
Chapter 2

Comparison Results

In this section we describe some comparison results for the Hessian and the Lapla-
cian of the distance function and for the volume of geodesic balls under curvature
conditions. In some cases, the results we are going to describe improve on classical
results.

2.1 Hessian and Laplacian comparison

We begin by showing that a lower (resp. upper) bound on the radial sectional
curvature of the form

Sectrad ≥ −G(r(x)) (resp. Sectrad ≤ −G(r(x))) (2.1)

implies an upper estimate for the Hessian, Hess r, of the distance function r(x) of
the type

Hess (r) ≤ h′(r)
h(r)

(〈 , 〉 − dr ⊗ dr
)

resp. Hess (r) ≥ h′(r)
h(r)

(〈 , 〉 − dr ⊗ dr
)

(2.2)

for some appropriate function h. By taking traces, we will then obtain corre-
sponding estimates for the Laplacian ∆r. As we will see, an upper estimate for ∆r
requires only a lower bound for the radial Ricci curvature, while a lower estimate
requires an upper bound for the radial sectional curvature.

To obtain these results we use an “analytic” approach inspired by P. Petersen,
[128] avoiding, in this way, the “geometrical” Laplacian comparison theorem of
R. Greene and H.H. Wu, [66].

We will need the following Sturm comparison result:

Lemma 2.1. Let G be a continuous function on [0, +∞) and let φ, ψ ∈ C1
(
[0,∞)

)
with φ′, ψ′ ∈ AC((0, +∞)) be solutions of the problems{

φ′′ −Gφ ≤ 0 a.e. in (0,∞),
φ(0) = 0,

{
ψ′′ −Gψ ≥ 0 a.e. in (0,∞),
ψ(0) = 0, ψ′(0) > 0.

If φ(r) > 0 for r ∈ (0, T ) and ψ′(0) ≥ φ′(0), then ψ(r) > 0 in (0, T ) and

φ′

φ
≤ ψ′

ψ
and ψ ≥ φ on (0, T ). (2.3)
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Proof. Since ψ′(0) > 0, ψ > 0 in a neighborhood of 0. We observe in passing that
if G is assumed to be non-negative, then integrating the differential inequality
satisfied by ψ we have

ψ′(r) = ψ′(0) +
∫ r

0

G(s)ψ(s) ds,

so that ψ′ is positive in the interval where ψ ≥ 0, and we conclude that, in fact,
ψ > 0 on (0, +∞).

In the general case where no assumption is made on the signum of G, we let
β = sup{t : ψ > 0 in (0, t)} and τ = min{β, T}, so that φ and ψ are both positive
in (0, τ). The function ψ′φ− ψφ′ is continuous on [0, +∞) vanishes in r = 0, and
satisfies

(ψ′φ− ψφ′)′ = ψ′′φ− ψφ′′ ≥ 0,

a.e. in (0, τ). Thus ψ′φ−ψφ′ ≥ 0 on [0, τ), and dividing through by φψ we deduce
that

ψ′

ψ
≥ φ′

φ
in (0, τ).

Integrating between ε and r (0 < ε < r < τ) yields

φ(r) ≤ φ(ε)
ψ(ε)

ψ(r)

and since

lim
ε→0+

φ(ε)
ψ(ε)

=
φ′(0)
ψ′(0)

≤ 1,

we conclude that in fact
φ(r) ≤ ψ(r) in [0, τ).

Since φ > 0 in (0, T ) by assumption, this in turn forces τ = T , for otherwise,
τ = β < T , and we would have, φ(β) > 0, while by continuity, ψ(β) = 0, which is
a contradiction. �

Using the above Sturm comparison result, we deduce a comparison result for
solutions of Riccati (in)equalities of the form

φ′ + φ2 = G (≥ G, ≤ G)

on (0, T ) with appropriate asymptotic behavior as r → 0+. Note in this respect
that the substitution g = φ′/φ transforms the Riccati inequality into the second-
order linear inequality

g′′ = Gg (≥ Gg, ≤ Gg)

and conversely.
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Corollary 2.2. Let G be a continuous function on [0, +∞) and let gi ∈ AC(0, Ti)
be solutions of the Riccati differential inequalities

g′1 +
g2

i

α
− αG ≤ 0 g′2 +

g2
2

α
− αG ≥ 0

a.e. in (0, Ti) satisfying the asymptotic condition

gi(t) =
α

t
+ O(1) as t→ 0+,

for some α > 0. Then T1 ≤ T2 and g1(t) ≤ g2(t) in (0, T1).

Proof. Since g̃i = α−1gi satisfies the conditions in the statement with α = 1,
without loss of generality we may assume that α = 1.

Observe that the function gi(s)− 1
s is bounded and integrable in a neighbor-

hood of s = 0, and let φi ∈ C1([0, Ti)) be the positive function on [0, Ti) defined
by

φi(t) = t exp
{∫ t

0

(
gi(s)− 1

s

)
ds

}
.

Then φi(0) = 0, φi > 0 on (0, Ti), φ′
i ∈ AC(0, Ti)) and straightforward computa-

tions show that
φ′

i(t) = giφi(t), φ′
i(0) = 1

and
φ′′

1 ≤ Gφ1 on (0, T1), φ′′
2 ≥ Gφ2 on (0, T2).

An application of Lemma 2.1 shows that T1 ≤ T2 and g1 = φ′
1

φ1
≤ φ′

2
φ2

= g2 on
(0, T1), as required. �

After this preparation we are ready to state our comparison result for the
Hessian.

Theorem 2.3. Let (M, 〈 , 〉) be a complete manifold of dimension m. Having fixed
a reference point o ∈ M , let r (x) = distM (x, o), and let Do = M \ cut(o) be the
domain of the normal geodesic coordinates centered at o. Given a smooth even
function G on R, let h be the solution of the Cauchy problem{

h′′ −Gh = 0,
h (0) = 0, h′ (0) = 1,

and let I = [0, r0) ⊆ [0, +∞) be the maximal interval where h is positive. If the
radial sectional curvature of M satisfies

Sectrad ≥ −G (r (x)) on Br0(o) (2.4)

on Bro(o), then

Hess (r) ≤ h′

h
{〈 , 〉 − dr ⊗ dr} (2.5)
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on (Do \ {o}) ∩Br0(o), in the sense of quadratic forms. On the other hand, if

Sectrad ≤ −G (r (x)) on Br0(o), (2.6)

then

Hess (r) ≥ h′

h
{〈 , 〉 − dr ⊗ dr} . (2.7)

Proof. We essentially follow the direct approach by P. Petersen, [128], thus avoid-
ing the classical use of Jacobi fields.

Observe first of all that Hess (r)(∇r, X) = 0 for every X ∈ TxM , and x ∈
Do \ {o}. Indeed, let γ be the geodesic parametrized by arc length issuing from
o with γ(so) = x, then γ is an integral curve of ∇r, namely, γ̇(s) = ∇r(γ(s)) so
that D∇r∇r(x) = Dγ(so)γ̇ = 0.

Next, since Hess (r) is symmetric, TxM has an orthonormal basis consisting
of eigenvectors of Hess (r). Denoting by λmax(x) and λmin(x), respectively, the
greatest and smallest eigenvalues of the Hess (r) in the orthogonal complement of
∇r(x), the theorem amounts to showing that on (Do \ {o}) ∩Br0(o),

(i) if (2.4) holds, then λmax(x) ≤ h′

h
(r(x)),

(ii) if (2.6) holds, then λmin(x) ≥ h′

h
(r(x)).

Let x ∈ Do \ {o}, and let again γ be the minimizing geodesic joining o to x.
We claim that, if (2.4) holds, then the Lipschitz function λmax satisfies{

d
ds (λmax ◦ γ) + (λmax ◦ γ)2 ≤ G for a.e. s > 0,
λmax ◦ γ = 1

s + o (1) , as s → 0+.
(2.8)

Similarly, if (2.6) holds, then the Lipschitz function λmin satisfies{
d
ds (λmin ◦ γ) + (λmin ◦ γ)2 ≥ G for a.e. s > 0,
λmin ◦ γ = 1

s + o (1) , as s → 0+.
(2.9)

Since φ = h′/h satisfies

φ′ + φ2 = G on (0, ro), φ(s) =
1
s

+ 0(s) as s → 0+,

the required conclusion follows at once from Corollary 2.2. It remains to prove that
λmax and λmin satisfy the required differential inequalities. To this end, given a
smooth real function u, denote by hess (u) the (1, 1) symmetric tensor field defined
by

hess (u) (X) = DX∇u,

so that
Hess (u) (X, Y ) = 〈hess (u) (X) , Y 〉 .
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By definition of covariant derivative in TM∗ ⊗ TM,

DX(hess(u))(Y ) = DX

[
hess(u)(Y )

]− hess(u)(DXY ),

so that, recalling the definition of the curvature tensor, we deduce the Ricci com-
mutation rule

DX(hess(u))(Y )−DY (hess(u))(X) = R(X, Y )∇u.

