
Chapter 4

Uniqueness, Generation of
Contraction Semigroups, Error
Estimates

In all this section we consider the “quadratic” approximation scheme (2.0.3b),
(2.0.4) for 2-curves of maximal slope and we identify the “weak” topology σ with
the “strong” one induced by the distance d as in Remark 2.1.1: thus we are as-
suming that

p = 2, (S , d) is a complete metric space and
φ : S → (−∞, +∞] is a proper, coercive (2.4.10), l.s.c. functional,

(4.0.1)

but we are not imposing any compactness assumptions on the sublevels of φ.
Existence, uniqueness and semigroup properties for minimizing movement u ∈
MM(Φ; u0) (and not simply the generalized ones, recall Definition 2.0.6) are well
known in the case of lower semicontinuous convex functionals in Hilbert spaces
[38]. In this framework the resolvent operator in Jτ [·] (3.1.2) is single valued and
non expansive, i.e.

d(Jτ [u], Jτ [v]) ≤ d(u, v) ∀u, v ∈ S , τ > 0; (4.0.2)

this property is a key ingredient, as in the celebrated Crandall-Ligget gener-
ation Theorem [58], to prove the uniform convergence of the exponential formula
(cf. (2.0.9))

u(t) = lim
n→∞(Jt/n)n[u0], d

(
u(t), (Jt/n)n[u0]

)
≤ 2|∂φ|(u0) t√

n
, (4.0.3)

and therefore to define a contraction semigroup on D(φ). Being generated by a
convex functional, this semigroup exhibits a nice regularizing effect [37], since
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u(t) ∈ D(|∂φ|) whenever t > 0 even if the starting value u0 simply belongs to
D(φ). Moreover the function u can be characterized as the unique solution of the
evolution variational inequality

〈 d
dtu(t), u(t)− v〉+ φ(u(t)) ≤ φ(v) ∀ v ∈ D(φ), (4.0.4)

〈·, ·〉 being the scalar product in S .
More recently, optimal a priori and a posteriori error estimates have also

been derived [23, 133, 118]: the original O(τ1/2) = O(1/
√

n) order of convergence
established by Crandall and Ligget for u0 ∈ D(|∂φ|) and a uniform partition
(2.0.8), has been improved to

d
(
u(t), (Jt/n)n[u0]

)
≤ |∂φ|(u0) t

n
√

2
(4.0.5)

and extended to the general scheme (2.0.4), (2.0.7)

d2(Uτ (t), u(t)) ≤ |τ |
(
φ(u0)− inf

S
φ
)
, d2(Uτ (t), u(t)) ≤ |τ |2 |∂φ|2(u0)

2
, (4.0.6)

thus establishing an optimal error estimate of the same order O(|τ |) of the Euler
method in a smooth and finite dimensional setting.

Similar results for gradient flows of convex functionals in general (non Hilber-
tian) Banach spaces are still completely open: at least heuristically, this fact sug-
gests that some structural property of the distance should play a crucial role,
besides the convexity of the functional φ.

A first step in this direction has been obtained by U. Mayer [110] (see
also [96]), who considered gradient flows of geodesically convex functionals on
nonpositively curved metric spaces: these are length spaces (i.e. each couple of
points v0, v1 can be connected through a minimal geodesic) where the distance
maps

v �→ 1
2d2(v, w) are 1-convex along geodesics ∀w ∈ S . (4.0.7)

This property was introduced by Aleksandrov on the basis of the analogous in-
equality satisfied in Euclidean spaces (2.4.4) and in Riemannian manifolds of non-
positive sectional curvature [95, §2.3]; it allows to prove (4.0.2), and to obtain the
generation formula (4.0.3) by following the same Crandall-Liggett arguments. Ob-
serve that Mayer’s assumptions yield in particular that the variational functional
defined by (2.0.3b)

v �→ Φ(τ, w; v) =
1
2τ

d2(v, w) + φ(v)

is (τ−1 + λ)-convex along geodesics ∀w ∈ S .
(4.0.8)

These assumptions, though quite general, do not cover the case of the metric
space of probability measures endowed with the L2-Wasserstein distance: we will
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show in Section 7.3 that, in fact, the distance of this space satisfies the opposite
inequality, thus providing a positively curved space, as formally suggested also by
[124]. Example 7.3.3 will also show that the squared L2-Wasserstein distance does
not satisfy any λ-convexity properties, even for negative choice of λ ∈ R.

Our idea is to concentrate our attention directly on the functional Φ(τ, w; ·)
and to allow more flexibility in the choice of the connecting curves, along which
it has to satisfies the convexity assumption (4.0.8): we formalize this requirement
in the following assumption:

Assumption 4.0.1 ((τ−1 + λ)-convexity of Φ(τ, u; ·)). We suppose that for every
choice of w, v0, and v1 in D(φ) there exists a curve γ = γt, t ∈ [0, 1], with
γ0 = v0, γ1 = v1 such that

v �→ Φ(τ, w; v) is
(1
τ

+ λ
)
-convex on γ for each 0 < τ <

1
λ− , (4.0.9)

i.e. the map Φ(τ, w; γt) satisfies the inequality

Φ(τ, w; γt) ≤ (1− t)Φ(τ, w; v0) + tΦ(τ, w; v1)− 1 + λτ

2τ
t(1− t)d2(v0, v1). (4.0.10)

Remark 4.0.2. Of course, Assumption 4.0.1 covers the case of a (geodesically)
λ-convex functional on a nonpositively curved metric space considered by [110],
in particular the case of a (geodesically) λ-convex functional in a Riemannian
manifold of nonpositive sectional curvature or in a Hilbert space.

Remark 4.0.3. Assumption 4.0.1 is stronger than 2.4.5, since this last one is a
particular case of (4.0.1) when the “base point” w coincides with v0.

We collect the main results in this case

Theorem 4.0.4 (Generation and main properties of the evolution semigroup). Let
us assume that (4.0.1) and the convexity Assumption 4.0.1 hold for some λ ∈ R.

i) Convergence and exponential formula: for each u0 ∈ D(φ) there exists a
unique element u = S[u0] in MM(Φ; u0) which therefore can be expressed
through the exponential formula

u(t) = S[u0](t) = lim
n→∞(Jt/n)n[u0]. (4.0.11)

ii) Regularizing effect: u is a locally Lipschitz curve of maximal slope with u(t) ∈
D(|∂φ|) ⊂ D(φ) for t > 0; in particular, if λ ≥ 0, the following a priori
bounds hold:

φ(u(t)) ≤ φt(u0) ≤ φ(v) +
1
2t

d2(v, u0) ∀ v ∈ D(φ),

|∂φ|2(u(t)) ≤ |∂φ|2(v) +
1
t2

d2(v, u0) ∀ v ∈ D(|∂φ|).
(4.0.12)
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iii) Uniqueness and evolution variational inequalities: u is the unique solution of
the evolution variational inequality

1
2

d

dt
d2(u(t), v) +

1
2
λd2(u(t), v) + φ(u(t)) ≤ φ(v) L 1-a.e. t > 0, ∀v ∈ D(φ),

(4.0.13)
among all the locally absolutely continuous curves such that limt↓0 u(t) = u0

in S .

iv) Contraction semigroup: The map t �→ S[u0](t) is a λ-contracting semigroup
i.e.

d
(
S[u0](t), S[v0](t)

) ≤ e−λ td(u0, v0) ∀u0, v0 ∈ D(φ). (4.0.14)

v) Optimal a priori estimate: if u0 ∈ D(φ) and λ = 0 then

d2
(
S[u0](t), (Jt/n)n[u0]

)
≤ t

n

(
φ(u0)− φt/n(u0)

)
≤ t2

2n2
|∂φ|2(u0). (4.0.15)

Remark 4.0.5. Let us collect some comments about this result:

(a) The regularizing effect provided by (4.0.12) is stronger than the analogous
property proved in Theorem 2.4.15 for λ-convex function, since in this case we
simply need u0 ∈ D(φ) instead of u0 ∈ D(φ). Inequality (4.0.12) also implies a
faster decay of |∂φ|(u(t)) as t ↑ +∞.

(b) Since for differentiable curves u in a Hilbert space S = H

〈 d

dt
u(t), u(t)− v〉 =

1
2

d

dt
|u(t)− v|2 =

1
2

d

dt
d2(u(t), v) ∀ v ∈ H ,

the variational inequality formulation (4.0.13) is formally equivalent to (4.0.4) (in
the case λ = 0), but it does not require neither the existence of the pointwise
derivative of u nor a vectorial structure. A similar idea was introduced by P.

