
Chapter 9

Splitting and gap theorems in the
presence of a Poincaré–Sobolev
inequality

9.1 Splitting theorems

Up to now, we have been using Theorem 4.5 to show that solutions of a differential
problem of the type {

ψ∆ψ + a (x)ψ2 ≥ −A |∇ψ|2 ,
ψ ≥ 0

have to be identically zero. The aim of this section is to present a geometrical
problem in which the second alternative of Theorem 4.5 does actually occur, that
is, ψ becomes a positive solution of the linear equation

∆ψ + a (x) ψ = 0.

We shall focus our attention on splitting-type theorems depending on spectral
and Ricci curvature bounds. To say that the complete manifold (M, 〈, 〉) splits
usually means that M is isometric to the Riemannian direct product(

N1 ×N2, (, )N1
+ (, )N2

)
for suitable complete Riemannian manifolds

(
Ni, (, )Ni

)
, i = 1, 2. Manifolds that

do not split are said to be irreducible. By way of example, the fundamental struc-
ture theorem by G. de Rham asserts that any complete, simply connected mani-
fold splits, according to its holonomy, into simply connected, geodesically complete
factors (Rn, can) ,

(
N2, (, )N2

)
, . . . ,

(
Nk, (, )Nk

)
; furthermore, the decomposition is

uniquely determined and the complete manifolds
(
Ni, (, )Ni

)
are irreducible. See,

e.g., [142].
Actually, the results we present in this section involve with a more general

notion of splitting which allows warped factors. Accordingly, we say that (M, 〈, 〉)
splits even if it is isometric to the warped product(

N1 ×N2, (, )N1
+ f2 (, )N2

)
where

(
Ni, (, )Ni

)
, i = 1, 2, are complete Riemannian manifolds and f ∈ C∞ (N1)

is a suitable positive function.
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Our purpose is to give a somewhat simplified proof of the following result
due to P. Li and J. Wang, [103]. It extends previous work by X. Wang, [161] on
the structure of conformally compact Einstein manifolds.

Theorem 9.1. Let (M, 〈, 〉) be a complete manifold of dimension m ≥ 3 satisfying

λ1 = λ1 (−∆M ) > 0.

Suppose also
MRic ≥ −

(
m− 1
m− 2

)
λ1. (9.1)

Then, either

(1) (M, 〈, 〉) has only one non-parabolic end,

or

(2) (M, 〈, 〉) splits as the warped product R× Σ with metric

〈, 〉 = dt2 + cosh2

(
t
√

λ1
m−2

)
(, ) (9.2)

where (Σ, (, )) is a compact, isometrically imbedded hypersurface of (M, 〈, 〉)
satisfying

ΣRic ≥ −λ1. (9.3)

Remark 9.2. According to Lemma 7.13 above, the presence of a Sobolev–Poin-
caré inequality implies that non-parabolic ends are precisely the infinite volume
ends.

The proof of Theorem 9.1 has its root in the classical splitting theorem by
J. Cheeger and D. Gromoll, [32]. This latter states that if a complete manifold
(M, 〈, 〉) of non-negative Ricci curvature contains a line, i.e., a minimizing geodesic
γ : R → M , then M splits as the Riemannian product R×N where N ⊂ M is a
totally geodesic hypersurface. Note that in the case where M has more than one
end, N is necessarily compact. The (very) original argument supplied by Cheeger-
Gromoll relies on the existence of a harmonic function u of distance-type, i.e.,
satisfying the condition |∇u| = 1. A substantial part of the proof is devoted
to showing that, under the assumptions of the theorem, the Busemann function
corresponding to (a half-line in) γ has the desired properties. Note that the integral
curves of the gradient vector field∇u are geodesic lines of M , so that, in particular,
∇u is complete. Moreover the level sets of u are smooth hypersurfaces with Gauss
map ∇u. Let N be such a level set. Using the flow φt of ∇u through N , one
establishes a smooth diffeomorphism between R×N and M . Finally, one observes
that φt is, in fact, a Riemannian isometry with respect to the product metric
on R × N . Indeed, obviously, (φt)∗

(
d
dt

)
= ∇u which is a unit vector field of M.
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Moreover, using the harmonic function u in the Weitzenbock formula and recalling
the refined Kato inequality yield

|Hess (u)|2 =
m

m− 1
|∇ |∇u||2 = 0,

i.e., ∇u is a parallel (hence a Killing) vector field, and N is totally geodesic. Thus,
by the very definition of Lie derivative, for every V, W ∈ TxM, it holds that

d

dt
〈(φt)∗ V, (φt)∗ W 〉 = 2Hess (u) ((φt)∗ V, (φt)∗ W ) = 0

showing that, obviously, φt is a one-parameter group of isometries of M . In par-
ticular, for any orthonormal basis e1, . . . , em−1 of TxN = 〈∇u (x)〉⊥ ⊂ TxM , the
tangent vectors (φt)∗ e1, . . . , (φt)∗ em−1 ∈ 〈∇u (φt (x))〉⊥ remain orthonormal in
Tφt(x)M. This completes the proof.

We note in passing that a differentiable splitting can be obtained by simply
assuming that there exists a smooth function u without critical points such that
|∇u| is constant on the level sets of u. Indeed, one considers the flow φt of the unit
vector field ∇u/|∇u|, which, by the assumption that |∇u| = α(u), moves level
sets of u onto level sets of u. Therefore, having chosen a level set Σo, the map
φ : R× Σo →M realizes the splitting.

A generalization of this kind of argument led, first M. Cai and G.J. Galloway,
[23], and later X. Wang, [161], and P. Li and J. Wang, [103], to obtain the following

Theorem 9.3. Let (M, 〈, 〉) be a complete manifold of dimension m ≥ 2 and Ricci
curvature satisfying

MRic ≥ −ρ

for some constant ρ > 0. Suppose that u ∈ C∞ (M) is a non-constant harmonic
function such that, setting

ψ = |∇u| ∈ Liploc (M) ,

it holds that
ψ∆ψ + ρψ2 =

1
m− 1

|∇ψ|2 on M, (9.4)

in the weak sense. Then, the level sets of u are smooth hypersurfaces, and (M, 〈, 〉)
splits as the warped product R× Σ0 with metric

〈 , 〉 = dt2 + w(t) ( , )

for a suitable level set Σ0 of u endowed with the inherited metric, and where

w(t) =

⎧⎨⎩C1 exp
(
t
√

ρ
m−1

)
+ C2 exp

(
−t

√
ρ

m−1

)
C1 + C2

⎫⎬⎭
2

, (9.5)
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for some non-negative constants C1 and C2 which are not both zero. Moreover, if
M has at least two ends, then Σ0 is compact and M has exactly two ends. If both
ends of M have infinite volume, we may chose Σ0 in such a way that

w(t) = cosh2
(
t
√

ρ
m−1

)
. (9.6)

If one end of M has finite volume, then, up to replacing t with −t, we have

w(t) = exp
(
2t
√

ρ
m−1

)
. (9.7)

Remark 9.4. Since here A = −1/(m − 1), according to Lemma 4.12, for every
p > (m− 2)/2(m− 1), we have ψp ∈W 1,2

loc (M) and

∇ψp = pψp−1∇ψ ∈ L2
loc. (9.8)

This fact will be crucial in the arguments below.

The proof of Theorem 9.3 is reached by means of two main steps: first, we
show a differential splitting of the original manifold and, next, the metric rigidity
of the differential decomposition.

We need to recall some facts of both topological and analytical nature. Al-
though they are quite simple, we provide a proof for the sake of completeness.

Lemma 9.5. Let Σ be a non-compact, connected manifold. Then, every compact
set [a, b]×K of R×Σ has a connected complement in R×Σ. In particular, R×Σ
has only one end.

Proof. Let Pj = (tj , xj) ∈ R × Σ − [a, b] × K, j = 1, 2. We show that there is a
continuous path γ in R × Σ − [a, b] ×K connecting P1 to P2. Roughly speaking,
γ is obtained by circumnavigating around [a, b]×K. Four possibilities can occur:
(i) t1, t2 ∈ [a, b] and x1, x2 /∈ K; (ii) x1, x2 ∈ K and t1, t2 /∈ [a, b]; (iii) up to
interchanging P1 with P2, t1 ∈ [a, b], x1 /∈ K and t2 /∈ [a, b] , x2 ∈ K; (iv)
t1, t2 /∈ [a, b] and x1, x2 /∈ K. We limit ourselves to consider case (i), the other
cases being similar and left to the reader. Fix t̄ /∈ [a, b] and define the paths
Γj (s) = (t̄s + tj (1− s)) × xj , j = 1, 2. Clearly, Γj (s) lies in the complement
of [a, b] × K and satisfies Γj (0) = Pj , Γj (1) = (t̄, xj). Next, observe that Σ is
connected and locally path connected, hence a path connected space. Choose a
path σ in Σ satisfying σ (0) = x1, σ (1) = x2 and define Γ3 (s) = t̄ × σ (s) .
Since Γ3 (s) ∈ R × Σ − [a, b] × K and Γ3 (0) = Γ1 (1), Γ3 (1) = Γ2 (1), we can
form a new path in R × Σ − [a, b] × K from γ (0) = P1 to γ (1) = P2 by setting
γ = Γ1 ∗Γ3 ∗Γ2, where ∗ means juxtaposition and Γ2 is nothing but Γ2 taken with
opposite orientation. �
Lemma 9.6. Let Σ be a closed connected submanifold of a connected Riemannian
manifold (M, 〈 , 〉). The normal exponential map exp⊥ : T⊥Σ →M , defined as the
restriction of exp to the normal bundle of Σ, is onto M .
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Proof. Since M is complete, given x ∈M , a standard compactness argument shows
that there exists xo ∈ Σ such that d(x, xo) = dist(x, Σ). Again by completeness of
M there exists a minimizing geodesic γ with γ(0) = xo, γ(1) = x and length(γ) =
d(x, xo). Since, exp⊥ is a local diffeomorphism of a neighborhood of the zero
section of T⊥Σ onto its image, and by Gauss’ lemma geodesics normal to Σ locally
minimize the distance from Σ, then γ′(0) ⊥ TxoΣ and by definition exp⊥(γ′(0)) =
γ(1) = x. �

Finally we shall need the following simple ODE result.

Lemma 9.7. Let ρ1 > 1, ρ2 > 0 and C1, C2 ≥ 0. Then, the solution of the differ-
ential equation

ββ′′ − ρ1 (β′)2 + ρ2β
2 = 0

is given by

β (t) =
{
C1 exp

(
t
√

ρ2 (ρ1 − 1)
)

+ C2 exp
(
−t

√
ρ2 (ρ1 − 1)

)}− 1
ρ1−1

.

We are now in a position to prove Theorem 9.3.

Proof of Theorem 9.3. For the sake of clarity, we divide the argument into several
steps.

Step 1. The function ψ = |∇u| satisfies ψ > 0 on M . In particular, ψ is smooth
and the level sets of u are smooth hypersurfaces of M with (Gauss map) unit
normal ∇u/ |∇u|.
Indeed, let

g = ψ
m−2
m−1 .

We insert the test function

(ψ + ε)−
m

m−1 λ, with λ ∈ Lipc(M)

in the weak formulation of (9.4), and perform a computation, similar to that
carried out in the proof of Theorem 4.5, to obtain∫

ψ− 1
m−1

( ψ

ψ + ε

) m
m−1 〈∇ψ,∇λ〉 =

∫
ρλψ2(ψ + ε)−

m
m−1

− m

m− 1

∫
λ
(
ψ− m

2(m−1) |∇ψ|
)2( ψ

ψ + ε

) m
m−1 ε

ψ + ε
.

Using (9.8) with p = 1 − m
2(m−1) we may let ε → 0 and apply the dominated

convergence theorem to deduce that the function g satisfies

∆g +
m− 2
m− 1

ρg = 0
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weakly on M . Thus, the desired positivity of ψ follows from a local Harnack
inequality (see, e.g., [60]).

Step 2. Let {ei} be a local orthonormal frame of M such that

e1 =
∇u

|∇u| =
∇u

ψ
.

Then, denoting by uij the coefficients of Hess (u) with respect to this frame, it
holds that

u1j = − (m− 1)µ δ1j , j = 1, . . . , m, (9.9)
uij = µ δij , i, j = 2, . . . , m,

for some smooth function µ. Equivalently,

Hess (u) (e1, ·) = − (m− 1)µ 〈e1, ·〉 on TM,

Hess (u) (·, ·) = µ 〈·, ·〉 on 〈e1〉⊥ .

(9.10)

In particular, ψ is constant on each path-component of the smooth, level hyper-
surfaces {u = const.} of u.

Indeed, note that (9.4) comes from the Bochner formula for harmonic func-
tions, once we replace the usual inequalities with the equality sign. In particular,
it forces equality in the refined Kato inequality of Proposition 1.3. Thus, setting
M = (uij) ∈ Mm (R) and y = (ui) ∈ Rm, we deduce that

‖M‖2 =
m

m− 1
|My|
|y|2

2

.

Application of the algebraic Lemma 1.5 with A = 1 enables us to obtain (9.9). As
for the second assertion, simply note that if σ is any curve in a path-component
of {u = const.}, then σ̇ is orthogonal to e1 and, therefore, by (9.9),

d

dt
|∇u| ◦ σ = Hess (u) (e1, σ̇) = 0.

As a matter of fact, using a similar argument together with Sard’s theorem, one
can show that each of the path components of a.e. level set of |∇u| coincides with
a path component of some level set of u.

Step 3. Let {ei} be as in Step 2. Then

De1e1 = 0,

so that the integral curves of the global unit vector field e1 = ∇u/|∇u| are
geodesics of M .
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Indeed, recall that

∇|∇u| = Hess (u) (e1, ·)# (9.11)
= − (m− 1)µe1.

Therefore, by a direct computation we get

De1e1 =
1
|∇u|D∇u

∇u

|∇u|

=
1
|∇u|

{
− 1
|∇u|2 〈∇u,∇|∇u|〉∇u +

1
|∇u|Hess (u) (∇u, ·)#

}

=
1
|∇u|

{
−Hess (u) (e1, e1) e1 + Hess (u) (e1, ·)#

}
=

1
|∇u| {(m− 1)µe1 − (m− 1)µe1} = 0.

Step 4. Let Σo be a connected component of a level set {u = uo} of u, and let φt

be the flow of the vector field e1. Then for every x ∈ Σo, φt(x) is defined for all t′s,
and φ : R × Σo → M is a smooth diffeomorphism which realizes a differentiable
splitting R×Σo ≈

diff
M . Moreover, if M has more than one end, then Σo is compact,

and M has exactly two ends.
Indeed, according to the previous step, for every x in M the integral curve

t→ φt(x) of e1 is a geodesic. Since M is complete, the flow φt is defined for every
t (this actually follows directly from the fact that e1 has bounded length), and for
every fixed t gives rise to a global diffeomorphism of M .

In particular, if x ∈ Σo, then φt(x) coincides with the normal exponential
map, namely φt(x) = exp⊥(te1(x)), and according to Lemma 9.6 the map φ :
R×Σo →M is onto. We claim that it is also 1-1 so that it realizes a differentiable
splitting R × Σo ≈

diff
M . Note that since for fixed t, φt : M → M is a global

diffeomorphism, if x1 	= x2, then φt(x1) 	= φt(x2). On the other hand, since ∇u
never vanishes, u is strictly increasing along the integral curves of e1. Therefore if
t1 < t2, then u(φt1(x)) < u(φt2(x)), and φt1(x) 	= φt2 (x). Thus, if φ is not 1 − 1
on R×Σo, there exist x1 	= x2 ∈ Σo and t1 	= t2 such that φt1(x1) = φt2(x2) = x̄.
But then, assuming, e.g., that t1 < t2 we have x2 = φ−t2(x̄) = φ−t2+t1(φ−t1(x̄)) =
φ−t2+t1(x1) and this is impossible since x1 and x2 belong to the same level set of
u, and u increases along integral lines of φt.

Note that, since u increases along the integral curve φt(x), the image of a
level set of u cannot intersect the same level set. Thus Σo is necessarily connected.
Since Σo = {u = to} was arbitrary, all level sets of u are in fact connected, and
|∇u| is constant on every such set.

The last assertion follows from Lemma 9.5 and the fact that the flow of φ
determines the ends of M .
Step 5. The map φ : R× Σo →M moves Σo onto any other level set of u.
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Since |∇u| is constant on level sets of u, there exists a function α defined
on the interval u(M) such that |∇u| = α(u). For fixed x ∈ M and every t ∈ R

we have |∇u|(φt(x)) = α(u(φt(x)), and since the right-hand side is a continuous
function of t, while t→ u(φt(x)) is a continuous bijection of R onto its image, we
deduce that the function α is continuous. Moreover

d

ds
u ◦ φs (x) =

〈
∇u (φs (x)) ,

·
φs (x)

〉
= |∇u (φs (x))|
= α (u ◦ φs (x)) .

Whence, integrating and using the change of variable formula, we get∫ u◦φt(x)

u(x)

dy

α (y)
= t, on R.

In particular, the value u(φt(x)) is independent of the point x in any fixed level
set of u, showing that the image under φt of a level set of u is contained in a level
set of u. The conclusion now follows from the fact that φ is a diffeomorphism of
R× Σo onto M .
Step 6. The smooth, positive function

β (t) = |∇u| ◦ φt (x) = ψ ◦ φt (x) (9.12)

is independent of x varying in a given level set of u and satisfies the ODE

β′′ − m

m− 1
(β′)2

β
+ ρβ = 0, on R. (9.13)

The first assertion follows directly from the fact that φt moves level sets of u
onto level sets of u, and that |∇u| is constant on such level sets. As for the second
assertion, direct computations that use (9.11) show

β′ (t) =
〈
(∇ψ) ◦ φt(x),

d

dt
φt(x)

〉
=

〈∇|∇u| ◦ φt(x), e1

〉
=

(
Hess (u) (e1, e1)

) ◦ φt(x) = − (m− 1)µ ◦ φt (x) ,
(9.14)

and (again by (9.11))

|∇ψ|2 ◦ φt (x) = (m− 1)2 µ2 ◦ φt (x) ,

so that, in particular,
β′ (t)2 = |∇ψ|2 ◦ φt (x) . (9.15)

Moreover, since t→ φt (x) is a geodesic in M with tangent vector e1,

β′′ (t) =
d

dt

(〈∇ψ, e1〉 (φt(x))
)

= Hess (ψ) (e1, e1) (φt (x)). (9.16)
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To treat the Hessian term on the right-hand side we write

Hess (ψ) (e1, e1) = ∆ψ −
m∑

j=2

Hess (ψ) (ej, ej) (9.17)

and claim that

Hess (ψ) (ej , ej) = − (m− 1)µ2

ψ
. (9.18)

Indeed, using (9.11) and the fact that {ei} is an orthonormal frame, we obtain,
for every j ≥ 2,

Hess (ψ) (ej , ej) = Hess (|∇u|) (ej , ej) (9.19)

=
〈
Dej∇|∇u| , ej

〉
= ej 〈∇ |∇u| , ej〉 −

〈∇|∇u| , Dej ej

〉
= ej (− (m− 1)µδ1j) + (m− 1)µ

〈
e1, Dej ej

〉
= − (m− 1)µ

〈
Dej e1, ej

〉
.

On the other hand, using again (9.11), a direct computation yields

Dej e1 = |∇u|−1
Dej∇u− |∇u|−2

ej(|∇u|)∇u

= |∇u|−1 Hess (u) (ej , ·)# + |∇u|−2 Hess(u)(ej , e1)∇u

= ψ−1Hess (u) (ej, ·)# .

Inserting this latter into (9.19) and using (9.9) establishes equation (9.18).
Now, substituting (9.18) into (9.17), inserting the resulting equality into

(9.16) and recalling (9.14) and (9.4), we conclude that

β′′(t) =
(
∆ψ + (m− 1)2

µ2

ψ

)
(φt(x))

=
(
∆ψ +

|∇ψ|2
ψ

)
(φt(x))

=
(
−ρψ +

m

m− 1
|∇ψ|2

ψ

)
(φt(x))

= −ρβ +
m

m− 1
(β′)2

β
.

(9.20)

Step 7. If Σ0 is a level set of M and φ : R × Σ0 → M realizes the differentiable
splitting, then

φ∗ 〈 , 〉 = dt⊗ dt +
(

β(t)
β(0)

)−2/(m−1)

( , ) . (9.21)
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Obviously, φ∗ ∂
∂t = e1 ◦ φ so that

φ∗ 〈 , 〉
(

∂

∂t
,

∂

∂t

)
= 1. (9.22)

Moreover, for every V ∈ TΣ0 = 〈e1〉⊥,〈
φ∗

∂

∂t
, φ∗V

〉
= 0. (9.23)

Indeed, if σ is any curve in Σ starting with velocity V , by definition of β and the
fact that it is independent of the point x ∈ Σ0, we have

d

ds

∣∣∣∣
s=0

(|∇u| ◦ φt) ◦ σ (s) =
d

ds

∣∣∣∣
s=0

β (t) = 0. (9.24)

On the other hand, using (9.10) and (9.14), we have

d

ds

∣∣∣∣
s=0

|∇u| ◦ (φt ◦ σ (s)) = Hess (u) (e1, (φt)∗V ) (9.25)

= − (m− 1)µ ◦ φt 〈e1, (φt)∗V 〉
= β′ (t) 〈e1, (φt)∗V 〉 .

Since β′ (t) 	= 0 by (9.14), combining (9.24) and (9.25) gives (9.23), and proves
that φ∗ 〈, 〉 takes the form

φ∗ 〈 , 〉 = dt⊗ dt + (φt)∗ 〈 , 〉 .
Thus, the desired conclusion will follow once we show that

(φt)∗ 〈 , 〉 =
(

β(t)
β(0)

)−2/(m−1)

( , ) .

By the definition of Lie derivative we have, for all vectors V, W tangent to Σ0,

〈DV e1, W 〉+ 〈DW e1, V 〉 = Le1 〈, 〉 (V, W ) =
d

ds

∣∣∣∣
s=0

(φ∗
s 〈, 〉) (V, W ) .

On the other hand, recalling that |∇u| is locally constant on the level sets of u, so
that

DV e1 = DV

( ∇u

|∇u|
)

=
1
|∇u|DV∇u,

and using (9.10), we deduce that

〈DV e1, W 〉 =
1
|∇u|Hess (u) (V, W ) =

µ

|∇u| 〈V, W 〉
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so that
d

ds

∣∣∣∣
s=0

(φ∗
s 〈 , 〉) =

2µ

|∇u| 〈 , 〉 .

As a consequence, recalling the definition (9.12) of β, (9.14) and the group property
of φt, we get

d

dt
(φ∗

t 〈 , 〉) =
2µ ◦ φt

|∇u| ◦ φt
φ∗

t 〈 , 〉

=
−2β′ (t)
m− 1

1
β (t)

φ∗
t 〈 , 〉 .

Integrating over [0, t] we finally obtain

φ∗
t 〈 , 〉 =

(
β (t)
β (0)

)− 2
m−1

φ∗
0 〈 , 〉

as required.
Step 8. In view of (9.13) and by Lemma 9.7, the positive function β (t) = ψ◦φt (x)
has the expression

β (t) =
{
C1 exp

(
t
√

ρ
m−1

)
+ C2 exp

(
−t

√
ρ

m−1

)}−(m−1)

,

for some non-negative constants C1, C2 which are independent of x ∈ Σo, since so
is β, and cannot both vanish because ψ = |∇u| > 0. Up to replacing t with −t,
we may assume that C1 > 0. Thus

w(t) =
(

β (t)
β (0)

)− 2
m−1

=

⎧⎨⎩C1 exp
(
t
√

ρ
m−1

)
+ C2 exp

(
−t

√
ρ

m−1

)
C1 + C2

⎫⎬⎭
2

,

as required to prove (9.5).
Step 9. Assume now that M has two ends. Note that if both the constants C1 and
C2 are different from zero, then the positive function β (t) tends to zero as t→ ±∞
and β attains its positive maximum B at some t0 ∈ R. Without loss of generality,
up to using the translated flow φt+t0 , we can assume t0 = 0. Accordingly,

β (0) = B > 0, β′ (0) = 0

which implies that β (t) has the expression

β (t) = B cosh−(m−1)
(
t
√

ρ
m−1

)
and

w(t) =
(

β(t)
β(0)

)−2/(m−1)

= cosh2
(
t
√

ρ
m−1

)
.
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On the other hand, if C2 = 0, then

w(t) = exp
(
2t
√

ρ
m−1

)
.

Since Σ0 is compact, in the former case both ends of M have infinite volume. In
the latter case, vol ((−∞, 0]× Σ0) < +∞, and one of the ends of M has finite
volume. �

In view of Theorem 9.3, the strategy of the proof of Theorem 9.1 is to use the
assumptions on the geometry of M to produce a non-constant harmonic function
satisfying the differential equation (9.4). This requires some preliminary results on
the energy of a special class of harmonic functions considered in Section 7.1.

We recall briefly the construction. Let D be a relatively compact domain D
with smooth boundary, and fix an exhaustion {Dn} of M by relatively compact
open domains with smooth boundary and D ⊂⊂ Dn ⊂⊂ Dn+1.

According to Proposition 7.10, if M has at least two non-parabolic ends E1

and E2, then the sequence of functions un which solve the boundary value problem{
∆un = 0 in Dn,

un = 1 on ∂Dn ∩ E1, un = 0 on ∂Dn ∩
(
M \E1

)
has a subsequence which converges locally uniformly to a bounded harmonic func-
tion u with finite Dirichlet integral such that 0 < u < 1, supE1

u = 1, and
infE2 u = 0.

Lemma 9.8. Maintaining the notation introduced above, let E be an end of M with
respect to D, satisfying the Poincaré inequality

0 < λ1 = λ1 (−∆E) = inf

∫
E
|∇ϕ|2∫
E ϕ2

(9.26)

where the infimum is taken over C∞
c (E) \ {0}. Let u be the harmonic function

obtained with the approximation procedure described above, and let 0 < δ <
√

λ1.
Then, there exists a constant C = C(u) > 0 such that

∫
E

e2δr(u− α)2 ≤ C(√
λ1 − δ

)2 , where α =

{
1 if E = E1,

0 otherwise.
(9.27)

Remark 9.9. We observe that a similar statement, with appropriate values of α,
holds for linear combinations of the harmonic functions as considered in the state-
ment, that is, for harmonic functions obtained by the approximation procedure
assigning to each un a constant boundary value on E ∩ ∂Dn (necessarily equal to
zero if E is parabolic).
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Proof. We consider the case where E 	= E1, so that the approximating sequence
un satisfies the boundary condition un = 0 on E ∩ ∂Dn. The other case is dealt
with by replacing u with 1 − u. Let o ∈ D and R0 such that D̄ ⊂ BR0(o),
fix R ≥ 2R0, and choose n ∈ N sufficiently large that B̄R(o) ⊂ Dn. We set
En = E ∩ Dn, ∂En = E ∩ ∂Dn, E(R) = E ∩ BR(o) and ∂E(R) = ∂BR(o) ∩ E.
Let also ϕ : M → [0, 1] be a smooth cut-off function such that

ϕ = 0 on BR0 , ϕ = 1 off BR, |∇ϕ| ≤ 2
R−R0

on M.

Fix 0 < δ <
√

λ1 and integrate over En to obtain∫
En

∣∣∇ (
ϕeδrun

)∣∣2 =
∫

En

u2
n

∣∣∇ (
ϕeδr

)∣∣2 + 2
∫

En

unϕeδr
〈∇un,∇ (

ϕeδr
)〉

+
∫

En

ϕ2e2δr |∇un|2

=
∫

En

u2
n

∣∣∇ (
ϕeδr

)∣∣2 +
∫

En

ϕ2e2δr |∇un|2

+
1
2

∫
En

〈∇ (
u2

n

)
,∇ (

ϕ2e2δr
)〉

.

Applying the divergence theorem, noting that un vanishes on ∂En, while φ2e2δr

is zero on ∂E, and using the harmonicity of un in En, we have

1
2

∫
En

〈∇ (
u2

n

)
,∇ (

ϕ2e2δr
)〉

= −1
2

∫
En

ϕ2e2δr∆
(
u2

n

)
= −

∫
En

ϕ2e2δrun∆un −
∫

En

ϕ2e2δr |∇un|2

= −
∫

En

ϕ2e2δr |∇un|2 ,

which, inserted into the above identity, yields∫
En

∣∣∇ (
ϕeδrun

)∣∣2 =
∫

En

u2
n

∣∣∇ (
ϕeδr

)∣∣2 .

By Young’s inequality, for every ε > 0 the right-hand side is estimated from above
by

(1 + ε) δ2

∫
En

u2
nϕ2e2δr +

(
1 + ε−1

) ∫
En

u2
ne2δr |∇ϕ|2 ,

so, using the Poincaré inequality to estimate the left-hand side from below and
rearranging, we get(

λ1 − (1 + ε) δ2
) ∫

En

u2
nϕ2e2δr ≤ (

1 + ε−1
) 4

(R−R0)
2

∫
E(R)\E(R0)

u2
ne2δr.
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Choosing

ε =
√

λ1 − δ

δ

we obtain (√
λ1 − δ

)2
∫

En

u2
nϕ2e2δr ≤ 4

(R−R0)
2

∫
E(R)\E(R0)

u2
ne2δr,

whence, recalling that ϕ is non-negative and identically equal to 1 outside BR,(√
λ1 − δ

)2
∫

En\E(R)

u2
ne2δr ≤ 4

(R−R0)
2

∫
E(R)\E(R0)

u2
ne2δr.

Now, we choose R = 2R0 and we let n → +∞ to get(√
λ1 − δ

)2
∫

E\E(2R0)

u2e2δr ≤ 4
R2

0

∫
E(2R0)\E(R0)

u2e2δr,

and (9.27) follows. �
Lemma 9.10. Assume that M has at least two non-parabolic ends, and that E is
an end of M with respect to D satisfying the Poincaré inequality (9.26). Let u be a
harmonic function as in the statement of Lemma 9.8. Then there exists a constant
C = C

(
u,
√

λ1

)
> 0, such that for every sufficiently large R,∫

ER\ER−1

e2
√

λ1r(u− α)2 ≤ C, (9.28)

where α is as in Lemma 9.8, namely, α = 1 if u is the limit of a sequence of
harmonic functions un equal to 1 on E ∩ ∂Dn, and α = 0 otherwise.

Proof. Again we consider the case where α = 0. Let ϕ ∈ Lipc (E). A straightfor-
ward computation shows the validity of the equality∫

E

∣∣∣∇(
e
√

λ1rϕu
)∣∣∣2 =

∫
E

{
e2

√
λ1ru2 |∇ϕ|2 + λ1e

2
√

λ1rϕ2u2

+ 2
√

λ1e
2
√

λ1rϕu2 〈∇ϕ,∇r〉 + e2
√

λ1rϕ2 |∇u|2

+ 2e2
√

λ1rϕu 〈∇ϕ,∇u〉 +2
√

λ1e
2
√

λ1rϕ2u 〈∇u,∇r〉
}

.

The last three terms under the integral on the right-hand side can be written in
the form 〈∇u,∇(e2

√
λ1 rϕ2u

)〉
,

so that, integrating by parts and using the fact that u is harmonic, they cancel
out and the above equality reduces to∫

E

∣∣∣∇(
ϕe

√
λ1ru

)∣∣∣2 =
∫

E

e2
√

λ1r
(
u2 |∇ϕ|2 + 2

√
λ1ϕu2 〈∇ϕ,∇r〉 + λ1ϕ

2u2
)

.
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We now apply the Poincaré inequality to the left-hand side and rearrange to obtain

−2
√

λ1

∫
E

e2
√

λ1ru2ϕ 〈∇ϕ,∇r〉 ≤
∫

E

e2
√

λ1ru2 |∇ϕ|2 . (9.29)

We let R0 < R1 < R and we choose ϕ to be given by the formula

ϕ (r) =

⎧⎪⎨⎪⎩
r(x)−R0
R1−R0

on E(R1) \ E(R0),
R−r(x)
R−R1

on E(R) \ E(R1),
0 elsewhere.

Substituting into (9.29) we have

2
√

λ1

(R−R1)
2

∫
E(R)\E(R1)

e2
√

λ1r (R− r) u2 (9.30)

≤ 1
(R−R1)

2

∫
E(R)\E(R1)

e2
√

λ1ru2 +
1

(R1 −R0)
2

∫
E(R1)\E(R0)

e2
√

λ1ru2

+
2
√

λ1

(R1 −R0)
2

∫
E(R1)\E(R0)

e2
√

λ1r (r −R0)u2.

We fix 0 < t < R−R1 and we observe that

2t

(R−R1)
2

∫
E(R−t)\E(R1)

e2
√

λ1ru2 ≤ 2
(R−R1)

2

∫
E(R−t)\E(R1)

(R− r) e2
√

λ1ru2.

Thus, from (9.30) we get

2t
√

λ1

(R−R1)
2

∫
E(R−t)\E(R1)

e2
√

λ1ru2 ≤ 1

(R−R1)
2

∫
E(R)\E(R1)

e2
√

λ1ru2

+

[
1

(R1 −R0)
2 +

2
√

λ1

R1 −R0

]∫
E(R1)\E(R0)

e2
√

λ1ru2. (9.31)

Let R > max
{
2R0, R1 + 1/

√
λ1

}
. We choose R1 = R0 + 1, t = 1/

√
λ1 and define

g (R) =
∫

E(R)\E(R0+1)

e2
√

λ1ru2.

The above inequality gives

2
(R−R0 − 1)2

g

(
R− 1√

λ1

)
≤ 1

(R−R0 − 1)2
g (R) + 2A

for some A = A
(
R0,

√
λ1, u

)
> 0, and therefore

g (R) ≤ 1
2
g

(
R +

1√
λ1

)
+ A

(
R +

1√
λ1

)2

. (9.32)
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Now we let k be a positive integer and we iterate (9.32) k-times to obtain

g (R) ≤ 1
2k

g

(
R +

k√
λ1

)
+ AR2

k∑
i=1

(
1 + i

R
√

λ1

)2

2i−1

and therefore

g (R) ≤ 1
2k

g

(
R +

k√
λ1

)
+ CR2

for some constant C > 0 which depends only on Ro,
√

λ1 and u. We now use
assumption (9.27) to show that

lim
k→+∞

1
2k

g

(
R +

k√
λ1

)
= 0.

Indeed, if 0 < δ < λ1, applying (9.27) we have

g

(
R +

k√
λ1

)
=
∫

B
R+ k√

λ1

\BR0+1

e2
√

λ1ru2

=
∫

B
R+ k√

λ1

\BR0+1

e2(
√

λ1−δ)ru2e2δr

≤ C
(√

λ1 − δ
)−2

e
2

(
R+ k√

λ1

)
(
√

λ1−δ)
.

Therefore

1
2k

g

(
R +

k√
λ1

)
≤ C

(√
λ1 − δ

)−2

e2R(
√

λ1−δ)e
2 k√

λ1
(
√

λ1−δ)−k log 2 → 0

as k → +∞, provided δ is sufficiently near to
√

λ1. Recalling the definition of
g (R) we have thus proved∫

E(R)\E(R0+1)

e2
√

λ1ru2 ≤ ĈR2, R >> 1,

for some constant Ĉ = Ĉ
(
u, R0,

√
λ1

)
> 0 and therefore∫

E(R)

e2
√

λ1ru2 ≤ CR2, R >> 1, (9.33)

for some C > 0. To improve (9.33) we use again inequality (9.31). For R large
enough, we choose R1 = R0 + 1, t = R/2 in (9.31) to obtain

R
√

λ1

∫
E( R

2 )\E(R0+1)

e2
√

λ1ru2 ≤
∫

E(R)\E(R0+1)

e2
√

λ1ru2 + 2AR2
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and then applying (9.33) ∫
E( R

2 )\E(R0+1)

e2
√

λ1ru2 ≤ CR

or, equivalently, ∫
E(R)

e2
√

λ1ru2 ≤ CR, R >> 1. (9.34)

To conclude we set R1 = R − 4/
√

λ1, t = 2/
√

λ1 in (9.31), and deduce that for
sufficiently large R,∫

E(R− 2√
λ1

)\E(R− 4√
λ1

)

e2
√

λ1ru2

≤ 1
4

∫
E(R)\E(R− 4√

λ1
)

e2
√

λ1ru2 +
C

R

∫
E(R− 2√

λ1
)\E(R0)

e2
√

λ1ru2

for some constant C = C
(
u, R0,

√
λ1

)
> 0. Thus, using (9.34),∫

E(R− 2√
λ1

)\E(R− 4√
λ1

)

e2
√

λ1ru2 ≤ 1
3

∫
E(R)\E(R− 2√

λ1
)

e2
√

λ1ru2 + C.

We iterate this inequality k-times to obtain, with the aid of (9.34),∫
E(R+ 2√

λ1
)\E(R)

e2
√

λ1ru2 ≤ C
k∑

i=1

1
3i−1

+
1
3k

∫
E(R+ 2k√

λ1
)\E(R+ 2(k−1)√

λ1
)

e2
√

λ1ru2

≤ C + C
1
3k

(
R +

2k√
λ1

)
,

whence, letting k → +∞ we deduce that the integral on the left-hand side is
bounded above by C. The required conclusion now follows at once. �
Lemma 9.11. Let (M, 〈, 〉), u and E be as in the previous lemmas. Then, there
exists a constant C > 0 independent of R such that, for R sufficiently large,∫

E(R)

e2
√

λ1r |∇u|2 ≤ CR. (9.35)

In particular |∇u|2 ∈ L1 (E) .

Proof. Let ϕ be the cut-off function

ϕ (x) =

⎧⎪⎪⎨⎪⎪⎩
r (x)− R + 1 on E(R) \ E(R − 1),
1 on E(R + 1) \ E(R),
R − 2− r (x) on E(R + 2) \ E(R + 1),
0 elsewhere.
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Consider the vector field
Z = ϕ2u∇u.

Using the divergence theorem, the fact that u is harmonic and the Cauchy–Schwarz
inequality, we have∫

E

ϕ2 |∇u|2 = −2
∫

E

ϕu 〈∇ϕ,∇u〉 −
∫

E

ϕ2u∆u

≤ 1
2

∫
E

ϕ2 |∇u|2 + 2
∫

E

|∇ϕ|2 u2.

Thus, using (9.28) and the definition of ϕ,∫
E(R+1)\E(R)

|∇u|2 ≤ 4
∫

E(R+2)\E(R−1)

u2 ≤ Ce−2
√

λ1(R−1).

It follows that∫
E(R+1)\E(R)

e2
√

λ1r |∇u|2 ≤ e2
√

λ1(R+1)

∫
E(R+1)\E(R)

|∇u|2 ≤ C.

We set R = R0 + i and we sum over 1 ≤ i ≤ k to get∫
E(R0+k)\E(R0+1)

e2
√

λ1r |∇u|2 ≤ Ck ≤ C (R0 + k) .

We have thus proved (9.35). The second assertion follows writing∫
E\E(R0)

|∇u|2 ≤
∑

k

∫
E(R0+k+1)\E(R0+k)

e−2
√

λ1(R0+k)

∫
∂Br

e2
√

λ1r|∇u|2

≤ C
∑

k

(R0 + k + 1)e−2
√

λ1(R0+k) < +∞.

�
We are now ready to give the

Proof of Theorem 9.1. Assume that M has at least two non-parabolic ends, and
that λ1 = λ1(−∆M ) > 0. Then, there exists a non-constant harmonic function u
on M which is obtained as the limit of a sequence {un} as in the assumptions of
Lemma 9.8. Having set ψ = |∇u| , and applying Lemma 9.11 to each end E of M
with respect to D (note that λ1(−∆E) ≥ λ1 > 0 by domain monotonicity), we
have the energy estimate ∫

BR

e2
√

λ1rψ2 ≤ CR (9.36)

with R sufficiently large. From Bochner’s formula and assumption (9.1) on the
Ricci curvature of M , we obtain

ψ∆ψ +
m− 1
m− 2

λ1ψ
2 ≥ 1

m− 1
|∇ψ|2 . (9.37)
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Now, the operator

L = −∆−H
m− 1
m− 2

λ1

(
H =

m− 2
m− 1

)
clearly satisfies λ1 (LM ) = 0. Furthermore, using Hölder inequality and (9.36),∫

BR

ψ2 m−2
m−1 =

∫
BR

(
e2

√
λ1rψ2

)m−2
m−1

e−2m−2
m−1

√
λ1r

≤ CR
m−2
m−1

(∫
BR

e−2(m−2)
√

λ1r

) 1
m−1

.

By the co-area formula, (9.1) and the Bishop comparison theorem we have∫
BR

e−2(m−2)
√

λ1r =
∫ R

0

∫
∂Bt

e−2(m−2)
√

λ1rdt ≤ C

∫ R

0

e
2
√

λ1t
(

m−1
2
√

m−2−m+2
)
dt.

Thus ∫
BR

ψ2 m−2
m−1 ≤ C

{
R for m = 3,

R
m−2
m−1 for m ≥ 4.

It both cases it follows that
r∫

Br
ψ2 m−2

m−1

/∈ L1 (+∞)

and therefore
1∫

∂Br
ψ2 m−2

m−1

/∈ L1 (+∞) .

Since ψ 	≡ 0, applying Theorem 4.5 with

β = A = H − 1 = − 1
m− 1

,

we deduce that equality holds in (9.37). The result now follows from Theorem 9.3,
noting that, since λ1 > 0, the infinite volume ends are precisely the non-parabolic
ends. �

9.2 Gap theorems

We have seen in Chapter 4 that vanishing theorems may be obtained by imposing
spectral conditions, namely, letting HL be the Schrödinger operator −∆−Ha(x),
then λ1(HLM ) ≥ 0 implies that non-negative Lp solutions of the differential in-
equality

ψ∆ψ + a(x)ψ2 + A|∇ψ|2 ≥ 0
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vanish identically provided the coefficients A, a and H satisfy suitable conditions.
On the other hand, it was shown in Section 7.1 that the validity of Sobolev-type
inequalities can be used to obtain spectral information on the operator HL. In
particular, if an appropriate integral norm of (the positive part of) the potential
Ha(x) is less than or equal to the L2-Sobolev constant, then λ1(HLM ) ≥ 0 (see
Lemma 7.33).

In this section we show that a direct use of a Poincaré–Sobolev inequality
can be used to obtain similar gap theorems, requiring that the integral norm of
Ha(x) be smaller than a suitable multiple(> 1) of the Poincaré–Sobolev constant.

We are going to apply this result to the investigation, already considered
in Section 7.4, of the topology at infinity of immersed submanifold, as well as to
other geometric situations like characterization of space forms and gap theorems
for harmonic maps.

Theorem 9.12. Let (M, 〈 , 〉) be a complete manifold and assume that, for some 0 ≤
α < 1 and some non-negative function h, the inhomogeneous Sobolev–Poincaré-
type inequality ∫

M

(|∇ϕ|2 + hϕ2
) ≥ S (α)−1

{∫
M

|ϕ| 2
1−α

}1−α

(9.38)

holds for every ϕ ∈ C∞
c (M) with a positive constant S (α) > 0. Suppose that

ψ ∈ Liploc (M) is a positive solution of

ψ∆ψ + a (x) ψ2 + A |∇ψ|2 ≥ 0 (weakly) on M (9.39)

satisfying ∫
Br

|ψ|σ = o
(
r2
)

as r → +∞ (9.40)

with A ∈ R, σ −A− 1 > 0, σ 	= 0, and a (x) ∈ C0 (M). Then∥∥∥∥a+ (x) +
4(σ −A− 1)

σ2
h

∥∥∥∥
L

1
α (M)

≥ 4(σ −A− 1)
σ2

S (α)−1
. (9.41)

Furthermore, if ψ is assumed to be non-negative and not identically zero, then
(9.41) holds under the further assumption that σ > 0.

We remark for future use that in the case where α = 0, then the constant
S(0)−1 coincides with the bottom of the L2-spectrum λ1(LM ) of the Schrödinger
operator L = −∆ + h.

We also remark that in the case where h = 0, that is when a standard
Sobolev inequality is assumed to hold, then the theorem states that there are no
non-zero solutions of (9.39) satisfying (9.40) if the L1/α-norm of the coefficient
a is smaller than a multiple, depending on the integrability exponent σ, of the
Sobolev constant. Thus the result compares directly with Theorem 4.5, replacing
the spectral assumption with the validity of a Sobolev–Poincaré inequality and a
norm estimate on the potential.
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Proof. Note that the conclusion certainly holds if either a+ or h are not in
L1/α(M), so we assume that a+ + h ∈ L1/α.

We consider the case where ψ is only assumed to be non-negative, and 0 <
σ < 2, the other cases being easier. Next, recall that, by (9.39), for every test
function 0 ≤ ρ ∈ H1

c we have∫
a+ψ2ρ ≥

∫
ψ〈∇ψ,∇ρ〉+ (1−A)ρ|∇ψ|2.

Let φ = φr ∈ C∞
c (M) be a family of cut-off functions satisfying

φr ≡ 1 on Br, φr ≡ 0 off B2r, |∇φr| ≤ 4
r

on M,

and apply the above inequality to the test function (ψ2 + η)
σ−2

2 φ2 to obtain, after
some manipulations,∫

a+φ2(ψ2 + η)
σ
2

ψ2

ψ2 + η
≥ 2

∫
(ψ2 + η)

σ−2
2 ψφ〈∇φ,∇ψ〉

+
∫

(ψ2 + η)
σ−2

2 φ2|∇ψ|2
{

1−A + (σ − 2)
ψ2

ψ2 + η

}
. (9.42)

We use the fact that

0 ≤ ψ2

ψ2 + η
≤ 1 (9.43)

and that σ − 2 < 0, to estimate the LHS from above, and the second integral on
the RHS from below. Also, by Young’s inequality and (9.43), for every ε > 0, the
first integral on the RHS is estimated from below by

−1
ε

∫
(ψ2 + η)

σ
2 |∇φ|2 − ε

∫
(ψ2 + η)

σ−2
2 .

Inserting the resulting inequalities and rearranging, we conclude that∫
a+φ2(ψ2 + η)

σ
2 +

1
ε

∫
(ψ2 + η)

σ
2 |∇φ|2

≥ (σ −A− 1− ε)
∫

φ2(ψ2 + η)
σ−2

2 |∇ψ|2. (9.44)

Fix ε > 0 small enough that σ−A−1−ε > 0. As η ↘ 0, by dominated convergence,
the LHS converges to ∫

a+φ2ψσ +
1
ε

∫
ψσ|∇φ|2,

while, since σ − 2 < 0, by monotone convergence, the RHS converges to

(σ −A− 1− ε)
∫

φ2ψσ−2|∇ψ|2.
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We may therefore conclude that∫
a+ (x) φ2ψσ +

1
ε

∫
ψσ |∇φ|2 ≥ (σ −A− 1− ε)

∫
ϕ2ψσ−2 |∇ψ|2 . (9.45)

According to Lemma 4.13, the function ψσ/2 ∈W 1,2
loc and ∇(ψσ/2

)
= σ

2 ψ( σ
2 −1)∇ψ.

By the Poincaré–Sobolev inequality, Young inequality and (9.45), we estimate

S(α)−1

{∫ (
ψ

σ
2 φ

) 2
1−α

}1−α

≤
∫ (|∇(ψ σ

2 φ
)|2 + hφ2ψσ

)
≤ (1 + δ)

σ2

4

∫
ψσ−2φ2|∇ψ|2 + (1 +

1
δ
)
∫

ψσ|∇φ|2 +
∫

hφ2ψσ

≤ C−1
δ,ε

∫ (
a+ + Cδ,εh

)
φ2ψσ +

( 1
εCδ,ε

+ 1 +
1
δ

) ∫
ψσ|∇φ|2,

where
Cδ,ε =

4
σ2

σ −A− 1− ε

1 + δ
.

Using Hölder’s inequality in the first integral,∫ (
a+ + Cδ,εh

)
φ2ψσ ≤ ||a+ + Cδ,εh||L1/α

{∫ (
ψ

σ
2 φ

) 2
1−α

}1−α

,

and rearranging, we finally obtain{
S(α)−1 − C−1

δ,ε ||a+ + Cδ,εh||L1/α

}(∫ (
ψ

σ
2 φ

) 2
1−α

}1−α

≤
{ 1

εCδ,ε
+ 1 +

1
δ

} C

R2

∫
B2r

ψσ.

To conclude, assume that (9.41) does not hold. Since, by dominated convergence,

C−1
δ,ε ||a+ + Cδ,εh||L1/α → σ2

4(σ −A− 1)

∥∥∥∥a+ (x) +
4(σ −A− 1)

σ2
h

∥∥∥∥
L

1
α (M)

,

as ε, δ → 0+, we may choose δ and ε small enough that the coefficient on the LHS
is positive. Since ψ does not vanish identically, there exists R such that, for every
r > R the integral is strictly positive. The required contradiction follows by noting
that, according to (9.40), the right-hand side tends to zero as r → +∞. �

Theorem 9.12 allows us to obtain a quantitative improvement on the results
obtained in Section 7.4

Recall that if (M, 〈 , 〉) is isometrically immersed into a Cartan–Hadamard
manifold N , the following L2-type Sobolev inequality holds:

S2 (m, ε)−1

(∫
M

|v| 2m
m−2

)m−2
m

≤
∫

M

|∇v|2 +
ε2(m− 2)2

4(m− 1)2

∫
M

|H |2 v2, (9.46)
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where

S (m, ε) =

(
2
√

1 + ε−2 (m− 1)
(m− 2)S1 (m)−1

)2

, (9.47)

and H is the mean curvature vector field of the immersion. We also recall that if
the immersion is minimal, then the best constant in (9.47) is achieved by choosing
ε = +∞, and in this situation, we write S2 (m) = S2 (m, +∞).

Applying Theorem 9.12 instead of Theorem 4.5, we obtain the following
improvements of Theorem 7.36 and Theorem 7.35.

Theorem 9.13. Let f : (Mm, 〈 , 〉) → Rn be a complete, minimal, immersed sub-
manifold of dimension m ≥ 3 whose second fundamental tensor II satisfies(∫

M

|II|m
) 2

m

< 4S2 (m)−1
2

(m+2)(n−m)−2 + m− 1(
2− 1

n−m

)
m2

. (9.48)

Then f is totally geodesic.

Theorem 9.14. Let f : (Mm, 〈 , 〉) → (Nn, (, )) be an isometric immersion of the
complete manifold M of dimension m ≥ 3 into the Cartan–Hadamard manifold N
whose sectional curvature (along f) satisfies

(0 ≥) NSectf(x) ≥ − NR (x) (9.49)

for some function NR ∈ C0 (M). Denote by H and II respectively the mean cur-
vature vector field and the second fundamental tensor of f. Assume that, for some
ε > 0,∥∥∥∥m(m− 2)2ε2

4(m− 1)3
H2 + (m− 1) NR (x) + |II| (|II|+ m |H |) (x)

∥∥∥∥
L

m
2

<
m

m− 1
S2 (m, ε)−1

Then M has only one end.

Remark 9.15. For the sake of comparison, recall that Theorem 7.36 yields the
same conclusion under the stronger assumption that∥∥∥∥ (m− 2)2ε2

(m− 1)2
|H |2 + (m− 1) NR (x) + |II| (|II|+ m |H |) (x)

∥∥∥∥
L

m
2

≤ S2 (m, ε)−1 . (9.50)

Observe that the proof of Theorem 7.36 relies on a vanishing result, Theorem 4.5,
which depends on the assumption that the bottom of the spectrum of a suitable
Schrödinger operator is non-negative. This in turn is obtained by combining the
integral bound (9.50) and the Sobolev inequality. By contrast, the argument in
Theorem 9.12 uses the Sobolev inequality in a more direct way, and allows us to
improve the constant.
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Our next result is a further application of Theorem 9.12, and it implies a
vanishing result for harmonic forms in L2.

Theorem 9.16. Let (M, 〈 , 〉) be a complete Riemannian manifold supporting the
Poincaré–Sobolev inequality (9.38) for some 0 ≤ α < 1, and assume that

Ric ≥ −ρ(x)

for some continuous function ρ satisfying

||ρ+ +
4
p2

(m− 1)(p− 1) + 1
m− 1

h||L1/α <
4
p2

(m− 1)(p− 1) + 1
m− 1

S(α)−1, (9.51)

for some p > (m− 2)/(m− 1). If ω is a closed and co-closed 1-form satisfying∫
Br

|ω|p = o
(
r2
)
,

then ω ≡ 0.

The proof follows by noting that the norm of a closed and co-closed 1-form
satisfies the differential inequality

ψ∆ψ + ρ (x)ψ2 ≥ 1
(m− 1)

|∇ψ|2

and applying Thoerem 9.12. Noting that a harmonic L2 form is automatically
closed and co-closed, we recover the vanishing results of P.Li and J. Wang, [103],
Theorem 4.2, for manifolds with a positive spectral gap. In the case of Lp harmonic
1-forms, which are not necessarily closed and co-closed, and therefore do not satisfy
a refined Kato inequality, one has a vanishing result provided the right-hand side
of (9.51) is replaced by 4(p− 1)S(α)−1/p2.

Similar results can be given for Lp harmonic forms of any degree, or for
harmonic maps with Lp energy density, provided one uses the appropriate Weitzen-
böck formula. For instance, we have the following

Theorem 9.17. Let (M, 〈 , 〉) be an m-dimensional complete Riemannian manifold,
supporting the Poincaré–Sobolev inequality (9.38) for some 0 ≤ α < 1, and assume
that

Ricci ≥ −ρ(x).

Let f : M → N be a harmonic map into an n-dimensional non-positively curved
Riemannian manifold N . If |df | ∈ Lp(M), for some p > m−2

m−1 and

||ρ+ +
4
p2

(m− 1)(p− 1) + 1
(m− 1)

h||L1/α <
4
p2

(m− 1)(p− 1) + 1
m− 1

S(α)−1,

then f is constant.



9.3. Gap Theorems, continued 229

9.3 Gap Theorems, continued

In this section we will employ Theorem 9.12 to obtain isolation phenomena for the
Ricci tensor of a scalar flat, conformally flat manifold.

A Riemannian manifold (M, 〈 , 〉) of dimension m is said to be locally con-
formally flat if a neighborhood of each point of M can be conformally immersed
into the standard sphere Sm. When m ≥ 4 this is equivalent to the fact that the
Weyl tensor vanishes identically. The category of locally conformally flat spaces
contains the manifolds of constant sectional curvature, hence, in particular, the
space-forms Rm, Hm

−k2 , Sm
k2 , where the subscripts refer to the constant sectional

curvature of the space. Note that, according to the orthogonal decomposition of
the Riemann tensor into its irreducible components, a conformally flat manifold of
dimension m ≥ 3 has constant sectional curvature if and only if it is Einstein, i.e.,
the traceless part of its Ricci tensor is identically equal to zero. As a consequence,
by the H. Hopf classification theorem, the space forms are (up to isometries) the
only complete, simply connected, locally conformally flat, Einstein manifolds. In
this section we investigate other possible characterizations of space forms from the
conformally-flat viewpoint.

Let (M, 〈 , 〉) be a conformally flat manifold of dimension m ≥ 3 with con-
stant scalar curvature S. We carry out the computations that follow assuming
that m ≥ 4, but note that the conclusions we obtain also hold when m = 3. Con-
formal flatness and the decomposition of the Riemann tensor into its irreducible
components yield

Rijkl =
1

m− 2
(Rikδjl −Rilδjk + Rjlδik −Rjkδil)

− S

(m− 1) (m− 2)
(δikδjl − δilδjk) , (9.52)

where we have denoted with Rij the components of the Ricci tensor. Taking co-
variant derivatives, tracing, and using the fact that S is constant give∑

i

Rijkl,i =
1

m− 2

(∑
i

Rik,iδjl −
∑

i

Ril,iδjk + Rjl,k −Rjk,l

)
. (9.53)

Now, note that tracing with respect to the indices i, m in the second Bianchi
identities

Rijkl,m + Rijmk,l + Rijlm,k = 0

yields ∑
i

Rijkl,i = −
∑

i

Rijik,l −
∑

i

Rijli,k = −Rjk,l + Rjl,k, (9.54)

and tracing again with respect to j, l and using the fact that S is constant we
deduce that the Ricci tensor satisfies

Rik,k = 0.
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Inserting this and (9.54) in (9.53) we conclude that

m− 3
m− 2

(Rjl,k −Rjk,l) = 0,

showing that Ric is a Codazzi tensor, namely, the following commutation relations
for the coefficients of the covariant derivative of Ric hold,

Rij,k = Rik,j . (9.55)

As a consequence, the traceless part

T = Ric− S

m
〈 , 〉

is again Codazzi so that, as first observed by J.P. Bourguignon, [18], we have the
validity of the refined Kato-type inequality

|DT |2 ≥ m + 2
m

|∇ |T ||2 . (9.56)

Further covariant differentiation of Ric yields the commutation formulas

Rij,kl −Rij,lk = RitRtjkl + RtjRtikl. (9.57)

Using (9.52), (9.55), (9.57), and the fact that S is constant, we compute

1
2
∆ |Ric|2 = |DRic|2 +

m

m− 2
tr
(
ric(3)

)
− (2m− 1)S

(m− 2) (m− 1)
|Ric|2 +

S3

(m− 1) (m− 2)
(9.58)

where ric(3) is the third composition power of the Ricci endomorphism. Using the
identity

|T |2 = |Ric|2 − S2

m
,

and expressing tr
(
ric(3)

)
in terms of T we obtain, with the obvious meaning of

the symbols,

1
2
∆ |T |2 = |DT |2 +

m

m− 2
tr
(
T (3)

)
+

S

m− 1
|T |2 .

A simple algebraic lemma due to M. Okumura, [122], shows that

tr
(
T (3)

)
≥ − m− 2√

m (m− 1)
|T |3 . (9.59)
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Inserting (9.59) into (9.58) gives

1
2
∆ |T |2 ≥ |DT |2 − m√

m (m− 1)
|T |3 +

S

m− 1
|T |2 .

Setting u = |T | and using (9.56), we rewrite the above inequality in the form

u∆u +
(√

m

m− 1
u− S

m− 1

)
u2 ≥ 2

m
|∇u|2 , (9.60)

pointwise on {x ∈M : |T | (x) 	= 0} and weakly on all of M .

In the late 1960s M. Tani, [157], showed that the universal cover of a compact,
orientable, m-dimensional, locally conformally flat Riemannian manifold (M, 〈 , 〉)
with positive Ricci curvature and constant scalar curvature S is isometrically a
sphere. This result has been generalized by S.I. Goldberg, [61], in the complete
(non-necessarily orientable) case under the additional assumption that, for some
ε > 0,

S2

m− 1
− |Ric|2 ≥ ε > 0, on M (9.61)

(see also [79]). In fact, combining a classification theorem by S. Zhu, [170], with a
PDEs global symmetry result due to L. Caffarelli, B. Gidas and J. Spruck, [22], we
prove that the above characterization holds by merely assuming that the left-hand
side of (9.61) is strictly positive at one point.

Theorem 9.18. Let (M, 〈 , 〉) be a complete, locally conformally flat Riemannian
manifold of dimension m ≥ 3 and with constant scalar curvature S > 0. If

S2

m− 1
− |Ric|2 ≥ 0, on M (9.62)

and the strict inequality holds at some point, then the universal cover of (M, 〈 , 〉)
is isometrically a sphere.

Proof. We note that, by a lemma of Okumura, [123], inequality (9.62) implies that
Ric ≥ 0 on M . Therefore, according to [170], the universal cover M̃ of M is either
isometric to R× S

m−1
S/(m−1)(m−2) or conformally equivalent to Rm or Sm

1 . Since,
by assumption, inequality (9.62) is strict somewhere, the first case is excluded.
On the other hand, M̃ cannot be conformally diffeomorphic to Rm. In fact, from
Theorem 8.1 in [22] we know that a Riemannian metric on Rm which is of constant,
positive scalar curvature and conformally related to the canonical metric must be
a spherical metric, hence incomplete. It follows that M̃ is conformally a sphere,
hence M is compact. The conclusion now follows from (the easy case of) Goldberg’s
argument. Namely, keeping the notation introduced above, we have only to show
that u ≡ 0, i.e., that M is Einstein. From (9.60) we obtain

∆u2 ≥ b (x)u2 on M (9.63)
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with
b (x) =

2
m− 1

(
S −

√
m (m− 1)u (x)

)
.

On the other hand, according to (9.62) and the fact that the strict inequality holds
somewhere, we have

0 	≡ b (x) ≥ C
{

S2 − (m− 1) |Ric|2 (x)
}
≥ 0,

for some absolute constant C > 0. Since M is compact, applying the usual max-
imum principle we conclude that b (x) is a positive constant and u ≡ 0, as de-
sired. �

Analogous characterizations hold in the case where the scalar curvature is
non-positive.

Our first result in this direction deals with Euclidean space and can be
thought of as an extension of Theorem 9.18 to the scalar flat case.

Theorem 9.19. Let (M, 〈 , 〉) be a complete, simply connected, locally conformally
flat Riemannian manifold of dimension m ≥ 3 and zero scalar curvature. Assume
that

‖Ric‖
L

m
2 (M)

<
2ω

2
m
m (m− 2)3

√
m− 1

m2
√

m
(9.64)

where ωm denotes the volume of the standard sphere Sm
1 . Then (M, 〈 , 〉) is iso-

metric to Euclidean space.

Proof. Maintaining the notation introduced above, we observe that in the present
setting u = |Ric| while (9.60) becomes

u∆u + a (x) u2 ≥ 2
m
|∇u|2 (9.65)

with

a (x) =
√

m

m− 1
u (x) .

Again, we have to show that u ≡ 0. To this end we reason by contradiction. Since
(M, 〈 , 〉) is simply connected and locally conformally flat, by a result of N. Kuiper,
[90], there is a (global) conformal immersion (in fact an embedding) of M into the
standard sphere Sm

1 . It follows by a result of R. Schoen and S.T. Yau, [147], that
the Yamabe invariant Q (M) of M defined by

Q(M) = inf
φ∈C∞

c (M)\{0}

∫ (|∇ϕ|2 + m−2
4(m−1)Sφ2

)
(∫ |φ| 2m

m−2
)m−2

m

satisfies

Q (M) = Q (Sm
1 ) =

m (m− 2)ω
2
m
m

4
. (9.66)
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Thus, since S = 0, we have∫
|∇ϕ|2 ≥ Q (Sm

1 )
(∫

ϕ
2m

m−2

)m−2
m

, for each ϕ ∈ C∞
c (M) \ {0}

which is the Sobolev inequality (9.38) with h ≡ 0, α = 2
m and S (α) = Q (Sm

1 )−1.
According to (9.65), conditions (9.39) and (9.40) are satisfied with A = − 2

m and
σ = m

2 . By Theorem 9.12 and (9.66) we conclude that

‖Ric‖
L

m
2 (M)

≥ 2ω
2
m
m (m− 2)3

√
m− 1

m2
√

m
,

contradicting (9.64). �
In the case of negative scalar curvature, we establish the following result:

Theorem 9.20. Let (M, 〈 , 〉) be a complete, locally conformally flat Riemannian
manifold of dimension m ≥ 4 and constant scalar curvature S < 0. Assume that,
for some fixed ε ≥ 0 and p, satisfying m−1 < mp < (m−1)(m−2), the following
conditions hold:

i)
∣∣∣∣Ric− S

m
〈 , 〉

∣∣∣∣ ≤ −εS, ii)
∣∣∣∣Ric− S

m
〈 , 〉

∣∣∣∣ ∈ Lp (M) (9.67)

and furthermore

λ1 (−∆) >
p2

4
m

m(p− 1) + 2
(−S)

{
ε
√

(m− 1)m + 1
(m− 1)

}
(9.68)

where λ1(−∆) denotes the bottom of the spectrum of the (positive definite) Laplace
operator −∆. Then, the universal cover of (M, 〈 , 〉) is isometric to m-dimensional
Hyperbolic space.

We remark that the restrictions on m and p follow from substituting into
(9.68) the values of the scalar curvature and the bottom of the spectrum of m-
dimensional hyperbolic space, for which (9.67) i) and ii) hold with ε = 0 and every
p > 0.

Proof. As in the previous arguments the key point is to show that u, i.e., the
length of the traceless Ricci tensor, vanishes identically.

Using (9.67) i) in (9.60) we see that u satisfies

u∆u− S

(
ε

√
m

m− 1
+

1
m− 1

)
u2 ≥ 2

m
|∇u|2 ,

and u ∈ Lp (M) by assumption (9.67) ii). If u were not identically zero, an applica-
tion of Theorem 9.12, with the choices A = − 2

m and a (x) = −S
(
ε
√

m
m−1 + 1

m−1

)
,

would contradict (9.68). Thus, u ≡ 0 as required. �


