
Chapter 7

The Wasserstein Distance and
its Behaviour along Geodesics

In this chapter we will introduce the p-th Wasserstein distance Wp(μ, ν) between
two measures μ, ν ∈ Pp(X). The first section is devoted to its preliminary prop-
erties, in connection with the optimal transportation problems studied in the pre-
vious chapter and with narrow convergence: the main topological results are valid
in general metric spaces.

In the last two sections we will focus our attention to the case when X is an
Hilbert space: we will characterize the (minimal, constant speed) geodesics with
respect to the Wasserstein distance and, for p = 2 and a given ν ∈ P2(X), we will
study the behaviour of the map μ �→ W 2

2 (μ, ν) along geodesics: in particular, we
will give a precise formula for its derivative along geodesics and and we will prove
its semi-concavity, an important geometric property which is related to a metric
version of suitable curvature inequalities.

7.1 The Wasserstein distance

Let X be a separable metric space satisfying the Radon property (5.1.9) and
p ≥ 1. The (p-th) Wasserstein distance between two probability measures μ1, μ2 ∈
Pp(X) is defined by

W p
p (μ1, μ2) := min

{∫
X2

d(x1, x2)p dμ(x1, x2) : μ ∈ Γ(μ1, μ2)
}

= min
{
d(x1, x2)

p
Lp(μ;X) : μ ∈ Γ(μ1, μ2)

}
.

(7.1.1)

Using Remark 5.3.3 we can show that the function defined above is indeed a
distance. Indeed, if μi ∈ Pp(X) for i = 1, 2, 3, γ1 2 is optimal between μ1 and
μ2 and γ2 3 is optimal between μ2 and μ3 we can find γ ∈ P(X3) such that
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π1 2
# γ = γ1 2 and π2 3

# γ = γ2 3. The plan γ1 3 := π1 3
# γ belongs to Γ(μ1, μ3) and

since

Wp(μ1, μ2) = d(x1, x2)Lp(γ;X), Wp(μ2, μ3) = d(x1, x2)Lp(γ;X)

and
d(x1, x3)Lp(γ1 3;X) = d(x1, x3)Lp(γ;X),

we immediately get Wp(μ1, μ3) ≤ Wp(μ1, μ2) + Wp(μ2, μ3) from the standard
triangle inequality of the Lp distance.

In the particular case when p = 1 and μ and ν have a bounded support we
can use the duality formula (6.1.1) and the fact that c-concavity coincides with
1-Lipschitz continuity and ϕc = −ϕ for the cost c(x, y) = d(x, y) to obtain

W1(μ, ν) = sup
{∫

ϕd(μ− ν) : ϕ : X → R 1-Lipschitz
}

. (7.1.2)

We denote by Γo(μ1, μ2) ⊂ Γ(μ1, μ2) (which also depends on p, even if we
omit to indicate explicitly this dependence) the convex and narrowly compact set
of optimal plans where the minimum is attained, i.e.

γ ∈ Γo(μ1, μ2) ⇐⇒
∫

X2
d(x1, x2)p dγ(x1, x2) = W p

p (μ1, μ2). (7.1.3)

When Γo(μ1, μ2) contains a unique plan γ = (i × r)#μ1 induced by a transport
map r as in (5.2.13), we will also denote r by tμ2

μ1 ; therefore tμ2

μ1 is characterized
by

tμ2

μ1 : X → X,
(
tμ2

μ1

)
#

μ1 = μ2, Γo(μ1, μ2) =
{(

i× tμ2

μ1

)
#

μ1
}
, (7.1.4)

it is the unique (strict) minimizer of the optimal transportation problem in the
original Monge’s formulation (6.0.1), and satisfies∫

X

d
(
x, tμ2

μ1(x)
)p

dμ1(x) = W p
p (μ1, μ2). (7.1.5)

Given μ-measurable maps r, s : X → X , a very useful inequality giving an
estimate from above of the Wasserstein distance is

Wp(r#μ, s#μ) ≤ d(r, s)Lp(μ;X). (7.1.6)

It holds because γ =(r, s)#μ∈Γ(r#μ, s#μ) and
∫

d(x1, x2)p dγ =d(r, s)p
Lp(μ;X).

From Theorem 6.1.4 we derive that μ is optimal iff its support is d(·, ·)p-
monotone according to Definition 6.1.3, i.e.

N∑
k=1

d
(
xk

1 , xk
2

)p ≤
N∑

k=1

d
(
xk

1 , x
σ(k)
2

)p (7.1.7)
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for every choice of (xk
1 , xk

2) ∈ supp μ, k = 1, . . . , N , and for every permutation
σ : {1, . . . , N} → {1, . . . , N} (actually Theorem 6.1.4 shows only that μ has to be
concentrated on a c-monotone set, but since in this case the cost is continuous the
c-monotonicity holds, by a density argument, for the whole support of μ).

Remark 7.1.1. It is not difficult to check that supports of optimal plans satisfy
the slightly stronger property⋃

γ∈Γo(μ1,μ2)

supp γ is d(·, ·)p −monotone. (7.1.8)

For, we take a sequence (γn) narrowly dense in Γo(μ1, μ2) and we consider the
new plan γ̄ :=

∑
n 2−nγn. The plan γ̄ is optimal, too, and its support coincides

with (7.1.8).

Remark 7.1.2 (Cyclical monotonicity in the case when X is Hilbert). When p = 2
and X is a (pre-)Hilbert space, condition (7.1.7) is equivalent to the classical
cyclical monotonicity of supp μ, i.e. for every cyclical choice of points (xk

1 , xk
2) ∈

suppμ, k = 0, . . . , N , with (x0
1, x

0
2) = (xN

1 , xN
2 ), we have

N∑
k=1

〈xk
1 − xk−1

1 , xk
2〉 ≥ 0. (7.1.9)

In particular, if r = ∇φ for some convex C1 function φ then r is a 2-optimal
transport map for every measure μ ∈ P2(X) such that

∫ |r|2 dμ < +∞.

A useful application of the necessary and sufficient optimality conditions is
given by the following stability of optimality with respect to narrow convergence.

Proposition 7.1.3 (Stability of optimality and narrow lower semicontinuity). Let
(μ1

n), (μ2
n) ⊂ Pp(X) be two sequences narrowly converging to μ1, μ2 respectively,

and let μn ∈ Γo(μ1
n, μ2

n) be a sequence of optimal plans with
∫

X2 d(x1, x2)p dμn

bounded.
Then (μn) is narrowly relatively compact in P(X2) and any narrow limit point
μ belongs to Γo(μ1, μ2), with

Wp(μ1, μ2) =
∫

X2
d(x1, x2)p dμ(x1, x2)

≤ lim inf
n→∞

∫
X2

d(x1, x2)p dμn(x1, x2) = lim inf
n→∞ Wp(μ1

n, μ2
n).

(7.1.10)

Proof. The relative compactness of the sequence (μn) is a consequence of Lemma
5.2.2 and the “lim inf” inequality in (7.1.10) is a direct consequence of (5.1.15),
which in particular yields

∫
X2 d(x1, x2)p dμ < +∞.

Using proposition 5.1.8 it is immediate to check by approximation that the support
of μ is d(·, ·)p-monotone. �
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When X is a Hilbert space, the Wasserstein distance is lower semicontinuous
w.r.t. the weaker narrow convergence in P(X�):

Lemma 7.1.4 (Weak narrow lower semicontinuity of Wp in Hilbert spaces). Let
X be a (separable) Hilbert space and let (μ1

n), (μ2
n) ⊂ Pp(X) be two weakly tight

sequences (according to (5.1.32)) narrowly converging to μ1, μ2 in P(X�). Then

Wp(μ1, μ2) ≤ lim inf
n→∞ Wp(μ1

n, μ2
n). (7.1.11)

Proof. The map (x1, x2) �→ |x1 − x2|p is weakly l.s.c. in X ×X : we simply argue
as in the previous proof and we apply Lemma 5.1.12(c). Notice that in this case
the first line of (7.1.10) is an inequality “≤”, since we do not know that the limit
plan μ is optimal any more; nevertheless, the inequality is sufficient to obtain
(7.1.11). �
Proposition 7.1.5 (Convergence, compactness and completeness). Pp(X) endowed
with the p-Wasserstein distance is a separable metric space which is complete if X
is complete. A set K ⊂ Pp(X) is relatively compact iff it is p-uniformly integrable
and tight. In particular, for a given sequence (μn) ⊂ Pp(X) we have

lim
n→∞Wp(μn, μ) = 0 ⇐⇒

{
μn narrowly converge to μ,

(μn) has uniformly integrable p-moments.
(7.1.12)

Proof. Let us first prove the completeness of Pp(X), by assuming that X is
complete. It suffices to show that any sequence {μn}n∈N ⊂ Pp(X) such that

∞∑
n=1

Wp(μn, μn+1) < +∞

is converging. We choose αn (n+1) ∈ Γo(μn, μn+1) and use Lemma 5.3.4 to find
μ ∈ P(X), with X = XN, satisfying (5.3.8). It follows that

∞∑
n=1

d(πn, πn+1)Lp(μ;X) < +∞.

