
Chapter 12

Appendix

12.1 Carathéodory and normal integrands

In this section we recall some standard facts about integrands depending on two
variables, measurable w.r.t. the first one, and more regular w.r.t. the second one.

Definition 12.1.1 (Carathéodory and normal integrands). Let X1, X2 be Polish
spaces, let μ ∈ P(X1) and let L be the Σ-algebra of μ-measurable subsets of X1.
We say that a L×B(X2)-measurable function f : X1×X2 → R is a Carathéodory
integrand if x2 �→ f(x1, x2) is continuous for μ-a.e. x1 ∈ X1.
We say that a L ×B(X2)-measurable function f : X1×X2 → [0, +∞] is a normal
integrand if x2 �→ f(x1, x2) is lower semicontinuous for μ-a.e. x1 ∈ X1.

In order to check that a given function f is a Carathéodory integrand the
following remark will often be useful.

Remark 12.1.2. Suppose that a function f : X1 ×X2 → R satisfies

x2 �→ f(x1, x2) is continuous for μ-a.e. x1 ∈ X1,

x1 �→ f(x1, x2) is L -measurable for each x2 ∈ X2.
(12.1.1)

Then f is a Carathéodory integrand. Indeed we can approximate f by the L ×
B(X2)-measurable functions

fε(x1, x2) :=
∑

i

fε(x1, yi)χV ε
i
(x2),

where {V ε
i } is a partition of X2 into (at most) countably many Borel sets with

diameter less than ε and yi ∈ V ε
i . By the first condition in (12.1.1) the functions

fε pointwise converge to u out of a set N × X2 with μ(N) = 0. Therefore f is
L ×B(X2)-measurable.
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For the proof of the following theorem, we refer to [28, Thm. 1, Cor. 1, Thm.
2((d) ⇒ (a))].

Theorem 12.1.3 (Scorza–Dragoni). Let X1, X2 be Polish spaces and let μ∈P(X1);
if f is defined in X1 ×X2 with values in R (resp. in [0, +∞]) is a Carathéodory
(resp. normal) integrand, then for every ε > 0 there exists a continuous (resp.
l.s.c. and bounded above by f) function fε such that

μ ({x1 ∈ X1 : f(x1, x2) �= fε(x1, x2) for some x2 ∈ X2}) ≤ ε. (12.1.2)

12.2 Weak convergence of plans and disintegrations

In this section we examine more closely the relation between narrow convergence
and disintegration for families of plans γn ∈ P(X1 ×X2) whose first marginal is
independent of n.

In the sequel we assume that X1 and X2 are Polish spaces, and μ1 ∈ P(X1).
We start by stating natural continuity and lower semicontinuity properties with
respect to narrow convergence of Carathéodory and normal integrands.

Theorem 12.2.1. Let γn ∈ P(X1 × X2) narrowly converging to γ and such that
π1

#γn = μ1. Then for every normal integrand f we have

lim inf
n→∞

∫
X1×X2

f(x1, x2) dγn(x1, x2) ≥
∫

X1×X2

f(x1, x2) dγ(x1, x2), (12.2.1)

and for every bounded Carathéodory integrand we have

lim
n→∞

∫
X1×X2

f(x1, x2) dγn(x1, x2) =
∫

X1×X2

f(x1, x2) dγ(x1, x2). (12.2.2)

Proof. We simply apply Lemma 5.1.10 and the Scorza–Dragoni approximation
theorem of the previous section. �

If γn narrowly converge to γ in P(X1×X2) and π1
#γn is independent of n,

the following result provides a finer description of the limit γ.

Lemma 12.2.2. Let X1, X2 be Polish spaces and let γn ∈ P(X1 ×X2) narrowly
converging to γ and such that π1

#γn = μ1 is independent of n. If {γn
x1
}x1∈X1 ,

{γx1}x1∈X1 are the disintegrations of γn, γ w.r.t. μ1 and Gx1 ⊂ P(X2) is the
subset of all the narrow accumulation points of (γn

x1
)n∈N, then we have

γx1 ⊂ conv Gx1 for μ1-a.e. x1 ∈ X1. (12.2.3)

In particular

supp γx1 ⊂
⋃

γ∈Gx1

supp γ for μ1-a.e. x1 ∈ X1. (12.2.4)
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Proof. Taking into account Remark 5.1.5 we can find a function ϕ : X2 → [0, +∞]
with compact sublevels, such that∫

X1×X2

ϕ(x2) dγ(x1, x2) ≤ sup
n∈N

∫
X1×X2

ϕ(x2) dγn(x1, x2) = S < +∞. (12.2.5)

In particular, for any open set A ⊂ X1 and any continuous and bounded function
f : X2 → R we have∫

A×X2

f(x2) dγ(x1, x2) + εS ≥ lim
n→+∞

∫
A×X2

(
f(x2) + εϕ(x2)

)
dγn(x1, x2)

≥
∫

A

(
inf
ε>0

lim inf
n→∞

∫
X2

(
f(x2) + εϕ(x2)

)
dγn

x1
(x2)

)
dμ1(x1)

(12.2.6)
Passing to the limit as ε ↓ 0 and observing that A is arbitrary, we get∫

X2

f(x2) dγx1(x2) ≥ inf
ε>0

lim inf
n→∞

∫
X2

(
f(x2) + εϕ(x2)

)
dγn

x1
(x2) for μ-a.e. x1

and it is not difficult to show using Prokhorov theorem that

lim inf
n→∞

∫
X2

(
f(x2) + εϕ(x2)

)
dγn

x1
(x2) ≥ inf

γ∈Gx1

∫
X2

f(x2) dγ(x2) (12.2.7)

and ∫
X2

f(x2) dγx1(x2) ≥ inf
γ∈Gx1

∫
X2

f(x2) dγ(x2) (12.2.8)

for μ1-a.e. x1 ∈ X1. Choosing f in a countable set C0 satisfying (5.1.2a,b) we can
find a μ1-negligible subset N ⊂ X1 such that (12.2.8) holds for each f ∈ C and
x1 ∈ X1 \ N . In fact the approximation property (5.1.2a,b) shows that (12.2.8)
holds for each function f ∈ C0

b (X2) and therefore Hahn–Banach theorem yields
γx1 ∈ conv Gx1 for x1 ∈ X1 \N . �

We conclude this section with an useful convergence result:

Lemma 12.2.3. Let X1 be a Polish space, let X2 be a separable Hilbert space, and
let f : X2 → [0, +∞] be a l.s.c. strictly convex function. Suppose that (γn) ⊂
P(X1 ×X2) narrowly converges to γ =

∫
X1

γx1
dμ1(x1), with μ1 = π1

#γ; if the
barycenter of γ γ̄(x1) =

∫
X2

x2 dγx1
(x2) exists and satisfies

lim inf
n→∞

∫
X1×X2

f(x2) dγn(x1, x2) =
∫

X1

f(γ̄x1
) dμ1(x1) ∈ R (12.2.9)

then γ = (i × γ̄)#μ1. The same result holds if π1
#γn = μ1 and f : X1 × X2 →

[0, +∞] is a normal integrand such that f(x1, ·) is strictly convex for μ1-a.e. x1 ∈
X1; in this case the barycenters γ̄n converge to γ̄ in μ1-measure.
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Proof. Equality (12.2.9) yields∫
X1

(∫
X2

f(x2) dγx1
(x2)

)
dμ1(x1) =

∫
X1×X2

f(x2) dγ(x1, x2)

≤ lim inf
n→+∞

∫
X1×X2

f(x2) dγn(x1, x2)

≤
∫

X1

f(γ̄(x1)) dγ1(x1),

so that Jensen inequality yields∫
X2

f(x2) dγx1
(x2) = f(γ̄(x1)) for μ1-a.e. x1 ∈ X1

and the strict convexity of f yields γx1
= δγ̄(x1). The second part of the statement

can be proved in an analogous way. �

12.3 PC metric spaces and their geometric tangent cone

In this section we review some basic general facts about positively curved (in short
PC) spaces in the sense of Aleksandrov [5, 40, 139], and we recall the related
notion of tangent cone; in the last section we will discuss its relationships with the
tangent space we introduced in Section 8.4 for the Wasserstein space P2(X).

Let (S , d) be a metric space; a constant speed geodesic x1→2 : t ∈ [0, T ] �→
xt ∈ S connecting x1 to x2 is a curve satisfying

x0 = x1, xT = x2, d(xt, xs) =
t− s

T
d(x1, x2) ∀ 0 ≤ s ≤ t ≤ T. (12.3.1)

In particular we are dealing with geodesics of minimal length whose metric deriva-
tive |x′|(t) is constant on [0, T ] and equal to T−1d(x1, x2).

We say that S is geodesically complete (or length space) if each couple of
points can be connected by a constant speed geodesic.

Definition 12.3.1 (PC-spaces). A geodesically complete metric space (S , d) is pos-
itively curved (a PC-space) if for every x0 ∈ S and every constant speed geodesic
x1→2 : t ∈ [0, 1] �→ x1→2

t connecting x1 to x2 it holds

d2(x1→2
t , x0) ≥ (1− t)d2(x1, x0) + td2(x2, x0)− t(1− t)d2(x1, x2). (12.3.2)

Observe that in an Hilbert space X (12.3.2) is in fact an identity, since for
x1→2

t = (1− t)x1 + tx2 we have

|x1→2
t − x0|2 = (1− t)|x1 − x0|2 + t|x2 − x0|2 − t(1− t)|x1 − x2|2. (12.3.3)

Therefore condition (12.3.2) can be considered as a sort of comparison property
for triangles: let us exploit this fact.



12.3. PC metric spaces and their geometric tangent cone 311

Definition 12.3.2 (Triangles). A triangle x in S is a triple x=(x1→2, x2→3, x3→1)
of constant speed geodesics connecting (with obvious notation) three points x1, x2,
x3 in S . We denote by % = %(x) ⊂ S the image of the curves x1→2, x2→3, x3→1.

To each triangle x in S we can consider a corresponding reference triangle
(unique, up to isometric transformation) x̂ = (x̂1→2, x̂2→3, x̂3→1) in R2 connecting
the points x̂1, x̂2, x̂3 ∈ R2 such that

|x̂i − x̂j | = d(xi, xj) i, j = 1, 2, 3. (12.3.4)

Two points x ∈ %, x̂ ∈ %̂ are correspondent if

x = xi→j
t , x̂ = x̂i→j

t for some t ∈ [0, 1], i, j ∈ {1, 2, 3}.

x1

x2

x3 x̂1

x̂2

x̂3

x1→2x2→3

x3→1

x̂1→2
x̂2→3

x̂3→1

Figure 12.1: on the left the triangle on the PC-space and on the right its euclidean
reference.

Proposition 12.3.3 (Triangle comparison). If S is a PC-space and % ⊂ S , %̂ ⊂
R2 are two corresponding triangles, then for each couples of correspondent points
x, y ∈ %, x̂, ŷ ∈ %̂ we have

d(x, y) ≥ |x̂− ŷ|. (12.3.5)

Proof. When x or y is a vertex of the triangle, then (12.3.5) is just (12.3.2): thus we
have to examine the case (up to permutation of the indexes) x = x1→2

t , y = x1→3
s ,

t, s ∈ (0, 1). Denoting by x1→t the rescaled geodesic connecting x1 to x = x1→2
t

and by introducing a new geodesic xt→3 connecting x to x3, we can consider
the new triangle x′ = (x1→t, xt→3, x3→1) connecting x1, x, x3. The corresponding
euclidean reference x̂′ can be constructed keeping fixed x̂1 and x̂3 (and therefore
ŷ = x̂1→3

s ) and introducing a new point x̂′, which in general will be different from
x̂, such that |x̂′− x̂1| = d(x, x1), |x̂′− x̂3| = d(x, x3). Applying (12.3.2) we obtain

|x̂′ − x̂3| = d(x, x3) ≥ |x̂− x̂3|
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and applying the identity (12.3.3) we get

|x̂′ − ŷ|2 = (1− s)|x̂′ − x̂1|2 + s|x̂′ − x̂3|2 − s(1− s)|x̂3 − x̂1|2
≥ (1− s)|x̂− x̂1|2 + s|x̂− x̂3|2 − s(1− s)|x̂3 − x̂1|2 = |x̂− ŷ|2

therefore, applying (12.3.2) again to the triangles x′, x̂′ we obtain

d(x, y) ≥ |x̂′ − ŷ′| = |x̂′ − ŷ| ≥ |x̂− ŷ|. �

In a Hilbert space X the angle ∠(x̂1→2, x̂1→3) ∈ [0, π] between the two
segments joining x̂1 to x̂2 and x̂1 to x̂3 can be easily computed by the formula

cos(∠(x̂1→2, x̂1→3)) =
〈x̂2 − x̂1, x̂3 − x̂1〉
|x̂2 − x̂1| |x̂3 − x̂1| = α(x̂1; x̂2, x̂3), (12.3.6)

where

α(x̂1; x̂2, x̂3) =
|x̂2 − x̂1|2 + |x̂3 − x̂1|2 − |x̂3 − x̂2|2

2|x̂2 − x̂1| |x̂3 − x̂1| . (12.3.7)

In particular, if x̂1→2
t := (1 − t)x̂1 + tx̂2 and x̂1→3

s := (1− s)x̂1 + sx̂3, we have

α(x̂1; x̂1→2
t , x̂1→3

s ) = α(x̂1; x̂2, x̂3) ∀ t, s ∈ (0, 1]. (12.3.8)

Taking into account of (12.3.7), in the case of a general PC-space, it is natural to
introduce the function

α(x1; x2, x3) :=
d(x2, x1)2 + d(x3, x1)2 − d(x3, x2)2

2d(x2, x1) d(x3, x1)
, x1 �= x2, x3 (12.3.9)

and we have the following monotonicity result.

Lemma 12.3.4 (Angle between geodesics). Let (S , d) be a PC-space and let x1→2,
x1→3 be constant speed geodesics starting from x1; then the function

t, s ∈ (0, 1] �→ α(x1; x1→2
t , x1→3

s ) is nondecreasing in s, t. (12.3.10)

The angle ∠(x1→2, x1→3) ∈ [0, π] between x1→2 and x1→3 is thus defined by the
formula

cos(∠(x1→2, x1→3)) := inf
s,t

α(x1; x1→2
t , x1→3

s ) = lim
s,t↓0

α(x1; x1→2
t , x1→3

s ).

(12.3.11)

Proof. It is sufficient to prove that α(x1; x2, x3) ≥ α(x1; x1→2
t , x1→3

s ) for s, t ∈
(0, 1]; if x̂ is a corresponding reference triangle with vertexes x̂1, x̂2, x̂3, we easily
have by Proposition 12.3.3 and (12.3.8)

α(x1; x1→2
t , x1→3

s ) ≤ α(x̂1; x̂1→2
t , x̂1→3

s ) = α(x̂1; x̂2, x̂3) = α(x1; x2, x3) �
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Remark 12.3.5. Notice that the separate limit as t ↓ 0 is given by

lim
t↓0

α(x1; x1→2
t , x1→3

s ) = lim
t↓0

t2d2(x1, x2) + d2(x1, x1→3
s )− d2(x1→2

t , x1→3
s )

2ts d(x1, x2) d(x1, x3)

= −(
2sd(x1, x2) d(x1, x3)

)−1 d

dt

(
d2(x1→2

t , x1→3
s )

)
|t=0+

and therefore

cos
(
∠(x1→2, x1→3)

)
= −(

2d(x1, x2) d(x1, x3)
)−1 ∂2

∂s∂t

(
d2(x1→2

t , x1→3
s )

)
|t,s=0+

For a fixed x ∈ S let us denote by G(x) the set of all constant speed geodesics
x starting from x and parametrized in some interval [0, Tx]; recall that the metric
velocity of x is |x′| = d(x(t), x)/t, t ∈ (0, T ]. We set

‖x‖x := |x′|, 〈x, y〉x := ‖x‖x ‖y‖x cos(∠(x, y)),

d2
x(x, y) := ‖x‖2

x + ‖y‖2
x − 2〈x, y〉x.

(12.3.12)

If x ∈ G(x) and λ > 0 we denote by λx the geodesic

(λx)t := xλt, Tλx = λ−1Tx, (12.3.13)

and we observe that for each x, y ∈ G(x), λ > 0, it holds

‖λx‖x = λ‖x‖x, 〈λx, y〉x = 〈x, λy〉x = λ〈x, y〉x (12.3.14)

Observe that the restriction of a geodesic is still a geodesic; we say that x ∼ y if
there exist ε > 0 such that x|[0,ε]

= y|[0,ε]
.

Theorem 12.3.6 (An abstract notion of Tangent cone). If x, y : [0, T ] → S are
two geodesics starting from x we have

dx(x, y) = lim
t↓0

d(xt, yt)
t

= sup
t∈(0,T ]

d(xt, yt)
t

. (12.3.15)

In particular, the function dx defined by (12.3.12) is a distance on the quotient
space G(x)/ ∼. The completion of G(x)/ ∼ is called the tangent cone TanxS at
the point x.

Proof. (12.3.15) follows by a simple computation since for each s > 0 (12.3.11)
yields

cos
(
∠(x, y)

)
= lim

t↓0
d2(xts, x) + d2(yts, x)− d2(xts, yts)

2d(xts, x)d(yts, x)

=
d2(xs, x) + d2(ys, x)

2d(xs, x)d(ys, x)
− lim

t↓0
d2(xts, yts)

2t2d(xs, x)d(ys, x)
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and therefore from (12.3.12) we have

d2
x(x, y) =

d2(xs, x) + d2(ys, x)
s2

− 2
d(xs, x)d(ys, x)

s2
cos(∠(x, y))

= lim
t↓0

d2(xts, yts)
2t2s2

.
�

Remark 12.3.7 (The tangent cone as Gromov-Hausdorff blow up of pointed
spaces). In the finite dimensional case TanxS can also be characterized as the
Gromov-Hasudorff limit of the sequence of pointed metric spaces (S , x, n · d) as
n →∞. [40, 7.8.1]

12.4 The geometric tangent spaces in P2(X)

Taking into account of the abstract definition of Tangent cone 12.3.6 for PC-
spaces and the fact proved in Section 7.3 that P2(X) is a PC-space, we want an
explicit representation of the abstract tangent space TanμP2(X) induced by the
2-Wasserstein distance.

First of all we want to determine a precise expression for the angle between
two geodesics. Observe that an optimal plan μ ∈ Γo(μ1, μ2) is associated to the
geodesic μ1→2 with μ1→2

t = (π1→2
t )#μ whose velocity is equal to the distance

between the end points |μ′|2 =
∫ |x2 − x1|2 dμ. If we want to represent each

constant speed geodesics, it is convenient to introduce the new “velocity” plans

γλ :=
(
π1, λ(π2 − π1)

)
#

μ, (12.4.1)

that can be used to provide a natural parametrizations for the rescaled geodesic
(λ · μ1→2)t := μ1→2

λt as follows:

μ1→2
λt =

(
(1− λt)π1 + λtπ2

)
#

μ = (π1 + tπ2)#γλ t ∈ [
0, λ−1

]
. (12.4.2)

Therefore we can identify constant speed geodesics parametrized in some interval
[0, λ−1] with transport plans γ of the type

γ =
(
π1, λ(π2 − π1)

)
#

μ for some optimal plan μ ∈ P2(X),

and therefore we set

G(μ) :=
{
γ ∈ P2(X2) : π1

#γ = μ,(
π1, π1 + επ2

)
#

γ is optimal, for some ε > 0
}
.

(12.4.3)

It easy to check that there is a one-to-one correspondence between G(μ) and the
quotient G(μ)/ ∼ introduced in the previous section: for, to each plan γ ∈ G(μ)
we associate the (equivalence class of the) geodesic

μt := (π1 + tπ2)#γ, 0 ≤ t ≤ ε, (12.4.4)
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where ε > 0 is chosen as in (12.4.3). Conversely, if μt, t ∈ [0, T ], is a curve such
that μ|[0,ε]

is a (minimal, constant speed) geodesic, then for every λ−1 ∈ (0, ε]
there exists a unique optimal plan μλ ∈ Γo(μ0, μλ−1) such that

μt =
(
π1 + λt(π2 − π1)

)
#

μλ t ∈ [0, λ−1];

by Theorem 7.2.2

0 < λ−1
1 < λ−1

2 ≤ ε =⇒ μλ1
=

(
π1, π1 + λ2/λ1(π2 − π1)

)
#

μλ2
,

so that

γ =
(
π1, λ(π2 − π1)

)
#

μλ is independent of λ, belongs to G(μ), (12.4.5)

and represents μt through (12.4.4).
Motivated by the above discussion, we introduce the following definition:

Definition 12.4.1 (Exponential map in P2(X)). For μ ∈ P(X) and γ ∈ G(μ) we
define

λ · γ :=
(
π1, λπ2

)
#

γ, expμ(γ) :=
(
π1 + π2

)
#

γ. (12.4.6)

The notation is justified by the fact that the curve

t �→ expμ(t · γ) is a constant speed geodesic in some interval [0, ε] (12.4.7)

whenever γ ∈ G(μ).
For γ1 2, γ1 3 ∈ P2(X2) with π1

#γ1 i = μ, i = 2, 3, we set

‖γ1 2‖2
μ :=

∫
X2
|x2|2 dγ1 2(x1, x2), (12.4.8)

〈γ1 2, γ1 3〉μ = max
{∫

X3
〈x2, x3〉 dγ : γ ∈ Γ1(γ1 2, γ1 3)

}
, (12.4.9)

W 2
μ(γ1 2, γ1 3) = min

{∫
X3
|x2 − x3|2 dγ : γ ∈ Γ1(γ1 2, γ1 3)

}
, (12.4.10)

where Γ1(γ1 2, γ1 3) is the family of all 3-plans in γ ∈ P(X3) such that π1,2
# γ =

γ1 2 and π1,3
# γ = γ1 3.

Proposition 12.4.2. Suppose that γ1 2, γ1 3 belongs to G(μ) so that they can be
identified with the constant speed geodesics μ1→2, μ1→3 through (12.4.4). Then
the previous definitions coincide with the corresponding quantities introduced in
(12.3.12) for general PC-metric spaces.

Proof. The first identity of (12.4.8) is immediate. In order to prove the second
one we apply Proposition 7.3.6, by taking into account Remark 12.3.5: thus we
have

〈γ1 2, γ1 3〉μ = lim
s↓0

2s−1

∫
X3
〈x2 − x1, x3 − x1〉 dμs,
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where μ1→3
s = expμ(sγ1 3) and μs ∈ Γo(μ1 2, μ1→3

s ) is chosen among the minimiz-
ers of (7.3.15). It is easy to check that we can choose

μs =
(
π1, π1 + π2, π1 + sπ2

)
#

γ,

where γ ∈ Γ1(γ1 2, γ1 3) realizes the maximum in (12.4.9) (or equivalently the
minumum of (12.4.10)) and therefore

lim
s↓0

s−1

∫
X3
〈x2 − x1, x3 − x1〉 dμs = lim

s↓0
s−1

∫
X3
〈x2, x1 + sx3 − x1〉 dγ

=
∫

X3
〈x2, x3〉 dγ.

The last formula of (12.4.8) follows now directly by the definition (12.3.12). �
If either γ1 2 or γ1 3 are induced by a transport map t, e.g. γ1 2 =

(
i× t

)
#

μ,
then the previous formulae are considerably simpler, since

‖γ1 2‖2
μ :=

∫
X2
|t(x1)|2 dμ(x1) = ‖t‖2

L2(μ;X), (12.4.11)

〈γ1 2, γ1 3〉μ =
∫

X2
〈t(x1), x3〉 dγ1 3(x1, x3), (12.4.12)

W 2
μ(γ1,2, γ1 3) =

∫
X2
|t(x1)− x3|2 dγ1 3(x1, x3). (12.4.13)

Finally, if also γ1 3 =
(
i× s

)
#

μ, then (12.4.12) and (12.4.13) become

〈γ1 2, γ1 3〉μ =
∫

X

〈t(x1), s(x1)〉 dμ(x1) = (t, s)L2(μ;X), (12.4.14)

W 2
μ(γ1,2, γ1 3) =

∫
X

|t(x1)− s(x1)|2 dμ(x1) = ‖t− s‖2
L2(μ;X). (12.4.15)

These results lead to the following definition.

Definition 12.4.3 (Geometric tangent cone). The geometric tangent cone
TanμP2(X) to P2(X) at μ is the closure of G(μ) in P2(X2) with respect to the
distance Wμ(·, ·).

In Section 8.4 we already introduced a notion of tangent space TanμP2(X)
and we showed in Theorem 8.5.1 its equivalent characterization in terms of optimal
transport maps

TanμP2(X) =
{
λ(r − i) : (i× r)#μ ∈ Γo(μ, r#μ), λ > 0

}L2(μ;X)
. (12.4.16)

In order to compare these two notions, let us recall the Definition 5.4.2 of barycen-
tric projection γ̄ of a plan γ ∈ P2(X2) with π1

#γ = μ:

t := γ̄ ⇔ t(x1) =
∫

X

x2 dγx1
(x2), t ∈ L2(μ; X), (12.4.17)
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which is a nonexpansive map from TanμP2(X) to L2(μ; X). Indeed choosing
γ ∈ Γ1(γ1, γ2) and denoting by γ1

x1
and γ2

x1
the disintegrations of γ1 and γ2

w.r.t. μ we have∫
X

|γ̄1 − γ̄2|2 dμ =
∫

X

∣∣∣∣∫
X2

(x2 − x3) dγx1

∣∣∣∣2 dμ ≤
∫

X3
|x2 − x3|2 dγ,

so that
‖γ̄1 − γ̄2‖L2(μ;X) ≤ Wμ(γ1, γ2). (12.4.18)

We have the following result:

Theorem 12.4.4. For every μ ∈ P2(X) the tangent space is the image
of TanμP2(X) through the barycentric projection. Moreover, if μ ∈ Pr

2 (X),
then the barycentric projection is an isometric one-to-one correpondence between
TanμP2(X) and TanμP2(X).

Proof. Let us first prove that γ̄ ∈ TanμP2(X) for any γ ∈ TanμP2(X). By the
continuity of the barycentric projection and the identity (π1, π1 + επ2)#γ = i+εγ̄,
it suffices to show that (μ̄− i) ∈ TanμP2(X) for any optimal plan μ whose first
marginal is μ. We know that suppμ is contained in the graph of the subdifferential
of a convex and l.s.c. function ψ : X → (−∞, +∞], i.e.

y ∈ ∂ψ(x) for any (x, y) ∈ supp μ.

Since ∂ψ(x) is a closed convex subset of X for every x ∈ D(∂ψ), we obtain that
μ̄(x) =

∫
X y dμx(y) ∈ ∂ψ(x) for μ-a.e. x; therefore μ̄ is an optimal transport map

and (μ̄− i) ∈ TanμP2(X).
In order to show that the barycentric projection is onto it suffices to prove

that the map I : TanμP2(X) �→ P(X ×X) defined by I(v) := (i× v)#μ takes
its values in TanμP2(X) and to notice that it satisfies I(v) = v. Since the unique
plan in Γ1 (I(v), I(v′)) is (i× v × v′)#μ, we have

W 2
μ (I(v), I(v′)) =

∫
X

|v − v′|2 dμ,

so that our thesis follows if I(v) ∈ G(μ) for every v in the dense subset of
TanμP2(X) introduced in (12.4.16): this last property follows trivially by the
definition of G(μ) (12.4.3). Finally in the case when μ is regular all optimal trans-
port plans in G(μ) are induced by transports: therefore I is onto and it is the
inverse of the barycentric projection. �

Remark 12.4.5 (The exponential map and its inverse). Observe that the exponen-
tial map is a contraction since

W2(expμ(μ), expμ(σ)) ≤ Wμ(μ, σ), (12.4.19)



318 Chapter 12. Appendix

but in general, it is not injective, even if it is restricted to the tangent space.
Nevertheless it admits a natural (multivalued) right inverse defined by

exp−1
μ (ν) :=

{
μ ∈ G(μ) :

(
π1, π1 + π2

)
#

μ ∈ Γo(μ, ν)
}

. (12.4.20)

We conclude this section with an explicit representation of the distance Wμ

defined by (12.4.10).

Proposition 12.4.6. Let γ1 2, γ1 3 be two plans in P2(X2) with the same first
marginal μ. Then γ ∈ Γ1(γ1 2, γ1 3) realizes the minimum in (12.4.8) if and only
if its disintegration w.r.t. μ satisfies

γx1
∈ Γo(γ1 2

x1
, γ1 3

x1
) for μ-a.e. x1 ∈ X. (12.4.21)

Moreover
W 2

μ(γ1 2, γ1 3) =
∫

X

W 2
2 (γ1 2

x1
, γ1 3

x1
) dμ(x1). (12.4.22)

Proof. For any γ ∈ Γ1(γ1 2, γ1 3) we clearly have∫
X3
|x2 − x3|2 dγ =

∫
X

∫
X2
|x2 − x3|2 dγx1

dμ(x1) ≥
∫

X

W 2
2 (μ1, 2

x1
, μ1, 3

x1
) dμ(x1).

Equality and the necessary and sufficient condition for optimality follows imme-
diately by Lemma 5.3.2 and by the next measurable selection result. �

Lemma 12.4.7. Suppose that (μ2
x1

)x1∈X1 , (μ3
x1

)x1∈X1 are Borel families of measures
in Pp(X) defined in a Polish space X1.

The map
x1 �→ W p

p (μ2
x1

, μ3
x1

) is Borel (12.4.23)

and there exists a Borel family γx1
∈ Pp(X ×X) such that γx1

∈ Γo(μ2
x1

, μ3
x1

).

Proof. We show first that x �→ σx is a Borel map between X1 and Pp(X) whenever
x �→ σx is Borel in the sense used in Section 5.3. Indeed by assumption x �→ σx(A)
is a Borel map for any open set A ⊂ X and since∫

X

f dσx =
∫ ∞

0

σx({f > t}) dt−
∫ 0

−∞
σx({f < t}) dt

and the integral can be approximated by Riemann sums, we have also that x �→∫
X

f dσx is Borel for any f ∈ C0
b (X).

Let δ be the distance inducing the narrow convergence on P(X) introduced
in (5.1.6). It follows that x �→ δ(σx, σ) is Borel for any σ ∈ P(X). By (7.1.12) it
follows that the distance W̃ defined by

W̃ p(μ, σ) := δp(μ, σ) +
∣∣∣∣∫ |x|p dμ−

∫
|x|p dσ

∣∣∣∣



12.4. The geometric tangent spaces in P2(X) 319

induces the p-Wasserstein topology on Pp(X); we deduce that x �→ W̃ (σx, σ) is
Borel for any σ ∈ Pp(X), therefore x �→ σx is Borel, seen as a function with values
in Pp(X).

In order to prove the second part of the statement, let us observe that the
multivalued map μ2, μ3 ∈ Pp(X) �→ Γo(μ2, μ3) ⊂ Pp(X×X) is upper semicontin-
uous thanks to Proposition 7.1.3. In particular for each open set G ⊂ Pp(X ×X)
the set {

(μ2, μ3) : Γo(μ2, μ3) ∩G �= ∅

}
is open in Pp(X)×Pp(X). Therefore classical measurable selection theorems (see
for instance Theorem III.23 in [49]) give the thesis. �


