Lectures In Mathematics ~ ETH Zurich

==
\
\
\



BIRKHAUSER



Lectures in Mathematics
ETH Ziirich

Department of Mathematics
Research Institute of Mathematics

Managing Editor:
Michael Struwe



Luigi Ambrosio
Nicola Gigl
Giuseppe Savare

Gradient Flows

in Metric Spaces and in the Space

of Probability Measures

Second Edition

Birkhduser
Basel - Boston - Berlin



Authors:

Luigi Ambrosio Giuseppe Savaré

Nicola Gigli Dipartimento di Matematica
Scuola Normale Superiore Universita di Pavia

Piazza die Cavalieri 7 Via Ferrata, 1

1-56126 Pisa 1-27100 Pavia
ambrosio@sns.it savare@imati.cnr.it

n.gigli@sns.it

2000 Mathematical Subject Classification: 28A33, 28A50, 35K55, 35K90, 47H0S, 47J35,
49J40, 65M15

Library of Congress Control Number: 2008921489

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

ISBN 978-3-7643-8721-1 Birkhéuser Verlag AG, Basel - Boston - Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broad-
casting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use
permission of the copyright owner must be obtained.

First edition 2005

© 2008 Birkhéuser Verlag AG

Basel - Boston - Berlin

P.O. Box 133, CH-4010 Basel, Switzerland

Part of Springer Science+Business Media

Printed on acid-free paper produced from chlorine-free pulp. TCF o
Printed in Germany

ISBN 978-3-7643-8721-1 e-ISBN 978-3-7643-8722-8

987654321 www.birkhauser.ch



Contents

Preface to the Second Edition

Introduction

Notation

I Gradient Flow in Metric Spaces

1

Curves and Gradients in Metric Spaces

1.1
1.2
1.3
1.4

Absolutely continuous curves and metric derivative . . . . . . . ..
Upper gradients . . . . . . . . . .. Lo
Curves of maximal slope . . . . . . . ... ... ... ... ..
Curves of maximal slope in Hilbert and Banach spaces . . . . . . .

Existence of Curves of Maximal Slope

2.1
2.2

2.3
24

Main topological assumptions . . . . . . . .. .. ... ... ..
Solvability of the discrete problem and compactness of discrete tra-
jectories . ... Lo
Generalized minimizing movements and curves of maximal slope

The (geodesically) convex case . . . . .. ... ... ... .....

Proofs of the Convergence Theorems

3.1
3.2
3.3
3.4

Moreau-Yosida approximation . . . . . . ... ... ... ... ...
A priori estimates for the discrete solutions . . . . ... ... ...
A compactness argument . . . . ... ...
Conclusion of the proofs of the convergence theorems . . . . . . ..

Generation of Contraction Semigroups

4.1

Cauchy-type estimates for discrete solutions . . . . . . .. ... ..
4.1.1 Discrete variational inequalities . . . . . . . . ... ... ..
4.1.2 Piecewise affine interpolation and comparison results . . . .

ix

18

21

23
23
26
30
32

39
42

44
45
49

59
59
66
69
71

75
82
82
84



Contents

vi
4.2 Convergence of discrete solutions . . . . . .. ... ... .. .... 89
4.2.1 Convergence when the initial datum up € D(¢) . . . . . . . 89
4.2.2  Convergence when the initial datum ug € D(@). . . . . . . . 92
4.3 Regularizing effect, uniqueness and the semigroup property . . .. 93
4.4 Optimal error estimates . . . . . . . ... ... ... 97
441 Thecase A\=0 . . . . . . ... 97
442 Thecase A\#0Q . . . . ..o e 99
II Gradient Flow in the Space of Probability Measures 103
5 Preliminary Results on Measure Theory 105
5.1 Narrow convergence, tightness, and uniform integrability . . . . . . 106
5.1.1 Unbounded and l.s.c. integrands . . . . .. .. .. ... .. 109
5.1.2  Hilbert spaces and weak topologies . . . . . . . .. ... .. 113
5.2 Transport of measures . . . . . . . ... ... oL 118
5.3 Measure-valued maps and disintegration theorem . . . . . . .. .. 121
5.4 Convergence of plans and convergence of maps . . . . ... .. .. 124
5.5 Approximate differentiability and area formula in Euclidean spaces 128
6 The Optimal Transportation Problem 133
6.1 Optimality conditions . . . . . . . .. .. .. ... ... ... .. 135
6.2 Optimal transport maps and their regularity . . . . . ... .. .. 139
6.2.1 Approximate differentiability of the optimal transport map 142
6.2.2 The infinite dimensional case . . . . . . .. ... ... ... 147
6.2.3 The quadraticcase p=2 . . . .. .. ... ... ..., 149
7 The Wasserstein Distance and its Behaviour along Geodesics 151
7.1 The Wasserstein distance . . . . . ... ... ... .. ... ... . 151
7.2 Interpolation and geodesics . . . . ... ..o 158
7.3 The curvature properties of P5(X) . . . . . ... ... 160
8 A.C. Curves in &,(X) and the Continuity Equation 167
8.1 The continuity equation in R% . . . . . .. .. ... .. ... ... 169
8.2 A probabilistic representation of solutions of the continuity equation 178
8.3 Absolutely continuous curves in Z,(X) . . ... ... ... 182
8.4 The tangent bundle to Z,(X) . ... ... ... ... 189
8.5 Tangent space and optimal maps . . . . . . . ... ... ... ... 194
9 Convex Functionals in &7,(X) 201
9.1 A-geodesically convex functionals in &2,(X) . . .. ... ... ... 202
9.2 Convexity along generalized geodesics . . . . . .. ... ... ... 205

9.3 Examples of convex functionals in &,(X) . . ... ... ... ... 209



Contents vii

10

9.4 Relative entropy and convex functionals of measures . . . . . . .. 215
9.4.1 Log-concavity and displacement convexity . . . . . . . . .. 220
Metric Slope and Subdifferential Calculus in &7,(X) 227
10.1 Subdifferential calculus in &5 (X): the regular case . . . . . . . .. 229
10.1.1 The case of A-convex functionals along geodesics . . . . . . 231
10.1.2 Regular functionals . . . . . . . ... ... ... .. 232
10.2 Differentiability properties of the p-Wasserstein distance . . . . . . 234
10.3 Subdifferential calculus in &2,(X): the general case . . . . . . . .. 240
10.3.1 The case of A-convex functionals along geodesics . . . . . . 244
10.3.2 Regular functionals . . . . . . . . ... ... ... .. 246
10.4 Example of subdifferentials . . . . . ... ... ... ... ..... 254
10.4.1 Variational integrals: the smooth case . . . . ... ... .. 254
10.4.2 The potential energy . . . . . . . .. ... ... 255
10.4.3 The internal energy . . . . . . . .. ... ... 257
10.4.4 The relative internal energy . . . . . . . ... ... ... 265
10.4.5 The interaction energy . . . . . . . ... ... 267
10.4.6 The opposite Wasserstein distance . . . . . . ... .. ... 269
10.4.7 The sum of internal, potential and interaction energy . . . 272

10.4.8 Relative entropy and Fisher information in infinite dimensions276

11 Gradient Flows and Curves of Maximal Slope in &,(X) 279
11.1 The gradient flow equation and its metric formulations . . . . . . . 280
11.1.1 Gradient flows and curves of maximal slope . . . . . .. .. 283

11.1.2 Gradient flows for A-convex functionals . . .. ... .. .. 284

11.1.3 The convergence of the “Minimizing Movement” scheme . . 286

11.2 Gradient flows for A-convex functionals along generalized geodesics 295
11.2.1 Applications to Evolution PDE’s . . . . .. .. .. ... .. 298

11.3 Gradient flows in &,(X) for regular functionals . . . . . . . .. .. 304

12 Appendix 307
12.1 Carathéodory and normal integrands . . . . . . .. .. .. .. ... 307
12.2 Weak convergence of plans and disintegrations . . . . . . ... .. 308
12.3 PC metric spaces and their geometric tangent cone . . . . . . . .. 310
12.4 The geometric tangent spaces in P5(X) . . . . . . .. .. ... .. 314
Bibliography 331

Index 333



Preface to the Second Edition

In this edition we made minor corrections kindly pointed out to us by some col-
leagues, and we updated and expanded the bibliography. We have not included
the developments of the theory of gradient flows occurred in the last three years,
as gradient flows in spaces with Alexandrov curvature bounds [135] (see also [119])
and Fokker-Planck equations in infinite-dimensional spaces [18], largely based on
the ideas developed in the book. We also mention the long survey paper [17],
more focussed on gradient flows in Euclidean spaces with respect to the quadratic
Wasserstein distance, where the notion of Evolution Variational Inequality is dis-
cussed more in detail, and the monumental book of C. VILLANI [147], which will
surely become the standard reference for the theory of Optimal Transport and its
applications to geometry and PDE’s.

Pisa and Pavia, January 2008



Introduction

This book is devoted to a theory of gradient flows in spaces which are not neces-
sarily endowed with a natural linear or differentiable structure. It is made of two
parts, the first one concerning gradient flows in metric spaces and the second one
devoted to gradient flows in the L?-Wasserstein space of probability measures on
a separable Hilbert space X endowed with the Wasserstein L? metric (we consider
the LP-Wasserstein distance, p € (1, 00), as well).

The two parts have some connections, due to the fact that the Wasserstein
space of probability measures provides an important model to which the “metric”
theory applies, but the book is conceived in such a way that the two parts can
be read independently, the first one by the reader more interested to Non-Smooth
Analysis and Analysis in Metric Spaces, and the second one by the reader more
oriented to the applications in Partial Differential Equations, Measure Theory and
Probability.

The occasion for writing this book came with the NachDiplom course taught
by the first author in the ETH in Ziirich in the fall of 2001. The course covered
only part of the material presented here, and then with the contribution of the
second and third author (in particular on the error estimates of Part I and on the
generalized convexity properties of Part II) the project evolved in the form of the
present book. As a result, it should be conceived in part as a textbook, since we
try to present as much as possible the material in a self-contained way, and in part
as a research book, with new results never appeared elsewhere.

Now we pass to a more detailed description of the content of the book,
splitting the presentation in two parts; for the bibliographical notes we mostly
refer to each single chapter.

Part I

In Chapter 1 we introduce some basic tools from Analysis in Metric Spaces. The
first one is the metric derivative: we show, following the simple argument in [7], that
for any metric space (., d) and any absolutely continuous map v : (a,b) C R — .%¥
the limit
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exists for Z1-a.e. t € (a,b) and d(v(s),v(t)) < fgt [v'|(r) dr for any interval (s,t) C
(a,b). This is a kind of metric version of Rademacher’s theorem, see also [13] and
the references therein for the extension to maps defined on subsets of R<.

In Section 1.2 we introduce the notion of upper gradient, a weak concept for the
modulus of the gradient, following with some minor variants the approach in [92],
[51]. We say that a function g : ¥ — [0,+00] is a strong upper gradient for
¢S — (—o0,+00] if for every absolutely continuous curve v : (a,b) — .¥ the
function g o v is Borel and

[6(00) ~ 9(u(s))] < [ gl |} dr Va<s<t<b (1)

In particular, if g o v|v'| € L'(a, b) then ¢ o v is absolutely continuous and
(@ ov) ()] < gu®)V'[(t) for L'-ae. t e (a,b). (2)

We also introduce the concept of weak upper gradient, where we require only that
(2) holds with the approximate derivative of ¢ o v, whenever ¢ o v is a function of
(essential) bounded variation. Among all possible choices of upper gradients, the
local [64] and global slopes of ¢ are canonical and respectively defined by:

e (90) = d(w)” o (60) —6w)
0¢](v) := hfu{ljgp T dw) lp(v) == S ) (3)
In our setting, [4(-) provides the natural “one sided” bounds for difference quo-
tients modeled on the analogous one [51] for Lipschitz functionals, where the pos-
itive part of ¢(v) — ¢(w) is replaced by the modulus.

We prove in Theorem 1.2.5 that the function |0¢| is a weak upper gradient
for ¢ and that, if ¢ is lower semicontinuous, [y is a strong upper gradient for ¢.
In Section 1.3 we introduce our main object of study, the notion of curve of maxi-
mal slope in a general metric setting. The presentation here follows the one in [8],
on the basis of the ideas introduced in [64] and further developed in [65], [109].
To illustrate the heuristic ideas behind, let us start with the classical setting of a
gradient flow

u'(t) = =V (u(t)) (4)

in a Hilbert space. If we take the modulus in both sides we have the equation
[W'|(t) = |[Vé(u(t))| which makes sense in a metric setting, interpreting the left
hand side as the metric derivative and the right hand side as an upper gradient
of ¢ (for instance the local slope |0¢], as in [8]). However, in passing from (4) to
a scalar equation we clearly have a loss of information. This information can be
retained by looking at the derivative of the energy:

L6 (u(t) = (o (1), Vo (u(t) =~/ (D]IVo (u(t)) | = 5! 2(0) 31V (1)
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The second equality holds iff v' and —V¢(u) are parallel and the third equality
holds iff |v/| and |V (u)| are equal, so that we can rewrite (4) as

1
2

2 (6) + 5V (ult)) P = — 56 (u(0).

Passing to an integral formulation and replacing |V (u)| with g(u), where g is an
upper gradient of ¢, we say that u is a curve of maximal slope with respect to g if

5 | (WPO)+ lo ) ) dr < 6 (ulo) - & (1) 5)

S

for #1-a.e. s, t with s < ¢. In the case when ¢ is a strong upper gradient, the
energy is absolutely continuous in time, the inequality above is an equality and it
holds for any s, t > 0 with s < ¢.

This concept of curve of maximal slope is very natural, as we will see, also in
connection with the problem of the convergence of the implicit Euler scheme.
Indeed, we will see that (5) has also a discrete counterpart, see (11) and (3.2.4).
A brief comparison between the notion of curves of maximal slope and the more
usual notion of gradient flows in Banach spaces is addressed in Section 1.4. We
shall see that the metric approach is useful even in a linear framework, e.g. when
the Banach space does not satisfy the Radon-Nikodym property (so that there
exist absolutely continuous curves which are not a.e. differentiable) and therefore
gradient flows cannot be characterized by a differential inclusion.

In Chapter 2 we study the problem of the existence of curves of maximal slope
starting from a given initial datum ug € . and the convergence of (a variational
formulation of) the implicit Euler scheme. Given a time step 7 > 0 and a discrete
initial datum U? = ug, we use the classical variational problem

1
U} € argmin {¢(v) + Zdz(v, urth:wve :5’} (6)

to find, given U"~!, the next value U". We consider also the case of a variable
time step when 7 depends on n as well (see Remark 2.0.3). Also, we have preferred
to distinguish the role played by the distance d (which, together with ¢, governs
the direction of the flow) by the role played by an auxiliary topology o on ., that
could be weaker than the one induced by d, ensuring compactness of the sublevel
sets of the minimizing functional of (6) (this ensures existence of minimizers in
(6)). In this introductory presentation we consider for simplicity the case of a
uniform step size 7 independent of n and of an energy functional ¢ whose sublevel
sets {¢ < ¢}, ¢ € R, are compact with respect to the distance topology; we also
suppose that U% = ug, ¢(ug) < +o0o. This ensures a compactness property of the
discrete trajectories and therefore the existence of limit trajectories as 7 | 0 (the
so-called generalized minimizing movements in De Giorgi’s terminology, see [63]).
In Section 2.3 we state some general existence results for curves of maximal slope.
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The first result is stated in Theorem 2.3.1 and it is the more basic one: we show
that if the relaxed slope

|0~ ¢|(u) := inf { linrr_l)ioréf [00](un) : wn — u, sgp{d(un,u),ﬂun)} < —1—00} (7)

is a weak upper gradient for ¢, and if ¢ is continuous along bounded sequences in
. on which both ¢ and |0¢| are bounded, then any limit trajectory is a curve of
maximal slope with respect to [0~ ¢|(u). If |0~ ¢|(u) is a strong upper gradient we
can drop the continuity assumption on ¢ and obtain in Theorem 2.3.3 that any
limit trajectory is a curve of maximal slope with respect to |0~ ¢|(u). In particular
this leads to the energy identity

5 [ (P e)+ 176 ulr)) dr = 6 (uls) = 6 (u(t) )

S

for any interval [s, t] C [0, +00). One can also show strong L? convergence of several
quantities associated to discrete trajectories to their continuous counterpart, see
(2.3.6) and (2.3.7).

In Section 2.4 we consider the case of convex functionals. Here convexity or, more
generally, A-convexity has to be understood (see [95], [111]) in the following sense:

B0) < (1= 1)6(10) +16(n) — A1~ )P (0, m) Ve [0.1]  (9)

for any constant speed minimal geodesic 7; : [0,1] — . (but more general class
of interpolating curves could also be considered). We show that for A\-convex func-
tionals with A > 0 the local and global slopes coincide. Moreover, for any A-convex
functional the local slope |0¢| is a a strong upper gradient and it is lower semicon-
tinuous, therefore the results of the previous section apply and we obtain existence
of curves of maximal slope with respect to |0¢| and the energy identity (8). As-
suming A\ > 0 we prove some estimates which imply exponential convergence of
u(t) to the minimum point of the energy as ¢ — +oo. At this level of generality
an open problem is the uniqueness of curves of maximal slope: this problem is
open even in the case when . is a Banach space. We are able to get uniqueness,
together with error estimates for the Euler scheme, only under stronger convexity
assumptions (see Chapter 4 and also Section 11.1.2 in Part II, where uniqueness
is obtained in the Wasserstein space using its differentiable structure). Finally,
we prove in Theorem 2.4.15 a metric counterpart of Brezis’ result [38, Theorem
3.2, page. 57], showing that the right metric derivative of ¢ — wu(¢) and the right
derivative of ¢ — ¢ (u(t)) exist at any ¢ > 0; in addition the equation

%MUU)) = —|0¢[*(u(t)) = —[uy |*(t) = —|0¢|(u(t)) |y (1)
N

holds in a pointwise sense in (0, +00).
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Chapter 3 is devoted to some proofs of the convergence and regularity the-
orems stated in the previous chapter. We study in particular the Moreau—Yosida
approximation ¢, of ¢ (a natural object of study in connection with (6)), defined
by

¢r(u) == inf{¢(v)+%d2(v,u) : UEY} ue.s, T>0. (10)

Notice that since v = u is admissible in the variational problem defining ¢, we
have the obvious inequality

1
o= () < 6(u) — (ur)

-
for any minimizer u, (here we assume that for 7 > 0 sufficiently small the infimum
is attained). Following an interpolation argument due to De Giorgi this elementary
inequality can be improved (see Theorem 3.1.4), getting

GOSNy COP
0

o o dr = 6(u) — dur). (11)

Combining this identity with the slope estimate (see Lemma 3.1.3)

o6(u) < Lert)

we obtain the sharper inequality

d2(uT,u) T |(‘3¢\2(u,»)
By S

o0 D) dr < ¢(u) - ¢(u7’)

If we interpret r — wu, as a kind of “variational” interpolation between v and .,
and if we apply this estimate repeatedly to all pairs (u,u,) = (U*~1,U") arising
in the Euler scheme, we obtain a discrete analogue of (5). This is the argument
underlying the basic convergence Theorem 2.3.1. Notice that this variational in-
terpolation does not coincide (being dependent on ¢), even in a linear framework,
with the standard piecewise linear interpolation.

Chapter 4 addresses the general questions related to the well posedness of
curves of maximal slope, i.e. uniqueness, continuous dependence on the initial
datum, convergence of the approximation scheme and possibly optimal error es-
timates, asymptotic behavior. All these properties have been deeply studied for
l.s.c. convex functionals ¢ in Hilbert spaces, where it is possible to prove that
the Euler scheme (6) converges (with an optimal rate depending on the regular-
ity of ug) for each choice of initial datum in the closure of the domain of ¢ and
generates a contraction semigroup which exhibits a regularizing effect and can be
characterized by a system of variational inequalities.

We already mentioned the lackness of a corresponding Banach space theory:
if one hopes to reproduce the Hilbertian result in a purely metric framework it is
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natural to think that the so called “parallelogram rule”

2 —y 2 1 1
|22 22 = Sl + Sl (12)
which provides a metric characterization of Hilbertian norms, should play a crucial
role.

It is well known that (12) is strictly related to the uniform modulus of
convexity of the norm: in fact, considering a general convex combination v, =
(1 —t)yo + ty1 instead of the middle point between ~y and 71, and evaluating the
distance d(y¢,v) := ||y — v|| from a generic point v instead of 0, we easily see that

(12) can be rephrased as
d(ve,v)* = (1 — t)d(70,v)* + td(y1,v)* — t(1 — t)d(y0,71)> Vt€[0,1]. (13)

It was one of the main contribution of U. MAYER [110] to show that in a general
geodesically complete metric space the 2-convexity inequality

d(7¢,0)* < (1 = t)d(y0,v)? + td(y1,0)* = t(1 = t)d(r0,m)* Vte[0,1]. (14)

(where now ~; is a constant speed minimal geodesic connecting o to y1: cf. (9))
is a sufficient condition to prove a well posedness result by mimicking the cele-
brated Crandall-Ligget generation result for contraction semigroups associated to
m-~accretive operators in Banach spaces.

For a Riemannian manifold (14) is equivalent to a global nonpositivity condi-
tion on the sectional curvature: Aleksandrov introduced condition (14) for general
metric spaces, which are now called NPC (Non Positively Curved) spaces.

Unfortunately, the L2-Wasserstein space, which provides one of the main
motivating example of the present theory, satisfies the opposite (generally strict)
inequality, which characterizes Positively Curved space.

Our main result consists in the possibility to choose more freely the family of
connecting curves, which do not have to be geodesics any more: we simply suppose
that for each triple of points g, 1, v there exists a curve ~; connecting 7y to 1
and satisfying (14) and (9); we shall see in the second Part of this book that this
considerably weaker condition is satisfied by various interesting examples in the
L2-Wasserstein space. In addition, these interpolating curves can be used to obtain
a new first variation formula in (10), namely

%(aﬁ(uﬂv) CPuv) + F) <F)  Yoes

This suggests to define a continuous solution w(t), in the same spirit of [27], by
requiring the Fvolution Variational Inequalities (EVT in short)

—=d?(u(t),v) + F(v) < F(u) Yo e .7
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For convex and lower semicontinuous functionals F' in Hilbert spaces this definition
is justified by

d1
21 5/u) = P = (= (t),v — u(t)) < F(v) — F(u(t)).
The two main ingredients in this derivation (derivative of the squared distance
and subdifferential inequality for convex functionals) can be perfectly reproduced,
as we will see, in Wasserstein spaces.

Even if the Crandall-Ligget technique cannot be applied under these more
general assumptions, we are able to prove a completely analogous generation result
for a regularizing contraction semigroup, together with the optimal error estimate
(here A = 0) at each point ¢ of the discrete mesh

a2(u(t), U (1)) < 7(é(u0) = 9 (w0) ) < 106 (uo).

where u(t) is the unique solution of (EVI) starting from wug.
Part II

Chapter 5 contains some preliminary and basic facts about Measure Theory and
Probability in a general separable metric space X. In the first section we introduce
the narrow convergence and discuss its relation with tightness, lower semicontinu-
ity, and p-uniform integrability; a particular attention is devoted in Section 5.1.2
to the case when X is an Hilbert space and the strong or weak topologies are con-
sidered. In the second section we introduce the push-forward operator p — r4pu
between measures and discuss its main properties. Section 5.3 is devoted to the
disintegration theorem for measures and to the related and classical concept of
measure-valued map. The relationships between convergence of maps and narrow
convergence of the associated plans, typical in the theory of Young measures (see
for instance [149, 150, 28, 144, 25]), are presented in Section 5.4.

Finally, the last section of the chapter contains a discussion on the area formula
for maps f : A ¢ RY — R? under minimal regularity assumptions on f (in the
same spirit of [88]), so that the classical formula for the change of density

fa (p2?) = FHpa2?

_r
|detV f]
still makes sense. These results apply in particular to the classical case when f is
the gradient of a convex function (this fact was proved first by a different argument
in [111]). In the same section we introduce the classical concepts of approzimate
continuity and approximate differentiability which will play an important role in
establishing the existence and the differentiability of optimal transport maps.
Chapter 6 is entirely devoted to the general results on optimal transportation
problems between probability measures p, v: in the first section they are studied
in a Polish/Radon space X with a cost function ¢ : X2 — [0, +o0c]. We consider
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the strong formulation of the problem with transport maps due to Monge, see
(6.0.1), and its weak formulation with transport plans

min {/XZ c(x,y)dy: v €T (u, y)} (15)

due to Kantorovich. Here T'(y, v) denotes the class of all v € Z2(X?) such that

71'71#'7 = p and 7@’7 =v (7' : X? - X,i=1, 2 are the canonical projections) and

in the following we shall denote by T', (1, V) the class of optimal plans for (15).
In Section 6.1 we discuss the duality formula

min (15):sup{/X <pdu+/deu: e(x) +1(y) SC(w,y)}

for the Kantorovich problem and the necessary and sufficient optimality conditions
for transport plans. These can be expressed in two basically equivalent ways (under
suitable a-priori estimates from above on the cost function): a transport plan = is
optimal if and only if its support is c-monotone, i.e.

n

n
Zc(azi,yg(i)) > Zc(azi,yi) for any permutation o of {1,...,n}
i=1

i=1

for any choice of (x;,y;) € supp~y, 1 < i < n. Alternatively, a transport plan ~ is
optimal if and only if there exist (¢,4) such that ¢(z) + ¢¥(y) < c(x,y) for any
(x,y) and

o@) +¢¥(y) = clx,y) ~y-a.e. in X x X. (16)

The pair (p,1) can be built in a canonical way, independent of the optimal plan
v, looking for maximizing pairs in the duality formula (6.1.1). In the presentation
of these facts we have been following mostly [16], [82], [129], [146]; see also [73].
Section 6.2 is devoted to the problem of the existence of optimal transport maps
t,,, under the assumption that X is an Hilbert space and the initial measure
u is absolutely continuous (in the infinite dimensional case we assume that the
measure p vanishes on all Gaussian null sets); we consider mostly the case when
the cost function is the p-power, with p > 1, of the distance. We include also (see
Theorem 6.2.10) an existence result in the case when X is a separable Hilbert
space (compare with the results [79, 80, 101] in Wiener spaces, where the cost
function c¢(x,y) is finite only when z — y is in the Cameron-Martin space). The
proofs follow the by now standard approach of differentiating with respect to z
the relation (16) to obtain that for p-a.e. = there is a unique y such that (16) holds
(the relation = — y then gives the desired optimal transport map y = t;,(x)).

The Wasserstein distances and their geometric properties are the main sub-
jects of Chapter 7. In Section 7.1 we define the p-Wasserstein distance and we
recall its basic properties, emphasizing the fact that the space Z2,(X) endowed
with this distance is complete and separable but not locally compact when the
underlying space X is not compact.
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The second section of Chapter 7 deals with the characterization of constant speed
geodesics in 2, (X) (here X is an Hilbert space), parametrized on the unit interval
[0,1]. Given the endpoints pg, i1 of the geodesic, we show that there exists an
optimal plan v between pg and pp such that

pe=(tr? +(1L-t)r') v Vte[0,1]. (17)

Conversely, given any optimal plan «, the formula above defines a constant speed
geodesic. In the case when plans are induced by transport maps, (17) reduces to

pe = (Eth: 4+ (1 — t)i)#uo vt € [0,1]. (18)

We show also in Lemma 7.2.1 that there is a unique transport plan joining a point
in the interior of a geodesic to one of the endpoints; in addition this transport
plan is induced by a transport map (this does not require any absolute continuity
assumption on the endpoints and will provide a useful technical tool to approxi-
mate plans with transports).

In Section 7.3 we focus our attention on the L2-Wasserstein distance: we will prove
a semi-concavity inequality for the squared distance function ¥ (t) := %sz(ut, )
from a fixed measure p along a constant speed minimal geodesic p, ¢ € [0, 1]

W3 (pey 1) > W3 (pa, ) + (1= W3 (o, ) — t(1 — W3 (o, 1) (19)

and we discuss its geometric counterpart; we also provide a precise formula to
evaluate the time derivative of ¥ and we show trough an explicit counterexample
that ¢ does not satisfy any A-convexity property, for any A € R. Conversely, (19)
shows that 1 is semi-concave and that (X)) is a Positively curved (PC) metric
space.

Chapter 8 plays an important role in the theory developed in this book. In
the first section we review some classical results about the continuity/transport
equation
%Mt + V- () =0 in X x (a,b) (20)
in a finite dimensional euclidean space X and the representation formula for its
solution by the Characteristics method, when the velocity vector field v, satisfies
a p-summability property with respect to the measures u; and a local Lipschitz
condition. When this last space-regularity properties does not hold, one can still
recover a probabilistic representation result, through Young measures in the space
of X-valued time dependent curves: this approach is presented in Section 8.2.
The main result of this chapter, presented in Section 8.3, is that the class of solu-
tions of the transport equation (20) (in the infinite dimensional case the equation
can still be interpreted in a weak sense using cylindrical test functions) coincides
with the class of absolutely continuous curves p; with values in the Wasserstein
space. Specifically, given an absolutely continuous curve p; one can always find
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a “velocity field” v, € LP(u; X) such that (20) holds; in addition, by construc-
tion we get that the norm of the velocity field can be estimated by the metric
derivative:

vl Lo ey < |1[(2) for Z'-a.e. t € (a,b). (21)

Conversely, any solution (u¢,v¢) of (20) with fab |vell Lo () dt < +o0 induces an
absolutely continuous curve p;, whose metric derivative can be estimated by
Vel e,y for Lr-ace. t € (a,b). As a consequence of (8.2.1) we see that among
all velocity fields v; which produce the same flow p, there is an optimal one with
smallest LP norm, equal to the metric derivative of p; we view this optimal field
as the “tangent” vector field to the curve u;. To make this statement more precise,
let us consider for instance the case when p = 2 and X is finite dimensional: in this
case the tangent vector field is characterized, among all possible velocity fields, by
the property

L (pe;X)

v €{Vyp: p e CX(X)} for Z'-a.e. t € (a,b). (22)

In general one has to consider a duality map j, between L? and LP (since gradi-
ents are thought as covectors, and therefore as elements of L?) and gradients of
cylindrical test functions if X is infinite dimensional.

In the next Section 8.4 we investigate the properties of the above defined tangent
vector. A first consequence of the characterization of absolutely continuous curves
is a result, given in Proposition 8.4.6, concerning the infinitesimal behaviour of
the Wasserstein distance along absolutely continuous curves p: given the tangent
vector field vy to the curve, we show that

i Vo(Besn, (@ + hog)gpe)
h—0 |h]

=0 for L1-a.e. t € (a,b). (23)

Moreover the optimal transport plans between p; and g4, rescaled in a suit-
able way, converge to the optimal transport plan (¢ X v;)xp associated to vy (see
(8.4.6)). This Proposition shows that the infinitesimal behaviour of the Wasser-
stein distance is governed by transport maps even in the situations when globally
optimal transport maps fail to exist (recall that the existence of optimal transport
maps requires assumptions on the initial measure pu).

Another interesting result is a formula for the derivative of the distance from a
fixed measure along any absolutely continuous curve pu; in #2,(X): one can show
for any p € (1,00) that

d
— W) (e, 1) = P/ (ve(w1), 1 — w)|a1 — 2|72 dryy (a1, 22) (24)

dt X2
for any optimal plan ~, between u; and fi; here v; is any admissible velocity
vector field associated to p; through the continuity equation (20). This “generic”
differentiability along absolutely continuous curves is sufficient for our purposes,
see for instance Theorem 11.1.4 where uniqueness of gradient flows is proved.
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Another consequence of the characterization of absolutely continuous curves in
P5(X) is the variational representation formula

: ! d
W22(N03M1) _IHIII{A Hth%Z(Ht) dt : E,ut+v ('Utﬂt) _0} (25)

Again, these formulas still hold with the necessary adaptations if either p €
(1,+00) (in this case we have a kind of Finsler metric) or X is infinite dimen-
sional. We also show that optimal transport maps belong to Tan,%,(X) under
quite general conditions.

The characterization (22) of velocity vectors and the additional properties we
listed above, strongly suggest to consider the following “regular” tangent bundle

to QQ(X)

L2 (115X)

Tan, Z»(X) :={Vp: pe Cx(X)} VY e Pa(X), (26)

endowed with the natural L? metric. Up to a .#!-negligible set in (a, b), it contains
and characterizes all the tangent velocity vectors to absolutely continuous curves.
In this way we recover in a general framework the Riemannian interpretation of the
Wasserstein distance developed by Otto in [124] (see also [123], [94] and also [48]):
indeed, the right hand side in (25) is nothing but the minimal length, computed
with respect to the metric tensor, of all absolutely continuous curves connecting
o to pp. This formula was independently discovered also in [26], and used for
numerical purposes. In the original paper [124], instead, (25) is derived using
formally the concept of Riemannian submersion and the family of maps ¢ — ¢xpu
(indexed by ) from Arnold’s space of diffeomorphisms into the Wasserstein space.
In the last Section 8.5 we compare the “regular” tangent space 26 with the tangent
cone obtained by taking the closure in LP(u; X) of all the optimal transport maps
and we will prove the remarkable result that these two notions coincide.

In Chapter 9 we study the convexity properties of functionals ¢ : &2, (X) —
(—00, +00]. Here “convexity” refers to convexity along geodesics (as in [111], [124],
where these properties have been first studied), whose characterization has been
given in the previous Section 7.2. More generally, as in the metric part of the
book, we consider A-convex functionals as well, and in Section 9.2 we investigate
some more general convexity properties in #»(X ). The motivation comes from the
fact, discussed in Part I, that error estimates for the implicit Euler approximation
of gradient flows seem to require joint convexity properties of the functional and
of the squared distance function. As shown by a formal computation in [124],
the function W2(-, u) is not 1-convex along classical geodesics y; and we have
actually the reverse inequality (19) (cf. Corollary 7.3.2). It is then natural to look
for different kind of interpolating curves, along which the distance behaves nicely,
and for functionals which are convex along this new class of curves.

To this aim, given an absolutely continuous measure pu, we consider the family of
“generalized geodesics”

pt = ((17t)tﬁ0+ttﬁl)#ﬂ te [031]3
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among all possible optimal transport maps ¢/,°, t/;'. As usual we get rid of the
absolute continuity assumption on p by considering the family of 3-plans

{ve2(X?): (x',7*) gy € Tolp o), (x',7°) 4y € Tolp, )}

and the corresponding family of generalized geodesics:
pe=(L=t)n® +tn) v te[0,1].

We prove in Lemma 9.2.1 the key fact that W2(-, u) is 1-convex along these gen-
eralized geodesics. Thanks to the theory developed in Part I, the convexity of
W3(-, 1) along the generalized geodesics leads to error estimates for the Euler
scheme, provided the energy functional ¢ is A-convex, for some A € R, along any
curve in this family. It turns out that almost all the known examples of convex
functionals along geodesics, which we study in some detail in Section 9.3, sat-
isfy this stronger convexity property; following a terminology introduced by C.
Villani, we will consider functionals which are the sum of three different kinds of

contribution: the potential and the interaction energy, induced by convex functions
V,W: X — (—o0,+x]

= [ V@@, W= [ W )dn< uta),

X2

and finally the internal energy

= [ F(fga@) d2%e) (27)

F : [0,+00) — R being the energy density, which should satisfy an even stronger
condition than convexity.

The last Section 9.4 discusses the link between the geodesic convexity of the Rel-
ative Entropy functional (without any restriction on the dimension of the space;
we also consider a more general class of relative integral functionals, obtained
replacing .#? in (27) by a general probability measure v in X)

d“ < ) |
log dy if p <7y,
H(uly) : / (28)

otherwise,

and the “log” concavity of the reference measure 7, a concept which is strictly
related to various powerful functional analytic inequalities. The main result here
states that H(-|y) is convex along geodesics in &2,(X) (here the exponent p can
be freely chosen, and also generalized geodesics in %25(X) can be considered) if
and only if v is “log” concave, i.e. for every couple of open sets A, B C X we have

logy((1 —t)A+tB) > (1 —t)logy(A) + tlog~y(B) t €[0,1].
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When X = R? and v < £, this condition is equivalent to the representation
v =e"V . £ for some ls.c. convex potential V : R? — (—o00, +0c] whose domain
has not empty interior in R%.

One of the goal of the last two chapters is to establish a theory sufficiently
powerful to reproduce in the Wasserstein framework the nice results valid for
convex functionals and their gradient flows in Hilbert spaces. In this respect an
essential ingredient is the concept of (Fréchet) subdifferential of a l.s.c. functional
¢ Pp(X) — (—o0, +00] (see also [47, 48]), which is introduced and systematically
studied in Chapter 10.

In order to motivate the relevant definitions and to suggest a possible guideline for
the development of the theory, we start by recalling five main properties satisfied
by the Fréchet subdifferential in Hilbert spaces. In Section 10.1 we prove that
a natural transposition of the same definitions in the Wasserstein space %(X),
when only regular measures belong to the proper domain of ¢ (or even of its metric
slope |0¢)|), is possible and they enjoy completely analogous properties as in the
flat case. Since this exposition is easier to follow than the one of Section 10.3 for
arbitrary measures, here we briefly sketch the main points.

First of all, the subdifferential d¢ (1) contains all the vectors & € L?(u; X) such
that

o) = 90n) = [ (&t =0) 0 (Walw.p0) (29)
If 1 is a minimizer of ¢, then 0 € d¢p(u); more generally, if . € HP(X) minimizes
1
Vi— ZWZQ(Vv /’(‘) + ¢(V)7

then the corresponding “Euler” equation reads

m

t
M E OP(phr).
T

As in the linear case, when ¢ is convex along geodesics, the subdifferential (29)
can also be characterized by the global system of variational inequalities

o) — $() = / (€t —iydy Vv e PX), (30)

and it is “monotone”, since

& o), i=12 — /sztm £, (2), 82 (2) — ) dpa () > O;

the fact that &, is evaluated on ¢/, in the above formula should not be surprising,
since subdifferentials of ¢ in dlﬂerent measures 1, o belong to different vector
(L?(pi; X)) spaces (like in Riemannian geometry), so that they can be added or
subtracted only after a composition with a suitable transport map.
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Closure properties like

/lh — /L il’l QQ(X), Eh — é, £h € a¢(ﬂh) g € € 8(15(,11,), (31)

(here one should intend the weak convergence of the vector fields &, which are
defined in the varying spaces L?(up; X ), according to the notion we introduced in
Section 5.4) play a crucial role: they hold for convex functionals and define the
class of “regular” functionals. In this class the minimal norm of the subdifferential
coincides with the metric slope of the functional

196](2) = min { €]l 2, : € € 06(n)},

and we can prove the chain rule

d
o) = /X (€ v) dun VE € Do),

for #1-a.e. (approximate) differentiability point of ¢ — ¢(j;) along an absolutely
continuous curve u, whose metric velocity is v;.

Section 10.2 is entirely devoted to study the (sub- and super-) differentiability
properties of the p-Wasserstein distances: here the assumption that the measures
are absolutely continuous w.r.t. the Lebesgue one is too restrictive, and our efforts
are mainly devoted to circumvent the difficulty that optimal transport maps do
not exist in general. Thus we should deal with plans instead of maps and the
results we obtain provide the right way to introduce the concept of subdifferential
in full generality, i.e. without restriction to absolutely continuous measures, in the
next Section 10.3.

To this aim, we need first to define, for given v € 2(X?) and i := 7,7, the class
of 3-plans

Lo(y,v) = {y € 2(X°): (r',7%)gp =", (v',7°)pp € To(p, 1)} .

Notice that in the particular case when v = (i x &) is induced by a transport
map and p is absolutely continuous, then I',(v,v) contains only one element

To(y,v) = { (i x € x 87) ) (32)

Thus we say that v € 2(X?) is a general plan subdifferential in d¢(u) if its
first marginal is pu, its second marginal has finite g-moment, and the asymptotic
inequality (29) can be rephrased as

o) — B() — / (22,23 — 01) dp(ar, w2,23) > o(Wa(usr)),  (33)

X3

for some 3-plan p (depending on v) in T, (7, v).
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When ¢ is convex (a similar characterization also holds for A-convexity) along
geodesics, this asymptotic property can be reformulated by means of a system of
variational inequalities, analogous to (30): v € d¢(u) if and only if

Vve Z,(X) Ipely(y,v): d(v) > P(p) + /Xs(xg,x;; —x1)dp.  (34)
If condition (32) holds then conditions (33) and (34) reduce of course to (29) and
(30) respectively.
This general concept of subdifferential, whose elements are transport plans rather
than tangent vectors (or maps) is useful to establish the typical identities of Convex
Analysis: we extend to this more general situation all the main properties we
discussed in the linear case and we also show that in the A-convex case tools of
I'-convergence theory fit quite well in our approach, by providing flexible closure
and approximation results for subdifferentials.
In particular, we prove in Theorem 10.3.10 that, as in the classical Hilbert setting,
the minimal norm of the subdifferential (in the present case, the g-moment of its
second marginal) coincides with the descending slope:

win{ [ Jaaftay s v € 000} = looie(o) (35)

and the above minimum is assumed by a unique plan 8°¢(u1), which provides the
so called “minimal selection” in d¢(u) and enjoys many distinguished properties
among all the subdifferentials in d¢(u). Notice that this result is more difficult
than the analogous property in linear spaces, since the g-moment of (the second
marginal of) a plan is linear map, and therefore it is not strictly convex. Besides
its intrinsic interest, this result provides a “bridge” between De Giorgi’s metric
concept of gradient flow, based on the descending slope, and the concepts of gra-
dient flow which use the differentiable structure (we come to this point later on).
The last Section 10.4 collects many examples of subdifferentials for the various
functionals considered in Chapter 9; among the others, here we recall Example
10.4.6, where the geometric investigations of Chapter 7 yield the precise expres-
sion for the subdifferential of the opposite 2-Wasserstein distance, Example 10.4.8,
where we show that even in infinite dimensional Hilbert spaces the Relative Fisher
Information coincides with the squared slope of the Relative Entropy H(+|7), when
v is log-concave, and 10.4.7 where the subdifferential of a general functional re-
sulting from the sum of the potential, interaction, and internal energies

o0 = [ V@ duw)+ [ W —y)duspten) + [

F(dp/d<L?) du,
Rd

R2d

is characterized: under quite general assumptions on V, W, F (which allow for
potentials with arbitrary growth and also assuming the value +00) we will show
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that the minimal selection 8°¢(u) is in fact induced by the transport map w =
0°¢(11) € L9 (u; RY) defined by

pw =V Lp(p)+pVo+p(VW s p), n=p-Z% Lr(p)=pF'(p)— F(p).

In the last Chapter 11 we define gradient flows in &2,(X), X being a separable

Hilbert space, and we combine the main points presented in this book to study
these flows under many different points of view.
For the sake of simplicity, in this introduction we consider only the more relevant
case p = 2: a locally absolutely continuous curve p; : (0,4+00) — (X)), with
\u'| € L?,.(0,+00) is said to be a gradient flow relative to the functional ¢ :
P(X) — (—o0, +0o0] if its velocity vector v satisfies

—vg € 0p(ue), for Z'-ae. t € (0,+00). (36)

For functionals ¢ satisfying the regularity property (31), in Theorem 11.1.3 we
show that this “differential” concept of gradient flow is equivalent to the “metric”
concept of curve of maximal slope introduced in Part I, see in particular Section 1.3
in Chapter 1. The equivalence passes through the pointwise identity (35).
When the functional is A-convex along geodesics, in Theorem 11.1.4 we show that
gradient flows are uniquely determined by their initial condition

ltlﬂ? Ht = fo-
The proof of this fact depends on the differentiability properties of the squared
Wasserstein distance studied in Section 8.3. When the measures p; are absolutely
continuous and the functional is A-convex along geodesics, this condition reduces
to the system

L+ V- (vgp) =0 in X x (0, 400),
00) = 0lim) = [ o, = i) e+ AW g (37)
Vv € P5(X), for PLlae. t>0.

Section 11.1.3 is devoted to a general convergence result (up to extraction of
a suitable subsequence) of the Minimizing Movement scheme, following a direct
approach, which is intrinsically limited to the case when p = 2 and the measures
1 are absolutely continuous. Apart from these restrictions, the functional ¢ could
be quite general, so that only a relaxed version of (36) can be obtained in the
limit. _
Existence of gradient flows is obtained in Theorem 11.2.1 for initial data pug € D(¢)
and ls.c. functionals which are A-convex along generalized geodesics in P(X):
this strong result is one of the main applications of the abstract theory developed
in Chapter 4 to the Wasserstein framework and, besides optimal error estimates for
the convergence of the Minimizing Movement scheme, it provides many additional
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informations on the regularity the semigroup properties, the asymptotic behaviour
as t — oo, the pointwise differential properties, the approximations, and the
stability w.r.t. perturbations of the functional of the gradient flows. Applications
are then given in Section 11.2.1 to various evolutionary PDE’s in finite and infinite
dimensions, modeled on the examples discussed in Section 10.4.

In Section 11.3 we consider the wider class of regular functionals in Z2,(X) even
for p # 2 and we prove existence of gradient flows when py belongs to the domain
of ¢ and suitable local compactness properties of the sublevel of ¢ are satisfied.
This approach uses basically the compactness/energy arguments of the theory
developed in Chapter 2 and the equivalence between gradient flows and curves of
maximal slope.

The Appendix collects some auxiliary results: the first two sections are de-
voted to lower semicontinuity and convergence results for integral functionals on
product spaces, when the integrand satisfies only a normal or Carathéodory con-
dition, and one of the marginals of the involved sequence of measures is fixed.

In the last two sections we follow the main ideas of the theory of Positively
curved (PC) metric space and we are able to identify the geometric tangent cone
Tan, Z>(X) to F(X) at a measure p. In a general metric space this tangent
space is obtained by taking the completion in a suitable distance of the abstract
set of all the curve which are minimal constant speed geodesics at least in a small
neighborhood of their starting point .

In our case, by identifying these geodesics with suitable transport plans, we can
give an explicit characterization of the tangent space and we will see that, if
€ P5(X), it coincides with the closure in L?(u; X) of the gradients of smooth
functions and with the closed cone generated by all optimal transport maps, thus
with the tangent space (10.4.1) we introduced in Section 8.4.

Acknowledgements. During the development of this project, that took almost
three years, we had many useful conversations with colleagues and friends on the
topics treated in this book. In particular we wish to thank Y.Brenier, J.A. Carrillo,
L.C. Evans, W. Gangbo, N. Ghoussub, R. Mc Cann, F. Otto, G. Toscani and C.
Villani. We also warmly thank the PhD student Stefano Lisini for his careful
reading of a large part of this manuscript.



18

Notation

V'] (¢)
ACP(a,b;.7)
B,.(z)

D(9)

09[(v), Ts(v)
Lip(¢, A)
6(v)

0°¢(1)

19-6(v)
D(7,u;v)
JJu)

U.(t)

MM (®;up)
GM M (D; ug)
Qé‘r(u)

U- (1)

B(X)
Cy(X)
C*(RY)

2 (X)
Pp(X)
Ppe(X x X)
LP(p; X)

T(u', 1)
Lo(u', 1?)
(]
t,
WP(/‘? V)
W, v)
W, (1, V)

i—j i—j,k
Ty = Ty

Jp

Notation

Metric derivative of v : (a,b) — ., see Theorem 1.1.2
Absolutely continuous v : (a,b) — . with |v'| € LP(a,b)
Open ball of radius r centered at x in a metric space
Domain of the functional ¢, see (1.2.1)

Local and global slopes of ¢, see Definition 1.2.4

Lipschitz constant of the function ¢ in the set A

Fréchet subdifferential of ¢ in Banach (1.4.7), Hilbert (10.0.1),
or Wasserstein spaces, see Definition 10.1.1 and (10.3.12)
Minimal selection map in the subdifferential, see Section 1.4
and (10.1.14)

Relaxed slope of ¢, see (2.3.1)

Quadratic perturbation of ¢ by d?(u, -)/27, see (2.0.3b)
Resolvent operator, see (2.0.5)

Piecewise constant interpolation of U, see (2.0.7)
Minimizing movement of ¢, see Definition 2.0.6

Generalized minimizing movement of ¢, see Definition 2.0.6
Moreau—Yosida approximation of ¢, see Definition 3.1.1

De Giorgi’s interpolation of U, see (3.2.1)

Borel sets in a separable metric space X

Space of continuous and bounded real functions defined on X
Space of smooth real functions with compact support in R?
Probability measures in a separable metric space X
Probability measures with finite p-th moment, see (5.1.22)
Probability measures with finite p, g-th moments, see (10.3.2)
L? space of p-measurable X-valued maps, see (5.4.3)

The Hilbert space X endowed with a weaker (normed) topolo-
gy, see Section 5.1.2

Approximate limit and differential of a function f, see
Definition 5.5.1

Support of p, see (5.0.1)

Linear envelope generated by a subset C' of a vector space
Push-forward of p through r, see (5.2.1)

Projection operators on a product space X, see (5.2.9)
2-plans with given marginals p', 2

Optimal 2-plans with given marginals *, >

Identity map

Optimal transport map between p and v, see (7.1.4)

p-th Wasserstein distance between p and v
Pseudo-Wasserstein distance induced by p, see (7.3.2)
Pseudo pth-Wasserstein distance induced p, see (10.2.9)

Interpolated projections, see (7.2.2)
Duality map between LP and LP | see (8.3.1)
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a(X)

Cyl(X)

7(2)
Tanltt @p (X)
FO(/J,I 2, M3)
9d(n)

9°p(1)

d-dimensional projections on a Hilbert space X, see
Definition 5.1.11

Cylindrical test functions on a Hilbert space X, see
Definition 5.1.11

Barycentric projection of a plan v in (X x X), see (5.4.9)
Tangent bundle to &,(X), see Definition 8.4.1
3-plans ~ such that W;‘?'y € Fo(ﬂ'#ulz, ©?)
Extended Fréchet subdifferential of ¢ at u, see
Definitions 10.3.1

Minimal selection plan in the subdifferential, see
Theorem 10.3.11
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Part I

Gradient Flow in Metric Spaces



Chapter 1

Curves and Gradients in Metric
Spaces

As we briefly discussed in the introduction, the notion of gradient flows in a metric
space ¢ relies on two elementary but basic concepts: the metric derivative of
an absolutely continuous curve with values in .¥ and the upper gradients of a
functional defined in .#. The related definitions are presented in the next two
sections (a more detailed treatment of this topic can be found for instance in
[20]); the last one deals with curves of maximal slope.

When . is a Banach space and its distance is induced by the norm, one can
expect that curves of maximal slope could also be characterized as solutions of
(doubly, if . is not Hilbertian) nonlinear (sub)differential inclusions: this aspect
is discussed in the last part of this chapter.

Throughout this chapter (and in the following ones of this first part)

(.7,d) will be a given complete metric space; (1.0.1)

we will denote by (a, b) a generic open (possibly unbounded) interval of R.

1.1 Absolutely continuous curves and metric derivative
Definition 1.1.1 (Absolutely continuous curves). Let (., d) be a complete metric

space and let v : (a,b) — % be a curve; we say that v belongs to ACP(a,b;.), for
p € [1,400], if there exists m € LP(a,b) such that

d(v(s),v(t)) < /tm(r) dr Va<s<t<b. (1.1.1)

In the case p = 1 we are dealing with absolutely continuous curves and we will
denote the corresponding space simply with AC(a,b; ).
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We recall also that a map ¢ : (a,b) — R is said to have finite pointwise
variation if

n—1
sup {Z lo(tiv1) —@(ti)]: a<t1 <--- <ty < b} < +o00. (1.1.2)
i=1

It is well known that any bounded monotone function has finite pointwise varia-
tion and that any function with finite pointwise variation can be written as the
difference of two bounded monotone functions.

Any curve in AC?(a,b;.#) is uniformly continuous; if a > —oo (resp. b <
+00) we will denote by v(a+) (resp. v(b—)) the right (resp. left) limit of v, which
exists since . is complete. The above limit exist even in the case a = —oo (resp.
b= +0c0) if v € AC(a,b;.”). Among all the possible choices of m in (1.1.1) there
exists a minimal one, which is provided by the following theorem (see [7, 8, 20]).

Theorem 1.1.2 (Metric derivative). Let p € [1,4o00]. Then for any curve v in
ACP(a,b;.”) the limit

[V'|(t) := IEM (1.1.3)

exists for £*-a.e. t € (a,b). Moreover the function t — |v'|(t) belongs to LP(a,b),
it is an admissible integrand for the right hand side of (1.1.1), and it is minimal
in the following sense:

[V'|(t) < m(t) for L -a.e. t € (a,b),
for each function m satisfying (1.1.1).
Proof. Let (y,) C . be dense in v((a,b)) and let d,,(t) := d(yn, v(t)). Since all

functions d,, are absolutely continuous in (a,b) the function

d(t) = sup [d;, (t)]
neN

(1.1.4)

is well defined .#'-a.e. in (a,b). Let t € (a,b) be a point where all functions d,, are
differentiable and notice that

lim inf d(v(s), v(t) > sup lim inf ldn(s) = dn(®)| =d(t).
s—t |s — ] neN s—t |s — |
This inequality together with (1.1.1) shows that d < m #!-a.e., therefore d €
LP(a,b). On the other hand the definition of d gives

d(v(s),v(t)) = :lég [dn(s) — dn(t)| < / d(r)dr Vs, t € (a,b), s < t,

and therefore J
S ORY0)
s—t |S — t‘

<d(¥)

at any Lebesgue point ¢ of d. O



1.1. Absolutely continuous curves and metric derivative 25

In the next remark we deal with the case when the target space is a dual
Banach space, see for instance [13].

Remark 1.1.3 (Derivative in Banach spaces). Suppose that . = A is a reflez-
ive Banach space (respectively: a dual Banach space): then a curve v belongs to
ACP(a,b; ) if and only if it is differentiable (resp. weakly*-differentiable) at #1-
a.e. point ¢t € (a, b), its derivative v’ belongs to LP(a,b; %) (resp. to L .(a,b; A))
and

t
v(t) —wv(s) = / V' (r)dr Va<s<t<b. (1.1.5)
In this case,
| (t)]|z = [v'|(t) ZL'-a.e. in (a,b). (1.1.6)
Lemma 1.1.4 (Lipschitz and arc-length reparametrizations). Let v be a curve in
AC(a,b;.#) with length L := f: |v'|(t) dt.

(a) For every e > 0 there exists a strictly increasing absolutely continuous map
se:(a,b) = (0,L.) withscs(a+)=0, se(b—)=L.:=L+¢e(b—a), (1.1.7)
and a Lipschitz curve 9. : (0, L.) — .7 such that

V']

~ ~1
v=0cose,  [oefose = e+ ||

€ L=(a,b). (1.1.8)

The map s. admits a Lipschitz continuous inverse tc : (0, L:) — (a,b) with Lips-
chitz constant less than ¢~*, and 9. = v ot..

(b) There exists an increasing absolutely continuous map
s:(a,b) = [0,L] withs(a+) =0, s(b—) =1L, (1.1.9)
and a Lipschitz curve 0 : [0, L] — . such that
v=1tos, [i'|=1 ZL'-ae. in|0,L]. (1.1.10)
Proof. Let us first consider the case (a) with € > 0; we simply define

s (t) ;—/t (= + [V'](0)) O, t € (a,b); (1.1.11)

sc is strictly increasing with s. > e, sg((a,b)) = (0, L), its inverse map t. :
(0, L) — (a,b) satisfies a Lipschitz condition with constant < e~!, and

/ 1 1 :

tL os. Z-a.e. in (a,b).

T et
Setting 0° := v o t., for every choice of t; = t-(s;) with 0 < s < s2 < L. we have

ac(s1),0.(6) = dlo(t). () < [ ) (1112)

S Sg(tg) — SE(tl) — €(t2 — tl) = SS9 — 81 — E(tg — tl),
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so that v, is 1-Lipschitz and can be extended to [0, L] since 9.(0+) = v(a+) and
0 (L.—) = v; dividing the above inequality by s — s; and passing to the limit as
s9 — s1 we get the bound

e |

|6L]0se <1— e ity ZLlae. in (a,b). (1.1.13)
On the other hand,
d((t2), o(t) = d(ic(s). :(50)) < [ [i2](5) ds
o (1.1.14)

:/2|ﬁ;\(sg(t))s’6(t)dt§/2 (|6L] o'sc) (e + |v']) dt.

t1 ty

By (1.1.4) we obtain
W' < (|0l]ose) (e + [v]) ZL'-ae. in (a,b),

which, combined with the converse inequality (1.1.13), yields (1.1.8).

(b) We define s := sg for e = 0 by (1.1.11) and we consider the left continuous,
increasing map

t(s) :==min {t € [a,b] : s(t) = s}, s€[0,L],

which satisfies s(t(s)) = s in [0, L]. Moreover, still denoting by v its continuous
extension to the closed interval [a, b], we observe that

t(s(t)) <t w(t(s(t)) = v(t) Vte [a,b], (1.1.15)

since

t

Ao (es(6).o(0) = [ I(6)db = s(e) = s(t) 0.
t(s(t))

Defining v := v ot as above, (1.1.12) (with ¢ = 0) shows that ¢ is 1-Lipschitz and

(1.1.15) yields v = 9 o's. Finally, (1.1.14) shows that |¢'| os =1 Z'-a.e. in (a,b).

]

1.2 Upper gradients

In this section we define a kind of “modulus of the gradient” for real valued
functions defined on metric spaces, following essentially the approach of [92, 51].

Let ¢ : . — (—00, +00] be an extended real functional, with proper effective
domain

D(¢) == {v e 7 : p(v) < +oo} # 2. (1.2.1)
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If .7 is a vector space and ¢ is differentiable, then |V¢| has the following natural
variational characterization:

o e o0 <a]

(1.2.2)
for every regular curve v : (a,b) — ..

We want to define a notion of “upper gradient” g for ¢ modeled on (1.2.2). A first
possibility is to use an integral formulation of (1.2.2) along absolutely continuous
curves.

Definition 1.2.1 (Strong upper gradients, [92, 51]). A function g : . — [0, 4+0o0]
is a strong upper gradient for ¢ if for every absolutely continuous curve v €
AC(a,b; ) the function g o v is Borel and

’(b(v(t)) - gi)(v(s))’ < / glo()'|(r)dr Ya<s<t<b. (1.2.3)

In particular, if govlv'| € L'(a,b) then ¢ ov is absolutely continuous and
[(pov) ()] < glo@)W|(t) for L -a.e. t e (a,b). (1.2.4)

We also introduce a weaker notion, based on a pointwise formulation:

Definition 1.2.2 (Weak upper gradients). A function g : . — [0,400] is a weak
upper gradient for ¢ if every curve v € AC(a,b;.) such that

(i) gov|v'| € L*(a,b);
(i) ¢powv is L -a.e. equal in (a,b) to a function ¢ with finite pointwise variation
in (a,b);
we have
1’ ()] < gw@)|V'|(t)  for L -a.e. t € (a,b). (1.2.5)

In this case, if pov € AC(a,b) then ¢ = pov and (1.2.3) holds.
Remark 1.2.3 (Approximate derivative). Condition (ii) of Definition 1.2.2 is equiv-
alent to say that ¢ o v has essential bounded variation in (a,b). Accordingly, con-

dition (1.2.5) could be stated without any reference to ¢ by replacing ¢’ (t) with
the approzimate derivative of ¢ o v (see Definition 5.5.1).

Among all the possible choices for an upper gradient of ¢, we recall the
definition of the local and global slopes (see also [51], [64]):
Definition 1.2.4 (Slopes). The local and global slopes of ¢ at v € D(¢) are defined
by

- w + v) — w +
061(v) = limsup PWZPNT ) P 9Mw)) T

msu ) SUp ) (1.2.6)
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Theorem 1.2.5 (Slopes are upper gradients). The function |0¢| is a weak upper
gradient for ¢. If ¢ is d-lower semicontinuous then ly is a strong upper gradient

for ¢.

Proof. In order to show that |0¢| is a weak upper gradient we consider an ab-
solutely continuous curve v : (a,b) — . satisfying the assumptions of Definition
1.2.2; we introduce the set

A={te(a,b): ¢(u(t)) = ¢(t), ¢is differentiable at ¢, 3[v'|()}

and we observe that (a,b) \ A is £ -negligible.

If the derivative of ¢ vanishes at ¢ € A then (1.2.5) is surely satisfied, therefore
it is not restrictive to consider points ¢ € A such that ¢'(t) # 0. In order to fix
the ideas, let us suppose that t € A and ¢'(t) > 0; since d(v(s),v(t)) # 0 when
s € A\ {t} belongs to a suitable neighborhood of ¢ we have

Pl ey 1 ot o 9(t) = é(u(s)) d(v(s),v(t))
Ol =¢'(t) = tm ———— T T D) t—s

()~ dlls) . d(e(s),v(®) ,
< I A0 oD) stinea t—s = OO

In order to check the second part of the Theorem, we notice first that v — [4(v) is
lower semicontinuous in .. Indeed, if w # v and v, — v then w # vy, for h large
enough and therefore

- i P00) = 0() T (#(0) — o(w))”
fittelon) 2 Bt 0 2T dew)

By taking the supremum w.r.t. w the lower semicontinuity follows.

Let now v be a curve in AC(a, b; %) satisfying [4(v)[v’| € L'(a,b) and notice
that [4(v) is lower semicontinuous, therefore Borel. We apply Lemma 1.1.4 with
e = 0, and for the increasing and absolutely continuous map s := sg : [a,b] — [0, L]
defined by (1.1.11) we set

0(s) = v(t(s)), @(s) = o(0(s)), g(s):=1s(0(s))  s€(0,L)

and we observe that for each couple s1, s2 € (0, L) we have (¢(s1) — ¢(s2))t <
g(s1)|s2 — s1], hence

|p(s1) — @(s2)| < max[g(s1),g(s2)] |s2 — s1. (1.2.7)

The 1-dimensional change of variables formula gives

L b
/0 g(s)dSZ/ L (0(t) V'] (1) dt < 400, (1.2.8)



1.2. Upper gradients 29

therefore g € L'(0,L) and (1.2.7) shows that ¢ belongs to the metric Sobolev
space W,11(0, L) in the sense of Hajtasz [91]. By a difference quotients argument
this condition implies (see Lemma 1.2.6 below and [20]) that ¢ belongs to the con-
ventional Sobolev space W1(0, L) and we simply have to check that ¢ coincides
with its continuous representative. Since v is a Lipschitz map we immediately see
that ¢ is lower semicontinuous in (0, L): therefore continuity follows if we show
that

1 S
lim sup — p(s+r)dr < p(s) forallse(0,L). (1.2.9)
€l0 26 —_e
Invoking (1.2.7) we get
€ €

1 1
lim sup — (¢(s+ 1) —¢(s)) dr < limsup — (p(s+71) - g@(s))+ dr
el0 €J—¢ clo 28 ).

1 [f 1 [°
<limsup — g(s+r)|r|dr < limsup—/ g(s+r)dr=0.
clo 2¢ ). clo 2. ¢

Since ¢(v(t)) = @(0(s(t))) = @(s(t)), we obtain the absolute continuity of ¢ o v;
using the inequality [, (v) > |0¢|(v) and the the fact that |0¢| is an upper gradient
we conclude. ]

Lemma 1.2.6. Let ¢, g € L(a,b) with g > 0 and assume that there exists a £L*-
negligible set N C (a,b) such that

lo(s) =) < (g9(s) +9(t)) [s—t| Vs, t€(a,b)\ N
Then o € Whl(a,b) and |¢'| <29 ZL'-a.e. in (a,b).
Proof. For every ¢ € C°(a,b) we have

b b B
T(¢) ::/ o(t) ¢’ (t) dt:}lii%/ Mt)M it

h
. /b p(t - h})l— p(t)

h—0 a

b
¢(t) dt < limsup / (gt — B) + g(0))[C(0)] dt

h—0

b
. / IOl < 2Nl sup c)

We obtain from Riesz representation theorem that T can be represented by a
signed measure X in (a,b) having total variation less that 2||g|/z1(4,5). Then, the

inequality
b
’ [ @

immediately gives that |\ < 2|g|-Z1. O

b
<2 [ lkOllalde %eCFab)
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1.3 Curves of maximal slope

The notion of curves of maximal slope have been introduced (in a slight different
form) in [64] and further developed in [65, 109]. Our presentation essentially follows
the ideas of [8], combining them with the “upper gradient” point of view.

In order to motivate the main Definition 1.3.2 of this section, let us initially
consider the finite dimensional case of the Euclidean space .# := R? with scalar
product (-, -) and norm |-|. The gradient V¢ of a smooth real functional ¢ : . — R
can be defined taking the derivative of ¢ along regular curves, i.e.

(pov) = (g(v),v)

g=Vo <&
for every regular curve v : (0, +00) — .,

(1.3.1)

and its modulus |V¢| has the natural variational characterization (1.2.2). In this
case, a steepest descent curve u for ¢, i.e. a solution of the equation

u'(t) = —=Vo(ut)) t>0, (1.3.2)
can be characterized by the following two scalar conditions in (0, +00)

(ou) = —|Ve(u) v, (1.3.3a)
'] = [V (u)l; (1.3.3b)

in fact, (1.3.3a) forces the direction of the velocity u’ to be opposite to the gradi-
ent one, whereas the modulus of v’ is determined by (1.3.3b). (1.3.3a,b) are also
equivalent, via Young inequality, to the single equation

(Gou) = —%m? - %\V¢(u)|2 in (0, 4-0). (1.3.3¢)

It is interesting to note that we can impose (1.3.3a,b) or (1.3.3c) as a system of
differential inequalities in the couple (u, g), the first one saying that the function
g is an upper bound for the modulus of the gradient (an “upper gradient”, as we
have seen in the previous section)

|(¢ o v)/| < g(v)|v'| for every regular curve v : (0, 4+00) — .7, (1.3.4a)

the second one imposing that the functional ¢ decreases along u as much as possible
compatibly with (1.3.4a), i.e.

(pou) < —g(w)u'| in (0,+00), (1.3.4b)
and the last one prescribing the dependence of |u/| on g(u)

u'| = g(u) in (0, +00), (1.3.4¢)
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or even in a single formula

Low)? i (0,400). (1.3.4d)

o e
(bow) < —glu'l*~

Whereas equations (1.3.1), (1.3.2) make sense only in a Hilbert-Riemannian frame-
work, the formulation (1.3.4a,b,c,d) is of purely metric nature and can be extended
to more general metric spaces (7, d), provided we understand |u’| as the metric
derivative of u. Of course, the concept of upper gradient provides only an up-
per estimate for the modulus of V¢ in the regular case, but it is enough to define
steepest descent curves, i.e. curves which realize the minimal selection of %(b(u(t))
compatible with (1.2.4).

Remark 1.3.1 (p,q variants). Instead of (1.3.2) we can consider more general
nonlinear coupling between time derivative and gradient, which naturally appears
when a non euclidean distance in .¥ is considered: in the last section of the present
chapter we will briefly discuss the case of a Banach space.

In the easier Euclidean setting, the simplest generalization leads to an equation of
the type

jW'(t)) = =Vo(u(t)) t>0, with j(v)= a(|v|)% (1.3.5)
for a continuous, strictly increasing and surjective map « : [0,+00) — [0, 400).
In this case, the velocity u' still takes the opposite direction of V¢ (u) yielding
(1.3.3a), but equation (1.3.3b) for its modulus is substituted by the monotone
condition

alu']) = [Vé(u)|. (1.3.6)

Introducing the strictly convex primitive function ¥ of o and its conjugate ¥*

P(2) ::/0 a(r)dr, *(z¥) = xer[{)lixoo)z*x —(x), z,2"€]0,+00), (1.3.7)

(1.3.5) is therefore equivalent to

(¢ou) < —p(ju']) =" (Ve(u)]) in (0,400), (1.3.8)

which, in the metric framework, could be relaxed to

(¢ou) < —p(lu']) = ¥ (g((w)) in (0,+00), (1.3.9)

for an upper gradient g satisfying (1.3.4a).

Even if many results could be extended to this general situation (see [131]), for
the sake of simplicity in the present book we will consider only a p, g-setting,
where p,q € (1,+00) are conjugate exponents p~! + ¢~ = 1, corresponding to

the choices 1 1
a(z) =271 P(z) = =2, PR(2) = =(2%)Y,
p q
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and to the equation

lo[P=2v  for v # 0,

1.3.10
0 if v=0. ( )

Il (£) = =Vo(u(t), (o) = {

Thus the idea is that (1.3.3a) is still imposed and (1.3.3b) is substituted by
[u'|P~1 = |Vo(u)| or, equivalently, |u| = |V(u)]?9! (1.3.11)
and therefore, taking into account the strict convexity of | -|P, in the purely metric
framework we end up with the inequality
1 1
(pou) < —=J/|” = =g(u)? in (0, +00). (1.3.12)
p q
The limiting case p = 1 plays a crucial role in the modelization of rate-independent

problems governed by time-dependent functionals ¢y, see [113, 131].

Recalling (1.3.4a), (1.3.4d), and (1.3.12), we introduce the following defini-
tion:

Definition 1.3.2 (Curves of maximal slope). We say that a locally absolutely con-
tinuous map u : (a,b) — . is a p-curve of maximal slope, p € (1,400) (we will
often omit to mention p in the quadratic case), for the functional ¢ with respect
to its upper gradient g, if ¢ ou is L -a.e. equal to a non-increasing map ¢ and

o(t) < f%|u'|p(t) - égq(u(t)) for £L'-a.e. t € (a,b). (1.3.13)

Remark 1.3.3. Observe that (1.2.5) and (1.3.13) yield
[/ |P(t) = g9(u(t)) = —¢'(t) L*-a.e. in (a,b), (1.3.14)

in particular u € ACY (a,b;.) and gou € Ll (a,b). If u is a curve of maximal

slope for ¢ with respect to a strong upper gradient g, then ¢(u(t)) = ¢(t) is a
locally absolutely continuous map in (a,b) and the energy identity

Lt Lt
El P (r) d’”*;/g g*(r) dr = ¢(u(s)) — ¢(u(t)) (1.3.15)

holds in each interval [s,t] C (a,b).

1.4 Curves of maximal slope in Hilbert and Banach
spaces

We conclude this chapter dedicated to slopes and upper gradients by giving a
closer look to the case when

& = % is a Banach space with norm || - |; (1.4.1)
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we denote by (-,-) the duality between 4 and its dual %’ and by || - ||« the dual
norm in %A’.

Let us first consider a C! functional ¢ : 2 — R: the chain rule (1.3.1) characterizes
the Frechet differential D¢ : 8 — %', which is defined by

9= Do) o lm 2 =00 —{gw=v)

Wy o o]

=0 VYveA

Since the metric derivative |v’| of a regular curve v coincides with the norm of the
velocity vector ||v/||, it is easy to show that upper gradients involve the dual norm
of Dgp(v): by (1.2.2) g is an upper gradient for ¢ iff

g > |Do(v)]|« Vv e B (1.4.2)

In this case, the steepest descent conditions (1.3.3a), (1.3.4b) become
(Dg(u),u') = (¢ou) < —[lu'] g(u) < [l | Dg(w)], (1.4.3)
whereas (1.3.3b) could take the more general p, ¢ form (1.3.11) (but see also (1.3.6))
[P~ = [ D) (1.4.4)

Combining (1.4.3) and (1.4.4) we end up with the doubly nonlinear differential
inclusion

Jp (W' (t)) > =Do(u(t)) t>0, (1.4.5)
where J), : & — 2% is the p-duality map defined by
£eplv) < (&) =[PP = [Igl[E = lloll €]l (1.4.6)
which is single valued if the norm || - || of £ is differentiable.

We want now to extend the previous considerations to a non-smooth setting.
Recall that the Fréchet subdifferential d¢(v) C %' of a functional ¢ : B —
(—00,400] at a point v € D(¢) is defined by

£edpr) <= limint AW =GO FEw=v)

w—v lw = vz

> 0. (1.4.7)

As usual, D(0¢) denotes the subset of # given by all the elements v € D(¢) such
that do(v) # @; dp(v) is a (strongly) closed convex set and we will suppose that

0¢(v) is weakly™ closed Vv € D(9¢); (1.4.8)

(1.4.8) is surely satisfied if e.g. £ is reflexive or ¢ is convex (see the next Propo-
sition 1.4.4). 0°¢(v) is the subset of elements of minimal (dual) norm in d¢(v),
which reduces to a single point if the dual norm of £ is strictly convex. Notice
that

p(v) — (v +w) w

< limsup(g, 7o) < [l V€ € 09(v).

0¢|(v) = limsup

w—0 [[w]]
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Therefore, if we extend the function v — ||0°¢(v)||+ to +o00 outside of D(d¢p) we
have

96](v) < 1°6(v)]l. Vv e 2, (1.4.9)

and we obtain from Theorem 1.2.5 that
the map v ||0°¢(v)||« is a weak upper gradient for ¢. (1.4.10)

In the next proposition we characterize the (#1-a.e. differentiable) curves of max-
imal slope with respect to the upper gradient (1.4.10) as the solution of a suitable
doubly nonlinear differential inclusion: in the case when .% is a reflexive Banach
space and ¢ is convex, these kind of evolution equations have been studied in
[53, 52]; we refer to these contributions and to [148] for many examples of partial
differential equations which can be studied by this abstract approach.

Proposition 1.4.1 (Doubly nonlinear differential inclusions). Let us consider a
proper l.s.c. functional ¢ : B — (—o0,+o0] satisfying (1.4.8) and a curve u €
ACP(a, b; B) which is differentiable at £*-a.e. point of (a,b) (see Remark 1.1.3).
If u is a p-curve of maximal slope for ¢ with respect to the weak upper gradient
(1.4.10), then

I (1) D —0°¢(u(t)) #@ for L -a.e. t € (a,b); (1.4.11)
in particular, if the norm of A is differentiable, we have
I (1) = —0°p(u(t)) for L -a.e. t € (a,b). (1.4.12)

Conversely, if u satisfies (1.4.11) and ¢powu is (£L*-a.e. equal to) a non increasing
function, then u is a p-curve of maximal slope.

Proof. Let us suppose that u is a p-curve of maximal slope for ¢ with respect to
the upper gradient (1.4.10) and let ¢ be a non increasing map #!-a.e. equal to
¢ o u satisfying (1.3.13).

Then we can find a #*-negligible subset N C (a, b) such that for every ¢ € (a,b)\ N
u and ¢ are differentiable at ¢, ¢p(u(t)) = ¢(t), the inequality of (1.3.13) holds,
and Definition (1.4.13) yields the chain rule

©'(t) = (& (1) VE € P(ult)). (1.4.13)
It follows that for ¢ € (a,b) \ N

') = (1) < —}Duu%t)np - gusuz VE € 0°(ult)), (1.4.14)

which yields (1.4.11). When the norm of 2 is differentiable, the duality map J,, is
single-valued so that 9°¢ contains at most one element: therefore (1.4.11) reduces
to (1.4.12).

The converse implication follows by the same argument, since (1.4.11) and the
chain rule (1.4.13) yields (1.3.13). O
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Corollary 1.4.2 (Gradient flows in Hilbert spaces). If ¥ = 2 = %’ is an Hilbert
space, usually identified with its dual through the Risz isomorphism Ja, any 2-curve
of mazimal slope u € ACE (a,b; B) with respect to ||0°p(v)| satisfies the gradient
flow equation

u'(t) = —0°p(u(t)) for Lt-a.e. t € (a,b). (1.4.15)

Remark 1.4.3 (Non reflexive Banach spaces). The previous Proposition 1.4.1
strongly depends on the .#!-a.e. differentiability of the considered curve and we
have seen in Remark 1.1.3 that absolutely continuous curves enjoy this property
if the underlying Banach space & satisfies the Radon-Nikodym property, e.g. if
it is reflexive. One of the advantage of the purely metric formulation (1.3.13) is
that it does not require any vector differentiability property of those curves and
therefore it can be stated in any Banach space.

The next section will provide general existence and approximation results for
curves of maximal slope with respect to the upper gradient |0¢|: it is therefore
important to know if ||0°¢(v)|l. = |0¢|(v). In the following Proposition we deal
with the case when ¢ is convex and l.s.c., proving in particular that ||0°¢(v)||. is
a strong upper gradient and coincides with |0¢|(v) and [4(v).

Proposition 1.4.4 (Slope and subdifferential of convex functions). Let # be a
Banach space and let ¢ : B — (—o0, 4] be conver and l.s.c. Then

E€do(v) = o(w)— (o) + (w—v) >0 YweR (1.4.16)

for any v € D(¢), the graph of ¢ in B x B is strongly-weakly* closed (in par-
ticular (1.4.8) holds), with

én € 8¢(Un)a Uy =, &p —* § = ¢¢€ 8(15(’1)), ¢(vn) - (ZS(’U), (1417)

and
96](v) = min {l¢]l. : € € D(v) } = |0°B(0)]. Vv e B, (1.4.18)

Moreover
|0¢](v) =ly(v) Yve B, (1.4.19)

so that, by Theorem 1.2.5, |0¢|(v) is a strong upper gradient.

Proof. The equivalence (1.4.16) and the identity (1.4.19) are simple consequence
of the monotonicity of difference quotients of convex functions.

For every w € % the map (v,&) — o(w) — ¢(v) — (§,w — v) is upper-
semicontinuous with respect to the strong-weak*-topology in the product % x %4’;
thus by (1.4.16) the graph of 9¢ is closed in this topology; this shows the first
implication of (1.4.17). the second one follows from (1.4.16), which yields

|6(v) = d(vn)| < [lon = vl ([€nlls + lI€]l+)-
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The inequality
p(v) — (v +w)

[[]l

w
[[]|

yields that [4(v) can be estimated from above by [|{||z for any & € J¢. Assuming
that [4(v) is finite, to conclude the proof we need only to show the existence of
¢ € 0¢(v) such that [|{||z < [4(v). By definition we know that

< -—)  vwe#\{0}

—lp()||w] < o(v+w) —d(v) Ywe A, (1.4.20)
i.e. the convex epigraph
{(w,r) e ZxR:r > ¢(v+w)—d(v)}

of the function w — ¢(v + w) — ¢(v) is disjoint from the open convex hypograph
in Z xR

{(w,r) e BxR:r < —ly(v)|wl}

Therefore we can apply a geometric version of Hahn-Banach theorem to obtain
€A, aeRsuch that

—lg(W)[lw]] < (& w) +a < p(v+w) —dpv) Ywe B

Taking w = 0 we get o = 0; the first inequality shows that ||{]|z < [4(v) and the
second one, according to (1.4.16), means that £ € dp(v). O

The above results can be easily extended to C!' perturbations of convex
functions.

Corollary 1.4.5 (C'-perturbations of convex functions). Let us suppose that ¢ :
B — (—o0, +00] admits the decomposition ¢ = ¢1+da, where ¢y is a proper, l.s.c.,
and convex functional, whereas ¢o : B — R is of class C*. Then 0¢ = Op1 + Do
satisfies (1.4.17) and (1.4.18), and |0¢|(v) is a strong upper gradient for ¢.

Proof. The sum rule ¢ = d¢1 + D¢ follows directly from Definition (1.4.7) and
the differentiability of ¢o.

In order to check the closure property (1.4.17), we observe that if &, € d¢(v,) and
(Un,&n) — (v,€) in the strong-weak™ topology of B x %’ then

&n — D¢2(Un) € 8¢1(Un)a &n — D¢2(Un) = §— D¢2(U) S 8¢2(U)a

since D¢y is continuous and ¢, is convex: we obtain £ € d¢(v) and ¢1(v,) — ¢1(v)
which yield (1.4.17) being ¢» continuous.

Finally, since we can add to ¢; and subtract to ¢o an arbitrary linear and
continuous functional, in order to prove (1.4.18) it is not restrictive to suppose
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that Dgy(v) = 0; it follows that

+
‘8¢|('U) = lim sup M

w—v H’LU - UH
2 timsup L =01 0)T L 0a(w) — da(w)]
wW—v ||U)—U|| w—v HU}—UH

= 10¢1|(v) = [10°¢1(0) ||+ = 19° (V)]
Combining this inequality with the opposite one (1.4.9), we conclude. |

Let us rephrase the last conclusion of the previous Corollary, which is quite
interesting in the case % does not satisfy the Radon-Nikodym property (as in
many examples of rate-independent problems, see [114, 113]).

Remark 1.4.6 (“Upper” chain rule for (even non reflexive) Banach spaces).

If ¢ : B — (—00,+0oq] is lower semicontinuou convex function (or a C'* perturba-
tion as in Corollary 1.4.5), v is a curve in AC(a, b; #) with ||0°¢||« [v'| € L (a,b),
then ¢ow is absolutely continuous in (a, b); if 2 has the Radon-Nikodym property,
then

%gbo v(t) = (0°¢(v(t)), v (t)) for L -ae. tin (a,b);

for general Banach spaces, one can always write the upper estimate
d o / 1 .

’Egéov(t)‘ < [0°6(())]|«|[v'|(t) for L -ace. t in (a,b). (1.4.21)

In the next chapter we will see how the last two proposition can be extended

to a general class of functions defined on metric spaces and satisfying suitable
geometric convexity conditions.



Chapter 2

Existence of Curves of Maximal
Slope and their Variational
Approximation

The main object of our investigation is the solution of the following Cauchy prob-
lem in the complete metric space (.7, d):

Problem 2.0.1. Given a functional ¢ : ¥ — (—o00,+00] and an initial datum ug €
D(¢), find a (p-)curve u of mazximal slope in (0,400) for ¢ such that u(0+) = ug.

To keep our presentation simpler we focus our attention to the case p = 2;
at the end of each section we will add some comments on the validity of the main
statements in the general case p € (1,+00).

The interest of studying Problem 2.0.1 in such an abstract framework re-
lies also on the approximation scheme which can be used to construct a curve
of maximal slope. In the Euclidean setting one of the simplest ways to solve nu-
merically (1.3.2) is provided by the Implicit Euler Method: for a given sequence
7 = {7, },;2 of (strictly positive) time steps with |7| := sup,, 7, < +0c associated
to the partition of the time interval (0, 4+00)

Pro={0=10 <tl <. .. <t <.}, IFi= (1t

= (2.0.1)
—1 . M
Ty =1tp — 0, nlgrolotz = Zq—k = 400,
k=1
one should find an approximate solution U ~ u(t2), n = 1,..., by solving itera-

tively the equation in the unknown U starting from an initial value U2 ~ ug

Ur - yr-1

Tn

= —Vo(U) n=1,... (2.0.2)



40 Chapter 2. Existence of Curves of Maximal Slope

Since (2.0.2) is the Euler equation associated to the functional in the variable V

1

Tn

VU124 0(V) Ve, (2.0.3a)

(1, U1 V) = 5

one can restrict the set of solutions of (1.3.14) to the minimum points of (2.0.3a),
which can also be settled in a general metric context, simply replacing the modulus
by the distance

_ 1
(7, UPL V) = 5

Tn

PV, U +e(V) Ve (2.0.3b)

We thus end up with the recursive scheme

UY is given; whenever Ul ... U"~! are known,
(2.0.4)
findUr € .S :  ®(r,,Ur"1UR) < ®(7,, UP 1 V) VV €7

The (multivalued) operator which provides all the solution U of (2.0.4) for a
given U1 is sometimes called resolvent operator: for a general 7 > 0 and U € .%¥
it is defined by

J-[U] := argmin ®(7,U; ), i.e.

(2.0.5)
U, € J,[Ul & o(r,U;U;) <®(r,U;V) VVe.Z.

Thus a sequence {UZ} 729 solves the recursive scheme (2.0.4) if and only if
UreJ. UMY Vn>1. (2.0.6)

Definition 2.0.2 (Discrete solution). Let us suppose that for a choice of T and
U € & a sequence {U}2 solving (2.0.4) exists, so that we can interpolate the
discrete values by the piecewise constant function U., defined by

U_(0)=U2, U.(t)y=Ur ifte @], n>1. (2.0.7)

-

We call U, a “discrete solution” corresponding to the partition Ps.

Remark 2.0.3 (Uniform partitions). From a theoretical point of view, the simpler
choice of uniform partitions of time step 7 > 0

Pr:={0,7,27,---}, t? = nr, o =T =T, (2.0.8)

would be sufficient to state all the following existence results; in this case for
U = ug we get .
U.(t) € (Ji/n)" [uo] with 7 := t/n. (2.0.9)

On the other hand, we will also address the related issue of deriving optimal error
estimates for this kind of approximation scheme and in this case the possibility to
choose freely the time steps is a crucial feature from the numerical point of view.
The reader which is not interested in such a numerical issue can simply reformulate
all the following theorems in terms of the uniform choice (2.0.8).
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Figure 2.1: Partition of the time interval and piecewise constant interpolant.

We can thus state our main approximation problem:

Problem 2.0.4. Find conditions on (ug, U2, ¢,.%) which ensure that the minimiza-
tion algorithm (2.0.4) is solvable and, up to a possible extraction of a subsequence
(Tk) of admissible partitions with |T1| | 0, the curves U, converge to a solution
of Problem 2.0.1 with respect to a suitable topology o on ..

Remark 2.0.5 (The choice of the topology o). Since the simplest choice would be
to study the convergence of the scheme with respect to the topology induced by
the distance d on ., one may wonder about the opportunity to introduce another
topology o on .. On the other hand, many examples (e.g. in the framework of
reflexive Banach spaces) show the importance to deal with an auxiliary weaker
topology, which allows for more flexibility to derive compactness properties. The
idea here is to distinguish between the role played by the distance d (which is an
essential ingredient of the approximation scheme through the functional ® and
of the definition of gradient flow through the notions of metric derivative (1.1.3)
and upper gradient) and the convergence properties of the approximation scheme
(which a priori can be studied with respect to different topologies).

From now on we adopt the convention to write

o d
u, — u for the convergence w.r.t. o, wu, — u for the convergence w.r.t. d.

Besides the natural Hilbertian setting (see e.g. [38, 133] and a more detailed
list of references in [118]), Problem 2.0.4 has been considered by many authors in
various particular contexts [107, 148, 6, 108, 114, 113, 94, 124]; in [63] (see also
[8]) E. De Giorgi proposed a general approach to this kind of problems, suggesting
that the iteration scheme itself could be used to define and select an appropriate
notion of “gradient flow” in a non Euclidean setting; similar ideas [57] occur in
the definition of the so called “mild solutions” for nonlinear evolution equations in
Banach spaces. Here we borrow and we adapt from [63] an important definition.



42 Chapter 2. Existence of Curves of Maximal Slope

Definition 2.0.6 (Minimizing movements). For a given functional ® defined as in
(2.0.3b) and an initial datum uy € ¥ we say that a curve u : [0,4+00) — &%
is a mimimizing movement for ® starting from wug if for every partition T (with
sufficiently small |T|) there exists a discrete solution U, defined as in (2.0.4),
(2.0.7) such that

lim ¢(U2) = p(up), limsupd(U2,ug) < +oo0,

ITlio 7110 (2.0.10)
U.(t) > u(t) Ytel0,+oo).

We denote by MM (®;ug) the collection of all the minimizing movements for ®

starting from ug.

Analogously, we say that a curve u : [0,4+00) — . is a generalized mimimizing

movement for ® starting from ug if there exists a sequence of partitions T with

|TK| | 0 and a corresponding sequence of discrete solutions U_, defined as in

(2.0.4), (2.0.7) such that

lim ¢(U2,) = ¢(ug), limsupd(U2, ,u) < +0o0,
Poee T k—o0 (2.0.11)
U, (t) > u(t) Vte][0,+00).

Tk

We denote by GM M (®;uq) the collection of all the generalized minimizing move-
ments for ® starting from ug.

The easiest question introduced by Problem 2.0.4, i.e. the existence of discrete
solutions corresponding to given partitions 7 of (0, +00), can be easily approached
by the direct method of the Calculus of Variations, which ensures the existence
of a minimum for (2.0.3b) under suitable lower semicontinuity, coercivity, and
compactness assumptions: in the next (sub)section we fix the main topological
properties we will deal with.

Remark 2.0.7 (The p-scheme). When we want to approximate p-curves of maximal
slope, we simply change the Definition (2.0.3b) of ® as

1
O(r, Vi UF) o= — dP(V, U D) +6(V) Ve (2.0.12)
PTn

2.1 Main topological assumptions

As usual, we are dealing with a complete metric space (., d); in the sequel we are
supposing that
o is an Hausdorff topology on . compatible with d,

in the sense that ¢ is weaker than the topology induced by d and d is sequentially
o-lower semicontinuous:

(U, vn) 2 (u,v) = liminfd(un,v,) > d(u,v). (2.1.1)

n—0o0
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Here are the various kind of assumptions on the proper (see (1.2.1)) functional
¢: .S — (—o0,+o0] we are dealing with:

2.1a: Lower semicontinuity. We suppose that ¢ is sequentially o-lower semicontin-
uous on d-bounded sets

sup d(tp, tp) < +00, U, >u = liminf ¢(u,) > ¢(u). (2.1.2a)

n,m n— 00
2.1b: Coercivity. There exist 7. > 0 and u. € . such that
Or, (us) := inf O(7y, us;v) > —00. (2.1.2b)
veS
2.1c: Compactness. Every d-bounded set contained in a sublevel of ¢ is relatively
o-sequentially compact: i.e.,

if (u,) C 7 with sup,, ¢(u,) < 400, sup,, , d(Un, Um) < +00,

then (u,) admits a o-convergent subsequence. (2:1.2¢)
Remark 2.1.1 (The case when ¢ is induced by d). Of course, the choice
“o := the topology induced by the distance d”
is always admissible: in this case Assumption 2.1a simply means that
¢ is d-lower semicontinuous, (2.1.3a)

and 2.1c says that
d-bounded subsets of a sublevel of ¢ are relatively compact in .. (2.1.3b)
In particular, if

the sublevels {v €. ¢v) < c} are (strongly) compact (2.1.3¢)

then all the previous assumptions hold: this is the simplest situation which is cov-
ered by this framework.

Weakly lower semicontinuous functionals in reflexive (or dual) Banach spaces pro-
vides another example which fits in this setting.

In the following

we will always assume that ¢ is lower semicontinuous and coercive,
i.e. that the first two properties 2.1a,b hold;

we will see that, in some circumstances, compactness is not necessary, since the
structure of the minimization algorithm and stronger convexity assumptions on d
and ¢ will directly provide convergence estimates with respect to the distance d.

Remark 2.1.2. We did not try to present a minimal set of assumptions: e.g.,
compactness 2.1c¢ implies that o is weaker than d on the sublevels of ¢, (2.1.1)
could be imposed only on the sublevel of ¢,...On the other hand, as we already
said, we will not always assume 2.1c, therefore some redundancy at this initial
level simplifies the exposition in the sequel.
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2.2 Solvability of the discrete problem and compactness
of discrete trajectories

Observe that (2.1.2b) is surely satisfied by all 7, and ., € .7 if ¢ is bounded from
below, i.e.

ir;}f¢ > —o0; in this case ¢, (us) > iI;f¢ Vu. €., 1> 0. (2.2.1)
Taking into account (2.1.2b) it is natural to define
T«(¢) := sup {7'* >0: ¢r, (us) > —00 for some u, € ,5”} (2.2.2)

Lemma 2.2.1. If ¢, (uy) > —00 as in Assumption 2.1b and 7 < 7. < 7.(@), then

Or(u) > dr, (us) — p— sz(u*,u) > —o0 Yue.”, (2.2.3)
d*(v,u) < leT_T*T <<I>(T,u; v) — ¢, (us) + — d2(u*,u)) Yu,ve.s. (2.24)

In particular, the sublevels of ®(T,u;-) are bounded in 7.

Proof. Invoking the Cauchy-type inequality
d*(v,uy) < (1 +e)d*(v,u) + (1 + e Nd*(us,u) Ve >0, u,v €., (2.2.5)
we get for e := (1. — 7) /(7 + 7)

1
_d2 . < d2
27Ty (v’u)_TJrT* (v,u)+7_*77_

dZ(U*,’LL),

so that (2.1.2b) yields for each u,v € . and 7 < T,

. _ 7—* — T 2 ]. 2
(7 usv) = 2T(T+T*)d (v, u) + T-I—T*d (v, u) + ¢(v)
> BT 2 (0,0) + 6, (1) — ——(unu)  (22.6)
Y v 7 (U Te — T bk o
> ¢T*(u*) - 177_0!2(“*771) (2.2.7)

We obtain (2.2.3) by taking the infimum w.r.t. v in (2.2.7); (2.2.4) follows directly
from (2.2.6). O

Corollary 2.2.2 (Existence of the discrete solutions). If the topological assumptions
of Section 2.1 are verified, then for every 7 < T.«(¢) and u € % the functional
O(1,u;-) admits a minimum in . ; in particular for every choice of UL € . and
of a partition Pr with |T| < T.(¢), there exists at least one discrete solution U,.
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Proof. (2.2.4) shows that both d(v,u) and ¢(v) remain bounded on the sublevels
of ®(7,u;v). Lower semicontinuity and compactness yield

the sublevels {v €S O(ryu;v) < c} are o-sequentially compact.

The existence of a minimum for (2.0.4) then follows by a well known compactness
and lower semicontinuity argument. |

The following preliminary result provides compactness for the family of dis-
crete solutions:

Proposition 2.2.3 (Compactness). Let us suppose that all the assumptions of Sec-
tion 2.1 hold and let A be a family of partitions with infrca |7| = 0. If the corre-
sponding family of initial data {U2}rca satisfies

sup p(U2) < +o0, supd(U2, ug) < 400, (2.2.8)
TEA TEA

then there exist a sequence (T) C A with || | 0 and a limit curve u €
ACE ([0, +00); %) such that

loc

O,

U, (t) > u(t)  Vtel0,+o0). (2.2.9)

In particular, if U, = ug and ¢(U2, ) — ¢(ug) as k — oo, then u(0+) = ug and
u € GM M (®;ug), which is therefore a nonempty set.

We prove this proposition in the next Section 3.

Remark 2.2.4 (p-estimates). In the general case p # 2, Lemma 2.2.1 and Proposi-
tion 2.2.3 still hold (with different constants) simply replacing 2 with p: thus the
limiting curve belongs to AC? ([0, +00);.%).

loc

2.3 Generalized minimizing movements and curves of
maximal slope

In this section we present two different sets of general conditions which provide a
general answer for Problems 2.0.1, 2.0.4, and a direct connection between curves
of maximal slope and generalized minimizing movements. They are both related
to some kind of lower semicontinuity property of the local slope of ¢, which can be
well expressed by its relazed slope, i.e. (a slight modification of) the sequentially
o-lower semicontinuous envelope of |0¢|:

07 l(u) := inf { lim inf [96] () 5 u = u,

(2.3.1)
Sﬂp{d(“"’ u), d(uy)} < —l—oo}.
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This following result holds (up to considering the appropriate p-scheme, cf. Remark
2.0.7) for every p € (1,400). Notice that the compactness assumption 2.1c (which
was a crucial ingredient in Proposition 2.2.3) is not needed here: Theorems 2.3.1
and 2.3.3 hold whenever one knows that a curve u belongs to GM M (®; ug); besides
Proposition 2.2.3, they can be combined with any convergence results for the
variational Euler scheme (2.0.4), e.g. with the results of Chapter 4.

Theorem 2.3.1 (GM M (¢;ug) are curves of maximal slope I). Let us assume that
¢ is lower semicontinuous and coercive according to Assumptions 2.1a,b; if

veE S — |07 ¢|(v) is a weak upper gradient for ¢, (2.3.2)

and ¢ satisfies the continuity condition
sup {106](vn), d(vn, v0), 6(oa) | < 400, v B S b(un) = B(0), (233)
ne

then every curve u € GMM (®;uo) with ug € D(¢) is a curve of mazimal slope
for ¢ w.r.t. |0~ ¢|.

Remark 2.3.2. Observe that, in view of Theorem 1.2.5, (2.3.2) is always satisfied
if |0¢| is o-sequentially lower semicontinuous, i.e. |0~ ¢| = |0¢|.

In order to state our strongest result we define a piecewise constant function
|UL| on (0, +00), relative to the partition P, by

d(U”, Un—l) ) _
|UL|(t) = W if ¢ € (tnhn). (2.3.4)
T T
Our notation is justified by the fact that |U.| is really the modulus of the derivative
of the piecewise affine interpolant of U when . in an Hilbert space and d is
induced by its scalar product.

Theorem 2.3.3 (GM M (®;ug) are curves of maximal slope II (energy identity)).
Suppose that the lower semicontinuity and coercivity assumptions 2.1a,b hold; if

v €. — |07 ¢|(v) is a strong upper gradient for ¢,

then every curve u € GM M (®;ug) with ug € D(¢p) is a curve of mazimal slope
for ¢ w.r.t. |0~ ¢| and in particular u satisfies the energy identity

%/ |u’|2(t)dt+%/ 0702 (u(t)) dt + d(u(T)) = dlug) VT >0. (2.3.5)
0 0

Moreover, if {Uq-k}keN is a sequence of discrete solutions satisfying (2.2.8) and
(2.2.9), we have

lim ¢(T,, (t) = (u(t)) Vi€ [0,+00), (2.3.6)
Jim |0¢[(T,) = |07 ¢|(u) in Ly ([0, +00)), (2.3.7)
lim |U. | = || in L ([0, +00)). (2.3.8)

n—0o0
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In the case p # 2 the energy identity reads

T T

%/ [u'|P(t) dt + %/ |07 |4 (u(t)) dt + ¢p(u(T)) = ¢(uo) vT >0, (2.3.9)
0 0

and the limiting relations (2.3.7), (2.3.8) should be intended in L _([0,+00)),

LY ([0, +00)) respectively.

loc

Remark 2.3.4. Whenever the functional ¢ satisfies the topological assumptions of
Section 2.1, the previous theorems 2.3.1 and 2.3.3 can be applied by following at
least two different strategies:

(i) One can try to show that the slope |0¢| is o-lower semicontinuous (i.e.
|0~ ¢| = |0¢|). In the case when .# is a Banach space and (1.4.18) holds,
as in Section 1.4, this property usually corresponds to a strong-weak™ closure
of the graph of the Fréchet subdifferential of ¢, as we will see in the next
example 2.3.5. Once the o-lower semicontinuity of |0¢| is proved, then one
has to check the continuity property (2.3.3) (for Theorem 2.3.1) or that [0
is a strong upper gradient for ¢ (for Theorem 2.3.3).

(ii) The second possibility, when the slope |0¢| is not lower semicontinuous, is to
prove directly that the relaxed slope is an upper gradient for ¢, i.e. it satisfies
a sort of chain rule. This approach is quite useful to dealing with gradient
flows of non regular perturbations of convex functional in Hilbert spaces
and has been applied to some evolution equations arising in quasi-stationary
phase field problems [132].

We postpone the proofs and more detailed statements of Theorems 2.3.1 and
2.3.3 to the next chapter and we conclude the present section by an important
application to the Banach case.

Example 2.3.5 (Doubly nonlinear evolution equations in Banach spaces). Let us
consider the Banach space setting . = £ introduced in Section 1.4 and let us
suppose that Z satisfies the Radon-Nikodym property, so that absolutely contin-
uous curves in # are Z!-a.e. differentiable.

We want to apply the previous metric results (following the first strategy of Re-
mark 2.3.4) to find solutions of the doubly nonlinear differential inclusion (1.4.11)
for a functional ¢ : B — (—o0, +00]. Two properties seem crucial: the first one
establishes a link between the metric slope and the Fréchet subdifferential of ¢

96](v) = min {l¢]l. : € € D(v) } = 0BV Vv e B, (2.3.10a)

and the second one is o-weak™® closure of the graph of 9¢ in % x %’

&n €00(vy), vy 2v, & —F & supd(v,) < +oo = £ € Ip(v). (2.3.10b)

The following result is immediate:
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Lemma 2.3.6 (Lower semicontinuity of |0¢|). Let us suppose that the functional
¢: B — (—o0,+00] satisfies (2.3.10a) and (2.3.10b). Then |0~ ¢| = |0¢|.

Proof. If (vy,) C % converges to v in the topology o and [9¢|(v,) — p < +0o0
as n — 00, by (2.3.10a) there exists &, € d¢(v,) such that ||&,]« = [9¢|(vy,) is
uniformly bounded; up to an extraction of a suitable subsequence, we can suppose
that &, —* £ and, by (2.3.10b), £ € d¢(v). Since the dual norm is weakly* lower
semicontinuous, a further application of (2.3.10a) yields

961(v) < [l¢]l. < liminf &) <p O

The following theorem is a variant of a result of [109]: notice that a per-
turbation of class C' of the functional ¢ corresponds to a C° perturbation of
its subdifferential and no general existence results are known for differential equa-
tions associated to CY vector fields in infinite dimensional (even Hilbertian) vector
spaces.

Theorem 2.3.7 (Existence for C'! perturbation of convex functionals). Let ¢ :
B — (—o0,+00] be a lower semicontinuous functional satisfying the coercivity
assumption (2.1.2b) and the (strong) compactness assumption (2.1.3b). If ¢ =
01+ P2 admits the decomposition of Corollary 1.4.5 with respect to a convex l.s.c.
function ¢1 and a C' function ¢o, then for every ug € D(¢) GMM (P;up) is
non empty and its elements u are solutions of the doubly nonlinear differential
inclusion

Jp(W' (1) D =0°¢(u(t)) t>0; u(0+)=uo, (2.3.11)

that satisfy the energy identity

/0 W/ ()P dt + d(u(T)) = d(ug) VT > 0. (2.3.12)

Proof. In this case o is the strong topology of %, as in Remark 2.1.1. We can
combine Proposition 2.2.3 (GM M (®;ug) is non empty), Corollary 1.4.5, Lemma
2.3.6, and Theorem 2.3.3 (every u € GMM (®;up) is a curve of maximal slope
for |0¢| and satisfies the energy identity (2.3.9)), Corollary 1.4.5 and Proposition
1.4.1 (curves of maximal slope for |0¢| solve (2.3.11)). O

In fact, condition (2.3.10b) is almost enough to prove the existence of solu-
tions to (2.3.11):

Theorem 2.3.8 (Existence under the closure condition (2.3.10b)). Let ¢ : # —
(=00, +00] be a functional satisfying all the Assumptions of Section 2.1. If ¢ sat-
isfies (2.3.10b) and (2.3.3), then it also satisfies (2.3.10a). In particular, for every
ug € D(¢) GM M (®;up) is non empty and its elements u are curves of maximal
slope which solve the doubly nonlinear differential inclusion (2.3.11).

The proof of this theorem relies on the implication (2.3.10b) = (2.3.10a) for
a functional ¢ which satisfies the assumptions of Section 2.1: we will prove the
above implication in the next chapter.
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We conclude this section by showing an example where the above theorem
can be applied by choosing an auxiliary topology o weaker than the strong one;
the following situation is typical for evolution equations in unbounded domains.
Remark 2.3.9 (An example where o is weaker than the strong topology of %).
Let us consider the Banach space % := LP(R%), 1 < p < +o0, and let F : R —
[0, +00) be a nonnegative C' convex function satisfying F(0) = 0. We consider
the functional

o(0) Jga (%|Vv(x)|2 + F(U(az))) dr if Vv € L}2(R?), F(v) € L}*(R?),
v) 1=
400 otherwise.
(2.3.13)
Since F” is increasing, it is not difficult to check that & € L9(R?) belongs to d¢(v)
if and only if

Av e LYRY), F'(v) € LYRY), &=—Av+ F'(v); (2.3.14)

the curve u of maximal slope associated to ¢ should be a solution of the Cauchy
problem

AulP20,u — Au+ F'(u) =0 in R? x (0, 4+00),
{t : (@ (0,+20) o

u(-,04) =ug(-) in R%
Moreover, if v satisfies (2.3.14), it enjoys the a priori estimates
| F' ()l Laway < N€llLaray, 1A Laay < 2/l Lo(ra)-

Since ¢ is a convex functional in LP(R%), we know that |0¢| is lower semicontinuous
w.r.t. the strong LP(R?) topology, but the sublevel sets

{ve P®?) : vl oy + 6(v) < cf

are not compact in LP(R%).

Let us show that ¢ satisfies (2.3.10b) with respect to the weak LP-topology o. If
& = —Av, + F'(v,) — € in LY(R?) sup,, #(v,) < +o0, and v, — v in LP(R?),
the a priori bounds and Rellich compactness theorem yields

E=—-Av+n, F'(v,)—nin LYRY), v, —vin L2 (RY)

loc

Up to extracting a further subsequence, we can assume that v, converges to v
ZL?-a.e. in R? so that n = F'(v) and therefore & € d¢(v).

2.4 The (geodesically) convex case

In this section we will consider a notion of convexity along classes of curves in the
metric space .¥: a particular attention is devoted to functionals ¢ which are convex
along the geodesics of the metric space .. Let us first introduce the relevant
definitions.
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Definition 2.4.1 (A-convexity along curves). A functional ¢ : ¥ — (—o00,+00] is
called convex on a curve vy :t € [0,1] — v € . if

o(ve) < (1 —t)d(y0) +td(y1) YVt e0,1]. (2.4.1)

More generally, we say that ¢ is A-convex on ~y for some A € R if

o) < (1 —=t)p(70) + td(1) — %At(l —t)d*(yo,m1)  Vte[0,1].  (24.2)

Notice that we require that the usual convexity inequality holds with respect
to the initial and final point of the curve ~; of course, if ¢o~ is a real convex function
in [0,1] then (2.4.1) surely holds. Among all the possible curves connecting points
in ., we are interested to the so called geodesics, i.e. to length minimizing curves.

Definition 2.4.2 (Constant speed geodesics). A curve v : [0,1] — .7 is a (constant
speed) geodesic if

d(vs, 1) = d(yo,m)(t—s) VO<s<t<1 (2.4.3)

Definition 2.4.3 (\-geodesically convex functionals). We say that a functional ¢ :
S — (=00, +00] is A-geodesically convex if for any vo,v1 € D(¢p) there exists a
constant speed geodesic y with o = vg,y1 = v1 such that ¢ is A-convex on .

Remark 2.4.4 (Euclidean case). In Euclidean spaces, the largest A such that ¢
is A-convex along segments (canonically parametrized on [0,1]) is, for smooth
functions ¢, the infimum w.r.t. @ of the smallest eigenvalue of V2¢(x). In this
case ¢ is A-convex if and only if v — ¢(v) — $A|v|? is convex. In particular the
map v %\v — w|? is 1-convex, as the following elementary identity, depending
on t € R, shows

|(1 —t)vo + tvg —w]* = (1 = t)|vg — w|? +t{vy —w|* —t(1 —t)|Jvg — v1]?. (2.4.4)

It is not difficult to show that (2.4.4) forces the norm |- | to be induced by a scalar
product: in fact, choosing w = 0, t = 1/2 we see that |- | satisfies the parallelogram
rule (12). It is interesting that the same conclusion holds if (2.4.4) is replaced by
the corresponding 1-convexity inequality for ¢ € [0, 1].

A-convexity along geodesics is the easiest assumption of geometric type, which
allows for a simple application of the theory presented in the previous Section 2.3,
as we shall see in a moment. This property results from the necessity to join
two points vg, v1 € D(¢) by a curve along which both the distance (the curve
should be a geodesic) and the functional (A-convexity) behave nicely. From the
“Minimizing Movement” point of view, its importance is clear, since the distance
and the functional are the two components of the family of variational functionals
v — O(1,w;v) defined by (2.0.3b).

We can easily check that if ¢ : ¥ — (—o0,+00] is a A-geodesically convex
functional, then for every couple of points vy, v1 € D(¢) the functional v —
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®(7,v0;v) is (771 + \)-convex along a suitable geodesic v connecting vg to vi. In
fact in this case we have

1 1
O(7,v0; ) = §d2(vo,%) +é(v) = Etzdz(vo,m) + &)

< %t2d2(vo,v1) + (1 —t)p(vo) + to(v1) — %)\t(l —t)d*(vo,v1)

— (1= t)é(vo) + t(%d2(vo,v1) + ¢(u1)) - %(% + )\)t(l — 1)d2(vo, v1)

= (1 = B (7, v0; v0) + tB(7, vo; v1) — %(% + )\)t(l — )2 (v, v1).  (2.4.5)

On the other hand, one can ask if it is possible to formulate a more general
assumption directly on ®: it is interesting that the results we are presenting in this
section hold even if there exists an arbitrary curve v (not necessarily a geodesic)
along which @ is (77! + \)-convex, for every 7 > 0 such that 771 + X > 0 (i.e.
0<T<)\%,Where)\%:+ooif)\20).

Assumption 2.4.5 (Convexity of ®). For a given A € R we suppose that for any
vo,v1 € D() there exists a curve v with o = vo,y1 = v1 such that

1
v ®(T,v0;v)  ds (771 4 N)-conver ony, VYO0 <7< = (2.4.6)
where (7,v0;v) = 2=d?(vo, v) + ¢(v) is the functional introduced in (2.0.3b).
Any function ¢ satisfying the previous Assumption 2.4.5 for some A € R
trivially satisfies the same condition for all X < A.

(2.4.6) is equivalent, for every vy, v1 € D(¢), to the existence of points v, t € [0, 1],
such that

%dz(vo,vt) + o(vy) (2.4.7a)
< (1= H)p(vo) + to(vy) + %tdQ(vo,vl) - %(% £ A) UL~ D(vo,01)
— (1= 1)d(vo) + t(vr) + % (t = (@ 1)) (w0, 1) (2.4.7b)

Neglecting the first term in the left-hand side (2.4.7a) and dividing by ¢ we also
get

¢(ve) — d(wo)

- < ¢(v1) — d(vo) + % (t — (1 - t))d2(vo,v1). (2.4.7¢)

Remark 2.4.6 (v; are independent of 7). For the sake of simplicity we supposed
that that the points v; in (2.4.7a) are independent of 7, even if many of the
following results still hold in the case when v; are allowed to depend on 7 and ¢ is
coercive (2.1.2b). Here we make explicit two useful consequences of the fact that
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vy is independent of 7: first of all, multiplying the inequality (2.4.7a,b) by 7 and
passing to the limit as 7 — 0T we get

d(vg, vt) < td(vg,v1). (2.4.8)

When A > 0, we can pass to the limit as 7 — +o0 in (2.4.7a,b) showing that ¢ is
A-convex along the curve v,. Thus in this case (2.4.7¢) becomes

o(vt) — P(vo)

7 S qb(’l)l) - ¢(1)()) — %)\(1 - t)dQ(U(),’Ul). (249)

Remark 2.4.7 (p-modulus of convexity). In the case of p-curves of maximal slope,
p # 2, one should consider a related notion of modulus of convexity depending on
the p-power of the distance. Here we do not exploit this variant and we will often
assume directly (2.4.7a,b) with A\ = 0.

A-convexity assumption provides a useful information about the value of 7, (¢)
as defined by (2.2.2) and on the existence of a minimum point for ¢.

Lemma 2.4.8 (Coercivity for convex functionals). Assume that Assumption 2.4.5
holds for some A € R (with A =0 if p #2). If

Jux € D(¢), 1 >0: my = inf{¢(v) cv €, d(vyuy) < r*} > —o0, (2.4.10)

(e.g. if either the coercivity 2.1b or the lower semicontinuity and compactness
2.1a,c assumptions hold), then

1
T (@) > = in particular T.(¢) = 400 if A > 0. (2.4.11)

If X > 0 then ¢ is bounded from below and if it is lower semicontinuous then it
has a unique minimum point u:

Jues: ¢u) = mji}nqb > —o0. (2.4.12)

Proof. Let uy, ry, m, asin (2.4.10),0 < 7 < s=. If v € D(¢) and d(v,u,) > r. we
apply the convexity property (2.4.7¢) with vo := us, vy := v and t = 7*/d(u, v)
to find v, := v, € D(¢) satisfying

$(vs) — p(us) — 5(771 + N)r?

7«*

A
6(0) = SdP(0.u.) > 9(u.) + cud(v, ), .=
By (2.4.8) dv,u < r, and therefore ¢(v.) > m. by (2.4.10); applying Young
inequality we get

A—¢
2

2 Vv e D(¢), e >0. (2.4.13)

&=

p(v) — AP (v,u.) > Plus) —
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(2.4.13) shows that 7.(¢) > —A~1 if A < 0, and that ¢ is bounded from below if
A > 0. If the lower semicontinuity-compactness Assumptions 2.1a,c hold, then the
existence of a minimum @ for ¢ follows directly from (2.4.13). We can also prove
the existence (and the uniqueness) of the minimum by a completeness argument,
thus assuming the ¢ is simply lower semicontinuous with respect to the distance
d and avoiding compactness: just take a minimizing sequence (v, ) with

o(vp) <infop 4wy, lim w, =0,
4 n—oo

and apply the A-convexity property of ¢ stated by Remark 2.4.6 along a curve
Yn,m connecting v, to v,,. Choosing t = 1/2 we obtain

A 1 1
gdz(vnvvwz) < §¢(Uwz) + E(b(vn) — ¢(Yn,m(1/2))
1
< - — — — 00.
< me—l— an 0 asn,m — o0 O

The next result, though simple, provides the crucial estimate for A-convex
functions; the reader could compare (2.4.14) with the classification introduced in
[109, page 293]: following the notation of that paper, it is not difficult to check
that A-convex functions belongs to the class £(.7;0,2).

Theorem 2.4.9. If the convexity Assumption 2.4.5 holds for some \ € R, then the
local slope |0¢| admits the representation

o (@) =) 1y N
6¢|(v)—31£]< (o) —1—2)\d(7 )) Vv e D(¢). (2.4.14)

In particular, when X > 0 the local slope coincides with the global one, i.e.

.
61(0) — sup L —00))_

wv d(v, w) =1s(v) Vv € D(e). (2.4.15)

Proof. First of all we observe that

v)— olw * v) — olw *
|0¢|(v) = lim sup M = lim sup (M + 2Ad(v, w))

wW—v d(v,w) w—v d(v,w)
$(v) —p(w) | ’
<sup () + o))

In order to prove the opposite inequality it is not restrictive to suppose
vED(P), w#v with ¢(v)—d(w)+ trd*(v,w) > 0; (2.4.16)
applying (2.4.7¢c) with vg = v and v1 = w to get v; satisfying for every 0 < 7 < )%_

p(v) — d(vr) > <¢(U) —¢(w) 1

1 or1—s— ow td(v,w)
(0 00) + — (M1 —t) = t)d(v, )>

d(v,vg)

d(v,w) 27
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Since d(v, v;) < td(v,w), the sign inequality of (2.4.16) yields

. P(v) — () _ o(v) —P(w)
|0¢|(v) > hntllsoup (o 00) > (o) +5Md(v,w) Vwe.Z.

Then (2.4.14) follows easily by taking the supremum with respect to w. O
Recalling the Definition (1.2.6) of global slope [4, from (2.4.14) we casily get

|0¢|(v) < lg(v) < |00](v) + % diam.” Vv e.”. (2.4.17)

The following corollary is an immediate consequence of the above upper bound.

Corollary 2.4.10. Suppose that ¢ : ¥ — (—o0, +00] satisfies the convezity assump-
tion 2.4.5 for some A € R and it is d-lower semicontinuous. Then |0¢| is a strong
upper gradient for ¢ and it is d-lower semicontinuous.

Proof. In the case when A > 0 or .¥ is bounded, we can simply apply The-
orem 1.2.5. In the case A < 0 and diam.” = +o0, recalling that |0¢| is a
weak upper gradient, we should check that for any curve z € AC(a,b;.¥) with
|0¢|(2)|2'| € L(a,b) the function ¢ o z is absolutely continuous.

It is not restrictive to assume that (a,b) is a bounded interval and the curve z is
extended by continuity to [a,b]. We simply introduce the compact metric space
o = 2([a, b]) with the metric induced by . and we consider the related global
slope of ¢, denoted by [g(~); (2.4.14) yields

(¢(v) — ¢(w))

+
[g(v) = sup < |0¢|(v) — %)\ diam .% Vv e .S.

weFo\{v} d(v, w)

In particular [4(2)|2’| € L'(a,b) and therefore Theorem 1.2.5 yields the desired
absolute continuity of ¢ o z.

In order to prove the lower semicontinuity of |0¢| we argue as in the proof
of Theorem 1.2.5, where we proved that [4 is d-lower semicontinuous, and use
(2.4.14). O

We can now state two existence results for curves of maximal slope, the first
one assuming that there is compactness with respect to the topology induced by
d and the second one assuming that there is compactness with respect to o. Both
of them hold even in the case of p-curves (with A = 0 for p # 2) and combine
Proposition 2.2.3 and Theorem 2.3.3 following the first strategy of Remark 2.3.4.

Corollary 2.4.11 (Existence of curves of maximal slope I). Suppose that ¢ : .7 —
(—00, +00] satisfies the convexity Assumption 2.4.5 for some X € R (with A = 0
for p# 2), and the lower semicontinuity-compactness Assumptions 2.1a,c for the
topology o induced by the distance d, as in (2.1.3a,b) of Remark 2.1.1. Then every
ug € D(¢) is the initial point of a curve of mazimal slope for ¢ with respect to
(the strong upper gradient) |0¢| and the conclusions of Theorem 2.3.3 hold.
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Proof. By Lemma 2.2.1, ¢ also satisfies the coercivity Assumption 2.1b. Proposi-
tion 2.2.3 shows that GM M (®;ug) is not empty; moreover, the above corollaries
yield that |0~ ¢| = |0¢| is a strong upper gradient for ¢, since the compactness
assumption of Section 2.1 holds for the topology induced by the distance. Then
we can apply Theorem 2.3.3. ]

Corollary 2.4.12 (Existence of curves of maximal slope II). Suppose that the func-
tional ¢ : . — (—o00,400] satisfies the convexity Assumption 2.4.5 for some
A € R and the lower semicontinuity-compactness Assumptions 2.1a,c. If the map
v = |0¢](v) is o-sequentially lower semicontinuous on d-bounded subsets of sub-
levels of ¢, then every ug € D(¢) is the starting point of a curve of mazimal slope
for ¢ with respect to |0¢| and the conclusions of Theorem 2.3.3 hold.

Proof. Again we observe that Corollary 2.4.10 and our assumption yield that
|0~ ¢| = |0¢| is a strong upper gradient for ¢. Invoking Proposition 2.2.3 and
Theorem 2.3.3 again we conclude. |

2-curves of maximal slopes of A-convex functionals with A > 0 exhibit expo-
nential convergence to the minimum point of the functional (which exists under
the weak condition (2.4.10) of Lemma 2.4.8), with exponential convergence to 0
of the energy. The crucial estimates are stated in the following lemma:

Lemma 2.4.13. Assume that ¢ : . — (—00, 4] is a d-lower semicontinuous
functional satisfying the convexity Assumption 2.4.5 with X\ > 0. Then

$(u) —inf¢ < %\8¢|2(u) Yu € D(o). (2.4.18)
Moreover, if 4 € D(¢) is the (unique) minimizer for ¢, then

2 (u,7) < () — 0(@) < 5100 (u) Yu € D(6). (2.4.19)

Proof. (2.4.18) is an immediate consequence of Young inequality and (2.4.14),
which for every v € D(¢) with ¢(v) < ¢(u) yields

A 1
B(u) = 6(v) < [09](u) d(u, v) — Sd(u, v)* < 5|06 (). (2.4.20)
On the other hand, if @ is a minimum for ¢, we can apply (2.4.9) with vy := @

and vy := u: since ¢(v) > P(@) we obtain

A

5 (1 =D (u, 1) < 6(u) — o(w);

taking the limit as ¢t | 0 we conclude. |
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Theorem 2.4.14. Assume that ¢ : . — (—o0,+00] is a d-lower semicontinuous
functional satisfying the convexity Assumption 2.4.5 with A > 0 and having a
minimum point 4. Then any curve of mazimal slope u w.r.t. to |0P| satisfies for
every t > tg >0

3A (u(t), @) < (u(t)) — o(a

Proof. Since the time derivative of

< (¢(ulto)) — g(@))e 2 710, (2.4.21)

the absolutely continuous map, since |0¢| is

)
(

a strong upper gradient) A(t) := ¢(u(t)) — ¢(u) is —|0¢|*(u(t)), we obtain the
differential inequality A’(t) < —2XA(t), whence the second inequality in (2.4.21)
follows; the first one is simply (2.4.19). |

Even in a metric framework, if a curve of maximal slope is a Generalized
Minimizing Movement, it exhibits a sort of regularizing effect allowing for a finer
description of the differential equation at each point of the interval, if we consider
right derivatives. It is interesting to compare the next theorem with Brezis’ result
[38, Theorem 3.2, page. 57].

Theorem 2.4.15. Let us suppose that ¢ : . — (—o0, +00] is d-lower semicontinu-
ous, and it satisfies (2.4.10) and the convexity Assumption 2.4.5 for some X\ € R.
If ug € D(¢) then each element u € GM M (ug; @) is locally Lipschitz in (0, +00)
and satisfies the following properties:

(i) The right metric derivative

d(u(s), u(t))

lu’l|(t) := lim (2.4.22)

exists and u(t) € D(|0¢|) for all t > 0.

(i) The map t — e~ 2* to(u(t)) is convex; the map t — e '|d¢|(u(t)) is non-
increasing, right continuous, and satisfies

T19g2 (u(T)) < e T (¢(u0) - ¢T(u0)), (2.4.23)
T|06P (u(T)) < (14 23" T)e™ " (o(uo) — inf 9. (2.4.24)

where ¢r(ug) is the Moreau- Yosida approximation of ¢ defined as in (2.1.2b)

o1 (ug) := Uié{; O (T, ug;v) = Ulélf —d (v,u0) + @(v). (2.4.25)

(iii) The equation
%ﬂu(t)) = —[00*(u(t)) = —|ul, [*(t) = —|0g|(u(t)) [uy [(t)  (2.4.26)
+

is satisfied at every point of (0, +00).
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Remark 2.4.16. The statements of the above Theorem hold up to t = 0 if uy €
D(|0¢]).
Remark 2.4.17. In the case p # 2 and A = 0 the previous Theorem still holds,

provided (2.4.23), (2.4.24), and (2.4.26) are properly reformulated:
210017 (u(T)) < (¢(uo) — ¢T(uO)), T|0¢|*(w(T)) < <¢>(UO) — inf qs), (2.4.27)

%(JS(U(t)) = 091" (u(t)) = —[u [P(t) = —|0¢] (u(t)) [y |(1). (2.4.28)



Chapter 3

Proofs of the Convergence
Theorems

We divide the proof of the main convergence theorems in four steps: first of all,
we study a single minimization problem of the scheme (2.0.4); stability estimates
are then derived for discrete solutions which yield Proposition 2.2.3 by a compact-
ness argument. Finally, convergence is obtained by combining the a priori energy
estimates with the gradient properties of the relaxed slope. We will conclude this
section with the proof of Theorem 2.4.15.

3.1 Moreau-Yosida approximation

In this section we will study a single minimization problem (2.0.4), which is strictly
related to the Moreau-Yosida approximation of the functional ¢. The convergence
of the scheme will be addressed in the next subsections.

Definition 3.1.1 (Moreau-Yosida approximation). Let us suppose that ¢ : & —
(—00,400] is a d-lower semicontinuous and coercive functional; for 7 > 0 the
Moreau-Yosida approximation ¢, of ¢ is defined as

._~ oy — inf S L2
or(u) = Ulél; O(r,u;v) = ulél;{%-d (v,u) + qu(v)}. (3.1.1)
We also set
Jrlu] = in®(r,u;-), ie.
[u] ;== argmin ®(7,u;-), i.e (3.1.2)

ur € Jrjul & ®(r,u;ur) < O(1,uyv) Yo €S,
and, if J.[u] # 90,
df(u) :== sup d(ur,u), d;(u):= inf d(ur,u). (3.1.3)

-
ur €J7[u] wr €J 7 [u]
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For the sake of simplicity, in this section we will often suppose that
Jrul #0 YueS, 0<1<1(p), (3.1.4)

even if many results hold without this assumption. The following properties are
well known:

Lemma 3.1.2 (Monotonicity and continuity of ¢, (u)). The map (T,u) — ¢, (u) is
continuous in (0, T«(¢)) x 7.
If0 <19 <7 and u,, € Jy,[u] then

P(u) 2 dry(u) > ¢r, (u),  d(ury,u)
$(u) = ¢(ury) = G(ur,), d7 (u) <
In particular, if ¢ satisfies (3.1.4), it holds

lTiﬁ)l ¢r(u) = 17_1?01 u,é?zf[u] d(ur) = o(u), if ue D(¢) then 171{51 df(u) =0, (3.1.6)

S (uﬁau)’
o (3.1.5)

(u) < df (u).

and there exists an (at most) countable set A, C (0,7.(¢)) such that
d; (u) =df(u) V7€ (0,7(9)) \ N (3.1.7)

T

Proof. To prove the continuity of ¢, let us consider sequences (7, up) C (0, 7 ()
x . convergent to (7,u) and a corresponding sequence (vy,) C D(¢) such that

lim <<I>(Tn,un;vn) — ¢, (un)) =0.

n—oo

We easily obtain

lim sup ®(7,,, Un; vy ) =limsup ¢, (uy,) <limsup ®(7,, up; v) =P(r,u;v) YveS.

n—oo n—oo n—oo
(3.1.8)

Taking the infimum w.r.t. v we get limsup,, ¢, (u,) < ¢-(u). By (2.2.4) we deduce
that (v,,) is a bounded sequence in .#’; therefore

liminf ¢, (u,) = liminf ®(7,, w,; v,) > liminf

n—oo n—00 n—oo T'IL

> liminf —d (v, u) — iCIf(UmU)d(Um u) + ¢(vy) = or(u),

n—oo 27T, Tn,

<d(vn, w) — d(un, u))2 + blvn)

and this inequality proves the continuity of ¢, .
The first inequality of (3.1.5) follows easily from the analogous monotonicity
property of 7+ ®(7,u;v) for each u,v € .. The second one follows from

L (g 1) + Guny) < (1 11) + Duir,)

27’0 27’0
1 1 1
= (5= = 5 (ury u) + 5= (ur,, .
(57 = 5y un ) + 5= (e, ) + 6ur)
1 1 1
< (5= = 5 (ury u) + 5= (un,, .
< (57 = gy ) ur ) + 5y ) + 6
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i.e.

The third inequality follows by combining the preceding one with

1 5 I
—_— < — .
o d* (U, u) + dlur,) < o A (Ury, w) + d(try)

The first limit in (3.1.6) is a simple consequence of the monotonicity property
(3.1.5) and of the d-lower semicontinuity of ¢. In order to prove the last one,
observe that

d?(ur,u) < —27¢(ur) + d*(v,u) + 27¢(v) Vv € D(}), u, € J,[u).

We take the supremum with respect to u, € J;[u] and we recall (2.2.3); passing
to the limit as 7 | 0 we get

limsup(df (u))? < d*(v,u) Vv € D(¢).
710

Since u € D(¢) we conclude. O

The second lemma provides a very useful pointwise estimate on the local
slope of ¢.

Lemma 3.1.3 (Slope estimate). If u, € J;[u|, then u, € D(|0¢|) and

d(ur,u)
—

10¢](ur) < (3.1.9)

In particular D(|0¢|) is d-dense in D(¢).

Proof. Starting from (3.1.2) we easily get

Blue) — 0(0) < ood?(v,w) — 5 0) < o d(w, 00 (A0, ) + i, w)

for every v € D(¢). Dividing the equation by d(v,u,) we get
A )

+
lim sup M < lim sup L (d(v, u) + d(ur, U)) = . U

VUL d(U, Ur VU 2T T

The next estimate will play a crucial role in the subsequent convergence
proofs; we observe that for any open interval (7o,71) with 0 < 79 < 71 < T (0),
(3.1.5) yields (recall (1.1.2))

the maps 7 — 7~ 'dF (u) have finite pointwise variation in (10,71).  (3.1.10)
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Theorem 3.1.4 (Derivative of ¢,(u)). Assume that (3.1.4) holds so that for T €
(0, 7(p)) the infimum in (3.1.1) is attained. For every u € . the map T — ¢ (u)
is locally Lipschitz in the open interval (0,7.($)) and

d d¥ (u))”

EQST(U) = 7%, for every T € (0,7.(0)) \ N, (3.1.11)
where A, is the (at most countable) set introduced in (3.1.7).
In particular, if ug € D(¢@), for every T € (0,7.(¢)) we have

d2 (s, ) / (d(w))?
- 7 + - - 7
0

o 5,2 dr = ¢(u) — d(ur) Yur € Jrlul. (3.1.12)

Proof. We simply observe that for every 7,71 € (0, 7.(¢)) and u,, € J;, [u]

bro (u) - On (u) < (I)(7_07u; un) - (I)(ThU; un)

1 1 ™ — To
= _— 2 — g2 =9
27’0 (un ’ U) 27’1 (un ’ U) 27’1 T0

(3.1.13)

and, changing sign to each term of the inequality and interchanging 79 with 74

71 — 70

Pro (u) = Pry (u) > d*(ury, u), (3.1.14)

27’17’0
so that, being the map 7 — ¢, (u) is non increasing,
2 _ 2
(di:) (u)> < ¢7'0 (’U,) - ¢Tl (’U,) < (dn (u))
2mto T 1 — 70 - 2770

(3.1.15) shows that 7 — ¢, (u) is locally Lipschitz in (0, 7.(¢)). Passing to the
limit as 71 | 7,70 T 7 we obtain (3.1.11). Integrating (3.1.11) from 0 < 79 to 7 > 79

0<

if0<79<my. (3.1.15)

we obtain ,
T (d (w)
ort)+ [ 4y g
T0 r
if ¢(ug) < +00, we can pass to the limit in the previous identity as 7o | 0: recalling
(3.1.6) we get (3.1.12). O

The next result provides a sort of duality characterization of the local slope
(1.2.6) in terms of the Moreau-Yosida approximation of ¢

Lemma 3.1.5 (Duality formula for the local slope). We have

l|8¢>\2(u) = limsupM. (3.1.16)
2 7—0 T

Moreover, if the infimum of (3.1.1) is attained at u, according to (3.1.4), there
exists a sequence T, | 0 such that

002w = Tim L) _ gy ) = Olur)

n— o0 T n— o0 Tn

> limlionf 106)?(ur). (3.1.17)
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Proof. It is not restrictive to suppose |0¢|(u) > 0. We use the elementary identity

1 1
—2? =supay — —y* Va € (0,400)
ot TP TS

obtaining for each 0 < a™! < [9¢|(u), € > 0

4\ 2
%|8¢‘2(u) = limsup% (M)

v—U

+
= limsup sup (My - %y2>

v—u y>aTl

lim sup sup
v—=u  0<T<ad(u,v)

IA

sup sup
veS\{u} 0<7r<e

sup  sup <(¢(u)—¢(v)) d(u,v) 1d2(u,v)>

0<r<eves\{u}

g YW 0w
0<r<e T

where we used the fact that

sup((6(0) ~ 00) " — 5P (w)) = sup () — 6(0) — - (u,0))

veS\{u} 2T veS\{u} 2
= ¢(u) - (bT (u)
Passing to the limit as ¢ | 0 we get
1 - YT
—10¢[*(u) < limsup M (3.1.18)
2 710 T

On the other hand, supposing that the infimum in (3.1.1) is attained (otherwise,
we argue by approximation), we have

lim sup M = lim sup <¢(’U/) - (b(UT) - dQ(U’ U/T))
710 T 710 T 272
d » T d2 y Ut 1
< timsp (o)) ©277) = 2 ) < Sl ),
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which proves (3.1.16). Combining (3.1.18) and (3.1.19), we get

- d(u, u,) |’
1 fllo - =2 <0
im inf \|0¢|(u) —| =0,
which yields (3.1.17), via (3.1.9). O
Now we show that convexity Assumption 2.4.5 leads to stronger estimates.

Theorem 3.1.6 (Slope estimates for convex functionals). Let us suppose that ¢
satisfies the convezity Assumption 2.4.5 for some A € R.

(i) If u € D(|0¢|), 1 + A7 >0 and u, € J;[u|, then

(14 An) 90 ur) < (14 xr) Lz t) < p 0 = 0r(t)
) T T (3.1.20)
2
< T 190 )
The last inequality holds even though J.[u] = .
(ii) If u € D(¢), ur € Jr[u], and X\ > 0 then
. 1 .
o(ur) — 1gf¢ < m (qS(u) — 1{151; (;5). (3.1.21)
(iii) If A > 0 then
sup olu) = ¢r(w) _ l\agzs|2(u) Yu € D(¢). (3.1.22)
7>0 T 2

Proof. (i) The first inequality has already been proved in (3.1.9); in order to prove
the second one, we apply (2.4.7b) with vg = u, v1 = u, to find a point 7; such
that

%dz(u, ur) + ¢(ur) < %d%u,%) + é()
t

< o (t =2 (1 =) d () + (1= D)(w) + to(ur).

Since the right hand quadratic function has a minimum for ¢ = 1, taking the left
derivative we obtain

(3 +2) (0 + 6lur) — 6(u) < 0.

or, equivalently,

(;5(’[1,) B ¢(u'r) d2(u, uT) ¢(u) — ¢T(u) )

Plu,ur) _ ) _
T2 - T 272 T

%(1 + A7)
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The last inequality of (3.1.20) is a simple consequence of Theorem 2.4.9: we write

W) — b (u ) — o(u 2(ur,u
6) — 9r(w) _ 6) ~ 9lur) _ Elur) _

T T 272

d*(ur,u)
272

7d(u;, u) —(1+X7)

and we apply the Young inequality, observing that 1 — A7 > 0. If J [u] = 0 we
repeat the argument above with a minimizing sequence.
(ii) Starting from (3.1.20) we easily get

¢(u) — ¢(ur)

T

> (14 3A7)|0¢] (ur)
and, recalling (2.4.18) and (3.1.9), we obtain

(6(u) — inf 9) — (B(ur) — inf 6) = () — 6(ur) = 227(1 + 3A7) (8(u) — inf 6)
(3.1.23)
which gives (3.1.21).
(iii) follows by (3.1.20) and (3.1.16).

Remark 3.1.7 (p-estimates). It is easy to check that Lemma 3.1.2, 3.1.3, 3.1.5 still
hold in the general p-case, with the estimates
dp T 1 . - ¥
106)9(u,) < L) 100/"(w) = timsup ) = ér(w) (3.1.24)

TP T—0 T

¢(u) — ¢(ur, )

n—o00 Tn n—o00 Tn

4
0617 () = tim Tr®) > lim inf 96| (u-).  (3.1.25)

(3.1.11) becomes

(47 ()"

qTP

%‘M“) - V7€ (0,7:(0)) \ A, (3.1.26)

and therefore (3.1.12) reads

_d"(ur,u) */OT (a5 (u)” dr = ¢(u) — dlur) V1€ (0,7.().  (3.1.27)

pT?P qr?
Finally, for A = 0 the estimates of Theorem 3.1.6 easily extend to

dP(ur,u)

TP

supM = 3\6¢|q(u). (3.1.29)

7>0

|09 (u,) < < q¢(u) _T(Mu) < |0¢|%(u), (3.1.28)
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3.2 A priori estimates for the discrete solutions

In order to obtain a sharp energy estimate for discrete solutions giving the differen-
tial inequality (1.3.13) as |7| — 0, we follow a variational interpolation argument
due to De Giorgi, which is based on the identity (3.1.12) in Theorem 3.1.4. As in
the previous section, we will assume (3.1.4), so that at least one solution of the
variational scheme (2.0.4) exists if |7] < 7.(¢).

Definition 3.2.1 (De Giorgi variational interpolation). Let {UZ}}2) be a solution
of the variational scheme (2.0.4); we will denote by Uy : [0, +o0) — .7 any inter-
polation of the discrete values satisfying

Ur(t) = U (27 4 6) € J5[URTY aft =t 45 (127117, (3.2.1)

We also introduce the real valued function G, defined by

af (Ur=1y . d(Ur(t),Up~)

Gf(t) = 5 t— t271

ift=12""4+0€ (2. (3.2.2)

Observe that G is a Borel map thanks to (3.1.10), and (3.1.9) yields
100|(Ur(t)) < G(t) VYt € (0,+00). (3.2.3)

Lemma 3.2.2 (A priori estimates). Let |7| € (0,7.), let {UZ},25 be a sequence
solving the variational scheme (2.0.4), and let |UL|, G+ be respectwely defined by
(2.3.4), (3.2.2). Then for each couple of integers 1 < i < j we have

1 [ 1 [ : .
3 [ Ewa s [T emarown —owh. @24
t

t

Moreover, for anyu, € &, S, T > 0, there exists a constant C' = C(us, (), S, T)
such that if

pU2) < S, d*(U2u,)<S, tN<T, |r]<7.(0)/8, (3.2.5)

we have for 1 <n < N

2 (U} Z TOT) <y -swm<c. (326
d2(U-(t),U,.(t)) < C|r| Vtelo,T]. (3.2.7)

Proof. Starting from (3.1.12) for u := UZ~', u, := U2 and observing that for
r € (0,7,) ur = UT(tﬁ*1 +7), we get

2(1TN n—1 1 2 ~7' n—1
d (U‘r’U‘r )+§/ d (U (t)7UT )dt

27 (T ST - eltn).
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Recalling the definition of |UL| and G we rewrite the inequality as
1 1
3 [ sldes s [ 16 0F de < 0wz - oUp).
» Iz

Summing up from n = i+ 1 to n = j we obtain (3.2.4). The same argument,
neglecting the (nonnegative) integral terms gives

B Z Tn (M) < o(U7) — o(U7Y). (3.2.8)

Now we observe that for every £ > 0 and 7, < 7.(¢) we have

| Ty Y _n12j i
S U - 5d (U,_,u*)fz<2d(U,.,u*) S (U] ,u*))

j=1

<ZdUﬂ Ui d(UL, )

<Ezd2 U;T]Uj 1 +—ZTjd2

<et(U}) ~ 2. (ws) + 5~ (U} chﬂ

Choosing ¢ := 7, /2 we get

(U7, w) < 2(d2(U2 ) + e p(UD) = 7e6r () + = anQU

2(5 + 7S — T, ( u* ZTde
(3.2.9)
where we used the obvious bound
BUZ) 2 b () — s—d* (U2, u). (3.2.10)

2Ty

By applying the Gronwall lemma 3.2.4 below with a,, := d*(UZ,u.), A := 2(5 +
7.8 — Tu¢r. (uy)), and o == 4/7., we get

«@ B 4 o A
1—alr| 7 —A47) T l—alr|

n—1
a, < Be®tr < Be®r T o, =

provided «|7| < 1. Applying this estimate to (3.2.9) and choosing, e.g. 7. =
37.(¢)/4, we obtain the first inequality of (3.2.6). The second inequality follows
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then from (3.2.8) and (3.2.10) for n := N. Finally, (3.2.7) follows by (3.1.5) and
(3.2.6) since for t € IZ, j < n,

(U (1), T, (1)) < 20%(UL, UJ) + 2420 (), US)

n . :
. , (Uit yI
<a2itvd) < 4|y LU
=7 -
Remark 3.2.3 (Easier estimates when ¢ is bounded from below). Observe that
when ¢ is bounded from below then (3.2.6) and (3.2.7) become considerably easier,

since they are a trivial consequence of (3.2.8):

Lo 170 L ~&Uiuith) _ 1 0y _
& (07(0). T, (1)) < 4] (6(U2) — inf 0). (3:2.12)

Lemma 3.2.4 (A discrete version of Gronwall Lemma). Let A, o € [0,+00) and,
forn >1, let a,, 1, € [0,+00) be satisfying

n
ap < A+ aZTjaj Vn > 1, m = sup a7, < 1. (3.2.13)

J=1 neN

Then, setting 8 = /(1 —m), B:= A/(1 —m) and 79 = 0, we have

n—1
B Ti
an, < Be EO Vn > 1. (3.2.14)

Proof. Let ¢/ := 25:1 7; for 7 > 1. First of all, we observe that (3.2.13) gives

n—1
an <B+BY ma; Yn>2,  a; <B. (3.2.15)

j=1

We argue by induction: observe that for n = 1 (3.2.14) reduces toa; < B. Sup-
posing that (3.2.14) holds for 1 < n < k, and observing that AT < Bt for any
t e (71 ¢7], we get

IN

k k - ko i
ot £ B4SY.ma <BHBAY ne <BBY [ e
j=1 j=1/t71

Jj=1

k
G- = BePt".

tk
B+Bﬂ/ ePtdt = B+ Bf
0
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Remark 3.2.5. Lemma 3.2.2 still holds for p # 2 with the obvious variants

\&blq(ﬁr(t)) < GR(), (3.2.16)

;1, / Vs e+ / GE(t)dt + 6(Uf) < $(U7), (3.2.17)

" dp(UL, UL (UL UITY)

dP(U", u,) < C, Z 7 b7 < o(UY) — p(UM) < C, (3.2.18)

dp(UT( ), U.(t)) <Cl|r| VYtelo,T). (3.2.19)

3.3 A compactness argument

The following result combines the ideas of Ascoli-Arzela and Aubin-Lions com-
pactness Theorems: weak compactness (w.r.t. o) and strong equicontinuity (w.r.t.
d) yield pointwise convergence up to subsequences.

Proposition 3.3.1 (A refined version of Ascoli-Arzela theorem). Let T > 0, let
K C .7 be a sequentially compact set w.r.t. o, and let u, : [0,T] — 7 be curves
such that

up(t) e K VneN, te|0,T], (3.3.1)

lim sup d(uy, (s), un(t)) <w(s,t) Vs, te[0,T], (3.3.2)

n—00

for a (symmetric) function w : [0,T] x [0,T] — [0, 4+00), such that

lim w(s,t)=0 Vrel0,T]\%, (3.3.3)
(s,t)—(r,r)

where € is an (at most) countable subset of [0,T]. Then there exist an increasing
subsequence k — n(k) and a limit curve u : [0,T) — . such that

Un(iy(t) 2 u(t) YVt e[0,T], wisd-continuous in [0,T]\ . (3.3.4)

Remark 3.3.2 (The case when w is induced by a finite measure). An important
case where the previous theorem can be applied is provided by a (symmetric)
function w of the form

w(s,t) = p(ls,t]) V0<s<t<T, (3.3.5)

where p is a non negative and finite measure on [0, T]; in this case € is set of the
atoms of .

Proof. Being K sequentially compact, by a standard diagonal argument we can
find a subsequence k — n(k) and a function u : (QN[0,7]) U% — K such that

Un(ry (1) 2> u(t), d(u(s),u(t)) <w(s,t) Vs,te (QN[0,T])U%E; (3.3.6)
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the distance inequality in (3.3.6) follows from (2.1.1). Since K is d-complete, thanks
to (3.3.6) we can extend u to [0, T'] by continuity. Therefore we can uniquely define
a curve (still denoted by) u : [0,T] — . which is continuous at each point of
[0,T]\ €.

In order to prove that w, ) (t) = u(t) also for all ¢t € [0, T]\¥ it is sufficient to
show that every converging subsequence of w,, ) (t) converges to u(t): if uy, ) (t) 2
v is such a subsequence, we have

d(u(s),v) < likm inf d(wp, gy (5), unry (t) < w(s,t) Vse[0,T]NQ.

If t ¢ € we can let s T ¢ to obtain that v = wu(t). O

An immediate application of Proposition 3.3.1 and Remark 3.3.2 is a clas-
sical result, due to Helly, on compactness of monotone functions w.r.t. pointwise
convergence.

Lemma 3.3.3 (Helly). Suppose that (¢,) are non increasing functions defined in

[0,T] with values in [—oo,+00]. Then there exist a subsequence k — n(k) and a

non increasing map ¢ : [0, T] — [—00, +00] such that klim n(k) () = @(t) for any
—00

t€[0,T].

Proof. Tt is not restrictive to assume, up to a left composition, that all functions ¢,
have their values in [0, 1]. Denoting by pu, the derivatives in the sense of distribu-
tions of ¢y, it suffices to extract a subsequence such that s, ;) narrowly converge
in [0, 7] to a finite and non negative measure y in [0, 7. Then the assumptions of
Remark 3.3.2 are fulfilled because

lim sup |y k) () = Pk ()] < lim sup tn(i) ([s52]) < p([s, 1])
— 00

k—oo

whenever 0 < s <t <T. O

Corollary 3.3.4. Let us fix p € (1,400) and let be given a family A of admissible
partitions of (0,400) with

inf || =0, < 7(9),
inf |7| sup 7| < 7.(¢)

and a corresponding family of initial data {U2}ren satisfying

UO

Dug, (UL — ¢(ug) as 7| 10, supd? (U2, up) < +o0. (3.3.7)
TEA

Then there exist a sequence (Ty,) C A with lim,, |7, = 0, a limit curve u which
belongs to ACY (]0,400);.%), a non-increasing function ¢ : [0,+00) — R, and a

loc

function A € LY ([0,+00)) such that

loc

U. (t) 2 u(t), Ur(t)>ult) asn—oo Vt>0, (3.3.8)
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o(t) = lim 6T, (1) > Gu(t) Vt>0, 6(u(0)=od(u),  (3.3.9)

n—oo
UL, = A in I, (10,400),  A(t) > [u/[(t) for £ -a.e. t € (0,400), (3.3.10)

liminf G, (1) 2 |07 ¢l (u(t) ¥t = 0. (3.3.11)
Proof. As usual we limit to consider the case p = 2, the modifications to deal
with the general case being obvious. Condition (3.3.7) ensures that for any T' > 0
the constant C' defined by Lemma 3.2.2 remains uniformly bounded with respect
to 7 € A. Therefore the estimate (3.2.6) and the Assumptions of section 2.1 show
that the curves U, : [0,T] — ., T € A, take their values in a o-sequentially
compact set. We can find a sequence (7,) C A with |7,] | 0 such that |U_ |
weakly converge in L?(0, +00) to some function A and, by Lemma 3.3.3, the limit
in (3.3.9) exists.

For fixed 0 < s < t let us define

s(n) :==max {r € Py, : r <s}, t(n) :==min{r € Pr : t<r},
so that
s(n) <s<t<t(n), lim s(n)=s, lim t(n)==t.
We have
_ _ t(n)
AT, (.0, ) < [ |03, |0 dr (3.3.12)
s(n)
and therefore
¢
limsupd(U, (s),U, (t)) §/ A(r) dr. (3.3.13)

Applying Proposition 3.3.1 and (3.2.7), possibly extracting one more subsequence,
we can find u € ACE ([0, +00);.#) such that (3.3.8) and (3.3.9) hold true. More-
over, the limit inequality d(u(s), u(t)) < fgt A(r) dr immediately gives that |u/| < A
L1-a.e. in (0,+00). Finally, (3.3.11) follows from Fatou’s Lemma and the estimate
(3.2.3), which yields

07 6l(u(t)) < liminf [06](U., (1)) < liminf Gy, (1).

3.4 Conclusion of the proofs of the convergence
theorems

Proof of Theorem 2.3.3. Combining (3.3.10), (3.3.11), (3.3.9) and using eventually
(3.2.4) we easily get



72 Chapter 3. Proofs of the Convergence Theorems

/|u’| )ds + /|a B2 (u(s)) ds + H(u(t)) (3.4.1)
9 1
< 2/OA() 2/OhmmfG ()ds+hm o(U, (1))

n—oo

< hmmfl/ UL ()2 ds + 2 /G2 Yds + 6(T.. (1)) < $luo)-

n—oo

On the other hand, since |0~ ¢| is a strong upper gradient for ¢ we have

o(uo) < d(u / 07| (u(s)) /| (5) ds, (3.4.2)

and therefore

/|(t) = [0~ $l(u(t) for L1-ae. t € (0, +o0),
3.4.3
H(uo) — / 10| (u(s)) e |(s) ds. (3.43)

It follows that ¢ — ¢(u(t)) is locally absolutely continuous and

d
E¢(u(t)) = —|07¢|(u(®))|W/|(t) for L'-ae. t € (0,+00). O
Proof of Theorem 2.3.1. Observe that Corollary 3.3.4 still holds under the assump-

tions of Theorem 2.3.1. Denoting by ¢(t) the limit in (3.3.9) and arguing as in
(3.4.1) we get

/ Ju'|2(r) dr + = / 10~ ¢*(u(r)) dr < p(s) — o(t) (3.4.4)

for 0 < s <t and

t
/ liminf G2 (r)dr < +oo Vt > 0. (3.4.5)
0 n—oo
Therefore
—A ) > S + %|8_¢\2(u(t)) for Z'ae. t € (0,400).  (3.4.6)

o] =

Moreover, (3.2.3) and (3.4.5) yield

liminf |0¢|(U, (t)) < liminf G, (t) < 400 for ZL'-a.e. t € (0, +00),
so that (3.3.8) and the continuity assumption (2.3.3) give
o(t) = ¢(u(t)) for L-ae. t € (0,+o0). (3.4.7)

We can conclude that u is a curve of maximal slope for ¢ with respect to is (weak)
upper gradient |0~ ¢|. |
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Proof of Theorem 2.4.15. We start with a simple consequence of (3.1.20) and
(3.1.21).

Lemma 3.4.1. Let us suppose that ¢ satisfies Assumption 2.4.5 with M\71| > —1,
and let us set
_ log(1+ AlT]) f log(1 + A7)

|T| n>0 Tn

Ar

<A (3.4.8)
The sequences
Aptl n 2xten ny . .
n— e |0¢|(UY), n— e tir <¢(U,_) 1£1ﬂf (;5) are non increasing. (3.4.9)

Proof. From (3.1.20) we get for every n > 1

n n | e O ne
STONUT) < T 108I(URT) < hrtrem 0l (UR T
n—1 n—
= e ogl(URT),
where we used the inequality
1

<e AT, 3.4.10

1+ A, — ‘ ( )

which follows directly from Definition (3.4.8) (whose last inequality is a conse-
quence of the concavity of the map ¢ — log(1 + At)). The second property of
(3.4.9) follows by an analogous argument and from (3.1.21). O

Setting -
G- (1) := el |g|(UR), ifte (tv1 7,

G, is a non-increasing function: taking into account the L120C convergence of slopes
given by (2.3.7) and Helly’s Theorem 3.3.3, we can suppose, up to extracting a
suitable subsequence, that for a non-increasing function G we have

klim G, (t)=G(t) Vt>0, G(t) = eM|0d|(u(t)) for L -a.e. t € (0,+00).

— 00

On the other hand, we know that the map ¢ — e**|96|(u(t)) is lower semicontinu-
ous and therefore it is bounded from above by the right continuous representative
G, of G, so that the right continuous function S, (t) := e *G,.(t) provides an
upper bound for |9¢|(u(t)). Since [u'|(t) = |0¢|(u(t)) for L -a.e. t € (0,+00), we
deduce that |u/| is essentially bounded in each interval (4, 1/0) for 0 < 6 < 1. From
the inequality

d(u(t—i—h),u(t))g/tt+L|8qb(u(r))dr Wi >0,

we get

lim sup M <S.(t)  Vt>0. (3.4.11)
hl0
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Since for any u, ¢ € R and Z'-a.e. t >0

d

T (9(ult) — 8) = = |0g [ (u(t)) + 2ue™ (G(u(t)) - 9), (3.4.12)

choosing v := min(,0) and ¢ < infepo7) @(u(t)), we find that the map ¢ —
e (p(u(t)) — ¢) is convex in [0,T]. It follows that the map ¢ — ¢(u(t)) is right
differentiable at each point ¢ € [0, 4+00) and

¢( (t)) = —S2(t) Vt=>0. (3.4.13)
dt

On the other hand, it is easy to check that

d(u(t + h),u(t)).

d . .
G Ow(t)) = ~106](u(t)) -l inf !

(3.4.14)

Combining (3.4.14) with (3.4.11), (3.4.13), and |0¢|(u(t)) < S.(t), we get

Jull |(t) = lﬁrol M = |0¢|(u(t)) at each point ¢ € (0, +00).

Inequality (2.4.23) follows by the energy inequality, since for A < 0

T |9 2 (u(T)) < § / ENNOGP(ult)) dt < (up) — H(ul(T)) — L / 2
< d(uo) — H(u(T)) — g (uo, u(T)) < d(uo) — dr (uo).

Finally (2.4.24) for A > 0 follows by an integration of (3.4.12), choosing p := A,
¢ := inf & ¢, and taking into account (2.4.21):

AT ($(u(T)) — 3) + T 1062 (u(T)) < Bluo) — & + QA/ 22 _ 5 at

< (1+207)((wo) - 9) .

We conclude this section with a discrete analogous to Theorem 2.4.14, whose
proof follows directly from (3.4.9) and Lemma 2.4.13.

Corollary 3.4.2. Assume that ¢ : ¥ — (—00,+00] is a_d-lower semicontinuous
functional satisfying Assumption 2.4.5 with A > 0 and let U, be a discrete solution.
Then

AP (UL @) < o(UF) — ¢(u) < ($(U7) — p(@))e A", (3.4.15)



Chapter 4

Uniqueness, (zeneration of
Contraction Semigroups, Error
Estimates

In all this section we consider the “quadratic” approximation scheme (2.0.3b),
(2.0.4) for 2-curves of maximal slope and we identify the “weak” topology o with
the “strong” one induced by the distance d as in Remark 2.1.1: thus we are as-
suming that

p=2, (,d)isa complete metric space and (4.0.1)
¢ . — (—00,+00] is a proper, coercive (2.4.10), L.s.c. functional, e

but we are not imposing any compactness assumptions on the sublevels of ¢.
Existence, uniqueness and semigroup properties for minimizing movement u €
MM (®;up) (and not simply the generalized ones, recall Definition 2.0.6) are well
known in the case of lower semicontinuous conver functionals in Hilbert spaces
[38]. In this framework the resolvent operator in J;[-] (3.1.2) is single valued and
non exrpansive, i.e.

d(J;[u), J-[v]) < d(u,v) Vu,ve.S, 7>0 (4.0.2)

this property is a key ingredient, as in the celebrated CRANDALL-LIGGET gener-
ation Theorem [58], to prove the uniform convergence of the exponential formula
(cf. (2.0.9))

ult) = Tim (Joya)"uol,  d(u(t), (Jipn)"[u0]) < %jﬁ“@”

n—oo
and therefore to define a contraction semigroup on D(¢). Being generated by a
convex functional, this semigroup exhibits a nice regularizing effect [37], since

(4.0.3)



76 Chapter 4. Generation of Contraction Semigroups

u(t) € D(|0¢|) whenever ¢ > 0 even if the starting value wo simply belongs to

D(¢). Moreover the function u can be characterized as the unique solution of the
evolution variational inequality

(gu(t), ult) —v) + o(u(t)) < d(v) Vv e D(9), (4.0.4)

(+,-) being the scalar product in .7.

More recently, optimal a priori and a posteriori error estimates have also
been derived [23, 133, 118]: the original O(7/2) = O(1//n) order of convergence
established by Crandall and Ligget for ug € D(]0¢|) and a uniform partition
(2.0.8), has been improved to

and extended to the general scheme (2.0.4), (2.0.7)
PT0.0(0) < rl(9(00) ~inf ). T, 1) < o2 2D a0

thus establishing an optimal error estimate of the same order O(|7|) of the Euler
method in a smooth and finite dimensional setting.

Similar results for gradient flows of convex functionals in general (non Hilber-
tian) Banach spaces are still completely open: at least heuristically, this fact sug-
gests that some structural property of the distance should play a crucial role,
besides the convexity of the functional ¢.

A first step in this direction has been obtained by U. MAYER [110] (see
also [96]), who considered gradient flows of geodesically convex functionals on
nonpositively curved metric spaces: these are length spaces (i.e. each couple of
points vg,v1 can be connected through a minimal geodesic) where the distance
maps

v +— 2d*(v, w) are 1-convex along geodesics Vw € .. (4.0.7)

This property was introduced by Aleksandrov on the basis of the analogous in-
equality satisfied in Euclidean spaces (2.4.4) and in Riemannian manifolds of non-
positive sectional curvature [95, §2.3]; it allows to prove (4.0.2), and to obtain the
generation formula (4.0.3) by following the same Crandall-Liggett arguments. Ob-
serve that MAYER’S assumptions yield in particular that the variational functional
defined by (2.0.3b)

I 5
v O(r,w;v) = Zd (v,w) + B(v) (4.0.8)

is (771 + \)-conver along geodesics Yw € 7.

These assumptions, though quite general, do not cover the case of the metric
space of probability measures endowed with the L2-Wasserstein distance: we will



7

show in Section 7.3 that, in fact, the distance of this space satisfies the opposite
inequality, thus providing a positively curved space, as formally suggested also by
[124]. Example 7.3.3 will also show that the squared L2-Wasserstein distance does
not satisfy any A-convexity properties, even for negative choice of A € R.

Our idea is to concentrate our attention directly on the functional ®(7,w; )
and to allow more flexibility in the choice of the connecting curves, along which
it has to satisfies the convexity assumption (4.0.8): we formalize this requirement
in the following assumption:

Assumption 4.0.1 ((77! + )\)-convexity of ®(7,u;-)). We suppose that for every
choice of w, v, and vy in D(P) there exists a curve v = v, t € [0,1], with
Yo = vVg,7y1 = v1 such that

1 1
v ®(1,w;v) is (= + A)-convex on v for each 0 < T < = (4.0.9)
T

i.e. the map ®(1,w;~y;) satisfies the inequality

1+ A7
T

O(r,w;y) < (1= t)P(1,w;vg) + tP(1,w;v1) — t(1 —t)d*(vo,v1). (4.0.10)

Remark 4.0.2. Of course, Assumption 4.0.1 covers the case of a (geodesically)
A-convex functional on a nonpositively curved metric space considered by [110],
in particular the case of a (geodesically) A-convex functional in a Riemannian
manifold of nonpositive sectional curvature or in a Hilbert space.

Remark 4.0.3. Assumption 4.0.1 is stronger than 2.4.5, since this last one is a
particular case of (4.0.1) when the “base point” w coincides with vg.

We collect the main results in this case

Theorem 4.0.4 (Generation and main properties of the evolution semigroup). Let
us assume that (4.0.1) and the convexity Assumption 4.0.1 hold for some A € R.

i) Convergence and exponential formula: for each ug € D(¢) there exists a
unique element u = Sug] in MM (P;ug) which therefore can be expressed
through the exponential formula

u(t) = Suo](t) = lim (Jo/m)" [uo]- (4.0.11)

ii) Regularizing effect: w is a locally Lipschitz curve of maximal slope with u(t) €
D(|0¢|) C D(¢) for t > 0; in particular, if X > 0, the following a priori
bounds hold:

B(u(t)) < duluo) < 6(e) + 2 d(v,0) Vo € D(B),

(4.0.12)
06 (w(t)) < 106P(0) + 5 (v,u0) Vo€ D(g))
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iii) Uniqueness and evolution variational inequalities: u is the unique solution of
the evolution variational inequality

1d 1

EEd%u(t),v) + E/\dz(u(t),v) +ou(t)) < op(v) L'-ae. t >0, Yo € D(¢),
(4.0.13)

among all the locally absolutely continuous curves such that limy o u(t) = ug

in 7.
iv) Contraction semigroup: The map t — Sluog|(t) is a A-contracting semigroup
i.€.

d(S[uo)(t), S[vo](t)) < e *d(ug,v0) VYuo,vo € D(9). (4.0.14)

v) Optimal a priori estimate: if ug € D(¢p) and A =0 then

2 (o)1), ()" 0] ) < £ (6(00) — 1 (00)) < 251002 0). (10.15)

n

Remark 4.0.5. Let us collect some comments about this result:

(a) The regularizing effect provided by (4.0.12) is stronger than the analogous
property proved in Theorem 2.4.15 for A-convex function, since in this case we
simply need ug € D(¢) instead of uy € D(¢). Inequality (4.0.12) also implies a
faster decay of [0¢|(u(t)) as t T +oc.

(b) Since for differentiable curves u in a Hilbert space . = J#

d 1d

(Zul),ult) = v) = 3= |u(t) = vf? = Ld

2
= 2dtd (u(t),v) YveH,

the variational inequality formulation (4.0.13) is formally equivalent to (4.0.4) (in
the case A = 0), but it does not require neither the existence of the pointwise
derivative of u nor a vectorial structure. A similar idea was introduced by P.
BENILAN [27] for the definition of the integral solutions of evolution equations
governed by m-accretive operators in Banach spaces. The integral formulation
corresponds to consider (4.0.13) in the weaker distributional sense:

FE(0).0) = 58wl 0) < [ (600) = blu(r)) = FE(ulr). ) dr. - (4.0.16)

for every v € D(¢) and 0 < s < ¢; in this way, one can simply require that u is a
continuous curve with ¢ ou € L}, (0, +00), thus avoiding any a priori regularity
assumption on the evolution curve. It would not be difficult to show that there
exists at most one integral solution with prescribed initial datum and that this

formulation is equivalent to (4.0.13).
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(¢) The semigroup S satisfies the contracting property (4.0.14) (e.g. for A = 0)
even if at the discrete level the resolvent operator does not satisfy in general the
analogous property (4.0.2).

(d) In the case A > 0 (4.0.14) provides another estimates of the exponential decay
of the solution w to the unique minimum point @ of ¢ (cf. (2.4.12)), as already
discussed in Theorem 2.4.14, i.e.

d(u(t), ) < e Md(ug,u) VYt > 0. (4.0.17)

(e) The estimates (4.0.15) are exactly the same of the Hilbert framework: in fact
the first one is even slightly better than the previously known results, since it
exhibits an order of convergence o(1/1/n) instead of O(y/1/n) for uy € D(¢)
and it shows that the error is related to the speed of convergence of the Moreau-
Yosida approximation ¢, to ¢ as 7 | 0. Starting from this formula, it would not
be difficult to relate the order of convergence to the regularity of ug, measured in
suitable (nonlinear) interpolation classes between D(¢) and D(|0¢|) (see e.g. [39],
24]).

In the limiting case A = 0 the exponential decay does not occur, in general,
but we can still prove some weaker results on the asymptotic behaviour of u, which
are easy consequences of (4.0.12) and of (4.0.13).

Corollary 4.0.6. Suppose that (4.0.1) and the convexity Assumption 4.0.1 hold with
A =0, and that u is a minimum point for ¢. Then the solution w = S[ug| provided
by Theorem 4.0.4 satisfies

d(uo, ) __ d*(uo,u)
09| (u(t)) < % pu(t)) — o(u) < 272 (4.0.18)

the map t— d(u(t),u) is not increasing.

In particular, if the sublevels of ¢ are compact, then u(t) A Uso aS T — 00 and U
is a minimum point for ¢.

General a priori and a posteriori error estimates. (4.0.15) is a particular case of
the general error estimates which can also be proved for non uniform partitions;
quite surprisingly, they reproduce exactly the same structure of the Hilbertian
setting and can be derived by a preliminary a posteriori error analysis (we refer
to [118] for a detailed account of the various contributions to the subject of the a
priori and a posteriori error estimates in the Hilbert case).

As we have already seen in (4.0.15), for each estimate the order of convergence
depends on the regularity of the initial datum: the best one is obtained if uy €
D(|04]), whereas an intermediate order O(y/]7[) can be proved if ug € D(¢);
simple linear examples show that these bounds are optimal.

We first present the most interesting result for A = 0 and then we will show
how the various constants are affected by different values of \.
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Theorem 4.0.7 (The case A = 0). Suppose that (4.0.1) and the convexity Assump-
tion 4.0.1 hold with A = 0, let w € MM (®;ug) be the unique solution of the
equation (4.0.13) and let U, be a discrete solution associated to the partition Py
(2.0.1). Ifug € D(¢) and T =tY € P,

N—-1
d*(U(T),u(T)) < d* (U2, u) + Y 7262, (4.0.19)
n=1
where - . P
g o= W) 00 4 LU (4.0.20)
Tn Tn
and
N
S msr <lrl(e(UD) - er(UY) ) (4.0.21)
n=1

if UL = ug we have
d2(U.(T), u(T)) < |T|(¢(u0) - ¢T(u0)) < \T\(¢(u0) figﬂfgﬁ) VT > 0. (4.0.22)

If UL € D(|0¢|) we have

- il
> T < 5109l (UD): (4.0.23)
n=1
if UL = ug we have
2
d*(U(T),u(T)) < %\6@2(%) VT > 0. (4.0.24)

Remark 4.0.8. (4.0.21) is slightly worse than (4.0.15), which in the case of a uni-
form mesh and ug € D(¢) provides an o(,/|7|) estimates, instead of O(+/|7|): this
fact depends on a finer cancellation effect which seems to be related to the choice
of uniform step sizes.

In the case A # 0 the error d(U,
nential factor e~

(T),u(T)) should be affected by an expo-
, corresponding to (4.0.14) or e=*=T where

~ log(1+ Al7|)

Ar
7|

as for the discrete bounds of Lemma 3.4.1; (4.0.25)
the involved constants could also be perturbed by the presence of A: here the
main technical difficulty is to obtain estimates which exhibit the right coefficient
of the exponential grow (or decay) and constants which reduce to the optimal ones
(4.0.22), (4.0.24) when A = 0.

We limit us to detail the a priori bounds of the error: we adopt the convention
to denote by ¢ = ¢(A, |T|,T) the constants which depend only on the parameters
A, ||, T, exhibit at most a polynomial (in fact linear or quadratic) growth with
respect to 7', and are asymptotic to 1 as A — 0.
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Theorem 4.0.9 (The case A < 0). Suppose that (4.0.1) and the convexity Assump-
tion 4.0.1 holds for A\ < 0, let u € MM (®;ug) be the unique solution of the
equation (4.0.13) and let U, be the discrete solution associated to the partition Py
in (2.0.1) with |T| < (=\)"L If UL = ug € D(¢) we have

d2(T.(T), u(T)) SCIT\(gb(uo)fi}yl]fqb)e_Z’\T, = (1+,/§\A|m)2. (4.0.26)

If U2 = ug € D(|0¢]), A+ is defined as in (4.0.25), and Tr = min {tk € P, : t& >
T}, we have
7]

d(U(T),u(T)) < ¢ =0¢|(uo) e T, 12N T

— . 4.0.27
5 T I NT ( )

We recall that in the case A > 0 the function ¢ is bounded from below.

Theorem 4.0.10 (The case A > 0). Suppose that (4.0.1) and the convexity Assump-
tion 4.0.1 hold for A > 0, let u € M M (®; up) be the unique solution of the equation
(4.0.13), let U, be a discrete solution associated to the partition Py (2.0.1), and
let Ay be defined as in (4.0.25). If U2 = ug € D(¢) and Ty € Py is defined as in
the above Theorem, we have

d2(U‘r(T)7u(T))) <c ‘7" (¢(UO) — i§f¢)672)“"T7

(4.0.28)
ci=(1+ A7) (1+ V22T "
If UL = uy € D(|0¢|) we have
d*(U_(T),u(T)) < c @\3@2@0) e AT ci=1+2\Ty. (4.0.29)

We split the proof of the previous theorems in many steps:

4.1.1: discrete variational inequalities. First of all we derive the variational evolu-
tion inequalities (4.1.3), which are the discrete counterparts of (4.0.13). They
provide a crucial property satisfied by the discrete solutions and are a simple
consequence of the convexity assumption 4.0.1; all the subsequent estimates
can be deduced from this fundamental point.

4.1.2: Cauchy-type estimates. Here we introduce a general way to pass from a
discrete variational inequality to a continuous one, though affected by a per-
turbation term; the main technical difficulty is the lackness of an underlying
linear structure, which prevents an easy interpolation of the discrete values
in the ambient space .. We circumvent this fact by considering affine inter-
polations of the values of the functions instead of trying to interpolate their
arguments (see also [117] for a similar approach). Once continuous versions
of the evolution variational inequalities are at our disposal, it will not be dif-
ficult to derive Cauchy-type estimates, by also applying a Gronwall lemma
in the case A # 0.
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4.2: convergence. This section is devoted to control the perturbation terms in the
previously derived estimates, in order to prove the convergence of the scheme.
We first consider the easier case ug € D(¢) and then we extend the results
to a general ug € D(¢).

4.3: regularizing effect and semigroup generation. Here we show that the unique
element u € MM (®;ug) exhibits the regularizing effect (4.0.12) and then de-
rives the differential characterization (4.0.13) which also yield the A-contract-
ing semigroup property (4.0.14).

4.4: optimal error estimates. Finally, we refine the error estimates which have
been derived in the first section, and we prove Theorems 4.0.7, 4.0.9, 4.0.10,
and the related estimate (4.0.15). For the ease of the reader, the main ideas
are first presented in the case A = 0; the more technical results for A # 0 are
discussed in Section 4.4.2

4.1 Cauchy-type estimates for discrete solutions

4.1.1 Discrete variational inequalities
Let us first state an auxiliary lemma:

Lemma 4.1.1. Let us suppose that (4.0.1) and the convezity Assumption 4.0.1 hold
for some A€ R, and let 0 < 7 < 5=. If u € D(¢) and (vy) is a sequence in D(¢)
satisfying

lim sup @ (7, u; v,) < @7 (u), (4.1.1)
then (vy) converges to v € D(¢) and v = u; = Jr[u| is the unique element of
Jr[u].

Proof. Being u € D(¢), we can find a sequence (u,) C D(¢) converging to u such
that
lim sup ®(7, up; vy,) = limsup O(7, u; vy,) < @7 ().
n—oo n—oo
We argue as in the proof of Lemma 2.4.8: observe that, being ¢, continuous (cf.
Lemma 3.1.2) and ¢, (u) < 400, (4.1.1) yields

(7, tni vn) = br () + (67 () = ér (un) ) + (@(r, uns va) = 6,(u))
= ¢, (up) +wy, with  limsupw, <0.

n—o0

We apply the convexity property (4.0.10) with w := up,vg 1= U, v1 = U, at
t =1/2 to find v, ., such that
Wn +wm 14+ AT

¢T(un) < (I)(T, Un§vn,m) < ¢'r(un) + 9 - 37 dz(”ﬂa”ﬂ%)'
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Since 1 4+ A7 > 0 this implies that

lim sup d?(vy,, vy ) < ——— lim sup (wn 4+ wm) =0,
n,Mm— 00 1+ A7 n,Mm— 00

therefore (v,,) is a Cauchy sequence and the lower semicontinuity of ¢ gives that
O(1,u;v) = ¢r(u), i.e. v € J-[u]. The same argument also shows that v is the
unique element of J-[u]. O

The following result is a significant improvement of Theorem 3.1.6:

Theorem 4.1.2 (Variational inequalities for w,). Let us suppose that (4.0.1) and
the convexity Assumption 4.0.1 holds for some A € R.

(i) If u € D(¢) and A\t > —1 then the minimum problem (2.0.5) has a unique
solution u, = J;[u]. The map u € D(¢) — J-[u] is continuous.

(ii) If u € D(¢) and u, = J;[u], for each v € D($) we have

Lo L s [N
27_d (ur,v) 27d (u,v) + 2/\d (ur,v) < () — ¢r(u). (4.1.2)
Proof. (i) In order to show the existence of a minimum point u, € J;[u] we simply
apply the previous Lemma 4.1.1 by choosing an arbitrary minimizing sequence,
thus satisfying (4.1.1).

The continuity of J, follows by the same argument; simply take a sequence
(un) C D(¢) converging to u and observe that v, := J[uy] is bounded in .# and
satisfies

lim sup @ (7, u; v,) = imsup (7, up; vy,) = Um ¢ (uy) = ¢ (u).

n— oo n—oo n—00

(ii) Since the map J; is continuous, by a standard approximation argument we
can suppose u € D(¢). We apply (4.0.10) again with w := u, v := u, and vy := v,
obtaining a family v; € D(¢), ¢t € (0,1), such that

14+ A7

(1, u5ur) < P(ryuyvr) < (1—0)P(1,uyur) + (7, u;0) — t(1 —t)d*(u,,v).

Subtracting ®(7, u;u,) by each term of the inequality, dividing by ¢, and passing
to the limit as ¢ | 0 we get

1+ A7

0< —®(1,usur) + ®(1,us0) — d?(u,,v)

which is equivalent to (4.1.2) since ¢, (u) = ®(7, u; u,). O
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Corollary 4.1.3 (Variational inequalities for discrete solutions). Under the same
assumptions of the previous Lemma, every discrete solution {UI} 5 with U2 €

D(¢) satisfies

L 2 n 2 n—1 l 2 n
5 (P U V) = P V)) 4 AP (U7 V)
1

27,

(4.1.3)

<o(V) = p(U}) — s=—d*(U2,UL") VYV eD(), n>1.

4.1.2 Piecewise affine interpolation and comparison results

Now we formalize a general way to write a discrete difference inequality as a con-
tinuous one: first of all, let us introduce the “delayed” piecewise constant function
U,

Ur-(t)y =0t ift e (2t tn,

and the interpolating functions

titﬁ_l tﬁ —t : n—1 yn
Co(t) = — T 1 t(t) = it e (£ n). (4.1.4)
Tn Tn
‘s
1 —_ — _ — —_— — — — —_— g — — — — — — — — .
t
1 T2 73 T4 T5 T6

Figure 4.1: The interpolating functions £+.

If ( : ¥ — (—00,+00] is a function which is finite on the discrete solution
{UR} 125, we can define its affine interpolation as

n=01
Gr(t) :=(1 = € (1)U (1)) + L (H)C(UL (1))
(1= L (O)CUF™) + L ()CUD) ifte @, el

(4.1.5)

In other words, (- is the continuous piecewise affine function which interpolates
the values ((U}) at the nodes t? of the partition Pr. In this way, for V € ., we
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can consider the functions

A2t V) = (1= L (0)d> (UL V) + 0()d> (U, V) te (21 t"],  (4.1.6)
pr(t) == (1= L (0)o(Ur ™) + L (D)o (U7) te (. (417)

The main idea here is to “interpolate a function” instead of evaluating it on a
(more difficult) interpolation of the arguments (see also [117] for another applica-
tion of this technique); of course, for convex functional in Euclidean space these
two approaches are slightly different but in our metric framework the first one is
particularly convenient.

Finally, to every discrete solution {Ur}1>) C D(¢) defined as before we
associate the “squared discrete derivative”

d2 n—1 n
DZ = M, n:l’... , (4.1.8)
Tn

and the residual function %, defined for t € (t2~1,¢7] by

Br(t) =201 L () (6(U™Y) = $(UF) = Z-D2) — Cr(t)ra Dy (41.92)
=2(1 — L ())& + (1 — 20-(t)) 7 DY (4.1.9b)

Observe that (3.1.20) yields

2 0
(1+A70)[0¢]*(U7) < (1 + A7) Df < — (¢>(U3‘1) —o(U7) - %Dﬁ)
. T . (4.1.10)
< 2 n—1 < D’I’L*l
_1+)\Tn|a¢‘ (Uz )_1+)\Tn T
so that, if UP~1 € D(|0¢|) then (4.1.9a) yields
2et) < =D pspwnty e, (mDr e (@l (@111)
= 1+)\7—n T T T obr

Theorem 4.1.4. Let us suppose that (4.0.1) and the convexity Assumption 4.0.1
hold for A € R, and UL € D(¢). The interpolated functions dr, o, defined as in
(4.1.6), (4.1.7) starting from the discrete solution {UR} 2% satisfy the following
system of variational inequalities almost everywhere in (0, +00):

SRV 4 SO0, V) 4 pr(t) — V) < 52-1) ¥V € D(6). (4112)

N
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Proof. If t € (271,¢2], using (4.1.3) we obtain

%%dg(t; V) + %)\dQ (T, (1), V) +¢r () — $(V)
1

= (W v)-aup=v)) + %AdQ(U}}, V) + or(t) = 6(V)
U2, U 6(V) — () + or ) — (V)
_ _%d%Ul Uz + (1 - 6 0) (o) — o))
(1= L 0) (U2 = o(UF) — s dP(UR.U2™)) — (1) 5 d2(U2, UL,

27, 27,

IN

Recalling the Definition (4.1.9a) of Z,(t) we conclude. O

Comparison between discrete solutions for A = 0. In the next Corollary we are
finally able to compare two discrete solutions.

Corollary 4.1.5 (Comparison for A = 0). Under the same assumptions of Theorem
4.1.4, let us suppose that A = 0 and let {UTT}Jro<> Ug € D(¢), be another discrete

m=0’
solution associated to the admissible partition

Py = {0:159] <ty <. <t$,...}, N =t — 71 (4.1.13)

The continuous and piecewise affine function
02, (t,8) = (1~ ba()d2 (t:Un(s)) + ba(8)d2 (5T () t,s >0  (4.1.14)

satisfies the differential inequality

%din(t, t) < Br(t) + Bn(t) Vit (0,400)\ (PrUPy) (4.1.15)

and therefore the integral bound

T
&2, (T, T) < d>(U2, UY) +/ (%,(t) +%,,(t)) dt. (4.1.16)
0

Proof. Defining the function ¢, (s) as in (4.1.5) by
nl5) = (1= b (5)0Un (5)) + La(5)8(T,(5)), (4.1.17)
a convex combination of (4.1.12) for V := Uy (s) and V := U, (s) yields

1

19 p (t,s) +pr(t) —pn(s) <

5 9% Hr(t) ¥Ys>0,te(0,+00)\ Pr.

DN | =
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Analogously, writing (4.1.12) for the function dZ, defined as in (4.1.6)
dpy(5:V) = (1 = Ln(5))d* (Un(s), V) + L ()d* [Ty (), V),
and reversing the roles of n and T we obtain
5 2o (5,0) + on(s) = r(0) < 5Rnls) V>0, 5 € (0, +00) \ Py,
where
df,.,.(s,t) =(1- Z.,-(t))dfl(s; urh + é.,-(t)dfl(s; Ur) forte (1777, (4.1.18)

Summing up the two contributions we find
9 9
adﬂ](t, s)+ %dn‘r(s’t) <KL (t) + Xn(s) Vs, te (0,400)\ (PrUPy).

Finally, by the symmetry property
2, (t,s) =d; (s, 1), (4.1.19)

evaluating the previous inequality for s = ¢ we end up with (4.1.15). ]

Comparison between discrete solutions for A # 0. If A # 0 we need to rewrite
(4.1.12) in a more convenient form; let us first observe that the concavity of the
square root provides the inequalities for V € .

(1 — € (1))d(Ur (1), V) + £ ()d(T.(£), V) < dr(t,V) ¥t >0, (4.1.20)
(1= £n(9))ds (£, Un(s)) + ln()dr (£, T, (5)) < drn(t,s) Vi s>0.  (4.1.21)

Lemma 4.1.6. Under the same assumptions of Theorem 4.1.4, for a discrete solu-
tion {UP}% with UL € D(@) let us define

Dr(t) == (1L () d(T, (1) Ur (1)) = 70 (1~L- (1)) /DE,  t € (127, 12]. (4.1.22)

Then for every element V. € D(¢) the interpolated functions dr,pr defined by
(4.1.6) and (4.1.7) satisfy the following system of variational inequalities almost
everywhere in (0, 4+00):

&SRV 4 SEBGV) ~ N2 (e (V) 40 (1)~ 6(V) < 522(0)+ - 2200),

(4.1.23)

N | —

where A~ = max(—A\,0).

Proof. If X > 0 the inequality (4.1.23) is an immediate consequence of (4.1.12)
and
—2d,(t; V)P (t) < d*(U,(t),V) — d2(t; V)
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which, in turn, follows by the triangle inequality. If A < 0 it follows by (4.1.12)
and
d*(U.(1),V) —d2(t; V) < 2d+(; V) D2 (1) + D2(1). (4.1.24)

Let us prove (4.1.24). Suppose t € (t2~1 %] and d*(U_(t), V) > d2(t; V), otherwise
(4.1.24) is obvious; the elementary identity a? — b* = 2b(a — b) + (a — b)? yields

P (1), V) —d2 (V) = 2d.(6V)(dT,(£),V) — de (t;V))
+ (T, V) - de (V)"
On the other hand the concavity inequality (4.1.20) gives
AT (1), V)~ de(t:V) < dT,(0),V) ~ (1 — £ (0))d(Ux (1), V)

— L WATL(),V) < (1)
These two inequalities imply (4.1.24). a

Corollary 4.1.7 (Comparison for A # 0). Under the same assumption of the previ-
ous Lemma, let Pr, Py be two admissible partitions; the “error” function dry(t, s)
defined by (4.1.14) satisfies the differential inequality

d
T2 (6 1) + 207, (1) S2N(Z2 () + Dy (1)) drn (1)

(4.1.25)
+ (%r(t) + Rn(1) + A~ (Z2(t) + Z2(1)),
and therefore the Gronwall-like estimate

- 1/2

eMd (T, T) < <d2(U£, V) 4+ Re(T) + Ry (T) + / NN (Z2(t) + 72 (1)) dt>

0
T
+2/ N (27 (t) + (1)) dt,

’ (4.1.26)

where Ry (and analogously Ry, ) are defined by

t T +
R(T):= sup / AR (1) dr < / AT (%’,-(r)) dr VT >0. (4.1.27)
0 0

t€[0,T)

Proof. Starting from the inequality (4.1.23) we easily obtain (4.1.25) by arguing as
in Corollary 4.1.5 and by using (4.1.21). Inequality (4.1.26) is a direct consequence
of (4.1.25) and of the following version of the Gronwall Lemma [23]. O

Lemma 4.1.8 (A version of Gronwall Lemma). Let x : [0,4+00) — R be a locally ab-
solutely continuous function, let a, b € Li, ([0,+00)) be given functions satisfying,
for X € R,

%xQ(t) +2X22(t) < a(t) + 2b(t)x(t)  for L -a.e. t > 0. (4.1.28)
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Then for every T > 0 we have

t 1/2 T
e |2(T)| < <x2(0)+ sup / e2>‘sa(s)ds) +2 / M |b(t)| dt.
0 0

te[0,7]
Proof. Multiplying (4.1.28) by e*** we obtain

%(€>\t$(t))2 < ePMa(t) 4+ 2eMb(t) (eMa(t)) for Ll-ae. t >0,

therefore it is sufficient to prove (4.1.29) for A = 0.
Introducing the functions

t
X(T):= sup |z(t)], A(T):= sup / a(s)ds,
te(0,7) te(0,T) JO

T
B(T) = / 1b(s) ds,

and integrating the equation we obtain

t
22 (t) < 2%(0) +/ a(s)ds+2B(t)X(t) Vt>O0.
0
Therefore, taking the supremum w.r.t. ¢ € [0,T] we get
X3(T) < 2*(0) + A(T) + 2B(T) X (T),

and adding B%(T) to both sides gives

89

(4.1.29)

(4.1.30)

(4.1.31)

(4.1.32)

(4.1.33)

X(T) < B(T) 4 /B2(T) + 22(0) + A(T) < 2B(T) + \/22(0) + A(T).

Recalling (4.1.31) we obtain (4.1.29).

4.2 Convergence of discrete solutions

4.2.1 Convergence when the initial datum uy € D(¢)

The previous Corollaries 4.1.5, 4.1.7 show the importance to obtain a priori bounds
of the integral of %Z,, Z,, and Z2. In this section we mainly focus our attention
on the convergence of the discrete solutions, by quickly deriving rough estimates
of these integrals and we postpone a finer analysis of the error to Section 4.4. It

is not restrictive to assume A < 0.
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Lemma 4.2.1. Let us suppose that the convexity Assumption 4.0.1 holds with A < 0,
let %+, D+ be the residual terms associated to a discrete solution {U} 2% defined
as in (4.1.9a), (4.1.22), and let us choose T in the interval IY = (tN=1 tN]. Then

T
/O ([ (O] = AZ2(1)) dt < || (4(U2) - 6(UY)), (4.2.1)
(/T AN (1) dt)2 < %/T A€M 22 (1) dt (4.2.2)
0 0
R 0y N
< 2T (ow) - o). (423)

Proof. First of all we observe that

2 n n—1
(0]t < (o) oy - LERUE N
I 27—71
which is a direct consequence of (4.1.9a) and
d2 n n—1 1
oz —own - L s 0 [ a-uya= [ ma=3,
QTn I;_L I,';_L 2
Since
/ (1 — L (t)*dt = %Tn,
and ) .
NZ2(0) dt < SN (U7, UF) < 207,07, (4.2.5)
Iy
from (4.2.4) we get
[ @)+ N20] dr < mozh —owp) @20
In

which yields (4.2.1). Starting from (4.2.5) and recalling (3.2.8) we obtain

T
| N2 dt < SR - o))

so that

([ e anma)’ < ["nea [ oo < U () —ow)),

which yields (4.2.2) and (4.2.3). O
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Theorem 4.2.2. Suppose that (4.0.1) and the convezxity Assumption 4.0.1 hold for
AeR and
|hﬁ10 d(U%,ug) =0, supp(U2) =S < +o0. (4.2.7)
T T
Then the family {U_.}+ of the discrete solutions generated by UQ is convergent to
a function u as |T| | 0, uniformly in each bounded interval [0,T]; in particular u
is the unique element of MM (®D;ug).

Proof. We fix a time t € [0, 7] and we prove that {U,(¢)}- is a Cauchy family as
|7| goes to 0. We already know from the a priori estimates of Lemma 3.2.2 that
there exists a constant C' dependent on S, T, A but independent of 7 such that

d*(U-(t),U-(1)) < Cl7|, 6(U7) —o(U7) <C 1<n<N, (4.2.8)

for the integer N such that the interval IY contains T. Moreover, choosing two
partitions Pr, Py, as in Corollary 4.1.7, by (4.1.14) we have

d*(U(1), T, (1)) < 3d7, (¢, 1) + 3d*(Ur (1), U (1)) + 3d* (Un(t), Uy (1))
< 3d2,,(t,) + 3C(I7] + Inl),
therefore we simply have to show that ‘T|17i|r1§1|l0 dryn(t,t) = 0. By (4.1.26), (4.2.1),
and (4.2.3) we obtain
e, (t,1) < 202U, UD) + 20 (7] + nl) + 2C (TP + ), (42.9)

and this conclude the proof of the convergence; since the constant C' in the bound
(4.2.9) is independent of ¢, the convergence is also uniform in [0, T7].

Finally, it is easy to check that the limit does not depend on the particular family
of initial data (U2) satisfying (4.2.7): if (V,?) is another sequence approximating uo,
we can apply the same convergence result to a third family (W2) which coincides
with the previous ones along two different subsequences of step sizes 7, 7], with
|7l |70 | 0asn — oo. O

Corollary 4.2.3. Under the same assumption of the previous Theorem, let u =
MM (®;up) and let U, be the discrete solution associated to the partition Pr.
Then if T € Pr and A = 0 we have

d*(U(T),u(T)) < d*(U2,ug) + /T K- (t)dt, (4.2.10)
0
whereas for A # 0 we have
. 1/2
AU (T),u(T)) < <d2(U2,uO) + RA(T) + / eMAT 22 (1) dt>
0 (4.2.11)

T
+ 2/ INeM 2, (t) dt,
0

where Ry is defined by (4.1.27).
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Proof. We simply pass to the limit as |n| | 0 in (4.1.16) or (4.1.26), observing that
the integrals of (%,,)Jr, Dy, D7 are infinitesimal by the estimates of Lemma 4.2.1;

n
on the other hand, by (4.2.8) we have for T' € P,
‘li‘rﬁ) drn(T,T) = dr (T,u(T)), and d(T,u(T)) = d(U.(T),u(T)). O
n

4.2.2 Convergence when the initial datum uy € D(¢).

Now we conclude the proof of (4.0.11) in the statement of Theorem 4.0.4 when the
starting point belongs to the closure in . of the proper domain of ¢: in this case,
it is more difficult to exhibit an explicit order of convergence for the approximate
solutions and we have to take care of the loss of regularity of the initial datum.

Let us start with a comparison result between two discrete solutions related
to the same partition Pr:

Lemma 4.2.4. Let U,V be discrete solutions associated to the same choice of step

size T and to the initial values UL € D(¢), VL € D(¢) respectively. If T € IN =
(tN=1 N, and )\ is defined in (4.0.25), then for —1 < A|T| < 0 we have

P THTD (T (T), V(T)) < et d?(UY V)
< UL V) + 207 (VD) - sV

T 'T T

)). (4.2.12)

Proof. Choosing V := V*~! in (4.1.3) and multiplying the inequality by 27, we
obtain
U7,V — ULV < 2, (VA — 2, 6(UT) — d (U2, URY)
— A, d*(Ur, vrh),
Analogously, we choose V' := U in the discrete inequality (4.1.3) written for the
discrete solution {V*},°9 obtaining
(L +Am)d?(VE, UR) = (VP U7) < 2m0(U7) = 2700(Vy) — d2 (VL VET),

U7
Recalling the elementary inequality (a + b)? < e ta? + (1 —¢)710%, 0 < e < 1,
choosing € := —\7,, we get

n n— n n— )‘Tn n— n—
7)‘Tﬂd2(Ur’V‘r 1) SdZ(U.’.,U.’. 1)7 mCﬂ(Ur 13V7- 1);
summing up the previous inequalities we obtain
n n 1 n-— n— n— n
(4 Ar) (VE UF) = g (07 V) < 27 (0(V2 ) = 0(V7)).

Multiplying the inequality by e’ (% '+7) < 1 and recalling that A
d(V), we get by (3.4.10)

ARV, UR) < ARV UR 4+ 2m (67 - o(V).
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Summing these inequalities from n =1 to N we get (4.2.12). a

The following Corollary extends the previous Theorem 4.2.2 and concludes
the proof of the convergence part of Theorem 4.0.4:

Corollary 4.2.5. Suppose that (4.0.1) and the convezity Assumption 4.0.1 hold for
AeR and
U2 € D(¢), lliﬁlo d(U2,up) = 0. (4.2.13)

The family {U,}+ of the discrete solutions generated by US is convergent to the
function uw = Sfuog] as || | 0 defined by Corollary 4.3.3, uniformly in each bounded
interval [0,T]; in particular u is the unique element of MM (®;up).

Proof. 1t is not restrictive to assume A < 0. Let UT,Un be two discrete solutions
corresponding to the admissible partitions P, Py, let us choose an arbitrary initial
datum vg € D(¢), and let us introduce the correspondent discrete solutions V., Vn
associated to the same partitions P, P, with V! = V,? = p.

Applying the previous Lemma 4.2.4 we get

AT (1), Ty (1)) < d(T (1), Vo (0) + AV (1), V1)) + (T (6 Ty (1)
< e D @2y, U) + 2l [6(w0) — oV, (0)]]

}1/2

e n(tFImD [dZ(vo, UQ) +2|7|[d(vo) — 6V, (0)]|  + d(V,(t), Vi (2)).

Since vy € D(¢), passing to the limit as |7|,|n| | 0 and applying Theorem 4.2.2,
we get

limsup d(U, (), T, (t)) < 2 Md(ug,vo) Yo € D(o).
[7];InlL0

Since ug € D(¢), taking the infimum with respect to vy we conclude. O

4.3 Regularizing effect, uniqueness and the semigroup
property
The A-contractivity property is an immediate consequence of Lemma 4.2.4:

Proposition 4.3.1. Suppose that (4.0.1) and the convexity Assumption 4.0.1 hold,
A €R. Ifug,vg € D(¢) and u = MM (ug; ®),v = MM (vy; ®), then

d(u(t),v(t)) < e d(ug, vo). (4.3.1)

Proof. If vy € D(¢), we can simply pass to the limit as |7| | 0 in (4.2.12), choosing
e.g. UL = ug, V2 = vp.
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When vy € D(¢) \ D(¢), we consider an auxiliary initial datum wo € D(¢)
and the Minimizing Movement w = M M (wq; ®), obtaining by the triangular
inequality

d(u(t),v(t)) < d(u(t), w(t)) + d(w(t),v(t)) < e M (d(uo,wo) + d(wo, vo)).

(4.3.1) follows now by taking the infimum of the right hand member of the previous
inequality w.r.t. wg € D(¢). O

Theorem 4.3.2. Suppose that (4.0.1) and the convexity Assumption 4.0.1 hold,
AER. If u € MM (up; ®) then u satisfies (4.0.13). In particular, setting

T
u(T) ;:/ M dt = eATT* L) (4.3.2)
0
we have
1 4 At
$T) < o / Bu(t)) Mdt < 01 (o), (4.3.3)
and, if A >0,

06| (u(T)) < =d(ug, u(T)),

N

. (4.3.4)
061 (w(T)) < [06*(V) + =3d*(V,uo) YV € D(|0g).

Proof. By a simple approximation argument via the A-contraction property of
Proposition 4.3.1 and the lower semicontinuity of ¢, it is not restrictive to assume
ug € D(¢). In this case, we already know from Theorem 2.4.15 that u is locally
Lipschitz in (0, +00). Keeping the same notation of Section 4.1.2, observe that

lim d- (V) = d(u(t). V), m pr(t) = o(u(t) V120,V e

Integrating (4.1.12) from S to T and passing to the limit as |7| | 0 gives

T
SEDLY) = 5.V + [ (olult) + FE (e, V) dt < (T = $)o(V)

s
(4.3.5)
which easily yields (4.0.13). Moreover, multiplying (4.0.13) by e and integrating
from 0 to T, since ¢t — ¢(u(t)) is decreasing we have

UT)OT) < [ ou(t) it < dTYOV) + 5 (w0, V) = G (D). V)
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for any V' € D(¢). Taking the infimum w.r.t. V we get (4.3.3). Finally, if A = 0,
multiplying (2.4.26) by ¢ and integrating in time we get

T2 2 ’ 2 _ ! w())
oo m) < [ Hookunyar< — [ tlotut)
= [ otute) de = To(u(r)
< THWV) + 5o, V) ~ To(w(T)) ~ 5 (u(T), V).

Choosing V' := u(T') yields the first estimate of (4.3.4); on the other hand, if
V € D(|0¢|) the right hand side of the last formula can be bounded by

2
T100|(V)d(V,ul(T)) = S8 (w(T), V) + 5 (0, V) < |06V + 3o, V),

which gives the second inequality of (4.3.4). |

Corollary 4.3.3. The \-contractive map ug — S[uol(t), Slug] being the Minimiz-
ing movement MM (ug; @), provides the unique solution of the evolution varia-
tional inequality (4.0.13), and it satisfies the semigroup property S[uol(t + s) =
S[S[uo](t)](s) for every choice of t,s > 0.

Proof. Let us first observe that if u is a continuous solution of the system (4.0.13),
then an integration from ¢ — h to ¢ gives for every v € D(¢)

(S (ulr).v) + o(u(r))) dr < ho()

%d2(u(t),v) + %dz(u(t —h),v) + / 5

t—h
Dividing by h and passing to the limit as h | 0, the lower semicontinuity of ¢ and
Fatou’s Lemma yield

im su *llzu U*lzuf v

£ 2(u(t), v) + 0(ult) < 6(0) V1> 0.

By the same argument we also get the analogous pointwise estimate for the right
derivative

. —1 1 2 u v —1 2 u v
hn;lsouph (2d( (t+h),v) Qd( ®), )> (4.3.7)

+ 2d(u(t),v) + G(u(t) < 6(0) V1> 0

Let now u,w € AC0c(0, +00;.7) be two curves valued in D(¢) which satisfy the
system (4.0.13) and take (by continuity as ¢ | 0) the initial values ug, wo € D(¢).
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Choosing v := w(t) in (4.3.6), v := u(t) in the analogous inequality (4.3.7)
written for the function w, and applying the next lemma we find that

%dQ( (), w(t)) + 2Ad*(u(t),w(t)) <0 for L -ae. t >0,

i.e.
d

Eez’\tdz(u(t),w(t)) <0, d*(u(t),w(t)) < e Md*(ug,wp) Yt > 0.

In particular, if ug = wg the functions u,w coincides and therefore the system
(4.0.13) has at most one solution for a given initial datum wo.

Since the curve u(t) := S[uo](t), defined as the value at ¢ of w € MM (ug; D)

for ug € D(¢), solves (4.0.13), we obtain that u is the unique solution of (4.0.13).

The semigroup property follows easily be the uniqueness for solutions of (4.0.13).

]

The following elementary lemma is stated just for convenience for functions
in the unit interval (0,1).

Lemma 4.3.4. Let d(s,t) : (0,1)2 — R be a map satisfying
|d(s,t) —d(s",t)] < Jo(s) —v(s)|,  d(s,t) —d(s,t')] < [v(t) —v(t)]

for any s, t, ', t' € (0,1), for some locally absolutely continuous map v : (0,1) —
R and let 6(t) :== d(t,t). Then ¢ is locally absolutely continuous in (0,1) and

d 4 501) < timsup d(t,t)—d(t—h,t) i sup d(t,t+h)—d(t,t)
dt 110 h n10 h

Proof. Since [6(s) — §(t)] < 2Jv(s) — v(t)| the function § is locally absolutely
continuous. We fix a nonnegative function ¢ € C2°(0,1) and h > 0 such that
+h+supp¢ C (0,1). We have then

/5 t+h Ct+h) —¢(t) /C d(t, t) d(z-h,t—h)dt

d(t,t) fd( — h,t) d(t,t+h) — d(t,t)
/O ) : dt + /0 C(t+ ) ) dt,

ZLa.e. in (0,1)

where the last equality follows by adding and subtracting d(¢ — h,t) and then
making a change of variables in the last integral. Since

“Lld(t,t) — d(t — h,t)| < B o(t) — v(t — k)| — [V'(t)] in LL (0,1) as h | 0

and an analogous inequality holds for the other difference quotient, we can apply
(an extended version of) Fatou’s Lemma and pass to the upper limit in the in-
tegrals as h | 0; denoting by a and b the two upper derivatives in the statement
of the Lemma we get — [§¢"dt < [(a + b){dt, whence the inequality between
distributions follows. O
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4.4 Optimal error estimates

4.4.1 The case A =0

In this section we mainly focus our attention on the case A = 0 and we postpone
the analysis of the other situation to Section 4.4.2.

Lemma 4.4.1. Let us suppose that the convexity Assumption 4.0.1 holds for A =0,
let Zr,ED be defined as in (4.1.9a) and (4.0.20), let I := (¢t271,t2], and let us
define

I ( / F-(t)dt for T € IN = (N1 M. (4.4.1)

Then
Rr(t)dt = 728", (4.4.2)

Iz
I (T) sTN(qb(UiV*l)—gﬁ(UN)f—T DY) < SR 00P(WN), (44.3)
&r < l(\aqﬂ?(w*) D) < 5 (106P ) ~106U), (444)
/ R (t) dt < 272£”+J (T). (4.4.5)

n=1

Proof. (4.4.2) follows directly from (4.1.9b) since

/)Q—ZAﬂﬁﬁ: Loyt =, /(1—%4@yu:o. (4.4.6)
» Iz n

(4.2.4) and (4.1.10) yield (4.4.3) and (4.4.4); finally, (4.4.7) is a direct consequence
of (4.4.2) and (4.4.1). O

Corollary 4.4.2. Under the same assumption of the previous lemma, let us suppose
that A =0 and U2 € D(¢); then we have

Z riér+ (1) < r{oU) — ér(UD) } < |r[{o(UD) —info),  (447)
and, if U2 € D(|9).

712190 (U?). (4.4.8)

N)IH

N—-1
Y omEr + (1) <
n=1

Moreover, when the partition Pr is uniform (i.e. 7, = 7 = |7| is independent of
n, cf. Remark 2.0.3) then the following sharper estimate holds, too:

/ Ao <Y 24T < {oUD) 0.9} < T 060D, (4.49)

n=1
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Proof. Since & > 0 by (4.1.10), we easily have

N—-1
Sorzer <t > (e = o(U)) — rDy)
n=1 1

N-1 N-1
<Ir1 Y (ews™) = o) = 111 Y 7D
n=1 n=1

N-—-1
= Irl{6(U) - $UF ) ~ 7| > D2 }.
n=1

Summing up the contribution of % (T') and recalling that

N N
dZ(Un Un—l)
7l)n: T T >
2 mbr=) T

n=1

(UL, UN), (4.4.10)

Nl =

we obtain (4.4.7).
Since n — \8¢|2(U”) is decreasing, too, if UY € D(|0¢|) then (4.4.4) yields
TS (1oepwz) - ooz )

2 on
Z TRér <
n=1

< %(mm?wﬁ) ~opy ) < T jaspwn) - 1),

which proves (4.4.8). When 7,, = 7 we can use a different estimate for & which
comes from (4.1.10)

g7 <7 (605 ~ 60U ) = 5D
< () — 6 (U2) — (6U7) — 6-(T7))),

thus obtaining

(4.4.11)

ZT%WTZ( U = 6 (UZT) = (6(UF) = 6-(U7)) )

< 76U = 6:(UD) ~7((UN ) = 6:(UF) )

which proves (4.4.9). O

Corollary 4.4.3. Suppose that the convexity Assumption 4.0.1 holds with A > 0.
Then the estimate (4.0.15) of Theorem 4.0.4 and all the estimates of Theorem
4.0.7 hold.

Proof. We simply apply (4.2.10) and the results of the previous corollary. Observe
that when T = t&¥ € P, then #+(T) = 0, so that we have (4.0.19) without any
correction term. ]



4.4. Optimal error estimates 99

4.4.2 The case \ # 0

First of all, let us observe that the first estimate (4.0.26) of Theorem 4.0.9 follows
directly from Corollary 4.2.3 and (4.2.1), (4.2.3).

In order to get the other error bounds, we need refined estimates of the
integral terms in the right-hand side of (4.2.11). Since A < A, by replacing A
by Ar in the left-hand side of the differential inequality (4.1.25), we easily get
bounds analogous to (4.1.26) and (4.2.11) where the coefficient A occours in each
exponential term, thus obtaining for U2 = ug

T 1/2
AT AU_(T), u(T)) < (R,.(T)—i—)\‘ / P2 (1) dt)
0

(4.4.12)
T
2/ N T, (1) di
0
Let us observe that if T € (tN¥=1,tY] for some N € N,

¢

R-(T) = sup / At (r) dr (4.4.13a)
te[0,7] J0

IN

M=t
sup < / MR (r) dr + / e ! % (r)] * dr) (4.4.13b)
1I<M<N 0 [M

Z/ A R dr+/ At [, ()] T dr), (44.13¢)

and, recalling (4.1.11), the integral of the positive part of %, can be bounded by

IN

1<]V[<N

M—-1 M
max [ePrtr " o2t

22,1t + 2 2(rTM—1
/IM MR (r)] " dr < T3y S0+ Arar) |06|2 (U2 7). (4.4.14)

The next two lemmas provide the estimates of the other integral in the right-
hand side of (4.4.13b) and of the integrals involving %, in (4.4.12). Combining
these results with (4.4.12) we complete the proof of Theorems 4.0.9 and 4.0.10.

Proposition 4.4.4. Suppose that A < 0 and U2 € D(9¢); then for T > 0 we have
s
RAM(T) < ———M—
(D) < 2(1+ \|7|)
and, recalling that Ty := min {tf_ € Ptk > T},
N Tr
A 2)\.,-t92 2 ‘ UO
s < Ir e PR )
|>\\
+ Al7|

06 (U2). (1.4.15)

(4.4.16)
09| (U?).

zm/ Dy (t) dt < 7
0
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Proof. Let us suppose that T € IY = (tN¥ =1 tN]sothat T, = tY, and1 < M < N.
Since

1 n—
/ A1 — £ (1)) dt < §T7L€2>\Tt" " (4.4.17)
1 n—1_,n n—
/ e (t )dt > 37 ertr D) 27’ et ! e, (4.4.18)

recalling (4.1.11) and (3.4.10) we get

2
2.t < Tn A7t 27rn—1y Ar T 2(77n
[ Pty < gt o) — (1 An)e T 00RW) }
2
Tn 22071 2(7rn—1 22,17 2(77n
L T — R — Pty .
< s (00RO = P agP )
Since the map n — €2 v'7|9¢|?(U2L) is decreasing, we get
2
Pt ( 7| 20770y 22, tM1 2(yM-1y)
§j / s e (1901 (U8) = 2 o))

Taking into account (4.4.14) we obtain (4.4.15). Finally, we easily have

‘)\|Tn 2)\1_71 1

A [ etaRa < (U, U
In
A7 22,071 1 A7 2(770
YE R VLG o2 (U2~ 78 U;),
and
2 [ D (t)dt < [Nrpe = d(Ur, Urt)
Iy
A n-1y o AT 0
< —_— .
< e el < RO 000D
Summing up all the contribution from n =1 to N we obtain (4.4.16). O

Proposition 4.4.5. Assume that A > 0, inf» ¢ =0, UL € D(¢), and T, is defined
as in the above proposition. We have

R(T) < /OT At (2n(1) i < |14 AT NS0, (44.19)

[ e < ri(o 004 xtewd) (4.4.20)
0
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Moreover, if U2 € D(|0¢|) then

R-(T) <

[T12(1 + \Tx) |89 (U7), (4.4.21)

DO | =

T
2/ D (t) dt < Ty |7T]|00|(U2). (4.4.22)
0
Proof. As before suppose that T € IY = (t¥—1,¢N]. Since Lemma 2.4.13 yields
D} > [0¢](Uy) = 22(U7),

by (4.1.9a) and recalling (3.4.10) and (3.4.9), we get

[ e (e0) " at < e (U ) — (14 Am)o(U)

)\Tn 1 n— n
(e m¢(Ur 1)*¢(Ur))

< ‘T‘(l +/\‘T‘)()\Tn€2)\"t:_l¢([];}71) _1_62)\-,-t:—1¢(U£71) _ e2)\1-t:¢(U;r-L))

< et (14 )\Tn)< (U1 +
< 7|1+ A7) (Awaﬁ) +eM T p(UnTY) - e”f%(w)

Summing up for n =1 to N we obtain
T
/ et (t) dt < |T|(1+ A7) (1 + \Tr)p(U2).
0

Moreover,

1/2

T N Dr
2/ Mt (t Z /D < \/ﬁh’\(ZﬂLe”‘* ﬂ—)
0 n=1

and
n

Arguing as before, we find

T
2/ ', (1) dt < |7 (27 (1 + ATTW(US))I/Z'

0

Finally, if U € D(|0¢|), we first observe that

/ A1 —20,(t)) dt <0, (4.4.24)
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so that by (4.1.9b) we have

| i< ety (1.425)
Since
267 < o) 06 0)
< TR0 (U )+ a0 ~ 06U
we obtain

1 -1
/ AWyt < 72 (eP 08P (U — e 08 (7))

A n—
+ e 90U,

Summing up from n =1 to M — 1 and adding the contribution of the integral in
the last interval IM as in (4.4.14), by a repeated application of (4.1.10) we find

M—-1

+
> / e R (t) dt + / e”*t(%(t)) dt
n=1 i I,f_”
s A7 |2 M1
<L (o) - et \a¢|2<UN*1>)+7‘T‘2* 00 (UY)
22 M1 oA tM
o et M 1 2, ATy et M—1

ﬁ 2770 M
< T jaoP WD + M),
which yields (4.4.21). Analogously,
T
2/ DG (1) dt < Tol0s|(UY),
0

which concludes the proof. O
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Gradient Flow in the Space of
Probability Measures



Chapter 5

Preliminary Results on Measure
Theory

In this chapter we introduce, mostly without proofs, some basic measure-theoretic
tools needed in the next chapters. We decided to present the most significant
result in the quite general framework of separable metric spaces in view of possible
applications to infinite dimensional Hilbert (or Banach) spaces, thus avoiding any
local compactness assumption (we refer to the treatises [126, 71, 72, 136, 67] for
comprehensive presentations of this subject).

At this preliminary level, the existence of an equivalent complete metric (Pol-
ish spaces) only enters in the compact inner reqularity (5.1.9) or tightness (5.1.8) of
every Borel measure (it is a consequence of Ulam’s Theorem [72, 7.1.4], a particular
case of the converse implication in Prokhorov Theorem 5.1.3), which in particular
appears in the so called disintegration theorem 5.3.1 and its consequences; this
inner approximation condition is satisfied by a wider class of even non complete
metric spaces (the so called Radon spaces [136, page 117]) and it will be sufficient
for our aims. Since weak topologies in Hilbert-Banach spaces are not metrizable, it
will also be useful (see Lemma 5.1.12) to deal with auxiliary non complete metrics,
still satisfying (5.1.9).

Even if the presentation looks more abstract and the assumptions very weak
with respect to the more usual finite dimensional Euclidean setting of the standard
theory for evolutionary PDE’s, this approach is sufficiently powerful to provide all
the crucial results and allows for a great flexibility.

Let X be a separable metric space. We denote by Z(X) the family of the
Borel subsets of X, by #(X) the family of all Borel probability measures on X.
The support supp u C X of p € P(X) is the closed set defined by

supp p = {x € X :u(U) >0 for each neighborhood U of x} (5.0.1)
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When X = X; x ... x X} is a product space, we will often use bold letters
to indicate Borel measures p € Z(X). Recall that for separable metric spaces
X1, ..., X the Borel g-algebra coincides with the product one

B(X) = B(X1) x B(Xs) x - x B(Xp). (5.0.2)

5.1 Narrow convergence, tightness, and uniform
integrability

Conformally to the probabilistic terminology, we say that a sequence (u,) C Z(X)
is narrowly convergent to p € Z(X) as n — oo if

nlirr;o f ) dpin, (z / f(z)du(z (5.1.1)

for every function f € CP(X), the space of continuous and bounded real functions
defined on X.

Of course, it is sufficient to check (5.1.1) on any subset € of bounded con-
tinuous functions whose linear envelope span% is uniformly dense (i.e. dense in
the uniform topology induced by the “sup” norm) in C(X). Even better, let us
suppose that 6y C CP(X) satisfies the approximation properties

/ f(z)dp(x) = sup {/ h(z)du(z) : h € Gy, h < f} (5.1.2a)
X X
- inf{/Xh(x) du(z) : h ey, h> f}, (5.1.2b)

for every f € € then if (5.1.1) holds for every f € %, then it holds for every
continuous and bounded function f. In fact for every f € € we easily have

liminf/ f(@)du,(x) > sup liminf/ h(z) dpy, (x)
X X

n—o00 hE€y,h<f M0

N he%&%gf/x h(z) dp(z) = /Xf(x) du(z)

and the opposite inequality for the “limsup” can be obtained in a similar way
starting from (5.1.2b). Thus every f € € satisfies (5.1.1), and we get the same
property for every f € CP(X) since span %’ is uniformly dense in CP(X).

If d is any metric for X, the subset of d-uniformly (or d-Lipschitz) continuous
and bounded real functions provides an important example [138, Th. 3.1.5] sat-
isfying (5.1.2a,b). For, we can pointwise approximate a continuous and bounded
function f from below with an increasing sequence of bounded Lipschitz functions
fx (they are particular examples of the Moreau-Yosida approximations for the

(5.1.3)
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exponent p = 1, see Section 3.1)

inf f < fi(z) < fz) <sup f,

f(a) = lim fi(x) = sup fi(x), (5.1.4)
e keN

fr(z) = n;f f(y) + kd(x,y), with

thus obtaining (5.1.2a) by Fatou’s lemma; changing f to —f we obtain (5.1.2b).

A slight refinement of this argument provides a countable set of d-Lipschitz
functions satisfying (5.1.2a,b) for every function f € CP(X): we simply choose
a countable dense set D C X and we consider the countable family of functions
h: X — R of the type

h(z) = (Ch + Q2d(x,y)) Ak

(5.1.5a)
for some q1,¢2,k € Q, ¢2, k€ (0,1), y € D.

We denote by %1 the collection generated from this set by taking the infimum of
a finite number of functions, thus satisfying

sup |h(x)] <1, Lip(h,X)<1 Vhe %; (5.1.5b)
zeX

finally we set

G = {M:he6,\eQ). (5.1.5¢)

As showed by the next remark, the above constructions are useful, since in
general Cp(X) (endowed with the uniform topology) is not separable, unless X is
compact.

Remark 5.1.1 (Narrow convergence is induced by a distance). It is well known
that narrow convergence is induced by a distance on Z?(X): an admissible choice
is obtained by ordinating each element of ¢ in a sequence (fy) and setting

o, v) :—i?k‘/)(fkdu/xfkdu‘. (5.1.6)

If d is a complete bounded metric for X we could also choose any p-Wasserstein
distance on Z(X) (see Chap. 7 and Remark 7.1.7). In particular, the family of all
converging sequences is sufficient to characterize the narrow topology and we do
not have to distinguish between compact and sequentially compact subsets.

Remark 5.1.2 (Narrow topology coincides with the weak™ topology of (CP (X ))/)
Z(X) can be identified with a convex subset of the unitary ball of the dual space

(CS(X ))/: by definition, narrow convergence is induced by the weak* topology of

(C’g(X ))/ This identification is useful to characterize the closed convex hull in
P(X) of a given set K C #(X): Hahn-Banach theorem shows that

p € Conv (K) fdp < sup/ fdv YfeC)X). (5.1.7)
X vek JX
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For instance we can prove the separability of &2(X) by choosing K := {595 rx €
D}, where D is a countable dense subset of X: by (5.1.7) we easily check that
P(X) = ConvK and therefore the subset of all the convex combinations with
rational coefficients of J-measures concentrated in D is narrowly dense in Z(X).

The following theorem provides a useful characterization of relatively com-
pact sets with respect to the narrow topology.

Theorem 5.1.3 (Prokhorov, [67, ITI-59]). If a set K C Z(X) is tight, i.e.
Ve>0 3JK. compact in X such that (X \K:)<e VYpek, (5.1.8)

then KC is relatively compact in P(X). Conversely, if there exists an equivalent
complete metric for X, i.e. X is a so called Polish space, then every relatively
compact subset of P(X) is tight.

Observe in particular that in a Polish space X each measure p € Z(X) is
tight; moreover, compact inner approximation holds for every Borel set:

VBe #B(X), e>0 IK.€B: puB\K.) <e. (5.1.9)

In fact, this approximation property holds for a more general class of spaces, the
so-called Radon spaces [136].

Definition 5.1.4 (Radon spaces). A separable metric space X is a Radon space if
every Borel probability measure p € 2 (X) satisfies (5.1.9).

When the elements of K C X are ordinated in a sequence () of tight
measures (which is always the case if X is a Radon space), then the tightness
condition (5.1.8) can also be reformulated as

inf i X\K)=0 5.1.10
Jnf lﬁsolipun( \ K) =0, ( a)

or, equivalently since p,(X) =1,

sup liminf pu, (K) = 1. (5.1.10b)

An interesting result by LE CaMm [103], [72, 11.5.3], shows that

in a (metric, separable) Radon space X, (5.1.11)
every narrowly converging sequence (p,) C P(X) is tight. o

Remark 5.1.5 (An integral condition for tightness). It is easy to check that (5.1.8)
is equivalent to the following condition: there exists a function ¢ : X — [0, +00],
whose sublevels {x € X : ¢(z) < ¢} are compact in X, such that

sup/ o(x) dp(r) < +oo. (5.1.12)
neK JX
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For, if {,}52 is a sequence with Zn 0En < 400 and K, := K. is an (increas-
mg) sequence of compact sets satisfying (5.1.8), the function

+o00
p(x) = inf{nZO:xeKn} :ZXX\K”(x), (5.1.13)
n=0

satisfies (5.1.12). Conversely, if IC satisfies (5.1.12), Chebichev inequality shows
that (5.1.8) is satisfied by the family of sublevels of .

We conclude this part by a well known result comparing narrow convergence
with convergence in the sense of distributions when X = R¢.

Remark 5.1.6 (Narrow and distributional convergence in X = R?). For n € N let
Lin, it be Borel probability measures in the euclidean space X = R¢ such that

lim f(z) dpn(z / f(x)du(z) VfeCZ(RY). (5.1.14)
n—oo [pd
Then the sequence (uy,) is tight and it narrowly converges to p as n — co.
For, if ¢ € C°(RY) satisfies
0<¢<1, ((z)=1 if|z|<1/2, ((z)=0 ifl|z|>1,

and (;(z) := ((x/k), we have

lim inf jz,, (B (0)) > lim Ck ) dpin (x / () dp(z

n—0o0 n—0o0

since Lebesgue dominated convergence theorem yields

lim [ () du(a) =1,
k—oo Rd

choosing k sufficiently big we can verify the tightness condition (5.1.10b). By

Prokhorov theorem the sequence (i) has at least one narrowly convergence sub-

sequence: a standard approximation result by convolution shows that any narrow

limit point of the sequence () should coincide with g, which is therefore the

narrow limit of the whole sequence (recall that the narrow topology is metrizable,
see Remark 5.1.1).

5.1.1 Unbounded and l.s.c. integrands

When one needs to pass to the limit in expressions like (5.1.1) w.r.t. unbounded or
lower semicontinuous functions f, the following two properties are quite useful.
The first one is a lower semicontinuity property:

liminf/Xg(J;)d,un(x) E/Xg(x)d,u(x) (5.1.15)

n—0o0
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for every sequence (u,,) C &(X) narrowly convergent to p and any l.s.c. function
g: X — (—00,+00] bounded from below: it follows by the same approximation
argument of (5.1.3), by truncating the Moreau-Yosida approximations (5.1.4); in
this case l.s.c. functions satisfy only the approximation property (5.1.2a), where
e.g. 6o is given by (5.1.5a,b,c).

Changing g in —g one gets the corresponding “lim sup” inequality for upper semi-
continuous functions bounded from above. In particular, choosing as g the char-
acteristic functions of open and closed subset of X, we obtain

liminf 4, (G) > p(G) VG open in X, (5.1.16)
n—oo
limsup pp (F) < pu(F) VF closed in X. (5.1.17)

The statement of the second property requires the following definitions: we say
that a Borel function g : X — [0, +o0] is uniformly integrable w.r.t. a given set
Kc2(X)if

lim g(x)dp(x) =0 uniformly w.r.t. g e K. (5.1.18)
k=00 Jag(a)2k)

If d is a given metric for X, in the particular case of g(z) := d(x,Z)P, for some
(and thus any) Z € X and a given p > 0, i.e. if

lim dP(Z,x)du(xz) =0 uniformly w.rt. p € K, (5.1.19)
koo JX\By (@)

we say that the set K C P(X) has uniformly integrable p-moments. Notice that
if

0<p<ps and sup/ d(z, )P du(z) < +oo, (5.1.20)

peK JXx

then K has uniformly integrable p-moments. In the case when X = R¢ with the
usual Euclidean distance, any family K € £2(R?) satisfying (5.1.20) is tight. The
following lemma provides a characterization of p-uniformly integrable families,
extending the validity of (5.1.1) to unbounded but with p-growth functions, i.e.
functions f : X — R such that

|f(z)| < A+ BdP(z,z) VreX, (5.1.21)

for some A, B >0 and z € X. We denote by &2,(X) the subset

Py(X) = e 2(x): /

d(x,Z)P du(x) < +oo  for some T € X}. (5.1.22)
X

Lemma 5.1.7. Let (u,) be a sequence in & (X)) narrowly convergent to p € 2 (X).
If f : X — R is continuous, g : X — (—o0,+0o0] is lower semicontinuous, and
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|f|, 9~ are uniformly integrable w.r.t. the set {{in }nen, then

liminf/ g(x) dpon (x )_/ g(x) du(z) > —oo, (5.1.23a)

lim / fz) dpn (z / f(z)dp(z (5.1.23b)
Conversely, if f: X — [0,400) is continuous, pn,-integrable, and
limsup/ f(z) dpn(z / fz)du(z) < +oo, (5.1.24)

then f is uniformly integrable w.r.t. {fin }nen.
In particular, a family {pntneny C P(X) has uniformly integrable p-moments iff
(5.1.1) holds for every continuous function f: X — R with p-growth.

Proof. If u, narrowly converges to p as n — oo and ¢ is lower semicontinuous,
(5.1.15) yields

lim inf/ g Aty > / gr dp Vk € N,
X X

n—oo

where g := gV (—k), k > 0. On the other hand, since ¢~ is uniformly integrable
w.r.b. {fin }nen and g > g, (5.1.18) gives

sup (/ Gk dpin, —/ gdun> < sup/ g duy, — 0
neN X X neNJ{z:g— (z)>k}

as k — oo. Using these two facts we obtain (5.1.23a). As usual, (5.1.23b) follows
by applying (5.1.23a) to g := f and g := —f.
Conversely, let f: X — [0,+00) be a continuous function satisfying (5.1.24)
and let
()= flx) Ak, Ve eX, FFi={zeX:f(x)>k};

since f* is continuous and bounded and F* is a closed subset of X, recalling
(5.1.17) and (5.1.15) we have for any ¢ > 0

n—0o0 n—0o0

sk kY _
< [ = rydusir = [ pan<e

limsup/ [ dpy, = limsup (/ (f = f*) dpn + an(Fk))
{w:f (x) >k} X

for k sufficiently large. Since f is uniformly integrable for finite subsets of {1, }nen,
this easily leads to the uniform integrability of f. O

There exists an interesting link between narrow convergence of probability
measures and Kuratowski convergence of their supports:
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Proposition 5.1.8. If (u,) C Z(X) is a sequence narrowly converging to p €
P(X) then supp p C K—liminf supp pin, i.e.
n—oo

Vo €suppp I, €Supp iy @ lim xz, = x. (5.1.25)

Proof. Let x € supp p and let By () be the open ball of center = and radius 1/k
with respect to the distance d on X. By (5.1.16) we obtain

liminf i, (By 1 (2)) = p(Bayk(x)) > 0;
thus the strictly increasing sequence
jo:=0, jr:=min {n eN:n>jgr 1, supppumNBip(x)#I Ym> n}

is well defined. For jx < n < jix41 pick a point x,, € supp j,, N By (x): clearly the
sequence (x,,) satisfies (5.1.25). O

Corollary 5.1.9 (Convergence of Dirac masses). A sequence (x,) C X is convergent
in X iff the sequence (3z,,) is narrowly convergent in & (X); in this case, the limit
measure [ is 0, x being the limit of the sequence (zy,).

Proposition 5.1.10. Let (p,) C P(X) be a sequence narrowly converging to p €
P(X) and let f,g : X — (—o0,+00] be Borel functions such that |f|,g~ are
uniformly integrable with respect to {pn }nen. If for any e > 0 there exists a closed
set A C X such that

f|A is continuous, g, s l.s.c., and lim sup pn (X \ 4) < e, (5.1.26)

then (5.1.1) and (5.1.15) hold.

Proof. As usual we can limit us to consider the ls.c. case; using the uniform
integrability of g~ with respect to {in }nen, a truncation argument, and arguing
as in the first part of the proof of Lemma 5.1.7, we reduce immediately ourselves
to the case when g is bounded from below by a constant —M < 0. Let e > 0,k € N
be fixed and let A C X be a closed set such that (5.1.26) holds. We consider the

truncated functions g¥(x) := g(x) Ak for z € X, and the lower semicontinuous §*

~ g*(z) ifxz e A,
k ifre X\ A,

which extends gk| 4 to X. We obtain

lim inf/ gdpy, > lim inf/ gk dpt, > liminf (/ fjk dpy, +/ (gk — f}k) dun)

> lim inf/ G" dptn, — (M + k) limsup p,, (X \ A)
p's

n—oo n—oo

> [ @)= +1) > [ o) du— (k4 M,
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Passing to the limit, first as € | 0 and then as k T co we obtain (5.1.15). |

5.1.2 Hilbert spaces and weak topologies

Let X be a separable, infinite dimensional, Hilbert space, with norm | - | and
scalar product (-,-); in many circumstances it would be useful to rephrase the
results of the previous section with respect to the weak topology (X, X’) of X.
Unfortunately, the weak topology is not induced by a distance on X, thus the
previous statements are not immediately applicable.

We can circumvent this difficulty by the following simple trick: we introduce a
new continuous norm || - || », inducing a topology w globally weaker than o(X, X'),
but coinciding with o (X, X”) on bounded sets (with respect to the original stronger
norm | - |). In particular bounded sets of X are relatively compact w.r.t. w and
Borel sets with respect to the three topologies coincide.

For instance, if {e,},7>] is an orthonormal basis of X, an admissible choice
is -
2
l2l1Z = —5(wen)”. (5.1.27)
n=1

In fact, if (zx) C X is a bounded sequence, we can extract a subsequence, still
denoted by xj, weakly converging to x in X; since (z — z,e,) — 0 as k — oo for
each n > 1, Lebesgue dominated convergence theorem yields

oo
. . 2
Jin llow = allz = Jim 3 Z5ton = o en)” =0
n=

We denote by X the new pre-Hilbertian topological vector space. We will also
introduce the space of smooth cylindrical functions Cyl(X): observe that for finite
dimensional spaces, X is homeomorphic to X and Cyl(X) = C(X).

Definition 5.1.11 (Finite dimensional projection and smooth cylindrical functions).
We denote by 114(X) the space of all maps ©: X — R< of the form

w(z) = ((z,e1), (z,e2),...,(x, eq)) re X, (5.1.28)
where {e1,...,eq} is any orthonormal family of vectors in X. The adjoint map
d
™ :yeRY— Zykek € span(eq,...,ep) C X (5.1.29)
k=1
is a linear isometry of R onto span(ey,...,eq) so that

mom* s the identity in R? and (5.1.30)
m:=m"omw is the orthogonal projection of X onto span(ei,...,eq). h

We denote by Cyl(X) the functions p = o1 with m € M4(X) and ¢ € C(R?).
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Notice that any ¢ = ¥ om € Cyl(X) is a Lipschitz function, everywhere
differentiable in the Fréchet sense, and that ¢ is also continuous with respect
to the weak topology of X and to X (if the corresponding orthogonal systems
coincide). Moreover Vi = 7% o Vi) o 7.

The following properties are immediate:

Lemma 5.1.12. Let X be a separable Hilbert space and let X, be the pre-Hilbertian
vector space whose norm is defined by (5.1.27).
(a) If K is weakly compact in X then K is strongly compact in X .

(b) If
g: X — (—o0,400] is weakly l.s.c. and lim g(z) = +oo, (5.1.31)

|| —o00
then it is lower semicontinuous in X with compact sublevels.

(c) Let us denote by B := {x € X : |x| < R} the centered closed balls w.r.t. the
strong norm; if K C P (X) satisfies the weak tightness condition

Ve >0 3R. >0 suchthat (X \ Bgr.)<e Vwpeck, (5.1.32)

then IC is tight in P (X) and therefore relatively compact in P (X ).

(d) If the sequence (un) C P(X) is narrowly converging to p in P(X5) and it
is weakly tight according to (5.1.32), then for every Borel functions f,g : X —
(=00, +00| such that g—,|f| are uniformly integrable and f (resp. g) is weakly
continuous (resp. l.s.c.) on bounded sets of X, we have

1iminf/Xg(J;)d,un(J;)2/ g(x)dp(x), (5.1.33a)

n—0o0 X

fim [ F(2) dpn(z) = / F(@) dua). (5.1.33b)
n—oo X X

(e) K C P(X) is weakly tight according to (5.1.32) iff there exists a Borel function

h:X —[0,4+00] such that h(x) — 400 as |x| — oo and

sup/ h(x) dp(r) < +o0. (5.1.34)
neK JX

(f) If the sequence (un) C P(X) is weakly tight according to (5.1.32), then it
narrowly converges to p in P (X) iff

lim o(x) dpin (x) :/ p(x)dp(r) Ve e Cyl(X). (5.1.35)
Proof. (a) and (b) are trivial and (c) is a direct consequence of the fact that
bounded and closed convex sets are compact in X. Since on bounded subsets
of X the topology of X coincides with the weak one, (d) follows from Proposi-
tion 5.1.10.
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One implication in (e) follows directly from Chebichev inequality. The other one
can be proved arguing as in Remark 5.1.5.

Finally, one implication in (f) is a consequence of (5.1.33b) of (d), since (smooth)
cylindrical functions are bounded and weakly continuous. In order to prove the
converse implication, we can simply check that any two narrow limit point p!, ;i
of the sequence (1,,) in #(X ) should coincide. For, let f € CP(X) and 74 be the
map (5.1.28), so that 7q := 7; o mg is the orthogonal projection of X onto Xgq =
span(er, -+ ,eq). We set g := fonh € CQ(RY), pg:=1pgomy = foryg € Cyl(X);
by (5.1.35) we know

[ ela)dnt @) = [ ele)di@) Ve culcx) (5.1.36)
X X

a standard approximation argument for bounded continuous functions defined in
R by smooth functions in C2°(R?) as in Remark 5.1.6 yields (5.1.36) for ¢ := ¢4
and d € N; therefore

| ftate) dnt @) = [ faala)) di(@) vd e,
X X

Passing to the limit as d — oo, since 74(x) — « for every = € X, Lebesgue
dominated convergence theorem yields

J@)dp' (@) = [ (@) di?(a).
/. /.

Since f is an arbitrary function in Cp(X) we obtain p! = p?. O

In the following theorem we will show that narrow convergence in & (X )
and convergence of the p-moment [ || duy, () (but more general integrands are
allowed) yields convergence in Z2(X), thus obtaining the measure-theoretic version
of the fact that weak convergence and convergence of the norms in X imply strong
convergence. We will show a different proof of this fact at the end of Section 7.1.

Theorem 5.1.13. Let j : [0,4+00) — [0,400) be a continuous, strictly increasing
and surjective map, and let pi,, p € P(X) be satisfying

pn — 1 in P(Xg), lim

am J(|x]) dpn () :/ j(|z]) dp < +o00.  (5.1.37)
X X

Then i, converge to p in P(X).

Proof. Observe that the family {u,}nen is weakly tight, according to (5.1.32).
We consider the vector space S of continuous functions h : X — R satisfying the
growth condition (compare with (5.1.21))

JA,B>0: |h(z) <A+ Bj(lz]) VzeX, (5.1.38)
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and
lim [ () dpn(z) = /X h(z) du(z). (5.1.39)

n—oo X

Observe that 7 is closed with respect to uniform convergence of functions and
contains the constants and the function j(| - |).

By the monotonicity argument outlined at the beginning of Section 5.1 we need
only to check that the infimum of a finite number of functions of the form

= (g +q@lr—y) k @geR, ¢k>0, yeX, (5.1.40)

belongs to #7. To this aim, let us consider the convex cone &/ C ¢ of strongly
continuous functions which satisfy (5.1.38), (5.1.39), and are weakly lower semi-
continuous. Notice that, truncated affine functions of the type

z— (=)V(a+(z,y))Am, forl,m=>0,a€R, ye X belongsto s, (5.1.41)

since they are bounded, weakly continuous, and condition (5.1.39) follows by (d)
of Lemma 5.1.12.
Let us first prove that &/ is a lattice.

Claim 1. If f, g € CY(X) satisfy (5.1.38), are weakly lower semicontinuous,
and f+ g € o, then both f, g € <.

Indeed, by (5.1.33a) we have

/(f+g)d/¢: lim /(erg)d,unZlimsup/ fdunJrliminf/ gdpn

n—oo

z/dequ/ngu:/X(Hg)du,

which yields

limsup/ fdunJrliminf/ gdﬂn:/ fd,qu/ g du; (5.1.42)
X n—ee Jx X X

n—oo

since by (5.1.33a)

limsup/ fd,unZ/ fdu, liminf/ gd,unz/ gdpu,
n— o0 X X n—oe Jx X

(5.1.42) yields

limsup/ fd,un:/ fdu, liminf/ gd,un:/ g du;
n— o0 X X n—oe Jx X

inverting the role of f and g we obtain f,g € 7.
Claim 1 immediately implies that <7 is a lattice, as

fhged = f+g=(rg+(fVvged = [fAg fVged.
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Since
(th + ga|x — yl) Nk = (q1 + (q2lz = yl) A (k — CII)) Nk,

it remains to show that

all functions x — |z — y| A k, for y € X, k > 0, belong to <. (5.1.43)

To this aim, we need a further claim.

Claim 2. If f € & and 0 : R — R is a uniformly continuous, bounded,
increasing function, then Qo f € <.

Indeed, since 6 can be uniformly approximated by a sequence of Lipschitz
continuous increasing maps, it is not restrictive to assume that 6 is Lipschitz,
bounded, and its Lipschitz constant is less than 1; in this case also x — x —6(z) is
Lipschitz and increasing, thus fo f and f— fof are still weakly lower semicontinuous
they satisfies the growth condition (5.1.38) and and their sum is f € &: we can
apply Claim 1.

Let us consider (5.1.43) in the case y = 0 first: we fix R > 0 and we consider
the continuous increasing function §r which vanishes in (—oo, 0) and satisfies

Or(s) :== (jfl(s))2 AR? s>0, sothat 72AR*>=0gr(j(r)) Yr>0.

By Claim 2, we deduce that the map fr defined by fr(x) := |z|*> A R? belongs to
o .
Now, for fixed k,I,m > 0 and y € X, we set

, 1/2
gl,m(x) = (_l) Vv (_ 2<.T, y> + |y‘ ) A m, IR, l.m,k = ((fR + gl,m) \ 0) A k‘,

and we know by the lattice property, the previous claim, and (5.1.41) that g i m k€
/. Choosing now R > + k2 and m > k the expression of 9R,1,m,k simplifies to

g1 s(@) = Guxe) = ((Ja + (= 20e9) + o) v (=) v 0)1/2 Ak,

which belongs to &7, is decreasing with respect to [, and satisfies
lim g p(x) =inf g p(x) =z —y| Ak VzeX.
l—o0 leN

It follows that

limsup/X (|z —y| A k) dpn(z) < limsup/Xgl,k(x) dpiy, (x) = /Xg,,k(x) du(x);

n—0o0 n—o0

passing to the limit as [ — +o00, and recalling that the corresponding “lim inf”
inequality is provided by (5.1.33a) of Lemma 5.1.12, we obtain (5.1.43). |
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5.2 Transport of measures

If X1, X are separable metric spaces, u € Z(X1), and r : X1 — X5 is a Borel (or,
more generally, y-measurable) map, we denote by r4uu € Z?(Xsz) the push-forward
of i through r, defined by

ryuu(B) = pu(r ' (B)) VB A(X,). (5.2.1)

More generally we have
flr@@)du(z) = [ fy)dryp(y) (5.2.2)
X1 X2

for every bounded (or r4p-integrable) Borel function f : Xy — R. It is easy to
check that
VL = Tal K Tyl Yy, ve P(Xy). (5.2.3)

In the following we will extensively use the following composition rule
(ros)up=ru(sgp) wheres: X; — Xo, 7: Xo — X3, p e 2(X1). (5.24)
Furthermore, if » : X; — X5 is a continuous map, then
ry : P(Xy) — P(Xy) is continuous w.r.t. the narrow convergence  (5.2.5)

and
'r(supp ,u) C supprup = r( supp /J). (5.2.6)
Lemma 5.2.1. Let r, : X1 — X5 be Borel maps uniformly converging to r on com-

pact subsets of X1 and let (pn,) C P(X1) be a tight sequence narrowly converging
to . If v is continuous, then (7y)xfin narrowly converge to T4 .

Proof. Let f be a bounded continuous function in Xs. We will prove the lim inf
inequality

timinf [ Fd(ra)pmn > [ farpn,
X2 X2

n—oo

as the lim sup simply follows replacing f by — f. To this aim, possibly adding to f
a constant, we can assume that f > 0. For any compact set K C X; the uniform
convergence of 7, to r on K gives the uniform convergence of f or, to for on
K, therefore (5.1.15) gives

lim inf/ forydu, > lim inf/ fory,du, = lim inf/ fordu,
X K

n—oo n—oo

Y

n—oo

(fsupf)sup,un(Xl\K +hmmf/ forduy

> (—sup f)suppn (X1 \K)+ [ fordpu.
n X
Since {pn}nen is tight, we can find an increasing sequence of compact set K,
such that lim,, sup,, (X1 \ K,,) = 0. Putting K = K, in the inequality above
and letting m T +o0o the proof is achieved. O
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Lemma 5.2.2 (Tightness criterion). Let X, X7, Xo,..., Xy be separable metric
spaces and let r* : X — X; be continuous maps such that the product map

ro=rtxrix. . xrV X 5 Xy x...x XN is proper. (5.2.7)

Let K € P(X) be such that K; := 7%,(K) is tight in 2(X;) fori =1,...,N.
Then also K is tight in P(X).

Proof. For every u € Z(X) we denote by u; the measure p; := 'I";EM. By definition,
for each & > 0 there exist compact sets K; C X; such that u;(X; \ K;) < e/N for
any p € K; it follows that u(X \ (r)~}(K;)) < e/N and

N N
Iz (X \ ﬂ(r”)%&»)) <Y X\ () NK)) <e  VpeK.  (5.28)
i=1 i=1

On the other hand NI, (r*)~Y(K;) = r~1(K; x K2 x ... x Ky), which is compact
by (5.2.7). O

For an integer N > 2 and i, j = 1,..., N, we denote by 7*, 7% the projection
operators defined on the product space X := X; x ... x Xy respectively defined
by

ﬂii(l‘l,...,l‘N)l—)l‘iEXi, 7Ti’jZ(l‘l,...,l‘N)l—)(.’EZ‘,.’Ej)EXZ'XX]'. (529)
If u e #(X), the marginals of p are the probability measures
ph=rhpe 2(X), pti=rpe P(Xix X;). (5.2.10)

If u@ € 2(X;), i = 1,...,N, the class of multiple plans with marginals u’ is
defined by

L(pt,..., 1) = {p,e,@(Xl XX X)) mlyp =, i:l,...,N}. (5.2.11)

In the case N = 2 a measure pu € I'(ut, p?) is also called transport plan between
' and 2. Notice also that

T(p', p?) = {u* x p?} if either ' or p? is a Dirac mass. (5.2.12)

We will mostly consider multiple plans with N = 2 or N = 3. To each couple
of measures p! € Z(X;1),u? = rypp' € P(Xz) linked by a Borel transport map
r: X1 — X9 we can associate the transport plan

o= (i x r)gp' € T(u', p?), i being the identity map on X;. (5.2.13)

If p is representable as in (5.2.13) then we say that p is induced by 7. Each
transport plan p concentrated on a p-measurable graph in X; x Xo admits the
representation (5.2.13) for some p'-measurable map r, which therefore transports
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ut to pu? (see, e.g., [9]; the same result holds for Borel graphs and maps if X1, X
are Polish spaces [136, p. 107])

We define also the inverse p=t € 2(Xy x X1) of a transport plan p €
P (X1 x Xo) by ixp, where i(z1,x2) = (22, 21).

Remark 5.2.3. By Lemma 5.2.2, if X7, Xo, -+, Xy are Radon spaces (i.e. each
measure pf € P(X;) is tight), T(p!,. .., u") is compact in Z(X) and not empty,
since it contains at least p! x...x ™. If for some Borel functions g; : X; — [0, +-00]

/ gi(z;) dp'(z;) < 400 i=1,...,N, (5.2.14)
X.

i

then it is easy to check that g(z) := ZZ]\LI gi(x;) defined in the product space
X = X x Xy x --- x Xy is uniformly integrable with respect to T'(z!, ..., u™V).

When X is a separable Hilbert space as in Section 5.1.2, the following result
provides a sufficient condition for the convergence of the integrals | 2 (T1,21) dpn
even in the case when the measures u; do not converge narrowly with respect to
the strong topology.

Lemma 5.2.4. Let (p,,) C P(X x X) be a sequence narrowly converging to p in
P (X x Xw), with

sup/ 1|7+ 22| dps,, (21, 22) < 400, p, g€ (1,00), p~'+¢ " =1. (5.2.15)
n X2

If either 7771%/.1% have uniformly integrable p-moments or 7@ i, have uniformly in-
tegrable g-moments, then

lim <JJ1, .T2> d[,l,n = / <JJ1, .T2> d/.L
XxX

=0 JXx X

Proof. We assume to fix the ideas that 7732‘7£ W, have uniformly integrable g-moments
and we show that the function (z1,22) — g(x1,22) = |21]| - |22| is uniformly
integrable. For any k, m € N we have

g(z1,22) >k, x| <m = |z > k/m

and therefore

1/q
| sdu, <m oy, + ([ e, )
{g>Fk} {lz1|=k/m} {lz2|2m}

where C? := sup,, [ |#1|” dp,,. Taking the supremum w.r.t. n and the limsup as
k — o0, since 7r71£,£ t,, has uniformly integrable 1-moments by (5.1.20) we have

k—oo n

1/q
lim sup sup/ gdp,, <sup C’(/ |z |? dﬂ'i[.l,”)
{g>k} n {lza|>m}



5.3. Measure-valued maps and disintegration theorem 121

Letting m — oo we conclude.

In the finite dimensional case (or even if g, — p in Z(X x X)) we conclude
immediately, since the map (z1,x2) — (x1,x2) is continuous in X x X.

In the infinite dimensional case, let B be the centered closed ball of radius
R in X which is compact in X,. The map (z1,22) — (x1,22) is continuous in
each closed set X x Bg with respect to the X x X, topology and (5.2.15) yields

limsup p,, (X?\ (X x Bg)) = 0.

n,R—oo

Therefore we conclude by invoking Proposition 5.1.10. |

5.3 Measure-valued maps and disintegration theorem

Let X, Y be separable metric spaces and let z € X +— p, € Z(Y) be a measure-
valued map. We say that u, is a Borel map if « — pu,(B) is a Borel map for any
Borel set B C Y, or equivalently if this property holds for any open set A C Y.
By the monotone class theorem we have also that

reX '—>/ f(x,y) dus(y) is Borel (5.3.1)
Y

for every bounded (or nonnegative) Borel function f: X xY — R.
By (5.3.1) the formula

u(f):/x </Y f(z,y) d/ix(y)) dv(x)

defines for any v € Z(X) a unique measure y € (X xY), that will be denoted
by [y tedv(z). Actually any p € Z(X x Y) whose first marginal is v can be
represented in this way. This is implied by the so-called disintegration theorem
(related to the existence of conditional probability measures in Probability), see
for instance [67, III-70].

Theorem 5.3.1 (Disintegration). Let X, X be Radon separable metric spaces, p €
P(X), let m : X — X be a Borel map and let v = mupp € P(X). Then there
exists a v-a.e. uniquely determined Borel family of probability measures { iy }oex C
P(X) such that

pr( X\ 7Y 2)) =0 forv-ae xz€X (5.3.2)
and

[ t@au) = [ ([ L @) i) (5.3.3)

for every Borel map f: X — [0,400].
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In particular, when X := X; x X9, X 1= X1, p € Z(X; x Xo), v=pl =
71';1&,& w, we can canonically identify each fiber (7!)~1(x1) with X5 and find a Borel
family of probability measures {fiz, }zex, € P(X2) (which is pl-a.e. uniquely
determined) such that p := le e, dpt (7).

As an application of the disintegration theorem we can prove existence, and
in some cases uniqueness, of multiple plans with given marginals.

Lemma 5.3.2. Let X, Xo, X3 be Radon separable metric spaces and let v'? €
P (X1 x Xa), v'? € P(X1 x X3) such that wlyy'? = wh~y'? = p'. Then there
exists p € P (X1 x Xo x X3) such that

7791¢2N =~'2 ﬂ#gu =~13, (5.3.4)

Moreover, if ¥*2 = [~A12du', v'3 = [L3du' and p = [ p,, du' are the disin-
tegrations of Y12, 413 and p with respect to u*, (5.3.4) is equivalent to

Bo, €ET(122,727) C P (X2 x X3)  for p'-a.e. z1 € X, (5.3.5)

In particular (5.2.12) implies that the measure p is unique if either ¥12 or 413
are induced by a transport. We denote by T''(y2,413) the subset of plans p €
P (X1 x Xo x X3) satisfying (5.3.4).

Proof. With the notation introduced in the statement of the theorem, the measure
p whose disintegration w.r.t. z; is

|ttt
X1

has the required properties.

Now we prove the equivalence between (5.3.4) and (5.3.5). If p satisfies
w#zu =~'? and w#du = ~!3 then

2
Y == /X Tty du' (21)
1

and the uniqueness of the disintegration gives ﬂiuml = 7;12 for pl-a.e. 11 € X;.
A similar argument gives that Wium = 'y;f for pl-a.e. 1 € X;.

Conversely, let us suppose that p satisfies (5.3.5) and let f: X7 x Xo — R
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be a bounded Borel function; the computation

/ f($1,$2)d73¢’2lt:/ f(@1,22) dp(zy, 22, x3)
X1 ><X2

X1 ><X2 ><X3

—/X1 (/XMXsf(xl,xz)duml(ffz,ff:s)) dp* (1)
- /X (|t i, ) dit @)

— [ (] fa) i) dut o)
X1 X2

:/ f(xlaxQ)dpylz(xlaxZ)
X1><X2

shows that 7r;1¥2u = ~!2. A similar argument proves that 773#’3u =13 a

Remark 5.3.3 (Composition of plans). An analogous situation occurs when v!2 €
P (X1 x Xo) and 23 € 2(X2 x X3). In this case we say that

pel?(v' 2% if mlu=v"% mlu=~"" (5.3.6)

Of course, I'?(y*2,423) is not empty iff ﬂi'yl 2 = 71'#'72 3. In this case, the measure
71';&’3/1,, with p € T'?(~12,~23) constructed as in the proof of Lemma 5.3.2, belongs

by construction to I'(u!, u?); it will be called composition of v?3 and 4'? and
denoted by v23 o 4! 2. We have then

[ reeaertern = [ ( / f<x1,x3>dv;3xvi§’) dy (@)
X1 xX3 Xo X1xX3 (537)

for any bounded Borel function f : X; x X3 — R. The name is justified since in the
case v'2, 423 are induced by the transports 7' 2,723, then the plan 723 o412 is
induced by the composition map 23 or!2: this fact can be easily checked starting
from (5.3.7)

/ St on?) - /. 2 ( i f(xhr”(xz))dvif(m)) dy (2)
- / F@1,723(22)) dy* (31, 22)
X1 xXo
= [ fan 3 @) d ().
X1

Notice that by (5.2.12) this construction is canonical only if either (y12)~! or 423

are induced by a transport.



124 Chapter 5. Preliminary Results on Measure Theory

In the proof of the completeness of the Wasserstein distance we will also need
the following useful extensions of Lemma 5.3.2 to a countable product of Radon
spaces.

Lemma 5.3.4. Let X;, i € N, be a sequence of Radon separable metric spaces,
pt e Z(X;) and o't € T(pt, pith), B € D(p!, 1t). Let X o = Iien X, with
the canonical product topology. Then there exist p,v € P (X ) such that

=o't iy =g vieN. (5.3.8)

Proof. Let X,, :=II"_1 X; = X,,_1 x X,, and let 7" : X,, — X,,, m > n, be
the projection onto the first n coordinates. In order to show the existence of p,
we set pu? := o'? and we apply recursively Lemma 5.3.2 and Remark 5.3.3 with
ut e P(X,_1 x Xn),a"(”*l) € P(Xn x Xpt1), n > 2, to obtain a sequence
ptt e P(X,,41) satisfying

n+1 n,n+1l n+4l — avz(n+1)

TEptT =t m
Kolmogorov’s Theorem [67, §51] provides a measure p € & (X o) such that 7y p =
p" and therefore

7;_1%” _ W;;_l’” (ﬂ_;u) _ W;—l,nun _ a(nfl) n
The existence of v can be proved by a similar argument, by setting v2 := 32
and by applying recursively Lemma 5.3.2 to v € 2(X; x X,_1),8'"™V ¢
P (X1 x Xpi1), n > 2: we can find a sequence v" 1 € P(X 1) satisfying

W;I#Vn+1 _ Vn’ W#n+1y7l+1 — ﬂl(nJrl).

Kolmogorov’s Theorem [67, §51] provides a measure v € &(X ) such that v =
v"™ and therefore

1,n

v = W;;n (w;lu) = W;;nu” =" O

5.4 Convergence of plans and convergence of maps

In this section we investigate the relation between the convergence of maps and
the convergence of the associated plans.

Let us first recall that if X,Y7,...,Y, are separable metric spaces with Y :=
Vix...xY,pePX),andr; : X - Y, i=1,--  k, then the product map

r:=(ry,re, - ,1): X =Y is Borel (u-measurable) iff (5.4.1)
each map 7; : X — Y; is Borel (resp. p-measurable). o

In particular, if r,s : X — Y are p-measurable, then their distance dy (r(-), s(+))
is a p-measurable real map.
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We can thus define the convergence in measure of a sequence of y-measurable
maps 7, : X — Y to a u-measurable map r by asking that

nl;rgc p({z € X i dy (rp(z),7(z)) >e}) =0 Ve>0. (5.4.2)

We can also introduce the LP spaces (see e.g. [7])

LP(u;Y) = {'r : X =Y p-measurable : [ d (r(z),7)du(z) < +oo
X (5.4.3)
for some (and thus any) y € Y}.

with the distance

1/p

(r.5) vy = ([ 0. s) du(o) " (5.4.4)

it is easy to check that LP(u;Y") is complete iff Y is complete. When Y is a
(separable) Hilbert space and p > 1, then the above distance is induced by the

norm
1/p

Il = ([ @ dute) " (5.45)

for r € L' (11;Y) the (vector valued) integral [ 7(x) du(z) € Y of r is well defined
and satisfies

/ (. (@) du(z) = (v, / r(@)du()) VyeY, (5.4.6)
X X
o /X r(z) du(a)) < /X o(r(2)) du(z) (5.4.7)

for every proper, convex and ls.c. function ¢ : Y — (—o0, +00] (Jensen’s inequal-
ity).

In the following lemma we consider first the case when the reference measure
u is fixed, and show the equivalence between narrow convergence of the plans
(4 X 7)1 and convergence in measure and in LP(u;Y) of 7, when the limiting
plan is induced by a transport 7.

Lemma 5.4.1 (Narrow convergence of plans and convergence in measure). Let
we ZP(X) and let rp, v : X — Y be Borel maps. Then the plans (% X 7y)up
narrowly convergence to (4 X r)up in (X xY) as n — oo if and only if ry,
converge in measure to 7.

Moreover, the measures (ry)gp have uniformly integrable p-moments iff r,, con-
verges to r in LP(u;Y).

Proof. Since for every Borel map s : X — Y

/ (. y) d(i X 8) 1 = / (o, s(x) du(z) Ve e CUX xY)
XxY X
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and convergence in measure is stable by composition with continuous functions,
it is immediate to check that convergence in measure of the maps implies narrow
convergence of the plans.

The converse implication can be obtained as follows: fix ¢ > 0, a continuous
function ¢ with 0 < 9. < 1, 9.(0) = 0 and t.(t) = 1 whenever |t| > ¢ and a
continuous function 7 such that p({r # 7}) < e. Then, using the test function

e(z,y) = Ye(dy (y,7(x))) we obtain

limsup p({dy (ry,7) > €}) < limsup/ Ce d(T X Ty) et = / Ced(T X T) gt
XxY X

n—oo n—o00 xY

[ @), 7 @) dnto) <
X

Taking into account our choice of 7 we obtain limsup pu({dy (rn,r) > €}) < 2e.

n—oo
The second part of the lemma follows easily by Vitali dominated convergence
theorem and the identities

tim [ (ra0).5) di(e) = Jim / & (9, 7) A((rn) 1) ()

n—0o0

:/ng(r(x), /d Y, ) d(rsm)(y),

which hold either if 7,, converges to 7 in LP(p;Y") or if the family (7,,)4u, n € N,
has uniformly integrable p-moments. O

(5.4.8)

In the rest of this section we assume that X is a separable Hilbert space as
in Section 5.1.2.

Definition 5.4.2 (Barycentric projection). The barycentric projection 4 : X — X
of a plan v € P(X x X), which admits the disintegration v = fX YV, dpp(z1) with
respect to its first marginal p = 773#7, is defined as

¥(z1) ::/ o dVe, (x2)  for p-a.e. v € X (5.4.9)
X

provided v, has finite first moment for p-a.e. x.

Assume that we are given maps v,, € LP(u,; X): here we have to be careful in
the meaning of the convergence of vectors v,,, which belong to different LP-spaces.
Two approaches seem natural:

(i) we can consider the narrow limit in & (X5) of the X-valued measures v,, :=
VUp i, (component by component);

(ii) we can consider the limit v of the associated plans v, := (¢ X vy)gp, in
P9 (X X X)), recovering a limit vector v by taking the barycenter of ~.

In fact, these two approaches yields equivalent notions: we formalize the point (i)
in the following definition, and then we see that it coincides with (ii).
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Definition 5.4.3. Let (e;) be an orthonormal basis of X, let (un) C P(X) be
narrowly converging to pu in P(Xg) and let v, € LY (u,; X). We say that v,
weakly converge to v € LY (u; X) if

lim [ C(@)leyvala)) dien(o) = [ C@)les. (@) dita) (5.4.10)

n—oo X

for every ¢ € Cyl(X) and any j € N. We say that v, converges strongly to v in
L?, p>1, if (5.4.10) holds and

limsup [|vn || o (unx) < M0l 2e(ux)- (5.4.11)

It is easy to check that the limit v, if it exists, is unique.

Theorem 5.4.4. Let p > 1, let (u,) C P(X) be narrowly converging to p in
P (Xx) and let v, € LP(puy; X) be such that

sup/ |V (2)|P dpin () < 4o00. (5.4.12)
neNJ X
Then the following statements hold:

(i) The family of plans ~y,, == (¢ X vy)xpn has limit points in P (X x Xo) as
n — oo and the sequence (vy,) has weak limit points as n — 0o.

(ii) v, weakly converge to v € LP(u; X) according to Definition 5.4.3 if and
only if v is the barycenter of any limit point of the sequence of plans ~y,, in
P(Xp x Xi); in this case

Jim inf /X (@) djin () > /X g(v(2)) du(z), (5.4.13)

n—o0

for every convex and l.s.c. function g : X — (—o0,+00].

(iii) If vy, strongly converge to v in LP then =y, narrowly converge to (i X v)gp
in P(Xp x X) and

i ol = Jim [ foal v = [0l (5414)

If, in addition, [, narrowly converge to p in P (X) then v, narrowly con-
verge to (4 X v)xp in P (X x X). Finally, if u, has uniformly integrable
p-moments, then

lim flzy v (x)) dpy (z / flzyv(x)) du(x), (5.4.15)

n—0o0 X

for every continuous function f : X x X — R with p-growth according to
(5.1.21).
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Proof. (i) Observe that Lemma 5.2.2 ensures that the sequence (7,,) is relatively
compact in (X x Xg), since (see also Lemma 5.1.12) wh, = pp, — p in
P (X) and wi'yn is relatively compact in Z(X5) by (5.4.12).

(ii) For every j € N and any ¢ € Cyl(X) we have

| elaleson@) diale) = [ plar)leszz) dv o, o)
X XxX
Since |z2| is uniformly integrable w.r.t. (,,), Proposition 5.1.10 yields

im [ @) (e, x2) dyy, (e1,22) = / o(@1) (€5, 2 dry(1, 22)
k—oo XxX XxX

- / pla1)(e;, ¥(x1)) du(ar)
X

for every subsequence (7, ) converging to v in # (X4 X Xg ). Therefore, (5.4.10)
holds if and only if v = 4 for every limit point ~.
(5.4.13) follows by Jensen’s inequality and (5.1.33a), being g weakly lower semi-
continuous.

(iii) If v is a limit point of «,, as in (ii), taking into account that v = 4 we

have
/ |z2|P dy < liminf/ |z2|P dvy,, = / |YIP dp.
XxX n—=eo JXx X X

Hence, by disintegrating v with respect to =1 we get

/X (/X |22 [P d’Ym)p — 5z [P () = 0

and so Jensen’s inequality gives that v, = dy(s,) for p-a.e. x1,ie. v = (i x v)ppu.
This proves the narrow convergence of 7, to v in P (X5 x Xz) and (5.4.14).
By applying Theorem 5.1.13 we obtain that the second marginals of «,, are also
converging in the stronger narrow topology of Z(X). Lemma 5.2.2 yields that the
sequence ,, is tight in (X, x X) and therefore converges to vy in (X5 x X).
The last part of the statement follows again by Lemma 5.2.2 and Lemma 5.1.7. O

5.5 Approximate differentiability and area formula in
Euclidean spaces

Let f : RY — R? be a function. Then, denoting by ¥ = D(V f) the Borel set where
f is differentiable, there is a sequence of sets 3,, T ¥ such that f|s, is a Lipschitz
function for any n (see [77, 3.1.8]). Therefore the well-known area formula for
Lipschitz maps (see for instance [75, 77]) extends to this general class of maps and
reads as follows:

/Eh(x)|detVf\(x)dx:/Rd > h(x)dy (5.5.1)

zeXNf~1(y)
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for any Borel function h : R — [0, +00]. Actually, these results hold more gener-
ally for the approzimately differentiable maps, whose definition and main proper-
ties are recalled below.

Definition 5.5.1 (Approximate limit and approximate differential). Let Q C R? be
an open set and f : Q — R™. We say that f has an approzimate limit (respectively,
approzimate differential) at x € Q if there exists a function g : Q@ — R™ continuous
(resp. differentiable) at x such that the set {f # g} has density 0 at x. In this case
the approximate limit (resp. approxzimate differential) will be denoted by f(m) (resp.

V().

It is immediate to check that the definition above is well posed, i.e. it does not
depend on the choice of g. An equivalent and more traditional (see [77]) definition
of approximate limit goes as follows: we say that z € R™ is the approximate limit
of f at x if all sets

{y: |f(y) — 2] >¢€} €>0

have density 0 at x. Analogously, a linear map L : R — R™ is said to be the
approximate differential of f at x if f has an approximate limit at z and all sets

{y: If(y)—f(w)—L(y—x)l>€} 0

ly — z|

have density 0 at x.

The latter definitions have the advantage of being more intrinsic and do not rely
on an auxiliary function g. We have chosen the former definitions because they
are more practical, as we will see, for our purposes. For instance, a property that
immediately follows by the definition, and that will be used very often in the
sequel, is the locality principle: if f has approximate limit f(x) (resp. approximate
differential V f(z)) for any z € B, with B Borel, then g has approximate limit
(resp. approximate differential) equal to f(z) (resp. Vf(z)) for Z%a.e. z € B,
and precisely at all points & where the coincidence set BN {f = g} has density 1.

Remark 5.5.2. Recall that if f:Q — R™ is & d:measurable, then it has approx-
imate limit f(z) at Z%-a.e. z € Q and f(z) = f(z) Z%a.e.. In particular every
Lebesgue measurable set B has density 1 at .#%-a.e. point of B.

Denoting by X7 the Borel set (see for instance [7]) of points where f is ap-
proximately differentiable, it is still true by [77, 3.1.8] that there exists a sequence
of sets X, T Xy such that f », is a Lipschitz function for any n. By Mc Shane
theorem we can extend f|s, to Lipschitz functions g, defined on the whole of R?.
In the case m = d, by applying the area formula to g, on ¥, and noticing that
(by definition) Vg, = Vf Z%a.e. on %,, we obtain

/th(x)|detVf(x)dx—/Rd > h(z)dy (5.5.2)

z€S NS~ (y)
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for any Borel function h : R? — [0, +00].
This formula leads to a simple rule for computing the density of the push-
forward of measures absolutely continuous w.r.t. Z¢.

Lemma 5.5.3 (Density of the push-forward). Let p € L'(RY) be a nonnegative
Junction and assume that there exists a Borel set ¥ C Xy such that f|2 18 injective
and the difference {p > 0} \ 3 is L4 -negligible. Then fy (pfd) < L% if and only
if |detV f] > 0 ZL-a.e. on ¥ and in this case

pd) _ P~ F—1 .
T#(p27) |detvf‘0f 1)

Proof. If |detV f| > 0 .Z%a.e. on ¥ we can put h = prpl(B)mz/\det@ﬂ in (5.5.2),
with B € %(R%), to obtain

dp = dp — ,ON(f‘{(y)) i
/fl(B>p ! /fl(Bmzp ! /an(z> |detV f(f~(y))] Y

Conversely, if there is a Borel set B C ¥ with £%(B) > 0 and |detVf| =0 on B
the area formula gives Z?¢(f(B)) = 0. On the other hand

Fa(p 2 (F(B)) = / pdr >0

F7HA(B)
because at ZL%-a.e. z € B we have f(z) = f(z) and p(z) > 0. Hence fu(pL?%) is
not absolutely continuous with respect to .Z<. ]

By applying the area formula again we obtain the rule for computing integrals
of the densities:

f#(ﬂfd)> _ ( p ) -
/RdF( Z dxf/RdF oo ] |detV f| dx (5.5.3)

for any Borel function F' : R — [0, +o0] with F'(0) = 0. Notice that in this formula
the set ¥ does not appear anymore (due to the fact that F'(0) = 0 and p = 0
out of X), so it holds provided f is approximately differentiable p.#%-a.e., it is
p-Z%-essentially injective (i.e. there exists a Borel set ¥ such that f |s is injective
and p = 0 Z%a.e. out of X)) and |detV f| > 0 p.Z%a.e.

We will apply mostly these formulas when f is the gradient of a convex func-
tion ¢ (corresponding to optimal transport map for the quadratic cost function),
or is an optimal transport map. In the former case actually approximate differen-
tiability is not needed thanks to the following result (see for instance [4, 75]).

Theorem 5.5.4 (Aleksandrov). Let g : R? — R be a convex function. Then Vg is
differentiable £?-a.e. in its domain, its gradient V2g(x) is a symmetric matriz
for £L%-a.e. x € R, and g has second order Taylor expansion

g9(y) = g(x) + (Vg(z),y — ) + %<V29(w), y—xz)+o(ly—=|*) asy—z. (554)
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Notice that Vg is also monotone
(Vg(z1) = Vg(x2), 21 —12) 20 21, 22 € D(Vg),

and that the above inequality is strict if g is strictly convex: in this case, it is
immediate to check that Vg is injective on D(Vg), and that |detV2g| > 0 on the
differentiability set of Vg if g is uniformly convex.



Chapter 6

The Optimal Transportation
Problem

Let X, Y be separable metric spaces such that any Borel probability measure
in X,Y is tight (5.1.9), i.e. Radon spaces, according to Definition 5.1.4, and let
¢: X xY — [0,4+00] be a Borel cost function. Given p € Z(X), v € Z(Y) the
optimal transport problem, in Monge’s formulation, is given by

inf {/X clx, t(x)) dp(z) + typp = V} . (6.0.1)

This problem can be ill posed because sometimes there is no transport map t such
that txp = v (this happens for instance when y is a Dirac mass and v is not a
Dirac mass). Kantorovich’s formulation

min {/XXY c(x,y)dy(z,y) : v e T (1, u)} (6.0.2)

circumvents this problem (as pu x v € I'(u, v)). The existence of an optimal trans-
port plan, when ¢ is Ls.c., is provided by (5.1.15) and by the tightness of T'(u, v/)
(this property is equivalent to the tightness of p, v, a property always guaranteed
in Radon spaces).

The problem (6.0.2) is truly a weak formulation of (6.0.1) in the following
sense: if ¢ is bounded and continuous, and if g has no atom, then the “min” in
(6.0.2) is equal to the “inf” in (6.0.1), see [81], [9]. This result can also be extended
to unbounded cost functions, under the assumption (6.1.8), see [128].

In some special situations one can directly show the existence of optimal
transport maps without any assumption on the cost function (besides positivity
and lower semicontinuity).
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Theorem 6.0.1 (Birkhoff theorem). Let C' be the convex set of all doubly stochastic
N x N matrices, i.e. those matrices M whose entries M;; satisfy

1 I
;Mijzﬁ Vj=1,...,N, ;Mljzﬁ Vi=1,...,N.

Then, the extreme points of C' are permutation matrices, i.e. those matrices of the

form

1
M;; = Néw(j) for some permutation o of {1,...,N}.

In particular, if u (resp. v) can be represented as the sum of N Dirac masses in
distinct points x; (resp. distinct points y;) with weight 1/N, then the minimum in
(6.0.2) is always provided by a transport map.

Proof. For a proof the first statement see, for instance, the simple argument at
the end of the introduction of [146].

The convex set I'(p1, ) can be canonically identified with C, writing p;; = p({z;} %
{yj})7 and transport maps correspond to permutation matrices. Since the energy
functional is linear on I'(u, v), the minimum is surely attained on a extreme point
of T'(u, v) and therefore on a transport map. O

Another special occasion occurs when X =Y = R. In this case we can use
the distribution function

Fu(t) == p((=o0,t))  teR

to characterize optimal transport maps and to give a simple formula for the min-
imum value in (6.0.2). We need to define also an inverse of F),, by the formula
(notice that a priori F), need not be continuous or strictly increasing)

F.'(s) :=sup{z € R: F,(z) < s} s €[0,1].

Theorem 6.0.2 (Optimal transportation in R). Let u, v € Z,(R) and let ¢(x,y) =
h(z —y), with h > 0 convex and with p growth.

(i) If u has no atom, i.e. F,, is continuous, then F,; ' oF,, is an optimal transport
map. It is the unique optimal transport map if h is strictly convewz.

(ii) We have

min {/}R2 c(z,y)dy: v eT(u, V)} = /01 c (Fljl(s),Fgl(s)) ds. (6.0.3)

Proof. For the proof of the first statement see for instance [146], [82].

(ii) In this proof we use the following two elementary properties of the distri-
bution function when v has no atom: first, Fjup = X(OJ)XI (this fact can be
checked in an elementary way on intervals and we omit the argument), second
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F, Lo F,(z) = « for p-a.e. x. The second property simply follows by the observa-
tion that the (maximal) open intervals in which F), is constant correspond, by the
very definition of F),, to intervals where p has no mass. Using statement (i) we
have then

/RC(.Z‘,FV_l o F(x)) du(z) = /Rc(FH_1 o Fy(z),F, ' o Fy(z)) du(z)

in the case when p has no atom. The general case can be achieved through a simple
approximation. O

6.1 Optimality conditions

In this section we discuss the optimality conditions in the variational problem
(6.0.2), assuming always that ¢: X x Y — [0, +oc] is a proper l.s.c. function.

Theorem 6.1.1 (Duality formula). The minimum of the Kantorovich problem
(6.0.2) is equal to

up { [ e@ant)+ [ v du<y>} (6.1.1)

where the supremum runs among all pairs (p,v) € CP(X) x CP(Y) such that
p(x) +9(y) < clz,y).

Proof. This identity is well-known if ¢ is bounded and continuous, see for instance
[104, 129, 146]. A possible strategy is to show first that the support of any optimal
plan is a c-monotone set, according to Definition 6.1.3 below, and than use this
fact to build a maximizing pair (we will give this construction in Theorem 6.1.4
below, under more general assumptions on ¢).

In the general case it suffices to approximate ¢ from below by an increasing
sequence of bounded continuous functions ¢, defined for instance by (compare
with (5.1.4))

ch(zyy) == inf  {e(@',y') Ah+ hdx(z,2") + hdy (y,y')}
(', y)eEXXY

noticing that a simple compactness argument gives

min{/X Ychdqf:’yeF(M,u)} 1 min{/X ch7:'y€F(u,y)}

and that any pair (¢, ) such that ¢ + 1 < ¢, is admissible in (6.1.1). O
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We recall briefly the definitions of c-transform, c-concavity and ¢-monotoni-
city, referring to the papers [68], [82] and to the book [129] for a more detailed
analysis.

Definition 6.1.2 (c-transform, c-concavity). (1) For u: X — R, the c-transform
u€:Y — R is defined by

“(y) := inf —
u®(y) = inf c(z,y) - u(z)
with the convention that the sum is +00 whenever c(z,y) = +oo and u(x) = +oo.
Analogously, for v:Y — R, the c-transform v¢: X — R is defined by

V(@) = inf ela,9) = ()

with the same convention when an indetermination of the sum is present.

(2) We say that u: X — R is c-concave if u = v° for some v; equivalently, u is
c-concave if there is some family {(yi,t;)}ier CY X R such that

u(z) =infe(z,y,) +t: Ve X. (6.1.2)

An analogous definition can be given for functions v:Y — R.

It is not hard to show that u“¢ > w and that equality holds if and only if u
is c-concave. Analogously, v°¢ > v and equality holds if and only if v is c-concave.
Let us also introduce the concept of c-monotonicity.

Definition 6.1.3 (c-monotonicity). We say that ' C X x Y is c-monotone if

n n

Z C(l‘i, ya(i)) > Z c(xi, yz)

i=1 i=1
whenever (x1,y1), ..., (Tn,yn) €T and o is a permutation of {1,...,n}.

With these definitions we can prove the following result concerning necessary
and sufficient optimality conditions and the existence of maximizing pairs (¢, )
in (6.1.1). The proof is taken from [16], see also [146], [82], [129] for similar results.
Notice also that conditions (6.1.3) and (6.1.4) do not apply to the cost functions
considered in [79, 80, 101], in a infinite-dimensional framework.

Theorem 6.1.4 (Necessary and sufficient optimality conditions).

(Necessity) If v € T'(u, v) is optimal and fXXY cdy < 400, then ~y is concentrated
on a c-monotone Borel subset of X xY. Moreover, if ¢ is continuous, then supp -~y
18 c-monotone.

(Sufficiency) Assume that ¢ is real-valued, v € T'(u,v) is concentrated on a c-
monotone Borel subset of X XY, and

i ({w € X: /Yc(x,y) dv(y) < +oo}> >0, (6.1.3)
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v ({y eEY: /X c(x,y) du(z) < +oo}) > 0. (6.1.4)

Then ~ is optimal, fXXY cdy < 400 and there exists a mazimizing pair (¢,1) in
(6.1.1) with ¢ c-concave and p = ¢°.

Proof. Let (pn, 1) be a maximizing sequence in (6.1.1) and let ¢,, = ¢— @, — ¥y,

Since
/ cnd’y:/ cd’yf/ cpnduf/wndZ/HO
XxY X XY X Y

and ¢, > 0 we can find a subsequence ¢, ) and a Borel set I" on which ~ is
concentrated and c is finite, such that ¢, ) — 0 on I'. If {(x,y;) }1<i<p C T and
o is a permutation of {1,...,p} we get

P P
Z (i, Yo(i) = Z On) (i) + Vo) Yo(s))
=1

i=1

p
= Z‘Pn(k) xz) + wn(k) yz ZC xz,yz — Cn(k) (xzayz)
=1

=1

for any k. Letting £ — oo the c-monotonicity of I' follows.

Now we show the converse implication, assuming that (6.1.3) and (6.1.4)
hold. We denote by I' a Borel and c-monotone set on which ~ is concentrated;
without loss of generality we can assume that I' = Ui['y with T’y compact and
¢|r, continuous. We choose continuous functions ¢; such that ¢; 1 ¢ and split the
proof in several steps.

Step 1. There exists a c-concave Borel function ¢ : X — [—00,+00) such that
p(x) > —oo for p-a.e. z € X and

(@) < (@) +c(a’,y) —clz,y) Vo' € X, (z,y) €T. (6.1.5)

To this aim, we use the explicit construction given in the generalized Rockafellar
theorem in [134], setting

o(z) :=inf{c(x, yp) — c(xp,yp) + c(xp,yp—l) - C(xpflaypfl)
4+ 4 C(l’lyyO) — C(xOvyO)}

where (z9,yo) € T'1 is fixed and the infimum runs among all integers p and collec-
tions {(z,vi) h<i<p CT.
It can be easily checked that

= lim lim lim ¢p .,

p—00 M—00 [—00
where

ep.mi(z) =nt{c;(z,yp) — c(xp, yp) + ci(@p, Yp—1) — c(Tp=1, Yp—-1)
+ e+ Cl(xla yo) - C(an yO)}
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and the infimum is made among all collections {(z;,¥:)}1<i<p C I'm. As all func-
tions ¢p m,; are upper semicontinuous we obtain that ¢ is a Borel function.

Arguing as in [134] it is straightforward to check that ¢(x¢) = 0 and that
(6.1.5) holds. Choosing 2’ = x¢ we obtain that ¢ > —oco on mx (T") (here we use
the assumption that ¢ is real-valued). But since = is concentrated on I' the Borel
set mx (I') has full measure with respect to u = mx 47, hence ¢ € R p-a.e.

Step 2. Now we show that ¥ := ¢ is v-measurable, real-valued r-a.e. and that
p+1P=c onl. (6.1.6)

It suffices to study ¥ on 7y (T'): indeed, as 7 is concentrated on T, the Borel set
7y (T') has full measure with respect to v = myxy. For y € 7y (I') we notice that
(6.1.5) gives

P(y) =clz,y) —pl@) eR Ve ely:={z: (v,y) €T}

In order to show that ¢ is v-measurable we use the disintegration v = v, x v of
~ with respect to y and notice that the probability measure v, is concentrated on
I'y for v-a.e. y, therefore

V) = [ clo) - pl@)dyle)  forvacy.

Since y +— 7, is a Borel measure-valued map we obtain that 1 is v-measurable.

Step 3. We show that o+ and ¥ are integrable with respect to u and v respectively
(here we use (6.1.3) and (6.1.4)). By (6.1.3) we can choose z in such a way that
Jy c(z,y) dv(y) is finite and ¢(z) € R, so that by integrating on Y the inequality
Pt < e(w,+) + ¢~ (x) we obtain that ¥+ € L'(Y,v). The argument for ¢* uses
(6.1.4) and is similar.

Step 4. Conclusion. The semi-integrability of ¢ and v gives the null-Lagrangian
identity

/ (<P+w)d’r:/ sodm/wduel&u{foo} vy € T, v),
XxY X Y

so that choosing 4 = v we obtain from (6.1.6) that fXXycdql < 400 and @ €
LY (X, p), ¥ € LY(Y,v). Moreover, for any 5 € T'(u, v) we get

/XxYCd:y /Xxy((erw)d:y:/XSOdﬂwL/Ywdy

/Xxy(<p+w)d7Z/F(Wrw)d'v:/chdv-

This chain of inequalities gives that + is optimal and, at the same time, that (¢, )
is optimal in (6.1.1). O

Y
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We say that a Borel function ¢ € L'(X, i) is a mazimal Kantorovich potential
if (¢, ¢°) is a maximizing pair in (6.1.1). In many applications it is useful to write
the optimality conditions using a maximal Kantorovich potential, instead of the
cyclical monotonicity.

Theorem 6.1.5. Let € P(X), v e P(Y), assume that (6.1.3) and (6.1.4) hold,
that c is real-valued and that the sup in (6.1.1) is finite. Then there exists a mazx-
imizing pair (o, ¢°) in (6.1.1) and if v € T'(p, v) is optimal then

w(x) + ¢°(y) = c(z,y) y-a.e. in X X Y. (6.1.7)

Moreover, if there exists a Borel potential ¢ € L'(X,p) such that (6.1.7) holds,
then ~ is optimal.

Proof. The existence of a maximizing pair is a direct consequence of the sufficiency

part of the previous theorem, choosing an optimal v and (by the necessity part of
the statement) a c-monotone set on which ~ is concentrated.

If ~v is optimal then

/ (cfcp*soc)dvz/ cd’r*/@du*/ﬁdvz(l
XXY XXY X Y

As the integrand is nonnegative, it must vanish «-a.e. The converse implication is
analogous. O

Remark 6.1.6. The assumptions (6.1.3), (6.1.4) are implied by

/ c(x,y)dp x v(z,y) < +o0. (6.1.8)
XxY

In turn, (6.1.8) is implied by the condition

c(z,y) < a(x) +b(y) with a€ L' (n), be L' (v).

6.2 Optimal transport maps and their regularity

In this section we go back to the original Monge problem (6.0.1), finding natural
conditions on ¢ and p ensuring the existence of optimal transport maps. The first
results in this direction, in Euclidean spaces and with the quadratic cost function
|z —y|?, have been estabilished in [35, 36, 100]; the case of a Riemannian manifold
is considered in [112].
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Definition 6.2.1 (Gaussian measures and Gaussian null sets). Let X be a separable
Banach space with dual X', and let p € P(X). We say that p is a nondegenerate
Gaussian (probability) measure in X if for any L € X' the image measure Ly €
P(R) has a Gaussian distribution, i.e. there existm =m(L) € R and o = o(L) >
0 such that

1
V2mo?

We say that B € B(X) is a Gaussian null set if u(B) =0 for any nondegenerate
Gaussian measure i in X .

b
p{reX: a<Lz)<b})— / e~ It=mI*/20" 4y (a,b) C R.

We refer to [32] for the general theory of Gaussian measures. Here we use
Gaussian measures only to define the o-ideal of Gaussian null sets. Starting from
Definition 6.2.1 and recalling (5.2.4), it is easy to check that if p is a (nonde-
generate) Gaussian measure in X and Y is another (separable) Banach space,
then

7y is a (nondegenerate) Gaussian measure in Y (6.2.1)
for every continuous (surjective) linear map m: X — Y. o

One can also check that in the case X = R? nondegenerate Gaussian measures
are absolutely continuous with respect to %, with density given by

1

(A7 (@—m),(z—m))
(2m)ddet A

1
e 2

for some m € R? and some positive definite symmetric matrix A. Therefore Gaus-
sian null sets coincide with .#“-negligible sets. See also [59] for the equivalence
between Gaussian null sets and null sets in the sense of Aronszajn, a concept that
involves only the Lebesgue measure on the real line.

Definition 6.2.2 (Regular measures). We say that u € P(X) is regular if (B) =0
for any Gaussian null set B. We denote by &7 (X) the class of regular measures.

By definition of Gaussian null sets, all Gaussian measures are regular. By
the above remarks on Gaussian null sets, in the finite dimensional case X = R¢
the class 27 (X)) reduces to the standard family of measures absolutely continuous
with respect to £

We recall the following classical infinite-dimensional version of Rademacher’s
theorem (see for instance Theorem 5.11.1 in [32]).

Theorem 6.2.3 (Differentiability of Lipschitz functions). Let X be a separable Hil-
bert space and let ¢ : X — R be a locally Lipschitz function. Then the set of points
where ¢ is not Gateaux differentiable is a Gaussian null set.
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Theorem 6.2.4 (Optimal transport maps in RY). Assume that u, v € P(R?),
c(z,y) = h(z —y) with h : R — [0, 4+00) strictly convex, and the minimum in
(6.0.2) finite.

If u, v satisfy (6.1.3), (6.1.4), and p € 2" (RY), then the Kantorovich problem
(6.0.2) has a unique solution p and this solution is induced by an optimal trans-
port, i.e. there exists a Borel map r : R — R? such that the representation
(5.2.13) holds. We have also

r(x) =z — (0h)~! (@ap(x)) for p-a.e. z, (6.2.2)

for any c-concave and mazimal Kantorovich potential ¢ (recall that V stands for
the approzimate differential).

Proof. By the necessity part in Theorem 6.1.4 we have the existence of an opti-
mal plan, concentrated on a c-monotone subset of R? x R%. By the sufficiency part
we obtain the existence of a c-concave maximal Kantorovich potential ¢. Theo-
rem 6.1.5 gives that for u-a.e. x there exists y such that ¢(z) + ¢°(y) = c(z,y).
We have to show that y is unique and given by (6.2.2). To this aim, for any R > 0
we define
— : c d
vr(x) = Zeg;f(o) c(x, z) — ¢°(2) x € R%.

Notice that all functions ¢g are locally Lipschitz in R? for R large enough (as
soon as there is some z with |z| < R and ¢°(z) > —o0) and therefore differentiable
Z%-a.e. Moreover, the above mentioned existence of y for p-a.e. z implies that
the decreasing family of sets {¢ < pgr} has a p-negligible intersection, i.e. p-a.e.
x belongs to {¢ = ¢r} for R large enough.

It follows that for p-a.e. x the following two conditions are satisfied: z is
a point of density 1 of {¢ = ¢gr} for some R (recall Remark 5.5.2 and g is
differentiable at x. By the very definition of approximate differential, ¢ is approx-
imately differentiable at  and Vi(z) = Vg (z). If p(z) + ¢°(y) = h(z —1y), since
' — h(z' —y) —(a') attains its minimum (equal to ¢°(y)) at z, by differentiation
of both sides we get

Vo(z) € Oh(z —y).

This immediately gives that y is unique and given by (6.2.2). O

In the following remark we point out some extensions of the previous exis-
tence result and we recall some cases when the approximate differential in (6.2.2)
is indeed a classical differential.

Remark 6.2.5. a) Classical differential. As the proof shows, the approximate dif-
ferential is actually a classical differential if ¥ has a bounded support. Under a
technical condition on the level sets of h at infinity (this condition includes the
model case h(z) = |z|?, p > 1) the differential is still classical even when v has an
unbounded support, see [82].
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b) More general initial measures. It has been shown in [82] that for h € Cllo’g (R%)
and v with bounded support the same properties hold if u satisfies the more general

condition
w(B) =0 whenever B € B(R?) and #%7!(B) < +o0. (6.2.3)

The proof is based on a refinement of Rademacher theorem, valid for convex or
semi-convex functions, see for instance [4].

c) The case when £ is not strictly convex. Here the difficulty arises from the fact
that (0h)~! is not single-valued in general, so the first variation argument of the
previous proofs does not produce anymore a unique y, for given x. This problem,
even when h(z) = ||z|| for some norm ||- || in R?, is not yet completely understood,
see the discussions in [14]. Only the case when || - || is the Euclidean norm (or,
more generally, a C? and uniformly convex norm) has been settled (see [142], [74],
[43], [143], [9], [16]). See also [14] for an existence result in the case when the norm
I - || is crystalline (i.e. its unit sphere is contained in finitely many hyperplanes).

6.2.1 Approximate differentiability of the optimal transport map

In many applications it is useful to know that the optimal transport map is dif-
ferentiable, at least in the approximate sense. The following theorem answers to
this question and shows, adapting to a non-smooth setting an argument in [120],
that the differential of the optimal transport map is diagonalizable and has non-
negative eigenvalues. Notice that our assumption on the cost includes the model
case c¢(z,y) = |z — y|P, p > 1. In the proof of the theorem we will use a weak ver-
sion of the second order Taylor expansion, but still sufficient to have a maximum
principle.

Definition 6.2.6 (Approximate second order expansion). Let @ C R? be an open
set and ¢ : ) — R. We say that ¢ has an approximate second order expansion at
x e Qif

b P —a—(by—a)~ (A — ). (y )
y—z,yEE ly — x|?

=0 (6.2.4)

for some a € R, b € R? and some symmetric matriz A, with E having density 1
at .

It is immediate to check that a = ¢(x), b = V() and that A is uniquely
determined: we will denote it by VZ¢(z). Moreover, if ¢ has a minimum at 2 then
b=0and A > 0.

Theorem 6.2.7 (Approximate differentiability of the transport map). Assume that
pe 2" (RY, ve P2(RY) and let c(z,y) = h(z —y) with h : RY — [0, +00) strictly
convez with superlinear growth, h € C1(R?) N C%(R?\ {0}), and V?h is positive
definite in R?\ {0}. If the minimum in (6.0.2) is finite, then for y-a.e. v € R?
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the optimal transport map r is approzimately differentiable at x and @r(x) 1
diagonalizable with nonnegative eigenvalues.

Proof. Let ¢ be a maximal Kantorovich potential and let N = {r(z) # x}. Clearly
it suffices to show that the claimed properties are true p-a.e. on N (as outside of N
the approximate differential of r is the identity). We consider the countable family
of triplets of balls (B, B’, B") centered at a rational point of R, with B C B,

B' ¢ B” and with rational radii, the family of sets
NB,B/,B” = {.T S B : 7’(1’) S BN \ B/},
and the family of functions

r g ) = min h xr — — ° T € B~
¢B,5',B"(T) o (@—y)—¢°(y)
Notice that ¢p g/ g7 = ¢ p-a.e. on Ng g pr, as the minimum of y — h(z —y) —
©°(y) is achieved at y = r(z) € B" \ B’ for p-a.e. x.
Let C = C(B,B’, B"”) be the Lipschitz constant Lip(Vh, B — (B" \ B’)) of
Vh in the set B — (B” \ B’); it follows that all maps

C C / !
v h(z—y) = ¢"(y) = Slef’,  yeB\B,

are concave in B, and therefore ¢ g p» — C|z|?/2 is concave in B as well. By
Alexandrov’s differentiability theorem (see 5.5.4) we obtain that ¢ g/ g are twice
differentiable and have a classical second order Taylor expansion for Z%-a.e. z € B.
Clearly the set NV is contained in the union of all sets Np, g g, therefore, by
Remark 5.5.2, Z%a.e. x € N is a point of density 1 for one of the sets NpB.p/ B
and g, pr g~ is twice differentiable at x. By Definition 6.2.6 we obtain that ¢ is
twice differentiable in the approximate sense at x and (6.2.4) holds with a = ¢(z),
b=Vep(x)=Vepp g and A =V2p(x) = VZpp p pr/2. Since

r(x) =z — (0h) 1 (Ve(x)) = 2 — VA*(Vp(z)),

we obtain that r is approximately differentiable p-a.e. on N.

Since h has a superlinear growth at infinity, the gradient map Vh : RY — R4
is a bijection and its inverse is Vh*, where h* is the conjugate of h. Therefore Vh*
is differentiable on RY\ {Vh(0)}.

Fix now a point « where the above properties hold and set y = r(z). Since
' — h(z' —y) — ¢(2') achieves its minimum, equal to —¢°(y), at z, we get

V2h(z —y) > V().
On the other hand, the identity VA(Vh*(p)) = p gives

V20 (Vh*(p) = [V2h*(p)] .
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Using the identity above with p = V(z) # Vh(0) we obtain

[V (Fo@)] 2 Viele).
By Lemma 6.2.8 below with A := V2h*(Ve(z)) and B := —V2p(z) we obtain

that @r(x) =4 + AB is diagonalizable and it has nonnegative eigenvalues. O

Again, under more restrictive assumptions (e.g. the supports of the two mea-
sures are compact and dist (supp u,suppv) > 0) one can show that the optimal
transport map r is p-a.e. differentiable in a classical sense. As discussed in Sec-
tion 5.5, approximate differentiability is however sufficient to establish an area
formula and the rule for the computation of the density of r4(p.2?).

The following elementary lemma is also taken from [120].

Lemma 6.2.8. Let A, B be symmetric matrices with A positive definite. If —B <
A7t then i + AB is diagonalizable and has nonnegative eigenvalues.

Proof. Let C be a positive definite symmetric matrix such that C? = A. Since
i+AB=C(i+CBC)C™*

and since ¢+ C'BC' is symmetric we obtain that ¢4+ AB is diagonalizable. In order
to show that the eigenvalues are nonnegative we estimate:

((i + CBO)E, €) €% + (C¢, BCE) > [¢* — (CE, A7 0¢)

= (P - catcey =0 O
|
In the following theorem we establish, under more restrictive assumptions on
7 or h, some properties of the distributional derivative of r and the nonnegativity
of the distributional divergence of r (or, better, of a canonical extension of r to
the whole of R?: recall that = is a priori defined only p-a.e.).

Theorem 6.2.9 (Distributional derivative of 7). Let y, v € 2" (R%), with suppv
bounded, let c(x,y) = h(x —y) with h : R? — [0, +00) strictly conver and with
superlinear growth and assume that the minimum in (6.0.2) is finite. Let v be the
optimal transport map between p and v. Then

(i) If h € C*(RY) is locally uniformly convex then T has a canonical BVio. ex-
tension to RY satisfying D - r > 0.

(ii) If h € C?*(R?\ {0}) and Vh(0) = 0 we can find equi-bounded maps 7y €
BVioe(RY) satisfying D - . > 0 such that u({rx #r}) — 0 as k — oo.

Proof. (i) By the argument used in the proof of Theorem 6.2.4 we know that there
exists a c-concave potential ¢ of the form

p(z) = inf h(z—y)—v(y) (6.2.5a)

yEsupp v
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with 9 = —oo on R? \ supp v, such that
r(z) =z — (Vh) 1 (V) p-a.e. in R% (6.2.5b)

We take as an extension of r the right hand side in the previous identity (6.2.5b),
for ¢ given by (6.2.5a). Notice that, on any ball B, all functions

x> h(z—y) —(y) — Clzf* fory € suppr, (y) > —oo,

are concave for C' large enough (depending on B and suppv), so that ¢ — C|z|?
is concave in B as well. This proves that ¢ is locally Lipschitz and locally BV in
R? and therefore, since the inverse of Vh is locally Lipschitz in R? as well (by the
local uniform convexity assumption on h and the superlinear growth condition),
also r is locally BV.

Let us show that r(z) € suppv and that 2’ — @(z') — h(z’ — y) attains
its maximum at z when y = r(x) for Z%-a.e. v € R% Indeed, fix x where ¢ is
differentiable and let § € supp v be a minimizer of y — h(z—y)—1(y) (without loss
of generality we can assume that v is upper semicontinuous: being supp v compact
and ¢ (y) < +oo for every y € X, a minimizer exists). Then ¢(2")—h(2' —7) attains
its maximum at z since (6.2.5a) yields

p(a') = h(z' —g) < h(@' —g) —¥(y) — h(z' —g) = —(y) = p(z) — h(z - 7),

and a differentiation yields § = r(z).
It remains to show that D -7 > 0. Since maxgupp . h(z — -) is locally bounded
we can find a strictly positive function p € L*(R?) such that

/R max h(z —y)p(x)dr < +o0. (6.2.6)

d YESupp v

Let i = p£¢, and notice that the minimality property above shows that the
graph of 7 is (essentially, excluding points x where ¢ is not differentiable) c-
monotone: indeed for any choice of differentiability points z1,...,z, of and for
any permutation o of {1,...,n} we have

Z 0(To(iy) — Moy — 7)) < Z o(x;) — h(x; — r(xi)).

Removing from both sides } . ¢(x;) we obtain the c-monotonicity inequality.

Therefore, since by (6.2.6) the cost associated to r is finite, Theorem 6.1.4
gives that r is an optimal map between fi and 4.

This optimality property of the extended map r shows that it suffices to
prove that D-r > 0 only when supp v is made by finitely many points: the general
case can be achieved by approximation, using the fact that optimality relative to
is stable in the limit and yields L”(f1) convergence of the maps (see Lemma 5.4.1)
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and then, up to subsequences, .Z%-a.e. convergence, due to the fact that p > 0 Z%-
a.e. Under the assumption that supp v is finite the function r takes only finitely
many values {y1,...,ym} and the distributional divergence is given by

D-r={(rt—r  n)xsA",
where r* are the approximate one sided limits on the approximate jump set S of
r and n is the approximate normal to the jump set. For a given Borel choice of
n, let us consider the sets

Sij = {JJESZT‘_(JJ)Zyi, r+(x):yj} 1<4,7<m,i#j, S= USij'
i#]

Since each neighborhood of = € S;; contains points z* such that r(2%) = r* ()
is the unique minimizer of y — h(z* —y) =¥ (y) in {y1, -+ ,ym}, Si; is contained
in 8Eij, with

Eij={x e R*: h(z—y;) —¥(y:) < h(z —y;) —¥(y;)} 1<i#j<m

and the classical inner normal to E;; is parallel (with the same direction) to the
nonvanishing vector Vh(z — y;) — Vh(z — y;). Therefore it suffices to check the
inequality

(Wi — 3 Vh(w — ;) = Vhiz = 3)) = 0.

This is a direct consequence of the monotonicity of Vh:
((z —y;) — (z —wi), Vh(z — y;) — Vh(z — y:)) > 0.

(ii) Let hg > h be in C2(R?) and locally uniformly convex, with the property that
for any z € R? we have hi(z) = h(z) and (Vhy)"1(2) = (Vh)~!(2) for k large
enough (the proof of the existence of this approximation, a regularization of h near
the origin, is left to the reader) and let ¢, 1 as in the proof of (i). We define

pr(x) == _inf hy(z —y) —¢(y)
yEsupp v
so that ¢ > . Since the infimum in the problem defining ¢ is attained (by
y =r(x)) for p-a.e. x, it follows that ¢y (z) = ¢(z) for p-a.e. x for k large enough
(precisely, such that hyx(z — r(z)) = h(z — r(x)), so that u({vr # ¢}) — 0 as
k — oo. Setting B
TR I=1— (th)’l(V@k)

we know, by the c-monotonicity argument seen in the proof of statement (i), that
Ty, are optimal transport maps relative to the costs hi(z — y), that r, € suppv
p-a.e. and that D - rp > 0. Since the approximate differentials coincide at points
of density 1 of the coincidence set we have u({Vyy # Vo}) — 0 as k — oo and
therefore p({ry #r}) — 0 as h — oc. O
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6.2.2 The infinite dimensional case

In the infinite dimensional case we consider for simplicity only the case when
c(x,y) = |z —ylP/p, p > 1; when v has a bounded support we are still able to
recover, by the same argument used in the finite dimensional case, a differential
characterization of the optimal transport map.

We denote by &) (X) the intersection of &2,(X) (see (5.1.22)) with Z"(X).

Theorem 6.2.10 (Optimal transport maps in Hilbert spaces). Assume that X is a
separable Hilbert space, let p € Z)(X), v € Zy(X) and let c(x,y) = [x—y|?/p for
p € (1,400), ¢t +p~! = 1. Then the Kantorovich problem (6.0.2) has a unique
solution p and this solution is induced by an optimal transport, i.e. there exists
a Borel map v € LP(X, u; X) such that the representation (5.2.13) holds. If v has
a bounded support we have also

r(r) =z — V()72 Ve(z) for p-a.e. x, (6.2.7)

for some locally Lipschitz, c-concave and mazimal Kantorovich potential ¢ (here
Vi denotes the Gateauz differential of ).

Proof. Let us assume first that supp v is bounded. We first define a canonical
Kantorovich potential, taking into account the boundedness assumption on supp v,
as follows. Let ¢ be any maximal Kantorovich potential and define

p(x) = inf c(z,y) —¢°(y) r e X. (6.2.8)

yEsupp v

Notice that the optimality conditions on ¢ ensure that for p-a.e. x the infimum
above is attained. By construction ¢ is a locally Lipschitz function and it is still
a maximal Kantorovich potential. Indeed, ¢ = ¢ p-a.e. and since ¢ is the c-
transform of the function 1 equal to ¢¢ on supp v and equal to —oo otherwise we
have ¢ = (¢¥°)¢ > ¢ = ¢° on supp v.

As in the proof of Theorem 6.2.4 it can be shown that for u-a.e. x there is
only one y such that ¢(x) + ¢°(y) = c(z,y), and that y is given by (6.2.7); the
only difference is that we have to consider Theorem 6.2.3 instead of the classical
Rademacher theorem.

In the general case when supp v is possibly unbounded we can still prove
existence and uniqueness of an optimal transport map as follows. Let v € T',(u, v),
let v,, = xB, (y)y where B,, := B,(0) is the centered open ball of radius n, and
let pin, vy, be the marginals of ,, (in particular v, = xp, v and u,, is absolutely
continuous with respect to u, therefore still regular). By Theorem 6.1.5 we know
that supp-y is | - |P-monotone, and therefore supp-y,, is | - |P-monotone as well. By
applying Theorem 6.1.5 again and the first part of the present proof, we obtain
that ~,, is an optimal plan, induced by a unique transport map r,. The inequality

(B X Tn)ghn = Yn < Y = (8 X Pi) gt fim
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immediately gives (for instance by disintegration of both sides with respect to x)
Ty =Tm Hp-a.e. whenever n < m.

Therefore the map r such that » = r,, u,-a.e. for any n is well defined, and passing
to the limit as n — oo in the identity ~,, = (¢ X ), we obtain v = (¢ X 7)xp.
This proves that r is an optimal transport map, and that any optimal plan is
induced by an optimal transport map.

If there were two different optimal transport maps 7, 7/, then we could build
an optimal transport plan

1
= 5/ 51‘(3:) + 51”(3:) d,u(x)
X

which is not induced by any transport map. This contradiction proves the unique-
ness of r. |

Remark 6.2.11 (Essential injectivity of the transport map). Notice also that if
v is regular as well, under the assumption of Theorem 6.2.4 or Theorem 6.2.10,
then the optimal transport map r between p and v is p-essentially injective (i.e.
its restriction to a set with full g-measure is injective). This follows by the fact
that, denoting by s the optimal transport map between v and u, the uniqueness
of optimal plans gives (¢ x 7)xu = [(s X 4)xv] ™1, which leads to sor =4 p-a.e.
and to the essential injectivity of r.

In the case when p = 2 and p, v € Z5(R?) we can actually prove strict
monotonicity of the optimal transport map.

Proposition 6.2.12 (Strict monotonicity of r). Let u, v € 25(RY), and let  be

the unique optimal transport map relative to the cost c(x,y) = |x — y|?/2. Then
Vr > 0 p-a.e. and there exists a pu-negligible set N C R? such that
(r(z1) —r(zx2),z1 —x2) >0 Vi, 2o € R4\ N. (6.2.9)

Proof. Let ¢ be a c-concave maximal Kantorovich potential. The c-concavity of ¢
and its construction ensure that ¢ < 400 globally, that ¢ > —oo p-a.e. and that
¢ — |z|?/2 is concave. In particular, denoting by C the interior of the convex hull
of { € R}, we have that ¢ is finite on C' and p is concentrated on C'. We have also
that the optimal transport map r can be represented as V¢ with ¢ = |2]?/2 — ¢
convex. Recalling that, by Alexandrov’s theorem 5.5.4 convex functions are twice
differentiable .#?-a.e. in the classical sense, we can apply Lemma 5.5.3 to obtain
that Vr > 0 p-a.e. in C, due to the fact that ryp < 7.

Let now N be the p-negligible set of points € C' where either ¢ is not twice
differentiable or V?¢ has some zero eigenvalue. The monotonicity inequality then
gives (with x; = (1 — t)x + ty)

(V6ly) — Vo(a),y — ) 2 i = (V6(w) = V@), 20— 7) > 0

for any x, y € C'\ N. O
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6.2.3 The quadratic case p = 2

In the case of c(z,y) := 3| — y|* in a Hilbert space X, the theory developed in
the previous sections presents some more interesting features and stronger links
with classical convex analysis.

Here we quote the most relevant aspects.

e A function u: X — R is c-concave iff u — %\ -2 is u.s.c. and concave, i.e.

a(x) = L|x|? — u(x) is Ls.c. and convez.

For, from the representation of (6.1.2) we get
1 . 1
u(w) = Slof? =l ti + Slyil* — (2, 9s).
This means that u(x) —|z|?/2 is the infimum of a family of linear continuous

functional on X.

o If v =u is the c-transform of u then v = u*, the Legendre-Fenchel-Moreau
conjugate functional defined as

' (y) := sup (z,y) — u(z).
zeX

We simply have
~ 1 . 1 1
u(y) = —\ZU|2 —u(y) = sup —\yl2 — =]z — y\2 + u(x)
2 zeX 2 2

= sup (2,9) — (3el? — u(@)) = sup {z. ) — o).
zeX reX

o A subsetT of X? is c-monotone according to Definition 6.1.3 iff it is cyclically
monotone, i.e. for every cyclical choice of points (z¥,25) €T, k=0,..., N,
with (29, 29) = (z, 2)), we have

N
(xh — 21 aky > 0. (6.2.10)
k=1

In particular, by Rockafellar theorem, c-monotone sets are always contained
in the graph of the subdifferential

{(z,y) : y € 0p(x)}

of a convex ls.c function ¢. Conversely, any subset of such a graph is c-
monotone.

o Suppose that p, v € Po(X) and v € T'(u,v). Then the following properties
are equivalent:
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— 7y is optimal;
— supp-y s cyclically monotone;

— there exists a conver, lL.s.c. potential p € L*(X, 1) such that
(x,y) = ¢(x) + ¢*(y) ~-a.e. in X2 (6.2.11)

Equivalently, we can also state (6.2.11) by saying that y € dp(z) for
~-a.e. (z,y) € X?2. In particular, if v = (¢ x r)xu then there exists a ls.c.
convex functional ¢ such that r(z) € dp(z) for p-a.e. z € X.

o Suppose that X = R? and p € P5(RY), v € Po(R?). Then there exists a
unique optimal transport plan and this plan is induced by a transport map r.
If v € 25 (RY) as well, then v is p-essentially injective and fulfills (6.2.9).



Chapter 7

The Wasserstein Distance and
its Behaviour along Geodesics

In this chapter we will introduce the p-th Wasserstein distance W, (1, ) between
two measures p, v € &,(X). The first section is devoted to its preliminary prop-
erties, in connection with the optimal transportation problems studied in the pre-
vious chapter and with narrow convergence: the main topological results are valid
in general metric spaces.

In the last two sections we will focus our attention to the case when X is an
Hilbert space: we will characterize the (minimal, constant speed) geodesics with
respect to the Wasserstein distance and, for p = 2 and a given v € Z5(X), we will
study the behaviour of the map u +— W2 (u,v) along geodesics: in particular, we
will give a precise formula for its derivative along geodesics and and we will prove
its semi-concavity, an important geometric property which is related to a metric
version of suitable curvature inequalities.

7.1 The Wasserstein distance

Let X be a separable metric space satisfying the Radon property (5.1.9) and
p > 1. The (p-th) Wasserstein distance between two probability measures u!, p? €
Pp(X) is defined by

WE(MI,NZ) — min{/X2 d(z1,z2)" dp(z1,22) + p € F(MI’MZ)} (7.1.1)

= min {d(ml,mg)’zp(“;x) TS F(Ml,;f)}'
Using Remark 5.3.3 we can show that the function defined above is indeed a

distance. Indeed, if pu* € Z,(X) for i = 1,2,3, v*? is optimal between p! and
p? and 422 is optimal between p? and 3 we can find v € 2(X?) such that
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7r.71¢2’y = ~'? and 73y = 4?3, The plan v'? := 743~ belongs to T'(u', x*) and
since

WP(/’L17/’62) = d(z1,22) Lo (~; X) Wp(M27M3) = d(T1,72) Lr(~;x)
and
d(1,23) r(y13,x) = A(T1,23) Lo (4 X)
we immediately get W,(u', u®) < W,(ut, p?) + W, (p?, p3) from the standard
triangle inequality of the LP distance.
In the particular case when p = 1 and p and v have a bounded support we

can use the duality formula (6.1.1) and the fact that c-concavity coincides with
1-Lipschitz continuity and ¢¢ = —¢ for the cost ¢(z,y) = d(x,y) to obtain

Wi (p,v) = sup {/god(/z —v): p: X >R 1-Lipschitz} . (7.1.2)

We denote by T'p(ut, u?) C T'(ut, 4?) (which also depends on p, even if we
omit to indicate explicitly this dependence) the convex and narrowly compact set
of optimal plans where the minimum is attained, i.e.

vyeT,(ut,p?) . d(xy,x2)P dy(z1,22) = Wf,’(,ul,;ﬂ). (7.1.3)
X
When T, (u!, 4?) contains a unique plan v = (¢ x 7)xu! induced by a transport

2 2
map 7 as in (5.2.13), we will also denote r by tﬁl; therefore t/’jl is characterized
by

X - X, () 0t =t Dot e®) = {(ix ) it} (T.14)

it is the unique (strict) minimizer of the optimal transportation problem in the
original Monge’s formulation (6.0.1), and satisfies

/X d(x,t‘:: (2))" dp' () = WP (u*, 1?). (7.1.5)

Given p-measurable maps r, s : X — X, a very useful inequality giving an
estimate from above of the Wasserstein distance is

Wy (rsm, spp) < d(r,8) 1o (u;x)- (7.1.6)

It holds because vy = (7, 8) g pu €L (rup, sxp) and [ d(xq,z2)P dy=d(r, s)LP(” X
From Theorem 6.1.4 we derive that p is optimal iff its support is d(-,-)P-
monotone according to Definition 6.1.3, i.e.

Zd xl,x2

xl,x;(k (7.1.7)

uMz
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for every choice of (z%,25) € suppu, k = 1,..., N, and for every permutation
o:{l,...,N} = {1,..., N} (actually Theorem 6.1.4 shows only that p has to be
concentrated on a c-monotone set, but since in this case the cost is continuous the
c-monotonicity holds, by a density argument, for the whole support of ).

Remark 7.1.1. It is not difficult to check that supports of optimal plans satisfy
the slightly stronger property

U supp~y is d(:,-)? — monotone. (7.1.8)
YET o (put,1?)

For, we take a sequence (v,,) narrowly dense in T',(u!, u?) and we consider the
new plan 4 := ) 27 ",. The plan % is optimal, too, and its support coincides
with (7.1.8).

Remark 7.1.2 (Cyclical monotonicity in the case when X is Hilbert). When p = 2
and X is a (pre-)Hilbert space, condition (7.1.7) is equivalent to the classical
cyclical monotonicity of supp p, i.e. for every cyclical choice of points (z%,z%) €

suppp, k=0,..., N, with (z9,29) = (21, 2}), we have
N
D (@ — a2yt ah) > 0. (7.1.9)
k=1

In particular, if r = V¢ for some convex C' function ¢ then r is a 2-optimal
transport map for every measure pu € %5(X) such that [|r[*du < +oc.

A useful application of the necessary and sufficient optimality conditions is
given by the following stability of optimality with respect to narrow convergence.

Proposition 7.1.3 (Stability of optimality and narrow lower semicontinuity). Let
(uh), (2) € Z,(X) be two sequences narrowly converging to p', pu? respectively,
and let p,, € To(pl, p2) be a sequence of optimal plans with [, d(xy, 22)P dp,,
bounded.

Then (p,,) is narrowly relatively compact in 2(X?) and any narrow limit point
w belongs to Ty (ut, u?), with

W ) = [ dar. ) daton, )

X (7.1.10)
< lim inf/ d(xy,12)P dp,, (21, 29) = liminf W, (u), p2).
n—oo Jy2 n—oo

Proof. The relative compactness of the sequence (u,,) is a consequence of Lemma
5.2.2 and the “liminf” inequality in (7.1.10) is a direct consequence of (5.1.15),
which in particular yields sz d(z1,29)P dp < +o00.

Using proposition 5.1.8 it is immediate to check by approximation that the support
of w is d(-, -)P-monotone. O
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When X is a Hilbert space, the Wasserstein distance is lower semicontinuous
w.r.t. the weaker narrow convergence in #(X):

Lemma 7.1.4 (Weak narrow lower semicontinuity of 1V, in Hilbert spaces). Let
X be a (separable) Hilbert space and let (pl), (u2) C 2,(X) be two weakly tight
sequences (according to (5.1.32)) narrowly converging to pt, p? in P(Xy). Then

W, (it p?) < liminf W, (uh, p2). (7.1.11)

Proof. The map (x1,x2) +— |21 — 22|P is weakly Ls.c. in X x X: we simply argue
as in the previous proof and we apply Lemma 5.1.12(c). Notice that in this case
the first line of (7.1.10) is an inequality “<”, since we do not know that the limit
plan p is optimal any more; nevertheless, the inequality is sufficient to obtain
(7.1.11). O

Proposition 7.1.5 (Convergence, compactness and completeness). Z2,(X) endowed
with the p-Wasserstein distance is a separable metric space which is complete if X
is complete. A set K C P,(X) is relatively compact iff it is p-uniformly integrable
and tight. In particular, for a given sequence (pn) C Pp(X) we have

lim W, (pn, p) =0 <= (7.1.12)

n—oo

Iy narrowly converge to p,
(tn) has uniformly integrable p-moments.

Proof. Let us first prove the completeness of 2,(X), by assuming that X is
complete. It suffices to show that any sequence {jin fnen C Zp(X) such that

(oo}

ST ) < o

n=1

is converging. We choose a” ("1 ¢ To(p™, p™*1) and use Lemma 5.3.4 to find
pe 2(X), with X = XN, satisfying (5.3.8). It follows that

Z d(r", 7Tn+1)LP(u;X) < too.
n=1

Therefore, (7™) is a Cauchy sequence in LP(p; X), which is a complete metric
space, and admits a limit map 7% € LP(p; X). Setting pioc 1= 7 p € Zp(X), we
easily find

limsup Wy, (", p>) < limsupd(7", 7%) 1p(; x)
(oo}
< limsu AT 1) Lo x) = 0.
B TLéOOp-Z;L ( )L (”’X)

We will prove now the equivalence (7.1.12) (a different argument in locally compact
spaces, based on the duality formula (7.1.2), is available for instance in [146]).
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First we suppose that W, (un, ) — 0. Arguing as before, we can choose
optimal plans B'™ € To(i, ftn,) and use Lemma 5.3.4 (with p; = p) to find
p € P(X) satisfying (5.3.8). It follows that

. n 1 =
Jim d(m", 7)) Lo (x pix) = 0,

and therefore, for every continuous real function f with p-growth the Vitali dom-
inated convergence theorem gives

lim [ f(@)dpn(z) = lim mwmwwzﬁﬂﬂwww

n—0o0 X n—o0

=Aﬂ5wm.

By lemma 5.1.7 we obtain the narrow convergence and the uniform p-integrability
of the sequence (py,).

Conversely, let us suppose that the sequence (u,) has uniformly integrable
p-moments and it is narrowly converging to p; in particular, by (5.4.7), the set
{4, pin, : m € N} is tight. As before, let us choose a'™ € T'p(u, i, ): it easy to check
that the sequence (a'™) is p-uniformly integrable and tight in Z(X x X) (see
Lemma 5.2.2): a subsequence k +— ny, exists such that a'™ — a narrowly, with
a € T'y(p, 1) by Proposition 7.1.3. Applying Lemma 5.1.7 we get

lim WP (i, pin,,) = lim |21 — 22|P da ™ (21, 20)
k—o0 k—oo XxX

/ |l‘1 — l‘2|p da(l‘l,l‘g) =0.
XxX

Since the limit is independent of the subsequence nj we get the convergence of pi,,
with respect to the Wasserstein distance. Using (7.1.12) it is now immediate to
check that convex combinations of Dirac masses with centers in a countable dense
subset of X and with rational coefficients are dense in &,(X), therefore Z7,(X)
is separable. O

It is interesting to note that in the previous proof of the equivalence between
narrow and Wasserstein topology (on sets with uniformly integrable p-moments),
one implication (the topology induced by the Wasserstein distance is stronger than
the narrow one) could be directly deduced from (7.1.2) via the approximation
arguments discussed in Section 5.1, thus avoiding Lemma 5.3.4; this implication
is therefore considerably easier than the converse one, which relies on the stability
property 7.1.3 and therefore on the main characterization results of Chapter 6 for
optimal transportation problems. However the argument via Lemma 5.3.2 seems
to be necessary to get completeness, at least in infinite dimensions.

Remark 7.1.6 (Limit of the optimal plan). As a byproduct of the previous proof,
we obtain that if p, — pin Z,(X) and p,, € To(p, f1n), then

g, — (i xi)up in Zy(X x X). (7.1.13)
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Remark 7.1.7 (#(X) is a Polish space if X is Polish). By taking an equivalent
bounded metric on X, all the Wasserstein distances induce the topology of narrow
convergence between probability measures: as we already noticed in Remark 5.1.1,

the narrow topology &?(X) is metrizable; moreover, if X is a Polish space, then
Z(X) is a Polish space, too.

Remark 7.1.8 (Relative compactness of &2,(X )-bounded sets). When X is infinite
dimensional Hilbert space, bounded subset in #2,(X) are not relatively compact
in Z(X) any more, but they are relatively compact in Z(X).

Remark 7.1.9 (#,(X) is locally compact only if X is compact). If X is not com-
pact, the space Z7,(X) is not locally compact, not even in the case when X = R
is finite dimensional. Indeed, assume that for some ¢ > 0 and zg € X the closed
ball in &,(X)

B = {u € Pp(X) : Wy(ph,0,) < 5} = {u € Z,(X): /Xd(x,xo)p du(z) < 5”}

is compact and let us prove that an arbitrary sequence (z,) € X admits a conver-
gent subsequence. It is not restrictive to assume liminf,,_ d(x,,xo) > 0 (other-
wise (z,,) admits a subsequence converging to x¢), and therefore inf,,en d(xy,, o) =
6 > 0. We consider the real numbers

_ (e p_ .
n — m S 1, so that mnd(xn,xo) = (5 /\5) N
the sequence of measures p, := (1 — my,)dy, + Mndy, belongs to B. since

Wy (tin; 0z,) = € A and therefore admits a subsequence (p,,) converging to some
o by in Py(X).

Since (my,) is bounded, too, it is not restrictive to assume that m,, — m € [0, 1]
which should be strictly positive, being p # 0,,. By Proposition 5.1.8 (see also
Corollary 5.1.9) it follows that yu takes the form (1 —m)d,, +md, for some xz € X,
and therefore z,, — x.

Lemma 7.1.10 (Approximation by convolution). Let 1 € Z2,(R?) and let (p.) C
C>(RY) be a family of nonnegative mollifiers such that

pe(x) == e 4p(x/e), /]Rd p(r)dr =1, mb(p) = /]Rd |zPp(z) dz < +o00. (7.1.14)

Then if pe := p* pe
W (s pre) < emy(p), (7.1.15)

and therefore pe converges to p in Z,(R%) ase | 0.
Proof. We introduce the family of plans v, := [ p.(- — 2). 2% du(z) defined by

//Rded o(x,y)dy (z,y) = /Rd /Rd oz, y)pe(y — x) dy du(x)



7.1. The Wasserstein distance 157

which obviously satisfy v, € I'(u, pc). Therefore

Wi < [ ewranen = [ ([ e vro o ) dute)
= [ (L epocraz)aute) = [ lesbozyaz = [ fapayaz

Remark 7.1.11. Combining Proposition 5.1.13 with j(r) :=rP, 1 < p < 400, and
Lemma 5.1.7 we get the following useful characterization of the convergence in
Zp(X), which is particularly interesting when X is infinite dimensional Hilbert
space:

Ihn, narrowly converge to p in Z(Xy),
lim W, =0 <= 7.1.16
n—oo
Since we have at our disposal new powerful results (Which are consequences of
the theory presented in Chapter 6) we conclude this section by showing a simpler
proof of (7.1.16), which could be extended to the case of uniformly convex Banach
spaces.

Proof. Let us consider the (Radon, separable) metric space X with the distance
induced by the norm || - ||; since || - ||, < |-|P, (7.1.16) and Lemma 5.1.7 show
that || - |2, is uniformly integrable w.r.t. the sequence (). Applying (7.1.12) of
Proposition 7.1.5 in X, (this characterization does not require the completeness of
the metric space), we obtain that p,, converges to p in the p-Wasserstein distance
of Zp(Xz). It follows by Remark 7.1.6 that any sequence of plans p,, € I'(jin, 1),
optimal in &7, (X), satisfies

B, = (Ex8)pp in Pp(Xe X Xg) asn— oo. (7.1.17)

We suppose p > 2 and we integrate with respect to p,, the inequality (¢, is a
strictly positive constant, j,(x1) = |z1[P~%21)

1 1 )
cplzy — zafP < 5|$2|p - 5\$1|p = (p(a1), w2 —@1) Vi, 22 € X,
which we will prove in Lemma 10.2.1; we obtain
Wl (s pin) < / cplrr — 22| dpy, (21, 22) (7.1.18a)
XxX
(R D
< | (Sl = Sfanl? = Gplwn),wz — 1) ) dp, (w1, 22)
XxX P p
1 1
=— [ |z2P dpn(z2) — = [ |&1|” dpu(z1)
P Jx pJx

(7.1.18b)
- / <y17y2> dﬂ‘n(ylay2)7
XxX
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where
[I‘n = (]p © Trla 7T2 - Trl)#l'l’n'
Since the first marginal of fi,, is fixed in &, (X), it is easy to check by Lemma

5.2.1 that
P, — ((p)ep) x 6 in (X x X)) asn — oo,

and that (w,,) satisfies the assumptions of Lemma 5.2.4; therefore, passing to
the limit as n — oo in (7.1.18a,b), the convergence of the moments (7.1.16) and
Lemma 5.2.4 yield W, (s, pin) — 0.

The case p < 2 follows by the same argument and inequality (10.2.5). |

7.2 Interpolation and geodesics

In this section we are assuming that X is a separable Hilbert space and p > 1,
and we show that constant speed geodesics in &Z,(X) coincide with a suitable
class of interpolations obtained from optimal transport plans. Recall that a curve
e € Zp(X), t €10,1], is a constant speed geodesic (see also (2.4.3)) if

Wy (s, ) = (& — )Wy (o, p1) V0 <s<t<1. (7.2.1)
Ifpe P2(XN),N>21<i,jk<N,andt¢c[0,1] we set

= (1 -t tnd XY - X, (7.2.2)

m = (1= R ik XY X2 (7.2.3)
P = (7 em € 2(X), (7.2.4)
piTI = (RTIR e P(X2). (7.2.5)

It is well known that T',(u', #?) can contain in general more than one element.
In the following lemma we show that along a geodesic the optimal plans to the
extreme points po, p1 are unique and induced by a transport map (which enjoys
nicer properties, see [30]), if we consider u., ¢t € (0,1), as the initial measure.

Lemma 7.2.1. Let (ut)ef0,1] be a constant speed geodesic in &,(X) and let t €
(0,1). Then Ty(jue, 1) (resp. To(pto, j1e)) contains a unique plan p'' (resp. p°t)
and this plan is induced by a transport. Moreover, p = p't o pu9t € Ty (1o, p11) and

1,1—2 —2,2
e G P TR T T3 (7.2.6)
Proof. For t € (0,1) let v (resp. i) be optimal transport plans between g and
e (vesp. gy and pq). In order to clarify the structure of the proof it is convenient
to view g, pi, 1 as measures in Z(X;), P (Xz), P(X3), where X; are distinct
copies of X. Then, we can define

A= / Yoo X Ny dut(l‘z) € F(/”‘Ov/”‘tv/’l‘l)
X2



7.2. Interpolation and geodesics 159

where v = fX2 Yz, dpt and m = fX2 Nz, dp are the disintegrations of v and i with
respect to the common variable z5. Then, since (recall the composition of plans
in Remark 5.3.3)

p=mnoy=my"XeT (1o, 1)

we get

Wy(po,s 1) < [lon — 23l Louix) < 21 — 22l rnix) + |72 — 23] Lo (ax)

= @1 — w2llLr(yix) + 1wz — @3l o nix) = Wplko, pa)-

This proves that p is optimal; moreover, since all inequalities are equalities and
the LP-norm is strictly convex, we get that there exists o > 0 such that x5 —
r1 = afzg — x1) for A-a.e. triple (21, z2,x3). Using the fact that W, (us, o) =
tWy (1o, p1) we obtain a = ¢ and therefore

To — X1 = t(xg — $1) A-a.e. in X1 X X2 X Xg.

Denoting by z(z2) the barycenter of v,,, the linearity of this relation w.r.t.
yields
xo — z(x2) = t(xz — z(x2)) m-a.e. in Xy x X3.

Hence n is induced by the transport r(z2) = @9/t —2z(x2)(1—1t)/t. Since z depends
on « and v and 1 have been chosen independently, this proves that n is unique,
so that § = p!?!, the measure defined in (7.2.6). Inverting the order of o and py,
we obtain the other identity. |

Theorem 7.2.2 (Characterization of constant speed geodesics). If u € T',(ut, p?)
then the curve t — p; := ut =2 is a constant speed geodesic connecting ' to p?.
Conversely, any constant speed geodesic i : [0,1] — Z2,(X) connecting u* to p?
has this representation for a suitable p € To(u', u?), which can be constructed
from any point puy, 0 <t <1, as in the previous Lemma.

Proof. By (7.1.6) we get
Wyl sis) < (6 — )Wy(u i) Vs, te (0,1), s<t.  (127)

If there is a strict inequality for some s < ¢t we immediately derive a contradiction
by applying the triangle inequality with the points pug, ps, gt and py. Therefore
equality holds and p; is a constant speed geodesic.

Let u; be a constant speed geodesic and for a fixed ¢ € (0,1) let p := p!top®t
be as in Lemma 7.2.1. Since pu°t = (71}1’1_)2)## is the unique element of T',(po, fit)
and the curve s — fi5, s € [0,1] is a constant speed geodesic, we get

1—2

)0t = (112 0w ) = (r )

Hst = ( s )#H = \Ts

Inverting po with p; we conclude. ]
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H1

~ N R \\
‘ Ho
Figure 7.1: An example of geodesic: the mass of u° splits into two parts

(] 9] M1

1o - S

Mt

Figure 7.2: Another example of geodesic: the trajectories may intersect

In the case X = R, using the explicit representation (6.0.3) for the Wasser-
stein distance in terms of the inverses of distribution functions, we get

Fol,=(1- HF L +tFL Lae in (0,1). (7.2.8)
t

w2

for any geodesic p}—? induced by p € T (ut, p?).

7.3 The curvature properties of %7,(X)

In this section we consider the particular case p = 2 and we establish some finer
geometric properties of Z5(X).

In particular we will prove in Theorem 7.3.2 the semiconcavity inequality
of the Wasserstein distance from a fixed measure p? along the constant speed

geodesics pf —2 connecting pl to p?:

W3 (2, 0%) = (L= t)W5 (', 1) + W5 (1%, 1) — (1 = )W3 (', p?). (7.3.1)

According to Aleksandrov’s metric notion of curvature (see [5] and Section
12.3 in the Appendix), this inequality can be interpreted by saying that the Wasser-
stein space is a positively curved metric space (in short, a PC-space). This was
already pointed out by a formal computation in [124], showing also that generically
the inequality is strict (see Example 7.3.3). See also Section 12.3 in the Appendix,
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where we recall some basic facts of the theory of positively curved metric spaces,
and [140] for similar results when X is a metric space.
For p € T'(pt, p?, p3) € Po(X3) and i, j, k € {1,2,3}, t € [0,1] we set

Wﬁ(uiﬁj,pk) = /Xs |(1 = t)x; + to; — x| dp(zy, 29, 23). (7.3.2)

By (7.1.6) we get o o
W3 (™7 1" < W2 (s ). (7.3.3)
Moreover, the Hilbertian identity
(1 —=tha+tb—c* =1 —t)|a—c*+tlb—c|* —t(1—1t)b—al?
gives
Wi 2, 0%) = (L= t)Wi(p', 1®) +tWe(p?, 1®) — t(L = )W (u', p°), (7.3.4)
and the related differential identities

d e
Wi (ui ™2, 1%) = Wi, 1®) = Wiuh, 1®) + (2t = YW (u', i) (7.3.5)

dtH

1 B -

:—1,,5(W5(M2’M3)—W5(u§ L) = Wi 2,u3)) (7.3.6)
1 - B

:;(Wﬁ(ﬂi 2 ) WEG R ) = W ). (7.37)

Proposition 7.3.1. Let u'? € T'(ut, p?), t € (0,1) and p'® € To(ut=2, u3). Then
there exists a plan

py €T(p'?,1%)  such that  (m,~*%)pp, = p'?, (7.3.8)

and this plan is unique if u*? € To(u', u?). For each plan p, satisfying (7.3.8) we
have

Wit (e~ 2,0%) = (L=t)W (', 1) + W5 (02, 1%) =t (L= t)W (', p?). (7.3.9)

Proof. Let ¥;: X? — X2 and A, : X?> — X3 be the homeomorphisms defined by
YSi(z1,x2) = (L —t)ay + twe, x2), Ap(x1,29,23) = (1 — t)x1 + tag, x0,x3)
and notice that p has the required properties if and only if v := Ay p satisfies
1,2 1,3 :
Ty v="Yuu'? Ty v=pu's (7.3.10)

Then, Lemma 5.3.2 says that there exists a plan v fulfilling (7.3.10) and, since A;
is invertible, this proves the existence of p. When p!2 is optimal, since ¥ pu'? €
To(ui™2, ), we infer from Lemma 7.2.1 that X, p'? is unique and induced by
a transport map and therefore v and p are uniquely determined. O
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2

23

3

Figure 7.3: p'? and p'® are given optimal plans; p?® and p'? are not optimal, in

general

Theorem 7.3.2 (#5(X) is a PC-space). For each choice of u', u?, u® € Po(X)
and p'? € T'(pt, p?) we have

W3 (2, 1%) = (L= O)W3(ut, 1)+ W3 (02, 1) — t(1 = )W a2 (', ) (7.3.11)

and the map t — W2 (u}t=2, 1) 7t2W312 (pt, p?) is concave in [0,1]. In particular,
choosing pt*? € Ty(ut, n?) (see Figure 7.3) we have

W3 (72, 0%) = (L= )W5 (uh, 1) + W5 (12, 1%) — ¢(1 = )W3 (', p?) (7.3.12)
and therefore P3(X) is a PC-space.

Proof. (7.3.11) is a direct consequence of (7.3.
concavity property we choose A, t1, ta € [0,1]
only to develop the obvious calculations:

9) and (7.3.3). In order to prove the
, t:= (1 — A\)t1 + Mo, and we have

W3 (%, 1%) = Wi (u', p?) = Wa (u =", 1) — 2 Whia (u', 1)
(L= W3 (", 15?) + AW5 (2, 1) — (A(l = A(t2 —t1)? + t2) Wiz (u', i?)
(L= [W5 (% 1) = W Swa (, 10®) |+ MWS (g2, 167) = 3W e (' 1)) -

In the case pu'? € T, (ut, u?) is sufficient to note that Wim(ul,;ﬂ) = Wi(pt, p?).
(]

Y

Example 7.3.3 (Strict positivity of the sectional curvature). The following example
shows that in general the inequality (7.3.1) is strict. Let

1 1 s 1
phi= 5 Ban +0ss) s 1= 5 (01 +053) . #7:= 5 (600 +00,-1) -
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1—2
Hy

T

Figure 7.4: p® is the sum of deltas on black dots, p; 2 is moving along the dotted lines

Then, it is immediate to check that W2 (u', u?) = 40, W2(u', p®) = 30, and
W2(u?, 1?) = 30. On the other hand, the unique constant speed geodesic joining
! to p? is given by

1
=5 (5(176t,1+2t) + 5(576t,372t)>

and a simple computation gives

30 30 40
24 = W3 -
W3 (1172, 18%) > 5 Ty T
Formula (7.3.11) is useful to evaluate the directional derivative of the Wasser-
stein distance. If u'? € T'(u!, pu?), general properties of concave maps ensures that
for each point ¢ € [0, 1) there exists the right derivative
d o W3 (%, %) = W3 (%, %)

w- 1—2 3 =i
dt+ Q(Mt ?lu ) tl/l,’LII} tlft

and, for ¢ € (0,1], the left derivative

1—2 3\ _ 1—2 3
d WQ( 1—»2’u3) -— lim (/’l/t y ) W2 (/’l/t/ y )

dt— 1t t—1t

satisfying

d d =2,

and, for a (at most) countable subset .4 C (0,1)

W2 ( 1_)2a :us)

W2 ( 1_>2,M3) W2 ( 1_)23“’3) Vit e (0’ 1) \‘/V (7313)

dt—i— dt
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Corollary 7.3.4. Let p', 2, p® € Po(X), ut? € T(ut, u?), t €10,1], and

pe € D(pt2, 1) such that (7} 7% yup € To(ui™2, 1®) as in Proposition 7.3.1.

Then

d o

" (e 2 0%) < W2 (02 0%) = W2 (nh 1®) + (2t = WL (', 1i?)

1 : — — :
= = (W2, (a2 1) = W2 (i ) = WE (=2 "))
1 ~ -
= (W2, (™2 ) + WE (=2 ) = W2 (i)
d e
Sﬁ”@(ﬂ% 1)

(7.3.14)
In particular, equality holds in the previous formula whenever t belongs to the set
of differentiability of the distance, i.e. t € (0,1)\ A"

Proof. We simply observe that
Wi (2 i) S W (i, ™) 38 # 6, W2, 0®) = Wi (w2, 1),

and we apply (7.3.9) and (7.3.5), (7.3.6), (7.3.7) to evaluate the right and left
derivatives. g

We conclude this section by a precise characterization of the right derivative
(7.3.14) at time ¢t = 0; we need to introduce some more definitions.

Definition 7.3.5 (A new class of multiple plans). Let u'? € 925(X?) and p? €
P5(X). We say that p € T(ut?2, 1i3) belongs to To(put?, 1) if 71';@311, € To(ut, 1?).

Proposition 7.3.6. Let u'2cT'(ut, p?), pu € Po(X). Then for every peTo (' 2, u?)
such that

/ lzo — x3|% dp = min{/ lzo — 3| dv v € Fo(ulz,/ﬁ)} (7.3.15)
X3 X3

we have
iwz( 1-2 /3 _ (WQ( 2 3)—W2( L) — W2 (! 3))
dt+ 2 (Mg y |t:0_ p,:uvl’é p,:uvl’é 2 M
= —2/ (2 — 1,23 — 1) dps. (7.3.16)
X3
Proof. We already know by (7.3.14) that

d . ,
EWf(Mi 2y < (Wﬁ(uzvug) —Wh(u', p?) — sz(ul,u"))
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so that we simply have to prove the opposite inequality. Let .4 be the negligible
set defined by (7.3.13); thanks to (7.3.14) and to the semiconcavity of the squared

distance map, we have

d o0 122 3 : d o0 122 3
il v Vs = lim —W.
2 (1) th,lteW dt+ 2 (e 12%)

. 1 — —
= 7 (W ) = Wi ™2, 02) = WE G2 %)

> (Wﬁo (1% 1) = Wha(ph, p®) — Wf(ul,us)),
where p, is any narrow accumulation point of p, as ¢t | 0. By Proposition 7.1.3
71';#2;1,0 =pl?, 7791%3“0 € T,(pt, 4?). Invoking (7.3.14) again, we conclude. |

Since the integrals of |x1 — 22|? and of |21 —2:3|* do not depend on the choice
of v € Ty(pt?, u3), we can reformulate (7.3.16) as

d 2¢,1—-2 3 :
EWQ (,ut , )‘t=0 = yeFUIEJI,PQ,p% —2 /X3 <.Z‘2 — T1,T3 — .Z‘1> dv. (7317)



Chapter 8

Absolutely Continuous Curves
in &,(X) and the Continuity
Equation

In this chapter we endow &2,(X), when X is a separable Hilbert space, with a
kind of differential structure, consistent with the metric structure introduced in
the previous chapter. Our starting point is the analysis of absolutely continuous
curves (i : (a,b) — Z,(X) and of their metric derivative |u/|(¢): recall that these
concepts depend only on the metric structure of &2,(X), by Definition 1.1.1 and
(1.1.3). We show in Theorem 8.3.1 that for p > 1 this class of curves coincides with
(distributional, in the duality with smooth cylindrical test functions) solutions of
the continuity equation

%Mt-FV'(Ut,U,t):O in X x (a,b).
More precisely, given an absolutely continuous curve i, one can find a Borel time-
dependent velocity field v; : X — X such that [lv¢||re(,) < [1'|(t) for ZLlae.
t € (a,b) and the continuity equation holds. Conversely, if y; solve the continuity
equation for some Borel velocity field v; with f; lvellLe(u,) dt < 400, then py is
an absolutely continuous curve and |[v¢]| 1o (,,,) > |1/|(t) for L -a.e. t € (a,b).

As a consequence of Theorem 8.3.1 we see that among all velocity fields
v; which produce the same flow i, there is a unique optimal one with smallest
LP(uy; X)-norm, equal to the metric derivative of p;; we view this optimal field as
the “tangent” vector field to the curve u;. To make this statement more precise,
one can show that the minimality of the LP norm of v; is characterized by the

property

vr € {34(Vp) : ¢ € Cyl(X))}

0 for Zt-a.e. t € (a,b), (8.0.1)
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where ¢ is the conjugate exponent of p and j, : L9(p; X) — LP(u; X) is the duality
map, i.e. j,(v) = |[v|7"?v (here gradients are thought as covectors, and therefore
as elements of L?).

The characterization (8.0.1) of tangent vectors strongly suggests, in the case
p = 2, to consider the following tangent to Po(X)

Tan, 25(X) = [V : g € Cyl(X)]~ »

Y € Py(X), (8.0.2)
endowed with the natural L? metric. Moreover, as a consequence of the charac-
terization of absolutely continuous curves in #5(X), we recover the BENAMOU—
BRENIER (see [26], where the formula was introduced for numerical purposes)
formula for the Wasserstein distance:

. ! d
W2 s ) =i { [ ol ix o+ V- o) =0f . (803)

Indeed, for any admissible curve we use the inequality between L? norm of v; and
metric derivative to obtain:

1 1
AHM%WMﬁZAHW@ﬁZWﬁmwﬂ

Conversely, since we know that &% (X) is a length space, we can use a geodesic
ue and its tangent vector field v; to obtain equality in (8.0.3). Similar arguments
work in the case p > 1 as well, with the only drawback that a priori the L? closure
of j,(Ve) is not a vector space in general, so we are able only to define a tangent
cone. We also show that optimal transport maps belong to Tan,27,(X) under
quite general conditions.

In this way we recover in a more general framework the Riemannian inter-
pretation of the Wasserstein distance developed by OTTO in [124] (see also [123],
[94]) and used to study the long time behaviour of the porous medium equation.
In the original paper [124], (8.0.3) is derived in the case X = R¢ using formally
the concept of Riemannian submersion and the family of maps ¢ — ¢4 p (indexed
by 1 < £?) from ARNOLD’s space of diffeomorphisms into the Wasserstein space.
In OTTO’s formalism tangent vectors are rather thought as s = % ¢ and these
vectors are identified, via the continuity equation, with —D - (vsu:). Moreover vg
is chosen to be the gradient of a function ¢, so that D - (Visu,) = —s. Then the
metric tensor is induced by the identification s — V¢4 as follows:

(s,8),, = /R (Ve Vo) dp.

As noticed in [124], both the identification between tangent vectors and gradients
and the scalar product depend on i, and these facts lead to a non trivial geometry
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of the Wasserstein space. We prefer instead to consider directly v, as the tangent
vectors, allowing them to be not necessarily gradients: this leads to (8.0.2).

Another consequence of the characterization of absolutely continuous curves
is a result, given in Proposition 8.4.6, concerning the infinitesimal behaviour of
the Wasserstein distance along absolutely continuous curves p;: given the tangent
vector field vy to the curve, we show that

lim W (s (84 hoy) g )

lim ] =0 for L1-a.e. t € (a,b).

Moreover the optimal transport plans between p; and pi44p, rescaled in a suitable
way, converge to the transport plan (¢ X v;)4pu; associated to v, (see (8.4.6)). This
proposition shows that the infinitesimal behaviour of the Wasserstein distance is
governed by transport maps even in the situations when globally optimal transport
maps fail to exist (recall that the existence of optimal transport maps requires
regularity assumptions on the initial measure p). As a consequence, we will obtain
in Theorem 8.4.7 a formula for the derivative of the map ¢ ~— WP (i, v).

8.1 The continuity equation in R?

In this section we collect some results on the continuity equation
Ohpe +V - (vgpe) =0 in R? x (0,7), (8.1.1)

which we will need in the sequel. Here p; is a Borel family of probability measures

on R defined for ¢ in the open interval I := (0,T), v : (z,t) — v(z) € R is a
Borel velocity field such that

T
[ [ @ duteyar < -+, 8.12)
0 Rd

and we suppose that (8.1.1) holds in the sense of distributions, i.e.

T
/ / (ot 1) + (wr(2), Vaipla 1)) dse(z) i = 0,
0 R4
Vi e C (R x (0,T)).

(8.1.3)

Remark 8.1.1 (More general test functions). By a simple regularization argument
via convolution, it is easy to show that (8.1.3) holds if ¢ € C} (R? x (0,T)) as well.
Moreover, under condition (8.1.2), we can also consider bounded test functions ¢,
with bounded gradient, whose support has a compact projection in (0,7) (that is,
the support in 2 need not be compact): it suffices to approximate ¢ by @x g where
Xr € CP(RY), 0 < xr <1, |Vxg| <2and xg = 1 on Bg(0). This more general
choice of the test functions is consistent with the infinite-dimensional case, where
cylindrical test functions will be considered, see Definition 5.1.11 and (8.3.8).
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An equivalent formulation of (8.1.3) is

d

& e C(w) dpi(z) = /Rd (V¢(x),ve(x)) dug(z) V¢ € CF(RY) (8.1.4)

in the sense of distributions in (0,7); it corresponds to the choice ¢(t,x) =
n(t)¢(z) with n € C°(0,T). The equivalence follows by the density of the lin-
ear span of these functions in C} (R? x (0,7)). We can use (8.1.4) to obtain the
following result:

Lemma 8.1.2 (Continuous representative). Let i be a Borel family of probability
measures satisfying (8.1.4) for a Borel vector field vy satisfying (8.1.2). Then there
exists a narrowly continuous curve t € [0,T] — ji; € 2 (R?) such that ju; = ji; for
Lta.e. t € (0,T). Moreover, if p € CHR? x [0,T]) and t; <tz € [0,T] we have

[ elata) i@ = [ o(e.t0)din @

Rd
t (8.1.5)
= ; /Rd (8tgp + <V<p,vt)) dpg(x) dt.
Proof. From (8.1.4) we get
to (O = [ C@dmla) e WHO.T)  ve e O (R
R4
with distributional derivative
a(Q) = / (V¢(x),v¢(x)) due(x)  for L-ae. t € (0,T), (8.1.6)
R4
so that
(O SVORPIV  with VO [ u@ldu). 617
R R4

If L¢ is the set of its Lebesgue points, we know that #1((0,T) \ L¢) = 0. Let us
now take a countable set Z which is dense in C}(R?) with respect the usual C*
norm ||¢|l¢r = supga(|¢], |V(]) and let us set Lz := N¢ezLe. The restriction of
the curve p to Lz provides a uniformly continuous family of bounded functionals
on C}(R%), since (8.1.7) shows

t
126(0) — (O] < ¢l / VO)dA Vs,t€ Ly

Therefore, it can be extended in a unique way to a continuous curve {/i¢ }c[o,7]
in [CLH(RY)). If we show that {ju}icr, is also tight, the extension provides a
continuous curve in Z(R%).
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For, let us consider nonnegative, smooth functions ¢y : R? — [0,1], k € N,
such that

Ce(x) =1 if|z| <k, CG(x)=0 if|z|>k+1, |Vi(z)|<2.

It is not restrictive to suppose that (; € Z. Applying the previous formula (8.1.6),
for t, s € Ly we have

T
|1 (C) — s (C)| < ag = 2/ / [oa(z)] dpex () dA,
0 k<|z|<k+1
with Zz;xi ap, < +oo. For a fixed s € Lz and € > 0, being pus tight, we can find
k € N such that pus(¢r) > 1 —¢/2 and ai, < /2. Tt follows that

1t (Br+1(0)) = pue(Ce) =1 —¢ Vi€ L.

Now we show (8.1.5). Let us choose ¢ € CL(R? x [0,7]) and set ¢.(z,t) =
Ne(t)p(z,t), where n. € C°(t1,t2) such that

0<n(t) <1, li}gng(t) = X(t1,1)(t) Yt € [0,T], hHJln‘; =0y, — Oty

in the duality with continuous functions in [0, 7]. We get

0= /T/d (815(77890) + <Vx(77690),vt>) dpii () dt
OT R
= [ 00 [ (2retw.6) + (160, Vatant) dueta) e
v [ 0w [ etendiwa

Passing to the limit as £ vanishes and invoking the continuity of f;, we get (8.1.5).

O

Lemma 8.1.3 (Time rescaling). Let t : s € [0,7'] — t(s) € [0,T] be a strictly
increasing absolutely continuous map with absolutely continuous inverse s :=t~ ",
Then (pt,ve) s a distributional solution of (8.1.1) if and only if

fg:=pot, v:=tvot, isa distributional solution of (8.1.1) on (0,T").

Proof. By an elementary smoothing argument we can assume that s is continuously
differentiable and s’ > 0. We choose ¢ € C}(R? x (0,7")) and let us set p(z,t) :=
@(x,s(t)); since ¢ € CLH(RY x (0,T)) we have

T
0= / (5 ()0:p (2, s(1)) + (Vp( 5(1)). 0 (2))) dpe () dit
0 Rd

= [0 [ (2u60500) + (Vaplas). 2 dut)

Rd
— /OT /R (as<ﬁ(az, 8) + (Vo p(2, 8),t'(8)vrs) (x)>) djis(z) ds.
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When the velocity field v; is more regular, the classical method of character-
istics provides an explicit solution of (8.1.1).

First we recall an elementary result of the theory of ordinary differential
equations.

Lemma 8.1.4 (The characteristic system of ODE). Let v; be a Borel vector field
such that for every compact set B C R?

T
/ (sup |v¢| + Lip(vy, B)) dt < +o0. (8.1.8)
0 B
Then, for every x € R? and s € [0,T] the ODE

d

EXt(% s) = v (X¢(z, 5)), (8.1.9)
admits a unique mazimal solution defined in an interval I(z,s) relatively open in
[0,T] and containing s as (relatively) internal point.

Furthermore, if t — |X¢(x,s)| is bounded in the interior of I(x,s) then I(x,s) =
[0,T]; finally, if v satisfies the global bounds analogous to (8.1.8)

XS(.T, 3) =,

T
S = / (sup |ve| + Lip(vt,Rd)) dt < 400, (8.1.10)
0 N Rd

then the flow map X satisfies

T
/ sup |0 X¢(z,s)|dt < S, sup Lip(X:(-,s),R?) < e”. (8.1.11)
0 zeRd t,s€[0,T]

For simplicity, we set X;(x) := X;(z,0) in the particular case s = 0 and

we denote by 7(x) := sup I(z,0) the length of the maximal time domain of the
characteristics leaving from z at ¢t = 0.

Remark 8.1.5 (The characteristics method for backward first order linear PDE’s).
Characteristics provide a useful representation formula for classical solutions of the
backward equation (formally adjoint to (8.1.1))

oo+ (v, Vo) =9 inRYx (0,T), oz, T)=pr(r) zcR? (8.1.12)

when, e.g., 1 € CH(R? x (0,7)), o7 € C}(R?) and v satisfies the global bounds
(8.1.10), so that maximal solutions are always defined in [0, T']. A direct calculation
shows that

ol2,t) = or(Xo(z, 1)) — /t O(X,(2,1), 5) ds (8.1.13)

solve (8.1.12). For X (X(z,0),t) = X4(x,0) yields

(X, (1, 0). ) = pr(Xp(x,0)) — / (X (x,0), 5) ds,



8.1. The continuity equation in RY 173

and differentiating both sides with respect to t we obtain

5+ 09| (X1(0.0).0) = 0(Xi(2.0).0,

Since z (and then Xy(x,0)) is arbitrary we conclude that (8.1.19) is fulfilled.

Now we use characteristics to prove the existence, the uniqueness, and a
representation formula of the solution of the continuity equation, under suitable
assumption on v.

Lemma 8.1.6. Let v; be a Borel velocity field satisfying (8.1.8), (8.1.2), let ug €
P(RY), and let X; be the mazimal solution of the ODE (8.1.9) (corresponding to
s =0). Suppose that for some t € (0,T]

m(x) >t for po-a.e. x € RY. (8.1.14)

Then t v g := (X¢)4po is a continuous solution of (8.1.1) in [0,].

Proof. The continuity of u; follows easily since lims_; X, (z) = X¢(x) for pp-a.e.
x € R%: thus for every continuous and bounded function ¢ : R¢ — R the dominated
convergence theorem yields

lim [ Cdps =lim | ¢(Xs(x))dpo(z / C(X¢(x)) dpo(z / Cdpu.
s—t R4 s—t Rd

For any ¢ € C®(R? x (0,7)) and for ug-a.e. * € R? the maps t — ¢ (x) :=
©(X¢(x),t) are absolutely continuous in (0, %), with

$1(x) = p(Xe(2), 1) + (Vop(Xe (@), 1), 0 (Xe(2))) = A, 8) 0 X,
where A(z,t) == Oyp(z,t) + (Vo(z,t), v (x)). We thus have

//Iebt ) dpo () dt = //R (X¢ (), t)] dpo () dt
- / /Rd\A(x,tndut(x)dt

< Lip(yp) (T + /OT /Rd |ve ()| dpe () dt) < 400

and therefore

0= [ elaDduo) - [ ew0)dule) = [ (9(Xi(@)D)  9(2.0) du(o)

/ / b (x dt dMo / (B + (Voo, 1)) dpuy dt,
Rd Rd

by a simple application of Fubini’s theorem. O
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We want to prove that, under reasonable assumptions, in fact any solution
of (8.1.1) can be represented as in Lemma 8.1.6. The first step is a uniqueness
theorem for the continuity equation under minimal regularity assumptions on the
velocity field. Notice that the only global information on v; is (8.1.15). The proof,
based on a classical duality argument (see for instance [69, 9]), could be much
simplified by the assumption that the velocity field is globally bounded, but we
prefer to keep here a version of the lemma stronger than the one actually needed
in the proof of Theorem 8.3.1.

Proposition 8.1.7 (Uniqueness and comparison for the continuity equation). Let
ot be a narrowly continuous family of signed measures solving 0oy +V - (vior) = 0
in RY x (0,T), with oo <0,

T
/O /R o] d]ore|dt < +oo, (8.1.15)

and

T
/ (|0’t(B) + sup |v¢| 4+ Lip(vy, B)) dt < 400
0 B

for any bounded closed set B C RY. Then o, <0 for any t € [0,T].
Proof. Fix ¢ € C°(RY x (0,7T)) with 0 < ¢ < 1, R > 0, and a smooth cut-off
function

Xr(-) = X(-/R) € C=(R?) such that 0 < Xz < 1, |VXg| < 2/R,

' (8.1.16)
Xr =1 on Br(0), and Xg =0 on R*\ Bag(0).

We define w; so that w, = v, on Bag(0) x (0,7), w, =0 if ¢ ¢ [0,7T] and

sup |wy| + Lip(ws, RY) < sup  |vg| + Lip(vs, Bag(0)) VYt € [0,T].  (8.1.17)
R4 B2r(0)

Let w; be obtained from w; by a double mollification with respect to the space
and time variables: notice that wy satisfy

T
sup / (sup lwi | + Lip(wf,]Rd)) dt < +o0. (8.1.18)
ce(0,1)Jo  \ Rd

We now build, by the method of characteristics described in Remark 8.1.5, a
smooth solution ¢ : R x [0, 7] — R of the PDE

£

dp

o T Vet = ¢ in R? x (0,7), ¢°(z,T)=0 z¢€R™% (8.1.19)

Combining the representation formula (8.1.13), the uniform bound (8.1.18), and
the estimate (8.1.11), it is easy to check that 0 > ¢ > —T and |V¢®| is uniformly
bounded with respect to ¢, ¢ and x.
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We insert now the test function ¢*Xg in the continuity equation and take
into account that oy < 0 and ¢° < 0 to obtain

T
a (>
0 = —/ SOEXRdUo:/ / XR Ld + (ve, XpV¢© + oV Xg) doydt
Rd 0 Rd 8t
T T
= / / XR(w+<vt7wf,ch5>)datdt+/ / O (VXR,v) dodt
0 Jrd 0 JRd
T T
> / / XR(w—i—(vt—wf,Vng))datdt—/ / [V XRg||vt] d|ot] dt.
0 R4 0 Rd

Letting £ | 0 and using the uniform bound on |V¢*| and the fact that wy = v; on
supp Xgr x [0,T], we get

T T ) T
/ / XRwdatdtg/ / \VXRHvt\d\at\dtS—/ / (oo o] dt.
0 JRd 0o Jrd R Jo Jr<|zi<2r

Eventually letting R — oo we obtain that fOT Jga ¥ doydt < 0. Since 1 is arbitrary
the proof is achieved. O

Proposition 8.1.8 (Representation formula for the continuity equation). Let pu,
t € [0,T], be a narrowly continuous family of Borel probability measures solving
the continuity equation (8.1.1) w.r.t. a Borel vector field vy satisfying (8.1.8) and
(8.1.2). Then for po-a.e. x € R the characteristic system (8.1.9) admits a globally
defined solution Xy(x) in [0,T] and

pe = (Xe)upo Vtel[0,T]. (8.1.20)

Moreover, if

T
/ / |vg ()|P dpe () dt < +o00  for some p > 1, (8.1.21)
0o Jrd

then the velocity field vy is the time derivative of Xy in the LP-sense

T—h p
X - X
lim / erhl®) = Xe@) o) dpo(w) dt = o, (8.1.22)
nlo Jg Rd h
Ail% M =v(x) in LP(uy; RY)  for Ll-ace. t € (0,T). (8.1.23)

Proof. Let E; = {7 > s} and let us use the fact that, proved in Lemma 8.1.6,
that ¢t — X, (Xg, o) is the solution of (8.1.1) in [0, s]. By Proposition 8.1.7 we
get also

Xix(XE, p0) < fue whenever 0 < t < s.
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Using the previous inequality with s = ¢ we can estimate:
T(x)
[ sw 1Xo) ~alduota) < [ [ 1@ duo(a)
R4 (0,7(x)) R4 JO
7(x)
= [ [ el duoto)
re Jo

T
- / oy (X(2)) | dpto(x) dt

E
T
/ / |’Ut| d,ut dt.
0 Rd

It follows that X,(x) is bounded on (0,7(z)) for ug-a.e. x € R? and therefore X;
is globally defined in [0, T for po-a.e. in RY. Applying Lemma 8.1.6 and Proposi-
tion 8.1.7 we obtain (8.1.20).

Now we observe that the differential quotient Dy (z,t) := h™'(Xiin(z) —
X¢(z)) can be bounded in LP(ug x .£*) by

T—h
T—h

T—h 1 h
<[ [ 5 [ e e @)l dsduo(a)de
0 R4 0
T

g/o » lvg (X¢(2)) ] dpo(z) dt < +o0.

IA

p

Xin(r) — Xy(2) dpo () dt

h

p

h
dpo(x) dt
0

A AN

Since we already know that D}, is pointwise converging to v; o Xy pg x Z*-a.e. in
R? x (0,7, we obtain the strong convergence in LP(ug x £1), i.e. (8.1.22).

Finally, we can consider ¢ — X;(-) and ¢ — v (X¢(+) as maps from (0,7 to
LP(po; RY); (8.1.22) is then equivalent to

T—h p

. Xitn — Xy
1 Ztrh 1
im 5

r10 Jo - vt(Xt)

dt =0,
LP(po;R)

and it shows that ¢ — X;(+) belongs to ACP(0,T; LP(uo; RY)). General results for
absolutely continuous maps in reflexive Banach spaces (see 1.1.3) yield that X, is
differentiable .#!-a.e. in (0,7), so that

P

Xign(z) — Xo(2) dpo(z) =0 for L'-ae. t € (0,7).

h

lim

h—0 Jrd T (Xt (-’If))

Since Xyqpn(x) = Xp(Xi(x),t), we obtain (8.1.23). O
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Now we state an approximation result for general solution of (8.1.1) with
more regular ones, satisfying the conditions of the previous Proposition 8.1.8.

Lemma 8.1.9 (Approximation by regular curves). Let p > 1 and let i, be a time-
continuous solution of (8.1.1) w.r.t. a velocity field satisfying the p-integrability
condition

/T/ |ve(2)|P dpe () dt < +oc0. (8.1.24)
0 Jre

Let (p.) € C>®(R%) be a family of strictly positive mollifiers in the x variable,
) =

(e.g. pe(x) = (2me) =42 exp(—|z|?/2¢)), and set
g g Eta
b gy Ef = (o) pey 0 = (8.1.25)
t

Then 1§ is a continuous solution of (8.1.1) w.r.t. v§, which satisfy the local regu-
larity assumptions (8.1.8) and the uniform integrability bounds

[ pi@pai@ < [ u@rdue vee ©.1). (8.1.26)
R R
Moreover, Ef — vy narrowly and

lglln& ||’UfHLp(#ts;Rd) = HthLl"(;Lt;Rd) Vt € (O,T) (8127)

Proof. With a slight abuse of notation, we are denoting the measure u§ and its
density w.r.t. .Z? by the same symbol. Notice first that |E¢|(t,-) and its spatial
gradient are uniformly bounded in space by the product of ||v¢|[11(,,) with a con-
stant depending on e, and the first quantity is integrable in time. Analogously,
|5 |(t, -) and its spatial gradient are uniformly bounded in space by a constant de-
pending on e. Therefore, as v§ = Ef/u$, the local regularity assumptions (8.1.8)
is fulfilled if
|x|§}%,ntfe[0,T] pi(x) >0 for any ¢ > 0, R > 0.

This property is immediate, since pf are continuous w.r.t. ¢ and equi-continuous
w.r.t. x, and therefore continuous in both variables.

Lemma 8.1.10 shows that (8.1.26) holds. Notice also that ¢ solve the conti-
nuity equation

O + V- (ips) =0 inRY x (0,7), (8.1.28)

because, by construction, V - (v u§) = V- ((vepir) % pe) = (V- (veper)) * pe. Finally,
general lower semicontinuity results on integral functionals defined on measures of

the form
p

E
dp

Evl’(‘H -
B |

(see for instance Theorem 2.34 and Example 2.36 in [11]) provide (8.1.27). O
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Lemma 8.1.10. Let p > 1, u € P(R%) and let E be a R™-valued measure in R?
with finite total variation and absolutely continuous with respect to p. Then

P
E
/ u*pdxg/
R4 R4

I
for any convolution kernel p.

p

E
* P d

% p

Proof. We use Jensen inequality in the following form: if ® : R™+! — [0, +o0] is
convex, l.s.c. and positively 1-homogeneous, then

o[ vwae) < [ o) e

for any Borel map ¢ : R — R™*! and any positive and finite measure 6 in R?
(by rescaling 6 to be a probability measure and looking at the image measure 40
the formula reduces to the standard Jensen inequality). Fix x € R? and apply the
inequality above with ¢ := (E/u, 1), 6 := p(x — -)u and
P
P eis
=T
P(z,t) == if (z,t) = (0,0)
+oo if either t <0 ort =0,z #0,

to obtain
Exp(x)|? (/ E / )
— | pxplx) = @ —Welx —y)duly), | plz —y)duly
I [ Zwota =) dut). [ ple = auty)
E
< [ #E W 0pla ) duty
R M
E P
= / — | (W)p(z —y) du(y)-
Re | K
An integration with respect to x leads to the desired inequality. O

8.2 A probabilistic representation of solutions of the
continuity equation

In this section we extend Proposition 8.1.8 to the case when the vector field fails to
satisfy (8.1.8) and is in particular not Lipschitz w.r.t. 2. Of course in this situation
we have to take into account that characteristics are not unique, and we do that
by considering suitable probability measures in the space I'7 of continuous maps
from [0, T'] into R¢, endowed with the sup norm. The results presented here are not
used in the rest of the book, but we believe that they can have an independent
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interest. Indeed, this kind of notion plays an important role in the uniqueness
and stability of Lagrangian flows in [10] and provides an alternative way to the
approach of [69]. We refer to [105] for extensions to more general metric spaces
and [29] for a different approach.

Our basic representation formula for solutions py' of the continuity equation
(8.1.1) is given by

/s@dul’: / p(®)dn(z,7) Yo e CORY, te[0,T]  (8.21)
R4 RdxIr

where 1 is a probability measure in R x I'z. In the case when 7 is the push
forward under = — (z,X.(x)) of po (here we are considering X as a function
mapping x € R? into the solution curve ¢ — X;(z) in I'7') we see that the measures
py implicitly defined by (8.2.1) simply reduce to the standard ones considered in
Proposition 8.1.8, i.e. ! = X (+)#/0-

By introducing the evaluation maps

e : (z,7) ERIx Tp () €RY,  for t €[0,T], (8.2.2)
(8.2.1) can also be written as

pi = (et)yn. (8.2.3)

Theorem 8.2.1 (Probabilistic representation). Let i : [0,T] — Z2(R?) be a nar-
rowly continuous solution of the continuity equation (8.1.1) for a suitable Borel
vector field v(t, z) = vi(x) satisfying (8.1.21) for some p > 1. Then there exists a
probability measure n in RY x T'p such that

(i) m is concentrated on the set of pairs (x,v) such that v € ACP(0,T;R?) is a
solution of the ODE %(t) = vi(y(t)) for L1-a.e. t € (0,T), with v(0) = z;

(i) e = py! for any t € [0, T, with py defined as in (8.2.1).
Conversely, any n satisfying (i) and

/ / loe (+(8))| dp (e, ) d < 4o, (8.2.4)
0 R xTp

induces via (8.2.1) a solution of the continuity equation, with o = v(0)xn.

Proof. We first prove the converse implication, since its proof is much simpler.
Indeed, notice that due to assumption (i) the set F of all (¢,z,7) such that ei-
ther 4(t) does not exist or it is different from v, (7(t)) is £ x n-negligible. As a
consequence, we have

() = v(y(t)) m-ae., for Lr-ae. t € (0,T).

It is immediate to check using (8.2.1) that ¢ — p;' is narrowly continuous. Now
we check that ¢ — [ ¢ duy is absolutely continuous for ¢ € C*(R?) bounded and
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with a bounded gradient. Indeed, for s < ¢ in I we have

‘/ Cdu?*/ Cdu?
R R

IA

[ [ 1o i
s JRIXTp

t
HVCIIOO/ /R ) lvy (v(7))| dn d.

By (8.2.4) this inequality immediately gives the absolute continuity of the map.
We have also

IN

d . d
G Lcmr = 5[ cown

[, enswnan= [ vcudn

for #t-a.e. t € (0,T). Since this pointwise derivative is also a distributional one,
this proves that (8.1.5) holds for test function ¢ of the form {(x)1(¢) and therefore
for all test functions.

Conversely, let pug, v; be given as in the statement of the theorem and let
us apply the regularization Lemma 8.1.9, finding approximations pj, v§ satisfying
the continuity equation, the uniform integrability condition (8.1.2) and the local
regularity assumptions (8.1.8). Therefore, we can apply Proposition 8.1.8, obtain-
ing the representation formula pu§ = (X7 )xpug, where X7 is the maximal solution
of the ODE X{ = v (X}) with the initial condition X§ = z (see Lemma 8.1.4).
Thinking X ¢ as a map from R to 'y, we thus define

n° = (i x X%)ppus € PR x T'p).

Now we claim that the family n¢ is tight as € | 0 and that any limit point 7 fulfills
(i) and (ii). The tightness of the family can be obtained from Lemma 5.2.2, by
choosing the maps !, 7% defined in R¢ x I'p

rti(z,y)—xeRY 72 (2,9) >y -z el (8.2.5)
and noticing that r : ' x 72 : R x I'p — R? x I'p is proper, the family 7 n° is
given by the first marginals i which are tight (indeed, they narrowly converge to
u°), while B° := ring satisfy

[ s = [ [ ai
/Rd /OT vtg(Xf)|Pdtd,ug(x)_/0T/Rd o (@) P dpc () dit
[ o oy

IN
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Since for p > 1 the functional v — fOT |¥|P dt (set to +oo if v ¢ ACP((0,T); R?) or
v(0) # 0) has compact sublevel sets in I'r, also 3° is tight, due to Remark 5.1.5.

Let now 1 be a narrow limit point of ¢, along some infinitesimal sequence
£;. Since

/ oyl = / () s = / D(XE) dpisy = / i
Rd RdxTr Rd Rd

for any ¢ € CP(R?), we can pass to the limit as i — oo to obtain that p =y, so
that condition (ii) holds.

Finally we check condition (i). Let w(¢, ) = wi(x) be a bounded uniformly
continuous function, satisfying |w;(z + 2) — w¢(x)] < w(z) with w bounded and
infinitesimal as z — 0, and let us prove the estimate

/ dn(z, 2T~ 1/ / —w,|P dpy dr.
R xT'p R

(8.2.6)
Indeed, we have

() =2 — / wr () d|

p

()~ — / w,(Y(r)) dr| i (z,7)

Xi@) o= [ w(Xi@)ar| did(a)

t
= / dpl(x) <P~ 1// vE —w,|Pduf dr
R

(7 —wr) (X7 (2 ))dT
< (2t)P~ 1// [vS — wi|Pduf dr + (2t)P~ 1// |ws — w, P duf dr

< (2T)p*1/ / \v77w7|pd,u7d7'+(2T)p71/ / pe(2)|w(2)|P dz dr,
0o Jre 0o Jre

where we have added and subtracted wS := (w,pu;) * po/us in the last two in-
equalities and then used Lemma 8.1.10. Setting € = ¢; and passing to the limit
as ¢ — oo we recover (8.2.6), since the function under the integral is a continuous
and nonnegative test function in R% x I'p.

Now let p := fOT pe dL1(t) the Borel measure on R? x (0,7T) whose disin-
tegration with respect to £ is {u}ieo.r) and let w™ € CO(R? x (0,7);RY) be
continuous functions with compact support converging to v in LP(u; R?). Using
the fact that p; = py! we have

T T
[ [ wree) - ea@rdran= [ [ o pdadr o
RexT'r JO 0 R4

as n — oo so that, using the triangular inequality in LP(n), we can pass to the
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limit as n — oo in (8.2.6) with w = w™ to obtain

/ﬂ\ngFT

and therefore

p

’y(t)—x—/o or(y(P)dr| dn@y) =0 Vie[0,T],  (8.2.7)

y(t) —z — /0 vr(y(7))dT =0 for m-a.e. (x,7)

for any ¢ € [0, T]. Choosing all ¢’s in (0, 7')NQ we obtain an exceptional n-negligible
set that does not depend on ¢ and use the continuity of v to show that the identity
is fulfilled for any ¢ € [0, T]. O

Notice that due to condition (i) the measure 7 in the previous theorem can
also be identified with a measure o in I'r whose projection on R? via the map
eo : 7 — 7(0) is po and whose corresponding disintegration o = [, o7, dpo(z) is
made by probability measures o, concentrated on solutions of the ODE starting
from x at ¢ = 0. In this case (8.2.1) takes the simpler equivalent form

[oeaut= [ powdon)  veeCl®Y, tel0T.  (28)
T

Finally we notice that the results of this section could be easily be extended
to the case when R? is replaced by a separable Hilbert space, using a finite dimen-
sional projection argument (see in particular the last part of the proof of Theorem
8.3.1).

8.3 Absolutely continuous curves in Z,(X)

In this section we show that the continuity equation characterizes the class of
absolutely continuous curves in &Z,(X), with p > 1 and X separable Hilbert space
(see [9] for a discussion of the degenerate case p = 1 when X = R%).

Let us first recall that the map j, : LP(u; X) — L9(p; X) defined by (here
q = p’ is the conjugate exponent of p)

) lv[P=2v if v # 0,
= 8.3.1
v o) {0 ol (8:3.1)
provides the differential of the convex functional
1
ve LP(u X) 5/ (@) )P du(z), (8.3.2)
X

for every measure p € Z2(X); in particular it satisfies

HMMthwmwmzﬁm@wwm, (8.3.3)
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w=jp(v) <= v=/j4(w), (8.3.4)

1 1 .

10y = S0y = U)o = w) Yo e D X). (335
Recall that the space of smooth cylindrical functions Cyl(X') has been introduced
in Definition 5.1.11; the space Cyl(X x I), I = (a,b) being an open interval, is
defined analogously considering functions 1 € C°(R¢ x I') and functions ¢(x,t) =
P(m(2),1).
Theorem 8.3.1 (Absolutely continuous curves and the continuity equation). Let I
be an open interval in R, let py : I — Z2,(X) be an absolutely continuous curve
and let /| € LY(I) be its metric derivative, given by Theorem 1.1.2. Then there
exists a Borel vector field v : (z,t) — vi(x) such that

v € LP (g X), vell Lo ey < 111(2) for Ll-ae tel, (8.3.6)
and the continuity equation
Ot + V- (vgpe) =0 in X x 1 (8.3.7)

holds in the sense of distributions, i.e.

/I/X ((%cp(x,t) + (v (), Vmcp(x,t») dug(z)dt =0 Ve Cyl(X x1I). (8.3.8)

Moreover, for £'-a.e. t € I j,(vi) belongs to the closure in L%, X) of the
subspace generated by the gradients Vi with ¢ € Cyl(X).

Conversely, if a narrowly continuous curve p : I — Z,(X) satisfies the continuity
equation for some Borel velocity field vy with |[ve]|Lo(u;x) € L'(I) then py : T —
Pp(X) is absolutely continuous and |1/ |(t) < [|vel|Le(u;x) for L-a.e. t € 1.

Proof. Taking into account Lemma 1.1.4 and Lemma 8.1.3, we will assume with
no loss of generality that |u/| € L°°(I) in the proof of the first statement, and
that ||v¢]| Lr(u;x) € L°(1) in the proof of the second one. To fix the ideas, we also
assume that I = (0, 1).

First of all we show that for every ¢ € Cyl(X) the function t — () is
absolutely continuous, and its derivative can be estimated with the metric deriva-
tive of . Indeed, for s, t € T we have, for pg, € T'o(us, ¢) and using the Holder
inequality,

m@ﬂ—u&@)Z‘/;d(¢@)—¢@Ddu“:SLm@ﬂWMumm%

whence the absolute continuity follows. In order to estimate more precisely the
derivative of () we introduce the upper semicontinuous and bounded map

V()] if z =y,

H(z,y) = [e(x) = e(y)| if o £y
|z — vyl ’
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and notice that, setting pj, = p(s4 )5, we have

|s+n () — ps ()] s
||

|z —yH(z,y) dpy,

|h‘ XxX

Ww. s 1/q

< Wt ([ oo ap,)
|h‘ XxX

where ¢ is the conjugate exponent of p. If ¢ is a point where s +— pug is metri-
cally differentiable, using the fact that p; — (z,2)4u narrowly (because their
marginals are narrowly converging, any limit point belongs to T', (s, ut) and is
concentrated on the diagonal of X x X) we obtain

1/q
R He+n P) — Kt P
limsup L0 — 1@ 1y ( /X H|q<x,x>dut) WOVl o)

h—0 |h‘
(8.3.9)
Set @ = X x I and let p = fMt dt € Z(Q) be the measure whose disintegration
is {pt brer. For any ¢ € Cyl(Q) we have

/0scpwsdu:rs—hm/ plw,8) = plw,s = )d,u(x,s)

=i s .
lim h(/x o(x, s) dps(x /XQOdeM—&-h())dS
Taking into account (8.3.9), Fatou’s Lemma yields
1/q
< [wi( [ 1Velz, ol duu) " as
J X

< (e as) ([ 1wete o dute, )"

(8.3.10)
where J C I is any interval such that suppp C J x X. If ¥ denotes the closure

‘ /Q Dup(,5) du(, 5

in L9(u; X) of the subspace V' := {Vgp, pE Cyl(Q)}, the previous formula says
that the linear functional L : V' — R defined by

L(Vy) / Bup(z, 5) dp(x, 5)

can be uniquely extended to a bounded functional on ¥". Therefore the minimum
problem

min{é /Q lw(x, s)|? du(z,s) — L(w) : w € ”//} (8.3.11)

admits a unique solution w € ¥ such that v := j,(w) satisfies

/Q (0(, 5), Volo, ) dule, 5) = (1, Vg)  VpeCylQ).  (33.12)
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Setting v¢(z) = v(x,t) and using the definition of L we obtain (8.3.8). Moreover,
choosing a sequence (V,,) C V converging to w in L%(u; X), it is easy to show
that for Z!-a.e. t € I there exists a subsequence n(i) (possibly depending on t)
such that Vi, ;) (-, 1) € Cyl(X) converge in L9 (js; X) to w(-,t) = jp(v(-,1)).

Finally, choosing an interval J C I and n € C°(J) with 0 <7 <1, (8.3.12)
and (8.3.10) yield

/ n($)lo(, )P du(e, s) = / n(o,wydp = lim | (v, Vo) dp
Q Q

n—oo

n—oo

~([wrea)"([ i) —(/Ju’P(s)ds)”p(AXJ|v|pdu)1/q.

Taking a sequence of smooth approximations of the characteristic function of J
we obtain
/ / vy (2)[P dpus () ds < / /[P (s) ds, (8.3.13)
JJX J

Vel Lo (e, x) < |p'|(t)  for Plae tel.

p ) . 1/q
= lim (L, V(n¢n)) /\ul ds " lim (/X J\Vson\ du)
X

and therefore

Now we show the converse implication, assuming first that X = R%. We apply the
regularization Lemma 8.1.9, finding approximations pj, v; satisfying the continu-
ity equation, the uniform integrability condition (8.1.2) and the local regularity
assumptions (8.1.8). Therefore, we can apply Proposition 8.1.8, obtaining the rep-
resentation formula pf = (TF)xpuf, where Ty is the maximal solution of the ODE
TF = vE(TF) with the initial condition T¢ = z (see Lemma 8.1.4).

Now, taking into account Lemma 8.1.10, we estimate

to .
[ @ -m@ras < @-npt [P s
R R t1

ta

= (ta— ) / / g ()P dy
t1 R4
to

< (s -t / / for P dpuedt,
t1 R4

therefore the transport plan ¢ := (Tf, x T, )4pg satisfies

ta
WP (s, 4,) < / &~ yP dy* < (£ — )P / / foelP dp d.
R2d t1 Rd

Since for every ¢t € I uf converges narrowly to p; as € — 0, Lemma 7.1.3 shows
that for any limit point v of v we have

to
WP (et 5 phe,) < / |z —y|P dy < (ta — t1)p_1/ / vt |P dpugdt.
R2d th Rd
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Since t; and t9 are arbitrary this implies that p; is absolutely continuous and that
its metric derivative is less than [|v¢|| 1s(,,,x) for Zt-ae. t € 1.

We conclude the proof considering the general infinite-dimensional case and
following a typical reduction argument, by projecting measures on finite dimen-
sional subspaces. Let 7¢ : X — R? be the canonical maps, given by (5.1.28) for an
orthonormal basis (e,) of X, let puf := 7% pu, € 2(RY), and let {11y}yecpa be the
disintegration of i, with respect to u¢ as in Theorem 5.3.1. Notice that considering
test functions ¢ = 1 o 7¢ in (8.1.3), with Vo = (74)* o Vo) o ¢, gives

jt @ dp(z) = /X<7rd(vt),vwo7rd>dut(x)
= / (. 1(y)< ),V 0 7 djey 1)) i (1)
/R , /(Wd) " @) dry @ ), Vip(y)) dp (y) = /R (0 (). V) duf (v),
with v(y) 1= [ 1a)-1(, ™ (v (7)) dpiry (x), and therefore

atuf—l—v-(vfuf):() in RY x T.

Notice also that, by similar calculations,

/Rd (o (y), X(y)) dpi (y ’ ‘/ (ve()), X (7(x))) dpue
< HUtHLP ,u,t;X)HXHLq(M?;Rd)

for any X € L>(uf; R?), hence [[vf | 15, (ud;rdy < [[Vtll Lo () Therefore ¢ — pd is
an absolutely continuous curve in Z,(R?) and

to to
Wl pld) < / 08 o iy i < / Loty dt Vo, ta € I, 1 < to.
t1 t1

Let now
g = (m ) ynd = 7,
be the image of the measures p¢ under the isometries (7%)* : y — Z‘f y;€;. Passing

to the limit as d — oo and using the narrow convergence of ¢ to y; and (7.1.11)
we obtain

to
W (phty > pit,) < / vell Lo, xydt Vi, ta € 1, t1 < ta.
t1

This proves that p; is absolutely continuous and that its metric derivative can be
estimated with |[v¢|| 1, x)- O
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In the case when the measures are constant in time, by combining the previ-
ous finite dimensional projection argument and the smoothing technique of Lemma
8.1.9, one obtains an important approximation property. Let us first collect some
preliminary useful properties of orthogonal projections of measures and vector
fields, some of which we already proved in the last part of the above proof.

Lemma 8.3.2 (Finite dimensional projection of vector fields). Let p € 22,(X),
v € LP(u; X), and let {e,}22, be a complete orthonormal system of X, with the
associated canonical maps ©?, (7)*, 74 given by (5.1.28), (5.1.29), and (5.1.30).

We consider the finite dimensional subspaces X := span(e1, ..., eq), the measures

ol = ﬁi,u, the disintegration {fiz}zexa of p w.r.t. % given by Theorem 5.3.1,

and the vector field
o(z) = / 7 (v(y)) dux(y)  for i%-a.e. x € X9 (8.3.15)
(7)1 (x)

The following properties hold:

(i) suppa? € X4, 4% — pin 2,(X) asd — oco. If p is reqular then also ,&d‘Xd
is reqular;

(i) o4 € LP(a% X7) with
109 ot x4y < N0l 2o ()3 (8.3.16)

(iii) ©¢ is characterized by the following identity

/X (@), 0%(x)) dp(z) = /X F(EY @) o) du(x),  (83.17)

for every bounded Borel vector field { : X — X;

(iv) If V - (vu) = 0 (in the duality with smooth cylindrical maps), then also
V- (ﬁdﬂd) =0;

(v) for every continuous function f : X x X — R with p-growth according to
(5.1.21) we have

lim [z, 9% (x)) dp(x) = /XXX f(z,v(z)) du(z). (8.3.18)

d—oo Jxx X
In particular, 944 — vu in the duality with CP(X; X) and

. d
dli)n;o ||U HLT’(;Ld;X) = HU”LT’(,U,;X)- (8319)

Proof. (i) is immediate and we have seen in the previous proof that (ii) is a direct
consequence of (iii); in order to check this point we simply use the Definition
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(8.3.15) of 94 obtaining

z),0%(x)) dp(z) = Y) dity dpd(z
| @it dita) = | eta /w)lm ) diia () i ()

//d) 1(z) Ad ))’n"u( )) dpz (y )d/L()
= [ (e @ duta) = [ (36, 0) duto).
X X

(iv) follows by (iii) simply choosing ¢ := V(Xhe), for ¢ € Cyl(X) and X§ =
Xgom? as in (8.1.16), and observing that
#(V(REDR(E) = V((Rkg) 0 77), (Xre) 07 € CyI(X).
Therefore we get
~d ~ R . ~d N
| Vet dit= tim_ [ (V@G0 dit= Jim_ [ V(%10 0 7).0) du=0.

Finally, (8.3.17) easily yields

d—oo

lim / <C,ﬁd>dﬂd:/ (¢, v)du V¢ e CYX;X); (8.3.20)
X X

taking into account of (8.3.16), of Definition 5.4.3, and of Theorem 5.4.4, we
conclude. 0O

Proposition 8.3.3 (Approximation by regular measures). For any p € Z2,(X),
any v € LP(p; X) such that V - (vu) = 0 (in the duality with smooth cylindrical
functions), and any complete orthonormal system {e,}n>1, there exist measures
pn € Zp(X) and vectors vy, € LP(up; X), h € N, such that

i. supp un C X := span(es,...,ep) (in the finite dimensional case we simply
set Xp, = X),
ii. /’(‘}L‘Xh € @;(Xh);
ili. vp(z) € Xp(z) Ve X, V- (vppn) =0,

iv. pp — poin Zp(X) as h — oo,

v. for every continuous function f : X x X — R with p-growth according to
(5.1.21) we have

lim /XXX f(z,op () dup (x) :/XXXf(x,v(x))d:c. (8.3.21)

h— o0
In particular, vpp, — v in the duality with CP(X; X) and

i onll ) = 10lo)-
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Proof. To each finite dimensional measure and vector field provided by Lemma
8.3.2 we apply the smoothing argument of Lemma 8.1.9; the proof is achieved by
a simple diagonal argument. |

8.4 The tangent bundle to &,(X)

Notice that the continuity equation (8.3.7) involves only the action of v; on Vi
with ¢ € Cyl(X). Moreover, Theorem 8.3.1 shows that the minimal norm among
all possible velocity fields v; is the metric derivative and that j,(v;) belongs to the
L7 closure of gradients of functions in Cyl(X). These facts suggest a “canonical”
choice of v¢ and the following definition of tangent bundle to &2,(X).

Definition 8.4.1 (Tangent bundle). Let € Z,(X). We define

- LP(u;X)
Tan, Z,(X) := {j,(Vo) : ¢ € Cyl(X)} 7,

where jq : L9(p; X) — LP(p; X) is the duality map defined in (8.3.1) .

Notice also that Tan, Z2,(X) can be equivalently defined as the image under
Jjq of the LY closure of gradients of smooth cylindrical functions in X. The choice of
Tan, &, (X) is motivated by the following variational selection principle (nonlinear
in the case p # 2):

Lemma 8.4.2 (Variational selection of the tangent vectors). A vector v € LP(p; X)
belongs to the tangent cone Tan, Z,(X) iff

v+ w| peuxy > |0l rux)y Yw € LP(u; X) such that V - (wp) = 0. (8.4.1)
In particular, for every v € LP(u; X) there exists a unique I1(v) € Tan, Z2,(X) in

the equivalence class of v modulo divergence-free vector fields, TI(v) is the element
of minimal LP-norm in this class, and

/ (Jp(v),w —I(w)) dp(x) =0 Vv e Tan, Zp(X), we LP(u; X).  (8.4.2)
b's
Proof. By the convexity of the LP norm, (8.4.1) holds iff
/ Up(),w)dp =0 for any w € LP(p; X) s.t. V- (wp) =0 (8.4.3)
X

(here the divergence is understood making the duality with smooth cylindrical test
functions) and this is true iff j,(v) belongs to the L closure of {V¢ : ¢ € Cyl(X)}.
Therefore v = j4(jp(v)) belongs to Tan, &7, (X). (8.4.2) follows from (8.4.3) since
w — II(w) is divergence free. O
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Observe that the projection II is linear and Tan,Z,(X) is a vector space
only in the Hilbertian case p = g = 2.

The remarks above lead also to the following characterization of divergence-
free vector fields:

Proposition 8.4.3. Let w € LP(u; X). Then V - (wp) = 0 iff ||[v — w|1r(ux) >
vl Lo (usx) for any v € Tan, Z,(X). Moreover equality holds for some v iff w = 0.
Proof. We already proved that V - (wp) = 0 implies v — w|| £ (usx) = 0] 2r (1 x)
for any v € Tan, Z7,(X). Let us prove now the opposite implication. Indeed, being
Tan, Z,(X) a cone, a differentiation yields

/X (p(v),w)ydp =0 Vo € Tan, Z,(X),

and choosing v = j,(Ve), with ¢ € Cyl(X), we obtain [ (Ve,w) du = 0 for any
v € Cyl(X).

We give now an elementary proof of the fact that if equality holds for some
v, then w = 0. If equality holds for some v the convexity of the LP norm gives
lv+tw| e x) = |Vl Lr(usx) for any ¢ € [0, 1], and differentiation with respect to
t gives

/ |v+ tw|P~2 (v 4+ tw,w)ydp =0 ¥t € (0,1).
p's

Differentiating once more (and using the monotone convergence theorem and the
convexity of the map ¢ +— |a + tb|P) we eventually obtain

((v + tw, w))?

dp=0 Vte(0,1).
P 1 €(0,1)

[ o+ tup [|w|2 (-2
X

Since the integrand is nonnegative it immediately follows that w = 0. ]
In the particular case p = 2 the map js is the identity and (8.4.3) gives
Tan, 25(X) = {v e L*(u,X): V- (vp) =0}. (8.4.4)

Remark 8.4.4 (Cotangent space, duality, and quotients). Since tangent vectors
acts naturally only on gradient vector fields, one could also define the cotangent
space as

L9 (s X)

CoTan, Z,(X) :={Ve: p e Cyl(X)} , (8.4.5)
and therefore the tangent space by duality. If ~ denotes the equivalence relation
which identifies two vector fields in LP(u; X) if their difference is divergence free,
the tangent space could be identified with the quotient space LP(u; X)/ ~. Def-
inition 8.4.1 and the related lemma 8.4.2 simply operates a canonical (though
nonlinear) selection of an element II(v) in the class of v by using the duality map
between the Cotangent and the Tangent space. This distinction becomes super-
fluous in the Hilbertian case p = ¢ = 2, since in that case the tangent and the
cotangent spaces turn out to be the same, by the usual identification via the Riesz
isomorphism.
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The following two propositions show that the notion of tangent space is con-
sistent with the metric structure, with the continuity equation, and with optimal
transport maps (if any).

Proposition 8.4.5 (Tangent vector to a.c. curves). Let p; : I — Z,(X) be an
absolutely continuous curve and let vy € LP(ue; X) be such that (8.3.7) holds.
Then vy satisfies (8.3.6) as well if and only if v, = II(v;) € Tan,, Pp(X) for
Lloa.e. t € I. The vector v, is uniquely determined £*-a.e. in I by (8.3.6) and
(8.3.7).

Proof. The uniqueness of v; is a straightforward consequence of the linearity with
respect to the velocity field of the continuity equation and of the strict convexity
of the LP norm.

In the proof of Theorem 8.3.1 we built vector fields v; € Tan,, &2,(X) sat-
isfying (8.3.6) and (8.3.7). By uniqueness, it follows that conditions (8.3.6) and
(8.3.7) imply v; € Tan,, 2,(X) for L1-a.e. t. O

In the following proposition we recover the tangent vector field to a curve
through the infinitesimal behaviour of optimal transport maps, or plans, along the
curve. Notice that in the limit we recover a plan (X v¢)4 s associated to a classical
transport even in the situation when p; are not necessarily absolutely continuous.
It is for this reason that we don’t need, at least for differential calculus along
absolutely continuous curves, the more general notions of tangent space, made by
plans instead of maps, discussed in the Appendix.

(Id + tv) g
Mt '
Do(h)

1293

Proposition 8.4.6 (Optimal plans along a.c. curves). Let u; : I — Z,(X) be an
absolutely continuous curve and let v, € Tan,, &7,(X) be characterized by Propo-
sition 8.4.5. Then, for £ -a.e. t € I the following property holds: for any choice

of py € Uo(pie, pren) we have

. 1 . .
}lll_r)%(ﬂ'l, E(ﬂ'Z - 7T1)>#[,Lh = (¢ X v) gl in Zy(X x X) (8.4.6)
and )
i Volkesn, (@ + hog) g )
h—0 |h]

= 0. (8.4.7)
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In particular, for £'-a.e. t € I such that p; € P} (X) we have

1
;ILIL% E(tl’ﬁ*h —1) = in LP(ug; X), (8.4.8)

where ti,.™" is the unique optimal transport map between p; and fiip.

Proof. Let 94 C C>(RY) be a countable set with the following property: for any
integer R > 0 and any ¢ € C2°(R?) with supp 1) C Bpg there exist (¢,) C 2, with
supp ¢, C Br and ¢, — ¢ in C1(R?). Let also II; C II4(X) be a a countable
set with the following property: for any 7 € I1;(X) there exist m, € Iz such that
7, — 7 uniformly on bounded sets of X (the existence of I, follows easily by the
separability of X).

We fix ¢t € I such that Wy, (pqn, pe)/1h] — [1/|(t) = [|ve ] ey, and

limwz/ (Ve,v) dpy Yo =1om, h € Dy, well,.
Rd

h—0 h
(8.4.9)
Since 9, and I, are countable, the metric differentiation theorem implies that

both conditions are fulfilled for #*-a.e. t € I. Let ), € To(jue, ptesn), set

1
vy = (771, E(ﬂ'z — 71'1)) s
#

and fix ¢ as in (8.4.9) and a limit point vy = [ vo, due(x) of vy as h — 0 (wr.t.
the narrow convergence in Z(X x X )). We use the identity

pranlp) —inly) _ L /X W) e dm

= %AXX 90(:c+hy)*90(w)dl/h:/XXX(V@(x),ijwm’y(h)duh

with w, ,(h) bounded and infinitesimal as h — 0, to obtain

Ve = [ [ Vel dvoc(y) dus(a).

Denoting by v¢(z) = [y y dvoz(y) the first moment of vo,, by a density argument
it follows that

We now claim that

//\ylpdVOx(y)dut(x)S[\u’\(t)]p. (8.4.11)
X JX
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Indeed

//|y\pdu0w(y)d,ut(x) < liminf/ ly|? dvp
X JX h=0 Jxxx

1
= liminf — —z[Pd
iminf XXX|y z|Pdpy,
W (tresns pit)
= liminf —2———= = |/|P(¢).
imin % | |P(t)

From (8.4.11) we obtain that

1961153 < /X /X [ylP dvowdpe () < (1|0 = [04]1%0 0,

Therefore Proposition 8.4.3 entails that o, = v;. Moreover, the first inequality
above is strict if v, is not a Dirac mass in a set of p-positive measure. Therefore
Vg is a Dirac mass for p-a.e. x and vo = (¢ X v;)gp. This proves the narrow
convergence of the measures in (8.4.6). Together with convergence of moments,
this gives convergence in the Wasserstein metric.

Now we show (8.4.7). Let p;, = [ ftna dpe () and let us estimate the distance

between fiyp, and (4 + hvy)ypy with wis (f Outho, X Vha d,ut(x)). We have then

we (2 +h 1
Plpesn, (4 hogp) [ e hunte) = ol duy
X

h» B xx hP
= [ o)~y = o)
XxX

because of (8.4.6).
In the case when y; € &)(X), the identity

1 .1 .
(7 g =) = (ix g —0)
# #

and the weak convergence at the level of plans give that %(t,’ﬁ*" — 1)y narrowly
converge to v p¢. On the other hand our choice of ¢ ensures that the LP norms
converge to the LP norm of the limit, therefore the convergence of the densities of
these measures w.r.t. p is strong in LP. (]

As an application of (8.4.7) we are now able to show the #!-a.e. differen-
tiability of ¢ — W,(u, o) along absolutely continuous curves p,. Recall that for
constant speed geodesics more precise results hold, see Chapter 7.

Theorem 8.4.7 (Generic differentiability of W, (1, 0)). Let py : I — Pp(X) be
an absolutely continuous curve, let 0 € Pp(X) and let v, € Tan,, Z,(X) be its
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tangent vector field, characterized by Proposition 8.4.5. Then

d
wa(ﬂt,a) Z/ pler — wolP (@1 — mo,vp(21))dy Yy € Dol 0) (8.4.12)
X2

for L1-a.e. t€l.

Proof. We show that the stated property is true at any ¢ where (8.4.7) holds
and the derivative of ¢t — W, (1, 0) exists (recall that this map is absolutely
continuous). Due to (8.4.7), we know that the limit

L= }1Lm% WG+ h”t)#ﬂ}t; o) = Wh(u, o)

exists and coincides with %Wg’ (u4t,0), and we have to show that it is equal to
the left hand side in (8.4.12). Choosing any v € I',(ut,0) we can use the plan
n = (7! + hvy o, w%) uy € D((¢ + hvy) g, 0) to estimate from above WF((4 +
hvy) g pie, o) as follows:

Wg((l + hvt)#ut,o) S /2 |£L’1 - 1’2|p d'f] = / , |£L’1 + hvt(xl) — 1’2‘17 d’y
X X

Xr1 — T2

= W},’(ut,o)nLh/X 1 ve(x1)) dy + o(h).

2 ‘.1‘1 —.’132‘2_17’

Dividing both sides by h and taking limits as h | 0 or & T 0 we obtain
L< / plry — x2|P7 3 (xy — 22, v(21)) dy < L. O
X2

The argument in the previous proof leads to the so-called superdifferentia-
bility property of the Wasserstein distance, a theme used in many papers on this
subject (see in particular [112]): we will explore it in more detail in Chapter 10
(see in particular Theorem 10.2.2).

Remark 8.4.8 (Derivative formula with an arbitrary velocity vector field). In fact,
Proposition 8.5.4 will show that formula (8.4.12) holds for every Borel velocity
vector field v, satisfying the continuity equation in the distribution sense (8.3.8)
and the LP-estimate ||v¢||1r(y,;x) € L' (1).

8.5 Tangent space and optimal maps

In this section we compare the tangent space arising from the closure of gradients
of smooth cylindrical function with the tangent space built using optimal maps;
the latter one is also compared in the Appendix with the geometric tangent space
made with plans (see Theorem 12.4.4).
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Proposition 8.4.6 suggests another possible definition of tangent cone to a
measure in Z,(X) (see also Section 12.4 in the Appendix): for any p € Z2,(X)
we define

r ; ; LP (p;.X)
Tan,, 2,(X) :== {Mr — i) : (i x P)pp € Tolp, m4p), A >0} . (8.5.1)

The main result of this section shows that the two notions in fact coincide.

Theorem 8.5.1. For any p € (1,+00) and any p € P, (X) we have
Tan, &, (X) = Tan;, Z,(X).

We split the (not elementary) proof of this result in various steps, which are
of independent interest.

The first step provides an inclusion between the tangent cones when the base
measure 4 is regular.

Proposition 8.5.2 (Optimal displacement maps are tangent). If p € (1,+00) and
p € Z)(X), then Tany, 2, (X) C Tan, Z,(X), i.e. for every measure o € Z,(X),
if t], is the unique optimal transport map between p and o given by Theorem 6.2.4
and Theorem 6.2.10, we have tj, — i € Tan, Z,(X).

Proof. Assume first that supp o is contained in Br(0) for some R > 0. Theo-
rem 6.2.4 ensures the representation t7, — i = j,(Vy), where ¢ is a locally Lips-
chitz and | - |[P-concave map whose gradient V¢ = j, (], — ) has (p — 1)-growth
(according to (5.1.21)), since ¢}, takes its values in a bounded set.

We consider the Euclidean case X = R? first and the mollified functions
@e. A truncation argument enabling an approximation by gradients with compact
support gives that j,(Ve.) belong to Tan, Z2,(X) (notice also that V. have still
(p — 1)-growth, uniformly with respect to €). Due to the absolute continuity of
it is immediate to check using the dominated convergence theorem that j, (V)
converge to j,(Ve) in LP(u; R?), therefore j,(Vy) € Tan, Z,(X) as well.

In the case when X is an infinite dimensional, separable Hilbert case we argue
as follows. Let 79, (7?)*, 7 be the canonical maps given by (5.1.28), (5.1.29), and
(5.1.30) for an orthonormal basis {e,}n>1 of X. We set

pt = Wi,u, v = ﬂiu € Z(RY), = ﬁi,u, = ﬁiy € Z(X),

observing that, by (6.2.1) and (5.2.3), u¢ is absolutely continuous with respect to
the d-dimensional Lebesgue measure. Therefore there exists an optimal transporta-
tion map r¢ € LP(u?; R?) defined on R such that ri,ud =v?and r¢—i = j,(Vy?)
in R? for some locally Lipschitz and |-|P-concave map ¢ : R? — R. By the previous
approximation argument, setting ¢? := % o 7¢ and

#i=(r)" o (rfo ) = (1) o (jy (Ve o) + 1)
=jq((r?)" o Vy? o) + (n)" 0 1 = jy (Vip?) + 74
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(here we used the commutation property j, o (74)* = (74)* 0 j,), we get #¢ — 7% &
Tan,, Z,(X); moreover, being (7?)* an isometry, it is immediate to check that 7
is an optimal map pushing i on o9,
Letting d — +o0, since
li I x)=20
A (|17 = o ux) =0,
we conclude by applying the following Lemma.
Finally, when o has not a bounded support, we can approximate o in &, (X)
by measures o, with bounded support and we can apply again the following
lemma. The details are left to the reader. (]

Lemma 8.5.3. Let u, v € Z,(X) such that T'y(p,v) = {(ix7)xu} contains only an
optimal transportation map v € LP(u; X), let t, € LP(u; X) be a family of maps
converging to the identity in LP(p; X) with iy = (En)pp, and let v, € Zp(X) be
converging to v as n — oo. Suppose that vy, € LP(u,; X) is an optimal transport
map from p, to v,. Then

lim HT‘n ot, — r”LP(#’X) =0. (852)

n—o0

Proof. Let ¢ : X x X — R any continuous function with p-growth. Since
WP(pn, ) — 0, WP(vn,v) — 0 as n — oo, by applying Proposition 7.1.3 and
Lemma 5.1.7 we get

m [t (), rn(tn(z))) du(z) = lim [ o(y, rn(y)) dpn(y)

n—oo X n—oo X

(8.5.3)
= /X oy, m(y)) du(y).

Choosing ¢(x1,x2) := |x2|? we get that 7, ot, is bounded in LP(u; X) and its
norm converges to the norm of r; therefore we can assume that r,, o t,, is weakly
convergent to some map s € LP(u; X) and we should prove that s = 7. Thus
we choose ¢(x1,22) := ((z1)(z2, z) with ¢ continuous and bounded and z € X:
(8.5.3) yields

lim [ C(ta(2)) (2, Pa(tn(2))) duz) = /X C(@) (2, 7(2) dp(a),

n—0o0 X

whereas weak convergence provides

lim [ ((En(2))(2, 70 (tn(2))) du(x) = lim [ ((2)(z, 70 (tn(2))) du(z)

n—oo [y n—o Jx
- / (@) (2, 8(x) du(a).
X

It follows that (z, s(z)) = (z,7(x)) for p-a.e. v € X, Vz € X, and therefore being
X separable s = r p-a.e. in X. g
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Proposition 8.5.4. Let u, v € Z,(X) and let v € T'y(p,v). For every divergence-
free vector field w € LP(u; X) we have

/ (Jp(w2 — 21),w(x1)) dy(21,22) = 0. (8.5.4)
XxX

In particular, if r is an optimal transport map between p and v = ryp we have

/X (Gp(r(z) — 2),w(z)) dp(z) =0 Yw € LP(u; X) s.t. V- (wp) =0.  (8.5.5)

Recalling (8.4.3) we get that v — ¢ € Tan, Z,(X).

Proof. We can assume (possibly replacing « by (7rt1’1_’2)#’y with ¢ close to 1) that
~ is the unique optimal transport plan between p and v (see Lemma 7.2.1).

By the approximation result stated in Proposition 8.3.3 we can find finite
dimensional subspaces X},, measures pj, € Z2,(X) with support in X, and regular
restriction to X converging to p in 2,(X), and vectors wy, € LP(up; Xp) such
that V - (wppn) = 0, (8 X wp)gpn — (8 X w)gp in P,(X?). Denoting by 5
the unique optimal transport map between pu; and v, = ﬁ;y (as usual, 7" is
the orthogonal projection of X onto X} and we identify p, and v, with their
restriction to X3 ), we know by Proposition 8.5.2 that ), —i € Tan,, &7,(X}), and

therefore
/(jp(th*i),wwduhzo Vh € N.
X

Moreover, the uniqueness of 7 yields that the transport plans (¢ x t,) #Hh narrowly
converge in (X x X) to . Since the marginals of the plans converge in &2,(X)
we have also that the plans are uniformly p-integrable, therefore

lim [ (jp(tn —2),w)dpp, = lim /X X(jp(x2fxl),w(xl»d(ixth)#uh

h—oo Jx h—oo

N / (plas = 21), 0 (1)) dy
XxX

for any continuous function w with linear growth. By Proposition 8.3.3 again (with
flz1,x2) = |z2 — W(x1)|P) we know that

lim lim sup/ |wp, — w|P dpp, = 0. (8.5.6)
WECY(X), w—w in LP(;X) h—oo JX

Since
0= / U (b — 6), ) dpa + / Up(tn — 8)swn — @) du, for any @ € CY(X),
X X

passing to the limit as h — oo and using Holder inequality we obtain

. . 1 . .
/ (p(re — 1), W(x1)) d’y‘ <sup||ty — 'LHL/pq(M;X) limsup [Jwy, — D £ () -
X h h— o0

Taking into account (8.5.6) we conclude that [ (jp(z2 — x1), w(z1))dy =0. O
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The above proposition shows that for general measures p € Z2,(X)
Tanj, 7, (X) C Tan, Z,(X). (8.5.7)
Now we want to prove the opposite inclusion: let us first mention that the case
p = 2 is particularly simple.
Corollary 8.5.5. For any € &2(X) we have Tan, P5(X) = Tan;, #5(X).
Proof. We should only check the inclusion C: if ¢ € Cyl(X) it is always possible to
choose A > 0 such that « — $|z|? + A\7*¢(x) is convex. Therefore 7 := i+ A"V

is cyclically monotone, thus an optimal map between p and rxu; by (8.5.1) we
obtain that V¢ = A(r — 1) belongs to Tan;, &5(X). O

In the general case p € (1,400) the desired inclusion follows by the following
characterization:

Proposition 8.5.6. Let € Z,(X), v € LP(u; X), and pe :== (i +ev)gp fore > 0.
If v € Tan, Z,(X) then

lim W (i, pee)

gy =22 = ol (855)

and denoting by v, € Ty, pe) a family of optimal plans, we have

lim XxX - xle_ev(xl) ) dy (w1, 22) =0. (8.5.9)
Proof. Let us consider the rescaled plans
poi= (1 el =) ye forv. € Do), (85.10)
observing that
R =n [ el o) = S ol @50

x9 —x1 —ev(xy)|”

9

/X><X

For every vanishing sequence €, — 0 we can find a subsequence (still denoted by
ex) and a limit plan p such that p_, is narrowly converging to p in (X x X).
In particular, for every smooth cylindrical function ¢ € Cyl(X) we have

6—1/)((((334—511(1‘))—((9;)) /<x2 dyue () /ga;l dp x1
= ) gy / 422 Z ) gy (0, 02)
XxX € Y XxX o

€

dy. (w1, 02) = / 22 — v(e2) P dps, (21, 22).
XxX

1
:/ / (V((z1 + etas), x2) dp (x1, x2) di (8.5.12)
XxX
and
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[ (¢ o) @) ant) = [ [ (6o + te0tw) o) duta) .

(8.5.13)
Choosing € = ¢, in (8.5.12) and in (8.5.13) and passing to the limit as k — oo, a
repeated application of Lebesgue dominated convergence theorem yields

| (¥¢@).vla) duta) (8.5.14)
_ lim/o /X<vg(x+teku(x)),v(x)> du(z) dt

k—o0

k—o0

1
= I v , dp, (z1, d
lm/o /XXX< (o1 + texs), 22) dps, (1, 22) dt
:/ (V{(21), 22) dp(z1, 22). (8.5.15)
XxX

It follows that the limit plan p satisfies

/ (VC(a1), 22 — (@) dps(zs,22) = 0 V¢ € Cyl(X), (8.5.16)
XxX

and the same relation holds if V( is replaced by any element & of the “cotangent
space” CoTan, Z,(X) (i.e. the closure in L7(u; X) of the gradient vector fields)
introduced by (8.4.5).

If v € Tan,Z,(X) and p > 2, by the p-inequality (10.2.4), we can find a
suitable vanishing subsequence ¢; — 0 and a limit plan g such that

0<¢ limsup/ |xo —v(x1)|P dp, (21, 22)
XxX

e—0

< limsup/X . |zal” = [o(z)[” — plip(v(21)), 22 — v(21)) dps (21, 22)

e—0
. Wp(/,c’,uak) .
= lim pT — vl usx) — /XxxpOp(U(ﬂfl))’xz —v(z1)) dp, (21, 22)

< /X - PUp(v(@)).a2 — v(an)) dp(zr,a2) =0

by (8.5.11) and (8.5.16), since v € Tan,Z?,(X) is equivalent to j,(v) €
CoTan, Z,(X). The case p < 2 is completely analogous. O

When p is regular, the opposite inclusion
Tan, Z,(X) C Tan, Z,(X),

which completes the proof of Theorem 8.5.1, follows easily from the previous propo-
sition: keeping the same notation, we know that -, is induced by an optimal
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transport map 7. so that e~'(r. — 4) € Tan;, #,(X) and (8.5.9) yields

lim re@) - _ v(x) ’ du(z) = 0. (8.5.17)
e—0 [x

Therefore v belongs to Tanj, 7, (X).
In the general case, by disintegrating «, with respect to the first variable z1,
a measurable selection theorem [49] allows us to select r.(z1) such that r.(x1) €

supp (7., and
p
<2
X

Then, since the graph of r. is contained in the support of «_, we obtain that r.
is | - [P-monotone (so that e~'(r. —4) € Tan, #,(X)) and (8.5.17) still holds.

p

re(y) —y d(¥2)z: (9)-

€

re(z1) — 11
€

—v(71) —v(y)




Chapter 9

Convex Functionals in &7,(X)

The importance of geodesically convex functionals in Wasserstein spaces was firstly
pointed out by McCANN [111], who introduced the three basic examples we will
discuss in detail in 9.3.1, 9.3.4, 9.3.6. His original motivation was to prove the
uniqueness of the minimizer of an energy functional which results from the sum
of the above three contributions.

Applications of this idea have been given to (im)prove many deep functional
(Brunn-Minkowski, Gaussian, (logarithmic) Sobolev, Isoperimetric, etc.) inequali-
ties ([3, 56] and to study their interplay with the geometry of the underlying space
(see [125, 54, 141, 55, 140, 106]): we refer to VILLANI’s books [146, Chap. 6] and
[147] (see also the survey [83]) for a detailed account on this topic. Connections
with evolution equations have also been exploited [120, 124, 125, 2, 48], mainly to
study the asymptotic decay of the solution to the equilibrium.

From our point of view, convexity is a crucial tool to study the well posedness
and the basic regularity properties of gradient flows, as we showed in Chapters 2
and 4. Thus in this chapter we discuss the basic notions and properties related to
this concept: the first part of Section 9.1 is devoted to fixing the notion of con-
vexity along geodesics in &2, (X), avoiding any unnecessary restriction to regular
measures; a useful tool for the subsequent developments is the stability of convex-
ity with respect to I'-convergence, a well known property in the more usual linear
theory.

Unfortunately, Example 9.1.5 shows that the squared 2-Wasserstein distance
is not convex along geodesics in P5(X): this fact and the theory of Chapter 4
motivate the investigation (of convexity properties) along different interpolating
curves, along which the squared 2-Wasserstein distance exhibits a nicer behavior;
the second part of Section 9.1 discusses this question and introduces the notion
of generalized geodesics. Lemma 9.2.7, though simple, provides a crucial link with
the metric theory of Chapter 4.

Section 9.3 discusses in great generality the main examples of geodesically
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convex functionals, showing that they all satisfy also the stronger convexity along
generalized geodesics. The last example is related to the semiconcavity properties
of the squared 2-Wasserstein distance, discussed in Theorem 7.3.2.

In the last section we give a closer look to the convexity properties of general
Relative Entropy functionals, showing that they are strictly related to the log-
concavity of the reference measures. Here we use the full generality of the theory,
proving all the significant results even in infinite dimensional Hilbert spaces.

9.1 \-geodesically convex functionals in &7,(X)

In McCann’s approach, functionals are naturally defined on 225(R%) so that for
each couple of measures pu', u? € 25(R%) a unique optimal transport map t =
2
tZ . (see (7.1.4)) always exists: in his terminology, a functional ¢ : &5 (R?) —
(—o00, +00] is displacement convex if
1—2 .,

setting py % = (i 4+ t(t —4)) ,u', t= t”?,
# r (9.1.1)

the map ¢ €[0,1] — ¢(p;7?) is convex, Vpu', p* € P5(RY).

In Section 7.2 we have seen that the curve pu}—?2 is the constant speed geodesic

connecting p' to u?; therefore the following definition seems natural, when we
consider functionals whose domain contains general probability measures.

Definition 9.1.1 (A-convexity along geodesics). Let X be a separable Hilbert space
and let ¢ : Pp(X) — (—o0,+00]. Given A € R, we say that ¢ is A-geodesically
convex in P,(X) if for every couple pt, u? € P,(X) there exists an optimal
transfer plan p € To(ut, u?) such that

A
$(uy; %) < (1= 1)) +to(p*) = St =W (!, p?) ¥t €(0,1],  (9.12)
where i~ = (7} 7 ap = (1 — )7t + t7r2)#u is defined as in (7.2.2), 7', w2

being the projections onto the first and the second coordinate in X2, respectively.
Notice that this notion of convexity depends on the summability exponent p.
Remark 9.1.2 (The map ¢t — ¢(u;—?) is A-convex). Actually this definition of

A-convexity expressed through (9.1.2) implies that
the map ¢ € [0,1] — ¢(uf —2) is )\sz(ul,,f)—convex, (9.1.3)

thus recovering an (apparently) stronger and more traditional form.
This equivalence follows easily by the fact, proved in Section 7.2, that for ¢; < to
in [0,1] with {t1,t2} # {0,1} the plan (7} 72 x 7T,512_)2)#y, is the unique element of

FO(N%;)Z,M%:Q)'
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Notice that in Definition 9.1.1 we do not require (9.1.2) along all the optimal
plans of T, (u!, 4?). One of the advantage of this technical point is provided by the
following proposition, which will be useful to check convexity in many examples.

Proposition 9.1.3 (Convexity criterion). Let ¢ : P, (X) — (—o0,+00] be a l.s.c.
map such that for any p € D(¢) there exists (un) C P, (X) converging to p in
Pp(X) with ¢(un) — d(p).
Then ¢ is A-geodesically convez iff for each p € D(¢) N &) (X) and for each p-
essentially injective map r € LP(u; X)) whose graph is | - |P-cyclically monotone the
map t — ¢ (1 — )i +tr)up) is A\-convez in [0, 1].
Proof. 1f p' € 27(X) and v € LP(u'; X) is | - [P-cyclically monotone, then
((1 — 1)1+ tr)#,ul is the unique geodesic joining p! to u? := ryput. This shows
the necessity of the condition.

In order to show its sufficiency, we notice that if u', u> € 27 (X) then
a unique optimal map tZ f exists, it belongs to LP(u'; X) and it is p'-essentially
injective (by Remark 6.2.11). Therefore the convexity inequality (9.1.2) holds when
the initial and final measure are regular. The general case can be recovered through

a standard approximation and compactness argument, as in the proof of the next
lemma. (Il

The following natural I'-convergence result is well known for convex func-
tionals in linear spaces, see for instance Chapter 11 in [62].

Lemma 9.1.4 (Convexity and I'-convergence). Let ¢, : P,(X) — (—o00, +00] be
A-geodesically convex functionals which F(S%(X))-converge to ¢ as n — o0, i.e.

= in Py(X) = Tt 6n(m) > 6(4), (9.1.4)
Ve Py(X) T ppin Pp(X): lim g () = o(n). (9.1.5)

Then ¢ is A-geodesically convew.

The same result holds for the F(W(X))—convergence if A >0, i.e if we replace
convergence in Pp(X) with narrow convergence in & (X) (thus without assuming
the convergence of the p-moments of up) in (9.1.4), (9.1.5).

Proof. Let us fix ut, u? € D(¢); by (9.1.5) we can find sequences y},, 3 converging
to u', u? in #,(X) such that

i gy (y) = ¢(n'),  Lim dn(pn) = o(u?).
Let p;, € To(pp,p7) be an optimal plan such that (5.1.19) holds for ¢p; by
Lemma 5.2.2 the sequence () is tight (resp. uniformly p-integrable), because
the sequences of their marginals are tight (resp. uniformly p-integrable). There-
fore, by Proposition 7.1.5 we can extract a suitable subsequence (still denoted by
) converging to p in Z2,(X x X): we want to show that ¢ is A\-convex along the

interpolation ) —? induced by p.
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Since (up)i—2? — pi—? in P,(X) as h — oo, (9.1.4) yields easily

Oy %) < liminf ép () ~?)

<timinf (1= 0)6(ah) + t60:3) — 510~ W20k 1))

= (1 00(a") + 16(x) —~ SH(1— OWE (' 1), (9.1.6)

In the case of narrow convergence, we can follow the same argument; (9.1.6) be-
comes an inequality, thanks to (7.1.11), if A > 0. |

A-convexity of functionals along geodesics is the simplest condition which
allows us to apply the theory developed in Section 2.4. The semigroup generation
results of Chapter 4 involve the stronger 1-convexity property of the distance
function W3 (pu!,-) from an arbitrary base point u.

In the 1-dimensional case we already know by Theorem 6.0.2 and (7.2.8) that
P5(RY) is isometrically isomorphic to a closed convex subset of an Hilbert space:
precisely the space of nondecreasing functions in (0, 1) (the inverses of distribution
functions), viewed as a subset of L2(0,1). Thus the 2-Wasserstein distance in R
satisfies the generalized parallelogram rule

Wi (uhs 5 7?) = (L= )W3 (', 1®) + W5 (uh, 1) — (1 = W5 (i, 1)

9.1.7
vte[0,1], p'p?p’e PR 0L

If the space X has dimension > 2 the following example shows that there is no
constant A such that W3 (-, u') is A-convex along geodesics. We will see in the next
subsection how to circumvent this difficulty.

Example 9.1.5 (The distance function is not A\-convex along geodesics). Let

1 1
W= 5 0o +ien), 1 i=5 000 +02n)

Using for instance Theorem 6.0.1 it is easy to check that the unique optimal map
r pushing p? to p® maps (0,0) in (—2,1) and (2,1) in (0,0), therefore there is a
unique constant speed geodesic joining the two measures, given by

= (5( ott) + O(2—2t,1-1)) t€[0,1].

Choosing p! := % (6(0,0) + 6(0,,2)), there are two maps 7, s; pushing u! to u2=3
given by
r:(0,0) = (—2t,t), 7r(0,-2)=(2—2t,1—1),
$:(0,0) = (2—2t,1—1t), s:(0,—2)=(=2t,1).
Therefore
2—3 1 . 2 13 2 9
W2 (u273, u') = min { 5t 77t+7,5t 73t+§
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has a concave cusp at ¢ = 1/2 and therefore is not A-convex along the geodesic
u?=3 for any A € R.

9.2 Convexity along generalized geodesics

In dimension greater than 1, Example 9.1.5 shows that the squared Wasserstein
distance functional y — W3 (ut, i) is not l1-convex along geodesics (in fact, The-
orem 7.3.2 shows that it satisfies the opposite inequality).

On the other hand, the theory developed in Chapter 4 indicates that 1-
convexity of the squared distance is a quite essential property and that we can
exploit the flexibilty in the choice of the connecting curve, along which 1-convexity
should be checked. Therefore, here we are looking for such kind of curves (in the
case of the “Hilbertian-like” 2-Wasserstein distance) and for the related concept
of convexity for functionals.

Let us first suppose that the reference measure p! is regular, i.e. u! € 25 (X)
and let p2, 43 be given in Z5(X); we can find two optimal transport maps > =

t’/ﬁ, P = t/’ﬁ as in (7.1.4) such that

Wi (pt, ') = / [ti(z) — x> dut(z), i=2,3. (9.2.1)
b's

Equation (9.2.1) reduces the evaluation of the Wasserstein distance to an integral
with respect to the fixed measure p': it is therefore quite natural to interpolate
between ;% and p® by using t? and 2, i.e. setting

P = () ppt where 7% = (1—t)t* +tt3, t€[0,1]. (9.2.2)

Since 272 is obviously cyclically monotone, we have

Wit ) = [ 1873w e it @) = [ 10=0 (@) + 18 (@) —of (@),

and therefore an easy calculation shows
Wit = (=0 [ ) Pt @)+t [ 8@ - aP it @)
X

— t(1—1) / t?(x) — t3(x)]* du* (z) (9.2.3)
< (A=W (ph, 1®) + W ('t 1®) — t(1 = )W3 (4, 1),
[ 1@ = @R @) = WEE )

This calculation shows that %WQ (pt,-) is 1-convex along the new interpolating
curve 773 given by (9.2.2).
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: 3
When p! is not regular, we have to substitute the optimal maps tﬁz , tZ 1 with

optimal plans p'? € T, (ut, u?), p'? € Ty(pt, u): in order to interpolate between
them, we shall also introduce a 3-plan

1€ Po(X3) such that wiﬁu =pu'?, 7T91%3[l, =p'? and we set

. 9.24
pi7? = (127, where w3 = (1 —t)n? + tnd. ( )
Recalling that in (7.3.2) we set
W2 ) = [ o aaf (o oa,ma) 2 WEG2 ), (0.25)
X

we have

Lemma 9.2.1. Let u', p?, i € P5(X) and let

weT(pt, w?, 1) such that pb' = W#iu el (pt,p), i=2,3. (9.2.6)

Then, defining u?=3 as in (9.2.4), we get
W2(u! 23 = / (1= 8)wa + tos — 1 2 dpa(an, @, 23) (9.2.7a)
XS
= (L= OW5 (uh, ) + W3 (', 1) —t(L = )Wi(p®, 1) (9.2.7b)
< (L= t)W3 (uh, p?) + W3 (uh, 1) = t(L = )W (2, 1), (9.2.7¢)

The inequality (9.2.7c) implies that W3 (u',-) is 1-convex along the curve pi 3.

Proof. We argue as for (9.2.3), by introducing the transfer plan
pb2=d ((1—t)r'2+ twl’s)#u € T(u', 127,

by the definition of the Wasserstein distance and the Hilbertian identity (12.3.3)
it is immediate to see that

W3 (u', pui?) < / ly1 — yz\zdu%’ZHS(yl,l&) (9.2.8)
XxX
= / (1 —t)zg + tas — 961\2617#(96179627903)
XS

_ / (= )z = 1P+ thos = 21 = 01 = 1) — s dpser, 2, 3).
XS
(9.2.9)
(9.2.9) yields (9.2.7b) since by (9.2.6) we have

/ |xrx1|2du<x1,xz,xs>:/ 2 — 212 dp*>(r, w) = WR(ub, 1),
X3 X2

/ (3 — 21]? dps(, 22, 23) = / s — a2 AP (a1, ) = WE (b, 1);
X3 X2
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(9.2.7¢) follows directly from the inequality (9.2.5).
Moreover, it is possible to see that (9.2.8) is in fact an equality, i.e. u% 273 ¢
To(pt, p272), by checking that the support of u% 273 g cyclically monotone; by

the density property (5.2.6), we can simply check that 71't1 ’2*3(supp [,L) is cycli-

cally monotone. We choose points (a;, b;) € 71't1 2—>3(supp u), i=1,...,N and set

(ag,bo) := (an,by); we thus find points b}, b} such that
(ai, b)) € supp 2, (a;, b)) € supp p* b; = (1 —t)b; + tb.
Therefore the cyclical monotonicity of supp ul’i gives

N N

Z(ai — Q5—1, bz> = Z(az — Q5—1, (1 — t)b; + tb;/>

i=1 i=1
N
1—tz i — Qi_ 1,Z+tz —a;_1,by>0. O
1=1

Taking account of Lemma 9.2.1, we introduce the following definitions.

Definition 9.2.2 (Generalized geodesics). A “generalized geodesic” joining p? to
p? (with base ') is a curve of the type

2—3 ( Zﬂd)

i #pn tel01]

where
peT(ph, p? 1) and mp’peTo(u',p?), 7w eTo(p',p?).  (9.2.10)

Remark 9.2.3. Remember that if 4! € 225(X) then by Lemma 5.3.2 and Theorem

6.2.10 there exists a unique generalized geodesic connecting i to p? with base

pt, since there exists a unique plan p € T'(u!, p?, ) satisfying the optimality

condition W;iu € To(put, %), i = 2, 3. In fact, denoting by t' the optimal maps
t/’jl pushing ! to u?, i = 2,3, p is given by

o= (i x 2 x ) ypt (9.2.11)
We thus recover the expression p7 % = ((1 — t)t* + tt?’)#,u1 given by (9.2.2).

Definition 9.2.4 (Convexity along generalized geodesics). Given A € R, we say
that ¢ is A-convex along generalized geodesics if for any p', u?, u® € D(¢) there
exists a generalized geodesic p?~2 induced by a plan p € T(u', u?, 1) satisfying
(9.2.10) such that

$(ui?) < (1—t)¢(ﬂ2)+t¢(u3)—%t(l—t)Wﬁ(/ﬂ,/f’) Ve [0,1], (9.2.12)

where W2 (-, -) is defined in (9.2.5).
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generalized geodesic induced by p

11 geodesic induced by T', (12, u?)

Figure 9.1: Generalized geodesics

Remark 9.2.5 (The case of optimal transport maps). If ¢ is convex along any

interpolating curve pu?—3 induced by p € T'(u?, 1i?), then ¢ is trivially convex

along generalized geodesics.

Remark 9.2.6. When A # 0 Definition 9.2.4 slightly differs from the analogous
metric Definition 2.4.1 in the modulus of convexity, since

W22, 1®) > W3 (12, ). (9.2.13)

In particular, when X\ > 0 this condition is stronger than 2.4.1, whereas for A < 0
(9.2.12) is weaker. The next lemma motivates this choice.

Lemma 9.2.7 ((77! + \)-convexity of ®(7,u';-)). Suppose that ¢ : Po(X) —
(—o00, +00] is a proper functional which is A-convex along generalized geodesics for
some X\ € R. Then for each u* € D(¢) and 0 < 7 < )\% the functional

1
O(r, putsp) = ;W;(ul,,u) + o(p)  satisfies the convezity Assumption 4.0.1.

Proof. We consider a plan p satisfying (9.2.10) and we combine (9.2.7b) and
(9.2.12) and use (9.2.13) to obtain

O(r, pts ) < (L= 0)@(7, ' 1?) + 40 (7, p's 1) —

—~

+ AW (6, 1)

N = N =

—~

Nl

< (1= 6)®(r, phsp?) +10(7, 15 1%) — < (= + \)W3 (1%, 1)

whenever 771 > —\. O
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Remark 9.2.8 (Comparison between the two notions of convexity). If ¢ is A-con-
vex on generalized geodesics then it is also A-geodesically convex according to
Definition 9.1.1: it is sufficient to notice if we choose ' = w2, then any p €
(!, 42, 43) such that 71';#’3/.1, € Ty(put, 11?) is of the form of the form

u=/ 0oy (w3) dp' (w1, 22)  where  p'? € D(u', 1)
X2

Therefore, if we impose also that u'? = 773#’2/1 € To(pt, pu?), then p?=3 is the
canonical geodesic interpolation (7! + (1 — t)7r2)# ut?.

We already know by Example 9.1.5 that %W2(~,u1) is mot \-conver along geo-
desics, and therefore is not A\-convexr along generalized geodesics. On the other
hand, if we choose generalized geodesics with base point u' as in (9.2.10), then
W3 (-, 1') is indeed 1—convex along these curves by Lemma 9.2.1. As Lemma
9.2.7 shows, this property is the key point to apply the theory of Chapter 4.

For A-convex functionals on generalized geodesics we present now two proper-
ties which are analogous to the ones stated in Lemma 9.1.4 and Proposition 9.1.3.
We omit the proofs, which are similar to the previous ones.

Lemma 9.2.9 (Convexity along generalized geodesics and I'-convergence). Let

pn : P2(X) — (—00,+00] be A-convex on generalized geodesics. If ¢, T'(P2(X))-
converge to ¢ as h — oo as in (9.1.4), (9.1.5), then ¢ is A\-convexr on gener-
alized geodesics. If X > 0 the same result holds for F(@(X))—convergence, i.e.
I-convergence with respect to the narrow topology of Z(X).

Proposition 9.2.10 (A criterion for convexity along generalized geodesics). Let
¢ Po(X) — (=00, +00] be a Ls.c. map such that for any p € D(¢) there exist
(un) C P5(X) converging to p with ¢(up) — ¢(u).

Then ¢ is A-convex on generalized geodesics iff for every p € 25(X) and
for every couple of p-essentially injective maps v°, r* € L?(u; X) whose graph is
cyclically monotone we have

(1= r® +trt) i) < (1= )9 (%) + 1o (rp)

(9.2.14)
— %t(l —t) /X [70(x) — v (z) > du(z) Vte0,1].

9.3 Examples of convex functionals in &7,(X)

In this section we introduce the main classes of geodesically convex functionals.

Example 9.3.1 (Potential energy). Let V : X — (—o00,+40cc]| be a proper, lower
semicontinuous function whose negative part has a p-growth, i.e.

V(z) > -A—-Blz|P VzeX forsome A BeR. (9.3.1)
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In #,(X) we define
V(p) = /X V() dp(z). (9.3.2)

Evaluating V on Dirac’s masses we check that ) is proper; since V'~ is uniformly
integrable w.r.t. any sequence (,,) converging in &,(X) (see Proposition 7.1.5),
Lemma 5.1.7 shows that V is lower semicontinuous in Z2,(X). If V' is bounded
from below we have even, thanks to (5.1.15), lower semicontinuity w.r.t. narrow
convergence.

Recall that for functionals defined on a Hilbert space, A\-convexity means

V((l — t).%‘l + tl‘z) < (1 — t)V(.Z‘l) + tV(.Q?z) — %t(l — t)|l‘1 — .Z‘2|2 Vi, xe € X.
(9.3.3)

Proposition 9.3.2 (Convexity of V). If V is A-convex then for every u', u?> € D(V)
and p € T(u', u?) we have

vmr%sa—mmh+wm%—%a—ﬂ/

|1 — 202 dp(xy, x2). (9.3.4)
X2

In particular:

(i) If p = 2 then the functional V is A-convex on generalized geodesics, according
to Definition 9.2.4 (in fact it is A-convex along any interpolating curve, cf.
Remark 9.2.5).

(i) If (p <2, A>0)or(p>2, A<0) then V is A\-geodesically convex in
Pp(X).

Proof. Since V is bounded from below by a continuous affine functional (if A > 0)
or by a quadratic function (if A < 0) its negative part satisfies (9.3.1) for the
corresponding values of p considered in this lemma; therefore Definition (9.3.2)
makes sense.

Integrating (9.3.3) along any admissible transport plan g € T'(u!, u?) with
ut, u? € D(V) we obtain (9.3.4), since

VW?%=AJW%ﬂM+mwwmwﬂ
< /X (1= V(@) + 1V (@) - %t(l s — wf?) dpr )
= (L= V() + () = 51 1) [ o1 ol duaCon, ).
XZ

When p = 2 we obtain (9.2.12). When p # 2 we choose p € T',(ut, p2): for p > 2
we use the inequality

2/p
[t =P dutaran) < ([ o= ol duon ) = WEG ),
X2 X2
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whereas, for p < 2, we use the reverse one

2/p
[ et = ([ o= aa dutenan) " = Wi ).
O

Remark 9.3.3. Since V(6,) = V(x), it is easy to check that the conditions on V'
are also necessary for the validity of the previous proposition.

Example 9.3.4 (Interaction energy). Let us fix an integer & > 1 and let us con-
sider a lower semicontinuous function W : X* — (—o0, +-oc], whose negative part
satisfies the usual p-growth condition. Denoting by p** the measure pux pux - - X st
on XF*, we set

We(p) := kW(xl,xg,...,xk)duXk(azl,xQ,...,xk). (9.3.5)
X
If
Jx e X :W(z,z,...,z) < +o0, (9.3.6)

then W, is proper; its lower semicontinuity follows from the fact that

fn = in Zy(X) = -t in 2, (XF). (9.3.7)
Here the typical example is & = 2 and W (w1, 22) 1= Wz, — ) for some W :
X — (=00, +00] with W(0) < +o0.

Proposition 9.3.5 (Convexity of W). If W is convex then the functional Wy is
convex along any interpolating curve ui—2, p € T'(pt, p?), in 2,(X) (cf. Remark
9.2.5).

Proof. Observe that W, is the restriction to the subset
P (XF) = {,N s ,%(X)}
of the potential energy functional W on &2,(X*) given by

W(I"’) = - W(xla . 'axk) dll‘(xla . 'axk)'

We consider the linear permutation of coordinates P : (X?)* — (X*)2 defined by

P((aj1,y1), (x2,92)s- - -, (xk,yk)) = ((xl, c k), (Y1, - yk))

If po € T'(p1, p2) then it is easy to check that Pyp* € T(u*, us*) ¢ 2((X*)?)

and
xk

(71 2) 4 Py () = Py ((n1 %) ems)

Therefore all the convexity properties for Wy follow from the corresponding ones
of W. (]
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In the next example we limit us to consider the finite dimensional case X :=
R?, since the Lebesgue measure .Z¢ will play a distinguished role.

Example 9.3.6 (Internal energy). Let F' : [0, +00) — (—o0, +00] be a proper, lower
semicontinuous convex function such that

F d
F(0) =0, liminf Fls) > —oo for some a > ——. (9.3.8)
sl0 s d+p

We consider the functional F : 2,(R?) — (—o0, +-00] defined by

F d.z? if p=p- ¢ " (R?
Fl) = {fw (p() AL (w) i p=p- 2 € PR, 9.39)
400 otherwise,
and its relaxed envelope F* defined as
F*(p) :=inf { lnigirggf(/zn) S — p in ,@p(Rd)}. (9.3.10)

Remark 9.3.7 (The meaning of condition (9.3.8)). Condition (9.3.8) simply guar-
antees that the negative part of F(u) is integrable in R? (and it is not necessary
when the measures are supported in a bounded set). Let us observe that there
exist nonnegative constants c¢1, ¢ such that the negative part of F' satisfies

F7(s) <c1s+cas® Vs €[0,400),

and it is not restrictive to suppose v < 1. Since pu = p £ € Z,(R?) and & > d
we have

/R )AL = / AP )T ) 2 a)

—

: </Rd p(x)(1+ )" dfd(ff))Oé(/Rd(l + [a])op/ (1=e) dgd(x))l < 400

and therefore F'~(p) € L*(R?).

Remark 9.3.8 (Lower semicontinuity of ). General results on integral functionals
[11] show that [90, 41] F* = F on 2?](R?) and that F* = F on the whole of
Z,(RY) if F has a superlinear growth at infinity.

Proposition 9.3.9 (Convexity of F). If
the map s+ s F(s™%) is convex and non increasing in (0,+0c), (9.3.11)

then the functionals F, F* are convex along (generalized, if p = 2) geodesics in

2, (RY).
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Proof. By Proposition 9.1.3 we can limit us to check the geodesic convexity of F:
thus we consider two regular measures p! = p'.#? € D(F) C 9;(]1%‘1), 1 =1, 2,
and the optimal transport map r for the p-Wasserstein distance W, such that
rypt = p?. Setting v, := (1 —t)i + tr, by Theorem 7.2.2 we know that r; is
an optimal transport map between p' and p; := rygp® for any t € [0,1], and
Lemma 7.2.1 (for ¢ € [0,1)) and the assumption p* € 27 (R%) (for ¢ = 1) show
that (¢ x 7)up' = (st X )4 for some optimal transport map s, therefore
s;or; = i pl-a.e. in RY This proves that ; is p'-essentially injective for any
te0,1].
By Theorem 6.2.7 we know that r is approximately differentiable p!-a.e. and
Vr is diagonalizable with nonnegative eigenvalues; since p? is regular, by Lemma
5.5.3 det @r(w) > 0 for pl-a.e. x € R% Therefore Vr, is diagonalizable, too,
with strictly positive eigenvalues: applying Lemma 5.5.3 again we get pui=?2 :=
(re)up' € 25 (R?) and
172 = p 2% with  py(ri(x)) = ) for p'-a.e. x € R?
He = Pt pPe\Tt = et @rt(x) Ho-a.e. :

By (5.5.3) it follows that

Fue) = /Rd F(pi(y)) dy = /d F(%) det Vry(z) dz.

R det @rt
Since for a diagonalizable map D with nonnegative eigenvalues
t— det((1 —t)I +tD)"¢ is concave in [0, 1], (9.3.12)

the integrand above may be seen as the composition of the convex and non-
increasing map s — s?F(p(x)/s?) and of the concave map in (9.3.12), so that
the resulting map is convex in [0, 1] for pu'-a.e. € R%. Thus we have

1

F(&) det Vry(z) < (1 — £)F(p'(2)) + tF(p*(z))
det Vry(x)

and the thesis follows by integrating this inequality in R<.

In order to check the convexity along generalized geodesics in the case p = 2,
we apply Proposition 9.2.10: we have to choose p € Z5(X) and two optimal
transport maps 70, rt € L?(u; X), setting r! := (1—t)r%+tr!. We know that 70, r!
are approximately differentiable, p-essentially injective, and that Vr9, Vrl are
symmetric (since p = 2) and strictly positive definite for pu-a.e. z € R%; moreover,
by applying (6.2.9) to ° and 7! we get

(r'(@) —r'(y),z —y) = Q= t)(r’(x) = r’y),z — y) + t{r' (@) — v (y),z —y) >0

for z, y € R4\ N, for a suitable p-negligible subset N of R%. It follows that r*
are p-essentially injective as well and we can argue as before by exploiting the
symmetry of Vr?, Vr!, obtaining

F(u') < (=) F(po) +tF (1) for p' = (r')pp. O
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In order to express (9.3.11) in a different way, we introduce the function

Lp(z) :=2F'(z) — F(z) which satisfies — Lr(e™%)e* = %F(e‘z)ez; (9.3.13)

denoting by F the modified function F(e #)e* we have the simple relation

d* .

N d - =5 d -
Lp(z) = fEF(z), L(z) = 7ELF(Z) = @F(z), where (9.3.14)
L%(z) =L, (2) = 2L(2) — Lp(z).
The nonincreasing part of condition (9.3.11) is equivalent to say that
Lp(2)>0 Vze(0,4+00), (9.3.15)

and it is in fact implied by the convexity of F'. A simple computation in the case
F € C?(0,+00) shows

d2 2 2

_ s . . . d
EF(S sl = @F(d-logs) = L%(d-logs)s—2 —I—LF(d-logs)s—27

and therefore
1
(9.3.11) is equivalent to L% (z) > —ELF(Z) Vz e (0,400), (9.3.16)
ie.
/ 1 1/d—1 . . .
zLp(z) > (1- E)Lp(z), the map z — 2 Lp(z) is non increasing. (9.3.17)

Observe that the bigger is the dimension d, the stronger are the above conditions,
which always imply the convexity of F'.

Remark 9.3.10 (A “dimension free” condition). The weakest condition on F yield-
ing the geodesic convexity of F in any dimension is therefore

L%(2) = 2Ln(2) = Lr(2) >0 Yz € (0,+00). (9.3.18)
Taking into account (9.3.14), this is also equivalent to ask that
the map s— F(e™%)e® s convex and non increasing in (0,400). (9.3.19)
Among the functionals F satisfying (9.3.11) we quote:
the entropy functional: F(s) = slogs, (9.3.20)
1

1
the power functional: F(s) = 15’” form>1— 7 (9.3.21)
m—
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Observe that (9.3.20) and (9.3.21) with m > 1 also satisfy (9.3.19) and F = F*,
by Remark 9.3.8; on the other hands, if m < 1, F* is given by [90, 41]

F*(p) = el F(p(z))dZL%z) with p=p- L%+ ps, ps L 2% (9.3.22)

In this case the functional takes only account of the density of the absolutely
continuous part of u w.r.t. Z¢ and the domain of F* is the whole &2, (R%), which
strictly contains 27 (R?).

Example 9.3.11 (The opposite Wasserstein distance). In the separable Hilbert
space X let us fix a base measure p! € P5(X) and let us consider the functional

Bl) = —5 W3 (", ). (9.3.23)

Proposition 9.3.12. For each couple p?, > € P2(X) and each transfer plan pu?3 €
(2, 43) we have

W3 (ph %) = (1= W3 (u', p?) + tW5 (u', 1®)

9.3.24
—t(l—t)/ ‘$2—$3‘2dﬂ23(l‘2,l‘3) Vte [0, 1]. ( )
X2

In particular, by Remark 9.2.5, the map ¢ : p — —%sz(ul,,u) is (—1)-convex
along generalized geodesics.

Proof. We argue as in Theorem 7.3.2: by Proposition 7.3.1, for u?, u® € 25(X)
and p?3 € T'(u?, u?) we can find a plan p € T'(ut, u?, u?) such that

(m ) € Tout i %), (02%) g = . (9.3.25)

Therefore
WHl it %) = [ 1= 002+t — P di(ar, )
X3
_ / (0= O)kes = a1 + tlas — 12 = 11— 1)z — a2 dpa(a, 22, 75)
X3

> (1 Wl )+ OWE )~ t(1 - ) [

|ze — x3\2 du23(x2,x3).
X2

O

9.4 Relative entropy and convex functionals of
measures
In this section we study in detail the case of relative entropies, which extend even

to infinite dimensional spaces the example (9.3.20) discussed in 9.3.6: for more
details and developments we refer to [17, 18].
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Definition 9.4.1 (Relative entropy). Let 7, be Borel probability measures on a
separable Hilbert space X ; the relative entropy of p w.r.t. 7y is

du ( ) )
log dy if p <y,
H(uly) / (9.4.1)
otherwise.

As in Example 9.3.6 we introduce the nonnegative, ls.c., (extended) real,
(strictly) convex function

s(logs —1)+1 if s> 0,

H(s):=q1 if s =0, (9.4.2)
+00 if s <0,
and we observe that
d
H(uly) = / H(—'u) dy>0; H(ply)=0 < p=r. (9.4.3)
X dy

Remark 9.4.2 (Changing v). Let v be a Borel measure on X and let V : X —
(—00, +00] a Borel map such that

VT has p-growth (5.1.21), 5:=e~ V-~ is a probability measure. (9.4.4)

Then for measures in &,(X) the relative entropy w.r.t. v is well defined by the
formula

Hlub) = 1) = [ V@) dn(o) € (—e,toc] Ve Z(X). (045

In particular, when X = R? and v is the d-dimensional Lebesgue measure, we find
the standard entropy functional introduced in (9.3.20).

More generally, we can consider a

proper, l.s.c., convex function F' : [0, 4+00) — [0, +00] (9.4.6)
with superlinear growth o

and the related functional
dp
F(—) dy if p <,
Fluly) = /X dy (9.4.7)
400 otherwise.

Lemma 9.4.3 (Joint lower semicontinuity). Let v, u € Z(X) be two sequences
narrowly converging to v, u in P (X). Then

liminf 7 (u"[7") = H(ply), liminf F(u" ") = F(uly)- (9.4.8)
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The proof of this lemma follows easily from the next representation formula;
before stating it, we need to introduce the conjugate function of F

F*(s*):=sups-s* — F(s) < +oo Vs*€R, (9.4.9)
s>0
so that
F(s) = sup s* s — F*(s"); (9.4.10)
s*ER

if sg > 0 is a minimizer of F then

F*(s*) > s"sog— F(sg), $s>so = F(s)=sups™-s—F"(s"). (9.4.11)
s*>0

In the case of the entropy functional, we have H*(s*) = es” — 1.

Lemma 9.4.4 (Duality formula). For any v, p € £(X) we have

f(uh):sup{ /X S* () du(z) — /X F*(S*(2)) dy(x) : S* ec{j(xw)}. (9.4.12)

Proof. This lemma is a particular case of more general results on convex integrals
of measures, well known in the case of a finite dimensional space X, see for instance
§2.6 of [11]. We present here a brief sketch of the proof for a general Hilbert space;
up to an addition of a constant, we can always assume F*(0) = — ming>o F(s) =
—F(So) =0.

Let us denote by F'(u|vy) the right hand side of (9.4.12). It is obvious that
F'(uly) < H(p|y), so that we have to prove only the converse inequality.

First of all we show that F'(u|ly) < 400 yields that p < . For let us fix
s*, € > 0 and a Borel set A with v(A) < &/2. Since p, 7 are tight measures (recall
that B(X) = B(X), compact subset of X are compact in X, too, and X, is
a separable metric space) we can find a compact set K C A, an open set (in X))
G D A and a continuous function ¢ : X — [0, s*] such that

wWG\K)<e, ~(G)<e ((x)=s" onkK, ((z)=0 onX\G.

Since F™* is increasing (by Definition (9.4.9)) and F*(0) = 0, we have
() = P < [ c@yauta) - [ (e dra)
< [ C@duta) = [ P ) drte) < Fuby)
Taking the supremum w.r.t. K C A and s* > 0, and using (9.4.11) we get

eF (u(A)/e) < F'(uly) if pu(A) > eso.

Since F'(s) has a superlinear growth as s — +o0, we conclude that u(A) — 0 as
el 0.
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Now we can suppose that u = p -~ for some Borel function p € L'(7), so
that

Fup) =suw { [ (8" @hta) = F*(5"(@) dr(o) : 8° € CO(X-r) )
and, for a suitable dense countable set C' = {s} }neny C R

Fiu) = [ sw (5°pa) = F* (")) do(a)

lim sup (s*p(x) — F*(s*)) dy()
k—o0 X s*€Cy

where C, = {s7,---, s }. Our thesis follows if we show that for every k
/ max (s*p(x) — F*(s")) dy(z) < F'(uly). (9.4.13)
XS eCy
For we call

Aj:{xeX:sjp(J;)—F*(s;)zsfp(x)—F*(sf) Vz’e{l,...,k}},
and .
j
Al = Ay, A;H:Ajﬂ\(UAi).
i=1

Since « is Radon, we find compact sets K; C A;-, Xo-open sets G; D A; with
GjNK; =@ ifi# j, and X5-continuous functions ¢; such that

k
Z’y(Gj\Kj)—i—,u(Gj\Kj) <e ( ES;T on K;, ¢;=0onX\G,.

j=1

Denoting by ¢ := Z§=1 G, M = Z§=1 |s7], since the negative part of F'*(s*) is
bounded above by |s*|sop we have

k
[ max (ota) = ) dr() = Y [ (siola) = P () (o)

x s*€Cy
k
> /K (s3p(x) — F*(s2)) dy(z) + (M + Mso)
]kr
= Z/ (C(@)p(x) — F*(¢(x))) dy(x) +e(M 4+ Mso)
j=1"%;

< /X (@) — F*(C(x))) dy(w) + (M + Mso + M + F*(M)).

Passing to the limit as € | 0 we get (9.4.13). O
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Lemma 9.4.5 (Entropy and marginals). Let m: X — X be a Borel map. For every
couple of probability measures v, € P(X) we have

H(mgplrey) < H(ply),  Flrgplmygy) < Fluly)- (9.4.14)

Proof. Tt is not restrictive to assume that p < +: we denote by p a Borel map

~v-a.e. equal to the density fil—f;; applying the disintegration theorem we can find a

Borel family of probability measures v, in X such that v = [ v, dmuvy(z) and
Ye(X \ 771 (x)) = 0 for myv-a.e. z.
It follows that p and mxp admit the representation

w= /X pyzdmpy(x) and Tap=p-myy with pz) = / p(y) dvz(y)

since for each Borel set A C X one has

/ﬂ ) ) = /A ( /ﬂ W) A7 (y) ) d 7 (@),

Jensen inequality yields

F(p()) < / Flp(y)) s (v),

=t (z)

and therefore

Frpulnn) = [ P@e)dmprta) < |

X

(/ﬂ_l(m)F(p(y))d%(y)) dryy(z)

< / F(p(z)) dy(z) = Fuly).
X

]
Corollary 9.4.6. Let 7% : X — X be Borel maps such that
klir&ﬂk(x) =z VrelX
For every v, p € 2(X), setting v* = 7@% pk = ﬂ%,u, we have
Jim H(uE ") = Huly), - Tim F(uFy") = Fuly). (9.4.15)

Proof. Lebesgue’s dominated convergence theorem shows that 7*, u* narrowly
converge to 7y, u respectively. Combining Lemma 9.4.3 and 9.4.5 we conclude. [J
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9.4.1 Log-concavity and displacement convexity

We want to characterize the probability measures + inducing a geodesically con-
vex relative entropy functional H(-|y) in Z7,(X). The following lemma provides
the first crucial property; the argument is strictly related to the proof of the
Brunn-Minkowski inequality for the Lebesgue measure, obtained via optimal trans-
portation inequalities [146]. See also [32] for the link between log-concavity and
representation formulae like (9.4.23).

Lemma 9.4.7 (v is log-concave if H(:|y) is displacement convex). Suppose that
for each couple of probability measures p',p? € P(X) with bounded support,
there exists p € T'(ut, u?) such that H(-|y) is convex along the interpolating curve
pui—r = ((1—t)7r1+t7r2)#u, t € [0,1]. Then for each couple of open sets A, B C X
and t € [0, 1] we have

logy((1 —t)A+tB) > (1 —t)logy(A) + tlogv(B). (9.4.16)
Proof. We can obviously assume that y(A) > 0, v(B) > 0 in (9.4.16); we consider
1 1
1 2
po=0lA4) = —xXa-vy, w=70|B)=—xXB"7,
(= U =1@)
observing that
H(p'ly) = —logy(A), H(p’|y) = —log~(B). (9.4.17)

If 4} 2 is induced by a transfer plan p € T'(u!, 4?) along which the relative entropy

is displacement convex, we have

Hpt2y) < (1= tH(p'y) + tH(Py) = —(1 — t) logv(A) — tlogy(B).

On the other hand the measure u; —?2 is concentrated on (1 —t)A+tB = 7} "2(Ax
B) and the next lemma shows that

—logy((1 = t)A +tB) < H(ui?|y). O

Lemma 9.4.8 (Relative entropy of concentrated measures). Let v, u € P(X); if
i is concentrated on a Borel set A, i.e. p(X \ A) =0, then

H(ply) > —logvy(A). (9.4.18)

Proof. Tt is not restrictive to assume p < v and v(A4) > 0; denoting by 74 the
probability measure v(-|A) := y(A)"1X4 - v, we have

H(uly) = / og(fl—“) —/ Og(dcf)//:.’y(lA))d
/ 1og(d—“) / log (v(A)) dys = H(ulra) — log (v(A))
> —log (v(4)). 0
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The previous results justifies the following definition:

Definition 9.4.9 (log-concavity of a measure). We say that a Borel probability
measure y € P(X) on X is log-concave if for every couple of open sets A, B C X
we have

logv((1 —t)A+1tB) > (1 —t)logy(A) + tlogv(B). (9.4.19)

In Definition 9.4.9 and also in the previous theorem we confined ourselves to
pairs of open sets, to avoid the non trivial issue of the measurability of (1—¢)A+tB
when A and B are only Borel (in fact, it is an open set whenever A and B are
open). Observe that a log-concave measure v in particular satisfies

log Y (B, (1 — o + ta1)) = (1 — t)log Y(B, (20)) + tlog y(B (1)),  (94.20)

for every couple of points zg, 21 € X, r > 0, t € [0,1].

We want to show that in fact log concavity is equivalent to the geodesic
convexity of the Relative Entropy functional H(-|v).

Let us first recall some elementary properties of convex sets in R?%. Let C' C R?
be a convex set; the affine dimension dim C of C' is the linear dimension of its
affine envelope

affC':{(l—t)xo—i—txl txo, 71 € C, tER}, (9.4.21)

which is an affine subspace of R%. We denote by int C' the relative interior of C' as
a subset of aff C' it is possible to show that

intC#@, mtC=C, #%C\intC)=0 ifk=dimC. (9.4.22)

Now we give a complete description of log-concavity in finite-dimensional
spaces (see also [34]), and relate it to convexity along generalized geodesics.

Theorem 9.4.10. Let us suppose that X = RY is finite dimensional and v € 2(X)
satisfies the log-concavity assumptions on balls (9.4.20). Then supp~y is convex
and there exists a convex l.s.c. function V : X — (00, +00] such that

y=e " k‘aﬂ(supp e where k = dim(supp 7). (9.4.23)
Conversely, if v admits the representation (9.4.23) then v is log-concave and the
relative entropy functional H(:|7y) is convex along any (generalized, if p = 2)
geodesic of Pp(X).

Proof. Let us suppose that - satisfies the log-concave inequality on balls and
let k be the dimension of aff(supp+y). Observe that the measure « satisfies the
same inequality (9.4.20) for the balls of aff (supp~y): up to an isometric change of
coordinates it is not restrictive to assume that k = d and aff (supp~y) = R%.
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Let us now introduce the set

_ ¢ limint 2B @)
D := {w e R*: hr?ﬁ)nf a > O}. (9.4.24)

Since (9.4.20) yields

V(Br(zi)) (v(&(%)))l_t (W(Br(l‘l))

rk rk rk

)t t e (0,1), (9.4.25)

it is immediate to check that D is a convex subset of R? with D C supp .
General results on derivation of Radon measures in R? (see for instance
Theorem 2.56 in [11]) show that

V(B (x))

lim sup pr < 4oo for L%ae. zcR? (9.4.26)

r]0

and
d

lim sup < 400 for y-a.e. z € R% (9.4.27)

,
rlo Y (Br(x))
Using (9.4.27) we see that actually v is concentrated on D (so that suppy C D)
and therefore, being d the dimension of aff(supp~y), it follows that d is also the
dimension of aff(D).

If a point € R exists such that

v(B,(Z))

limsup ————= = +o0,
r]0

then (9.4.25) forces every point of int(D) to verify the same property, but this
would be in contradiction with (9.4.26), since we know that int(D) has strictly
positive .Z%-measure. Therefore

V(B (x))

lim sup pr < +oo for all z € R? (9.4.28)

rl0

and we obtain that v < .Z¢, again by the theory of derivation of Radon measures

in R?. In the sequel we denote by p the density of v w.r.t. .Z? and notice that by

Lebesgue differentiation theorem p > 0 .Z%-a.e.in D and p = 0 Z%-a.e. in R4\ D.
By (9.4.20) the maps

W(Br(x)))

W(.’E) = - log ( a)d’l"d

are convex on R%, and (9.4.28) gives that the family V,.(x) is bounded as r | 0 for
any x € D. Using the pointwise boundedness of V. on D and the convexity of V.
it is easy to show that V,. are locally equi-bounded (hence locally equi-continuous)
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onint(D) as r | 0. Let W be a limit point of V,., with respect to the local uniform
convergence, as r | 0: W is convex on int(D) and Lebegue differentiation theorem
shows that

Elliﬂ)l Vi(x) = —logp(x) = W(z) for L%ae. x € int(D), (9.4.29)

so that v = p.% = e_WXint( D).ﬁfd. In order to get a globally defined convex and
Ls.c function V' we extend W with the +oo value out of int(D) and define V' to
be its convex and l.s.c. envelope. It turns out that V' coincides with W on int(D),
so that still the representation v = e~V 2% holds.

Conversely, let us suppose that v admits the representation (9.4.23) for a
given convex ls.c. function V and let p!, p? € 2,(X); if their relative entropies
are finite then they are absolutely continuous w.r.t. v and therefore their sup-
ports are contained in aff (supp 7). It follows that the support of any optimal plan
€ To(pt, p?) in 2,(X) is contained in aff(supp ) x aff(supp~): up to a linear
isometric change of coordinates, it is not restrictive to suppose aff(suppy) = R¢,
pl, p? € Z(RY), y=eV . L1 P(RY).

In this case we introduce the density p’ of u* w.r.t. Z? observing that

dy’ -
o =peV i=1,2,
dy

where we adopted the convention 0 - (+00) = 0 (recall that p’(z) = 0 for Z%-a.e.
x € R?\ D(V)). Therefore the entropy functional can be written as

H(p'ly) = /R , p'(z)log p'(x) dx + /R , V(x) du'(z), (9.4.30)

i.e. the sum of two geodesically convex functionals, as we proved discussing Ex-
amples 9.3.1 and Examples 9.3.6. Lemma 9.4.7 yields the log-concavity of ; the
case of generalized geodesics in P2 (X) is completely analogous. ]

The previous theorem shows that in finite dimensions log-concavity of v is
equivalent to the convexity of H(u|y) along (even generalized, if p = 2) geodesics
of anyone of the Wasserstein spaces &2,(X): the link between these two concepts
is provided by the representation formula (9.4.23).

When X is an infinite dimensional Hilbert space, (9.4.23) is no more true in
general, but the equivalence between log-concavity and geodesic convexity of the
relative entropy still holds. In particular all Gaussian measures, defined in Defini-
tion 6.2.1, induce a geodesically convex relative entropy functional (see condition
(5) in the statement below).

Theorem 9.4.11. Let X be a separable Hilbert space and let v € P (X). The fol-
lowing properties are equivalent:

(1) H(-|y) is geodesically convex in Pp(X) for every p € (1,400).
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(2) H(:|y) is convex along generalized geodesics in Pa(X).

(3) For every couple of measures p', p?> € P(X) with bounded support there
exists a connecting plan p € T(ut, p?) along with H(-|y) is displacement
conve.

(4) ~ is log-concave.

(5) For every finite dimensional orthogonal projection ™ : X — X, mu~y is rep-
resentable as in (9.4.23) for a suitable convex and l.s.c. function V.

Proof. The implications (1) = (3) and (2) = (3) are trivial, and (3) = (4) follows
by Lemma 9.4.7.

Now we show that (4) = (5), using Theorem 9.4.10: if A, B are (relatively) open
subsets of 7(X) and t € [0, 1] we should prove that

log (W#'y((l —t)A+ tB ) (1—1t)log (W#’Y(A)) + tlog (’R’#’}/(B)). (9.4.31)

By definition 77#7( ) ’y( ), W#'y( ) = 7(77*13), and it is immediate to
check that
muy((1—t)A+tB) =v(1—t)r ' A+ tr ' B)

since 71 ((1 —=t)A+tB) = (1 —t)m'A + tn—'B. Thus (9.4.31) follows by the
log-concavity of « applied to the open sets 771 A, 7~ !B.

(5) = (1): we choose a sequence 7" of finite dimensional orthogonal projections
on X such that 7" (z) — x for any z € X as h — oo, set /' := W?’}%'y and

O™ () == H(puh"),  b(p) :=H(uly) Vupe 2(X).

Since each functional ¢ is geodesically convex in &2, (X), by Theorem 9.4.10, the
thesis follows by Lemma 9.1.4 if we show that ¢ is the I-limit of ¢ as h — oo:
thus we have to check conditions (9.1.4) and (9.1.5).

(9.1.4) follows immediately by Lemma 9.4.3; in order to check (9.1.5) we
simply choose p" := 7'(';;/1 and we apply Corollary 9.4.6.
The implications (5) = (2) follows by the same approximation argument, invoking
Lemma 9.2.9. (]

If 7 is log-concave and F' satisfies (9.3.19), then all the integral functionals
F(-]v) introduced in (9.4.7) are geodesically convex in &,(X) and convex along
generalized geodesics in 5 (X).

Theorem 9.4.12 (Geodesical convexity for relative integral functionals). Suppose
that ~y is log-concave and F : [0,+00) — [0,400] satisfies conditions (9.4.6) and
(9.3.19). Then the integral functional F(-|y) is geodesically convex in Py(X) and
convex along generalized geodesics in P2(X).

Proof. The same approximation argument of the proof of the previous theorem
shows that it is sufficient to consider the final dimensional case X := R?%. Arguing
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as in the final part of the proof of Theorem 9.4.10 we can assume that v := e~ .24
for a convex Ls.c. function V : R? — (—o0, +00] whose domain has not empty
interior. For every couple of measure u', u> € D(F(-|y)) we have

pt=pleV oy, Fluily) = / F(pi(z)eV e V@ dy i=1,2. (9.4.32)
R4

As in Proposition 9.3.9, we denote by r the optimal transport map for the p-
Wasserstein distance pushing ! to p? and we set ! := (1—t)i+tr, uy == (rt)zp;
arguing as in that proposition, we get

p(x)e’ (rel) S 0N~V (re())
= F{——) det ) d 9.4.33
F(paly) /Rd ( Qe T ) ) et Vr'(z)e x, ( )

and the integrand above may be seen as the composition of the convex and non-
increasing map s — F(p(z)e™%)e® with the concave curve

t— =V (ry(z)) + log(det Vr(z)),
since D(z) := Vr(z) is a diagonalizable map with nonnegative eigenvalues and
t+— logdet ((1 —t)I +tD(z)) is concave in [0, 1].

The case of convexity along generalized geodesics in %5 (R?) follows by the same
argument, recalling the final part of the proof of Proposition 9.3.9 once again.
|



Chapter 10

Metric Slope and Subdifferential
Calculus in &7,(X)

As we have seen in Section 1.4, in the classical theory of subdifferential calculus for
proper, lower semicontinuous functionals ¢ : X — (—o0, +00] defined in a Hilbert
space X, the Fréchet Subdifferential 0¢ : X — 2% of ¢ is a multivalued operator
defined as

£cob(v) > veD(g), limms 2=V (Ew-v)

>0 10.0.1
w—v "w — 1}| -7 ( )

which we will also write in the equivalent form for v € D(¢)
£€dp(v) =  ow) =)+ (&w—v)+o(lw—v|) asw—wv. (10.0.2)

As usual in multivalued analysis, the proper domain D(0¢) C D(¢) is defined as
the set of all v € X such that d¢(v) # @; we will use this convention for all the
multivalued operators we will introduce.

The Fréchet subdifferential occurs quite naturally in the Euler equations for
minima of (smooth perturbation of) ¢:

A. Euler equation for quadratic perturbations. If v is a minimizer of
1
w — O(1,v;w) = P(w) + 2—|w —wv|? forsome 7>0,veX (10.0.3)
T

then
—)

vy € D(0¢) and —

€ 0 (v,). (10.0.4)

For A-convex functionals (recall Definition 2.4.1 and Remark 2.4.4) the Fréchet
subdifferential enjoys at least two other simple but fundamental properties, which
play a crucial role in the corresponding variational theory of evolution equations:
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B. Characterization by variational inequalities and monotonicity. If ¢ is \-
convex, then

A
£€dpv) = o(w) > d(v) + (§,w—v)+ §|w —v[* Ywe D(¢);
(10.0.5)
in particular,
& €0p(v)) = (& —&,v1 —v2) > Avr —v2® Vour,ve € D(09).
(10.0.6)

C. Convexity and strong-weak closure. [38, Chap. II, Ex. 2.3.4, Prop. 2.5] If
¢ is A-convex, then Od¢(v) is closed and convex, and for every sequences
(Un), (&) € X we have

&n € 8¢(Un)v Up =0, §n =& =  §€09(v), ¢(Un) — ¢(v).
(10.0.7)

Modeled on the last property C and following a terminology introduced by F.H.
CLARKE, see e.g. [130, Chap. 8], we say that a functional ¢ is regular if

én € 8¢(le)a On = Qb(vn)

(UTLH,U’ gng\g’ So’n;)@

} = £€0p(v), ¢=a¢). (10.0.8)

D. Minimal selection and slope. (cf. Proposition 1.4.4) If ¢ is regular (in partic-
ular if ¢ is A-convex) for every v € D(¢) the metric slope

(6(v) = ¢(w))*

061(2) = Timsup 550 (10.0.9)
is finite if and only if O¢(v) # () and
19¢|(v) = min {\g| Lt 5‘¢5(v)}. (10.0.10)
E. Chain rule. If v : (a,b) — D(¢) is a curve in X then
So((t) = 6 (0) VEE (1), (10.0.1)

at each point ¢ where v and ¢ o v are differentiable and d¢(v(t)) # 0. In
particular (see [38, Chap. III, Lemma 3.3] and Remark 1.4.6) if ¢ is also
A-convex, v € AC(a,b; X) (see Remark 1.1.3), and

b
/ 0¢|(v(t))|v' ()] dt < +o0, (10.0.12)

then ¢ o v is absolutely continuous in (a,b) and (10.0.11) holds for #!-a.e.
t € (a,b).
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The aim of this chapter is to extend the notion of Fréchet subdifferentiability and
these properties to the Wasserstein framework (see also [48] for related results). In
the next section we shall consider the simpler case of regular measures in %5 (X),
where the theory exhibit an evident formal analogy with the Euclidean one.
After a detailed analysis of the differentiability properties of the Wasserstein
distance map Wp(-, ) from a fixed reference measure p € #,(X) that we will
carry out in Section 10.2, in the third section we will attack the case of general
measures in #,(X). Examples are provided in the last section of this chapter.

10.1 Subdifferential calculus in 275(X): the regular case

In this section we focus our attention to functionals ¢ defined on P2(X) (i.e. here
p = 2) and we present the main definitions and results on subdifferentiability in
the (considerably) simplifying assumption that each measure p in D(]0¢|) can be
pushed on every v € D(¢) by a unique optimal transport map, which we denoted
by t, in (7.1.4). To ensure this property we are supposing that

¢ Po(X) — (—o00,+00] is proper and lower semicontinuous,

with D(|8¢]) € 225(X); (10.1.1a)

we further simplify some technical point by assuming that for some 7, > 0 the
functional

1
Vi O(7, s v) = ZWQQ(M’ v) + ¢(v) admits at least (10.1.1b)

a minimum point p,, for all 7 € (0, 7,.) and p € Po(X).

Notice that D(¢) C &5 (X) is a sufficient but not necessary condition for (10.1.1a),
see the example of the internal energy functional discussed in Theorem 10.4.13.

The formal mechanism for translating statements from the euclidean frame-
work to the Wasserstein formalism is simple: if p < v is the reference point,
scalar products (-,-) have to be intended in the reference Hilbert space L?(u; X)
(which contains the tangent space Tan, %> (X)) and displacement vectors w — v
corresponds to transport maps ¢, — ¢. According to these two natural rules, the
transposition of (10.0.1) yields

Definition 10.1.1 (Fréchet subdifferential). Let ¢ : P5(X) — (—o0,+00] be a
functional satisfying (10.1.1a) and let u € D(|0¢|). We say that & € L?(u; X)
belongs to the Fréchet subdifferential O¢(p) if

g 200 = 800) = [ (€(@),1(2) — ) dp(z)
o Wa(u,)

>0, (10.1.2)
or, with equivalent simpler notation,

P(v) — d(p) = / (€(2), 8 (2) — ) du(z) + o(Walp,v)). (10.1.3)

X
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When & € 0p(u) also satisfies

P(tpp) — ¢(p) = /X (&(x), t(x) — x) dp(z) + o(|It — il L2(uix)), (10.1.4)

then we will say that & is a strong subdifferential.

It is obvious that d¢(u) is a closed convex subset of L?(j; X); in fact, we can
also impose that it is contained in the tangent space Tan, %, (X), since the vector
& in (10.1.3) acts only on tangent vectors (see (8.5.1) and Theorem 8.5.1).

A. Euler equation for quadratic perturbations. When we want to minimize the
perturbed functional (10.1.1b) we get a result completely analogous to the eu-
clidean one (10.0.4):

Lemma 10.1.2. Let ¢ be satisfying (10.1.1a,b) and let u, be a minimizer of
(10.1.1b); then pur € D(|0¢|) and

1

;(tﬁT — 1) € 0¢(ur) is a strong subdifferential. (10.1.5)

Proof. The minimality of p, gives
1
6(v) = (pir) = @, piv) = @ s o) + 5= (WEpr ) = WE )

> o (Waur ) = W3 ) o € 25(X).

Now we observe that if v =t /i,

e = [ W) = o dir(@). Wiwm) < [ ) e @ die(a),

and therefore the elementary identity 3|a|? — £[b|? = (a,a — b) — 3|a — b|* yields

6v) ~ 6ur) 2 5 (1t (@) = al* = £ (2) = t@)[?) dur (@)
X

2T

- /X (2t @) — ,80) — 2) — 5-w) — 2l e (2)
= A l<tﬁ7 (x) - x,t(x) — $> d,LLT(x) - %”t - iH%2(uT;X)'

We deduce = (t” — z) € 0¢(u,) and the strong subdifferentiability condition. O

T Hr
The above result, though simple, is very useful and usually provides the
first crucial information when one looks for the differential properties of discrete
solutions of the variational scheme (2.0.4). The nice argument which combine the
minimality of x, and the possibility to use any “test” transport map ¢ to estimate
W3 (t4v, 1) was originally introduced by F. OTTO.
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10.1.1 The case of A-convex functionals along geodesics

Let us now focus our attention to the case of a A\-convex functional:

¢ is A-convex on geodesics, according to Definition 9.1.1. (10.1.6)

B. Characterization by Variational inequalities and monotonicity. Suppose that ¢
satisfies (10.1.1a) and (10.1.6). Then a vector & € L?(u; X) belongs to the Fréchet
subdifferential of ¢ at p iff

A
00) = 0(0) = [ (€(e).thl@) — ) dn(o) + 5WE () Vv e Do) (10.07)
In particular if €; € 0p(p;), i = 1,2, and t = U2 is the optimal transport map,
then

/X (& (t(2) — & (2), t(2) — ) dpa () > AWZ (p1, p2). (10.1.8)

Proof. One implication is trivial. To prove the other one, suppose that & € d¢(u)
and v € D(¢); for t € [0, 1] we set iy := (i + (], —i))4p and we recall that the
A-convexity yields

P(pe) — (1)

— < o) — () — 51~ W),

On the other hand, since Wa (i, pt) = tWa(u, v), Fréchet differentiability yields

liminfw > lim inf — /X (€(2), 4 (z) — ) dyu(z)

t10 t—0t+
> /X (€(), () — ) dp(z),

since th' (z) = x + t(t,(z) — ). O

C. Convexity and strong-weak closure. The next step is to show the closure of
the graph of d¢: here one has to be careful in the meaning of the convergence of
vectors &, € L?(pn; X), which belongs to different L2-spaces, and we will adopt
Definition 5.4.3, see also Theorem 5.4.4 for the main properties of this convergence.

Lemma 10.1.3 (Closure of the subdifferential). Let ¢ be a A-convex functional
satisfying (10.1.1a), let (p,) be converging to p € D(¢p) in Po(X) and let &, €
0P(un) be satisfying

sup/X 1€, (2)|? dpn () < 400, (10.1.9)

n

and converging to & according to Definition 5.4.3. Then € € Op(1).
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Proof. Let us fix v € D(¢) and the related optimal transport map ¢;, , and let
w, = (i x &, % tzn)#,un. Observe that the sequence pu,, is relatively compact in
P (X x X x X), by Lemma 5.2.2 (the tightness of second marginals follows by

(10.1.9) and Lemma 5.1.12) and
7791%’3;% €To(ttn,v), n= 7'('?1%’2[.1% is as in Theorem 5.4.4. (10.1.10)

By (10.1.7) we know that

o) = d(pn) +/ (w2, 23 — 21) dp,, (21, 72, 23) + %Wﬁ(un, v). (10.1.11)

XXXxX

If p is any limit point of p, in P(X x X5 x X), applying Lemma 5.2.4 and
the lower semicontinuity of ¢ (recall that |z1|? and |z3]? are uniformly integrable
w.r.t. ,,, by the convergence of pi,, in P3(X) and the fact that the third marginal
of u,, is v) we get

00020+ [ (oaa - ) duler,aan) + SWE). (10012

XXX xX

On the other hand, W;E’Su € I'o(p,v) and (10.1.12) easily yields p € D(|0¢|); by

(10.1.1a) we know that ’7'('3#’3[1, is induced by the unique optimal transport map ¢;.
Invoking Lemma 5.3.2 we get

00260+ [ o tilon) — o) (o) + SWE ()

XxX

=00+ [ @) ) =) duar) + 5WEGe),

with v = W;E’Zu. Since Theorem 5.4.4 yields & = 4, we conclude. O

10.1.2 Regular functionals
Definition 10.1.4. A functional ¢ : P2(X) — (—o0, 40| satisfying (10.1.1a) is
regular if whenever the strong subdifferential €, € 0d(pn), ©n = ¢(un) satisfy

fin = prin Po(X), o=@, sup|[|€,llL2(un;x) < +o0
n (10.1.13)
&, — & weakly, according to Definition 5.4.3,

then § € 0¢(n) and ¢ = ¢(u).

We just proved that A-convex functionals are indeed regular.
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D. Minimal selection and slope.

Lemma 10.1.5. Let ¢ be a regular functional satisfying (10.1.1a,b). p € D(|0¢]) if
and only if O¢p(p) is not empty and

196](1) = min { €]l 2 x) + € € Db(w) }. (10.1.14)
By the convexity of 0¢(p) there exists a unique vector € € O¢(u) which attains the
minimum in (10.1.14): we will denote it by 0°p(u).
Proof. 1t is clear from the very definition of Fréchet subdifferential that

100](1) < €l z2(ux) V& € OP(p);

thus we should prove that if |0¢|(1) < +oo there exists € € d¢p(u) such that
€]l 22(usx) < [09](1). We argue by approximation: for u € D(|0¢]) and 7 € (0, 7),
let 41, be a minimizer of (10.1.1b); by Lemma 10.1.2 and 3.1.5 we know that

W, pr)

Hth — i) €00, [ 1€ dna) = T,
X

T

¢,

72

&, is a strong subdifferential, and for a suitable vanishing subsequence 7,, — 0
tim [ (€, @) dur, () = 00 1) (10.1.15)

By Theorem 5.4.4(c) we know that &, has some limit point &€ € L?(u; X) as 7 | 0,
according to Definition 5.4.3. By (10.1.13) we conclude. O

E. Chain rule. Let ¢ : P2(X) — (—o00,+00] be a regular functional satisfying
(10.1.1a,b), and let p1 : (a,b) — pp € D(¢) C P2(X) be an absolutely continuous
curve with tangent velocity vector vy. Let A C (a,b) be the set of points t € (a,b)
such that

(a) [09](pe) < 4o0;

(b) ¢ o p is approzimately differentiable at t (recall Definition 5.5.1);
(¢) condition (8.4.6) of Proposition 8.4.6 holds.

Then

%¢(ut):/ (€,(2),v:(2)) dus(a) VE, € 06(ur), VEeA  (10.1.16)
X

Moreover, if ¢ is A-convex (10.1.6) and

b
[ 106l (0 de < oo, (10.1.17)
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then the map t — ¢(us) is absolutely continuous, and (a,b) \ A is L -negligible.
Proof. Let t € A; observing that

1, ..
v = E(tlijh —i) = v in L?(pup X), (10.1.18)
we have

G(pisn) — O(pz) 2 h/X (vn(z), &¢(2)) dpi(z) + o(h). (10.1.19)

Dividing by h and taking the right and left limits as h — 0 we obtain that the left
and right approximate derivatives d/dt4¢(u;) satisfy

)|y > [ {oelo), €@} dialo). g0t < [ (ot 5l dpnta)

and therefore we find (10.1.16).
In the A-convex case, since |0¢| is a strong upper gradient (see Definition 1.2.1

and Corollary 2.4.10), we already know that ¢ — ¢(u) is absolutely continuous in
(a,b) and thus the conditions (a, b, c) hold Z!-a.e. in (a,b). O

10.2 Differentiability properties of the p-Wasserstein
distance

In this section we present a careful analysis of the differentiability properties of the
Wasserstein distance function v — W2 (u,v) from a fixed measure p € &2, (X).

This important example, which is a basic ingredient of the Minimizing Move-
ment approach developed in Chapter 2, will provide some basic tools for dealing
with more general functionals (as in step A of the previous section) and will suggest
the right way to define their Fréchet subdifferential in terms of plans.

The main ingredient, a super-differentiability result which is essential to the
developments of the next Section 10.3, is provided by Theorem 10.2.2. The remain-
ing part is devoted to study the (more delicate) sub-differentiability properties of
W,, which are interesting by themselves (see [12]), even if they do not play a
crucial role in the sequel.

First of all, we recall a useful property of the differential j,(z) = |z|P~2z of
the function p~!|z|P in X, p € (1, 00); we first introduce the strictly positive and
continuous function

(L—to)? —tf +ptp

1
R (t ::/ 10|t —to|P~2dt = , 10.2.1
and the positive constants
cp:= min hy(ty), Cp,:= max hy(to), (10.2.2)

to€[0,1] to€[0,1]
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observing that

9l—p ; o 922—p
—— forp=>2, <
pp—1) Pop—1

cp > for p < 2. (10.2.3)

Lemma 10.2.1. If p > 2 then for each couple of points x1, xo in the Hilbert space
X we have

1 1 .
cplrr — @2fP < ];\sz\p - ;|x1\p = (Jp(w1), 22 — 71)

- 1) (10.2.4)
- -2
<2 5 |2 —J;l\zmax(\xz\,\xl\)p
Analogously, if p < 2 we have
p—1 2. p—2
5 w2 — 1 [* min (|@2], |z1])
) (10.2.5)

1 )
< —|zaf? — ;\l‘l\p = (Jp(w1), 22 — 1) < Cpla — 21"

Proof. Let us denote by x¢, t € (0,1), the segment a; := (1 — )z + tao; it is
not restrictive to suppose that x; # 0 for each value of t. Therefore the convex
map t — p~'|z|P is of class C? and denoting by g¢(t) its (nonnegative) second
derivative we have

1 1 _ !
Lol = Lo = (a0, 22 — 1) = / (1 t)g(t) dt. (10.2.6)
p p 0

A direct calculation shows

Elflmp = |@¢|P 2 (24, 22 — 21),
&? —1y,.|p p—2 2 p—4 2
9(0) = Sp™ al? = oz — ml? + (o — Dl (a1, 22— 22))

and therefore

|[2e|P |y — 21| < g(t) < (p— D)|weP P |lwy — a1 |* ifp>2,
(p— Dlae|P 2 ae — a1* < g(t) < 2P 2oz —aa|® ifp <2

The second inequality of (10.2.4) and the first one of (10.2.5) follow easily by
(10.2.6). In order to prove the other inequalities, let us denote by to € [0, 1] the
value corresponding to the point of minimal norm along the segment x;. It is easy
to check that

(el > | — | = |22 — 2] |t — tol:

taking into account of (10.2.2) we conclude. O
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We can apply the above result to establishing a sort of super-differentiability
property of the Wasserstein distance; to clarify our notation, we will call ;2 the
reference measure, and we are studying the map

1
Ui () = ];sz(M,MQ) near a given measure ' € Z,(X). (10.2.7)

Some other notation will be useful: for a given plan p'? € T'(u!, u?) € Z2,(X x X)
and p? € 2,(X) we set

D(p'?, 4% = {u € Z(X x X xX): 773#’2/1 =pt? Wiu = ug}, (10.2.8)

which is a subset of I'(uu!, 42, 43); a “3-plan” pu € T'(ut, u?, 43) induces the “pseudo-
distances”

Wzﬁ“(,ui,,uj) = /X3 |z; — ;[P dp(ze, 2, z3) i,j€{1,2,3}, (10.2.9)

some of which reduce to the Wasserstein ones, if 71';’3 € Ty(pt, p?). In particular,
we will often consider

o2, 0%) = {m e 2,(X%) i miPp = w'?, wPueTo(u' i)}, (10.2.10)
observing that for pu'? € T, (u!, u?) and p € Tp(p'?, u®) we have

Wp,u(ulv/f) = Wp(ﬂlafuz) and Wp,u(ﬂlv/ﬁ) = Wp(MI’M3)~ (10.2.11)

Theorem 10.2.2 (Super-differentiability of W),). Let us fiz u!, > € 2,(X), u'? €
Lo(ut, 1?), and let 1 be defined as in (10.2.7). Then for every p> € 2,(X) and
we (2 p?) we have

(p®) = (p') + /XS (p(w2 — 21), 23 — x1) dpe < o(Wp (s %)) (10.2.12)
where for p > 2

o(Wpu(uhs 1)) = (0= 1)W; (1", 1) (Wp(ul,/f) F W, (1t ,f’))%2 (10.2.13)

and for p <2
13 22»
O(pr(ﬂ s M )) = p—1

WP (1t 1) (10.2.14)
In particular
limsup () = (p') + [y Uplwz —21),23 — 1) dp

W,,,“(;ﬁ,ul)ﬂo val‘(/’ﬁﬂu’l)
pel(p'?,u?)

<0. (10.2.15)

If we restrict p to belong to T'o(p'?, u3), then we can replace Wy, (u*, p?) with
W, (ub, 1) in (10.2.12), (10.2.13), (10.2.14), (10.2.15).
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Proof. Let us check (10.2.12) for p > 2, the other case being even easier: since
pel(p'? p3) and p'? is optimal, we have by (10.2.4)

1 1 .
Lyym s, w2y — Lwegat p2) + / Uy (3 — 1), 5 — 1) dp
p p X3

1 1 .
S/ (—\1‘3 —xol? — ~|w2 — @1 |” — (jp(w2 — 21), 3 — 1‘1>) dp
X3 \p p

—2
<(p— 1)/ |25 — a1]? max (Jzo — 21, |os — 22|)" " dps
XS

)(p—Z)/p

2/p
<=0/ s =) ([ (2 =il =) d

p—2
< = DWE (1) (Wo (0 12) + W (0 %)) .

Remark 10.2.3 (Super-differentiability). Recalling that, at least in the case p = 2,
the function — is (—1)-convex along geodesics, it is not surprising that we proved
a super-differentiability result for 1, i.e. a sub-differentiability property for —u.
The converse property requires a more refined argument and it does not hold in
general: we will discuss this property in the next theorem.

Remark 10.2.4 (The regular case). Let us suppose that u' € 27 (X) in the previ-

2
ous statement; then T',(ut, u?) contains the unique plan p'? = (7, X t’;l)#ul and
2 3

Io(pn' 2, %) contains the unique plan p = (4 x tZl X tzl)#ul; therefore (10.2.12)
becomes (up to a change of sign)

Y1) — () + / G (t (1) — 1), 81 (1) — 1) dpe (1) < o(Wip (it 1))

X
(10.2.16)
Recalling Definition 10.1.1 we could say that
2 .
Jo(th — 1) € 0(=¥)(n), (10.2.17)
which is formally analogous to the euclidean formula
) 1
Jp(z2 —21) € O(—=¢)(z1) where ¢(z1):= 5\5&1 — x|". (10.2.18)

In the case of a general measure p', (10.2.17) suggests an extended notion
for the subdifferential of —1: anticipating the definition of the next section, we
will say that the rescaled plans

v = (21, jp(z2 — $1))#H12 for u'? € To(ut, %) (10.2.19)

will belong to the extended subdifferential 8(—)(u').
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Remark 10.2.5. One may wonder about the use of general plans p € T'(u'2, 1i?)
instead of p € Tp(p!?, 43) in (10.2.12),---,(10.2.15): this choice corresponds to
consider more general perturbation of ;' than those obtained by optimal trans-
ports: this is the reason why these perturbations have to be measured in the
pseudo-distance W), (-, -) instead of W, (-, -).

This choice will reveal more flexible and useful when one considers the Euler
equation for minima of the Yosida approximation of a given functional, as we
will discuss in the point A of the next section and in some of the examples of
Section 10.4.

When T',(u!, 4?) contains a unique element induced by a transport, then we
can prove a corresponding sub-differentiability (and therefore differentiability) of
the Wasserstein distance.

Theorem 10.2.6 (Sub-differentiability of W,). Let us fix p', u? € 2,(X) and let
us suppose that Ty (ut, u?) contains a unique element p'? = (’L X r)#,ul. Then the
distance function p— () = %Wg’(,u,p?) satisfies
e R0 ) + L Gp(r(en) = 1), — 1) dps
W (p!, %) —0 Wi (1, pt)
BElo(ut p?)

>0.  (10.2.20)

Proof. Being pu'? induced by a transport r, any element g € I'(u!?2, 43) is of the
form p = ($1,T($1),x2)#u13 for some p'?® € Ty(pt, 1?®). In particular we can
rewrite (10.2.20) in the form

a0 =) + Jxs Uplee = 21) 23 — 21) dpe

WP(H17#3)‘>O WP(MS,MI)
peTo(p'?,u®)

>0.  (10.2.21)

Let us choose a sequence (1) converging to p! in 92,(X) and a corresponding
2

sequence of plans u,, € T'p(u!2, 1) such that
P(®) = (') + [ Gplze —a1), 23 — 21) dpe

lim inf =
w3l W. 3’ 1
ET,(p' 2, 1%) Sl

o ) = ) + fya Gl = 1), a0 = 1) dp
n—00 Wy (1, ') '

Choosing 3,, such that
1,3 1,3 2,3 :
Ty B = Ty Mp € FO(/"Ll’Mi)’ oy B, € FO(“23M2)7

we observe that ﬂjfﬂn € I'(ut, u?), so that

Wy ) = Wy i) 2 [ (jaa = aal? — o = l?) dB,.
X
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Now we denote by A, := W, (u2, u') and we rescale p,,, 3,, so that

p, = (77w 4 aam®) i, B, = (77 T 4 A LB,
obtaining
Lo 2 - Lweid 2 » P) df
o Wo i, 17) = W (e, %) = ('”‘xl ~ Antsl” = o2 — i )dﬁn
X3

_)\n <jp(x2 _-/El)ax3> d/éyu
X3

=

Y

/ (Jp(2 — 21), 23 — 1) dpt,, = Ay (Jp(w2 — 21), 23) dft,,.
X3 X3

It follows that the “limint” of (10.2.21) is bounded from below by

hmsup/ <jp(x2 - xl)ax3> d[l"n - / <jp(x2 - xl)ax3> d/én
X3 X3

n—0o0

Let us extract subsequences (still denoted by f,,, Bn) narrowly converging in
P (X x X x Xg) to i1, B € P,(X3): by construction 71';@3/3, = 71'}1,#’3[3 and, applying
the next Lemma 10.2.8, we get

773#’2,371 = 773#’2,671 —u'? in Z,(X x X),

so that 773#’2;1 = 773#’2,3 = pu'?; therefore, since p'? is induced by a transport map,

Lemma 5.3.2 gives that fo = ,3 By Lemma 5.2.4 we conclude that

limsup/ (p (2 f:rl),x;;)dﬂnf/ (p(x2 — 1), 23)dB,
X3 X3

n—oo

— [ otz — a0y div— [ Gaa = w2).0) dB =
X3 X3 0

As a corollary of the super-differentiability property (10.2.16) and of the
sub-differentiability property (10.2.20) we obtain a differentiability property of
the Wasserstein distance at regular measures.

Corollary 10.2.7 (Differentiability of 1V, at regular measures). If u' € 2] (X)
then for every p? € 2,(X) the distance function 1 : %Wg’(u, ©?) satisfies

. W) —o(h) + [y ot (@) — @), (2) — 2) du ()
wont W (p?, pt)

=0. (10.2.22)

We prove now a result we used in the proof of Proposition 10.2.6.
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Lemma 10.2.8 (Continuity of optimal plans). Let ', u? € 2,(X) and assume that
To(ut, u?) = {u'?}. Then, for any choice of B € T'(p', u?, u?) C 2,(X3) with
Wisﬂ € To(u?, p3) we have

W;gzﬂ —pt? i Z,(X x X)) as Wy a(pt, ) — 0.
Proof. Notice that the triangular inequality yields

Wys(u', 1i?) < Wy g(p', 1) + Wy (p?, 1%)
< Wy (', 1) + Wy (p', 1®) + Wy(p', 1)
<2Wy(pt, 1) + W (u', 1?)

therefore any limit point of 71'71%@2 3 (belonging to the &2, (X )-compact set I'(ut, u?))
as W, g(ut, 1?) — 0 belongs to T'p(u', u?). Since T'p(p!, u?) = {p!?} this proves
the convergence of W;f,@ to p'2. O

10.3 Subdifferential calculus in &7,(X): the general case

When one tries to extend the results of the previous Section 10.1 to functionals
which should be “differentiable” on general (thus possibly not regular) probability
measures, one realizes immediately that vector transport fields are often no more
sufficient to describe a satisfactory notion of subdifferential (but see also [12]) even
for convex functionals. There are at least two main reasons for that:

e Minima 1, of quadratic perturbations (10.1.1b) cannot be pushed to the ref-
erence measure by a transport map: thus the starting point (10.1.5) of point
A is no more valid, in general. Notice that this property is essential to prove
the existence of a minimal selection in d¢(i) when the metric slope |0¢|(u)
is finite (point D).

o The reference measure . cannot be pushed to general “testing” measures v by
a transport t;;: thus the formal identification of the Euclidean difference vector
w — v with the displacement map ¢, — % is no longer available. Notice that
this was an essential ingredient in Definition (10.1.2) and in the subsequent
points B, C, E.

The above remarks suggest that rescaled plans with assigned first marginal pu
should be used instead of vector fields to describe a useful notion of subdifferential.
Of course, dealing with plans is less intuitive and notation becomes more complex;
moreover, if for vector fields ¢, s € L?(u; X) the scalar product <t,s>L2(#;X) is
unambiguously defined, things become subtler when one tries to find an analogous
coupling for two plans v, o whose first marginals is u.

Nevertheless, reasoning in terms of plans allow to recover all the main prop-
erties for a subdifferential theory, which we detailed at the beginning of the present
chapter both in the Euclidean and in the 225 (X)-case.
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In this section we are thus considering a functional
¢ Pp(X) — (—o0,400], proper and lower semicontinuous (10.3.1a)

such that

1

prP1

v O, uiv) = W;(M, v)+ ¢(v) admits at least

(10.3.1b)
a minimum point x4, for all 7 € (0,7,.) and p € Zp(X).

This condition is surely satisfied if ¢ is bounded below and lower semicontinu-
ous w.r.t. narrow convergence of #(X,) on Wjy-bounded sets. If p = 2 and ¢
is A-convex along generalized geodesics, then lower semicontinuity w.r.t. Ws is
sufficient, thanks to Theorem 4.1.2.

In order to deal with the case p # 2 we introduce the set

Do X x X) = {,,L € P(X x X): |plip+ g < +oo} (10.3.2)

where, for p € Z(X x X), we defined
|5 ::/ P dpp(1,20),  j=1,2, p> 1. (10.3.3)
XxX

Recalling (7.1.12), we will say that a sequence (u,,) C Ppq(X x X) converges to
pin Zp(X x X) asn — oo if
w,, narrowly converge to g in Z(X x X) and

(10.3.4)
iy — [lip, 1,

2,g = |pl2,q asn— oo

By applying Theorem 5.1.13 it is easy to check that we can replace the first
condition in (10.3.4) by the weaker one

@, narrowly converge to pu in (X5 x Xo). (10.3.5)

The above notion of convergence (10.3.4) is induced by a distance: e.g. we can
take the sum of a distance inducing the narrow convergence in &(X x X) and the
p,q Wasserstein distances between the first and the second marginals of a given
couple of plans p, v € P, (X x X). When p = ¢ this distance is equivalent to the
p-Wasserstein distance in 22,(X?).

Definition 10.3.1 (Extended Fréchet subdifferential). Let ¢ = p’ = 1%, let ¢ -
Pp(X) — (=00, 4] be a functional satisfying (10.3.1a) and let p* € D(¢). We
say that v € P,q(X x X)), belongs to the (extended) Fréchet subdifferential dp(u')

if
(i) mpy = p';
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(i)  ¢(u®) —g(u') >  inf / (x2, 25 — z1) dp + o(Wy (', 11%)).  (10.3.6)
rETH(v,1?) J x3

We say that v € ¢p(u') is also a strong Fréchet subdifferential if for every p €
T(v, ) it satisfies the stronger condition

0 = 0') = [ (anas =) dmt oWyl ). (10.3.7)
Remark 10.3.2 (First variation along vector fields). If v € 9¢(u') is a strong
subdifferential, we can choose u3 and p of the type

p? = (w1 er(@n))upn',  p= (21,202,201 +er(1))py (10.3.8)

for an arbitrary vector field r € LP(u'; X).
In this case W, (1%, 1) = €l|7|| Lo (. x), and therefore we get a lower bound
for the directional derivative of ¢ along r:
¢((i +er)pn') — o(n')

lim inf > / (xa,r(x1)) dy(z1, 22) (10.3.9)
el0 g X2

_ /X ) (@) dit (). (10.3.10)

Observe that this property is stronger than the corresponding one (10.3.6) satisfied
by a generic element of the Fréchet subdifferential of ¢, since we are free to take
variations along arbitrary vector fields, whereas (10.3.6) forces us to use only p-
optimal transports. We will see that each minimizer of (10.3.1b) is a point of strong
subdifferentiability: this is particularly useful in the case of functionals which are
not geodesically convex (see e.g. [86]).

On the other hand, requiring (10.3.7) for general subdifferentials would induce a
too strong notion, which would not satisfy in general the closure property of the
next Lemma 10.3.8 even for A-convex functionals. (10.3.9) will be related to extra
properties of x', and an important example will be provided by minimizers of
(10.3.1b), as we will discuss in Lemma 10.3.4.

Remark 10.3.3 (Consistency). Suppose that p = 2 and that u' € 2%(X); then
¢ € L?(u*; X) belongs to the Fréchet subdifferential d¢(u!), according to Defini-
tion 10.1.1, if and only if

v = (i x €) n' € dd(u'). (10.3.11)

In fact, T'o(y, u?) contains the unique element p = (i x & x t/’ﬁ)#ul, so that the
integral in (10.3.6) becomes

inf /X3 <£L’2,£L’37£L’1>du:/ <£(w),tﬁj(m)fx>du1(x),

pel, (77/‘3) X

as in (10.1.3).
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Moreover, if v € @¢(u') according to Definition 10.3.1, then its barycentric projec-
tion 4 € L?(u'; X) according to (5.4.9) belongs to d¢(u'). This property follows
easily from the relation for pu € T, (v, u?)

/(xz,x?,—xl)du(xhxmxs):/ (xz,tﬁf(m)—xﬁd'y(xl,xz)
X3

X2

LS

= / <’_}’(.’E1), titl (xl) - -’E1> d,ul(xl)
X
Motivated by the above remark, we will introduce the shorter notation

Ecosl) — EehX), (ix&uu€do(u),  (103.12)
observing that, by Lemma 5.3.2, £ € LI(u'; X) belongs to d¢(ut) if
o) o) = in (6. = ) du s oWyl i), (10313)
HET,(pt,u?) J x2
and, also for general p € (1,400),
ifpeZ)(X), v€ Pp(X xX), (y€09(n) <= ~F€Ip(n)). (10.3.14)

With the notion introduced in Definition 10.3.1 we can now revisit the five prop-
erties A,B,C,D,E discussed at the beginning of this chapter. The starting point is
an easy consequence of Theorem 10.2.2.

A. Euler equation for the Moreau-Yosida approximations.

Lemma 10.3.4. Let ¢ : Zp(X) — (—o0,+00] be satisfying (10.3.1a) and let p, be
a minimizer of (10.3.1b); if 4, € To(ir, i), then the rescaled plans

V= (pr)#;y‘r with pT(x17x2) = (xlvjp($2 ;'/El )) (10315)

and the associated plans p. € (v, u®) satisfy
o(1?) = plpr) — /XS (w2, 5 — 1) dp, 2 oWy (1%, 7). (10.3.16)

In particular, restricting (10.3.16) to plans p, € Tp(v,, u3), we get
Y, € 86(ur) (10.3.17)

and 7, is also a strong subdifferential, according to (10.3.7).

Proof. If p, is a minimizer of (10.3.1b), Theorem 10.2.2 yields for u' := pu,,
p? = p, and for every p® € Z,(X) and fr, € D(¥,,1?)

¢(u3)*¢(u7)2f( WP (i, p) — ! W”(unu))

pr—l P

prpt

. L2 — T N
> [ () = ) it = o Wi 4 1)

which is exactly (10.3.16), after the appropriate rescaling (10.3.15). O
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Observe that in the previous corollary .. belongs to the set of all the rescaled
optimal plans, whose first marginal is u.; moreover

/ (2| 9dy, =/
X2 X2

Remark 10.3.5 (0¢(j1,) is not empty). We shall see at the end of Section 10.4.6
that, at least for p = 2, there exists a rescaled plan v2 = (p,)x9; for some
7 € To(pr, ) whose barycenter 42 is a strong subdifferential in d¢(u,): it is
characterized by the minimum condition

P
4y, =

T

T2 — I

(W) < +00. (10.3.18)

T

TH’?:HL2(#T;X) = mln{”"_}’,,. - iHLQ(uT;X) : 6’7— € FO(MTMU/)}' (10319)

In particular d¢(p,) is not empty.

10.3.1 The case of A-convex functionals along geodesics

As in Section 10.1, we turn now our attention to A-(geodesically) convex function-
als. We already recalled in Section 9.1 what “convexity” here means.

B. Characterization by Variational inequalities and monotonicity

Theorem 10.3.6. Let ¢ : Z2,(X) — (—o0,+00] be a proper, lower semicontinuous
and A-convex functional. A plan v € Py (X x X) belongs to d¢(u') if and only

if
(i) myy = p';
(ii) for any p3 € P,(X) there exists p € To(vy, pu?) satisfying

() — p(u') = / (x2,23 —x1) dp + %Wﬁ(ul,;ﬁ). (10.3.20)

X3

Moreover, (10.3.20) holds for every plan g € To(vy, p®) such that ¢ is A-convex
along 71';&’2/1. For every couple of subdifferentials v* € 8¢(ut), i = 1,2, there exists

a plan p € T'(y,~4?) € P2(X? x X?) such that 71'71%&’3'7 € Ty(ut, u?) and

/X4 (o — x4, 21 —x3) dp > )\Wg(pl,,u?’). (10.3.21)

Proof. (10.3.20) directly yields (10.3.6); conversely, if (10.3.6) holds, we fix u> €
D(¢) and we apply (10.3.6) to the measures p} —2 induced by some plan p'? €
To(pt, p?) along which ¢ is A-convex. Thus we find plans fi, € T'o(7, i —2) such

that

O %) — p(u') > /

<$2,$3—$1>dﬂt+0(t):t/ <l‘2,$3—1}1>dﬂt+0(t),
X3

X3
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where p, € To(7, 13) is defined by the relation i, := (> %)

hand, the A-convexity of ¢ yields for

1=3y _ 1 A1 _ 2/,1 ,3
¢(u3)—¢(u1)2¢(ut ) ¢(”)+t2t(1 OW, (s 1)

A
> [ (wm =) dp + 50 OWEG )+ o(0)
X

4. On the other

Passing to the limit as ¢ | 0 we get (10.3.20) from Lemma 5.2.4, where p is any
limit point of p, in P (X x X x X) ast | 0 (recall Lemma 5.2.2).

(10.3.21) follows by the same argument, simply inverting the role of x% (which
now is called p?) and p' : notice that for a given optimal plan p'? € T',(ut, u?)
along which ¢ is A-convex, we can always find a 4-plan p such that

1,2 3,4 1,3
Ty p=~" Ty =" Ty p=p'? O
Remark 10.3.7. The proof shows that if u'3 € T',(ut, 11?) is an optimal plan along
3

which ¢ is A-convex, we can always choose pu € T',(7y, p?) in (10.3.20) such that
1,3 13

T =t
#

C. Convexity, strong-weak closure, and I'-convergence. The following lemma ex-
tends Lemma 10.1.3 to the more general setting of subdifferential plans; we also
take account of a varying family of functionals ¢;, which are I'(7,(X))-convergent
to ¢ as n — oo, as in (9.1.4), (9.1.5).

Lemma 10.3.8 (Closure of the subdifferential). Let ¢, : Z2,(X) — (—o0, +00] be
A-geodesically functionals which T'(Z,(X))-converge to ¢ as h — oo. If

Y € Obn(pn), pn — pin Pp(X), pe D(@)

sup [ypl2,g < 400, v, =y in (X x Xgp), (10.3.22)
h

then v € O¢(p).

Proof. By (9.1.5) for a given p® € D(¢) we can find a sequence p3 converging to
p3 in Z,(X) such that ¢p,(u3) — ¢(u®) as h — oo. Theorem 10.3.6 yields plans
iy, € To(vy, 13) such that

A )
On0) = onlan) = [ Gwaa = ) dpy o+ G2 ).

X3
Let pu € To(, p2) be a limit point in 2(X x X, x X) of u,, (its existence follows
by Lemma 5.2.2 together with Lemma 5.1.12). We wish to pass to the limit in this
inequality. To this aim, notice that the upper limit of the first side is less than
d(p?) — ¢(pt), thanks to (9.1.4), therefore it suffices to show that

lim (X2, 3 — x1) dpy, = / (x2, 3 — x1) dps. (10.3.23)
X3

h—oo [x3
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Since
/ (w2, 23 — 1) dpty, = / (w2, w3) dry’ py, */ (w2, 21) dpay,
X3 X3 X3

and the same decomposition can be done for p, we may apply Lemma 5.2.4 first
to widuh (whose second marginal is xj) and then to the bounded sequence p,,
(whose first marginals is j): since the these marginals are converging in &2, (X)
and therefore have uniformly integrable p-moments, we obtain (10.3.23). |

As a consequence one obtains also that for lower semicontinuous functionals
the graph of d¢(u) is closed w.r.t. narrow convergence in #(X x X) along
pg-bounded sequences.

10.3.2 Regular functionals

We can introduce a property analogous to 10.1.4 even in the case of the extended
subdifferential.

Definition 10.3.9 (Regular functionals). A functional ¢ : Z,(X) — (—o0,+x]
satisfying (10.3.1a) is regular if whenever the strong subdifferentials v,, € OP(iin ),
Pn = ¢(un) satisfy

on = @R, py —p in Pp(X),
Sup [y, )2, < +00, v, = in P(X x Xg), (10.3.24)
n

then v € d¢(u) and o = (p).

D. Minimal selection and slope

Theorem 10.3.10 (Metric slope and subdifferential). Let ¢ : &2,(X) — (—o0, +]
be a regular functional satisfying (10.3.1a,b). Then pu € D(|0¢|) if and only if
Aé (1) is not empty and we have

96](1) = win {|¥]24 -7 € Do)} V€ D(99]) = D(@g).  (10.3.25)

Moreover, if . is a minimizer of (10.3.1b) and vy, is defined as in Lemma 10.3.4,
then there exists a vanishing sequence 1, — 0 such that

PN o(p) — dlpr,) . q
|0¢|(p) = lim o gim e = Jim |y [5,4- (10.3.26)
Finally if 7, is a vanishing sequence satisfying (10.3.26), then any limit point vy of
the (relatively compact) family (v, ) in P(X x Xg) is a minimizer of (10.3.25)
and it is also a limit point in the topology of Ppq(X x X). When p = 2 the same
resull holds for the sequence of strong subdifferentials 43 € 0¢(ur, ), provided by
Remark 10.3.5.



10.3. Subdifferential calculus in &,(X): the general case 247

Proof. Let us first prove that

106|(1) < |7l2,4 Vv € 0d(p). (10.3.27)

This follows directly from (10.3.6), since if v € 8¢ (u) for each p® € D(¢) and
€ Ty(v, 1) satisfying (10.3.6) we get the estimate

o)~ 905*) < ( [leatran) ([ 1oa =) "+ oW, (%)
= [Yl2.gWp (1, 1) + 0 (W (12, 1)),

which is independent on the choice of p. Dividing by W, (1, u?) and passing to the
limit as % — pu we get (10.3.27).

Conversely, let € D(|0¢|) and let us denote by . a minimizer of (10.3.1b).
If v. € O¢(ur) is defined as in Lemma 10.3.4, we know by Remark 3.1.7 and
(10.3.18) that ~, is a strong subdifferential and (10.3.26) holds for a suitable
vanishing subsequence 7,, — 0. Since p; — p in &, (X) as 7 | 0, the regularity
of ¢ ensures that any limit point v in (X x Xg) of the family v, asn — oo
belongs to d¢(p). By the lower semicontinuity of the map v — |v|2,, with respect
to narrow convergence in Z(X x X)), we obtain |y|2, 4 < [0¢|(1) which, combined
with (10.3.27) yields that - is a minimizer of (10.3.25). Applying Theorem 5.1.13
to the second marginal of v, we conclude.
The argument for 47 is completely analogous. O

When one considers vectors instead of plans, it is easy to show that there
exists a unique selection of minimal norm in d¢(u) by an argument of strict con-
vexity of the norm. In the case of plans, this result is no more obvious, since the
map v — |7y|2,4 is linear along convex combination. One can try to circumvent this
difficulty by considering convex interpolation of plans, but it is not clear if d¢(u)
is stable under this kind of interpolation. On the other hand, strong subdifferen-
tials are closed under interpolation, so that suitably combining interpolation and
approximation, we can prove that the minimal selection is unique even for plan
subdifferentials.

Theorem 10.3.11 (Minimal selection). Let ¢ be regular functional satisfying
(10.3.1a,b), and let p € D(8¢). There exists a unique plan v, € OP(u) which
attains the minimum

[Vol2.¢ = min {I'r\z,q Py E 8¢(u)} = |0¢|(1)- (10.3.28)

Consequently 7y, is the unique narrow limit point in 2 (X x Xz) and in Ppe(X x
X) of any family (of strong subdifferentials, according to (10.3.7)) 7, (when
p = 2 we can also choose the barycenters 73 —as in Remark 10.3.5) satisfying the
asymptotic property (10.3.26) of the previous theorem, and we will denote it by the
symbol 8°P(u).
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Proof. Let v € 8¢(u) be attaining the minimum in (10.3.25) (the existence of min-
imizers is a direct consequence of the regularity of ¢ and a compactness argument
in Z(X x X) based on Lemma 5.2.2 and Lemma 5.1.12), let p, be a minimizer
of (10.3.1b); by the definition of subdifferential, we can find plans fi, € To(7, pir)
such that

P(ur) — d(p) = /XS (w2, 23 — 21) dft, + o(Wp (1, pir))- (10.3.29)

We rescale fi. as

Hr = (771’77277—_1(71-1 - 71-3))#13’7—

and we consider a limit point p € Z,(X?) of p,. in P(X x X x Xg), 7, — 0
being a vanishing sequence satisfying (10.3.26).
By the previous theorem we know that

o(p) — o(pr,)

Tn

lim

n—oo

= 106" (1) = 17124 :/ 2| dpe :/ |z3]” dp,
X3 X3

and by (10.3.29) and Lemma 5.2.4

iy H=90) ¢ [
n—00 Tn 3
so that
1 1
/ (—\l‘z\q + —fasl” - (xz,x3>) dp <0, (10.3.30)
X3 \q p

i.e. xy = j,(x3) for p-a.e. (z1,22,23) € X>. It follows that all the sequence T
is converging to p and (Fl,jp o 71'3)#””’ is converging to v in Z(X x X). We
observe that

1777r3,jp07r3)#uT € 0¢(1,) 1is a rescaled optimal plan as in (10.3.15),

v, = (m
and ~, has the same limit points in &,(X x X) of (7!, j, 0 7'('3)#[1,7_" by Lemma
5.2.1; therefore v, converges to v in Z(X x X).

Let us now suppose that v,,7v, € O¢(u) attain the minimum in (10.2.13).
We thus find two families v, , € 8¢(fi-,) such that

Yir, 7 Yio "7z’,rn‘2,q - |'7z"2,q = |06|(pn) asn — oo.

Being v, , strong subdifferentials, the next lemma shows that for every 3-plan v,
such that 7T?1%’2V7—n =Y1r,> 71'71%@31/% = s, the interpolated plan

( 1,23

Y12, = Ty )#Vr,
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still is a strong subdifferential in 8¢ (u). Being {v,, }nen a tight family, possibly
extracting a vanishing subsequence 7,/ so that v, , — v in 2(X x X5 x X),
we know that

1,2 1,3 1,23
ﬂ-# v = '71v 71'# v = 72a (71-1/2 )#V € 8¢(M)
The uniform convexity of the LP-norm and the minimality of v, yield v; = v,. O

Lemma 10.3.12 (Interpolation of strong subdifferentials). If v'2,~13 € 22,,(X x
X) belong to the strong subdifferential of a functional ¢ at p € P,(X), then for
every v € Z,(X?) and t € [0,1] we have

ﬂ;z‘,y =4 =23 = 4?7 = (1T € Bo(p), (10.3.31)

7%’2H3 being also a strong subdifferential.

Proof. For p* € D(¢) and p, € I‘('ytl’QHS,,u‘L), arguing as in Proposition 7.3.1, it
is not difficult to construct a new plan g € Z(X*) such that

1,2,3 2—3 4
N

Since

1,2,4 1,3,4

71'# 7 c 1“(,71 27/,64)7 71'# m e 1—\(71 3,/,64), ( 1,2—3,4 1,23

T )#/J‘ € F(7t 7/’64)7
applying (10.3.7) we get

o) = 60 = [ (aaa— ) dp+ o(Woli. ).
X4

o(u*) — p(p) > /X4 (z3,24 — 1) dpp + O(Wp,“(,u,;ﬁ)),
so that

o(u') — d(p) > /X4 (1= t)as + tas, x4 — 21) dp + o(Wp (1, 1))

= / (y, x4 — x1) dpy (21,9, 24) + oWy p, (1, 1))
X3 ]
Remark 10.3.13 (The distinguished role of the minimal selection 9°¢(p)). The
above theorem is particularly useful in combination with Remark 10.3.2: in many
examples it shows that the minimal selection 8°¢ () enjoys both the variational
inequalities characterization (10.3.20) along optimal transports and a directional
derivative inequality like (10.3.9) along general smooth vector fields.
This last property is not a consequence of general abstract conditions (like con-
vexity for (10.3.20)), but it can directly checked by approximating 8°¢(u) as in
Theorem 10.3.11 and showing that the differential properties provided by (10.3.9)
on the approximating sequence pass to the limit if the vector field r is sufficiently
regular.
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Remark 10.3.14 (A refined convergence result for \-convex functionals). If the
regular functional ¢ is A-geodesically convex in Z7,(X) according to Definition
9.1.1,and satisfies (10.5.1a,b), the whole rescaled family (v, )o<r<1/x~ considered
in Theorem 10.3.10 and 10.3.11 satisfies

Wpln i) o) — dlur)

TP 710 T

q -1 =1 4 10.3.32
06| (11) lim Tlfgl%b,q (10.3.32)

and therefore is converging to v = 8°¢(p) in Zp(X x X) as 7 | 0: it is sufficient
to apply the estimates of Theorem 3.1.6 and Remark 3.1.7.

Combining Theorem 10.3.11 with (10.3.14) we show that for measures p €
Z5(X)ND(|0¢]) the minimal selection 8°¢(u) is induced by a (unique) transport
map in the cotangent space of p, that we call 9°¢(u).

Corollary 10.3.15 (8°¢(u) = 9°p(u) if p is regular). If ¢ is a regular functional
and p € Z)(X) N D(|0¢]) then

{(@ x &pu} = 0°(n) (10.3.33)

for some map & with j4(§) € Tan), Z,(X) = Tan, Z,(X). We denote this vector
by 0°¢(p).

Proof. 1f 4 € 8°¢(u) then by (10.3.14) the plan (¢ x 4)xp belongs to d¢(p) and
therefore

[ mttdreran) = [ ([ ol v, @) due) = [ i),

The minimality of v and the usual strict convexity argument yield v, = d5
for pra.e. 1 € X, 1e. v = (1 X ) g

To show that j, (%) belongs to Tan;, #,(X) we observe that by the regularity
of u the rescaled plans -, introduced in Lemma 10.3.4 and Theorem 10.3.10 are
given by

Il)

i—thr
7o = (th % dp (1))

Since, by Theorem 10.3.11, «, narrowly converge in Z(X x X ) to vy as 7 | 0,
choosing test functions of the form ¢(x;)xs with ¢ Lipschitz, we easily get

i — thr
r ) — 4 in the duality with Lipschitz functions.

i

On the other hand, since |7, |2, — |7|2,4 We have also

)

and therefore the two informations together give that j, (7'*1(1' — tﬁ*)) — 4 in
L4(u; X). By applying the duality map j, we obtain that 77! (3 — th) — jg(¥) in
LP(; X), so that jg () € Tan;, &, (X). O

T
t—t7

T

= [|¥ll a(u:x)
La(p;X)

.jp(

lim
710
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Let us now consider a sequence of functionals (¢p) which is I'(Z2,(X))-
converging to ¢; if ¢, are A\-geodesically convex, Lemma 10.3.8 shows that limits of
Fréchet subdifferentials of ¢, are Fréchet subdifferentials of ¢. In many situations
a converse approximation results would be useful, too; in other words, it would
interesting to know if a given plan v € 8¢(u) can be approximated by a sequence
of plans v, € 8¢ (un).

If 4 is the minimal selection 8°¢(u) and we reinforce a little bit the con-
vergence assumption on ¢y, this approximation can always be performed, and we
can also find an approximating sequence -y, of strong subdifferentials. We can
thus reproduce in the Wasserstein setting the same result which in the Euclidean
case follows from the convergence of (¢,) in the sense of Mosco (i.e. with different
topologies in the lim inf inequality (9.1.4) and the lim sup inequality (9.1.5)).

Lemma 10.3.16. Suppose that ¢p, : P, (X) — (—00, +] is a sequence of function-
als which satisfy (10.3.1b) (for some 7, > 0 independent of h) and the equicoerci-
vity-like condition

. 1 _
ueglpf(x) {¢h(y) + , flwg(u,u)} > —00 (10.3.34)
heN

for some i € Pp(X). Assume that ¢ is a proper regqular functional which is the
limit of ¢ in the sense that

pn — pin P(Xg),

> liminf én(un) 2 d(p), 10.3.35
sup/ |z|P dup, < 400 lhl’I_l)loré bn(pn) = o(p) ( )
heNJ X

Vie Pp(X) Fun — pin Pp(X): lim () = o). (10.3.36)

Then ¢ satisfies (10.3.1a,b) and for every p € D(O¢) there exist a sequence (i)
converging to p in Zp(X) and strong subdifferentials ), € 8én(un) such that

v, — 0°0(p)  in Pp(X x X) as h— oo. (10.3.37)
The proof is based on the next typical I'-convergence lemma, ensuring con-
vergence of minimizers to minimizers and convergence of the extremal values.

Lemma 10.3.17. Under the same assumptions of Lemma 10.3.16, for a given se-
quence (p") C Py(X) converging to p in Py(X) and T € (0,7.) such that
(10.3.34) holds, let us consider sequences pl*, v such that

1

prpt

pl s a minimum for v ¢n(v) + WP(u",v), (10.3.38)

and v € dP(ul) is obtained by rescaling an optimal plan 4" € To(ul, uh) as in
Lemma 10.3.4:

Y= (p)wA" with p, (21, 20) = (xl,jp(x2 ;xl )) (10.3.39)
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Then the families {p"}nen, {¥V*}nen, and {4 nen are relatively compact in
Pp(X), Zp(X x X), and in Ppy(X x X) respectively, Furthermore, for any
v, = lim; ¥, the measure . := wlyy, minimizes (10.3.1b) and

Jim ') = @ur), - Jim Wi (', 1) = Walpr, p)- (10.3.40)

Proof. (10.3.34) and the estimate (2.2.4) (see also Remark 2.2.4) yield that u” is
bounded in &, (X)) and therefore the sequence ’?}TL is narrowly relatively compact in
P (X5 xX). Let 4, be a limit point of 4™ as i — oo and let ., = 773#5'7 = 71'71#’77;
we choose v € D(¢) and a sequence (1) converging to v in Z,(X) such that
én (V") — ¢(v) as in (10.3.36). Passing to the limit in the inequality

WP, )

1
(bh(/’éﬁ) + prfl Wg(/’&v/’éh) < ¢h(l/h) + pr,1 P

with n = h;, using (10.3.35) and the lower semicontinuity of the Wasserstein
distance w.r.t. narrow convergence in &,(Xx) (see Lemma 7.1.4), we get

. 1
d(pr) + W2 (jr, 1) < limsup oy, (1) + L (2, p)
hoe (10.3.41)

WP (v, p).

prP!

< OW) + s
This shows that g, minimizes (10.3.1b). Choosing v = p,, the same argument
provides convergence in energy, i.e.

WP )

— () + ),

hm ¢hi (:u”;L) + pr—l

i—00 pr_l

But since the two terms are separately lower semicontinuous we obtain (10.3.40).

By applying (7.1.16), we obtain that the second marginals of the plans

(71'27 m —7r2) #"yﬁ are narrowly converging in #2(X) and have uniformly integrable

p-moments; since the first marginals (i.e. p”*) are also converging in Z,(X), we
obtain

(m?, mt — 7r2)#"y¢7" — (n?, 7! — 71'2)#’}/7 in Z,(X x X).

It follows that 'Ay}T“ — 4, in Z,(X x X) and, as a consequence, and v — ~_ in
Ppy(X x X) and pli — p; in 2,(X). O

Proof of Lemma 10.3.16. Let d be a distance in &,q(X x X) inducing the con-
vergence (10.3.4); by the same construction of Proposition 5.1.8, Lemma 10.3.16
is equivalent to check that any open ball centered at v = 8°¢(u) contains strong
subdifferentials 7, € 8¢(u") for sufficiently large h.

We argue by contradiction: thus we suppose that ¢ > 0 and a sequence
h; — oo exist such that

v, is a strong subdifferential in d¢p, (un,) = d(vp,,v) > (10.3.42)
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We perform a diagonal argument (first keep 7 fixed and let h; — oo, then let
hi,

7 | 0): by the previous lemma we know that for any 7 € (0, 7,) the family {~v. };en
(defined as in (10.3.38) and (10.3.39)) has a limit point v, in (X x X). We
take a sequence 7, — 0 such that (10.3.26) is fulfilled by p,, = 77, and by
Theorem 10.3.11 we can find 7 € N such that d(v,,,~v) < &/2. Since v, is a limit
point of (v ) in Fp,(X x X) as i — oo, we get a contradiction with (10.3.42). O

E. Chain rule. We conclude this section by proving a chain rule for functionals
along absolutely continuous curves.

Proposition 10.3.18 (Chain rule). Let ¢ : Z,(X) — (—o0, +o0| be a regular func-
tional satisfying (10.3.1a,b), and let p : (a,b) — p € D(¢) C Pp(X) be an
absolutely continuous curve with tangent velocity vector vy. Let A C (a,b) be the
set of points t € (a,b) such that

(a) 106](1) < +o0;
(b) @ o p is approzimately differentiable at t;
(¢c) condition (8.4.6) of Proposition 8.4.6 holds.
Then

%qb(ut) = / (r2,v¢(z1)) dy(z1,22) Vv, € Op(p), VI € A. (10.3.43)

Moreover, if ¢ is A\-convex and (10.1.17) holds, then the map t — ¢(ut) is abso-
lutely continuous and (a,b) \ A is £-negligible.

Proof. We have simply to evaluate the time derivative of ¢ o u at a point ¢ € A.
We take v; € 8¢(puz) and fry, € To(vi, ptian) so that

P(pepn) — dpe) = /Xs (x9,x3 — 1) dfty, + o(h) (10.3.44)

[ o) dus, + o),
X3
with p, := (7!, 7%, A= (73 — ﬂl))#/lh. We know by (8.4.6) that
. 1,3 . .

Ag%ﬁ# py, = (2 % 'vg)#,ug, in Z,(X x X)
and therefore, since 71';#’2[1% = 7;, we infer from Lemma 5.3.2 that

’?L% Wy, = (xl,xg,vg(xl))#ﬁyt— in 2,(X?).
Therefore, dividing by h and passing to the limit in (10.3.44) we obtain that the
approximate derivatives d/dty¢(p) satisfy

d

—¢(Mt)’t

i _Z/(xz,vz($1)>d757 %WM)L:ZS/<1‘2,U£(9€1)>d’7t
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and therefore we find (10.3.43).
In the convex case, since |0¢| is a strong upper gradient, we already know
that ¢(u,) is absolutely continuous and thus (a,b) \ A is #!-negligible. O

10.4 Example of subdifferentials

In this section we consider in the detail the subdifferential of the convex function-
als presented in Chapter 9 (potential energy, interaction energy, internal energy,
negative Wasserstein distance), with a particular attention to the characterization
of the elements with minimal norm.

We start by considering a general, but smooth, situation.

10.4.1 Variational integrals: the smooth case

In order to clarify the underlying structure of many examples and the link between
the notion of Wasserstein subdifferential and the standard variational calculus for
integral functionals, we first consider the case of a variational integral of the type

/ F(z,p(x),Vp(x))dr if u=p- £ with p € CH(R?)
R

F(n) = (10.4.1)

+o00 otherwise.

Since we are not claiming any generality and we are only interested in the form of
the subdifferential, we will assume enough regularity to justify all the computa-
tions; therefore, we suppose that F : R? x [0, +00) x R? — [0, +-00) is a C2 function
with F(z,0,p) = 0 for every z, p € R? and we consider the case of a smooth and
strictly positive density p: as usual, we denote by (z,z,p) € R? x R x R the
variables of F' and by 6.% /dp the first variation density

0F
g(x) = Fa(z, p(x), Vp(z)) =V - Fp(z, p(x), Vp(x)). (10.4.2)
Lemma 10.4.1. If p = p- £% € 25(R?) with p € C*(R?) satisfies F(n) < +00
and w € LI(j;RY) belongs to the strong subdifferential of F at u, then

w(z) = V%(w) for p-a.e. x € RY, (10.4.3)

and for every vector field & € C°(R%; R?) we have

[ 0 e@dn@ =~ [ 2@V (pla)e(a) do. (10.4.4)
Rd

Ra O

The same result holds if p =2, p € C2(R?) and w € 0.F (u) N Tan, Z2(R?).
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Proof. We take a smooth vector field ¢ € C°(R%R?) and we set for e € R
sufficiently small p. := (¢ 4 €€)xp. If w is a strong subdifferential, by (10.3.10)
we know that

ar _ T ar 7
lim sup Flue) = 7 < / w(z) - £(z) du(z) < liminf M;
€10 £ Rd €l0 €
(10.4.5)
on the other hand, by Lemma 5.5.3 we know that pu. = p..£¢ with
P : -1 d
W)= = R®. 10.4.

PeW) = G+ eve) ° (i+c€) (v) Vye (10.4.6)

The map (z,¢) — pe(z) is of class C? with p.(x) = p(z) outside a compact set
and (@)
Ope(x

pe@) g =pla), 2| =V (@), (1047)

Standard variational formulae (see e.g. [87, Vol.1, 1.2.1]) yield

iig(l) M =— y %(az) V- (p(x)€(x)) dx, (10.4.8)
which shows (10.4.4).

Let us now suppose that p = 2 and w € 0.7 (u) N Tan, P5(R); then (10.4.8)
holds whenever 4 + £ is, an optimal transport map for || small enough, and in
particular for gradient vector fields £ = V¢ with ¢ € C2°(R?). Since Tan, Z>(R?)
is the closure in L?(u;R?) of the space of such gradients, we have

0F

/ w(z)-&(z) du(z) = 7/ V(S—(x)ﬁ(x) du(z) V& € Tan, Z5(R?). (10.4.9)
R4 R4 P

We obtain (10.4.3) noticing that §.7 /dp € Tan, P(R?), by the assumption that

p € C2(RY). O

10.4.2 The potential energy

Let V : X — (—o00,+00] be a proper, l.s.c. and A-convex functional (here it is
sufficient to consider the case A < 0) and let ) be the functional defined by (9.3.2)
on Z,(X) (here p > 2 if A < 0). We denote by graph 0V the graph of the Fréchet
subdifferential of V' in X x X, i.e. the subset of the couples (z1,22) € X x X
satisfying

A
V(ws) 2 V(w1) + (wa, 05 = 21) + Slan =l Vag € X, (10.4.10)

As usual, 9°V(z) denotes the element of minimal norm in OV ().
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Proposition 10.4.2. Let v € Ppq(X x X)) with p = 7wl,y.

(i) v is a strong subdifferential of V at p if and only if it satisfies suppvy C
graph dV.

(i) v = 8°V(u) if and only if v is induced by the transport & = 0°V, i.e.
v = (i X &)up where &(x) = 0°V () for p-a.e. x € X; in particular

I6¢\q(u)=/x\8vlq(x)du(x):/X|a°V(x)|qdu(x). (10.4.11)

Proof. We suppose A = 0 and p = 2: the proof of the general case can be obtained
by obvious modifications.

(i) If v € Z,,(X x X) with supp~y C graphdV then for every p? € D(V)
and p € T'(v, 13) (10.4.10) holds p-a.e. in X3 and therefore

Wﬁ%vmf/

X3

(o, x3—21)dp = /

(V($3) —V(ze) — (22,23 f:m)) dp > 0.
X3

Conversely, suppose that (10.3.7) holds: then choosing us € D(V), p € T'(~, us),
1—3

py o= (1,22, (1 — t)zy + tag)gp, pp % i= mlp,, and recalling that V is convex
along any interpolating plan, we have

1-3Y _ p(,,1
V(i®) — V(pt) > lim inf Yo ™) = Vi) > / (xo,23 —x1ydp.  (10.4.12)
X3

t10 t

If supp~ is not a subset of graphdV, by the lower semicontinuity of V' we can
find %1, 22, 3 € X and p > 0 such that

V(23) < V(1) + (w2, 83 — 1) V(21,22) € R:= B,(21) x B,(&2)

and y(R) > 0; thus, integrating the above relation in R with respect to v yields
/ <V(:23) — V(a1) — (22,83 — x1>> dy (21, 2) < 0. (10.4.13)
R

We introduce the map r equal to 71 on X2\ R and equal to &3 on R and we set

p = ryy, po= (z1, 79, 7(21,72)) 2y € (7, ). Applying (10.4.12) we get

0<V(®) - V(') - /X3 (22,23 — 1) dp(x1, 22, X3)
— / <V(r(x1,x2)) —Vi(x1) — (za2, (21, 22) — x1>> dy(x1,x2)
X2
= [ (V@) = Vi) = (oaa = ) dr(an o),
R

which contradicts (10.4.13).
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(ii) We now show (10.4.11), which in particular characterizes 8°V(u). For
7 > 0 we call r, the resolvent map which provides for any x the unique solution
of the strictly convex minimization problem

1 2
min — |y — +V .
yelX 27 ‘y l‘| (y)

We set pir == (r)gp and we check that p, is the minimizer of (10.3.1b): for every
v € D(V) and v € T'p(p, v) we have

1 1
V)t g Wi = [ V()4 5fea =iy
T X2 2T
1
> [ Vir@) + g-ire(o) - du
X T
1
> — W3 .
= V(pr) + 5-Ws (n, pir)

Recalling that |9V|*(n) = lim, o W3 (u, pir)/72 and that

oo @ _ e e @P
- 2 <[0°V(2)[%, E%T = |0°V ()],
we obtain
. x— 1, (7))? .
v =ty [ = ) = [ v uta). 0
T X T X

Remark 10.4.3. It would not be difficult to show that if V € C'}(X) is a functional
with bounded Fréchet derivatives, then V is regular and & = 0°V(p) iff &(x) =
VV (z).

10.4.3 The internal energy
Let F be the functional

| Felndzia itu=p-2te 2@,

F(p) = (10.4.14)
400 otherwise,
for a convex differentiable function satisfying
F d
F(0) =0, liminf () > —oo for some a > —— (10.4.15)

sl0 8¢ d+p

as in Example 9.3.6. Recall that if F' has superlinear growth at infinity then the
functional F is l.s.c. with respect to the narrow convergence (indeed, under this
growth condition the lower semicontinuity can be checked w.r.t. to the stronger
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weak L' convergence, by Dunford-Pettis theorem, and lower semicontinuity w.r.t.
weak L! convergence is a direct consequence of the convexity on F). More gener-
ally, in the case when F' has a (sub-)linear growth, i.e.

lim F) = sup M

z—400 z 2>0 z

=0 < +oo, (10.4.16)
we consider the lower semicontinuous envelope of F, given by
F*(p) = / F(p)dz +0ps(RY), p=p- L%+ p,, ps L.2° (10.4.17)
R4

We set Lp(z) = zF'(z) — F(2) : [0,4+00) — [0,400) and we observe that Lp is
strictly related to the conver function

G(z,s) :=sF(z/s), z€][0,40), s€ (0,+00), (10.4.18)

%G(z,s) = —EF’(z/s) + F(z/s) = —Lp(z/s). (10.4.19)
In particular (recall that F(0) = 0, by (10.4.15))
F(z) — G(z,s)

G(z,8) < F(z) fors>1, 1 Lp(z) ass|1. (10.4.20)

s—1
We will also suppose that F' satisfies condition (9.3.11), i.e.
the map s+ s?F(s™%) is convex and non increasing in (0, +o0), (10.4.21)

yielding the geodesic convexity of F, F*.
The following lemma shows the existence of the directional derivative of F
(or F*) along a suitable class of directions including all optimal transport maps.

Lemma 10.4.4 (Directional derivative of F*). Suppose that F' : [0,+00) — R
is a convex differentiable function satisfying (10.4.21) and (10.4.15). Let p =
pL4+ us € D(F*), r € LP(u;R?Y) and t > 0 be such that

(i) = is approzimately differentiable p£%-a.e. and vy = (1 — t)i + tr is p.2-
injective with |det Vry(z)| > 0 pL?-a.e., for any t € [0,1];

(i) Vr; is diagonalizable with positive eigenvalues;

(iii) ps L 24 and (ry)gps L L7 for any t € [0,];

(iv) F*((rg)pp) < +oo.

Then the map t — t=*(F*((r¢)up) — F*(n)) is nondecreasing in [0, and
Fr((re)gp) — F* (1)

“+oo > lim = —/ Lr(p)trV(r — ) dz. (10.4.22)
t10 t R4

The identity above still holds when assumptions (ii) on T is replaced by
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(i) |V (r — 1) || oo (pgaraxay < +00 (in particular if r — i € C°(RGRY)),
and F satisfies in addition the “doubling” condition
3C>0: F(z4+w) <C(1+F(2)+ F(w)) Vz w. (10.4.23)

Proof. By assumptions (i) and (ii), taking into account Lemma 5.5.3 and the
representation (10.4.17) of F* we have

Flrown) 7w = [ F (#x)m) devTrfe)do— [ Flpla)ds

/Rd (G(f)(x),det @rt(x)) - F(p(x))) dz

for any ¢ € (0,{]. By the argument given in Proposition 9.3.9, (iii), assumption
(10.4.21) together with (9.3.12) imply that the function

Gp(x), det V) = F(p(a)

; te (0,1 (10.4.24)

is nondecreasing w.r.t. t and bounded above by an integrable function (take ¢t = ¢
and apply (iv)). Therefore the monotone convergence theorem gives

ltiH}f ((frt)#/i) F(p) _ /Rd %G(p(x),det Vri(@))|,_, do
and the expansion det Vr; = 1+ ttr V(r — ) + o(t) together with (10.4.19) give
the result.

In the case when (ii’) holds, the argument is analogous but, since condition
(ii) fails, we cannot rely anymore on the monotonicity of the function in (10.4.24).
However, using the inequalities

F(w) — F(0) < wF'(w) < F(2w) — F(w)

and the doubling condition we easily see that the derivative w.r.t. s of the function
G(z,s) can be bounded by C(1 4+ F*(z)) for |s — 1| < 1/2. Therefore we can use
the dominated convergence theorem instead of the monotone convergence theorem
to pass to the limit. O

The next technical lemma shows that we can “integrate by parts” in (10.4.22)
preserving the inequality, if Lr(p) is locally in Wbt

Lemma 10.4.5 (A “weak” integration by parts formula). Under the same assump-
tions of Lemma 10.4.4, let us suppose that

(i) supp u C Q, Q being a convex open subset of R (not necessarily bounded);
(i) Lr(p) € Wi (9);

loc
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(ii) K = supp(ry)4xp is a compact subset of Q for some t € (0,1];

(iv) 7 satisfies the property (ii) of Theorem 6.2.9, i.e. there exists a sequence Ty,
of functions in BVio.(R% R?) such that rj,(z) € K for pL-a.c. x € R and
pm p({rn 7)) =0

Then we can find an increasing family of nonnegative Lipschitz functions X :
R? — [0,1] with compact support in Q such that Xi T xa and

—/ Lp(p(z))tr V(r — i) dz > lim sup/ (VLp(p),r — )X dx.  (10.4.25)
R R4

k—o0

Proof. Possibly replacing r by 77, we can assume that ¢ = 1 in (iii). Let us
first recall that by Calderon-Zygmund theorem (see for instance [11]) for every
vector field s € BVjo.(R?; R?) the approximate divergence tr (@s) is the absolutely
continuous part of the distributional divergence D - s; therefore we have

/ vir (Vs)de < f/ (Vu, s) dx, (10.4.26)
R4 Rd

provided D-s > 0 and v € C°(R?) is nonnegative. If s is bounded, by approxima-
tion the same inequality remains true for every nonnegative function v € W1 (R?).
For every Lipschitz function n : R? — [0, 1] with compact support in € and each
function s = r,, choosing v :=nLg(p) € WHL(R?) we get

[ et e (Fryde < [ (T(oLep) rn) (10.4.27)
Rd Rd

taking into account that pu({Vr # Vr,}) — 0 (because the approximate differ-
entials coincide at points of density one of the coincidence set) and that Lg(p)
vanishes where p vanishes, we recover the inequality

/ (nLr(p)) tr (Vr)dz < 7/ (V(nLr(p)),r)dz. (10.4.28)
Rd R4

On the other hand, a standard integration by parts yields
/Q (nLr(p)) tr (Vi) dz = — /Q (V(nLp(p)),s) da; (10.4.29)

summing up with (10.4.28) and inverting the sign we find
~ /R (nLr(p)) tr (V(r — 0)) da > /R (V(nLr(p)),r —i)dz.  (10.4.30)

Now we choose carefully the test function 1. We consider an increasing family
bounded open convex sets 2 such that

o0
Qcc, 9=[Jwu
k=1
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and for each convex set 2 we consider the function
Xi(z) := kd(z, R\ Q) A L. (10.4.31)

X is an increasing family of nonnegative Lipschitz functions which take their
values in [0,1] and satisfy Xx(z) = 1 if d(z,R? \ Q) > 1; in particular, X;; = 1 in
K for k sufficiently large. Moreover X}, is concave in €y, since the distance function

d(-,RY\ Q) is concave. Choosing 7 := X}, in (10.4.30) we get

—/ (XeLr(p)) tr(@(r—i))dmz/ (VLp(p),r — i) Xy, dz
R

Rd

+/ (VXg, —4) Lp(p)dr  (10.4.32)
Qp
> [ (VLe(o)r—ihxido

since the integrand of (10.4.32) is nonnegative: in fact, for Z%-a.e. x €  where
Lr(p(x)) is strictly positive, the concavity of Xj and r(z) € K yields

(VXp(2),7(x) —i(2)) > Xi(r(2)) = Xp(2) =1 = Xp(2) = 0.

Passing to the limit as & — oo in the previous integral inequality, we obtain
(10.4.25) (recall that the function in the left hand side of (10.4.25) is semiintegrable
by (10.4.22)). 0

In the following two theorems we characterize 0°F* (1) and give (under the
doubling condition, but see Remark 10.4.7) a formula for the slope of the func-
tional, showing that VLg(p)/p is the minimal selection in the subdifferential. Since
F* = F in the superlinear case, we consider the functional F* only.

Theorem 10.4.6 (Slope and subdifferential of F*). Suppose that F : [0, +00) — R
is a convex differentiable function satisfying (10.4.15), (10.4.21) and (10.4.23).
Assume that F* has finite slope at p € P,(R?) with p = p- L4+ ps and ps L L.
Then the following statements hold:

(a) Lr(p) € WHHRY) and VLE(p) = wp for some function w € LI(p L% RY).
Moreover

(/Rd () 7o) dr) " < 105 (1) < 4. (10.4.33)

(b) If p € 25(RY) then equality holds in (10.4.33) and w = 0°F*(u).

Conwersely, if Lp(p) € W,oH(R?) and VLp(p) = wp for some w € LI(u; RY),

loc

then F* has a finite slope at p = pL% and w = °F*(u).
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Proof. (a) We apply first (10.4.22) with » = 0 pZ%a.e. and » = i on a L%
negligible set on which p® is concentrated and take into account that

WP(M? ((1 - t)z + tr)#,u) < tHiHL”(p;’fd;Rd)
to obtain

d [ Lr(p)do < OF ]l pzvney

so that Lp(p) € L'(R?). Next, we apply (10.4.22) with 7 —4 equal to a C2°(R%; R9)
function ¢ p.#%-a.e. (notice that condition (i) holds with £ < sup |V¢|) and equal to
0 on a .Z%negligible set on which s, is concentrated, and use again the inequality
Wi (s (L= t)i +tr)pp) < tl|lr — | Lo,z to obtain

[ Lot (90 do < 0 (0220, < 107 ) s0p e,

having used also the fact that the approximate differential V(r —4) (by definition)
coincides with the classical differential Vt p.#?-a.e. As t is arbitrary, Riesz theorem
gives that Lp(p) is a function of bounded variation (i.e. its distributional derivative
DLEg(p) is a finite R%-valued measure in R?), so that we can rewrite the inequality

as 4
Z/ tidDiLF(p)
i=1 7 R?

By LP duality theory there exists w € L?(p£%;R?) with ||w|, < |0F|(n) such
that

<|OF ()t Lo (p.z:m)-

d
Z/ tidDiLF(p):/ (w,t) dp 2"Vt € O (RY,RY),
i—1 /R R

Therefore Lr(p) € WHL(RY) and VLg(p) = wp. This leads to the inequality <
in (10.4.33).

(b) Assume now that p € &) (R9). In order to show that equality holds in (10.4.33)
we will prove that (¢ x w)xp belongs to F*(1). We have to show that (10.1.7)
holds for any v € 2,(R%) and, by approximation, we can assume that v € 277 (R%)
and that F7*(v) is finite. Using the doubling condition it is also easy to find a
sequence of measures v, with compact support converging to v in #2,(X) and such
that F*(vp,) converges to F*(v), hence we can also assume that supp v is compact.
Setting r = t;,, by Theorem 6.2.7 and the argument in the beginning of Proposition
9.3.9, we know that all the conditions of Lemma 10.4.4 are fulfilled. Theorem 6.2.9
shows that also Lemma 10.4.5 holds; therefore, by applying (10.4.22), the geodesic
convexity of F*, and (10.4.25) we obtain

F(v) — F* () = limsup / (TLe(p), (r — i) d

h— o0

= limsup/ (w, (r —1))Xppdr = / (w,r — 1) dpu,
Rd

h—o0 R4
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proving that w € 0F*(u).

Finally, we notice that our proof that w = VLg(p)/p € 0F* (1) does not
use the finiteness of slope, but only the assumption w € L7(u;R?), therefore
these conditions imply that the subdifferential is not empty and that the slope is
finite. |

Remark 10.4.7 (The non-doubling case). The doubling assumption seems to play
an essential role in the previous proof, as it allows to differentiate the energy func-
tionals along smooth and compactly supported directions. Notice also that the
proof that the assumptions Lg(p) € WH1(RY) and VLp(p) = wp with w € LY
imply that w is in the subdifferential does not use the doubling condition. In
the non-doubling case the characterization of the minimal subdifferential could
still be obtained through a monotone approximation argument of F' by doubling
functions F), (which yields indeed the I'-convergence of the corresponding energy
functionals) based on Lemma 10.3.16. This argument is explained in detail in a
more relevant case for the applications, the entropy functional in infinite dimen-
sions (see Theorem 10.4.17: in this case the approximating functionals are the
entropies with respect to finite dimensional projections of the reference measure).

Let us now consider a particular class of functions I’ with sublinear growth:
assuming that —F(z)/z — 0 sufficiently slowly as z — oo, we prove that finiteness
of slope implies absolute continuity of the measure. This assumptions covers all
power functions —t™ with m > 1 — 1/d (leaving open only the case m =1 — 1/d,
where still (10.4.21) holds).

Theorem 10.4.8 (Finiteness of slope implies regularity). Let us suppose that F is
a convez differentiable function in [0,+00) satisfying (10.4.15), (10.4.21), and

lim 2%/ (0 - @) = +o0. (10.4.34)

z—+400
If the metric slope |0F*|(i1) is finite at p € Py (X) then p € P} (X).

Proof. Let u € D(F*) be fixed, assume that [0F*|(u) < oo, and write p =
pL% + 1i®, with p® singular with respect to .Z%. We call E a Borel .#%negligible
set on which p® is concentrated, i.e.

Ec ZRY), pRI\E)=0 ZLYE)=0.

We now claim that g is absolutely continuous. If not, let @ = [0,1]¢ and let r
be the optimal transport map between g = xg-2? and p. By Theorem 6.2.7
we know that r is approximately differentiable and that Vr is diagonalizable with
nonnegative eigenvalues pg-a.e.; the argument in the beginning of Proposition 9.3.9
shows that (1 — t)i + tr is pp-essentially injective for any t € [0, 1).

We define Q1 := r~}(E) and Q2 = Q\ Q1. Since F is .Z%-negligible the area
formula (5.5.2) gives det Vr = 0 Z%-a.e. on Q;. Notice also that £%(Q1) is the
total mass of p®.



264 Chapter 10. Metric Slope and Subdifferential Calculus in &,(X)

We define vy :=ti+ (1 —t)r, pg := (r¢)xpo and J; := det Vr;. The concavity
of the map ¢ — Jtl/d and the fact that Jo(z) >0, Ji(z) =1 ZL%a.e. in Q yield

Ji(z) >t for L%ae. x € Q. (10.4.35)

Therefore from (5.5.3) we get p; = (pr + p?).Z£? with

: 1
Pt = J, 0 rt_l ""t(Qi)'

Moreover, the pg-essential injectivity of r; and the fact that p; < £ imply that
r(Q1) N7 (Q2) is L ¥-negligible, so that we have the decomposition

f*(m):f(m)z/Q F(ﬁ)ﬁ(y)dy—i—/r@ )F(m) do. (10.4.36)

On the other hand, r|g, is the optimal transport map between yg,-£? and p.£?
and p? is the value of the unique constant speed geodesic at time ¢, see Chapter 7
(here we apply the interpolation theory to pairs of measures whose common total
mass is not necessarily 1).

Since p.Z? is regular as well we can find the optimal transport map s between
pL?% and xg, ¢ and setting s, = ((1 — t)i + ts), the uniqueness of geodesic
interpolation gives p?.£? = (st)#(pfd), hence

! 2 * ()N
.o ") = 700 = 7 002 = [P (G i i
with jt := det @ét and

Fr(w) = F () _ fl(/Rd F(p(z)) dx — /RdF< o) )jt(x) d:c)

t
+t7! / 1 (9 - F(Jiy))Jt(yD dy.

From Lemma 10.4.5 and (10.4.22) we get

—00 < A=~ /]Rd (VLp(p(2)),s(z) — z) dx

< ltilrgt_1</Rd F(p(z)) dx — /Rd F(z(é)))jt(x) dx).

Passing to the limit as ¢ | 0 and using the identity W), (e, po) = tWy (1o, 1t)
we get

lm sup / a (0-F( Jiy))m)) dy < [0F| ()W (puo, 12) — A < +00.
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We observe that if det Vr(y) = 0 we have lim;|o J;(y) = 0 and by (10.4.35) we get

lir?l(i)nf t! (9 - F(%y))&(y)) > lir?l(i)nf Jt_l/d(y) (9 - F(#y)) Jt(y))
= lir%1+iorlle/d (9 - F(z)/z) = +o0.

Since det Vr(y) = 0 for Z%a.e. y € Q1, Fatou’s Lemma yields

lir?l(i)nf /Q1 t1 <0 - F(ﬁ)Jt(y)) dy = +o0

whenever .£4(Q1) = p*(RY) > 0. O

10.4.4 The relative internal energy

In this section we briefly discuss the modifications which should be apported to the
previous results, when one consider a relative energy functional as in Section 9.4.

We thus consider a log-concave probability measure vy = e~ - £ € 2(R?)
induced by a convex l.s.c. potential

ViR = (=00, 400], with Q=int D(V) # 0. (10.4.37)
We are also assuming that the energy density
F :[0,400) — [0,+00] is convex and ls.c.,
it satisfies the doubling property (10.4.23), (10.4.38)
and the geodesic convexity condition (9.3.19),

which yield that the map s — F(s) := F(e *)e® is convex and non increasing in
R. The functional

Fuly) = /Rd F(o)dy = /QF(p/e_V)e_V dz, p=0-v=pL" (10.4.39)

is therefore geodesically convex in 22, (R%), by Theorem 9.4.12. It is easy to check
that whenever F' is not constant (case which corresponds to a linear F and a
constant functional F), F' has a superlinear growth and therefore F is lower semi-
continuous in &, (X).

As already observed in Remark 10.4.7, the doubling property (10.4.38) could
be avoided; here we are assuming it for the sake of simplicity.

Theorem 10.4.9 (Subdifferential of F(-|v)). The functional F(-|y) has finite slope
at p=o0-v € D(F) if and only if Lp(o) € VVIECI(Q) and VLp(o) = ow for some
function w € L(u; RY). In this case

1/q
( / w@du() " = 10F |, (10.4.40)
and w = 0°F ().
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Proof. We argue as in Theorem 10.4.6: in the present case the directional derivative
formula (10.4.22) becomes

F((ro)gply) = F(uly)
t

400 > ltilrtI)l
_ _/ Le(pfe™") (e V¥ i) — e V(VVor —i) ) de (10.4.41)
R4
= _/ LF(a)tr@(e_V(r - z)) dx
R4

for every vector field r satisfying the assumptions of Lemma 10.4.4 and F(rgpu|vy) <
+00. Choosing as before r =i + e"t, t € C°(Q; R?), since V is bounded in each
compact subset of ), we get

/ Lr(o)tr Vtdz < |0F| () sup |eVt|,
Q Ra

so that Lp(0) € BWee(£2). Choosing now r =4 + t with t € C°(Q; R?) we get

d
Z/tidDiLF(O')d’y
i=1 %

so that there exists w € LP(u; R?) such that

< |OFI ()1l o sy

d
Z/tidDin(a)d'y:/ <w,t>d/¢:/ (pw,t)e”V dr YVt e CZ(QRY),
L) R R

thus showing that Lr(o) € VVlloc1 () and VLg(0) = pe™Vw = ow.
Conversely, if Lr(0) € W21 (Q) with VLp(0) = ow and w € LI(u;R?),
arguing as in Lemma 10.4.5 we have for every measure v = r4xp with compact

support in

Fv|y) — F(uly) > limsup — /Q Lp(o)tr @(e‘v(r — z))Xk dx

k—o0

> limsup/ (XeVLp(o) + Lp(0)VXk, 7 — 1) dy
Q

k—o0

k—oo

> limsup/ (VLp(o),r — )Xy dy
Q

zlimsup/ (w,r7i>xkd,u:/ (w,r — 1) dp,
Q Q

k—o0

which shows through a density argument that w € 9F (u). O
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10.4.5 The interaction energy

In this section we consider the interaction energy functional W : &2,(X) — [0, +o0]
defined by

Win) =5 s Wz —y)dp x p(z,y).

Without loss of generality we shall assume that W : X — [0, +00) is an even func-
tion; our main assumption, besides the convexity of W, is the doubling condition

ICw >0: W(r+y) <Cw(l+W(z)+W(y) Va,yeX. (10.4.42)

Let us first state a preliminary result: we are denoting by i the barycenter of the
measure /i

ﬁ::/Xxdp(x). (10.4.43)

Lemma 10.4.10. Assume that W : X — [0, +00) is convex, Gateauzx differentiable,
even, and satisfies the doubling condition (10.4.42). Then for any p € D(W) we
have

/X W (z) du(z) < Cw (1 +W(p) + W(n)) < +oo, (10.4.44)

/ VW (z — y)|dp x p(z,y) < Cw (1 + Sw +W(n)) < +oo, (10.4.45)
XxX

where Sw = sup|, <1 W(y). In particular w := (VW)xp is well defined for ji-a.e.
x € X, it belongs to L*(u; X), and it satisfies

/ (VW (z1 = 22),y1 — 21) dy(21,91) dp(22)
X2x X (10.4.46)

:/ (w(x1),y1 — 21) dy(21,91),
X2

for every plan v € T'(u,v) with v € D(W). In particular, choosing v := (& X 7)1,
we have

[ W=yt i plen) = [ o) re) du) (0447
XxX X

for every vector field v € L>(u; X) and for r := i, A € R.

Proof. By Jensen inequality we have
Wi(x —p) < / W(xr —y)duly) VoelX, (10.4.48)
X
so that a further integration yields

[ Wle = i) dute) < Wi (10.4.49)
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(10.4.44) follows directly from (10.4.49) and the doubling condition (10.4.42), since
W(z) < Cw(1+W(z—p)+W(R).
Combining the doubling condition and the convexity of W we also get

VW ()| = sup (VW(x),y) < sup W(x +y) - W(z)

ly|<1 ly|<1 (10.4.50)
< Cw(1+ W(z) + sup W(y)), o
ly|<1

which yields (10.4.45).
If now v € D(OW) and v € T'(u,v), then the positive part of the map
(1,91, 22) — (VW (21 — 22), 91 — 1) belongs to L(v x ) since convexity yields

(VW (z1 —22),y1 —21) < W(y1 — 22) — W(z1 — 12),

and the right hand side of this inequality is integrable:

- W(yr—w2)dyxp = - W(yr—a2) dvxp < C(1+WW)+W(p)+ W (7—R)),

W(xy —xo)dy X = / W(zy — x2) dp x p=W(p).
X3 X2

Therefore we can apply Fubini-Tonelli theorem to obtain
/3 (VW (z1 — 22),y1 — 1) dy X p(21, 91, 72)
X

= [ (] 9WGar = a2 — ) duaa)) dy(or )
x2 VJx

:/ <(/ VW (21 *$2)dl~t($2)),y1 — 1) dy(21, 1)
X2 X

2/ (w(x1),y1 — 1) dy (w1, 91),
X2

which yields (10.4.46). O

Theorem 10.4.11 (Minimal subdifferential of W). Assume that W : X — [0, 400)
is convex, Gateauz differentiable, even, and satisfies the doubling condition
(10.4.42). Then p € P,(X) belongs to D(|OW)|) if and only if w = (VW) % p €
LU(u; X). In this case w = 0°W(p).

Proof. As we did for the internal energy functional, we start by computing the
directional derivative of YW along a direction induced by a transport map r = i+t,
with ¢ bounded and with a compact support (by the growth condition on W, this
ensures that W(r4u) < +00). Since the map

Wz —y) + () —ty) - Wz —y)
t
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is nondecreasing w.r.t. ¢, the monotone convergence theorem and (10.4.47) give
(taking into account that VIV is an odd function)

oo > Tim W((E + tt)fu - W)

- %/XXX (VW (z —y), (t(x) — t(y))) dp x pp = /X (w, t) dp.

On the other hand, since [OW|(p) < +00, using the inequality W, ((¢+tt)xp, n) <
1t Le(usx) We get

/X (w, ) dyt > —|OW| () [l] Lo’

changing the sign of ¢ we obtain

’ /X (w, 1) du’ < oW ()]t 2o -

and this proves that w € L(u; X) and that ||w|| L« < [OW]|(1).

Now we prove that if w = (VW) % u € L9(u; X), then it belongs to OW(u).
Let us consider a test measure v € D(W), a plan v € I'(u, v), and the directional
derivative of W along the direction induced by ~y. Since the map

W ((1—=1t)(x1 —x2) +t(y1 — y2)) — W(x1 — 22)
t

t—

is nondecreasing w.r.t. ¢, the monotone convergence theorem, the fact that V¥ is
an odd function, and (10.4.47) give

WA = )" +tr)uy — W(n)

_ > i
W) =W 2 lim ;

1

= 5 [ (W =) - ) — (52— wz)) dy x

X2xX?2

= / (w(z1),y1 — 1) dy(21,91),

X2
and this proves that (¢ x w)zu € OW(u). O

10.4.6 The opposite Wasserstein distance

In this section we compute the (metric) slope of the function ¥ (-) := —IWZ(-, u?),
i.e. the limit W20, 1) — W 12)
L. v j17) — s o
=1 - 22002 = 0v|(n); 10.4.51
im sup AT |01 (w); ( )

observe that the triangle inequality shows that the “lim sup” above is always less
than Wy (u, p?); however this inequality is always strict when optimal plans are not
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induced by transports, as the following theorem shows; the right formula for the
slope involves the minimal L? norm of the barycentric projection of the optimal
plans and gives that the minimal selection is always induced by a map.

Theorem 10.4.12 (Minimal subdifferential of the opposite Wasserstein distance).
Let () = —3W3(u, u?). Then

09| (1) = min {/X ¥ —il*du: ye Fo(u,/f)} Vu e Po(X), (10.4.52)

and 0°¢Y(pu) =4 — 1 is a strong subdifferential, where v is the unique minimizing
plan above.

Moreover p— |0Y|(1) is lower semicontinuous with respect to narrow convergence
in Z(X), along sequences bounded in P(X).

Proof. Notice first that the minimum is uniquely attained because of the convexity
of T (u, p2), the linearity of the barycentric projection, and the strict convexity
of the L? norm.

We show first that for any v € To(u, u?) the plan n = (i x (§ — 1)) xp
belongs to &Y (u), i.e. ¥ —¢ € JY(u), proving the inequality < in (10.4.52). For
every v € P5(X) and v € T'(u,v) it would be sufficient to show that (recall that
1 is —1 convex)

Y(v) > P(p) +/ ((x1) — 21,22 — 1) dV (21, 2) — %WE(M,I/). (10.4.53)

X2

Let B € T'(i, 4%, v) be the 3-plan determined by the condition
By = Voo X Vg, for prace. g

Since w# B=~c To(p, p?) and 773#’ SB=ve I'(u,v), we have the inequalities

1 1 1 1
V) =) + Wi, v) = =5 W3 (v, %) + S W5 (1, 1) + W5 (1, v)
1 , 1 , 1 ,
> —§Hx2 — 23l 720,x) T 5“5”2 —z1[728.x) T 5”% — 21| 72(8,x)

(x2 — 21,23 — 1) dB(x1, T2, 23)

o~

X3

(/X2 (2 — 21,23 — 1) dys, (X2) X dvyg, (q;3)) dp(xy)

(/X F(z1) — w1, 23 — 1) duxl(x;;)) du(zy)

I

(Y(z1) — 21,22 — 21) dU (21, 22),

proving (10.4.53).
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In order to show that equality holds in (10.4.52) we notice that

1/2
([P dr) = Il = 1B € Tl

where P, : L?(p; X) — Tan,, % (X) is the orthogonal projection. Therefore, tak-
ing into account that the slope is equal to the minimal norm in the subdifferential,
it would be sufficient to show that any v € 9v(u) satisfies P,(¥) = n — ¢ for
some 1 € T',(i1, u?). Denoting by (-, -) the scalar product in L?(u; X), by applying
Hahn-Banach theorem in Tan, %% (X) it suffices to show the inequality

(Pu(7),v) < max (w,v) Vv € Tan, Z»(X), (10.4.54)

we

where K C L?(u; X) is the bounded, closed, and convex set defined by

K:={n—i: nely(up}.

Notice indeed that K C Tan, %2(X) by Theorem 12.4.4 and Theorem 8.5.5.

By a density argument it suffices to check (10.4.54) when v has the property
that ¢ + v is an optimal map, and the unique one, for some £ > 0: indeed,
it suffices to recall that for any optimal transport map 7 the interpolated maps
ry = (1 — )i + tr are the unique optimal transport maps (see Lemma 7.2.1) for
any t € [0,1), so that the property above is fulfilled with ¢ = ¢ and v = r — 4.
Then we use the fact that the positive cone induced by these vectors is dense in
Tan,, Z»(X), by Theorem 8.5.5. By homogeneity, we assume that ¢ = 1. Under
these assumptions on v, for ¢ € [0, 1] we set

pe = (i +tv)gp and oy = (7', 72, (i +tv) o) py,

noticing that Lemma 5.3.2 gives that «a; is the unique 3-plan such that w# 2o = v

and 773#’3(1,5 = . As a consequence, since v € 91(u), the inequality

wle) 2 () + [ (3, 0) i 5 1 )

1
s <3327333 —331> doy — EWQQ(IMM) = t/

X

must hold. Since W3 (u, j1¢) = t>W3(p, j11), dividing both sides by ¢ and passing
to the limit as ¢ | 0 we obtain

W3 (1, p?) — W3 (e, p12)
¢

lim inf
10

>2 [ Go)du=2 [ (P30 du

On the other hand, Proposition 7.3.6 and (7.3.17) give that the derivative on the
left is equal to

max 2/ (v(x1),22 —x1)dn = max 2/ (v(x1),n(z1) — 21) dp,
nelo(p,p?) Jx2 nelo(p,pn?) Jx2
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so that, recalling the definition of K, (10.4.53) holds.

Now we show the stated lower semicontinuity of the slope. Let (u,) C
P5(X) be a bounded sequence narrowly converging in H5(X) to p and let ,, €
Lo(pin, u?). We assume that |91|(u,,) converges to L and we have to show that
L > |0¢|(p). Since the marginals of =, are converging in (X)) (and there-
fore tight), we can assume, possibly extracting a subsequence, that 7y, narrowly
converge in Z(X x X) to some plan v. By Proposition 7.1.3 we obtain that
v € To(p, p?). Using test functions of the form (zo—x1, p(z1)), with ¢ € CP (X; X),
we immediately obtain that (7, — %)y, narrowly converge in the duality with
CO(X: X) to (7 — ).

Now we claim that || — &|[12(,) < L. Indeed, for any ¢ € CP(X;X) we can
pass to the limit as n — oo in the inequality

< ”’771 - iHL"’(un;X)H‘PHL"’(MW,;X)

‘/ (0,9, — 1) dpin
X

to obtain

’/X <§0’;Y - 7’> d:“" < L”QD”L?(M;X),
whence the stated inequality follows. Using the inequality [09|(p) < |57 — €| L2(u)
we obtain that |0v|(n) < L. O

We conclude this section by proving Remark 10.3.5: setting now ¢(-) :=
—2W3(-, p), we simply observe that if 4, is a minimizer of (10.3.1b), then

Y- €0Y(ur) = v, € 09(ur), (10.4.55)

since

¢(y) - (b(/fé‘r) > ¢(V) - ¢(MT) Vv e QQ(X)

10.4.7 The sum of internal, potential and interaction energy

In this section we consider, as in [48], the functional ¢ : Z,(X) — (—o0, +x]
given by the sum of internal, potential and interaction energy:

1

o) = / F(p)dx + Vidu+ —/ Wdpx p if p=p2? (10.4.56)
R4 R? 2 JraxRe

setting ¢(u) = +oo if p € Zp(RY) \ 27 (R?). Recalling the “doubling condition”

stated in (10.4.23), we make the following assumptions on F, V and W:

(F) F:[0,400) — R is a doubling, convex differentiable function with superlin-

ear growth satisfying (10.4.15) (i.e. the bounds on F'~) and (10.4.21) (yielding
the geodesic convexity of the internal energy).

(V) V:R? — (—o0,+00] is a Ls.c. l-convex function with proper domain D(V)
with nonempty interior Q C R?;
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(W) W : RY — [0,+00) is a convex, differentiable, even function satisfying the
doubling condition (10.4.42).

Notice that we have assumed that F' has a superlinear growth only for sim-
plicity: also the case of (sub-)linear growth could be considered, proving along the
lines of Theorem 10.4.8 that finiteness of the slope implies regularity of the mea-
sure. Also the doubling assumptions could be relaxed, see Remark 10.4.7. Finally,
the finiteness of ¢ yields

supppu C Q= D(V), u(0Q) =0, (10.4.57)

so that its density p w.r.t. .Z? can be considered as a function of L().
The same monotonicity argument used in the proof of Lemma 10.4.4 gives

oo > lim Jpa VAL —t)i+tr))pp— [ca Vdu B
t10 t

/ (VV,r —i)dp, (10.4.58)
Rd

whenever both [p, V du < +oo and [p, Vdrap < +oc.
Analogously, denoting by W the interaction energy functional induced by
W/2, arguing as in the first part of Theorem 10.4.11 we have

oo > lim YU =8 40) = W) _ / (VW) % )7 — &) dps, (10.4.59)
t10 t R

whenever W(p) + W(r4p) < +oo. The growth condition on W ensures that
w € D(W) implies 74u € D(W) if either r — 4 is bounded or r = 2¢ (here we use
the doubling condition).

We have the following characterization of the minimal selection in the subd-
ifferential 90°¢(p):

Theorem 10.4.13 (Minimal subdifferential of ¢). A measure p = p£?% € D(¢) C
P,(R) belongs to D(|0¢|) if and only if Lr(p) € W) and

loc
pw =V Lp(p)+pVV + p(VNW)xp for some w € L(u; RY). (10.4.60)
In this case the vector w defined p-a.e. by (10.4.60) is the minimal selection in
08(), ive. w = 0°B().

Proof. We argue exactly as in the proof of Theorem 10.4.6, computing the Gateaux

derivative of ¢ in several directions r, using Lemma 10.4.4 for the internal energy

and (10.4.58), (10.4.59) respectively for the potential and interaction energy.
Choosing r = i + t, with t € C2°(; R?), we obtain

—/ LF(p)V-tdx+/ (VV,t) du+/ (VW) % p, t) dpp > — 00| (1)1t L (1) -
Rd R4 R4
(10.4.61)
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Since V is locally Lipschitz in Q and VW x p is locally bounded, following the
same argument of Theorem 10.4.6, we obtain from (10.4.61) first that Lp(p) €
BViec(R%) and then that Lg(p) € W 1 (R), with

loc

VLr(p)+ pVV +p(VW) % p=wp for some w € LI(u; R?) (10.4.62)

with [[wl|La < [0¢](w).

In order to show that the vector w is in the subdifferential (and then, by the
previous estimate, it is the minimal selection) we choose eventually a test mea-
sure v € D(¢) with compact support contained in  and the associated optimal
transport map r = t;;; Lemma 10.4.4, (10.4.58), (10.4.59), and Lemma 10.4.5 yield

B(r) — () > Lo (1= )i + tr)pm) | _,.

:_/QLF(p)V(r—i)dm+/9<vv,r—i>du+/g<(VW)*p,r—i>du

IS
Iy

zlimsup/ (VLF(p),r—i>X;de—|—/ (VV + (VW) % p,r — 2) dp
o) Q

h— o0

= lim sup/ (VLp(p) + pVV + p(VW) % p, 7 — )X} dx
Q

h—oo
:/(pw,r—i>dx:/(w,r—i>du.
Q Q

Finally, we notice that the proof that w belongs to the subdifferential did not
use the finiteness of slope, but only the assumption (previously derived by the
finiteness of slope) that Lgr(p) € VVIZCI(Q), (10.4.60), and ¢(u) < +o0; therefore
these conditions imply that the subdifferential is not empty, hence the slope is

finite and the vector w is the minimal selection in d¢ (). O

We know that for general \-convex functionals the metric slope is l.s.c. with
respect to convergence in &Z,(R%). In the case of the functional ¢ of (10.4.56) the
slope is also lower semicontinuous w.r.t. the narrow convergence.

Proposition 10.4.14 (Narrow lower semicontinuity of |0¢|). Let us suppose that
assumptions (F,V,W) are satisfied; if (un) C 2,(R?) is a bounded sequence nar-
rowly converging to u in P(R%) with sup,, ¢(jt,) < +00, w, € 9°¢(i,) have
bounded L9(ji,; RY) morms and are weakly converging to w € Li(u;R?) in the
sense of Definition 5.4.3, then w € 9°¢(pn). We have also

tim inf 16| (s,) > 06 (1). (10.4.63)

Proof. Observe that thanks to Theorem 5.4.4

+oo > liminf |0¢|9(u,) = liminf/ |w., ()| dpn (x / |w(x)|? du(z
n—oo n—oo X
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Let now p,, be such that p, = p,.£% since the p-moment of y,, is bounded and
the negative part of V' has a linear growth, we know that

sup [ F(pn(z))dr < +o0, sup/ <V+(JJ) + |x|p) pn(x)dr < +00.
Rd

n Rd n

Thanks to the superlinear growth of F'; we deduce that p,, weakly converge to p
in L'(R?), p being the Lebesgue density of .

Since Lp(p) < F(2p) — 2F (p), the doubling condition shows that Lp(p,) is
bounded in L!(Q); since VV is locally bounded, we know that

onVV — pVV, weakly in Li (Q); (10.4.64)
(10.4.50) and Lemma 5.1.7 show that

/m (VW (x —y),t(y)) pn(z)pn(y) dz dy — . (VW (z —y), t(y))p(z)p(y) dz dy

for every vector field t € L*(Q2), so that p, (VW )xp, weakly converge to p(VIW)x*p
in L1(Q).

We thus deduce that Lg(p,,) is bounded in BV, (2); we can extract a further
subsequence such that

Lr(pn) — L in L} (R?) and pointwise .Z%-a.e. (10.4.65)

A standard truncation argument and the fact that Lp is a monotone function
yield L(z) = Lr(p(x)) for £%a.e. v € Q, and therefore VL (p,) — VLr(p) in
the sense of distributions.

Combining all the above results, we get

pw = VLp(p)+pVV + p(VW)xp for w € L(1; R?), (10.4.66)
so that w = 0°¢(u). O

An interesting particular case of the above result is provided by the relative
entropy functional: let us choose p =2, W = 0 and

1
F(s) :=slogs, ~:= Eefv gl = = (V(@)Hlog2) | pd

with Z > 0 chosen so that y(R?) = 1. Recalling Remark 9.4.2, the functional ¢
can also be written as

¢(n) = H(uly) —log Z. (10.4.67)

Since in this case Lr(p) = p, a vector w € L*(u;R?) is the minimal selection
0°¢(u) if and only if

[ V@) due) = / (w(x),¢(2)) du(z) — / (VV (@), () dulz),
Rd R4 R4
(10.4.68)
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for every test function ¢ € C2°(R%;R%); (10.4.68) can also be written in terms of

o= a5

—/ aV-(e‘V(”’)C(x))dacz/ (ow(z), eV D¢(2)) da, (10.4.69)
Rd

Rd

which shows that cw = Vo.

10.4.8 Relative entropy and Fisher information in infinite
dimensions

Let X be an infinite dimensional (separable) Hilbert space, and let @ : X — X
be a bounded, positive definite, symmetric linear operator of trace class.
We introduce the orthonormal system (e, ) of eigenvectors of @, i.e. satisfying

Qen=Anen, Ay >0, Y Ay =trQ < +oc. (10.4.70)

n=1
We denote by X the finite dimensional subspace generated by the first d eigen-
vectors, by 74 the orthogonal projection of X onto Xy, and by Q4 : X — X4 the
linear operator defined by Qg := 7ig0 Q, Qqx = Zj Nj(z,ej)e;.
Let v be the centered Gaussian measure with covariance operator Q~': « is
determined by its finite dimensional projections g := (74)#7, which are given by

1

,_ —L@Q7 z,x) d
= 2'¥d - . 10.4.71
e (2m)d det Qq [, ( )
Notice that
d d
det Qq == H)\j and (Q;'z,x) = Z/\ Yz, e;)? (10.4.72)
j=1 j=1

In Section 9.4 we studied the properties of the relative entropy functional

d(p) == H(ply), (10.4.73)

which is a geodesically convex functional in &5 (X).
Let us recall the standard definition of generalized partial derivatives for
functions in L'(7) [32, Def. 5.2.7]:

Definition 10.4.15 (Partial and logarithmic derivatives). Let p : X — R be a Borel
Junction with [ |z||p|dy < +oo. The function p has generalized partial derivative
0j = Oe,;p € L*(v) along e; if for any smooth cylindrical function ¢ € Cyl(X)
one has the “integration by parts” formula

- /X p()0e, C() dr(x) = /X 05(@)C(x) dy(z) — A7 / z,€;)C(@)plx) dy ().
(10.4.74)
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We say that p = p-v € P5(X) has w; as logarithmic partial derivative along e;
de . ,
if De,p € L*(v) and w; = T’p € L3(p), i.e.

- [ tec@ (o) = [ wi)s(e) dute) <X [ (o)) duta). (10475
X X X

By a standard smoothing argument, as in the finite dimensional case, one can
check that the integral identities above holds for any cylindrical bounded function
¢ of class C' with a bounded gradient.

Definition 10.4.16 (Logarithmic gradient and Fisher information functional). If u

e,
has logarithmic partial derivatives w; = %p € L%(p) for every j € N and

(oo}
3 / o (2)]2 dpa() < oo, (10.4.76)
j=17%

we define the “logarithmic gradient” of p as follows:

w(z) = % = iwj(x)ej € L*(u; X). (10.4.77)

The Fisher information functional .7 (u|y) is defined as Hw||2L2(MX),

The following theorem shows that the Fisher information functional is indeed
the minimal slope of the entropy functional even in the infinite-dimensional case;
more refined results for general log-concave measures are presented in [18]. The
proof requires the validity of the statement in the finite dimensional case and
an approximation based on the I'-convergence of the finite-dimensional entropy
functionals.

Theorem 10.4.17. A measure p = p v € P5(X) with finite relative entropy
o(n) = H(ply) belongs to D(|0¢]) if and only if p has a logarithmic gradient
w = % € L%(u; X) according to Definition 10.4.16. In this case w = 0°¢(u) and

s [ @E Ve
0P = | RS dpw) = [ BB 3wy = k). (07

Proof. Let us suppose that all the components w; of w € L?(u;X) satisfy
(10.4.75). We fix an integer d and we consider the orthogonal projection 74 of
X onto Xy4. We consider cylindrical functions of the form {(z) = v (74(z)) for
1 : Xg — X bounded, of class C' and with a bounded gradient. If we introduce
the measure g = (7q)pp, we can disintegrate p w.r.t. pg as p = fXd o dpg (),

with p1, € 2(X) concentrated on 7' (z) and we can define the vector field

wila) = [ wl)dus (o), (10.4.79)
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which satisfies
/ (w (@), (Fale))) dulz) = / (wa(y), () dualy). (10.4.80)
X Xaq

Choosing 9 of the form Z;lzl je;, using (10.4.75) and the previous identity, we
obtain

d

_/XZ

d j=1

(g—fj(x) dpa(x) Z/Xd (wa(x), ¥ (x)) dpa(z) _/Xd (Q1, 9 (x)) dpra(z).
(10.4.81)
Since (by Jensen inequality) wy € L?(ug; RY) and

[ o) duate) < [ fwta) dnta) (10.4.82)
Xa

from (10.4.68) (stated for R? but still true for X,) we obtain that wg € 9°¢a(pa)
where ¢q(p) = H(plvq). Lemma 9.4.3 and Lemma 9.4.5 show that ¢4 is
I'(P(X)) converging to ¢ as d — +oo. Since pg — p in Z,(X) and wy are
easily seen to be converging to w according to Definition 5.4.3 (by compactness,
see Theorem 5.4.4(a), one needs only to check condition (10.4.47) on cylindrical
test functions ¢), we can apply Lemma 10.3.8 which shows that w € 9¢(u) and
therefore

06| (1) < F (uly).-

In order to prove the opposite implication, let us now suppose that w = 9°¢(u):
applying Lemma 10.3.16 to the sequence of functionals ¢4(p) = H(p|va), we find
two sequences vg — p in Po(X) and wy € 0°¢q(vq) converging to w according
to Definition 5.4.3, i.e. the plans (i X wgq)xvg € 8°¢q(vq) narrowly converge in
P(X x X)) to (3 x w)zpu € 8°¢(p) (actually the lemma provides the stronger
convergence in Z5(X x X), not needed here). By the finite dimensional result, we
know that

— [ Oe @ dvata) = [ (wste) (@) dvala) =X [ (a,e,)c(a) dvalo)

for every j = 1,...,d and ¢ € Cyl(X). Keeping j and ¢ fixed, we can pass to
the limit as d — oo to obtain (10.4.75) (the convergence of the rightmost integral
follows by Lemma 5.1.7). O



Chapter 11

Gradient Flows and Curves of
Maximal Slope in &7,(X)

In this chapter we state some of the main results of the paper, concerning exis-
tence, uniqueness, approximation, and qualitative properties of gradient flows
generated by a proper, l.s.c. functional ¢ in Z2,(X), X being a separable Hilbert
space. Taking into account the first part of this book and the (sub)differential the-
ory developed in the previous chapter, there are at least four possible approaches
to gradient flows which can be adapted to the framework of Wasserstein spaces:

1. The “Minimizing Movement” approximation. We can simply consider any li-
mit curve of the variational approximation scheme we introduced at the be-
ginning of Chapter 2 (see Definition 2.0.6), i.e. a “Generalized minimizing
movement” GM M (®; 119) in the terminology suggested by E. DE GIORGI.
In the context of Z,(R?) this procedure has been first used in [94, 121, 122,
120, 123] and subsequently it has been applied in many different contexts,
e.g. by [93, 115, 124, 84, 85, 89, 78, 45, 46, 2, 86, 76, 15, 19].

2. Curves of Maximal Slope. We can look for absolutely continuous curves p; €
ACYP ((0,400); Z,(X)) which satisfy the differential form of the Energy in-

loc

equality
It ot 12 7 Mt ) - [p -J.

for #'-a.e. t € (0,+00). Notice that in the present case of £2,(X), we estab-
lished in Chapter 8 a precise description of absolutely continuous curve (in
terms of the continuity equation) and of the metric velocity (in terms of the
LP(py; X)-norm of the related velocity vector field); moreover, in Chapter 10
we have shown an equivalent differential characterization of the slope |0¢| in
terms of the L9(u:; X )-norm of the Fréchet subdifferential of ¢.
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3. The pointwise differential formulation. Since we have at our disposal a notion
of tangent space and the related concepts of velocity vector field v; and
(sub)differential d¢(u), we can reproduce the simple definition of gradient
flow modeled on smooth Riemannian manifold, i.e.

vt € _8¢(Mt)7 (1102)

trying to adapt it to the case p # 2 and to extended plan subdifferentials.

4. Systems of Evolution Variational Inequalities (E.V.I.). When p = 2, in the
case of A-convex functionals along geodesics in P2(X), we can try to find
solutions of the family of “metric” variational inequalities

1d A

§EW22(M, v) < () — ) — 5W22(Mt, v) Yve D(¢). (11.0.3)
This formulation provides the best kind of solutions, for which in particular
one can prove not only uniqueness, but also error estimates. On the other
hand it imposes severe restrictions on the space (p = 2) and on the functional

(A-convexity along generalized geodesics).

In any case, the variational approximation scheme is the basic tool for proving
existence of gradient flows: at the highest level of generality, when the functional
¢ does not satisfy any convexity or regularity assumption, one can only hope to
prove the existence of a limit curve which will satisfy a sort of “relaxed” differential
equation: we will present the basic steps of the convergence argument at the end
of the next section, in a simplified situation.

As we will see in the next section, when ¢ satisfies more restrictive regularity
assumptions, one can show that the first three notions essentially coincide; if ¢ is
also A-convex and p = 2, they are also equivalent to the most restrictive fourth
one.

It is then possible to prove the convergence of the discrete solutions to a
curve of maximal slope (or to a solution of the E.V.I. system) by applying the
general theorems of Chapter 2 (respectively, of Chapter 4): we will devote the last
two sections to present a brief account of these metric approaches.

11.1 The gradient flow equation and its metric
formulations

Definition 11.1.1 (Gradient flows). We say that a map p, € ACY ((0, +00); Z,(X))
is a solution of the gradient flow equation

Jp(ve) € —0(pe) >0, (11.1.1)

if denoting by ve € Tan,, 22,(X) its velocity vector field, its dual vector field j,(v¢)
belongs to the (reduced) subdifferential (10.3.12) of ¢ at p; for L'-a.e. t > 0.
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The above definition is equivalent to the requirement that there exists a
Borel vector field vy such that v; € Tan, 2,(X) for L'-ae. t > 0, ||ve| 1o, €
LY (0,+00), the continuity equation

loc

Ope + V- () =0 in X x (0, +00) (11.1.2)
holds in the sense of distributions according to (8.3.8), and finally
Jp(ve) € —0¢(pe) for Ll-ae. t > 0. (11.1.3)

The last inclusion is also equivalent (see (10.3.12) and Definition 10.3.1 for the
definition of d¢) to

(i x jp(—vt))#,ut € 0¢(us) for Lt-a.e. t > 0. (11.1.4)
Observe that in the case p = 2 (11.1.1) simplifies to
vy € —0¢(py), or, equivalently, (¢ x (—vt))#,ut € 0o (1), (11.1.5)

for #'-a.e. t > 0. Before studying the question of existence of solutions to (11.1.1),
which we will postpone to the next sections, we want to discuss some preliminary
issues.

First of all we mention the basic (but formal, at this level) example, which
provides one of the main motivations to study this kind of gradient flows.

Example 11.1.2 (Gradient flows and evolutionary PDE’s of diffusion type). In
the space-time open cylinder R? x (0, +00) we look for nonnegative solutions p :
R? x (0, +00) of a parabolic equation of the type

0.F .
Op— V- (pV(W)) —0 inR? x (0, +00), (11.1.6)
where 57 (0)
5Pp ==V FP(J;’IO’ Vp) + FZ(J;HO’ Vp)

is the first variation of a typical integral functional as in (10.4.1)
F(0) = [ Fla.pla). Vola)) da (11.1.7)
Rd

associated to a (smooth) Lagrangian F' = F(x, z,p) : R? x [0, +00) x R? — R.
Observe that (11.1.6) has the following structure:

op+ V- (pv)=0 (continuity equation), (11.1.8a)
pv = pVp (gradient condition), (11.1.8b)

6 a
Y =— Z(p) (nonlinear relation). (11.1.8¢c)

op
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Observe that in the case when F' depends only on z = p then we have

6F(p)
op

= F.(p), pVF.(x,p) =VLp(p), Lp(z):=z2F'(z)—F(z). (11.1.9)

Since we look for nonnegative solutions having (constant, by (11.1.8a), normalized)
finite mass

px,t) >0, / ple,t)yde =1 VYt >0, (11.1.10)
Rd

and finite quadratic momentum
/ lz2p(x,t) de < +o0 YVt >0, (11.1.11)
R4

recalling Example 10.4.1, we can
identify p with the measures p; := p(-,t) - £<, (11.1.12)

and we consider .7 as a functional defined in %5 (R%). Then any smooth positive
function p is a solution of the system (11.1.8a,b,c) if and only if 4 is a solution in
P5(RY) of the Gradient Flow equation (11.1.1) for the functional .%.

Observe that (11.1.8a) coincides with (11.1.2), the gradient constraint
(11.1.8b) corresponds to the tangent condition vy € Tan,,, Z5(R?) of (11.1.3), and
the nonlinear coupling ¥ = —6.% (p)/dp is equivalent to the differential inclusion
vy € —0.F () of (11.1.3).

At this level of generality the equivalence between the system (11.1.8a,b,c)
and the evolution equation (11.1.1) is known only for smooth solution (which, by
the way, may not exist); nevertheless, the point of view of gradient flow in the
Wasserstein spaces, which was introduced by F. OTTO in a series of pioneering
and enlightening papers [121, 94, 123, 124], still presents some interesting features,
whose role should be discussed in each concrete case:

a) The gradient flow formulation (11.1.1) suggests a general variational scheme
(the Minimizing Movement approach, which we discussed in the first part of
this book and which we will apply in the next sections) to approximate the
solution of (11.1.8a,b,c): proving its convergence is interesting both from the
theoretical (cf. the papers quoted at the beginning of the chapter) and the
numerical point of view [99].

b) The variational scheme exhibits solutions which are a priori nonnegative,
even if the equation does not satisfies any maximum principle as in the fourth
order case [122, 86].

¢) Working in Wasserstein spaces allows for weak assumptions on the data:
initial values which are general measures (as for fundamental solutions, in
the linear cases) fit quite naturally in this framework.
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d) The gradient flow structure suggests new contraction and energy estimates,
which may be useful to study the asymptotic behaviour of solutions to
(11.1.8a,b,c) [124, 22, 44, 48, 1, 137, 70], or to prove uniqueness under weak
assumptions on the data.

e) The interplay with the theory of Optimal Transportation provides a novel
point of view to get new functional inequalities with sharp constants [125,
145, 3, 56, 21, 66, 106, 140].

f) The variational structure provides an important tool in the study of the
dependence of solutions from perturbation of the functional.

g) The setting in space of measures is particularly well suited when one considers
evolution equations in infinite dimensions and tries to “pass to the limit” as
the dimension d goes to co.

Let us also mention that some of the tools developed for the variational
approach to gradient flows turn out to be useful in the case of Hamiltonian flows,
see [12].

11.1.1 Gradient flows and curves of maximal slope

Our first step is to compare solutions to (11.1.1) with the curves of Maximal Slope
we introduced in 1.3.2: we are thus discussing the equivalence of the second and
of the third formulation introduced at the beginning of this chapter.

As usual, we are at least assuming that

¢ Pp(X) — (—o0,+00], proper and lower semicontinuous, (11.1.13a)

is such that

1
pTP

v O v) = — Wl (p,v) + é(v) admits at least

(11.1.13b)
a minimum point ., for all 7 € (0,7,) and p € P, (X).

Theorem 11.1.3 (Curves of maximal slope coincide with gradient flows). Let
¢ Pp(X) — (—o0,+00] be a regular functional, according to Definition 10.3.9
satisfying (11.1.13a,b). Then py : (0, +00) — P, (X) is a p-curve of mazimal slope
w.r.t. |0¢| (according to Definition 1.3.2) iff s is a gradient flow and t — ¢(pt) is
L' -a.e. equal to a function of bounded variation. In this case the tangent vector
field vy to py satisfies the minimal selection principle

v = —0°¢(us)  for L'-a.e. t > 0. (11.1.14)

Proof. Assume first that p; is a p-curve of maximal slope w.r.t. |0¢|. We know
that there exists a function of (locally) bounded variation ¢ : (0, +00) — R such
that ¢(u) = ¢(t) L*-a.e. in (0, +00) and

%go(t) _ —;1)\“'|p(t) - émw(t) Lae. in (0,400). (11.1.15)
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Indeed, the inequality < follows by the definition of curve of maximal slope, while
the opposite inequality follows by the fact, proved in Theorem 1.2.5, that |0¢| is
a weak upper gradient of ¢.
Being ¢ regular, 8¢(u;) # 0 for £1-a.e. t > 0; thus the chain rule 10.3.18
shows that
%cp(t) = / (xo,ve(x1))dy, Vv, € 0d(uy) for L'-ae. t>0. (11.1.16)
X2

Choosing in particular v, = 8°¢(u), since the equalities
PO = [ P v, oo = [ ey,
X2 X2
hold for #1-a.e. t > 0, we get

1 T B
/X2 (];|’Ut(l'1)| + §|x2| + <.’1727’Ut(l'1)>) dvy,(z1,22) = 0. (11.1.17)

It follows that
xo = —Jp(ve(x1)) for v, ae. (v1,x2),
fe. (i X jp(—ve))wpe = 8°¢(uy) or, equivalently, j,(vy) = —9°d ().
Conversely, if p; is a gradient flow in the sense of (11.1.1) and ¢ o p is a

function of (essential) bounded variation, by applying the chain rule once more,
we easily get that u; is a p-curve of maximal slope w.r.t. |09 |

One of the most interesting aspects of the previous characterization is to
force 8°p(ut) to be concentrated on the graph of the transport map —j,(v;) for
Z'-a.e. t > 0, even if the measures p; do not satisfy any regularity assumption.

11.1.2 Gradient flows for \-convex functionals

If the functional ¢ is A-convex along geodesics, for flows p; : (0, +00) — Z/(X)
with Hvt||’£p(m) locally integrable, Definition (11.1.1) reduces to the system

6t/,6t + V- (/,Lt Ut) =0 inX x (O, -i—OO)7

R (11.1.18)
- /X (Jp(ve), 5, — ) dpy < @(0) — d(pe) — §sz(‘7, pe) Vo € D(¢),

where the first equation is understood in a weak sense, in the duality with cylin-
drical functions in X x (0, +00), and the second one holds for #!-a.e. t > 0.
Notice that in the case p = 2 it is not necessary to assume that v; is tangent
in (11.1.18): indeed, projecting the velocity field onto the tangent space leaves the
continuity equation unchanged (by (8.4.4)) and does not affect the subdifferential
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inequality (by Proposition 8.5.2). However, whenever the norm of the velocity field
has to be minimized, it is natural to assume that the vector field is tangent.

The case p = 2 is particularly distinguished, since the left hand side of
(11.1.18) is also equal to the time derivative of 2 W3 (p, v); this simple fact is the
crucial ingredient of the following uniqueness result, which is known in the case
p = 2 only (see [19] for a uniqueness result under weaker assumptions). This is
not very surprising, as even in the “flat” L? spaces, p € (1, +00) \ {2}, uniqueness
of gradient flows is not known.

Theorem 11.1.4 (Uniqueness of gradient flows in the case p = 2 and E.V.L.). Let
p=2andlet ¢ : P2(X) — (—00,+0] be a l.s.c. A\-geodesically convex functional.
If 4t 2 (0, +00) — Po(X), i = 1,2, are gradient flows satisfying pt — p' ast |0
in P2(X), then

Wo(ut, 1) < e MWo(pt, u?) Vit > 0. (11.1.19)

In particular, for any pg € P2(X) there is at most one gradient flow py satisfying
the initial Cauchy condition uy — po ast | 0 and it is also characterized by the
system of “FEvolution Variational Inequalities”

S EW (1, 0) + S W3 ,0) < 6(0) — G{e) Jor Lreace. 130, Yo € Do),
(11.1.20)

Proof. Let o € D(¢) and let p; be a gradient flow satisfying p; — po as ¢ | 0. De-
noting by v, the velocity vector of y;, and applying the definition of subdifferential
we obtain the existence of v, € I',(pt, o) such that

o) > () +/ (vi(z2), 21 — w2) dy, + %Wf(ut,o). (11.1.21)

X2
On the other hand the differentiability of W2 stated in Lemma 8.4.7 gives

1d

iawg(ut,o) = / (ve(z1), 01 — 2) dy, for L -ace. t € (0, +00),

X2
and therefore (11.1.20).

Conversely, if 1, is an absolutely continuous curve satisfying (11.1.20), it is
immediate to check that for every countable subset ¥ C D(¢) we can find a £1-
negligible set .4~ C (0,+00) such that the velocity vector v, satisfies (11.1.21)
for every o € ¥ and t € (0,400) \ 4. We can choose now a countable set X
which is dense in D(¢) with respect to the distance Wa(u,v) + |p(p) — d(v)| (see
Proposition 7.1.5): by a density argument based on Proposition 7.1.3 we conclude
that —v; € 9¢(ut) for t € (0, +00) \ A

Finally, if pf, 7 are two gradient flows satisfying the initial Cauchy condition
pi— ptast | 0,4i=1,2, it is easy to check that we can apply Lemma 4.3.4 with
the choices d(s,t) := W3 (ul, u?), 6(t) := d(t,t), thus obtaining &' < —2\J. Since
5(04) = W2 (ut, u?) we obtain (11.1.19). O
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11.1.3 The convergence of the “Minimizing Movement” scheme

The existence of solutions to (11.1.1) will be obtained as limit of the metric vari-
ational scheme we discussed in Chapter 2: let us briefly recall some notation we
will extensively use.

The discrete equation Here we consider (for simplicity: see Remark (2.0.1)) a
uniform partition P- of (0,+oc0) by intervals I of size 7 > 0

Pr={0<ti=r<t®=2r<--<t!=nr<--}, I':=((n—1)7n7];
for a given family of initial values M? such that
M? — po in Zy(X), S(MP) — ¢p(uo) asT |0, (11.1.22)

assuming that (11.1.13Db) is satisfied, for every 7 € (0, 7.) a corresponding family
of sequences (M™),en recursively defined as

M minimizes p— ®(r, M"Y ) (11.1.23)

always exists. We call “discrete solution” the piecewise constant interpolant

M, (t) =M" ifte ((n—1)r,n, (11.1.24)

and we say that a curve i is a Generalized Minimizing Movement of GM M (®; 119)
if there exists a sequence (1) | 0 such that

M., (t) — s mnarrowly in Z(Xy) for every t >0, as k — oc. (11.1.25)

It follows from Proposition 2.2.3 that if py € D(¢$) then a generalized Min-
imizing Movement always exists and it is an absolutely continuous curve p €
ACP ([0, +00); Z,(X)).

The main problem is to characterize the equation satisfied by its tangent
velocity vector v, or, equivalently, to pass to the limit in the “discrete gradient
flow” equation satisfied by the discrete solution M.

In order to clarify this point, let us first suppose for simplicity, as we did in
Section 10.1, that

D(|0¢]) ¢ Z5(X). (11.1.26)

If t” is the optimal transport map pushing M™ to M"~1 it is natural to define the
discrete velocity vector V. as (¢ — t?') /7. By Lemma 10.1.2 and Theorem 10.4.12

T—1

. n . tT
—jp(V") :Jp< -

) € dp(M™), (11.1.27)

which can be considered as an Euler implicit discretization of (11.1.1). By intro-
ducing the piecewise constant interpolant

Vi(t) =V ifte ((n—1)7,nl, (11.1.28)

T
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the identity (11.1.27) reads
—ip (Vi (1)) € 9¢(M,(t)) for t > 0. (11.1.29)

It is not difficult to show that, up to subsequences, V, — v in the distribution
sense in X X (0,400), for some vector field v satisfying

8t,ut + V- (,ut'ut) =0 inX X (0,+OO), HthLp(llt;X) eL? (0,+OO) (11130)

loc

A we already said, the main difficulty is to show that the (doubly, if p # 2)
nonlinear equation (11.1.29) is preserved in the limit.

We shall see three different kinds of arguments which give some insights for
this problem and reflect different properties of the functional.

1. The first one is a direct development of the compactness method: passing to
the limit in the discrete equation satisfied at each step by the approximating
sequence M, one tries to write a relaxed form of the limit differential equa-
tion, assuming only narrow convergences of weak type. It may happen that
under suitable closure and convexity assumptions on the sections of the sub-
differential, which should be checked in each particular situation, this relaxed
version coincides with the stronger one, and therefore one gets an effective
solution to (11.1.1).

In general, however, even under some simplifying assumptions (p = 2,
all the measures are regular), the results of this direct approach are not
completely satisfactory: it could be considered as a first basic step, which
should be common to each attempt to apply the Wasserstein formalism for
studying a gradient flow.

In order to clarify the basic arguments of this preliminary strategy, we
will try to explain it at the end of this section (in a simplified setting, to keep
the presentation easier) without invoking all the abstract results of the first
part of this book.

2. The second approach (see Section 11.3) involves the reqularity of the func-
tional according to Definition 10.3.9, and works for every p > 1; in particular
it can applied to A-convex functionals.

In this case, thanks to Theorem 11.1.3, the gradient flow equation is
equivalent to the maximal slope condition, which is of purely metric nature.
We can then apply the abstract theory we presented in Chapter 2 and there-
fore we can prove that any limit curve p of (11.1.28) is a solution to (11.1.1).

The key ingredient, which allows to pass to the limit in the “doubly non-
linear” differential inclusion (without any restrictions on the regularity of ;)
and to gain a better insight on the limit than the previous simpler method,
is the refined discrete energy estimate (3.2.4) (related to DE GIORGI’s varia-
tional interpolation (3.2.1)) and the lower semicontinuity of the slope, which
follows from the regularity of the functional.
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3. The last approach, presented in Section 11.2, is based on the general esti-
mates of Theorem 4.0.4 of Chapter 4: it can be performed only in Z75(X)
and imposes on the functionals the strongest condition of A-convexity along
generalized geodesics.

Despite the strong convexity requirements on ¢, which are nevertheless
satisfied by all the examples of Section 10.4 in Z?5(X), this approach has
many nice features:

e it does not require compactness assumptions of the sublevels of ¢ in
P5(X): the convergence of the “Minimizing movement” scheme is
proved by a Cauchy-type estimate.

e The gradient flow equation (11.1.1) is satisfied in the limit, since Theo-
rem 4.0.4 provides directly the system of evolution variational inequal-
ities (11.1.20).

e It provides our strongest results in terms of regularity, asymptotic be-
haviour, and error estimates for the continuous solution, which can be
directly derived from the general metric setting.

e It allows for general initial data ;o which belong to the closure of the
domain of ¢: in particular, one can often directly consider a sort of “non-
linear fundamental solution” for initial values which are concentrated
in one point.

e The I'-convergence of functionals, in the sense of Lemma 10.3.16, in-
duces the uniform convergence of the corresponding gradient flows.

Let us now present a brief sketch of the first approach: as in Section 10.1 we
are assuming p = 2 and (11.1.26). We also introduce a limiting version of the
subdifferential, modeled on the analogous one introduced by [102, 116] in linear
spaces (see also the monograph [130] and [132] for applications to gradient flows
in Hilbert spaces).

Definition 11.1.5 (Limiting subdifferentials). For ;1 € D(¢), we say that a vector
€ € L?(u; X) belongs to the limiting subdifferential 9,¢ () of ¢ at p if there exist
two sequences py € D(09), &, € 0p(ur), &, being strong subdifferentials, such
that

wr — i narrowly in P(Xy), €&, — & weakly, as in Definition 5.4.3,

sup (n). [ (o +164(@)) dun(0)) < -+oc.
(11.1.31)

The following result has a simpler counterpart in the flat framework of Hilbert
spaces:

Theorem 11.1.6 (Relaxed gradient flow). Let us suppose that p = 2, the proper and
coercive functional ¢ : Po(X) — (—o00,+00] is l.s.c. with respect to the narrow
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convergence of P(X), and it satisfies D(|0¢|) C 25 (X).
If po € D(¢), then each sequence of discrete solutions (M, ) with vanishing time
steps admits a converging subsequence (still denoted by M ,, ) such that:

() Mo (t) = e in P(Xs) Vit [0,400);

(ii) for any T > 0 we have V,, — v € L*(u; X) weakly in X x (0,T), as in Defi-
nition 5.4.3, where T~y € P(X x (0,T)) is the measure T 1 fOT e dLL(t).

The map t — pg belongs to ACE ([0, +00); P2(X)), it satisfies the continuity
equation

O+ V - (pw) = 0, (11.1.32)

and v satisfies the relaxed gradient flow
—v; € Conv dpp(pe)  for PLlae t>0. (11.1.33)

In other words, the limit vector field —v; belongs to the closed convex hull in
L?(u4; X) of the limiting subdifferential 9y¢(j1¢). Before presenting the proof of this
theorem, let us show two easy corollaries and two related motivating applications:
the proof of the first statement follows from Lemma 10.1.3, providing the inclusion
of the limiting subdifferential into the standard subdifferential for coercive and -
convex functionals.

Corollary 11.1.7 (A-convex functionals in &2 (X)). Under the same assumptions of
the previous theorem, suppose that ¢ is a \-geodesically convex functional satisfying
(11.1.26), whose sublevels are locally compact in Po(X); then pt is a solution of
the gradient flow equation (11.1.5).

Corollary 11.1.8 (Single—valued limiting subdifferential). Under the same assump-
tions of the above theorem, suppose that Opd(1) contains at most one vector. Then
1t s a solution of

Op+V - (pv) =0, —v; = () for L-a.e. t > 0. (11.1.34)

Example 11.1.9 (Diffusion equations without geodesic convexity). Let F' : [0, 4+00)
— R be a convex, doubling, differentiable functional with superlinear growth sat-
isfying (9.3.8) and let V : R? — (—o00, +-00] be a Ls.c. potential. which is bounded
from below and locally Lipschitz in the (nonempty) interior 2 of its proper domain
D(V), with £(09Q) = 0. Even if the related functional

o0 = [ (Fo)+p@V (@) dz, n=p-2" (11.1.35)

is not A-geodesically convex in P5(R?) (since we do not ask for (10.4.21) and
V could not satisfy any A-convexity property), it is not difficult to check that ¢
satisfies the assumptions of Theorem 11.1.6 and

wedp(n) = Lr(p) e WL Q), VLrp(p)=plw—-VV).  (11.1.36)

loc
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For, taking directional derivatives of ¢ along smooth transport vector fields ¢t €
C2(Q;R?) as in Section 10.4.1 (see also Lemma 10.4.4), we easily find that any
strong subdifferential w,, € d¢(uy,) satisfies (11.1.36) and the same argument of
Proposition 10.4.14 shows that this relation holds for the limit w € dpd ().

Therefore, for every pg = po-L? € D(¢) there exists a solution p; = ps.L of
the equation

{&pt + V- (pvy) =0 in Z'(R? x (0,+0)),

. ' (11.1.37)
—pvy =V Lp(p) +pVV  in Q,  for £ -a.e. t > 0.

satisfying the initial condition p; — po as t | 0 weakly in L'(RY) and having
(locally) finite energy

T T 2
/ /\vt(x)|2d,ut(x)dt:/ /'VLFW“NV‘ dodt < +oo. (11.1.38)
0 JQ 0 JQ Pt

Notice that, even if  is bounded, the first equation of (11.1.37) is still imposed
in R? (in the distribution sense), and therefore it provides a weak formulation of
the Neumann boundary condition

On(Lr(pt)+ptV) =0 on 90 x (0,+00). (11.1.39)

The main difference with the results we are going to show in the case of -
geodesically convex functionals is that we do not know if a solution of (11.1.38),
(11.1.39) is indeed a gradient flow in the variational sense or in the differential
sense. However, it is still often possible to prove that the functional inside the
time integral of (11.1.38) is a strong upper gradient for ¢, see [15].

Example 11.1.10 (The Quantum drift-diffusion equation as gradient flow of the
Fisher information). Let us consider the Fisher information functional (relative
to the Lebesgue measure), introduced in 10.4.16

T 2
sy =gty = [ B o [ oyl i

re  P(T)
if p=p- 2 with \/p € WH(R?), 400 otherwise.

(11.1.40)

It is an integral functional as in (11.1.7) corresponding to the (non smooth) La-
grangian

2 A A
F(z,z,p) = ﬂ, with 07 (p) = —4_\/5 = —4M. (11.1.41)
z op NG p

It is not known if . enjoys some A-convexity or regularity property, but it is still
possible to prove [86] that if w € L?(u;RY), p = p- L% € P5(R?), then

VBEW?ARY), /pAVEEWH(RY),
pw = ~4(V(VBAVP) ~ 2V VB AVR),

we I () — (11.1.42)
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which is an indirect way to write as in (10.2.1)

A
0= v(12) <5 (50),

Thanks to (11.1.42) and to Corollary 11.1.8, for every g = poL? € D(F) there
exists a solution iy = pe L% of the Quantum drift-diffusion equation

AR
Bupr + 4V - (ptv NG ) —0 inR? x (0, +00) (11.1.43)

in the sense of (11.1.34) and (11.1.42), and satisfying the initial condition py — po
as t | 0 weakly in L'(R?).

We refer to [31, 97] for a different approach to the above equation, and to [42, 98,
86] for further investigations and results.

Proof of Theorem 11.1.6. For the sake of simplicity, here we present the proof of
Corollary 11.1.8 for a nonnegative functional ¢. The estimates for the general case
can be obtained as in Lemma 3.2.2 by means of the discrete Gronwall Lemma
3.2.4, whereas the relaxed inclusion (11.1.33) will follow from Lemma 12.2.2 in the
Appendix.

Step 1: a priori estimates. We easily have

T (Wz(Mf,Mffl)

2 )2 + (M) < ¢(MP7H), (11.1.44)

-
which yields

Wa(My, M7~

T

+o0
p(My) < 6(M?) vnen, Y7 )" <oud):  (11145)
n=1

in terms of M, it means that

sup (M, (t)) < (M?) V7> 0. (11.1.46)
t>0

From the last inequality of (11.1.45) we get for 0 < m <mn

n
MFE ME-1
waor ) <7 ) L)

.
k=m+1
n 1/2
W2(ME, ME1)? 1/2
< Mo\ e ) _
< (Tkgl . ((m TL)T)

< (200m0)) i ((m—m)r) v (11.1.47)
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Step 2: compactness and limit trajectory p. (11.1.47) and (11.1.22) show that in
each bounded interval (0,7 the values {M, (t)},~0 are bounded in &5(X), thus
belong to a fixed compact set for the narrow topology of Z(X,).

By connecting every pair of consecutive discrete values M"~1 M™ with a con-
stant speed geodesic parametrized in the interval [t7~1, 7], we obtain by (11.1.47)
a family of Lipschitz curves M, satisfying

Wa(M(t), M (s)) < Ot — 5)'/2,

N (11.1.48)
Wo (M, (t), M.(t)) < Cy/T ¥t,s€0,T],
where C'is a constant independent of 7. Since the curves M, are uniformly equicon-
tinuous w.r.t. the 2-Wasserstein distance, which induces a stronger convergence
than the narrow one of &(X), Ascoli-Arzela Theorem yields the relative com-
pactness of the family {M,, }nen in CO([0,T]; 2(X)) for each bounded interval
[0, T]; we can therefore extract a vanishing subsequence (still denoted by 75,) such
that statement (i) holds.
Step 3: space-time measures and construction of v. Recall that t? is the optimal
transport map pushing M" to M"~! and that the discrete velocity vector V" is
defined by (¢ — t7})/7. Let us introduce the discrete rescaled optimal plans

A" = (i x V) MP (11.1.49)

and the piecewise constant interpolants

() = ~2, t-(t) =t ifte((n—1)7,n7]. (11.1.50)

For every bounded time interval Iy := (0,T], denoting by Xr := X x Ir, we
can canonically identify T~*M,, T~1u to elements of Z(Xr) and T~'%_ to an
element in & (Xp x X), simply by integrating with respect to the (normalized)
Lebesgue measure T—1.#" in I7. Therefore V; is a vector field in L2 (MT; X) and
5. is related to M, by

N, = (ir x V;)uM,, ir(x,t):=z being the projection of X7 onto X.
(11.1.51)
Then (11.1.45) yields

T
/ / Ve, )2 d(V 1 (1)) () dt = / Vi (, )2 dV 1 (1)
0 JX Xz (11.1.52)

- / a2 47, < 20(MY).
XTXX

Hence, by Lemma 5.1.12(e), the family 7, is tight w.r.t. the narrow convergence
of Z(Xn x It x X). Denoting by ~ the narrow limit (up to the extraction of a
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further subsequence, not relabeled) of 7., in Z(Xx x It X X ), passing to the

limit as h — oo in the identity w#zﬁm = M,, we obtain

Tty = p. (11.1.53)
Therefore, we define

v(x,t) 2:/X£L'2")’I1’t(1'2) (11.1.54)

where 7, ; is the disintegration of v w.r.t. . Then, Theorem 5.4.4 and (11.1.52)
give

/ lv(z,t)* du(z,t) < ligninf/ V.., (z,t)|> dM ,, (z,t) < 26(p0).  (11.1.55)
XT - XT

o0

Step 4: the limits p, v satisfy the continuity equation (11.1.32).
The following argument was introduced, in a simpler setting, in [94]. Let us first
observe that for every smooth cylindrical function ¢ € Cyl(X) we have

/ () d(F (1)) () — / () d(V (¢ — 7)) (2)
X X
- /X () = $(E (2, 1)) d(T (1)) ()

- /X (Vib(2), z — (2, £)) AR (1)) () + (r. 6, 1)
—7 / (Vib(ar), 22) d(T, (1)) (@1, 22) + (7, 6, 1),
XxX

where, for a suitable constant Cy depending only on the second derivatives of

(7, 6,)] = \ [ (96e) = 0(Er@.t) = Vota) - (@ = () AT () 0)

—_ —_— J— 2 —_
<Cy /X\x*tT(fE,t)\zd(MT(t))(fE):CwTZ/X!VT(SE,t)! d(M-(t)) ().
Choosing now ¢ € Cyl(Xr), applying the estimate above with ¢(-) = ¢(t,-) and
taking into account (11.1.52), we have

- Oho(z,t) dp(z,t) = lim — Opd(z,t)dM ,, (v,t) =
Xr h—oo X

= lim —7; ! / ((z,t +71) — d(,t)) dM o, (2, )

h—o0 Xr

T
Jim (V(a1, ), 22) drrs, (21,1, 22) + 75 / e(rh, $(t, ), ) dt
h—oo JxrxXx 0

/ (V(a1,1), 22) dy(an, 1, 72) = / (Volar 1), v(zr, 1)) dy(n, 1)
XrxX

Xr



294 Chapter 11. Gradient Flows and Curves of Maximal Slope in &2,(X)

Step 5: the limits u, v satisfy the relaxed equation —v; € 9pp(ue). By (11.1.55)

and Fatou’s Lemma, there exists a Borel set Iy C (0,7) with £*((0,T)\ Ip) =0
such that

lim inf / Vi, (o.0)|2 d(WT, (8)) (&) < 400 Vit € L.
h—oo [x

Since —V;, (t,-) is a strong subdifferential for every h € N, ¢ > 0, the definition of
limiting differential and the compactness Theorem 5.4.4 show that for any ¢t € Iy

¢ belongs to the domain of the limiting subdifferential; since dy¢(u:) contains at
most one vector, there exists a unique vector —v(t) € d¢p(u(t)) for any t € Iy. We
have to show that ©(t) = v(t) £*-a.e. in (0,7).

The basic point here is that if t € Iy, e > 0, ¢ € Cyl(X), and e € X, then

lim inf /X (c)le. Ve, . 0)) + [V (.02 ) (D, (1) 2
> [ @le.i(o.0) (o).

For, if the left hand side is finite, by extracting a further subsequence we can
assume thanks to Theorem 5.4.4 that V;, (t,-) is weakly converging in the sense
of Definition 5.4.3 and its limit is ©(t, -), since this vector is the unique element of
e (put)-

Integrating (11.1.56) in time, against a test function n € C§°(0,7) with
values in [0, 1], and choosing e among the vectors {e; }jen of an orthonormal basis
of X we have

lim inf / 0 ( /X ((@)(e5, V) d(Mor, (1)) () ) dt + 226(o)

n—oo

(11.1.56)

> liminf /Tn(t)</ C(x){e;, Vs, + 6|VTh|2d(MTh(t))(x)) dt

n—oo

Z/OTn( hmmf/C (e, Vo) + €V, Pd(3, (1)) () )

> /OTW) ([ caesvrdm) = [ e, o) dn

On the other hand, the narrow convergence of 7, to 7, Lemma 5.1.7 and the
definition of v yield

hlim n(t)((x)(ej,VTh> dM,, (z,t) = hhm n(t)((x1){e;, z2) v,
—oo Jx, =00 JxrxX

— [ nocnleg ) av= [ ) e o) du).
XTXX XT
Letting € | 0 and changing ( with —( we eventually get

/X n(t)C() (e, v) dp = /X n(t)C() (e, B) dp,
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Since 1, ¢ and j are arbitrary this proves that v = v. O

11.2 Gradient flows in &7(X) for A\-convex functionals
along generalized geodesics

In this section we are considering the case of a

proper, l.s.c. and coercive functional ¢ : P5(X) — (—o0, x0],
o _ , (11.2.1)
which is A\-convez along generalized geodesics,

according to Definition 9.2.4; as usual, X is a separable Hilbert space. Thus we
are assuming that for every choice of u',u? u® € D(¢) there exists a 3-plan
€ T'(pt, 2, 1) such that

mw e To(u!, p?), mme To(p!, i),
A
O ) < (1= 00 + t6(s®) ~ 51— 1) [

X

11.2.1a
w2 — x3|* dp, ( )
3

where p272 is the interpolation between p? and g induced by p. By Lemma 2.4.8,

for A-convex functionals the coercivity assumption can equivalently formulated as
Jr,>0: inf {¢(,u) tp € Pa(X), / |z|? du(z) < r*} > —oo. (11.2.1b)
X

We already observed in Lemma 9.2.7 that (11.2.1a,b) entails the main convexity
assumption 4.0.1 of Chapter 4, whereas (4.0.1) corresponds to (11.2.1). By The-
orem 4.1.2 the above conditions imply (11.1.13a,b), which are also the minimal
assumptions we adopted to develop the subdifferential theory of Chapter 10.

The following theorem reproduces in the Wasserstein setting the metric re-
sults of Chapters 2 and 4.

Theorem 11.2.1 (Existence and main properties of gradient flows). Let us suppose
that ¢ : P3(X) — (—o0, +0] satisfies (11.2.1) and let po € D(¢).

Convergence. The discrete solution M, of (11.1.24) converges locally uniformly
to a locally Lipschitz curve p := S[uo] in P2(X) which is the unique gradient
flow of ¢ with u(0+) = po-

A-contractive semigroup. The map t — S[uo](t) is a A-contracting semigroup on

D(¢), i.e.

Wa(S[po)(t), S[vo](t) < e MWa(uo, vo). (11.2.2)
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Regularizing effect. 1, € D(0¢) C D(¢) for every t > 0 and the map t —
e |0p|(iu¢) is mon increasing. For X > 0 it satisfies the regularization es-
timates

W3 (po,v) + ¢(v) Vv e D(9),

Rl =

() <

(11.2.3)
06 (10) < 106(+) + 5 WE (o, ) Vo € D(|05))

Steepest descent and Evolution variational inequalities. i = S[uo] is a curve of
mazximal slope, it satisfies the system of evolution variational inequalities
(11.1.20), and the energy identity

b
/ /X [ug (@) |2 dpe (z) dt + d(up) = d(pa) Y0 <a <b< +oo. (11.2.4)

Asymptotic behaviour. If A > 0 then ¢ admits a unique minimum point fi and
Wa(u(t), 7)) < Wa(u(to), me =),

B(u(t) = &) < (6(u(to)) — o) )=~ (11.2.5)
1961 (1(t)) < 06| (u(to))e 1),

If A\=0 and 1 is a minimum point of ¢ then we have

W22 (NO? ﬁ)

ool(ue)) < T2EEL oo - om < TUREL o

t b
the map t— Wa(pu(t), ) is not increasing.

Right limits and precise pointwise formulation of the equation. For every t,h >
0 and fu; }, € To(pit, pre4n) the right limit

1 2

T 1 T T . . .
Ky = lﬂrol (71' T )#uth exists in P2(X x X) (11.2.7)
and satisfies
Hoo = 8°0() V10, (1123)
d
o) = = [ [l dug = ~100P(u(0) = -(e) Ve >0
+ X2

(11.2.9)

Moreover, (11.2.7), (11.2.8), and (11.2.9) hold at t = 0 iff po € D(9¢p) =
D(|0¢]).

Optimal error estimate. If A\ > 0 and pg € D(¢), for every t = kT € P, we have

72

2

W3 (p(t), M- (t)) < 7(d(po) — ¢-(10)) < 5100 (o). (11.2.10)
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Stability. Suppose that ¢n, ¢ are A-convez functionals along generalized geodesics
and satisfy the assumption of Lemmal10.3.16, and let pp, p : (0,4+00) —
P5(X) be the corresponding gradient flows satisfying the initial Cauchy con-
ditions ltilHOl pn(t) = w0, ltilrél w(t) = po in Po(X). If

Who — to  in Po(X) as h — oo, sup ép(pno) < +00 (11.2.11)
heN

then pp(t) converge to u(t) in P2(X), locally uniformly in [0,400).

Proof. We already observed that we can apply Theorem 4.0.4; the convergence of
the variational scheme, the \-contraction property of the induced semigroup, the
regularizing estimates (11.1.47), the formulation by evolution variational inequal-
ities (11.1.20), and the optimal error estimates (11.2.10) follow directly from that
statement.

Theorem 11.1.4 shows that the limit curve p satisfies the gradient flow equa-
tion (11.1.3) and it is therefore a curve of maximal slope, by Theorem 11.1.3.

The energy identity (11.2.4) is then a direct consequence of the metric The-
orem 2.3.3 or of the Chain Rule 10.3.18.

Theorem 2.4.15 shows that the map t — e**|9¢|(u(t)) is not increasing; this
proves the third formula of (11.2.5). The first one is a simple consequence of
(11.2.2), since a minimum point provides a constant solution to the gradient flow
equation. The second formula in (11.2.5) follows from Theorem 2.4.14, whereas
(11.2.6) corresponds to Corollary 4.0.6.

Let us consider now the right limit properties (11.2.7), (11.2.8), and (11.2.9).
We already know that d¢(u(t)) is not empty for ¢ > 0: we set v, = 8°d(u(t));
Theorem 2.4.15 and Theorem 10.3.11 yield

d B 9 1 9 .
o o®) = [P avo=times [ e e, (1212

As in Proposition 10.3.18 we consider 3-plans -, ;, such that

(Wl’z)#'yt,h =Y (Wl’s)#'yt,h = Py s

and we define v, ,, := (7', 72, h=! (7! — wg))#ﬁ/t’h; arguing as in (10.3.44) we get

d .
L b(u(t)) > Timsup — / (2, 23) dp,
dt 4 h10 X3

while (11.2.12) gives

d _ 2 1 2
o 0u(0) = [ e v =t [l i
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Combining these inequalities we get

. 2
hmsup/ lzo — 23]° dy,
XS

110
<lim sup (/ |22 dyip — 2/ (@, x3) dv;p +/ \J;z\Q d'yt’h) =0,
h10 X3 X3 X3

which shows that
m ven = (7 TN = 72) yhey — e i Pa(X x X) ash 0. (11.2.13)

(11.2.9) then follows from (11.2.12).

Finally, we are proving the last stability property in a fixed time interval
[0, T). If M}, » is the piecewise constant discrete solution of the gradient flow of
on associated to a fixed time step 7 > 0, Lemma 10.3.17, the uniqueness of the
minimizers M given by Lemma 4.1.1, and a simple induction argument show that

My, (t) — M,(t) in Po(X) uniformly in [0,7], V7 € (0,1/A7) (11.2.14)

for the discrete solution M, (t) relative to ¢. On the other hand, the optimal a
priori error estimates and the bound on the initial energy show that

sup Wo(Mp,r(t), pn(t)) < OV/T,  sup Wa(M (1), u(t)) < CV'T
te[0,T te[0,T

for a constant C' independent of 7. The triangle inequality then proves the uniform
convergence of pp, to p in [0, T7. O

11.2.1 Applications to Evolution PDE’s

Here we illustrate some Evolution PDE’s arising from the examples of A-convex
functionals given in Chapter 9, whose (minimal) subdifferential has been computed
in Chapter 10.

Example 11.2.2 (The linear transport equation for \-convex potentials). Let V :
X — (—o00,+00] be a proper, l.s.c. and A-convex potential. We are looking for
curves t — iy € Po(X) which solve the evolution equation

%,ut + V- (o) =0, with —vi(z) € OV () for pp-ae. x € X,  (11.2.15)

which is the gradient flow in &5(X) of the potential energy functional discussed
in Example 9.3.1:

V(p) = /X V() dp(z). (11.2.16)
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If V is differentiable, (11.2.15) can also be written as

%ﬂt(x) =V (u(x)VV(x)) in the distribution sense. (11.2.17)

In the statement of the following theorem we denote by T the A-contractive semi-
group on D(V) C X induced by the differential inclusion

d [

ETt(x) € —0V(Ty(z)), To(z) =2 VYzeDV). (11.2.18)
Recall also that, according to Brezis theorem, £7;(z) equals —9°V (Ty(z)) for
Llae. t > 0.

Theorem 11.2.3. For every ug € P2(X) with supp pg C D(V') there exists a unique
solution (ue,v) of (11.2.15) satisfying

i = po, [ [oea)|? dia(o) € LL(0,40) (11.2.19)
X

and this solution satisfies all the properties stated in Theorem 11.2.1. In particular,
for every t > 0 we have the representation formulas py = (T})4po and

vi(z) = —=0°V () for pi-a.e. v € X. (11.2.20)
Proof. Proposition 9.3.2 shows that the functional V satisfies (11.2.1). In order

to show that pg € D(V) we observe that, being supp po C D(V'), we can find a
sequence (1) C D(V) of convex combination of Dirac masses

K, Ky
Vp 1= Zan,kém’n,ka QA k Z O, Zan,k - 1, T,k S D(V), (11221)
k=1 k=1

such that v, — po in Pa(X).
Therefore, we can apply Theorem 11.2.1 and the subdifferential characteri-
zation in Proposition 10.4.2 to get (11.2.15) and more precisely (11.2.20).
It is then immediate to check directly that if we choose g = v, then
K
Vit = k01, (0, ) = (T4) #Vn (11.2.22)
k=1
solves (11.2.15) (see also Section 8.1, where the connection between characteristics

and solutions of the continuity equation is studied in detail), whereas (11.2.19)
follows by the energy identity

b
/ 0°V(Ty (@) dt + §(Ty(x)) = &(Ta(x)) Y € D(V).

We thus have puy = vpy = (T})#po for every initial datum which is a convex
combination of Dirac masses in D(V). A standard approximation argument via
(11.2.2) yields the representation formula p; = (T3)4 0 for every admissible initial
measure fi. ]
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Example 11.2.4 (Nonlinear diffusion equations). Let us consider a convex differen-
tiable function F : [0, +00) — R which satisfies (10.4.15) with p = 2, (10.4.21) and
(10.4.23): F'is the density of the internal energy functional F defined in (10.4.14).

Setting Lp(z) := zF'(z) — F(z), we are looking for nonnegative solution of
the evolution equation

0

5Pt A(Lp(p:)) =0 inR% x (0,4+00), (11.2.23)

satisfying the (normalized) mass conservation
pr € L*(R?), / pe(x)dr =1 Vt>0, (11.2.24)
Rd
the finiteness of the quadratic moment

sup / |z[2pi(x) dz < 400 VT >0, (11.2.25)
te(0,T) Jre

the integrability condition Lr(p) € L

L J(RY x (0,+00)), and the initial Cauchy
condition

lir(r)lpt - 2% = iy in Py(RY). (11.2.26)
t

Therefore (11.2.23) has the usual distributional meaning

+o0
/ /Rd — ol C(x t) + Lr(pi(z ))AC(x,t)) dzdt =0

for any ¢ € Z(R¢ x (0, +0)).

Theorem 11.2.5. Suppose that either F' has a superlinear growth or F satisfies
(10.4.34). Then for every puo € P2(RY) there exists a unique solution

p € ACR((0,+00); Z5(R7))
of the above equation among those satisfying

[VLr(p)P

) dr € Li,.(0,4+00). (11.2.27)

Le(p) € (0. 4005 W ®D), [
R
It is the unique gradient flow in Po(R?) of the (relaved) functional F* defined in

(10.4.17), which is convex along generalized geodesics. In particular it satisfies all
the properties of Theorem 11.2.1 for A = 0.

Proof. The proof is a simple combination of Theorem 11.2.1 and of the results of
Section 10.4.3 for the functional F*, noticing that the domain of F is dense in
Py(R?).
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Observe that, even if F' has a sublinear growth and pg is not regular (e.g.
a Dirac mass), the regularizing effect of the Wasserstein semigroup and Theo-
rem 10.4.8 show that, because of (10.4.34), us := S[uo(t) is absolutely continuous
w.r.t. the Lebesgue measure 2 for all t > 0: its density p; w.r.t. £? is therefore
well defined and provides a solution of (11.2.23) in the above precised meaning. [

Remark 11.2.6. Equation (11.2.23) is a very classical problem: it has been studied
by many authors from different points of view, which is impossibile to recall in
detail here.

We only mention that in the case of homogeneous Dirichlet boundary conditions
in a bounded domain, H. BREzIS showed that the equation is the gradient flow
(see [38]) of the convex functional (since Ly is monotone)

W(p) = Grp(p)dx, where Gp(p):= /pLF(r) dr,

R4 0

in the space H (). We refer to the paper of OTTO [124] for a detailed comparison
of the two notions of solutions and for a physical justification of the interest of the
Wasserstein approach. Notice that here we allow for more general initial data (an
arbitrary probability measure), whereas in the H~! formulation Dirac masses are
not allowed (but see [127, 50]).

Example 11.2.7 (Drift diffusion equations with non local terms). Let us consider,
as in [47, 48], a functional ¢ which is the sum of internal, potential and interaction
energy:

1
o) ::/ F(p)dx+/ Vd,qu—/ Wdp x p if p= p2%
Rd Rd 2 Jraxga

Here F, V, W satisfy the assumptions considered in Section 10.4.7; as usual we set
d(p) = +oo if u € Po(R4)\ 25 (R9). The gradient flow of ¢ in ZP5(RY) leads to
the equation

Bipi — V- (VLF(pt) + YV 4 pu(VW) *pt) —0, (11.2.28)

coupled with conditions (11.2.24), (11.2.25), (11.2.26).

Theorem 11.2.8. For every jug € P2(RY) there exists a unique distributional so-
lution py = pL? of (11.2.28) among those satisfying p.L% — po as t | 0,
Li(pt) € L, ((0, 400); Wyt (RY)), and

loc loc

=

VY (YW )
t

€ L2 (0, +00). (11.2.29)
L2 (pe;RY)

Furthermore, this solution is the gradient flow in P5(RY) of the functional ¢ and
therefore satisfies all the properties stated in Theorem 11.2.1.
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Proof. The existence of p; follows by Theorem 11.2.1 and by the characterization,
given in Section 10.4.7, of the (minimal) subdifferential of ¢. The same character-
ization proves that any p; as in the statement of the theorem is a gradient flow;
therefore the uniqueness Theorem 11.1.4 can be applied. |

When F, V = 0 we find a model equation for the evolution of granular flows
(see e.g. [44]); when W = 0 and F is the entropy functional, we find the Fokker—
Planck equation with an arbitrary A-convex potential: it is interesting to compare
our result with [33, 60]. Notice that we can also consider evolution equations in
convex (bounded or unbounded) domains @ C R? with homogeneous Neumann
boundary conditions, simply by setting V (z) = +oo for z € R?\ Q.

Example 11.2.9 (Gradient flow of —1W?/2 and geodesics). For a fixed reference
measure o € Y5(X), X being a separable Hilbert space, let us now consider the
functional ¢(u) := —%sz(u, o), as in Theorem 10.4.12. Being ¢ (—1)-convex along
generalized geodesics, we can apply Theorem 11.2.1 to show that ¢ generates an
evolution semigroup on P(X).

When I'y (0o, pto) contains a plan 4 such that

(!, 7wt + T(n® — wl))#'y is optimal for some T > 1, (11.2.30)

then the semigroup moves pg along the geodesics induced by ~. Lemma 7.2.1 shows
that in this case v admits the representation v = (7 X )4 uo for some transport
map 7 and -y is the unique element of ', (0, 10).

Theorem 11.2.10. Let be given two measures o, g € Po(X) and suppose that
v € To(o, o) satisfies (11.2.30), i.e. the constant speed geodesic

Y(s) = (L= s)m" +s7°) v
can be extended to an interval [0, T, with T > 1. Then the formula
t — p(t) :==v(eh), for 0 <t <log(T), (11.2.31)
giwes the gradient flow of p— —%WQZ(M, o) starting from pg.

Proof. Lemma 7.2.1 shows that ((1 — el + eln?, 771)#7 is the unique optimal
plan in T',(u(t), 0); therefore

WE(u(t), w(D) = I’ — PWE (0, 0), WEult), 0) = e Wi(uo, ), (11.2.32)
so that p
(1)) = =€ W3 (po, o) = —|/|*(2). (11.2.33)
On the other hand, the characterization of |0¢| given in (10.4.52) gives
061 (1(t)) = ¥ W3 (o, o).

This shows that u(t) is a curve of maximal slope; combining Theorem 11.1.3 with
the uniqueness Theorem 11.1.4, we conclude. O
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Example 11.2.11 (Fokker—Planck equation in infinite dimension). Let X be a sep-
arable Hilbert space and let 7 be a reference probability measure which satisfies
the log-concavity assumption (9.4.19). The relative entropy functional defined as
in (9.4.1)

6(1) = H(ul) (11.2.34)

is then convex along generalized geodesics, according to Theorem 9.4.11; since

it is nonnegative and ls.c. in P%5(X), its gradient flow generates a contraction

semigroup on D(¢), which satisfies all the properties stated in Theorem 11.2.1.
Is is not difficult to check that

D(¢) = {,u € P5(X) :suppu C supp’y}. (11.2.35)

For, D(¢) contains all the measures of the type

1
pi=———XB,(z0) with x¢ € supp~y, p > 0,
Haxo,p ’Y(Bp(fo)) By(zo) =Y 0 Y P

and their convex combinations, so that

Zaiémi € D(¢) if x; € suppry, a; >0, Zai =1.

Then, Remark 5.1.2 shows (11.2.35).

Let us now consider the particular case of a Gaussian measure 7 induced
by a bounded, positive definite, symmetric operator @ of trace class, which was
considered in Section 10.4.4. Keeping the same notation, from the characterization
given in that section of the minimal subdifferential of the relative entropy in terms
of the Fisher information functional we obtain the following result (we refer to
[61, 17, 18] and to the references therein for a more detailed analysis of this kind
of equations).

Theorem 11.2.12. For every pg € P2(X) there exists a unique solution i = py-~y,
t > 0, of the equation

Oepe — V- (vVpr) =0, ltilrglut = Lo, (11.2.36)

in the distributional sense according to (8.3.8), among those satisfying the local
integrability of the Fisher information
[Vpe|?

———dy € L},.(0,+00). (11.2.37)
X Pt

Here <

~Pt) = po® ()

Pt

is defined in terms of the “logarithmic gradient” of p according to Definition
10.4.16. p; is the gradient flow of the Relative Entropy functional (11.2.34) and
satisfies all the properties stated in Theorem 11.2.1.

Vps = Pt(
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11.3 Gradient flows in &,(X) for regular functionals
In this section we are considering the case of a

proper, coercive (2.1.2b), and Ls.c. functional ¢ : Z,(X) — (—o0, +00],
(11.3.1)
which will satisfy a suitable regularity assumption like in Definition 10.3.9.

Our main examples will still concern A-geodesically convex functionals: the
main difference with respect to the previous section is thus provided by the Wasser-
stein distance in #,(X), p # 2, which does not exhibit a sufficiently nice behaviour
along generalized geodesics. Thus, even if the functionals would be convex along
these more general interpolating curves, the abstract machinery of Chapter 4 could
not be applied.

Here we refer instead to the metric theory developed in Chapter 2; that more
general convergence proof uses the identity between curves of maximal slopes and
gradient flows, we established in Theorem 11.1.3. The crucial assumptions of that
approach result from a combination of the lower semicontinuity of the metric slope
|0¢|(-) and the local compactness of the sublevels of ¢. It follows that the choice
of the right topology becomes crucial.

For m € (0,400) let us denote by %,, the sets

S = {u € Py(X): ¢(p) < m, / 2P du(z) < m}. (11.3.2)
p's
The sets X, are bounded in &7,(X) and therefore relatively compact in Z(X),

by Lemma 5.1.12(e): we are assuming that

Assumption 11.3.1 (Weak lower semicontinuity). ¢ and |0¢| are lower semicontin-
uous on YN, w.r.t. the narrow convergence of P(Xy). Moreover, if iy, p € X,
tin — i1 in P(Xe) and sup,, [06)(jn) < +00, then ¢{jin) — H(1).

Observe that Assumption 11.3.1 is surely satisfied if

¢ is a regular functional according to Definition 10.3.9

11.3.3
and X, are compact in Z,(X). ( )

In particular, the assumption is satisfied if
¢ is a A\-convex functional and ¥, are compact in &, (X), (11.3.4)

due to the fact that for A-convex functionals |0¢| is always lower semicontinuous
w.r.t. the narrow convergence of & (X).

When ¢ is A-convex but ¥, are not compact, then one has to check directly
on the particular form of |9¢| the lower semicontinuity property with respect to
the narrow convergence in Z(Xz).
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Theorem 11.3.2 (Existence of gradient flows). Let ¢ : Z2,(X) — (—o0,+0o0] be
a proper and l.s.c. functional satisfying Assumption 11.3.1. For every initial da-
tum po € D(@) each sequence of discrete solutions M., of the variational scheme
admits a (not relabeled) subsequence such that:

(i) M, (t) narrowly converges in P(Xy) to py locally uniformly in [0, +00),
with 1€ ACY ([0, 4+00); Z,(X)).

(ii) p is a solution of the gradient flow equation

Jp(ve) = =0°0(1e), Vel Lo(usx) = I |(t), for Llae t>0, (11.3.5)

with g — po as t | 0, where v, is the tangent vector to the curve .

(iii) The energy inequality

b
| [ @l duate) dt+ 6(m) < o). (11.3.6)

holds for every b € [0,+00) and a € [0,b) \ A, A being a L -negligible
subset of (0, 400).

Moreover, if ¢ is also A-convex along geodesics, then we have:

Energy identity.
b
/ / oo (@) P diaa(2) dt + D) = S(a) YO <a<b< oo,  (11.3.7)
a X

Regularizing effect. p; is locally Lipschitz in (0, +00) (in [0,400) if po € D(|09])),
pe € D(8¢) for everyt > 0, t +— e |0¢|(ur) is right continuous, and satisfies
the bounds (2.4.27), (2.4.28).

Right limits and pointwise formulation of the equation. For every t, h > 0 and
By € To(pt, pegn) the right limit

1 g2

. . T N . .
Mo = I}g% (ﬂ-l,jp( - ))#“t,h exists in Ppq(X x X) (11.3.8)

and it satisfies
o = 0°0(n) (11.3.9)

and

d

() == [ ol g = ~100l7) = <) (11.3.10)

for any t > 0. Finally, (11.3.8), (11.3.9), and (11.3.10) hold at t = 0 iff
po € D(8¢) = D(|9¢]).
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Proof. The first part of the statement is a simple transposition of Theorem 2.3.1:
o is the topology of narrow convergence in Z(X,).

The second part follows from Theorems 2.3.3, 2.4.12, and 2.4.15; the finer
pointwise properties can be proved by the same argument of Theorem 11.2.1. [J

Example 11.3.3. Let us consider a functional ¢ which is the sum of internal, po-
tential and interaction energy

1
o) ::/ F(p)dx+/ Vd,qu—/ Wdp x p if p= p2e,
RY R 2 Jraxrd

where F, V, W satisfy the assumptions considered in Section 10.4.7; as usual we
set p(p) = +oo if p € Zp(R?) \ Z27(R?). The gradient flow of ¢ in Z2,(R?) leads
to the equation

Oip—V - (%(%p(p) +VV 4+ (VIV) *p)) =0, (11.3.11)

coupled with conditions analogous to (11.2.24), (11.2.25), (11.2.26) for arbitrary
p € (1,400). Arguing as in the proof of Theorem 11.2.8, but replacing 2 by a
general exponent p € (1, +00), we obtain the following existence result.

Theorem 11.3.4. For every py € D(¢) C P,(R?) there exists a distributional
solution piy = p L% of (11.3.11) with Lr(ps) € L1 .((0, 4+00); VVIZ’CI(Rd)), p L4 —
o ast | 0 and

=

STV (YW %
t

€ L0, +00). (11.3.12)

La(pe;X)

Moreover, t — ¢(u) satisfies the energy identity and all the other properties stated
in Theorem 11.3.2.
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Appendix

12.1 Carathéodory and normal integrands

In this section we recall some standard facts about integrands depending on two
variables, measurable w.r.t. the first one, and more regular w.r.t. the second one.

Definition 12.1.1 (Carathéodory and normal integrands). Let X, X5 be Polish
spaces, let € P(X1) and let L be the S-algebra of p-measurable subsets of X;.
We say that o £ x B(X3)-measurable function f : X1 x X5 — R is a Carathéodory
integrand if xo — f(x1,x2) is continuous for p-a.e. x1 € X;.

We say that a £ x B(Xs)-measurable function f : X1 x Xo — [0, 400] is a normal
integrand if xo — f(x1,x2) is lower semicontinuous for p-a.e. x1 € Xq.

In order to check that a given function f is a Carathéodory integrand the
following remark will often be useful.

Remark 12.1.2. Suppose that a function f: X; x Xo — R satisfies

a9 — f(x1,22) is continuous for p-a.e. xy € Xy, (12.1.1)
x1 — f(x1,29) is Z-measurable for each xzo € Xo. o

Then f is a Carathéodory integrand. Indeed we can approximate f by the £ x
P (X5)-measurable functions

fe@r,wa) =Y felwr, yi)Xve (22),

where {V} is a partition of X, into (at most) countably many Borel sets with
diameter less than € and y; € V. By the first condition in (12.1.1) the functions
f- pointwise converge to u out of a set N x Xo with u(N) = 0. Therefore f is
¥ x B(Xz)-measurable.
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For the proof of the following theorem, we refer to [28, Thm. 1, Cor. 1, Thm.
2((d) = (a))]-
Theorem 12.1.3 (Scorza—Dragoni). Let X1, X5 be Polish spaces and let p€ 2(X1);
if [ is defined in X1 x Xo with values in R (resp. in [0,+00]) is a Carathéodory
(resp. normal) integrand, then for every e > 0 there exists a continuous (resp.
l.s.c. and bounded above by f) function f. such that

w{z € X1: f(zr,22) # fe(x1,22) for some g € Xo}) <e. (12.1.2)

12.2 Weak convergence of plans and disintegrations

In this section we examine more closely the relation between narrow convergence
and disintegration for families of plans v € Z(X; x X3) whose first marginal is
independent of n.

In the sequel we assume that X; and X5 are Polish spaces, and p11 € Z2(X7).
We start by stating natural continuity and lower semicontinuity properties with
respect to narrow convergence of Carathéodory and normal integrands.

Theorem 12.2.1. Let 4" € P (X1 x Xa) narrowly converging to v and such that
w#'y” = p1. Then for every normal integrand f we have

liminf/ fla1, @) dy" (21, 22) 2/ fx1,x2) dy(zq, x2), (12.2.1)
X1><X2

n— oo X1 X Xo

and for every bounded Carathéodory integrand we have

lim f(z1,22) dy" (z1,22) = / flzy, xo) dy(z1, 22). (12.2.2)
n—0o0 X1><X2 X1><X2

Proof. We simply apply Lemma 5.1.10 and the Scorza—Dragoni approximation
theorem of the previous section. O

If 4™ narrowly converge to v in Z(X; x X2) and 773#7” is independent of n,
the following result provides a finer description of the limit .

Lemma 12.2.2. Let X, X5 be Polish spaces and let v € P (X1 x X3) narrowly
converging to v and such that 71';#’7” = p1 is independent of n. If {7} }eiex,,
{Va1 }2rex, are the disintegrations of v, v w.r.t. p1 and Gy, C P(X3) is the
subset of all the narrow accumulation points of (7} Jnen, then we have

Vo, Cconv Gy, for pi-a.e. r1 € Xy. (12.2.3)

In particular

Supp vz, C U suppy for pi-a.e. x1 € X;. (12.2.4)
YEGa,
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Proof. Taking into account Remark 5.1.5 we can find a function ¢ : Xy — [0, +00]
with compact sublevels, such that

/ o(x2) dy(z1,22) < sup/ o(x2)dy" (1, 22) = S < +o0.  (12.2.5)
X1 ><X2 neN X1 ><X2

In particular, for any open set A C X3 and any continuous and bounded function
f:+ X2 — R we have

[t drene) 25z tin (Fw2) + ep(n)) dy" (a1, 22)
Ax X, n—+0 JAx X,

> [ (gt /X (F@2) +ep(aa)) dal, (a2) ) d' (1)

(12.2.6)
Passing to the limit as € | 0 and observing that A is arbitrary, we get

f(z2) dyg, (z2) > inf lim inf/ (f(z2) + ep(x2)) dvy} (z2) for prae. x
5 X,

X >0 n—oo

and it is not difficult to show using Prokhorov theorem that

liminf/X (f(z2) + ep(x2)) dv (z2) > inf flag) dy(2) (12.2.7)

n—00 'YGG”—'l Xo

and

f(@2) dve, (22) = inf f(@2) dy(x2) (12.2.8)

X; VEGw, J X,
for pl-a.e. 1 € X;. Choosing f in a countable set 6y satisfying (5.1.2a,b) we can
find a p'-negligible subset N C X; such that (12.2.8) holds for each f € € and
x1 € X3 \ N. In fact the approximation property (5.1.2a,b) shows that (12.2.8)
holds for each function f € Cp(X5) and therefore Hahn-Banach theorem yields
Yz, € Conv G, for 21 € X7\ N. O

We conclude this section with an useful convergence result:

Lemma 12.2.3. Let X be a Polish space, let Xo be a separable Hilbert space, and
let f: Xo — [0,400] be a l.s.c. strictly convex function. Suppose that (v,,) C
P (X1 x X3) narrowly converges to v = le Yo, Apr (1), with py = 7@’7; if the
barycenter of v ¥(x1) = sz xydry,, (x2) exists and satisfies

lim in /X ey @) = [ fE)dn@)eR  (1229)

n—oo X,

then v = (¢ X ¥)gp1. The same result holds if w#'y” =p and f: X3 X X9 —
[0,400] is a normal integrand such that f(xy,-) is strictly convex for pi-a.e. x1 €
X1 in this case the barycenters 7, converge to 7 in pi-measure.
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Proof. Equality (12.2.9) yields

/X1 ( .. f(ﬂcz)d’}’ml(xz)) dp (1) :/ Flas) dy(zy, 22)

X1 ><X2

< lim inf/ f(x2) dy, (z1,22)
X1 ><X2

n—-+4oo
< /X ) dn ),

so that Jensen inequality yields

f(@2) dv,, (w2) = f(¥(21))  for pr-ae 1 € Xy
X2
and the strict convexity of f yields v, = d5(,,). The second part of the statement
can be proved in an analogous way. O

12.3 PC metric spaces and their geometric tangent cone

In this section we review some basic general facts about positively curved (in short
PC) spaces in the sense of Aleksandrov [5, 40, 139], and we recall the related
notion of tangent cone; in the last section we will discuss its relationships with the
tangent space we introduced in Section 8.4 for the Wasserstein space %5(X).

Let (7,d) be a metric space; a constant speed geodesic *=2 : t € [0,T] —
x; € . connecting z!' to 2?2 is a curve satisfying

tf
o =z, xp =22, d(xt,xs):Tsd(xl,x2) Vo<s<t<T. (12.3.1)

In particular we are dealing with geodesics of minimal length whose metric deriva-
tive |2’|(¢) is constant on [0,7] and equal to T~ 1d(z!, 2?).

We say that . is geodesically complete (or length space) if each couple of
points can be connected by a constant speed geodesic.

Definition 12.3.1 (PC-spaces). A geodesically complete metric space (-, d) is pos-
itively curved (a PC-space) if for every ¥ € % and every constant speed geodesic
72t €0,1] — x} 72 connecting x* to x* it holds

d?(x}72,2%) > (1 = t)d* (2!, 2°) + td? (22, 2°) —t(1 — t)d* (2", 2?).  (12.3.2)

Observe that in an Hilbert space X (12.3.2) is in fact an identity, since for
;7% = (1 —t)a! + tz? we have

lef 72 — 2% = (1 = b))zt — 202 +t)2® — 202 —t(1 —t) |2t — 2?2, (12.3.3)

Therefore condition (12.3.2) can be considered as a sort of comparison property
for triangles: let us exploit this fact.
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Definition 12.3.2 (Triangles). A triangle x in . is a triple x = (' 2, >3 23!
2

of constant speed geodesics connecting (with obvious notation) three points xt, z2,
23 in . We denote by A\ = /\(x) C .7 the image of the curves x*—2 x?73 2371

To each triangle x in .% we can consider a corresponding reference triangle
(unique, up to isometric transformation) & = (:fclﬁz7 73, 2371 in R? connecting
the points &', 22, #3 € R? such that

3| =d(2',27) i,j=1,2,3. (12.3.4)

Two points z € A, & € A are correspondent if

_ i—7 A o al—] ..
=z, ), =42, for some ¢ € [0,1], 7,5 € {1,2,3}.
22
w2—>3 m1—>2
—_—
23 2l 73 431 1
3—1

xr

Figure 12.1: on the left the triangle on the PC-space and on the right its euclidean
reference.

Proposition 12.3.3 (Triangle comparison). If .7 is a PC-space and /\ C .7, A C
R2 are two corresponding triangles, then for each couples of correspondent points
x,y €N, &,y € AN we have

dz,y) > |3 — 3. (12.3.5)
Proof. When x or y is a vertex of the triangle, then (12.3.5) is just (12.3.2): thus we
have to examine the case (up to permutation of the indexes) x = x; =2, y = 2173,

t,s € (0,1). Denoting by '~ the rescaled geodesic connecting z' to z = x; 2

and by introducing a new geodesic x'~3 connecting = to z3, we can consider
the new triangle ' = (x'~!, 2!, 23~1) connecting x', z, 2>. The corresponding
euclidean reference &' can be constructed keeping fixed #! and #® (and therefore
§ = 2173) and introducing a new point #’, which in general will be different from
#, such that |2’ — | = d(z,2!), |#' — 23| = d(z,2®). Applying (12.3.2) we obtain

@ — 3| = d(w,2) > |¢ — &
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and applying the identity (12.3.3) we get
12— g2 = (1 —s)|2" — &' > + 5|3’ — 2%|? — s(1 — s)|@3 — &1
> (1= s)d - &' +slz — 2% = s(1 - 5)|3° - &'[* = |2 — g|?
therefore, applying (12.3.2) again to the triangles ', " we obtain
dz,y) > & — | = &' — 5] > |3 — 3] O

In a Hilbert space X the angle /(@727 € [0,7] between the two
segments joining #! to 22 and &' to &3 can be easily computed by the formula

(32 — &

52

cos(Z (2172 2173)) =

= a(zt; 22, 23), (12.3.6)

where

“%2 _‘%1‘2 + |JA}3 _£1|2 _ |JA}3 _i.2|2

~1, 22 23\
a@; &, &) = 2132 — 31| |28 — 4]

(12.3.7)

In particular, if /72 := (1 — t)2! + 2% and 2173 := (1 — 8)2! + 523, we have

a(ity i), a1 7%) = a(i2%,2%) Vi s € (0,1]. (12.3.8)

S

Taking into account of (12.3.7), in the case of a general PC-space, it is natural to
introduce the function

d($2,.’£1)2 + d(xg,.’bl)Q _ d($3,$2)2

V£ 2% (123
2d(x2, z') d(x3, x1) , T AT (12.3.9)

a(zt;2?, 2% =

and we have the following monotonicity result.

Lemma 12.3.4 (Angle between geodesics). Let (15” d) be a PC-space and let '~
73 be constant speed geodesics starting from x'; then the function

t,s € (0,1 a(zty2; 2,2l 73)  is nondecreasing in s,t. (12.3.10)

The angle Z(z' =2, 2'73) € [0, 7] between ' =2 and x'=3 is thus defined by the
formula

cos(l(wléz,azlé?’)) = isnfoz(xl x%_’z,xi_"?) = lim oz(x1 xiéz,xi_"?).

s,t10
(12.3.11)
Proof. 1t is sufficient to prove that a(x';z? 2%) > a(z';z; =2, 2173) for s,t €
(0,1]; if @ is a corresponding reference triangle with vertexes !, %2, 33, we easily
have by Proposition 12.3.3 and (12.3.8)
alzt;z 72 273 <a(@h 2% 270 = a(@h 22, 23) = a(at 22, 2%) O
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Remark 12.3.5. Notice that the separate limit as ¢ | 0 is given by

hma(xl.xl—»Z 1_>3) — lim t2d2($1a$2) + dZ(xlvxi_"g) - dz(x%_aax;ég)
bRl A -

t10 e t10 2tsd(xt, 22) d(xt, x3)
. d I
= —(2sd(z", 2%) d(z", 2%)) E(dQ(xtl 2 a! ‘3))|t=0+

and therefore

— — 7 -1 82 — —
cos (£L(z' 72, 2'7?)) = —(2d(2', 2?) d(2', 2?)) D0t <d2(x% 2 a! 3)) |50+
For a fixed z € . let us denote by G(x) the set of all constant speed geodesics
x starting from x and parametrized in some interval [0, T,]; recall that the metric
velocity of @ is |2'| = d(x(t),x)/t, t € (0,T]. We set

]l := [a'], (. y), = @/l [yl cos(£(z, y)),

B(a.y) = lall2 + lyl —2,v),. 12312
If € € G(x) and A > 0 we denote by Az the geodesic
(A&); = @xr, Trg = AT, (12.3.13)
and we observe that for each @,y € G(z), A > 0, it holds
IAz]|z = M|z Az, y), = (2, \y), = XNz, y), (12.3.14)

Observe that the restriction of a geodesic is still a geodesic; we say that  ~ y if
there exist € > 0 such that T = YN

Theorem 12.3.6 (An abstract notion of Tangent cone). If , y : [0,T] — . are
two geodesics starting from x we have

dy(@,y) = lim 20D o @0y (12.3.15)

t]0 t te(0,T] t

In particular, the function d, defined by (12.3.12) is a distance on the quotient
space G(x)/ ~. The completion of G(x)/ ~ is called the tangent cone Tan,.” at
the point x.

Proof. (12.3.15) follows by a simple computation since for each s > 0 (12.3.11)
yields

P (@15, 7) + d*(Yys, ) — P (@15, Yy)
/ — 1 EX) 59 CRl S
COS( (ac,y)) tllrtr)l 2d(xs, x)d(Y g, )
d2($5,.’£) +d2(ys’x) —lim dz(wts,yts)
2d(xs,x)d(y,, x) t10 2t2d(xs, z)d(y,, x)
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and therefore from (12.3.12) we have

(x5, 7) +d*(y,,7) ,d(@s, 2)d(y,, @)

di (:E, y) = 52 -2 52 COS(Z(:I:? y))
i E @ Y1)
10 2t252 0

Remark 12.3.7 (The tangent cone as Gromov-Hausdorff blow up of pointed
spaces). In the finite dimensional case Tan,.” can also be characterized as the
Gromov-Hasudorff limit of the sequence of pointed metric spaces (., x,n - d) as
n — oo. [40, 7.8.1]

12.4 The geometric tangent spaces in &5(X)

Taking into account of the abstract definition of Tangent cone 12.3.6 for PC-
spaces and the fact proved in Section 7.3 that Z25(X) is a PC-space, we want an
explicit representation of the abstract tangent space Tan, % (X) induced by the
2-Wasserstein distance.

First of all we want to determine a precise expression for the angle between
two geodesics. Observe that an optimal plan g € T',(ut, u?) is associated to the
geodesic p'=? with pul=? = (7} 7?)4p whose velocity is equal to the distance
between the end points [¢/|> = [ |z — z1|?dp. If we want to represent each
constant speed geodesics, it is convenient to introduce the new “velocity” plans

vy = (rh A(r? — ﬂl))#u, (12.4.1)

that can be used to provide a natural parametrizations for the rescaled geodesic
(A pt=2), = pl7? as follows:

P = (L= 2 + xem?) = (7' +im)yyy te[0,AT] (124.2)

Therefore we can identify constant speed geodesics parametrized in some interval
[0, A\~1] with transport plans v of the type

~ = (771,)\(7r2 - ﬂl))#u for some optimal plan pu € P5(X),
and therefore we set
G(p) = {v e 2(X?): mhy =p,
(12.4.3)
(7r1,7rl + 5772)#7 is optimal, for some ¢ > 0}.

It easy to check that there is a one-to-one correspondence between G(u) and the
quotient G(u)/ ~ introduced in the previous section: for, to each plan v € G(u)
we associate the (equivalence class of the) geodesic

pr = (m' )y, 0<t<e, (12.4.4)
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where € > 0 is chosen as in (12.4.3). Conversely, if u, t € [0,T1], is a curve such
that Flio.q) is a (minimal, constant speed) geodesic, then for every A\=! € (0,¢]

there exists a unique optimal plan p, € I',(10, ix-1) such that
pe = (7 + At(n® — 71'1))#;1,)\ te[0,A71;
by Theorem 7.2.2
0<AT <A <e =y, = (rhat + /(P - wl))#u,\2,
so that
v = (7T17 A2 — 7T1)>#[,l,)\ is independent of A, belongs to G(1), (12.4.5)

and represents y; through (12.4.4).
Motivated by the above discussion, we introduce the following definition:

Definition 12.4.1 (Exponential map in & (X)). For p € Z(X) and v € G(n) we
define
Aoy = (nh )\7r2)#"y, exp, (v) == (7' + 7r2)#'y. (12.4.6)

The notation is justified by the fact that the curve
t s exp,(t-v) isa constant speed geodesic in some interval [0,e]  (12.4.7)

whenever v € G(p).
For v'2,4'% € 2,(X?) with 7jy'" = pu, i = 2,3, we set

Iy 2115 = /XZ |wa|? dy' 2 (21, 22), (12.4.8)

(v 419), = maX{/XS (w2, 2s) dy iy €T (2,919 (12.4.9)

Wi('?,~4'?) = min { / |22 — x5 dy sy € Fl(’r”ﬁ”)}, (12.4.10)
X3

where T'1 (412, 413) is the family of all 3-plans in v € Z(X?) such that W;f'y =
~12 and 7'('3#’3’7 =13

Proposition 12.4.2. Suppose that v'2,~413 belongs to G(u) so that they can be
identified with the constant speed geodesics u'—2, u'=3 through (12.4.4). Then
the previous definitions coincide with the corresponding quantities introduced in
(12.3.12) for general PC-metric spaces.

Proof. The first identity of (12.4.8) is immediate. In order to prove the second
one we apply Proposition 7.3.6, by taking into account Remark 12.3.5: thus we
have

<'712a'713>,u - 13%128_1 /X3 <JJ2 — X1, 3 — l‘1>dus,



316 Chapter 12. Appendix

where p} 7 = exp,,(sy'?) and p, € To(p' 2, ul7?) is chosen among the minimiz-

ers of (7.3.15). It is easy to check that we can choose
p, = (rl, ot + o 7t + 3772)#7,

where v € Tl (412, 4!3) realizes the maximum in (12.4.9) (or equivalently the
minumum of (12.4.10)) and therefore

lims_l/ (2 — 21,23 — 1) dpy = lims_l/ (x2, 1 + sxg — x1) dy
sl0 X3 s|0 X3

= / <‘T27 l’3> d’Y
X3
The last formula of (12.4.8) follows now directly by the definition (12.3.12). O

If either v'2 or 4' 2 are induced by a transport map t, e.g. v'? = (z X t)#u,
then the previous formulae are considerably simpler, since

2 = [ ) P i) = el o (12.4.11)

(12413 :/X2 (t(x1), 23) dy '3 (21, 23), (12.4.12)

Wiyh2 %) = / (@) = sl dy "B, @), (12.4.13)
X

Finally, if also v'3 = (@ x s)#,u, then (12.4.12) and (12.4.13) become
'A%, = /X (t(z1), s(z1)) dp(21) = (£, 8) 2 (uix) s (12.4.14)

Wi ') = [ i) = s duten) = = sl (12415)

These results lead to the following definition.

Definition 12.4.3 (Geometric tangent cone). The geometric tangent cone
Tan, P5(X) to Po(X) at p is the closure of G(u) in P2(X?) with respect to the
distance W, (-, -).

In Section 8.4 we already introduced a notion of tangent space Tan, &5 (X)

and we showed in Theorem 8.5.1 its equivalent characterization in terms of optimal
transport maps

- - L2(1;X)
Tan, Z5(X) = {A(r —i): (i x7)gp € Lo(p,m4p), A >0} . (12.4.16)

In order to compare these two notions, let us recall the Definition 5.4.2 of barycen-
tric projection 4 of a plan v € P5(X?) with w#*y = u:

t=7 & t(a:l):/ zady,, (x2), te€L*(;X), (12.4.17)
X
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which is a nonexpansive map from Tan,%5(X) to L?(u; X). Indeed choosing
v € T*(~*,4?) and denoting by v, and ~2 the disintegrations of v and ~?
w.r.t. 4 we have

J | ]/ (02— 23) s,
X X X2

so that

2

dué/ 22 — 23l dv,
X3

H'?l - '72HL2(;L;X) < VVM(’Yla'72)~ (12-4'18)
We have the following result:

Theorem 12.4.4. For every p € Po(X) the tangent space is the image
of Tan, P5(X) through the barycentric projection. Moreover, if p € P5(X),
then the barycentric projection is an isometric one-to-one correpondence between
Tan, % (X) and Tan, P> (X).

Proof. Let us first prove that 4 € Tan, #»(X) for any v € Tan, % (X). By the
continuity of the barycentric projection and the identity (7!, 7! + en?) gy = i+¢7,
it suffices to show that (@t — %) € Tan, %>(X) for any optimal plan p whose first
marginal is g. We know that supp p is contained in the graph of the subdifferential
of a convex and ls.c. function ¢ : X — (—o00, 400], i.e.

y € 0Y(x) for any (z,y) € supp p.

Since OY(z) is a closed convex subset of X for every x € D(0v), we obtain that
() = [y ydp,(y) € 9Y(x) for p-a.e. x; therefore f is an optimal transport map
and (& — 1) € Tan, P> (X).

In order to show that the barycentric projection is onto it suffices to prove
that the map I : Tan, #5(X) — P (X x X) defined by I(v) := (i X v),pu takes

its values in Tan, %% (X) and to notice that it satisfies I(v) = v. Since the unique
plan in T (I(v), I(v)) is (3 x v X v') 4, We have

W2 (I(w), I(v')) = /X o — o' dp,

so that our thesis follows if I(v) € G(u) for every v in the dense subset of
Tan, Z»(X) introduced in (12.4.16): this last property follows trivially by the
definition of G() (12.4.3). Finally in the case when p is regular all optimal trans-
port plans in G(u) are induced by transports: therefore I is onto and it is the
inverse of the barycentric projection. O

Remark 12.4.5 (The exponential map and its inverse). Observe that the exponen-
tial map is a contraction since

Wa(exp, (), exp, (o)) < Wy(p, o), (12.4.19)



318 Chapter 12. Appendix

but in general, it is not injective, even if it is restricted to the tangent space.
Nevertheless it admits a natural (multivalued) right inverse defined by

exp, ' (v) = {u €EG(p): (n',m" + 71'2)#11, € Fo(,u,u)}. (12.4.20)
We conclude this section with an explicit representation of the distance W,
defined by (12.4.10).

Proposition 12.4.6. Let v'2, 43 be two plans in P2(X?) with the same first
marginal p. Then v € TY(y12,413) realizes the minimum in (12.4.8) if and only
if its disintegration w.r.t. p satisfies

Yo, € Do(V22,L3)  for p-a.e. 1 € X. (12.4.21)

Moreover
WE2y%) = [ WE AL duon). (12.4.22)

Proof. For any v € T''(y*2,413) we clearly have

[ fre—afay= [ [ fea - aaP v, dute) = [ W20 duon).
X3 X JX?2 X

Equality and the necessary and sufficient condition for optimality follows imme-
diately by Lemma 5.3.2 and by the next measurable selection result. O

Lemma 12.4.7. Suppose that (2 )a,ex,, (43 )zrex, are Borel families of measures
in P(X) defined in a Polish space X .
The map
xy = WE(p2 . p3) s Borel (12.4.23)

and there exists a Borel family v,, € P,(X x X) such that v,, € To(u2 , u3 ).

Proof. We show first that  +— o, is a Borel map between X and &2,(X ) whenever
x +— 04 is Borel in the sense used in Section 5.3. Indeed by assumption z — o, (A)
is a Borel map for any open set A C X and since

/deam=/0°°ax<{f>t}>dt—/_oooax<{f<t}>dt

and the integral can be approximated by Riemann sums, we have also that = —
[ [ dog is Borel for any f € CJ(X).

Let § be the distance inducing the narrow convergence on &?(X) introduced
n (5.1.6). It follows that x — (o, 0) is Borel for any o € &(X). By (7.1.12) it
follows that the distance W defined by

WP, 0) 1= (10 ] [ 1al = [ a1 do
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induces the p-Wasserstein topology on Z2,(X); we deduce that x — W(oy,0) is
Borel for any o € &2,(X), therefore z — o, is Borel, seen as a function with values
in Z,(X).

In order to prove the second part of the statement, let us observe that the
multivalued map p2, pu3 € 2, (X) — To(p?, 1) C Z,(X x X) is upper semicontin-
uous thanks to Proposition 7.1.3. In particular for each open set G C Z2,(X x X)
the set

{(u27u3) To(u?, 1*) NG # ®}

is open in Z,(X) x Z,(X). Therefore classical measurable selection theorems (see
for instance Theorem II1.23 in [49]) give the thesis. O



Bibliography

1]
2]

3]

[7]
8]

[9]

[10]

[11]

[12]

M. AGUEH, Asymptotic behavior for doubly degenerate parabolic equations,
C. R. Math. Acad. Sci. Paris, 337 (2003), pp. 331-336.

——, Existence of solutions to degenerate parabolic equations via the Monge-
Kantorovich theory, Adv. Differential Equations, 10 (2005), pp. 309-360.

M. AcugeH, N. GHOUSSOUB, AND X. KANG, Geometric inequalities via a
general comparison principle for interacting gases, Geom. Funct. Anal., 14
(2004), pp. 215-244.

G. ALBERTI AND L. AMBROSIO, A geometrical approach to monotone func-
tions in R™, Math. Z., 230 (1999), pp. 259-316.

A. D. ALEKSANDROV, A theorem on triangles in a metric space and some
of its applications, in Trudy Mat. Inst. Steklov., v 38, Trudy Mat. Inst.
Steklov., v 38, Izdat. Akad. Nauk SSSR, Moscow, 1951, pp. 5-23.

F. ALMGREN, J. E. TAYLOR, AND L. WANG, Curvature-driven flows: a
variational approach, STAM J. Control Optim., 31 (1993), pp. 387-438.

L. AMBROSIO, Metric space valued functions of bounded variation, Ann. Sc.
Norm. Sup. Pisa, 17 (1990), pp. 439-478.

—, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl.
(5), 19 (1995), pp. 191-246.

———, Lecture notes on optimal transport problem, in Mathematical aspects
of evolving interfaces, CIME summer school in Madeira (Pt), P. Colli and
J. Rodrigues, eds., vol. 1812, Springer, 2003, pp. 1-52.

——, Transport equation and Cauchy problem for BV wvector fields, Invent.
Math., 158 (2004), pp. 227-260.

L. AMBROSIO, N. Fusco, AND D. PALLARA, Functions of bounded vari-
ation and free discontinuity problems, Oxford Mathematical Monographs,
Clarendon Press, Oxford, 2000.

L. AMBROSIO AND W. GANGBO, Hamiltonian ODE’s in the Wasserstein
space of probability measures, To appear in Comm. Pure Appl. Math., (2008).



322
[13]

[14]

[15]

[16]

[23]

Bibliography

L. AMBROSIO AND B. KIRCHHEIM, Rectifiable sets in metric and Banach
spaces, Math. Ann., 318 (2000), pp. 527-555.

L. AMBROS1I0, B. KIRCHHEIM, AND A. PRATELLI, Ezistence of optimal

transport maps for crystalline norms, Duke Mathematical Journal, to ap-
pear, (2003).

L. AMBROSIO, S. LISINI, AND G. SAVARE, Stability of flows associ-
ated to gradient vector fields and convergence of iterated transport maps,
Manuscripta Math., 121 (2006), pp. 1-50.

L. AMBROSIO AND A. PRATELLI, Fxistence and stability results in the L'
theory of optimal transportation, in Optimal transportation and applications,
Lecture Notes in Mathematics, L. Caffarelli and S. Salsa, eds., vol. 1813,
Springer, 2003, pp. 123-160.

L. AMBROSIO AND G. SAVARE, Gradient flows of probability measures, in
Handbook of Evolution Equations (III), Elsevier, 2006.

L. AMBROSIO, G. SAVARE, AND L. ZAMBOTTI, Ezistence and stability for
Fokker-Planck equations with log-concave reference measure, ArXiv Mathe-
matics e-prints, (2007).

L. AMBROSIO AND S. SERFATY, A gradient flow approach to an evolution
problem arising in superconductivity, to appear on Comm. Pure Appl. Math.,

(2007).

L. AmMBROSIO AND P. TiLLi, Selected Topics on “Analysis in Metric
Spaces”, Scuola Normale Superiore, Pisa, 2000.

A. ARNOLD AND J. DOLBEAULT, Refined conver Sobolev inequalities, J.
Funct. Anal., 225 (2005), pp. 337-351.

A. ArRNOLD, P. MARKOWICH, G. TOSCANI, AND A. UNTERREITER, On
convex Sobolev inequalities and the rate of convergence to equilibrium for
Fokker-Planck type equations, Comm. Partial Differential Equations, 26
(2001), pp. 43-100.

C. BA1occCHI, Discretization of evolution variational inequalities, in Partial
differential equations and the calculus of variations, Vol. I, F. Colombini,
A. Marino, L. Modica, and S. Spagnolo, eds., Birkhduser Boston, Boston,
MA, 1989, pp. 59-92.

C. BatoccHl AND G. SAVARE, Singular perturbation and interpolation,
Math. Models Methods Appl. Sci., 4 (1994), pp. 557-570.

E. J. BALDER, A general approach to lower semicontinuity and lower closure
in optimal control theory, STAM J. Control Optim., 22 (1984), pp. 570-598.

J.-D. BENAMOU AND Y. BRENIER, A computational fluid mechanics so-
lution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84
(2000), pp. 375-393.



Bibliography 323

[27]

[28]

[34]

[35]

[36]

[37]

[38]

[39]

P. BENILAN, Solutions intégrales d’équations d’évolution dans un espace de
Banach, C. R. Acad. Sci. Paris Sér. A-B, 274 (1972), pp. A47-A50.

H. BerLiOCCcHI AND J.-M. LASRY, Intégrandes normales et mesures
paramétrées en calcul des variations, Bull. Soc. Math. France, 101 (1973),
pp. 129-184.

P. BERNARD, Young measures, superposition and transport, to appear in
Indiana Univ. Math. J., (2008).

P. BERNARD AND B. BUFFONI, Optimal mass transportation and Mather
theory, J. Eur. Math. Soc. (JEMS), 9 (2007), pp. 85-127.

P. M. BLEHER, J. L. LEBowITZ, AND E. R. SPEER, Ezristence and posi-
tivity of solutions of a fourth-order nonlinear PDE describing interface fluc-
tuations, Comm. Pure Appl. Math., 47 (1994), pp. 923-942.

V. I. BOGACHEV, Gaussian measures, vol. 62 of Mathematical Surveys and
Monographs, American Mathematical Society, Providence, RI, 1998.

V. 1. BoGACHEV, G. DA PRATO, AND M. ROCKNER, Ezistence of solutions

to weak parabolic equations for measures, Proc. London Math. Soc. (3), 88
(2004), pp. 753-774.

C. BoORELL, Convez set functions in d-space, Period. Math. Hungar., 6
(1975), pp. 111-136.

Y. BRENIER, Décomposition polaire et réarrangement monotone des champs
de vecteurs, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), pp. 805-808.

———, Polar factorization and monotone rearrangement of vector-valued
functions, Comm. Pure Appl. Math., 44 (1991), pp. 375-417.

H. BREZIS, Propriétés régqularisantes de certains semi-groupes non linéaires,
Israel J. Math., 9 (1971), pp. 513-534.

——, Opérateurs mazimauxr monotones et semi-groupes de contractions
dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973.
North-Holland Mathematics Studies, No. 5. Notas de Matematica (50).

———, Interpolation classes for monotone operators, in Partial Differential
Equations and Related Topics, J. A. Goldstein, ed., vol. 446 of Lecture Notes
in Mathematics, Springer, Berlin, 1975, pp. 65-74.

Y. Buraco, M. GROMOV, AND G. PEREL'MAN, A. D. Aleksandrov spaces
with curvatures bounded below, Uspekhi Mat. Nauk, 47 (1992), pp. 3-51, 222.

G. BuTTAZZ0, Semicontinuity, relazation and integral representation in the
calculus of variations, vol. 207 of Pitman Research Notes in Mathematics
Series, Longman Scientific & Technical, Harlow, 1989.



324
[42]

[43]

[44]

Bibliography

M. CAcERES, J. CARRILLO, AND G.TOSCANI, Long-time behavior for a
nonlinear fourth order parabolic equation,, Trans. Amer. Math. Soc., (2003).

L. A. CAFFARELLI, M. FELDMAN, AND R. J. McCANN, Constructing op-

timal maps for Monge’s transport problem as a limit of strictly convex costs,
J. Amer. Math. Soc., 15 (2002), pp. 1-26 (electronic).

E. Cacriott AND C. VILLANI, Homogeneous cooling states are not al-
ways good approximations to granular flows, Arch. Ration. Mech. Anal., 163
(2002), pp. 329-343.

E. A. CARLEN AND W. GANGBO, Constrained steepest descent in the 2-
Wasserstein metric, Ann. of Math. (2), 157 (2003), pp. 807-846.

——, Solution of a model Boltzmann equation via steepest descent in the
2-Wasserstein metric, Arch. Ration. Mech. Anal., 172 (2004), pp. 21-64.

J. A. CARRILLO, R. J. McCANN, AND C. VILLANI, Kinetic equilibration
rates for granular media and related equations: entropy dissipation and mass
transportation estimates, Rev. Mat. Iberoamericana, 19 (2003), pp. 971
1018.

—, Contractions in the 2-Wasserstein length space and thermalization of
granular media, Arch. Ration. Mech. Anal., 179 (2006), pp. 217-263.

C. CASTAING AND M. VALADIER, Convexr analysis and measurable multi-
functions, Springer-Verlag, Berlin, 1977. Lecture Notes in Mathematics, Vol.
580.

E. CHASSEIGNE AND J. L. VAZQUEZ, Theory of extended solutions for fast-
diffusion equations in optimal classes of data. Radiation from singularities,
Arch. Ration. Mech. Anal., 164 (2002), pp. 133—-187.

J. CHEEGER, Differentiability of Lipschitz functions on metric measure
spaces, Geom. Funct. Anal., 9 (1999), pp. 428-517.

P. CoLL1, On some doubly nonlinear evolution equations in Banach spaces,
Japan J. Indust. Appl. Math., 9 (1992), pp. 181-203.

P. CoLLt AND A. VISINTIN, On a class of doubly nonlinear evolution equa-
tions, Comm. Partial Differential Equations, 15 (1990), pp. 737-756.

D. CORDERO-ERAUSQUIN, R. J. MCCANN, AND M. SCHMUCKEN-

SCHLAGER, A Riemannian interpolation inequality a la Borell, Brascamp
and Lieb, Invent. Math., 146 (2001), pp. 219-257.

—, Prékopa-Leindler type inequalities on Riemannian manifolds, Jacobi
fields, and optimal transport, Ann. Fac. Sci. Toulouse Math. (6), 15 (2006),
pp. 613-635.



Bibliography 325

[56]

[57]

D. CORDERO-ERAUSQUIN, B. NAZARET, AND C. VILLANI, A mass-

transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequali-
ties, Adv. Math., 182 (2004), pp. 307-332.

M. G. CRANDALL, Nonlinear semigroups and evolution governed by accre-
tive operators, in Nonlinear Functional Analysis and its Applications, F. E.
Browder, ed., vol. 45 of Proceedings of Symposia in Pure Mathematics,
American Mathematical Society, Providence, 1986, pp. 305-338.

M. G. CRANDALL AND T. M. LIGGETT, Generation of semi-groups of non-
linear transformations on general Banach spaces, Amer. J. Math., 93 (1971),

pp- 265-298.

M. CSORNYEIL, Aronszajn null and Gaussian null sets coincide, Israel J.
Math., 111 (1999), pp. 191-201.

G. DA PrRATO AND A. LUNARDI, Elliptic operators with unbounded drift
coefficients and Neumann boundary condition, J. Differential Equations, 198
(2004), pp. 35-52.

G. DA PRATO AND J. ZABCZYK, Second order partial differential equations
in Hilbert spaces, vol. 293 of London Mathematical Society Lecture Note
Series, Cambridge University Press, Cambridge, 2002.

G. DAL MAso, An Introduction to I'-Convergence, vol. 8 of Progress in Non-
linear Differential Equations and Their Applications, Birkhduser, Boston,
1993.

E. DE GIORGI, New problems on minimizing movements, in Boundary Value
Problems for PDE and Applications, C. Baiocchi and J. L. Lions, eds., Mas-
son, 1993, pp. 81-98.

E. DE GIORGI, A. MARINO, AND M. TOSQUES, Problems of evolution in
metric spaces and mazximal decreasing curve, Atti Accad. Naz. Lincei Rend.
Cl. Sci. Fis. Mat. Natur. (8), 68 (1980), pp. 180-187.

M. DEGIOVANNI, A. MARINO, AND M. TOSQUES, Fvolution equations with
lack of convezity, Nonlinear Anal., 9 (1985), pp. 1401-1443.

M. DL Pino, J. DOLBEAULT, AND I. GENTIL, Nonlinear diffusions, hy-

percontractivity and the optimal LP-FEuclidean logarithmic Sobolev inequality,
J. Math. Anal. Appl., 293 (2004), pp. 375-388.

C. DELLACHERIE AND P.-A. MEYER, Probabilities and potential, vol. 29 of
North-Holland Mathematics Studies, North-Holland Publishing Co., Ams-
terdam, 1978.

H. DiETRICH, Zur c-Konvexitit und c-Subdifferenzierbarkeit von Funk-
tionalen, Optimization, 19 (1988), pp. 355-371.



326
[69]

[70]

[75]

[82]

Bibliography

R. J. DIPERNA AND P.-L. LioNs, Ordinary differential equations, transport
theory and Sobolev spaces, Invent. Math., 98 (1989), pp. 511-547.

J. DOLBEAULT, D. KINDERLEHRER, AND M. KOWALCZYK, Remarks about
the Flashing Rachet, in Partial differential equations and inverse prob-
lems, vol. 362 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2004,
pp. 167-175.

R. M. DUDLEY, Probabilities and metrics, Matematisk Institut, Aarhus Uni-
versitet, Aarhus, 1976. Convergence of laws on metric spaces, with a view
to statistical testing, Lecture Notes Series, No. 45.

——, Real analysis and probability, Wadswoth & Brooks/Cole, Pacific
Grove, California, 1989.

L. C. Evans, Partial differential equations and Monge-Kantorovich mass
transfer, in Current developments in mathematics, 1997 (Cambridge, MA),
Int. Press, Boston, MA, 1999, pp. 65-126.

L. C. EvanNs AND W. GANGBO, Differential equations methods for the
Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137
(1999), pp. viii+66.

L. C. Evans anND R. F. GARIEPY, Measure theory and fine properties of
functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL,
1992.

L. C. Evans, O. SAVIN, AND W. GANGBO, Diffeomorphisms and nonlinear
heat flows, SIAM J. Math. Anal., 37 (2005), pp. 737-751 (electronic).

H. FEDERER, Geometric measure theory, Die Grundlehren der mathematis-
chen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York,
1969.

J. FENG AND M. KATSOULAKIS, A Hamilton Jacobi theory for controlled
gradient flows in infinite dimensions,. 2003.

D. FEYEL AND A. S. USTUNEL, Measure transport on Wiener space and the
Girsanov theorem, C. R. Math. Acad. Sci. Paris, 334 (2002), pp. 1025-1028.

D. FEYEL AND A. S. USTUNEL, Monge-Kantorovitch measure transporta-
tion and Monge-Ampeére equation on Wiener space, Probab. Theory Related
Fields, 128 (2004), pp. 347-385.

W. GANGBO, The Monge mass transfer problem and its applications, in
Monge Ampere equation: applications to geometry and optimization (Deer-
field Beach, FL, 1997), vol. 226 of Contemp. Math., Amer. Math. Soc., Prov-
idence, RI, 1999, pp. 79-104.

W. GANGBO AND R. J. MCCANN, The geometry of optimal transportation,
Acta Math., 177 (1996), pp. 113-161.



Bibliography 327

[83]

[84]

[95]

[96]

R. GARDNER, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc., 39
(2002), pp. 355-405.

L. GiacoMELLI AND F. OTTO, Variational formulation for the lubrication
approzimation of the Hele-Shaw flow, Calc. Var. Partial Differential Equa-
tions, 13 (2001), pp. 377-403.

——, Rigorous lubrication approximation, Interfaces Free Bound., 5 (2003),
pp. 483-529.

U. Gi1aNAzzA, G. SAVARE, AND G. ToOSCANI, The wasserstein gradient
flow of the fisher infromation and the quantum drift-diffusion equation, To
appear in Arch. Ration. Mech. Anal., (2008).

M. GIAQUINTA AND S. HILDEBRANDT, Calculus of Variations I, vol. 310 of
Grundlehren der mathematischen Wissenschaften, Springer, Berlin, 1996.

M. GIAQUINTA, G. MODICA, AND J. SOUCEK, Area and the area formula,
in Proceedings of the Second International Conference on Partial Differential
Equations (Italian) (Milan, 1992), vol. 62, 1992, pp. 53-87 (1994).

K. GLASNER, A diffuse interface approach to Hele-Shaw flow, Nonlinearity,
16 (2003), pp. 49-66.

C. GOFFMAN AND J. SERRIN, Sublinear functions of measures and varia-
tional integrals, Duke Math. J., 31 (1964), pp. 159-178.

P. HAJLASZ, Sobolev spaces on an arbitrary metric space, Potential Anal.,
5 (1996), pp. 403-415.

J. HEINONEN AND P. KOSKELA, Quasiconformal maps in metric spaces with
controlled geometry, Acta Math., 181 (1998), pp. 1-61.

C. HuaNG AND R. JORDAN, Variational formulations for Viasov-Poisson-
Fokker-Planck systems, Math. Methods Appl. Sci., 23 (2000), pp. 803—843.

R. JORDAN, D. KINDERLEHRER, AND F. OTTO, The variational formula-
tion of the Fokker-Planck equation, STAM J. Math. Anal., 29 (1998), pp. 1-17
(electronic).

J. Jost, Nonpositive curvature: geometric and analytic aspects, Lectures in
Mathematics ETH Ziirich, Birkhauser Verlag, Basel, 1997.

———, Nonlinear Dirichlet forms, in New directions in Dirichlet forms, vol. 8
of AMS/IP Stud. Adv. Math., Amer. Math. Soc., Providence, RI, 1998,
pp. 1-47.

A. JUNGEL AND R. PINNAU, Global nonnegative solutions of a nmonlinear
fourth-order parabolic equation for quantum systems, STAM J. Math. Anal.,
32 (2000), pp. 760-777 (electronic).



328
(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

Bibliography

A. JUNGEL AND G. TOSCANI, Decay rates of solutions to a nonlinear fourth—
order parabolic equation, Z. Angew. Math. Phys., 54 (2003), pp. 377-386.

D. KINDERLEHRER AND N. J. WALKINGTON, Approximation of parabolic
equations using the Wasserstein metric, M2AN Math. Model. Numer. Anal.,
33 (1999), pp. 837-852.

M. KNoTT AND C. S. SMITH, On the optimal mapping of distributions, J.
Optim. Theory Appl., 43 (1984), pp. 39-49.

A. V. KOLESNIKOV, Convezity inequalities and optimal transport of infinite-
dimensional measures, J. Math. Pures Appl. (9), 83 (2004), pp. 1373-1404.

A. J. KRUGER AND B. S. MORDUHOVIC, Extremal points and the Euler
equation in nonsmooth optimization problems, Dokl. Akad. Nauk BSSR, 24
(1980), pp. 684687, 763.

L. LECAM, Convergence in distribution of stochastic processes, Univ. Calif.
Publ. Statist., 2 (1957), pp. 207-236.

V. L. LEVIN AND S. T. RACHEV, New duality theorems for marginal prob-
lems with some applications in stochastics, vol. 1412 of Lecture Notes in
Math., Springer, Berlin, 1989.

S. LisiNi, Characterization of absolutely continuous curves in Wasserstein
spaces, Calc. Var. Partial Differential Equations, 28 (2007), pp. 85-120.

J. LorT AND C. VILLANI, Ricci curvature for metric-measure spaces via
optimal transport, Ann. Math., (to appear).

S. LUCKHAUS, Solutions for the two-phase Stefan problem with the Gibbs-
Thomson Law for the melting temperature, Euro. Jnl. of Applied Mathemat-
ics, 1 (1990), pp. 101-111.

S. LUCKHAUS AND T. STURZENHECKER, Implicit time discretization for the

mean curvature flow equation, Calc. Var. Partial Differential Equations, 3
(1995), pp. 253-271.

A. MARINO, C. SACCON, AND M. ToSQUES, Curves of mazimal slope

and parabolic variational inequalities on nonconvexr constraints, Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (4), 16 (1989), pp. 281-330.

U. F. MAYER, Gradient flows on nonpositively curved metric spaces and
harmonic maps, Comm. Anal. Geom., 6 (1998), pp. 199-253.

R. J. McCANN, A convezity principle for interacting gases, Adv. Math.,
128 (1997), pp. 153-179.

—, Polar factorization of maps on riemannian manifolds, Geometric and
Functional Analysis, 11 (2001), pp. 589-608.



Bibliography 329

[113]

[114]

[115]

[116]

[117]

[118]

[119]
[120]
[121]
[122]
[123]
[124]

[125]

[126]

[127]

A. MIELKE, Ewvolution in rate-independent systems (Ch. 6), in Handbook
of Differential Equations, Evolutionary Equations, vol. 2, C. Dafermos and
E. Feireisl, eds., Elsevier B.V., Amsterdam, 2005, pp. 461-559.

A. MIELKE, F. THEIL, AND V. 1. LEVITAS, A variational formulation of

rate-independent phase transformations using an extremum principle, Arch.
Ration. Mech. Anal., 162 (2002), pp. 137-177.

T. Mikami, Dynamical systems in the variational formulation of the Fokker-
Planck equation by the Wasserstein metric, Appl. Math. Optim., 42 (2000),
pp. 203-227.

B. S. MORDUKHOVICH, Nonsmooth analysis with nonconvexr generalized
differentials and conjugate mappings, Dokl. Akad. Nauk BSSR, 28 (1984),
pp. 976-979.

R. H. NoCHETTO AND G. SAVARE, Nonlinear evolution governed by ac-
cretive operators in Banach spaces: error control and applications, Math.
Models Methods Appl. Sci., 16 (2006), pp. 439-477.

R. H. NoCHETTO, G. SAVARE, AND C. VERDI, A posteriori error esti-

mates for variable time-step discretizations of nonlinear evolution equations,
Comm. Pure Appl. Math., 53 (2000), pp. 525-589.

S.-1. OHTA, Gradient flows on wasserstein spaces over compact alexandrov
spaces, tech. rep., Universitiat Bonn, 2007.

F. Otro, Doubly degenerate diffusion equations as steepest descent,
Manuscript, (1996).

——, Dynamics of labyrinthine pattern formation in magnetic fluids: a
mean-field theory, Arch. Rational Mech. Anal., 141 (1998), pp. 63-103.

———, Lubrication approximation with prescribed nonzero contact angle,
Comm. Partial Differential Equations, 23 (1998), pp. 2077-2164.

——, Bwolution of microstructure in unstable porous media flow: a relaz-
ational approach, Comm. Pure Appl. Math., 52 (1999), pp. 873-915.

——, The geometry of dissipative evolution equations: the porous medium
equation, Comm. Partial Differential Equations, 26 (2001), pp. 101-174.

F. OrTro AND C. VILLANI, Generalization of an inequality by Talagrand
and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000),
pp. 361-400.

K. R. PARTHASARATHY, Probability measures on metric spaces, Probability
and Mathematical Statistics, No. 3, Academic Press Inc., New York, 1967.

M. PI1ERRE, Uniqueness of the solutions of us—Ap(u) = 0 with initial datum
a measure, Nonlinear Anal., 6 (1982), pp. 175-187.



330

[128]

[129]

[130]

[131]

[132]

[133]
[134]

[135]

[136]

[137]

[138]
[139)
[140]

[141]

Bibliography

A. PRATELLI, On the equality between Monge’s infimum and Kantorovich’s
minimum in optimal mass transportation, Annales de I'Institut Henri
Poincare (B) Probability and Statistics, 43 (2007), pp. 1-13.

S. T. RACHEV AND L. RUSCHENDORF, Mass transportation problems. Vol.
1, Probability and its Applications, Springer-Verlag, New York, 1998. The-
ory.

R. T. ROCKAFELLAR AND R. J.-B. WETS, Variational analysis, Springer-
Verlag, Berlin, 1998.

R. Rossi, A. MIELKE, AND G. SAVARE, A metric approach to a class of

doubly nonlinear evolution equations and applications, to appear in Ann. Sc.
Norm. Sup. Pisa, (2008).

R. Rosst AND G. SAVARE, Gradient flows of non convex functionals in
Hilbert spaces and applications, ESAIM Control Optim. Calc. Var., 12
(2006), pp. 564-614 (electronic).

J. RULLA, Error analysis for implicit approximations to solutions to Cauchy
problems, STAM J. Numer. Anal., 33 (1996), pp. 68-87.

L. RUSCHENDORF, On c-optimal random wvariables, Statist. Probab. Lett.,
27 (1996), pp. 267-270.

G. SAVARE, Gradient flows and diffusion semigroups in metric spaces under
lower curvature bounds, C. R. Math. Acad. Sci. Paris, 345 (2007), pp. 151—
154.

L. SCHWARTZ, Radon measures on arbitrary topological spaces and cylin-
drical measures, Published for the Tata Institute of Fundamental Research,
Bombay by Oxford University Press, London, 1973. Tata Institute of Fun-
damental Research Studies in Mathematics, No. 6.

C. SPARBER, J. A. CARRILLO, J. DOLBEAULT, AND P. A. MARKOWICH,

On the long-time behavior of the quantum Fokker-Planck equation, Monatsh.
Math., 141 (2004), pp. 237-257.

D. W. STROOCK, Probability theory, an analytic view, Cambridge University
Press, Cambridge, 1993.

K.-T. STURM, Metric spaces of lower bounded curvature, Exposition. Math.,
17 (1999), pp. 35-47.

——, On the geometry of metric measure spaces. I, Acta Math., 196 (2006),
pp. 65-131.

K.-T. STurRM AND M.-K. VON RENESSE, Transport inequalities, gradi-
ent estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math., 58
(2005), pp. 923-940.



Bibliography 331

[142]

[143]
[144]

[145]

[146]

[147]
[148]

[149]

[150]

V. N. SubpaAkov, Geometric problems in the theory of infinite-dimensional
probability distributions, Proc. Steklov Inst. Math., (1979), pp. i—v, 1-178.
Cover to cover translation of Trudy Mat. Inst. Steklov 141 (1976).

N. S. TRUDINGER AND X.-J. WANG, On the Monge mass transfer problem,
Calc. Var. Partial Differential Equations, 13 (2001), pp. 19-31.

M. VALADIER, Young measures, in Methods of nonconvex analysis (Varenna,
1989), Springer, Berlin, 1990, pp. 152-188.

C. VILLANI, Optimal transportation, dissipative PDE’s and functional in-
equalities, in Optimal transportation and applications (Martina Franca,
2001), vol. 1813 of Lecture Notes in Math., Springer, Berlin, 2003, pp. 53-89.

—, Topics in optimal transportation, vol. 58 of Graduate Studies in Math-
ematics, American Mathematical Society, Providence, RI, 2003.

——, Optimal transport, old and new, Springer Verlag, 2008.

A. VISINTIN, Models of Phase Transitions, vol. 28 of Progress in Nonlinear
Differential Equations and Their Applications, Birkhéduser, Boston, 1996.

L. C. YouNG, Generalized cuves and the existence of an attained absolute
minimum in the calculus of variations, Comptes Rendus de la Soccieté des
Sciences et des Lettres de Varsovie (classe III), 30 (1937), pp. 212-234.

——, Lectures on the calculus of variations and optimal control theory, Fore-
word by Wendell H. Fleming, W. B. Saunders Co., Philadelphia, 1969.



Index

c-concavity, 136
c-monotonicity, 136
c-transform, 136

Absolutely continuous curves, 23
Approximate

differential, 129

limit, 129
Arc-length reparametriztion, 25
Area formula, 129

Barycentric projection, 126, 316

Carathéodory integrands, 307
Chain rule, 228, 233, 253
Characteristics, 172
Continuity equation, 169
Convergence
in measure, 124
in the sense of distributions, 109
in the Wasserstein space, 154
narrow, 106
Convex functions
I'-convergence of, 203, 209
along generalized geodesics, 205
along geodesics, 50, 202
Convexity
along curves, 50
along generalized geodesics, 207
Curvature
of Z5(X), 160
Curves of maximal slope, 30, 32
in Banach spaces, 32, 47
in Hilbert spaces, 35
Cyclical monotonicity, 153

De Giorgi interpolation, 66
Differentiability of Wy

along a.c. curves, 193

along interpolated curves, 163

at regular measures, 239
Disintegration of a measure, 121
Displacement convexity, 202, 220
Doubly nonlinear evolution equations,

33, 47

Duality map, 34, 182

Energy
interaction, 211
subdifferential of, 267
internal, 212
subdifferential of, 257
potential, 209
subdifferential of, 255
Entropy functional, 214
relative, 215
subdifferential of, 276
Euler method, 39
convergence, 46, 54, 55

Fisher information functional, 277
Fréchet subdifferential, 33, 227, 229,
241
closure of, 228, 231, 245
minimal selection, 33, 233, 246
monotonicity, 231, 244
of convex functions, 35
variational approximation, 251
Functions
cylindrical, 113

Gaussian



334

measures, 140

null sets, 140
Geodesics

generalized, 207

in metric spaces, 50

in the Wasserstein space, 158
Gradient flows

in Banach spaces, 32, 47

in Hilbert spaces, 35

Kantorovich potential, 139
Kantorovich problem, 133

Log-concavity, 220
Logarithmic gradient, 277

Measures
regular, 140
Metric derivative, 24
Metric spaces
PC, 162
Radon, 108
Minimizing movements, 42
generalized, 42
Monge problem, 133
Moreau-Yosida approximation, 59
Euler equation, 243

Narrow convergence, 107
Normal integrands, 307
NPC metric spaces, 76

Optimal transport maps
approximate differentiability of,
142

distributional divergence of, 144
essential injectivity of, 148
existence in R? of, 141

existence in Hilbert spaces of, 147
strict monotonicity of, 148

PC metric spaces, 162, 310
Plans
composition of, 123
induced by a map, 119

Index

inverse of, 120

optimal, 152

transport, 119
Polish spaces, 108

Radon spaces, 108
Regular functionals, 228, 232
Resolvent operator, 40

Slope, 27

of convex functions, 35
Spaces

Polish, 108

Radon, 108
Sub-differentiability of W,,, 238
Super-differentiability of W), 236
Support of a measure, 105

Tangent space, 189, 195, 313, 314
Theorem
Aleksandrov, 130
Birkhoff, 133
Crandall-Ligget, 75
duality, 135
Helly, 70
Prokhorov, 108
Rademacher-Phelps, 140
Scorza-Dragoni, 308
Ulam, 105
Tightness
conditions, 108, 114, 119
Transport of measures, 118

Uniform integrability, 110
of order p, 110
Upper gradient, 26
strong, 27
weak, 27

Variational integrals
subdifferential of, 254

Wasserstein distance, 151
differentiability of, 234
semiconcavity of, 160
slope of, 269