Therefore, (πn) is a Cauchy sequence in Lp(μ; X), which is a complete metric
space, and admits a limit map π∞ ∈ Lp(μ; X). Setting μ∞ := π∞

# μ ∈ Pp(X), we
easily find

lim sup
n→∞

Wp(μn, μ∞) ≤ lim sup
n→∞

d(πn, π∞)Lp(μ;X)

≤ lim sup
n→∞

∞∑
j=n

d(πj+1, πj)Lp(μ;X) = 0.

We will prove now the equivalence (7.1.12) (a different argument in locally compact
spaces, based on the duality formula (7.1.2), is available for instance in [146]).
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First we suppose that Wp(μn, μ) → 0. Arguing as before, we can choose
optimal plans β1 n ∈ Γo(μ, μn,) and use Lemma 5.3.4 (with μ1 := μ) to find
μ ∈ P(X) satisfying (5.3.8). It follows that

lim
n→∞ d(πn, π1)Lp(X,μ;X) = 0,

and therefore, for every continuous real function f with p-growth the Vitali dom-
inated convergence theorem gives

lim
n→∞

∫
X

f(x) dμn(x) = lim
n→∞

∫
X

f(πn(x)) dμ(x) =
∫

X

f(π1(x)) dμ(x)

=
∫

X

f(x) dμ(x).

By lemma 5.1.7 we obtain the narrow convergence and the uniform p-integrability
of the sequence (μn).

Conversely, let us suppose that the sequence (μn) has uniformly integrable
p-moments and it is narrowly converging to μ; in particular, by (5.4.7), the set
{μ, μn : n ∈ N} is tight. As before, let us choose α1 n ∈ Γo(μ, μn): it easy to check
that the sequence (α1 n) is p-uniformly integrable and tight in P(X × X) (see
Lemma 5.2.2): a subsequence k �→ nk exists such that α1 nk → α narrowly, with
α ∈ Γo(μ, μ) by Proposition 7.1.3. Applying Lemma 5.1.7 we get

lim
k→∞

W p
p (μ, μnk

) = lim
k→∞

∫
X×X

|x1 − x2|p dα1 nk(x1, x2)

=
∫

X×X

|x1 − x2|p dα(x1, x2) = 0.

Since the limit is independent of the subsequence nk we get the convergence of μn

with respect to the Wasserstein distance. Using (7.1.12) it is now immediate to
check that convex combinations of Dirac masses with centers in a countable dense
subset of X and with rational coefficients are dense in Pp(X), therefore Pp(X)
is separable. �

It is interesting to note that in the previous proof of the equivalence between
narrow and Wasserstein topology (on sets with uniformly integrable p-moments),
one implication (the topology induced by the Wasserstein distance is stronger than
the narrow one) could be directly deduced from (7.1.2) via the approximation
arguments discussed in Section 5.1, thus avoiding Lemma 5.3.4; this implication
is therefore considerably easier than the converse one, which relies on the stability
property 7.1.3 and therefore on the main characterization results of Chapter 6 for
optimal transportation problems. However the argument via Lemma 5.3.2 seems
to be necessary to get completeness, at least in infinite dimensions.

Remark 7.1.6 (Limit of the optimal plan). As a byproduct of the previous proof,
we obtain that if μn → μ in Pp(X) and μn ∈ Γo(μ, μn), then

μn → (i× i)#μ in Pp(X ×X). (7.1.13)
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Remark 7.1.7 (P(X) is a Polish space if X is Polish). By taking an equivalent
bounded metric on X , all the Wasserstein distances induce the topology of narrow
convergence between probability measures: as we already noticed in Remark 5.1.1,
the narrow topology P(X) is metrizable; moreover, if X is a Polish space, then
P(X) is a Polish space, too.

Remark 7.1.8 (Relative compactness of Pp(X)-bounded sets). When X is infinite
dimensional Hilbert space, bounded subset in Pp(X) are not relatively compact
in P(X) any more, but they are relatively compact in P(X�).

Remark 7.1.9 (Pp(X) is locally compact only if X is compact). If X is not com-
pact, the space Pp(X) is not locally compact, not even in the case when X = Rd

is finite dimensional. Indeed, assume that for some ε > 0 and x0 ∈ X the closed
ball in Pp(X)

Bε :=
{
μ ∈ Pp(X) : Wp(μ, δx0) ≤ ε

}
=

{
μ ∈ Pp(X) :

∫
X

d(x, x0)p dμ(x) ≤ εp
}

is compact and let us prove that an arbitrary sequence (xn) ∈ X admits a conver-
gent subsequence. It is not restrictive to assume lim infn→∞ d(xn, x0) > 0 (other-
wise (xn) admits a subsequence converging to x0), and therefore infn∈N d(xn, x0) =
δ > 0. We consider the real numbers

mn =
(δ ∧ ε)p

d(xn, x0)p
≤ 1, so that mnd(xn, x0)p = (δ ∧ ε)p;

the sequence of measures μn := (1 − mn)δx0 + mnδxn belongs to Bε since
Wp(μn, δx0) = ε∧ δ and therefore admits a subsequence (μn′) converging to some
μ �= δx0 in Pp(X).
Since (mn) is bounded, too, it is not restrictive to assume that mn′ → m ∈ [0, 1]
which should be strictly positive, being μ �= δx0 . By Proposition 5.1.8 (see also
Corollary 5.1.9) it follows that μ takes the form (1−m)δx0 +mδx for some x ∈ X ,
and therefore xn′ → x.

