Chapter 12

Appendix

12.1 Carathéodory and normal integrands

In this section we recall some standard facts about integrands depending on two variables, measurable w.r.t. the first one, and more regular w.r.t. the second one.

Definition 12.1.1 (Carathéodory and normal integrands). Let X_1 , X_2 be Polish spaces, let $\mu \in \mathscr{P}(X_1)$ and let \mathscr{L} be the Σ -algebra of μ -measurable subsets of X_1 . We say that a $\mathscr{L} \times \mathscr{B}(X_2)$ -measurable function $f : X_1 \times X_2 \to \mathbb{R}$ is a Carathéodory integrand if $x_2 \mapsto f(x_1, x_2)$ is continuous for μ -a.e. $x_1 \in X_1$. We say that a $\mathscr{L} \times \mathscr{B}(X_2)$ -measurable function $f : X_1 \times X_2 \to \mathbb{R}$ is a normal integrand if $x_2 \mapsto f(x_1, x_2)$ is lower semicontinuous for μ -a.e. $x_1 \in X_1$.

In order to check that a given function f is a Carathéodory integrand the following remark will often be useful.

Remark 12.1.2. Suppose that a function $f: X_1 \times X_2 \to \mathbb{R}$ satisfies

$$\begin{aligned} x_2 &\mapsto f(x_1, x_2) & \text{is continuous for } \mu\text{-a.e. } x_1 \in X_1, \\ x_1 &\mapsto f(x_1, x_2) & \text{is } \mathscr{L}\text{-measurable for each } x_2 \in X_2. \end{aligned}$$
 (12.1.1)

Then f is a Carathéodory integrand. Indeed we can approximate f by the $\mathscr{L} \times \mathscr{B}(X_2)$ -measurable functions

$$f_{\varepsilon}(x_1, x_2) := \sum_i f_{\varepsilon}(x_1, y_i) \chi_{V_i^{\varepsilon}}(x_2),$$

where $\{V_i^{\varepsilon}\}$ is a partition of X_2 into (at most) countably many Borel sets with diameter less than ε and $y_i \in V_i^{\varepsilon}$. By the first condition in (12.1.1) the functions f_{ε} pointwise converge to u out of a set $N \times X_2$ with $\mu(N) = 0$. Therefore f is $\mathscr{L} \times \mathscr{B}(X_2)$ -measurable. For the proof of the following theorem, we refer to [28, Thm. 1, Cor. 1, Thm. $2((d) \Rightarrow (a))$].

Theorem 12.1.3 (Scorza–Dragoni). Let X_1 , X_2 be Polish spaces and let $\mu \in \mathscr{P}(X_1)$; if f is defined in $X_1 \times X_2$ with values in \mathbb{R} (resp. in $[0, +\infty]$) is a Carathéodory (resp. normal) integrand, then for every $\varepsilon > 0$ there exists a continuous (resp. l.s.c. and bounded above by f) function f_{ε} such that

$$\mu(\{x_1 \in X_1 : f(x_1, x_2) \neq f_{\varepsilon}(x_1, x_2) \text{ for some } x_2 \in X_2\}) \le \varepsilon.$$
(12.1.2)

12.2 Weak convergence of plans and disintegrations

In this section we examine more closely the relation between narrow convergence and disintegration for families of plans $\gamma^n \in \mathscr{P}(X_1 \times X_2)$ whose first marginal is independent of n.

In the sequel we assume that X_1 and X_2 are Polish spaces, and $\mu_1 \in \mathscr{P}(X_1)$. We start by stating natural continuity and lower semicontinuity properties with respect to narrow convergence of Carathéodory and normal integrands.

Theorem 12.2.1. Let $\gamma^n \in \mathscr{P}(X_1 \times X_2)$ narrowly converging to γ and such that $\pi^1_{\#}\gamma^n = \mu_1$. Then for every normal integrand f we have

$$\liminf_{n \to \infty} \int_{X_1 \times X_2} f(x_1, x_2) \, d\gamma^n(x_1, x_2) \ge \int_{X_1 \times X_2} f(x_1, x_2) \, d\gamma(x_1, x_2), \quad (12.2.1)$$

and for every bounded Carathéodory integrand we have

$$\lim_{n \to \infty} \int_{X_1 \times X_2} f(x_1, x_2) \, d\gamma^n(x_1, x_2) = \int_{X_1 \times X_2} f(x_1, x_2) \, d\gamma(x_1, x_2). \tag{12.2.2}$$

Proof. We simply apply Lemma 5.1.10 and the Scorza–Dragoni approximation theorem of the previous section. \Box

If γ^n narrowly converge to γ in $\mathscr{P}(X_1 \times X_2)$ and $\pi^1_{\#}\gamma^n$ is independent of n, the following result provides a finer description of the limit γ .

Lemma 12.2.2. Let X_1, X_2 be Polish spaces and let $\gamma^n \in \mathscr{P}(X_1 \times X_2)$ narrowly converging to γ and such that $\pi^1_{\#}\gamma^n = \mu_1$ is independent of n. If $\{\gamma^n_{x_1}\}_{x_1 \in X_1}$, $\{\gamma_{x_1}\}_{x_1 \in X_1}$ are the disintegrations of γ^n, γ w.r.t. μ_1 and $G_{x_1} \subset \mathscr{P}(X_2)$ is the subset of all the narrow accumulation points of $(\gamma^n_{x_1})_{n \in \mathbb{N}}$, then we have

$$\gamma_{x_1} \subset \overline{\operatorname{conv} G_{x_1}} \quad for \ \mu_1 \text{-} a.e. \ x_1 \in X_1.$$
(12.2.3)

In particular

$$\operatorname{supp} \gamma_{x_1} \subset \overline{\bigcup_{\gamma \in G_{x_1}} \operatorname{supp} \gamma} \quad for \ \mu_1\text{-}a.e. \ x_1 \in X_1.$$
(12.2.4)

12.2. Weak convergence of plans and disintegrations

Proof. Taking into account Remark 5.1.5 we can find a function $\varphi : X_2 \to [0, +\infty]$ with compact sublevels, such that

$$\int_{X_1 \times X_2} \varphi(x_2) \, d\gamma(x_1, x_2) \le \sup_{n \in \mathbb{N}} \int_{X_1 \times X_2} \varphi(x_2) \, d\gamma^n(x_1, x_2) = S < +\infty.$$
(12.2.5)

In particular, for any open set $A \subset X_1$ and any continuous and bounded function $f: X_2 \to \mathbb{R}$ we have

$$\int_{A \times X_2} f(x_2) d\boldsymbol{\gamma}(x_1, x_2) + \varepsilon S \ge \lim_{n \to +\infty} \int_{A \times X_2} \left(f(x_2) + \varepsilon \varphi(x_2) \right) d\boldsymbol{\gamma}^n(x_1, x_2)$$
$$\ge \int_A \left(\inf_{\varepsilon > 0} \liminf_{n \to \infty} \int_{X_2} \left(f(x_2) + \varepsilon \varphi(x_2) \right) d\boldsymbol{\gamma}^n_{x_1}(x_2) \right) d\mu^1(x_1)$$
(12.2.6)

Passing to the limit as $\varepsilon \downarrow 0$ and observing that A is arbitrary, we get

$$\int_{X_2} f(x_2) \, d\gamma_{x_1}(x_2) \ge \inf_{\varepsilon > 0} \liminf_{n \to \infty} \int_{X_2} \left(f(x_2) + \varepsilon \varphi(x_2) \right) d\gamma_{x_1}^n(x_2) \quad \text{for μ-a.e. x_1}$$

and it is not difficult to show using Prokhorov theorem that

$$\liminf_{n \to \infty} \int_{X_2} \left(f(x_2) + \varepsilon \varphi(x_2) \right) d\gamma_{x_1}^n(x_2) \ge \inf_{\gamma \in G_{x_1}} \int_{X_2} f(x_2) d\gamma(x_2) \tag{12.2.7}$$

and

$$\int_{X_2} f(x_2) \, d\gamma_{x_1}(x_2) \ge \inf_{\gamma \in G_{x_1}} \int_{X_2} f(x_2) \, d\gamma(x_2) \tag{12.2.8}$$

for μ^1 -a.e. $x_1 \in X_1$. Choosing f in a countable set \mathscr{C}_0 satisfying (5.1.2a,b) we can find a μ^1 -negligible subset $N \subset X_1$ such that (12.2.8) holds for each $f \in \mathscr{C}$ and $x_1 \in X_1 \setminus N$. In fact the approximation property (5.1.2a,b) shows that (12.2.8) holds for each function $f \in C_b^0(X_2)$ and therefore Hahn–Banach theorem yields $\gamma_{x_1} \in \overline{\operatorname{conv}} G_{x_1}$ for $x_1 \in X_1 \setminus N$.

We conclude this section with an useful convergence result:

Lemma 12.2.3. Let X_1 be a Polish space, let X_2 be a separable Hilbert space, and let $f : X_2 \to [0, +\infty]$ be a l.s.c. strictly convex function. Suppose that $(\gamma_n) \subset \mathscr{P}(X_1 \times X_2)$ narrowly converges to $\gamma = \int_{X_1} \gamma_{x_1} d\mu_1(x_1)$, with $\mu_1 = \pi_{\#}^1 \gamma$; if the barycenter of $\gamma \ \overline{\gamma}(x_1) = \int_{X_2} x_2 d\gamma_{x_1}(x_2)$ exists and satisfies

$$\liminf_{n \to \infty} \int_{X_1 \times X_2} f(x_2) \, d\gamma_n(x_1, x_2) = \int_{X_1} f(\bar{\gamma}_{x_1}) \, d\mu_1(x_1) \in \mathbb{R} \tag{12.2.9}$$

then $\gamma = (\mathbf{i} \times \bar{\gamma})_{\#} \mu_1$. The same result holds if $\pi^1_{\#} \gamma^n = \mu_1$ and $f : X_1 \times X_2 \rightarrow [0, +\infty]$ is a normal integrand such that $f(x_1, \cdot)$ is strictly convex for μ_1 -a.e. $x_1 \in X_1$; in this case the barycenters $\bar{\gamma}_n$ converge to $\bar{\gamma}$ in μ_1 -measure.

Proof. Equality (12.2.9) yields

$$\begin{split} \int_{X_1} \left(\int_{X_2} f(x_2) \, d\gamma_{x_1}(x_2) \right) d\mu_1(x_1) &= \int_{X_1 \times X_2} f(x_2) \, d\gamma(x_1, x_2) \\ &\leq \liminf_{n \to +\infty} \int_{X_1 \times X_2} f(x_2) \, d\gamma_n(x_1, x_2) \\ &\leq \int_{X_1} f(\bar{\gamma}(x_1)) \, d\gamma_1(x_1), \end{split}$$

so that Jensen inequality yields

$$\int_{X_2} f(x_2) \, d\gamma_{x_1}(x_2) = f(\bar{\gamma}(x_1)) \quad \text{for } \mu_1\text{-a.e. } x_1 \in X_1$$

and the strict convexity of f yields $\gamma_{x_1} = \delta_{\bar{\gamma}(x_1)}$. The second part of the statement can be proved in an analogous way.

12.3 PC metric spaces and their geometric tangent cone

In this section we review some basic general facts about *positively curved* (in short PC) spaces in the sense of Aleksandrov [5, 40, 139], and we recall the related notion of tangent cone; in the last section we will discuss its relationships with the tangent space we introduced in Section 8.4 for the Wasserstein space $\mathscr{P}_2(X)$.

Let (\mathscr{S}, d) be a metric space; a constant speed geodesic $\mathbf{x}^{1 \to 2} : t \in [0, T] \mapsto x_t \in \mathscr{S}$ connecting x^1 to x^2 is a curve satisfying

$$x_0 = x^1, \quad x_T = x^2, \quad d(x_t, x_s) = \frac{t-s}{T} d(x^1, x^2) \quad \forall 0 \le s \le t \le T.$$
 (12.3.1)

In particular we are dealing with geodesics of minimal length whose metric derivative $|\mathbf{x}'|(t)$ is constant on [0, T] and equal to $T^{-1}d(x^1, x^2)$.

We say that \mathscr{S} is *geodesically complete* (or *length space*) if each couple of points can be connected by a constant speed geodesic.

