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Preface

The theory of foliations is closely related to that of differential equations: an ori-
ented one-dimensional foliation is equivalent to a nowhere vanishing vector field
X on a manifold M , and the integral curves of X are solutions of a system of or-
dinary differential equations. Higher-dimensional foliations correspond to systems
of partial differential equations via the Frobenius theorem. When the solutions (or
leaves) are locally equidistant, the foliation is said to be metric. If in addition,
the space B of leaves is reasonably well-behaved, the map M −→ B that sends a
point of M to the leaf on which it lies is called a metric fibration or Riemannian
submersion.

In the past three or four decades, there has been increasing realization that
these foliations play a key role in understanding the structure of Riemannian man-
ifolds, particularly those with positive or nonnegative sectional curvature. In fact,
all known such spaces are constructed from only a representative handful by means
of metric fibrations or deformations thereof. This is even more pronounced in pos-
itive curvature, where every such space is the image of a Riemannian submersion
from a nonnegatively curved manifold. Further indication of the key role that sub-
mersions play in nonnegative curvature is Perelman’s result that all noncompact
spaces with curvature ≥ 0 are metric fibrations over compact ones.

This text is an attempt to document some of these constructions, many
of which have only appeared in journal form. The emphasis here is less on the
fibration itself and more on how to use it to either construct or understand a
metric with curvature of fixed sign on a given space. The approach differs in this
sense from previous ones in which a typical question would be to ask whether there
exists a metric on the ambient space for which a given foliation has this or that
property. The reader will in fact find that this work has little intersection with
other books on the subject such as Molino’s [91] or Tondeur’s [124]. In particular,
topics such as basic cohomology or Lie foliations are either omitted or only briefly
mentioned. It is assumed that the reader has a working knowledge of differentiable
manifolds and Riemannian metrics, such as that offered in an intermediate level
course in Riemannian geometry.

The first chapter introduces the main concepts and tools that are used
throughout, and relates the curvature of the ambient space with that of the base.
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It further discusses the relation between the geodesics in both manifolds as well
as the Jacobi fields along them, and ends with the description of Wilking’s dual
foliation.

Chapter 2 begins by studying how warping of the fibers affects the curvature
of the ambient space. This is then used to introduce warped products, after which
we discuss the main class of Riemannian submersions, namely those generated by
isometric group actions. The rest of the chapter is mostly devoted to the construc-
tion of spaces of positive or nonnegative curvature by means of submersions. This
includes fundamental examples such as Lie groups, as well as more elaborate ones,
such as the Allof-Wallach and Eschenburg spaces.

Chapter 3 studies the structure of complete, noncompact manifolds with
curvature ≥ 0, beginning with the Cheeger-Gromoll soul construction. We present
Perelman’s proof of the generalized soul theorem, and Wilking’s work on smooth-
ness of the metric projection onto the soul. The converse of the soul theorem,
namely the question of which vector bundles admit nonnegatively curved metrics
is also discussed.

The last chapter deals with the problem of classifying metric foliations on
spaces of constant curvature. Although this is a fundamental question, it is also a
surprisingly delicate one which at the time of writing is still not entirely answered.

We would like to thank Taechang Byun and Luis Guijarro for reading prelim-
inary versions of the manuscript and offering valuable suggestions and corrections.

On a tragic note, the first named author, Detlef Gromoll, passed away during
the final revision phase of this manuscript. He is fondly remembered by his many
friends, colleagues, and former students.



Chapter 1

Submersions, Foliations,
and Metrics

The concept of submersion is dual to what is arguably the oldest notion in differen-
tial geometry, that of immersion. Both are generalizations of diffeomorphisms. In
the presence of a Riemannian metric, it is natural to consider distance-preserving
maps rather than diffeomorphisms. These in turn generalize to isometric immer-
sions, and their metric dual, Riemannian submersions.

1.1 Notation and basic geometric concepts

In order to fix notation, we begin by briefly recalling some of the basic concepts
that will be used throughout. For further details, the reader is referred for example
to [104] or [136]. All maps and manifolds are assumed to be sufficiently smooth.
The tangent space of a manifold M at p ∈ M will be denoted by TpM or often Mp,
the algebra of real-valued functions φ : M → R on M by F(M) = FM = C.(M),
and the Lie algebra of vector fields on M by X(M) = XM = ΓTM ; the last term
in the previous identity refers to the space of sections of the tangent bundle TM of
M . The derivative of a map f : M → N at p is the vector bundle homomorphism
f∗ : TM → TN from the tangent bundle TM of M into that of N which restricts
fiber-wise to the linear map f∗p : Mp → Nf(p) given by f∗pv(φ) = v(φ ◦ f) for
p ∈ M , v ∈ Mp, φ ∈ F(N).

Let I ⊂ R be an interval, D ∈ X(I) the standard coordinate vector field on I
corresponding to the identity chart (I, 1I) of I. The tangent field of c is the vector
field ċ along c defined by ċ = c∗D.

Definition 1.1.1. Let Mn+k and Bn denote manifolds of dimension n + k and
n respectively. A surjective map π : M → B is said to be a submersion if its
derivative π∗p at any p ∈ M has maximal rank n.
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By the implicit function theorem, the preimage F := π−1(b) of a point b ∈ B
is a k-dimensional submanifold of M , called the fiber of π over b, even though
π need not be a fibration in the usual sense. If ı : F → M denotes inclusion,
and p ∈ F , then ı∗Fp = kerπ∗p. For the sake of brevity, we will identify Fp with
the subspace ı∗Fp of Mp. A fundamental example of a submersion is the tangent
bundle projection πM : TM → M , where the fiber over p ∈ M is the tangent
space Mp of M at p.

Subbundles of the tangent bundle – such as the kernel of the derivative of a
submersion π : M → B – of a manifold M are called distributions on M . A (local)
section of a distribution D is a map X : U → D from an open set U of M to the
distribution such that πM ◦ X = 1U , where 1U denotes the identity map on U .
A distribution D is said to be integrable if the space XD of sections of D is a Lie
algebra under the usual Lie bracket of vector fields.

The Frobenius theorem asserts that if D is an integrable distribution on M ,
then each point p of M is contained in some integral manifold of D; i.e., p belongs
to an immersed submanifold N of M , the tangent bundle of which coincides with
the restriction D|N of the distribution to N . In fact, if D is k-dimensional, then
there exists a chart (U, x) of M around p, with x(U) = (−1, 1)n+k, x(p) = 0, such
that the slices x−1(0, a), for (0, a) ∈ {0} × (−1, 1)n ⊂ (−1, 1)n+k, coincide with
the maximal connected integral manifolds of D contained in U ; in other words,
these manifolds are given by the fibers of the submersion π ◦ x : U → (−1, 1)n,
where π : (−1, 1)k × (−1, 1)n → (−1, 1)n denotes projection.

�

�

�

�
�
� � �

�

x(U)

x

Rk

Rn

U

The Frobenius theorem can be conveniently reformulated in terms of differen-
tial forms: a differential l-form α is said to annihilate a k-dimensional distribution
D if for any p ∈ M ,

α(p)(v1, . . . , vl) = 0 whenever v1, . . . , vl ∈ Dp.

Consider the ideal I(D) in the exterior algebra of M of all forms that annihilate
D. Then D is integrable iff I(D) is a differential ideal ; i.e., iff d(I(D)) ⊂ I(D).
This is an immediate consequence of the fact that D is locally generated by n
independent 1-forms ω1, . . . , ωn which annihilate D, together with the identity

ωi[X, Y ] = −dωi(X, Y ) + Xωi(Y ) − Y ωi(X) = −dωi(X, Y )

for sections X, Y of D. In fact, if D is spanned on some open set U by linearly
independent sections Xn+1, . . . , Xn+k, extend the latter to linearly independent
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sections X1, . . . , Xn+k on (some open subset of) U . If ωi denote the dual one-forms,
then I(D) is generated by (the kernels of) ω1, . . . , ωn:

I(D) ∩ TU = {v ∈ TU | ωi(v) = 0, i = 1, . . . , n}.
Furthermore, setting Ω = ω1∧· · ·∧ωn, the integrability condition is equivalent to

dΩ = α ∧ Ω for some 1-form α, (1.1.1)

since each dωi =
∑

j αij ∧ ωj for some 1-forms αij on U .

Definition 1.1.2. Let D denote an integrable distribution on M . The collection of
integral manifolds of D is called a foliation of M . A maximal connected integral
manifold of D is called a leaf of the foliation.

For example, the collection of fibers of a submersion π : M → B is the folia-
tion of M induced by the distribution kerπ∗. Conversely, the leaves of a foliation
of M are always locally given by the fibers of a submersion π ◦ x : U → (−1, 1)n

as above. Unlike submersions, the leaves of a foliation need not be imbedded sub-
manifolds of M , as some of the examples below show.

Examples and Remarks 1.1.1.

(i) Let ui : Rn → R, ui(a1, . . . , an) = ai, denote the projection onto the
ith factor, and Di the coordinate vector field ∂/∂ui on Rn corresponding to the
chart (Rn, 1Rn) of Rn, i = 1, . . . , n. Given a real number a, the vector field X =
−u2D1 +u1D2−au4D3 +au3D4 on R4 is tangent to the unit sphere M = S3, and
thus induces a one-dimensional (necessarily) integrable distribution on M . Viewing
M as the set of all pairs of complex numbers (z1, z2) ∈ C2 with |z1|2 + |z2|2 = 1,
the one-parameter group Φt of diffeomorphisms corresponding to the flow of X is
given by

Φt(z1, z2) = (z1e
it, z2e

iat), t ∈ R, (z1, z2) ∈ S3,

and the leaf through a point p is the orbit {Φt(p) | t ∈ R} of the point. When
a = 1, all the leaves are great circles, the space of leaves is CP1 = S2, and the map
π : M → S2 that assigns to a point the leaf it belongs to is a submersion, called
the Hopf fibration. When a is, say, irrational, only the leaves through ±(1, 0) and
±(0, 1) are great circles; all others are immersed copies of R.

(ii) Consider the torus S1
1/

√
2
× S1

1/
√

2
= {(z1, z2) ∈ S3 | |z1|2 = |z2|2 = 1/2}.

The foliation in (i) restricts to a foliation on the torus. It is easy to see that all
the leaves are dense if a is irrational.

(iii) The torus T in (ii) partitions the 3-sphere into two disjoint open sets
U1 = {(z1, z2) ∈ S3 | |z1|2 < 1/2} and U2 = {(z1, z2) | |z2|2 < 1/2} with common
boundary T . These two sets are diffeomorphic via (z1, z2) 	→ (z2, z1), and they have
as closure a solid torus D2 × S1, where D2 denotes the unit disk in the plane. In
fact, the map (z1, z2) 	→ (

√
2z1, z2/|z2|) is a diffeomorphism from Ū1 onto D2×S1.

Thus, any two-dimensional foliation of the solid torus that has the boundary T as
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a leaf induces a two-dimensional foliation of the 3-sphere. We describe one such
foliation below. The resulting foliation of S3 is known as the Reeb foliation.

Consider cylindrical coordinates (r, θ, z) on D2 ×R. Let φ be a smooth func-
tion on R that is 0 when r ≤ 0, 1 when r ≥ 1, and such that φ(r) ∈ (0, 1) when
r ∈ (0, 1). If ω is the 1-form on D2 × R,

ω = φ(r)dr + (1 − φ(r))dz,

then
dω = −φ′(r)dr ∧ dz = α ∧ ω,

where α = (2(1−φ) + φ′)dz + (2φ− φ′)dr. By (1.1.1), the two-dimensional distri-
bution corresponding to the kernel of ω is integrable, and the resulting foliation on
D2 ×R induces one on the solid torus D2 ×S1. Since the boundary T of the torus
is a leaf, we obtain a two-dimensional foliation of S3 with exactly one compact
leaf.

(iv) Let G be a Lie group, H a closed subgroup of G. There exists a unique
differentiable structure on the quotient space G/H for which the natural projection
π : G → G/H becomes a submersion. G/H is then called a homogeneous space.

(v) Let ξ = π : E → M be a vector bundle over M . A (linear) connection H
on ξ is a distribution on the total space E such that if Hu denotes the fiber of the
subbundle H over u ∈ E, then

1. π∗u : Hu → Mπ(u) is an isomorphism for all u ∈ E, and
2. μa∗Hu = Hau, where μa(u) = au is multiplication by a ∈ R.

The first condition above implies that the tangent bundle of E decomposes as a
direct sum TE = H⊕ kerπ∗. The connection is said to be flat if it is integrable.
This is a fairly restrictive condition, since it implies for example that E admits
two complementary foliations.

(vi) A surjective map π : M → B is said to be a fibration if it has the
homotopy lifting property: namely, given a manifold N , and a map f : N → M , any
homotopy H : N×[0, 1] → B of π◦f can be lifted to a homotopy H̃ : N×[0, 1] → M
of f ; i.e., π ◦ H̃ = H , and H̃ ◦ ı0 = f , where ıt : N → N × [0, 1] maps p to (p, t),
0 ≤ t ≤ 1. In other words, one must be able to fill in the dashed arrow in the
following diagram:

N = N × {0} f ��

ı0

��

M

π

��
N × [0, 1]

H̃

��������

H
�� B

A fibration is necessarily a submersion: let p be in M , b := π(p). It must be shown
that π∗p is surjective. So let v ∈ Bb, c : [0, 1] → B be a curve in B with c(0) = b,
ċ(0) = v. Since c is a homotopy of π ◦ f , where f : {0} → M maps 0 to p, there
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exists a curve c̃ in M that starts at p and projects to c. Then π∗(
.
c̃(0)) = v, as

claimed. On the other hand, the projection u1 : R2 \ {0} → R onto the x-axis
is a submersion which is not a fibration. It can be shown that π : M → B is a
fibration if it is one locally; i.e., if each point of B has a neighborhood U such that
the restriction π : π−1(U) → U is a fibration, cf. [26]. In particular, a locally trivial
fiber bundle (a map π : M → B such that each point of B has a neighborhood U
and a diffeomorphism (π, φ) : π−1(U) → U × F for some fixed F ) is easily seen
to be a fibration. The converse, though, is in general not true, see [51], [85] for
examples of fibrations that are not locally trivial fiber bundles.

1.2 Metric foliations and Riemannian submersions

The concept of Riemannian submersion is a special case of an elementary notion
that can best be described in the context of metric spaces: Let (M, d) denote a
metric space. A singular metric foliation F of M is a decomposition of M into
connected subsets, called leaves, that are locally equidistant; i.e., for any p ∈ M ,
there exist neighborhoods U ⊂ V of p such that the following holds: given two
leaves Li and connected components Ni of Li ∩ V , i = 1, 2, the distance function
q 	→ d(q, N1) is constant on N2∩U . In the case when U = V = M , the orbit space
M/F inherits a metric from d, and the projection π : M → M/F is a submetry:
that is, π maps any closed metric ball around p ∈ M onto the metric ball of
same radius around π(p)[22]. Notice that we do not require the existence of an
isometry, or even a bijection, between two of these subsets. For example, consider
the 2-sphere of radius r with its canonical metric, and decompose it into circles of
latitude. The north and south poles can then be viewed as degenerate circles, and
the quotient metric space is a closed interval of length πr.

V
H

�b

�

π

π−1(b)

M

B

We now wish to examine these concepts in the context of Riemannian man-
ifolds. The vertical distribution V of a submersion π : M → B is defined to be
the kernel of π∗, i.e., the collection of tangent spaces to the fibers. A vertical field
is a section of the vertical subbundle V → M , or more simply put, a vector field
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on M that is everywhere tangent to the leaves of the submersion. The space Xv

of vertical fields on M is a Lie subalgebra of X(M). It is in fact an ideal of the
algebra of projectable fields on M ; i.e., those vector fields that are π-related to
vector fields on B: If E ∈ X(M) is π-related to X ∈ X(B) and U is vertical, then
U is π-related to the trivial field on B, and π∗[E, U ] = [X, 0] ◦ π = 0, so [E, U ]
is vertical. Notice that any complementary subspace to kerπ∗p in Mp is mapped
isomorphically onto the tangent space of B at π(p). In general, there is no canon-
ical complementary subspace to Vp. If M is a Riemannian manifold, however, one
such is the orthogonal complement of Vp.

Definition 1.2.1. Let π : M → B be a submersion, where M is a Riemannian
manifold. The horizontal distribution of π is the orthogonal complement H = V⊥

of V . If in addition B is a Riemannian manifold, then the submersion is said to be
Riemannian if it is isometric when restricted to the horizontal distribution; i.e., if
|π∗x| = |x| for all x ∈ H.

Thus, Riemannian submersions generalize isometries to the case when n ≥ k,
just as isometric immersions generalize them for n ≤ k. Riemannian manifolds are,
of course, metric spaces, and it makes sense to consider submetries (as defined
above) between them. It can be shown that a submetry between Riemannian
manifolds is a C1,1 Riemannian submersion, cf. [19].

Given a Riemannian submersion π : M → B, the orthogonal splitting of
the tangent bundle of M induces a decomposition e = eh + ev ∈ H ⊕ V of any
e ∈ TM . We will for the most part abbreviate (∇EF )h by ∇h

EF , and similarly for
the vertical component. A basic vector field on M is one that is both horizontal
and projectable. The space B of basic fields is isomorphic to X(B), but is not, in
general, a Lie algebra. Notice though, that since elements of B are projectable,
[B, Xv] ⊂ Xv as above; i.e.,

[X, U ]h = 0, X ∈ B, U ∈ Xv. (1.2.1)

One would like to have a corresponding notion for foliations. In this case,
there is no base manifold, however, let alone a Riemannian one. Nevertheless,
according to the Frobenius theorem, the leaves of a foliation are locally given
by fibers of submersions, so it suffices to consider the following question: given a
submersion π : M → B, where M is Riemannian, does there exist a metric on
the base for which π becomes Riemannian? Intuitively, a necessary and sufficient
condition should be that the horizontal metric is invariant under the flow of vertical
fields.To render this precisely, let us denote by gh the horizontal component of the
metric tensor: gh(E, F ) = 〈Eh, Fh〉, E, F ∈ X(M). Horizontal vector fields will
be denoted by X , Y , Z, vertical ones by U , V , W .

Theorem 1.2.1. Let π : M → B be a submersion with connected fibers, where M
is a Riemannian manifold. Then there exists a metric on B for which π becomes
Riemannian iff the Lie derivative LUgh of gh vanishes in any vertical direction U .
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Proof. Suppose the Lie derivative LUgh is zero. Then

0 = (LUgh)(X, Y ) = U〈X, Y 〉 − 〈[U, X ]h, Y 〉 − 〈X, [U, Y ]h〉. (1.2.2)

Now, let X̄, Ȳ denote (local) vector fields on B, and consider their basic lifts
X , Y to M ; i.e., for p ∈ M , Xp is the unique horizontal vector that projects to
X̄π(p) via π∗ (smoothness of basic lifts will be established in the next section).
Then [U, X ]h = [U, Y ]h = 0, and by (1.2.2), U〈X, Y 〉 = 0 for any U ∈ Xv, so
that 〈X, Y 〉 is constant along fibers. We may therefore define the metric on B by
〈X̄, Ȳ 〉 := 〈X, Y 〉. Conversely, suppose π : M → B is a Riemannian submersion,
and X , Y ∈ B. By (1.2.1) and the definition of the Levi-Civita connection,

2〈∇v
XY, U〉 = X〈Y, U〉 + Y 〈U, X〉 − U〈X, Y 〉

+ 〈U, [X, Y ]〉 + 〈X, [Y, U ]〉 − 〈Y, [U, X ]〉
= 〈[X, Y ]v, U〉,

and ∇v
XY = (1/2)[X, Y ]v for basic X , Y . Now, the map [, ]v : Xh × Xh → Xv is

F(M)-linear, since for φ ∈ F(M), [φX, Y ]v = φ[X, Y ]v − (Y φ)Xv = φ[X, Y ]v.
Similarly, ∇v : Xh × Xh → Xv is F(M)-linear, so that

∇v
XY =

1
2
[X, Y ]v, X, Y ∈ Xh, (1.2.3)

and in particular, the operator ∇v : H×H → V is a skew-symmetric tensor field,
a fact that will be important in the sequel. This in turn implies that for horizontal
X , Y , and vertical U ,

(LU gh)(X, Y ) = U〈X, Y 〉 − 〈[U, X ], Y 〉 − 〈X, [U, Y ]〉
= 〈∇XU, Y 〉 + 〈∇Y U, X〉 = −〈U,∇v

XY + ∇v
Y X〉

= 0

by (1.2.3). �

Implicit in the proof of Theorem 1.2.1 is the following:

Remark 1.2.1. Let F be a foliation on a Riemannian manifold. ThenLUgh vanishes
horizontally for all U ∈ Xv iff ∇v

XX = 0 for all X ∈ Xh.

In particular, the leaves of such a foliation are locally given by fibers of
Riemannian submersions for adequately defined metrics on the local quotients.

Definition 1.2.2. A foliation on a Riemannian manifold is said to be metric if
LUgh is horizontally zero for any U ∈ Xv, or equivalently, if ∇v : H ×H → V is
skew-symmetric.

Examples and Remarks 1.2.1. (i) We have used the terminology “metric foliation”
in Definition 1.2.2 instead of the more traditional “Riemannian foliation” because
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the latter is sometimes reserved for foliations on manifolds that are not necessarily
endowed with a global Riemannian metric – i.e., a Euclidean metric on TM –
but rather one on the quotient bundle TM/V only, cf. for example [124]. This
transversal metric is then required to satisfy the same condition that gh does in
our case. In this book, however, a Riemannian foliation always refers to a metric
foliation.

(ii) Let F be a foliation of dimension k on Mn+k, {(Uα, xα)}α∈A an atlas of
charts on M such that for xα : Uα → (−1, 1)n+k, the connected components of the
leaves of F in Uα are given by the slices x−1

α (0, a), (0, a) ∈ {0}× (−1, 1)n ⊂ Rn+k.
Denote by π2 the projection Rn+k → Rn, and let πα = π2 ◦ xα : Uα → (−1, 1)n,
so that the slices coincide with the fibers of the submersion πα. For any α, β in
A, there is a diffeomorphism fαβ : πα(Uα ∩ Uβ) → πβ(Uα ∩ Uβ) such that

fαβ ◦ πα = πβ . (1.2.4)

If M is Riemannian and F is a metric foliation, then by Theorem 1.2.1, there
exists a Riemannian metric on each πα(Uα) for which πα becomes a Riemannian
submersion. (1.2.4) then implies that each transition function fαβ is isometric.

(iii) Suppose U is a Killing vector field on M with no zeros. Then LUg = 0,
and the one-dimensional foliation generated by the integral curves of U is metric.
The foliation in Examples and Remarks 1.1.1(i) is a metric foliation of this type,
since the one-parameter group of the vector field consists of isometries of S3.

(iv) More generally, let G be a subgroup of the isometry group of a Rieman-
nian manifold M , and suppose that all orbits have the same type (meaning that
any two are equivariantly diffeomorphic), so that there exists a differentiable struc-
ture on the space M/G of orbits for which the natural projection π : M → M/G
is a submersion. For g ∈ G, denote by Lg : M → M the isometry mapping p to
g(p), and for p ∈ M , denote by λp : G → M the map that sends g to g(p); i.e.,
λp maps G onto the orbit G(p) = π−1(π(p)) of p. Then each element U in the Lie
algebra g of G induces a vertical vector field Ũ on M defined by

Ũ(p) = λp∗eU(e), p ∈ M,

and the collection of these vector fields span the fibers of π. We claim that each
such field is a Killing field, so that there exists a unique metric on M/G for
which π becomes Riemannian: To see this, let φ : R → G denote the Lie group
homomorphism with φ̇(0) = U(e), and for q ∈ M , consider the curve t 	→ cq(t) :=
Lφ(t)(q). For any fixed t0 ∈ R, we have

cq(t) = Lφ(t)(q) = λq(φ(t)) = λq(φ(t − t0)φ(t0)) = λφ(t0)q(φ(t − t0))
= λcq(t0)(φ(t − t0)).

Thus, ċq(t0) = λcq(t0)∗eφ̇(0) = λcq(t0)∗eU(e) = Ũ ◦ cq(t0), and cq is the integral
curve of Ũ passing through q at t = 0. In other words, the flow of Ũ is the
one-parameter group of isometries Lφ(t), and Ũ is Killing.
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We could actually have argued this more directly by explicitly exhibiting the
metric on M/G: In order to define the length of a vector x in the tangent space of
M/G at some point π(p), consider the orthogonal complement Hp of the tangent
space to the fiber π−1(π(p)) at p. This subspace contains a unique xp such that
π∗xp = x. Define |x| := |xp|. To see that this is independent of the point p in the
preimage, let q be any other point in the orbit G(p) of p, and xq the vector in Hq

that gets mapped to x via π∗. By assumption, there exists some g ∈ G mapping p to
q. g preserves orbits, hence also their orthogonal complement, so that g∗Hp = Hq.
On the other hand, π ◦ g = π, which implies that π∗g∗xp = π∗xp = x = π∗xq.
But both g∗xp and xq belong to Hq, and the restriction of π is one-to-one on this
subspace, so that the two vectors coincide. Since g is an isometry, it follows that
|xp| = |xq|, and the norm of x is well defined. On the more elementary metric
space level, notice also that any two orbits in M are necessarily equidistant, so
that the orbit space immediately inherits a metric space structure from that of M .

(v) We have already remarked that the leaves of a foliation F need not
share the same topology. In the case of a metric foliation on a compact manifold
M , though, Reinhart has shown that the leaves have the same universal cover
[109]. In this case, Molino [89] has shown that in a neighborhood of any leaf that
is not closed, there exist transverse Killing fields (i.e., basic fields that project
to Killing fields in a local quotient) the flows of which fill out the closure of
the leaf. This result in turn uses a general construction that consists in lifting
the foliation to a principal bundle over M . More precisely, define the bundle of
horizontal orthonormal frames P (M,F) over M to be the principal O(n)-bundle
(here, n is the codimension of F) associated to the vector bundle H over M .
The lifted foliation on P (M,F) can be described as follows: given p ∈ M , and
a local submersion π : U −→ B defining F in a neighborhood of p, there is a
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natural submersion ρ : P (U,F) −→ P (B) onto the bundle P (B) of orthonormal
frames of B, that takes the frame x1, . . . , xn to π∗x1, . . . , π∗xn, see [91]. The leaves
of the foliation are then locally defined by the submersion ρ; i.e., they have the
form ρ−1(q), q ∈ P (B). Returning to the original foliation on a compact simply
connected M , Ghys has shown that there is always at least one compact leaf,
provided the Euler characteristic of M is nonzero [52]. If none of the leaves are
compact, then F is contained inside a higher-dimensional metric foliation F ′ that
has at least one compact leaf, and that has the same leaf closures as the original
F . In fact, F ′ is obtained by considering the flows of an abelian Lie algebra of
global transverse Killing fields [93].

(vi) If N is a codimension one submanifold of a Riemannian manifold M , then
at least locally, N is a leaf of metric foliation: given p ∈ N , there exists a parallel
section X of the normal bundle of N on a neighborhood U of p in N , and ε > 0 such
that the sets Ls := {exp(sX(q)) | q ∈ U}, |s| < ε, are the leaves of a codimension
one metric foliation on a neighborhood of p, cf. also Examples 2.2.1. When M
is complete and has positive curvature (or more generally nonnegative curvature
everywhere and positive curvature at one point), we will later see that the foliation
cannot be extended to all of M . Without curvature assumptions, metric foliations
of codimension greater than one generically do not exist even locally, in the sense
that any metric that admits one can be residually perturbed to metrics that do not.

1.3 Horizontal lifts and transversal holonomy

Let π : Mn → Bk denote a submersion. We begin by investigating the problem of
lifting curves in B to M . At this stage, no Riemannian metric is required. Recall
that a lift of c : I → B to M is a curve c̄ : I → M with π ◦ c̄ = c. Lifts are
in general not unique, and we therefore only consider those that have all their
tangent vectors in a given distribution H complementary to the kernel of π∗. Such
a curve will be called an H-lift or a horizontal lift. The splitting TM = H⊕kerπ∗
induces smooth projections ph and pv onto the subbundles H and kerπ∗.

It may be assumed without loss of generality that c is a regular curve; i.e., that
ċ(t) �= 0 for all t ∈ I: for otherwise, its “graph” c1 : I → I ×B, c1(t) = (t, c(t)) is a
regular curve, and a (TI⊕H)-lift of c1 for the submersion (1I , π) : I×M → I×B
has the form t 	→ (t, c̄(t)), where c̄ is the desired lift of c. We first establish
smoothness of basic lifts of vector fields.

Lemma 1.3.1. Let π : M → B be a submersion, H a distribution complementary
to kerπ∗, and X a vector field on B. Then the basic lift of X is smooth.

Proof. Since the statement is local, we need only establish it near any point p of M .
By the implicit function theorem, we may assume, up to a local diffeomorphism,
that there exists a neighborhood of p of the form V = U × N on which the
restriction of π is the projection U ×N → U onto the first factor. Then ph(X|U , 0)
is a smooth vector field on V which by construction is the basic lift of X|U . �
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Proposition 1.3.1. Let π : M → B be a submersion, H a distribution complemen-
tary to kerπ∗, and c : I → B a curve. Then for any t0 ∈ I and any p ∈ π−1(c(t0)),
there exists ε > 0 and a horizontal lift c̄ : [t0, t0 + ε) → M of c|[t0,t0+ε) with
c̄(t0) = p. Any two such lifts coincide on the intersection of their domains. If, fur-
thermore, I = [a, b] and M is compact (or M is a complete Riemannian manifold),
then c̄ is defined on all of [a, b].

Proof. As noted earlier, we may assume that c is a regular curve. Choose a vector
field X on B such that X ◦ c = ċ on some neighborhood of t0, and consider the
basic lift X̄ of X to M . Integral curves c̄ of X̄ are by definition horizontal, and
furthermore project down to integral curves of X , since

.

(π ◦ c̄) = π∗
.
c̄ = π∗X̄ ◦ c = X ◦ π ◦ c̄.

Now (the restriction of) c itself is an integral curve of X , and the first claim follows.
The others are immediate consequences. �

Returning to the Riemannian case, we can now establish the following facts
that will be used many times throughout the sequel:

Theorem 1.3.1. Let π : M → B denote a Riemannian submersion. If c : I → M is
a geodesic with ċ(t0) ∈ H for some t0 ∈ I, then ċ(t) ∈ H for all t ∈ I, and π ◦ c is
a geodesic in B. Such a c will be called a horizontal geodesic of M . Furthermore,
if M is complete, then

1. B is complete;
2. π is a submetry; i.e., π maps the closure of the metric ball Br(p) =

{q ∈ M | d(p, q) < r} of radius r around p onto the closure of Br(π(p))
for any p ∈ M ;

3. the fibers of π are equidistant; i.e., for any two fibers F0 and F1, and p ∈ F0,
the distance between p and F1 equals that between F0 and F1;

4. π is a locally trivial fiber bundle; i.e., any point b in B has a neighborhood U
such that π−1(U) is diffeomorphic to U × F , where F = π−1(b).

Proof. Suppose c : I → M is a geodesic, with t0 ∈ I, p := c(t0), and x := ċ(t0) ∈
H. Choose some interval J ⊂ I around t0 on which the geodesic cB in B with
ċB(t0) = π∗x is defined and minimal. By Proposition 1.3.1, cB admits a horizontal
lift cM in M with cM (t0) = p on some subinterval J ′ of J . We will show that cM

is length-minimizing, and hence a geodesic. By uniqueness of geodesics, cM must
then coincide with c|J′ , and in particular will be horizontal. To see that cM is
indeed length-minimizing, suppose that c0 : [a, b] → M is some other curve in M
with the same endpoints as cM . If L denotes the length function, then

L(c0) =
∫ b

a

|ċ0| ≥
∫ b

a

|ċh0 | =
∫ b

a

|π∗ċ0| = L(π ◦ c0) ≥ L(cB) = L(cM ),

where the last inequality follows from the fact that cB is minimal.
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Suppose next that M is complete. Statements (1) and (2) are then an im-
mediate consequence of the above. In order to prove (3), let bi := π(Fi), i = 0, 1;
by (1), there exists a minimal normal (that is, unit-speed) geodesic c : [0, a] → B
from b0 to b1. Now, the distance between any point of F0 and any point of F1 is
at least as large as the length of c because π is distance-decreasing. Consequently,

d(F0, F1) ≥ L(c), (1.3.1)

where d denotes the distance function. On the other hand, for any p ∈ F0, the
horizontal lift of c starting at p is a curve which ends at some point of F1 and has
the same length as c. Thus,

d(F0, F1) ≤ d(p, F1) ≤ L(c). (1.3.2)

The claim now follows by comparing equations (1.3.1) and (1.3.2).
For the last statement, we will show that given b ∈ B, there exists a neighbor-

hood U of b in B such that π−1(U) is diffeomorphic to U ×F , where F = π−1(b),
cf. Examples and Remarks 1.1.1(v). Let ε > 0 be the injectivity radius of B at b,
and V the metric ball of radius ε centered at the origin in the tangent space Bb.
For each x ∈ V , denote by X the section of the normal bundle of F in M with
π∗X = x. Then the map

h : F × V −→ Bε(F ) = π−1(Bε(b)),
(p, x) 	−→ expX(p)

is well defined by (1) and differentiable. Given q ∈ Bε(F ), consider the unique
normal minimal geodesic c : [0, a] → B from π(q) to b. If cM denotes the horizontal
lift of c starting at q, then cM (a) is well defined by completeness of M , and p :=
cM (a) ∈ F . Then q = h(p, x), where x = −ċ(a), and h is surjective. By uniqueness
of horizontal lifts, h is injective. Being defined in terms of the exponential map,
this in turn implies that h has maximal rank. Thus, the composition

π−1(Bε(b))
h−1−→ F × V

1F ×expb−→ F × Bε(b)

is a diffeomorphism. �

From now on, we will use the term fibration to refer to a locally trivial fiber
bundle, even though a fibration in the traditional sense of Examples and Remarks
1.1.1(vi) is not always a locally trivial fiber bundle. A metric fibration is just
a synonym of Riemannian submersion. Riemannian manifolds will routinely be
assumed to be complete, unless otherwise specified.

Definition 1.3.1. Let π : M → B be a metric fibration, and c : [0, 1] → B a piece-
wise smooth curve in the base space. The holonomy diffeomorphism associated to
c is the map hc : π−1(c(0)) → π−1(c(1)) between the fibers over the endpoints of
c that maps a point p in the first fiber to the endpoint of the horizontal lift of c
that starts at p.
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Observe that the inverse of hc is h−c, where −c(t) := c(1 − t).

Definition 1.3.2. The holonomy group Hol(b) of a metric fibration π : M → B at
a point b in B is the group of holonomy diffeomorphisms hc of the fiber over b,
where c is a piece-wise smooth closed curve at b.

If b0 and b1 are points in B and c is a curve joining b0 to b1, then the map

Hol(b0) −→ Hol(b1),

hc0 	−→ hc ◦ hc0 ◦ h−1
c

is an isomorphism of holonomy groups.

Examples and Remarks 1.3.1. (i) Proposition 1.3.1 is no longer true in general
if one removes the compactness assumption. The same can be said of Theorem
1.3.1 without the completeness hypothesis: If π : M → B is a submersion with
dimM > 1, dimB < dimM , and p ∈ M , then the restriction of π to M \ {p} is
still a submersion, but in the topological case, some lifts exist only locally, whereas
in the Riemannian case, π is no longer a fibration.

(ii) Let F = π−1(b) denote a fiber of a Riemannian submersion π : M → B,
b ∈ B, ν(F ) the normal bundle of F in M . Given x in the tangent space of B
at b, consider the basic section X of ν(F ) with π∗X = x. If x1, . . . , xk is a basis
of Bb, then X1, . . . , Xk, when evaluated at p ∈ F , span the fiber of ν(F ) at p,
so that ν(F ) is a trivial bundle. The Bott connection ∇B on ν(F ) is the unique
connection for which basic fields are parallel. ∇B is Riemannian, since 〈X, Y 〉 is
constant along F for basic X and Y . If Γ(ν(F )) denotes the space of sections of
ν(F ), then the Bott connection is given by

∇B
u X = [U, X ]h, u ∈ TF, X ∈ Γ(ν(F )), (1.3.3)

where U is any local vertical field extending u. To see this, consider a basis Xi

of basic sections, and write X =
∑

φiXi, φi ∈ F(F ). Since [U, Xi] is vertical by
(1.2.1), both sides of (1.3.3) yield the same expression, namely

∑
u(φi)Xi, thereby

establishing the claim.
The Bott connection actually makes sense in the context of foliations, not

just submersions, and is usually viewed as a connection on the vector bundle H
over M . The Jacobi identity for brackets implies that the corresponding curvature
tensor vanishes. This in turn yields the existence of certain characteristic classes
of the vector bundle H; i.e., cohomology classes of M that depend only on the
foliation, see for example [83], [78].

(iii) In the case of a metric foliation on a complete Riemannian manifold M ,
the holonomy maps hc are still defined. The curve c is now a horizontal curve in
M , and hc is obtained by horizontally lifting projections of (restrictions of) c in
local quotients. In general, however, hc will only be a local diffeomorphism be-
tween leaves, since the latter need not share the same topology, cf. Examples and
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Remarks 1.1.1(i). It should be noted that our definition of holonomy is fundamen-
tally different from the one in [91]. There, the holonomy group of a leaf at a point
p is understood to be a certain group of germs of diffeomorphisms of transverse
manifolds that leave p invariant. Our definition, in contrast, is a generalization of
the concept of holonomy in bundles. In fact, when the Riemannian submersion is
a fiber bundle, and the horizontal distribution is a connection, we will later see
that one recovers the usual holonomy group of the connection. If the submersion
π is only a fibration, then the holonomy group will not, in general, be a Lie group:
it will be shown in section 2.3 that if the holonomy group is a Lie group G, then π
has the structure of a fiber bundle with group G. There are, however, examples of
submersions whose structure group cannot be reduced to a Lie group [7], see also
Remark 9.57 in [22]. It should furthermore be noted that even when it is a Lie
group and M is compact, the holonomy group itself need not be compact [123].

(iv) Given a Riemannian submersion π : M → B, horizontal lifts can in many
cases easily be described directly. One such is the gradient ∇f of some function
f : B → R on the base. We claim that the basic lift of ∇f is ∇(f ◦ π): Indeed, for
any e ∈ TM ,

〈∇(f ◦ π), e〉 = e(f ◦ π) = (π∗e)(f) = 〈∇f, π∗e〉. (1.3.4)

Taking e to be vertical in (1.3.4) implies that ∇(f ◦ π) is horizontal, and taking e
to be horizontal shows that ∇(f ◦ π) is π-related to ∇f .

In particular, if c is an integral curve of ∇(f ◦ π), then
.

(π ◦ c̄) = π∗ ◦ ċ = π∗ (∇(f ◦ π) ◦ c) = ∇f ◦ (π ◦ c),

so that π ◦ c is an integral curve of ∇f ; equivalently, integral curves of ∇(f ◦ π)
are horizontal lifts of integral curves of ∇f .

(v) Let p ∈ B, and ε > 0 smaller than the injectivity radius at p. The
gradient of the distance function f : Bε(p) \ {p} −→ R from p, f(q) := d(p, q), has
as integral curves normal geodesics through p. Thus, (iv) yields a different proof
of the existence of horizontal lifts of geodesics.

1.4 The fundamental tensors of a submersion

We are now ready to begin exploring the metric properties of a Riemannian sub-
mersion π. In this section, we will see that there are two tensor fields that measure
the complexity of π; specifically, they determine by how much π differs from a pro-
jection B×F → B of a metric product onto one of the factors. Given a Riemannian
submersion π : M → B, denote by ∇M and ∇B the Levi-Civita connections of M
and B, and by RM and RB their curvature tensors.

Lemma 1.4.1. If X, Y ∈ X(M) are basic, then so is (∇M
X Y )h. In fact, if X̃, Ỹ

denote the vector fields on B that are π-related to X and Y , then (∇M
X Y )h is
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π-related to ∇B
X̃

Ỹ ; i.e.,

π∗(∇M
X Y )h = (∇B

X̃
Ỹ ) ◦ π. (1.4.1)

Proof. Given a basic Z ∈ X(M) that is π-related to Z̃ ∈ X(B), the formula for
the Levi-Civita connection implies

2〈π∗∇M
X Y, Z̃ ◦ π〉 = 2〈π∗∇M

X Y, π∗Z〉 = 2〈∇M
X Y, Z〉

= X〈Y, Z〉 + Y 〈Z, X〉 − Z〈X, Y 〉
+ 〈Z, [X, Y ]〉 + 〈Y, [Z, X ]〉 − 〈X, [Y, Z]〉.

Each term of the form X〈Y, Z〉 above may be rewritten as

X〈Y, Z〉 = X〈π∗Y, π∗Z〉 = X(〈Ỹ , Z̃〉 ◦ π) = π∗X〈Ỹ , Z̃〉 = (X̃〈Ỹ , Z̃〉) ◦ π.

Similarly, 〈Z, [X, Y ]〉 can be expressed as

〈Z, [X, Y ]〉 = 〈π∗Z, π∗[X, Y ]〉 = 〈Z̃, [X̃, Ỹ ]〉 ◦ π.

Thus,

2〈π∗∇M
X Y, Z̃ ◦ π〉 = {X̃〈Ỹ , Z̃〉) + Ỹ 〈Z̃, X̃〉 − Z̃〈X̃, Ỹ 〉

+ 〈Z̃, [X̃, Ỹ ]〉 + 〈Ỹ , [Z̃, X̃]〉 − 〈X̃, [Ỹ , Z̃]〉} ◦ π

= 2〈∇B
X̃

Ỹ , Z̃〉 ◦ π,

which establishes (1.4.1). �

Notice that (1.4.1) also holds for metric foliations, since the argument is a
local one.

Definition 1.4.1. The A-tensor of a metric foliation on M is the tensor field A :
H×H → V on M given by

AXY = ∇v
XY =

1
2
[X, Y ]v, X, Y ∈ Xh. (1.4.2)

The fact that A is indeed tensorial follows from (1.2.3).

Definition 1.4.2. The S-tensor of a metric foliation is the tensor field S : H×V → V
on M given by

SXU = −∇v
UX, X ∈ Xh, U ∈ Xv. (1.4.3)

SX is of course just the second fundamental tensor of a leaf in direction
X . In particular, S ≡ 0 iff the leaves are totally geodesic (in which case we say
the foliation is totally geodesic), whereas A ≡ 0 iff the horizontal distribution is
integrable (in which case the foliation is said to be flat).
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Remark 1.4.1. We caution the reader that the terminology we use here differs from
that in [22] and [97] among others. There, the A-tensor is defined by the equation

AEF = ∇v
EhFh + ∇h

EhFv.

Thus, the two notations coincide only for horizontal fields. Furthermore, these
references use a tensor field T instead of S, defined by

TEF = ∇h
EvFv + ∇v

EvFh.

For vertical fields U , V , TUV is the classical second fundamental tensor of a leaf,
and is related to the S-tensor via

TUV =
∑

i

〈SXiU, V 〉Xi,

where Xi is a local orthonormal basis of horizontal fields.
The curvature formulae that will be derived in the next section involve co-

variant derivatives of these tensors, and for these to make sense, A and S must be
defined for all vectors, not just horizontal or vertical ones. For this purpose, we
set

AEF = ∇v
EhFh, SEF = −∇v

EvFh, E, F ∈ X,

and their covariant derivatives are then taken in the usual sense. For example,

(∇EA)F1F2 = ∇E(AF1F2) − A∇EF1F2 − AE∇F1F2, E, Fi ∈ X.

The tensor fields A and S essentially determine the geometry of the metric
foliation: The simplest example of a metric foliation is the one given by {b} × F ,
b ∈ B, on a Riemannian product M = B × F . A metric foliation is said to split
if any point has a neighborhood isometric to a metric product, with the leaves
tangent to one of the factors. Clearly, a foliation that splits is both totally geodesic
and flat. Our next goal is to establish the converse.

Let us begin by taking a closer look at the holonomy transformations from
Definition 1.3.1; recall that such a diffeomorphism hc : π−1(b0) → π−1(b1) is
generated by lifting a geodesic c : [0, 1] → B joining points b0 and b1 in B to M :
given p ∈ π−1(b0), hc(p) = cp(1), where cp is the horizontal lift of c with cp(0) = p.
Denote by A∗

x : V → H the adjoint of Ax : H → V :

〈A∗
xu, y〉 = 〈Axy, u〉, x, y ∈ H, u ∈ V .

Notice that if X is basic, then for vertical U ,

A∗
XU = −∇h

UX, (1.4.4)

since [X, U ] is vertical by (1.2.1), so that for horizontal Y ,

〈A∗
XU, Y 〉 = 〈AXY, U〉 = 〈∇XY, U〉 = X〈Y, U〉 − 〈Y,∇h

XU〉 = 〈−∇h
UX, Y 〉.
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Lemma 1.4.2. Let π : M → B denote a Riemannian submersion, and h : F 0 → F 1

the holonomy diffeomorphism induced by the geodesic c : [0, 1] → B, where c(0) =
π(F 0), c(1) = π(F 1). Given p ∈ F 0, let cp denote the horizontal lift of c starting
at p. Then for u ∈ F 0

p ,
h∗u = J(1), (1.4.5)

where J is the Jacobi field along cp with J(0) = u, J ′(0) = −A∗
ċp(0)u − Sċp(0)u.

Proof. Set x := ċ(0), and denote by X the basic field along F 0 with π∗X = x. Let
γ : I → F 0 be a curve defined on some neighborhood I of 0 with γ̇(0) = u, and
consider the variation V : [0, 1]× I → M of cp given by V (t, s) = exp t(X ◦ γ)(s).
Then h ◦ γ(s) = V (1, s), so that h∗u = V∗D2(1, 0). Since the variation is by
geodesics, the vector field t 	→ J(t) = V∗D2(t, 0) is Jacobi along c, and h∗u = J(1).
Furthermore,

J ′(0) = ∇D1V∗D2(0, 0) = ∇D2V∗D1(0, 0) = ∇uX,

and
∇uX = ∇h

uX + ∇v
uX = −A∗

ċp(0)u − Sċp(0)u

by (1.4.3) and (1.4.4). �
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γ(0)

u

X ◦ γ(0)
h(γ(0))

h∗u
cp

Definition 1.4.3. A Jacobi field J along a horizontal geodesic c : [0, a] → M that
is vertical at 0 and satisfies J ′(0) = −A∗

ċ(0)J(0) − Sċ(0)J(0) is called a holonomy
field .

Such a field is always vertical, and is identically zero if it vanishes at one point, since
the holonomy transformations are diffeomorphisms. Notice that for t0 ∈ (0, a), the
restriction J |[t0,a] is again a holonomy field along c|[t0,a]. Thus,

J ′(t) = −(A∗
ċ(t) + Sċ(t))J(t), t ∈ [0, a]. (1.4.6)

Lemma 1.4.3. If π : M → B is a Riemannian submersion with totally geodesic
fibers, and M is complete, then the holonomy diffeomorphisms between fibers are
isometries.
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Proof. Consider a holonomy field J along a horizontal geodesic c : [0, 1] → M with
J(0) = u, as above. Since J is vertical, and the fibers are totally geodesic, (1.4.6)
implies that

〈J, J〉′ = 2〈J, J ′〉 = 2〈J, J ′v〉 = −2〈J, SċJ〉 = 0,

and J has constant norm. If h is the associated holonomy diffeomorphism, then
by (1.4.5),

|h∗u| = |J(1)| = |J(0)| = |u|,
so that h is an isometry. �
Theorem 1.4.1. Let π : M → B be a Riemannian submersion, with M complete.

1. If the fibers are totally geodesic, then π : M → B is a fiber bundle.
2. If, in addition, the A-tensor is identically zero, then π splits. Specifically,

each point b ∈ B has a neighborhood U such that π−1(U) is isometric to
a metric product U × F ; furthermore, if Φ : U × F → π−1(U) denotes the
isometry, then, π ◦ Φ : U × F → U is projection onto the first factor.

Proof. We begin with the first statement, by constructing, as in [77], a principal
bundle that has π as associated bundle. Fix b0 ∈ B, let F := π−1(b0), and G the
Lie group of isometries of F . For any b ∈ B, Gb will denote the collection of all
isometries F → π−1(b). Define P = ∪b∈BGb. We claim that πP : P → B admits a
canonical G-bundle structure, where πP (h) = b if h ∈ Gb. There is a natural free
right action of G on each set Gb: given h ∈ Gb, g ∈ G, set hg := h◦g : F → π−1(b).
Let {Uα} be a locally finite open cover of B, such that each Uα = Bεα(bα) is
the diffeomorphic image under the exponential map of an open ball of radius εα

centered at the origin in the tangent space of B at bα. Next, choose some geodesic
cα from b0 to bα. Given b ∈ Uα, there is a unique (up to parametrization) geodesic
cb contained in Uα from bα to b. We obtain in this fashion a map

sα : Uα −→ π−1
P (Uα),

b 	−→ hcb
◦ hcα

that assigns to each b ∈ Uα the holonomy diffeomorphism (which in this case is
an isometry by Lemma 1.4.3) along the piece-wise smooth curve cα followed by
cb. Since the map

Uα × G −→ π−1
P (Uα),

(b, g) 	−→ sα(b)g
(1.4.7)

is a bijection, there exists a topology on P for which these maps become homeo-
morphisms.

It remains to check that the collection

(πP , φα) : π−1
P (Uα) −→ Uα × G,

h 	−→ (πP (h), (sα ◦ πP (h))−1 ◦ h)
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M

B

F

b0bα

b

cb

cα

sα(b)

π

Uα

π−1(b)

of inverses to (1.4.7) is a principal bundle atlas. But each φα is G-equivariant by
construction, and if Uβ intersects Uα, then

(πP , φβ) ◦ (πP , φα)−1(b, g) = (b, sβ(b)−1 ◦ sα(b)g)

for b ∈ Uα ∩Uβ and g ∈ G, so that the transition map fα,β : Uα ∩Uβ → G is given
by fα,β(b) = sβ(b)−1 ◦ sα(b). Thus, πP : P → B is a principal G-bundle over B.
The diffeomorphism

P ×G F −→ M,

[h, q] 	−→ h(q)

then exhibits M → B as the associated fiber bundle with fiber F .
To prove the second statement, let b ∈ B, F := π−1(b), and U a simply

connected neighborhood of b that is the diffeomorphic image under expb of some
ball in Bb. We consider again the local trivialization

(π, φ) : π−1(U) −→ U × F,

q 	−→ (π(q), cq(1))

used in the proof of Theorem 1.3.1, where cq : [0, 1] → F is the shortest geodesic
from q to F . Notice that for any b̃ ∈ U , the restriction φ|π−1(b̃) is a holonomy
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diffeomorphism, and hence an isometry. We claim that for p ∈ π−1(U), and hori-
zontal x ∈ Mp, φ∗x = 0. Indeed, H is integrable, so that the restriction of π to the
connected component V ⊂ π−1(U) of the leaf of H that contains p is a covering
map, and therefore a diffeomorphism, U being simply connected. V then intersects
F in exactly one point, namely φ(p). If γ is a horizontal curve with γ̇(0) = x, then
γ is contained in V , so that φ◦γ = φ(p), thereby establishing the claim. It follows
that for e ∈ Mp, |π∗e| = |eh|, and |φ∗e| = |ev|. Thus, |(π, φ)∗e| = |e|, and (π, φ) is
an isometry. �

We end this section by introducing a concept that will be needed in future
sections:

Definition 1.4.4. The mean curvature form of a Riemannian foliation on M is the
one-form κ on M given by κ(E) = tr SEh .

If Ti is a local orthonormal basis of the vertical space, then for horizontal X ,

κ(X) =
∑

i

−〈Ti,∇TiX〉 =

〈∑
i

∇TiTi, X

〉
=
∑

i

〈Ti, [X, Ti]〉. (1.4.8)

In particular, the mean curvature vector field H , given locally by H =
∑

i ∇h
Ti

Ti,
is the vector field dual to κ.

Proposition 1.4.1. For basic X, Y , d κ(X, Y ) = −2 div(AXY ).