Lemma 7.1.10 (Approximation by convolution). Let μ ∈ Pp(Rd) and let (ρε) ⊂
C∞(Rd) be a family of nonnegative mollifiers such that

ρε(x) := ε−dρ(x/ε),
∫

Rd

ρ(x) dx = 1, mp
p(ρ) :=

∫
Rd

|x|pρ(x) dx < +∞. (7.1.14)

Then if με := μ ∗ ρε

Wp(μ, με) ≤ εmp(ρ), (7.1.15)

and therefore με converges to μ in Pp(Rd) as ε ↓ 0.

Proof. We introduce the family of plans γε :=
∫

ρε(· − x)L d dμ(x) defined by∫∫
Rd×Rd

ϕ(x, y) dγε(x, y) :=
∫

Rd

∫
Rd

φ(x, y)ρε(y − x) dy dμ(x)
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which obviously satisfy γε ∈ Γ(μ, με). Therefore

W p
p (μ, με) ≤

∫∫
(Rd)2

|x− y|p dγε(x, y) =
∫

Rd

(∫
Rd

|x− y|pρε(y − x) dy
)

dμ(x)

=
∫

Rd

( ∫
Rd

|z|pρε(z) dz
)

dμ(x) =
∫

Rd

|εz|pρ(z) dz = εp

∫
Rd

|z|pρ(z) dz
�

Remark 7.1.11. Combining Proposition 5.1.13 with j(r) := rp, 1 < p < +∞, and
Lemma 5.1.7 we get the following useful characterization of the convergence in
Pp(X), which is particularly interesting when X is infinite dimensional Hilbert
space:

lim
n→∞Wp(μn, μ) = 0 ⇐⇒

⎧⎨⎩ μn narrowly converge to μ in P(X�),

lim
n→∞

∫
X

|x|p dμn(x) =
∫

X

|x|p dμ(x).
(7.1.16)

Since we have at our disposal new powerful results (which are consequences of
the theory presented in Chapter 6) we conclude this section by showing a simpler
proof of (7.1.16), which could be extended to the case of uniformly convex Banach
spaces.

Proof. Let us consider the (Radon, separable) metric space X� with the distance
induced by the norm ‖ · ‖�; since ‖ · ‖p

� ≤ | · |p, (7.1.16) and Lemma 5.1.7 show
that ‖ · ‖p

� is uniformly integrable w.r.t. the sequence (μn). Applying (7.1.12) of
Proposition 7.1.5 in X� (this characterization does not require the completeness of
the metric space), we obtain that μn converges to μ in the p-Wasserstein distance
of Pp(X�). It follows by Remark 7.1.6 that any sequence of plans μn ∈ Γ(μn, μ),
optimal in Pp(X�), satisfies

μn → (i× i)#μ in Pp(X� ×X�) as n →∞. (7.1.17)

We suppose p ≥ 2 and we integrate with respect to μn the inequality (cp is a
strictly positive constant, jp(x1) = |x1|p−2x1)

cp|x1 − x2|p ≤ 1
p
|x2|p − 1

p
|x1|p − 〈jp(x1), x2 − x1〉 ∀x1, x2 ∈ X,

which we will prove in Lemma 10.2.1; we obtain

cpW
p
p (μ, μn) ≤

∫
X×X

cp|x1 − x2|p dμn(x1, x2) (7.1.18a)

≤
∫

X×X

(1
p
|x2|p − 1

p
|x1|p − 〈jp(x1), x2 − x1〉

)
dμn(x1, x2)

=
1
p

∫
X

|x2|p dμn(x2)− 1
p

∫
X

|x1|p dμ(x1)

−
∫

X×X

〈y1, y2〉 dμ̂n(y1, y2),
(7.1.18b)
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where
μ̂n :=

(
jp ◦ π1, π2 − π1

)
#

μn.