Now, choose u = r (x), X = ∇r, and let γ be the minimizing geodesic joining o to
x ∈ Do \ {o}. For every unit vector Y ∈ TxM such that Y ⊥ γ̇(so), define a vector
field Y⊥γ̇, by parallel translation along γ. Since, as noted above, hess (r)(∇r) ≡ 0,
we compute

Dγ̇(t0)

[
hess (r)(Y )

]
= Dγ̇(t0)(hess (r))(Y ) + hess (r)(Dγ̇(t0)Y )
= D∇(r)(hess (r))(Y )
= DY (hess (r))(∇r) + R(∇r, Y )∇r

= DY [hess (r)(∇r)] − hess (r)(DY∇r)−R(Y,∇r)∇r

= −hess (r)(hess (r)(Y ))−R(Y,∇r)∇r,

that is,
Dγ̇(to)[hess (r)(Y )] + hess (r)(hess (r)(Y ))−R(Y,∇r)∇r.

Since Y is parallel,

d

dt
〈hess (r)(Y ), Y 〉 = 〈Dγ̇ [hess (r)(Y )], Y 〉,

and we conclude that

d

ds
(Hess (r) (γ) (Y, Y )) + 〈hess (r)(γ)(Y ), hess (r)(γ)(Y )〉 = −Sectγ (Y ∧ γ̇) .

(2.10)
Now assume that Sectrad ≥ −G (r (x)). Note that, for any unit vector field X⊥∇r,

Hess (r) (X, X) ≤ λmax.

Thus, if Y is chosen so that, at s0,

Hess (r) (γ) (Y, Y ) = λmax (γ (s0)) ,

then the function
Hess (r) (γ) (Y, Y )− λmax ◦ γ

attains its maximum at s = s0 and, if at this point λmax is differentiable, then its
derivative vanishes:

d

ds

∣∣∣∣
s0

Hess (r) (γ) (Y, Y )− d

ds

∣∣∣∣
s0

λmax ◦ γ = 0.
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Whence, using (2.10), we obtain, at s0,

d

ds
(λmax ◦ γ) + (λmax ◦ γ)2 ≤ G,

which is the desired inequality stated in (2.8). The asymptotic behavior of λmax◦γ
near s = 0+ follows from the fact that

Hess (r) =
1
r

(〈 , 〉 − dr ⊗ dr) + o (1) , r → 0+,

as one can verify by a standard computation in normal coordinates at o ∈M . The
argument in the case where Sectrad ≤ −G is completely similar. �

As mentioned above, by taking traces in Theorem 2.3 we immediately obtain
corresponding estimates for ∆r. In particular, if Sectrad ≤ −G(r(x)) it follows
that

∆r(x) ≥ (m− 1)
h′(r(x))
h(r(x))

on (Do\{o})∩Br0(o). Clearly the corresponding upper estimate holds if we assume
instead that the radial sectional curvature is bounded below by −G. In this case
however, the conclusion holds under the weaker assumption that the radial Ricci
curvature is bounded from below by−(m−1)G(r(x)). Indeed we have the following
Laplacian comparison theorem,

Theorem 2.4. Maintaining the notation of the previous theorem, assume that the
radial Ricci curvature of M satisfy

Ric(M,〈 ,〉)(∇r,∇r) ≥ −(m− 1)G(r) (2.11)

for some function G ∈ C0([0, +∞)), and let h ∈ C2([0, +∞)) be a solution of the
problem {

h′′ −Gh ≥ 0,

h(0) = 0, h′(0) = 1.
(2.12)

Then the inequality

∆r(x) ≤ (m− 1)
h′(r(x))
h(r(x))

(2.13)

holds pointwise on M \ (cut(o) ∪ {o}), and weakly on all of M .

Proof. Let [0, r0) ⊆ [0, +∞) be the maximal interval where h is positive. Note that
comparing h with the solution of the differential equation associated to (2.12) and
using the remark at the beginning of the proof of Lemma 2.1 shows that if G is
non-negative, then ro = +∞.

As in the proof of Theorem 2.3, let Do = M \ cut(o) be the maximal star-
shaped domain of the normal coordinates at o. Fix any x ∈ Do ∩ (Bro(o) \ {o})
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and let γ : [0, l] → M be the minimizing geodesic from o to x parametrized by
arc-length. Set

ϕ(s) = (∆r) ◦ γ(s), s ∈ (0, l].

We claim that ϕ satisfies{
i) ϕ(s) = m−1

s + o(1), as s → 0+,

ii) ϕ′ + 1
m−1ϕ2 ≤ (m− 1)G, on (0, l].

(2.14)

Indeed (2.14) i) follows from the well-known fact that

∆r =
m− 1

r
+ o(1), as r → 0+.

As for (2.14) ii), note that by tracing in (2.10) we deduce that

d

dt
(∆r ◦ γ) + |Hess r|2(γ) = −Ric(∇r,∇r)(γ).

Using the elementary inequality

(∆r)2

m− 1
≤ |Hess(r)|2 ,

which in turn follows easily from the Cauchy–Schwarz inequality, we deduce that

d

dt
(∆r ◦ γ) +

(∆r ◦ γ)2

m− 1
≤ −Ric(∇r,∇r)(γ). (2.15)

Inequality (2.14) ii) follows from the assumption on Ric. Arguing as in the proof
of Theorem 2.3 shows that (2.13) holds pointwise on Do ∩ (Bro(o) \ {o}).

Note now that a computation in polar geodesic coordinates shows that

∆r ◦ γ(t) =
1√

g(t, θ)
∂
√

g(t, θ)
∂t

where θ = γ′(0) and g(r, θ) is the determinant of the metric in geodesic polar
coordinates. Thus (2.13) can be rewritten in the form

1√
g(t, θ)

∂
√

g(t, θ)
∂t

≤ (m− 1)
h′(t)
h(t)

whence, integrating and using the asymptotic behavior of h and
√

g as t → 0+,
show that for every unit length θ ∈ ToM ,√

g(t, θ) ≤ h(t) ∀t < min{ro, c(θ)}
where c(θ) denotes the distance of o from cut(o) along the geodesic γθ. Since√

g(t, θ) > 0 if (t, θ) belongs to the domain of the geodesic polar coordinates,
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while, if ro < +∞, then h(ro) = 0, we deduce that for all θ c(θ) ≤ ro, and
therefore Do ⊂ Bro(o).

Thus (2.13) holds pointwise on M \ ({o} ∪ cut(o)), and it remains to prove
that the inequality holds weakly on all of M . This is guaranteed by the following
lemma. �

Lemma 2.5. Set Do = M\cut(o) and suppose that

∆r ≤ α(r) pointwise on Ω\ {o} (2.16)

for some α ∈ C0
(
(0, +∞)

)
. Let v ∈ C2(R) be non-negative and set u(x) = v(r(x))

on M . Suppose either
i) v′ ≤ 0 or ii) v′ ≥ 0. (2.17)

Then we respectively have

i) ∆u ≥ v′′(r) + α(r)v′(r); ii) ∆u ≤ v′′(r) + α(r)v′(r) (2.18)

weakly on M .

Proof. Let Eo be the maximal star-shaped domain on which expo is a diffeomor-
phism onto its image, so that Do = exp(Eo) and we have cut(o) = ∂ (expo (Eo)).
Since Eo is a star-shaped domain, we can exhaust Eo by a family {En

o } of relatively
compact, star-shaped domains with smooth boundary. We set Ωn = expo(En

o ) so
that

Ω
n ⊂ Ωn+1 and ∪n Ωn = Do.

The fact that each En
o is star-shaped implies

∂r

∂νn
> 0, on ∂Ωn (2.19)

where νn denotes the outward unit normal to ∂Ωn. Now, we assume the validity
of (2.17) i). Since r ∈ C∞(Ωn\ {o}), computing we get

∆u ≥ v′′ + α(r)v′ pointwise on Ωn\ {o} . (2.20)

Let 0 ≤ ϕ ∈ C∞
0 (M). We claim that, ∀n,∫

Ωn

u∆ϕ ≥
∫

Ωn

(v′′ + α(r)v′)ϕ + εn

with εn → 0 as n → +∞. Since M = Ω ∪ cut(o) and cut(o) has measure 0,
inequality (2.18) i) will follow by letting n→ +∞. To prove the claim we fix δ > 0
small and we apply the second Green formula on Ωn\Bδ(o) to obtain∫

Ωn\Bδ(o)

u∆ϕ =
∫

Ωn\Bδ(o)

ϕ∆u−
∫

∂Ωn∪∂Bδ(o)

(
ϕ

∂u

∂νn
− u

∂ϕ

∂νn

)
(2.21)
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where νn is the outward unit normal to ∂Ωn ∪∂Bδ(o). We note that, according to
(2.17) i) and (2.19),

∂u

∂νn
= v′(r)

∂r

∂νn
≤ 0 on ∂Ωn.

Using this, (2.20) and (2.21), we obtain∫
Ωn

u∆ϕ ≥
∫

Ωn

(v′′ + α(r)v′)ϕ + εn + Iδ

with
εn =

∫
∂Ωn

u
∂ϕ

∂νn
,

Iδ =
∫

Bδ(o)

[u∆ϕ− (v′′ + α(r)v′)ϕ]−
∫

∂Bδ(o)

[
u

∂ϕ

∂r
− ϕ

∂u

∂r

]
.

Clearly, Iδ → 0 as δ → 0+. On the other hand, since ϕ ∈ C∞
0 (M) and cut(o) has

measure 0, using the divergence and Lebesgue theorems we see that, as n → +∞,

εn =
∫

Ωn

div (u∇ϕ) →
∫

Ω

div(u∇ϕ) =
∫

M

div(u∇ϕ) = 0.

This proves the claim and the validity of (2.18) i).
The case of (2.17) ii) and (2.18) ii) can be dealt with in a similar way. �

Remark 2.6. We note that, for the above proofs to work, it is not necessary that
(2.11) holds on the entire M . Indeed, for instance, if (2.11) is valid on BR(o), then
(2.13) holds on BR(o)\ ({o} ∪ cut(o)) and weakly on BR(o).

We also remark that in the course of the proof we have shown that if the
solution h of (2.12) vanishes at ro, then Do ⊂ Bro(o) and therefore M ⊂ Bro(o).
This easily yields the classical Bonnet-Myers theorem, stating that if Ric ≥ (m−
1)B2, then M is compact with diameter at most

√
π/B.

Remark 2.7. We note for future use that a modification of the above argument
shows that on M \ {o} the singular part of the distribution ∆r is negative, and
therefore it is the opposite of a positive measure concentrated on the cut locus.
Indeed, let φ be a smooth, non-negative test function with support contained in
M \ {o}. Arguing as above we may write

(φ, ∆r) =
∫

M

r∆φ = lim
n

(∫
Ωn

φ∆r +
∫

∂Ωn

r〈∇φ, ν〉 −
∫

∂Ωn

φ〈∇r, ν〉).
As n → +∞, the first term on the right-hand side tends to

∫
Eo

φ∆r, and, as noted
in the above proof, the second term tends to zero. Thus the limit of the third term
exists, and we have

(r, ∆φ)−
∫

Eo

φ∆r = (φ, (∆r)sing) = − lim
n

∫
∂Ωn

φ〈∇rν〉,

and since 〈∇r, ν〉 ≥ 0, the limit is non-negative, as claimed.
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In order to apply Theorem 2.4 one needs to find solutions of (2.12). We begin
with the following fairly general result.

Lemma 2.8. Suppose that G is a positive C1 function on [0, +∞) such that

inf
[0,+∞)

G′

G3/2
> −∞. (2.22)

Then, there exists D > 0 sufficiently large that the function h defined by

h(r) =
1

D
√

G(0)

{
eD

∫
r
0

√
G(s)ds − 1

}
(2.23)

is a solution of (2.12).

Proof. Indeed, it is a simple matter to check that if h is as in the statement, then
h(0) = 0, h′(0) = 1 and furthermore

h′′ −G h ≥ G√
G(0)

[
inf

[0,+∞)

G′

2G3/2
+ D − 1

D

]
so that, by (2.22), (2.12) holds provided D > 0 is sufficiently large. �

Remark 2.9. Assumption (2.22) implies G(r)1/2 	∈ L1(+∞). It is then a simple
matter to check that

h′(r)
h(r)

∼
{

1
r as r → 0,

D G(r)1/2 as r → +∞.
(2.24)

Remark 2.10. When we can find an explicit solution of the problem{
h′′ − h G = 0, on [0, +∞),
h(0) = 0, h′(0) = 1,

(2.25)

then (2.13) yields a better estimate. For instance if G(r) ≡ B2, B > 0,

h(r) = B−1 sinh (Br)

satisfies (2.25) and we obtain

∆r ≤ (m− 1)B coth (Br) weakly on M (2.26)

and pointwise on M\ ({o} ∪ cut(o)). This estimate will be repeatedly used in the
sequel.

We next describe some upper and lower estimates for h′/h and for h obtained
in [20] for the case where G has the form G(r) = B2(1+ r2)α/2 for some constants
B > 0 and α ≥ −2. We begin with upper bounds.
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Proposition 2.11. Assume h is a solution of{
h′′ −B2(1 + r2)α/2h = 0,

h(0) = 0 h′(0) = 1,
(2.27)

where B > 0 and α ≥ −2. Set

B′ =

{
B if α > −2,
1+

√
1+4B2

2 if α = −2.
(2.28)

Then
h′

h
(r) ≤ B′rα/2(1 + o(1)) as r → +∞. (2.29)

Moreover there exists a constant C such that, when r > 1,

h(r) ≤ C

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp

(
2B′

2 + α
(1 + r)1+α/2

)
if α ≥ 0,

r−α/4exp
(

2B′

2 + α
r1+α/2

)
if − 2 < α < 0,

rB′
if α = −2.

(2.30)

Proof. The case where α ≥ 0 was already treated in [134]. It is a simple matter to
check that the function ψ defined by

ψ(r) = B−1 sinh
(

2B

2 + α

[
(1 + r)1+α/2 − 1

])
satisfies ψ′′/ψ ≥ B2(1 + r2)α/2, ψ(0) = 0 and ψ′(0) = 1. The estimates (2.29) and
(2.30) follow at once.

Next assume that −2 < α < 0. Denoting by Iν the modified Bessel function
of order ν, it may be verified that the function defined by

ψ(r) = r1/2I 1
2+α

(
2B

2 + α
r1+α/2

)
,

is a positive C1 solution on [0, +∞) of the (singular) differential equation

ψ′′ = B2rαψ

satisfying ψ(0) = 0 ([91], page 106). Since rα ≥ (1 + r2)α/2, the argument above
shows that h′/h ≤ ψ′/ψ. Using the recurrence relation

Iν =
1
2

(Iν+1 + Iν−1)

and the asymptotic representation

Iν(r) =
er

√
2πr

(1 + o(1)) as r → +∞
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([91], page 110 and page 123, respectively), it is not hard to show that

ψ′

ψ
(r) = Brα/2 − α

4
r−1 + O

(
r−2−α/2

)
as r → +∞

and (2.29) follows. Since we also have ψ′(0) = C where C = Cα,B is a positive con-
stant depending on α and B, we have h ≤ C−1ψ and (2.30) is again a consequence
of the asymptotic representation of Iν .

Finally, if α = −2, we consider the function defined by

ψ(r) = rβ .

A simple computation shows that

ψ′′/ψ ≥ B2(1 + r2)−1

holds provided β =
[
1 +

√
1 + 4B2

]
/2, showing that (2.29) holds. The validity of

(2.30) is then established by integrating h′/h over [1, r]. �
Next we consider lower bounds. To illustrate the method, assume that h′′ =

G(r)h and that G(r) is non-increasing. Then

h′′(r) = G(r)h(r) ≥ G(R)h(r) ∀ r ∈ [0, R].

Thus, the comparison argument used in the proof of Lemma 2.1 applied to the
function φ(r) = G(R)−1/2 sinh

(
G(R)1/2r

)
implies that

h′

h
(r) ≥ G(R)1/2 tanh

(
G(R)1/2r

)
.

Suppose now that G(r) has the form G(r) = B2(1 + r2)α/2. The condition
that G(r) be decreasing requires that we restrict ourselves to the case where −2 ≤
α ≤ 0.

The case where α = 0 is trivial since then G(r) is constant, and we have the
equality h(r) = B−1 sinh(Br).

If −2 < α < 0, the argument above shows that

h′

h
≥ B(1 + r2)α/4 ≥ Brα/4

[
1 +

α

4
r−2

]
r � 1,

where the last inequality follows by expanding the function (1+r−2)α/4. Integrat-
ing over [R, r], R � 1, we obtain

h(r) ≥ h(R) exp
(

B

∫ r

R

sα/4[1 + α/(4s2)]
)

ds

≥ C exp
(

2B

2 + α
r1+α/2

)
.
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Finally, if α = −2, we consider the function φ(r) = (1+ r)B′
, with B′ as in (2.28).

Then
φ′′

φ
(r) =

B′(B′ − 1)
(1 + r)2

≥ B2

1 + r2
.

Thus (h′φ− hφ′)′(r) > 0, r > 0, and since (h′φ− hφ′)(0) = 1, we conclude that

h′

h
(r) ≥ B′(1 + r)−1,

and then integrating
h(r) ≥ C(1 + r)B′

.

The above considerations prove the following

Proposition 2.12. Let h be the solution of (2.27) with −2 ≤ α ≤ 0, and let B′ be
defined as in (2.28). Then

h′

h
(r) ≥ B′rα/2(1 + o(1)) as r → +∞, (2.31)

and there exists a constant C such that when r > 1

h(r) ≥ C

⎧⎨⎩exp
(

2B′

2 + α
r1+α/2

)
if − 2 < α ≤ 0,

rB′
if α = −2.

(2.32)

We conclude this section by considering the case where G is a non-negative
non-increasing function satisfying the condition∫ +∞

0

tG(t) dt < +∞. (2.33)

According to a terminology introduced by U. Abresch [1] for the sectional curva-
ture, if a manifold (M, 〈 , 〉) satisfies

Sect(x) ≥ −G(r(x)) resp. Ric(∇r,∇r) ≥ −(m− 1)G(r(x))

with G as above, then one says that M has asymptotically non-negative sectional,
resp. Ricci, curvature. Note that under these assumption, G decays faster than
quadratically at infinity, and in particular, condition (2.22) does not hold. This
case is dealt with in the following lemma (see also [125], Lemma 1, and [171],
Lemma 2.1).

Lemma 2.13. Assume that h ∈ C2([0, +∞) is the solution of the problem{
h′′ −G(r)h = 0,

h(0) = 1, h′(0) = 1,
(2.34)
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where G is a continuous non-negative function on [0, +∞). Let ψ be defined by the
formula

ψ(r) =
∫ r

0

e
∫

s
0 uG(u) duds.

Then we have the estimates

(i) 1 ≤ h′(r) ≤ ψ′(r) (ii)
1
r
≤ h′

h
≤ ψ′

ψ
and (iii) r ≤ h(r) ≤ ψ(r). (2.35)

In particular, if ∫ +∞

0

tG(t) dt = b0 < +∞, (2.36)

then, for every r ≥ 0,

1 ≤ h′(r) ≤ eb0 and r ≤ h(r) ≤ eb0r. (2.37)

Proof. Since the function φ(t) = t satisfies{
φ′′ −G(r)φ ≤ 0,

φ(0) = 1, φ′(0) = 1,

applying Lemma 2.1 we easily obtain the left-hand side inequalities in (2.35)
(ii) and (iii), which in turn imply (i).

The upper bounds are proved in a similar way. Indeed, since

ψ(r) ≤ re
∫

r
0 sG(s) ds,

a straightforward computation shows that the function ψ satisfies{
ψ′′ −G(r)ψ ≥ 0,

ψ(0) = 1, ψ′(0) = 1,

and therefore we obtain the right-hand side inequalities in (2.35). It is clear that
if (2.36) holds, then (2.35) yields (2.37) �

2.2 Volume comparison and volume growth

The following result is a somewhat generalized version of what is known in the lit-
erature as the Bishop-Gromov volume comparison theorem. In fact, on manifolds
with Ricci curvature bounded from below, R. Bishop proved an upper estimate
for the volume of balls not intersecting the cut locus of their centers, in terms
of the volumes of corresponding balls in space-forms, [10]. Later, M. Gromov ex-
tended the estimate including the cut locus and improved the result by showing a
monotonicity behavior.
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Theorem 2.14. Let (M, 〈 , 〉) be a complete, m-dimensional Riemannian manifold
satisfying

Ric (x) ≥ − (m− 1)G (r (x)) on M (2.38)

for some non-negative function G ∈ C0 ([0, +∞)) , where r (x) = dist (x, o) is
the distance from a fixed reference origin o ∈ M. Let h (t) ∈ C2 ([0, +∞)) be the
non-negative solution of the problem{

h′′ (t)−G (t)h (t) = 0,
h (0) = 0 h′ (0) = 1.

(2.39)

Then, for almost every R > 1, the function

R �→ vol∂BR (o)
h(R)m−1

is non-increasing (2.40)

and
vol∂BR (o) ≤ cmh(R)m−1 (2.41)

where cm is the volume of the unit sphere in Rm. Moreover,

R �→ volBR (o)∫ R

0 h (t)m−1
dt

(2.42)

is a non-increasing function on (0, +∞).

Proof. In case o is a pole of M one simply integrates the radial vector field

X = h(r(x))−m+1∇r

on concentric balls BR (o), and uses the divergence and the Laplacian compari-
son theorems. However, in general, objects are non-smooth and inequalities are
intended in the sense of distributions. Therefore, we have to take some extra care.

The Laplacian comparison theorem asserts that

∆r (x) ≤ (m− 1)
h′ (r (x))
h (r (x))

(2.43)

pointwise on the open, star-shaped, full-measured set M \ cut (o) and weakly on
all of M . Thus, for every 0 ≤ ϕ ∈ Lipc (M),

−
∫
〈∇r,∇ϕ〉 ≤ (m− 1)

∫
h′ (r (x))
h (r (x))

ϕ. (2.44)

For any ε > 0, consider the radial cut-off function

ϕε (x) = ρε (r (x))h(r(x))−m+1 (2.45)
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where ρε is the piecewise linear function

ρε (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if t ∈ [0, r),
t−r

ε if t ∈ [r, r + ε),
1 if t ∈ [r + ε, R− ε),
R−t

ε if t ∈ [R− ε, R),
0 if t ∈ [R,∞).

(2.46)

Note that

∇ϕε =
{
−χR−ε,R

ε
+

χr,r+ε

ε
− (m− 1)

h′(r(x))
h(r(x))

ρε

}
h (r(x))−m+1∇r,

for a.e. x ∈ M , where χs,t is the characteristic function of the annulus Bt (o) \
Bs (o) . Therefore, using ϕε into (2.44) and simplifying, we get

1
ε

∫
BR(o)\BR−ε(o)

h (r(x))−m+1 ≤ 1
ε

∫
Br+ε(o)\Br(o)

h (r(x))−m+1
.

Using the co-area formula we deduce that

1
ε

∫ R

R−ε

vol∂Bt (o)h (t)−m+1 ≤ 1
ε

∫ r+ε

r

vol∂Bt (o)h (t)−m+1

and, letting ε ↘ 0,
vol∂BR (o)
h (R)m−1 ≤ vol∂Br (o)

h (r)m−1 (2.47)

for a.e. 0 < r < R. Letting r → 0, and recalling that h(r) ∼ r and vol∂Br ∼
cmrm−1 as r → 0, we conclude that, for a.e. R > 0,

vol∂BR (o) ≤ cmh (R)m−1
, a.e. R > 0.

To prove the second statement, we note that it was observed by M. Gromov, see
[33], that for general real-valued functions f (t) ≥ 0, g (t) > 0,

if t→ f (t)
g (t)

is decreasing, then t→
∫ t

0 f∫ t

0 g
is decreasing.

Indeed, since f/g is decreasing, if 0 < r < R,∫ r

0

f

∫ R

r

g =
∫ r

0

g
f

g

∫ R

r

g ≥ f(r)
g(r)

∫ r

0

g

∫ R

r

g ≥
∫ r

0

g

∫ R

r

g
f

g
=

∫ r

0

g

∫ R

r

f,

whence∫ r

0

f

∫ R

0

g =
∫ r

0

f

∫ r

0

g +
∫ r

0

f

∫ R

r

g ≥
∫ r

0

f

∫ r

0

g +
∫ r

0

g

∫ R

r

f =
∫ r

0

g

∫ R

0

f.
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In particular, applying this observation to (2.47) and using the co-area formula
we deduce that

r → volBr (o)∫ r

0
h (t)m−1

dt
is decreasing,

as required to conclude the proof. �
The following straightforward consequence of Theorem 2.14 is useful in ap-

plications.

Corollary 2.15. Let (M, 〈 , 〉) be a complete, m-dimensional manifold satisfying
(2.38) for some non-negative function G (t) ∈ C0 ([0,∞)).

(i) Having fixed x0 ∈M and 0 < R̄ ≤ r (x0), define

snH (t) =
{

H−1 sinh (Ht) if H > 0,
t if H = 0,

(2.48)

with
H2 = max

BR̄(x0)
G (r (x)) = max

[r(x0)−R̄,r(x0)+R̄]
G (t) . (2.49)

Then, the function

R �→ volBR (x0)∫ R

0 snH (t)m−1
dt

is non-increasing on [0, R̄].

(ii) If G (t) is non-decreasing, then, for every x0 ∈M , the function

R �→ volBR (x0)∫ R

0
hx0 (t)m−1

dt

is non-increasing on (0, +∞). Here, hx0 is the solution of the problem{
h′′ (t)−Gx0 (t)h (t) = 0,
h (0) = 0 h′ (0) = 1,

where Gx0 (t) = G (t + r (x0)) .

Remark 2.16. Using the first part of the statement, J. Cheeger, M. Gromov and
M. Taylor, [33], were able to deduce sharp volume growth estimates under point-
inhomogeneous curvature conditions. See Theorem 2.26 and Corollary 2.27 below.
See also Remark 2.23.

Proof. Part (i) is just a local version of Theorem 2.14. As for part (ii) , let G (t)
be non-decreasing. Fix x0 ∈ M , set rx0 = dist (x0, x) , and observe that, by the
triangle inequality,

Ric (x) ≥ − (m− 1)G (r (x)) ≥ − (m− 1)Gx0 (rx0 (x)) .

Therefore, the assumptions of Theorem 2.14 are met with respect to the origin
x0. �
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In the previous section, we made several choices of the lower Ricci bound
G (t) in such a way that the solutions g (t) of the corresponding problem (2.39)
can be explicitly estimated. In view of Theorem 2.14, these estimates can now be
applied to get upper volume bounds. We limit ourselves to “polynomial situations”
(see Proposition 2.11 and Lemma 2.13 above).

Corollary 2.17. Let (M, 〈 , 〉) be a complete, m-dimensional manifold satisfying

Ric (x) ≥ − (m− 1)G (r (x)) on M

for some non-negative function G ∈ C0 ([0, +∞)) , where r (x) = dist (x, o) is the
distance from a fixed reference origin o ∈M .

(i) Assume G (t) = B2
(
1 + t2

)−1, with B > 0. Then, for every R > r >> 1,

volBR (o)
volBr (o)

≤ C

(
R

r

)(m−1)B′+1

, vol∂Br (o) ≤ Cr(m−1)B′
,

where

B′ =
1 +

√
1 + 4B2

2
and C > 0 is a suitable constant.

(ii) Assume
∫ +∞
0 tG (t) dt = b0 < +∞. Then, for every R > r > 1,

volBR (o)
volBr (o)

≤ e(m−1)b0

(
R

r

)m

, vol∂Br (o) ≤ cme(m−1)b0rm−1,

where, as in (2.41), cm is the (m− 1)-volume of the unit sphere in Rm.

The volume estimates described above depend on uniform bounds on the
Ricci curvature. We next consider a situation in which the Ricci curvature satisfies
some Lp-integrability conditions, and describe upper bounds for the volume growth
of balls obtained by P. Petersen and G. Wei in [129], who consider the slightly less
general case where the function G below is a non-negative constant and M is
compact. Previous related results have been obtained by S. Gallot, [57], Li and
Yau, [107] and D. Yang, [166].

As above, we assume that G is non-negative and continuous on [0, +∞) and
that h (t) ∈ C2 ([0, +∞)) is the non-negative solution of the problem{

h′′ (t)−G (t)h (t) = 0,
h (0) = 0 h′ (0) = 1.

Letting r(x) be the distance function from the reference point o, we also define

ψ(x) = max{0, ∆r(x) − (m− 1)
h′(r(x))
h(r(x))

} (2.50)
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in the domain Do of the normal coordinates at o, and 0 on the cut locus, and let

ρ(x) = max{0,−Ric(∇r,∇r) − (m− 1)G(r(x))}, (2.51)

so that if ρ ≡ 0, that is Ric(∇r,∇r) ≥ −(m − 1)G(r(x)), then, by the Laplacian
comparison theorem, ψ(x) ≡ 0. For ease of notation, in the course of the arguments
that follow we will denote by

AG(r) = cmh(r)m−1 and VG(r) = cm

∫ r

0

h(t)m−1dt (2.52)

the measures of the sphere and of the ball of radius r centered at the pole in the m-
dimensional model manifold MG with radial Ricci curvature equal to −(m− 1)G,
that is the manifold that is diffeomorphic to Rm and whose metric is given, in
geodesic polar coordinates by

〈 , 〉G = dr2 + h(r)2( , )Sm−1 .

We begin with the following lemma, which is a minor modification of Lemma
2.1 in [129].

Lemma 2.18. Maintaining the notation introduced above, for every fixed p > 1/2
we have

d

dR

volBR(o)
VG(R)

≤ cmRAG(R)
VG(R)1+1/2p

(volBR

VG(R)

)1−1/2p(∫
BR

ψ2p
)1/2p

. (2.53)

Proof. According to Remark 2.7, for every non-negative Lipschitz function ϕ com-
pactly supported in M \ {o} we have

−
∫

M

〈∇r,∇ϕ〉 = (ϕ, ∆r) =
∫

Eo

ϕ∆r + (ϕ, (∆r)sing ) ≤
∫

Eo

ϕ∆r,

where Do is the domain of the normal geodesic coordinates at o. Applying this
inequality to the function ϕε (x) = ρε (r (x))h(r(x))−m+1 where ρε is the Lipschitz
cut-off function defined in (2.46), arguing as in the proof of Theorem 2.14, and
using the fact that h is non-decreasing, and the definition of ψ, we deduce that
for a.e. 0 < r < R,

vol∂BR

AG(R)
− vol∂Br

AG(r)
≤

∫
BR\Br

h(r(x))−m+1
[
∆r − (m− 1)

h′(r(x))
h(r(x))

]
≤ h(r)−m+1

∫
BR\Br

ψ.

Using Hölder inequality and the definition of AG we obtain

AG(r)vol ∂BR −AG(R)vol∂Br ≤ cmAG(R)
∫

BR\Br

ψ(x)

≤ cmAG(R)
(
volBR

)1−1/2p
(∫

BR

ψ2p
)1/2p

.
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Therefore, applying the co-area formula, and using the above inequality we obtain

d

dR

(volBR

VG(R)

)
=

VG(R)vol∂BR −AG(R)vol BR

VG(R)2

= VG(R)−2

∫ R

0

(
AG(r)vol ∂BR −AG(R)vol ∂Br

)
dr

≤ VG(R)−2

∫ R

0

cmAG(R)
(
volBR

)1−1/2p
(∫

BR

ψ2p
)1/2p

dr

=
cmRAG(R)
VG(R)1+1/2p

(volBR

VG(R)

)1−1/2p(∫
BR

ψ2p
)1/2p

as required. �

As noted before the statement of the lemma, if the Ricci tensor satisfies the
inequality Ric(∇r,∇r) ≥ −(m − 1)G(r(x)), then ψ ≡ 0, and we recover the fact
that the function

r �→ vol∂Br(o)
AG(r)

is a decreasing function of r.
The following lemma (see Lemma 2.2 in [129]) allows to estimate the 2p-norm

of ψ over BR in terms of the p-norm of ρ.

Lemma 2.19. For every p > m/2 there exists a constant C = C(m, p) such that
for every R, ∫

BR

ψ2p ≤ C

∫
BR

ρp

with ρ(x) as defined in (2.51).

Proof. Integrating in polar geodesic coordinates we have∫
BR

f =
∫

Sm−1
dθ

∫ min{R,c(θ)}

0

f(tθ)ω(tθ)dt

where ω is the volume density with respect to Lebesgue measure dtdθ, and c(θ) is
the distance from o to the cut locus along the ray t→ tθ. It follows that it suffices
to prove that for every θ ∈ Sm−1,∫ min{R,c(θ)}

0

ψ2p(tθ)ω(tθ)dt ≤ C

∫ min{R,c(θ)}

0

ρp(tθ)ω(tθ)dt. (2.54)

An easy computation which uses (2.15) yields

∂

∂t
{∆r − (m− 1)

h′

h
} ≤ − (∆r)2

m− 1
−Ric(∇r,∇r) − (m− 1)

{h′′

h
−
(h′

h

)2}
.
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Thus, recalling the definitions of ψ and ρ, we deduce that the locally Lipschitz
function ψ satisfies the differential inequality

ψ′ +
ψ2

m− 1
+ 2

h′

h
ψ ≤ ρ

on the set where ρ > 0 and a.e. on (0, +∞). Multiplying through by ψ2p−2ω and
integrating, we obtain∫ r

0

ψ′ψ2p−2ω +
1

m− 1

∫ r

0

ψ2pω + 2
∫ r

0

h′

h
ψ2p−1ω ≤

∫ r

0

ρψ2p−1ω. (2.55)

On the other hand, integrating by parts, and recalling that ω−1∂ω/∂t = ∆r ≤
ψ + (m− 1)h′

h and that ψ(tθ) = 0 if t ≥ c(θ), yield∫ r

0

ψ′ψ2p−2ω =
1

2p− 1
ψ(r)2p−1ω(rθ) − 1

2p− 1

∫ r

0

ψ2p−1∆rω

≥ − 1
2p− 1

∫ r

0

ψ2p−1
(
ψ + (m− 1)

h′

h

)
ω.

Substituting this into (2.55), and using Hölder inequality we obtain( 1
m− 1

− 1
2p− 1

)∫ r

0

ψ2pω +
(
2− m− 1

2p− 1

) ∫
ψ2p−1ω

≤
∫ r

0

ρψ2p−1ω

≤
(∫ r

0

ρpω
)1/p(∫ r

0

ψ2pω
)(p−1)/p

,

and, since the coefficient of the first integral on the left-hand side is positive, by
the assumption on p, while the second summand is non-negative, rearranging and
simplifying we conclude that (2.54) holds with

C(m, p) =
( 1

m− 1
− 1

2p− 1

)−p

. �

We are now ready to state the announced volume comparison theorem under
Lp Ricci curvature assumptions.

Theorem 2.20. Keeping the notation introduced above, if p > m/2, then for every
0 < r < R,

volBR(o)
VG(R)

− volBr(o)
VG(r)

≤
( 1

2p

∫ R

r

f(t)dt
)2p

, (2.56)

where

f(t) =
cmtAG(t)

VG(t)1+1/2p

(∫
Bt

ρp
)1/2p

. (2.57)
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Moreover f is integrable in r = 0 and

volBR(o)
VG(R)

≤
(
1 +

1
2p

∫ R

0

f(t)dt
)2p

, (2.58)

and

vol∂BR(o)
AG(R)

≤
(
1 +

1
2p

∫ R

0

f(t)dt
)2p

+
cmR

VG(R)1/2p

(∫
BR

ρp
)1/2p(

1 +
1
2p

∫ R

0

f(t)dt
)2p−1

.

(2.59)

Proof. Set

y(r) =
volBr(o)

VG(r)
.

According to (2.53) in Lemma 2.18, Lemma 2.19 and (2.57) we have{
y′(t) ≤ f(t)y(t)1−1/2p,

y(t) ∼ 1 as t→ 0+, y(t) > 0 if t > 0,

whence, integrating between r and R we obtain

y(R)1/2p − y(r)1/2p ≤ 1
2p

∫ R

r

f(t) dt,

that is, (2.56). Since

AG(t) ∼ cmtm−1 and
∫

Bt

ρp = O(tm) as t→ 0,

f is integrable in t = 0, and letting r → 0 we obtain (2.58).
On the other hand, according to (2.53) and Lemma 2.19,

vol∂BR

AG(R)
≤ volBR

VG(R)
+

cmR

VG(R)1/2p

(∫
Bt

ρp
)1/2p(volBR

VG(R)

)1−1/2p

and the conclusion follows inserting (2.58). �

Corollary 2.21. Keeping the notation introduced above, we have:

(i) Let G = 0, so that h(t) = t, AG(t) = cmtm−1and

ρ = max{0,−Ric(∇r,∇r)} = Ric−.
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(1) If Ric− ∈ Lp(M) for some p > m/2, then there exist constants C1 and
C2, depending only on m and p, such that

volBR ≤ cm

m

[
1 + C1||Ric−||1/2

Lp(M)R
1−m/2p

]2p

Rm,

and
vol∂BR ≤ cm

[
1 + C2||Ric−||1/2

Lp(M)R
1−m/2p

]2p

Rm−1.

(2) (cf. [107], Corollary 1.2) If∫
BR

Ricp
− = o

(
Rγ

)
as t→ +∞, (2.60)

for some p > m/2 and γ > 0, then

volBR = o(R2p+γ) as R → +∞,

and
vol∂BR = o(R2p+γ−1) as R → +∞.

(ii) Let G = H2 > 0 be constant, so that h(t) = H−1 sinhHt, and

VG(t) ∼ cm

(m− 1)2m−1Hm
e(m−1)Ht as t→ +∞.

If ρ ∈ Lp(M) for some p > m/2, then there exist constants C3 and C4

depending only on p, m and H such that

volBR ≤
(
1 + C3||ρ||1/2

Lp(M)

)2p
VG(R),

and
vol∂BR ≤

(
1 + C4||ρ||1/2

Lp(M)

)2p
AG(R),

Proof. Assume that G = 0 and that Ric− ∈ Lp. Then we may estimate

f(t) =
cmtAG(t)

VG(t)1+1/2p

(∫
Bt

Ricp
−
)1/2p

≤ C||Ric−||1/2
Lp(M)t

−m/2p

and (i) (1) follows at once from (2.58) and (2.59). Similarly, if (2.60) holds, then

f(t) = o
(
t(γ−m)/2p

)
as t→ +∞,

and (i) (2) follows as before from (2.58) and (2.59). Finally, if G = H2 > 0 and
ρ ∈ Lp(M), we may estimate

f(t) ≤ C||ρ||1/2
Lp(M) max{1, t}VG(t)−1/2p

and since the right-hand side is integrable on [0, +∞), the required conclusion
follows once again from (2.58) and (2.59). �
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The Bishop-Gromov comparison theorem enables one to get an upper es-
timate of the volumes of geodesic balls, assuming a lower control on the Ricci
tensor. However, there are special situations where lower volume estimates can be
deduced from the same curvature conditions. To see this, let us first consider the
next important consequences of Theorem 2.14, as was pointed out in [33].

Corollary 2.22. Let (M, 〈 , 〉) and h be as in Theorem 2.14.

(i) For every r1 ≤ r2 ≤ r3,

volBr3 (o)− volBr2 (o)∫ r3

r2
h (t)m−1

dt
≤ volBr1 (o)∫ r1

0
h (t)m−1

dt
. (2.61)

(ii) Assume that the lower Ricci curvature bound is a constant function G (t) ≡
H2 ≥ 0. Let x, y ∈ M , set d = dist (x, y) and take r + R < d. Then

volBR (x)

∫ r

0 snH (t)m−1
dt∫ d+R

d−R
snH (t)m−1 dt

≤ volBr (y) , (2.62)

where snH is defined in (2.48).

Remark 2.23. As will be clear from the proof, property (2.61) can be localized
according to the first part of Corollary 2.22. In this situation, condition (2.61)
becomes: for every r1 ≤ r2 ≤ r3 ≤ R̄,

volBr3 (x0)− volBr2 (x0)∫ r3

r2
snH (t)m−1

dt
≤ volBr1 (x0)∫ r1

0 snH (t)m−1
dt

with H defined in (2.49).

Proof. We first consider case (i) . A repeated use of Theorem 2.14 gives

volBr3 (o)− volBr2 (o) = volBr3 (o)− volBr2 (o)∫ r2

0 h (t)m−1
dt

∫ r2

0

h (t)m−1
dt

≤ volBr3 (o)− volBr3 (o)∫ r3

0 h (t)m−1
dt

∫ r2

0

h (t)m−1
dt

=
volBr3 (o)∫ r3

0
h (t)m−1

dt

∫ r3

r2

h (t)m−1
dt

≤ volBr1 (o)∫ r1

0
h (t)m−1 dt

∫ r3

r2

h (t)m−1 dt,

proving (2.61).
We now consider case (ii) . The desired inequality easily follows from (2.61).

Indeed, observe that
BR (x) ⊂ BR+d (y) \Bd−R (y) .
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Therefore, recalling that d−R ≥ r and using (2.61), we conclude that

volBR (x) ≤ volBd+R (y)− volBd−R (y)

≤
∫ d+R

d−R

snH (t)m−1 dt
volBr (y)∫ r

0
snH (t)m−1 dt

.

�

Now, by way of example, assume that (M, 〈 , 〉) is a complete manifold of
non-negative Ricci curvature. Using (2.62) of Corollary 2.22 with H = 0, so that
snH (t) = t, and radii d = s− 1, r = s− 2, and R = 1, we obtain

volBs (y) ≥ (s− 2)m

sm − (s− 2)m volB1 (x) ≥ Cs,

for every s >> 1 and for some constant C > 0. Namely, a complete manifold of
non-negative Ricci curvature has at least a linear volume growth. This result was
originally due to E. Calabi and S.T. Yau. Similar conclusions can be reached in
a slightly more general situation. The starting point is that, in the above Ricci
curvature assumption,

volBR (x)
volBr (x)

≤
(

R

r

)m

for every x ∈ M, R ≥ r > 0. Thus, in particular, (M, 〈 , 〉) enjoys the doubling
property. This means that, for some (hence any) α > 1, there is a constant Dα > 1,
such that

volBαR (x) ≤ DαvolBR (x)

regardless of x ∈ M and R > 0. We recall the following characterization of mani-
folds enjoying the doubling property.

Lemma 2.24. A complete manifold (M, 〈 , 〉) has the doubling property if and only if
for some (hence any) α > 1 there exists a constant Dα > 1 such that the following
holds. Let A ⊂ M be a bounded set. Then, for every ball Br (x) centered at x ∈ A
and of radius r satisfying

r < δx (A) = sup
y∈A

dist (x, y) ,

we have
vol (A)

volBr (x)
≤ Dα

(
δx (A)

r

)logα Dα

. (2.63)

In particular, for every 0 < r ≤ R we have

volBR(x)
volBr (x)

≤ Dα

(
R

r

)logα Dα

.
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Proof. We only need to show that if M has the doubling property, then the prop-
erty holds. Assume therefore that (M, 〈 , 〉) satisfies the doubling property with
constants α, Dα > 1. Fix Br (x) as in the statement and consider j ∈ N satisfying

αj−1 ≤ δx (A)
r

≤ αj .

Note that
A ⊂ Bδx(A) (x) ⊂ Brαj (x) .

Therefore, using the doubling property,

vol (A) ≤ volBrαj (x) ≤ Dj
αvolBr (x) .

To conclude, note that

Dj−1
α =

(
αj−1

)logα Dα ≤
(

δx (A)
r

)logα Dα

. �

Direct use of this Lemma gives a (quantitative) volume growth result which
is true regardless of any monotonicity property.

Proposition 2.25. Let (M, 〈 , 〉) be a complete manifold with the doubling property
and let x ∈ M . Then, there exist explicit constants C = C (x, α) > 0 and k =
k (Dα, α) > 0 such that, for every R > 1,

volBR (x) ≥ CRk. (2.64)

Proof. Fix x ∈ M and, for every j, choose yj ∈ ∂Bαj−1+αj

2
(x). Then, we have the

inclusions

Bαj (x) \Bαj−1 (x) ⊃ Bαj−αj−1
2

(yj) ; Bαj+3αj−1
2

(yj) ⊃ Bαj−1 (x) .

Using Lemma 2.24, we deduce

volBαj (x)− volBαj−1 (x) ≥ volBαj−αj−1
2

(yj)

≥ D−1
α

(
αj − αj−1

αj + 3αj−1

)logα Dα

volBαj+3αj−1
2

(yj)

≥ D−1
α

(
α− 1
α + 3

)logα Dα

volBαj−1 (x) .

Therefore
volBαj (x) ≥ EvolBαj−1 (x) ,

where we have set

E = 1 +
(

α− 1
α2 + 3α

)logα Dα

> 1.
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Iterating this inequality j-times gives

volBαj (x) ≥ EjvolB1 (x) ,

and choosing k = logα E > 0 we finally obtain

volBαj (x) ≥ αjkvolB1 (x) =
(
αj+1

)k volB1 (x)
αk

. (2.65)

Now, for any given R > 1, let j satisfy αj < R < αj+1. From (2.65) we conclude
the validity of (2.64) with C = volB1 (x) /αk. �

The last result of the section is the following impressive volume growth prop-
erty of complete manifolds with almost non-negative Ricci curvature (in the sense
specified in (2.66), (2.67) see also Corollary 2.27 below). It is a contribution of
P. Li and R. Schoen, [95], and P. Li and M. Ramachandran, [98]. Its proof relies
heavily on the work by Cheeger-Gromov-Taylor [33].

Theorem 2.26. For every m ≥ 2 there exists a constant ε = ε (m) > 0 such that
the following holds. Let (M, 〈 , 〉) be a complete manifold satisfying

Ric ≥ − (m− 1)G (r (x)) on M (2.66)

where G (t) ∈ C0 ([0, +∞)) is a positive function such that

G (t) =
ε2

t2
for t >> 1, (2.67)

and r (x) = dist (x, o), for some reference origin o ∈M . Then, for every d > 1,

vol
(
B r(x)

d

(x)
)
→ +∞, as r (x) → +∞. (2.68)

Proof. We divide the quite involved proof in several steps.

First Step. Fix

0 < ξ < 1, β >
2(

21/m − 1
) > 1.

If ε = ε (m, ξ, β) > 0 is sufficiently small, then the following holds: For every x ∈M
choose a geodesic γ parametrized by arc length which realizes the distance between
o = γ (0) and x = γ (r (x)). Define a set of values t0 < t1 < · · · < tk ≤ r (x) by

t0 = 0; ti = (β + 1)
i−1∑
j=0

βj , (2.69)

tk being the largest value so that tk < r (x). Define xj = γ (tj) . Then, if k is large
enough,

volBβk (xk) ≥ C1

(
βm

(β + 2)m − βm

)k(1−ξ)

volB1 (o) , (2.70)
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for some constant C = C (β) > 0.
Indeed, observe that {xi} form a set of points along γ with the property that⎧⎨⎩ (i) r (xi) = ti = (β + 1) (β − 1)−1 (βi − 1

)
,

(ii) dist (xi, xi+1) = ti+1 − ti = βi + βi+1,
(iii) dist (xk, x) = r (x)− tk < tk+1 − tk = βk + βk+1.

(2.71)

Thus, the geodesic balls
{
Bβi (xi)

}
are disjoint and their closures cover the set

γ
(
[0, tk + βk)

)
. Furthermore

Bβi−1 (xi−1) ⊂ Bβi+2βi−1 (xi) \Bβi (xi) . (2.72)

Setting
H2

i = max
Bβi+2βi−1(xi)

G (r (y)) ,

from Corollary 2.22 (i) and (2.72), we deduce that

volBβi (xi) ≥ Ti

{
volBβi+2βi−1 (xi)− volBβi (xi)

}
≥ TivolBβi−1 (xi−1)

where

Ti =

∫ βi

0

H−1
i sinhm−1(Hit) dt∫ (βi+2βi−1)

βi

H−1
i sinhm−1(Hit) dt

=

∫ βiHi

0

sinhm−1 t dt∫ (βi+2βi−1)Hi

βiHi

sinhm−1 t dt

.

(2.73)

Iterating this inequality we conclude that

volBβk (xk) ≥
k∏

i=1

Ti volB1 (o) . (2.74)

The validity of (2.70) will follow once we show that, for every i, hence k, large
enough,

Ti ≥
(

βm

(β + 2)m − βm

)1−ξ

. (2.75)

Note that, according to (2.66) and (2.67), for sufficiently large i ≥ i0 = i0 (β, m),
we have

Ric ≥ −(m− 1)H2
i on Bβi+2βi−1 (xi)
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with
Hi =

ε

dist
(
o, ∂Bβi+2βi−1 (xi)

) = ε
(β − 1)

2βi−1 − β − 1
.

In particular, for every i ≥ i0,(
βi + 2βi−1

)
Hi = ε

(β + 2)(β − 1)
2− β+1

βi+1

≤ εA,

where

A = A (β, i0) =
(β − 1) (β + 2)

2− β+1
βi0−1

. (2.76)

Let 0 < δ = δ (m, β, ξ) < 1 be defined by the equation(
1

1 + δ

)m−1

=
{

(β + 2)m − βm

βm

}ξ

.

The definition is consistent because our assumption that β > 2/
(
21/m − 1

)
guar-

antees that the right-hand side is < 1. If ε = ε (m, δ) > 0 is chosen small enough,
we can approximate

t ≤ sinh t ≤ t (1 + δ) on [0, εA]

which in turn, used in (2.73), gives

Ti ≥
(

1
1 + δ

)m−1 (βiHi)m

[(βi + 2βi−1)Hi]m − (βiHi)m

=
(

1
1 + δ

)m−1
βm

(β + 2)m − βm
,

proving (2.75).

Second Step. There exists a constant 0 < α = α (β) < 1 such that, for r (x) >> 1,
hence k >> 1,

vol
(
Bαr(x) (x)

) ≥ volBβk (xk) . (2.77)

To see this, first observe that, by the triangle inequality,

Bdist(xk,x)+βk (x) ⊃ Bβk (xk) . (2.78)

On the other hand, x and xk lie on the minimizing geodesic γ from o to x, so that

dist (xk, x) + βk

r (x)
=

dist (xk, x) + βk

dist (xk, x) + r (xk)
.

Since, by (2.71) (i), r (xk) ≥ βk, the function

t �→ t + βk

t + r (xk)
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is monotone increasing. Whence, using (2.71) (iii),

dist (xk, x) + βk

r (x)
=

dist (xk, x) + βk

dist (xk, x) + r (xk)

≤ 2βk + βk+1

βk + βk+1 + (β+1)(βk−1)
β−1

=
2 + β

1 + β + β+1
β−1 (1− β−k)

.

Note that
lim

k→+∞
2 + β

1 + β + β+1
β−1 (1− β−k)

=
2 + β

1 + β + β+1
β−1

< 1.

Therefore, up to choosing k (hence r (x)) large enough, say k ≥ k0 = k0 (β) > 0,
we have

dist (xk, x) + βk

r (x)
≤ α,

with
α =

2 + β

1 + β + β+1
β−1 (1− β−k0)

< 1.

It follows that
Bαr(x) (x) ⊃ Bdist(xk,x)+βk (x)

which in turn, combined with (2.78), proves (2.77).

Third Step. Let d > 1 be fixed. There exists a constant C2 = C2 (α, d, ε) > 0 such
that, for r (x) >> 1,

volB r(x)
d

(x) ≥ C2vol
(
Bαr(x) (x)

)
. (2.79)

Indeed, suppose d > 1/α, for otherwise there would be nothing to prove. Note
that, for every y ∈ Bαr(x) (x),

Ric (y) ≥ − (m− 1)
ε2

r (x)2 (1− α)2
,

provided r (x) >> 1. Therefore, by Corollary 2.15 with H = ε/r (x) (1− α) we
deduce

volB r(x)
d

(x)

vol
(
Bαr(x) (x)

) ≥ C2 :=
∫ ε

d(1−α)
0 sinhm−1 (t) dt∫ αε

(1−α)
0 sinhm−1 (t) dt

.

Fourth Step. Putting together (2.70), (2.77) and (2.79) gives

volB r(x)
d

(x) ≥ C3

(
βm

(β + 2)m − βm

)k(1−ξ)

volB1 (o)
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with C3 = C1C2 > 0. Since, by our choice of β > 2/
(
21/m − 1

)
,(

βm

(β + 2)m − βm

)
> 1,

the validity of (2.68) follows by letting r (x), hence k, tend to +∞. �
We point out the following consequence of the above proof.

Corollary 2.27. Suppose we are given

m ≥ 2, 0 < ξ < 1, β >
2(

21/m − 1
) > 1, d > 1.

Then, there exists ε = ε (m, ξ, β) > 0 sufficiently small such that the follow-
ing holds. Let (M, 〈 , 〉) be a complete manifold satisfying the curvature conditions
(2.66) and (2.67) above. Then

volB r(x)
d

(x) ≥ Cr (x)logβ E
, as r (x)→ +∞,

where

E =
(

βm

(β + 2)m − βm

)(1−ξ)

> 1

and C = C (m, β, ξ, d) > 0 is a suitable constant.

Proof. Let x ∈ M be such that r (x) >> 1. Recall that, by definitions of k and
{tj} in the First Step, we have

tk+1 =
(β + 1)

(
βk+1 − 1

)
β − 1

≥ r (x) .

Therefore

k ≥ logβ r (x) + logβ

(
β − 1
β + 1

)
− 1.

On the other hand, in the Fourth Step we obtained, for r (x) >> 1,

volB r(x)
d

(x) ≥ C3

(
βm

(β + 2)m − βm

)k(1−ξ)

volB1 (o) .

It follows that
volB r(x)

d

(x) ≥ CElogβ r(x),

where we have set

C = C3volB1 (o)
(

βm

(β + 2)m − βm

)(1−ξ){log( β−1
β+1 )−1}

and

E =
(

βm

(β + 2)m − βm

)(1−ξ)

. �
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2.3 A monotonicity formula for volumes

In the previous sections we obtained volume growth estimates under curvature
conditions. In the present section we replace the curvature conditions with the
assumption that the manifold M is isometrically immersed in an appropriate am-
bient space N .

In this context, we recall that if M is an m-dimensional manifold minimally
immersed into Rn, denoting by BR

n

R (p) the Euclidean ball of radius R centered at
p ∈ Rn, then the monotonicity formula states that

vol (M ∩BR
n

R (xo))
Rm

is a non-decreasing function of R (see, e.g., [38]), and therefore

vol (M ∩BR
n

R (xo)) ≥ cmRm,

where cm is the volume of the unit sphere in Rm. Such estimates have proven to be
important in a number of applications, including the regularity theory of harmonic
maps. A variation of the argument shows that similar monotonicity formulas hold
replacing the “exterior ball” BR

n

R (xo) with the intrinsic ball BR(p), p ∈ M . As a
matter of fact, we have the following slightly more general result concerning the
volume growth of manifolds which admit a bi-Lipschitz, harmonic immersion into
a Cartan–Hadamard space. Before stating the theorem, we recall that a geodesic
ball BN

ρ (q) in N is said to be regular if it does not intersect the cut locus of q, and,
having denoted by k an upper bound for the sectional curvature of N on BN

ρ (q) ,

one has
√

kρ < π/2.

Theorem 2.28. Let (M, 〈 , 〉) be a complete, non-compact Riemannian manifold of
dimension dimM = m, immersed into a complete manifold (N, ( , )) via f : M →
N . Assume that either N is Cartan–Hadamard, or that f (M) is contained in a
regular geodesic ball. Furthermore, suppose that the immersion f is harmonic and
bi-Lipschitz so that there exist positive constants A and B such that

A〈X, X〉 ≤ (
df(X), df(X)

) ≤ B〈X, X〉 (2.80)

for every X ∈ TM . Fix an origin o ∈M and denote ρ (y) = distN (y, f (o)). Next,
set

k = sup
f(M)

NSect

and define snk to be the unique solution of the Cauchy problem{ ··
snk + k snk = 0,

snk (0) = 0;
·

snk (0) = 1.

Set also
cnk (t) =

·
snk (t) .
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Then, there exists a constant B1,

B1

{
= 1 if f is isometric,
≤ √mB otherwise,

(2.81)

such that

R �−→
∫

BR(o) cnk (ρ ◦ f){
snk

(√
BR

)} mA
B1

√
B

(2.82)

is a non-decreasing function. In particular, in case N is Cartan–Hadamard, for
every R ≥ R0 > 0 it holds that

volBR (o) ≥ C

{
R

mA

B1
√

B if k = 0,

sinh
mA

B1
√

B
−1 (√−kBR

)
tanh

(√−kBR
)

if k < 0,
(2.83)

for a suitable constant C = C (R0, k, A, B, m) > 0.

Proof. Consider the function

F (x) = ink ◦ ρ ◦ f (x)

where we have set

ink (t) =
∫ t

0

snk (s) ds.

The chain rule for the Hessian yields

M∆F (x) =
m∑

i=1

NHess (ink ◦ ρ) (df (ei) , df (ei)) + d (ink ◦ ρ) (τ (f))

where {ei} is any local orthonormal frame filed in (M, 〈 , 〉). Since f is harmonic,
we have

τ (f) = 0,

and therefore

M∆F (x) =
m∑

i=1

NHess (ink ◦ ρ) (df (ei) , df (ei)) . (2.84)

Note that, by Hessian comparison,

NHess (ink ◦ ρ) =
··
ink (ρ) dρ⊗ dρ +

·
ink (ρ) NHess (ρ)

= cnk (ρ) dρ⊗ dρ + snk (ρ) NHess (ρ)

≥ cnk (ρ) dρ⊗ dρ + snk (ρ)
cnk (ρ)
snk (ρ)

{( , )− dρ⊗ dρ}

= cnk (ρ) ( , ).
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Therefore, using the fact that f is bi-Lipschitz and cnk (ρ) > 0,

RHS(2.84) ≥
m∑

i=1

cnk (ρ (f))
(
df (ei) , df (ei)

)
≥ mA cnk (ρ (f)) .

It follows that
M∆F ≥ mA cnk (ρ (f)) . (2.85)

Starting from (2.85), we now apply the divergence theorem on the (intrinsic)
geodesic ball BR (o) of M and use Schwarz inequality and Gauss’ lemma to obtain

mA

∫
BR(o)

cnk (ρ (f)) ≤
∫

BR(o)

M∆F (2.86)

=
∫

∂BR(o)

〈
M∇F,

∂

∂r

〉
≤

∫
∂BR(o)

∣∣M∇F
∣∣
M

.

It is readily seen that ∣∣ M∇F
∣∣
M
≤ B1 snk (ρ (f)) (2.87)

with B1 satisfying (2.81). Indeed,∣∣ M∇F
∣∣
M

=
·
ink (ρ (f))

∣∣ M∇ (ρ ◦ f)
∣∣
M

= snk (ρ (f))
∣∣ M∇ (ρ ◦ f)

∣∣
M

.

Moreover, with respect to local orthonormal frames {ei} on M , {EA} on N with
dual frames

{
θi
}
,
{
ΘA

}
, we have

dρ = ρAΘA, df = fA
i θi ⊗ EA

so that
M∇ (ρ ◦ f) = ρAfA

i ei.

This latter implies ∣∣ M∇ (ρ ◦ f)
∣∣
M

= |Dy|
Rm

where
D =

(
fA

i

) ∈Mn,m (R) , y = (ρA)t ∈ Rn.

Clearly, in case f is isometric, D =
(
δA
i

)
, while, in the general bi-Lipschitz case,

|D| =
√∑

〈df (ei) , df (ei)〉N = |df | ≤
√

mB.
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Now recall that, by Gauss’ lemma,

|y|
Rn =

∣∣N∇ρ
∣∣
N

= 1,

and therefore

|Dy|
Rm ≤ sup

|x|=1

|Dx|
Rm

{
= 1 f isometric,
≤ √mB otherwise.

This proves the claimed inequality (2.87) with

B1 = sup
M

sup
|x|=1

|Dx|
Rm .

Inserting (2.87) into (2.86) gives

mA

∫
BR(o)

cnk (ρ (f)) ≤ B1

∫
∂BR(o)

snk (ρ (f)) . (2.88)

Let us elaborate the RHS of this latter. Observe that the positive function

t �−→ snk (t)
cnk (t)

is increasing. (2.89)

Furthermore, from the very definitions of distN and distM , we see that

ρ (f (x)) ≤
√

B distM (x, o) . (2.90)

Indeed,

ρ (f (x)) = distN (f (x) , f (o))

= inf
Γ⊂N

Γ(0)=f(o), Γ(1)=f(x)

∫ 1

0

∣∣∣Γ̇ (t)
∣∣∣
N

≤ inf
γ⊂M

γ(0)=o, γ(1)=x

∫ 1

0

∣∣∣∣ d

dt
f ◦ γ (t)

∣∣∣∣
N

≤
√

B inf
γ⊂M

γ(0)=o, γ(1)=x

∫ 1

0

|γ̇ (t)|M

=
√

B distM (x, o) .

Combining (2.90) with (2.89) we deduce

RHS (2.88) =
∫

∂BR(o)

snk (ρ (f))
cnk (ρ (f))

cnk (ρ (f))

≤ B1

snk

(√
BR

)
cnk

(√
BR

) ∫
∂BR(o)

cnk (ρ (f))
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so that

mA

∫
BR(o)

cnk (ρ (f)) ≤ B1

snk

(√
BR

)
cnk

(√
BR

) ∫
∂BR(o)

cnk (ρ (f)) . (2.91)

Using the co-area formula, (2.91) can be written in the form

d

dR
log

⎛⎜⎝∫
BR(o)

cnk (ρ (f))

sn
mA

B1
√

B

k

(√
BR

)
⎞⎟⎠ ≥ 0 (2.92)

which implies the validity of (2.82). �


