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Preface

Inequalities are found in almost all fields of pure and applied mathematics. Because
of their various applications in areas such as the natural and engineering sciences
as well as economics, new types of interesting inequalities are discovered every
year. In the theory of differential equations, in the calculus of variations and in
geometry, fields which are dominated by inequalities, efforts are made to extend
and improve the classical ones.

The study of inequalities reflects the different aspects of modern mathematics.
On one hand, there is the systematic search for the basic principles, such as the
deeper understanding of monotonicity and convexity. On the other hand, finding
the solutions to an inequality requires often new ideas. Some of them have become
standard tools in mathematics. In view of the wide-ranging research related to
inequalities, several recent mathematical periodicals have been devoted exclusively
to this topic.

A possible way to speed up the communication between groups of specialists
of the seemingly unconnected areas is to bring them together from many parts of
the globe. Due to the efforts of János Aczél, Georg Aumann, Edwin F. Beckenbach,
Richard Bellman and Wolfgang Walter, the first General Inequalities meeting was
organized in Oberwolfach, Germany in 1976. Then six meetings were organized in
Oberwolfach between 1978 and 1995 and one in Noszvaj, Hungary in 2002.

The Conference on Inequalities and Applications ’07 also took place at the
De La Motte Castle in Noszvaj, Hungary from September 9 to 15, 2007. It was
organized by the Department of Analysis of the University of Debrecen.

The members of the Scientific Committee were Catherine Bandle (Basel),
William Norrie Everitt (Birmingham, honorary member), László Losonczi (De-
brecen), Zsolt Páles (Debrecen), Michael Plum (Karlsruhe) and Wolfgang Walter
(Karlsruhe, honorary member).

The organizing Committee consisted of Zoltán Daróczy (honorary chairman),
Attila Gilányi (chairman), Mihály Bessenyei (scientific secretary), Zoltán Boros,
Gyula Maksa, Szabolcs Baják and Fruzsina Mészáros. There were 66 participants
from 16 countries.

The talks at the symposium focused on the following topics: convexity and
its generalizations; mean values and functional inequalities; matrix and operator
inequalities; inequalities for ordinary and partial differential operators; integral and
differential inequalities; variational inequalities; numerical methods. A number of



x Preface

sessions were, as usual, devoted to problems and remarks. The scientific program
was complemented by several social events, such as a harpsichord recital of some
masterpieces of Bach and Haydn, performed by Ágnes Várallyay.

This volume contains 33 research papers, about half of the works presented
at the meeting. The material is arranged into six chapters ranging from Inequali-
ties related to ordinary and partial differential equations to Inequalities, stability,
and functional equations. The contributions given here reflect the ramification of
inequalities into many areas of mathematics, and also present a synthesis of results
in both theory and practice.

The editors of the volume are thankful to Mrs. Phyllis H. Brown for the
artistic drawings made at the conference, which are illustrations to the six chap-
ters. They thank Mihály Bessenyei for enthusiastically compiling the report of the
meeting, Andrea Pákozdy for the preparation of the manuscripts and the publisher,
Birkhäuser Verlag, for the careful typesetting and technical assistance.

The organization of the meeting and the publication of the proceedings were
partially supported by the Hungarian Scientific Research Fund Grants NK–68040
and K–62316.

The Editors
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Abstracts of Talks

Abramovich, Shoshana: Normalized Jensen functional and superquadracity.
(Joint work with Sever S. Dragomir.)

Normalized Jensen functional is the functional

Jn (f,x,p) =
n∑

i=1

pif (xi)− f
(

n∑
i=1

pixi

)
,

n∑
i=1

pi = 1.

A superquadratic function is a function f defined on an interval I = [0, a] or
[0,∞) so that for each x in I there exists a real number C (x) such that

f (y)− f (x) ≥ f (|y − x|) + C (x) (y − x)

for all y ∈ I.
For example the functions xp, p ≥ 2 and the functions −xp, 0 ≤ p ≤ 2 are

superquadratic functions as well as the function f (x) = x2 log x, x > 0, f (0) = 0.
Using these definitions we generalize for convex functions the inequality

MJn (f,x,q) ≥ Jn (f,x,p) ≥ mJn (f,x,q)

dealt by S.S. Dragomir and we show that for superquadratic functions, we get
nonzero lower bounds of Jn (f,x,p)−mJn (f,x,q) and nonzero upper bounds of
Jn (f,x,p)−MJn (f,x,q).

Then we define an extended normalized Jensen functional

Hn,k (f,x,q,p) =
n∑

i1,...,ik=1

pi1 . . . pik
f

⎛⎝ k∑
j=1

qjxij

⎞⎠− f (
n∑

i=1

pixi

)
,

∑n
i=1 pi = 1,

∑k
j=1 qj = 1, and we establish bounds for

Hn,k (f,x,q,p)−mHn,k (f,x,q, r)

for different values of m when f is convex and when f is superquadratic.
At the end of the paper we get a reverse Jensen inequality for special cases

of superquadratic functions.
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Adamek, Miros�law: On three-parameter families and associated convex functions.

Using two-parameter families E.F. Beckenbach presented in [1] the concept of
generalized convex functions. It is extended in [2] to two-dimensional case by the
use of so-called three-parameter families. In particular, F-midconvex functions are
defined.

In this talk we define
(
F, (t1, t2, t3)

)
-convex functions and we show that any

such a function must be F-midconvex. We also consider some properties of three-
parameter families.

References

[1] E.F. Beckenbach, Generalized convex functions, Bull. Amer. Math. Soc. 43 (1937),
363–371.

[2] M. Adamek, A. Gilányi, K. Nikodem, Zs. Páles, A note on three-parameter families
and generalized convex functions, J. Math. Anal. Appl. 330 (2007), 829–835.

Baják, Szabolcs: Invariance equation for generalized quasi-arithmetic means.
(Joint work with Zsolt Páles.)

We deal with the following equation, which is a generalization of the Matkowski-
Sutô problem:

(ϕ1 + ϕ2)−1
(
ϕ1(x) + ϕ2(y)

)
+ (ψ1 + ψ2)−1

(
ψ1(x) + ψ2(y)

)
= x+ y ,

where ϕ1, ϕ2, ψ1, ψ2 are monotonically increasing, continuous functions on the
same interval and we assume that each function is four times continuously differ-
entiable. First we establish the connection between ϕ1 and ϕ2, and ψ1 and ψ2 by
comparing the derivatives up to the fourth order and taking x = y. Then we give
the general solutions.

Bandle, Catherine: An eigenvalue problem with mixed boundary conditions: open
problems.

In this talk we discuss the following non-standard eigenvalue problem:

�u+ (λ− q)u = 0 in D ⊂ RN ,
∂u

∂n
= λσu on ∂D.

Here q > 0 and σ < 0 are real numbers and D is a bounded domain. In a series of
papers in collaboration with J. v. Below and W. Reichel the existence of positive
and negative eigenvalues

· · · < λ−2 < λ−1 < 0 < λ1 < λ2 < · · · , λ±n → ±∞
was established. In addition it was shown that both λ1 and λ−1 are simple which
led to maximum and anti-maximum principles. The question arises to what extent
do some of the classical inequalities for the membrane problem hold. Upper (lower)
bounds for λ1 (λ−1) are easily obtained from the variational characterization. More
difficult are lower (upper) bounds depending only on the geometry, q and σ. It turns
out that this problem is much more involved and that many conjectures remain
unsolved.
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Barza, Sorina: Sharp constants related to Lorentz spaces.
(Joint work with Viktor Kolyada and Javier Soria.)

In the theory of Lorentz spaces Lp,s(R, μ) it is very natural to consider the following
norm defined in terms of Köthe duality

‖f‖′p,s = sup
{∫

R

fgdμ : ‖g‖p′,s′ = 1
}
.

We call it the “dual norm”. It was proved in [1] that the dual norm is equivalent
with the usual norm defined in terms of the decreasing rearrangement but without
giving the optimal constants. We will find the best constants in the inequalities
relating these norms. This was done in a joint work with Viktor Kolyada and
Javier Soria (see [2]).

References

[1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston,
1988.

[2] S. Barza, V. Kolyada and J. Soria, Sharp constants related to the triangle inequality
in Lorentz spaces, submitted.

Behnke, Henning: Lower and upper bounds for sloshing frequencies.

The calculation of the frequencies ω for small oscillations of an ideal liquid in a
container results in the eigenvalue problem:

−Δϕ = 0 in Ω (liquid),
∂ϕ

∂n
= λϕ on ∂1Ω (free surface), (1)

∂ϕ

∂n
= 0 on ∂2Ω (container wall),

λ > 0;

n denotes the outward normal to the boundary ∂Ω of Ω, the relation between λ
and ω is λ = ω2/g, g is the acceleration due to gravity. As an example for the
diversity of possible domains with polygonal boundaries, let Ω be defined as

Ω := {(x, y) ∈ R2 : −1 < y < 0,−1− y

2
< x < 0},

∂1Ω := {(x, y) ∈ R2 : −1 ≤ x ≤ 0, y = 0},
and ∂2Ω := ∂Ω\∂1Ω. The two-dimensional problem is a model for an infinitely
long canal with cross section Ω.

Take Ha := {f ∈ H1(Ω) :
∫

∂1Ω
f ds = 0} and

a(f, g) :=
∫

Ω

(gradf)′ · gradg dx dy,

b(f, g) :=
∫

∂1Ω

ds for all f, g ∈ Ha;
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now the weak form of (1) is:

Determine ϕ ∈ Ha, ϕ 
= 0, λ ∈ R such that

a(f, ϕ) = λ b(f, ϕ) for all f ∈ Ha. (2)

A procedure for calculating lower and upper bounds to the eigenvalues of (2)
is proposed. The calculation of upper bounds is done by means of the well-known
Rayleigh-Ritz procedure. For the lower bound computation Goerich’s generaliza-
tion of Lehmann’s method is applied, trial functions are constructed with finite
elements. It is shown that Lehmann’s method can not be applied in this context,
whereas a specification of Goerisch’s method is possible.

Rounding errors in the computation are controlled with interval arithmetic.
Numerical results for different cross sections Ω are given.

Bessenyei, Mihály: Hermite–Hadamard-type inequalities for Beckenbach-convex
functions.

Beckenbach structures, or as they are also termed, Beckenbach families are deter-
mined by the property that prescribing certain points on the plain (with pairwise
distinct first coordinates) there exists precisely one member of the family that in-
terpolates the points. Applying Beckenbach families, the classical convexity notion
can be considerably generalized (see [1], [2] [3], [9]). The obtained convexity notion
involves the notion of higher-order convexity due to Popoviciu (see [8]); in more
general, the convexity notion induced by Chebyshev systems if the underlying
Beckenbach family has a linear structure (see [7]).

The aim of the talk is to present some special support properties for general-
ized convex functions of Beckenbach sense, and, motivated by some earlier results
(consult [4] [5], [6]), as direct applications of the support properties, to obtain
Hermite–Hadamard-type inequalities for that kind of functions. The Markov–Krein
representation problem of Beckenbach families is also investigated.

References

[1] E.F. Beckenbach, Generalized convex functions, Bull. Amer. Math. Soc. 43 (1937),
363–371.

[2] E.F. Beckenbach and R.H. Bing, On generalized convex functions, Trans. Amer. Math.
Soc. 58 (1945), 220–230.

[3] E.F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54 (1948), 439–460.

[4] M. Bessenyei, Hermite–Hadamard-type inequalities for generalized convex functions,
Ph.D. dissertation (2005), RGMIA monographs
(http://rgmia.vu.edu.au/monographs), Victoria University, 2006.

[5] M. Bessenyei and Zs. Páles, On generalized higher-order convexity and Hermite–
Hadamard-type inequalities, Acta Sci. Math. (Szeged) 70 (2004), 13–24.

[6] M. Bessenyei and Zs. Páles, Hermite–Hadamard inequalities for generalized convex
functions, Aequationes Math. 69 (2005), 32–40.
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[7] S. Karlin and W.J. Studden, Tchebycheff systems: With applications in analysis and
statistics, Pure and Applied Mathematics, Vol. XV, Interscience Publishers John Wi-
ley & Sons, New York-London-Sydney, 1966.

[8] T. Popoviciu, Les fonctions convexes, Hermann et Cie, Paris, 1944.

[9] L. Tornheim, On n-parameter families of functions and associated convex functions,
Trans. Amer. Math. Soc. 69 (1950), 457–467.

Boros, Zoltán: Approximate convexity of van der Waerden type functions.

Let p ∈]0,∞[ . The Takagi–van der Waerden type function

Tp(x) =
∞∑

n=0

(dist(2nx,Z))p

2n
(x ∈ R)

plays a specific role in the theory of approximately convex functions ([2], [3]).
Motivated by this experience, we investigate whether Tp fulfils the inequality

Tp

(
x+ y

2

)
≤ Tp(x) + Tp(y)

2
+ cp|x− y|p (1)

for every x, y ∈ R with some constant cp ≥ 0. If, for some fixed p, Tp satisfies the
inequality (1), then, by [3, Theorem 6], we have cp ≥ 2−p. It is established, for
instance [1], that the Takagi–van der Waerden function T1 satisfies the inequality
(1) with p = 1 and c1 = 1/2 .

References

[1] Z. Boros, An inequality for the Takagi function, Math. Inequal. Appl., to appear.

[2] A. Házy and Zs. Páles, On approximately midconvex functions, Bull. London Math.
Soc. 36 (2004), 339–350.

[3] A. Házy and Zs. Páles, On approximately t-convex functions, Publ. Math. Debrecen
66 (2005), 489–501.

[4] T. Takagi, A simple example of the continuous function without derivative, J. Phys.
Math. Soc. Japan 1 (1903), 176–177.

[5] B.L. van der Waerden, Ein einfaches Beispiel einer nichtdifferenzierbaren stetigen
Funktion, Math. Z. 32 (1930), 474–475.

Brown, Malcolm B.: A Hardy Littlewood inequality for the p-Laplacian.
(Joint work with Simon Aumann and Karl M. Schmidt.)

Hardy and Littlewood obtained the inequality(∫ ∞

0

| f ′ |2 dx
)2

≤ 4
∫ ∞

0

| f |2 dx
∫ ∞

0

| f ′′ | dx.

This has been generalized, by Everitt, to one involving the Sturm–Liouville opera-
tor −y′′+qy: the HELP inequality. In this talk we show that the inequality may be
further generalized to involve functions in Lp and in the spirit of the Everitt result
may be considered as a generalization of the HELP inequality for the p-Laplacian
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Brown, Richard C.: An Opial-type Inequality with an integral boundary condition.
(Joint work with Michael Plum.)

Suppose that y is a real absolutely continuous function on the interval [a, b], −∞ <

a < b < ∞,
∫ b

a y dx = 0, and
∫ b

a (y′)2 dx < ∞. We give a new proof that the best
constant K of the inequality∫ b

a

|yy′| dx ≤ K(b− a)
∫ b

a

(y′)2 dx

is 1/4 and that equality holds if and only if y = c(x− (a+ b)/2 for any constant c.
The techniques employed are much more complicated than those required to prove
the standard Opial inequality where the boundary conditions are y(a) = 0 = y(b)
and K is also 1/4.

Bullen, Peter: Equivalent inequalities.
(Joint work with Li Yuan-Chuan and Yeh Cheh-Chi.)

This is a report on joint work in progress. It was pointed out in, [1, pp. 212–213]
that many disparate looking inequalities are in fact equivalent. We are attempting
to systematize this fact.

References

[1] P.S. Bullen Handbook of Means and Their Inequalities, Kluwer Academic Publishers,
Dordrecht, 2003.

Burai, Pál: Inequalities with Hölder and Daróczy means.

We present some inequalities connected with Hölder means

Hp(x, y) :=

⎧⎪⎨⎪⎩
(

xp+yp

2

)1/p

if p 
= 0
x , y > 0 ,√

xy if p = 0

and Daróczy means

Dw,p(x, y) :=

⎧⎪⎨⎪⎩
(

xp+w(
√

xy)p+yp

w+2

)1/p

if p 
= 0 and ∞ > w ≥ −1
x, y > 0 .√

xy if p = 0 or w =∞
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Buşe, Constantin: An ergodic version of the Rolewicz theorem on exponential
stability in Banach spaces.
(Joint work with Constantin P. Niculescu.)

We shall prove that a semigroup of operators acting on a Banach space X is
uniformly exponentially stable, that is its exponential growth is negative, if and
only if there exist two positive constants α and M such that for all positive t and
each x ∈ X, one has:

1
t

∫ t

0

φ(eαs||T (s)x||)ds ≤ φ(M ||x||).

The result is proved under the general assumption that for each positive t and
each x ∈ X, the map s �→ ||T (s)x|| is measurable on the interval [0, t]. Here φ is
a proper function, i.e., a nonnegative and nondecreasing function on [0,∞] with
φ(∞) =∞. Similar result for evolution families are also proved.

Cerone, Pietro: Bounding the Gini mean difference.

Recent results on bounding and approximating the Gini mean difference for both
general distributions and distributions supported on a finite interval are surveyed.
It supplements the previous work utilizing the Steffensen and Karamata type ap-
proaches in approximating and bounding the Gini mean difference [1], given by

RG (f) :=
1
2

∫ ∞

−∞

∫ ∞

−∞
|x− y|dF (x) dF (y) , (1)

where F (x) is the cumulative function associated with a density function f(x). The
mean difference has a certain theoretical attraction, being dependent on the spread
of the variate-values among themselves rather than on the deviations from some
central value. Further, its defining integral (1) may converge when the variance
does not.
Some identities for the Gini Mean Difference, RG (f) will be stated here since they
will form the basis for obtaining approximations and bounds.
Define the functions e : R→ R, e(x) = x, F : R→ R+, F (x) =

∫ x

−∞ f (t) dt, then
the covariance of e and F is given by Cov (e, F ) := E [(e− E (f)) (F − E (F ))].

Theorem. With the above notation the following identities hold:

RG (f) = 2 Cov (e, F ) =
∫ ∞

−∞
(1− F (y))F (y) dy = 2

∫ ∞

−∞
xf (x)F (x) dx−E (f) .

(2)

Steffensen type inequalities have attracted considerable attention in the lit-
erature given the variety of applications and its generality. The following result is
obtained utilizing the Steffensen inequality [2] which provides some improvements
over an earlier result of Gastwirth under less restrictive assumptions.

Theorem. Let f be supported on [a, b] and E (f) exist. Then RG (f) satisfies∫ a+λ

a
(a+ λ− x) f (x) dx ≤ RG (f) ≤ λ −

∫ b

b−λ
[x− (b−λ)] f (x) dx, where λ =

E (f)− a.
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Below, we give bounds on RG (f) based on an inequality of Karamata type ([2, 3]).

Theorem. Let f(x) be a pdf on [a, b] and 0 < m ≤ f(x) ≤M , then RG (f) satisfies
E(f)+2M[a( a+b

2 )−bE(f)]
2bM−1 ≤ RG (f) ≤ E(f)+2M[b( a+b

2 )−aE(f)]
2aM−1 .

Theorem. Let f(x) be a pdf on [a, b] with a > 0 and 0 < m ≤ f(x) ≤ M ,
x ∈ [a, b]. Then RG (f) satisfies

(
1−ρζ
1+ρζ

)
E (f) ≤ RG (f) ≤

(
ρ−ζ
ρ+ζ

)
E (f), where

ρ = M
m , ζ = M2−a2

b2−M2
and M2 =

∫ b

a
x2f(x)dx, the second moment about zero.

References
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Chudziak, Jacek: Stability of the equation originating from some kind of shift-
invariance.

A kind of invariance of n-attribute utility functions leads to the functional equation

U(x1 + z, . . . , xn + z) = k(z)U(x1, . . . , xn) + l(z),

where k, l, U are unknown functions. Inspired by the stability problem for this
equation, we consider the inequality

|U(x1 + z, . . . , xn + z)− k(z)U(x1, . . . , xn)− l(z)| ≤ ε,
where ε ≥ 0 is fixed.

Daróczy, Zoltán: A characterization of nonconvexity and its applications.
(Joint work with Zsolt Páles.)

Given a nonconvex real function f : I → R, one can find elements x, y ∈ I and
0 < t < 1 such that

f(tx+ (1 − t)y) > tf(x) + (1− t)f(y) (1)

holds. Assuming continuity, one can obtain the following sharper statement:

Theorem. Let f : I → R be continuous nonconvex function. Then there exist
elements x, y ∈ I such that (1) holds for all 0 < t < 1.

As an application, we show that this simple result has interesting and sur-
prising consequences in the comparison theory of quasi-arithmetic means.
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Dragomir, Sever Silvestru: On the Grüss Type inequalities in Hilbert spaces with
applications for operator inequalities.

Let (H, 〈·, ·〉) be a Hilbert space over the real or complex number field K, B(H)
the C∗-algebra of all bounded linear operators defined on H and A ∈ B(H). If
A is invertible, then we can define the Kantorovich functional as K (A;x) :=
〈Ax, x〉

〈
A−1x, x

〉
for any x ∈ H, ‖x‖ = 1.

As pointed out by Greub and Rheinboldt in their seminal paper [3], if M >
m > 0 and for the selfadjoint operator A we have MI ≥ A ≥ mI in the partial
operator order of B(H), where I is the identity operator, then the Kantorovich
operator inequality holds true

1 ≤ K (A;x) ≤ (M +m)2

4mM
, for any x ∈ H, ‖x‖ = 1. (1)

On utilizing some recent Grüss’ type inequalities in inner product spaces
obtained by the author (see for instance [1]) we can obtain various Kantorovich
operator type inequalities such as the following ones [2]:

Theorem. Let A ∈ B(H) and α, β ∈ K be such that the transform

Cα,β (A) := (A∗ − αI) (βI −A)

is accretive. If Re (βα) > 0 and the operator −i Im (βα)Cα,β (A) is accretive, then

|K (A;x)− 1| ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4
|β−α|2
|βα| −

[
Re 〈Cα,β (A) x, x〉Re

〈
C 1

α , 1
β

(
A−1

)
x, x

〉] 1
2
,

1
4
|β−α|2
|βα| −

∣∣∣〈(A− α+β
2 I

)
x, x

〉∣∣∣ ∣∣∣〈(A−1 − α+β
2αβ I

)
x, x

〉∣∣∣ ,
1
4
|β−α|2
Re(βα) |〈Ax, x〉|

∣∣〈A−1x, x
〉∣∣ ,

|β+α|−2[Re(βα)]
1
2

|βα| 12
[
|〈Ax, x〉|

∣∣〈A−1x, x
〉∣∣] 1

2 ,

1
4

|β−α|2
|βα| 12 |β+α|

[
(‖Ax‖+ |〈Ax, x〉|)

(∥∥A−1x
∥∥ +

∣∣〈A−1x, x
〉∣∣)] 1

2 ,

(2)
for any x ∈ H, ‖x‖ = 1.
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Fazekas, Borbála: Enclosure for the fourth order Gelfand-equation.

We investigate the fourth order nonlinear biharmonic equation for u ∈ H2
0 (Ω) on

the star-shaped domain Ω ⊂ R2

Δ2u = F (u) on Ω,
u = 0 on ∂Ω,

∂u

∂ν
= 0 on ∂Ω.

Our aim is to obtain an enclosure of a solution with a rigorous proof of exis-
tence. For that purpose, we use a computer-assisted approach based on a general
method by M. Plum.

The main numerical tools are, e.g., C0-finite element approximations for the
solution, as well as for its gradient and its Laplacian, and homotopy methods (to
get enclosures for certain eigenvalues).

We demonstrate our results on the example of the Gelfand-equation, i.e., in
the case F (u) = λ exp(u).

Fechner, W�lodzimierz: A Sandwich theorem for orthogonally additive functions.
(Joint work with Justyna Sikorska.)

Let p be an orthogonally subadditive mapping, q an orthogonally superadditive
mapping and assume that q ≤ p. We prove that under some additional assumptions
there exists a unique orthogonally additive mapping f such that q ≤ f ≤ p.

Gavrea, Bogdan: On some integral inequalities.

In this presentation we extend some results presented in [1] and we solve an open
problem proposed here.
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Gavrea, Ioan: Operators of Bernstein-Stancu type and the monotonicity of some
sequences involving convex functions.

Using the properties of some sequences of positive linear operators of Bernstein-
Stancu type, we establish some refinements of some inequalities obtained in [1].
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Ger, Roman: On vector Pexider differences controlled by scalar ones.

During several decades of the last age till now, stability type inequalities play a
significant role in the general theory of inequalities. After many particular cases,
Kil-Woung Jun, Dong-Soo Shin Byung-Do Kim presented the description of solu-
tions of a general stability inequality of Pexider type (see [1]), while Yang-Hi Lee
and Kil-Woung Jun investigated it assuming only a special form of the dominat-
ing function (see [2]). As it is well known, the standard approach (direct method),
applied also in these two papers, is useless while dealing with the most delicate
(singular) cases. Facing the lack of stability we then try to diminish the dominat-
ing function to get the desired result. The aim of our talk is to give the solutions
of the inequality

‖F (x+ y)−G(x) −H(y)‖ ≤ g(x) + h(y)− f(x+ y)

where F,G,H map a given commutative semigroup (S,+) into a Banach space
and f, g, h : S → R are given scalar functions. Reducing this inequality to the
case where G = H and g = h we then apply sandwich type results obtained by
Kazimierz Nikodem, Zsolt Páles and Szymon Wa̧sowicz in [3].
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Gilányi, Attila: Regularity theorems for generalized convex functions.
(Joint work with Zsolt Páles.)

One of the classical results of the theory of convex functions is the theorem of
F. Bernstein and G. Doetsch [2] which states that if a real-valued Jensen-convex
function defined on an open interval I is locally bounded above at one point in
I then it is continuous. According to a related result by W. Sierpiński [4], the
Lebesgue measurability of a Jensen-convex function implies its continuity, too.
In this talk we generalize the theorems above for (M,N)-convex functions, calling
a function f : I → J (M,N)-convex if it satisfies the inequality

f(M(x, y)) ≤ Nx,y(f(x), f(y))

for all x, y ∈ I, where I and J are open intervals, M is a mean on I and Nx,y

is a suitable mean on J for every x, y ∈ I (cf., e.g., [3]) Our statements contain
T. Zgraja’s results on (M,M)-convex functions ([5]) and M. Adamek’s theorems
on λ-convex functions ([1]) as special cases.
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Goldberg, Moshe: Minimal polynomials and radii of elements in finite-dimen-
sional power-associative algebras.

We begin by revisiting the definition and some of the properties of the minimal
polynomial of an element of a finite-dimensional power-associative algebra A over
an arbitrary field F. Our main observation is that pa, the minimal polynomial of
a ∈ A, may depend not only on a, but also on the underlying algebra.

Restricting attention to the case where F is either R or C, we proceed to
define r(a), the radius of an element a in A, to be the largest root in absolute
value of the minimal polynomial of a. As it is, r possesses some of the familiar
properties of the classical spectral radius. In particular, r is a continuous function
on A.

In the third part of the talk we discuss stability of subnorms acting on subsets
of finite-dimensional power-associative algebras. Our main result states that if S,
a subset of an algebra A, satisfies certain assumptions, and f is a continuous
subnorm on S, then f is stable on S if and only if f majorizes the radius r.

Házy, Attila: On a certain stability of the Hermite–Hadamard inequality.
(Joint work with Zsolt Páles.)

In our talk, we investigate the connection between the stability forms of the func-
tional inequalities related to Jensen-convexity, convexity, and Hermite–Hadamard
inequality. In other words, we consider continuous functions f : D → R satisfying

f

(
x+ y

2

)
≤ f(x) + f(y)

2
+ δJ(‖x− y‖) (x, y ∈ D),

f

(
x+ y

2

)
≤

∫ 1

0

f
(
tx+ (1− t)y

)
dt+ δH(‖x− y‖) (x, y ∈ D),

and

f
(
tx+ (1 − t)y) ≤ tf(x) + (1− t)f(y) + δC(t, ‖x− y‖) (x, y ∈ D, t ∈ [0, 1]),

where δJ , δH : [0,∞[→ R, and δC : [0, 1] × [0,∞[→ R are given functions called
the stability terms. The main results establish connections between these terms.
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Hoang, Vu: Enclosures for scalar nonlinear hyperbolic problems.

Consider the Cauchy problem for the scalar conservation law in one space dimen-
sion:

ut + f(u)x = 0
u(x, 0) = u0(x)

where f is a given nonlinear function. Suppose an approximate solution w to this
PDE has been computed by some numerical method. It is desirable to verify the
existence of a weak solution to our problem lying close to w (in an appropriate
norm). A challenge is presented by the well-known fact that weak solutions may
develop discontinuities (shocks) and are not uniquely determined by their initial
data; one is interested in enclosing “physically” correct solutions, characterized
by additional (e.g., Entropy) criteria. We shall discuss an approach to this prob-
lem where one first computes an approximate solution to the perturbed equation
ut − εuxx + f(u)x = 0 (with small ε > 0) and then obtains an solution of the
conservation law by an iteration procedure.

Johansson, Maria: A unified approach to Hardy type inequalities for non-increasing
functions.
(Joint work with Lars-Erik Persson and Anna Wedestig.)

Some Hardy type inequalities for non-increasing functions are characterized by one
condition (Sinnamon), while others are described by two independent conditions
(Sawyer). In this presentation we make a unified approach to such results and
present a result which covers both the Sinnamon result and Sawyer’s result for
the case when one weight is non-decreasing. In all cases we point out that this
condition is not unique and can even be chosen among some (infinite) scales of
conditions.

Kittaneh, Fuad: Norm inequalities for commutators of Hilbert space operators.

Let A,B, and X be bounded linear operators on a complex separable Hilbert
space. It is shown that if A and B are self-adjoint such that a1 ≤ A ≤ a2 and
b1 ≤ B ≤ b2 for some real numbers a1, a2, b1, and b2, then for every unitarily
invariant norm |||·|||,

|||AX −XB||| ≤ (max (a2, b2)−min (a1, b1)) |||X |||
and

||AB −BA|| ≤ 1
2

(a2 − a1) (b2 − b1) ,

where ||·|| is the usual operator norm. Consequently, if A and B are positive, then

|||AX −XB||| ≤ max (||A|| , ||B||) |||X |||
and

||AB −BA|| ≤ 1
2
||A|| ||B|| .
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Generalizations of these norm inequalities to commutators of normal operators are
obtained, and applications of these inequalities are also given.

Klaričić Bakula, Milica: Generalizations of Jensen–Steffensen’s and related in-
equalities.
(Joint work with Marko Matić and Josip Pečarić.)

Let ϕ : (a, b)→ R be a convex function and pi ∈ R, i = 1, . . . , n satisfying

0 ≤ Pk ≤ Pn, k = 1, . . . , n, Pn > 0,

where

Pk =
k∑

i=1

pi.

We prove that for any xi ∈ (a, b), i = 1, . . . , n such that

x1 ≤ x2 ≤ · · · ≤ xn or x1 ≥ x2 ≥ · · · ≥ xn

the following inequalities

ϕ (c) + ϕ′ (c)

(
1
Pn

n∑
i=1

pixi − c
)
≤ 1
Pn

n∑
i=1

piϕ (xi)

≤ ϕ (d) +
1
Pn

n∑
i=1

piϕ
′ (xi) (xi − d) ,

hold for all c, d ∈ (a, b).
We show that the discrete Jensen–Steffensen’s inequality, as well as a discrete

Slater type inequality, can be obtained from these general inequalities as special
cases. We also prove that one of our general companion inequalities, under some
additional assumptions on the function ϕ is tighter then the obtained Slater type
inequality. The integral variants of the results are also established.

Kobayashi, Kenta: A constructive a priori error estimation for finite element
discretizations in a non-convex domain using mesh refinement.

In solving elliptic boundary value problem by finite element method in a bounded
domain which has a re-entrant corner, the convergent rate could be improved by
using mesh refinement. In our research, we have obtained explicit a priori error
estimation for finite element solution of the Poisson equation in a polygonal do-
main. Our result is important in a theoretical sense as well as practical calculations
because the constructive a priori error estimation for linear problem are often used
for computer-assisted proof for non-linear problems.

For f ∈ L2(Ω), we consider the weak solution of the following partial differ-
ential equation. {−Δu = f in Ω,

u = 0 on ∂Ω.
where Ω is the polygonal domain.
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If Ω is a convex domain, we can obtain a priori error estimation as follows:

‖u− uh‖H1
0 (Ω) ≤ Ch‖f‖L2(Ω),

where uh is a finite element solution, h denotes maximum mesh size, and C is a
constant which is calculated only by condition of mesh [3].

However, if Ω is a non-convex domain, we cannot obtain such O(h) error
estimation with uniform mesh because of the singularities at the re-entrant cor-
ner [1][2]. To deal with this difficulty, we use mesh refinement and furthermore,
obtained a priori error estimation for finite element solutions.
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Lemmert, Roland Heinrich: Boundary value problems via an intermediate value
theorem.
(Joint work with Gerd Herzog.)

We use an intermediate value theorem([1], [2]) for quasimonotone increasing func-
tions to prove the existence of a smallest and a greatest solution of the Dirichlet
problem

u′′ + f(t, u) = 0, u(0) = α, u(1) = β

between lower and upper solutions, where f : [0, 1] × E → E is quasimonotone
increasing in its second variable with respect to a regular cone.
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Losonczi, László: Polynomials all of whose zeros are on the unit circle.
(Joint work with Piroska Lakatos.)

According to a classical theorem of Cohn [1] all zeros of a polynomial P ∈ C[z] lie
on the unit circle if and only if
• P is self-inversive,
• all zeros of P ′ are in or on this circle.

Here we discuss recent results (see, e.g., [2], [3]) which give simple sufficient con-
ditions (inequalities in terms of the coefficients of P ) for all zeros of P to be on
the unit circle.
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Makó, Zita: On the equality of generalized quasi-arithmetic means.
(Joint work with Zsolt Páles.)

Given a continuous strictly monotone function ϕ : I → R and a probability mea-
sure μ on the Borel subsets of [0, 1], the two variable mean Mϕ,μ : I2 → I is defined
by

Mϕ,μ(x, y) := ϕ−1
(∫ 1

0

ϕ
(
tx+ (1 − t)y

)
dμ(t)

)
(x, y ∈ I).

This class of means includes quasi-arithmetic as well as Lagrangian means. The
aim of my talk is to study their equality problem, i.e., to characterize those pairs
(ϕ, μ) and (ψ, ν) such that

Mϕ,μ(x, y) = Mψ,ν(x, y) (x, y ∈ I)
holds. Under at most fourth-order differentiability assumptions for the unknown
functions ϕ and ψ, a complete description of the solution set of the above functional
equation is obtained.

Maksa, Gyula: A decomposition of Wright convex functions of higher order.
(Joint work with Zsolt Páles.)

In this talk we present the following generalization of a result of C.T. Ng [4]. Let
∅ 
= I ⊂ R be an open interval, p be a fixed positive integer, and f : I → R be a
p-Wright convex function, that is, f satisfies the inequality

Δh1 . . .Δhp+1f(x) ≥ 0

for all h1 . . . hp+1 ∈]0,+∞[, x ∈ I, for which x+ h1 + · · ·+ hp+1 ∈ I. Then

f(x) = C(x) + P (x) (x ∈ I)
where C : I → R is (continuous) p-convex and P : R→ R is a polynomial function
of degree at most p, that is, Δp+1

h P (x) = 0 for all x, h ∈ R. In the proof we use

some ideas, among others, from the works [1], [2], and [3].
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Matić, Marko: Euler-Grüss type inequalities involving measures.
(Joint work with Ambroz Čivljak and Ljuban Dedić.)

Let μ be a real Borel measure on Borel set X ⊂ Rm such that μ(X) 
= 0 and let
f ∈ L∞(X,μ) be such that

γ ≤ f(t) ≤ Γ, t ∈ X, μ-a.e.,

for some γ,Γ ∈ R. We prove that then∣∣∣∣∫
X

f(t)dμ(t)
∣∣∣∣ ≤ 1

2 (Γ− γ) ‖μ‖ , (G)

where ‖μ‖ is the total variation of μ. Also, we discuss the equality case in (G).
This inequality is a generalization of the key result from [2]. Using the inequality
(G) and general Euler identities involving μ-harmonic sequences of functions that
were proved in [1] we give various Euler-Grüss type inequalities.
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Matkowski, Janusz: Generalization of some results on globally Lipschitzian super-
position operators.

Let I ⊂ R be an interval. A function h : I × R → R generates the so-called
superposition (or Nemytskij) operator H : RI → RI defined by

H(ϕ)(x) := h (x, ϕ(x)) , ϕ ∈ JI , (x ∈ I).

It is known that there are some Banach function spaces F(I) of functions ϕ : I → R

with the norms ‖·‖ (stronger than the supremum norm) such that the global
Lipschitz inequality

‖H(ϕ)−H(ψ)‖ ≤ c ‖ϕ− ψ‖ , ϕ, ψ ∈ F(I),

implies that
h(x, y) = a(x)y + b(x), x ∈ I, y ∈ R

for some a, b ∈ F(I).
We shall present some results which show that the Lipschitz condition can

replaced by the uniform continuity of H and weaker ones.
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Mészáros, Fruzsina: Functional equations connected with beta distributions.
(Joint work with Károly Lajkó.)

The functional equation

fU (u) fV (v) = fX

(
1− v
1− uv

)
fY (1− uv) v

1− uv (u, v ∈ (0, 1)) (1)

for unknown density functions fX , fY , fU , fV : (0, 1) → R+ was introduced by
J. Weso�lowski.

He determined the solution of (1) under the assumptions that the density
functions are strictly positive and locally integrable on (0, 1) and he asked the
measurable solution of (1) (see [5]).

The investigations of Weso�lowski are based on the locally integrable real
solutions g1, g2, α1, α2 : (0, 1)→ R of the following general functional equation

g1

(
1− x
1− xy

)
+ g2

(
1− y
1− xy

)
= α1 (x) + α2 (y) (x, y ∈ (0, 1)) . (2)

The main aim of this talk is to give the general solution of (1) for func-
tions fX , fY , fU , fV : (0, 1) → R+ and the general solution of (2) for functions
g1, g2, α1, α2 : (0, 1)→ R. Furthermore we determine the solution of (1) under the
following natural assumptions:

1. the density functions are measurable,
2. (1) is satisfied for (u, v) ∈ (0, 1)2 almost everywhere.
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[2] A. Járai, Measurable solutions of functional equations satisfied almost everywhere,
Mathematica Pannonica 10 (1999), 103–110.
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Mitrea, Alexandru: Inequalities related to the error-estimation and superdense
unbounded divergence of some approximation procedures.
(Joint work with Paulina Mitrea.)

Let consider the approximation procedures of interpolatory type, described by the
relations:

(1) Af = Dnf +Rnf, f ∈ Cs[−1, 1];n ≥ 1,
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where A is a given continuous linear functional, s ≥ 0 is an integer and Dn, n ≥ 1,
are approximating functionals associated to a triangular node matrix {xk

n : n ≥
1; 1 ≤ k ≤ in} ⊆ [−1, 1] of the form:

Dnf =
m∑

j=0

in∑
k=1

akj
n f

(j)(xk
n),

with a given integer m, 0 ≤ m ≤ s.
Our aim is to obtain theorems concerning the convergence or the superdense

unbounded divergence of the approximation procedures (1) and to give, in this
framework, estimations of the approximation error Rnf .

To this end, we shall establish various inequalities regarding the norm of the
functionals Dn for the following approximation procedures:

(i) Numerical differentiation formulas, i.e., Af = f (s)(0)

(ii) Quadrature formulas, i.e., Af =
∫ 1

−1

f(x)dx, with Jacobi or equidistant in-

terpolatory nodes xk
n.
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Mohapatra, Ram Narayan: Sharp inequalities for rational functions in the complex
plane.
(Joint work with John Boncek.)

Markov and Bernstein Inequalities for real and complex polynomials have been
studied extensively. Their analogues for rational functions have been studied by
Borwein and Erdelyi, and Li, Mohapatra and Rodriguez separately. Extremal ra-
tional functions have been determined to show that these inequalities are sharp. In
the case of polynomials an extension of the concept of the derivative is achieved by
considering polar derivatives. In that case Laguerre’s theorem help establish many
nice results. In this talk we shall discuss some of the known results and define an
analogue of polar derivative for rational functions and obtain an inequality for self
inversive rational functions. Some other related results will also be mentioned.

Moslehian, Mohammad Sal: Asymptoticity aspect of the quadratic functional equa-
tion in multi-normed spaces.

The notion of multi-normed space was introduced by H.G. Dales and M.E. Polya-
kov in [2]. This concept is somewhat similar to operator sequence space and has
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some connections with operator spaces and Banach latices. In this talk, we investi-
gate the stability (see [3]) of the quadratic functional equation for mappings from
linear spaces into multi-normed spaces (see [1]). We then study an asymptotic
behavior of the quadratic equation in the framework of multi-normed spaces.
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Mrowiec, Jacek: On generalized convex sets and generalized convex functions (in
the sense of Beckenbach).

A natural way to generalize the concept of a convex function was introduced by
E.F. Beckenbach in [1]. In this talk this concept is extended to higher-dimensional
cases. We will present and compare two definitions of generalized convex sets and
their properties. Then two ways of introducing generalized convex functions are
presented.
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Nagatou, Kaori: Eigenvalue problems on 1-D Schrödinger operators.

In this talk we consider the following eigenvalue problem

−u′′ + q(x)u + s(x)u = λu, x ∈ R, (1)

where we assume that q(x) ∈ L∞(R) is a periodic function and s ∈ L∞(R) satisfies
s(x)→ 0 (|x| → ∞). This kind of operator has essential spectrum with band-gap
structure, and depending on the perturbation it may have, in addition, isolated
eigenvalues in the spectral gaps.

This kind of problem is very important not only in practical physical problems
but also in relation to a nonlinear problem

−u′′ + q(x)u + f(u) = 0 on R. (2)

In order to enclose a weak solution u ∈ H1(R) of (2) we need to estimate an
eigenvalue (especially with the smallest absolute value) of the linearized operator
in some spectral gap. Due to the lack of appropriate variational characterizations
and to the “spectral pollution” problem, it is difficult to locate these eigenvalues
analytically or numerically. We will show how a mathematically rigorous treatment
of such a problem could be done by computer-assisted means, and especially we
focus on excluding eigenvalues in spectral gaps.
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Nakao, Mitsuhiro T.: The guaranteed a priori error estimates in the finite element
method and the spectral method with applications to nonlinear PDEs.

In this talk, we first consider the guaranteed a priori error estimates in the finite
element method for Poisson’s equation and for bi-harmonic problems. In these er-
ror estimates, actual values of constants in the various inequalities play important
and essential roles. Next, as an application of the results, we show a numerical
verification method of solutions for nonlinear elliptic problems and Navier-Stokes
equations as well as other applications. We also show similar kinds of error es-
timates can also be possible for the spectral Galerkin method with applications
to prove the bifurcating solutions of two and three dimensional heat convection
problems. Several numerical examples which confirm the actual effectiveness of
our method will be presented.

References

[1] K. Hashimoto, K. Kobayashi, M.T. Nakao, Verified numerical computation of solu-
tions for the stationary Navier-Stokes equation in nonconvex polygonal domains, MHF
Preprint Series, Kyushu University, MHF2007-2 (2007), 15 pp.

[2] K. Nagatou, K. Hashimoto, M.T. Nakao, Numerical verification of stationary solutions
for Navier-Stokes problems, J. Comput. Appl. Math. 199 (2007), 424–431.

[3] M.T. Nakao and K. Hashimoto, On guaranteed error bounds of finite element approx-
imations for non-coercive elliptic problems and its applications, J. Comput. Appl.
Math., to appear.

[4] Y. Watanabe, N. Yamamoto, M.T. Nakao T. Nishida, A Numerical Verification of
Nontrivial Solutions for the Heat Convection Problem, J. Math. Fluid Mech. 6 (2004),
1–20.

Niculescu, Constantin P.: An overview of absolute continuity and its applications.

The basic idea of absolute continuity is to control the behavior of a function f :
X → R via an estimate of the form

|f | ≤ εq + δ(ε)p, ε > 0, (1)
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where p, q : X → R are suitably chosen nonnegative functions. This appears as an
useful relaxation of the condition of domination

|f | ≤ p,
The aim of our paper was to illustrate the usefulness of the notion of absolute
continuity in a series of fields such as Functional Analysis, Approximation Theory
and PDE.
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[4] B. Chabat, Introduction à l’analyse complexe. Tome 1, Ed. Mir, Moscou, 1990.

[5] K.R. Davidson and A.P. Donsig, Real Analysis with Real Applications, Prentice Hall,
Inc., Upper Saddle River, N. J., 2002.

[6] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge
University Press, 1995.

[7] L.C. Evans, Partial Differential Equations, American Mathematical Society, Provi-
dence, R.I., 3rd Printing, 2002.

[8] H. Hueber, On Uniform Continuity and Compactness in Metric Spaces, Amer. Math.
Monthly 88 (1981), 204–205.

[9] P.P. Korovkin, On convergence of linear positive operators in the space of continuous
functions, Doklady Akad. Nauk. SSSR (NS) 90 (1953), 961–964. (Russian)

[10] H.E. Lomeli and C.L. Garcia, Variations on a Theorem of Korovkin, Amer. Math.
Monthly 113 (2006), 744–750.

[11] C.P. Niculescu, Absolute Continuity and Weak Compactness, Bull. Amer. Math. Soc.
81 (1975), 1064–1066.

[12] C.P. Niculescu, Absolute Continuity in Banach Space Theory, Rev. Roum. Math.
Pures Appl. 24 (1979), 413–422.
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Nikodem, Kazimierz: Notes on t-quasiaffine functions.
(Joint work with Zsolt Páles.)

Given a convex subset D of a vector space and a constant 0 < t < 1, a function
f : D → R is called t-quasiaffine if, for all x, y ∈ D,

min{f(x), f(y)} ≤ f
(
tx+ (1 − t)y

)
≤ max{f(x), f(y)}.
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If, furthermore, both of these inequalities are strict for f(x) 
= f(y), f is called
strictly t-quasiaffine. We show that every t-quasiaffine function is also Q-quasiaffine
(i.e., t-quasiaffine for every rational number t in [0, 1]). An analogous result is
established for strict t-quasiaffinity. The basic role in the proof of these results is
played by a theorem stating that if A and B are disjoint t-convex sets such that
D = A ∪B, then A and B are also Q-convex.

Ogita, Takeshi: Lower and upper error bounds of approximate solutions of linear
systems.
(Joint work with Shin’ichi Oishi.)

This talk is concerned with the problem of verifying the accuracy of an approximate
solution x̃ of a linear system

Ax = b, (1)

where A is a real n× n matrix and b is a real n-vector. If A is nonsingular, there
exists a unique solution x∗ := A−1b. We aim on verifying the nonsingularity of A
and calculating some ε, ε ∈ Rn such that

o ≤ ε ≤ |x∗ − x̃| ≤ ε, (2)

where o := (0, . . . , 0)T ∈ Rn. A number of fast self-validating algorithms (cf., for
example, [1, 3, 5, 6]) have been proposed to verify the nonsingularity of A and to
compute ε in (2). In this talk, computing the lower bound ε in (2) is also considered.
If εi ≈ εi, then we can verify that the error bounds (and the verification) for x̃i are
of high quality. The main point of this talk is to develop a fast method of calculating
both ε and ε satisfying (2), which are as tight as we need. It is possible when using
new accurate algorithms for summation and dot product [2, 4]. Numerical results
are presented elucidating properties and efficiencies of the proposed verification
method.
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Olkin, Ingram: Characterizations of some probability distributions.

In the theory of life distributions in engineering reliability and in medical survival
analysis semiparametric families are somewhat central. These are families that
have both a real parameter and a parameter that is itself a distribution. Examples
of such families are scale parameter families, power parameter families, moment
parameter families, and many others. The coincidence of two families provides
a characterization of the underlying distribution. In this talk we introduce these
families and obtain some characterizations. Each characterization is obtained by
solving a functional equation.

Opic, Bohumı́r: The ρ-quasiconcave functions and weighted inequalities.
(Joint work with William D. Evans and Amiran Gogatishvili.)

Let ρ be a positive, continuous and strictly increasing function on the interval
I := (a, b) ⊆ R. A non-negative function h is said to be ρ-quasiconcave on I –
notation h ∈ Qρ(I) – if h is non-decreasing on I and h/ρ is non-increasing on I.
(Note that when I = (0,+∞) and the function ρ is the identity map on I, then
the class Qρ(I) coincides with the well-known class Q((0,+∞)) of all quasiconcave
functions on the interval (0,+∞).) We present a representation of ρ-quasiconcave
functions on I by means of non-negative Borel measures on I.

Let h ∈ Qρ(I). We decompose the interval I on a system {Ik} of disjoint
subintervals Ik with the property that, for all x, y ∈ Ik, either h(x) ≈ h(y) or
(h/ρ)(x) ≈ (h/ρ)(y).

Given the weighted Lebesgue space Lq(w, I, μ) (w is a weight on I, μ is a non-
negative Borel measure on I, q ∈ (0,+∞]), we show that the ρ - fundamental func-
tion of this space is ρ-quasiconcave on I. This fact is used to discretize Lq(w, I, μ)-
quasinorms of ρ-quasiconcave functions on I.

The operator T , whose domain D(T ) is a subset of all non-negative functions
on I, is called ρ-quasiconcave provided that Tf ∈ Qρ(I) for all f ∈ D(T ).

We apply our results to characterize the validity of weighted inequalities
involving ρ-quasiconcave operators. Our method consists in a discretization the of
inequalities in question. We solve them locally (which represents an easier task)
to obtained a discrete characterization of the original problem. Finally, we use the
antidiscretization to convert the discrete characterization to a continuous one.

Páles, Zsolt: Comparison in a general class of means.
(Joint work with László Losonczi.)

Means of the form

Mf,g;μ(x, y) :=
(
f

g

)−1
(∫ 1

0
f
(
tx+ (1− t)y

)
dμ(t)∫ 1

0 g
(
tx+ (1 − t)y

)
dμ(t)

)
(x, y ∈ I)

are considered, where I is an open real interval, f, g : I → R are continuous
functions such that g is positive and f/g is strictly monotonic, and μ is a Borel
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probability measure on [0, 1]. This class of means generalizes and includes quasi-
arithmetic, Lagrangian, Cauchy, Gini, and Stolarsky means if the generating func-
tions f, g and the measure μ are chosen properly.
The aim is to study the comparison problem of these means, i.e., to find necessary
conditions and sufficient conditions for the functions (f, g) and (h, k) and for the
measures μ, ν such that

Mf,g;μ(x, y) ≤Mh,k;ν(x, y) (x, y ∈ I)
holds.

Pearce, Charles E.M.: The alternative lattice: oriented bond percolation,
phase transitions inequalities.

Consider a lattice with the sites (atoms) connected by bonds. Each bond is, in-
dependently of every other, open with probability p and closed with probability
1−p. When there exists a connected path of open bonds of like orientation from the
origin to infinity, percolation is said to occur. The probability θ(p) of percolation
is a nondecreasing function of p.

A common phenomenon is for there to exist a critical value p = pcb ∈ (0, 1)
such that

θ(p)
{

= 0 for 0 ≤ p < pcb

> 0 for pcb < p ≤ 1
When this phenomenon occurs, the process is said to undergo a phase transition at
p = pcb. The exact determination of the critical probability pcb is usually difficult
and has been achieved for relatively few graph configurations.

Much effort has gone into finding good upper and lower bounds for critical
probabilities. Work in this area is characterized by subtle and intricate probabilistic
arguments and sometimes also heavy computation. The problem has proved more
difficult in oriented graphs. Here each bond has an orientation and paths are
required to proceed in the direction of that orientation on each link.

A particular case of some interest is the square lattice on the positive quad-
rant of the plane. The critical probability is still not known exactly for its oriented
bond graph, although some upper and lower estimates have been obtained. Re-
cently some theoretical interest has focussed on a more complicated related lattice,
the so-called alternative lattice.

We address the question of finding a rigorous lower bound for the critical
probability on the alternative lattice. Our estimate employs an analytical proce-
dure which centres on the use of inequalities. The procedure utilizes a technique
used recently on the corresponding site lattice, where it was used to obtain a
considerable improvement on existing estimates. See Pearce and Fletcher [1].
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Perić, Ivan: Frequency variant of Euler type identities and the problem of sign
constancy of the kernel in associated quadrature formulas.

Extended Euler identities generalize the well known formula for the expansion
of an function in Bernoulli polynomials. Quadrature formulas are obtained using
affine combinations of the extended Euler identities for symmetric nodes. The main
step in obtaining the best possible error estimates is to prove that in this manner
obtained kernel has some “nice” zeros. Generally, the problem of distribution of
nodes such that this kernel has controlled zeros it seems to be difficult. Based on
Multiplication Theorem the frequency variants of the extended Euler identities are
given. Analogously obtained kernel appears to be more tractable for the investi-
gation of zeros. The case of m-adic frequencies and the case of frequencies with no
gaps are completely solved. The general case is considered using some interesting
convexity arguments.

Plum, Michael: A computer-assisted existence proof for photonic band gaps.
(Joint work with Vu Hoang and Christoph Wieners.)

The investigation of monochromatic waves in a periodic dielectric medium (“pho-
tonic crystal”) leads to a spectral problem for a Maxwell operator. It is well known
that the spectrum is characterized as a countable union of compact real intervals
(“bands”) which may or may not be separated by gaps, and the occurrence of such
gaps is of great practical interest but difficult to prove analytically. In this talk, we
will attack this problem, for the 2D case of polarized waves, by computer-assisted
means. First we reduce the problem, using an analytical perturbation type argu-
ment, to the computation of enclosures for finitely many eigenvalues of finitely
many periodic eigenvalue problems. This task is then carried out by computer-
assisted variational methods.

Popa, Dorian: Approximate solutions of linear equation.

In this paper we give some results on the stability of some linear functional equa-
tions. A functional equation with the unknown function ϕ

E(ϕ) = F (ϕ) (1)

is said to be Hyers–Ulam stable if for an approximate solution ϕa, i.e.,

|E(ϕa)(x) − F (ϕa)(x)| ≤ ε (2)

for some fixed constant ε ≥ 0, there exists a solution of equation (1) such that

|ϕ(x) − ϕa(x)| ≤ δ.
We investigate the Hyers–Ulam stability of the linear equation of the higher order
in single variable and the linear recurrence with nonconstant coefficients.
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Reichel, Wolfgang: A priori bounds for non-linear finite difference boundary value
problems.
(Joint work with Joe McKenna.)

On a bounded domain Ω ⊂ RN we consider positive solutions of the non-linear
boundary value problem

−Δu = f(x, u) in Ω, u = 0 on ∂Ω (1)

and its finite-difference discretization on an equidistant mesh:

−Δhu = f(x, u) in Ωh, u = 0 on ∂Ωh. (2)

A prototype nonlinearity is given by f(x, s) = sp for some exponent p > 1. Much
research has been carried out on the question of a priori bounds for (1), and very
little is known about a priori bounds for (2). We will show a method to obtain
a priori bounds in the discrete setting based on discrete versions of the Hardy and
the Sobolev inequality and the Moser iteration method. If Ω is an N -dimensional
cube, then a priori bounds for (2) hold if 1 < p < N

N−1 , which is considerably
smaller than the exponent N+2

N−2 related to the Sobolev-embedding.

Sadeghi, Ghadir: Mazur–Ulam theorem in non-Archimedean normed spaces.
(Joint work with Mohammad Sal Moslehian.)

The theory of isometric mappings was started by paper [2] by S. Mazur and
S. Ulam, who proved that every isometry of a normed real vector space onto an-
other normed real vector space is a linear mapping up to translation. The hypoth-
esis surjectivity is essential. Without this assumption, J.A. Baker [1] proved that
every isometry from a normed real space into a strictly convex normed real space is
linear up to translation. A number of mathematicians have used the Mazur–Ulam
theorem; see [3] and references therein.

The Mazur–Ulam Theorem is not valid in the contents of non-Archimedean
normed spaces, in general. As a counterexample, take R with the trivial non-
Archimedean valuation and define f : R → R by f(x) = x3. Then f is clearly a
surjective isometry and f(0) = 0, but f is not linear.

In this talk, we establish a Mazur–Ulam type theorem in the framework of
non-Archimedean normed spaces over valuation fields (see [4]).
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Sperb, René: Bounds for the solution in reaction-diffusion problems with variable
diffusion coefficient.

The type of problems describes a steady state of a reaction diffusion process mod-
elled by the equation

div(σ(x)∇u) + f(u) = 0 in Ω ∈ RN

with Dirichlet boundary conditions.
Bounds for the solution are derived by using a maximum principle for an

appropriately chosen functional of the solution.

Székelyhidi, László: Spectral synthesis problems on locally compact groups.

Spectral analysis and spectral synthesis problems are formulated and solved on
noncommutative locally compact groups.

Tabor, Jacek: Characterization of convex functions.
(Joint work with Józef Tabor.)

As is well known, there are many inequalities which in the class of continuous
functions are equivalent to convexity (for example the Jensen inequality, Hermite-
Hadamard inequalities and so on). We show that this is not a coincidence, namely,
we prove that an arbitrary nontrivial linear inequality which is valid for all convex
functions is valid only for convex functions. In other words we obtain the following

Theorem. Let K be a compact subset of Rn and let ν, μ, ν 
= μ be Borel measures
in K. We assume that ∫

K

fdν ≤
∫

K

fdμ

for every continuous convex function f such that K ⊂ dom(f) (where dom denotes
the domain). Let W be a convex subset of a Banach space and let h ∈ C(W,R) be
such that ∫

K

(h ◦ a)dν ≤
∫

K

(h ◦ a)dμ

for every affine function a such that a(K) ⊂W . Then h is convex.

Varga, Adrienn: On a functional equation containing four weighted arithmetic
means.

In this talk we study the functional equation

f(αx + (1− α)y) + f(βx+ (1− β)y) = f(γx+ (1− γ)y) + f(δx+ (1− δ)y)
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which holds for all x, y ∈ I where I ⊂ R is a non-void open interval, f : I → R is
an unknown function and α, β, γ, δ ∈ (0, 1) are arbitrarily fixed.
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[3] Zs. Páles, Extension theorems for functional equations with bisymmetric operations,
Aequationes Math. 63 (2002), 266–291.
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Wa̧sowicz, Szymon: On error bounds of quadrature operators.

In [1] using a theorem of support-type we obtained for convex functions of higher
order (defined on [−1, 1]) some Hadamard-type inequalities of the form

L(f) ≤ I(f) ≤ U(f), (∗)
where I(f) =

∫ 1

−1
f(x)dx and L, U stand for some operators connected with

quadrature rules. In this talk we show that the operator in the middle of (∗) need
not to be an integral and only two its properties are important. Namely, we obtain
the inequalities of the form

L(f) ≤ T (f) ≤ U(f),

where T is any operator such that
(i) T is nondecreasing and
(ii) T = I for polynomials of degree not greater than some fixed positive integer.

Observe that many quadrature-type operators fulfil (i) and (ii).
We also show that such inequalities allow us to obtain the error bounds

of quadrature operators for less regular functions than in the classical results of
numerical analysis.
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Problems and Remarks

1. Remark

(Reply to the remarks on my talk on Superquadracity made by Attila Gillányi) The
definition of superquadratic functions says that a function f : I → R where I is
[0,∞) or [0, L] is superquadratic provided that for all x ∈ I there exists a constant
C(x) ∈ R such that

f(y) ≥ f(x) + C(x)(y − x) + f (|y − x|) (1)

for all y ∈ I.
From (1) it follows that for z, w ∈ I, z ≤ w a superquadratic function satisfies

f(w) + f(z)
2

≥ f
(
w + z

2

)
+ f

(
w − z

2

)
which is equivalent to

f(y + x) + f(y − x) ≥ 2f(y) + 2f(x)

for 0 ≤ x ≤ y, x+ y ∈ I.
Also, the proofs of [1] Theorem 2.3 and [2] Lemma 2.1 show that f(x) is su-
perquadratic iff for 0 ≤ y1 < x < y2, y2 ∈ I the inequality

f(x) ≤ x− y1
y2 − y1

(f(y2)− f(y2 − x)) +
y2 − x
y2 − y1

(f(y1)− f(x− y1))

holds.
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2. Problem

(The discrete Sobolev inequality) Let n ≥ 3, h = (h1, . . . , hn) with hi > 0 for
i = 1, . . . , n. Consider the discretization Rn

h of Rn

Rn
h := (h1Z)× · · · × (hnZ) .

The following is a discrete analogue of the Sobolev inequality: there exists a con-
stant cs > 0 such that

∑
x∈Rn

h

|u(x)| 2n
n−2h1 · · · · · hn ≤ cs

⎛⎝∑
Rn

h

|∇+
h u(x)|2h1 · · · · · hn

⎞⎠
n

n−2

for all u : Rn
h → R with compact support. Here

∇+
h u(x) :=

⎛⎜⎜⎝
u(x+h1e1)−u(x)

h1
...

u(x+hnen)−u(x)
hn

⎞⎟⎟⎠
is the discrete gradient and {e1, . . . , en} is the standard basis of Rn. The following
questions arise:

1. What is the best constant cs? We know that cs ≤ 4(n−1)
n3/2 .

2. Is it attained in the space

D := {u : Rn
h → R with compact support} |||.|||

where

|||u||| :=

⎛⎝∑
Rn

h

|∇+
h u(x)|2h1 · · · · · hn

⎞⎠1/2

?

Already the case h1 = · · · = hn > 0 is interesting.
Wolfgang Reichel

3. Problem

It is known that the following statement holds if X is a Banach space: For each
ε > 0 and each mapping f : Z→ X satisfying f(0) = 0 and

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ε (x, y ∈ Z),

there exists a (unique) quadratic mapping Q : Z→ X such that ‖f(x)−Q(x)‖ ≤
ε/2 for all x ∈ Z.

Problem. Prove that the converse is true, i.e., every normed space X fulfill-
ing the above assertion is Banach.

Mohammad Sal Moslehian
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4. Problem

Given an operator

T(f) :=
7
15
f (−1) +

64
45
f

(
1
4

)
+

1
9
f (1) .

It is easy to compute that

T(f) =
∫ 1

−1

f(x)dx

for f(x) = ax2 + bx + c. Classical error terms of quadrature operators are of the
form ∫ 1

−1

f(x)dx = Q(f) + αnf
(n)(ξf )

for some n ∈ N, αn ∈ R, and ξf ∈]− 1, 1[ (n and αn are independent of f).
Problem. Find such an error term for the operator T. (The Peano Kernel

Theorem is not applicable because Peano Kernel of T changes sign.)
Szymon Wa̧sowicz

5. Remark

(Remark on subquadratic functions, related to Shoshana Abramovich’s talk and
remark) At the present meeting, in Shoshana Abramovich’s talk, superquadratic
functions were investigated, calling a real-valued function f defined on an interval
I = [0,∞) or I = [0, a] with a positive a superquadratic, if, for each x ∈ I, there
exists a C(x) ∈ R such that

f(x)− f(y) ≥ f(|y − x|) + C(x)(y − x) (2)

for all x ∈ I (cf. also [1]).
Analogously to the concept of subadditive (and superadditive) functions (cf.,
e.g., [5] and [4]), we may consider another definition of subquadraticity (and su-
perquadraticity). It is well known, that a real-valued function defined on a group
G = (G,+) is called quadratic if it satisfies the functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (x, y ∈ G).

The function f is said to be subquadratic if it fulfills

f(x+ y) + f(x− y) ≤ 2f(x) + 2f(y) (x, y ∈ G), (3)

it is called superquadratic if the inequality

f(x+ y) + f(x− y) ≥ 2f(x) + 2f(y) (x, y ∈ G) (4)

is valid (cf. [3], [6] and [2]). Obviously, a function f : G → R is superquadratic
if and only if −f is subquadratic, therefore, it is enough to consider one of these
concepts.
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In Shoshana Abramovich’s remark, a connection between inequalities (2) and (4)
was established. In the following, we give some examples for subquadratic functions
in the sense of the second definition and we present a regularity theorem for them.

Examples.

1. If B : G×G→ R is a biadditive symmetric function and b is a nonnegative
real number then the function f : G→ R

f(x) = B(x, x) + b (x ∈ G)

satisfies (3).
As a special case of the example above, we obtain that if a : G → R is an
additive function, c is an arbitrary and b is a nonnegative real constant then
the function f : G→ R

f(x) = c (a(x))2 + b (x ∈ G)

solves (3), too.
In the class of continuous real functions, this example gives the subquadratic
functions f : R→ R

f(x) = cx2 + b

where c is an arbitrary, b is a nonnegative real constant.
2. A simple calculation yields that f : G→ R,

f(x) = c |a(x)|+ b (x ∈ G),

where c is an arbitrary, b is a nonnegative real constant, is also a subquadratic
function.

3. The function f : G→ R

f(x) =

{
b if x 
= 0
d if x = 0,

where b and d are nonnegative constants such that d ≤ 3b, is subquadratic.
4. An arbitrary function f : G→ R satisfying the inequality

sup
x∈G

f(x) ≤ 2 inf
x∈G

f(x)

is subquadratic.
5. The function f : Rn → R

f(x) =

{
0 if x ∈ Qn

b otherwise,

with an arbitrary nonnegative constant b, is subquadratic.

Theorem. If a real-valued subquadratic function defined on a metric group divisible
by 2 is continuous at 0 and its value is 0 there then it is continuous everywhere.

It is remarkable that if one of the assumptions for the function considered in the
theorem above is omitted, it will fail to hold.
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– In fact, according to Example 4, there exist (also real) subquadratic functions,
which are continuous at 0 but not continuous everywhere.

– Obviously, f(0) = 0 does not imply any continuity properties.
– Furthermore, the assumption of the continuity of the function above at a point

other than 0 does not imply its continuity everywhere (cf., e.g., Example 3).
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International Series of Numerical Mathematics, Vol. 157, xlvii–xlviii
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Opic, Bohuḿır, Czech Academy of Sciences, Praha, Czech Republic
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Perić, Ivan, University of Zagreb, Zagreb, Croatia
Plum, Michael, Universität Karlsruhe, Karlsruhe, Germany
Popa, Dorian, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
Reichel, Wolfgang, Universität Karlsruhe, Karlsruhe, Germany
Sadeghi, Ghadir, Ferdowsi University, Mashhad, Iran
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Some Monotonicity Properties for
Eigenvalue Problems with
Mixed Boundary Conditions

Catherine Bandle

Abstract. An eigenvalue problem is considered whose eigenvalues appear in
the interior and on the boundary. It has been shown in [1] that there exists an
infinite sequence of positive and an infinite sequence of negative eigenvalues.
The lowest positive and the largest negative eigenvalue λ1, resp. λ−1 can be
characterised by means of a Rayleigh principle. It turns out that among all
domains of given volume the ball has the smallest λ1. A partial result in this
direction is established for λ−1. The proof uses the isoperimetric inequality of
Krahn-Bossel-Daners. Some monotonicity properties similar to those for the
elastically supported membrane are included.

Mathematics Subject Classification (2000). 35P15, 47A75, 49R50, 51M16.

Keywords. Comparison theorems for eigenvalues, isoperimetric inequalities,
spectrum for elliptic operators with mixed boundary conditions.

1. Introduction

Let D ⊂ RN , N > 1 be a bounded domain with a Lipschitz boundary and denote
by n its outer normal. In this paper we consider the eigenvalue problem

�ϕ+ λϕ = 0 in D,
∂ϕ

∂n
= λσϕ on ∂D, (1.1)

where σ is a negative real number. It is obvious that λ0 = 0 is an eigenvalue and
that ϕ =const. is the corresponding eigenfunction. It has been shown in [1], see
also [2] for the more general case with variable coefficients, that there exists an
infinite sequence {λn}∞n=1 of positive eigenvalues such that λn →∞ as n→∞. In
addition there is an infinite sequence {λ−n}∞n=1 of negative eigenvalues with the

A Rayleigh-Faber-Krahn Inequality and
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property that λ−n → −∞ as n → ∞. (Here the assumption N > 1 is used.) The
eigenvalues can be ordered as follows, taking into account their multiplicity,

· · · ≤ λ−n−1 ≤ λ−n ≤ · · · ≤ λ−2 ≤ λ−1 < 0
= λ0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ λn+1 ≤ · · ·

We are interested in the behaviour of λ±1. They can be characterised by the
following variational principle.

For u, v ∈W 1,2(D) set

a(u, v) :=
∫

D

uv dx+ σ

∮
∂D

uv ds,

〈u, v〉 :=
∫

D

(∇u,∇v) dx.

Define

σ0(D) := − |D||∂D| .

Then for σ 
= σ0

1
λ1(D)

= sup
K
a(v, v),

1
λ−1(D)

= inf
K
a(v, v), (1.2)

K := {v ∈ W 1,2(D), 〈v, v〉 = 1, a(v, 1) = 0}.

It has been observed in [1] that the fact that the eigenfunctions ϕ1 and ϕ−1

corresponding to λ1 and to λ−1 are of constant sign depends on the size of σ.
More precisely we have:

(i) If σ < σ0 then ϕ1 is of constant sign and λ1 is simple, whereas ϕ−1 changes
sign.

(ii) If σ > σ0 then ϕ−1 is of constant sign and λ−1 is simple, whereas ϕ1 changes
sign.

(iii) If σ = σ0 both ϕ1 and ϕ−1 change sign.

The main result of this paper is a Rayleigh-Faber-Krahn type inequality.

Theorem 1. Let D∗ be the ball of the same volume as D.
(i) For each σ < σ0(D∗) we have λ1(D) ≥ λ1(D∗). Equality holds only for the

ball.
(ii) For any domain D there exists a number σ̂ ∈ (σ0(D), 0) such that λ−1(D) ≥

λ−1(D∗) whenever σ ∈ (σ̂, σ0(D)).

In general D1 ⊂ D2 does not imply λ±1(D1) > λ±1(D2). However for special
domains it is true. In particular we have

Theorem 2. Let B be a ball containing D.
(i) If σ < σ0(B) then λ1(D) ≥ λ1(B).
(ii) If σ > σ0(D) then λ−1(D) ≥ λ−1(B).
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2. Isoperimetric inequality

The first part of the proof of Theorem 1 relies on the isoperimetric inequality of
Krahn-Bossel-Daners concerning the elastically supported membrane

�φ+ λ+φ = 0 in D,
∂φ

∂n
+ αφ = 0 on ∂D, α ∈ R+. (2.1)

It is well known that there exists infinitely many positive eigenvalues

0 < λ+
1 < λ+

2 ≤ · · · ≤ λ+
n ≤ · · · .

The lowest eigenvalue can be obtained from the variational principle

λ+
1 (D) = inf

W 1,2(D)

∫
D |∇v|2 dx + α

∮
∂D v2 ds∫

D v2 dx
. (2.2)

It was conjectured by Krahn, proved by M.-H. Bossel [6] for N = 2 and completed
by D. Daners [7] for arbitrary N , that λ+

1 (D) satisfies the isoperimetric inequality

λ+
1 (D) ≥ λ+(D∗). (2.3)

Equality holds only for the ball [8].

For the proof of Theorem 1 we need the following auxiliary lemmas.

Lemma 3. The lowest positive and the largest negative eigenvalue satisfy the fol-
lowing variational principles.

(i) If σ < σ0(D) < 0 then
1

λ1(D)
= sup

K0

a(v, v), K0 := {v ∈ W 1,2(D), 〈v, v〉 = 1}.

(ii) If 0 > σ > σ0(D) then
1

λ−1(D)
= inf
K0
a(v, v).

Proof. Let v ∈ K0 be fixed and let v0 be any real number. Clearly v + v0 is also
an element of K0 and

a(v + v0, v + v0) = a(v, v) + a(1, 1)v2
0 + 2a(v, 1)v0.

Since by assumption a(1, 1) < 0 the function f(v0) = a(1, 1)v2
0 + 2a(v, 1)v0 takes

its maximum for v∗0 = −a(v,1)
a(1,1) . Hence

a(v, v) ≤ a(v + v∗0 , v + v∗0), where a(1, v + v∗0) = 0.

The assertion (i) now follows from (1.2). The second assertion is proved exactly in
the same way. We only have to take into consideration that in this case a(1, 1) is
positive. �

Lemma 4. Let D̃ be an arbitrary fixed domain. If λ+
1 (D̃) ≤ λ+

1 (D) for all positive
α, then

λ1(D̃) ≤ λ1(D) for all σ < σ0(D̃).
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Proof. Consider λ+
1 (D) with α = −λ1(D)σ > 0. By assumption

λ+
1 (D) ≥ λ+

1 (D̃) =

∫
D̃
|∇φ̃|2 dx− λ1(D)σ

∮
∂D̃

φ̃2 ds∫
D̃
φ̃2 dx

, (2.4)

where φ̃ is the eigenfunction corresponding to λ+
1 (D̃). Moreover we have by (2.2)

λ1(D) =

∫
D
|∇ϕ1|2 dx− λ1(D)σ

∮
∂D

ϕ2
1 ds∫

D ϕ2
1 dx

≥ λ+
1 (D). (2.5)

Here ϕ1 is the eigenfunction corresponding to λ1(D). From (2.4) and (2.5) we find

λ1(D)
∫

D̃

φ̃2 dx ≥
∫

D̃

|∇φ̃|2 dx− λ1(D)σ
∮

∂D̃

φ̃2 ds,

and ∫
D̃
φ̃2 dx+ σ

∮
∂D̃

φ̃2 ds∫
D̃
|∇φ̃|2 dx

≥ 1
λ1(D)

.

By Lemma 3 the left-hand side is bounded from above by 1
λ1(D̃)

. This completes
the proof of the lemma. �

As an immediate consequence we have the

Proof of Theorem 1(i). The first assertion is an immediate consequence of the
previous lemma and the Krahn-Bossel-Daners inequality (2.3) if we take D̃ =
D∗ and observe that in view of the classical isoperimetric inequality σ0(D∗) <
σ0(D). �

Proof of Theorem 1(ii). In order to prove the second part of Theorem 1 we recall
a result derived in [1], namely for σ < 0 there is a decreasing C1-curve λ(σ) such
that

λ(σ) =

⎧⎪⎨⎪⎩
λ1(σ) if σ < σ0

0 if σ = σ0

λ−1(σ) if σ0 < σ < 0

Let ν1 denote the lowest eigenvalue of �φ+ νφ = 0 in D, φ = 0 on ∂D. Then

λ1(σ)→ ν1 as σ → −∞, and λ−1(σ)→ −∞ as σ → 0.

Let λ(σ : D) and λ(σ : D∗) be the eigenvalue curves described above cor-
responding to the domain D and the ball D∗ [cf. Fig. 1]. From σ0(D∗) < σ0(D)
it follows that λ(σ0(D) : D) = 0 and λ(σ0(D) : D∗) = λ−1(D∗) < 0. Since both
curves are continuous the inequality λ−1(σ : D) ≥ λ−1(σ : D∗) remains valid in a
neighbourhood to the right of σ0(D).

This establishes the second assertion of Theorem 1. �
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Figure 1. Illustration of the curves λ(σ) corresponding to D and D∗

3. Domain monotonicity

We start with an auxiliary result concerning the eigenvalue problem

�u+ λu = 0 in D,
∂u

∂n
+ γu = 0 on ∂D. (3.1)

Here γ and λ can be positive or negative. We assume that u does not change sign
and that u > 0 in D. In the ball of radius R the function u is radial (because it is
of constant sign) and satisfies the ordinary differential equation

w′′ +
N − 1
r

w′ + λw = 0 in (0, R), u > 0. (3.2)

The solutions of (3.2) are of the form

w(r) = r−
N−2

2

{
JN−2

2
(
√
λr) if λ > 0,

IN−2
2

(
√
−λr) if λ < 0.

(3.3)

Here Jν and Iν denote the Bessel, resp. the modified Bessel functions.

Lemma 5. |w
′(r)

w(r) | takes its maximum at r = R. In view of (3.1) we have∣∣∣∣w′(r)w(r)

∣∣∣∣ ≤ |γ|.
Proof. From (3.2) we deduce that v = w′(r)

w(r) satisfies

v′ + v2 +
N − 1
r

v + λ = 0 in (0, R). (3.4)
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Let us distinguish between two cases.

(i) γ > 0. In this case we have λ > 0. Since v(0) = 0 we deduce that v′(0) =
−λ/N < 0. Hence v decreases in a neighbourhood of the origin. Suppose that it
attains a local minimum at r0. Multiplication of (3.4) with r, differentiation with
respect to r and evaluation at r0 implies

r0v
′′(r0) + v2(r0) + λ = 0.

Hence v′′(r0) < 0 which is a contradiction. This establishes the lemma in the first
case.

(ii) γ < 0. Then λ < 0, v(0) = 0 and v′(0) = −λ/N > 0. Suppose that v attains a
local maximum at r1. Differentiation of (3.4) and evaluation at r1 yields

v′′(r1) =
N − 1
r21

v(r1).

This is obviously a contradiction. �

The following lemma is well known (cf. [9] for λ+
1 and [4] for λ−1 ).

Lemma 6. Let BR be a ball of radius R and D ⊂ BR.

(i) If γ > 0 then
λ(D) ≥ λ(BR).

(ii) If γ < 0 then
λ(D) ≤ λ(BR).

Proof. Let u and w be the positive solutions of (3.1) in D, resp. BR. Then

−
∮

∂D

(
γ + w−1 ∂w

∂n

)
uw ds =

∫
D

(w�u − u�w) dx = (−λ(D) + λ(BR))
∫

D

uw dx.

(3.5)

From Lemma 5 it follows that |w−1 ∂w
∂n | ≤ |γ|. Therefore the left-hand side of (3.5)

is negative (positive) if γ is positive (negative). The proof is now immediate. �

Proof of Theorem 2(i). The comparison of λ1(D) with λ1(BR) follows immediately
from Lemma 6 and Lemma 4. �

The proof for the comparison of λ−1 is very similar. We consider the eigen-
value problem

�φ+ λ−φ = 0 in D,
∂φ

∂n
= βφ on ∂D, β > 0. (3.6)

From the classical theory of compact operators and the trace inequality it follows
that there exist infinitely many eigenvalues

λ−1 < λ−2 ≤ · · · , λ−n →∞ as n→∞, λ−1 < 0.
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In this case Lemma 4 becomes

Lemma 7. Let D̃ be an arbitrary fixed domain. If λ−1 (D̃) ≥ λ−1 (D) for all positive
β, then

λ−1(D̃) ≤ λ−1(D) for all σ > σ0(D).

Proof. Consider λ−1 (D) with β = λ−1(D̃)σ. If ϕ̃1 is the eigenfunction correspond-
ing to λ−1(D̃) then

λ−1(D̃) =

∫
D̃
|∇ϕ̃1|2 dx− λ−1(D̃)σ

∮
∂D̃ ϕ̃2

1 ds∫
D̃
ϕ̃12 dx

≥ λ−1 (D̃) ≥ λ−1 (D).

Let φ denote the eigenfunction corresponding to λ−1 (D). Then∫
D

|∇φ|2 dx = λ−1 (D)
∫

D

φ2 dx+ λ−1(D̃)σ
∮

∂D

φ2 ds

≤ λ−1(D̃)
[∫

D

φ2 dx+ σ

∮
∂D

φ2 ds

]
This inequality together with Lemma 3 implies

1
λ−1(D̃)

≥
∫

D φ2 dx+ σ
∮

∂D φ2 ds∫
D
|∇φ|2 dx ≥ 1

λ−1(D)
.

This completes the proof. �

Proof of Theorem 2(ii). Theorem 2(ii) is a consequence of the Lemmas 6 and 7.

4. Complements and open problems

4.1. Let D be a fixed and consider λ1 and λ−1 as functions of σ.

Lemma 8. If σ < σ0 the function 1/λ1(σ) is convex whereas for σ > σ0 the function
1/λ−1(σ) is concave.

Proof. From Lemma 3 we get for σ1, σ2 < σ0

λ−1
1

(
σ1 + σ2

2

)
=

∫
D u2 dx + σ1+σ2

2

∮
∂D u2 ds

〈u, u〉

=
1
2

∫
D
u2 dx+ σ1

∮
∂D

u2 ds

〈u, u〉 +
1
2

∫
D
u2 dx+ σ2

∮
∂D

u2 ds

〈u, u〉

≤ 1
2
[λ−1

1 (σ1) + λ−1
1 (σ2)],

which proves the first statement. In the same way we prove that 1/λ−1(σ) is
concave. �
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Notice that the behaviour of λ±1(σ) differs from the behaviour of λ+
1 (α) and

λ−1 (β). In fact λ+
1 (α) is concave and λ−1 (β) is convex.

4.2. The question arises whether the inequality λ−1(D) ≥ λ−1(D∗) is valid for all
σ > σ0. For simple examples such as the square

S := {−a < x1 < a,−a < x2 < a}
this inequality can be checked directly. In this case the eigenvalues of (1.1) can be
expressed in terms of algebraic equations. In fact we have

ϕ−1 = cosh(
√
−λ/2x1) cosh(

√
−λ/2x2).

The boundary condition yields

− tanh(
√
−λ/2a) =

√
−2λσ.

Then λ−1(S) is the largest nontrivial negative root of the above equation. For the
unit circle B1 ⊂ R2 we have (cf. (3.3))

ϕ−1(r) = I0(
√
−λ−1r)

and λ−1 is the largest negative root of

I ′0(
√
−λ)

I0(
√
−λ)

= −
√
−λσ.

Let us compare λ−1(B1) with λ−1(S) where |B1| = |S|, i.e., a =
√
π/2. Put for

short

x :=
√
−λ, F (x) :=

I1(x)
I0(x)

, f(x) := 2−1/2 tanh
[√

πx

23/2

]
and g(x) = −σx.

We have, cf. Figure 2,
f(x) ≤ F (x).

Hence for all negative σ > σ0 the inequality λ−1(B1) < λ−1(S) holds. This obser-
vation together with Theorem 2 leads to the conjecture that λ−1 also satisfies a
Rayleigh-Faber-Krahn inequality if σ0 < σ < 0.

The intersection of the straight line g(x) with the upper curve F (x) corre-
sponds to

√
−λ−1(B1) and the one with the lower curve to

√
λ−1(S).

Problem 1. Prove or disprove Theorem 1(ii) for all σ ∈ (σ0, 0).

M. Bareket derived in [5] a Rayleigh-Faber-Krahn inequality for λ−1 for nearly
circular domains and for small β. She proved that λ−1 (D) ≤ λ−1 (D∗). Notice that
this is not in contradiction with Theorem 2(ii).

4.3. It is in general not possible to extend Theorem 2(i) to the case σ > σ0. Indeed
if σ vanishes, λ1, as defined in (1.2), coincides with the first nontrivial eigenvalue ν
of the free membrane. According to the classical result of Szegö [10] and Weinberger
[11], the opposite inequality λ1(D) ≤ λ1(D∗) holds. By continuity this is true in
a neighbourhood of σ = 0. In the case of a square we have λ1(S) > λ1(S∗) for
σ0 < σ < σ∗ < 0.
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Figure 2. upper curve - - - F (x); lower curve · · · f(x)

Problem 2. Prove that there exists a number σ0 < σ∗ < 0 such that

λ1(D)

{
≤ λ1(D∗), if σ > σ∗

≥ λ1(D∗), if σ < σ∗.

4.4. The monotonicity result in Theorem 2 holds also if B is replaced by a N-cell
C := {ai < xi < bi, i = 1, . . . , N}. The proof is similar and uses the fact that ϕ±1

are of the form
∏N

i=1 hi(xi).

Problem 3. Describe all domains B for which Theorem 2 holds.
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[3] C. Bandle, J. v. Below and W. Reichel, Positivity and anti-maximum principles for
elliptic operators with mixed boundary conditions, JEMS 10 (2007), 73–104.

[4] M. Bareket, On the domain monotonicity of the first eigenvalue of a boundary value
problem, ZAMP 27 (1976), 487–491.

[5] M. Bareket, On an isoperimetric inequality for the first eigenvalue of a boundary
value problem, SIAM J. Math. Anal. 8 (1977), 280–287.



12 C. Bandle
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Abstract. The calculation of the frequencies ω for small oscillations of an
ideal liquid in a container results in a Steckloff eigenvalue problem. A pro-
cedure for calculating lower and upper bounds to the smallest eigenvalues
is proposed. For the lower bound computation Goerisch’s generalization of
Lehmann’s method is applied, trial functions are constructed with finite ele-
ments. Rounding errors are controlled with interval arithmetic.
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1. Introduction

We study an eigenvalue problem with a spectral parameter in a boundary condi-
tion.

This problem for the two-dimensional Laplace equation is relevant to sloshing
frequencies that describe free oscillations of an inviscid, incompressible, heavy fluid
in a canal having uniform cross-section and bounded from above by a horizontal
free surface.

It is demonstrated that accurate bounds for the smallest eigenvalues can be
computed using inclusion theorems (based on variational principles) and interval
arithmetic.

The calculation of the frequencies ω for small oscillations of an ideal liquid
in a container results in the eigenvalue problem:

−Δϕ = 0 in Ω (liquid),

∂ϕ/∂n = λϕ on ∂1Ω (free surface),

∂ϕ/∂n = 0 on ∂2Ω (container wall),
λ > 0;

(1)
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n denotes the outward normal to the boundary ∂Ω of Ω, the relation between λ
and ω is λ = ω2/g, g is the acceleration due to gravity.

As an example for the diversity of possible domains with polygonal bound-
aries, let Ω be defined as

Ω := {(x, y) ∈ R2 : −1 < y < 0,−1− y

2
< x < 0},

∂1Ω := {(x, y) ∈ R2 : −1 ≤ x ≤ 0, y = 0},
and ∂2Ω := ∂Ω\∂1Ω. The two-dimensional problem is a model for an infinitely
long canal with cross section Ω.

Besides numerical examples the rest of the paper is dedicated to a setup for
the Goerisch method which is suitable for finite element computations. Since the
Goerisch method permits to choose certain quantities in many different ways, this
is one of the critical questions.

2. Setting for the problem

Let Ha and Hb be two separable, complex Hilbert spaces with inner products
a( . , . ) and b( . , . ), respectively. Suppose Ha is a dense subspace of Hb continuously
embedded in Hb such that for κ > 0

κ b(u, u) ≤ a(u, u) for all u ∈ Ha

holds true. The following variationally posed eigenvalue problem is considered:

Find eigenpairs (λ, u) ∈ R×Ha , u 
= 0 , such
that a(u, v) = λb(u, v) holds for all v ∈ Ha.

}
(2)

Denote by B ∈ L(Ha) the bounded self-adjoint operator that satisfies

a(Bu, v) = b(u, v) for all u, v ∈ Ha .

By assumption B possesses a self-adjoint inverse A = B−1 : Ha ⊃ D(A) −→ Ha

and (2) is equivalent to the eigenvalue problem for A. Hence, σ(A) and σe(A)
represent the spectrum σ and the essential spectrum σe of (2), respectively.

We suppose that for some N ∈ N the lower part of σ consists of at least N+1
isolated eigenvalues of finite multiplicity

0 < κ ≤ λ1 ≤ λ2 ≤ · · · ≤ λN+1 < inf σe .

These eigenvalues are characterized by the variational principle

λj = inf
V⊂Ha

dim V =j

max
0�=v∈V

a(v, v)
b(v, v)

. (3)

This formula can be obtained (see [14, Chapter 3]) from Poincaré’s principle
for the eigenvalues μj = 1/λj of the operator B ∈ L(Ha).

A discretization of (3) gives the famous Rayleigh-Ritz method for a straight-
forward and efficient computation of upper bounds to the eigenvalues below the
essential spectrum.
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In order to compute lower bounds we have to establish an other variationally
posed characterization of the eigenvalues as it is given in [15]. Since, the method
acts on the Hilbert space Ha and the inner product a( . , . ) stands on the left side
of (2) this procedure is called the left definite case.

Assume that X is a further complex Hilbert space with inner product s( . , . )
and equipped with an isometric embedding T : Ha −→ X such that

s(Tu,Tv) = a(u, v) for all u, v ∈ Ha . (4)

Additionally, the method makes use of a separating parameter ρ ∈ R with

λN < ρ < λN+1 ,

where this lower bound for the (N + 1)st eigenvalue is known a priori. Sometimes
it is hard to determine such a separating parameter ρ, then a homotopy method
can be used [1, 12].

Now, if the eigenvalues λj are represented in the form

λj = ρ+
ρ

τj − 1
with τj =

λj

λj − ρ
, j = 1, . . . , N , (5)

we have (see [15, Corollary 2.1]) for j = 1, . . . , N the variational characterization

τj = inf
V⊂Ha

dim V =j

max
0�=v∈V

min
w

a(v, v)− ρb(v, v)
a(v, v)− 2ρb(v, v) + ρ2s(w,w)

, (6)

where the minimum is taken over w ∈ X such that

s(w,Tu) = b(v, u) for all u ∈ Ha. (7)

Note, that by the spectral mapping theorem τN ≤ · · · ≤ τ1 < 0 are the
eigenvalues of the bounded and self-adjoint operator-function T = A(A− ρI)−1 ∈
L(Ha) giving the lower part of its spectrum. This relation is used in equation (5).

A discretization of (6) using a Rayleigh-Ritz procedure to the operator T ∈
L(Ha) combined with a complementary variational principle gives upper bounds to
τj and hence, by the transformation τ �−→ ρ+ ρ

τ−1 lower bounds to the eigenvalues
λj , j = 1, . . . , N , of (2).

3. Calculation of bounds

For a discretization of (3) and (6) let n ∈ N , m ∈ N0 and suppose the following:

L1. v1, . . . , vn ∈ Ha are linearly independent trial functions.
L2. w

1 , . . . , w

n ∈ X satisfy s(w

i ,Tu) = b(vi, u) for all u ∈ Ha , i = 1, . . . , n.
L3. w◦0 , . . . , w◦m ∈ X◦ = {w ∈ X : s(w,Tu) = 0 for all u ∈ Ha} where w◦0 = 0

and w◦1 , . . . , w
◦
m are linearly independent.
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Then, we construct matrices A1 = (a(1)
ik ), A2 = (a(2)

ik ) by

a
(1)
ik = a(vk, vi)

a
(2)
ik = b(vk, vi)

for i, k = 1, . . . , n

and matrices C11 = (c(11)ik ), C12 = (c(12)ik ), C22 = (c(22)ik ) by

c
(11)
ik = s(w

k, w

i ) for i, k = 1, . . . , n ,

c
(12)
ik =

{
s(w◦k, w


i ) if m > 0

0 if m = 0 for i = 1, . . . , n ; k = 1, . . . ,max{1,m} ,

c
(22)
ik =

{
s(w◦k, w

◦
i ) if m > 0

1 if m = 0 for i, k = 1, . . . ,max{1,m} ,

as well as
A3 = C11 − C12C

−1
22 C

H
12 .

Now, we consider the following matrix eigenvalue problems

(Λ[n], x) ∈ R× Cn : A1x = Λ[n]A2x , (8)

(τρ[n,m], x) ∈ R× Cn : (A1 − ρA2)x = τρ[n,m](A1 − 2ρA2 + ρ2(A3))x (9)

and arrange the N lowest eigenvalues of both problems in the order

τ
ρ[n,m]
N ≤ · · · ≤ τρ[n,m]

2 ≤ τρ[n,m]
1 < 0 < Λ[n]

1 ≤ Λ[n]
2 ≤ · · · ≤ Λ[n]

N . (10)

Such an arrangement is always possible if the trial functions fulfill the assumption⋃
n∈N

span{v1, . . . , vn} is dense in
(

Ha, a( . , . )
)
.

Then, for sufficiently large n ∈ N and arbitrary m ∈ N0 the problem (9) gives
exactly N negative eigenvalues (see [11, Theorem 3.4]).

Obviously, the values Λ[n]
j are upper Rayleigh-Ritz bounds for the eigen-

values λj of (2). Whereas the values τρ[n,0]
j are upper Rayleigh-Ritz bounds for

the eigenvalues τj of the operator T ∈ L(Ha) with respect to the trial functions
(I − ρB)v1, . . . , (I − ρB)vn ∈ Ha (see [11, Theorem 2.6]). A complementary vari-
ational principle provides τj ≤ τ

ρ[n,0]
j ≤ τ

ρ[n,m]
j for m ∈ N (see [11, Lemma 3.3]).

Hence, setting
Λρ[n]

j = ρ+
ρ

τ
ρ[n,m]
j − 1

, j = 1, . . . , N ,

we arrive at

Theorem 3.1. Lower and upper bounds to the eigenvalues of (2) are given by

Λρ[n]
j ≤ λj ≤ Λ[n]

j , j = 1, . . . , N .

For convergence results see [9, 10, 11].
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Remark 3.2. The choice m = 0 yields the procedure of Lehmann [6] and Maehly
[8] (cf. also [15, Remark 2.2]) given by

X = Ha, s( . , . ) = a( . , . ), T = I and X◦ = {0} .

Generalizing the procedure of Lehmann and Maehly the discretization (9) was
originally given by Goerisch [1, 3, 4]. Therefore, we refer to Goerisch method and
to Goerisch bounds Λρ[n]

j .

4. Application to the sloshing problem

In order to treat the sloshing problem (1) we define

Ha := {f ∈ H1(Ω) :
∫

∂1Ω

f ds = 0}

and

a(f, g) :=
∫

Ω

(gradf)′ · gradg dx dy,

b(f, g) :=
∫

∂1Ω

f g ds for all f, g ∈ Ha;

now the weak form of (1) is:

Determine ϕ ∈ Ha, ϕ 
= 0, λ ∈ R such that

a(f, ϕ) = λ b(f, ϕ) for all f ∈ Ha. (11)

For an application of the finite element method Ω is divided into subtriangles
Ω1, . . . ,Ωl. The trial functions vi are to be constructed using Lagrange elements.
The coupling condition (7) for Lehmann’s procedure reads as

a(w
i , f) = b(vi, f) for all f ∈ Ha, i = 1, . . . , n

If this equation holds for f ∈ Ha, it holds for f ∈ C∞0 (Ω) as well, hence

a(w
i , f) =

∫
Ω

(gradw
i )′ · grad f dx dy

=
∫

Ω

−w
i Δf dx dy = 0

=
∫

∂1Ω

vi f ds

= b(vi, f) for all f ∈ C∞0 (Ω)

According to Weyl’s Lemma ([7, 13]) w
i is equivalent to a harmonic function

w̃i ∈ C∞(Ω′) for each Ω′ ⊂ Ω′ ⊂ Ω and can not be constructed with finite elements.
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In order to compute lower bounds using finite elements, a more sophisticated
definition of the quantities X, s(., .) and T is required:

X :=
l∏

j=1

(L2(Ωj))2,

T : Ha → X, T f :=

⎛⎜⎝ gradf |Ω1

...
gradf |Ωl

⎞⎟⎠ ,

s

⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
f1,1

f1,2

...
fl,1

fl,2

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
g1,1

g1,2

...
gl,1

gl,2

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠ :=
l∑

j=1

∫
Ωj

(fj,1gj,1 + fj,2gj,2) dx dy .

Now we have s(T f, T g) =
∑l

j=1

∫
Ωj

(grad f |Ωj ) · (grad g|Ωj ) dx dy = a(f, g) for all
f, g ∈ Ha. Assume that we have w

i ∈ X,

w
i =

⎛⎜⎝ w
i,1
...
w

i,l

⎞⎟⎠ with w
i,j ∈ (C1(Ωj))2, i = 1, . . . , n, j = 1, . . . , l,

such that

−div w
i,j = 0 in Ωj for j = 1, . . . , l (12)

w
i,j · nj = −w

i,k · nk on ∂Ωj ∩ ∂Ωk for j, k = 1, . . . , l (13)

w
i,j · nj = 0 on ∂2Ω ∩ ∂Ωj for j = 1, . . . , l (14)

w
i,j · nj = vi on ∂1Ω ∩ ∂Ωj for j = 1, . . . , l (15)

A short computation gives

s(T f, w
i ) =

l∑
j=1

∫
Ωj

(gradf |Ωj ) · w
i,j dx dy

=
l∑

j=1

(−
∫

Ωj

f div w
i,j dx dy +

∫
∂Ωj

f (w
i,j · nj) ds) =

∫
∂1Ω

f vi ds

= b(f, vi) for all f ∈ Ha, i = 1, . . . , n ,

that is (7). The same construction is possible for w◦i if equation (15) is replaced
by w◦i,j · nj = 0 on ∂1Ω ∩ ∂Ωj for j = 1, . . . , l.

We use ŵi ∈ C(Ω), ŵi|Ωj ∈ C2(Ωj) for j = 1, . . . , l to construct w
i by

w
i,j :=

( ∂ŵi

∂y |Ωj

−∂ŵi

∂x |Ωj

)
, j = 1, . . . , l .

By this definition (12) and (13) are satisfied.
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If we require

ŵi|∂2Ω = 0 and (16)

ŵi(x, 0) = −
∫ x

−1

vi(ξ, 0) dξ for − 1 ≤ x ≤ 0 (17)

we have (14) and (15).
The trial functions are constructed using Lagrange elements. For vi we use

polynomials of degree p, for ŵi polynomials of degree p+ 1. The results are com-
puted with interval arithmetic. For details see [2].

The spectral parameter ρ can be determined due to domain monotonicity. If
we have two domains Ω and Ω̂, such that Ω̂ ⊂ Ω, with the same free surface (that
is ∂1Ω̂ = ∂1Ω), then the the smaller domain has the smaller eigenvalues, i.e.,

λ̂j ≤ λj j = 1, 2, . . . .

The sloshing problem can easily be solved for an right angled triangle.

5. Results

We give numerical results for the triangulation in Figure 1.
The mesh consists of 694 elements and 376 nodes. The table shows enclo-

sures for the smallest eigenvalues for different degrees of polynomials for the La-
grange elements. dimRR is the dimension of the matrix eigenvalue problem for
the Rayleigh-Ritz computation, dimLG is the dimension of the Lehmann-Goerisch
matrix eigenvalue problem. For p = 1 the dimension is not 376 since we require
orthogonality to the constant function.

p = 1 , ρ = 14.9 p = 2 , ρ = 14.9

λi dimRR = 375 ; dimLG = 1708 dimRR = 1444 ; dimLG = 4484

1 2.803787 2.7905160
099

2 6.067
5.874 5.95209

172

3 9.522
7.576 9.09714

227

4 13.254
8.458 12.246199

p = 3 , ρ = 14.9 p = 4 , ρ = 14.9

λi dimRR = 3207 ; dimLG = 8648 dimRR = 5664 ; dimLG = 14200

1 2.7905110909
772 2.79051108281

033

2 5.95186840
785 5.95186807614

008

3 9.0952405
265 9.0952350595

49169

4 12.237242
016 12.23720113

19944
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Figure 1

Using a finer mesh with 7925 elements, the bounds become sharper:

p = 3 , ρ = 14.9 p = 4 , ρ = 14.9

λi dimRR = 35934 ; dimLG = 98973 dimRR = 63762 ; dimLG = 162373

1 2.79051108205
059 2.7905110830

795

2 5.95186807379
159 5.9518680741

698

3 9.0952350341
172 9.09523502942

136

4 12.237200959
729 12.237200920

893

For p = 4 the enclosure for the smallest eigenvalue is worse than that for
p = 3. This is an effect of the rounding errors which are controlled by interval
arithmetic. Even though the discretization error is smaller for p = 4 the effect of
rounding errors becomes larger, since the matrix eigenvalue problems are consid-
erably larger.
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Figure 2

Figure 2 shows the triangulation for an other domain. It consists of 659
elements.

Some numerical results are given in the following table:

p = 5 , ρ = 16

λi dimRR = 35934 ; dimLG = 98973

1 2.88865634
530

2 6.1559878
770

3 9.466537
476

4 12.56808
766

The results have been computed on a Fujitsu Siemens SCENIC P computer
with 3 GHz clock speed an 1024 MB memory. For the verified computations we
used the PROFIL/BIAS library [5].
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On Spectral Bounds for Photonic
Crystal Waveguides

B. Malcolm Brown, Vu Hoang, Michael Plum and Ian G. Wood

Abstract. For a (d+1)-dimensional photonic crystal with a linear defect strip
(waveguide), we calculate real intervals containing spectrum of the associated
spectral problem. If such an interval falls completely into a spectral gap of
the unperturbed problem (without defect), this will prove the existence of
additional spectrum induced by the waveguide.

1. Introduction

Waves in periodic structures may propagate without attenuation except at certain
energy levels. This fact is the basic tool used in most integrated electronics, and
the idea has been extended to an optical setting, with the notion of photonic band-
gap (PBG) materials where bands of forbidden wavelengths are encountered. These
ideas have generated a rapidly developing topic in optics and nano-technology and
are an important area of engineering practice.

We consider a (d+1)-dimensional periodic structure, which has a linear de-
fect introduced. This will create a waveguide which will allow light frequencies
to be transmitted that are forbidden in the bulk. The waveguide itself may also
exhibit a (possibly different) periodic structure, and indeed waveguides may in-
tersect without causing interference in the transmission. There is much numerical
and experimental evidence to show that such waveguides can be effectively created
(see [1] and the references contained therein).

We calculate real intervals containing spectrum of the waveguide problem. If
such an interval falls completely into a spectral gap of the unperturbed problem
(without waveguide), this proves additional spectrum induced by the waveguide.
We note that a similar approach, but using L2-estimates (and not H−1-estimates
as we do) has been developed in [1].
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2. Preliminaries

In order to model our problem we take a photonic crystal covering the whole of
Rd+1 (in practice d = 1, 2), with a “defect” strip

Sl = {x = (x1, x
′) ∈ Rd+1|x1 ∈ R, x′ ∈ lΩ}

where Ω ⊂ Rd is a bounded, convex domain containing the origin and l > 0. We
suppose that the electric permittivity is given as

ε(x) = ε > 0 (x ∈ Sl), ε(x) periodic and positive (x 
∈ Sl).

We shall work in the Hilbert space H−1(Rd+1) (the space of bounded linear func-
tionals on H1

0 (Rd+1)) and take as scalar product on H1
0 (Rd+1)

〈u, v〉H1
0

=
∫

Rd+1

1
ε
∇u · ∇vdx+ σ

∫
Rd+1

uvdx (1)

where σ > 0 is a parameter at our disposal. Our photonics problem is modelled
by the following spectral problem

A[u] ≡ −div
(

1
ε
∇u

)
= λu.

We work with the shifted operator Φ : D(Φ) = H1
0 (Rd+1) ⊂ H−1(Rd+1) →

H−1(Rd+1)

Φ ≡ A+ σ = −div
(

1
ε
∇
)

+ σ. (2)

Note that
(Φu)[v] = 〈u, v̄〉H1

0
(u, v ∈ H1

0 )

and the scalar product in H−1(Rd+1) is 〈x, y〉H−1 = 〈Φ−1x,Φ−1y〉H1
0
.

We now discuss the spectral problem Au = λu, or equivalently

Φu = (λ+ σ)u. (3)

Then, for u, v ∈ H1
0 (Rd+1),

〈Φu, v〉H−1 = 〈u,Φ−1v〉H1
0

= 〈Φ−1v, u〉H1
0

= v[u] =
∫

Rd+1
uvdx = 〈u, v〉L2 , (4)

where 〈u, v〉L2 denotes the usual scalar product in L2(Rn). Thus Φ is symmet-
ric, and since we know that the range of Φ is H−1(Rd+1), we have that Φ−1 :
H−1(Rd+1)→ H−1(Rd+1) is selfadjoint, which implies that Φ is also selfadjoint.

3. Construction of an enclosing interval

In this section we seek to show that in addition to the spectrum of the unperturbed
problem (where ε(x) is periodic throughout Rd+1) the perturbation will induce
new spectrum which we intend to localize in form of an enclosing interval. We
do this by constructing an approximate eigenpair for Φ−1 which we denote by
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(x̃, μ̃) ∈ H−1(Rd+1)× (0,∞), x̃ 
= 0. We then let δ > 0 be an upper bound for the
defect

‖Φ−1x̃− μ̃x̃‖H−1

‖x̃‖H−1
≤ δ,

and the interval [μ̃ − δ, μ̃ + δ] contains at least one spectral point of Φ−1 due to
the classical theorem of D. Weinstein (see [2], Theorem 5.9). If μ̃− δ > 0, then by
the spectral mapping theorem a spectral point of A is in the interval

1
[μ̃− δ, μ̃+ δ]

− σ =

[
λ̃− δ(λ̃+ σ)2

1 + δ(λ̃+ σ)
, λ̃+

δ(λ̃ + σ)2

1− δ(λ̃+ σ)

]
(5)

where we have written μ̃ = 1
λ̃+σ

.

3.1. Estimate for δ

In this section we seek an upper bound for δ.
Let ũ := Φ−1x̃ ∈ H1

0 (Rd+1)\{0}. Then

Aũ ≈ λ̃ũ⇔ Φũ ≈ (λ̃+ σ)ũ⇔ x̃ ≈ 1
μ̃

Φ−1x̃⇔ Φ−1x̃ ≈ μ̃x̃,

i.e., (ũ, λ̃) is an approximate eigenpair for A. Moreover, since

‖Φ−1x̃− μ̃x̃‖H−1 = sup{〈Φ−1x̃− μ̃x̃, y〉H−1 : y ∈ H−1(Rd+1), ‖y‖H−1 = 1}

we get, using the fact that 〈ũ, y〉H−1 = 〈Φ−1ũ,Φ−1y〉H1
0

= 〈ũ,Φ−1y〉L2 by (4),

‖Φ−1x̃− μ̃x̃‖H−1 = sup
‖y‖H−1=1

{〈ũ,Φ−1y〉L2 − μ̃〈ũ, Φ−1y〉H1
0
}

= sup
‖v‖

H1
0
=1

{〈ũ, v〉L2 − μ̃〈ũ, v〉H1
0
}.

Next we note that, for any w̃ ∈ H(div,Rd+1),

〈ũ, v〉H1
0

=
∫

Rd+1
(
1
ε
∇ũ− w̃) · ∇vdx+

∫
Rd+1

w̃ · ∇vdx+ σ

∫
Rd+1

ũv̄dx

=
〈

1
ε
∇ũ− w̃,∇v

〉
L2

− 〈divw̃, v〉L2 + σ〈ũ, v〉L2 ,

whence we obtain

‖Φ−1x̃− μ̃x̃‖H−1 = sup
‖v‖

H1
0
=1

{
〈ũ+ μ̃(div w̃ − σũ), v〉L2 − μ̃

〈
1
ε
∇ũ− w̃,∇v

〉
L2

}

≤ σ−1/2‖ũ+ μ̃(div w̃ − σũ)‖L2 + μ̃

∥∥∥∥ 1√
ε
∇ũ−

√
εw̃

∥∥∥∥
L2

=
σ−1/2

λ̃+ σ
‖λ̃ũ+ div w̃‖L2 + μ̃

∥∥∥∥ 1√
ε
∇ũ−

√
εw̃

∥∥∥∥
L2

.
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For the defect we therefore have
‖Φ−1x̃− μ̃x̃‖H−1

‖x̃‖H−1
≤ 1
‖ũ‖H1

0

{ 1
√
σ(λ̃+ σ)

‖div w̃ + λ̃ũ‖L2

+ μ̃‖ 1√
ε
∇ũ−

√
εw̃‖L2

}
. (6)

We have w̃ ≈ 1
ε∇ũ in mind, in order to make both defect terms “small”. Thus,

when ũ is sufficiently smooth and supported in the waveguide (where ε is constant),
as we will assume from now on, we can choose

w̃ =
1
ε
∇ũ.

The last component of (6) is now zero. So the square of the defect has an upper
bound given by

δ2 =
1

σ(λ̃ + σ)2
‖ 1

ε Δũ + λ̃ũ‖2L2

‖ũ‖2
H1

0

. (7)

We now quote the construction in [1] of the function ũ which relates our ex-
pression to computable objects. Let φ(x′) ∈ H2

0 (Ω)\{0} and φl(x′) = l−d/2φ(x′/l).
Let moreover ψ(x1) ∈ C∞0 (R) with unit L2-norm and define

ψn(x1) = n−1/2ψ(x1/n), n > 0.

Define k =
√
λ̃ε and

ũ(x) = ũl,n(x) = φl(x′)ψn(x1)eikx1 .

We calculate the denominator of (7):∫
Rd+1
|∇ũl,n|2dx =

∫
Rd+1

[|φl(x′)[ψ′n(x1) + ikψn(x1)]|2 + |∇φl(x′)ψn(x1)|2]dx.

As n→∞ this tends to k2‖φ‖2L2(Ω) +
∫

lΩ
|∇φl|2dx′, and

lim
n→∞ ||ũl,n||2H1

0
= lim

n→∞

∫
Rd+1

1
ε
|∇ũl,n|2dx+ σ

∫
Rd+1
|ũl,n|2dx

= λ̃‖φ‖2L2(Ω) +
1
ε

∫
lΩ

|∇φl|2dx′ + σ‖φ‖2L2(Ω).

Also as ∇φl(x′) = l−(d+2)/2∇φ(x′/l), we get∫
lΩ

|∇φl|2dx′ =
1
l2

∫
Ω

|∇φ(y)|2dy

and thus
lim

n→∞ ‖ũl,n‖2H1
0

=
1
εl2
‖∇φ‖2L2(Ω) + (σ + λ̃)‖φ‖2L2(Ω).

Using the calculations from [1] for the numerator in (7) we finally arrive at

δ2(λ̃+ σ)2 =
1

σε2l4 ‖Δφ‖2L2(Ω)

(λ̃ + σ)‖φ‖2L2(Ω) + 1
εl2 ‖∇φ‖2L2(Ω)

, (8)
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where of course we can choose any φ ∈ H2
0 (Ω)\{0}. Minimizing δ with respect to

φ, we are led to the first eigenvalue of the problem

Δ2φ = κ(εl2(λ̃ + σ)φ−Δφ). (9)

Slightly more explicit results are obtained by an obvious comparison of (9) with the
clamped plate problem (Δ2φ = κφ) or the buckling plate problem (Δ2φ = −κΔφ).
In practice, it might however be more useful to choose a specific test function
φ ∈ H2

0 (Ω) in (8), as we do in Section 4.
Using (8) and (5) we obtain the enclosing interval, where both λ̃ and σ

are at our disposal. We have however to make sure that μ̃ − δ > 0, i.e., that
1 − δ2(λ̃ + σ)2 > 0, for example by choosing σ sufficiently large. We note that as
σ →∞ we get the result in [1] (developing the theory in L2 instead of H−1).

4. An example

We consider the case d = 2, Ω = (− 1
2 ,

1
2 )2. Since we cannot solve the eigenvalue

problem (9) we use the test function

φ(x, y) = (x− 1
2
)2(x+

1
2
)2(y − 1

2
)2(y +

1
2
)2

which lies in H2
0 (Ω). The results are illustrated in Figure 1 for some selected values

of λ̃. Upper and lower bound of the enclosure interval are shown as functions of
β = εl2. In these examples it turns out that the condition μ̃− δ > 0 mentioned in
Section 3 is satisfied if β > 0.026.

We remark that the length of the enclosing interval is given by

72
√
βσ(λ̃ + σ)2(β(λ̃ + σ) + 24)

(βσ(β(λ̃ + σ) + 24)− 1296)
,

while the length of the interval in [1] is

lk =
2
√

1295
β

,

where we have used the upper bound 1295 for the first eigenvalue of the biharmonic
problem on the unit square.

The length of our enclosing interval is essentially the same as in [1], for some
ranges of the parameters β and λ̃ we get marginal improvements.
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Figure 1. Enclosing interval for λ̃ = 1, 2, 3 plotted as a function
of β (σ = 1000)
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Figure 2. Enclosing interval for λ̃ = 4, 5, 10 plotted as a function
of β (σ = 1000)
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Real Integrability Conditions for the
Nonuniform Exponential Stability of
Evolution Families on Banach Spaces

Constantin Buşe

Abstract. Let J be either R or R+ := [0,∞). We prove that an evolution
family U = {U(t, s)}t≥s∈J which satisfies some natural assumptions is non-
uniformly exponentially stable if there exist a positive real number α and a
nondecreasing function φ : R+ → R+ with φ(t) positive for all positive t and
such that for each s ∈ J, the following inequality

sup
t>s

∫ t−s

0

φ(eαu||U(s + u, s)x||)du = Mφ(s) < ∞

holds true for all x ∈ X with ||x|| ≤ 1. We arrive at the same conclusion under
the assumption that there exist three positive real numbers α, β and K such
that for each t ∈ J the inequality(∫

J

χ(−∞,t](τ )e−qατ ||U(t, τ )∗x∗||)dτ

) 1
q

≤ Ke−βt

holds true, for all x∗ ∈ X∗ with ||x∗|| ≤ 1 and for some q ≥ 1.

Mathematics Subject Classification (2000). Primary 47D06, Secondary 35B35.

Keywords. Operator semigroups, evolution families of bounded linear opera-
tors, uniform and nonuniform exponential stability.

1. Introduction

The uniform exponential stability of an evolution family {U(t, s)}t≥s of bounded
linear operators acting on a Banach space X has been intensively investigated
and several important characterizations in terms of integrability conditions with
respect to the first variable are known, see [9], [10], [13], [14], [7], [15] and the
references therein.

Part of this article was done while the author visited the School of Mathematical Sciences,
Governmental College University, Lahore, Pakistan.
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On the other hand a reformulation of an old result of E.A. Barbashin
[1, Theorem 5.1] reads as follows:

Let U = {U(t, s) : t ≥ s ≥ 0} be an exponentially bounded evolution family
of bounded linear operators acting on a Banach space X such that for each t > 0
the map s �→ ||U(t, s)|| : [0, t] → R+ is measurable. The following two statements
are equivalent:

(i) The family U is uniformly exponentially stable.
(ii) There exists 1 ≤ p <∞ such that

sup
t≥0

⎛⎝ t∫
0

||U(t, s)||pds

⎞⎠
1
p

<∞.

A similar result for families on the entire real line, can be found in [[6],
Theorem 4.1], and reads as follows:

Let φ : R+ → R+ be a nondecreasing function such that φ(t) > 0 for all t > 0
and U = {U(t, s) : t ≥ s} be an exponentially bounded evolution family of bounded
linear operators on X. We assume that the function

s �→ ||U(t, s)|| : (−∞, t]→ R+,

is measurable for all t ∈ R. If

sup
t∈R

t∫
−∞

φ(||U(t, s)||)ds <∞,

then the family U is uniformly exponentially stable.
Among the real integrability conditions which imply nonuniform exponential

stability we recall the following:
Let φ : R+ → R+ be a nondecreasing function such that φ(t) > 0 for all

t > 0 and let U = {U(t, s)}t≥s≥0 and V = {V (t, s)}t≥s be exponentially bounded
evolution families of bounded linear operator acting on X such that for each s ≥ 0
each t ∈ R and each x ∈ X the maps τ �→ ||U(τ, s)x|| : [s,∞) → R+ and τ �→
||V (t, τ)|| : (−∞, t]→ R+ are measurable. If there exists a positive real number α
such that

∞∫
s

φ(eαt||U(t, s)x||)dt = Mφ(s) <∞, ∀s ≥ 0, ∀x ∈ X, ||x|| ≤ 1

and if for each t ∈ R
t∫

−∞
φ(e−ατ ||V (t, τ)||)dτ <∞ (1.1)

then the families U and V are non-uniformly exponentially stable.
We refer to [4], [6] for further details and proofs.
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The variant of (1.1), in the case J = R+, says that for each t ≥ 0 the
inequality

t∫
0

φ(e−ατ ||V (t, τ)||)dτ <∞,

holds true. However this condition is trivially verified when the map τ �→ ||V (t, τ)||
is continuous. Therefore, it cannot imply the nonuniform exponential stability
of the family V. Moreover, in the literature we did not find characterizations of
nonuniform exponential stability in terms of the real integrability conditions along
the norm of the trajectories of the evolution family V, similar to (1.1). The aim of
this paper is to provide such characterizations.

2. Notations and preliminary results

Let X be a real or complex Banach space and X∗ its dual space. By B(X) will
denote the Banach algebra of all linear and bounded operators acting on X. The
norms on X, X∗ and B(X) will be denoted by the symbol || · ||. Let R+ := [0,∞)
and let J either R or R+. By ΔJ will denote the set of all pairs (t, s) ∈ J ×J with
t ≥ s. By an evolution family of bounded linear operators acting on X we mean a
family U = {U(t, s) : (t, s) ∈ ΔJ} ⊂ B(X) satisfying the following two conditions:

1. U(t, t) = I-the identity of B(X)- for all t ∈ J, and
2. U(t, s)U(s, r) = U(t, r) for all t, s, r ∈ J with t ≥ s ≥ r. If the latter condition

holds for all t, s, r ∈ J we say that U is a reversible evolution family on X.
Let q > 0. We say that an evolution family is q-periodic if

U(t, s) = U(t+ q, s+ q) for all (t, s) ∈ ΔJ .

An evolution family is called strongly continuous if for each x ∈ X the maps

τ �→ U(τ, s)x : [s, t]→ X and s �→ U(t, s)x : [s, t]→ X

are continuous for any pair (t, s) ∈ ΔJ . An evolution family is exponentially
bounded if there exist ω ∈ R and Mω ≥ 1 such that

||U(t, s)|| ≤Mωe
ω(t−s) for all (t, s) ∈ ΔJ . (2.1)

We say that a reversible evolution family is exponentially bounded if there exist
ω ∈ R and Mω ≥ 1 such that

||U(t, s)|| ≤Mωe
ω|t−s| ∀t, s ∈ J. (2.2)

An important example of reversible exponentially bounded evolution family is
given by:

Example 1. Let J = R+ and t �→ A(t) : J → B(X) be a locally integrable function

such that supt≥0

t+1∫
t

||A(τ)dτ < ∞, and let U(t) be the solution of the Cauchy

problem
V̇ (t) +A(t)V (t) = 0 t ≥ 0, V (0) = I. (A(t))
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Put U(t, s) := U(t)U−1(s) for t ≥ 0 and s ≥ 0. The family U = {U(t, s), t ≥ 0, s ≥
0} is an exponentially bounded reversible evolution family on X, see e. g. [9].

In order to introduce the concept of nonuniform exponential stability and
show that it is quite natural we prove the following:

Proposition 1. Let J = R+ and U be an exponentially bounded reversible evolution
family of bounded linear operators acting on the Banach space X. The following
four statements are equivalent:

1. There exist two maps N : [0,∞)→ (0,∞) and ν : [0,∞)→ (0,∞) such that

||U(t, s)|| ≤ N(s)e−ν(s)(t−s) for all t ≥ s ≥ 0. (2.3)

2. There exist a function M : [0,∞)→ (0,∞) and a positive real number μ such
that

||U(t, s)|| ≤M(s)e−μ(t−s) ∀t ≥ s ≥ 0. (2.4)
3. There exist two positive constants K and ρ such that

||U(t, 0)|| ≤ Ke−ρt for all t ≥ 0. (2.5)

4. There exist three constants L > 0, a > 0 and b ∈ R such that

||U(t, s)|| ≤ Le−atebs for all t ≥ s ≥ 0. (2.6)

Proof. The inequality (2.3) with s = 0 yields the inequality (2.5). The inequality
(2.6) may be rewritten as

||U(t, s)|| ≤ Le(b−a)se−a(t−s) for all t ≥ s ≥ 0,

i.e., (2. 4) holds true. Assume that (2.5) fulfils and obtain:

||U(t, s)|| = ||U(t, 0)U(0, s)|| ≤ ||U(t, 0)||||U(0, s)|| ≤ Ke−ρtMωe
ωs.

This is a variant of (2.6). �

An evolution family (reversible or not) is called:
(i) uniformly bounded if

sup
(t,s)∈ΔJ

||U(t, s)|| ≤MU <∞.

(ii) non-uniformly strongly stable if for each x ∈ X and each s ∈ J we have that
lim

t→∞U(t, s)x = 0.

(iii) uniformly exponentially stable if there exist two positive constants N and ν
such that ||U(t, s)|| ≤ Ne−ν(t−s) for all t, s ∈ J with t ≥ s.

(iv) non-uniformly exponentially stable if there exist a function N : [0,∞) →
(0,∞) and a positive real number ν such that

||U(t, s)|| ≤ N(s)e−ν(t−s) for all t, s ∈ J with t ≥ s.
The next example shows that there exist exponentially bounded reversible

evolution families which are uniformly bounded and non-uniformly exponentially
stable and are not uniformly exponentially stable.
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Example 2. By C we denote the set of all complex numbers. Let us consider the
map

t �→ A(t) :=
√

2− sin ln(t+ 1)− cos ln(t+ 1) : R+ → C.

The solution P (·) of the Cauchy problem (A(t)) with the initial condition U(0) = 1

is P (t) = exp(−
t∫
0

A(τ)dτ), t ≥ 0. It is clear that the map A(·) is bounded, so the

family U = {U(t, s) := P (t)P−1(s) : t ≥ 0, s ≥ 0} of bounded linear operators on
C is a reversible and exponentially bounded evolution family. Moreover, for each
t ≥ s ≥ 0 we have that

|P (t)P−1(s)| = exp(−
t∫

s

A(τ)dτ) ≤ 1,

that is U is uniformly bounded.
On the other hand

|P (t)P−1(0)| = exp(−
t∫
0

A(τ)dτ) = e−
√

2t+(t+1) sin ln(t+1)

= e
√

2e−(t+1)[
√

2−sin ln(t+1)] ≤ e
√

2−0.4e−0.4t

for all t ≥ 0, then the evolution family U is non-uniformly exponentially stable
such as been stated in the Proposition 1, above.

In order to prove that the family U is not uniformly exponentially stable
first remark that the following two statements are equivalent. We refer to [11] for
theorems of this type in the infinite dimensional case.

(j) There exist constants a > 0 and b ≥ 0 such that
t∫

s

A(τ)dτ ≥ a(t− s)− b for all t ≥ s ≥ 0.

(jj) The family U is uniformly exponentially stable.
Indeed the implication (j)⇒ (jj) follows by the inequality

P (t)P−1(s) = exp(−
t∫

s

A(τ)dτ) ≤ ebe−a(t−s) for all t ≥ s ≥ 0,

while that the inequality

exp(−
t∫

s

A(τ)dτ) ≤ Ne−ν(t−s) = ebe−ν(t−s)

where N = eb ≥ 1 (i.e., b ≥ 0) and t ≥ s ≥ 0, implies that
t∫
s

A(τ)dτ ≥ −b+ν(t−s),

i.e., (j) holds with a = ν and b = lnN. We suppose for a contradiction that the
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family U is uniformly exponentially stable. Then there exist a > 0 and b ≥ 0 such
that
√

2(t− s)− [(t+ 1) sin ln(t+ 1)− (s+ 1) sin ln(s+ 1)] ≥ a(t− s)− b (2.7)

holds for any t ≥ s ≥ 0. Let g(ξ) :=
√

2ξ − ξ sin(ln ξ), ξ ≥ 1. The above inequality
(2.7) may be written as

g(u)− g(v) ≥ a(u− v)− b for all u ≥ v ≥ 1. (2.8)

Let un := e2nπ+π
4 and vn := un(1 + 1

n ). Using the mean value theorem follows
that there exists ξn ∈ (un, vn) such that

g(un)− g(vn) = (un − vn)
√

2(1− cos
(
ln

(
ξn −

π

4

))
Then from (2.8) we get

√
2
(
1− cos

(
ln

(
ξn −

π

4

)))
≥ a− nb

un
∀n = 1, 2, . . . (2.9).

But 1 > cos(ln(ξn − π
4 )) > cos(ln(1 + 1

n )), so the left side of (2.9) tends to 0 when
n→∞. This leads with the inequality 0 ≥ a, which it is a contradiction.

For a more technical treatment of this example see [5].

Recall that if an evolution family U satisfies the convolution condition

U(t, s) = U(t− s, 0) for all (t, s) ∈ ΔJ

then the one parameter evolution family T := {U(t, 0), t ≥ 0} is a semigroup of
operators on X. If T is strongly continuous then it is exponentially bounded, that
is there exist a real numbers ω and Mω ≥ 1 such that ||T (t)|| ≤Mωe

ωt for all t ≥ 0.
The converse statement is not true but exponentially bounded semigroups possess
a certain type of measurability. More precisely we use the following proposition.

Proposition 2. If a one parameter semigroup {T (t)}t≥0 is exponentially bounded
then for each x ∈ X, the map t �→ ||T (t)x|| is measurable.

Let {T (t)}t≥0 be a strongly continuous one parameter semigroup on a Banach
space X and T∗ = {T (t)∗}t≥0 the associated one parameter dual semigroup on
X∗. It is known that the dual semigroup T∗ may be not strongly continuous but
it is exponentially bounded because ||T (t)|| = ||T (t)∗|| for all t ≥ 0. Then for
each x∗ ∈ X∗ the map t �→ ||T (t)∗x∗|| is measurable. We say that an evolution
family {U(t, s)} : (t, s) ∈ ΔJ of bounded linear operators acting on X satisfies the
measurability condition on ΔJ , if for each pair (t, s) ∈ ΔJ , each x ∈ X and each
x∗ ∈ X∗ the maps U(·, s)x and U(t, ·)∗)x∗ are measurable.

Remark.

1. For q-periodic evolution families and for semigroups the notions of uniform
exponential stability and nonuniform exponential stability are equivalent,
such as been stated in [3], [5].
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2. Let X := C00(R+, X) the Banach space of all continuous X-valued functions
f on R+ with the property that f(0) = f(∞) = 0, endowed with the “sup”
norm and let U = {U(t, s)}t≥s≥0 be an exponentially bounded evolution
family on X.

The evolution family U is uniformly exponentially stable if and only if its
associated evolution semigroup T = {T (t)}t≥0 on X , defined by

(T (t)f)(ξ) =
{
U(ξ, ξ − t)f(ξ − t) if ξ ≥ t

0, if 0 ≤ ξ < t

is uniformly exponentially stable. See [12] and [8] for further details.
Also it is known that a uniformly stable evolution family U is non-uniformly

strongly stable if and only if its associated evolution semigroup on X is strongly
stable. We refer to [2] for further details and proofs.

3. Real integrability conditions for nonuniform
exponential stability

Theorem 1. Let p, q ∈ (1,∞) with 1
p + 1

q = 1 and let U = {U(t, s) : (t, s) ∈ ΔJ}
be an evolution family of bounded linear operator acting on X which satisfies the
measurability condition on ΔJ . The following two statements are equivalent:

(i) The evolution family U is non-uniformly exponentially stable.
(ii) There exist a positive real number α and two positive functions Mp(·) and

M∗
q (·) on R+ such that

sup
t>s

⎛⎝ 1
t− s

t∫
s

epα(τ−s)||U(τ, s)x||pdτ

⎞⎠
1
p

≤Mp(s)||x||, ∀s ∈ J ∀x ∈ X

and

sup
t>s

⎛⎝ 1
t− s

t∫
s

eqα(t−τ)||U(t, τ)∗x∗||q
⎞⎠

1
q

≤M∗
q (s)||x∗||, ∀s ∈ J ∀x∗ ∈ X∗.

Proof. The implication (i)⇒ (ii) is trivial. We shall prove the implication (ii)⇒
(i). Let x ∈ X,x∗ ∈ X∗ and (t, s) ∈ ΔJ with t > s. Using the Hölder inequality
we get:

(t− s)|〈x∗, eα(t−s)U(t, s)x〉| =
t∫

s

eα(t−τ)eα(τ−s)|〈x∗, U(t, τ)U(τ, s)x〉|dτ

≤

⎛⎝ 1
t− s

t∫
s

eqα(t−τ)||U(t, τ)∗x∗||q
⎞⎠

1
q
⎛⎝ 1
t− s

t∫
s

epα(τ−s)||U(τ, s)x||pdτ

⎞⎠
1
p

(t− s)

≤Mp(s)M∗
q (s)||x||||x∗||(t− s).
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Finally we have

||U(t, s)|| ≤Mp(s)M∗
q (s)e−α(t−s), for all (t, s) ∈ ΔJ ,

that is the family U is non-uniformly exponentially stable. �

Corollary 1. Let T = {T (t)}t≥0 be a semigroup of bounded linear operators acting
on X, and let p, q ∈ (1,∞) with 1/p+ 1/q = 1. We assume that for each x ∈ X
and each x∗ ∈ X∗ the maps t �→ ||T (t)x|| and t �→ ||T (t)∗x∗|| are measurable and
moreover there exists a positive real number α such that

sup
t>0

1
t

∫ t

0

epαs||T (s)x||pds <∞ (3.1)

and

sup
t>0

1
t

∫ t

0

eqαs||T (s)∗x∗||qds <∞. (3.2)

Then the semigroup T is uniformly exponentially stable.

It is worth to mention that the previous corollary is stated under the minimal
assumption that the maps t �→ ||T (t)x|| and t �→ ||T (t)∗x∗|| are measurable. If
the semigroup T is exponentially bounded the above maps are measurable and
moreover either one of the conditions (3.1) or (3.2) can be dropped. We leave
open the question whether the measurability conditions imply the exponential
boundedness of T.

Theorem 2. Let φ : R+ → R+ be a nondecreasing function such that φ(t) > 0
for all t > 0 and let U = {U(t, s)}(t,s)∈ΔJ

be an exponentially bounded evolution
family on a Banach space X which satisfies the measurability condition on ΔJ . If
there exists α > 0 such that for each s ∈ J the following inequality

sup
t>s

∞∫
−∞

φ(χ[s,t](τ)eα(τ−s)||U(τ, s)x||)dτ := Mφ(s) <∞

holds true for every x ∈ X with ||x|| ≤ 1, then the family U is non-uniformly
exponentially stable.

Proof. Let ω > 0 and Mω ≥ 1 such that ||U(t, s)|| ≤ Mωe
ω(t−s) for every t ≥ s.

Let x ∈ X, as above, and let x∗ ∈ X∗ be a non-zero vector. We may suppose
that φ(1) = 1 otherwise we replace φ be an appropriate multiple of itself. Let
N = N(s) > Mφ(s), t ≥ s+N(s) and t−N ≤ τ ≤ t. We have successively:

χ[t−N,t](τ)e−(ω+α)N(s)|〈x∗, eα(t−s)U(t, s)x〉|
≤ χ[t−N,t](τ)e−ω(t−τ)||U(t, τ)∗||eα(τ−s)||U(t, s)x||||x∗||
≤Mω||x∗||χ[s,t](τ)eα(τ−s)||U(τ, s)x||.
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Using the properties of φ we get:

Nφ(M−1
ω ||x∗||−1e−(ω+α)N |〈x∗, eα(t−s)U(t, s)x〉|)

=

∞∫
−∞

φ(χ[t−N,t](τ)M−1
ω ||x∗||−1e−(ω+α)N |〈x∗, eα(t−s)U(t, s)x〉|)dτ

≤
∞∫

−∞
φ(eα(τ−s)χ[s,t](τ)||U(τ, s)x||)dτ ≤Mφ(s) < N(s).

Now it is easy to see that:

||U(t, s)|| ≤Mωe
(ω+α)N(s)e−α(t−s)

for all t ≥ s, that is the family U is non-uniformly exponentially stable. �

A simple calculations shows that:

t∫
s

φ(eα(τ−s)||U(τ, s)x||)dτ =

t−s∫
0

φ(eαu||U(s+ u, s)x||)du.

Thus we have

Corollary 2. Let U be an exponentially bounded evolution family on X which sat-
isfies the measurability condition on ΔJ . If there exist φ, as above, and a positive
real number α such that for each s ∈ J the inequality

∞∫
s

φ(eαte−αs||U(t, s)x||)dt =

∞∫
0

φ(eαu||U(s+ u, s)x||)du <∞, (3.3)

holds true for every x ∈ X with ||x|| ≤ 1, then the family U is non-uniformly
exponentially stable.

In the case J = R+ from (3.3) follows also the following known result: Let
U, φ and α be as above. If for each s ≥ 0 and each x ∈ X we have that

∞∫
s

φ(eαt||U(t, s)x||)dt <∞

then the family U = {U(t, s)}t≥s≥0 is non-uniformly exponentially stable. See [3].

Theorem 3. Let U = {U(t, s)}t≥s∈J be an evolution family on a Banach space X
which satisfies the measurability condition on ΔJ and is non-uniformly exponen-
tially bounded, that is there exist two positive maps ω and Mω on J such that

||U(t, s)|| ≤Mω(s)eω(s)(t−s), ∀(t, s) ∈ ΔJ .
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The following two statements are equivalent:

(i) The family U is non-uniformly stable.
(ii) There exist three positive real numbers α, β and K such that for some q ≥ 1

and each t ∈ J the inequality⎛⎝∫
J

χ(−∞,t](τ)e−qατ ||U(t, τ)∗x∗||qdτ

⎞⎠
1
q

≤ Ke−βt

holds true, for all x∗ ∈ X∗ with ||x∗|| ≤ 1.

Proof. We consider the case q = 1 and q > 1 separately.

Case q = 1. Let s ∈ J, N > 0 and let s ≤ τ ≤ s + N ≤ t. Then for each x ∈ X
and each x∗ ∈ X∗ with ||x∗|| ≤ 1, have that:

Ne−ω(s)+α)N |〈x∗, eα(t−s)U(t, s)x〉|

≤
∫
J

χ[s,s+N ](τ)e−(ω(s)+α)(τ−s)eα(τ−s)||U(τ, s)x||eα(−τ)||U(t, τ)∗x∗||dτ

≤Mω(s)
∫
J

χ(−∞,t](τ)||x||eα(−τ)||U(t, τ)∗x∗||dτ ≤Mω(s)Ke−βt,

||U(t, s)|| ≤ KMω(s)
N

e(ω(s)+α)Neαse−βt.

Case q > 1. Let t, s, τ and N as above and let p > 1 such that 1
p + 1

q = 1. Using
the Hölder inequality we have that:

Ne−(ω(s)+α)N |〈x∗, eα(−s)U(t, s)x〉|

≤
∫
J

χ[s,s+N ](τ)e−(ω(s)+α)(τ−s)eα(τ−s)||U(τ, s)x||eα(−τ)||U(t, τ)∗x∗dτ

≤

⎛⎝∫
J

Mp
ω(s)χ[s,s+N ](τ)||x||pdτ

⎞⎠
1
p
⎛⎝∫

J

χ(−∞,t](τ)eα(−qατ)||U(t, τ)∗x∗||qdτ

⎞⎠
1
q

≤ N 1
pKMω(s)||x||e−βt.

This yields

||U(t, s)|| ≤ N− 1
qKMω(s)e(ω(s)+α)Neαse−βt.

A similar inequality can be easily obtained, in the both cases, for t ∈ [s, s+N ]. �

Corollary 3. Let U = {U(t, s)}t≥s≥0 and q be as in the above Theorem 3 with
J = R+. If there exist three positive real numbers α, β and K such that for each
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t ≥ 0 the inequality
t∫

0

e−qατ ||U(t, τ)∗x∗||qdτ ≤ Ke−qβt

holds true for every x∗ ∈ X∗ with ||x∗|| ≤ 1, then the family U is non-uniformly
exponentially stable.

A similar corollary can be formulated for J = R. For semigroups the above
Theorem 3 yields the following interesting variant of the Datko-Pazy Theorem:

Corollary 4. An exponentially bounded semigroup T = {T (t)}t≥0 on a Banach
space X is uniformly exponentially stable if and only if there exist three positive
real numbers α, β and K such that for each t ≥ 0 the inequality:

t∫
0

eqαρ||T (ρ)∗x∗||qdρ ≤ Keq(α−β)t

holds true for all x∗ ∈ X∗ with ||x∗|| ≤ 1 and some q ≥ 1.

Proof. The measurability of the function ρ �→ ||T (ρ)∗x∗|| : R+ → R+ is a conse-
quence of the Proposition 1 stated above. �
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Validated Computations for
Fundamental Solutions of
Linear Ordinary Differential Equations

Kaori Nagatou

Abstract. We present a method to enclose fundamental solutions of linear
ordinary differential equations, especially for a one dimensional Schrödinger
equation which has a periodic potential. Our method is based on Floquet
theory and Nakao’s verification method for nonlinear equations. We show
how to enclose fundamental solutions together with characteristic exponents
and give a numerical example.
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1. Introduction

We consider to compute fundamental solutions for the following equation

Lψ ≡ −ψ′′ + q(x)ψ = 0, x ∈ R, (1)

where we assume that q is a bounded, continuous and periodic function with a
period r > 0.

By Floquet Theory there exist fundamental solutions ψ1(x), ψ2(x) of Lψ = 0
s.t.

ψ1(x) = eμxp1(x), ψ2(x) = e−μxp2(x), (2)

or
ψ1(x) = eμxp1(x), ψ2(x) = eμx(xp1(x) + p2(x)), (3)

where μ is the characteristic exponent and p1, p2 are r−periodic functions. In this
paper we assume that |φ1(r) + φ′2(r)| > 2 for the solutions φ1, φ2 of (6) and (7),
and note that this excludes the case (3), and allows to choose μ in (2) with positive
real part. Our aim is to compute ψ1, ψ2 with guaranteed accuracy.
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Once we obtained enclosures for such fundamental solutions, we may use
them for another problem. For example, using these guaranteed enclosures for the
fundamental solutions we can enclose the Green’s function G(x, y) defined by [1]

G(x, y) =

{
ψ1(x)ψ2(y)/W (ψ1, ψ2)(x) (x ≤ y)
ψ2(x)ψ1(y)/W (ψ1, ψ2)(x) (x ≥ y)

(4)

for −∞ < x, y < +∞ , where W (ψ1, ψ2)(x) ≡ ψ1(x)ψ′2(x) − ψ′1(x)ψ2(x) stands
for the Wronskian. Since Re(μ) > 0, G decays exponentially as y → −∞ and
y → +∞, and we have [1]

−(L−1f)(x) =
∫

R

G(x, y)f(y)dy. (5)

This kind of expression for L−1 is useful to execute another verification
method (e.g., for a spectral problem of a perturbed Schrödinger operator) related
to the selfadjoint operator L : D(L) ⊂ L2(R)→ L2(R) defined on a suitable dense
subspace D(L) ⊂ L2(R); see [1] for details on the construction of this operator
realizing the differential expression (1).

2. Verification for fundamental solutions

In order to verify the fundamental solutions ψ1 and ψ2 in (1) satisfying (2), it is
sufficient, as explained at the end of this section, to enclose the functions φ1 and
φ2 which are solutions for the following equations:{

−φ′′1 (x) + q(x)φ1(x) = 0 in [0, r]
φ1(0) = 1, φ′1(0) = 0

(6)

{
−φ′′2 (x) + q(x)φ2(x) = 0 in [0, r]

φ2(0) = 0, φ′2(0) = 1
(7)

Let Sh denote the set of continuous and piecewise linear functions on [0, r]
with uniform mesh 0 = x0 < x1 < · · · < xN+1 = r and mesh size h. We define a
function space

V ≡W 1
∞,0(0, r) ∩

(
N∧

i=0

C1[xi, xi+1]

)
,

and we define the norm for (w, μ) ∈ V × R by

‖(w, μ)‖V×R ≡ max{‖w‖W 1
∞,0

, |μ|},

where W 1
∞,0(0, r) is a usual Sobolev space defined by

W 1
∞,0(0, r) ≡ {φ ∈W 1

∞(0, r) | φ(0) = φ(r) = 0}
Setting φ1(r) = κ, φ2(r) = τ and transforming

φ̃1(x) ≡ φ1(x) +
1− κ
r

x− 1, φ̃2(x) ≡ φ2(x)−
τ

r
x,
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we consider the following equivalent problems:

Find (φ̃1, κ) ∈ V × R s.t.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−φ̃′′1 (x) + q(x)

(
φ̃1(x) +

κ− 1
r

x+ 1
)

= 0 in [0, r]

φ̃1(0) = φ̃1(r) = 0

φ̃′1(0) =
1− κ
r

(8)

Find (φ̃2, τ) ∈ V × R s.t.⎧⎪⎪⎨⎪⎪⎩
−φ̃′′2(x) + q(x)

(
φ̃2(x) +

τ

r
x
)

= 0 in [0, r]

φ̃2(0) = φ̃2(r) = 0

φ̃′2(0) = 1− τ

r

(9)

Below we describe how to enclose (φ̃1, κ) ∈ V × R in (8). The enclosure for
(φ̃2, τ) ∈ V × R is analogous.

Let Ph0 : V → Sh denote the H1
0 -projection defined by

(∇(u − Ph0u),∇v)L2 = 0 for all v ∈ Sh,

and define the projection Ph : V × R→ Sh × R by

Ph(u, λ) ≡ (Ph0u, λ).

Now, let (φ̃1,h, κh) ∈ Sh×R be the exact finite element solution of (8). (Here
we assume that there exists a unique finite element solution. This assumption can
be checked in the actual verified computation.) We will verify the solution (φ̃1, κ)
in the neighborhood of (φ̄1, κh) satisfying⎧⎨⎩−φ̄1

′′(x) = −q(x)
(
φ̃1,h(x) +

κh − 1
r

x+ 1
)

in (0, r),

φ̄1(x) = 0 for x = 0, r.
(10)

Notice that φ̄1 ∈ W 1
∞,0(0, r)

⋂
W 2
∞(0, r), and φ̃1,h = Ph0φ̄1. Defining w =

φ̃1 − φ̄1, v0 = φ̄1 − φ̃1,h, μ = κ− κh, we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
−w′′(x) = −q(x)

(
w(x) + v0(x) +

μ

r
x
)

in (0, r)
w(0) = w(r) = 0

w′(0) =
1− μ− κh

r
− v′0(0)− φ̃′1,h(0)

(11)

Thus using the following compact map on V × R

F (w, μ) ≡
(
(−Δ)−1

{
−q(x)

(
w(x) + v0(x) +

μ

r
x
)}

,

μ+ w′(0)− 1− μ− κh

r
+ v′0(0) + φ̃′1,h(0)

)
, (12)
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where (−Δ)−1 means the solution operator for the Poisson equation with homo-
geneous boundary condition, we have the fixed point equation for z = (w, μ)

z = F (z). (13)

Now we decompose (13) into finite- and infinite-dimensional parts:{
Ph(z) = PhF (z),

(I − Ph)(z) = (I − Ph)F (z).
(14)

We define the operator

Nh(z) ≡ Ph(z)− [I − F ′]−1
h (Ph(z)− PhF (z)),

where we omitted to express the evaluation point for the Fréchet derivative F ′

because the operator F is affine, and assumed that the restriction to Sh×R of the
operator Ph[I − F ′] : V × R→ Sh × R has an inverse

[I − F ′]−1
h : Sh × R→ Sh × R.

This assumption can be numerically checked in the actual computation.
We next define the operator T : V × R→ V × R as

T (z) ≡ Nh(z) + (I − Ph)F (z). (15)

Then T becomes a compact map on V × R, and

z = T (z)⇔ z = F (z) (16)

holds.
Our purpose is to find a fixed point of T in a certain set Z ⊂ V × R, which

is called a ‘candidate set’. Given positive real numbers α, γ and γR we define the
corresponding candidate set Z by

Z ≡ Zh + [α], (17)

where
Zh ≡ {z1 ∈ Sh | ‖z1‖W 1

∞,0
≤ γ} × {z2 ∈ R | |z2| ≤ γR}, (18)

[α] ≡ {z⊥ ∈ S⊥h × {0} | ‖w⊥‖W 1
∞,0
≤ α}. (19)

Here S⊥h denotes the orthogonal complement of Sh in H1
0 (0, r). We define the two

operators Nh,1 and Nh,1 by

Nh,1 : V × R→ V, Nh,2 : V × R→ R

such that Nh = (Nh,1,Nh,2). If the relation

T (Z) ⊂ Z (20)

holds, by Schauder’s fixed point theorem, there exists a fixed point of T in Z. De-
composing T (Z) ⊂ Z into finite- and infinite-dimensional parts we have a sufficient
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conditions for it as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
sup
z∈Z
‖Nh,1(z)‖V ≤ γ,

sup
z∈Z
|Nh,2(z)| ≤ γR,

sup
z∈Z
‖(I − Ph)F (z)‖W 1

∞,0×{0} ≤ α.
(21)

We find γ, γR and α which satisfy the conditions (21) by an iteration method.
Details (on a more general level) can be found, e.g., in [4, 6, 7].

After enclosing φ1(x) and φ2(x) by the method mentioned above, we evaluate
φ1(r) and φ′2(r) rigorously. Then we can calculate the real values ρ1 and ρ2 which
are solutions of the quadratic equation:

ρ2 − {φ1(r) + φ′2(r)}ρ+ 1 = 0. (22)

Here ρ1 and ρ2 are obtained as real values by our assumption that |φ1(r)+φ′2(r)| >
2. Note that ρ1 and ρ2 are the characteristic multipliers for Lψ = 0 and the
characteristic exponents μ1 and μ2 are calculated by μ1 ≡ r−1 log ρ1, μ2 ≡ −μ1.
(Note that erμi = ρi (i = 1, 2) holds.)

Here we mention about the relation between φ1, φ2 and ψ1, ψ2. We define
the matrix A by

A =
(
φ1(r) φ′1(r)
φ2(r) φ′2(r)

)
.

Since we enclose φ1(r), φ′1(r), φ2(r) and φ′2(r) by intervals, the matrix A is usually
an interval matrix. Then clearly ρ1 and ρ2 are the eigenvalues of A. (Note that
ρ1 
= ρ2 holds by our assumption that |φ1(r) + φ′2(r)| > 2.) Let v1 and v2 be the
corresponding eigenvectors for ρ1 and ρ2, respectively. Then we can define ψ1 and
ψ2 by (

ψ1

ψ2

)
≡

(
v1 v2

)−1
(
φ1

φ2

)
. (23)

Now we define p1 and p2 by (
p1

p2

)
≡

(
e−μxψ1

eμxψ2

)
, (24)

where μ ∈ {μ1, μ2} is chosen such that Reμ > 0, which is possible if |φ1(r) +
φ′2(r)| > 2. Then we can observe that pi(x + r) = pi(x) (i = 1, 2) and ψ1 and ψ2

defined by (23) satisfy the relation (2).

3. Numerical examples

We consider the case q(x) = 5 cos 2πx− 9.0, r = 3 and N = 2000 as an example.
The computations were carried out on the DELL Precision WorkStation 340

(Intel Pentium4 2.4GHz) using MATLAB (Ver. 7.0.1). The verification results for
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φ̃k (k = 1, 2) are shown in Table 1 and 2, and the solutions (φ̃1, κ), (φ̃2, τ) are
enclosed as

‖φ̃k − φ̃k,h‖V ≤ ‖v0‖W 1
∞,0

+ α+ γ (k = 1, 2),

|κ− κh| ≤ γR, |τ − τh| ≤ τR.

Table 1. Verification Results for (φ̃1, κ)

‖v0‖W 1
∞,0

γ γR α

0.1472 0.4842 2.101×10−7 0.0204

Table 2. Verification Results for (φ̃2, τ)

‖v0‖W 1
∞,0

γ τR α

0.0061 0.0037 1.56×10−9 1.5188×10−4

From these verified results we could obtain

κ ∈ [−9.4586× 10−6,−9.0384× 10−6]
τ ∈ [2.5080× 10−7, 2.5392× 10−7]

and finally
μ ∈ [0.73995353, 0.73995485],

which gives the desired fundamental solutions ψ1 and ψ2.
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approximate fundamental solution phi1, r=3, N=2000, lam=9

Figure 1. Approximate solution for φ1
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approximate fundamental solution phi2, r=3, N=2000, lam=9

Figure 2. Approximate solution for φ2
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Figure 3. Approximate solution for ψ1
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Figure 4. Approximate solution for ψ2

References

[1] M.S.P. Eastham, The Spectral Theory of Periodic Differential Equations, Scottish
Academic Press, 1973.

[2] K. Nagatou, A numerical method to verify the elliptic eigenvalue problems including
a uniqueness property, Computing 63 (1999), 109–130.

[3] M.T. Nakao and Y. Watanabe, An efficient approach to the numerical verification
for solutions of the elliptic differential equations, Numerical Algorithms 37 (2004),
311–323.

[4] M.T. Nakao, K. Hashimoto and Y. Watanabe, A numerical method to verify the in-
vertibility of linear elliptic operators with applications to nonlinear problems, Com-
puting 75(1) (2005), 1–14.

[5] M.T. Nakao, N. Yamamoto and K. Nagatou, Numerical Verifications for eigenvalues
of second-order elliptic operators, Japan Journal of Industrial and Applied Mathe-
matics, 16(3) (1999), 307–320.

[6] K. Nagatou, N. Yamamoto and M.T. Nakao, An approach to the numerical verifi-
cation of solutions for nonlinear elliptic problems with local uniqueness, Numerical
Functional Analysis and Optimization 20(5 & 6) (1999), 543–565.

[7] K. Nagatou, K. Hashimoto, and M.T. Nakao, Numerical verification of stationary
solutions for Navier-Stokes problems, Journal of Computational and Applied Math-
ematics 199 (2007) 445–451.

[8] M.H. Schultz, Spline Analysis, Prentice-Hall, London, 1973.

[9] K. Yosida, Functional Analysis, Springer-Verlag, Berlin, 1995.

Kaori Nagatou
Faculty of Mathematics, Kyushu University, Japan, and
PRESTO, Japan Science and Technology Agency



Part II

Integral Inequalities





International Series of Numerical Mathematics, Vol. 157, 53–59
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1. Introduction

The aim of this paper is to extend some weighted inequalities, proved in [6] and [7],
from the Lebesgue setting to more general “modular inequality” settings equipped
with Orlicz spaces. Let w be a weight, i.e., a positive and measurable function on
R. The Orlicz spaces LΦ(R, w(x)dx) are defined by

‖f‖LΦ(R,w(x)dx) = inf
λ>0

{∫
R

Φ
(
|f(x)|
λ

)
w(x)dx ≤ 1

}
<∞ (1)

where Φ is a Young function. For standard notations and details concerning Orlicz
spaces and modular functions we refer to [1]. Let now

E := {f(x) ≥ 0, x ∈ R+} ,

E↓ := {f(x) ≥ 0, f(x) is non-increasing for x ∈ R+}
be two standard cones in the space of Lebesgue measurable functions. A Volterra
type integral operator is an operator K defined by

Kf(x) =
∫ x

0

k(x, y)f(y)dy, (2)
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where the kernel k is nonnegative, nondecreasing in x and nonincreasing in y (such
kernels are sometimes called Oinarov kernels). These include the Hardy operator
if k ≡ 1 and the Riemann-Liouville fractional integral operators if k(x, y) = (x −
y)α, α > 0.
In [6, Theorem 2.3] it was proved, in particular, that, for 1 ≤ p <∞ and 0 < q <
∞, the inequalities(∫

R+

(Kf(x))q
u(x)dx

)1/q

≤ C1(p, q)

(∫
R+

(f(x))p
dx

)1/p

, f ∈ E,

and (∫
R+

(Kf(x))q
u(x)dx

)1/q

≤ C2(p, q)

(∫
R+

(f(x))p
dx

)1/p

, f ∈ E ↓,

are equivalent and C1(p, q) = C2(p, q). In this paper we will generalize this and
other similar results to more general modular inequalities.
Here and in the sequel functions are assumed to be measurable, weight functions,
denoted by u, v, and w, are locally integrable and the left-hand sides of inequalities
exist if the right-hand sides do. Also constants are assumed to be positive and
denoted by C or c (sometimes with different subscripts to pronounce that they
can be different from each other).

2. Main results

We consider first some auxiliary results that will be used to prove the main results.
The notion of level function was first introduced by Halperin [3]. We use the
extension of this notion given by Lorentz [2] and based on the following result:

Theorem 1. Assume that f is nonnegative measurable function on R+ such that

lim
x→∞

∫ x

0 f(t)dt
x

= 0. (3)

Then there exists a unique nonnegative decreasing function f◦ on R+ satisfying
the following conditions:

1.
∫ x

0
f(t)dt ≤

∫ x

0
f◦(t)dt

2. up to a set of measure zero, the set {t ∈ R+ : f(t) 
= f◦(t)} is the union of
bounded disjoint intervals Ik such that∫

Ik

f(t)dt =
∫

Ik

f◦(t)dt

and f◦(t) is constant on Ik.

Remark 2. This theorem is a slight modification of the results of Chapter 3.6 of
[2]; the proof is similar to the one given in [2] so we omit the details. The function
f◦ is called the level function of f .
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Lemma 3. Let P ≥ 0 be a convex function on [0,∞). Let f ≥ 0 be a bounded
function with compact support ⊂ R+ and let f◦ be its level function. Then∫ ∞

0

P (f◦(x))dx ≤
∫ ∞

0

P (f(x))dx. (4)

Proof. Since f has compact support the condition (3) is satisfied. By Theorem 1
we have that f◦(t) = λk for any t ∈ Ik and λk = 1

|Ik|
∫

Ik
f(t)dt. Hence, by Jensen’s

inequality, we get that∫
Ik

P (f◦(x))dx = P (λk) |Ik| = P

(
1
|Ik|

∫
Ik

f(t)dt
)
|Ik| ≤

∫
Ik

P (f(x))dx.

Since on [0,∞) \ ∪∞k=1Ik, f(x) = f◦(t), by summing up we obtain the inequality
(4) and the proof is complete. �

Remark 4. If P (x) = xp, p ≥ 1, then we get the result of Proposition 2.1 in [6].

Our first main result reads:

Theorem 5. Let P ≥ 0 be a convex and increasing function on [0,∞) and Q ≥ 0 be
an increasing function on [0,∞) such that limx→0Q(x) = 0 and limx→∞Q(x) =
∞. Let the kernel k(x, y) : R+×R+ → R+ be nonincreasing in y ∈ [0, x] for every
x and let K be defined by (2). Then the inequalities

Q−1

(∫ ∞

0

Q(Kf(x)u(x))v(x)dx
)
≤ P−1

(∫ ∞

0

P (C1f(x))dx
)
, f ∈ E, (5)

and

Q−1

(∫ ∞

0

Q(Kf(x)u(x))v(x)dx
)
≤ P−1

(∫ ∞

0

P (C2f(x))dx
)
, f ∈ E ↓, (6)

are equivalent and C1 = C2.

Remark 6. Note that by choosing Q(u) = uq, 0 < q <∞, P (u) = up, 1 ≤ p <∞,
we obtain exactly the previous mentioned result by Persson-Stepanov-Ushakova
[6, Theorem 2.3].

Proof. The implication (5)=⇒ (6) and the inequality C2 ≤ C1 are trivial because
E ↓⊂ E. Now we will show the reversed implication and assume that (6) holds. By
monotonicity of the kernel k(x, y) we have in the sense of Stieltjes’ integral that

k(x, y) = k(x, x) +
∫ x

y

dz(−k(x, z)),

for all 0 ≤ y < x < ∞. Using the above representation and the fact that∫ x

0
f(t)dt ≤

∫ x

0
f◦(t)dt it was proved in [6, Theorem 2.3] that

Kf(x) ≤ Kf◦(x)
for all bounded f ∈ E with compact support. Since Q is increasing we also have
that

Q(Kf(x)u(x))v(x) ≤ Q(Kf◦(x)u(x))v(x), x ≥ 0,
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and, hence, by our assumption and by Lemma 3 (see inequality (4)) we get that

Q−1

(∫ ∞

0

Q(Kf(x)u(x))v(x)dx
)
≤ Q−1

(∫ ∞

0

Q(Kf◦(x)u(x))v(x)dx
)

≤ P−1

(∫ ∞

0

P (C2f
◦(x))dx

)
≤ P−1

(∫ ∞

0

P (C2f(x))dx
)
.

Hence (5) holds and we also have that C1 ≤ C2. For arbitrary f ∈ E the implication
follows by a standard approximation argument. The proof is complete. �

As remarked in [4, Proposition 3, p. 115] the integral modular inequalities
are equivalent to the uniform boundedness of a family of norm inequalities. More
precisely we have the following general result:

Lemma 7. Let P and Q be two Young functions, f ∈ E, u, v, w be weight functions
and K an operator. Then the modular inequality

Q−1

(∫ ∞

0

Q(Kf(x)u(x))v(x)dx
)
≤ P−1

(∫ ∞

0

P (Cf(x))w(x)dx
)
, f ∈ E

holds if and only if

‖uKf‖LQ(R+,εv(x)dx) ≤ C‖f‖LP (R+,η(ε)w(x)dx)

holds for all ε > 0, with η(ε) = 1
Q(P−1( 1

ε ))
and C independent of ε.

(Here ‖f‖LP (R+,w(x)dx) is the Orlicz norm as defined in (1).)

Using the above lemma with ε = 1 we can state the following corollary of
Theorem 5:

Corollary 8. Let P and Q be two Young functions and let the integral operator K
be defined by (2). The inequalities

‖uKf‖LQ(R+,v(x)dx) ≤ C1‖f‖LP (R+,dx), f ∈ E

and

‖uKf‖LQ(R+,v(x)dx) ≤ C2‖f‖LP (R+,dx), f ∈ E ↓

are equivalent and C1 = C2.

Let now Hf(x) = 1
x

∫ x

0 f(t)dt be the classical Hardy operator and denote by
C the best constant in the inequality

‖Hf‖LP (R+,dx) ≤ C‖f‖LP (R+,dx). (7)

It is well known that (7) always holds if the complementary function P̃ to the
Young function P satisfies the Δ2 condition, see, e.g., [5].
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The following result gives a generalization of Corollary 2.4 in [6]:

Corollary 9. Let P and Q be two Young functions, where P̃ satisfies the Δ2 con-
dition. Then the inequalities

‖Hf‖LQ(R+,u(x)dx) ≤ C1‖f‖LP (R+,dx), f ∈ E, (8)

‖Hf‖LQ(R+,u(x)dx) ≤ C2‖f‖LP (R+,dx), f ∈ E ↓, (9)

and

‖f‖LQ(R+,u(x)dx) ≤ C3‖f‖LP (R+,dx), f ∈ E ↓ (10)

are equivalent. Moreover, C3 ≤ C1 = C2 ≤ CC3, where C is the best con-
stant in (7).

Proof. The first equivalence follows from Corollary 8. Now we show that (9) implies
(10). Since f(x) ≤ Hf(x)) for any f ∈ E ↓ we have by the inequality (9) that

‖f‖LQ(R+,u(x)dx) ≤ ‖Hf‖LQ(R+,u(x)dx) ≤ C2‖f‖LP (R+,dx), f ∈ E ↓
and C3 ≤ C2. To show that (10) implies (9) we first note that if f is decreasing,
then Hf is decreasing. Hence, by (10) and (7), we have that

‖Hf‖LQ(R+,u(x)dx) ≤ C3‖Hf‖LP (R+,dx) ≤ CC3‖f‖LP (R+,dx), f ∈ E ↓,
i.e., (9) holds with C2 ≤ CC3 and this completes the proof. �

Remark 10. There exist several results concerning the characterization of the above
inequalities. For a comprehensive study see, e.g., [4]. By using our corollary some
complementary information to these characterizations can be given.

Let φ : (0,∞)→ R be an invertible monotone function such that either
(a) φ is concave and increasing or
(b) φ is convex and decreasing.

Put Hφf(x) = φ−1
(

1
x

∫ x

0 φ(f)(y)dy
)
. Our last main result is a generalization

of results which can be found in [7] and [6].

Theorem 11. Suppose that φ satisfies the condition (a) or (b). Let P be a positive,
convex and increasing function and Q be a positive, increasing function on [0,∞)
such that the inequality(∫ ∞

0

P (Hf(x))dx
)
≤

(∫ ∞

0

P (Cf(x))dx
)
, f ∈ E,

holds. Then the following inequalities are equivalent:

Q−1

(∫ ∞

0

Q(f(x)u(x))v(x)dx
)
≤ P−1

(∫ ∞

0

P (c1f(x))dx
)
, f ∈ E ↓,

(11)

Q−1

(∫ ∞

0

Q(Hf(x)u(x))v(x)dx
)
≤ P−1

(∫ ∞

0

P (c2f(x))dx
)
, f ∈ E, (12)
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Q−1

(∫ ∞

0

Q(Hf(x)u(x))v(x)dx
)
≤ P−1

(∫ ∞

0

P (c3f(x))dx
)
, f ∈ E ↓,

(13)

Q−1

(∫ ∞

0

Q(Hφf(x)u(x))v(x)dx
)
≤ P−1

(∫ ∞

0

P (c4f(x))dx
)
, f ∈ E, (14)

Q−1

(∫ ∞

0

Q(Hφf(x)u(x))v(x)dx
)
≤ P−1

(∫ ∞

0

P (c5f(x))dx
)
, f ∈ E ↓ .

(15)

Moreover, the least possible constants in the inequalities (11)–(15) are pairwise
equivalent.

Proof. The proof of the implication (11)=⇒ (13) follows in a similar way as the
proof of the implication (10)=⇒ (9) in Corollary 9 and the equivalence (12)⇐⇒
(13) follows from Theorem 5. Moreover, by applying Jensen’s inequality for the
case (b) and the reversed Jensen’s inequality for the case (a) we find thatHφf(x) ≤
Hf(x) so that (13)=⇒ (15). Also the equivalence (14)⇐⇒ (15) follows from Theo-
rem 5. It remains to prove that (15)=⇒ (11). Let f ∈ E ↓ and φ satisfies condition
(a). Then φ(f) is decreasing. This implies that φ(f(x)) ≤ H(φ(f(x))). And since
φ−1 is increasing we conclude that f(x) ≤ Hφf(x) and therefore (15)=⇒ (11).
Moreover c1 ≤ c5. If φ satisfies the condition (b) and f ∈ E ↓, then φ(f) is in-
creasing. Hence φ(f(x)) ≥ H(φ(f(x))). Applying the decreasing function φ−1 to
this inequality we obtain that f(x) ≤ Hφf(x) and we have also in this case that
(15)=⇒ (11) and c1 ≤ c5. The proof is complete. �

Finally we state the following direct consequence of Theorem 11:

Corollary 12. Suppose that the hypothesis of Theorem 11 are satisfied. Then the
inequalities (11) and

Q−1

(∫ ∞

0

Q(exp(H(log f(x))u(x))v(x)dx
)
≤ P−1

(∫ ∞

0

P (c6f(x))dx
)

are equivalent either for all f ∈ E or for all f ∈ E ↓.

Remark 13. This result is useful when investigating the relations between Hardy-
type inequalities and its limit Pólya-Knopp type inequalities both on the cone of
positive functions and the cone of positive and decreasing functions.
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1. Introduction

In this paper we are interested in the validity and applications – especially to
problems involving Sturm-Liouville operators – of inequalities of the following
type: ∫

I

w|u(j)|q ≤ K1(ε)
(∫

I

v0|u|p
)q/p

+ ε

(∫
I

v1|u(m)|r
)q/r

(1.1)∫
I

w|u(j)|q ≤ K2

(∫
I

v0|u|p
)(q/p)λ (∫

I

v1|u(m)|r
)(q/r)(1−λ)

(1.2)∫
I

w|u|q ≤ K3

(∫
I

v1|u(m)|r
)q/r

. (1.3)

Here w, v0, v1 are positive a.e. measurable functions or “weights”, K1,K2,K3 are
positive constants independent of u, I = (a, b), −∞ ≤ a < b ≤ ∞, 1 ≤ p, q, r ≤ ∞,
and ε, λ are real numbers such that ε ∈ (0, ε0) where ε0 ≤ ∞ and 0 ≤ λ < 1.
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The domains of the “sum” inequality (1.1) or the “product” inequality (1.2)
are one of the following linear spaces:

Dp,r(v0, v1; I) :=
{
u : u ∈ ACm−1(I);

∫
I

v0|u|p,
∫

I

v1|u(m)|r <∞
}

Dp,r
L (v0, v1; I) := {u ∈ Dp,r(v0, v1; I) : lim

t→a+
u(i)(t) = 0

for i = 0, . . . ,m− 1}
Dp,r

R (v0, v1; I) := {u ∈ Dp,r(v0, v1; I) : lim
t→b−

u(i)(t) = 0

for i = 0, . . . ,m− 1}
Dp,r

LR(v0, v1; I) := {u ∈ Dp,r
L (v0, v1; I) ∩ Dp,r

R (v0, v1; I)}

where u ∈ ACk(I) if and only all derivatives of u up to and including u(k) are
absolutely continuous on compact subintervals of I. For the Hardy-type inequality
(1.3) we require that

∫
I
v1|u(m)| be finite and define analogously the subspaces

Dq,r
L (v1; I), Dq,r

R (v1; I), or Dq,r
LR(v1; I).

There has been much recent interest in the inequalities (1.1)–(1.3) with results
due to many mathematicians. We will discuss some of them here. Unfortunately,
while a great many facts are known, there is as yet no satisfactory theory of
necessary and sufficient conditions for the inequalities (1.1) or (1.2). One topic
concerning (1.1)–(1.3) which we will omit is the determination of the optimal
values of the constants K1,K2, and K3. For nontrivial weights these values are
almost all unknown. In the unweighted case (1.2) includes many special cases due
to Landau, Kolgomorov, Hardy, Kwong and Zettl, and others for which the best
constants are known. For a survey of results concerning this problem see Kwong
and Zettl, [26]. We mention in passing, however, that one new result (Brown and
Kwong, [10]) in the unweighted case of (1.2) is the sharp inequality∫ ∞

0

|y′|2 ≤ (4/3)
√

3
(∫ ∞

0

|y|
)

max
(0,∞)

|y′′|.

The best constants for the unweighted (Poincaré-type) inequalities (1.3) on finite
intervals when m = 1 have also been characterized by Talenti [38].

A few additional remarks concerning notation: Upper case letters (principally
K or C) denote an arbitrary constant whose value may vary. We write K1,K2, . . . ,
etc. to distinguish between different constants. K(·) indicates dependence on a
parameter, e.g., K1(ε). If w is a weight, Lp(w; I) signifies the Lp space on the
interval I having the norm ||u||I;w,p :=

(∫
I w|u|p

)1/p where the cases p = 1 or
w = 1 are omitted from the notation. A local property is indicated by the subscript
“loc”, e.g., f ∈ Lp

loc(I), etc. Also AC(I) ≡ AC0(I), L(w; I) ≡ L1(w; I), and when
the context is obvious we sometimes write Dp,r, Dp,r

L , Dq,r
R , etc. Lastly, finite

subintervals of I are denoted by J or Δ with |J | or |Δ| signifying their length.
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2. Interpolation inequalities of sum type

The following basic lemma is a one dimensional version of a Sobolev embedding
theorem.

Lemma 2.1. Let J be a finite subinterval of R, and set L = |J |. Then for all
u ∈ ACm−1(J) and 0 ≤ j ≤ m− 1 the inequality

||u(j)||J,∞ ≤ K
{
L−(j+1)

∫
J

|u|+ Lm−j−1

∫
J

|u(m)|
}

(2.1)

holds.

Proof. For simplicity we suppose that m = 2, j = 1, and J = [0, 1]. Clearly,

|u′(t)| ≤
∫ 1

0

|u′′|+ |u′(0)|.

Let F denote the class of appropriately smooth functions ψ such that ψ(0) = −1,
ψ(1) = ψ′(0) = ψ′(1) = 0. Then integration by parts and the triangle inequality
gives

|u′(0)| ≤
∫ 1

0

|u′′||ψ|+
∫ 1

0

|u||ψ′′|.

(2.1) follows with K ≤ infψ∈F max{1 + |ψ|, |ψ′′|}. A change of variable yields the
inequality on general J . The proof is similar for general m and j. For other proofs
see [3] or [19]. �

Lemma 2.1 will yield inequalities like (1.1). Let I = [a,∞) where a > −∞.
Suppose f is a positive continuous function. Let Jt,ε := [t, t + εf(t)], and define
for 1 < p, q, r <∞

S1(ε0) := sup
t∈I, 0<ε≤ε0

f−φ

[
(εf)−1

∫
Jt,ε

w

] [
(εf)−1

∫
Jt,ε

v
−p′/p
0

]q/p′

(2.2)

S2(ε0) := sup
t∈I, 0<ε≤ε0

fθ

[
(εf)−1

∫
Jt,ε

w

] [
(εf)−1

∫
Jt,ε

v
−r′/r
1

]q/r′

(2.3)

where φ := q(j + 1/p− 1/q) and θ := q(m− j − 1/r + 1/q).
Our first example of inequality (1.1) is the following:

Theorem 2.1. Suppose ∞ ≥ q ≥ max{p, r} ≥ 1 and S1(ε0), S2(ε0) < ∞ then the
inequality ∫

I

w|u(j)|q ≤ K1

{
εφ

(∫
I

v0|u|p
)q/p

+ εθ
(∫

I

v1|u(m)|p
)q/r

}
(2.4)

holds on Dp,r(v0, v1; I) for ε ≤ ε0 and K1 ≈ max{S1(ε0), S2(ε0)}.
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Proof. Assume 1 < p, q, r < ∞. Set t0 := a, ti+1 := ti + εf(ti), etc., and Δi :=
[ti, ti+i]. (The continuity and positivity of f , shows that {ti} has no finite limit
point.) A Hölder’s inequality calculation applied to (2.1) with L = |Δi| yields that∫

Δi

w|u(j)|q ≤ K
{
ε−φS1(ε0)

(∫
Δi

v0|u|p
)q/p

+ εθS2(ε0)
(∫

Δi

v1|u(m)|r
)q/r

}
.

Adding these inequalities over i and the elementary inequality
∑
As

i ≤ (
∑
Ai)

s

for s ≥ 1, gives (2.4). We omit the cases when p, q, or r = 1 or ∞. The proof is
similar if we make the necessary (and obvious) changes in the definitions of S1(ε0),
and S2(ε0). �

Remark 2.1. Weighted sum inequalities can also be proven in Rn, and conditions
involving averages like (2.2) and (2.3) can be stated if q < min {p, r}, p ≤ q < r,
or r ≤ q < p. See [5], [6] for details.

Remark 2.2. If ∞ > q ≥ max{p, r} (2.4) remains true if the “semi-pointwise”
averages

R1(ε0) := sup
t∈I, 0<ε<∞

f(t)−qjw(t)

[
(εf)−1

∫
Jt,ε

v
−p′/p
0

]q/p′

R2(ε0) := sup
t∈I, 0<ε≤∞

f(t)q(m−j)w(t)

[
(εf)−1

∫
Jt,ε

v
−r′/r
1

]q/r′

are finite and f is nondecreasing (cf. [4, (14)]). Likewise, Theorem 2.1 may be
improved by assuming that p, q, r satisfy (3.1) below and ε0 =∞. This is a conse-
quence of Theorem 3.1 in the next section. See Remark 3.1.

How can conditions like (2.2), (2.3) be verified? Essentially we will want to
choose Jt so that the weights are “almost” constant on this interval.

Example 2.1. Let q ≥ max {p, r}, w(t) = tβ, v0(t) = tγ , v1(t) = tα, f(t) = tδ

where δ ≤ 1, and I = [1,∞). Then

1 ≤ sup
s∈Jt,ε

st−1 ≤ 1 + εtδ−1 ≤ 1 + ε.

A calculation shows that S1(ε0), S2(ε0) <∞ if

β ≤ min
{
δφ+ qp−1γ,−δθ + qr−1α

}
, (2.5)

and ε is sufficiently small (say, ε ∈ (0, 1]). If I = (0, b], b <∞, then these inequal-
ities are reversed. If I = (0,∞), there is equality . In (2.5) β will be as large as
possible relative to α and γ if δ is chosen by “equality”, i.e.,

δ = (α/r − γ/p)(m+ 1/p− 1/r)−1 ≤ 1. (2.6)

With this choice of δ
β

q
≤

(
γ

p

)(
θ

φ+ θ

)
+

(α
r

)(
φ

φ+ θ

)
. (2.7)



Weighted Inequalities 65

In particular if q = p = r we get that

βm ≤ (m− j)γ + jα. (2.8)

It turns out that if (2.6) is assumed, then (2.7) is necessary as well as sufficient
for the sum inequality to hold. (In general the condition S1(ε0) <∞ is necessary
and sufficient for the inequality provided the weights are chosen so that the two
integral averages S1(ε0), S2(ε0) are equivalent.)

Example 2.2. The analysis works if w(t) = eβt, v0(t) = eγt, v1(t) = eαt, f(t) = eδt

where δ ≤ 0, and I = [0,∞).

Example 2.3. If I = [0,∞), w(t) = eβt2 , v0(t) = eγt2, v1(t) = eαt2 , and f(t) = eδt2

with δ ≤ 0, then 1 ≤ es2
e−t2 ≤ O(e2εt). In this case a calculation shows that (2.4)

holds if there is strict inequality in (2.7). Again this condition is necessary as well
as sufficient.

Remark 2.3. As mentioned above, no necessary and sufficient conditions are known
for the sum inequality (1.1) which are valid for all p, q, r, j,m and weights w, v0, and
v1. However in the case m = 1, j = 0, p = r, q ≥ p, and ε = 1, then a necessary and
sufficient condition for (1.1) has been derived by Oı̌narov [34]. These conditions
are too complicated to state here but they also requires the finiteness of integral
averages distantly resembling (2.2), (2.3).

We also note that Kwong and Zettl have shown in the case q = p = r
that the sum inequality (1.1) is sometimes valid when the local integrability of
v
−p/p′

0 is replaced by weaker conditions, for example if v0 ≥ 0 and has a positive
integral on subintervals. Several such examples are given in [24] and [26]. When
p = q = r = 2, m = 2, and j = 1 Wojteczek [41] has also given examples of
weighted sum inequalities which are not derivable from Theorem 2.1.

3. Product inequalities

Brown and Hinton [4] have shown:

Theorem 3.1. If 1 ≤ p, q, r <∞, I = [a,∞), a > −∞, S1(∞), S2(∞) <∞ and

m/q ≤ (m− j)/p+ j/r, (3.1)

or R1(∞), R2(∞) <∞ with f nondecreasing and q ≥ max{p, r}, then∫
I

w|u(j)|q ≤ K2

(∫
I

v0|u|p
)(q/p)λ (∫

I

v1|u(m)|r
)(q/r)(1−λ)

(3.2)

where

λ :=
m− j − 1/r + 1/q
m+ 1/p− 1/r

, 1− λ :=
j + 1/p− 1/q
m+ 1/p− 1/r

(3.3)

holds for all u ∈ Dp,r(v0, v1; I) such that
∫

I v1|u(m)|r 
= 0.
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Remark 3.1. An arithmetic-geometric mean inequality argument shows that (3.2)
implies (2.4) if K2 := K1/(λλ(1− λ)(1−λ)). Conversely, if (2.4) holds for all ε > 0,
then we get (3.2). If p, q, r do not satisfy (3.1), for example if q ≤ min{p, r} versions
of (3.2) still hold if we change the definitions of S1(∞) and S2(∞). The theory (as
in the case for sum inequalities) may also be developed in Rn. See [5] or [6] for
details.

Example 3.1. An interesting special case of Theorem 3.1 is to take w(t) = v0(t) =
v1(t) = f(t) = 1. Then∫

I

|u(j)|q ≤ K2

(∫
I

|u|p
)(q/p)λ (∫

I

|u(m)|r
)(q/r)(1−λ)

. (3.4)

With a little further argument (see [4, p.118]) it can be shown that (3.4) is valid
when I = R. This inequality is due to Gabushin [18] and is an n = 1 analogue of
the interpolation inequality of Nirenberg [33] which holds on C∞0 (Rn).

Example 3.2. If I = [0,∞) and q ≥ max{p, r}, then∫
I

ect|u(j)|q ≤ K2

(∫
I

ect|u|p
)(q/p)λ (∫

I

ect|u(m)|r
)(q/r)(1−λ)

where c > 0 since R1(∞), R2(∞) <∞. The case p = q = r was proven by Kwong
and Zettl in [25].

Other examples of Theorem 3.1 may be obtained by taking w = v0 = v1,
p = q = r, and assuming that w satisfies the “Ap condition” (i.e., exactly equivalent
to assuming S1(∞), S2(∞) finite with f(t) = 1.1)

In the case of power weights with q = p = r, m = 2, and j = 1, the following
result was shown by Brown, Hinton, and Kwong [11].

Theorem 3.2. Let u ∈ Dp,p(tγ , tα; (0,∞)), 1 ≤ p <∞, then the inequality∫ ∞

0

tβ |u′|p ≤ K2

(∫ ∞

0

tγ |u|p
)1/2 (∫ ∞

0

tα|u′′|p
)1/2

holds if and only if the following conditions are satisfied:

(i) {α, β, γ} 
= {p− 1,−1,−1− p}.
(ii) β = (α+ γ)/2.
(iii) lim

t→0+
u′(t) = 0 when β ≤ −1 and β > α− p.

(iv) lim
t→∞u

′(t) = 0 when β ≥ −1 and β < α− p.

1Because of this connection, one might think of (2.2), (2.3) as requiring that the weights satisfy a
kind of generalized Ap condition. It may be useful therefore to investigate whether our conditions

have the same sort of applications to analysis as Ap conditions.
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Also in the exceptional case {α, γ} = {p− 1, −1− p} the inequality∫ ∞

0

t−1|u′|p ≤K3

{(∫ ∞

0

t−1−p|u|p
)1/2 (∫ ∞

0

tp−1|u′′|
)1/2

+
∫ ∞

0

t−1−p|u|p
}

(3.5)

is valid.

This result extends Kwong and Zettl [25],[26] who proved the inequality when
γ > −1− p and β > −1. For additional information on the power weight case see
[8] and [9, Example 2.1].

If one is willing to allow u to vanish at the end points of I, many more
multiplicative inequalities can be derived. One of the most general [9, Theorem
2.1] has the form∫

I

Mβ|M ′|β0 |u(j)|q≤K2

(∫
I

Mγ |M ′|γ0 |u|p
)(q/p)λ(∫

I

Mα|M ′|α0 |u(m)|r
)(q/r)(1−λ)

on Dp,r
L , Dp,r

R , or Dp,r
LR where λ is given by (3.3), q, p, r, n, j satisfy (3.1), M is

positive, strictly monotone, M ′ is strictly monotone, M/|M ′| is bounded below
by a positive constant, and is uniformly Lipshitz on I. β, β0, α, α0 satisfy certain
complicated conditions which will not be given here. But when p = q = r we have
that:

β = λγ + (1 − λ)α

β0 = λγ0 + (1− λ)α0.

Example 3.3. (cf. [9, Example 2.2]) If q = p = r, M = e−t on I = (0,∞) we have
the inequality∫

I

e−ct|u(j)|p ≤ K2

(∫
I

e−ct|u|p
)(m−j)/m (∫

I

e−ct|u(m)|p
)j/m

on Dp,p
L where c > 0. Notice that the zero endpoint conditions on u are now

necessary for the inequality to hold.

4. Weighted Hardy inequalities

The classical Hardy inequality (Hardy, Littlewood, and Polya [21, Theorem 330]
states that if 1 < p <∞, c < −1, and u ∈ Dp

L(tc+p; (0,∞)), then∫ ∞

0

tc|u(t)|p dt ≤ [p/|c+ 1|]p
∫ ∞

0

tc+p|u′(t)|p dt. (4.1)

If c > −1 the inequality is true on Dp
R(tc+p; (0,∞)). There have been many gen-

eralizations of this inequality (excellent surveys may be found in Opic and Kufner
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[32] and Kufner, Maligranda, and Persson [23]). It has been shown by Stepanov
[36] that ∫ ∞

0

w|u|q ≤ K3

(∫ ∞

0

v1|u(m)|r
)q/r

where q ≥ r holds on Dr
L if and only if

sup
t>0

[∫ ∞

t

w(x) dx
]1/q [∫ t

0

(t− x)(m−1)r′
v1(x)−r′/rdx

]1/r′

<∞

sup
t>0

[∫ ∞

t

(x− t)(m−1)qw(x) dx
]1/q [∫ t

0

v1(x)−r′/rdx

]1/r′

<∞. (4.2)

A slightly different (though equivalent) pair of conditions has been given by Martin-
Reyes and Sawyer [29]. When m = 1 the conditions (4.2) collapse into a single
well-known necessary and sufficient condition discovered independently by Muck-
enhoupt [30], Chisholm and Everitt [12], Talenti [37], and Tomaselli [39]. It seems
hard, however, to find more than very few specific weights (e.g., powers of t) which
satisfy these conditions. (For examples in the case m = 1 see Love [28].) Another
approach is to show that Hardy’s inequality holds for a large family of weights
having a certain structure. For instance, (Brown and Hinton [7]) one can obtain
the following results:

Theorem 4.1. Let M be a positive locally absolutely continuous function on I =
(a, b) such that either M ′ > 0 or M ′ < 0 a.e. on I and:

(i) ω is a positive measurable function that is nonincreasing if limt→a+ u(i)(t) =
0 and nondecreasing if limt→b− u

(i)(t) = 0 for i = 0, . . . ,m− 1;
(ii) we suppose that

β = (q/r)(α + 1)−mq − 1 (4.3)

β0 = (q/r)(α0 − 1) +mq + 1. (4.4)

Then if M is increasing and concave up the inequality∫
I

Mβ|M ′|β0 |u|qω ≤ K3

[∫
I

Mα|M ′|α0 |u(m)|rωr/q

]q/r

holds on Dr
L if β < −1− (m− 1)q and β0 ≤ 1; and it holds on Dr

R if β > −1 and
β0 ≥ 1 + (m− 1)q.

For other choices of M , e.g.: M increasing and concave down, M decreasing
and concave up or down, the Hardy inequality will hold with other conditions on
β0, β.
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Corollary 4.1. Let Mj, M ′
j, j = 1, . . . , l, and ω be functions satisfying the condi-

tions of Theorem 4.1. Define

w :=

⎛⎝ l∏
j=1

w
1/λj

j

⎞⎠ω,

v1 :=

⎛⎝ l∏
j=1

v
1/λj

1j

⎞⎠ω

where

wj = M
βj

j |M ′
j|βj0 ,

v1j = M
αj

j |M ′
j |αj0 ,

the λj are positive numbers such that
∑l

j=1 λ
−1
j ≥ 1, and the other parameters are

as above. Then the Hardy inequality∫
I

w|u|q ≤ K3

(∫
I

v1|u(m)|r
)q/r

holds on Dr
R or Dr

L.

Example 4.1. Let M(t) = et2 , q = r, I = (1,∞), ω = t−mq−α0 ≡ t−1 if α0 =
1−mq. A calculation based on Theorem 4.1 gives:∫

I

e−ct2 |u(t)|q ≤ K3

∫
I

e−ct2t−mq|u(t)(m)|q.

on Dq
L where c = −(α+ α0) > (m− 1)q.

5. Applications

We look at a few examples showing some of the ways the inequalities discussed
in the previous sections can be applied to problems in differential equations. Our
selection is only intended to give the “flavor” of the theory and is not exhaustive.
We have omitted, for instance, the quadratic form perturbation theory of Kato,
disconjugacy criteria, bounds of the number of negative eigenvalues, or the deter-
mination of lower bounds on the spectrum. In all these areas Hardy or interpolation
type inequalities have proven useful.

A theorem of Landau. In 1930 Landau [27] proved the following result:

Theorem 5.1. Consider the differential operator

L(y) := y(m) + pm−1y
(m−1) + · · ·+ p0y

defined on I := [a,∞). Suppose y and L(y) are bounded, and that the coefficients
pi, i = 0, . . . ,m − 1, are bounded. Then the functions y(i), i = 1, . . . ,m, are also
bounded.
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Landau’s proof was technically difficult. However, our technology allows us to
prove:

Theorem 5.2. Suppose y, L(y) ∈ Lr(I) for some 1 ≤ r ≤ ∞, the functions∫ t+η

t |pi|r are bounded for some η > 0 when r < ∞, and that the pi are bounded
when r = ∞. Then (i) y(i) ∈ Lq(I), i = 0, . . . ,m − 1, for all ∞ ≥ q ≥ r; (ii)
y(m) ∈ Lr(I).

Proof. Assume r < ∞. Let Inε := [a, a + nε] where 0 < ε < η will be chosen
later, and n be an arbitrary positive integer. The hypothesis on the coefficients pi,
Theorem 2.1, and an extension of the interval of integration for |y|r gives the sum
inequalities∫

Inε

|pi|r|y(i)|r ≤ Ki

{
ε−r(i+1/r)

∫
I

|y|r + εr(m−i−1/r)

∫
Inε

|y(m)|r
}

(5.1)

for i = 1, . . . ,m − 1. Moreover, the constants Ki do not depend on nε Next, the
triangle inequality, the Minkowski inequality for sums, and extension of the range
of integration for |L(y)|r yields that∫

Inε

|y(m)|r ≤ (m+ 1)r−1

{∫
I

|L(y)|r +
m−1∑
i=0

∫
Inε

|pi|r|y(i)|r
}
. (5.2)

Therefore, choosing ε small enough, substituting (5.1) into (5.2), and subtracting
the terms involving |y(m)|r from both sides we see that

(1/2)
∫

Inε

|y(m)|r ≤ K1(ε)
{∫

I

|L(y)|r +
∫

I

|y|r
}
.

Since n is arbitrary, this proves (ii). Next (i) follows from the interpolation in-
equalities

||y(i)||I,q ≤ K(i,m, q, r){||y||I,r + ||y(m)||I,r}
which are unweighted versions of Theorem 2.1. In the case r = ∞ the analogs of
(5.1) and (5.2) are

||piy
(i)||∞,Inε ≤ K

{
ε−i||y||∞,I + ε(m−i)||y(m)||∞,Inε

}
, i = 1, . . . ,m− 1, (5.3)

||y(m)||∞,Inε ≤
{
||L(y)||∞,I +

m−1∑
i=0

||piy
(i)||∞,Inε

}
. (5.4)

(5.3) is an obvious modification of Lemma 2.1. (5.4) follows from the triangle
inequality. The remainder of the argument parallels the case r <∞. �
Example 5.1. Suppose I = [1,∞), r = 2, m = 2k, and L(y) = y(m) − p0y where∫ t+η

t
|p0|2 is bounded on I for some η > 0. Then Theorem 5.1 implies that y(m) ∈

L2(I) and that all intermediate derivatives y(i) are bounded and Lq integrable
for q ≥ 2. In particular, all square integrable solutions y of L(y) = 0 have these
properties. Further, from the triangle inequality p0y ∈ L2(I); in other words, this
symmetric differential operator is separated.
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Discrete spectra and Non-oscillation criteria. For convenience we again
take I = (a,∞), a > −∞. Recall that the differential expression

M [u] :=
m∑

i=0

(−1)i(piu
(i))(i)

where pm > 0 and pi is assumed to have a continuous ith derivative is said to
be oscillatory at ∞ if for every n > a there is an interval [c, d] ⊂ (n,∞) and a
nontrivial solution y of M [y] = 0 such that

y(c) = · · · = y(m−1)(c) = 0 = y(d) = · · · = y(m−1)(d).

Two basic results in oscillation theory (cf. Glazman [20] or Reid [35]) are:

Theorem 5.3. Let Q(u) :=
∑m

i=0

∫
I pi|u(i)|2, and let Am(c, d) ⊂ ACm−1(c, d) be

the class of functions u such that

u(i)(c) = u(i)(d), i = 0, . . . ,m− 1, and u(m) ∈ L2(c, d).

Then M is oscillatory at ∞ if and only if for every n > a there is an interval
[c, d] ⊂ (n,∞) and a nontrivial y ∈ Am(c, d) such that Q(ỹ) ≤ 0 where ỹ := y on
[c, d] and 0 otherwise.

In particular, M will be non-oscillatory at ∞ if for every n > a, Q(u) > 0
for all u ∈ ACm−1 having compact support in (n,∞) and L2 integrable mth
derivative. This concept has a connection to the property “BD” of M – that the
spectrum of every self-adjoint extension A of the minimal operator T0(M) in the
Hilbert space L2(I) determined by M [u]2 is discrete and bounded below. The
classical result is:

Theorem 5.4. M has BD if and only if for all real numbers λ, M(u)− λu is non-
oscillatory at ∞, i.e., for each λ there is an n such that Q(u) > λ

∫∞
n |u|2 for

all compact support functions in ACm−1(n,∞) with L2 integrable mth derivative.
Further if this is true up to λ = μ the spectrum of A is finite on (−∞, μ).

These theorems together with our inequalities can be used to give conditions
that M be non-oscillatory at ∞ or that its spectrum of self-adjoint extensions of
be finite on (−∞, μ) for μ ∈ R.

Example 5.2. (cf. Everitt [13]) Consider M [y] := −y′′ + qy on (0,∞). Let q =
q+ − q− where q+ := max{q, 0}. Then if q− ∈ Lp(0,∞) for some 1 < p <∞. The
spectrum of self-adjoint extensions is discrete on (−∞, 0). To see this choose n
large enough that ||q−||(n,∞),p ≤ ε < 1 and note that

Q(u) ≥
∫ ∞

n

|u′|2 −
∫ ∞

n

q−|u|2.

2For the definitions of the minimal and maximal operators determined by M see Naimark [31].
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Next let t0 = n, ti+1 = ti + ε, Δi = [ti, ti+1], i = 0, . . . , on Δi. A calculation using
the basic sum inequality (2.1) and Hölder’s inequality gives∫

Δi

q−|u|2 ≤ 2ε1/p′
{∫

Δi

|u|2 +
∫

Δi

|u′|2
}

where 1/p′ = 1− 1/p. By addition the same inequality is true on (n,∞). Hence

Q(u) ≥ (1 − 2ε1/p′
)
∫ ∞

n

|u′|2 − 2ε1/p′
∫ ∞

n

|u|2

≥ −2ε1/p′
∫ ∞

n

|u|2.

This shows that the spectrum is finite.3 on (−∞,−δ) for all δ > 0, so that 0 is
a limit point of the point spectrum. The same argument works for the weaker
assumption on q that limt→∞

∫ t+ε

t
|q| = 0. Indeed, if limt→∞ ε−1

(∫ t+ε

t
|q|

)
= μ/2,

the spectrum of self-adjoint extensions is finite on (−∞,−μ− δ), ∀δ > 04.

Example 5.3. Consider the two term operator

M [u] = (−1)m(ectu(m))(m) + q(t)u .

Then by an analogous but more involved argument using a weighted Hardy in-
equality Brown and Hinton [7] showed that M has BD if∫

I

|e−cxq(x)|s <∞, for c > 0,

and ∫
I

|e|c|xq(x)|s <∞, for c < 0,

and some s, 1 < s <∞. Many other results of this type may be found in Ashbaugh,
Brown, and Hinton [2].

Dirichlet and Strong Limit-point Results. Let I = [a,∞), a > −∞ and
consider the differential expression

M [y] := w−1[−(py′)′ + qy] (5.5)

where p, q > 0 and p−1, q, w ∈ L1
loc[a,∞). This means that M is regular at a and

and singular at ∞.
The following result is in the spirit of the main result in Kalf [22] but has a

simpler proof; it also extends Amos and Everitt [1, Theorem 1].

Theorem 5.5. Suppose in (5.5):
(i) q = q1 − q2 where q1 + cw ≥ q3 for some constant c ≥ 0 on I.

3For the determination of a precise lower bound on the spectrum using the best constant of a
product type interpolation inequality see Veiling [40]
4On the other hand, [20, Theorem 25] shows that continuous spectrum of these example covers
the nonnegative part of the axis
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(ii) For a sufficiently large n, all t > n, and fixed positive constants K1, μ < 1,
and K2 < 1− μ the inequalities∫ t

n

|q2||y|2 ≤ K1

∫ t

n

w|y|2 + μ

∫ t

n

p|y′|2 (5.6)∫ t

n

|q3||y|2 ≤ K2

∫ t

n

p|y′|2 (5.7)

hold for all y ∈ D(T (M)) with support in (n,∞).
(iii) w /∈ L(I).
Then the maximal operator T (M) is “Dirichlet” and “strong limit-point” (SLP)
at ∞; i.e., p1/2y′, |q|1/2y ∈ L2(I) and

lim
t→∞ f(t)(pḡ′)(t) = 0 , ∀f, g ∈ D(T (M)).

Proof. Given f ∈ D(T (M)) using Lemma 2 of [31, §17.3] we can construct f̃ with
support in (n,∞) such that f̃ ≡ f on [n+ 1,∞). Clearly f satisfies the Dirichlet
and SLP condition if and only if f̃ does. This observation justifies us in considering
only those f ∈ D(T (M)) such that f(n) = f ′(n) = 0. Let n be such that (5.6) and
(5.7) hold. Integrating by parts and an elementary estimate gives that for t > n∫ t

n

{p|f ′|2 + (q1 + cw)|f |2} ≤ (pf̄ ′f)(t) +
∫ t

n

(|q2|+ |q3|)|f |2 +
∫

I

wfM [f̄ ]. (5.8)

Consequently we have that∫ t

n

{(1− μ−K2)p|f ′|2 + (q1 + cw)|f |2} ≤ (pf̄ ′f)(t) +K1

∫
I

w|f |2 +
∫

I

wfM [f̄ ].

Since 1 − μ − K2 > 0, it is clear that if p1/2f ′ or (q1 + cw)1/2f /∈ L2(a,∞)
then lim

t→∞(pf̄ ′f)(t) = ∞, whence in particular |f |2 is monotone increasing near

∞, contradicting the fact that both w /∈ L(I) and f ∈ L2(w; I). By (5.6)–(5.7)
it follows that |q2|1/2f , |q3|1/2f and therefore also |q|1/2f ∈ L2(I). The argument
that M is strong limit-point at ∞ is omitted since it may be found in [15] or [16].
For further information concerning the Dirichlet and SLP properties see [14]. �
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c© 2008 Birkhäuser Verlag Basel/Switzerland

Bounding the Gini Mean Difference

Pietro Cerone

Abstract. Some recent results on bounding and approximating the Gini mean
difference in which the author was involved for both general distributions
and distributions supported on a finite interval are surveyed. The paper sup-
plements the previous work utilising the Steffensen and Karamata type ap-
proaches in approximating and bounding the Gini mean difference.
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1. Introduction

Let f : R→[0,∞) be a probability density function (pdf), meaning that f is
integrable on R and

∫∞
−∞ f (t) dt = 1, and define

F (x) :=
∫ x

−∞
f (t) dt, x ∈ R and E (f) :=

∫ ∞

−∞
xf (x) dx, (1.1)

to be its cumulative function and the expectation provided that the integrals exist
and are finite.

The mean difference

RG (f) :=
1
2

∫ ∞

−∞

∫ ∞

−∞
|x− y| dF (x) dF (y) (1.2)

was proposed by Gini in 1912 [12], after whom it is usually named, but it was
discussed by Helmert and other German writers in the 1870’s (cf. H.A. David [10],
see also [18, p. 48]). The mean difference has a certain theoretical attraction, being
dependent on the spread of the variate-values among themselves rather than on
the deviations from some central value ([18, p. 48]). Further, its defining integral
(1.2) may converge when the variance σ2 (f) ,

σ2 (f) :=
∫ ∞

−∞
(x− E (f))2 dF (x) , (1.3)

does not. It can, however, be more difficult to compute than (1.3).
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Another useful concept that will be utilized in the following is the mean
deviation MD (f) , defined by [18, p. 48]

MD (f) :=
∫ ∞

−∞
|x− E (f)| dF (x) . (1.4)

As G.M. Giorgi noted in [13], some of the many reasons for the success and
the relevance of the Gini mean difference or Gini index IG (f) ,

IG (f) =
RG (f)
E (f)

, (1.5)

are their simplicity, certain interesting properties and useful decomposition possi-
bilities, and these attributes have been analysed in an earlier work by Giorgi [14].
For a bibliographic portrait of the Gini index, see [13] where numerous references
are given.

The aim of the present paper is to supplement a survey of some recent inequal-
ities for the mean differences [3] obtained by Cerone and Dragomir in a sequence
of four papers ([4]–[7]). In the four papers, the Sonin and Korkine identities were
used to point out various bounds for the Gini mean difference in both the general
case and in the case of distributions supported on a finite interval.

Bounds for the Gini mean difference are developed in the current article util-
ising Steffensen and Karamata type inequalities. Specifically, some new or less
well-known developments will be used to obtain bounds for RG (f) which supple-
ments knowledge of this important quantity.

2. Some identities and inequalities

Some identities for the Gini mean difference, RG (f) will be stated here since they
will form the basis for obtaining approximations and bounds. The reader is referred
to the book [18], Exercise 2.9, p. 94 or [3].

Define the function e : R→ R, e (x) = x and with F (·) and E (·) as given by
(1.1) then, the covariance of e and F is given by:

Cov (e, F ) := E [(e− E (f)) (F − E (F ))] . (2.1)

The following result holds (see for instance [18, p. 54] or [3]).

Theorem 1. With the above notation then

RG (f) = 2 Cov (e, F ) =
∫ ∞

−∞
(1− F (y))F (y) dy (2.2)

= 2
∫ ∞

−∞
xf (x)F (x) dx− E (f) .

Utilising Sonin’s identity (see for instance [21, p. 246] for the case of univariate
real functions) was used in [4], to obtain the following identities for RG (f).
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Theorem 2. With the above assumptions for f and F , we have for any γ, δ ∈ R

the identities:

RG (f) = 2
∫ ∞

−∞
(x− E (f)) (F (x)− γ) f (x) dx (2.3)

= 2
∫ ∞

−∞
(x− δ)

(
F (x)− 1

2

)
f (x) dx.

The following result was produced in [5] using the Korkine identity (see for instance
[21, p. 242]):

Theorem 3. With the above assumptions for f and F, we have the following rep-
resentation for the Gini mean difference:

RG (f) =
∫ ∞

−∞

∫ ∞

−∞
(x− y) (F (x)− F (y)) f (x) f (y) dxdy. (2.4)

The identities of Theorems 1–3 namely, (2.2), (2.3) and (2.4) provide a means
of bounding RG (f) which will be outlined in the following sections.

2.1. Inequalities for RG (f)
The following result compares the Gini mean difference with the mean deviation
defined by (1.4) which was obtained in [4] using (2.3).

Theorem 4. With the above assumptions, we have the bounds:
1
2
MD (f) ≤ RG (f) ≤ 2 sup

x∈R

|F (x)− γ|MD (f) ≤MD (f) , (2.5)

for any γ ∈ [0, 1] , where F (·) is the cumulative distribution of f and MD (f) is
the mean deviation defined by (1.4).

It was pointed out by J.L. Gastwirth in [11], using inequality 105 from the
book [15] by Hardy, Littlewood and Polya and the fact that F is increasing, that
one can state the following results.

Theorem 5. Assume that F is supported on a finite interval (a, b) . Then

0 ≤ RG (f) ≤ 1
b− a (b− E (f)) (E (f)− a) . (2.6)

Theorem 6. If F is concave on (a, b) , then

1
3

(E (f)− a) ≤ RG (f) ≤ 1
b− a (E (f)− a)

[
(b− E (f))− 1

3
(E (f)− a)

]
. (2.7)

It should be noted that when F is convex on (a, b) , then the mean difference
RG (f) is bounded by [11, p. 309]

b− E (f)
3 (b− a) ≤ RG (f) ≤ b− E (f)

3 (b− a) [4 (E (f)− a)− (b− a)] . (2.8)

Recall that (see for instance [11, p. 309]) a cumulative function F supported
on (a,∞) has the decreasing hazard rate (DHR) property if – ln [1− F (x)] is
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concave for x ≥ a. When the density function f (x) = F ′ (x) exists, then the
function q (x) = f (x) [1− F (x)]−1 is nonincreasing.

Using Lemma 5 from [15], Gastwirth has obtained the following results as
well [11, Theorem 3]:

Theorem 7. If F is a cumulative function defined on (a,∞) with the DHR prop-
erty, density f and finite mean E (f) , then

1
2

(E (f)− a) ≤ RG (f) ≤ E (f)− a. (2.9)

2.2. Inequalities via Grüss and Sonin type results

The following representation for the Gini mean difference

RG (f) =
∫ b

a

F (x) (1− F (x)) dx, (2.10)

holds provided that F is supported on [a, b], a finite interval.
Bounds for the quantity R∗G (f), involving RG (f) and defined here for sim-

plicity

R∗G (f) :=
1

b− a [b− E (f)] [E (f)− a]−RG (f) , (2.11)

will be obtained below.
Utilising the well-known Grüss inequality the following simple bound for the

Gini mean difference was obtained in [6].

Theorem 8. If f is defined on the finite interval [a, b] and R∗G (f) is given by (2.11)
then

0 ≤ R∗G (f) ≤ 1
4

(b− a) . (2.12)

The following improvement of Theorem 8 was obtained in [6] using an im-
provement (see [5] and [9]) of the Grüss inequality .

Theorem 9. If f is defined on the finite interval [a, b]and R∗G (f) is given by (2.11),
then

0 ≤ R∗G (f) ≤ 1
2
·
∫ b

a

∣∣∣∣F (x)− b− E (f)
b− a

∣∣∣∣ dx (2.13)

≤ 1
2
·
[∫ b

a

(
F (x)− b − E (f)

b− a

)2

dx

] 1
2

≤ 1
4

(b − a) .

The Sonin identity [21, p. 246] on (2.10) produces the result:

R∗G (f) =
∫ b

a

(
F (t)− b− E (f)

b− a

)
(F (t)− λ) dt. (2.14)

which was used in [7] to obtain the following theorem.
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Theorem 10. Assume that f is defined on the finite interval [a, b] and R∗G (f) is
given by (2.11), then

(0 ≤)R∗G (f) ≤ inf
λ∈R
‖F − λ‖∞

∫ b

a

∣∣∣∣F (t)− b− E (f)
b− a

∣∣∣∣ dt (2.15)

≤ 1
2

∫ b

a

∣∣∣∣F (t)− b− E (f)
b− a

∣∣∣∣ dt.
Taking λ = b−E(f)

b−a in (2.14), the following simple bound was also obtained
in [7],

R∗G (f) ≤ 1
b− a

[
b− a

2
+

∣∣∣∣E (f) +
a+ b

2

∣∣∣∣]2

. (2.16)

The following identity was developed in [7] from using the Korkine identity [21, p.
242] on (2.10)

R∗G (f) =
1

2 (b− a)

∫ b

a

∫ b

a

(F (y)− F (x))2 dxdy, (2.17)

where R∗G (f) is as given by (2.11).
If upper and lower bounds for the density function f are known, then we

have the following result which was obtained from (2.17) in [7].

Theorem 11. If f is supported on [a, b] and there exist the constants 0 < m,M <∞
such that

m ≤ f (x) ≤M for a.e. x ∈ [a, b] , (2.18)
then

1
12
m2 (b− a)3 ≤ 1

b− a [b− E (f)] [E (f)− a]−RG (f) ≤ 1
12
M2 (b− a)3 . (2.19)

3. Results from Steffensen’s inequality

The following theorem is due to Steffensen [22] (see also [1] and [2]).

Theorem 12. Let h : [a, b] → R be a nondecreasing mapping on [a, b] and g :
[a, b]→ R be an integrable mapping on [a, b] with

−∞ < φ ≤ g (x) ≤ Φ <∞ for all x ∈ [a, b] ,

then

Φ
∫ a+λ

a

h (x) dx+ φ

∫ b

a+λ

h (x) dx ≤
∫ b

a

h (x) g (x) dx (3.1)

≤ φ
∫ b−λ

a

h (x) dx+ Φ
∫ b

b−λ

h (x) dx, (3.2)

where

λ =
∫ b

a

G (x) dx, G (x) =
g (x)− φ
Φ− φ , Φ 
= φ. (3.3)
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Remark 1. We note that the result (3.1) may be rearranged to give Steffensen’s
better known result that∫ a+λ

a

h (x) dx ≤
∫ b

a

h (x)G (x) dx ≤
∫ b

b−λ

h (x) dx, (3.4)

where λ is as given by (3.3) and 0 ≤ G (x) ≤ 1.
Equation (3.4) has a very pleasant interpretation, as observed by Steffensen,

that if we divide by λ then

1
λ

∫ a+λ

a

h (x) dx ≤
∫ b

a G (x) h (x) dx∫ b

a
G (x) dx

≤ 1
λ

∫ b

b−λ

h (x) dx. (3.5)

Thus, the weighted integral mean of h (x) is bounded by the integral means over
the end intervals of length λ, the total weight.

Steffensen type inequalities have attracted considerable attention in the lit-
erature given the variety of applications and its generality. See for example [21] for
a comprehensive survey and [20] wherein a number of generalisations have been
provided.

Theorem 13. Let f be supported on the interval [a, b] and E (f) exist. Then the
Gini mean difference RG (f) satisfies∫ a+λ

a

(a+ λ− x) f (x) dx ≤ RG (f) ≤ λ−
∫ b

b−λ

[x− (b− λ)] f (x) dx, (3.6)

where λ = E (f)− a.

Proof. From the representation (2.10) for RG (f) we notice that F (x) is non-
decreasing and 0 ≤ 1 − F (x) ≤ 1 for x ∈ [a, b] . Taking h (x) = F (x) and
g (x) = 1− F (x) in (3.1) we have that φ = 0, Φ = 1 and

λ =
∫ b

a

(1− F (x)) dx = E (f)− a. (3.7)

For an interval [c, d] , we have on using integration by parts that∫ d

c

F (x) dx = dF (d)− cF (c)−
∫ d

c

xf (x) dx. (3.8)

Result (3.7) is obtained on noticing that F (b) = 1 and F (a) = 0. Thus from (3.1)
or (3.4) we have∫ a+λ

a

F (x) dx ≤
∫ b

a

F (x) (1− F (x)) dx ≤
∫ b

b−λ

F (x) dx. (3.9)
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Now using (3.8), an integration by parts gives,∫ a+λ

a

F (x) dx = (a+ λ)F (a+ λ)−
∫ a+λ

a

xf (x) dx (3.10)

=
∫ a+λ

a

(a+ λ− x) f (x) dx

and similarly from (3.8),∫ b

b−λ

F (x) dx = λ−
∫ b

b−λ

(x− (b− λ)) f (x) dx. (3.11)

Substitution of (3.10) and (3.11) into (3.9) upon noting (2.10), the stated result
(3.6) holds with λ being given by (3.7). �

Remark 2. We note that the result (3.6) may be compared with that of Gastwirth
depicted by (2.9). The (2.9) result has the assumption that F is defined on (a,∞)
and satisfies a DHR property giving λ

2 ≤ RG (f) ≤ λ with λ = E (f)− a.
We notice that the upper bound in (3.6) is always less than λ. It is uncertain

however as to whether the lower bound is greater or less than λ
2 .

Theorem 14. Let f (x) be a pdf on [a, b] , 0 < α ≤ xf (x) ≤ β and λ = E(f)−α(b−a)
β−α ,

then the Gini mean difference RG (f) satisfies

(β − α)
∫ a+λ

a

(a+ λ− x) f (x) dx (3.12)

≤ RG (f) + E (f)
2

− α (b− E (f))

≤ (β − α)
[
λ−

∫ b

b−λ

(x− (b− λ)) f (x) dx
]
.

Proof. (Sketch) From (2.2) we have the identity

RG (f) + E (f)
2

=
∫ b

a

xf (x)F (x) dx. (3.13)

Associating g (x) with xf (x) and h (x) with F (x) in Theorem 12 and after some
algebra gives the result. �

Theorem 15. Let f be supported on the positive interval [a, b] with 0 ≤ a < b and
φ ≤ f (x) ≤ Φ, x ∈ [a, b] and E (f) exist. With λ = 1−(b−a)φ

Φ−φ then the Gini mean
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difference RG (f) satisfies

(Φ− φ)
∫ a+λ

a

[
(a+ λ)2 − x2

]
f (x) dx (3.14)

≤ RG (f) + E (f)− φ
∫ b

a

(
b2 − x2

)
f (x) dx

≤ (Φ− φ)

{
λ (2b− λ)−

∫ b

b−λ

[
x2 − (b− λ)2

]
f (x) dx

}
.

Proof. From (2.2) for f defined on the finite interval [a, b] we have the identity

RG (f) = 2
∫ b

a

xf (x)F (x) dx− E (f) . (3.15)

In order to determine bounds for RG (f) consider
∫ b

a
xf (x)F (x) dx from which we

note that xF (x) is nondecreasing. From Theorem 12 associating g (x) with f (x)
and h (x) with xF (x), we have

(Φ− φ)
∫ a+λ

a

xF (x) dx ≤
∫ b

a

xf (x)F (x) dx− φ
∫ b

a

xF (x) dx (3.16)

≤ (Φ− φ)
∫ b

b−λ

xF (x) dx,

where

λ =
∫ b

a

f (x) − φ
Φ− φ dx =

1− (b− a)φ
Φ− φ .

Now,

2
∫ d

c

xF (x) dx = d2F (d)− c2F (c)−
∫ d

c

x2f (x) dx (3.17)

so that with F (a) = 0, F (b) = 1 we have⎧⎪⎪⎨⎪⎪⎩
2
∫ b

a xF (x) dx =
∫ b

a

(
b2 − x2

)
f (x) dx,

2
∫ a+λ

a
xF (x) dx =

∫ a+λ

a

[
(a+ λ)2 − x2

]
f (x) dx,

2
∫ b

b−λ
xF (x) dx = b2 − (b− λ)2 −

∫ b

b−λ

[
x2 − (b− λ)2

]
f (x) dx.

(3.18)

Substitution of (3.18) into (3.16) and noting (3.15) readily produces the result
(3.14). �

4. Results with Karamata’s inequality

In an interesting, but not well-known paper [19], Alexandru Lupaş generalised
some results due to Karamata. These are presented and applications to bounding
the Gini Mean Difference are demonstrated in the current section.

First some notation.
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Let −∞ < a < b < +∞ and e0 (x) = 1, x ∈ [a, b] . Further, let X be a real
linear space with elements being real functions defined on [a, b] . By F : X → R we
denote a positive linear functional normalised by F (e0) = 1. The following three
results were obtained by Lupaş in [19].

Theorem 16. Let h, g ∈ X with

m1 ≤ h (x) ≤M1 (M1 
= m1) , 0 < m2 ≤ g (x) ≤M2 x ∈ [a, b] . (4.1)

If D (h) = M1 −F (h) , d (h) = F (h)−m1, then

m1M2D (h) +M1m2d (h)
M2D (h) +m2d (h)

≤ F (hg)
F (g)

≤ M1M2d (h) +m1m2D (h)
M2d (h) +m2D (h)

. (4.2)

The bounds in (4.2) are best possible.

Theorem 17. Let h, g be elements from X which satisfy (4.1). If Δ (x) = M1−h (x) ,
δ (x) = h (x) −m1, then

|F (h)F (g)−F (hg)|

≤ M2 −m2

(M1 −m1) (M2 +m2)
[F (Δ)F (δg) + F (δ)F (Δg)] . (4.3)

Theorem 18. Let h, g ∈ X with

0 < m1 ≤ h (x) ≤M1, 0 < m2 ≤ g (x) ≤M2 x ∈ [a, b] . (4.4)

If K =
√

m1m2+
√

M1M2√
m1M2+

√
M1m2

, then

1
K2
≤ F (hg)
F (h)F (g)

≤ K2. (4.5)

We note that Karamata established (4.2) and (4.5) in [16] and [17] for

F (h) =
∫ 1

0

h (t) dt.

Further, h and g in Theorem 18 are assumed to be strictly positive and bounded
whereas in Theorems 16 and 17, h is not allowed to be constant and the requirement
for positivity is removed.

The following three theorems assume that the normalised positive linear func-
tional F (·) is given by

F (h) =
1

b− a

∫ b

a

h (x) dx. (4.6)

Theorem 19. Let f (x) be a pdf on [a, b] and 0 < α ≤ xf (x) ≤ β, then the Gini
mean difference RG (f) satisfies(

1− pz
1 + pz

)
E (f) ≤ RG (f) ≤

(
p− z
p+ z

)
E (f) , (4.7)

where p = β
α and z = E(f)−a

b−E(f) .
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Proof. From (2.2) for f defined on the finite interval [a, b] , we have the identity
(3.13). In order to obtain bounds forRG (f) consider

∫ b

a
xf (x)F (x) dx. Let h (x) =

F (x) and g (x) = xf (x) in Theorem 16, then we have that 0 ≤ F (x) ≤ 1 and
0 < α ≤ xf (x) ≤ β from the postulates.

Now, from (4.6)

d (F ) = 1
b−a

∫ b

a

F (x) dx = b−E(f)
b−a and D (F ) = 1− d (F ) = E(f)−a

b−a . (4.8)

From (4.2) we have, on utilising (3.13),

αd (F )
βD (F ) + αd (F )

≤
∫ b

a xf (x)F (x) dx
E (f)

=
RG (f) + E (f)

2E (f)
≤ βd (F )
αD (F ) + βd (F )

,

giving
L (f) ≤ RG (f) ≤ U (f) , (4.9)

where L (f) = E (f)
(

αd(F )−βD(F )
αd(F )+βD(F )

)
and U (f) = E (f)

(
βd(F )−αD(F )
βd(F )+αD(F )

)
.

Simplification of (4.9) gives the stated result (4.7) where we have from (4.8)
that z = D(F )

d(F ) . �

Theorem 20. Let f (x) be a pdf on [a, b] and 0 < m ≤ f (x) ≤ M, then the Gini
mean difference RG (f) satisfies

2bξ
bρ− (ρ− 1) ξ

− E (f) ≤ RG (f) ≤ 2bρξ
b+ (ρ− 1) ξ

− E (f) , (4.10)

where

ρ =
M

m
, ξ =

b2 −M2

2 (b− a) and M2 =
∫ b

a

x2f (x) dx. (4.11)

Proof. Following the proof of Theorem 19 so that in order to find bounds for
RG (f) we consider

∫ b

a
xf (x)F (x) dx. Let h (x) = xF (x) and g (x) = f (x) in

Theorem 16 then we have that 0 ≤ xF (x) ≤ b and 0 < m ≤ f (x) ≤ M from the
postulates. Further, let the normalised positive linear functional F (·) be given by
(4.6) so that

d (h) = 1
b−a

∫ b

a xF (x) dx = b2−M2
2(b−a) and D (h) = b− d (h) (4.12)

From (4.2) we have

bmd (h)
MD (h) +md (h)

≤
∫ b

a

xf (x)F (x) dx ≤ bMd (h)
Md (h) +mD (h)

(4.13)

so that from (3.13) and (4.12),

L (h) ≤ RG (f) ≤ U (h) (4.14)

where

L (h) = 2bmd(h)
M(b−d(h))+md(h) − E (f) and U (h) = 2bMd(h)

Md(h)+m(b−d(h)) − E (f) . (4.15)
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Rearranging the denominator in (4.15), noting that ξ = d (h) and division by m
gives the required result (4.10)–(4.11). �

Theorem 21. Let f (x) be a pdf on [a, b] and 0 < m ≤ f (x) ≤ M , then the Gini
mean difference RG (f) satisfies

E (f) + 2M
[
a
(

a+b
2

)
− bE (f)

]
2bM − 1

≤ RG (f) (4.16)

≤
E (f) + 2M

[
b
(

a+b
2

)
− aE (f)

]
2aM − 1

.

Proof. Let h (x) = f (x)F (x) and g (x) = x in Theorem 16. Then we have from
the postulates that 0 ≤ f (x)F (x) ≤ M and 0 < a ≤ x ≤ b. Further, with the
normalised positive linear functional F (·) given by (4.6) produces

d (h) =
1

b− a

∫ b

a

f (x)F (x) dx =
1

2 (b− a) and D (h) = M − d (h) . (4.17)

From (4.2) we have

aMd (h)
b (M − d (h)) + ad (h)

≤
∫ b

a
xf (x)F (x) dx∫ b

a xdx
≤ bMd (h)
bd (h) + a (M − d (h))

which from (3.13) and upon rearrangement gives

2aMd (h)
∫ b

a
xdx

bM − (b− a) d (h)
− E (f) ≤ RG (f) ≤

2bMd (h)
∫ b

a
xdx

aM + (b− a) d (h)
− E (f) .

That is, since from (4.17) d (h)
∫ b

a xdx = b+a
4 we have

aM (b+ a)
2bM − 1

− E (f) ≤ RG (f) ≤ bM (b+ a)
2aM − 1

− E (f) . (4.18)

Rearrangement of (4.18) readily produces the result (4.16). �

Theorem 22. Let f (x) be a pdf on [a, b] with a > 0 and 0 < m ≤ f (x) ≤ M,
x ∈ [a, b] . Then the Gini mean difference RG (f) satisfies(

1− ρζ
1 + ρζ

)
E (f) ≤ RG (f) ≤

(
ρ− ζ
ρ+ ζ

)
E (f) , (4.19)

where ρ = M
m , ζ = M2−a2

b2−M2
and M2 =

∫ b

a
x2f (x) dx, the second moment about

zero.

Proof. Let the normalised positive linear functional F (·) be given by

F (h) =

∫ b

a w (x) h (x) dx∫ b

a
w (x) dx

. (4.20)
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Taking w (x) = x, h (x) = F (x) and g (x) = f (x) in Theorem 16, and that
0 ≤ F (x) ≤ 1 and 0 < m ≤ f (x) ≤M, we then have that

md (F )
md (F ) +MD (F )

≤
∫ b

a f (x)xF (x) dx
E (f)

≤ Md (F )
Md (F ) +mD (F )

. (4.21)

Now, from (3.13) we have, upon simplification that(
md (F )−MD (F )
md (F ) +MD (F )

)
≤ RG (f) ≤

(
Md (F )−mD (F )
md (F ) +MD (F )

)
, (4.22)

where

d (F ) =

∫ b

a xF (x) dx∫ b

a
xdx

=
b2 −M2

b2 − a2
and D (F ) = 1− d (F ) =

M2 − a2

b2 − a2
. (4.23)

since

2
∫ b

a

xF (x) dx = x2F (x)
]b

a
−

∫ b

a

x2f (x) dx = b2 −M2.

Simplifying (4.22) in a similar manner as in Theorem 16, we have the result (4.19).
�

Remark 3. The lower bounds in (4.7) and (4.19) are only useful when they are
greater than 0 since RG (f) is known to be non-negative. This occurs for E (f) <
aβ+bα
α+β and M2 <

Ma2+mb2

M+m .

Acknowledgement

The author would like to thank the referee for his detailed comments on an earlier
version of this paper.

References

[1] P. Cerone, On an identity for the Chebychev functional and some ramifications,
J. Ineq. Pure and Appl. Math. 3(1) Art. 4 (2002). http://jipam.vu.edu.au/v3n1/.

[2] P. Cerone, On some generalisatons of Steffensen’s inequality and related results,
J. Ineq. Pure and Appl. Math. 2(3) Art. 28 (2001). http://jipam.vu.edu.au/v2n3/.

[3] P. Cerone and S.S. Dragomir, A survey on bounds for the Gini Mean Difference,
Advances in Inequalities from Probability Theory and Statistics, N.S. Barnett and
S.S. Dragomir (Eds.), Nova Science Publishers, (2008), 81–111.

[4] P. Cerone and S.S. Dragomir, Bounds for the Gini mean difference via the Sonin
identity, Comp. Math. Modelling 50 (2005), 599–609.

[5] P. Cerone and S.S. Dragomir, Bounds for the Gini mean difference via the Korkine
identity, J. Appl. Math. & Computing (Korea) 22(3) (2006), 305–315.

[6] P. Cerone and S.S. Dragomir, Bounds for the Gini mean difference of continuous
distributions defined on finite intervals (I), Applied Mathematics Letters 20 (2007),
782–789.



Gini Mean Difference 89

[7] P. Cerone and S.S. Dragomir, Bounds for the Gini mean difference of continuous
distributions defined on finite intervals (II), Comput. Math. Appl. 52(10-11) (2006),
1555–1562.

[8] P. Cerone and S.S. Dragomir, A refinement of the Grüss inequality and applications,
Tamkang J. Math. 38(1) (2007), 37–49. (See also RGMIA Res. Rep. Coll. 5(2) (2002),
Art. 14. [ONLINE: http://rgmia.vu.edu.au/v5n2.html]

[9] X.-L. Cheng and J. Sun, A note on the perturbed trapezoid inequality, J. Inequal. Pure
& Appl. Math. 3(2) (2002), Article 29,
http://jipam.vu.edu.au/article.php?sid=181

[10] H.A. David, Gini’s mean difference rediscovered, Biometrika 55 (1968), 573.

[11] J.L. Gastwirth, The estimation of the Lorentz curve and Gini index, Rev. Econom.
Statist. 54 (1972), 305–316.
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c© 2008 Birkhäuser Verlag Basel/Switzerland

On Some Integral Inequalities

Bogdan Gavrea

Abstract. An extension of inequalities (1.2) and (1.3) ([1]) is given and an
open problem raised in [1] is solved.
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1. Introduction

Let f be a continuous function defined on [0, 1]. Assume also that f satisfies the
following inequality: ∫ 1

x

f(t)dt ≥ 1− x2

2
, ∀ x ∈ [0, 1]. (1.1)

In [1] it is shown that for any positive function f which satisfies inequality (1.1),
the following two inequalities hold:∫ 1

0

fα+1(x)dx ≥
∫ 1

0

xαf(x)dx (1.2)

∫ 1

0

fα+1(x)dx ≥
∫ 1

0

xfα(x)dx (1.3)

for any positive real number α.
Now, let f be a continuous function on [0, 1] and g be a continuous and

positive function such that:∫ 1

x

f(t)dt ≥
∫ 1

x

g(t)dt, ∀ x ∈ [0, 1]. (1.4)

The aim of this note is to derive inequalities similar to (1.2) and (1.3) for functions
f that verify inequality (1.4).
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2. Auxiliary results

Lemma 2.1. Let h be a continuous, increasing and positive function on [0, 1]. If f
satisfies inequality (1.4) then∫ 1

u

h(x)f(x)dx ≥
∫ 1

u

h(x)g(x)dx, ∀ u ∈ [0, 1]. (2.5)

Proof. Without loss of generality, we may assume that h is differentiable and its
derivative is continuous on [0, 1].

Multiplying both sides of (1.4) by h′(x) and than integrating on [u, 1] gives:∫ 1

u

[
h′(x)

∫ 1

x

f(t)dt
]
dx ≥

∫ 1

u

[
h′(x)

∫ 1

x

g(t)dt
]
dx. (2.6)

By performing integration by parts in (2.6), we obtain:

−h(u)
∫ 1

u

f(t)dt+
∫ 1

u

h(x)f(x)dx ≥ −h(u)
∫ 1

u

g(t)dt+
∫ 1

u

h(x)g(x)dx

or ∫ 1

u

h(x)f(x)dx −
∫ 1

u

h(x)g(x)dx ≥ h(u)
[∫ 1

u

f(t)dt−
∫ 1

u

g(t)dt
]
. (2.7)

From (2.7) and (1.4) the conclusion of the Lemma follows. �

Lemma 2.2. If f and g satisfy (1.4) with f positive and g increasing, then for any
α ≥ 1 we have: ∫ 1

u

fα(x)dx ≥
∫ 1

u

gα(x)dx, ∀ u ∈ [0, 1]. (2.8)

Proof. Let α > 1 and let h be an increasing function on [0, 1]. From Lemma 2.1
we have: ∫ 1

u

h(x)f(x)dx ≥
∫ 1

u

h(x)g(x)dx. (2.9)

By using Hölder’s inequality we obtain:∫ 1

u

h(x)f(x)dx ≤
(∫ 1

u

[h(x)]
α

α−1

)α−1
α

[∫ 1

u

fα(x)dx
] 1

α

. (2.10)

From (2.10) we get:

∫ 1

u

fα(x)dx ≥

[∫ 1

u

h(x)f(x)dx
]α

[∫ 1

u

[h(x)]
α

α−1 dx

]α−1 . (2.11)
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Inequalities (2.9) and (2.11) give:

∫ 1

u

fα(x)dx ≥

[∫ 1

u

h(x)g(x)dx
]α

[∫ 1

u

[h(x)]
α

α−1 dx

]α−1 (2.12)

Because g is an increasing function, it follows that

h = gα−1

is also an increasing function. Taking h = gα−1 in (2.12), we obtain the inequality
(2.8). �

Remark 2.3. For α ∈ (0, 1) the above result doesn’t hold in general. To better see
this, consider:

f(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2
t, t ∈

[
0,

1
3

)
3
2
t− 1

3
, t ∈

[
1
3
, 1

] , g(t) = t

Given f and g above we have:∫ 1

x

f(t)dt ≥
∫ 1

x

g(t)dt

and ∫ 1

0

[f(t)]
1
2 dt <

∫ 1

0

[g(t)]
1
2 dt.

3. Main results

Theorem 3.1. Assume f and g satisfy (1.4) with f positive and g increasing. Let
x ∈ [0, 1] and α > 0. Then∫ 1

x

fα+1(t)dt ≥
∫ 1

x

gα(t)f(t)dx. (3.13)

Proof. Using the Mean’s Inequality, we obtain:

1
α+ 1

fα+1(t) +
α

α+ 1
gα+1(t) ≥ f(t)gα(t). (3.14)

Integrating both sides of (3.14) on [x, 1] gives:

1
α+ 1

∫ 1

x

fα+1(t)dt +
α

α+ 1

∫ 1

x

gα+1(t)dt ≥
∫ 1

x

f(t)gα(t)dt. (3.15)
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From Lemma 2.2, we obtain∫ 1

x

gα+1(t)dt ≤
∫ 1

x

fα+1(t)dt (3.16)

From (3.15) and (3.16) we get

1
α+ 1

∫ 1

x

fα+1(t)dt+
α

α+ 1

∫ 1

x

gα+1(t)dt ≤
∫ 1

x

fα+1(t)dt. (3.17)

Inequality (3.13) follows now from (3.15) and (3.17). �

Theorem 3.2. Assume f and g satisfy (1.4). Then, for any α > 0 and x ∈ [0, 1] we
have: ∫ 1

x

fα+1(t)dt ≥
∫ 1

x

g(t)fα(t)dt.

Proof. Given that for nonnegative t, the function tα is an increasing function, we
have

(uα − vα)(u− v) ≥ 0, ∀ u, v ∈ [0,∞). (3.18)
Taking u = f(t) and v = g(t) gives

(fα(t)− gα(t))(f(t) − g(t)) ≥ 0, ∀ t ∈ [0, 1]. (3.19)

Integrating both sides of (3.19) on [x, 1], we obtain∫ 1

x

fα+1(t)dt−
∫ 1

x

fα(t)g(t)dt−
∫ 1

x

gα(t)f(t)dt +
∫ 1

x

gα+1(t)dt ≥ 0 (3.20)

or ∫ 1

x

fα+1(t)dt ≥
∫ 1

x

fα(t)g(t)dt +
∫ 1

x

gα(t)f(t)dt−
∫ 1

x

gα+1dt. (3.21)

Since gα is an increasing function, by taking

h(t) = gα(t)

in Lemma 2.1, we obtain∫ 1

x

gα(t)f(t)dt ≥
∫ 1

x

gα+1(t)dt. (3.22)

The conclusion of the theorem follows from (3.21) and (3.22). �

In [1], the following open problem is proposed: Let f be a continuous function
on [0, 1] satisfying the inequality:∫ 1

x

f(t)dt ≥
∫ 1

x

tdt, ∀ x ∈ [0, 1].

Under what assumptions does the following inequality holds∫ 1

0

fα+β(x)dx ≥
∫ 1

0

xαfβ(x)dx?
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In what follows, we assume that the functions f and g are continuous, f is positive,
g is increasing and positive on [0, 1] and that inequality (1.4) holds.

Theorem 3.3. If f is an increasing function, α ≥ 1, β ≥ 0 and x ∈ [0, 1] then the
inequality ∫ 1

x

fα+β(t)dt ≥
∫ 1

x

gα(t)fβ(t)dt

holds.

Proof. For α ≥ 1, from (2.8) we have:∫ 1

x

fα(t)dt ≥
∫ 1

x

gα(t)dt. (3.23)

Because fβ is an increasing function, by taking h = fβ in (2.5), it follows from
(3.23) that ∫ 1

x

fβ(t)fα(t)dt ≥
∫ 1

x

gα(t)fβ(t)dt.

The last inequality is equivalent to the desired result. �
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1. Introduction

The study of the Pólya-Knopp inequality(∫ ∞

0

(
exp

(
1
x

∫ x

0

ln f(t)dt
))q

u(x)dx
) 1

q

≤ C
(∫ ∞

0

fp(x)v(x)dx
) 1

p

(1.1)

is closely connected to the study of the Hardy inequality(∫ ∞

0

(
1
x

∫ x

0

f (t) dt
)q

u (x) dx
) 1

q

≤ C
(∫ ∞

0

fp (x) v (x) dx
) 1

p

(1.2)

since the Pólya-Knopp inequality can be regarded as a limit inequality to the Hardy
inequality. In [6] L.E. Persson and V.D. Stepanov proved a weight characterization
for the inequality (1.1) by first characterizing the Hardy inequality (1.2) with a
new weight criteria. Their result reads:
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Theorem 1.1. Let 1 < p ≤ q <∞. Then the Hardy inequality (1.2) holds for f ≥ 0
if and only if

APS = APS(p, q, u, v) := (1.3)

sup
t>0

(∫ t

0

u(x)x−q

(∫ x

0

v(y)1−p′
dy

)q

dx

) 1
q
(∫ t

0

v(x)1−p′
dx

)− 1
p

<∞.

Moreover, the best constant C in (1.2) can be estimated as follows:

APS ≤ C ≤ p′APS..

Then by performing a limiting procedure they obtained the following limit
result:

Theorem 1.2. Let 0 < p ≤ q <∞. Then the inequality (1.1) holds for all f ≥ 0 if
and only if

DPS = DPS(p, q, w) := sup
t>0

t−
1
p

(∫ t

0

w(x)dx
) 1

q

<∞, (1.4)

where

w(x) = exp
(

1
x

∫ x

0

ln v(y)dy
)− q

p

u(x). (1.5)

Moreover, if C is the best possible constant in (1.1), then

DPS ≤ C ≤ e
1
pDPS .

As mentioned Persson and Stepanov (see Theorem 1.1) proved a new weight
characterization for the Hardy inequality. Their motivation for doing that, was the
fact that it was not possible to perform the mentioned limiting procedure by using
the Muckenhoupt condition so they needed an equivalent characterization. Partly
guided by this we also prove a new weight characterization for the Hardy inequality
for decreasing functions, because it is not possible to use Sawyers conditions for
the purpose of performing a limiting procedure.

More precisely, in Section 2 we present and prove our new alternative weight
characterization of the Hardy inequality for decreasing functions (see Theorem
2.1). In Section 3 we use a fairly new equivalence theorem to give an alternative
proof of Theorem 2.1 and Sawyer’s result (see Remark 3.3). In fact, this result
shows that there are infinitely many possibilities to characterize the considered
Hardy inequality for decreasing functions. Finally, in Section 4 we state the cor-
responding Pólya-Knopp inequality for decreasing functions (see Remark 4.1).

In 1990 E. Sawyer [7] proved the following theorem by performing a general
approach for general operators. In [9] V.D. Stepanov gave a direct proof, which
also gave good estimates of the constants.

Theorem 1.3. Let 1 < p ≤ q <∞. Then the inequality (1.2) holds for all decreasing
f ≥ 0 if and only if

A0 = A0(p, q, u, v) := sup
t>0

V (t)−
1
p

(∫ t

0

u(x)dx
) 1

q

<∞, (1.6)
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and
A1 = A1(p, q, u, v) :=

sup
t>0

(∫ ∞

t

u(x)x−qdx

) 1
q
(∫ t

0

xp′
V (x)−p′

v(x)dx
) 1

p′

<∞,

where p′ = p
p−1 and

V (t) =
∫ t

0

v(x)dx. (1.7)

Moreover, if C is the best possible constant in (1.2), then

C ≈ max(A0, A1).

Here and in the sequel by decreasing we mean non-increasing.

2. A new weight characterization of the weighted Hardy inequality
for decreasing functions

The main result of this section reads:

Theorem 2.1. Let 1 < p ≤ q < ∞. Then the Hardy inequality (1.2) holds for all
decreasing f ≥ 0 if and only if (1.6) and

A2 = A2(p, q, u, v) := (2.1)

sup
t>0

(∫ t

0

(∫ x

0

yp′
V (y)−p′

v(y)dy
)q

u(x)x−qdx

) 1
q
(∫ t

0

xp′
V (x)−p′

v(x)dx
)− 1

p

<∞

hold, where V is defined by (1.7). Moreover, if C is the best possible constant in
(1.2), then

C ≈ max(A0, A2). (2.2)

For the proof we need the following Lemma:

Lemma 2.2. Let 0 < p ≤ q <∞. Then the inequality(∫ ∞

0

f q(x)u(x)dx
) 1

q

≤ C
(∫ ∞

0

fp(x)v(x)dx
) 1

p

(2.3)

holds for all decreasing f ≥ 0 if and only if (1.6) holds. Moreover, the constant
C = A0 is the best possible, where A0 is defined by (1.6).

A proof of this Lemma can be found, e.g., in [9] (for more references see, e.g.,
the Ph.D. thesis [1] by S. Barza).

Proof. (Theorem 2.1). Since f is a decreasing function we can write f(x) =∫∞
x h(y)dy, for some h(y) ≥ 0. First note that, by changing order of integration,

1
x

∫ x

0

f(t)dt =
1
x

∫ x

0

∫ ∞

t

h(y)dydt =
∫ ∞

x

h(y)dy +
1
x

∫ x

0

yh(y)dy. (2.4)



100 M. Johansson

Consequently, by using (2.4) and Minkowski’s inequality, we find that

F :=
(∫ ∞

0

(
1
x

∫ x

0

f(t)dt
)q

u(x)dx
) 1

q

=
(∫ ∞

0

(∫ ∞

x

h(y)dy +
1
x

∫ x

0

yh(y)dy
)q

u(x)dx
) 1

q

≤
(∫ ∞

0

f q (x)u(x)dx
) 1

q

+
(∫ ∞

0

(
1
x

∫ x

0

yh(y)dy
)q

u(x)dx
) 1

q

:=
(∫ ∞

0

f q(x)u(x)dx
) 1

q

+ F1.

The first term on the right-hand side can be estimated by using Lemma 2.2 and,
thus,

F ≤ A0

(∫ ∞

0

fp(x)v(x)dx
) 1

p

+ F1. (2.5)

Let us estimate the second term F1. We have, setting H = hV, where V is
defined by (1.7),

F q
1 =

∫ ∞

0

(
1
x

∫ x

0

yh(y)dy
)q

u(x)dx =
∫ ∞

0

(
1
x

∫ x

0

yH(y)
V (y)

dy

)q

u(x)dx.

Moreover, by integrating by parts and setting
∫ y

0
H(t)dt = G(y), we get that∫ x

0

yH(y)
V (y)

dy =
xG(x)
V (x)

−
∫ x

0

G(y)
V (y)

dy +
∫ x

0

yv(y)
V 2(y)

G(y)dy

≤ xG(x)
V (x)

+
∫ x

0

yv(y)
V 2(y)

G(y)dy.

Hence, according to Minkowski’s inequality,

F1 ≤
(∫ ∞

0

(
G(x)
V (x)

)q

u(x)dx
)1/q

+
(∫ ∞

0

(
1
x

∫ x

0

yv(y)
V 2(y)

G(y)dy
)q

u(x)dx
)1/q

:= F2 + F3. (2.6)

Moreover, by integrating by parts and using an approximation argument, we find
that

F q
2 =

∫ ∞

0

(
G(x)
V (x)

)q

u(x)dx ≤ q
∫ ∞

0

G(x)qv(x)
V (x)q+1

(∫ x

0

u(t)dt
)
dx.

Hence, by applying condition (1.6), we have that

F q
2 ≤ qA

q
0

∫ ∞

0

G(x)qv(x)
V (x)q+1−q/p

dx. (2.7)
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Moreover,

G(y) =
∫ y

0

h(x)
∫ x

0

v(t)dtdx =
∫ y

0

v(t)
(∫ y

t

h(x)dx
)
dt (2.8)

≤
∫ y

0

v(t)
(∫ ∞

t

h(x)dx
)
dt ≤

∫ y

0

f(t)v(t)dt.

Consequently, by inserting (2.8) into (2.7), we get that

F q
2 ≤ qA

q
0

∫ ∞

0

(∫ x

0

f(t)v(t)dt
)q

v(x)
V (x)q+1−q/p

dx.

If we apply Theorem 1.1 to the function f (t) v (t) instead of f (t) and the weights
V (x)

q
p−q−1

v (x) xq instead of u (x) and v (x)1−p instead of v (x) we find that the
condition (1.3) becomes

Aq
PS = sup

t>0

(∫ t

0

V (x)q/p−1−qv(x)
(∫ x

0

v (y)(1−p)(1−p′)
dy

)q

dx

)
×

(∫ t

0

v(x)(1−p)(1−p′)dx

)− q
p

= sup
t>0

(∫ t

0

V (x)q/p−1v(x))dx
)(∫ t

0

v(x)dx
)− q

p

=
p

q
,

and, thus,

F q
2 ≤ p (p′)q

Aq
0

(∫ ∞

0

fp(x)v(x)dx
) q

p

. (2.9)

Denoting
yv(y)
V 2(y)

G(y) = Φ(y)

and
xp′
V (x)−p′

v(x) = Ψ(x)1−p′
(2.10)

and, again applying Theorem 1.1, (2.1) and (2.8), we find that

F q
3 =

∫ ∞

0

(
1
x

∫ x

0

Φ(y)dy
)q

u(x)dx ≤ (p′)q
Aq

2

(∫ ∞

0

Φp(x)Ψ(x)dx
) q

p

= (p′)q
Aq

2

(∫ ∞

0

Gp(x)v(x)V (x)−pdx

) q
p

≤ (p′)q
Aq

2

(∫ ∞

0

(∫ x

0

f(y)v(y)dy
)p

v(x)V (x)−pdx

) q
p

≤ (p′)2q
Aq

2

(∫ ∞

0

f(x)pv(x)dx
) q

p

. (2.11)
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Here in the last step we apply Theorem 1.1 with q = p, f (x) replaced by f (x) v (x),
v (x) replaced by v1−p (x) and u (x) replaced by v (x) V −p (x)xp so that the con-
dition (1.3) APS = 1. By combining the estimates (2.5), (2.6), (2.9) and (2.11) we
find that (1.2) holds with a constant C satisfying

C ≤
(
1 + p1/qp′

)
A0 + (p′)2A2,

i.e., the upper estimate in (2.2) holds.
For the necessity condition, assume that the inequality (1.2) holds for all

decreasing f ≥ 0. Consider, for fixed y > 0, the decreasing test function

fy(s) =
(∫ y

s

tp
′
V (t)−p′−1v(t)dt

) 1
p

χ[0,y](s).

Applying this function to the right-hand side of (1.2) and changing the order of
integration we obtain that(∫ ∞

0

fy(s)pv(s)ds
)1/p

=
(∫ y

0

(∫ y

s

tp
′
V (t)−p′−1v(t)dt

)
v(s)ds

) 1
p

=
(∫ y

0

tp
′
V (t)−p′−1

(∫ t

0

v(s)ds
)
dt

) 1
p

=
(∫ y

0

tp
′
V (t)−p′

v(t)dt
) 1

p

. (2.12)

For the left-hand side of (1.2) we have that

(∫ ∞

0

(
1
x

∫ x

0

f(s)ds
)q

u(x)dx
) 1

q

≥
(∫ y

0

(∫ x

0

(∫ y

s

tp
′
V (t)−p′−1v(t)dt

) 1
p

ds

)q

u(x)x−qdx

) 1
q

. (2.13)

For the inner integral it yields that∫ x

0

(∫ y

s

tp
′
V (t)−p′−1v(t)dt

) 1
p

ds

≥
∫ x

0

s
p′
p

(∫ y

s

V (t)−p′−1v(t)dt
) 1

p

ds

≥ 1
p

∫ x

0

s
p′
p

(∫ x

s

(∫ y

t

V (z)−p′−1v(z)dz
)− 1

p′
V (t)−p′−1v(t)dt

)
ds := I
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Now, by changing the order of integration, we find that

I =
1
p

∫ x

0

V (t)−p′−1v(t)
(∫ t

0

s
p′
p ds

)(∫ y

t

V (z)−p′−1v(z)dz
)− 1

p′
dt

=
1
pp′

∫ x

0

V (t)−p′−1v(t)tp
′
(∫ y

t

V (z)−p′−1v(z)dz
)− 1

p′
dt

≥ 1

p (p′)
1
p

∫ x

0

V (t)−p′
v(t)tp

′
dt. (2.14)

Therefore, by combining (2.12) and (2.13) with (2.14), we obtain that(∫ y

0

tp
′
V (t)−p′

v(t)dt
)− 1

p
(∫ y

0

(∫ x

0

tp
′
V −p′

(t)v(t)dt
)q

u(x)x−qdx

) 1
q

≤ p (p′)
1
p C

Hence C ≥ A2

p(p′)
1
p
. Moreover, since f(x) ≤ 1

x

∫ x

0 f(t)dt when f is decreasing, it

follows that A0 ≤ C, by choosing ft (x) = χ[0,t] (x) and taking supremum. Hence
also the lower estimate of (2.2) holds and the proof is complete. �

Remark 2.3. The crucial part of the proof above is to use the results in [6], [8]
and the technique in [9] combined with finding explicitly the corresponding test
functions. For the estimates C ≈ max (A0, A2) we have found that

max

(
A0, A2

1

p (p′)1/p

)
≤ C ≤

(
1 + p1/qp′

)
A0 + (p′)2A2 (2.15)

but we strongly believe that these estimates can be improved.

3. Another approach via an equivalence theorem

In [7] E. Sawyer showed that to characterize the inequality (1.2) for decreasing
functions f is equivalent to characterize the following inequalities:(∫ ∞

0

(∫ x

0

f(t)dt
)p′

V (x)−p′
v(x)dx

) 1
p′

≤ C
(∫ ∞

0

f q′
(x)u(x)1−q′

dx

) 1
q′
, (3.1)

and(∫ ∞

0

(∫ ∞

x

f(t)
t
dt

)p′

xp′
V (x)−p′

v(x)dx

) 1
p′

≤ C
(∫ ∞

0

f q′
(x)u(x)1−q′

dx

) 1
q′
,

(3.2)
where V is defined by (1.7). Then, by using the Hardy inequality and the so-called
Muckenhoupt condition to characterize the inequalities (3.1) and (3.2), E. Sawyer
received the before mentioned result in Theorem 1.3.

Recently the weighted Hardy inequality has been characterized with some
new conditions (see, e.g., [4] and [10]). More generally, nowadays we know that



104 M. Johansson

the Hardy inequality (1.2) for 1 < p ≤ q <∞ holds for all f ≥ 0 if and only if just
one of the following (infinite many equivalent) conditions is satisfied (see [2]):

Theorem 3.1. Let 1 < p ≤ q <∞, 0 < s <∞ and define

A1(s) := sup
t>0

⎛⎝∫ ∞

t

u (x)
(∫ x

0

v(y)1−p′
dy

)q
(

1
p′−s

)
dx

⎞⎠
1
q (∫ t

0

v(x)1−p′
dx

)s

,

A2(s) := sup
t>0

⎛⎝∫ t

0

u (x)
(∫ x

0

v(y)1−p′
dy

)q
(

1
p′ +s

)
dx

⎞⎠
1
q (∫ t

0

v(x)1−p′
dx

)−s

,

A3(s) := sup
t>0

(∫ t

0

v(x)1−p′
(∫ ∞

x

u(y)dy
)p′( 1

q−s)
dx

) 1
p′ (∫ ∞

t

u(x)dx
)s

,

A4(s) := sup
t>0

(∫ ∞

t

v(x)1−p′
(∫ ∞

x

u(y)dy
)p′( 1

q +s)
dx

) 1
p′ (∫ ∞

t

u(x)dx
)−s

.

(3.3)

Then the Hardy inequality(∫ ∞

0

(∫ x

0

f (t) dt
)q

u (x) dx
) 1

q

≤ C
(∫ ∞

0

fp (x) v (x) dx
) 1

p

(3.4)

holds for all measurable functions f ≥ 0 if and only if any of the quantities Ai(s) is
finite. Moreover, for the best constant C in (3.4) we have C ≈ Ai(s), i = 1, 2, 3, 4.

This gives us the possibility to characterize the weighted Hardy inequality for
decreasing functions with some new conditions, by just using the technique of E.
Sawyer described above. We can therefore formulate the following generalization
of our Theorem 2.1:

Theorem 3.2. Let 1 < p ≤ q <∞. Then the inequality (1.2) holds for all decreasing
f ≥ 0 if and only if for any s, r, 0 < s, r <∞, one of the quantities

B1(s) := sup
t>0

(∫ ∞

t

V (x)−p′
v (x)

(∫ x

0

u(y)dy
)p′( 1

q−s)
dx

) 1
p′ (∫ t

0

u(x)dx
)s

,

B2(s) := sup
t>0

(∫ t

0

V (x)−p′
v (x)

(∫ x

0

u(y)dy
)p′( 1

q +s)
dx

) 1
p′ (∫ t

0

u(x)dx
)−s

,

B3(s) := sup
t>0

⎛⎝∫ t

0

u(x)
(∫ ∞

x

V (y)−p′
v (y) dy

)q
(

1
p′−s

)
dx

⎞⎠
1
q

×
(∫ ∞

t

V (x)−p′
v (x) dx

)s

,
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B4(s) := sup
t>0

⎛⎝∫ ∞

t

u(x)
(∫ ∞

x

V (y)−p′
v (y)dy

)q
(

1
p′ +s

)
dx

⎞⎠
1
q

×
(∫ ∞

t

V (x)−p′
v (x) dx

)−s

and any of the quantities

E1(r) := sup
t>0

⎛⎝∫ ∞

t

u (x) x−q

(∫ x

0

Ψ(y)1−p′
dy

)q
(

1
p′−r

)
dx

⎞⎠
1
q (∫ t

0

Ψ(x)1−p′
dx

)r

,

E2(r) := sup
t>0

⎛⎝∫ t

0

u (x) x−q

(∫ x

0

Ψ(y)1−p′
dy

)q
(

1
p′ +r

)
dx

⎞⎠
1
q

×
(∫ t

0

Ψ(x)1−p′
dx

)−r

,

E3(r) := sup
t>0

(∫ t

0

Ψ(x)1−p′
(∫ ∞

x

u(y)y−qdy

)p′( 1
q−r)

dx

) 1
p′ (∫ ∞

t

u(x)x−qdx

)r

,

E4(r) := sup
t>0

(∫ ∞

t

Ψ(x)1−p′
(∫ ∞

x

u(y)y−qdy

)p′( 1
q +r)

dx

) 1
p′

×
(∫ ∞

t

u(x)x−qdx

)−r

are finite, where V is defined by (1.7) and Ψ is defined by (2.10).

Remark 3.3. By using B1 with s = 1
q and V (∞) = ∞ (this is no real restriction

see, e.g., [7, p. 148] and [5, p. 316]) and integrating, and also using E1 with r = 1
p′

we get the result due to Sawyer (Theorem 1.3). Furthermore, if we again use B1

as above with s = 1
q and also E2 with r = 1

p we get our result (Theorem 2.1).

Proof. (Theorem 3.2). We apply the above mentioned technique by E. Sawyer [7].
First we give weight characterizations for the inequality (3.1). If we use Theorem
3.1 with p, q, u (x) , v (x) replaced by q′, p′,V (x)−p′

v (x) and u(x)1−q′
, respec-

tively, then we obtain the first bunch of conditions in Theorem 3.2.
Now, we characterize the inequality (3.2) and first we note that, by duality

(see, e.g., [5, p. 314]), (3.2) is equivalent to the Hardy inequality(∫ ∞

0

(∫ x

0

f(t)dt
)q

u(x)x−qdx

) 1
q

≤ C
(∫ ∞

0

fp(x)Ψ(x)dx
) 1

p

,
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where Ψ(x) is defined by (2.10) so we can again use Theorem 3.1 now with s, u (x)
and v (x) replaced by r, u (x) x−qand Ψ(x) respectively, and we get the second
bunch of conditions in Theorem 3.2. The proof is complete. �

Remark 3.4. By using Theorem 3.2 and arguing as in the proof of Theorem 4.1 we
can get a number of other characterizations of the Pólya-Knopp inequality (1.1)
besides that stated in Theorem 4.1.

4. Concluding remarks

In this Section we will give a weight characterization of the Pólya-Knopp inequality
(1.1) for decreasing functions for the case when v (x) is decreasing. In fact, the
following Pólya-Knopp type inequality may be regarded as a limit result of our
Theorem 2.1:

Remark 4.1. Let 0 < p ≤ q < ∞. Let u (x) and v (x) be weight functions and
assume that v (x) is decreasing. Then the inequality (1.1) holds for all decreasing
f ≥ 0 if and only if

DPS = DPS(p, q, w) := sup
t>0

t−
1
p

(∫ t

0

w(x)dx
) 1

q

<∞, (4.1)

holds. Moreover, if C is the best possible constant in (1.1), then

DPS ≤ C ≤ inf
r>1

k (r)DPS , (4.2)

where

k (r) =
(
1 + r

p
qr r′ + (r′)2

) r
p

,

The details of the proof can be found in [3].

Remark 4.2. We have obtained the same condition for characterizing the Pólya-
Knopp inequality for decreasing functions as for all positive functions in [6] but
our upper estimate of the best constant C in (4.2) is different.

Acknowledgement: The author express her deep gratitude to Professor Lars-
Erik Persson for fruitful discussions.
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ties involving μ-harmonic sequences of functions with respect to a real Borel
measure μ.

Mathematics Subject Classification (2000). 26D15, 26D20.

Keywords. Grüss type inequalities, Euler identities, harmonic sequences, Borel
measures.

1. Introduction

For a, b ∈ R, a < b, let C[a, b] be the Banach space of all continuous functions
f : [a, b]→R with the max norm, and M [a, b] the Banach space of all real Borel
measures on [a, b] with the total variation norm. For μ ∈ M [a, b] define function
μ̌n : [a, b]→R, n ≥ 1, by

μ̌n(t) = 1
(n−1)!

∫
[a,t]

(t− s)n−1dμ(s). (1.1)

The function μ̌n is differentiable, μ̌′n(t) = μ̌n−1(t) and μ̌n(a) = 0, for every n ≥ 2,
while for n = 1

μ̌1(t) =
∫
[a,t]dμ(s) = μ([a, t]), (1.2)

which means that μ̌1(t) is equal to the distribution function of μ. From (1.1) and
(1.2) using the Fubini theorem we easily get the following two formulas

μ̌n(t) = 1
(n−2)!

∫ t

a (t− s)n−2μ̌1(s)ds, n ≥ 2

and ∫ t

a μ̌n(s)ds = μ̌n+1(t), n ≥ 1. (1.3)
Also, g(s) = (t − s)n−1 is nonincreasing on [a, t] so that from (1.1) we get the
estimate

|μ̌n(t)| ≤ 1
(n−1)! (t− a)

n−1 ‖μ‖ , t ∈ [a, b], n ≥ 1 (1.4)
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where ‖μ‖ denotes the total variation of μ. Note also that in the case when μ ≥ 0
every μ̌n(·) is nondecreasing on [a, b].

A sequence of functions Pn : [a, b]→ R, n ≥ 1, is called μ-harmonic sequence
of functions on [a, b] if

P ′n(t) = Pn−1(t), n ≥ 2; P1(t) = c+ μ̌1(t), t ∈ [a, b],

for some c ∈ R.
The sequence (μ̌n, n ≥ 1) is an example of μ-harmonic sequence of functions

on [a, b].
Assume that (Pn(t), n ≥ 1) is a μ-harmonic sequence of functions on [a, b].

Define P ∗n(t), for n ≥ 1, to be a periodic function of period 1, related to Pn(t) as

P ∗n(t) = [Pn(a+ (b− a)t)]/ (b− a)n
, 0 ≤ t < 1; P ∗n(t+ 1) = P ∗n(t), t ∈ R.

Thus, for n ≥ 2, P ∗n(t) is continuous on R\Z and has a jump of

αn = [Pn(a)− Pn(b)]/ (b− a)n (1.5)

at every k ∈ Z, whenever αn 
= 0. Also note that P ∗n(t) is differentiable on R\Z
for n ≥ 2 and

P ∗′n (t) = P ∗n−1(t), n ≥ 2, t ∈ R\Z.
Let f : [a, b] → R be such that f (n−1) is a continuous function of bounded

variation on [a, b] for some n ≥ 1. In the recent paper [1] the following two identities
have been proved:

μ([a, b])f(x) =
∫
[a,b]fx(t)dμ(t) + Sn(x) +R1

n(x), (1.6)

and for n ≥ 2

μ([a, b])f(x) =
∫
[a,b]

fx(t)dμ(t) + Sn−1(x)

+ [Pn (a)− Pn (b)] f (n−1)(x) +R2
n(x), (1.7)

where

Sm(x) =
∑m

k=1Pk (x) [f (k−1)(b)− f (k−1)(a)] +
∑m

k=2
[Pk (a)− Pk (b)] f (k−1)(x),

for 1 ≤ m ≤ n, with convention S1(x) = P1 (x) [f(b)− f(a)] , and

fx(t) =
{
f(a+ x− t), a ≤ t ≤ x
f(b+ x− t), x < t ≤ b , (1.8)

while for every x ∈ [a, b]

R1
n(x) = −(b− a)n

∫
[a,b]P

∗
n(x−t

b−a )df (n−1)(t) (1.9)

and
R2

n(x) = −(b− a)n
∫
[a,b][P

∗
n(x−t

b−a )− 1
(b−a)nPn(x)]df (n−1)(t). (1.10)

Identities (1.6) and (1.7) are called the general Euler harmonic identities.
They are generalizations of similar identities considered in [2] and [3].
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Recently the following theorem was proved [5, Theorem 4]:

Theorem A Let f, g : [a, b]→ R be integrable functions such that

γ ≤ f(t) ≤ Γ, a.e. and
∫ b

a
g(t)dt = 0,

for some γ,Γ ∈ R, Then∣∣∣∫ b

a f(t)g(t)dt
∣∣∣ ≤ 1

2 (Γ− γ)
∫ b

a |g(t)| dt,

with equality if and only if either

f(t) = Γ, t ∈ I+ and f(t) = γ, t ∈ I−, a.e. on I+ ∪ I−
or

f(t) = γ, t ∈ I+ and f(t) = Γ, t ∈ I−, a.e. on I+ ∪ I−,
where I+ = {t ∈ [a, b]; g(t) > 0}, I− = {t ∈ [a, b]; g(t) < 0}.

Remark 1. The assumption
∫ b

a g(t)dt = 0 is not essential since g(t) can be replaced
with g̃(t) = g(t)− 1

b−a

∫ b

a
g(s)ds. Such result was proved by Matić [4, Theorem 3].

The aim of this paper is to give generalizations of Theorem A (see Theorem
1 and Remark 4), and applying them to formulae (1.6) and (1.7) to prove some
general Euler-Grüss type inequalities. Our Theorem 1 has many applications. For
some of them see recent papers [6] and [7].

2. Some inequalities of Grüss type

Let X ⊂ Rm be a Borel set in Rm, m ≥ 1, and let M(X) denotes the Banach
space of all real Borel measures on X with the total variation norm. For μ ∈M(X)
let μ = μ+ − μ− be the Jordan-Hahn decomposition of μ, where μ+ and μ− are
orthogonal and positive measures. Then we have |μ| = μ+ + μ− and

‖μ‖ = |μ| (X) = ‖μ+‖+ ‖μ−‖ = μ+(X) + μ−(X).

Measure μ ∈M(X) is called balanced if μ(X) = 0. This is equivalent to

‖μ+‖ = ‖μ−‖ = 1
2 ‖μ‖ .

Theorem 1. For balanced measure μ ∈M(X) let f ∈ L∞(X,μ) be such that

γ ≤ f(t) ≤ Γ, t ∈ X, μ− a.e., (2.1)

for some γ,Γ ∈ R. Then ∣∣∫ f(t)dμ(t)
∣∣ ≤ 1

2 (Γ− γ) ‖μ‖ , (2.2)

with the equality if and only if either

f(t) = Γ, t ∈ I+ and f(t) = γ, t ∈ I−, μ− a.e. (2.3)

or
f(t) = γ, t ∈ I+ and f(t) = Γ, t ∈ I−, μ− a.e., (2.4)
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where I+ and I− are disjoint Borel sets satisfying

μ+(I+) = ‖μ+‖, μ−(I−) = ‖μ−‖, μ+(I−) = μ−(I+) = 0.

Proof. Integrating the relation (2.1) with respect to μ+ and μ− we get
1
2γ ‖μ‖ ≤

∫
f(t)dμ+(t) ≤ 1

2Γ ‖μ‖ (2.5)

and
− 1

2Γ ‖μ‖ ≤ −
∫
f(t)dμ−(t) ≤ − 1

2γ ‖μ‖ . (2.6)
Adding these relations together we get our inequality.

The equality case occurs in (2.2) if and only if we have the equality either in
the both right-hand sides of (2.5) and (2.6), or in the both left-hand sides of (2.5)
and (2.6). The former case is equivalent to (2.3), while the later case to (2.4). �

Remark 2. Let f and g be from Theorem A and let μ ∈ M([a, b]) be defined by
dμ(t) = g(t)dt. Then μ+ and μ− are given by dμ+(t) = g+(t)dt, dμ−(t) = g−(t)dt,
where

g+(t) = 1
2 [|g(t)|+ g(t)] , g−(t) = 1

2 [|g(t)| − g(t)] ,
and we have

μ([a, b]) =
∫ b

a g(t)dt = 0,
which means that μ is balanced. Now we see that Theorem 1 reduces to Theorem
A since ‖μ‖ =

∫ b

a
|g(t)| dt.

Remark 3. The inequality (2.2) is obviously sharp. Namely for the function f
defined as f(t) = ΓχI+(t) + γχI−(t), t ∈ X, we have equality in (2.2). Clearly, the
same is true for the function f(t) = γχI+(t) + ΓχI−(t), t ∈ X.

Corollary 1. Let (ck, k ≥ 1) be a sequence in R such that
∑

k≥1 |ck| < ∞ and∑
k≥1ck = 0. Then for every bounded sequence (dk, k ≥ 1) in R we have∣∣∣∑k≥1ckdk

∣∣∣ ≤ 1
2 (Γ− γ)

∑
k≥1 |ck| ,

where Γ = sup{dk : ck 
= 0} and γ = inf{dk : ck 
= 0}. The equality occurs if and
only if either

dk = Γ, k ∈ I+ and dk = γ, k ∈ I−,
or

dk = γ, k ∈ I+ and dk = Γ, k ∈ I−,
where I+ = {k : ck > 0} and I− = {k : ck < 0}.

Proof. Choose any sequence (xk, k ≥ 1) of distinct points xk ∈ R and setX = {xk :
k ≥ 1}. Then apply the theorem above for the measure μ =

∑
k≥1ckδxk

, where δy
is the Dirac measure at y ∈ R, i.e., the measure defined by

∫
f(t)dδy(t) = f(y),

and for the function f : X → R defined as f(xk) = dk, k ≥ 1. In this case
‖μ‖ =

∑
k≥1 |ck| <∞ and μ(X) =

∑
k≥1ck = 0, which means that μ is balanced,

while
∫
f(t)dμ(t) =

∑
k≥1ckf(xk) =

∑
k≥1ckdk. �
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Corollary 2. For μ ∈ M(X) let f : X → R be a Borel function such that γ ≤
f(t) ≤ Γ, t ∈ X. Then for every x ∈ X we have∣∣μ(X)f(x)−

∫
f(t)dμ(t)

∣∣ ≤ 1
2 (Γ− γ) [|μ(X)|+ ‖μ‖] .

Proof. For x ∈ X define measure νx by νx = μ(X)δx − μ. Then νx(X) = μ(X)−
μ(X) = 0, and ‖νx‖ = ‖μ(X)δx − μ‖ ≤ |μ(X)| + ‖μ‖ ,while

∫
f(t)dνx(t) =

μ(X)f(x)−
∫
f(t)dμ(t). Apply now the theorem above. �

Corollary 3. Let μ, ν ∈ M(X) be probability measures and let f : X → R be a
Borel function such that γ ≤ f(t) ≤ Γ, t ∈ X, μ and ν-a.e. Then we have∣∣∫ f(t)dμ(t) −

∫
f(t)dν(t)

∣∣ ≤ Γ− γ.

Proof. Apply the theorem above for μ− ν and note that (μ− ν) (X) = 1− 1 = 0
and ‖μ− ν‖ ≤ ‖μ‖+ ‖ν‖ = 2. �

Corollary 4. For a probability measure μ ∈M(X) and a Borel function f : X → R

such that γ ≤ f(t) ≤ Γ, t ∈ X, and for every x ∈ X we have∣∣f(x)−
∫
f(t)dμ(t)

∣∣ ≤ Γ− γ.

Proof. Apply Corollary 3 for μ and ν = δx. �

3. Some Euler-Grüss type inequalities

Throughout this section we use the same notations as in the previous one for the
special case X = [a, b] ⊂ R. Hence μ denotes a real Borel measure on [a, b]. Also,
whenever f : [a, b] → R is such that f (k) exists and is bounded, for some k ≥ 1,
we assume that there are some real constants γk and Γk such that

γk ≤ f (k)(t) ≤ Γk, t ∈ [a, b]. (3.1)

Theorem 2. Let f : [a, b] → R be such that f (n−1) is a continuous function of
bounded variation, for some n ≥ 2. Then for every μ-harmonic sequence (Pk, k ≥
1) we have∣∣R2

n(x)
∣∣ ≤ 1

2 (Γn−1 − γn−1)[|Pn (b)− Pn (a)|+
∫ b

a
|Pn−1 (t)| dt], (3.2)

where R2
n(x) is given by (1.10).

Proof. We shall rewrite R2
n(x) in more suitable form. Integration by parts yields

R2
n(x) = −(b− a)n[P ∗n(x−t

b−a )− 1
(b−a)nPn(x)]f (n−1)(t) |ba

+ (b− a)n
∫
[a,b]

f (n−1)(t)dP ∗n(x−t
b−a ). (3.3)

For a ≤ x < b we have P ∗n(x−b
b−a ) = P ∗n(x−a

b−a ) = 1
(b−a)nPn(x) so that from (3.3) we

get
R2

n(x) = (b− a)n
∫
[a,b]f

(n−1)(t)dP ∗n(x−t
b−a ). (3.4)
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For a < x < b the function ϕn(x; t) = P ∗n(x−t
b−a ) is differentiable on [a, b] \ {x} and

its derivative is equal to −1
b−aP

∗
n−1(

x−t
b−a ). Further, it has a jump of ϕn(x;x + 0)−

ϕn(x;x − 0) = −αn at x, where αn is given by (1.5), so that from (3.4) we get

R2
n(x) = −(b− a)n−1

∫ b

a f
(n−1)(t)P ∗n−1(

x−t
b−a )dt− [Pn (a)− Pn (b)] f (n−1)(x). (3.5)

We claim that this formula holds for all x ∈ [a, b]. For x = a the function ϕn(a; t) =
P ∗n( a−t

b−a ) is differentiable on (a, b) and its derivative is equal to −1
b−aP

∗
n( a−t

b−a ). Fur-
ther, it has a jump of ϕn(a; a+0)−ϕn(a; a) = −αn at a, while ϕn(a; b)−ϕn(a; b−
0) = 0, so that from (3.4) we get formula (3.5) with x = a. It remains to see
that formula (3.5) holds for x = b. In this case we have P ∗n( b−b

b−a ) = P ∗n( b−a
b−a ) =

1
(b−a)nPn(a) so that from (3.3) we get

R2
n(b) = [Pn(b)− Pn(a)] [f (n−1)(b)− f (n−1)(a)] + (b− a)n

∫
[a,b]

f (n−1)(t)dP ∗n ( b−t
b−a ).

Now, the function ϕn(b; t) = P ∗n( b−t
b−a ) is identically equal to P ∗n( a−t

b−a ) so that from
the formula above we easily get formula (3.5) for x = b.

Define measures νn and ξn by dξn(t) = −(b − a)n−1P ∗n−1(
x−t
b−a )dt and νn =

ξn − [Pn (a)− Pn (b)] δx, and note that by (3.5) we have

R2
n(x) =

∫
[a,b]f

(n−1)(t)dνn(t).

For all k ≥ 1 we have

P ∗k (x−t
b−a ) = 1

(b−a)k ×
{
Pk (a+ x− t) , for a ≤ t ≤ x
Pk (b+ x− t) , for x < t ≤ b (3.6)

so that

νn([a, b]) = −(b− a)n−1
∫ b

aP
∗
n−1(

x−t
b−a )dt− [Pn (a)− Pn (b)]

= −
∫ b

a
Pn−1 (t) dt− [Pn (a)− Pn (b)]

= Pn (a)− Pn (b)− [Pn (a)− Pn (b)] = 0,

which means that νn is balanced. Further

‖νn‖ = (b− a)n−1
∫ b

a
|P ∗n−1(

x−t
b−a )|dt+ |Pn (a)− Pn (b)|

=
∫ b

a |Pn−1 (t)| dt+ |Pn (a)− Pn (b)| .
Now we can apply Theorem 1 to obtain (3.2). �

Corollary 5. Let f and μ be as in Theorem 2. Then we have∣∣∣μ([a, b])f(x)−
∫
[a,b]fx(t)dμ(t) − Šn−1(x) + μ̌n (b) f (n−1)(x)

∣∣∣
≤ 1

2 (Γn−1 − γn−1)[|μ̌n (b)|+
∫ b

a
|μ̌n−1 (t)| dt]

≤ 1
(n−1)! (b− a)

n−1 [Γn−1 − γn−1] ‖μ‖ ,
where

Šm(x) =
∑m

k=1μ̌k (x) [f (k−1)(b)− f (k−1)(a)]−
∑m

k=2μ̌k (b) f (k−1)(x). (3.7)
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Proof. The first inequality follows by Theorem 2 applied to the μ-harmonic se-
quence (μ̌k, k ≥ 1) defined by (1.1) and (1.2). In that case Sn−1(x) becomes
Šn−1(x) since μ̌k(a) = 0, k ≥ 2. The second inequality follows from inequality
(1.4). �

Corollary 6. Let f and μ be as in Theorem 2. If μ ≥ 0, then we have∣∣∣μ([a, b])f(x)−
∫
[a,b]

fx(t)dμ(t) − Šn−1(x) + μ̌n (b) f (n−1)(x)
∣∣∣

≤ [Γn−1 − γn−1] μ̌n (b)

≤ 1
(n−1)! (b− a)

n−1 [Γn−1 − γn−1] ‖μ‖ .

Proof. Apply Corollary 5. Since μ ≥ 0, we have μ̌k ≥ 0, for k ≥ 1 and
∫ b

a
μ̌n−1 (t) dt

= μ̌n (b) , by (1.3). �

Corollary 7. Let f be as in Theorem 2. Then for every x ∈ [a, b]∣∣∣(b − a)f(x)−
∫ b

a f(t)dt− Un−1(x) + 1
n! (b− a)

nf (n−1)(x)
∣∣∣

≤ 1
n!(b− a)

n [Γn−1 − γn−1] ,

where

Um(x) =
∑m

k=1
1
k! (x− a)

k[f (k−1)(b)− f (k−1)(a)]−
∑m

k=2
1
k! (b− a)

kf (k−1)(x).

Proof. Apply Corollary 6 for the case when μ is the Lebesgue measure on [a, b].
For any x ∈ [a, b] we then have

∫
[a,b] fx(t)dμ(t) =

∫ b

a f(t)dt. Also we have μ̌k(t) =
1
k! (t− a)k, k ≥ 1, so that Šn−1(x) becomes Un−1(x). �

Corollary 8. Let f be as in Theorem 2. Then for every x, y ∈ [a, b], y ≤ x we have∣∣∣f(x)− f(a+ x− y)− Tn−1(x, y) + 1
(n−1)! (b− y)

n−1f (n−1)(x)
∣∣∣

≤ 1
(n−1)!(b− y)

n−1 [Γn−1 − γn−1] ,

where Tn−1(x, y) is equal to∑n−1
k=1

1
(k−1)! (x− y)

k−1[f (k−1)(b)− f (k−1)(a)]−
∑n−1

k=2
1

(k−1)! (b− y)
k−1f (k−1)(x).

Proof. Apply Corollary 6 for μ = δy, a ≤ y ≤ x. Then ‖μ‖ = 1. Also Šn−1(x)
becomes Tn−1(x, y), since μ̌n(t) = 1

(n−1)! (t − y)n−1, y ≤ t ≤ b, and μ̌n(t) = 0,
a ≤ t < y. �

Corollary 9. If f is such that f ′ is a continuous function of bounded variation,
then for every μ ∈M [a, b] and every real constant c the absolute value of

μ([a, b])f(x)−
∫
[a,b]

fx(t)dμ(t)− [c+ μ̌1 (x)] [f(b)− f(a)] + [c(b− a) + μ̌2(b)] f ′(x)

is less than or equal to
1
2 (Γ1 − γ1)[|c(b− a) + μ̌2(b)|+

∫ b

a |c+ μ̌1 (t)| dt].
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Proof. For any constant c ∈ R, P1(t) = c+ μ̌1(t) and P2(t) = c(t− a) + μ̌2(t) are
two beginning terms of a μ-harmonic sequence of functions on [a, b]. So we can
apply Theorem 2 for n = 2 and use the fact that S1(x) = [c+ μ̌1(x)] [f(b)− f(a)]
and P2(a)− P2(b) = −c(b− a)− μ̌2(b). �

Corollary 10. Under assumptions of Corollary 9 if μ ≥ 0 and c ≥ 0, then the
absolute value of

μ([a, b])f(x)−
∫
[a,b]

fx(t)dμ(t)− [c+ μ̌1 (x)] [f(b)− f(a)] + [c(b− a) + μ̌2(b)] f ′(x)

is less than or equal to

(Γ1 − γ1) [c(b− a) + μ̌2(b)] ≤ (Γ1 − γ1) (b− a) (c+ ‖μ‖) .

Proof. Apply Corollary 9 and note that in this case

|c(b− a) + μ̌2(b)|+
∫ b

a |c+ μ̌1 (t)| dt = 2 [c(b− a) + μ̌2(b)]

and μ̌2(b) ≤ (b− a) ‖μ‖ . �

Theorem 3. Let f : [a, b] → R be such that f (n−1) is absolutely continuous for
some n ≥ 1, and let

γn ≤ f (n) ≤ Γn, a.e.

for some real constants γn and Γn. If (Pk, k ≥ 1) is a μ-harmonic sequence such
that

Pn+1 (a) = Pn+1 (b)

for that particular n, then for every x ∈ [a, b] we have∣∣∣μ([a, b])f(x) −
∫
[a,b]

fx(t)dμ(t) − Sn(x)
∣∣∣ ≤ 1

2 (Γn − γn)
∫ b

a
|Pn(t)| dt, (3.8)

where fx(t) is defined by (1.8).

Proof. Since f (n−1) is absolutely continuous its derivative f (n) exists a.e. and
R1

n(x) from (1.6), which is defined by (1.9), can be rewritten as

R1
n(x) = −(b− a)n

∫ b

aP
∗
n(x−t

b−a )f (n)(t)dt =
∫ b

a f
(n)(t)dνn(t),

where measure νn is defined by dνn(t) = −(b− a)nP ∗n(x−t
b−a )dt. Using (3.6) we get

νn([a, b]) = −(b− a)n
∫ b

a
P ∗n(x−t

b−a )dt = −
∫ b

a
Pn (t) dt = Pn+1 (a)− Pn+1 (b) = 0,

which means that νn is balanced. Further,

‖νn‖ = (b− a)n
∫ b

a
|P ∗n(x−t

b−a )|dt =
∫ b

a
|Pn(t)| dt.

Now (3.8) follows immediately by Theorem 1, since the left-hand side of (3.8) is
equal to |R1

n(x)|. �
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Corollary 11. Let f : [a, b]→ R be an absolutely continuous function and let

γ1 ≤ f ′ ≤ Γ1, a.e.

for some real constants γ1 and Γ1. If μ ∈M [a, b] and c ∈ R are such that

c(b− a) + μ̌2(b) = 0,

then for every x ∈ [a, b] we have∣∣∣∣μ([a, b])f(x)−
∫

[a,b]

fx(t)dμ(t)−[c+μ̌1(x)] [f(b)− f(a)]
∣∣∣∣ ≤ 1

2
(Γ1−γ1)

b∫
a

|c+μ̌1(t)|dt.

Proof. Note that P1(t) = c+ μ̌1(t) and P2(t) = c(t− a) + μ̌2(t) are two beginning
terms of a μ-harmonic sequence of functions on [a, b]. Also note that the condition
P2 (a) = P2 (b) reduces to c(b− a) + μ̌2(b) = 0 and then apply Theorem 3. �

Measure μ ∈M [a, b] is called k-balanced if μ̌k (b) = 0.We see that 1-balanced
measure is the same as balanced measure. We also define the kth moment of μ as

mk(μ) =
∫
[a,b]

tkdμ(t), k ≥ 0.

Theorem 4. For any μ ∈M [a, b] the following assertions hold:
1) For any n ≥ 1 we have

μ̌n (b) =
∑n−1

k=0
(−1)k

(n−1)!

(
n−1

k

)
bn−1−kmk(μ).

2) For any n ≥ 0 we have

mn(μ) =
∑n

k=0(−1)kk!
(
n
k

)
bn−kμ̌k+1 (b) .

3) μ is k-balanced for every k ∈ {1, . . . , n} if and only if mk(μ) = 0 for every
k ∈ {0, . . . , n− 1}.

4) μ is uniquely determined by the sequence (μ̌k (b) , k ≥ 1).

Proof. 1) By definition of μ̌n we have μ̌n (b) = 1
(n−1)!

∫
[a,b]

(b− s)n−1 dμ(s).The

stated identity follows from the binomial formula applied to (b− s)n−1.
2) For every real α, by a simple calculation we have∑

k≥0α
kμ̌k+1 (b) =

∫
[a,b]

exp (α (b− s)) dμ(s)

and ∑
k≥0α

kμ̌k+1 (b) exp (−αb) =
∫
[a,b]

exp (−αs) dμ(s).

Expand both sides of this identity in Taylor series in variable α and then equate
the coefficients to get the formula.
3) Follows immediately from 1) and 2).
4) Every compactly supported real Borel measure μ in R is uniquely determined by
its moments, and therefore μ ∈ M [a, b] is uniquely determined by (μ̌k (b) , k ≥ 1),
because of 1) and 2). �
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Corollary 12. Let f : [a, b] → R, γn and Γn be as in Theorem 3. Then for every
(n+ 1)-balanced measure μ ∈M [a, b] and for every x ∈ [a, b] we have∣∣∣μ([a, b])f(x) −

∫
[a,b]

fx(t)dμ(t) − Šn(x)
∣∣∣ ≤ 1

2 (Γn − γn)
∫ b

a
|μ̌n(t)| dt

≤ 1
2 (Γn − γn) 1

n! (b− a)
n ‖μ‖

where Šn(x) is defined by (3.7).

Proof. To obtain the first inequality apply Theorem 3 for μ-harmonic sequence
(μ̌k, k ≥ 1) and note that the condition Pn+1 (a) = Pn+1 (b) reduces to μ̌n+1 (b) =
0, which means that μ is (n+ 1)-balanced. The second inequality follows by (1.4).

�

Corollary 13. Let f : [a, b] → R, γn and Γn be as in Theorem 3. Then for every
μ ∈ M [a, b], such that all k-moments of μ are zero, for k = 0, . . . , n, and for any
x ∈ [a, b] we have∣∣∣∣ ∫
[a,b]

fx(t)dμ(t) −
n∑

k=1

μ̌k (x) [f (k−1)(b)− f (k−1)(a)]
∣∣∣∣ ≤ 1

2
(Γn − γn)

b∫
a

|μ̌n(t)| dt

≤ 1
2
(Γn − γn)

1
n!

(b− a)n ‖μ‖ .

Proof. By Theorem 4 the condition mk(μ) = 0, k = 0, . . . , n, is equivalent to
μ̌k(b) = 0, k = 1, . . . , n + 1. Apply now Corollary 12 and note that in this case
μ([a, b]) = 0 and S̆n(x) =

∑n
k=1μ̌k (x) [f (k−1)(b)− f (k−1)(a)]. �

Corollary 14. Let f : [a, b] → R, γn and Γn be as in Theorem 3. Then for every
μ ∈M [a, b], such that all k-moments of μ are zero, for k = 0, . . . , n, we have∣∣∣∫[a,b]f(t)dμ(t)

∣∣∣ ≤ 1
2 (Γn − γn)

∫ b

a |μ̌n(t)| dt ≤ 1
2(n!) (Γn − γn)(b− a)n ‖μ‖ .

Proof. Put x = b in Corollary 13. Then S̆n(b) = 0, and we can replace fb(t) =
f(a+ b− t) by f(t) since the constants Γn and γn are the same for both fx(t) and
f(t). �

Remark 4. The inequality of Corollary 14∣∣∣∫[a,b]
f(t)dμ(t)

∣∣∣ ≤ 1
2(n!) (Γn − γn)(b− a)n ‖μ‖

can be regarded as an nth order generalization of inequality (2.2) of Theorem 1.

Corollary 15. Let f : [a, b]→ R, γ1 and Γ1 be as in Corollary 11. Then for every
2-balanced measure μ and for any x ∈ [a, b] we have∣∣∣μ([a, b])f(x)−

∫
[a,b]

fx(t)dμ(t)− μ̌1 (x) [f(b)− f(a)]
∣∣∣ ≤ 1

2 (Γ1 − γ1)
∫ b

a
|μ̌1(t)| dt

≤ 1
2 (Γ1 − γ1)(b− a) ‖μ‖ .

Proof. Put n = 1 in Corollary 12. �
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Corollary 16. Let f : [a, b]→ R, γ1 and Γ1 be as in Corollary 11. Then for every
μ ∈M [a, b] such that ∫

[a,b]dμ(t) =
∫
[a,b]tdμ(t) = 0,

and for any x ∈ [a, b] we have∣∣∣∫[a,b]
fx(t)dμ(t) − μ̌1 (x) [f(b)− f(a)]

∣∣∣ ≤ 1
2 (Γ1 − γ1)

∫ b

a

|μ̌1(t)| dt

≤ 1
2 (Γ1 − γ1)(b− a) ‖μ‖

and ∣∣∣∫[a,b]
f(t)dμ(t)

∣∣∣ ≤ 1
2 (Γ1 − γ1)

∫ b

a
|μ̌1(t)| dt ≤ 1

2 (Γ1 − γ1)(b− a) ‖μ‖ .

Proof. Put n = 1 in Corollaries 13 and 14. �

Corollary 17. Let {xk : k ≥ 1} be a subset of [a, b] of different points and let
(ck, k ≥ 1) be a sequence in R such that∑

k≥1 |ck| <∞,
∑

k≥1ck(b− xk) = 0.

Then for every x ∈ [a, b] and f : [a, b]→ R such that γ1 ≤ f ′(xk) ≤ Γ1, k ≥ 1 we
have ∣∣∣f(x)

∑
k≥1ck −

∑
k≥1ckfx(xk)−

∑
k≥1ckχ[a,x](xk) [f(b)− f(a)]

∣∣∣
≤ 1

2 (Γ1 − γ1)(b− a)
∑

k≥1 |ck| ,

where χ[a,x] is the indicator function of [a, x] and fx(t) is defined by (1.8).

Proof. Apply Corollary 15 for discrete measure μ =
∑

k≥1ckδxk
. In this case ‖μ‖ =∑

k≥1 |ck|, μ̌1 =
∑

k≥1ckχ[xk,b], μ̌2 (b) =
∑

k≥1ck(b−xk) = 0 and
∫
[a,b]fx(t)dμ(t) =∑

k≥1ckfx(xk). �

Corollary 18. Let {xk; k ≥ 1} be a subset of [a, b] of different points and let (ck, k ≥
1) be a sequence in R such that∑

k≥1 |ck| <∞,
∑

k≥1ck =
∑

k≥1ckxk = 0.

Then for every f : [a, b]→ R, such that γ1 ≤ f ′(xk) ≤ Γ1, k ≥ 1 we have∣∣∣∑k≥1ckf(xk)
∣∣∣ ≤ 1

2 (Γ1 − γ1)(b− a)
∑

k≥1 |ck| .

Proof. Apply Corollary 16 for discrete measure μ =
∑

k≥1ckδxk
. In this case we

have ‖μ‖ =
∑

k≥1 |ck|, μ̌1(b) =
∑

k≥1ck = 0 and μ̌2 (b) =
∑

k≥1ck(b − xk) = 0,
while

∫
[a,b]

f(t)dμ(t) =
∑

k≥1ckf(xk). �
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The ρ-quasiconcave Functions and
Weighted Inequalities

William Desmond Evans, Amiran Gogatishvili and Bohumı́r Opic

Abstract. We present some facts from a general theory of ρ-quasiconcave func-
tions defined on the interval I = (a, b) ⊆ R and show how to use them to
characterize the validity of weighted inequalities involving ρ-quasiconcave op-
erators.
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Keywords. ρ-quasiconcave function, representation of ρ-quasiconcave func-
tions, weighted Lebesgue space, ρ-fundamental function, ρ-quasiconcave op-
erator, discretization of weighted quasi-norms, weighted inequalities.

1. Introduction and basic definitions

Throughout the paper we assume that I := (a, b) ⊆ R and that ρ is a positive,
continuous and strictly increasing function on the interval I. Such a function ρ is
called admissible on I – notation ρ ∈ Ads(I). A non-negative function h is said to
be ρ-quasiconcave on I – notation h ∈ Qρ(I) – if h is non-decreasing on I and h/ρ
is non-increasing on I.

Note that when I = (0,+∞) and the function ρ is the identity map on I, then
the class Qρ(I) coincides with the well-known class Q((0,+∞)) of all quasiconcave
functions on the interval (0,+∞). In the literature the class Q((0,+∞)) and its
subclass Q0((0,+∞)) have been especially investigated and used (cf., for example,
[2, Chapter 3], [10], [11], [9]); the set Q0((0,+∞)) consists of those h ∈ Q((0,+∞))
which are such that h(t), t/h(t) → 0 as t → 0+, and h(t), t/h(t) → +∞ as
t → +∞. Another subclass of Qρ((0,+∞)) with ρ(t) = tk, t > 0, can be found
in [8]. The subclass Q0

ρ((0,+∞)) of those h ∈ Qρ((0,+∞)) which are such that
h(t), (ρ/h)(t)→ 0 as t→ 0+, and h(t), (ρ/h)(t))→ +∞ as t→ +∞ was used in
[7] to characterize the associate space to Γp(v). A particular case of Qρ(I) with I =

The research was supported by grant no. 201/05/2033 of the Grant Agency of the Czech
Republic, by the INTAS grant no. 05-1000008-8157 and by the Institutional Research Plan
no. AV0Z10190503 of the Academy of Sciences of the Czech Republic.
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(1,+∞) and ρ(t) = tλ, t ∈ I, λ > 0, was considered, e.g., in [13], where relations
between summability of functions and their Fourier series were investigated.

By B+(I) we denote the collection of all non-negative Borel measures on
the interval I. Let μ ∈ B+(I). The symbol M(I, μ) stands for the set of all μ-
measurable functions on I, while M+(I, μ) is used to denote the collection of all
f ∈M(I, μ) which are non-negative on I. The family of all weight functions on I
is given by

W(I, μ) = {w ∈M(I, μ); w > 0 μ-a.e. on I}.
If the measure μ is the Lebesgue measure on I, then we omit the symbol μ in the
notation and, for example, we write simply M(I) instead ofM(I, μ).

For p ∈ (0,+∞] and w ∈ M+(I, μ), we define the functional ‖ · ‖p,w,I,μ on
M(I, μ) by

‖f‖p,w,I,μ =

⎧⎨⎩(
∫

I
|fw|p dμ)1/p if p < +∞

ess sup
I
|fw| if p = +∞.

If, in addition, w ∈ W(I, μ), then the weighted Lebesgue space Lp(w, I, μ) is
given by

Lp(w, I, μ) = {f ∈ M(I, μ); ‖f‖p,w,I,μ < +∞}
and it is equipped with the quasi-norm ‖ · ‖p,w,I,μ.

When w ≡ 1 on I, we write simply Lp(I, μ) and ‖·‖p,I,μ instead of Lp(w, I, μ)
and ‖ · ‖p,w,I,μ, respectively. Furthermore, if μ is the Lebesgue measure, then we
use symbols Lp(I), ‖ · ‖p,I , Lp(w, I) and ‖ · ‖p,w,I instead of Lp(I, μ), ‖ · ‖p,I,μ,
Lp(w, I, μ) and ‖ · ‖p,w,I,μ, respectively.

Finally, if p ∈ (0,+∞], Z ⊆ Z, Z 
= ∅, then the discrete analogue of Lp(I) is
denoted by �p = �p(Z). Sometimes we write ‖ak‖�p(Z) instead of ‖{ak}‖�p(Z).

The function ϕ associated to the space Lp(w, I, μ) and defined by

ϕ(x) := ‖min{ρ(·), ρ(x)}‖p,w,I,μ, x ∈ I,
is called the ρ-fundamental function of the space Lp(w, I, μ). This function is an
important example of a ρ-quasiconcave function on the interval I (cf. [5]) and it
plays a crucial role in what follows.

The operator T , whose domain D(T ) is a subset of all non-negative functions
on I, is called ρ-quasiconcave provided that Tf ∈ Qρ(I) for all f ∈ D(T ). For
example, the following operators are ρ-quasiconcave (cf. [5]):

(Tg)(x) := sup
a<t≤x

ρ(t)
∫ b

t

g(s) ds, g ∈ M+(I), ρ ∈ Ads(I), (1.1)

(Tg)(x) := ‖ρ(t)‖g‖∞,(t,b)‖∞,(a,x), g ∈M+(I), ρ ∈ Ads(I), (1.2)

(Tg)(x) :=
∫ x

a

u(t)
(∫ b

t

g(s) ds
)
dt, g ∈ M+(I), (1.3)

(Tg)(x) :=
∫ x

a

u(t)‖g‖∞,(t,b) dt, g ∈M+(I), (1.4)
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where (in the case of (1.3) and (1.4))

ρ(t) :=
∫ x

a

u(t) dt, with u ∈ W(I), satisfies ρ ∈ Ads(I). (1.5)

Throughout the paper we write A � B (or A � B) if A ≤ cB (or cA ≥ B)
for some positive constant c independent of appropriate quantities involved in the
expressions A and B, and A ≈ B (and say that A is equivalent to B) if A � B
and A � B.

In Section 2 we present a representation of ρ-quasiconcave functions on I by
means of non-negative Borel measures on I. This generalizes the well-known result
about the representation of quasiconcave functions on (0,+∞) (cf., for example,
[3, page 117]). Furthermore, we assign to any h ∈ Qρ(I) a sequence {xk} contained
in the closure of the interval I and we use this sequence to decompose the interval
I into a system {Ik} of disjoint subintervals Ik with the property that, for all x, y ∈
Ik, either h(x) ≈ h(y) or (h/ρ)(x) ≈ (h/ρ)(y). Such a decomposition corresponding
to the ρ-fundamental function of the weighted Lebesgue space Lq(w, I, μ) is applied
in Section 3 to discretize Lq(w, I, μ)-quasinorms involving ρ-quasiconcave functions
on I and ρ-quasiconcave operators.

In Section 4 we make use of our results to characterize the validity of weighted
inequalities involving the ρ-quasiconcave operators T given by (1.1) and (1.3). Our
method consists in a discretization of the inequalities in question. We solve them
locally (which represents an easier task) to obtain a discrete characterization of
the original problem. Finally, we apply an antidiscretization to convert the discrete
characterization to a continuous one.

For related weighted inequalities involving the operator T given by

(Tg)(x) := sup
x≤t<+∞

ω(t)
∫ t

0

g(s) ds, g ∈ M+((0,+∞)), with ω ∈ W((0,+∞)),

we refer to [6], where quite different methods were used to prove the boundedness
of T : Lp(v, I) �→ Lq(w, I). Since the operator

g �→ ρ̃(x) sup
x≤t<b

1
ρ̃(t)

∫ t

a

g(s) ds, g ∈ M+(I), with ρ̃ ∈ Ads(I),

is ρ̃-quasiconcave (cf. [5]), the methods of this paper can be used to treat the bound-
edness of the operator T : Lp(v, I) �→ Lq(w, I) provided that 1/ω ∈ Ads((0,+∞)).

In Section 4 (see Remark 4.6) we also explain how our results on the bound-
edness of the operator T : Lp(v, I) �→ Lq(w, I), with T given by (1.3), can be used
to solve similar problems for the Stieltjes transform treated in [1], [14] and [15].

Note that the complete proofs of all our results, together with other ones,
can be found in [5].

In the paper we use the abbreviation LHS(∗) (RHS(∗)) for the left- (right-)
hand side of the relation (∗). We also adopt the following convention.
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Convention 1.1.

(i) Throughout the paper we put 1/(+∞) = 0, 1/0 = +∞, (+∞)/(+∞) = 0,
0/0 = 0, 0 · (±∞) = 0, (+∞)α = +∞ and α0 = 1 if α ∈ (0,+∞).

(ii) If I = (a, b) ⊆ R and g is a monotone function on I, then by g(a) and g(b)
we mean the limits limx→a+ g(x) and limx→b− g(x), respectively.

2. The ρ-quasiconcave functions

We have noted that the ρ-fundamental function of the space Lp(w, I, μ) is ρ-
quasiconcave on the interval I. Consequently, the function

h(x) =
∫

I

min{ρ(t), ρ(x)} dμ(t), x ∈ I,

belongs to Qρ(I). The following theorem implies that any function h ∈ Qρ(I) can
be represented in a similar form.

Theorem 2.1. Let I = (a, b) ⊆ R, ρ ∈ Ads(I) and let h ∈ Qρ(I). Then there is
a non-negative Borel measure μ on I such that, for all x ∈ I,

h(x) ≤ α+ βρ(x) +
∫

I

min{ρ(t), ρ(x)} dμ(t) ≤ 4h(x), (2.1)

where

α = lim
x→a+

h(x) and β = lim
x→b−

h(x)
ρ(x)

.

By (2.1),

h(x) ≈ α+ βρ(x) +
∫

I

min{ρ(t), ρ(x)} dμ(t) for all x ∈ I,

which is the desired representation of the function h ∈ Qρ(I).

If h ∈ Qρ(I) and p ∈ (0,+∞), then it is clear that

hp ∈ Qρp(I) and
(ρ
h

)p

∈ Qρp(I).

In this connection a natural question arises: What is the relationship between
representations of h and hp or between representations of h and (ρ/h)p? The
following two theorems solve this problem provided that the non-negative Borel
measure μ satisfies

dμ(t) = w(t) dt, where w ∈ W(I).

Theorem 2.2. Let I = (a, b) ⊆ R, ρ ∈ Ads(I), h ∈ Qρ(I), α, β ∈ [0,+∞], w ∈
W(I), p ∈ (0,+∞) and let

h(x) ≈ α+ βρ(x) +
∫

I

min{ρ(x), ρ(t)}w(t) dt for all x ∈ I.



The ρ-quasiconcave Functions and Weighted Inequalities 125

Then, for all x ∈ I,

hp(x) ≈ αp + βpρp(x) +
∫

I

min{ρp(x), ρp(t)}
(H
ρ

)p−1

(t)w(t) dt,

where
H(x) =

∫
I

min{ρ(x), ρ(t)}w(t) dt, x ∈ I.

Theorem 2.3. Let I = (a, b) ⊆ R, ρ ∈ Ads(I), h ∈ Qρ(I), 0 
≡ h 
≡ +∞, α, β ∈
[0,+∞), w ∈ W(I), p ∈ (0,+∞) and let

h(x) ≈ α+ βρ(x) +
∫

I

min{ρ(x), ρ(t)}w(t) dt for all x ∈ I.

Then (ρ
h

)p

(x) ≈ αp
1 + βp

1ρ
p(x) + V (x) for all x ∈ I,

where

V (x) =
∫

I

min{ρp(x), ρp(t)}h−p−2(t)
(
α+

∫ t

a

ρ(s)w(s) ds
)

×
(
β +

∫ b

t

w(s) ds
)
dρ(t),

α1 = lim
t→a+

(ρ
h

)
(t) and β1 = lim

t→b−

(1
h

)
(t).

Another result, which is also needed in the antidiscretization process, reads
as follows.

Lemma 2.4. Let I = (a, b) ⊆ R, ρ ∈ Ads(I) and h ∈ Qρ(I). Then(ρ
h

)
(x) = ‖min{ρ(·), ρ(x)}‖∞,1/h,I for all x ∈ I.

To any function h ∈ Qρ(I), 0 
≡ h 
≡ +∞, we can assign an increasing
sequence {tj}J+

j=J− ⊂ I := (a, b) which will be used to define a convenient decom-
position of the interval I.

Definition 2.5. Let I = (a, b) ⊆ R, ρ ∈ Ads(I) and h ∈ Qρ(I). A strictly increasing
sequence {tj}J+

j=J− ⊂ I, where −∞ ≤ J− ≤ 0 ≤ J+ ≤ +∞, is said to be
a ρ-discretizing sequence of h if:

(i) There is α ∈ (1,+∞) such that the inequalities

αh(tj−1) ≤ h(tj) and α
( ρ
h

)
(tj−1) ≤

(ρ
h

)
(tj) (2.2)

hold for all j satisfying J− < j ≤ J+.
(ii) There is a positive constant C such that for any t ∈ I there exists an integer

k = k(t) ∈ [J−, J+] satisfying

C−1h(tk) ≤ h(t) ≤ Ch(tk)
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or
C−1

(ρ
h

)
(tk) ≤

(ρ
h

)
(t) ≤ C

(ρ
h

)
(tk).

The set of all ρ-discretizing sequences of the function h ∈ Qρ(I) is denoted
by DS(h, ρ, I). The symbol DS(h, ρ, I, α) stands for the subset of those elements
of DS(h, ρ, I) which satisfy (2.2) with a given α ∈ (1,+∞). One can show (cf. [5])
that this set is nonempty for any α ∈ (1,+∞).

If h ∈ Qρ(I), then ρ
h ∈ Qρ(I) and also hp ∈ Qρp(I) for any p ∈ (0,+∞).

Moreover, it is easy to verify that the following implications hold:

{tj}J+
j=J− ∈ DS(h, ρ, I, α)⇒ {tj}J+

j=J− ∈ DS
(ρ
h
, ρ, I, α

)
,

{tj}J+
j=J− ∈ DS(h, ρ, I, α)⇒ {tj}J+

j=J− ∈ DS(hp, ρp, I, αp), p ∈ (0,+∞).

In the next lemma we mention some more properties of ρ-discretizing se-
quences of h ∈ Qρ(I).

Lemma 2.6. Let I = (a, b) ⊆ R, h ∈ Qρ(I), 0 
≡ h 
≡ +∞, α ∈ (1,+∞) and let
{tj}J+

j=J− ∈ DS(h, ρ, I, α).

(i) Then the inequalities
αρ(tj−1) ≤ ρ(tj)

hold for all j satisfying J− < j ≤ J+.
(ii) If J+ = +∞, then

lim
j→+∞

tj = b.

(iii) J+ = +∞ if and only if

lim
t→b−

h(t) = +∞ and lim
t→b−

(ρ
h

)
(t) = +∞.

(iv) If J− = −∞, then
lim

j→−∞
tj = a.

(v) J− = −∞ if and only if

lim
t→a+

h(t) = 0 and lim
t→a+

(ρ
h

)
(t) = 0.

Now, let h ∈ Qρ(I), I = (a, b). We are going to assign to any ρ-discretizing
sequence {tj}J+

j=J− of h another strictly increasing sequence, say {xk}K+
k=K− , which

we shall call the ρ-covering sequence of h and which is defined as follows:
(i) If J+ < +∞, we put K+ = J+ + 1 and xK+ = b.
(ii) If J− > −∞, we put K− = J− − 1 and xK− = a.
(iii) If J+ = +∞, we put K+ = J+.
(iv) If J− = −∞, we put K− = J−.
(v) For all k ∈ [J−, J+] we put xk = tk.



The ρ-quasiconcave Functions and Weighted Inequalities 127

We use the symbol CS(h, ρ, I) to denote the set of all ρ-covering sequences of
h ∈ Qρ(I). Note that the rule which was used to assign to a ρ-discretizing se-
quence of h ∈ Qρ(I) the corresponding ρ-covering sequence defines in fact a one
to one mapping between the sets DS(h, ρ, I) and CS(h, ρ, I). If α ∈ (1,+∞), then
we denote by CS(h, ρ, I, α) the subset of CS(h, ρ, I) consisting of all ρ-covering
sequences of h ∈ Qρ(I) which correspond to elements of DS(h, ρ, I, α). To clarify
our terminology, note the following. If {xk}K+

k=K− ∈ CS(h, ρ, I), then the system

of intervals {[xk−1, xk)}K+
k=K− forms a covering of the interval I.

We close this section with the following theorem, which is the desired result,
mentioned in the Introduction, on a decomposition of the interval I for a given
ρ-quasiconcave function h on I.

Theorem 2.7. Let I = (a, b) ⊆ R, h ∈ Qρ(I) and let {xk}K+
k=K− ∈ CS(h, ρ, I). Put

Z = {k ∈ Z; K− < k ≤ K+}. Then there is a decomposition

Z = Z1 ∪ Z2, Z1 ∩ Z2 = ∅,
such that

h(x) ≈ h(xk) for all x ∈ [xk−1, xk] and every k ∈ Z1

and (ρ
h

)
(x) ≈

(ρ
h

)
(xk) for all x ∈ [xk−1, xk] and every k ∈ Z2.

3. Discretization of weighted quasi-norms

Our aim in this section is to discretize weighted quasi-norms of ρ-quasiconcave
functions. We start with some notation. Assume that I = (a, b) ⊆ R, ρ ∈ Ads(I),
ϕ ∈ Qρ(I) and {xk}K+

k=K− ∈ CS(ϕ, ρ, I). Then we put

K+
− = {k ∈ Z; K− ≤ k ≤ K+} and K+ = {k ∈ Z; K− < k ≤ K+}.

Lemma 3.1. Let I = (a, b) ⊆ R, ρ ∈ Ads(I), p ∈ (0,+∞], μ ∈ B+(I) and w ∈
W(I, μ). Put

ϕ(x) := ‖min{ρ(·), ρ(x)}‖p,w,I,μ, x ∈ I,
and assume that

ϕ(x̄) < +∞ for some x̄ ∈ I.
Let {xk}K+

k=K− ∈ CS(ϕ, ρ, I, α) with α > 21/p. Then, for all f ∈ Qρ(I),

‖f‖p,w,I,μ ≈
∥∥∥(fϕ

ρ

)
(xk)

∥∥∥
�p(K+

−)
, (3.1)

where (fϕ
ρ

)
(xk) := lim

x→a+

(fϕ
ρ

)
(x) if xk = a (3.2)

and (fϕ
ρ

)
(xk) := lim

x→b−

(fϕ
ρ

)
(x) if xk = b. (3.3)
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If one has more information about the ρ-quasiconcave function f , then one
can prove even more than (3.1). For example, this is the case when f belongs to
the range of some ρ-quasiconcave operator T . In our next assertion we consider the
case when the operator T is given by (1.1). (From now on we still assume (3.2) and
(3.3) when f is any ρ-quasiconcave function on I and {xk}K+

k=K− ∈ CS(ϕ, ρ, I).)

Theorem 3.2. Let I = (a, b) ⊆ R, ρ ∈ Ads(I), q ∈ (0,+∞], μ ∈ B+(I) and let
w ∈ W(I, μ). Put

ϕ(x) := ‖min{ρ(·), ρ(x)}‖q,w,I,μ, x ∈ I,

and suppose that
ϕ(x̄) < +∞ for some x̄ ∈ I.

Let {xk}K+
k=K− ∈ CS(ϕ, ρ, I, α) with α > 21/q. Then, for all g ∈ M+(I),∥∥∥ sup

a<t≤x
ρ(t)

∫ b

t

g(s) ds
∥∥∥

q,w,I,μ
≈

∥∥∥ϕ(xk)
ρ(xk)

sup
a<t≤xk

ρ(t)
∫ b

t

g(s) ds
∥∥∥

�q(K+
−)

≈
∥∥∥ sup

xk−1<t≤xk

ϕ(t)
∫ xk

t

g(s) ds
∥∥∥

�q(K+)
.

Our next result is a modification of Theorem 3.2 and concerns the case when
the operator T from (1.1) is replaced by the operator T defined by (1.2). In this
context note that, on changing the order of the essential suprema, we obtain, for
all g ∈M+(I),

(Tg)(x) = ‖ρ(t)‖g‖∞,(t,b)‖∞,(a,x) = ‖min{ρ(·), ρ(x)}‖∞,g,I .

Theorem 3.3. Let I = (a, b) ⊆ R, ρ ∈ Ads(I), q ∈ (0,+∞], μ ∈ B+(I) and let
w ∈ W(I, μ). Put

ϕ(x) := ‖min{ρ(·), ρ(x)}‖q,w,I,μ, x ∈ I,

and suppose that
ϕ(x̄) < +∞ for some x̄ ∈ I.

Let {xk}K+
k=K− ∈ CS(ϕ, ρ, I, α) with α > 21/q. Then, for all g ∈ M+(I),

‖ ‖min{ρ(·), ρ(x)}‖∞,g,I‖q,w,I,μ ≈ ‖ ‖ϕ‖∞,g,(xk−1,xk)‖�q(K+).

We close this section with one more result involving the operator T given
by (1.3). In this context we mention that, by Fubini’s theorem,

(Tg)(x) =
∫ x

a

u(t)
( ∫ b

t

g(s) ds
)
dt = ‖min{ρ(·), ρ(x)}‖1,g,I (3.4)

for all g ∈M+(I), with ρ from (1.5).
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Theorem 3.4. Let I = (a, b) ⊆ R, ρ ∈ Ads(I), q ∈ (0,+∞], μ ∈ B+(I) and let
w ∈ W(I, μ). Put

ϕ(x) := ‖min{ρ(·), ρ(x)}‖q,w,I,μ, x ∈ I,

and assume that
ϕ(x̄) < +∞ for some x̄ ∈ I.

Let {xk}K+
k=K− ∈ CS(ϕ, ρ, I, α) with α > 21/q. Then, for all g ∈ M+(I),

‖ ‖min{ρ(·), ρ(x)}‖1,g,I‖q,w,I,μ ≈
∥∥∥ ∫

(xk−1,xk]

ϕ(t)g(t) dt
∥∥∥

�q(K+)
.

4. Weighted inequalities

In this section we are going to apply our previous results to characterize the validity
of weighted inequalities involving ρ-quasiconcave operators. Our method consists
of several steps. Firstly, we discretize both sides of the inequality in question.
Secondly, we solve our problem locally (which represents an easier task) to get
a discrete characterization of the original inequality. Finally, we apply an antidis-
cretization to convert the discrete characterization to a continuous one.

We define p′ by 1/p+1/p′ = 1 if p ∈ [1,+∞]. Moreover, we put p∗ = p/(1−p)
when p ∈ (0, 1].

The first two theorems concern the operator (1.1).

Theorem 4.1. Let I = (a, b) ⊆ R, ρ ∈ Ads(I), w, v ∈ W(I) and let 1 ≤ p ≤ q ≤
+∞. Then ∥∥∥ sup

a<t≤x
ρ(t)

∫ b

t

g(s) ds
∥∥∥

q,w,I
� ‖g‖p,v,I for all g ∈ M+(I) (4.1)

if and only if∥∥∥ ∥∥∥min
{ ρ(·)
ρ(x)

, 1
}∥∥∥

q,w,I
sup

a<t≤x
ρ(t)‖v−1‖p′,(t,b)

∥∥∥
∞,I

< +∞. (4.2)

The idea of the proof.

Step 1. Let the function ϕ ∈ Qρ(I) be given by

ϕ(x) := ‖min{ρ(·), ρ(x)}‖q,w,I , x ∈ I,

and assume (for simplicity) that ϕ(x) < +∞ for all x ∈ I. Let {xk}K+
k=K− ∈

CS(ϕ, ρ, I, α) with α > 21/q. Then, by Theorem 3.2,

LHS(4.1) ≈
∥∥∥ sup

t∈Ik

ϕ(t)
∫ xk

t

g(s) ds
∥∥∥

�q(K+)
,
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where Ik = (xk−1, xk]. Since RHS(4.1)= ‖ ‖gv‖p,Ik
‖�p(K+), inequality (4.1) can be

rewritten as∥∥∥ sup
t∈Ik

ϕ(t)
∫ xk

t

g(s) ds
∥∥∥

�q(K+)
� ‖ ‖gv‖p,Ik

‖�p(K+) for all g ∈M+(I). (4.3)

Step 2. We solve (4.3) locally. That is, for any k ∈ K+, we solve the Hardy-type
inequality

sup
t∈Ik

ϕ(t)
∫ xk

t

h(s) ds ≤ Ak‖hv‖p,Ik
, h ∈M+(Ik), (4.4)

where Ak is the best possible constant in (4.4), i.e.,

Ak := sup
h∈M+(Ik)

(
sup
t∈Ik

ϕ(t)
∫ xk

t

h(s) ds
)
/‖hv‖p,Ik

;

here we use the convention that 0/0 = 0 and (+∞)/(+∞) = 0 – cf. Conven-
tion 1.1 (i). It is well known (cf. [12]) that if 1 ≤ p ≤ +∞, then

Ak ≈ sup
t∈Ik

‖ϕ‖∞,(xk−1,t)‖v−1‖p′,(t,xk) = sup
t∈Ik

ϕ(t)‖v−1‖p′,(t,xk);

the last equality holds since ϕ is continuous and non-decreasing on I.
Step 3. It is not hard to show that inequality (4.3) (and so (4.1) as well) is equiv-
alent to

‖{Ak}‖�∞(K+) < +∞. (4.5)

Step 4. We apply results of Section 3 to convert the discrete characterization (4.5)
to a continuous one. �

The following result is an analogue of Theorem 4.1 and concerns the case
when 1 ≤ p ≤ +∞, 0 < q < +∞ and q < p.

Theorem 4.2. Let I = (a, b) ⊆ R, ρ ∈ Ads(I), w, v ∈ W(I), 1 ≤ p ≤ +∞,
0 < q < +∞ and q < p. Put 1/r := 1/q − 1/p. Then (4.1) holds if and only if∥∥∥ ∥∥∥min

{ ρ(·)
ρ(x)

, 1
}∥∥∥1− q

r

q,w,I
w

q
r (x) sup

a<t≤x
ρ(t)‖v−1‖p′,(t,b)

∥∥∥
r,I

< +∞.

The next theorem is an analogue of Theorem 4.1 for the operator (1.3).

Theorem 4.3. Let I = (a, b) ⊆ R, w, v, u ∈ W(I) and let 1 ≤ p ≤ q ≤ +∞. Put
ρ(x) :=

∫ x

a u(t) dt, x ∈ I, and assume that ρ ∈ Ads(I). Then∥∥∥ ∫ x

a

u(t)
( ∫ b

t

g(s) ds
)
dt

∥∥∥
q,w,I

� ‖g‖p,v,I for all g ∈ M+(I) (4.6)

if and only if∥∥∥ ∥∥∥min
{ ρ(·)
ρ(x)

, 1
}∥∥∥

q,w,I

∥∥∥ min{ρ(·), ρ(x)}
∥∥∥

p′,v−1,I

∥∥∥
∞,I

< +∞.

We continue with an analogue of Theorem 4.2.
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Theorem 4.4. Let I = (a, b) ⊆ R, w, v, u ∈ W(I), 1 ≤ p ≤ +∞, 0 < q < +∞,
q < p and 1/r := 1/q − 1/p. Put ρ(x) :=

∫ x

a u(t) dt, x ∈ I, and assume that
ρ ∈ Ads(I). Then (4.6) holds if and only if∥∥∥ ∥∥∥min

{ ρ(·)
ρ(x)

, 1
}∥∥∥1− q

r

q,w,I
w

q
r (x)

∥∥∥ min{ρ(·), ρ(x)}
∥∥∥

p′,v−1,I

∥∥∥
r,I

< +∞.

Now, we investigate the reverse inequality to (4.6).

Theorem 4.5. Let I = (a, b) ⊆ R, w, v, u ∈ W(I) and let 0 < q ≤ p ≤ 1. Put
ρ(x) :=

∫ x

a u(t) dt, x ∈ I, and assume that ρ ∈ Ads(I). Then

‖g‖p,v,I �
∥∥∥ ∫ x

a

u(t)
(∫ b

t

g(s) ds
)
dt

∥∥∥
q,w,I

for all g ∈M+(I)

if and only if∥∥∥ ∥∥∥min
{
1,
ρ(x)
ρ(·)

}∥∥∥
p∗,v,I

‖min{ρ(·), ρ(x)}‖−1
q,w,I

∥∥∥
∞,I

< +∞.

Remark 4.6. Since

‖min{ρ(·), ρ(x)}‖1,g,I =
∥∥∥ 1

max { 1
ρ(·) ,

1
ρ(x)}

∥∥∥
1,g,I

≈
∥∥∥ 1

1
ρ(·) + 1

ρ(x)

∥∥∥
1,g,I

=
∥∥∥ ρ(x)ρ(·)
ρ(x) + ρ(·)

∥∥∥
1,g,I

= ρ(x)
∥∥∥ h(·)
ρ(x) + ρ(·)

∥∥∥
1,I
, (4.7)

where h := ρg, we see from (3.4) and (4.7) that Theorems 4.3–4.5 can be used
to characterize the validity of weighted inequalities involving the operator S de-
fined by

(Sh)(x) =
∫ b

a

h(t) dt
ρ(x) + ρ(t)

, h ∈ M+(I).

We call this operator the generalized Stieltjes transform; the usual Stieltjes trans-
form is obtained on putting (a, b) = (0,+∞) and ρ(x) ≡ x.

In the case that (a, b) = (0,+∞) and ρ(x) ≡ xλ, λ > 0, the boundedness of
the operator S between weighted Lp and Lq spaces was investigated in [1] (when
1 ≤ p ≤ q ≤ +∞) and in [14], [15] (when 1 ≤ q < p ≤ +∞).
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1. Introduction

Let (H ; 〈·, ·〉) be a complex Hilbert space. The numerical range of an operator T is
the subset of the complex numbers C given by W (T )={〈Tx,x〉, x∈H, ‖x‖=1},
see for instance [6, p. 1]. It is well known that (see [6]):

(i) The numerical range of an operator is convex;
(ii) The spectrum of an operator is contained in the closure of its numerical range;
(iii) T is self-adjoint if and only if W (T ) is real.

The numerical radius w (T ) of an operator T on H is defined by w (T ) :=
sup {|λ| , λ ∈W (T )} = sup {|〈Tx, x〉| , ‖x‖ = 1} , [6, p. 8]. It is well known that
w (·) is a norm on the Banach algebra B (H) of all bounded linear operators acting
on H and the following inequality holds true:

w (T ) ≤ ‖T ‖ ≤ 2w (T ) . (1.1)

We recall some classical results involving the numerical radius of two linear
operators A,B.

The following general result for the product of two operators holds [6, p. 37]:

Theorem 1. If A,B are two bounded linear operators on the Hilbert space (H, 〈·, ·〉) ,
then w (AB) ≤ 4w (A)w (B).

In the case that AB = BA, then w (AB) ≤ 2w (A)w (B) .
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The following results are also well known [6, p. 38].

Theorem 2. If A is a unitary operator that commutes with another operator B,
then

w (AB) ≤ w (B) . (1.2)
If A is an isometry and AB = BA, then (1.2) also holds true.

We say that A and B double commute if AB = BA and AB∗ = B∗A. The
following result holds [6, p. 38].

Theorem 3 (Double commute). If the operators A and B double commute, then
w (AB) ≤ w (B) ‖A‖ .

As a consequence of the above, we have [6, p. 39]:

Corollary 1. Let A be a normal operator commuting with B. Then w (AB) ≤
w (A)w (B).

For other results and historical comments on the above see [6, pp. 39–41].
For more results on the numerical radius, see [7].

The main aim of this paper is to establish some new inequalities for compos-
ite operators generated by a pair of operators (A,B) under various assumptions.
Namely, in one side, several inequalities involving the norm

∥∥∥A∗A+B∗B
2

∥∥∥ and the
numerical radius w (B∗A) are established. On the other side, upper bounds for the
nonnegative quantities ‖A‖ ‖B‖−w (B∗A) and ‖A‖2 ‖B‖2−w2 (B∗A) under spe-
cial conditions for the operators involved are also given. These results provide vari-
ous generalizations for some inequalities recently obtained by the author in [1]–[3].

2. General inequalities

The following result may be stated:

Theorem 4. Let A,B : H → H be two bounded linear operators on the Hilbert
space (H, 〈·, ·〉). If r > 0 and

‖A−B‖ ≤ r, (2.1)
then ∥∥∥∥A∗A+B∗B

2

∥∥∥∥ ≤ w (B∗A) +
1
2
r2. (2.2)

Proof. For any x ∈ H, ‖x‖ = 1, we have from (2.1) that

‖Ax‖2 + ‖Bx‖2 ≤ 2 Re 〈Ax,Bx〉 + r2. (2.3)

However
‖Ax‖2 + ‖Bx‖2 = 〈(A∗A+B∗B)x, x〉

and by (2.3) we obtain

〈(A∗A+B∗B)x, x〉 ≤ 2 |〈(B∗A) x, x〉|+ r2 (2.4)

for any x ∈ H, ‖x‖ = 1.
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Taking the supremum over x ∈ H, ‖x‖ = 1 in (2.4) we get

w (A∗A+B∗B) ≤ 2w (B∗A) + r2 (2.5)

and since the operator A∗A + B∗B is self-adjoint, hence w (A∗A+B∗B) =
‖A∗A+B∗B‖ and by (2.5) we deduce the desired inequality (2.2). �
Remark 1. We observe that, from the proof of the above theorem, we have the
inequalities

0 ≤
∥∥∥∥A∗A+B∗B

2

∥∥∥∥− w (B∗A) ≤ 1
2
‖A−B‖2 , (2.6)

provided that A,B are bounded linear operators in H.
The second inequality in (2.6) is obvious while the first inequality follows by

the fact that

〈(A∗A+B∗B)x, x〉 = ‖Ax‖2 + ‖Bx‖2 ≥ 2 |〈(B∗A) x, x〉|
for any x ∈ H.

The inequality (2.2) is obviously a reach source of particular inequalities of
interest.

Indeed, if we assume, for λ ∈ C and a bounded linear operator T, that we
have ‖T − λT ∗‖ ≤ r, for a given positive number r, then by (2.6) we deduce the
inequality

0 ≤
∥∥∥∥∥T ∗T + |λ|2 TT ∗

2

∥∥∥∥∥− |λ|w (
T 2

)
≤ 1

2
r2. (2.7)

Now, if we assume that for λ ∈ C and a bounded linear operator V we have
that ‖V − λI‖ ≤ r, where I is the identity operator on H, then by (2.2) we deduce
the inequality

0 ≤
∥∥∥∥∥V ∗V + |λ|2 I

2

∥∥∥∥∥− |λ|w (V ) ≤ 1
2
r2.

As a dual approach, the following result may be noted as well:

Theorem 5. Let A,B : H → H be two bounded linear operators on the Hilbert
space H. Then ∥∥∥∥A+B

2

∥∥∥∥2

≤ 1
2

[∥∥∥∥A∗A+B∗B
2

∥∥∥∥ + w (B∗A)
]
. (2.8)

Proof. We obviously have

‖Ax+Bx‖2 = ‖Ax‖2 + 2 Re 〈Ax,Bx〉 + ‖Bx‖2

≤ 〈(A∗A+B∗B) x, x〉+ 2 |〈(B∗A) x, x〉|
for any x ∈ H.

Taking the supremum over x ∈ H, ‖x‖ = 1, we get

‖A+B‖2 ≤ ‖A∗A+B∗B‖+ 2w (B∗A) ,

from where we get the desired inequality (2.8). �
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Remark 2. The inequality (2.8) can generate some interesting particular results
such as the following inequality∥∥∥∥T + T ∗

2

∥∥∥∥2

≤ 1
2

[∥∥∥∥T ∗T + TT ∗

2

∥∥∥∥ + w
(
T 2

)]
, (2.9)

holding for each bounded linear operator T : H → H.

The following result may be stated as well.

Theorem 6. Let A,B : H → H be two bounded linear operators on the Hilbert
space H and p ≥ 2. Then∥∥∥∥A∗A+B∗B

2

∥∥∥∥
p
2

≤ 1
4

[‖A−B‖p + ‖A+B‖p] . (2.10)

Proof. We use the following inequality for vectors in inner product spaces obtained
by Dragomir and Sándor in [4]:

2 (‖a‖p + ‖b‖p) ≤ ‖a+ b‖p + ‖a− b‖p (2.11)

for any a, b ∈ H and p ≥ 2.
Utilising (2.11) we may write

2 (‖Ax‖p + ‖Bx‖p) ≤ ‖Ax +Bx‖p + ‖Ax−Bx‖p (2.12)

for any x ∈ H.
Now, observe that ‖Ax‖p + ‖Bx‖p =

(
‖Ax‖2

) p
2

+
(
‖Bx‖2

) p
2

and by the

elementary inequality αq+βq

2 ≥
(

α+β
2

)q

, α, β ≥ 0 and q ≥ 1 we have(
‖Ax‖2

) p
2

+
(
‖Bx‖2

) p
2 ≥ 21−p

2 [〈(A∗A+B∗B)x, x〉]
p
2 . (2.13)

Combining (2.12) with (2.13) we get

1
4

[‖Ax−Bx‖p + ‖Ax+Bx‖p] ≥
∣∣∣∣〈(

A∗A+B∗B
2

)
x, x

〉∣∣∣∣
p
2

(2.14)

for any x ∈ H, ‖x‖ = 1. Taking the supremum over x ∈ H, ‖x‖ = 1, and taking
into account that w

(
A∗A+B∗B

2

)
=

∥∥∥A∗A+B∗B
2

∥∥∥ , we deduce the desired result
(2.10). �

Remark 3. If p = 2, then we have the inequality:
∥∥∥A∗A+B∗B

2

∥∥∥ ≤ ∥∥A−B
2

∥∥2
+∥∥A+B

2

∥∥2
, for any A,B bounded linear operators. This result can be obtained di-

rectly on utilising the parallelogram identity as well. We also should observe that
for A = T and B = T ∗, T a normal operator, the inequality (2.10) becomes
‖T ‖p ≤ 1

4 [‖T − T ∗‖p + ‖T + T ∗‖p], where p ≥ 2.

The following result may be stated as well.
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Theorem 7. Let A,B : H → H be two bounded linear operators on the Hilbert space
H and r ≥ 1. If A∗A ≥ B∗B in the operator order or, equivalently, ‖Ax‖ ≥ ‖Bx‖
for any x ∈ H, then:∥∥∥∥A∗A+B∗B

2

∥∥∥∥r

≤ ‖A‖r−1 ‖B‖r−1
w (B∗A) +

1
2
r2 ‖A‖2r−2 ‖A−B‖2 . (2.15)

Proof. We use the following inequality for vectors in inner product spaces due to
Goldstein, Ryff and Clarke [5]:

‖a‖2r + ‖b‖2r ≤ 2 ‖a‖r−1 ‖b‖r−1 Re 〈a, b〉+ r2 ‖a‖2r−2 ‖a− b‖2 , (2.16)

where r ≥ 1, a, b ∈ H and ‖a‖ ≥ ‖b‖ .
Utilising (2.16) we can state that:

‖Ax‖2r + ‖Bx‖2r

≤ 2 ‖Ax‖r−1 ‖Bx‖r−1 |〈Ax,Bx〉|+ r2 ‖Ax‖2r−2 ‖Ax−Bx‖2 , (2.17)

for any x ∈ H. As in the proof of Theorem 6, we also have

21−r [〈(A∗A+B∗B)x, x〉]r ≤ ‖Ax‖2r + ‖Bx‖2r
, (2.18)

for any x ∈ H. Therefore, by (2.17) and (2.18) we deduce[〈(
A∗A+B∗B

2

)
x, x

〉]r

≤ ‖Ax‖r−1 ‖Bx‖r−1 |〈Ax,Bx〉|+ 1
2
r2 ‖Ax‖2r−2 ‖Ax−Bx‖2 (2.19)

for any x ∈ H.
Taking the supremum in (2.19) we obtain the desired result (2.15). �

Remark 4. If we choose in (2.15) A = V and B = V ∗, then, on taking into account
that w

(
V 2

)
≤ ‖V ‖2, we get the inequality∥∥∥∥V ∗V + V V ∗

2

∥∥∥∥r

≤ ‖V ‖2r−2

[
‖V ‖2 +

1
2
r2 ‖V − V ∗‖2

]
, (2.20)

holding for any operator V and any r ≥ 1.

3. Further inequalities for an invertible operator

In this section we assume that B : H → H is an invertible bounded linear operator
and let B−1 : H → H be its inverse. Then, obviously,

‖Bx‖ ≥ 1
‖B−1‖ ‖x‖ for any x ∈ H, (3.1)

where
∥∥B−1

∥∥ denotes the norm of the inverse B−1.
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Theorem 8. Let A,B : H → H be two bounded linear operators on H and B is
invertible such that, for a given r > 0,

‖A−B‖ ≤ r. (3.2)

Then:

‖A‖ ≤
∥∥B−1

∥∥ [
w (B∗A) +

1
2
r2

]
. (3.3)

Proof. The condition (3.2) is obviously equivalent to:

‖Ax‖2 + ‖Bx‖2 ≤ 2 Re 〈(B∗A)x, x〉 + r2 (3.4)

for any x ∈ H, ‖x‖ = 1. Since, by (3.1), ‖Bx‖2 ≥ 1
‖B−1‖2 ‖x‖

2
, x ∈ H and

Re 〈(B∗A) x, x〉 ≤ |〈(B∗A) x, x〉| , hence by (3.4) we get

‖Ax‖2 +
‖x‖2

‖B−1‖2
≤ 2 |〈(B∗A)x, x〉|+ r2 (3.5)

for any x ∈ H, ‖x‖ = 1. Taking the supremum over x ∈ H, ‖x‖ = 1 in (3.5), we
have

‖A‖2 +
1

‖B−1‖2
≤ 2w (B∗A) + r2. (3.6)

By the elementary inequality

2 ‖A‖
‖B−1‖ ≤ ‖A‖

2 +
1

‖B−1‖2
(3.7)

and by (3.6) we then deduce the desired result (3.3). �

Remark 5. If we choose above B = λI, λ 
= 0, then we get the inequality

(0 ≤) ‖A‖ − w (A) ≤ 1
2 |λ|r

2, (3.8)

provided ‖A− λI‖ ≤ r. This result has been obtained in the earlier paper [1].
Also, if we assume that B = λA∗, A is invertible, then we obtain

‖A‖ ≤
∥∥A−1

∥∥ [
w

(
A2

)
+

1
2 |λ|r

2

]
, (3.9)

provided ‖A− λA∗‖ ≤ r, λ 
= 0.

The following result may be stated as well:

Theorem 9. Let A,B : H → H be two bounded linear operators on H. If B is
invertible and for r > 0,

‖A−B‖ ≤ r, (3.10)
then

(0 ≤) ‖A‖ ‖B‖ − w (B∗A) ≤ 1
2
r2 +

‖B‖2
∥∥B−1

∥∥2 − 1

2 ‖B−1‖2
. (3.11)



Inequalities for the Norm and Numerical Radius 141

Proof. The condition (3.10) is obviously equivalent to

‖Ax‖2 + ‖Bx‖2 ≤ 2 Re 〈Ax,Bx〉 + r2

for any x ∈ H, with ‖x‖ = 1, which is clearly equivalent to

‖Ax‖2 + ‖B‖2 ≤ 2 Re 〈B∗Ax, x〉 + r2 + ‖B‖2 − ‖Bx‖2 . (3.12)

Since

Re 〈B∗Ax, x〉 ≤ |〈B∗Ax, x〉| , ‖Bx‖2 ≥ 1
‖B−1‖2

‖x‖2

and ‖Ax‖2 + ‖B‖2 ≥ 2 ‖B‖ ‖Ax‖ for any x ∈ H, hence by (3.12) we get

2 ‖B‖ ‖Ax‖ ≤ 2 |〈B∗Ax, x〉|+ r2 +
‖B‖2

∥∥B−1
∥∥2 − 1

‖B−1‖2
(3.13)

for any x ∈ H, ‖x‖ = 1. Taking the supremum over x ∈ H, ‖x‖ = 1 we deduce the
desired result (3.11). �

Remark 6. If we choose in Theorem 9, B = λA∗, λ 
= 0, A is invertible, then we
get the inequality:

(0 ≤) ‖A‖2 − w
(
A2

)
≤ 1

2 |λ|r
2 + |λ| ·

‖A‖2
∥∥A−1

∥∥2 − 1

2 ‖A−1‖2
(3.14)

provided ‖A− λA∗‖ ≤ r.

The following result may be stated as well.

Theorem 10. Let A,B : H → H be two bounded linear operators on H. If B is
invertible and for r > 0 we have

‖A−B‖ ≤ r < ‖B‖ , (3.15)

then

‖A‖ ≤ 1√
‖B‖2 − r2

(
w (B∗A) +

‖B‖2
∥∥B−1

∥∥2 − 1

2 ‖B−1‖2

)
. (3.16)

Proof. The first part of condition (3.15) is obviously equivalent to

‖Ax‖2 + ‖Bx‖2 ≤ 2 Re 〈Ax,Bx〉 + r2

for any x ∈ H, with ‖x‖ = 1, which is clearly equivalent to

‖Ax‖2 + ‖B‖2 − r2 ≤ 2 Re 〈B∗Ax, x〉 + ‖B‖2 − ‖Bx‖2 . (3.17)

Since

Re 〈B∗Ax, x〉 ≤ |〈B∗Ax, x〉| , ‖Bx‖2 ≥ 1
‖B−1‖2

‖x‖2
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and, by the second part of (3.15), ‖Ax‖2 + ‖B‖2 − r2 ≥ 2
√
‖B‖2 − r2 ‖Ax‖ , for

any x ∈ H, hence by (3.17) we get

2 ‖Ax‖
√
‖B‖2 − r2 ≤ 2 |〈B∗Ax, x〉|+

‖B‖2
∥∥B−1

∥∥2 − 1

‖B−1‖2
(3.18)

for any x ∈ H, ‖x‖ = 1. Taking the supremum over x ∈ H, ‖x‖ = 1 in (3.18), we
deduce the desired inequality (3.16). �

Remark 7. The above Theorem 10 has some particular cases of interest. For in-
stance, if we choose B = λI, with |λ| > r, then (3.15) is obviously fulfilled and by
(3.16) we get

‖A‖ ≤ w (A)√
1−

(
r
|λ|

)2
, (3.19)

provided ‖A− λI‖ ≤ r. This result has been obtained in the earlier paper [1].
On the other hand, if in the above we choose B = λA∗ with ‖A‖ > r

|λ|
(λ 
= 0), and A is invertible, then by (3.16) we get

‖A‖ ≤ 1√
‖A‖2 −

(
r
|λ|

)2

[
w

(
A2

)
+ |λ| ·

‖A‖2
∥∥A−1

∥∥2 − 1

2 ‖A−1‖2

]
, (3.20)

provided ‖A− λA∗‖ ≤ r.

The following result may be stated as well.

Theorem 11. Let A,B and r be as in Theorem 8. Moreover, if∥∥B−1
∥∥ < 1

r
, (3.21)

then

‖A‖ ≤
∥∥B−1

∥∥√
1− r2 ‖B−1‖2

w (B∗A) . (3.22)

Proof. Observe that, by (3.6) we have

‖A‖2 +
1− r2

∥∥B−1
∥∥2

‖B−1‖2
≤ 2w (B∗A) . (3.23)

Utilising the elementary inequality

2
‖A‖
‖B−1‖

√
1− r2 ‖B−1‖2 ≤ ‖A‖2 +

1− r2
∥∥B−1

∥∥2

‖B−1‖2
, (3.24)

which can be stated since (3.21) is assumed to be true, hence by (3.23) and (3.24)
we deduce the desired result (3.22). �
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Remark 8. If we assume that B = λA∗ with λ 
= 0 and A an invertible operator,
then, by applying Theorem 11, we get the inequality:

‖A‖ ≤
∥∥A−1

∥∥w (
A2

)
|λ|√

|λ|2 − r2 ‖A−1‖2
, (3.25)

provided ‖A− λA∗‖ ≤ r and
∥∥A−1

∥∥ < |λ|
r .

The following result may be stated as well.

Theorem 12. Let A,B : H → H be two bounded linear operators. If r > 0 and B
is invertible with the property that ‖A−B‖ ≤ r and

1√
r2 + 1

≤
∥∥B−1

∥∥ < 1
r
, (3.26)

then

‖A‖2 ≤ w2 (B∗A) + 2w (B∗A) ·
∥∥B−1

∥∥−√
1− r2 ‖B−1‖2

‖B−1‖ . (3.27)

Proof. Let x ∈ H, ‖x‖ = 1. Then by (3.5) we have

‖Ax‖2 +
1

‖B−1‖2
≤ 2 |〈B∗Ax, x〉|+ r2, (3.28)

and since 1
‖B−1‖2 − r

2 > 0, we can conclude that |〈B∗Ax, x〉| > 0 for any x ∈ H,
‖x‖ = 1.