Since the first marginal of μ̂n is fixed in Pq(X), it is easy to check by Lemma
5.2.1 that

μ̂n →
(
(jp)#μ

)× δ0 in P(X ×X�) as n →∞,

and that (μn) satisfies the assumptions of Lemma 5.2.4; therefore, passing to
the limit as n → ∞ in (7.1.18a,b), the convergence of the moments (7.1.16) and
Lemma 5.2.4 yield Wp(μ, μn) → 0.
The case p < 2 follows by the same argument and inequality (10.2.5). �

7.2 Interpolation and geodesics

In this section we are assuming that X is a separable Hilbert space and p > 1,
and we show that constant speed geodesics in Pp(X) coincide with a suitable
class of interpolations obtained from optimal transport plans. Recall that a curve
μt ∈ Pp(X), t ∈ [0, 1], is a constant speed geodesic (see also (2.4.3)) if

Wp(μs, μt) = (t− s)Wp(μ0, μ1) ∀ 0 ≤ s ≤ t ≤ 1. (7.2.1)

If μ ∈ P(XN), N ≥ 2, 1 ≤ i, j, k ≤ N , and t ∈ [0, 1] we set

πi→j
t := (1− t)πi + tπj : XN → X, (7.2.2)

πi→j,k
t := (1− t)πi,k + tπj,k : XN → X2, (7.2.3)

μi→j
t := (πi→j

t )#μ ∈ P(X), (7.2.4)

μi→j,k
t := (πi→j,k

t )#μ ∈ P(X2). (7.2.5)

It is well known that Γo(μ1, μ2) can contain in general more than one element.
In the following lemma we show that along a geodesic the optimal plans to the
extreme points μ0, μ1 are unique and induced by a transport map (which enjoys
nicer properties, see [30]), if we consider μt, t ∈ (0, 1), as the initial measure.

Lemma 7.2.1. Let (μt)t∈[0,1] be a constant speed geodesic in Pp(X) and let t ∈
(0, 1). Then Γo(μt, μ1) (resp. Γo(μ0, μt)) contains a unique plan μt 1 (resp. μ0 t)
and this plan is induced by a transport. Moreover, μ = μt 1 ◦μ0 t ∈ Γo(μ0, μ1) and

μ0 t = (π1,1→2
t )#μ, μt 1 = (π1→2,2

t )#μ. (7.2.6)

Proof. For t ∈ (0, 1) let γ (resp. η) be optimal transport plans between μ0 and
μt (resp. μt and μ1). In order to clarify the structure of the proof it is convenient
to view μ0, μt, μ1 as measures in P(X1), P(X2), P(X3), where Xi are distinct
copies of X . Then, we can define

λ :=
∫

X2

γx2 × ηx2 dμt(x2) ∈ Γ(μ0, μt, μ1)
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where γ =
∫

X2
γx2 dμt and η =

∫
X2

ηx2 dμt are the disintegrations of γ and η with
respect to the common variable x2. Then, since (recall the composition of plans
in Remark 5.3.3)

μ = η ◦ γ = π1,3
# λ ∈ Γ(μ0, μ1)

we get

Wp(μ0, μ1) ≤ ‖x1 − x3‖Lp(μ;X) ≤ ‖x1 − x2‖Lp(λ;X) + ‖x2 − x3‖Lp(λ;X)

= ‖x1 − x2‖Lp(γ;X) + ‖x2 − x3‖Lp(η;X) = Wp(μ0, μ1).

This proves that μ is optimal; moreover, since all inequalities are equalities and
the Lp-norm is strictly convex, we get that there exists α > 0 such that x2 −
x1 = α(x3 − x1) for λ-a.e. triple (x1, x2, x3). Using the fact that Wp(μt, μ0) =
tWp(μ0, μ1) we obtain α = t and therefore

x2 − x1 = t(x3 − x1) λ-a.e. in X1 ×X2 ×X3.

Denoting by z(x2) the barycenter of γx2 , the linearity of this relation w.r.t. x1

yields
x2 − z(x2) = t(x3 − z(x2)) η-a.e. in X2 ×X3.

Hence η is induced by the transport rt(x2) = x2/t−z(x2)(1−t)/t. Since z depends
on γ and γ and η have been chosen independently, this proves that η is unique,
so that η = μt 1, the measure defined in (7.2.6). Inverting the order of μ0 and μ1,
we obtain the other identity. �

Theorem 7.2.2 (Characterization of constant speed geodesics). If μ ∈ Γo(μ1, μ2)
then the curve t �→ μt := μ1→2

t is a constant speed geodesic connecting μ1 to μ2.
Conversely, any constant speed geodesic μt : [0, 1] → Pp(X) connecting μ1 to μ2

has this representation for a suitable μ ∈ Γo(μ1, μ2), which can be constructed
from any point μt, 0 < t < 1, as in the previous Lemma.

Proof. By (7.1.6) we get

Wp(μt, μs) ≤ (t− s)Wp(μ1, μ2) ∀s, t ∈ (0, 1), s ≤ t. (7.2.7)

If there is a strict inequality for some s < t we immediately derive a contradiction
by applying the triangle inequality with the points μ0, μs, μt and μ1. Therefore
equality holds and μt is a constant speed geodesic.