Bénilan [27] for the definition of the integral solutions of evolution equations
governed by m-accretive operators in Banach spaces. The integral formulation
corresponds to consider (4.0.13) in the weaker distributional sense:

1
2
d2(u(t), v) − 1

2
d2(u(s), v) ≤

∫ t

s

(
φ(v)− φ(u(r)) − λ

2
d2(u(r), v)

)
dr, (4.0.16)

for every v ∈ D(φ) and 0 < s < t; in this way, one can simply require that u is a
continuous curve with φ ◦ u ∈ L1

loc(0, +∞), thus avoiding any a priori regularity
assumption on the evolution curve. It would not be difficult to show that there
exists at most one integral solution with prescribed initial datum and that this
formulation is equivalent to (4.0.13).
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(c) The semigroup S satisfies the contracting property (4.0.14) (e.g. for λ = 0)
even if at the discrete level the resolvent operator does not satisfy in general the
analogous property (4.0.2).
(d) In the case λ > 0 (4.0.14) provides another estimates of the exponential decay
of the solution u to the unique minimum point ū of φ (cf. (2.4.12)), as already
discussed in Theorem 2.4.14, i.e.

d(u(t), ū) ≤ e−λtd(u0, ū) ∀ t ≥ 0. (4.0.17)

(e) The estimates (4.0.15) are exactly the same of the Hilbert framework: in fact
the first one is even slightly better than the previously known results, since it
exhibits an order of convergence o(

√
1/n) instead of O(

√
1/n) for u0 ∈ D(φ)

and it shows that the error is related to the speed of convergence of the Moreau-
Yosida approximation φτ to φ as τ ↓ 0. Starting from this formula, it would not
be difficult to relate the order of convergence to the regularity of u0, measured in
suitable (nonlinear) interpolation classes between D(φ) and D(|∂φ|) (see e.g. [39],
[24]).

In the limiting case λ = 0 the exponential decay does not occur, in general,
but we can still prove some weaker results on the asymptotic behaviour of u, which
are easy consequences of (4.0.12) and of (4.0.13).

Corollary 4.0.6. Suppose that (4.0.1) and the convexity Assumption 4.0.1 hold with
λ = 0, and that ū is a minimum point for φ. Then the solution u = S[u0] provided
by Theorem 4.0.4 satisfies

|∂φ|(u(t)) ≤ d(u0, ū)
t

, φ(u(t)) − φ(ū) ≤ d2(u0, ū)
2t

,

the map t �→ d(u(t), ū) is not increasing.
(4.0.18)

In particular, if the sublevels of φ are compact, then u(t) d→ u∞ as t →∞ and u∞
is a minimum point for φ.

General a priori and a posteriori error estimates. (4.0.15) is a particular case of
the general error estimates which can also be proved for non uniform partitions;
quite surprisingly, they reproduce exactly the same structure of the Hilbertian
setting and can be derived by a preliminary a posteriori error analysis (we refer
to [118] for a detailed account of the various contributions to the subject of the a
priori and a posteriori error estimates in the Hilbert case).

As we have already seen in (4.0.15), for each estimate the order of convergence
depends on the regularity of the initial datum: the best one is obtained if u0 ∈
D(|∂φ|), whereas an intermediate order O(

√|τ |) can be proved if u0 ∈ D(φ);
simple linear examples show that these bounds are optimal.

We first present the most interesting result for λ = 0 and then we will show
how the various constants are affected by different values of λ.
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Theorem 4.0.7 (The case λ = 0). Suppose that (4.0.1) and the convexity Assump-
tion 4.0.1 hold with λ = 0, let u ∈ MM(Φ; u0) be the unique solution of the
equation (4.0.13) and let Uτ be a discrete solution associated to the partition Pτ

(2.0.1). If u0 ∈ D(φ) and T = tNτ ∈ Pτ

d2(Uτ (T ), u(T )) ≤ d2(U0
τ , u0) +

N−1∑
n=1

τ2
nE n

τ , (4.0.19)

where

E n
τ :=

φ(Un−1
τ )− φ(Un

τ )
τn

− d2(Un−1
τ , Un

τ )
τ2
n

(4.0.20)

and
N∑

n=1

τ2
nE n

τ ≤ |τ |
(
φ(U0

τ )− φT (U0
τ )

)
; (4.0.21)

if U0
τ ≡ u0 we have

d2(Uτ (T ), u(T )) ≤ |τ |
(
φ(u0)− φT (u0)

)
≤ |τ |

(
φ(u0)− inf

S
φ
)

∀T > 0. (4.0.22)

If U0
τ ∈ D(|∂φ|) we have

N∑
n=1

τ2
nE n

τ ≤ |τ |2
2
|∂φ|2(U0

τ ); (4.0.23)

if U0
τ ≡ u0 we have

d2(Uτ (T ), u(T )) ≤ |τ |2
2
|∂φ|2(u0) ∀T > 0. (4.0.24)

Remark 4.0.8. (4.0.21) is slightly worse than (4.0.15), which in the case of a uni-
form mesh and u0 ∈ D(φ) provides an o(

√|τ |) estimates, instead of O(
√|τ |): this

fact depends on a finer cancellation effect which seems to be related to the choice
of uniform step sizes.

In the case λ �= 0 the error d(Uτ (T ), u(T )) should be affected by an expo-
nential factor e−λT , corresponding to (4.0.14) or e−λτ T , where

λτ :=
log(1 + λ|τ |)

|τ | as for the discrete bounds of Lemma 3.4.1; (4.0.25)

the involved constants could also be perturbed by the presence of λ: here the
main technical difficulty is to obtain estimates which exhibit the right coefficient
of the exponential grow (or decay) and constants which reduce to the optimal ones
(4.0.22), (4.0.24) when λ = 0.

We limit us to detail the a priori bounds of the error: we adopt the convention
to denote by c = c(λ, |τ |, T ) the constants which depend only on the parameters
λ, |τ |, T , exhibit at most a polynomial (in fact linear or quadratic) growth with
respect to T , and are asymptotic to 1 as λ → 0.
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Theorem 4.0.9 (The case λ < 0). Suppose that (4.0.1) and the convexity Assump-
tion 4.0.1 holds for λ < 0, let u ∈ MM(Φ; u0) be the unique solution of the
equation (4.0.13) and let Uτ be the discrete solution associated to the partition Pτ

in (2.0.1) with |τ | < (−λ)−1. If U0
τ = u0 ∈ D(φ) we have

d2(Uτ (T ), u(T )) ≤ c |τ |
(
φ(u0)−inf

S
φ
)
e−2λT , c :=

(
1+

√
4
3 |λ| |τ |

)2

. (4.0.26)

If U0
τ = u0 ∈ D(|∂φ|), λτ is defined as in (4.0.25), and Tτ = min

{
tkτ ∈ Pτ : tkτ ≥

T
}
, we have

d(Uτ (T ), u(T )) ≤ c
|τ |√

2
|∂φ|(u0) e−λτ T , c :=

1 + 2|λ|Tτ

1 + λ|τ | . (4.0.27)

We recall that in the case λ > 0 the function φ is bounded from below.

Theorem 4.0.10 (The case λ > 0). Suppose that (4.0.1) and the convexity Assump-
tion 4.0.1 hold for λ > 0, let u ∈ MM(Φ; u0) be the unique solution of the equation
(4.0.13), let Uτ be a discrete solution associated to the partition Pτ (2.0.1), and
let λτ be defined as in (4.0.25). If U0

τ = u0 ∈ D(φ) and Tτ ∈ Pτ is defined as in
the above Theorem, we have

d2(Uτ (T ), u(T ))) ≤ c |τ |
(
φ(u0)− inf

S
φ
)
e−2λτ T ,

c := (1 + λ|τ |)(1 +
√

2λTτ

)4
.

(4.0.28)

If U0
τ = u0 ∈ D(|∂φ|) we have

d2(Uτ (T ), u(T )) ≤ c
|τ |2
2
|∂φ|2(u0) e−2λτ T , c := 1 + 2λTτ . (4.0.29)

We split the proof of the previous theorems in many steps:

4.1.1: discrete variational inequalities. First of all we derive the variational evolu-
tion inequalities (4.1.3), which are the discrete counterparts of (4.0.13). They
provide a crucial property satisfied by the discrete solutions and are a simple
consequence of the convexity assumption 4.0.1; all the subsequent estimates
can be deduced from this fundamental point.

4.1.2: Cauchy-type estimates. Here we introduce a general way to pass from a
discrete variational inequality to a continuous one, though affected by a per-
turbation term; the main technical difficulty is the lackness of an underlying
linear structure, which prevents an easy interpolation of the discrete values
in the ambient space S . We circumvent this fact by considering affine inter-
polations of the values of the functions instead of trying to interpolate their
arguments (see also [117] for a similar approach). Once continuous versions
of the evolution variational inequalities are at our disposal, it will not be dif-
ficult to derive Cauchy-type estimates, by also applying a Gronwall lemma
in the case λ �= 0.
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4.2: convergence. This section is devoted to control the perturbation terms in the
previously derived estimates, in order to prove the convergence of the scheme.
We first consider the easier case u0 ∈ D(φ) and then we extend the results
to a general u0 ∈ D(φ).

4.3: regularizing effect and semigroup generation. Here we show that the unique
element u ∈ MM(Φ; u0) exhibits the regularizing effect (4.0.12) and then de-
rives the differential characterization (4.0.13) which also yield the λ-contract-
ing semigroup property (4.0.14).