Dividing in (3.28) with |〈B∗Ax, x〉| > 0, we obtain

‖Ax‖2

|〈B∗Ax, x〉| ≤ 2 +
r2

|〈B∗Ax, x〉| −
1

‖B−1‖2 |〈B∗Ax, x〉|
. (3.29)

Subtracting |〈B∗Ax, x〉| from both sides of (3.29), we get

‖Ax‖2

|〈B∗Ax, x〉| − |〈B
∗Ax, x〉| (3.30)

≤ 2− |〈B∗Ax, x〉| −
1− r2

∥∥B−1
∥∥2

|〈B∗Ax, x〉| ‖B−1‖2

= 2−
2
√

1− r2 ‖B−1‖2

‖B−1‖ −

⎛⎝√
|〈B∗Ax, x〉| −

√
1− r2 ‖B−1‖2

‖B−1‖
√
|〈B∗Ax, x〉|

⎞⎠2

≤ 2

⎛⎝∥∥B−1
∥∥−√

1− r2 ‖B−1‖2

‖B−1‖

⎞⎠ ,
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which gives:

‖Ax‖2 ≤ |〈B∗Ax, x〉|2 + 2 |〈B∗Ax, x〉|
∥∥B−1

∥∥−√
1− r2 ‖B−1‖2

‖B−1‖ . (3.31)

We also remark that, by (3.26) the quantity∥∥B−1
∥∥−√

1− r2 ‖B−1‖2 ≥ 0,

hence, on taking the supremum in (3.31) over x ∈ H, ‖x‖ = 1, we deduce the
desired inequality. �

Remark 9. It is interesting to remark that if we assume λ ∈ C with 0 < r ≤ |λ| ≤√
r2 + 1 and ‖A− λI‖ ≤ r, then by (3.2) we can state the following inequality:

‖A‖2 ≤ |λ|2 w2 (A) + 2 |λ|
(

1−
√
|λ|2 − r2

)
w (A) . (3.32)

Also, if ‖A−A∗‖ ≤ r, A is invertible and 1√
r2+1

≤
∥∥A−1

∥∥ < 1
r , then, by (3.27)

we also have

‖A‖2 ≤ w2
(
A2

)
+ 2w

(
A2

)
·
∥∥A−1

∥∥−√
1− r2 ‖A−1‖2

‖A−1‖ . (3.33)

One can also prove the following result.

Theorem 13. Let A,B : H → H be two bounded linear operators. If r > 0 and B
is invertible with the property that ‖A−B‖ ≤ r and

∥∥B−1
∥∥ < 1

r , then

(0 ≤) ‖A‖2 ‖B‖2 − w2 (B∗A) (3.34)

≤ 2w (B∗A) · ‖B‖‖B−1‖

(
‖B‖

∥∥B−1
∥∥−√

1− r2 ‖B−1‖2
)
.

Proof. We subtract the quantity |〈B∗Ax,x〉|
‖B‖2 from both sides of (3.29) to obtain

0 ≤ ‖Ax‖2

|〈B∗Ax, x〉| −
|〈B∗Ax, x〉|
‖B‖2

(3.35)

≤ 2− 2 ·

√
1− r2 ‖B−1‖2

‖B‖ ‖B−1‖ −

⎛⎝√
|〈B∗Ax, x〉|
‖B‖ −

√
1− r2 ‖B−1‖2√
|〈B∗Ax, x〉| ‖B−1‖

⎞⎠2

≤ 2 ·

(
‖B‖

∥∥B−1
∥∥−√

1− r2 ‖B−1‖2
)

‖B‖ ‖B−1‖ ,
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which is equivalent with

(0 ≤) ‖Ax‖2 ‖B‖2 − |〈B∗Ax, x〉|2 (3.36)

≤ 2
‖B‖
‖B−1‖ |〈B

∗Ax, x〉|
(
‖B‖

∥∥B−1
∥∥−√

1− r2 ‖B−1‖2
)

for any x ∈ H, ‖x‖ = 1.

The inequality (3.36) also shows that ‖B‖
∥∥B−1

∥∥ ≥ √
1− r2 ‖B−1‖2 and

then, by (3.36), we get

‖Ax‖2 ‖B‖2 ≤ |〈B∗Ax, x〉|2

+ 2
‖B‖
‖B−1‖ |〈B

∗Ax, x〉|
(
‖B‖

∥∥B−1
∥∥−√

1− r2 ‖B−1‖2
)

(3.37)

for any x ∈ X, ‖x‖ = 1. Taking the supremum in (3.37) we deduce the desired
inequality (3.34). �

Remark 10. The above Theorem 13 has some particular instances of interest as
follows. If, for instance, we choose B = λI with |λ| ≥ r > 0 and ‖A− λI‖ ≤ r,
then by (3.34) we obtain the inequality

(0 ≤) ‖A‖2 − w2 (A) ≤ 2 |λ|w (A)

(
1−

√
1− r2

|λ|2

)
. (3.38)

Also, if A is invertible, ‖A− λA∗‖ ≤ r and
∥∥A−1

∥∥ ≤ |λ|
r , then by (3.34) we can

state:

(0 ≤) ‖A‖4 − w2
(
A2

)
(3.39)

≤ 2 |λ|w
(
A2

)
· ‖A‖‖A−1‖

(
‖A‖

∥∥A−1
∥∥−√

1− r2

|λ|2
‖A−1‖2

)
.
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Norm Inequalities for Commutators
of Normal Operators

Fuad Kittaneh

Abstract. Let S, T , and X be bounded linear operators on a Hilbert space.
It is shown that if S and T are normal with the Cartesian decompositions
S = A+iC and T = B+iD such that a1 ≤ A ≤ a2, b1 ≤ B ≤ b2, c1 ≤ C ≤ c2,
and d1 ≤ D ≤ d2 for some real numbers a1, a2, b1, b2, c1, c2, d1, and d2,
then for every unitarily invariant norm |||·|||,

|||SX − XS||| ≤
√

(a2 − a1)2 + (c2 − c1)2 |||X|||
and

||ST − TS|| ≤ 1

2

√
(a2 − a1)2 + (c2 − c1)2

√
(b2 − b1)2 + (d2 − d1)2,

where ‖·‖ is the usual operator norm. Applications of these norm inequal-
ities are given, and generalizations of these inequalities to a larger class of
nonnormal operators are also obtained.

Mathematics Subject Classification (2000). 47A30, 47B15, 47B47.

Keywords. Commutator, normal operator, positive operator, unitarily invari-
ant norm, norm inequality, Cartesian decomposition.

1. Introduction

The commutator of two bounded linear operators S and T acting on a Hilbert
space H is the operator ST − TS. For the usual operator norm ‖·‖ and for any
two operators S and T , we have

‖ST − TS‖ ≤ 2 ‖S‖ ‖T ‖ . (1)

If S or T is positive, then

‖ST − TS‖ ≤ ‖S‖ ‖T ‖ . (2)
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Moreover, if S and T are positive, then

‖ST − TS‖ ≤ 1
2
‖S‖ ‖T ‖ . (3)

The inequality (1) is an immediate consequence of the triangle inequality
and the submultiplicativity of the norm ‖·‖. More general forms of the improved
inequalities (2) and (3), which are the stimulants of this work, have been recently
given in [8] and [7], respectively. These inequalities can be also concluded from
a general theorem on the norms of derivations in [10]. Related commutator esti-
mates for the Hilbert-Schmidt norm have been given in [4], and related singular
value inequalities and unitarily invariant norm inequalities for commutators of pos-
itive operators have been recently given in [7]. The connections between norms of
commutators, pinchings, and spectral variation have been recently clarified in [3].

It should be mentioned here that the inequalities (1)–(3) are sharp.

For S =
[

1 0

0 −1

]
and T =

[
0 1

0 0

]
, the inequality (1) becomes an equality.

For S =
[

1 0

0 0

]
and T =

[
0 1

0 0

]
, the inequality (2) becomes an equality.

For S =
[

1 0

0 0

]
and T =

[
1 1

1 1

]
, the inequality (3) becomes an equality.

In this paper, we give considerable generalizations of the inequalities (2) and
(3) to commutators of normal operators. Our analysis in this paper is completely
different from and much simpler than those in [7] and [8], and our generalized
inequalities are given in terms of the spectral bounds of the Cartesian parts of op-
erators. The generalized versions of (2) are extended to the wider class of unitarily
invariant norms.

Recall that if S is an operator, then the Cartesian decomposition of S is
S = A+ iC, where A and C are the self-adjoint operators A = Re S and C = Im
S. Note that ‖S‖2 = ‖S∗S‖, and that if S is normal, then S∗S = A2 + C2 and
S − z is normal for all complex numbers z.

We will make a repeated use of the triangle inequality, the submultiplicativity
of the norm ‖·‖, and the fact that for a self-adjoint operator A and for a positive
real number a, ‖A‖ ≤ a if and only if −a ≤ A ≤ a. This is also equivalent to
the condition that σ(A) ⊆ [−a, a], where σ(A) is the spectrum of A. Another fact
that will be repeatedly used asserts that if S, T, and X are operators such that
X belongs to a norm ideal associated with a unitarily invariant (or symmetric)
norm |||·|||, then |||SXT ||| ≤ ‖S‖ ‖T ‖ |||X ||| (see, e.g., [1, p. 94] or [5, p. 79]).
Recall that the usual operator norm and the Schatten p-norms (in particular, the
Hilbert-Schmidt norm) are unitarily invariant.

In the sequel, the symbol |||·||| denotes any unitarily invariant norm, and for
the sake of brevity, we will make no explicit mention of this norm. Thus, when
we talk of |||X |||, we are assuming that the operator X belongs to the norm ideal
associated with |||·|||.
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2. Main results

Our first main result can be stated as follows.

Theorem 1. Let S be a normal operator with the Cartesian decomposition S =
A+ iC such that a1 ≤ A ≤ a2 and c1 ≤ C ≤ c2 for some real numbers a1, a2, c1,
and c2. Then, for every operator X,

|||SX −XS||| ≤
√

(a2 − a1)2 + (c2 − c1)2 |||X ||| . (4)

Proof. Let a = a1+a2
2 , c = c1+c2

2 , and z = a+ ic. Then

|||SX −XS||| = |||(S − z)X −X(S − z)|||
≤ 2 ‖S − z‖ |||X ||| . (5)

But

‖S − z‖2 = ‖A− a+ i(C − c)‖2

=
∥∥(A− a)2 + (C − c)2

∥∥ (by the normality of S − z)
≤ ‖A− a‖2 + ‖C − c‖2 .

Since −
(

a2−a1
2

)
≤ A− a ≤ a2−a1

2 and −
(

c2−c1
2

)
≤ C − c ≤ c2−c1

2 , it follows that
‖A− a‖ ≤ a2−a1

2 and ‖C − c‖ ≤ c2−c1
2 , and so

‖S − z‖2 ≤
(
a2 − a1

2

)2

+
(
c2 − c1

2

)2

. (6)

Now, it follows from the inequalities (5) and (6) that

|||SX −XS||| ≤
√

(a2 − a1)2 + (c2 − c1)2 |||X ||| ,
as required. �

A generalized commutator version of Theorem 1 is given in the following
result.

Theorem 2. Let S and T be normal operators with the Cartesian decompositions
S = A + iC and T = B + iD such that a1 ≤ A ≤ a2, b1 ≤ B ≤ b2, c1 ≤ C ≤ c2,
and d1 ≤ D ≤ d2 for some real numbers a1, a2, b1, b2, c1, c2, d1, and d2. Then,
for every operator X,

|||SX −XT ||| ≤√
(max(a2, b2)−min(a1, b1))2 + (max(c2, d2)−min(c1, d1))2 |||X ||| . (7)

Proof. Let R =
[
S 0
0 T

]
and Y =

[
0 X
0 0

]
. Then, as operators on H⊕H, R

is normal, min(a1, b1) ≤ ReR ≤ max(a2, b2), min(c1, d1) ≤ ImR ≤ max(c2, d2),

RY −Y R =
[

0 SX −XT
0 0

]
, |||RY − Y R||| = |||(SX −XT )⊕ 0|||, and |||Y ||| =

|||X ⊕ 0|||. Applying Theorem 1 to the operators R and Y , and utilizing the Fan
dominance principle (see, e.g., [1, p. 93] or [5, p. 82]), we obtain the desired in-
equality (7). �
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In the following result, we obtain a norm inequality for commutators of nor-
mal operators.

Theorem 3. Let S and T be normal operators with the Cartesian decompositions
S = A + iC and T = B + iD such that a1 ≤ A ≤ a2, b1 ≤ B ≤ b2, c1 ≤ C ≤ c2,
and d1 ≤ D ≤ d2 for some real numbers a1, a2, b1, b2, c1, c2, d1, and d2. Then

‖ST − TS‖ ≤ 1
2

√
(a2 − a1)2 + (c2 − c1)2

√
(b2 − b1)2 + (d2 − d1)2. (8)

Proof. Let a = a1+a2
2 , b = b1+b2

2 , c = c1+c2
2 , d = d1+d2

2 , z = a+ ic, and w = b+ id.
Then

‖ST − TS‖ = ‖(S − z)(T − w)− (T − w)(S − z)‖
≤ 2 ‖S − z‖ ‖T − w‖ . (9)

But, as in the proof of Theorem 1, the normality of S and T implies that

‖S − z‖ ≤

√(
a2 − a1

2

)2

+
(
c2 − c1

2

)2

(10)

and

‖T − w‖ ≤

√(
b2 − b1

2

)2

+
(
d2 − d1

2

)2

. (11)

The desired inequality (8) now follows from the inequalities (9)–(11). �

For general (i.e., not necessarily normal) operators S and T , we have the
following weaker estimate.

Theorem 4. Let S and T be operators with the Cartesian decompositions S =
A + iC and T = B + iD such that a1 ≤ A ≤ a2, b1 ≤ B ≤ b2, c1 ≤ C ≤ c2, and
d1 ≤ D ≤ d2 for some real numbers a1, a2, b1, b2, c1, c2, d1, and d2. Then

‖ST − TS‖ ≤ 1
2
((a2 + c2)− (a1 + c1))((b2 + d2)− (b1 + d1)). (12)

Proof. As in the proof of Theorem 3, we have

‖ST − TS‖ = ‖(S − z)(T − w)− (T − w)(S − z)‖
≤ 2 ‖S − z‖ ‖T − w‖
= 2 ‖A− a+ i(C − c)‖ ‖B − b+ i(D − d)‖
≤ 2 (‖A− a‖+ ‖C − c‖) (‖B − b‖+ ‖D − d‖)

≤ 2
(
a2 − a1

2
+
c2 − c1

2

)(
b2 − b1

2
+
d2 − d1

2

)
=

1
2
((a2 + c2)− (a1 + c1))((b2 + d2)− (b1 + d1)),

as required. �
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3. Applications

As applications of Theorem 1, we have the following corollaries, which include
generalizations of the inequality (2).

Corollary 1. Let S be a normal operator with the Cartesian decomposition S =
A+ iC such that A is positive. Then, for every operator X,

|||SX −XS||| ≤
√
‖A‖2 + 4 ‖C‖2 |||X ||| . (13)

Proof. The inequality (13) follows from the inequality (4) by letting a1 = 0, c1 =
−‖C‖, a2 = ‖A‖, and c2 = ‖C‖. �
Remark 1. In Corollary 1, if instead of the assumption that A is positive, we
assume that C is positive, then we obtain the inequality

|||SX −XS||| ≤
√

4 ‖A‖2 + ‖C‖2 |||X ||| . (14)

Corollary 2. Let S be a normal operator with the Cartesian decomposition S =
A+ iC such that A and C are positive. Then, for every operator X,

|||SX −XS||| ≤
√
‖A‖2 + ‖C‖2 |||X ||| . (15)

Proof. The inequality (15) follows from the inequality (4) by letting a1 = c1 = 0,
a2 = ‖A‖, and c2 = ‖C‖. �

Using arguments similar to those used in the proofs of Corollaries 1 and 2,
we obtain the following norm inequalities for commutators of normal operators
as consequences of Theorem 3. These inequalities include generalizations of the
inequality (3).

Corollary 3. Let S and T be normal operators with the Cartesian decompositions
S = A+ iC and T = B + iD such that A and B are positive. Then

‖ST − TS‖ ≤ 1
2

√
‖A‖2 + 4 ‖C‖2

√
‖B‖2 + 4 ‖D‖2. (16)

Remark 2. In Corollary 3, if instead of the assumption that A and B are positive,
we assume that C and D are positive, then we obtain the inequality

‖ST − TS‖ ≤ 1
2

√
4 ‖A‖2 + ‖C‖2

√
4 ‖B‖2 + ‖D‖2. (17)

Corollary 4. Let S and T be normal operators with the Cartesian decompositions
S = A+ iC and T = B + iD such that A, B, C, and D are positive. Then

‖ST − TS‖ ≤ 1
2

√
‖A‖2 + ‖C‖2

√
‖B‖2 + ‖D‖2. (18)

For a positive invertible operator A, we have
∥∥A−1

∥∥−1 ≤ A ≤ ‖A‖. Using
this fact, the reasoning above can be invoked to establish improvements of the
inequalities (2) and (3) for positive invertible operators, and improvements of the
inequalities (13)–(18) for normal operators with positive invertible Cartesian parts.
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Based on Theorem 2, we obtain natural generalizations and improvements of norm
inequalities concerning differences of positive invertible operators in [6]. We leave
the details to the interested reader.

4. Generalizations

Using an analysis employed in [10], it has been recently shown in [3] that if S and
T are normal operators, then for every operator X ,

|||SX −XS||| ≤ c(S) |||X ||| (19)

and
‖ST − TS‖ ≤ 1

2
c(S)c(T ), (20)

where c(S) = 2 infz∈C ‖S − z‖ is the diameter of the smallest disk in the complex
plane containing σ(S).

Based on the spectral theorem for normal operators, one can easily show that
if S is normal, then σ(ReS) = Re σ(S) and σ(ImS) = Im σ(S). Consequently, if
a1, a2, c1, and c2 are as in Theorem 1, then

c(S) ≤
√

(a2 − a1)2 + (c2 − c1)2. (21)

Thus, in view of the inequality (21), the inequalities (4) and (8) can be also con-
cluded from the inequalities (19) and (20), respectively. However, in addition to
the simple proofs of the inequalities (4) and (8) given in Section 2, the bounds
obtained there are much more easily computable and they seem natural enough
and applicable to be widely useful. Moreover, our methods used in Section 2 enable
us to generalize Theorems 1 and 3 to a larger class of nonnormal operators.

It is evident that if S is a normal operator, then
∥∥S2

∥∥ = ‖S‖2. However,
the converse is not true if dimH > 2. To see this, consider the three-dimensional

example S =

⎡⎣ 0 0 0
1 0 0
0 1 0

⎤⎦. Then
∥∥S2

∥∥ = ‖S‖2 = 1, but S is not normal. Tedious

computations show that if dimH = 2, then an operator S is normal if and only if∥∥S2
∥∥ = ‖S‖2.
If S is an operator with the Cartesian decomposition S = A + iC, then

S∗S + SS∗ = 2(A2 + C2). So, by the fact that ‖S∗S‖ = ‖SS∗‖ = ‖S‖2 and the
triangle inequality, we have ∥∥A2 + C2

∥∥ ≤ ‖S‖2 . (22)

Also, by the fact that
∥∥S2

∥∥ = ‖ |S| |S∗| ‖ and the arithmetic-geometric mean in-
equality for positive operators (see, e.g., [2] or [9]), we have∥∥S2

∥∥ = ‖ |S| |S∗| ‖ ≤ 1
2

∥∥∥ |S|2 + |S∗|2
∥∥∥

=
1
2
‖S∗S + SS∗ ‖ =

∥∥A2 + C2
∥∥ . (23)
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Combining the inequalities (22) and (23), we conclude that if S is an operator
with the Cartesian decomposition S = A+ iC, then∥∥S2

∥∥ ≤ ∥∥A2 + C2
∥∥ ≤ ‖S‖2 . (24)

Thus, if
∥∥S2

∥∥ = ‖S‖2, then ∥∥S2
∥∥ =

∥∥A2 + C2
∥∥ . (25)

This assertion allows us to replace the normality conditions on the operators S
and T in Theorems 1 and 3 by the weaker conditions that

∥∥(S − z)2
∥∥ = ‖S − z‖2

and
∥∥(T − w)2

∥∥ = ‖T − w‖2, where z and w are as in Theorems 1 and 3. These
generalizations of Theorems 1 and 3 yield analogous generalizations of Corollar-
ies 1–4.

Finally, we remark that our commutator inequalities presented in this paper
are sharp. Moreover, except for the inequality (12), these inequalities do not hold
for general operators S and T . The example

S =
[
a1 + ic1 0

0 a2 + ic2

]
and X =

[
0 1
0 0

]
shows that the inequality (4) is sharp, and the example

S =
[

0 2i
0 0

]
and X =

[
1 0
0 −1

]
shows that it is not possible to drop the condition that

∥∥(S − z)2
∥∥ = ‖S − z‖2 in

the generalized version of Theorem 1. Analogous two-dimensional examples can be
constructed to demonstrate that the other commutator inequalities are sharp, and
that the assumptions that

∥∥(S − z)2
∥∥ = ‖S − z‖2 and

∥∥(T − w)2
∥∥ = ‖T − w‖2 in

the generalized versions of Theorems 1 and 3 are indispensable.
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Uniformly Continuous Superposition Operators
in the Spaces of Differentiable Functions
and Absolutely Continuous Functions

Janusz Matkowski

Abstract. Let I, J ⊂ R be intervals. We prove that if a superposition operator
H generated by a two place h : I × J → R,

H(ϕ)(x) := h(x, ϕ(x)),

maps the set Cr(I, J) of all r-times continuously differentiable functions ϕ :
I → J into the Banach space Cr(I, R) and is uniformly continuous with
respect to Cr-norm, then

h(x, y) = a(x)y + b(x), x ∈ I, y ∈ J,

for some a, b ∈ Cr(I, R).
For the Banach space of absolutely continuous functions an analogous

result is proved.

Mathematics Subject Classification (2000). Primary 47H30; Secondary 39B22.

Keywords. Superposition operator, Nemytskij operator, Lipschitzian operator,
uniformly continuous operator, Banach space of r-times continuously differ-
entiable functions, Banach space of absolutely continuous functions.

1. Introduction

Let I, J ⊂ R be intervals. By JI denote the set of all functions ϕ : I → J. For a
given function h : I × J → R, the mapping H : JI → RI defined by

H(ϕ)(x) := h(x, ϕ(x)), ϕ ∈ JI ,

is called a superposition (composition or Nemytskij) operator of a generator h.
The superposition operators play important role in the theory of differential

equations, integral equations and functional equations. It is known that every lo-
cally defined operator mapping the set C(I, J) of continuous functions ϕ : I → J
into C(I,R) must be a superposition operator. Moreover H maps C(I, J) into
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C(I,R) if, and only if, its generator h is continuous (Krasnoselskij). At this back-
ground it is surprising enough that there are discontinuous functions h : I×R→ R

generating the superpositions operators H which map the space of continuously
differentiable functions C1(I,R) into itself (cf. [2], p. 209).

Let F(I,R) ⊂ RI be a function Banach space with a norm ‖·‖F . The fixed
point methods applied in examination of the existence and uniqueness of a solution
ϕ ∈ F(I,R) of the functional equation

ϕ(x) = h(x, ϕ(f(x))),

where f and h are he given functions (which strongly depends on the space F(I,R)
cf. M. Kuczma [3]) in a natural way lead to the question: when is the superposition
operatorH Lipschitz continuous with respect to the norm ‖·‖F? The same question
arises in connection with the problem of existence and uniqueness of the implicit
function in the class F(I,R).

In [5] it has been proved that if a superposition operator maps the Banach
space Lip(I,R) into itself and is globally Lipschitzian with respect to Lip-norm,
that is, there is a c ≥ 0 such that

‖H(ϕ) −H(ψ)‖Lip ≤ c ‖ϕ− ψ‖Lip , ϕ, ψ ∈ Lip(I,R),

then its generator h must be of the form

h(x, y) = a(x)y + b(x), x ∈ I, y ∈ R,

where a, b ∈ Lip(I,R). Then this result has been extended to some other function
Banach spaces (cf. [5]–[7], cf. also J. Appell & P.P. Zabrejko [2]).

Given a positive integer number r, denote by Cr(I,R) the Banach space of
all r-times continuously differentiable functions ϕ : I → R with the norm ‖·‖r . In
Section 2 of the present paper, using the theory of Jensen functional equation, we
prove the following (Theorem 1): if the operator H mapping the set Cr(I, J) into
Cr(I, R) satisfies the inequality

‖H(ϕ)−H(ψ)‖Cr ≤ γ (‖ϕ− ψ‖Cr) , ϕ, ψ ∈ Cr(I, J),

for a function γ : [0,∞)→ [0,∞) that is continuous at 0 and such that γ(0) = 0,
then its generator h must be of the form

h(x, y) = a(x)y + b(x), x ∈ I, y ∈ J . (∗)

As a conclusion we obtain the main result of this section (Theorem 2) stating that
the generator h of any superposition operator mapping Cr(I, J) into Cr(I,R) and
uniformly continuous with respect to the norm ‖·‖r must of the form (∗).

Moreover, in the case J = R the assumptions in both results can be signifi-
cantly weakened (cf. Proposition 1 and Corollary 1).

Denote by AC(I,R) the Banach space of all absolutely continuous functions
ϕ : I → R and by AC(I, J) the set of all functions ϕ ∈ AC(I,R) such that
ϕ(I) ⊂ J. Assume that the operator H maps AC(I, J) into the space AC(I,R).
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In Section 3 we prove (Theorem 3): if the operator H satisfies the inequality

‖H(ϕ)−H(ψ)‖AC ≤ γ (‖ϕ− ψ‖AC) , ϕ, ψ ∈ AC(I, J),

where a function γ : [0,∞) → [0,∞) is continuous at 0 and such that γ(0) = 0,
then its generator h must be of the form (∗) with a, b in AC(I,R). Taking γ(t) = ct
for some c ≥ 0 we obtain a result of [6].

Applying Theorem 3 we conclude that the generator h of any superposition
operator mapping AC(I, J) into AC(I,R) and uniformly continuous with respect
to the norm ‖·‖AC must of the form (∗) with a, b in AC(I,R) (Theorem 4).

2. Uniformly continuous superposition operators in the space of
r-times continuously differentiable functions

Let x0 ∈ I be fixed. By Cr(I,R) we denote the Banach space of all r-times
continuously differentiable functions ϕ : I → R with the norm

‖ϕ‖r :=
r−1∑
i=0

∣∣∣ϕ(i)(x0)
∣∣∣ + sup

x∈I

∣∣∣ϕ(r)(x)
∣∣∣ .

For an interval J ⊂ R we put

Cr(I, J) := {ϕ ∈ Cr(I,R) : ϕ(I) ⊂ J} .

Theorem 1. Let I, J ⊂ R be intervals and let h : I × J → R. Suppose that
γ : [0,∞)→ [0,∞) is continuous at 0 and γ(0) = 0. If the superposition operator
H of the generator h maps the set Cr(I, J) into the Banach space Cr(I,R) and
satisfies the inequality

‖H(ϕ)−H(ψ)‖r ≤ γ (‖ϕ− ψ‖r) , ϕ, ψ ∈ Cr(I, J), (1)

then there are a, b ∈ Cr(I,R) such that

h(x, y) = a(x)y + b(x), x ∈ I, y ∈ J .

Proof. Without any loss of generality we can assume that I = [0, 1] and that
x0 = 0. Note that for arbitrary y ∈ J the constant function ϕ(t) = y, (t ∈ I),
belongs to Cr(I, J). Since H maps Cr(I, J) into Cr(I,R), the function H(ϕ) =
h(·, y) ∈ Cr(I,R) and, consequently, h is continuous with respect to the first
variable.

For arbitrarily fixed y, ȳ ∈ J take ϕ, ψ : I → J defined by

ϕ(t) = y, ψ(t) = ȳ, t ∈ I.

Then, of course, ϕ, ψ ∈ Cr(I, J) and, by the assumption, the functions H(ϕ) =
h(·, y), H(ψ) = h(·, ȳ) belong to Cr(I,R) and

‖ϕ− ψ‖r = |y − ȳ| .



158 J. Matkowski

Hence, applying the Lagrange mean-value theorem, the definition of the norm ‖·‖r
and (1) we get, for all x ∈ [0, 1],

|h(x, y)− h(x, ȳ)| ≤ |h(0, y)− h(0, ȳ)|+ |h(x, y)− h(x, ȳ)− h(0, y)− h(0, ȳ)|
= |H(ϕ)(0)−H(ψ)(0)|

+ |[H(ϕ)(x) −H(ψ)(x)] − [H(ϕ)(0)−H(ψ)(0)]|
= |[H(ϕ)−H(ψ)](0)|+ |[H(ϕ)−H(ψ)]′(c)|
≤ ‖[H(ϕ)−H(ψ)]‖r ≤ γ (‖ϕ− ψ‖r) ≤ γ (|y − ȳ|) .

This inequality, the continuity of γ at 0 and the equality γ(0) = 0 imply that h is
continuous with respect to the second variable.

Take arbitrary x, x̄ ∈ I, x < x̄; and y1, y2, ȳ1, ȳ2 ∈ J. Let α : [0, 1] → R be
defined by

α(t) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for t < x

2 t−x
x̄−x for x ≤ t ≤ x+x̄

2

2 x̄−t
x̄−x for x+x̄

2 ≤ t ≤ x̄
0 for t > x̄.

Of course α is continuous and
∫ 1

0 α(s)ds =
∫ x̄

x α(s)ds = 1. Now define the functions
ϕ1, ϕ2 : [0, 1]→ R by

ϕi(t) := yi +
1

(r − 1)!
ȳi − yi

x̄− x

∫ t

0

(t− s)r−1α(s)ds, for t ∈ [0, 1], i = 1, 2.

Note that ϕi ∈ Cr(I, J) and

ϕ
(k)
i (t) =

1
(r − k − 1)!

ȳi − yi

x̄− x

∫ t

0

(t− s)r−k−1α(s)ds, k = 1, . . . , r − 1,

ϕ
(r)
i (t) =

ȳi − yi

x̄− x α, i = 1, 2, (t ∈ [0, 1]).

It follows that

ϕi(0) = yi, ϕ
(k)
i (0) = 0, k = 1, . . . , r−1, ϕ

(r)
i =

ȳi − yi

x̄− x α, i = 1, 2,

whence, by the definitions of α and the norm ‖·‖r ,

‖ϕ1 − ϕ2‖r = |y1 − y2|+
|y1 − y2 − ȳ1 + ȳ2|

|x− x̄| .

Since

ϕi(x) = yi, ϕi(x̄) = ȳi, i = 1, 2,
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by the Lagrange mean-value theorem, for some c ∈ (x, x̄), we have

|h(x, y1)− h(x, y2)− h(x̄, ȳ1) + h(x̄, ȳ2)|
|x− x̄|

=
|[H(ϕ1)−H(ϕ2](x) − [H(ϕ1)−H(ϕ2](x̄)|

|x− x̄| = |[H(ϕ1)−H(ϕ2]′(c)|

≤ ‖H(ϕ1)−H(ϕ2)‖r ,

whence, applying inequality (1) with ϕ = ϕ1, ψ = ϕ2, we obtain

|h(x, y1)− h(x, y2)− h(x̄, ȳ1) + h(x̄, ȳ2)|
|x− x̄|

≤ γ
(
|y1 − y2|+

|y1 − y2 − ȳ1 + ȳ2|
|x− x̄|

)
for all x, x̄ ∈ I, x < x̄; y1, y2, ȳ1, ȳ2 ∈ J.

Taking arbitrary u, v ∈ J and setting here

y1 :=
u+ v

2
, y2 := u, ȳ1 := v, ȳ2 :=

u+ v

2
we obtain ∣∣h(x, u+v

2 )− h(x, u)− h(x̄, v) + h(x̄, u+v
2 )

∣∣
|x− x̄|α ≤ γ

(
|u− v|

2

)
whence∣∣∣∣h(

x,
u+ v

2

)
− h(x, u)− h(x̄, v) + h

(
x̄,
u+ v

2

)∣∣∣∣ ≤ |x− x̄|α γ(
|u− v|

2

)
for all x, x̄ ∈ I, x < x̄; u, v ∈ J.

Letting here x̄ tend to x and making use of the continuity of h with respect
to the first variable, we hence get

2h
(
x,
u+ v

2

)
= h(x, v) + h(x, u), x ∈ I; u ∈ J,

which proves that, for every fixed x ∈ I, the function h(x, ·) satisfies the Jensen
functional equation in the interval J . The continuity of h with respect to the second
variable implies that (cf. J. Aczél [1], p. 43, Theorem 1, or M. Kuczma [3], p. 315,
Theorem 1) for every x ∈ I there exist a(x), b(x) ∈ R such that

h(x, y) = a(x)y + b(x), x ∈ I, y ∈ R.

If J is a nontrivial interval, there are y1, y2 ∈ J, y1 
= y2. By assumption the
functions h(·, y1) = ay1 + b and h(·, y2) = ay2 + b belong to Lipα(I,R). It follows
that a, b ∈ Lipα(I,R). If J is trivial, the result is obvious. �

Taking J = R and γ(t) = ct, t ∈ R, we obtain the main result of [6].
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In the case J = R we have the following stronger result.

Proposition 1. Let I ⊂ R be an interval, h : I × R → R, and γ : [0,∞) → [0,∞)
be continuous at 0 and such that γ(0) = 0. Denote by A be the set of all functions
ϕ : I → R of the form

ϕ(t) = αt+ β, t ∈ I.
Suppose the superposition operator H of the generator h maps the set A into the
Banach space Cr(I,R). If H satisfies the inequality

‖H(ϕ)−H(ψ)‖r ≤ γ (‖ϕ− ψ‖r) , ϕ, ψ ∈ A,
then there exist a, b ∈ Cr(I,R) such that

h(x, y) = a(x)y + b(x), x ∈ I, y ∈ R.

Proof. Without any loss of generality we may assume that I = [0, 1].
Since all the constant functions in I belong to A, in a similar way as in the

previous theorem we can show that h is continuous with respect to both variables.
Take arbitrary x, x̄ ∈ I, x < x̄, p, q, k, l ∈ R and

ϕ(t) = pt+ k, ψ(t) = qt+ l, t ∈ I.
Of course

‖ϕ− ψ‖r = |k − l|+ |p− q| .
By the Lagrange mean-value theorem there is c ∈ (x, x̄) such that

|h(x, px + k)− h(x, qx + l)− h(x̄, px̄+ k) + h(x̄, qx̄+ l)|
|x− x̄|

=
|[H(ϕ)−H(ψ)](x) − [H(ϕ)−H(ψ)](x̄)|

|x− x̄| = |[H(ϕ)−H(ψ)]′(c)|

≤ ‖H(ϕ)−H(ψ)‖r
whence, by the assumption,

|h(x, px+ k)− h(x, qx + l)− h(x̄, px̄+ k) + h(x̄, qx̄+ l)|
|x− x̄|

≤ γ (|k − l|+ |p− q|) ,
which can be written in the form

|h(x, px+ k)− h(x, qx + l)− h(x̄, px̄+ k) + h(x̄, qx̄+ l)|
≤ |x− x̄| γ (|k − l|+ |p− q|) .

Take arbitrary u, v ∈ R. Putting here

p = q =
u− v

2(x− x̄) , k =
(2x− x̄)v − x̄u

2(x− x̄)
, l =

(x− 2x̄)u+ xv

2(x− x̄)

we obtain∣∣∣∣h(
x,
u+ v

2

)
− h (x, u)− h (x̄, v) + h

(
x̄,
u+ v

2

)∣∣∣∣ ≤ |x− x̄| γ (∣∣∣∣u− v2

∣∣∣∣)
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for all x, x̄ ∈ I, x 
= x̄, and u, v ∈ R. Letting x̄ tend to x, by the continuity of h,
we hence get

2h
(
x,
u+ v

2

)
= h (x, u) + h (x, v) , x ∈ I, u, v ∈ R.

Now we can argue similarly as in the proof of Theorem 1. �

The main result of this section reads as follows.

Theorem 2. Let I, J ⊂ R be intervals and let h : I × J → R. If the superposition
operator H of the generator h maps the class Cr(I, J) into the class Cr(I,R) and is
uniformly continuous with respect to the norm ‖·‖r, then there are a, b ∈ Cr(I,R)
such that

h(x, y) = a(x)y + b(x), x ∈ I, y ∈ J .

Proof. The uniform continuity of H implies that the function γ : [0,∞)→ [0,∞),

γ(t) := sup {‖H(ϕ) −H(ψ)‖r : ‖ϕ− ψ‖r ≤ t} , t ≥ 0,

is correctly defined, continuous at 0, γ(0) = 0 and, clearly, we have

‖H(ϕ) −H(ψ)‖r ≤ γ (‖ϕ− ψ‖r) , ϕ, ψ ∈ Lipα(I, J).

Now the result is a consequence of Theorem 1. �

Similarly, applying Proposition 1, we obtain

Corollary 1. Let I ⊂ R be an interval, h : I × R → R, and γ : [0,∞) → [0,∞)
be continuous at 0 and such that γ(0) = 0. Denote by A the set of all functions
ϕ : I → R of the form

ϕ(t) = αt+ β, t ∈ I.
Suppose the superposition operator H of the generator h maps the set A into the
Banach space Cr(I,R). If H is uniformly continuous with respect to the norm ‖·‖r
in A then there exist a, b ∈ Cr(I,R) such that

h(x, y) = a(x)y + b(x), x ∈ I, y ∈ R.

3. Uniformly continuous superposition operators in the space
absolutely continuous functions

Let I ⊂ R be an interval and let x0 ∈ I. Then the set AC(I,R) of all absolutely
continuous functions ϕ : I → R with the norm

‖ϕ‖AC := |ϕ(x0)|+
∫

I

|ϕ′(t)| dt

is a Banach space. For an interval J ⊂ R denote by AC(I, J) the set of all ϕ ∈
AC(I,R) such that ϕ(I) ⊂ J.
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Theorem 3. Let I, J ⊂ R be intervals and h : I × J → R. Suppose that γ :
[0,∞) → [0,∞) is continuous at 0 and γ(0) = 0. If the superposition operator
H of the generator h maps the set AC(I, J) into the Banach space AC(I,R) and
satisfies the inequality

‖H(ϕ)−H(ψ)‖AC ≤ γ (‖ϕ− ψ‖AC) , ϕ, ψ ∈ AC(I, J), (2)

then there exist a, b ∈ AC(I,R) such that

h(x, y) = a(x)y + b(x), x ∈ I, y ∈ R.

Proof. Without any loss of generality we can assume that I = [0, 1] and that

‖ϕ‖AC := |ϕ(0)|+
∫ 1

0

|ϕ′(t)| dt.

For arbitrary y, ȳ ∈ J take ϕ, ψ : I → J defined by

ϕ(t) = y, ψ(t) = ȳ, t ∈ I.

Then, of course, ϕ, ψ ∈ AC(I, J) and, by the assumption, H(ϕ) = h(·, y) and
H(ψ) = h(·, ȳ) belong to AC(I,R) and

‖ϕ− ψ‖AC = |y − ȳ| .

Hence, making use of (2), we have, for all x ∈ I,

|h(x, y)− h(x, ȳ)| ≤ |h(0, y)− h(0, ȳ)|+ |h(x, y)− h(x, ȳ)− h(0, y)− h(0, ȳ)|

= |h(0, y)− h(0, ȳ)|+
∣∣∣∣∫ x

0

d

dt
[h(t, y)− h(t, ȳ)]dt

∣∣∣∣
≤ |h(0, y)− h(0, ȳ)|+

∫ x

0

∣∣∣∣ ddt [h(t, y)− h(t, ȳ)]
∣∣∣∣ dt

≤ |h(0, y)− h(0, ȳ)|+
∫ 1

0

∣∣∣∣ ddt [h(t, y)− h(t, ȳ)]
∣∣∣∣ dt

= |[H(ϕ)−H(ψ)](0)|+
∫ 1

0

∣∣∣∣ ddt [H(ϕ)−H(ψ)](t)
∣∣∣∣ dt

= ‖H(ϕ)−H(ψ)‖AC ≤ γ (|y − ȳ|) ,

whence, for all x, x̄ ∈ I, y, ȳ ∈ J,

|h(x, y)− h(x̄, ȳ)| ≤ |h(x, y)− h(x̄, y)|+ |h(x̄, y)− h(x̄, ȳ)|
≤ |H(ϕ)(x) −H(ϕ)(x̄)|+ γ (|y − ȳ|) ,

which implies the continuity of h in I × J.
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Take arbitrary n ∈ N, x ∈ I, y1, y2, ȳ1, ȳ2 ∈ J, and a finite sequence
x1, x2, . . . , x2n such that

0 < x1 < x2 < · · · < x2n < 1.

Let ϕ : I → J be the polygonal function the graph of which is uniquely determined
by the vertices

(0, y1), (x1, y1), (x2, y2), . . . , (x2k−1, y1), (x2k, y2), . . . , (x2n, y2), (1, y2)

and, similarly, let ψ : I → J be the polygonal function the graph of which is
uniquely determined by the vertices

(0, ȳ1), (x1, ȳ1), (x2, ȳ2), . . . , (x2k−1, ȳ1), (x2k, ȳ2), . . . , (x2n, ȳ2), (1, ȳ2).

Clearly, ϕ, ψ ∈ AC(I, J). Since ϕ and ψ are constant in the intervals [0, x1] and
[x2n, 1], and affine in each of the intervals [xk, xk+1], k = 1, . . . , 2n − 1, by the
definition of the norm‖·‖AC , we have

‖ϕ− ψ‖AC = |ϕ(0)− ψ(0)|+
∫ 1

0

|ϕ′(t)− ψ′(t)| dt

= |y1 − ȳ1|+
2n−1∑
k=1

∫ xk+1

xk

|ϕ′(t)− ψ′(t)| dt

= |y1 − ȳ1|+
2n−1∑
k=1

|y1 − ȳ1 − y2 + ȳ2|

= |y1 − ȳ1|+ (2n− 1) |y1 − ȳ1 − y2 + ȳ2| .

Moreover

‖H(ϕ)−H(ψ)‖AC

= |h(0, ϕ(0))− h(0, ψ(0))|+
∫ 1

0

∣∣∣∣ ddt [h(t, ϕ(t))− h(t, ψ(t))]
∣∣∣∣ dt

≥
∫ 1

0

∣∣∣∣ ddt [h(t, ϕ(t)) − h(t, ψ(t))]
∣∣∣∣ dt

=
2n−1∑
k=1

∫ xk+1

xk

∣∣∣∣ ddt [h(t, ϕ(t)) − h(t, ψ(t))]
∣∣∣∣ dt

≥
2n−1∑
k=1

∣∣∣∣∫ xk+1

xk

d

dt
[h(t, ϕ(t)) − h(t, ψ(t))] dt

∣∣∣∣
=

2n−1∑
k=1

|h(xk+1, ϕ(xk+1))− h(xk+1, ψ(xk+1))− h(xk, ϕ(xk)) + h(xk, ψ(xk))| .
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Note that for each k ∈ {1, 2, . . . , 2n} either ϕ(xk) = y1 or ϕ(xk) = y2 and

ϕ(xk) = y1 ⇐⇒ ϕ(xk+1) = y2, k ∈ {1, 2, . . . , 2n− 1}.
It is also true if we replace ϕ by ψ, y1 by ȳ1 and y2 by ȳ2. Therefore, letting xk

tend to x for all k ∈ {1, 2, . . . , 2n} and making use of the continuity of h in I × J,
we hence get

‖H(ϕ)−H(ψ)‖AC ≥
2n−1∑
k=1

|h(x, y1)− h(x, ȳ1)− h(x, y2) + h(x, ȳ2)|

= (2n− 1) |h(x, y1)− h(x, ȳ1)− h(x, y2) + h(x, ȳ2)| .
Hence, applying inequality (2), we obtain

(2n− 1) |h(x, y1)− h(x, ȳ1)− h(x, y2) + h(x, ȳ2)|
≤ γ (|y1 − ȳ1|+ (2n− 1) |y1 − ȳ1 − y2 + ȳ2|)

for all n ∈ N, x ∈ I, y1, y2, ȳ1, ȳ2 ∈ J.
Taking r ∈ (0, 1), u, v ∈ J and substituting here

y1 := (1− r)u + rv, y2 := u, ȳ1 := v, ȳ2 := ru + (1− r)v
we obtain

(2n− 1) |h(x, (1 − r)u + rv) − h(x, u)− h(x̄, v) + h(x̄, ru+ (1− r)v)|
≤ γ (r |u− v|)

for all x, x̄ ∈ I, x < x̄; u, v ∈ J.
Letting here x̄ tend to x and making use of the continuity of h with respect

to the first variable, we hence get

(2n− 1) |h(x, (1 − r)u + rv) − h(x, u)− h(x, v) + h(x, ru + (1− r)v)|
≤ γ (r |u− v|)

for all n ∈ N, x ∈ I; r ∈ (0, 1), u, v ∈ J. Since n ∈ N is arbitrary, it follows that

h(x, (1 − r)u + rv)− h(x, u)− h(x, v) + h(x, ru + (1− r)v) = 0

for all x ∈ I; r ∈ (0, 1), u, v ∈ J (which means that, for each x ∈ I, the function
h(x, ·) is Wright-affine). For r = 1

2 we hence get

2h
(
x,
u+ v

2

)
= h(x, v) + h(x, u), x ∈ I; u ∈ J,

that is, for every x ∈ I, the function h(x, ·) satisfies the Jensen functional equation.
The continuity of h implies that for every x ∈ I there are a(x), b(x) ∈ R such that

h(x, y) = a(x)y + b(x), x ∈ I, y ∈ J,
(cf. J. Aczél [1], p. 43, Theorem 1, or M. Kuczma [3], p. 315, Theorem 1). Since
h(·, c) ∈ AC(I,R) for every c ∈ J, the functions a and b are absolutely continuous.

�
Taking γ(t) = kt (t ≥ 0) for some k ≥ 0 we get a result of [6].
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Remark 1. Theorem 3 remains valid if we replace the norm ‖·‖AC by the following
one

‖ϕ‖ := sup
x∈I
|ϕ(x)| +

∫
I

|ϕ′(t)| dt.

Since

‖ϕ‖AC ≤ ‖ϕ‖ ≤ 2 ‖ϕ‖AC ,

both these norms are equivalent. It easy to check the following: if I ⊂ R is a
compact interval and a, b ∈ AC(I,R) then the superposition operator H of the
generator h(x, y) = a(x)y+ b(x), (x ∈ I, y ∈ R) maps the Banach space AC(I,R)
into itself, and

‖H(ϕ)−H(ψ)‖AC ≤ ‖α‖ ‖ϕ− ψ‖AC , ϕ, ψ ∈ AC(I,R),

that is H is Lipschitzian.

Now we can prove the main result of this section which reads as follows.

Theorem 4. Let I, J ⊂ R be intervals and h : I × J → R. Suppose that the
superposition operator H of the generator h maps the set AC(I, J) into the Banach
space AC(I,R). Then H is uniformly continuous if, and only if, there exist a, b ∈
AC(I,R) such that

h(x, y) = a(x)y + b(x), x ∈ I, y ∈ R.

Proof. Suppose that H is uniformly continuous. Then for every ε > 0 there is a
δ > 0 such that for all ϕ, ψ ∈ AC(I, J),

‖ϕ− ψ‖AC ≤ δ =⇒ ‖H(ϕ)−H(ψ)‖AC ≤ ε.

It follows that the function γ : [0,∞)→ [0,∞),

γ(t) := sup {‖H(ϕ) −H(ψ)‖AC : ‖ϕ− ψ‖AC = t} , t ≥ 0,

is correctly defined, γ is continuous at 0 and γ(0) = 0. Since

‖H(ϕ)−H(ψ)‖AC ≤ γ (‖ϕ− ψ‖AC) , ϕ, ψ ∈ AC(I, J),

the “only if” part of the theorem follows from the previous result. As the “if” part
is obvious, the proof is completed. �

Remark 2. Clearly, without any loss of generality, one can assume that the function
γ is increasing. It follows that Theorem 3 and Theorem 4 remain valid on replacing
the AC-norm by equivalent ones.

Final Remark

The suitable results for the spaces of Hölder functions and bounded variation
functions will be considered in our next paper.



166 J. Matkowski

References

[1] J. Aczél, Lectures on functional equations and their applications, Academic Press,
New York and London, 1966.

[2] J. Appell, P.P. Zabrejko, Nonlinear Superposition Operators, Cambridge University
Press, Cambridge, 1990.

[3] M. Kuczma, Functional equations in a single variable, Monografie Matematyczne 46,
Polish Scientific Publishers, Warszawa, 1968.

[4] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities,
Polish Scientific Publishers and Silesian University, Warszawa – Kraków – Katowice,
1985.

[5] J. Matkowski, Functional equations and Nemytskij operators, Funkc. Ekvacioj
Ser. Int. 25 (1982), 127–132.

[6] J. Matkowski, Form of Lipschitz operators of substitution in Banach spaces of dif-
ferentiable functions, Zeszyty Nauk. Politch. Lódz. Mat. 17 (1984), 5–10.
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c© 2008 Birkhäuser Verlag Basel/Switzerland

Tight Enclosures of Solutions of Linear Systems

Takeshi Ogita and Shin’ichi Oishi

Abstract. This paper is concerned with the problem of verifying the accuracy
of an approximate solution of a linear system. A fast method of calculating
both lower and upper error bounds of the approximate solution is proposed.
By the proposed method, it is possible to obtain the error bounds which are as
tight as needed. As a result, it can be verified that the obtained error bounds
are of high quality. Numerical results are presented elucidating properties and
efficiencies of the proposed verification method.
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1. Introduction

We are concerned with the problem of verifying the accuracy of an approximate
solution x̃ of a linear system

Ax = b, (1)

where A is a real n× n matrix and b is a real n-vector. If A is nonsingular, there
exists a unique solution x∗ := A−1b. We aim on verifying the nonsingularity of A
and calculating some ε, ε ∈ Rn such that

o ≤ ε ≤ |x∗ − x̃| ≤ ε with o := (0, . . . , 0)T ∈ Rn. (2)

Here, for a real vector v = (v1, . . . , vn)T ∈ Rn, we denote by |v| = (|v1|, . . . , |vn|)T ∈
Rn the nonnegative vector consisting of entrywise absolute values.

A number of fast self-validating algorithms (cf., for example, [6, 8, 14]) have
been proposed to verify the nonsingularity of A and to compute ε in (2). This paper
also considers to compute ε. If εi ≈ εi, then we can verify that the error bounds
(and the verification) are of high quality. A geometric image of the inclusions for
the exact solution x∗ such as (2) can be depicted as in Figure 1.
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Figure 1. Inner and outer enclosures of the exact solution (two-
dimensional case). The exact solution x∗ exists in Ω.

A main point of this paper is to develop a method of calculating both ε and ε
satisfying (2), which are as tight as we need. For the purpose, the iterative refine-
ment is used. If we obtain tight error bounds, we can set an appropriate criterion
for improving an approximate solution x̃ by the iterative refinement method.

We assume that the floating-point system used in this paper follows IEEE
standard 754 for floating-point arithmetic [1]. Moreover, we suppose that all float-
ing-point operations are executed according to the prescribed rounding mode de-
fined in IEEE standard 754. Under such conditions, we will propose a fast algo-
rithm of calculating a verified solution of (1) in terms of (2).

The rest of the paper is organized as follows: In Section 2, we state notations
and definitions used in this paper. In Section 3, we analyze the behavior of the
iterative refinement. In Section 4, we briefly review previous verification methods
of calculating a componentwise error bound of an approximate solution x̃ of (1).
After that, we propose the verification theory for calculating tight error bounds of
x̃. In Section 5, we present a concrete algorithm of calculating tight error bounds
of x̃. In Section 6, some numerical results are presented elucidating properties and
efficiencies of the proposed verification method. Finally in Section 7, we conclude
the paper.

2. Notation and definitions

Let R denote the set of real numbers. Let F be a set of floating-point numbers
following IEEE standard 754. Let u be the unit-roundoff. In IEEE 754 double
precision arithmetic, u = 2−53. Throughout this paper, we assume that the op-
erations in fl(· · · ) is all executed by floating-point arithmetic in given rounding
mode (default is round-to-nearest). Let IR denote the set of interval real numbers
and IF denote a set of interval floating-point numbers. Note that IF ⊂ IR. For
a real matrix A = (aij) ∈ Rn×n, we denote by |A| = (|aij |) ∈ Rn×n the non-
negative matrix consisting of entrywise absolute values. For real n × n matrices
A = (aij), B = (bij), an inequality A ≤ B is understood entrywise, i.e., aij ≤ bij
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for all (i, j). We express an interval matrix including A by [A] := [A,A] ∈ IRn×n

where A and A is a lower and an upper bound of A, respectively. For real vectors,
we apply these definitions similarly.

The magnitude and the mignitude1 of an interval quantity [a] ∈ IR, which
are the largest and the smallest absolute values in [a], are defined by

mag([a]) := max
a∈[a,a]

|a| and mig([a]) := min
a∈[a,a]

|a|,

respectively. For an interval vector and an interval matrix, they are applied entry-
wise.

Throughout this paper, n-vectors e and o are defined by e := (1, . . . , 1)T and
o := (0, . . . , 0)T , respectively. For p ∈ {1, 2,∞} we denote p-norm of a real m× n
matrix A = (aij) by

‖A‖1 := max
1≤j≤n

m∑
i=1

|aij |, ‖A‖2 := σmax(A), ‖A‖∞ := max
1≤i≤m

n∑
j=1

|aij |,

where σmax(A) denotes the largest singular value of A. Moreover, the condition
number of A is defined by

condp(A) := ‖A‖p‖A−1‖p for p ∈ {1, 2,∞}.

3. Iterative refinement

To obtain a tight enclosure of an approximate solution x̃ of a linear system Ax = b,
we shall show some properties of the iterative refinement (cf., e.g., [2]).

Using the iterative refinement for the approximate solution x̃ ∈ Fn, we may
improve x̃ by x̃+ y where y :=

∑K
k=1 z

(k) with z(k) ∈ Fn for 1 ≤ k ≤ K. Then z(k)

is called the staggered correction for x̃. This approach seems to be already used
in [12]. If a good approximate inverse R of A has been calculated, we can obtain
x̃+ y with arbitrarily high precision using the iterative refinements:

y(0) = o
for k = 1, 2, . . . ,K

r(k) = AccDot(b−A(x̃ + y(k−1))) % computing an accurate residual
z(k) = R ∗ r(k) % approximation of A−1r(k)

y(k) = y(k−1) + z(k) % updating y

This makes only sense for calculating the residual b−A(x̃+ y(k−1)) when an accu-
rate dot product “AccDot” is available. Fortunately, a fast and portable method
of implementing the accurate dot product has been developed in [7, 9] and it is
available in INTLAB [11]. We can use them for this purpose. For detail, see [7, 9].
Of course, LU factors of A can be used for calculating z(k) instead of R by forward
and backward substitutions.

1This seems to be a technical term used in interval analysis.
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Assume that an approximate inverse R ∈ Fn×n of A is computed by a
backward stable algorithm, e.g., LU factorization with partial pivoting. Then,
the following is known as a rule of thumb: Let u denote the unit-roundoff. For
μ := cond∞(A) < u−1 and G := I −RA,

α := ‖G‖∞ = O(nu)μ. (3)

Let x̃ = Rb and e := (1, . . . , 1)T . Since

|A−1b− x̃| = |A−1b−Rb| = |(I −RA)A−1b| ≤ |G||A−1b|,
it holds that

|A−1b− x̃| ≤ ‖A−1b‖∞|G|e. (4)
After an iterative refinement by using y(1) = R(b−Ax̃), it follows that

|A−1b− (x̃+ y(1))| = |A−1b− x̃−R(b−Ax̃)| = |(I −RA)(A−1b− x̃)|
≤ |G||A−1b− x̃|. (5)

Inserting (3) and (4) into (5) yields

|A−1b− (x̃+ y(1))| ≤ ‖A−1b‖∞|G|2e.
For k ≥ 2, it can inductively be proved for y(k) = y(k−1) + R(b − A(x̃ + y(k−1)))
that

|A−1b− (x̃+ y(k))| ≤ ‖A−1b‖∞|G|k+1e

and
|A−1b− (x̃+ y(k))| ≤ αk+1‖A−1b‖∞e. (6)

Therefore, if α < 1, then the iterative refinement converges with the factor α =
O(nu)μ for each iteration. In practice, due to the rounding error, we have x̃(k) =
fl(x̃+ y(k)) with x̃(0) = x̃ and

|A−1b− x̃(k)| ≤ u|A−1b|+O(αk+1)‖A−1b‖∞e. (7)

This is a componentwise error bound and explains the behavior of the iterative re-
finement. Namely, we can grasp the following tendency of the iterative refinement:
Let x∗ := A−1b, xmax := max1≤i≤n |x∗i | = ‖A−1b‖∞ and xmin := min1≤i≤n |x∗i |.
Suppose xmin 
= 0. Let also x̃ be an approximate solution of Ax = b. If xmax/xmin

is very large, then a component of x̃ corresponding to xmin is fairly less accurate
than that corresponding to xmax in the sense of relative errors, which is due to the
second term O(αk+1)‖A−1b‖∞e of the right-hand side in (7). An extreme case is
that xmin = 0 and then the iterative refinements for x̃min can not converge until
entering the underflow range. To avoid it, an additional stopping criterion ((15)
in Section 4) for the iterative refinement is needed.

For example, consider the case where A ∈ F5×5 is generated by an
algorithm proposed in [4] with cond∞(A) ≈ 1010 and the exact solution
A−1b = (1, 103, 106, 109, 134217728)T . Here, the last component 134217728 is
not important but necessary only for generating the part of the exact solution
(1, 103, 106, 109)T , so that we omit to consider it. All computations are done in
double precision arithmetic on Matlab, so that u = 2−53 ≈ 10−16. An approxi-
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Table 1. History of iterative refinement for k = 0, 1, 2; Approx-
imate solutions x̃(k) and their true absolute errors |x∗ − x̃(k)|.

i x̃(0) x̃(1) x̃(2)

1 −1.711885408678072 · 102 0.999935694692795 1.000000000002729
2 1.021301738732815 · 103 1.000000011437893 · 103 1.000000000000000 · 103

3 1.000055792398647 · 106 0.999999999979213 · 106 1.000000000000000 · 106

4 1.000000083648967 · 109 0.999999999999980 · 109 1.000000000000000 · 109

i |x∗ − x̃(0)| |x∗ − x̃(1)| |x∗ − x̃(2)|
1 1.7218 · · · × 102 6.4305 · · · × 10−5 2.7284 · · · × 10−12

2 2.1301 · · · × 101 1.1437 · · · × 10−5 3.4106 · · · × 10−13

3 5.5792 · · · × 101 2.0787 · · · × 10−5 0
4 8.3648 · · · × 101 2.0265 · · · × 10−5 0

mate inverse R of A is computed by the Matlab’s function inv, which uses BLAS
and LAPACK routines. Then, α = ‖I−RA‖∞ ≈ 1.8 ·10−7, which is almost consis-
tent with the fact that u · cond∞(A) ≈ 10−6. An initial approximate solution x̃(0)

is computed by x̃(0) = fl(Rb). The results of the iterative refinements are displayed
in Table 1. As expected, each component is gradually improved with the factor
α, in this case about 6 or 7 decimal digits, for each iteration until achieving the
maximum accuracy.

4. Verification theory

In this section, we will briefly review some previous methods of calculating a
componentwise error bound of an approximate solution x̃ of a linear system Ax = b.

First, we present in the following a linearized version of Yamamoto’s theo-
rem [14].

Theorem 4.1 (Yamamoto [14]). Let A be a real n × n matrix and b be a real n-
vector. Let x̃ be an approximate solution of Ax = b and r := b−Ax̃. Suppose R is
an approximate inverse of A and G := I −RA with I denoting the n× n identity
matrix. If ‖G‖∞ < 1, then A is nonsingular and

|A−1b− x̃| ≤ |Rr|+ ‖Rr‖∞
1− ‖G‖∞

|G|e. (8)

On the other hand, the following alternative approach for calculating a com-
ponentwise error bound is known in [6].

Theorem 4.2 (Ogita et al. [6]). Let A, b, x̃ and r be as in Theorem 4.1. Let ỹ be an
approximate solution of Ay = r. If A is nonsingular, then it holds that

|A−1b− x̃| ≤ |ỹ|+ ‖A−1‖p‖r −Aỹ‖pe (9)

for p ∈ {1, 2,∞}.
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The advantages of this approach are as follows:

• Although it needs an upper bound ρ of ‖A−1‖p, it does not necessarily need to
compute an approximate inverse R of A. For example, ‖A−1‖2 = 1/σmin(A),
where σmin(A) denotes the smallest singular value of A. Therefore, ρ can be
estimated from σmin(A) (cf., e.g., [13]). Moreover, Theorem 4.2 can be applied
to verification for solutions of sparse linear systems if it is not so difficult to
compute ρ (cf., e.g., [5]).
• If ỹ is accurate enough, then the reminder term ‖A−1‖p‖r−Aỹ‖pe becomes

almost negligible.
• It is compatible with iterative refinement (see Section 3).

The main point of Theorem 4.2 is that ỹ can arbitrarily be improved for a
fixed approximate solution x̃. To obtain tight error bounds of x̃ utilizing Theorem
4.1, we will modify it as in Proposition 4.3.

We shall extend Theorem 4.1. Suppose that an approximate inverseR ∈ Fn×n

of A is obtained. Then a main part of computational effort to obtain the error
bounds of x̃ is to calculate an upper bound of ‖I−RA‖∞. To do this, a possibility
is to calculate [G] ∈ IF

n×n such that I − RA ⊆ [G]. It is known (e.g., [8]) that if
‖mag([G])‖∞ < 1, then an upper bound ρ of ‖A−1‖∞ can be obtained by

‖A−1‖∞ ≤
‖R‖∞

1− ‖I −RA‖∞
≤ ‖R‖∞

1− ‖mag([G])‖∞
=: ρ. (10)

Using a usual matrix multiplication for including I − RA with directed rounding
requires 4n3 flops [8, 10]. Faster methods of calculating an upper bound of ‖I −
RA‖∞ have also been presented in [8].

We now assume that ‖G‖∞ < 1 for G := I−RA. Then A is nonsingular. For
an arbitrary ỹ ∈ Rn, it holds that

A−1b− x̃ = A−1b− (x̃+ ỹ) + ỹ

and
|ỹ| − ε ≤ |A−1b− x̃| ≤ |ỹ|+ ε with ε := |A−1b− (x̃+ ỹ)|.

By regarding x̃+ ỹ as an approximate solution of Ax = b (or ỹ as that of Ay = r
where r := b−Ax̃), Theorem 4.1 implies

ε ≤ |R(b−A(x̃ + ỹ))| + ‖R(b−A(x̃ + ỹ))‖∞
1− ‖G‖∞

|G|e

≤ |R(r −Aỹ)|+ ‖R(r −Aỹ)‖∞
1− ‖G‖∞

|G|e =: ε1.

From this, we have the following proposition.

Proposition 4.3. Let A,R,G, b, e, x̃ and r be as in Theorem 4.1. Let ỹ be an ap-
proximate solution of Ay = r. If ‖G‖∞ < 1, then A is nonsingular and

max(|ỹ| − ε1,o) ≤ |A−1b− x̃| ≤ |ỹ|+ ε1, (11)
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where

ε1 := |R(r −Aỹ)|+ ‖R(r −Aỹ)‖∞
1− ‖G‖∞

|G|e.

Note that the validity of the proposition is independent of the quality of ỹ.
From Proposition 4.3, we can obtain tight componentwise lower and upper

error bounds of x̃ by updating ỹ using the iterative refinement until satisfying

|ỹi| ≥ (ε1)i for all i, ỹi 
= 0, (12)

which becomes an appropriate stopping criterion for the iterations.
Next, we shall extend Theorem 4.2. Suppose ‖A−1‖p ≤ ρ. Then it follows for

p ∈ {1, 2,∞} that

ε = |A−1(b−A(x̃+ ỹ))| = |A−1(r −Aỹ)|
≤ ‖A−1(r −Aỹ)‖∞e ≤ ‖A−1(r −Aỹ)‖pe
≤ ρ‖r −Aỹ‖pe =: ε2.

From this, we also have the following proposition.

Proposition 4.4. Let A, b, x̃ and r be as in Theorem 4.1. Let ỹ be an approximate
solution of Ay = r. Assume that A is nonsingular and ρ satisfies ‖A−1‖p ≤ ρ for
any p ∈ {1, 2,∞}. Then

max(|ỹ| − ε2,o) ≤ |A−1b− x̃| ≤ |ỹ|+ ε2, (13)

where ε2 := ρ‖r −Aỹ‖pe.

From Proposition 4.4 after obtaining an upper bound ρ of ‖A−1‖p, we can
also set an appropriate stopping criterion

min
1≤i≤n, ỹi �=0

|ỹi| ≥ ρ‖r −Aỹ‖p (14)

for the iterative refinement. To treat the case ỹj = 0 for some j, we add the
following criterion for improving ỹ:

|x̃j | ≥ u · ρ‖r −Aỹ‖p for all j such that ỹj = 0, (15)

which ensures the maximum accuracy of x̃j in the working precision.

Remark 4.5. In general, it is difficult for this kind of verification method to prove
xj = 0 for some j, which means x̃j + ỹj = 0 and (ε1)j = 0 (or (ε2)j = 0). If
xj = 0, then the best possible inclusion by floating-point numbers (except zero) of
xj is [−u,u], where u denotes the underflow unit. In IEEE 754 double precision
arithmetic, u = 2−1074. Therefore, if xj = x̃j = 0, then the iterative refinement
tries to improve ỹ until ỹj enters the underflow range, and finally it falls into
infinite loops. To avoid it, the maximum number of loops should be set for the
iterative refinement.
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5. Algorithm for tight enclosures

Based on Proposition 4.4 and the discussions in the previous sections, we now
present a fast algorithm of calculating tight and componentwise error bounds of
an approximate solution of a linear system. Here, we express the algorithm in
Matlab-style, which is an almost executable INTLAB code.

Algorithm 5.1. Let A be a real nonsingular n×n matrix. Suppose a preconditioner
R for A, an upper bound α of ‖I −RA‖∞, an upper bound ρ of ‖A−1‖∞, and an
approximate solution x̃ of a linear system Ax = b are given. Then the following
algorithm calculates componentwise lower and upper error bounds ε and ε of x̃ such
that o ≤ ε ≤ |A−1b− x̃| ≤ ε.
function [x̃, ε, ε] = vclss(A, b,R, x̃, α, ρ)
r = AccDot(b −Ax̃); % accurate residual b−Ax̃
y = R ∗ r; % y = y(1): initial estimated error
for loop = 1 : mloop % mloop: maximum number of loops

[rs] = AccDot(b−A(x̃+ y), [ ]); % accurate inclusion of b−A(x̃+ y)
setround(+1) % rounding upwards
β = ρ ∗ norm(mag([rs]), p); % ρ‖b−A(x̃ + y)‖p ≤ β
setround(0) % rounding to nearest
q = find(abs(y) < 102 ∗ β); % find all indeces where |yi| < 102β
if isempty(q) % check whether |yi| ≥ 102β for all i
break

elseif all(u ∗ abs(x(q)) ≥ 102 ∗ β) % check whether u|xj | ≥ 102β
break % for all j ∈ q

end
z = R ∗ mid([rs]); % correction term for y
y = stag(y, z, α); % staggered correction of y

end
[t] = midrad(0, β ∗ e); % [t] = [−β, β] · e
m = size(y, 2); % y =

∑m
j=1 y

(j)

for j = m : −1 : 1 % inclusion of y + [−β, β] · e
[t] = [t] + y(j);

end
ε = mag([t]); % upper bound of |A−1b− x̃|
ε = max(mig([t]),o); % lower bound of |A−1b− x̃|

In Algorithm 5.1, the instruction stag is to be assumed as the staggered cor-
rection. Let us briefly explain how it works, although the details are not shown
in this paper; Suppose a preconditioner R for A satisfies ‖I − RA‖∞ ≤ α. Let
y =

∑m
j=1 y

(j) with y(j) ∈ Fn and {y(1)
i , y

(2)
i , . . . , y

(m)
i } being a non-overlapping

sequence2 for all i. Let z ∈ Fn be a correction term obtained by an iterative refine-
ment for improving y. Then, w = stag(y, z) updates y to w =

∑M
j=1 w

(j) ≈ y + z

2Basically this means y(j+1) ≤ 2uy(j) . For detail, see [7, 9].
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with {w(1)
i , w

(2)
i , . . . , w

(M)
i }, M ≤ m+1 being also a non-overlapping sequence for

all i. Since z is obtained by the iterative refinement, the normwise relative error
of z is basically less than α. Assume that u|y(m)

i | > α|zi| with zi 
= 0 for some
i is satisfied. If we only update y(m) to w(m) = fl(y(m) + z), then the rounding
error ψ := (y(m)

i + zi)− fl(y(m)
i + zi) is discarded, whereas ψ still contains a useful

information as the correction term. In that case, we should use the information as
w(m+1) := (y(m) + z)− fl(y(m) + z).

We stress that all the computations in Algorithm 5.1 can be done in O(n2)
flops, so that the algorithm works fast compared with the verification of the non-
singularity of A.

6. Numerical examples

In this section, we present some results of numerical experiments showing the per-
formance of our proposed method. We use a PC with an Intel Core Duo 1.06GHz
CPU and Matlab 7.4.0 (R2007a) with INTLAB 5.3. All computations are done in
IEEE 754 double precision, so that u = 2−53 ≈ 10−16.

We compare the quality of componentwise error bounds of approximate so-
lutions of linear systems by the following methods:

(Method-P) The proposed method based on Proposition 4.4 (Algorithm 5.1)

(Method-Y) The method based on Theorem 4.1

(Method-O) The method based on Theorem 4.2

We denote componentwise lower and upper error bounds obtained by Method-
P as e and e, respectively. We also denote componentwise (upper) error bounds
obtained by Method-Y and Method-O as eY and eO, respectively. The exact error
is denoted as e∗. For ẽ ∈ {e, eY, eO}, we define the maximum ratio between e∗ and
ẽ by

Ratio(e∗, ẽ) := max
1≤i≤n,e∗

i �=0

ẽi

|e∗i |
≥ 1.

If Ratio(e∗, ẽ) ≈ 1, then it can be said that ẽ is a tight error bound. Moreover, we
define the maximum relative distance between e and e by

RelDist(e, e) := max
1≤i≤n,ei �=0

ei − ei

ei
.

For example, if RelDist(e, e) < 0.1, then it can be said that e and e are tight
error bounds. In practice, we do not normally know the exact error e∗, so that
RelDist(e, e) is useful to know how tight the error bounds are.

For all examples, we compute approximate inverses by the Matlab’s function
inv. In all the methods, the accurate dot product [7, 9] is used for calculating the
residuals b−Ax̃ and b−A(x̃ + y).
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Table 2. Error bounds of approximate solutions

Case n cond(A) Ratio(e∗, eY) Ratio(e∗, eO) Ratio(e∗, e) RelDist(e, e) # iter

1-1 100 106 ≈ 1 ≈ 1 ≈ 1 1.03 × 10−5 1
1-2 100 1012 ≈ 1 ≈ 1 ≈ 1 2.43 × 10−7 3
2-1 10 106 ≈ 1 ≈ 1 ≈ 1 2.18 × 10−16 5
2-2 10 106 ≈ 1 8.99 × 102 ≈ 1 4.04 × 10−16 4
3-1 10 1012 ≈ 1 2.84 × 107 ≈ 1 1.97 × 10−16 11
3-2 10 1012 8.28 × 104 5.39 × 1014 ≈ 1 4.04 × 10−16 9
4 100 1012 7.26 × 1095 7.35 × 10104 ≈ 1 4.40 × 10−16 28

We treat the following cases:

Case 1-1. A is generated as a random matrix with n = 100 and cond2(A) ≈ 106

by a Higham’s test matrix randsvd and b := (1, 1, . . . , 1)T . Set x̃ := fl(R · b).
Case 1-2. Similar to Case 1-1 except cond2(A) ≈ 1012.

Case 2-1. A and b are generated by the algorithm in [4] with n = 10, cond2(A) ≈
106 and a part of the exact solution x∗(1 : n) = t+ δt where

t = (1, 10, 102, . . . , 10n−1)T and |δti| ≤ u|ti|.

Set x̃ := fl(R · b). Note that dim(A) becomes a little greater than n because
of setting the desired exact solution.

Case 2-2. Similar to Case 2-1 except x̃ := fl(x∗), which is the best possible approx-
imate solution in double precision.

Case 3-1. Similar to Case 2-1 except cond2(A) ≈ 1012. In this case, x̃ := fl(R ·b), so
that x̃ becomes a poor approximate solution in the sense of relative accuracy.

Case 3-2. Similar to Case 3-1 except x̃ := fl(x∗).

Case 4. Similar to Case 3-2 except n = 100.

The results are displayed in Table 2. The notation “# iter” means the number of
iterations for the iterative refinement in Method-P.

From the results, we can observe the following facts:

• In usual cases such as Cases 1-1 and 1-2, all the methods can normally give
tight error bounds.
• Method-Y seems to be more robust than Method-O.
• In the case where there is a big difference in the order of magnitude in the

exact solution, the relative error bounds obtained by Method-Y and Method-
O become poor if an approximate solution is accurate.
• Method-P can always give tight error bounds. The number of iterations for

the iterative refinement in Method-P increases depending on the condition
number of A and the difference in the order of magnitude in the approximate
solution.
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7. Conclusions

We proposed a fast method of calculating both lower and upper error bounds of
an approximate solution of a linear system. The proposed method is based on the
iterative refinement and the staggered correction. Using the proposed method, we
can obtain the error bounds which are as tight as needed. As a result, we can verify
that the obtained error bounds are of high quality. By the numerical results, we
confirmed that the proposed verification method worked as expected.
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Abstract. By using the operators introduced by D.D. Stancu in 1969, we show
that the results obtained in the papers [1], [2] and [5] follow from the properties
of these operators. We also present some improvements and generalizations
of the results obtained in the above mentioned papers.
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1. Introduction

Throughout this paper we denote by n a natural number greater than 1. The
divided difference [x1, x2, x3; f ] of a function f ∈ R[0,1] on the distinct nodes,
x1, x2, x3 ∈ [0, 1] is defined by

[x1, x2, x3; f ] =
f(x1)

(x1 − x2)(x1 − x3)
+

f(x2)
(x2 − x3)(x2 − x1)

+
f(x3)

(x3 − x1)(x3 − x2)
.

A function f ∈ R[0,1] is said be convex (concave) if

[x1, x2, x3; f ] ≥ 0 ([x1, x2, x3; f ] ≤ 0)

for every distinct nodes x1, x2, x3 ∈ [0, 1].
If f ∈ R[0,1] is a convex (concave) function then

[x1, x2; f ] ≤ [x2, x3; f ] ([x1, x2; f ] ≥ [x2, x3; f ])

for every distinct nodes x1, x2, x3 ∈ [0, 1] such that

x1 < x2 < x3,

where

[x1, x2; f ] =
f(x2)− f(x1)

x2 − x1
.



182 I. Gavrea

J.-Ch. Kuang ([2]) proved the following result:

Theorem 1.1. ([2]) Let f be a strictly increasing convex (concave) function on [0, 1].
Then:

1
n

n∑
k=1

f

(
k

n

)
>

1
n+ 1

n+1∑
k=1

f

(
k

n+ 1

)
>

∫ 1

0

f(x)dx. (1.1)

G. Bennett and G. Jameson [1] investigate the monotonicity of various aver-
ages of the values of a convex (concave) function at n equally spaced points. More
precisely, they defined

An(f) =
1

n− 1

n−1∑
r=1

f
( r
n

)
(n ≥ 2)

Bn(f) =
1

n+ 1

n∑
r=0

f
( r
n

)
(n ≥ 1)

sn(f) =
1
n

n−1∑
r=0

f
( r
n

)
(n ≥ 1)

Sn(f) =
1
n

n∑
r=1

f
( r
n

)
(n ≥ 1)

and proved the following theorems:

Theorem 1.2. ([1]) If f is a convex function on the open interval (0, 1), then An(f)
increases with n. If f is concave, An(f) decreases with n.

Theorem 1.3. ([1]) If f is convex on [0, 1], then Bn(f) decreases with n. If f is
concave, Bn(f) increases with n.

Theorem 1.4. ([1]) Suppose that f is monotonic and either convex or concave on
[0, 1]. Then, with the above notation, sn(f) increases with n, and Sn(f) decreases.

We remark that Theorem 1.1 ([2]) is the same with Theorem 1.4 ([1]).
F. Qi [4] proves the following result.

Theorem 1.5. ([4]) Let f be a strictly increasing convex (concave) function on [0, 1].
Then

1
n

n+k∑
i=k+1

f

(
i

n+ k

)
>

1
n+ 1

n+k+1∑
i=k+1

f

(
i

n+ k + 1

)
>

∫ 1

0

f(x)dx, (1.2)

where k is a fixed natural number.

Recently, F. Qi and B.-N. Guo ([5]) obtain the following result:

Theorem 1.6. ([5]) Let f be an increasing (concave) function defined on [0, 1] and
{ai}i∈N be an increasing positive sequence such that the sequence{

i

(
ai

ai+1
− 1

)}
i∈N
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decreases ({i ((ai+1/ai)− 1)}i∈N increases), then

1
n

n∑
i=1

f

(
ai

an

)
≥ 1
n+ 1

n+1∑
i=1

f

(
ai

an+1

)
≥

∫ 1

0

f(t)dt. (1.3)

Let Bn(f ;x) be the well-known Bernstein polynomial of degree n defined by

Bn(f ;x) =
n∑

k=0

f(k/n)pn,k(x), (1.4)

where

pn,k(x) =
(
n

k

)
xk(1 − x)n−k, k = 0, . . . , n.

The following identity can be found in [3] (p. 309, Th. 4.1).

For n = 1, 2, . . . we have

Bn(f ;x)−Bn+1(f ;x) =
x(1 − x)
n(n+ 1)

n−1∑
k=0

[
k

n
,
k + 1
n+ 1

,
k + 1
n

; f
]
pn−1,k(x). (1.5)

From (1.5) we obtain

x(1− x)
n(n+ 1)

min
k=0,n−1

[
k

n
,
k + 1
n+ 1

,
k + 1
n

; f
]
≤ Bn(f ;x)−Bn+1(f ;x) (1.6)

≤ x(1 − x)
n(n+ 1)

max
k=0,n−1

[
k

n
,
k + 1
n+ 1

,
k + 1
n

; f
]

.

Integrating between 0 and 1 both sides of (1.6) we get

1
6n(n+ 1)

min
k=0,n−1

[
k

n
,
k + 1
n+ 1

,
k + 1
n

; f
]

(1.7)

≤ 1
n+ 1

n∑
k=0

f

(
k

n

)
− 1
n+ 2

n+1∑
k=0

f

(
k

n+ 1

)
≤ 1

6n(n+ 1)
max

k=0,n−1

[
k

n
,
k + 1
n+ 1

,
k + 1
n

; f
]
.

Certainly, inequalities (1.6) and (1.7) improve the result from the Theorem
1.4 relative to Sn(f).

The aim of this paper is to improve the results from the Theorems 1.1–1.6,
using operators of Bernstein-Stancu type.
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2. Main results

In 1969 D.D. Stancu [6] considered the following linear positive operators, B(α,β)
n

defined by:

B(α,β)
n (f ;x) =

n∑
k=0

f

(
k + α

n+ β

)
pn,k(x), (2.1)

where 0 ≤ α ≤ β and pn,k(x) =
(
n

k

)
xk(1− x)n−k, k = 0, 1, . . . , n.

In the following we will establish some properties of the operators defined by
(2.1) for some particular values of the parameters α, β and n ≥ 2.

Theorem 2.1. Let f : (0, 1)→ R be a convex function. Then

B
(1,2)
n−1 (f ;x)−B(1,2)

n−2 (f ;x) ≥
n−2∑
k=0

pn−2,k(x)
nx − k − 1
n(n+ 1)

[
k + 1
n

,
k + 1
n+ 1

; f
]

(2.2)

B
(1,2)
n−1 (f ;x)−B(1,2)

n−2 (f ;x) ≤ x(n− 1)− (n− 2)x2

n(n+ 1)

[
n− 1
n

,
n

n+ 1
; f

]
(2.3)

− (1 − x)((n− 2)x+ 1)
n(n+ 1)

[
1
n
,

1
n+ 1

; f
]
.

Proof. Using the definition (2.1) of the operator B(1,2)
n we get

B
(1,2)
n−1 (f ;x)−B(1,2)

n−2 (f ;x) (2.4)

=
n−1∑
k=0

(
n− 1
k

)
xk(1− x)n−k−1f

(
k + 1
n+ 1

)

−
n−2∑
k=0

(
n− 2
k

)
xk(1− x)n−k−2((1− x) + x)f

(
k + 1
n

)

=
n−1∑
k=0

(
n− 1
k

)
xk(1− x)n−k−1f

(
k + 1
n+ 1

)

−
n−2∑
k=0

(
n− 2
k

)
xk(1− x)n−k−1f

(
k + 1
n

)

−
n−1∑
k=1

(
n− 2
k − 1

)
xk(1− x)n−k−1f

(
k

n

)
.

Using the equality (
n

k

)
=

(
n− 1
k − 1

)
+

(
n− 1
k

)
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(2.4) becomes

B
(1,2)
n−1 (f ;x)−B(1,2)

n−2 (f ;x)

=
n−1∑
k=1

(
n− 2
k − 1

)
xk(1 − x)n−k−1

(
f

(
k + 1
n+ 1

)
− f

(
k

n

))

−
n∑

k=1

(
n− 2
k − 1

)
xk−1(1− x)n−k

(
f

(
k

n

)
− f

(
k

n+ 1

))
or, in terms of divided differences

B
(1,2)
n−1 (f ;x)−B(1,2)

n−2 (f ;x) (2.5)

=
1

n(n+ 1)

(
n−2∑
k=0

(
n− 2
k

)
xk+1(1 − x)n−k−2(n− k − 1)

[
k + 1
n

,
k + 2
n+ 1

; f
])

−
n−2∑
k=0

(
n− 2
k

)
xk(1 − x)n−k−1(k + 1)

[
k + 1
n

,
k + 1
n+ 1

; f
]
.

But [
k

n
,
k + 1
n+ 1

; f
]
≥

[
k

n
,

k

n+ 1
; f

]
and so, from (2.5) we have

B
(1,2)
n−1 (f ;x)−B(1,2)

n−2 (f ;x) ≥ 1
n(n+ 1)

n−2∑
k=0

pn−2,k(x)(n−x−k−1)
[
k + 1
n

,
k + 1
n+ 1

; f
]
.

Inequality (2.2) is proved.

Since f is a convex function we have[
k

n
,
k + 1
n+ 1

; f
]
≤

[
n− 1
n

,
n

n+ 1
; f

]
[
k

n
,

k

n+ 1
; f

]
≥

[
1
n
,

1
n+ 1

; f
] k = 1, n− 1 (2.6)

From (2.5) and (2.6) we get (2.3).

Corollary 2.2. Let f : (0, 1)→ R be a convex function on (0, 1) and α ≥ 0 a fixed
number. Then the following inequalities hold:

Γ(n)
Γ(n+α+1)

n−1∑
k=0

Γ(k+α+1)
k!

f

(
k+1
n+1

)
− Γ(n−1)

Γ(n+α)

n−2∑
k=0

Γ(k+α+1)
k!

f

(
k+1
n

)

≥ α

n(n+1)
· Γ(n−1)
Γ(n+α+1)

n−2∑
k=0

(n−k−1)
Γ(k+α+1)

k!

[
k+1
n

,
k+1
n+1

;f
]

(2.7)



186 I. Gavrea

1
n

n−1∑
k=0

Γ(k + α+ 1)
k!

f

(
k + 1
n+ 1

)
− n+ α

n(n− 1)

n−2∑
k=0

Γ(k + α+ 1)
k!

f

(
k + 1
n

)

≥
α

[
1
n
,

1
n+ 1

; f
]

(α+ 1)(α+ 2)
· Γ(α+ n+ 1)

(n+ 1)!
(2.8)

1
n

n−1∑
k=0

Γ(k + α+ 1)
k!

f

(
k + 1
n+ 1

)
− n+ α

n(n− 1)

n−2∑
k=0

Γ(k + α+ 1)
k!

f

(
k + 1
n

)
≤

(
α+ n+ 1

(α+ 2)(α+ 3)

[
n− 1
n

,
n

n+ 1
; f

]
−

(
(n− 1)α+ n+ 1

(α+ 1)(α+ 2)(α+ 3)

[
1
n
,

1
n+ 1

; f
])

Γ(α+ n+ 1)
(n+ 1)!

)
. (2.9)

Proof. If we multiply (2.2) and (2.3) by xα and then integrate between 0 and 1 we
get (2.7) and (2.9). The relation (2.8) follows from (2.7) and from the inequality[

k + 1
n

,
k + 1
n+ 1

; f
]
≥

[
1
n
,

1
n+ 1

; f
]
, k = 0, n− 2.

Remark 2.3. If α = 0 then, from inequalities (2.8) and (2.9) we obtain

0 ≤ 1
n

n−1∑
k=0

f

(
k + 1
n+ 1

)
− 1
n− 1

n−2∑
k=0

f

(
k + 1
n

)
(2.10)

≤ 1
6

([
n− 1
n

,
n

n+ 1
; f

]
−

[
1
n
,

1
n+ 1

; f
])

for every convex function f on (0, 1).

Theorem 2.4. For any function f : [0, 1]→ R, the following equality holds:

B
(β+1,β+1)
n−1 (f ;x)−B(β+1,β+1)

n (f ;x) = (1− x)
n−1∑
i=0

pn−1,i(x)Ei,n,β(f) (2.11)

where

Ei,n,β(f) =
1

(n+ β)(n+ β + 1)

(
(i+ β + 1)

[
i+ β + 1
n+ β + 1

,
i+ β + 1
n+ β

; f
]

(2.12)

−i
[
i+ β

n+ β
,
i+ β + 1
n+ β + 1

; f
])

.

Proof. Using the definition of B(α,β)
n (f ;x) we obtain successively:

B
(β+1,β+1)
n−1 (f ;x)−B(β+1,β+1)

n (f ;x)

=
n−1∑
i=0

pn−1,i(x)f
(
i+ β + 1
n+ β

)
−

n∑
i=0

pn,i(x)f
(
i+ β + 1
n+ β + 1

)
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=
n−1∑
i=0

(
n− 1
i

)
xi(1− x)n−i−1[(1− x) + x]f

(
i+ β + 1
n+ β

)

−
n∑

i=0

(
n

i

)
xi(1 − x)n−if

(
i+ β + 1
n+ β + 1

)

=
n−1∑
i=0

(
n− 1
i

)
xi(1− x)n−if

(
i+ β + 1
n+ β

)

+
n−1∑
i=0

(
n− 1
i

)
xi+1(1 − x)n−i−1f

(
i+ β + 1
n+ β

)

−
n∑

i=0

[(
n− 1
i

)
+

(
n− 1
i− 1

)]
xi(1 − x)n−if

(
i+ β + 1
n+ β + 1

)

=
n−1∑
i=0

(
n− 1
i

)
xi(1− x)n−if

(
i+ β + 1
n+ β

)
+

n∑
i=1

(
n− 1
i− 1

)
xi(1 − x)n−if

(
i+ β

n+ β

)

−
n∑

i=0

(
n− 1
i

)
xi(1 − x)n−if

(
i+ β + 1
n+ β + 1

)

−
n∑

i=0

(
n− 1
i− 1

)
xi(1 − x)n−if

(
i+ β + 1
n+ β + 1

)

=
n−1∑
i=0

(
n− 1
i

)
xi(1− x)n−i

[
f

(
i+ β + 1
n+ β

)
− f

(
i+ β + 1
n+ β + 1

)]

−
n−1∑
i=0

(
n− 1
i− 1

)
xi(1 − x)n−i

[
f

(
i+ β + 1
n+ β + 1

)
− f

(
i+ β

n+ β

)]

= (1− x)
n−1∑
i=0

pn−1,i(x)
{
f

(
1 + β + 1
n+ β

)
− f

(
i+ β + 1
n+ β + 1

)
− i

n− i

[
f

(
i+ β + 1
n+ β + 1

)
− f

(
i+ β

n+ β

)]}

= (1− x)
n−1∑
i=0

pn−1,i(x)
{

i+ β + 1
(n+ β)(n+ β + 1)

[
i+ β + 1
n+ β + 1

,
i+ β + 1
n+ β

; f
]

− i

(n+ β)(n+ β + 1)

[
i+ β

n+ β
,
i+ β + 1
n+ β + 1

; f
]}

= (1− x)
n−1∑
i=0

pn−1,i(x)Ei,n,β(f).
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Corollary 2.5. Let f be a convex function on [0, 1]. Then

B
(β+1,β+1)
n−1 (f ;x)−B(β+1,β+1)

n (f ;x) (2.13)

≥ (1 − x)(β + 1)
(n+ β)(n+ β + 1)

n−1∑
i=0

[
i+ β

n+ β
,
i+ β + 1
n+ β + 1

; f
]
pn−1,i(x)

≥ (1 − x)(β + 1)
(n+ β)(n+ β + 1)

[
β

n+ β
,

β + 1
n+ β + 1

; f
]

and

B
(β+1,β+1)
n−1 (f ;x)−B(β+1,β+1)

n (f ;x) (2.14)

≤ 1
(n+ β)(n+ β + 1)

{
(n+ β)xn−1(1− x)

[
n+ β

n+ β + 1
, 1; f

]}
+

n−2∑
i=0

pn−1,i(x)((i+ β + 1− (n+ β)x)
[
i+ β + 1
n+ β

,
i+ β + 2
n+ β + 1

; f
]
.

Proof. The convexity of the function f implies that[
i+ β + 1
n+ β + 1

,
i+ β + 1
n+ β

; f
]
≥

[
i+ β

n+ β
,
i+ β + 1
n+ β + 1

; f
]
. (2.15)

From (2.11) and (2.15) we obtain (2.13). Relation (2.11) can be written in
the following form:

B
(β+1,β+1)
n−1 (f ;x)−B(β+1,β+1)

n (f ;x)

=
1− x

(n+ β)(n + β + 1)

(
n∑

i=1

(i+ β)
[

i+ β

n+ β + 1
,
i+ β

n+ β
; f

]
pn−1,i−1(x)

−
n−1∑
i=0

i

[
i+ β

n+ β
,
i+ β + 1
n+ β + 1

; f
]
pn−1,i(x)

)
or

B
(β+1,β+1)
n−1 (f ;x)−B(β+1,β+1)

n (f ;x) (2.16)

=
1− x

(n+ β)(n + β + 1)

{
(n+ β)

[
n+ β

n+ β + 1
, 1; f

]
xn−1

+
n−1∑
i=1

(i+ β)
[

i+ β

n+ β + 1
,
i+ β

n+ β
; f

]
pn−1,i−1(x)

−
n−1∑
i=1

i

[
i+ β

n+ β
,
i+ β + 1
n+ β + 1

; f
]
pn−1,i(x)

}
.



Operators of Bernstein-Stancu Type. . . 189

Inequality (2.14) follows from (2.16) and from the inequality[
i+ β

n+ β + 1
,
i+ β

n+ β
; f

]
≤

[
i+ β

n+ β
,
i+ β + 1
n+ β + 1

; f
]
, i = 1, n− 1.

Corollary 2.6. Let f be a convex function on [0, 1]. For every α, β ≥ 0 we have

An ≤
(n− 1)!

Γ(n+ α+ 1)

n−1∑
i=0

Γ(i+ α+ 1)
i!

f

(
i+ β + 1
n+ β

)
(2.17)

− n!
Γ(n+ α+ 2)

n∑
i=0

Γ(i+ α+ 1)
i!

f

(
i+ β + 1
n+ β + 1

)
≤ Bn

where

An =
β + 1

(α+ 1)(α+ 2)
· 1
(n+ β)(n+ β + 1)

[
β

n+ β
,

β + 1
n+ β + 1

; f
]

Bn =
β + 1

(α+ 1)(α+ 2)
· 1
(n+ β)(n+ β + 1)

[
n+ β

n+ β + 1
, 1; f

]
.

Proof. We note that∫ 1

0

xα(B(β+1,β+1)
n−1 (f ;x)−B(β+1,β+1)

n (f ;x))dx (2.18)

=
(n− 1)!

Γ(n+ α+ 1)

n−1∑
i=0

Γ(i+ α+ 1)
i!

f

(
i+ β + 1
n+ β

)

− n!
Γ(n+ α+ 2)

n∑
i=0

Γ(i+ α+ 1)
i!

f

(
i+ β + 1
n+ β + 1

)
.

Now, if we multiply (2.13) by xα and then integrate between 0 and 1 we get∫ 1

0

xα(B(β+1,β+1)
n−1 (f ;x)− B(β+1,β+1)

n (f ;x))dx ≥ An. (2.19)

From (2.18) and (2.19) we obtain the first inequality from (2.17).
For the proof of the second inequality from (2.17) we note that∫ 1

0

xαpn−1,i(x)(i + β + 1− (n+ β)x)dx > 0, i = 0, 1, . . . , n− 1. (2.20)

If we multiply (2.13) by xα and then integrate between 0 and 1 we get:∫ 1

0

xα(B(β+1,β+1)
n−1 (f ;x)−B(β+1,β+1)

n (f ;x))dx (2.21)

≤ 1
(n+ β)(n + β + 1)

{
(n+ β)

[
n+ β

n+ β + 1
, 1; f

]∫ 1

0

xn+α−1(1− x)dx

+
n−2∑
i=0

∫ 1

0

xαpn−1,i(x)(i + β + 1− (n+ β)x)dx
[
i+ β + 1
n+ β

,
i+ β + 2
n+ β + 1

; f
]}

.



190 I. Gavrea

By the inequality[
i+ β + 1
n+ β

,
i+ β + 2
n+ β + 1

; f
]
≤

[
n+ β

n+ β + 1
, 1; f

]
, i = 0, 1, . . . , n− 2

and from inequalities (2.21) and (2.20), we obtain∫ 1

0

xα(B(β+1,β+1)
n−1 (f ;x)−B(β+1,β+1)

n (f ;x))dx ≤ Bn

the proof is completed.

Remark 2.7. For α = 0, (2.17) becomes

β + 1
2(n+ β)(n+ β + 1)

[
β

n+ β
,

β + 1
n+ β + 1

; f
]

(2.22)

≤ 1
n

n∑
i=1

f

(
i+ β

n+ β

)
− 1
n+ 1

n+1∑
i=1

f

(
iβ

n+ β + 1

)
≤ β + 1

2(n+ β)(n+ β + 1)

[
n+ β

n+ β + 1
, 1; f

]
which is an improvement of Theorem 1.5 ([4]), in the case when f is a convex
function.

Let us suppose that f is a concave function. Then g = −f is a convex
function and, so the inequalities obtained change sign. For example, if f is a
concave function then (2.22) becomes

β + 1
2(n+ β)(n+ β + 1)

[
β

n+ β
,

β + 1
n+ β + 1

; f
]

(2.23)

≥ 1
n

n∑
i=1

f

(
i+ β

n+ β

)
− 1
n+ 1

n∑
i=1

f

(
i+ β

n+ β + 1

)
≥ β + 1

2(n+ β)(n + β + 1)

[
n+ β

n+ β + 1
, 1; f

]
.

Inequality (2.23) is an improvement of Theorem 1.5 ([4]) in the case when f
is a concave function.

In the following we will consider more general Bernstein-Stancu type opera-
tors. More precisely, let us consider a fixed natural number n, n ≥ 1 and let xi,n,
i = 0, 1, . . . , n, n+ 1 be nodes on [0, 1] such that

0 ≤ x0,n ≤ x1,n < · · · < xn,n ≤ 1. (2.24)

We also assume that, for every k = 1, 2, . . . , n we have

xk,n+1 < xk,n < xk+1,n+1, n ∈ N∗. (2.25)

Now, we consider the operator Sn : R[0,1] → Πn defined by

Sn(f ;x) =
n∑

k=0

pn,k(x)f(xk,n). (2.26)
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The operator Sn defined by (2.26) is called an operator of Bernstein-Stancu
type relative to the nodes xk,n.

Theorem 2.8. The following equality is true:

Sn−1(f ;x)− Sn(f ;x) (2.27)

= (1 − x)
n−1∑
k=1

pn−1,k(x)
{

(xk,n−1 − xk,n)[xk,n, xk,n−1; f ]

− k(xk,n − xk−1,n−1)
n− k [xk−1,n−1, xk,n; f ]

}
+ (1− x)n(f(x0,n−1)− f(x0,n)) + xn(f(xn−1,n−1)− f(xn,n)).

Proof. The proof of this theorem is similar to Theorem 2.4.

Corollary 2.9. If the nodes xk,n satisfy the additional requirement

x0,n−1 ≥ x0,n

xn−1,n−1 ≥ xn,n

xk,n−1 − xk,n ≥
k

n− k (xk,n − xk−1,n−1),

(2.28)

k = 1, 2, . . . , n− 1, n ∈ N∗, then for any increasing convex function f we have

1
n

n∑
k=1

f(xk−1,n−1) ≥
1

n+ 1

n+1∑
k=1

f(xk−1,n). (2.29)

Proof. By (2.27) and (2.28) we obtain

Sn−1(f ;x) ≥ Sn(f ;x) (2.30)

for any increasing convex function. If we integrate both sides of (2.30) between 0
and 1 we obtain (2.29).

The following result follows from (2.29).

Corollary 2.10. Let (an)n∈N∗ be an increasing sequence, an ∈ [0, 1], n ∈ N∗, such
that {

n

(
1− an

an+1

)}
n∈N∗

is an increasing sequence. Then for any increasing convex function on [0, 1] we
have:

1
n

n∑
k=1

f

(
ak

an

)
≥ 1
n+ 1

n+1∑
k=1

f

(
ak

an+1

)
.
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1. Introduction

Given an integer s ≥ 0, denote by Cs the Banach space of all functions f : [−1, 1]→
R which are continuous together with their derivatives up to the order s, endowed
with the norm:

‖f‖s = ‖f (s)‖+
∑s−1

j=0
|f (j)(0)|, if s ≥ 1

‖f‖0 = ‖f (0)‖ = ‖f‖,
where ‖ · ‖ means the uniform norm.

Let M = {xk
n : n ≥ 1, 1 ≤ k ≤ in} be a triangular node matrix, where

(in)n≥1 is a strictly increasing sequence of natural numbers and −1 ≤ x1
n < x2

n <
· · · < xin

n ≤ 1.
Let us consider, too, a given linear continuous functional A : Cs → R and

the approximating functionals Dn : Cs → R, n ≥ 1

Dnf =
m∑

j=0

jn∑
i=1

akj
n f

(j)(xk
n), f ∈ Cs, (1.1)

where m is a given integer, with 0 ≤ m ≤ s and akj
n are real coefficients.
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In this paper, we shall deal with approximation procedures described by the
formulas

Af = Dnf +Rnf ; n ≥ 1, f ∈ Cs, (1.2)
where Rnf , n ≥ 1, are the approximation errors.

We shall assume that these procedures are of interpolatory type, i.e.,

AP = DnP (1.3)

for each polynomial P whose degree does not exceed qn = (m+ 1)in − 1.
Many approximation procedures are comprised within the framework of the

scheme described by the relations (1.2) and (1.1): pointwisely Lagrange interpo-
lation (Af = f(x0), with a given x0 ∈ [−1, 1]), numerical differentiation (with
s ≥ 1, m ≤ s − 1 and Af = f (m+1)(x0), usually x0 = 0), quadrature procedures

(Af =
∫ 1

−1

w(x)f(x)dx, with a given weight-function w(x)).

The aim of this paper is to establish various types of inequalities regarding
the norm of the approximating functionals Dn corresponding to the numerical
differentiation, in order to characterize the topological structure of the set of un-
bounded divergence of the family {Dn : n ≥ 1}, using the following principle of
the condensation of singularities of Functional Analysis:

1.1. Theorem. [2], [10]. If X is a Banach space, Y is a normed space and (An)n≥1,
An : X → Y is a sequence of continuous linear operators with lim sup

n→∞
‖An‖ =∞,

then the set of singularities of the family {An : n ≥ 1},
S(An) = {x ∈ X : lim sup

n→∞
‖Anx‖ =∞}

is superdense in X.
We recall that a subset S of a topological space T is said to be superdense in

T if it is residual, uncountable and dense in T .
In what follows, we denote by Mi, i ≥ 1, some positive constants, which do

not depend on n.

2. Numerical differentiation on Chebyshev node matrix

Firstly, take m = 0 and Af = f ′(0), so (1.1) and (1.2) become the numerical
differentiation formulas (shortly n.d.f.):

f ′(0) =
in∑

k=1

ak
nf(xk

n) +Rnf, f ∈ Cs, s ≥ 1, n ≥ 1. (2.1)

Let us consider, for each α > −1, the Jacobi node matrix Mα, whose nth
row contains the roots of the ultraspherical Jacobi polynomial P (α)

n , n ≥ 1.
R.A. Lorentz [3] has established the convergence of the n.d.f. (2.1) in the case

of the matrix of extreme Chebyshev nodes (i.e., α = 1/2) and their divergence for
equidistant nodes in [−1, 1]. In fact, the set of all functions in C1 for which the
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n.d.f. (2.1) unboundedly diverge is superdense in the Banach space (C1, ‖ · ‖1) in
the case of equidistant nodes, while the convergence in the case of Jacobi nodes

hold for each α ≥ −1
2
, [4]. On the same topic, we remark the results of K. Balázs,

[1], J. Szabados and P. Vértesi [7], [9].
In this section, we shall take m = 1, s = 2 and Af = f ′′(0), f ∈ Cs. The

approximation procedures described by (1.2) and (1.1) lead to the n.d.f.:⎧⎨⎩ f ′′(0) = Dnf +Rnf ; f ∈ C2, n ≥ 1

Dnf =
∑in

k=1
ak

nf(xk
n) +

∑in

k=1
bknf

′(xk
n)

(2.2)

Further, suppose that the node matrix Mα is the even Chebyshev node

matrix MT , i.e., α = −1
2

and in = 2n, so xk
n, 1 ≤ k ≤ 2n, are the roots of

the Chebyshev polynomial T2n(x) = cos(2n arccosx), −1 ≤ x ≤ 1, n ≥ 1. Putting

tk2n = sin
2k − 1

4n
π, 1 ≤ k ≤ n, it is easy to see that xn+k

n = tk2n, xn−k+1
n = −tk2n =

t−k
2n , 1 ≤ k ≤ n, soMT = {±tk2n : n ≥ 1, 1 ≤ k ≤ n}. Writing a2

2n, a−k
2n instead of

an+k
n , an−k+1

n , 1 ≤ k ≤ n, respectively, and bk2n, b−k
2n instead of bk2n, b−k

2n , 1 ≤ k ≤ n,
respectively, the n.d.f. (2.2) become:

f ′′(0) = D2nf +R2nf, f ∈ C2, n ≥ 1 (2.3)

D2nf =
∑

|k|≤n, k �=0

ak
2nf(tk2n) +

∑
|k|≤n, k �=0

bk2nf
′(fk

2n). (2.4)

Now, let hj
2n,0(t) and hj

2n,1(t) be the fundamental polynomials of Hermite in-
terpolation, [6]. Taking into account the interpolatory condition (1.3) with respect
to n.d.f. (2.3) and (2.4), we get

ak
2n = A(hk

2n,0) = (hk
2n,0)

′′(0),

bk2n = A(hk
2n,1) = (hk

2n,1)
′′(0), |k| ≤ n, k 
= 0,

i.e., (see also [5]):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ak
2n = 2 · T ′′2n(tk2n)

(T ′2n(tk2n))3

[
T2n(0)T ′′2n(0)

tk2n

+
T 2

2n(0)
(tk2n)3

]
+

2
(T ′2n(tk2n))2

[
T2n(0)T ′′2n(0)

(tk2n)2
+ 3 · T

2
2n(0)

(tk2n)4

]
, 1 ≤ k ≤ n

a−k
2n = ak

2n, 1 ≤ k ≤ n

(2.5)

⎧⎪⎨⎪⎩ bk2n = − 2
(T ′2n(tk2n))2

[
T2n(0)T ′′2n(0)

tk2n

+
T 2

2n(0)
(tk2n)3

]
, 1 ≤ k ≤ n

b−k
2n = −bk2n, 1 ≤ k ≤ n.

(2.6)

Let α2n =
n∑

k=1

|ak
2n| and β2n =

n∑
k=1

|bk2n|, n ≥ 1.
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In order to establish estimations concerning the approximation error Rnf
and to characterize the topological structure of the unbounded set of n.d.f. (2.3),
we need two-sided estimates for α2n and β2n.

2.1. Lemma. The following inequalities

M1n
2 ≤ α2n ≤M2n

2 (2.7)

M3n lnn ≤ β2n ≤M4n lnn (2.8)

hold for sufficiently large n’s, i.e., α2n ∼ n2 and β2n ∼ n lnn.

Proof. It is easy to verify the relations

T ′2n(tk2n) = (−1)n+k · 2n ·
(

cos
2k − 1

4n
π

)−1

,

T ′′2n(tk2n) = (−1)n+k · 2ntk2n

(
cos

2k − 1
4n

π

)−3

,

so, according to (2.5) and (2.6) we obtain:⎧⎪⎪⎨⎪⎪⎩
ak
2n =

−1
2n2(tk2n)n

(4n2(tk2n)2 − 3 + 2(tk2n)2)

bk2n =
1− (tk2n)2

2n2(tk2n)3
(4n2(tk2n)2 − 1).

(2.9)

The classic inequalities

2
π
x ≤ sinx ≤ x, 0 ≤ x ≤ π

2
(2.10)

show that {
a1
2n > 0; ak

2n < 0, ∀ k ≥ 2, if n ≥ 2
bk2n > 0, ∀ n ≥ 1, ∀ k ∈ {1, 2, 3, . . . , n}. (2.11)

It follows from (2.9) and (2.11):

|ak
2n| =

2
(tk2n)2

+
1

n2(tk2n)2
− 3

2n2(tk2n)4
. (2.12)

Relation (2.10), written as
1
x
≤ 1

sinx
≤ π

2x
, 0 < x <

π

2
, combined with

(2.12), gives:

n2

π2

(
32

(2k − 1)2
+

16
(2k − 1)2n2

− 24π2

(2k − 1)4

)
≤ |ak

2n| ≤ n2

(
8

(2k − 1)2
+

4
n2(2k − 1)2

)
; k ≥ 2.
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Adding, we obtain, for sufficiently large n’s:
n∑

k=2

|ak
2n| ≤ 8n2

n∑
k=2

1
(2k − 1)2

+ 4
n∑

k=2

1
(2k − 1)2

≤M5n
2; (2.13)

n∑
k=2

|ak
2n| ≥ 8n2

2n∑
k=2

1
(2k − 1)2

(
4
π2
− 3

1
(2k − 1)2

)
(2.14)

≥ 8n2

(
4
π2
− 1

3

) n∑
k=2

1
(2k − 1)2

≥M6n
2.

On the other hand, we have:

a1
2n ≥

1
2n2
· 256n4

π4

[
3− (2n2 + 1)

π2

16n2

]
≥ 8n2

π4
(48− 3π2) (2.15)

a1
2n ≤

1
2n2

[
3− (2n2 + 1)2 · 1

4n2

]
16n4 = 2(10n2 − 1) ≤ 20n2. (2.16)

Inequalities (2.11), (2.13), (2.14), (2.15) and (2.16) prove (2.7).
Similarly, taking into account (2.11) and writing bk2n of (2.9) as

bk2n =
2
tk2n

− 2tk2n +
1

2n2tk2n

− 1
2n2(tk2n)3

, 1 ≤ k ≤ n, (2.17)

we get, in accordance with (2.10):
n∑

k=1

|bk2n| ≤ 4n
n∑

k=1

1
2k − 1

+
1
2n

n∑
k=1

1
2k − 1

≤M7n lnn+M8
lnn
n

;
n∑

k=1

|bk2n| ≥
8n
π

n∑
k=1

1
2k − 1

− π

n

n∑
k=1

(2k − 1)− nπ
n∑

k=1

1
(2k − 1)3

≥M9n lnn−M10n−M11n.

So, (2.8) is valid, which completes the proof.

Now, we are in a position to prove the main result of this paper.

2.2. Theorem. The set of all functions in C2 for which the n.d.f. described by (2.3)
and (2.4) unboundedly diverge, i.e.,{

f ∈ C2 : lim sup
n→∞

|D2nf | =∞
}
,

is superdense in the Banach space (C2, ‖ · ‖2).

Proof. Let δk
2n =

1
3

min{tk2n − tk−1
2n ; tk+1

2n − tk2n}, 1 ≤ k ≤ n − 1, with t02n = 0,

δn
2n =

1
3

min{tn2n − tn−1
2n , 1− tn2n} and δ2n = max{δk

2n : 1 ≤ k ≤ n}.
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Define the functions gk
2n : [−1, 1]→ R and g2n : [−1, 1]→ R, n ≥ 1, 1 ≤ k ≤ n

as follows:

gk
2n(t) = (t− tk2n)[(t− tk2n)3 − (δk

2n)3]

g2n(t) =

{
gk
2n(t)signbk2n, if |t− tk2n| ≤ δk

2n, 1 ≤ k ≤ n
0; otherwise.

It is a simple exercise to show that g2n ∈ C2 and

|g′′2n(t)| ≤ |(gk
2n)′′(t)| ≤ 24(δk

2n)5, |t| ≤ 1, n ≥ 1,

so:
‖g2n‖2 = |g2n(0)|+ |g′2n(0)|+ ‖g′′2n‖ ≤ 24(δk

2n)5 ≤ 24δ52n, (2.18)

because g2n(0) = g′2n(0) = 0.

Now, introduce the functions f2n ∈ C2 by f2n =
1

24δ52n

g2n, n ≥ 1.

The relations g2n(tk2n) = 0, g′2n(tk2n) = −(δk
2n)6, together with (2.18) give:

D2nf2n = −δ2n

24

n∑
k=1

(
δk
2n

δ2n

)6

|bk2n|. (2.19)

The relations tk2n − tk−1
2n = 2 sin

π

4n
sin

n− k + 1
2n

π, 1 ≤ k ≤ n and (2.10),

combined with the definitions of δk
2n and δ2n lead to:

M11
n− k + 1

n2
≤ δk

2n ≤M12
n− k + 1

n2
, 1 ≤ k ≤ n (2.20)

M11 ≤ nδ2n ≤M12, (2.21)

because δk
2n ≥ δk−1

2n , 1 ≤ k ≤ n− 1, so δ2n = δ12n.
We deduce from (2.19), (2.20) and (2.21):

|D2nf2n| ≥M13
1
n

n∑
k=1

(
n− k + 1

n

)6

|bk2n| (2.22)

=
M13

n

n∑
k=1

(
1− k − 1

n

)6

|bk2n| ≥
M13

n

n∑
k=1

(
1− 6

k − 1
n

)
|bk2n|

taking into account Bernoulli’s inequality (1− x)m ≥ 1−mx, x ∈ [0, 1], m ≥ 1.
The inequalities (2.22) and (2.8) give:

|D2nf2n| ≥
M13

n
β2n −

M14

n2

n∑
k=1

(k − 1)|bk2n|. (2.23)

It follows from (2.17), (2.11) and (2.10):

|bk2n| = bk2n ≤
2
t22n

+
1

2n2tk2n

≤ 4n
2k − 1

+
2

n(2k − 1)
,
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so:
n∑

k=1

(k − 1)|bk2n| ≤
(

4n+
2
n

) n∑
k=1

k − 1
2k − 1

≤
(

4n+
2
n

)
· n
2
≤M15n

2,

which, combined with (2.23) and (2.8), leads to the inequality:

|D2nf2n| ≥
M13

n
M3n lnn− M14

n2
M15n

2 ≥M16 lnn. (2.24)

Using (2.24) we obtain

‖D2n‖ = sup{|D2nf | : f ∈ C2, ‖f‖ ≤ 1} ≥ |D2nf2n| ≥M16 lnn, (2.25)

for sufficiently large n’s.
Finally, apply Theorem 1.1, with X = C2, Y = R, An = D2n. In accordance

with (2.25) we have:

lim sup
n→∞

‖An‖ = lim sup
n→∞

‖D2n‖ =∞,

which completes the proof.

2.3. Remark. It follows from Jackson’s type inequalities, [8], that there exists a
polynomial P of degree equal to qn and a positive M17 so that the relations

‖f (j) − p(j)‖ ≤M17q
−r
n ω

(
f (r);

1
qn

)
; f ∈ Cr; r ≥ s; 0 ≤ j ≤ r

hold for sufficiently large n’s, where ω(g; ·) is the modulus of continuity of a func-
tion g ∈ C.

From here, we deduce, similarly to [5],

|Rnf | ≤M18n
−r(M19n+ α2n + β2n · n)ω

(
f (r);

1
n

)
,

which gives, in accordance with Lemma 2.1:

|Rnf | ≤M20n
2−r(lnn)ω

(
f (r);

1
n

)
, r ≥ 2.

So, we can state:

2.3.1. The n.d.f. described by (2.3) and (2.4) are convergent on the class Cr, r ≥ 3,
i.e., lim

n→∞D2nf = Af = f ′′(0), ∀ f ∈ Cr.

2.3.2. The n.d.f. described by (2.3) and (2.4) are convergent on the subset of all
functions f ∈ C2 whose second derivatives satisfy a Dini-Lipschitz condition

lim
δ↘0

ω(f ′′; δ) ln δ = 0.
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1. Introduction

The basic idea of absolute continuity is to control the behavior of a function f :
X → R via an estimate of the form

|f | ≤ εq + δ(ε)p, for every ε > 0, (1)

where p, q : X → R are suitably chosen nonnegative functions. Technically, this
means that for every ε > 0, one can find δ(ε) > 0 such that |f(x)| ≤ εq(x) +
δ(ε)p(x), for all x ∈ X . Thus the property of absolute continuity can be seen as a
relaxation of the condition of domination

|f | ≤ p.
In this respect (1) allows us to interpolate between two extreme cases: |f | ≤ q and
|f | ≤ p, one appearing as “too weak” and the other “too special”.

Measure Theory offers us the important case of σ-additive measures defined
on a σ-algebra T (of subsets of a set T ). In this context, a measure m : T → C

is said to be absolutely continuous with respect to a positive measure μ : T → R

(abbreviated, m  μ) if for every ε > 0 there is a η = η(ε) > 0 such that for all
A ∈ T with μ(A) ≤ η we have

|m(A)| ≤ ε.
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Since m has finite variation |m| (see [10], Theorem 19.13 (v)), the condition m μ
yields

|m(A)| ≤ ε+
|m| (T )
η

μ(A) for all A ∈ T and ε > 0, (2)

that represents the case of (1) when X = T , f = m, q = 1, p = μ and δ =
|m| (T )/η. In turn, (2) yields the absolute continuity of m with respect to μ since
for every A ∈ T with

μ(A) ≤ εη(ε/2)
2 |m| (T )

we have |m(A)| ≤ ε/2 + ε/2 = ε.

The main criterion of absolute continuity in the above context is provided by
the membership of negligible sets:

m μ if and only if μ(A) = 0 implies m(A) = 0. (3)

See [10], Exercise 19.67, p. 339.
The subject of absolutely continuous functions in Real Analysis can be cov-

ered by the above discussion since a function f : [a, b]→ R is absolutely continuous
if and only if it is of the form

f(x) = f(a) +m([a, x]),

for a suitable Borel measure m which is absolutely continuous with respect to the
Lebesgue measure.

The theory of inequalities offers many interesting applications where the con-
cept of absolute continuity is instrumental. In particular this is the case of the
famous Hardy-Landau-Littlewood inequalities. See [18].

The aim of this paper is to illustrate the usefulness of the notion of absolute
continuity in other areas of mathematics such as Functional Analysis, Approxima-
tion Theory and PDE. In particular we show how this notion allows us to derive
some quantitative facts from different qualitative properties.

Most of the results we discuss below are not in full generality, but it was our
option to emphasize ideas rather than technical results.

2. Absolute continuity in Functional Analysis

Inspired by the case of Measure Theory, the author initiated in the early 70s an
operator theoretical generalization of the concept of absolute continuity, which
proved to be useful in understanding the properties of weakly compact operators
defined on some special Banach spaces such as C(K) and its relatives; as usually,
C(K) represents the Banach space (endowed with the sup norm) of all continuous
real-valued functions defined on a compact Hausdorff space K.

The basic fact, which led to the concept of absolutely continuous operator,
is as follows:
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Theorem 1. (C.P. Niculescu [15], [16]). Suppose that E is a Banach space. A
bounded linear operator T ∈ L(C(K), E) is weakly compact if and only if there
exists a positive Borel measure μ on K such that for every ε > 0 one can find a
δ(ε) > 0 such that

‖T (f)‖ ≤ ε ‖f‖+ δ(ε)
∫

K

|f | dμ, (4)

whenever f ∈ C(K).

Proof. If T is weakly compact, then the set

K = {|x′ ◦ T | : x′ ∈ E′, ‖x′‖ ≤ 1}

is relatively weakly compact in C(K)′ (see [19], p. 119); according to the Riesz
representation theorem (see [10], p. 177), the functionals on a space C(K) can be
viewed as Borel regular measures, so here modulus means variation. By a classical
result due to A. Grothendieck [9], the relative weak compactness of K means that
for every bounded sequence of Borel measurable functions fn : K → R which is
pointwise convergent to 0 we have

lim
n→∞

∫
K

fndν = 0, uniformly for ν ∈ K. (5)

Claim: For every ε > 0 there exist a number η(ε) > 0 and a finite subset Kε ⊂ K
such that every Borel measurable function f : K → R with 0 ≤ f ≤ 1 and
supν∈Kε

∫
K
fdν ≤ η(ε) verifies the inequality

sup
ν∈K

∫
K

fdν ≤ ε.

Once the claim is proved, we can easily infer that the measure

μ =
∞∑

n=1

(
1
2n

sup
ν∈K1/n

ν

)
verifies a condition of the following form,

f ∈ C(K), ‖f‖ ≤ 1,
∫

K

|f |dμ ≤ η̃(ε)⇒ ‖T (f)‖ ≤ ε, (6)

where η̃(ε) > 0 can be obtained from η(ε) by rescaling. Now it is clear that T
verifies the inequality (4) for δ(ε) = ‖T ‖ /η̃(ε).

The Claim can be proved by reductio ad absurdum. In fact, if the contrary is
true, then there are a number ε0 > 0 and two sequences (fn)n (of Borel measurable
functions on K) and (νn)n (of elements of K) such that

i) 0 ≤ fn ≤ 1
ii) sup1≤k≤n

∫
K
fndνk ≤ 2−n−1

iii)
∫

K
fndνn+1 ≥ ε0
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for all n. Put gn = sup {fk : k ≥ n} and g = inf {gn : n ≥ 1} . Then

sup
1≤k≤n

∫
K

gndνk ≤ 2−n,

so by (5) we infer that ∫
K

gdνk = lim
n→∞

∫
K

gndνk = 0

uniformly for k ∈ N, a fact that contradicts the inequalities iii) above. Thus the
proof of Claim is done.

Suppose now that T verifies the estimate (4). We shall show that T maps the
weak Cauchy sequences of elements of C(K) into norm convergent sequences in E
(whence T is weakly compact by a result due to Grothendieck [9]). In fact, if (fn)n

is a weak Cauchy sequence in C(K), then by Lebesgue’s dominated convergence
theorem we get

lim
m,n→∞

∫
K

|fm − fn| dμ = 0

and thus from (4) we conclude that (Tfn)n is a norm Cauchy sequence. �
Since the inclusion L2(μ) ⊂ L1(μ) is continuous, the inequality (4) yields the

following one,

‖T (f)‖ ≤ ε ‖f‖+ δ(ε)
(∫

K

|f |2 dμ
)1/2

. (7)

According to the Banach-Saks theorem, every bounded sequence in a Hilbert space
has a Cesàro converging subsequence. Thus from Theorem 1 we infer the following
interesting property of weakly compact operators defined on a C(K) space:

Corollary 1. If T ∈ L(C(K), E) is weakly compact, then T maps every bounded
sequence into a sequence with Cesàro converging subsequences.

Another direct consequence of Theorem 1 is as follows:

Corollary 2. Suppose that T ∈ L(C(K), E) is an weakly compact operator and
(fn)n is a bounded sequence of functions in C(K) which converges pointwise to a
function f ∈ C(K). Then ‖T (fn)− T (f)‖ → 0.

For further developments related to Theorem 1 see our papers [14], [15], [16],
[17], and the monograph of J. Diestel, H. Jarchow and A. Tonge [7], Ch. 15.

The property of absolute continuity is also instrumental in establishing the
Radon-Riesz property for Lp-spaces with 1 ≤ p <∞. See Corollary 3 below, which
is a consequence of following result due to H. Brezis and E.H. Lieb [4], about the
“missing term” in Fatou’s Lemma:

Theorem 2. Let (fn)n be a sequence of functions in a space Lp(μ) with p ∈ [1,∞),
which verifies the following conditions:

i) sup ‖fn‖ <∞; ii) fn → f almost everywhere.
Then f ∈ Lp(μ) and limn→∞ (‖fn‖p − ‖fn − f‖p) = ‖f‖p .
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Corollary 3. Assume that (fn)n is a sequence of functions in a space Lp(μ) (p ∈
[1,∞)) such that:

i) ‖fn‖ → ‖f‖ ;
ii) fn → f almost everywhere.

Then ‖fn − f‖ → 0.

Proof of Theorem 2. We start by noticing the following inequality (that illustrates
a property of absolute continuity): For each ε > 0 there is a δ = δ(ε) > 0 such
that

||a+ b|p − |a|p| ≤ ε |a|p + δ|b|p (8)

for all a, b ∈ R.

This is clear for p = 1. For p > 1 we shall use the convexity of the function
|x|p . Indeed,

|a+ b|p ≤ (|a|+ |b|)p =
(

(1− λ)
|a|

(1 − λ)
+ λ
|b|
λ

)p

≤ |a|p +
(
(1− λ)1−p − 1

)
|a|p + λ1−p|b|p

for all a, b ∈ R and λ ∈ (0, 1). For λ = 1−(1 + ε)−1/(p−1), this inequality yields (8).
The membership of f to the space Lp(μ) is motivated by Fatou’s lemma.

According to (8),

gn,ε = (||fn|p − |fn − f |p − |f |p| − ε |fn − f |p)+

≤ (1 + δ) |f |p

so that by the dominated convergence theorem we get

lim
n→∞

∫
gn,εdμ = 0.

Taking into account the inequality

||fn|p − |fn − f |p − |f |p| ≤ gn,ε + ε |fn − f |p ,

we infer that

lim sup
n→∞

∫
||fn|p − |fn − f |p − |f |p|dμ ≤ ε sup

n∈N

‖fn − f‖p ,

whence limn→∞ (‖fn‖p − ‖fn − f‖p) = ‖f‖p. �

In what follows we shall concentrate on the connection between absolute
continuity and the Arzelà-Ascoli criterion of compactness. Roughly speaking, this
criterion asserts that in a function space, the property of being relatively compact
means the boundedness plus a certain kind of equi-membership.

If M is a metric space, then an estimate of the form

|f(s)− f(t)| ≤ Cd(s, t) for all s, t ∈M
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is characteristic for the Lipschitz functions f : M → R. The following relaxation
in terms of absolute continuity

|f(s)− f(t)| ≤ ε+ δ(ε)d(s, t) for all s, t ∈M (9)

represents precisely the condition of uniform continuity. Indeed, a function f :
M → R is uniformly continuous if and only if there is a nonnegative function
ω : [0,∞)→ R such that ω(0) = 0, ω is continuous at x = 0 and

|f(s)− f(t)| ≤ ω (d(s, t)) for all s, t ∈M.

As a consequence of (9) we easily infer the well-known fact that every uni-
formly continuous function f : R→ R verifies an estimate of the form

|f(x)| ≤ a |x|+ b.

A characterization of the metric spaces on which every continuous function
is also uniformly continuous appeared in [11].

In the special case when M is also compact, the role of the distance function
in (9) can be taken by any separating function for M . Recall that a separating
function is a nonnegative continuous function γ : M ×M → R such that

γ(s, t) = 0 implies s = t.

If M is a compact subset of RN , and f1, . . . , fm ∈ C(M) is a family of
functions which separates the points of M (in particular this is the case of the
coordinate functions pr1, . . . ,prN ), then

γ(s, t) =
m∑

k=1

(fk(s)− fk(t))2 (10)

is a separating function.
More generally, all separating parametric in General Topology (see [2]) are

also separating functions.
The separating functions play an important role in Approximation Theory.

This will be detailed in the next section.

Lemma 1. If K is a compact metric space, and γ : K × K → R is a separat-
ing function, then any real-valued continuous function f defined on K verifies an
estimate of the following form

|f(s)− f(t)| ≤ ε+ δ(ε)γ(s, t) for all s, t ∈ K.
Proof. In fact, if the estimate above doesn’t work, then for a suitable ε0 > 0 one
can find two sequences (sn)n and (tn)n of elements of K such that

|f(sn)− f(tn)| ≥ ε0 + 2nγ(sn, tn) (11)

for all n. Without loss of generality we may assume (by passing to subsequences)
that both sequences (sn)n and (tn)n are convergent, respectively to s and t. Since
f is bounded, the inequality (11) forces s = t. Indeed,

|f(sn)− f(tn)|
2n

≥ γ(sn, tn)→ γ(s, t) ≥ 0.
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On the other hand, from (11) we can infer that |f(s)− f(t)| ≥ ε0 (and thus s 
= t).
This contradiction shows that the conclusion of Lemma 1 is true. �

Lemma 1 is the topological counterpart of a well-known result in Measure
Theory (precisely, of the equivalence (3)).

Now, a careful inspection of the proof of the Arzelà-Ascoli criterion of com-
pactness in a space C(K) shows that this criterion can be reformulated in terms
of absolute continuity as follows:

Theorem 3. If K is a compact metric space, then a bounded subset A of the Banach
space C(K) is relatively compact if and only if for every ε > 0 there is a number
δ = δ(ε) > 0 such that

|f(s)− f(t)| ≤ ε+ δ(ε)d(s, t) for all s, t ∈ K and f ∈ A.
Here the role of the distance function can be taken by any separating function
for K.

We leave the details to the reader, as an exercise.

The above discussion can be easily extended to the case of functions with
values in a complete metric space. Besides, the result of Theorem 3 remains valid
for many other spaces, for example, for the space Cr([a, b]), of all functions f :
[a, b]→ R which are r-times continuously differentiable, endowed with the norm

‖f‖r =
r∑

k=0

sup
a≤t≤b

∣∣∣f (k)(t)
∣∣∣ .

In fact, Cr([a, b]) is isomorphic to a subspace of C([a, b]×{0, . . . , r}). This remark
can be used to prove that the canonical inclusion

j : Cr+1([a, b])→ Cr([a, b]) (12)

is compact.

A variant of Theorem 3 in the case of functions defined on a noncompact
domain is as follows:

Theorem 4. Given a bounded open subset Ω of RN , we denote by BC(Ω) the
Banach space of all continuous bounded functions f : Ω → R, endowed with the
sup norm. A bounded subset A of BC(Ω) is relatively compact if and only if for
every ε > 0 there is a number δ = δ(ε) > 0 such that

|f(s)− f(t)| ≤ ε+ δ(ε)d(s, t) for all s, t ∈ Ω and f ∈ A.

3. Absolute continuity and approximation theory

We start with the beautiful result of P.P. Korovkin [12], which put in a new
perspective the whole subject of approximation in the case of continuous functions.
In order to state this result we need a preparation.
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Suppose that E is a Banach lattice. A linear operator T : E → E is called
positive if

x ≥ 0 implies T (x) ≥ 0.

Such an operator is always bounded. See [19], p. 84. For E = C(K) this fact can
be checked easily since

−‖f‖ · 1 ≤ f ≤ ‖f‖ · 1 implies − ‖f‖ · T (1) ≤ T (f) ≤ ‖f‖ · T (1)

and thus ‖T (f)‖ ≤ ‖T (1)‖ · ‖f‖ .

Theorem 5. (P.P. Korovkin [12]). Consider the functions e0(x) = 1, e1(x) = x,
e2(x) = x2 in C([0, 1]), and suppose there is given a sequence

Tn : C([0, 1])→ C([0, 1]) (n ∈ N)

of positive linear operators such that Tn(f) → f uniformly on [0, 1] for f ∈
{e0, e1, e2}. Then

Tn(f)→ f uniformly on [0, 1]

for every f ∈ C([0, 1]).

The proof is both simple and instructive, so we shall include here the details.
The main ingredient is the fact that every function f ∈ C([0, 1]) verifies an estimate
of the form

|f(s)− f(t)| ≤ ε+ δ(ε)|s− t|2.
See Lemma 1. Then

|f − f(t)e0| ≤ εe0 + δ(ε)
(
e2 − 2te1 + t2e0

)
which implies that |Tn(f)(s)− f(t)Tn(e0)(s)| is bounded above by

εTn(e0)(s) + δ(ε)[Tn(e2)(s) − 2tTn(e1)(s) + t2Tn(e0)(s)]

for every s ∈ [0, 1]. Therefore

|Tn(f)(t)− f(t)| ≤ |Tn(f)(t)− f(t)Tn(e0)(t)|+ |f(t)| · |Tn(e0)(t) − 1|
≤ εTn(e0)(t) + δ(ε)[Tn(e2)(t)− 2tTn(e1)(t) + t2Tn(e0)(t)]

+ ‖f‖ · |Tn(e0)(t)− 1|

whence we conclude that Tn(f)→ f uniformly on [0, 1].
The above argument (based on Lemma 1) is actually strong enough to cover

a much more general result:

Theorem 6. Suppose that K is a compact metric space and γ is a separating func-
tion for M. If Tn : C(K)→ C(K) (n ∈ N) is a sequence of positive linear operators
such that Tn(1)→ 1 uniformly and

Tn(γ(·, t))(t)→ 0 uniformly in t, (13)

then Tn(f)→ f, uniformly for each f ∈ C(K).
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Proof. In fact, taking into account Lemma 1, we have

|Tn(f)(t) − f(t)| ≤ |Tn(f)(t)− f(t)Tn(1)(t)|+ |f(t)| · |Tn(1)(t)− 1|
≤ Tn (|f − f(t)|) (t) + ‖f‖ · |Tn(1)(t)− 1|
≤ Tn (ε+ δ(ε)γ(·, t)) (t) + ‖f‖ · |Tn(1)(t) − 1|
≤ εTn(1)(t) + δ(ε)Tn(γ(·, t))(t) + ‖f‖ · |Tn(1)(t)− 1|

and the conclusion follows from our hypothesis. �
Theorem 6 is a variant of a recent result by H.E. Lomeli and C.L. Garcia [13]

(based on a slightly different concept of separating function).
In order to understand how Theorem 6 extends the Theorem of Korovkin,

let us consider the case were M is a compact subset of RN and

γ(s, t) =
m∑

k=1

(fk(s)− fk(t))2

is the separating function (associated to a family of functions f1, . . . , fm ∈ C(M)
which separates the points of M). In this case the condition (13) of uniform con-
vergence can be obtained by imposing that

Tn(f)→ f uniformly for t ∈M,

for each of the functions f ∈
{
1, f1, . . . , fm, f

2
1 , . . . , f

2
m

}
. For M = [0, 1] the iden-

tity separates the points of M, a fact that leads to the Theorem of Korovkin.

Corollary 4. (Weierstrass Approximation Theorem). If f belongs to C([a, b]), then
there exists a sequence of polynomials that converges to f uniformly on [a, b].

Proof. We can restrict to the case where [a, b] = [0, 1] (by performing the linear
change of variable t = (x− a)/(b − a)). Then we apply Theorem 6 for M = [0, 1],
γ(s, t) = (s− t)2 and Tn the nth Bernstein operator,

Tn(f)(t) =
n∑

k=0

(
n

k

)
tk(1− t)n−kf (k/n) .

In fact,

Tn(γ(·, t))(t) =
t(1 − t)

n
for all t ∈ [0, 1]. This computation is part of Bernstein’s classical proof of the
Weierstrass Approximation Theorem. See [6], pp. 290–292. �
Corollary 5. (Féjer Approximation Theorem). The Cesàro averages of the Fourier
partial sums of a continuous function f of period 2π converge uniformly to f.

Proof. We have to consider the Féjer kernels

Kn(t) =

⎧⎪⎨⎪⎩ 1
2n

(
sin nt

2

sin t
2

)2

if t 
= 2kπ, k ∈ Z

n
2 if t = 2kπ, k ∈ Z.
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A direct computation shows that

Kn(t) =
1
2

+
1
n

n−1∑
m=1

m∑
k=1

cos kt.

The result of Corollary 5 follows from Theorem 6, applied to M = R mod 2π,
γ(s, t) = 1− cos(s− t) and the sequence of operators

Tn(f)(t) =
1
π

∫ π

−π

Kn(t− s)f(s)ds. �

Since Lemma 1 does not work for all metric spaces, we cannot use arbitrary
separating functions in the case of noncompact metric spaces. However we can
still formulate a Korovkin type criterion of convergence for operators acting on
the Banach lattice BUC(M) (of all uniformly continuous bounded functions on
the metric space M, endowed with the sup norm).

Theorem 7. Suppose that M is a metric space and

Tn : BUC(M)→ BUC(M) (n ∈ N)

is a sequence of positive linear operators such that Tn(1)→ 1 uniformly and

Tn(d(·, t)α)(t)→ 0 uniformly in t, (14)

for a positive real number α. Then Tn(f)→ f, uniformly for each f ∈ BUC(M).

The usual technique of mollification for approximating the continuous func-
tions by smooth functions can be derived as a consequence of Theorem 7. In
the next theorem, a mollifier is meant as any nonnegative continuous function
ϕ : RN → R such that

ϕ(x) ≤ C(1 + ‖x‖)−p for some C > 0 and p > N

and ∫
RN

ϕ(x)dx = 1.

The standard mollifier is the function ϕ(x) = (2π)−N/2
e−‖x‖

2/2.

Theorem 8. If ϕ : RN → R is a mollifier and f ∈ BUC(RN ), then

nN

∫
RN

ϕ (n(y − x)) f(y)dy → f(x)

uniformly on RN .

Proof. We apply Theorem 7 for M = RN , α ∈ (0, p−N) arbitrarily fixed, and the
sequence of operators

Tn(f)(x) = nN

∫
RN

ϕ (n(y − x)) f(y)ds.
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In order to prove that the condition (14) is fulfilled we need the following
estimate:

‖y − x‖α ϕ (n(y − x)) ≤ nN ‖y − x‖α

C(1 + n ‖y − x‖)p

≤ nN−α

C(1 + n ‖y − x‖)p−α
.

Then

0 ≤ Tn(‖· − x‖α)(x) = nN

∫
RN

ϕ (n(y − x)) ‖y − x‖α ds

≤ C′ 1
nα

∫
RN

ds

(1 + n ‖y − x‖)p−α
,

where C′ is a constant and the integral in the right-hand side is convergent because
p−α > N . Consequently Tn(‖· − x‖α)(x)→ 0 uniformly, as n→∞, and the proof
is complete. �

The technique of mollification works outside the framework of continuous
functions. It would be interesting to enlarge the theory above to encompass some
spaces of differentiable functions (for example, the Sobolev spaces). A nice account
of the most significant developments in the Korovkin theory (including Bauer’s
approach [3] in terms of Choquet boundary) can be found in the monograph [1].

4. Absolute continuity and PDE

There are many instances when the concept of absolute continuity appears in
PDE (see [8]) but we shall restrict here to the remarkable theorem of F. Rellich
concerning the compact embedding of Sobolev spaces.

Theorem 9. If Ω is a bounded open subset of RN then the canonical injection

i : H̊m+1(Ω)→ H̊m(Ω)

is compact.

Recall that H̊m(Ω) is the closure of C∞c (Ω) into Hm(Ω), the Sobolev space
of all functions f : Ω→ R that have weak derivatives Dαf ∈ L2

(
RN

)
of all orders

α with |α| ≤ m. The natural norm on Hm(Ω) (and thus on H̊m(Ω)) is

||f ||Hm =

⎛⎝ ∑
|α|≤m

∫
Ω

|Dαf(x)|2 dx

⎞⎠1/2

.

Before to enter the details of Theorem 9, we shall discuss an easy (though
important) application, related to a property of absolute continuity of compact
operators.
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Lemma 2. (Ehrling’s Lemma). Assume that E,F,G are Banach spaces. If T ∈
L(E,F ) is a compact linear operator and S ∈ L(F,G) is an one-to-one bounded
linear operator, then for every ε > 0 there is a δ(ε) > 0 such that

‖Tx‖ ≤ ε ‖x‖+ δ(ε) ‖S(Tx)‖ for all x ∈ E.

The proof is similar to the proof of Lemma 1, and we shall omit the details.

By combining Ehrling’s Lemma with Theorem 9 we get the estimate

||f ||Hm−1 ≤ ε ||f ||Hm + δ(ε) ||f ||L2 for all f ∈ H̊m(Ω),

which yields

||f ||Hm−1 ≤
1
2

⎛⎝ ∑
|α|=m

∫
Ω

|Dαf(x)|2 dx

⎞⎠1/2

+
1
2
||f ||Hm−1 + δ(1/2) ||f ||L2

that is,

||f ||Hm−1 ≤

⎛⎝ ∑
|α|=m

∫
Ω

|Dαf(x)|2 dx

⎞⎠1/2

+ 2δ(1/2) ||f ||L2 .

Therefore the norm ||·||Hm is equivalent to the norm

|f |Hm =

⎛⎝ ∑
|α|=m

∫
Ω

|Dαf(x)|2 dx

⎞⎠1/2

+ ||f ||L2 .

The above renorming argument is typical for many Banach spaces of differ-
entiable functions. See [8].

The usual proof of Theorem 9 (and its generalization to the case of Sobolev
spaces W̊m,p(Ω)) is obtained via the mollification technique described in Theorem
8. However it is possible to provide an alternative argument based on Fourier
transform.

Indeed, H̊m(Ω) can be viewed as a subspace of H̊m(RN ). The later space has
a very simple description in terms of Fourier transform:

H̊m(RN ) =
{
f ∈ L2

(
RN

)
:
∫

RN

(
1 + ||ξ||2

)m ∣∣∣f̂(ξ)
∣∣∣2 dξ <∞}

Moreover, ||·||Hm on H̊m(RN ) is equivalent to the norm || |·| ||Hm , where

|| |f | ||Hm =
(∫

RN

(
1 + ||ξ||2

)m ∣∣∣f̂(ξ)
∣∣∣2 dξ)1/2

.

This gives us a constant C (m) > 0 such that ||·||Hm ≤ C(m)|| |·| ||Hm .
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Let ε > 0. Then there is number A > 0 such that 1 + ||ξ||2 ≥ C(m− 1)/ε for
||ξ|| ≥ A. Consequently, for every sequence (fk)k of functions in the unit ball of
H̊m(RN ) we have

||fj − fk||2Hm−1 ≤ C(m− 1)
∫

RN

(
1 + ||ξ||2

)m−1 ∣∣∣f̂j(ξ)− f̂k(ξ)
∣∣∣2 dξ (15)

≤ ε
∫
‖ξ‖>A

(
1 + ||ξ||2

)m ∣∣∣f̂j(ξ) − f̂k(ξ)
∣∣∣2 dξ

+ δ(ε)
∫
‖ξ‖≤A

∣∣∣f̂j(ξ)− f̂k(ξ)
∣∣∣2 dξ.

The Fourier transform of every function in H̊m(Ω) is holomorphic on CN , and the
Cauchy-Schwarz inequality shows that for every compact subset K ⊂ CN there is
a constant M = M(K) > 0 such that

sup
ξ∈K

∣∣∣f̂(ξ)
∣∣∣ ≤M ||f ||Hm

for all functions f ∈ H̊m(Ω). Therefore the functions (f̂k)k are uniformly bounded
on the compact subsets of CN . Because they are holomorphic, a compactness
principle due to P. Montel assures us that a subsequence should be uniformly
convergent on each compact subset of CN . See [5], p. 209. Taking into account
the estimate (15), that subsequence should also verify lim sup

j,k→∞
||fj − fk||2Hm−1 = 0.

The proof of Theorem 9 is done. �
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Normalized Jensen Functional,
Superquadracity and Related Inequalities

Shoshana Abramovich and Silvestru S. Dragomir

Abstract. In this paper we generalize the inequality

MJn (f, x,q) ≥ Jn (f,x,p) ≥ mJn (f, x,q)

where

Jn (f,x,p) =
n∑

i=1

pif (xi) − f

( n∑
i=1

pixi

)
,

obtained by S.S. Dragomir for convex functions. We show that for the class
of functions that we call superquadratic, strictly positive lower bounds of
Jn (f, x,p)−mJn (f,x,q) and strictly negative upper bounds of Jn (f,x,p)−
MJn (f,x,q) exist when the functions are also nonnegative. We also provide
cases where we can improve the bounds m and M for convex functions and
superquadratic functions. Finally, an inequality related to the Čebyšev func-
tional and superquadracity is also given.

Mathematics Subject Classification (2000). 26D15.

Keywords. Convex functions, superquadratic functions, Jensen inequality, Jen-
sen Steffensen inequality, Čebyšev inequality.

1. Introduction

In this paper we consider the normalized Jensen functional

Jn (f,x,p) =
n∑

i=1

pif (xi)− f
( n∑

i=1

pixi

)
, (1.1)

where
∑n

i=1 pi = 1, f : I −→ R, and I is an interval in R.

This type of functionals was considered by S.S. Dragomir in [7], where the
following theorem was proved:
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Theorem 1. Consider the normalized Jensen functional (1.1) where f : C −→
R is a convex function on the convex set C in a real linear space, and x =
(x1, . . . , xn) ∈ Cn, p = (p1, . . . , pn), q = (q1, . . . , qn) are nonnegative n-tuples
satisfying

∑n
i=1 pi = 1,

∑n
i=1 qi = 1, qi > 0, i = 1, . . . , n. Then

MJn (f,x,q) ≥ Jn (f,x,p) ≥ mJn (f,x,q) , (1.2)

provided

m = min
1≤i≤n

(
pi

qi

)
, M = max

1≤i≤n

(
pi

qi

)
.

In the following section we show that for a class of functions we call
superquadratic, defined below, strictly positive lower bounds of Jn (f,x,p) −
mJn (f,x,q) and strictly negative upper bounds of Jn (f,x,p) − MJn (f,x,q)
are obtained when the functions are also nonnegative. We also show when (1.2)
holds for m∗ larger than min

1≤i≤n

(
pi

qi

)
, and M∗ smaller than max

1≤i≤n

(
pi

qi

)
. Although

x = (x1, . . . , xn), xi ∈ I, i = 1, . . . , n is not necessarily a monotonic n-tuple, in
order to get better bounds than m and M as defined in Theorem 1, both in the
superquadratic case and in the convex case, we use Jensen-Steffensen’s inequality
that states that if f : I −→ R is convex, where I is an interval in R, then

n∑
i=1

aif (xi) ≥ Anf (x) , (1.3)

where x :=
∑n

i=1 aixi

An
, x = (x1, . . . , xn) is any monotone n-tuple in In, and a =

(a1, . . . , an) is a real n-tuple that satisfies the condition:

0 ≤ Ai ≤ An, i = 1, . . . , n , where Ai =
i∑

j=1

aj , and An > 0 (1.4)

(see for instance [10, page 57]).
In order to get better bounds than m and M as defined in Theorem 1 for

a superquadratic function, we use Theorem 2 below instead of the above Jensen-
Steffensen inequality.

In addition, we get in the last section an inequality related to the Čebyšev’s
type functional and superquadracity.

Definition 1 ([3, Definition 1]). A function f defined on an interval I = [0, a] or
[0,∞) is superquadratic, if for each x in I there exists a real number C (x) such
that

f (y)− f (x) ≥ f (|y − x|) + C (x) (y − x) (1.5)

for all y ∈ I.

For example, the functions xp, p ≥ 2 and the functions −xp, 0 ≤ p ≤ 2 are
superquadratic functions as well as the function f (x) = x2 log x, x > 0, f (0) = 0.
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Remark 1. The definition of superquadracity as stated here appeared first in 2004
in papers [3] and [4] and since then this terminology was used by several authors
in many papers and journals.

Unfortunately, the users of this definition were not aware that the term su-
perquadracity was used in a different context since 1987 (see [11], [9] and [8]).

In [9] it is stated: Let X be a real linear space and R be the set of all reals.
Then every function f : X −→ R satisfying the inequality

f (x+ y) + f (x− y) ≥ 2f (x) + 2f (y) , x, y ∈ X (∗)
is called superquadratic.

It is of interest to clarify the relations and the differences between the classes
of functions satisfying these definitions. This is worth further investigation.

Definition 1 and Definition (∗) are both well established in the mathematical
literature. Although there is a conflict of terminology, we use in this paper our
Definition 1.

In Section 2 we use the following lemmas and theorem for superquadratic
functions:

Lemma 1 ([3, Lemma 2.1]). Let f be a superquadratic function with C (x) as in
(1.5).

(i) Then f (0) ≤ 0
(ii) If f (0) = f ′ (0) = 0, then C (x) = f ′ (x) wherever f is differentiable at

x > 0.
(iii) If f ≥ 0, then f is convex and f (0) = f ′ (0) = 0.

Lemma 2 ([4, Lemma 2.3]). Suppose that f is superquadratic. Let xi ≥ 0, i =
1, . . . , n and let x :=

∑n
i=1 aixi, where ai ≥ 0, i = 1, . . . , n and

∑n
i=1 ai = 1.

Then
n∑

i=1

aif (xi)− f (x) ≥
n∑

i=1

aif (|xi − x|) . (1.6)

The following Theorem 2 was proved in [1, Theorem 1] for differentiable
positive superquadratic functions f , but because of Lemma 1 (iii) it holds also
when f is not always differentiable.

Theorem 2. Let f : I −→ R, where I is [0, a] or [0,∞) , be nonnegative
superquadratic function. Let x be a monotone nonnegative n-tuple in In and a
satisfies (1.4). Let

x :=
∑n

i=1 aixi

An
(1.7)

Then
n∑

i=1

aif (xi)−Anf (x) ≥ (n− 1)Anf

(∑n
i=1 ai |xi − x|
(n− 1)An

)
. (1.8)
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2. The main results

In Theorem 3 that deals with superquadratic functions we use the same techniques
as used in [7] to prove Theorem 1 for convex functions.

Theorem 3. Under the same conditions and definitions on p, q, x, m and M as
in Theorem 1, if I is [0, a) or [0,∞) and f is a superquadratic function on I, then

Jn (f,x,p)−mJn (f,x,q) (2.1)

≥ mf
(∣∣∣∣ n∑

i=1

(
qi − pi

)
xi

∣∣∣∣) +
n∑

i=1

(
pi −mqi

)
f

(∣∣∣∣xi −
n∑

j=1

pjxj

∣∣∣∣)
and

Jn (f,x,p)−MJn (f,x,q) (2.2)

≤ −
n∑

i=1

(
Mqi − pi

)
f

(∣∣∣∣xi −
n∑

j=1

qjxj

∣∣∣∣)− f(∣∣∣∣ n∑
i=1

(
pi − qi

)
xi

∣∣∣∣).
Proof. To prove (2.1) we define y as

yi =

{
xi, i = 1, . . . , n∑n

j=1 qjxj , i = n+ 1
,

and d as

di =

{
pi −mqi, i = 1, . . . , n
m, i = n+ 1

.

Then (1.6) for y and d is
n∑

i=1

(pi −mqi) f (xi) +mf

( n∑
i=1

qixi

)
− f

( n∑
i=1

pixi

)

=
n+1∑
i=1

dif

(
yi

)
− f

(n+1∑
i=1

diyi

)

≥
n+1∑
i=1

dif

(∣∣∣∣yi −
n+1∑
j=1

djyj

∣∣∣∣)

=
n∑

i=1

(pi −mqi) f
(∣∣∣∣xi −

n∑
j=1

pjxj

∣∣∣∣) +mf

(∣∣∣∣ n∑
i=1

(
pi − qi

)
xi

∣∣∣∣)
which is (2.1).

To get (2.2), we choose z and r as

zi =

{
xi, i = 1, . . . , n∑n

j=1 pjxj , i = n+ 1
,
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and

ri =

{
qi − pi

M , i = 1, . . . , n
1
M , i = n+ 1

.

Then, as f is superquadratic and
∑n+1

i=1 ri = 1, ri ≥ 0, we get that
n∑

i=1

(
qi −

pi

M

)
f(xi) +

1
M
f

( n∑
i=1

pixi

)
− f

( n∑
i=1

qixi

)

=
n+1∑
i=1

rif (zi)− f
(n+1∑

i=1

rizi

)

≥
n+1∑
i=1

rif

(∣∣∣∣zi −
n+1∑
i=1

rizi

∣∣∣∣)

=
n∑

i=1

(
qi −

pi

M

)
f

(∣∣∣∣xi −
n∑

j=1

qjxj

∣∣∣∣) +
1
M
f

(∣∣∣∣ n∑
i=1

(pi − qi)xi

∣∣∣∣)
which is equivalent to (2.2). �

Remark 2. If the superquadratic function is also nonnegative and therefore accord-
ing to Lemma 1 is convex, then (2.1) and (2.2) refine Theorem 1.

In the sequel we use the following notations:

Let x↑ =
(
x(1), . . . , x(n)

)
be the increasing rearrangement of x =(x1, . . . , xn).

Let π be the permutation that transfers x into x↑ and let (p1, . . . , pn) and (q1,
. . . , qn) be the n-tuples obtained by the same permutation π on (p1, . . . , pn) and
(q1, . . . , qn) respectively. Then for an n-tuple x = (x1, . . . , xn), xi ∈ I, i = 1, . . . , n
where I is an interval in R we get the following results:

Theorem 4. Let p = (p1, . . . , pn) , where 0 ≤
∑i

j=1 pj ≤ 1, i = 1, . . . , n,∑n
i=1 pi = 1, and q = (q1, . . . , qn) , 0 <

∑i
j=1 qj < 1, i = 1, . . . , n − 1,∑n

i=1 qi = 1, and p 
= q. Denote

mi =

∑i
j=1 pj∑i
j=1 qj

, mi =

∑n
j=i pj∑n
j=i qj

, i = 1, . . . , n (2.3)

where (p1, . . . , pn) and (q1, . . . , qn) are as denoted above, and

m∗ = min
1≤i≤n

{mi,mi} , M∗ = max
1≤i≤n

{mi,mi} . (2.4)

If x = (x1, . . . , xn) is any n-tuple in In, where I is an interval in R, then

M∗Jn (f,x,q) ≥ Jn (f,x,p) ≥ m∗Jn (f,x,q) , (2.5)

where f : I −→ R is a convex function on the interval I.
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Proof. As p 
= q it is clear that m∗ < 1, and M∗ > 1.
As

∑n
i=1 qi = 1 and 1 ≥

∑j
i=1 qi > 0 it is easy to verify that there is an

integer k, 2 ≤ k ≤ n such that x(k−1) ≤
∑n

i=1 qixi ≤ x(k), see also [1].
We apply Jensen-Steffensen’s inequality for the increasing (n + 1)-tuple

y =(y1, . . . , yn+1)

yi =

⎧⎨⎩
x(i), i = 1, . . . , k − 1∑n

j=1 qjxj , i = k

x(i−1), i = k + 1, . . . , n+ 1
(2.6)

and

ai =

⎧⎨⎩
pi −m∗qi, i = 1, . . . , k − 1
m∗, i = k
pi−1 −m∗qi−1, i = k + 1, . . . , n+ 1

(2.7)

where m∗ is defined in (2.4).
It is clear that a satisfies (1.4). Therefore, (1.3) holds for the increasing

(n+ 1)-tuple y and for a convex function f .
Hence

n+1∑
i=1

aif (yi) = m∗f
( n∑

i=1

qixi

)
+

n∑
i=1

(pi −m∗qi) f (xi)

≥ f
(
m∗

n∑
i=1

qixi +
n∑

i=1

(pi −m∗qi)xi

)
= f

( n∑
i=1

pixi

)
.

In other words
n∑

i=1

pif (xi)− f
( n∑

i=1

pixi

)
≥ m∗

( n∑
i=1

qif (xi)− f
( n∑

i=1

qixi

))
.

This completes the proof of the right side inequality in (2.5).

The proof of the left side of (2.5) is similar: We define an increasing (n+ 1)-
tuple z

zi =

⎧⎨⎩
x(i), i = 1, . . . , s− 1∑n

j=1 pjxj , i = s

x(i−1), i = s+ 1, . . . , n+ 1
(2.8)

and

bi =

⎧⎨⎩
qi −

pi

M∗ , i = 1, . . . , s− 1
1

M∗ , i = s

qi−1 −
pi−1
M∗ , i = s+ 1, . . . , n+ 1 ,

(2.9)

where s satisfies x(s−1) ≤
∑n

j=1 pjxj ≤ x(s). As b satisfies (1.4) and
∑n+1

i=1 bi = 1,
by using Jensen-Steffensen’s inequality, we get the left side of (2.5).

This completes the proof. �
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Remark 3. If min
1≤i≤n

(
pi

qi

)
= pk

qk
, k 
= 1, n and max

1≤i≤n

(
pi

qi

)
= ps

qs
, s 
= 1, n then

it is clear that for pi ≥ 0, and qi > 0, we get that m∗ > m and M∗ < M and
in these cases (2.5) refines (1.2).

The following result is proved for superquadratic functions using the same
technique used in Theorem 4 for convex functions and by using Theorem 2, there-
fore, the proof is omitted.

Theorem 5. Let f(x) be a nonnegative superquadratic function on I where I is [0, a]
or [0,∞) . Let x, p, q, m∗, M∗ be the same as in Theorem 4. Then

Jn (f,x,p)−m∗Jn (f,x,q) (2.10)

≥ nf
(∑n

i=1 (pi −m∗qi)
∣∣xi −

∑n
j=1 pjxj

∣∣ +m∗
∣∣∑n

i=1 (pi − qi)xi

∣∣
n

)
,

and

Jn (f,x,p)−M∗Jn (f,x,q) (2.11)

≤ −M∗nf
(∑n

i=1 (M∗qi − pi)
∣∣xi −

∑n
j=1 qjxj

∣∣ +
∣∣∑n

j=1 (qj − pj)xj

∣∣
M∗n

)
.

In the following Theorem 6 we state another generalisation of the Jensen
inequality for superquadratic functions, then in Theorem 7 we extend Theorem 1
and in Theorem 8 we extend Theorem 3.

Theorem 6. Assume that x = (x1, . . . , xn) with xi ≥ 0 for i ∈ {1, . . . , n} ,p =
(p1, . . . , pn) is a probability sequence and q = (q1, . . . , qk) is another probability
sequence with n, k ≥ 2. Then for any superquadratic function f : [0,∞) → R we
have the inequality

n∑
i1,...,ik=1

pi1 . . . pik
f

( k∑
j=1

qjxij

)
(2.12)

≥ f
( n∑

i=1

pixi

)
+

n∑
i1,...,ik=1

pi1 . . . pik
f

(∣∣∣∣ k∑
j=1

qjxij −
n∑

i=1

pixi

∣∣∣∣).
Proof. By the definition of superquadratic functions, we have

f

( k∑
j=1

qjxij

)
≥ f

( n∑
i=1

pixi

)
+ C

( n∑
i=1

pixi

)( k∑
j=1

qjxij −
n∑

i=1

pixi

)

+ f

(∣∣∣∣ k∑
j=1

qjxij −
n∑

i=1

pixi

∣∣∣∣) (2.13)

for any xij ≥ 0, ij ∈ {1, . . . , n} .
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Now, if we multiply (2.13) with pi1 . . . pik
≥ 0, sum over i1, . . . , ik from 1 to

n and take into account that
∑n

i1,...,ik=1 pi1 . . . pik
= 1 we deduce

n∑
i1,...,ik=1

pi1 . . . pik
f

( k∑
j=1

qjxij

)
(2.14)

≥ f
( n∑

i=1

pixi

)
+ C

( n∑
i=1

pixi

) n∑
i1,...,ik=1

pi1 . . . pik

( k∑
j=1

qjxij −
n∑

i=1

pixi

)

+
n∑

i1,...,ik=1

pi1 . . . pik
f

(∣∣∣∣ k∑
j=1

qjxij −
n∑

i=1

pixi

∣∣∣∣).
However

I =
n∑

i1,...,ik=1

pi1 . . . pik

( k∑
j=1

qjxij−
n∑

i=1

pixi

)
=

n∑
i1,...,ik=1

pi1 . . . pik

( k∑
j=1

qjxij

)
−

n∑
i=1

pixi

and since
n∑

i1,...,ik=1

pi1 . . . pik

( k∑
j=1

qjxij

)

= q1

n∑
i1=1

pi1xi1

n∑
i2,...,ik=1

pi2 . . . pik
+ · · ·+ qk

n∑
ik=1

pik
xik

n∑
i1,...,ik−1=1

pi1 . . . pik−1

= q1

n∑
i=1

pixi + · · ·+ qk

n∑
i=1

pixi =
n∑

i=1

pixi

hence I = 0 and by (2.14) we get the desired result (2.12). �

Theorem 7. Assume that x = (x1, . . . , xn) with xi ∈ I, i = 1, . . . , n, I is an interval
in R, p = (p1, . . . , pn), r = (r1, . . . , rn) , ri > 0, i = 1, . . . , n are probability
sequences, and q = (q1, . . . , qk) , another probability sequence with n, k ≥ 2. Then,
for any convex function f on I we have the inequality

M

⎛⎝ n∑
i1,...,ik=1

ri1 . . . rik
f

( k∑
j=1

qjxij

)
− f

( n∑
i=1

rixi

)⎞⎠ (2.15)

≥

⎛⎝ n∑
i1,...,ik=1

pi1 . . . pik
f

( k∑
j=1

qjxij

)
− f

( n∑
i=1

pixi

)⎞⎠
≥ m

⎛⎝ n∑
i1,...,ik=1

ri1 . . . rik
f

( k∑
j=1

qjxij

)
− f

( n∑
i=1

rixi

)⎞⎠
where m = min

1≤i1,...,ik≤n

(
pi1 ...pik

ri1 ...rik

)
, M = max

1≤i1,...,ik≤n

(
pi1 ...pik

ri1 ...rik

)
.
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Proof. The proof is similar to the proof of Theorem 1: We will prove the right side
of the inequality. The left side of the inequality is similar. As

m

n∑
i=1

rixi +
n∑

i1,i2,...,ik=1

(pi1 . . . pik
−mri1 . . . rik

)
k∑

j=1

qjxij

=
n∑

i1,...,ik

pi1 . . . pik

k∑
j=1

qjxij =
n∑

i=1

pixi,

0 ≤ m ≤ 1, 0 ≤ pi1 . . . pik
−mri1 . . . rik

≤ 1 and

m+
n∑

i1...ik=1

(pi1 . . . pik
−mri1 . . . rk) = 1

we get as a result of the convexity of f that

mf

( n∑
i=1

rixi

)
+

n∑
i1,...,ik=1

(pi1 . . . pik
−mri1 . . . rik

) f
( k∑

j=1

qjxij

)

≥ f

⎛⎝m n∑
i=1

rixi +
n∑

i1,...,ik=1

(pi1 . . . pik
−mri1 . . . rik

) f
( k∑

j=1

qjxij

)⎞⎠
= f

( n∑
i=1

pixi

)
.

This completes the proof of the right inequality of (2.15). �

Below we state the analogue to Theorem 7 for superquadratic functions. The
proof is similar to the proof of Theorem 3 and hence it is omitted.

Theorem 8. Under the same conditions on p, q, r, m and M as in Theorem 7,
if I is [0, a) or [0,∞) and f (x) is a superquadratic function on I, then:

n∑
i1,...,ik=1

pi1 . . . pik
f

( k∑
j=1

qjxij

)
− f

( n∑
i=1

pixi

)

−m

⎛⎝∑
ri1 . . . rik

f

( k∑
j=1

qjxij

)
− f

( n∑
i=1

rixi

)⎞⎠
≥ mf

(∣∣∣∣ n∑
i=1

(ri − pi)xi

∣∣∣∣)

+
n∑

i1,...,ik=1

(pi1pi2 . . . pik
−mri1 . . . rik

) f
(∣∣∣∣ k∑

j=1

qjxij −
n∑

s=1

psxs

∣∣∣∣)
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and
n∑

i1,...,ik=1

pi1 . . . pik
f

( k∑
j=1

qjxij

)
− f

( n∑
i=1

pixi

)

−M

⎛⎝∑
ri1 . . . rik

f

( k∑
j=1

qjxij

)
− f

( n∑
i=1

rixi

)⎞⎠
≤ −f

(∣∣∣∣ n∑
i=1

(ri − pi)xi

∣∣∣∣)

−
n∑

i1,...,ik=1

(Mri1 . . . rik
− pi1pi2 . . . pik

) f
(∣∣∣∣ k∑

j=1

qjxij −
n∑

s=1

rsxs

∣∣∣∣)
If f is also positive, then these inequalities refine (2.15).

3. Other inequalities

The definition of superquadratic functions and their properties draw our attention
to the possibility of using the Čebyšev functional and its properties to get new
type of reverse Jensen Inequality.

For a function C : [0,∞)→ R we consider the Čebyšev type functional

T (C,x,p) :=
n∑

i=1

pixiC (xi)−
n∑

i=1

pixi

n∑
i=1

piC (xi) .

It is well known that, if C is monotonic nondecreasing function on [0,∞) then
the sequences x and C (x) := (C (x1) , . . . , C (xn)) are synchronous and for any
probability sequence p we have the Čebyšev inequality

T (C,x,p) ≥ 0.

If certain bounds for the values of the function C (xi) are known, namely

−∞ < m ≤ C (xi) ≤M <∞ for any i ∈ {1, . . . , n} (3.1)

then the following inequality due to Cerone & Dragomir [6] holds:

|T (C,x,p)| ≤ 1
2

(M −m)
n∑

i=1

pi

∣∣∣∣xi −
n∑

j=1

pjxj

∣∣∣∣. (3.2)

The constant 1
2 is best possible in the sense that it cannot be replaced by a smaller

quantity.

We can state now the following reverse of the Jensen inequality for su-
perquadratic functions:
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Theorem 9. Assume that x = (x1, . . . , xn) with xi ≥ 0 for i ∈ {1, . . . , n} , and
p = (p1, . . . , pn) is a probability sequence with n ≥ 2. Then for any superquadratic
function f : [0,∞)→ R with C (xi) satisfying (3.1), where C (x) is as in Definition
1 we have the inequality,

1
2

(M −m)
n∑

i=1

pj

∣∣∣∣xj −
n∑

j=1

pixi

∣∣∣∣− n∑
j=1

pjf

(∣∣∣∣ n∑
i=1

pixi − xj

∣∣∣∣) (3.3)

≥
n∑

j=1

pjf (xj)− f
( n∑

i=1

pixi

)
≥

n∑
j=1

pjf

(∣∣∣∣ n∑
i=1

pixi − xj

∣∣∣∣).
Proof. The right-hand side inequality of (3.3) is inequality (1.6).

Utilizing the definition of the superquadratic functions we have

f

( n∑
i=1

pixi

)
≥ f (xj) + C (xj)

( n∑
i=1

pixi − xj

)
+ f

(∣∣∣∣ n∑
i=1

pixi − xj

∣∣∣∣) (3.4)

for any j ∈ {1, . . . , n} .
If we multiply (3.4) by pj ≥ 0, j ∈ {1, . . . , n} , sum over j from 1 to n and

take into account that
∑n

j=1 pj = 1 we get

f

( n∑
i=1

pixi

)
≥

n∑
j=1

pjf (xj)+
n∑

j=1

pjC (xj)
( n∑

i=1

pixi−xj

)
+

n∑
j=1

pjf

(∣∣∣∣ n∑
i=1

pixi−xj

∣∣∣∣).
(3.5)

Hence by this inequality, by (3.2) and since
n∑

j=1

pjC (xj)
( n∑

i=1

pixi − xj

)
= −T (C,x,p)

we deduce the desired result (3.3). �

Remark 4. As a “by-product” of (3.5) we get by using the right-hand side inequality
of (3.3) that for superquadratic functions the following inequality

1
2
T (C,x,p) ≥

n∑
j=1

pjf

(∣∣∣∣ n∑
i=1

pixi − xj

∣∣∣∣)
holds, while from (3.3) we get

1
2

(M −m)
n∑

i=1

pj

∣∣∣∣xj −
n∑

j=1

pixi

∣∣∣∣ ≥ n∑
j=1

pjf

(∣∣∣∣ n∑
i=1

pixi − xj

∣∣∣∣).
Remark 5. During the conference of Inequalities and Application 2007 in Noszvaj
Hungary, we realized that Theorem 4 in this paper (see also preprint [2] dated June
26, 2007), overlaps Theorem 2 and Corollary 1 in preprint [5].
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Comparability of Certain Homogeneous Means
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Dedicated to professor Zoltán Daróczy on his 70th birthday

Abstract. We present some inequalities between two variables homogeneous
means. Namely, we give necessary as well as sufficient condition on the com-
parability of Daróczy means.
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1. Introduction

In [9] W. Janous introduced the class of generalized Heronian means as follows:

Hw(x, y) :=

⎧⎨⎩
x+ w

√
xy + y

w + 2
, if 0 ≤ w <∞ ,

G(x, y) :=
√
xy, if w =∞ ,

for all x, y ∈ R. Here (and hereafter in this work) R+ denotes the positive real
line.

In [6] Daróczy generalized this class (more precisely he defined the p-modifi-
cation of the previous class (see also [14]) ):

Dα,p(x, y) :=

⎧⎨⎩
(
xp + α(

√
xy)p + yp

α+ 2

)1/p

if p 
= 0 , −1 ≤ α <∞ ,
√
xy if p = 0 or α =∞ ,

for all x, y ∈ R.
In the sequel we call the members of this class Daróczy means. It is easy to

prove that Dα,p is a mean indeed. Namely, it is continuous as a two place function,
and

min{x, y} ≤ Dα,p(x, y) ≤ max{x, y} , x, y ∈ R+ .

Supported by the Hungarian Research Fund (OTKA) Grant No. NK 68040.
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One can easily check that Dα,p is homogeneous and symmetric. It is an obvi-
ous but important fact that the class of Hölder means is a subclass of Daróczy
means (α = 0). Furthermore the following limits hold: limp→0 Dα,p = Dα,0 =
G and limα→∞Dα,p = D∞,p = G.

In this paper we give necessary as well as sufficient conditions on the compa-
rability of Daróczy means.

2. Comparability problem of Daróczy means

Our first lemma shows that the geometric mean separates the Daróczy means with
special parameters.

Lemma 2.1. Let p ∈ R+ and α ≥ −1 be real numbers, then

Dα,−p ≤ G ≤ Dα,p .

Proof. Easy calculation. �
In the following lemma we examine the comparability of Daróczy means when

either the first or the second parameter is the same.

Lemma 2.2. Let p ∈ R and α , β ≥ −1 and p, q ∈ R. Then
1. Dα,p ≤ Dβ,p if and only if p (α− β) ≥ 0;
2. Dα,p ≤ Dα,q if and only if p ≤ q.

Proof. The first part is an easy calculation.
Proving the second part, we can assume that pq > 0, because of Lemma 1.

We can apply [1, Theorem 5.], which says that in our case such comparability holds
if and only if εψ ·ψ ◦ϕ−1 is convex, where ψ(x) = xq , ϕ(x) = xp and εψ = 1, when
ψ is increasing and −1, when it is decreasing. An elementary calculation shows,
that this is equivalent to our assertion. �
Remark 2.3. From the second part of the previous lemma we get the comparability
theorem of Hölder means (see [8]) if α = 0.

Lemma 2.4. Let p ∈ R and α ≥ −1 and p ∈ R. Then

lim
x→1

Dα,p(x, 1)− x+1
2

(x− 1)2
=

p

4(α+ 2)
− 1

4
.

Proof. Using the L’Hospital rule twice, we get our statement. Indeed

lim
x→1

Dα,p(x, 1)− x+1
2

(x− 1)2
= lim

x→1

∂2Dα,p(x,1)
∂x2

2
=

2p− 2− α
8(α+ 2)

,

where ∂2Dα,p(x,1)
∂x2 denotes the second partial derivative of Dα,p with respect to the

first variable at the place (x, 1), and

∂2Dα,p(x, 1)
∂x2

=
(
xp + αx

p
2 + 1

α+ 2

) 1
p
(
(x

p
2 + x

3p
2 )(p− 2)α+ 4xp(p− 1)− α2xp

)
4x2(xp + αx

p
2 + 1)2

.

�
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Theorem 2.5 (Necessary condition). If Dα,p ≤ Dβ,q, then p
α+2 ≤

q
β+2 .

Proof. Because of the symmetry and homogeneous property of Daróczy means
Dα,p(x, y) ≤ Dβ,q(x, y) if and only if Dα,p(x,1)−x+1

2
(x−1)2 ≤ Dβ,q(x,1)−x+1

2
(x−1)2 , x > 1. As x

tends to 1, we get from the previous lemma
p

4(α+ 2)
− 1

4
≤ q

4(β + 2)
− 1

4
.

This inequality is equivalent to our assertion. �

Remark 2.6. The previous theorem with Lemma 2.1 give necessary condition for
all p , q and α , β ≥ −1.

Theorem 2.7 (Sufficient condition). Let p , q ∈ R and α , β ≥ 0. If 0 < 2p ≤ q and
p

α+2 ≤
q

β+2 , then Dα,p ≤ Dβ,q.

Proof. Similarly as in the proof of Lemma 2 we have to examine the positivity of
function

A(s) :=
1
r

log(s2r + βsr + 1)− 1
r

log(β + 2)− log(s2 + αs+ 1) + log(α+ 2) ,

where xp = s2 , s ≥ 1 and r = q
p . It is clear that A(1) = 0. Calculate the first

derivative of A:

A′(s) =

(
s2r − 1

)
α+ sr−1

(
1− s2

)
β + 2s

(
s2(r−1) − 1

)
(s2 r + β sr + 1) (s2 + α s+ 1)

.

Because the denominator is positive here, it is enough to analyze the numerator.
According our assumption the numerator does not increase if we substitute β by
αr + 2r − 2. Therefore,

A′(s) ≥ B(s) :=
(
sr−1r − sr+1r + s2 r − 1

)
α+ 2 sr+1 + 2 s2 r−1 +

2 sr−1r − 2 sr+1r − 2 s− 2 sr−1 , where s ≥ 1 .

We examine the coefficient of α and the other terms, respectively.
According to the comparability theorem of Stolarsky means (see [3], [13])

we get that S0,0(s2, 1) ≤ Sr,1(s2, 1), where Sa,b(x, y) denotes the corresponding
Stolarsky mean (see [3], [10], [11], [13]) and s ≥ 1 , r > 1. In other terms

√
s2 · 1 ≤

(
s2r − 1
r(s2 − 1)

) 1
r−1

, r > 1 , s ≥ 1 .

This means that the coefficient of α is nonnegative. It is an easy calculation that
the coefficient of α is also nonnegative if r = 1 , s ≥ 1. On the other hand, we
get the other terms from the coefficient of α if we replace r by r − 1. If r ≥ 2 the
nonnegativity remains valid on the other terms, so the proof is finished now. �

Remark 2.8. It remains an open problem to find a necessary and sufficient condi-
tion on all parameters such that Dα,p ≤ Dβ,q be valid.
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[8] G.H. Hardy, J.E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press,
Cambridge, 1934 (first edition), 1952 (second edition).

[9] W. Janous, A note on generalized Heronian means, Math. Inequal. Appl. 4 (2001),
390–407.

[10] E.B. Leach and M.C. Sholander, Multi-variable extended mean values, J. Math. Anal.
Appl. 104 (1984), 390–407.

[11] E. Neumann and J. Sándor, Inequalities involving Stolarsky and Gini means, Math.
Pannonica 14 (2003), 29–44.
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Abstract. We present several general inequalities related to Jensen’s inequal-
ity and the Jensen-Steffensen inequality. Some recently proved results are
obtained as special cases of these general inequalities.
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1. Introduction

Let the real function ϕ be defined on some nonempty interval I of the real line R.
We say that ϕ is convex on I if

ϕ (λx + (1− λ) y) ≤ λϕ (x) + (1− λ)ϕ (y)

holds for all x, y ∈ I and λ ∈ [0, 1] .
An important property of convex functions is the existence of the left and

the right derivative on the interior I̊ of I (see [11]). If ϕ : I → R is convex then for
any x ∈ I̊ the left derivative ϕ′− (x) and the right derivative ϕ′+ (x) are increasing
on I̊ and

ϕ′− (x) ≤ ϕ′+ (x) for all x ∈ I̊ .
It can be also proved that for any convex function ϕ : I → R the inequalities

ϕ (z) + c (z) (y − z) ≤ ϕ (y) , c (z) ∈
[
ϕ′− (z) , ϕ′+ (z)

]
(1.1)

ϕ (y) ≤ ϕ (z) + c (y) (y − z) , c (y) ∈
[
ϕ′− (y) , ϕ′+ (y)

]
(1.2)

hold for all y, z ∈ I̊ .
One consequence of (1.1) and (1.2) is that ϕ : I → R is convex if and only

if there is at least one line of support for ϕ at each x0 ∈ I̊ . Furthermore, ϕ is
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differentiable if and only if the line of support at x0 ∈ I̊ is unique. In this case,
the line of support is

A (x) = ϕ (x0) + ϕ′ (x0) (x− x0) .

There are many known inequalities for convex functions, but surely the most
important of them is Jensen’s inequality. In its integral form it is stated as follows
(see [10, p. 45]).

Theorem A. (Jensen) Let (Ω,A, μ) be a measure space with 0 < μ (Ω) < ∞, and
let u : Ω → I, I ⊂ R, be a function from L1 (μ). Then for any convex function
ϕ : I → R the inequality

ϕ

(
1

μ (Ω)

∫
Ω

udμ

)
≤ 1
μ (Ω)

∫
Ω

(ϕ ◦ u) dμ (1.3)

holds.

One of the inequalities which are strongly related to Jensen’s inequality is the
Jensen-Steffensen inequality for convex functions. An integral version was proved
by Steffensen, but here we consider a variant given by R.P. Boas in [3].

Theorem B. (Steffensen-Boas) Let f : [α, β] → (a, b) be a continuous and mono-
tonic function, where −∞ < α < β < +∞ and −∞ ≤ a < b ≤ +∞, and let
ϕ : (a, b) → R be a convex function. If λ : [α, β] → R is either continuous or of
bounded variation satisfying

(∀x ∈ [α, β]) λ (α) ≤ λ (x) ≤ λ (β) , λ (β)− λ (α) > 0, (1.4)

then

ϕ

(∫ β

α f (t) dλ (t)∫ β

α
dλ (t)

)
≤

∫ β

α ϕ (f (t)) dλ (t)∫ β

α
dλ (t)

. (1.5)

In [7] a couple of companion inequalities to Jensen’s inequality in its discrete
and integral form were proved. The main result in its discrete form is stated as
follows.

Theorem C. (Matić, Pečarić) Let ϕ : C → R be a convex function defined on an
open convex subset C in a normed real linear space X. For the given vectors xi ∈
C, i = 1, 2, . . . , n, and a nonnegative real n-tuple p such that Pn =

∑n
i=1pi > 0

let

x =
1
Pn

n∑
i=1

pixi, y =
1
Pn

n∑
i=1

piϕ (xi) .

If c,d ∈ C are arbitrarily chosen vectors, then

ϕ (c) + a∗ (c; x− c) ≤ y ≤ ϕ (d) +
1
Pn

n∑
i=1

pia
∗ (xi; xi − d) . (1.6)
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Also, when ϕ is strictly convex we have equality in the first inequality in (1.6) if
and only if xi = c for all indices i with pi > 0, while equality holds in the second
inequality in (1.6) if and only if xi = d for all indices i with pi > 0.

In the rest of the paper without any loss of generality for the convex function
ϕ : (a, b)→ R we denote

ϕ′ (x) := ϕ′+ (x) , x ∈ (a, b) .

Theorem D. (Klaričić, Matić, Pečarić) Let ϕ : (a, b)→ R,−∞ ≤ a < b ≤ +∞, be
a convex function and p ∈ Rn (n ≥ 2) such that

0 ≤ Pk =
∑k

i=1pi ≤ Pn, k = 1, . . . , n, Pn > 0. (1.7)

Then for any x ∈ (a, b)n such that

x1 ≤ x2 ≤ · · · ≤ xn or x1 ≥ x2 ≥ · · · ≥ xn

the inequalities

ϕ (c) + ϕ′ (c) (x− c) ≤ 1
Pn

n∑
i=1

piϕ (xi) ≤ ϕ (d) +
1
Pn

n∑
i=1

piϕ
′ (xi) (xi − d) (1.8)

hold for all c, d ∈ (a, b).

Under the stated assumptions on x and p the inequalities in (1.8) are valid
for all c, d ∈ (a, b) , so in the first inequality in (1.8) we may choose c = x thus
obtaining the discrete Jensen-Steffensen inequality. Moreover, the choice c = x is
the best possible since

ϕ (c) + ϕ′ (c) (x− c) ≤ ϕ (x)

for all c ∈ (a, b) .

The integral version of Theorem D, stated in Theorem E, has been also proved
in [6].

Theorem E. (Klaričić, Matić, Pečarić) Suppose that f, ϕ and λ are as in Theorem
B. Then x and y given by

x =
1

λ (β) − λ (α)

∫ β

α

f (t) dλ (t) ,

y =
1

λ (β) − λ (α)

∫ β

α

ϕ (f (t)) dλ (t)

are well defined and x ∈ (a, b) . Furthermore, if ϕ′ (f) and λ have no common
discontinuity points, then the inequalities

ϕ (c) + ϕ′ (c) (x− c)

≤ y ≤ ϕ (d) +
1

λ (β)− λ (α)

∫ β

α

ϕ′ (f (t)) [f (t)− d] dλ (t) (1.9)

hold for each c, d ∈ (a, b).
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In [9] the following theorem was proved.

Theorem F. (Pečarić) Suppose that ϕ is convex on (a, b) and a < x1 ≤ · · · ≤
xn < b. If p1, . . . , pn are real numbers such that the conditions (1.7) hold and if

∑n

i=1
piϕ

′ (xi) 
= 0, x̃ =

∑n

i=1
pixiϕ

′
(xi)∑n

i=1
piϕ′ (xi)

∈ (a, b) ,

then
1
Pn

n∑
i=1

piϕ (xi) ≤ ϕ (x̃) .

In paper [8] A. Mercer proved the following variant of Jensen’s inequality:

ϕ

(
x1 + xn −

n∑
i=1

wixi

)
≤ ϕ (x1) + ϕ (xn)−

n∑
i=1

wiϕ (xi) , (1.10)

which holds whenever ϕ is a convex function on an interval containing the n-tuple
x such that 0 < x1 ≤ x2 ≤ · · · ≤ xn and where w is a positive n-tuple with∑n

i=1 wi = 1. His result was generalized for weights satisfying the conditions as in
the Jensen-Steffensen inequality in [1], and two alternative proofs of (1.10) were
given in [13] and [2].

2. The results

The goal of this paper is to obtain Mercer-type variants of Theorems C, D, E
and F.

In the following with (Ω,A, μ) we denote a measure space with 0 < μ (Ω) <∞
and for a, b,m,M ∈ R we always assume ∞ ≤ a < m < M < b ≤ ∞.
Theorem 1. Let ϕ : (a, b) → R be a convex function and let u : Ω → [m,M ] be a
measurable function such that ϕ′ ◦ u belongs to L1 (μ) . Then the inequalities

ϕ (c) + ϕ′ (c)
(
m+M − c− 1

μ (Ω)

∫
Ω

udμ

)
≤ ϕ (m) + ϕ (M)− 1

μ (Ω)

∫
Ω

(ϕ ◦ u) dμ (2.1)

≤ ϕ (d) + ϕ′ (m) (m− d) + ϕ′ (M) (M − d)− 1
μ (Ω)

∫
Ω

(u (t)− d) (ϕ′ ◦ u) dμ

hold for all c, d ∈ [m,M ] .

Proof. We prove the first inequality in (2.1) .
For all u (t) ∈ [m,M ] , t ∈ Ω, we can write

u (t) = λtm+ (1− λt)M, λt ∈ [0, 1]

hence

(ϕ ◦ u) (t) = ϕ (λtm+ (1− λt)M) ≤ λtϕ (m) + (1− λt)ϕ (M)
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for all t ∈ Ω. Also

ϕ (m+M − u (t)) = ϕ ((1− λt)m+ λtM) ≤ (1− λt)ϕ (m) + λtϕ (M)

= ϕ (m) + ϕ (M)− [λtϕ (m) + (1− λt)ϕ (M)]

≤ ϕ (m) + ϕ (M)− (ϕ ◦ u) (t) .

If in (1.1) we choose z = c and y = m+M − u (t) we obtain

ϕ (c) + ϕ′ (c) (m+M − u (t)− c) (2.2)

≤ ϕ (m+M − u (t)) ≤ ϕ (m) + ϕ (M)− (ϕ ◦ u) (t) .

Integrating over Ω and dividing by μ (Ω) we obtain

ϕ (c) + ϕ′ (c)
(
m+M − c− 1

μ (Ω)

∫
Ω

udμ

)
≤ 1
μ (Ω)

∫
Ω

ϕ (m+M − u (t)) dμ ≤ ϕ (m) + ϕ (M)− 1
μ (Ω)

∫
Ω

(ϕ ◦ u) dμ.

Now it remains to prove the second inequality in (2.1). Let d, u (t) ∈ [m,M ],
t ∈ Ω.

We consider two cases.

Case 1. u (t) ≥ d. From (1.2) we have

ϕ (m)− ϕ (d) ≤ ϕ′ (m) (m− d) ,
ϕ (M)− (ϕ ◦ u) (t) ≤ ϕ′ (M) (M − u (t)) ,

hence

ϕ (m) + ϕ (M)− (ϕ ◦ u) (t)

= ϕ (d) + ϕ (m)− ϕ (d) + ϕ (M)− (ϕ ◦ u) (t)

≤ ϕ (d) + ϕ′ (m) (m− d) + ϕ′ (M) (M − u (t))

= ϕ (d) + ϕ′ (m) (m− d) + ϕ′ (M) (M − d)− ϕ′ (M) (u (t)− d) . (2.3)

Since ϕ is convex the derivative ϕ′ is nondecreasing and we know that from u (t) ≤
M follows (ϕ′ ◦ u) (t) ≤ ϕ′ (M) , hence (2.3) implies

ϕ (m) + ϕ (M)− (ϕ ◦ u) (t)

≤ ϕ (d) + ϕ′ (m) (m− d) + ϕ′ (M) (M − d)− (ϕ′ ◦ u) (t) (u (t)− d) . (2.4)

Case 2. u (t) < d. Similarly as in the previous case we can write

ϕ (m) + ϕ (M)− (ϕ ◦ u) (t)

= ϕ (d) + ϕ (m)− (ϕ ◦ u) (t) + ϕ (M)− ϕ (d)

≤ ϕ (d) + ϕ′ (m) (m− u (t)) + ϕ′ (M) (M − d)
= ϕ (d) + ϕ′ (m) (m− d) + ϕ′ (M) (M − d) + ϕ′ (m) (d− u (t)) .
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From m ≤ u (t) we have ϕ′ (m) ≤ (ϕ′ ◦ u) (t) , hence

ϕ (m) + ϕ (M)− (ϕ ◦ u) (t)

≤ ϕ (d) + ϕ′ (m) (m− d) + ϕ′ (M) (M − d) + (ϕ′ ◦ u) (t) (d− u (t))

= ϕ (d) + ϕ′ (m) (m− d) + ϕ′ (M) (M − d)− (ϕ′ ◦ u) (t) (u (t)− d) ,

which is again (2.4) .
In other words, for any d, u (t) ∈ [m,M ] the inequality in (2.4) holds. In-

tegrating (2.4) over Ω and dividing by μ (Ω) we obtain the second inequality in
(2.1) . The proof is complete. �

Corollary 1. Let ϕ : (a, b)→ R be a convex function. If p ∈ Rn
+ and x ∈ [m,M ]n

then the inequalities

ϕ (c) + ϕ′ (c)
(
m+M − c− 1

Pn

n∑
i=1

pixi

)

≤ ϕ (m) + ϕ (M)− 1
Pn

n∑
i=1

piϕ (xi) (2.5)

≤ ϕ (d) + ϕ′ (m) (m− d) + ϕ′ (M) (M − d)− 1
Pn

n∑
i=1

piϕ
′ (xi) (xi − d)

hold for all c, d ∈ [m,M ] .

Proof. This is a straightforward consequence of Theorem 1. We simply choose

Ω = {1, 2, . . . , n} ,
μ ({i}) = pi, i = 1, 2, . . . , n,

u (i) = xi, i = 1, 2, . . . , n. �

Corollary 2. The following inequalities are valid under the assumptions of Corol-
lary 1:

0 ≤ ϕ (m) + ϕ (M)− 1
Pn

n∑
i=1

piϕ (xi)− ϕ (x)

≤ ϕ′ (m) (m− x) + ϕ′ (M) (M − x)− 1
Pn

n∑
i=1

piϕ
′ (xi) (xi − x) ,

where x = m+M − 1/Pn

n∑
i=1

pixi.
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Corollary 3. Suppose that the conditions of Corollary 1 are satisfied and addition-
ally assume ∑n

i=1
piϕ

′ (xi) 
= Pn

[
ϕ

′
(m) + ϕ

′
(M)

]
,

x̃ =
Pn

[
mϕ

′
(m) +Mϕ

′
(M)

]
−

∑n

i=1
pixiϕ

′
(xi)

Pn [ϕ′ (m) + ϕ′ (M)]−
∑n

i=1
piϕ′ (xi)

∈ [m,M ] .

Then

ϕ (m) + ϕ (M)− 1
Pn

n∑
i=1

piϕ (xi) ≤ ϕ (x̃) .

The inequalities obtained in Corollary 2 and 3 are the Mercer-type variants
of the corresponding inequalities given in [4] and [12].

Theorem 2. Let ϕ : (a, b)→ R be a convex function and w ∈ Rl such that

0 ≤Wk =
k∑

i=1

wi ≤Wl, k = 1, . . . , l, Wl > 0.

Let ξ ∈ [m,M ]l be such that ξ1 ≤ ξ2 ≤ · · · ≤ ξl or ξ1 ≥ ξ2 ≥ · · · ≥ ξl. Then the
inequalities

ϕ (c) + ϕ′ (c)

(
m+M − c− 1

Wl

l∑
i=1

wiξi

)

≤ ϕ (m) + ϕ (M)− 1
Wl

l∑
i=1

wiϕ (ξi) (2.6)

≤ ϕ (d) + ϕ′ (m) (m− d) + ϕ′ (M) (M − d)− 1
Wl

l∑
i=1

wiϕ
′ (ξi) (ξi − d)

hold for all c, d ∈ [m,M ] .

Proof. For n = l+ 2 we define

x1 = m, x2 = ξ1, x3 = ξ2, . . . xn−1 = ξl, xn = M
p1 = 1, p2 = −w1/Wl, p2 = −w2/Wl, . . . pn−1 = −wl/Wl, pn = 1 .

It is obvious that x1 ≤ x2 ≤ · · · ≤ xn if ξ1 ≤ ξ2 ≤ · · · ≤ ξl or x1 ≥ x2 ≥ · · · ≥
xn if ξ1 ≥ ξ2 ≥ · · · ≥ ξl and that

0 ≤ Pk =
k∑

i=1

pi ≤ Pn, k = 1, 2, . . . , n, Pn = 1 > 0,

hence we can apply Theorem D on ϕ, x and p thus obtaining (2.6) . �
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Note that under the conditions of Theorem 2 we also have

ξ = m+M − 1
Wl

l∑
i=1

wiξi ∈ [m,M ] ,

which means that in (2.6) we can choose c = ξ in which case the first inequality in
(2.6) becomes the generalized Mercer inequality as it was stated in [1]. Mercer’s
inequality itself can be obtained in the same way as a special case of Corollary 1.

Corollary 4. The following inequalities are valid under the assumptions of Theo-
rem 2:

0 ≤ ϕ (m) + ϕ (M)− 1
Wl

l∑
i=1

wiϕ (ξi)− ϕ
(
ξ
)

≤ ϕ′ (m)
(
m− ξ

)
+ ϕ′ (M)

(
M − ξ

)
− 1
Wl

l∑
i=1

wiϕ
′ (ξi)

(
ξi − ξ

)
,

where

ξ = m+M − 1
Wl

l∑
i=1

wiξi.

Corollary 5. Suppose that the conditions of Theorem 2 are satisfied and addition-
ally assume ∑l

i=1
wiϕ

′ (ξi) 
= Wl

[
ϕ

′
(m) + ϕ

′
(M)

]
,

ξ̃ =
Wl

[
mϕ

′
(m) +Mϕ

′
(M)

]
−

∑l

i=1
wiξiϕ

′
(ξi)

Wl [ϕ′ (m) + ϕ′ (M)]−
∑l

i=1
wiϕ′ (ξi)

∈ (m,M) .

Then

ϕ (m) + ϕ (M)− 1
Wl

l∑
i=1

wiϕ (ξi) ≤ ϕ
(
ξ̃
)
.

The inequalities given in Corollary 4 are the Mercer type variants of a result
from [5] and the inequality given in Corollary 5 is the Mercer type variant of
Theorem F.

Now we prove the integral case of Theorem 2.

Theorem 3. Suppose that f : [α, β]→ [m,M ] , ϕ, λ, x and y are all as in Theorem E
and additionally assume that ϕ is continuously differentiable. Then the inequalities

ϕ (c) + ϕ′ (c) (m+M − c− x) ≤ ϕ (m) + ϕ (M)− y
≤ ϕ (d) + ϕ′ (m) (m− d) + ϕ′ (M) (M − d)

− 1
λ (β)− λ (α)

∫ β

α

ϕ′ (f (t)) [f (t)− d] dλ (t) (2.7)

hold for each c, d ∈ [m,M ] .
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Proof. Suppose that f is nondecreasing (for f nonincreasing the proof is analo-
gous). For arbitrary α̃, β̃ ∈ R such that α̃ < α and β̃ > β we define a new function
f̃ : [α̃, β̃]→ [m,M ] by

f̃(t) =

⎧⎪⎨⎪⎩
m+ f(α)−m

α−α̃ (t− α̃) , t ∈ [α̃, α],
f (t) , t ∈ [α, β],

M + M−f(β)

β̃−β
(t− β̃), t ∈ [β, β̃].

It can be easily seen that the function f̃ is continuous and nondecreasing.
Next we define two new functions λ̃s : [α̃, β̃]→ R and λ̃c : [α̃, β̃]→ R by

λ̃s (t) =

⎧⎨⎩
1, t = α̃,

0, t ∈ (α̃, β̃),
−1, t = β̃,

and

λ̃c (t) =

⎧⎪⎨⎪⎩
1, t ∈ [α̃, α],

λ(β)−λ(t)
λ(β)−λ(α) , t ∈ [α, β],

0, t ∈ [β, β̃].

Note that for any function g : [α̃, β̃] → R continuous at the points α̃ and β̃ we
have ∫ β̃

α̃

g (t) dλ̃s (t) = g (α̃) [λ̃s (α̃+ 0)− λ̃s (α̃)] + g(β̃)[λ̃s(β̃)− λ̃s(β̃ − 0)]

= −g (α̃)− g(β̃). (2.8)

Also, if λ is continuous on [α, β] then λ̃c is continuous on [α̃, β̃], and if λ is of
bounded variation on [α, β] then λ̃c is of bounded variation on [α̃, β̃]. This means
that for any continuous and piecewise monotonic function g : [α̃, β̃] → R the

integral
∫ β̃

α̃ g(t)dλ̃c(t) is well defined and∫ β̃

α̃

g (t) dλ̃c (t) =
∫ α

α̃

g (t) dλ̃c (t) +
∫ β

α

g (t) dλ̃c (t) +
∫ β̃

β

g (t) dλ̃c (t)

=
∫ β

α

g (t) dλ̃c (t) =
∫ β

α

g (t) d
[
λ (β)− λ (t)
λ (β)− λ (α)

]
= − 1

λ (β)− λ (α)

∫ β

α

g (t) dλ (t) . (2.9)

Now we define λ̃ : [α̃, β̃]→ R by

λ̃ (t) = λ̃c (t)− λ̃s (t) , t ∈ [α̃, β̃].
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From (2.8) and (2.9) we conclude that the integral
∫ β̃

α̃
g(t)dλ̃(t) is well defined for

any continuous and piecewise monotonic function g : [α̃, β̃]→ R and∫ β̃

α̃

g (t) dλ̃ (t) =
∫ β̃

α̃

g (t) dλ̃c (t)−
∫ β̃

α̃

g (t) dλ̃s (t)

= − 1
λ (β)− λ (α)

∫ β

α

g (t) dλ (t) + g (α̃) + g(β̃). (2.10)

We also have

λ̃(β̃)− λ̃ (α̃) = λ̃c(β̃)− λ̃c (α̃)− λ̃s(β̃) + λ̃s (α̃) = 0− 1 + 1 + 1 = 1.

If we apply Theorem E on the functions f̃ , ϕ and λ̃ (we can do that even if the
function λ̃ is neither continuous nor of bounded variation since all the integrals
are well defined) we obtain

ϕ (c) + ϕ′ (c) (x̃− c)

≤ ỹ ≤ ϕ (d) +
1

λ̃ (β)− λ̃ (α)

∫ β̃

α̃

ϕ′
(
f̃ (t)

) [
f̃ (t)− d

]
dλ̃ (t)

where

x̃ =
1

λ̃
(
β̃
)
− λ̃ (α̃)

∫ β̃

α̃

f̃ (t) dλ̃ (t) =
∫ β̃

α̃

f̃ (t) dλ̃ (t)

= − 1
λ (β)− λ (α)

∫ β

α

f (t) dλ (t) + f̃ (α̃) + f̃(β̃)

= m+M − x

and

ỹ =
1

λ̃
(
β̃
)
− λ̃ (α̃)

∫ β̃

α̃

ϕ
(
f̃ (t)

)
dλ̃ (t) =

∫ β̃

α̃

ϕ
(
f̃ (t)

)
dλ̃ (t)

= ϕ (m) + ϕ (M)− y.

Now we have

ϕ (c) + ϕ′ (c) (m+M − c− x) ≤ ϕ (m) + ϕ (M)− y

≤ ϕ (d) +
∫ β̃

α̃

ϕ′
(
f̃ (t)

) [
f̃ (t)− d

]
dλ̃ (t) , (2.11)

and if in the second inequality in (2.11) we apply (2.10) for the function g : [α̃, β̃]→
R defined by

g (t) = ϕ′
(
f̃ (t)

) [
f̃ (t)− d

]
we obtain (2.7) . The proof is complete. �
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equality for convex and superquadratic functions, JIPAM 7 (2) (2006), Article 70.

[3] R.P. Boas, The Jensen-Steffensen inequality, Univ. Beograd. Publ. Elektrotehn.
Fak. Ser. Mat. Fiz. 302-319 (1970), 1–8.

[4] S.S. Dragomir, C.J. Goh, A counterpart of Jensen’s inequality, Math. Comput. Mod-
elling 24(2) (1996), 1–11.
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[6] M. Klaričić Bakula, M. Matić, J. Pečarić, Generalizations of the Jensen-Steffensen
and related inequalities, submitted for publication.
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Schur-Convexity, Gamma Functions,
and Moments

Albert W. Marshall and Ingram Olkin

Abstract. The gamma function is a central function that arises in many con-
texts. A wide class of inequalities is obtained by showing that certain gamma
functions are Schur-convex coupled with majorization of two vectors.
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1. Background and preliminaries

A function defined on a subset of Rn is Schur-convex (concave) if it preserves
(reverses) the ordering of majorization. Upper and lower bounds for such a function
can often be found by identifying vectors that, within the domain of the function,
are external in the sense of majorization. This procedure is employed here to
obtain bounds on several functions, all defined in terms of gamma functions. The
required Schur-convexity is verified by making use of inequalities that result from
connections with moments. For a more detailed discussion of majorization and
Schur-convexity, see [8] or [2].

The gamma function introduced by Euler in 1729 is a central function that
arises in many contexts, and is discussed in many books on special functions or
applied mathematics. The book by [3] deals solely with the gamma function, and
provides a detailed discussion of its properties. Two historical accounts are pro-
vided by [5] and [10]. A brief description that may suffice for general use is given
by [8, Chapter 23]. The compendium by [1] lists formulas and asymptotic behavior
of the gamma function.

The concern here is with Schur-convexity of gamma functions, which in turn
leads to bounds for the function. For definitions of Schur-convexity and majoriza-
tion, see [8] or [2]. In particular, let x = (x1, . . . , xn) and y = (y1, . . . , yn); if ϕ(x)
is a Schur-convex function, and x ! y (x majorizes y), then ϕ(x) ≥ ϕ(y). Because

(x1, . . . , xn) ! (x̄, . . . , x̄), (1)
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where x̄ =
∑
xi/n for all vectors x, ϕ(x) ≥ ϕ(x̄, . . . , x̄). However, an upper bound

for gamma functions may be elusive if x is restricted to be positive because the
majorization (∑

xi, 0, . . . , 0
)
! (x1, . . . , xn) (2)

does not provide a bound. An upper bound can be obtained if the x vector is
constrained, as in the following discussion.

The notation R = (0,∞),R+ = [0,∞),R++ = (0,∞) is used throughout.

2. Majorization under constraints

Here a variety of constrained majorization results are stated, each of which will
yield a bound. For further discussion and proofs of constrained majorization, see
[8, page 132].

Fact 1. [6] Suppose that m ≤ xi ≤ M , i = 1, . . . , n. Then there exist a unique
θ ∈ [m,M ], and a unique integer L such that∑

xi = (n− L− 1)m+ θ + LM. (3)

With L and θ so determined,

x ≺ (M, . . . ,︸ ︷︷ ︸M, θ, m, . . . ,︸ ︷︷ ︸m) ≡ v.

L n− L− 1
(4)

Fact 2. If xi ≥ m, i = 1, . . . , n, and
∑
xi = t, then

x ≺ (m, . . . ,m, t− (n− 1)m); (5)

if xi ≤M, i = 1, . . . , n, and
∑
xi = t, then

x ≺
( t−M
n− 1

, . . . ,
t−M
n− 1

,M
)
. (6)

Fact 3. If x[1] ≥ · · · ≥ x[n] and x[n] ≤ cx[n−1], then

x ≺
(
x[n],

x[n]

c
, . . . ,

x[n]

c
,M

)
, (7)

where M is determined by the equation
∑
xi = x[n] + (n− 2)x[n]/c+M .

Fact 4. If x[n] ≤ x[n−1] + d, then

x ≺ (x[n], x[n] + d, . . . , x[n] + d,M), (8)

where M is determined by the equation
∑
xi = x[n] + (n− 2)(x[n] + d) +M .

Fact 5. If minxi = m,maxxi = M,
∑
xi = t, then

x !
(
m,

t−m−M
n− 2

, . . . ,
t−m−M
n− 2

,M
)
. (9)
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As a consequence of the majorizations 5–9, if ϕ(x) is Schur-convex and if, for
example, xi ≥ m,

∑
xi = t, then an upper bound is given by

ϕ(x) ≤ ϕ(m, . . . ,m, t− (n− 1)m).

Each of the constraints noted in Facts 1–5 leads to bounds.

3. Gamma functions and Schur-convexity

Each of the following functions will be shown to be Schur-convex (or concave):

ϕ(x) =
n∏
1

Γ(xi + a), xi + a > 0, a ≥ 0; (10)

ϕ(x) =
n∏
1

Γ(xi + a)
Γ(xi + a+ b)

, xi + a > 0, a, b > 0; (11)

ϕ(x) =
n∏
1

Γ(mxi + a)
Γs(xi + a)

, mxi + a > 0, a ≥ 1, m ≥ 2, s ≤ m; (12)

ϕ(x) =
n∏
1

xxi+1
i

Γ(xi + 1)
, xi ≥ 0; (13)

The key to the proofs of 10–13 is the fact that a product of moments of
nonnegative random variables is Schur-convex.

Fact 6. Let g be a continuous positive function defined on an interval I ⊂ R. Then

ϕ(x) =
n∏
1

g(xi), x ∈ In, (14)

is Schur-convex on In if and only if log g is convex. Moreover, ϕ is strictly Schur-
convex on In if and only if log g is strictly convex on I.

A particularly useful sufficient condition for the convexity of log g is the
following.

Fact 7. If ν is a measure on [0,∞) such that g(x) =
∫∞
0 zxdν(z) exists for all x in

an interval I, then log g is convex on I. Unless ν concentrates its mass on a set of
the form {0, z0}, log g is strictly convex on I.

The following is a consequence: If μr is the rth moment of a non-negative
variable, that is

μr =
∫ ∞

0

zrdν(z) (15)

for some probability measure ν, and if μr exists for all r in the interval I ⊂ R,
then

ϕ(r1, . . . , rn) =
n∏
1

μri (16)

is Schur-convex in r = (r1, . . . , rn) ∈ In.
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The application of Fact 7 is central to showing that 10–13 are Schur-convex.

Proof of the Schur-convexity of 10. With dν(z) = za−1e−zdz, 0 ≤ z ≤ ∞, and
I = (−a,∞), μr = Γ(r + a), r > −a. �

Proof of the Schur-convexity of 11. With dν(z) = za−1(1 − z)b−1dz, 0 ≤ z ≤ 1,
and I = (−a,∞), μr = Γ(r + a)/Γ(r + a+ b). �

Proof of the Schur-convexity of 12. The Legendre multiplication formula permits
the expansion

Γ(mz + a)
Γs(z + a)

=
mmz+a−1/2

(2π)(m−1)/2

s∏
j=1

(
Γ
(
z + a+j−1

m

)
Γ(z + a)

)
m∏

j=s+1

Γ
(
z +

a+ j − 1
m

)
. (17)

Define ψj(zi) = Γ
(
zi + a+j−1

m

)/
Γ(zi + a) for j = 1, . . . , s, and ψj(zi) =

Γ(zi + a+j−1
m ) for j = s+ 1, . . . ,m. Further, note that a+j−1

m ≤ a for a ≥ 1. Then

ϕ(z) = c

n∏
i=1

m∏
j=1

ψj(zi), (18)

where c depends on m,n, a, and
∑
zi, which does not affect Schur-convexity. From

the Schur-convexity of 10 and 11 it follows that the product 18 is Schur-convex.
�

Proof of the Schur-convexity of 13. The function ϕ(x) in 13 is Schur-concave on
Rn

+. Here note that

Γ(r + 1)
rr+1

=
∫ ∞

0

(te−t)rdt =
∫ ∞

0

zrdν(z),

where

ν[−y, z] =
∫

te−t≤z

te−tdt.

Consequently, log(Γ(x + 1)/xx+1) is convex in x > 0 and log(xx+1/Γ(x + 1)) is
concave in x > 0. �

Other results can be obtained in a similar manner. In particular, if g is a
Laplace transform, i.e.,

g(s) =
∫ ∞

0

e−szdμ(z),

then ϕ(x) = Πg(xi) is Schur-convex on Rn
+.

This opens up many possible results on Schur-convexity.
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4. Bounds from constrained majorizations

Each of the constrained majorizations 4 to 9 coupled with the Schur-convexity
results of Section 3 leads to new bounds. The following examples are illustrative
of these bounds.

4.1 If xi ≤M , xi + a > 0, i = 1, . . . , n,
∑
xi = t,

∑
xi/n = x̄, then

[Γ(x̄+ a)]n ≤
n∏
1

Γ(xi + a) ≤
[
Γ
( t−M
n− 1

+ a
)]n−1

Γ(M + a). (19)

The upper bound 19 follows from the Schur-convexity of 10 and the constrained
majorization 6; the lower bound follows from x ! (x̄, . . . , x̄).

4.2 If xi ≥ m, xi + a > 0, i = 1, . . . , n, b > 0,
∑
xi = t,

∑
xi/n = x̄, then[ Γ(x̄+ a)

Γ(x̄+ a+ b)

]n

≤
n∏
1

Γ(xi + a)
Γ(xi + a+ b)

≤
[ Γ(m+ a)
Γ(m+ a+ b)

]n−1 Γ(t− (n− 1)m+ a)
Γ(t− (n− 1)m+ a+ b)

.

(20)

The upper bound 20 follows from the Schur-convexity of 11 and the constrained
majorization 5; the lower bound follows from x ! (x̄, . . . , x̄).

These examples show how the pairing of a constrained majorization with a
Schur-convex function leads to a bound.
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A Characterization of Nonconvexity
and Its Applications in the Theory
of Quasi-arithmetic Means

Zoltán Daróczy and Zsolt Páles

Abstract. In this paper, we give necessary and sufficient conditions for the
comparison, equality and homogeneity problems of two-variable means of the
form

M
(
Aϕ,w1(x, y), . . . , Aϕ,wn(x, y)

)
(x, y ∈ I)

where M is an n-variable mean on the open interval I and Aϕ,wi denotes the
weighted quasi-arithmetic mean generated by a strictly increasing continuous
function ϕ : I → R and by a weight function wi : I2 →]0, 1[. The approach is
based on a characterization of lower semicontinuous nonconvex function.

Mathematics Subject Classification (2000). Primary 26D10.

Keywords. Nonconvexity; comparison, equality, and homogeneity of means;
quasi-arithmetic mean.

1. Introduction

Throughout this paper let I denote a nonempty open interval of real numbers and
let CM(I) stand for the class of continuous strictly monotone functions f : I → R.

For a function ϕ ∈ CM(I), define the (two-variable symmetric) quasi-arith-
metic mean Aϕ by

Aϕ(x, y) := ϕ−1

(
ϕ(x) + ϕ(y)

2

)
(x, y ∈ I).

When I = R+ and there exists a real parameter p ∈ R such that, for x > 0,

ϕ(x) = σp(x) :=

{
xp if p 
= 0,
ln(x) if p = 0,

This research has been supported by the Hungarian Scientific Research Fund (OKTA) Grants
K-62316, NK-68040.
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then the two-variable symmetric quasi-arithmetic mean Aϕ becomes the so-called
two-variable symmetric power or Hölder mean Hp defined by

Hp(x, y) :=

⎧⎪⎨⎪⎩
(
xp + yp

2

) 1
p

if p 
= 0
√
xy if p = 0

(x, y > 0).

Obviously, in the particular cases p = 1, p = 0, and p = −1, the Hölder means
reduce to the arithmetic, geometric, and harmonic means, respectively.

Concerning the comparison, equality and homogeneity problems of quasi-
arithmetic means, we have the following three classical results presented in the
book [8] of Hardy, Littlewood, and Pólya (cf. also [6], [11]).

Theorem A. Let ϕ, ψ ∈ CM(I). Then the comparison inequality

Aϕ(x, y) ≤ Aψ(x, y) (x, y ∈ I)

holds if and only if ψ◦ϕ−1 is convex (concave) on ϕ(I) provided that ψ is increasing
(decreasing).

Theorem B. Let ϕ, ψ ∈ CM(I). Then the identity

Aϕ(x, y) = Aψ(x, y) (x, y ∈ I)
holds if and only if there exist real constants a 
= 0 and b such that ψ = aϕ+ b.

In this case, we say that the generating functions ϕ and ψ are equivalent and
we write ϕ ∼ ψ.

Theorem C. Let ϕ ∈ CM(R+). Then the quasi-arithmetic mean Aϕ is homoge-
neous, i.e.,

Aϕ(tx, ty) = tAϕ(x, y) (x, y, t > 0)

if and only if there exists a real parameter p such that ϕ ∼ σp, i.e., the quasi-
arithmetic mean Aϕ is equal to the Hölder mean Hp.

In order to define quasi-arithmetic means and Hölder means weighted by a
weight function, denote by W(I) the class of functions w : I2 →]0, 1[. For ϕ ∈
CM(I) and for a weight function w ∈ W(I), define the weighted quasi-arithmetic
mean Aϕ,w : I2 → I by

Aϕ,w(x, y) := ϕ−1
(
w(x, y)ϕ(x) + (1− w(x, y))ϕ(y)

)
(x, y ∈ I).

For a parameter p ∈ R and for a weight function w ∈W(R+), define the weighted
Hölder mean Hp,w : R2

+ → R+ by

Hp,w(x, y) :=

⎧⎨⎩
(
w(x, y)xp + (1− w(x, y))yp

) 1
p if p 
= 0

xw(x,y)y1−w(x,y) if p = 0
(x, y > 0).

Clearly, if the weight function w is equal to the constant 1
2 , then we have that

Aϕ = Aϕ, 12
and Hp = Hp, 1

2
.
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Given a generating function ϕ ∈ CM(I), an n-variable mean M : In → I, and
an n-tuple of weight functions w1, . . . , wn ∈ W(I), we can define a two-variable
mean by the following formula

M
(
Aϕ,w1(x, y), . . . , Aϕ,wn(x, y)

)
(x, y ∈ I). (1.1)

The main problem investigated in this paper is to find necessary and sufficient
conditions for the comparison, equality and homogeneity problems of means of
the form (1.1). Our approach is based on a characterization of the nonconvexity of
lower semicontinuous real-valued functions. In the last section examples are pro-
vided to demonstrate the applicability of our results and also some open questions
are discussed.

2. Nonconvex functions

Let X be a real linear space and D ⊆ X be a nonvoid convex subset. By the
standard definition of convexity, a function f : D → R is convex if, for all x, y ∈ D
and t ∈ [0, 1],

f
(
tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y). (2.1)

Thus, the nonconvexity of f yields the existence of elements x 
= y in D and
t ∈]0, 1[ such that

f
(
tx+ (1− t)y

)
> tf(x) + (1− t)f(y). (2.2)

It seems to be a natural problem if, for some fixed x 
= y, one could get further
properties of the values t satisfying (2.2).

Let X = R and consider the function f = χ{0} : R → R, the characteristic
function of the singleton {0}. Obviously, f is nonconvex. On the other hand, (2.2)
can hold for this function only if f

(
tx+ (1− t)y

)
= 1, i.e., when tx+(1− t)y = 0.

This is satisfied only if either x < 0 < y or y < 0 < x and t = y
y−x . Therefore,

if x < 0 < y or y < 0 < x, then there exists exactly one t ∈]0, 1[ such that (2.2)
holds and for x, y ≤ 0 and 0 ≤ x, y there is no t ∈]0, 1[ satisfying (2.2). Thus, in
order to assure a larger set of the values t satisfying (2.2) for some fixed x 
= y, we
need to assume additional regularity properties on the function f .

Since the restriction of a convex functions to any open segment of D is au-
tomatically continuous, the continuity of f in this sense seems to be a relevant
regularity property. In fact, we shall see that lower semicontinuity is sufficient for
our purposes. We say that f : D → R is lower semicontinuous along the seg-
ments of D if, for all u, v ∈ D, the real function t �→ f

(
tu + (1 − t)v

)
is lower

semicontinuous on [0, 1] in the standard sense.

Theorem 2.1. Let f : D → R be a nonconvex function which is lower semicontin-
uous along the segments of D. Then there exist x 
= y in D such that (2.2) holds
for all 0 < t < 1.
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Proof. By the nonconvexity of f , we have that there exist elements u 
= v in D
and 0 < τ < 1 such that

f
(
τu+ (1 − τ)v

)
> τf(u) + (1− τ)f(v).

Thus, the set

T :=
{
t ∈]0, 1[: f

(
tu+ (1 − t)v

)
− tf(u)− (1− t)f(v) > 0

}
is nonempty. On the other hand, by the lower semicontinuity property of f , the
set T is also open. Let S =]r, s[ be a maximal open subinterval of T . Then r, s
cannot belong to T , hence

f
(
ru+ (1 − r)v

)
≤ rf(u) + (1− r)f(v),

f
(
su+ (1− s)v

)
≤ sf(u) + (1 − s)f(v),

(2.3)

and
f
(
τu + (1− τ)v

)
> τf(u) + (1− τ)f(v) (τ ∈]r, s[). (2.4)

Denote
x := su+ (1− s)v and y := ru + (1− r)v. (2.5)

Then y − x = (s − r)(v − u) 
= 0, hence x 
= y. To show that (2.2) holds, let
t ∈]0, 1[ be arbitrary. Then, using the definitions in (2.5), the inequality (2.4) with
τ := ts+ (1− t)r and finally the two inequalities of (2.3), we get

f
(
tx+ (1− t)y

)
= f

(
t
(
su+ (1− s)v

)
+ (1 − t)

(
ru + (1− r)v

))
= f

((
ts+ (1− t)r

)
u+

(
t(1− s) + (1− t)(1 − r)

)
v
)

>
(
ts+ (1− t)r

)
f(u) +

(
t(1− s) + (1− t)(1 − r)

)
f(v)

= t
(
sf(u) + (1− s)f(v)

)
+ (1− t)

(
rf(u) + (1− r)f(v)

)
≥ tf

(
su+ (1− s)v

)
+ (1− t)f

(
ru + (1− r)v

)
= tf(x) + (1− t)f(y).

Therefore (2.2) holds for all t ∈]0, 1[. �

Remark 2.2. A characterization of nonconvexity for upper semicontinuous func-
tions was found by the second author in [13]. This characterization was used to
obtain sandwich-type theorems for the separation of quasi-arithmetic means by
Hölder means.

The following result, which is an obvious consequence of Theorem 2.1, offers
a new characterization of convexity.

Corollary 2.3. Let f : D → R be lower semicontinuous function along the segments
of D. Let w : D2 →]0, 1[ and assume that f is w-convex, i.e., for all x, y ∈ D,

f
(
w(x, y)x +

(
1− w(x, y)

)
y
)
≤ w(x, y)f(x) +

(
1− w(x, y)

)
f(y). (2.6)

Then f is convex on D.



A Characterization of Nonconvexity 255

Remark 2.4. In the case when, instead of lower semicontinuity, the local upper
boundedness is assumed for the function f and the function w is continuous in
both variables, the second author proved in [12, Remark 2] that inequality (2.6)
also characterizes the convexity of f . Using the results of Adamek [1, 2], one can
see that, for this statement, the local upper boundedness of f at a single point of
D is sufficient. These results generalize the so-called Bernstein–Doetsch Theorem
(cf. [5], [9]). On the other hand, by the example considered at the beginning of
this section, one can see that the lower semicontinuity of f at a single point of D
and the validity of (2.6) does not imply the convexity of f in general.

3. Main results

Our basic result presents an alternative for the comparison of quasi-arithmetic
means.

Theorem 3.1. Let ϕ, ψ ∈ CM(I). Then

(i) either, for all elements x, y ∈ I and for all constant weights w ∈]0, 1[,

Aϕ,w(x, y) ≤ Aψ,w(x, y), (3.1)

(ii) or there exist two distinct elements x, y ∈ I such that, for all constant weights
w ∈]0, 1[,

Aϕ,w(x, y) > Aψ,w(x, y). (3.2)

Proof. Obviously, the two alternatives cannot hold simultaneously. Without loss
of generality, we may assume that ψ is increasing.

Suppose that the first alternative (i) is not valid: Then there exist elements
x, y ∈ I and w ∈]0, 1[, such that (3.1) is not satisfied, i.e., (3.2) holds. By the
increasingness of ψ, (3.2) can be rewritten as

ψ ◦ ϕ−1
(
wϕ(x) + (1− w)ϕ(y)

)
> wψ(x) + (1− w)ψ(y). (3.3)

Now, set u := ϕ(x) and v := ϕ(y). Then u, v ∈ ϕ(I), x = ϕ−1(u), y = ϕ−1(v), and
(3.3) yields

ψ ◦ ϕ−1
(
wu + (1− w)v

)
> wψ ◦ ϕ−1(u) + (1− w)ψ ◦ ϕ−1(v),

showing that the continuous function f := ψ ◦ ϕ−1 is not convex on the interval
ϕ(I). By our characterization of nonconvexity, it follows that there exist elements
u 
= v in ϕ(I) such that, for all w ∈]0, 1[,

f
(
wu+ (1− w)v

)
> wf(u) + (1− w)f(v).

Define x := ϕ−1(u) and y := ϕ−1(v). Then u = ϕ(x) and v = ϕ(y) and the above
inequality yields that (3.3) holds for all w ∈]0, 1[. By the increasingness of ψ again,
we get that the second alternative (ii) must be valid. �
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Our main result below gives a general comparison theorem for means of the
form (1.1). It is a generalization of Theorem A. In the formulation of the result,
an n-variable mean M : In → I is called increasing if, for all elements x1, . . . , xn,
y1, . . . , yn in I with x1 ≤ y1, . . . , xn ≤ yn, we have the inequality

M(x1, . . . , xn) ≤M(y1, . . . , yn)

The mean M is called strictly increasing if it is increasing and the strict inequality

M(x1, . . . , xn) < M(y1, . . . , yn)

is valid whenever x1 < y1, . . . , xn < yn.

Theorem 3.2. Let ϕ, ψ ∈ CM(I), let M : In → I be a strictly increasing n-variable
mean, and let w1, . . . , wn ∈W(I). Then

M
(
Aϕ,w1(x, y), . . . , Aϕ,wn(x, y)

)
≤M

(
Aψ,w1(x, y), . . . , Aψ,wn(x, y)

)
(x, y ∈ I)

(3.4)
holds if and only if ψ ◦ ϕ−1 is convex (concave) on ϕ(I) if ψ is increasing (de-
creasing).

Proof. Throughout the proof, we may assume that ψ is increasing.
If ψ ◦ ϕ−1 is convex on ϕ(I) then, by Theorem A, the comparison inequality

Aϕ ≤ Aψ holds on I2, i.e., for all x, y ∈ I,
Aϕ, 12

(x, y) ≤ Aψ, 1
2
(x, y).

Therefore, the second alternative (ii) of Theorem 3.1 cannot be valid. Thus, the
first alternative (i) of this theorem must hold, i.e., for all x, y ∈ I and for all
constant weights w ∈]0, 1[, we have

Aϕ,w(x, y) ≤ Aψ,w(x, y).

In particular, with w = wi(x, y), we get that

Aϕ,wi(x, y) ≤ Aψ,wi(x, y) (x, y ∈ I, i = 1, . . . , n).

Hence, by the increasingness of the mean M , (3.4) follows.
Now assume that ψ ◦ ϕ−1 is nonconvex on ϕ(I). Then, by Theorem A, the

comparison inequality Aϕ ≤ Aψ is not satisfied on I2. Therefore, the first alter-
native (i) of Theorem 3.1 cannot hold. Thus, the second alternative (ii) of this
theorem must be valid, i.e., there exist two elements x, y ∈ I such that, for all
constant weights w ∈]0, 1[,

Aϕ,w(x, y) > Aψ,w(x, y).

In particular, with w = wi(x, y), we get that

Aϕ,wi(x, y) > Aψ,wi(x, y) (i = 1, . . . , n).

Now, using the strict increasingness of the mean M , it follows from these strict
inequalities that (3.4) cannot be valid. �
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Theorem 3.3. Let ϕ, ψ ∈ CM(I), let M : In → I be a strictly increasing n-variable
mean, and let w1, . . . , wn ∈W(I). Then

M
(
Aϕ,w1(x, y), . . . , Aϕ,wn(x, y)

)
= M

(
Aψ,w1(x, y), . . . , Aψ,wn(x, y)

)
(x, y ∈ I)

(3.5)
holds if and only if there exist real constants a 
= 0 and b such that ψ = aϕ+ b.

Proof. Without loss of generality, we may assume that ϕ and ψ are increasing
functions. Then the identity (3.5) holds if and only if, instead of the equality, the
two inequalities ≤ and ≥ hold in (3.5) simultaneously. By Theorem 3.2, this is
valid if and only if ψ ◦ ϕ−1 and ϕ ◦ ψ−1 are convex functions on ϕ(I) and ψ(I),
respectively. Using Theorem A, it follows that the two inequalities Aϕ ≤ Aψ and
Aψ ≤ Aϕ hold on I2 simultaneously, i.e., we have the identity Aϕ = Aψ. By
Theorem B, this is satisfied if and only if ϕ ∼ ψ, i.e., there exist real constants
a 
= 0 and b such that ψ = aϕ+ b. �

Theorem 3.4. Let ϕ, ψ ∈ CM(R+), let M : Rn
+ → R+ be a strictly increasing

n-variable mean which is homogeneous, i.e.,

M(tx1, . . . , txn) = tM(x1, . . . , xn) (t, x1, . . . , xn > 0).

Let w1, . . . , wn ∈W(R+) be nullhomogeneous weight functions, i.e.,

wi(tx, ty) = wi(x, y) (t, x, y > 0, i = 1, . . . , n)

Then the homogeneity property

M
(
Aϕ,w1(tx, ty), . . . , Aϕ,wn(tx, ty)

)
= tM

(
Aϕ,w1(x, y), . . . , Aϕ,wn(x, y)

)
(3.6)

holds for all t, x, y > 0 if and only if there exists a real parameter p such that
ϕ ∼ σp, i.e., for all x, y > 0,

M
(
Aϕ,w1(x, y), . . . , Aϕ,wn(x, y)

)
= M

(
Hp,w1(x, y), . . . , Hp,wn(x, y)

)
. (3.7)

Proof. Assume first that (3.6) holds. For a fixed t > 0, define the function ϕt :
R+ → R+ by ϕt(x) := ϕ(tx). Then, by the nullhomogeneity of wi, for all x, y > 0,
we have

Aϕ,wi(tx, ty) = ϕ−1
(
wi(tx, ty)ϕ(tx) + (1− wi(tx, ty))ϕ(ty)

)
= ϕ−1

(
wi(x, y)ϕt(x) + (1− wi(x, y))ϕt(y)

)
= tϕ−1

t

(
wi(x, y)ϕt(x) + (1− wi(x, y))ϕt(y)

)
= tAϕt,wi(x, y).

Thus, using the homogeneity of M , (3.6) yields

M
(
Aϕt,w1(x, y), . . . , Aϕt,wn(x, y)

)
= M

(
Aϕ,w1(x, y), . . . , Aϕ,wn(x, y)

)
.

Applying Theorem 3.3, it follows that ϕt ∼ ϕ for all t > 0. Hence, by Theorem B,
we get that Aϕt = Aϕ for all t > 0, i.e.,

Aϕ(x, y) = Aϕt(x, y) =
1
t
ϕ−1

(ϕ(tx) + ϕ(ty)
2

)
=

1
t
Aϕ(tx, ty).
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This shows that Aϕ is a homogeneous mean. In view of Theorem C, we get that
ϕ ∼ σp, and hence Aϕ,wi = Hp,wi (i = 1, . . . , n) are valid for some p ∈ R.
Therefore, (3.7) holds with this value of p ∈ R.

Conversely, assume that ϕ ∼ σp holds for some p ∈ R. By the nullhomogeneity
of wi, we have that

Hp,wi(tx, ty) =
(
wi(tx, ty)(tx)p + (1− wi(tx, ty))(ty)p

) 1
p

=
(
tp
(
wi(x, y)xp + (1− wi(x, y))yp

)) 1
p

= t
(
wi(x, y)xp + (1− wi(x, y))yp

) 1
p = tHp,wi(x, y)

if p 
= 0, and the same is also valid if p = 0. In other words, Hp,wi is homogeneous
for all i = 1, . . . , n. Using ϕ ∼ σp, the homogeneity of the means Hp,wi and M , we
get

M
(
Aϕ,w1(tx, ty), . . . , Aϕ,wn(tx, ty)

)
= M

(
Hp,w1(tx, ty), . . . , Hp,wn(tx, ty)

)
= M

(
tHp,w1(x, y), . . . , tHp,wn(x, y)

)
= tM

(
Hp,w1(x, y), . . . , Hp,wn(x, y)

)
= tM

(
Aϕ,w1(x, y), . . . , Aϕ,wn(x, y)

)
,

which proves the homogeneity property (3.6). �

4. Examples

In the subsequent examples we demonstrate the applicability of our main results.

Example 1. For a generating function ϕ ∈ CM(I) and for a constant weight w ∈
]0, 1[, consider the mean

Ãϕ,w(x, y) :=
ϕ−1

(
wϕ(x) + (1− w)ϕ(y)

)
+ ϕ−1

(
(1− w)ϕ(x) + wϕ(y)

)
2

,

which is called a symmetrized weighted quasi-arithmetic mean. Then Ãϕ,w is of the
form (1.1), where n = 2 and

M(x, y) =
x+ y

2
, w1(x, y) = w, w2(x, y) = 1− w (x, y ∈ I).

Observe that M is a strictly increasing and homogeneous mean, and the weight
functions w1 and w2 are trivially nullhomogeneous. Thus, each of Theorem 3.2,
Theorem 3.3, and Theorem 3.4 can be applied. By these theorems, we have that:

1. For ϕ, ψ ∈ CM(I) and w ∈]0, 1[, the inequality Ãϕ,w ≤ Ãψ,w holds on I2 if
and only if ψ◦ϕ−1 is convex (concave) on ϕ(I) if ψ is increasing (decreasing).

2. For ϕ, ψ ∈ CM(I) and w ∈]0, 1[, the identity Ãϕ,w = Ãψ,w holds on I2 if and
only if ϕ ∼ ψ.

3. For ϕ ∈ CM(R+) and w ∈]0, 1[, the mean Ãϕ,w is homogeneous on R2
+ if and

only if ϕ ∼ σp for some p ∈ R.
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The results of this paper have grown out from the investigation of means of the
form Ãϕ,w. Originally, we wanted to describe the comparison, equality and homo-
geneity problems of these means. The more general comparison problem Ãϕ,w1 ≤
Ãψ,w2 and the related equality problem Ãϕ,w1 = Ãψ,w2 (where ϕ, ψ ∈ CM(I) and
w1, w2 ∈]0, 1[), i.e., when the constant weights w1 and w2 are possibly different
seem to be much more difficult, and they have not been solved yet.

Example 2. For a generating function ϕ ∈ CM(I) and for a positive function
p : I → R+, consider the mean

Mϕ,p(x, y) := ϕ−1

(
p(x)ϕ(x) + p(y)ϕ(y)

p(x) + p(y)

)
(x, y ∈ I), (4.1)

which is called a quasi-arithmetic mean weighted by the weight function p. These
means were considered first by Bajraktarević [3, 4]. It is easy to see that Mϕ,p is
also of the form (1.1), where n = 1 and

M(x) = x, w1(x, y) =
p(x)

p(x) + p(y)
(x, y ∈ I).

Then M is a strictly increasing and homogeneous mean. The weight functions w1

is not nullhomogeneous in general except if p is a power function. Thus, again
Theorem 3.2, Theorem 3.3, and Theorem 3.4 can be applied. By these theorems,
we have that:

1. For ϕ, ψ ∈ CM(I) and p : I → R+, the inequality Mϕ,p ≤Mψ,p holds on I2 if
and only if ψ◦ϕ−1 is convex (concave) on ϕ(I) if ψ is increasing (decreasing).

2. For ϕ, ψ ∈ CM(I) and p : I → R+, the identity Mϕ,p = Mψ,p holds on I2 if
and only if ϕ ∼ ψ.

3. For ϕ ∈ CM(R+) and p(x) = xq (x > 0), the mean Mϕ,p is homogeneous on
R2

+ if and only if ϕ ∼ σr for some r ∈ R, i.e., if Mϕ,p is a two-variable Gini
mean.

The more general equality problem Mϕ,p = Mψ,q with four unknown functions
ϕ, ψ ∈ CM(I), p, q : I → R+ was solved under six-times continuous differentiability
assumptions by Losonczi [10]. The general comparison problem Mϕ,p ≤ Mψ,q

(again with four unknown functions) has not been solved yet. The solution for the
homogeneity problem is also unknown. If the definition (4.1) is extended to more
than two-variable means, the comparison problem was solved in [7].

Example 3. For a generating function ϕ ∈ CM(R+), consider the mean

Nϕ(x,y) :=

√
ϕ−1

(
ϕ(x)+ϕ(y)

2

)
·ϕ−1

(
cos2

( x

x+y

)
ϕ(x)+sin2

( x

x+y

)
ϕ(y)

)
.

Then Nϕ is of the form (1.1), where n = 2 and

M(x, y) =
√
xy, w1(x, y) =

1
2
, w2(x, y) = cos2

( x

x+ y

)
(x, y > 0).
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Observe that M is a strictly increasing and homogeneous mean, and the weight
functions w1 and w2 are nullhomogeneous. Thus, each of Theorem 3.2, Theo-
rem 3.3, and Theorem 3.4 can be applied. By these theorems, we have that:

1. For ϕ, ψ ∈ CM(R+), the inequality Nϕ ≤ Nψ holds on R2
+ if and only if

ψ ◦ ϕ−1 is convex (concave) on ϕ(R+) if ψ is increasing (decreasing).
2. For ϕ, ψ ∈ CM(R+), the identity Nϕ = Nψ holds on R2

+ if and only if ϕ ∼ ψ.
3. For ϕ ∈ CM(R+), the mean Nϕ is homogeneous if and only if ϕ ∼ σp for

some p ∈ R.
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[7] Z. Daróczy and L. Losonczi, Über den Vergleich von Mittelwerten, Publ. Math. De-
brecen 17 (1970), 289–297.
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Approximately Midconvex Functions

Jacek Mrowiec, Jacek Tabor and Józef Tabor

Abstract. Let X be a vector space and let D ⊂ X be a nonempty convex set.
We say that a function f is δ-midconvex if

f
(x + y

2

)
≤ f(x) + f(y)

2
+ δ for x, y ∈ D.

We find the smallest function C : [0, 1] ∩ Q → R such that for every
δ-midconvex function f : D → R the following estimate holds

f(qx + (1 − q)y) ≤ qf(x) + (1 − q)f(y) + C(q)δ

for x, y ∈ D, q ∈ [0, 1] ∩ Q.

Mathematics Subject Classification (2000). 26A51, 39B82.

Keywords. Stability, convexity, Jensen convex functions.

Let X be a real vector space and let D be a convex subset of X . A function
f : D → R is convex if

f(tx+ (1 − t)y) ≤ tf(x) + (1− t)f(y) for x, y ∈ D, t ∈ [0, 1].

We say that f is midconvex (or Jensen convex) if it satisfies

f

(
x+ y

2

)
≤ f(x) + f(y)

2
for x, y ∈ D.

D. Hyers and S. Ulam introduced in [4] the notion of approximate convexity.
Function f is said to be δ-convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + δ for x, y ∈ D, t ∈ [0, 1],

and f is δ-midconvex if

f

(
x+ y

2

)
≤ f(x) + f(y)

2
+ δ for x, y ∈ D.

It is clear that every discontinuous additive function midconvex, but is is not
δ-convex with any δ. C.T. Ng and K. Nikodem proved in [8] (for the discussion of
related results see also [3]) that every locally bounded above at a point δ-midconvex
function is automatically 2δ-convex:



262 J. Mrowiec, Ja. Tabor and Jó. Tabor

Theorem NN. Let X be a real topological vector space. Let D ⊂ X be an open and
convex set, and let f : D → R be δ-midconvex. If f is bounded from above at a
point of D, then f is 2δ-convex.

On the other hand, as it is well known [5], a midconvex function is Q-convex,
that is

f(qx+ (1− q)y) ≤ qf(x) + (1− q)f(y) for x, y ∈ D, q ∈ [0, 1]Q,

where
[0, 1]Q := [0, 1] ∩Q.

Thus it seemed natural to investigate whether a version of the result of C.T.
Ng and K. Nikodem holds for approximately midconvex functions, but without
the assumption of local boundedness. J. Mrowiec showed in [6] (see also [7]) that
this is the case. Namely, he proved that if f : D → R is a δ-midconvex function,
then

f(qx+ (1− q)y) ≤ qf(x) + (1− q)f(y) + 2δ for x, y ∈ D, q ∈ [0, 1]Q.

Our aim in this paper is to improve the result of J. Mrowiec and provide the
optimal function C such that the following estimation holds

f(qx+ (1− q)y) ≤ qf(x) + (1− q)f(q) + C(q)δ.

for every δ-midconvex function f : D → R.
At the end of the introduction let us mention that in our results we apply the

modified (and simplified) version of the method used by A. Házy and Zs. Páles [1].

Let us now proceed to our results. From now on X stands for a real vector
space, D ⊂ X for a nonempty Q-convex subset of X and δ for a nonnegative
number.

Following the idea of C.T. Ng and K. Nikodem, see [8, Lemma 1], we define
the function C : [0, 1]→ R by the formula

C(t) =

⎧⎨⎩
0 for t = 0 or t = 1;
2− 21−n for t = k

2n , k odd;
2 otherwise.

Clearly C is a nonnegative function which is bounded from above by 2. As we will
show later in Remark 1 in general C gives us optimal estimation.

In the following lemma we investigate the properties of the function C.

Lemma 1. The function C satisfies the following conditions
(i) C(t) = C(2t)/2 + 1 for t ∈ (0, 1/2];
(ii) C(t) = C(2t− 1)/2 + 1 for t ∈ [1/2, 1);
(iii) C is 1-midconvex, that is

C

(
s+ t

2

)
≤ C(s) + C(t)

2
+ 1 (1)

for all s, t ∈ [0, 1].



Approximately Midconvex Functions 263

Before proceeding to the proof let us point out that the functional equations
(i) and (ii) are to similar to the equations investigated in [1, Section 2].

Proof. Since conditions (i) and (ii) are obvious, we consider only (iii).
Let s, t ∈ [0, 1] be arbitrary. If either C(s) + C(t) ≥ 2 or s = 0 = t (or

s = 1 = t) then (1) trivially holds. It remains to consider the case when s = k/2n

(k odd) and t = 0 or t = 1. If t = 0 then by (ii) we have

C( s+0
2 ) = C(s/2) = C(s)/2 + 1 = C(s)+C(0)

2 + 1.

Similarly, if t = 1 applying (ii) we get

C( s+1
2 ) = C(s)/2 + 1 = C(s)+C(1)

2 + 1. �

The following proposition will play a crucial role in the proof of our main
result.

Proposition 1. Let n ∈ N be fixed and let In = {0, 1
n , . . . ,

n−1
n , 1}. Let g : In → R

be a function such that g(0) = 0 = g(1) and that

g(q) ≤ g(2q)/2 + δ for q ∈ In, q ≤ 1/2, (2)

g(q) ≤ g(2q − 1)/2 + δ for q ∈ In, q ≥ 1/2. (3)

Then
g(q) ≤ C(q)δ for q ∈ In. (4)

Proof. Let
M := max{g(q)− C(q)δ : q ∈ In},

and let r ∈ In be chosen such that

g(r)− C(r)δ = M.

If r = 0 then M = g(0)− C(0)δ = 0. Analogously we obtain that M = 0 if r = 1.
Now let us consider the case when r ∈ (0, 1

2 ]. Then by (2) and property (i)
from Lemma 1 we obtain

M ≥ g(2r)− C(2r)δ ≥ (2g(r)− 2δ)− (2C(r)− 2)δ = 2M,

which means that M ≤ 0.
If r ∈ [ 12 , 1) then by similar argumentation using (3) and (ii) from Lemma 1

we again obtain that M ≤ 0. �

Now we are ready to prove the main result of the paper.

Theorem 1. Let D be a nonempty Q-convex subset of a vector space X and let
f : D → R be a δ-midconvex function. Then

f(qx+ (1− q)y) ≤ qf(x) + (1− q)f(y) + C(q)δ for x, y ∈ D, q ∈ [0, 1]Q.



264 J. Mrowiec, Ja. Tabor and Jó. Tabor

Proof. Let us fix arbitrarily x, y ∈ D and n ∈ N. We define the function g : In → R

by the formula

g(q) = f(qx+ (1 − q)y)− (qf(x) + (1− q)f(y)) for q ∈ In,
where as before In = {0, 1

n , . . . ,
n−1

n , 1}. One can easily check that g satisfies all
the assumptions of Proposition 1. Consequently we get

g(q) ≤ C(q)δ for q ∈ In,
which means that

f( k
nx+ (1 − k

n )y) ≤ k
nf(x) + (1− k

n )f(y) + C( k
n )δ for k ∈ {0, 1, . . . , n}.

Since n ∈ N was arbitrarily chosen, the proof is complete. �

Since the maximum of the function C is 2, directly from Theorem 1 we obtain
that every δ midconvex function is 2δ Q-midconvex.

Remark 1. Let us mention that the function C|[0,1]Q is the best possible in the
class of functions for which Theorem 1 holds.

To observe this, suppose that C̃ : [0, 1]Q → R is such a function that condition

f(qx+ (1− q)y) ≤ qf(x) + (1− q)f(y) + C̃(q)δ for x, y ∈ D, q ∈ [0, 1]Q. (5)

holds for for every δ-midconvex function f : D → R. By Lemma 1 (iii) we know
that C is 1-midconvex. Taking in (5) D = [0, 1], f = C, δ = 1 and x = 0, y = 1
we get

C(q) ≤ C̃(q) for q ∈ [0, 1]Q.

At the end let us show some applications of our theorem. The first corollary
gives an improvement of the result of C.T. Ng and Nikodem [8].

Corollary 1. Let D be a nonempty open convex subset of a topological vector space
X and let f : D → R be a δ-midconvex function which is bounded from above in a
neighbourhood of a point of D. Then

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + C(t)δ for t ∈ [0, 1]. (6)

Proof. If t is not rational, then C(t) = 2 and the above estimation follows from
the result of C.T. Ng and K. Nikodem [8]. If t is rational, (6) follows directly from
Theorem 1. �

Now we show that we can obtain something even in the case when the bound
on the “Jensen difference” is not constant (see also [2] for different results in the
similar spirit).

Corollary 2. Let D be a nonempty Q-convex subset of a normed space X, and let
Ψ : R+ → R+ be a non-decreasing function. Let f : D → R satisfy the inequality

f

(
x+ y

2

)
≤ f(x) + f(y)

2
+ Ψ(‖x− y‖) for x, y ∈ D.
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Then

f(qx+ (1 − q)y) ≤ qf(x) + (1− q)f(y) + C(q)Ψ(‖x− y‖) for q ∈ [0, 1]Q.

Proof. We fix arbitrarily x, y ∈ D and put δ := Ψ(‖x− y‖),
D[x,y] := {qx+ (1 − q)y : q ∈ [0, 1]Q}.

Then one can easily notice that since Ψ is non-decreasing f |D[x,y] is δ-midconvex.
Therefore applying Theorem 1 we obtain that

f(qx+(1−q)y) ≤ qf(x)+(1−q)f(y)+C(q)δ = qf(x)+(1−q)f(y)+C(q)Ψ(‖x−y‖)
for q ∈ [0, 1]Q. �
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Sandwich Theorems for
Orthogonally Additive Functions
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Abstract. Let p be an orthogonally subadditive mapping, q an orthogonally
superadditive mapping such that p ≤ q or q ≤ p. We prove that under some
additional assumptions there exists a unique orthogonally additive mapping
f such that p ≤ f ≤ q or q ≤ f ≤ p, respectively.
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1. Introduction

Throughout the paper R denotes the set of real numbers, R+ = {t ∈ R : t ≥ 0}
and N = {1, 2, . . .}.

Let (X, 〈·|·〉) be a real inner product space of dimension at least 2 and let
(Y,+) be an abelian group. We say that a mapping f : X → Y is orthogonally
additive iff it satisfies the following conditional functional equation:

x ⊥ y =⇒ f(x+ y) = f(x) + f(y), x, y ∈ X,
where ⊥⊂ X ×X denotes the standard orthogonality relation on X , i.e., x ⊥ y iff
〈x|y〉 = 0.

Each additive mapping b : X → Y , i.e., the solution of the Cauchy functional
equation:

b(x+ y) = b(x) + b(y), x, y ∈ X
is an example of orthogonally additive mapping. Moreover, one may calculate that
the map

X $ x �→ 〈x|x〉 = ‖x‖2 ∈ R

is orthogonally additive (the Pythagoras Theorem for inner product spaces). In
1995 K. Baron and J. Rätz [1] proved that if (Y,+) is an abelian group and
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f : X → Y is orthogonally additive, then there exists exactly one pair of additive
mappings a : R→ Y , b : X → Y such that

f(x) = a(‖x‖2) + b(x), x ∈ X.

A map g : X → Y is called quadratic if it satisfies the equation

g(x+ y) + g(x− y) = 2g(x) + 2g(y), x, y ∈ X.

If a : R → Y is an additive function, then the map X $ x �→ a(‖x‖2) ∈ Y is
an example of a quadratic mapping which is orthogonally additive. On the other
hand, a quadratic map needs not to be orthogonally additive.

Orthogonality may be introduced on more general structures than the inner
product space. W. Blaschke [4], G. Birkhoff [3], R.C. James [9] and Gy. Szabó
[19] investigated an orthogonality relation, called Birkhoff-James orthogonality,
defined in a real normed linear space X as follows:

x ⊥BJ y ⇐⇒ ∀λ∈R (‖x+ λy‖ ≥ ‖x‖) .

One may check that if X is an inner product space, then ⊥BJ coincides with the
standard orthogonality ⊥.

In 1974 S. Gudder and D. Strawther [8] proposed an axiomatic framework for
the orthogonal additivity so that the case of standard orthogonality and the case
of Birkhoff-James orthogonality is covered. The idea has been developed in the
1980’s by J. Rätz and Gy. Szabó [12, 13, 14, 15]. In particular, they introduced the
orthogonality space, also called the Rätz space. An ordered pair (X,⊥) is called an
orthogonality space whenever X is a vector space over a field K such that 1+1 
= 0
in K, dimX ≥ 2 and ⊥ is a binary relation on X such that

(i) x ⊥ 0 and 0 ⊥ x for all x ∈ X ;
(ii) if x, y ∈ X \ {0} and x ⊥ y, then x and y are linearly independent;
(iii) if x, y ∈ X and x ⊥ y, then for all ξ, η ∈ K we have ξx ⊥ ηy;
(iv) for any two-dimensional subspace P of X and for every x ∈ P , there exists a

y ∈ P such that x ⊥ y and x+ y ⊥ x− y.
In 1998 K. Baron and P. Volkmann [2], developing the above-mentioned ear-

lier results of J. Rätz and Gy. Szabó, obtained the representation of orthogonally
additive mappings defined on an orthogonality space as a sum of an additive map-
ping and a quadratic mapping without additional assumptions on the range of
investigated functions. On the other hand, Gy. Szabó [20] and D. Yang [21] proved
that if an orthogonality space (X,⊥) admits an orthogonally additive mapping
which is not additive, then X is an inner product space and ⊥ coincides with the
standard orthogonality.

In 2006 the first author [5] made an attempt to describe orthogonally subad-
ditive mappings. In particular, the following result has been obtained.
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Theorem A. Assume that (X, 〈·|·〉) is a real inner product space with dimX ≥ 3.
If f : X → R is orthogonally subadditive, i.e., it satisfies

x ⊥ y =⇒ f(x+ y) ≤ f(x) + f(y), (1)

and
f(2x) ≥ 4f(x), x ∈ X, (2)

then there exists a nonnegative sublinear map P : R+ → R such that

f(x) = P (‖x‖2), x ∈ X. (3)

Conversely, for each sublinear map P : R+ → R a function f : X → R given by
(3) fulfills (1) and (2).

By sublinear map we understand a subadditive and n-homogeneous map for
each n ∈ N. For more details see M. Kuczma [10, pp. 414–417].

In [5] we have provided some conditions weaker than (2) which jointly with
(1) allow to describe f in terms of solutions of unconditional functional equations
and inequalities. However, we were not able to get rid of such conditions com-
pletely. Therefore, our state of knowledge connected with orthogonally subadditive
mappings is much less satisfactory than in case of (unconditionally) subadditive
mappings.

In 1995 R. Ger and the second author [7] investigated the Hyers-Ulam sta-
bility of the equation of the orthogonal additivity. Further results in this direction
have been obtained by M. Moslehian [11] and by the second author [16, 17, 18].
Theorem 1 below is a joint generalization of [18, Theorem 4.2] and [18, Theorem
6.1].

Let (X,⊥) be an orthogonality space. Consider function ϕ : X ×X → [0,∞)
such that

(a) one of the series
∞∑

n=1

2−nϕ(2n−1x, 2n−1x) and
∞∑

n=1

2n−1ϕ(2−nx, 2−nx) is con-

vergent; denote such a sum by Φ(x);

(b) one of the series
∞∑

n=0

41−nϕ(2n−1x, 2n−1x) and
∞∑

n=1

4nϕ(2−nx, 2−nx) is con-

vergent; denote such a sum by Ψ(x);
(c) for all x, y ∈ X such that x ⊥ y we have

lim
n→∞ 2−nϕ(2nx, 2ny) = 0 or lim

n→∞ 2nϕ(2−nx, 2−ny) = 0

for respective cases from (a);
(d) for all x, y ∈ X such that x ⊥ y we have

lim
n→∞ 4−nϕ(2nx, 2ny) = 0 or lim

n→∞ 4nϕ(2−nx, 2−ny) = 0

for respective cases from (b);
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(e) there exists an M > 0 such that for all x, y ∈ X if x ⊥ y and x+ y ⊥ x− y
then

max {ϕ(x, y), ϕ(x,−y), ϕ(x + y, x− y), ϕ(x+ y, y − x)} ≤Mϕ(x, x).

Theorem 1. Let (X,⊥) be an orthogonality space, (Y, ‖ · ‖) be a real Banach space
and ψ : X ×X → [0,∞). If F,G,H : X → Y satisfy the condition

x ⊥ y =⇒ ‖F (x+ y)−G(x) −H(y)‖ ≤ ψ(x, y),

and function ϕ : X ×X → [0,∞) given by

ϕ(x, y) := ψ(x, y) + ψ(x, 0) + ψ(0, y), x, y ∈ X,

satisfies conditions (a)–(e), then there exists a unique orthogonally additive func-
tion f : X → Y such that

‖F (x)−G(0)−H(0)− f(x)‖ ≤M(3Φ(x) + Ψ(x)), x ∈ X ;

‖G(x) −G(0)− f(x)‖ ≤M(3Φ(x) + Ψ(x)) + ψ(x, 0), x ∈ X ;

‖H(x)−H(0)− f(x)‖ ≤M(3Φ(x) + Ψ(x)) + ψ(0, x), x ∈ X,

where Φ(x) := 1
2 [Φ(x) + Φ(−x)], x ∈ X, and Ψ(x) := 1

2 [Ψ(x) + Ψ(−x)], x ∈ X.
In particular case, if F = G = H, the approximation

‖F (x)− f(x)‖ ≤M(3Φ(x) + Ψ(x)), x ∈ X

is valid with ϕ := ψ satisfying (a)–(e).

Proof. This statement can be proved by a modification of the proof of Theorem 4.2
in [18]. One needs to replace the value ε(‖x‖p + ‖y‖p) from that proof by ψ(x, y)
and observe that thanks to our assumptions upon ψ all the calculations can be
repeated. �

2. Main results

From now on we will be assuming that (X,⊥) is an orthogonality space.

We are going to show that if p : X → R and q : X → R satisfy

x ⊥ y =⇒ p(x+ y) ≤ p(x) + p(y), (4)

x ⊥ y =⇒ q(x+ y) ≥ q(x) + q(y), (5)

jointly with some auxiliary technical conditions, then p and q can be separated by
an orthogonally additive mapping.

Clearly, each subadditive map p and superadditive map q satisfy (4) and (5),
respectively, and each orthogonally additive mapping satisfies both inequalities.
Moreover, if X is an inner product space and P : R+ → R is a sublinear map, then
p := P (‖ · ‖2) and q := −P (‖ · ‖2) also fulfill these inequalities. One may check
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that for all above-mentioned examples of solutions of (4) and (5) the following
estimations are satisfied:

p(2x) ≤ 3p(x) + p(−x), x ∈ X ; (6)

q(2x) ≥ 3q(x) + q(−x), x ∈ X. (7)

However, we do not know whether they hold true for arbitrary solutions of (4)
and (5). In the sequel, we will provide some conditions sufficient for orthogonally
subadditive or superadditive mapping to satisfy (6) or (7), respectively. Note that
for an orthogonally subadditive and even map p the inequality (6) is the opposite
to (2).

Now, consider the following properties of functions α : X → [0,∞) and
υ : X → X :

1o either (i)
∞∑

n=1

2−nα(2nx) is convergent or (ii)
∞∑

n=0

2nα(2−nx) is convergent;

denote such a sum by A(x);

2o either (i)
∞∑

n=0

41−nα(2nx) is convergent or (ii)
∞∑

n=0

4n+1α(2−nx) is convergent;

denote such a sum by B(x);
3o there exists an M > 0 such that for all x, y ∈ X if x ⊥ y and x+ y ⊥ x− y

then:
(i) max {α(x+ y), α(x − y), α(2y)} ≤Mα(2x);
(ii) max {S(x, y), S(x,−y), S(x+ y, x− y), S(x+ y, y − x)} ≤M S(x, x),

where S(x, y) := α(x + y) + α(x) + α(y);
(iii) max {α(y), α(−y), α(x+ y) + α(x− y), α(x+ y) + α(y − x)} ≤Mα(x);
(iv) max {α(y), α(x + y), α(x− y)} ≤M(α(x) + α(0));

4o υ2 = υ ◦ υ = idX and α(x) = α(υ(x)) for all x ∈ X .

Proposition 1. Assume that p : X → R and q : X → R satisfy (4), (5) and

p(x) ≤ q(x), x ∈ X. (8)

If there exists an α : X → [0,∞) such that 1o, 2o, 3o(i) hold true and

|q(x) − p(x)| ≤ α(x), x ∈ X, (9)

then there exists a unique orthogonally additive mapping f : X → R such that

p(x)− μ(x) ≤ f(x) ≤ q(x) + μ(x), x ∈ X, (10)

where μ(x) = M [3A(x) +B(x)] for all x ∈ X.

Proof. Observe that for arbitrarily fixed vectors x, y ∈ X such that x ⊥ y we have

p(x+ y)− p(x)− p(y) ≥ q(x+ y)− α(x + y)− q(x) − q(y) ≥ −α(x+ y),

and, obviously,
p(x+ y)− p(x)− p(y) ≤ 0 ≤ α(x+ y).
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Therefore, we get the estimation

x ⊥ y =⇒ |p(x+ y)− p(x) − p(y)| ≤ α(x + y).

We are at the point to apply Theorem 1 with ψ(x, y) = ϕ(x, y) := α(x + y). We
infer that there exists a unique orthogonally additive mapping f : X → Y such
that:

|p(x)− f(x)| ≤ μ(x), x ∈ X. (11)
Moreover, one may easily calculate that μ(x) = M [3A(x) +B(x)] for all x ∈ X .

From this it follows that

p(x)− μ(x) ≤ f(x) ≤ p(x) + μ(x) ≤ q(x) + μ(x), x ∈ X.
Uniqueness of f as a solution of (10) can be derived by use of standard tools,

repeating argumentation from the proof of Theorem 2.4 in [18]. This completes
the proof. �

In the next proposition condition (9) is replaced by a more flexible one, but
we need to strengthen assumption upon α and we obtain a less sharp estimation.

Proposition 2. Assume that p : X → R and q : X → R satisfy (4), (5) and (8). If
there exist mappings α : X → [0,∞) and υ : X → X such that 1o, 2o, 3o(ii), 4o

hold true, and
|q(x) − p(υ(x))| ≤ α(x), x ∈ X, (12)

then there exists a unique orthogonally additive mapping f : X → R such that the
estimation (10) is satisfied with μ(x) = M

[
3A(x) + 6A

(
x
2

)
+B(x) + 2B

(
x
2

)]
+

α(x) for all x ∈ X.

Proof. One can check that for each x, y ∈ X such that x ⊥ y the following esti-
mations are valid:

p(υ(x+ y))− p(x) − p(y) ≥ q(x + y)− α(x + y)− q(x) − q(y) ≥ −α(x+ y)

and

p(υ(x+ y))− p(x) − p(y)
= p(x+ y)− p(x)− p(y) + p(υ(x+ y))− p(x+ y)

≤ p(υ(x+ y))− p(x+ y) ≤ q(υ(x+ y))− p(x+ y) ≤ α(υ(x + y)).

Thus, we have shown that

x ⊥ y =⇒ |p(υ(x+ y))− p(x)− p(y)| ≤ α(x+ y).

From (4) and (5) it follows that p(0) ≥ 0 ≥ q(0) which jointly with (8) means
that p(0) = q(0) = 0. From Theorem 1 applied for F := p ◦ υ, G = H := p
and ψ(x, y) := α(x+ y) we derive the existence of a unique orthogonally additive
mapping f : X → Y such that

|p(x)− f(x)| = |G(x) −G(0)− f(x)|

≤M
[
3A(x) + 6A

(x
2

)
+B(x) + 2B

(x
2

)]
+ α(x)
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for all x ∈ X . From this it follows that

p(x)− μ(x) ≤ f(x) ≤ q(x) + μ(x) ≤ p(x) + μ(x), x ∈ X.
Uniqueness of f as a solution of (10) is shown in a standard way. This completes
the proof. �

In the next two statements we assume the converse inequality to (8) and we
obtain analogous results.

Proposition 3. Assume that p : X → R and q : X → R satisfy (4), (5) and

q(x) ≤ p(x), x ∈ X. (13)

If there exists an α : X → [0,∞) such that 1o, 2o, 3o(iii) and (9) hold true, then
there exists a unique orthogonally additive mapping f : X → R such that

q(x) − μ(x) ≤ f(x) ≤ p(x) + μ(x), x ∈ X, (14)

where μ(x) = M
[
6A

(
x
2

)
+ 2B

(
x
2

)]
for all x ∈ X.

Proof. It is enough to check that

p(x+ y)− p(x)− p(y) ≥ q(x+ y)− q(x) − α(x) − q(y)− α(y) ≥ −α(x)− α(y),

whenever x ⊥ y, and apply Theorem 1 for ψ(x, y) = ϕ(x, y) := α(x) + α(y). The
rest of the proof is analogous to the proof of Proposition 1. �

Proposition 4. Assume that p : X → R and q : X → R satisfy (4), (5) and (13).
If there exist a mapping α : X → [0,∞) and an orthogonally additive mapping
υ : X → X such that 1o, 2o, 3o(iv), 4o and (12) hold true, then there exists a
unique orthogonally additive mapping f : X → R such that the estimation (14) is
satisfied with μ(x) = 4M

[
3A

(
x
2

)
+B

(
x
2

)]
+α(x)+

(
50
3 M + 3

)
α(0) for all x ∈ X.

Proof. For x ⊥ y we have

p(υ(x) + υ(y))− p(x)− p(y)
≥ q(υ(x) + υ(y))− q(υ(x)) − α(υ(x)) − q(υ(y))− α(υ(y))

≥ −α(υ(x)) − α(υ(y)),

and

p(υ(x) + υ(y))− p(x) − p(y)
= p(υ(x) + υ(y))− p(υ(x)) − p(υ(y)) + p(υ(x)) + p(υ(y))− p(x)− p(y)
≤ p(υ(x))− q(x) + p(υ(y))− q(y) ≤ α(x) + α(y),

so,

|p(υ(x+ y))− p(x) − p(y)| = |p(υ(x) + υ(y))− p(x)− p(y)| ≤ α(x) + α(y). (15)

Now, it is enough to apply Theorem 1 with F := p ◦υ, G = H := p and ψ(x, y) :=
α(x) +α(y). From (15) and additivity of υ we have |p(0)| ≤ 2α(0). Moreover, it is
easy to observe that cases 1o(ii) and 2o(ii) force α(0) = 0. Calculating the exact
formula of μ completes the proof. �
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Now, we will prove our main result.

Theorem 2. Assume that α : X → [0,∞) fulfills 2o(ii), p : X → R and q : X → R

satisfy (4), (5), (6), (7) and (8). If at least one set of following conditions: (9) and
3o(i) or (12), 3o(ii), 4o with some υ : X → X is valid, then there exists a unique
orthogonally additive mapping f : X → R such that

p(x) ≤ f(x) ≤ q(x), x ∈ X. (16)

Proof. Define operator Λ: RX → RX by the formula

Λ(f)(x) := 3f
(x

2

)
+ f

(
−x

2

)
, f ∈ RX , x ∈ X.

Observe that Λ is a linear operator which is monotonic, i.e., if g ≤ h, then Λ(g) ≤
Λ(h). Moreover, from (6) and (7) it follows that p ≤ Λ(p) and Λ(q) ≤ q. Further,
if f : X → R is an orthogonally additive mapping, then Λ(f) = f .

Now, we join Proposition 1 or Proposition 2 with the already established
properties of Λ to obtain the existence of an orthogonally additive mapping f
satisfying

p− Λn(μ) ≤ Λn(p)− Λn(μ) ≤ Λn(f)

≤ Λn(q) + Λn(μ) ≤ q + Λn(μ), n ∈ N,

where μ is defined in the respective proposition.
Our assumptions upon α imply that

lim
n→+∞Λn (μ(x)) = 0, x ∈ X.

Therefore, letting n tend to +∞ in the foregoing estimation we arrive at p ≤ f ≤ q.
The estimation (16) is stronger than (10) and thus f is unique. This completes
the proof. �

Now, we derive two corollaries from Proposition 3 and Proposition 4 which
provide conditions sufficient for the separation of p and q by an additive and by a
quadratic mapping in case q ≤ p. Assumptions (6) and (7) are replaced by other
ones, which force the map f to be odd or even, respectively.

Theorem 3. Assume that α : X → [0,∞) fulfills 1o(i), p : X → R and q : X → R

satisfy (4), (5), (13) and

p(2x) ≤ 2p(x), x ∈ X ; (17)

q(2x) ≥ 2q(x), x ∈ X. (18)

If at least one set of conditions (9) and 3o(iii) or (12), 3o(iv), 4o with some or-
thogonally additive υ : X → X is valid, then there exists a unique additive mapping
f : X → R such that

q(x) ≤ f(x) ≤ p(x), x ∈ X. (19)
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Proof. Let f : X → R be a unique orthogonally additive mapping postulated by
Proposition 3 or Proposition 4. Assume that f has decomposition f = fo + fe,
where fo is the odd part of f and fe is the even one. Thus fo is additive, whereas
fe is quadratic. In particular,

fo(2x) = 2fo(x), fe(2x) = 4fe(x), x ∈ X.
On the other hand, from (14) jointly with (17) and (18) we infer that

2nq(x) − μ(2nx) ≤ q(2nx)− μ(2nx)

≤ f(2nx)

= 2nfo(x) + 4nfe(x)

≤ p(2nx) + μ(2nx)

≤ 2np(x) + μ(2nx), x ∈ X, n ∈ N.

Divide this estimations side by side by 2n and let n tend to +∞. Condition 1o(i)
implies 2o(i), so from the form of μ and the properties of α we derive that neces-
sarily fe = 0 and

q(x) ≤ fo(x) = f(x) ≤ p(x), x ∈ X,
which was to be proved. �

Theorem 4. Assume that α : X → [0,∞) fulfills 1o, 2o(i), p : X → R and q : X → R

satisfy (4), (5), (13) and

p(2x) ≤ 4p(x), x ∈ X ; (20)

q(2x) ≥ 4q(x), x ∈ X. (21)

If at least one set of conditions (9) and 3o(iii) or (12), 3o(iv) and 4o with some
additive υ : X → X is valid, then there exists a unique quadratic orthogonally
additive mapping f : X → R such that (19) holds true.

Proof. Preserving the notations of the foregoing proof, for all x ∈ X, n ∈ N we
obtain

4nq(x) − μ(2nx) ≤ q(2nx) − μ(2nx) ≤ f(2nx) = 2nfo(x) + 4nfe(x)

≤ p(2nx) + μ(2nx) ≤ 4np(x) + μ(2nx).

Dividing the above inequality side by side by 4n, letting n tend to +∞, using the
form of μ and the properties of α we arrive at

q(x) ≤ fe(x) ≤ p(x), x ∈ X,
which was to be proved. �

Remark 1. A simple observation shows that the above results can be easily applied
to the situation, where (X, ‖ · ‖) is a real normed linear space with the Birkhoff-
James orthogonality, α := ‖·‖r and υ := −idX . One may check using the properties
of the Birkhoff-James orthogonality that for various possibilities r < 1, r > 1,
r < 2, r > 2 the corresponding cases 1o(i), 1o(ii), 2o(i), 2o(ii), and 3o holds true.
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We will terminate the paper by providing some conditions sufficient for (6)
and (7).

Theorem 5. Assume that p : X → R and q : X → R satisfy (4), (5) and
+∞∑
n=1

2n
[
p
( x

2n

)
+ p

(
− x

2n

)]
≤ p(x) + p(−x), x ∈ X ; (22)

+∞∑
n=1

2n
[
q
( x

2n

)
+ q

(
− x

2n

)]
≥ q(x) + q(−x), x ∈ X. (23)

Then (6) and (7) hold true.

Proof. We will prove that (4) jointly with (22) implies (6). Fix arbitrarily x ∈ X
and choose y ∈ X such that x ⊥ y and x+ y ⊥ x− y. Using the properties of the
orthogonality relation ⊥, by the multiple use of (4) we obtain

p(2x) ≤ p(x+ y) + p(x− y)
≤ 2p(x) + p(y) + p(−y)

≤ 2p(x) +
[
2p

(y
2

)
+ p

(x
2

)
+ p

(
−x

2

)]
+

[
2p

(
−y

2

)
+ p

(
−x

2

)
+ p

(x
2

)]
= 2p(x) + 2p

(x
2

)
+ 2p

(
−x

2

)
+ 2p

(y
2

)
+ 2p

(
−y

2

)
≤ 2p(x) +

N∑
n=1

2n
[
p
( x

2n

)
+ p

(
− x

2n

)]
+ 2N

[
p
( y

2N

)
+ p

(
− y

2N

)]
,

for each N ∈ N. Now, apply (22) to deduce that

lim
N→+∞

2N
[
p
( y

2N

)
+ p

(
− y

2N

)]
= 0

and

p(2x) ≤ 2p(x) +
+∞∑
n=1

2n
[
p
( x

2n

)
+ p

(
− x

2n

)]
≤ 3p(x) + p(−x).

To prove that (5) and (23) imply (7) put p := −q and apply the already
proved statement for p. This completes the proof. �
Remark 2. Under assumptions of the previous theorem, if additionally X is an in-
ner product space with dimX ≥ 3, then there exist sublinear functions P,Q : R+ →
R such that

+∞∑
n=1

2n
[
p
( x

2n

)
+ p

(
− x

2n

)]
= P (‖x‖2), x ∈ X ;

+∞∑
n=1

2n
[
q
( x

2n

)
+ q

(
− x

2n

)]
= −Q(‖x‖2), x ∈ X.
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Indeed, denote f(x) :=
∑+∞

n=1 2n
[
p
(

x
2n

)
+ p

(
− x

2n

)]
for x ∈ X . It is clear that f

satisfies (1) and

f(2x) = 2p(x) + 2p(−x) + 2f(x)

≥ 4f(x), x ∈ X.
Therefore, from Theorem A it follows that f has the desired representation. The
argument for q is analogous.

Further, by (22) we have

P (‖x‖2) ≤ p(x) + p(−x), x ∈ X,
and, consequently, from this and by the 2-homogeneity of P we get

+∞∑
n=1

2n
[
p
( x

2n

)
+ p

(
− x

2n

)]
≥

+∞∑
n=1

2n

[
P

(∥∥∥ x
2n

∥∥∥2
)]

= P (‖x‖2), x ∈ X.
This means that the following equality holds true:

p(x) + p(−x) =
+∞∑
n=1

2n
[
p
( x

2n

)
+ p

(
− x

2n

)]
= P (‖x‖2), x ∈ X.

Similarly,
q(x) + q(−x) = −Q(‖x‖2), x ∈ X.

Now, if p and q are Borel-measurable or p is bounded from above at a point
and q is bounded from below at a point, then P and Q are continuous (see M.
Kuczma [10, pp. 414–417]) and thus there exist constants cp, cq ∈ R such that
P (t) = cpt and Q(t) = cqt for t ∈ R+. Therefore, if we define

po(x) := p(x)− 1
2
cp‖x‖2, x ∈ X ;

qo(x) := q(x)− 1
2
cq‖x‖2, x ∈ X,

then po and qo are odd mappings and one may calculate that po is orthogonally
subadditive, whereas qo is orthogonally superadditive. Thus, both mappings, as
odd maps, are orthogonally additive and consequently, additive and thus linear,
since p and q enjoy a regularity property. In particular, p and q are orthogonally
additive.

Remark 3. In a number of sandwich theorems assumptions that the functions to
be separated are increasing or decreasing in a sense appears (see, e.g., Z. Gajda
[6]). For orthogonally subadditive mapping p it seems natural to assume that p
is orthogonally increasing, i.e., p(x + y) ≥ p(x) whenever x ⊥ y. S. Gudder and
D. Strawther proved in [8] that orthogonally increasing functions are of the form
X $ x �→ g(‖x‖) ∈ R with a nondecreasing map g : R+ → R. In fact, orthogonally
subadditive and orthogonally increasing function p satisfies (6) and (20). Indeed,
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fix x ∈ X arbitrarily and choose y ∈ X such that x ⊥ y and ‖x‖ = ‖y‖. From the
result of S. Gudder and D. Strawther we infer that in particular p(±x) = p(±y).
Now, we have

p(2x) ≤ p(x+ y) + p(x− y)
≤ 2p(x) + p(y) + p(−y)
= 4p(x)

= 3p(x) + p(−x).
Similarly, an orthogonally subadditive and orthogonally decreasing function q sat-
isfies (7) and (21).
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On Vector Pexider Differences
Controlled by Scalar Ones

Roman Ger

Abstract. We deal with a functional inequality

‖F (x + y) − G(x) − H(y)‖ ≤ g(x) + h(y) − f(x + y)

where F, G, H map a given commutative (semi)group (S,+) into a Banach
space and f, g, h : S → R are given scalar functions. This is a pexiderized
version of the stability problem

‖F (x + y) − F (x) − F (y)‖ ≤ f(x) + f(y) − f(x + y)

examined in connection with the singular case (p = 1) in

‖F (x + y) − F (x) − F (y)‖ ≤ ε (‖x‖p + ‖y‖p)

We show, among others, that the maps F, G and H have to be, in a sense, close
to an additive map provided that the function g + h − 2f is upper bounded.

Mathematics Subject Classification (2000). 39B82, 39B62, 39B52.

Keywords. Pexider difference, stability, functional inequality, vector-valued
solutions.

1. Introduction

Let (X, ‖ · ‖) and (Y, ‖ · ‖) be two Banach spaces and let F : X −→ Y and
ϕ : X2 −→ R be two functions such that

‖ F (x+ y)− F (x)− F (y) ‖≤ ϕ(x, y), x, y ∈ X. (1)

Z.Gajda [3] has proved that in the case where

ϕ(x, y) = ε (‖ x ‖p + ‖ y ‖p), (x, y) ∈ X2,

with given ε ≥ 0 and p ∈ R\{1}, there exists a unique additive mapping A : X −→
Y such that

‖ F (x)−A(x) ‖≤ 2ε sgn (p− 1)
2p − 2

‖ x ‖p, x ∈ X.
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For p = 0 the result was known already in 1941 by D.H. Hyers [7] and for p ∈ [0, 1)
it was proved in 1950 by T. Aoki [1] and rediscovered in 1978 by Th.M. Rassias
[10]. The value p = 1 seems to be critical and it actually is; in [3] (see also Th.M.
Rassias and P. S̆emrl [11]) Z. Gajda presents an example of a continuous function
F : R −→ R such that | F (x + y) − F (x) − F (y) | ≤ | x | + | y | for all x, y ∈ R,
but there exists no additive mapping A : R −→ R for which the function

R\{0} $ x −→ 1
| x | | F (x)−A(x) |

were bounded. In other words, the inequality

‖ F (x+ y)− F (x)− F (y) ‖ ≤ ‖ x ‖ + ‖ y ‖, x, y ∈ X, (2)

is too weak for F to enforce its asymptotic additivity. In [4] it is shown, among
others, that diminishing the right-hand side of (2) by taking

‖F (x+ y)− F (x)− F (y)‖ ≤ ‖x‖+ ‖y‖ − ‖x+ y‖, x, y ∈ X, (3)

does the job, i.e., then there exists an additive mapping A : X −→ Y such that
the function x −→ 1

‖x‖ ‖ F (x) − A(x) ‖ is bounded (i.e., F is asymptotically
additive, as required). However, the target space (Y, ‖ · ‖) is assumed to be finite
dimensional in [4]. The latter assumption has then been replaced in [5] by the
requirement that the space (Y, ‖ · ‖) is either reflexive or has the Hahn-Banach
extension property or forms a boundedly complete Banach lattice with a strong
unit. Moreover, inequality (3) was there generalized to

‖F (x+ y)− F (x) − F (y)‖ ≤ f(x) + f(y)− f(x+ y), x, y ∈ X, (4)

whereas the domain X was replaced by an amenable group.
Kil-Woung Jun, Dong-Soo Shin & Byung-Do Kim [8] and a year later Yang-

Hi Lee and Kil-Woung Jun [9] described the stability behaviour of the following
pexiderization of inequality (1):

‖F (x+ y)−G(x) −H(y)‖ ≤ ϕ(x, y) .

In both papers the dominating function ϕ is assumed to satisfy a convergence
condition corresponding to the so-called direct method – the technique of Hyers
sequences applied by him already in [7]. That standard approach is useless while
dealing with the most delicate (singular) cases we have spoken of. Facing the lack
of stability we then try to diminish the dominating function to get the desired
result. To cover such cases in the pexiderized case, in the present paper we deal
with a Pexider analogue of inequality (4), namely

‖F (x+ y)−G(x) −H(y)‖ ≤ g(x) + h(y)− f(x+ y) (5)

where F,G,H map a given commutative (semi)group (S,+) into a Banach space
and f, g, h : S → R are given scalar functions. However, we have to remark that
without any additional assumptions upon the scalar functions occurring here such
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a setting is too general; actually, observe that even in the case where G = H and
g = h, quite arbitrary mappings F and G solve the inequality

‖F (x+ y)−G(x) −G(y)‖ ≤ ‖G(x)‖+ ‖G(y)‖ − (−‖F (x+ y)‖) .

Therefore some shrinking conditions upon the dominating difference in (5) are
indispensable to avoid trivialities.

2. Reducing inequality (5) to four unknown functions

We begin with a rearrangement of inequality (5) to reduce it to a slightly simpler
form. Recall that a monoid is a semigroup admitting a neutral element.

Theorem 1. Let (S,+) be an Abelian semigroup and let (X, ‖·‖) stand for a normed
linear space. Given mappings F,G,H : S −→ X and functions f, g, h : S −→ R

satisfying inequality (5) for all x, y ∈ S, we have

‖F1(x+ y)−G1(x) −G1(y)‖ ≤ g1(x) + g1(y)− f1(x + y) , x, y ∈ S,

where F1 := 2F, G1 := G+H, f1 := 2f and g1 := g + h.

Proof. Inequality (5) jointly with the commutativity of the semigroup (S,+) imply
that

‖F (x+ y)−G(y)−H(x)‖ ≤ g(y) + h(x)− f(x+ y) , x, y ∈ S.

Summing this inequality with (5) side by side and applying the triangle inequality
of the norm we derive the assertion.

Theorem 2. Let (S,+, 0) be a monoid and let (X, ‖ · ‖) stand for a normed linear
space. Given mappings F,G : S −→ X and functions f, g : S −→ R such that

‖F (x+ y)−G(x) −G(y)‖ ≤ g(x) + g(y)− f(x+ y) , x, y ∈ S, (6)

we have

‖F (x+ y)− F (x)− F (y)‖ ≤ g̃(x) + g̃(y)− f(x+ y) , x, y ∈ S, (7)

and
‖G(x+ y)−G(x)−G(y)‖ ≤ g(x) + g(y)− f̃(x+ y) , x, y ∈ S, (8)

where g̃ := 2g − f + c and f̃ := 2f − g − c, with c := g(0) + ‖G(0)‖ .

Proof. Setting y = 0 in (6) we get

‖F (x)−G(x)‖−‖G(0)‖ ≤ ‖F (x)−G(x)−G(0)‖ ≤ g(x)+ g(0)− f(x) , x, y ∈ S,

whence

‖F (x)−G(x)‖ ≤ g(x)− f(x) + g(0) + ‖G(0)‖ = g(x)− f(x) + c , x, y ∈ S.
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Therefore, for all x, y ∈ S one has

‖F (x+ y)− F (x)− F (y)‖
≤ ‖F (x+ y)−G(x) −G(y)‖+ ‖G(x)− F (x)‖ + ‖G(y)− F (y)‖
≤ g(x) + g(y)− f(x+ y) + (g(x)− f(x) + c) + (g(y)− f(y) + c)

≤ (2g(x)− f(x) + c) + (2g(y)− f(y) + c)− f(x+ y)

= g̃(x) + g̃(y)− f(x+ y) ,

which gives (7).
To prove (8), note that for all elements x, y, z from S we get

‖F (x+ y + z)−G(x) −G(y + z)‖ ≤ g(x) + g(y + z)− f(x+ y + z) ,

as well as

‖F (x+ y + z)−G(x+ y)−G(z)‖ ≤ g(x+ y) + g(z)− f(x+ y + z) ,

which easily implies that

‖G(x+y)+G(z)−G(x)−G(y+z)‖ ≤ g(x)+g(y+z)+g(x+y)+g(z)−2f(x+y+z) .

Putting here z = 0 we conclude that

‖G(x+ y)−G(x) −G(y)‖ − ‖G(0)‖
≤ ‖G(x+ y) +G(0)−G(x) −G(y)‖
≤ g(x) + g(y) + g(x+ y) + g(0)− 2f(x+ y) ,

from which inequality (8) results immediately. Thus the proof has been completed.

3. Main results

Because of the tools used, in what follows we will need a group structure in the do-
main considered. In the reduced case the commutativity is weakened to amenabil-
ity due to the fact that Theorem 1 is of no use. Recall that a semigroup (S,+) is
termed left (resp. right) amenable provided that there exists a real linear functional
M on B(S,R) such that

inf f(S) ≤ M(f) ≤ sup f(S) , f ∈ B(S,R) ,

and M is left (resp. right) invariant in the sense that

M(af) = M(f) (resp.M(fa) = M(f) )

for all f ∈ B(S,R) and all a ∈ S; here (af)(x) := f(a + x) and fa(x) := f(x +
a), x, a ∈ S.

It is well known that any commutative semigroup is amenable.



On Vector Pexider Differences 287

In what follows we will be using the following slightly modified version of
Theorem 3 from [5]:

Theorem (∗). Let (S,+) be an amenable group and let (X, ‖ · ‖) be a real normed
linear space that is either reflexive or has the Hahn-Banach extension property.
Suppose further that F : S −→ X and f : S −→ R satisfy inequality

‖ F (x+ y)− F (x) − F (y) ‖≤ f(x) + f(y)− f(x+ y) , x, y ∈ S.

Then exists an additive mapping A : S −→ X such that

‖ F (x)−A(x) ‖≤ 2fe(x) , x ∈ S ,

where fe stands for the even part of f .

Now, we are in a position to prove the following

Theorem 3. Let (S,+) be an amenable group and let (X, ‖ · ‖) be a real normed
linear space that is either reflexive or has the Hahn-Banach extension property.
Given functions f, g : S −→ R and F,G : S −→ X such that

‖F (x+ y)−G(x) −G(y)‖ ≤ g(x) + g(y)− f(x+ y)

for all x, y ∈ S, and

c0 := sup {g(x)− f(x) : x ∈ S} <∞ ,

there exist an additive map A : S −→ X and real constants α, β such that

‖F (x)−A(x)‖ ≤ 2fe(x) + α , x ∈ S,

and
‖G(x) −A(x)‖ ≤ 2ge(x) + β , x ∈ S .

Proof. By means of Theorem 2, for all x, y ∈ S we have

‖G(x+ y)−G(x)−G(y)‖
≤ g(x) + g(y)− f̃(x+ y)

= g(x) + g(y)− 2f(x+ y) + g(x+ y) + c

= (g(x) + g(y)− g(x+ y)) + 2(g(x+ y)− f(x+ y)) + c

≤ g(x) + g(y)− g(x+ y) + 2c0 + c

=
(
g +

1
2
β

)
(x) +

(
g +

1
2
β

)
(y)−

(
g +

1
2
β

)
(x+ y) ,

where β := 4c0 + 2c. On account of Theorem (∗), there exists an additive map
A : S −→ X such that for every x ∈ S one has

‖G(x)−A(x)‖ ≤ 2(g +
1
2
β)e(x) = 2ge(x) + β , x ∈ S ,

as claimed.
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Moreover, by (6) applied for y = 0, for an arbitrary x from S we have also

‖F (x)−A(x)‖ ≤ ‖F (x)−G(x)‖ + ‖G(x)−A(x)‖
= g(x)− f(x) + c+ 2ge(x) + β

≤ c0 + c+ 2fe(x) + 2c0 + β

= 2fe(x) + α ,

with α := 3c0 + c+ β. This finishes the proof.

Theorem 4. Let (S,+) be an Abelian group and let (X, ‖ · ‖) be a real Banach
space that is either reflexive or has the Hahn-Banach extension property. Given
functions f, g, h : S −→ R and F,G,H : S −→ X such that

(5) ‖F (x+ y)−G(x) −H(y)‖ ≤ g(x) + h(y)− f(x+ y)

for all x, y ∈ S, and

c0 := sup {g(x) + h(x)− 2f(x) : x ∈ S} <∞ ,

there exist an additive map A : S −→ X and real constants α0, β0, γ0 such that

‖F (x)−A(x)‖ ≤ 2fe(x) + α0 , x ∈ S,

and
‖G(x)−A(x)‖ ≤ 2ge(x) + β0 , x ∈ S ,
‖H(x)−A(x)‖ ≤ 2he(x) + γ0 , x ∈ S ,

where fe, ge and he stand for the even parts of f, g and h, respectively.

Proof. By means of Theorem 1, for all x, y ∈ S we have

‖F1(x+ y)−G1(x)−G1(y)‖ ≤ g1(x) + g1(y)− f1(x+ y) , x, y ∈ S,

where F1 := 2F, G1 := G+H, f1 := 2f and g1 := g + h. Moreover, one has

sup{g1(x)− f1(x) : x ∈ S} = sup{g(x) + h(x)− 2f(x) : x ∈ S} = c0 <∞ .

An appeal to Theorem 3 gives now the existence of an additive map A1 : S −→ X
and real constants α and β such that

‖F1(x) −A1(x)‖ ≤ 2(f1)e(x) + α , x ∈ S, (9)

Obviously, the map A := 1
2A1 is additive as well and (9) says that

‖F (x)−A(x)‖ ≤ 2fe(x) +
1
2
α = 2fe(x) + α0 , x ∈ S ,

where α0 := 1
2α . Now, with the aid of (5) applied for y = 0 we infer that the

inequality

‖G(x)−A(x)‖ ≤ ‖G(x)− F (x)‖ + ‖F (x)−A(x)‖
≤ g(x)− f(x) + h(0) + ‖H(0)‖+ 2fe(x) + α0 ,



On Vector Pexider Differences 289

holds true for every x ∈ S. On the other hand, (5) forces the difference g(x) +
h(y)− f(x+ y) to be nonnegative for all x, y from S whence, in particular, f(x) ≤
h(x) + g(0), x ∈ S, and therefore, for every x ∈ S one has

g(x)− f(x) ≤ c0 + f(x)− h(x) ≤ c0 + g(0) .

Consequently, because of the inequality f(x) ≤ g(x)+h(0) valid for every x ∈ S, ,
we get

‖G(x)−A(x)‖ ≤ c0 + g(0) + h(0) + ‖H(0)‖+ 2fe(x) + α0

≤ 2ge(x) + β0 , x ∈ S,
where β0 := c0 + g(0) + 3h(0) + ‖H(0)‖+ α0 .

Along the same lines one may establish the inequality

‖H(x)−A(x)‖ ≤ c0 + g(0) + h(0) + ‖G(0)‖+ 2fe(x) + α0

≤ 2he(x) + γ0 , x ∈ S,
where γ0 := c0 + 3g(0) + h(0) + ‖G(0)‖+ α0 . This completes the proof.

4. Concluding remarks

In [6] the stability of the so-called delta-convexity has been examined. These stud-
ies were focused on the functional inequality∥∥∥∥F (

x+ y

2

)
− F (x) + F (y)

2

∥∥∥∥ ≤ f(x) + f(y)
2

− f
(
x+ y

2

)
with F and f defined on a nonempty open and convex subset D of a normed
linear space (E, ‖ · ‖). In the case where D = E this inequality may equivalently
be written in the form∥∥∥∥F (x+ y)− 1

2
F (2x)− 1

2
F (2y)

∥∥∥∥ ≤ 1
2
f(2x) +

1
2
f(2y)− f(x+ y) (10)

and no norm structure in the domain is needed any more. As an application of
Theorem 3 we get the following result being, in a sense, complementary to those
presented in [6].

Let (S,+) be an amenable group and let (X, ‖ · ‖) be a real Banach space that
is either reflexive or has the Hahn-Banach extension property. Given functions
f : S −→ R and F : S −→ X such that inequality (10) is satisfied for all x, y ∈ S,
and

sup {f(2x)− 2f(x) : x ∈ S} <∞ ,

there exist an additive map A : S −→ X and a real constant α such that

‖F (x)−A(x)‖ ≤ 2fe(x) + α , x ∈ S .

As an easy application of Theorem 4 we may consider the very simple case
where f = g = h = const getting a Hyers-Ulam stability result for the classical
Pexider functional equation.
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The assumption that the target space (X, ‖ · ‖) is either reflexive or has the
Hahn-Banach extension property, occurring here and in Theorems 3 and 4, may be
replaced by the requirement that X admits a continuous projection of its second
dual onto X (see F. Cabello Sánchez [2]). On the other hand, the basic tool we
were using in the present paper (Theorem 3 from [5]) allows one to replace the
assumption in question by another alternative one: (X, ‖ · ‖) forms a boundedly
complete Banach lattice with a strong unit. However, in this case, some additional
coefficient will show up in the dominating function in the assertions of Theorems
3 and 4; for brevity of the statements, we have decided to omit that possible
extension.
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A Characterization of the Exponential
Distribution through Functional Equations

Gyula Maksa and Fruzsina Mészáros

Abstract. In this paper we give a characterization for the exponential distri-
bution by using functional equations.
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1. Introduction

Some years ago A.W. Marshall (University of British Columbia) and I. Olkin (Stan-
ford University) raised the following problem (personal communication). Find all
density functions f satisfying the following two properties

Property 1. f(u) = 0 for almost all u ∈ ] −∞, 0 [ (with respect to the Lebesgue
measure) and

Property 2. There exist 0 ≤ n ∈ Z (the set of all integers) and −1 < β ∈ R (the
set of all real numbers) such that the function p defined on R2 by p(u, v) = 0 if
u < 0 or v < 0 and

p(u, v) =
∫ +∞

0

f(u) (F (u)− F (s+ u))n
f(s+ u)f(s+ u+ v)F (s+ u+ v)βds (1)

if u, v ∈ [ 0,+∞ [ , where F (u) =
∫ +∞

u
f , u ≥ 0 is the survival function, is the

joint density function of some two independent random variables.

It was only known that, if f (u) = 0 for u < 0 and f (u) = e−u for u ≥ 0,
then p (u, v) = g (u)h (v) (u ≥ 0, v ≥ 0) for some functions g, h : [ 0,+∞ [ → R.
We remark that the problem is similar to those ones which are extensively discussed
in the book Azlarov-Volodin [2].

This research has been supported by the Hungarian Scientific Research Fund (OTKA) Grants
NK 68040 and K 62316.
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In this paper we give a solution of the problem by proving that all density
functions f which are positive on [ 0,+∞ [ and have Properties 1–2 are exponential
density functions. Furthermore we give a necessary and sufficient condition for the
parameters n and β in (1) in order to the function p defined in Property 2, with
some exponential density function f , be a density function itself, too.

We will need the following result of A. Járai (see [3] and [4]).

Theorem 1. Let Z be a regular topological space, Zi (i = 1, 2, . . . , n) be topological
spaces and T be a first countable topological space. Let Y be an open subset of
Rk, Xi an open subset of Rri , ri ∈ Z, (i = 1, 2, . . . , n) and D an open subset
of T × Y . Let furthermore T ′ ⊂ T be a dense subset, H : T ′ → Z, gi : D → Xi

and h : D×Z1 × · · · ×Zn → Z. Suppose that the function fi is almost everywhere
defined on Xi (with respect to the ri-dimensional Lebesgue measure) with values
in Zi (i = 1, 2, . . . , n) and the following conditions are satisfied:

(i) for all t ∈ T ′ and for almost all y ∈ Dt = {y ∈ Y : (t, y) ∈ D}

H(t) = h(t, y, f1(g1(t, y)), . . . , fn(gn(t, y))); (2)

(ii) for each fixed y in Y , the function h is continuous in the other variables;

(iii) fi is Lebesgue measurable (i = 1, 2, . . . , n);

(iv) gi and the partial derivative ∂gi

∂y are continuous on D (i = 1, 2, . . . , n);

(v) for each t ∈ T there exist a y such that (t, y) ∈ D and the partial derivative
∂gi

∂y has the rank ri at (t, y) ∈ D (i = 1, 2, . . . , n).

Then there exists a unique continuous function H̃ such that H = H̃ almost ev-
erywhere on T , and if H is replaced by H̃ then equation (2) is satisfied almost
everywhere on D.

2. Results

We begin with our main result.

Theorem 2. If the density function f has Property 1 and Property 2, and

f (u) > 0 if u ≥ 0 (3)

then there exists 0 < α ∈ R such that

f(u) = αe−αu for almost all u ∈ [ 0,+∞ [ , (4)

that is, f is an exponential density function with expectation α−1.
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Proof. Since f is density function, the function F defined on [ 0,+∞ [ by

F (u) =
∫ +∞

u

f

is absolutely continuous and F ′ = −f a.e. on [ 0,+∞ [ . On the other hand, with
the substitution t = s+ u equation (1) can be written in the form

p (u, v) =
∫ +∞

u

f (u) (F (u)− F (t))n
f (t) f (t+ v)F (t+ v)β

dt (5)

for all u, v ∈ [ 0,+∞ [ . Dividing both sides by −f (u) and using the binomial
theorem, (5) implies that

p (u, v)
−f (u)

=
n∑

k=0

(
n

k

)
(−1)k

F (u)n−k
Rk (u, v) (u, v ∈ [ 0,+∞ [)

where

Rk (u, v) = −
∫ +∞

u

F (t)k f (t) f (t+ v)F (t+ v)β dt

(u, v ∈ [ 0,+∞ [ , 0 ≤ k ∈ Z, k ≤ n). Therefore the function

u �−→ p (u, v)
−f (u)

(u ≥ 0)

is differentiable a.e. on [ 0,+∞ [ , too, and by the known identity
∑n

k=0

(
n
k

)
(−1)k =

0, after some calculation, we have that

∂

∂u

(
p (u, v)
−f (u)

)
= −f (u)

n∑
k=0

(
n

k

)
(−1)k (n− k)F (u)n−k−1

Rk (u, v) (6)

a.e. on [ 0,+∞ [ × [ 0,+∞ [ . Introducing the differential operator

Dq (u, v) =
∂

∂u

(
q (u, v)
−f (u)

)
,

(6) can be written as

Dp (u, v) = −f (u)
n∑

k=0

(
n

k

)
(−1)k (n− k)F (u)n−k−1

Rk (u, v) .

This shows that the previous argument can be repeated for Dp instead of p, too,
and, by the identity

∑n
k=0

(
n
k

)
(−1)k (n− k) = 0, we get that

D2p (u, v) = −f (u)
n∑

k=0

(
n

k

)
(−1)k (n− k) (n− k − 1)F (u)n−k−2

Rk (u, v)

holds a.e. on [ 0,+∞ [ × [ 0,+∞ [ . Finally, by the identity
n∑

k=0

(
n

k

)
(−1)k (n− k) . . . (n− k − �) = 0 (0 ≤ � < n) ,
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we have that

Dnp (u, v) = −f (u)
n∑

k=0

(
n

k

)
(−1)k (n− k) . . . (−k + 1)F (u)−k

Rk (u, v)

= −f (u)n!R0 (u, v) ,

whence
Dn+1p (u, v) = n!f (u) f (u+ v)F (u+ v)β (7)

follows for almost all u, v ∈ [ 0,+∞ [ .
On the other hand, by Property 2, p (u, v) = g (u)h (v) a.e. on [ 0,+∞ [ ×

[ 0,+∞ [ with some density functions g and h. Thus

Dn+1p (u, v) = gn (u)h (v) a.e. on [ 0,+∞ [ × [ 0,+∞ [

with some function gn : [ 0,+∞ [ → R. Therefore, by (7), we obtain the exponen-
tial Pexider equation

f (u+ v)F (u+ v)β =
gn (u)
n!f (u)

h (v)

which holds for almost all u, v ∈ [ 0,+∞ [ . This equation, with the notations

B (t) = f (t)F (t)β and Gn (t) =
gn (t)
n!f (t)

,

yield the equation
B (u+ v) = Gn (u)h (v) , (8)

which holds a.e. on the open set ] 0,+∞ [ × ] 0,+∞ [ .
Since the measurable functions B,Gn, h satisfy equation (8) for almost all

(u, v) ∈ ] 0,+∞ [ × ] 0,+∞ [ , then, by Theorem 1, there exist unique continuous
functions B̃, G̃n, h̃ : ] 0,+∞ [ → R, such that B̃ = B, G̃n = Gn, h̃ = h almost
everywhere on ] 0,+∞ [ , and if B,Gn, h are replaced by B̃, G̃n, h̃, respectively,
then equation (8) is satisfied everywhere on ] 0,+∞ [ × ] 0,+∞ [ .

First we show that there exists a unique continuous function B̃ which is equal
to B a.e. on ] 0,+∞ [ , and after replacing B by B̃, equation (8) is satisfied almost
everywhere. With the substitution

t = u+ v, y = v

we get from (8) that
B (t) = Gn (t− y)h (y) (9)

holds for almost all (t, y) ∈ D, where

D = {(t, y) |t, y ∈ ] 0,+∞ [ } .
By Fubini’s Theorem it follows that there exists T ′ ⊆ ] 0,+∞ [ of full measure
such that, for all t ∈ T ′ equation (9) is satisfied for almost every y ∈ Dt, where

Dt = {y ∈ ] 0,+∞ [ |(t, y) ∈ D} .
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Define the functions g1, g2, h by:

g1 (t, y) = t− y, g2 (t, y) = y,

h (t, y, z1, z2) = z1z2,

and apply Theorem 1 to (9) with the following casting

B (t) = H (t) , Gn (t) = f1 (t) , h (t) = f2 (t) ,

Z = R, Zi = R, T = ] 0,+∞ [ ,

Y = ] 0,+∞ [ , Xi = ] 0,+∞ [ , (i = 1, 2).

Hence the first assumption in Theorem 1 with respect to (9) is valid. In the case
of a fixed y, the function h is continuous in the other variables, so the second
assumption holds, too. Since the functions in equation (9) are measurable, the
third assumption is trivial. The functions gi are continuous, the partial derivatives

∂2g1 (t, y) = −1, ∂2g2 (t, y) = 1,

are also continuous, so the fourth assumption holds, too.
For each t ∈ ] 0,+∞ [ there exist a y ∈ ] 0,+∞ [ such that (t, y) ∈ D and

the partial derivatives do not equal zero at (t, y), so they have the rank 1. Thus
the last assumption is satisfied in Theorem 1. So we get that there exists a unique
continuous function B̃ which is almost everywhere equal to B on ] 0,+∞ [ and
B̃, Gn, h satisfy equation (9) almost everywhere, which is equivalent to equation

B̃ (u+ v) = Gn (u)h (v) , (10)

for almost all (u, v) ∈ ] 0,+∞ [ × ] 0,+∞ [ .
There exist u0 and v0 so that, equation (10) implies that

h (v) =
B̃ (u0 + v)
Gn (u0)

holds for almost all v ∈ ] 0,+∞ [ , and

Gn (u) =
B̃ (u+ v0)
h (v0)

holds for almost all u ∈ ] 0,+∞ [ .
Due to the continuity of B̃, we have proved before, there exist unique continu-

ous functions h̃ : ] 0,+∞ [ → R and G̃n : ] 0,+∞ [ → R, defined by the right-hand
side of the last two equalities, which are almost everywhere equal to h and Gn on
] 0,+∞ [ , respectively, and if we replace h and Gn by h̃ and G̃n, respectively, the
functional equation

B̃ (u+ v) = G̃n (u) h̃ (v) , (11)
is fulfilled almost everywhere on ] 0,+∞ [ × ] 0,+∞ [ . Both sides of (11) define
continuous functions on ] 0,+∞ [ , which are equal to each other on a dense subset
of ] 0,+∞ [ , therefore we obtain that (11) is satisfied everywhere on ] 0,+∞ [ ×
] 0,+∞ [ .
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Therefore, by [1] (see pp. 28–31 and 42–46),

B (t) = aebt

a.e. on ] 0,+∞ [ with some 0 < a ∈ R, b ∈ R. On the other hand B (0) =
Gn (0)h (0)=a, and hence

f (t)F (t)β = aebt

a.e. on [ 0,+∞ [ with some 0 < a ∈ R, b ∈ R. Since f is density function and
F ′ = −f a.e. on [ 0,+∞ [ , we get (4) with some 0 < α ∈ R. �

Theorem 3. Let f be an exponential density function with expectation α−1. Then
the function p defined in Property 2 is density function itself, too, if, and only if,

(1 + β) · · · (n+ 3 + β) = n!. (12)

Furthermore, if (12) is satisfied then

p (u, v) = α (n+ 3 + β) e−α(n+3+β)uα (1 + β) e−α(1+β)v

(a.e. on [ 0,+∞ [ × [ 0,+∞ [), that is, p is the product of two exponential density
functions with expectations (α (n+ 3 + β))−1 and (α (1 + β))−1, respectively.

Proof. We first prove, by induction on n, that

(2 + β) · · · (n+ 2 + β)
n∑

k=0

(
n

k

)
(−1)k 1

k + 2 + β
= n! (13)

holds for all 0 ≤ n ∈ Z and β ∈ R\{− (n+ 2) , . . . ,−2}. Equality (13) is obviously
true for n = 0. Suppose that n > 0 and (13) holds, particularly with β = −1. Thus
we have that

n∑
k=0

(
n

k

)
(−1)k

1
k + 1

=
1

n+ 1
,

or equivalently (replacing here k by n− k)
n∑

k=0

(
n

k

)
(−1)k 1

n+ 1− k =
(−1)n

n+ 1
. (14)

Therefore

(2 + β) · · · (n+ 3 + β)
n+1∑
k=0

(
n+ 1
k

)
(−1)k 1

k + 2 + β

= (2 + β) · · · (n+ 3 + β)

[
n∑

k=0

(
n+ 1
k

)
(−1)k 1

k + 2 + β
+ (−1)n+1 1

n+ 3 + β

]
= (−1)n+1 (2 + β) · · · (n+ 2 + β) + (2 + β) · · · (n+ 3 + β)

×
n∑

k=0

(
n

k

)
(−1)k n+ 1

(n+ 1− k) (k + 2 + β)
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= (−1)n+1 (2 + β) · · · (n+ 2 + β) + (2 + β) · · · (n+ 3 + β)

×
n∑

k=0

(
n

k

)
(−1)k n+ 1

n+ 3 + β

(
1

n+ 1− k +
1

k + 2 + β

)
= (−1)n+1 (2 + β) · · · (n+ 2 + β) + (2 + β) · · · (n+ 2 + β) (n+ 1)

×
n∑

k=0

(
n

k

)
(−1)k

(
1

n+ 1− k +
1

k + 2 + β

)
whence, by (14) and the induction hypothesis,

(2 + β) · · · (n+ 3 + β)
n+1∑
k=0

(
n+ 1
k

)
(−1)k 1

k + 2 + β

= (−1)n+1 (2 + β) · · · (n+ 2 + β) + (−1)n (2 + β) · · · (n+ 2 + β) + (n+ 1) (n!)

= (n+ 1)!

follows. Thus (13) is proved to hold.
Now the only thing we have to prove that

∫
R
p = 1 if, and only if, (12) holds.

Since F (u) = e−αu for u ≥ 0, after some calculation, (5) implies that

p (u, v) = α2e−α(u+v+vβ)
n∑

k=0

(
n

k

)
(−1)k 1

k + 2 + β
e−α(n+2+β)u

(u ≥ 0, v ≥ 0). Therefore, by (13), we obtain that

p (u, v) = α2 n!
(2 + β) · · · (n+ 2 + β)

e−α(n+3+β)ue−α(β+1)v

=
n!

(1 + β) · · · (n+ 3 + β)
α (n+ 3 + β) e−α(n+3+β)uα (β + 1) e−α(β+1)v

(u ≥ 0, v ≥ 0). Now, it is easy to see that
∫

R2 p = 1 if, and only if, (12) holds and
in this case

p (u, v) = α (n+ 3 + β) e−α(n+3+β)uα (β + 1) e−α(β+1)v

(u ≥ 0, v ≥ 0) which was to be proved. �

Remark 1. Since the function ϕ defined on ]− 1,+∞ [ by

ϕ (t) = (1 + t) · · · (n+ 3 + t)− n!

is continuous and strictly increasing, moreover limt→−1 ϕ (t) = −n! < 0, ϕ (1) =
(n+ 4)! − n! > 0 therefore for all 0 ≤ n ∈ Z there exists exactly one −1 < β ∈ R

such that (12) holds.
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Approximate Solutions of the Linear Equation

Dorian Popa

Abstract. In this paper we obtain a stability result for the general linear
equation in Hyers-Ulam sense.
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1. Introduction

The starting point of the stability theory of functional equations was the question
of S.M. Ulam formulated at Wisconsin University in 1940 (see [10]):

Let (X, ·) be a group and (Y, ·, d) a metric group. Does for every ε > 0, there exist
δ > 0 such that if a function f : X → Y satisfies the inequality

d(f(xy), f(x)f(y)) ≤ δ (1.1)

there exists a homomorphism g : X → Y such that

d(f(x), g(x)) ≤ ε, x ∈ X? (1.2)

If the answer to this question is affirmative the equation g(xy) = g(x)g(y) is called
stable. A solution of the inequality (1.1) is called an approximate solution of the
equation of homomorphism. In other words an equation is called stable if every
approximate solution of the equation differs from a solution of the equation with
a small error. A first answer to the problem of Ulam was given by D.H. Hyers in
1941 [4] in the case when X is a normed space and Y is a Banach space. Later the
subject was strongly developed by many mathematicians, especially during the
last 30 years.

In this paper we deal with the stability of the general linear equation

f(ax+ by + k) = pf(x) + qf(y) + s (1.3)

considered for the first time by J. Aczél [1] and studied later by Z. Daróczy and
L. Losonczi (see [5]).
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In some recent papers, Páles, Volkmann and Luce [7] and Páles [6] obtained
very nice results on the stability of the Cauchy functional equation on square-
symmetric groupoids, which leads as a particular case to the stability of the general
linear equation. The role of square-symmetry was pointed out also by Rätz [9] and
Borelli and Forti [2], [3]. A result on stability of the general linear equation, in
Hyers-Ulam-Rassias sense, was obtained by the author in [8].

Let us recall this result.
Let X be a linear space over R, Y a Banach space over R, ϕ : X ×X → [0,∞)
be a given mapping, a, b, p, q ∈ R \ {0}, k ∈ X, s ∈ Y , a + b 
= 1, p + q 
= 1 and

ψ(x) = ϕ(x+ x0, x+ x0), x ∈ X, x0 =
k

1− a− b . Suppose that f satisfies

‖f(ax+ by + k)− pf(x)− qf(y)− s‖ ≤ ϕ(x, y), x, y ∈ X. (1.4)

If
(i)

lim
n→∞

ϕ((a+ b)nx+ x0, (a+ b)ny + x0)
|p+ q|n = 0, x, y ∈ X, (1.5)

(ii)
∞∑

n=1

ψ((a+ b)n−1x)
|p+ q|n = μ(x), x ∈ X (1.6)

then there exist an additive mapping g : X → Y and a constant c ∈ Y such that

‖f(x)− g(x)− c‖ ≤ μ(x − x0), x ∈ X. (1.7)

The goal of this paper is to obtain a result on the stability of the general
linear equation, when the condition (1.4) is replaced by a condition of the form

f(ax+ by + k)− pf(x)− qf(y)− s ∈ V (1.8)

where V is some subset of a topological vector space Y .

2. Main result

In this section we denote by X a linear space over R and by Y a sequentially
complete Hausdorff topological vector space over R. Suppose that a, b, p, q ∈ R \
{0}, k ∈ X and s ∈ Y .

Remark 2.1. Let p+ q 
= 1, a + b 
= 1, and suppose that f : X → Y satisfies the
general linear equation (1.3). Then the mapping h : X → Y given by the relation

h(x) = f(x+ x0)−
s

1− p− q , x ∈ X (2.1)

where x0 =
k

1− a− b , satisfies the equation

h(ax+ by) = ph(x) + qh(y), x, y ∈ X. (2.2)
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Proof. Suppose that f satisfies the general linear equation (1.3) and h is given by
(2.1). Then

f(x) = h(x− x0) +
s

1− p− q , x ∈ X. (2.3)

Replacing in (1.3) one gets

h(a(x− x0) + b(y − x0)) = ph(x− x0) + qh(y − x0), x, y ∈ X, (2.4)

which is equivalent to (2.2). �

Theorem 2.1. Suppose that V is a nonempty bounded and convex subset of Y and
f : X → Y satisfies

f(ax+ by + k)− pf(x)− qf(y)− s ∈ V, x, y ∈ X. (2.5)

If a + b 
∈ {0, 1} and p + q ≥ 0, p + q 
= 1, then there exists a unique mapping
g : X → Y satisfying

g(ax+ by + k) = pg(x) + qg(y) + s, x, y ∈ X, (2.6)

such that

g(x)− f(x) ∈ 1
p+ q − 1

· V , x ∈ X, (2.7)

where V denotes the sequential closure of V .

Proof. Suppose that f satisfies (2.5), a+ b 
∈ {0, 1}, p+ q ≥ 0, p+ q 
= 1. Then in
view of Lemma 2.1, the mapping h : X → Y given by (2.1) satisfies the relation

h(ax+ by)− ph(x)− qh(y) ∈ V, x, y ∈ X. (2.8)

Taking in (2.8) y = x ∈ X , we get

h((a+ b)x)− (p+ q)h(x) ∈ V. (2.9)

1) Suppose first that p+ q > 1.
Replacing x by (a+b)nx, n ∈ N, and dividing by (p+q)n+1 the relation (2.9)

leads to
h((a+ b)n+1x)

(p+ q)n+1
− h((a+ b)nx)

(p+ q)n
∈ 1

(p+ q)n+1
V. (2.10)

Since V is convex, from (2.10) it follows that

h((a+ b)mx)
(p+ q)m

− h((a+ b)nx)
(p+ q)n

∈
[

m∑
i=n+1

(p+ q)−i

]
V (2.11)

for m,n ∈ N, m > n, and x ∈ X .

We prove that
(
h((a+ b)nx)

(p+ q)n

)
is a Cauchy sequence for every x ∈ X . Fix

x ∈ X and take U an arbitrary balanced neighbourhood of the origin of Y . Since
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V is bounded, there exists α > 0 such that αV ⊆ U . As series
∞∑

i=0

(p + q)−i is

convergent, there exists n0 ∈ N such that
m∑

i=n+1

(p+ q)−i < α (2.12)

for every n ≥ n0 and every m > n. Then for m > n ≥ n0 we have

h((a+ b)mx)
(p+ q)m

− h((a+ b)nx)
(p+ q)n

∈
m∑

i=n+1

(p+ q)−iV ⊆ αV ⊆ U. (2.13)

Hence
(
h((a+ b)nx)

(p+ q)n

)
is a Cauchy sequence, so it is convergent since Y is a

sequentially complete topological vector space.
Let w : X → Y be given by

w(x) = lim
n→∞

h((a+ b)nx)
(p+ q)n

, x ∈ X. (2.14)

Replacing x by (a+ b)nx and y by (a+ b)ny in (2.8) and dividing by (p+ q)n we
get

h((a+ b)n(ax+ by))
(p+ q)n

− ph((a+ b)nx)
(p+ q)n

− q h((a+ b)ny)
(p+ q)n

∈ 1
(p+ q)n

V. (2.15)

Taking the limit as n→∞ (2.15) gives

w(ax + by) = pw(x) + qw(y). (2.16)

Putting n = 0 in (2.11) one gets

h((a+ b)mx)
(p+ q)m

− h(x) ∈
m∑

i=1

(p+ q)−iV (2.17)

and so letting m→∞ one obtains

w(x) − h(x) ∈ 1
p+ q − 1

V , x ∈ X. (2.18)

Now taking g(x) = w(x − x0) +
s

1− p− q , x ∈ X , by (2.18) follows

g(x)− f(x) ∈ 1
p+ q − 1

V , x ∈ X. (2.19)

In this way we have proved the existence of g. To prove the uniqueness of g
it is sufficient to show that the function w from (2.18) is unique. So suppose that
there exist two mappings w1, w2 : X → Y satisfying (2.16) with the property

wk(x)− h(x) ∈ 1
p+ q − 1

V , k ∈ {1, 2}. (2.20)
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By (2.18) and (2.20) we get

w1(x) − w2(x) ∈
1

p+ q − 1
(V − V ). (2.21)

Since V is bounded, so is V . Therefore the set
1

p+ q − 1
(V −V ) is bounded. Note

that by (2.16) the functions w1, w2 satisfy the relations

wk((a+ b)nx) = (p+ q)nwk(x), k ∈ {1, 2} (2.22)

for every x ∈ X and every n ∈ N. Now by (2.21) and (2.22) follows

w1(x) − w2(x) ∈
1

(p+ q)n
· 1
p+ q − 1

(V − V ), x ∈ X, n ∈ N. (2.23)

Fixing x in (2.23) and letting n→∞ one gets w1(x) = w2(x), thus the uniqueness
is proved.

2) Now suppose that 0 ≤ p+ q < 1.
Replacing in (2.9) x by

x

(a+ b)n+1
and multiplying (2.9) by (p+ q)n one gets

(p+q)nh

(
x

(a+ b)n

)
−(p+q)n+1h

(
x

(a+ b)n+1

)
∈ (p+q)nV, x ∈ X, n ∈ N. (2.24)

Now, arguing as in the first case, we obtain

(p+ q)nh

(
x

(a+ b)n

)
− (p+ q)mh

(
x

(a+ b)m

)
∈

m−1∑
i=n

(p+ q)iV (2.25)

for x ∈ X , m,n ∈ N, n > m. Hence
(

(p+ q)nh

(
x

(a+ b)n

))
n≥0

is a Cauchy

sequence and since Y is sequentially complete topological vector space it is con-
vergent. Define

w(x) = lim
n→∞(p+ q)nh

(
x

(a+ b)n

)
, x ∈ X. (2.26)

Taking in (2.25) n = 0 and letting n→∞ we get

h(x) − w(x) ∈ 1
1− p− q V , x ∈ X. (2.27)

Replacing in (2.8) x by
x

(a+ b)n
, y by

y

(a+ b)n
, multiplying (2.8) by (p+ q)n and

letting n→∞ follows

w(ax+ by) = pw(x) + qw(y), x, y ∈ X. (2.28)

Now taking g(x) = w(x− x0) +
s

1− p− q the existence is proved. The uniqueness

follows as in the first part of the proof. �



304 D. Popa

Remark 2.2. Let Y be a Banach space over R, ε is a positive number, a+b 
∈ {0, 1},
p+ q ≥ 0, p+ q 
= 1. Suppose that f : X → Y satisfies

‖f(ax+ by + k)− pf(x)− qf(y)− s‖ ≤ ε, x, y ∈ X. (2.29)

Then there exists a unique mapping g : X → Y satisfying (2.6) such that

‖g(x)− f(x)‖ ≤ ε

|p+ q − 1| , x ∈ X. (2.30)

Proof. The result follows from Theorem 2.1 taking V = B(0, ε), where B(0, ε) is
the closed ball of center 0 and radius ε in Y .

The result from Remark 2.2 is analogous to Corollary 3 from [6], where this
corollary is a consequence of a more general result obtained by Zs. Páles for the
stability of Cauchy functional equation on square-symmetric groupoids. �
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On a Functional Equation Containing
Weighted Arithmetic Means

Adrienn Varga and Csaba Vincze

Abstract. In this paper we solve the functional equation
n∑

i=1

aif(αix + (1 − αi)y) = 0

which holds for all x, y ∈ I , where I ⊂ R is a non-void open interval, f : I →
R is an unknown function and the weights αi ∈ (0, 1) are arbitrarily fixed
(i = 1, . . . , n). It will be proved that all solutions are generalized polynomials
of degree at most n − 2. Furthermore we give a sufficient condition for the
existence of nontrivial solutions.

Mathematics Subject Classification (2000). 39B22.

Keywords. Functional equation, p-Wright and Jensen affine functions.

1. Introduction and preliminaries

Consider the functional equation
n∑

i=1

aif(αix+ (1 − αi)y) = 0 (1.1)

which holds for all x, y ∈ I, where I ⊂ R is a non-void open interval, f : I → R is an
unknown function and the parameters αi ∈ [0, 1] are arbitrarily fixed (i = 1, . . . , n).
The particular case n = 4, a1 = a2 = 1, a3 = a4 = −1 and α3 = 1, α4 = 0 has
been investigated in Daróczy-Maksa-Páles [3], Daróczy-Lajkó-Lovas-Maksa-Páles
[8], and also in Maksa [9] in connection with the equivalence of certain functional
equations involving means. The result have been extended for the case of arbitrary
α3, α4 ∈ (0, 1) in the paper [10]. The purpose of this paper is to extend these results
for equation (1.1) and to give nonzero additive solutions of (1.1) by generalizing a
result of Daróczy [1]. We remark that equation, with possibly different functions

This research has been supported by the Hungarian Scientific Research Fund (OKTA) Grants
F049212, NK-68040.
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but similar to (1.1), has been investigated in [2], however it is supposed that some
of the weights are equal to 1 therefore some of the unknown functions at the point
x can explicitly be expressed from the equation. In our case it is impossible.

The paper is organized as follows. First of all we make some simple remarks,
which indicate that the most important is to investigate the case ai 
= 0 (i =
1, . . . , n) such that

∑n
i=1 ai = 0 and αi 
= αj if i 
= j (i, j = 1, . . . , n). We mention

that the method in [10] could be applied to this more general problem. As we
shall see, any solution of (1.1) is a generalized polynomial of degree at most n− 2,
that is the sum of the diagonalizations of symmetric k-additive functions, where
k = 0, . . . , n− 2. Here we introduce some basic notions and results we need in the
following. Throughout the paper I denotes a non-void open interval.

Definition 1.1. Let k be a positive integer and Ak : Rk → R be a symmetric k-
additive function, i.e., Ak is additive in each variable.

(i) The function D(Ak) defined by

D(Ak)(x) := Ak(x, . . . , x︸ ︷︷ ︸
k times

) (x ∈ R)

is said to be the diagonal of Ak at x.
(ii) Let

Ak,l(x, y) := Ak(x, . . . , x︸ ︷︷ ︸
l times

, y, . . . , y︸ ︷︷ ︸
k−l times

) (x, y ∈ R).

We use the phrase “0-additive function” for constant functions.

The following result is a particular case of Lemma 1.3 in Székelyhidi [7].

Lemma 1.2. If k ≥ 0 is an integer and Ak : Rk → R is k-additive and symmetric
then we have that

D(Ak)(x+ y) =
k∑

l=0

(
k

l

)
Ak,l(x, y).

Remark 1.3. It is well known that every k-additive symmetric function is rational
homogeneous in each variable.

The following theorem is very important for us. It says that the function
f : I → R is a locally generalized polynomial of degree at most n on I if and only
if it is a globally generalized polynomial of degree at most n on I.

Theorem 1.4. Let f : I → R be a function. Suppose that for any point ξ ∈ I, there
is an ε > 0 such that f has the form

f(x) =
n∑

k=0

D(Aξ
k)(x) x ∈ Jξ := (ξ − ε, ξ + ε) ⊂ I,

where Aξ
k : Rk → R is k-additive and symmetric (k = 0, . . . , n). Then

f(x) =
n∑

k=0

D(Ak)(x) x ∈ I,
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where Ak : Rk → R is a uniquely determined k-additive and symmetric function
for any k = 0, . . . , n.

Proof. Let f : I → R be a function and suppose that ξ1, ξ2 ∈ I such that (ξ1 −
ε1, ξ1 + ε1) ⊂ I and (ξ2 − ε2, ξ2 + ε2) ⊂ I for some ε1, ε2 > 0. For the simplicity
assume that

f(x) =
∑n

k=0
D(Ak)(x) x ∈ (ξ1 − ε1, ξ1 + ε1)

and f(x) =
∑n

k=0
D(Bk)(x) x ∈ (ξ2 − ε2, ξ2 + ε2)

where Ak and Bk : Rk → R (k = 0, . . . , n) are symmetric k-additive functions.
The proof can be divided into two parts:

I. (ξ1 − ε1, ξ1 + ε1) ∩ (ξ2 − ε2, ξ2 + ε2) 
= ∅
II. (ξ1 − ε1, ξ1 + ε1) ∩ (ξ2 − ε2, ξ2 + ε2) = ∅.

I. Denote the intersection of (ξ1 − ε1, ξ1 + ε1) and (ξ2 − ε2, ξ2 + ε2) by M . Then
M is an open interval and

n∑
k=0

D(Ak)(x) =
n∑

k=0

D(Bk)(x) (x ∈M). (1.2)

In the first step we show that (1.2) implies that

D(Ak)(x) = D(Bk)(x) (x ∈M), (k = 0, . . . , n). (1.3)

In the second step it is proved that if (1.3) holds then

D(Ak)(x) = D(Bk)(x) (x ∈ R), (k = 0, . . . , n). (1.4)

Therefore

f(x) =
n∑

k=0

D(Ak)(x) =
n∑

k=0

D(Bk)(x) (x ∈ I).

First step. So, assume that (1.2) holds. Let x ∈ M be fixed. Then there exists
ε > 0 such that for all r ∈ (1− ε, 1 + ε)∩Q we have that rx ∈M . Replacing x by
rx in equation (1.2) and using remark 1.3 we get that

n∑
k=0

rkD(Ak)(x) =
n∑

k=0

rkD(Bk)(x). (1.5)

Since every real number z ∈ (1 − ε, 1 + ε) can be approximated by rational se-
quences, we can replace r ∈ Q by z and thus (1.3) holds.
Second step. Let y ∈ R, y 
= 0 be arbitrarily fixed. Then there exist r ∈ Q such
that ry ∈M . Therefore, by (1.3) we get that

rkD(Ak)(y) = rkD(Bk)(y) (k = 0, . . . , n).

Thus
D(Ak)(y) = D(Bk)(y) (k = 0, . . . , n)

which, of course, holds also for y = 0.
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II. Suppose that ξ1 < ξ2. Then there exist

x1, . . . , xm ∈ [ξ1, ξ2], x1 < · · · < xm such that [ξ1, ξ2] ⊂ ∪m
i=1Jxi ,

where f has the special (polynomial) form on each of the intervals Jxi := (xi −
δi, xi + δi) for some δi > 0 (i = 1, . . . ,m) and

(ξ1 − ε1, ξ1 + ε1) ∩ (x1 − δ1, x1 + δ1) 
= ∅
(xi − δi, xi + δi) ∩ (xi+1 − δi+1, xi+1 + δi+1) 
= ∅ (i = 1, . . . ,m− 1)

(xm − δm, xm + δm) ∩ (ξ2 − ε2, ξ2 + ε2) 
= ∅
hold. Then the first part of the proof implies the statement. �

In order to construct non-trivial solutions of (1.1) we will use particular field
isomorphisms. The existence of such a field isomorphism will also be discussed.
We need the following notions.

Definition 1.5. Let m be a positive integer, μi and νi be real numbers (i =
1, . . . ,m).

(i) The ideal

I := { p ∈ Q[x1, . . . , xm] | p(μ1, . . . , μm) = 0 }
of the polynomial ring Q[x1, . . . , xm] is called the defining ideal of μ1, . . . , μm.

(ii) If the defining ideals of μ1, . . . , μm and ν1, . . . , νm are the same then we say
that they are algebraic conjugate of each other.

Remark 1.6. In the particular case m = 1 the ideal I can be generated by the
minimal polynomial and Definition 1.5 (ii) gives back the following notion: μ1 and
ν1 are algebraic conjugate if both of them are transcendent or they are algebraic
and their defining polynomials are the same. For the details see [5].

2. The solutions of equation (1.1)

Replacing y by x in (1.1) we get that( n∑
i=1

ai

)
f(x) = 0 (x ∈ I),

therefore if f is a not identically zero solution of (1.1), then
∑n

i=1 ai = 0.
On the other hand if αi = αj for some indices i and j then we can reduce

equation (1.1).
Therefore without loss of generality we may assume that

ai 
= 0 (i = 1, . . . , n);
n∑

i=1

ai = 0 and α1 < α2 < · · · < αn, (2.1)

where 2 ≤ n.
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At first we prove the following lemma.

Lemma 2.1. Suppose that condition (2.1) holds. Let

βi :=
αn − αi

αn − α1
(i = 2, . . . , n).

If f : I → R satisfies functional equation (1.1) then for any point ξ ∈ I there is an
ε > 0 such that

a1f(u) +
n∑

i=2

aif
(
βiu+ (1− βi)v

)
= 0 (2.2)

holds for all u, v ∈ Jξ := (ξ − ε, ξ + ε) ⊂ I.

Proof. Using the transformation

u = α1x+ (1− α1)y, v = αnx+ (1− αn)y (x, y) ∈ I2 (2.3)

functional equation (1.1) goes over into the form

a1f(u) +
n∑

i=2

aif
(
βiu+ (1− βi)v

)
= 0 (u, v) ∈ P (I2) (2.4)

where P (I2) is the image of I2 under transformation (2.3). Transformation (2.3)
has the matrix

P :=
(
α1 1− α1

αn 1− αn

)
and detP = α1 − αn. As α1, αn ∈ (0, 1) are different real numbers (because of
condition (2.1)) our linear transformation is regular. Since every regular linear
transformation is an open mapping and

P

(
x
x

)
=

(
x
x

)
(x ∈ I),

every point of
diag I2 := {(ξ, ξ) | ξ ∈ I}

is an interior point of the set P (I2) (the image of I2 under P ). Thus for any point
ξ ∈ I there is an ε > 0 such that

(ξ − ε, ξ + ε)2 ⊂ P (I2).

On the other hand P (I2) ⊂ I2 because both u and v are between x and y. Thus
equation (2.4) holds for all u, v ∈ Jξ := (ξ − ε, ξ + ε) ⊂ I. �

Lemma 2.2. Suppose that condition (2.1) holds. Let ξ ∈ I be arbitrarily fixed and
assume that f satisfies functional equation (2.2) for all u, v ∈ Jξ. Then there exists
a unique extension f̃ : R → R such that f̃ satisfies (2.2) for all u, v ∈ R and
f̃ |Jξ

= f .
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Proof. The lemma is a simple consequence of Theorem 5 in Páles [4] in the fol-
lowing settings:

F = X = R, K = Jξ, Y = (R,+),

ϕ0 = 0, ϕ1 = 0, ϕi : R→ R, ϕi(t) = − ai

a1
t (i = 2, . . . , n). �

Before we can state our theorem in its final form we need the following lemma.

Lemma 2.3. Let ϕi, ψi : R→ R be additive mappings of R onto itself such that

Rg (ψj ◦ ψ−1
i − ϕj ◦ ϕ−1

i ) = R for i 
= j (i, j = 1, 2 . . . , n− 1), (2.5)

where Rg denotes the range of the transformation.
If the functions fi : R→ R (i = 0, 1, . . . , n−1) satisfy the functional equation

f0(x) +
n−1∑
i=1

fi

(
ϕi(x) + ψi(y)

)
= 0 (x, y ∈ R)

then there exist Ai
k : Rk → R (k = 0, 1, . . . , n − 2; i = 0, 1, . . . , n − 1) k-additive

symmetric functions such that

fi(x) =
n−2∑
k=0

D(Ai
k)(x) (i = 0, 1, . . . , n− 1) (x ∈ R).

Proof. The lemma is an easy consequence of Theorem 3.9 in Székelyhidi [6]. �

About the solutions of (1.1) we can state the following

Theorem 2.4. Suppose that condition (2.1) holds. The function f : I → R satis-
fies functional equation (1.1) for all x, y ∈ I if and only if there exist uniquely
determined symmetric k-additive functions

Ak : Rk → R (k = 0, 1, . . . , n− 2)

such that

f(x) =
n−2∑
k=0

D(Ak)(x) (2.6)

and, with the notation pi := αi−α1
αn−α1

(i = 2, . . . , n), the equations
n∑

i=2

aiAk,k−l(s, tpi) = 0 (s, t ∈ R) (2.7)

hold for any k = 1, . . . , n− 2 and l = 1, . . . , k, provided that n ≥ 3. If n = 2 then,
by (2.6), f is constant.

Proof. Let f : I → R be a solution of equation (1.1) and ξ ∈ I be arbitrarily fixed.
According to Lemma 2.1 and Lemma 2.2 there exists f̃ : R→ R such that

a1f̃(u) +
n∑

i=2

aif̃
(
βiu+ (1− βi)v

)
= 0 (2.8)
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holds for all u, v ∈ R, where βi := αn−αi

αn−α1
, (i = 2, . . . , n); moreover f̃ |Jξ

= f

where Jξ := (ξ − ε, ξ + ε) ⊂ I for some ε > 0. Using the substitutions

u = s and v = s− t (u, v ∈ R)

in (2.8), we obtain

a1f̃(s) +
n∑

i=2

aif̃
(
s− t(1 − βi)

)
= 0 (s, t ∈ R). (2.9)

Because of condition (2.1) equation (2.9) is equivalent to the equation

f̃(s) +
n∑

i=2

ai

a1
f̃
(
s− t(1− βi)

)
= 0 (s, t ∈ R). (2.10)

Now we can apply Lemma 2.3 for equation (2.10) in the following settings:

f0 = f̃ , fi =
ai+1

a1
f̃ (i = 1, . . . , n− 1)

ψi(x) = −(1− βi+1)x and ϕi(x) = x (i = 1, . . . , n− 1).

It is easy to see that conditions (2.5) hold because of (2.1). Thus we get that there
exist symmetric k-additive functions

Aξ
k : Rk → R (k = 0, 1, . . . , n− 2)

such that

f̃(x) =
n−2∑
k=0

D(Aξ
k)(x) (x ∈ R). (2.11)

Recall that ξ was arbitrarily fixed. At this point of the proof we need Theorem 1.4
which implies that

f(x) =
n−2∑
k=0

D(Ak)(x) (x ∈ I),

where Ak : Rk → R (k = 0, 1, . . . , n− 2) are symmetric k-additive functions and
f̃ : R → R is the unique extension of f . Therefore substituting expression (2.11)
of f̃ into (2.10) we get that

n∑
i=1

ai

a1

( n−2∑
k=0

D(Ak)
(
s− t(1 − βi)

))
= 0 (s, t ∈ R),

where β1 := 1. Because of Lemma 1.2 and condition (2.1) we get that

n∑
i=2

ai

( n−2∑
k=1

( k∑
l=1

(
k

l

)
(−1)lAk,k−l(s, tpi)

))
= 0 (s, t ∈ R), (2.12)
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where pi := 1− βi (i = 2, . . . , n). Replacing s by xs and t by yt, where x, y ∈ Q,
the rational homogeneity implies that

n∑
i=2

ai

( n−2∑
k=1

( k∑
l=1

(
k

l

)
(−1)lxk−lylAk,k−l(s, tpi)

))
= 0 (s, t ∈ R),

where pi := 1 − βi (i = 2, . . . , n). Since every z, w ∈ R can be approximated
by rational sequences, the expression on the left-hand side can be considered as a
polynomial of the variables z and w. Therefore

n∑
i=2

aiAk,k−l(s, tpi) = 0 (s, t ∈ R)

holds for any k = 1, . . . , n− 2 and l = 1, . . . , k provided that n ≥ 3. The converse
is trivial. �

3. Sufficient conditions for the existence of non-trivial solutions

According to Theorem 2.4 if we give a nonzero additive A : R→ R solution of the
equation

n∑
i=2

aiA(tpi) = 0 (t ∈ R), where n ≥ 3,

then we have a solution of (1.1) with nonzero additive part. This means that we
are looking for nonzero additive functions satisfying (2.7) for k = 1. We remark
that the case n = 3, i.e., when there are two members in the sum, the problem is
solved in Daróczy [1]. Here we generalize his result.

Lemma 3.1. Let 3 ≤ n ∈ N, γi and δi ∈ R (i = 2, . . . , n − 1) be arbitrarily fixed.
There exists a field isomorphism

δ : Q(γ2, . . . , γn−1)→ Q(δ2, . . . , δn−1)

such that
δ(γi) = δi for all i = 2, . . . , n− 1

if and only if γ2, . . . , γn−1 and δ2, . . . , δn−1 are algebraic conjugate (see Defini-
tion 1.5).

Proof. For the simplicity denote the defining ideals of γ2, . . . , γn−1 and δ2, . . . , δn−1

by Iγ and Iδ, respectively. It is well known that for any field isomorphism δ we
have that δ(q) = q for all q ∈ Q. Therefore we have to see that the mapping

z =
w(γ2, . . . , γn−1)
k(γ2, . . . , γn−1)

�→ δ(z) :=
w(δ2, . . . , δn−1)
k(δ2, . . . , δn−1)

, (3.1)

where w, k ∈ Q[x2, . . . , xn−1], k /∈ Iγ and k /∈ Iδ is well defined if and only if
Iγ = Iδ.
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First we prove that if Iγ = Iδ then (3.1) is well defined. To see this let
z ∈ Q(γ2, . . . , γn−1) such that

z =
p(γ2, . . . , γn−1)
q(γ2, . . . , γn−1)

=
w(γ2, . . . , γn−1)
k(γ2, . . . , γn−1)

(3.2)

for some p, q, w, k ∈ Q[x2, . . . , xn−1], where q, k /∈ Iγ . We have to show that if
Iγ = Iδ then

p(δ2, . . . , δn−1)
q(δ2, . . . , δn−1)

=
w(δ2, . . . , δn−1)
k(δ2, . . . , δn−1)

. (3.3)

(3.2) means that (pk − wq)(γ2, . . . , γn−1) = 0 and thus pk − wq ∈ Iγ . Using the
condition Iγ = Iδ we get that (pk − wq)(δ2, . . . , δn−1) = 0 also holds. According
to the conditions q, k /∈ Iγ and Iγ = Iδ we get that (3.3) holds. It is easy to see
that (3.1) is a field isomorphism with the required property.

Conversely, assume that (3.1) is well defined and p ∈ Iγ . Then

z = p(γ2, . . . , γn−1) �→ δ(z) = p(δ2, . . . , δn−1).

The additivity of δ and the condition p ∈ Iγ imply that p ∈ Iδ. So we have just
seen that Iγ ⊂ Iδ. Using the inverse of δ we get that Iδ ⊂ Iγ . Thus the proof is
completed. �

Theorem 3.2. Let 3 ≤ n ∈ N be arbitrarily fixed and ai, pi ∈ R be nonzero real
numbers, i = 2, . . . , n. If there exists a field isomorphism

δ : Q

(
p2

pn
, . . . ,

pn−1

pn

)
→ Q

(
a2

an
, . . . ,

an−1

an

)
such that

a2

an
δ

(
p2

pn

)
+ · · ·+ an−1

an
δ

(
pn−1

pn

)
= −1,

then there exists a not identically zero additive function A : R→ R such that
n∑

i=2

ai A(tpi) = 0 (t ∈ R).

Proof. Consider R as the vector space over Q

(
p2
pn
, . . . , pn−1

pn

)
with the basis H.

Define A : R→ R as follows: on the elements of H we define it arbitrarily and for

t =
∑

j cjhj , where cj ∈ Q

(
p2
pn
, . . . , pn−1

pn

)
and hj ∈ H let

A(t) :=
∑

j

δ(cj)A(hj) (t ∈ R);

it is easy to see that for any i = 2, . . . , n− 1

A

(
pi

pn
t

)
= δ

(
pi

pn

)
A(t) (t ∈ R).
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Indeed,

A

(
pi

pn
t

)
= A

(∑
j

pi

pn
cjhj

)
=

∑
j
δ

(
pi

pn
cj

)
A(hj)

=
∑

j
δ

(
pi

pn

)
δ(cj)A(hj) = δ

(
pi

pn

)∑
j
δ(cj)A(hj) = δ

(
pi

pn

)
A(t)

holds for all t ∈ R, where i = 2, . . . , n− 1. Therefore

A(t) +
a2

an
A

(
p2

pn
t

)
+ · · ·+ an−1

an
A

(
pn−1

pn
t

)
= A(t)

(
1 +

a2

an
δ

(
p2

pn

)
+ · · ·+ an−1

an
δ

(
pn−1

pn

))
= 0

for all t ∈ R, i.e.,
n∑

i=2

ai

an
A

(
pi

pn
t

)
= 0 (t ∈ R).

Multiplying by an and substituting t by pnt this equation is equivalent to
n∑

i=2

ai A(tpi) = 0 (t ∈ R)

which was to be stated. �
Lemma 3.3. Let 3 ≤ n ∈ N, γi and δi ∈ R (i = 2, . . . , n − 1) be arbitrarily fixed.
Suppose that

δ : Q(γ2, . . . , γn−1)→ Q(δ2, . . . , δn−1)
is a field isomorphism such that δ(γi) = δi (i = 2, . . . , n − 1). Then, with the
notations

pi

pn
= γi and − aian∑n−1

j=2 a
2
j

= δi (i = 2, . . . , n− 1),

where aj , pj ∈ R (j = 2, . . . , n) are non-zero real numbers,

a2

an
δ

(
p2

pn

)
+ · · ·+ an−1

an
δ

(
pn−1

pn

)
= −1.

Proof. The proof is trivial. �
Theorem 3.4. Suppose that condition (2.1) holds and 3 ≤ n ∈ N. If the elements

γi :=
αi − α1

αn − α1
and δi := − aian∑n−1

j=2 a
2
j

, (i = 2, . . . , n− 1)

are algebraic conjugate then there exists a not identically zero additive function
A : R→ R such that

f(x) = A(x) + c (x ∈ I)
satisfies equation (1.1) for any constant c ∈ R.

Proof. Recall that pn = 1; see Theorem 2.4. The result is a simple consequence of
Lemma 3.1, Theorem 3.2 and Lemma 3.3. �
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