Let μt be a constant speed geodesic and for a fixed t ∈ (0, 1) let μ := μt 1◦μ0 t

be as in Lemma 7.2.1. Since μ0 t = (π1,1→2
t )#μ is the unique element of Γo(μ0, μt)

and the curve s �→ μts, s ∈ [0, 1] is a constant speed geodesic, we get

μst = (π1→2
s )#μ0 t = (π1→2

s ◦ π1,1→2
t )#μ = (π1→2

st )#μ.

Inverting μ0 with μ1 we conclude. �
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μ0

μ1/2

μ1

Figure 7.1: An example of geodesic: the mass of μ0 splits into two parts

μ0

μ1

μt

Figure 7.2: Another example of geodesic: the trajectories may intersect

In the case X = R, using the explicit representation (6.0.3) for the Wasser-
stein distance in terms of the inverses of distribution functions, we get

F−1
μ1→2

t
= (1− t)F−1

μ1 + tF−1
μ2 L 1-a.e. in (0, 1). (7.2.8)

for any geodesic μ1→2
t induced by μ ∈ Γo(μ1, μ2).

7.3 The curvature properties of P2(X)

In this section we consider the particular case p = 2 and we establish some finer
geometric properties of P2(X).

In particular we will prove in Theorem 7.3.2 the semiconcavity inequality
of the Wasserstein distance from a fixed measure μ3 along the constant speed
geodesics μ1→2

t connecting μ1 to μ2:

W 2
2 (μ1→2

t , μ3) ≥ (1− t)W 2
2 (μ1, μ3) + tW 2

2 (μ2, μ3)− t(1− t)W 2
2 (μ1, μ2). (7.3.1)

According to Aleksandrov’s metric notion of curvature (see [5] and Section
12.3 in the Appendix), this inequality can be interpreted by saying that the Wasser-
stein space is a positively curved metric space (in short, a PC-space). This was
already pointed out by a formal computation in [124], showing also that generically
the inequality is strict (see Example 7.3.3). See also Section 12.3 in the Appendix,
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where we recall some basic facts of the theory of positively curved metric spaces,
and [140] for similar results when X is a metric space.

For μ ∈ Γ(μ1, μ2, μ3) ⊂ P2(X3) and i, j, k ∈ {1, 2, 3}, t ∈ [0, 1] we set

W 2
μ(μi→j

t , μk) :=
∫

X3
|(1− t)xi + txj − xk|2 dμ(x1, x2, x3). (7.3.2)

By (7.1.6) we get
W 2

2 (μi→j
t , μk) ≤ W 2

μ(μi→j
t , μk). (7.3.3)

Moreover, the Hilbertian identity

|(1 − t)a + tb− c|2 = (1 − t)|a− c|2 + t|b− c|2 − t(1− t)|b− a|2

gives

W 2
μ(μ1→2

t , μ3) = (1− t)W 2
μ(μ1, μ3) + tW 2

μ(μ2, μ3)− t(1 − t)W 2
μ(μ1, μ2), (7.3.4)

and the related differential identities

d

dt
W 2

μ(μ1→2
t , μ3) = W 2

μ(μ2, μ3)−W 2
μ(μ1, μ3) + (2t− 1)W 2

μ(μ1, μ2) (7.3.5)

=
1

1− t

(
W 2

μ(μ2, μ3)−W 2
μ(μ1→2

t , μ2)−W 2
μ(μ1→2

t , μ3)
)

(7.3.6)

=
1
t

(
W 2

μ(μ1→2
t , μ1) + W 2

μ(μ1→2
t , μ3)−W 2

μ(μ1, μ3)
)
. (7.3.7)

Proposition 7.3.1. Let μ1 2 ∈ Γ(μ1, μ2), t ∈ (0, 1) and μt 3 ∈ Γo(μ1→2
t , μ3). Then

there exists a plan

μt ∈ Γ(μ1 2, μ3) such that (π1→2,3
t )#μt = μt 3, (7.3.8)

and this plan is unique if μ1 2 ∈ Γo(μ1, μ2). For each plan μt satisfying (7.3.8) we
have

W 2
2 (μ1→2

t , μ3) = (1− t)W 2
μt

(μ1, μ3)+ tW 2
μt

(μ2, μ3)− t(1− t)W 2
μt

(μ1, μ2). (7.3.9)

