
Chapter 5

Preliminary Results on Measure
Theory

In this chapter we introduce, mostly without proofs, some basic measure-theoretic
tools needed in the next chapters. We decided to present the most significant
result in the quite general framework of separable metric spaces in view of possible
applications to infinite dimensional Hilbert (or Banach) spaces, thus avoiding any
local compactness assumption (we refer to the treatises [126, 71, 72, 136, 67] for
comprehensive presentations of this subject).

At this preliminary level, the existence of an equivalent complete metric (Pol-
ish spaces) only enters in the compact inner regularity (5.1.9) or tightness (5.1.8) of
every Borel measure (it is a consequence of Ulam’s Theorem [72, 7.1.4], a particular
case of the converse implication in Prokhorov Theorem 5.1.3), which in particular
appears in the so called disintegration theorem 5.3.1 and its consequences; this
inner approximation condition is satisfied by a wider class of even non complete
metric spaces (the so called Radon spaces [136, page 117]) and it will be sufficient
for our aims. Since weak topologies in Hilbert-Banach spaces are not metrizable, it
will also be useful (see Lemma 5.1.12) to deal with auxiliary non complete metrics,
still satisfying (5.1.9).

Even if the presentation looks more abstract and the assumptions very weak
with respect to the more usual finite dimensional Euclidean setting of the standard
theory for evolutionary PDE’s, this approach is sufficiently powerful to provide all
the crucial results and allows for a great flexibility.

Let X be a separable metric space. We denote by B(X) the family of the
Borel subsets of X , by P(X) the family of all Borel probability measures on X .
The support supp μ ⊂ X of μ ∈ P(X) is the closed set defined by

supp μ :=
{

x ∈ X : μ(U) > 0 for each neighborhood U of x
}

. (5.0.1)
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When X = X1 × . . . × Xk is a product space, we will often use bold letters
to indicate Borel measures μ ∈ P(X). Recall that for separable metric spaces
X1, . . . , Xk the Borel σ-algebra coincides with the product one

B(X) = B(X1)×B(X2)× · · · ×B(Xk). (5.0.2)

5.1 Narrow convergence, tightness, and uniform

integrability

Conformally to the probabilistic terminology, we say that a sequence (μn) ⊂ P(X)
is narrowly convergent to μ ∈ P(X) as n →∞ if

lim
n→∞

∫
X

f(x) dμn(x) =
∫

X

f(x) dμ(x) (5.1.1)

for every function f ∈ C0
b (X), the space of continuous and bounded real functions

defined on X .
Of course, it is sufficient to check (5.1.1) on any subset C of bounded con-

tinuous functions whose linear envelope spanC is uniformly dense (i.e. dense in
the uniform topology induced by the “sup” norm) in C0

b (X). Even better, let us
suppose that C0 ⊂ C0

b (X) satisfies the approximation properties∫
X

f(x) dμ(x) = sup
{∫

X

h(x) dμ(x) : h ∈ C0, h ≤ f
}

(5.1.2a)

= inf
{∫

X

h(x) dμ(x) : h ∈ C0, h ≥ f
}
, (5.1.2b)

for every f ∈ C ; then if (5.1.1) holds for every f ∈ C0, then it holds for every
continuous and bounded function f . In fact for every f ∈ C we easily have

lim inf
n→∞

∫
X

f(x) dμn(x) ≥ sup
h∈C0,h≤f

lim inf
n→∞

∫
X

h(x) dμn(x)

= sup
h∈C0,h≤f

∫
X

h(x) dμ(x) =
∫

X

f(x) dμ(x),
(5.1.3)

and the opposite inequality for the “lim sup” can be obtained in a similar way
starting from (5.1.2b). Thus every f ∈ C satisfies (5.1.1), and we get the same
property for every f ∈ C0

b (X) since spanC is uniformly dense in C0
b (X).

If d is any metric for X , the subset of d-uniformly (or d-Lipschitz) continuous
and bounded real functions provides an important example [138, Th. 3.1.5] sat-
isfying (5.1.2a,b). For, we can pointwise approximate a continuous and bounded
function f from below with an increasing sequence of bounded Lipschitz functions
fk (they are particular examples of the Moreau-Yosida approximations for the
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exponent p = 1, see Section 3.1)

fk(x) := inf
y

f(y) + kd(x, y), with

⎧⎨⎩ inf f ≤ fk(x) ≤ f(x) ≤ sup f,

f(x) = lim
k→∞

fk(x) = sup
k∈N

fk(x), (5.1.4)

thus obtaining (5.1.2a) by Fatou’s lemma; changing f to −f we obtain (5.1.2b).
A slight refinement of this argument provides a countable set of d-Lipschitz

functions satisfying (5.1.2a,b) for every function f ∈ C0
b (X): we simply choose

a countable dense set D ⊂ X and we consider the countable family of functions
h : X → R of the type

h(x) =
(
q1 + q2d(x, y)

) ∧ k

for some q1, q2, k ∈ Q, q2, k ∈ (0, 1), y ∈ D.
(5.1.5a)

We denote by C1 the collection generated from this set by taking the infimum of
a finite number of functions, thus satisfying

sup
x∈X

|h(x)| < 1, Lip(h, X) < 1 ∀h ∈ C1; (5.1.5b)

finally we set
C0 =

{
λh : h ∈ C1, λ ∈ Q

}
. (5.1.5c)

As showed by the next remark, the above constructions are useful, since in
general C0

b (X) (endowed with the uniform topology) is not separable, unless X is
compact.

Remark 5.1.1 (Narrow convergence is induced by a distance). It is well known
that narrow convergence is induced by a distance on P(X): an admissible choice
is obtained by ordinating each element of C1 in a sequence (fk) and setting

δ(μ, ν) :=
∞∑

k=1

2−k
∣∣∣ ∫

X

fk dμ−
∫

X

fk dν
∣∣∣. (5.1.6)

If d is a complete bounded metric for X we could also choose any p-Wasserstein
distance on P(X) (see Chap. 7 and Remark 7.1.7). In particular, the family of all
converging sequences is sufficient to characterize the narrow topology and we do
not have to distinguish between compact and sequentially compact subsets.

Remark 5.1.2 (Narrow topology coincides with the weak∗ topology of
(
C0

b (X)
)′

).
P(X) can be identified with a convex subset of the unitary ball of the dual space(
C0

b (X)
)′: by definition, narrow convergence is induced by the weak∗ topology of(

C0
b (X)

)′. This identification is useful to characterize the closed convex hull in
P(X) of a given set K ⊂ P(X): Hahn-Banach theorem shows that

μ ∈ Conv (K) ⇐⇒
∫

X

f dμ ≤ sup
ν∈K

∫
X

f dν ∀ f ∈ C0
b (X). (5.1.7)
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For instance we can prove the separability of P(X) by choosing K :=
{
δx : x ∈

D
}
, where D is a countable dense subset of X : by (5.1.7) we easily check that

P(X) = ConvK and therefore the subset of all the convex combinations with
rational coefficients of δ-measures concentrated in D is narrowly dense in P(X).

The following theorem provides a useful characterization of relatively com-
pact sets with respect to the narrow topology.

Theorem 5.1.3 (Prokhorov, [67, III-59]). If a set K ⊂ P(X) is tight, i.e.

∀ ε > 0 ∃Kε compact in X such that μ(X \Kε) ≤ ε ∀μ ∈ K, (5.1.8)

then K is relatively compact in P(X). Conversely, if there exists an equivalent
complete metric for X, i.e. X is a so called Polish space, then every relatively
compact subset of P(X) is tight.

Observe in particular that in a Polish space X each measure μ ∈ P(X) is
tight; moreover, compact inner approximation holds for every Borel set:

∀B ∈ B(X), ε > 0 ∃Kε � B : μ(B \Kε) ≤ ε. (5.1.9)

In fact, this approximation property holds for a more general class of spaces, the
so-called Radon spaces [136].

Definition 5.1.4 (Radon spaces). A separable metric space X is a Radon space if
every Borel probability measure μ ∈ P(X) satisfies (5.1.9).