Proof. Since d κ(X, Y ) = X(κY ) − Y (κX) − κ[X, Y ], the claim will follow once
we establish that

κ([X, Y ]) = κ([X, Y ]h) = X(κY ) − Y (κX) + 2 div AXY. (1.4.9)

To see this, let Xij := 〈[X, Ti], Tj〉, and Yij := 〈[Y, Ti], Tj〉. Since X is basic, each
bracket [X, Ti] is vertical, so that [X, Ti] =

∑
j XijTj , and a similar formula holds

for [Y, Ti]. Now,

κ([X, Y ]h) =
∑

i

〈[[X, Y ]h, Ti], Ti〉

=
∑

i

{〈[[X, Y ], Ti], Ti〉 − 〈[[X, Y ]v, Ti], Ti〉
}

=
∑

i

{〈[[X, Y ], Ti], Ti〉 + 〈Ti,∇Ti [X, Y ]v〉}
= 2 div AXY +

∑
i

〈[[X, Y ], Ti], Ti〉,

since the divergence of a vertical field coincides with its divergence in a leaf.
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Furthermore, by the Jacobi identity, the last term may be rewritten as follows:∑
i

〈[[X, Y ], Ti], Ti〉 =
∑

i

{〈[[X, Ti], Y ], Ti〉 − 〈[[Y, Ti], X ], Ti〉
}

=
∑
i,j

{〈[XijTj , Y ], Ti〉 − 〈[YijTj , X ], Ti〉
}

=
∑
i,j

{
Xij〈[Tj , Y ], Ti〉 − Y (Xij)〈Tj , Ti〉 − Yij〈[Tj , X ], Ti〉

+ X(Yij)〈Tj , Ti〉
}

=
∑
i,j

{
XijYji − YijXji

}
+
∑

i

{
X(Yii) − Y (Xii)

}
=
∑

i

{
X(Yii) − Y (Xii)

}
=
∑

i

{
X〈[Y, Ti], Ti〉 − Y 〈[X, Ti], Ti〉

}
= Xκ(Y ) − Y κ(X). �

Examples and Remarks 1.4.1. (i) We will assume, unless specified otherwise, that
the fiber F of a Riemannian submersion π : M → B is connected. By the long exact
homotopy sequence of the fibration π, B is simply connected provided M is. If
both fundamental tensors A and S vanish, and M is simply connected, de Rham’s
holonomy theorem implies that the local splitting guaranteed by Theorem 1.4.1 is
actually global; i.e., M is isometric to the Riemannian product B × F , cf. [22].

(ii) Although the results in this section are stated for submersions, they
carry over as usual to foliations, at least locally. Thus, if a metric foliation has
totally geodesic leaves, then the holonomy transformations are isometric, and if
in addition the foliation is flat, then the ambient space splits locally as a metric
product.

(iii) Suppose F is a metric foliation with totally geodesic leaves on M . Con-
sider a leaf L, two horizontal vectors x and y at some point of L, and extend them
to basic sections X , Y of the normal bundle of L in M . We claim that the vector
field AXY is a Killing field on L. In fact, if X is basic, then for vertical U ,

LXU = (LXU)v = ∇v
XU (1.4.10)

since [X, U ] is vertical and ∇v
UX = −SXU = 0. Let U be a unit vertical field. We

must show that 〈∇UAXY, U〉 = 0, or equivalently, that

〈L[X,Y ]vU, U〉 = 2(〈∇AXY U, U〉 − 〈∇UAXY, U〉) = −2〈∇UAXY, U〉 = 0. (1.4.11)

By (1.4.10), 〈L[X,Y ]hU, U〉 = 0, so that

〈L[X,Y ]vU, U〉 = 〈L[X,Y ]U, U〉 = 〈LXLY U, U〉 − 〈LY LXU, U〉
= 〈∇v

X∇v
Y U −∇v

Y ∇v
XU, U〉

= 〈R(X, Y )U, U〉 − 〈∇v
X∇h

Y U −∇v
Y ∇h

XU, U〉,
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and
〈L[X,Y ]vU, U〉 = −〈∇v

X∇h
Y U −∇v

Y ∇h
XU, U〉. (1.4.12)

Now, ∇v
X∇h

Y U = AX∇h
Y U = −AXA∗

Y U . If T denotes the endomorphism AXA∗
Y

of the vertical space, then T ∗ = AY A∗
X , and by (1.4.12),

〈L[X,Y ]vU, U〉 = 〈(T − T ∗)U, U〉 = 〈TU, U〉 − 〈U, TU〉 = 0,

which establishes (1.4.11).
We will find in the next section a milder condition which ensures that AXY

is Killing along a leaf, see (1.5.12). It is already clear, though, that AXY can
be Killing without the leaves being totally geodesic: in fact, when the leaves are
one-dimensional, the Killing condition is equivalent to AXY having constant norm
along leaves, and this is for example always satisfied in a space of constant curva-
ture.

(iv) Let F be a metric foliation on a manifold M of nonpositive sectional
curvature. If J is a Jacobi field along a geodesic c of M , then

|J |2′′ = 〈J, J〉′′ = 2〈J ′, J〉′ = 2(〈J ′, J ′〉 + 〈J ′′, J〉) = 2(|J ′|2 − 〈R(J, ċ)ċ, J〉)
≥ 0.

If F is totally geodesic, then the holonomy fields have constant norm, so that they
must be parallel by the preceding inequality. (1.4.6) then implies that A∗

ċJ ≡ 0
for a holonomy field along a horizontal geodesic c. Since ċ and J are arbitrary,
A ≡ 0, and M splits locally as a metric product. In particular, a negatively curved
manifold admits no totally geodesic metric foliations. A similar result holds if
one removes the sectional curvature condition on M , and assumes instead that
the leaves are compact and have negative Ricci curvature: A theorem of Bochner
asserts that such a leaf cannot admit nontrivial Killing fields, and the claim then
follows from (iii).

(v) Let F be a metric foliation on M . If c : I → M is an arbitrary curve, and
E a vector field along c, then the covariant derivative E′ of E may be expressed
in terms of the fundamental tensors A and S. We will denote by σ the second
fundamental tensor of the fibers,

σ(u, v) := ∇h
UV, u, v ∈ Mp, p ∈ M,

where U and V are local vertical extensions of u and v. Given t0 ∈ I, consider
a Riemannian submersion π : U → B defining F in a neighborhood U of c(t0),
and extend ċ and E to vector fields Fc and FE in U . Then Ev′h is the restriction
to c of

∇h
Fh

c
Fv

E + ∇h
Fv

c
Fv

E = −A∗
Fh

c
Fv

E + σ(Fv
c , Fv

E),

so that
Ev′h = −A∗

ċhEv + σ(ċv, Ev). (1.4.13)
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Write Eh =
∑

φi(Xi ◦ c), where Xi is a local basis of basic fields, and φi are
functions defined on a neighborhood of t0. Then

Eh′h =
∑

i

φi′Xi ◦ c +
∑

φi∇h
D(Xi ◦ c)

=
[∑

i

φi′Xi ◦ c +
∑

i

φi∇h
ċhXi

]
+
∑

i

φi∇h
ċvXi,

so that if x̃ denotes the horizontal lift of x ∈ Bπ(p) to Mp, then

Eh′h = (̃π∗E)′ − A∗
Eh ċv. (1.4.14)

Thus, the first term on the right side of the equation denotes the basic lift of the
derivative of π∗E. Similarly,

Eh′v =
∑

i

φi∇v
D(Xi ◦ c) =

∑
i

φi∇v
ċ Xi =

∑
i

φi∇v
ċhXi +

∑
i

φi∇v
ċvXi

=
∑

i

φiAċh(Xi ◦ c) −
∑

i

φiSXi◦cċ
v,

and
Eh′v = AċhEh − SEh ċv. (1.4.15)

Equations (1.4.13)–(1.4.15) then yield

E′h = (̃π∗E)′ − A∗
Eh ċv − A∗

ċhEv + σ(ċv, Ev),

E′v = AċhEh − SEh ċv + Ev′v.
(1.4.16)

(1.4.16) provides another proof of the fact that F splits locally if A and S are
identically zero. One can argue this using either horizontal or vertical fields: for
example, if E is a parallel field along c with E(t0) vertical, then Ev is parallel, so
E = Ev is always vertical. Thus, V is invariant under parallel translation, and the
claim follows from de Rham’s holonomy theorem.

(vi) If F is a metric foliation on M , then (1.4.16) applied to the tangent field
ċ of a curve c in M yields

ċ′h = (̃π∗ċ)′ − 2A∗
ċh ċv + σ(ċv, ċv), ċ′v = −Sċh ċv + ċv′v. (1.4.17)

Given a normal geodesic c : I → M , define the angle �(F , c) : I → [0, π/2] between
c and F by

cos�(F , c) = |ċv|.
It is a differentiable function on I, since ċv ≡ 0 if it vanishes at one point. Sup-
pose now that F is totally geodesic. By (1.4.17), ċv′v = 0, so that 〈ċv, ċv〉′ =
2〈ċv′v, ċv〉 = 0. Thus if a metric foliation F is totally geodesic, then the geodesics
of M make a constant angle with F .
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(vii) Denote by H : TM −→ H ⊂ TM the orthogonal projection onto the
horizontal subbundle. It is interesting to note that the A and S tensors are just
the covariant derivatives in horizontal and vertical directions of this projection
restricted to H, cf. [80]. More precisely, for horizontal x and vertical u,

∇xH|H = Ax, Sxu = −(∇uH)x.

In fact, for a horizontal field Y that evaluates to the vector y at the foot-point of
x , ∇x(HY ) = (∇xH)Y − H∇xY , so that (∇xH)Y = ∇x(HY ) − H∇xY = Axy,
and a similar formula holds for ∇uH. One can alternatively express this in terms
of the covariant derivatives of the orthogonal projection V : TM −→ V onto the
vertical distribution, since H + V is the identity, and the latter is parallel.

(viii) Recall that a map f : M −→ N between Riemannian manifolds is said
to be harmonic if it satisfies the Euler-Lagrange equation

tr∇f∗ = 0.

The covariant derivative operator in the above equation is the one induced by the
Levi-Civita connections on M and N . Specifically, f∗ is a section of the homomor-
phism bundle Hom(TM, f∗TN), so that

(∇Xf∗)Y = ∇X(f∗Y ) − f∗∇XY, X, Y ∈ XM.

Suppose now that π : M −→ B is a Riemannian submersion. Then for horizontal
X , (∇Xπ∗)X = 0 by (1.4.1), and for vertical T , (∇T π∗)T = −π∗∇T T . It follows
that π is harmonic iff the mean curvature vector field is identically zero; i.e., iff
the fibers are minimal submanifolds.

1.5 Curvature relations

Our next goal is to examine the relation between the curvature tensors R of M , RB

of B, and RF of the fibers of a Riemannian submersion π : Mn+k → Bn, n ≥ 2.
Denote by K and KB the corresponding sectional curvatures, with Kx,y denoting
the curvature of the plane spanned by the vectors x and y. For the sake of brevity,
we will omit these superscripts when dealing with the Levi-Civita connections. We
begin with the horizontal curvatures. The following formula is commonly referred
to as O’Neill’s formula, even though it was also derived by Gray in [54].

Proposition 1.5.1. For p ∈ M , and x, y, z ∈ Hp,

π∗R(x, y)z = RB(π∗x, π∗y, )π∗z + π∗(2A∗
zAxy − A∗

xAyz − A∗
yAzx).

Proof. Extend x, y, z locally to basic fields X , Y , Z, and denote by X̄, Ȳ , Z̄ the
π-related vector fields on B. Then

π∗R(X, Y )Z = π∗(∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z)

= π∗(∇h
X∇h

Y Z + ∇h
X∇v

Y Z −∇h
Y ∇h

XZ −∇h
Y ∇v

XZ

−∇[X,Y ]hZ −∇[X,Y ]vZ).

(1.5.1)
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Each term of the form π∗(∇h
X∇h

Y Z) equals (∇X̄∇Ȳ Z̄) ◦ π by (1.4.1). Similarly,

∇h
X∇v

Y Z = ∇h
XAY Z = −A∗

XAY Z,

and
∇h

[X,Y ]vZ = −A∗
Z [X, Y ]v = −2A∗

ZAXY

by (1.4.4). Substituting in (1.5.1) then establishes the claim. �

In order to investigate curvature relations involving one or more vertical
vectors, recall from (1.4.6) that a holonomy Jacobi field J along a horizontal
geodesic c satisfies

J ′ = −(A∗
ċ + Sċ)J.

As in Section 1.4, extend the tensor fields S and A to all of TM by setting

Aef := Aehfh, Sef := Sehfv, e, f ∈ TM.

The covariant derivative ∇DL of a tensor field L along c will be denoted by L′.
Thus, for example, if L is of type (1, 1), then for a vector field E along c,

L′E = (LE)′ − L(E′).

Let T be a vertical vector field along c. Then

〈R(T, ċ)ċ, J〉 = 〈R(J, ċ)ċ, T 〉 = −〈T, J ′′〉 = 〈T, (A∗
ċJ)′〉 + 〈T, (SċJ)′〉

= 〈T, AċA
∗
ċJ〉 + 〈T, SċJ〉′ − 〈T ′v, SċJ〉

= 〈AċA
∗
ċT, J〉 + 〈SċT, J〉′ − 〈Sċ(T ′), J〉

= 〈AċA
∗
ċT, J〉 + 〈(SċT )′, J〉 + 〈SċT, J ′〉 − 〈Sċ(T ′), J〉

= 〈AċA
∗
ċT, J〉 + 〈(SċT )′, J〉 − 〈Sċ(T ′), J〉 − 〈S2

ċ T, J〉
= 〈(S′

ċ − S2
ċ + AċA

∗
ċ)T, J〉.

Given any t0, the holonomy fields can be chosen so that they form an orthonormal
basis of the vertical space at c(t0). Thus,

Rv(T, ċ)ċ = (S′
ċ − S2

ċ + AċA
∗
ċ)T, (1.5.2)

or equivalently,

Rv(u, x)x = ((∇v
xS)x − S2

x + AxA∗
x)u, x ∈ H, u ∈ V . (1.5.3)

Similarly, if X is a horizontal field along c, then

〈R(X, ċ)ċ, J〉 = −〈X, J ′′〉 = 〈X, (A∗
ċJ)′〉 + 〈X, (SċJ)′〉.
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The last term in the above equation equals −〈X, A∗
ċSċJ〉 = −〈SċAċX, J〉. The

term before that may be rewritten as follows:

〈X, (A∗
ċJ)′〉 = 〈X, A∗

ċJ〉′ − 〈X ′, A∗
ċJ〉 = 〈AċX, J〉′ − 〈AċX

′, J〉
= 〈(AċX)′, J〉 + 〈AċX,−SċJ〉 − 〈Aċ(X ′), J〉
= 〈(A′

ċ
v − SċAċ)X, J〉,

so that
Rv(X, ċ)ċ = (A′

ċ
v − 2SċAċ)X, (1.5.4)

or equivalently,

Rv(y, x)x = (∇v
xA)xy − 2SxAxy, x, y ∈ H. (1.5.5)

By polarization together with the Bianchi identity, (1.5.5) in turn implies

3Rv(x, y)z = Rv(x, y + z)(y + z) − Rv(y, x + z)(x + z) − Rv(x, y)y
− Rv(x, z)z + Rv(y, x)x + Rv(y, z)z

= (∇v
y A)zx − (∇v

xA)zy + (∇v
z A)yx − (∇v

z A)xy

− 2SyAzx + 2SxAzy + 4SzAxy.

One easily checks that ∇v
z A is skew-symmetric; i.e.,

(∇v
z A)xy = −(∇v

z A)yx,

so that

3Rv(x, y)z = (∇v
y A)zx + (∇v

xA)yz + 2(∇v
z A)yx − 2SyAzx + 2SxAzy + 4SzAxy.

(1.5.6)
In order to derive an alternative expression, we use the following:

Lemma 1.5.1. � (∇v
xA)yz+ � SxAyz = 0 for x, y, z ∈ H, where � denotes cyclic

summation.

Proof. Extend x, y, z ∈ Hp to basic fields X , Y , Z with vanishing horizontal Lie
bracket at p. Then by the Jacobi identity,

0 =
1
2

� [X, [Y, Z]]v =� [X, AY Z]v =� ∇v
X(AY Z)− � ∇v

AY ZX

=� ∇v
X(AY Z)+ � SXAY Z

at p. It thus suffices to show that � (∇v
XA)Y Z =� ∇v

X(AY Z). Now,

(∇v
XA)Y Z −∇v

X(AY Z) = −(A∇X Y Z + AY ∇XZ) = AZ∇XY − AY ∇XZ

= AZ∇XY − AY ∇ZX

since [X, Z] is vertical. Cyclic summation of the last expression yields zero. �
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Applying Lemma 1.5.1 to the first two terms on the right of (1.5.6), we have

3Rv(x, y)z =� (∇v
xA)yz − (∇v

z A)xy + 2(∇v
z A)yx − 2SyAzx + 2SxAzy

+ 4SzAxy

= −3(∇v
z A)xy− � SxAyz − 2SyAzx + 2SxAzy + 4SzAxy

= −3(∇v
z A)xy + 3SzAxy − 3SyAzx − 3SxAyz,

and

Rv(x, y)z = −(∇v
z A)xy + SzAxy − SyAzx − SxAyz, x, y, z ∈ H. (1.5.7)

We next compute Rv(x, u)y for horizontal x, y, and vertical u. As usual, extend
these vectors to basic fields X , Y , and vertical field U . Then

Rv(X, U)Y = ∇v
X∇h

UY + ∇v
X∇v

UY −∇v
U∇h

XY −∇v
U∇v

XY −∇v
[X,U ]Y

= −∇v
XA∗

Y U −∇v
XSY U + S∇h

XY U −∇v
UAXY + SY [X, U ]v

= −AXA∗
Y U −∇v

XSY U + SY ∇v
XU + S∇h

XY U − SY ∇v
UX

−∇v
UAXY

= −AXA∗
Y U − (∇v

XS)Y U + SY SXU −∇v
U (AXY ).

Everything but perhaps the last term is tensorial, and it can be rewritten by using
the fact that

−(∇v
UA)XY = −∇v

U (AXY ) + A∇h
U XY + AX∇h

UY

= −∇v
U (AXY ) − AA∗

XUY − AXA∗
Y U

= −∇v
U (AXY ) + AY A∗

XU − AXA∗
Y U,

(1.5.8)

which incidentally also shows that (∇v
uA)xy = −(∇v

uA)yx. Substituting this ex-
pression in the above equation for Rv(X, U)Y yields

Rv(x, u)y = −(∇v
uA)xy − AyA∗

xu − (∇v
xS)yu + SySxu, x, y ∈ H, u ∈ V .

(1.5.9)
Applying (1.5.9) to the right side of the identity

Rv(x, y)u = Rv(x, u)y − Rv(y, u)x,

and recalling the skew-symmetry of ∇v
uA, we obtain

Rv(x, y)u = −2(∇v
uA)xy − (∇v

xS)yu + (∇v
yS)xu + [Sy, Sx]u + (AxA∗

y − AyA∗
x)u,

(1.5.10)
where [Sx, Sy] = SxSy−SySx. (1.5.10) may be expressed in a slightly more compact
form using exterior covariant derivatives: recall that given a connection ∇ on a
vector bundle ξ over M , the exterior covariant derivative of ∇ is the map d∇
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that assigns to each k-form ω ∈ Ak(M, ξ) on M with values in ξ the (k + 1)-form
d∇ω ∈ Ak+1(M, ξ) given by

(d∇ω)(U0, . . . , Uk) =
k∑

i=0

(−1)i∇Ui(ω(U0, . . . , Ûi, . . . , Uk))

+
∑
i<j

(−1)i+jω([Ui, Uj ], U0, . . . , Ûi, . . . , Ûj, . . . , Uk).

Now, the S-tensor may be viewed as a 1-form on M with values in the endomor-
phism bundle of TM . From this perspective, d∇S ∈ A2(M, EndTM) is given by

d∇SX,Y = ∇X(SY ) −∇Y (SX) − S[X,Y ]h = (∇XS)Y − (∇Y S)X ,

and (1.5.10) then reads:

Rv(x, y)u = −2(∇v
uA)xy − d∇Sx,yu + [Sy, Sx]u + (AxA∗

y − AyA∗
x)u.

For future reference, we group all these curvature identities together in the
next theorem, along with the Gauss and Codazzi equations for the fibers of π:

Theorem 1.5.1 (Gray [54], O’Neill [97]). Let π : Mn+k → Bn be a Riemannian
submersion, n ≥ 2, with R, RB, and RF denoting the curvature tensors of M , B,
and a fiber F , respectively. Let p ∈ M , x, y, z ∈ Hp, and u, v, w ∈ V. Denote
by σ the second fundamental tensor of the fiber π−1(π(p)) at p, σ(U, V ) = ∇h

UV .
Then

π∗R(x, y)z = RB(π∗x, π∗y, )π∗z + π∗(2A∗
zAxy − A∗

xAyz − A∗
yAzx);

Rv(x, y)z = −(∇v
z A)xy + SzAxy − SyAzx − SxAyz;

Rv(x, u)y = −(∇v
uA)xy − AyA∗

xu − (∇v
xS)yu + SySxu;

Rv(x, y)u = −2(∇v
uA)xy − d∇Sx,yu + [Sy, Sx]u + (AxA∗

y − AyA∗
x)u;

RF (u, v)w = Rv(u, v)w + Sσ(v,w)u − Sσ(u,w)v;
Rv(u, w)x = (∇v

wS)xu − (∇v
uS)xw.

Recalling that the tensor field ∇v
uA is skew-symmetric, we immediately ob-

tain for the sectional curvatures:

Corollary 1.5.1. With notation as in Theorem 1.5.1, if x, y, u, v are orthonormal,
then

Kπ∗x,π∗y = Kx,y + 3|Axy|2;
KF

u,v = Ku,v + σ(u, u)σ(v, v) − σ2(u, v);

Kx,u = 〈(∇v
xS)xu, u〉 + |A∗

xu|2 − |Sxu|2.

The second equation in the corollary is of course just the Gauss equation.
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We mention one further consequence of the curvature identities above, which
relates the derivatives of the S and A tensors. By (1.5.9),

〈Rv(x, u)y, v〉 = −〈(∇v
uA)xy, v〉 − 〈AyA∗

xu, v〉 − 〈(∇v
xS)yu, v〉 + 〈SySxu, v〉.

Writing out the corresponding expression for 〈Rv(y, v)x, u〉, equating it to the one
above, and noticing that the second and fourth term appear in both, we deduce

〈(∇v
xS)yu, v〉 − 〈(∇v

y S)xv, u〉 = −〈(∇v
uA)xy, v〉 + 〈(∇v

v A)yx, u〉.

We have already remarked that (∇v
uA)yx = −(∇v

uA)xy. The above identity can
therefore be rewritten as

〈(∇v
yS)xv, u〉 − 〈(∇v

xS)yu, v〉 = 〈(∇v
uA)xy, v〉 + 〈(∇v

v A)xy, u〉. (1.5.11)

Extending x, y to basic fields X and Y , an alternative expression for the right side
of (1.5.11) is 〈∇u(AXY ), v〉 + 〈∇v(AXY ), u〉. This follows from (1.5.8) together
with the fact that the operator AxA∗

y − AyA∗
x is skew-adjoint. Furthermore, the

operator (∇v
xS)y is self-adjoint, since

〈(∇v
XS)Y U, V 〉 = 〈∇X(SY U), V 〉 − 〈S∇h

XY U, V 〉 − 〈SY (∇v
XU), V 〉

= X〈SY U, V 〉 − 〈SY U,∇v
XV 〉 − 〈∇h

UV,∇h
XY 〉

− 〈SY V,∇v
XU〉

is symmetric in U and V . We then obtain the following alternative version of
(1.5.11):

−〈d∇Sx,yu, v〉 = 〈∇u(AXY ), v〉 + 〈∇v(AXY ), u〉. (1.5.12)

Examples and Remarks 1.5.1. (i) It follows from Corollary 1.5.1 that if π : M → B
is a Riemannian submersion from a manifold M of nonnegative (resp. positive)
sectional curvature, then the target space B also has nonnegative (resp. positive)
curvature. It turns out that virtually all nonnegatively curved manifolds arise in
this way. One typical example is that of projective spaces: the canonical metrics
on CPn and HPn are those for which the natural projections π : S2n+1 → CPn

and π : S4n+3 → HPn become Riemannian submersions. Consider for instance
CPn. Denote by Jp : R2n+2 → R2n+2

p the canonical isomorphism sending the ith
standard basis vector ei to Di(p). Then the restriction N of the position vector
field P of R2n+2, P (p) = Jpp, to the unit sphere S2n+1 is a unit normal field to
the sphere. Identify R2n+2 with Cn+1 via

(x1, y1, . . . , xn+1, yn+1) 	→ (x1 + iy1, . . . , xn+1 + iyn+1),

and consider the canonical complex structure I on TRn+2 given by

I(Jpv) = Jp(iv), p, v ∈ Cn+1.
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The fiber of π through (z1, . . . , zn) is {(z1z, . . . , znz) | |z| = 1}, so that IN is a
unit vector field on the sphere that spans the fibers. Moreover, I is parallel, so
that

∇xIN = I∇xN = Ix, x ∈ TS2n+1. (1.5.13)

The covariant derivatives in (1.5.13) are the Levi-Civita connection of Euclidean
space, but since Ix and IN are both tangent to the sphere, the first covariant
derivative also represents the Levi-Civita connection of the sphere.

The Hopf action of S1 on S2n+1 is by isometries, so there exists a unique
metric on complex projective space for which the Hopf fibration becomes a Rie-
mannian submersion. Since IN is a unit field spanning the vertical distribution,

|Axy|2 = 〈Axy, IN〉2 = 〈y, A∗
xIN〉2 = 〈y, (∇xIN)h〉2 = 〈y, Ix〉2

for horizontal x and y. Here, we used the fact that if x is horizontal, then so
is Ix: In fact, given any x ∈ TS2n+1, 〈Ix, IN〉 = −〈x, I2N〉 = 〈x, N〉 = 0. By
Proposition 1.5.1,

Kπ∗x,π∗y = 1 + 3〈y, Ix〉2

for orthonormal x, y ∈ H. Thus, the sectional curvature K of CPn satisfies 1 ≤
K ≤ 4. For any horizontal x, the plane spanned by x and Ix projects down to
a plane of curvature 4 (such a plane is sometimes called a holomorphic plane),
whereas the plane spanned by x and any vector orthogonal to both x and Ix
projects to a plane of curvature 1.

(ii) (An exotic sphere with nonnegative sectional curvature, [59]). Consider
the Lie group Sp(2) consisting of all 2 × 2 symplectic matrices; i.e., matrices Q
with quaternion entries such that QQ∗ = Q∗Q = I2, where Q∗ = Q̄t denotes
the transposed conjugate of Q. Sp(2) admits a standard metric of nonnegative
sectional curvature, namely the negative of its Killing form. The action of Sp(1) ∼=
S3 on Sp(2) given by

(q, Q) 	−→
[
q 0
0 q

]
Q

[
q̄ 0
0 1

]
is a free action by isometries, so that there exists a unique Riemannian metric on
the seven-dimensional quotient M7 for which the projection Sp(2) → M7 becomes
a Riemannian submersion. By Proposition 1.5.1, this metric has nonnegative cur-
vature. We will see in 2.6.1 that M7 is an exotic 7-sphere.

(iii) Since the curvature computations in this section are local in nature,
Theorem 1.5.1 holds for metric foliations. Consider a metric foliation F on a
complete space Mn of constant curvature κ. If κ > 0, then F cannot be flat
anywhere: suppose, to the contrary, that Ap ≡ 0 for some p ∈ M . Let x be a
unit horizontal vector at p, c the geodesic t 	→ exp(tx) in direction x. If λ is an
eigenvalue of the self-adjoint endomorphism Sx with corresponding eigenvector
u ∈ Vp, consider the holonomy field J along c with J(0) = u. Since

J ′(0) = −A∗
xu − Sxu = −λu = −λJ(0),
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we have

J(t) =
(

cos
√

κt − λ√
κ

sin
√

κt

)
E(t),

where E is the parallel field along c with E(0) = u. But then J vanishes somewhere,
and is therefore identically zero, contradicting u �= 0. The same argument shows
that Ax �= 0 for any nonzero horizontal x.

Suppose next that κ = 0. We claim that if Ap ≡ 0, then A ≡ 0 everywhere,
and the foliation splits. In fact, arguing as above, we see that holonomy fields
along horizontal geodesics emanating from p must be parallel: if u ∈ Vp is a λ-
eigenvector of Sx, x ∈ Hp, then the holonomy field J along c with J(0) = u is
given by

J(t) = (1 − λt)E(t),

where E is the parallel field along c with E(0) = u. Since J cannot vanish, λ = 0,
and J is parallel. It follows that if N denotes the totally geodesic submanifold
expHp, then the vertical distribution is orthogonal to N everywhere; i.e., A ≡ 0
and S ≡ 0 along N . But since M has constant curvature, A ≡ 0 along the leaf
through p, and both A and S must then vanish everywhere.

(iv) Consider the isometric R-action on Euclidean 3-space given by glide
rotations:

(t, (z, t0)) 	−→ (eitz, t + t0), t ∈ R, (z, t0) ∈ C × R = R3.

This action is free and there exists a unique metric of nonnegative sectional cur-
vature on the two-dimensional quotient M2 (diffeomorphic to R2) for which the
projection π : R3 → M2 is a Riemannian submersion. This metric is rotationally
symmetric, and we compute its curvature in terms of the distance r = (x2 +y2)1/2

to the z-axis; i.e., K(r) will denote the sectional curvature of M at π(F ), where
F is an orbit in R3 at distance r from the z-axis. The vertical space at (x + iy, t0)
is spanned by ċ(0), where c(t) = (eit(x + iy), t + t0), so that a unit vertical vector
field is given by

T =
1

(1 + r2)1/2
(yD1 − xD2 + D3).

Thus,

X =
1
r
(xD1 + yD2), Y =

1
r(1 + r2)1/2

(−yD1 + xD2 + r2D3)

is an orthonormal basis of horizontal vector fields away from the z-axis. A lengthy
computation now yields

[X, Y ] =
1 + 2r2

r2(1 + r2)3/2
(yD1 − xD2) +

1
(1 + r2)3/2

D3,

and by Corollary 1.5.1,

K(r) =
3
4
〈[X, Y ], T 〉2 =

3
(1 + r2)2

.
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(v) Taking u = v in (1.5.12) and summing over an orthonormal basis of the
vertical space implies that for basic X , Y ,

2 div AXY = − tr d∇SX,Y .

This also follows directly from Proposition 1.4.1, which asserts that the mean
curvature κ of the foliation satisfies −dκ(X, Y ) = 2 div AXY : since κ is just the
trace of S, the above identity then follows from tr ◦ d∇ = d◦tr, which itself reflects
the fact that the trace operator is a parallel section of the bundle (EndTM)∗, see
for example [136].

(vi) The reader may have noticed that some of the curvature formulae in this
section seem to differ substantially from those in [22] or [97], even allowing for the
difference in notation. For example, O’Neill’s formula for 〈R(x, y)u, v〉 does not
involve the derivative of the S-tensor, as ours does. However, substituting (1.5.12)
in our expression for Rv(x, y)u yields

〈R(x, y)u, v〉 = 〈(∇vA)xy, u〉 − 〈(∇uA)xy, v〉 + 〈[Sy, Sx]u, v〉
+ 〈(AxA∗

y − AyA∗
x)u, v〉,

which agrees with O’Neill’s formula.

1.6 Projectable Jacobi fields

We have seen that holonomy fields along a horizontal geodesic c : [0, a] → M arise
by lifting a single geodesic, namely π ◦c, horizontally along some curve in the fiber
through c(0). In this section, we consider a larger class of Jacobi fields along c;
roughly speaking, these fields arise by horizontally lifting a variation of π◦c rather
than only π ◦ c. Let F denote a metric foliation on M , c : [0, a] → M a horizontal
geodesic. A Jacobi field J along c is said to be projectable if it satisfies

J ′v = −SċJ
v − AċJ

h. (1.6.1)

The collection of projectable Jacobi fields along c is clearly a vector space
that contains the collection of holonomy fields as a subspace.

Let I denote an interval containing 0, and for s ∈ I, denote by ıs : [0, a] →
[0, a] × I the map sending t to (t, s). The variational field of a variation V :
[0, a]× I → M of c is defined to be the vector field V∗D2 ◦ ı0 along c. Recall that
if V is a variation by geodesics (meaning that Vs := V ◦ ıs is a geodesic for every
s ∈ I), then its variational field is Jacobi.

Proposition 1.6.1. If V : [0, a] × I → M is a variation of c through horizontal
geodesics, then its variational field is projectable.
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Proof. Fix t0 ∈ [0, a], and set γ(s) := V (t0, s), E(s) := V∗D1(t0, s). Then

J ′v(t0) = ∇v
D1

V∗D2(t0, 0) = ∇v
D2

V∗D1(t0, 0) = E′v(0)

= Aγ̇hEh(0) − SEh γ̇v(0) + Ev′v(0),

by (1.4.16). But E is by assumption horizontal, so that

J ′v(t0) = AJh ċ(t0) − SċJ
v(t0) = −(SċJ

v + AċJ
h)(t0). �

Establishing the converse to Proposition 1.6.1 requires a little more work:

Lemma 1.6.1. Let π : M → B denote a Riemannian submersion, c : [0, a] → M
a horizontal geodesic, and J a Jacobi field along π ◦ c. Given any u ∈ Vc(0), there
exists a unique projectable Jacobi field J̃ along c such that

(1) π∗J̃ = J, and (2) J̃v(0) = u.

Proof. Let I be a small interval around 0, γ : I → B a curve with γ(0) = c(0),
γ̇(0) = J(0). If V , W denote the parallel fields along γ with V (0) = ċ(0), W (0) =
J ′(0), consider the variation V : [0, a] × I → B of π ◦ c given by

V (t, s) = expγ(s) t(V + sW )(s).

It is easily checked that J = V∗D2◦ı0. Next, let γ̄ : I → M be a curve with π◦γ̄ = γ,
whose initial tangent vector has u as vertical component. For each s ∈ I, denote
by Xs the basic field along the fiber through γ(s) with π∗Xs = (V + sW )(s), and
consider the variation Ṽ : [0, a]× I → M of c given by

Ṽ (t, s) = expγ̄(s) t(Xs ◦ γ̄)(s).

Since the latter is by horizontal geodesics, its variational field J̃ is a projectable
Jacobi field by Proposition 1.6.1, and J̃v(0) = u by construction. Moreover, π◦Ṽ =
V , so that π∗J̃ = π∗Ṽ∗D2 ◦ ı0 = V∗D2 ◦ ı0 = J . By (1.6.1),

J̃v′v = J̃ ′v − AċJ̃
h = −SċJ̃

v − 2AċJ̃
h,

so that
J̃v′ = −(Sċ + A∗

ċ)J̃
v − 2AċJ̃

h.

This, together with (2), determines J̃v uniquely. But J̃h is determined by (1), and
uniqueness of J̃ follows. �

Theorem 1.6.1. If π : M → B is a Riemannian submersion, and J is a projectable
Jacobi field along a horizontal geodesic c : [0, a] → M , then π∗J is Jacobi along
π ◦ c.
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Proof. Denote by P the space of projectable Jacobi fields along c and by J the
space of all Jacobi fields along π ◦ c. By Lemma 1.6.1, the map

Vc(0) × J −→ P ,

(u, J) 	−→ J̄
(1.6.2)

that sends the pair (u, J) to the unique projectable Jacobi field J̄ with π∗J̄ = J
and J̄v(0) = u is well defined and linear. Its kernel is trivial by construction, so
that dimP ≥ k +2 dimB = dimM +dimB (here, k is the fiber dimension). Next,
consider the linear map

P −→ Mc(0) ×Hc(0),

J 	−→ (J(0), J ′h(0)).

If J is an element in the kernel, then J ′h(0) = 0, and J ′v(0) = −Sċ(0)J
v(0) −

Aċ(0)J
h(0) = 0. Thus, J(0) = J ′(0) = 0, and the kernel is trivial. This implies

dimP ≤ dimM + dimB, and by the reverse inequality above, dimP = dim M +
dimB. The 1-1 map from (1.6.2) is therefore an isomorphism, and the theorem
follows. �

Corollary 1.6.1. Let F be a metric foliation on M . If J is a projectable Jacobi
field along a horizontal geodesic c : [0, a] → M , then there exists a variation of c
by horizontal geodesics that has J as its variational field.

Proof. Since c[0, a] is compact and connected, we may assume that F is defined
by a Riemannian submersion π. By Theorem 1.6.1, π∗J is Jacobi along π ◦ c, and
the claim then follows from the proof of Lemma 1.6.1, where such a variation is
explicitly constructed. �

Examples and Remarks 1.6.1. (i) A Jacobi field along c : [0, a] → M that is
projectable at one point t0 ∈ [a, b] is projectable on all of [a, b]. In fact, the space
Pt0 of Jacobi fields along c that satisfy (1.6.1) at the point t0 contains the set P
of projectable Jacobi fields as a subspace, and has the same dimension as P : as in
the proof of Theorem 1.6.1, the map

Pt0 −→ Mc(t0) ×Hc(t0),

J 	−→ (J(t0), J ′h(t0))

is an isomorphism.
(ii) Recall that for a submanifold F of M , and a normal geodesic c : I =

[0, a] → M with ċ(0) ⊥ Fc(0), a point t0 in I is said to be a focal point of F along
c if there exists a nontrivial Jacobi field J along c with J(0) ∈ Fc(0), J ′v(0) =
−Sċ(0)J(0), and J(t0) = 0. Here uv denotes the orthogonal projection of u ∈ Mc(0)

onto Fc(0), and S is the second fundamental tensor of F . Suppose π : M → B
is a Riemannian submersion, c : [0, a] → M a normal horizontal geodesic, and
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F = π−1(π(c(0))). By Theorem 1.6.1, if t0 ∈ I is a focal point of F along c, then
t0 is a conjugate point of π ◦ c: in fact, the Jacobi field J above is projectable at
0, hence everywhere by (i). π∗J is then a Jacobi field that vanishes at 0 and t0.
It turns out that the order of focal points of c and conjugate points of π ◦ c, as
well as the indexes of these geodesics, are the same, see [98] for details and further
results.

1.7 The Riccati equation for Jacobi fields

When dealing with Jacobi fields, it is often useful to decompose the second-order
Jacobi differential equation into two first-order ones. Let V denote a vector space
of Jacobi fields orthogonal to a geodesic c : R → Mn. We assume that V is self-
adjoint in the sense that 〈J1, J

′
2〉(t) = 〈J ′

1, J2〉(t) for any Ji ∈ V and some (and
hence all) t ∈ R. Given t ∈ R, set

V (t) := {J(t) | J ∈ V} ⊕ {J ′(t) | J ∈ V, J(t) = 0} ⊂ Mc(t).

V (t) is clearly a subspace of Mc(t).

Lemma 1.7.1. dimV (t) = dim V. Furthermore, the second summand is trivial for
almost every t.

Proof. Notice first that the sum is indeed a direct one, since the summands
are mutually orthogonal: If Ji(t) belongs to the ith summand, i = 1, 2, then
〈J1(t), J ′

2(t)〉 = 〈J ′
1(t), J2(t)〉 = 0. Next, set

V1(t) := {J ∈ V | J(t) = 0}, V2(t) := {J ′(t) | J ∈ V, J(t) = 0}.

The map V1(t) → V2(t) which sends J ∈ V1(t) to J ′(t) is linear, surjective by
definition, and has zero kernel. Thus V1(t) ∼= V2(t). For any fixed t0 ∈ R, let
J1, . . . , Jk be a basis of V1(t0), and extend it to a basis J1, . . . , Jl of V, where
l := dimV. Then Jk+1(t0), . . . , Jl(t0) is a basis of {J(t0) | J ∈ V}, and

dimV = l = k + l − k = dim V1(t0) + dim{J(t0) | J ∈ V}
= dimV2(t0) + dim{J(t0) | J ∈ V} = dimV (t0).

To prove the second statement, let t0 and J1, . . . , Jl be as above. We will show
that there is some ε > 0 such that J1(t), . . . , Jl(t) are linearly independent for each
t ∈ (t0, t0 + ε). By assumption, Jk+1(t0), . . . , Jl(t0) are linearly independent, and
thus remain so for t close enough to t0. On the other hand, if ε > 0 is such that the
restriction of c to [t0, t0 + ε] has no conjugate points, then J1(t), . . . , Jk(t) must
also be linearly independent for each t ∈ (t0, t0+ε): Indeed, if

∑
i≤k αiJi(t) = 0 for

some t ∈ (t0, t0 + ε), then J :=
∑

αiJi vanishes at t0 and t, so that J ≡ 0. It now
remains to show that if J ∈ span{J1, . . . , Jk}, then J(t) /∈ span{Jk+1(t), . . . , Jl(t)}.
To see this, write J =

∑
fiEi, where E1, . . . , En−1 are orthonormal parallel fields
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perpendicular to c, and fi = 〈J, Ei〉. Since fi(t0) = 0, fi(t) = (t− t0)gi(t) for some
function gi with gi(t0) = f ′

i(t0). Thus,

1
t − t0

J(t) → J ′(t0) ⊥ span{Ji(t0) | i > k} as t → t0,

which establishes the claim. �

Suppose next that dimV = n − 1, where n is the dimension of M . Then for
almost every t, ċ⊥(t) is spanned by {J(t) | J ∈ V}, and we may define a self-adjoint
operator S(t) on ċ⊥(t) by setting S(t)u := J ′(t), where J is the element of V with
J(t) = u. S is called the Riccati operator of V. Let R(t) denote the self-adjoint
operator R(·, ċ(t))ċ(t) on ċ⊥(t). Then for J ∈ V,

−R(t)J(t) = J ′′(t) = (SJ)′(t) = (S′J)(t) + (SJ ′)(t) = (S′ + S2)(t)J(t).

Identifying ċ⊥(t) with W := ċ⊥(0) via parallel translation along c, each J ∈ V is a
curve in W , and S, R are curves in the space S(W ) of self-adjoint transformations
of W . Furthermore, the second-order Jacobi equation along c is now decomposed
into two first-order equations

SJ = J ′, S′ + S2 + R = 0. (1.7.1)

There exists a comparison theory for the above equation which can be used to
derive the Rauch comparison theorems for Jacobi fields, cf. [44], [45]. Here, we shall
only consider a special case. Endow S(W ) with the inner product 〈A, B〉 = tr(AB).
Taking traces of the Riccati equation S′ + S2 + R = 0 yields

(tr S)′ + tr(S2) + Ric = 0, (1.7.2)

with Ric = trR. Decompose S as S = (trS/(n−1))I+S0, where S0 is the traceless
part of S, so that 〈I, S0〉 = 0. Then

tr(S2) = |S|2 =
(tr S)2

n − 1
+ |S0|2,

and setting s := tr S/(n − 1), (1.7.2) becomes

s′ + s2 + r = 0, r =
Ric +|S0|2

n − 1
. (1.7.3)

Theorem 1.7.1. Let V be an (n − 1)-dimensional space of Jacobi fields orthogonal
to c : R → Mn with self-adjoint Riccati operator S. Suppose furthermore, that
{J(t) | J ∈ V} spans ċ(t)⊥ for all t ∈ R. If Ric(ċ) ≥ 0, then S ≡ 0, and Ric(ċ) ≡ 0.
In particular, V consists of parallel Jacobi fields.
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Proof. Since {J(t) | J ∈ V} spans ċ(t)⊥ for all t ∈ R, the Riccati operator S is
defined on all of R. Suppose, to the contrary, that S is not identically zero, and
consider the associated equation (1.7.3). Then s(t0) �= 0 for some t0 ∈ R (for if
s ≡ 0, then r ≡ 0, hence S ≡ S0 ≡ 0). We may, without loss of generality, assume
that t0 = 0 and that s(0) < 0 (otherwise, consider t 	→ s̃(t) = −s(−t + t0)). Let f
denote the solution of

f ′ + f2 = 0, f(0) = s(0);

i.e.,

f(t) =
1

t + 1/s(0)
.

If y := f−s on (−∞,−1/s(0)), then y′ = f ′−s′ = −f2+s2+r = −(f−s)(f+s)+r,
so that y is the solution of the O.D.E.

y′ = −(f + s)y + r, y(0) = 0.

Consider any nontrivial solution x of the homogeneous equation x′=−(1/2)(f+s)x.
If u is the function satisfying u′ = 2r/x2, u(0) = 0, then y = (1/2)ux2. But u ≥ 0,
so that y ≥ 0, and s ≤ f . This contradicts the fact that s is defined for all time,
since f(t) → −∞ as t ↗ −1/s(0). �

The condition that the Jacobi fields in V span the normal space of c at
every point is essential: Consider for example R2 with the standard metric, and a
geodesic c in R2. If E is a parallel field orthogonal to c, then t 	→ J(t) := tE(t)
defines a non-parallel Jacobi field, and represents an (n− 1)-dimensional space of
Jacobi fields satisfying all the conditions of the theorem except for the one above.
The corresponding Riccati operator is S(t) = (1/t)I which is not defined at 0.

When dim V < n− 1, one can still, following Wilking [141], derive a Riccati-
type equation for Jacobi fields that are transversal to V: Suppose J is an (n − 1)-
dimensional space of Jacobi fields orthogonal to c with self-adjoint Riccati opera-
tor, and V is a subspace of J. As before, define

V (t) = {J(t) | J ∈ V} ⊕ {J ′(t) | J ∈ V, J(t) = 0}.

By Lemma 1.7.1, V (t) and V have the same dimension, and the second summand
vanishes almost everywhere. Let H(t) := V (t)⊥ ∩ ċ(t)⊥, and write u = uv + uh ∈
V (t) ⊕ H(t). Given a generic t0 ∈ R (i.e., one for which ċ(t0)⊥ is spanned by
{J(t0) | J ∈ J}), there is a well-defined operator S(t0) : H(t0) → H(t0) given by

S(t0)u := Y ′h(t0), where Y = Jh, J ∈ J, and J(t0) = u.

To see this, notice that if Ji(t0) = u for i = 1, 2, then for any J ∈ J,

〈(J1 − J2)′, J〉(t0) = 〈J1 − J2, J
′〉(t0) = 0,
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so that J ′
1(t0) = J ′

2(t0), and hence J ′
1
h(t0) = J ′

2
h(t0). Furthermore, Jv

i
′h(t0) = 0,

because Jv
i (t0) = 0, so that given a vector field X tangent to H , 〈Jv

i
′, X〉(t0) =

−〈Jv
i , X ′〉(t0) = 0. Thus, Jh

1
′h(t0) = Jh

2
′h(t0) as claimed. Next, we check that S

is self-adjoint: let ui = Yi(t0) ∈ H(t0), where Yi = Jh
i , Ji(t0) = ui. As remarked

above, Jv
i
′h(t0) = 0, so that

〈S(t0)u1, u2〉 = 〈Jh
1
′, J2〉(t0) = 〈(J1 − Jv

1 )′, J2〉(t0) = 〈J ′
1, J2〉(t0)

= 〈J1, J
′
2〉(t0) = 〈u1, S(t0)u2〉.

Now, the assignment that sends a vector field X tangent to H to X ′h determines
a covariant derivative operator Dh on the bundle {(t, u) | t ∈ R, u ∈ H(t)} over
R, and therefore also a system of parallel translations. Use the latter to identify
H(t) with E := H(t0), and obtain in the process a map S : I → S(E) from some
interval I containing t0 into the space of self-adjoint operators on E. With this
identification, S′ = DhS, and for Y = Jh,

Y ′′ = Dh2Y = Dh(SY ) = (DhS)Y + S(DhY ) = (S′ + S2)Y. (1.7.4)

But Dh2Y can also be computed as follows: Define A(t) : V (t) → H(t) by A(t)u =
J ′h(t), where J ∈ V, J(t) = u. As we did for S, it is straightforward to check
that A(t) is a well-defined linear map. As usual, assume that Y (t0) = J(t0) for
Y = Jh as above, and consider orthonormal Dh-parallel fields X1, . . . Xd with
X1(t0) = J(t0). Notice that for Z ∈ V,

〈J ′, Z〉(t0) = 〈J, Z ′〉(t0) = 〈J, AZ〉(t0),
so that

J ′v(t0) = A∗(t0)J(t0). (1.7.5)

Similarly,
X ′

i(t) = −A∗(t)Xi(t), (1.7.6)

since

0 = 〈Xi, Z〉′ = 〈X ′
i, Z〉 + 〈Xi, Z

′h〉 = 〈X ′
i, Z〉 + 〈Xi, AZ〉 = 〈X ′

i + A∗Xi, Z〉,
and X ′

i
h ≡ 0. Thus, setting R := R(·)ċ, ċ, (1.7.5) and (1.7.6) imply

〈Dh2Y, Xk〉(t0) = 〈Jh′h′, Xk〉(t0) = 〈Jh′h, Xk〉′(t0)
= 〈Jh, Xk〉′′(t0) − 〈Jh, X ′

k〉′(t0) = 〈J, Xk〉′′(t0)
= 〈J ′′, Xk〉(t0) + 2〈J ′, X ′

k〉(t0) + 〈J, X ′′
k 〉(t0)

= −〈RJ, Xk〉(t0) − 2〈A∗J, A∗Xk〉(t0) + 〈X1, X
′′
k 〉(t0)

= −〈RY, Xk〉(t0) − 2〈AA∗J, Xk〉(t0) − 〈X ′
1, X

′
k〉(t0)

+ 〈X1, X
′
k〉′(t0)

= −〈RY − 3AA∗Y, Xk〉(t0),
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and
Dh2Y + RhY + 3AA∗Y = 0.

Together with (1.7.4), we conclude

S′ + S2 + Rh + 3AA∗ = 0. (1.7.7)

Theorem 1.7.2 (Wilking, [141]). Let J denote an (n−1)-dimensional space of Jacobi
fields orthogonal to a geodesic c : R → Mn, with self-adjoint Riccati operator. If
M has nonnegative sectional curvature, then

J = span
R
{J ∈ J | J(t) = 0 for some t} ⊕ {J ∈ J | J is parallel }.

Proof. Set
V := span

R
{J ∈ J | J(t) = 0 for some t}.

The collection {Y | Y = Jh, J ∈ J} is a vector space canonically isomorphic to J/V
via J +V 	→ Jh, and satisfies (1.7.7). The argument used in the proof of Theorem
1.7.1 can now be repeated verbatim to deduce that S in (1.7.7) identically vanishes,
provided we know that this collection spans H(t) for every t; equivalently, that for
any J ∈ J \ V, and any t ∈ R, the vector J(t) is transversal to

V (t) = {J(t) | J ∈ V} ⊕ {J ′(t) | J ∈ V, J(t) = 0}.

Suppose, to the contrary, that for some J ∈ J \V and some t, J(t) = J1(t)+J ′
2(t),

Ji ∈ V, J2(t) = 0. Then 〈J(t), J ′
2(t)〉 = 〈J ′(t), J2(t)〉 = 0, and similarly, J1(t) ⊥

J ′
2(t). But then J ′

2(t) = J(t)−J1(t) is perpendicular to itself, hence vanishes. Thus,
J(t) = J1(t), and J − J1 ∈ V, which contradicts the fact that J /∈ V. By (1.7.7),
S ≡ 0, and the fields Y are Dh-parallel. But A (and Rh) also vanish, so that
Y ′ = −A∗Y = 0, and any Y is then parallel for the Levi-Civita connection. �

If π : Mn+k → Bn is a metric fibration, and c : R → M is a horizontal
geodesic in M , then there is a distinguished (n + k − 1)-dimensional family of
projectable Jacobi fields orthogonal to c with self-adjoint Riccati operator that
will be used in the next section: define

Pv = {J | J is projectable Jacobi along c, J ⊥ ċ, Jh(0) = 0}. (1.7.8)

An argument similar to the one used in Theorem 1.6.1 shows that Pv has dimension
n + k − 1. Denote by π∗Pv the space of projected Jacobi fields π∗J , J ∈ Pv. Since
every element in π∗Pv vanishes at 0, π∗Pv has self-adjoint Riccati operator. The
following lemma then implies that Pv itself also has that property:

Lemma 1.7.2. Let π : M → B be a metric fibration, c : R → M a horizontal
geodesic, and V a subspace of projectable Jacobi fields along c. If π∗V denotes the
space {π∗J | J ∈ V} of projected Jacobi fields, then V has self-adjoint Riccati
operator iff π∗V does.
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Proof. Given J1 and J2 in V,

〈J1, J
′
2〉 = 〈Jv

1 , J ′
2
v〉 + 〈Jh

1 , J ′
2
h〉

= 〈Jv
1 ,−SċJ

v
2 〉 − 〈Jv

1 , AċJ
h
2 〉 + 〈Jh

1 , Jh
2
′h〉 + 〈Jh

1 , Jv
2
′h〉

= 〈Jv
1 ,−SċJ

v
2 〉 − 〈A∗

ċJ
v
1 , Jh

2 〉 + 〈Jh
1 , Jh

2
′h〉 − 〈Jh

1 , A∗
ċJ

v
2 〉.

Thus,

〈J1, J
′
2〉 − 〈J ′

1, J2〉 = 〈Jh
1 , Jh

2
′h〉 − 〈Jh

1
′h, Jh

2 〉
= 〈π∗J1, (π∗J2)′〉 − 〈(π∗J1)′, π∗J2〉,

and the claim follows. �

1.8 The dual foliation

Consider a metric foliation F on a Riemannian manifold M that may be singular
(see Section 1.2) in the sense that the leaves need not have constant dimension.
Wilking [141] introduced a so-called dual foliation of M that plays a key role in
nonnegative sectional curvature: given p ∈ M , the dual leaf through p is defined
by

L#(p) := {q ∈ M | there exists a piece-wise smooth horizontal curve from
p to q}.

To show that the collection F# of dual leaves is indeed a (singular) foliation, it
must be checked that these leaves are smooth immersed submanifolds of M . For
a fixed leaf L of F with normal bundle π : ν(L) → L, consider all vector fields X
on M that can be written as expν∗ Y ◦ exp−1

ν for some smooth vector field Y with
compact support on ν(L) such that π∗Y = 0. The latter condition means that the
points on a flow line of X can be connected to a single point in L by means of
horizontal geodesics. In particular, flow lines are contained in a dual leaf.

Next, consider the collection X0 of all vector fields obtained in this way from
each and every leaf of F , and the group D of diffeomorphisms of M generated
by the flows of these fields. Finally, denote by X the Lie algebra generated by all
vector fields induced by one-parameter subgroups of D, and set

Δp := {X(p) | X ∈ X}, p ∈ M.

In general, Δ will not be a distribution globally, because it need not have constant
dimension, cf. Examples and Remarks 1.8.1(iii). Notice, however, that if X ∈ X
has flow Φt and φ ∈ D, then φ∗ ◦ X ◦ φ−1 has flow φ ◦ Φt ◦ φ−1, and hence also
belongs to X. Thus, Δ has constant dimension along orbits of D. It follows that
the orbits are precisely the integral manifolds of this distribution. Each orbit is
therefore a smooth submanifold, which by definition coincides with a dual leaf.
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If k denotes the dimension of a given leaf of the original foliation, then the
dimension of a dual leaf L# that intersects it must of course satisfy dimM −
k ≤ dim L# ≤ dimM . Both bounds may be taken on: The simplest example
of a dual foliation occurs for a Riemannian product M = B × F . The metric
projection M → B is a Riemannian submersion, and the dual foliation consists of
the collection B × {q}, as q ranges over F . On the other hand, it is not hard to
see that for the Hopf fibration S3 → S2, the dual foliation has exactly one leaf;
i.e., any two points of S3 can be joined by a piece-wise smooth horizontal curve.

Wilking [141] has shown that this is actually a property shared by all folia-
tions in spaces of positive curvature:

Theorem 1.8.1. The dual of a metric foliation in a space Mn+k of positive curva-
ture consists of a single leaf.

Proof. By definition, horizontal geodesics are contained in dual leaves. The the-
orem follows once we show that the normal space to a leaf along some geodesic
contained in it is spanned by parallel Jacobi fields. Suppose then that some dual
leaf L# has dimension smaller than n := dimM , and consider a horizontal geodesic
c in L#. If the tangent space of L# at c(0) intersects the vertical space, choose an
orthonormal basis u1, . . . , uk of Vc(0) with ul, . . . , uk ∈ L#

c(0), l > 1. By hypothe-
sis, there exists for each i ≥ l a curve γi with γ̇i(0) = ui, such that if s is small
enough, then γi(s) can be joined to c(0) by a broken horizontal geodesic. Thus,
there exist Jacobi fields Jl, . . . , Jk with Ji(0) = ui, and Ji(t) ∈ L#

c(t). Similarly,
choose Jacobi fields Jk+1, . . . , Jk+n−1 with Jk+i(0) = 0, such that {J ′

k+i(0)} spans
Hc(0) ∩ ċ(0)⊥. By Corollary 1.6.1, Jk+1(t), . . . , Jk+n−1(t) are also tangent to L#

for all t. Finally, denote by J1, . . . , Jl−1 the holonomy fields with Ji(0) = ui. Now,
J := span

R
{J1, . . . , Jn+k−1} is an (n + k − 1)-dimensional space of projectable

Jacobi fields orthogonal to c that are vertical at 0. By dimension considerations, it
coincides with the space Pv from (1.7.8). Thus, J has self-adjoint Riccati operator,
and by Theorem 1.7.2,

J = span
R
{J ∈ J | J(t) = 0 for some t} ⊕ {J ∈ J | J is parallel }.

Notice that the first summand above is contained in {Ji ∈ J | i ≥ l}: For if
J ∈ J, then J is a projectable Jacobi field, so that if J(t0) = 0 for some t0, it is
the variational field of a variation by horizontal geodesics emanating from c(t0);
i.e., J(t) ∈ L#

c(t) for all t. Thus, J contains a subspace of parallel Jacobi fields of
dimension ≥ l − 1. Since the two summands of J are point-wise orthogonal, the
normal space of L# along c is spanned by parallel Jacobi fields, as claimed. �

Notice that the proof does not require positive curvature everywhere, so that
the theorem actually holds on any space of nonnegative curvature where the cur-
vature is strictly positive at one point and dual leaves are complete. Wilking’s
result is related to so-called Carnot-Carathéodory structures studied by Gromov
and others, which have deep applications in rigidity problems for noncompact
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rank one symmetric spaces, cf. [92], [100], [65]. Such a structure is defined by a
subbundle H of the tangent bundle of a manifold M together with an inner prod-
uct, so that a horizontal curve (i.e., one tangent to H) has a well-defined length.
One then sets the distance between two points to be the infimum of the lengths of
all horizontal curves that connect them (if such curves exist), or ∞ otherwise. If
any two points can be joined by a horizontal curve, then this distance is actually
a metric on M , called a Carnot-Carathéodory or sub-Riemannian metric, and this
metric induces the original topology on M . Theorem 1.8.1 says that in a space M
of positive curvature, the horizontal distribution stemming from a metric foliation
defines a Carnot-Carathéodory metric on M . In general, if one only assumes the
existence of a horizontal distribution H on a manifold M that is not necessarily
endowed with a Riemannian structure, then Chow’s connectivity theorem asserts
that any two points can be joined by a horizontal curve provided H is completely
nonintegrable; i.e., the tangent space of M at any point can be generated by taking
iterated brackets of horizontal vector fields.

Examples and Remarks 1.8.1. (i) The proof of Theorem 1.8.1 does not require
that the dimension k of a leaf be constant. This implies that the theorem holds
more generally for singular Riemannian foliations in positively curved manifolds.

(ii) By definition, the distribution spanned by the dual foliation contains the
image of the A-tensor. It is therefore easy to find examples of metric foliations
in spaces that are not positively curved where any two points can be joined by a
broken horizontal geodesic: one such is the foliation of R3 given by the orbits of
the isometric R-action

R × (R2 × R) → R2 × R,

(t, (p, t0)) 	→ (eitp, t + t0).

If, on the other hand, we allow singular Riemannian foliations, then there are
even examples of flat foliations with only one dual leaf: perhaps the simplest one
consists of the foliation of R2 by circles of radius r around a point, with 0 ≤ r < ∞.

(iii) When the dual foliation consists of more than one leaf, it is in general
singular. One example that will be treated in more detail in Chapter 3 is the
orbit space M = S3 ×S1 R2 of the free isometric action of S1 on the Riemannian
product S3 ×R2, where each factor has the standard metric; the action of z ∈ S1

on (p, u) ∈ S3 × R2 is given by z(p, u) := (pz−1, zu), with p ∈ S3 viewed as an
element of C2, and u ∈ C. Since the action is by isometries, there is a metric
of nonnegative curvature on M for which the projection ρ : S3 × R2 → M is a
Riemannian submersion. Notice that ρ(S3 × {0}) = S2(1/2) is the image of the
Hopf fibration. Consider the map

π : M = ρ(S3 × R2) → ρ(S3 × {0}),
ρ(p, u) 	→ ρ(p, 0).

If p1 : S3×R2 → S3 denotes projection onto the first factor, and σ : S3 → S2(1/2)
is the Hopf fibration, then σ ◦ p1 = π ◦ ρ. Furthermore, (x, 0) ∈ S3

p × R2
u is
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ρ-horizontal whenever x ∈ S3
p is σ-horizontal, so that |π∗ ◦ ρ∗(x, 0)| = |σ∗x| = |x|,

and π is Riemannian. This also shows that any ρ-horizontal curve c with c(0) =
(p, u) has its image contained inside ρ(S3 × {u}), and in fact, the restriction of π
to the positively curved manifold ρ(S3 × {u}) is again Riemannian. By Theorem
1.8.1, the foliation dual to π consists of three-dimensional leaves ρ(S3 × {u}),
|u| > 0, and one two-dimensional leaf S2(1/2).

(iv) Wilking has shown that if the dual foliation has complete leaves, then
it is also a (singular) metric foliation provided the ambient space is nonnegatively
curved, see [141]. The set of points for which the dual leaves have maximal dimen-
sion is open and dense in M . This is in particular true for the dual foliation in
(iii), the leaves of which are the boundary of the distance tubes of radius r around
S2(1/2), r ≥ 0. If the curvature assumption is dropped, then the dual foliation
will not, in general, be metric. For example, any codimension one totally geodesic
foliation F of hyperbolic space is the dual of the one-dimensional metric foliation
orthogonal to it, but F is never metric in this situation.

(v) Let F be a metric foliation of a nonnegatively curved manifold, and
suppose that the dual leaves are complete. Let x ∈ Mp be a horizontal vector,
v ∈ Mp a vector orthogonal to the dual leaf through p. We claim that if c is the
geodesic with ċ(0) = x, and E the parallel field along c with E(0) = v, then the
rectangle

V : R × [0,∞) → M,

(t, s) 	→ exp sE(t)

is flat and totally geodesic. To see this, notice that the proof of Theorem 1.8.1
implies that E is a parallel Jacobi field which stays perpendicular to the dual leaf
through p. By (iv), each geodesic s 	→ Vt(s) := exp sE(t) is horizontal for the dual
foliation, and is therefore vertical for F . For any t, there exists ε > 0 such that the
restriction c|[t,t+ε] is a local minimal connection between the leaves through c(t)
and c(t + ε). However, if Vs(t) = V (t, s), then the restriction of Vs to [t, t + ε] also
connects these leaves, and by the second Rauch comparison theorem, it cannot
be longer than the restriction of c to the same interval, see Theorem 3.2.2. The
equality version of that same theorem now implies the claim.
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1.9 Basic identities

In this last section of the chapter, we gather for convenience of the reader a
list of the definitions and identities introduced so far that are most often used
throughout the text. The notation is the one agreed upon earlier, with X , Y
denoting horizontal fields, T , U , V vertical ones, etc.

• A tensor:
AXY =

1
2
[X, Y ]v, 〈A∗

XU, Y 〉 = 〈AXY, U〉.

• S tensor and mean curvature form κ:

SXU = −∇v
UX ; κ(E) = tr SEh ; d κ(X, Y ) = −2 div(AXY ) = tr d∇SX,Y

(in the last equation, X and Y are assumed to be basic).

• Covariant derivative of a vector field E along a curve c:

E′h = (̃π∗E)′ − A∗
Eh ċv − A∗

ċhEv + σ(ċv, Ev),

E′v = AċhEh − SEh ċv + Ev′v.

• Curvature identities:

π∗R(x, y)z = RB(π∗x, π∗y, )π∗z + π∗(2A∗
zAxy − A∗

xAyz − A∗
yAzx);

Rv(x, y)z = −(∇v
z A)xy + SzAxy − SyAzx − SxAyz;

Rv(x, u)y = −(∇v
uA)xy − AyA∗

xu − (∇v
xS)yu + SySxu;

Rv(x, y)u = −2(∇v
uA)xy − d∇Sx,yu + [Sy, Sx]u + (AxA∗

y − AyA∗
x)u;

RF (u, v)w = Rv(u, v)w + Sσ(v,w)u − Sσ(u,w)v;
Rv(u, w)x = (∇v

wS)xu − (∇v
uS)xw.

• Sectional curvature identities:
Kπ∗x,π∗y = Kx,y + 3|Axy|2;

KF
u,v = Ku,v + σ(u, u)σ(v, v) − σ2(u, v);

Kx,u = 〈(∇v
xS)xu, u〉+ |A∗

xu|2 − |Sxu|2.

• Holonomy Jacobi field J along a horizontal geodesic c:

J ′ = −A∗
ċJ − SċJ.

• Projectable Jacobi field J along a horizontal geodesic c:

J ′v = −SċJ
v − AċJ

h.

• Riccati equation for S along a horizontal geodesic c:

Rv = S′
ċ − S2

ċ + AċA
∗
ċ , R := R(·, ċ)ċ.



Chapter 2

Basic Constructions
and Examples

2.1 General vertical warping

Any Riemannian submersion can be used to generate new ones by deforming
the metric in the vertical direction. To be specific, let π : (M, 〈, 〉) → B be a
Riemannian submersion. Given φ : M → R, define a new metric 〈, 〉φ on M by

〈e, f〉φ = e2φ(p)〈ev, fv〉 + 〈eh, fh〉, e, f ∈ Mp, p ∈ M.

Since the horizontal metric is unchanged, π : (M, 〈, 〉φ) → B is still a Riemannian
submersion. X , Y , Z will denote basic fields, Ti vertical ones, and ∇̃, R̃ the Levi-
Civita connection and curvature tensor, respectively, of 〈, 〉φ. We will assume that
the deformation is constant along fibers, or equivalently, that the gradient of φ is
basic.

2.1.1 The connection

We begin by computing the covariant derivatives. Since [X, T ] is vertical, we have:

〈∇̃T X, Y 〉φ = 〈∇̃XT, Y 〉φ = −〈T, (∇̃XY )v〉φ = −1
2
〈T, [X, Y ]v〉φ

= −1
2
e2φ〈T, [X, Y ]v〉 = e2φ〈∇T X, Y 〉,

so that
(∇̃T X)h = (∇̃XT )h = e2φ(∇T X)h = e2φ(∇XT )h. (2.1.1)
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Similarly, using the formula for the Levi-Civita connection,

2e2φ〈∇̃T1X, T2〉 = 2〈∇̃T1X, T2〉φ
= X〈T1, T2〉φ + 〈T2, [T1, X ]〉φ − 〈T1, [X, T2]〉φ
= 2X(φ)e2φ〈T1, T2〉 + e2φ

{
X〈T1, T2〉 + 〈T2, [T1, X ]〉

− 〈T1, [X, T2]〉
}

= e2φ
{
2〈T1, T2〉〈∇φ, X〉 + 2〈∇T1X, T2〉

}
.

Thus,
(∇̃T X)v = (∇T X)v + 〈∇φ, X〉T. (2.1.2)

Much in the same way,

2〈∇̃XT1, T2〉φ = X〈T1, T2〉φ + 〈T2, [X, T1]〉φ + 〈T1, [T2, X ]〉φ
= 2X(φ)e2φ〈T1, T2〉 + e2φ

{
X〈T1, T2〉 + 〈T2, [X, T1]〉

+ 〈T1, [T2, X ]〉}
= e2φ

{
2〈T1, T2〉〈∇φ, X〉 + 2〈∇XT1, T2〉

}
= 2〈∇φ, X〉〈T1, T2〉φ + 2〈∇XT1, T2〉φ,

which implies
(∇̃XT )v = (∇XT )v + 〈∇φ, X〉. (2.1.3)

For covariant derivatives of vertical fields in vertical directions, we compute:

2〈∇̃T1T2, X〉 = 2〈∇̃T1T2, X〉φ = −X〈T2, T1〉φ + 〈X, [T2, T1]〉φ + 〈T2, [X, T1]〉φ
− 〈T1, [T2, X ]〉φ

= −X(e2φ)〈T2, T1〉 + e2φ
(〈X, [T2, T1]〉 + 〈T2, [X, T1]〉

− 〈T1, [T2, X ]〉)
= −2e2φ〈T1, T2〉〈∇φ, X〉 + 2e2φ〈∇T1T2, X〉,

so that
(∇̃T1T2)h = e2φ

{
(∇T1T2)h − 〈T1, T2〉∇φ

}
. (2.1.4)

Next, we have

2e2φ〈∇̃T1T2, T3〉 = 2〈∇̃T1T2, T3〉φ
= T1〈T2, T3〉φ + T2〈T3, T1〉φ − T3〈T1, T2〉φ

+ 〈T3, [T1, T2]〉φ + 〈T2, [T3, T1]〉φ − 〈T1, [T2, T3]〉φ
= e2φ

{
T1〈T2, T3〉+T2〈T3, T1〉 − T3〈T1, T2〉

+ 〈T3, [T1, T2]〉 + 〈T2, [T3, T1]〉 − 〈T1, [T2, T3]〉
}

= 2e2φ〈∇T1T2, T3〉,
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so that
(∇̃T1T2)v = (∇T1T2)v. (2.1.5)

The horizontal and vertical parts in the above identities may be combined
into one. σ will denote the second fundamental tensor of the fibers in the original
metric, σ(T1, T2) = (∇T1T2)h, and similarly, the point-wise adjoint A∗ of the A-
tensor is the one with respect to the original metric. We then obtain:

∇̃T1T2 = ∇T1T2 + (e2φ − 1)σ(T1, T2) − e2φ〈T1, T2〉∇φ, (2.1.6)

∇̃T X = ∇T X + (1 − e2φ)A∗
XT + 〈∇φ, X〉T, (2.1.7)

∇̃XT = ∇XT + (1 − e2φ)A∗
XT + 〈∇φ, X〉T. (2.1.8)

It remains to compute ∇̃XY . Since the metric is unchanged in the horizontal
direction, (∇̃XY )h = (∇XY )h, whereas

2〈∇̃XY, T 〉φ = 〈[X, Y ], T 〉φ = e2φ〈[X, Y ], T 〉 = 2e2φ〈∇XY, T 〉 = 2〈∇XY, T 〉φ.

Thus, (∇̃XY )v = (∇XY )v, and

∇̃XY = ∇XY. (2.1.9)

2.1.2 The curvature tensor

The curvature tensor R̃ of 〈, 〉φ can be readily derived from the above identities. Let
us begin with terms involving horizontal vectors. In order to find the expression
for R̃(X, Y )Z, we compute, using (2.1.9) and(2.1.8),

∇̃X∇̃Y Z = ∇̃X∇Y Z = ∇̃X((∇Y Z)h + (∇Y Z)v)

= ∇X(∇Y Z)h + ∇X(∇Y Z)v + (1 − e2φ)A∗
X(∇Y Z)v

+ 〈∇φ, X〉(∇Y Z)v

= ∇X∇Y Z + (1 − e2φ)A∗
XAY Z + 〈∇φ, X〉AY Z.

Interchanging X and Y yields of course a corresponding expression for ∇̃Y ∇̃XZ.
By (2.1.9) and (2.1.7),

∇̃[X,Y ]Z = ∇̃[X,Y ]hZ + ∇̃[X,Y ]vZ

= ∇[X,Y ]hZ + ∇[X,Y ]vZ + (1 − e2φ)A∗
Z [X, Y ]v + 〈∇φ, Z〉[X, Y ]v

= ∇[X,Y ]Z + 2(1 − e2φ)A∗
ZAXY + 2〈∇φ, Z〉AXY.

Adding these identities then yields

R̃(X, Y )Z = R(X, Y )Z + (1 − e2φ)(A∗
XAY Z − A∗

Y AXZ − 2A∗
ZAXY )

+ 〈∇φ, X〉AY Z − 〈∇φ, Y 〉AXZ − 2〈∇φ, Z〉AXY.
(2.1.10)
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Taking vertical and horizontal parts, we obtain

R̃v(X, Y )Z = Rv(X, Y )Z + 〈∇φ, X〉AY Z − 〈∇φ, Y 〉AXZ − 2〈∇φ, Z〉AXY,
(2.1.11)

and

R̃h(X, Y )Z = Rh(X, Y )Z + (1− e2φ)(A∗
XAY Z −A∗

Y AXZ − 2A∗
ZAXY ). (2.1.12)

Recalling the relation between the curvatures R of M and RB of B, the last
identity may be rewritten as

R̃h(X, Y )Z = (1 − e2φ)RB(X, Y )Z + e2φRh(X, Y )Z, (2.1.13)

where we denote by the same letter a basic field on M and the vector field on B
that is π-related to it.

Next, we look at terms that only involve vertical vectors.

To find R̃h(T1, T2)T3, we first calculate (∇̃T X)h for nonbasic X :

(∇̃T X)h = (∇̃XT )h + [T, X ]h = e2φ(∇XT )h + [T, X ]h

= e2φ
{
(∇XT )h + [T, X ]h

}
+ (1 − e2φ)[T, X ]h

= e2φ∇XT + (1 − e2φ)[T, X ]h.

Using (2.1.6), we then obtain(∇̃T1(∇̃T2T3)h
)h =

(∇̃T1e
2φ{(∇T2T3)h − 〈T2, T3〉∇φ})h

= e2φ
{(∇̃T1(∇T2T3)h

)h − T1〈T2, T3〉∇φ − 〈T2, T3〉∇̃T1∇φ
}h

= e2φ
{(∇T1(∇T2T3)h

)h + (1 − e2φ)
(
[T1, (∇T2T3)h]h

− (∇σ(T2,T3)T1)h
)− T1〈T2, T3〉∇φ − 〈T2, T3〉(∇T1∇φ)h

− 〈T2, T3〉(1 − e2φ)A∗
∇φT1

}
= e2φ

{(∇T1(∇T2T3)h
)h + (1 − e2φ)

(∇T1(∇T2T3)h
)h

− T1〈T2, T3〉∇φ − 〈T2, T3〉(∇T1∇φ)h

− 〈T2, T3〉(1 − e2φ)A∗
∇φT1

}
= e2φ

{
(2 − e2φ)

(∇T1(∇T2T3)h
)h − T1〈T2, T3〉∇φ

+ 〈T2, T3〉e2φA∗
∇φT1

}
,

and (∇̃T1(∇̃T2T3)v
)h

=
(∇̃T1(∇T2T3)v

)h
= e2φ

{(∇T1(∇T2T3)v
)h

− 〈T1,∇T2T3〉∇φ
}
.
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Assuming without loss of generality that [T1, T2] = 0,

R̃h(T1, T2)T3 = e2φ
{
(2 − e2φ))Rh(T1, T2)T3 +

(− T1〈T2, T3〉 + T2〈T1, T3〉
− 〈T1,∇T2T3〉 + 〈T2,∇T1T3〉

)∇φ

+ e2φA∗
∇φ

(〈T2, T3〉T1 − 〈T1, T3〉T2

)}
.

The coefficient of ∇φ in the above identity is zero, however, so that we finally
obtain:

e−2φR̃h(T1, T2)T3 = (2 − e2φ)Rh(T1, T2)T3

+ e2φA∗
∇φ

(〈T2, T3〉T1 − 〈T1, T3〉T2

)
.

(2.1.14)

In order to express the vertical component of R̃(T1, T2)T3, we use (2.1.6) and
(2.1.7): (∇̃T1(∇̃T2T3)v

)v =
(∇̃T1(∇T2T3)v

)v =
(∇T1(∇T2T3)v

)v
,

whereas(∇̃T1(∇̃T2T3)h
)v =

(∇̃T1(e
2φ{(∇T2T3)h − 〈T2, T3〉∇φ}))v

= e2φ
{∇T1

(
(∇T2T3)h − 〈T2, T3〉∇φ

)v
+ 〈∇φ, (∇T2T3)h − 〈T2, T3〉∇φ〉T1

}
= e2φ

{∇T1

(
(∇T2T3)h

)v + 〈T2, T3〉
(
S∇φT1 − |∇φ|2T1

)
+ 〈∇φ,∇T2T3〉T1

}
= ∇T1

(
(∇T2T3)h

)v + (1 − e2φ)Sσ(T2,T3)T1

+ e2φ
{〈T2, T3〉

(
S∇φT1 − |∇φ|2T1

)
+ 〈∇φ, σ(T2, T3)〉T1

}
.

Thus,

R̃v(T1, T2)T3 = Rv(T1, T2)T3 + (1 − e2φ){Sσ(T2,T3)T1 − Sσ(T1,T3)T2}
+ e2φ

{
(S∇φ − |∇φ|2I)(〈T2, T3〉T1 − 〈T1, T3〉T2)

+ 〈∇φ, σ(T2, T3)〉T1 − 〈∇φ, σ(T1, T3)〉T2

}
.

(2.1.15)

This identity may be rewritten as follows: According to the Gauss equation,

Rv(T1, T2)T3 = RF (T1, T2)T3 + Sσ(T1,T3)T2 − Sσ(T2,T3)T1,

where RF denotes the intrinsic curvature of the fiber (with respect to the original
metric). Substituting this into (2.1.15) then yields

R̃v(T1, T2)T3 = (1 − e2φ)RF (T1, T2)T3 + e2φRv(T1, T2)T3

+ e2φ
{
(S∇φ − |∇φ|2I)(〈T2, T3〉T1 − 〈T1, T3〉T2)

}
+ e2φ

{〈∇φ, σ(T2, T3)〉T1 − 〈∇φ, σ(T1, T3)〉T2

}
.

(2.1.16)
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We next compute R̃v(X, T )Y , which involves the following five expressions:(∇̃X(∇̃T Y )v
)v =

(∇̃X{(∇T Y )v + 〈∇φ, Y 〉T })v
=
(∇X{(∇T Y )v + 〈∇φ, Y 〉T })v + 〈∇φ, X〉((∇T Y )v

+ 〈∇φ, Y 〉T )
=
(∇X(∇T Y )v

)v + {〈∇X∇φ, Y 〉 + 〈∇φ,∇XY 〉
+ 〈∇φ, X〉〈∇φ, Y 〉}T + 〈∇φ, Y 〉(∇XT )v

+ 〈∇φ, X〉(∇T Y )v,(∇̃X(∇̃T Y )h
)v =

(∇̃X(e2φ∇T Y )h
)v = e2φ

(∇X(∇T Y )h
)v

,(∇̃T (∇̃XY )h
)v

=
(∇̃T (∇XY )h

)v
=
(∇T (∇XY )h

)v
+ 〈∇φ,∇XY 〉T,(∇̃T (∇̃XY )v

)v =
(∇̃T (∇XY )v

)v =
(∇T (∇XY )v

)v
,

(∇̃[X,T ]Y )v = (∇[X,T ]Y )v + 〈∇φ, Y 〉[X, T ].

Let hφ denote the Hessian form of φ, hφ(X, Y ) = 〈∇X∇φ, Y 〉 = 〈X,∇Y ∇φ〉.
Adding the above expressions then yields

R̃v(X, T )Y = Rv(X, T )Y − (1 − e2φ)
(∇X(∇T Y )h

)v +
{
hφ(X, Y )

+ 〈∇φ, X〉〈∇φ, Y 〉}T + 〈∇φ, Y 〉(∇T X)v + 〈∇φ, X〉(∇T Y )v.

Equivalently,

R̃v(X, T )Y = Rv(X, T )Y + (1 − e2φ)AXA∗
Y T +

{
hφ(X, Y )

+ 〈∇φ, X〉〈∇φ, Y 〉}T − (〈∇φ, X〉SY T + 〈∇φ, Y 〉SXT
)
.

(2.1.17)

All other curvature identities can be derived from the previous ones using
symmetries of the curvature tensor. For example, to obtain R̃h(X, T )Y , (2.1.11)
implies

〈R̃h(X, T )Y, Z〉 = 〈R̃h(X, T )Y, Z〉φ = 〈R̃v(Y, Z)X, T 〉φ
= 〈Rv(Y, Z)X, T 〉φ + 〈∇φ, Y 〉〈AZX, T 〉φ

− 〈∇φ, Z〉〈AY X, T 〉φ − 2〈∇φ, X〉〈AY Z, T 〉φ
= e2φ

{〈Rv(Y, Z)X, T 〉 + 〈∇φ, Y 〉〈AZX, T 〉
− 〈∇φ, Z〉〈AY X, T 〉 − 2〈∇φ, X〉〈AY Z, T 〉}

= e2φ
{〈Rh(X, T )Y, Z〉 − 〈∇φ, Y 〉〈A∗

XT, Z〉
− 〈∇φ, Z〉〈AY X, T 〉 − 2〈∇φ, X〉〈A∗

Y T, Z〉},

so that

e−2φR̃h(X, T )Y = Rh(X, T )Y − 〈∇φ, Y 〉A∗
XT − 2〈∇φ, X〉A∗

Y T + 〈AXY, T 〉∇φ.
(2.1.18)
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Similarly, to compute R̃h(T1, X)T2, one can proceed as follows:

〈R̃h(T1, X)T2, Y 〉 = 〈R̃h(T1, X)T2, Y 〉φ = 〈R̃v(X, T1)Y, T2〉φ
= 〈R(X, T1)Y, T2〉φ + (1 − e2φ)〈AXA∗

Y T1, T2〉φ
+ {hφ(X, Y ) + 〈∇φ, X〉〈∇φ, Y 〉}〈T1, T2〉φ
− 〈∇φ, X〉〈SY T1, T2〉φ − 〈∇φ, Y 〉〈SXT1, T2〉φ

= e2φ
{〈R(X, T1)Y, T2〉 + (1 − e2φ)〈AXA∗

Y T1, T2〉
+ {hφ(X, Y ) + 〈∇φ, X〉〈∇φ, Y 〉}〈T1, T2〉
− 〈∇φ, X〉〈SY T1, T2〉 − 〈∇φ, Y 〉〈SXT1, T2〉

}
= e2φ

{〈R(T1, X)T2, Y 〉 − (1 − e2φ)〈A∗
A∗

XT2
T1, Y 〉

+ 〈T1, T2〉{〈∇X∇φ, Y 〉 + 〈∇φ, X〉〈∇φ, Y 〉}
− 〈∇φ, X〉〈∇T1T2, Y 〉 − 〈SXT1, T2〉〈∇φ, Y 〉}.

Thus,

e−2φR̃h(T1, X)T2 = Rh(T1, X)T2 − (1 − e2φ)A∗
A∗

XT2
T1 + 〈T1, T2〉〈∇φ, X〉∇φ

− 〈X, σ(T1, T2)〉∇φ − 〈∇φ, X〉σ(T1, T2)

+ 〈T1, T2〉(∇X∇φ)h.

(2.1.19)

For R̃h(T1, T2)X , we use the Bianchi identity and (2.1.19):

e−2φR̃h(T1, T2)X = e−2φ
(
R̃h(T1, X)T2) + R̃h(X, T2)T1

)
= Rh(T1, X)T2 + Rh(X, T2)T1 − (1 − e2φ)A∗

A∗
XT2

T1

+ (1 − e2φ)A∗
A∗

XT1
T2,

so that

e−2φR̃h(T1, T2)X = Rh(T1, T2)X + (1 − e2φ)(A∗
A∗

XT1
T2 − A∗

A∗
XT2

T1). (2.1.20)

The latter identity can also be used to derive R̃v(X, Y )T : Notice that

〈A∗
A∗

XT T1, Y 〉 = 〈T1, AA∗
XT Y 〉 = −〈T1, AY A∗

XT 〉.
Thus,

〈R̃(X, Y )T, T1〉 = e−2φ〈R̃(X, Y )T, T1〉φ = e−2φ〈R̃(T, T1)X, Y 〉φ
= e−2φ〈R̃(T, T1)X, Y 〉
= 〈R(T, T1)X, Y 〉 + (1 − e2φ)

(− 〈AY A∗
XT, T1〉

+ 〈T, AY A∗
XT1〉

)
= 〈R(X, Y )T, T1〉 + (1 − e2φ)〈(AXA∗

Y − AY A∗
X)T, T1〉,
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and

R̃v(X, Y )T = Rv(X, Y )T + (1 − e2φ)(AXA∗
Y − AY A∗

X)T. (2.1.21)

Finally, by (2.1.11),

〈R̃(X, Y )T, Z〉 = 〈R̃(X, Y )T, Z〉φ = −〈R̃(X, Y )Z, T 〉φ
= −e2φ〈R̃(X, Y )Z, T 〉
= −e2φ

{〈R(X, Y )Z, T 〉 + 〈∇φ, X〉〈AY Z, T 〉
− 〈∇φ, Y 〉〈AXZ, T 〉 − 2〈∇φ, Z〉〈AXY, T 〉}

= e2φ
{〈R(X, Y )T, Z〉 − 〈∇φ, X〉〈A∗

Y T, Z〉
+ 〈∇φ, Y 〉〈A∗

XT, Z〉 + 2〈∇φ, Z〉〈AXY, T 〉},

so that

e−2φR̃h(X, Y )T = Rh(X, Y )T − 〈∇φ, X〉A∗
Y T + 〈∇φ, Y 〉A∗

XT

+ 2〈AXY, T 〉∇φ.
(2.1.22)

2.1.3 The sectional curvatures

The results from the previous section yield corresponding identities for the sec-
tional curvatures. Given (not necessarily orthonormal) vertical v, w and horizontal
x, y in Mp, p ∈ M , let

k(v, w) := 〈R(v, w)w, v〉,
k̃(v, w) := 〈R(v, w)w, v〉φ,

kB(x, y) := 〈RB(π∗x, π∗y)π∗y, π∗x〉B ,

etc. Then

k̃(X, Y ) = (1 − e2φ)kB(X, Y ) + e2φk(X, Y ), (2.1.23)

k̃(X, T ) = k(X, T ) − (1 − e2φ)|A∗
XT |2 + 2〈∇φ, X〉〈X, σ(T, T )〉

− (hφ(X, X) + 〈∇φ, X〉2)|T |2, (2.1.24)

e−4φk̃(T1, T2) = e−2φ(1 − e2φ)kF (T1, T2) + k(T1, T2)

+ 〈∇φ, σ(T1, T1)〉|T2|2 + 〈∇φ, σ(T2, T2)〉|T1|2
− 2〈∇φ, σ(T1, T2)〉〈T1, T2〉 − |∇φ|2(|T1|2|T2|2
− 〈T1, T2〉2

)
.

(2.1.25)
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2.1.4 The Ricci curvature

Let k denote the dimension of the fibers. Recall from Definition 1.4.4 that the mean
curvature form of the submersion is the horizontal 1-form κ, where κ(u) = trSuh ,
and the mean curvature vector field is the (horizontal) vector field H dual to κ:
〈H, Y 〉 = κ(Y ). If Ti is a local orthonormal basis of vertical vector fields, and Xj

a local basic one, then locally, H =
∑

i ∇TiTi, because

〈H, Y 〉 = tr SY =
∑

i

〈SY Ti, Ti〉 = −
∑

i

〈∇TiY, Ti〉 =
〈∑

i

∇TiTi

〉
Y.

The Laplacians ΔBφ and Δφ of φ on B and M are related by ΔBφ = Δ φ+κ(∇φ),
since

ΔBφ =
∑

j

hφ(Xj , Xj) = Δφ −
∑

i

hφ(Ti, Ti) = Δφ −
∑

i

〈∇Ti∇φ, Ti〉

= Δ φ + 〈∇φ, H〉.
We denote by Rich(u, v) the trace of the operator w 	→ R(w, u)v restricted to the
horizontal space, and by Ricv the one restricted to the vertical space. As usual, a
basic field on M and the π-related field on B are denoted by the same letter. Let
T̃j := e−φTj , so that T̃j is a local orthonormal basis of the vertical space in the
φ-metric. Now,

R̃ic(X, Y ) = R̃ic
h
(X, Y ) + R̃ic

v
(X, Y )

=
n∑

i=1

〈R̃(Xi, X)Y, Xi〉φ +
k∑

j=1

〈R̃(T̃j , X)Y, T̃j〉φ,

where
R̃ic

h
(X, Y ) = (1 − e2φ)RicB(X, Y ) + e2φ Rich(X, Y ) (2.1.26)

by (2.1.13). On the other hand, (2.1.17) implies

R̃ic
v
(X, Y ) =

∑
j

〈R̃((T̃j , X)Y, T̃j〉φ = e2φ
∑

j

〈R̃(T̃j , X)Y, T̃j〉

=
∑

j

〈R̃(Tj , X)Y, Tj〉 = −
∑

j

〈R̃(X, Tj)Y, Tj〉

= −
∑

j

〈R(X, Tj)Y, Tj〉 − (1 − e2φ)
∑

j

〈AXA∗
Y Tj, Tj〉

−
∑

j

{hφ(X, Y ) + 〈∇φ, X〉〈∇φ, Y 〉}〈Tj, Tj〉

+ 〈∇φ, X〉
∑

j

〈SY Tj , Tj〉 + 〈∇φ, Y 〉
∑

j

〈SXTj, Tj〉

= Ricv(X, Y ) − (1 − e2φ) tr AXA∗
Y − k{hφ(X, Y )

+ 〈∇φ, X〉〈∇φ, Y 〉} + 〈∇φ, X〉〈Y, H〉 + 〈∇φ, Y 〉〈X, H〉.
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Recalling that tr AXA∗
Y = (1/3)(RicB(X, Y ) − Rich(X, Y )), we obtain

R̃ic
v
(X, Y ) = Ricv(X, Y ) − 1

3
(1 − e2φ)

(
RicB(X, Y ) − Rich(X, Y )

)
− k{hφ(X, Y ) + 〈∇φ, X〉〈∇φ, Y 〉} + 〈∇φ, X〉〈Y, H〉
+ 〈∇φ, Y 〉〈X, H〉.

(2.1.27)

Adding (2.1.26) and (2.1.27) then yields

R̃ic(X, Y ) = Ric(X, Y ) +
2
3
(1 − e2φ)

(
RicB(X, Y ) − Rich(X, Y )

)
+ 〈∇φ, X〉〈Y, H〉 + 〈∇φ, Y 〉〈X, H〉 − k{hφ(X, Y )
+ 〈∇φ, X〉〈∇φ, Y 〉}.

(2.1.28)

For the “vertizontal” Ricci curvature R̃ic(X, T ), we have

R̃ic(X, T ) = R̃ic
h
(X, T ) + R̃ic

v
(X, T )

=
∑

i

〈R̃(Xi, X)T, Xi〉φ +
∑

j

〈R̃(T̃j , X)T, T̃j〉φ,

where, by (2.1.11),

〈R̃(Xi, X)T, Xi〉φ = −〈R̃(Xi, X)Xi, T 〉φ = −e2φ〈R̃(Xi, X)Xi, T 〉
= −e2φ{〈R(Xi, X)Xi, T 〉 + 〈∇φ, Xi〉〈AXXi, T 〉

− 2〈∇φ, Xi〉〈AXiX, T 〉}
= e2φ{〈R(Xi, X)T, X〉i + 3〈∇φ, Xi〉〈AXiX, T 〉}.

Thus,

R̃ic
h
(X, T ) = e2φ{Rich(X, T ) + 3〈A∇φX, T 〉}. (2.1.29)

Furthermore, by (2.1.14),

〈R̃(T̃j , X)T, T̃j〉φ = 〈R̃(T, T̃j)T̃j , X〉φ = e−2φ〈R̃(T, Tj)Tj , X〉
= 〈R(T, Tj)Tj , X〉 + (1 − e2φ)〈A∗

σ(Tj ,Tj)
T − A∗

σ(T,Tj)Tj , X〉
+ e2φ〈A∗

∇φ(T − 〈T, Tj〉Tj), X〉,
so that

R̃ic
v
(X, T ) = Ricv(X, T ) + e2φ(k − 1)〈A∇φX, T 〉

+ (1 − e2φ){tr(U 	→ AXσ(T, U)) − 〈A∗
XT, H〉}.

(2.1.30)

Adding (2.1.29) and (2.1.30), we obtain

R̃ic(X, T ) = Ricv(X, T ) + e2φ
(
Rich(X, T ) + (k + 2)〈A∇φX, T 〉)

+ (1 − e2φ)
(
tr AXσ(T, ·) − 〈A∗

XT, H〉). (2.1.31)
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In order to derive the vertical Ricci curvature, we temporarily introduce verti-
cal fields U and V , since the notation Ti is already reserved for a local orthonormal
vertical basis. Now,

R̃ic(U, V ) = R̃ic
h
(U, V ) + R̃ic

v
(U, V )

=
∑

i

〈R̃(Xi, U)V, Xi〉φ +
∑

j

〈R̃(T̃j , U)V, T̃j〉φ,

where by (2.1.17),

〈R̃(Xi, U)V, Xi〉φ = −〈R̃(Xi, U)Xi, V 〉φ = −e2φ〈R̃(Xi, U)Xi, V 〉
= −e2φ

(〈R(Xi, U)Xi, V 〉 + (1 − e2φ)〈AXiA
∗
Xi

U, V 〉
+ {hφ(Xi, Xi) + 〈∇φ, Xi〉2}〈U, V 〉
− 2〈∇φ, Xi〉〈SXiU, V 〉).

Recalling that 〈SXiU, V 〉 = 〈σ(U, V ), Xi〉, we obtain after summing over i,

R̃ic
h
(U, V ) = e2φ

{
Rich(U, V ) − (1 − e2φ)

∑
i

〈AXiA
∗
Xi

U, V 〉

− (
ΔMφ + |∇φ|2)〈U, V 〉 + 2〈∇φ, σ(U, V )〉}.

(2.1.32)

Similarly, (2.1.16) implies

〈R̃(T̃j, U)V, T̃j〉φ = 〈R̃(Tj, U)V, Tj〉
= (1 − e2φ)〈RF (Tj , U)V, Tj〉 + e2φ〈R(Tj , U)V, Tj〉

+ e2φ〈{(S∇φ − |∇φ|2I)(〈U, V 〉Tj − 〈Tj , V 〉U)}, Tj〉
+ e2φ

(〈∇φ, σ(U, V )〉〈Tj , Tj〉 − 〈∇φ, σ(Tj , V )〉〈U, Tj〉
)

= (1 − e2φ)〈RF (Tj , U)V, Tj〉 + e2φ
{〈R(Tj , U)V, Tj〉

+ 〈U, V 〉〈S∇φTj , Tj〉 − 〈Tj , V 〉〈S∇φU, Tj〉
− |∇φ|2(〈U, V 〉 − 〈Tj , V 〉〈Tj , U〉)+ 〈∇φ, σ(U, V )〉
− 〈∇φ, σ(Tj , V )〉〈U, Tj〉

}
,

so that

R̃ic
v
(U, V ) = (1 − e2φ)RicF (U, V ) + e2φ

{
Ricv(U, V ) + 〈U, V 〉(〈∇φ, H〉

− (k − 1)|∇φ|2)+ (k − 2)〈∇φ, σ(U, V )〉}.
(2.1.33)

Adding (2.1.32) and (2.1.33) after replacing U , V by T1, T2 finally yields

R̃ic(T1, T2) = (1 − e2φ)
{

RicF (T1, T2) − e2φ
∑

i

〈AXiA
∗
Xi

T1, T2〉
}

+ e2φ
{

Ric(T1, T2) + k〈∇φ, σ(T1, T2)〉
+ 〈T1, T2〉

(〈∇φ, H〉 − ΔMφ − k|∇φ|2)}.

(2.1.34)
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Example 2.1.1. If π : M → B denotes a Riemannian submersion with totally
geodesic fibers, the canonical variation of the metric on M is the one obtained by
taking the function φ to be constant; i.e., φ(p) ≡ t for all p ∈ M , t ∈ (−∞,∞).
The results from Subsection 2.1.3 then imply that the unnormalized sectional
curvatures K̃ in the new metric are given by

K̃(X, Y ) = (1 − e2t)KB(X, Y ) + e2tK(X, Y ),

K̃(X, T ) = e2t|A∗
XT |2,

K̃(T1, T2) = e2tK(T1, T2).

In particular, if we let t → −∞ (which amounts to shrinking the fibers down to a
point, a phenomenon known as collapse), the sectional curvatures stay bounded,
and the metric on M “converges” to that on B.

2.2 Warped products

The simplest application of the construction in Section 2.1 is when the original
manifold M is a Riemannian product Bn×F k, and the Riemannian submersion is
the projection onto B. When in addition, the function φ depends on B only, then
the resulting warped space (M, 〈, 〉φ) is called a warped product, and is denoted
by B ×e2φ F . By (2.1.9), the A-tensor is identically zero. By (2.1.4), the second
fundamental form of the fibers is given by

σ(T1, T2) = −e2φ〈T1, T2〉∇φ = −〈T1, T2〉φ∇φ.

In particular, the fibers are totally umbilic, and the mean curvature field H =
−k∇φ is basic. These properties actually characterize warped products:

Proposition 2.2.1. Let π : Mn+k → Bn be a Riemannian submersion. Then π is
locally a warped product iff

1. the A-tensor identically vanishes;
2. the fibers are totally umbilic submanifolds of M , and
3. π is isoparametric; i.e., the mean curvature form κ is basic (equivalently, the

vector field metrically dual to κ is basic).

Proof. We have already remarked that the three conditions are necessary, so it
remains to establish they are also sufficient. For basic X , Y ,

d κ(X, Y ) = −2 div AXY = 0

by Proposition 1.4.1, and

d κ(X, T ) = Xκ(T )− Tκ(X)− κ([X, T ]) = 0
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since κ is basic. Thus, κ is closed, and locally equals kdψ for some function ψ that
is constant on the fibers. Equivalently, H = k∇ψ. The fibers being totally umbilic
means that there is a horizontal vector field N such that σ(T1, T2) = 〈T1, T2〉N .
But for an orthonormal basis Ti, H =

∑
σ(Ti, Ti), so that N = (1/k)H = ∇ψ.

Multiply the metric on the fibers by e2ψ. (2.1.4) implies that the second funda-
mental form of the fibers in the new metric is given by

σ̃(T1, T2) = e2ψ{σ(T1, T2) − 〈T1, T2〉∇ψ} = 0.

Since both the second fundamental tensor and the A-tensor vanish, (M, 〈, 〉ψ) is
locally a metric product B×F . This means that the original Riemannian manifold
is locally a warped product B ×e−2ψ F , as claimed. �

In order to construct examples of warped products, we will need the following:

Lemma 2.2.1. Let M be a Riemannian manifold, φ : M → R. Then φ is a Rie-
mannian submersion iff |∇φ| ≡ 1.

Proof. Suppose φ is a Riemannian submersion, and consider a normal horizontal
geodesic of M . Since φ ◦ c is a geodesic of R, (φ ◦ c)(t) = ±t + (φ ◦ c)(0). But ∇φ
is horizontal, so that

±1 = (φ ◦ c)′ = 〈∇φ ◦ c, ċ〉 = ±|∇φ ◦ c|.
Conversely, suppose the function φ : M → R has gradient of unit length. Then
φ∗∇φ(1R) = ∇φ(1R ◦ φ) = 〈∇φ,∇φ〉 =1. Thus, φ∗∇φ = D ◦ φ, where D is the
standard coordinate vector field on R, and φ∗ is a linear isometry on (kerφ∗)⊥;
i.e., φ is a Riemannian submersion. �

Let M be a Riemannian manifold, p ∈ M , and r0 > 0 small enough that
expp maps Ur0 := {v ∈ Mp | |v| < r0} diffeomorphically onto the metric ball
Br0(p) of radius r0 centered at p. The function φ : Br0(p) \ {p} → (0, r0), where
φ(q) = d(p, q), has maximal rank everywhere, since ∇φ(q) is the tangent vector at
q of the minimal normal geodesic from p to q. In fact, |∇φ| ≡ 1, and by Lemma
2.2.1, φ is a Riemannian submersion. Set X := ∇φ, so that by the proof of the
above lemma, X is basic and φ-related to the standard coordinate vector field D
on (0, r0). Fix r ∈ (0, r0), and consider the sphere F := φ−1(r) of radius r centered
at p. Since X is a unit normal field along F , the second fundamental form of F is
given by

SXv = −∇vX = −∇v∇φ, q ∈ F, v ∈ Fq .

Notice that we omitted the vertical superscript, since ∇vX is already vertical. Let
γ : (−ε, ε) → Mp be a smooth curve in the tangent space of p with expp∗ γ̇(0) = v,
|γ| ≡ r, and consider the variation V : [0, r] × (−ε, ε) → M by geodesics, where
V (t, s) = expp

(
(t/r)γ(s)

)
. If c(t) := V (t, 0), then by assumption, V∗D1 = X ◦ V ,

and t 	→ Y (t) := V∗D2(t, 0) is the Jacobi field along c with Y (0) = 0, Y (r) = v.
Thus,

∇v∇φ = ∇D2(r,0)V∗D1 = ∇D1(r,0)V∗D2 = Y ′(r),
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and the second fundamental form of F at a point q is given by 〈SXv, w〉 =
−〈Y ′, Z〉(r), where Y and Z are the Jacobi fields along c with Y (0) = Z(0) = 0,
Y (r) = v, Z(r) = w.

Suppose now that M is a space of constant curvature λ, and denote by cλ

and sλ the solutions of the differential equation x′′(t) + λx(t) = 0 with cλ(0) =
s′λ(0) = 1, c′λ(0) = sλ(0) = 0. The Jacobi fields above are then given by

Y =
sλ

sλ(r)
V, Z =

sλ

sλ(r)
W,

where V , W are the parallel fields along c with V (r) = v, W (r) = w. Thus,

〈SXv, w〉 = −〈Y ′, Z〉(r) = −
〈

cλ

sλ
(r)v,

sλ

sλ
(r)w

〉
= − cλ

sλ
(r)〈v, w〉.

It follows that κ(X) = −k(cλ/sλ) ◦ φ, where k = dimM − 1; equivalently, since
ċ = X ◦ c,

κ(ċ) = −k
cλ

sλ
◦ φ ◦ c = −k(ln ◦sλ ◦ φ ◦ c)′ (because φ ◦ c = 1(0,r0))

= kdψ(ċ),

where ψ = − ln ◦sλ ◦ φ. By the proof of Proposition 2.2.1,

Br0 \ {p} = (0, r0) ×e−2ψ Fr = (0, r0) ×s2
λ

Fr

isometrically, where Fr denotes the sphere F = φ−1(r) with the induced metric
multiplied by s−2

λ (r). By the Gauss equations, the sectional curvature of F is
λ + (cλ/sλ)2(r) = (λs2

λ + c2
λ)/(s2

λ)(r) = 1/(s2
λ)(r). Thus, the curvature of Fr is

identically 1; i.e., Fr is isometric to the round sphere Sn−1(1) of radius 1. Notice
that r0 may be taken to be ∞ if λ ≤ 0, and π/

√
λ if λ > 0.

Summarizing, we have proved:

Theorem 2.2.1. Let Qn
λ denote the simply connected space form of constant cur-

vature λ, and p a point in Qn
λ. Then

1. Qn
λ \ {p} = (0,∞) ×s2

λ
Sn−1(1) if λ ≤ 0, and

2. Qn
λ \ {p,−p} = (0, π/

√
λ) ×s2

λ
Sn−1(1) if λ > 0, where

sλ(t) =

⎧⎪⎨⎪⎩
t if λ = 0,
1√
λ

sin(
√

λt) if λ > 0,
1√
λ

sinh(
√

λt) if λ < 0.

When λ < 0, all of Qn
λ can actually be realized as a warped product: Indeed,

we may, after rescaling, assume that λ = −1. Choose some p ∈ Mn := Qn
−1,
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some (n − 1)-dimensional subspace Np of Mp, and set N := expp(Np). N is a
totally geodesic submanifold of M isometric to Qn−1

−1 . If X is a unit-length section
of the normal bundle of N in M , then f : R × N → M , f(t, p) = exp tX(p),
is a diffeomorphism because X is parallel and N is totally geodesic. Notice that
f∗(t0,p)(D, 0) = ċ(t0), where c(t) = exp tX(p), so that |f∗(t0,p)(D, 0)| = 1. Thus,
the signed distance

π := π1 ◦ f−1 : M → R

from N (where π1 : R × N → R denotes projection) has gradient of unit length,
and is a Riemannian submersion by Lemma 2.2.1. As in the proof of Theorem
2.2.1, the S-tensor of the submersion at q = exp t0X(p) is given by

S∇πv = −∇v∇π = −Y ′(t0),

where Y is the holonomy Jacobi field along c with Y (t0) = v. Now,

Y ′(0) = −Sċ(0)Y (0) − A∗
ċ(0)Y (0) = 0,

since N is totally geodesic and the horizontal distribution, being one-dimen-
sional, is integrable. Thus, Y (t) = (cosh t/ cosh t0)V , where V is the parallel field
along c with V (t0) = v, and S∇πv = −(tanh t0)v. The mean curvature form κ is
therefore given by

κ(∇π) = −(n − 1) tanh ◦π = −(n − 1)(ln cosh)′ ◦ π

= −(n − 1)(ln cosh)′ ◦ π dπ(∇π) = −(n − 1)d(ln cosh ◦π)(∇π).

By the proof of Proposition 2.2.1,

Qn
−1 = R ×cosh2 Qn−1

−1 .

There are other realizations of hyperbolic space as warped products: For ex-
ample, Qn

−1 = R×e2t Rn−1, which comes from fibering Q by horospheres. Similarly,
if R+ denotes (0,∞) with the complete metric φ2g0, where g0 is the standard met-
ric and φ(t) = 1/t, then the upper half-space model of Qn

−1 is the warped product
R+ ×φ2 Rn−1.

Let X , Y , Z be basic, T , Ti vertical, i = 1, 2. Following the convention
adopted in Section 2.1, a basic field on M = B ×e2φ F will be identified with
its π-related vector field on the base B. The curvature identities from Section 2.1
applied to the Riemannian product B×F immediately yield the following formulas
for a warped product B ×e2φ F :

Proposition 2.2.2. Let RB, RF denote the curvature tensors of the Riemannian
manifolds B, F , respectively. The curvature R of the warped product B ×e2φ F is
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then given by

R(X, Y )Z = RB(X, Y )Z; (2.2.1)

R(T1, T2)T3 = RF (T1, T2)T3 − e2φ|∇φ|2(〈T2, T3〉T1 − 〈T1, T3〉T2

)
; (2.2.2)

R(X, Y )T = R(T1, T2)X = 0; (2.2.3)

R(X, T )Y =
(
hφ(X, Y ) + 〈∇φ, X〉〈∇φ, Y 〉)T ; (2.2.4)

R(T1, X)T2 = 〈T1, T2〉
(〈∇φ, X〉∇φ + ∇X∇φ

)
(2.2.5)

where the inner products are those in the original product metric.

Similarly, let K, KB, and KF denote the non-normalized sectional curvatures
of B ×e2φ F , B, and F respectively. Thus, for example, K(E, F ) = 〈R(E, F )F, E〉
in the warped product metric. Proposition 2.2.2 immediately yields:

Corollary 2.2.1.

K(X, Y ) = KB(X, Y ); (2.2.6)

K(T1, T2) = e−2φ
{
KF (T1, T2) − |∇φ|2(|T1|2|T2|2 − 〈T1, T2〉2

)}
; (2.2.7)

K(X, T ) = −|T |2(〈∇φ, X〉2 + hφ(X, X)
)
. (2.2.8)

Corollary 2.2.2. The Ricci curvature of B ×e2φ F k satisfies

Ric(X, Y ) = RicB(X, Y ) − k
(
hφ(X, Y ) + 〈∇φ, X〉〈∇φ, Y 〉); (2.2.9)

Ric(X, T ) = 0; (2.2.10)

Ric(T1, T2) = RicF (T1, T2) − 〈T1, T2〉e2φ
(
ΔMφ − k|∇φ|2). (2.2.11)

Notice that the inner products on the right side of the identities in the above
corollaries correspond to the product metric. The following is an immediate con-
sequence of (1.4.17) in Chapter 1:

Proposition 2.2.3. A curve c = (ch, cv) in B ×e2φ F is a geodesic iff

∇D ċh = e2φ|ċv|2∇φ, ∇D ċv = −(φ ◦ ch)′ċv.

We next look at a class of metric foliations that is more general than that
of warped products. We have seen that many Riemannian submersions are fiber
bundles for which the horizontal distribution actually defines a connection. Recall
that a connection on a fiber bundle is flat if it is integrable. This motivates the
following:

Definition 2.2.1. A metric foliation is said to be flat if its horizontal distribution
is integrable; equivalently, if A ≡ 0.

Examples 2.2.1. (i) A warped product is a flat Riemannian submersion.
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(ii) A codimension one metric foliation is necessarily flat. In particular, any
Riemannian manifold M locally admits flat metric foliations: As pointed out earlier
in the section, if p ∈ M and ε is the injectivity radius at p, then

Bε(p) \ {p} → (0, ε),
q 	→ d(p, q)

is a flat Riemannian submersion. A similar statement holds if p is replaced by a
compact hypersurface of M .

(iii) Suppose M admits a totally geodesic foliation of codimension one. Its
orthogonal complement then defines a one-dimensional flat metric foliation by
Definition 1.2.2.

(iv) Let Qn+k be a space of constant curvature, Mk a submanifold of Q with
flat normal bundle; i.e., the connection on the normal bundle ν of M , induced by
that of Q, is flat. Then for any p ∈ M , there exists a neighborhood U of p such
that M ∩ U is a leaf of a flat metric foliation of U .

To see this, consider the foliation obtained by exponentiating parallel sec-
tions of ν, restricted to a neighborhood U small enough to avoid singularities. To
establish that this foliation is metric, it suffices, by Definition 1.2.2, to show that
each leaf is everywhere orthogonal to the totally geodesic foliation of M ∩U with
leaves exp(νq), q ∈ M ∩ U , where νq denotes the fiber of ν over q. So consider a
leaf N := exp X(M), where X is a parallel section of ν, and a curve γ in N . Then
γ = expc(X ◦ c) for some curve c in M . Now, the tangent space of exp(νγ(0)) can
be realized as the parallel translate of the tangent space of exp(νc(0)) along the
geodesic t 	→ exp(t(X ◦ c)(0)). Thus, the claim will follow once we show that if E
is a parallel field along t 	→ exp(t(X ◦ c)(0)) with E(0) ⊥ Mc(0), then E(1) ⊥ γ̇(0).
So consider the variation by geodesics

(t, s) 	→ V (t, s) = expc(s) t(X ◦ c)(s).

If J is the Jacobi field J(t) = V∗D2(t, 0) along the geodesic t 	→ V (t, 0), then
J(0) = ċ(0), and J(1) = γ̇(0). By hypothesis, J(0) ⊥ E(0), and

J ′(0) = ∇D1(0,0)V∗D2 = ∇D2(0,0)V∗D1 = ∇D(0)(X ◦ c)

is orthogonal to E(0) since X is a parallel section of ν. But in a space of constant
curvature κ, if J is a Jacobi field along a geodesic, E a parallel field along the
same geodesic, and both J(0), J ′(0) are orthogonal to E(0), then 〈J, E〉 ≡ 0; this
is because 〈J, E〉 satisfies the second-order ODE

〈J, E〉′′ = 〈J ′′, E〉 = −〈R(J, ċ)ċ, E〉 = −κ〈J, E〉,

with initial conditions 〈J, E〉 = 〈J, E〉′ = 0. But then 〈γ̇(0), E(1)〉 = 〈J(1), E(1)〉 =
0, as claimed.
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Conversely, of course, if F is any (local) flat metric foliation in a space
form, and M is a leaf of F , then M has flat normal bundle, and any leaf equals
exp(X(M)) for some parallel section X of the normal bundle of M : This is in
fact already true in nonconstant curvature, since for an arbitrary metric foliation,
leaves have the form exp(X(M)) for a basic section of the normal bundle. When
the foliation is flat, basic sections coincide with the parallel ones by (1.4.4).

The following result is completely general, and is in fact just a reformulation
of (1.5.2):

Lemma 2.2.2. Let F be a metric foliation, c a horizontal geodesic in M , and denote
by S, Rv, and A the tensor fields Sċ, Rv(·, ċ)ċ, and Aċ respectively along c. One
then has the Riccati-type equation:

S′v = S2 − AA∗ + Rv. (2.2.12)

Recall that for unit horizontal X , the vertical Ricci curvature in direction
X is Ricv(X, X) =

∑
i K(X, Ti), where Ti is an orthonormal basis of the vertical

space.

Theorem 2.2.2. Let F be a flat metric foliation on a complete Riemannian mani-
fold M . If the vertical Ricci curvature is nonnegative in horizontal directions, then
F splits.

Proof. Let c : R → M be a horizontal geodesic. Since A ≡ 0, (2.2.12) becomes
S′v = S2 + Rv. Again by flatness, the vertical distribution V is invariant under
parallel translation along c; similarly, R(V ◦ c) ⊂ V ◦ c. We may therefore identify
V ◦ c via parallel translation with the vertical space E at c(0). If L(E) denotes the
space of self-adjoint endomorphisms of E, then the Riccati equation becomes

S′ = S2 + R, (2.2.13)
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where S, R : R → L(E). The proof of Theorem 1.7.1, with S replaced by −S, now
goes through essentially word for word to show that both S and R must vanish
identically. Since A ≡ 0 by assumption, the claim follows. �

Implicit in the proof of Theorem 2.2.2 is the following:

Corollary 2.2.3. Let M be a complete Riemannian manifold with nonnegative sec-
tional curvature. If the sectional curvatures are positive at some point, then M
admits no flat metric foliations.

Remarks 2.2.1. (i) Theorem 2.2.2 is of course no longer true if the completeness
assumption is dropped: We have seen, for example, that Euclidean space with a
point deleted can be written as a warped product. Nor is it true if the hypothesis
Ricv ≥ 0 is replaced by Ric ≥ 0: There exist complete warped product metrics of
nonnegative Ricci curvature on Rn, see [5].

(ii) A slightly more involved argument shows that for a flat metric foliation
of a complete manifold with sectional curvature bounded below by −λ2, the leaves
must have principal curvatures no larger than |λ| in absolute value, cf. [136]. Ob-
serve that when λ = 0, this implies totally geodesic leaves and therefore splitting
of the foliation, see also (iii) below.

(iii) If one replaces the Ricci curvature hypothesis in Theorem 2.2.2 by the
stronger condition that M have nonnegative sectional curvature, then the result
follows from Examples and remarks 1.8.1 (v). Indeed, if F is flat, then the dual
foliation is the one that is tangent to the horizontal distribution – and has therefore
complete leaves, so that any pair of vertical and horizontal vectors generate a
totally geodesic flat. In particular, S ≡ 0.

(iv) A codimension one metric foliation is automatically flat. By Theorem
2.2.2, such a foliation cannot exist if the Ricci curvature is positive. There are
further restrictions, though: if the universal cover M̃ of M is compact, then M
does not admit such a foliation. Otherwise, it can be lifted to M̃ , and its orthogonal
complement is an orientable one-dimensional foliation, so that there exists a global
basic unit vector field X . If α denotes the dual one-form,

α(E) = 〈X, E〉, E ∈ XM,

then for vertical U , V , dα(U, V ) = U〈X, V 〉−V 〈X, U〉−〈X, [U, V ]〉 = 0. Similarly,
dα(U, X) = 0 because [X, U ] is vertical. Thus, α is closed, hence exact, and α = df
for some f : M −→ R. This would imply that α and hence also X vanish at those
points where f attains extremal values, which is impossible.

2.3 Homogeneous submersions

The richest class of Riemannian submersions is the one generated by isometric
group actions on a Riemannian manifold M . More precisely, let G be a compact
Lie group acting by isometries on M via μ : G × M → M . For p ∈ M and g ∈ G,
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denote by ıp : G → M the map given by ıp(g) = μ(g, p), and by jg : M → M the
isometry jg(p) = μ(g, p) induced by g. When there is no risk of confusion, we also
use g instead of jg. The orbit {g(p) | g ∈ G} of p ∈ M will be denoted by G(p),
and the isotropy subgroup Gp at p is the subgroup of G consisting of all g ∈ G
such that g(p) = p. Notice that an isotropy subgroup is necessarily closed in G.
We assume the action is by principal orbits ; i.e., for any two orbits O1 and O2,
there exists a diffeomorphism f : O1 −→ O2 that is G-equivariant in the sense
that f ◦ jg = jg ◦ f for any g ∈ G .

Lemma 2.3.1. Let p ∈ M , and set H := Gp. Then the map f : G/H → M given
by f(gH) = g(p) is an imbedding onto the orbit G(p) of p.

Proof. Denote by π : G −→ G/H the projection. f is clearly well defined and
bijective onto the orbit of p. Since G/H is compact and M is Hausdorff, f is
a topological imbedding, and it remains to establish that it has maximal rank
everywhere. But f is equivariant, so it suffices to do so at eH ; equivalently, we
claim that x ∈ Ge belongs to He whenever π∗ex ∈ ker f∗eH . To see this, consider
the vector field X ∈ g with X(e) = x, and the curve t 	→ c(t) := (f ◦ π)(exp tx).
Equivariance of f means that f = jg ◦ f ◦L−1

g for any g ∈ G, where Lg : G/H −→
G/H is given by Lg(aH) = gaH . But if Lg denotes left translation in G, then
Lg ◦ π = π ◦ Lg, so that

ċ(t) = (f ◦ π)∗(X(exp tx)) = jexp tx∗ ◦ f∗ ◦ Lexp−tx∗π∗X(exp tx)
= jexp tx∗ ◦ f∗ ◦ π∗ ◦ Lexp−tx∗X(exp tx) = jexp tx∗ ◦ f∗π∗x = 0.

exp tx therefore belongs to H for all t, and x ∈ He.
�

Remark 2.3.1. When G is not assumed to be compact, Lemma 2.3.1 no longer
holds in general, even when the action is free. If a is an irrational number, then
the R-action on the torus S1 × S1 given by μ(t, (z1, z2)) = (z1e

it, z2e
iat) is free

and isometric, but all orbits are dense.

Lemma 2.3.2. The space G\M of orbits inherits a natural differentiable structure
from M such that the projection π : M → G\M becomes a submersion. It also
inherits a natural metric for which π becomes Riemannian.

Proof. Consider a point p ∈ M with isotropy group H = Gp. Let νp denote
the normal bundle of G(p) in M , νε

p the corresponding disk bundle of radius
ε > 0, and U the fiber of the latter over p. Choose ε small enough so that exp :
E(νε

p) −→ Bε(G(p)) is a diffeomorphism from the total space of the disk bundle
onto the tubular neighborhood of radius ε of the orbit, and consider the map
φ : (G/H) × U −→ Bε(G(p)) given by φ(gH, x) = g(expx). To see that this map
is well defined, we must show that H acts trivially on U ; i.e., that h(expx) = expx
for all h ∈ H and x ∈ U . By hypothesis, there exists an equivariant diffeomorphism
ψ : G/Gexp x −→ G/H . Let aH = ψ(Gexp x). By equivariance, ψ(gGexpx) = gaH
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G/H G(p)

U

x

gH

(gH, x)

p exp x

g(exp x) = exp g∗x

φ

for g ∈ G. This implies that for any g ∈ Gexp x, gaH = aH , and a−1ga ∈ H .
In other words, the isotropy subgroup of expx is conjugate to a subgroup of H .
Arguing in a similar fashion with ψ−1, we see that it is conjugate to H itself. But
if g ∈ Gexp x, then expx = g(expx) = exp g∗x (because g is an isometry), so that
g∗x = x, and in particular g(p) = p; i.e., g ∈ H . Thus, Gexp x = H , and H acts
trivially on U as claimed.

φ is a G-equivariant diffeomorphism. Its inverse, followed by projection onto
the second factor yields a homeomorphism between a neighborhood of G(p) (in
G\M endowed with the quotient topology) and U . It is easy to check that the
transition functions between two such homeomorphisms are smooth, so that G\M
inherits a differentiable structure for which the projection π : M → G\M is
differentiable. As noted in Chapter 1, since the action is by isometries, there exists a
unique Riemannian metric on the quotient for which π becomes Riemannian. �

Notice that the proof actually establishes that π is a fibration. We will shortly
see that it is in fact a fiber bundle.

Set B := G\M , and for b ∈ B denote by Hol(b) the holonomy group of the
submersion at b, consisting of the holonomy diffeomorphisms of π−1(b) obtained
by horizontally lifting piece-wise smooth loops at b.

Lemma 2.3.3. Hol(b) is a Lie group.

Proof. Consider a curve c : [0, 1] → B, and the diffeomorphism

hc : π−1(c(0)) → π−1(c(1))

between the fibers over the endpoints that assigns to p the endpoint of the hor-
izontal lift of c starting at p. If c̄ is a horizontal lift of c, then jg ◦ c̄ is a hori-
zontal curve for any g ∈ G because jg is an isometry, and by definition of π, it
projects down to c. This means that hc is a G-equivariant diffeomorphism. Thus,
Hol(b) is a subgroup of the group DiffG(π−1(b)) of G-equivariant diffeomorphisms
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of π−1(b). We claim that the latter group is a Lie group. To see this, identify
π−1(b) with G/H as in Lemma 2.3.1. It will suffice to establish that DiffG(G/H)
is isomorphic to N(H)/H , where N(H) is the normalizer of H in G. Now, if
f ∈ DiffG(G/H), then f(gH) = gaH for some a ∈ G with a−1Ha ⊂ H by the
argument used in Lemma 2.3.2. We claim that a−1Ha = H ; i.e., a ∈ N(H): In-
deed, if A = {an | n = 0, 1, 2, . . .}, then by Lemma 2.3.4 below, the closure Ā of A
contains a−1. Now, the map F : G× G → G sending (b, c) to b−1cb is continuous,
and by hypothesis, F (A × H) ⊂ H . Since H is closed, F (Ā × H) ⊂ H . Thus,
aHa−1 ⊂ H , so that H ⊂ a−1Ha as claimed. Summarizing, any f ∈ DiffG(G/H)
has the form f(gH) = gaH = (gH)a for some a in the normalizer of H . It now
easily follows that DiffG(G/H) is isomorphic to N(H)/H acting by right multi-
plication on G/H .

Having established that DiffG(π−1(b)) is a Lie group, consider the subgroup
Hol0(b) of Hol(b) obtained by considering only loops that are null-homotopic. This
is a path-connected subgroup of DiffG(π−1(b)), and therefore also a Lie group, see,
e.g., [142]. There is a natural epimorphism of π1(B, b) onto Hol(b)/ Hol0(b) that
assigns to the homotopy class of a loop c the equivalence class of hc. Since the
fundamental group of B is countable, so is Hol(b)/ Hol0(b). Thus, Hol(b) is a Lie
group, as claimed. �

Lemma 2.3.4. For any a ∈ G, the closure of the set A = {an | n = 0, 1, 2, . . .} is
a subgroup of G.

Proof. Notice first of all that the closure of a subgroup is again a subgroup by con-
tinuity of (a, b) 	→ ab−1. It suffices therefore to show that a−1 ∈ Ā, or equivalently,
that any neighborhood of a−1 intersects A. Consider the subgroup 〈a〉 generated
by a. If e is an isolated point of 〈a〉, then 〈a〉 is discrete, and being compact,
must be finite, so that an = e for some n ∈ N. If n = 1, then a−1 = e ∈ A, and
otherwise, a−1 = an−1 ∈ A. So assume that e is not isolated. If U is a neigh-
borhood of e, then so is V = U ∩ U−1, where U−1 := {g−1 | g ∈ U}. It must
therefore contain an for some positive n, so that an−1 ∈ La−1(V ) ∩ A. In other
words, if U is any neighborhood of e, then La−1(U) intersects A. But then any
neighborhood W of a−1 intersects A, because La(W ) is a neighborhood of e, so
that W ∩ A = La−1(La(W )) ∩ A �= ∅. �

Theorem 2.3.1. Let G be a compact Lie group acting by isometries on M with
principal orbits, so that π : M → B := G\M is a Riemannian submersion. Fix
any b0 ∈ B, let F = π−1(b0), and Hol(b0) be the holonomy group of the submersion
at b0. Then M is the total space of a fiber bundle with fiber F and structure group
Hol(b0).

Proof. Consider a locally finite cover of B by open sets Uα each of which is the
diffeomorphic image via exp of some metric ball in the tangent space of bα ∈
Uα. For each α, choose a geodesic cα from b0 to bα. Given b ∈ Bα, there exists
a unique minimal normal geodesic cb

α from bα to b. This yields a trivialisation
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{π−1(Uα), (π, φα)} of the fibration π, where (π, φα)
−1

: Uα × F → π−1(Uα) is
given by (π, φα)

−1
(b, p) = hcb

α
◦ hcα(p).

Here, as above, hc denotes the holonomy transformation along the curve c.
The transition function φαβ : Uα ∩ Uβ → Hol(b0) between two charts Uα and Uβ

maps b ∈ Uα ∩Uβ to the element of Hol(b0) that consists of horizontal lifts of the
piece-wise smooth curve cβ ∗ cb

β ∗ −cb
α ∗ −cα. Since φαβ depends differentiably on

b, the claim follows. �

π−1(b) F

M

�

G\M

p φα(p)

�
�

�
�

�
b

cb
α

Uα

�
bα

cα �
b0

In the case when M is nonnegatively curved, and positively curved at one
point, it follows from Wilking’s dual foliation result that the fiber is a Lie group:

Proposition 2.3.1 ([73]). Let M be as in Theorem 2.3.1. If the curvature of M
is nonnegative, and positive at some point, then the isotropy group at any point
is a normal subgroup of G. Thus, every fiber is diffeomorphic to a Lie group. If
furthermore, G is simple, then the action is free or transitive.

Proof. The argument used in Lemma 2.3.2 implies that any two points that are
joined by a horizontal geodesic share the same holonomy group. By Theorem 1.8.1,
the leaf of the dual foliation passing through a point where the curvature is positive
must have the same dimension as M (since its normal space along a horizontal
geodesic is spanned by parallel Jacobi fields). Furthermore, it can be shown that
when the action is by isometries, dual leaves are intrinsically complete. Thus, there
is only one dual leaf, and the isotropy group is the same for all points of M . But
if H is the isotropy group at p, then the isotropy group at g(p) is gHg−1. This
implies that H is normal in G. The last two statements follow immediately. �

In the case when M has strictly positive curvature in the above proposition,
Wilking has shown that the action is always free [140].
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Recall from the proof of Lemma 2.3.3 that Hol(b0) acts on F from the right.
To make this more explicit, denote by hc ∈ Hol(b0) the holonomy diffeomorphism
of F induced by the loop c at b0. Given loops c1 and c2 at b0, c1 ∗ c2 is the loop
obtained by first following c1, and then c2. The group multiplication ∗ in Hol(b0)
is then given by hc1 ∗ hc2 := hc1∗c2 . Since hc1∗c2 = hc2 ◦ hc1 , the right action of
Hol(b0) on F is just (p, h) 	→ h(p).

Set Q := Hol(b0), and consider the principal Q-bundle πP : P → B associated
to π : M → B. Since Q acts on F from the right, πP is a left principal bundle,
and there exists a G-equivariant diffeomorphism

Φ : F ×Q P −→ M

from the total space F×QP of the associated F -bundle with M (recall that F×QP
is the orbit space of F × P under the left Q-action given by h(p, f) = (ph−1, hf),
for h ∈ Q, p ∈ F , and f ∈ P ).

The total space P of the principal bundle may be described as follows: for b ∈
B, let Qb denote the collection of all holonomy transformations hc : F → π−1(b),
where c is a piece-wise smooth curve from b0 to b. Define P to be the union of all
Qb as b ranges over B, and πP : P → B the projection that assigns to an element
of Qb the point b. There is a natural left action

ν : Q × P → P,

(h, f) 	→ f ◦ h

of Q on P by composition, since

ν(h1 ∗ h2, f) = f ◦ (h1 ∗ h2) = f ◦ h2 ◦ h1 = ν(h1, f ◦ h2) = ν(h1, ν(h2, f)).

The bundle atlas {π−1(Uα), (π, φα)} constructed for π : M → B in the proof
of Theorem 2.3.1 induces a corresponding atlas {π−1

P (Uα), (πP , ψα)} for πP , where
ψα : π−1

P (Uα) → Q maps f ∈ Qb to h−cb
α∗−cα

◦ f in the notation of the proof of
Theorem 2.3.1. This is a principal bundle atlas, since ψα is Q-equivariant: if h ∈ Q,
then

ψα(hf) = h−cb
α∗−cα

◦ f ◦ h = ψα(f) ◦ h = h ∗ ψα(f).

It is easy to see that the transition functions coincide with those of the F -
bundle π, so that πP is indeed the corresponding principal bundle. If [p, f ] ∈
F ×Q P denotes the equivalence class of (p, f) ∈ F × P , then the G-equivariant
diffeomorphism Φ : F ×Q P −→ M is given by Φ[p, f ] = f(p).

Recall that a connection on a (left) principal Q-bundle πP : P → B is a
distribution H on P such that TP = kerπP∗⊕H, and jg∗H = H◦ jg for all g ∈ Q,
where jg : P → P maps p to ν(g, p) = gp. Parallel translation in the bundle
along a curve c : [0, 1] → B is the diffeomorphism Pc : π−1

P (c(0)) → π−1
P (c(1))

between the fibers over the endpoints of c defined by Pc(p) = γ(1), where γ is the
horizontal lift of c (i.e., γ̇ ∈ H ◦ γ, πP ◦ γ = c) with γ(0) = p. The holonomy group
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Hol(b) of the connection at a point b ∈ B is the group of all diffeomorphisms of
the fiber π−1

P (b) over b consisting of parallel translation along piece-wise smooth
loops beginning and ending at b. Since B is connected, any two holonomy groups
are isomorphic. In our situation, there exists a canonical connection on P → B
induced by the horizontal distribution of the Riemannian submersion π : M → B:
Consider a point p = hc ∈ P and a curve c0 : [α, β] → B in B with c0(α) = πP (p).
The curve cp

0 : [α, β] → P , where

cp
0(t) := hc0|[α,t]

◦ hc = hc∗c0|[α,t]
(2.3.1)

is then a lift of c0 starting at p. Furthermore, given any m ∈ F , the curve c̄0,
where

c̄0 = Φ[m, cp
0],

is by construction the horizontal lift to M (for the Riemannian submersion π :
M → B) of c0 with initial condition c̄0(α) = Φ[m, p] = hc(m).

Denote by ρ : F × P → F ×Q P the projection that maps (m, p) to its
equivalence class [m, p]. By the above, the restriction

Φ∗[m,p]|ρ∗({0m}×Pp) : ρ∗({0m} × Pp) → MΦ[m,p]

is onto HΦ[m,p], so that there exists a unique distribution H̃ on P such that
(Φ ◦ ρ)∗({0m} × H̃p) = HΦ[m,p]. Now, if Φ[m, cp

0] is a horizontal curve in M ,
then so is Φ[mg, cp

0] for any g ∈ Q. But the latter is just Φ[m, jg ◦ cp
0]. Thus,

jg∗H̃ = H̃ ◦ jg, and H̃ is indeed a connection on P . It is easy to describe the
holonomy group H̃ol(b0) of this connection at the point b0 ∈ B that was used in
the construction of P : By definition, the fiber π−1

P (b0) over b0 is the group of all
holonomy transformations hc : F = π−1(b0) → F along loops c based at b0; i.e.,
π−1

P (b0) is just Q = Hol(b0). By (2.3.1), H̃ol(b0) = Hol(b0) = Q acting on itself by
right multiplication

Hol(b0) × H̃ol(b0) → Hol(b0),
(hc, hc0) 	→ hc∗c0 = hc ∗ hc0 .

Summarizing the above discussion, we have:

Theorem 2.3.2. Consider the Riemannian submersion π : M → B from Theorem
2.3.1, and the corresponding principal Q-bundle πP : P → B, where Q = Hol(b0).
Let ρ : F × P → F ×Q P � M denote the projection. If H denotes the horizontal
distribution of the submersion π, then the distribution H̃ on P determined by
ρ∗({0}m ×H̃p) = Hρ(m,p), m ∈ F , p ∈ P , is a connection on the principal bundle.
The holonomy group of this connection at b0 is the holonomy group Q of the
Riemannian submersion π acting on itself by right multiplication.

This justifies to a certain extent the terminology introduced in the last sec-
tion: a homogeneous metric foliation is flat in the sense of Definition 2.2.1 iff the
corresponding connection from Theorem 2.3.2 is flat.
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We next consider the important special case when the action of G on M
is free. If we identify F = π−1(b0) with G via the map from Lemma 2.3.1, then
M = G ×Q P → B is a left principal G-bundle. Notice that Q = Hol(b0) is now
identified with a subgroup of G acting on G by right multiplication: Suppose the
identification G ∼= F is given by g 	→ g(p), for some p ∈ M . If h ∈ Q maps p to
g̃(p) for some g̃ ∈ G, then h = Rg̃, because

gh = h(g(p)) = g(h(p)) = gg̃.

(For the second equality, we have used the fact that holonomy transformations
are G-equivariant, as observed in the proof of Lemma 2.3.3.) Thus, the bundle
P → B is the reduction of M → B to a principal Q-bundle. The decomposition
TM = kerπ∗ ⊕H of the tangent bundle of M induced by the connection induces
one at the vector level, and we write u = uv + uh ∈ kerπ∗ ⊕ H as usual. If ıp
denotes the imbedding of G onto the fiber containing p ∈ M from Lemma 2.3.1,
then the connection form of H is the g-valued one-form ω on M given by

ω(u) = (ıp∗e)−1uv, u ∈ Mp, p ∈ M,

and the curvature form of H is the g-valued 2-form Ω defined by

Ω(x, y) = −ω[X, Y ]v(p), x, y ∈ Mp, p ∈ M, (2.3.2)

where X , Y are local horizontal fields on M with X(p) = xh, Y (p) = yh. It follows
that after identification of the vertical space with the Lie algebra g of the group,
the A-tensor of the Riemannian submersion is equal to −(1/2)Ω.

A well-known result of Ambrose and Singer states that the Lie algebra of the
holonomy group of a connection on a principal G-bundle is the Lie subalgebra of
g generated by the image of Ω. We summarize all these facts in the following:

Proposition 2.3.2. Let π : M → B = G\M denote the Riemannian submersion
generated by a free isometric action of a compact Lie group G on M . Then the
holonomy group of the submersion is a Lie group, and its Lie algebra is the subal-
gebra of g generated by

{ı−1
p∗eAxy | x, y ∈ Hp, p ∈ M},

where ıp : G → M is the imbedding g 	→ g(p) onto the fiber containing p.

Definition 2.3.1. The fundamental vector field Ũ on M induced by U ∈ g is
given by

Ũ(p) := ıp∗U(e). (2.3.3)

Recall that a vector field on M is said to be Killing if its flow consists of
isometries of M .

Proposition 2.3.3. The collection of fundamental vector fields on M is a Lie algebra
of Killing fields that is isomorphic to the algebra of right-invariant fields on G.



2.3. Homogeneous submersions 71

Proof. Let U ∈ g, and Ũ be the corresponding fundamental vector field. To see
that Ũ is Killing, it suffices to show that its flow φt is given by jexp tU . So consider
the curve c, where c(t) = jexp tU (q), and q ∈ M . Given t0 ∈ R,

c(t) = jexp tUq = ıq(exp tU) = ıq(exp(t − t0)U exp t0U) = ıc(t0)(exp(t − t0)U).

Thus, ċ(t0) = ıc(t0)∗U = Ũ ◦ c(t0), as claimed, and Ũ is Killing. For the second
statement, let ḡ denote the Lie algebra of right-invariant fields on G. Given U ∈ g,
Ū ∈ ḡ with U(e) = Ū(e), and p ∈ M , the identity ıgp = ıp ◦ Rg implies that

Ũ(gp) = ıgp∗U(e) = ıp∗Rg∗U(e) = ıp∗Ū(g),

so that Ũ ◦ ıp = ıp∗Ū , and ıp∗ is a Lie algebra isomorphism. �

The vector fields AXY are not, in general, Killing fields. This is because they
are associated to left-invariant fields of G, whereas the fundamental Killing fields
are associated to right-invariant ones:

Definition 2.3.2. A vector field on a fiber F is said to be left-invariant if it is
jg-related to itself for any g ∈ G.

The collection of left-invariant fields on a fiber form a Lie algebra isomorphic
to g. In fact, given u in the tangent space of F at some p, it is straightforward to see
that the left-invariant field Û on F that equals u at p is given by Û = ıp∗ ◦U ◦ ı−1

p ,
where U is the element of g with U(e) = ı−1

p∗ u.

Proposition 2.3.4. Given a left-invariant Û and basic X, Y along a fiber F , the
vector fields AXY and SX Û are left-invariant.

Proof. A horizontal field X is basic iff it is jg-related to itself for any g ∈ G. Thus,
for g ∈ G, basic X , and left-invariant Û ,

jg∗∇ÛX = ∇Û jg∗X = ∇Û (X ◦ jg) = ∇jg∗ÛX = (∇ÛX) ◦ jg,

since the map jg is an isometry. For the same reason, this map preserves the
vertizontal splitting, so that

jg∗SX Û = (SX Û) ◦ jg, jg∗A∗
X Û = (A∗

X Û) ◦ jg.

This implies that SX Û is left-invariant, and A∗
X Û is basic. In particular, for basic

Y , 〈AXY, Û〉 = 〈A∗
X Û , Y 〉 is constant, so that AXY is left-invariant. �

Example 2.3.1. Consider the free Rk-action on Rk+n = Rk × Rn given by

Rk × (Rk × Rn) → Rk × Rn,

(v, (u, x)) 	→ (u + v, φ(v)x)
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where φ : Rk → SO(n) is a Lie group homomorphism. The orbits of the action
are generalized helices winding around the central plane Rk ×{0}, which happens
to be the orbit of the origin. Here, G is the abelian group Rk, so the left-invariant
fields coincide with the right-invariant ones, and are then necessarily parallel along
a fiber F , since they form an abelian Lie algebra of Killing fields that contains a
point-wise orthonormal basis Ui: in fact, [Ui, Uj ] = 0, so that

2〈∇UiUj, Uk〉 = 〈∇UiUj, Uk〉 + 〈∇Uj Ui, Uk〉
= −〈∇Uk

Uj , Ui〉 − 〈∇Uk
Ui, Uj〉

= −Uk〈Ui, Uj〉 = 0,

and 〈Ui, Uj〉 is constant along F .

2.4 Left-invariant metrics on Lie groups

The simplest and most common homogeneous submersions are those from Lie
groups with left-invariant metrics. Recall that such a metric on a Lie group G is
one for which each left translation Lg : G → G, where Lg(a) = ga, is an isometry.
Such metrics are in bijective correspondence with inner products on the tangent
space Ge of G at the identity e by letting the canonical isomorphism

g → Ge,

X 	→ X(e)

from the Lie algebra g of G be a linear isometry. In the sequel, we will often use
this isomorphism to identify both spaces. We begin by computing the connection
and curvature of such a metric. Since it is left-invariant, the formula

〈∇XY, Z〉 =
1
2
{X〈Y, Z〉 + Y 〈Z, X〉 − Z〈X, Y 〉
+ 〈Z, [X, Y ]〉 + 〈Y, [Z, X ]〉 − 〈X, [Y, Z]〉}

for the Levi-Civita connection, when applied to left-invariant vector fields X , Y ,
Z ∈ g becomes

〈∇XY, Z〉 =
1
2
{〈Z, [X, Y ]〉 + 〈Y, [Z, X ]〉 − 〈X, [Y, Z]〉},

so that

∇XY =
1
2
{adX Y − ad∗

X Y − ad∗
Y X}, X, Y ∈ g, (2.4.1)



2.4. Left-invariant metrics on Lie groups 73

with ad∗ denoting the adjoint of ad. A long, but fairly straightforward computation
using (2.4.1) yields for the curvature tensor

R(X, Y )Z = −1
4
{

ad[X,Y ] Z + (adX − ad∗
X) ad∗

Z Y − (adY − ad∗
Y ) ad∗

Z X

+ (ad∗
X adY −(ad∗

X adY )∗)Z − (adY ad∗
X −(adY ad∗

X)∗)Z
− ad∗

[X,Y ] Z + ad∗
[Y,Z] X + ad∗

[Z,X] Y − ad∗
(ad∗

Y Z+ad∗
Z Y ) X

+ ad∗
(ad∗

X Z+ad∗
Z X) Y

}
+

1
2

ad∗
Z [X, Y ].

This in turn implies that the non-normalized sectional curvature K(X, Y ) =
〈R(X, Y )Y, X〉 is given by

K(X, Y ) =
1
2
〈[[X, Y ], X ], Y 〉 − 1

2
〈[[X, Y ], Y ], X〉 − 〈ad∗

Y Y, ad∗
X X〉

− 3
4
|[X, Y ]|2 +

1
4
| ad∗

X Y + ad∗
Y X |2.

(2.4.2)

Example 2.4.1. Consider the Lie group G = Rn−1 × R+ with multiplication

(x, t) · (y, s) := (x + ty, ts), x, y ∈ Rn−1, t, s > 0.

Left translation L(x,t) by (x, t), when extended to all of Rn, is the affine transfor-
mation (y, s) 	→ (x, 0) + t(y, s), so that for the standard coordinate vector fields
Di on Rn, the derivative of L(x,t) at the identity e = (0, 1) satisfies

L(x,t)∗eDi = tDi(x, t).

It follows that X1, . . . , Xn, where Xi = tDi, is a basis of the Lie algebra of G, and

[Xi, Xj ] = 0, [Xn, Xi] = Xi, i, j < n.

Endow G with the left-invariant metric for which Xi is an orthonormal basis. By
the above,

ad∗
Xi

Xj = −δijXn, , ad∗
Xi

Xn = ad∗
Xn

Xn = 0, ad∗
Xn

Xi = Xi.

(2.4.2) then implies

K(Xi, Xj) = −〈ad∗
Xi

Xi, ad∗
Xj

Xj〉 = −1,

K(Xi, Xn) = −1
2
〈[[Xi, Xn], Xn], Xi〉 − 3

4
|[Xi, Xn]|2 +

1
4
| ad∗

Xn
Xi|2

= −1
2
− 3

4
+

1
4

= −1.

Thus, G is a simply connected space of constant curvature −1. Being homoge-
neous, it is also complete, and is therefore isometric to hyperbolic space. In fact,
the identity map is an isometry between G and the upper half-space model of
hyperbolic space.
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Lemma 2.4.1. If adX : g → g is skew-adjoint, then

K(X, Y ) =
1
4
| ad∗

Y X |2 ≥ 0

for all Y ∈ g, and K(X, Y ) = 0 iff X ⊥ adY (g).

Proof. By skew-symmetry of adX ,

〈[[X, Y ], X ], Y 〉 = | adX Y |2, 〈[[X, Y ], Y ], X〉 = −〈adX Y, ad∗
Y X〉,

〈ad∗
Y Y, ad∗

X X〉 = 0, | ad∗
X Y + ad∗

Y X |2 = | − adX Y + ad∗
Y X |2.

The claim follows upon substitution of these expressions in (2.4.2). �
Proposition 2.4.1. Let H be a connected Lie subgroup of G. The following state-
ments are equivalent:

1. Right translation Rh : G → G by h, Rh(g) = gh, is an isometry for any
h ∈ H.

2. h is an algebra of Killing fields of G.
3. Adh : g → g is a linear isometry for any h ∈ H.
4. adX : g → g is skew-adjoint for any X ∈ h.

Proof. For any X ∈ g, the curve t 	→ exp(tX(e)) is the integral curve of X passing
through e when t = 0 (here, exp : g → G denotes the Lie group exponential map).
By left invariance of X , t 	→ Lg(exp tX(e)) is the integral curve of X passing
through g at 0. The identity Rexp tX(g) = Lg(exp tX) then implies that the flow
of X is given by Rexp tX ; this shows the equivalence of (1) and (2). Since Adh−1 =
Lh−1∗ ◦Rh∗e, and since Lh−1∗ is a linear isometry, the equivalence of (1) and (3) is
clear. The equivalence of (3) and (4) need only be established in a neighborhood
of e, because H is connected. Choose one such that is the diffeomorphic image via
exp of some open neighborhood of 0 in He. If h = expx, then adx is skew-adjoint
iff ad∗

x = − adx; this occurs iff ead∗
x = e− adx , or equivalently, (eadx)∗ = (eadx)−1.

Using the identity
Ad ◦ exp = ead ,

we see that this amounts to the condition that Ad∗
h = (Adh)−1; i.e., that Adh is

a linear isometry. �

It is well known that if G acts effectively on G/H , then the statements in the
above proposition are satisfied (for some left-invariant metric on G) iff Ad(H) has
compact closure in GL(g), cf. [35]. In particular, any compact Lie group admits
a bi-invariant metric; i.e., a metric for which both left and right translations are
isometries. Notice that by Lemma 2.4.1 and Proposition 2.4.1, if for X ∈ g, right
translation by exp tX is an isometry for all t, then K(X, Y ) ≥ 0 for all Y ∈ g. For
example, a Lie group with bi-invariant metric has nonnegative sectional curvature

K(X, Y ) =
1
4
|[X, Y ]|2, X, Y ∈ g. (2.4.3)
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On the other hand, many of these curvatures will be zero: Wallach has shown that
S3 is the only simply connected Lie group that admits a left-invariant metric with
strictly positive curvature [129]. The fact that bi-invariant metrics have nonnega-
tive curvature can also be seen geometrically [43]: let M be a Riemannian manifold,
and suppose that for any pair c1, c2 of normal geodesics with c1(0) = c2(0), the
distance between c1(2t) and c2(2t) is at most twice that between c1(t) and c2(t)
for small enough t. Then M has nonnegative curvature by the Rauch comparison
theorem, see also [9]. To establish this for a Lie group G with bi-invariant metric,

l L l L

L ≤ 2l ⇒ K ≥ 0 L = 2l ⇒ K = 0

consider a pair c1, c2 of normal geodesics of G with c1(0) = c2(0). By homogeneity,
we may assume they have e as initial point. Fix any small t, and consider g = c1(t),
h = c2(t). Then

d(g2, h2) = d(Lh−1 ◦ Rg−1(g2), Lh−1 ◦ Rg−1(h2)) = d(h−1g, hg−1)

≤ d(h−1g, e) + d(e, hg−1).

Next, apply Lh−1 ◦ Rg to both elements in the last distance term to deduce that
d(g2, h2) ≤ 2d(h−1g, e). Finally, we obtain

d(g2, h2) ≤ 2d(h−1g, e) = 2d(Lh(h−1g), Lh(e)) = 2d(g, h).

Since c1 is a one-parameter subgroup of G, g2 = c1(t)2 = c1(2t), and similarly,
h2 = c2(2t). This establishes the claim.

Let us examine in more detail the curvature tensor of a bi-invariant metric.
By (2.4.1),

∇X =
1
2

adX ,

so that

R(X, Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ]

=
1
4
(adX ◦ adY − adY ◦ adX) − 1

2
ad[X,Y ] .

By the Jacobi identity, ad[X,Y ] = adX ◦ adY − adY ◦ adX , and

R(X, Y ) = −1
4

ad[X,Y ] . (2.4.4)
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Given a Riemannian metric on a manifold M , define the Ricci form ρ of the
metric by

ρ(x) := trRx, x ∈ Mp, p ∈ M,

where Rx is the self-adjoint endomorphism of Mp given by Rx(y) = R(y, x)x.
Observe that Ric(x, x) = ρ(x). We claim that the Ricci form is independent of the
particular bi-invariant metric on G: recall that the Killing form of g is the bilinear
form β, where

β(X, Y ) = tr(adX ◦ adY ), X, Y ∈ g.

The claim then follows from:

Lemma 2.4.2. The Ricci form ρ of a bi-invariant metric on G is given by ρ(X) =
−(1/4)β(X, X).

Proof. For X ∈ g, (2.4.4) implies that RX = −(1/4)(adX)2, since

RX(Y ) = −1
4

ad[Y,X] X = −1
4

adX [X, Y ]. �

It follows from the lemma that the Ricci tensor of a bi-invariant metric sat-
isfies

Ric = −1
4
β. (2.4.5)

We now look at an important special case: recall that a Lie algebra is said to be
simple if it is nonabelian and has no proper ideals. A Lie algebra is semisimple if
it is the direct sum of simple ideals. Thus, for example, a semisimple Lie algebra
must have trivial center, since the latter is an abelian ideal. A Lie group is said to
be simple or semisimple if its Lie algebra has these properties.

Proposition 2.4.2. If β denotes the Killing form of a compact semisimple Lie group
G, then −β is a bi-invariant metric on G, called the canonical metric of G. The
canonical metric is Einstein with Ricci curvature 1/4.

Proof. The Killing form of any Lie algebra is symmetric and bilinear; we claim
it is negative definite when G is semisimple. Consider any bi-invariant metric
on G (such a metric exists by compactness of the group), and a corresponding
orthonormal basis Xi of g. Since adX is skew-adjoint for this metric,

β(X, X) = tr(adX)2 =
∑

i

〈ad2
X Xi, Xi〉 = −

∑
i

| adX Xi|2 ≤ 0,

and can only be zero if adX = 0. In that case, X belongs to the center of g, which
is trivial. Thus, −β is an inner product on g. We claim it generates a bi-invariant
metric on G; i.e., that adX is skew-symmetric with respect to β for any X ∈ g, so
that

β([X, Y ], Z) = −β(Y, [X, Z]), Y, Z ∈ g.
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But this is a consequence of the following calculation:

tr(ad[X,Y ] ◦ adZ) = tr(adX ◦ adY ◦ adZ − adY ◦ adX ◦ adZ)
= − tr(adY ◦ adX ◦ adZ − adX ◦ adY ◦ adZ)
= − tr(adY ◦ adX ◦ adZ − adY ◦ adZ ◦ adX)
= − tr(adY ◦ ad[X,Z]).

Thus −β is a bi-invariant metric on G, as claimed. Its Ricci curvature is given by
(2.4.5). �

When G is actually simple, the canonical metric is essentially the only bi-
invariant metric on G:

Proposition 2.4.3. If G is a compact simple Lie group, then the canonical metric
is the only bi-invariant metric, up to scaling by some constant.

Proof. We follow Milnor’s argument [87]. Any other bi-invariant metric 〈, 〉 on G
can be expressed as 〈X, Y 〉 = −β(LX, Y ) for some self-adjoint L : g → g. Given
Z ∈ g, adZ is skew-adjoint with respect to both metrics, and

−β(L adZ X, Y ) = 〈adZ X, Y 〉 = −〈X, adZ Y 〉 = β(LX, adZ Y )
= −β(adZ LX, Y ),

so that adZ and L commute. Eigenspaces of L are then invariant under adZ for
any Z ∈ g, which means that they are in fact ideals. Since G is simple, L can have
only one eigenvalue λ, and 〈X, Y 〉 = −λ · β(X, Y ). �

We now return to the general case of an arbitrary left-invariant metric on G.
If H is a subgroup of G, then the left action

H × G → G,

(h, g) 	→ hg

of H on G is by isometries, and the collection of orbits is a metric foliation on G.
If, in addition, H is closed, then the orbit space H\G = {Hg | g ∈ G} admits
a manifold structure for which the projection π : G → H\G is a submersion,
and there exists a unique metric on the quotient such that π is a Riemannian
submersion. Notice that if H is normal in G, then the orbit space H\G = G/H is
a Lie group.

Example 2.4.2. The Heisenberg algebra is the (2n+1)-dimensional Lie algebra hn,
where the only nontrivial bracket operations on a given basis X1, Y1, . . . , Xn, Yn, Z
are

[Xi, Yi] = −[Yi, Xi] = Z, i = 1, . . . , n.

Clearly, hn has one-dimensional center z spanned by Z. The Heisenberg group
Hn is the simply connected Lie group that has hn as its Lie algebra. The one-
dimensional subgroup R = {exp(tZ) | t ∈ R} is normal in Hn, so that Hn/R is
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a Lie group, and for any left-invariant metric on Hn, there exists a metric on the
quotient such that π : Hn → Hn/R is a Riemannian submersion. Fix one such
metric. There exists an orthonormal basis of hn, which we denote by the same
letters as before, in which the only nontrivial bracket relations are given by

[Xi, Yi] = −[Yi, Xi] = 2αiZ, i = 1, . . . , n, (2.4.6)

for some nonzero αi ∈ R. By (2.4.1), ∇XZ = −(1/2) ad∗
X Z for X in the Lie

algebra of Hn, which, together with (2.4.6), yields

∇ZXi = ∇XiZ = −αiYi, ∇ZYi = ∇YiZ = αiXi.

Similarly,
∇XiYi = −∇YiXi = αiZ,

and all other covariant derivatives vanish. By (2.4.2) and (2.4.3),

K(Xi, Yi) = −3α2
i , K(Xi, Z) = K(Yi, Z) = α2

i ,

and the sectional curvatures of planes spanned by other pairs of vectors in this
orthonormal basis are zero. It follows that the curvature of the quotient space
Hn/R is

K(Xi, Yi) +
3
4
|[Xi, Yi]|2 = 0.

In fact, it is easily checked that the Lie group Hn/R is just the abelian group R2n.

Returning to the general case, for arbitrary H and a given left-invariant
metric on G, the fibration of G by left cosets gH , g ∈ G, will not, in general, be
metric. However, if Ad(H) has compact closure, then there exists a left-invariant
metric on G that is right-invariant under H , and the fibration is homogeneous for
this metric, since a fiber gH is the set {Rh(g) | h ∈ H}, and each Rh is an isometry.
Furthermore, if G/H is endowed with that metric for which π : G → G/H becomes
a Riemannian submersion, then the natural action

G × G/H → G/H,

(g, aH) 	→ gaH

of G on M := G/H is by isometries: If we denote by Lg : M → M the action of
g ∈ G, then Lg ◦ π = π ◦ Lg, so that Lg is an isometry of M . M is then called
a (Riemannian) homogeneous space. The submersion Hn −→ R2n described in
Example 2.4.2 above falls in this category.

The fundamental tensors of the submersion π : G → M are entirely deter-
mined by their values at a single point (which we may therefore choose to be the
identity): Indeed, both horizontal and vertical distributions are invariant under
left translation, so that if x, y ∈ He, u ∈ Ve, and X , Y , U denote the left-invariant
vector fields that equal x, y, u respectively at e, then X(g), Y (g) ∈ Hg, and
U(g) ∈ Vg for any g ∈ G. By (2.4.1), AXY and SXU are then left-invariant.
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Let m := h⊥ denote the orthogonal complement of the Lie algebra h of H
in g, so that any Z ∈ g decomposes as Z = Zh + Zm ∈ h ⊕ m. The elements
of m then span the horizontal distribution at any point, and given X , Y ∈ m,
AXY = 1

2 [X, Y ]h. Together with (2.4.2), this implies that the sectional curvature
of the plane P spanned by orthonormal π∗X and π∗Y in TM is given by

K(P ) =
1
2
〈[[X, Y ], X ], Y 〉 − 1

2
〈[[X, Y ], Y ], X〉 − 〈ad∗

X X, ad∗
Y Y 〉

+
1
4
| ad∗

X Y + ad∗
Y X |2 − 3

4
|[X, Y ]m|2.

The second fundamental tensor σ of the fibers is

σ(U, V ) =
1
2
{(adU V )m − (ad∗

U V )m − (ad∗
V U)m}, U, V ∈ h.

But adU V belongs to h since h is an algebra, and so does ad∗
U V = − adU V .

Thus, the fibers are totally geodesic, and their intrinsic curvature equals the one
in G. Since the restriction of the metric to h is bi-invariant, the curvature of the
fibers is given by (2.4.3). Furthermore, for orthonormal X ∈ m, U ∈ h, K(X, U) =
(1/4)| ad∗

X U |2. Summarizing, we have proved:

Theorem 2.4.1. Let G be a Lie group, H a closed subgroup of G, and consider a
left-invariant metric on G that is right-invariant under H. Then

1. there exists a unique metric on M := G/H such that the projection π : G →
M becomes a Riemannian submersion;

2. G acts by isometries on M in this metric via g(aH) = (ga)H, so that M is
a homogeneous space;

3. the fibers of π are totally geodesic;
4. for orthonormal X, Y ∈ m := h⊥, U , V ∈ h,

AXY =
1
2
[X, Y ]h, K(U, V ) =

1
4
| adU V |2, K(X, U) =

1
4
| ad∗

X U |2,

and K(X, Y ) is given by (2.4.2).

An important special case is that of a bi-invariant metric on G. G/H with the
induced metric is then called a normal homogeneous space. By the above theorem
and (2.4.3), we have:

Corollary 2.4.1. A normal homogeneous space has nonnegative sectional curvature.
Specifically, for orthonormal X, Y ∈ m,

K(π∗X, π∗Y ) =
1
4
|[X, Y ]m|2 + |[X, Y ]h|2.
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Example 2.4.3 (The Berger spheres). Recall that the unit sphere in R4 is the Lie
group of unit quaternions under quaternion multiplication. Consider the Lie group
S3×R with the bi-invariant metric that is the product of the standard bi-invariant
metrics on each factor. If c : R → S3 is a unit-speed one-parameter subgroup of
S3, and α is a positive number less than 1, then

H := {(c(αt),
√

1 − α2t) ∈ S3 × R | t ∈ R}
is a subgroup of S3 × R, and the manifold M = (S3 × R)/H inherits a normal
homogeneous metric from the projection π : S3 × R → M .

Choose an orthonormal basis X1, X2, X3 of the Lie algebra of S3 with
ċ(0) = X1(e), and [Xi, Xi+1] = 2Xi+2 (mod 3), see for example [136]. The vertical
distribution of π : S3 × R → M is spanned by T := (αX1,

√
1 − α2D), and the

horizontal distribution by X := (−√
1 − α2X1, αD), (X2, 0), and (X3, 0). Since T

spans the kernel of π∗, the restriction π : S3 × {0} → M of π has maximal rank
everywhere, and is therefore a local diffeomorphism. It is also injective, so that M
is diffeomorphic to S3.

We compute the curvature of M . Any pair Y , Z of horizontal vectors may
be expressed as

Y = a1X + a2(X2, 0) + a3(X3, 0), Z = b1X + b2(X2, 0) + b3(X3, 0).

Then a straightforward computation yields

[Y, Z] = 2c1(X1, 0) −
√

1 − α2(2c2(X2, 0) + 2c3(X3, 0)),

where c1 = a2b3 − a3b2, c2 = a3b1 − a1b3, c3 = a1b2 − a2b1. It follows that

|[Y, Z]|2 = 4
(
c2
1 + (1 − α2)(c2

2 + c2
3)
)
.

Furthermore, |Y |2|Z|2 − 〈Y, Z〉2 = c2
1 + c2

2 + c2
3, and

|[Y, Z]h|2 = 〈[Y, Z], T 〉2 = 4c2
1α

2.

By Corollary 2.4.1, the curvature of the plane P spanned by π∗Y and π∗Z is

KP =
|[Y, Z]|2 + 3|[Y, Z]h|2
4(|Y |2|Z|2 − 〈Y, Z〉2) =

c2
1 + (1 − α2)(c2

2 + c2
3) + 3c2

1α
2

c2
1 + c2

2 + c2
3

= 1 + α2 3c2
1 − (c2

2 + c2
3)

c2
1 + c2

2 + c2
3

,

so that the curvature KM of M satisfies

0 < 1 − α2 ≤ KM ≤ 1 + 3α2.

It is a well-known fact that an even-dimensional positively curved manifold with
curvature bounded above by κ has injectivity radius ≥ π/

√
κ. This example
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by Berger shows that the result no longer holds in odd dimensions: Indeed, we
claim that M has a closed geodesic of length 2π

√
1 − α2. Since π

√
1 − α2 <

π/(
√

1 + 3α2) provided α2 > 2/3, the injectivity radius of M must be smaller
than π/(

√
1 + 3α2). To establish the claim, observe that by (2.4.1), c is a geodesic

of S3 with period 2π. The curve γ, with γ(t) =
(
c(−√

1 − α2t), αt
)
, is then a

geodesic in S3 × R that is horizontal, since its tangent vector at 0 is X(e). Fur-
thermore,

γ(2π
√

1 − α2) =
(
c(−2π(1 − α2)), 2πα

√
1 − α2

)
=
(
c(2πα2), 2πα

√
1 − α2

)
,

by periodicity of c. Thus, γ(2π
√

1 − α2) ∈ H , and π ◦ γ is a closed geodesic in M
of length 2π

√
1 − α2. This establishes the claim.

Example 2.4.4. The Berger spheres in the previous example may be viewed as a
special case of the vertical warping discussed in Section 2.1, and is closely related
to the following construction due to Cheeger [34]: Let G be a compact group of
isometries of a Riemannian manifold M . Suppose M has nonnegative sectional
curvature, and endow G with a bi-invariant metric. G acts freely by isometries on
the Riemannian product G × M by left multiplication

ḡ(g, p) = (ḡg, ḡ(p)), ḡ, g ∈ G, p ∈ M,

and the quotient space is diffeomorphic to M via

(G × M)/G −→ M,

[(g, m)] 	−→ g−1(m).

The new metric on M therefore also has nonnegative curvature. It can be described
as the original metric on M shrunk in the direction of the G-orbits. To see this,
denote, as in Section 2.3, by Ũ the fundamental Killing field on M induced by
U ∈ g: Ũ(p) = ıp∗U(e) for p ∈ M , where ıp : G → M maps g ∈ G to g(p) ∈ M .
After identification of the tangent space of G × M at (e, p) with Ge × Mp, the
vertical space of the submersion π : G × M → M is spanned by the collection

(U(e), Ũ(p)), U ∈ g. (2.4.7)

It follows that if x ∈ Mp is orthogonal to the orbit G(p), then (0, x) is
horizontal and π∗(0, x) = x. Thus, the length of vectors orthogonal to the G-
orbits is unchanged, as claimed. Notice that for U ∈ g,

π∗(U(e), 0(p)) = −Ũ(p), (2.4.8)

as can be seen by differentiating the identity

π(exp(tU), p) = (exp tU)−1(p) = ıp ◦ exp t(−U).
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(2.4.7) and (2.4.8) now imply that

π∗(U(e), Ṽ (p)) = −Ũ(p) + Ṽ (p), U, V ∈ g. (2.4.9)

To see what happens to vectors tangent to orbits, consider U ∈ g. By (2.4.7) and
(2.4.9), the horizontal lift of Ũ(p) to G × M at (e, p) is

(0, Ũ)(e, p) − 〈(0, Ũ), (U, Ũ)〉 (U, Ũ)
|(U, Ũ)|2 (e, p).

Thus, one easily computes that the length of Ũ(p) squared in the new metric
equals

|Ũ |2
1 + (|Ũ |2/|U |2) (p) < |Ũ |2(p).

Notice that if we scale the inner product on g by 1/t and denote by gt the resulting
metric on the quotient (G×M)/G, t ∈ (0, 1], then g1 is the metric just described,
gt converges to the original metric when t → 0, and gt has nonnegative curvature
for all t.

The metric on R2 constructed in Examples and Remarks 1.5.1(iv) is of the
type just described, with G = S1. The Killing field Ũ in this case is the polar
coordinate field ∂/∂θ, and by the above, the metric in polar coordinates is given
by dr2 + (r2/(1 + r2))dθ2. The surface is asymptotic to a cylinder of radius 1.

2.5 The Aloff-Wallach examples

Apart from the rank one symmetric spaces (namely spheres, complex and quater-
nionic projective spaces, and the Cayley plane), examples of compact manifolds
with positive sectional curvature are very scarce. In this section, we describe an
infinite family of seven-dimensional manifolds of positive curvature following [2].
They are all Riemannian homogeneous spaces, although the metric is not normal
homogeneous in the sense of Section 2.4.

Denote by U(n) the unitary group of n × n complex matrices A such that
AĀt = In, and by SU(n) the subgroup consisting of those matrices with determi-
nant 1. Any A ∈ U(n) may be written as A = exp X for some X in the Lie algebra
of U(n). Then

I = exp X exp X̄t,

so that exp X̄t = (exp X)−1 = exp(−X), and X̄t = −X for small X . Conversely,
if X̄t = −X , then for A := expX ,

AĀt = (exp X)(exp X̄t) = exp(X + X̄t) = I,

and A ∈ U(n). Similarly, the identity

etr X = det(expX)
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implies that expX ∈ SU(n) iff tr X = 0. Thus, U(n) and SU(n) are Lie groups of
dimension n2 and n2 − 1 respectively, with Lie algebras

u(n) = {X ∈ Mn,n(C) | X + X̄t = 0}, su(n) = {X ∈ u(n) | trX = 0}.

Consider the Lie group G = SU(3). The inner product

〈X, Y 〉 := −Re tr(XY )

on su(3) is Ad-invariant, and therefore induces a bi-invariant metric on G. De-
note by

K =
{[

A 0
0 detA−1

]
| A ∈ U(2)

}
the standard imbedding of U(2) in G, with Lie algebra

k =
{[

X 0
0 − trX

]
| X ∈ u(2)

}
.

By the remark following Theorem 2.4.1, there is a normal homogeneous metric on
G/K such that the projection G → G/K is a Riemannian submersion with totally
geodesic fibers. In fact, G/K is CP 2 with its canonical metric, and (G, K) is a
symmetric pair: the map that assigns to gK ∈ G/K the complex line containing
ge3 (with e3 = (0, 0, 1) ∈ C3) is a diffeomorphism G/K −→ CP 2. Our next
objective is to deform the metric on G: Let Gφ denote G with the metric from
Section 2.1 warped in the vertical direction by the number e2φ(t), where φ(t) =
ln
√

1 + t, t > −1. The results from Sections 2.1 and 2.4 imply that the curvature
tensor R̃ of Gφ is given by

〈R̃(X, Y )Y, X〉φ =
1
4
|[X, Y ]|2 − 3t

4
|[X, Y ]k|2,

〈R̃(X, T )T, X〉φ =
1 + t

4
|[X, T ]|2,

〈R̃(T1, T2)T2, T1〉φ =
1 + t

4
|[T1, T2]|2

(2.5.1)

for X , Y ∈ k⊥, T , Ti ∈ k, with Zk denoting the orthogonal projection of Z ∈ g
onto k.

Since

k⊥ =
{[

0 z
−z̄t 0

]
| z =

[
z1

z2

]
, zi ∈ C

}
,

one easily checks that [k, k⊥] ⊂ k⊥, so that AdK(k⊥) ⊂ k⊥. It follows that 〈, 〉φ is
AdK-invariant. Notice also that

[k⊥, k⊥] ⊂ k. (2.5.2)
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For nonzero k, l ∈ R, consider the circle subgroup

Hk,l =

⎧⎨⎩
⎡⎣e2πikt 0 0

0 e2πilt 0
0 0 e−2πi(k+l)t

⎤⎦ | t ∈ R

⎫⎬⎭ . (2.5.3)

The family of Aloff-Wallach examples consists of the seven-dimensional manifolds
Mk,l := G/Hk,l together with the (nonnormal) G-homogeneous metric for which
the projection π : Gφ → Mk,l becomes a Riemannian submersion (notice that
Hk,l ⊂ K, so that 〈, 〉φ is right-invariant under Hk,l, and we may apply Theo-
rem 2.4.1). For simplicity of notation, from now on, 〈, 〉φ will be denoted by 〈, 〉
unless explicitly stated otherwise. Before computing the curvature of Mk,l, some
preliminaries are in order.

The vertical space at the identity is the Lie algebra h of Hk,l which is
spanned by

T =

⎡⎣2πik 0 0
0 2πil 0
0 0 −2πi(k + l)

⎤⎦ .

The horizontal space He = h⊥ decomposes as an orthogonal direct sum He =
H1 ⊕ H2, where H1 := h⊥ ∩ k, H2 := k⊥. The bracket relations between these
spaces are as follows:

Lemma 2.5.1.

1. [h, Hi] ⊂ Hi;
2. [Hi, Hi] ⊂ h ⊕ H1;
3. [H1, H2] ⊂ H2.

Proof. (1): Let Ti ∈ h, i = 1, 2. Since adT1 is skew-adjoint,

〈[T1, X ], T2〉 = −〈X, [T1, T2]〉 = 0

for X ∈ h⊥, and [h, h⊥] ⊂ h⊥. Together with [h, H1] ⊂ k (which follows from the
fact that h, H1 ⊂ k), this means that [h, H1] ⊂ h⊥ ∩ k = H1. On the other hand,

[h, H2] = [h, k⊥] ⊂ [k, k⊥] ⊂ k⊥ = H2.

(2): Since k = h ⊕ H1 and H1 ⊂ k, [H1, H1] ⊂ k = h ⊕ H1. The other identity
[H2, H2] ⊂ h ⊕ H1 is just (2.5.2).

(3): [H1, H2] ⊂ [k, k⊥] ⊂ k⊥ = H2. �

Lemma 2.5.2. Suppose kl > 0, and [X, Y ] = 0 for X, Y ∈ He = H1 ⊕ H2.

1. If X, Y ∈ H1, or if X, Y ∈ H2, then they are linearly dependent.
2. If X ∈ H1 and Y ∈ H2, then X or Y is zero.
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Proof. (1): Let

X =

⎡⎣α1i z1

−z̄1 β1i
−(α1 + β1)i

⎤⎦ , Y =

⎡⎣α2i z2

−z̄2 β2i
−(α2 + β2)i

⎤⎦ ∈ H1.

Then

[X, Y ] =

⎡⎣ 2 Im z̄1z2 iz1(β2 − α2) + iz2(α1 − β1) 0
iz̄1(β2 − α2) + iz̄2(α1 − β1) −2 Im z̄1z2 0

0 0 0

⎤⎦
is zero by assumption. Furthermore, the condition X , Y ⊥ T implies〈[

αi

βi

]
,

[
2k + l
2l + k

]〉
= 0, i = 1, 2. (2.5.4)

Thus, we may assume [
α1

β1

]
= λ

[
α2

β2

]
, λ ∈ R, (2.5.5)

and the (1, 2) entry of [X, Y ] reads

(λiz2 − iz1)(α2 − β2) = 0. (2.5.6)

If α2 = β2 = 0, then α1 = β1 = 0 by (2.5.5); moreover, z1, z2 are linearly
dependent since Im z̄1z2 = 0, and the claim follows. If α2 = β2 �= 0, then by
(2.5.4), 3(k + l) = 0, contrary to assumption. Finally, if α2 �= β2, then by (2.5.6),
z1 = λz2, and together with (2.5.5), we obtain X = λY as claimed.

Suppose next that X , Y ∈ H2. Since H2 is the horizontal space for the
submersion SU(3) → CP 2, R(π∗X, π∗Y ) = 0 by (2.4.4). But CP 2 has positive
curvature, so X and Y must be linearly dependent.

(2): Let

X =

⎡⎣ αi w
−w̄ βi

−(α + β)i

⎤⎦ ∈ H1, Y =
[

0 z
−z̄t 0

]
∈ H2, z =

[
z1

z2

]
∈ C2.

The assumption X ⊥ T implies (2α + β)k + (2β + α)l = 0, which together with
the fact that kl > 0 yields

2α + β = − l

k
(2β + α). (2.5.7)

Since

0 = [X, Y ] =

⎡⎣0 0 (2α + β)iz1 + wz2

0 0 (α + 2β)iz2 − w̄z1

∗ ∗ 0

⎤⎦ ,
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(2.5.7) yields the system

− l

k
(2β + α)iz1 + wz2 = 0,

−w̄z1 + (2β + α)iz2 = 0

of equations in z1, z2, with determinant of coefficients (l/k)(2β + α)2 + |w|2. But
kl > 0, so this determinant is positive (implying z = 0, and thus, Y = 0) unless
2β = −α and w = 0. In the latter case, (2.5.7) implies α = β = w = 0; i.e.,
X = 0. �

For X ∈ He, write X = X1 + X2 ∈ H1 ⊕ H2.

Lemma 2.5.3. If kl > 0 and [X, Y ] = [X1, Y1] = 0, then X and Y are linearly
dependent.

Proof. Consider first the case X1 = 0 and X2 �= 0. Then 0 = [X, Y ] = [X2, Y2] +
[X2, Y1]. Since [X2, Y2] ∈ h ⊕ H1, and [X2, Y1] ∈ H2 by Lemma 2.5.1, they both
vanish. By Lemma 2.5.2 (2), Y1 = 0, so that 0 = [X, Y ] = [X2, Y2]. Lemma 2.5.2
(1) then implies that X2 = X and Y2 = Y are linearly dependent. The case X1 �= 0
and X2 = 0 is similar. We may therefore assume that X1 and X2 are both nonzero.
Then

0 = [X, Y ] = [X1, Y2] + [X2, Y1] + [X2, Y2], (2.5.8)
and by Lemma 2.5.1, [X2, Y2] = 0. Lemma 2.5.2 (1) then implies that Y2 = αX2

for some α ∈ R, and therefore Y1 = βX1, also for some β ∈ R. Substituting in
(2.5.8) yields

0 = [X1, Y2] + [X2, Y1] = (α − β)[X1, X2].
But [X1, X2] �= 0 by Lemma 2.5.2 (2), since Xi �= 0. Thus, α = β and Y = αX as
claimed. �

We are now ready to prove the main result:

Theorem 2.5.1. Let Hk,l denote the circle group from (2.5.3). If kl(k+ l) > 0, then
Mk,l := SU(3)/Hk,l admits a homogeneous metric of positive curvature.

Proof. Endow SU(3) with the warped metric 〈, 〉φ the curvature of which is given
by (2.5.1). As remarked earlier, this metric is right-invariant under Hk,l, and by
Theorem 2.4.1, Mk,l admits a metric for which the projection π : SU(3) → Mk,l

becomes a Riemannian submersion. Given X , Y in the horizontal space He of
SU(3) at the identity e, a lengthy but straightforward computation using (2.5.1),
Lemma 2.5.1 and the results from Section 2.5 implies that the curvature tensor
RM of Mk,l is given by

〈RM (π∗X, π∗Y )π∗Y, π∗X〉 =
1 − 3t

4
|[X, Y ]1|2 + t2|[X1, Y1]|2

+
(1 + t)2

4
|[X, Y ]2|2 + |[X, Y ]v|2

+ (t − t2)〈[X1, Y1], [X, Y ]〉.
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Consider the quadratic forms

Q1(x, y) =
1 − 3t

4
x2 − |t − t2|xy + t2y2,

Q2(x, y) = x2 − |t − t2|xy + t2y2,

which are easily seen to be positive definite if t ∈ (−1, 0). By the Cauchy-Schwartz
inequality,

〈RM (π∗X, π∗Y )π∗Y, π∗X〉 ≥ 1 − 3t

4
|[X, Y ]1|2 − |t − t2||[X, Y ]1||[X1, Y1]1|

+ t2|[X1, Y1]1|2 + |[X, Y ]v|2
− |t − t2||[X, Y ]v||[X1, Y1]v| + t2|[X1, Y1]v|2

+
(1 + t)2

4
|[X, Y ]2|2

= Q1(|[X, Y ]1|, |[X1, Y1]1|)
+ Q2(|[X, Y ]v|, |[X1, Y1]v|)

+
(1 + t)2

4
|[X, Y ]2|2

≥ 0

if t ∈ (−1, 0). Furthermore, it can only be zero if

|[X, Y ]1| = |[X, Y ]2| = |[X, Y ]v| = |[X1, Y1]1| = |[X1, Y1]v| = 0.

In this case, [X, Y ] = [X1, Y1] = 0, and by Lemma 2.5.3, X and Y are linearly
dependent. Thus, Mk,l has positive curvature if −1 < t < 0. �

It can be shown that if k, l are relatively prime, then H4(Mk,l) = Z/rZ,
where r = |k2 + l2 + kl|. The above result therefore provides an infinite family
of seven-dimensional homogeneous spaces of positive curvature. These, together
with the rank one symmetric spaces and five exceptional manifolds are known to
be the only simply connected homogeneous spaces of positive curvature, cf. [20],
[16], and [129].

2.6 Bi-quotients of Lie groups

Consider a Lie group G with a left-invariant metric that is right-invariant under a
subgroup H . The last remark in the previous section implies that in order to obtain
more positively curved manifolds from G and H , one must somehow generalize the
homogeneous space construction G/H . Now, observe that G×H acts isometrically
on G via

(G × H) × G −→ G,(
(g, h), a

) 	−→ (g, h)a := gah−1,



88 Chapter 2. Basic Constructions and Examples

and so does any subgroup K of G×H . If K acts freely on G, then the space G//K
of orbits is called a bi-quotient of G. Since the action of K is by isometries, there
is a natural Riemannian metric on the quotient space such that the projection
π : G → G//K becomes a Riemannian submersion. Notice that if K ⊂ {e} × H ,
then G//K is just a homogeneous space in the sense of Section 2.5. In general,
though, the vertical distribution of G is not invariant under left translation: the
fiber through g ∈ G is F g = {(k1gk−1

2 ) | (k1, k2) ∈ K}. Given U = (U1, U2) ∈ k, let
ci denote the one-parameter subgroup of G with ċi(0) = Ui(e). Then t 	→ c(t) :=
c1(t)gc−1

2 (t) is a curve in F g, and U determines a vertical Killing field Ũ , with

Ũ(g) := ċ(0) = (Rg∗U1 − Lg∗U2)(e). (2.6.1)

The vertical space Vg at g is then equal to the subspace spanned by all Ũ(g), as U
ranges over k. Since left translation is an isometry, we may, as far as calculations
are concerned, translate this space back to the origin and use (2.6.1) to obtain

Vg
e := Lg−1∗Vg = span{(Adg−1 U1 − U2)(e) | (U1, U2) ∈ k}. (2.6.2)

We see from this that the subspaces Vg
e of Ge need not coincide for different values

of g.
Bi-quotients have been used to construct examples of spaces with positive or

nonnegative curvature. We discuss two such here.

2.6.1 The Gromoll-Meyer exotic sphere

Recall that the symplectic group Sp(n) is the group of n×n quaternion matrices A
satisfying AĀt = In. If we identify R4 with the division algebra H of quaternions,
then Sp(1) is just the set of unit quaternions, or in other words, S3. Sp(n) is simple,
and as such, admits a canonical bi-invariant metric of nonnegative curvature by
Proposition 2.4.2. Set G = Sp(2), and consider the subgroup K of G×G given by

K =
{([

q 0
0 q

]
,

[
q̄ 0
0 1

])
| q ∈ Sp(1)

}
.

K acts freely on G, so that the seven-dimensional bi-quotient M := G//K of G
admits a metric with nonnegative sectional curvature. It turns out that this metric
has positive curvature on an open set.

Before identifying M as an exotic sphere (i.e., as a manifold homeomorphic,
but not diffeomorphic, to a standard sphere), we recall part of Milnor’s description
of S3-bundles over S4 [86]:

Denote by xN and xS the stereographic projections of S4 from the north and
south poles respectively onto R4. For u ∈ H \ {0},

xN ◦ x−1
S (u) = xS ◦ x−1

N (u) =
u

|u|2 ,
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x−1
S (u)

xN ◦ x−1
S (u)

u
R4

S4

so that S4 is the identification space

R4 � R4/ ∼, u ∼ u

|u|2 , u �= 0,

obtained as the disjoint union of two copies of R4, where each nonzero u in one
copy is identified with u/|u|2 in the other. Next, let l be an odd integer, and set
m := (1 + l)/2, n := (1 − l)/2. Define

El = R4 × S3 � R4 × S3/ ∼,

where (u, q) (for u �= 0) in the first copy is identified with (u/|u|2, umqun/|u|) in
the second copy. Multiplication here is understood to be quaternion multiplication.
It follows that there exists a well-defined map π : El → S4, with π[u, q] = x−1

N (u)
if (u, q) lies in the first copy, and π[u, q] = x−1

S (u) for (u, q) in the second one
(here, [u, v] denotes the equivalence class of (u, v) in El). Define maps φN : R4 ×
S3 � ∅/ ∼→ S3 and φS : ∅�R4 ×S3/ ∼→ S3 by φN [u, q] = q, φS [u, q] = q. Then
A = {(xN ◦ π, φN ), (xS ◦ π, φS)} determines a topology on El by requiring both
maps to be homeomorphisms. Since

(xS ◦ π, φS) ◦ (xN ◦ π, φN )−1(u, q) =
(

u

|u|2 ,
umqun

|u|
)

, u �= 0,

the atlas A determines a differentiable structure on El, and at the same time an
S3-bundle structure on π : El → S4. Milnor showed that El is homeomorphic to
S7, but not diffeomorphic, unless l2 is congruent to 1 modulo 7. We now identify M
as an exotic sphere, by showing it is diffeomorphic to E3: Denote by ρ : Sp(2) → M
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the projection onto the orbit space, and define

f1 : R4 × S3 → M, f2 : R4 × S3 → M,

(u, q) 	→ ρ

(
φ(u)

[
q ū

−uq 1

])
(v, p) 	→ ρ

(
φ(v)

[
v̄p 1
−p̄ v

])
where φ(u) = (1 + |u|2)−1/2. Notice that b and d cannot both vanish for

ρ

([
a b
c d

])
∈ M.

If d �= 0, then

ρ

([
a b
c d

])
= ρ

(
d̄

|d|
[
a b
c d

] [ d
|d| 0
0 1

])
= ρ

(
|d|

[
d̄ad
|d|3

d̄b
|d|2

d̄cd
|d|3 1

])
= f1

(
b̄d

|d|2 ,
d̄ad

|d|3
)

.

Similarly, if b �= 0, then

ρ

([
a b
c d

])
= f2

(
b̄d

|b|2 ,− b̄cb

|b|3
)

.

It follows that the union of the images of f1 and f2 equals all of M . Moreover, f1

and f2 are differentiable, and by the above, are invertible with

f−1
1

(
ρ

[
a b
c d

])
=
(

b̄d

|d|2 ,
d̄ad

|d|3
)

, f−1
2

(
ρ

[
a b
c d

])
=
(

b̄d

|b|2 ,− b̄cb

|b|3
)

.

Finally, f−1
2 ◦ f1(u, q) = (u/|u|2, u2qu−1/|u|), so that f1 and f2 combine to yield

a diffeomorphism between E3 and M , as claimed; see also [59].

2.6.2 The seven-dimensional Eschenburg examples

Let G = SU(3), and denote by Mk,l = G/Hk,l any one of the Aloff-Wallach spaces
of positive curvature from Section 2.5. Eschenburg constructed a sequence Mi of
bi-quotients of G with curvature converging in a sense to that of Mk,l [42], [43].
In particular, Mi is positively curved for large i. One remarkable aspect is that
Mi is not a Riemannian homogeneous space; in fact, he proves that it is not even
homotopy equivalent to a compact homogeneous space.

For n ∈ N, consider the subgroup Kn of G × G given by

Kn =

⎧⎨⎩
⎛⎝⎡⎣e2πit 0 0

0 1 0
0 0 e−2πit

⎤⎦ ,

⎡⎣e2πinkt 0 0
0 e2πinlt 0
0 0 e−2πin(k+l)t

⎤⎦⎞⎠ | t ∈ R

⎫⎬⎭ .
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For the sake of brevity, we denote a diagonal matrix such as the first one above
by diag(e2πit, 1, e−2πit). Kn acts by isometries on G via

((a, b), g) 	→ agb−1,

and it is readily checked that this action is free for infinitely many values of n. We
will denote by Mn the bi-quotient G//Kn of G.

The Lie algebra kn of Kn is spanned by (Un, V ) ∈ g × g, where

Un = diag
(

2πi

n
, 0,−2πi

n

)
, V = diag(2πik, 2πil,−2πi(k + l)).

Notice that V generates the Lie algebra of Hk,l ⊂ G, where G/Hk,l is the Aloff-
Wallach space Mk,l. The following result then guarantees that Mn has positive
curvature for infinitely many values of n:

Theorem 2.6.1. Let Ki, i = 1, 2, . . . be 1-parameter subgroups of G × G acting
freely on G, with Lie algebras kni spanned by (Ui, V ), where Ui → 0, V �= 0.
Denote by H the subgroup of G with Lie algebra spanned by V . If M := G/H has
positive curvature, then so does Mi := G//Ki for large enough i.

Proof. Set T g
i := (V − Adg−1 Ui)(e)/|(V − Adg−1 Ui)(e)| ∈ Ge, for g ∈ G. Then

T g
i → V

|V | (e) (2.6.3)

uniformly in g. Fix some such g, and denote by Hg, Hi
g ⊂ Gg the horizontal spaces

of the submersions π : G → M := G/H , πi : G → Mi = G//Ki, respectively.
Observe that πi∗|Hg

has maximal rank for large i by (2.6.2) and (2.6.3). Next, let
Sg be the unit sphere in Hg, h : Sg → Gg the inclusion, and hi : Sg → Gg the
restriction of the πi-horizontal projection Gg → Hi

g to Sg, followed by inclusion
Hi

g ↪→ Gg. Then hi → h uniformly, since

hi(x) = Lg∗
(
Lg−1∗x − 〈Lg−1∗x, T g

i 〉T g
i

)
, x ∈ Sg.

By Theorem 1.5.1, given a plane P ⊂ Hg spanned by π-horizontal fields X , Y
that are orthonormal at g, and Pi := span{hiX(g), hiY (g)},

KMi(πi∗P ) = KG(Pi) +
3|(1Gg − hi)[hiX(g), hiY (g)]|2

4(|hiX(g)|2|hiY (g)|2 − 〈hiX(g), hiY (g)〉2)
→ KG(P ) +

3
4
|(1Gg − h)[X, Y ](g)|2 = KM (π∗P ).

The claim now follows by compactness of G. �

Using spectral sequences, it can be shown that there exists a sequence ni →
∞ of positive integers such that the spaces Mni = G//Kni are strongly inho-
mogeneous ; i.e., they are not homotopy equivalent to any compact Riemannian
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homogeneous space. The above construction therefore yields infinite families of
positively curved such spaces.

Just as the Eschenburg examples are derived from the Aloff-Wallach spaces,
Bazaikin, motivated by the Berger example of the normal homogeneous space
SU(5)/(Sp(2)× U(1)), discovered an infinite family of thirteen-dimensional posi-
tively curved manifolds [12]. It is known that each Bazaikin space contains one or
more totally geodesically imbedded Aloff-Wallach or Eschenburg spaces [39].

2.7 Associated bundles

There is yet another construction which yields a large class of homogeneous sub-
mersions that often appear in the literature. Let P denote the total space of a
(right) principal G-bundle πP : P → M = P/G, and F a manifold on which G
acts (on the left). Then G acts freely on P × F via:

G × P × F → P × F,

(g, p, m) 	→ (pg−1, gm).

The quotient manifold G\(P × F ) is usually denoted by P ×G F , and is the total
space of a bundle π : P ×G F → M with fiber F and group G, where π(G(p, m)) =
πP (p) for p ∈ P , m ∈ F . π is called the bundle with fiber F associated to the
principal bundle πP (and the given action of G on F ). Now, suppose that both P
and F have G-invariant metrics. Then G acts by isometries on the Riemannian
product P × F , and by Examples and Remarks 1.2.1 (iv), P ×G F inherits a
metric such that the projection ρ : P ×F → P ×G F is a Riemannian submersion.
Similarly, there exists a metric on M for which πP : P → M becomes Riemannian.
Let π1 : P ×F → P denote the projection onto the first factor. Since the diagram

P × F
ρ−−−−→ P ×G F

π1

⏐⏐' ⏐⏐'π

P −−−−→
πP

M

commutes, and since π1, ρ, and πP are Riemannian, the bundle projection π :
P ×G F → M is also a Riemannian submersion. Furthermore, if πP has totally
geodesic fibers, then so does π. To see this, consider a vertical vector u in the
tangent space of P ×G F at ρ(p, m), and its ρ-horizontal lift ũ = (v, w) ∈ Pp×Fm.
The geodesic cũ in P ×F with ċũ(0) = ũ decomposes as a pair (c1, c2) of geodesics
in each factor, and c := ρ ◦ cũ is a geodesic in P ×G F with ċ(0) = u. It suffices to
show that π∗ċ ≡ 0. Now, π∗u = 0, so that

πP∗(v) = πP∗ ◦ π1∗(ũ) = π∗ ◦ ρ∗(ũ) = π∗u = 0.
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Since πP has totally geodesic fibers, πP∗(ċ1) ≡ 0. But then,

π∗ċ = π∗ ◦ ρ∗(ċũ) = πP∗ ◦ π1∗(ċũ) = πP (ċ1) ≡ 0,

which establishes the claim, cf. also [96].

Example 2.7.1 (The tangent bundle of a homogeneous space). Let M = G/H de-
note a Riemannian homogeneous space, and set p := eH ∈ M . There are natural
actions (g, aH) 	→ gaH and (g, u) 	→ g∗u of G on M and TM , respectively. The
latter action, when restricted to H , leaves the tangent space of M at p invari-
ant, and thus defines a bundle π : G ×H Mp → G/H with fiber Mp associated
to the principal H-bundle G → G/H . G acts on the total space G ×H M via
(g1, ρ(g2, u)) 	→ ρ(g1g2, u), and the map

f : G ×H Mp → TM,

ρ(g, u) 	→ g∗u

is a well-defined G-equivariant diffeomorphism. Since the action of H on both
factors is by isometries (here Mp is identified with Euclidean space by means of
its inner product and H is then a subgroup of the orthogonal group), G ×H Mp

inherits a natural Riemannian metric, and so does TM via f . Furthermore, if
πM : TM → M denotes the vector bundle projection that maps v ∈ Mq to q, then
πM ◦ f = π, since for u ∈ Mp,

πM ◦ f(ρ(g, u)) = πM (g∗u) = g(πMu) = g(p) = π(ρ(g, u)).

Thus, after identifying G ×H Mp with TM via f , π is just the vector bundle
projection πM .

G ×H Mp

π
����

��
��

��
��

f∼= �� TM

πM

����
��

��
��

�

M

By Theorem 2.4.1 together with the above discussion, π : TM → M is then
a Riemannian submersion with totally geodesic fibers. Notice that if the metric
on G is bi-invariant, then the sectional curvature of TM is nonnegative. This is
the case, for example, of the tangent bundle of Sn = SO(n + 1)/SO(n). The
curvature cannot, however, be positive: Since M = G ×H {0} ⊂ G ×H Mp, the
horizontal distribution through any point of M is integrable; i.e., A ≡ 0 along M ,
or equivalently, the zero section is horizontal. By the proof of Theorem 2.2.2, the
S-tensor must also vanish along M , and any plane spanned by a vector tangent
to M and one orthogonal to M has zero curvature, cf. (1.5.2).

The construction above has many applications. One such is the following
theorem due to Cheeger [34]:
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Theorem 2.7.1. The connected sum of two rank one symmetric spaces of the same
dimension admits a metric of nonnegative curvature.

Proof. The construction is similar in all cases, and we shall only outline it for
complex projective space. Consider the Hopf fibration S2n+1 → CPn; the associ-
ated rank two vector bundle E = S2n+1 ×S1 R2 → CPn is the normal bundle of
the inclusion of CPn into CPn+1, and as such, its total space E is diffeomorphic
to CPn+1 with a ball removed. Endow R2 \ {0} with the metric given in polar
coordinates by

〈∂r, ∂r〉 ≡ 1, 〈∂r, ∂θ〉 ≡ 0, and 〈∂θ, ∂θ〉(r) = f2(r),

where f is a differentiable concave function on (0, +∞) with the following prop-
erties:

1. f is extendable to a smooth odd function on (−ε, ε) for some ε > 0;
2. f ′(0) = 1, and
3. f is constant for r ≥ r0, where r0 > 0.

Conditions (1) and (2) guarantee that this metric on the punctured plane is ex-
tendable to all of R2, cf. [53], [104]. The resulting surface P2 has nonnegative
curvature. In fact, it can be expressed as a warped product

P2 = [0,∞) ×f2 S1,

where by Corollary 2.2.1,

〈R(X, T )T, X〉 = −f ′′

f
|T |2 ≥ 0.

Notice that the warping function f is constant for r ≥ r0, so that the complement
of the ball of radius r0 around the origin is isometric to the cylinder (r0,∞)×S1.
Since P2 is rotationally symmetric, there is a submersion metric on E = S2n+1×S1

P2 induced by ρ : S2n+1 × P2 → E, and it has nonnegative sectional curvature.
Given p ∈ S2n+1, u ∈ R2, the distance in E between ρ(p, 0) and ρ(p, u) equals

the distance between the sets {(pz0, 0) | z0 ∈ S1} and {(pz1, z
−1
1 u) | z1 ∈ S1} in

the Riemannian product S2n+1 × P2. The latter is clearly |u|, and it follows that
the distance from ρ(p, u) to the zero section ρ(S2n+1 × {0}) = CPn also equals
|u|. Since P2 is isometric to the product (r0,∞) × S1 for r ≥ r0, the action of S1

on the first factor is trivial, and the complement of the tubular neighborhood of
radius r0 about CPn is isometric to

S2n+1 ×S1

(
S1 × (r0,∞)

)
= (S2n+1 ×S1 S1) × (r0,∞) = M × (r0,∞),

where M denotes the Riemannian manifold S2n+1 ×S1 S1 which is diffeomorphic
to a sphere.

By gluing two such disk bundles of radius R > r0 along their common bound-
ary, we then obtain a well-defined metric of nonnegative curvature on the con-
nected sum of two copies of CPn+1. �
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Remark 2.7.1. One cannot expect to construct metrics of nonnegative curvature on
a connected sum of arbitrarily many copies of CPn: One of the known obstructions
to the existence of metrics with nonnegative curvature is a result of Gromov [64],
which states that for each positive integer n, there exists a constant C(n), such
that the total Betti number of any n-dimensional complete manifold of nonnegative
sectional curvature is less than C(n). This, in fact, illustrates how much weaker,
as a property, positive Ricci curvature is as opposed to nonnegative sectional
curvature: Sha and Yang [113] have shown the existence of seven-dimensional
manifolds with arbitrarily large total Betti number, which admit complete metrics
of positive Ricci curvature (and cannot all admit metrics of nonnegative sectional
curvature by the above). The details of their construction are fairly technical in
nature, but since it is related to the metric on the Hopf bundle from the above
theorem, we provide an overview of it.

First, let us look at an alternative description of the standard metric on the
total space E = S3×S1 R2 of the plane bundle associated to the lowest-dimensional
Hopf fibration. The unit sphere bundle has total space S3×S1 S1 = S3, so that the
complement E0 of the zero section S3×S1 {0} = S2 is diffeomorphic to (0,∞)×S3

via

E0 → (0,∞) × S3,

u 	→ (|u|, u

|u| ).

E itself can then be realized as [0,∞) × S3/ ∼, where the equivalence relation
identifies (0, p) with (0, pz) for p ∈ S3, z ∈ S1. We have seen that the distance
function from the zero section is the projection π1 : (0,∞) × S3 → (0,∞), and
is a Riemannian submersion. The total space (0,∞) × S3 of the submersion is
not, however, a warped product, because only the direction tangent to the Hopf
fiber in S3 is warped, leaving its orthogonal complement unchanged: Denote by
I the Killing field on S3 whose flow generates the Hopf fibers, cf. Examples and
Remarks 1.5.1, where it was called IN instead. If R2 is endowed with the stan-
dard flat metric, then the vertical space of ρ : S3 × R2 → E = S3 ×S1 R2 has
1/(1+r2)1/2(I,−∂θ) as orthonormal basis. The vertical component (I, 0)v of (I, 0)
then has norm squared

|(I, 0)v|2 =
1

1 + r2
〈(I, 0), (I,−∂θ)〉2 =

1
1 + r2

,

so that |ρ∗(I, 0)|2 = 1 − 1/(1 + r2) = r2/(1 + r2). Thus, the metric on E =
[0,∞) × S3/ ∼ is

dr2 ⊕ gr,

where gr is the metric on S3 given by

gr(I, I) =
r2

1 + r2
, gr|I⊥⊗I⊥ = g|I⊥⊗I⊥ ,
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with g denoting the canonical metric on S3. As in the proof of Theorem 2.7.1, the
function r 	→ r2/(1 + r2) may be replaced by any function f2, where f is odd,
and f(0) = 0, f ′(0) = 1. In the sequel, we shall consider the unit disk bundle
E1 = [0, 1]× S3/ ∼, together with the metric dr2 ⊕ gf,b, where

gf,b(I, I) = f2, gf,b|I⊥⊗I⊥ = b2g|I⊥⊗I⊥ , (2.7.1)

with the function f and the positive number b yet to be specified.
With these preliminaries out of the way, we now examine the Sha-Yang con-

struction, which involves surgery on the seven-dimensional manifold S4 × S3: Let
a > 1, b as above, and consider the Euclidean spheres M = S4

a, N = S3
b of radii

a, b, respectively. Fix a point p0 ∈ M . The closed ball B̄1(p0) of radius 1 around
p0 in M is isometric to the warped product

[0, 1] ×φ S3
1/ ∼0,

where φ(r) = a sin(r/a), and ∼0 collapses {0} × S3
1 to a point, cf. Theorem 2.2.1.

The manifold (M \ B̄1(p)) × N is then M × N with

B1(p) × S3
b = ([0, 1] ×φ S3

1)/ ∼0 ×S3
b

removed. The part removed is now replaced by a space that is topologically

E1 × S3 = ([0, 1] × S3)/ ∼ ×S3,

but with the identification interchanging the S3-factors; i.e., (r, p, q) ∈ B1(p)×S3

is to be identified with (r, q, p) ∈ E1 × S3. The metric on E1 × S3 is a warped
product

(E1, dr2 ⊕ gf,b) ×k2 S3
1 .

Because of the interchange in the S3-factors, we require that

k(r) = a sin
r

a
, and f(r) = b for r ≥ 1,

in order to obtain a well-defined metric on the whole manifold.
Sha and Yang show that the functions k, f , and the number b may be chosen

to yield a metric of positive Ricci curvature on E1 × S3. Since the metric on the
complement of E1 × S3 is the original product metric, one obtains a metric of
positive Ricci curvature on the entire manifold. Finally, by choosing the radius
a of S4 large enough, the same type of surgery can be performed at any given
number of points on S4, since they only need to be at distance larger than 2
from each other. One then obtains 7-manifolds of positive Ricci curvature with
arbitrarily large total Betti numbers.

These examples have since been extended to four-dimensional manifolds, cf.
[6], [114]: It is now known that a (clearly) necessary but also sufficient condition
for a compact, simply connected four-dimensional manifold to admit a metric of
positive Ricci curvature is that it be homeomorphic to one that admits a metric
with positive scalar curvature. There are 4-manifolds that do not fall under this
category, namely spin manifolds with nonzero signature.
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Returning to our original theme, it should be noted that there is also a
different way of constructing metrics on P×GF , one that does not involve a metric
on P , but rather one on the base space M of the principal G-bundle P → M ,
together with a connection on that bundle. The proposition below is due to Vilms
[127]:

Proposition 2.7.1. Let M be a Riemannian manifold, πP : P → M a principal
G-bundle over M with connection H. Given a Riemannian manifold F on which
G acts by isometries, there exists a (unique) metric on P ×G F such that π :
P ×G F → M is a Riemannian submersion with totally geodesic fibers isometric
to F and horizontal distribution H̃ := ρ∗(H × {0}), where ρ : P × F → P ×G F
denotes projection.

Such a metric is called a connection metric.

Proof. As before, π1 : P × F −→ P denotes projection. Observe first that since
π ◦ ρ = πP ◦ π1,

π∗H̃ = (π ◦ ρ)∗(H× {0}) = πP∗ ◦ π1∗(H× {0}) = πP∗H = TM.

Thus, T (P ×G F ) = kerπ∗ ⊕ H̃, and uniqueness is immediate, since kerπ∗ ⊥ H̃,
and the inner product is specified on each factor. To establish existence, given
(p, m) ∈ P × F , endow H̃ρ(p,m) with the inner product for which the restriction
π∗ : H̃ρ(p,m) → MπP (p) becomes a linear isometry. Next, endow the vertical space
kerπ∗ρ(p,m) = ρ∗({0}×Fm) with the inner product for which hp∗ : Fm → ρ∗({0}×
Fm) becomes a linear isometry, where hp : F → ρ(p, F ) is given by hp(m) =
ρ(p, m); i.e., we endow the fiber ρ(p, F ) over πP (p) with the Riemannian metric for
which hp becomes an isometry. To see that this metric is well defined, observe that
if Lg : F → F denotes the isometric action of g ∈ G on F , then hpg = hp◦Lg. Thus,
hp is an isometry iff hpg is one for any g ∈ G, and the definition is independent
of the point (p, m) chosen in the fiber. Finally, set kerπ∗ ⊥ H̃. By construction,
π : P ×G F → M is a Riemannian submersion, and it remains to show that the
fibers are totally geodesic. Consider, to this end, a regular curve c : [0, 1] → M
in M . If c̃ denotes its horizontal lift to P (meaning c̃ is tangent to H) starting at
p, then ρ ◦ (c̃, m) is the horizontal lift of c to P ×G F starting at ρ(p, m). Now,
H is a G-connection, so that if c is closed, then c̃(1) = pg for some g ∈ G. Thus,
ρ(c̃(1), m) = ρ(pg, m) = ρ(p, gm), and under the identification hp : F → ρ(p, F ),
the holonomy diffeomorphism induced by c is just the isometry Lg of F . But if
holonomy transformations are isometries, then by the discussion in Section 1.4,
the fibers are totally geodesic: In fact, a holonomy Jacobi field along a horizontal
geodesic must have constant norm, so that

0 = |J |2′ = −2〈SċJ, J〉,

and S ≡ 0. �
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It is worth noticing that the construction outlined at the beginning of the
section is actually a special case of Proposition 2.7.1, provided the fibers are totally
geodesic; i.e., if G acts freely on the right by isometries on a Riemannian manifold
P , acts isometrically on the left on F , and if P → P/G has totally geodesic
fibers, then the metric on P ×G F for which ρ : P × F → P ×G F becomes a
Riemannian submersion is a connection metric as in Proposition 2.7.1: Since the
horizontal distribution H of the Riemannian submersion πP : P → M = P/G is
invariant under the action of G, it is a connection on the principal bundle πG. By
commutativity of the diagram

P × F
ρ−−−−→ P ×G F

π1

⏐⏐' ⏐⏐'π

P −−−−→
πP

M ,

π∗ maps ρ∗(H×{0}) isometrically onto TM , so that ρ∗(H×{0}) is the horizontal
distribution of π. Since the fibers are totally geodesic, the claim follows from
the uniqueness part of the proposition. The fibers, though, will not, in general, be
isometric to the original Riemannian manifold F . The point here is that connection
metrics are equivalent to Riemannian submersions with totally geodesic fibers in
the following sense:

Theorem 2.7.2. Let π : M → B be a Riemannian submersion with totally geodesic
fibers. Then π is a fiber bundle and the metric on M is a connection metric.

Proof. That π is a fiber bundle was the content of Theorem 1.4.1 (1). In fact,
recall that for fixed b0 ∈ B, if F := π−1(b0) and G is the Lie group of isometries
of F , then the corresponding principal G-bundle P → B has as fiber π−1

P (b) the
collection of all isometries F → π−1(b), and M is identified with P ×G F via

P ×G F −→ M,

ρ(h, q) 	−→ h(q).

By definition, given h ∈ π−1
P (b), the map

F −→ ρ(h, F ) = π−1(b),
q 	−→ ρ(h, q)

is just h, hence is an isometry. It remains to show that under the identification
M = P ×GF , the horizontal distribution H̃ of M → B equals ρ∗(H×{0}) for some
connection H on P ; i.e., that Rg∗Hh = Hhg for h ∈ P , g ∈ G, or equivalently, that
if γ : I → P is a curve in P such that ρ(γ, q) is horizontal in M , then ρ(Rg ◦ γ, q)
is also horizontal for g ∈ G. Now, if c : [0, 1] → B is a curve with c(0) = b, then
the horizontal lift of c in M starting at some point ρ(h, q) ∈ π−1(b) is given by

t 	−→ ρ(hc|[0,t]
◦ h, q),
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where hc is the holonomy transformation associated to c. But then for any g ∈ G
the curve

t 	−→ ρ(Rg ◦ hc|[0,t]
◦ h, q) = hc|[0,t]

(h(gq))

is the horizontal lift of c starting at g(q), thereby establishing the claim. �

Example 2.7.2. Let G be a Lie group, K, H compact subgroups with K ⊂ H .
Then there exist G-invariant metrics on G/K, G/H , and a normal homogeneous
metric on H/K such that the natural fibration π : G/K → G/H becomes a
Riemannian submersion with totally geodesic fibers isometric to H/K, cf. [15].
To see this, choose a left-invariant metric on G that is right-invariant under H ,
so that πG : G → G/H is a Riemannian submersion as in Section 2.5. We claim
that the horizontal distribution H of πG is a connection on the principal H-bundle
πG: given h ∈ H , g ∈ G, we have Rh∗Hg = Hgh, since Rh is an isometry of G
that preserves the fibers, and therefore also their orthogonal complement. Thus,
H is a connection (this also follows from the fact that the fibers of G −→ G/H
are totally geodesic – by Theorem 2.4.1 – together with Theorem 2.7.2). The
restriction of the metric to H is bi-invariant, so that H acts by isometries on the
normal homogeneous space H/K. By Proposition 2.7.1, there exists a metric on
the total space G/K = G ×H H/K of the associated bundle with fiber H/K for
which π : G/K → G/H becomes a Riemannian submersion with totally geodesic
fibers. It is straightforward to verify that this metric is G-invariant: left translation
Lg : G → G induces a well-defined diffeomorphism Lg of G ×H H/K such that
the diagram

G × H/K
Lg×1H/K−−−−−−→ G × H/K

ρ

⏐⏐' ⏐⏐'ρ

G ×H H/K −−−−→
Lg

G ×H H/K

commutes. Furthermore, since Lg also induces an isometry of G/H , we have that
Lg∗H = H ◦ Lg. Thus,

Lg∗ρ∗(H× {0}) = ρ∗(Lg∗H× {0}) = ρ∗(H ◦ Lg × {0}),

and Lg preserves the horizontal distribution of π. Since Lg is an isometry, the
restriction of Lg∗ to this horizontal distribution is isometric. Finally, the restriction
to the vertical distribution is also isometric, because if a ∈ G, h ∈ H , and (0, u) ∈
Ga × (H/K)hK , then

Lg∗ρ∗(a,hK)(0, u) = ρ∗(Lg∗0, u) = ρ∗(ga,hK)(0, u),

and |ρ∗(a,hK)(0, u)| = |ρ∗(ga,hK)(0, u)| = u, by definition of the fiber metric.

Proposition 2.7.1 enables us to construct metrics of positive Ricci curvature
on certain fiber bundles, following results of Poor [106], Nash [96], and Bérard
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Bergery [17]. But first, some notation: given a Riemannian manifold M , denote as
in Section 2.4 by ρ the Ricci form of the metric,

ρ(x) := Ric(x, x), x ∈ TM.

If π : M −→ B is a Riemannian submersion, and u ∈ V , define

Au : H −→ H,

x 	−→ A∗
xu.

The following is an immediate consequence of Theorem 1.5.1:

Lemma 2.7.1. Let π : M → B be a Riemannian submersion with totally geodesic
fibers. Then for basic X,

(ρM − ρh)(X) = 3 trA∗
XAX ;

ρv(X) = (ρ − ρh)(X) = tr AXA∗
X = tr A∗

XAX ;

ρh(T ) = trA∗
T AT ,

where, as usual, X also denotes the π-related vector field on B.

Theorem 2.7.3. Let M and F denote compact Riemannian manifolds with positive
Ricci curvature, π : E → M a fiber bundle with fiber F and structure group G.
If the metric on F is G-invariant, then E admits a metric with positive Ricci
curvature.

Proof. Endow E with some connection metric as in Proposition 2.7.1, and apply
vertical warping to the fiber as in Section 2.1, taking the function φ to be a constant
r ∈ R. If ρ̃ denotes the Ricci curvature of the new metric, then decomposing a
vector field W = X + T on E as a sum of horizontal X and vertical T , we have

ρ̃(W ) = ρ̃(X) + ρ̃(T ) + 2R̃ic(X, T ). (2.7.2)

(2.1.28) yields

ρ̃(X) = ρ(X) +
2
3
(1 − e2r)(ρM − ρh)(X),

which, by Lemma 2.7.1, becomes

ρ̃(X) = e2rρ(X) + (1 − e2r)ρ(X) + (1 − e2r)ρM (X) − 1
3
(1 − e2r)ρM (X)

− 2
3
(1 − e2r)ρh(X)

= (1 − e2r)ρM (X) + e2rρ(X) + (1 − e2r)(ρ − ρh)(X)

− 1
3
(1 − e2r)(ρM − ρh)(X)

= (1 − e2r)ρM (X) + e2rρ(X).

(2.7.3)
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Similarly, (2.1.34) yields

ρ̃(T ) = (1 − e2r){ρF (T ) − e2r tr A∗
T AT } + e2rρ(T ),

which, by the lemma, becomes

ρ̃(T ) = ρF (T ) + e4rρh(T ). (2.7.4)

Finally, the Codazzi equation implies that Ricv(X, T ) = 0 because the fibers are
totally geodesic, and (2.1.31) becomes

R̃ic(X, T ) = e2r Rich(X, T ). (2.7.5)

Substitution of (2.7.3), (2.7.4), and (2.7.5) in (2.7.2) then yields

ρ̃(W ) = (1 − e2r)ρM (X) + e2rρ(X) + ρF (T ) + e4rρh(T ) + 2e2r Rich(X, T ).

As r → −∞, ρ(W ) → ρM (X)+ ρF (T ) > 0, and the result follows by compactness
of E. �

Notice that the theorem applies to the principal bundle πP : P −→ M of
any vector bundle of rank k ≥ 3 over a compact manifold M of positive Ricci
curvature, since for k > 2, the orthogonal group O(k) admits a bi-invariant metric
of positive Ricci curvature. It does not apply, however, to the one-dimensional
O(2). In this case, we argue as in [17]: Up to a 2-fold cover and scaling, we may
assume that πP is a principal S1-bundle. Let T be a basis of the Lie algebra of
S1, and T̃ the corresponding fundamental vector field, cf. (2.3.3). The curvature
form Ω of a connection on πP may then be identified with the real-valued 2-form
(also denoted Ω) on P given by

Ω(p)(X, Y ) := 〈Ω(p)(X, Y ), T 〉, X, Y ∈ H, p ∈ P,

and is always the pullback via πP of a closed 2-form on M , the cohomology class
of which is 2πe ∈ H2(M, R), where e is the real Euler class of the bundle. Denote
by α the unique harmonic representative in that cohomology class. By [82], there
exists a connection on πP whose curvature form equals π∗

P α. Endow P with the
corresponding connection metric, with totally geodesic fibers of length 2π. (2.3.2)
then implies that

α(X, Y ) = −2〈AX̄ Ȳ , T̃ 〉, (2.7.6)

where X̄, Ȳ are the basic lifts of X , Y ∈ XM . Observe that if φt denotes the flow
of the vertical Killing field T̃ , then any basic field X̄ is φt-related to itself, so that
[X̄, T̃ ] = 0. Thus,

∇v
X̄ T̃ = ∇v

T̃
X̄ = −SX̄ T̃ = 0.
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If Xi is a local orthonormal basis of XM , harmonicity of α implies that for X ∈
XM ,

0 = δα(X) =
∑

i

(∇Xiα)(Xi, X)

=
∑

i

{∇Xi

(
α(Xi, X)

)− α(∇XiXi, X) − α(Xi,∇XiX)}

= −2
∑

i

{X̄i〈AX̄i
X̄, T̃ 〉 − 〈A∇X̄i

X̄i
X̃, T̃ 〉 − 〈AX̄i

∇X̄i
X̄, T̃ 〉}

= −2
∑

i

{〈∇X̄i
(AX̄i

X̄), T̃ 〉 − 〈A∇X̄i
X̄i

X̃, T̃ 〉 − 〈AX̄i
∇X̄i

X̄, T̃ 〉}

= −2
∑

i

〈(∇X̄i
A)X̄i

X̄, T̃ 〉 = −2
∑

i

〈R(X̄i, X̄)X̄i, T̃ 〉,

where the last equality uses (1.5.7). It follows that Rich(X̃, T̃ ) ≡ 0, and the formula
for the Ricci form ρ̃(W ) at W = X + T in the warped metric becomes

ρ̃(W ) = (1 − e2r)ρM (X) + e2rρ(X) + e4rρh(T ).

It follows that the Ricci curvature can be made nonnegative, and strictly positive
at any point where

ρh(T ) = tr A∗
T AT ≥ 0

is nonzero for T �= 0. This implies that if the Euler class is nonzero, then α �= 0, and
by (2.7.6), there is one point at least where the Ricci curvature will be positive.
But by a result of Aubin [4], such a metric can be deformed to one of strictly
positive Ricci curvature. On the other hand, if the Euler class is zero, then the
bundle is trivial, and P is diffeomorphic to M ×S1. By Myers’ theorem, P cannot
admit a metric of positive Ricci curvature. Summarizing, we have:

Theorem 2.7.4. Let πP : P → M be a principal O(k)-bundle over a compact
manifold M of positive Ricci curvature. If k > 2, then P admits a metric of positive
Ricci curvature. When k = 2, P admits a metric of positive Ricci curvature iff πP

or its orientable 2-fold cover is not a trivial bundle.

Remark 2.7.2. Nash [96] has shown that if the total space of a principal O(k)-
bundle over a compact M with positive Ricci curvature admits a metric with
positive Ricci curvature, then so does the total space of the associated rank k
vector bundle over M . Thus, the total space of any vector bundle of rank k ≥ 2
over a compact manifold of positive Ricci curvature admits a complete metric
of positive Ricci curvature: This follows from Theorem 2.7.4 unless the bundle,
up to a 2-fold cover, is trivial of rank two. But if P denotes R2 with a metric of
positive sectional curvature, then M×P with the product metric has positive Ricci
curvature. On the other hand, the statement is not true for rank one bundles: up
to a 2-fold cover, the total space of such a bundle is diffeomorphic to M×R, and as
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such cannot admit a metric of positive Ricci curvature. Indeed, for any complete
metric on M × R, there must exist a line; i.e., a normal geodesic c : R → M
with d(c(t), c(t′)) = |t − t′| for all t, t′; one way to see this is to fix some p ∈ M
and observe that for any n ∈ N there exists a minimal normal geodesic cn from
(p,−n) to(p, n). cn intersects M ×{0} in a unique point cn(tn). Since the sequence
vn := ċn(tn) lives in a compact set (namely, the restriction of the unit tangent
bundle of M × R to M × {0}), we may assume it converges to some v. It is now
easy to see that the geodesic t 	→ exp(tv) is a line. Gromoll and Meyer, however,
have shown that a manifold of positive Ricci curvature cannot contain a line [58],
cf. also [36].

2.8 Fat bundles

Given a submersion π : M → B, one usually seeks to endow B with a metric of
positive (or nonnegative) curvature by projecting via π an existing metric on M .
But the problem can also be inverted: If B is a Riemannian manifold with positive
curvature, one may ask whether there is a metric of positive curvature on M for
which π becomes Riemannian. Now, the curvature of a vertizontal plane (i.e., a
plane spanned by a unit vertical u and unit horizontal x) is

Kx,u = 〈(∇v
xS)xu, u〉 − |Sxu|2 + |A∗

xu|2

by Theorem 1.5.1. The easiest way to guarantee that this be nonnegative is to
require that the fibers be totally geodesic. This motivates the following definition:

Definition 2.8.1. A Riemannian submersion with totally geodesic fibers is said to
be fat if all vertizontal planes have positive curvature.

This terminology was introduced by Weinstein [137], see also [146] for a
comprehensive survey of fat bundles. The reason the words ‘bundle’ and ‘submer-
sion’ are often used interchangeably when referring to fatness is that according to
Theorem 2.7.2, any Riemannian submersion with totally geodesic fibers is a fiber
bundle with a connection metric. Furthermore, we will soon see that fatness can
be expressed in terms of the connection.

By definition, a submersion is fat if A∗
X : V → H is 1-1, or equivalently, if

AX : H → V is onto for any nonzero X ∈ H. This already imposes fairly stringent
restrictions on the dimensions of the spaces involved:

Lemma 2.8.1. Let π : M → B denote a fat submersion. Then

1. B is even-dimensional;
2. dimV ≤ dimH− 1, and equality only occurs when dimH = 2, 4, or 8.

Proof. At any p ∈ M , for fixed nonzero u ∈ Vp, the assignment (x, y) 	→ 〈Axy, u〉
is a skew-symmetric nondegenerate bilinear form on Hp; i.e., a symplectic form.
Elementary linear algebra implies that H, and hence also B, is even-dimensional.
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The second statement follows by observing that the assignment x 	→ A∗
xu defines

a nowhere zero vector field on the unit sphere in Hp. Fatness actually yields dimV
linearly independent vector fields on the sphere of dimension dimH−1. This clearly
implies the inequality. Equality can only occur if the sphere is parallelizable, in
which case it must have dimension one, three, or seven. �

By Theorem 2.7.2, if π : M → B is fat, then π is an associated G-bundle,
with G denoting the isometry group of the fiber, and M = P ×G F . Since the
AXY are vertical Killing fields that span the fiber at each point, the action of G
on a fiber F must be transitive, so that F is a homogeneous space G/H , where H
denotes the isotropy group at some point of F . Thus, M itself is diffeomorphic to
P ×G (G/H) = P/H .

Our next objective is to examine the restrictions that fatness imposes on the
connection, beginning with a connection H on the principal bundle. If ω and Ω
denote the connection and curvature forms of H, then by definition,

ω(AXY ) = −1
2
Ω(X, Y )

for horizontal fields X and Y on P , cf. (2.3.2). We assume from now on that G is
endowed with some fixed bi-invariant metric, or alternatively, that g is endowed
with an Ad-invariant inner product. Then fatness of the connection is equivalent
to non-degeneracy of the 2-form

(x, y) 	−→ 〈Ω(x, y), u〉

on H for every u ∈ g. More generally, any u for which the above form is nondegen-
erate is called a fat vector . Notice that if u is fat, then so is the orbit of u under
the adjoint action of G: this follows from the identity

R∗
gΩ = Adg−1 Ω, g ∈ G,

which together with bi-invariance of the metric on G implies

〈Ω(X, Y ), Adg u〉 = 〈Adg−1 Ω(X, Y ), u〉 = 〈Ω(Rg∗X, Rg∗Y ), u〉.

Recall that the integral of a function f : G → R on an oriented Lie group G
is defined to be ∫

G

f :=
∫

G

fμ,

where μ is the (dim G)-bi-invariant form on G consistent with the orientation that
satisfies

∫
G

μ = 1. It is a standard fact that for left translation Lg by g,∫
G

f =
∫

G

f ◦ Lg,
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cf. [136]. Fix a fat vector u, and define a polynomial p on g by

p(w) =
∫

G

〈w, Adg u〉n,

where n = (dimB)/2. In other words p(w) is the integral of the function φ : G →
R, where φ(g) = 〈w, Adg u〉n. Then p is Ad-invariant, because

p(Adh w) =
∫

G

〈Adh w, Adg u〉n =
∫

G

〈w, Adh−1g u〉n =
∫

G

φ ◦ Lh−1 =
∫

G

φ

= p(w).

By Chern-Weil theory, the 2n-form p(Ω) on P , with

p(Ω)(X1, . . . , X2n) =
1

(2n)!

∑
σ

(sgn σ)
∫

G

〈Ω(Xσ(1), Xσ(2)), Adg u〉 · · ·

· · · 〈Ω(Xσ(2n−1), Xσ(2n)), Adg u〉

is the pull-back to P of a closed (2n)-form α on B, the cohomology class of which
is independent of the choice of connection, and represents a characteristic class of
the bundle.

Theorem 2.8.1 (Weinstein). Let u ∈ g be a fat vector for some connection on
πP : P → B. Then the bundle has at least one nonzero characteristic number.

Proof. For g ∈ G, denote by μg the one-form on g given by μg(v) = 〈v, Adg u〉,
v ∈ g. Then

p(Ω) =
∫

G

(μg ◦ Ω) ∧ · · · ∧ (μg ◦ Ω),

and by fatness, μg ◦Ω is the pull-back of a symplectic (i.e., nondegenerate) form on
B. It follows that (μg ◦Ω)n, and hence also p(Ω) is the pull-back of a volume form
on B; in other words, the characteristic class above is represented by a volume
form α, so that the corresponding characteristic number

∫
B

α �= 0. �

Example 2.8.1. If G = S1, then Ω = 2ππ∗
P e, where e represents the Euler class of

πP . Since [Ωn] �= 0, [en] �= 0. Similarly, it can be shown that if G = S3 or SO(3),
then dimB = 4n, and [αn] �= 0, where [α] denotes the first Pontrjagin class of the
bundle, see [146].

We next look at fatness in the context of associated bundles, which we have
seen are of the form π : M = P ×G (G/H) → B, where H is the isotropy group
of some m0 ∈ G/H . For p ∈ P , m ∈ G/H , denote by ıp : G/H → P × G/H and
ım : P → P × G/H the maps q 	→ (p, q) and r 	→ (r, m), respectively, and by lp
(resp. rm) the action of G on p ∈ P (resp. on m ∈ G/H). If ρ : P × (G/H) → M
is projection, then ρ ◦ ım ◦ lp = ρ ◦ ıp ◦ rm. Furthermore, the vertical space at p of
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the principal bundle πP : P → B is lp∗eg. Thus, if u is a vertical vector in TpP ,
then

ρ∗(u, 0) = ρ∗(0, rm∗l−1
p∗eu) = ρ∗ ◦ ım∗u = ρ∗ ◦ ıp∗ ◦ rm∗ ◦ l−1

p∗eu

= ρ∗(0, rm∗ω(u)).

The above formula enables us to compute the A-tensor: Let X , Y ∈ XB, with
basic lifts X̃ , Ỹ to P . The corresponding basic lifts to M are X̄ = ρ∗(X̃, 0) and
Ȳ = ρ∗(Ỹ , 0). Thus,

AX̄ Ȳ =
1
2
[X̄, Ȳ ]v =

1
2
(ρ∗[X̃, Ỹ ]v, 0) =

1
2
ρ∗(0, rm∗ω[X̃, Ỹ ])

= −1
2
ρ∗(0, rm∗Ω(X̃, Ỹ )).

Now, the restriction rm∗e : h⊥ → (G/H)m is isometric, and by definition of the
connection metric, the map

ρp : G/H −→ ρ(p, G/H),
gH 	−→ ρ(p, gH)

is an isometry. It follows that the associated bundle π is fat if and only if

〈Ω(X̃, Ỹ ), u〉 = −2〈AX̄ Ȳ , ρp∗rm∗u〉 �= 0

for every u ∈ h⊥, a situation we formally characterize below:

Definition 2.8.2. Let H be a subgroup of a compact group G. A connection on a
principal G-bundle is said to be H-fat if

(X, Y ) 	−→ 〈Ω(X, Y ), u〉
is nondegenerate for all nonzero u ∈ h⊥.

We have proved:

Proposition 2.8.1. A connection on an associated bundle P ×G (G/H) → B is fat
iff the corresponding connection on the principal G-bundle P → B is H-fat.

We wish to illustrate Proposition 2.8.1 in the important special case of a
sphere bundle. Before doing so, let us recall without proof some facts concerning
the identification of the orthogonal algebra with the space of bivectors. For further
details, see for example [136].

If E is an inner product space, denote by o(E) the Lie algebra of skew-adjoint
transformations of E. There is a canonical isomorphism I : Λ2(E) → o(E), which
on decomposable elements is given by

I(u ∧ v)(w) = 〈v, w〉u − 〈u, w〉v.
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Notice that when u and v are orthonormal, this is a rotation by π/2 in the plane
spanned by u and v. Endow o(E) with the inner product

〈A, B〉 = −1/2 trAB,

and Λ2(E) with the one for which I becomes a linear isometry. It follows that if
ei is an orthonormal basis of E, then ei ∧ ej, i < j, is an orthonormal basis of
Λ2(E).

The Lie group O(E) of orthogonal transformations of E acts on o(E) via the
adjoint action. Under the isomorphism I, the action of O(E) on Λ2(E) is given by

A(u ∧ v) = Au ∧ Av, A ∈ O(E), u, v ∈ E, (2.8.1)

and extending linearly. Moreover, for M ∈ o(E),

〈M, u ∧ v〉 = 〈Mv, u〉, u, v ∈ E. (2.8.2)

With these preliminaries out of the way, consider a sphere bundle Sk → M
π→ B,

with corresponding principal O(k + 1)-bundle P → B. There is an associated
vector bundle Rk+1 → E = P ×O(k+1) Rk+1 → B, which inherits a connection
from one on the principal bundle. The following result expresses fatness of the
sphere bundle in terms of the curvature tensor R of the connection on the vector
bundle:

Proposition 2.8.2. A sphere bundle is fat iff the 2-form

Bm × Bm −→ R,

(x, y) 	−→ 〈R(x, y)u, v〉
is nondegenerate for all linearly independent u, v ∈ Em, m ∈ B.

Proof. The fiber over m of the total space P of the principal O(k + 1)-bundle
π : P → B consists of all orthonormal bases of Em. If b denotes such a basis, then
for x, y in the tangent space of P at b, the matrix of R(π∗x, π∗y) ∈ o(Em) with
respect to the basis b is Ω(b)(x, y), cf. [136]. Since the total space of the sphere
bundle is M = P ×O(k+1) O(k + 1)/O(k), Proposition 2.8.1 says that M → B is
fat iff the 2-form

(x, y) 	−→ 〈Ω(b)(x, y), α〉 = 〈R(π∗x, π∗y), b(α)〉

is nondegenerate for all nonzero α ∈ o(k)⊥, b ∈ P . Here, the basis b is viewed as
a linear isometry b : Rk+1 → Em that extends in a natural way to an isometry
o(k+1) → o(Em) via the identification Λ2(Rk+1) ∼= o(k+1); i.e., b(u∧v) = bu∧bv
for u, v ∈ Rk+1. If we identify o(k) with the subspace of o(k+1) spanned by ei∧ej

for 1 < i < j, then e1 ∧ e2 ∈ o(k)⊥. Now, recall that if e1 ∧ e2 is fat, then so is
Adg(e1 ∧ e2) for any g ∈ O(k + 1). By (2.8.1), this means that the 2-form above is
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nondegenerate for any α = Adg e1∧Adg e2, g ∈ O(k+1); i.e., for any decomposable
vector in Rk+1. In terms of R, this amounts to nondegeneracy of

(x, y) 	→ 〈R(π∗x, π∗y), β〉

for any decomposable β ∈ Λ2(Em). Together with (2.8.2), this establishes the
result. �

The simplest examples of fat sphere bundles are of course the Hopf fibrations,
since they have totally geodesic fibers and their total spaces are positively curved.
In fact, it was shown in [40] that among all S3-bundles over S4, the Hopf fibration
is the only fat bundle. Another indication that fat bundles are scarce is the fact
that, when the fiber dimension is larger than 1, the only known examples are
bundles of the form H/K → G/K → G/H as in Example 2.7.2 (a fat S1-bundle
is just one with symplectic base). All fat bundles of that type were classified in
[15]. It is actually easy to give a criterion for fatness in this case:

Proposition 2.8.3. Let G be a Lie group with bi-invariant metric.Then the bundle
π : G/K → G/H from Example 2.7.2 is fat iff [X, U ] �= 0 for all 0 �= X ∈ h⊥ and
0 �= U ∈ k⊥ ∩ h.

Proof. By Proposition 2.8.1, π is fat iff the principal H-bundle G → G/H is K-fat;
i.e., iff the 2-form

h⊥ × h⊥ −→ R,

(X, Y ) 	−→ 〈Ω(X, Y ), U〉

is nondegenerate for all U ∈ k⊥ ∩ h. But Ω(X, Y ) = −[X, Y ]h by definition of the
connection on G → G/H , and

〈Ω(X, Y ), U〉 = −〈[X, Y ], U〉 = 〈[X, U ], Y 〉

since the metric is bi-invariant. The claim clearly follows. �



Chapter 3

Open Manifolds of
Nonnegative Curvature

Noncompact manifolds with a complete metric of nonnegative sectional curvature
were studied in detail by Gromoll-Meyer [58], and by Cheeger-Gromoll [36], who
gave a thorough account of their topology. Apart from some special cases, however,
their metric structure has only been understood fairly recently. It illustrates the
key role that Riemannian submersions seem to play in nonnegative curvature.

3.1 Convex sets in Riemannian manifolds

We begin by discussing several types of convexity that can occur in a connected
Riemannian manifold M with distance function d. As usual, Bε(p) = {q ∈ M |
d(p, q) < ε} will denote the metric ball of radius ε > 0 centered at p ∈ M .

Definition 3.1.1. A subset C of M is said to be convex if any two points of C can
be joined by a minimal geodesic of M , the image of which is contained in C. If, in
addition, this geodesic is always unique in M , then C is said to be strongly convex .

A classical result of J.H.C. Whitehead states that for any p ∈ M there exists
a number r(p) > 0, called the convexity radius at p, such that if ε < r(p), then any
metric ball contained in Bε(p) is strongly convex. The corresponding boundary
sphere has positive definite second fundamental form.

Definition 3.1.2. C ⊂ M is said to be locally convex if for any p in the closure C̄
of C, there exists ε(p) ∈ (0, r(p)) such that Bε(p)(p) ∩ C is strongly convex.

Thus, a convex set is always locally convex, and a strongly convex set is
convex. There is one further type of convexity that usually occurs in conjunction
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with certain functions: A function f : M → R is said to be convex if for any
geodesic c : I → M , the function f ◦ c : I → R is convex in the usual sense. If f
is such a function, consider a sublevel set Ca = f−1(−∞, a], a ∈ R, and points p,
q ∈ Ca. Given any (not necessarily minimal) geodesic c : [0, 1] → M from p to q,
we have

(f ◦ c)(t) ≤ max{(f ◦ c)(0), (f ◦ c)(1)}
by convexity of f , so that the image of c is contained in Ca. A subset C of M is
said to be totally convex if any geodesic of M joining two points of C lies entirely
inside C. Such a set is necessarily convex, provided M is complete. Proper totally
convex subsets exist only in special situations: it is easy to see that a round sphere,
for example, admits none. In fact, a result of Bangert implies that if M admits
such a set, then it is noncompact [11].

The next theorem shows that even the weakest notion of convexity in an
arbitrary Riemannian manifold shares features similar to those in Euclidean space:

Theorem 3.1.1 (Cheeger-Gromoll). Let C be a closed, connected, locally convex
subset of a Riemannian manifold Mn. Then C is an imbedded k-dimensional sub-
manifold of M with totally geodesic connected (relative) interior, and (possibly
non-smooth and/or empty) boundary, where 0 ≤ k ≤ n.

Proof. For now, we do not assume that C is closed. Let k ∈ {0, . . . , n} denote the
largest integer such that the collection of all smoothly imbedded k-dimensional
submanifolds of M contained in C is nonempty, and denote by N the union of this
collection. We claim that N is a smooth, totally geodesic submanifold of M . To
establish the first part of the claim, it suffices to show that for any given p ∈ N ,
there exists a neighborhood U of p in N , and a neighborhood V of p in M such that
N ∩ V = U . Now, by assumption, p belongs to some k-dimensional submanifold
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N(p) of M contained in C. Consider a neighborhood U ⊂ N(p) ∩ Bε(p)/2(p) of
p in N(p), and choose δ ∈ (0, ε(p)/2) small enough so that the exponential map
of the normal bundle of U , when restricted to vectors of length less than δ, is a
diffeomorphism onto a tubular neighborhood V of U in M . Then N ∩ V contains
U , and hence equals U : for if q ∈ (N ∩ V ) \U , and r ∈ U is the point in U closest
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to q, then the minimal geodesic from q to r intersects U orthogonally. It follows
that the minimal geodesic from q to any point in a sufficiently small neighborhood
U0 of r in U intersects U transversally. Then the cone

{exp(tu) | u ∈ Mq, |u| < δ, 0 < t < 1, expu ∈ U0}

is a smooth (k + 1)-dimensional submanifold of M which is contained in C by
convexity. This contradicts the definition of k. Thus, N is a submanifold of M ,
and essentially the same argument shows it is totally geodesic.

Before proceeding any further with the proof, we point out the following:

Lemma 3.1.1. Let p ∈ C ∩ N̄ , q, r ∈ Bε(p)/4(p), δ := d(q, r), and c a minimal
normal geodesic from q to r. If q ∈ N and r ∈ C, then c[0, δ) ⊂ N , and in
particular, r ∈ N̄ . Moreover, if r /∈ N , then c(δ + t) /∈ C for 0 < t < ε(p)/4.

Proof. Since N is k-dimensional, there exists a (k − 1)-dimensional hypersurface
U in N ∩ Bε(p)/4(p) containing q and transversal to the image of c. Consider any
p0 = c(ε0) ∈ C with 0 < ε0 < δ + ε(p)/4. Then the smooth k-dimensional cone

V = {exp(tu) | u ∈ Mp0 , |u| < ε(p), exp(u) ∈ U, 0 < t < 1}

must be contained in C, and hence also in N . In particular, choosing p0 = r implies
that c[0, δ) ⊂ N . Furthermore, if c(t + δ) ∈ C, then choosing p0 = c(t + δ) implies
that r = c(δ) ∈ N , which proves the last statement in the lemma. �

Resuming the proof of the theorem, we next claim that C ⊂ N̄ . To see this,
consider a connected component N0 of N . Then C ⊂ N̄0, for otherwise we can
find points p ∈ C∩N̄ , q ∈ Bε(p)/4(p)∩N0, and r ∈ Bε(p)/4(p)∩(C \ N̄0). But then,
r ∈ N̄0 by Lemma 3.1.1, which is a contradiction. Since any connected component
of N is dense in C, there can only be one; i.e., N = N0, and C ⊂ N̄ as claimed.
Assume now that C is closed for the remainder of the argument, so that C = N̄ .
Consider points p ∈ N̄ \N , and q ∈ Bε(p)/4(p)∩N . Define W to be the collection
of all unit vectors u in Nq such that exp(su) ∈ (N̄ \ N) ∩ Bε(p)/4(p) for some
s ∈ (0, ε(p)/4). For any given u ∈ W , the value of s is unique by Lemma 3.1.1,
and we denote it by f(u). Lemma 3.1.1 also implies that W is open in the unit
sphere in Nq, and that f is continuous on W . Then

F : (0, 1] × W → C,

(t, u) 	→ expq tf(u)u

is a homeomorphism onto a neighborhood of p in C. This completes the proof of
the theorem. �

Since the boundary of a k-dimensional convex set is not necessarily smooth,
there is in general no notion of a (k − 1)-dimensional tangent space for a point in
the boundary. We consider instead the following:
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Definition 3.1.3. Let C be a closed convex set in M . The tangent cone at a point
p in the boundary ∂C of C is the set

Cp = {u ∈ Mp | expp(tu) ∈ N for sufficiently small t ∈ (0, ε(p))} ∪ {0}.
Given any q ∈ N at distance less than ε(p)/4 from p ∈ ∂C, consider the

minimal geodesic c from p to q. Then ċ(0) belongs to Cp, but by Lemma 3.1.1,
−ċ(0) does not. Thus, Cp �= Mp. However, given u ∈ Cp \{0}, and q := exp(t0u) ∈
Bε(p)/4(p)∩N , the argument of Lemma 3.1.1 with the hypersurface of N through
q orthogonal to c shows that there is an open neighborhood of u contained in
Cp. Thus, Cp \ {0} is open in Mp. This enables us to describe Cp in at least one
important special case:

Proposition 3.1.1. Let C ⊂ M be closed, connected, and p ∈ ∂C. If there exists
q ∈ N and a minimal normal geodesic c from p to q that realizes the distance
between q and the boundary of C, then Cp \ {0} is the open half-space

H = {u ∈ Mp | � (u, ċ(0)) <
π

2
}.

Proof. For t0 ∈ (0, ε(p)/2) smaller than d(p, q), −c|[0,t0] also realizes the distance
between c(t0) and the boundary of C, so that the closed ball of radius t0 centered at
c(t0) intersects ∂C in p only. A first variation of arc length argument then implies
that H ⊂ Cp. On the other hand, if v ∈ Cp \{0}, then �(v, ċ(0)) ≤ π/2: otherwise,
−v ∈ H ⊂ Cp, so that for sufficiently small t, both exp(tv) and exp(−tv) belong
to N , and p itself then belongs to N by Lemma 3.1.1. Thus, Cp ⊂ H̄ . Since Cp is
open in Mp, this completes the argument. �

qn

p

vn

pn

v

It can be shown that in general, Cp \ {0} is an intersection of half-spaces.
Notice that there always exists a half-space containing Cp\{0}: In fact, let pn → p,
pn ∈ N . If qn denotes the point of ∂C closest to pn, then qn → p. Denote by vn the
initial tangent vector of the minimal normal geodesic from qn to pn. By Proposition
3.1.1, Cqn \ {0} is the open half-space {u ∈ Mqn | �(u, vn) < π/2} determined by
vn. {vn} may be assumed to converge to some unit vector v ∈ Mp, and it follows
that the open half-space determined by v contains Cp \ {0}.
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3.2 The soul construction

So far, we have made no assumption on the curvature of M . From now on, M will
denote a complete, noncompact (open for short) manifold with sectional curvature
K ≥ 0. We outline in this section the construction of a compact, totally convex
submanifold S without boundary of M , which will be called a soul of M , following
[37]. By the results of the previous section, S is totally geodesic, and in particular,
also has nonnegative curvature.

We begin by recalling special cases of three classical theorems (for a proof, see
[35], [57], or [104]) tailored to our situation. The second one, commonly referred
to as the second Rauch comparison theorem, is actually due to Berger.

Theorem 3.2.1 (Rauch I). Let p ∈ M , and consider a geodesic bi-angle ci : [0, 1] →
M , i = 1, 2, at p with angle α. If the length of ci is less than the injectivity radius at
p, then the distance between c1(1) and c2(1) is no larger than the distance between
the endpoints of the bi-angle with same lengths and angle in R2.

α α

l L

l ≤ L

Theorem 3.2.2 (Rauch II). Let c : [0, a] → M be a normal geodesic, X a parallel
vector field along c, and denote by γ : [0, a] → M the curve given by γ(t) =
expc(t) X(t). If none of the geodesics s 	→ exp sX(t) has focal points in (0, 1), then

c

γX(0) X(a)
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the length L(γ) of γ is no larger than a. Furthermore, if it equals a, then the
“rectangle”

V : [0, a]× [0, 1] → M,

(t, s) 	→ expc(t) sX(t)

is flat and totally geodesic.

Theorem 3.2.3 (Toponogov). Let ci denote the sides of a geodesic triangle in M
with angle αi at the vertex opposite ci, i = 0, 1, 2. Suppose that the geodesics c1

and c2 are minimal, with L(c1) + L(c2) ≥ L(c0). Then there exists a triangle in
R2 with sides c̄i and angles ᾱi, such that L(ci) = L(c̄i) for all i, and αi ≥ ᾱi for
i = 1, 2.

Recall that a ray in a noncompact Riemannian manifold M is a geodesic
c : [0,∞) → M such that d(c(0), c(t)) = t for all t ≥ 0. When M is complete, there
exists at least one ray emanating from any point p of M : To see this, consider
a sequence qn of points in M with d(p, qn) → ∞. By completeness, there is a
minimal normal geodesic cn from p to qn. The sequence ċn(0) in the unit sphere
of Mp must subconverge to some v. The geodesic t 	→ tv is then a ray, because the
function

s : {v ∈ Mp | |v| = 1} → R+ ∪ {∞},
v 	→ sup{t > 0 | d(p, exp(tv)) = t}

is continuous, so that s(ċn(0)) subconverges to s(v).
Now fix a point p in M , a ray c emanating from p, and define

Bc =
⋃
t>0

Bt(c(t)).

Notice that this is an expanding union, since Bt1(c(t1)) ⊂ Bt2(c(t2)) for t1 < t2
by the triangle inequality. The fundamental ingredient in the soul construction is
given by the following:

Theorem 3.2.4. M \ Bc is a closed totally convex set.

Proof. M \ Bc is clearly closed. If it is not totally convex, then there exists a
geodesic γ : [0, 1] → M with end points in the complement of Bc, but γ(s) ∈ Bc

for some s ∈ (0, 1). It follows that γ(s) ∈ Bt0(c(t0)) for some t0 > 0; set ε :=
t0 − d(γ(s), c(t0)) > 0. Then

d(γ(s), c(t)) ≤ t − ε for all t ≥ t0. (3.2.1)

Next, fix some t such that

t > max{t0, L(γ), L2(γ)/ε}, (3.2.2)



3.2. The soul construction 115

c(t)

γ(0)

c2

c1

Bc

M \ Bc

γ

γ(s0)

and consider a point γ(s0) on γ that is closest to c(t). Denote by c0 := γ|[0,s0] the
restriction of γ to [0, s0], and by c1, c2 minimal geodesics from c(t) to γ(s0), γ(0),
respectively. Since c0(0) /∈ Bt(c(t)), L(c2) > t, so that L(c1)+ L(c2) > t > L(γ) >
L(c0), and there exists, by Theorem 3.2.3, a comparison triangle in Euclidean
space with ᾱ2 ≤ α2 = π/2 (the last equality holds because c0(s0) is the point on
γ closest to c(t) and s0 ∈ (0, 1)). On the other hand, (3.2.1) implies

L(c1) < L(c2) − ε,

so that by the law of cosines in Euclidean space,

cos ᾱ2 =
L2(c0) + L2(c1) − L2(c2)

2L(c0)L(c1)

=
L(c1) + L(c2)

2L(c1)
· L(c1) − L(c2)

L(c0)
+

L(c0)
2L(c1)

<
1

2L(c1)
(
L(c0) − ε

L(c1) + L(c2)
L(c0)

)
<

1
2L(c1)

(
L(c0) − εt

L(c0)
)

< 0,

since by (3.2.2), L2(c0) < L2(γ) ≤ εt. This contradicts ᾱ2 ≤ π/2. �
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Even though M \ Bc is not, in general, compact, it is now easy to construct
a compact totally convex set:

Proposition 3.2.1. For any p ∈ M , there exists a compact totally convex set C0

with p ∈ ∂C0.

Proof. Define
C0 =

⋂
{M \ Bc | c is a ray , c(0) = p}.

C0 is clearly closed, totally convex, and p belongs to its boundary. It remains to
establish compactness. If C0 is not compact, then there exists a sequence of points
pn ∈ C0 with d(p, pn) → ∞. Letting cn denote the minimal normal geodesic in
C0 joining p to pn, it follows that there exists a subsequence of ċn(0) converging
to some unit vector v ∈ Mp. By construction, the geodesic t 	→ exp(tv) is a ray
contained in C0, contradicting the definition of that set. �

Remark 3.2.1. For any given ray c emanating from p, and t > 0, let ct denote the
ray given by ct(s) := c(s + t). If we define

Ct =
⋂

{M \ Bct | c is a ray , c(0) = p},

then the same argument as above shows that Ct is a compact totally convex set,
and M equals the expanding union ∪t≥0Ct. It is, furthermore, not difficult to see
that if t2 ≥ t1, then

Ct1 = {q ∈ Ct2 | d(q, ∂Ct2) ≥ t2 − t1}.

Our next aim is to gradually contract the set C0 from Proposition 3.2.1
without losing total convexity. This can be achieved with the following:

Theorem 3.2.5. Let C be a closed totally convex set with boundary in M . Then
the distance function

f : C → R,

q 	→ d(q, ∂C)

to the boundary is concave. Furthermore, suppose that for a normal geodesic c in
C, the restriction of f ◦ c is a constant d on some interval [a, b], and consider the
parallel vector field X along c, where t 	→ exp tX(a) denotes any minimal normal
geodesic from c(a) to ∂C. Then for any s ∈ [a, b], t 	→ exp tX(s) is a minimal
geodesic of length d from c(s) to ∂C, and the rectangle

V : [a, b] × [0, d] → C,

(s, t) 	→ expc(s) tX(s)

is flat and totally geodesic.
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Proof. Let c : [α, β] → C be a normal geodesic. In order to establish concavity
of f ◦ c, it suffices to show that for any s0 ∈ (α, β), f ◦ c is bounded above on
a neighborhood of s0 by the linear function s 	→ (f ◦ c)(s0) − (cos φ)(s − s0),
where φ denotes the angle between c and the minimal normal geodesic cs0 from
c(s0) to ∂C. We actually only need to do this for s > s0, since the case s < s0

follows by considering f ◦ c̃, where c̃ denotes c with the reverse parametrization
c̃(s) = c(α+β− s). So set d := (f ◦ c)(s0), and suppose first that φ = π/2. Denote
by X the parallel field along cs0 with X(0) = ċ(s0), and consider the rectangle

V : [s0, β] × [0, d] → M,

(s, t) 	→ expcs0(t)(s − s0)X(t).

By Theorem 3.2.2, for s close enough to s0, each curve t 	→ V (s, t) has length
≤ d, and connects c(s) to a point that does not belong to the interior of C, by
Proposition 3.1.1. The claim then clearly follows, as does the second statement of
the theorem (by the rigidity part of Rauch II). Next, consider the case φ > π/2.
Denote by v the unit vector that is the convex combination of ċs0(0) and ċ(s0)
which is orthogonal to ċs0(0). Just as above, it follows that for small t,

d(exp tv, ∂C) ≤ d. (3.2.3)

On the other hand, by Theorem 3.2.1 and the law of cosines in the plane,

d2(exp tv, c(s)) ≤ t2 + (s − s0)2 − 2t(s − s0) cos
(

φ − π

2

)
for small t, and s close enough to s0. In particular, letting t = (s−s0) cos(φ−π/2),
we obtain

d(exp tv, c(s)) ≤ (s − s0) sin
(

φ − π

2

)
= − cosφ(s − s0). (3.2.4)

(3.2.3) and (3.2.4), together with the triangle inequality, then establish the claim.
Finally, suppose φ < π/2, and denote by as the minimal normal geodesic from cs0

to c(s), with as(0) = cs0(ts). Then, as before,

d(c(s), ∂C) ≤ d − ts, (3.2.5)

and
d2(cs0(ts), c(s)) ≤ t2s + (s − s0)2 − 2ts(s − s0) cos φ.

On the other hand, ȧs(0) ⊥ ċs0(ts) because as is minimal, so that

(s − s0)2 ≤ d2(cs0(ts), c(s)) + t2s.

Together, these two inequalities imply that 2ts(s − s0) cosφ ≤ 2t2s, or ts ≥ (s −
s0) cosφ. Substituting this in (3.2.5) once again establishes the claim. �
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∂C

cs0

v

φ − π/2

c

c(s0)

Figure 3.1: The case φ > π/2

c(s0)

c(s)
φ

as(0) = cs0(ts)

cs0

as

∂C

Figure 3.2: The case φ < π/2

For a closed totally convex set C0 with boundary, and α ≥ 0, define

Cα
0 = {q ∈ C0 | d(q, ∂C0) ≥ α}, C1 =

⋂
{Cα

0 | Cα
0 �= ∅}.

Theorem 3.2.5 then immediately implies:

Corollary 3.2.1. Cα
0 and C1 are totally convex, and dimC1 < dim C0.

Now choose a point p in M , and consider the compact totally convex set C0

with boundary from Proposition 3.2.1. If C1 has nonempty boundary, repeat the
above procedure finitely many times to conclude:

Theorem 3.2.6. M contains a compact, totally geodesic submanifold S without
boundary.

In fact, S is totally convex. A submanifold S obtained by this construction
is called a soul of M .
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Examples 3.2.1. (i) If M = Rn with the standard flat metric, then the set C0 from
Proposition 3.2.1 constructed at some point p consists precisely of p, since every
geodesic from p is a ray. Thus, any point of Rn is a soul.

(ii) Let M = {(x, y, z) ∈ R3 | z = x2 + y2} together with the metric of
positive curvature induced from R3. Given 0 �= a ∈ R2, there is exactly one ray
in M emanating from p = (a, |a|2) ∈ M , namely the one whose image consists of
the upward branch of the meridian through p. It follows that C0 consists of those
points of M at height ≤ |a|2, and the (unique) soul C1 consists of the vertex of
the paraboloid.

(iii) Let M = S1 × R with the product metric. Given p = (z, t0) ∈ M , there
are two rays emanating from p, namely t 	→ (z, t0 + t), and t 	→ (z, t0 − t). This
implies that C0 = S1 × {t0} is a soul of M for any t0 ∈ R.

(iv) Let M = G/H be an n-dimensional Riemannian homogeneous space of
nonnegative curvature, p := eH . By Example 2.7.1, the tangent bundle TM of
M is canonically identified with G ×H Mp, and there exists a unique metric of
nonnegative curvature on TM for which the projection ρ : G × Mp → TM =
G ×H Mp becomes a Riemannian submersion. Given g ∈ G, and a unit u ∈ Mp,
the geodesic t 	→ (g, tu) in G × Mp is ρ-horizontal, and therefore projects to a
geodesic cg,u in TM with ċg,u(0) ⊥ ρ(G × {0}). We will identify the zero section
ρ(G×{0}) = G×H {0} of the bundle G×H Mp → G×H {0} with M , so that p =
ρ(e, 0). Now, the distance between cg,u(0) and cg,u(t) equals the distance between
their pre-images; i.e., between the sets gH × {0} and {(gh−1, th∗u) | h ∈ H} in
G×Mp. Since the latter is clearly t, cg,u is a ray in TM . But every normal geodesic
orthogonal to M is of this form, so that every such geodesic is a ray. Now perform
the soul construction at p. We claim that the soul is then M , and coincides with
C0, the first totally convex set from Proposition 3.2.1. To see this, consider any
q /∈ M , and a minimal geodesic γ : [0, a] → TM from q to p. By assumption,
there exists a unit vector u ⊥ Mp that makes an angle < π/2 with −γ̇(a). Since
the geodesic t 	→ cu(t) := exp tu is a ray, q ∈ Bcu , and therefore q /∈ C0. Thus,
C0 ⊂ M . Conversely, suppose q ∈ M . Notice that M is totally geodesic in TM (if
γ is a horizontal geodesic for the submersion G → G/H , then (γ, 0) is a horizontal
geodesic for ρ and thus projects to a geodesic in M). So consider a geodesic c from
p to q. Since c(R) is contained in the compact set M , it is contained in one of
the totally convex sets Ct that provide the expanding filtration of M described
in Remark 3.2.1. Then the function s 	→ d(c(s), ∂Ct) is concave, bounded below
by 0, and defined on all of R, so that it must be constant equal to d(p, ∂Ct). But
p ∈ ∂C0, and thus, d(q, ∂Ct) = d(p, ∂Ct) = t; i.e., q ∈ C0. Summarizing, we have
that M = C0, and since M has empty boundary, it must be a soul, as claimed.

Notice that in the above examples, we have Riemannian submersions onto
the soul. We will later see that this is true in general.

(v) Let c be a ray in M . For fixed p ∈ M , the function t 	→ d(p, c(t)) − t is
bounded in absolute value, since

|d(p, c(t)) − t| = |d(p, c(t)) − d(c(0), c(t))| ≤ d(p, c(0)).
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For t ≥ 0, define a function bt on M by bt(q) := d(q, c(t)) − t. It follows again
from the triangle inequality that if s < t, then bs(q) ≥ bt(q). Furthermore, bt is
distance-decreasing in the sense that

|bt(p) − bt(q)| = |d(p, c(t)) − d(q, c(t))| ≤ d(p, q), p, q ∈ M.

In particular, the family of functions {bt}t≥0 is equicontinuous and converges to a
continuous function bc, where

bc(p) := lim
t→∞ d(p, c(t)) − t, p ∈ M,

which satisfies |bc(p)−bc(q)| ≤ d(p, q)| for any p, q ∈ M . bc is called the Busemann
function of c. The level sets b−1

c (t), t ≥ 0, are called horospheres , and the sets
b−1
c (−∞, t) horoballs . They can be thought of as spheres and balls centered at

infinity: in fact, the closed half-space M \Bc from Theorem 3.2.4 is just b−1
c [0,∞).

Notice that Theorem 3.2.5 implies that Busemann functions are concave when the
ambient space is nonnegatively curved.

3.3 The topological structure of M

Let S denote a soul of M , and ν(S) = {u ∈ Mp | p ∈ S, u ⊥ Sp} the total space
of the normal bundle of S in M . The aim of this section is to show that M is
diffeomorphic to ν(S). It should be noted, however, that this identification is not
canonical; in particular, the exponential map ν(S) → M of the normal bundle is
not, in general, a diffeomorphism. Instead, we use a generalized notion of regular
points of the distance function that dates back to Grove and Shiohama [66].

Let ρ : M → R denote the distance function from S. By compactness of
S, there exists ε > 0 such that the exponential map, when restricted to the disk
bundle νε(S) of vectors of length < ε, is a diffeomorphism onto Bε(S). Thus, on
Bε(S) \ S, ρ has no critical points, and its gradient ∇ρ is a vector field of unit
length. We begin by generalizing the concept of a regular point of ρ:

Definition 3.3.1. q ∈ M \S is said to be a regular point of ρ if there exists v ∈ Mq

such that for any minimal geodesic c from q to S,

�(v, ċ(0)) >
π

2
.

Such a vector v is called a gradient-like vector.

Clearly, a regular point in the usual sense is also regular in the sense of
Definition 3.3.1.

Lemma 3.3.1. Any q ∈ M \ S is a regular point of ρ.
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Proof. By hypothesis, q belongs to the boundary of some totally convex set C that
contains S. By the discussion following Proposition 3.1.1, Cq \ {0} is contained in
an open half-space {v ∈ Mq | �(v, u) < π/2} for some 0 �= u ∈ Mq. −u is then a
gradient-like vector. �

Theorem 3.3.1. M is diffeomorphic to the normal bundle ν(S) of S in M .

Proof. For each p ∈ M \Bε/2(S), choose a gradient-like vector vp as in the lemma,
and extend it locally to a vector field Xp. Xp is still gradient-like on a neighborhood
Up of p, which we assume to be contained inside the ball of radius ε/4 around p.
Let {Ui}i≥1 be a locally finite subcover, with Ui = Upi , and set U0 = Bε(S).
If {φi} is a partition of unity subordinate to {Ui}i≥0, define vector fields Xi on
M \ S by

Xi(p) =

{
φi(p)Xpi(p), p ∈ Ui,

0, p /∈ Ui,

for i ≥ 1, and

X0(p) =

{
φ0(p)∇ρ(p), p ∈ U0,

0, p /∈ U0.

Then X := (
∑

i Xi)/|
∑

i Xi| is a smooth gradient-like vector field on M \ S that
equals ∇ρ when restricted to Bε/4(S). In particular, ρ is strictly increasing along
any integral curve of X . Furthermore, if γp denotes the maximal integral curve of
X with γp(0) = p ∈ M \S, there exists T ∈ R such that γp(T ) ∈ ∂Bε/4(S): this is
clear for p ∈ Bε/4(S), since X = ∇ρ on this set. For p /∈ Bε/4(S), let γ(t) = γp(−t).
If γ does not reach ∂Bε/4(S) in finite time, then γ is defined on [0,∞) (having
image inside a compact set). But then a subsequence γi := γ|[i,i+1] would converge
to an integral curve of X along which ρ is constant, which is impossible. Thus,
there exists a differentiable function T : M \ S → R defined by the condition

γp(T (p)) ∈ ∂Bε/4(S).

Next, let ψ : [0,∞) → [0, ε) be a smooth function with positive derivative, that
equals the identity when restricted to [0, ε/4]. If Φ denotes the maximal flow of X ,
Φ(t, p) = γp(t), define

F : M → Bε(S),

p 	→
{

p, p ∈ S,

Φ(ψ( ε
4 − T (p)) + T (p) − ε

4 , p), p /∈ S.

Notice that for p ∈ Bε/4(S), 0 ≤ T (p) ≤ ε/4, so that 0 ≤ (ε/4) − T (p) ≤ ε/4, and
F (p) = p. Thus, F is differentiable, and is in fact a diffeomorphism. Since ν(S) in
turn is diffeomorphic to Bε(S), this completes the proof. �
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3.4 The Sharafutdinov retraction

Our next project is the construction of a continuous, distance non-increasing map
π : M → S onto a soul of M ; i.e., d(π(p), π(q)) ≤ d(p, q) for p, q ∈ M . In fact,
a stronger result will be established, namely: There exists a strong deformation
retraction H : M × [0, 1] → M onto S such that the map p 	→ H(p, t) is distance
non-increasing for every t ∈ [0, 1]. π is then the map corresponding to t = 1.
The construction of such a map is due to Sharafutdinov [115]. Here we follow
an alternative approach by Schroeder and Ziller, cf. [144], [145]. Although the
argument in itself doesn’t preclude the existence of other distance non-increasing
retractions onto a soul, we will see in the next section that such a map is unique.

A key ingredient in the proof is the following:

Lemma 3.4.1 ([30], 6.3.5). Let c be a normal geodesic in a Riemannian manifold
with sectional curvature K ≤ κ, and J a Jacobi field orthogonal to ċ. Denote by
cκ a normal geodesic in the simply connected two-dimensional space of constant
curvature κ, and by Jκ the Jacobi field orthogonal to ċκ with the same initial
conditions as J : |Jκ|(0) = |J |(0), |Jκ|′(0) = |J |′(0). If Jκ �= 0 on [0, a), then
|J | ≥ |Jκ| on [0, a].

Corollary 3.4.1. Let γ : [0, l] → M be a normal geodesic in a Riemannian manifold
M with curvature bounded above by κ > 0, and X a vector field along γ orthogonal
to γ̇ which is contained in the domain of exp |γ[0,l]. Given a smooth surjective
function φ : [0, 1] → [0, l], define a curve c : [0, 1] → M by

c(t) = exp(γ◦φ)(t)(X ◦ φ)(t).

If |X | ≤ ε < π/(2
√

κ), then L(c) ≥ cos(ε
√

κ) · L(γ).

Proof. The result will follow once we establish that

|ċ|(t) ≥ | ˙̂
γ ◦ φ|(t) cos(ε

√
κ), t ∈ [0, 1], (3.4.1)

since L(c) =
∫ 1

0
|ċ|, and L(γ) ≤ ∫ 1

0
| ˙̂
γ ◦ φ| by surjectivity of φ:∫ 1

0

| ˙̂
γ ◦ φ| =

∫ 1

0

|φ′(γ̇ ◦ φ)| =
∫ 1

0

|φ′| ≥ l = L(γ).

So set X0 := X/|X |, and consider the variation V : [0, 1]× [0, 1] → M given by

V (t, s) = exp(γ◦φ)(t) s(X0 ◦ φ)(t).

For any fixed t0 ∈ [0, 1], the curve ct0 , where ct0(s) = V (t0, s), is a geodesic, and
the vector field J along ct0 , where J(s) = V∗D1(t0, s), is Jacobi. By definition,

J(0) =
˙̂

γ ◦ φ(t0) ⊥ ċt0(0) = (X0 ◦ φ)(t0). (3.4.2)
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Furthermore,

〈J, ċt0〉′(0) = 〈∇D2V∗D1, V∗D2〉(t0, 0) = 〈∇D1V∗D2, V∗D2〉(t0, 0)

=
1
2
|X0 ◦ φ|′2(t0) = 0.

J(|X ◦ φ|(t0))

ċ(t0)

ct0

γ

c

Together with (3.4.2), this implies

J ⊥ ċt0 . (3.4.3)

Now, c(t) = V (t, |X ◦ φ|(t)), so that

ċ(t0) = V∗D1(t0, |X ◦ φ|(t0)) + |X ◦ φ|′(t0)V∗D2(t0, |X ◦ φ|(t0))
= J(|X ◦ φ|(t0)) + |X ◦ φ|′(t0)ċt0(|X ◦ φ|(t0)),

and by (3.4.3),
|ċ|(t0) ≥ |J |(|X ◦ φ|(t0)). (3.4.4)

On the other hand,

〈J, J ′〉(0) = 〈∇D2V∗D1, V∗D1〉(t0, 0) = 〈∇D1V∗D2, V∗D1〉(t0, 0)
= D1〈V∗D2, V∗D1〉(t0, 0) − 〈V∗D2,∇D1V∗D1〉(t0, 0)

= 〈X0 ◦ φ,
˙̂

γ ◦ φ〉′(t0) − 〈X0 ◦ φ,∇D
˙̂

γ ◦ φ〉(t0).
The first term vanishes because X0 ⊥ γ̇. So does the second one, since

∇D
˙̂

γ ◦ φ = ∇Dφ′(γ̇ ◦ φ) = φ′′(γ̇ ◦ φ) ⊥ X0 ◦ φ.

Thus, |J |′(0) = 0, and by Lemma 3.4.1, |J |(t) ≥ |J |(0) cos(t
√

κ). Together with
(3.4.2) and (3.4.4), this yields

|ċ|(t0) ≥ |J |(0) cos(|X ◦ φ|(t0) ·
√

κ) ≥ |J |(0) cos(ε
√

κ)

= | ˙̂
γ ◦ φ|(t0) cos(ε

√
κ),

which proves (3.4.1). �
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Theorem 3.4.1. Let M be an open manifold of nonnegative curvature with soul S.
There exists a strong deformation retraction H : M × [0, 1] → M onto S, such
that if ıt : M → M × [0, 1] is the imbedding ıt(p) = (p, t), then H ◦ ıt is distance
non-increasing for each t ∈ [0, 1].

Proof. Recall from Section 3.2 that there exists a family of compact totally convex
sets such that M = ∪t≥0C

t, C0 =: C0 ⊃ C1 ⊃ · · · ⊃ Ck = S, where Ci+1 denotes
the set of points at maximal distance from the boundary of Ci. Let C be a compact
totally convex set with boundary, and for α ≥ 0, Cα = {p ∈ C | d(p, ∂C) ≥ α}.
Set α0 = sup{d(p, ∂C) | p ∈ C}. It suffices to show that for 0 ≤ α ≤ β ≤ α0, there
exists a strong deformation retraction Hβ

α : Cα × [0, 1] → Cα onto Cβ such that
Hβ

α ◦ ıt is distance non-increasing for each t.
We begin by assuming that β < α0. Since C is compact, there exists ε0 such

that for p ∈ C and 0 < r ≤ ε0,

Property 1: Br(p) is the strictly convex diffeomorphic image of the Euclidean ball
of radius r about 0 ∈ Mp under expp.

Property 2: If c : [0, l] → Br(p) is a nonconstant geodesic, γ : [0, 1] → Br(p) the
minimal geodesic from p to c(0), and �(ċ(0), γ̇(1)) < π/2, then t 	→ d(p, c(t))
is strictly increasing along [0, l].

We will assume that ε0 < π/(2
√

κ), where κ is an upper bound for the sectional
curvatures of planes in TC. Set ε := ε0/3. By uniform continuity of the function
(t, p) 	→ d(p, Ct) on the compact set [0, α0] × C, there exists δ > 0 such that for
p ∈ Ct, d(p, Cs) < ε if 0 < s − t < δ. We may assume that β − α < δ, since
[α, β] can be divided into subintervals [ti−1, ti] of length < δ, and the deformation
retraction Hβ

α may then be constructed by composing the successive retractions
Hti

ti−1
. Next, observe that there is a well-defined projection

h : Cα → Cβ , where d(p, h(p)) = d(p, Cβ).

In fact, if there exist two points q1, q2 ∈ Cβ such that d(p, q1) = d(p, q2) =
d(p, Cβ), then the minimal geodesic c : [0, 1] → Cβ from q1 to q2 is contained in
Bε0(p). If γ : [0, 1] → Cα is the minimal geodesic from p to q1, then �(ċ(0), γ̇(1)) <
π/2 (because c(0) ∈ Cβ is a point closest to p), and by Property 2, t 	→ d(p, c(t))
is strictly increasing, contradicting the fact that this function takes on the same
value at 0 and 1.

So consider points p, q ∈ Cα at distance less than ε apart. Then d(p, h(p))
and d(q, h(q)) are less than ε, and q, h(p), and h(q) are all contained in the strictly
convex ball Bε0(p). Denote by c : [0, a] → Ca, γ : [0, l] → Cβ the minimal normal
geodesics from p to q and from h(p) to h(q) respectively. There is a well-defined con-
tinuous metric projection π : c[0, a] → γ[0, l], where d(c(t), π(c(t)) = d(c(t), γ[0, l]).
π is surjective, since π(c(0)) = γ(0), π(c(a)) = γ(l), and π ◦ c is defined on a
connected interval. Let t0 (respectively t1) denote the supremum (respectively in-
fimum) of those t ∈ [0, l] such that (π ◦ c)(t) = γ(0) (respectively γ(l)). Then the
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restriction π : c[t0, t1] → γ[0, l] is also surjective, and

c(t) = exp(γ◦φ)(t)(X ◦ φ)(t),

for some X ⊥ γ̇ with |X | < 2ε < ε0, where φ is defined by the equation γ◦φ = π◦c.
Since ε0 < π/(2

√
κ), Corollary 3.4.1 implies

d(h(p), h(q)) ≤ 1
cos(2ε

√
κ)

d(p, q). (3.4.5)

(3.4.5) actually holds for any p, q ∈ Cα, since if d(p, q) ≥ ε, then γ can be
subdivided into geodesic segments γ|[ti−1,ti], 1 ≤ i ≤ k, of length less than ε, and
the above argument may be applied to each segment, so that

d(h(p), h(q)) ≤
k∑

i=1

d(h(γ(ti−1), h(γ(ti)) ≤ 1
cos(2ε

√
κ)

∑
i

d(γ(ti−1), γ(ti))

=
1

cos(2ε
√

κ)
d(p, q).

Thus, h : Cα → Cβ is a Lipschitz map with constant (cos κ0)−1, where κ0 := 2ε
√

κ.
Set f0 := h, and define f1 to be the composition of the projections Cα →

Cα+(β−α)/2 and Cα+(β−α)/2 → Cβ . Each projection is Lipschitz with constant
(cos(κ0/2))−1, so that f1 has Lipschitz constant (cos(κ0/2))−2. One obtains in-
ductively a sequence fi : Cα → Cβ of equicontinuous maps with constants
(cos(2−iκ0))−2i. Since C is compact, we may, by the Ascoli theorem, assume that
fi converges to a continuous map f : Cα → Cβ , which is distance non-increasing
since (cos(2−iκ0))−2i → 1. Furthermore, each fi may be expressed as a compo-
sition fi = f1

i ◦ f2
i , where f2

i : Cα → Cα+(β−α)/2 and f1
i : Cα+(β−α)/2 → Cβ

are Lipschitz maps constructed as above. Since fi → f , subsequences of f1
i and

f2
i converge to distance non-increasing maps f1 and f2, with f = f2 ◦ f1. By an

induction argument, f can be expressed for any integer m as a composition

f = f2m ◦ f2m−1 ◦ · · · ◦ f1

of distance non-increasing maps f i : Cti−1 → Cti , where α = t0 < t1 < · · · <
t2m = β is a partition of [α, β] into 2m intervals of length (β − α)/2m. It now
follows by a continuity argument that for any t0 ∈ (0, 1), f = f1

t0 ◦ f2
t0 , where

f2
t0 : Cα → Cα+t0(β−α) and f1

t0 : Cα+t0(β−α) → Cβ are distance non-increasing.
Then Hβ

α : Cα × [0, 1] → Cα, where Hβ
α(p, t) = f2

t (p) if t < 1 and f(p) if t = 1,
satisfies the requirements of the theorem.

It remains to consider the case β = α0. If βi → α0 is an increasing sequence,
define Hβi

α to equal the composition of H
βi−1
α with a distance non-increasing strong

deformation retraction Hβi

βi−1
of Cβi−1 onto Cβi , adequately parametrized. We then

obtain a homotopy H : Cα × [0, 1) → Cα which can be extended to Cα × [0, 1] by
the Ascoli theorem. �
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3.5 The metric projection onto the soul

A distance non-increasing retraction π : M → S onto the soul S, such as the one
constructed in the last section, need a priori not be unique or even differentiable.
We now show that in fact any such map π is a C∞ Riemannian submersion, and
is uniquely determined as the metric projection onto the soul, in the sense that
the diagram

expν
ν(S) � M

�
�

��

�
�

��
S

πν π

commutes, where πν : ν(S) → S is the normal bundle projection. Notice that
commutativity of the diagram implies that for p ∈ M , π(p) is the point of S that
is closest to p, so that π is indeed the metric projection. The uniqueness part is
implicit in the following theorem, due to Perelman [103]:

Theorem 3.5.1. If π : M → S is a distance non-increasing retraction, then π ◦
expν = πν . Furthermore, if c : R → S is a geodesic in S, and X a parallel field
along c with X(0) ∈ ν(S), then the rectangle V : R × [0,∞) → M , V (t, s) =
expc(t) sX(t), is flat and totally geodesic.

Proof. For t ≥ 0, let νt(S) = {v ∈ ν(S) | |v| = t} denote the total space of the
sphere bundle of radius t over S, and define f : [0,∞) → R by

f(t) := max{d(π ◦ expν(v), πν (v)) | v ∈ νt(S)}.
For brevity, we drop the subscript ν in expν , and denote π ◦ exp by F . Then
f(0) = 0, and the first statement will follow once we establish that f is weakly
decreasing. The second one is a consequence of the first: Given t1, t2 ∈ R such
that the restriction of c to [t1, t2] is minimal and s0 > 0, define cs0 : [t1, t2] → M
by cs0(t) = expc(t) s0X(t). If s0 is small enough that none of the geodesics s 	→
expc(t) sX(t) has a focal point in (0, s0), then by the second Rauch comparison
theorem, L(cs0) ≤ L(c|[t1,t2]). But since π is distance non-increasing,

L(c|[t1,t2]) = d(c(t1), c(t2)) ≤ d(cs0 (t1), cs0(t2)) ≤ L(cs0).

The rigidity part of Theorem 3.2.2 then implies that the rectangle is flat and totally
geodesic up to distance s0, and in fact up to any distance: consider the set of all
s0 ≥ 0 for which the rectangle V : [t1, t2]× [0, s0] → M , V (t, s) = expc(t) sX(t), is
flat and totally geodesic. It is clearly closed, and by the above argument it is also
open. Being nonempty, it equals [0,∞). Finally, since the domain of c is a union
on intervals on which c is minimal, the interval [t1, t2] may be replaced by R.

To see that f is decreasing, choose t ∈ (0, injS), and v ∈ νt(S) with f(t) =
d(F (v), πν(v)). By assumption, the geodesic in S from F (v) to p := πν(v) mini-
mizes past p to some point q. Let w denote the parallel translate of v along this
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geodesic to q.

�
�

F (v) F (w)

p
q

v
w

By Rauch II and the fact that π decreases distances,

d(F (v), F (w)) ≤ d(exp v, exp w) ≤ d(p, q). (3.5.1)

Since f(t) = d(F (v), p),
d(F (w), q) ≤ f(t). (3.5.2)

On the other hand,

d(F (v), q) = d(F (v), p) + d(p, q) = f(t) + d(p, q). (3.5.3)

Apply the triangle inequality to F (v), F (w), q to conclude that equality holds
in (3.5.1) and (3.5.2). By the rigidity part of Rauch II, p, q, exp v, and expw
determine a flat totally geodesic rectangle.

Next, consider ε ∈ (0, t), and let wε := (1 − (ε/t))w, so that |wε| = t − ε.
Then

d2(exp v, exp wε) ≤ d2(exp v, expw) + ε2 = d2(p, q)(1 + (ε2/d2(p, q))),

so that

d(F (v), F (wε)) ≤ d(exp v, expwε) ≤ d(p, q) +
ε2

2d2(p, q)
(3.5.4)

for small ε, by Taylor’s theorem. Since d(F (wε), q) ≤ f(t − ε), (3.5.3) and (3.5.4)
imply

f(t − ε) ≥ d(q, F (v)) − d(F (v), F (wε)) ≥ f(t) − ε2

2d2(p, q)
.

F (v)

F (wε)

��������

p q

exp v expw

exp wε

�
�
ε
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In particular,

lim sup
h→0+

f(t + h) − f(t)
h

≤ 0,

and f is weakly decreasing, as claimed. More generally, the above argument shows
that the set {t ≥ 0 | f(s) = 0 on [0, t]} is open, so that f is identically zero. �

Gromoll and Meyer [58] proved that an open manifold of positive curvature
is diffeomorphic to Rn. Cheeger and Gromoll [37] conjectured this should still be
true under the weaker assumption that the curvature is positive at one point.
Perelman’s theorem yields an immediate proof of this conjecture:

Corollary 3.5.1. Let M be an open manifold with nonnegative sectional curvature.
If the sectional curvatures at some p ∈ M are positive, then M is diffeomorphic
to Euclidean space.

Proof. We show the contrapositive statement: If M is not diffeomorphic to Eu-
clidean space (i.e., if a soul S of M does not consist of one point), then S is positive-
dimensional, and for any p in M there exist a plane P ⊂ Mp with K(P ) = 0. In
fact, if q = π(p), and c : [0, 1] → M is a minimal geodesic from q to p, then
the plane spanned by ċ(1) and the parallel translate along c of any x ∈ Sq has
vanishing curvature by Theorem 3.5.1. �

Next, we tackle the matter of smoothness of π. Observe that since π ◦expν =
πν , π is C∞ wherever expν is locally 1-1; i.e., Perelman’s result implies that π is
smooth almost everywhere. Similarly, if r > 0 is small enough that expν : ν(S) →
Br(S) is a diffeomorphism, then π|Br(S) is a C∞ Riemannian submersion. By the
proof of Theorem 3.5.1, any π-horizontal curve remains at constant distance from
S, and by the results from Section 1.8, there exists a partition of Br(S) into dual
leaves. The latter are smooth by Section 1.8, and intrinsically complete once again
by the proof of Theorem 3.5.1.

Fix one such dual leaf L ⊂ Br(S), and consider a horizontal geodesic c : R →
L. The argument used in the proof of Theorem 1.8.1 shows that the normal bundle
of L along c is spanned by parallel Jacobi fields, and in particular, must be flat.
Thus, if p ∈ L and v ∈ ν(L) ∩ Mp, then the parallel translate of v along c stays
vertical; i.e., it belongs to the kernel of π∗. Denote by E the closure of the set
of vectors obtained by parallel translating v along piece-wise smooth horizontal
geodesics through p, and define f : [0,∞) → R by

f(s) = max{d(π ◦ γu(s), π ◦ γu(0)) | u ∈ E},

where γu denotes the geodesic with γ̇u(0) = u. An argument virtually identical to
that in Theorem 3.5.1 then implies that f ≡ 0. Thus, π(exp(tv)) = π(p), and the
rigidity part of Rauch II now implies the following:

Lemma 3.5.1. Let L denote a dual leaf in Br(S), where Br(S) is the diffeomorphic
image via expν of the disk bundle of radius r in ν(S). Consider a piece-wise smooth
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horizontal geodesic c : [0, 1] → L, p := c(0), q := c(1), and let X be a parallel vector
field along c with X(0) ∈ ν(L). Then

1. π(exp sX(t)) = π ◦ c(t);
2. The rectangle V : [0, 1] × [0,∞) → M , V (t, s) = expc(t) sX(t), is flat and

totally geodesic.
3. If hc : π−1(π(p)) → π−1(π(q)) denotes the holonomy map obtained by hori-

zontal lifts of π ◦ c, and ||c is parallel translation along c, then the diagram

νp(L)
||c−−−−→ νq(L)

exp

⏐⏐' ⏐⏐'exp

π−1(π(p)) −−−−→
hc

π−1(π(q))

commutes.

The second statement in the lemma essentially says that if x ∈ Mp is hori-
zontal, and v ∈ Mp is perpendicular to the holonomy orbit, then x and v generate
a totally geodesic flat. The statement actually holds for any metric foliation in a
manifold of nonnegative curvature, provided the dual leaves are complete, cf. [141].

A consequence of Perelman’s result is that the metric projection π onto a
soul is C1, since the derivative of π is isometric on the continuous horizontal
distribution and zero on the vertical one. Guijarro later showed that π is C2 [68].
Full regularity was established in 2005:

Theorem 3.5.2 (Wilking). The metric projection π : M → S onto the soul is a
C∞ Riemannian submersion.

Proof. In order to show that π is smooth in a neighborhood of p ∈ M , we first
prove that the restriction π|L of π to the dual leaf L containing p is smooth. So
consider a minimal geodesic from p to some dual leaf L1 ⊂ Br(S), where Br(S)
is the diffeomorphic image via exp of a neighborhood of the zero section in the
normal bundle of S. Then p = expp1

u for some p1 ∈ L1 and some u ∈ νp1(L1).
Let X be the parallel section of ν(L1) with X(p1) = u. By Lemma 3.5.1, L =
{expX(z) | z ∈ L1}, and the map

φ : L1 → L,

z 	→ expX(z)

is smooth and surjective. Furthermore, if c is a piece-wise smooth horizontal
geodesic in L1 joining p1 to some q1, then

hc : L1 ∩ π−1(π(p1)) → L1 ∩ π−1(π(q1))
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is a diffeomorphism, and by Lemma 3.5.1 (3), the diagram

L1 ∩ π−1(π(p1))
hc−−−−→ L1 ∩ π−1(π(q1))

φ

⏐⏐' ⏐⏐'φ

L ∩ π−1(π(p1)) −−−−→
hc

L ∩ π−1(π(q1))

commutes. This implies that φ has constant rank: In fact, the kernel of φ∗ is vertical
(because π ◦ φ = π), so the above diagram says that hc∗ maps the kernel of φ∗p1

isomorphically onto the kernel of φ∗q1 . Thus, φ is a smooth submersion. Now,
π|L ◦φ = π|L1 , so that locally there exist charts such that if ψ1 : U ⊂ Rl+l1 → Rl2

represents the smooth map π|L1 in this coordinate system, then ψ1 factors as

p
U ⊂ Rl+l1 � 0 × Rl1

�
�

��

�
�

��
Rl2

ψ1 ψ

where p : Rl+l1 → 0×Rl1 is projection, and ψ represents π|L. But then ψ = ψ1 ◦ ı,
where ı : 0 × Rl1 → Rl+l1 denotes inclusion, so that ψ, and hence also π|L, is
smooth. To conclude the proof, let πL : ν(L) → L denote the bundle projection.
By Lemma 3.5.1 (1), π◦expν(L) = π|L◦πL, and since the right side of this identity
is smooth, π ◦ expν(L) is C∞. But expν(L) is a diffeomorphism in a neighborhood
of 0 ∈ νp(L), so that π is indeed smooth in a neighborhood of p. Finally, the fact
that π is Riemannian was established in Theorem 3.5.1. �

A different approach in attempting to prove the above theorem is adopted
in [33].

3.6 The metric structure of bundles with K ≥ 0

The work of Perelman and Wilking discussed in the last section suggests that
vector bundles which admit a metric with nonnegative sectional curvature have
a fairly rigid metric structure. The aim of this section is to explore this further.
We begin by introducing a note of caution, though: Vector bundles are classified
by equivalence classes, whereas existence of metrics with K ≥ 0 depends only on
the diffeomorphism type of the total space. This can lead to surprising facts. For
example, there are nontrivial bundles over Sn, discovered by Levine [84], with total
space diffeomorphic to Sn × Rk. Fix one such bundle ξ with total space E, and a
diffeomorphism f : E → Sn × Rk. Consider the standard product metric on the
image space, and pull it back via f to obtain a metric of nonnegative curvature on
E. Then E has infinitely many souls (namely f−1(Sn ×{u}) for any u ∈ Rk), but



3.6. The metric structure of bundles with K ≥ 0 131

the zero section is not a soul, for if it were one, than ξ would be a trivial bundle,
see [41] for details. For this reason, we implicitly assume in what follows that a
given metric of nonnegative curvature on the total space of a vector bundle has
the zero section as soul.

Let M be an open manifold of nonnegative curvature with soul S, E the total
space of the normal bundle ν(S) = πν : E −→ S of S in M . Given p ∈ S, the
fiber π−1

ν (p) over p will be denoted by Ep. We begin with the relation between the
A-tensor of the submersion, the curvature tensor Rν of the normal bundle, and
the curvature R of the metric on M .

Proposition 3.6.1 ( [118]). Let p ∈ S, x, y ∈ Sp, u ∈ Ep, and c the geodesic
c(t) = exp(tu). If X, Y denote the horizontal lifts of x, y along c, then

1. Rν(x, y)u = R(x, y)u,
2. AXY ◦ c is the Jacobi field J along c with J(0) = 0, J ′(0) = − 1

2R(x, y)u,
3. R(x, y)u = 2R(x, u)y.

Proof. The first identity follows from the fact that S is totally geodesic in M . For
the second identity, consider the connection H̃ on ν(S) induced by the Levi-Civita
connection of M . By Perelman’s theorem (Theorem 3.5.1), if U is a parallel section
of ν along a curve, then the curve expν U is horizontal in M . Thus, expν∗ H̃ =
H ◦ expν , and in the same way, expν preserves the vertical subspaces (notice also
that expν∗ has maximal rank on the horizontal distribution). Given a vector field
X on S, denote its horizontal lifts to E and M by X̃ and X̄, respectively. Then X̃
and X̄ are expν -related, and by definition of the curvature tensor of the normal
bundle, given u ∈ Ep,

Ju(Rν(X, Y )u) = −[X̃, Ỹ ]v(u), X, Y ∈ X(S),

where Ju denotes the canonical isomorphism between the vector space Ep and its
tangent space at u, see, e.g., [136]. Applying exp∗ to both sides, we see that if c is
a geodesic orthogonal to S, then

(2AX̄ Ȳ ) ◦ c(t) = [X̄, Ȳ ]v ◦ c(t) = expν∗(−tJtċ(0)R
ν(X, Y )ċ(0)),

which proves the second identity. For the last identity, denote by ∂r the gradient
of the distance function to S on a small enough neighborhood of S. By Perelman’s
result, if X is basic, then ∇X∂r = ∇∂r X = 0, so that

R(X, ∂r)Y = −∇∂r∇XY .

If u is a unit vector in E, then the curve t 	→ c(t) = expν(tu) is an integral curve
of ∂r, and

R(X ◦ c, ċ)Y ◦ c = −J ′, J := (AXY ) ◦ c.

Evaluating this at t = 0 and using (2) now proves (3). �
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The proposition also gives an easy proof of a result originally due to Strake [117]:

Corollary 3.6.1. If the normal bundle of a soul S of M is flat, then M splits locally
isometrically over S; i.e., M is locally isometric to S×P k with the product metric,
where P k denotes Rk together with some metric of nonnegative curvature.

Proof. By Proposition 3.6.1, the submersion M → S is flat. The claim now follows
from Theorem 2.2.2. �
Example 3.6.1. When S is simply connected, then ν(S) is trivial whenever it is
flat. The converse is not true in general: Consider S2 × R2 × R with the product
metric, where each factor has the standard metric. Then R acts freely by isometries
on this product via

(t, (p, u, t0)) 	→ (φt(p), eitu, t + t0),

with φt denoting rotation by angle t in S2 about some axis. The quotient manifold
M therefore has nonnegative curvature. It is diffeomorphic to S2 × R2, and has a
topological 2-sphere as soul. The normal bundle of the soul is trivial but not flat.
In fact, the fibers of M → S are not even totally geodesic, see [131]. Nonnegatively
curved metrics on S2 × R2 were classified in [61], and are all similar to the above
example: for such a metric g, there exists a metric g0 on S2, a metric gf on R2, and
a (possibly trivial) isometric action of R on the Riemannian product (S2, g0) ×
(R2, gf ) such that (S2 ×R2, g) is isometric to ((S2, g0)× (R2, gf)×R)/R endowed
with the submersion metric. As a consequence, if a complete nonnegatively curved
metric g on S2 × R2 is not given by a product metric, then there is an isometric
effective action of a two-torus on (S2 × R2, g).

The metric rigidity that is apparent from the above results is nevertheless
relative: In a manifold with curvature bounded below by a positive constant, one
can deform the metric slightly in a compact set and still retain positive curvature.
In a manifold of nonnegative curvature (and in particular one where each point
has planes of zero curvature) on the other hand, deforming the metric usually
introduces some negative curvature. It is therefore noteworthy that on M = S3×S1

R2 with the metric from Examples and Remarks 1.8.1 (iii) for which the projection
ρ : S3×R2 → M is Riemannian, altering the length of the vector field ρ∗(0, ∂θ) by
a sufficiently small amount does not change the sign of the curvature, even though
the planes that contain the gradient of the distance function to the soul at any
point have vanishing curvature (here, ∂θ is the standard polar coordinate vector
field on R2); for details, see [131].

Theorem 3.6.1 ([71]). If the total space of a vector bundle admits a metric of
nonnegative curvature, then so does the total space of its associated sphere bundle.

Proof. It suffices to show that if M is an open manifold of nonnegative curvature
with soul S, then for small enough r > 0, the set Sr := {p ∈ M | d(p, S) = r}
is nonnegatively curved in the induced metric. By the Gauss equations, this will
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follow once we establish that the second fundamental form l of Sr associated to
the inward-pointing unit normal vector field N is positive semi-definite. So choose
r small enough that

1. the exponential map of ν(S) is a diffeomorphism onto Br(S) when restricted
to vectors of length less than r, and

2. metric balls of radius r centered at points in the soul are strongly convex (so
that, as mentioned in Section 3.1, their boundary has positive definite second
fundamental form).

The Riemannian submersion π : M → S restricts to Sr → S. By Theorem 3.5.1,
N is parallel along any horizontal geodesic, so that l(x, ·) = 0 for any x ∈ H. The
vertical space at p ∈ Sr coincides with the tangent space at p of Sr ∩ ∂Br(π(p)).
Since Br(π(p)) is strongly convex, l(u, u) > 0 for any vertical nonzero u, and the
second fundamental form is positive semi-definite, as claimed. �

Cheeger and Gromoll asked in [37] whether there is a converse to the soul
theorem for spheres: does any vector bundle over a sphere admit a complete metric
with nonnegative curvature? At the time of writing, there are no known obstruc-
tions to such metrics, and in fact, it has been shown that any vector bundle over
a sphere of dimension less than or equal to five admits such a metric, cf. [67].
More generally, one can ask whether any vector bundle over a compact manifold
of nonnegative curvature admits a metric with K ≥ 0. For example, Yang proved
that any rank two bundle over the connected sum of complex projective space with
itself (but with opposite orientation) admits such a metric [143]. The first coun-
terexamples were provided in [99]. The proof we give here is based on Theorem
3.6.1.

Theorem 3.6.2. Among the (infinitely many) rank two vector bundles over the
torus S1 × S1, only the trivial one admits a metric of nonnegative curvature.

Proof. If ξ is a plane bundle over the torus whose total space admits a met-
ric of nonnegative sectional curvature, then the total space E1 of the associated
unit sphere bundle also admits such a metric by Theorem 3.6.1. By a theorem
of Cheeger and Gromoll [37], the universal cover of E1 splits as the product of
a compact simply-connected manifold with Euclidean space. Since E1 fibers over
the torus with fiber S1, the universal cover must be R3. Thus, the unit sphere
bundle and therefore also the original bundle is trivial. �

For further results along these lines, the reader is referred to [13], [14], and
[138]. Up to a finite cover, a soul S splits as S = C × T , where T is a torus, C
is a simply-connected nonnegatively curved space, and the normal bundle splits
by a base-preserving diffeomorphism as ξC × T , where ξC is a vector bundle over
C with total space E(ξC) having nonnegative curvature. In [14], the authors say
that a vector bundle virtually comes from C if the pullback bundle under a map
id × p : C × T → C × T (where p : T → T is a finite cover) is ξC × T . A typical
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result is that if ξ is a rank two vector bundle over C ×T whose total space admits
a metric with nonnegative curvature, then ξ virtually comes from C. This in turn
implies that many vector bundles don’t admit nonnegative curvature metrics.

Wilking, on the other hand, has generalized this to Ricci curvature, by show-
ing that any compact manifold with nonnegative Ricci curvature is finitely covered
by the product of a torus with a simply-connected space. This product is, in gen-
eral, topological rather than isometric. Consider for example the twisted product
M = S2×ZR, where the integer m ∈ Z acts on S2 by rotation of angle 2mαπ about
some axis and by translation by m on R. If α is irrational, then M is diffeomorphic
to S2 × S1, but no cover of M is isometric to the Riemannian product S2 × S1.

Returning to the original problem posed by Cheeger and Gromoll concerning
rank k bundles over n-spheres, it was shown in [72] that if one also imposes an
upper bound κ > 0 for the curvature (of a ball of fixed radius centered at some
point of the soul), then there are only finitely many such bundles admitting metrics
with 0 ≤ K < κ, cf. also [121] for similar results involving a non-spherical base. It
turns out that the curvature along some vertical planes at each point of the soul
must increase as the bundle becomes more twisted.

A different approach to the problem is to try to construct connection met-
rics of nonnegative curvature on the total space E of the bundle, as was done
in Theorem 2.7.3 for the Ricci curvature. In [119], it is shown that a necessary
condition for nonnegative curvature is that the curvature tensor R∇ of the con-
nection satisfy a differential inequality. Specifically, endow the fiber Rk with the
metric given in polar coordinates by dr2 + G2(r)dσ2, where dσ2 is the standard
metric on Sk−1, and G2(r) = ε2r2/(ε2 + r2). If we define R∇(u, v) : Bp → Bp by
〈R∇(u, v)x, y〉 := 〈R∇(x, y)u, v〉, and denote by kB the non-normalized sectional
curvature of the base B, then R∇ must satisfy

〈∇xR∇(x, y)u, v〉2 ≤ |R∇(u, v)x|2
(

kB(x, y) − 3
4
ε2|R∇(x, y)u|2

)
, (3.6.1)

for u, v ∈ Ep, x, y ∈ Bp, p ∈ B. Of course, the simplest way to guarantee this
inequality is to require that R∇ be parallel. This turns out to be fairly restrictive, at
least in some cases: If, for example, B is a symmetric space G/H , then E = G×ρRk

for some orthogonal representation ρ of H , cf. [69].
In [122], it is shown that the above inequality is almost sufficient: If the

bundle admits a connection such that

〈∇xR∇(x, y)u, v〉2 < |R∇(u, v)x|2 · kB(x, y), (3.6.2)

then there exists a connection metric of nonnegative curvature on E. We do not
know whether the inequality (3.6.1) is also sufficient. It applies for example to the
case where the base is flat (and says that the connection must then be parallel),
whereas (3.6.2) can only be used when the base is positively curved. It should
finally be noted that the metrics of nonnegative curvature constructed on rank
four bundles over S4 in [67] are not connection metrics.



Chapter 4

Metric Foliations
in Space Forms

We have so far focused our attention mostly on the base space B of a Riemannian
submersion M → B, in particular when searching for new metrics of nonnegative
curvature on B. It is also interesting to look at the total space of the fibration. The
very fact that there exists a Riemannian submersion from M (or more generally,
that M admits a metric foliation) is a sign that the space possesses a fair amount
of symmetry. One therefore expects those Riemannian manifolds with the largest
amount of symmetry – namely, space forms – to be the ones that display the most
variety as far as these foliations are concerned. Surprisingly, a complete classifica-
tion of metric foliations on spaces of constant curvature is not yet available. There
does, however, exist a classification of metric fibrations, at least in nonnegative
curvature, which will be described in this chapter.

4.1 Isoparametric foliations

Recall from Section 1.4 that the mean curvature of a metric foliation on M is the
one-form κ given by κ(e) = tr Seh , e ∈ TM . It essentially measures the infinites-
imal rate of change of the volume form of the leaves in horizontal directions. To
see this, assume the foliation is oriented (which is always the case, at least up to
a cover of M). Let ω denote the form on M that is locally the metric dual of
U1∧· · ·∧Uk, where U1, . . . , Uk is a local oriented orthonormal basis of the vertical
distribution; i.e.,

ω(E1, . . . , Ek) = det(〈Ui, Ej〉), Ej ∈ XM.

We denote by ωv the restriction of ω to the vertical distribution. With this nota-
tion, we have:
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Proposition 4.1.1 (Rummler [112]). The vertical restriction of the Lie derivative
of ω in a horizontal direction X ∈ XM satisfies

(LXω)v = −κ(X)ωv.

Proof. If U1, . . . , Uk denotes an oriented local orthonormal frame, then

(LXω)(U1, . . . , Uk) = Xω(U1, . . . , Uk) −
k∑

i=1

ω(U1, . . . , [X, Ui]v, . . . , Uk)

= −
k∑

i=1

ω(U1, . . . , [X, Ui]v, . . . , Uk).

Furthermore, we may replace [X, Ui]v by its projection onto Ui, which equals

〈[X, Ui], Ui〉Ui = −〈∇UiX, Ui〉Ui = 〈SXUi, Ui〉Ui,

so that
(LXω)(U1, . . . , Uk) = −(trSX)ω(U1, . . . , Uk),

as claimed. �

Definition 4.1.1. A metric foliation is said to be isoparametric if its mean curvature
form is basic.

By definition, a 1-form κ is basic if its metrically dual vector field is basic;
i.e., if κ(X) is locally constant along leaves for basic X . In view of Proposition
4.1.1, this amounts to saying that the infinitesimal rate of change of the volume of
leaves in basic directions is independent from the point on the leaf at which it is
measured. For example, any homogeneous foliation is isoparametric. This follows
from Proposition 2.3.4, which actually asserts a stronger property, namely that
for basic X and left-invariant U , SXU is left-invariant. The converse is not true in
general: If M is an open manifold of nonnegative curvature with soul S, and if the
metric projection M → S has totally geodesic fibers, then the resulting fibration
is isoparametric, but not homogeneous unless M splits locally isometrically as a
product over S (one way to see this is to notice that if M → S is homogeneous, then
by Proposition 2.3.4, AXY is left-invariant for basic X and Y , and in particular
has constant norm along geodesics emanating from the soul; it must then be
identically zero by Proposition 3.6.1. Now apply Theorem 2.2.2). A typical example
is TSn = SO(n + 1) ×SO(n) Rn → Sn. When the foliation is one-dimensional,
however, the converse is true under weak curvature restrictions, see also [134],
[55]:

Proposition 4.1.2. Any one-dimensional isoparametric Riemannian foliation F
with complete leaves on a manifold with curvature bounded below is locally homo-
geneous; i.e., F is locally generated by a Killing field.
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Proof. Since the mean curvature form κ is basic, so is dκ, and by Proposition
1.4.1, the function

div AXY = −1
2
dκ(X, Y )

is then constant along leaves for basic X and Y . If T is a local unit vertical
field, this translates into 〈∇T AXY, T 〉 being constant, since 〈∇ZAXY, Z〉 is always
zero for horizontal Z. Thus, if c : R → M is a unit-speed curve parametrizing a
complete leaf, then 〈AXY ◦c, ċ〉′ is constant, and 〈AXY ◦c, ċ〉 is an affine function.
It must then be constant by O’Neill’s formula, if the curvature is bounded below.
Consequently, dκ(X, Y ) = 0, and κ is closed, because

dκ(X, T ) = Xκ(T )− Tκ(X)− κ[X, T ] = −Tκ(X) = 0.

Thus, κ = dφ locally, for a function φ that is constant along leaves. Set L := e−φ,
U := LT . Then U is Killing, since

〈∇XU, X〉 = L〈∇XT, X〉 = L〈∇T X, X〉 = 0,

and

〈∇XU, T 〉+ 〈∇T U, X〉 = XL〈T, T 〉 − 〈U,∇T X〉 = XL + Lκ(X) = 0. �

The relevance of isoparametric foliations for space forms is illustrated by the
following:

Theorem 4.1.1 ([63]). Any metric foliation of a space form of nonnegative curva-
ture is isoparametric.

Proof. Let x be horizontal, and consider a Riemannian submersion that locally
defines the foliation in a neighborhood of the footpoint of x. We will prove a
stronger assertion, namely that if λ is an eigenvalue of Sx, then it is also an
eigenvalue (of equal multiplicity) of Sx̃, for any horizontal x̃ with π∗x̃ = π∗x.
Denote by γ (resp. γ̃) the geodesic with initial tangent vector x (resp. x̃), and
consider the Jacobi field J along γ with J(0) = u, J ′(0) = −Sxu = −λu, where u
denotes a unit λ-eigenvector of Sx. Notice that J = φE, where E is the parallel
field along γ with E(0) = u, and φ is the solution of the O.D.E.

φ′′ + cφ = 0, φ(0) = 1, φ′(0) = −λ,

with c denoting the curvature of the space. Assume for now that λ �= 0 if c = 0.
Then J(l) = 0 for some l ∈ R. But J is by definition projectable, so that π∗J
is Jacobi along π ◦ γ by Theorem 1.6.1. By Lemma 1.6.1, there exists a unique
Jacobi field J̃ along γ̃ with π∗J̃ = π∗J and J̃(l) = 0. In particular, J̃(0) must be
vertical (because J is), so that J̃ ′v(0) = −Sx̃J̃(0). This, together with the fact
that J̃(l) = 0 implies that J̃ = φẼ for some parallel field E. It follows that J̃(0)
is a λ-eigenvector of Sx̃. Let k denote the multiplicity of λ as an eigenvalue of Sx.
Since for any Jacobi field Y along π ◦ γ that vanishes at 0 and l there exists a
unique projectable Jacobi field J along γ with J(0) in the λ-eigenspace of Sx, l is
a conjugate point of π ◦ γ of order ≤ k. Conversely, if J is a projectable Jacobi
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field along γ with J ′(0) = −SxJ(0) and J(0) �= 0, then π∗J is a nontrivial Jacobi
field that vanishes at 0 and l (if π∗J ≡ 0, then J is vertical; i.e., J is a holonomy
field, and since J(l) = 0, J ≡ 0). Thus, l is a conjugate point of order k. Applying
Lemma 1.6.1 again, we see that the multiplicity of λ as an eigenvalue of Sx̃ is also
k. This establishes the theorem in all cases except perhaps when c = λ = 0. But
then it must also be true in the latter case. �

Corollary 4.1.1. A one-dimensional metric foliation of a space form of nonnegative
curvature is locally homogeneous.

Proof. This follows immediately from Theorem 4.1.1 and Proposition 4.1.2. Notice
that if the space is simply connected, then the Killing field is globally defined. �

Even though the above is not necessarily true in constant negative curvature
(see Examples and Remarks (i) below), a slightly more general result does hold,
cf. also [55]:

Theorem 4.1.2. A one-dimensional metric foliation of a hyperbolic space form is
either locally homogeneous or flat.

Proof. We first claim that in constant (not necessarily negative) curvature c, the
A-tensor vanishes everywhere as soon as it vanishes at any one point p. To see
this, it is enough to show that it is zero along any horizontal geodesic γ emanating
from p, since for basic X , Y , AXY has constant norm along leaves by O’Neill’s
formula. An equivalent claim is that the totally geodesic hypersurface expp(Hp)
is horizontal everywhere, or alternatively, that any parallel vector field E along γ
with E(0) horizontal remains horizontal for all t. But if J is a holonomy Jacobi
field along γ, then

〈J, E〉′′ = 〈J ′′, E〉 = −〈R(J, γ̇)γ̇, E〉 = −c〈J, E〉.

The claim now follows from the initial conditions, because 〈J, E〉(0) = 0 by as-
sumption, and

〈J, E〉′(0) = 〈J ′, E〉(0) = −〈(Sγ̇ + A∗
γ̇)J, E〉(0) = −〈A∗

γ̇J, E〉(0) = 0

if Ap ≡ 0.
Resuming the proof of the theorem, assume that the foliation is not flat. By

the above claim, there exist at any point p basic vector fields X , Y with AXY �= 0
at p. Theorem 1.5.1 then implies that

Rv(X, Y )X = −(∇v
XA)XY + 2SXAXY,

so that if T is a local unit field spanning the vertical distribution, then

0 = 〈R(X, Y )X, T 〉 = −〈(∇v
XA)XY, T 〉+ 2〈SXAXY, T 〉. (4.1.1)
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Now, the first term on the right in (4.1.1) is locally constant along leaves, since it
can be written as

〈(∇v
XA)XY, T 〉 = 〈∇X(AXY ), T 〉 − 〈A∇XXY, T 〉 − 〈AX∇XY, T 〉

= X〈AXY, T 〉 − 〈A∇X XY, T 〉 − 〈AX∇XY, T 〉,
where both ∇h

XX and ∇h
XY are basic, whereas

TX〈AXY, T 〉 = [T, X ]〈AXY, T 〉 + XT 〈AXY, T 〉 = 0

because [T, X ] is vertical. Thus, 〈SXAXY, T 〉 is constant along leaves by (4.1.1),
so that κ(X) is also constant, since

〈SXAXY, T 〉 = 〈AXY, SXT 〉 = 〈AXY, T 〉κ(X).

Summarizing, κ(X) is locally constant for all X in a nonempty open subset of
basic fields along the leaf through p, and κ is therefore basic. �
Examples and Remarks 4.1.1. (i) In a space of constant curvature c, any sub-
manifold with flat normal bundle is locally a leaf of a (flat) metric foliation, as
remarked in Examples 2.2.1(ii). This foliation cannot be extended to the whole
space if c > 0 by Theorem 2.2.2. For c = 0, it can iff L is totally geodesic. When
c < 0, however, there is no such rigidity. This also shows that Theorem 4.1.1 does
not hold in this case: Consider for example a line in hyperbolic space. Deform
the line in a neighborhood of some point so that it is no longer totally geodesic
there, but do it slightly so that the exponential map of the normal bundle is still
one-to-one. Exponentiating parallel sections of the normal bundle then yields a
metric foliation of hyperbolic space that is not isoparametric.

(ii) The Hopf fibrations with fibers S1 and S3 are homogeneous. Even though
the higher-dimensional Hopf fibration S15 → S8 with fiber S7 is isoparametric (in
fact, it is totally geodesic) by Theorem 4.1.1, it is not homogeneous. Before arguing
this, notice first that since the fibration is a fat bundle, it is weakly substantial ; i.e.,
the image of the A-tensor equals the whole vertical distribution. This implies that
it cannot be homogeneous. In fact, we claim that if a homogeneous submersion is
weakly substantial, then the fiber is a Lie group (the fiber of the Hopf fibration is
S7, which of course is not a Lie group). To see this, let G be the group of isometries
generating the fibration, so that a fiber has the form G/H , where H is the isotropy
group at some point p. Consider h ∈ H . Since π ◦ h = π and since h preserves
the vertical, and hence horizontal distributions, it must preserve basic fields; i.e.,
h∗X = X ◦ h for any basic field X (and in particular, h∗ is the identity on the
horizontal space at p). h∗ must then also preserve the bracket of basic fields, so
that h∗Axy = Axy for any horizontal vectors x, y at p. Thus, h∗ is the identity
on the vertical space also, and since h is an isometry, it is the identity map. This
means that H is trivial, and the fiber is G, as claimed.

(iii) Recall that given a metric foliation on M , a one-form α is basic if its
metrically dual vector field α� is basic. This is easily seen to be equivalent to
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requiring that α(T ) = 0 and dα(T, E) = 0 for any vertical field T and arbitrary
field E. More generally, a differential form α on M is said to be basic if

ıT α = 0, ıT dα = 0, for vertical T,

(ı denotes interior multiplication). By definition, the differential of a basic form is
again basic, so that d, when restricted to the algebra of basic forms, induces a so-
called basic cohomology of the leaf space introduced by Reinhart [110]. A number
of authors have studied this complex in an attempt to develop a basic Hodge theory
and basic Laplacian, leading to a representation of basic cohomology classes by har-
monic forms, see, e.g., [79] in the isoparametric case and [101] in the general case.

4.2 Metric fibrations of Euclidean space

Our next objective is to derive a classification of Riemannian submersions π :
Rn+k → Bn. A simple, yet illustrative example to keep in mind throughout this
discussion is the orbit fibration π : R3 → B2 = R3/R, where R is the Lie group of
isometries acting on R3 = C × R via glide-rotations; i.e.,

R × (C × R) −→ C × R,

(t, (x, t0)) 	−→ (eitx, t0 + t),

cf. Examples and Remarks 1.5.1(iv). Notice that there is exactly one totally
geodesic fiber, namely the z-axis. It turns out it is the fiber over the soul of
the nonnegatively curved manifold B2.

In general, if π : Rn+k → Bn is a Riemannian submersion, then Bn has
nonnegative curvature, and π factors as a fibration over the universal cover of
B, followed by a covering map. Covering maps in nonnegative curvature are well
understood (see, e.g., [37]), and we may therefore assume without loss of generality
that B is simply connected. It follows from the long exact homotopy sequence of
π that the fiber of the submersion is connected. Using the spectral sequence for
the homology of the fibration, one concludes that B is contractible, cf. [70]. Since
B is also a vector bundle over a soul, it must be diffeomorphic to Euclidean space,
and any soul consists of a point.

Proposition 4.2.1. If π : Rn+k → B is a Riemannian submersion, then the fiber
over any soul of B is an affine subspace.

Proof. The general idea is to lift the soul construction to Euclidean space, cf. also
[38]: Let {p} denote a soul of B, c : [0,∞) → B a ray emanating from p. Notice
that any lift c̃ of c must also be a ray: this is of course trivial in this case, since any
normal geodesic in Euclidean space is a ray, but is also true in general: otherwise,
for some t, the line segment from c̃(0) to c̃(t) would be shorter than t, implying
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that c = π(c̃) is not minimal. If

Bc =
⋃
t>0

Bt(c(t))

is the open half-space determined by c from the soul construction, then π(Bc̃) =
Bc, since π maps metric balls onto metric balls of the same radius. Denote by B̃c

the union of all Bc̃, where c̃ ranges over all lifts of c, and by C̃c its complement
in Rn+k. C̃c is closed and convex (as an intersection of closed half-spaces), and by
construction, Cc ⊂ π(C̃c), where Cc is the complement of Bc in B. The reverse
inclusion also holds, for otherwise, one could find some q ∈ C̃c such that π(q) ∈ Bc;
i.e., there would exist some t0 such that d(π(q), c(t0)) < t0. But then the horizontal
lift to q of a minimal geodesic from π(q) to c(t0) is a curve of length less than t0 con-
necting q to c̃(t0) for some lift c̃ of c, contradicting the fact that q ∈ Cc̃. Next, set

C̃ :=
⋂
c

C̃c, C :=
⋂
c

Cc,

where c ranges over all rays emanating from p. Just as above, one has that C̃ is
a closed convex set of Euclidean space with C̃ = π−1(C) and ∂C̃ = π−1(∂C). If
C = {p}, then C̃ = π−1(p) is a closed, connected, convex submanifold without
boundary of Euclidean space, i.e., an affine subspace. If C has nonempty boundary,
define sets

C̃a = {q ∈ C̃ | d(q, ∂C̃) ≥ a}, Ca = {q ∈ C | d(q, ∂C) ≥ a},
where 0 ≤ a ≤ max{d(q, ∂C) | q ∈ C}. Both sets are closed and totally convex
by the results from Chapter 3. Furthermore, given any two points p0, p1 in B,
the distance between them equals the distance between the fibers over them, as
well as the distance between any point on one fiber and the other fiber. This is
easily seen to imply that C̃a = π−1(Ca). Iterating this procedure finitely many
times until the set in the base no longer has boundary (and therefore equals {p})
lets us draw the same conclusion as when C consists of the single point p, thereby
establishing the result. �

The above proposition allows us to strengthen Theorem 4.1.1 in the case of
a fibration of Euclidean space:

Proposition 4.2.2. The mean curvature form κ of a Riemannian submersion π :
Rn+k → Bn is basic and exact; i.e., there exists a function f : B → R such that
κ = d(f ◦ π).

Proof. The fact that κ is basic follows from Theorem 4.1.1, so we only have to show
that it is closed. Since κ vanishes when applied to vertical vectors, dκ(U, V ) = 0
for vertical U , V . Furthermore, for basic X , the bracket [X, U ] is vertical, so that

dκ(X, U) = Xκ(U) − Uκ(X) = −Uκ(X) = 0,
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because κ is basic. It remains to show that dκ(X, Y ) = 0 for basic X , Y , or
equivalently (by Proposition 1.4.1), that the vertical field AXY has vanishing
divergence. Now, this divergence is the one induced by the fiber metric, since
〈∇ZAXY, Z〉 = −〈AXY,∇ZZ〉 = 0 for basic Z. Furthermore, the divergence is
constant along fibers because κ, and hence also dκ, is basic. Denote by F the
totally geodesic fiber over the soul, and consider a minimal segment c from F to
some fiber L at distance l from F . The horizontal lifts of π ◦ c induce a holonomy
diffeomorphism h : F → L, and by Lemma 1.4.2, the derivative of h at any point q
of F satisfies h∗u = J(l), where J is the holonomy field along the line t 	→ exp(tZq),
with J(0) = u (here, Z denotes the basic field along F that extends ċ(0)). Now,
F is totally geodesic, so that J ′(0) = −A∗

Zu, and J(t) = E + tF , where E and F
are the parallel fields with E(0) = u and F (0) = −A∗

Zu. In particular E and F
are mutually orthogonal, so that

|h∗u|2 = |u|2 + l2|A∗
Zu|2.

Thus, the norm of h∗ is bounded below by 1, and since |AXY | is constant along
fibers, it is also bounded above by some constant. It follows that if Br ⊂ L denotes
the h-image of a ball of radius r in F about some point, then volBr ≥ a · rk and
vol∂Br ≤ b · rk−1 for some positive constants a and b. If Nr denotes the outward
unit normal field to ∂Br, then Stokes’ Theorem implies

a · | div AXY | · rk ≤
∣∣∣∣∫

Br

div AXY

∣∣∣∣ =
∣∣∣∣∫

∂Br

〈AXY, Nr〉
∣∣∣∣ ≤ b · |AXY | · rk−1,

so that div AXY ≡ 0 if the above inequality is to hold for all r > 0. �

Up to a congruence of Rn+k, the totally geodesic fiber F is {0}×Rk ⊂ Rn+k.
Normalize the function f : Bn → R from Proposition 4.2.2 so that it equals zero at
π(F ). If ω is the vertical volume form from Proposition 4.1.1, define the holonomy
form of the fibration to be the k-form η given by

η := e−(f◦π)ω.

It can alternatively be described as follows: Consider an oriented orthonormal
parallel basis E1, . . . , Ek of vector fields along F , and extend them radially via
holonomy diffeomorphisms from F ; i.e., define vector fields Ui on Rn+k by

Ui(x, u) := ||(Ei(0, u)− A∗
J(0,u)x

Ei(0, u)
)
, i = 1, . . . , k, (4.2.1)

where || denotes parallel translation from (0, u) to (x, u), and J(0,u) is the canonical
isomorphism of Euclidean space with its tangent space at (0, u). Thus, for a line
c emanating orthogonally from F , Ui ◦ c is the holonomy Jacobi field that equals
Ei at 0. The relation between the Ui and η is given by the following:

Lemma 4.2.1. η� = U1 ∧ · · · ∧ Uk.
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Proof. Since η and the dual of U1 ∧ · · · ∧ Uk are both vertical forms, it suffices to
show that at any point p,

η(v1, . . . , vk) = 〈U1(p) ∧ · · · ∧ Uk(p), v1 ∧ · · · ∧ vk〉,
where v1, . . . , vk denotes a positively oriented orthonormal basis of the fiber at p;
equivalently, that e−(f◦π) = ω(U1, . . . , Uk). Now by definition, both functions are
constant equal to 1 along F . Furthermore, if X is the tangent field of a horizontal
geodesic emanating from F , then

X
(
e−(f◦π)

)
= −e−(f◦π)X(f ◦ π) = −e−(f◦π)κ(X),

whereas by Proposition 4.1.1,

X
(
ω(U1, . . . , Uk)

)
= LX

(
ω(U1, . . . , Uk)

)
= (LXω)(U1, . . . , Uk)

= −ω(U1, . . . , Uk)κ(X),

using the fact that [X, Ui] = 0. The claim clearly follows. �

Lemma 4.2.1 says that the k-form U1 ∧ · · · ∧ Uk is holonomy-invariant in
the sense that the wedge product of holonomy fields is independent of the chosen
horizontal path. We will soon see that the vector fields Ui are in fact global Killing
fields that generate the isometric action. In the special case of a one-dimensional
fibration, it is easy to see that U is a Killing field, i.e., that the assignment z 	→
∇zU is skew-adjoint: If T = U/|U | is the unit field in direction U , then U =
e−(f◦π)T , so that, for horizontal X ,

〈∇XU, X〉 = −〈∇XX, U〉 = 0,

whereas
〈∇UU, U〉 =

1
2
U
(
e−2(f◦π)

)
= 0

since π∗U = 0. Finally,

〈∇XU, T 〉 + 〈∇T U, X〉 = X
(
e−(f◦π)

)
+ e−(f◦π)κ(X) = 0

by Lemma 4.2.1. Thus, U is Killing.
For simplicity of notation, we will, for the remainder of the section, identify

Euclidean space with its tangent space at any point. Thus, the vector field Ui from
(4.2.1) becomes a map from Rn+k to itself, and the holonomy form (or rather its
dual η�) is a map from Rn+k to Λk(Rn+k). We say a map from Rn+k to a vector
space is polynomial of degree at most r if each component function φ : Rn+k → R

of this map in some basis is a polynomial of degree at most r in the usual sense.
For example, each vector field Ui is polynomial of degree at most 1 along any
affine subspace Rn × {u}, since the map x 	→ A∗

xE is linear. It follows that η� is
polynomial of degree at most k along these subspaces. In fact, it is polynomial
along any horizontal space, not just those based at F ; this will be a key point in
the forthcoming classification of metric fibrations on Euclidean space:
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p1

E(p1)

F

p2

E(p2)

r

U(r)
q

U(q)

π−1(π(r))

π−1(π(q))

Figure 4.1: Holonomy invariance in dimension one.

Lemma 4.2.2. η� is polynomial of degree at most k on every affine horizontal
subspace.

Proof. Consider p ∈ Rn+k, and a point q on the horizontal subspace H through
p. By Lemma 4.2.1, η� is holonomy-invariant, so that

η�(q) =
∧
i

Ui(q) =
∧
i

(
Ui(p) − (A∗

q−p + Sq−p)Ui(p)
]
.

Thus, after translating the origin to p, it suffices to show that the map

x 	−→
∧
i

(Ei − A∗
xEi − SxEi)

is polynomial of degree at most k. This in turn follows from the fact that x 	→
A∗

xE + SxE is linear. �

Lemma 4.2.3. η� is polynomial along every affine plane through a point (0, a) ∈ F
spanned by a horizontal x and a vertical u in the image of Ax.
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Proof. Normalize x to have length 1, and denote by H(t) the horizontal space at
(tx, a) for t ≥ 0; i.e., at distance t from F along the (horizontal) line in direction
x through (a, 0). By Lemma 4.2.2, η� is polynomial on H(t). Now, x is in H(t)
for all t. By a continuity argument, the claim follows once we establish that u is
in H(∞), where the latter denotes the limit of H(t) as t → ∞. In fact, H(∞) is
the direct sum of the kernel of Ax and the image of Ax, because of the form of
holonomy fields in Euclidean space: the holonomy field J that equals E at time
0 is J(t) = E − tA∗

xE (where E is extended to be parallel). Now, let t go to
infinity, to conclude that the vertical space at infinity is spanned by (ker+ Im)A∗

x.
Equivalently, the horizontal space at infinity is spanned by (ker+ Im)Ax. �

���������..................
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�
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u

�
�
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����
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��

H(t)

(tx, a)	

F
H(∞)

Since F is totally geodesic, any vector x in its normal bundle ν may be
extended by parallel translation to a horizontal vector field along F . Such a field
will be denoted by the same lowercase letter x to distinguish it from the uppercase
notation X for basic fields. Thus, the former are the parallel sections for the
usual Euclidean connection ∇h on ν, whereas the latter represent those that are
parallel for the Bott connection ∇B from (1.3.3). The connection difference form
Ω = ∇h−∇B is then the 1-form on F with values in the bundle of skew-symmetric
endomorphisms of ν given by

Ω(u)x = −A∗
xu, u ∈ TF, x ∈ ν.

At this point, it is convenient to simplify matters by getting rid of the “transla-
tional” part of the submersion, which is grosso modo the kernel of A∗: for a point
p in the fiber F , denote by Ap the (affine) space at p spanned by all integrability
fields Axy. Define the kernel of A∗ to be the union over p ∈ F of A⊥

p . We then
have the following

Proposition 4.2.3. π factors as an orthogonal projection Rn+k−l ×Rl → Rn+k−l ×
{0} followed by a Riemannian submersion π′ : Rn+k−l → B, where the fiber F ′ of
π′ over the soul of B is spanned by the image of A; i.e., for any p ∈ F ′, F ′ = Ap.
Furthermore, given parallel sections x, y of the normal bundle ν′ of F ′, Axy is a
parallel vector field along F ′.



146 Chapter 4. Metric Foliations in Space Forms

Proof. Let x be a vector in the normal bundle ν of F at (0, a), and u a vector in the
image of Ax. By Lemma 4.2.3, the holonomy form is polynomial along the plane
through (0, a) spanned by x and u, and therefore so is its derivative in direction
x. The restriction of this derivative to the line t 	→ γu(t) := (0, a + tu) is given by

∇xη� = −
∑

i

E1 ∧ · · · ∧ A∗
xEi ∧ · · · ∧ Ek.

Now, the Ej are parallel, and A∗
xEi is horizontal and bounded in norm. Since a

bounded polynomial is constant, we conclude that each A∗
xEi is parallel along γu,

or equivalently,
(Axy ◦ γu)′ ≡ 0, u ∈ Im Ax. (4.2.2)

Thus, the image of Ax, though a priori not of constant rank along F , is totally
geodesic, and consists of a disjoint union of affine subspaces. Next, let u ∈ kerA∗

x.
We claim that γ̇u(t) ∈ kerA∗

x for all t. To see this, consider the variation V (t, s) =
expsu tx, which projects down to a variation W = π ◦ V on the quotient. The
Jacobi field Y (t) = W∗D2(t, 0) induced by W satisfies Y (0) = 0, and

Y ′(0) = π∗∇D1(0,0)(V∗D2)h = −π∗∇h
D1(0,0)(V∗D2)v = π∗A∗

xu = 0.

Thus, Y is identically zero, or equivalently, the parallel field x is actually basic
along γu, so that A∗

xγ̇u = −(x ◦ γu)′ ≡ 0. This establishes the claim. The latter in
turn implies that the image of A has constant rank: in fact, it says that for any
point p in F , A⊥

p = kerA∗
p is totally geodesic since it is the intersection over all unit

horizontal x at p of the kernel of A∗
x. Now, up to congruence, A0 is Rk−l × {0}

for some integer l by (4.2.2). It follows that for any (a, b) ∈ Rl × Rk−l = F ,
A⊥

(a,b) = kerA∗
(a,b) = {a} × Rl, since A⊥

(a,0) = {a} × Rl. Thus, A(a,b) = Rk−l ×
{b}, and F splits isometrically as Rk−l × Rl with the image of A tangent to
the first factor, and the kernel of A∗ tangent to the second one. This splitting
extends to all of Euclidean space, since the kernel of A∗ is invariant under parallel
translation along horizontal lines γ that intersect F , thereby establishing the first
part of the proposition. After factoring out an orthogonal projection, we now have
a submersion π′ : Rn+k−l → B where the fiber F ′ over the soul of B is spanned
by the image of the A-tensor. An argument similar to the one that led to (4.2.2)
then implies that each integrability field is parallel along any line in F ′, thereby
concluding the proof. �

We are now in a position to classify metric fibrations of Euclidean spaces:

Theorem 4.2.1. Let π : Rn+k → Bn be a Riemannian submersion with connected
fibers. Then there exists an orthogonal representation φ : Rk → SO(n), such that,
up to congruence, π is the orbit fibration of the free isometric group action ψ of
Rk on Rn+k = Rn × Rk given by

ψ(v)(x, u) = (φ(v)x, u + v), u, v ∈ Rk, x ∈ Rn.
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Rl

A⊥
(a,0)

Rk−l

a

0

b

(a, b)

Conversely, of course, given any homomorphism φ : Rk → SO(n), the orbits
of the free isometric action ψ described above form a metric fibration of Rn+k.
Before going into the proof of the theorem, it may be useful to give a rough
description of the main idea involved: If we identify the trivial rank n normal
bundle ν of F with Rn by means of parallel translation, then the bundle of skew-
adjoint endomorphisms of ν is simply so(n). Similarly, TF is identifiable with F
via parallel translation. The connection difference form Ω = ∇h−∇B can then be
viewed as a linear map Ω : F = Rk → so(n). Proposition 4.2.3 now implies that
Ω is a Lie algebra homomorphism. The corresponding Lie group homomorphism
turns out to be the representation φ in the theorem.

Proof. In general, it is a standard fact that if ∇1 and ∇2 are connections on a
vector bundle with connection difference 1-form Ω = ∇1 −∇2, then the curvature
tensors of these connections satisfy

R1 − R2 = d∇2Ω + [Ω, Ω], (4.2.3)

where d∇ denotes the exterior derivative operator associated to ∇; i.e.,

d∇Ω(U, V ) = ∇UΩ(V ) −∇V Ω(U) − Ω[U, V ], (4.2.4)
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cf. [106]. Now, both the Bott and the Euclidean connections on ν are flat (since
they admit globally parallel sections), so that if Ω = ∇h−∇B, then (4.2.3) becomes

d∇hΩ = −d∇BΩ = [Ω, Ω]. (4.2.5)

If U , V are parallel vector fields on F , and x is a parallel section of ν, then by
Proposition 4.2.3, A∗

xV is a parallel section of ν, so that(∇UΩ(V )
)
x = ∇U

(
Ω(V )x

)
= −∇U (A∗

xV ) = 0.

(4.2.4) then implies that d∇hΩ = 0, and (4.2.5) that [Ω, Ω] = 0. F = Rk will be
identified with its tangent space at any point via parallel translation, and similarly,
sections of the normal bundle of F will be viewed as maps from Rk to Rn. The
restriction of Ω to 0 ∈ Rk then defines a linear map from Rk to so(n), which we
denote by the same letter. The fact that [Ω, Ω] = 0 now implies that it is a Lie
algebra homomorphism. Let φ : Rk → SO(n) denote the corresponding Lie group
homomorphism, and for horizontal x ∈ Rn, consider the section X of ν given by
X(u) = φ(u)x, for u ∈ Rk. If v, w ∈ Rk, then

(∇wX)(v) =
d

dt |0
(t 	→ φ(v + tw)x) =

d

dt |0
(t 	→ φ(tw) · φ(v)x = Ω(w)X(v),

so that X is the basic field along F with X(0) = x. Thus, the fiber through any
point (x, u) ∈ Rn × Rk can be described as the set of all

(
X(u + v), u + v

)
where

X is the basic field with X(u) = x and v ranges over Rk. This completes the proof
of the theorem, since the free action ψ in the statement satisfies

ψ(v)(x, u) = (φ(v)x, u + v) = (φ(u + v)φ(−u)x, u + v) = (X(u + v), u + v).

Here, we have used the fact that X(0) = φ(−u)x, which follows from X(u) =
φ(u)X(0) = x. �

It was already observed in Example 2.3.1 that along any given fiber of π,
there exists a point-wise orthonormal basis of Killing fields. This in turn implies
that the fibers are flat submanifolds of Rn+k. From the above description of the
action ψ, they can be viewed as generalized helices.

The soul argument no longer works of course for metric foliations, since one
has no global complete quotient space. Using different methods, it was shown in
[62] that they are also homogeneous, at least for leaves of dimension less than
three.

In [24], Boltner studies the so-called equidistant foliations of Euclidean space.
These are singular metric foliations in the sense that leaves need not share the same
dimension, but on the other hand, they are required to be imbedded submanifolds,
and furthermore globally equidistant; i.e., the distance function from a fixed leaf
is constant when restricted to a leaf. The latter condition guarantees that the
space B of leaves inherits a metric space structure, and is in fact an Alexandrov
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space of nonnegative curvature as defined for example in [29], with the projection
Rn+k → B a submetry. Just as in the fibration case, B is shown to have a one-
point set that is totally convex, the preimage of which is an affine subspace. The
foliation is not, however, necessarily homogeneous.

4.3 Metric foliations of spheres

We now consider a k-dimensional metric foliation F of the Euclidean sphere M =
Sn+k. All local results and most global ones actually hold on any complete space
form of positive curvature, since such a folation can be lifted to the universal cover.
Nevertheless, we shall assume for the sake of simplicity that M is a sphere.

According to Theorem 1.8.1, there is a single dual leaf, so that the dual
distribution at any point consists of the whole tangent space. This suggests that
the A-tensor is highly nontrivial. We begin with the following

Lemma 4.3.1. If x is a nonzero horizontal vector, then A∗
xu �= 0 for any eigenvector

u of Sx.

Proof. If not, then the holonomy field J along t 	→ γx(t) := exp(tx) that equals
u when t = 0 satisfies J ′(0) = −SxJ(0) − A∗

xJ(0) = −λJ(0) for some scalar λ.
Then J = (cos−λ sin)E, where E is the parallel field along γx with E(0) = u.
This contradicts the fact that J can never vanish. �

As a consequence, the A-tensor cannot vanish at any single point of M .

Definition 4.3.1. F is said to be substantial along a leaf L if there exists a normal
vector x ∈ Hp at some p ∈ L such that Ax : Hp → Vp is onto, or equivalently, if
A∗

x is one-to-one.

Of course, if A∗
x is one-to-one, then it remains so for all x in an open dense

subset of Hp. Furthermore, this condition is independent of the point p in L, since
AXY has constant norm along L for basic X , Y by O’Neill’s curvature formula.
Now, Theorem 1.5.1 implies in our present context that

(∇v
z A)xy = SzAxy − SyAzx − SxAyz, x, y, z ∈ H. (4.3.1)

In particular, if x = z = ċ(t) is the tangent field of a horizontal geodesic c, and Y
is horizontally parallel along c, then

(AċY )′v = 2SċAċY,

so that the kernel of Aċ is horizontally parallel, and Aċ has constant rank. Thus,
if F is substantial along a leaf L, then it remains so along all leaves in an open,
dense subset of M .

Proposition 4.3.1. If k ≤ 3, then F is substantial everywhere.
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Proof. Although the argument requires considering several cases (and is therefore
fairly long), it always relies in an essential way on Lemma 4.3.1. Let p ∈ M , L
the leaf through p. We may assume that Sx �= 0 for any nonzero x, for otherwise
the claim follows from Lemma 4.3.1. Thus, the linear map x 	→ Sx from Hp to
the space of self-adjoint endomorphisms of Vp is one-to-one, and in particular,
n ≤ k(k + 1)/2. On the other hand, n + k must be odd – the tangent bundle of
an even-dimensional sphere admits no proper subbundles – so the only remaining
possibilities are (k, n) equaling (2,3), (3,6), (3,4), (2,1), or (3,2). In the first three
cases, where n ≥ k, consider, for u ∈ Vp = Rk, the skew-adjoint endomorphism
Au of Hp = Rn given by Aux = A∗

xu for x ∈ Rn. We claim that for any nonzero u,

rankAu > n − k. (4.3.2)

In particular, Au is nonzero if u �= 0, so that

dimE = k, E = {Au | u ∈ Rk}. (4.3.3)

Thus, Vp = Rk is spanned by all Axy, x, y ∈ Hp. To see why (4.3.2) holds, assume
to the contrary that Av has rank ≤ n − k for some nonzero v ∈ Vp; then Av

has nullity ≥ k, and the space Wv = {Sx | x ∈ kerAv} has dimension at least
k by Lemma 4.3.1 again. But Wv must then intersect the space of self-adjoint
endomorphisms of Vp that have v as eigenvector, since the latter, as a subspace
of the space of all self-adjoint endomorphisms, has codimension k − 1. In other
words, there exists a nonzero x such that v is an eigenvector of Sx and A∗

xv = 0,
contradicting Lemma 4.3.1.

An equivalent way of saying that F is substantial along L is that there exists
a vector x ∈ Hp that is not annihilated by any nonzero element of E from (4.3.3);
i.e., Aux �= 0 for any nonzero u ∈ Vp. The case (k, n) = (2, 3) then follows, since a
two-dimensional space E of skew-adjoint endomorphisms of R3 cannot annihilate
all of R3. Although this can easily be argued directly, we will prove it instead in
the setting that will be used in the other cases: consider the real projective space
RP 2 of the three-dimensional vector space o(3) of all skew-adjoint endomorphisms
of R3; since any nonzero element of o(3) has nullity 1, the subset Ē of RP 2 × R3

consisting of all ([α], u), where α ∈ E \ {0} and u ∈ kerα, is a smooth line bundle
over a curve in RP 2. The projection π2 : Ē → R3 onto the second factor has
as image the set of points in R3 annihilated by E, and the latter has therefore
measure zero.

Next, let k = 3 and n = 6. By (4.3.2), any nonzero α ∈ E has nullity at most
2; thus, any given α is either invertible or has two-dimensional kernel. If no α is
invertible, then as above, the subset Ē of RP 5 × R6 consisting of all pairs ([α], u)
with α ∈ E \{0} and u ∈ kerα is a plane bundle over a two-dimensional projective
space, and E cannot annihilate a set of dimension greater than 4. So assume
some α ∈ E is invertible. Recall the canonical isomorphism Λ2(R2n) ∼= o(2n)
that maps u∧v to the skew-adjoint transformation w 	→ 〈v, w〉u−〈u, w〉v, and let
ᾱ ∈ Λ2(R2n) denote the bivector associated to α ∈ o(2n). Notice that α is singular
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iff f(α) = 0, where f is the Pfaffian, f(α) = �ᾱn/n. Thus, f(α) is a homogeneous
cubic polynomial in the components of α relative to any given basis of E, and the
annihilating set f−1(0) is a cone over a manifold of dimension ≤ 1. The set Ē
above is then a plane bundle over this manifold, and cannot annihilate all of R6.

We next consider the case k = 3 and n = 4. If the Pfaffian is not identically
zero, then the claim follows as above, so we only need to show that f cannot be
trivial. In that situation,

0 = 2f(α) = �ᾱ ∧ ᾱ, α ∈ E,

(i.e., ᾱ is decomposable), and by polarization, ᾱ∧β̄ = 0 for any α, β ∈ E. Consider
a basis αi of E, 1 ≤ i ≤ 3. Since ᾱ1 ∧ ᾱ2 = 0, they share a common factor, and
we may write

ᾱ1 = ε0 ∧ ε1, ᾱ2 = ε0 ∧ ε2

for some independent one-forms ε0, ε1, ε2 on R4. Now, ᾱ3 may or may not lie in
the span of εi∧ εj , 0 ≤ i < j ≤ 2. In the former case, consider any ε3 that does not
belong to the span of εi, 0 ≤ i ≤ 2. If ei denotes the basis dual to εi, then all of
E annihilates e3, which contradicts Lemma 4.3.1. In the latter case, ᾱ3 = β ∧ ε3,
and since it shares a common factor with α1 and α2,

ᾱ3 = (s0ε0 + s1ε1) ∧ ε3 = (t0ε0 + t2ε2) ∧ ε3.

It follows that s0 = t0, and s1 = t2 = 0; i.e., ᾱ3 is a multiple of ε0 ∧ ε3, and no
nonzero element of E annihilates the vector e0 of the dual basis.

Finally, the last two cases cannot occur by [90] (cf. also [91]), where Molino
provides a classification of Riemannian foliations of codimension k ≤ 3 on com-
pact, simply connected manifolds. In our situation, this also follows by a direct
argument: the case (k, n) = (2, 1) may be ruled out since otherwise A ≡ 0, con-
tradicting Lemma 4.3.1. Next, consider k = 3, n = 2. At any point, the image of
the A-tensor is one-dimensional, and the claim again follows from Lemma 4.3.1,
if we can establish that for some nonzero x, Sx has an eigenvector orthogonal to
that image; i.e., if given any two-dimensional subspace E of self-adjoint endomor-
phisms of R3 and any plane P through 0 in R3, some element in E∗ = E \ {0}
has an eigenvector in P . We will argue this by contradiction: if not, then each
element of E∗ has three distinct eigenvalues, thus defining continuous functions
λi : E∗ → R with λ1 < λ2 < λ3. Similarly, we can find continuous unit eigen-
vector fields Xi : E∗ → R3 \ {0}, SXi(S) = λi(S)Xi(S) for S ∈ E∗, with image
contained in one of the two open half-spaces with boundary P . But −S has eigen-
values −λ1(S) > −λ2(S) > −λ3(S), so that X1(−S) = X3(S), X2(−S) = X2(S),
and X3(−S) = X1(S). Thus, X1 ∧ X2 ∧ X3(−S) = −X1 ∧ X2 ∧ X3(S), which is
impossible since E∗ is connected. �

From now on, we assume, unless otherwise specified, that the leaf dimension
k is no larger than 3. Let U denote a connected open set such that the restriction



152 Chapter 4. Metric Foliations in Space Forms

F|U is given by the fibers of a Riemannian submersion π : U → B, and consider the
space A of integrability fields spanned by all AXY on U where X , Y are elements
of the space B of basic fields on U . Our next endeavor is to show that A is a Lie
algebra. Notice first that by Proposition 1.5.1,

π∗A∗
XAXY =

1
3
(
π∗R(X, Y )X − RB(π∗X, π∗Y )π∗X

)
,

so that A∗
XAXY ∈ B if X , Y ∈ B, and thus,

T 〈AXY, AXZ〉 = 0, T vertical, X, Y, Z ∈ B. (4.3.4)

Lemma 4.3.2. If X, Y ∈ B, then SXAXY ∈ A.

Proof. (4.3.1) implies

2〈SXAXY, AXY 〉 =
1
2
X |AXY |2 − 〈AX∇h

XY, AXY 〉 − 〈AY ∇XX, AY X〉,

which is constant along leaves by (4.3.4), since TX = XT − [T, X ], and [T, X ] is
vertical. By polarization,

T 〈SXAXY, AXZ〉 = 0, T vertical, X, Y, Z ∈ B. (4.3.5)

Consider a leaf L in U . Since F is substantial, we may assume that AX is onto
L. Using (4.3.4) and (4.3.5), we can find Y1, . . . , Yk ∈ B such that AXYi|L is
an orthonormal frame of eigenvector fields of SX with constant eigenvalues λi

along L. Then for any basic Y , the restriction AXY|L is a constant linear com-
bination

∑
i αiAXYi, with αi = 〈AXY, AXYi〉, and SXAXY = AXZ, where

Z =
∑

i αiλiYi ∈ B. Thus, SXAXY ∈ A. �
Proposition 4.3.2. A ⊕ B is a Lie algebra that contains A as an ideal.

Proof. For X , Y ∈ B, T ∈ A, the Jacobi identity implies

2[AXY, T ] =
[
[X, Y ]v, T

]
=
[
[X, Y ], T

]− [
[X, Y ]h, T

]
=
[
X, [Y, T ]

]− [
Y, [X, T ]

]− [
[X, Y ]h, T

]
,

and it remains to show that

[Y, T ] ∈ A, Y ∈ B, T ∈ A. (4.3.6)

Now, by (4.3.1),

[X, AXY ] = ∇v
XAXY + SXAXY = 3SXAXY + AX∇h

XY − AY ∇h
XX,

and using Lemma 4.3.2, we conclude that
[
X, [X, Y ]v

] ∈ A. Thus, by polarization,[
X, [Y, Z]v

]
+
[
Y, [X, Z]v

] ∈ A. (4.3.7)
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Furthermore, [
Y, [Z, X ]v

]
+
[
Y, [X, Z]v

]
= 0, (4.3.8)

and [
Z, [X, Y ]v

]
+
[
Y, [X, Z]v

]
= −[Z, [Y, X ]v

]− [
Y, [Z, X ]v

] ∈ A (4.3.9)

by (4.3.7). Adding (4.3.7) through (4.3.9) then implies(
�
[
X, [Y, Z]v

])
+ 3

[
Y, [X, Z]v

] ∈ A, (4.3.10)

where � denotes cyclic summation. Now,
[
X, [Y, Z]v

]
is vertical by the Jacobi

identity, so that

�
[
X, [Y, Z]v

]
=�

[
X, [Y, Z]

]− �
[
X, [Y, Z]h

]
= − �

[
X, [Y, Z]h

]v
= −2 � AX [Y, Z]h ∈ A,

which, together with (4.3.10), proves (4.3.6). �

It follows from Proposition 4.3.2 that the restriction AL of A to a leaf L in
U is a Lie algebra with dimension k ≤ dim AL ≤ (

n
2

)
. We now improve on this

estimate:

Lemma 4.3.3. 〈T1, T2〉 is constant along L for any Ti ∈ AL. In particular, AL has
dimension k.

Proof. It must be shown that 〈AZ1Z2, AZ3Z4〉 is constant along L for any Zi ∈
B. Since AX is onto VL for an open dense subset of basic fields X along L,
we may assume that the Zi belong to a subspace H of basic fields along L, of
dimension 3 ≤ dimH = m +1 ≤ 4, such that AX0 (H) = VL for some X0 ∈ H . By
(4.3.4), there exist linearly independent X1, . . . , Xm such that {AX0Xi | i ≤ k} is
an orthonormal basis of VL. Using skew-symmetry of A, it suffices to show that
〈AXiXj , AX0Xl〉 is constant for 0 ≤ i < j ≤ m, 1 ≤ l ≤ k. Now, by (4.3.4), this is
true if i = 0, or i = l, or j = l. The other cases then follow from (4.3.4) together
with the fact that AXiXj has constant length: for example, when k = 3, then

〈AX1X2, AX0X3〉2 = |AX1X2|2 − 〈AX1X2, AX0X1〉2 − 〈AX1X2, AX0X2〉2

is constant. �

We are now in a position to prove the main result of this section. The ar-
gument will make use of the following classical theorem, a proof of which can be
found in [116]:

Theorem 4.3.1 (Fundamental theorem for submanifolds). Let Mi, i = 1, 2, denote
k-dimensional Riemannian submanifolds of the simply connected spaceform Qn+k

c

of constant curvature c, h : M1 → M2 an isometry. Let E(νi) denote the total
space of the normal bundle νi of Mi in Qc, and suppose there exists a linear
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bundle isometry H : E(ν1) → E(ν2) covering h, such that H preserves the normal
connections ∇h

i on νi and the second fundamental forms Si of Mi; i.e.,

∇h
2 T (HX) = H∇h

1 T X, h∗S1
XT = S2

HXh∗T

for any sections T and X of the tangent and normal bundle respectively of M1.
Then there exists an isometry h̃ of Qc such that h̃|M1 = h, and the restriction of
h̃∗ to E(ν1) equals H.

Theorem 4.3.2 (Gromoll-Grove, [56]). When k ≤ 3, any k-dimensional metric
foliation of the Euclidean sphere Sn+k is homogeneous; specifically, it is the orbit
foliation of a connected k-dimensional Lie subgroup of SO(n + k + 1).

Proof. Consider a point p in the sphere, and the leaf L containing it. We begin by
constructing a group of local isometries of L near p. These will then be extended
to the whole ambient space. Denote by G the local Lie group of diffeomorphisms
of some neighborhood of p in L generated by the flows of vector fields in AL. There
are neighborhoods U of e in G and V of p in L such that ıp : U → V , ıp(g) := g(p),
is a diffeomorphism. According to the discussion in Section 2.3, a vector field on
V belongs to AL iff it is ıp-related to a right invariant vector field of G. Denote
by KL the algebra of vector fields on V that are ıp-related to left invariant vector
fields of G; i.e.,

KL = {T ∈ X(M) | T = ıp∗X ◦ ı−1
p , X ∈ g}.

Since left and right invariant fields commute, [AL, KL] = 0. This implies that KL

is an algebra of Killing fields: in fact, since AL contains a point-wise orthonormal
basis of the vertical space, it suffices to check that the transformation T 	→ ∇T X ,
X ∈ KL, is skew-adjoint on these basis elements. But this is clear, since

〈∇T X, T 〉 = 〈∇XT, T 〉 =
1
2
X〈T, T 〉 = 0, T ∈ AL.

We next extend the isometries of V ⊂ L generated by KL to (unique) leaf-
preserving isometries of an open set in the sphere. Using the fact that a local
Killing field has a unique global extension, the theorem then clearly follows. So
consider such a local isometry φ, and extend it to a linear isometry Φ of the normal
bundle of L near p by defining

ΦX := X ◦ φ, X ∈ B.

We claim that Φ preserves the normal connection: if T ∈ A and X ∈ B, then
∇h

T X = −A∗
XT is basic by Lemma 4.3.3, and φ∗T = T ◦φ because the algebras A

and KL commute. Thus,

Φ(∇h
T X) = (∇h

T X) ◦ φ = ∇h
T◦φX = ∇h

φ∗T X = ∇h
T (X ◦ φ) = ∇h

T (ΦX).

In the same way, Φ preserves the second fundamental form: Lemmas 4.3.2 and
4.3.3 imply that SXA ⊂ A, so that

φ∗SXT = (SXT ) ◦ φ = SX◦φ(T ◦ φ) = SΦXφ∗T.
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The fundamental theorem for submanifolds then implies that φ extends to an
isometry of a tubular neighborhood of V in the ambient space. Since this isometry
must then locally be given by expV ◦Φ◦exp−1

V , where expV is the exponential map
of the normal bundle of V , it preserves leaves. �

Little is known at present concerning metric foliations of spheres with higher-
dimensional leaves. One remarkable fact is that when k > 1, they are always
generalized Seifert fibrations, in the sense that all leaves are compact [52]. The
latter are fairly similar to actual fibrations, at least from a homotopical point of
view [75].

We end the section with a brief description of the foliations that can occur
in Theorem 4.3.2. If k = 1, then F is the orbit foliation of a one-dimensional
Lie subgroup G of SO(n + 2), and is therefore determined by a homomorphism
φ : R → SO(n + 2), φ(t) = etM , where M = φ̇(0) ∈ o(n + 2). The skew-symmetric
matrix M is similar, via an orthogonal matrix, to a block matrix of the form

diag{iλ1, . . . , iλs, 0 . . . , 0} :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −λ1

λ1 0
. . .

0 −λs

λs 0
0

. . .
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where 0 < λ1 ≤ · · · ≤ λs. Since the action is free, M must actually have the form
diag{iλ1, . . . , iλs}, and n is even, with s = 1+(n/2). Normalize M so that λs = 1.
Then, up to congruence, G is a direct sum of rotations

diag{eiλ1t, eiλ2t, . . . , eit}, 0 < λ1 ≤ λ2 ≤ · · · ≤ 1.

Notice there are always at least s compact leaves that are totally geodesic circles,
namely the orbits of the odd standard basis vectors e1, e3, . . . , en+1. All leaves are
compact iff each λj is rational. Among these foliations, only one is a fibration,
namely the Hopf fibration, corresponding to λj = 1 for all j.

Next, consider the case k = 2. Since the only two-dimensional subgroups
of an orthogonal group are abelian, there can be no metric foliations of this di-
mension: for otherwise, there would exist independent M , N in the Lie algebra of
G with vanishing bracket. Then M and N would share a common basis of com-
plex eigenvectors, and such a vector would have the same orbit under the actions
t 	→ etM , t 	→ etN , implying the action is not free. This also shows, incidentally,
that there are no free O(k)-actions on spheres if k > 3, since the orthogonal Lie
algebra is then no longer simple, and contains linearly independent commuting
vectors.
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When k = 3, the last argument implies that G has SU(2) as universal cover.
The classification in this case is obtained via representation theory, and we will
limit ourselves to merely stating the result. The interested reader should consult
[56] and [27] for further details. Let Vn denote the complex vector space of homo-
geneous polynomials p of degree n in two complex variables z1, z2,

p(z1, z2) =
n∑

k=0

akzk
1zn−k

2 ,

and define an action ρn of SU(2) on Vn by setting

(gp)(z) = p(zg), g ∈ SU(2), p ∈ Vn, z = (z1, z2),

with zg denoting matrix multiplication. Notice that ρ1 is just the standard action
of SU(2) on V1

∼= C2. The main result is that three-dimensional foliations of
Sn+3 exist precisely when n = 4l, and any such foliation is given by a direct
sum ρn1 ⊕ · · · ⊕ ρns of irreducible representations of SU(2), with nj odd for all j,
1 ≤ n1 ≤ · · · ≤ ns, and n1 + · · ·+ ns = 2((n/4) + 1)− s. Here again, only one is a
fibration, namely the Hopf fibration with n1 = · · · = ns = 1.

As far as metric fibrations of spheres are concerned, it follows from [28] that
the fiber must be a homotopy sphere of dimension one, three, or seven. The first
two cases are covered in Theorem 4.3.2, and the last one was solved by Wilking
in [139], using Morse theoretical methods:

Theorem 4.3.3 (Gromoll-Grove, Wilking). Any Riemannian submersion Sn+k →
Mn of a Euclidean sphere is congruent to a Hopf fibration.

In the special case of totally geodesic fibers, this result is due to Escobales
[46] and Ranjan [107]. The extra assumption is quite strong, of course, and it is
easy to see directly that in this case, M must be a rank one symmetric space:
consider a point p in M . Local geodesic reflection in p of a curve c can be obtained
by horizontally lifting that curve to the sphere, reflecting it in the fiber over p, and
projecting back onto M . The first two steps preserve the length of c since the fiber
is totally geodesic, so that geodesic reflection in M is distance non-increasing. It
must then be an isometry, because its square is the identity. Thus, M is locally
symmetric. If the fiber of π is connected, then M is simply connected, and hence
globally symmetric. The rank statement follows from the fact that M has positive
curvature by O’Neill’s formula.

The discussion of foliations in space forms carried out in the last two sections
raises several new questions: it would for example be interesting to determine how
much of the rigidity that is apparent in constant nonnegative curvature carries
over to more general manifolds, such as symmetric spaces. Most of the few known
results deal with one-dimensional metric foliations: they have been shown to be
homogeneous if the ambient space is a compact Lie group [94] with bi-invariant
metric or S2 × R with the standard product metric [61]. The methods used in
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each case are specific to the situation at hand and do not easily generalize. In
a related but slightly different direction, it is known that the same result holds
for the Heisenberg group [95]; there are, however, noncompact Lie groups with
left invariant metrics that admit one-dimensional metric foliations which are not
homogeneous [135].

4.4 Geometry of the tangent bundle

In order to discuss metric foliations on a compact space form M of nonpositive
curvature, some properties of the geodesic flow on the tangent bundle of M will
be needed. The reader familiar with these concepts may skip this section without
loss of continuity, and the one who wishes to study them in more detail is referred
to [102] or [106].

Denote by π : TM −→ M and π̃ : T ∗M −→ M the bundle projections.

Definition 4.4.1. The fundamental 1-form θ on the co-tangent bundle T ∗M is given
by θ(α) = π̃∗α, for α ∈ T ∗M .

Thus, for ξ ∈ (T ∗M)α, θ(α)(ξ) = α(π̃∗αξ).
The Levi-Civita connection H of a Riemannian manifold M induces a bundle

homomorphism K : TTM −→ TM over π : TM −→ M , called the connection
map, defined as follows: a vector ξ ∈ TTM decomposes as ξh + ξv ∈ H ⊕ V ,
where V = kerπ∗ and H = kerK. For p ∈ M , u ∈ Mp, and Vu = ı∗u(Mp), with
ı : Mp ↪→ TM denoting inclusion, denote by Ju : Mp −→ (Mp)u the isomorphism
given by Juw = γ̇(0), γ(t) = u + tw. Then

Kξ = (ı∗ ◦ Ju)−1ξv. (4.4.1)

Alternatively, for a vector field X on M and u ∈ TM ,

∇uX = KX∗u. (4.4.2)

Since the restrictions π∗ : Hu −→ Mπ(u) and K : Vu −→ Mπ(u) are both isomor-
phisms, the map

(π∗, K) : TTM −→ TM ⊕ TM

is a bundle isomorphism over π : TM −→ M . In fact, its inverse I : TM ⊕
TM −→ TTM is described as follows: for u ∈ TM , w, z ∈ Mπ(u), consider a curve
γ : I → M with γ̇(0) = z. If Z denotes the parallel field along γ with Z(0) = u
(i.e., Z is the horizontal lift to TM of γ starting at u), then

I(z, w) = Ż(0) + ı∗Juw.

We will routinely identify (TM)u with Mπ(u)×Mπ(u) via the isomorphism (π∗, K).
The Sasaki metric 〈〈, 〉〉 on the manifold TM is that metric for which (π∗, K)
becomes a linear isometry. It is a connection metric in the sense of Proposition
2.7.1.
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Recall that a vector field S on TM is called a spray on M if π∗ ◦ S = 1TM

and S ◦μa = aμa∗S, where μa denotes multiplication by a ∈ R. The geodesic spray
S is the unique horizontal spray on M ; i.e., S(u) = (u, 0), u ∈ TM . The integral
curves of S are precisely the velocity fields γ̇ : I −→ TM of geodesics γ : I −→ M
of M .

We shall denote by � : TM −→ T ∗M , �(u) = 〈u, ·〉, and �̃ : TTM −→ T ∗TM
the musical isomorphisms induced by the metrics on M and TM respectively. The
cotangent vector �(u) is often written as u�. The next proposition says that the
geodesic spray is essentially the metric dual of the fundamental 1-form on T ∗M :

Proposition 4.4.1. S �̃ = �∗θ.

Proof. Let u ∈ TM , ξ ∈ (TM)u. Since π̃ ◦ � = π and S is horizontal,

�∗θ(ξ) = θ(�∗ξ) = u�(π̃∗ ◦ �∗ξ) = u�(π∗ξ) = 〈u, π∗ξ〉 = 〈π∗S(u), π∗ξ〉
= 〈〈S(u), ξ〉〉. �

Define a complex structure J on TTM by setting J(u, w) = (−w, u); equiv-
alently,

π∗J = −K, KJ = π∗. (4.4.3)

Then the 2-form Ω, where
Ω(ξ, η) := 〈〈Jξ, η〉〉,

is a symplectic (i.e., nondegenerate) 2-form on TM , and if n is the dimension of
M , then Ωn equals (−1)[n/2]n! times the Sasaki metric volume element. On the
other hand, −dθ is also a symplectic form, but one on T ∗M rather than TM . The
relation between the two is given by the following:

Proposition 4.4.2. Ω = −d(b∗θ); i.e., Ω is the metric pullback of the canonical
symplectic form −dθ on T ∗M .

Proof. Viewing the identity map 1TM on TM as a vector field on M along π :
TM −→ M , we have

∇X(1TM ) = K(1TM)∗X = KX, X ∈ XTM.

Thus, if Y is another vector field on TM , then

−d(�∗θ)(X, Y ) = −X〈π∗S, π∗Y 〉 + Y 〈π∗S, π∗X〉 + 〈π∗S, π∗[X, Y ]〉
= −〈∇X(1TM ), π∗Y 〉 − 〈1TM ,∇Xπ∗Y 〉 + 〈∇Y (1TM), π∗X〉

+ 〈1TM ,∇Y π∗X〉 + 〈1TM , π∗[X, Y ]〉
= −〈KX, π∗Y 〉 + 〈KY, π∗X〉 = 〈π∗JX, π∗Y 〉 + 〈KJX, KY 〉
= 〈〈JX, Y 〉〉,

where we used (4.4.3) in the equality before last. �
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Proposition 4.4.3. If h : TM −→ R denotes the energy function, h(u) = (1/2)|u|2,
then iSΩ = dh.

Proof. S is horizontal for the submersion π : TM −→ M , and if γ is an integral
curve of S, then π◦γ is a geodesic of M . Thus, γ is a geodesic of the Sasaki metric,
and S is an auto-parallel vector field. Given a vector field X on TM ,

iSΩ(X) = −d(�∗θ)(S, X) = −S〈〈S, X〉〉 + X〈〈S, S〉〉 + 〈〈S, [S, X ]〉〉
= −〈〈S,∇SX − [S, X ]〉〉 + X〈〈S, S〉〉 = −〈〈S,∇XS〉〉 + X〈〈S, S〉〉
=

1
2
X〈〈S, S〉〉 = X(h),

since 〈〈S, S〉〉(u) = 〈π∗S, π∗S〉(u) = 〈u, u〉. �

Proposition 4.4.3 says that the geodesic spray is the Hamiltonian vector field
of the energy function with respect to Ω.

Assume from now on that M is compact. Instead of working on TM , we shall
restrict ourselves to the unit tangent bundle T 1M = {u ∈ TM | |u| = 1}, which
has the advantage of being compact. We first describe the tangent space of this
manifold at a given point:

Proposition 4.4.4. If ı : T 1M ↪→ TM denotes the inclusion map, then for u ∈
T 1M ,

ı∗(T 1M)u = {ξ ∈ (TM)u | 〈Kξ, u〉 = 0} = J ◦ S(u)⊥.

Alternatively, under the isomorphism (π∗, K), ı∗(T 1M)u = (0, u)⊥. In particular,
there is a unique vector field on T 1M that is ı-related to S (it will be denoted by
S also).

Proof. Since T 1M is the pre-image of 1 under the energy function h, the space
ı∗(T 1M)u is the kernel of h∗u, which by Proposition 4.4.3 equals {ξ ∈ (TM)u |
Ω(S(u), ξ) = 0}. But Ω(S(u), ξ) = 〈〈JS(u), ξ〉〉 = 〈Kξ, u〉 by (4.4.3). �

We will denote by σ the restriction ı∗�∗θ to T 1M of the 1-form �∗θ on TM .
By Proposition 4.4.1, σ is the metric dual of the geodesic spray S on T 1M . Since
the volume form of TM is

ω̄ =
(−1)
n!

[n/2]

Ωn =
(−1)
n!

n+[n/2]

d(�∗θ)n,

the volume form of T 1M is

ω = iJSı∗ω̄ =
(−1)
n!

n+[n/2]

iJSdσn,

with iJS denoting interior multiplication by JS. But iJSdσn = n(iJSdσ)∧(dσ)n−1,
and for X ∈ XT 1M ,

iJSdσ(X) = −Ω(JS, X) = −〈〈J2S, X〉〉 = 〈〈S, X〉〉 = σ(X).
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Thus,

ω =
(−1)n+[n/2]

(n − 1)!
σ ∧ (dσ)n−1. (4.4.4)

A 1-form α on an odd-dimensional manifold M2n−1 is said to be a contact form if
α ∧ (dα)n−1 is nowhere zero. (4.4.4) implies that the metric dual of the geodesic
spray is a contact form on the unit tangent bundle.

Since T 1M is compact, S is complete, and its flow is a one parameter group
{φt}t∈R of diffeomorphisms, called the geodesic flow of M . The volume form ω has
finite integral over T 1M , and thus induces a probability measure on that space,
called the Liouville measure.

Proposition 4.4.5. The geodesic flow is measure-preserving; i.e., given A ⊂ T 1M ,
the volume of φt(A) is constant, t ∈ R.

Proof. The statement follows once we establish that LSω = 0, or using (4.4.4), that
LSσ = 0. Now, LSσ = iSdσ + diSσ = iSdσ, because iSσ ≡ 1. Given X ∈ XT 1M ,
iSdσ(X) = −Ω(S, X) = −〈〈JS, X〉〉 = 0, since JS is orthogonal to T 1M . �
Proposition 4.4.6. Given v ∈ T 1M and (u, w) ∈ (T 1M)v, φt∗(u, w) = (J(t), J ′(t)),
where J is the Jacobi field along the geodesic t 	→ exp(tv) with J(0) = u, J ′(0) = w.

Proof. Recall that for v ∈ TM , φt(v) = ċv(t), where cv(t) = exp(tv). Consider a
curve γ : I −→ T 1M with γ(0) = v, γ̇(0) = (u, w). Then

(t, s) 	→ V (t, s) := π ◦ φt ◦ γ(s) = exp(tγ(s))

is a variation by geodesics of cv. The corresponding Jacobi field t 	→ J(t) =
V∗D2(t, 0) is given by

J(t) = π∗ ◦ φt∗γ̇(0) = π∗ ◦ φt∗(u, w),

and
J ′(t) = ∇D1(t,0)V∗D2 = ∇D2(t,0)V∗D1.

But V∗D1(t, s) = φt(γ(s)), so

J ′(t) = ∇D(0)(φt ◦ γ) = K(φt ◦ γ)∗D(0) = K ◦ φt∗(u, w),

as claimed. �

We end this section with two ergodic theorems that hold on measure spaces
with a measure-preserving transformation, see [130]. In our context, with the trans-
formation being the geodesic flow, they can be stated as follows:

Theorem 4.4.1. Let A be a submanifold of the unit tangent bundle of M that is
measure-invariant under the geodesic flow.

1. (Oseledets) For almost every v ∈ A, there exists a direct sum decomposition
of the tangent space

Av = V s(v) ⊕ V u(v) ⊕ V 0(v)
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of A at v, where for ξ �= 0,

ξ ∈ V s(v) iff lim
t→±∞

1
t

ln |φt∗ξ| < 0,

ξ ∈ V u(v) iff lim
t→±∞

1
t

ln |φt∗ξ| > 0,

ξ ∈ V 0(v) iff lim
t→±∞

1
t

ln |φt∗ξ| = 0.

2. (Birkhoff) If f : A −→ R is integrable, then for a.e. u ∈ A,

f̃(u) := lim
t→∞

1
t

∫ t

0

f(φsu)ds exists, and
∫

A

fω =
∫

A

f̃ω.

4.5 Compact space forms of nonpositive curvature

Although at the time of writing there does not seem to be a classification of
metric foliations in space forms of curvature κ ≤ 0, we will see that there are
severe restrictions, at least in the compact case, cf. [81], [133]. The main tools
used in the argument are the ergodic theorems introduced in the last section. So
let M be a compact space of constant curvature κ ≤ 0, and F a metric foliation
on M . We begin by identifying the tangent space Hx of the horizontal bundle H
at x ∈ H. Notice that if H1 denotes the unit horizontal bundle, then for x ∈ H1,
H1

x = Hx ∩ (0, x)⊥ by Proposition 4.4.4.

Lemma 4.5.1. Hx = {(e, f) ∈ Mπ(x) × Mπ(x) | f ∈ Aehx − Sxev + H}.

Proof. Both spaces have the same dimension 2n−k, so we only need to show that
Hx is contained in the space on the right. Consider ξ = (e, f) ∈ Hx and a curve
Z in H with Ż(0) = ξ. If c := π ◦Z, p := c(0), then 〈Z, U ◦ c〉 ≡ 0 for any vertical
field U , so that

0 = 〈Z, U ◦ c〉′(0) = 〈Z ′, U ◦ c〉(0) + 〈Z, (U ◦ c)′〉(0)
= 〈Kξ, U(p)〉 + 〈x,∇πξ

U〉 = 〈f, U(p)〉 + 〈x,∇eU〉
= 〈fv, U(p)〉 + 〈x,∇ehU〉 + 〈x,∇evU〉
= 〈fv, U(p)〉 − 〈Aehx, U(p)〉 + 〈Sxev, U(p)〉.

Thus, fv = Aehx − Sxev, as claimed. �

Consider H1 as a Riemannian submanifold of T 1M , where T 1M is endowed
with the Sasaki metric, and observe that H1 is invariant under the geodesic flow,
since a geodesic that starts out horizontally remains so.

Proposition 4.5.1. The geodesic flow {φt} is measure-preserving on H1.
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Proof. Given x ∈ H1 and ξ ∈ H1
x, denote by Yξ the Jacobi field along the

geodesic t 	→ exp(tx) with Yξ(0) = π∗ξ, Y ′(0) = Kξ. By Proposition 4.4.6,
φt∗ξ = (Yξ(t), Y ′

ξ (t)), after the usual identification of TTM with TM ⊕ TM via
(π∗, K).

Consider first the negative curvature case, which we normalize so that κ =
−1. Then Yξ(t) = etE1(t)+e−tE2(t) for some parallel fields Ei, and given η ∈ H1

x,
we have

〈φ∗tξ, φ∗tη〉 =
2∑

k=−2

akekt (4.5.1)

for some constants ak. But if ω is the volume element of H1 and ξi is a basis of
H1

x, then
φ∗

t ω(ξ1, . . . , ξ2n−k−1) = (det〈φt∗ξi, φt∗ξj〉)1/2 (4.5.2)

must be constant by (4.5.1) and compactness of H1.
The flat case is similar: Jacobi fields now have the form t 	→ E1(t) + tE2(t),

so that (4.5.2) becomes the square root of a polynomial in t. Compactness of H1

then forces it to be constant. �
Theorem 4.5.1. Let M be a compact space form of curvature κ ≤ 0. If κ < 0, then
M admits no metric foliations. If κ = 0, then any such foliation splits; i.e., it is
locally congruent to a metric product foliation.

Proof. We will show that the foliation is flat (and in particular, its orthogonal
complement is a totally geodesic foliation). In negative curvature, the statement
follows from the fact that compact manifolds of negative curvature admit no totally
geodesic foliations [128], and in the flat case, from Theorem 2.2.2.

In the hyperbolic case, consider a point x ∈ H1 where the decomposition
stated in Oseledets’ ergodic theorem holds, so that H1

x = V s(x)⊕ V u(x)⊕ V 0(x).
We claim that

V u(x) ⊂ Δ = {(e, e) | e ∈ Mπ(x)},
V s(x) ⊂ Δ∗ = {(e,−e) | e ∈ Mπ(x)}.

(4.5.3)

The arguments are similar in both instances, and we only prove the latter. Denote
by pu : H1

x −→ V u(x) the projection. As pointed out earlier, if ξ = (u, v) ∈ H1
x,

then Yξ(t) = etE1(t) + e−tE2(t), with Ei parallel, E1(0) = (u + v)/2, E2(0) =
(u − v)/2. Then

ln |φt∗ξ| = ln
(|Yξ|2 + |Y ′

ξ |2
)1/2

(t) = ln
√

2 +
1
2

ln
[
e2t|E1|2 + e−2t|E2|2

]
.

Notice that if E1 �= 0, then (ln |φ∗tξ|)/t → 1 as t → ∞, so that puξ �= 0. In other
words, if ξ ∈ V s(x), then E1 = 0, and v = −u as claimed.

Now, consider any horizontal 0 �= y ⊥ x. By Lemma 4.5.1, (0, y) ∈ H1
x, and

since V 0(x) is spanned by (0, x), (0, y) = (e, e)+(f,−f) ∈ V u(x)⊕V s(x) for some
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e, f . But then −f = e = y/2, from which we conclude that (y, y) ∈ H1
x. Again by

the lemma, Ayx = 0. Thus, Ax = 0 for almost every x, and by continuity, F is
flat.

In the zero curvature case, choose x ∈ H1 as in the statement of Birkhoff’s
ergodic theorem, with f : H1 → R given by f(z) := |A∗

z|2. The result will follow
once we show that if U is a unit vertical field along the geodesic c in direction x,
then (1/t)

∫ t

0 |A∗
ċU |2 → 0 as t → ∞. Assume first that U can be written as J/|J |

for some holonomy Jacobi field J along c. Since J = E + tF for parallel fields E,
F , we have

|A∗
ċU |2 ≤ |A∗

ċU |2 + |SċU |2 =
|J ′|2
|J |2 =

|F |2
|E|2 + 2t〈E, F 〉 + t2|F |2 ,

and the claim certainly holds in this case. In general, if Ji, i = 1, 2, are holonomy
fields with Ji(0) orthonormal eigenvectors of Sċ(0), then the angle �(J1(t), J2(t)) →
�(J ′

1(0), J ′
2(0)) as t → ∞ by linearity of Jacobi fields in Euclidean space. It follows

that there exists an orthonormal basis {ui} of eigenvectors of Sċ(0) such that if Ji

is the holonomy field with Ji(0) = ui, then the angle between any two Ji(t) and
Jk(t) lies in some fixed interval (α, β), for some 0 < α < β < π, and all t > 0.
This in turn implies that U equals a functional linear combination

∑
fi(Ji/|Ji|)

with bounded fi, and thus (1/t)
∫ t

0 |A∗
ċU |2 → 0. �

It should be noted that the argument above extends with only minor mod-
ifications to compact locally homogeneous manifolds of negative curvature. It is
therefore tempting to conjecture that there are no metric foliations on compact
manifolds of negative curvature, especially in light of the following result (see
[108]):

Theorem 4.5.2. A compact manifold M with negative Ricci curvature admits no
one-dimensional metric foliations.

Proof. We begin by computing the divergence of the mean curvature vector field
Z = ∇T T of F , where T is a (local) unit vertical field. Let p ∈ M , π : U → B a
submersion defining F in a neighborhood U of p, and X̄i local orthonormal fields
on B with ∇X̄i

X̄j(π(p)) = 0. Then the basic fields Xi on U that are π-related to
X̄i satisfy ∇h

Xi
Xj(p) = 0. Now,

div Z =
∑

i

〈∇Xi∇T T, Xi〉 + 〈∇T∇T T, T 〉. (4.5.4)

The second term on the right equals −|∇T T |2, whereas the first term may be
rewritten as

〈∇Xi∇T T, Xi〉 = Xi〈∇T T, Xi〉 − 〈∇T T,∇XiXi〉
= Xi〈∇T T, Xi〉 = Xi〈SXiT, T 〉
= 〈∇Xi(SXiT ), T 〉+ 〈SXiT,∇XiT 〉
= 〈(∇v

Xi
S
)
Xi

T, T 〉.
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Using (1.5.9), we obtain

〈∇Xi∇T T, Xi〉 = 〈R((T, Xi)Xi, T 〉 − |A∗
Xi

T |2 + |SXiT |2.

Substituting in (4.5.4) and noticing that |∇T T |2 =
∑

i |SXiT |2, we finally get

div Z = Ric(T ) − |A∗T |2, (4.5.5)

with |A∗T | denoting the norm of the operator x 	→ A∗
xT . The theorem now clearly

follows, since the divergence of Z integrates to zero over M . �

One further consequence of (4.5.5) is that if the sectional curvature of a
compact manifold M is nonpositive, then any one-dimensional metric foliation of
M splits: In fact, both the A-tensor and the vertizontal curvatures must vanish,
so that Theorem 2.2.2 applies.

In light of the above discussion, a negatively curved manifold M that admits
a one-dimensional metric foliation cannot be compact. So what does M look like,
topologically? If the curvature is a constant κ, then the answer is known: Namely,
when κ = 0, M must be isometric to R×Γ Rn−1, where Γ = π1(M) acts diagonally
by rigid motions. When κ < 0, M is diffeomorphic to R× (R×Γ Rn−2), with Γ as
above, and in particular, M admits a flat metric. For a proof, the reader is referred
to [10]. It should be noted, though, that this does not generalize to nonconstant
negative curvature. For example, let S denote any compact surface with genus
> 1, endowed with a hyperbolic metric, and let N denote the warped product
R ×et S. Define a function f : N → R by f(t, p) = et. Then the warped product
M = N×fR has negative curvature, and since the hypersurfaces N×{t} are totally
geodesic in M , their orthogonal complement are the leaves of a one-dimensional
metric foliation on M . M , however, is diffeomorphic to S × R2.
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de Bott (2008). ISBN 978-3-7643-8709-9

PM 266: Pigola, S. / Rigoli, M. / Setti, A.G.

Vanishing and Finiteness Results in Geometric
Analysis. In Memory of Alexander Reznikov
(2008). ISBN 978-3-7643-8641-2

PM 265: Kapranov, M. / Kolyada, S. /

Manin, Yu.I. / Moree, P. / Potyagailo, L. (Eds.)
Geometry and Dynamics of Groups and Spaces
(2007). ISBN 978-3-7643-8607-8

PM 264: Miró-Roig, R.M.
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