Proof. Let Σt : X2 → X2 and Λt : X3 → X3 be the homeomorphisms defined by

Σt(x1, x2) := ((1− t)x1 + tx2, x2), Λt(x1, x2, x3) = ((1 − t)x1 + tx2, x2, x3)

and notice that μ has the required properties if and only if ν := Λt#μ satisfies

π1,2
# ν = Σt#μ1 2, π1,3

# ν = μt 3. (7.3.10)

Then, Lemma 5.3.2 says that there exists a plan ν fulfilling (7.3.10) and, since Λt

is invertible, this proves the existence of μ. When μ1 2 is optimal, since Σt#μ1 2 ∈
Γo(μ1→2

t , μ2), we infer from Lemma 7.2.1 that Σt#μ1 2 is unique and induced by
a transport map and therefore ν and μ are uniquely determined. �
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μ1

μ2

μ3

μ1→2
t

μ1→2
tμt 3

μ1 2

μ2 3 = π2,3
# μt

μ1 3 = π1,3
# μt

Figure 7.3: μ1 2 and μt 3 are given optimal plans; μ2 3 and μ1 3 are not optimal, in

general

Theorem 7.3.2 (P2(X) is a PC-space). For each choice of μ1, μ2, μ3 ∈ P2(X)
and μ1 2 ∈ Γ(μ1, μ2) we have

W 2
2 (μ1→2

t , μ3) ≥ (1− t)W 2
2 (μ1, μ3)+ tW 2

2 (μ2, μ3)− t(1− t)W 2
μ1 2(μ1, μ2) (7.3.11)

and the map t �→ W 2
2 (μ1→2

t , μ3)−t2W 2
μ1 2(μ1, μ2) is concave in [0, 1]. In particular,

choosing μ1 2 ∈ Γo(μ1, μ2) (see Figure 7.3) we have

W 2
2 (μ1→2

t , μ3) ≥ (1− t)W 2
2 (μ1, μ3) + tW 2

2 (μ2, μ3)− t(1 − t)W 2
2 (μ1, μ2) (7.3.12)

and therefore P2(X) is a PC-space.

Proof. (7.3.11) is a direct consequence of (7.3.9) and (7.3.3). In order to prove the
concavity property we choose λ, t1, t2 ∈ [0, 1], t := (1 − λ)t1 + λt2, and we have
only to develop the obvious calculations:

W 2
2 (μ1→2

t , μ3)− t2W 2
μ1 2(μ1, μ2) = W 2

2 (μt1→t2
λ , μ3)− t2W 2

μ1 2(μ1, μ2)

≥(1−λ)W 2
2 (μt1 , μ3) + λW 2

2 (μt2 , μ3)−
(
λ(1 − λ)(t2 − t1)2 + t2

)
W 2

μ1 2(μ1, μ2)

=(1−λ)
[
W 2

2 (μ1→2
t1 , μ3)− t21W

2
μ1 2(μ1, μ2)

]
+ λ

[
W 2

2 (μ1→2
t2 , μ3)− t22W

2
μ1 2(μ1, μ2)

]
.

In the case μ1 2 ∈ Γo(μ1, μ2) is sufficient to note that W 2
μ1 2(μ1, μ2) = W 2

2 (μ1, μ2).
�

Example 7.3.3 (Strict positivity of the sectional curvature). The following example
shows that in general the inequality (7.3.1) is strict. Let

μ1 :=
1
2
(
δ(1,1) + δ(5,3)

)
, μ2 :=

1
2
(
δ(−1,1) + δ(−5,3)

)
, μ3 :=

1
2
(
δ(0,0) + δ(0,−4)

)
.
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μ3

μ1→2
t

Figure 7.4: μ3 is the sum of deltas on black dots, μ1→2
t is moving along the dotted lines

Then, it is immediate to check that W 2
2 (μ1, μ2) = 40, W 2

2 (μ1, μ3) = 30, and
W 2

2 (μ2, μ3) = 30. On the other hand, the unique constant speed geodesic joining
μ1 to μ2 is given by

μt :=
1
2
(
δ(1−6t,1+2t) + δ(5−6t,3−2t)

)
and a simple computation gives

24 = W 2
2 (μ1/2, μ

3) >
30
2

+
30
2
− 40

4
.

Formula (7.3.11) is useful to evaluate the directional derivative of the Wasser-
stein distance. If μ1 2 ∈ Γ(μ1, μ2), general properties of concave maps ensures that
for each point t ∈ [0, 1) there exists the right derivative

d

dt+
W 2

2 (μ1→2
t , μ3) := lim

t′↓t

W 2
2 (μ1→2

t′ , μ3)−W 2
2 (μ1→2

t , μ3)
t′ − t

and, for t ∈ (0, 1], the left derivative

d

dt−W 2
2 (μ1→2

t , μ3) := lim
t′↑t

W 2
2 (μ1→2

t , μ3)−W 2
2 (μ1→2

t′ , μ3)
t− t′

satisfying

d

dt+
W 2

2 (μ1→2
t , μ3) ≤ d

dt−W 2
2 (μ1→2

t , μ3) ∀ t ∈ (0, 1)

and, for a (at most) countable subset N ⊂ (0, 1)

d

dt+
W 2

2 (μ1→2
t , μ3) =

d

dt−W 2
2 (μ1→2

t , μ3) ∀ t ∈ (0, 1) \N . (7.3.13)
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Corollary 7.3.4. Let μ1, μ2, μ3 ∈ P2(X), μ1 2 ∈ Γ(μ1, μ2), t ∈ [0, 1], and

μt ∈ Γ(μ1 2, μ3) such that (π1→2,3
t )#μ ∈ Γo(μ1→2

t , μ3) as in Proposition 7.3.1.

Then

d

dt+
W 2

2 (μ1→2
t , μ3) ≤ W 2

μt
(μ2, μ3)−W 2

μt
(μ1, μ3) + (2t− 1)W 2

μt
(μ1, μ2)

=
1

1− t

(
W 2

μt
(μ2, μ3)−W 2

μt
(μ1→2

t , μ2)−W 2
2 (μ1→2

t , μ3)
)

=
1
t

(
W 2

μt
(μ1→2

t , μ1) + W 2
2 (μ1→2

t , μ3)−W 2
μt

(μ1, μ3)
)

≤ d

dt−
W 2

2 (μ1→2
t , μ3).

(7.3.14)
In particular, equality holds in the previous formula whenever t belongs to the set
of differentiability of the distance, i.e. t ∈ (0, 1) \N .

Proof. We simply observe that

W 2
2 (μ1→2

t′ , μ3) ≤ W 2
μt

(μ1→2
t′ , μ3) if t′ �= t, W 2

2 (μ1→2
t , μ3) = W 2

μt
(μ1→2

t , μ3),

and we apply (7.3.9) and (7.3.5), (7.3.6), (7.3.7) to evaluate the right and left
derivatives. �

We conclude this section by a precise characterization of the right derivative
(7.3.14) at time t = 0; we need to introduce some more definitions.

Definition 7.3.5 (A new class of multiple plans). Let μ1 2 ∈ P2(X2) and μ3 ∈
P2(X). We say that μ ∈ Γ(μ1 2, μ3) belongs to Γo(μ1 2, μ3) if π1,3

# μ ∈ Γo(μ1, μ3).

Proposition 7.3.6. Let μ1 2∈Γ(μ1, μ2), μ3∈P2(X). Then for every μ∈Γo(μ1 2, μ3)
such that∫

X3
|x2 − x3|2 dμ = min

{∫
X3
|x2 − x3|2 dν : ν ∈ Γo(μ1 2, μ3)

}
(7.3.15)

we have

d

dt+
W 2

2 (μ1→2
t , μ3)|t=0

=
(
W 2

μ(μ2, μ3)−W 2
μ(μ1, μ2)−W 2

2 (μ1, μ3)
)

= −2
∫

X3
〈x2 − x1, x3 − x1〉 dμ. (7.3.16)

Proof. We already know by (7.3.14) that

d

dt+
W 2

2 (μ1→2
t , μ3)|t=0

≤
(
W 2

μ(μ2, μ3)−W 2
μ(μ1, μ2)−W 2

2 (μ1, μ3)
)
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so that we simply have to prove the opposite inequality. Let N be the negligible
set defined by (7.3.13); thanks to (7.3.14) and to the semiconcavity of the squared
distance map, we have

d

dt+
W 2

2 (μ1→2
t , μ3) = lim

t↓0,t�∈N

d

dt+
W 2

2 (μ1→2
t , μ3)

= lim
t↓0,t�∈N

1
1− t

(
W 2

μt
(μ2, μ3)−W 2

μ1 2(μ1→2
t , μ2)−W 2

2 (μ1→2
t , μ3)

)
≥

(
W 2

μ0
(μ2, μ3)−W 2

μ1 2(μ1, μ2)−W 2
2 (μ1, μ3)

)
,

where μ0 is any narrow accumulation point of μt as t ↓ 0. By Proposition 7.1.3
π1 2

# μ0 = μ1 2, π1 3
# μ0 ∈ Γo(μ1, μ3). Invoking (7.3.14) again, we conclude. �

Since the integrals of |x1−x2|2 and of |x1−x3|2 do not depend on the choice
of ν ∈ Γo(μ1 2, μ3), we can reformulate (7.3.16) as

d

dt+
W 2

2 (μ1→2
t , μ3)|t=0

= min
ν∈Γo(μ1 2,μ3)

−2
∫

X3
〈x2 − x1, x3 − x1〉 dν. (7.3.17)


