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Introduction

This book originated from a graduate course given during the Spring of 2005 at the
University of Milan. Our goal was to present an extension of the original Bochner
technique describing a selection of results recently obtained by the authors, in non-
compact settings where in addition one didn’t assume that the relevant curvature
operators satisfied signum conditions. To make the course accessible to a wider
audience it was decided to introduce many of the more advanced analytical and
geometrical tools along the way.

The initial project has grown past the original plan, and we now aim at
treating in a unified and detailed way a variety of problems whose common thread
is the validity of Weitzenböck formulae.

As is well illustrated in the elegant work by H.H. Wu, [165], typically, one
is given a Riemannian (Hermitian) vector bundle E with compatible fiber metric
and considers a geometric Laplacian L on E which is related to the connection
(Bochner) Laplacian −tr(D∗D) via a fiber bundle endomorphism R which is in
turn related to the curvature of the base manifold M . Because of this relationship,
the space of L-harmonic sections of E reflects the geometric properties of M .

To illustrate the method, let us consider the original Bochner argument to es-
timate the first real Betti number b1(M) of a closed oriented Riemannian manifold
(M, 〈 , 〉).

By the Hodge–de Rham theory, b1(M) equals the dimension of the space of
harmonic 1-forms H1 (M). A formula of Weitzenböck, independently rediscovered
by Bochner, states that for every harmonic 1-form ω,

1
2
∆ |ω|2 = |Dω|2 + Ric

(
ω#, ω#

)
, (0.1)

where ∆ and Ric are the Laplace–Beltrami operator (with the sign convention
+d2/dx2) and the Ricci curvature of M, respectively, D denotes the extension
to 1-forms of the Levi–Civita connection, and ω# is the vector field dual to ω,
defined by 〈ω#, X〉 = ω(X) for all vector fields X . In particular |ω|2 satisfies the
differential inequality

∆ |ω|2 − q(x) |ω|2 ≥ 0,

where q(x)/2 is the lowest eigenvalue of the Ricci tensor at x. Thus, if Ric ≥ 0,
then |ω| is subharmonic. Since M is closed, we easily conclude that |ω| =const.
This can be done using two different viewpoints, (i) the L∞ and (ii) the Lp<+∞

one. As for (i), note that the smooth function |ω| attains its maximum at some
point and, therefore, by the Hopf maximum principle we conclude that |ω| =const.
In case (ii) we use the divergence theorem to deduce

0 =
∫

M

div
(
|ω|2∇|ω|2

)
=
∫

M

∣∣∣∇|ω|2∣∣∣2 +
∫

M

|ω|2 ∆ |ω|2 ≥
∫

M

∣∣∣∇|ω|2∣∣∣2 ≥ 0.
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This again implies |ω| =const.
Now, since Ric ≥ 0, using this information in formula (0.1) shows that ω is

parallel, i.e., Dω = 0. As a consequence, ω is completely determined by its value at
a given point, say p ∈ M . The evaluation map εp : H1 (M) → Λ1

(
T ∗

p M
)

defined
by

εp (ω) = ωp

is an injective homomorphism, proving that, in general,

b1(M) = dimH1 (M) ≤ m.

Note that (0.1) yields

0 = Ric
(
ω#

p , ω#
p

)
at p.

Therefore, if Ric (p) > 0, we get ωp = 0 which, in turn, implies ω = 0. This shows
that, when Ric is positive somewhere,

b1(M) = dimH1 (M) = 0.

The example suggests that one can generalize the investigation in several
directions. One can relax the assumption on the signum of the coefficient q(x),
consider complete non-compact manifolds, or both.

Maintaining compacteness, one can sometimes allow negative values of q(x)
using versions of the generalized maximum principle, according to which if ψ ≥ 0
satisfies

∆ψ − q (x) ψ ≥ 0, (0.2)

and M supports a solution ϕ > 0 of

∆ϕ− q (x) ϕ ≤ 0, (0.3)

then the ratio u = ψ/ϕ is constant. Combining (0.2) and (0.3) shows that ψ

satisfies (0.2) with equality sign. In particular, according to (0.1), ψ = |ω|2 satisfies
(0.2), and therefore, if M supports a function ϕ satisfying (0.3), we conclude, once
again, that ω is parallel, thus extending the original Bochner vanishing result to
this situation.

It is worth noting that the existence of a function ϕ satisfying (0.3) is related
to spectral properties of the operator −∆ + q (x), and that the conclusion of the
generalized maximum principle is obtained by combining (0.2) and (0.3) to show
that the quotient u satisfies a differential inequality without zero-order terms; see
Section 2.5 in [133].

In the non-compact setting the relevant function may fail to be bounded, and
even if it is bounded, it may not attain its supremum. In the latter case, one may
use a version of the maximum principle at infinity introduced by H. Omori, [124]
and generalized by S.T. Yau, [167], and S.Y Cheng and Yau, [34], elaborating ideas
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of L.V. Ahlfors. An account and further generalizations of this technique, which
however works under the assumption that q(x) is non-negative, may be found in
[131].

Here we consider the case where the manifold is not compact and the func-
tion encoding the geometric problem is not necessarily bounded, but is assumed
to satisfy suitable Lp integrability conditions, and the coefficient q(x) in the dif-
ferential (in)equality which describes the geometric problem is not assumed to be
non-negative.

Referring to the previous example, the space of harmonic 1-forms in L2 de-
scribes the L2 co-homology of a complete manifold, and under suitable assump-
tions it has a topological content sensitive to the structure at infinity of the man-
ifold. It turns out to be a bi-Lipschitz invariant, and, for co-compact coverings, it
is in fact a rough isometry invariant.

As in the compact case described above, one replaces the condition that
the coefficient q(x) is pointwise positive, with the assumption that there exists a
function ϕ satisfying (0.3) on M or at least outside a compact set. Again, one uses
a Weitzenböck-type formula to show that the geometric function ψ = |ω| satisfies
a differential inequality of the form (0.2).

Combining (0.2) and (0.3) and using the integrability assumption, one con-
cludes that either ψ vanishes and therefore the space L2H1(M) of L2-harmonic
1-forms is trivial or that L2H1(M) is finite-dimensional.

The method extends to the case of Lp-harmonic k-forms, even with values in a
fibre bundle, and in particular to harmonic maps with Lp energy density, provided
we consider an appropriate multiple of q(x) in (0.3), and restrict the integrability
coefficient p to a suitable range. Harmonic maps in turn yield information, as in
the compact case, on the topological structure of the underlying domain manifold.

This relationship becomes even more stringent in the case where the domain
manifold carries a Kählerian structure. Indeed, for complex manifolds, the splitting
in types allows to consider, besides harmonic maps, also pluriharmonic and holo-
morphic maps. If, in addition, the manifold is Kähler, the relevant Weitzenböck
identity for pluriharmonic functions (which in the L2 energy case coincides with
a harmonic function with L2 energy) takes on a form which reflects the stronger
rigidity of the geometry and allows us to obtain stronger conclusions. Thus, on the
one hand one can enlarge the allowed range of the integrability coefficient p, and
on the other hand one may deduce structure theorems which have no analogue in
the purely Riemannian case.

The extension to the non-compact case introduces several additional technical
difficulties, which require specific methods and tools. The description of these is
in fact a substantial part of the book, and while most, but not all, of the results
are well known, in many instances our approach is somewhat original. Further, in
some cases, one needs results in a form which is not easily found, if at all, in the
literature.

When we feel that these ancillary parts are important enough, or the ap-
proach sufficiently different from the mainstream treatment, a fairly detailed
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description is given. Thus we provide, for instance, a rather comprehensive treat-
ment of comparison methods in Riemannian geometry or of the spectral theory
of Schrödinger operators on manifolds. In other situations, the relevant tools are
introduced when needed. For instance this is the case of the Poincaré inequalities
or of the Moser iteration procedure.

The material is organized as follows.
In Chapter 1, after a quick review of harmonic maps between Riemannian

manifolds, where in particular we describe the Weitzenböck formula and derive a
sharp version of Kato’s inequality, we introduce the basic facts on the geometry
of complex manifolds, and Hermitian bundles, concentrating on the Kähler case.
Our approach is inspired by work of S.S. Chern, and is based on analyzing the
Riemannian counterpart of the Kähler structure.

The same line of arguments allows us to extend a result of J.H. Sampson,
[143], concerning the pluriharmonicity of a harmonic map from a compact Kähler
manifold into a Riemannian target with negative Hermitian curvature to the case
of a non-compact domain. This in turn yields a sharp version of a result of P. Li,
[96], for pluriharmonic real-valued functions. The chapter ends with a derivation
of Weitzenböck-type formulas for pluriharmonic and holomorphic maps.

Chapter 2 is devoted to a detailed description of comparison theorems in
Riemannian Geometry under curvature conditions, both pointwise and integral,
which will be extensively used throughout the book. We begin with general com-
parison results for the Laplacian and the Hessian of the distance function. The
approach, which is indebted to P. Petersen’s treatment, [128], is analytic in that
it only uses comparison results for ODEs avoiding the use of Jacobi fields, and it
is not limited to the case where the bound on the relevant curvature is a constant,
but is given in terms of a suitable function G of the distance from a reference point.
Some effort is also made to describe explicit bounds in a number of geometrically
significant situations, namely when G(r) = −B(1 + r2)α/2, or when G(t) satisfies
the integrability condition tG(t) ∈ L1([0, +∞)) considered, among others, by U.
Abresch, [1], and by S.H. Zhu, [171].

These estimates are then applied to obtain volume comparisons. Even though
the method works both for upper and lower estimates, we concentrate on upper
bounds, which hold under less stringent assumptions on the manifold, and in par-
ticular depend on lower bounds for the Ricci curvature alone, and do not require
topological restrictions. We also describe volume estimates under integral Ricci
curvature conditions which extend previous work of S. Gallot, [57], and, more
recently, by Petersen and G. Wei, [129]. We then describe remarkable lower esti-
mates for the volume of large balls on manifolds with almost non-negative Ricci
curvature obtained by P. Li and R. Schoen, [95] and Li and M. Ramachandran,
[98], elaborating on ideas of J. Cheeger M. Gromov and M. Taylor, [33]. These es-
timates in particular imply that such manifolds have infinite volume. We conclude
the chapter with a version of the monotonicity formula for minimal submanifolds
valid for the volume of intrinsic (as opposed to extrinsic) balls in bi-lipschitz har-
monic immersions.
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Chapter 3 begins with a quick review of spectral theory of self-adjoint opera-
tors on Hilbert spaces modelled after E.B. Davies’ monograph, [41]. In particular,
we define the essential spectrum and index of a (semibounded) operator, and apply
the minimax principle to describe some of their properties and their mutual rela-
tionships. We then concentrate on the spectral theory of Schrödinger operators on
manifolds, in terms of which many of the crucial assumptions of our geometrical
results are formulated.

After having defined Schrödinger operators on domains and on the whole
manifold, we describe variants of classical results by D. Fisher-Colbrie, [53], and
Fisher-Colbrie and Schoen, [54], which relate the non-negativity of the bottom of
the spectrum of a Schrödinger operator L on a domain Ω to the existence of a
positive solution of the differential inequality Lϕ ≤ 0 on Ω.

Since, as already mentioned above, the existence of such a solution is the
assumption on which the analytic results depend, this relationship allows us to
interpret such hypothesis as a spectral condition on the relevant Schrödinger op-
erator. This is indeed a classical and natural feature in minimal surfaces theory
where the stability, and the finiteness of the index of a minimal surface, amount
to the fact that the stability operator −∆− |II|2 has non-negative spectrum, re-
spectively finite Morse index.

In describing these relationships we give an account of the links between
essential spectrum, bottom of the spectrum, and index of a Schrödinger operator
L on a manifold, and that of its restriction to (internal or external) domains. With
a somewhat different approach and arguments, our presentation follows the lines
of a paper by P. Berard, M.P. do Carmo and W. Santos, [13].

Chapter 4 and Chapter 5 are the analytic heart of the book. In Chapter 4 we
prove a Liouville-type theorem for Lp solutions u of divergence-type differential
inequalities of the form

udiv
(
ϕ∇u

) ≥ 0,

where ϕ is a suitable positive function. An effort is made to state and prove the
result under the minimal regularity assumptions that will be needed for geometric
applications. As a consequence we deduce the main result of the chapter, namely
a vanishing theorem for non-negative solutions of the Bochner-type differential
inequality

ψ∆ψ + a(x)ψ2 + A|∇ψ|2 ≥ 0. (0.4)

Assuming the existence of a positive solution of the inequality

∆ϕ + Ha(x)ϕ ≤ 0, (0.5)

for a suitable constant H , one proceeds similarly to what we described above, and
shows that an appropriate combination u of the function ψ and ϕ satisfies the
hypotheses of the Liouville-type theorem.

In Chapter 6 the analytic setting is similar, one considers vector spaces of
Lp-sections whose lengths satisfy the differential inequality (0.4) and proves that
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such spaces are finite-dimensional under the assumption that a solution ϕ to the
differential inequality (0.5) exists in the complement of a compact set K in M .
The idea of the proof is to show that there exists a constant C depending only
on the geometry of the manifold in a neighborhood of K such that the dimension
of every finite-dimensional subspace is bounded by C. The proof is based on a
version of a lemma by Li, and uses a technique of Li and J. Wang, [104] and [105],
combined with the technique of the coupling of the solutions ψ and ϕ which allows
us to deal with Lp sections with p not necessarily equal to 2. The proof requires
a number of technical results which are described in detailed, in some cases new,
direct proofs.

Chapter 6 to 9 are devoted to applications in different geometric contexts.
In Chapter 6 we specialize the vanishing results to the case of harmonic maps
with finite Lp energy, and derive results on the constancy of convergent harmonic
maps, and a Schwarz-type lemma for harmonic maps of bounded dilation. We then
describe topological results by Schoen and Yau, [146], concerning the fundamental
group of manifolds of non-negative Ricci curvature and of stable minimal hypersur-
faces immersed in non-positively curved ambient spaces. While the main argument
is the same as Schoen and Yau’s, the use of our vanishing theorem allows us to
relax their assumption that the Ricci curvature of the manifold is non-negative.
The chapter ends by generalizing to non-compact settings the finiteness theorems
of L. Lemaire, [93], for harmonic maps of bounded dilation into a negatively curved
manifold, on the assumption that the domain manifold has a finitely generated
fundamental group.

In Chapter 7 we use the techniques developed above to describe the topology
at infinity of a Riemannian manifold M , and more specifically the number of
unbounded connected components of the complement of a compact domain D in
M , namely the ends of M with respect to D.

The number of ends of a manifold will in turn play a crucial role in the
structure results for Kähler manifolds, and in the derivation of metric rigidity in
the Riemannian setting (see Chapters 8 and 9, respectively).

The chapter begins with an account of the theory relating the topology at in-
finity and suitable classes of harmonic functions on the manifold as developed by Li
and L.F. Tam and collaborators. At the basis of this theory is the fact that, via the
maximum principle, the parabolicity/non-parabolicity of an end is intimately con-
nected with the existence of a proper harmonic function on the end (the so-called
Evans–Selberg potential of the end), or, in the non-parabolic case, of a bounded
harmonic function on the end with finite Dirichlet integral. Combining these facts
with the analytic results of the previous chapters in particular, we obtain that the
manifold has only one, or at most finitely many non-parabolic ends, depending on
spectral assumptions on the operator L = −∆−a(x), where −a(x) is the smallest
eigenvalue of the Ricci tensor at x. To complete the picture, following H.-D. Cao,
Y. Shen, S. Zhu, [25], and Li and Wang, [104], one shows that when the mani-
fold supports an L1-Sobolev inequality, then all ends are non-parabolic. This in
particular applies to submanifolds of Cartan–Hadamard manifolds, provided that
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the second fundamental form is small in a suitable integral norm. In the chapter,
using a gluing technique of T. Napier and Ramachandran, [117], we also provide
the details of a construction sketched by Li and Ramachandran, [98] of harmonic
functions with controlled L2 energy growth that will be used in the structure the-
orems for Kähler manifolds. The last two sections of the chapter contain further
applications of these techniques to problems concerning line bundles over Kähler
manifolds, and to the reduction of codimension of harmonic immersions with less
than quadratic p-energy growth.

In Chapter 8 we concentrate on the Kähler setting. We begin by provid-
ing a detailed description of a result of Li and Yau, [107], on the constancy of
holomorphic maps with values in a Hermitian manifold with suitably negative
holomorphic bisectional curvature. We then describe two variations of the result,
where the conclusion is obtained under different assumptions: in the first, using
Poisson equation techniques, an integral growth condition on the Ricci tensor is re-
placed by a volume growth condition, while in the second one assumes a pointwise
lower bound on the Ricci curvature which is not necessarily integrable, together
with some spectral assumptions on a variant of the operator L. We then apply this
in the proof of the existence of pluri-subharmonic exhaustions due to Li and Ra-
machandran, [98], which is crucial in obtaining the important structure theorem
of Napier and Ramachandran, [117], and Li and Ramachandran, [98].

The unifying element of Chapter 9 is the validity of a Poincaré–Sobolev in-
equality. In the first section, we give a detailed proof of a warped product splitting
theorem of Li and Wang, [104]. There are two main ingredients in the proof. The
first is to prove that the metric splitting holds provided the manifold supports a
non-constant harmonic function u for which the Bochner inequality with a sharp
constant in the refined Kato’s inequality is in fact an equality. The second ingredi-
ent consists of energy estimates for a suitable harmonic function u on M obtained
by means of an exhaustion procedure. This is the point where the Poincaré–Sobolev
inequality plays a crucial role. Finally, one uses the analytic techniques of Chap-
ter 4 to show that u is the sought-for function which realizes equality in the
Bochner inequality. In the second section we begin by showing that whenever M
supports an L2 Poincaré–Sobolev-type inequality, then a non-negative Lp solution
ψ of the differential inequality (0.4),

ψ∆ψ + a(x)ψ2 + A|∇ψ|2 ≥ 0,

must vanish provided a suitable integral norm of the potential a(x) is small
compared to the Sobolev constant. This compares with the vanishing result of
Chapter 4 which holds under the assumption that the bottom of the spectrum
of −∆ + Ha(x) is non-negative. Actually, in view of the geometric applications
that follow, we consider the case where M supports an inhomogeneous Sobolev
inequality.

We then show how to recover the results on the topology at infinity for
submanifolds of Cartan–Hadamard manifolds of Chapter 7. In fact, using directly
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the Sobolev inequality allows us to obtain quantitative improvements. Further
applications are given to characterizations of space forms which extend in various
directions a characterization of the sphere among conformally flat manifolds with
constant scalar curvature of S. Goldberg, [61].

The book ends with two appendices. The first is devoted to the unique con-
tinuation property for solutions of elliptic partial differential systems on manifolds,
which plays an essential role in the finite-dimensionality result of Chapter 5. Apart
from some minor modifications, our presentation follows the line of J. Kazdan’s
paper [87].

In the second appendix we review some basic facts concerning the Lp co-
homology of complete non-compact manifolds. We begin by describing the basic
definitions of the Lp de Rham complex and discussing some simple, but significant
examples. We then collect some classical results like the Hodge, de Rham, Kodaira
decomposition, and briefly consider the role of Lp harmonic forms. Finally, we il-
lustrate some of the relationships between Lp cohomology and the geometry and
the topology of the underlying manifold both for p = 2 and p 	= 2. In particular
we present (with no proofs) the Whitney-type approach developed by J. Dodziuk,
[43] and V.M. Gol’dshtein, V.I. Kuz’minov, I.A. Shvedov, [63] and [64], where the
topological content of the Lp de Rham cohomology is emphasized by relating it
to a suitable, global simplicial theory on the underlying triangulated manifold.

The authors are grateful to G. Carron for a careful reading of the manuscript
and several useful comments. It is also a pleasure to thank Dr. Thomas Hempfling
of Birkhäuser for his extreme efficiency and helpfulness during the various stages
of the production of this book.



Chapter 1

Harmonic, pluriharmonic, holomorphic
maps and basic Hermitian and
Kählerian geometry

1.1 The general setting

The aim of the chapter is to review some basic facts of Riemannian and complex
geometry, in order to compute, for instance, some Bochner-type formulas that we
shall need in the sequel. In doing so, we do not aim at giving a detailed treatment
of the subject, but only to set down notation and relevant results, illustrating some
of the computational techniques involved in the proofs.

Let (M, 〈 , 〉) and (N, (, )) be (real) smooth manifolds of (real) dimensions
m and n respectively, endowed with the Riemannian metrics 〈 , 〉 and (, ) and let
f : M → N be a smooth map. The energy density e (f) : M → R is the non-
negative function defined on M as follows. Let df ∈ Γ

(
T ∗M ⊗ f−1TN

)
be the

differential of f and set

e (f) (x) =
1
2
|dxf |2

where |df | denotes the Hilbert-Schmidt norm of the differential map. In local
coordinates

{
xi
}

and {yα} respectively on M and N , e (f) is expressed by

e (f) =
1
2
〈 , 〉ij ∂fα

∂xi

∂fβ

∂xj
(, )αβ =

1
2
tr〈 , 〉f∗ (, ) .

Here fα = yα ◦ f and 〈 , 〉ij represents the inverse of the matrix coefficient 〈 , 〉ij =〈
∂/∂xi, ∂/∂xj

〉
.

If Ω ⊂M is a compact domain we use the canonical measure

dVol〈 , 〉 =
√

det 〈 , 〉ij dx1 ∧ · · · ∧ dxm

associated to 〈 , 〉 to define the energy of f |Ω : (Ω, 〈 , 〉) → (N, (, )) by

EΩ (f) =
∫

Ω

e (f) dVol〈 , 〉.

Definition 1.1. A smooth map f : (M, 〈 , 〉) → (N, (, )) is said to be harmonic if,
for each compact domain Ω ⊂ M , it is a stationary point of the energy functional
EΩ : C∞(M, N)→ R with respect to variations preserving f on ∂Ω.
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A vector field X along f , that is, a section of the bundle f−1TN → M
determines a variation ft of f by setting

ft (x) = expf(x) tXx.

If X has support in a compact domain Ω ⊂ M , then

d

dt

∣∣∣∣
t=0

EΩ (ft) = −
∫

M

(
τ (f) (x) , Xx

)
dVol〈 ,〉

where the Euler-Lagrange operator, called the tension field of f , is given by

τ (f) = tr〈 ,〉Ddf,

Ddf ∈ Γ
(
T ∗M ⊗ T ∗M ⊗ f−1TN

)
being the (generalized) second fundamental

tensor of the map f . As a consequence, τ (f) ∈ Γ
(
f−1TN

)
and f is harmonic if

and only if
τ (f) = 0 on M.

In local coordinates

τ (f)γ = 〈 , 〉ij
(

∂2fγ

∂xi∂xj
− MΓk

ij

∂fγ

∂xk
+ NΓγ

αβ

∂fα

∂xi

∂fβ

∂xj

)
where MΓ and NΓ are the Christoffel symbols of the Levi–Civita connections on M
and N , respectively. Thus, the harmonicity condition is represented by a system
of non-linear elliptic equations.

Observe that, when f : (M, 〈 , 〉) → (N, ( , )) is an isometric immersion, that
is, f∗ ( , ) = 〈 , 〉, then τ (f) = mH, with H the mean curvature vector field of
the immersion. It is well known that the equation H ≡ 0 is the Euler-Lagrange
equation of the volume functional

VΩ (f) =
∫

Ω

dVol〈 ,〉

Ω ⊂ M a compact domain. Thus, an isometric immersion is minimal if and only
if it is harmonic.

For later use, we show how to compute the tension field of f : (M, 〈 , 〉) →
(N, (, )) with the moving frame formalism. Towards this aim, let

{
θi
}

and {ei},
i = 1, . . . , m, be local ortho-normal co-frame, and dual frame, on M with cor-
responding Levi–Civita connection forms

{
θi

j

}
. Similarly, let {ωα} , {εα} ,

{
ωα

β

}
,

1 ≤ α, β, . . . ≤ n describe, locally, the Riemannian structure of (N, (, )) . Then

f∗ωα = fα
i θi

so that
df = fα

i θi ⊗ εα
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and computing the covariant derivatives

(i) fα
ijθ

j = dfα
i − fα

j θj
i + fβ

i ωα
β , (ii) fα

ij = fα
ji

in such a way that
Ddf = fα

ijθ
i ⊗ θj ⊗ εα

and
τ (f) =

∑
i

fα
iiεα.

In what follows we shall also use the next Bochner–Weitzenböck-type formula
for harmonic maps. Since we shall prove analogous formulas in Kählerian geometry
we omit here its derivation. See, e.g., [47].

Theorem 1.2. Let f : (M, 〈 , 〉)→ (N, (, )) be a smooth map. Then

1
2
∆ |df |2 = |Ddf |2 − tr〈 ,〉 (Dτ (f) , df) +

∑
i

(
df

(
MRic (ei, ·)#

)
, df (ei)

)
−
∑
i,j

(
NRiem (df (ei) , df (ej)) df (ej) , df (ei)

)
with {ei} as above and MRic, NRiem respectively the Ricci tensor of M and the
Riemannian curvature tensor of N . In particular, if f is harmonic,

1
2
∆ |df |2 = |Ddf |2 +

∑
i

(
df

(
MRic (ei, ·)#

)
, df (ei)

)
−
∑
i,j

(
NRiem (df (ei) , df (ej)) df (ej) , df (ei)

)
.

Futher, assuming that f is a harmonic function the formula specializes to
Bochner’s formula

1
2
∆|∇f |2 = |Hess f |2 + Ric (∇f,∇f). (1.1)

Weitzenböck formulae will be repeatedly used in the sequel. Here we give a
sharp estimate from below of the term |Ddf |2. This type of estimate goes under the
name of refined Kato inequalities. Their relevance will be clarified by their analytic
consequences. For a more general and abstract treatment, we refer to work by T.
Branson, [21], and by D.M.J. Calderbank, P. Gauduchon, and M. Herzlich, [24].

Proposition 1.3. Let f : M → N be a harmonic map between Riemannian mani-
folds of dimensions dimM = m and dim N = n. Then

|Ddf |2 − |∇ |df ||2 ≥ 1
(m− 1)

|∇ |df ||2

pointwise on the open, dense subset Ω = {x ∈M : |df | (x) 	= 0} and weakly on all
of M .
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Remark 1.4. The dimension n of the target manifold plays no role.

Proof. It suffices to consider the pointwise inequality on Ω. Let {fα
i } and

{
fα

ij

}
be the coefficients of the (local expressions of the) differential and of the Hessian
of f , respectively. Then

|df | =
√∑

α,i

(fα
i )2

so that

∇|df | =

∑
i

{∑
α,j

fα
ijf

α
j

}
ei√∑

α,i

(fα
i )2

and we have

|Ddf |2 − |∇ |df ||2 =
∑
α,i,j

(
fα

ij

)2 −
∑
i

{∑
α,j

fα
ijf

α
j

}2

∑
α,i

(fα
i )2

. (1.2)

For α = 1, . . . , n, define

Mα =
(
fα

ij

) ∈Mm (R) , yα = (fα
i )t ∈ Rm.

Note that each matrix Mα is traceless, by harmonicity of f , and symmetric. Then
(1.2) reads

|Ddf |2 − |∇ |df ||2 =
∑

α

‖Mα‖2 −

∣∣∣∣∑
α

Mαyα

∣∣∣∣2∑
α
|yα|2

where ‖M‖2 = tr (MM t) and |y| denotes the Rm-norm of y. We have to show
that

∑
α

‖Mα‖2 −

∣∣∣∣∑
α

Mαyα

∣∣∣∣2∑
α
|yα|2 ≥ 1

(m− 1)

∣∣∣∣∑
α

Mαyα

∣∣∣∣2∑
α
|yα|2 .

This inequality is an immediate consequence of the next simple algebraic lemma.
�

Lemma 1.5. For α = 1, . . . , n, let Mα ∈Mm (R) be a symmetric matrix satisfying
trace (Mα) = 0. Then, for every y1, . . . , yn ∈ Rm with

∑
α
|yα|2 	= 0,

∑
α

‖Mα‖2 −

∣∣∣∣∑
α

Mαyα

∣∣∣∣2∑
α
|yα|2 ≥ 1

(m− 1)

∣∣∣∣∑
α

Mαyα

∣∣∣∣2∑
α
|yα|2 . (1.3)
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Moreover, suppose the equality holds. If yα 	= 0, then either Mα = 0 or yα is an
eigenvector of Mα corresponding to an eigenvalue µα of multiplicity 1. Further-
more, the orthogonal complement 〈yα〉⊥ is the eigenspace of Mα corresponding to
the eigenvalue −µα/ (m− 1) of multiplicity (m− 1).

Proof. First, we consider the case α = 1. Let λ1 ≤ · · · ≤ λs ≤ 0 ≤ λs+1 ≤ · · · ≤ λm

be the eigenvalues of M . Without loss of generality we may assume that λm ≥ |λ1| .
We are thus reduced to proving that

m∑
i=1

λ2
i ≥

(
1 +

1
m− 1

)
λ2

m.

To this end we note that, since M is traceless,

−
m−1∑
j=1

λj = λm (1.4)

and therefore, from Schwarz’s inequality,

λ2
m ≤ (m− 1)

m−1∑
j=1

λ2
j . (1.5)

This implies
m∑

i=1

λ2
i = λ2

m +
m−1∑
j=1

λ2
j ≥

(
1 +

1
m− 1

)
λ2

m,

as desired. Suppose now that M 	= 0, so that λm > 0, and assume that equality
holds in (1.3) for some vector y 	= 0. Let C ∈ O (m) be such that CMCt = D =
diag (λ1, . . . , λm) and set w = (w1, . . . , wm) = Cy. Thus(

1 +
1

m− 1

)
λ2

m ≤
∑

i

λ2
i =

(
1 +

1
m− 1

)∑
i

(
λi

wi

|w|
)2

≤
(

1 +
1

m− 1

)
λ2

m.

(1.6)
It follows that the equality holds in (1.5) which in turn forces, according to (1.4)
and (the equality case in) Schwarz’s inequality,

λ1 = · · · = λm−1 = µ; λm = − (m− 1)µ,

for some µ < 0. On the other hand, (1.6) gives

m−1∑
i=1

λ2
i

w2
i

|w|2 + λ2
m

(
w2

m

|w|2 − 1
)

= 0

proving that w ∈ span{(0, . . . , 0, 1)t} and therefore it is an eigenvector of D belong-
ing to the multiplicity 1 eigenvalue λm. It follows that y = Ctw is an eigenvector
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of M belonging to the multiplicity 1 eigenvalue λm = − (m− 1)µ. Obviously, y⊥

is the eigenspace corresponding to the multiplicity (m− 1) eigenvalue µ.
Now let α be any positive integer. We note that

∑
α

‖Mα‖2 −

∣∣∣∣∑
α

Mαyα

∣∣∣∣2∑
α
|yα|2 ≥

∑
α

‖Mα‖2 −

(∑
α
|Mαyα|

)2

∑
α
|yα|2 .

Applying the first part of the proof we get, for every α = 1, . . . , n,

|Mαyα| ≤
√

m− 1
m

‖Mα‖ |yα| (1.7)

which in turn, used in the above, gives

∑
α

‖Mα‖2 −

∣∣∣∣∑
α

Mαyα

∣∣∣∣2∑
α
|yα|2 ≥

∑
α

‖Mα‖2 −

(∑
α

√
m−1

m ‖Mα‖ |yα|
)2

∑
α
|yα|2

≥
∑
α

‖Mα‖2 − m− 1
m

∑
α
‖Mα‖2 ∑

α
|yα|2∑

α
|yα|2 =

1
m

∑
α

‖Mα‖2 .

Whence, rearranging and simplifying yields (1.3). To complete the proof, note that
the equality in (1.3) forces equality in (1.7) and therefore the first part of the proof
applies to Mα. �

1.2 The complex case

We now turn our attention to the complex case.

Definition 1.6. An almost complex manifold (M, J) is a (real) manifold together
with a (smooth) tensor field J ∈ Γ (T ∗M ⊗ TM) of endomorphisms of TM such
that

J2
p = −idp (1.8)

for every p ∈M .

Note that (1.8) implies dim TpM = 2s.
Let TMC denote the complexified tangent bundle of M whose fibers are

C ⊗R TpM, p ∈ M . Here, dimC (C⊗R TpM) = 2s. The smooth field J can be
pointwise extended C-linearly to T C

p M so that, again, it satisfies (1.8). It follows
that Jp has eigenvalues ı and −ı and

TpM
C = TpM

(1,0) ⊕ TpM
(0,1) (1.9)
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where TpM
(1,0) and TpM

(0,1) are the eigenspaces of the eigenvalues ı and −ı,
respectively, Furthermore, v′ ∈ TpM

(1,0) and v′′ ∈ TpM
(0,1) if and only if there

exist u, w ∈ TpM such that

v′ = u− iJpu, v′′ = w + iJpw.

The above decomposition induces a dual decomposition

T ∗
p MC = T ∗

p M (1,0) ⊕ T ∗
p M (0,1). (1.10)

Note that (1.9) and (1.10) hold at the bundle level. Similar decompositions are
induced on tensor products and in particular on the Grassmann bundle

ΛkT ∗MC =
∑

i+j=k

Λ(i,j)T ∗MC.

As we have just seen, the existence of J as in Definition 1.6 induces restric-
tions on M and, for instance, one can, according to the previous discussion, easily
prove that an almost complex manifold (M, J) is even-dimensional and orientable.
However, these conditions are not sufficient to guarantee the existence of J . In-
deed, C. Ehreshmann and H. Hopf (see [154] page 217) have shown that S4 cannot
be given an almost complex structure J .

Definition 1.7. An almost Hermitian manifold (M, 〈 , 〉 , J) is an almost complex
manifold (M, J) with a Riemannian metric 〈 , 〉 with respect to which J is an
isometry, that is, for every p ∈M and every v, w ∈ TpM ,

〈Jpv, Jpw〉 = 〈v, w〉 .
In what follows, we extend 〈 , 〉 complex-bilinearly to TpM

C.

Definition 1.8. The Kähler form of an almost Hermitian manifold (M, 〈 , 〉 , J) is
the (1, 1)-form defined by

K (X, Y ) = 〈X, JY 〉
for each X, Y ∈ TMC.

Note that dK ∈ Λ3T ∗MC can be split into types according to the decompo-
sition in (1.10).

Definition 1.9. An almost Hermitian manifold (M, 〈 , 〉 , J) is said to be (1, 2)-
symplectic if

dK(1,2) = 0.

Similarly, if
dK = 0

or
δK = 0

where δ = − ∗ d∗ is the co-differential acting on 2-forms (see Appendix B), the
almost Hermitian manifold is said to be symplectic and co-symplectic, respectively.
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Definition 1.10. Let (M, 〈 , 〉 , J) be a (symplectic) almost Hermitian manifold. If
the almost complex structure J is induced by a complex structure on M , that is,
J is the multiplication by ı in the charts of a holomorphic atlas, then (M, 〈 , 〉 , J)
is called a ( Kähler) Hermitian manifold.

Note that there are manifolds which cannot be given a Kählerian structure,
for instance the Hopf and Calabi-Eckmann manifolds; see [35] page 69.

Given an almost complex manifold (M, J) the Nijenhuis tensor N is the
tensor field of type (1, 2) given by

N (X, Y ) = 2 {[JX, JY ]− [X, Y ]− J [X, JY ]− J [JX, Y ]}

for each vector field X, Y ∈ Γ (TM) , and where [ , ] denotes the Lie bracket.
By the Newlander-Nirenberg theorem, [118], an almost complex structure

J is induced by a complex structure if and only if the Nijenhuis tensor vanishes
identically.

At the cotangent bundle level, this is expressed by

dω = 0 mod (1, 0)-forms

for each form ω of type (1, 0) . In other words the ideal generated by the (1, 0)-
forms is a differential ideal. Note that if dimR M = 2 this is always true (the result
is due to Korn and Lichtenstein). In a way similar to that of the definition of the
Kähler form, we introduce the Ricci form R, that is, for every X, Y ∈ TMC,

R (X, Y ) = Ric (JX, Y ) .

Clearly, R is a (1, 1) form and the Kähler manifold (M, 〈 , 〉 , JM ) is said to be
Kähler–Einstein in case

R= − ı

4m
S (x)K

with S (x) the scalar curvature.
Let f : (M, 〈 , 〉 , JM ) → (N, ( , ) , JN ) be a smooth map between almost Her-

mitian manifolds. Then, df can be linearly extended to the complexified differential
dfC : TMC → TNC. According to the decomposition

TNC = TN (1,0) ⊕ TN (0,1)

we can write
dfC = df (1,0) + df (0,1).

Definition 1.11. A map f : (M, 〈 , 〉 , JM ) → (N, ( , ) , JN) between almost Hermi-
tian manifolds is holomorphic if and only if

JN ◦ df = df ◦ JM .
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This is immediately seen to be equivalent to the fact that dfC carries (1, 0)
vectors into (1, 0) vectors or the pull-back of (1, 0) forms, under the complex linear
extension

(
fC

)∗, are (1, 0) forms or, finally, to the fact that df (0,1) = 0.
On the other hand, f is said to be anti-holomorphic if

JN ◦ df = −df ◦ JM .

The basic relation between (anti-)holomorphic maps and harmonic maps is given
by the following local result due to A. Lichnerowicz, [108].

Proposition 1.12. Let (M, 〈 , 〉, JM ) and (N, ( , ), JN ) be almost Hermitian man-
ifolds. If M is co-symplectic and N is (1, 2)-symplectic, then any (anti-)holo-
morphic map f : M → N is harmonic.

Note that, if M is symplectic, then it is also co-symplectic. We should also
remark that some condition on M is necessary for a (anti-)holomorphic map to
be harmonic, as an example of A. Grey shows. See [48], page 58.

We now consider the case where (M, 〈 , 〉 , JM ) is an almost Hermitian mani-
fold and (N, ( , )) is Riemannian. Given a map f : M → N we can split its general-
ized second fundamental tensor Ddf according to types in T ∗MC⊗T ∗MC⊗f−1TN.
We have

DdfC = Ddf (2,0) + Ddf (1,1) + Ddf (0,2)

where DdfC is the complex linear extension of Ddf .

Definition 1.13. The map f : (M, 〈 , 〉 , JM )→ (N, ( , )) is said to be pluriharmonic,
or (1, 1)-geodesic, if Ddf (1,1) = 0.

When N = R, then Ddf (1,1) is a Hermitian form referred to as the Levi form
of f .

Definition 1.14. We say that the function f : (M, 〈 , 〉 , JM ) → R is plurisubhar-
monic if all eigenvalues of its Levi form are non-negative.

Note that any pluriharmonic map is harmonic and, if the almost Hermitian
manifolds (M, 〈 , 〉 , JM ) and (N, (, ) , JN ) are also (1, 2)-symplectic, then any (anti-
)holomorphic map f : M → N is pluriharmonic.

Thus, the notion of pluriharmonic map lies between those of harmonic and
(anti-)holomorphic maps.

In case (M, 〈 , 〉 , JM ) is almost Hermitian and (1, 2)-symplectic, and (N, (, ))
is Riemannian, J. Rawnsley, [136], has given the following characterization.

Theorem 1.15. A map f : (M, 〈 , 〉 , JM )→ (N, (, )) is pluriharmonic if and only if
its restriction to every complex curve in M is harmonic.

Note that, from this it follows that if (M, 〈 , 〉 , JM ) is Kähler, then the notion
of pluriharmonic map does not depend on the choice of the Kähler metric 〈 , 〉 on
M .
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We also note that, if (M, 〈 , 〉 , JM ) and (N, (, ) , JN ) are Kähler and f : M →
N is an isometry, then we can express holomorphicity of f via the system{

II (X, Y ) + II (JMX, JMY ) = 0,
II (X, Y ) + JN II (X, JMY ) = 0

for all X, Y vector fields on M , where we have used the more familiar notation
II for Ddf in the isometric case. Clearly, the first equation is nothing but the
definition of a pluriharmonic map.

The notion of a pluriharmonic map has appeared in the literature in the
context of the work of Y.T. Siu, [152], who used it as a bridge from harmonicity
to (anti-)holomorphicity in the analysis of the strong rigidity of compact Kähler
manifolds. Since then, it has been used in a variety of geometrical problems and
it will be used below with the aim of providing extra geometric information.

1.3 Hermitian bundles

Later on we shall also be interested in vector bundles of rank q on a base manifold
M. This means that we have a map

π : E →M

such that the following conditions are satisfied:

(i) for each x ∈M , π−1 (x) is a real (or complex) vector space of dimension q.

(ii) E is locally a product, that is, for each x ∈ M, there exists an open neigh-
borhood U of x and a bijection

ϕU : U × V → π−1 (U)

with V any fixed real (or complex) vector space of dimension q satisfying the
condition

π ◦ ϕU (x, v) = x,

for each v ∈ V .

(iii) For any two of the above neighborhoods U1, U2 such that U1 ∩U2 	= ∅, there
is a map

gU1U2 : U1 ∩ U2 → Glq (R) (or Glq (C) )

such that, for x ∈ U1 ∩ U2, and for each v, w ∈ V ,

ϕU1 (x, v) = ϕU2 (x, w)

if and only if
v = gU1U2 (x) w.
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Clearly, E can be given a (unique) topology and differentiable structure such
that each

(
π−1 (U) , ϕ−1

U

)
of (ii) is a local chart. The functions gU1U2 are called

transition functions of the bundle and they satisfy

gUU (x) = id ∈ Glq (R) , for each x ∈ U,

gU1U2gU2U1 = id ∈ Glq (R) , for each x ∈ U1 ∩ U2,

gU1U2gU2U3gU3U1 = id ∈ Glq (R) , for each x ∈ U1 ∩ U2 ∩ U3.

It is well known that the transition functions relative to a covering of M completely
determine the bundle.

A section of π : E →M is a map s : M → E such that π ◦ s = idM . The set
Γ (E) of smooth sections of E is a vector space over R (or C)

A connection on E is a map

D : Γ (E)→ Γ (T ∗M ⊗ E)

such that the following conditions are satisfied for each s, t ∈ Γ (E), and for each
f ∈ C∞ (M) (f either real- or complex-valued):

(D1) D (s + t) = Ds + Dt,

(D2) D (fs) = fDs + df ⊗ s.

Letting X ∈ Γ (TM), DXs is the derivative of s in the direction of X . Note that
DXs ∈ Γ (E).

It does make sense to define the curvature transformation

K̃ (X, Y ) : Γ (E) → Γ (E)

where X, Y ∈ Γ (TM) are any two vector fields of M , by setting

K̃ (X, Y ) s = DXDY s−DY DXs−D[X,Y ]s.

A Riemannian vector bundle is a smooth vector bundle with a fibre metric
h and a compatible connection D, that is, if s and t are sections of π : E → M ,
then, for each vector field X ∈ Γ (TM),

Xh (s, t) = h (DXs, t) + h (s, DXt) .

We will be mainly concerned with Hermitian bundles, that is, E is a Hermi-
tian manifold with a connection, the Hermitian connection, which is compatible
with the metric and uniquely determined by the next requirement (see, [35]).
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Let q = dimR π−1 (x) = 2p be the real dimension of the fibres and let {ea},
1 ≤ a, b, . . . ≤ p, be a unitary (1, 0)-type local frame of sections of E. Thus,
indicating with {µa} the dual (1, 0) forms, we have

h =
∑

a

µa ⊗ µ̄a.

Then, the Hermitian connection on E is the unique connection whose connection
forms µa

b are determined by the requirements

(i) µa
b + µ̄b

a = 0,

(ii) dµa = −µa
b ∧ µb + ζa,

(1.11)

where the ζa are forms of (2, 0)-type, and denotes complex conjugation. The
curvature forms Ma

b are then defined by the second structure equations

dµa
b = −µa

c ∧ µc
b + Ma

b ,

which are of type (1, 1) and satisfy

Ma
b + M̄ b

a = 0.

Having set
Ma

b = Aa
bcd

µc ∧ µ̄d,

the metric of the bundle is said to be Hermitian–Einstein if∑
c

Aa
bcc = λδa

b

for some constant λ ∈ C. Note that the matrix(∑
c

Aa
bcc

)
a,b

is called the mean curvature and

scalh (x) =
∑
a,c

Aa
acc

(in a unitary frame) is called the scalar curvature of the Hermitian bundle π :
E →M .

1.4 Complex geometry via moving frames

In what follows we shall always deal with the case where (M, 〈 , 〉 , JM ) is Kähler,
while (N, ( , )) or (N, ( , ) , JN ) , the target manifolds of maps, will be Riemannian
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or Kählerian. Later on we shall also consider the case where (N, ( , ) , JN ) is Her-
mitian. The situation, from our point of view, will be very similar to the Kähler
case so, since in the Hermitian case the formalism is definitively heavier, we will
not bother to provide details in derivation of the appropriate differential inequali-
ties needed in some proofs of theorems in later chapters. We formalize the Kähler
structure with a particular emphasis on its Riemannian counterpart and to do
so we will use the method of moving frame. Thus, let (M, 〈 , 〉 , JM ) be a Kähler
manifold with s = dimC M so that m = 2s = dimR M . We fix the index convention
1 ≤ i, j, k . . . ≤ s. The Kähler structure of M is naturally described by a unitary
coframe

{
ϕj

}
of (1, 0)-type, 1-forms giving the metric

〈 , 〉 =
∑

j

ϕj ⊗ ϕ̄j

and the corresponding Kähler connection forms
{
ϕi

j

}
characterized by the prop-

erty
ϕi

j + ϕ̄j
i = 0

and by the structure equations

dϕj = −ϕj
k ∧ ϕk. (1.12)

Note that, comparing with (1.11), we are now requiring that the (2, 0)-forms ζa are
identically zero. This can be seen to be equivalent to dK = 0, i.e., to the condition
that the complex manifold is Kähler (see Definition 1.9).

The Kähler curvature forms
{
Φj

k

}
are determined by the second structure

equations
dϕj

k = −ϕj
i ∧ ϕi

k + Φj
k (1.13)

and satisfy the symmetry relations

Φj
k + Φ̄k

j = 0. (1.14)

The coefficients Hi
jkt of the Hermitian curvature tensor are determined by

Φi
j = Hi

jktϕ
k ∧ ϕ̄t (1.15)

and condition (1.14) becomes equivalent to

Hi
jkt = Hj

itk.

Differentiating (1.12) we obtain the first complex Bianchi identities, that is,

Φj
k ∧ ϕk = 0

while differentiating (1.13) we obtain the second complex Bianchi identities which
we write in the form

dΦj
i + Φk

i ∧ ϕj
k − ϕk

i ∧Φj
k = 0.
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We also recall that the Kähler form K and the Ricci form R are respectively given
by

K =
ı

2

∑
j

ϕj ∧ ϕ̄j ,

R =
1
2

∑
i

Hi
iktϕ

k ∧ ϕ̄t,

so that (M, 〈 , 〉 , JM ) is Kähler–Einstein if and only if∑
i

Hi
ikt =

s

8m
δkt

with s the scalar curvature. In order to detect the underlying Riemannian structure
we set

ϕj = θj + ıθs+j , (1.16)

ϕj
k = θj

k + ıθs+j
k , (1.17)

θj
k = θs+j

s+k, θj
s+k = −θs+j

k . (1.18)

Then, the θj , θs+j give an orthonormal coframe for the metric 〈 , 〉 whose corre-
sponding Levi–Civita connection forms are determined by (1.17), (1.18) and the
usual skew symmetry conditions

θa
b + θb

a = 0,

where, from now on, we shall adhere also to the further index convention 1 ≤
a, b, . . . ≤ m. Analogously, setting

Φk
j = Θk

j + ıΘs+k
j , (1.19)

Θk
j = Θs+k

s+j , Θj
s+k = −Θs+j

k , (1.20)

0 = Θa
b + Θb

a, (1.21)

the Θa
b ’s defined in (1.19), (1.20), (1.21) coincide with the corresponding curvature

forms. Thus, letting Ra
bcd be the coefficients of the Riemannian curvature tensor

(obeying the usual symmetries), for which

Θa
b =

1
2
Ra

bcdθ
c ∧ θd (1.22)

form (1.20), we obtain the Kähler symmetry relations

Rk
jab = Rs+k

s+j ab, Rj
s+k ab = −Rs+j

kab . (1.23)

We use (1.15) and (1.19), (1.22) to relate Hermitian and Riemannian curvatures.
We obtain

Hi
jkt =

1
2

(
Ri

jkt + Rs+i
j k+s t

)
+

ı

2

(
Ri

jk s+t + Rs+i
jkt

)
. (1.24)
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Extending C-linearly the ((4, 0)-version of the) Riemannian curvature tensor we
obtain

Rabcdθ
a ⊗ θb ⊗ θc ⊗ θd = Rijklϕ

i ⊗ ϕ̄j ⊗ ϕk ⊗ ϕ̄l + Rijklϕ
i ⊗ ϕ̄j ⊗ ϕ̄k ⊗ ϕl

+ Rijklϕ
i ⊗ ϕj ⊗ ϕk ⊗ ϕl + Rijklϕ

i ⊗ ϕj ⊗ ϕk ⊗ ϕl

where

Rijkl = Rijkl, Rijkl = Rijkl, (1.25)

Rijkl = −Rijlk = −Rjikl, Rijkl = Rklij , (1.26)

the remaining coefficients, for instance Rijkl, being null. From (1.25), (1.26) and
(1.24) we deduce

Hi
jkl = Rijkl. (1.27)

Recalling the first (Riemannian) Bianchi identities

Ra
bcd + Ra

cdb + Ra
dbc = 0,

with the aid of (1.23) we obtain∑
k

Rs+i
j s+k k = Rics+i s+j = Ricij .

Hence, tracing (1.24) twice we obtain that the scalar curvature s is given by

s = 4
∑
k,i

Hi
ikk.

Furthermore
Rics+i j = −Rici s+j = −Rics+j i = −Ricj s+i (1.28)

in particular, for each fixed i = 1, . . . , s,

Rics+i i = 0.

Finally, the “Ricci curvature” of the Kähler manifold has components given by
the Hermitian matrix

Rij̄ =
∑

k

Hi
jkk =

1
2
Ricij +

ı

2
Rics+i j . (1.29)

From (1.27) and (1.28) we deduce

Rics+i j = ı
∑

k

(
Rijkk −Rijkk

)
,

Ricij =
∑

k

(
Rijkk + Rijkk

)
.
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In particular ∑
k

Hi
jkk = Rij̄ k̄ k = Rij̄ ,

and the Ricci form can be expressed as

R =
1
2

∑
i

Rij̄ϕ
k ∧ ϕl.

Note that an orthogonal transformation Uz of TzM
C is unitary if and only if it

commutes with Jz (see, e.g., [88], p. 116), and we may therefore diagonalize the
Hermitian matrix Rkj with a (1, 0)-basis of the form Ek = ek− ıJzek = ek− ıek+s,
where {ek, ek+s} is the orthonormal basis of TzM dual to {θi, θs+i}. If λk are the
corresponding eigenvalues of Rkj , then

Rkj = λkδkj =
1
2

(
Rickj + ıRick+sj

)
which implies that

Rickj = 2λkδkj and Rick+sj = 0 ∀k, j.

Further, since Rick+sj+s = Rickj = 2λkδkj , we conclude that 2λk is an eigenvalue
of Ric. This shows that, if

2Ri j̄u
iūj ≥ −ρ|u|2

holds for every u ∈ Cm, then inequality

Rici jv
ivj ≥ −ρ|v|2

holds for every v ∈ Rm. Since the reverse implication is obviously true, we conclude
that two conditions are in fact equivalent.

Let {ea} be the dual frame to {θa} . For each i, k = 1, . . . , s, we consider the
holomorphic 2-planes Π and Π̂ spanned by ei,Jei = es+i, and ek, Jek = es+k,
respectively. Then the holomorphic bisectional curvature of Π and Π̂ is defined by

Hi
ikk =

1
4
Ri s+i k s+k,

where, in this case, there is no summation over repeated indices. In particular, if
Π = Π̂ we obtain the holomorphic sectional curvature of the 2-plane Π, namely,

Hi
iii =

1
4
Ri s+i i s+i =

1
4
Sect (Π)

where, as above, there is no summation over repeated indices, and where Sect (Π)
is the (Riemannian) sectional curvature of Π.

We say that the holomorphic bisectional curvature of M is bounded above
by a function k (z) if, for all (1, 0) vectors ζ = ξkEk, η = ηjEj , at z, we have

1
2

Hi
jklξ

iξ
j
ηkηl∑

ξkξ
k ∑

ηkηk
≤ k (z) .
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1.5 Weitzenböck-type formulas

We shall now derive some Weitzenböck-type formulas. First, we consider the case
where (M, 〈 , 〉 , JM ) is a Kähler manifold, (N, (, )) is a Riemannian manifold, and
we derive a Weitzenböck formula for pluriharmonic maps f : M → N . Since it
is difficult to find the formula in the literature, we will provide a rather detailed
derivation. We fix the index convention 1 ≤ i, j, k, . . . ≤ s = 2m = dimC M ,
1 ≤ α, β, γ, . . . ≤ n = dimR N . For the manifold M we keep the notation previ-
ously introduced, while for N we let {ωα} ,

{
ωα

β

}
,
{

Ωα
β

}
be respectively a (local)

orthonormal coframe, the relative Levi–Civita connection forms and the curvature
forms. For f : M → N we set

f∗ωα = Fα
i ϕi + Fα

ı̄ ϕi (1.30)

so that
df =

(
Fα

i ϕi + Fα
ı̄ ϕi

)⊗ εα

with {εα} the frame dual to {ωα}. We observe that

Fα
i = Fα

i
. (1.31)

We take exterior differentiation of (1.30) and we use the structure equations on
M and N to get(

dFα
k − Fα

i ϕi
k + F β

k ωα
β

)
∧ ϕk +

(
dFα

k
− Fα

i
ϕi

k + F β

k
ωα

β

)
∧ ϕk = 0.

By Cartan’s lemma, there exist Fα
ij , F

α
ij

, Fα
ij

, Fα
ij

with the properties

Fα
kt

= Fα
kt, Fα

kt = Fα
tk, Fα

kt
= Fα

tk
(1.32)

and such that

dFα
k − Fα

i ϕi
k + F β

k ωα
β = Fα

ktϕ
t + Fα

ktϕ
t, (1.33)

dFα
k
− Fα

i
ϕi

k + F β

k
ωα

β = Fα
kt

ϕt + Fα
kt

ϕt. (1.34)

Note that, from (1.31) we obtain

Fα
kt = Fα

kt
, Fα

kt
= Fα

kt
. (1.35)

We observe that, comparing with the underlying Riemannian structure on M and
using the notation previously introduced, we have

Fα
k =

1
2
(
fα

k − ıfα
s+k

)
, (1.36)

Fα
kt =

1
4
(
fα

kt − fα
s+k s+t

)− ı

4
(
fα

s+k t + fα
k s+t

)
, (1.37)

Fα
kt =

1
4
(
fα

kt + fα
s+k s+t

)− ı

4
(
fα

s+k t − fα
k s+t

)
. (1.38)



18 Chapter 1. Basic Hermitian and Kählerian geometry

In particular,

DdfC = Fα
ktϕ

k ⊗ ϕt ⊗ εα + 2Fα
ktϕ

k ⊗ ϕt ⊗ εα + Fα
kt

ϕk ⊗ ϕt ⊗ εα

and it follows that f is pluriharmonic if and only if

Fα
kt = 0 = Fα

kt

and from (1.38) we double check, in this setting, that a pluriharmonic map is, in
particular, harmonic. Indeed, the harmonicity of f is equivalent to∑

k

Fα
kk

= 0.

Note that
τ (f) = 4

∑
k

Fα
kk

εα.

Next, we take exterior differentiation of (1.33) and we use the structure equations
to get(

dFα
kt − Fα

jtϕ
j
k − Fα

kjϕ
j
t + F β

ktω
α
β

)
∧ ϕt

+
(
dFα

kt − Fα
jtϕ

j
k − Fα

kj
ϕj

t + F β

kt
ωα

β

)
∧ ϕt

= −1
2
Fα

i Hi
kltϕ

l ∧ ϕt +
1
2
F β

k
NRiemα

βγδω
γ ∧ ωδ.

We define {
Fα

ktlϕ
l + Fα

ktl
ϕl = dFα

kt − Fα
jkϕj

k − Fα
kjϕ

j
t + F β

ktω
α
β ,

Fα
ktl

ϕl + Fα
ktl

ϕl = dFα
kt
− Fα

jt
ϕj

k − Fα
kj

ϕj
t + F β

kt
ωα

β .

Using (1.30) and the above equations we deduce the commutation relations

Fα
ktl = Fα

klt − F β
k F γ

t F δ
l

NRiemα
βγδ,

Fα
ktl

= Fα
klt
− F β

k F γ

t
F δ

l
NRiemα

βγδ,

Fα
ktl = Fα

klt −
1
2
Fα

i Hi
klt −

1
2
F β

k

(
F γ

t
F δ

l − F δ
t F γ

l

)
NRiemα

βδγ .

Similarly, we set{
Fα

ktl
ϕl + Fα

ktl
ϕl = dFα

kt
− Fα

jk
ϕj

k − Fα
kj

ϕj
t + F β

kt
ωα

β ,

Fα
ktl

ϕl + Fα
ktl

ϕl = dFα
kt
− Fα

jt
ϕj

k − Fα
kj

ϕj
t + F β

kt
ωα

β .
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Exterior differentiation of (1.34) and use of the structure equations yield the com-
mutation relations

Fα
ktl

= Fα
klt
− F β

k
F γ

t F δ
l

NRiemα
βγδ,

Fα
ktl

= Fα
klt
− F β

k
F γ

t
F δ

l
NRiemα

βγδ,

Fα
ktl

= Fα
klt
− 1

2
Fα

i
Hi

klt +
1
2
F β

k

(
F γ

l
F δ

t − F δ
l
F γ

t

)
NRiemα

βδγ .

From (1.35) we also deduce

Fα
ktl = Fα

ktl
; Fα

ktl
= Fα

ktl
; Fα

ktl
= Fα

ktl
; Fα

ktl
= Fα

ktl

and from (1.32) we get

Fα
ktl

= Fα
tkl

; Fα
ktl

= Fα
tkl

;

Fα
ktl = Fα

tkl; Fα
ktl

= Fα
tkl

;

Fα
ktl

= Fα
tkl

; Fα
ktl

= Fα
tkl

.

We shall now use the above preliminaries to perform some computations. It is
apparent that any time a harmonic map f : (M, 〈 , 〉 , JM )→ (N, (, )) from a Kähler
manifold to a Riemannian manifold is indeed pluriharmonic, we gain information
of both geometrical and analytical flavor. Theorem 1.20 below gives a result in
this direction. First we recall the following definition due to J.H. Sampson, [143].

Definition 1.16. A Riemannian manifold (N, ( , )) is said to have non-positive Her-
mitian curvature if

NRiemαβγδu
αvβuγvδ ≤ 0 (1.39)

for arbitrary complex vectors u and v.

Remark 1.17. Note that the left-hand side of (1.39) is indeed real.

Remark 1.18. If (N, ( , )) has constant, non-positive sectional curvature, then it
has non-positive Hermitian curvature. Other examples are provided, for instance,
by the following result of Sampson, [143].

Theorem 1.19. Let (N, ( , )) be a Riemannian symmetric space whose irreducible
local factors are all of the non-compact or Euclidean type. Then (N, ( , )) has non-
positive Hermitian curvature.

We are now in a position to state the following theorem that extends a result
of Sampson, [143] to the non-compact setting.

Theorem 1.20. Let (M, 〈 , 〉 , JM ) be a complete Kähler manifold and (N, ( , )) a
Riemannian manifold of non-positive Hermitian curvature. Then any harmonic
map f : M → N with energy density satisfying(∫

∂Br

|df |2
)−1

/∈ L1 (+∞) (1.40)

is pluriharmonic.
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Remark 1.21. As will become clear from the proof below, the harmonicity of f can
be replaced by the weaker requirement that Dτ (f) = 0, namely, f has parallel
tension field.

Remark 1.22. We remark that if f is assumed to be isometric, the conclusion of
the theorem follows without additional hypotheses on the energy density from the
assumption that M is Kähler and that N has non-positive (or even positive but
suitably pinched) Hermitian curvature. See [52], and earlier work by [40]

Proof. For the local geometries of M and N we use the notation introduced above.
Furthermore, we let

Et =
1√
2

(et − ies+t)

be the dual (1, 0)-frame of the ϕk ’s. We define the vector field

W =
∑
k,t,α

Fα
k Fα

kt
Et

and we note that it is globally defined. With the aid of the formulas determined
above and the commutation relations we obtain

1
4
divW =

∑
k,t,α

{
Fα

kt
Fα

kt + Fα
k Fα

ttk
− Fα

k F β
t F γ

k
F δ

t
NRiemα

βγδ

}
.

Note that
Dτ (f) = 0 ⇐⇒

∑
t

Fα
ttk

= 0, ∀α, k

and the latter is implied by harmonicity. Furthermore, (1.31) with non-positive
Hermitian curvature gives

Fα
k F β

t F γ

k
F δ

t
NRiemα

βγδ ≤ 0.

Using the divergence theorem it follows that∫
Br

∣∣∣Ddf (1,1)
∣∣∣2 ≤ 1

4

∫
∂Br

〈W,∇r〉 . (1.41)

Recalling the definition of W we have∫
∂Br

〈W,∇r〉 ≤
{∫

∂Br

|df |2
} 1

2
{∫

∂Br

∣∣∣Ddf (1,1)
∣∣∣2} 1

2

. (1.42)

Putting together (1.41) and (1.42) and squaring we finally get

γ (r)2 ≤ 1
4

(∫
∂Br

|df |2
)

γ′ (r) (1.43)
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where we have set
γ (t) =

∫
Br

∣∣∣Ddf (1,1)
∣∣∣2

and, by the co-area formula,

γ′ (r) =
∫

∂Br

∣∣∣Ddf (1,1)
∣∣∣2 .

Next, we reason by contradiction and we suppose Ddf (1,1) 	= 0. It follows that
there exists R > 0 sufficiently large such that γ (r) > 0, for every r ≥ R. Fix such
an r. From (1.43) we then derive

γ (R)−1 − γ (r)−1 ≥ 4
∫ r

R

dt∫
∂Bt

|df |2

and letting r → +∞ we contradict (1.40). �
We will be interested in the following consequence that improves on a result

by Li, [96], and that we state as

Corollary 1.23. Let (M, 〈 , 〉 , JM ) be a complete Kähler manifold. Then any har-
monic function u with energy satisfying(∫

∂Br

|∇u|2
)−1

/∈ L1 (+∞)

is pluriharmonic.

We now derive a Weitzenböck-type formula for the energy density of a pluri-
harmonic map from a Kähler domain into a Riemannian target.

Theorem 1.24. Let (M, 〈 , 〉 , JM ) be a Kähler manifold, let (N, ( , )) be a Rieman-
nian manifold, and let f : M → N be a pluriharmonic map. Then

∆ |df |2 = 16
∑
α,k,t

Fα
ktF

α
kt − 16

∑
k,t

Fα
k F β

t F γ

k
F δ

t

(
NRiemαβγδ + NRiemγβαδ

)
(1.44)

+ 16
∑
α,k,l

RlkFα
k

Fα
l .

Proof. With the above notation, we let

u =
∑
k,α

Fα
k Fα

k
=

1
4
|df |2 . (1.45)

In order to compute ∆u, we use the formulas

du = utϕ
t + utϕ

t,

dut − ulϕ
l
t = utlϕ

l + utlϕ
l. (1.46)
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Then
∆u = 4

∑
t

utt. (1.47)

Differentiating (1.45) we obtain

ut =
∑
α,k

Fα
k

Fα
kt +

∑
α,k

Fα
k Fα

kt
. (1.48)

Next, we perform (1.46) and we use the structural equations to arrive at

utl =
∑
α,k,t

{
Fα

ktF
α
kl

+ Fα
k

Fα
ktl

+ Fα
kt

Fα
kl

+ Fα
k Fα

ktl

}
. (1.49)

Thus, according to (1.47), (1.49) and the commutation relations, we get

∆u = 4
∑
α,k,t

Fα
ktF

α
kt
− 4

∑
α,k,t

Fα
k F β

t F γ

k
F δ

t

(
NRiemαβγδ + NRiemγβαδ

)
+ 2

∑
α,k,t

{
Fα

k
Fα

l H l
tkt + 4Fα

kt
Fα

kt + 4Fα
k Fα

ttk
+ 4Fα

k
Fα

ttk

}
.

Note that, since f is pluriharmonic, the last three terms on the RHS of the above
vanish and, furthermore,

Fα
kt

= Fα
kt. (1.50)

Finally, using (1.29), we see that∑
t

H l
tkt =

∑
t

H l
ktt. = MRiclk + ı MRics+l k = 2Rlk,

proving the validity of (1.44). �
As an easy consequence we obtain the following corollary.

Corollary 1.25. Let
(
M, 〈 , 〉 , JM

)
be a Kähler manifold with Ricci curvature sat-

isfying
MRic ≥ −ρ (x) ,

and let
(
N, ( , )

)
be a Riemannian manifold with non-positive Hermitian curvature.

Then, for any pluriharmonic map f : M → N the following inequality holds:

|df |2 ∆ |df |2 ≥
∣∣∣∇|df |2∣∣∣2 − 2ρ (x) |df |4 . (1.51)

Proof. According to (1.45), |df |2 = 4
∑

αk Fα
k

Fα
k

= 4u. Using (1.48) and recalling
that Fα

k
= Fα

k and Fα
kt

= Fα
kt we obtain

|ut|2 ≤ 4
∑
αk

|Fα
k |2

∑
αk

|Fα
kt|2 = |df |2

∑
αk

|Fα
kt|2,
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whence, using (1.50), we conclude that∣∣∣∇|df |2∣∣∣2 = 4
∑

|ut|2 ≤ 16 |df |2
∑
α,k,t

Fα
ktF

α
kt.

Inserting this inequality and the curvature assumptions into (1.44) completes the
proof. �

We note for future use the following

Proposition 1.26. Let (M, 〈 , 〉 , JM ) be a Kähler manifold with Ricci curvature
satisfying

MRic ≥ −ρ (x) .

Let f : M → R be a pluriharmonic function which is bounded from below, and let
C > − infM f . Then w = |∇ log(f + C)|2 satisfies

w∆w + 2ρ (x) w2 ≥ 2w3 + |∇w|2 .

Proof. We may assume that f is positive on M and define

w = |∇ log f |2 =
|∇f |2

f2
.

Using (1.51), we compute

w∆w ≥ w

(
6w2 − 2ρw +

1
f4

∣∣∇|∇f |2∣∣2
w

− 4
f3

〈∇f,∇|∇f |2〉) .

Next,

|∇w|2 =

∣∣∇|∇f |2∣∣2
f4

− 4|∇f |2
f5

〈∇f,∇|∇f |2〉+
4|∇f |4

f6
|∇f |2

and substituting we obtain

w∆w + 2ρ (x) w2 ≥ 2w3 + |∇w|2 . �

In a similar way, we get a Weitzenböck formula for a holomorphic map f :
M → N between Kähler manifolds (M, 〈, 〉 , JM ) and (N, (, ) , JN). We fix the index
convention

1 ≤ i, j, k, . . . ≤ sM = dimC M,

1 ≤ α, β, γ, . . . ≤ sN = dimC N.

For the manifold M we fix the local unitary coframe and related connection and
curvature forms

ϕi, ϕi
j , Φ

i
j ,
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while, for N , we fix the analogous coframing

ωα, ωα
β , Ωα

β .

We also set {Gα} for the dual frame of {ωα} and let

Ωa
β = Kα

βγδω
γ ∧ ωδ.

Since f : M → N is holomorphic, we have

f∗ωα = Bα
i ϕi, (1.52)

so that
df = Bα

i ϕi ⊗Gα.

Hence
u =

1
4
|df |2 =

∑
α,i

Bα
i B

α

i .

Differentiating (1.51) and using the structure equations on M and N , we obtain(
dBα

i −Bα
j ϕj

i + Bβ
i ωα

β

)
∧ ϕi = 0.

We set
Bα

ikϕk = dBα
i −Bα

j ϕj
i + Bβ

i ωα
β .

Differentiating this latter and using once more the structure equations, we obtain(
dBα

ik −Bα
jkϕj

i −Bα
ijϕ

j
k + Bβ

ikωα
β

)
∧ ϕk =

(
Bα

j Hj
ikt −Bβ

i Bγ
kB

δ

tK
α
βγδ

)
ϕt ∧ ϕk.

We define
Bα

iktϕ
t + Bα

iktϕ
t = dBα

ik −Bα
jkϕj

i −Bα
ijϕ

j
k + Bβ

ikωα
β ,

so that, from the above we deduce

Bα
ikt = 0,

Bα
ikt = Bα

j Hj
ikt −Bβ

i Bγ
kB

δ

tK
α
βγδ.

Next, we compute the Laplacian of u. We observe that

du = ukϕk + ukϕk

with, according to the previous formulas,

uk =
∑
α,i

B
α

i Bα
ik.
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Hence, with the aid of the above calculations,

uktϕ
t + uktϕ

t = duk − utϕ
t
k

with
ukt = Bα

ikB
α

it + B
α

i Bα
ikt.

By the definition of the Laplacian on the Kähler manifold M , we have

∆u = 4
∑

k

ukk

= 4
∑
α,i,k

(
Bα

ikB
α

ik + B
α

i Bα
ikk

)
= 4

∑
α,i,k

Bα
ikB

α

ik + 4
∑
α,i,k

B
α

i Bα
j Hj

ikk − 4
∑
α,i,k

B
α

i Bβ
i Bγ

t B
δ

tK
α
βγδ.

We have thus obtained the following

Theorem 1.27. Let (M, 〈, 〉 , JM ), (N, (, ) , JN) be Kähler manifolds and let f :
M → N be a holomorphic map. Then

∆ |df |2 = 16
∑
α,i,k

Bα
ikB

α

ik + 16
∑
α,i,k

RijB
α

i Bα
j − 16

∑
α,i,k

B
α

i Bβ
i Bγ

t B
δ

t K
α
βγδ. (1.53)

Remark 1.28. As we mentioned at the beginning of Section 1.4, the Weitzenböck
formula of Theorem 1.27 holds in the more general situation where (N, (, ) , JN ) is
only Hermitian. However, the computations due to Y.C. Lu, [111], require a little
more care, due to the presence of torsion terms in the first structural equations of
N . Accordingly, one can deduce the following result that shall be used in Chapter 8

Corollary 1.29. Let (M, 〈, 〉 , JM ) and (N, (, ) , JN ) be, respectively, a Kähler and a
Hermitian manifold. Let f : M → N be a holomorphic map. Assume

MRic ≥ −ρ (x)

and suppose that N has holomorphic bisectional curvature bounded above by k (z).
Then

|df |2 ∆ |df |2 ≥ |∇|df |2|2 − 2ρ (x) |df |4 − 2k (f (x)) |df |6 . (1.54)

Proof. With the notation introduced above, we have

u =
1
4
|df |2 =

∑
αi

Bα
i B

α

i and
1
4
|∇u|2 =

∑
k

ukuk,

where uk =
∑

α,i Bα
ikB

α

i and uk = uk. Therefore

|∇|df |2|2 = 64
∑

k

ukuk

≤ 64
∑
α,i

Bα
i B

α

i

∑
α,i,k

Bα
i,kB

α

i,k = |df |2
{

16
∑
α,i,k

Bα
i,kB

α

i,k

}
.
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Inserting this inequality into (1.52) and using the curvature assumptions completes
the proof. �



Chapter 2

Comparison Results

In this section we describe some comparison results for the Hessian and the Lapla-
cian of the distance function and for the volume of geodesic balls under curvature
conditions. In some cases, the results we are going to describe improve on classical
results.

2.1 Hessian and Laplacian comparison

We begin by showing that a lower (resp. upper) bound on the radial sectional
curvature of the form

Sectrad ≥ −G(r(x)) (resp. Sectrad ≤ −G(r(x))) (2.1)

implies an upper estimate for the Hessian, Hess r, of the distance function r(x) of
the type

Hess (r) ≤ h′(r)
h(r)

(〈 , 〉 − dr ⊗ dr
)

resp. Hess (r) ≥ h′(r)
h(r)

(〈 , 〉 − dr ⊗ dr
)

(2.2)

for some appropriate function h. By taking traces, we will then obtain corre-
sponding estimates for the Laplacian ∆r. As we will see, an upper estimate for ∆r
requires only a lower bound for the radial Ricci curvature, while a lower estimate
requires an upper bound for the radial sectional curvature.

To obtain these results we use an “analytic” approach inspired by P. Petersen,
[128] avoiding, in this way, the “geometrical” Laplacian comparison theorem of
R. Greene and H.H. Wu, [66].

We will need the following Sturm comparison result:

Lemma 2.1. Let G be a continuous function on [0, +∞) and let φ, ψ ∈ C1
(
[0,∞)

)
with φ′, ψ′ ∈ AC((0, +∞)) be solutions of the problems{

φ′′ −Gφ ≤ 0 a.e. in (0,∞),
φ(0) = 0,

{
ψ′′ −Gψ ≥ 0 a.e. in (0,∞),
ψ(0) = 0, ψ′(0) > 0.

If φ(r) > 0 for r ∈ (0, T ) and ψ′(0) ≥ φ′(0), then ψ(r) > 0 in (0, T ) and

φ′

φ
≤ ψ′

ψ
and ψ ≥ φ on (0, T ). (2.3)
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Proof. Since ψ′(0) > 0, ψ > 0 in a neighborhood of 0. We observe in passing that
if G is assumed to be non-negative, then integrating the differential inequality
satisfied by ψ we have

ψ′(r) = ψ′(0) +
∫ r

0

G(s)ψ(s) ds,

so that ψ′ is positive in the interval where ψ ≥ 0, and we conclude that, in fact,
ψ > 0 on (0, +∞).

In the general case where no assumption is made on the signum of G, we let
β = sup{t : ψ > 0 in (0, t)} and τ = min{β, T}, so that φ and ψ are both positive
in (0, τ). The function ψ′φ− ψφ′ is continuous on [0, +∞) vanishes in r = 0, and
satisfies

(ψ′φ− ψφ′)′ = ψ′′φ− ψφ′′ ≥ 0,

a.e. in (0, τ). Thus ψ′φ−ψφ′ ≥ 0 on [0, τ), and dividing through by φψ we deduce
that

ψ′

ψ
≥ φ′

φ
in (0, τ).

Integrating between ε and r (0 < ε < r < τ) yields

φ(r) ≤ φ(ε)
ψ(ε)

ψ(r)

and since

lim
ε→0+

φ(ε)
ψ(ε)

=
φ′(0)
ψ′(0)

≤ 1,

we conclude that in fact
φ(r) ≤ ψ(r) in [0, τ).

Since φ > 0 in (0, T ) by assumption, this in turn forces τ = T , for otherwise,
τ = β < T , and we would have, φ(β) > 0, while by continuity, ψ(β) = 0, which is
a contradiction. �

Using the above Sturm comparison result, we deduce a comparison result for
solutions of Riccati (in)equalities of the form

φ′ + φ2 = G (≥ G, ≤ G)

on (0, T ) with appropriate asymptotic behavior as r → 0+. Note in this respect
that the substitution g = φ′/φ transforms the Riccati inequality into the second-
order linear inequality

g′′ = Gg (≥ Gg, ≤ Gg)

and conversely.
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Corollary 2.2. Let G be a continuous function on [0, +∞) and let gi ∈ AC(0, Ti)
be solutions of the Riccati differential inequalities

g′1 +
g2

i

α
− αG ≤ 0 g′2 +

g2
2

α
− αG ≥ 0

a.e. in (0, Ti) satisfying the asymptotic condition

gi(t) =
α

t
+ O(1) as t→ 0+,

for some α > 0. Then T1 ≤ T2 and g1(t) ≤ g2(t) in (0, T1).

Proof. Since g̃i = α−1gi satisfies the conditions in the statement with α = 1,
without loss of generality we may assume that α = 1.

Observe that the function gi(s)− 1
s is bounded and integrable in a neighbor-

hood of s = 0, and let φi ∈ C1([0, Ti)) be the positive function on [0, Ti) defined
by

φi(t) = t exp
{∫ t

0

(
gi(s)− 1

s

)
ds

}
.

Then φi(0) = 0, φi > 0 on (0, Ti), φ′
i ∈ AC(0, Ti)) and straightforward computa-

tions show that
φ′

i(t) = giφi(t), φ′
i(0) = 1

and
φ′′

1 ≤ Gφ1 on (0, T1), φ′′
2 ≥ Gφ2 on (0, T2).

An application of Lemma 2.1 shows that T1 ≤ T2 and g1 = φ′
1

φ1
≤ φ′

2
φ2

= g2 on
(0, T1), as required. �

After this preparation we are ready to state our comparison result for the
Hessian.

Theorem 2.3. Let (M, 〈 , 〉) be a complete manifold of dimension m. Having fixed
a reference point o ∈ M , let r (x) = distM (x, o), and let Do = M \ cut(o) be the
domain of the normal geodesic coordinates centered at o. Given a smooth even
function G on R, let h be the solution of the Cauchy problem{

h′′ −Gh = 0,
h (0) = 0, h′ (0) = 1,

and let I = [0, r0) ⊆ [0, +∞) be the maximal interval where h is positive. If the
radial sectional curvature of M satisfies

Sectrad ≥ −G (r (x)) on Br0(o) (2.4)

on Bro(o), then

Hess (r) ≤ h′

h
{〈 , 〉 − dr ⊗ dr} (2.5)
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on (Do \ {o}) ∩Br0(o), in the sense of quadratic forms. On the other hand, if

Sectrad ≤ −G (r (x)) on Br0(o), (2.6)

then

Hess (r) ≥ h′

h
{〈 , 〉 − dr ⊗ dr} . (2.7)

Proof. We essentially follow the direct approach by P. Petersen, [128], thus avoid-
ing the classical use of Jacobi fields.

Observe first of all that Hess (r)(∇r, X) = 0 for every X ∈ TxM , and x ∈
Do \ {o}. Indeed, let γ be the geodesic parametrized by arc length issuing from
o with γ(so) = x, then γ is an integral curve of ∇r, namely, γ̇(s) = ∇r(γ(s)) so
that D∇r∇r(x) = Dγ(so)γ̇ = 0.

Next, since Hess (r) is symmetric, TxM has an orthonormal basis consisting
of eigenvectors of Hess (r). Denoting by λmax(x) and λmin(x), respectively, the
greatest and smallest eigenvalues of the Hess (r) in the orthogonal complement of
∇r(x), the theorem amounts to showing that on (Do \ {o}) ∩Br0(o),

(i) if (2.4) holds, then λmax(x) ≤ h′

h
(r(x)),

(ii) if (2.6) holds, then λmin(x) ≥ h′

h
(r(x)).

Let x ∈ Do \ {o}, and let again γ be the minimizing geodesic joining o to x.
We claim that, if (2.4) holds, then the Lipschitz function λmax satisfies{

d
ds (λmax ◦ γ) + (λmax ◦ γ)2 ≤ G for a.e. s > 0,
λmax ◦ γ = 1

s + o (1) , as s → 0+.
(2.8)

Similarly, if (2.6) holds, then the Lipschitz function λmin satisfies{
d
ds (λmin ◦ γ) + (λmin ◦ γ)2 ≥ G for a.e. s > 0,
λmin ◦ γ = 1

s + o (1) , as s → 0+.
(2.9)

Since φ = h′/h satisfies

φ′ + φ2 = G on (0, ro), φ(s) =
1
s

+ 0(s) as s → 0+,

the required conclusion follows at once from Corollary 2.2. It remains to prove that
λmax and λmin satisfy the required differential inequalities. To this end, given a
smooth real function u, denote by hess (u) the (1, 1) symmetric tensor field defined
by

hess (u) (X) = DX∇u,

so that
Hess (u) (X, Y ) = 〈hess (u) (X) , Y 〉 .
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By definition of covariant derivative in TM∗ ⊗ TM,

DX(hess(u))(Y ) = DX

[
hess(u)(Y )

]− hess(u)(DXY ),

so that, recalling the definition of the curvature tensor, we deduce the Ricci com-
mutation rule

DX(hess(u))(Y )−DY (hess(u))(X) = R(X, Y )∇u.

Now, choose u = r (x), X = ∇r, and let γ be the minimizing geodesic joining o to
x ∈ Do \ {o}. For every unit vector Y ∈ TxM such that Y ⊥ γ̇(so), define a vector
field Y⊥γ̇, by parallel translation along γ. Since, as noted above, hess (r)(∇r) ≡ 0,
we compute

Dγ̇(t0)

[
hess (r)(Y )

]
= Dγ̇(t0)(hess (r))(Y ) + hess (r)(Dγ̇(t0)Y )
= D∇(r)(hess (r))(Y )
= DY (hess (r))(∇r) + R(∇r, Y )∇r

= DY [hess (r)(∇r)] − hess (r)(DY∇r)−R(Y,∇r)∇r

= −hess (r)(hess (r)(Y ))−R(Y,∇r)∇r,

that is,
Dγ̇(to)[hess (r)(Y )] + hess (r)(hess (r)(Y ))−R(Y,∇r)∇r.

Since Y is parallel,

d

dt
〈hess (r)(Y ), Y 〉 = 〈Dγ̇ [hess (r)(Y )], Y 〉,

and we conclude that

d

ds
(Hess (r) (γ) (Y, Y )) + 〈hess (r)(γ)(Y ), hess (r)(γ)(Y )〉 = −Sectγ (Y ∧ γ̇) .

(2.10)
Now assume that Sectrad ≥ −G (r (x)). Note that, for any unit vector field X⊥∇r,

Hess (r) (X, X) ≤ λmax.

Thus, if Y is chosen so that, at s0,

Hess (r) (γ) (Y, Y ) = λmax (γ (s0)) ,

then the function
Hess (r) (γ) (Y, Y )− λmax ◦ γ

attains its maximum at s = s0 and, if at this point λmax is differentiable, then its
derivative vanishes:

d

ds

∣∣∣∣
s0

Hess (r) (γ) (Y, Y )− d

ds

∣∣∣∣
s0

λmax ◦ γ = 0.
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Whence, using (2.10), we obtain, at s0,

d

ds
(λmax ◦ γ) + (λmax ◦ γ)2 ≤ G,

which is the desired inequality stated in (2.8). The asymptotic behavior of λmax◦γ
near s = 0+ follows from the fact that

Hess (r) =
1
r

(〈 , 〉 − dr ⊗ dr) + o (1) , r → 0+,

as one can verify by a standard computation in normal coordinates at o ∈M . The
argument in the case where Sectrad ≤ −G is completely similar. �

As mentioned above, by taking traces in Theorem 2.3 we immediately obtain
corresponding estimates for ∆r. In particular, if Sectrad ≤ −G(r(x)) it follows
that

∆r(x) ≥ (m− 1)
h′(r(x))
h(r(x))

on (Do\{o})∩Br0(o). Clearly the corresponding upper estimate holds if we assume
instead that the radial sectional curvature is bounded below by −G. In this case
however, the conclusion holds under the weaker assumption that the radial Ricci
curvature is bounded from below by−(m−1)G(r(x)). Indeed we have the following
Laplacian comparison theorem,

Theorem 2.4. Maintaining the notation of the previous theorem, assume that the
radial Ricci curvature of M satisfy

Ric(M,〈 ,〉)(∇r,∇r) ≥ −(m− 1)G(r) (2.11)

for some function G ∈ C0([0, +∞)), and let h ∈ C2([0, +∞)) be a solution of the
problem {

h′′ −Gh ≥ 0,

h(0) = 0, h′(0) = 1.
(2.12)

Then the inequality

∆r(x) ≤ (m− 1)
h′(r(x))
h(r(x))

(2.13)

holds pointwise on M \ (cut(o) ∪ {o}), and weakly on all of M .

Proof. Let [0, r0) ⊆ [0, +∞) be the maximal interval where h is positive. Note that
comparing h with the solution of the differential equation associated to (2.12) and
using the remark at the beginning of the proof of Lemma 2.1 shows that if G is
non-negative, then ro = +∞.

As in the proof of Theorem 2.3, let Do = M \ cut(o) be the maximal star-
shaped domain of the normal coordinates at o. Fix any x ∈ Do ∩ (Bro(o) \ {o})
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and let γ : [0, l] → M be the minimizing geodesic from o to x parametrized by
arc-length. Set

ϕ(s) = (∆r) ◦ γ(s), s ∈ (0, l].

We claim that ϕ satisfies{
i) ϕ(s) = m−1

s + o(1), as s → 0+,

ii) ϕ′ + 1
m−1ϕ2 ≤ (m− 1)G, on (0, l].

(2.14)

Indeed (2.14) i) follows from the well-known fact that

∆r =
m− 1

r
+ o(1), as r → 0+.

As for (2.14) ii), note that by tracing in (2.10) we deduce that

d

dt
(∆r ◦ γ) + |Hess r|2(γ) = −Ric(∇r,∇r)(γ).

Using the elementary inequality

(∆r)2

m− 1
≤ |Hess(r)|2 ,

which in turn follows easily from the Cauchy–Schwarz inequality, we deduce that

d

dt
(∆r ◦ γ) +

(∆r ◦ γ)2

m− 1
≤ −Ric(∇r,∇r)(γ). (2.15)

Inequality (2.14) ii) follows from the assumption on Ric. Arguing as in the proof
of Theorem 2.3 shows that (2.13) holds pointwise on Do ∩ (Bro(o) \ {o}).

Note now that a computation in polar geodesic coordinates shows that

∆r ◦ γ(t) =
1√

g(t, θ)
∂
√

g(t, θ)
∂t

where θ = γ′(0) and g(r, θ) is the determinant of the metric in geodesic polar
coordinates. Thus (2.13) can be rewritten in the form

1√
g(t, θ)

∂
√

g(t, θ)
∂t

≤ (m− 1)
h′(t)
h(t)

whence, integrating and using the asymptotic behavior of h and
√

g as t → 0+,
show that for every unit length θ ∈ ToM ,√

g(t, θ) ≤ h(t) ∀t < min{ro, c(θ)}
where c(θ) denotes the distance of o from cut(o) along the geodesic γθ. Since√

g(t, θ) > 0 if (t, θ) belongs to the domain of the geodesic polar coordinates,
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while, if ro < +∞, then h(ro) = 0, we deduce that for all θ c(θ) ≤ ro, and
therefore Do ⊂ Bro(o).

Thus (2.13) holds pointwise on M \ ({o} ∪ cut(o)), and it remains to prove
that the inequality holds weakly on all of M . This is guaranteed by the following
lemma. �

Lemma 2.5. Set Do = M\cut(o) and suppose that

∆r ≤ α(r) pointwise on Ω\ {o} (2.16)

for some α ∈ C0
(
(0, +∞)

)
. Let v ∈ C2(R) be non-negative and set u(x) = v(r(x))

on M . Suppose either
i) v′ ≤ 0 or ii) v′ ≥ 0. (2.17)

Then we respectively have

i) ∆u ≥ v′′(r) + α(r)v′(r); ii) ∆u ≤ v′′(r) + α(r)v′(r) (2.18)

weakly on M .

Proof. Let Eo be the maximal star-shaped domain on which expo is a diffeomor-
phism onto its image, so that Do = exp(Eo) and we have cut(o) = ∂ (expo (Eo)).
Since Eo is a star-shaped domain, we can exhaust Eo by a family {En

o } of relatively
compact, star-shaped domains with smooth boundary. We set Ωn = expo(En

o ) so
that

Ω
n ⊂ Ωn+1 and ∪n Ωn = Do.

The fact that each En
o is star-shaped implies

∂r

∂νn
> 0, on ∂Ωn (2.19)

where νn denotes the outward unit normal to ∂Ωn. Now, we assume the validity
of (2.17) i). Since r ∈ C∞(Ωn\ {o}), computing we get

∆u ≥ v′′ + α(r)v′ pointwise on Ωn\ {o} . (2.20)

Let 0 ≤ ϕ ∈ C∞
0 (M). We claim that, ∀n,∫

Ωn

u∆ϕ ≥
∫

Ωn

(v′′ + α(r)v′)ϕ + εn

with εn → 0 as n → +∞. Since M = Ω ∪ cut(o) and cut(o) has measure 0,
inequality (2.18) i) will follow by letting n→ +∞. To prove the claim we fix δ > 0
small and we apply the second Green formula on Ωn\Bδ(o) to obtain∫

Ωn\Bδ(o)

u∆ϕ =
∫

Ωn\Bδ(o)

ϕ∆u−
∫

∂Ωn∪∂Bδ(o)

(
ϕ

∂u

∂νn
− u

∂ϕ

∂νn

)
(2.21)
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where νn is the outward unit normal to ∂Ωn ∪∂Bδ(o). We note that, according to
(2.17) i) and (2.19),

∂u

∂νn
= v′(r)

∂r

∂νn
≤ 0 on ∂Ωn.

Using this, (2.20) and (2.21), we obtain∫
Ωn

u∆ϕ ≥
∫

Ωn

(v′′ + α(r)v′)ϕ + εn + Iδ

with
εn =

∫
∂Ωn

u
∂ϕ

∂νn
,

Iδ =
∫

Bδ(o)

[u∆ϕ− (v′′ + α(r)v′)ϕ]−
∫

∂Bδ(o)

[
u

∂ϕ

∂r
− ϕ

∂u

∂r

]
.

Clearly, Iδ → 0 as δ → 0+. On the other hand, since ϕ ∈ C∞
0 (M) and cut(o) has

measure 0, using the divergence and Lebesgue theorems we see that, as n → +∞,

εn =
∫

Ωn

div (u∇ϕ) →
∫

Ω

div(u∇ϕ) =
∫

M

div(u∇ϕ) = 0.

This proves the claim and the validity of (2.18) i).
The case of (2.17) ii) and (2.18) ii) can be dealt with in a similar way. �

Remark 2.6. We note that, for the above proofs to work, it is not necessary that
(2.11) holds on the entire M . Indeed, for instance, if (2.11) is valid on BR(o), then
(2.13) holds on BR(o)\ ({o} ∪ cut(o)) and weakly on BR(o).

We also remark that in the course of the proof we have shown that if the
solution h of (2.12) vanishes at ro, then Do ⊂ Bro(o) and therefore M ⊂ Bro(o).
This easily yields the classical Bonnet-Myers theorem, stating that if Ric ≥ (m−
1)B2, then M is compact with diameter at most

√
π/B.

Remark 2.7. We note for future use that a modification of the above argument
shows that on M \ {o} the singular part of the distribution ∆r is negative, and
therefore it is the opposite of a positive measure concentrated on the cut locus.
Indeed, let φ be a smooth, non-negative test function with support contained in
M \ {o}. Arguing as above we may write

(φ, ∆r) =
∫

M

r∆φ = lim
n

(∫
Ωn

φ∆r +
∫

∂Ωn

r〈∇φ, ν〉 −
∫

∂Ωn

φ〈∇r, ν〉).
As n → +∞, the first term on the right-hand side tends to

∫
Eo

φ∆r, and, as noted
in the above proof, the second term tends to zero. Thus the limit of the third term
exists, and we have

(r, ∆φ)−
∫

Eo

φ∆r = (φ, (∆r)sing) = − lim
n

∫
∂Ωn

φ〈∇rν〉,

and since 〈∇r, ν〉 ≥ 0, the limit is non-negative, as claimed.
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In order to apply Theorem 2.4 one needs to find solutions of (2.12). We begin
with the following fairly general result.

Lemma 2.8. Suppose that G is a positive C1 function on [0, +∞) such that

inf
[0,+∞)

G′

G3/2
> −∞. (2.22)

Then, there exists D > 0 sufficiently large that the function h defined by

h(r) =
1

D
√

G(0)

{
eD

∫
r
0

√
G(s)ds − 1

}
(2.23)

is a solution of (2.12).

Proof. Indeed, it is a simple matter to check that if h is as in the statement, then
h(0) = 0, h′(0) = 1 and furthermore

h′′ −G h ≥ G√
G(0)

[
inf

[0,+∞)

G′

2G3/2
+ D − 1

D

]
so that, by (2.22), (2.12) holds provided D > 0 is sufficiently large. �

Remark 2.9. Assumption (2.22) implies G(r)1/2 	∈ L1(+∞). It is then a simple
matter to check that

h′(r)
h(r)

∼
{

1
r as r → 0,

D G(r)1/2 as r → +∞.
(2.24)

Remark 2.10. When we can find an explicit solution of the problem{
h′′ − h G = 0, on [0, +∞),
h(0) = 0, h′(0) = 1,

(2.25)

then (2.13) yields a better estimate. For instance if G(r) ≡ B2, B > 0,

h(r) = B−1 sinh (Br)

satisfies (2.25) and we obtain

∆r ≤ (m− 1)B coth (Br) weakly on M (2.26)

and pointwise on M\ ({o} ∪ cut(o)). This estimate will be repeatedly used in the
sequel.

We next describe some upper and lower estimates for h′/h and for h obtained
in [20] for the case where G has the form G(r) = B2(1+ r2)α/2 for some constants
B > 0 and α ≥ −2. We begin with upper bounds.
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Proposition 2.11. Assume h is a solution of{
h′′ −B2(1 + r2)α/2h = 0,

h(0) = 0 h′(0) = 1,
(2.27)

where B > 0 and α ≥ −2. Set

B′ =

{
B if α > −2,
1+

√
1+4B2

2 if α = −2.
(2.28)

Then
h′

h
(r) ≤ B′rα/2(1 + o(1)) as r → +∞. (2.29)

Moreover there exists a constant C such that, when r > 1,

h(r) ≤ C

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp

(
2B′

2 + α
(1 + r)1+α/2

)
if α ≥ 0,

r−α/4exp
(

2B′

2 + α
r1+α/2

)
if − 2 < α < 0,

rB′
if α = −2.

(2.30)

Proof. The case where α ≥ 0 was already treated in [134]. It is a simple matter to
check that the function ψ defined by

ψ(r) = B−1 sinh
(

2B

2 + α

[
(1 + r)1+α/2 − 1

])
satisfies ψ′′/ψ ≥ B2(1 + r2)α/2, ψ(0) = 0 and ψ′(0) = 1. The estimates (2.29) and
(2.30) follow at once.

Next assume that −2 < α < 0. Denoting by Iν the modified Bessel function
of order ν, it may be verified that the function defined by

ψ(r) = r1/2I 1
2+α

(
2B

2 + α
r1+α/2

)
,

is a positive C1 solution on [0, +∞) of the (singular) differential equation

ψ′′ = B2rαψ

satisfying ψ(0) = 0 ([91], page 106). Since rα ≥ (1 + r2)α/2, the argument above
shows that h′/h ≤ ψ′/ψ. Using the recurrence relation

Iν =
1
2

(Iν+1 + Iν−1)

and the asymptotic representation

Iν(r) =
er

√
2πr

(1 + o(1)) as r → +∞
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([91], page 110 and page 123, respectively), it is not hard to show that

ψ′

ψ
(r) = Brα/2 − α

4
r−1 + O

(
r−2−α/2

)
as r → +∞

and (2.29) follows. Since we also have ψ′(0) = C where C = Cα,B is a positive con-
stant depending on α and B, we have h ≤ C−1ψ and (2.30) is again a consequence
of the asymptotic representation of Iν .

Finally, if α = −2, we consider the function defined by

ψ(r) = rβ .

A simple computation shows that

ψ′′/ψ ≥ B2(1 + r2)−1

holds provided β =
[
1 +

√
1 + 4B2

]
/2, showing that (2.29) holds. The validity of

(2.30) is then established by integrating h′/h over [1, r]. �
Next we consider lower bounds. To illustrate the method, assume that h′′ =

G(r)h and that G(r) is non-increasing. Then

h′′(r) = G(r)h(r) ≥ G(R)h(r) ∀ r ∈ [0, R].

Thus, the comparison argument used in the proof of Lemma 2.1 applied to the
function φ(r) = G(R)−1/2 sinh

(
G(R)1/2r

)
implies that

h′

h
(r) ≥ G(R)1/2 tanh

(
G(R)1/2r

)
.

Suppose now that G(r) has the form G(r) = B2(1 + r2)α/2. The condition
that G(r) be decreasing requires that we restrict ourselves to the case where −2 ≤
α ≤ 0.

The case where α = 0 is trivial since then G(r) is constant, and we have the
equality h(r) = B−1 sinh(Br).

If −2 < α < 0, the argument above shows that

h′

h
≥ B(1 + r2)α/4 ≥ Brα/4

[
1 +

α

4
r−2

]
r � 1,

where the last inequality follows by expanding the function (1+r−2)α/4. Integrat-
ing over [R, r], R � 1, we obtain

h(r) ≥ h(R) exp
(

B

∫ r

R

sα/4[1 + α/(4s2)]
)

ds

≥ C exp
(

2B

2 + α
r1+α/2

)
.
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Finally, if α = −2, we consider the function φ(r) = (1+ r)B′
, with B′ as in (2.28).

Then
φ′′

φ
(r) =

B′(B′ − 1)
(1 + r)2

≥ B2

1 + r2
.

Thus (h′φ− hφ′)′(r) > 0, r > 0, and since (h′φ− hφ′)(0) = 1, we conclude that

h′

h
(r) ≥ B′(1 + r)−1,

and then integrating
h(r) ≥ C(1 + r)B′

.

The above considerations prove the following

Proposition 2.12. Let h be the solution of (2.27) with −2 ≤ α ≤ 0, and let B′ be
defined as in (2.28). Then

h′

h
(r) ≥ B′rα/2(1 + o(1)) as r → +∞, (2.31)

and there exists a constant C such that when r > 1

h(r) ≥ C

⎧⎨⎩exp
(

2B′

2 + α
r1+α/2

)
if − 2 < α ≤ 0,

rB′
if α = −2.

(2.32)

We conclude this section by considering the case where G is a non-negative
non-increasing function satisfying the condition∫ +∞

0

tG(t) dt < +∞. (2.33)

According to a terminology introduced by U. Abresch [1] for the sectional curva-
ture, if a manifold (M, 〈 , 〉) satisfies

Sect(x) ≥ −G(r(x)) resp. Ric(∇r,∇r) ≥ −(m− 1)G(r(x))

with G as above, then one says that M has asymptotically non-negative sectional,
resp. Ricci, curvature. Note that under these assumption, G decays faster than
quadratically at infinity, and in particular, condition (2.22) does not hold. This
case is dealt with in the following lemma (see also [125], Lemma 1, and [171],
Lemma 2.1).

Lemma 2.13. Assume that h ∈ C2([0, +∞) is the solution of the problem{
h′′ −G(r)h = 0,

h(0) = 1, h′(0) = 1,
(2.34)
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where G is a continuous non-negative function on [0, +∞). Let ψ be defined by the
formula

ψ(r) =
∫ r

0

e
∫

s
0 uG(u) duds.

Then we have the estimates

(i) 1 ≤ h′(r) ≤ ψ′(r) (ii)
1
r
≤ h′

h
≤ ψ′

ψ
and (iii) r ≤ h(r) ≤ ψ(r). (2.35)

In particular, if ∫ +∞

0

tG(t) dt = b0 < +∞, (2.36)

then, for every r ≥ 0,

1 ≤ h′(r) ≤ eb0 and r ≤ h(r) ≤ eb0r. (2.37)

Proof. Since the function φ(t) = t satisfies{
φ′′ −G(r)φ ≤ 0,

φ(0) = 1, φ′(0) = 1,

applying Lemma 2.1 we easily obtain the left-hand side inequalities in (2.35)
(ii) and (iii), which in turn imply (i).

The upper bounds are proved in a similar way. Indeed, since

ψ(r) ≤ re
∫

r
0 sG(s) ds,

a straightforward computation shows that the function ψ satisfies{
ψ′′ −G(r)ψ ≥ 0,

ψ(0) = 1, ψ′(0) = 1,

and therefore we obtain the right-hand side inequalities in (2.35). It is clear that
if (2.36) holds, then (2.35) yields (2.37) �

2.2 Volume comparison and volume growth

The following result is a somewhat generalized version of what is known in the lit-
erature as the Bishop-Gromov volume comparison theorem. In fact, on manifolds
with Ricci curvature bounded from below, R. Bishop proved an upper estimate
for the volume of balls not intersecting the cut locus of their centers, in terms
of the volumes of corresponding balls in space-forms, [10]. Later, M. Gromov ex-
tended the estimate including the cut locus and improved the result by showing a
monotonicity behavior.
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Theorem 2.14. Let (M, 〈 , 〉) be a complete, m-dimensional Riemannian manifold
satisfying

Ric (x) ≥ − (m− 1)G (r (x)) on M (2.38)

for some non-negative function G ∈ C0 ([0, +∞)) , where r (x) = dist (x, o) is
the distance from a fixed reference origin o ∈ M. Let h (t) ∈ C2 ([0, +∞)) be the
non-negative solution of the problem{

h′′ (t)−G (t)h (t) = 0,
h (0) = 0 h′ (0) = 1.

(2.39)

Then, for almost every R > 1, the function

R �→ vol∂BR (o)
h(R)m−1

is non-increasing (2.40)

and
vol∂BR (o) ≤ cmh(R)m−1 (2.41)

where cm is the volume of the unit sphere in Rm. Moreover,

R �→ volBR (o)∫ R

0 h (t)m−1
dt

(2.42)

is a non-increasing function on (0, +∞).

Proof. In case o is a pole of M one simply integrates the radial vector field

X = h(r(x))−m+1∇r

on concentric balls BR (o), and uses the divergence and the Laplacian compari-
son theorems. However, in general, objects are non-smooth and inequalities are
intended in the sense of distributions. Therefore, we have to take some extra care.

The Laplacian comparison theorem asserts that

∆r (x) ≤ (m− 1)
h′ (r (x))
h (r (x))

(2.43)

pointwise on the open, star-shaped, full-measured set M \ cut (o) and weakly on
all of M . Thus, for every 0 ≤ ϕ ∈ Lipc (M),

−
∫
〈∇r,∇ϕ〉 ≤ (m− 1)

∫
h′ (r (x))
h (r (x))

ϕ. (2.44)

For any ε > 0, consider the radial cut-off function

ϕε (x) = ρε (r (x))h(r(x))−m+1 (2.45)
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where ρε is the piecewise linear function

ρε (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if t ∈ [0, r),
t−r

ε if t ∈ [r, r + ε),
1 if t ∈ [r + ε, R− ε),
R−t

ε if t ∈ [R− ε, R),
0 if t ∈ [R,∞).

(2.46)

Note that

∇ϕε =
{
−χR−ε,R

ε
+

χr,r+ε

ε
− (m− 1)

h′(r(x))
h(r(x))

ρε

}
h (r(x))−m+1∇r,

for a.e. x ∈ M , where χs,t is the characteristic function of the annulus Bt (o) \
Bs (o) . Therefore, using ϕε into (2.44) and simplifying, we get

1
ε

∫
BR(o)\BR−ε(o)

h (r(x))−m+1 ≤ 1
ε

∫
Br+ε(o)\Br(o)

h (r(x))−m+1
.

Using the co-area formula we deduce that

1
ε

∫ R

R−ε

vol∂Bt (o)h (t)−m+1 ≤ 1
ε

∫ r+ε

r

vol∂Bt (o)h (t)−m+1

and, letting ε ↘ 0,
vol∂BR (o)
h (R)m−1 ≤ vol∂Br (o)

h (r)m−1 (2.47)

for a.e. 0 < r < R. Letting r → 0, and recalling that h(r) ∼ r and vol∂Br ∼
cmrm−1 as r → 0, we conclude that, for a.e. R > 0,

vol∂BR (o) ≤ cmh (R)m−1
, a.e. R > 0.

To prove the second statement, we note that it was observed by M. Gromov, see
[33], that for general real-valued functions f (t) ≥ 0, g (t) > 0,

if t→ f (t)
g (t)

is decreasing, then t→
∫ t

0 f∫ t

0 g
is decreasing.

Indeed, since f/g is decreasing, if 0 < r < R,∫ r

0

f

∫ R

r

g =
∫ r

0

g
f

g

∫ R

r

g ≥ f(r)
g(r)

∫ r

0

g

∫ R

r

g ≥
∫ r

0

g

∫ R

r

g
f

g
=

∫ r

0

g

∫ R

r

f,

whence∫ r

0

f

∫ R

0

g =
∫ r

0

f

∫ r

0

g +
∫ r

0

f

∫ R

r

g ≥
∫ r

0

f

∫ r

0

g +
∫ r

0

g

∫ R

r

f =
∫ r

0

g

∫ R

0

f.
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In particular, applying this observation to (2.47) and using the co-area formula
we deduce that

r → volBr (o)∫ r

0
h (t)m−1

dt
is decreasing,

as required to conclude the proof. �
The following straightforward consequence of Theorem 2.14 is useful in ap-

plications.

Corollary 2.15. Let (M, 〈 , 〉) be a complete, m-dimensional manifold satisfying
(2.38) for some non-negative function G (t) ∈ C0 ([0,∞)).

(i) Having fixed x0 ∈M and 0 < R̄ ≤ r (x0), define

snH (t) =
{

H−1 sinh (Ht) if H > 0,
t if H = 0,

(2.48)

with
H2 = max

BR̄(x0)
G (r (x)) = max

[r(x0)−R̄,r(x0)+R̄]
G (t) . (2.49)

Then, the function

R �→ volBR (x0)∫ R

0 snH (t)m−1
dt

is non-increasing on [0, R̄].

(ii) If G (t) is non-decreasing, then, for every x0 ∈M , the function

R �→ volBR (x0)∫ R

0
hx0 (t)m−1

dt

is non-increasing on (0, +∞). Here, hx0 is the solution of the problem{
h′′ (t)−Gx0 (t)h (t) = 0,
h (0) = 0 h′ (0) = 1,

where Gx0 (t) = G (t + r (x0)) .

Remark 2.16. Using the first part of the statement, J. Cheeger, M. Gromov and
M. Taylor, [33], were able to deduce sharp volume growth estimates under point-
inhomogeneous curvature conditions. See Theorem 2.26 and Corollary 2.27 below.
See also Remark 2.23.

Proof. Part (i) is just a local version of Theorem 2.14. As for part (ii) , let G (t)
be non-decreasing. Fix x0 ∈ M , set rx0 = dist (x0, x) , and observe that, by the
triangle inequality,

Ric (x) ≥ − (m− 1)G (r (x)) ≥ − (m− 1)Gx0 (rx0 (x)) .

Therefore, the assumptions of Theorem 2.14 are met with respect to the origin
x0. �
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In the previous section, we made several choices of the lower Ricci bound
G (t) in such a way that the solutions g (t) of the corresponding problem (2.39)
can be explicitly estimated. In view of Theorem 2.14, these estimates can now be
applied to get upper volume bounds. We limit ourselves to “polynomial situations”
(see Proposition 2.11 and Lemma 2.13 above).

Corollary 2.17. Let (M, 〈 , 〉) be a complete, m-dimensional manifold satisfying

Ric (x) ≥ − (m− 1)G (r (x)) on M

for some non-negative function G ∈ C0 ([0, +∞)) , where r (x) = dist (x, o) is the
distance from a fixed reference origin o ∈M .

(i) Assume G (t) = B2
(
1 + t2

)−1, with B > 0. Then, for every R > r >> 1,

volBR (o)
volBr (o)

≤ C

(
R

r

)(m−1)B′+1

, vol∂Br (o) ≤ Cr(m−1)B′
,

where

B′ =
1 +

√
1 + 4B2

2
and C > 0 is a suitable constant.

(ii) Assume
∫ +∞
0 tG (t) dt = b0 < +∞. Then, for every R > r > 1,

volBR (o)
volBr (o)

≤ e(m−1)b0

(
R

r

)m

, vol∂Br (o) ≤ cme(m−1)b0rm−1,

where, as in (2.41), cm is the (m− 1)-volume of the unit sphere in Rm.

The volume estimates described above depend on uniform bounds on the
Ricci curvature. We next consider a situation in which the Ricci curvature satisfies
some Lp-integrability conditions, and describe upper bounds for the volume growth
of balls obtained by P. Petersen and G. Wei in [129], who consider the slightly less
general case where the function G below is a non-negative constant and M is
compact. Previous related results have been obtained by S. Gallot, [57], Li and
Yau, [107] and D. Yang, [166].

As above, we assume that G is non-negative and continuous on [0, +∞) and
that h (t) ∈ C2 ([0, +∞)) is the non-negative solution of the problem{

h′′ (t)−G (t)h (t) = 0,
h (0) = 0 h′ (0) = 1.

Letting r(x) be the distance function from the reference point o, we also define

ψ(x) = max{0, ∆r(x) − (m− 1)
h′(r(x))
h(r(x))

} (2.50)
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in the domain Do of the normal coordinates at o, and 0 on the cut locus, and let

ρ(x) = max{0,−Ric(∇r,∇r) − (m− 1)G(r(x))}, (2.51)

so that if ρ ≡ 0, that is Ric(∇r,∇r) ≥ −(m − 1)G(r(x)), then, by the Laplacian
comparison theorem, ψ(x) ≡ 0. For ease of notation, in the course of the arguments
that follow we will denote by

AG(r) = cmh(r)m−1 and VG(r) = cm

∫ r

0

h(t)m−1dt (2.52)

the measures of the sphere and of the ball of radius r centered at the pole in the m-
dimensional model manifold MG with radial Ricci curvature equal to −(m− 1)G,
that is the manifold that is diffeomorphic to Rm and whose metric is given, in
geodesic polar coordinates by

〈 , 〉G = dr2 + h(r)2( , )Sm−1 .

We begin with the following lemma, which is a minor modification of Lemma
2.1 in [129].

Lemma 2.18. Maintaining the notation introduced above, for every fixed p > 1/2
we have

d

dR

volBR(o)
VG(R)

≤ cmRAG(R)
VG(R)1+1/2p

(volBR

VG(R)

)1−1/2p(∫
BR

ψ2p
)1/2p

. (2.53)

Proof. According to Remark 2.7, for every non-negative Lipschitz function ϕ com-
pactly supported in M \ {o} we have

−
∫

M

〈∇r,∇ϕ〉 = (ϕ, ∆r) =
∫

Eo

ϕ∆r + (ϕ, (∆r)sing ) ≤
∫

Eo

ϕ∆r,

where Do is the domain of the normal geodesic coordinates at o. Applying this
inequality to the function ϕε (x) = ρε (r (x))h(r(x))−m+1 where ρε is the Lipschitz
cut-off function defined in (2.46), arguing as in the proof of Theorem 2.14, and
using the fact that h is non-decreasing, and the definition of ψ, we deduce that
for a.e. 0 < r < R,

vol∂BR

AG(R)
− vol∂Br

AG(r)
≤

∫
BR\Br

h(r(x))−m+1
[
∆r − (m− 1)

h′(r(x))
h(r(x))

]
≤ h(r)−m+1

∫
BR\Br

ψ.

Using Hölder inequality and the definition of AG we obtain

AG(r)vol ∂BR −AG(R)vol∂Br ≤ cmAG(R)
∫

BR\Br

ψ(x)

≤ cmAG(R)
(
volBR

)1−1/2p
(∫

BR

ψ2p
)1/2p

.
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Therefore, applying the co-area formula, and using the above inequality we obtain

d

dR

(volBR

VG(R)

)
=

VG(R)vol∂BR −AG(R)vol BR

VG(R)2

= VG(R)−2

∫ R

0

(
AG(r)vol ∂BR −AG(R)vol ∂Br

)
dr

≤ VG(R)−2

∫ R

0

cmAG(R)
(
volBR

)1−1/2p
(∫

BR

ψ2p
)1/2p

dr

=
cmRAG(R)
VG(R)1+1/2p

(volBR

VG(R)

)1−1/2p(∫
BR

ψ2p
)1/2p

as required. �

As noted before the statement of the lemma, if the Ricci tensor satisfies the
inequality Ric(∇r,∇r) ≥ −(m − 1)G(r(x)), then ψ ≡ 0, and we recover the fact
that the function

r �→ vol∂Br(o)
AG(r)

is a decreasing function of r.
The following lemma (see Lemma 2.2 in [129]) allows to estimate the 2p-norm

of ψ over BR in terms of the p-norm of ρ.

Lemma 2.19. For every p > m/2 there exists a constant C = C(m, p) such that
for every R, ∫

BR

ψ2p ≤ C

∫
BR

ρp

with ρ(x) as defined in (2.51).

Proof. Integrating in polar geodesic coordinates we have∫
BR

f =
∫

Sm−1
dθ

∫ min{R,c(θ)}

0

f(tθ)ω(tθ)dt

where ω is the volume density with respect to Lebesgue measure dtdθ, and c(θ) is
the distance from o to the cut locus along the ray t→ tθ. It follows that it suffices
to prove that for every θ ∈ Sm−1,∫ min{R,c(θ)}

0

ψ2p(tθ)ω(tθ)dt ≤ C

∫ min{R,c(θ)}

0

ρp(tθ)ω(tθ)dt. (2.54)

An easy computation which uses (2.15) yields

∂

∂t
{∆r − (m− 1)

h′

h
} ≤ − (∆r)2

m− 1
−Ric(∇r,∇r) − (m− 1)

{h′′

h
−
(h′

h

)2}
.
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Thus, recalling the definitions of ψ and ρ, we deduce that the locally Lipschitz
function ψ satisfies the differential inequality

ψ′ +
ψ2

m− 1
+ 2

h′

h
ψ ≤ ρ

on the set where ρ > 0 and a.e. on (0, +∞). Multiplying through by ψ2p−2ω and
integrating, we obtain∫ r

0

ψ′ψ2p−2ω +
1

m− 1

∫ r

0

ψ2pω + 2
∫ r

0

h′

h
ψ2p−1ω ≤

∫ r

0

ρψ2p−1ω. (2.55)

On the other hand, integrating by parts, and recalling that ω−1∂ω/∂t = ∆r ≤
ψ + (m− 1)h′

h and that ψ(tθ) = 0 if t ≥ c(θ), yield∫ r

0

ψ′ψ2p−2ω =
1

2p− 1
ψ(r)2p−1ω(rθ) − 1

2p− 1

∫ r

0

ψ2p−1∆rω

≥ − 1
2p− 1

∫ r

0

ψ2p−1
(
ψ + (m− 1)

h′

h

)
ω.

Substituting this into (2.55), and using Hölder inequality we obtain( 1
m− 1

− 1
2p− 1

)∫ r

0

ψ2pω +
(
2− m− 1

2p− 1

) ∫
ψ2p−1ω

≤
∫ r

0

ρψ2p−1ω

≤
(∫ r

0

ρpω
)1/p(∫ r

0

ψ2pω
)(p−1)/p

,

and, since the coefficient of the first integral on the left-hand side is positive, by
the assumption on p, while the second summand is non-negative, rearranging and
simplifying we conclude that (2.54) holds with

C(m, p) =
( 1

m− 1
− 1

2p− 1

)−p

. �

We are now ready to state the announced volume comparison theorem under
Lp Ricci curvature assumptions.

Theorem 2.20. Keeping the notation introduced above, if p > m/2, then for every
0 < r < R,

volBR(o)
VG(R)

− volBr(o)
VG(r)

≤
( 1

2p

∫ R

r

f(t)dt
)2p

, (2.56)

where

f(t) =
cmtAG(t)

VG(t)1+1/2p

(∫
Bt

ρp
)1/2p

. (2.57)
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Moreover f is integrable in r = 0 and

volBR(o)
VG(R)

≤
(
1 +

1
2p

∫ R

0

f(t)dt
)2p

, (2.58)

and

vol∂BR(o)
AG(R)

≤
(
1 +

1
2p

∫ R

0

f(t)dt
)2p

+
cmR

VG(R)1/2p

(∫
BR

ρp
)1/2p(

1 +
1
2p

∫ R

0

f(t)dt
)2p−1

.

(2.59)

Proof. Set

y(r) =
volBr(o)

VG(r)
.

According to (2.53) in Lemma 2.18, Lemma 2.19 and (2.57) we have{
y′(t) ≤ f(t)y(t)1−1/2p,

y(t) ∼ 1 as t→ 0+, y(t) > 0 if t > 0,

whence, integrating between r and R we obtain

y(R)1/2p − y(r)1/2p ≤ 1
2p

∫ R

r

f(t) dt,

that is, (2.56). Since

AG(t) ∼ cmtm−1 and
∫

Bt

ρp = O(tm) as t→ 0,

f is integrable in t = 0, and letting r → 0 we obtain (2.58).
On the other hand, according to (2.53) and Lemma 2.19,

vol∂BR

AG(R)
≤ volBR

VG(R)
+

cmR

VG(R)1/2p

(∫
Bt

ρp
)1/2p(volBR

VG(R)

)1−1/2p

and the conclusion follows inserting (2.58). �

Corollary 2.21. Keeping the notation introduced above, we have:

(i) Let G = 0, so that h(t) = t, AG(t) = cmtm−1and

ρ = max{0,−Ric(∇r,∇r)} = Ric−.
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(1) If Ric− ∈ Lp(M) for some p > m/2, then there exist constants C1 and
C2, depending only on m and p, such that

volBR ≤ cm

m

[
1 + C1||Ric−||1/2

Lp(M)R
1−m/2p

]2p

Rm,

and
vol∂BR ≤ cm

[
1 + C2||Ric−||1/2

Lp(M)R
1−m/2p

]2p

Rm−1.

(2) (cf. [107], Corollary 1.2) If∫
BR

Ricp
− = o

(
Rγ

)
as t→ +∞, (2.60)

for some p > m/2 and γ > 0, then

volBR = o(R2p+γ) as R → +∞,

and
vol∂BR = o(R2p+γ−1) as R → +∞.

(ii) Let G = H2 > 0 be constant, so that h(t) = H−1 sinhHt, and

VG(t) ∼ cm

(m− 1)2m−1Hm
e(m−1)Ht as t→ +∞.

If ρ ∈ Lp(M) for some p > m/2, then there exist constants C3 and C4

depending only on p, m and H such that

volBR ≤
(
1 + C3||ρ||1/2

Lp(M)

)2p
VG(R),

and
vol∂BR ≤

(
1 + C4||ρ||1/2

Lp(M)

)2p
AG(R),

Proof. Assume that G = 0 and that Ric− ∈ Lp. Then we may estimate

f(t) =
cmtAG(t)

VG(t)1+1/2p

(∫
Bt

Ricp
−
)1/2p

≤ C||Ric−||1/2
Lp(M)t

−m/2p

and (i) (1) follows at once from (2.58) and (2.59). Similarly, if (2.60) holds, then

f(t) = o
(
t(γ−m)/2p

)
as t→ +∞,

and (i) (2) follows as before from (2.58) and (2.59). Finally, if G = H2 > 0 and
ρ ∈ Lp(M), we may estimate

f(t) ≤ C||ρ||1/2
Lp(M) max{1, t}VG(t)−1/2p

and since the right-hand side is integrable on [0, +∞), the required conclusion
follows once again from (2.58) and (2.59). �
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The Bishop-Gromov comparison theorem enables one to get an upper es-
timate of the volumes of geodesic balls, assuming a lower control on the Ricci
tensor. However, there are special situations where lower volume estimates can be
deduced from the same curvature conditions. To see this, let us first consider the
next important consequences of Theorem 2.14, as was pointed out in [33].

Corollary 2.22. Let (M, 〈 , 〉) and h be as in Theorem 2.14.

(i) For every r1 ≤ r2 ≤ r3,

volBr3 (o)− volBr2 (o)∫ r3

r2
h (t)m−1

dt
≤ volBr1 (o)∫ r1

0
h (t)m−1

dt
. (2.61)

(ii) Assume that the lower Ricci curvature bound is a constant function G (t) ≡
H2 ≥ 0. Let x, y ∈ M , set d = dist (x, y) and take r + R < d. Then

volBR (x)

∫ r

0 snH (t)m−1
dt∫ d+R

d−R
snH (t)m−1 dt

≤ volBr (y) , (2.62)

where snH is defined in (2.48).

Remark 2.23. As will be clear from the proof, property (2.61) can be localized
according to the first part of Corollary 2.22. In this situation, condition (2.61)
becomes: for every r1 ≤ r2 ≤ r3 ≤ R̄,

volBr3 (x0)− volBr2 (x0)∫ r3

r2
snH (t)m−1

dt
≤ volBr1 (x0)∫ r1

0 snH (t)m−1
dt

with H defined in (2.49).

Proof. We first consider case (i) . A repeated use of Theorem 2.14 gives

volBr3 (o)− volBr2 (o) = volBr3 (o)− volBr2 (o)∫ r2

0 h (t)m−1
dt

∫ r2

0

h (t)m−1
dt

≤ volBr3 (o)− volBr3 (o)∫ r3

0 h (t)m−1
dt

∫ r2

0

h (t)m−1
dt

=
volBr3 (o)∫ r3

0
h (t)m−1

dt

∫ r3

r2

h (t)m−1
dt

≤ volBr1 (o)∫ r1

0
h (t)m−1 dt

∫ r3

r2

h (t)m−1 dt,

proving (2.61).
We now consider case (ii) . The desired inequality easily follows from (2.61).

Indeed, observe that
BR (x) ⊂ BR+d (y) \Bd−R (y) .
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Therefore, recalling that d−R ≥ r and using (2.61), we conclude that

volBR (x) ≤ volBd+R (y)− volBd−R (y)

≤
∫ d+R

d−R

snH (t)m−1 dt
volBr (y)∫ r

0
snH (t)m−1 dt

.

�

Now, by way of example, assume that (M, 〈 , 〉) is a complete manifold of
non-negative Ricci curvature. Using (2.62) of Corollary 2.22 with H = 0, so that
snH (t) = t, and radii d = s− 1, r = s− 2, and R = 1, we obtain

volBs (y) ≥ (s− 2)m

sm − (s− 2)m volB1 (x) ≥ Cs,

for every s >> 1 and for some constant C > 0. Namely, a complete manifold of
non-negative Ricci curvature has at least a linear volume growth. This result was
originally due to E. Calabi and S.T. Yau. Similar conclusions can be reached in
a slightly more general situation. The starting point is that, in the above Ricci
curvature assumption,

volBR (x)
volBr (x)

≤
(

R

r

)m

for every x ∈ M, R ≥ r > 0. Thus, in particular, (M, 〈 , 〉) enjoys the doubling
property. This means that, for some (hence any) α > 1, there is a constant Dα > 1,
such that

volBαR (x) ≤ DαvolBR (x)

regardless of x ∈ M and R > 0. We recall the following characterization of mani-
folds enjoying the doubling property.

Lemma 2.24. A complete manifold (M, 〈 , 〉) has the doubling property if and only if
for some (hence any) α > 1 there exists a constant Dα > 1 such that the following
holds. Let A ⊂ M be a bounded set. Then, for every ball Br (x) centered at x ∈ A
and of radius r satisfying

r < δx (A) = sup
y∈A

dist (x, y) ,

we have
vol (A)

volBr (x)
≤ Dα

(
δx (A)

r

)logα Dα

. (2.63)

In particular, for every 0 < r ≤ R we have

volBR(x)
volBr (x)

≤ Dα

(
R

r

)logα Dα

.
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Proof. We only need to show that if M has the doubling property, then the prop-
erty holds. Assume therefore that (M, 〈 , 〉) satisfies the doubling property with
constants α, Dα > 1. Fix Br (x) as in the statement and consider j ∈ N satisfying

αj−1 ≤ δx (A)
r

≤ αj .

Note that
A ⊂ Bδx(A) (x) ⊂ Brαj (x) .

Therefore, using the doubling property,

vol (A) ≤ volBrαj (x) ≤ Dj
αvolBr (x) .

To conclude, note that

Dj−1
α =

(
αj−1

)logα Dα ≤
(

δx (A)
r

)logα Dα

. �

Direct use of this Lemma gives a (quantitative) volume growth result which
is true regardless of any monotonicity property.

Proposition 2.25. Let (M, 〈 , 〉) be a complete manifold with the doubling property
and let x ∈ M . Then, there exist explicit constants C = C (x, α) > 0 and k =
k (Dα, α) > 0 such that, for every R > 1,

volBR (x) ≥ CRk. (2.64)

Proof. Fix x ∈ M and, for every j, choose yj ∈ ∂Bαj−1+αj

2
(x). Then, we have the

inclusions

Bαj (x) \Bαj−1 (x) ⊃ Bαj−αj−1
2

(yj) ; Bαj+3αj−1
2

(yj) ⊃ Bαj−1 (x) .

Using Lemma 2.24, we deduce

volBαj (x)− volBαj−1 (x) ≥ volBαj−αj−1
2

(yj)

≥ D−1
α

(
αj − αj−1

αj + 3αj−1

)logα Dα

volBαj+3αj−1
2

(yj)

≥ D−1
α

(
α− 1
α + 3

)logα Dα

volBαj−1 (x) .

Therefore
volBαj (x) ≥ EvolBαj−1 (x) ,

where we have set

E = 1 +
(

α− 1
α2 + 3α

)logα Dα

> 1.
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Iterating this inequality j-times gives

volBαj (x) ≥ EjvolB1 (x) ,

and choosing k = logα E > 0 we finally obtain

volBαj (x) ≥ αjkvolB1 (x) =
(
αj+1

)k volB1 (x)
αk

. (2.65)

Now, for any given R > 1, let j satisfy αj < R < αj+1. From (2.65) we conclude
the validity of (2.64) with C = volB1 (x) /αk. �

The last result of the section is the following impressive volume growth prop-
erty of complete manifolds with almost non-negative Ricci curvature (in the sense
specified in (2.66), (2.67) see also Corollary 2.27 below). It is a contribution of
P. Li and R. Schoen, [95], and P. Li and M. Ramachandran, [98]. Its proof relies
heavily on the work by Cheeger-Gromov-Taylor [33].

Theorem 2.26. For every m ≥ 2 there exists a constant ε = ε (m) > 0 such that
the following holds. Let (M, 〈 , 〉) be a complete manifold satisfying

Ric ≥ − (m− 1)G (r (x)) on M (2.66)

where G (t) ∈ C0 ([0, +∞)) is a positive function such that

G (t) =
ε2

t2
for t >> 1, (2.67)

and r (x) = dist (x, o), for some reference origin o ∈M . Then, for every d > 1,

vol
(
B r(x)

d

(x)
)
→ +∞, as r (x) → +∞. (2.68)

Proof. We divide the quite involved proof in several steps.

First Step. Fix

0 < ξ < 1, β >
2(

21/m − 1
) > 1.

If ε = ε (m, ξ, β) > 0 is sufficiently small, then the following holds: For every x ∈M
choose a geodesic γ parametrized by arc length which realizes the distance between
o = γ (0) and x = γ (r (x)). Define a set of values t0 < t1 < · · · < tk ≤ r (x) by

t0 = 0; ti = (β + 1)
i−1∑
j=0

βj , (2.69)

tk being the largest value so that tk < r (x). Define xj = γ (tj) . Then, if k is large
enough,

volBβk (xk) ≥ C1

(
βm

(β + 2)m − βm

)k(1−ξ)

volB1 (o) , (2.70)
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for some constant C = C (β) > 0.
Indeed, observe that {xi} form a set of points along γ with the property that⎧⎨⎩ (i) r (xi) = ti = (β + 1) (β − 1)−1 (βi − 1

)
,

(ii) dist (xi, xi+1) = ti+1 − ti = βi + βi+1,
(iii) dist (xk, x) = r (x)− tk < tk+1 − tk = βk + βk+1.

(2.71)

Thus, the geodesic balls
{
Bβi (xi)

}
are disjoint and their closures cover the set

γ
(
[0, tk + βk)

)
. Furthermore

Bβi−1 (xi−1) ⊂ Bβi+2βi−1 (xi) \Bβi (xi) . (2.72)

Setting
H2

i = max
Bβi+2βi−1(xi)

G (r (y)) ,

from Corollary 2.22 (i) and (2.72), we deduce that

volBβi (xi) ≥ Ti

{
volBβi+2βi−1 (xi)− volBβi (xi)

}
≥ TivolBβi−1 (xi−1)

where

Ti =

∫ βi

0

H−1
i sinhm−1(Hit) dt∫ (βi+2βi−1)

βi

H−1
i sinhm−1(Hit) dt

=

∫ βiHi

0

sinhm−1 t dt∫ (βi+2βi−1)Hi

βiHi

sinhm−1 t dt

.

(2.73)

Iterating this inequality we conclude that

volBβk (xk) ≥
k∏

i=1

Ti volB1 (o) . (2.74)

The validity of (2.70) will follow once we show that, for every i, hence k, large
enough,

Ti ≥
(

βm

(β + 2)m − βm

)1−ξ

. (2.75)

Note that, according to (2.66) and (2.67), for sufficiently large i ≥ i0 = i0 (β, m),
we have

Ric ≥ −(m− 1)H2
i on Bβi+2βi−1 (xi)
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with
Hi =

ε

dist
(
o, ∂Bβi+2βi−1 (xi)

) = ε
(β − 1)

2βi−1 − β − 1
.

In particular, for every i ≥ i0,(
βi + 2βi−1

)
Hi = ε

(β + 2)(β − 1)
2− β+1

βi+1

≤ εA,

where

A = A (β, i0) =
(β − 1) (β + 2)

2− β+1
βi0−1

. (2.76)

Let 0 < δ = δ (m, β, ξ) < 1 be defined by the equation(
1

1 + δ

)m−1

=
{

(β + 2)m − βm

βm

}ξ

.

The definition is consistent because our assumption that β > 2/
(
21/m − 1

)
guar-

antees that the right-hand side is < 1. If ε = ε (m, δ) > 0 is chosen small enough,
we can approximate

t ≤ sinh t ≤ t (1 + δ) on [0, εA]

which in turn, used in (2.73), gives

Ti ≥
(

1
1 + δ

)m−1 (βiHi)m

[(βi + 2βi−1)Hi]m − (βiHi)m

=
(

1
1 + δ

)m−1
βm

(β + 2)m − βm
,

proving (2.75).

Second Step. There exists a constant 0 < α = α (β) < 1 such that, for r (x) >> 1,
hence k >> 1,

vol
(
Bαr(x) (x)

) ≥ volBβk (xk) . (2.77)

To see this, first observe that, by the triangle inequality,

Bdist(xk,x)+βk (x) ⊃ Bβk (xk) . (2.78)

On the other hand, x and xk lie on the minimizing geodesic γ from o to x, so that

dist (xk, x) + βk

r (x)
=

dist (xk, x) + βk

dist (xk, x) + r (xk)
.

Since, by (2.71) (i), r (xk) ≥ βk, the function

t �→ t + βk

t + r (xk)
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is monotone increasing. Whence, using (2.71) (iii),

dist (xk, x) + βk

r (x)
=

dist (xk, x) + βk

dist (xk, x) + r (xk)

≤ 2βk + βk+1

βk + βk+1 + (β+1)(βk−1)
β−1

=
2 + β

1 + β + β+1
β−1 (1− β−k)

.

Note that
lim

k→+∞
2 + β

1 + β + β+1
β−1 (1− β−k)

=
2 + β

1 + β + β+1
β−1

< 1.

Therefore, up to choosing k (hence r (x)) large enough, say k ≥ k0 = k0 (β) > 0,
we have

dist (xk, x) + βk

r (x)
≤ α,

with
α =

2 + β

1 + β + β+1
β−1 (1− β−k0)

< 1.

It follows that
Bαr(x) (x) ⊃ Bdist(xk,x)+βk (x)

which in turn, combined with (2.78), proves (2.77).

Third Step. Let d > 1 be fixed. There exists a constant C2 = C2 (α, d, ε) > 0 such
that, for r (x) >> 1,

volB r(x)
d

(x) ≥ C2vol
(
Bαr(x) (x)

)
. (2.79)

Indeed, suppose d > 1/α, for otherwise there would be nothing to prove. Note
that, for every y ∈ Bαr(x) (x),

Ric (y) ≥ − (m− 1)
ε2

r (x)2 (1− α)2
,

provided r (x) >> 1. Therefore, by Corollary 2.15 with H = ε/r (x) (1− α) we
deduce

volB r(x)
d

(x)

vol
(
Bαr(x) (x)

) ≥ C2 :=
∫ ε

d(1−α)
0 sinhm−1 (t) dt∫ αε

(1−α)
0 sinhm−1 (t) dt

.

Fourth Step. Putting together (2.70), (2.77) and (2.79) gives

volB r(x)
d

(x) ≥ C3

(
βm

(β + 2)m − βm

)k(1−ξ)

volB1 (o)
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with C3 = C1C2 > 0. Since, by our choice of β > 2/
(
21/m − 1

)
,(

βm

(β + 2)m − βm

)
> 1,

the validity of (2.68) follows by letting r (x), hence k, tend to +∞. �
We point out the following consequence of the above proof.

Corollary 2.27. Suppose we are given

m ≥ 2, 0 < ξ < 1, β >
2(

21/m − 1
) > 1, d > 1.

Then, there exists ε = ε (m, ξ, β) > 0 sufficiently small such that the follow-
ing holds. Let (M, 〈 , 〉) be a complete manifold satisfying the curvature conditions
(2.66) and (2.67) above. Then

volB r(x)
d

(x) ≥ Cr (x)logβ E
, as r (x)→ +∞,

where

E =
(

βm

(β + 2)m − βm

)(1−ξ)

> 1

and C = C (m, β, ξ, d) > 0 is a suitable constant.

Proof. Let x ∈ M be such that r (x) >> 1. Recall that, by definitions of k and
{tj} in the First Step, we have

tk+1 =
(β + 1)

(
βk+1 − 1

)
β − 1

≥ r (x) .

Therefore

k ≥ logβ r (x) + logβ

(
β − 1
β + 1

)
− 1.

On the other hand, in the Fourth Step we obtained, for r (x) >> 1,

volB r(x)
d

(x) ≥ C3

(
βm

(β + 2)m − βm

)k(1−ξ)

volB1 (o) .

It follows that
volB r(x)

d

(x) ≥ CElogβ r(x),

where we have set

C = C3volB1 (o)
(

βm

(β + 2)m − βm

)(1−ξ){log( β−1
β+1 )−1}

and

E =
(

βm

(β + 2)m − βm

)(1−ξ)

. �
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2.3 A monotonicity formula for volumes

In the previous sections we obtained volume growth estimates under curvature
conditions. In the present section we replace the curvature conditions with the
assumption that the manifold M is isometrically immersed in an appropriate am-
bient space N .

In this context, we recall that if M is an m-dimensional manifold minimally
immersed into Rn, denoting by BR

n

R (p) the Euclidean ball of radius R centered at
p ∈ Rn, then the monotonicity formula states that

vol (M ∩BR
n

R (xo))
Rm

is a non-decreasing function of R (see, e.g., [38]), and therefore

vol (M ∩BR
n

R (xo)) ≥ cmRm,

where cm is the volume of the unit sphere in Rm. Such estimates have proven to be
important in a number of applications, including the regularity theory of harmonic
maps. A variation of the argument shows that similar monotonicity formulas hold
replacing the “exterior ball” BR

n

R (xo) with the intrinsic ball BR(p), p ∈ M . As a
matter of fact, we have the following slightly more general result concerning the
volume growth of manifolds which admit a bi-Lipschitz, harmonic immersion into
a Cartan–Hadamard space. Before stating the theorem, we recall that a geodesic
ball BN

ρ (q) in N is said to be regular if it does not intersect the cut locus of q, and,
having denoted by k an upper bound for the sectional curvature of N on BN

ρ (q) ,

one has
√

kρ < π/2.

Theorem 2.28. Let (M, 〈 , 〉) be a complete, non-compact Riemannian manifold of
dimension dimM = m, immersed into a complete manifold (N, ( , )) via f : M →
N . Assume that either N is Cartan–Hadamard, or that f (M) is contained in a
regular geodesic ball. Furthermore, suppose that the immersion f is harmonic and
bi-Lipschitz so that there exist positive constants A and B such that

A〈X, X〉 ≤ (
df(X), df(X)

) ≤ B〈X, X〉 (2.80)

for every X ∈ TM . Fix an origin o ∈M and denote ρ (y) = distN (y, f (o)). Next,
set

k = sup
f(M)

NSect

and define snk to be the unique solution of the Cauchy problem{ ··
snk + k snk = 0,

snk (0) = 0;
·

snk (0) = 1.

Set also
cnk (t) =

·
snk (t) .
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Then, there exists a constant B1,

B1

{
= 1 if f is isometric,
≤ √mB otherwise,

(2.81)

such that

R �−→
∫

BR(o) cnk (ρ ◦ f){
snk

(√
BR

)} mA
B1

√
B

(2.82)

is a non-decreasing function. In particular, in case N is Cartan–Hadamard, for
every R ≥ R0 > 0 it holds that

volBR (o) ≥ C

{
R

mA

B1
√

B if k = 0,

sinh
mA

B1
√

B
−1 (√−kBR

)
tanh

(√−kBR
)

if k < 0,
(2.83)

for a suitable constant C = C (R0, k, A, B, m) > 0.

Proof. Consider the function

F (x) = ink ◦ ρ ◦ f (x)

where we have set

ink (t) =
∫ t

0

snk (s) ds.

The chain rule for the Hessian yields

M∆F (x) =
m∑

i=1

NHess (ink ◦ ρ) (df (ei) , df (ei)) + d (ink ◦ ρ) (τ (f))

where {ei} is any local orthonormal frame filed in (M, 〈 , 〉). Since f is harmonic,
we have

τ (f) = 0,

and therefore

M∆F (x) =
m∑

i=1

NHess (ink ◦ ρ) (df (ei) , df (ei)) . (2.84)

Note that, by Hessian comparison,

NHess (ink ◦ ρ) =
··
ink (ρ) dρ⊗ dρ +

·
ink (ρ) NHess (ρ)

= cnk (ρ) dρ⊗ dρ + snk (ρ) NHess (ρ)

≥ cnk (ρ) dρ⊗ dρ + snk (ρ)
cnk (ρ)
snk (ρ)

{( , )− dρ⊗ dρ}

= cnk (ρ) ( , ).
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Therefore, using the fact that f is bi-Lipschitz and cnk (ρ) > 0,

RHS(2.84) ≥
m∑

i=1

cnk (ρ (f))
(
df (ei) , df (ei)

)
≥ mA cnk (ρ (f)) .

It follows that
M∆F ≥ mA cnk (ρ (f)) . (2.85)

Starting from (2.85), we now apply the divergence theorem on the (intrinsic)
geodesic ball BR (o) of M and use Schwarz inequality and Gauss’ lemma to obtain

mA

∫
BR(o)

cnk (ρ (f)) ≤
∫

BR(o)

M∆F (2.86)

=
∫

∂BR(o)

〈
M∇F,

∂

∂r

〉
≤

∫
∂BR(o)

∣∣M∇F
∣∣
M

.

It is readily seen that ∣∣ M∇F
∣∣
M
≤ B1 snk (ρ (f)) (2.87)

with B1 satisfying (2.81). Indeed,∣∣ M∇F
∣∣
M

=
·
ink (ρ (f))

∣∣ M∇ (ρ ◦ f)
∣∣
M

= snk (ρ (f))
∣∣ M∇ (ρ ◦ f)

∣∣
M

.

Moreover, with respect to local orthonormal frames {ei} on M , {EA} on N with
dual frames

{
θi
}
,
{
ΘA

}
, we have

dρ = ρAΘA, df = fA
i θi ⊗ EA

so that
M∇ (ρ ◦ f) = ρAfA

i ei.

This latter implies ∣∣ M∇ (ρ ◦ f)
∣∣
M

= |Dy|
Rm

where
D =

(
fA

i

) ∈Mn,m (R) , y = (ρA)t ∈ Rn.

Clearly, in case f is isometric, D =
(
δA
i

)
, while, in the general bi-Lipschitz case,

|D| =
√∑

〈df (ei) , df (ei)〉N = |df | ≤
√

mB.
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Now recall that, by Gauss’ lemma,

|y|
Rn =

∣∣N∇ρ
∣∣
N

= 1,

and therefore

|Dy|
Rm ≤ sup

|x|=1

|Dx|
Rm

{
= 1 f isometric,
≤ √mB otherwise.

This proves the claimed inequality (2.87) with

B1 = sup
M

sup
|x|=1

|Dx|
Rm .

Inserting (2.87) into (2.86) gives

mA

∫
BR(o)

cnk (ρ (f)) ≤ B1

∫
∂BR(o)

snk (ρ (f)) . (2.88)

Let us elaborate the RHS of this latter. Observe that the positive function

t �−→ snk (t)
cnk (t)

is increasing. (2.89)

Furthermore, from the very definitions of distN and distM , we see that

ρ (f (x)) ≤
√

B distM (x, o) . (2.90)

Indeed,

ρ (f (x)) = distN (f (x) , f (o))

= inf
Γ⊂N

Γ(0)=f(o), Γ(1)=f(x)

∫ 1

0

∣∣∣Γ̇ (t)
∣∣∣
N

≤ inf
γ⊂M

γ(0)=o, γ(1)=x

∫ 1

0

∣∣∣∣ d

dt
f ◦ γ (t)

∣∣∣∣
N

≤
√

B inf
γ⊂M

γ(0)=o, γ(1)=x

∫ 1

0

|γ̇ (t)|M

=
√

B distM (x, o) .

Combining (2.90) with (2.89) we deduce

RHS (2.88) =
∫

∂BR(o)

snk (ρ (f))
cnk (ρ (f))

cnk (ρ (f))

≤ B1

snk

(√
BR

)
cnk

(√
BR

) ∫
∂BR(o)

cnk (ρ (f))
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so that

mA

∫
BR(o)

cnk (ρ (f)) ≤ B1

snk

(√
BR

)
cnk

(√
BR

) ∫
∂BR(o)

cnk (ρ (f)) . (2.91)

Using the co-area formula, (2.91) can be written in the form

d

dR
log

⎛⎜⎝∫
BR(o)

cnk (ρ (f))

sn
mA

B1
√

B

k

(√
BR

)
⎞⎟⎠ ≥ 0 (2.92)

which implies the validity of (2.82). �



Chapter 3

Review of spectral theory

In this chapter we collect the results from spectral theory that will be used in the
sequel, concentrating our attention on the spectral theory of Schrödinger operators
on Riemannian manifolds. The vanishing and finite-dimensionality results which
we will present in the next chapters are based on assumptions on the spectrum of
suitable Schrödinger operators. And some of the geometric conditions which we
will encounter in later chapters can be interpreted in spectral sense.

Our presentation is based on the delightful book by E.B. Davies, [41], and
on the paper by P. Bérard, M. do Carmo and W. Santos, [13] (see also Reed and
Simon, [137], [138]).

3.1 The spectrum of a self-adjoint operator

Let T : D(T ) ⊆ X → X be a possibly unbounded densely defined operator on
a complex Banach space X . We recall the resolvent set of T is the set of point
λ in C such that (λ − T ) has dense range R(λ − T ), and (λ − T )−1 extends to
a bounded operator on X (note that if in addition T is closed, then necessarily
R(λ− T ) = X ). The spectrum σ(T ) of T is the complement of the resolvent set.

In particular, if ker(λ − T ) 	= {0} we say that λ is an eigenvalue of T ,
ker(λ− T ) is the eigenspace belonging to λ, and its dimension is the multiplicity
of the eigenvalue.

The point spectrum σp(T ) of T is the set of all eigenvalues, the discrete
spectrum σd(T ) is the set of all eigenvalues of finite multiplicity which are isolated
points of the spectrum, and the essential spectrum σess(T ) is the complement of
the discrete spectrum, and consists of eigenvalues of infinite multiplicity together
with cluster points of the spectrum. Both the spectrum, and the essential spectrum
are closed.

Assume now that T is a densely defined operator defined on a Hilbert space
H, endowed with inner product ( , ). It’s adjoint operator is defined by D(T ∗) =
{y ∈ H : x �→ (Tx, y) is a bounded linear functional on D(T )} and T ∗y is defined
via the Riesz representation theorem by the identity (x, T ∗y) = (Tx, y) for all
x ∈ D(T ). If T is closed and densely defined, then so is T ∗.

Then T is symmetric if T ⊆ T ∗, that is (Tx, y) = (x, T y) for all x, y ∈ D(T )
and it is self-adjoint if T = T ∗. Finally T is essentially self-adjoint on D if its
closure T̄ is self-adjoint, and since (T̄ )∗ = T ∗ this amounts to T̄ = T ∗. In this case
T̄ is the only self-adjoint extension of T.
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We have the following criteria of self-adjointness, respectively essential self-
adjointness.

Theorem 3.1. Let T : D → H be a symmetric operator. Then the following are
equivalent:

(i) T is self-adjoint (resp. T is essentially self-adjoint);

(ii) T is closed and ker(T ∗ ± i) = {0} (resp. ker(T ∗ ± i) = {0});
(iii) R(T ± i) = H (resp. R(T ± i) = H).

In general, for a symmetric operator T on D ⊆ H, we define its deficiency
indices d± = dimker(T ∗ ± i). Then T is essentially self-adjoint if and only if
d+ = d− = 0, while it has at least one self-adjoint extension if and only if d+ = d−.

In the case of differential operators on bounded domains (of Rn or of a
manifold), the following sufficient condition is often useful.

Theorem 3.2. Let T be a symmetric operator with domain D(T ), and let {fn} be a
complete orthonormal set in H such that, for every n, fn ∈ D(T ) and Tfn = λnfn

for some λn, which is necessarily real since T is symmetric. Then T is essentially
self-adjoint on D(T ) and the spectrum of T̄ = T ∗ is the closure in R of the set
{λn}.

The condition of the theorem is satisfied if for some λ ∈ R the operator
(λ− T ) is invertible with compact inverse. In the case of second-order differential
operators on bounded domains on Rn, the compactness of the inverse may often
be deduced from the Rellich embedding theorem.

We next consider multiplication operators on L2 spaces, which provide the
basic example of self-adjoint (and in fact normal) operators, and are the building
blocks of one form of the spectral theorem.

Let (X, µ) be a measure space. For every measurable function f : X → C

define a, possibly unbounded, operator Mf on L2(X, µ) as follows:

D(Mf ) = {ψ ∈ L2 : fψ ∈ L2},
Mfψ = fψ for every ψ ∈ D(Mf ).

The operator Mf is then said to be the multiplication operator associated to f .
Under the assumption that µ is σ-finite we have

(i) for every measurable almost everywhere finite f , Mf is closed and densely
defined;

(ii) Mf is bounded if and only if f ∈ L∞(X, µ) and in this case |||Mf ||| = ||f ||L∞ ;

(iii) (Mf )∗ = Mf̄ so that Mf is self-adjoint if and only if f is real-valued;

(iv) σ(Mf ) = essrange(f) = {λ ∈ C : ∀ε > 0, µ(f−1(B(λ, ε))) > 0}, where
B(λ, ε) is the ball in C of radius ε centered in λ;
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(v) λ is an eigenvalue if and only if µ(f−1({λ}) > 0;

(vi) By (v) and (iv) , isolated points in σ(Mf ) are necessarily eigenvalues;

(vii) for every Borel subset E of C, let P (E)φ = χf−1(E)φ. Then P (E) is the
orthogonal projection on the subspace {φ ∈ L2 : (Mfφ, φ) ∈ E};

(viii) λ ∈ σess(Mf ) if and only if for every ε > 0 the R(P (B(λ, ε))) is infinite-
dimensional.

The spectral theorem allows us to deduce properties of arbitrary self-adjoint
operators from those of multiplication operators.

Theorem 3.3. Let T : H → H be a a self-adjoint operator on a separable Hilbert
space H. Then there exist a measure space (X, µ), a unitary operator U : H →
L2(X, µ) (that is U is a bijection and preserves the inner product) and a measurable
almost everywhere finite function f on X such that

UTU−1 = Mf .

Using the spectral theorem, one can easily establish the following properties:

(i) λ ∈ σ(T ) if and only if there exists a sequence {φn} ∈ D(T ) such that
||φn|| = 1 and limn ||(λ− T )φn|| = 0.

(ii) λ ∈ σess(T ) if and only if there exists a sequence {φn} ∈ D(T ) such that

(a) limn ||(λ− T )φn|| = 0;

(b) {φn} is an orthonormal system (or {φn} does not have any converging
subsequence).

In this case {φn} is said to be a characteristic sequence for λ.

(iii) The essential spectrum σess(T ) is empty if and only if there exists a complete
orthonormal system {φn} in H such that

(a) each φn is an eigenfunction belonging to the eigenvalue λn;

(b) |λn| → +∞ as n→ +∞.

(iv) T is bounded if and only if σ(T ) is a bounded subset of R, and T is compact
if and only if σess(T ) = {0} and there exists a complete orthonormal set
{φn} of eigenfunctions belonging to the eigenvalue λn and |λn| → 0.

Corollary 3.4. Let T be a self-adjoint operator, and assume that for some λ the
resolvent (λ − T )−1 is compact. Then T has discrete spectrum consisting of a
sequence of eigenvalues repeated according to multiplicity {λn} such that |λn| →
+∞ as n → +∞.

We concentrate our attention on operators bounded from below. A symmetric
operator T defined on D is bounded from below, or semibounded, if there exists
c ∈ R such that

(Tφ, φ) ≥ c||φ|| for all φ ∈ D.
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This condition implies that the dimension dim ker(λ−T ∗) is constant in C\[c, +∞)
and we have the following proposition (see, e.g., [138], pp. 136–137).

Proposition 3.5. Let T be a semibounded symmetric operator on D. Then T has
equal deficiency indices, and therefore admits at least one self-adjoint extension.
Furthermore, if ker(λ−T ∗) = {0} for some real λ, then T is essentially self-adjoint
on D.

In the investigations of several questions related to the spectrum of a self-
adjoint operator, as well as problems like the existence of self-adjoint extensions of
differential operators, quadratic forms associated to the operator are a very useful
tool.

A quadratic form defined on a dense domain D in H is a map Q : D×D → C,
which is linear in the first entry and conjugate linear in the second entry. We say
that Q is

– Hermitian if Q(φ, ψ) = Q(ψ, φ);

– bounded if |Q(φ, φ)| ≤ C||φ||2 for some constant C;

– bounded from below, or semibounded, if it is Hermitian, and Q(φ, φ) ≥ c||φ||2
for some c.

If Q is semibounded, the infimum of Q is defined by

inf
0�=φ∈D

Q(φ, φ)
||φ||2 ,

and Q is said to be positive if its infimum is ≥ 0.
If Q is semibounded with bound c, then the Hermitian form

(φ, ψ)Q = Q(φ, ψ) + (1− c)(φ, ψ)H

is an inner product on D(Q), and Q is said to be closed if D is a Hilbert space
with respect to (φ, ψ)Q. From the definition of ( , )Q it is not difficult to see that
a form Q is closed if and only if

for every {φn} ∈ D(Q) such that
φn → φ in H and Q(φn − φm, φn − φm)→ 0 as n, m→ +∞,

then φ ∈ D(Q) and Q(φn − φ, φn − φ) → 0.

(3.1)

A form Q which is bounded from below on a domain D is said to be closable if
there exists a closed form Q′ defined on a subspace D′ ⊇ D in H which extends Q.
Note that the abstract completion of (D, ( , )Q) can always be defined. The issue
here is the possibility of identifying it with a subspace of H.

If Q is a semibounded quadratic form, a subspace D′ ⊆ D(Q) is a core for Q
if D′ is dense in D(Q) with respect to the inner product to ( , )Q. It is clear from
the definition that if Q is a closable form, then D(Q) is a core for its closure.
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Now let T be a self-adjoint operator on H. We may associate to it the Her-
mitian quadratic form Q defined via the spectral theorem as follows: identify T
with the multiplication operator Mf defined on L2(X, µ), then

D(Q) = {φ ∈ L2(X, µ) : |f |1/2φ ∈ L2(X, µ)}
Q(φ, ψ) =

∫
X

fφψ̄ dµ.

Since T is self-adjoint, f is real-valued. Then Q is a Hermitian form on the dense
domain D(Q) ⊃ D(T ) and Q(φ, ψ) = (Tφ, ψ) if φ ∈ D(T ). Further, T is bounded,
if and only if Q is bounded, i.e., |Q(φ, φ)| ≤ C||φ||2 for some constant C, and T is
bounded from below if and only if Q is bounded from below, and we have

inf
0�=φ∈D(Q)

Q(φ, φ)
||φ||2 = inf σ(T ).

Note that if T is bounded from below by c, then T + c is non-negative, and it has
a unique self-adjoint non-negative square root (T + c)1/2, and in this case

D(Q) = D((T + c)1/2) Q(φ, ψ) = ((T + c)1/2φ, (T + c)1/2ψ)− c(φ, ψ).

Furthermore, T can be characterized in terms of Q as follows: φ ∈ D(T ) if and only
if φ ∈ D(Q) and there exists k ∈ H such that Q(φ, ψ) = (k, ψ)H for all ψ ∈ D(Q)
and then Tψ = k.

Using (3.1), it is not difficult to see that if Q is the quadratic form associated
to the semibounded self-adjoint operator T , then Q is closed. In fact the closed
forms are precisely those which arise from semibounded self-adjoint operators.

Theorem 3.6. (see [41], Theorem 4.4.2) Let Q be a semibounded form defined
on a dense domain D(Q) ⊆ H. Then Q is closed if and only if there exists a
unique semibounded self-adjoint operator T on H such that Q is the quadratic
form associated to T.

Assume now that T : D(T ) ⊆ H → H is a semibounded symmetric operator,
and let Q be the quadratic form defined by

D(Q) = D(T ) Q(ψ, ψ) = (Tφ, ψ)H ∀φ, ψ ∈ D(Q).

Then Q is a closable, semibounded quadratic form. If Q̂ is the closure of Q, then
the associated self-adjoint operator T̂ is a self-adjoint extension of T called its
Friedrichs extension. The operator T̂ is semibounded and in fact

inf σ(T̂ ) = inf
0�=φ∈D(T )

(Tφ, φ)H
||φ||2H

.

From the above discussion we deduce that

D(T̂ ) = {φ ∈ D(Q) : ∃k ∈ H such that Q(φ, ψ) = (k, ψ)H, ∀ψ ∈ D(Q)},
T̂ φ = k.



68 Chapter 3. Review of spectral theory

Further, T̂ is the only self-adjoint extension of T with domain contained in D(Q̂).
We now come to the variational formula and minimax which are useful in

determining the eigenvalues of a self-adjoint operator which lie below the essential
spectrum.

Let T be a self-adjoint operator on H, and let

λo = inf
0�=φ∈D(T )

(Tφ, φ)H
||φ2||H , Λo = sup

0�=φ∈D(T )

(Tφ, φ)H
||φ2||H .

It follows easily from the spectral theorem that σ(T ) ⊆ [λo, Λo] and if they are
finite they belong to σ(T ). Further, T is bounded if and only if λo and Λo are both
finite, and T is semibounded if and only if λo, which is called the bottom of the
spectrum of T , is finite.

When T is bounded from below, the variational characterization of the bot-
tom of the spectrum may be extended to describe the discrete part of σ(T ).

Let T be a semibounded self-adjoint operator with domain D(T ) ⊆ H. For
every finite-dimensional subspace L ⊆ D(T ) we define

λ(L) = sup{(Tφ, φ)H : φ ∈ L, ||φ||2H = 1} (3.2)

and define
λn = inf{λ(L) : L ⊆ D(T ), dimL = n}. (3.3)

It is clear that λn is a non-decreasing sequence, and that λ1 agrees with λo as
defined above. In fact we have (see [41], Theorems 4.51, 4.5.2, 4.5.3):

Theorem 3.7 (MiniMax). Maintaining the notation introduced above, we have the
following.

(1) If σess(T ) = ∅, then the numbers λn are the eigenvalues of T written in
increasing order, and repeated according to multiplicity, and λn → +∞ as
n → +∞.

(2) If σess(T ) 	= ∅, then two cases may occur.

(i) There exists A ≤ +∞, such that λn < A for every n and λn → A as
n → +∞. Then A = inf σess(T ), σ(T ) ∩ (−∞, A) = {λn} and λn are
eigenvalues of T .

(ii) There exists A < +∞ and N such that λN < A but λn = A for every
n > N . Then A = inf σess(T ), σ(T )∩(−∞, A) = {λn}N

n=1 and λ1 . . . λN

are eigenvalues of T .

(3) σess(T ) is empty if and only if λn →∞ as n →∞.

(4) Let Q be the form associated to T with domain D(Q) and let D be a core Q.
For every n let

λ′
n = inf{λ(L) : L ⊆ D(Q), dimL = n},

λ′′
n = inf{λ(L) : L ⊆ D, dimL = n},
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then
λn = λ′

n = λ′′
n.

In particular, if T is essentially self-adjoint on the domain D′, then we may
use D′ instead of D in the definition of λn.

We conclude this review with a definition of the index of a self-adjoint oper-
ator. Let T be a self-adjoint operator, P the spectral projection associated to T ,
and let W− = P ((−∞, 0))H = {φ ∈ D(T ) : (Tφ, φ)H < 0} be the space where T
is negative definite. We define the Morse index of T to be the (possibly infinite)
number i (T ) = dimW−.

Note that

i (T ) = sup{dimL : L ⊆ D(T ) and (Tφ, φ)H < 0, ∀φ ∈ L}
and that if D is a form core for the quadratic form associated to T , in particular,
if T is essentially self-adjoint on D, then we may use finite-dimensional subspaces
of D in the definition of i (T ).

If i (T ) < +∞ we say that T has finite (Morse) index.

Theorem 3.8. Let T be a self-adjoint operator. Then:

(i) If i (T ) < +∞, then T is bounded from below, inf σess(T ) ≥ 0, and the
negative part of the spectrum consists of finitely many eigenvalues {λn}N

n=1

repeated according to multiplicity, and i (T ) = N .

(ii) If T is bounded from below, and inf σess(T ) > 0, then i (T ) < +∞.

(iii) i (T ) < +∞ if and only if T is bounded from below, and if having defined

λn = inf{λ(L) : L ⊆ D(T ), dimL = n}
we have λn < 0 only for finitely many n = 1, 2, . . . , N . In this case i (T ) = N.

Proof. (i) Assume that i(T ) = N < +∞, and let W− = P ((−∞, 0))H, where P
is the spectral projection associated to T , so that dimW− = N , (Tφ, φ) < 0 for
every φ ∈ W− and (Tφ, φ) ≥ 0 for every φ ∈ W⊥− ∩ D(T ). Since W− is finite-
dimensional, and T is positive on W⊥

− ∩ D(T ), it follows immediately that T is
bounded from below. Clearly we must have inf σess(T ) ≥ 0 (for otherwise the
index would be infinite). Moreover, by Theorem 3.7 (2), if λn < inf σess(T ), then
λn is an eigenvalue of T , and therefore λn < 0 for n = 1, . . . , N , while λN+1 ≥ 0.
This proves (i) .

(ii) is clear, and (iii) follows from (i) and Theorem 3.7. �

3.2 Schrödinger operators on Riemannian manifolds

Let M be a complete Riemannian manifold, let ∆ be its (negative semidefinite)
Laplace–Beltrami operator, and assume that q ∈ L∞

loc(M). For every open set
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Ω ∈M we consider the Schrödinger operator

LΩ = −∆ + q

originally defined on C∞
c (Ω). In the case where Ω = M we will simply write L

instead of LM . It follows easily from the divergence theorem that LΩ is a symmetric
operator on C∞

c (Ω), which is associated to the quadratic form

QΩ(φ, ψ) =
∫

Ω

(〈∇φ,∇ψ〉 + qφψ).

If LΩ is bounded from below (this is certainly the case if either q is bounded
from below or if Ω is bounded), then denote its Friedrichs extension with the same
symbol. According to the discussion of Section 1, we have

inf σ(LΩ) = inf{
∫
Ω
(|∇φ|2 + qφ2)∫

Ω φ2
: 0 	= ψ ∈ C∞

c (Ω)}.

Note that in the case where Ω = M and M is geodesically complete, if L is
bounded from below, then it is automatically essentially self-adjoint on C∞

c (M).
See Theorem 3.13 below.

Proposition 3.9. Assume that Ω is a bounded domain. Then LΩ has purely discrete
spectrum consisting of a non-decreasing sequence of eigenvalues, repeated according
to multiplicity,

λ1(LΩ) ≤ λ2(LΩ) ≤ · · · ≤ λn(LΩ)→ +∞ as n → +∞.

Further if Ω ⊆ Ω′, then for every n,

λn(LΩ′) ≤ λn(LΩ),

and therefore
i(LΩ) ≤ i(LΩ′).

Indeed, if Ω has a sufficiently smooth boundary, by Rellich’s Theorem then
(λ + L)−1 is compact if λ is large enough, and the conclusion follows from Corol-
lary 3.4. In the general case, let Ω′ ⊇ Ω be a bounded domain with smooth bound-
ary. In the notation of Theorem 3.7 (with D′ = C∞

c (Ω), C∞
c (Ω′), respectively), it

is clear that
λn(LΩ′) ≤ λn(LΩ) ∀n,

and since λn(LΩ′) → ∞, the conclusion follows from the variational principle
Theorem 3.7.

We now turn our attention to unbounded domains. We begin with a slightly
improved version of a result of W.F. Moss and J. Piepenbrink, [114], and D. Fisher-
Colbrie and R. Schoen, [54] (see [132]) which will play an important role in the
sequel.
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Lemma 3.10. Let (M, 〈 , 〉) be a Riemannian manifold, and Ω ⊂ M be a domain
in M and let q(x) ∈ L∞

loc(Ω). The following facts are equivalent:

(i) There exists w ∈ C1(Ω), w > 0, weak solution of

∆w − q(x)w = 0 on Ω;

(ii) There exists ϕ ∈ H1
loc(Ω), ϕ > 0, weak solution of

∆ϕ− q(x)ϕ ≤ 0 on Ω;

(iii) λ1(LΩ) ≥ 0.

Proof. We sketch the proof, which is a modification of the original proof in ([54]).
It is trivial that (i) implies (ii) . To prove that (ii) implies (iii) , observe that,

by our assumptions, ϕ satisfies∫
〈∇ϕ,∇ρ〉 + q(x)ϕρ ≥ 0, ∀0 ≤ ρ ∈ H1

c (Ω). (3.4)

For every ε > 0, set ψε = log(ϕ + ε) ∈ H1
loc. Then, given f ∈ C∞

c (Ω) we compute∫
〈∇ψε,∇(f2)〉 =

∫
〈 ∇ϕ

ϕ + ε
,∇(f2)〉

=
∫
〈∇ϕ,∇( f2

ϕ + ε

)
+

f2

(ϕ + ε)2
∇ϕ〉

≥ −
∫

qϕ
f2

ϕ + ε
+
∫ |∇ϕ|2

(ϕ + ε)2
f2 = −

∫
q

ϕ

ϕ + ε
f2 +

∫
|∇ψε|2f2,

where we have used inequality (3.4) applied to the non-negative compactly sup-
ported H1 function f2/(ϕ + ε). We use the inequality

〈∇ψε,∇(f2)〉 ≤ 2|f ||∇f ||∇ψε| ≤ f2|∇ψε|2 + |∇f |2

to estimate the left-hand side, and simplify to obtain∫
|∇f |2 ≥ −

∫
ϕ

ϕ + ε
qf2,

and since q ∈ L∞
loc, f2 ∈ C∞

c and |ϕ/(ϕ + ε)| ≤ 1, we may let ε → 0+ and apply
the dominated convergence theorem to conclude that∫

|∇f |2 ≥ −
∫

qf2,

as required.
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We now come to the implication (iii) ⇒ (i) . Let {Dn} be an exhaustion of Ω
by an increasing sequence of relatively compact domains with smooth boundary.
Since q(x) ∈ L∞

loc(Ω), and λ1(LDn) > 0, by domain monotonicity, the Dirichlet
problem {

(−∆ + q)v = 0 in Dn,

v = 1 on ∂Dn,
(3.5)

has a solution vn which belongs to C0,α(Dn) ∩H2(Dn) for some 0 < α < 1 (see,
e.g., Theorems 8.6, 8.12 and 8.29 in [60]). Moreover, it follows from Theorem 1.1
in [159] (see also [59], Chap VII, Theorem 1.2) that vn ∈ C1,β

loc (Dn) for some
0 < β < 1 independent of n.

We claim that vn > 0 in Dn. By the maximum principle (see [60], p. 35,
and note that the result extends to functions in C1 using a comparison argument
modelled, e.g., on [131], Prop. 6.1) it suffices to show that vn ≥ 0. Assume by
contradiction that Bn = {x ∈ Dn : vn(x) < 0} 	= ∅. Then, by the boundary
condition, Bn ⊂⊂ Dn and v−n = min{vn, 0} ∈ H1

c (Dn) is a weak solution of the
differential inequality (−∆ + q)v−n ≥ 0. Using the non-zero function −v−n as test
function, we obtain ∫

|∇v−n |2 + q(x)(v−n )2 ≤ 0,

contradicting the positivity of λ1(LDn).
Now fix xo ∈ D0, and let

wn(x) =
vn(x)
vn(xo)

,

so that wn ∈ C0,α(Dn) ∩ C1,β
loc (Dn). Furthermore, according to Theorem 8.20 in

[60] and Theorem 1.1 in [159], for every n there exists a constant Cn such that for
every k > n,

C−1
n ≤ wk(x) ≤ Cn,

|∇wn| ≤ Cn,

|∇wk(x) −∇wk(y)| ≤ Cnd(x, y)β

for every x, y ∈ Dn.
The Ascoli-Arzelá theorem and a diagonal argument yield a subsequence

{wnj} which converges in C1
loc(Ω) to a C1 function w which is a weak solution

of (−∆ + q)w = 0. Since wn(xo) = 1 for every n, w(xo) = 1, and, again by the
maximum principle, w > 0 on Ω. �
Remark 3.11. As the proof shows, the function w belongs in fact to the space
C1,β

loc (Ω) for some 0 ≤ β < 1. Further, if we assume that q(x) ∈ C0,α
loc (Ω) for some

0 < α < 1, then w ∈ C2,α
loc (Ω) (see, e.g., [9], Theorem 3.55) and it is therefore

a classical solution of ∆w − q(x)w = 0 on Ω. Finally, it is easy to see that the
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equivalences (i) – (iii) extend to the case where Ω is replaced by the exterior M \K
of a compact set K, thus extending Proposition 1 in [53].

Our first application of the above lemma is the following theorem that shows
that −∆ + q is bounded from below on M if and only if it bounded from below
on some exterior domain (see [13], Prop.1).

Theorem 3.12. Let M be a Riemannian manifold, then the following are equivalent:

(i) L is bounded from below on C∞
c (M).

(ii) For any relatively compact domain Ω the operator LM\Ω̄ is bounded from
below on C∞

c (M \ Ω̄).

(iii) There exists a relatively compact domain Ω such that the operator LM\Ω̄ is
bounded from below on C∞

c (M \ Ω̄).

Proof. The only implication that requires proof is that (iii) implies (i). By as-
sumption there exists A ∈ R such that∫

|∇φ|2 + (q + A)φ2 ≥ 0, ∀φ ∈ C∞
c (M \ Ω̄). (3.6)

By replacing q with q + A we may assume that A = 0.
Next let Ω′, be a relatively compact domain with smooth boundary such that

Ω ⊂⊂ Ω′, and let q1 ∈ L∞
loc(M) be a function such that

q1 ∈ C∞(Ω′), q1 ≤ q on M, and q = q1 on M \ Ω̃,

where Ω̃ is a relatively compact domain such that Ω′ ⊂⊂ Ω̃. Note that since q1− q
is bounded and compactly supported on M , then −∆ + q1 = −∆ + q + (q1 − q) is
bounded from below on C∞

c ((M \ Ω̄). Furthermore, since q1 − q ≤ 0 on M , then
if −∆ + q1 is bounded from below on C∞

c (M), so is −∆ + q = −∆ + q1− (q1− q).
Thus it suffices to prove the assertion under the additional assumption that

q is smooth on Ω′.
By (1) and the previous lemma there exists v ∈ C1(M \ Ω̄) such that v > 0

and (−∆+ q)v = 0 weakly in M \ Ω̄, and, since q ∈ C∞(Ω̄′), then v ∈ C∞(Ω′ \ Ω̄).
Choose Ω′′ such that Ω ⊂⊂ Ω′′ ⊂⊂ Ω′. By modifying v in Ω′′ \ Ω̄, we may extend
v to a function on M , which we still denote v, such that

v ∈ C1(M) ∩ C∞(Ω′), v > 0 in M, (−∆ + q)v = 0 weakly on M \ Ω′′.

Finally, choose a smooth cut-off function σ such that σ = 1 in a neighborhood of
Ω′′ and suppσ ⊂⊂ Ω′.

Now let φ ∈ C∞
c (M), set w = log v and compute∫

〈∇w,∇(φ2
)〉+ qφ2 =

∫
〈∇v,∇(φ2

v

)
+

φ2

v2
∇v〉+ qφ2

=
∫

φ2|∇w|2 +
[〈∇v,∇(φ2

v

)〉+ qφ2
]
.
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Since 〈∇w,∇(φ2
)〉 ≤ φ2|∇w|2 + |∇φ|2, inserting into the above identity, simplify-

ing and writing φ2 = (1− σ)φ2 + σφ2 we deduce that∫
|∇φ|2 + qφ2 =

∫
〈∇v,∇(φ2

v

)〉+ qφ2

=
∫
〈∇v,∇( (1− σ)φ2

v

)〉+ qv
(1 − σ)φ2

v

+
∫
〈∇v,∇(σφ2

v

)〉+ qv
σφ2

v
.

Since (1−σ)φ2

v is C1, non-negative, and compactly supported in M \ Ω′′, the first
integral on the right-most side vanishes by the assumption that v satisfies (−∆ +
q)v = 0 weakly on M \ Ω′′. On the other hand, since σφ2

v is compactly supported
in Ω′ and v is there smooth, integrating by parts we see that the second integral
is equal to ∫

[−∆v + qv]
σφ2

v
≥ −B

∫
φ2

where B = min(−∆v + qv)σ/v > −∞. Thus∫
|∇φ|2 + qφ2 ≥ −B

∫
|φ|2

as required to show that −∆ + q is bounded on C∞
c (M). �

Our next result shows that if M is complete and L = −∆ + q is bounded
from below on C∞

c (M), then L is essentially self-adjoint. This extends a classical
result for the Laplace operator due to M.P. Gaffney [56], and later obtained with
different methods by P. Chernoff, [37], and R.S. Strichartz [155]. The proof we
present, which is taken from [13], Prop. 2 i), is an adaptation of Strichartz’s proof.

Theorem 3.13. Let (M, 〈 , 〉) be a complete Riemannian manifold, and assume that
L = −∆ + q is bounded from below on C∞

c (M). Then L is essentially self-adjoint
on C∞

c (M).

Proof. We may assume, without loss of generality, that L is bounded from below
by 1, that is ∫

|∇φ|2 + qφ2 ≥
∫

φ2, ∀φ ∈ C∞
c (M). (3.7)

Since L is symmetric and densely defined, according to Proposition 3.5 it suffices
to show that ker L∗ = {0}. Note that the adjoint L∗ is defined with domain
D(L∗) = {f ∈ L2(M) : ∃B > 0 : | ∫

M
f(−∆ + q)φdx| ≤ B||φ||L2 ∀φ ∈ C∞

c (M)}.
In particular, if f ∈ D(L∗), then the distribution (−∆ + q)f is in L2 and equals
L∗f .

Assume therefore that f ∈ Ker (L∗), i.e., (−∆+ q)f = 0. By elliptic regular-
ity, f ∈ L2(M)∩H1

loc(M). Since M is complete, given o ∈M , there exists a family
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of smooth cut-off functions φr,s, 0 < r < s < +∞, such that φr,s = 1 on the ball
B(o, r), φr,s = 0 in M \B(o, s) and |∇φr,s| ≤ C/(s− r) for some constant C > 0
independent of r, s. Since fφ2

r,s is compactly supported and belongs to H1(M), by
the definition of the weak equality (−∆ + q)f = 0 we have

0 =
∫

M

〈∇f,∇(fφ2
r,s)〉+ qf2φ2

r,s =
∫
|∇(fφr,s)|2 + q(fφr,s)2 −

∫
f2|∇φr,s|2

≥
∫

(fφr,s)2 − C2

(s− r)2

∫
f2,

where we have used (3.7) and the properties of ∇φr,s. Setting s = 2r, and letting
r →∞ we deduce that

0 ≥
∫

f2,

and therefore f = 0 in L2(M), as required. �

Our next task consists in describing the bottom of the essential spectrum of
L. We will need the following technical lemma (see [13], p. 317–318).

Lemma 3.14. Let (M, 〈 , 〉) be a complete Riemannian manifold, and assume that
L is bounded from below. Let λ ∈ σess(L) and let K, K ′ be compact sets in M
such that K ′ is compactly contained in the interior IntK of K. Then there exists
a characteristic sequence {φn} ⊂ C∞

c (M) for L relative to λ, a subsequence {φ′
n}

of {φn} and φ ∈ L2(K) such that

(i) φ′
n → φ in L2(K);

(ii) ωn = φ′
2n+1 − φ′

2n → 0 in L2(K);

(iii) ∇ωn → 0 in L2(K ′);

(iv) ωn is a characteristic sequence for L relative to λ.

Proof. Let un be a characteristic sequence relative to λ. Since L is essentially self-
adjoint on C∞

c (M), we may find a sequence φn ∈ C∞
c (M) such that ||φn||2 = 1

∀n, ||un − φn||2 ≤ 1/n and ||L(un − φn)||2 ≤ 1/n. It is clear then that

||(L − λ)φn||2 → 0 and (φn, φm)L2 ≤ 2 max{1/n, 1/m}, (3.8)

showing that {φn} is a characteristic sequence relative to λ.

Let χ ∈ C∞
c (M) be a cut-off function such that χ ≡ 1 in a neighborhood K1

of K. Since χ2φn is bounded in L2 and (L−λ)φn → 0 in L2, (χ2φn, (L−λ)φn)| → 0
as n →∞. In particular, we may assume that

−
∫

χ2φn∆φn +
∫

(q − λ)χ2φ2
n ≤ 1 (3.9)
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for every n. On the other hand, integrating by parts,

−
∫

χ2φn∆φn =
∫
〈∇(χ2φn),∇φn〉 =

∫
χ2|∇φn|2 + 2χφn〈∇χ,∇φn〉

≥
∫

(
1
2
χ2|∇φn|2 − 2χφn|∇χ||∇φn|+ 2φ2

n|∇χ|2)

+
∫

(
1
2
χ2|∇φn|2 − 2φ2

n|∇χ|2) ≥
∫

(
1
2
χ2|∇φn|2 − 2φ2

n|∇χ|2)

whence, substituting in (3.9) and rearranging, we obtain

1
2

∫
χ2|∇φn|2 ≤ 2

∫
φ2

n|∇χ|2 −
∫

(q − λ)χ2φ2
n + 1

≤ 1 + C

∫
supp χ

φ2
n.

Since χ is equal to 1 in the neighborhood K1 of K, it follows that there exists a
constant C′ such that ∫

K1

|∇φn|2 ≤ C, ∀n,

and therefore φn is uniformly bounded in L2(K1). By Rellich’s Theorem a subse-
quence {φ′

n} of {φn} converges to a function φ in L2(K1). This proves (i) , and
therefore (ii) .

Since (L− λ)φn → 0 in L2, (L− λ)ωn → 0, as n →∞, and, by (3.8),

||ωn||22 = 2− 2(φ′
2n+1, φ

′
2n) ≥ 2− 2

n
,

|(ωn, ωm)| ≤ 4 max{1/n, 1/m}, if m 	= n,

as needed to show that ωn is a characteristic sequence relative to λ.

Finally, to prove (iii) we argue as in the first part of the proof. We choose a
cut-off function χ1 which is supported in K and equal to 1 in a neighborhood of
K ′, and use the fact that (L−λ)ωn → 0, ωn → 0 in L2(K) to conclude that there
exists a constant C1 such that

1
2

∫
K′
|∇ωn|2 ≤ 1

2

∫
χ2

1|∇ωn|2 ≤ C1

∫
K

ω2
n → 0 as n →∞. �

We can now prove the following theorem that relates the bottom of the
essential spectrum of L to the bottom of the spectrum of the Dirichlet Schrödinger
operator on exterior domains.

Theorem 3.15. Let (M, 〈 , 〉) be a complete Riemannian manifold, and assume that
L is bounded from below. For every relatively compact domain Ω, denote by LM\Ω̄
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the Friedrichs extension of −∆ + q originally defined on C∞
c (M \ Ω̄). Then

inf σess(L) = sup
Ω⊂⊂M

inf σ(LM\Ω̄)

= sup
Ω⊂⊂M

inf
0�=φ∈C∞

c (M\Ω̄)

∫ |∇φ|2 + qφ2

||φ||22
.

(3.10)

Proof. We begin by noting that the second equality in (3.10) follows from general
properties of the Friedrichs extension. Denote by λe and δe the left- and right-hand
side of (3.10), respectively, which are both finite since L and therefore LM\Ω̄ are
bounded from below. Note also that λe ∈ σess(L) since the latter is closed.

We first show that λe ≤ δe. Indeed, assume by contradiction that λe > δe

and let δ be such that δe < δ < λe. By definition of δe, for every Ω ⊂⊂M ,

inf
0�=φ∈C∞

c (M\Ω̄)

∫ |∇φ|2 + qφ2

||φ||22
< δ

and therefore there exists a non-zero φΩ ∈ C∞
c (M \ Ω̄) such that∫

|∇φΩ|2 + q|φΩ|2 < δ||φΩ||22.

We may choose an exhaustion of M by relatively compact domains Ωk such that
for every k the function φΩk

= φk is supported in Ωk+1 \ Ω̄k. Since the functions
φk have disjoint support, they span an infinite-dimensional subspace E of C∞

c (M)
where L ≤ δ in the sense of quadratic forms. By the minimax principle, L has
infinitely many eigenvalues below δ. But this is impossible since δ < λe and L is
bounded from below.

Next assume by contradiction that δe > λe and let δ be such that λe < δ < δe.
Using the definition of δe we deduce that there exists a relatively open domain Ω
such that

inf σ(LM\Ω̄) ≥ δ > λe. (3.11)

We are going to reach a contradiction, showing that λe belongs to σ(LM\Ω̄) (in
fact to σess(LM\Ω̄).

Let K, K ′ be compact sets such that Ω̄ ⊂⊂ Int(K ′) ⊂ K ′ ⊂⊂ Int(K) ⊂ K.
Since λe ∈ σess(L), we may find a characteristic sequence ωn for L relative to λe

with the properties listed in Lemma 3.14. Let θ be a smooth cut-off function such
that θ = 1 on a neighborhood of Ω̄ and supp θ ⊂ K ′. Finally let ψn = (1 − θ)ωn.
It is clear that ψn ∈ C∞

c (M \ Ω̄) and therefore it belongs to the domain of LM\Ω̄.
We have

||(L− λe)ψn||2 ≤ ||(1− θ)(L − λe)ωn||2 + 2||〈∇θ,∇ωn〉||2 + ||ωn∆θ||2
≤ ||(L − λ)ωn||2 + 2C

(∫
K′
|∇ωn|2

)1/2

+ C
(∫

K′
ω2

n

)1/2
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and the right-hand side tends to zero as n →∞ by the properties of ωn. Further-
more

(ψn, ψm)L2 =
∫

M

ωmωn −
∫

M

θ(2 − θ)ωnωm,

and

|
∫

M

θ(2− θ)ωnωm| ≤ 2
(∫

K′
ω2

m

)1/2(∫
K′

ω2
n

)1/2

→ 0 as n, m →∞,

while (see the proof of the lemma)

|
∫

M

ωmωn| ≤ 4 max{ 1
n

,
1
m
}, if m 	= n, and

∫
ω2

n ≥ 2− 2
n

.

Thus ψn is a characteristic sequence for LM\Ω̄ relative to λe which therefore be-
longs to σess(LM\Ω̄), as required to complete the proof. �

Our last task is to relate the index of the operator L with that of LΩ. We
define a “generalized” Morse index by

ĩ(L) = sup{i(LΩ) : Ω ⊂⊂M}.
Recall that since LΩ has purely discrete spectrum, i(LΩ) is the number, counted
according to multiplicity, of the negative eigenvalues. Further, since C∞

c (Ω) is a
core for the quadratic form QΩ associated to LΩ,

i(LΩ) = sup{dimL : L ⊂ C∞
c (Ω) such that (LΩφ, φ)L2 < 0, ∀φ ∈ L}. (3.12)

Similarly, if L is essentially self-adjoint on C∞
c (M), then

i(L) = sup{dimL : L ⊂ C∞
c (M) such that (Lφ, φ)L2 < 0, ∀φ ∈ L}. (3.13)

Then we have the following result of Gulliver, [77], and Fisher–Colbrie, [53].

Lemma 3.16. Let (M, 〈 , 〉) be a complete Riemannian manifold, and assume that
ĩ(L) < +∞. Then there exists a compact set K such that λ1(LM\K) ≥ 0.

Proof. Fix a reference point o ∈ M , and let Br(o) be the geodesic ball of radius
r centered at o. Since Br(o) is almost Euclidean for sufficiently small r, and the
bottom of the spectrum of the Dirichlet Laplacian of Rn on the ball BR of radius
R grows like R−2, as is easily seen by a scaling argument, we deduce that there
exists a constant C such that if r is sufficiently small,∫

Br(o)

|∇φ|2 + qφ2 ≥
(C

r2
− sup

Br(o)

|q|
) ∫

Br(o)

φ2,

for all φ ∈ C∞
c (Br(o), and therefore,

λ1(LBr(o)) > 0 for r small enough.
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Let
r1 = 2 sup{r : λ1(LBr(o)) > 0}.

If r1 = +∞, then λ1(M) ≥ 0, and we are done. Otherwise, note that if r1 < r <
2r1, then the Poincaré inequality on annuli (see the more general Theorem 5.8 of
Chapter 5), shows that there exists a constant C = C(B2r1(o)) such that∫

Br(o)\Br1(o)

|∇φ|2 + qφ2 ≥
( C

(r − r1)2
− sup

Br(o)\Br1(o)

|q|
) ∫

Br(o)\Br1 (o)

φ2,

for all φ ∈ C∞
c (Br(o) \Br1(o)), and therefore,

λ1(LBr(o)\Br1(o)) > 0 for r close enough to r1.

Set
r2 = 2 sup{r > r1 : λ1(LBr(o)\Br1 (o)) > 0}.

Again, if r2 = +∞ we are done. Otherwise r1 < r2 < +∞, and, by (strict) domain
monotonicity,

λ1(LBr2 (o)\Br1(o)) < 0.

Iterating the construction we find a sequence r1 < r2 < · · · < rk such that

λ1(LBri
(o)\Bri−1 (o)) < 0.

For every i let φi ∈ C∞
c (Bri(o) \Bri−1(o)) be such that

QL(φi, φi) =
∫ |∇φi|2 + qφ2

i

||φi||2L2

< 0.

Thus Q is negative definite on the space W = span (φi) , which is (k − 1)-
dimensional since the functions φi ∈ C∞

c (Brk
(o)) have disjoint support, and by

definition
ĩ(L) ≥ i(LBrk

) ≥ k − 1.

It follows that the sequence rk must be finite, and that

λ1(LBr(o)\Brk
(o)) > 0, ∀r > rk, i.e., λ1(LM\Brk

(o)) ≥ 0.

�
Theorem 3.17. Let (M, 〈 , 〉) be a complete Riemannian manifold.

(i) If L is essentially self-adjoint on C∞
c (M), then ĩ(L) = i(L).

(ii) If ĩ(L) < +∞, then L is bounded from below, essentially self-adjoint on
C∞

c (M) and i(L) = ĩ(L) < +∞.
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Proof. (i) By assumption L is essentially self-adjoint on C∞
c (M), and therefore

i(L) = sup{dimL : L ⊂ C∞
c (M) such that (Lφ, φ)L2 < 0 ∀φ ∈ L}.

Thus, if N ≤ i(L) there exists L ⊂ C∞
c (M) such that dimL = N and (Lφ, φ) < 0

for all φ ∈ L. Since L is finite-dimensional, there exists Ω ⊂⊂ M such that suppφ ⊂
⊂ Ω for every φ ∈ L, and therefore i(LΩ) ≥ N . By definition ĩ(L) ≥ i(LΩ) ≥ N,
and we conclude that ĩ(L) ≥ i(L).

To prove the reverse inequality suppose that ĩ(L) ≥ N . Again by definition,
there exists Ω ⊂⊂ M such that i(LΩ) ≥ N . Thus there exist L ∈ C∞

c (Ω) such
that dimL = N and (Lφ, φ)L2 < 0 for every φ ∈ L, and clearly i(L) ≥ N. Thus
i(L) ≥ ĩ(L).
(ii) In view of (i) it suffices to show that L is bounded from below on C∞

c (M).
According to Lemma 3.16, there exists R0 such that λ1(LM\BR0 (o)) ≥ 0, i.e.,

for every φ ∈ C∞
c (M \BR0(o)) we have

Q(φ, φ) =
∫
|∇φ|2 + qφ2 ≥ 0. (3.14)

Fix R > Ro suitably large, and let 0 ≤ χ ≤ 1 be a smooth function such that
χ = 0 on BR(o), χ = 1 on M \B2R(o) and |∇χ| ≤ 2/R. Set η = 1− (1−χ)2; then
η = 0 on BR(o), η = 1 on M \B2R(o) and ∇η = −2(1− χ)∇χ so that

|∇η|2 = 4(1− χ)2|∇χ|2 ≤ 16
R2

(1 − η) ≤ 16
R2

(1− η2). (3.15)

Given φ ∈ C∞
c (M) we write

Q(φ, φ) =
∫
|∇φ|2 + qφ2 =

∫
(1− η2)(|∇φ|2 + qφ2) +

∫
η2(|∇φ|2 + qφ2). (3.16)

Since

η2|∇φ|2 = |∇(ηφ)|2 − φ2|∇η|2 − 2ηφ〈∇φ,∇η〉
≥ |∇(ηφ)|2 − φ2(1 + |∇η|2)− η2|∇η|2|∇φ|2,

we may estimate∫
η2(|∇φ|2 + qφ2) ≥ Q(ηφ, ηφ) −

∫
(1 + |∇η|2)φ2 −

∫
η2|∇η|2|∇φ|2

≥ −C

∫
φ2 − 16

R2

∫
(1− η2)|∇φ|2

where we have used the fact that, since ηφ ∈ C∞
c (M \BR0(o)), Q(ηφ, ηφ) ≥ 0 by

(3.14), and (3.15). Inserting into (3.16) we have

Q(φ, φ) ≥ (1− 16
R2

)
∫

(1− η2)|∇φ|2 − (C + sup
B2R(o)

|q|)
∫

φ2 ≥ −C′
∫

φ2

provided R ≥ 4, with C′ = (C + supB2R(o) |q|). Thus L is bounded from below on
C∞

c (M) as required. �
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As a corollary we have a partial converse of Lemma 3.16.

Corollary 3.18. Let (M, 〈 , 〉) be a complete Riemannian manifold. Assume that
there exists a relatively compact domain Ω such that

λ1(LM\Ω) > 0.

Then ĩ(L) < +∞.

Proof. Indeed, since LM\Ω is bounded from below, L is bounded from below, and
essentially self-adjoint on C∞

c (M). Since

inf σess(L) = sup
Ω⊂⊂M

λ1(LM\Ω) > 0,

we conclude that i(L) = ĩ(L) < +∞. �
Observe that the conclusion of Lemma 3.16 is that if ĩ(L) < +∞, then there

exists a relatively compact domain Ω such that λ1(LM\Ω) ≥ 0. In this respect it
should be remarked that in general the strict domain monotonicity fails for the
bottom of the spectrum of L on external domains, as the case of the Dirichlet
Laplacian on external domains of Rn easily shows.

We also observe that, if we assume that for some p > 2 an L2-Sobolev
inequality of the form

S−1
p

(∫
v

2p
p−2

) p−2
p

≤
∫
|∇v|2 (3.17)

holds for every v ∈ C∞
c (M), and that the negative part of the potential q− belongs

to L
p
2 (M), then an easy argument shows that λ1(LM\K) ≥ 0 provided the compact

K is large enough. Indeed, for every v ∈ C∞
c (M \K) we have∫

q−v2 ≤
(∫

M\K

q
p
2−
) 2

p
(∫

v
2p

p−2

) p−2
p ≤ S−1

p (
∫

M\K

q
p
2−
) 2

p

∫
|∇v|2.

Since q− ∈ L
p
2 , we may choose K so large that

S−1
p (

∫
M\K

q
p
2−
) 2

p ≤ 1,

and therefore ∫
|∇v|2 + qv2 ≥

∫
|∇v|2 − q−v2 ≥ 0,

as required. In particular, under the present assumptions, inf σess(L) ≥ 0.
In fact, G.V. Rozenbljum, [141], M. Cwikel, [39], E. Lieb, [109], were able to

estimate the index of the operator −∆ + q on Rm in terms of a multiple of the
Lm/2 norm of q−. Later, Li and Yau, [106] improved the constant, expressing it in
terms of the Sobolev constant Sp. We state below the result in the form given by
Li and Yau.
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Theorem 3.19. Let (M, 〈 , 〉) be a complete Riemannian manifold, and assume that
the L2-Sobolev inequality (3.17) holds for some p > 2, some constant Sp > 0 and
every v ∈ C∞

c (M). Assume that q ∈ L∞
loc(M) is such that

q− (x) = max (−q (x) , 0) ∈ L
p
2 (M) .

Then the Schrödinger operator L = −∆+q is bounded from below, essentially self-
adjoint and has non-negative essential spectrum. Further, there exists a constant
C = C(m, Sp) > 0 such that

i(L) ≤ C‖q−‖L
p
2 (M)

.



Chapter 4

Vanishing results

4.1 Formulation of the problem

As we mentioned in the introduction, the aim of this book is to present a unified
approach to different geometrical questions such as the study of the constancy of
harmonic maps, the topology at infinity of submanifolds, the L2-cohomology, and
the structure and rigidity of Riemannian and Kählerian manifolds (see Sections 6.1,
7.4, 7.5, 7.6, 8.1, and Appendix B).

The common feature of most of these problems lies in the fact that one iden-
tifies a suitable function ψ whose vanishing or, more generally, constancy, is the
analytic counterpart of the desired geometric conclusion, and, using the peculiar-
ities of the geometric data, one shows that the function ψ satisfies a differential
inequality of the form

ψ∆ψ + a(x)ψ2 + A|∇ψ|2 ≥ 0 (4.1)

weakly on M , as well as some suitable non-integrability condition. Typically, ψ
represents the length of a section of a suitable vector bundle.

This is reminiscent of Bochner’s original method: in the compact case, and
under appropriate assumptions on the sign of the function ψ and of the coefficient
a(x), one concludes with the aid of the standard maximum principle.

In the non-compact case, one could conclude using a form of the maximum
principle at infinity, see for instance [31] and the very recent [131], where, in some
cases, one can also relax the boundedness conditions on ψ.

In the general case however, where no sign condition is imposed on a(x)
and/or the function ψ is not bounded, this method is not feasible.

The compactness of the ambient manifold is now replaced by the assumption
that there exists a positive solution ϕ of a differential inequality suitably related
to (4.1),

∆ϕ + Ha(x)ϕ ≤ 0. (4.2)

Combining the two inequalities enables us to rephrase the vanishing of ψ into an
appropriate Liouville-type result.

We note that the existence of a positive solution to (4.2) is equivalent to
the non-negativity of the bottom of the spectrum of the Schrödinger operator
−∆ − Ha(x) (see Lemma 3.10 above), and one could interpret the condition on
its spectrum as a sign condition on a(x) in a suitably integrated sense. We also
remark that a somewhat related approach has been used by other authors, see,
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e.g., P. Berard, [11]. However, he uses the condition on the spectral radius directly,
and is therefore forced to restrict consideration to the L2 case.

The main analytical tool used in proving our geometric results is a Liouville-
type theorem for locally Lipschitz solutions of differential inequalities of the type

udiv (ϕu) ≥ 0

on M satisfying suitable non-integrability conditions (see Theorem 4.5 below).
Applying this result to a function u constructed in terms of ψ and ϕ yields the

vanishing result for solutions of (4.1) alluded to above. The fairly weak regularity
assumptions imposed on u are indeed necessary in order to treat the geometrical
problems at hand.

4.2 Liouville and vanishing results

Theorem 4.1 below is a generalization of a Liouville-type result originally due to
by H. Berestycki, L. Caffarelli and L. Nirenberg,[14], in a Euclidean setting. See
also Proposition 2.1 in [6]. We remark that in the general case of a Riemannian
manifold, the Euclidean technique works as well but does not yield the sharp result
we are going to describe. We also note that when ϕ ≡ 1 we recover a classical result
of Yau’s, [168].

Theorem 4.1. Let (M, 〈 , 〉) be a complete manifold. Assume that 0 < ϕ ∈ L∞
loc(M)

and u ∈ L∞
loc(M) ∩W 1,2

loc (M) satisfy

udiv (ϕ∇u) ≥ 0, weakly on M. (4.3)

If, for some p > 1, (∫
∂Br

|u|p ϕ

)−1

	∈ L1(+∞), (4.4)

then u is constant.

Proof. We begin by observing that assumption (4.3) means that, for every 0 ≤
σ ∈ C∞

c (M), we have

0 ≤ −
∫
〈∇(σu), ϕ∇u〉 = −

∫ {〈∇σ, ϕu∇u〉+ ϕσ|∇u|2}, (4.5)

and it is therefore equivalent to the validity of the differential inequality

div (ϕu∇u) ≥ ϕ|∇u|2 (4.6)

in the weak sense on M . Further, by a standard approximation argument, in-
equality (4.5) holds for every 0 ≤ σ ∈ L∞(M)∩W 1,2(M) compactly supported in
M .
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Next, let a(t) ∈ C1(R) and b(t) ∈ C0(R) satisfy

(i) a(u) ≥ 0, (ii) a(u) + ua′(u) ≥ b(u) > 0 (4.7)

on M , and, for fixed ε, t > 0, let ψε be the Lipschitz function defined by

ψε(x) =

⎧⎪⎪⎨⎪⎪⎩
1 if r(x) ≤ t,
t + ε− r(x)

ε
if t < r(x) < t + ε,

0 if r(x) ≥ t + ε.

The idea of the proof is to apply the divergence theorem to the vector field
a(u)uϕ∇u. We use an integrated form of this idea in order to deal with the weak
regularity of the functions involved.

For every non-negative compactly supported Lipschitz function ρ, we com-
pute

−
∫
〈ψεa(u)∇ρ, ϕu∇u〉

= −
∫
〈∇(ρψεa(u))− ρψεa

′(u)∇u− ρa(u)∇ψε, ϕu∇u〉

≥
∫

ρψεϕ|∇u|2[a(u) + a′(u)u] + ρa(u)〈∇ψε, ϕu∇u〉

≥
∫

ρψεϕb(u)|∇u|2 − 1
ε

∫
Bt+ε\Bt

ρa(u)ϕ|u||∇u|,

where the first inequality follows from (4.6) using as test function ρψεa(u), which
is non-negative compactly supported and belongs to L∞(M) ∩W 1,2(M) because
of the assumptions imposed on a, u, ϕ, ψε and ρ, while the second inequality is a
consequence of (4.7) (ii) , and of the Cauchy–Schwarz inequality.

Choosing ρ in such a way that ρ ≡ 1 on Bt+ε the integral on the leftmost
side vanishes, and, applying the Cauchy–Schwarz inequality to the second integral
on the right-most side and rearranging, we deduce that∫

Bt

ϕb(u)|∇u|2

≤
(

1
ε

∫
Bt+ε\Bt

a(u)2

b(u)
ϕu2

)1/2 (
1
ε

∫
Bt+ε\Bt

b(u)ϕ|∇u|2
)1/2

. (4.8)

Setting

H(t) =
∫

Bt

ϕb(u)|∇u|2,

it follows by the co-area formula (see Theorem 3.2.12 in [51]) that

H ′(t) = lim
ε→0+

1
ε

∫
Bt+ε\Bt

b(u)ϕ|∇u|2 =
∫

∂Bt

b(u)ϕ|∇u|2Hm−1 for a.e. t.
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Here Hm−1 denotes the (m − 1)-dimensional Hausdorff measure on ∂Bt, which
coincides with the Riemannian measure induced on the regular part of ∂Bt (the
intersection of ∂Bt with the complement of the cut locus of o, see [51], 3.2.46, or
[30], Proposition 3.4).

Since the same conclusion holds for the first integral on the right-hand side
of (4.8), letting ε → 0+ in (4.8) and squaring, we conclude that

H(t)2 ≤
(∫

∂Bt

a(u)2

b(u)
ϕu2

)
H ′(t) for a.e. t. (4.9)

At this point the proof follows the lines of that of Lemma 1.1 in [138]: assume by
contradiction that u is non-constant, so that there exists R0 > 0 such that |∇u|
does not vanish a.e. in BRo . Then for each t > R0, H(t) > 0, and therefore the RHS
of (4.9) is also positive. Integrating the inequality between R and r (R0 ≤ R < r)
we obtain

H(R)−1 ≥ H (R)−1 −H(r)−1 ≥
∫ r

R

(∫
∂Bt

ϕ
a(u)2

b(u)
u2

)−1

. (4.10)

Now, we consider the sequence of functions defined by

an (t) =
(

t2 +
1
n

) p−2
2

, bn(t) = min{p− 1, 1} an(t) , ∀n ∈ N.

Since condition (4.7) holds for every n, so does (4.10), whence, letting n → +∞
and using the Lebesgue dominated convergence theorem and Fatou’s lemma we
deduce that there exists C > 0 which depends only on p such that(∫

BR

ϕ|u|p−2|∇u|2
)−1

≥ C

∫ r

R

(∫
∂Bt

ϕ|u|p
)−1

dt.

The required contradiction is now reached by letting r → +∞ and using assump-
tion (4.4). �

As the above proof shows, the conclusion of the theorem holds if one assumes
that 0 < ϕ ∈ L2

loc(M) and u ∈ Liploc(M).
We observe that condition (4.4) is implied by uϕ1/p ∈ Lp(M). Indeed, if this

is the case and we set f =
∫

∂Br
|u|pϕ, then the assumption and the co-area formula

show that f ∈ L1(+∞), and by Hölder inequality∫ r

r0

f−1 ≥ (r − r0)2
(∫ r

r0

f

)−1

→ +∞ as r → +∞.

We also note that the conclusion of Theorem 4.1 fails if we assume that p = 1
in (4.4). Indeed, taking ϕ ≡ 1, (4.3) reduces to u∆u ≥ 0, and P. Li and R. Schoen
have constructed in [95] an example of a non-constant, L1, harmonic, function
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on a complete manifold. Indeed, let (M, 〈 , 〉 be a model manifold in the sense of
Greene and Wu, namely M = Rm as a manifold, with the metric given in polar
coordinates by

〈 , 〉 = dr2 + σ(r)2dθ2,

where dθ2 denotes the standard metric on the unit sphere Sm−1, and σ is a smooth
odd function on R which is positive for r > 0 and such that σ′(0) = 1.

Choose a non-negative non-identically zero compactly supported smooth
function a(t), and define the non-negative function

u(x) =
∫ r(x)

0

σ(t)−(m−1)
{∫ t

0

a(s)σ(s)m−1 ds
}
dt, (4.11)

where r(x) denotes the distance function from 0. It is easily verified that u is
smooth, and satisfies

∆u = a(r(x))

on (Rm, 〈 , 〉), and it is therefore a non-constant non-negative subharmonic func-
tion. Since u is radial, for ease of notation we will write u(r). If we specify σ to
be σ(t) = t for t ∈ [0, 1], and such that

σ(t) =
(
t(log t)ε

)−1/(m−1) exp
(− t2(log t)ε

m− 1
)
,

for t ∈ [To, +∞), for some ε > 0, and To > 1 sufficiently large, then it is easy to
check that

u(r) ∼ C exp
(
r2(log r)ε

)
and ∫

∂Br

u ∼ C′

r(log r)ε

as r → +∞. Thus, if ε > 1, then u is a non-negative, integrable subharmonic
function on M . We note that in this case, the manifold (M, 〈 , 〉) has finite volume.

Finally, we remark that Theorem 4.1 generalizes [14] (see the proof of Propo-
sition 2.1 therein) in two directions, even in the case where M = Rm. First, in
their case p = 2; secondly they replace (4.4) by the more stringent condition∫

Br

u2ϕ ≤ Cr2

for some constant C > 0. To see that the latter implies (4.4) simply note that its
validity forces

r∫
Br

u2ϕ
	∈ L1 (+∞)

which in turn implies (4.4) (see, e.g., [138], Proposition 1.3). Furthermore, although
the approach used in [14] is applicable also in the case of Riemannian manifolds,
in this general context, it does not yield a sharp result.
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We apply Theorem 4.1 to prove a uniqueness result for harmonic maps which
largely improves on previous work in the literature. We recall that a ball BR (q)
in a Riemannian manifold (N, (, )) is said to be regular if it does not intersect the
cut locus of q, and, having denoted by B ≥ 0 an upper bound for the sectional
curvature of N on BR (q) , one has

√
BR < π/2. Let qb be the function defined by

the formula

qB (t) =

{
1
2 t2 if B = 0,
1
B

(
1− cos

(√
Bt

))
if B > 0.

Assume that f, g : (M, 〈 , 〉) → BR(q) ⊂ N are harmonic maps taking values in
the regular ball BR(q) and define functions Φ, ψ, ϕ, u : M → R by setting

Φ(x) = − log
(
cos(

√
BdistN (q, f(x)) cos(

√
BdistN (q, g(x))

)
,

ϕ(x) = e−Φ(x) and u = ϕ(x)−1qB (distN (f(x), g(x))) .
(4.12)

Clearly, u ≥ 0 and, since f and g take values in the regular ball BR(q), there exists
a constant C ≥ 1 such that

C−1 ≤ ϕ ≤ 1 and

C−1distN (f(x), g(x))2 ≤ u(x) ≤ CdistN (f(x), g(x))2
(4.13)

on M. Further, a result of W. Jäger and H. Kaul [86] shows that

div (ϕ∇u) ≥ 0 on M,

and therefore, “a fortiori”,

udiv (ϕ∇u) ≥ 0 weakly on M. (4.14)

With this preparation we have the following uniqueness result:

Theorem 4.2. Maintaining the notation introduced above, let f, g : M → N be
harmonic maps taking values in the regular ball BR(q) ⊂ N , and assume that, for
some p ≥ 1,

distN (f, g)2p ∈ L1(M). (4.15)

In case p = 1, assume also that∫
∂Br

distN (f, g)2 ≤ C

r logβ r
(4.16)

for some constants C, β > 0 and for r (x) >> 1. If vol(M) = +∞, then f ≡ g.

Proof. As noted above, the functions ϕ and u satisfy (4.14), and, according to
(4.13), the integrability condition (4.15) implies that

ϕup = ϕ1−pqB (distN (f(x), g(x)))p ∈ L1(M).
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In particular {∫
∂Br

ϕup

}−1

/∈ L1 (+∞) .

If p > 1, we can use Theorem 4.1 above to deduce that u is constant, that is, there
exists a constant C1 ≥ 0, such that

qB (distN (f(x), g(x))) = C1ϕ(x).

Since vol (M) = +∞ and ϕ is bounded away from zero, the integrability condition
(4.15) forces C1 = 0 and therefore distN (f(x), g(x)) ≡ 0, as required.

The case p = 1 is a consequence of the following version of Theorem 4.1
above. �

Theorem 4.3. Let (M, 〈 , 〉) be a complete manifold. Assume that 0 < ϕ ∈ L2
loc (M)

and u ∈ Liploc (M) satisfy

div (ϕ∇u) ≥ 0 weakly on M.

If u ≥ 0 and

(i)
∫

∂Br

ϕu ≤ C

r logβ r
, (ii) u (x) ≤ Cer(x)2 (4.17)

for some constants C, β > 0 and r (x) � 1, then u is constant.

Proof. We suppose that u is non-constant to get a contradiction. Thus, we proceed
as in the proof of Theorem 4.1 above to arrive at

{∫
BR

ϕb (u) |∇u|2
}−1

≥
∫ r

R

{∫
∂Bt

ϕ
a (u)2

b (u)

}−1

(4.18)

for r > R ≥ R0 sufficiently large and where the functions a ∈ C1 (R) and b ∈
C0 (R) satisfy

(i) a (u) ≥ 0; (ii) a′ (u) ≥ b (u) > 0 on M. (4.19)

Now, for every fixed n ≥ 1, and for every t ≥ 0, we let

an (t) = logβ

(
1 + log

(
1 + t +

1
n

))
,

bn (t) = a′
n (t) =

β logβ−1
(
1 + log

(
1 + t + 1

n

))(
1 + log

(
1 + t + 1

n

)) (
1 + t + 1

n

) .

It is easy to verify that there exists a constant γ = γ (β) > 0 such that, for every
s ≥ 0,

log1+β (1 + log (1 + s)) ≤ γs
(
1 + log1+β (1 + log (1 + s))

)
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and therefore

an (t)2

bn (t)

≤ 1
β

γ

(
1
n

+ t

)(
1 + log

(
1 + t +

1
n

))(
1 + log1+β

(
1 + log

(
1 + t +

1
n

)))
.

We substitute an, bn into (4.18), let n tend to infinity in the resulting inequality
and use the dominated convergence theorem and Fatou’s lemma to deduce the
existence of a constant C > 0 such that{∫

BR

ϕ |∇u|2
(1 + u) (1 + log (1 + u)) log1−β (1 + log (1 + u))

}−1

(4.20)

≥ C

∫ r

R

{∫
∂Bt

ϕu (1 + log (1 + u))
(
1 + log1+β (1 + log (1 + u))

)}−1

.

On the other hand, by (4.17),∫
∂Bt

ϕu (1 + log (1 + u))
(
1 + log1+β (1 + log (1 + u))

)
≤ C

∫
∂Bt

ϕut2 (log t)1+β ≤ Ct log t.

By letting r → +∞, this contradicts (4.20). �
When (N, (, )) is a Cartan–Hadamard manifold, namely, a complete, simply

connected manifold of non-positive sectional curvature, the above proof yields the
next

Theorem 4.4. Let (N, (, )) be Cartan–Hadamard and let f, g : M → N be harmonic
maps such that, for some p ≥ 1,

distN (f(x), g(x))2p ∈ L1 (M) (4.21)

and, for p = 1, add the conditions

(i)
∫

∂Br

distN (f(x), g(x))2 ≤ C

r logβ r
; (ii) distN (f(x), g(x))2 ≤ Cer(x)2 (4.22)

for some constants β, C > 0 and for r (x) large enough. If vol (M) = +∞, then
f = g.

As we pointed out after the proof of Theorem 4.1, an L1-Liouville-type the-
orem for subharmonic functions is in general false if we do not require some extra
assumptions. This explains the role of assumption (4.22) in Theorem 4.4 when
p = 1.

We now come to the following consequence of Theorem 4.1, which will be the
main ingredient in the geometric applications of Chapter 6 below.
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Theorem 4.5. Let (M, 〈 , 〉) be a complete manifold, a(x) ∈ L∞
loc(M) and let ψ ∈

Liploc(M) satisfy the differential inequality

ψ∆ψ + a(x)ψ2 + A|∇ψ|2 ≥ 0 weakly on M (4.23)

for some A ∈ R. Let also ϕ ∈ Liploc(M) be a positive solution of

∆ϕ + Ha(x)ϕ ≤ 0, weakly on M, (4.24)

for some H such that
H ≥ A + 1, H > 0. (4.25)

If (∫
∂Br

|ψ|2(β+1)

)−1

	∈ L1(+∞) (4.26)

for some β such that
A ≤ β ≤ H − 1, β > −1, (4.27)

then there exists a constant C ∈ R such that

Cϕ = |ψ|Hsgnψ. (4.28)

Further,

(i) If H − 1 > A, then ψ is constant on M , and if in addition, a(x) does not
vanish identically, then ψ is identically zero;

(ii) If H − 1 = A, and ψ does not vanish identically, then ϕ and therefore |ψ|H
satisfy (4.24) with equality sign.

Proof. Set, for ease of notation, α = β+1
H , and let u be the function defined by

u = ϕ−α|ψ|βψ,

so that the first assertion in the statement is that u is constant on M.
Noting that the restrictions imposed on β, and Lemma 4.12 in the Appendix

at the end of this section, imply that u ∈ C0(M) ∩W 1,2
loc (M). Moreover,∫

ϕ2α|u|2 =
∫
|ψ|2(β+1),

so that (4.26) implies that (4.4) holds with ϕ2α in place of ϕ, and p = 2, the con-
stancy of u follows from Theorem 4.1 once we show that the differential inequality

udiv
(
ϕ2α∇u

) ≥ 0 (4.29)

holds weakly on M. i.e. (see the beginning of the proof of Theorem 4.1), that for
every non-negative, compactly supported function ρ ∈ L∞(M) ∩ W 1,2(M), we
have

I =
∫ [〈ϕ2αu∇u,∇ρ〉+ ϕ2α|∇u|2ρ] ≤ 0.
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Using the definition of u, and Lemma 4.13, we compute

∇u = −αϕ−α−1|ψ|βψ∇ϕ + (β + 1)ϕ−α|ψ|β∇ψ

whence

I = (β + 1)
∫
〈∇ψ, ψ|ψ|2β∇ρ〉 − α

∫
ϕ−1|ψ|2β+2〈∇ϕ,∇ρ〉

+
∫ [

(β + 1)2|ψ|2β |∇ψ|2ρ + α2|ψ|2β+2 |∇ϕ|2
ϕ2

ρ

]
− 2α(β + 1)

∫
|ψ|2βψ〈∇ϕ

ϕ
,∇ψ〉. (4.30)

We first consider the first integral on the right-hand side, and assume that β < 0,
the other case being easier. Since∣∣(ψ2 + ε)βψ∇ψ

∣∣ ≤ |ψ|2β+1|∇ψ| = |ψ|1+β |ψ|β |∇ψ| ∈ L1
loc

by Lemma 4.13, by the dominated convergence theorem,∫
|ψ|2βψ〈∇ψ,∇ρ〉 = lim

ε→0+

∫
(ψ2 + ε)βψ〈∇ψ,∇ρ〉

= lim
ε→0+

{∫
〈∇ψ,∇[ψ(ψ2 + ε)βρ

]〉 − (ψ2 + ε)β (2β + 1)ψ2 + ε

ψ2 + ε
|∇ψ|2ρ

}
. (4.31)

According to (4.23), for every non-negative, compactly supported function σ ∈
W 1,2(M), ∫

〈∇ψ,∇(σψ)〉 ≤
∫ (

a(x)ψ2 + A|∇ψ|2)σ.

Applying the above inequality with σ = ρ(ψ2 + ε)β, and applying the dominated
convergence theorem, we deduce that

lim
ε→0+

∫
(ψ2 + ε)β (2β + 1)ψ2 + ε

ψ2 + ε
|∇ψ|2ρ = (2β + 1)

∫
|ψ|2β |∇ψ|2ρ,

and

lim
ε→0+

∫
〈∇ψ,∇[ψ(ψ2 + ε)βρ

]〉 ≤ lim
ε→0+

∫ [
a(x)ψ2 + A|∇ψ|2](ψ2 + ε)βρ

=
∫ [

a(x)|ψ|2β+2 + A|ψ|2β |∇ψ|2]ρ.

Inserting these expressions into (4.31) we conclude that∫
|ψ|2βψ〈∇ψ,∇ρ〉 ≤

∫ [
a(x)|ψ|2β+2 + (A− 2β − 1)|ψ|2β|∇ψ|2]ρ. (4.32)



4.2. Liouville and vanishing results 93

In a similar, but easier way, using (4.24) one verifies that

−
∫

ϕ−1|ψ|2β+2〈∇ϕ,∇ρ〉

≤
∫ [−Ha(x)|ψ|2β+2 − |ψ|2β+2 |∇ϕ|2

ϕ2
+ 2(β + 1)|ψ|2βψ〈∇ϕ

ϕ
,∇ψ〉]ρ. (4.33)

Substituting (4.32) and (4.33) into (4.30), and recalling the value of α and the
condition satisfied by β, we conclude that

I ≤ (β + 1)
∫ [

(A − β)|ψ|2β |∇ψ|2ρ +
β + 1−H

H2
|ψ|2β+2 |∇ϕ|2

ϕ2
ρ

]
≤ 0,

as required to show that (4.29) holds.
In particular, ψ has constant sign, and if we assume that ψ 	≡ 0, multiplying

ψ by a suitable constant we may assume that ψ is strictly positive, and

ϕ = ψH .

Inserting this equality into (4.24) we have

HψH−2
[
ψ∆ψ + (H − 1)|∇ψ|2 + a(x)ψ2

] ≤ 0, (4.34)

whence, multiplying (4.23) by HψH−2, and subtracting the resulting inequality
from (4.34) we obtain

H
[
(H − 1)−A

]
ψH−2|∇ψ|2 ≤ 0. (4.35)

Thus, if H − 1 > A, |∇ψ|2 ≡ 0, and ψ and therefore ϕ are constant. It follows
from (4.24) that

∆ϕ + Ha(x)ϕ = Ha(x)ϕ ≤ 0, so that a(x) ≤ 0,

while, (4.23) implies that

ψ∆ψ + a(x)ψ2 + A|∇ψ|2 = a(x)ψ2 ≥ 0 so that a(x) ≥ 0,

and we conclude that a(x) ≡ 0. In particular, if a(x) 	≡ 0, then ψ must vanish
identically.

Finally, assume that A = H − 1, and that ψ does not vanish identically, so
that, as noted above, we may assume that ψ is strictly positive, and that ϕ = ψH .
On the other hand, it follows from (4.24) and Lemma 3.10 that there exists a
positive C1 function v satisfying

∆v + Ha(x)v = 0 weakly on M. (4.36)

Repeating the argument with v in place of ϕ, we deduce that there exists c̃ 	= 0
such that

c̃v = ψH = ϕ.

Thus ϕ is a positive multiple of v and we conclude that it also satisfies (4.36). �
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We remark that Theorem 4.5 fails if the exponent 2(β+1) in the integrability
condition (4.28) is replaced by p(β + 1) for some p > 2. Indeed, it was shown in
[16] that if a(x) and b(x) are non-negative continuous functions on Rm satisfying

a(x) ≤ (m− 2)2

4
|x|−2 , a(x) =

(m− 2)2

4
|x|−2 if |x| � 1

and

b(x) =
|x|(m−2)(σ−1)/2

(log |x|)σ+1(log log |x|)(log log log |x|)2 if |x| � 1

for some σ > 1, then the equation

∆u + a(x)u − b(x)uσ = 0 (4.37)

has a family of positive solutions uα (α > 0) satisfying

uα(0) = α and uα(x) ∼ |x|−(m−2)/2 log |x| as |x| → +∞.

In particular, uα is a solution of (4.23) with A = 0, and∫
∂Br

|uα|q " r1+(m−2)(2−q)/2(log r)q,

so that (∫
∂Br

|uα|q
)−1

	∈ L1(+∞)

for every q > 2.
On the other hand, it is well known that in this case λ1

(
[−∆− a(x)]Rm

)
= 0,

so there exists a positive solution ϕ of

∆ϕ + a(x)ϕ = 0 on Rm (4.38)

(see, e.g., [19], Lemma 3 and subsequent Remark 4). Since in this case H = 1,
applying Theorem 4.5 we would conclude that

cϕ = uα

for some constant c which is necessarily positive, since both u, ϕ > 0. But then
uα would be a solution of (4.38) and this is impossible since it satisfies (4.37) and
b is non-zero.

We also note that a minor modification of the above proof yields the following

Theorem 4.6. Let a(x), b(x) ∈ C0(M) and assume that b(x) ≥ 0. Let H > 0,
K > −1 and A ∈ R be constants satisfying

A ≤ H(K + 1)− 1, (4.39)
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and suppose that there exists a positive Liploc(M) solution of the differential in-
equality

∆ϕ + Ha(x)ϕ ≤ −K
|∇ϕ|2

ϕ
on M. (4.40)

Then the differential inequality

u∆u + a(x)u2 − b(x)uσ+1 ≥ −A|∇u|2, σ ≥ 1, (4.41)

has no non-negative Liploc(M) solutions on M satisfying

supp u ∩ {x ∈ M : b(x) > 0} 	= ∅ (4.42)

and (∫
∂Br

u2(β+1)
)−1

	∈ L1(+∞), (4.43)

for some β satisfying β > −1, A ≤ β ≤ H(K + 1)− 1.

As an immediate corollary of Theorem 4.5 we have

Corollary 4.7. Let a(x) ∈ L∞
loc(M), A ∈ R, H ≥ A + 1,H > 0, and set HL =

−∆ − Ha(x). Assume that ψ ∈ Liploc(M) is a changing sign solution of (4.23)
satisfying (4.26) for some β such that β > −1, A ≤ β ≤ H−1. Then λ1(HLM ) < 0.

Proof. Assume by contradiction that λ1(HLM ) ≥ 0. By Lemma 3.10 there exists
0 < ϕ ∈ C1(M) satisfying ∆ϕ+Ha(x)ϕ = 0 on M. By Theorem 4.5, there exists a
constant C such that Cϕ = |ψ|H−1ψ, and since ψ changes sign, while ϕ is strictly
positive, this yields the required contradiction. �

In the case of Euclidean space, the integrability condition (4.26) follows as-
suming a suitable upper estimate for ψ, and yields the following (slight) improve-
ment of [14] Theorem 1.7.

Corollary 4.8. Let a(x) ∈ L∞
loc(R

m), and let ψ ∈ Liploc(Rm) be a changing sign
solution of

ψ∆ψ + a(x)ψ2 ≥ 0 on Rm,

such that, for some H ≥ 1,

|ψ(x)| = O
(
r(x)−(m−2)/2H(log r(x))1/2H

)
, as r(x) → +∞.

If HL = −∆−Ha(x), then λ1

(
HLRm

)
< 0.

Similar results can be obtained on Riemannian manifolds where vol∂Br sat-
isfies a suitable upper bound. This in turn follows, by the volume comparison
theorem, from appropriate lower bounds on the Ricci curvature (see, Section 2.2
and [20], Appendix). We leave the details to the interested reader.

Theorem 4.5 yields also the following generalization of Theorem 2 (and Corol-
lary 2) in [54].
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Corollary 4.9. Let (M, 〈 , 〉) be a complete manifold, and let a(x) ∈ L∞
loc(M) and

A < 0. Suppose that ψ ∈ Lip loc is a non-constant weak solution of the differential
inequality

ψ∆ψ + a(x)ψ2 + A|∇ψ|2 ≥ 0,

satisfying (∫
∂Br

ψ2
)−1

	∈ L1(+∞). (4.44)

Then, there exists Ho ∈ [0, 1) such that, for every H > Ho, the differential in-
equality

∆ϕ + Ha(x)ϕ ≤ 0 (4.45)

has no positive, locally Lipschitz weak solution on M, while if 0 ≤ H ≤ Ho, such
a solution of (4.45) exists.

Proof. Recall that, according to Lemma 3.10, the existence of a positive, locally
Lipschitz weak solution of (4.45) is equivalent to

λ1

(
HL

) ≥ 0,

where HL = −∆−Ha(x).
Observe next that if 0 < H1 ≤ H2, then, by the variational characterization

of the bottom of λ1

(
HL

)
, we have

λ1

(
H1L

) ≥ H1

H2
λ1

(
H2L

)
. (4.46)

(see the argument in the proof of Theorem 2 in [54]). Thus, if we denote by S the
set of H ≥ 0 such that (4.45) holds, S is not empty, since λ1(−∆) ≥ 0, and if H2

is in S, then so is H1.
An application of Theorem 4.5 with A < max{A, 0} = 0 = β = H − 1

implies that if H = 1, then (4.45) has no positive locally Lipschitz solution, for
otherwise ψ would necessarily be constant, against the assumption. Thus 1 	∈ S,
and Ho = supS ≤ 1

Now one concludes as in Corollary 2 in [54] showing, by an approximation
argument, that S is closed, so that 1 > Ho ∈ S. �

To see that Corollary 4.9 implies Theorem 2 and Corollary 2 in [54], it suffices
to observe that if ds2 = µ(z)|dz|2 is a complete metric on the unit disk D, with
Gaussian curvature K, then ψ = µ−1/2 is a non-constant solution of

ψ∆ψ −Kψ2 = |∇ψ|2

and ∫
ψ2dvolds2 =

∫
µ−1µ dxdy = vol Eucl(D) < +∞.
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According to the remark after the proof of Theorem 4.1, condition (4.44) holds,
and Corollary4.9 implies that there exists Ho ∈ [0, 1) such that equation

∆ϕ−HK(x)ϕ = 0

has no positive solution if H > Ho and has a positive solution if 0 ≤ H ≤ Ho.

Following the above line of investigation, we are naturally led to the next
result, which extends some known facts in minimal surfaces theory to minimal
hypersurfaces of Euclidean space; see Corollary 4.11 below.

We recall that a minimal hypersurface f : (Mm, 〈 , 〉) → Rm+1 is stable if it
(locally) minimizes area up to second order or, equivalently, if the bottom of the
spectrum λ1LM ) of the operator L = −∆− |II|2 is non-negative. Here |II| denotes
the length of the second fundamental tensor of the immersion.

We also recall that a Riemannian metric 〈̃ , 〉 on a (generic) manifold M is
said to be a pointwise conformal deformation of a metric 〈 , 〉 if there exists a
positive function ρ ∈ C∞ (M) such that 〈̃ , 〉x (v, w) = ρ2 (x) 〈 , 〉x (v, w), for every
x ∈M and v, w ∈ TxM .

Theorem 4.10. Let f : (Mm, 〈 , 〉) → Rm+1 be a complete, stable, minimal hyper-
surface of dimension m ≥ 2. Then 〈 , 〉 cannot be pointwise conformally deformed
to a Riemannian metric 〈̃ , 〉 of scalar curvature S̃(x) ≤ 0 and finite volume.

Proof. We first consider the case where m ≥ 3. By contradiction, we assume that
there exists a conformal metric 〈̃ , 〉 on M with scalar curvature S̃(x) ≤ 0 and
finite volume ṽol(M) < +∞. Denoting by S(x) the scalar curvature of the original
metric, minimality and the Gauss equations imply

S(x) = − |II (x)|2 . (4.47)

According to Lemma 3.10, the stability of f is then equivalent to the existence of
a positive solution ϕ ∈ C∞ (M) of

∆ϕ− S(x)ϕ = 0 on M. (4.48)

Setting

H =
4 (m− 1)

m− 2
> 1; a(x) = − 1

H
S(x),

we can rewrite (4.48) in the form

∆ϕ + Ha(x)ϕ = 0 on M.

Now, let

〈̃ , 〉 = ψ
4

m−2 〈 , 〉. (4.49)
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Then the smooth positive function ψ is a solution of the Yamabe equation, and,
since S̃ (x) ≤ 0, we deduce that

∆ψ + a(x)ψ = − 1
H

S̃(x)ψ
m+2
m−2 ≥ 0, on M. (4.50)

Since ∫
M

ψ
2m

m−2 dvol = ṽol(M) < +∞

we have
1∫

∂Br(o) ψ2(β+1)
	∈ L1 (+∞)

where
β =

2
m− 2

satisfies
0 < β < H − 1.

Applying Theorem 4.5, case 1, with A = 0 we therefore conclude that ψ, and
therefore ϕ, is a positive constant and S (x) ≡ 0. According to (4.47) and (4.49)
we deduce that f (M) is an affine hyperplane and hence

(
M, 〈̃ , 〉

)
is homothetic

to (Rm, can) . But this clearly contradicts the assumption that ṽol (M) < +∞.
The case m = 2 is completely similar. This time, we replace (4.49) with

〈̃ , 〉 = ψ2〈 , 〉
and, instead of (4.50), we use the corresponding Yamabe equation

ψ∆ψ − S (x)ψ2 = −S̃ (x)ψ4 + |∇ψ|2 .

Thus, ψ satisfies
ψ∆ψ − S (x)ψ2 ≥ |∇ψ|2 .

Since ∫
M

ψ2dvol = ṽol (M) < +∞

we have
1∫

∂Br(o)
ψ2
	∈ L1 (+∞) .

On the other hand, the stability assumption implies the existence of a positive,
smooth solution ϕ of (4.48). Therefore we can apply Theorem 4.5, case 1, with the
choices β = 0, a(x) = −S(x), H = 1, A = −1. Reasoning as above, we reach the
desired contradiction. �

Using a classical universal covering argument, together with the Riemann-
Köbe uniformization theorem, we easily recover Corollary 4 in [54]:
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Corollary 4.11. Let f : (M, 〈 , 〉)→ R3 be a 2-dimensional, complete, stable, mini-
mal surface. Then f(M) is parabolic, and hence is an affine plane.

Proof. Let π :
(
M̄, ¯〈 , 〉) → (M, 〈 , 〉) be the Riemannian universal covering of M.

Then, f̄ = f ◦ π :
(
M̄, ¯〈 , 〉)→ R3 defines a complete, minimal surface. Moreover f̄

is stable because any positive solution ϕ of (4.48) on M lifts to a positive solution
ϕ̄ = ϕ ◦ π of ∆̄ϕ̄− S̄(y)ϕ̄ = 0 on M̄. Here the bar-quantities refer to the covering
metric ¯〈 , 〉. Since there are no compact minimal surfaces in the Euclidean space,
the Uniformization Theorem implies that

(
M̄, ¯〈 , 〉) is conformally diffeomorphic

to either R2 or the open unit disc D1 ⊂ R2. In view of Theorem 4.10 the second
possibility cannot occur so that M must be parabolic. To conclude that f is totally
geodesic, simply note that, by (4.48), ϕ is a positive superharmonic function.
Therefore ϕ must be constant and S(x) = − |II|2 ≡ 0. �

4.3 Appendix: Chain rule under weak regularity

This section provides the technical justification for the distributional computations
needed in the proofs of Theorems 4.5 and 5.16 and Lemma 5.17 in the next section.
First, we present a regularity result.

Lemma 4.12. Let a (x) ∈ L∞
loc (M) and A ∈ R. Let ψ ∈ Liploc (M) be a weak

solution of
ψ∆ψ + a (x)ψ2 + A |∇ψ|2 ≥ 0 on M.

Then
|ψ|p−1ψ ∈ W 1,2

loc (M) (4.51)

provided ⎧⎨⎩
p ≥ 1 if A ≥ 1,

p > max
{

0, A+1
2

}
if A < 1

and, furthermore,

∇
((

ψ2 + ε
)(p−1)/2

ψ
)

L2

⇀ ∇ (|ψ|p−1ψ
)

as ε→ 0 + . (4.52)

Proof. We treat only the case p < 1, the other case being easier. Consider the
family of functions

(
ψ2 + ε

)(p−1)/2
ψ and note that, as ε → 0+,(

ψ2 + ε
)(p−1)/2

ψ → |ψ|p−1ψ in L2
loc.

We are going to use the fact that if a sequence {fn} is uniformly bounded in
W 1,2

loc and converges to f strongly in L2
loc, then the limit function f is in W 1,2

loc and
∇fn converges to ∇f weakly in L2

loc (see [55], Lemma 6.2, page 16). Since

|∇((ψ2 + ε)(p−1)/2ψ
)| = (

ψ2 + ε
)(p−1)/2 pψ2 + ε

ψ2 + ε
|∇ψ| ≤ (

ψ2 + ε
)(p−1)/2|∇ψ|
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it suffices to show that the right-hand side is uniformly bounded in L2
loc as ε → 0+.

By assumption, for any 0 ≤ ρ ∈ Lipc (M) , we have

−
∫
〈∇ψ,∇ (ρψ)〉 ≥ −

∫
a (x) ψ2ρ−A

∫
|∇ψ|2 ρ,

that is,

−
∫

ψ 〈∇ψ,∇ρ〉 ≥ −
∫

a (x)ψ2ρ + (−A + 1)
∫
|∇ψ|2 ρ. (4.53)

Fix ε > 0 and choose
ρ =

(
ψ2 + ε

)p−1
φ2

where 0 ≤ φ ∈ C∞
c (M) . Then,

∇ρ = 2(p− 1)φ2
(
ψ2 + ε

)p−2
ψ∇ψ + 2φ

(
ψ2 + ε

)p−1∇φ,

so that, using the Cauchy–Schwarz and Young inequalities and the fact that p−1 <
0, we estimate

LHS of (4.53)

= −2
∫

φ
(
ψ2 + ε

)p−1
ψ〈∇ψ,∇φ〉 − 2 (p− 1)

∫
φ2
(
ψ2 + ε

)p−2
ψ2|∇ψ|2

≤ 2
∫

φ
(
ψ2 + ε

)p−1/2|∇ψ| |∇φ| − 2 (p− 1)
∫

φ2
(
ψ2 + ε

)p−1|∇ψ|2

≤ 4
η

∫ (
ψ2 + ε

)p|∇φ|2 − (2p− 2− η)
∫

φ2
(
ψ2 + ε

)p−1|∇ψ|2.

Moreover

RHS of (4.53) = −
∫

a(x)ψ2
(
ψ2 + ε

)p−1
φ2 + (−A + 1)

∫
φ2
(
ψ2 + ε

)p−1|∇ψ|2

≥ −
∫
|a(x)|(ψ2 + ε

)p
φ2 + (−A + 1)

∫
φ2
(
ψ2 + ε

)p−1|∇ψ|2,

for η > 0. Combining the two inequalities and rearranging we obtain

(2p−A− 1− η)
∫

φ2
(
ψ2 + ε

)p−1|∇ψ|2

≤ 4
η

∫ (
ψ2 + ε

)p|∇φ|2 +
∫
|a(x)|(ψ2 + ε

)p
φ2.

≤
∫

max{1, |ψ|2p}(4
η
|∇φ|2 + |a(x)|φ2

)
.

Since 2p−A−1 > 0, we may choose η > 0 small enough that the (2p−A−1−η) > 0,
and conclude that the left-hand side is uniformly bounded in L2

loc as ε → 0+, as
required to conclude the proof. �
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Next we prove that, in the above assumptions, one can use the ordinary chain
rule to compute the weak gradient of |ψp−1|ψ even if p < 1. Note that, in this
situation, the function x �−→ |x|p−1x is not Lipschitz so that standard results in
the literature do not apply directly.

Lemma 4.13. Let 0 < po (< 1) and assume that ψ ∈ Liploc (M) satisfies (4.51)
and (4.52), for every p > po. Then for every such p,

|ψ|p−1∇ψ ∈ L2
loc (M) (4.54)

and
∇ (|ψ|p−1ψ

)
= p|ψ|p−1∇ψ, a.e. on M, (4.55)

where the LHS is understood in the sense of distribution and the RHS is defined
almost everywhere, and is equal to 0 where the ∇ψ vanishes.

Proof. Let po < p′ (< 1) be any real number, and Ω ⊂⊂ M a fixed domain. Using
∇ψ ∈ L2(Ω) as a test function in (4.52) we have∫

Ω

〈∇((ψ2 + ε)(p
′−1)/2ψ

)
,∇ψ〉 →

∫
Ω

〈∇(|ψ|p′−1ψ),∇ψ〉, as ε → 0 + . (4.56)

Since
p′
(
ψ2 + ε

)(p′−1)/2|∇ψ|2 ≤ 〈∇((ψ2 + ε)(p
′−1)/2ψ

)
,∇ψ〉,

it follows from (4.56) and the monotone convergence theorem that

lim
ε→0

(
ψ2 + ε

)(p′−1)/2|∇ψ|2 =

⎧⎪⎨⎪⎩
0 if ∇ψ = 0,

|ψ|p′−1|∇ψ|2 if ∇ψ 	= 0, ψ 	= 0,

+∞ if ∇ψ 	= 0, ψ = 0

is integrable on Ω. In particular, the set where ψ = 0 and ∇ψ 	= 0 has measure
zero, showing that the vector field |ψ|(p′−1)/2∇ψ is defined almost everywhere and
in L2(Ω). Therefore we may use this vector field in (4.52) and, arguing as above,
show that |ψ|3(p′−1)/4∇ψ ∈ L2(Ω). Iterating, we deduce that, for every n,

|ψ|(2n−1)(p′−1)/2n∇ψ ∈ L2(Ω). (4.57)

Now, given p > po, let p′ = 2n(p−1)/(2n−1)+1 so that (2n−1)(p′−1)/2n = p−1.
Choosing n large enough that p′ > po, shows that (4.54) holds.

Finally, to prove (4.55), let ρ ∈ C∞
c (M). By (4.52),∫

〈∇((ψ2 + ε)(p−1)/2ψ
)
,∇ρ〉 →

∫
〈∇(|ψ|p−1ψ),∇ρ〉, as ε → 0 + . (4.58)

On the other hand,

∇((ψ2 + ε)(p−1)/2ψ
)

= (ψ2 + ε)(p−1)/2 pψ2 + ε

ψ2 + ε
∇ψ → p|ψ|p−1∇ψ
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pointwise a.e., and its absolute value is bounded above by p|ψ|p−1|∇ψ| which is
in L2

loc by (4.54). Therefore we may apply the dominated convergence theorem to
the left-hand side of (4.58) to obtain∫

〈p|ψ|p−1∇ψ,∇ρ〉 =
∫
〈∇(|ψ|p−1ψ),∇ρ〉

as required. �



Chapter 5

A finite-dimensionality result

As briefly mentioned at the beginning of the previous chapter, typical geometric
applications of Theorem 4.5 are obtained by applying it when the function ψ is
the norm of the section of a suitable vector bundle. In appropriate circumstances,
the theorem guarantees that certain vector subspaces of such sections are trivial,
the main geometric assumption being the existence of a positive solution ϕ of the
differential inequality

∆ϕ + Ha(x)ϕ ≤ 0 weakly on M, (5.1)

where a(x) is a lower bound for the relevant curvature term. According to Lemma
3.10 this amounts to requiring that the bottom of the spectrum of the Schrödinger
operator −∆−Ha(x) is non-negative.

We now consider the case where it is only assumed that (5.1) has a positive
solution outside a compact set, which is related to the finiteness of the Morse index
of the operator (see Lemma 3.16, Corollary 3.18 and Lemma 3.10).

Theorem 5.1. Let (M, 〈 , 〉) be a connected, complete, m-dimensional Riemannian
manifold and E a Riemannian (Hermitian) vector bundle of rank l over M . The
space of its smooth sections is denoted by Γ (E). Having fixed

a (x) ∈ C0 (M)

and constants A ∈ R, p and H satisfying

H ≥ p ≥ A + 1, p > 0, (5.2)

let V = V (a, A, p, H) ⊂ Γ (E) be any vector space with the following property:

(P) Every ξ ∈ V has the unique continuation property, i.e., ξ is the null sec-
tion whenever it vanishes on some domain; furthermore the locally-Lipschitz
function ψ = |ξ| satisfies⎧⎨⎩ ψ∆ψ + a (x) ψ2 + A |∇ψ|2 ≥ 0 weakly on M∫

Br
ψ2p = o

(
r2
)

as r → +∞.
(5.3)

If there exists a solution 0 < ϕ ∈ Liploc of the differential inequality

∆ϕ + Ha (x) ϕ ≤ 0 (5.4)
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weakly outside a compact set K ⊂ M , then

dimV < +∞. (5.5)

The spaces of harmonic functions, and more generally, harmonic forms on a
Riemannian manifold are the most typical examples of spaces of sections for which
the conditions of the theorem hold.

This situation can be generalized to the following setting. Let E be a Rie-
mannian (Hermitian) vector bundle of rank l over M with a compatible connection
D and let ∆E be a differential operator acting on the space of smooth sections
Γ(E) of the form

∆E = ∆B + R (5.6)

where ∆B = −Trace
(
D2

)
is the rough Laplacian, and R is a smooth symmetric

endomorphism of E. A smooth section ξ ∈ Γ (E) is called ∆E-harmonic if ∆Eξ =
0. We define the vector spaces

H (E) = {ξ ∈ Γ (E) : ∆Eξ = 0}

and
L2pH (E) =

{
ξ ∈ H (E) : |ξ| ∈ L2p (M)

}
.

Note that ∆E-harmonic sections satisfy the (strong) unique continuation property.
In local coordinates, the condition ∆Bξ + Rξ = 0 becomes a system of l elliptic
differential equations satisfying the structural assumptions of Aronszajn–Cordes,
see Appendix A below. Indeed, we have

Proposition 5.2. Let E be a rank l vector bundle over the connected manifold
(M, 〈 , 〉) and let ∆E be a differential operator acting on sections of E and satisfying
(5.6). Let ξ ∈ H (E) be a ∆E-harmonic section of E. If ξ has a zero of infinite
order at some point p ∈M , then ξ vanishes identically on M .

Proof. Notation is as in Appendix A. By assumption ∆Eξ = 0 so that, according
to (5.6),

∆Bξ +Rξ = 0. (5.7)

where ∆B = −trD2. Let
{
ξA

} ⊂ Γ (E) be a smooth, local orthonormal frame of
E. Writing

ξ =
∑

1≤A≤l

uAξA

and setting
u = (uA) ∈ Rl,

straightforward computations give the local expression of (5.7):

{∆uA + FA (u,∇u)} ξA = 0, (5.8)
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where F = (FA) is a suitable function satisfying

|F (u,∇u)| ≤ A |u|+ B |∇u|

for some constants A, B > 0. Therefore, the local (vector-valued) function u =
(uA) satisfies the assumptions of Theorem A.5, proving that harmonic sections lo-
cally enjoy the unique continuation property. A standard connectedness argument
now completes the proof. Indeed, let

Ω = {x ∈M : ξ = 0 in a neighborhood of x} .

Clearly, Ω is open. Furthermore, Ω 	= ∅ because, according to Theorem A.5, ξ
vanishes in a sufficiently small neighborhood of p. If we show that Ω is closed,
then Ω = M and we are done. But this is obvious because, if x ∈ Ω′ is a limit
point of Ω, then, according to Remark A.3 and the local unique continuation
property, we have ξ = 0 near x, proving that x ∈ Ω. �

From (5.6) we deduce the Bochner-Weitzenböck formula, ∀ξ ∈ H (E),

−1
2
∆ |ξ|2 = 〈∆Bξ, ξ〉 − |Dξ|2 = −〈Rξ, ξ〉 − |Dξ|2

which in turn implies that the differential inequality

|ξ|∆ |ξ| − 〈Rξ, ξ〉 = |Dξ|2 − |∇ |ξ||2 ≥ 0 (5.9)

holds in the sense of distributions. The last inequality in (5.9) is known as (the
first) “ Kato inequality”. We recall for completeness that, in case there exists a
constant k > 0 such that

|Dξ|2 − |∇ |ξ||2 ≥ k |∇ |ξ||2 , (5.10)

one says that a “ refined Kato inequality”holds.
If we let

R− (x) = sup
|ξ|=1

〈−Rξ, ξ〉 ,

then, from (5.9), we obtain

|ξ| (∆ |ξ|+ R− (x) |ξ|) ≥ 0.

and we are naturally led to consider the Schrödinger operator

HL = −∆−HR− (x)

with H > 0 a real number. Accordingly, from Theorem 5.1 we immediately deduce
the following
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Corollary 5.3. Maintaining the notation introduced above, assume that, for some
H ≥ 1,

Ind
(
HL

)
< +∞.

Then,
dimL2pH (E) < +∞

for every 1 ≤ p ≤ H.

As examples of bundles where the above considerations apply, we mention the
space of spinors and of the exterior differential q-forms. In these settings the role
of the operator ∆E is played by the Dirac and the Hodge–De Rham Laplacians,
respectively. Both operators can be written in terms of the rough Laplacian via a
Bochner-type formula. In the spinorial case the endomorphism R is given by the
formula

〈R (x) v, v〉 =
MScal (x)

4
|v|2 , , ∀v ∈ Ex,

where MScal denotes the scalar curvature of M (see [165]). For differential 1-forms
R is given by

〈R (x) v, v〉 = MRic (x) (v, v)

where MRic is the Ricci tensor of M . In the case of differential k-forms on a locally,
conformally flat manifold M of even dimension m = 2k ≥ 4, one has (see [17])

〈R (x) v, v〉 =
k!k MScal (x)

2 (2k − 1)
|v|2 .

The expression of R for the exterior bundle Λq (T ∗M) , q ≥ 2, on a general manifold
is quite complicated but can be estimated in terms of the curvature operator R of
M (the linear extension to Λ2TM of the (2, 2)-Riemann curvature tensor) by (see
[58])

〈R (x) v, v〉 ≥ Cλ (x) |v|2

where C = C(m, q) > 0 is a constant depending on m and q and

λ (x) = min
V ∈Λ2TxM

< Rx(V ), V > .

For future use we record the following particular case of Corollary 5.3.

Corollary 5.4. Let (M, 〈 , 〉) be a complete Riemannian manifold whose Ricci cur-
vature satisfies

Ric ≥ −a(x),

for some non-negative continuous function a(x). Let HL = −∆ − Ha(x), and
assume that, for some H ≥ 1,

Ind
(
HL

)
< +∞.
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Then,
dimL2pH (E) < +∞

for every 1 ≤ p ≤ H.

Remark 5.5. In the special case p = 1, finiteness results have been widely in-
vestigated by many authors under different assumptions. We limit ourselves to
quote [104], [105] by P. Li and J. Wang, where Morse index assumptions are used
in a way similar to ours, and [28] by G. Carron where quantitative-dimensional
estimates are obtained assuming that the underlying manifold supports a global
Sobolev inequality. We note explicitly that Theorem 5.1 on the one hand allows
us to deal with integrability exponents p 	= 1, and, on the other hand, it enables
us to avoid the request that ψ = |ξ| be a solution of the more stringent inequality

ψ∆ψ + a (x)ψ2 ≥ k |∇ψ|2 (5.11)

for some constant k > 0. Often, in geometrical contexts, the validity of (5.11)
depends on a refined Kato inequality. This is the case, for instance, in the Li-
Wang papers cited above. The greater generality we achieve enables us to deal
with the space of harmonic, 2p -integrable q-forms instead of restricting ourselves
to the closed and co-closed ones for which a refined Kato inequality does hold.

5.1 Peter Li’s lemma

The proof of Theorem 5.1 is based on the following version of a classical result
due to Li (see [94] Lemma 11).

Lemma 5.6. Let (E, 〈 , 〉E) be a Riemannian vector bundle of rank l over a compact
Riemannian manifold

(
Ω̄, 〈 , 〉) with (possibly empty) boundary ∂Ω̄. Let L2Γ (E) be

the vector space of continuous sections of E endowed with the L2-scalar product

(ξ1, ξ2) =
∫

Ω̄

〈ξ1, ξ2〉E .

Let T be a vector subspace of L2Γ (E) of positive finite dimension. Then, there
exists a (non-zero) section ξ̄ ∈ T such that, for any p > 0,

(dim T )min{1,p}
∫

Ω̄

∣∣ξ̄∣∣2p

E
≤ min {l, dimT }min{1,p} vol

(
Ω̄
)
sup
Ω̄

∣∣ξ̄∣∣2p

E
. (5.12)

Proof. It suffices to consider the case p = 1. The general case then follows by
noting that, if p > 1, then

dim T

∫
Ω

∣∣ξ̄∣∣2p

E
= dimT

∫
Ω

∣∣ξ̄∣∣2(p−1)

E

∣∣ξ̄∣∣2
E
≤
(

dimT

∫
Ω

∣∣ξ̄∣∣2
E

)
sup
Ω

∣∣ξ̄∣∣2(p−1)

E

≤
{

min {l, dimT }vol (Ω) sup
Ω

∣∣ξ̄∣∣2
E

}
sup
Ω

∣∣ξ̄∣∣2(p−1)

E
.
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On the other hand, if p < 1, we can use Hölder inequality to obtain

dimT

∫
Ω

∣∣ξ̄∣∣2p ≤ dimT

(∫
Ω

∣∣ξ̄∣∣2)p

vol (Ω)1−p

= (dimT )1−p

(
dimT

∫
Ω

∣∣ξ̄∣∣2)p

vol (Ω)1−p

≤ (dimT )1−p

(
vol (Ω) min {l, dimT } sup

Ω

∣∣ξ̄∣∣2)p

vol (Ω)1−p

which implies

(dimT )p
∫

Ω

∣∣ξ̄∣∣2p ≤ vol (Ω)min {l, dimT }p sup
Ω

∣∣ξ̄∣∣2p
.

Thus, let p = 1 and consider the function F (x) : Ω̄ → R defined by

F (x) =
dim T∑
i=1

|fi (x)|2E (5.13)

where {fi (x)} is an orthonormal basis of T ⊂ L2Γ (E). Since T is finite-dimen-
sional, different orthonormal bases in T are related by constant coefficients unitary
matrices, and therefore F is independent of the chosen orthonormal basis. Let
x0 ∈ Ω̄ be the point of absolute maximum of F . Then

dim T =
∫

Ω̄

F (x) dvol (x) ≤ F (x0) vol
(
Ω̄
)
. (5.14)

We shall show that there exists ξ̄ ∈ T such that
(
ξ̄, ξ̄

)
= 1 and

F (x0) ≤ min {l, dimT } sup
Ω̄

∣∣ξ̄∣∣2
E

. (5.15)

Toward this end we consider the evaluation map εx0 : T → Ex0

εx0ξ = ξ (x0) .

Since T is finite-dimensional, εx0 is continuous with norm

sup
(ξ,ξ)=1

|εx0ξ|E =
∣∣εx0 ξ̄

∣∣
E

(5.16)

for some ξ̄ in the unit sphere of T . Note that the kernel S = Ker (εx0) consists of
those sections in T vanishing at x0 and we have the orthogonal decomposition

T = S⊥ ⊕ S
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with dimS⊥ ≤ min {l, dimT }. Let {ξj} be an orthonormal basis of T adapted
to this decomposition, namely, ξ1, . . . , ξdim S⊥ is a basis of S⊥ and ξdim S⊥+1, . . .,
ξdim T is a basis of S. Since F is independent of the choice of {fj}, we have

F (x) =
dim T∑
i=1

|ξi (x)|2E .

Whence, using (5.16), we get

F (x0) =
dim S⊥∑

i=1

|ξi (x0)|2E =
dim S⊥∑

i=1

|εx0ξi|2E ≤ dimS⊥ sup
ξ∈T

(ξ,ξ)=1

|εx0ξ|2E

≤ min {l, dimT } sup
Ω̄

∣∣ξ̄∣∣2
E

proving (5.15). �
In view of Peter Li’s lemma, the strategy of the proof of Theorem 5.1 consists

in showing that there are a geodesic ball BR̄ ⊂ M and a constant C > 0, such
that the following a-priori local estimate holds true:

sup
BR̄

|ξ|2p ≤ C

∫
BR̄

|ξ|2p

for every ξ ∈ V . This is obtained in Lemma 5.17 below combining a local, weak
Harnack inequality for solutions of (5.3), see Theorem 5.16 below, and the annuli-
estimate technique of Li and Wang, [104], [105]. As in the previous section, to
derive this estimate we use a technique based on the interaction of the differential
inequalities (5.3) and (5.4), which is the crucial ingredient to extend the result to
situations where a refined Kato inequality does not hold (see Remark 5.5 above).

The proof of the local weak Harnack inequality is based on the following
idea (see, e.g., [140] pp. 486-487): if we have a local Sobolev inequality, then the
weak Harnack inequality for subsolutions of a suitable class of PDEs is a formal
consequence, via the Moser iteration procedure, of a Caccioppoli-type inequality.
Schematically:

Sobolev + Caccioppoli =⇒
↑

Moser Iteration

Weak Harnack. (5.17)

As we shall see, there is no obstruction against a manifold supporting a
local Sobolev inequality. Therefore our first task will be to obtain a Caccioppoli
inequality.

To obtain the estimate on annuli we will also need a suitable Poincaré in-
equality on annuli valid for functions vanishing only on one boundary component.

We begin by collecting the results we are going to use.



110 Chapter 5. A finite-dimensionality result

5.2 Poincaré-type inequalities

The following result is due to Li and Schoen, see Corollary 1.1 in [95] and Remark
5.10 below. It is a Riemannian version of the classical Lp-Poincaré inequality
(p ≥ 1) for functions with zero boundary conditions. Note that the case p = 2
gives a lower estimate for the first Dirichlet eigenvalue of −∆. The case p = 1 will
be used below to obtain a local Sobolev inequality.

Theorem 5.7. Let R be such that 5R ≤ diam (M) , and B5R (o) is a relatively
compact geodesic ball in (M, 〈 , 〉). Let B ≥ 0 be such that

MRic ≥ − (m− 1)B2 on B5R(o).

Then, for every p ≥ 1,∫
BR(o)

|u|p ≤ Cp

∫
BR(o)

|∇u|p ∀u ∈ C∞
0 (BR (o))

with

Cp =
(

pR exp (2m (1 + BR))
1 + BR

)p

.

Proof. Fix x1 ∈ ∂B2R(o) and let ρ(y) = dist(M,〈 ,〉)(y, x1). By the Laplacian com-
parison theorem, and the assumption on the Ricci curvature, it follows that, on
B3R(o),

∆ρ ≤ (m− 1)B coth(Br) ≤ m− 1
ρ

+ (m− 1)B (5.18)

in the weak sense, that is, for every 0 ≤ φ ∈ C∞
c (B3R(o)),∫

ρ∆φ ≤
∫ [m− 1

ρ
+ (m− 1)B

]
φ.

Letting α > 0 be a constant to be chosen later, we compute

∆e−αρ = αe−αρ(−∆ρ + α) (5.19)

in the weak sense. Since BR(o) ⊂ B3R(x1) \BR(x1), we deduce that

∆e−αρ ≥ αe−αρ
[
α− m− 1

R
− (m− 1)B

]
on BR(o), and choosing

α = m(
1
R

+ B),

we obtain
∆e−αρ ≥ αe−3αR(

1
R

+ B) on BR(o). (5.20)
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Let ψ ∈ C∞
c (BR(o)), ψ ≥ 0 and apply the divergence theorem to obtain∫

BR(o)

ψ∆e−αρ = −
∫

BR(o)

〈∇ψ,∇e−αρ〉,

whence, using (5.20), the Schwarz inequality, and the fact that ρ ≥ R on BR(o),

e−3Rα(
1
R

+ B)
∫

BR(o)

ψ ≤
∫

BR(o)

|∇ψ|e−αρ ≤
∫

BR(o)

|∇ψ|e−αR

and rearranging ∫
BR(o)

ψ ≤ R

1 + BR
e2αR

∫
BR(o)

|∇ψ|.

Now let u ∈ C∞
c (BR(o)). Applying Kato’s and Hölder’s inequality, and inserting

the value of α we get∫
BR(o)

|u|p ≤ R

1 + BR
e2m(1+BR)

∫
BR(o)

|∇(|u|p)|

=
R

1 + BR
e2m(1+BR)

∫
BR(o)

p|u|p−1|∇|u||

≤ pR

1 + BR
e2m(1+BR)

∫
BR(o)

|u|p−1|∇u|

≤ pR

1 + BR
e2m(1+BR)

{∫
BR(o)

|u|p
}1−1/p{∫

BR(o)

|∇u|p
}1/p

,

and the required conclusion follows by simplifying. �
There are several variants of this result, each requiring some special condition

on the family of functions under consideration. For instance, one can replace the
zero-boundary condition with the zero-mean value condition, namely each function
u has to satisfy

∫
B u = 0. The corresponding inequality is usually known under the

name of Neumann–Poincaré and it yields a lower bound for the first (non-zero)
Neumann eigenvalue.

We shall employ a version of the Poincaré inequality on annuli valid for func-
tions vanishing only on one of the boundary components. We state it in the form
we will need. In a Euclidean setting, due to the special structure of the manifold,
different techniques have been used by L. Hedberg, to obtain more general and re-
fined statements of these type of inequalities , see Lemma 2.1 in [81] and Theorem
4.1 in [82].

Theorem 5.8. Let BR̄ (o) be a relatively compact geodesic ball in the Riemannian
manifold (M, 〈 , 〉). Assume that

Ric ≥ − (m− 1)B2 on BR̄ (o)
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for some B > 0. Fix p > 1 and 0 < R1 < R2 < R̄, then for every u ∈
C0

(
BR2 \BR1

)
∩W 1,p (BR2 \BR1) such that

u = 0 on ∂BR1

we have ∫
BR2\BR1

|u|p ≤ Cp

∫
BR2\BR1

|∇u|p

with

C = p (R2 −R1)
(

sinh (BR2)
sinh (BR1)

)(m−1)

.

The proof of the theorem is based on the next lemma. For the sake of com-
pleteness we recall that, for any p > 1, the p-Laplacian of a function u ∈ W 1,p

loc is
defined by the expression

∆pu = div
(
|∇u|p−2∇u

)
where the divergence is understood in the weak sense.

Lemma 5.9. Let A = Ω2 \ Ω1 ⊂ (M, 〈 , 〉) be an annular domain with compact
boundary ∂Ω1 ∪ ∂Ω2. Let p > 1 and 0 ≤ φ ∈ Lip

(
Ā
)

be a non-zero solution of the
problem {

∆pφ ≥ 0 weakly on A,

φ = 0 on ∂Ω2.
(5.21)

Suppose also that
|∇φ| > 0 on Ā. (5.22)

Then, there exists an explicit constant

C =
infĀ |∇φ|p
pp supĀ |φ|p

> 0

such that

C

∫
A

|u|p ≤
∫

A

|∇u|p (5.23)

for every u ∈ C0
(
A
) ∩W 1,p (A) satisfying

u = 0 on ∂Ω1. (5.24)

Proof. By assumption,

−
∫ 〈

|∇φ|p−2∇φ,∇ρ
〉
≥ 0, (5.25)
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for every 0 ≤ ρ ∈ C∞
0 (A). As a matter of fact, since φ ∈ Lip

(
Ā
) ⊂ W 1,p (A) , we

have the validity of (5.25) for every 0 ≤ ρ ∈W 1,p
0 (A) . Note that φ |u|p ∈W 1,p

0 (A).
Indeed φ |u|p lies in W 1,p (A) and vanishes continuously on ∂A. Therefore, we can
choose ρ = φ |u|p in (5.25). Using Schwarz and Hölder inequalities we get

0 ≤ −
∫ 〈

|∇φ|p−2∇φ,∇ (φ |u|p)
〉

(5.26)

= −
∫
|∇φ|p |u|p −

∫
p |u|p−1 φ |∇φ|p−2 〈∇φ,∇|u|〉

≤ −
∫
|∇φ|p |u|p + p

∫
φ |u|p−1 |∇ |u|| |∇φ|p−1

≤ −
∫
|u|p |∇φ|p + p

(∫
|φ|p |∇u|p

)1/p (∫
|u|p |∇φ|p

)(p−1)/p

proving the Caccioppoli-type inequality∫
|u|p |∇φ|p ≤ pp

∫
|φ|p |∇u|p , (5.27)

which, recalling the properties of φ, easily yields (5.23). �
Proof of Theorem 5.8. We simply have to choose the test function φ in Lemma
5.9. One observes that, in case of model manifolds, the p-equilibrium potential of
the condenser E =

(
BR2 , BR1

)
is suitable for the purpose. The general case can

be obtained by a model-comparison argument as follows.
Set r (x) = distM (x, o) and define φ(x) = α(r(x)) where

α (r) = c

∫ R2

r

dt[
B−1 sinh (Bt)

]m−1
p−1

with

c =

⎛⎝∫ R2

R1

dt[
B−1 sinh (Bt)

]m−1
p−1

⎞⎠−1

.

Then φ ≥ 0, φ = 0 on ∂BR2 , φ = 1 on ∂BR1 and

|∇φ(x)| = c[B−1 sinh (r (x))]
1−m
p−1 > 0 on BR2 \BR1 .

Moreover , since α′ ≤ 0, using the Laplacian comparison theorem, we obtain,
pointwise in the complement of cut (o),

∆pφ = (p− 1)(−α′)p−2α′′ − (−α′)p−1∆r(x)

≥ (p− 1)(−α′)p−2α′′ − (−α′)p−1(m− 1) coth r(x) = 0.

As usual, this latter extends weakly on all of the annulus. Therefore, Lemma 5.9
applies to obtain the desired inequality. �
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Remark 5.10. Obviously, Theorem 5.8 implies the validity of Theorem 5.7 for
p > 1. Indeed, having fixed a geodesic ball Br (o), we can choose an annular
domain BR2 (z) \BR1 (z) such that

Br (o) ⊂ BR2 (z) \BR1 (z) .

Since every u ∈ C∞
0 (Br (o)) satisfies u = 0 on the interior boundary component

∂BR1 (z), Theorem 5.8 applies and the asserted result follows. We point out that
the corresponding Poincaré constant is different from that of Lemma 5.9, but
this is irrelevant in local applications. Similarly, this yields the result for annular
regions Ω2 \ Ω1. Finally, we remark that Theorem 5.8 could be established using
computations in polar coordinates.

5.3 Local Sobolev inequality

It is well known that for m ≥ 2, the standard Euclidean space (Rm, can) enjoys
the L1-Sobolev inequality

S−1
1

(∫
|v| m

m−1

)m−1
m

≤
∫
|∇v| (5.28)

for every v ∈ C∞
0 (Rm), where

S−1 = mω1/m
m

with ωm the volume of the unit ball of Rm. The situation may change drastically
if we consider a general complete Riemannian manifold. This depends on the
isoperimetric properties of the manifold. In fact, a classical result by Federer and
Fleming asserts that (5.28) is equivalent to

S−1
1 vol (Ω)

m−1
m ≤ vol (∂Ω)

for every relatively compact domain Ω with smooth boundary. In particular, in-
tegrating the above inequality yields a uniform lower bound for the volumes of
geodesic balls of prescribed radius, namely

inf
x∈M

volBr (x) ≥ S−1
1 rm > 0,

and the underlying manifold has at least Euclidean volume growth.
Note however that obstructions of these types have a global nature, and in-

deed, locally, the usual Euclidean Sobolev inequality is valid on every Riemannian
manifold.

Theorem 5.11. Let B2R (o) be a relatively compact geodesic ball in the Riemannian
manifold (M, 〈 , 〉) of dimension m = dimM ≥ 2. Assume that 2R ≤ diam (M).
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Then, for each domain Ω ⊂⊂ BR (o) there exists a constant S1 = S1 (Ω, m) > 0
such that the L1-Sobolev inequality

S−1
1

(∫
|v| m

m−1

)m−1
m

≤
∫
|∇v| (5.29)

holds for every v ∈ C∞
0 (Ω).

In particular, the Sobolev inequalities

S−1
2

(∫
v

mq
m−1

)m−1
mq

≤
{∫

|∇v|2
}1/2

, ∀v ∈ C∞
0 (Ω) (5.30)

hold for any choice of

q ∈
⎧⎨⎩

[
1, 2(m−1)

m−2

]
if m ≥ 3,

[1, +∞) if m = 2,
(5.31)

and for some appropriate constant S2 = S2 (Ω, m, q) > 0.

Proof of Theorem 5.11. We supply a proof for the sake of completeness. Note, first
of all, that (5.30) follows applying (5.29) to the function

v = |u|q

for every u ∈ C∞
0 (Ω). Indeed, assume that q > 1 satisfies (5.31). Then,

S−1
1

(∫
|u| mq

m−1

)m−1
m

≤ q

∫
|u|q−1 |∇u| ,

whence, applying Hölder inequality with conjugate exponents

mq

(m− 1) (q − 1)
,

mq

m + q − 1
,

and simplifying we obtain

S−1
1

(∫
|u| mq

m−1

)m−1
mq

≤ q

(∫
|∇u| mq

m+q−1

)m+q−1
mq

.

Set

p =
2 (m + q − 1)

mq
,

and note that p ≥ 1 by the assumptions on q. If p = 1 the above inequality is
(5.30) and we are done. Otherwise, the desired conclusion is obtained by applying
Hölder inequality with exponents p and p/(p− 1) to the right-hand side.



116 Chapter 5. A finite-dimensionality result

We now come to the proof of (5.29). For each x̄ ∈ Ω there exists a small
geodesic ball Bε (x̄) ⊂⊂ BR (o) such that, within Bε (x̄), the metric 〈 , 〉 is quasi
Euclidean, i.e., there exists a positive constant C > 0 such that

C−1canRm ≤ 〈 , 〉 ≤ C canRm

in the sense of quadratic forms. As a consequence both the length of the gradient,
and the Riemannian volume element are controlled from above and below by their
Euclidean counterparts, i.e.,

C−1
1 |Rm∇v|Rm ≤ |∇v| ≤ C1|Rm∇v|Rm

and,

C−1
2 dvolRm ≤ dvol ≤ C2dvolRm ,

for appropriate constants C1, C2 > 0, and it follows that (5.29) holds on Bε (x̄) for
some choice of S1 (Bε (x̄)) > 0. To conclude, using Theorem 5.7 and a standard
partition of unity argument, we paste these inequalities together. Let

{
Bεj

}n

j=1

be a finite covering of the compact Ω̄ by small geodesic balls contained in BR (o).
The L1-Sobolev constant relative to Bεj is denoted by Sj

1. Choose a partition of
unitity {ϕj}n

j=1 subordinated to this covering and satisfying supp(ϕj) ⊂ Bεj .
Let v ∈ C∞

0 (Ω). Then

(∫
Ω

|v| m
m−1

)m−1
m

=
(∫

Ω

|∑ϕjv|
m

m−1

)m−1
m

≤∑(∫
Ω

|ϕjv|
m

m−1

)m−1
m

(Sobolev on Bεj )

≤∑
Sj

1

∫
|∇ (ϕjv)|

≤∑
Sj

1

{∫
Ω

ϕj |∇v|+
∫

Ω

|v| |∇ϕj |
}

≤∑
Sj

1

{∫
Ω

|∇v|+ max
Ω̄
|∇ϕj |

∫
Ω

|v|
}

(Poincaré)

≤ S1

∫
Ω

|∇v|

where we have set

S1 =
∑

Sj
1

(
1 + C3 max

Ω̄
|∇ϕj |

)
with C3 > 0 the Poincaré constant of Theorem 5.7. �
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5.4 L2 Caccioppoli-type inequality

It is well known that if v is a non-negative subharmonic function v on a domain
Ω ⊂⊂ M , then there exists an absolute constant C > 0, such that, for every
η ∈ C∞

0 (Ω),

C

∫
Ω

|∇v|2 η2 ≤
∫

Ω

v2 |∇η|2 . (5.32)

Indeed, in the proof of Lemma 5.9 we showed that (5.32) holds with C = 1/4. This
integral inequality is usually referred to as the Caccioppoli inequality for subhar-
monic functions on Ω. The exponent 2 entering in the gradient terms is intimately
related with the structure of the Laplace operator. This is well understood if we
consider, for instance, the p-Laplacian or other divergence-form non-linear opera-
tors modelled on the p-Laplacian; see [140]. Generalizing the above situation, we
say that an Lµ-Caccioppoli-type inequality is valid if

C

∫
Ω

ηµvq |∇v|µ ≤
∫

Ω

vq+µ |∇η|µ (5.33)

holds with q ≥ 0 and µ > 1. We shall come back to (5.33) in the next section.
Here, we limit ourselves to proving the following simple variant of (5.32).

Lemma 5.12. Let (M, 〈 , 〉) be a Riemannian manifold and let Ω be a relatively com-
pact domain in M . Let 0 < w ∈ C0

(
Ω̄
)

and v ∈ Liploc (Ω) satisfy the differential
inequality

vdiv (w∇v) ≥ 0 (5.34)

weakly on Ω. Then, for any fixed q ≥ 0,

Dq

∫
Ω

w|v|q |∇v|2 η2 ≤
∫

Ω

w|v|q+2 |∇η|2 ∀η ∈ C∞
0 (Ω) , (5.35)

where

Dq =
(1 + q)2

4
.

Proof. Inequality (5.34) means that, for each 0 ≤ ρ ∈ Lip0 (Ω) ,

−
∫
〈w∇v,∇ (vρ)〉 = −

∫
wρ |∇v|2 −

∫
wv 〈∇v,∇ρ〉 ≥ 0.

We choose
ρ = (v2 + δ)q/2η2

with η ∈ C∞
0 (Ω), and use the Schwarz and the Young inequality to obtain

0 ≥
∫

w(v2 + δ)q/2η2
(
1 +

qv2

v2 + δ

) |∇v|2 −
∫

2w(v2 + δ)q/2|v||η||∇v||∇η|

=
∫

w(v2 + δ)q/2η2
(
1 +

qv2

v2 + δ
− ε

) |∇v|2 − 1
ε

∫
w(v2 + δ)q/2v2|∇η|2.
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Letting δ → 0, and using the dominated convergence theorem, we deduce that

ε(1 + q − ε)
∫

w|v|qη2|∇v|2 ≤
∫

w|v|q+2v2|∇η|2,

and the conclusion follows by optimizing with respect to ε ∈ (0, q + 1]. �

5.5 The Moser iteration procedure

The Moser iteration is a by now standard procedure that enables one to get an
L∞-Lq inequality starting from an Lp-Lq one. The process is explained in the next

Lemma 5.13. Let γ, µ > 1 and R > 0 be fixed real numbers. Suppose that v is a
non-negative locally bounded function such that, for every 0 < r1 < r2 ≤ Ro and
for every q ≥ 1, the integral inequality

‖vq‖Lµγ(Br1) ≤
C

r2 − r1
‖vq‖Lµ(Br2) (5.36)

holds for some constant C = C (Ro, µ) > 0. Then, having fixed q0 > 0, and
0 < R̄ < R ≤ Ro, the following Lµ-weak Harnack inequality holds:

‖vq0‖L∞(BR̄) ≤
(

C′

R− R̄

) γ
γ−1

‖vq0‖Lµ(BR) . (5.37)

Proof. We fix q0 ≥ 1, 0 < R̄ < R <≤ Ro and, for every j = 0, 1, 2, . . . , we set

qj = q0γ
j ; Rj = R̄ +

(
R− R̄

)
2−j.

An application of (5.36) with q = qj , r2 = Rj and r1 = Rj+1 gives∥∥∥vq0γj
∥∥∥

Lµγ(BRj+1)
≤ 2j+1C(

R− R̄
) ∥∥∥vq0γj

∥∥∥
Lµ(BRj )

which, in turn, can be written in the form

‖vq0‖Lµγj+1(BRj+1) ≤
{

2j+1C(
R− R̄

)}γ−j

‖vq0‖Lµγj (BRj ) . (5.38)

Iterating (5.38) n-times and noting that {Rn} ↘ R̄ we deduce

‖vq0‖Lµγn+1(BR̄) ≤ ‖vq0‖Lµγn+1(BRn+1)

≤
n∏

j=0

{
2j+1C(
R− R̄

)}γ−j

‖vq0‖Lµ(BR)

= 2
∑n

j=0
j+1
γj

{
C(

R− R̄
)}

∑n
j=0 γ−j

‖vq0‖Lµ(BR) .
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The validity of (5.37) with q0 ≥ 1 follows letting n → +∞, and recalling that for
a space X of finite measure and for any f ∈ L∞ (X),

‖f‖Lp(X) → ‖f‖L∞(X) as p→ +∞.

At this point one uses a standard argument (see, e.g., [95]) to prove that (5.36)
holds for every q0 > 0. We outline the argument for completeness. Clearly it
suffices to consider the case q0 < 1.

W use the above result to conclude that for every 0 < R ≤ Ro, and ε, θ > 0
such that ε + θ ≤ 1 we have

sup
BθR

v ≤
(C′

εR

) γ
γ−1

∫
B(θ+ε)R

v

≤
(C′

εR

) γ
γ−1 [

sup
B(θ+ε)R

v
]1−q0

∫
BR

vq0 .

Setting M(θ) = supBθr
v we rewrite the last inequality in the form

M(θ) ≤
(C′

εR

) γ
γ−1

M(θ + ε)λ

∫
BR

vq0 ,

where λ = 1− q0. Setting θ0 = 1− τ , 0 < τ < 1, θi = θi−1 + 2−iτ and εi = 2−iτ,
we get

M(θi−1) ≤
( C′

2−iτR

) γ
γ−1

M(θi)λ

∫
BR

vq0 ,

whence, iterating,

M(θ0) ≤
{( C′

τR

) γ
γ−1

}∑n−1
i=0 λi

× 2
γ

γ−1
∑n−1

i=0 (i+1)λi

M(θn)λn
(∫

BR

vq0

)∑n−1
i=0 λi

.

Letting n → +∞, and noting that

θn = θ0 + τ

n∑
1

2−i → 1, λn → 0

and ∞∑
0

λi =
1

1− λ
= 1/q0

∞∑
0

(i + 1)λi =
d

dλ

∞∑
0

λi = (1/q0)2,

we conclude that

M(1− τ) ≤
(21/q0C′

τR

) γ
(γ−1)q0

(∫
BR

vq0

)1/q0

,

that is, letting R̄ = (1− τ)R, recalling the definition of M(θ),

sup
BR̄

vq0 ≤
(21/q0C′

R− R̄

) γ
(γ−1)

∫
BR

vq0

as required to conclude the proof. �
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Obviously, a natural problem is now to understand when an integral inequal-
ity like that in (5.36) is satisfied. This is addressed in the next

Lemma 5.14. Let µ, γ > 1 and R > 0 be fixed real numbers. Assume that the
Lµ-Sobolev inequality

S−1 ‖η‖Lµγ(BR) ≤ ‖∇η‖Lµ(BR) (5.39)

holds for all η ∈ C∞
0 (BR) and for some constant S = S (R, γ, µ) > 0. Let v ≥ 0

be a locally Lipschitz function for which for every q̃ > 0 the Lµ-Caccioppoli-type
inequality∫

BR

vq̃ηµ |∇v|µ ≤ Cµ

(q̃ + 1)µ

∫
BR

vq̃+µ |∇η|µ , ∀η ∈ C∞
0 (BR) (5.40)

is valid for some constant C = C (R, µ) > 0 independent of q̃. Then for every
q ≥ 1 and for every 0 < r1 < r2 ≤ R, we have

‖vq‖Lµγ(Br1) ≤
2S(1 + C)

r2 − r1
‖vq‖Lµ(Br2) . (5.41)

Proof. By density, the Sobolev inequality (5.39) holds for every function in W 1,µ
0 .

Fix 0 < r1 < r2 ≤ R and let η = ηr1,r2 ∈ C∞ (M) be a cut-off function satisfying

(i) 0 ≤ η ≤ 1, (ii) η ≡ 0 on M \Br2 , (iii) η ≡ 1 on Br1 , (iv) |∇η| ≤ 2
r2 − r1

.

Assume first that q > 1. We set q̃ = q − 1 and estimate

‖vq‖Lµγ(Br1) ≤
∥∥ηvq̃+1

∥∥
Lµγ(Br2)

(Sobolev)

≤ S
∥∥∇ (

ηvq̃+1
)∥∥

Lµ(Br2)

= S
∥∥vq̃+1∇η + (q̃ + 1) ηvq̃∇v

∥∥
Lµ(Br2)

(Minkowski)

≤ S
∥∥vq̃+1∇η

∥∥
Lµ(Br2)

+ S(q̃ + 1)
∥∥ηvq̃∇v

∥∥
Lµ(Br2)

(Caccioppoli)

≤ S
∥∥vq̃+1∇η

∥∥
Lµ(Br2)

+ SC
q̃ + 1
µq̃ + 1

∥∥vq̃+1∇η
∥∥

Lµ(Br2)

≤ 2S (1 + C)
r2 − r1

‖vq‖Lµ(Br2)

as required. The case q = 1 follows by dominated convergence. �

As an application of the previous results we deduce the validity of an Lq-weak
Harnack inequality for weak solutions v of v div (w∇v) ≥ 0.
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Proposition 5.15. Let BR be a relatively compact geodesic ball in the Riemannian
manifold (M, 〈 , 〉) of dimension m ≥ 2. Let also 0 < w ∈ C0

(
B̄R

)
. Having fixed

0 < R̄ < R and q ≥ 1, there exists a constant C = C (R, q, w) > 0 such that

sup
BR̄

|v|2q ≤ C

∫
BR

|v|2q

for every v ∈ Liploc (BR) satisfying the differential inequality

v div (w∇v) ≥ 0

weakly on BR.

Proof. As noted in in Theorem 5.11 above, a local L2-Sobolev inequality is always
satisfied. On the other hand, by Lemma 5.12 and Kato’s inequality

∣∣∇|v|∣∣ ≤ |∇v|,
the function |v| satisfies an L2-Caccioppoli inequality. Therefore, according to
Lemma 5.14, we can apply the Moser iteration procedure of Lemma 5.13 with
qo = q to obtain the desired conclusion. �

5.6 A weak Harnack inequality

In this section we prove an Lp-version of the Harnack inequality for (weak) solu-
tions of differential inequalities of the type

u∆u + a (x) u2 + A |∇u|2 ≥ 0. (5.42)

Theorem 5.16. Let BR+1 (o) be a relatively compact geodesic ball in a Riemannian
manifold (M, 〈 , 〉) of dimension m ≥ 2 and let

a ∈ C0 (BR+2 (o)) , A ∈ R, and p ≥ A + 1, p > 0. (5.43)

Then, there exists a constant C > 0 depending on the above data and the geometry
of BR+1 (o), such that

sup
BR(o)

u2p ≤ C

∫
BR+1(o)

u2p (5.44)

for every locally Lipschitz, weak solution u of (5.42).

Proof. We shall show that, for every x ∈ B̄R (o), there exists ε > 0 and a constant
C′ > 0 independent of u such that

sup
Bε(x)

|u|2p ≤ C′
∫

B2ε(x)

|u|2p. (5.45)

Since B̄R (o) is compact, the desired inequality will follow from (5.45) using a
covering argument.
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Let us consider the Schrödinger operator

L = −∆− pa (x)

on L2 (B3ε (x)) . Since the first Dirichlet eigenvalue of −∆ on Br (x) grows like
r−2 as r → 0+, we can choose ε > 0 so small that

λ1(LB3ε(x)) > 0.

Let w be the corresponding, positive, first eigenfunction, i.e., a solution of the
eigenvalue problem⎧⎨⎩

∆w + pa (x)w = −λ1(LB3ε(x))w ≤ 0 on B3ε (x) ,
w > 0 on B3ε (x) ,
w ≡ 0 on ∂B3ε (x) .

(5.46)

The regularity theory for elliptic equations implies that w ∈ C1 (B3ε (x)). Com-
bining u and w, we define a new function

v = w−1|u|p−1u.

According to the first part of the proof of Theorem 4.5 (with H = p, β = p − 1
and α = 1) the function v satisfies the differential inequality

vdiv
(
w2∇v

) ≥ 0

weakly on B3ε (x). Therefore Proposition 5.15 applies with q = 1 and gives

sup
Bε(x)

|v|2 ≤ C

∫
B2ε(x)

|v|2,

for some constant C > 0 depending on w|B̄2ε(x) and the geometry of B2ε (x) . Thus
(5.45) holds with

C′ =
(

supB2ε
w

infBε w

)2

C.

�

5.7 Proof of the abstract finiteness theorem

The weak Harnack inequality of Theorem 5.16 differs from the estimate

sup
BR(x)

|ξ|2p ≤ C

∫
BR(x)

|ξ|2p (5.47)
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needed to apply Li’s Lemma in that on both sides of (5.47) there is the same ball
BR (x). Accordingly, one is led to search for an integral, a-priori estimate on annuli
of the type ∫

BR+1(x)\BR(x)

|ξ|2p ≤ C′
∫

BR(x)

|ξ|2p.

This is the core of the proof. Very recently, [104] and [105], Peter Li and J. Wang
have developed a technique to solve the problem in the L2-setting. We point out
that the L2 assumption is crucial for their argument to work in that they need
the presence of a refined Kato inequality (see Remark 5.5 above). However L2p-
harmonic forms, in general, do not have this property. We are able to circumvent
the problem, using once again the reduction procedure which is based on a com-
bination of the two basic differential inequalities (5.3) and (5.4) in a new one of
the type vdiv (w∇v) ≥ 0.

Lemma 5.17. Keeping notation and assumptions of Theorem 5.1, having fixed an
origin o ∈M , there exist R̄ > 0 and a constant C > 0 depending on p, H and the
geometry of BR̄ (o) such that

sup
BR̄(o)

|ξ|2p ≤ C

∫
BR̄(o)

|ξ|2p (5.48)

for ξ ∈ V .

Proof. From now on, we assume that all the geodesic balls under consideration
are centered at the point o ∈M and so, to simplify the notation, we omit it from
the writing.

We set u = |ξ| and choose R0 > 0 so large that K ⊂ BR0 . We shall show
that (5.48) is met with R̄ = R0 +1. To this end, let us note that by Theorem 5.16
there exists a constant D > 0 independent of u such that

sup
BR0+1

u2p ≤ D

∫
BR0+2

u2p = D

(∫
BR0+2\BR0+1

+
∫

BR0+1

)
u2p.

The goal is to prove that∫
BR0+2\BR0+1

u2p ≤ E

∫
BR0+1

u2p (5.49)

for some constant E > 0 independent of u. We set

α =
p

H

and consider the function

v = ϕ−αup on M \BR0 .

As above, the first part of the proof of Theorem 4.5 shows that

vdiv
(
ϕ2α∇v

) ≥ 0 (5.50)
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weakly on M \BR0 Moreover, since∫
BR0+2\BR0+1

u2p =
∫

BR0+2\BR0+1

ϕ2α
(
ϕ−αup

)2
≤
(

sup
BR0+2\BR0+1

ϕ2α

)∫
BR0+2\BR0+1

v2

the desired inequality (5.49) will follow once we prove∫
BR0+2\BR0+1

v2 ≤ E

∫
BR0+1

u2p. (5.51)

Towards this end, we fix a sequence {Rk} ↗ +∞, and we consider the family of
compactly supported, Lipschitz functions {φk} defined by

φk (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 on BR0 ,
r (x)−R0 on BR0+1 \BR0 ,
1 on BR0+2 \BR0+1,
Rk − r (x)

Rk −R0 − 2
on BRk

\BR0+2,

0 on M \BRk
.

Furthermore, we set

φ∞ =

⎧⎨⎩
0 on BR0 ,
r (x)−R0 on BR0+1 −BR0 ,
1 on M −BR0+1 .

According to (5.50) we can apply Lemma 5.12 with q = 0 to obtain

D0

∫
BR0+2\BR0

φ2
∞ |∇v|2

≤ D0 sup
BR0+2\BR0

ϕ−2α

∫
BR0+2\BR0

ϕ2αφ2
∞ |∇v|2

≤ D0 sup
BR0+2\BR0

ϕ−2α

∫
M\BR0

ϕ2αφ2
k |∇v|2

≤ sup
BR0+2\BR0

ϕ−2α

∫
M\BR0

ϕ2αv2 |∇φk|2

≤ sup
BR0+2\BR0

ϕ−2α

{∫
BR0+1\BR0

ϕ2αv2 +
∫

BRk
\BR0+2

ϕ2αv2 |∇φk|2
}

≤ sup
BR0+2\BR0

ϕ−2α

{∫
BR0+1\BR0

u2p + 1
(Rk−R0−2)2

∫
BRk\BR0

u2p

}
.
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Letting k → +∞ we deduce∫
BR0+2\BR0

φ2
∞ |∇v|2 ≤ D̃

∫
BR0+1\BR0

u2p (5.52)

where we have set
D̃ =

1
D0 supBR0+2\BR0

ϕ−2α
> 0.

On the other hand, Theorem 5.8 above implies that there exists a constant C1 >
0 depending on the geometry of BR0+2 such that the following Poincaré-type
inequality holds:

C1

∫
BR0+2\BR0

f2 ≤
∫

BR0+2\BR0

|∇f |2

for every f ∈ H1 (BR0+2) with
f |B̄R0

= 0.

Applying this inequality to the function φ∞v, and using the Schwarz and Young
inequalities, we get

C1

∫
BR0+2\BR0

φ2
∞v2

≤
∫

BR0+2\BR0

|∇ (φ∞v)|2

=
∫

BR0+2\BR0

φ2
∞ |∇v|2 + v2 |∇φ∞|2 + 2vφ 〈∇v,∇φ∞〉

≤
∫

BR0+2\BR0

{
2φ2

∞ |∇u|2 + 2v2 |∇φ∞|2
}

≤ 2
∫

BR0+2\BR0

φ2
∞ |∇v|2 + 2

∫
BR0+1\BR0

v2

≤ 2
∫

BR0+2\BR0

φ2
∞ |∇v|2 + 2 sup

BR0+1\BR0

ϕ−2α

∫
BR0+1\BR0

u2p,

whence, using (5.52), we conclude that

C1

∫
BR0+2\BR0+1

v2 ≤ C1

∫
BR0+2\BR0

φ2
∞v2

≤ 2

(
D̃ + sup

BR0+1\BR0

ϕ−2α

)∫
BR0+1\BR0

u2p

≤ 2

(
D̃ + sup

BR0+1\BR0

ϕ−2α

)∫
BR0+1

u2p,

as required to prove (5.51). �
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We are now in a position to conclude the proof of Theorem 5.1.

Proof of Theorem 5.1. Let BR̄ ⊂ M and C > 0 be as in Lemma 5.17. From the
unique continuation property we have that the restriction map

ξ �−→ ξ|BR̄

defines an injective homomorphism of V into L2Γ (E|BR̄), the space of continuous
sections of E on BR̄ endowed with the L2-inner product.

Let T be any finite-dimensional subspace of V. We have to prove that t =
dimT is bounded from above by an absolute constant. To this end we apply Peter
Li’s lemma to deduce that there exists ξ̄ ∈ T such that

t

∫
BR̄

∣∣ξ̄∣∣2p ≤ vol (BR̄)min {l, t} sup
BR̄

∣∣ξ̄∣∣2p
.

On the other hand, using u =
∣∣ξ̄∣∣ in (5.48) of Lemma 5.17, we see that

sup
BR̄

∣∣ξ̄∣∣2p ≤ C

∫
BR̄

∣∣ξ̄∣∣2p
.

As a consequence
t ≤ vol (BR̄) min {l, t}C

which in turn implies

t = dimT ≤ l max {Cvol (BR̄) , 1} . �



Chapter 6

Applications to harmonic maps

In this section we show the usefulness of Theorem 4.5 by deriving a number of
results on harmonic maps. We begin by establishing a Liouville-type theorem which
compares with classical work by Schoen and Yau, [146]. Direct inspection shows
that our result, emphasizing the role of a suitable Schrödinger operator related
to the Ricci curvature of the domain manifold, unifies in a single statement the
situations considered in [146]; see Remark 6.22 below. We also give a version of
this result in case the domain manifold is Kähler and see how this allows weaker
integrability conditions on the energy density of the map. From this, we derive a
number of geometric conclusions. We then provide a sharp upper estimate on the
growth of the energy of a harmonic map. We close the section with a Schwarz-type
lemma for harmonic maps with bounded dilation, and some applications to the
fundamental group which extend results by Schoen and Yau and Lemaire ([93]).

6.1 Harmonic maps of finite Lp-energy

6.1.1 A vanishing theorem

In [146], using harmonic maps techniques, Schoen and Yau studied the fundamen-
tal group of a manifold of non-negative Ricci curvature and of a stable minimal
hypersurface immersed into non-positively curved ambient spaces. Basic tools in
their investigation are represented by vanishing-type theorems for finite-energy
harmonic maps. This section aims to unify and extend their results in the follow-
ing

Theorem 6.1. Let (M, 〈 , 〉) be a complete manifold whose Ricci tensor satisfies

MRic ≥ −ρ (x) , on M (6.1)

for some continuous function ρ (x). Having fixed H > m−2
m−1 , set HL = −∆−Hρ (x)

and assume that
λ1(HLM ) ≥ 0. (6.2)

Let (N, ( , )) be a manifold of non-positive sectional curvature NRiem ≤ 0. Then,
any harmonic map f : M → N with energy density satisfying

|df |2 ∈ Lγ (M) (6.3)

for some m−2
m−1 ≤ γ ≤ H, is constant.
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Proof. We recall the Weitzenböck–Bochner formula of Theorem 1.2:

1
2
∆ |df |2 = |Ddf |2 +

∑
i

(
df

(
MRic (ei, ·)#

)
, df (ei)

)
(6.4)

−
∑
i,j

(
NRiem (df (ei) , df (ej)) df (ej) , df (ei)

)
.

The curvature assumptions imply that

∆ |df |2 ≥ 2 |Ddf |2 − 2ρ (x) |df |2 on M.

Therefore, the non-negative function u = |df | ∈ Liploc (M) satisfies

u∆u + ρ (x) u2 ≥ |Ddf |2 − |du|2 ,

pointwise on the open set

Ω = {x ∈ M : u (x) 	= 0}
and weakly on all of M. Whence, recalling the refined Kato inequality

|Ddf |2 − |d |df ||2 ≥ 1
m− 1

|d |df ||2

of Proposition 1.3 above, we see that u satisfies

u∆u + ρ (x)u2 ≥ 1
(m− 1)

|du|2

weakly on M . Moreover, the condition u ∈ L2γ (M) implies

1∫
∂Br

u2γ
	∈ L1 (+∞) .

On the other hand, since λ1(LM ) ≥ 0, there exists a positive function ϕ ∈ C1 (M)
satisfying

∆ϕ + Hρ (x) ϕ = 0. (6.5)

Applying Theorem 4.5, case (i), with the choices A = −1/ (m− 1) , β = γ − 1
we conclude that u and ϕ are non-negative constants. Suppose by contradiction
that u ≡ c > 0. Then, the integrability condition (6.3) forces vol (M) < +∞.
On the other hand, since ϕ is constant, (6.5) forces ρ (x) ≡ 0, that is, M has
non-negative Ricci curvature. In particular vol (M) = +∞ which gives the desired
contradiction. �

We now show how Theorem 6.1 improves in the case of pluriharmonic maps
defined on a Kähler manifold by enlarging the range of admissible γ’s. The im-
provement relies on the Weitzenböck–Bochner formula for pluriharmonic maps.
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Theorem 6.2. Let (M, 〈 , 〉 , JM ) be a complete Kähler manifold with Ricci tensor
satisfying (6.1), and assume that (6.2) holds for H > 0. Let (N, (, )) be a Rieman-
nian manifold with non-positive Hermitian curvature. Then any pluriharmonic
map f : M → N with energy density satisfying (6.3) with 0 < γ ≤ H, is constant.

Proof. We set u = |df | . Since N has non-positive Hermitian curvature, and the
Ricci tensor of M satisfies (6.1), an application of Corollary 1.25 shows that u
satisfies the differential inequality

u∆u + ρ+ (x)u2 ≥ |∇u|2 (6.6)

pointwise on Ω = {x ∈ M : u (x) 	= 0} and weakly on all of M . To complete the
proof we apply Theorem 4.5 with A = −1 and β = γ − 1. �

Corollary 6.3. Let (M, 〈 , 〉 , JM ) be a complete Kähler manifold with Ricci tensor
satisfying (6.1) and assume that (6.2) holds for H > 0. Let (N, ( , )) be a Rieman-
nian, locally symmetric space whose irreducible local factors are all of non-compact
or Euclidean type. Then any pluriharmonic map f : M → N with energy density
satisfying (6.3) with 0 < γ ≤ H, is constant.

Proof. Indeed, by Theorem 1.19, (N, ( , )) has non-positive Hermitian curvature.
�

Remark 6.4. The same conclusion holds if M is as above, and f : M → N is
a holomorphic map into a Hermitian manifold N with non-positive holomorphic
bisectional curvature. Indeed, according to Corollary 1.29, u = |df | satisfies in-
equality (6.6).

Remark 6.5. In the above proofs the term involving the curvature tensor of the
target manifold N was dealt with in a rather crude way and one may expect better
results from a more careful analysis. However, this term is not easy to handle and
in general requires extra assumptions; see, e.g., Section 6.2 below. Particularly
favorable instances occur when f is a holomorphic map from a Kähler manifold
M into a Hermitian manifold N . This situation is considered in Chapter 8 below.
In this case, the Weitzenböck–Bochner formula for the energy density of f contains
a non-linear term of the form |df |4 which arises from the curvature tensor of N .
In Theorem 8.11, starting from this observation, adapting a result by Li and Yau,
and using “a-priori” estimates for solutions of Yamabe-type equations, we are able
to extend the range of γ to

0 < γ ≤ H +
√

H (H − 2), (H ≥ 2).

We stress that this provides the only instance where the integrability exponent is
allowed to be greater than H .
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6.1.2 Convergent harmonic maps

Under appropriate circumstances we can guarantee that |df |2 ∈ Lγ(M) for some γ
in the admissible range. Towards this end, we recall the following estimate ([139]).

Lemma 6.6. Let f : (M, 〈 , 〉) → (N, (, )) be a harmonic map such that u (x) →
q ∈ N as r (x) → +∞. Let η (r) be a non-increasing, positive function such that
η (r) → 0 as r → +∞ and

distN (f (x) , q)2 ≤ Cη (r (x)) (6.7)

for r (x) sufficiently large and for some constant C > 0. Then, either

|df |2 ∈ L1 (M) (6.8)

or both the following conditions are satisfied:

1
vol (∂Br)

∈ L1 (+∞) (6.9)

and there exists R > 0 such that, for every r ≥ R,∫
Br

|df |2 ≤ Cη (r)
{∫ +∞

r

dt

vol (∂Bt)

}−1

. (6.10)

Proof. Let ρ (y) = distN (f(y), q). Then ρ2 is smooth in the geodesic ball BT (q)
for T > 0 sufficiently small. Furthermore, since

NHess
(
ρ2
)

= 2ρ NHess (ρ) + 2dρ⊗ dρ

by the Hessian comparison theorem we can also suppose that ρ2 is strictly convex
on BT (q). Next, we choose R1 > 0 so large that

f
(
M −BR1

) ⊂ BT (q)

and
sup
∂Br

ρ2 (f) ≤ η (r) , r ≥ R1. (6.11)

Let
Λ = inf

BT (q)
λ (y) > 0

where λ (y)is the smallest eigenvalue of Hess
(
ρ2
)
(y). Then, by the composition

law
M∆ (v ◦ f) = dv (τ (f)) +

m∑
i=1

NHess (v) (df (ei) , df (ei))
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valid for v : N → R and {ei}i=1,...,m=dim M a local orthonormal frame on M , we
deduce

M∆(ρ2 (f)) ≥ Λ |df |2 (6.12)

on M \BR1. Let r > R1. Applying the divergence theorem on Br \BR1 , with the
aid of (6.11), (6.12), Gauss’ lemma, and the Cauchy–Schwarz inequality, we obtain

Λ
∫

Br\BR1

|df |2 ≤
∫

Br\BR1

M∆(ρ2 ◦ f)

≤ 2
∫

∂(Br\BR1)

ρ(f)|df | ≤ C +
(
η(r)vol (∂Br)

∫
∂Br

|df |2)1/2
.

Letting

γ (r) =
∫

Br\BR1

|df |2

rearranging and using the co-area formula, the above inequality becomes

γ (r) ≤ C
{
1 + η (r)

1
2 γ′ (r)

1
2 vol (∂Br)

1
2

}
(6.13)

for r > R1 and some constant C > 0. To complete the proof, assume that |df |2 	∈
L1 (M) . Then γ (r) → +∞ as r → +∞ and therefore so does the RHS of (6.13).
We deduce that there exist R2 ≥ R1 and C1 > 0 sufficiently large that

γ (r)2 ≤ C1η (r) vol (∂Br) γ′ (r) ,

for every r ≥ R2. Let R2 ≤ r ≤ t. Integrating over (r, t) and taking into account
the monotonicity of η, we have

1
γ (r)

− 1
γ (t)

≥ C

η (r)

∫ t

r

ds

vol (∂Bs)
.

Whence, letting t→ +∞ we conclude the validity of both (6.9) and (6.10). �
In a similar way we can also prove

Lemma 6.7. Let f : (M, 〈 , 〉) → (N, ( , )) be a harmonic map such that, for some
R0 > 0, f(M \BR0) is compact and contained in a domain D ⊂ N supporting
a strictly convex function. Then, either |df |2 ∈ L1(M) or vol(∂Br)−1 ∈ L1(+∞)
and there exists R > 0 such that, for every r ≥ R,∫

Br

|df |2 ≤ C

{∫ +∞

r

dt

vol (∂Br)

}−1

, (6.14)

for some C > 0.

We are now ready to show the validity of
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Theorem 6.8. Let (M, 〈 , 〉) be a complete Riemannian manifold such that

Ric ≥ −ρ (x) on M

for some function ρ ∈ C0 (M) and assume that the Schrödinger operator L =
−∆− ρ+ (x) satisfies

λ1(LM ) ≥ 0.

Suppose that vol(∂Br) is at most of polynomial growth in r, as r → +∞. Let
(N, ( , )) be a complete manifold with non-positive sectional curvature and let q ∈
N . Assume that

vol (∂Br) = O
(
rα+3

)
, as r → +∞, (6.15)

for some α ≥ 0. Then any harmonic map f : (M, 〈 , 〉) → (N, ( , )) such that

distN (f (x) , q) =

{
O(r(x)−α) if α > 0,

o(1) if α = 0,
as r(x) → +∞, (6.16)

is constant.

Proof. The proof is similar to that of of Theorem 6.1. The only delicate point in
order to apply Theorem 4.5 is to show that

1∫
∂Br

|df |2 /∈ L1 (+∞) . (6.17)

Note that if vol (∂Br)
−1 /∈ L1 (+∞), then, by Lemma 6.6, |df |2 ∈ L1 (M) and

(6.17) holds true. Therefore, suppose vol (∂Br)
−1 ∈ L1 (+∞). From (6.15) we

deduce ∫ +∞

r

dt

vol (∂Br)
≥ C

∫ +∞

t

dt

rα+3
= C′ 1

rα+2

which implies {∫ +∞

r

dt

vol (∂Br)

}−1

≤ C′′rα+2. (6.18)

First, we consider the case where α > 0. From estimate (6.10) of Lemma 6.6 we
deduce ∫

Br

|df |2 ≤ Cr2 (6.19)

for r ≥ R > 0 sufficiently large. It follows that

r∫
Br
|df |2 /∈ L1 (+∞)

and, “a-fortiori” (6.17) is true. The case where α = 0 is similar. �
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We end this section showing that the growth estimates obtained in (6.10)
and (6.14) are rather sharp despite the simplicity of their proofs. To this end we
consider rotationally symmetric maps between models, referring to [139] for the
details and proofs that we omit here.

Let η, ζ : [0, +∞) → [0, +∞) be smooth functions such that η(t), ζ(t) > 0
for t > 0, and

η′(0) = ζ′(0) = 1, and η(2k)(0) = ζ(2k)(0) = 0 ∀k = 0, 1, . . . ,

and let M(η) and M(ζ) be the Riemannian manifolds obtained by endowing Rm

with the metrics defined in polar coordinates by

〈 , 〉η = dr2 + η2(r)dθ2 and 〈 , 〉ζ = dr2 + ζ2(r)dθ2,

where dθ2 is the canonical metric on Sm−1.
Next we consider rotationally symmetric maps Fρ : M(ζ) → M(η) defined

in polar coordinates by

Fρ : (r, θ) �→ (
ρ(r), θ

)
ρ(0) = 0.

A computation shows that, up to a constant factor, the energy of Fρ on Br is
given by

Er(Fρ) =
∫ r

0

[
(ρ′)2 +

m− 1
ζ2

η2(ρ)
]

(s)ζm−1(s) ds, (6.20)

and therefore Fρ is a (smooth) harmonic map if and only if ρ is a non-negative
solution of{

ρ′′(r) + (m− 1) ζ′

ζ ρ′(r) − m−1
ζ2 η(ρ(r))η′(ρ(r)) = 0 r > 0,

limr→0+ ρ(r) = 0.
(6.21)

Assuming that m ≥ 3, we choose η(r) = r, so that M(η) is the standard
Euclidean space, and ζ(r) such that, for some δ > 1 and sufficiently large Ro > 0,

ζ(t) = t(log t)δ ∀t ≥ Ro. (6.22)

According to [139] Theorem 4.1 there exists L > 0 such that, for every ρ∞ in
(0, L], (6.21) has a solution ρ satisfying

ρ′(r) ≥ 0, lim
r→+∞ ρ(r) = ρ∞. (6.23)

It follows that for every R1 < L there exists a harmonic map Fρ : M(ζ) → M(η)
with the property that, for suitably large R2,

Fρ

(
M(ζ) \BR2

)
⊂ B

M(η)
R1

,
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where B
M(η)
R1

denotes the ball of radius R1 centered at 0 in M(η). In particular,
integrating (6.21) between 1 and r we obtain

ρ′(r) = Cζ(r)−(m−1) + (m− 1)ζ(r)−(m−1)

∫ r

1

η(ρ)η′(ρ)ζ(s)m−3 ds.

Using (6.22) we see that the integral on the right-hand side has the same order of
magnitude as ∫ r

1

ζm−3(s) ds " rm−2
(
log r

)(m−3)δ as r → +∞,

and therefore
ρ′(r) " r−1

(
log r

)−2δ as r → +∞.

Inserting this result into (6.20) we conclude that

Er(Fρ) "
∫ r

1

[
(ρ′)2 + (m− 1)ζ−2η2(ρ)

]
(s)ζm−1(s) ds

"
∫ r

1

ζm−3(s) ds " rm−2
(
log r

)(m−3)δ as r → +∞.

On the other hand, we have vol∂Bt = cmtm−1(log t)δ(m−1) for t ≥ Ro, so that∫ +∞

r

dt

vol (∂Br)
=

∫ +∞

r

dt

tm−1(log t)δ(m−1)
" 1

rm−2(log r)δ(m−1)

showing that the estimate provided by Lemma 6.7 is sharp up to a power of log r.

6.1.3 Further remarks on convergent harmonic maps

In this section we take a closer look at Lemma 6.6 above.

We first note that the assumption that f
(
M \BR1

) ⊂ BT (q), 0 < T << 1,

cannot be replaced by f (M) ⊂ BT (q), for otherwise the result is trivial. In fact,
harmonic maps having small images and limiting value at infinity are necessarily
constant. This is true regardless both of the geometry of the domain manifold and
of the rate of convergence at infinity. More precisely we have the following

Proposition 6.9. Let (M, 〈 , 〉M ), (N, 〈 , 〉N ) be non-compact Riemannian manifolds
and let f : M → N be a harmonic map. Suppose that f(M) is contained in a
regular geodesic ball BN

R (y0) in N , and that

lim
x→∞ f(x) = y0 ∈ N.

Then f ≡ y0.
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Proof. To see this, let v : BN
R (y0) → R be the smooth function defined by

v(y) = 1− cos
(√

k+ distN (y, y0)
)

,

where 0 < k+ <
(

π
2R

)2 denotes an upper bound for the sectional curvatures of
BN

R (y0). Then, according to the Hessian comparison theorem, v is convex. More-
over, it is non-negative and vanishes exactly at y0. Since f is a harmonic map
with f(M) ⊂ BN

R (y0), the composition u = v ◦ f : M → R is a well-defined,
non-negative, subharmonic function. It suffices to show that u (x) ≡ 0. To this
end, suppose the contrary and assume that u (x0) > 0 for some x0 ∈ M . Since, by
assumption,

lim
x→∞u (x) = 0

the non-negative function u must attain its positive absolute maximum. By the
maximum principle u is a positive constant, contradicting the limit condition. �

As a matter of fact, the limit assumption can be relaxed provided we require
some further property on the harmonic map f . For instance, one can consider
the situation of rotationally symmetric harmonic maps between model manifolds
considered at the end of the previous section. Clearly, if f = Fρ : M(ζ) → M(η)
is the rotationally symmetric map induced by ρ, then

f
(
∂BM(ζ)

r

)
= ∂B

M(η)
ρ(r)

where B·
R denotes the geodesic ball of radius R centered at the pole of the model

manifold at hand. In view of this latter property one can introduce the following

Definition 6.10. A smooth map f : (Mm, 〈 , 〉M , x0) → (Nn, 〈 , 〉N , y0) between
pointed, complete Riemannian manifolds of dimensions m and n is said to be
weakly rotationally symmetric if, for every r > 0 there is r̄ > 0 such that

f
(
∂BM

r (x0)
) ⊆ ∂BN

r̄ (y0) .

We have the following version of the Liouville property proved above.

Proposition 6.11. Let f : (M, 〈 , 〉M , x0)→ (N, 〈 , 〉N , y0) be a harmonic map which
is weakly rotationally symmetric. Suppose that f (M) is contained in a regular
geodesic ball BN

R (y0) of N . If

lim
n→+∞ f (xn) = y0

along some sequence {xn} → ∞, then f ≡ y0.

Proof. Indeed, let v (y) and u (x) = v◦f (x) be the functions defined above. Again,
we have to show that u (x) ≡ 0. By assumption, we find a sequence of real numbers
{rn} ↗ +∞ with the property that, for each n,

u (x) <
1
n

on ∂BM
rn

(x) .
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Since f is subharmonic, the maximum principle yields that, for each n,

(0 ≤) u (x) <
1
n

on BM
rn

(x) .

Whence, letting n → +∞, we conclude u (x) ≡ 0 as desired. �

6.2 Harmonic maps of bounded dilations and a
Schwarz-type lemma

In this section, we compare the above results based on Lγ energy growth as-
sumptions with other Liouville-type theorems. Towards this end, we recall some
definitions.

Definition 6.12. Given a smooth map f : (M, 〈 , 〉)→ (N, ( , )) between Riemannian
manifolds of dimension m and n respectively, let

λ1 (x) ≥ λ2 (x) ≥ · · · ≥ λs (x) ≥ λs+1 (x) ≥ · · · ≥ λmin{n,m} ≥ 0

be the eigenvalues of the quadratic form f∗
x( , ). We say that f has (first) dilation

of order at most k and constant T ≥ 1 if, for every x ∈M , either dxf = 0 or

λ1 (x) ≤ T
(
1 + r (x)2

)k
2

λ2 (x) .

We will denote with Hk,T the set of all smooth, harmonic maps f with dilation of
order at most k and constant T , and with L2pHk,T the subset of maps f ∈ Hk,T

with energy density satisfying |df |2 ∈ L2p.

Remark 6.13. If f has bounded dilation of order at most k on M , then f cannot
have rank 1 at any point of M , for otherwise λ2 (x) = 0.

Remark 6.14. Obviously, when M is compact, Hk,T = L2pHk,T . Furthermore, the
dilation condition can always be reduced to the case k = 0 for a sufficiently large
T > 0. Therefore, in the compact realm, one simply considers the set of harmonic
maps of uniformly bounded dilation and write HT .

A special class of harmonic maps of (uniformly) bounded dilation is rep-
resented by (anti-) holomorphic maps f : M → N from a Kähler manifold
(M, 〈 , 〉 , JM ) to a Hermitian manifold (N, ( , ) , JN ). Indeed, let X ∈ TxM be
an eigenvector corresponding to the eigenvalue λ of f∗ ( , ). Then, assuming for
instance that f is holomorphic, we have

λ = f∗ 〈 , 〉N (X, X) = 〈dxf (X) , dxf (X)〉N = 〈JNdxf (X) , JNdxf (X)〉N
= 〈dxf (JMX) , dxf (JMX)〉N = f∗ 〈 , 〉N (JMX, JMX) .
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Therefore, also JMX is an eigenvector of λ, proving that the eigenvalues of f∗ 〈 , 〉N
have (geometric hence algebraic) multiplicity at least 2. It follows that f has
bounded dilation of order at most k = 0 and constant T = 1.

Harmonic maps of controlled dilations enjoy the Schwarz-type property de-
scribed in the next theorem, which extends to this situation seminal results ob-
tained by Ahlfors, [2] and Yau, [169].

Theorem 6.15. Let (M, 〈 , 〉) and (N, (, )) be complete, Riemannian manifolds of
dimensions m and n, respectively. Assume that the Ricci curvature of M satisfies

MRic ≥ − (m− 1)B2
(
1 + r (x)2

)− γ
2

on M, (6.24)

for some 0 ≤ γ < 2 and some constant B > 0. Suppose also that the sectional
curvature of N satisfies

NRiemz ≤ −K (z) on N,

for some function K (z) on N . Let f ∈ Hk,T be such that

K (f (x)) ≤ −C2
(
1 + r (x)2

)k−γ
2

on M

for some C > 0. Then,

sup
M
|df |2 ≤ (m− 1)B2T min {m, n}2

2C2
. (6.25)

Proof. To simplify the notation, set

a (x) = (m− 1)B2
(
1 + r (x)2

)− γ
2

.

Let � ≤ min{m, n} be the rank of df at x, and choose a local orthonormal frame
{ei} of M which diagonalizes the quadratic form f∗ 〈 , 〉N at x. Thus

|df |2 =
∑

j=1,...,�

f∗〈ej , ej〉 =
∑

j=1,...,�

λj

and

NRiem (df (ei) , df (ej) , df (ei) , df (ej)) ≤ −C2
(
1 + r (x)2

)k−γ
2

λiλj ,

where {λi}, i = 1, . . . , � are the non-zero eigenvalues of f∗ 〈 , 〉N arranged in de-
creasing order. From the Bochner–Weitzenböck formula for harmonic maps, we
have

∆ |df |2 ≥ 2 |Ddf |2 − 2a (x) |df |2 + 4C2
(
1 + r (x)2

)k−γ
2

�∑
i<j=1

λiλj . (6.26)
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On the other hand, using the dilation assumption on f we obtain

|df |4(x) =
( ∑

1≤i≤�

λi(x)
)2

≤ �2λ1(x)2

≤ min{m, n}2T (1 + r(x)2
) k

2 λ1(x)λ2(x)

≤ min{m, n}2T (1 + r(x)2
) k

2
∑

1≤i<j≤�

λi(x)λj(x).

We therefore conclude that the smooth function u = |df |2 satisfies the differential
inequality

∆u + a (x) u ≥ b (x)u2 on M

with

a (x) =
2 (m− 1)B2(
1 + r (x)2

) γ
2
, b (x) =

4C2

T min{m, n}2
1(

1 + r (x)2
) γ

2
.

Note that
a (x)
b (x)

=
(m− 1)B2T min{m, n}2

2C2
.

Furthermore, according to (2.30), we have

log
(
vol (BM

r )
) " r1−γ/2

so that

lim inf
r→+∞

log vol
(
BM

r

)
r2−γ

= 0.

Therefore, to conclude the validity of (6.25), we can invoke the a-priori estimates
contained in the next theorem that we quote from [130]. �
Theorem 6.16. Let (M, 〈 , 〉) be a complete manifold and let a (x) , b (x) ∈ C0 (M).
Set a+ (x) = max {a (x) , 0}. Assume

sup
M

a+ (x) < +∞

and
b (x) > 0 on M , b (x) ≥ B

r (x)µ

for r (x) >> 1 and some 0 ≤ µ < 2. Suppose furthermore

a+ (x)
b (x)

≤ E on M

for some E ≥ 0. Let u ∈ C1 (M) be a non-negative, weak solution of

∆u + a (x)u ≥ b (x) uσ on M
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with σ > 1. If

lim inf
r→+∞

log vol
(
BM

r

)
r2−µ

< +∞,

then
u (x) ≤ E

1
σ−1 on M.

Corollary 6.17. Let (M, 〈 , 〉 , JM ) be a complete Kähler manifold such that

MRic ≥ −(m− 1)B2
(
1 + r(x)2

)−γ
2 on M (6.27)

for some constants B > 0 and 0 ≤ γ < 2. Let (N, (, ) , JN ) be a Hermitian manifold
with holomorphic bisectional curvature bounded above by k (z) , z ∈ N . Let f :
M → N be a holomorphic map such that

k (f (x)) ≤ −C2
(
1 + r (x)2

)− γ
2

on M

for some C > 0. Then

sup
M
|df |2 ≤ (m− 1)B2

C2
.

Proof. According to Corollary 1.29, the function u = |df |2 satisfies

∆u + 2ρ (x)u ≥ −2k (f (x))u2 +
|∇u|2

u

pointwise on Ω = {x ∈ M : u (x) > 0} and weakly on M. Here, −ρ (x) denotes the
function on the RHS of (6.27). Now the result follows easily. �
Remark 6.18. Using a different technique, which relies on a-priori estimates valid
under Ricci curvature assumptions, one may obtain the conclusions of Theorem
6.15 and Corollary 6.17 replacing the assumption 0 ≤ γ < 2 with γ ≤ 2; see [135].

Remark 6.19. Note that in the assumption of Corollary 6.17 the holomorphic
function f is distance-decreasing provided

(m− 1)B2

C2
< 1

and this is an exact analog of the classical Schwarz lemma.

It is also possible to obtain versions of the Schwarz lemma for volumes. We
describe an instance of this in the holomorphic setting, extending results first
obtained by Chern, [36], and, for generic complete Kähler domains, by Yau, [169].

Theorem 6.20. Let (M, 〈 , 〉 , JM ) be a complete Kähler manifold of complex dimen-
sion m and scalar curvature s (x) , and let (N, (, ) , JN ) be a Hermitian manifold
of the same dimension and with Ricci curvature bounded from above by R (z),
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z ∈ N . Denote by dvolM and dvolN the volume elements of M and N respectively.
Suppose that f : M → N is holomorphic and that

(i) R (f (x)) < 0 on M ; (ii) R (f (x)) ≤ − 1
r (x)µ on M \BR0

for some R0 > 0 and some 0 ≤ µ < 2. Assume also that

(i) s− ∈ L∞ (M) ; (ii)
s− (x)

R (f (x))
≥ −2mE on M

for some E ≥ 0. If

lim inf
r→+∞

log vol (Br)
r2−µ

< +∞,

then {
f∗dvolN
dvolM

} 1
m

≤ E.

In particular, if E < 1, then f is volume-decreasing.

Proof. We set u = |df |2 = trf∗ (, ) and

v =
{

f∗dvolN
dvolM

}4

= (det f∗ (, ))2 .

A computation due to Chern, [36], shows that the function v satisfies the differ-
ential inequality

∆v ≥ −2R (f (x)) uv + 2s (x) v +
|∇v|2

v
.

The arithmetic-geometric means inequality implies that

v
1

4m = (det f∗ (, ))1/2m ≤ 1
2m

trf∗ (, ) =
1

2m
u,

whence, letting w = v
1

4m , and inserting into the above inequality, we obtain

∆w ≥ −R (f (x))w2 +
1

2m
s (x)w +

|∇w|2
w

.

The result now follows from Theorem 6.16. �

For applications of the type of Schwarz’s lemma described above see, e.g.,
Ph. Griffiths’ book, [70], and the references therein.
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6.3 Fundamental group and harmonic maps

As mentioned at the beginning of Section 6.1.1, Schoen and Yau have used har-
monic map techniques, and most notably the Liouville-type Theorem 6.1, to study
the fundamental group of manifolds of non-negative Ricci curvature and of stable
minimal hypersurfaces immersed into non-positively curved ambient spaces (see
[146] and chapter XII in [148]). We generalize and unify their topological results
in the following obstruction theorem.

Theorem 6.21. Let (M, 〈 , 〉) be a complete, m-dimensional manifold whose Ricci
tensor satisfies

MRic ≥ −ρ (x) , on M (6.28)

and assume that the Schrödinger operator L = −∆− ρ satisfies

λ1

(
LM

) ≥ 0. (6.29)

If D is any compact domain in M with smooth, simply connected boundary, then
there is no non-trivial homomorphism of π1(D) into the fundamental group of a
compact manifold with non-positive sectional curvature.

Remark 6.22. If (M, 〈 , 〉) has non-negative Ricci curvature, we can obviously
choose ρ (x) ≡ 0 in (6.28) so that condition (6.29) is automatically satisfied.
Similarly, suppose that (M, 〈 , 〉) is isometrically immersed as a complete, stable,
minimal hypersurface into a space M̄ of non-negative sectional curvature. Then,
according to the Gauss equations, MRic ≥ − |II|2, where |II| denotes the length of
the second fundamental tensor of the immersion. Moreover, the stability assump-
tion amounts to the fact that the operator L = −∆− |II|2 satisfies (6.29). These
are the geometric situations considered in [146].

A further situation where the topological conclusion of Theorem 6.21 holds
true is when (M, 〈 , 〉) is a complete, m-dimensional manifold satisfying both the
following properties:

(a) M supports the (global) Sobolev inequality

S(α)−1

(∫
M

v
2

1−α

)1−α

≤
∫

M

|∇v|2 , ∀v ∈ C∞
c (M)

where 0 < α < 1, and S (α) > 0 is a constant.

(b) The Ricci tensor of M satisfies

MRic ≥ −ρ (x) , on M

with
‖ρ+ (x)‖

L
1
α (M)

≤ S (α)−1 .
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This readily follows from Lemma 7.33 in Section 7.4. It should be noted that, in
the above assumptions, we also have some information on the topology at infinity
of the manifold at hand. See Section 7.1.

The proof of Theorem 6.21 relies on the following generalized version of a
result by Schoen and Yau, [146].

Theorem 6.23. Let (M, 〈 , 〉) be a complete Riemannian manifolds whose Ricci
tensor satisfies (6.28) and (6.29). Let (N, ( , )) be a compact manifold of non-
positive sectional curvature NRiem ≤ 0. Then, any smooth map f : M → N of
finite energy |df | ∈ L2 (M) is homotopic to a constant on each compact set of M .

Proof. Arguing as in [146], we see that the smooth map f : M → N is homotopic,
on each compact set, to a harmonic map g : M → N of finite energy |dg| ∈ L2 (M).
To reach the desired conclusion it suffices to show that g is constant, and this
follows at once from Theorem 6.1. �

We now come to the proof of the main theorem of the section. The arguments
are detailed from [146].

Proof of Theorem 6.21. Let D ⊂ M be a compact domain with smooth, sim-
ply connected boundary and let σ ∈ Hom (π1 (D) , π1 (N)), where (N, ( , )) is a
compact manifold of non-positive sectional curvature. We have to show that σ is
trivial.

By the Cartan–Hadamard theorem, the universal cover of N is contractible,
so that all the higher homotopy groups πj (N) (j ≥ 2) of N vanish. Thus N is as-
pherical, or equivalently, is a K (π, 1) space. According to the theory of aspherical
spaces, see, e.g., [163], the set [D; N ] of (free) homotopy classes of maps from D to
N is in one-to-one correspondence with the set of conjugacy classes of homomor-
phisms Hom (π1 (D) , π1 (N)). The correspondence is simply given by f �−→ [f#],
where f# is the homomorphism induced by f . Accordingly, we find a continuous
map f : D → N such that

σ = α ◦ f#,

for some α ∈ Aut (π1 (N)).
Since ∂D is simply connected, the restriction f |∂D : ∂D → N is homotopic

to a constant. This follows again by the above mentioned property of aspherical
spaces. Let H : ∂D × [0, ε] → M be a (continuous) homotopy with H (·, 0) = f ,
H (·, ε) = const. Suppose also ε > 0 is small enough. Using the normal exponential
map exp⊥ relative to ∂D, see, e.g., [30], the homotopy map H enables us to
extend the definition of f to a smooth domain D′, D ⊂⊂ D′, along the directions
normal to ∂D. Namely, for any x ∈ M with distM (x, ∂D) = t ≤ ε, there are
uniquely determined x′ ∈ ∂D and ν ∈ (Tx′∂D)⊥ ⊂ Tx′M with |ν| = 1 such that
x = expx′ (tν). Thus, one defines

f (x) = H (x′, t) .
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By construction, the extended continuous map f : D′ → N is constant on ∂D′

and therefore can be further extended by the same constant on M \D′.
Now, we use the Whitney approximation procedure, see, e.g., [92], to get a

smooth map f̄ on M which is homotopic to f . In fact, we can take f̄ in the same
homotopy class of f , relative to the closed set M \D′′, where D′ ⊂⊂ D′′ ⊂⊂ M .
This is because f is constant, hence smooth, on M \D′′. Clearly, we have

σ = α′ ◦ ( f̄
∣∣
D

)#

for some α′ ∈ Aut (π1 (N)). On the other hand, f̄ is constant on M \D′′, hence
it has finite energy. Applying Theorem 6.23 we deduce that f̄ is homotopic to
a constant on each compact subset of M . Whence, it follows that ( f̄

∣∣
D

)#, and
therefore σ, are trivial homomorphisms. �

6.4 A generalization of a finiteness theorem of Lemaire

In the previous section, following Schoen and Yau, we used vanishing results for
harmonic maps in order to obtain information on the fundamental group of a
manifold whose Ricci curvature is non-negative in some integral sense. In this sec-
tion we take a different point of view. The purpose is to prove finiteness theorems
for harmonic maps of bounded dilation into a negatively curved manifold, on the
assumption that the domain manifold has finitely generated fundamental group.
The results we consider here generalize to non-compact settings previous work by
Lemaire, [93]. Maintaining the notation introduced in Definition 6.12, Lemaire’s
result states

Theorem 6.24. Suppose that (M, 〈 , 〉) and (N, ( , )) are compact manifolds. Suppose
also that the sectional curvatures of N are strictly negative. Then, for every T > 0,
the set HT is finite.

We provide a somewhat direct and qualitative proof of the result, where the
compactness of the target manifold plays no role.

Proof. Since (M, 〈 , 〉) is compact and the sectional curvatures of the complete
manifold (N, ( , )) are negative and bounded away from zero, we see that HT is
a compact subset of C0 (M, N) endowed with the uniform topology. Indeed, the
Schwarz-type lemma of Theorem 6.15 asserts that

sup
f∈HT

sup
M
|df | = C < +∞.

In particular
sup

f∈HT

diamf (M) ≤ Cdiam (M) < +∞. (6.30)

By Ascoli’s theorem,HT is relatively compact in C0 (M, N). Elliptic estimates now
show that, for every sequence {fn} ⊆ HT converging to f , there is a subsequence
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whose higher derivatives converge locally uniformly on M . It follows that the limit
function f is in fact a smooth harmonic map; see also [148], Chapter IX. Finally,
f has dilation bounded by T . Indeed, f∗

n 〈, 〉N → f∗ 〈, 〉N as n → +∞, pointwise
on M and in the sense of quadratic forms. Set λn

j and λj for the j-th eigenvalues
of f∗

n 〈, 〉N and f∗ 〈, 〉N , respectively. Then, from the variational characterization,
we deduce λn

j → λj as n → +∞, proving that

λ1 (x) ≤ Tλ2 (x) on M.

As a consequence, the relatively compact set HT is, in fact, compact.

Accordingly, we have only to show that HT is discrete. To this end, we adapt
an argument of [148], Chapter XI. Let R > 0 be so large that, for every f ∈ HT ,

f (M) ⊂ BN
R .

Such a radius exists because of (6.30). Next, set

i = inj
(
BN

R

)
> 0.

For any chosen f ∈ HT , we consider the ball Bi (f) in C0 (M, N), centered at f
and of radius i:

Bi (f) =
{

g ∈ C0 (M, N) : sup
M

distN (f (x) , g (x)) < i

}
.

We claim that every harmonic map g ∈ Bi (f) is homotopic to f . Indeed, consider
the function ρ : M → R given by ρ (x) = distN (f (x) , g (x)). Then ρ2 (x) is smooth
and subharmonic on M . By the maximum principle, ρ2 must be constant. We can
therefore construct a (geodesic) homotopy between f and g in the following way:
for every x ∈ M , let γx : [0, ρ] → N be the unique geodesic segment, of length
ρ (< i), satisfying γx (0) = f (x) and γx (ρ) = g (x). The desired homotopy map is
defined by setting H (x, t) = γx (t) and this proves the claim.

To conclude, recall that every free homotopy class in [M ; N ] contains at most
one harmonic map of bounded dilation. Therefore, if f ∈ HT , then HT ∩Bi (f) =
{f}, showing that HT is discrete �

We are now going to generalize Lemaire’s theorem to the case where the
domain manifold is non-compact.

Theorem 6.25. Let (M, 〈 , 〉) be a geodesically complete, parabolic manifold satisfy-
ing, for some 0 ≤ k < 2,

MRic ≥ − (m− 1)B2 (1 + r (x))−k , on M.

Assume further that the fundamental group π1(M) of M is finitely generated. Let
(N, ( , )) be a compact manifold with strictly negative sectional curvatures. Then,
L2Hk,T is a finite set.



6.4. A generalization of a finiteness theorem of Lemaire 145

The proof of Theorem 6.25 can be obtained by adapting Lemaire’s origi-
nal argument to the present setting. The crucial ingredients of the proof are the
Schwarz-type lemma contained in Theorem 6.15 and the following uniqueness re-
sult for harmonic maps in a given homotopy class. It is an improved version of the
Schoen and Yau uniqueness theorem, [149], see also [148] Chapter XIII, which in
turn extends to the non-compact setting a theorem by P. Hartman, [78].

Theorem 6.26. Let (M, 〈 , 〉) and (N, ( , )) be complete Riemannian manifolds. As-
sume that M is parabolic and that N has strictly negative sectional curvatures.
Let f : M → N be a non-constant, harmonic map of finite energy |df | ∈ L2 (M).
Then, there is no other harmonic map of finite energy in the (free) homotopy class
of f , unless f (M) is contained in a geodesic of N .

Remark 6.27. The original statement required vol (M) < +∞; see Theorem 1 on
page 321 in [148].This assumption was used only to prove that a subharmonic
function ϕ with finite Dirichlet integral |∇ϕ| ∈ L2 (M) is in fact constant; see
Lemma 1, Corollary 1 and Lemma 2 on page 318 in [148]. Therefore, Theorem
6.25 follows from the Schoen–Yau proof using Corollary 7.28 in the next section.

We are now in a position to give the

Proof of Theorem 6.25. Note that, due to the dilation assumption, the rank of
any f ∈ Hk,T is different from 1. Therefore, f (M) is not a geodesic of N . By
Theorem 6.26 it follows that different maps f 	= g ∈ L2Hk,T represent distinct
free homotopy classes [f ] 	= [g] ∈ [M ; N ]. We have to show that they are finite in
number.

Fix x0 ∈ M and y0 ∈ N . As noted at the beginning of the proof of Theo-
rem 6.21 in the previous section, the manifold N is aspherical and therefore, the
set [M ; N ] is in one-to-one correspondence with the conjugacy classes of homomor-
phisms π1 (M, x0) → π1 (N, y0). The finiteness result will be established once we
prove that there are only a finite number of conjugacy classes of homomorphisms
induced by maps in L2Hk,T . This will be done by interpreting the fundamental
group as the deck transformation group of the universal covering.

So, let (M ′, 〈 , 〉′) and (N ′, ( , )′) be the Riemannian universal coverings of
M and N , respectively. Note that any smooth map f : M → N lifts to an
f#-equivariant smooth map f ′ : M ′ → N ′. This means that, for every γ ∈
π1 (M, x0) = Deck (M ′) ,

f ′ (γ (x′)) = f# (γ) f ′ (x′)

where (up to conjugation) f# is the homomorphism induced by f . We choose
a (relatively compact) fundamental region F of N ′ and we fix a point x′

0 ∈ M ′

over x0 ∈ M . Next, for every f ∈ Hk,T , we consider the lifting f ′ of f with the
property that f ′ (x′

0) ∈ F . This can be done by composing any lifting f ′ with
a deck transformation α ∈ π1 (N, y0) = Deck (N ′) . Note that, in this way, f ′

becomes an α ◦ f#-equivariant map.
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According to Theorem 6.15, there exists a constant C > 0 such that

sup
f∈Hk,T

sup
M
|df |2 ≤ C.

Since Riemannian covering maps are local isometries, we deduce that the same
L∞-estimate holds true for the lifted maps f ′. From this, the relative compactness
of F and the fact that f ′ (x′

0) ∈ F , it easily follows that, for every R > 0 there is
R̄ > 0 such that

f ′
(
BM ′

R (x′
0)
)
⊂ BN ′

R̄ ,

for every f ∈ Hk,T .
Let S = {γ0 = 1, . . . , γs} be a (finite) set of generators for π1 (M, x0) and

choose R > 0 large enough that

{γ0 (x′
0) , . . . , γs (x′

0)} ⊂ BM ′
R (x′

0) .

Then, recalling the equivariant property, we have

{f ′ ◦ γ0 (x′
0) , . . . , f ′ ◦ γs (x′

0)} ⊂ BN ′
R̄ ∩ {α ◦ f ′ (x′

0) : α ∈ π1 (N, y0)} ,

for every f ∈ Hk,T . Let

G = ∪f∈Hk,T

{
α ∈ π1 (N, y0) : α ◦ f ′ (x′

0) ∈ BN ′
R̄

}
which is a finite set because

G ⊂
{
α ∈ π1 (N, y0) : BN ′

R̄ ∩ α (F) 	= ∅

}
.

The conjugacy classes of the homomorphisms f# associated to f ∈ L2Hk,T ,
are characterized by the restrictions

f#|S : S → G.

Since both S and G are finite, the number of these classes is also finite, as required
to complete the proof. �
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Some topological applications

7.1 Ends and harmonic functions

Given a compact set K in M , an end E(K) with respect to K is an unbounded
connected component of M \ K. By a compactness argument, it is readily seen
that the number of ends with respect to K is finite,

It is also clear that if K ⊂ K ′, then every end E(K ′) is contained in one end
E(K), so that the number of ends increases as the compact K enlarges.

We say that M has a finite number of ends if there exists a constant C such
that for every compact K the number of ends with respect to K is bounded above
by C. In this case there exists a compact Ko and a number N such that for every
compact K ⊃ Ko the number of ends with respect to K is exactly N , and we say
that M has N ends.

In what follows we will fix a compact domain D with smooth boundary and
by an end we will always mean an end with respect to D.

We recall that a Riemannian manifold (M, 〈 , 〉) is parabolic if every subhar-
monic, bounded-above function on M is constant. See Section 7.2 for a description
of some equivalent definitions of parabolicity. An end E will be said to be parabolic
if the double of E (see, Section 7.3) is a parabolic manifold. Equivalently, if every
positive superharmonic function u satisfying ∂u/∂ν ≥ 0 on ∂E, ν being the unit
outward normal to ∂E, is constant. Otherwise the end will be called non-parabolic.
The non-parabolicity of E is also characterized by the existence of a (minimal)
positive Green kernel satisfying Neumann boundary conditions on ∂E.

We are going to describe the connection between the number of ends and
harmonic functions as developed by P. Li and L.-F. Tam and co-authors (see [99]–
[102], [156], [104] and [105]). In particular, we are going to show that the number
of non-parabolic ends of a manifold is controlled by the dimension of the space of
bounded harmonic functions with finite Dirichlet integral. This, together with the
vanishing, or finiteness theorems described above, allows us to obtain results on
the number of non-parabolic ends.

We fix an exhaustion {Di} of M by relatively compact open domains with
smooth boundary with D ⊂ Di ⊂ Di+1, and, given an end E with respect to D
we write Ei = E ∩Di, and ∂Ei = ∂Di ∩ E.

Our first task is to obtain a characterization of non-parabolic ends (see [100],
Proposition 1.1), that will be instrumental in the constructions that follow. We
begin by recalling the following equivalent characterization of parabolicity in terms
of a maximum principle for unbounded domains (See [3], Theorem 6.C).
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Lemma 7.1. A manifold M is parabolic if and only if the following condition holds:
Let φ be defined and subharmonic in a region G ⊂ M with non-empty boundary
∂G. If φ is bounded above, and for every ζ ∈ ∂G

lim inf
G�x→ζ

φ(x) ≤ m,

then φ ≤ m in G

Proof. Let M be parabolic, and assume by contradiction that supG φ > m + 2ε
for some ε > 0. Define

vε =

{
max{φ, m + ε} in G,

m + ε in M \G.

Then vε is subharmonic and bounded above on M , and therefore it is constant on
M . Since φ < m + ε on ∂G, we conclude that vε ≡ m + ε, so that φ ≤ m + ε on G,
a contradiction.

For the converse, assume that the condition holds, let v be a subharmonic
bounded above function on M, and suppose by contradiction that v is not constant.
Then there exist ε > 0 and xo ∈ M such that φ(xo) < sup φ − 2ε. Then, if G
is a connected component of the non-empty set {x : φ(x) > sup φ − 2ε}, φ is
subharmonic on G and φ ≤ sup φ − ε on ∂G. The condition implies that φ ≤
supφ− ε on G contradicting the definition of G. �

Applying the lemma to the double of an end we immediately obtain

Corollary 7.2. Let E be an end of the manifold M . Then E is parabolic if and
only if for every function φ : Ē → R which is subharmonic and bounded above on
E we have supE φ = max∂E φ.

This allows us to deduce the characterization of non-parabolic ends men-
tioned above (see [100]).

Proposition 7.3. Let E be an end of M . Then E is non-parabolic if and only
if there exists a bounded harmonic function h : Ē → R such that min∂E h >
infE h = lim infE�x→∞ h(x). In fact, if E is non-parabolic, it can be arranged that
h = 1 on ∂E and infE h = 0. Furthermore h has finite Dirichlet integral, and it
is minimal in the sense that, if h̃ : Ē → R is a positive harmonic satisfying h̃ ≥ h
on ∂E, then h̃ ≥ h on E.

Proof. Corollary 7.2 above implies that if there exists a bounded harmonic function
h satisfying infE h < min∂E h, then E is non-parabolic.

Conversely, assume that E is non-parabolic. Then, again by Corollary 7.2,
there exists a function ψ : Ē → R which is superharmonic and bounded below
on E and such that infE ψ < min∂E ψ. By the maximum principle, this implies
that the sequence min∂Ei ψ is eventually decreasing. By translating and scaling,
we may assume that infE ψ = 0 and ψ ≥ 1 on ∂E.
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Next, for every i, let hi be the solution of the following boundary value
problem: {

∆h = 0 in Ei,

h = 1 on ∂E, h = 0 on ∂Ei.

It follows from the maximum principle that 0 < hi < 1 on Ei and that the
sequence {hi} is increasing, and therefore hi converges to a positive harmonic
function h on E satisfying 0 < h ≤ 1 and h = 1 on ∂E. On the other hand, again
by the maximum principle, hi ≤ ψ on Ēi, and passing to the limit, h ≤ ψ. Thus
infE h ≤ infE ψ = 0.

We note in passing that since h is harmonic on E, it follows that the sequence
min∂Ei h is strictly decreasing.

The minimality of h is proved in the same way. Indeed, let h̃ be as in the
statement. Then, by the maximum principle h̃ ≥ hi for every i, and the conclusion
follows by letting i → +∞.

Finally, since hi is harmonic on Ei with boundary values hi = 1 on ∂E,
hi = 0 on ∂Ei, integrating by parts and denoting by ν the outward unit normal
to ∂E, it follows that, for every io ≤ i,∫

Eio

|∇hi|2 ≤
∫

Ei

|∇hi|2 = −
∫

∂E

hi
∂hi

∂ν
=
∫

∂E

∂hi

∂ν
.

Now, by elliptic estimates up to the boundary, all derivatives of hi are uniformly
bounded in compact subsets of Ēi (see, e.g., [15], Section 5.6), and therefore, by
passing to a subsequence if necessary, hi converges to h with all its derivatives
uniformly on compact subsets to Ē. Thus letting i tend to infinity in the above
inequality we obtain∫

Eio

|∇h|2 ≤ lim inf
∫

Ei

|∇hi|2 = − lim
∫

∂E

hi
∂hi

∂ν
=

∫
∂E

h
∂h

∂ν
.

An alternative proof, which does not use refined regularity estimates goes as
follows: Note that hi minimizes the Dirichlet integral

∫
Ei
|∇u|2 subjected to the

boundary conditions u = 1 on ∂E, u = 0 on ∂Ei. Thus, if i < j, and we extend hi

to Ej by setting it equal to zero in Ej \ Ei, we have∫
Ej

|∇hj |2 ≤
∫

Ej

|∇hi|2 =
∫

Ei

|∇hi|2

showing that the Dirichlet integral
∫

Ej
|∇hj |2 is a decreasing function of j, and

therefore there exists a constant C such that∫
Ej

|∇hj |2 ≤ C ∀j.
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Now, since hj converges to h uniformly on compact subsets of E, ∇hj → ∇h
weakly in L2

loc, and we deduce that for every compact K in E,∫
K

|∇h|2 ≤ lim inf
j

∫
K

|∇hj |2 ≤ C.

The conclusion is obtained by exhausting E by a family of compacts. Observe
that one could also use standard interior estimates to deduce that, by passing to
a subsequence if needed, ∇hi converges to ∇h locally uniformly in E. �
Definition 7.4. Let E be a non-parabolic end, and let h be the harmonic function
constructed above. A sequence {xn} ⊂ E which tends to infinity is said to be
regular if limn h(xn) = infE h = 0.

Remark 7.5. Clearly, (a subsequence of ) the sequence gi = 1 − hi converges
locally uniformly on E to a harmonic function g on E such that 0 < g < 1 on
E, g = 0 on ∂E and lim supE�x→∞ g(x) = 1. For future use, we also note that
given a relatively compact domain Ω with D ⊂⊂ Ω, then infE\Ω g > 0. Indeed, by
construction gi ≥ g on Ei, and g > 0 on ∂Ω ∩ E so there exists a constant c > 0
such that gi ≥ c on ∂Ω∩E. Moreover, by the maximum principle gi ≥ min∂Ω∩E gi

on Ei \ Ω. Now, fix io such that Ω̄ ⊂ Eio . Since gi converges to g uniformly on
Eio , 0 < gi − g < c/2 for every i > io sufficiently large, and we conclude that

g = gi − (g − gi) ≥ c/2 on Eio \ Ω.

Letting io → +∞ yields the required conclusion

Small modifications of the last part of the proof allow us to establish the
validity of the following lemma ([100], Lemma 2.2).

Lemma 7.6. Let E be an end of a non-compact manifold M , and let f be a har-
monic function on E which is C2,α up to the boundary for some α ∈ (0, 1). Assume
that there exist an exhaustion of M by relatively compact domains with smooth
boundary Di and a sequence of harmonic functions fi on Ei, C0 up to the bound-
ary, satisfying the boundary conditions fi = f on ∂E and fi = 0 on ∂Ei, and such
that lim fi = f . Then f has finite Dirichlet integral and, if ν is the outward unit
normal to ∂E, we have ∫

E

|∇f |2 ≤ −
∫

∂E

f
∂f

∂ν
. (7.1)

The same conclusion holds if the end E is replaced by the complement of a relatively
compact set D with smooth boundary.

Remark 7.7. The assumption that f is C2,α up to the boundary ensures that so
are the functions fi (see [60], Theorem 6.14). This in turn yields, via boundary
elliptic estimates (see [60], Theorem 6.6), that fi together with its first and second
derivatives are locally Hölder up to the boundary with constants independent of
i, and therefore a subsequence of fi converges locally uniformly in C2(Ē).
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Using the function h constructed in Proposition 7.3 as barrier, we easily
obtain the following lemma ([156], Lemma 2.2).

Lemma 7.8. Let E be a non-parabolic end of M and let h be the harmonic function
constructed in Proposition 7.3. Then:

(i) If f is harmonic on E, continuous up to ∂E, and satisfies f ≤ 0 on ∂E and
f ≤ Ch on E for some constant C > 0, then f ≤ 0 on E. If f = 0 on ∂E
and |f | ≤ Ch on E, then f ≡ 0 on E.

(ii) If f is bounded and harmonic on E, continuous up to ∂E and such that
|f | ≤ Ch on E for some C > 0, then f has finite Dirichlet integral.

Proof. We follow the proof in [156]. To prove (i) , consider the function h−C−1f
which is positive on E and greater than or equal to h on ∂E. According to the
minimality statement in the proposition, we conclude that h − C−1f ≥ h and
therefore f ≤ 0 on E.

To prove (ii) , assume first that f is C2,α up to the boundary. For every i let
fi be the harmonic function which solves the boundary problem fi = f on ∂E and
fi = 0 on ∂Ei. As in the proof of Proposition 7.3 a subsequence of fi converges
locally uniformly in C2(Ē) to a bounded harmonic function f̃ on E with finite
Dirichlet integral. By the maximum principle, |fi| ≤ C1h on Ei for some constant
C1 and passing to the limit |f̃ | ≤ C1h on E. Thus, |f̃ − f | ≤ (C + C1)h on E and,
by (i) , f = f̃ and f has finite Dirichlet integral. The conclusion in the case where
f is only assumed to be continuous up to the boundary is obtained by applying
the argument to E \ U where U is a suitable neighborhood of ∂E. �

A variation of the argument above allows us to show that a bounded harmonic
function defined on a parabolic end, has automatically finite Dirichlet integral (see,
e.g., [156], Lemma 2.3).

Lemma 7.9. Let E be a parabolic end of a manifold M. Assume that f : Ē → R

is bounded harmonic on E and continuous up to the boundary. Then f has finite
Dirichlet integral. In fact, if f is C2,α up to the boundary, then f satisfies estimate
(7.1).

Proof. As above, we may assume that f is C2,α up to the boundary of E. Further,
by adding to f a suitable constant, we may suppose that f is positive on E.
Arguing as in the proof of (ii) above yields a function f̃ which satisfies f̃ = f on
∂E, 0 ≤ f̃ ≤ f on E and satisfies (7.1). Since f − f̃ is bounded on E and vanishes
on ∂E, f − f̃ = 0 on E by Corollary 7.2. �

We are now ready to present the proof that the number of non-parabolic
ends of M is bounded above by the dimension of the space of bounded harmonic
functions with finite Dirichlet integral (see [102] and [71]).

Proposition 7.10. Let M be a complete non-compact Riemannian manifold, and
assume M has two non-parabolic ends E1 and E2 (with respect to the compact
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domain D). Then there exists a bounded harmonic function f : M → R with finite
Dirichlet integral such that 0 < f < 1, supE1

f = 1, and infE2 f = 0.

Proof. Denote by ea and EA the parabolic and non-parabolic ends of M with
respect to D, respectively, and, for every i, let fi be the solution of the boundary
value problem{

∆fi = 0 in Di,

fi = 1 on ∂Di ∩ E1, fi = 0 on ∂Di ∩
(
M \ E1

)
.

Then, 0 < fi < 1, and, by the Harnack principle, (a subsequence of) fi converges,
locally uniformly, to a harmonic function f on M , satisfying 0 ≤ f ≤ 1.

For every A, let hA be the harmonic function on EA constructed in Proposi-
tion 7.3. By construction, and the maximum principle, for A 	= 1, fi < hA on EA.
Thus 0 < f ≤ hA, so that 0 ≤ infEA f ≤ infEA hA = 0, and, by Lemma 7.8, f has
finite Dirichlet integral on EA.

Similarly, since 1− fi < h1 on E1, we conclude that supE1
f = 1, and that f

has finite Dirichlet integral on E1.
Finally, since f is bounded harmonic, by Lemma 7.9, it has finite Dirichlet

integral on each parabolic end ea. We may therefore conclude that f has finite
Dirichlet integral on M , as required to complete the proof. �
Theorem 7.11. Let H∞

D (M) denote the space of bounded harmonic functions with
finite Dirichlet integral on M , and by N(D) the number of non-parabolic ends of
M with respect to the relatively compact domain D. Then

N(D) ≤ dimH∞
D (M).

It follows that, if H∞
D (M) is finite-dimensional, then the M has finitely many

non-parabolic ends, whose number is bounded above by dimH∞
D (M).

Proof. Since the constants are inH∞
D (M), we may assume that N(D) ≥ 2. Let EA,

A = 1, . . . , N(D) be the non-parabolic ends of M with respect to the relatively
compact domain D. According to the previous proposition, for every A there
exists a bounded harmonic function on M with finite Dirichlet integral fA such
that supEA

fA = 1 and infEB fA = 0 if B 	= A.
To complete the proof it remains to be shown that the functions fA are

linearly independent. To this end note that for every A there exists a sequence of
points {xA,n} going to infinity in the end EA such that limn hA(xA,n) = 0, and
therefore, limn fA(xA,n) = 1 and limn fB(xA,n) = 0 if B 	= A.

Now if
∑N(D)

B=1 cBfB = 0, evaluating the sum along the sequence xA,n we
obtain cA = 0 for every A, proving that the functions fA are linearly independent.

�
An immediate application of Theorem 6.1 and Corollary 5.4 yields the fol-

lowing
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Corollary 7.12. Let (M, 〈 , 〉) be a complete, non-compact, connected Riemannian
manifold satisfying

Ric ≥ −ρ(x) (7.2)

for some non-negative continuous function ρ, and let L = −∆− ρ. Then

(i) if λ1(LM ) ≥ 0, then M has at most one non-parabolic end;

(ii) if λ1(LM\K) ≥ 0 for some compact set K, then M has at most finitely many
non-parabolic ends.

We note that one may estimate the number of all ends, parabolic and non-
parabolic, in terms of the dimension of suitable spaces of harmonic functions on
M . More precisely, if we denote by n(D) the number of parabolic ends with respect
to D, and by H+(M) the space spanned by the positive harmonic functions on
M and by H0(M, D) the space spanned by the harmonic functions which are
bounded from one side on every end with respect to D, then Li and Tam prove
that n(D) + N(D) ≤ dimH0(M, D), N(D) ≤ dimH∞

D (M) and if N(D) ≥ 1, then
n(D) + N(D) ≤ dimH+(M) (see [102], Theorem 2.1).

It should be also noted that, more recently, C.-J. Sung L.-F. Tam and J.
Wang improved on the above result (see Theorem 2.1 in [156]), by establishing
isomorphisms between the spaces H0(M, D), H+(M, D) and H∞

D (M) and direct
sums of spaces of harmonic functions defined on each end, which yields:

(i) if N(D) ≥ 1, then dimH∞
D (M) =

∑N(D)
A=1 dimH∞

D (EA),

(ii) if N(D) ≥ 1, then dimH+(M) =
∑N(D)

A=1 dimH∞
D (EA) +

∑n(D)
a=1 dimH+(ea),

(iii) if N(D) = 0 and n(D) ≥ 2, then dimH0(M, D) =
∑N(D)

A=1 dimH+(ea),

where the spaces H∞
D (EA), H+(ea) and H+(ea) are defined as in the case of the

corresponding spaces of functions on M, but with the additional assumption that
the functions vanish on the boundary of the end.

In order to deduce topological consequences from the results on the triviality
respectively, finite-dimensionality, of the space of bounded harmonic functions with
finite Dirichlet integral on M , we need to find conditions which ensure that all
ends of M are non-parabolic.

We begin with the following lemma which states that if M supports an L2-
Sobolev inequality, then every end is either non-parabolic or has finite volume (see
[25], Lemma 1 and [104], Theorem 3).

Lemma 7.13. Let M be a complete Riemannian manifold, and assume that for
some 0 ≤ α < 1, there exists a constant S (α) > 0 such that the L2-Sobolev–
Poincaré inequality

S(α)−1

(∫
M

v
2

1−α

)1−α

≤
∫

M

|∇v|2 (7.3)
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holds for every smooth function (H1 is enough) compactly supported in the com-
plement of a compact set K. Then every end E of M is either non-parabolic or it
has finite volume.

Proof. Let E be an end with respect to the domain D. Without loss of generality,
we may assume that K ⊂ D. Maintaining the notation introduced above, we
proceed as in the proof of Proposition 7.3 and, for every i, we let hi be the solution
of the boundary value problem{

∆hi = 0 in Ei,

hi = 1 on ∂E, hi = 0 on ∂Ei

so that 0 < hi < 1, and, by the gradient estimate, (a subsequence of) hi converges,
locally uniformly, to a harmonic function h on E, which satisfies 0 ≤ h ≤ 1 and
h = 1 on ∂E.

We claim that if vol (E) = +∞, then h is non-constant, and therefore
E is non-parabolic by Corollary 7.2 (or directly, since h is non-constant, (su-
per)harmonic and satisfies ∂f/∂ν ≥ 0, ν being the outward unit normal to ∂E).

To this end, fix i, and let φ be a smooth cut-off function such that suppφ ⊂ E,
φ = 1 on E \ Ei, and |∇φ| ≤ C.

For every j > i the function φhj is compactly supported in E, and vanishes
off Ej , so that, by the Sobolev inequality(∫

Ej

(φhj)2/(1−α)

)1−α

≤ S(α)
∫

Ej

|∇(φhj)|2

= S(α)
∫

Ej

(|∇φ|2h2
j + φ2|∇hj |2 +

1
2
〈∇(φ2),∇(h2

j)〉
)
.

On the other hand, since hj is harmonic in Ej and vanishes on ∂Ej , while φ
vanishes on ∂E, integrating by parts,∫

Ej

φ2|∇hj |2 = −
∫

Ej

φ2hj∆hj + hj〈∇(φ)2,∇hj〉 = −1
2

∫
Ej

〈∇(φ)2,∇(h2
j )〉

which, inserted into the above inequality, gives(∫
Ej

(φhj)2/(1−α)

)1−α

≤ S(α)
∫

Ej

|∇φ|2h2
j .

Since |∇φ| ≤ C and ∇φ = 0 outside Ei, this in turn yields(∫
Ejo\Ei

h
2/(1−α)
j

)1−α

≤ S(α)C
∫

Ei

h2
j ,
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for every j > jo > i.
To conclude, suppose that the limiting function h is constant, so that, by

the boundary condition, h ≡ 1 on E, and hj ↗ 1 on E. Letting j → +∞ in the
inequality above, and applying the monotone convergence theorem, we obtain that(

volEjo \ volEi

)1−α ≤ S(α)Cvol (Ei),

so that, letting jo → +∞, we deduce that vol (E) < +∞. �

Remark 7.14. In the statement of Lemma 7.13 we assumed that the L2-Sobolev
inequality holds outside a compact set. It is worth noticing that G. Carron has
shown that if an L2-Sobolev inequality holds in the complement of a compact set,
then it holds on M (see [26], Proposition 2.5).

Suppose now that M supports an L1-Sobolev inequality outside a compact
set K, namely for some α > 1 and there exists a constant S1(α) > 0 such that

S1(α)−1
(∫

|u|α
)1/α

≤
∫
|∇u|, (7.4)

for every smooth function u or, equivalently, for every u ∈ W 1,1(M), compactly
supported in M \K.

As mentioned in Section 5.3, the validity of an L1-Sobolev inequality like
(7.4) is equivalent to isoperimetric inequality

S1(α)−1
(
vol(Ω)

)1/α ≤ vol (∂Ω) (7.5)

for every relatively compact domain Ω ⊂⊂ M \ K with smooth boundary. In
particular, if Ω is a ball of radius r, we obtain that in Rm the only α for which an
L1-Sobolev inequality may (and in fact does) hold is α = m

m−1 . On the other hand,
recalling that the local geometry of a Riemannian manifold is almost Euclidean,
we see that in a general setting α is restricted to satisfy the inequality α ≤ m

m−1 .
Indeed, we have the following elementary lemma (whose first point is in fact

implied by the more general (7.5)).

Lemma 7.15. Suppose that the L1-Sobolev inequality (7.4) holds for some α ∈
(1, m

m−1 ] and for every function u ∈ W 1,1 compactly supported in M \ K. Then
the following holds:

(i) There exist a constant C depending only on α such that the volume growth
estimate

vol (BR(x)) ≥ CRα/(α−1)

holds for every geodesic ball BR(x) ⊂ M \ K. In particular every end with
respect to K has infinite volume.
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(ii) Assume that α < 2 (this condition is automatically satisfied if m > 2). Then
the L2-Sobolev inequality

S2(α)−1
(∫

|v| 2α
2−α

) 2−α
α ≤

∫
|∇v|2

holds for every v ∈ W 1,2(M) compactly supported in M \K, and with

S2(α) =
(2S1(α)

2− α

)2

.

Proof. Let φε be a family of smooth cut-off functions such that φε = 1 on Br(x),
= 0 off Br+ε(x) and |∇φε| ≤ 2/ε, for every ε > 0. Applying (7.4) we deduce that

S1(α)−1
(
volBr(x)

)1/α ≤ 2
ε
vol

(
Br+ε(x) \Br(x)

)
.

Letting ε → 0 and applying the co-area formula yield, for a.e. r,

(2S1(α))−1(volBr(x))1/α ≤ vol (∂Br(x)) =
d

dr
(volBr(x)),

whence (i) follows by integrating the differential inequality between 0 and R.
To prove (ii) one proceeds as in the proof of Theorem 5.11. We recall the

argument: let v be a smooth function compactly supported in M \ K. Applying
(7.4) to the function u = |v|2/(2−α), and using Schwarz’s inequality yield

S1(α)−1
(∫

|v|2α/(2−α)
)1/α

≤
∫
|∇|v|2/(2−α)|

≤ 2
2− α

(∫
|v|2α/(2−α)

)1/2(∫
|∇v|2

)1/2

,

and (ii) follows by rearranging and simplifying. �
As a consequence, it follows that if the Sobolev inequality (7.4) holds for some

α ∈
(
1, m

m−1

]
and for every function u ∈W 1,1 compactly supported in M\K, then

every end of M with respect to K is non-parabolic and, therefore, if M has at
least two ends, M supports a non-constant bounded harmonic function with finite
Dirichlet integral. In particular, if M supports an L1-Sobolev inequality off a
compact set, and the version for harmonic functions of Theorem 6.1 is applicable,
we may conclude that M has only one end. A situation where this occurs is
described in the next section (see also Section 9.2 where a slightly better result is
obtained by a different method).

As a matter of fact, using isoperimetric considerations (a la Faber–Krahn),
Carron, [27], observed that even an L2-Sobolev inequality is related to volume
growth properties of M . More precisely, we have the following result that we state
without proof.
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Theorem 7.16. Let (M, 〈, 〉) be a complete Riemannian manifold supporting the L2-
Sobolev inequality stated in (ii) of Lemma 7.15. Then, the volume growth estimate
stated in (i) of Lemma 7.15 holds.

As a corollary, the above considerations on the nature of the ends supporting
an L1-Sobolev inequality can be generalized in the following

Corollary 7.17. Assume that the L2-Sobolev inequality in (ii) of Lemma 7.15 holds
for some 0 < α < 1 and every function v ∈ W 1,2 compactly supported in M\K.
Then, every end of M with respect to K is non-parabolic. In particular, if M has
at least two ends, then M supports a non-constant harmonic function with finite
Dirichlet integral.

So far, we have been mainly concerned with non-parabolic situations. We now
take a closer look at the parabolic setting. To begin with, we recall the following
classical result by M. Nakai, [116], [144].

Theorem 7.18. Let E be an end of the Riemannian manifold (M, 〈 , 〉) with respect
to a bounded domain D with smooth boundary. Then E is parabolic if and only
if there exists a non-negative, continuous, proper function f : E → R+ which is
harmonic on E and satisfies f |∂E = 0.

The harmonic function f in the above statement is called an Evans–Selberg
potential of E. Note that, by boundary elliptic regularity, f ∈ C∞ (

E
)
; see, e.g.,

[9], Theorem 3.59.

Starting from Nakai’s theorem, and using the gluing technique developed
by L. Sario and collaborators, T. Napier and M. Ramachandran, observed the
following (see the proof of Theorem 2.6 in [117]).

Theorem 7.19. A Riemannian manifold (M, 〈 , 〉), with at least two ends, is para-
bolic if and only if the following holds. Let E1, . . . , El, l ≥ 2, be the ends of M with
respect to a compact set D with smooth boundary. Then, given b1, . . . , bl ∈ {±∞}
(not all equal) there exist proper harmonic functions f : M → R and fj : Ej → R

satisfying the further properties:

(i) fj |∂Ej
= 0;

(ii) fj has constant sign and therefore fj (x) → bj as x tends to ∞ in Ej ;

(iii) supEj
|f − fj | < +∞. In particular f (x) → bj as x tends to ∞ in Ej.

Imposing some further property on the underlying manifold (M, 〈 , 〉), this
result can be substantially improved by specifying the maximal growth rate of the
energy of f . For instance, if (M, 〈 , 〉) satisfies

inj (M) > 0, Ric ≥ −K,

then T. Napier and M. Ramachandran are able to deduce that the energy of f
must be finite. In the case of complete manifolds with almost non-negative Ricci
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curvature, we have the following remarkable result first observed by P. Li and M.
Ramachandran; see the proof of the Main Theorem in [98].

Theorem 7.20. For every m ≥ 2, there exists a constant ε = ε (m) > 0 such that
the following holds. Let (M, 〈 , 〉) be a complete, parabolic Riemannian manifold of
dimension m. Assume that, for some reference origin o ∈ M, the Ricci curvature
of M satisfies

Ric ≥ − ε

r (x)2
for r (x) >> 1 (7.6)

where r (x) = dist (x, o) . Let f : M → R be one of the proper harmonic functions
described in Theorem 7.19. Then∫

BR(o)

|∇f |2 = o
(
R2

)
as R → +∞. (7.7)

Later on, in Section 8.2, we shall employ Theorem 7.20 to study the structure
of complete Kähler manifolds. We are going to provide a somewhat detailed proof
of Theorem 7.20. To this end, recall the volume growth estimate by Li–Schoen
and Li–Ramachandran contained in Theorem 2.26 of Section 2.2, stating that for
every m ≥ 2, there exists a constant ε = ε (m) > 0 such that if M satisfies (7.6)
with constant ε, then, for every d > 1,

vol
(
B r(x)

d

(x)
)
→ +∞, as r (x)→ +∞.

Theorem 7.20 is then an easy consequence of the next more general lemma
which is modelled on some results by Li and Tam; see Lemma 3.2, Lemma 3.3,
Corollary 3.2, Theorem 4.2 in [102].

Lemma 7.21. Let (M, 〈, 〉) be a complete Riemannian manifold such that for some
o ∈M , K > 0, and d > 2,

Ric (x) ≥ − K

1 + r (x)2
, (7.8)

on M , and
vol

(
B r(x)

d

(x)
)
→ +∞, as r (x) → +∞, (7.9)

where r (x) = dist (x, o) . Let E be a parabolic end of M with respect to a compact
set D with smooth boundary, and let f : E → R+ be the Evans–Selberg potential
of E given in Theorem 7.18. Then

sup
∂BR(o)∩E

f = o
(
R2

)
and

∫
BR(o)∩E

|∇f |2 = o
(
R2

)
(7.10)

as R→ +∞.

Let us show how to deduce Theorem 7.20 from Lemma 7.21.
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Proof of Theorem 7.20. Having fixed a smooth compact domain D ⊂ M, let
E1, . . . , El denote the (parabolic) ends of M with respect to D. Let f and f1, . . . , fl

be the smooth, proper harmonic functions constructed in Theorem 7.19. For any
fixed j, since f − fj is a bounded harmonic function on the parabolic end Ej , by
Lemma 7.9 we deduce that ∫

Ej

|∇ (f − fj)|2 < +∞.

On the other hand, according to Theorem 2.26, the energy estimate of Lemma
7.21 applies to fj and we have∫

BR(o)∩Ej

|∇fj |2 = o
(
R2

)
, as R → +∞.

It follows that ∫
BR(o)∩Ej

|∇f |2 = o
(
R2

)
, as R → +∞

which implies, for every R >> 1,∫
BR(o)

|∇f |2 =
∫

D

|∇f |2 +
∫

BR(o)∩(M\D)
|∇f |2

= C +
l∑

j=1

∫
BR(o)∩Ej

|∇f |2 = o
(
R2

)
as R → +∞.

�
It remains to prove Lemma 7.21. The argument makes an essential use of

a version of the weak Harnack inequality for Schrödinger-type operators under
curvature conditions. In the form we need, it follows applying to the function
g = u exp

(−At/(1 + R2)
)

the parabolic Harnack inequality due to Li and Tam
[101], Theorem 1.1.

Theorem 7.22. Let (M, 〈 , 〉) be an m-dimensional Riemannian manifold with (pos-
sibly empty) boundary ∂M . Let o ∈ M and R > 0 be such that the closed ball
B2R (o) ⊂M \ ∂M is compact, and assume that

Ric (x) ≥ − K

1 + R2
on B2R (o) ,

for some K > 0. Finally, let A ∈ R and d > 1. Then, there exists a constant C > 0
which depends on A, m, K, d but not on R such that, if u ≥ 0 is a weak solution of

∆u +
A

1 + R2
u ≥ 0 on B2R (o) ,
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then, for every x ∈ BR (o),

u (x) ≤ C

vol
(
BR

d
(x)

) ∫
B R

d
(x)

u.

We will also need a localized version of the celebrated gradient estimate of
Cheng Yau, which we recall for the convenience of the reader (see Schoen and
Yau’s book, [147], Theorem 3.1).

Theorem 7.23. Let (M, 〈 , 〉) be an m-dimensional Riemannian manifold with (pos-
sibly empty) boundary ∂M . Let xo ∈ M and R > 0 be such that the closed ball
B2R(xo) ⊂ M \ ∂M is compact, and assume that

Ric (x) ≥ − K

1 + R2
on B2R (xo) ,

for some K > 0. Then, there exists a constant C which depends only on m such
that for every positive harmonic function f on B2R(xo),

|∇f(x)| ≤ C
(1 +

√
K

R

)
f(x), ∀x ∈ BR (xo) .

We are now in a position to give the

Proof of Lemma 7.21. For ease of notation, in the sequel we will denote by BR

the geodesic ball of radius R centered at o. Assume that D ⊆ BR0 . First, we show
that, for any R > R0,∫

BR∩E

|∇f |2 ≤ sup
∂BR∩E

f

∫
∂E

(
−∂f

∂ν

)
, (7.11)

where ν denotes the outward pointing unit normal to ∂E. Let

T = T (R) = sup
BR∩E

f = sup
∂BR∩E

f,

so that
BR ∩E ⊂ f−1 ([0, T ]) .

For the sake of simplicity, we assume T is a regular value of f. The general case
can be handled by choosing a sequence of regular values {Tn} ↘ T by applying
the reasonings below on [0, Tn] and, finally, by taking the limit as n → +∞. We
set

g = T − f.
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Integrating by parts, and recalling that f is harmonic (enough superharmonic)
and that f−1({0}) = ∂E, we obtain∫

BR∩E

|∇f |2 ≤
∫

f−1([0,T ])

|∇f |2

=
∫

f−1([0,T ])

|∇g|2

=
∫

f−1(T )

g
∂g

∂ν
+
∫

f−1(0)

g
∂g

∂ν

=
∫

∂E

T

(
−∂f

∂ν

)
= sup

∂BR∩E
f

∫
∂E

(
−∂f

∂ν

)
,

proving (7.11).
Next, we show that there exists a constant C > 0 independent of R such

that, whenever R > R0d/ (d− 2) ,

sup
∂BR∩E

|∇f |2 ≤ C

inf
x∈∂BR

vol
(
BR

d
(x)

)( sup
∂BR∩E

f
)∫

∂E

(
−∂f

∂ν

)
. (7.12)

Note that, for every x ∈ ∂BR,

dist (x, ∂BR0) = R −R0 >
2R

d

which implies

B 2R
d

(x) ⊂ E.

Now, the Bochner formula and the curvature assumption imply that

∆ |∇f |2 +
2K

1 + (d− 2)2R2/d2
|∇f |2 ≥ 0 on B 2R

d
(x) ,

where K is the constant in (7.8). Using the weak Harnack inequality of Theo-
rem 7.22, we deduce that there exists a constant C1 independent of R such that,
for every y ∈ BR/d(x),

|∇f |2 (y) ≤ C1

vol
(
BR

d
(y)

) ∫
B R

d
(y)

|∇f |2 . (7.13)
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Specializing (7.13) to y = x ∈ ∂BR(o) and using (7.11) we obtain

sup
∂BR∩E

|∇f |2 ≤ C1

inf
x∈∂BR∩E

vol(BR
d
(x))

∫
B (d+1)R

d

∩E

|∇f |2

≤ C1

inf
x∈∂BR∩E

vol(BR
d
(x))

(
sup

∂B (d+1)R
d

∩E
f
)∫

∂E

(
−∂f

∂ν

)
.

Now, let xo be the point where f attains its supremum on the set ∂B(1+d)R/d∩E.
According to Theorem 7.23, there exists a constant C2 which depends only on m
and d and K such that

|∇f |
f

≤ C2

R
on B2R/d(xo). (7.14)

Integrating this inequality along the unit speed minimizing geodesic γ joining o to
xo, for t between R and (1 + d)R/d, yields

sup
∂B (d+1)R

d

∩E
f = f(xo) ≤ eC2/df(γ(R)) ≤ eC2/d sup

∂BR∩E
f,

which, substituted into the above inequality, yields (7.12).
Similarly, integrating |∇f | along the part contained in E of the unit speed

geodesic joining o to x ∈ ∂Br ∩ E, recalling that f |∂E = 0, and using the funda-
mental theorem of calculus, we have

sup
∂Br∩E

f = sup
Br∩E

f ≤ r sup
Br∩E

|∇f | . (7.15)

Therefore, inserting these inequalities into (7.12), we get

sup
∂BR∩E

|∇f |2 ≤ CR

inf
x∈∂BR(o)∩E

vol(BR
d
(x))

(
sup

BR∩E
|∇f |

)∫
∂E

(
−∂f

∂ν

)
. (7.16)

We claim that, in view of the volume growth assumption (7.9), this implies
that

sup
BR∩E

|∇f | = o (R) , as r → +∞. (7.17)

Indeed, suppose by contradiction that there exists a positive constant A such that,
along some sequence Rk → +∞,

sup
BRk

∩E
|∇f | ≥ ARk.

Without loss of generality, we can assume

sup
BRk

∩E
|∇f | = sup

∂BRk
∩E
|∇f | ,
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and we deduce from (7.16) that

ARk ≤ CRk

inf∂BRk
vol

(
BRk

d

(x)
) ∫

∂E

(
−∂f

∂ν

)
.

Thus

inf
∂BRk

vol
(
BRk

d

(x)
)
≤ CA−1

∫
∂E

(
−∂f

∂ν

)
,

which contradicts (7.9). This proves (7.17). Hence, by (7.15),

sup
∂BR∩E

f = o
(
R2

)
as r → +∞, which together with (7.11) yields∫

BR∩E

|∇f |2 = o
(
R2

)
as R → +∞, as required to complete the proof. �

To complete the picture, we point out that, up to avoiding the properness
assumption, the result of Theorem 7.20 still holds even in the non-parabolic setting.
This observation is proved in the Li-Tam paper [102] in a quite implicit form and is
further remarked in Li–Ramachandran, [98]. A direct, explicit construction using
a gluing technique can be readily obtained following Napier–Ramachandran, [117].

Theorem 7.24. For every m ≥ 2, there exists a constant ε = ε (m) > 0 such
that the following holds. Let (M, 〈, 〉) be a complete, non-parabolic Riemannian
manifold of dimension m with at least two ends. Assume that, for some reference
origin p ∈ M, the Ricci curvature of M satisfies

Ric ≥ − ε

r (x)2
for r (x) >> 1 (7.18)

where r (x) = dist (x, p) . Then, there exists a positive non-constant harmonic
function f on M satisfying∫

BR(p)

|∇f |2 = o
(
R2

)
as R → +∞. (7.19)

Proof. Having fixed a smooth compact domain D, we denote by e1, . . . , en(D) and
by E1, . . . , EN(D) respectively the parabolic and the non-parabolic ends of M
with respect to D. According to Proposition 7.3, for every A = 1, . . . , N (D) and
a−A > 0, we find a harmonic function gA = aA(1− hA) : EA → R satisfying

(i) 0 < gA ≤ 1, (ii) gA = 0 on ∂EA, (iii) |∇gA| ∈ L2 (EA) . (7.20)
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On the other hand, applying Lemma 7.21, for every j = 1, . . . , n (D), we get a
proper harmonic function fj : ej → R such that

(i) fj > 0 on ej, (ii) fj = 0 on ∂ej, (iii)
∫

BR(p)∩ej

|∇fj |2 = o
(
R2

)
. (7.21)

To get the desired function f we now glue the various harmonic functions together.
Let Ω be a relatively compact domain with D ⊂⊂ Ω, and note that according to
Remark 7.5 there exists a constant ε > 0 such that gA ≥ 3ε > 0 on EA \ Ω. Next
let χ : R → R be a smooth function such that χ′ ≥ 0, χ′′ ≥ 0, χ (t) = 0 for t < ε,
χ (t) = t− 2ε for t > 3ε. We define a function α : M → R by setting

α (x) =

⎧⎨⎩
χ (fj) on ej ,
χ (gA) on EA,
0 on D.

(7.22)

Direct computations show that α (x) is a non-negative subharmonic function on
M . Note that since fj is proper, the level set {x ∈ ej : 0 ≤ fj(x) ≤ 3ε} is compact
for every j. As noted above, this also holds for every gA, and, since χ(t) is linear
if t ≥ 3ε > 0, we deduce that α (x) is harmonic off a large enough compact set,
and therefore, 0 ≤ ∆α ∈ C∞

c (M) . Let β : M → R be the solution of the Poisson
equation

∆β = ∆α (7.23)

given by

β (x) = −
∫

M

G (x, y)∆α (y) dy,

where G (x, y) is the positive Green function of M , which exists because of the
non-parabolicity assumption. Recall that β ≤ 0 is bounded, |∇β| ∈ L2 (M) and
β(xn)→ 0 along any regular sequence. See Appendix 7.2. Finally, define f : M →
R as

f (x) = α (x) − β (x) .

Clearly, f (x) ≥ 0 and, by (7.23), f (x) is harmonic. Moreover, since β (x) has
finite Dirichlet integral, recalling definition (7.22) of α (x), and properties (7.20)
(iii) and (7.21) (iii), we see that∫

BR

|∇f |2 ≤ C +
n(D)∑
j=1

∫
BR∩ej

|∇fj −∇β|2 +
N(D)∑
A=1

∫
BR∩EA

|∇gA −∇β|2

≤ C + 2
n(D)∑
j=1

∫
BR∩ej

|∇fj |2 + 2
N(D)∑
A=1

∫
BR∩EA

|∇gA|2 + 2
∫

M

|∇β|2

= o
(
R2

)
, as R → +∞.

Finally, the non-constancy of f is obvious if M has at least one parabolic end.
Otherwise, limn f(xn) = limn g(xn) = aA− 2ε along any regular sequence {xn} ⊂
E, and it suffices to choose the aA’s not all equal to conclude. �
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7.2 Appendix: Further characterizations of parabolicity

In Section 7.1 we gave a self-contained introduction to parabolic manifolds and
parabolic ends using the point of view of function theory and maximum principles.
As a matter of fact, parabolicity is related to a wide class of equivalent properties
involving the Green kernel, Brownian motion, capacity of condensers, L2 differ-
ential forms, and so on. We invite the interested reader to consult the very nice
survey paper by A. Grigor’yan, [72]. Here, we collect those characterizations of a
parabolic manifold that shall be employed at some isolated points in the book.

The Green kernel and the Poisson equation. Let (M, 〈, 〉) be a connected manifold
of dimension m = dimM . We do not assume that M is geodesically complete.
Given a smooth, compact domain Ω ⊂⊂ M , the Dirichlet Green kernel GΩ (x, y)
of Ω is defined as a positive, symmetric, fundamental solution of the Laplace–
Beltrami operator satisfying Dirichlet boundary conditions. Namely GΩ : Ω×Ω \
{(x, x) : x ∈ Ω} → R is a smooth function such that:

(P) (Positivity) GΩ (x, y) > 0.

(S) (Symmetry) GΩ (x, y) = GΩ (y, x) .

(H) (Harmonicity) x �−→ GΩ (x, y) is harmonic, for every fixed y ∈ Ω.

(A) (Asymptotic behavior)

G (x, y) ∼ C (m)
{ − log d (x, y) m = 2

d (x, y)2−m
m ≥ 3

, as d (x, y) → 0.

(F) (Fundamental solution) For every f ∈ C∞
c (Ω),

∆
∫

Ω

GΩ (x, y) f (y) dy =
∫

Ω

GΩ (x, y)∆f (y)dy = −f (x) , on Ω.

(D) (Dirichlet condition) GΩ (x, y) = 0 on x ∈ ∂Ω, for every fixed y ∈ Ω.

By the maximum principle, GΩ increases with Ω. Therefore, letting Ω ↗ M (in
the sense of an exhaustion), GΩ converges pointwise to a well-defined limit G :
M×M → R≥0∪{+∞}. In fact, by the Harnack principle, GΩ converges uniformly
on compact subsets of M ×M \{(x, x) : x ∈M} and the limit function G is either
identically equal to +∞ or it is finite for every x 	= y. In this latter case, G is
called the positive Green function of M , and satisfies conditions (P), (S), (H),
(A), (F) listed above, with Ω replaced by M . Moreover, G enjoys the following
further properties:

(M) (Minimality) If G̃ (x, y) is a second function satisfying (P), (S), (H), (A), (F),
then G̃ (x, y) ≥ G (x, y). In particular infM G (x, y) = 0, for every y ∈M .
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Indeed, it is an easy consequence of the maximum principle that G̃ (x, y) ≥
GΩ (x, y) for every x, y ∈ Ω ⊂⊂ M . As for the infimum property, note that, for
every constant C ∈ R, the function G (x, y)+C is again a symmetric fundamental
solution of the Laplacian, satisfying (A).

(LU) (Locally uniform integrability properties) Having fixed relatively compact
domains D1 ⊂⊂ D2 ⊂⊂M ,

y �−→ G (x, y) ∈ L1
loc (M) ∩ L∞ (M \D2) ,

uniformly for x ∈ D1.

Indeed, the uniform, L1
loc-integrability follows easily from (A). On the other hand,

by the local Harnack inequality applied to the family of harmonic functions
{G (·, y)}y∈M−D2

, there exists a constant C independent of x ∈ D1 and such
that

G (x, y) ≤ CG (o, y) , ∀y ∈M −D2.

Moreover
sup

M−D2

G (o, y) < +∞.

Indeed, let Ωn be an exhaustion of M by open sets containing o and with smooth
boundaries, and let Gn be the Dirichlet Green kernel of Ωn, so that Gn (x, y) ↗
G (x, y) locally uniformly in M − {x} . Let C > sup∂D2

G (o, y) . Then, for every
sufficiently large n, C > G (o, y) ≥ Gn (o, y) , for y ∈ ∂D2 and, clearly, C >
Gn (o, y) = 0 on ∂Ωn. Thus, by the comparison principle, C > Gn (o, y) in Ωn\D2.
Whence, letting n → +∞, G (0, y) ≤ C for every y ∈ M \D2. It follows that there
exists a constant C′ > 0 independent of x ∈ D1 and y ∈M \D2 such that

G (x, y) ≤ C′.

This proves that G ∈ L∞ (M \D2) uniformly for x ∈ D1.

(C) (Convergence along regular sequences) Let E be a non-parabolic end. Then
{xn} is regular for E if and only if G(xn, y)→ 0 as n → +∞ for every y ∈M .

We state the following result whose proof can be found in [72].

Theorem 7.25. The Riemannian manifold (M, 〈 , 〉) is non-parabolic if and only if
it supports a positive Green function.

Property (F) above states that the positive Green function of a non-parabolic
manifold inverts the Laplace–Beltrami operator and, for any f ∈ C∞

c (M), enables
us to solve the Poisson equation

∆u = f (x) on M.

Using the integrability properties (LU) one can show that the same conclusion
holds in the more general case f (x) ∈ C1,α (M) ∩ L1 (M) ; see Lemma 8.5. We
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explicitly note that, if f is compactly supported, then the solution u satisfies
|∇u| ∈ L2 (M). Moreover, if {xn} is a regular sequence relative to a non-parabolic
end, then u(xn) → 0 as n → +∞. Indeed, let f ∈ C∞

c (M), f ≥ 0 and f 	≡ 0.
Then

u (x) =
∫

M

f (y)G (x, y) dy

is a smooth, positive, bounded solution of the Poisson equation

∆u = −f (x) .

As remarked by T. Lyons–D. Sullivan, [110], in some limit sense and for the special
solution u, one has ∫

M

|∇u|2 =
∫

M

u∆u =
∫

M

uf < +∞.

To be precise, following Napier–Ramachandran, [117], consider a smooth exhaus-
tion {Ωj} of M such that suppf ⊂ Ω0, let Gj denote the Dirichlet Green function
corresponding to Ωj . and recall that Gj ↗ G. Next, define

uj (x) =
∫

M

f (y)Gj (x, y) dy

and note that uj is the unique positive solution of the boundary value problem{
∆uj = −f on Ωj ,
uj = 0 on ∂Ωj .

In particular, uj is a harmonic function on Ωj\suppf . The sequence {uj} is mono-
tone increasing and converges to u, uniformly on compact subsets of M\suppf .
Using the local gradient estimates by Cheng–Yau (or the Harnack principle), we
deduce that ∇uj → ∇u uniformly on compact subsets of M\suppf . Now, inte-
grating by parts, ∫

Ωj

ujf = −
∫

Ωj

uj∆uj =
∫

Ωj

|∇uj |2 .

Whence, letting j → +∞,

+∞ >

∫
M

uf = lim
j→+∞

∫
Ωj

|∇uj |2 ≥
∫

M

lim inf
j→+∞

{
|∇uj |2 χΩj\Ω0

}
=

∫
M\Ω0

|∇u|2 .

Finally, the last statement follows from (LU), (C) and dominated convergence.

Condensers and capacity. The next characterization of parabolicity that we need
to recall involves the concept of (absolute) capacity of a compact set.
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By a condenser we mean any couple E = (K, Ω) where K is compact and
Ω ⊆M is an open set with K ⊂ Ω. The capacity of the condenser E is defined as

cap (K, Ω) = inf
u∈L(K,Ω)

∫
M

|∇u|2 ,

where L (K, Ω) is the space of Lipschitz functions 0 ≤ u ≤ 1 on M which are
compactly supported in Ω̄ and satisfy u ≡ 1 on K. In case Ω = M one can
simply write cap (K) and speak of the (absolute) capacity of the compact set K.
We remark that if both K and Ω are smooth, relatively compact domains, then
the infimum is realized by a function u0 ∈ C∞ (Ω \K) solving the boundary value
problem ⎧⎨⎩

∆u0 = 0 on Ω \K,
u0 = 0 on ∂Ω,
u0 = 1 on ∂K.

The extremal function u0 is called the equilibrium potential of E. The following
result can be found in [72].

Theorem 7.26. The Riemannian manifold (M, 〈 , 〉) is non-parabolic if and only
every compact set has positive capacity.

L2-vector fields. There is a further characterization of non-parabolicity that we
would like to recall. Essentially, it represents a global form of the divergence the-
orem for L2 vector fields. By comparison, recall that if (M, 〈 , 〉) is geodesically
complete and X is a vector field on M satisfying X, divX ∈ L1 (M), then∫

M

divX = 0.

Indeed, since M is geodesically complete there exists a family of smooth cut-off
functions φR such that φR = 1 on BR, φR = 0 off B2R and |∇φR| ≤ C/R. Using
the function φR as test function in the definition of weak divergence, we obtain∫

M

φRdivX = −
∫
〈∇φR, X〉 ≤ C

R

∫
B2R\BR

|X |

so that letting R → +∞ and using the dominated convergence theorem gives∫
M

divX ≤ 0.

Applying the same argument to −X yields the required conclusion.
This is a celebrated result by P.M. Gaffney, [56]. In a sense, X ∈ L1 (M)

has vanishing “boundary values”. In the L2 setting, without the completeness
assumption, we have the next result which is known in the literature as the Kelvin–
Nevanlinna–Royden criterion for non-parabolicity; see [110], and [72] for historical
remarks. We also advise the reader that there is a non-linear extension of the
criterion due to Gold’stein and M. Troyanov, [62].
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Theorem 7.27. Let (M, 〈, 〉) be a complete manifold. Then M is non-parabolic if
and only if there exists a (C1) vector field X on M such that

(i) |X | ∈ L2 (M) ,
(ii) divX ∈ L1

loc (M) and (divX)− ∈ L1 (M) ,
(iii) 0 <

∫
M

divX ≤ +∞.

Proof. Assume first that M is non-parabolic. Let f be a smooth, compactly sup-
ported, non-negative and non-identically zero function, and let G(x, y) be the
Green kernel of M . Let

u = −
∫

M

G(x, y)f(y)dy.

According to the discussion after the statement of Theorem 7.25 the vector field
X = ∇u is in L2 and div X = ∆u = f is compactly supported, smooth, non-
negative and not identically zero, as required.

To prove the reverse implication we show that if M is parabolic, and X is a
vector field satisfying conditions (i) and (ii) , then

∫
M div X ≤ 0. To this end, let

D = D0 ⊂⊂ D1 · · · ⊂⊂ Dn be an exhaustion of M by relatively compact domains
with smooth boundary, and, for every n, let φn be the solution of the Dirichlet
problem {

∆φn = 0 on Dn \D,

φn = 1 on ∂D, φn = 0 on ∂Dn,

and extend it to a Lip function on M by setting it constant on D and on M \Dn.
The sequence φn converges monotonically to a harmonic function φ on M \ D̄,
and, since φ = 1 on ∂D, then φ ≡ 1, by the assumed parabolicity of M . Further,
according to Remark 7.7, the convergence is locally uniform in C2(M \D), so that,
in particular ∇φn → 0 uniformly on ∂D, and we have∫

Dn\D

|∇φn|2 = −
∫

∂D

φn
∂φn

∂ν
→ 0, as n → +∞.

Using the Lip function φn as test function, and arguing as above, we write∫
φndiv X = −

∫
〈∇φn, X〉 ≤ −||∇φn||L2 ||X ||L2 .

The required conclusion follows by noting that as n → +∞ the right-hand side
tends to zero, while ∫

φndiv X →
∫

div X

by an application of the monotone convergence theorem to the positive and neg-
ative part of φndiv X. �
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As noted above, if we assume that M is parabolic and divX ∈ L1, applying
the theorem to X and −X we conclude that∫

M

divX = 0.

As an immediate consequence, if (M, 〈, 〉) is parabolic, every subharmonic function
u : M → R satisfying |∇u| ∈ L2 (M) must be harmonic. Indeed, u turns out to be
constant

Corollary 7.28. Let (M, 〈 , 〉) be a parabolic manifold. If ϕ ∈ C2 (M, R) is a sub-
harmonic function satisfying |∇ϕ| ∈ L2 (M), then ϕ is constant.

Proof. Let ϕ be subharmonic with gradient in L2. According to the previous re-
mark, ϕ is in fact harmonic. Consider now the smooth function f =

(
1 + ϕ2

) 1
2 .

Direct computations show that f is subharmonic. Moreover

|∇f | ≤ |∇ϕ|

so that |∇f | ∈ L2 (M). Applying the first part of the proof yields that f is har-
monic. Since f ≥ 0 and M is parabolic we conclude that f is constant. As a
consequence, ϕ must be constant. �

We also observe that in the Kelvin–Nevanlinna–Royden criterion it suffices
to consider gradient vector fields only. We refer to Appendix B for notation and
basic facts concerning differential forms.

Proposition 7.29. Let (M, 〈 , 〉) be a complete manifold of dimension m ≥ 3. Then,
for every vector field X ∈ L2 (M) there is a function u ∈ W 1,2

loc (M) satisfying
∇u ∈ L2 (M) and

div X = ∆u weakly on M.

Proof. By the Hodge–Kodaira decomposition (see Appendix B), given the L2-
differential form ω = X� ∈ L2Λ1 (M), there are sequences {uk} ⊂ C∞

c (M) ,
{vk} ⊂ C∞

c Λ2 (M) and a harmonic 1-form γ ∈ L2H1 (M) such that

(a) duk
L2→ α, (7.24)

(b) δvk
L2→ β,

and
ω = α + β + γ.

Fix any Ω ⊂⊂ M with smooth boundary. Since {|duk|} is bounded in L2 (Ω) , it
follows from the local Poincaré inequality that {uk} is bounded in W 1,2 (Ω) . By
the Rellich-Kondrakov compactness theorem,

{ukh
} L2

→ u
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for some u ∈ L2 (Ω) . As a matter of fact, according to (7.24) (a), {ukh
} is a con-

vergent sequence in W 1,2
loc and therefore u ∈W 1,2 (Ω) with du = α. Repeating the

argument on a smooth, compact exhaustion of M gives a function u ∈ W 1,2
loc (M)

satisfying du = α on M.
To conclude, note that since d is a closed operator on L2, then so is δ, and

δβ = 0 by (7.24) (b). Obviously, δγ = 0. Thus, div X = δω = δα = δdu =
−∆u. �

7.3 Appendix: The double of a Riemannian manifold

Following J. Munkres, [115], we recall the construction of the Riemannian doubling
of a manifold with boundary.

Let M be a differentiable, m-dimensional manifold with smooth compact
boundary ∂M . The interior of M is denoted by M̊ = M \∂M . Let us consider two
copies of M , say M × 0, M × 1. The (topological) double of M is defined as the
topological manifold (without boundary) D (M) obtained from M × 0 ∪M × 1,
identifying points x×0 and x×1 for every x ∈ ∂M . The homeomorphic images of
M̊ × 0 and M̊ × 1 in D (M) are denoted by M0 and M1. In order to introduce a
smooth structure on D (M), recall that ∂M has a product neighborhood, i.e., we
can find an open set W ⊂ M and a smooth diffeomorphism p : W → ∂M × [0, 1)
whose restriction p|∂M : ∂M → ∂M×0 is the identity map p (x) = x×0. Without
loss of generality, we can always assume that W is relatively compact. Applying
this construction to each copy M×0 and M×1 of M we get product neighborhoods
p0 : W0 → ∂M × [0, 1) and p1 : W1 → ∂M × (−1, 0]. Let W be the union of W0

and W1 in D (M) and note that the maps p0 and p1 induces a homeomorphism
p :W → ∂M × (−1, 1). A differentiable structure on D (M) is defined by imposing
the following conditions:

(1) The homeomorphism p is a smooth diffeomorphism.

(2) The inclusions i0 : ∂M × 0 ↪→ D (M) and i1 : ∂M × 1 ↪→ D (M) are smooth
imbeddings.

Although the differentiable structure thus obtained depends on the choice of
the product neighborhoods, it can be shown that the resulting smooth manifolds
are diffeomorphic to each other.

Suppose now that M is endowed with a smooth Riemannian metric 〈, 〉.
Obviously, this induces metrics 〈, 〉0, 〈, 〉1 on M ×0 and M ×1 which, in turn, give

rise to the metrics 〈, 〉M0
and 〈, 〉M1

onM0 andM1. Thus, each
(
Mj, 〈, 〉Mj

)
is an

isometric copy of
(
M̊, 〈, 〉

)
in D (M) . Let 〈, 〉W be the Riemannian metric onW ⊂

D (M) obtained by pulling back via p the product metric 〈, 〉|∂M +dt⊗dt of ∂M×
(−1, 1). Next, choose a relatively compact, open set V = p−1 (∂M×(−ε, ε))⊂⊂ W
and consider a smooth partition of unity {ϕ0, ϕ1, ϕV} of D (M), subordinated to
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the open cover {M0,M1,V}. A Riemannian metric on D (M) is then defined by
the formula

(, ) = ϕ0 〈, 〉M0
+ ϕ1 〈, 〉M1

+ ϕ2 〈, 〉W .

We remark that the parabolicity of the double D is independent of how the metric
is defined in a compact neighborhood of the gluing, which makes the definition of
a parabolic end consistent.

7.4 Topology at infinity of submanifolds of C-H spaces

In order to put the next results into the appropriate perspective, we recall that
the topology at infinity of a submanifold Mm of Rn is influenced and, in some
cases determined, by the size of its second fundamental tensor II.

In the setting of complete, minimal hypersurfaces in Euclidean space, J. Tysk,
[158], has shown that the Lm-integrability of |II| forces the submanifold to possess
only a finite number of ends. See also the more recent paper by L. Ni, [120], for
a different proof and related results. If we also add the stability assumption, by a
result of Y.-B. Shen and X.-H. Zhu, [151], the immersion is totally geodesic. On
the other hand, H. Cao, Y. Shen and S. Zhu have shown in [25] that stability alone
implies that the hypersurface has simple topology at infinity, i.e., it has only one
end.

We note that a suitable control of the Lm size of |II| implies stability; see
[153] and Lemma 7.34 below. According to an isolation phenomenon pointed out
by M. Anderson, [7], and quantified by P. Berard, [12], if we allow the codimension
of the minimal immersion to be greater than 1 and the Lm size of |II| is sufficiently
small, then the submanifold is again an affine space; see also Theorem 7.36 below.

Finally, we know from the aforementioned paper by Ni, [120], that if we relax
the bound on |II| the minimal submanifold still has only one end.

Our main purpose is to extend the results both in [25] and in [120] by show-
ing that small perturbations of the minimal immersion (so that minimality is lost)
do not modify the topology at infinity of the submanifold. In fact, we are able
to quantify the amount of such perturbation and to replace the Euclidean ambi-
ent space with a Cartan–Hadamard manifold, i.e., a complete, simply connected
Riemannian manifold of non-positive sectional curvature; see Theorems 7.31 and
7.35 below. We should remark that G. Carron has obtained in [28] a similar result,
with a different method and a less precise condition on the second fundamental
form of the immersion.

We recall that, according to D. Hoffman and J. Spruck, [83], if f : (M, 〈 , 〉) →
(N, ( , )) is an isometric immersion of a complete manifold M of dimension m ≥ 2
into a Cartan–Hadamard manifold N , and H denotes the mean curvature vector
field of f , then the following L1-Sobolev inequality holds:

S1 (m)−1

(∫
M

|u| m
m−1

)m−1
m

≤
∫

M

(|∇u|+ |H | |u|) , ∀u ∈W 1,1
0 (M) (7.25)
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with

S1 (m) =
π2m−1

ω
1
m
m

(m + 1)1+
1
m

m− 1
, (7.26)

ωm being the volume of the unit ball of Rm. In particular, if we assume that
H ∈ Lm(M), so that, for a suitable compact K,

‖H‖Lm(M\K) < S1 (m)−1
,

then, applying Hölder inequality, the term involving the mean curvature can be
absorbed in the left-hand side, showing that the standard L1-Sobolev inequality

C

(∫
|u| m

m−1

)m−1
m

≤
∫
|∇u| (7.27)

holds for every u ∈ W 1,1
0 (M) supported in M \ K. According to Lemma 7.15,

every end of M \K is non-parabolic, and, if m ≥ 3, the L2-Sobolev inequality

C

(∫
|v| 2m

m−2

)m−2
m

≤
(∫

|∇v|2
) 1

2

(7.28)

holds in M \ K. We are therefore in the situation considered at the end of Sec-
tion 7.1, and we have the following lemma.

Lemma 7.30. Let f : (M, 〈 , 〉) → (N, ( , )) be an isometric immersion of a complete
manifold M of dimension m ≥ 3 into a Cartan–Hadamard manifold N . Denote
by H the mean curvature vector field of f and assume that H ∈ Lm(M). Then,
each end of M is non-parabolic, and therefore the cardinality of the ends of M is
bounded above by the dimension of the space of bounded harmonic functions on M
with finite energy. In particular, if M has at least two ends, then M supports a
non-constant, bounded, harmonic function with finite energy.

We are now in a position to prove our first result on the topology at infinity of
an immersed submanifold of a Cartan–Hadamard space with controlled extrinsic
geometry, which generalizes [25], Theorem 1. We note that assumption (7.32)
below is the counterpart of the stability condition assumed there.

Theorem 7.31. Let f : (M, 〈 , 〉) → (N, ( , )) be an isometric immersion of a com-
plete manifold M of dimension m ≥ 3 into a Cartan–Hadamard manifold N whose
sectional curvature (along f) satisfies

(0 ≥) NSectf(x) ≥ − NR (x) (7.29)

for some non-negative function NR ∈ C0 (M). Denote by H and II the mean
curvature vector field and the second fundamental tensor of f respectively, and let
a(x) ∈ C0(M) be the function defined by

a (x) = (m− 1) NR (x) + |II| (|II|+ m |H |) (x) . (7.30)
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Assume that H ∈ Lm(M), and let L = −∆− a(x).
If

λ1

(
LM\K

) ≥ 0, (7.31)

for some compact set K, then M has only finitely many ends.
If

λ1

(
LM

) ≥ 0, (7.32)

then M has only one end.

Proof. Indeed the Gauss equations imply that the Ricci tensor of M satisfies

MRic (x) ≥ −a (x) .

According to Lemma 7.30, all ends of M are non-parabolic. The conclusion now
follows from Corollary 7.12. �

At the end of [7], M. Anderson observed that a complete minimal subman-
ifold f : Mm → RN of finite total scalar curvature |II| ∈ Lm (M) is necessarily
totally geodesic provided it has only one end; see Theorem 5.2 in [7]. Combining
this result with Theorem 7.31 we obtain the following theorem which was first
proved, with different arguments and in case N = m + 1, by Y.B. Shen and X.H.
Zhu, [151].

Theorem 7.32. Let f : Mm → RN be a complete, minimal submanifold of finite
total scalar curvature. Suppose that f is stable, in the sense that λ1

(
−∆− |II|2

)
≥

0. Then f (M) is an affine m-plane.

Our next task is to quantify the heuristic idea according to which the bottom
of the spectrum of L = −∆−a(x) is non-negative provided the norm of the function
a(x) in (7.30) is small.

It is well known that if an L2-Sobolev inequality holds on M , then λ1

(
LM

) ≥
0 provided a suitable Lp-norm of a is strictly less than the Sobolev constant (see,
e.g., [153]).

In the next lemma, we obtain the same conclusion in terms of an L2-Sobolev
inequality with a potential like (7.33) below.

Lemma 7.33. Suppose that the following Sobolev-type inequality

S(α)−1

(∫
M

v
2

1−α

)1−α

≤
∫

M

(
|∇v|2 + h(x)v2

)
, ∀v ∈ C∞

c (M) (7.33)

holds on M , where 0 < α < 1, S (α) > 0 is a constant, and h (x) ∈ C0 (M) is a
non-negative function. Consider the Schrödinger operator

L = −∆− a(x)
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with a(x) ∈ C0 (M), and set a+ (x) = max{a(x), 0}. If

‖h (x) + a+ (x)‖
L

1
α (M)

≤ S (α)−1
, (7.34)

then
λ1(LM ) ≥ 0.

If
‖h (x) + a+ (x)‖

L
1
α (M)

< +∞, (7.35)

then there exists a sufficiently large compact K such that

λ1(LM\K) ≥ 0.

Proof. Let K be a, possibly empty, compact set in M and let Ω = M \ K. For
every v ∈ C∞

c (Ω) \ {0}, using (7.33) and applying Hölder inequality, we have∫
Ω

(|∇v|2 − a(x)v2) ≥
∫

Ω

(|∇v|2 + h(x)v2)−
∫

Ω

(a+(x) + h(x))v2

≥
∫

Ω

(|∇v|2 + h(x)v2)− ||a+ + h||
L

1
α (Ω)

(∫
Ω

v2/(1−α)
)1−α

≥ (1 − S(α)||a+ + h||
L

1
α (Ω)

)
∫

Ω

(|∇v|2 + h(x)v2).

If (7.34) holds, then, taking K = ∅, from the variational characterization of the
bottom of the spectrum, we immediately obtain that λ1(LM ) ≥ 0. On the other
hand, if (7.35) holds, then we may find a compact set K such that the term in
brackets on the right-hand side of the above inequality is positive, and we conclude
that λ1(LM\K) ≥ 0. �

There are a number of geometric situations where the Sobolev inequality
(7.33) is satisfied for some choices of α, S (α) , h(x). The interested reader can
consult, e.g., [80].

Assume now that (M, g) is a submanifold of a Cartan–Hadamard manifold, so
that the L1-type Sobolev inequality (7.25) holds. As above, we apply this inequality
to the function u = |v| 2(m−1)

m−2 with v ∈ C∞
c (M) to get

S1(m)−2

(∫
M

|v| 2m
m−2

)m−2
m

≤
{

2(m− 1)
m− 2

(∫
M

|∇v|2
) 1

2

+
(∫

M

|H |2 |v|2
) 1

2
}2

.

Expanding the square on the right-hand side and applying the inequality 2ab ≤
ε2a2 + ε−2b2 with ε > 0, we finally obtain the L2-Sobolev inequality

S2 (m, ε)−1

(∫
M

|v| 2m
m−2

)m−2
m

≤
∫

M

|∇v|2 + ε2 (m− 2)2

4(m− 1)2

∫
M

|H |2 v2, (7.36)
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where

S2 (m, ε) =
4(m− 1)2

(m− 2)2
1 + ε2

ε2
S1 (m)2 . (7.37)

We observe that in case f is a minimal immersion, the best L2-Sobolev constant
in (7.37) is achieved by choosing ε = +∞. In this situation, we set

S2 (m) = S2 (m, +∞) .

In particular, from Lemma 7.33 we immediately conclude

Lemma 7.34. Let f : (M, 〈 , 〉) → (N, ( , )) be an isometric immersion of a complete
manifold M of dimension m ≥ 3 into a Cartan–Hadamard manifold N . Denote
by H the mean curvature vector field of f . Consider the Schrödinger operator

L = −∆− a (x) (7.38)

with a ∈ C0 (M). If, for some ε > 0,∥∥∥∥ (m− 2)2ε2

4(m− 1)2
|H |2 + a+ (x)

∥∥∥∥
L

m
2

≤ S2 (m, ε)−1
, (7.39)

then
λ1

(
LM

) ≥ 0.

If ∥∥∥∥ (m− 2)2ε2

4(m− 1)2
|H |2 + a+ (x)

∥∥∥∥
L

m
2

< +∞, (7.40)

then, for a sufficiently large compact K,

λ1

(
LM\K

) ≥ 0.

Lemma 7.34 allows us to obtain a version of Theorem 7.31 above, where
the assumption on the bottom of the spectrum of −∆ − a(x) is replaced by a
suitable control on the second fundamental tensor of the immersion. We note that
our result extends the above mentioned result of Ni, [120], valid for a minimal
submanifold of Rn, and yields a quantitative improvement on the result of Carron
[28] where the constant in the integral bound is not explicit. We also note that
since

S2(m, ε)−1 <
(m− 2)2ε2

4(m− 1)2
S1(m)−2,

the norm estimate in the statement of Theorem 7.35 below implies that ‖H‖Lm <
S1(m)−1. Thus in this case, the standard L1-Sobolev inequality (7.27) holds on
M and we may conclude that L2-Sobolev inequality (7.28) is valid on M , without
having to appeal to Proposition 2.5 in [26].
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Theorem 7.35. Maintaining the notation of Theorem 7.31, assume that the sec-
tional curvature (along f) of N satisfies (7.29) and that∥∥∥∥ (m− 2)2ε2

4(m− 1)2
|H |2 + (m− 1) NR (x) + |II| (|II|+ m |H |) (x)

∥∥∥∥
L

m
2

≤ S2 (m, ε)−1

for some ε > 0, where S2 (m, ε) is the L2-Sobolev constant defined in (7.37). Then
M has only one end.

If the norm on the left-hand side is finite, then M has finitely many ends.

Finally, combining Lemma 7.34 with some careful computations of Berard,
[12], we obtain the following isolation phenomena for minimal submanifolds of the
Euclidean space. Note that our constant improves on that of Proposition II.1 in
[12].

Theorem 7.36. Let f : (M, 〈 , 〉)→ Rn be a complete, minimal, immersed subman-
ifold of dimension m ≥ 3 whose second fundamental tensor II satisfies(∫

M

|II|m
) 2

m

≤ 2

m
(
2− 1

n−m

)S2 (m)−1
. (7.41)

Then f is totally geodesic.

Proof. From Proposition I.2 of [12] we know that the function ψ = |II| is a (weak)
solution of

ψ∆ψ +
(

2− 1
n−m

)
|II|2 ψ2 ≥ 2

(m + 2) (n−m)− 2
|∇ψ|2 .

Moreover, by (7.41), ψ ∈ Lm (M) so that

1∫
∂Br

ψm
	∈ L1 (+∞) .

We define the differential operator

L = −∆− m

2

(
2− 1

n−m

)
|II|2 ,

and we note that, according to (7.41), we can apply Lemma 7.34 to obtain that
λ1(LM ) ≥ 0. This means that there exists a positive solution ϕ ∈ C∞ (M) of the
equation

∆ϕ +
m

2

(
2− 1

n−m

)
|II|2 ϕ = 0.

Applying Theorem 4.5, case 1, with the choices a (x) =
(
2− 1

n−m

)
|II|2, H = m

2 ,

β = m
2 − 1, A = − 2

(m+2)(n−m)−2 , we therefore conclude that ψ is constant and
a (x) ≡ 0, i.e., |II| ≡ 0. �
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7.5 Line bundles over Kähler manifolds

Suppose (M, 〈, 〉 , J) is a complete Kähler manifold of complex dimension m and
Ricci form Rij . Let E be a holomorphic line bundle over M endowed with a
Hermitian metric (, ) with curvature form Ωij . The complex vector space of Lp

holomorphic (k, 0)-forms with values in E is denoted by LpΛ(k,0)
holo (E) . We also set

LpΓholo

(⊗kE
)

for the space of Lp holomorphic sections of tensor powers of E.
In [121], L. Ni, Y. Shi and L.F. Tam investigate geometric conditions forcing

dimL2pΛ(k,0)
holo (E) = 0. In the L2 setting, vanishing results and corresponding

quantitative finiteness theorems for dimL2Γholo

(⊗kE
)

are established, e.g., in
works by N. Mok, [112], and by L. Ni, [119]. In this section, as a direct application
of Theorem 5.1, we prove qualitative Lp finite-dimensionality results in both these
situations.

To begin with, we consider the space LpΛ(k,0)
holo (E) . To simplify the writings,

let

a(x) = 4
(

s(x) − min
1≤i1<···<ik≤m

(γi1 + · · ·+ γik
)
)

,

where γ1, . . . , γm are the eigenvalues of the Ricci form Rij of M and s (x) is the
trace of the curvature form Ωij of E with respect to (, ).

We have the following

Theorem 7.37. Suppose that H > 0 and let HL = −∆ − Ha(x). Then, for every
0 < p ≤ H, if

Ind
(
HL

)
= 0, then dimL4pΛ(k,0)

holo (E) = 0.

If

Ind
(
HL

)
< +∞, then dimL4pΛ(k,0)

holo (E) < ∞.

Proof. Assume that Ind
(
HL

)
< +∞. As noted at the beginning of Section 5, (see

Lemma 3.16, Corollary 3.18 and Lemma 3.10) the index assumption guarantees
the existence of a positive solution ϕ of

∆ϕ + Ha(x)ϕ = 0 on M \K

for some compact set K ⊂ M. Moreover, the Kodaira–Bochner formula states
that, for every ξ ∈ Λ(k,0)

holo (E), the smooth function u = |ξ|2 satisfies

u∆u + a(x)u2 − |∇u|2 ≥ 0 on M ;

see [113] Chapter 3, Section 6. Therefore, the result follows directly from (a slightly
modified version of) Theorem 5.1. The case where Ind

(
HL

)
= 0 is similar. �

We now come to the case of LpΓholo

(⊗kE
)
.
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Theorem 7.38. Let k ∈ N, let H > 0, and define HL = −∆− 2Hks (x). Then, for
every 0 < p ≤ H, if

Ind
(
HL

)
< +∞, then dimL2pΓholo

(⊗kE
)

< +∞.

If
Ind

(
HL

)
= 0, then dimL2pΓholo

(⊗kE
)

= 0.

Proof. The proof goes as above. The only difference is that now we use the Bochner
formula

|ξ| (∆ |ξ|+ 2ks (x) |ξ|)− |∇ |ξ||2 ≥ 0

which is valid, in the sense of distributions, for every ξ ∈ Γholo

(⊗kE
)
; see [119].

�

7.6 Reduction of codimension of harmonic immersions

From a somewhat different perspective, Theorem 5.1 applies to codimensional
problems for (non-isometric) harmonic immersions into Euclidean spaces.

R. Greene and H.H. Wu, [67], [68], proved that any m-dimensional Rieman-
nian manifold (M, 〈 , 〉) can be imbedded into R2m+1 and immersed into R2m via
a proper, harmonic immersion f : M → Rd (d = 2m, 2m + 1 respectively). The
properness condition insures that the induced metric f∗canRd is complete. Ob-
serve that, due to, e.g., volume growth restrictions, the immersion is in general
non-homothetic, and, in particular, non-isometric; see Remark 7.42 below. Equiv-
alently, in general |df |2 	= const.

Theorem 7.39. Let (M, 〈 , 〉) be a complete Riemannian manifold of dimension
m ≥ 3, satisfying

Ric ≥ −a(x) on M (7.42)

and assume that
Ind (−∆−Ha(x)) < +∞ (7.43)

for some H ≥ m−2
m−1 . Then, there exists a compact set K ⊂ M and an integer

n ≥ m depending on H and on the geometry of (M, 〈 , 〉) in a neighborhood of K
such that the following holds.

Let f : M → Rd, d > n be a harmonic immersion whose energy density
satisfies the growth condition∫

BR

|df |2p = o
(
R2

)
, as R→ +∞, (7.44)

for some m−2
m−1 ≤ p ≤ H. Then, there is an n-dimensional affine subspace An of

Rd such that f(M) ⊂ An.
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Proof. LetHp be the real vector space of harmonic functions u : M → R satisfying∫
BR

|du|2p = o
(
R2

)
, as R → +∞,

with p as in the statement. Define Vp = Im d|Hp
, and observe that, by the Bochner

formula and the refined Kato inequality, we have

|du| (∆|du|+ a(x)|du|) − 1
m− 1

|∇|du||2 ≥ 0

for every du ∈ Vp. On the other hand, according to (7.43), there exists a solution
ϕ > 0 of

∆ϕ + a(x)ϕ = 0 on M \K,

for some compact set K ⊂ M . Thus, we can apply Theorem 5.1 to deduce that
there exists n ∈ N depending on p and on the geometry of (M, 〈, 〉) in a neighbor-
hood of K such that,

dimVp ≤ n. (7.45)

Let f =
(
f i
)

: M → Rd, d > n be a harmonic immersion satisfying (7.44). Note
that, for each i,

df i ∈ Vp,

and from the estimate (7.45) we deduce that

span{df1, . . . , dfd} = span{df i1 , . . . , df in}

for some i1, . . . , in. Note that since f is assumed to be an immersion, n ≥ m.
Without loss of generality, we can assume i1 = 1, . . . , in = n, so that

dfα =
n∑

i=1

λα
i df i, α = n + 1, . . . , d,

for some appropriate real coefficients {λα
i }. This clearly implies that there exist

suitable constants {cα} such that

fα =
n∑

i=1

λα
i f i + cα.

It follows that f (M) is contained in the affine subspace An of Rn passing through(
0, . . . , 0, cn+1, . . . , cd

)t and spanned by

span
{
ei +

(
0, . . . , 0, λn+1

i , . . . , λd
i

)t
: i = 1, . . . , n

}
,

where {ei} is the standard basis of Rd. �
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Remark 7.40. The result of Theorem 7.39 is qualitative. It would be very inter-
esting to get a quantitative version, where the dimension n of the affine ambi-
ent subspace is estimated in terms of the geometric data. In particular, forcing
n = dimM would yield a Bernstein-type result.

Remark 7.41. The above arguments can be applied to obtain holomorphic immer-
sions of Kähler manifolds into Cd.

Remark 7.42. Note that according to Theorem 2.28 in Section 2.3, if f : M → Rn

is an isometric harmonic (=minimal) immersion, then

volBR(xo) ≥ cmRm, (7.46)

where cm is the volume of the unit sphere in Rm. It follows that the harmonic
immersion f in the statement of Theorem 7.39 cannot be isometric, for otherwise
(7.44) and |df | = 1 would imply

vol (BR) = o
(
R2

)
as R→ +∞

contradicting (7.46). In fact, if m ≥ 3, the immersion f cannot be conformal,
because conformal harmonic maps are homothetic; see, e.g., [47].

Some restrictions apply even if f is only assumed to be bi-Lipschitz. Indeed,
if there exist positive constants A and B such that

A〈X, X〉 ≤ (df(X), df(X))Rn ≤ B〈X, X〉
for every X ∈ TM , then, again by Theorem 2.28,

volBR(xo) ≥ CR
√

mAR/B for R ≥ 1,

which is compatible with the energy growth condition (7.44) in the statement of
the theorem only if

√
mAB−1 < 2.

Here are some special situations where Theorem 7.39 applies.

Corollary 7.43. Let (M, 〈, 〉) be a complete, m-dimensional Riemannian manifold
satisfying both

vol (BR) = o
(
R2

)
as R → +∞,

and
MRic ≥ 0 on M \K

for some compact set K ⊂ M . Then, there exists n ∈ N depending on the geome-
try of (M, 〈, 〉) in a neighborhood of K such that, any (non-isometric) harmonic,
Lipschitz immersion f : M → Rd, d > n, must satisfy f (M) ⊂ An for some
n-dimensional affine subspace An ⊂ Rd.

We say that a Riemannian metric ( , ) on the smooth manifold M is dominated
by the metric 〈 , 〉 if there exists C > 0 such that (, ) ≤ C2 〈, 〉, in the sense of
quadratic forms.
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Corollary 7.44. Let (M, 〈 , 〉) be a complete, m-dimensional Riemannian manifold
satisfying

MRic ≥ 0 on M \K

for some compact set K ⊂M . Then, there exists n ∈ N depending on the geometry
of (M, 〈 , 〉) in a neighborhood of K such that the following holds.

Let f : M → Rd, n > d, be a harmonic immersion whose induced metric
f∗can is dominated by a metric 〈̃ , 〉 in the conformal class of 〈 , 〉 satisfying

ṽol (M) < +∞.

Then, f is in fact a harmonic immersion into some n-dimensional affine subspace
An ⊂ Rd.

Proof. We set 〈̃, 〉 = u2 (x) 〈 , 〉 and we note that∫
M

|df |m dvol ≤ C

∫
M

umdvol = Cṽol (M)

for some constant C > 0. �
Suppose f : (M, 〈 , 〉M ) → (N, ( , )) is a smooth map between Riemannian

manifolds of dimensions m and n respectively. As in Section 6.2, we denote by

λ1 (x) ≥ λ2 (x) ≥ · · · ≥ λm (x) ≥ 0

the eigenvalues of the quadratic form f∗
x( , ) and we say that f has bounded kth

dilation if
λ1 (x) ≤ Ckλk (x) on M

for some constant Ck ≥ 1. When k = m we say (perhaps improperly) that f is of
bounded distortion (or, equivalently, quasi-regular).

Corollary 7.45. Let (M, 〈 , 〉) be a complete, m-dimensional Riemannian manifold
satisfying

MRic ≥ 0 on M \K

for some compact set K ⊂ M . Then, there exists n ∈ N depending on the geome-
try of (M, 〈 , 〉) in a neighborhood of K such that, any (non-isometric) harmonic
immersion f : M → Rd, d > n, of bounded distortion and satisfying

volf∗can (M) < +∞,

is in fact a harmonic immersion into some n-dimensional affine subspace An ⊂ Rd.

Proof. We set 〈̃, 〉 = f∗can, where can denotes the canonical metric of Rd, and we
observe that

|df |m
dṽol

=
{tr (f∗can)}m

2

{det (f∗can)} 1
2

=
(
∑

λi)
m
2

(Πλi)
1
2
≤ C

(
λ1

λm

)m
2

≤ CCm.

Thus the energy density of f satisfies the integrability condition (7.44) and The-
orem 7.39 applies. �



Chapter 8

Constancy of holomorphic maps and
the structure of complete Kähler
manifolds

8.1 Three versions of a result of Li and Yau

The aim of this section is to prove three versions of a vanishing result by Li and
Yau for holomorphic maps. The first theorem is a strengthening of the original
formulation and its proof follows the lines of [107].

Theorem 8.1. Let (M, 〈 , 〉 , JM ) be a complete Kähler manifold of real dimension
m = 2s such that

MRic ≥ −ρ (x) (8.1)

for some ρ ∈ C0 (M) ∩ L1(M). Assume that ρ+ ∈ L1(M), satisfies∫
M

ρ (x) ≤ 0, (8.2)

and ∫
Br

ρ+ (x)p = o
(
rβ(p−1)

)
, as r → +∞, (8.3)

for some constants, β > 0 and p > m
2 . Let (N, ( , ) , JN ) be a Hermitian mani-

fold with holomorphic bisectional curvature bounded above by k (z) , z ∈ N , k ∈
C0 (N) . Let f : M → N be a holomorphic map such that

k (f (x)) < 0 on M ; k (f (x)) ≤ − B

r (x)µ on M \BR0 (8.4)

for some R0, B > 0 and µ ≥ 0. If

µ
m

2
+ β(

m

2
− 1) < 2, (8.5)

then f is constant.

Remark 8.2. As will be clear from the proof of Theorem 8.1, the same constancy re-
sult holds if f is a pluriharmonic function which is bounded on one side on a Kähler
manifold M satisfying the curvature assumptions listed in the statement of the
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theorem with µ = 0. Indeed, suppose for instance that infM f > −C for some con-
stant C > 0. Then, according to Proposition 1.26, the function u = |∇ log(f + C)|2
satisfies inequality (8.15) below, with k (z) ≡ −1. The constancy of log(f + C),
and hence of f , now follows, applying without changes the arguments in the proof
of Theorem 8.1. For later purposes, we also note that u ≤ |∇f |2 / (f + C)2 and,
therefore, u inherits the same integrability properties of |∇f |2.

The proof of Theorem 8.1 is based on the important estimate contained in
the next

Lemma 8.3 ([107]). Let (M, 〈, 〉) be a complete Riemannian manifold. Let also
a (x), b (x) ∈ C0 (M) with b (x) ≥ 0 on M and σ ≥ 1. Assume that u ≥ 0 is a
C2-solution of the differential inequality

u∆u + a (x)u2 ≥ b (x) uσ+1 + |∇u|2 on M. (8.6)

Set a+ (x) = max {a (x) , 0}, a− (x) = max {−a (x) , 0} so that a (x) = a+ (x) −
a− (x). Suppose that

a+ (x) ∈ L1 (M) (8.7)

and that ∫
Br

up = o
(
r2
)
, as r → +∞ (8.8)

for some constant p > 0. Then, a− (x) , b (x)uσ−1 ∈ L1 (M) and∫
M

b (x) uσ−1 ≤
∫

M

a (x) . (8.9)

Proof. We fix R > r and let φ : M → [0, 1] be a smooth cut-off function such that

φ ≡ 1 on Br; φ ≡ 0 on M \BR; |∇φ| ≤
√

3
R− r

on M. (8.10)

We fix ε, δ > 0 and consider the vector field

W = φ2 (u + δ)p−2

(u + δ)p + ε
u∇u.

We compute its divergence and use (8.6) and Schwarz’s inequality to estimate

divW ≥ φ2(u + δ)p−2

(u + δ)p + ε

(−a(x)u2 + b(x)uσ+1
)− 2

φ(u + δ)p−2

(u + δ)p + ε
|∇u| |∇φ|

+
φ2(u + δ)p−3

(u + δ)p + ε

{
2(u + δ) + (p− 2)u− p

u(u + δ)p

(u + δ)p + ε

}
|∇u|2.

Since the term in braces on the right-hand side is equal to

2δ +
εpu

(u + δ)p + ε
≥ εpu

(u + δ)p + ε
,
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rearranging and applying the divergence theorem on BR yield

∫
BR

φ2 (u + δ)p−2
uσ+1

(u + δ)p + ε
b (x)−

∫
BR

φ2 (u + δ)p−2
u2

(u + δ)p + ε
a (x)

≤ −
∫

BR

εpuφ2 (u + δ)p−3 |∇u|2
[(u + δ)p + ε]2

+ 2
∫

BR

φ
(u + δ)p−2 u

(u + δ)p + ε
|∇φ| |∇u| ,

whence, using the elementary inequality,

2αβ ≤ εpα2 +
1
εp

β2, p, ε > 0

in the second integral of the RHS, we finally get

∫
BR

φ2 (u + δ)p−2
uσ+1

(u + δ)p + ε
b (x)−

∫
BR

φ2 (u + δ)p−2
u2

(u + δ)p + ε
a (x)

≤ 1
εp

∫
BR

u (u + δ)p−1 |∇φ|2 .

Next, we let δ → 0+ and we apply the Lebesgue dominated convergence theorem
to deduce ∫

BR

φ2 up+σ−1

up + ε
b (x)−

∫
BR

φ2 up

up + ε
a (x) ≤ 1

εp

∫
BR

up |∇φ|2 .

We choose R = 2r and we use the properties of φ to infer∫
Br

up+σ−1

up + ε
b (x)−

∫
B2r

up

up + ε
a+ (x) +

∫
Br

a− (x)
up

up + ε
≤ 3

εpr2

∫
B2r

up

and letting r → +∞, because of (8.8), we obtain∫
M

b (x)
up+σ−1

up + ε
+
∫

M

up

up + ε
a− (x)−

∫
M

a+ (x) ≤ 0.

Now, as ε↘ 0,
up+σ−1

up + ε
↗ uσ−1 and

up

up + ε
↗ 1

monotonically, and since a+ (x) ∈ L1 (M) and b (x) ≥ 0 by assumption, it follows
from the monotone convergence theorem that a− (x) and b (x)uσ−1 ∈ L1 (M) and
that ∫

M

b (x) uσ−1 +
∫

M

a− (x) −
∫

M

a+ (x) ≤ 0,

which is (8.9). �
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In order to verify that condition (8.8) holds we will appeal to the following

Lemma 8.4. Let (M, 〈 , 〉) be a complete Riemannian manifold, and let a(x), b(x) ∈
C0(M) with b(x) > 0 on M. Assume that u ≥ 0 is a C2 solution of the differential
inequality

u∆u + a(x)u2 − b(x)uσ+1 ≥ −A|∇u|2, (8.11)

for A ≤ 1 and σ > 1. Then for every q ≥ 1, q > A + 2 there exist constants C1,
C2 > 0 which depend only on q, σ and R0 > 0 such that, for every R ≥ R0,∫

BR

b(x)uq+σ−2 ≤ C1R
−2 q+σ−2

σ−1

∫
B2R

b(x)−
q−1
σ−1 + C2

∫
B2R

(a+(x)
b(x)

) q−1
σ−1

a+(x).

(8.12)

Proof. Observe first that we may assume that u 	≡ 0, for otherwise there is nothing
to prove. Thus, there exists R0 > 0 such that u 	≡ 0 on BR for every R ≥ R0.

Next, for every R ≥ R0, let φ = φR : M → [0, 1] be a smooth cut-off function
such that

φ ≡ 1 on BR, φ ≡ 0 on M \B2R, and |∇φ| ≤ C

R
φ

q−1
q+σ−2 on B2R, (8.13)

for some C which depends only on q and σ. Note that this is possible since the
exponent (q − 1) / (q + σ − 2) is strictly less than 1. Having fixed ε > 0, we let W
be the vector field defined by

W = φ2(u + ε)q−3u∇u.

A computation that uses (8.11), q −A− 2 > 0 and u ≥ 0 yields

div W ≥ φ2(u + ε)q−3
{−a(x)u2 + b(x)uσ+1 + (q −A− 2)

u

u + ε

)|∇u|2}
+ 2φ(u + ε)q−3u〈∇u,∇φ〉.

We use the Cauchy–Schwarz inequality and Young’s inequality 2αβ ≤ λα2+λ−1β2

with λ = q − 2 − A > 0 to estimate the last term on the right-hand side from
below and obtain

div W ≥ φ2(u + ε)q−3
{−a+(x)u2 + b(x)uσ+1

}− 1
q − 2−A

u(u + ε)q−2|∇φ|2.

We integrate the above inequality, apply the divergence theorem, rearrange, let
ε→ 0+ and use the monotone and dominated convergence theorem, in that order,
to deduce that∫

B2R

b(x)φ2uq+σ−2 ≤ 1
q − 2−A

∫
B2R

uq−1|∇φ|2 +
∫

B2R

φ2a+(x)uq−1. (8.14)
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If q = 1, the conclusion follows immediately using (8.14). If q > 1, we denote by
I and II the two integrals on the right-hand side, and use Hölder inequality with
conjugate exponents

q + σ − 2
q − 1

(> 1) and
q + σ − 2

σ − 1
,

and the assumption that b(x) > 0, to estimate

I ≤
(∫

B2R

b(x)φ2uq+σ−2
) q−1

q+σ−2
(∫

B2R

φ−2 q−1
σ−1 b(x)−

q−1
σ−1 |∇φ|2 q+σ−2

σ−1

) σ−1
q+σ−2

and

II ≤
(∫

B2R

b(x)φ2uq+σ−2
) q−1

q+σ−2
(∫

B2R

φ2a+(x)
q+σ−2

σ−1 b(x)−
q−1
σ−1

) σ−1
q+σ−2

.

Inserting the above into (8.14), noting that the integral on the left-hand side is
strictly positive by the choice of R, and simplifying, we obtain∫

B2R

b(x)φ2uq+σ−2 ≤
{ 1

q − 2−A

(∫
B2R

φ−2 q−1
σ−1 b(x)−

q−1
σ−1 |∇φ|2 q+σ−2

σ−1

) σ−1
q+σ−2

+
(∫

B2R

φ2a+(x)
q+σ−2

σ−1 b(x)−
q−1
σ−1

) σ−1
q+σ−2

} q+σ−2
σ−1

.

The required conclusion follows using again (8.13) and the elementary inequality
(a + b)τ ≤ 2τ (aτ + bτ ) valid for a, b, τ ≥ 0. �

Proof of Theorem 8.1. We let u = |df |2 , and use (8.1) and Corollary 1.29 to de-
duce that

u∆u + 2ρ (x) u2 ≥ −2k (ψ (x))u3 + |∇u|2 (8.15)

so that (8.6) is satisfied with a (x) = 2ρ (x), b (x) = −2k (ψ (x)) and σ = 2. Since
ρ+ ∈ L1(M) by assumption, (8.2) and (8.4) imply, via (8.9), that u ≡ 0 as desired,
provided we can apply Lemma 8.3. In order to do this, we only need to show the
existence of q > 0 such that∫

Br

uq = o
(
r2
)
, as r → +∞. (8.16)

Towards this end, we first observe that, since ρ+ ∈ L1(M), by Hölder in-
equality, for every 1 < γ ≤ p we have∫

Br

ρ+ (x)γ ≤
{∫

Br

ρ+ (x)
} p−γ

p−1
{∫

Br

ρ+ (x)p

} γ−1
p−1

≤ C

{∫
Br

ρ+ (x)p

} γ−1
p−1

,
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so that, using (8.3) and (8.5) we may choose γ satisfying

m

2
< γ ≤ p, µγ + β(γ − 1) ≤ 2 (8.17)

and for which ∫
Br

ρ+ (x)γ = o
(
rβ(γ−1)

)
, as r → +∞. (8.18)

Next, (8.18) and γ > m
2 allows us to apply Corollary 2.21 to obtain

volBr = o
(
r2γ+β(γ−1)

)
, as r → +∞. (8.19)

Now, since u satisfies (8.15), using (8.4) we see that it also satisfies

u∆u + 2ρ+ (x) u2 ≥ B̃

[1 + r (x)]µ
u3 + |∇u|2 on M (8.20)

for an appropriate constant B̃ > 0. Conditions (8.18) and (8.19) enable us to apply
Lemma 8.4 with the choices σ = 2, A = −1, a (x) = 2ρ (x), b (x) = B̃ (1 + r (x))−µ,
q = γ > 1 to obtain∫

Br

uγ = o
(
rµγ+β(γ−1)

)
= o

(
r2
)
, as r → +∞,

as required. �

In order to give a second version of this result we need to solve the Poisson
equation on a generic non-parabolic manifold.

Lemma 8.5. Let (M, 〈, 〉) be a complete, non-parabolic manifold and let a (x) ∈
C0,α (M) ∩ L1 (M) , 0 < α < 1, be a non-negative function. Then, there exists a
solution v ∈ C2 (M) of the Poisson equation

∆v = a (x) on M (8.21)

satisfying v ≤ 0.

Proof. Let G (x, y) be the positive Green kernel of M , which exists by the non-
parabolicity assumption (see Appendix 7.2). Recall that:

i) G (x, y) is symmetric.

ii) For any fixed R > 0,

y �−→ G (x, y) ∈ L1
loc (M) ∩ L∞ (M \B2R) ,

uniformly for x ∈ BR.
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iii) If ψ ∈ C∞
c (M), then u (x) = − ∫

M G (x, y)ψ (y) dy is smooth and satisfies

∆u (x) = −
∫

M

G (x, y)∆ψ (y)dy = ψ (x) .

We claim that the function

v (x) = −
∫

M

G (x, y) a (y) dy

is a well-defined, locally bounded distributional solution of the desired Poisson
equation. Then, by standard elliptic regularity theory it follows that v (x) is a
classical C2 solution; see Theorem 3.54 in [9]. Let R > 0 be fixed. If we write∫

M

G (x, y) a (y) dy =
∫

B2R

+
∫

M\B2R

G (x, y) a (y) dy,

using the integrability properties ii) above, we can estimate each of the summands,
uniformly for x ∈ BR, and deduce v ∈ L∞

loc (M). Moreover, for every ϕ ∈ C∞
c (M),

G (x, y) a (y)ϕ (x) ∈ L1 (M ×M) ,

as one realizes using again property ii). Therefore, applying Fubini’s theorem, and
recalling property iii), for each ψ ∈ C∞

c (M) we get∫
M

v (x)∆ψ (x) dx = −
∫

M

∆ψ (x)
∫

M

G (x, y) a (y) dydx

= −
∫

M

a (y)
∫

M

G (x, y)∆ψ (x) dxdy

=
∫

M

a (y)ψ (y) ,

proving the claim. �

Theorem 8.6. Let (M, 〈 , 〉 , JM ) be a non-parabolic, complete, Kähler manifold such
that

MRic ≥ −ρ (x) (8.22)

for some ρ ∈ C0 (M) satisfying

ρ+ (x) ∈ L1 (M) . (8.23)

Suppose also that

lim inf
r→+∞

log volBr

r2−µ
< +∞ (8.24)
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for some 0 ≤ µ < 2. Let (N, ( , ) , JN) be a Hermitian manifold with holomorphic
bisectional curvature bounded above by k (z) , z ∈ N , k ∈ C0 (N). Let f : M → N
be a holomorphic map such that

k (f (x)) < 0 on M ; k (f (x)) ≤ − B

r (x)µ on M \BR0 (8.25)

for some R0, B > 0. Then f is constant.

Remark 8.7. Note that, for non-parabolic manifolds, Theorem 8.6 extends Theo-
rem 8.1. Indeed, in Theorem 8.6 the assumptions on µ are relaxed; condition (8.2)
implies (8.23) and condition (8.3) implies, via Corollary 2.21, that M has at most
polynomial growth so that (8.24) is satisfied (see 8.19).

Proof of Theorem 8.6. As before, we let u = |df |2 so that, using (8.22) and (8.25)
we deduce

u∆u + 2ρ+ (x) u2 ≥ 2B′

[1 + r (x)]µ
u3 + |∇u|2 on M, (8.26)

for some constant B′ > 0. Since ρ+ (x) ∈ L1 (M) we can apply Lemma 8.5 to
deduce the existence of a solution v ≤ 0 of

∆v = 2ρ+ (x) on M.

We set ϕ = e−v so that, from the above, we get

∆ϕ + 2ρ+ (x) ϕ =
|∇ϕ|2

ϕ
on M (8.27)

with ϕ ≥ 1. We define w = ϕ−1u and we use (8.26) and (8.27) to compute

∆w ≥ 2B′

[1 + r (x)]µ
ϕw2 (8.28)

≥ 2B′

[1 + r (x)]µ
w2.

Assumption (8.24) and 0 ≤ µ < 2 enable us to apply Theorem 6.16 and deduce
that w, and therefore u, vanishes on M . �

As explained in Remark 8.2, the result still holds in the case where M is as in
the theorem, and f : M → R is a pluriharmonic function which is bounded on one
side. Since this result will be used in the next section, we state it as a corollary.

Corollary 8.8. Let (M, 〈 , 〉 , JM ) be a non-parabolic, complete Kähler manifold such
that

MRic ≥ −ρ (x) (8.29)

for some ρ ∈ C0 (M) satisfying

ρ+ (x) ∈ L1 (M) . (8.30)
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Suppose also that

lim inf
r→+∞

log volBr

r2
< +∞. (8.31)

Then every pluriharmonic function f : M → R which is bounded from below on
M is constant.

Indeed, as already observed, according to Proposition 1.26, the function u =
|∇ log(f + C)|2 satisfies the inequality

u∆u + 2ρ+u2 ≥ 2u3 + |∇u|2

and therefore (8.28) holds with µ = 0.
In our third, and final, version of the theorem of Li–Yau, we avoid the request

ρ+ (x) ∈ L1 (M); see Theorem 8.11 below. Towards this end, we first prove

Theorem 8.9. Let σ > 1 and a (x) , b (x) ∈ C0 (M) satisfy

i) 0 	≡ b (x) ≥ 0 and ii) a (x) ≤ Cb (x) on M (8.32)

for some constant C > 0. Given α > 0, suppose that, for some

H ≥ (1 + α)2

4α
, (8.33)

the operator LH = −∆−Ha (x) satisfies

λ1

(
HLM

) ≥ 0. (8.34)

Then the differential inequality

∆u + a (x)u ≥ b (x) uσ (8.35)

has no bounded, non-negative, non-identically zero, C2-solutions u satisfying

i) a (x)u1+α ∈ L1 (M) ; ii)
{∫

∂Br

u1+α

}−1

/∈ L1 (+∞) . (8.36)

Remark 8.10. Note that (8.36) i), ii) are satisfied if a (x) is bounded and u1+α ∈
L1 (M). Note also that if b(x) > 0 on M and a(x) ≤ Cb(x) for r(x) � 1 and some
constant C > 0, then condition (8.32) (ii) holds, possibly with a bigger constant
C̃ > 0.

Proof. Assume by contradiction that u ∈ C2 (M) is a bounded, non-negative, non-
identically zero solution of (8.35) satisfying (8.36). We claim that, without loss of
generality, we may assume that

a (x) ≤ b (x) on M (8.37)
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and
sup
M

u < 1. (8.38)

Indeed, let

A = max
{

sup
M

u,
1
2
C

1
σ−1 , 1

}
and

ū (x) = (2A)−1
u (x) .

Then, supM ū ≤ 1/2 and ū satisfies

∆ū + a (x) ū ≥ b̄ (x) ūσ (8.39)

with
b̄ (x) = (2A)σ−1

b (x) ≥ Cb (x) ≥ a (x)

on M , proving the claim.
We now proceed by dividing the argument in four steps.

Step 1. There exists a sequence {rk} ↗ +∞ such that

lim
k→+∞

∫
∂Brk

uα|∇u| = 0 (8.40)

Let ε > 0, define Wε = (u + ε)α∇u, compute its divergence using (8.39) and apply
the divergence theorem to get∫

∂Br

(u + ε)α 〈∇u,∇r〉 −α

∫
Br

(u + ε)α−1 |∇u|2 (8.41)

≥
∫

Br

(b (x) uσ − a (x) u) (u + ε)α (8.42)

≥
∫

Br

a (x) (uσ − u) (u + ε)α

where, in the last inequality we have used 8.37. Letting ε → 0+ the last term on
the RHS of (8.42) tends to the finite quantity∫

Br

a (x) (uσ − u)uα

and the first integral on the LHS tends to∫
∂Br

uα 〈∇u,∇r〉 .

Thus, by the monotone (or dominated, depending on whether α < 1 or > 1)
convergence theorem ,∫

Br

(u + ε)α−1 |∇u|2 →
∫

Br

uα−1 |∇u|2 < +∞
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as ε ↘ 0. In particular uα−1 |∇u|2 ∈ L1
loc (M) . Moreover∫

∂Br

uα 〈∇u,∇r〉 − α

∫
Br

uα−1 |∇u|2 ≥
∫

Br

a (x) (uσ − u)uα.

Now, since u < 1, and σ > 1, and u is bounded, it follows from (8.36) ii) that
a (x)

(
uσ+α − u1+α

) ∈ L1 (M) and, letting r → +∞, we obtain

lim inf
r→+∞

{∫
∂Br

uα 〈∇u,∇r〉 − α

∫
Br

uα−1 |∇u|2
}

= B > −∞. (8.43)

We claim that
uα−1 |∇u|2 ∈ L1 (M) .

To see this, we define

G (r) =
∫

Br

uα−1 |∇u|2 .

Since uα−1 |∇u|2 ∈ L1
loc (M) , it follows from the co-area formula that G (r) is

absolutely continuous and that

G′ (r) =
∫

∂Br

uα−1 |∇u|2

is defined a.e. and is locally L1. Assume by contradiction that G (r) → +∞ as
r → +∞. Then, for large enough r > R, G (r) > 0 and B > − (α/2)G (r) so that,
by (8.43), ∫

∂Br

uα 〈∇u,∇r〉 ≥ α

2
G (r)

and therefore, by the Hölder inequality,{α

2
G (r)

}2

≤
{∫

∂Br

uα 〈∇u,∇r〉
}2

≤ G′ (r)
∫

∂Br

uα+1.

It follows from this that

G′ (r)
G (r)2

≥ α2

4

{∫
∂Br

uα+1

}−1

and, integrating over [R, r], we get

− 1
G (r)

+
1

G (R)
≥ α2

4

∫ r

R

{∫
∂Bt

uα+1

}−1

dt.

Whence, letting r → +∞, we contradict assumption (8.36) ii), proving the claim.
It follows that uα−1 |∇u|2 ∈ L1 (M) and therefore∫

∂Br

uα−1 |∇u|2 ∈ L1 ((0, +∞)) .
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Because of (8.36) ii), this in turn implies that there exists a sequence {rk} ↗ +∞
such that

lim
k→+∞

(∫
∂Brk

uα+1

)(∫
∂Brk

uα−1 |∇u|2
)

= 0.

To conclude we apply the Cauchy–Schwarz inequality,∫
∂Brk

uα|∇u| ≤
{∫

∂Brk

uα+1

} 1
2
{∫

∂Brk

uα−1 |∇u|2
} 1

2

→ 0

as k → +∞.
Step 2. The condition λ1

(
HLM

) ≥ 0 implies that there exists ϕ ∈ C2 (M) , ϕ > 0,
which is a solution of

∆ϕ + Ha (x) ϕ = 0 on M. (8.44)

We claim that
uα+1ϕ−2 |∇ϕ|2 ∈ L1 (M) . (8.45)

Indeed, let V = uα+1ϕ−1∇ϕ. Using Schwarz’s inequality, (8.44) and the elemen-
tary inequality 2ab ≤ a2 + b2, we compute

divV = (α + 1)uαϕ−1 〈∇u,∇ϕ〉+ uα+1ϕ−1∆ϕ− uα+1ϕ−2 |∇ϕ|2 (8.46)

≤ (α + 1)2

2
uα−1 |∇u|2 −Ha (x)uα+1 − 1

2
uα+1ϕ−2 |∇ϕ|2 ,

and apply the divergence theorem,∫
∂Br

u1+αϕ−1 〈∇ϕ,∇r〉 +
1
2

∫
Br

u1+αϕ−2 |∇ϕ|2

≤ −H

∫
Br

a (x) uα+1 +
(α + 1)2

2

∫
Br

uα−1 |∇u|2 ≤ B ∈ R

where, in the last inequality, we have used the fact that a (x) uα+1, uα−1 |∇u|2 ∈
L1 (M) .

Setting, for ease of notation,

K (r) =
1
2

∫
Br

u1+αϕ−2 |∇ϕ|2 ,

we can write the above inequality in the form∫
∂Br

u1+αϕ−1 〈∇ϕ,∇r〉 ≤ −K (r) + B.

Now, assume by contradiction that K (r) → +∞ as r → +∞. Thus, for each
r ≥ R sufficiently large, K (r) > 1

2B, so that∫
∂Br

u1+αϕ−1 〈∇ϕ,∇r〉 ≤ −1
2
K (r) .
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On the other hand, by Schwarz’s inequality,

1
2
K (r) ≤ −

∫
∂Br

u1+αϕ−1 〈∇ϕ,∇r〉 ≤
{∫

∂Br

u1+α

} 1
2
{∫

∂Br

u1+αϕ−2 |∇ϕ|2
} 1

2

,

that is,

K (r) ≤
{∫

∂Br

u1+α

} 1
2

{8K ′ (r)} 1
2 .

Squaring and integrating over [R, r] give

K (R)−1 −K (r)−1 ≥ 1
8

∫ r

R

{∫
∂Bt

u1+α

}−1

dt

and, letting r → +∞, we contradict (8.36) ii).
Step 3. We note that

lim
r→+∞

∫
∂Br

u1+αϕ−1 〈∇ϕ,∇r〉 = 0.

Indeed, by (8.45) of Step 2 and assumption (8.36) ii), there exists a sequence
{rk} ↗ +∞ such that

lim
k→+∞

{∫
∂Brk

u1+α

}{∫
∂Brk

u1+αϕ−2 |∇ϕ|2
}

= 0

and therefore{∫
∂Brk

u1+αϕ−1 〈∇ϕ,∇r〉
}2

≤
{∫

∂Brk

u1+α

}{∫
∂Brk

u1+αϕ−2 |∇ϕ|2
}
→ 0

as k → +∞. It remains to show that the desired limit exists. According to (8.44),
(8.46) and the divergence theorem, we have∫

∂Br

u1+αϕ−1 〈∇ϕ,∇r〉 = (α + 1)
∫

Br

uαϕ−1 〈∇ϕ,∇r〉 (8.47)

−H

∫
Br

u1+αa (x) −
∫

Br

u1+αϕ−2 |∇ϕ|2 .

Thus, we are reduced to showing that each of the (algebraic) summands on the
RHS of (8.47) has a finite limit, as r → +∞. This easily follows from assumption
(8.36) i), and from the following fact from Step 1:∣∣uαϕ−1 〈∇ϕ,∇r〉∣∣ ≤ 1

2
uα−1 |∇u|2 +

1
2
u1+αϕ−2 |∇ϕ|2 ∈ L1 (M) .
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Step 4. Fix ε > 0 so small that supM u + ε < 1 and define the vector field

Zε = H−1 uα+1

ϕ
∇ϕ− (u + ε)α

1− (u + ε)σ−1∇u.

Then, using (8.39), (8.44) and (8.37), we compute

divZε = H−1 (α + 1)uαϕ−1 〈∇ϕ,∇u〉+ H−1uα+1ϕ−1∆ϕ

−H−1uα+1ϕ−2 |∇ϕ|2 − α
(u + ε)α−1

1− (u + ε)σ−1 |∇u|2

− (σ − 1)
(u + ε)α+σ−2[

1− (u + ε)σ−1
]2 |∇u|2 − (u + ε)α

1− (u + ε)σ−1 ∆u

≤ H−1 (α + 1)ϕ−1uα 〈∇ϕ,∇u〉 −H−1uα+1ϕ−2 |∇ϕ|2

− α
(u + ε)α−1

1− (u + ε)σ−1 |∇u|2 − (σ − 1)
(u + ε)α+σ−2[

1− (u + ε)σ−1
]2 |∇u|2

+
(u + ε)α

1− (u + ε)σ−1 a (x)
(
1− uσ−1

)
u− a (x) u1+α.

Integrating over Br and applying the divergence theorem give

H−1

∫
∂Br

uα+1ϕ−1 〈∇ϕ,∇r〉 −
∫

∂Br

(u + ε)α

1− (u + ε)σ−1 〈∇u,∇r〉

≤ I + II + III

where we have set

I =
∫

Br

H−1
{
(α + 1)ϕ−1uα 〈∇ϕ,∇u〉 − uα+1ϕ−2 |∇ϕ|2

}
,

II = −
∫

Br

⎧⎪⎨⎪⎩α
(u + ε)α−1

1− (u + ε)σ−1 + (σ − 1)
(u + ε)α+σ−2[

1− (u + ε)σ−1
]2

⎫⎪⎬⎪⎭ |∇u|2 ,

III = −
∫

Br

a (x)

{
u1+α − (u + ε)α

1− (u + ε)σ−1

(
1− uσ−1

)
u

}
.

Letting ε ↘ 0+ and applying the dominated convergence theorem, the LHS of the
above converges to

H−1

∫
∂Br

uα+1ϕ−1 〈∇ϕ,∇r〉 −
∫

∂Br

uα

1− uσ−1
〈∇u,∇r〉
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while

II → −
∫

Br

{
α

uα−1

1− uσ−1
|∇u|2 + (σ − 1)

uα+σ−2

[1− uσ−1]2
|∇u|2

}
,

and finally
III → 0.

Thus, using assumption (8.33):

H−1 (α + 1)2

4
≤ α,

and completing the square in I, we obtain

H−1

∫
∂Br

uα+1ϕ−1 〈∇ϕ,∇r〉 −
∫

∂Br

uα

1− uσ−1
〈∇u,∇r〉

≤ −H−1

∫
Br

{
ϕ−2uα+1 |∇ϕ|2 +

(α + 1)2

4
uα−1 |∇u|2 − (α + 1) 〈∇ϕ,∇u〉ϕ−1uα

}

−
∫

Br

{
α

uα−1

1− uσ−1
+ (σ − 1)

uα+σ−2

[1− uσ−1]2
−H−1 (α + 1)2

4
uα−1

}
|∇u|2

≤ −H−1

∫
Br

uα−1

∣∣∣∣α + 1
2
∇u− u

ϕ
∇ϕ

∣∣∣∣2−α

∫
Br

1 + σ−1
α − uσ−1

(1− uσ−1)2
|∇u|2 u(α−1)+(σ−1).

Now, letting r → +∞ along the sequence {rk} constructed in Step 1 and using
Step 3 yields

0 ≤ −H−1

∫
M

uα−1

∣∣∣∣α + 1
2
∇u− u

ϕ
∇ϕ

∣∣∣∣2−α

∫
M

1 + σ−1
α − uσ−1

(1− uσ−1)2
|∇u|2 uα+σ−2 ≤ 0.

Let now A 	= ∅ be a connected component of the set

{x ∈M : u (x) > 0} .

The above inequality forces∇u = 0 on A and thus u = c1 on A. So, either c1 = 0 on
A, contradicting the definition of A, or else A = M and u = c1 > 0 on M . But then
ϕ−1|∇ϕ| = 0 on M and therefore ϕ = c2 > 0 on M , and since ∆ϕ + Ha(x)ϕ = 0
this implies a(x) ≡ 0 on M . Finally, since 0 = ∆u ≥ −a (x)u + b (x) uσ = b (x) cσ

1 ,
we conclude that b (x) ≡ 0 on M , contradicting (8.32) (i) . �

We are now ready to prove our third version of the Li–Yau vanishing result.

Theorem 8.11. Let (M, 〈 , 〉 , JM ) be a complete Kähler manifold satisfying

MRic ≥ −ρ (x)
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with ρ ∈ C0 (M) such that

0 ≤ ρ (x) ≤ A

r (x)µ , r (x) >> 1, (8.48)

for some constants 0 ≤ µ < 2 and A > 0. Assume also that, for some H ≥ 2, the
operator HL = −∆−Hρ (x) satisfies

λ1

(
HLM

) ≥ 0.

Let (N, (, ) , JN ) be a Hermitian manifold with holomorphic bisectional curvature
bounded above by k (z), z ∈ N , k ∈ C0 (N). Let f : M → N be a holomorphic map
such that (8.25) holds true, i.e.,

k (ψ (x)) < 0 on M ; k (ψ (x)) ≤ − B

r (x)µ on M −BR0 (8.49)

for some R0, B > 0. If
|df |2 ∈ Lq (M) (8.50)

for some
0 < q ≤ H +

√
H (H − 2) ,

then ψ is constant.

Remark 8.12. As already remarked, this is the only instance where one allows
integrability exponents greater than H.

We also note that even in this case the result holds in the case of a plurihar-
monic function which is bounded on one side of M . See Remark 8.2.

Proof. As before, set u = |df |2 . Then, u satisfies

∆u + 2ρ (x)u ≥ −k (f (x)) u2 on M.

Our assumptions on the Ricci curvature and the volume comparison theorem con-
tained in Corollary 2.17 imply that

lim inf
r→+∞

log volBr

r2−µ
< +∞.

Setting b (x) = −k (f (x)) and a (x) = 2ρ+ (x), and writing HL = −∆− H
2 a(x) we

see that (8.49) and (8.48) guarantee that the remaining assumptions of Theorem
6.16 are satisfied with E = A/B. It follows that u ∈ L∞ (M) . Combining this fact
with (8.50), recalling the range of q, and interpolating, we deduce

u ∈ Lq0 (M) (8.51)

with
q0 = H +

√
H (H − 2).
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We set α = q0 − 1 and we note that

H

2
=

(1 + α)2

4α
.

Now, (8.51) and the fact that ρ ∈ L∞ (M) imply the validity of (8.36) i) and ii)
while (8.49) and (8.48) show that (8.32) holds with some constant C > 0. An
application of Theorem 8.9 gives u = 0 on M , that is f is a constant map. �
Remark 8.13. Let f : M → N be a harmonic map with bounded dilation T
between Riemannian manifolds M and N of dimensions m and n, respectively.
According to formula (6.26) and to the refined Kato inequality, if the Ricci curva-
ture of M is bounded below by −ρ(x) and the sectional curvature of N is bounded
above by a function k(z) satisfying k(f(x)) ≤ 0, then the function u = |df |2 sat-
isfies the inequality

u∆u ≥ m

4(m− 1)
|∇u|2 − 2ρ (x)u2 +

4k(f(x))
T min{m, n}2 u3.

It follows that one may give a version of the above theorem in this setting. Note
that the coefficient of the gradient term on the right-hand side is now less than
1. It may be interesting to investigate if even the first two versions of the Li and
Yau result admit similar extensions.

8.2 Plurisubharmonic exhaustions and a structure
theorem for Kähler manifolds

A smooth function ρ : M → R on a Riemannian manifold (M, 〈, 〉) is said
to be an exhaustion function if, for every r ∈ R, the sublevel sets Mρ (r) =
{x ∈M : ρ (x) < r} are relatively compact. In particular, by the well-known Sard
theorem, ∂Mρ (r) are compact, smooth hypersurfaces for almost every r ∈ R.
Clearly, every open manifold (M, 〈, 〉) supports an exhaustion function. For in-
stance, using a celebrated theorem by H. Whitney, one can embed M into some Eu-
clidean space RN via a proper map f : M → RN and the function ρ (x) = |f (x)|2
gives the desired smooth exhaustion. In fact, according to R. Greene and H.H. Wu,
[67], [68], we can require f to be a harmonic map and, therefore, ρ (x) = |f (x)|2
to be a strictly subharmonic exhaustion function. Despite this fact, the possibility
of constructing a special exhaustion usually reflects topological and geometrical
properties of the underlying manifold. By way of example, if a complete manifold
(M, 〈, 〉) supports a smooth, non-negative, strictly convex exhaustion function,
then, by standard Morse theory, M must be simply connected. Indeed, according
to work by Greene and Wu, [69], in this situation M is diffeomorphic to Euclidean
space Rm and such a strictly convex exhaustion function exists, for instance, when
M has strictly positive sectional curvature, thus recovering the conclusion of the
Gromoll–Meyer theorem, [74].
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As an application of the above versions of the Li–Yau vanishing theorem, see
especially Corollary 8.8, this section aims to prove the existence of a plurisubhar-
monic exhaustion on a complete Kähler manifold with almost non-negative Ricci
curvature; Theorem 8.17 below. The result will then be used to deduce information
on the structure of such manifolds; Theorem 8.19 below.

To begin with, we point out the following

Lemma 8.14. For every s ≥ 2, there exists a constant ε = ε (s) > 0 such that the
following holds. Let (M, 〈 , 〉 , J) be a complete Kähler manifold of real dimension
m = 2s and Ricci curvature satisfying

Ric ≥ − ε

r (x)2
for r (x) >> 1. (8.52)

If (M, 〈, 〉 , J) is parabolic, then there exists a smooth, proper, pluriharmonic func-
tion f : M → R satisfying∫

BR(o)

|∇f |2 = o
(
R2

)
as R → +∞. (8.53)

Proof. Simply recall that, by Theorem 7.20, (M, 〈, 〉) supports a proper harmonic
function f satisfying (8.53). On the other hand, according to Theorem 1.20, a
harmonic function with sub-quadratic energy growth on any Kähler manifold is
necessarily pluriharmonic. �

The next parabolicity result is due to Li and Tam; see Theorem 4.2 in [102].

Lemma 8.15. For every s ≥ 2, there exists a constant ε = ε (s) > 0 such that the
following holds. A complete, Kähler manifold (M, 〈, 〉 , J) of real dimension m = 2s
is parabolic provided M has at least two ends, and Ricci curvature satisfying

Ric ≥ −ρ (x) on M, (8.52)

where 0 ≤ ρ (x) ∈ C0 (M) is such that

(i) ρ (x) ∈ L1 (M) ; (ii) ρ (x) ≤ ε

r (x)2
as r (x) >> 1. (8.54)

Proof. By contradiction, suppose M is non-parabolic, that is, M has a non-
parabolic end. Recall from Theorem 7.24 that M supports a non-constant, positive
harmonic function f with sub-quadratic energy growth. According to Theorem
1.20, f is pluriharmonic. Since, by volume comparison (see Theorem 2.14 and
Proposition 2.11), condition (8.54) (ii) ensures that the volume of balls grows at
most polynomially, we may apply Corollary 8.8 to conclude that f is constant, a
contradiction. �
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Remark 8.16. Conditions (8.54) are both satisfied, e.g., if ρ (x) = α (r (x)) for
some non-increasing function α (t) such that

tm−1α (t) ∈ L1 (+∞) . (8.55)

Indeed, because of the monotonicity of α, the above implies

α (t) = o
(
t−m

)
as t→ +∞, (8.56)

so that, in particular, (8.54) (ii) is met. Furthermore, by volume comparison,

vol (∂Br) = O
(
rm−1

)
as r → +∞,

and therefore, integrating in polar coordinates and using the co-area formula yields∫
M

ρ =
∫ +∞

0

∫
∂Bt

α (t) ≤ C

∫ +∞

0

tm−1α (t) < +∞,

for some positive constant C, proving the validity of (8.54) (i). For the sake of
completeness, let us verify (8.56). By contradiction, suppose that α (tk) ≥ At−m

k

along some divergent sequence {tk} ↗ +∞ and for some constant A > 0. Without
loss of generality, we can assume tk+1 − tk > tk. Using the monotonicity of α (t)
we conclude ∫ +∞

tm−1α (t) dt =
∑

k

∫ tk+1

tk

tm−1α (t) dt

≥
∑

k

∫ tk+1

tk

tm−1α (tk+1) dt

≥ A

m

∑
k

t−m
k+1

(
tmk+1 − tmk

)
≥ A

m

∑
k

{
1−

(
1
2

)m}
= +∞,

contradicting (8.55).

Combining Lemma 8.14 and Lemma 8.15 yields the following existence result
alluded to above. This is one of the main achievements of the paper [98] by P. Li
and M. Ramachandran.

Theorem 8.17. For every s ≥ 2, there exists a constant ε = ε (s) > 0 such that
the following holds. A complete, Kähler manifold (M, 〈, 〉 , J) of real dimension
m = 2s, with at least two ends, and Ricci curvature satisfying (8.52) and (8.54)
supports a smooth, non-negative, plurisubharmonic exhaustion function.
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Proof. We first apply Lemma 8.15 to deduce that M is parabolic. Using Lemma
8.14, we next construct a proper, pluriharmonic function f on M . Finally, we
observe that (

Ddf2
)(1,1)

= 2f (Ddf)(1,1) + 2 (df)(1,0) ⊗ (df)(0,1)

= 2 (df)(1,0) ⊗ (df)(0,1) ≥ 0

in the sense of quadratic forms. Therefore f2 (x) ≥ 0 is the desired plurisubhar-
monic exhaustion. �

Motivated by applications to Lefschetz-type theorems and to a conjecture
of I.R. Shafarevich in complex geometry, in their paper [117], T. Napier and M.
Ramachandran obtain structure results for complete Kähler manifolds (M, 〈, 〉 , J).
Their main assumption is that M has a complex atlas of locally uniformly bilip-
schitz charts, i.e., there exists an absolute constant C > 0 such that, for every
x ∈ M , there is a biholomorphic map ψx of the unit Euclidean ball B1 (0) ⊂ Cm

onto an open neighborhood Ux of x, satisfying ψx (0) = x and

C−1canCm ≤ ψ∗
x 〈, 〉 ≤ CcanCm , on B1 (0) .

This is a special kind of 0-order bounded geometry in the complex setting which
is obviously satisfied if M is a co-compact covering manifold. See also Appendix
B.

In the same paper, [117], Napier–Ramachandran also consider the situation
of manifolds supporting a plurisubharmonic exhaustion. In fact, they are able to
develop a reduction procedure to the locally uniformly bilipschitz Euclidean case.
The deep structure theorem by Napier-Ramachandran looks as follows. Since its
proof is quite long and requires tools from complex geometry that go beyond the
scope of the present notes, we limit ourselves to stating it.

Theorem 8.18. Let (M, 〈 , 〉 , J) be a complete Kähler manifold of real dimension
m = 2s. Assume that either M has a complex atlas of locally uniformly bilipschitz
charts or M supports a plurisubharmonic exhaustion function.

(1) If M has at least three ends, then there exists a proper holomorphic map φ :
M → S onto a Riemann surface S, whose fibres are compact and connected.

(2) If H1 (M, Z) = 0, then M has only one end.

Note that, in case M is parabolic, the base Riemann surface S must be para-
bolic as well. To see this, observe that, given a holomorphic map f : (M, 〈, 〉 , JM )
→ (N, (, ) , JN ) between Kähler manifolds and any function u : N → R, one has

Dd (u ◦ f)(1,1) = Ddu(1,1)
(
df, df

)
.

In particular,
∆ (u ◦ f) = trM

{
Ddu(1,1)

(
df, df

)}
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proving that ∆ (u ◦ f) has constant sign whenever the complex Hessian Ddu(1,1)

is semi-definite. In the special case where N is (complex) one-dimensional, i.e., N
is a Riemann surface, we have Ddu(1,1) = ∆u (, ) and the above reduces to

∆ (u ◦ f) = |df |2 ∆u.

Summarizing, the holomorphic map φ in the statement of the theorem pulls
(sub)superharmonic functions on S back to (sub)superharmonic functions on M .

On the base of this observation, combining Theorem 8.17 with Theorem 8.18,
we get the following result by P. Li and M. Ramachandran, [98], that completes
the section.

Theorem 8.19. For every s ≥ 2, there exists a constant ε = ε (s) > 0 such that the
following holds. Let (M, 〈, 〉 , J) be a complete Kähler manifold of real dimension
m = 2s. Assume that, having set r (x) = dist (x, p) for some reference origin
p ∈ M , the Ricci curvature of M satisfies

Ric ≥ −ρ (x) on M

where 0 ≤ ρ (x) ∈ C0 (M) is such that

(i) ρ (x) ∈ L1 (M) ; (ii) ρ (x) ≤ ε

r (x)2
as r (x) >> 1.

(1) If M has at least three ends, then M is parabolic and there exists a proper
holomorphic map φ : M → S onto a parabolic Riemann surface S, whose
fibres are compact and connected.

(2) If H1 (M, Z) = 0, then M has only one end.
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Splitting and gap theorems in the
presence of a Poincaré–Sobolev
inequality

9.1 Splitting theorems

Up to now, we have been using Theorem 4.5 to show that solutions of a differential
problem of the type {

ψ∆ψ + a (x)ψ2 ≥ −A |∇ψ|2 ,
ψ ≥ 0

have to be identically zero. The aim of this section is to present a geometrical
problem in which the second alternative of Theorem 4.5 does actually occur, that
is, ψ becomes a positive solution of the linear equation

∆ψ + a (x) ψ = 0.

We shall focus our attention on splitting-type theorems depending on spectral
and Ricci curvature bounds. To say that the complete manifold (M, 〈, 〉) splits
usually means that M is isometric to the Riemannian direct product(

N1 ×N2, (, )N1
+ (, )N2

)
for suitable complete Riemannian manifolds

(
Ni, (, )Ni

)
, i = 1, 2. Manifolds that

do not split are said to be irreducible. By way of example, the fundamental struc-
ture theorem by G. de Rham asserts that any complete, simply connected mani-
fold splits, according to its holonomy, into simply connected, geodesically complete
factors (Rn, can) ,

(
N2, (, )N2

)
, . . . ,

(
Nk, (, )Nk

)
; furthermore, the decomposition is

uniquely determined and the complete manifolds
(
Ni, (, )Ni

)
are irreducible. See,

e.g., [142].
Actually, the results we present in this section involve with a more general

notion of splitting which allows warped factors. Accordingly, we say that (M, 〈, 〉)
splits even if it is isometric to the warped product(

N1 ×N2, (, )N1
+ f2 (, )N2

)
where

(
Ni, (, )Ni

)
, i = 1, 2, are complete Riemannian manifolds and f ∈ C∞ (N1)

is a suitable positive function.
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Our purpose is to give a somewhat simplified proof of the following result
due to P. Li and J. Wang, [103]. It extends previous work by X. Wang, [161] on
the structure of conformally compact Einstein manifolds.

Theorem 9.1. Let (M, 〈, 〉) be a complete manifold of dimension m ≥ 3 satisfying

λ1 = λ1 (−∆M ) > 0.

Suppose also
MRic ≥ −

(
m− 1
m− 2

)
λ1. (9.1)

Then, either

(1) (M, 〈, 〉) has only one non-parabolic end,

or

(2) (M, 〈, 〉) splits as the warped product R× Σ with metric

〈, 〉 = dt2 + cosh2

(
t
√

λ1
m−2

)
(, ) (9.2)

where (Σ, (, )) is a compact, isometrically imbedded hypersurface of (M, 〈, 〉)
satisfying

ΣRic ≥ −λ1. (9.3)

Remark 9.2. According to Lemma 7.13 above, the presence of a Sobolev–Poin-
caré inequality implies that non-parabolic ends are precisely the infinite volume
ends.

The proof of Theorem 9.1 has its root in the classical splitting theorem by
J. Cheeger and D. Gromoll, [32]. This latter states that if a complete manifold
(M, 〈, 〉) of non-negative Ricci curvature contains a line, i.e., a minimizing geodesic
γ : R → M , then M splits as the Riemannian product R×N where N ⊂ M is a
totally geodesic hypersurface. Note that in the case where M has more than one
end, N is necessarily compact. The (very) original argument supplied by Cheeger-
Gromoll relies on the existence of a harmonic function u of distance-type, i.e.,
satisfying the condition |∇u| = 1. A substantial part of the proof is devoted
to showing that, under the assumptions of the theorem, the Busemann function
corresponding to (a half-line in) γ has the desired properties. Note that the integral
curves of the gradient vector field∇u are geodesic lines of M , so that, in particular,
∇u is complete. Moreover the level sets of u are smooth hypersurfaces with Gauss
map ∇u. Let N be such a level set. Using the flow φt of ∇u through N , one
establishes a smooth diffeomorphism between R×N and M . Finally, one observes
that φt is, in fact, a Riemannian isometry with respect to the product metric
on R × N . Indeed, obviously, (φt)∗

(
d
dt

)
= ∇u which is a unit vector field of M.
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Moreover, using the harmonic function u in the Weitzenbock formula and recalling
the refined Kato inequality yield

|Hess (u)|2 =
m

m− 1
|∇ |∇u||2 = 0,

i.e., ∇u is a parallel (hence a Killing) vector field, and N is totally geodesic. Thus,
by the very definition of Lie derivative, for every V, W ∈ TxM, it holds that

d

dt
〈(φt)∗ V, (φt)∗ W 〉 = 2Hess (u) ((φt)∗ V, (φt)∗ W ) = 0

showing that, obviously, φt is a one-parameter group of isometries of M . In par-
ticular, for any orthonormal basis e1, . . . , em−1 of TxN = 〈∇u (x)〉⊥ ⊂ TxM , the
tangent vectors (φt)∗ e1, . . . , (φt)∗ em−1 ∈ 〈∇u (φt (x))〉⊥ remain orthonormal in
Tφt(x)M. This completes the proof.

We note in passing that a differentiable splitting can be obtained by simply
assuming that there exists a smooth function u without critical points such that
|∇u| is constant on the level sets of u. Indeed, one considers the flow φt of the unit
vector field ∇u/|∇u|, which, by the assumption that |∇u| = α(u), moves level
sets of u onto level sets of u. Therefore, having chosen a level set Σo, the map
φ : R× Σo →M realizes the splitting.

A generalization of this kind of argument led, first M. Cai and G.J. Galloway,
[23], and later X. Wang, [161], and P. Li and J. Wang, [103], to obtain the following

Theorem 9.3. Let (M, 〈, 〉) be a complete manifold of dimension m ≥ 2 and Ricci
curvature satisfying

MRic ≥ −ρ

for some constant ρ > 0. Suppose that u ∈ C∞ (M) is a non-constant harmonic
function such that, setting

ψ = |∇u| ∈ Liploc (M) ,

it holds that
ψ∆ψ + ρψ2 =

1
m− 1

|∇ψ|2 on M, (9.4)

in the weak sense. Then, the level sets of u are smooth hypersurfaces, and (M, 〈, 〉)
splits as the warped product R× Σ0 with metric

〈 , 〉 = dt2 + w(t) ( , )

for a suitable level set Σ0 of u endowed with the inherited metric, and where

w(t) =

⎧⎨⎩C1 exp
(
t
√

ρ
m−1

)
+ C2 exp

(
−t

√
ρ

m−1

)
C1 + C2

⎫⎬⎭
2

, (9.5)
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for some non-negative constants C1 and C2 which are not both zero. Moreover, if
M has at least two ends, then Σ0 is compact and M has exactly two ends. If both
ends of M have infinite volume, we may chose Σ0 in such a way that

w(t) = cosh2
(
t
√

ρ
m−1

)
. (9.6)

If one end of M has finite volume, then, up to replacing t with −t, we have

w(t) = exp
(
2t
√

ρ
m−1

)
. (9.7)

Remark 9.4. Since here A = −1/(m − 1), according to Lemma 4.12, for every
p > (m− 2)/2(m− 1), we have ψp ∈W 1,2

loc (M) and

∇ψp = pψp−1∇ψ ∈ L2
loc. (9.8)

This fact will be crucial in the arguments below.

The proof of Theorem 9.3 is reached by means of two main steps: first, we
show a differential splitting of the original manifold and, next, the metric rigidity
of the differential decomposition.

We need to recall some facts of both topological and analytical nature. Al-
though they are quite simple, we provide a proof for the sake of completeness.

Lemma 9.5. Let Σ be a non-compact, connected manifold. Then, every compact
set [a, b]×K of R×Σ has a connected complement in R×Σ. In particular, R×Σ
has only one end.

Proof. Let Pj = (tj , xj) ∈ R × Σ − [a, b] × K, j = 1, 2. We show that there is a
continuous path γ in R × Σ − [a, b] ×K connecting P1 to P2. Roughly speaking,
γ is obtained by circumnavigating around [a, b]×K. Four possibilities can occur:
(i) t1, t2 ∈ [a, b] and x1, x2 /∈ K; (ii) x1, x2 ∈ K and t1, t2 /∈ [a, b]; (iii) up to
interchanging P1 with P2, t1 ∈ [a, b], x1 /∈ K and t2 /∈ [a, b] , x2 ∈ K; (iv)
t1, t2 /∈ [a, b] and x1, x2 /∈ K. We limit ourselves to consider case (i), the other
cases being similar and left to the reader. Fix t̄ /∈ [a, b] and define the paths
Γj (s) = (t̄s + tj (1− s)) × xj , j = 1, 2. Clearly, Γj (s) lies in the complement
of [a, b] × K and satisfies Γj (0) = Pj , Γj (1) = (t̄, xj). Next, observe that Σ is
connected and locally path connected, hence a path connected space. Choose a
path σ in Σ satisfying σ (0) = x1, σ (1) = x2 and define Γ3 (s) = t̄ × σ (s) .
Since Γ3 (s) ∈ R × Σ − [a, b] × K and Γ3 (0) = Γ1 (1), Γ3 (1) = Γ2 (1), we can
form a new path in R × Σ − [a, b] × K from γ (0) = P1 to γ (1) = P2 by setting
γ = Γ1 ∗Γ3 ∗Γ2, where ∗ means juxtaposition and Γ2 is nothing but Γ2 taken with
opposite orientation. �
Lemma 9.6. Let Σ be a closed connected submanifold of a connected Riemannian
manifold (M, 〈 , 〉). The normal exponential map exp⊥ : T⊥Σ →M , defined as the
restriction of exp to the normal bundle of Σ, is onto M .
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Proof. Since M is complete, given x ∈M , a standard compactness argument shows
that there exists xo ∈ Σ such that d(x, xo) = dist(x, Σ). Again by completeness of
M there exists a minimizing geodesic γ with γ(0) = xo, γ(1) = x and length(γ) =
d(x, xo). Since, exp⊥ is a local diffeomorphism of a neighborhood of the zero
section of T⊥Σ onto its image, and by Gauss’ lemma geodesics normal to Σ locally
minimize the distance from Σ, then γ′(0) ⊥ TxoΣ and by definition exp⊥(γ′(0)) =
γ(1) = x. �

Finally we shall need the following simple ODE result.

Lemma 9.7. Let ρ1 > 1, ρ2 > 0 and C1, C2 ≥ 0. Then, the solution of the differ-
ential equation

ββ′′ − ρ1 (β′)2 + ρ2β
2 = 0

is given by

β (t) =
{
C1 exp

(
t
√

ρ2 (ρ1 − 1)
)

+ C2 exp
(
−t

√
ρ2 (ρ1 − 1)

)}− 1
ρ1−1

.

We are now in a position to prove Theorem 9.3.

Proof of Theorem 9.3. For the sake of clarity, we divide the argument into several
steps.

Step 1. The function ψ = |∇u| satisfies ψ > 0 on M . In particular, ψ is smooth
and the level sets of u are smooth hypersurfaces of M with (Gauss map) unit
normal ∇u/ |∇u|.
Indeed, let

g = ψ
m−2
m−1 .

We insert the test function

(ψ + ε)−
m

m−1 λ, with λ ∈ Lipc(M)

in the weak formulation of (9.4), and perform a computation, similar to that
carried out in the proof of Theorem 4.5, to obtain∫

ψ− 1
m−1

( ψ

ψ + ε

) m
m−1 〈∇ψ,∇λ〉 =

∫
ρλψ2(ψ + ε)−

m
m−1

− m

m− 1

∫
λ
(
ψ− m

2(m−1) |∇ψ|
)2( ψ

ψ + ε

) m
m−1 ε

ψ + ε
.

Using (9.8) with p = 1 − m
2(m−1) we may let ε → 0 and apply the dominated

convergence theorem to deduce that the function g satisfies

∆g +
m− 2
m− 1

ρg = 0
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weakly on M . Thus, the desired positivity of ψ follows from a local Harnack
inequality (see, e.g., [60]).

Step 2. Let {ei} be a local orthonormal frame of M such that

e1 =
∇u

|∇u| =
∇u

ψ
.

Then, denoting by uij the coefficients of Hess (u) with respect to this frame, it
holds that

u1j = − (m− 1)µ δ1j , j = 1, . . . , m, (9.9)
uij = µ δij , i, j = 2, . . . , m,

for some smooth function µ. Equivalently,

Hess (u) (e1, ·) = − (m− 1)µ 〈e1, ·〉 on TM,

Hess (u) (·, ·) = µ 〈·, ·〉 on 〈e1〉⊥ .

(9.10)

In particular, ψ is constant on each path-component of the smooth, level hyper-
surfaces {u = const.} of u.

Indeed, note that (9.4) comes from the Bochner formula for harmonic func-
tions, once we replace the usual inequalities with the equality sign. In particular,
it forces equality in the refined Kato inequality of Proposition 1.3. Thus, setting
M = (uij) ∈ Mm (R) and y = (ui) ∈ Rm, we deduce that

‖M‖2 =
m

m− 1
|My|
|y|2

2

.

Application of the algebraic Lemma 1.5 with A = 1 enables us to obtain (9.9). As
for the second assertion, simply note that if σ is any curve in a path-component
of {u = const.}, then σ̇ is orthogonal to e1 and, therefore, by (9.9),

d

dt
|∇u| ◦ σ = Hess (u) (e1, σ̇) = 0.

As a matter of fact, using a similar argument together with Sard’s theorem, one
can show that each of the path components of a.e. level set of |∇u| coincides with
a path component of some level set of u.

Step 3. Let {ei} be as in Step 2. Then

De1e1 = 0,

so that the integral curves of the global unit vector field e1 = ∇u/|∇u| are
geodesics of M .
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Indeed, recall that

∇|∇u| = Hess (u) (e1, ·)# (9.11)
= − (m− 1)µe1.

Therefore, by a direct computation we get

De1e1 =
1
|∇u|D∇u

∇u

|∇u|

=
1
|∇u|

{
− 1
|∇u|2 〈∇u,∇|∇u|〉∇u +

1
|∇u|Hess (u) (∇u, ·)#

}

=
1
|∇u|

{
−Hess (u) (e1, e1) e1 + Hess (u) (e1, ·)#

}
=

1
|∇u| {(m− 1)µe1 − (m− 1)µe1} = 0.

Step 4. Let Σo be a connected component of a level set {u = uo} of u, and let φt

be the flow of the vector field e1. Then for every x ∈ Σo, φt(x) is defined for all t′s,
and φ : R × Σo → M is a smooth diffeomorphism which realizes a differentiable
splitting R×Σo ≈

diff
M . Moreover, if M has more than one end, then Σo is compact,

and M has exactly two ends.
Indeed, according to the previous step, for every x in M the integral curve

t→ φt(x) of e1 is a geodesic. Since M is complete, the flow φt is defined for every
t (this actually follows directly from the fact that e1 has bounded length), and for
every fixed t gives rise to a global diffeomorphism of M .

In particular, if x ∈ Σo, then φt(x) coincides with the normal exponential
map, namely φt(x) = exp⊥(te1(x)), and according to Lemma 9.6 the map φ :
R×Σo →M is onto. We claim that it is also 1-1 so that it realizes a differentiable
splitting R × Σo ≈

diff
M . Note that since for fixed t, φt : M → M is a global

diffeomorphism, if x1 	= x2, then φt(x1) 	= φt(x2). On the other hand, since ∇u
never vanishes, u is strictly increasing along the integral curves of e1. Therefore if
t1 < t2, then u(φt1(x)) < u(φt2(x)), and φt1(x) 	= φt2 (x). Thus, if φ is not 1 − 1
on R×Σo, there exist x1 	= x2 ∈ Σo and t1 	= t2 such that φt1(x1) = φt2(x2) = x̄.
But then, assuming, e.g., that t1 < t2 we have x2 = φ−t2(x̄) = φ−t2+t1(φ−t1(x̄)) =
φ−t2+t1(x1) and this is impossible since x1 and x2 belong to the same level set of
u, and u increases along integral lines of φt.

Note that, since u increases along the integral curve φt(x), the image of a
level set of u cannot intersect the same level set. Thus Σo is necessarily connected.
Since Σo = {u = to} was arbitrary, all level sets of u are in fact connected, and
|∇u| is constant on every such set.

The last assertion follows from Lemma 9.5 and the fact that the flow of φ
determines the ends of M .
Step 5. The map φ : R× Σo →M moves Σo onto any other level set of u.
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Since |∇u| is constant on level sets of u, there exists a function α defined
on the interval u(M) such that |∇u| = α(u). For fixed x ∈ M and every t ∈ R

we have |∇u|(φt(x)) = α(u(φt(x)), and since the right-hand side is a continuous
function of t, while t→ u(φt(x)) is a continuous bijection of R onto its image, we
deduce that the function α is continuous. Moreover

d

ds
u ◦ φs (x) =

〈
∇u (φs (x)) ,

·
φs (x)

〉
= |∇u (φs (x))|
= α (u ◦ φs (x)) .

Whence, integrating and using the change of variable formula, we get∫ u◦φt(x)

u(x)

dy

α (y)
= t, on R.

In particular, the value u(φt(x)) is independent of the point x in any fixed level
set of u, showing that the image under φt of a level set of u is contained in a level
set of u. The conclusion now follows from the fact that φ is a diffeomorphism of
R× Σo onto M .
Step 6. The smooth, positive function

β (t) = |∇u| ◦ φt (x) = ψ ◦ φt (x) (9.12)

is independent of x varying in a given level set of u and satisfies the ODE

β′′ − m

m− 1
(β′)2

β
+ ρβ = 0, on R. (9.13)

The first assertion follows directly from the fact that φt moves level sets of u
onto level sets of u, and that |∇u| is constant on such level sets. As for the second
assertion, direct computations that use (9.11) show

β′ (t) =
〈
(∇ψ) ◦ φt(x),

d

dt
φt(x)

〉
=

〈∇|∇u| ◦ φt(x), e1

〉
=

(
Hess (u) (e1, e1)

) ◦ φt(x) = − (m− 1)µ ◦ φt (x) ,
(9.14)

and (again by (9.11))

|∇ψ|2 ◦ φt (x) = (m− 1)2 µ2 ◦ φt (x) ,

so that, in particular,
β′ (t)2 = |∇ψ|2 ◦ φt (x) . (9.15)

Moreover, since t→ φt (x) is a geodesic in M with tangent vector e1,

β′′ (t) =
d

dt

(〈∇ψ, e1〉 (φt(x))
)

= Hess (ψ) (e1, e1) (φt (x)). (9.16)
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To treat the Hessian term on the right-hand side we write

Hess (ψ) (e1, e1) = ∆ψ −
m∑

j=2

Hess (ψ) (ej, ej) (9.17)

and claim that

Hess (ψ) (ej , ej) = − (m− 1)µ2

ψ
. (9.18)

Indeed, using (9.11) and the fact that {ei} is an orthonormal frame, we obtain,
for every j ≥ 2,

Hess (ψ) (ej , ej) = Hess (|∇u|) (ej , ej) (9.19)

=
〈
Dej∇|∇u| , ej

〉
= ej 〈∇ |∇u| , ej〉 −

〈∇|∇u| , Dej ej

〉
= ej (− (m− 1)µδ1j) + (m− 1)µ

〈
e1, Dej ej

〉
= − (m− 1)µ

〈
Dej e1, ej

〉
.

On the other hand, using again (9.11), a direct computation yields

Dej e1 = |∇u|−1
Dej∇u− |∇u|−2

ej(|∇u|)∇u

= |∇u|−1 Hess (u) (ej , ·)# + |∇u|−2 Hess(u)(ej , e1)∇u

= ψ−1Hess (u) (ej, ·)# .

Inserting this latter into (9.19) and using (9.9) establishes equation (9.18).
Now, substituting (9.18) into (9.17), inserting the resulting equality into

(9.16) and recalling (9.14) and (9.4), we conclude that

β′′(t) =
(
∆ψ + (m− 1)2

µ2

ψ

)
(φt(x))

=
(
∆ψ +

|∇ψ|2
ψ

)
(φt(x))

=
(
−ρψ +

m

m− 1
|∇ψ|2

ψ

)
(φt(x))

= −ρβ +
m

m− 1
(β′)2

β
.

(9.20)

Step 7. If Σ0 is a level set of M and φ : R × Σ0 → M realizes the differentiable
splitting, then

φ∗ 〈 , 〉 = dt⊗ dt +
(

β(t)
β(0)

)−2/(m−1)

( , ) . (9.21)
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Obviously, φ∗ ∂
∂t = e1 ◦ φ so that

φ∗ 〈 , 〉
(

∂

∂t
,

∂

∂t

)
= 1. (9.22)

Moreover, for every V ∈ TΣ0 = 〈e1〉⊥,〈
φ∗

∂

∂t
, φ∗V

〉
= 0. (9.23)

Indeed, if σ is any curve in Σ starting with velocity V , by definition of β and the
fact that it is independent of the point x ∈ Σ0, we have

d

ds

∣∣∣∣
s=0

(|∇u| ◦ φt) ◦ σ (s) =
d

ds

∣∣∣∣
s=0

β (t) = 0. (9.24)

On the other hand, using (9.10) and (9.14), we have

d

ds

∣∣∣∣
s=0

|∇u| ◦ (φt ◦ σ (s)) = Hess (u) (e1, (φt)∗V ) (9.25)

= − (m− 1)µ ◦ φt 〈e1, (φt)∗V 〉
= β′ (t) 〈e1, (φt)∗V 〉 .

Since β′ (t) 	= 0 by (9.14), combining (9.24) and (9.25) gives (9.23), and proves
that φ∗ 〈, 〉 takes the form

φ∗ 〈 , 〉 = dt⊗ dt + (φt)∗ 〈 , 〉 .
Thus, the desired conclusion will follow once we show that

(φt)∗ 〈 , 〉 =
(

β(t)
β(0)

)−2/(m−1)

( , ) .

By the definition of Lie derivative we have, for all vectors V, W tangent to Σ0,

〈DV e1, W 〉+ 〈DW e1, V 〉 = Le1 〈, 〉 (V, W ) =
d

ds

∣∣∣∣
s=0

(φ∗
s 〈, 〉) (V, W ) .

On the other hand, recalling that |∇u| is locally constant on the level sets of u, so
that

DV e1 = DV

( ∇u

|∇u|
)

=
1
|∇u|DV∇u,

and using (9.10), we deduce that

〈DV e1, W 〉 =
1
|∇u|Hess (u) (V, W ) =

µ

|∇u| 〈V, W 〉
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so that
d

ds

∣∣∣∣
s=0

(φ∗
s 〈 , 〉) =

2µ

|∇u| 〈 , 〉 .

As a consequence, recalling the definition (9.12) of β, (9.14) and the group property
of φt, we get

d

dt
(φ∗

t 〈 , 〉) =
2µ ◦ φt

|∇u| ◦ φt
φ∗

t 〈 , 〉

=
−2β′ (t)
m− 1

1
β (t)

φ∗
t 〈 , 〉 .

Integrating over [0, t] we finally obtain

φ∗
t 〈 , 〉 =

(
β (t)
β (0)

)− 2
m−1

φ∗
0 〈 , 〉

as required.
Step 8. In view of (9.13) and by Lemma 9.7, the positive function β (t) = ψ◦φt (x)
has the expression

β (t) =
{
C1 exp

(
t
√

ρ
m−1

)
+ C2 exp

(
−t

√
ρ

m−1

)}−(m−1)

,

for some non-negative constants C1, C2 which are independent of x ∈ Σo, since so
is β, and cannot both vanish because ψ = |∇u| > 0. Up to replacing t with −t,
we may assume that C1 > 0. Thus

w(t) =
(

β (t)
β (0)

)− 2
m−1

=

⎧⎨⎩C1 exp
(
t
√

ρ
m−1

)
+ C2 exp

(
−t

√
ρ

m−1

)
C1 + C2

⎫⎬⎭
2

,

as required to prove (9.5).
Step 9. Assume now that M has two ends. Note that if both the constants C1 and
C2 are different from zero, then the positive function β (t) tends to zero as t→ ±∞
and β attains its positive maximum B at some t0 ∈ R. Without loss of generality,
up to using the translated flow φt+t0 , we can assume t0 = 0. Accordingly,

β (0) = B > 0, β′ (0) = 0

which implies that β (t) has the expression

β (t) = B cosh−(m−1)
(
t
√

ρ
m−1

)
and

w(t) =
(

β(t)
β(0)

)−2/(m−1)

= cosh2
(
t
√

ρ
m−1

)
.
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On the other hand, if C2 = 0, then

w(t) = exp
(
2t
√

ρ
m−1

)
.

Since Σ0 is compact, in the former case both ends of M have infinite volume. In
the latter case, vol ((−∞, 0]× Σ0) < +∞, and one of the ends of M has finite
volume. �

In view of Theorem 9.3, the strategy of the proof of Theorem 9.1 is to use the
assumptions on the geometry of M to produce a non-constant harmonic function
satisfying the differential equation (9.4). This requires some preliminary results on
the energy of a special class of harmonic functions considered in Section 7.1.

We recall briefly the construction. Let D be a relatively compact domain D
with smooth boundary, and fix an exhaustion {Dn} of M by relatively compact
open domains with smooth boundary and D ⊂⊂ Dn ⊂⊂ Dn+1.

According to Proposition 7.10, if M has at least two non-parabolic ends E1

and E2, then the sequence of functions un which solve the boundary value problem{
∆un = 0 in Dn,

un = 1 on ∂Dn ∩ E1, un = 0 on ∂Dn ∩
(
M \E1

)
has a subsequence which converges locally uniformly to a bounded harmonic func-
tion u with finite Dirichlet integral such that 0 < u < 1, supE1

u = 1, and
infE2 u = 0.

Lemma 9.8. Maintaining the notation introduced above, let E be an end of M with
respect to D, satisfying the Poincaré inequality

0 < λ1 = λ1 (−∆E) = inf

∫
E
|∇ϕ|2∫
E ϕ2

(9.26)

where the infimum is taken over C∞
c (E) \ {0}. Let u be the harmonic function

obtained with the approximation procedure described above, and let 0 < δ <
√

λ1.
Then, there exists a constant C = C(u) > 0 such that

∫
E

e2δr(u− α)2 ≤ C(√
λ1 − δ

)2 , where α =

{
1 if E = E1,

0 otherwise.
(9.27)

Remark 9.9. We observe that a similar statement, with appropriate values of α,
holds for linear combinations of the harmonic functions as considered in the state-
ment, that is, for harmonic functions obtained by the approximation procedure
assigning to each un a constant boundary value on E ∩ ∂Dn (necessarily equal to
zero if E is parabolic).
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Proof. We consider the case where E 	= E1, so that the approximating sequence
un satisfies the boundary condition un = 0 on E ∩ ∂Dn. The other case is dealt
with by replacing u with 1 − u. Let o ∈ D and R0 such that D̄ ⊂ BR0(o),
fix R ≥ 2R0, and choose n ∈ N sufficiently large that B̄R(o) ⊂ Dn. We set
En = E ∩ Dn, ∂En = E ∩ ∂Dn, E(R) = E ∩ BR(o) and ∂E(R) = ∂BR(o) ∩ E.
Let also ϕ : M → [0, 1] be a smooth cut-off function such that

ϕ = 0 on BR0 , ϕ = 1 off BR, |∇ϕ| ≤ 2
R−R0

on M.

Fix 0 < δ <
√

λ1 and integrate over En to obtain∫
En

∣∣∇ (
ϕeδrun

)∣∣2 =
∫

En

u2
n

∣∣∇ (
ϕeδr

)∣∣2 + 2
∫

En

unϕeδr
〈∇un,∇ (

ϕeδr
)〉

+
∫

En

ϕ2e2δr |∇un|2

=
∫

En

u2
n

∣∣∇ (
ϕeδr

)∣∣2 +
∫

En

ϕ2e2δr |∇un|2

+
1
2

∫
En

〈∇ (
u2

n

)
,∇ (

ϕ2e2δr
)〉

.

Applying the divergence theorem, noting that un vanishes on ∂En, while φ2e2δr

is zero on ∂E, and using the harmonicity of un in En, we have

1
2

∫
En

〈∇ (
u2

n

)
,∇ (

ϕ2e2δr
)〉

= −1
2

∫
En

ϕ2e2δr∆
(
u2

n

)
= −

∫
En

ϕ2e2δrun∆un −
∫

En

ϕ2e2δr |∇un|2

= −
∫

En

ϕ2e2δr |∇un|2 ,

which, inserted into the above identity, yields∫
En

∣∣∇ (
ϕeδrun

)∣∣2 =
∫

En

u2
n

∣∣∇ (
ϕeδr

)∣∣2 .

By Young’s inequality, for every ε > 0 the right-hand side is estimated from above
by

(1 + ε) δ2

∫
En

u2
nϕ2e2δr +

(
1 + ε−1

) ∫
En

u2
ne2δr |∇ϕ|2 ,

so, using the Poincaré inequality to estimate the left-hand side from below and
rearranging, we get(

λ1 − (1 + ε) δ2
) ∫

En

u2
nϕ2e2δr ≤ (

1 + ε−1
) 4

(R−R0)
2

∫
E(R)\E(R0)

u2
ne2δr.
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Choosing

ε =
√

λ1 − δ

δ

we obtain (√
λ1 − δ

)2
∫

En

u2
nϕ2e2δr ≤ 4

(R−R0)
2

∫
E(R)\E(R0)

u2
ne2δr,

whence, recalling that ϕ is non-negative and identically equal to 1 outside BR,(√
λ1 − δ

)2
∫

En\E(R)

u2
ne2δr ≤ 4

(R−R0)
2

∫
E(R)\E(R0)

u2
ne2δr.

Now, we choose R = 2R0 and we let n → +∞ to get(√
λ1 − δ

)2
∫

E\E(2R0)

u2e2δr ≤ 4
R2

0

∫
E(2R0)\E(R0)

u2e2δr,

and (9.27) follows. �
Lemma 9.10. Assume that M has at least two non-parabolic ends, and that E is
an end of M with respect to D satisfying the Poincaré inequality (9.26). Let u be a
harmonic function as in the statement of Lemma 9.8. Then there exists a constant
C = C

(
u,
√

λ1

)
> 0, such that for every sufficiently large R,∫

ER\ER−1

e2
√

λ1r(u− α)2 ≤ C, (9.28)

where α is as in Lemma 9.8, namely, α = 1 if u is the limit of a sequence of
harmonic functions un equal to 1 on E ∩ ∂Dn, and α = 0 otherwise.

Proof. Again we consider the case where α = 0. Let ϕ ∈ Lipc (E). A straightfor-
ward computation shows the validity of the equality∫

E

∣∣∣∇(
e
√

λ1rϕu
)∣∣∣2 =

∫
E

{
e2

√
λ1ru2 |∇ϕ|2 + λ1e

2
√

λ1rϕ2u2

+ 2
√

λ1e
2
√

λ1rϕu2 〈∇ϕ,∇r〉 + e2
√

λ1rϕ2 |∇u|2

+ 2e2
√

λ1rϕu 〈∇ϕ,∇u〉 +2
√

λ1e
2
√

λ1rϕ2u 〈∇u,∇r〉
}

.

The last three terms under the integral on the right-hand side can be written in
the form 〈∇u,∇(e2

√
λ1 rϕ2u

)〉
,

so that, integrating by parts and using the fact that u is harmonic, they cancel
out and the above equality reduces to∫

E

∣∣∣∇(
ϕe

√
λ1ru

)∣∣∣2 =
∫

E

e2
√

λ1r
(
u2 |∇ϕ|2 + 2

√
λ1ϕu2 〈∇ϕ,∇r〉 + λ1ϕ

2u2
)

.
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We now apply the Poincaré inequality to the left-hand side and rearrange to obtain

−2
√

λ1

∫
E

e2
√

λ1ru2ϕ 〈∇ϕ,∇r〉 ≤
∫

E

e2
√

λ1ru2 |∇ϕ|2 . (9.29)

We let R0 < R1 < R and we choose ϕ to be given by the formula

ϕ (r) =

⎧⎪⎨⎪⎩
r(x)−R0
R1−R0

on E(R1) \ E(R0),
R−r(x)
R−R1

on E(R) \ E(R1),
0 elsewhere.

Substituting into (9.29) we have

2
√

λ1

(R−R1)
2

∫
E(R)\E(R1)

e2
√

λ1r (R− r) u2 (9.30)

≤ 1
(R−R1)

2

∫
E(R)\E(R1)

e2
√

λ1ru2 +
1

(R1 −R0)
2

∫
E(R1)\E(R0)

e2
√

λ1ru2

+
2
√

λ1

(R1 −R0)
2

∫
E(R1)\E(R0)

e2
√

λ1r (r −R0)u2.

We fix 0 < t < R−R1 and we observe that

2t

(R−R1)
2

∫
E(R−t)\E(R1)

e2
√

λ1ru2 ≤ 2
(R−R1)

2

∫
E(R−t)\E(R1)

(R− r) e2
√

λ1ru2.

Thus, from (9.30) we get

2t
√

λ1

(R−R1)
2

∫
E(R−t)\E(R1)

e2
√

λ1ru2 ≤ 1

(R−R1)
2

∫
E(R)\E(R1)

e2
√

λ1ru2

+

[
1

(R1 −R0)
2 +

2
√

λ1

R1 −R0

]∫
E(R1)\E(R0)

e2
√

λ1ru2. (9.31)

Let R > max
{
2R0, R1 + 1/

√
λ1

}
. We choose R1 = R0 + 1, t = 1/

√
λ1 and define

g (R) =
∫

E(R)\E(R0+1)

e2
√

λ1ru2.

The above inequality gives

2
(R−R0 − 1)2

g

(
R− 1√

λ1

)
≤ 1

(R−R0 − 1)2
g (R) + 2A

for some A = A
(
R0,

√
λ1, u

)
> 0, and therefore

g (R) ≤ 1
2
g

(
R +

1√
λ1

)
+ A

(
R +

1√
λ1

)2

. (9.32)
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Now we let k be a positive integer and we iterate (9.32) k-times to obtain

g (R) ≤ 1
2k

g

(
R +

k√
λ1

)
+ AR2

k∑
i=1

(
1 + i

R
√

λ1

)2

2i−1

and therefore

g (R) ≤ 1
2k

g

(
R +

k√
λ1

)
+ CR2

for some constant C > 0 which depends only on Ro,
√

λ1 and u. We now use
assumption (9.27) to show that

lim
k→+∞

1
2k

g

(
R +

k√
λ1

)
= 0.

Indeed, if 0 < δ < λ1, applying (9.27) we have

g

(
R +

k√
λ1

)
=
∫

B
R+ k√

λ1

\BR0+1

e2
√

λ1ru2

=
∫

B
R+ k√

λ1

\BR0+1

e2(
√

λ1−δ)ru2e2δr

≤ C
(√

λ1 − δ
)−2

e
2

(
R+ k√

λ1

)
(
√

λ1−δ)
.

Therefore

1
2k

g

(
R +

k√
λ1

)
≤ C

(√
λ1 − δ

)−2

e2R(
√

λ1−δ)e
2 k√

λ1
(
√

λ1−δ)−k log 2 → 0

as k → +∞, provided δ is sufficiently near to
√

λ1. Recalling the definition of
g (R) we have thus proved∫

E(R)\E(R0+1)

e2
√

λ1ru2 ≤ ĈR2, R >> 1,

for some constant Ĉ = Ĉ
(
u, R0,

√
λ1

)
> 0 and therefore∫

E(R)

e2
√

λ1ru2 ≤ CR2, R >> 1, (9.33)

for some C > 0. To improve (9.33) we use again inequality (9.31). For R large
enough, we choose R1 = R0 + 1, t = R/2 in (9.31) to obtain

R
√

λ1

∫
E( R

2 )\E(R0+1)

e2
√

λ1ru2 ≤
∫

E(R)\E(R0+1)

e2
√

λ1ru2 + 2AR2
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and then applying (9.33) ∫
E( R

2 )\E(R0+1)

e2
√

λ1ru2 ≤ CR

or, equivalently, ∫
E(R)

e2
√

λ1ru2 ≤ CR, R >> 1. (9.34)

To conclude we set R1 = R − 4/
√

λ1, t = 2/
√

λ1 in (9.31), and deduce that for
sufficiently large R,∫

E(R− 2√
λ1

)\E(R− 4√
λ1

)

e2
√

λ1ru2

≤ 1
4

∫
E(R)\E(R− 4√

λ1
)

e2
√

λ1ru2 +
C

R

∫
E(R− 2√

λ1
)\E(R0)

e2
√

λ1ru2

for some constant C = C
(
u, R0,

√
λ1

)
> 0. Thus, using (9.34),∫

E(R− 2√
λ1

)\E(R− 4√
λ1

)

e2
√

λ1ru2 ≤ 1
3

∫
E(R)\E(R− 2√

λ1
)

e2
√

λ1ru2 + C.

We iterate this inequality k-times to obtain, with the aid of (9.34),∫
E(R+ 2√

λ1
)\E(R)

e2
√

λ1ru2 ≤ C
k∑

i=1

1
3i−1

+
1
3k

∫
E(R+ 2k√

λ1
)\E(R+ 2(k−1)√

λ1
)

e2
√

λ1ru2

≤ C + C
1
3k

(
R +

2k√
λ1

)
,

whence, letting k → +∞ we deduce that the integral on the left-hand side is
bounded above by C. The required conclusion now follows at once. �
Lemma 9.11. Let (M, 〈, 〉), u and E be as in the previous lemmas. Then, there
exists a constant C > 0 independent of R such that, for R sufficiently large,∫

E(R)

e2
√

λ1r |∇u|2 ≤ CR. (9.35)

In particular |∇u|2 ∈ L1 (E) .

Proof. Let ϕ be the cut-off function

ϕ (x) =

⎧⎪⎪⎨⎪⎪⎩
r (x)− R + 1 on E(R) \ E(R − 1),
1 on E(R + 1) \ E(R),
R − 2− r (x) on E(R + 2) \ E(R + 1),
0 elsewhere.
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Consider the vector field
Z = ϕ2u∇u.

Using the divergence theorem, the fact that u is harmonic and the Cauchy–Schwarz
inequality, we have∫

E

ϕ2 |∇u|2 = −2
∫

E

ϕu 〈∇ϕ,∇u〉 −
∫

E

ϕ2u∆u

≤ 1
2

∫
E

ϕ2 |∇u|2 + 2
∫

E

|∇ϕ|2 u2.

Thus, using (9.28) and the definition of ϕ,∫
E(R+1)\E(R)

|∇u|2 ≤ 4
∫

E(R+2)\E(R−1)

u2 ≤ Ce−2
√

λ1(R−1).

It follows that∫
E(R+1)\E(R)

e2
√

λ1r |∇u|2 ≤ e2
√

λ1(R+1)

∫
E(R+1)\E(R)

|∇u|2 ≤ C.

We set R = R0 + i and we sum over 1 ≤ i ≤ k to get∫
E(R0+k)\E(R0+1)

e2
√

λ1r |∇u|2 ≤ Ck ≤ C (R0 + k) .

We have thus proved (9.35). The second assertion follows writing∫
E\E(R0)

|∇u|2 ≤
∑

k

∫
E(R0+k+1)\E(R0+k)

e−2
√

λ1(R0+k)

∫
∂Br

e2
√

λ1r|∇u|2

≤ C
∑

k

(R0 + k + 1)e−2
√

λ1(R0+k) < +∞.

�
We are now ready to give the

Proof of Theorem 9.1. Assume that M has at least two non-parabolic ends, and
that λ1 = λ1(−∆M ) > 0. Then, there exists a non-constant harmonic function u
on M which is obtained as the limit of a sequence {un} as in the assumptions of
Lemma 9.8. Having set ψ = |∇u| , and applying Lemma 9.11 to each end E of M
with respect to D (note that λ1(−∆E) ≥ λ1 > 0 by domain monotonicity), we
have the energy estimate ∫

BR

e2
√

λ1rψ2 ≤ CR (9.36)

with R sufficiently large. From Bochner’s formula and assumption (9.1) on the
Ricci curvature of M , we obtain

ψ∆ψ +
m− 1
m− 2

λ1ψ
2 ≥ 1

m− 1
|∇ψ|2 . (9.37)
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Now, the operator

L = −∆−H
m− 1
m− 2

λ1

(
H =

m− 2
m− 1

)
clearly satisfies λ1 (LM ) = 0. Furthermore, using Hölder inequality and (9.36),∫

BR

ψ2 m−2
m−1 =

∫
BR

(
e2

√
λ1rψ2

)m−2
m−1

e−2m−2
m−1

√
λ1r

≤ CR
m−2
m−1

(∫
BR

e−2(m−2)
√

λ1r

) 1
m−1

.

By the co-area formula, (9.1) and the Bishop comparison theorem we have∫
BR

e−2(m−2)
√

λ1r =
∫ R

0

∫
∂Bt

e−2(m−2)
√

λ1rdt ≤ C

∫ R

0

e
2
√

λ1t
(

m−1
2
√

m−2−m+2
)
dt.

Thus ∫
BR

ψ2 m−2
m−1 ≤ C

{
R for m = 3,

R
m−2
m−1 for m ≥ 4.

It both cases it follows that
r∫

Br
ψ2 m−2

m−1

/∈ L1 (+∞)

and therefore
1∫

∂Br
ψ2 m−2

m−1

/∈ L1 (+∞) .

Since ψ 	≡ 0, applying Theorem 4.5 with

β = A = H − 1 = − 1
m− 1

,

we deduce that equality holds in (9.37). The result now follows from Theorem 9.3,
noting that, since λ1 > 0, the infinite volume ends are precisely the non-parabolic
ends. �

9.2 Gap theorems

We have seen in Chapter 4 that vanishing theorems may be obtained by imposing
spectral conditions, namely, letting HL be the Schrödinger operator −∆−Ha(x),
then λ1(HLM ) ≥ 0 implies that non-negative Lp solutions of the differential in-
equality

ψ∆ψ + a(x)ψ2 + A|∇ψ|2 ≥ 0
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vanish identically provided the coefficients A, a and H satisfy suitable conditions.
On the other hand, it was shown in Section 7.1 that the validity of Sobolev-type
inequalities can be used to obtain spectral information on the operator HL. In
particular, if an appropriate integral norm of (the positive part of) the potential
Ha(x) is less than or equal to the L2-Sobolev constant, then λ1(HLM ) ≥ 0 (see
Lemma 7.33).

In this section we show that a direct use of a Poincaré–Sobolev inequality
can be used to obtain similar gap theorems, requiring that the integral norm of
Ha(x) be smaller than a suitable multiple(> 1) of the Poincaré–Sobolev constant.

We are going to apply this result to the investigation, already considered
in Section 7.4, of the topology at infinity of immersed submanifold, as well as to
other geometric situations like characterization of space forms and gap theorems
for harmonic maps.

Theorem 9.12. Let (M, 〈 , 〉) be a complete manifold and assume that, for some 0 ≤
α < 1 and some non-negative function h, the inhomogeneous Sobolev–Poincaré-
type inequality ∫

M

(|∇ϕ|2 + hϕ2
) ≥ S (α)−1

{∫
M

|ϕ| 2
1−α

}1−α

(9.38)

holds for every ϕ ∈ C∞
c (M) with a positive constant S (α) > 0. Suppose that

ψ ∈ Liploc (M) is a positive solution of

ψ∆ψ + a (x) ψ2 + A |∇ψ|2 ≥ 0 (weakly) on M (9.39)

satisfying ∫
Br

|ψ|σ = o
(
r2
)

as r → +∞ (9.40)

with A ∈ R, σ −A− 1 > 0, σ 	= 0, and a (x) ∈ C0 (M). Then∥∥∥∥a+ (x) +
4(σ −A− 1)

σ2
h

∥∥∥∥
L

1
α (M)

≥ 4(σ −A− 1)
σ2

S (α)−1
. (9.41)

Furthermore, if ψ is assumed to be non-negative and not identically zero, then
(9.41) holds under the further assumption that σ > 0.

We remark for future use that in the case where α = 0, then the constant
S(0)−1 coincides with the bottom of the L2-spectrum λ1(LM ) of the Schrödinger
operator L = −∆ + h.

We also remark that in the case where h = 0, that is when a standard
Sobolev inequality is assumed to hold, then the theorem states that there are no
non-zero solutions of (9.39) satisfying (9.40) if the L1/α-norm of the coefficient
a is smaller than a multiple, depending on the integrability exponent σ, of the
Sobolev constant. Thus the result compares directly with Theorem 4.5, replacing
the spectral assumption with the validity of a Sobolev–Poincaré inequality and a
norm estimate on the potential.
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Proof. Note that the conclusion certainly holds if either a+ or h are not in
L1/α(M), so we assume that a+ + h ∈ L1/α.

We consider the case where ψ is only assumed to be non-negative, and 0 <
σ < 2, the other cases being easier. Next, recall that, by (9.39), for every test
function 0 ≤ ρ ∈ H1

c we have∫
a+ψ2ρ ≥

∫
ψ〈∇ψ,∇ρ〉+ (1−A)ρ|∇ψ|2.

Let φ = φr ∈ C∞
c (M) be a family of cut-off functions satisfying

φr ≡ 1 on Br, φr ≡ 0 off B2r, |∇φr| ≤ 4
r

on M,

and apply the above inequality to the test function (ψ2 + η)
σ−2

2 φ2 to obtain, after
some manipulations,∫

a+φ2(ψ2 + η)
σ
2

ψ2

ψ2 + η
≥ 2

∫
(ψ2 + η)

σ−2
2 ψφ〈∇φ,∇ψ〉

+
∫

(ψ2 + η)
σ−2

2 φ2|∇ψ|2
{

1−A + (σ − 2)
ψ2

ψ2 + η

}
. (9.42)

We use the fact that

0 ≤ ψ2

ψ2 + η
≤ 1 (9.43)

and that σ − 2 < 0, to estimate the LHS from above, and the second integral on
the RHS from below. Also, by Young’s inequality and (9.43), for every ε > 0, the
first integral on the RHS is estimated from below by

−1
ε

∫
(ψ2 + η)

σ
2 |∇φ|2 − ε

∫
(ψ2 + η)

σ−2
2 .

Inserting the resulting inequalities and rearranging, we conclude that∫
a+φ2(ψ2 + η)

σ
2 +

1
ε

∫
(ψ2 + η)

σ
2 |∇φ|2

≥ (σ −A− 1− ε)
∫

φ2(ψ2 + η)
σ−2

2 |∇ψ|2. (9.44)

Fix ε > 0 small enough that σ−A−1−ε > 0. As η ↘ 0, by dominated convergence,
the LHS converges to ∫

a+φ2ψσ +
1
ε

∫
ψσ|∇φ|2,

while, since σ − 2 < 0, by monotone convergence, the RHS converges to

(σ −A− 1− ε)
∫

φ2ψσ−2|∇ψ|2.
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We may therefore conclude that∫
a+ (x) φ2ψσ +

1
ε

∫
ψσ |∇φ|2 ≥ (σ −A− 1− ε)

∫
ϕ2ψσ−2 |∇ψ|2 . (9.45)

According to Lemma 4.13, the function ψσ/2 ∈W 1,2
loc and ∇(ψσ/2

)
= σ

2 ψ( σ
2 −1)∇ψ.

By the Poincaré–Sobolev inequality, Young inequality and (9.45), we estimate

S(α)−1

{∫ (
ψ

σ
2 φ

) 2
1−α

}1−α

≤
∫ (|∇(ψ σ

2 φ
)|2 + hφ2ψσ

)
≤ (1 + δ)

σ2

4

∫
ψσ−2φ2|∇ψ|2 + (1 +

1
δ
)
∫

ψσ|∇φ|2 +
∫

hφ2ψσ

≤ C−1
δ,ε

∫ (
a+ + Cδ,εh

)
φ2ψσ +

( 1
εCδ,ε

+ 1 +
1
δ

) ∫
ψσ|∇φ|2,

where
Cδ,ε =

4
σ2

σ −A− 1− ε

1 + δ
.

Using Hölder’s inequality in the first integral,∫ (
a+ + Cδ,εh

)
φ2ψσ ≤ ||a+ + Cδ,εh||L1/α

{∫ (
ψ

σ
2 φ

) 2
1−α

}1−α

,

and rearranging, we finally obtain{
S(α)−1 − C−1

δ,ε ||a+ + Cδ,εh||L1/α

}(∫ (
ψ

σ
2 φ

) 2
1−α

}1−α

≤
{ 1

εCδ,ε
+ 1 +

1
δ

} C

R2

∫
B2r

ψσ.

To conclude, assume that (9.41) does not hold. Since, by dominated convergence,

C−1
δ,ε ||a+ + Cδ,εh||L1/α → σ2

4(σ −A− 1)

∥∥∥∥a+ (x) +
4(σ −A− 1)

σ2
h

∥∥∥∥
L

1
α (M)

,

as ε, δ → 0+, we may choose δ and ε small enough that the coefficient on the LHS
is positive. Since ψ does not vanish identically, there exists R such that, for every
r > R the integral is strictly positive. The required contradiction follows by noting
that, according to (9.40), the right-hand side tends to zero as r → +∞. �

Theorem 9.12 allows us to obtain a quantitative improvement on the results
obtained in Section 7.4

Recall that if (M, 〈 , 〉) is isometrically immersed into a Cartan–Hadamard
manifold N , the following L2-type Sobolev inequality holds:

S2 (m, ε)−1

(∫
M

|v| 2m
m−2

)m−2
m

≤
∫

M

|∇v|2 +
ε2(m− 2)2

4(m− 1)2

∫
M

|H |2 v2, (9.46)
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where

S (m, ε) =

(
2
√

1 + ε−2 (m− 1)
(m− 2)S1 (m)−1

)2

, (9.47)

and H is the mean curvature vector field of the immersion. We also recall that if
the immersion is minimal, then the best constant in (9.47) is achieved by choosing
ε = +∞, and in this situation, we write S2 (m) = S2 (m, +∞).

Applying Theorem 9.12 instead of Theorem 4.5, we obtain the following
improvements of Theorem 7.36 and Theorem 7.35.

Theorem 9.13. Let f : (Mm, 〈 , 〉) → Rn be a complete, minimal, immersed sub-
manifold of dimension m ≥ 3 whose second fundamental tensor II satisfies(∫

M

|II|m
) 2

m

< 4S2 (m)−1
2

(m+2)(n−m)−2 + m− 1(
2− 1

n−m

)
m2

. (9.48)

Then f is totally geodesic.

Theorem 9.14. Let f : (Mm, 〈 , 〉) → (Nn, (, )) be an isometric immersion of the
complete manifold M of dimension m ≥ 3 into the Cartan–Hadamard manifold N
whose sectional curvature (along f) satisfies

(0 ≥) NSectf(x) ≥ − NR (x) (9.49)

for some function NR ∈ C0 (M). Denote by H and II respectively the mean cur-
vature vector field and the second fundamental tensor of f. Assume that, for some
ε > 0,∥∥∥∥m(m− 2)2ε2

4(m− 1)3
H2 + (m− 1) NR (x) + |II| (|II|+ m |H |) (x)

∥∥∥∥
L

m
2

<
m

m− 1
S2 (m, ε)−1

Then M has only one end.

Remark 9.15. For the sake of comparison, recall that Theorem 7.36 yields the
same conclusion under the stronger assumption that∥∥∥∥ (m− 2)2ε2

(m− 1)2
|H |2 + (m− 1) NR (x) + |II| (|II|+ m |H |) (x)

∥∥∥∥
L

m
2

≤ S2 (m, ε)−1 . (9.50)

Observe that the proof of Theorem 7.36 relies on a vanishing result, Theorem 4.5,
which depends on the assumption that the bottom of the spectrum of a suitable
Schrödinger operator is non-negative. This in turn is obtained by combining the
integral bound (9.50) and the Sobolev inequality. By contrast, the argument in
Theorem 9.12 uses the Sobolev inequality in a more direct way, and allows us to
improve the constant.
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Our next result is a further application of Theorem 9.12, and it implies a
vanishing result for harmonic forms in L2.

Theorem 9.16. Let (M, 〈 , 〉) be a complete Riemannian manifold supporting the
Poincaré–Sobolev inequality (9.38) for some 0 ≤ α < 1, and assume that

Ric ≥ −ρ(x)

for some continuous function ρ satisfying

||ρ+ +
4
p2

(m− 1)(p− 1) + 1
m− 1

h||L1/α <
4
p2

(m− 1)(p− 1) + 1
m− 1

S(α)−1, (9.51)

for some p > (m− 2)/(m− 1). If ω is a closed and co-closed 1-form satisfying∫
Br

|ω|p = o
(
r2
)
,

then ω ≡ 0.

The proof follows by noting that the norm of a closed and co-closed 1-form
satisfies the differential inequality

ψ∆ψ + ρ (x)ψ2 ≥ 1
(m− 1)

|∇ψ|2

and applying Thoerem 9.12. Noting that a harmonic L2 form is automatically
closed and co-closed, we recover the vanishing results of P.Li and J. Wang, [103],
Theorem 4.2, for manifolds with a positive spectral gap. In the case of Lp harmonic
1-forms, which are not necessarily closed and co-closed, and therefore do not satisfy
a refined Kato inequality, one has a vanishing result provided the right-hand side
of (9.51) is replaced by 4(p− 1)S(α)−1/p2.

Similar results can be given for Lp harmonic forms of any degree, or for
harmonic maps with Lp energy density, provided one uses the appropriate Weitzen-
böck formula. For instance, we have the following

Theorem 9.17. Let (M, 〈 , 〉) be an m-dimensional complete Riemannian manifold,
supporting the Poincaré–Sobolev inequality (9.38) for some 0 ≤ α < 1, and assume
that

Ricci ≥ −ρ(x).

Let f : M → N be a harmonic map into an n-dimensional non-positively curved
Riemannian manifold N . If |df | ∈ Lp(M), for some p > m−2

m−1 and

||ρ+ +
4
p2

(m− 1)(p− 1) + 1
(m− 1)

h||L1/α <
4
p2

(m− 1)(p− 1) + 1
m− 1

S(α)−1,

then f is constant.
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9.3 Gap Theorems, continued

In this section we will employ Theorem 9.12 to obtain isolation phenomena for the
Ricci tensor of a scalar flat, conformally flat manifold.

A Riemannian manifold (M, 〈 , 〉) of dimension m is said to be locally con-
formally flat if a neighborhood of each point of M can be conformally immersed
into the standard sphere Sm. When m ≥ 4 this is equivalent to the fact that the
Weyl tensor vanishes identically. The category of locally conformally flat spaces
contains the manifolds of constant sectional curvature, hence, in particular, the
space-forms Rm, Hm

−k2 , Sm
k2 , where the subscripts refer to the constant sectional

curvature of the space. Note that, according to the orthogonal decomposition of
the Riemann tensor into its irreducible components, a conformally flat manifold of
dimension m ≥ 3 has constant sectional curvature if and only if it is Einstein, i.e.,
the traceless part of its Ricci tensor is identically equal to zero. As a consequence,
by the H. Hopf classification theorem, the space forms are (up to isometries) the
only complete, simply connected, locally conformally flat, Einstein manifolds. In
this section we investigate other possible characterizations of space forms from the
conformally-flat viewpoint.

Let (M, 〈 , 〉) be a conformally flat manifold of dimension m ≥ 3 with con-
stant scalar curvature S. We carry out the computations that follow assuming
that m ≥ 4, but note that the conclusions we obtain also hold when m = 3. Con-
formal flatness and the decomposition of the Riemann tensor into its irreducible
components yield

Rijkl =
1

m− 2
(Rikδjl −Rilδjk + Rjlδik −Rjkδil)

− S

(m− 1) (m− 2)
(δikδjl − δilδjk) , (9.52)

where we have denoted with Rij the components of the Ricci tensor. Taking co-
variant derivatives, tracing, and using the fact that S is constant give∑

i

Rijkl,i =
1

m− 2

(∑
i

Rik,iδjl −
∑

i

Ril,iδjk + Rjl,k −Rjk,l

)
. (9.53)

Now, note that tracing with respect to the indices i, m in the second Bianchi
identities

Rijkl,m + Rijmk,l + Rijlm,k = 0

yields ∑
i

Rijkl,i = −
∑

i

Rijik,l −
∑

i

Rijli,k = −Rjk,l + Rjl,k, (9.54)

and tracing again with respect to j, l and using the fact that S is constant we
deduce that the Ricci tensor satisfies

Rik,k = 0.
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Inserting this and (9.54) in (9.53) we conclude that

m− 3
m− 2

(Rjl,k −Rjk,l) = 0,

showing that Ric is a Codazzi tensor, namely, the following commutation relations
for the coefficients of the covariant derivative of Ric hold,

Rij,k = Rik,j . (9.55)

As a consequence, the traceless part

T = Ric− S

m
〈 , 〉

is again Codazzi so that, as first observed by J.P. Bourguignon, [18], we have the
validity of the refined Kato-type inequality

|DT |2 ≥ m + 2
m

|∇ |T ||2 . (9.56)

Further covariant differentiation of Ric yields the commutation formulas

Rij,kl −Rij,lk = RitRtjkl + RtjRtikl. (9.57)

Using (9.52), (9.55), (9.57), and the fact that S is constant, we compute

1
2
∆ |Ric|2 = |DRic|2 +

m

m− 2
tr
(
ric(3)

)
− (2m− 1)S

(m− 2) (m− 1)
|Ric|2 +

S3

(m− 1) (m− 2)
(9.58)

where ric(3) is the third composition power of the Ricci endomorphism. Using the
identity

|T |2 = |Ric|2 − S2

m
,

and expressing tr
(
ric(3)

)
in terms of T we obtain, with the obvious meaning of

the symbols,

1
2
∆ |T |2 = |DT |2 +

m

m− 2
tr
(
T (3)

)
+

S

m− 1
|T |2 .

A simple algebraic lemma due to M. Okumura, [122], shows that

tr
(
T (3)

)
≥ − m− 2√

m (m− 1)
|T |3 . (9.59)
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Inserting (9.59) into (9.58) gives

1
2
∆ |T |2 ≥ |DT |2 − m√

m (m− 1)
|T |3 +

S

m− 1
|T |2 .

Setting u = |T | and using (9.56), we rewrite the above inequality in the form

u∆u +
(√

m

m− 1
u− S

m− 1

)
u2 ≥ 2

m
|∇u|2 , (9.60)

pointwise on {x ∈M : |T | (x) 	= 0} and weakly on all of M .

In the late 1960s M. Tani, [157], showed that the universal cover of a compact,
orientable, m-dimensional, locally conformally flat Riemannian manifold (M, 〈 , 〉)
with positive Ricci curvature and constant scalar curvature S is isometrically a
sphere. This result has been generalized by S.I. Goldberg, [61], in the complete
(non-necessarily orientable) case under the additional assumption that, for some
ε > 0,

S2

m− 1
− |Ric|2 ≥ ε > 0, on M (9.61)

(see also [79]). In fact, combining a classification theorem by S. Zhu, [170], with a
PDEs global symmetry result due to L. Caffarelli, B. Gidas and J. Spruck, [22], we
prove that the above characterization holds by merely assuming that the left-hand
side of (9.61) is strictly positive at one point.

Theorem 9.18. Let (M, 〈 , 〉) be a complete, locally conformally flat Riemannian
manifold of dimension m ≥ 3 and with constant scalar curvature S > 0. If

S2

m− 1
− |Ric|2 ≥ 0, on M (9.62)

and the strict inequality holds at some point, then the universal cover of (M, 〈 , 〉)
is isometrically a sphere.

Proof. We note that, by a lemma of Okumura, [123], inequality (9.62) implies that
Ric ≥ 0 on M . Therefore, according to [170], the universal cover M̃ of M is either
isometric to R× S

m−1
S/(m−1)(m−2) or conformally equivalent to Rm or Sm

1 . Since,
by assumption, inequality (9.62) is strict somewhere, the first case is excluded.
On the other hand, M̃ cannot be conformally diffeomorphic to Rm. In fact, from
Theorem 8.1 in [22] we know that a Riemannian metric on Rm which is of constant,
positive scalar curvature and conformally related to the canonical metric must be
a spherical metric, hence incomplete. It follows that M̃ is conformally a sphere,
hence M is compact. The conclusion now follows from (the easy case of) Goldberg’s
argument. Namely, keeping the notation introduced above, we have only to show
that u ≡ 0, i.e., that M is Einstein. From (9.60) we obtain

∆u2 ≥ b (x)u2 on M (9.63)
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with
b (x) =

2
m− 1

(
S −

√
m (m− 1)u (x)

)
.

On the other hand, according to (9.62) and the fact that the strict inequality holds
somewhere, we have

0 	≡ b (x) ≥ C
{

S2 − (m− 1) |Ric|2 (x)
}
≥ 0,

for some absolute constant C > 0. Since M is compact, applying the usual max-
imum principle we conclude that b (x) is a positive constant and u ≡ 0, as de-
sired. �

Analogous characterizations hold in the case where the scalar curvature is
non-positive.

Our first result in this direction deals with Euclidean space and can be
thought of as an extension of Theorem 9.18 to the scalar flat case.

Theorem 9.19. Let (M, 〈 , 〉) be a complete, simply connected, locally conformally
flat Riemannian manifold of dimension m ≥ 3 and zero scalar curvature. Assume
that

‖Ric‖
L

m
2 (M)

<
2ω

2
m
m (m− 2)3

√
m− 1

m2
√

m
(9.64)

where ωm denotes the volume of the standard sphere Sm
1 . Then (M, 〈 , 〉) is iso-

metric to Euclidean space.

Proof. Maintaining the notation introduced above, we observe that in the present
setting u = |Ric| while (9.60) becomes

u∆u + a (x) u2 ≥ 2
m
|∇u|2 (9.65)

with

a (x) =
√

m

m− 1
u (x) .

Again, we have to show that u ≡ 0. To this end we reason by contradiction. Since
(M, 〈 , 〉) is simply connected and locally conformally flat, by a result of N. Kuiper,
[90], there is a (global) conformal immersion (in fact an embedding) of M into the
standard sphere Sm

1 . It follows by a result of R. Schoen and S.T. Yau, [147], that
the Yamabe invariant Q (M) of M defined by

Q(M) = inf
φ∈C∞

c (M)\{0}

∫ (|∇ϕ|2 + m−2
4(m−1)Sφ2

)
(∫ |φ| 2m

m−2
)m−2

m

satisfies

Q (M) = Q (Sm
1 ) =

m (m− 2)ω
2
m
m

4
. (9.66)
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Thus, since S = 0, we have∫
|∇ϕ|2 ≥ Q (Sm

1 )
(∫

ϕ
2m

m−2

)m−2
m

, for each ϕ ∈ C∞
c (M) \ {0}

which is the Sobolev inequality (9.38) with h ≡ 0, α = 2
m and S (α) = Q (Sm

1 )−1.
According to (9.65), conditions (9.39) and (9.40) are satisfied with A = − 2

m and
σ = m

2 . By Theorem 9.12 and (9.66) we conclude that

‖Ric‖
L

m
2 (M)

≥ 2ω
2
m
m (m− 2)3

√
m− 1

m2
√

m
,

contradicting (9.64). �
In the case of negative scalar curvature, we establish the following result:

Theorem 9.20. Let (M, 〈 , 〉) be a complete, locally conformally flat Riemannian
manifold of dimension m ≥ 4 and constant scalar curvature S < 0. Assume that,
for some fixed ε ≥ 0 and p, satisfying m−1 < mp < (m−1)(m−2), the following
conditions hold:

i)
∣∣∣∣Ric− S

m
〈 , 〉

∣∣∣∣ ≤ −εS, ii)
∣∣∣∣Ric− S

m
〈 , 〉

∣∣∣∣ ∈ Lp (M) (9.67)

and furthermore

λ1 (−∆) >
p2

4
m

m(p− 1) + 2
(−S)

{
ε
√

(m− 1)m + 1
(m− 1)

}
(9.68)

where λ1(−∆) denotes the bottom of the spectrum of the (positive definite) Laplace
operator −∆. Then, the universal cover of (M, 〈 , 〉) is isometric to m-dimensional
Hyperbolic space.

We remark that the restrictions on m and p follow from substituting into
(9.68) the values of the scalar curvature and the bottom of the spectrum of m-
dimensional hyperbolic space, for which (9.67) i) and ii) hold with ε = 0 and every
p > 0.

Proof. As in the previous arguments the key point is to show that u, i.e., the
length of the traceless Ricci tensor, vanishes identically.

Using (9.67) i) in (9.60) we see that u satisfies

u∆u− S

(
ε

√
m

m− 1
+

1
m− 1

)
u2 ≥ 2

m
|∇u|2 ,

and u ∈ Lp (M) by assumption (9.67) ii). If u were not identically zero, an applica-
tion of Theorem 9.12, with the choices A = − 2

m and a (x) = −S
(
ε
√

m
m−1 + 1

m−1

)
,

would contradict (9.68). Thus, u ≡ 0 as required. �



Appendix A

Unique continuation

It is well known that harmonic functions possess the unique continuation property,
namely, if they vanish of infinite order at a point, then they vanish identically in the
connected component containing the point. In fact unique continuation is shared
by solutions to a wide class of differential elliptic differential systems satisfying
the structural assumptions of Aronszajn–Cordes, and proves to be a vital tool in a
variety of localization techniques. The vanishing and finite-dimensionality results
which have been presented in previous chapters are no exceptions.

In this Appendix we describe, with only minor changes, the approach to
unique continuation due to J. Kazdan, [87]. We begin by setting some preliminary
definitions.

Definition A.1. Suppose we are given the elliptic system

∆u (x) = F (x, u,∇u) u = (u1, . . . , ul) : Mm → Rl. (A.1)

We say that (A.1) satisfies the structural conditions of Aronszajn–Cordes if, for
every p ∈ M , we can find a small geodesic ball BR (p) and a smooth function
f : [0, R]→ R satisfying

(i) f ′ (t) ≥ 0, (ii) f (0) = 0, (iii)
f (t)

t
∈ L1

(
0+

)
, (A.2)

such that

|F (x, u,∇u)| ≤

⎧⎪⎪⎨⎪⎪⎩
(i) a f(r(x))

r(x)2
|u (x)|+ b f(r(x))

r(x) |∇u (x)| m ≥ 3,

(ii) a f(r(x))

[r(x) log( 2R
r(x))]

2 |u (x)|+ b f(r(x))

r(x) log( 2R
r(x))

|∇u (x)| m = 2

(A.3)
for every x ∈ BR (p) and some constants a, b > 0. Here r (x) = dist (x, p) denotes
the geodesic distance from p (which is Lipschitz on M and smooth in BR (p)\{p},
for R > 0 small enough).

Definition A.2. A vector-valued function u ∈ W 1,2
loc

(
M ; Rl

)
is said to have a zero

of infinite order at p ∈M if, for every k ∈ N, we have

lim inf
r→0+

1
rk

∫
∂Br(p)

|u|2 = 0. (A.4)
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Remark A.3. It is easy to check, using Taylor expansion, that if derivatives of
all orders of u ∈ C∞ (

M ; Rl
)

vanish at p, then u has a zero of infinite order. In
particular, if u vanishes identically on a domain Ω ⊆ M , then u has a zero of
infinite order at any point of Ω.

Definition A.4. Let u = (uA) ∈ W 1,2
loc

(
M ; Rl

)
be a weak solution of the elliptic

system (A.1). This means that, for every ϕ = (ϕA) ∈ C∞
c

(
M ; Rl

)
,

−
∫

M

l∑
A=1

〈∇ϕA,∇uA〉 =
∫

M

l∑
A=1

ϕAFA (x, u,∇u) .

We say that u has the unique continuation property if the validity of (A.4) at some
p ∈ M implies that u is identically zero on M .

We shall prove the following

Theorem A.5. Let (M, 〈, 〉) be a connected Riemannian manifold and let u ∈
W 1,2

loc

(
M, Rl

)
be a weak solution of (A.1). Suppose the structural conditions (A.2)

and (A.3) are met. Then u has the unique continuation property.

Our proof of Theorem A.5 is a minor modification of the proof originally
given by Kazdan, [87]. To simplify the exposition, we shall limit ourselves to the
case of a scalar function u ∈ C2 (M, R). We begin with some elementary lemmas.

Lemma A.6. Assume that there exist positive constants R and k such that the
function K (r) ∈ C1 ((0, R]) is non-negative and satisfies

(i) K (R) > 0; (ii) K ′ (r) ≤ k

r
K (r) on (0, R]. (A.5)

Then, there exists a constant α > 0 such that

K (r) ≥ αrk on (0, R]. (A.6)

Proof. Condition (A.5) (ii) implies

d

dr

{
K (r)

rk

}
≤ 0.

Therefore, for every 0 < r ≤ R,

K (r)
rk

≥ K (R)
Rk

,

proving (A.6) with α = K (R) /Rk > 0. �
Thus, if K (r) satisfies the assumptions of Lemma A.6 it cannot have a zero

of infinite order at r = 0. Given a solution u of (A.1), the strategy of the proof
consists in applying the previous lemma to the function defined by

Kp (r) =
1

rm−1

∫
∂Br(p)

u2, rp(x) = dist (x, p) , (A.7)
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to show that either u is identically zero in a neighborhood of p or u does not vanish
of infinite order at p.

The following lemma will be instrumental in proving that the function Kp

defined in (A.7) satisfies condition (A.5) (ii) .

Lemma A.7. Let 0 ≤ δ < R and assume that h ∈ C((δ, R]) is non-negative and
satisfies ∫ R

δ

h (s) ds ≤ C

for some non-negative constant C. If z : (δ, R] → R is non-negative and satisfies
the differential inequality

z′ (r) ≥ −h (r) z (r) on (δ, R], (A.8)

then
z (r) ≤ eCz (R) on (δ, R].

In particular, z (r) is a bounded function.

Proof. From (A.8) we have

d

dr

{
z (r) e−

∫ R
r

h(s)ds
}

= e−
∫ R

r
h(s)ds {z′ (r) + h (r) z (r)} ≥ 0.

Hence, using z (r) ≥ 0,

e−Cz (r) ≤ z (r) e−
∫ R

r
h(s)ds ≤ z (R) . �

We will also need to differentiate integrals over geodesic spheres. This is
addressed in the next lemma.

Lemma A.8. Let w ∈ C1 (M). Then, for 0 < R < inj (p),

d

dR

∫
∂BR(p)

w =
∫

∂BR(p)

〈∇w,∇r〉 +
∫

∂BR(p)

w∆r. (A.9)

Proof. Let r (x) = dist (x, p). Applying the divergence theorem to the vector field
Z = w∇r and using Gauss’ lemma we obtain∫

∂BR(p)

w =
∫

BR(p)

divZ =
∫

BR(p)

〈∇w,∇r〉 +
∫

BR(p)

w∆r. (A.10)

Note that since ∆r = (m − 1)r−1
(
1 + o(r)

)
as r → 0, the singularity of ∆r at p

does not affect integrability. By the co-area formula∫
BR

u =
∫ R

0

∫
∂Bt

u,

for any locally integrable function u. It follows that the RHS, and therefore the
LHS, of (A.10) is differentiable. The desired inequality follows by differentiation.

�
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Remark A.9. Note that, choosing w = 1, formula (A.9) reads

d

dR
vol (∂Br (p)) =

∫
∂BR(p)

∆r.

Since R < inj (p), ∂BR (p) is a smooth, oriented hypersurface with Gauss map ∇r
and, for any tangent vector fields X, Y ∈ T∂BR, the (scalar) second fundamental
form of ∂BR (p) is given by II (X, Y ) = Hess (r) (X, Y ) . We have already noted
that, as a consequence of Gauss’ lemma, Hess (r) (∇r,∇r) = 0. Therefore

∆r = trMHess (r) = tr∂BRHess (r) = tr∂BRII = (m− 1)H (x) ,

with H (x) the mean curvature function of ∂BR (p). Thus,

d

dR
vol (∂Br (p)) =

∫
∂BR(p)

(m− 1)H.

We point out that the 2-dimensional case of this formula is of special interest
in that, by the Gauss–Bonnet theorem, it takes the nice form

d

dR
� (∂Br (p)) = 2π −

∫
BR(p)

MSect.

We recall the argument for the sake of completeness. Having parametrized ∂BR

by arc-length as a curve γ (s), we see that H is nothing but the geodesic curvature
kg of γ (with respect to the inward-pointing unit normal −∇r), that is,

kg= 〈Dγ̇ γ̇,−∇r〉 = H.

Indeed, note that r ◦ γ (s) = R implies

0 =
d2

ds2
r ◦ γ

= Hess (r) (γ̇, γ̇) + 〈Dγ̇ γ̇,∇r〉
= II (γ̇, γ̇) + 〈Dγ̇ γ̇,∇r〉
= H + 〈∇r, Dγ̇ γ̇〉 .

Now, for R small enough, BR is homeomorphic (diffeomorphic in fact) to a Eu-
clidean disk. Therefore, applying the Gauss–Bonnet theorem we conclude

d

dR
� (∂Br (p)) =

∫
∂BR(p)

H

=
∫ �(∂Br(p))

0

kg (s) ds

= 2πχ (BR (p))−
∫

BR(p)

MSect

= 2π −
∫

BR(p)

MSect,

as claimed.
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Now let Ω ⊂⊂ M be a relatively compact domain. Since the injectivity radius
inj (x) is a positive and continuous function of x, inj(Ω) = infΩ inj (x) > 0; see, e.g.,
[30]. Fix R0 < inj (Ω). For any p ∈ Ω, let rp (x) = distM (x, p) and suppose that
u is a non-null solution of (A.1) in BR0(p). Applying Lemma A.8 to the function
Kp (r (x)) defined in (A.7) we obtain, for every 0 < R < R0,

K ′
p (R) = −m− 1

Rm

∫
∂BR(p)

u2 +
2

Rm−1

∫
∂BR(p)

u 〈∇u,∇rp〉+
1

Rm−1

∫
∂BR(p)

u2∆rp.

On the other hand, by the Laplacian Comparison Theorem,

rp∆rp ≤ (m− 1)
(
1 +

k−
3

r2
p + O(k2

−r4
p)
)

in BR(p),

where k− is a lower bound for the sectional curvature of M in Bp(R). Therefore
there exists a constant C1, which depends only on the lower bound for the sectional
curvature in an R0-neighborhood of Ω such that, for every p in Ω, and for every
R ≤ R0,

K ′
p (R) ≤ 2

R

{
1

Rm−2

∫
∂BR(p)

u 〈∇u,∇rp〉
}

+ C1RKp (R) . (A.11)

It is now clear that Lemma A.6 applies and, thus, u does not possess a zero of
infinite order at p, provided we are able to prove that, for a sufficiently small
R̄ ∈ (0, R0), we have

Kp

(
R̄
)

> 0 (A.12)

and {
1

Rm−2

∫
∂BR(p)

u 〈∇u,∇rp〉
}
≤ cKp (R) on (0, R̄] (A.13)

for some constant c > 0. This is the content of Lemma A.13 and Lemma A.17
below, where it is in fact proved that if p belongs to a relatively compact set Ω,
then both the radius R̄ and the constant c in (A.13) depend only on the geometry
of M in a neighborhood of Ω. A crucial ingredient in their proof is, of course, the
fact that (A.1) enjoys the structural assumptions of Aronszajn–Cordes.

The proof of (A.12) and (A.13) depends on a number of technical lemmas.
We begin with an integral inequality of independent interest, which is sometimes
referred to as a version of “the Heisenberg uncertainty principle”.

For ease of notation, we will understand that a point p has been fixed, and
we will usually drop explicit reference to it in symbols and formulae.

Lemma A.10. Let Ω ⊂⊂ M be a relatively compact domain and let R0 < inj(Ω).
Then, there exist constants 0 < R1 ≤ R0 and α, β > 0 depending only on m
and on the geometry of M in an R0-neighborhood of Ω such that, for every u ∈
C1

(
BR0(p)

)
and 0 < R < R1,∫

BR

u2

r2
≤ α

R

∫
∂BR

u2 + β

∫
BR

|∇u|2 , for m ≥ 3, (A.14)
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while ∫
BR

u2

{r log (2R/r)}2 ≤
α

R

∫
∂BR

u2 + β

∫
BR

|∇u|2 , for m = 2. (A.15)

Proof. Assume first that m = dimM ≥ 3 and note that, by Gauss’ lemma,

u2div
(
r−1∇r

)
= u2

(
r−1∆r − r−2|∇r|2) = r−2u2

(
r∆r − 1), (A.16)

whence, integrating over BR \Bε, using Green’s identity, Gauss’ lemma again, and
letting ε → 0, we obtain∫

BR

u2

r2
(r∆r − 1) =

∫
BR

u2div
∇r

r

=
∫

∂BR

u2

r
− 2

∫
BR

u

r
〈∇r,∇u〉

for every 0 < R ≤ R0. We apply the Schwarz inequality and the elementary
estimate

2ab ≤ λa2 +
b2

λ
, λ > 0,

with the choice λ = (m− 2) /2, to estimate

−2
r
u〈∇u,∇r〉 ≤ m− 2

2
u2

r2
+

2
m− 2

|∇u|2,

whence, inserting and rearranging, we deduce that, for every 0 < R ≤ R0,∫
BR

u2

r2

(
r∆r − 1− m− 2

2

)
≤ 1

R

∫
∂BR

u2 +
2

m− 2

∫
BR

|∇u|2 .

Clearly, to conclude the validity of (A.14) we have to prove that, up to choosing
0 < R1 ≤ R0 sufficiently small, and depending only on m and on the geometry of
M in an R0-neighborhood of Ω̄, we have

inf
BR1 (p)

(
r∆r − 1− m− 2

2

)
> 0. (A.17)

To this end, fix k+ > 0 so as to satisfy

k+ ≥ sup{ MSect(x) : dist(x, Ω̄) ≤ R0}

and choose T > 1 large enough that

R1 =
π

2T
√

k+

≤ R0

(
< inj

(
Ω̄
))

.
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Then BR1 (p) is a regular geodesic ball of M and, by Hessian comparison, we
deduce

r∆r ≥ (m− 1) r
√

k+ cot
(√

k+r
)

≥ (m− 1)
π

2T
cot

( π

2T

)
on BR1 (p) ,

where the second inequality follows from the fact that the function t → t cot t is
decreasing. Since t cot t→ 1 as t→ 0+, we conclude that

r∆r − 1− m− 2
m

≥ (m− 1)
π

2T
cot

( π

2T

)
= α−1 > 0 on BR1(p)

provided T is sufficiently large (and therefore R1 is sufficiently small. This proves
the validity of (A.17).

In the case where m = dimM = 2 one argues in a similar fashion, replacing
(A.16) with

div
∇r

r log (R/r)
=

∆r

r log (R/r)
− 1

r2 log (R/r)
+

1
r2 log2 (R/r)

and choosing λ = 1/2 in the above elementary inequality. �
The next lemmas have a technical flavor.

Lemma A.11. Let Ω, R0 and R1 be as in Lemma A.10. Given p ∈ Ω, let u ∈
C2 (BR0 (p)), r (x) = distM (x, p), and define, for 0 < R < R0,

A (R) =
1

Rm−2

∫
∂BR

u 〈∇r,∇u〉 , (A.18)

B (R) =
2

Rm−2

∫
∂BR

〈∇r,∇u〉2 , (A.19)

I1 (R) =
1

Rm−2

∫
BR

u∆u, (A.20)

I2 (R) =
2

Rm−2

∫
BR

r 〈∇r,∇u〉∆u, (A.21)

I3 (R) =
1

Rm−3

∫
∂BR

u∆u, (A.22)

D (R) =
1

Rm−2

∫
BR

|∇u|2 . (A.23)

Then

A′(R)−B(R) +
1
R

[
(m− 2)I1(R) + I2(R)− I3(R)

]
=

1
Rm−1

∫
BR

[1
2
∆r2 −Hess r2

( ∇u

|∇u| ,
∇u

|∇u|
)− (m− 2)

]|∇u|2 (A.24)
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and there exists a constant C0 which depends only on m, Ro and on the geometry
on M in an R0-neighborhood of Ω̄ such that, for 0 < R < R1 we have∣∣A′ (R)−B (R) +

1
R

[(m− 2) I1 (R)− I2 (R) + I3 (R)]
∣∣ ≤ C0RD (R) . (A.25)

Proof. To start off, we note that, by the divergence theorem,

Rm−2A (R) =
∫

∂BR

〈u∇u,∇r〉 =
∫

BR

div
(
u∇u

)
=
∫

BR

(
u∆u + |∇u|2) (A.26)

and, therefore, by the co-area formula,

A′ (R) =
1

Rm−2

∫
∂BR

(
u∆u + |∇u|2)− m− 2

Rm−1

∫
BR

(
u∆u + |∇u|2). (A.27)

We now want to get rid of the integral on the boundary of |∇u|2, which is the
only term on the right-hand side which does not appear in (A.19)–(A.23). To this
end, we apply the divergence theorem to the vector field

W = |∇u|2 r∇r − 2r 〈∇r,∇u〉∇u.

Recalling that, given smooth functions f, g, h,

〈∇f, 〈∇g,∇h〉〉 = ∇f〈∇g,∇g〉 = Hess g(∇f,∇h) + Hess h(∇f,∇g)

we compute

div W =
1
2
|∇u|2∆r2 +

1
2
∇r2〈∇u,∇u〉 − 〈∇r2,∇u〉∆u−∇u〈∇r2,∇u〉

=
1
2
|∇u|2∆r2 −Hess r2(∇u,∇u)− 〈∇r2,∇u〉∆u

whence, integrating over BR, we obtain the following identity, first derived, in a
Euclidean setting, by Rellich,

R

∫
∂BR

{
|∇u|2 − 2 〈∇r,∇u〉2

}
=
∫

BR

{
1
2
|∇u|2 ∆r2 −Hess

(
r2
)
(∇u,∇u)− 2r 〈∇r,∇u〉∆u

}
. (A.28)

Solving for
∫

∂BR
|∇u|2 we obtain∫

∂BR

|∇u|2 = 2
∫

∂BR

〈∇r,∇u〉2

+
1
R

∫
BR

{
1
2
|∇u|2 ∆r2 −Hess

(
r2
)
(∇u,∇u)− 2r 〈∇r,∇u〉∆u

}
, (A.29)
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whence, substituting (A.29) into the expression (A.27) for A′(R) and rearranging,

A′(R)− 2
Rm−2

∫
∂BR

〈∇r,∇u〉2 − 1
Rm−2

∫
∂BR

u∆u

+
m− 2
Rm−1

∫
BR

u∆u +
2

Rm−1

∫
BR

r〈∇r,∇u〉∆u

=
1

Rm−1

∫
BR

(1
2
|∇u|2∆r2 −Hess r2(∇u,∇u)− (m− 2)|∇u|2).

Now (A.24) follows recalling the definitions (A.19)–(A.22).
In order to estimate the right-hand side, let k+, k− > 0 be such that

−k− ≤ MSect ≤ k+ on {x : dist(x, Ω) ≤ R0},
so that, by the Hessian comparison theorem, in BR1 we have√

k+r cot(
√

k+r)〈 , 〉 + (1−
√

k+r cot(
√

k+r))dr ⊗ dr

≤ 1
2
Hess (r2) ≤

√
k−r coth(

√
k−r)〈 , 〉+ (1 −

√
k−r coth(

√
k−r))dr ⊗ dr

(A.30)

and, tracing,

(m− 1)
√

k+r cot(
√

k+r) + 1 ≤ 1
2
∆r2 ≤ (m− 1)

√
k−r coth(

√
k−r) + 1. (A.31)

We now observe that, as r → 0,√
k−r coth(

√
k−r)〈 ∇u

|∇u| ,
∇u

|∇u| 〉+ (1 −
√

k−r coth(
√

k−r))〈 ∇u

|∇u| ,∇r〉2

=
√

k−r coth(
√

k−r) + O
(
1−

√
k−r coth(

√
k−r)

)
= 1 + O

(
k−r2

)
and that an analogous estimate holds replacing k− with k+ and coth with cot.
The term 1

2∆r2 can be dealt with in a similar way, thus showing that∣∣1
2
∆r2 −Hess

( ∇u

|∇u| ,
∇u

|∇u|
)− (m− 2)

∣∣ ≤ C0r
2 in BR1 (A.32)

where C1 depends only on m, R0 and k±. Using this estimate in (A.24), and
recalling the definition of D(R) yields (A.25). �

We next proceed to estimate the quantities introduced in the previous lemma.

Lemma A.12. Let p, R0 and R1 be as in Lemma A.10 and let u be a C2-solution
on BR0 (p) of the differential inequality

|∆u| ≤ a
f (r)
r2

|u|+ b
f (r)

r
|∇u| (A.33)
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where a, b > 0 are constants and f is a C1 function satisfying the structural
conditions (A.2). Then, there exist positive constants c1, . . . , c5, depending only
on m and on the geometry of M in an R0-neighborhood of Ω̄, such that, for every
0 < R ≤ R1,

|Ij (R)| ≤ cjf (R) [K (R) + D (R)] , j = 1, 2, (A.34)

|I3 (R)| ≤ c4f (R)
[
K (R) + D (R) +

√
RK (R)B (R)

]
, (A.35)

|I3 (R)| ≤ c5f (R) [K (R) + D (R) + RB (R)] , (A.36)
1

Rm−3

∫
∂BR

|∇u|2 ≤ RB (R) + c3 [K (R) + D (R)] . (A.37)

Proof. We consider only the case m ≥ 3. We start with the first of (A.34). In what
follows we shall make repeated use of (A.14), (A.33) and of conditions (A.2) on f .
We have

|I1 (R)| = 1
Rm−2

∣∣∣∣∫
BR

u∆u

∣∣∣∣
≤ 1

Rm−2

∫
BR

a
f(r)
r2

u2 +
1

Rm−2

∫
BR

b
f(r)

r
|u||∇u|

≤ (
a +

b

2
) f(R)
Rm−2

∫
BR

u2

r2
+

b

2
f(R)
Rm−2

∫
BR

|∇u|

≤ α
(
a + b

2

)
f (R)

Rm−1

∫
∂BR

u2 +

(
βa + b

2 + β b
2

)
f (R)

Rm−2

∫
BR

|∇u|2 .

This shows the validity of the first of (A.34). The estimate for |I2 (R)| is completely
analogous.

We now show (A.37). From (A.29) and (A.32) in Lemma A.11, we have

1
Rm−3

∫
∂BR

|∇u|2 ≤ 2
Rm−3

∫
∂BR

〈∇r,∇u〉2 (A.38)

+
C0R + (m− 2)

Rm−2

∫
BR

|∇u|2 − 2
Rm−2

∫
BR

r 〈∇r,∇u〉∆u,

and recalling the definition of I2(R) and the estimate

|I2(R)| ≤ c2f (R) [K (R) + D (R)]

in (A.34) we conclude that

1
Rm−3

∫
∂BR

|∇u|2 ≤ RB(R) + [C0R
2 + (m− 2)]D(R) + c2f(R)[K(R) + D(R)]

≤ RB(R) + c3[K(R) + D(R)]
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for some constant c3 > 0, and (A.37) is proved.
We now prove (A.35). From (A.33) and Schwarz’s inequality we obtain

|I3 (R)| ≤ 1
Rm−3

∫
∂BR

|u| |∆u|

≤ af (R)
Rm−1

∫
∂BR

u2 +
bf (R)
Rm−3

∫
∂BR

|u| |∇u|
r

≤ af (R)
Rm−1

∫
∂BR

u2 +
bf (R)

R
m−3

2

{∫
∂BR

u2

r2

} 1
2
{

1
Rm−3

∫
∂BR

|∇u|2
} 1

2

= af (R)K (R) + bf (R)K (R)
1
2

{
1

Rm−3

∫
∂BR

|∇u|2
} 1

2

.

We now use (A.37) to get

|I3 (R)| ≤ af (R)K (R) + bf (R)K (R)
1
2 {RB (R) + c3 (D (R) + K (R))} 1

2

from which (A.35) follows immediately. Finally, (A.36) is a simple consequence of
(A.35). �
Lemma A.13. Let u be as in Lemma A.12 and let c1 > 0 be the constant in (A.34).
Choose 0 < R2 < R1 sufficiently small that

c1f (R2) ≤ 1
2
. (A.39)

Then, there exists δ ∈ [0, R2] such that the function K (R) defined in (A.7) satisfies

K (R) =
{

0 for 0 ≤ R ≤ δ,
> 0 for δ < R ≤ R2.

(A.40)

Remark A.14. Notice that, since c1 depends only on m, R1 and on the geometry
of M in an R0-neighborhood of Ω, so does R2.

Proof. Again, we consider only the case m ≥ 3. From (A.26) we have

A (R) = D (R) + I1 (R) .

Hence, applying the first of (A.34) we have, for 0 < R ≤ R2,

A (R) ≥ D (R)− |I1 (R)|
≥ D (R)− c1f (R) (K (R) + D (R))

≥ 1
2
D (R)− 1

2
K (R) ,

that is,
D (R) ≤ 2A (R) + K (R) . (A.41)
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Using (A.41) and the definitions of A(R),D(R) and K(R) into the Heisenberg
uncertainty principle (A.14), we obtain∫

BR

u2

r2
≤ α

R

∫
∂BR

u2 + βRm−2D (R)

≤ α

R

∫
∂BR

u2 + 2βRm−2A (R) + βRm−2K (R)

= 2β

∫
∂BR

u 〈∇r,∇u〉+ (α + β)Rm−2K (R) .

(A.42)

Now, if K (R) = 0, then u = 0 on ∂BR and therefore the right-hand side of (A.42)
vanishes. This forces u = 0 on BR and proves the validity of (A.40). �
Lemma A.15. Let u be as in Lemma A.12 and let C0 be the constant in inequality
(A.25) in the statement of Lemma A.11. There exists a constant c6 > 0 (depending
only on m and on the geometry of M in an R0-neigborhood of Ω̄) such that, having
fixed ε > 0, if R3 ∈ (0, R1] satisfies

C0R
2
3 + c6f (R3) < ε, (A.43)

then, for every 0 < R ≤ R3, we have

|A′ (R)−B (R)| ≤ εB (R) +
ε

R
(K (R) + D (R)) . (A.44)

Remark A.16. The radius R3 depends only on m, ε and on the geometry of M in
an R0-neighborhood of Ω̄.

Proof. According to (A.25),

|A′(R)−B(R)| ≤ C0RD(R) +
m− 2

R
|I1|+ 1

R
|I2|+ 1

R
|I3|,

whence, applying Lemma A.12, we deduce that for every 0 ≤ R ≤ R1 < R0,

|A′(R)−B(R)| ≤ c6f(R)B(R) +
C0R

2 + c6f(R)
R

[K(R) + D(R)] (A.45)

where c6 = [(m− 2)c1 + c2 + c5], and cj are the constants in Lemma A.12. Since
C0 and cj depend only on m and the geometry of M in an R0-neighborhood of
Ω̄, so does c6. The required conclusion follows from (A.43) together with the fact
that f is increasing. �
Lemma A.17. Let u be as in Lemma A.12. There exists R4 ∈ (0, R1] and a constant
c7 > 0, depending only on m and on the geometry of M in an R0-neighborhood of
Ω̄, such that, if 0 < R ≤ R4, then

A (R) ≤ c7K (R) . (A.46)
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Proof. Let C0, c1 and c6 be the positive constants of Lemmas A.11, A.12 and
A.15, respectively. Choose R4 ∈ (0, R1] in such a way that

(i) c1f (R4) ≤ 1
2
; (ii) C0R

2
4 + c6f (R4) ≤ 1

2
. (A.47)

Next, recall that it follows easily from the definitions of A (R) and K (R)
that

if K (R) = 0 for some 0 < R ≤ R4, then A (R) = 0, (A.48)

and in this case inequality (A.46) trivially holds for any choice of c7 > 0. Therefore
we only need to verify (A.46) for those values of R ∈ (0, R4], for which K(R) > 0.
According to (A.47) (i) and Lemma A.13, there exists δ ∈ [0, R4] such that

{R ∈ (0, R4] : K (R) > 0} = (δ, R4].

We let ϕ : (δ, R4]→ R be the C1-function defined by

ϕ (R) =
A (R)
K (R)

+ 1.

Then the conclusion of the lemma amounts to proving that ϕ is bounded on
(δ, R4]. To this end, we shall apply Lemma A.7. First of all, we observe that since
c1f(R4) < 1

2 , according to (A.41) in Lemma A.13, D(R) ≤ 2A(R) + K(R) on
(0, R4] and therefore

ϕ (R) ≥ 1
2

[
D (R)
K (R)

+ 1
]

> 0, on (δ, R4]. (A.49)

If we show that there exist constants µ, ν ≥ 0 such that

ϕ′(R) ≥ −(µf(R)
R

+ ν)ϕ(R) on (δ, R4], (A.50)

then, recalling that f(r)/r ∈ L1 (0+), we can apply Lemma A.7 with

h (R) = µ
f(R)

R
+ ν

and conclude that ϕ is bounded on (δ, R4]. We have

ϕ′ (R) =
1

K(R)2
[A′ (R)K (R)−K ′ (R)A (R)] . (A.51)

Since ϕ (R) > 0 and f (R) > 0, (A.50) is surely satisfied for any choice of µ, ν ≥ 0
if R is such that ϕ′ (R) ≥ 0. Thus, we only have to consider values of R for which
ϕ′(R) < 0, i.e.,

A′ (R)K (R) < K ′ (R)A (R) . (A.52)
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Since C0R
2
4 + c1f(R4) ≤ 1

2 by (A.47) (ii), using Lemma A.15 with ε = 1/2, we
have

|A′(R)−B(R)| ≤ 1
2
B(R) +

1
2R

[K(R) + D(R)]

and therefore

B (R) = A′(R) + [B(R)−A′(R)]

≤ 2A′ (R) +
1
R

[K (R) + D (R)] , on (0, R4].
(A.53)

Now, since K(R) ≥ 0, if we assume that A′(R)K(R) < K ′(R)A(R) we may write

K (R)B (R) ≤ 2K ′ (R)A (R) +
K(R)

R
[K (R) + D (R)] . (A.54)

Also, since c1f(R4) ≤ 1
2 , by (A.47) (i), according to (A.34) in Lemma A.12 we

have
|I1| ≤ 1

2
[K(R) + D(R)],

whence

A (R) = D (R) + I1 (R) (A.55)

≤ D (R) +
1
2

[K (R) + D (R)]

≤ 2 [K (R) + D (R)] .

On the other hand, recalling the definition (A.18) of A (R) and the estimate (A.11)
we have

K ′ (R) ≤ 2
R

A (R) + C1RK (R) on (0, R4], (A.56)

with C1 > 0 depending only on m and on the geometry of M in an R0-neighbor-
hood of Ω. Using (A.55) and (A.56) into (A.54) we deduce that

K (R)B (R) ≤ 4A (R)2

R
+ C1RA(R)K(R) +

K(R)
R

[K (R) + D (R)] (A.57)

≤ α [K (R) + D (R)]2

R
,

for some constant α > 0. Inserting this into the estimate (A.35) for I3, namely,

|I3| ≤ c4f(R)[K(R) + D(R) +
√

RK(R)B(R)]

we see that, if we assume that A′(R)K(R) < K ′(R)A(R) we can improve (A.35)
of Lemma A.12 to

|I3| ≤ βf (R) [K (R) + D (R)] ,
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for a suitable constant β > 0. Using this latter and (A.34) in (A.25) of Lemma
A.11 we get the corresponding improvement of inequality (A.44) of Lemma A.15:

|A′ (R)−B (R)| ≤ γf (R)
2R

[K (R) + D (R)] + C1RD(R), (A.58)

for some γ > 0, and therefore

A′(R) ≥ B(R)− γf (R)
2R

[K (R) + D (R)]− C1RD(R).

Plugging this back into the expression for ϕ′(R) we conclude that

ϕ′(R) =
1

K(R)2
[A′(R)K(R)−K ′(R)A(R)]

≥ 1
K2(R)

[
K(R)B(R)−K ′(R)A(R)

]
− 1

K(R)
[
γ

f(R)
R

(K(R) + D(R)) + C1RD(R)
]
.

(A.59)

To conclude, note that by the definitions of A(R), B(R) and K(R), and Schwarz’s
inequality,

2
R

A2(R) =
2

R2m−3

(∫
∂BR

u〈∇u,∇r〉
)2

≤ 2
Rm−2

∫
∂BR

〈∇u,∇r〉2 1
Rm−1

∫
∂BR

u2 = B(R)K(R)

so that, using (A.56) and (A.55) we may estimate

K(R)B(R)−K ′(R)A(R) ≥ 2
R

A2(R)−A(R)
[ 2
R

A(R) + C1RK(R)
]

= −C1RK(R)A(R) ≥ −2C1RK(R)
[
K(R) + D(R)

]
.

Inserting this into (A.59), yields

ϕ′ (R) ≥ −
(
γ

f(R)
R

+ 3C1R
) [K (R) + D (R)]

K (R)
,

whence, recalling (A.49), the required inequality (A.50) follows with µ = 2γ and
ν = 6C1R4. �

We are now in a position to give the

Proof of Theorem A.5. Suppose that u has a zero of infinite order at p ∈ M . Let
BR0 (p) be a geodesic ball with R0 < inj (p). Pick R̄ > 0 to be smaller than the
value R4 in Lemma A.17. Note that, according to (A.47), Lemma A.13 applies.
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Furthermore, R̄ can be chosen so to depend only on m and on the geometry of
a compact neighborhood of p. We show that u is identically null in BR̄ (p). By
contradiction, suppose that this is not the case. Let us consider the function

K (R) =
1

Rm−1

∫
∂BR

u2, 0 < R ≤ R̄.

Note that, by assumption and according to Lemma A.13, we find 0 < δ < R̄ such
that K (R) > 0 on (δ, R̄]. In particular,

K
(
R̄
)

> 0. (A.60)

Now, by (A.56) of the previous lemma, we have

K ′ (R) ≤ 2
R

A (R) + αK (R) on (0, R̄],

for some constant α = α
(
R̄
)

> 0. Thus, using (A.46) of Lemma A.17 gives that,
for a suitable k ∈ N sufficiently large,

K ′ (R) ≤ k

R
K (R) on (0, R̄].

Combining this latter with (A.60) and applying Lemma A.6 we conclude that

lim inf
R→0+

1
Rk+m−1

∫
∂BR

u2 = lim inf
R→0+

K (R)
Rk

> 0,

so that u cannot have a zero of infinite order at p. The contradiction shows that
u must vanish on BR̄ (p).

It remains to show that u is identically null on M . We use a connectedness
argument. Let

D = {x ∈M : u (x) = 0 in a neighborhood of x} .

Then, obviously, D 	= ∅ is an open set. We have to show that D is closed. Thus,
let x ∈ D′, be a limit point of D, and consider any compact neighborhood Ω of
x. The radius R̄ > 0 introduced in the first part of the proof can be required to
depend only on m and the geometry of M in a suitable neighborhood of Ω̄. Let us
choose a point y ∈ D ∩ Ω such that distM (x, y) < R̄. The function u vanishes in
a neighborhood of y, hence, u has a zero of infinite order at y. Applying the first
part of the proof we deduce that u must vanish in BR̄ (y). Since this ball contains
x, we conclude x ∈ D. �



Appendix B

Lp-cohomology of non-compact
manifolds

Throughout this section, we will always assume Riemannian manifolds to be ori-
ented. The main purpose of the appendix is to introduce the basic definitions con-
cerning the Lp de Rham cohomology and to collect some classical results about its
dependence on the geometry and the topology of the manifold under consideration.
The role of Lp harmonic forms will be also briefly discussed. For a more detailed
account the reader is referred to Pansu’s survey paper [126] for the case p = 2,
and to Chapter 8 of Gromov’s seminal book [75], for the general Lp case. See also
the very recent notes by Carron, [29], where possible links between L2-cohomology
and the de Rham cohomology with compact support are established.

B.1 The Lp de Rham cochain complex: reduced and

unreduced cohomologies

Suppose we are given a Riemannian manifold (M, 〈 , 〉) of dimension m = dimM .
Set Λ0 (T ∗M) = R and, for any integer k ≥ 1, let Λk (T ∗M) denote the k-exterior
vector bundle over M . The sections of Λk (T ∗M) , k ≥ 0, are called differential
k-forms (or differential forms of degree k). Clearly, differential forms of degree 0
are nothing but real functions. The real vector space of the measurable differential
k-forms on M is denoted by Λk (M), while the symbol C∞Λk (M) is reserved to
the vector space of the smooth ones. In case of smooth differential forms with
compact support, we write C∞

c Λk (M) . Thus, having fixed any (non-necessarily
orthonormal) local frame field {Vi} and denoting by

{
�i

}
the dual coframe, a

k-form ω is locally represented by

ω =
∑

1≤i1<···<ik≤m

ωi1···ik
�i1 ∧ · · · ∧�ik (B.1)

where the
(
m
k

)
local functions ωi1···ik

reflect the regularity of ω (e.g., they are
measurable if ω ∈ Λk (M)) and �i1 ∧ · · · ∧ �ik denotes the alternating, k-linear
product of �i1 , . . . , �ik defined as follows: for any tangent vectors X1, . . . , Xk(

�i1 ∧ · · · ∧�ik
)
(X1, . . . , Xk) =

1
k!

∑
sgn (σ)�i1

(
Xσ(1)

) · · ·�ik
(
Xσ(k)

)
,

the sum being extended to all the permutations σ of k elements.
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The vector bundle Λk (T ∗M) inherits from (M, 〈 , 〉) a natural Riemannian
structure defined as follows.

For each x ∈ M we have to prescribe an inner product ( , )x on the fibre
Λk (T ∗

xM), smoothly varying with x. To this end, let
{
θi
} ⊂ C∞Λ1 (U) be an

orthonormal co-frame on a small domain U ⊂ M , so that,

〈, 〉|U =
∑

θi ⊗ θi. (B.2)

We know that, for every x ∈ U ,{
θi1 (x) ∧ · · · ∧ θik (x)

}
1≤i1<···<ik≤m

(B.3)

realizes a basis of Λk (T ∗
xM) . We declare that such a basis is orthonormal in(

Λk (T ∗
xM) , (, )x

)
. Thus, if ω, η ∈ Λk (M) and, locally, ω =

∑
ωi1···ik

θi1 ∧· · ·∧θik ,
η =

∑
ηi1···ik

θi1 ∧ · · · ∧ θik , then

(ω, η) =
∑

1≤i1<···<ik≤m

ωi1···ik
ηi1···ik

.

The Riemannian vector bundle Λk (T ∗M) is then supplied with a compatible
connection

Dk : C∞Λk (M)→ C∞ (
Λk (T ∗M)⊗ T ∗M

)
, (B.4)

with Γ
(
Λk (T ∗M)⊗ T ∗M

)
the space of smooth sections of the tensor product

bundle. It is defined via the Levi–Civita connection D of (M, 〈, 〉) by the following
formula:

Let ω ∈ C∞Λk (M) . Then, for all vector fields X1, . . . , Xk, Y of M ,(
Dk

Y ω
)
(X1, . . . , Xk) :=

(
Dkω

)
(X1, . . . , Xk; Y ) (B.5)

= DY (ω (X1, . . . , Xk))−
∑

i

ω (X1, . . . , DY Xi, . . . , Xk) .

Recall that compatibility means

Dk (ω, η) =
(
Dkω, η

)
+
(
ω, Dkη

)
,

for every ω, η ∈ Λk (M).

Via the connection Dk we can introduce a further first-order, R-linear oper-
ator called the exterior differential. The k-th exterior differential is the degree +1
operator

dk : C∞Λk (M)→ C∞Λk+1 (M) (B.6)

defined as follows: take any local frame {Vi} of M and denote by
{
�i

}
its dual

coframe. Then
dkω =

∑
�i ∧Dk

Vi
ω. (B.7)
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Obviously, the definition does not depend on the chosen frame and, in fact,
it depends only on the differentiable structure of M , whereas the Riemannian
metric 〈 , 〉 plays no role. It can be shown that the exterior differential d is an
anti-derivation in the sense that, for ω1 ∈ C∞Λk (M) and ω2 ∈ C∞Λh (M),

dk+h (ω1 ∧ ω2) = dkω1 + (−1)k dhω2. (B.8)

Furthermore, d enjoys the coboundary property

dk+1 ◦ dk = 0. (B.9)

According to (B.9) the family of real vector spaces and linear maps{
C∞Λk (M) dk→ C∞Λk+1 (M)

}
gives rise to a (algebraic) cochain complex which is usually called the (smooth) de
Rham complex of M. The corresponding cohomology

Hk
dR (M) =

Zk
dR (M)

Bk
dR (M)

with
Zk

dR (M) = ker dk and Bk
dR (M) = Im dk−1

is the (smooth) de Rham cohomology of M.
It is readily seen that such a cohomology theory is a diffeomorphism invari-

ant of M and it is insensitive to the underlying Riemannian structure. Thus, for
instance, the Euclidean space Rm and the hyperbolic space Hm are the same space
from the de Rham cohomology viewpoint. To prove the above mentioned invari-
ance, one usually notes that every smooth map f : M → N between differentiable
manifolds induces a family of homomorphisms

(f∗)k : C∞Λk (N)→ C∞Λk (M)

which are called the pull-back maps. They are defined by the formula

(f∗)k (ω) (v1, . . . , vk) = ω (f∗ (v1) , . . . , f∗ (vk))

where f∗ : TM → TN is the usual differential of a smooth map. For the sake of
notation, we simply write f∗ω = ω (f∗) . In view of the commutation rule

dk
M ◦ (f∗)k = (f∗)k+1 ◦ dk

N , (B.10)

the family {(f∗)k}k realizes a homomorphism of cochain complexes which, in turn,
gives rise to a cohomology homomorphism denoted by {(f#

)k}k. Here, the k-th
map (

f#
)k

: Hk
dR (N)→ Hk

dR (M)
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is simply defined by (
f#

)k
[ω] = [(f∗)kω].

The functioriality property of # asserts that, for any smooth maps between dif-
ferentiable manifolds

M
f→ N

g→ Z,

it holds that
(g ◦ f)# = f# ◦ g#

and, furthermore,
(IdM )# = IdHdR

.

Accordingly, if f : M → N is a smooth diffeomorphism, then f# is a cohomology
isomorphism with inverse f#−1 =

(
f−1

)#
.

We now leave the smooth realm and enter the Lp world. We fix 1 ≤ p < +∞,
and for every k = 0, . . . , m, we define the Banach space

LpΛk (M) = C∞
c Λk (M),

the closure being taken with respect to the obvious norm

‖ω‖Lp =
(∫

M

|ω|p
)1/p

.

Note that, without any further assumption on (M, 〈, 〉),
LpΛk (M) =

{
ω ∈ Λk (M) : ‖ω‖Lp < +∞}

.

Let us now consider the Sobolev space

W 1,pΛk (M) = C∞
c Λk (M),

this time the closure being intended with respect to the norm

‖ω‖W 1,p = ‖ω‖Lp + ‖dω‖Lp .

Due to the coboundary property, the exterior differential

dk : C∞
c Λk (M)→ C∞

c Λk+1 (M) ⊂ LpΛk (M)

extends to a bounded operator

dk : W 1,pΛk (M)→ LpΛk+1 (M) .

Explicitly, for every ω ∈ W 1,pΛk (M) take any sequence {ωn} ⊂ C∞
c Λk (M) such

that ωn
W 1,pΛk(M)→ ω as n → +∞, and define

dkω = lim
n→+∞ dkωn.
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As a matter of fact, there is another natural way to extend the action of
the exterior differential to non-smooth forms, i.e., by means of the distributional
formula

(d̃kω, η) =
∫

M

〈
ω, δkη

〉
, ∀η ∈ C∞

c Λk+1 (M) .

Here, δk : C∞Λk+1 (M)→ C∞Λk (M) stands for the k-th exterior codifferential of
M . It is the formal adjoint of dk in L2Λk (M). The exterior codifferential depends
on dk in a rather explicit way. Let ∗ : C∞Λk (M)→ C∞Λm−k (M) be the pointwise
linear isometry (the Hodge-∗ operator) defined, for any local, oriented, orthonormal
coframe

{
θj
}

by
∗θi1 ∧ · · · ∧ θik = ±θj1

x ∧ · · · ∧ θjm−k
x

where θi1
x ∧ · · · ∧ θik

x ∧
(
±θj1

x ∧ · · · ∧ θ
jm−k
x

)
gives the correct orientation of M .

Then
δk = (−1)m(k+1)+1 ∗ dk ∗ .

Coming back to the distributional differential, we are naturally led to intro-
duce a second Sobolev space of differential forms

W̃ 1,pΛk (M) =
{

ω ∈ LpΛk (M) : d̃kω ∈ LpΛk+1 (M)
}

.

A direct application of the Gaffney cut-off trick shows that, on a complete manifold,

W̃ 1,pΛk (M) = W 1,pΛk (M) .

In particular the weak exterior differential and the densely defined one coincide;
see, e.g., [160].

From now on, unless otherwise specified, we will always assume that Rieman-
nian manifolds are geodesically complete.

Obviously, as in the smooth case, the exterior differential enjoys the basic
identity

dk+1 ◦ dk = 0 (B.11)

so that, the collection of bounded operators dk’s gives rise to the Banach cochain
complex

· · · →W 1,pΛk (M) dk

→ W 1,pΛk+1 (M) dk+1

→ W 1,pΛk+2 (M)→ · · · .
As usual, the corresponding spaces of cocycles and coboundariesare defined by

Zk,p (M) = ker dk and Bk,p (M) = Im dk−1.

Differential forms in the (Banach) space Zk,p (M) are called weakly closed while
differential forms in the (possibly incomplete) space Bk,p (M) are called weakly
exact.
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Note that, for ω ∈ Zk,p (M), ‖ω‖Λk,p = ‖ω‖Lp and we have the important
equality

Bk,p (M) = dC∞
c Λk−1 (M)

whose validity is an immediate consequence of the continuity of dk−1 and the
definition of W 1,pΛk(M). Furthermore, by (B.11) and the closeness of Zk,p (M),
we have the inclusion of subspaces

Bk,p (M)⊂Bk,p (M)⊂Zk,p (M) .

We can therefore introduce two different cohomology spaces: the first one is simply
given by the quotient

LpHk (M) = Zk,p (M) /Bk,p (M)

and is called the k-th de Rham space of unreduced Lp-cohomology. The second one
is obtained by replacing Bk,p (M) with its closure

LpHk (M) = Zk,p (M) /Bk,p (M)

and it is named the k-th de Rham space of reduced Lp-cohomology. We endow both
these spaces with the quotient topology. Note that LpHk (M) inherits the norm
‖·‖Lp of LpΛ (M) and, in this way, becomes itself a Banach space. Note also the
obvious inclusion

LpHk (M) ⊂ LpHk (M)

and the isomorphism

LpHk (M) & LpHk (M) /
{
[ω] ∈ LpHk (M) : ‖[ω]‖Lp = 0

}
.

In particular, every topological isomorphism LpHk (M) → LpHk (N) induces a
topological isomorphism at the reduced level.

Example B.1. Following M. Gromov, [75], let us consider the standard m-dimen-
sional hyperbolic space

(
Hm

−1, can
)

which we identify with its Poincaré model⎛⎜⎝B1 (0) ,
4
∑

dxi ⊗ dxi(
1− |x|2

)2

⎞⎟⎠
where B1 (0) ⊂ Rm denotes the Euclidean unit ball. Then

kp = m =⇒ LpHk
(
Hm

−1

) 	= 0. (B.12)

To see this, we first observe that, on a generic m-dimensional Riemannian
manifold (M, 〈, 〉), condition kp = m implies that the Banach space LpΛk (M) is a
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conformal invariant. Namely, let 〈̃, 〉 = λ2 (x) 〈, 〉 be a second Riemannian metric,
pointwise conformal to 〈, 〉. Then, for every k-form ω,

|ω|〈̃,〉 = λ−k |ω|〈,〉
and, furthermore,

dṽol = λmdvol

where dvol and dṽol denote the Riemannian measures corresponding to the given
metrics. As a consequence∫

M

|ω|p〈̃,〉 dṽol =
∫

M

|ω|p〈,〉 dvol

as claimed.
Now, since the hyperbolic metric is pointwise conformal to the Euclidean one

and the unit ball B1 (0) has finite Euclidean volume, we deduce that the inclusion

i : B1 (0) ↪→ Rm

induces, for every hq = m, a bounded pull-back homomorphism

i∗ : Λh (Rm)→ LqΛh
(
Hm

−1

)
.

Let
p =

m

k
, q =

m

m− k

and consider the closed differential forms

ω1 = i∗
(
dx1 ∧ · · · ∧ dxk

) ∈ Zk,p
(
Hm

−1

)
,

ω2 = i∗
(
dxk+1 ∧ · · · ∧ dxm

) ∈ Zm−k,q
(
Hm

−1

)
.

We claim that both ω1 and ω2 represent non-trivial de Rham cohomology classes in
LpHk

(
Hm−1

)
and LqHm−k

(
Hm−1

)
, respectively. Indeed, by contradiction, suppose

that this is not the case. Without loss of generality we may assume that

ω1 ∈ Bk,p
(
Hm

−1

)
(B.13)

so that dk−1τn
Lp→ ω1, for some sequence {τn} ⊂ C∞

c Λk−1
(
Hm

−1

)
. Since∣∣∣∣∣

∫
Hm

−1

dτn ∧ ω2 −
∫

Hm
−1

ω1 ∧ ω2

∣∣∣∣∣ ≤
∫

Hm
−1

|(dτn − ω1) ∧ ω2|

≤ ‖dτn − ω1‖Lp ‖ω2‖Lq
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using Stokes theorem and the conformal invariance of L1Λm
(
Hm−1

)
, we deduce

0 = lim
n→+∞

∫
Hm

−1

dτn ∧ ω2 =
∫

Hm
−1

ω1 ∧ ω2

=
∫
B1(0)

dx1 ∧ · · · ∧ dxm = volRm (B1 (0)) ,

i.e., a contradiction. Therefore ω1 represents a non-trivial de Rham class in
LpHk

(
Hm

−1

)
, proving (B.12).

Example B.2. The usual proof of the Poincaré lemma for the unit Euclidean
ball B1 (0) ⊂ Rm works even in the Lp setting. Accordingly, for the geodesically
incomplete manifold (B1 (0) , canRm), the following holds:

LpHk (B1 (0)) = 0

for every k = 1, . . . , m and for every p ≥ 1. See, e.g., [127], Lemma 8.

As illustrated by Examples B.1 and B.2 above, diffeomorphic manifolds are
far from possessing isomorphic Lp cohomology spaces. The reason is that a smooth
map, in general, does not pull back Lp forms to Lp forms and, even in this case,
the pull-back operator could be unbounded. However, it is easy to show that if a
map induces Lp-bounded pull-backs, then the usual commutation rule (B.10) still
holds and we get again bounded cochain and cohomology homomorphisms sat-
isfying the contravariant functoriality property, as explained above. Bi-Lipschitz
homeomorphisms are the most natural example of maps enjoying these properties,
showing that the Lp de Rham cohomology essentially depends on the Riemannian
geometry at infinity of the manifold at hand. More precisely, recall that a contin-
uous map f : (M, 〈 , 〉) → (N, ( , )) between Riemannian manifolds is said to be a
Lipschitz map if the following two conditions are met:

(1) f is differentiable almost everywhere (a.e.), i.e., denoting by dvolM the Rie-
mannian measure of (M, 〈, 〉M ), there exists a set Ω ⊂ M with dvolM (Ω) = 0
such that, for every x ∈ M \ Ω, the differential map f∗x : TxM → Tf(x)N
exists.

(2) There exists a constant C > 0 such that |f∗x |N (v) ≤ C |v|M for every x ∈
M \Ω and every v ∈ TxM .

One also says that (M, 〈 , 〉) and (N, ( , )) are bi-Lipschitz equivalent if there exists
a homeomorphism f : (M, 〈 , 〉) → (N, ( , )) such that both f and f−1 are Lipschitz
maps.

Remark B.3. In general, given a Lipschitz map f : M → N , the pull-back of
a p-integrable form on N is not p-integrable on M . Consider for instance the
Riemannian universal covering of the flat torus, say

π : (Rm, canRm)→ (Tm = Rm/Zm, canTm) .
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Since π is a local isometry, we have

|π∗ (v)|
Tm = |v|

Rm ,

hence π is Lipschitz. Since Tm is compact, any continuous form is p-integrable, for
every p > 0. On the other hand, let dx1 ∧ · · · ∧ dxk ∈ C∞Λk (Tm) be induced by
the coordinate functions x1, . . . , xm of Rm. Then

π∗ (dx1 ∧ · · · ∧ dxk
)

= dx1 ∧ · · · ∧ dxk 	∈ LpΛk (Rm) ,

showing that the Lp-integrability is not preserved.

Making an essential use of the change of variable formula for Lipschitz trans-
formations yields the invariance property alluded to above.

Proposition B.4. Bi-Lipschitz equivalent Riemannian manifolds have isomorphic
de Rham Lp-cohomologies.

Example B.5. Suppose that the Riemannian manifolds (M, 〈 , 〉) and (N, ( , )) are
isometric at infinity. This means that there exists a diffeomorphism f : M → N
such that, for some (possibly empty) compact set K ⊂M , setting M ′ = M \K and
N ′ = N \ f (K), the restriction f ′ = f |M ′ : (M ′, 〈, 〉) → (N ′, ( , )) is a Riemannian
isometry. Then,

LpHk(M) & LpHk(N).

In this sense, the de Rham Lp-cohomology depends only on the Riemannian ge-
ometry at infinity of the manifold.

The proof of the claimed property is a trivial consequence of Proposition B.4.

Example B.6. Suppose we are given a compact Riemannian manifold (M, 〈 , 〉). Its
Riemannian universal covering is denoted by PM : (M̃, 〈̃ , 〉) → (M, 〈 , 〉). Then,
the Lp de Rham reduced and unreduced cohomologies of M̃ are diffeomorphism
invariants of the base manifold M . Namely, if (M, 〈 , 〉) is diffeomorphic to (N, ( , )),
then

LpHk(M̃) & LpHk(Ñ)

where PN : (Ñ , (̃ , ))→ (N, ( , )) is the (Riemannian) universal covering of N . This
follows from the fact that any diffeomorphism f : M → N lifts to a Lipschitz
diffeomorphism f̃ : M̃ → Ñ . Indeed, the composition f ◦ PM : M̃ → N defines
a second universal covering of N . Therefore, by uniqueness, there exists a fiber-
preserving diffeomorphism f̃ : M̃ → Ñ such that PN ◦ f̃ = f ◦PM . Since both PM

and PN are local isometries we see that

|f̃∗|Ñ = |(PN )∗|N |f̃∗|Ñ = |(PN ◦ f̃)∗|N = |(f ◦ PM )∗|N = |f∗|N |(PM )∗| = |f∗|N .

On the other hand, by the compactness of both M and N , we have

|f∗|N ≤ C

for some C > 0. Therefore f̃ is a Lipschitz map. Obviously, similar considerations
hold for the inverse map f̃−1, completing the proof.
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B.2 Harmonic forms and L2-cohomology

Recall that a differential form ω ∈ C∞Λk (M) is said to be harmonic if

∆Hω = 0

where ∆H = dδ + δd is a degree 0, second-order, differential operator called the
Hodge Laplacian. Note that, on functions, ∆H is nothing but −∆. The real vector
space of (smooth) harmonic k-forms of M is denoted by Hk (M) . For the sake of
notation, we also set

LpHk (M) = Hk (M) ∩ LpΛk (M) .

Let us now consider the space L2Λk (M) with the usual scalar product

(ω, ξ)L2 =
∫

M

〈ω, ξ〉Λk . (B.14)

As we pointed out earlier, since (M, 〈 , 〉) is geodesically complete, the exterior
differential of an L2-form ω ∈ L2Λk (M) can be defined via the (distributional)
formula

(dω, τ) := (ω, δτ)L2 , ∀τ ∈ C∞
c Λk (M) . (B.15)

The L2-form ω is said to be weakly closed if dω = 0 in the distributional sense.
Similarly, we can introduce the distributional co-differential of ω by setting

(δω, τ) := (ω, dτ)L2 , ∀τ ∈ C∞
c Λk−1 (M) (B.16)

and we say that ω is weakly co-closed provided δω = 0. The following description
of L2 harmonic forms is essentially due to A. Andreotti and E. Vesentini; see [160]
and [42]. Its proof combines Gaffney-integration by parts (which is based on the
Gaffney cut-off trick) with classical elliptic regularity theory.

Proposition B.7. Let (M, 〈 , 〉) be geodesically complete. Then ω ∈ L2Hk (M) if
and only if ω ∈ L2Λk (M) satisfies both dω = 0 and δω = 0 in the weak sense.

Remark B.8. One may suspect that similar characterizations hold with different
degrees of integrability. In general, even for nice (e.g., with bounded geometry)
Riemannian spaces, this is false. In fact, D. Alexandru-Rugina, [4], obtains Lp

harmonic k-forms on the hyperbolic space Hm−1, m ≥ 3, which are neither closed
nor co-closed.

The next result is called a decomposition theorem by K. Kodaira; see [42],
[89].

Theorem B.9. Let (M, 〈 , 〉) be a geodesically complete manifold. Then

L2Λk (M) = d (C∞
c Λk−1 (M))⊕ δ (C∞

c Λk+1 (M))⊕ L2Hk (M) ,

Zk,2(M) = Bk,2(M)⊕ L2Hk (M) .
(B.17)
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As a consequence, one gets the following L2 version of the Hodge repre-
sentation theorem showing that, as in the compact setting, L2 harmonic forms
completely describe the L2 reduced cohomology of the manifold.

Corollary B.10. Let (M, 〈 , 〉) be a complete Riemannian manifold. Then, the map

I : L2Hk (M)→ L2Hk (M)

defined by
I (ω) = [ω]

is a linear isometry.

Example B.11. In view of the L2 representation theorem, we can use classical
analytic tools from harmonic function theory to show that the standard Euclidean
space (Rm, can) satisfies

dimL2Hk (Rm) = 0, ∀k = 0, . . . , m. (B.18)

This amounts to showing that every L2 harmonic k-form vanishes. In fact, we shall
prove the following more general statement

dimLpHk (Rm) =

{
0 if 1 ≤ p < +∞,(
n
k

)
if p = +∞.

(B.19)

To this end, take ω ∈ LpHk (Rm). Using the definition of the Riemannian structure
of Λk (Rm) one can show that ω can be globally written as

ω =
∑

ωi1···ik
dxi1 ∧ · · · ∧ dxik

where
ωi1···ik

∈ LpH0 (Rm) .

The desired conclusion (B.19) therefore reduces to a quite standard Liouville the-
orem for harmonic functions on Rm.

First, we consider the case 1 ≤ p < +∞. For any fixed δ > 0 let

vδ =
√

(ωi1···ik
)2 + δ2.

Obviously, 0 ≤ |ωi1···ik
| < vδ. Furthermore, since ωi1···ik

is harmonic we have

∆vδ =
δ2 |∇ωi1···ik

|2
v3

δ

≥ 0,

proving that vδ is a positive, subharmonic function on all of Rm. The usual mean
value inequality tells us that for every x0 ∈ Rm and for every ball BR (x0),

0 ≤ |ωi1···ik
| (x0) ≤ vδ (x0) ≤ 1

vol (BR (x0))

∫
BR(x0)

vδ.
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Whence, using Hölder inequality and letting δ → 0+ we deduce, for every p ≥ 1,

0 ≤ |ωi1···ik
| (x0) ≤ 1

vol (BR (x0))
1
p

{∫
BR(x0)

|ωi1···ik
|p
}1/p

.

From this latter, since |ωi1···ik
| ∈ Lp (Rm), letting R → +∞ we conclude that

ωi1···ik
(x0) = 0. This proves the first part of (B.19).

Now we consider the case p = +∞. Since ωi1···ik
is bounded from below,

setting
u = ωi1···ik

− inf
Rm

ωi1···ik
,

we have that u ≥ 0 is a harmonic function on Rm satisfying

inf
Rm

u = 0.

The Harnack inequality then tells us that there exists a universal constant C > 0
such that, on every ball BR (0) ,

0 ≤ sup
BR(0)

u ≤ C inf
BR(0)

u.

Letting R → +∞ we therefore conclude u ≡ 0, i.e., ωi1···ik
≡ const, completing

the proof of (B.19).

Remark B.12. As already noted, a theorem by S.T. Yau, [168], shows that, on a
generic complete Riemannian manifold (M, 〈, 〉) of infinite volume, the only non-
negative subharmonic function u satisfying u ∈ Lp (M), for some 1 < p < +∞, is
the null function u = 0.

It should be stressed that the endpoint cases p = 1 and p = +∞ give rise
to substantial problems of non-technical nature. In general, constancy results are
false without some further geometric assumption on the underlying manifold.

B.3 Harmonic forms and Lp 	=2-cohomology

A natural question is whether or not Lp harmonic forms may be used to describe
the Lp-cohomology even for p 	= 2.

In general, the answer is negative. Indeed, as we mentioned in Remark B.8,
hyperbolic space Hm

−1, m ≥ 3, supports non-trivial Lp-harmonic k-forms which are
not closed, for some p > 2 and 1 ≤ k ≤ (m− 1) /2, see [4]. Clearly, these harmonic
forms represent no cohomology class at all. As we shall soon see, the range p > 2
is, in a sense, sharp.

In the affirmative direction, only partial results are known. Here is a brief
account.
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B.3.1 The Lp-Hodge decomposition for Euclidean space

The following result is due to T. Iwaniec and G. Martin, [85]. The original proof
relies on classical singular integral methods. In particular, Lp-estimates of the
Riesz transform are used.

Theorem B.13. For every 1 < p < +∞, we have the topological splitting

LpΛk (Rm) = dW 1,pΛk−1 (Rm)⊕ δW 1,pΛk+1 (Rm) ,

differential and co-differential being understood in the sense of distributions.

Note that, in the above decomposition, Lp harmonic forms do not appear.
This is in accordance with the Liouville properties obtained in Example B.11
above. The next vanishing result for the non-reduced cohomology is an immediate
consequence of the theorem.

Corollary B.14. For every 1 < p < +∞ and for every k = 0, . . . , m,

LpHk (Rm) = 0.

B.3.2 The case of manifolds with bounded geometry

Roughly speaking, a manifold is said to have bounded geometry if its Riemannian
invariants (metric tensor, Christoffel symbols, Riemann curvature etc.) are locally
uniformly controlled. The following definition employs a locally uniform bound of
the metric coefficients in normal coordinates.

A complete Riemannian manifold (M, 〈, 〉) is said to have bounded geometry
at order s ∈ [0, +∞] if the following hold.

(Inj) The injectivity radius of M satisfies inj (M) = i > 0, i.e., for every x ∈ M , the
exponential map expx : Bi (0) ⊂ TxM = Rm → Bi (x) is a diffeomorphism.

(Gs) For every x ∈M , fix an orthonormal frame {ej} of TxM = Rm, and consider
the pull-back metric tensor on Bi (0),

gij = 〈(expx)∗ ei, (expx)∗ ej〉 .

Then, both the matrix gij and its inverse gij are bounded in the Cs-topology
of Bi/2 (0).

Besides these conditions, consider the following further property which turns
out to be very important in applications.

(Rk) The covariant derivatives of the Riemann tensor up to order k are uniformly
bounded, i.e.,

∥∥D(j)Riem
∥∥

L∞(M)
≤ C, for every j = 0, . . . , k and for some

constant C > 0.
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The following result shows how conditions (Inj), (Gs) and (Rk) are related
to each other. See Theorem 4.7 in [33] and Lemma 5.2 in [166] for the injectivity
radius estimates; and [49], [145] for equivalent definitions of bounded geometry.

Theorem B.15. Let (M, 〈, 〉) be a complete Riemannian manifold.

(1) Assume that M satisfies condition (R0) and, for some r0 > 0,

inf
x∈M

volBr0 (x) > 0.

Then M enjoys property (Inj).

(2) Suppose M satisfies condition (Inj). Then

(Rs) =⇒ (Gs) =⇒ (Rs−2).

Remark B.16. From the topological viewpoint, it is a fundamental result by R.
Greene, [65], that there is no obstruction for a smooth manifold to support a
complete Riemannian metric of bounded geometry.

Remark B.17. An interesting aspect of bounded geometry is that we can mimic
the “from-local-to-global” procedure which is typical of the compact realm. In
fact, very often, for a compact manifold, a global result is achieved from its local
version (in a neighborhood of each point) by using a finite covering argument.
For a manifold of bounded geometry, the extension is obtained by using infinite
coverings with controlled intersection multiplicity. Clearly, since the covering could
be infinite, one is forced to start with “uniformly controlled” local objects, and
this is certainly the case if the objects at hand depend continuously on the metric
and its derivatives.

Now, we come back to Lp harmonic forms. The next theorem is due to D.
Alexandru-Rugina, [5]. The idea behind the proof is a reduction procedure to the
L2 situation via a Sobolev imbedding result and a (pairing) argument similar to
that due to Gromov described in Example B.1 . The bounded geometry assump-
tion enters in a crucial way in order to obtain that local Sobolev constants are
independent of the chosen point.

Theorem B.18. Let (M, 〈 , 〉) be a complete manifold of bounded geometry at the
order s = 2 and let 1 < p ≤ 2. Then, there is a continuous imbedding

LpHk (M) ↪→ LpHk (M).

An obvious consequence of the theorem is that, if LpHk (M) is infinite-
dimensional, then so is LpHk (M). This is the way Alexandru-Rugina employs
her result.

It is an interesting problem to investigate the validity of the opposite impli-
cation, namely,

dimLpHk (M) < +∞ =⇒ dimLpHk (M) < +∞.
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B.4 Some topological aspects of the theory

It is well known that the de Rham cohomology of a compact, smooth manifold
M is isomorphic to the simplicial cohomology induced by any chosen smooth
triangulation of M . In particular, the de Rham spaces turn out to be homotopy
invariants of the manifold. Different proofs of this fact are available, ranging from
the very concrete construction by H. Whitney, [164], up to the abstract theory
of sheaf cohomology, [162]. Both these approaches have been developed in the
setting of the Lp cohomology of non-compact spaces. The former was first used
in the seminal paper [43] by J. Dodziuk (see also [46]) concerning the L2 reduced
theory of manifolds with sufficiently bounded geometry, and was subsequently used
by V.M. Gol’dshtein, V.I. Kuz’minov and I.A. Shvedov to establish the definitive
result in the Lp unreduced setting (see Theorem B.22 below). The latter has
been recently reconsidered by P. Pansu in his investigation on the quasi-isometric
invariance of the Lp (unreduced) cohomology spaces, see, e.g., [127].

We shall focus our attention on the Whitney-type approach developed by
Dodziuk, Gol’dshtein, Kuz’minov, and Shvedov. Our purpose is to emphasize the
topological content of the Lp de Rham cohomology. This is accomplished by re-
lating the Lp de Rham spaces with a suitable, global simplicial theory on the
underlying triangulated manifold: the �p simplicial cohomology. So, let (M, 〈, 〉)
be a geodesically complete, non-compact Riemannian manifold of dimension m.
Recall that a smooth triangulation of (M, 〈, 〉) is a couple (K, t) where

(1) K is a (locally finite) simplicial complex of dimension dimK = m which we
may assume to be geometrically realized in some Euclidean space.

(2) t : |K| → M is a homeomorphism such that, for every k-dimensional sim-
plex σ ∈ K, the restriction tσ = t||σ| : |σ| → M is a smooth imbedding.
This means that tσ extends smoothly in a neighborhood U of σ ⊂ Rk and,
furthermore, the differential (tσ)∗x : TxU → Tt(x)M is injective, for every
x ∈ |σ|.

The Dodziuk–Gol’dshtein–Kuz’minov–Shvedov theory involves the special class of
triangulations described in the next definition.

The smooth triangulation (K, t) of (M, 〈, 〉) is said to be of bounded geometry
(BG for short) if the following further conditions are satisfied:

(3) K is a BG simplicial complex, i.e., a finite-dimensional, locally finite (geomet-
ric) simplicial complex for which there is an (absolute) integer N > 0 such
that every k-dimensional simplex of K is the face of at most N simplices of
dimension k + 1. Equivalently, the 1-skeleton of K is a graph with uniformly
bounded vertex degrees.

(4) There exists a universal constant C > 1 such that, for every k-dimensional
simplex σ ∈ K, and for every v ∈ Tx |σ| (in the sense of (2) )

C−1 〈v, v〉
Rk ≤ 〈(tσ)∗xv, (tσ)∗xv〉 ≤ C 〈v, v〉

Rk .
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The following existence result is attributed to E. Calabi. For a somewhat
complete proof, we refer the reader to the paper [8] by O. Attie.

Theorem B.19. Let the manifold (M, 〈, 〉) have bounded geometry at the order
s = 2. Then, there exists a smooth BG triangulation (K, t) of M satisfying the
further property

(5) D−1 ≤ vol (σ) ≤ D and D−1 ≤ diam(σ) ≤ D

for some universal constant D > 1 and for every σ ∈ K of maximal dimension
dimσ = m.

In particular, we have

Corollary B.20. Every Riemannian covering of a compact Riemannian manifold
has a BG smooth triangulation.

Infinite simplicial complexes of bounded geometry are suitable for a global
extension to the non-compact realm of the ordinary simplicial cohomology of a
compact polyhedron.

Let K be a BG complex of dimension dim (K) = m. Set Sk (K) for the
(countable) collection of all the oriented, k-dimensional simplices of K. Let also(
Ck (K) , ∂k

)
be the ordinary simplicial cochain complex. We fix q ≥ 1, and,

for any k, we introduce the vector space �pCk (K) of �p simplicial cochains of
dimension k, by setting

�pCk (K) =
{
λ ∈ Ck (K) : ‖λ‖�pCk(K) < +∞

}
where

‖λ‖�pCk(K) =

⎛⎝ ∑
σ∈Sk(K)

|λ (σ)|q
⎞⎠1/q

.

Obviously, �pCk (K) is a Banach space topologically isomorphic to �p (Z). Fur-
thermore, restricting the action of the ordinary coboundary operator ∂k to k-
dimensional �p-cochains, yields a bounded operator ∂k : �pCk (K) → �pCk+1 (K)
(here the BG assumption enters the game). Because of the (restricted) identity

∂k ◦ ∂k−1 = 0

the family of Banach spaces and bounded operators
{
�pCk (K) , ∂k

}
defines a

cochain-complex , the complex of the �p simplicial cochains. Set �pZk (K) = ker ∂k

and �pBk (K) = Im ∂k−1 for the spaces of the �p cocycles and the �p coboundaries,
respectively. Since this latter space is not necessarily closed, then, as we did in
the Sobolev setting of differential forms, we introduce the unreduced �p simplicial
cohomology of K,

�pHk (K) = �pZk (K) /�pBk (K)
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and its (Banach) reduced version

�pHk (K) = �pZk (K) /�pBk (K).

Obviously
�pHk (K) ⊂ �pHk (K)

and, every topological isomorphism f : �pHk (K1) → �pHk (K2) induces a topo-
logical isomorphism between reduced spaces.

Definition B.21. Suppose the complete manifold (M, 〈, 〉) has a BG triangulation
(K, t). The �p simplicial cohomology of the triangulated manifold (M,K, t) is de-
fined as the �p simplicial cohomology of the BG simplicial complex K. Accordingly,
we set

�pHj (M,K, t) = �pHj (K) and �pHj (M,K, t) = �pHj (K).

We are now in a position to state the far-reaching extension due to Gol’d-
shtein–Kuz’minov–Shvedov of the classical de Rham theorem. The philosophy un-
derlying the clever and quite complicated proof resemble the original one by Whit-
ney. Indeed, with some oversimplification, their aim is to show that integration of
(non-smooth) forms over simplexes establishes the desired isomorphism.

Theorem B.22. Let (M, 〈 , 〉) be a complete m-dimensional manifold admitting a
smooth BG triangulation (K, t). Then, for p ≥ 1 and for any k ∈ N, there is a
topological isomorphism

LpHk (M) & �pHk (M,K, t)

between unreduced cohomologies.

It is worth noting that, unlike the compact case, the �p simplicial cohomology
is not a continuous homotopy invariant of BG polyhedra. For instance, one can
appeal to Theorem B.22 and recall Corollary B.14 and Example B.1. Accordingly,
the Riemannian manifolds Rm and Hm

−1 have different �p simplicial cohomologies.
A natural question is whether there are situations where the topology of the

BG polyhedron is reflected in the �p cohomology of a triangulation. In this respect,
we first recall the following result due to Dodziuk, [43].

Theorem B.23. Let K̃ be a connected simplicial complex of dimension m and let Γ
be a discrete group of simplicial homeomorphisms acting freely on K̃. Suppose also
that the orbit space K = K̃/Γ is an m-dimensional, finite simplicial complex so
that the quotient projection is a simplicial map. Then K̃ is a BG simplicial complex
and the �p simplicial cohomology of K̃ is a continuous-homotopy invariant of the
couple (K,Γ).

Combining this result with Theorem B.22, and using also the equivariant
triangulation theory by S. Illman, [84], yields the following fundamental
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Theorem B.24. Let (M, 〈 , 〉) and (N, ( , )) be compact Riemannian manifolds. De-
note by (M̃, 〈̃ , 〉) and (Ñ , (̃ , )) the respective Riemannian universal coverings. If M
and N are (continuously) homotopic, then, for every k ∈ N and for every p > 1,
there is a topological isomorphism

LpHk(M̃) & LpHk(Ñ).
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[19] L. Brandolini, M. Rigoli, A.G. Setti, Positive solutions of Yamabe-type equa-
tions on the Heisenberg group, Duke Math. J. 91 (1998), 241–296.

[20] L. Brandolini, M. Rigoli and A.G. Setti, Positive solutions of Yamabe type
equations on complete manifolds and applications, Jour. Funct. Anal. 160
(1998), 176–222.

[21] T. Branson, Kato constants in Riemannian geometry. Math. Res. Lett. 7
(2000), 245–261.

[22] L. Caffarelli, B. Gidas, J. Spruck, Asymptotic symmetry and local behavior of
semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl.
Math. 42 (1989), 271–297.

[23] M. Cai, G.J. Galloway, Boundaries of zero scalar curvature in the ADS/CFT
correspondence. Adv. Theor. Math. Phys. 3 (1999), 1769–1783.

[24] D.M.J. Calderbank, P. Gauduchon, M. Herzlich, Refined Kato inequalities
and conformal weights in Riemannian geometry. J. Funct. Anal. 173 (2000),
214–255.

[25] H.-D. Cao, Y. Shen, S. Zhu, The structure of stable minimal hypersurfaces
in Rm+1. Math. Res. Lett. 4 (1997), no. 5, 637–644.

[26] G. Carron, Une suite exacte en L2-cohomologie, Duke Math. J. 95 (1988),
343–373.
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