Notation

v' (t)	Metric derivative of $v: (a, b) \to \mathscr{S}$, see Theorem 1.1.2
$AC^p(a,b;\mathscr{S})$	Absolutely continuous $v: (a, b) \to \mathscr{S}$ with $ v' \in L^p(a, b)$
$B_r(x)$	Open ball of radius r centered at x in a metric space
$D(\phi)$	Domain of the functional ϕ , see (1.2.1)
$ \partial \phi (v), \ \mathfrak{l}_{\phi}(v)$	Local and global slopes of ϕ , see Definition 1.2.4
$\operatorname{Lip}(\phi, A)$	Lipschitz constant of the function ϕ in the set A
$\partial \phi(v)$	Fréchet subdifferential of ϕ in Banach (1.4.7), Hilbert (10.0.1),
	or Wasserstein spaces, see Definition 10.1.1 and (10.3.12)
$\partial^{\circ}\phi(\mu)$	Minimal selection map in the subdifferential, see Section 1.4
	and (10.1.14)
$ \partial^-\phi (v)$	Relaxed slope of ϕ , see (2.3.1)
$\Phi(\tau, u; v)$	Quadratic perturbation of ϕ by $d^2(u, \cdot)/2\tau$, see (2.0.3b)
$J_{\tau}[u]$	Resolvent operator, see $(2.0.5)$
$\overline{U}_{\tau}(t)$	Piecewise constant interpolation of U^n_{τ} , see (2.0.7)
$MM(\Phi; u_0)$	Minimizing movement of ϕ , see Definition 2.0.6
$GMM(\Phi; u_0)$	Generalized minimizing movement of ϕ , see Definition 2.0.6
$\phi_{\tau}(u)$	Moreau–Yosida approximation of ϕ , see Definition 3.1.1
$\tilde{U}_{\tau}(t)$	De Giorgi's interpolation of U^n_{τ} , see (3.2.1)
$\mathscr{B}(X)$	Borel sets in a separable metric space X
$C_b^0(X)$	Space of continuous and bounded real functions defined on X
$C^{\infty}_{c}(\mathbb{R}^{d})$	Space of smooth real functions with compact support in \mathbb{R}^d
$\mathscr{P}(X)$	Probability measures in a separable metric space X
$\mathscr{P}_p(X)$	Probability measures with finite p -th moment, see $(5.1.22)$
$\mathscr{P}_{pq}(X \times X)$	Probability measures with finite p, q -th moments, see (10.3.2)
$L^p(\mu; X)$	L^p space of μ -measurable X-valued maps, see (5.4.3)
X_{ϖ}	The Hilbert space X endowed with a weaker (normed) topolo-
~ ~	gy, see Section 5.1.2
$f, \nabla f$	Approximate limit and differential of a function f , see
	Definition 5.5.1
$\operatorname{supp} \mu$	Support of μ , see (5.0.1)
$\operatorname{span} C$	Linear envelope generated by a subset C of a vector space
$r_{\#}\mu$	Push-forward of μ through \boldsymbol{r} , see (5.2.1)
$\pi^i, \pi^{i,j}$	Projection operators on a product space X , see (5.2.9)
$\Gamma(\mu^1,\mu^2)$	2-plans with given marginals μ^1 , μ^2
$\Gamma_o(\mu^1,\mu^2)$	Optimal 2-plans with given marginals μ^1 , μ^2
1	Identity map
$t^{ u}_{\mu}$	Optimal transport map between μ and ν , see (7.1.4)
$W_p(\mu, \nu)$	<i>p</i> -th Wasserstein distance between μ and ν
$W_{\mu}(\mu,\nu)$	Pseudo-Wasserstein distance induced by μ , see (7.3.2)
$W_{p,\mu}(\mu,\nu)$	Pseudo pth-Wasserstein distance induced μ , see (10.2.9)
π_t , π_t , π_t	Interpolated projections, see $(7.2.2)$
j_p	Duality map between L^p and L^p , see (8.3.1)

18

Notation

d-dimensional projections on a Hilbert space X , see
Definition 5.1.11
Cylindrical test functions on a Hilbert space X , see
Definition 5.1.11
Barycentric projection of a plan γ in $\mathscr{P}(X \times X)$, see (5.4.9)
Tangent bundle to $\mathscr{P}_p(X)$, see Definition 8.4.1
3-plans γ such that $\pi_{\#}^{1,3}\gamma \in \Gamma_o(\pi_{\#}^1\mu^{12},\mu^3)$
Extended Fréchet subdifferential of ϕ at μ , see
Definitions 10.3.1
Minimal selection plan in the subdifferential, see
Theorem 10.3.11