When the elements of K ⊂ X are ordinated in a sequence (μn) of tight
measures (which is always the case if X is a Radon space), then the tightness
condition (5.1.8) can also be reformulated as

inf
K�X

lim sup
n→∞

μn(X \K) = 0, (5.1.10a)

or, equivalently since μn(X) ≡ 1,

sup
K�X

lim inf
n→∞ μn(K) = 1. (5.1.10b)

An interesting result by Le Cam [103], [72, 11.5.3], shows that

in a (metric, separable) Radon space X ,
every narrowly converging sequence (μn) ⊂ P(X) is tight.

(5.1.11)

Remark 5.1.5 (An integral condition for tightness). It is easy to check that (5.1.8)
is equivalent to the following condition: there exists a function ϕ : X → [0, +∞],
whose sublevels {x ∈ X : ϕ(x) ≤ c} are compact in X, such that

sup
μ∈K

∫
X

ϕ(x) dμ(x) < +∞. (5.1.12)
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For, if {εn}∞n=0 is a sequence with
∑+∞

n=0 εn < +∞ and Kn := Kεn is an (increas-
ing) sequence of compact sets satisfying (5.1.8), the function

ϕ(x) := inf
{

n ≥ 0 : x ∈ Kn

}
=

+∞∑
n=0

χX\Kn
(x), (5.1.13)

satisfies (5.1.12). Conversely, if K satisfies (5.1.12), Chebichev inequality shows
that (5.1.8) is satisfied by the family of sublevels of ϕ.

We conclude this part by a well known result comparing narrow convergence
with convergence in the sense of distributions when X = Rd.

Remark 5.1.6 (Narrow and distributional convergence in X = Rd). For n ∈ N let
μn, μ be Borel probability measures in the euclidean space X = Rd such that

lim
n→∞

∫
Rd

f(x) dμn(x) =
∫

Rd

f(x) dμ(x) ∀ f ∈ C∞
c (Rd). (5.1.14)

Then the sequence (μn) is tight and it narrowly converges to μ as n →∞.
For, if ζ ∈ C∞

c (Rd) satisfies

0 ≤ ζ ≤ 1, ζ(x) = 1 if |x| ≤ 1/2, ζ(x) = 0 if |x| ≥ 1,

and ζk(x) := ζ(x/k), we have

lim inf
n→∞ μn(Bk(0)) ≥ lim

n→∞

∫
Rd

ζk(x) dμn(x) =
∫

Rd

ζk(x) dμ(x);

since Lebesgue dominated convergence theorem yields

lim
k→∞

∫
Rd

ζk(x) dμ(x) = 1,

choosing k sufficiently big we can verify the tightness condition (5.1.10b). By
Prokhorov theorem the sequence (μn) has at least one narrowly convergence sub-
sequence: a standard approximation result by convolution shows that any narrow
limit point of the sequence (μn) should coincide with μ, which is therefore the
narrow limit of the whole sequence (recall that the narrow topology is metrizable,
see Remark 5.1.1).

5.1.1 Unbounded and l.s.c. integrands

When one needs to pass to the limit in expressions like (5.1.1) w.r.t. unbounded or
lower semicontinuous functions f , the following two properties are quite useful.
The first one is a lower semicontinuity property:

lim inf
n→∞

∫
X

g(x) dμn(x) ≥
∫

X

g(x) dμ(x) (5.1.15)
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for every sequence (μn) ⊂ P(X) narrowly convergent to μ and any l.s.c. function
g : X → (−∞, +∞] bounded from below: it follows by the same approximation
argument of (5.1.3), by truncating the Moreau-Yosida approximations (5.1.4); in
this case l.s.c. functions satisfy only the approximation property (5.1.2a), where
e.g. C0 is given by (5.1.5a,b,c).
Changing g in −g one gets the corresponding “lim sup” inequality for upper semi-
continuous functions bounded from above. In particular, choosing as g the char-
acteristic functions of open and closed subset of X , we obtain

lim inf
n→∞ μn(G) ≥ μ(G) ∀G open in X, (5.1.16)

lim sup
n→∞

μn(F ) ≤ μ(F ) ∀F closed in X. (5.1.17)

The statement of the second property requires the following definitions: we say
that a Borel function g : X → [0, +∞] is uniformly integrable w.r.t. a given set
K ⊂ P(X) if

lim
k→∞

∫
{x:g(x)≥k}

g(x) dμ(x) = 0 uniformly w.r.t. μ ∈ K. (5.1.18)

If d is a given metric for X , in the particular case of g(x) := d(x, x̄)p, for some
(and thus any) x̄ ∈ X and a given p > 0, i.e. if

lim
k→∞

∫
X\Bk(x̄)

dp(x̄, x) dμ(x) = 0 uniformly w.r.t. μ ∈ K, (5.1.19)

we say that the set K ⊂ P(X) has uniformly integrable p-moments. Notice that
if

0 < p < p1 and sup
μ∈K

∫
X

d(x, x̄)p1 dμ(x) < +∞, (5.1.20)

then K has uniformly integrable p-moments. In the case when X = Rd with the
usual Euclidean distance, any family K ⊂ P(Rd) satisfying (5.1.20) is tight. The
following lemma provides a characterization of p-uniformly integrable families,
extending the validity of (5.1.1) to unbounded but with p-growth functions, i.e.
functions f : X → R such that

|f(x)| ≤ A + B dp(x̄, x) ∀x ∈ X, (5.1.21)

for some A, B ≥ 0 and x̄ ∈ X . We denote by Pp(X) the subset

Pp(X) :=
{
μ ∈ P(X) :

∫
X

d(x, x̄)p dμ(x) < +∞ for some x̄ ∈ X
}

. (5.1.22)

Lemma 5.1.7. Let (μn) be a sequence in P(X) narrowly convergent to μ ∈ P(X).
If f : X → R is continuous, g : X → (−∞, +∞] is lower semicontinuous, and
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|f |, g− are uniformly integrable w.r.t. the set {μn}n∈N, then

lim inf
n→∞

∫
X

g(x) dμn(x) ≥
∫

X

g(x) dμ(x) > −∞, (5.1.23a)

lim
n→∞

∫
X

f(x) dμn(x) =
∫

X

f(x) dμ(x). (5.1.23b)

Conversely, if f : X → [0, +∞) is continuous, μn-integrable, and

lim sup
n→∞

∫
X

f(x) dμn(x) ≤
∫

X

f(x) dμ(x) < +∞, (5.1.24)

then f is uniformly integrable w.r.t. {μn}n∈N.
In particular, a family {μn}n∈N ⊂ P(X) has uniformly integrable p-moments iff
(5.1.1) holds for every continuous function f : X → R with p-growth.

Proof. If μn narrowly converges to μ as n → ∞ and g is lower semicontinuous,
(5.1.15) yields

lim inf
n→∞

∫
X

gk dμn ≥
∫

X

gk dμ ∀k ∈ N,

where gk := g ∨ (−k), k ≥ 0. On the other hand, since g− is uniformly integrable
w.r.t. {μn}n∈N and gk ≥ g, (5.1.18) gives

sup
n∈N

(∫
X

gk dμn −
∫

X

g dμn

)
≤ sup

n∈N

∫
{x:g−(x)≥k}

g− dμn → 0

as k → ∞. Using these two facts we obtain (5.1.23a). As usual, (5.1.23b) follows
by applying (5.1.23a) to g := f and g := −f .

Conversely, let f : X → [0, +∞) be a continuous function satisfying (5.1.24)
and let

fk(x) := f(x) ∧ k, ∀x ∈ X, F k :=
{
x ∈ X : f(x) ≥ k

}
;

since fk is continuous and bounded and F k is a closed subset of X , recalling
(5.1.17) and (5.1.15) we have for any ε > 0

lim sup
n→∞

∫
{x:f(x)≥k}

f dμn = lim sup
n→∞

( ∫
X

(
f − fk

)
dμn + kμn(F k)

)
≤

∫
X

(
f − fk

)
dμ + kμ(F k) =

∫
F k

f dμ < ε

for k sufficiently large. Since f is uniformly integrable for finite subsets of {μn}n∈N,
this easily leads to the uniform integrability of f . �

There exists an interesting link between narrow convergence of probability
measures and Kuratowski convergence of their supports:
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Proposition 5.1.8. If (μn) ⊂ P(X) is a sequence narrowly converging to μ ∈
P(X) then supp μ ⊂ K−lim inf

n→∞ supp μn, i.e.

∀x ∈ supp μ ∃xn ∈ supp μn : lim
n→∞xn = x. (5.1.25)

Proof. Let x ∈ supp μ and let B1/k(x) be the open ball of center x and radius 1/k
with respect to the distance d on X . By (5.1.16) we obtain

lim inf
n→∞ μn(B1/k(x)) ≥ μ(B1/k(x)) > 0;

thus the strictly increasing sequence

j0 := 0, jk := min
{
n ∈ N : n > jk−1, supp μm ∩B1/k(x) �= ∅ ∀m ≥ n

}
is well defined. For jk ≤ n < jk+1 pick a point xn ∈ supp μn ∩B1/k(x): clearly the
sequence (xn) satisfies (5.1.25). �

Corollary 5.1.9 (Convergence of Dirac masses). A sequence (xn) ⊂ X is convergent
in X iff the sequence (δxn) is narrowly convergent in P(X); in this case, the limit
measure μ is δx, x being the limit of the sequence (xn).

Proposition 5.1.10. Let (μn) ⊂ P(X) be a sequence narrowly converging to μ ∈
P(X) and let f, g : X → (−∞, +∞] be Borel functions such that |f |, g− are
uniformly integrable with respect to {μn}n∈N. If for any ε > 0 there exists a closed
set A ⊂ X such that

f |A is continuous, g|A is l.s.c., and lim sup
n→∞

μn(X \A) < ε, (5.1.26)

then (5.1.1) and (5.1.15) hold.

Proof. As usual we can limit us to consider the l.s.c. case; using the uniform
integrability of g− with respect to {μn}n∈N, a truncation argument, and arguing
as in the first part of the proof of Lemma 5.1.7, we reduce immediately ourselves
to the case when g is bounded from below by a constant −M ≤ 0. Let ε > 0, k ∈ N

be fixed and let A ⊂ X be a closed set such that (5.1.26) holds. We consider the
truncated functions gk(x) := g(x)∧ k for x ∈ X , and the lower semicontinuous g̃k

g̃k(x) =

{
gk(x) if x ∈ A,

k if x ∈ X \A,

which extends gk|A to X . We obtain

lim inf
n→∞

∫
X

g dμn ≥ lim inf
n→∞

∫
X

gk dμn ≥ lim inf
n→∞

(∫
X

g̃k dμn +
∫

X\A

(
gk − g̃k

)
dμn

)
≥ lim inf

n→∞

∫
X

g̃k dμn − (M + k) lim sup
n→∞

μn(X \A)

≥
∫

X

g̃k(x) dμ− ε(M + k) ≥
∫

X

gk(x) dμ− (k + M)ε.
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Passing to the limit, first as ε ↓ 0 and then as k ↑ ∞ we obtain (5.1.15). �

5.1.2 Hilbert spaces and weak topologies

Let X be a separable, infinite dimensional, Hilbert space, with norm | · | and
scalar product 〈·, ·〉; in many circumstances it would be useful to rephrase the
results of the previous section with respect to the weak topology σ(X, X ′) of X .
Unfortunately, the weak topology is not induced by a distance on X , thus the
previous statements are not immediately applicable.

We can circumvent this difficulty by the following simple trick: we introduce a
new continuous norm ‖·‖�, inducing a topology � globally weaker than σ(X, X ′),
but coinciding with σ(X, X ′) on bounded sets (with respect to the original stronger
norm | · |). In particular bounded sets of X are relatively compact w.r.t. � and
Borel sets with respect to the three topologies coincide.

For instance, if {en}+∞
n=1 is an orthonormal basis of X , an admissible choice

is

‖x‖2
� :=

∞∑
n=1

1
n2
〈x, en〉2. (5.1.27)

In fact, if (xk) ⊂ X is a bounded sequence, we can extract a subsequence, still
denoted by xk, weakly converging to x in X ; since 〈xk − x, en〉 → 0 as k →∞ for
each n ≥ 1, Lebesgue dominated convergence theorem yields

lim
k→∞

‖xk − x‖2
� = lim

k→∞

∞∑
n=1

1
n2
〈xk − x, en〉2 = 0.

We denote by X� the new pre-Hilbertian topological vector space. We will also
introduce the space of smooth cylindrical functions Cyl(X): observe that for finite
dimensional spaces, X� is homeomorphic to X and Cyl(X) = C∞

c (X).

Definition 5.1.11 (Finite dimensional projection and smooth cylindrical functions).
We denote by Πd(X) the space of all maps π : X → Rd of the form

π(x) = (〈x, e1〉, 〈x, e2〉, . . . , 〈x, ed〉) x ∈ X, (5.1.28)

where {e1, . . . , ed} is any orthonormal family of vectors in X. The adjoint map

π∗ : y ∈ Rd →
d∑

k=1

ykek ∈ span(e1, . . . , ek) ⊂ X (5.1.29)

is a linear isometry of Rd onto span(e1, . . . , ed) so that

π ◦ π∗ is the identity in Rd and
π̂ := π∗ ◦ π is the orthogonal projection of X onto span(e1, . . . , ed).

(5.1.30)

We denote by Cyl(X) the functions ϕ = ψ ◦ π with π ∈ Πd(X) and ψ ∈ C∞
c (Rd).
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Notice that any ϕ = ψ ◦ π ∈ Cyl(X) is a Lipschitz function, everywhere
differentiable in the Fréchet sense, and that ϕ is also continuous with respect
to the weak topology of X and to X� (if the corresponding orthogonal systems
coincide). Moreover ∇ϕ = π∗ ◦ ∇ψ ◦ π.

The following properties are immediate:

Lemma 5.1.12. Let X be a separable Hilbert space and let X� be the pre-Hilbertian
vector space whose norm is defined by (5.1.27).
(a) If K is weakly compact in X then K is strongly compact in X�.
(b) If

g : X → (−∞, +∞] is weakly l.s.c. and lim
|x|→∞

g(x) = +∞, (5.1.31)

then it is lower semicontinuous in X� with compact sublevels.
(c) Let us denote by BR := {x ∈ X : |x| ≤ R} the centered closed balls w.r.t. the
strong norm; if K ⊂ P(X) satisfies the weak tightness condition

∀ ε > 0 ∃Rε > 0 such that μ(X \BRε) ≤ ε ∀μ ∈ K, (5.1.32)

then K is tight in P(X�) and therefore relatively compact in P(X�).
(d) If the sequence (μn) ⊂ P(X) is narrowly converging to μ in P(X�) and it
is weakly tight according to (5.1.32), then for every Borel functions f, g : X →
(−∞, +∞] such that g−, |f | are uniformly integrable and f (resp. g) is weakly
continuous (resp. l.s.c.) on bounded sets of X, we have

lim inf
n→∞

∫
X

g(x) dμn(x) ≥
∫

X

g(x) dμ(x), (5.1.33a)

lim
n→∞

∫
X

f(x) dμn(x) =
∫

X

f(x) dμ(x). (5.1.33b)

(e) K ⊂ P(X) is weakly tight according to (5.1.32) iff there exists a Borel function
h : X → [0, +∞] such that h(x) → +∞ as |x| → ∞ and

sup
μ∈K

∫
X

h(x) dμ(x) < +∞. (5.1.34)

(f) If the sequence (μn) ⊂ P(X) is weakly tight according to (5.1.32), then it
narrowly converges to μ in P(X�) iff

lim
n→∞

∫
X

ϕ(x) dμn(x) =
∫

X

ϕ(x) dμ(x) ∀ϕ ∈ Cyl(X). (5.1.35)

Proof. (a) and (b) are trivial and (c) is a direct consequence of the fact that
bounded and closed convex sets are compact in X�. Since on bounded subsets
of X the topology of X� coincides with the weak one, (d) follows from Proposi-
tion 5.1.10.
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One implication in (e) follows directly from Chebichev inequality. The other one
can be proved arguing as in Remark 5.1.5.
Finally, one implication in (f) is a consequence of (5.1.33b) of (d), since (smooth)
cylindrical functions are bounded and weakly continuous. In order to prove the
converse implication, we can simply check that any two narrow limit point μ1, μ2

of the sequence (μn) in P(X�) should coincide. For, let f ∈ C0
b (X) and πd be the

map (5.1.28), so that π̂d := π∗
d ◦ πd is the orthogonal projection of X onto Xd =

span(e1, · · · , ed). We set ψd := f ◦ π∗
d ∈ C0

b (Rd), ϕd := ψd ◦ πd = f ◦ π̂d ∈ Cyl(X);
by (5.1.35) we know∫

X

ϕ(x) dμ1(x) =
∫

X

ϕ(x) dμ2(x) ∀ϕ ∈ Cyl(X); (5.1.36)

a standard approximation argument for bounded continuous functions defined in
Rd by smooth functions in C∞

c (Rd) as in Remark 5.1.6 yields (5.1.36) for ϕ := ϕd

and d ∈ N; therefore∫
X

f(π̂d(x)) dμ1(x) =
∫

X

f(π̂d(x)) dμ2(x) ∀ d ∈ N.

Passing to the limit as d → ∞, since π̂d(x) → x for every x ∈ X , Lebesgue
dominated convergence theorem yields∫

X

f(x) dμ1(x) =
∫

X

f(x) dμ2(x).

Since f is an arbitrary function in C0
b (X) we obtain μ1 = μ2. �

In the following theorem we will show that narrow convergence in P(X�)
and convergence of the p-moment

∫
X
|x|p dμh(x) (but more general integrands are

allowed) yields convergence in P(X), thus obtaining the measure-theoretic version
of the fact that weak convergence and convergence of the norms in X imply strong
convergence. We will show a different proof of this fact at the end of Section 7.1.

Theorem 5.1.13. Let j : [0, +∞) → [0, +∞) be a continuous, strictly increasing
and surjective map, and let μn, μ ∈ P(X) be satisfying

μn → μ in P(X�), lim
n→∞

∫
X

j(|x|) dμn(x) =
∫

X

j(|x|) dμ < +∞. (5.1.37)

Then μn converge to μ in P(X).

Proof. Observe that the family {μn}n∈N is weakly tight, according to (5.1.32).
We consider the vector space H of continuous functions h : X → R satisfying the
growth condition (compare with (5.1.21))

∃A, B ≥ 0 : |h(x)| ≤ A + Bj(|x|) ∀x ∈ X, (5.1.38)
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and
lim

n→∞

∫
X

h(x) dμn(x) =
∫

X

h(x) dμ(x). (5.1.39)

Observe that H is closed with respect to uniform convergence of functions and
contains the constants and the function j(| · |).
By the monotonicity argument outlined at the beginning of Section 5.1 we need
only to check that the infimum of a finite number of functions of the form

x �→ (
q1 + q2|x− y|) ∧ k, q1 ∈ R, q2, k ≥ 0, y ∈ X, (5.1.40)

belongs to H . To this aim, let us consider the convex cone A ⊂ H of strongly
continuous functions which satisfy (5.1.38), (5.1.39), and are weakly lower semi-
continuous. Notice that, truncated affine functions of the type

x �→ (−l)∨(a+〈x, y〉)∧m, for l, m ≥ 0, a ∈ R, y ∈ X belongs to A , (5.1.41)

since they are bounded, weakly continuous, and condition (5.1.39) follows by (d)
of Lemma 5.1.12.
Let us first prove that A is a lattice.

Claim 1. If f, g ∈ C0(X) satisfy (5.1.38), are weakly lower semicontinuous,
and f + g ∈ A , then both f, g ∈ A .

Indeed, by (5.1.33a) we have∫
X

(f + g) dμ = lim
n→∞

∫
X

(f + g) dμn ≥ lim sup
n→∞

∫
X

f dμn + lim inf
n→∞

∫
X

g dμn

≥
∫

X

f dμ +
∫

X

g dμ =
∫

X

(f + g) dμ,

which yields

lim sup
n→∞

∫
X

f dμn + lim inf
n→∞

∫
X

g dμn =
∫

X

f dμ +
∫

X

g dμ; (5.1.42)

since by (5.1.33a)

lim sup
n→∞

∫
X

f dμn ≥
∫

X

f dμ, lim inf
n→∞

∫
X

g dμn ≥
∫

X

g dμ,

(5.1.42) yields

lim sup
n→∞

∫
X

f dμn =
∫

X

f dμ, lim inf
n→∞

∫
X

g dμn =
∫

X

g dμ;

inverting the role of f and g we obtain f, g ∈ A .
Claim 1 immediately implies that A is a lattice, as

f, g ∈ A ⇒ f + g = (f ∧ g) + (f ∨ g) ∈ A ⇒ f ∧ g, f ∨ g ∈ A .



5.1. Narrow convergence, tightness, and uniform integrability 117

Since (
q1 + q2|x− y|

)
∧ k =

(
q1 +

(
q2|x− y|) ∧ (k − q1)

)
∧ k,

it remains to show that

all functions x �→ |x− y| ∧ k, for y ∈ X , k ≥ 0, belong to A . (5.1.43)

To this aim, we need a further claim.

Claim 2. If f ∈ A and θ : R → R is a uniformly continuous, bounded,
increasing function, then θ ◦ f ∈ A .

Indeed, since θ can be uniformly approximated by a sequence of Lipschitz
continuous increasing maps, it is not restrictive to assume that θ is Lipschitz,
bounded, and its Lipschitz constant is less than 1; in this case also x �→ x−θ(x) is
Lipschitz and increasing, thus θ◦f and f−f◦θ are still weakly lower semicontinuous
they satisfies the growth condition (5.1.38) and and their sum is f ∈ A : we can
apply Claim 1.

Let us consider (5.1.43) in the case y = 0 first: we fix R > 0 and we consider
the continuous increasing function θR which vanishes in (−∞, 0) and satisfies

θR(s) :=
(
j−1(s)

)2 ∧R2, s ≥ 0, so that r2 ∧R2 = θR(j(r)) ∀ r ≥ 0.

By Claim 2, we deduce that the map fR defined by fR(x) := |x|2 ∧R2 belongs to
A .

Now, for fixed k, l, m > 0 and y ∈ X , we set

gl,m(x) := (−l) ∨
(
− 2〈x, y〉+ |y|2

)
∧m, gR,l.m,k :=

((
fR + gl,m

) ∨ 0
)1/2

∧ k,

and we know by the lattice property, the previous claim, and (5.1.41) that gR,l,m,k∈
A . Choosing now R ≥ l + k2 and m ≥ k the expression of gR,l,m,k simplifies to

gR,l,m,k(x) = g̃l,k(x) :=
((
|x|2 +

(− 2〈x, y〉+ |y|2) ∨ (−l)
)
∨ 0

)1/2

∧ k,

which belongs to A , is decreasing with respect to l, and satisfies

lim
l→∞

g̃l,k(x) = inf
l∈N

g̃l,k(x) = |x− y| ∧ k ∀x ∈ X.

It follows that

lim sup
n→∞

∫
X

(|x− y| ∧ k
)
dμn(x) ≤ lim sup

n→∞

∫
X

g̃l,k(x) dμn(x) =
∫

X

g̃l,k(x) dμ(x);

passing to the limit as l → +∞, and recalling that the corresponding “lim inf”
inequality is provided by (5.1.33a) of Lemma 5.1.12, we obtain (5.1.43). �
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5.2 Transport of measures

If X1, X2 are separable metric spaces, μ ∈ P(X1), and r : X1 → X2 is a Borel (or,
more generally, μ-measurable) map, we denote by r#μ ∈ P(X2) the push-forward
of μ through r, defined by

r#μ(B) := μ(r−1(B)) ∀B ∈ B(X2). (5.2.1)

More generally we have∫
X1

f(r(x)) dμ(x) =
∫

X2

f(y) d r#μ(y) (5.2.2)

for every bounded (or r#μ-integrable) Borel function f : X2 → R. It is easy to
check that

ν << μ =⇒ r#ν << r#μ ∀μ, ν ∈ P(X1). (5.2.3)

In the following we will extensively use the following composition rule

(r ◦ s)#μ = r#(s#μ) where s : X1 → X2, r : X2 → X3, μ ∈ P(X1). (5.2.4)

Furthermore, if r : X1 → X2 is a continuous map, then

r# : P(X1) → P(X2) is continuous w.r.t. the narrow convergence (5.2.5)

and
r
(
supp μ

) ⊂ suppr#μ = r
(
supp μ

)
. (5.2.6)

Lemma 5.2.1. Let rn : X1 → X2 be Borel maps uniformly converging to r on com-
pact subsets of X1 and let (μn) ⊂ P(X1) be a tight sequence narrowly converging
to μ. If r is continuous, then (rn)#μn narrowly converge to r#μ.

Proof. Let f be a bounded continuous function in X2. We will prove the lim inf
inequality

lim inf
n→∞

∫
X2

f d(rn)#μn ≥
∫

X2

f dr#μ,

as the lim sup simply follows replacing f by −f . To this aim, possibly adding to f
a constant, we can assume that f ≥ 0. For any compact set K ⊂ X1 the uniform
convergence of rn to r on K gives the uniform convergence of f ◦ rn to f ◦ r on
K, therefore (5.1.15) gives

lim inf
n→∞

∫
X1

f ◦ rn dμn ≥ lim inf
n→∞

∫
K

f ◦ rn dμn = lim inf
n→∞

∫
K

f ◦ r dμn

≥ (− sup f
)
sup

n
μn(X1 \K) + lim inf

n→∞

∫
X1

f ◦ r dμn

≥ (− sup f
)
sup

n
μn(X1 \K) +

∫
X1

f ◦ r dμ.

Since {μn}n∈N is tight, we can find an increasing sequence of compact set Km

such that limm supn μn(X1 \Km) = 0. Putting K = Km in the inequality above
and letting m ↑ +∞ the proof is achieved. �
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Lemma 5.2.2 (Tightness criterion). Let X, X1, X2, . . . , XN be separable metric
spaces and let ri : X → Xi be continuous maps such that the product map

r := r1 × r2 × . . .× rN : X → X1 × . . .×XN is proper. (5.2.7)

Let K ⊂ P(X) be such that Ki := ri
#(K) is tight in P(Xi) for i = 1, . . . , N .

Then also K is tight in P(X).

Proof. For every μ ∈ P(X) we denote by μi the measure μi := ri
#μ. By definition,

for each ε > 0 there exist compact sets Ki ⊂ Xi such that μi(Xi \Ki) ≤ ε/N for
any μ ∈ K; it follows that μ(X \ (ri)−1(Ki)) ≤ ε/N and

μ

(
X \

N⋂
i=1

(ri)−1(Ki)

)
≤

N∑
i=1

μ
(
X \ (ri)−1(Ki)

) ≤ ε ∀μ ∈ K. (5.2.8)

On the other hand ∩N
i=1(r

i)−1(Ki) = r−1(K1×K2× . . .×KN), which is compact
by (5.2.7). �

For an integer N ≥ 2 and i, j = 1, . . . , N , we denote by πi, πi,j the projection
operators defined on the product space X := X1 × . . .×XN respectively defined
by

πi : (x1, . . . , xN ) �→ xi ∈ Xi, πi,j : (x1, . . . , xN ) �→ (xi, xj) ∈ Xi ×Xj . (5.2.9)

If μ ∈ P(X), the marginals of μ are the probability measures

μi := πi
#μ ∈ P(Xi), μi j := πi,j

# μ ∈ P(Xi ×Xj). (5.2.10)

If μi ∈ P(Xi), i = 1, . . . , N , the class of multiple plans with marginals μi is
defined by

Γ(μ1, . . . , μN ) :=
{
μ ∈ P(X1 × . . .×XN ) : πi

#μ = μi, i = 1, . . . , N
}
. (5.2.11)

In the case N = 2 a measure μ ∈ Γ(μ1, μ2) is also called transport plan between
μ1 and μ2. Notice also that

Γ(μ1, μ2) = {μ1 × μ2} if either μ1 or μ2 is a Dirac mass. (5.2.12)

We will mostly consider multiple plans with N = 2 or N = 3. To each couple
of measures μ1 ∈ P(X1), μ2 = r#μ1 ∈ P(X2) linked by a Borel transport map
r : X1 → X2 we can associate the transport plan

μ := (i× r)#μ1 ∈ Γ(μ1, μ2), i being the identity map on X1. (5.2.13)

If μ is representable as in (5.2.13) then we say that μ is induced by r. Each
transport plan μ concentrated on a μ-measurable graph in X1 × X2 admits the
representation (5.2.13) for some μ1-measurable map r, which therefore transports
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μ1 to μ2 (see, e.g., [9]; the same result holds for Borel graphs and maps if X1, X2

are Polish spaces [136, p. 107])
We define also the inverse μ−1 ∈ P(X2 × X1) of a transport plan μ ∈

P(X1 ×X2) by i#μ, where i(x1, x2) = (x2, x1).

Remark 5.2.3. By Lemma 5.2.2, if X1, X2, · · · , XN are Radon spaces (i.e. each
measure μi ∈ P(Xi) is tight), Γ(μ1, . . . , μN ) is compact in P(X) and not empty,
since it contains at least μ1×. . .×μN . If for some Borel functions gi : Xi → [0, +∞]∫

Xi

gi(xi) dμi(xi) < +∞ i = 1, . . . , N, (5.2.14)

then it is easy to check that g(x) :=
∑N

i=1 gi(xi) defined in the product space
X = X1 ×X2 × · · · ×XN is uniformly integrable with respect to Γ(μ1, . . . , μN ).

When X is a separable Hilbert space as in Section 5.1.2, the following result
provides a sufficient condition for the convergence of the integrals

∫
X2 〈x1, x1〉 dμh

even in the case when the measures μh do not converge narrowly with respect to
the strong topology.

Lemma 5.2.4. Let (μn) ⊂ P(X ×X) be a sequence narrowly converging to μ in
P(X ×X�), with

sup
n

∫
X2
|x1|p + |x2|q dμn(x1, x2) < +∞, p, q ∈ (1,∞), p−1 + q−1 = 1. (5.2.15)

If either π1
#μn have uniformly integrable p-moments or π2

#μn have uniformly in-
tegrable q-moments, then

lim
n→∞

∫
X×X

〈x1, x2〉 dμn =
∫

X×X

〈x1, x2〉 dμ.

Proof. We assume to fix the ideas that π2
#μn have uniformly integrable q-moments

and we show that the function (x1, x2) �→ g(x1, x2) := |x1| · |x2| is uniformly
integrable. For any k, m ∈ N we have

g(x1, x2) ≥ k, |x2| ≤ m ⇒ |x1| ≥ k/m

and therefore∫
{g≥k}

g dμn ≤ m

∫
{|x1|≥k/m}

|x1| dπ1
#μn + C

( ∫
{|x2|≥m}

|x2|q dπ2
#μn

)1/q

where Cp := supn

∫
X |x1|p dμn. Taking the supremum w.r.t. n and the lim sup as

k →∞, since π1
#μn has uniformly integrable 1-moments by (5.1.20) we have

lim sup
k→∞

sup
n

∫
{g≥k}

g dμn ≤ sup
n

C
( ∫

{|x2|≥m}
|x2|q dπ2

#μn

)1/q
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Letting m →∞ we conclude.
In the finite dimensional case (or even if μn → μ in P(X×X)) we conclude

immediately, since the map (x1, x2) �→ 〈x1, x2〉 is continuous in X ×X .
In the infinite dimensional case, let BR be the centered closed ball of radius

R in X which is compact in X�. The map (x1, x2) �→ 〈x1, x2〉 is continuous in
each closed set X ×BR with respect to the X ×X� topology and (5.2.15) yields

lim sup
n,R→∞

μn

(
X2 \ (X ×BR)

)
= 0.

Therefore we conclude by invoking Proposition 5.1.10. �

5.3 Measure-valued maps and disintegration theorem

Let X, Y be separable metric spaces and let x ∈ X �→ μx ∈ P(Y ) be a measure-
valued map. We say that μx is a Borel map if x �→ μx(B) is a Borel map for any
Borel set B ⊂ Y , or equivalently if this property holds for any open set A ⊂ Y .
By the monotone class theorem we have also that

x ∈ X �→
∫

Y

f(x, y) dμx(y) is Borel (5.3.1)

for every bounded (or nonnegative) Borel function f : X × Y → R.
By (5.3.1) the formula

μ(f) =
∫

X

(∫
Y

f(x, y) dμx(y)
)

dν(x)

defines for any ν ∈ P(X) a unique measure μ ∈ P(X × Y ), that will be denoted
by

∫
X

μx dν(x). Actually any μ ∈ P(X × Y ) whose first marginal is ν can be
represented in this way. This is implied by the so-called disintegration theorem
(related to the existence of conditional probability measures in Probability), see
for instance [67, III-70].

Theorem 5.3.1 (Disintegration). Let X, X be Radon separable metric spaces, μ ∈
P(X), let π : X → X be a Borel map and let ν = π#μ ∈ P(X). Then there
exists a ν-a.e. uniquely determined Borel family of probability measures {μx}x∈X ⊂
P(X) such that

μx(X \ π−1(x)) = 0 for ν-a.e. x ∈ X (5.3.2)

and ∫
X

f(x) dμ(x) =
∫

X

( ∫
π−1(x)

f(x) dμx(x)
)

dν(x) (5.3.3)

for every Borel map f : X → [0, +∞].
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In particular, when X := X1 ×X2, X := X1, μ ∈ P(X1 ×X2), ν = μ1 =
π1

#μ, we can canonically identify each fiber (π1)−1(x1) with X2 and find a Borel
family of probability measures {μx1}x1∈X1 ⊂ P(X2) (which is μ1-a.e. uniquely
determined) such that μ :=

∫
X1

μx1 dμ1(x1).

As an application of the disintegration theorem we can prove existence, and
in some cases uniqueness, of multiple plans with given marginals.

Lemma 5.3.2. Let X1, X2, X3 be Radon separable metric spaces and let γ1 2 ∈
P(X1 × X2), γ1 3 ∈ P(X1 × X3) such that π1

#γ1 2 = π1
#γ1 3 = μ1. Then there

exists μ ∈ P(X1 ×X2 ×X3) such that

π1,2
# μ = γ1 2, π1,3

# μ = γ1 3. (5.3.4)

Moreover, if γ1 2 =
∫

γ1 2
x1

dμ1, γ1 3 =
∫

γ1 3
x1

dμ1 and μ =
∫

μx1
dμ1 are the disin-

tegrations of γ1 2, γ1 3 and μ with respect to μ1, (5.3.4) is equivalent to

μx1
∈ Γ(γ1 2

x1
, γ1 3

x1
) ⊂ P(X2 ×X3) for μ1-a.e. x1 ∈ X1. (5.3.5)

In particular (5.2.12) implies that the measure μ is unique if either γ1 2 or γ1 3

are induced by a transport. We denote by Γ1(γ1 2, γ1 3) the subset of plans μ ∈
P(X1 ×X2 ×X3) satisfying (5.3.4).

Proof. With the notation introduced in the statement of the theorem, the measure
μ whose disintegration w.r.t. x1 is

∫
X1

γ1 2
x1
× γ1 3

x1
dμ1(x1)

has the required properties.

Now we prove the equivalence between (5.3.4) and (5.3.5). If μ satisfies
π1,2

# μ = γ1 2 and π1,3
# μ = γ1 3, then

γ1 2 = π1,2
# μ =

∫
X1

π2
#μx1

dμ1(x1)

and the uniqueness of the disintegration gives π2
#μx1

= γ1 2
x1

for μ1-a.e. x1 ∈ X1.
A similar argument gives that π3

#μx1
= γ1 3

x1
for μ1-a.e. x1 ∈ X1.

Conversely, let us suppose that μ satisfies (5.3.5) and let f : X1 ×X2 → R
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be a bounded Borel function; the computation∫
X1×X2

f(x1, x2) dπ1,2
# μ =

∫
X1×X2×X3

f(x1, x2) dμ(x1, x2, x3)

=
∫

X1

( ∫
X2×X3

f(x1, x2) dμx1
(x2, x3)

)
dμ1(x1)

=
∫

X1

( ∫
X2

f(x1, x2) dπ2
#μx1

(x2)
)

dμ1(x1)

=
∫

X1

( ∫
X2

f(x1, x2) dγ1 2
x1

(x2)
)

dμ1(x1)

=
∫

X1×X2

f(x1, x2) dγ1 2(x1, x2)

shows that π1,2
# μ = γ1 2. A similar argument proves that π1,3

# μ = γ1 3. �

Remark 5.3.3 (Composition of plans). An analogous situation occurs when γ1 2 ∈
P(X1 ×X2) and γ2 3 ∈ P(X2 ×X3). In this case we say that

μ ∈ Γ2(γ1 2, γ2 3) if π1,2
# μ = γ1 2, π2,3

# μ = γ2 3. (5.3.6)

Of course, Γ2(γ1 2, γ2 3) is not empty iff π2
#γ1 2 = π1

#γ2 3. In this case, the measure
π1,3

# μ, with μ ∈ Γ2(γ1 2, γ2 3) constructed as in the proof of Lemma 5.3.2, belongs
by construction to Γ(μ1, μ3); it will be called composition of γ2 3 and γ1 2 and
denoted by γ2 3 ◦ γ1 2. We have then∫

X1×X3

f(x1, x3) d(γ2 3 ◦ γ1 2) =
∫

X2

(∫
X1×X3

f(x1, x3) dγ1 2
x2
× γ2 3

x2

)
dμ2(x2)

(5.3.7)
for any bounded Borel function f : X1×X3 → R. The name is justified since in the
case γ1 2, γ2 3 are induced by the transports r1 2, r2 3, then the plan γ2 3 ◦ γ1 2 is
induced by the composition map r2 3 ◦r1 2: this fact can be easily checked starting
from (5.3.7)∫

X1×X3

f(x1, x3) d(γ2 3 ◦ γ1 2) =
∫

X2

(∫
X1

f(x1, r
2 3(x2)) dγ1 2

x2
(x1)

)
dμ2(x2)

=
∫

X1×X2

f(x1, r
2 3(x2)) dγ1 2(x1, x2)

=
∫

X1

f(x1, r
2 3(r1 2(x1))) dμ1(x1).

Notice that by (5.2.12) this construction is canonical only if either (γ1 2)−1 or γ2 3

are induced by a transport.
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In the proof of the completeness of the Wasserstein distance we will also need
the following useful extensions of Lemma 5.3.2 to a countable product of Radon
spaces.

Lemma 5.3.4. Let Xi, i ∈ N, be a sequence of Radon separable metric spaces,
μi ∈ P(Xi) and αi(i+1) ∈ Γ(μi, μi+1), β1 i ∈ Γ(μ1, μi). Let X∞ := Πi∈NXi, with
the canonical product topology. Then there exist μ, ν ∈ P(X∞) such that

πi,i+1
# μ = αi (i+1), π1,i

# ν = β1 i ∀ i ∈ N. (5.3.8)

Proof. Let Xn := Πn
i=1Xi = Xn−1 × Xn and let πn : Xm → Xn, m ≥ n, be

the projection onto the first n coordinates. In order to show the existence of μ,
we set μ2 := α1 2 and we apply recursively Lemma 5.3.2 and Remark 5.3.3 with
μn ∈ P(Xn−1 × Xn), αn(n+1) ∈ P(Xn × Xn+1), n ≥ 2, to obtain a sequence
μn+1 ∈ P(Xn+1) satisfying

πn
#μn+1 = μn, πn,n+1

# μn+1 = αn(n+1).

Kolmogorov’s Theorem [67, §51] provides a measure μ ∈ P(X∞) such that πn
#μ =

μn and therefore

πn−1,n
# μ = πn−1,n

#

(
πn

#μ
)

= πn−1,n
# μn = α(n−1) n.

The existence of ν can be proved by a similar argument, by setting ν2 := β1 2

and by applying recursively Lemma 5.3.2 to νn ∈ P(X1 × Xn−1), β1(n+1) ∈
P(X1 ×Xn+1), n ≥ 2: we can find a sequence νn+1 ∈ P(Xn+1) satisfying

πn
#νn+1 = νn, π1,n+1

# νn+1 = β1(n+1).

Kolmogorov’s Theorem [67, §51] provides a measure ν ∈ P(X∞) such that πn
#ν =

νn and therefore
π1,n

# ν = π1,n
#

(
πn

#ν
)

= π1,n
# νn = β1 n �

5.4 Convergence of plans and convergence of maps

In this section we investigate the relation between the convergence of maps and
the convergence of the associated plans.

Let us first recall that if X, Y1, . . . , Yk are separable metric spaces with Y :=
Y1 × . . .× Yk, μ ∈ P(X), and ri : X → Yi, i = 1, · · · , k, then the product map

r := (r1, r2, · · · , rk) : X → Y is Borel (μ-measurable) iff
each map ri : X → Yi is Borel (resp. μ-measurable).