Definition 12.3.1 (*PC*-spaces). A geodesically complete metric space (\mathcal{S}, d) is positively curved (a *PC*-space) if for every $x^0 \in \mathcal{S}$ and every constant speed geodesic $x^{1\to 2}: t \in [0, 1] \mapsto x_t^{1\to 2}$ connecting x^1 to x^2 it holds

$$d^{2}(x_{t}^{1 \to 2}, x^{0}) \ge (1-t)d^{2}(x^{1}, x^{0}) + td^{2}(x^{2}, x^{0}) - t(1-t)d^{2}(x^{1}, x^{2}).$$
(12.3.2)

Observe that in an Hilbert space X (12.3.2) is in fact an identity, since for $x_t^{1\to 2} = (1-t)x^1 + tx^2$ we have

$$|x_t^{1\to 2} - x^0|^2 = (1-t)|x^1 - x^0|^2 + t|x^2 - x^0|^2 - t(1-t)|x^1 - x^2|^2.$$
(12.3.3)

Therefore condition (12.3.2) can be considered as a sort of comparison property for triangles: let us exploit this fact.

Definition 12.3.2 (Triangles). A triangle x in \mathscr{S} is a triple $x = (x^{1 \to 2}, x^{2 \to 3}, x^{3 \to 1})$ of constant speed geodesics connecting (with obvious notation) three points x^1, x^2 , x^3 in \mathscr{S} . We denote by $\Delta = \Delta(x) \subset \mathscr{S}$ the image of the curves $x^{1 \to 2}, x^{2 \to 3}, x^{3 \to 1}$.

To each triangle \boldsymbol{x} in \mathscr{S} we can consider a corresponding reference triangle (unique, up to isometric transformation) $\hat{\boldsymbol{x}} = (\hat{\boldsymbol{x}}^{1 \to 2}, \hat{\boldsymbol{x}}^{2 \to 3}, \hat{\boldsymbol{x}}^{3 \to 1})$ in \mathbb{R}^2 connecting the points $\hat{x}^1, \hat{x}^2, \hat{x}^3 \in \mathbb{R}^2$ such that

$$|\hat{x}^i - \hat{x}^j| = d(x^i, x^j) \quad i, j = 1, 2, 3.$$
 (12.3.4)

Two points $x \in \Delta$, $\hat{x} \in \hat{\Delta}$ are correspondent if

 $x = x_t^{i \to j}, \quad \hat{x} = \hat{x}_t^{i \to j} \quad \text{for some } t \in [0, 1], \ i, j \in \{1, 2, 3\}.$

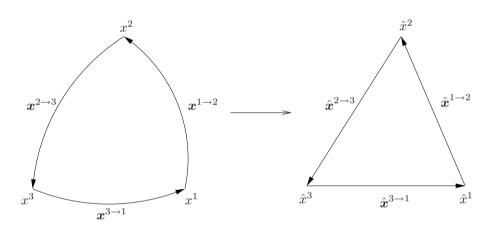


Figure 12.1: on the left the triangle on the PC-space and on the right its euclidean reference.

Proposition 12.3.3 (Triangle comparison). If \mathscr{S} is a PC-space and $\triangle \subset \mathscr{S}, \hat{\triangle} \subset \mathbb{R}^2$ are two corresponding triangles, then for each couples of correspondent points $x, y \in \triangle, \hat{x}, \hat{y} \in \hat{\triangle}$ we have

$$d(x,y) \ge |\hat{x} - \hat{y}|. \tag{12.3.5}$$

Proof. When x or y is a vertex of the triangle, then (12.3.5) is just (12.3.2): thus we have to examine the case (up to permutation of the indexes) $x = x_t^{1 \to 2}$, $y = x_s^{1 \to 3}$, $t, s \in (0, 1)$. Denoting by $x^{1 \to t}$ the rescaled geodesic connecting x^1 to $x = x_t^{1 \to 2}$ and by introducing a new geodesic $x^{t \to 3}$ connecting x to x^3 , we can consider the new triangle $x' = (x^{1 \to t}, x^{t \to 3}, x^{3 \to 1})$ connecting x^1, x, x^3 . The corresponding euclidean reference \hat{x}' can be constructed keeping fixed \hat{x}^1 and \hat{x}^3 (and therefore $\hat{y} = \hat{x}_s^{1 \to 3}$) and introducing a new point \hat{x}' , which in general will be different from \hat{x} , such that $|\hat{x}' - \hat{x}^1| = d(x, x^1)$, $|\hat{x}' - \hat{x}^3| = d(x, x^3)$. Applying (12.3.2) we obtain

$$|\hat{x}' - \hat{x}^3| = d(x, x^3) \ge |\hat{x} - \hat{x}^3|$$

and applying the identity (12.3.3) we get

$$\begin{aligned} |\hat{x}' - \hat{y}|^2 &= (1-s)|\hat{x}' - \hat{x}^1|^2 + s|\hat{x}' - \hat{x}^3|^2 - s(1-s)|\hat{x}^3 - \hat{x}^1|^2\\ &\geq (1-s)|\hat{x} - \hat{x}^1|^2 + s|\hat{x} - \hat{x}^3|^2 - s(1-s)|\hat{x}^3 - \hat{x}^1|^2 = |\hat{x} - \hat{y}|^2 \end{aligned}$$

therefore, applying (12.3.2) again to the triangles x', \hat{x}' we obtain

$$d(x,y) \ge |\hat{x}' - \hat{y}'| = |\hat{x}' - \hat{y}| \ge |\hat{x} - \hat{y}|.$$

In a Hilbert space X the angle $\angle(\hat{x}^{1\to 2}, \hat{x}^{1\to 3}) \in [0, \pi]$ between the two segments joining \hat{x}^1 to \hat{x}^2 and \hat{x}^1 to \hat{x}^3 can be easily computed by the formula

$$\cos(\angle(\hat{\boldsymbol{x}}^{1\to2}, \hat{\boldsymbol{x}}^{1\to3})) = \frac{\langle \hat{x}^2 - \hat{x}^1, \hat{x}^3 - \hat{x}^1 \rangle}{|\hat{x}^2 - \hat{x}^1| \, |\hat{x}^3 - \hat{x}^1|} = \alpha(\hat{x}^1; \hat{x}^2, \hat{x}^3), \quad (12.3.6)$$

where

$$\alpha(\hat{x}^{1}; \hat{x}^{2}, \hat{x}^{3}) = \frac{|\hat{x}^{2} - \hat{x}^{1}|^{2} + |\hat{x}^{3} - \hat{x}^{1}|^{2} - |\hat{x}^{3} - \hat{x}^{2}|^{2}}{2|\hat{x}^{2} - \hat{x}^{1}||\hat{x}^{3} - \hat{x}^{1}|}.$$
 (12.3.7)

In particular, if $\hat{x}_t^{1\to 2} := (1-t)\hat{x}^1 + t\hat{x}^2$ and $\hat{x}_s^{1\to 3} := (1-s)\hat{x}^1 + s\hat{x}^3$, we have

$$\alpha(\hat{x}^1; \hat{x}_t^{1 \to 2}, \hat{x}_s^{1 \to 3}) = \alpha(\hat{x}^1; \hat{x}^2, \hat{x}^3) \quad \forall t, s \in (0, 1].$$
(12.3.8)

Taking into account of (12.3.7), in the case of a general *PC*-space, it is natural to introduce the function

$$\alpha(x^1; x^2, x^3) := \frac{d(x^2, x^1)^2 + d(x^3, x^1)^2 - d(x^3, x^2)^2}{2d(x^2, x^1) d(x^3, x^1)}, \quad x^1 \neq x^2, x^3$$
(12.3.9)

and we have the following monotonicity result.

Lemma 12.3.4 (Angle between geodesics). Let (\mathscr{S}, d) be a PC-space and let $x^{1 \to 2}$, $x^{1 \to 3}$ be constant speed geodesics starting from x^1 ; then the function

$$t, s \in (0,1] \mapsto \alpha(x^1; x_t^{1 \to 2}, x_s^{1 \to 3}) \quad is \ nondecreasing \ in \ s, t.$$
(12.3.10)

The angle $\angle(\mathbf{x}^{1\to 2}, \mathbf{x}^{1\to 3}) \in [0, \pi]$ between $\mathbf{x}^{1\to 2}$ and $\mathbf{x}^{1\to 3}$ is thus defined by the formula

$$\cos(\angle(\boldsymbol{x}^{1\to 2}, \boldsymbol{x}^{1\to 3})) := \inf_{s,t} \alpha(x^1; x_t^{1\to 2}, x_s^{1\to 3}) = \lim_{s,t\downarrow 0} \alpha(x^1; x_t^{1\to 2}, x_s^{1\to 3}).$$
(12.3.11)

Proof. It is sufficient to prove that $\alpha(x^1; x^2, x^3) \geq \alpha(x^1; x_t^{1 \to 2}, x_s^{1 \to 3})$ for $s, t \in (0, 1]$; if \hat{x} is a corresponding reference triangle with vertexes $\hat{x}^1, \hat{x}^2, \hat{x}^3$, we easily have by Proposition 12.3.3 and (12.3.8)

$$\alpha(x^1; x_t^{1 \to 2}, x_s^{1 \to 3}) \le \alpha(\hat{x}^1; \hat{x}_t^{1 \to 2}, \hat{x}_s^{1 \to 3}) = \alpha(\hat{x}^1; \hat{x}^2, \hat{x}^3) = \alpha(x^1; x^2, x^3) \qquad \Box$$

12.3. PC metric spaces and their geometric tangent cone

Remark 12.3.5. Notice that the separate limit as $t \downarrow 0$ is given by

$$\lim_{t\downarrow 0} \alpha(x^1; x_t^{1\to 2}, x_s^{1\to 3}) = \lim_{t\downarrow 0} \frac{t^2 d^2(x^1, x^2) + d^2(x^1, x_s^{1\to 3}) - d^2(x_t^{1\to 2}, x_s^{1\to 3})}{2ts \, d(x^1, x^2) \, d(x^1, x^3)}$$
$$= -\left(2sd(x^1, x^2) \, d(x^1, x^3)\right)^{-1} \frac{d}{dt} \left(d^2(x_t^{1\to 2}, x_s^{1\to 3})\right)|_{t=0+1}$$

and therefore

$$\cos\left(\angle(\pmb{x}^{1\to 2}, \pmb{x}^{1\to 3})\right) = -\left(2d(x^1, x^2)\,d(x^1, x^3)\right)^{-1}\frac{\partial^2}{\partial s\partial t}\left(d^2(x_t^{1\to 2}, x_s^{1\to 3})\right)|_{t,s=0+1}$$

For a fixed $x \in \mathscr{S}$ let us denote by G(x) the set of all constant speed geodesics x starting from x and parametrized in some interval $[0, T_x]$; recall that the metric velocity of x is |x'| = d(x(t), x)/t, $t \in (0, T]$. We set

$$\|\boldsymbol{x}\|_{x} := |\boldsymbol{x}'|, \quad \langle \boldsymbol{x}, \boldsymbol{y} \rangle_{x} := \|\boldsymbol{x}\|_{x} \|\boldsymbol{y}\|_{x} \cos(\angle(\boldsymbol{x}, \boldsymbol{y})), \\ d_{x}^{2}(\boldsymbol{x}, \boldsymbol{y}) := \|\boldsymbol{x}\|_{x}^{2} + \|\boldsymbol{y}\|_{x}^{2} - 2\langle \boldsymbol{x}, \boldsymbol{y} \rangle_{x}.$$
(12.3.12)

If $x \in G(x)$ and $\lambda > 0$ we denote by λx the geodesic

$$(\lambda \boldsymbol{x})_t := \boldsymbol{x}_{\lambda t}, \quad T_{\lambda \boldsymbol{x}} = \lambda^{-1} T_{\boldsymbol{x}},$$
 (12.3.13)

and we observe that for each $\boldsymbol{x}, \boldsymbol{y} \in G(x), \lambda > 0$, it holds

$$\|\lambda \boldsymbol{x}\|_{x} = \lambda \|\boldsymbol{x}\|_{x}, \quad \langle \lambda \boldsymbol{x}, \boldsymbol{y} \rangle_{x} = \langle \boldsymbol{x}, \lambda \boldsymbol{y} \rangle_{x} = \lambda \langle \boldsymbol{x}, \boldsymbol{y} \rangle_{x}$$
(12.3.14)

Observe that the restriction of a geodesic is still a geodesic; we say that $\boldsymbol{x} \sim \boldsymbol{y}$ if there exist $\varepsilon > 0$ such that $\boldsymbol{x}_{|[0,\varepsilon]} = \boldsymbol{y}_{|[0,\varepsilon]}$.

Theorem 12.3.6 (An abstract notion of Tangent cone). If $x, y : [0,T] \to S$ are two geodesics starting from x we have

$$d_x(\boldsymbol{x}, \boldsymbol{y}) = \lim_{t \downarrow 0} \frac{d(\boldsymbol{x}_t, \boldsymbol{y}_t)}{t} = \sup_{t \in (0,T]} \frac{d(\boldsymbol{x}_t, \boldsymbol{y}_t)}{t}.$$
 (12.3.15)

In particular, the function d_x defined by (12.3.12) is a distance on the quotient space $G(x)/\sim$. The completion of $G(x)/\sim$ is called the tangent cone $\operatorname{Tan}_x \mathscr{S}$ at the point x.

Proof. (12.3.15) follows by a simple computation since for each s > 0 (12.3.11) yields

$$\cos\left(\angle(\boldsymbol{x}, \boldsymbol{y})\right) = \lim_{t \downarrow 0} \frac{d^2(\boldsymbol{x}_{ts}, x) + d^2(\boldsymbol{y}_{ts}, x) - d^2(\boldsymbol{x}_{ts}, \boldsymbol{y}_{ts})}{2d(\boldsymbol{x}_{ts}, x)d(\boldsymbol{y}_{ts}, x)}$$
$$= \frac{d^2(\boldsymbol{x}_s, x) + d^2(\boldsymbol{y}_s, x)}{2d(\boldsymbol{x}_s, x)d(\boldsymbol{y}_s, x)} - \lim_{t \downarrow 0} \frac{d^2(\boldsymbol{x}_{ts}, \boldsymbol{y}_{ts})}{2t^2d(\boldsymbol{x}_s, x)d(\boldsymbol{y}_s, x)}$$

and therefore from (12.3.12) we have

$$d_x^2(x, y) = \frac{d^2(x_s, x) + d^2(y_s, x)}{s^2} - 2\frac{d(x_s, x)d(y_s, x)}{s^2}\cos(\angle(x, y))$$

=
$$\lim_{t\downarrow 0} \frac{d^2(x_{ts}, y_{ts})}{2t^2s^2}.$$

Remark 12.3.7 (The tangent cone as Gromov-Hausdorff blow up of pointed spaces). In the finite dimensional case $\operatorname{Tan}_x \mathscr{S}$ can also be characterized as the Gromov-Hasudorff limit of the sequence of pointed metric spaces $(\mathscr{S}, x, n \cdot d)$ as $n \to \infty$. [40, 7.8.1]

12.4 The geometric tangent spaces in $\mathscr{P}_2(X)$

Taking into account of the abstract definition of Tangent cone 12.3.6 for *PC*-spaces and the fact proved in Section 7.3 that $\mathscr{P}_2(X)$ is a *PC*-space, we want an explicit representation of the abstract tangent space $\operatorname{Tan}_{\mu} \mathscr{P}_2(X)$ induced by the 2-Wasserstein distance.

First of all we want to determine a precise expression for the angle between two geodesics. Observe that an optimal plan $\boldsymbol{\mu} \in \Gamma_o(\mu^1, \mu^2)$ is associated to the geodesic $\boldsymbol{\mu}^{1\to 2}$ with $\mu_t^{1\to 2} = (\pi_t^{1\to 2})_{\#}\boldsymbol{\mu}$ whose velocity is equal to the distance between the end points $|\boldsymbol{\mu}'|^2 = \int |x_2 - x_1|^2 d\boldsymbol{\mu}$. If we want to represent each constant speed geodesics, it is convenient to introduce the new "velocity" plans

$$\boldsymbol{\gamma}_{\lambda} := \left(\pi^1, \lambda(\pi^2 - \pi^1)\right)_{\#} \boldsymbol{\mu}, \qquad (12.4.1)$$

that can be used to provide a natural parametrizations for the rescaled geodesic $(\lambda \cdot \mu^{1 \to 2})_t := \mu_{\lambda t}^{1 \to 2}$ as follows:

$$\mu_{\lambda t}^{1 \to 2} = \left((1 - \lambda t) \pi^1 + \lambda t \pi^2 \right)_{\#} \boldsymbol{\mu} = (\pi^1 + t \pi^2)_{\#} \boldsymbol{\gamma}_{\lambda} \qquad t \in \left[0, \lambda^{-1} \right].$$
(12.4.2)

Therefore we can identify constant speed geodesics parametrized in some interval $[0, \lambda^{-1}]$ with transport plans γ of the type

$$\boldsymbol{\gamma} = \left(\pi^1, \lambda(\pi^2 - \pi^1)\right)_{\#} \boldsymbol{\mu}$$
 for some optimal plan $\boldsymbol{\mu} \in \mathscr{P}_2(X),$

and therefore we set

$$\mathbf{G}(\mu) := \left\{ \boldsymbol{\gamma} \in \mathscr{P}_2(X^2) : \ \pi_{\#}^1 \boldsymbol{\gamma} = \mu, \\ \left(\pi^1, \pi^1 + \varepsilon \pi^2 \right)_{\#} \boldsymbol{\gamma} \text{ is optimal, for some } \varepsilon > 0 \right\}.$$
(12.4.3)

It easy to check that there is a one-to-one correspondence between $G(\mu)$ and the quotient $G(\mu)/\sim$ introduced in the previous section: for, to each plan $\gamma \in G(\mu)$ we associate the (equivalence class of the) geodesic

$$\mu_t := (\pi^1 + t\pi^2)_{\#} \gamma, \quad 0 \le t \le \varepsilon,$$
(12.4.4)

314

where $\varepsilon > 0$ is chosen as in (12.4.3). Conversely, if $\mu_t, t \in [0, T]$, is a curve such that $\mu|_{[0,\varepsilon]}$ is a (minimal, constant speed) geodesic, then for every $\lambda^{-1} \in (0,\varepsilon]$ there exists a unique optimal plan $\mu_{\lambda} \in \Gamma_o(\mu_0, \mu_{\lambda^{-1}})$ such that

$$\mu_t = \left(\pi^1 + \lambda t (\pi^2 - \pi^1)\right)_{\#} \boldsymbol{\mu}_{\lambda} \quad t \in [0, \lambda^{-1}];$$

by Theorem 7.2.2

$$0 < \lambda_1^{-1} < \lambda_2^{-1} \le \varepsilon \quad \Longrightarrow \quad \boldsymbol{\mu}_{\lambda_1} = \left(\pi^1, \pi^1 + \lambda_2/\lambda_1(\pi^2 - \pi^1)\right)_{\#} \boldsymbol{\mu}_{\lambda_2},$$

so that

$$\boldsymbol{\gamma} = \left(\pi^1, \lambda(\pi^2 - \pi^1)\right)_{\#} \boldsymbol{\mu}_{\lambda} \quad \text{is independent of } \lambda, \text{ belongs to } \boldsymbol{G}(\mu), \qquad (12.4.5)$$

and represents μ_t through (12.4.4).

Motivated by the above discussion, we introduce the following definition:

Definition 12.4.1 (Exponential map in $\mathscr{P}_2(X)$). For $\mu \in \mathscr{P}(X)$ and $\gamma \in G(\mu)$ we define

$$\lambda \cdot \boldsymbol{\gamma} := \left(\pi^1, \lambda \pi^2\right)_{\#} \boldsymbol{\gamma}, \quad \exp_{\mu}(\boldsymbol{\gamma}) := \left(\pi^1 + \pi^2\right)_{\#} \boldsymbol{\gamma}. \tag{12.4.6}$$

The notation is justified by the fact that the curve

 $t \mapsto \exp_{\mu}(t \cdot \boldsymbol{\gamma})$ is a constant speed geodesic in some interval $[0, \varepsilon]$ (12.4.7) whenever $\boldsymbol{\gamma} \in \boldsymbol{G}(\mu)$

whenever $\boldsymbol{\gamma} \in \boldsymbol{G}(\mu)$. For $\boldsymbol{\gamma}^{12}, \boldsymbol{\gamma}^{13} \in \mathscr{P}_2(X^2)$ with $\pi^1_{\#} \boldsymbol{\gamma}^{1i} = \mu, i = 2, 3$, we set

$$|\boldsymbol{\gamma}^{1\,2}||_{\mu}^{2} := \int_{X^{2}} |x_{2}|^{2} \, d\boldsymbol{\gamma}^{1\,2}(x_{1}, x_{2}), \qquad (12.4.8)$$

$$\langle \boldsymbol{\gamma}^{1\,2}, \boldsymbol{\gamma}^{1\,3} \rangle_{\mu} = \max\Big\{ \int_{X^3} \langle x_2, x_3 \rangle \, d\boldsymbol{\gamma} : \boldsymbol{\gamma} \in \Gamma^1(\boldsymbol{\gamma}^{1\,2}, \boldsymbol{\gamma}^{1\,3}) \Big\}, \tag{12.4.9}$$

$$W_{\mu}^{2}(\boldsymbol{\gamma}^{12}, \boldsymbol{\gamma}^{13}) = \min\left\{\int_{X^{3}} |x_{2} - x_{3}|^{2} \, d\boldsymbol{\gamma} : \boldsymbol{\gamma} \in \Gamma^{1}(\boldsymbol{\gamma}^{12}, \boldsymbol{\gamma}^{13})\right\}, \qquad (12.4.10)$$

where $\Gamma^1(\gamma^{1\,2},\gamma^{1\,3})$ is the family of all 3-plans in $\gamma \in \mathscr{P}(X^3)$ such that $\pi^{1,2}_{\#}\gamma = \gamma^{1\,2}$ and $\pi^{1,3}_{\#}\gamma = \gamma^{1\,3}$.

Proposition 12.4.2. Suppose that γ^{12}, γ^{13} belongs to $G(\mu)$ so that they can be identified with the constant speed geodesics $\mu^{1\to 2}, \mu^{1\to 3}$ through (12.4.4). Then the previous definitions coincide with the corresponding quantities introduced in (12.3.12) for general PC-metric spaces.

Proof. The first identity of (12.4.8) is immediate. In order to prove the second one we apply Proposition 7.3.6, by taking into account Remark 12.3.5: thus we have

$$\langle \gamma^{12}, \gamma^{13} \rangle_{\mu} = \lim_{s \downarrow 0} 2s^{-1} \int_{X^3} \langle x_2 - x_1, x_3 - x_1 \rangle \, d\mu_s,$$

where $\mu_s^{1\to 3} = \exp_{\mu}(s\gamma^{13})$ and $\mu_s \in \Gamma_o(\mu^{12}, \mu_s^{1\to 3})$ is chosen among the minimizers of (7.3.15). It is easy to check that we can choose

$$\boldsymbol{\mu}_s = \left(\pi^1, \pi^1 + \pi^2, \pi^1 + s\pi^2\right)_{\#} \boldsymbol{\gamma},$$

where $\gamma \in \Gamma^1(\gamma^{12}, \gamma^{13})$ realizes the maximum in (12.4.9) (or equivalently the minumum of (12.4.10)) and therefore

$$\lim_{s\downarrow 0} s^{-1} \int_{X^3} \langle x_2 - x_1, x_3 - x_1 \rangle \, d\boldsymbol{\mu}_s = \lim_{s\downarrow 0} s^{-1} \int_{X^3} \langle x_2, x_1 + sx_3 - x_1 \rangle \, d\boldsymbol{\gamma}$$
$$= \int_{X^3} \langle x_2, x_3 \rangle \, d\boldsymbol{\gamma}.$$

The last formula of (12.4.8) follows now directly by the definition (12.3.12).

If either $\gamma^{1\,2}$ or $\gamma^{1\,3}$ are induced by a transport map t, e.g. $\gamma^{1\,2} = (i \times t)_{\#} \mu$, then the previous formulae are considerably simpler, since

$$\|\boldsymbol{\gamma}^{1\,2}\|_{\mu}^{2} := \int_{X^{2}} |\boldsymbol{t}(x_{1})|^{2} \, d\mu(x_{1}) = \|\boldsymbol{t}\|_{L^{2}(\mu;X)}^{2}, \qquad (12.4.11)$$

$$\langle \gamma^{12}, \gamma^{13} \rangle_{\mu} = \int_{X^2} \langle t(x_1), x_3 \rangle \, d\gamma^{13}(x_1, x_3), \qquad (12.4.12)$$

$$W_{\mu}^{2}(\boldsymbol{\gamma}^{1,2},\boldsymbol{\gamma}^{1\,3}) = \int_{X^{2}} |\boldsymbol{t}(x_{1}) - x_{3}|^{2} \, d\boldsymbol{\gamma}^{1\,3}(x_{1},x_{3}).$$
(12.4.13)

Finally, if also $\gamma^{13} = (i \times s)_{\#} \mu$, then (12.4.12) and (12.4.13) become

$$\langle \gamma^{12}, \gamma^{13} \rangle_{\mu} = \int_{X} \langle \boldsymbol{t}(x_1), \boldsymbol{s}(x_1) \rangle \, d\mu(x_1) = (\boldsymbol{t}, \boldsymbol{s})_{L^2(\mu; X)},$$
 (12.4.14)

$$W^{2}_{\mu}(\boldsymbol{\gamma}^{1,2},\boldsymbol{\gamma}^{1\,3}) = \int_{X} |\boldsymbol{t}(x_{1}) - \boldsymbol{s}(x_{1})|^{2} d\mu(x_{1}) = \|\boldsymbol{t} - \boldsymbol{s}\|^{2}_{L^{2}(\mu;X)}.$$
 (12.4.15)

These results lead to the following definition.

Definition 12.4.3 (Geometric tangent cone). The geometric tangent cone $\operatorname{Tan}_{\mu}\mathscr{P}_{2}(X)$ to $\mathscr{P}_{2}(X)$ at μ is the closure of $G(\mu)$ in $\mathscr{P}_{2}(X^{2})$ with respect to the distance $W_{\mu}(\cdot, \cdot)$.

In Section 8.4 we already introduced a notion of tangent space $\operatorname{Tan}_{\mu}\mathscr{P}_{2}(X)$ and we showed in Theorem 8.5.1 its equivalent characterization in terms of optimal transport maps

$$\operatorname{Tan}_{\mu}\mathscr{P}_{2}(X) = \overline{\left\{\lambda(\boldsymbol{r}-\boldsymbol{i}): (\boldsymbol{i}\times\boldsymbol{r})_{\#}\mu\in\Gamma_{o}(\mu,\boldsymbol{r}_{\#}\mu), \lambda>0\right\}}^{L^{2}(\mu;X)}.$$
 (12.4.16)

In order to compare these two notions, let us recall the Definition 5.4.2 of barycentric projection $\bar{\gamma}$ of a plan $\gamma \in \mathscr{P}_2(X^2)$ with $\pi^1_{\#}\gamma = \mu$:

$$\boldsymbol{t} := \bar{\boldsymbol{\gamma}} \quad \Leftrightarrow \quad \boldsymbol{t}(x_1) = \int_X x_2 \, d\boldsymbol{\gamma}_{x_1}(x_2), \quad \boldsymbol{t} \in L^2(\mu; X), \tag{12.4.17}$$

which is a nonexpansive map from $\operatorname{Tan}_{\mu}\mathscr{P}_2(X)$ to $L^2(\mu; X)$. Indeed choosing $\gamma \in \Gamma^1(\gamma^1, \gamma^2)$ and denoting by $\gamma^1_{x_1}$ and $\gamma^2_{x_1}$ the disintegrations of γ^1 and γ^2 w.r.t. μ we have

$$\int_X |\bar{\gamma}^1 - \bar{\gamma}^2|^2 \, d\mu = \int_X \left| \int_{X^2} (x_2 - x_3) \, d\gamma_{x_1} \right|^2 \, d\mu \le \int_{X^3} |x_2 - x_3|^2 \, d\gamma,$$

so that

$$\|\bar{\boldsymbol{\gamma}}^{1} - \bar{\boldsymbol{\gamma}}^{2}\|_{L^{2}(\mu;X)} \le W_{\mu}(\boldsymbol{\gamma}^{1},\boldsymbol{\gamma}^{2}).$$
(12.4.18)

We have the following result:

Theorem 12.4.4. For every $\mu \in \mathscr{P}_2(X)$ the tangent space is the image of $\operatorname{Tan}_{\mu}\mathscr{P}_2(X)$ through the barycentric projection. Moreover, if $\mu \in \mathscr{P}_2^r(X)$, then the barycentric projection is an isometric one-to-one correspondence between $\operatorname{Tan}_{\mu}\mathscr{P}_2(X)$ and $\operatorname{Tan}_{\mu}\mathscr{P}_2(X)$.

Proof. Let us first prove that $\bar{\gamma} \in \operatorname{Tan}_{\mu} \mathscr{P}_2(X)$ for any $\gamma \in \operatorname{Tan}_{\mu} \mathscr{P}_2(X)$. By the continuity of the barycentric projection and the identity $(\pi^1, \pi^1 + \varepsilon \pi^2)_{\#} \gamma = i + \varepsilon \bar{\gamma}$, it suffices to show that $(\bar{\mu} - i) \in \operatorname{Tan}_{\mu} \mathscr{P}_2(X)$ for any optimal plan μ whose first marginal is μ . We know that $\sup \mu$ is contained in the graph of the subdifferential of a convex and l.s.c. function $\psi : X \to (-\infty, +\infty]$, i.e.

$$y \in \partial \psi(x)$$
 for any $(x, y) \in \operatorname{supp} \mu$.

Since $\partial \psi(x)$ is a closed convex subset of X for every $x \in D(\partial \psi)$, we obtain that $\bar{\mu}(x) = \int_X y \, d\mu_x(y) \in \partial \psi(x)$ for μ -a.e. x; therefore $\bar{\mu}$ is an optimal transport map and $(\bar{\mu} - i) \in \operatorname{Tan}_{\mu} \mathscr{P}_2(X)$.

In order to show that the barycentric projection is onto it suffices to prove that the map $I : \operatorname{Tan}_{\mu} \mathscr{P}_2(X) \mapsto \mathscr{P}(X \times X)$ defined by $I(\boldsymbol{v}) := (\boldsymbol{i} \times \boldsymbol{v})_{\#} \mu$ takes its values in $\operatorname{Tan}_{\mu} \mathscr{P}_2(X)$ and to notice that it satisfies $\overline{I(\boldsymbol{v})} = \boldsymbol{v}$. Since the unique plan in $\Gamma^1(I(\boldsymbol{v}), I(\boldsymbol{v}'))$ is $(\boldsymbol{i} \times \boldsymbol{v} \times \boldsymbol{v}')_{\#} \mu$, we have

$$W^2_{\mu}\left(I(\boldsymbol{v}), I(\boldsymbol{v}')\right) = \int_X |\boldsymbol{v} - \boldsymbol{v}'|^2 \, d\mu,$$

so that our thesis follows if $I(v) \in G(\mu)$ for every v in the dense subset of $\operatorname{Tan}_{\mu}\mathscr{P}_2(X)$ introduced in (12.4.16): this last property follows trivially by the definition of $G(\mu)$ (12.4.3). Finally in the case when μ is regular all optimal transport plans in $G(\mu)$ are induced by transports: therefore I is onto and it is the inverse of the barycentric projection.

Remark 12.4.5 (The exponential map and its inverse). Observe that the exponential map is a contraction since

$$W_2(\exp_{\mu}(\boldsymbol{\mu}), \exp_{\mu}(\boldsymbol{\sigma})) \le W_{\mu}(\boldsymbol{\mu}, \boldsymbol{\sigma}), \qquad (12.4.19)$$

but in general, it is not injective, even if it is restricted to the tangent space. Nevertheless it admits a natural (multivalued) right inverse defined by

$$\exp_{\mu}^{-1}(\nu) := \left\{ \boldsymbol{\mu} \in \boldsymbol{G}(\mu) : \left(\pi^{1}, \pi^{1} + \pi^{2}\right)_{\#} \boldsymbol{\mu} \in \Gamma_{o}(\mu, \nu) \right\}.$$
 (12.4.20)

We conclude this section with an explicit representation of the distance W_{μ} defined by (12.4.10).

Proposition 12.4.6. Let γ^{12} , γ^{13} be two plans in $\mathscr{P}_2(X^2)$ with the same first marginal μ . Then $\gamma \in \Gamma^1(\gamma^{12}, \gamma^{13})$ realizes the minimum in (12.4.8) if and only if its disintegration w.r.t. μ satisfies

$$\gamma_{x_1} \in \Gamma_o(\gamma_{x_1}^{12}, \gamma_{x_1}^{13}) \quad for \ \mu\text{-}a.e. \ x_1 \in X.$$
 (12.4.21)

Moreover

$$W_{\mu}^{2}(\boldsymbol{\gamma}^{12},\boldsymbol{\gamma}^{13}) = \int_{X} W_{2}^{2}(\boldsymbol{\gamma}_{x_{1}}^{12},\boldsymbol{\gamma}_{x_{1}}^{13}) \, d\mu(x_{1}). \tag{12.4.22}$$

Proof. For any $\boldsymbol{\gamma} \in \Gamma^1(\boldsymbol{\gamma}^{1\,2}, \boldsymbol{\gamma}^{1\,3})$ we clearly have

$$\int_{X^3} |x_2 - x_3|^2 \, d\gamma = \int_X \int_{X^2} |x_2 - x_3|^2 \, d\gamma_{x_1} \, d\mu(x_1) \ge \int_X W_2^2(\mu_{x_1}^{1,2}, \mu_{x_1}^{1,3}) \, d\mu(x_1).$$

Equality and the necessary and sufficient condition for optimality follows immediately by Lemma 5.3.2 and by the next measurable selection result. \Box

Lemma 12.4.7. Suppose that $(\mu_{x_1}^2)_{x_1 \in X_1}, (\mu_{x_1}^3)_{x_1 \in X_1}$ are Borel families of measures in $\mathscr{P}_p(X)$ defined in a Polish space X_1 .

The map

$$x_1 \mapsto W_p^p(\mu_{x_1}^2, \mu_{x_1}^3)$$
 is Borel (12.4.23)

and there exists a Borel family $\gamma_{x_1} \in \mathscr{P}_p(X \times X)$ such that $\gamma_{x_1} \in \Gamma_o(\mu_{x_1}^2, \mu_{x_1}^3)$.

Proof. We show first that $x \mapsto \sigma_x$ is a Borel map between X_1 and $\mathscr{P}_p(X)$ whenever $x \mapsto \sigma_x$ is Borel in the sense used in Section 5.3. Indeed by assumption $x \mapsto \sigma_x(A)$ is a Borel map for any open set $A \subset X$ and since

$$\int_X f \, d\sigma_x = \int_0^\infty \sigma_x(\{f > t\}) \, dt - \int_{-\infty}^0 \sigma_x(\{f < t\}) \, dt$$

and the integral can be approximated by Riemann sums, we have also that $x \mapsto \int_X f \, d\sigma_x$ is Borel for any $f \in C_b^0(X)$.

Let δ be the distance inducing the narrow convergence on $\mathscr{P}(X)$ introduced in (5.1.6). It follows that $x \mapsto \delta(\sigma_x, \sigma)$ is Borel for any $\sigma \in \mathscr{P}(X)$. By (7.1.12) it follows that the distance \tilde{W} defined by

$$\tilde{W}^p(\mu,\sigma) := \delta^p(\mu,\sigma) + \left| \int |x|^p \, d\mu - \int |x|^p \, d\sigma \right|$$

12.4. The geometric tangent spaces in $\mathscr{P}_2(X)$

induces the *p*-Wasserstein topology on $\mathscr{P}_p(X)$; we deduce that $x \mapsto \tilde{W}(\sigma_x, \sigma)$ is Borel for any $\sigma \in \mathscr{P}_p(X)$, therefore $x \mapsto \sigma_x$ is Borel, seen as a function with values in $\mathscr{P}_p(X)$.

In order to prove the second part of the statement, let us observe that the multivalued map $\mu^2, \mu^3 \in \mathscr{P}_p(X) \mapsto \Gamma_o(\mu^2, \mu^3) \subset \mathscr{P}_p(X \times X)$ is upper semicontinuous thanks to Proposition 7.1.3. In particular for each open set $G \subset \mathscr{P}_p(X \times X)$ the set

$$\left\{ (\mu^2, \mu^3) : \Gamma_o(\mu^2, \mu^3) \cap G \neq \emptyset \right\}$$

is open in $\mathscr{P}_p(X) \times \mathscr{P}_p(X)$. Therefore classical measurable selection theorems (see for instance Theorem III.23 in [49]) give the thesis.