4.4: optimal error estimates. Finally, we refine the error estimates which have
been derived in the first section, and we prove Theorems 4.0.7, 4.0.9, 4.0.10,
and the related estimate (4.0.15). For the ease of the reader, the main ideas
are first presented in the case λ = 0; the more technical results for λ �= 0 are
discussed in Section 4.4.2

4.1 Cauchy-type estimates for discrete solutions

4.1.1 Discrete variational inequalities

Let us first state an auxiliary lemma:

Lemma 4.1.1. Let us suppose that (4.0.1) and the convexity Assumption 4.0.1 hold
for some λ ∈ R, and let 0 < τ < 1

λ− . If u ∈ D(φ) and (vn) is a sequence in D(φ)
satisfying

lim sup
n→∞

Φ(τ, u; vn) ≤ φτ (u), (4.1.1)

then (vn) converges to v ∈ D(φ) and v = uτ = Jτ [u] is the unique element of
Jτ [u].

Proof. Being u ∈ D(φ), we can find a sequence (un) ⊂ D(φ) converging to u such
that

lim sup
n→∞

Φ(τ, un; vn) = lim sup
n→∞

Φ(τ, u; vn) ≤ φτ (u).

We argue as in the proof of Lemma 2.4.8: observe that, being φτ continuous (cf.
Lemma 3.1.2) and φτ (u) < +∞, (4.1.1) yields

Φ(τ, un; vn) = φτ (un) +
(
φτ (u)− φτ (un)

)
+

(
Φ(τ, un; vn)− φτ (u)

)
= φτ (un) + ωn with lim sup

n→∞
ωn ≤ 0.

We apply the convexity property (4.0.10) with w := un, v0 := vn, v1 := vm at
t = 1/2 to find vn,m such that

φτ (un) ≤ Φ(τ, un; vn,m) ≤ φτ (un) +
ωn + ωm

2
− 1 + λτ

8τ
d2(vn, vm).
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Since 1 + λτ > 0 this implies that

lim sup
n,m→∞

d2(vn, vm) ≤ 4τ

1 + λτ
lim sup
n,m→∞

(
ωn + ωm

)
= 0,

therefore (vn) is a Cauchy sequence and the lower semicontinuity of φ gives that
Φ(τ, u; v) = φτ (u), i.e. v ∈ Jτ [u]. The same argument also shows that v is the
unique element of Jτ [u]. �

The following result is a significant improvement of Theorem 3.1.6:

Theorem 4.1.2 (Variational inequalities for uτ ). Let us suppose that (4.0.1) and
the convexity Assumption 4.0.1 holds for some λ ∈ R.

(i) If u ∈ D(φ) and λτ > −1 then the minimum problem (2.0.5) has a unique
solution uτ = Jτ [u]. The map u ∈ D(φ) �→ Jτ [u] is continuous.

(ii) If u ∈ D(φ) and uτ = Jτ [u], for each v ∈ D(φ) we have

1
2τ

d2(uτ , v)− 1
2τ

d2(u, v) +
1
2
λd2(uτ , v) ≤ φ(v) − φτ (u). (4.1.2)

Proof. (i) In order to show the existence of a minimum point uτ ∈ Jτ [u] we simply
apply the previous Lemma 4.1.1 by choosing an arbitrary minimizing sequence,
thus satisfying (4.1.1).

The continuity of Jτ follows by the same argument; simply take a sequence
(un) ⊂ D(φ) converging to u and observe that vn := Jτ [un] is bounded in S and
satisfies

lim sup
n→∞

Φ(τ, u; vn) = lim sup
n→∞

Φ(τ, un; vn) = lim
n→∞φτ (un) = φτ (u).

(ii) Since the map Jτ is continuous, by a standard approximation argument we
can suppose u ∈ D(φ). We apply (4.0.10) again with w := u, v0 := uτ and v1 := v,
obtaining a family vt ∈ D(φ), t ∈ (0, 1), such that

Φ(τ, u; uτ) ≤ Φ(τ, u; vt) ≤ (1− t)Φ(τ, u; uτ)+ tΦ(τ, u; v)− 1 + λτ

2τ
t(1− t)d2(uτ , v).

Subtracting Φ(τ, u; uτ) by each term of the inequality, dividing by t, and passing
to the limit as t ↓ 0 we get

0 ≤ −Φ(τ, u; uτ) + Φ(τ, u; v)− 1 + λτ

2τ
d2(uτ , v)

which is equivalent to (4.1.2) since φτ (u) = Φ(τ, u; uτ ). �
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Corollary 4.1.3 (Variational inequalities for discrete solutions). Under the same
assumptions of the previous Lemma, every discrete solution {Un

τ }+∞
n=0 with U0

τ ∈
D(φ) satisfies

1
2τn

(
d2(Un

τ , V )− d2(Un−1
τ , V )

)
+

1
2
λd2(Un

τ , V )

≤ φ(V )− φ(Un
τ )− 1

2τn
d2(Un

τ , Un−1
τ ) ∀V ∈ D(φ), n ≥ 1.

(4.1.3)

4.1.2 Piecewise affine interpolation and comparison results

Now we formalize a general way to write a discrete difference inequality as a con-
tinuous one: first of all, let us introduce the “delayed” piecewise constant function
Uτ

Uτ (t) ≡ Un−1
τ if t ∈ (tn−1

τ , tnτ ],

and the interpolating functions

�τ (t) :=
t− tn−1

τ

τn
, 1− �τ (t) =

tnτ − t

τn
if t ∈ (tn−1

τ , tnτ ]. (4.1.4)

t
τ1 τ2 τ3 τ4 τ5 τ6

�τ

1

Figure 4.1: The interpolating functions �τ .

If ζ : S → (−∞, +∞] is a function which is finite on the discrete solution
{Un

τ }+∞
n=0, we can define its affine interpolation as

ζτ (t) :=(1− �τ (t))ζ(Uτ (t)) + �τ (t)ζ(Uτ (t))

=(1− �τ (t))ζ(Un−1
τ ) + �τ (t)ζ(Un

τ ) if t ∈ (tn−1
τ , tnτ ].

(4.1.5)

In other words, ζτ is the continuous piecewise affine function which interpolates
the values ζ(Un

τ ) at the nodes tnτ of the partition Pτ . In this way, for V ∈ S , we
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can consider the functions

d2
τ (t; V ) := (1− �τ (t))d2(Un−1

τ , V ) + �τ (t)d2(Un
τ , V ) t ∈ (tn−1

τ , tnτ ], (4.1.6)

ϕτ (t) := (1− �τ (t))φ(Un−1
τ ) + �τ (t)φ(Un

τ ) t ∈ (tn−1
τ , tnτ ]. (4.1.7)

The main idea here is to “interpolate a function” instead of evaluating it on a
(more difficult) interpolation of the arguments (see also [117] for another applica-
tion of this technique); of course, for convex functional in Euclidean space these
two approaches are slightly different but in our metric framework the first one is
particularly convenient.

Finally, to every discrete solution {Un
τ }+∞

n=0 ⊂ D(φ) defined as before we
associate the “squared discrete derivative”

Dn
τ :=

d2(Un−1
τ , Un

τ )
τ2
n

, n = 1, · · · , (4.1.8)

and the residual function Rτ , defined for t ∈ (tn−1
τ , tnτ ] by

Rτ (t) :=2(1− �τ (t))
(
φ(Un−1

τ )− φ(Un
τ )− τn

2
Dn

τ

)
− �τ (t)τnDn

τ (4.1.9a)

=2(1− �τ (t))τnE n
τ +

(
1− 2�τ (t)

)
τnDn

τ . (4.1.9b)

Observe that (3.1.20) yields

(1 + λτn)|∂φ|2(Un
τ ) ≤ (1 + λτn)Dn

τ ≤
2
τn

(
φ(Un−1

τ )− φ(Un
τ )− τn

2
Dn

τ

)
≤ 1

1 + λτn
|∂φ|2(Un−1

τ ) ≤ 1
1 + λτn

Dn−1
τ ,

(4.1.10)

so that, if Un−1
τ ∈ D(|∂φ|) then (4.1.9a) yields

Rτ (t) ≤ τn
1− �τ (t)
1 + λτn

|∂φ|2(Un−1
τ )− �τ (t)τnDn

τ t ∈ (tn−1
τ , tnτ ]. (4.1.11)

Theorem 4.1.4. Let us suppose that (4.0.1) and the convexity Assumption 4.0.1
hold for λ ∈ R, and U0

τ ∈ D(φ). The interpolated functions dτ , ϕτ defined as in
(4.1.6), (4.1.7) starting from the discrete solution {Un

τ }+∞
n=0 satisfy the following

system of variational inequalities almost everywhere in (0, +∞):

1
2

d

dt
d2

τ (t; V ) +
λ

2
d2(Uτ (t), V ) + ϕτ (t)− φ(V ) ≤ 1

2
Rτ (t) ∀V ∈ D(φ). (4.1.12)



86 Chapter 4. Generation of Contraction Semigroups

Proof. If t ∈ (tn−1
τ , tnτ ], using (4.1.3) we obtain

1
2

d

dt
d2

τ (t; V ) +
1
2
λd2(Uτ (t), V ) + ϕτ (t)− φ(V )

=
1

2τn

(
d2(Un

τ , V )− d2(Un−1
τ , V )

)
+

1
2
λd2(Un

τ , V ) + ϕτ (t)− φ(V )

≤ − 1
2τn

d2(Un
τ , Un−1

τ ) + φ(V )− φ(Un
τ ) + ϕτ (t)− φ(V )

= − 1
2τn

d2(Un
τ , Un−1

τ ) + (1 − �τ (t))
(
φ(Un−1

τ )− φ(Un
τ )

)
= (1− �τ (t))

(
φ(Un−1

τ )− φ(Un
τ )− 1

2τn
d2(Un

τ , Un−1
τ )

)
− �τ (t)

1
2τn

d2(Un
τ , Un−1

τ ).

Recalling the Definition (4.1.9a) of Rτ (t) we conclude. �

Comparison between discrete solutions for λ = 0. In the next Corollary we are
finally able to compare two discrete solutions.

Corollary 4.1.5 (Comparison for λ = 0). Under the same assumptions of Theorem
4.1.4, let us suppose that λ = 0 and let {Um

η }+∞
m=0, U0

η ∈ D(φ), be another discrete
solution associated to the admissible partition

Pη :=
{
0 = t0η < t1η < . . . < tmη , . . .

}
, ηm = tmη − tm−1

η . (4.1.13)

The continuous and piecewise affine function

d2
τη(t, s) := (1− �η(s))d2

τ (t;Uη(s)) + �η(s)d2
τ (t; Uη(s)) t, s ≥ 0 (4.1.14)

satisfies the differential inequality

d

dt
d2

τη(t, t) ≤ Rτ (t) + Rη(t) ∀ t ∈ (0, +∞) \ (Pτ ∪ Pη) (4.1.15)

and therefore the integral bound

d2
τη(T, T ) ≤ d2(U0

τ , U0
η) +

∫ T

0

(
Rτ (t) + Rη(t)

)
dt. (4.1.16)

Proof. Defining the function ϕη(s) as in (4.1.5) by

ϕη(s) := (1− �η(s))φ(Uη(s)) + �η(s)φ(Uη(s)), (4.1.17)

a convex combination of (4.1.12) for V := Uη(s) and V := Uη(s) yields

1
2

∂

∂t
d2

τη(t, s) + ϕτ (t)− ϕη(s) ≤ 1
2
Rτ (t) ∀ s > 0, t ∈ (0, +∞) \ Pτ .
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Analogously, writing (4.1.12) for the function d2
η defined as in (4.1.6)

d2
η(s; V ) := (1− �η(s))d2(Uη(s), V ) + �η(s)d2(Uη(s), V ),

and reversing the roles of η and τ we obtain

1
2

∂

∂s
d2

ητ (s, t) + ϕη(s)− ϕτ (t) ≤ 1
2
Rη(s) ∀ t > 0, s ∈ (0, +∞) \ Pη,

where

d2
ητ (s, t) := (1 − �τ (t))d2

η(s; Un−1
τ ) + �τ (t)d2

η(s; Un
τ ) for t ∈ (tn−1

τ , tnτ ]. (4.1.18)

Summing up the two contributions we find

∂

∂t
d2

τη(t, s) +
∂

∂s
d2

ητ (s, t) ≤ Rτ (t) + Rη(s) ∀ s, t ∈ (0, +∞) \ (Pτ ∪ Pη).

Finally, by the symmetry property

d2
τη(t, s) = d2

ητ (s, t), (4.1.19)

evaluating the previous inequality for s = t we end up with (4.1.15). �

Comparison between discrete solutions for λ �= 0. If λ �= 0 we need to rewrite
(4.1.12) in a more convenient form; let us first observe that the concavity of the
square root provides the inequalities for V ∈ S

(1− �τ (t))d(Uτ (t), V ) + �τ (t)d(Uτ (t), V ) ≤ dτ (t, V ) ∀ t > 0, (4.1.20)

(1− �η(s))dτ (t,Uη(s)) + �η(s)dτ (t, Uη(s)) ≤ dτη(t, s) ∀ t, s > 0. (4.1.21)

Lemma 4.1.6. Under the same assumptions of Theorem 4.1.4, for a discrete solu-
tion {Un

τ }+∞
n=0 with U0

τ ∈ D(φ) let us define

Dτ (t) :=
(
1−�τ (t)

)
d(Uτ (t),Uτ (t)) = τn

(
1−�τ (t)

)√
Dn

τ , t ∈ (tn−1
τ , tnτ ]. (4.1.22)

Then for every element V ∈ D(φ) the interpolated functions dτ , ϕτ defined by
(4.1.6) and (4.1.7) satisfy the following system of variational inequalities almost
everywhere in (0, +∞):

d

dt

1
2
d2

τ (t; V )+
λ

2
d2

τ (t; V )−|λ|Dτ (t)dτ (t; V )+ϕτ (t)−φ(V ) ≤ 1
2
Rτ (t)+

λ−

2
D2

τ (t),

(4.1.23)
where λ− = max(−λ, 0).

Proof. If λ ≥ 0 the inequality (4.1.23) is an immediate consequence of (4.1.12)
and

−2dτ (t; V )Dτ (t) ≤ d2(Uτ (t), V )− d2
τ (t; V )
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which, in turn, follows by the triangle inequality. If λ < 0 it follows by (4.1.12)
and

d2(Uτ (t), V )− d2
τ (t; V ) ≤ 2dτ (t; V )Dτ (t) + D2

τ (t). (4.1.24)

Let us prove (4.1.24). Suppose t ∈ (tn−1
τ , tnτ ] and d2(Uτ (t), V ) ≥ d2

τ (t; V ), otherwise
(4.1.24) is obvious; the elementary identity a2 − b2 = 2b(a− b) + (a− b)2 yields

d2(Uτ (t), V )− d2
τ (t; V ) = 2dτ (t; V )

(
d(Uτ (t), V )− dτ (t; V )

)
+

(
d(Uτ (t), V )− dτ (t; V )

)2
.

On the other hand the concavity inequality (4.1.20) gives

d(Uτ (t), V )− dτ (t; V ) ≤ d(Uτ (t), V )− (1− �τ (t))d(Uτ (t), V )
− �τ (t)d(Uτ (t), V ) ≤ Dτ (t).

These two inequalities imply (4.1.24). �
Corollary 4.1.7 (Comparison for λ �= 0). Under the same assumption of the previ-
ous Lemma, let Pτ ,Pη be two admissible partitions; the “error” function dτη(t, s)
defined by (4.1.14) satisfies the differential inequality

d

dt
d2

τη(t, t) + 2λd2
τη(t, t) ≤2|λ|(Dτ (t) + Dη(t)

)
dτη(t, t)

+ (Rτ (t) + Rη(t)) + λ−(
D2

τ (t) + D2
η(t)

)
,

(4.1.25)

and therefore the Gronwall-like estimate

eλT dτη(T, T ) ≤
(
d2(U0

τ , V 0
η ) + Rτ (T ) + Rη(T ) +

∫ T

0

e2λtλ−(D2
τ (t) + D2

η(t)
)
dt

)1/2

+ 2
∫ T

0

|λ|eλt
(
Dτ (t) + Dη(t)

)
dt,

(4.1.26)
where Rτ (and analogously Rη) are defined by

Rτ (T ) := sup
t∈[0,T ]

∫ t

0

e2λrRτ (r) dr ≤
∫ T

0

e2λr
(
Rτ (r)

)+

dr ∀T > 0. (4.1.27)

Proof. Starting from the inequality (4.1.23) we easily obtain (4.1.25) by arguing as
in Corollary 4.1.5 and by using (4.1.21). Inequality (4.1.26) is a direct consequence
of (4.1.25) and of the following version of the Gronwall Lemma [23]. �
Lemma 4.1.8 (A version of Gronwall Lemma). Let x : [0, +∞) → R be a locally ab-
solutely continuous function, let a, b ∈ L1

loc ([0, +∞)) be given functions satisfying,
for λ ∈ R,

d

dt
x2(t) + 2λx2(t) ≤ a(t) + 2b(t)x(t) for L 1-a.e. t > 0. (4.1.28)



4.2. Convergence of discrete solutions 89

Then for every T > 0 we have

eλT |x(T )| ≤
(
x2(0) + sup

t∈[0,T ]

∫ t

0

e2λsa(s) ds
)1/2

+ 2
∫ T

0

eλt|b(t)| dt. (4.1.29)

Proof. Multiplying (4.1.28) by e2λt we obtain

d

dt

(
eλtx(t)

)2 ≤ e2λta(t) + 2eλtb(t)
(
eλtx(t)

)
for L 1-a.e. t > 0, (4.1.30)

therefore it is sufficient to prove (4.1.29) for λ = 0.
Introducing the functions

X(T ) := sup
t∈(0,T )

|x(t)|, A(T ) := sup
t∈(0,T )

∫ t

0

a(s) ds,

B(T ) :=
∫ T

0

|b(s)| ds,

(4.1.31)

and integrating the equation we obtain

x2(t) ≤ x2(0) +
∫ t

0

a(s) ds + 2B(t)X(t) ∀ t > 0. (4.1.32)

Therefore, taking the supremum w.r.t. t ∈ [0, T ] we get

X2(T ) ≤ x2(0) + A(T ) + 2B(T )X(T ), (4.1.33)

and adding B2(T ) to both sides gives

X(T ) ≤ B(T ) +
√

B2(T ) + x2(0) + A(T ) ≤ 2B(T ) +
√

x2(0) + A(T ).

Recalling (4.1.31) we obtain (4.1.29). �

4.2 Convergence of discrete solutions

4.2.1 Convergence when the initial datum u0 ∈ D(φ)

The previous Corollaries 4.1.5, 4.1.7 show the importance to obtain a priori bounds
of the integral of Rτ , Dτ , and D2

τ . In this section we mainly focus our attention
on the convergence of the discrete solutions, by quickly deriving rough estimates
of these integrals and we postpone a finer analysis of the error to Section 4.4. It
is not restrictive to assume λ ≤ 0.
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Lemma 4.2.1. Let us suppose that the convexity Assumption 4.0.1 holds with λ ≤ 0,
let Rτ , Dτ be the residual terms associated to a discrete solution {Un

τ }+∞
n=0 defined

as in (4.1.9a), (4.1.22), and let us choose T in the interval IN
τ = (tN−1

τ , tNτ ]. Then∫ T

0

e2λt
(
[Rτ (t)]+ − λD2

τ (t)
)

dt ≤ |τ |
(
φ(U0

τ )− φ(UN
τ )

)
, (4.2.1)( ∫ T

0

|λ|eλtDτ (t) dt
)2

≤ 1
2

∫ T

0

|λ|e2λtD2
τ (t) dt (4.2.2)

≤ |λ| |τ |2
3

(
φ(U0

τ )− φ(UN
τ )

)
. (4.2.3)

Proof. First of all we observe that∫
In

τ

[
Rτ (t)

]+
dt ≤ τn

(
φ(Un−1

τ )− φ(Un
τ )− d2(Un

τ , Un−1
τ )

2τn

)
, (4.2.4)

which is a direct consequence of (4.1.9a) and

φ(Un−1
τ )− φ(Un

τ )− d2(Un
τ , Un−1

τ )
2τn

≥ 0,

∫
In

τ

(1− �τ (t)) dt =
∫

In
τ

�τ (t) dt =
1
2
.

Since ∫
In

τ

(1− �τ (t))2 dt =
1
3
τn,

and ∫
In

τ

|λ|D2
τ (t) dt ≤ 1

3
|λ|τnd2(Un

τ , Un−1
τ ) ≤ 1

3
d2(Un

τ , Un−1
τ ), (4.2.5)

from (4.2.4) we get∫
In

τ

e2λt
[(

Rτ (t)
)+ + |λ|D2

τ (t)
]
dt ≤ τn

(
φ(Un−1

τ )− φ(Un
τ )

)
(4.2.6)

which yields (4.2.1). Starting from (4.2.5) and recalling (3.2.8) we obtain∫ T

0

|λ|D2
τ (t) dt ≤ 2

3
|λ| |τ |2(φ(U0

τ )− φ(UN
τ )),

so that( ∫ T

0

|λ|eλtDτ (t) dt
)2

≤
∫ T

0

|λ|e2λt dt

∫ T

0

|λ|D2
τ (t) dt ≤ |λ| |τ |2

3

(
φ(U0

τ )− φ(UN
τ )

)
,

which yields (4.2.2) and (4.2.3). �
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Theorem 4.2.2. Suppose that (4.0.1) and the convexity Assumption 4.0.1 hold for
λ ∈ R and

lim
|τ |↓0

d(U0
τ , u0) = 0, sup

τ
φ(U0

τ ) = S < +∞. (4.2.7)

Then the family {Uτ}τ of the discrete solutions generated by U0
τ is convergent to

a function u as |τ | ↓ 0, uniformly in each bounded interval [0, T ]; in particular u
is the unique element of MM(Φ; u0).

Proof. We fix a time t ∈ [0, T ] and we prove that {Uτ (t)}τ is a Cauchy family as
|τ | goes to 0. We already know from the a priori estimates of Lemma 3.2.2 that
there exists a constant C dependent on S, T, λ but independent of τ such that

d2(Uτ (t),Uτ (t)) ≤ C |τ |, φ(U0
τ )− φ(Un

τ ) ≤ C 1 ≤ n ≤ N, (4.2.8)

for the integer N such that the interval IN
τ contains T . Moreover, choosing two

partitions Pτ ,Pη as in Corollary 4.1.7, by (4.1.14) we have

d2(Uτ (t), Uη(t)) ≤ 3d2
τη(t, t) + 3d2(Uτ (t), Uτ (t)) + 3d2(Uη(t), Uη(t))

≤ 3d2
τη(t, t) + 3C(|τ |+ |η|),

therefore we simply have to show that lim
|τ |,|η|↓0

dτη(t, t) = 0. By (4.1.26), (4.2.1),

and (4.2.3) we obtain

e2λtd2
τη(t, t) ≤ 2d2(U0

τ , U0
η) + 2C

(|τ |+ |η|) + 2|λ|C(|τ |2 + |η|2), (4.2.9)

and this conclude the proof of the convergence; since the constant C in the bound
(4.2.9) is independent of t, the convergence is also uniform in [0, T ].
Finally, it is easy to check that the limit does not depend on the particular family
of initial data (U0

τ ) satisfying (4.2.7): if (V 0
τ ) is another sequence approximating u0,

we can apply the same convergence result to a third family (W 0
τ ) which coincides

with the previous ones along two different subsequences of step sizes τn, τ ′
n with

|τn|, |τ ′
n| ↓ 0 as n →∞. �

Corollary 4.2.3. Under the same assumption of the previous Theorem, let u =
MM(Φ; u0) and let Uτ be the discrete solution associated to the partition Pτ .
Then if T ∈ Pτ and λ = 0 we have

d2(Uτ (T ), u(T )) ≤ d2(U0
τ , u0) +

∫ T

0

Rτ (t) dt, (4.2.10)

whereas for λ �= 0 we have

eλT d(Uτ (T ), u(T )) ≤
(

d2(U0
τ , u0) + Rτ (T ) +

∫ T

0

e2λtλ−D2
τ (t) dt

)1/2

+ 2
∫ T

0

|λ|eλtDτ (t) dt,

(4.2.11)

where Rτ is defined by (4.1.27).
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Proof. We simply pass to the limit as |η| ↓ 0 in (4.1.16) or (4.1.26), observing that
the integrals of

(
Rη

)+
, Dη, D2

η are infinitesimal by the estimates of Lemma 4.2.1;
on the other hand, by (4.2.8) we have for T ∈ Pτ

lim
|η|↓0

dτη(T, T ) = dτ (T, u(T )), and dτ (T, u(T )) = d(Uτ (T ), u(T )). �

4.2.2 Convergence when the initial datum u0 ∈ D(φ).

Now we conclude the proof of (4.0.11) in the statement of Theorem 4.0.4 when the
starting point belongs to the closure in S of the proper domain of φ: in this case,
it is more difficult to exhibit an explicit order of convergence for the approximate
solutions and we have to take care of the loss of regularity of the initial datum.

Let us start with a comparison result between two discrete solutions related
to the same partition Pτ :

Lemma 4.2.4. Let Uτ , Vτ be discrete solutions associated to the same choice of step
size τ and to the initial values U0

τ ∈ D(φ), V 0
τ ∈ D(φ) respectively. If T ∈ IN

τ =
(tN−1

τ , tNτ ], and λτ is defined in (4.0.25), then for −1 < λ|τ | ≤ 0 we have

e2λτ (T+|τ |)d2(Uτ (T ), Vτ (T )) ≤ e2λτ tN
τ d2(UN

τ , V N
τ )

≤ d2(U0
τ , V 0

τ ) + 2|τ |
(
φ(V 0

τ )− φ(V N
τ )

)
.

(4.2.12)

Proof. Choosing V := V n−1
τ in (4.1.3) and multiplying the inequality by 2τn we

obtain

d2(Un
τ , V n−1

τ )− d2(Un−1
τ , V n−1

τ ) ≤ 2τnφ(V n−1
τ )− 2τnφ(Un

τ )− d2(Un
τ , Un−1

τ )

− λτnd2(Un
τ , V n−1

τ ).

Analogously, we choose V := Un
τ in the discrete inequality (4.1.3) written for the

discrete solution {V n
τ }+∞

n=0 obtaining

(1 + λτn)d2(V n
τ , Un

τ )− d2(V n−1
τ , Un

τ ) ≤ 2τnφ(Un
τ )− 2τnφ(V n

τ )− d2(V n
τ , V n−1

τ ).