(5.4.1)

In particular, if r, s : X → Y are μ-measurable, then their distance dY (r(·), s(·))
is a μ-measurable real map.
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We can thus define the convergence in measure of a sequence of μ-measurable
maps rn : X → Y to a μ-measurable map r by asking that

lim
n→∞μ

({x ∈ X : dY (rn(x), r(x)) > ε}) = 0 ∀ ε > 0. (5.4.2)

We can also introduce the Lp spaces (see e.g. [7])

Lp(μ; Y ) :=
{
r : X → Y μ-measurable :

∫
X

dp
Y (r(x), ȳ) dμ(x) < +∞

for some (and thus any) ȳ ∈ Y
}

.

(5.4.3)

with the distance

d(r, s)Lp(μ;Y ) :=
( ∫

X

dp
Y (r(x), s(y)) dμ(x)

)1/p

; (5.4.4)

it is easy to check that Lp(μ; Y ) is complete iff Y is complete. When Y is a
(separable) Hilbert space and p ≥ 1, then the above distance is induced by the
norm

‖r‖Lp(μ;Y ) :=
( ∫

X

|r(x)|pY dμ(x)
)1/p

; (5.4.5)

for r ∈ L1(μ; Y ) the (vector valued) integral
∫

X r(x) dμ(x) ∈ Y of r is well defined
and satisfies ∫

X

〈y, r(x)〉 dμ(x) = 〈y,

∫
X

r(x) dμ(x)〉 ∀ y ∈ Y, (5.4.6)

φ
( ∫

X

r(x) dμ(x)
)
≤

∫
X

φ(r(x)) dμ(x) (5.4.7)

for every proper, convex and l.s.c. function φ : Y → (−∞, +∞] (Jensen’s inequal-
ity).

In the following lemma we consider first the case when the reference measure
μ is fixed, and show the equivalence between narrow convergence of the plans
(i× rn)#μ and convergence in measure and in Lp(μ; Y ) of rn, when the limiting
plan is induced by a transport r.

Lemma 5.4.1 (Narrow convergence of plans and convergence in measure). Let
μ ∈ P(X) and let rn, r : X → Y be Borel maps. Then the plans (i × rn)#μ
narrowly convergence to (i × r)#μ in P(X × Y ) as n → ∞ if and only if rn

converge in measure to r.
Moreover, the measures (rn)#μ have uniformly integrable p-moments iff rn con-
verges to r in Lp(μ; Y ).

Proof. Since for every Borel map s : X → Y∫
X×Y

ϕ(x, y) d(i× s)#μ =
∫

X

ϕ(x, s(x)) dμ(x) ∀ϕ ∈ C0
b (X × Y )
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and convergence in measure is stable by composition with continuous functions,
it is immediate to check that convergence in measure of the maps implies narrow
convergence of the plans.
The converse implication can be obtained as follows: fix ε > 0, a continuous
function ψε with 0 ≤ ψε ≤ 1, ψε(0) = 0 and ψε(t) = 1 whenever |t| > ε and a
continuous function r̃ such that μ({r �= r̃}) < ε. Then, using the test function
ϕε(x, y) = ψε(dY (y, r̃(x))) we obtain

lim sup
n→∞

μ({dY (rn, r̃) > ε}) ≤ lim sup
n→∞

∫
X×Y

ϕε d(i× rn)#μ =
∫

X×Y

ϕε d(i× r)#μ

=
∫

X

ψε(dY (r(x), r̃(x))) dμ(x) ≤ ε.

Taking into account our choice of r̃ we obtain lim sup
n→∞

μ({dY (rn, r) > ε}) ≤ 2ε.

The second part of the lemma follows easily by Vitali dominated convergence
theorem and the identities

lim
n→∞

∫
X

dp
Y (rn(x), ȳ) dμ(x) = lim

n→∞

∫
Y

dp
Y (y, ȳ) d

(
(rn)#μ

)
(y)

=
∫

X

dp
Y (r(x), ȳ) dμ(x) =

∫
Y

dp
Y (y, ȳ) d

(
r#μ

)
(y),

(5.4.8)

which hold either if rn converges to r in Lp(μ; Y ) or if the family (rn)#μ, n ∈ N,
has uniformly integrable p-moments. �

In the rest of this section we assume that X is a separable Hilbert space as
in Section 5.1.2.

Definition 5.4.2 (Barycentric projection). The barycentric projection γ̄ : X → X
of a plan γ ∈ P(X ×X), which admits the disintegration γ =

∫
X

γx1 dμ(x1) with
respect to its first marginal μ = π1

#γ, is defined as

γ̄(x1) :=
∫

X

x2 dγx1(x2) for μ-a.e. x1 ∈ X (5.4.9)

provided γx1 has finite first moment for μ-a.e. x1.

Assume that we are given maps vn ∈ Lp(μn; X): here we have to be careful in
the meaning of the convergence of vectors vn, which belong to different Lp-spaces.
Two approaches seem natural:

(i) we can consider the narrow limit in P(X�) of the X-valued measures νn :=
vnμn (component by component);

(ii) we can consider the limit γ of the associated plans γn := (i × vn)#μn in
P2(X� ×X�), recovering a limit vector v by taking the barycenter of γ.

In fact, these two approaches yields equivalent notions: we formalize the point (i)
in the following definition, and then we see that it coincides with (ii).
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Definition 5.4.3. Let (ej) be an orthonormal basis of X, let (μn) ⊂ P(X) be
narrowly converging to μ in P(X�) and let vn ∈ L1(μn; X). We say that vn

weakly converge to v ∈ L1(μ; X) if

lim
n→∞

∫
X

ζ(x)〈ej , vn(x)〉 dμn(x) =
∫

X

ζ(x)〈ej , v(x)〉 dμ(x) (5.4.10)

for every ζ ∈ Cyl(X) and any j ∈ N. We say that vn converges strongly to v in
Lp, p > 1, if (5.4.10) holds and

lim sup
n→∞

‖vn‖Lp(μn;X) ≤ ‖v‖Lp(μ;X). (5.4.11)

It is easy to check that the limit v, if it exists, is unique.

Theorem 5.4.4. Let p > 1, let (μn) ⊂ P(X) be narrowly converging to μ in
P(X�) and let vn ∈ Lp(μn; X) be such that

sup
n∈N

∫
X

|vn(x)|p dμn(x) < +∞. (5.4.12)

Then the following statements hold:

(i) The family of plans γn := (i× vn)#μn has limit points in P(X� ×X�) as
n →∞ and the sequence (vn) has weak limit points as n →∞.

(ii) vn weakly converge to v ∈ Lp(μ; X) according to Definition 5.4.3 if and
only if v is the barycenter of any limit point of the sequence of plans γn in
P(X� ×X�); in this case

lim inf
n→∞

∫
X

g(vn(x)) dμn(x) ≥
∫

X

g(v(x)) dμ(x), (5.4.13)

for every convex and l.s.c. function g : X → (−∞, +∞].

(iii) If vn strongly converge to v in Lp then γn narrowly converge to (i × v)#μ
in P(X� ×X) and

lim
n→∞ ‖vn‖p

Lp(μn;X) = lim
n→∞

∫
X2
|x2|p dγn = ‖v‖p

Lp(μ;X). (5.4.14)

If, in addition, μn narrowly converge to μ in P(X) then γn narrowly con-
verge to (i × v)#μ in P(X × X). Finally, if μn has uniformly integrable
p-moments, then

lim
n→∞

∫
X

f(x, vn(x)) dμn(x) =
∫

X

f(x, v(x)) dμ(x), (5.4.15)

for every continuous function f : X × X → R with p-growth according to
(5.1.21).
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Proof. (i) Observe that Lemma 5.2.2 ensures that the sequence (γn) is relatively
compact in P(X� × X�), since (see also Lemma 5.1.12) π1

#γn = μn → μ in
P(X�) and π2

#γn is relatively compact in P(X�) by (5.4.12).
(ii) For every j ∈ N and any ϕ ∈ Cyl(X) we have∫

X

ϕ(x)〈ej , vn(x)〉 dμn(x) =
∫

X×X

ϕ(x1)〈ej , x2〉 dγn(x1, x2).

Since |x2| is uniformly integrable w.r.t. (γn), Proposition 5.1.10 yields

lim
k→∞

∫
X×X

ϕ(x1)〈ej , x2〉 dγnk
(x1, x2) =

∫
X×X

ϕ(x1)〈ej , x2〉 dγ(x1, x2)

=
∫

X

ϕ(x1)〈ej , γ̄(x1)〉 dμ(x1)

for every subsequence (γnk
) converging to γ in P(X� ×X�). Therefore, (5.4.10)

holds if and only if v = γ̄ for every limit point γ.
(5.4.13) follows by Jensen’s inequality and (5.1.33a), being g weakly lower semi-
continuous.

(iii) If γ is a limit point of γn as in (ii), taking into account that v = γ̄ we
have ∫

X×X

|x2|p dγ ≤ lim inf
n→∞

∫
X×X

|x2|p dγn =
∫

X

|γ̄|p dμ.

Hence, by disintegrating γ with respect to x1 we get∫
X

(∫
X

|x2|p dγx1

)p

− |γ̄(x1)|p dμ(x1) = 0

and so Jensen’s inequality gives that γx1
= δv(x1) for μ-a.e. x1, i.e. γ = (i×v)#μ.

This proves the narrow convergence of γn to γ in P(X� × X�) and (5.4.14).
By applying Theorem 5.1.13 we obtain that the second marginals of γn are also
converging in the stronger narrow topology of P(X). Lemma 5.2.2 yields that the
sequence γn is tight in P(X� ×X) and therefore converges to γ in P(X� ×X).
The last part of the statement follows again by Lemma 5.2.2 and Lemma 5.1.7. �

5.5 Approximate differentiability and area formula in
Euclidean spaces

Let f : Rd → Rd be a function. Then, denoting by Σ = D(∇f) the Borel set where
f is differentiable, there is a sequence of sets Σn ↑ Σ such that f |Σn is a Lipschitz
function for any n (see [77, 3.1.8]). Therefore the well-known area formula for
Lipschitz maps (see for instance [75, 77]) extends to this general class of maps and
reads as follows: ∫

Σ

h(x)|det∇f |(x) dx =
∫

Rd

∑
x∈Σ∩f−1(y)

h(x) dy (5.5.1)
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for any Borel function h : Rd → [0, +∞]. Actually, these results hold more gener-
ally for the approximately differentiable maps, whose definition and main proper-
ties are recalled below.

Definition 5.5.1 (Approximate limit and approximate differential). Let Ω ⊂ Rd be
an open set and f : Ω → Rm. We say that f has an approximate limit (respectively,
approximate differential) at x ∈ Ω if there exists a function g : Ω → Rm continuous
(resp. differentiable) at x such that the set {f �= g} has density 0 at x. In this case
the approximate limit (resp. approximate differential) will be denoted by f̃(x) (resp.
∇̃f(x)).

It is immediate to check that the definition above is well posed, i.e. it does not
depend on the choice of g. An equivalent and more traditional (see [77]) definition
of approximate limit goes as follows: we say that z ∈ Rm is the approximate limit
of f at x if all sets

{y : |f(y)− z| > ε} ε > 0

have density 0 at x. Analogously, a linear map L : Rd → Rm is said to be the
approximate differential of f at x if f has an approximate limit at x and all sets{

y :
|f(y)− f̃(x) − L(y − x)|

|y − x| > ε

}
ε > 0

have density 0 at x.
The latter definitions have the advantage of being more intrinsic and do not rely
on an auxiliary function g. We have chosen the former definitions because they
are more practical, as we will see, for our purposes. For instance, a property that
immediately follows by the definition, and that will be used very often in the
sequel, is the locality principle: if f has approximate limit f̃(x) (resp. approximate
differential ∇̃f(x)) for any x ∈ B, with B Borel, then g has approximate limit
(resp. approximate differential) equal to f̃(x) (resp. ∇̃f(x)) for L d-a.e. x ∈ B,
and precisely at all points x where the coincidence set B ∩ {f = g} has density 1.

Remark 5.5.2. Recall that if f : Ω → Rm is L d-measurable, then it has approx-
imate limit f̃(x) at L d-a.e. x ∈ Ω and f(x) = f̃(x) L d-a.e.. In particular every
Lebesgue measurable set B has density 1 at L d-a.e. point of B.

Denoting by Σf the Borel set (see for instance [7]) of points where f is ap-
proximately differentiable, it is still true by [77, 3.1.8] that there exists a sequence
of sets Σn ↑ Σf such that f̃ |Σn is a Lipschitz function for any n. By Mc Shane
theorem we can extend f̃ |Σn to Lipschitz functions gn defined on the whole of Rd.
In the case m = d, by applying the area formula to gn on Σn and noticing that
(by definition) ∇gn = ∇̃f L d-a.e. on Σn we obtain∫

Σf

h(x)|det∇̃f |(x) dx =
∫

Rd

∑
x∈Σf∩f̃−1(y)

h(x) dy (5.5.2)
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for any Borel function h : Rd → [0, +∞].
This formula leads to a simple rule for computing the density of the push-

forward of measures absolutely continuous w.r.t. L d.

Lemma 5.5.3 (Density of the push-forward). Let ρ ∈ L1(Rd) be a nonnegative
function and assume that there exists a Borel set Σ ⊂ Σf such that f̃ |Σ is injective
and the difference {ρ > 0} \Σ is L d-negligible. Then f#

(
ρL d

)� L d if and only
if |det∇̃f | > 0 L d-a.e. on Σ and in this case

f#

(
ρL d

)
=

ρ

|det∇̃f | ◦ f̃−1|f(Σ)L
d.

Proof. If |det∇̃f | > 0 L d-a.e. on Σ we can put h = ρχf̃−1(B)∩Σ/|det∇̃f | in (5.5.2),
with B ∈ B(Rd), to obtain∫

f̃−1(B)

ρ dx =
∫

f̃−1(B)∩Σ

ρ dx =
∫

B∩f̃(Σ)

ρ(f̃−1(y))
|det∇̃f(f̃−1(y))| dy.

Conversely, if there is a Borel set B ⊂ Σ with L d(B) > 0 and |det∇̃f | = 0 on B
the area formula gives L d(f̃(B)) = 0. On the other hand

f#(ρL d)(f̃(B)) =
∫

f−1(f̃(B))

ρ dx > 0

because at L d-a.e. x ∈ B we have f(x) = f̃(x) and ρ(x) > 0. Hence f#(ρL d) is
not absolutely continuous with respect to L d. �

By applying the area formula again we obtain the rule for computing integrals
of the densities:∫

Rd

F

(
f#(ρL d)

L d

)
dx =

∫
Rd

F

(
ρ

|det∇̃f |

)
|det∇̃f | dx (5.5.3)

for any Borel function F : R → [0, +∞] with F (0) = 0. Notice that in this formula
the set Σ does not appear anymore (due to the fact that F (0) = 0 and ρ = 0
out of Σ), so it holds provided f is approximately differentiable ρL d-a.e., it is
ρL d-essentially injective (i.e. there exists a Borel set Σ such that f̃ |Σ is injective
and ρ = 0 L d-a.e. out of Σ) and |det∇̃f | > 0 ρL d-a.e.

We will apply mostly these formulas when f is the gradient of a convex func-
tion g (corresponding to optimal transport map for the quadratic cost function),
or is an optimal transport map. In the former case actually approximate differen-
tiability is not needed thanks to the following result (see for instance [4, 75]).

Theorem 5.5.4 (Aleksandrov). Let g : Rd → R be a convex function. Then ∇g is
differentiable L d-a.e. in its domain, its gradient ∇2g(x) is a symmetric matrix
for L d-a.e. x ∈ Rd, and g has second order Taylor expansion

g(y) = g(x) + 〈∇g(x), y− x〉+ 1
2
〈∇2g(x), y− x〉+ o(|y− x|2) as y → x. (5.5.4)
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Notice that ∇g is also monotone

〈∇g(x1)−∇g(x2), x1 − x2〉 ≥ 0 x1, x2 ∈ D(∇g),

and that the above inequality is strict if g is strictly convex: in this case, it is
immediate to check that ∇g is injective on D(∇g), and that |det∇2g| > 0 on the
differentiability set of ∇g if g is uniformly convex.