Recalling the elementary inequality (a + b)2 ≤ ε−1a2 + (1 − ε)−1b2, 0 < ε < 1,
choosing ε := −λτn we get

−λτnd2(Un
τ , V n−1

τ ) ≤ d2(Un
τ , Un−1

τ )− λτn

1 + λτn
d2(Un−1

τ , V n−1
τ );

summing up the previous inequalities we obtain

(1 + λτn)d2(V n
τ , Un

τ )− 1
1 + λτn

d2(Un−1
τ , V n−1

τ ) ≤ 2τn

(
φ(V n−1

τ )− φ(V n
τ )

)
.

Multiplying the inequality by eλτ (2tn−1
τ +τn) < 1 and recalling that φ(V n−1

τ ) ≥
φ(V n

τ ), we get by (3.4.10)

e2λτ tn
τ d2(V n

τ , Un
τ ) ≤ e2λτ tn−1

τ d2(V n−1
τ , Un−1

τ ) + 2τn

(
φ(V n−1

τ )− φ(V n
τ )

)
.
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Summing these inequalities from n = 1 to N we get (4.2.12). �

The following Corollary extends the previous Theorem 4.2.2 and concludes
the proof of the convergence part of Theorem 4.0.4:

Corollary 4.2.5. Suppose that (4.0.1) and the convexity Assumption 4.0.1 hold for
λ ∈ R and

U0
τ ∈ D(φ), lim

|τ |↓0
d(U0

τ , u0) = 0. (4.2.13)

The family {Uτ}τ of the discrete solutions generated by U0
τ is convergent to the

function u = S[u0] as |τ | ↓ 0 defined by Corollary 4.3.3, uniformly in each bounded
interval [0, T ]; in particular u is the unique element of MM(Φ; u0).

Proof. It is not restrictive to assume λ ≤ 0. Let Uτ , Uη be two discrete solutions
corresponding to the admissible partitions Pτ ,Pη, let us choose an arbitrary initial
datum v0 ∈ D(φ), and let us introduce the correspondent discrete solutions Vτ , Vη

associated to the same partitions Pτ ,Pη with V 0
τ = V 0

η = v0.
Applying the previous Lemma 4.2.4 we get

d(Uτ (t), Uη(t)) ≤ d(Uτ (t), Vτ (t)) + d(Vτ (t), Vη(t)) + d(Vη(t), Uη(t))

≤ e−λτ (t+|τ |)
[
d2(v0, U

0
τ ) + 2|τ |[φ(v0)− φ(Vτ (t))]

]1/2

+ e−λη(t+|η|)
[
d2(v0, U

0
η) + 2|τ |[φ(v0)− φ(Vη(t))]

]1/2

+ d(Vτ (t), Vη(t)).

Since v0 ∈ D(φ), passing to the limit as |τ |, |η| ↓ 0 and applying Theorem 4.2.2,
we get

lim sup
|τ |,|η|↓0

d(Uτ (t), Uη(t)) ≤ 2e−λtd(u0, v0) ∀ v0 ∈ D(φ).

Since u0 ∈ D(φ), taking the infimum with respect to v0 we conclude. �

4.3 Regularizing effect, uniqueness and the semigroup

property

The λ-contractivity property is an immediate consequence of Lemma 4.2.4:

Proposition 4.3.1. Suppose that (4.0.1) and the convexity Assumption 4.0.1 hold,
λ ∈ R. If u0, v0 ∈ D(φ) and u = MM(u0; Φ), v = MM(v0; Φ), then

d(u(t), v(t)) ≤ e−λtd(u0, v0). (4.3.1)

Proof. If v0 ∈ D(φ), we can simply pass to the limit as |τ | ↓ 0 in (4.2.12), choosing
e.g. U0

τ = u0, V
0
τ = v0.
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When v0 ∈ D(φ) \D(φ), we consider an auxiliary initial datum w0 ∈ D(φ)
and the Minimizing Movement w = MM(w0; Φ), obtaining by the triangular
inequality

d(u(t), v(t)) ≤ d(u(t), w(t)) + d(w(t), v(t)) ≤ e−λt
(
d(u0, w0) + d(w0, v0)

)
.

(4.3.1) follows now by taking the infimum of the right hand member of the previous
inequality w.r.t. w0 ∈ D(φ). �

Theorem 4.3.2. Suppose that (4.0.1) and the convexity Assumption 4.0.1 hold,
λ ∈ R. If u ∈ MM(u0; Φ) then u satisfies (4.0.13). In particular, setting

ι(T ) :=
∫ T

0

eλt dt =
eλT − 1

T
, (4.3.2)

we have

φ(u(T )) ≤ 1
ι(T )

∫ T

0

φ(u(t)) eλtdt ≤ φι(T )(u0), (4.3.3)

and, if λ ≥ 0,

|∂φ|(u(T )) ≤ 1
T

d(u0, u(T )),

|∂φ|2(u(T )) ≤ |∂φ|2(V ) +
1
T 2

d2(V, u0) ∀V ∈ D(|∂φ|).
(4.3.4)

Proof. By a simple approximation argument via the λ-contraction property of
Proposition 4.3.1 and the lower semicontinuity of φ, it is not restrictive to assume
u0 ∈ D(φ). In this case, we already know from Theorem 2.4.15 that u is locally
Lipschitz in (0, +∞). Keeping the same notation of Section 4.1.2, observe that

lim
|τ |↓0

dτ (t, V ) = d(u(t), V ), lim
|τ |↓0

ϕτ (t) = φ(u(t)) ∀ t ≥ 0, V ∈ S .

Integrating (4.1.12) from S to T and passing to the limit as |τ | ↓ 0 gives

1
2
d2(u(T ), V )− 1

2
d2(u(S), V ) +

∫ T

S

(
φ(u(t)) +

λ

2
d2(u(t), V )

)
dt ≤ (T − S)φ(V )

(4.3.5)
which easily yields (4.0.13). Moreover, multiplying (4.0.13) by eλt and integrating
from 0 to T , since t �→ φ(u(t)) is decreasing we have

ι(T )φ(u(T )) ≤
∫ T

0

φ(u(t)) eλtdt ≤ ι(T )φ(V ) +
1
2
d2(u0, V )− eλT

2
d2(u(T ), V )
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for any V ∈ D(φ). Taking the infimum w.r.t. V we get (4.3.3). Finally, if λ = 0,
multiplying (2.4.26) by t and integrating in time we get

T 2

2
|∂φ|2(u(T )) ≤

∫ T

0

t|∂φ|2(u(t)) dt ≤ −
∫ T

0

t
(
φ(u(t)

)′
dt

=
∫ T

0

φ(u(t)) dt − Tφ(u(T ))

≤ Tφ(V ) +
1
2
d2(u0, V )− Tφ(u(T ))− 1

2
d2(u(T ), V ).

Choosing V := u(T ) yields the first estimate of (4.3.4); on the other hand, if
V ∈ D(|∂φ|) the right hand side of the last formula can be bounded by

T |∂φ|(V )d(V, u(T ))− 1
2
d2(u(T ), V ) +

1
2
d2(u0, V ) ≤ T 2

2
|∂φ|2(V ) +

1
2
d2(u0, V ),

which gives the second inequality of (4.3.4). �
Corollary 4.3.3. The λ-contractive map u0 �→ S[u0](t), S[u0] being the Minimiz-
ing movement MM(u0; Φ), provides the unique solution of the evolution varia-
tional inequality (4.0.13), and it satisfies the semigroup property S[u0](t + s) =
S[S[u0](t)](s) for every choice of t, s ≥ 0.

Proof. Let us first observe that if u is a continuous solution of the system (4.0.13),
then an integration from t− h to t gives for every v ∈ D(φ)

1
2
d2(u(t), v) +

1
2
d2(u(t− h), v) +

∫ t

t−h

(λ

2
d2(u(r), v) + φ(u(r))

)
dr ≤ hφ(v).

Dividing by h and passing to the limit as h ↓ 0, the lower semicontinuity of φ and
Fatou’s Lemma yield

lim sup
h↓0

h−1
(1

2
d2(u(t), v)− 1

2
d2(u(t− h), v)

)
+

λ

2
d2(u(t), v) + φ(u(t)) ≤ φ(v) ∀ t > 0.

(4.3.6)

By the same argument we also get the analogous pointwise estimate for the right
derivative

lim sup
h↓0

h−1
(1

2
d2(u(t + h), v)− 1

2
d2(u(t), v)

)
+

λ

2
d2(u(t), v) + φ(u(t)) ≤ φ(v) ∀ t > 0.

(4.3.7)

Let now u, w ∈ ACloc(0, +∞; S ) be two curves valued in D(φ) which satisfy the
system (4.0.13) and take (by continuity as t ↓ 0) the initial values u0, w0 ∈ D(φ).
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Choosing v := w(t) in (4.3.6), v := u(t) in the analogous inequality (4.3.7)
written for the function w, and applying the next lemma we find that

d

dt
d2(u(t), w(t)) + 2λd2(u(t), w(t)) ≤ 0 for L 1-a.e. t > 0,

i.e.
d

dt
e2λtd2(u(t), w(t)) ≤ 0, d2(u(t), w(t)) ≤ e−2λtd2(u0, w0) ∀ t > 0.

In particular, if u0 = w0 the functions u, w coincides and therefore the system
(4.0.13) has at most one solution for a given initial datum u0.

Since the curve u(t) := S[u0](t), defined as the value at t of u ∈ MM(u0; Φ)
for u0 ∈ D(φ), solves (4.0.13), we obtain that u is the unique solution of (4.0.13).
The semigroup property follows easily be the uniqueness for solutions of (4.0.13).

�
The following elementary lemma is stated just for convenience for functions

in the unit interval (0, 1).

Lemma 4.3.4. Let d(s, t) : (0, 1)2 → R be a map satisfying

|d(s, t)− d(s′, t)| ≤ |v(s)− v(s′)|, |d(s, t)− d(s, t′)| ≤ |v(t)− v(t′)|
for any s, t, s′, t′ ∈ (0, 1), for some locally absolutely continuous map v : (0, 1) →
R and let δ(t) := d(t, t). Then δ is locally absolutely continuous in (0, 1) and

d

dt
δ(t) ≤ lim sup

h↓0

d(t, t)−d(t−h, t)
h

+lim sup
h↓0

d(t, t+h)−d(t, t)
h

L 1-a.e. in (0, 1)

Proof. Since |δ(s) − δ(t)| ≤ 2|v(s) − v(t)| the function δ is locally absolutely
continuous. We fix a nonnegative function ζ ∈ C∞

c (0, 1) and h > 0 such that
±h + supp ζ ⊂ (0, 1). We have then

−
∫ 1

0

δ(t)
ζ(t + h)− ζ(t)

h
dt =

∫ 1

0

ζ(t)
d(t, t) − d(t− h, t− h)

h
dt

=
∫ 1

0

ζ(t)
d(t, t) − d(t− h, t)

h
dt +

∫ 1

0

ζ(t + h)
d(t, t + h)− d(t, t)

h
dt,

where the last equality follows by adding and subtracting d(t − h, t) and then
making a change of variables in the last integral. Since

h−1 |d(t, t)− d(t− h, t)| ≤ h−1 |v(t)− v(t− h)| → |v′(t)| in L1
loc(0, 1) as h ↓ 0

and an analogous inequality holds for the other difference quotient, we can apply
(an extended version of) Fatou’s Lemma and pass to the upper limit in the in-
tegrals as h ↓ 0; denoting by a and b the two upper derivatives in the statement
of the Lemma we get − ∫

δζ ′ dt ≤ ∫
(a + b)ζ dt, whence the inequality between

distributions follows. �
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4.4 Optimal error estimates

4.4.1 The case λ = 0

In this section we mainly focus our attention on the case λ = 0 and we postpone
the analysis of the other situation to Section 4.4.2.

Lemma 4.4.1. Let us suppose that the convexity Assumption 4.0.1 holds for λ = 0,
let Rτ , E n

τ be defined as in (4.1.9a) and (4.0.20), let In
τ := (tn−1

τ , tnτ ], and let us
define

Iτ (T ) :=
∫ T

tN−1
τ

Rτ (t) dt for T ∈ IN
τ = (tN−1

τ , tNτ ]. (4.4.1)

Then∫
In

τ

Rτ (t) dt = τ2
nE n

τ , (4.4.2)

Iτ (T ) ≤ τN

(
φ(UN−1

τ )− φ(UN
τ )− 1

2
τNDN

τ

)
≤ 1

2
τ2
N |∂φ|2(UN−1

τ ), (4.4.3)

E n
τ ≤ 1

2

(
|∂φ|2(Un−1

τ )−Dn
τ

)
≤ 1

2

(
|∂φ|2(Un−1

τ )− |∂φ|2(Un
τ )

)
, (4.4.4)∫ T

0

Rτ (t) dt ≤
N−1∑
n=1

τ2
nE n

τ + Iτ (T ). (4.4.5)

Proof. (4.4.2) follows directly from (4.1.9b) since∫
In

τ

(1 − �τ (t)) dt =
∫

In
τ

�τ (t) dt =
1
2
,

∫
In

τ

(1− 2�τ (t)) dt = 0. (4.4.6)

(4.2.4) and (4.1.10) yield (4.4.3) and (4.4.4); finally, (4.4.7) is a direct consequence
of (4.4.2) and (4.4.1). �
Corollary 4.4.2. Under the same assumption of the previous lemma, let us suppose
that λ = 0 and U0

τ ∈ D(φ); then we have
N−1∑
n=1

τ2
nE n

τ + Iτ (T ) ≤ |τ |
{

φ(U0
τ )− φT (U0

τ )
}
≤ |τ |

{
φ(U0

τ )− inf
S

φ
}
, (4.4.7)

and, if U0
τ ∈ D(|∂φ|),

N−1∑
n=1

τ2
nE n

τ + Iτ (T ) ≤ 1
2
|τ |2 |∂φ|2(U0

τ ). (4.4.8)

Moreover, when the partition Pτ is uniform (i.e. τn ≡ τ = |τ | is independent of
n, cf. Remark 2.0.3), then the following sharper estimate holds, too:∫ T

0

Rτ (t) dt ≤
N−1∑
n=1

τ2
nE n

τ +Iτ (T ) ≤ τ
{

φ(U0
τ )−φτ (U0

τ )
}
≤ τ2

2
|∂φ|2(U0

τ ). (4.4.9)
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Proof. Since E n
τ ≥ 0 by (4.1.10), we easily have

N−1∑
n=1

τ2
nE n

τ ≤ |τ |
N−1∑
n=1

((
φ(Un−1

τ )− φ(Un
τ )

)− τnDn
τ

)
≤ |τ |

N−1∑
n=1

(
φ(Un−1

τ )− φ(Un
τ )

)
− |τ |

N−1∑
n=1

τnDn
τ

= |τ |
{

φ(U0
τ )− φ(UN−1

τ )− |τ |
N−1∑
n=1

τnDn
τ

}
.

Summing up the contribution of Iτ (T ) and recalling that
N∑

n=1

τnDn
τ =

N∑
n=1

d2(Un
τ , Un−1

τ )
τn

≥ 1
T

d2(U0
τ , UN

τ ), (4.4.10)

we obtain (4.4.7).
Since n �→ |∂φ|2(Un

τ ) is decreasing, too, if U0
τ ∈ D(|∂φ|) then (4.4.4) yields

N∑
n=1

τ2
nE n

τ ≤ |τ |2
2

N−1∑
n=1

(
|∂φ|2(Un−1

τ )− |∂φ|2(Un−1
τ )

)
≤ |τ |2

2

(
|∂φ|2(U0

τ )− |∂φ|2(UN−1
τ )

)
≤ |τ |2

2
|∂φ|2(U0

τ )−Iτ (T ),

which proves (4.4.8). When τn ≡ τ we can use a different estimate for E n
τ which

comes from (4.1.10)

E n
τ ≤ τ−1

((
φ(Un−1

τ )− φτ (Un−1
τ )

)− 1
2
τnDn

τ

)
≤ τ−1

((
φ(Un−1

τ )− φτ (Un−1
τ )

)− (
φ(Un

τ )− φτ (Un
τ )

))
,

(4.4.11)

thus obtaining
N−1∑
n=1

τ2E n
τ ≤ τ

N−1∑
n=1

((
φ(Un−1

τ )− φτ (Un−1
τ )

)− (
φ(Un

τ )− φτ (Un
τ )

))
≤ τ

(
φ(U0

τ )− φτ (U0
τ )

)− τ
(
φ(UN−1

τ )− φτ (UN−1
τ )

))
≤ τ

(
φ(U0

τ )− φτ (U0
τ )

)−I τ(T ),

which proves (4.4.9). �
Corollary 4.4.3. Suppose that the convexity Assumption 4.0.1 holds with λ ≥ 0.
Then the estimate (4.0.15) of Theorem 4.0.4 and all the estimates of Theorem
4.0.7 hold.

Proof. We simply apply (4.2.10) and the results of the previous corollary. Observe
that when T = tNτ ∈ Pτ then I τ(T ) = 0, so that we have (4.0.19) without any
correction term. �
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4.4.2 The case λ �= 0

First of all, let us observe that the first estimate (4.0.26) of Theorem 4.0.9 follows
directly from Corollary 4.2.3 and (4.2.1), (4.2.3).

In order to get the other error bounds, we need refined estimates of the
integral terms in the right-hand side of (4.2.11). Since λτ ≤ λ, by replacing λ
by λτ in the left-hand side of the differential inequality (4.1.25), we easily get
bounds analogous to (4.1.26) and (4.2.11) where the coefficient λτ occours in each
exponential term, thus obtaining for U0

τ = u0

eλτ T d(Uτ (T ), u(T )) ≤
(

Rτ (T ) + λ−
∫ T

0

e2λτ tD2
τ (t) dt

)1/2

+ 2
∫ T

0

|λ|eλτ tDτ (t) dt.

(4.4.12)

Let us observe that if T ∈ (tN−1
τ , tNτ ] for some N ∈ N,

Rτ (T ) = sup
t∈[0,T ]

∫ t

0

e2λτ tRτ (r) dr (4.4.13a)

≤ sup
1≤M≤N

(∫ tM−1
τ

0

e2λτ tRτ (r) dr +
∫

IM
τ

e2λτ t
[
Rτ (r)

]+
dr

)
(4.4.13b)

≤ sup
1≤M≤N

(M−1∑
n=1

∫
In

τ

e2λτ tRτ (r) dr +
∫

IM
τ

e2λτ t
[
Rτ (r)

]+
dr

)
, (4.4.13c)

and, recalling (4.1.11), the integral of the positive part of Rτ can be bounded by∫
IM

τ

e2λτ t
[
Rτ (r)

]+
dr ≤ τ2

M

max
[
e2λτ tM−1

τ , e2λτ tM
τ

]
2(1 + λτM )

|∂φ|2(UM−1
τ ). (4.4.14)

The next two lemmas provide the estimates of the other integral in the right-
hand side of (4.4.13b) and of the integrals involving Dτ in (4.4.12). Combining
these results with (4.4.12) we complete the proof of Theorems 4.0.9 and 4.0.10.

Proposition 4.4.4. Suppose that λ < 0 and U0
τ ∈ D(∂φ); then for T > 0 we have

Rτ (T ) ≤ |τ |2
2(1 + λ|τ |) |∂φ|2(U0

τ ), (4.4.15)

and, recalling that Tτ := min
{
tkτ ∈ Pτ : tkτ ≥ T

}
,

|λ|
∫ T

0

e2λτ tD2
τ (t) dt ≤ |τ |2 |λ|Tτ

3(1 + λ|τ |)2 |∂φ|2(U0
τ ),

2|λ|
∫ T

0

eλτ tDτ (t) dt ≤ |τ | |λ|Tτ

1 + λ|τ | |∂φ|(U0
τ ).

(4.4.16)
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Proof. Let us suppose that T ∈ IN
τ = (tN−1

τ , tNτ ] so that Tτ = tNτ , and 1 ≤ M ≤ N .
Since ∫

In
τ

e2λτ t(1− �τ (t)) dt ≤ 1
2
τne2λτ tn−1

τ , (4.4.17)∫
In

τ

e2λt�τ (t) dt ≥ 1
2
τneλ(tn−1

τ +tn
τ ) =

1
2
τne2λtn−1

τ eλτn , (4.4.18)

recalling (4.1.11) and (3.4.10) we get∫
In

τ

e2λτ tRτ (t) dt ≤ τ2
n

2(1 + λτn)
e2λτ tn−1

τ

{
|∂φ|2(Un−1

τ )− (1+λτn)eλτ τn |∂φ|2(Un
τ )

}
≤ τ2

n

2(1 + λτn)

(
e2λτ tn−1

τ |∂φ|2(Un−1
τ )− e2λτ tn

τ |∂φ|2(Un
τ )

)
.

Since the map n �→ e2λτ tn
τ |∂φ|2(Un

τ ) is decreasing, we get

M−1∑
n=1

∫
In

τ

e2λτ tRτ (t) dt ≤ |τ |2
2(1 + λ|τ |)

(
|∂φ|2(U0

τ )− e2λτ tM−1
τ |∂φ|2(UM−1

τ )
)
.

Taking into account (4.4.14) we obtain (4.4.15). Finally, we easily have

|λ|
∫

In
τ

e2λτ tD2
τ (t) dt ≤ |λ|τn

3
e2λτ tn−1

τ d2(Un
τ , Un−1

τ )

≤ |λ|τ3
n

3(1 + λτn)2
e2λτ tn−1

τ |∂φ|2(Un−1
τ ) ≤ |λ||τ |2τn

3(1 + λ|τ |) |∂φ|2(U0
τ ),

and

2|λ|
∫

In
τ

eλτ tDτ (t) dt ≤ |λ|τneλτ tn−1
τ d(Un

τ , Un−1
τ )

≤ |λ|τ2
n

1 + λτn
eλτ tn−1

τ |∂φ|(Un−1
τ ) ≤ |λ||τ |τn

1 + λ|τ | |∂φ|(U0
τ ).

Summing up all the contribution from n = 1 to N we obtain (4.4.16). �

Proposition 4.4.5. Assume that λ > 0, infS φ = 0, U0
τ ∈ D(φ), and Tτ is defined

as in the above proposition. We have

Rτ (T ) ≤
∫ T

0

e2λτ t
(
Rτ (t)

)+

dt ≤ |τ |(1 + λ|τ |)(1 + λTτ )φ(U0
τ ), (4.4.19)∫ T

0

eλτ tDτ (t) dt ≤ |τ |
(
2Tτ (1 + λTτ )φ(U0

τ )
)1/2

. (4.4.20)
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Moreover, if U0
τ ∈ D(|∂φ|) then

Rτ (T ) ≤ 1
2
|τ |2(1 + λTτ ) |∂φ|2(U0

τ ), (4.4.21)

2
∫ T

0

eλτ tDτ (t) dt ≤ Tτ |τ ||∂φ|(U0
τ ). (4.4.22)

Proof. As before suppose that T ∈ IN
τ = (tN−1

τ , tNτ ]. Since Lemma 2.4.13 yields

Dn
τ ≥ |∂φ|2(Un

τ ) ≥ 2λφ(Un
τ ),

by (4.1.9a) and recalling (3.4.10) and (3.4.9), we get∫
In

τ

e2λτ t
(
Rτ (t)

)+

dt ≤ τne2λτ tn
τ

(
φ(Un−1

τ )− (1 + λτn)φ(Un
τ )

)
≤ τne2λτ tn

τ (1 + λτn)
( λτn

(1 + λτn)2
φ(Un−1

τ ) +
1

(1 + λτn)2
φ(Un−1

τ )− φ(Un
τ )

)
≤ |τ |(1 + λ|τ |)

(
λτne2λτ tn−1

τ φ(Un−1
τ ) + e2λτ tn−1

τ φ(Un−1
τ )− e2λτ tn

τ φ(Un
τ )

)
≤ |τ |(1 + λ|τ |)

(
λτnφ(U0

τ ) + e2λτ tn−1
τ φ(Un−1

τ )− e2λτ tn
τ φ(Un

τ )
)
.

Summing up for n = 1 to N we obtain∫ T

0

e2λτ tRτ (t) dt ≤ |τ |(1 + λ|τ |)(1 + λTτ )φ(U0
τ ).

Moreover,

2
∫ T

0

eλτ tDτ (t) dt ≤
N∑

n=1

τ2
neλτ tn

τ

√
Dn

τ ≤
√

2Tτ |τ |
( N∑

n=1

τne2λτ tn
τ
Dn

τ

2

)1/2

and

(1 + λτn)τn
Dn

τ

2
≤

(
φ(Un−1

τ )− (1 + λτn)φ(Un
τ )

)
. (4.4.23)

Arguing as before, we find

2
∫ T

0

eλτ tDτ (t) dt ≤ |τ |
(
2Tτ (1 + λTτ )φ(U0

τ )
)1/2

.

Finally, if U0
τ ∈ D(|∂φ|), we first observe that∫

In
τ

e2λτ t(1 − 2�τ (t)) dt ≤ 0, (4.4.24)
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so that by (4.1.9b) we have∫
In

τ

e2λτ tRτ (t) dt ≤ τ2
ne2λτ tn

τ E n
τ . (4.4.25)

Since

2E n
τ ≤ 1

1 + λτn
|∂φ|2(Un−1

τ )− |∂φ|2(Un
τ )

≤ λτn

(1 + λτn)2
|∂φ|2(Un−1

τ ) +
1

(1 + λτn)2
|∂φ|2(Un−1

τ )− |∂φ|2(Un
τ )

we obtain∫
In

τ

e2λτ tRτ (t) dt ≤ 1
2
τ2
n

(
e2λτ tn−1

τ |∂φ|2(Un−1
τ )− e2λτ tn

τ |∂φ|2(Un
τ )

)
+

λ

2
τ3
ne2λτ tn−1

τ |∂φ|2(Un−1
τ ).

Summing up from n = 1 to M − 1 and adding the contribution of the integral in
the last interval IM

τ as in (4.4.14), by a repeated application of (4.1.10) we find

M−1∑
n=1

∫
In

τ

e2λτ tRτ (t) dt +
∫

IM
τ

e2λτ t
(
Rτ (t)

)+

dt

≤ |τ |2
2

(
|∂φ|2(U0

τ )− e2λτ tM−1
τ |∂φ|2(UM−1

τ )
)

+
λ|τ |2tM−1

τ

2
|∂φ|2(U0

τ )

+ τ2
M

e2λτ tM−1
τ

2
|∂φ|2(UM−1

τ ) + τ2
M

λτM e2λτ tM
τ

(1 + λτ τM )2
|∂φ|(UM−1

τ )

≤ |τ |2
2
|∂φ|2(U0

τ )(1 + λtMτ ),

which yields (4.4.21). Analogously,

2
∫ T

0

e2λτ tDτ (t) dt ≤ Tτ |∂φ|(U0
τ ),

which concludes the proof. �


