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Chapter 0

Introduction

SILVESTRE FRANGOIS LACROIX (Paris, 1765 - 4bid., 1843) was not a prominent
mathematician, in the sense of someone who creates (or discovers) new mathe-
matics, but he was certainly a most influential mathematical book author. The
revolutionary times he lived in, changing political and social structures, changed
also the social role of mathematicians and mathematics, through a great expansion
of education. Lacroix dedicated his career to the teaching of mathematics, both
in person (he taught at numerous institutions, from the Ecole des Gardes de La
Marine to the Ecole Polytechnique and the Collége de France) and as a prolific
(and much read) textbook writer. He also showed much concern for the history of
mathematics, namely writing biographies of several mathematicians for Michaud’s
Biographie Universelle.

One of the most successful of his textbooks was the Traité élémentaire du cal-
cul différentiel et du calcul intégral [1802a]. It had several editions throughout the
19th century, being widely used in teaching even after Cauchy’s radical transfor-
mation of the subject: its first edition was in 1802; the last edition during Lacroix’s
lifetime (the 5th) was in 1837; in 1861-1862 a 6th one was published with notes
added by Charles Hermite and Joseph Alfred Serret; in 1881 the 9th edition was
reached. Translations were published in Portuguese (in 1812, in Rio de Janeiro),
English (in 1816, as part of an effort to introduce Continental analysis into Bri-
tain), German (twice, in 1817 and 1830-1831), Polish (in 1824, in Vilnius), and
Italian (in 1829).

Prior to [1802a], Lacroix had published a monumental Traité du calcul dif-
férentiel et du calcul intégral (three large volumes, 1797-1800; a second edition
appeared in 1810-1819) [Lacroix Traité]. This is not a textbook: in the preface to
the first volume of the second edition Lacroix, comparing it to elementary books,
says that “such a voluminous treatise as this one, can hardly be consulted but by
people to whom the subject is not entirely new, or that have an unwavering taste
for this kind of study” [Lacroix Traité, 2nd ed, I, xx]. It is rather a reference work —
an encyclopedia of 18th-century calculus. In an encyclopédiste style, Lacroix aimed
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at presenting a comprehensive account of the differential and integral calculus, but
not as a simple compilation of methods: he thought it necessary to choose between
different but equivalent methods or to show how they relate to one another, as well
as give all of them a “uniform hue” that would not allow tracing the respective
authors. It was a major appraisal of the calculus just before this subject was
radically transformed by Cauchy in the 1820s.

Throughout this work I will often refer to [Lacroix 1802a] as “Lacroix’s Traité
élémentaire”, and to [Lacroix Traité] as “Lacroix’s Traité” or (to better distinguish
from the former) as his “large Traité”.

0.1 Lacroix and his 7Traité in the literature

In spite of the great influence of Lacroix in early 19th-century mathematics, “no
major study has been written of [him|” [Grattan-Guinness 1990, I, 112]. Grattan-
Guinness adds that “the most useful studies” are [Taton 1953a|, [Taton 1953b] and
[Taton 1959]; but even these are mainly biographical, focusing on Lacroix’s career
but not studying his works (and yet, they do not constitute a complete biography
of Lacroix, which is still lacking).

Meanwhile, Lacroix’s textbooks have received some more attention. In [1987]
Schubring presented Lacroix as a very good example of a textbook author to be
analysed, due to the extension and influence of his textbook euvre (however, he
hardly touched on the mathematical content of any of Lacroix’s books). Pierre
Lamandé has written several papers where he addresses Lacroix’s textbooks; the
most important for us here are [1988; 1998], where he compares the Traité élé-
mentaire with the older texts on the calculus by I’'Hopital and Bézout.

But the large Traité has not been studied thoroughly, which is a serious
omission, both in itself and as a necessary step before a global study of Lacroix
can be achieved.

True, a considerable number of references to [Lacroix Traité] can be found in
the historical literature: when studying the history of some aspect of the calculus
in a period of time that includes the turn of the 18th to the 19th century, it is not
uncommon to briefly address Lacroix’s account of the aspect under study, taking
it as typical of the period. For instance, [Gilain 1981] uses the second edition of
Lacroix’s Traité to highlight the novelties in Cauchy’s treatment of differential
equations. But each of those references concerns only one or another particular
aspect, and most of them are extremely small: [Grabiner 1981] gives several exam-
ples of influence on Cauchy (in details and terminology), but Lacroix’s Traité is
still quite secondary; [Boyer 1956] attributes to [Lacroix Traité] a very important
place in the history of analytic geometry, but this is only a very particular aspect
of the Traité.
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0.2 This study

The main purpose of this book is to study Lacroix’s large Traité, focusing on
the first edition and on the process of its composition (much more than on its
aftermath). There is also a chapter on the second edition (chapter 9), but it plays
a secondary role here. The chapter on the Traité élémentaire is more important —
but that is mainly because it offers the opportunity to compare the large Traité
with another text, by the same author, on the same subject, actually based on the
large Traité, but with a very different intended audience.

0.2.1 Comparisons

If every historical research must be set in a context, the more so when the object of
research is a scientific text that did not intend to be original but rather an appraisal
of an existing subject. Thus, a great part of this study consists of comparisons:

1. The obvious model for Lacroix’s larger Traité was Euler’s six-volume set
of treatises on the calculus [Introductio; Differentialis; Integralis|, published
between 1748 and 1770. Lacroix himself admitted having taken passages from
there [Traité, I, xxiv]. But he was following different foundations and he wan-
ted to incorporate recent developments as well as alternative methods. How
did this affect the structure of the Traité? We will see in chapter 2 that the
difference in foundations hardly affected it: Lacroix kept much of the struc-
ture of Euler’s set of works. He did not include an early section on finite
difference calculus (vital for Euler’s foundation, but not for Lacroix’s), but
other than that he departed mostly in his systematic inclusion of geometrical
applications, and in the inclusion of a final volume on “differences and series”,
these departures are related to the incorporation of recent developments (na-
mely Monge’s differential geometry, finite difference equations, and several
studies involving definite integrals, mostly by Euler himself and by Laplace).

2. One of the choices Lacroix actually made between methods was that the
foundational approach would be the one suggested by Lagrange in [1772a],
based on the power-series expansion of arbitrary functions. Lagrange used
this method in his lectures at the Ecole Polytechnique from 1794, but only
published it in detail in [Fonctions|, in 1797 — the same year in which the first
volume of Lacroix’ Traité appeared. Lacroix attended Lagrange’s lectures at
least in 1795, but he was working on the Traité since 1787, and therefore
he probably had already written its first chapters. The question of Lacroix’s
relatively independent development of details for the Lagrangian foundations
of the calculus (a comparison with [Lagrange Fonctions|) is addressed in
chapter 3.

3. In the 1790s two other books were published in France with similar titles:
Cousin’s Traité de Calcul Différentiel et de Calcul Intégral [1796] and Bos-
sut’s Traités de Calcul Différentiel et de Calcul Intégral [1798]. The latter
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was more a textbook, but Cousin’s was truly a treatise. Both (and, up to
a certain point, also the section on the calculus in [Bézout 1796, IV]) of-
fer points of comparison with [Lacroix Traité], representing more traditional
and/or less advanced accounts.

4. A more general comparison is that between Lacroix’s text and his sources,
which is facilitated by the inclusion of a wonderful bibliography. We will
see that in most cases Lacroix simply summarizes those sources, adapting
terminology and notation so as to give the Traité the “uniform hue” required.
But there are also several instances of originality — in some cases in content
(for instance, total differential equations in three variables that do not satisfy
the conditions of integrability), in other cases in systematization (for instance,
analytic geometry).

Besides these, there are two more comparisons that must be made, and that
have already been mentioned:

5. We will see in chapter 8 how Lacroix reduced and adapted his large Traité
for teaching, and how this resulted in the Traité élémentaire.

6. In chapter 9 we will take a brief look at the second edition. There were no
major differences, but Lacroix improved the organization of the material, and
included many new developments by Lagrange, Poisson, and others.

0.2.2 Structure

This book starts with a short biography of Lacroix (chapter 1), followed by an
overview of the first edition of the Traité (chapter 2). Next come five chapters
where particular aspects are analysed in detail. Then we examine the Traité élé-
mentaire (chapter 8), we take a look at the second edition of the large Traité
(chapter 9), and conclude the study with some final remarks (chapter 10). The
book closes with some appendices, mainly containing relevant documentation.
The five chapters 3-7 constitute the bulk of the study. Their subjects were
chosen taking several issues in consideration. First of all, Lacroix’s possible origi-
nalities would have to be addressed, but this could not be reduced to a study of
possible originalities. The topics chosen should allow one to form a prospect of the
whole Traité: they should cover both Lagrangean and Mongean topics (Lagrange
being an acknowledged influence, and Monge being a mentor of Lacroix), and the
three volumes should be present (even if not with the same weights). There was an
attempt at having topics dealing more with concepts than with methods; of course,
in several situations methods have to be addressed, because they have interesting
conceptual consequences (as in the case of Euler’s approximate integration) or
underpinnings (as in the case of the several methods for calculating tangents to
curves). But this is the main reason for the lesser weight of volume IIT in these
chapters — that volume consisting almost exclusively in a collection of methods;
the other reason, actually related to the former, is that volume III does not offer



0.2. This study 5

much opportunity to study possible originalities by Lacroix — its great originality
residing in its existence and structure (for which see section 2.5).

Chapter 3 analyses the foundations of differential calculus — the most classi-
cal topic here; it has already been mentioned (item 2 above). After this Lagrange-
related topic, chapter 4 deals with analytic and differential geometry — the most
direct influences from Monge; analytic geometry is included because of the impor-
tant role of Lacroix’s Traité in its history.

Chapter 5 addresses two subjects that seem to be more closely related in
Lacroix’s Traité than before: approximate integration, and conceptions of the in-
tegral — Lacroix used Euler’s method of approximation (the one Cauchy would later
use to define the definite integral) to explore “the nature of integrals”. Chapter 6
combines several issues on what types of objects can be solutions of differential
equations — the distinctions between complete, general, particular, and singular
integrals/solutions, the geometrical interpretations of all these, what types of ar-
bitrary functions (and how many) may occur in integrals of partial differential
equations, the special case of total differential equations in three variables that
do not satisfy the conditions of integrability, and finally Fontaine’s conception of
formation of (ordinary) differential equations by elimination of arbitrary constants
(with different adaptations to partial differential equations). Lacroix regarded Fon-
taine’s conception as the basis of the theory of differential equations, and used it
to build his own analytical theory for total differential equations in three variables
that do not satisfy the conditions of integrability.

Chapter 7 explores three aspects of “differences and series”. The first is the
subscript index notation, whose introduction has been misattributed to Lacroix.
The other two are partly a follow-up of chapter 6: studies of the solutions of (finite)
difference equations and of mixed difference equations.

0.2.3 Notations

An effort has been made to be as faithful as possible to original notations. Thus,
sometimes we have expressions such as

1 1 1 1
fz, X1k + Xok? + X3k3 + etc., or 14+ =4+=—+=...+-,
2 3 4 x
while we would nowadays write them as
) 5 111 1
f((L'), X1k 4+ Xok® + X3k® + -+, and 1+§+§+2+"‘+;.

There is only one notable exception: it was common in late 18th-century
to print the d of differential as O (particularly in publications of the Paris Aca-
demy of Sciences, for instance the ordinary differential equation 0y = pJdz in
[Laplace 1772a, 343]); since this would now be easily and systematically confused
with notation for partial differentiation, I have substituted d or d for 0.



Chapter 1

A short biography of
Silvestre-Francois Lacroix

A detailed biography of Lacroix is still lacking, despite the articles by René Taton
[1958a; 1953b; 1959]. In this chapter the main focus is on his education (in a
broad sense) and his career until the publication of the large Traité.

1.1 Youth and early career (1765-1793)

Silvestre Francois de Lacroix! was born on April 28th, 1765, in Paris. His parents

were Jean Frangois De la Croix (a “bourgeois”, that is, a burgher — an urban
member of the third estate) and his wife Marie Jeanne Antoinette Tarlay. They
lived in the rue de la Lune, parish of Notre Dame de Bonne Nouvelle, nowadays

In his Procés-verbal d’individualité for the Légion d’Honneur (probably the most official
document one may hope for), dating of 1837, Lacroix’s surname appears as “Lacroix (de)”,
and the christian names as “Silvestre Frangois”. In a transcript of his baptism certificate the
christian names are written “Silvestre francois”, and the family name is “De la Croix” [Lacroix LH]|
According to his own statement, Lacroix stopped using the particle “de” when addressing a
petition to a court in Besangon in 1793 (a time when any hint at aristocracy would not be
favourable); having published several works afterwards without the particle, he never retook it
[Lacroix IF, ms2399]. Variations in capitalization and word splitting in names like Lacroix/La
Croix/la Croix (or Lagrange/La Grange/la Grange) were common in the 18th and early 19th
centuries. As for whether his first name was “Silvestre” or “Sylvestre” (most modern authors
refer to him as “Sylvestre”): late 18th/early 19th century Frenchmen had the annoying habit of
almost never using their christian names in public, at least not in full — nearly all of Lacroix’s
books appeared under the name “S. F. Lacroix”; in manuscript sources there are some (not many)
occurrences of his christian names in full, and both “Sylvestre” and “Silvestre” occur (even within
his Légion d’Honneur file [Lacroix LH]), but the more official documents tend to have “Silvestre”;
this is also how the name appears in its two contemporary printed occurrences that I know of —
[Anonymous 1818] and the title page of the first edition of [Lacroix 1795] (see fig. 1.1). I have
decided to stick with “Silvestre”. Of course, this is not a very important issue — but one must
acknowledge it in an era of computerized searches.
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in the 2nd arrondissement. There is no mention of Lacroix’s father later than the
baptism certificate (while his mother is mentioned in a letter by Monge from 1783
[Lacroix IF, ms 2396]); it is likely that he died when Lacroix was still young. We
know that Lacroix was protected by a nobleman, the chevalier de Champigny
(1712-1787).2 In a letter written in 1783, Lacroix goes as far as addressing him
as “mon cher papa” [Lacroix IF, ms2397]3; and Lacroix’s close friend (and also
Champigny’s protégé) Jean-Henri Hassenfratz (1755-1827), in a letter written to
Lacroix in 1785 speaks of the “bon papa Mr le Ch. de Champigni” [Lacroix IF,
ms 2396; Grison 1996, 51-52|. But we do not know when this protection started.

The only information available on Lacroix’s early studies comes from a spe-
ech read by Guglielmo/Guillaume Libri (1803-1869) at Lacroix’s funeral — a source
open to anecdotes and exaggerations (and which does not mention Champigny),
but with the advantage of the author having known Lacroix personally (he was his
substitute at the Collége de France for several years). According to Libri [1843,
5-6], Lacroix often recalled the humble conditions in which he spent his childhood,
living with his poor mother. But “cet enfant, qui avait & peine de quoi se nourrir,
était dominé par le besoin de lire et d’apprendre”’®. Having read Robinson Crusoe,
he wished to sail the seas. So, he tried to read a treatise on navigation. But in
order to understand it he needed to know geometry, and so he started attending
Mauduit’s course at the Collége Royal de France®. Antoine-René Mauduit (1731-
1815) occupied two chairs there. From 1775 to 1779 he taught, in the chair of
mathematics, on conic sections (1775), integral calculus (1776), nature and cons-
truction of equations and elements of differential calculus (1778) and spherical
trigonometry (1779); and in the Ramus Chair® he taught on “elements of the art
of analysis” (1775-1778) and “elements of curves” (1779) [Torlais 1964, 283, 285].
Lacroix may also have attended lectures by other professors at the Collége Royal,
like Lalande (astronomy), Le Monnier and Cousin (both professors of “universal
physics”) [Torlais 1964, 283]; we know that Le Monnier transmitted astronomical
observations to Lacroix not later than 1779 (see below).

Thanks to a letter from the abbé Joseph-Frangois Marie (1738-1801), kept in
[Lacroix IF, ms2396], we know that Lacroix also followed lectures by him. Marie
was professor of mathematics at the College Mazarin of the University of Paris.
He had published a much revised and enlarged edition of a one-volume course of
pure mathematics by his predecessor La Caille, which went from arithmetic to the
elements of differential and integral calculus [La Caille & Marie 1772]. But we do
not know what he taught Lacroix.

Mauduit, Le Monnier, and Marie notwithstanding, Lacroix’s great educatio-

20n Champigny, see [Grison 1996, 24].

3All or nearly all the letters kept in [Lacroix IF, ms2397| are in fact drafts of letters. It will
be assumed that there were not significant changes in the versions posted.

44this child, who had barely anything to eat, was dominated by a need to read and learn”

5The courses of the Collége Royal were open to anyone, and had traditionally been free. It
appears that fees were introduced precisely around this time [Torlais 1964, 267]; but presumably
these newly introduced fees were not very high.

SNamed after the 16th century mathematician Petrus Ramus (Pierre de La Ramée).
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nal influence was Gaspard Monge. Since the late 1760’s Monge had been teaching
at the Ecole Royale du Génie (Royal Engineering School) at Méziéres, where he
developed descriptive geometry. But in January 1780 Monge was elected adjoint
to the Geometry section of the Académie des Sciences of Paris; this meant that
he had to live in the capital for at least five months per year, and Bossut, who
had been Monge’s predecessor at Méziéres and who was in charge of a chair of
hydrodynamics at the Louvre, arranged for Monge an assistant post there. During
his half-year stays in Paris Monge did much more than attend Academy meetings
and help teaching hydrodynamics. In particular, in 1780 he gave some sort of ex-
traordinary lectures in mathematics to a group of students that included Lacroix.”
Lacroix became a disciple and lifelong admirer of Monge, who was an excellent
teacher. As for the contents of Monge’s lectures, a letter written by Lacroix to
Monge in 1789 [Lacroix IF, ms2397; Belhoste 1992, 565| indicates that they co-
vered geometry in space — certainly analytic and differential geometry. One of the
indications of their high level is given by Lacroix [ Traité, I1, 487], recollecting that
Monge had integrated a partial differential equation using an early version of what
was to be his method of characteristics. Descriptive geometry was excluded, since
Monge was not authorized by the Ecole du Génie (a military school) to divulge
it [Taton 1951, 14-15]; he could only allude to the fact that he was able to solve
graphically the problems that he was solving analytically [Belhoste 1992, 565].

Lacroix’s first attempts at research predate his acquaintance with Monge.
Pierre-Charles Le Monnier (1715-1799), astronomer and professor of “universal
physics” at the Collége Royal, had given him a notebook with lunar observations
that led Lacroix to conduct long calculations during the years of 1779 to 1781.
Lacroix would later tell Le Monnier that he was diverted from this labour because
of his application to pure mathematics [Lacroix IF, ms 2397; Taton 1959, 129].

In a letter to Marie dated 4 August 1781 [IF', ms 2397], Lacroix still declared
that

‘Se me destine entiérement a l’astronomie étant a present trés difficile
de devenir geometre. Je veux pourtant apprendre autant de geometrie
que je pourrai car les ouvrages de M" Euler [et] Clairaut m’ont bien
persuadé de ce qu’on peut faire en astronomie lorsqu’on posse[de] bien
la geometrie.”®

This letter accompanied a work by Lacroix on ballistics (now lost), where (if I
understand correctly his summary) he used approximation techniques inspired
by Clairaut’s treatment of the three-body problem. It is worth quoting his own
contextualization, as it shows some of his strong early influences:

"Taton [1951, 24] indicates the years 1781-1782, but Lacroix [ Traité, I1, 487] spoke clearly of
1780. Since Monge spent the winters in Paris and summers in Méziéres, the autumn-winter of
1780-1781 is the most likely. But they certainly contacted again in 1781-1782.

841 fully intend to pursue astronomy, as it is very difficult nowadays to become a geometer.
Nevertheless, I wish to learn as much geometry as I can, since the works of Mr Euler and Clairaut
have convinced me of how much one can do in astronomy if one really dominates geometry.”
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“Jetais plein des methodes de M" Monge et sur-tout de sa geometrie
dans l'espace. Je venais d’étudier la théorie de la Lune de M* Clairaut
que j’avais assez bien entendu. Je voulais simple[ment| m exercer sur
cette matiere et faire usage des principes que j’avais tirez de cet excellent
ouvrage. Je m’avisai de transporter tout d’un coup la question dans
Pespace et de soumettre mes [?] a des coordonnées rectangulaires comme
étant plus faciles et plus simetriques que les angles.”®

Remember: Lacroix was only 16 years old.

Reaching what in the 18th century was adulthood, and not being rich, Lacroix
needed to obtain a source of income. On the 1st December 1782, under recom-
mendation of Monge and /or Champigny,'® Lacroix was appointed for his first job:
teaching mathematics at the Ecole des Gardes de la Marine in Rochefort.!!

Lacroix stayed in Rochefort until the end of 1785. During these three years
he maintained continued correspondence with Monge'? — who also became his
superior in October 1783, being appointed examiner of the navy students. This
correspondence dealt mainly with scientific issues, but occasionally it included also
more personal advice from Monge. Lacroix was not happy in Rochefort. Later he
would recall the lack of authority that the teachers had over their pupils (due
to social differences — the pupils were young noblemen [Hahn 196/, 547|, while
the teachers, like Lacroix, were not), and the poor methods of teaching, based
on memory alone [Lacroix 1805, 128, 217-220]. The only positive comment on his
location is in one of his earlier letters, dated 28 April 1783, where he says that
“’analogie que ma situation a avec la votre de Mezieres m’encourage”!3.

Throughout 1783 Lacroix studied nonlinear partial differential equations,
following Monge’s methods — including viewing them as resulting from the eli-

94T was engrossed with M" Monge’s methods, especially with his space geometry. I had just
studied M* Clairaut’s Lunar theory and had understood it quite well. I simply wished to train
myself on that matter and to use the principles that I had acquired from that excellent work.
I dared to transfer all at once the question to space, and to bring my [?] into rectangular
coordinates, as they are easier and more symmetrical than angles.”

10 According to Libri [1848, 6] it was Monge who recommended him for the post. Grison [1996,
27| has attributed that recommendation to Champigny, citing a letter from the minister of navy
to Champigny, dated 8 October 1782 [Lacroix IF, ms2398]. This letter shows that Lacroix’s pro-
tector was interceding in his favour, although with a different place in view, and unsuccessfully:
Champigny tried to secure Lacroix a place as “aspirant éléve ingénieur constructeur” — something
like cadet student of (ship-)building engineering. The minister was sympathetic, but there were
no vacancies at the moment.

11Rochefort is a port town on the river Charente, only a few kilometers inland from the Atlantic
ocean, in southwestern France.

12From this period, four letters from Monge to Lacroix survive, dated: 27 January 1783
[Lacroix IF, ms2396], c. 12 January 1784 [Ec. Pol. Arch, IX GM 1.19], end of August 1785
[Ec. Pol. Arch, IX GM 1.20-21] (partly transcribed in [Taton 1959, 130], wrongly cited as being
kept in the Institut), and end of 1785 [Lacroix IF, ms2396; Taton 1959, 138-142|; while five
drafts of letters from Lacroix to Monge are kept in [Lacroix IF, ms2397], dated: 10 March 1783,
28 April 1783, 5 August 1783, 11 July 1785, and 9 October 1785 (extract). Their content makes
it clear that there were more.

13¢the analogy between my situation and yours in Méziéres encourages me”
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mination of arbitrary functions, and interpreting them geometrically (see sections
6.1.3.4 and 6.1.4.2). By the end of the year Lacroix asked Monge whether his
results would make a memoir worthy of being submitted to the Académie des Sci-
ences. Monge (in his letter of January 1784) was not too encouraging: “ces matiéres
ne sont pas trés accueillies aujourd’hui, & cause de leur peu d’utilité prochain”!4.
Instead, Monge suggested, now that Lacroix knew enough geometry, he should
study mechanics.

Lacroix did not follow this advice. Instead, he returned temporarily to astro-
nomy. During 1784 he constructed solar tables, using observations by Le Monnier
and La Caille [Taton 1959; Wilson 199/, 280]. By the end of the year he sent
them to the Académie des Sciences;'> they were presented in the meeting of 15
January 1785.16 This was a good move: that same day an election was held for a
place of “adjoint astronéme” and Lacroix ran fifth — that he was considered at all
was excellent. Now the members of the Académie had heard of him.

A very prominent member of the Académie — its perpetual secretary, the
marquis de Condorcet — took an interest in Lacroix. Monge spoke well of Lacroix’s
talents, and Condorcet asked for works by Lacroix. In July Lacroix sent to Monge a
new version of the research on partial differential equations that he had conducted
in 1783 (much revised, according to his letter of 11 July 1785). This memoir
(transcribed in appendix A.l) was presented to the Académie in December. In
February 1786 Monge and Condorcet reported favourably on it, recommending
that it be published in the Savans Etrangers series. However, this did not happen,
because the publication of the Savans Etrangers stopped.

But the other goal of this memoir was accomplished: Condorcet (who must
have seen the memoir before its presentation to the Académie) was convinced of
Lacroix’s capabilities. This had very good consequences for Lacroix. The first was
that Condorcet employed Lacroix as his substitute at the newly founded Lycée.
This Lycée is not to be confused with the later secondary education institutions; it
was a private school for gentlemen who wished to acquire a general culture; it had
renowned professors who in fact nominated their substitutes to give all lectures
under their general direction; Condorcet was in charge of mathematics.

Thus, Lacroix returned to Paris in January 1786 to teach at the Lycée. He
stayed in Paris until August 1788. During this time Condorcet became another
great influence for him. Scientifically, this influence resulted mainly in Lacroix
gaining an interest for probability (which does not concern us much here); the
influence of Condorcet’s work on integral calculus is ambiguous — Lacroix used
a few details from Condorcet in his Traité, namely on considerations about the
number of arbitrary functions in integrals of higher-order partial differential equa-
tions, but he expressly omitted Condorcet’s “general method of integration” (see
sections 6.1.4.1 and 6.2.2.3). But the most important aspect of this influence is

14«those matters are not very well received, nowadays, because of their little immediate utility”

15Following a complicated path: Lacroix - Champigny - Hassenfratz - Monge - Le Monnier
[Grison 1996, 52].

16Not 15 July, as Wilson [1994, 280] has it.
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probably philosophical: Lacroix always admired in Condorcet the encyclopédiste
and the educationalist, probably more than the mathematician.

The course of mathematics at the Lycée was far from successful, because of
the natural difficulty of teaching mathematics to an audience who wished only
to acquire a “general culture”; it was cancelled at the end of the second year of
the Lycée [Taton 1959, 143-153|. As a supporting text, Condorcet and Lacroix
prepared a new edition of Euler’s popularization book Lettres a une princesse
d’Allemagne — cutting out most of Euler’s theological considerations [Taton 1959,
153-155].

In February 1787 Lacroix added to his post at the Lycée another at the Ecole
Royale Militaire de Paris (to which he was appointed also by recommendation of
Condorcet). This proved fortunate when the course at the Lycée was cancelled in
August.

One of the main topics in the course of mathematics at the Lycée was the
calculus of probabilities. There is no indication that Lacroix had ever taken an
interest in this. But he taught it according to Condorcet’s instructions, in the fol-
lowing years kept a correspondence with Condorcet on the subject, and even later
(1815) published an influential textbook. Still in 1786, he submitted an entry for
a prize competition on the theory of marine insurance proposed by the Académie
des Sciences, and he received the best classification.!” Taton [1959, 245] suggests
that it was Condorcet who pressed Lacroix to write his entry (as well as probably
giving some guidance).

During this period in Paris, besides Monge and Condorcet, Lacroix met
other mathematicians and astronomers: Laplace, Legendre, Cassini and Lalande
[Taton 1959, 248].'% It was an active period. According to his later statements,
it was in 1787 that he started collecting material for writing his Traité (see sec-
tion 2.1). In the same year, he submitted to the Académie des Sciences a memoir
containing corrections to his solar tables [Wilson 1994, 280].

Besides all this working activity, Lacroix married in 1787,' to Marie Nicole
Sophie Arcambal, one year older than him. She outlived her husband, dying in
1846. There is no indication of any children.

In 1788 the Ecole Militaire of Paris was closed. This time, it was under
Laplace’s recommendation that Lacroix obtained a new appointment, teaching
mathematics, physics and chemistry at the Ecole Royale d’Artillerie in Besan-
con?’ (Laplace was examiner of the artillery students, and thus became Lacroix’s
superior). Lacroix was forced to go once again into ezile. He stayed in Besangon
until 1793.

In Besangon Lacroix felt isolated from the scientific community. He com-

17There was no absolute winner. Only half of the prize was conferred — Lacroix received 30%,
and another contestant received 20%.

18We have seen above that Lacroix may have known Lalande from his period at the Collége
Royal.

19The marriage contract was signed on 5 June 1787 [Lacroix LH].

20Besancon is a city in eastern France, close to Switzerland and to Alsace.
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plained in letters to Laplace and Monge about the lack of good libraries and
the difficulty in having access to recent books when away from Paris [Lacroix IF
ms 2397; Taton 1953b, 352-353|. In 1792 he told Laplace that he had not been able
to advance much on his Traité, because of the difficulty in accessing the sources
he needed.

But he kept postal contact with Monge, Condorcet, Cassini, Lalande, Le-
gendre and Laplace (often asking them for books or off-prints of memoirs). The
correspondence with Condorcet (namely on statistics of the population of Besan-
¢on) earned him in August 1789 the official title of correspondent of Condorcet
by the Académie des Sciences — this gave him access to the meetings when he
might be in Paris (namely during Summer holidays), and was of course a nice
encouragement.

However, Lacroix’s next submission to the Académie des Sciences was not
Condorcetian, but rather Mongean: a memoir on developable surfaces and total
differential equations in three variables (transcribed in appendix A.2), which he
read himself at the meeting of 1 September 1790. Lagrange, Condorcet and Monge
were charged with reporting on it, but apparently they never did. Lacroix himself
may be to blame: some months later he wrote to Monge telling him that he had not
yet done a fair copy of the memoir (“mis au net le memoire”), because he wanted to
redo the second part; he had found out that he could use the theory of particular
(i.e., singular) integrals to study the total differential equations that do not satisfy
the conditions of integrability [Lacroix IF, ms 2397].2! He probably took too much
time to complete this, and in August 1793 the Académie des Sciences was dissolved
(together with the other academies). But we will see that he carried on with this
idea.

Through other letters, we know that in Besangon Lacroix occupied himself
also with descriptive geometry: he already knew the basic principles, and which
problems Monge solved with it; now he tried to reconstitute the solutions |La-
croix IF, ms 2396-2397; Belhoste 1992]. He had some help from Monge (who was
not allowed to say much about it), as well as from two of Monge’s former pupils
at Méziéres, Girod-Chantrans and Charles Tinseau, who were stationed near Be-
sancon. Finally, he studied the “new chemistry” of Lavoisier (a favorite subject of
Monge also), with the help of his friend Hassenfratz (who had worked in Lavoisier’s
laboratory).?2

From November 1792 to early 1793 Lacroix was in Paris to acquire books and
scientific equipment for the Ecole of Besancon; during that stay (22 December) he
was elected a corresponding member of the Société Philomathique de Paris [Taton
1959, 258; 1990]. This was a scientific society that was about to become quite
important, because of the closure of the Académie des Sciences. The only work we
know to have been submitted from Besangon is a chemical analysis of confervae

21This letter draft does not have a precise date, but it carries the indication “90-91”, and
Lacroix speaks of the memoir that he had read “last summer”.

22Later, Hassenfratz taught “general physics” at the Ecole Polytechnique, and mineralogy and
metallurgy at the Ecole des Mines.
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(a kind of algae) — a joint work with Chantrans [Soc. Phil. Rapp, II, 58-59].

1.2 The most productive years (1793-1806)

Lacroix returned definitively to Paris in October 1793. This was the period of
Terror — the most radical in the French Revolution, dominated by Robespierre and
the Jacobins. Laplace did not feel safe and withdrew from Paris to the countryside
at an uncertain date in 1793, until mid 1794 (after the fall of Robespierre in July)
|Gillispie 1997, 154-155]. On the 1st October 1793 Lacroix was chosen to replace
Laplace as examiner of the artillery students [Lacroix IF, ms2398]. According to
Libri [1843, 4], Lacroix took the noble and dangerous attitude of refusing the place
and making an effort for its restitution to Laplace. There is no evidence supporting
this story. It is possible that Lacroix offered this post back to Laplace after the
latter had returned to Paris and the political situation had changed (Laplace was
reinstated in July 1795 [Lamandé 2004, 51]); but in October 1793 he took the
chance to move back to Paris, and in January 1794 he was fulfilling his duties,
examining artillery students and candidates in Chalons-sur-Marne [Lacroix IF,
ms 2399].

This does not mean that Lacroix was a Jacobin. Quite the contrary: he
held moderate, progressive opinions, in line with the tradition of 18th-century
enlightenment. In June 1791 (when the king fled from Paris and was then arrested)
he had expressed to Monge his uneasiness about the unrolling of the revolution
[Taton 1948]. His philosophical mentor, Condorcet, was persecuted during the
Terror, and committed suicide while imprisoned, in March 1794. But his other
mentor, Monge, was a Jacobin, as well as his friend Hassenfratz. It was probably
due to these two friendships, as well as to his moderation, that Lacroix traversed
safely through the Terror. But he was certainly much more at home with the
moderate republican regimes of the Thermidorian Convention (July 1794 - October
1795) and of the Executive Directory (October 1795 - November 1799).

In these final years of the 18th century, and in the beginning of the 19th, La-
croix held several posts related to education (all in Paris), often accumulating.??
On 18 Vendemiaire of year 3 of the French Republic (9 October 1794), he was
appointed chef de bureau at the Executive Commission for Public Instruction,
where he stayed until 1799; there he played an important role in the educational
reforms, namely on the establishment of the Ecole Normale (of year 3), and of
programmes for the Ecoles Centrales (secondary schools) [Taton 1953a, 589; Be-
lhoste 1992, 564]. In the Ecole Normale that functioned in year 3 (1794-1795), he
assisted Monge in the teaching of descriptive geometry, together with Hachette.
On 6 Prairial year 3 (25 May 1795) he was appointed a teacher at the Ecoles
Centrales; this was confirmed the next year, when these schools were regulated,
and he taught mathematics at the Ecole Centrale des Quatre-Nations; when the

23Two lists of his public posts (omitting private jobs, namely at the Lycée), are kept at [Lacroix
LH; UF].
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Figure 1.1: Title page of Lacroix’s first textbook.

Ecoles Centrales were replaced by the Lycées (a move towards a more classical
education that he disapproved of), Lacroix was appointed teacher of transcenden-
tal mathematics at the Lycée Bonaparte (3 Vendemiaire year 13 = 25 September
1804). He was an admission examiner for the Ecole Polytechnique in the years 3
to 6 (1794-1795 to 1797-1798). Finally, on 24 Brumaire year 8 (15 October 1799)
he was appointed professor of analysis at the Ecole Polytechnique.

A consequence of these pedagogical activities was the writing of a series of
remarkably successful textbooks (besides what follows, see section 8.1). The first of
these appeared in 1795, and resulted from his teaching at the Ecole Normale: it was
the Essais de Géométrie sur les plans et les surfaces courbes, also called Elémens de
Géométrie descriptive (fig. 1.1); this was the first textbook on descriptive geometry
to be published, and the only one directed to secondary schools until the 1820’s
[Belhoste 1992, 568]; from the second edition (1802) onwards it was included in
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Lacroix’s Cours de Mathématiques, with a new subtitle — Complément des Elémens
de Géométrie. Most of Lacroix’s other texbooks resulted from the need of good
textbooks to be used in the Ecole Centrale des Quatre-Nations, and appeared
between 1797 and 1800: textbooks on arithmetic, algebra (both an elementary
textbook and a volume of complements), geometry, and trigonometry and analytic
geometry [Schubring 1987; Lamandé 2004]. When the last of those directed to
the Ecole Centrale des Quatre-Nations (the Complément des Elémens d’Algébre)
appeared in 1800, some of the others already had two editions, and they all ran
to many more.?* Another textbook was published in 1802, mainly directed to the
students of the Ecole Polytechnique: the Traité élémentaire de Calcul différentiel
et de Calcul intégral, which will be the subject of chapter 8. This textbook activity
culminated with [Lacroix 1805], a complementary book addressed not to students,
but to teachers, containing pedagogical reflections and an analysis of his textbook
series.

Besides all those textbooks, being in Paris allowed Lacroix to finally complete
his great project: the Traité du Calcul différentiel et du Calcul intégral. Printing
started in 1795, although the first volume only appeared in 1797; the second ap-
peared in 1798 and the third in 1800.

During this period Lacroix still carried out some mathematical research,
but not much — and all of it in the context of the Société Philomathique. Not
later than 1797 he communicated some “elucidations about a passage in La-
grange’s méchanique analytique, related to rotation of bodies”, and “observations
on the number of arbitrary functions in the integrals of partial differential equa-
tions” [Soc. Phil. Rapp, 11, 25]; T do not know of any trace of the elucidations
about Lagrange’s passage, but the observations on integrals of partial differen-
tial equations were certainly those included in the second volume of the Traité
(see section 6.2.2.3). In 1798 he submitted a memoir on total differential equa-
tions resulting from the idea that he had communicated to Monge in 1790 or
1791 [Soc. Phil. Rapp, 111, 9-10]; a slightly abridged version was published in the
Bulletin of the Société Philomathique [Lacroix 1798a], and a fuller version in the
second volume of the Traité (see section 6.2.4). In 1799 he read two memoirs: one
on geographical maps,2® and another about curves traced on developable surfaces
[Soc. Phil. Rapp, IV, 13]; the latter was certainly the first part of the one he had
read to the Académie des Sciences in 1790, or a new version of it; in 1810 he
published a second or third version as the final section in the first volume of the
second edition of the Traité. Although classified as “physics” in the Bulletin, we
may also mention a “note on fluid resistance” [Lacroix 1802b].

These seem to have been his last attempts at original research. As Taton

24The most impressive figures are those of the Arithmétique, which reached the 20th edition
in 1846, the Eléments d’algebre, which reached the 23rd in 1871, and the Eléments de géométrie,
which reached the 22nd in 1884.

25In 1804 Lacroix published an introduction to mathematical and physical geography, as a, first
volume of a larger geographical work directed by J. Pinkerton and C. Walkenaer [Lamandé 2004,
105].
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said in [1953a, 590], writing his large Traité and his textbooks, Lacroix realized
“que son érudition si étendue et son talent si remarquable de mise au point et de
présentation lui permettrait de faire 1a une oeuvre plus utile que celle qu’il aurait
réalisée en se confinant dans des recherches de détail”?%. Yet, we should stress that
he did some research, and that he included in the Traité most of that that was
related to analysis.

In spite of his reduced research career, Lacroix gained the respect of the
mathematical community. His Traité was certainly a major factor in this. On
16 Germinal year 7 (5 April 1799) he was elected a member of the first class
(“mathematical and physical sciences”) of the Institut National (founded in 1795
in replacement of the Académie des Sciences). As we have seen, he did not present
any mathematical research to the Institut; but he was an active member — mostly
participating in commissions for reporting on works submitted by non-members;
in addition, he was secrétaire of the mathematical section between 1 Germinal year
10 (22 March 1802) and 11 Pluviose year 11 (31 January 1803). It was probably in
that capacity that he wrote a “Compte rendu a la section de Géométrie de I'Institut
national, des progrés que les mathématiques ont faits depuis 1789 jusqu’au 1.°"
Vendemiaire an 10" (that is, a “report to the Geometry section of the Institut
National, on the progress made in mathematics from 1789 to Vendemiaire 1st,
year 10 [= September 23rd, 1801]”); most of it was eventually incorporated in
[Delambre 1810] (see appendix B).

Speaking of this “Compte rendu...” is a good cue to mention Lacroix’s his-
torical activities. The reading programme that he must have carried out to write
his Traité, and the impressive bibliography that he included in it, indicate that he
acquired a very good knowledge of the history of the calculus in the process of its
composition. And this should have been obvious for everyone at the time. When
Lalande set to complete the second, enlarged edition of Montucla’s Histoire des
Mathématiques, after Montucla’s death in 1799, he asked Lacroix to revise the ar-
ticle on partial differential equations [Montucla & Lalande 1802, 342-352], as this
was “un des plus difficiles de tout I'ouvrage”?” [Montucla & Lalande 1802, 342];
Lacroix added a couple of footnotes with his name (one of which is quite subs-
tantial and interesting [Montucla & Lalande 1802, 344]), and he may also have
changed a few details in the main text — the article uses Lacroix’s terminology,
speaking of “differential coefficients” and “partial differential equations” (rather
than “partial difference equations” as was usual at the time).?

7

But Lacroix’s historical output was not restricted to the calculus. We have
already mentioned his “Compte rendu...” on the recent progress of mathematics,
which covered all branches of pure mathematics. Apart from this, he read to

26«that his so wide erudition and his so remarkable talent for clarification and presentation
would allow him to make there a work more useful than that he would have achieved had he
confined himself to researches on details”

27¢one of the most difficult in the whole work”

28 Grattan-Guinness [1990, 1, 143] suggests that Lacroix’s participation in the third volume of
Montucla’s Histoire was more extensive. However, I have not seen any other traces of it.
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the Société Philomathique a “historical summary” (“précis historique”) of physical
astronomy (that is, celestial mechanics) that was published in the Décade Philo-
sophique [Lacroix 1797| — a short piece where he tried to explain to laymen (hence
without any formulas) the development of the methods used to approximate pla-
netary movements (especially those by Lagrange and Laplace). He also wrote a
historical eulogy of the applied mathematician Jean-Charles Borda (1733-1799),
whose vacancy in the Institut he had occupied; this succession was the obvious
motivation for the eulogy but, oddly, it was again published by the Société Philo-
mathique [Soc. Phil. Rapp, IV, 92-135|, rather than the Institut.?°

1.3 Second editions and prestige (1806-1820)

After 1805 Lacroix’s productivity clearly dropped. Most of his publications until
1820 were second (or third, or fourth,...) editions of his books. And in most cases
the changes were not very significant; for instance, the relevant changes in his
algebra textbook had all been introduced in the second (1800) and third (1802)
editions [Lamandé 2004, 68|. The second and third editions of the Traité élémen-
taire de calcul... (1806, 1820) and the second edition of the large Traité (1810-1819)
clearly stand out (those of the former demarcate this period). But even the long
period between the publication of the first and the third volumes of the latter
suggests a decrease in productivity.

The only new book published by Lacroix in this period was his textbook on
probability: the Traité élémentaire du Calcul des Probabilités (1816).

On the other hand, in this period Lacroix participated in a huge histori-
cal enterprise: the 52-volume biographical dictionary published by Louis-Gabriel
Michaud [Michaud Biographie|. Actually, Lacroix’s participation was limited to
volumes 1 to 13 (published between 1811 and 1815); he authored the entries for
d’Alembert, Apollonios, Arbogast, Archimedes, Barrow, de Beaune, the Bernoullis,
Bézout, Bombelli, Cardano, Cavalieri, Clairaut, John Craig, Diophantos, Euclid,
Euler, and Eutocios of Ascalon.?? The reason for the interruption of his participa-
tion must have been the rejection of his entry on Condorcet: it was too favourable
to the philosopher, and risked causing problems with the censorship; it was re-
placed by an anonymous and much more neutral text [Taton 1959, 259-261].3!
Lacroix published his own text elsewhere [Lacroix 1813].

In contrast to the decrease in productivity, we notice an increase in prestige
of Lacroix’s appointments. In 1809 he exchanged the position as professor at the
Ecole Polytechnique for that of permanent examiner — which was more prestigious

29Taton [1953a, 593] mentioned an Essai sur I’Histoire des Mathématiques written by Lacroix,
unpublished and whose manuscript had apparently vanished. Itard [1973, 550] repeated this. I
do not know Taton’s source, but I find it likely that this Essat was simply the Compte rendu...
(see page 397).

30T cannot guarantee that this list is exhaustive.

31Ttard [1973, 550] wrongly gives Borda and Condorcet as examples of Lacroix’s contributions
to [Michaud Biographie|. Borda’s entry is in fact by Biot and De Rossel.
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and meant an increase in salary [Grattan-Guinness 1990, I, 97]; he kept this post
until 1815. Also in 1809 he was appointed professor of differential and integral cal-
culus at the newly-founded Faculté des Sciences de Paris — with this appointment
came an automatic degree of doctor®2. The Faculté des Sciences was actually less
prestigious than the Ecole Polytechnique, but Lacroix was also made its first dean.
Finally, in 1812 he replaced Poisson as a substitute for his old teacher Mauduit at
the by then Collége Impérial de France; and when Mauduit died in March 1815
he was appointed for the vacant chair of mathematics (which was confirmed a few
months later for the again Collége Royal de France).

1.4 Declining years (1820-1843)

After 1820 Lacroix’s activities decreased even more. In 1815 he had already quit
his posts of teacher at the Lycée Bonaparte and of permanent examiner at the
Ecole Polytechnique. In 1821 he quit the post of dean of the Faculté des Sciences,
and from 1825 onwards, invoking health reasons, he was substituted as professor
there by Lefébure de Fourcy. He may have kept his teaching at the Collége de
France, but he was substituted there by Francoeur in 1828 [Lamandé 200/, 54]
and from 1836 by Libri [Liitzen 1990, 84].

In 1826 Abel, then visiting Paris, wrote to his former teacher Holmboe des-
cribing the mathematical scene in the French capital. Lacroix was only 61 years
old, but appeared “terribly bald and extremely old” [Grattan-Guinness 1990, I,
1275]. Ttard [1973, 550] interprets this as indicating that “his astonishing activity
since adolescence had affected his health”.

He still published in 1826 a book on surveying and in 1828 an introduction
to the “knowledge of the sphere” [Lamandé 200/, 54]. None of these are among
Lacroix’s most famous books.

In addition, of course, he kept publishing new editions of his older textbooks.
Those of the Traité élémentaire de calcul différentiel et de calcul intégral still
brought a few changes, particularly through the inclusion of new endnotes on
some special topics.

As for historical work, in 1831 he published a new edition of Montucla’s
history of the squaring of the circle, with several additions of his own; according
to Sarton [1936, 533], “Lacroix’s edition superseded completely the original one”.

Lacroix died on the 24th May 1843, at his home in Paris.

32The diploma is kept at [Lacroix IF, ms 2398]
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Figure 1.2: A medallion by David d’Angers, the only known portrait of Lacroix,
made two years prior to his death. [Académie des Sciences de I'Institut de France]



Chapter 2

An overview of Lacroix’s Traité

2.1 The project of the Traité

According to his own statement, Lacroix started collecting material for his Traité
in 1787, while employed at the Ecole Royale Militaire in Paris | Traité, I, xxiv]. This
is confirmed by his correspondence: during his stay in Besangon (1788-1793) he
wrote to mathematicians in Paris asking them to send him material or information
on how to find it. In October 1789 Lacroix thanked Legendre for information on
a work by Landen, and explained that he wished to use the tables of integrals
included there for a project “dans lequel j’ai pour objet de rassembler dans un corps
d’ouvrage les materiaux sur le calcul integral qui se trouvent dans les memoires
des societes savantes”! [Lacroix IF, ms2397]; in 1792 he communicated the same
intent to Laplace [Taton 1953b, 353|.2

In both these letters, as well as in the Preface to the first edition of the
Traité, Lacroix indicated as the trigger for this project his reading of Lagrange’s
“Sur une nouvelle espéce de calcul relatif a la differentiation et a la intégration
des quantités variables” [1772a] — the memoir where Lagrange first suggested a
power-series foundation for the calculus. Thus, he intended to write a complete
treatise under this unifying principle.

However, it is clear that the purpose was not simply to apply Lagrange’s
suggestion. The reason for assembling the material dispersed in the volumes of
memoirs of learned societies was that this had not been done, at least not recently.
In the 1789 letter to Legendre, Lacroix declared: “les livres elementaires les plus
complets, le Calcul Integral d’Euler, celui de M. Cousin ont besoin d’adition”3.
In the Preface to the second edition, he stressed this motivation [Traité, 2nd

L4n which my goal is to assemble in a single work the materials on integral calculus that are

found in the memoirs of learned societies”
2Presumably “calcul integral” is to be read here as short for “differential and integral calculus”.
3“the most complete elementary books, the integral calculus of Euler, that of M. Cousin, need
to be supplemented”
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ed, I, xviii-xix|: in the 1780’s there was an enormous gap between elementary
books and research memoirs on “analysis and transcendental geometry”, and this
made their (advanced) study very difficult. This was especially true for those not
living in Paris, because those research memoirs were available only in academic
collections and books with low print runs; in his 1792 letter to Laplace, Lacroix had
complained about the scientific indigence of Besancon — the only public library did
not have even the memoirs of the Paris Academy of Sciences. One might suspect
that this was the main motivation only a posteriori (and invoked especially in the
second edition, when Lacroix’s enthusiasm for the power-series foundation had
cooled off); but it is easy to imagine how his bad experiences far from Paris would
have led to this plan.

The “livres elementaires les plus complets” mentioned by Lacroix were [Euler
Introductio; Differentialis; Integralis| and [Cousin 1777].* Euler’s set, six volumes
in total, published between 1748 and 1770, was hard to reproach. But in 1792
Laplace would agree with Lacroix that it was beginning to grow old [Taton 1953b,
355]. Moreover, there were topics that Euler had never included there, such as dif-
ferential geometry, or finite difference equations. As for Cousin’s Legons de Calcul
Différentiel et de Calcul Intégral [1777], it was probably the most comprehensive
survey of the calculus (apart from Euler’s), but it still lacked some topics, and
the order of subjects is confusing, making it difficult to use as a reference work.
Lacroix was fair when assessing it thus: “I’ouvrage, remarquable d’abord par le
grand nombre de choses que I'auteur avoit réunies dans un petit espace, laissoit a
désirer un ordre plus sévére et quelques développemens indispensables & la clarté
de lexposition”® [Delambre 1810, 95|°. He was more critical in a letter to Prony
dated 1791 [Lacroix IF, ms 2396|, accusing Cousin of slavishly copying everything
in his “compilations” (to the point of employing a particular notation only once,
just because it was used in the article he was copying). A second, enlarged edi-
tion appeared under the title Traité de Calcul Différentiel et de Calcul Intégral
[Cousin 1796], but these shortcomings persisted.

Lacroix’s plan was different from Cousin’s: not only to compile all the major
methods, but also to choose between different but equivalent ones or to show how
they relate to one another, as well as to give all of them a uniform hue that would
not allow tracing of the respective authors [Traité, 1, iii-iv].

His model was clearly Euler’s six-volume set, except that it should include

4“FElementary” here must be understood in the sense that they start with the first notions, the
“elements” of the calculus, rather than assuming them and addressing original research straight
away. After the educational reforms of the 1790’s and 1800’s, “elementary” would mean simple,
or introductory — see for example [Lacroix Traité, 2nd ed, I, xx|, where the Traité is specifically
opposed to “elementary books”; see also section 8.1.

5«This work, remarkable above all for the great number of topics assembled in a small space,
wanted a stricter order and some developments essential for the clarity of the exposition”

6This sentence can be found in fl. 19v of Lacroix’s “Compte rendu |[...] des progrés que les
mathématiques ont faits depuis 1789 [...]”. See appendix B for the relation between the “Compte
rendu” and [Delambre 1810].
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geometrical applications”. Physical applications, on the other hand, were entirely
omitted.

An important point, made in the Preface of the second edition but likely to
be applicable also to the first edition, is that this Traité was not intended to be a
first introduction to the calculus: “un Traité aussi volumineux que celui-ci, ne peut
gueére étre consulté que par des personnes auxquelles le sujet n’est pas tout-a-fait
étranger, ou qui ont un gotit décidé pour ce genre d’étude”® [ Traité, 2nd ed, I, xx]|.
In fact, the three volumes of the first edition add up to around 1800 quarto pages.

A remarkable feature is the subject index included at the end of the third
volume. It is not completely unprecedented: La Caille’s book on astronomy [1764]
also has one. But this was certainly uncommon. Moreover, it is a substantial index:
34 pages long [Lacroix Traité, 111, 545-578]! In the Preface of the second edition
Lacroix explained that with this index he hoped to make the whole book “a sort
of dictionary of analysis and transcendental geometry” [ Traité, 2nd ed, I, xlviii] —
we would call it an encyclopedia.

Speaking of encyclopedia: the title pages of the three volumes bear the motto
“Tantum series juncturaque pollet. HORAT.” (see figure 2.1). This is a quotation
from Horatio’s De Arte Poetica, and translates as “Such power has a just arrange-
ment and connection of the parts”. This is an interesting clue on Lacroix’s views.
But it becomes even more interesting when we notice that the motto of Diderot
and d’Alembert’s [Encyclopédie] was “Tanttim series juncturaque pollet, Tanttum
de medio sumptis accedit honoris! HORAT.” — “Such power has a just arrange-
ment and connection of the parts: such grace may be added to subjects merely
common”®. In 1797-1800 probably any reader would understand the allusion.

The result of this grand plan was a monumental reference work: an encyclo-
pedic appraisal of the calculus at the turn of the century.

2.2 The bibliography

Another remarkable feature in Lacroix’s Traité, one that does seem to be un-
precedented in mathematical books, is the bibliography attached to the table of
contents: for each chapter and section, Lacroix gives a list of the main works
related to its subject.

All the major 18th-century works on the calculus are included there, as well
as many minor and even some obscure ones. Typically, in the list for a given
chapter/section one will find the corresponding chapters in one of Euler’s three

7[Euler Introductio] does include geometrical applications (analytic geometry); but they are
missing from [Euler Differentialis| and [Euler Integralis].

84such a voluminous treatise as this one can hardly be consulted but by persons to whom the
subject is not entirely new, or that have an unwavering taste for this kind of study”

9This translation, and of course the previous one, were taken from Perseus
<http://www.perseus.tufts.edu/cgi-bin/ptext?lookup=Hor.+ Ars+220> (accessed 21 February
2007).
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Figure 2.1: Title page of volume I

books, some other relevant books (say, Lagrange’s Théorie des Fonctions Analy-
tiques, Jacob Bernoulli’s Opera or Stirling’s 8rd-order lines) and memoirs drawn
from the volumes published by the Académie des Sciences de Paris, by the Berlin
Academy, by the St. Petersburg Academy, by the Turin Academy, and so on. The
most cited authors are those that one would expect: Euler, Lagrange, Laplace,
d’Alembert, Monge; but it is also possible to find references to such authors as
Fagnano [Lacroix Traité, I, v] or even Oechlitius [Lacroix Traité, 111, viii].

An interesting issue is that of the languages of the works included. Me-
moirs are cited only as, say, “Nouv. Mém de Petersbourg, T. XV et XVI. (Lexell)”
[Lacroix Traité, I, xxx| — thus not indicating in which language they were written.
Therefore, it would be impracticable to give precise quantitative data. But it is
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safe to say that French is the most common language, followed by Latin. Of course,
this only reflects the weight of these languages in the scientific community at the
time (the memoirs of the Berlin Academy for instance, were usually in French).
At a long distance come English and Italian, languages that Lacroix clearly could
read.!® No other languages appear. In particular, no work in German — the few
works of the German Combinatorial School included are in Latin [Trasté, II1, vi].

This bibliography shows how incredibly well-read Lacroix was. But note that
not all of the works appearing there are used in the main text. As an extreme
example, take the section on “application of the calculus of differences to summa-
tion of sequences”, in chapter 1 of the third volume: it is 29 pages long, and has
about 40 bibliographical entries! As Lacroix explains, the titles indicated are of the
works used in writing the text or of works somehow related to it [ Traité, I, xxix].
Some works appear to be included in the bibliography solely for their “classic”
nature: for example, UHopital’s Analyse des Infiniment Petits [1696] for chapter
1 of the first volume; being the first textbook ever written on the differential cal-
culus it had to be included, but by the late 18th century it was utterly out-dated;
Lacroix does not include it for chapter 2, which is where “I’'Hopital’s rule” is given
(however, it had aged much better as a reference for differential geometry of plane
curves, and it appears again in the bibliography for chapter 4).

We should also note that the bibliography is restricted to printed works.
There are a few cases in which Lacroix made use of manuscripts (for instance,
Biot’s memoirs on difference and mixed difference equations, that were still unpu-
blished — see sections 7.2.2 and 7.3.2); but, although he acknowledges them in the
main text, they do not appear in the bibliography.

2.3 Volume I: differential calculus (1797)

Tables 2.1 and 2.2 show the contents of the first volume, dedicated to differential
calculus. It must be noticed that in the text we will usually follow the division
of chapters into sections, but that these are not shown exactly in the tables; the
horizontal lines often correspond to them, but sometimes to “subsections” (inspired
by the rather better divided sections in the second edition).

The first volume starts with a general Preface to the whole Traité. This in-
cludes an explanation of the aims of the work and the plan for the three volumes,
but is mostly taken up with a long account of the history of the calculus [ Traité,
I, iv-xxiii|]. Having a historical introduction is consistent with Lacroix’s encyclo-
pédisme, but it is hardly original: both Cousin [1777, xiv-xxx; 1796, 1, x-xvi] and
Bossut [1798, 1, iii-lxxvii] do the same.

After the table of contents (with bibliography) comes an Introduction. Its
purpose is to give series expansions of algebraic, exponential, logarithmic and

10As an aside, it is curious to know that in 1818-1819 Lacroix took a course in Chinese by
Rémusat (the first professor of Chinese at the Collége de France) [Lacroix IF, ms 2402, fls 380-
465].
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Volume I
topics | chapter | pages

History of the calculus; overview of the Traité Preface iii-xxix
Table of contents and bibliography Table XXX-XXXii
General notions on functions, series and limits 1-19
Series expansion of algebraic functions 19-32
Series expansion of exponential and logarithmic functions 33-52

. . . . . Introduction 52-61
Series expansion of trigonometric functions 78-80
Relationships between trigonometric and logarithmic 6175
functions
Reversion of series 75-78
Changes on a function of x when z becomes x + k 82-87
Recursion between the coefficients of f(z+k) (derivation) 87-94
Differentials and differential coefficients; 94-107

differentiation of algebraic functions
Differentiation of logarithmic, exponential and trigono- | Chapter 1:

metric functions Principles of 107-114
Differentiation of explicit functions of two variables differential 114-131
Differentiation of explicit functions of any number of va- | calculus 131-134
riables
Differentiation of equations; change of independent vari-
able; elimination of constants, irrational exponents, and 134-178
functions
COHF].IUOH equations for a formula to be an exact diffe- 178-189
rential
Method of limits; infinitesimals 189-194
Expansion of functions of one variable in series Chapter 2: 195-232
Particular cases in the expansion of f(z + k) Main 939-240
(infinite values of the differential coefficients) analytical
Indeterminacies (2,0 x oo, etc.) uses of the 241-255
Expansion of functions of two variables in series differential 255-264
Maxima and minima of functions of one or several varia- | calculus

264-276
bles
Symmetric functions of the roots of an equation Chapter 3: 277-286
“Imaginary expressions” (i.e., complex numbers); inc. the | Digression 986-326
fundamental theorem of algebra and Cotes’s theorem on equations

Table 2.1: Volume I of Lacroix’s Traité (continued in table 2.2)

trigonometric functions. The idea was to make the Traité accessible to readers
who knew algebra only as it was treated in the textbooks of Bézout and Bossut
[Lacroix Traité, 1, xxiv], that is, elementary algebra — mainly equation solving.
Thus the Introduction plays a role broadly equivalent to the first volume of Euler’s
Introductio in Analysin Infinitorum [Euler Introductio, I]. But with an important
difference: Fuler had used infinite and infinitesimal quantities extensively, while
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Lacroix wished to avoid them.

This Introduction starts with a section about “general notions on functions
and series” [Traité, 1, 1-18|, which includes definitions for function, implicit and
explicit functions, and also, apropos of series, a fairly extensive treatment of li-
mits. But this does not mean that limits are to be used as the foundational concept
for what follows: Lacroix believes that if the expansion of a function results in a
nonconvergent series, this series can still be used to represent that function — just
not its “value” [Traité, I, 7] (see section 3.2.6). The section on series expansion
of algebraic functions [Traité, I, 19-32] is dedicated to the binomial theorem, for
the case of rational exponent (the case of irrational “or even imaginary” n appears
later as an application of the expansion of the logarithm!!). The section on series
expansion of exponential and logarithmic functions [Traité, I, 33-52] is more inte-
resting, because it was more challenging: Lacroix expands a® using the functional
equation a® x a* = a®T* and the method of indeterminate coefficients; he was
quite proud of how he had avoided the notions of infinite and of limits in this
expansion (see section 7.1.2). Similar procedures are used for the logarithm, and
for the sine and cosine in the section on expansion of “circular” functions [ Traité,
I, 52-80]. This latter section also addresses several trigonometric formulas (inclu-
ding sinnx = EJL\F;\;—E_;L\H and similar ones), and the important method of
reversion of series.

Chapter 1 is entitled “analytical exposition of the principles of differential
calculus”. In the Preface Lacroix announces that he will give this “purely analy-
tical exposition”, “complete” and “dun seul jet”!? [Traité, I, xxiv]. He likens this
comprehensiveness to what Euler had done (obviously in [Differentialis]). The al-
ternative would be to include some applications in between — that is what Lacroix
would later do in [1802a], where both analytical and geometrical applications of
differential calculus of functions of one variable precede the analytical exposition
of the differential calculus of functions of two variables. The separation between
theory and applications is one of the characteristics that marks this as a treatise,
rather than a textbook.

As for the exposition being “purely analytical”, it may partly be an allusion
to the separation from geometrical applications. But it is most likely a reference
to the foundation followed, which does not appeal to geometrical or mechanical
notions. In fact, Lacroix builds the differential calculus on the basis suggested by
Lagrange in [1772a] — power series. This will be treated in section 3.2: let us only
summarize the chapter here. First comes the expansion

f(x + k) — f(z) = X1k + Xok? + X3k + ete. (2.1)

H1n [Domingues 2005, 281] I said that “a ‘weak’ version of the binomial theorem, stating
(1+2)™ =1+ nz™ ! + etc. is proven (for ‘any n’; the full expansion is given for integer n)”.
Apart from the fact that one should read “rational” instead of “integer”, this is misleading because
Lacroix shows the recursive relation between the coefficients independently of n being integer
or not [Traité, I, 19-22]. My mistake resulted from the physical separation between this and the
general proof that the first two terms in the expansion of (1 + z)™ are 1 + nz [Traité, I, 49].

1243t one stroke”
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Then, after establishing the iterative relation between the coefficients and thus
renaming them to

f//(.r) kj2 + f///(x)

3
5 1'2'3]&‘ + etc.

f(x + k) — f(z) = ' (x)k +

the first term f’(z)k is christened differential “because it is only a portion of the
difference” and is given the symbol df(x). “For uniformity of symbols [...] dx will
be written instead of k”, so that

is an immediate conclusion. Occasionally {'(x), {”(z), etc. are called “derived func-
tions” (as in [Lagrange 1772a, § 1-4; Fonctions]), because of the recursive process
of derivation; but in page 98 Lacroix introduces the name differential coefficients
for them, and uses it throughout the three volumes. The differential notation is also
much more frequent than the use of accents. Overall this foundation for the calculus
is Lagrangian, but much closer to [Lagrange 1772a] than to [Lagrange Fonctions|,
where differentials have no place. The results obtained in the Introduction allow
easy deductions of the differentials of algebraic, logarithmic, exponential and tri-
gonometric functions of one variable: it is only necessary to expand f(z + dz) and
extract the term with the first power of dz. Differentiation of functions of two
variables is also inspired by [Lagrange 1772a|, but without resorting to the cum-
bersome notation that Lagrange had employed (u”” for our %322). f(x+h,y+k)is
expanded in two steps and in two ways (via f(x + h,y) and via f(z,y + k)), whence
the conclusion that dd;;y = dd;;x. The definition of differential as the first-order
term in the series expansion of the incremented function is extended to u = f(z, y)
giving

df(z,y) = du = Z—de + Z—Zdy
(the O notation is still absent). The largest section in this chapter is dedicated to
“differentiation of equations” [Traité, I, 134-178]. It covers several topics, namely:
differentiation of implicit functions; change of independent variable — Lacroix was
proud of the way he had treated this without infinitesimals (see section 3.2.4); and
use of differentiation to eliminate constants, irrational exponents, transcendental
functions, and unknown functions. Elimination of constants and unknown (i.e.,
arbitrary) functions will play a relatively important part in the second volume,
as they furnish a theory for the formation of differential equations (see sections
6.2.1.1 and 6.2.2.1). The next section, on condition equations for a formula to
be an exact differential, proceeds in the direction of preparing the way for the
treatment of differential equations in volume II. Chapter 1 ends with a section
about alternative foundations for the calculus. Both d’Alembert’s limit approach
and Leibniz’s infinitesimals are treated. This is typical of Lacroix’s encyclopédiste
approach: to expound all relevant alternative methods or theories. It is also an
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essential instance of that approach because in future chapters Lacroix will some-
times need to resort to one or another of those alternative foundations in order to
explain some particular method.

Chapter 2 is dedicated to some analytic applications of the differential cal-
culus. First, its use in expanding functions in series, for which of course Tay-
lor’s theorem (or rather Maclaurin’s) is central. But this section has a lot more
to offer, including Lagrange’s formula for expanding #(y) in powers of z, where
a—y+ xp(y) = 0. Oddly, the section finishes with a non-differential, approxi-
mation method by Lagrange [1776] for expanding implicit functions in continued
fractions, adapted to give also power-series expansions. After this comes an exa-
mination of certain cases in which the differential coefficient “becomes infinite” (as
with f(z) = v/ — a for x = a) and why the expansion (2.1), “although true in ge-
neral”, is not valid in such cases. The explanation for this rests on the irrationality
of the function involved disappearing for certain values of the variable, dragging a
collapse of multiple values of the function. Lacroix attributes this to Lagrange and
in fact it appears in his Théorie des fonctions analytiques: it may be one of the few
remarks drawn from Lagrange’s lectures at the Ecole Polytechnique that Lacroix
was able to include in the first volume (see section 3.2.5). This is followed by a
section on indeterminacies (%, 0 %X 00, ...) and how to raise them. After this we have
a section on series expansion of functions of two variables (much shorter than the
one for functions of one variable). And the chapter finishes with the investigation
of maxima and minima of functions of one or several variables.

After analytical applications, we would expect to see geometrical applica-
tions. And they eventually appear. But chapter 3 is a “digression on algebraic
equations” — an interlude in the natural sequence of topics. Lacroix justifies this
chapter by the “imperfection” of the available textbooks on algebra, and by the
want for these methods in integral calculus [Traité, I, xxv]. But why not include
them in the Introduction? There are a couple of uses of differential calculus, but
they could have been avoided (if this were a chapter on applications of differential
calculus to algebraic equations, it could have been merged into chapter 2). In the
Preface to the second edition Lacroix explains the arrangement in the first as being
due to his fear that the Introduction might become too long and retard too much
the entry of the main subject — differential calculus [Traité, 2nd ed, I, xx] (this
changed in the second edition: Lacroix omitted several of these topics, because
meanwhile he had included them in his Complément des élémens d’algebre [1800];
while the rest was moved precisely to the Introduction). This explanation is quite
unsatisfactory; Lacroix should not be too worried with the length of the Introduc-
tion in this kind of treatise. One must consider the possibility of chapter 3 not
being in the original plans, and having been included only after the Introduction
was printed.

Chapter 3 has two sections. The first, on “similar functions of the roots of
equations” (i.e., all the roots appear in a similar form) is about symmetric functions
(incidentally, Lacroix appears to introduce the expression “symmetric functions”
[Traité, 277]). Here Lacroix gives a proof, which he claims to be original, of New-
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ton’s theorem on the sums of powers of the roots of an equation;' Lacroix’s proof
does not use differential calculus or infinite series, and he thought it worthy of
mention in his Compte rendu [...] des progrés que les mathématiques ont faits de-
puis 1789 (see appendix B, under “algébre”, or [Delambre 1810, 90]). In the second
section, on “imaginary expressions” (i.e., complex numbers), Lacroix gives, among
other things, a proof by Laplace of the fundamental theorem of algebra, Cotes’
theorem, Descartes’s sign rule, and Euler’s solution to the problem of logarithms
of negative numbers.

The two final chapters are devoted to analytic and differential geometry:
chapter 4 on the plane; chapter 5 in the space. They will be treated at length in
chapter 4 below (sections 4.1.2, 4.2.1.2, 4.2.2.2, and 4.2.2.3). The determination in
including geometrical applications (which also serve as illustrations of the analy-
tical theory), and at the same time in keeping them separate (trying not to derive
any analytical result from geometry), are important characteristics of Lacroix’s
Traité.

Volume 1
topics | chapter | pages

Analytic geometry: coordinates and fundamental formulas

. . . 327-332
for points and straight lines
Analytic geometry: curves 332-341
Analytic geometry: change of coordinates Chapter 4: 341-362
Applications of series expansion to the theory of curves Theory of 362-369
Use of differential calculus to find tangents curved lines | 369-377
Use of differential calculus to find singular points (plane 377-388
Contact and osculation curves) 388-394
Properties of the osculating circle; evolutes 394-401
Transcendental curves (logarithmic, cycloid, spirals); polar
coordinates; diff. of arc-length and of the area under a 401-419
curve
Method of limits applied to curves 419-422
Curves as polygons; roulettes 422-434
Analytic geometry: coordinates and fundamental formulas 435448
for points, planes and straight lines Chapter 5:
Analytic geometry: “curved surfaces of second order” Curved

. . 448-465
(quadrics); change of coordinates surfaces and
Application of differential calculus to the theory of contact | curves of

465-471

of surfaces double
Theory of curvature of surfaces curvature 471-482
Generation of surfaces (envelopes; developable surfaces; 482-504
etc.)
Curves of double curvature 504-519

Table 2.2: Volume I of Lacroix’s Traité (continued from table 2.1)

13Nowadays often called Newton-Girard formulas (not by Lacroix, who ignores Girard).
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Here the influence from Monge is most marked. What was still generally
known as “‘application of algebra to geometry” was then being transformed into
analytic geometry. Monge was the main architect of this change (with an important
suggestion by Lagrange in a 1773 memoir on tetrahedra), but Lacroix played an
important role in its systematization, precisely in the Traité [Taton 1951, ch.3].
As he explains in the Preface, he tried to keep apart all geometric constructions
and synthetic reasonings, and to deduce all geometry by purely analytic methods
[ Traité, 1, xxv]. That is why chapter 4 starts with an extensive study of fundamen-
tal formulas for points, straight lines and distances, to be used in what follows,
instead of “geometric constructions”. These elementary subjects were usually re-
garded as belonging to the realm of synthetic geometry. After these preliminaries,
Lacroix develops the analytic geometry of plane curves, including plotting, clas-
sification of singular points and changes of coordinates. Changes of coordinates
have several applications, including finding tangents and multiple points.

Before differential geometry properly speaking, comes the application of series
expansions (which because of their approximative nature supply a way of finding
tangents and asymptotes). But the central part of chapter 4 is the application of
differential calculus (that is, the use of differential coefficients) to find properties
of the curves: their tangents, normals, singular points, the differentials of their arc-
length and of the area under them; and to develop a theory of osculation, and hence
of curvature via the osculating circle. The chapter concludes in a manner very
typical of Lacroix: presenting alternative points of view, namely an application of
the method of limits to find tangents and osculating curves and the Leibnizian
consideration of curves as polygons. It is significant that in total this chapter has
five approaches to the determination of tangents. In this last section is included
a study of envelopes of one-parameter families of curves, the language alternating
between limit-oriented and infinitesimal. A very important special case is that of
the evolute of a given curve, formed by the consecutive intersections of its normals.

The matter of chapter 5, a theory of surfaces and space curves, is mostly due
to Monge, according to Lacroix [Traité, I, 435]. In fact, in spite of some isolated
studies by Euler and others, it was Monge who set spatial differential geometry
going, and made it a discipline [Struik 1933, 105-113; Taton 1951, ch. 4]; and for
this he needed to develop also three-dimensional analytic geometry.

The fundamental formulas for planes and points, straight lines and distances
in space are followed by more traditional subjects: second-order surfaces (that is,
quadrics), and changes of coordinates.

There is some discussion of contact of surfaces using their series expansions,
but as the chapter proceeds power series lose ground to limits and infinitesimals.
Alternatively to comparison of coefficients in series expansions, the tangent plane
through a point with coordinates z’, y’, 2z’ is determined by the tangents to the sec-
tions parallel to the vertical coordinate planes (these tangents have slopes g;l,, g;: ,
so that

! /!

_d /(x_'r/)—i—d_y/(y_y/)
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is the equation of the plane). Not surprisingly, curvature of a surface on a point is
studied through the radii of curvature of plane sections through that point: these
have a maximum and a minimum, which allow us to calculate the curvature of
any other plane section. There is no discussion yet of kinds of curvature or of the
possibilities of the centres of curvature being on the same or on different sides
of the surface. Envelopes of one-parameter families of surfaces are studied as the
“limits” of their consecutive intersections (these intersections are called, following
Monge, “characteristics”). A special case is that in which the generating surfaces
are planes: the envelope is then called a “developable surface”.

Three approaches are given to study curves in space (“curves of double curva-
ture”). But two of them only briefly (through their projections on the coordinate
planes; and through the series expansions of two coordinates as functions of the
third). The bulk of the section follows Monge in regarding space curves as poly-
gons where three consecutive sides are not coplanar. This allows Lacroix not only
to study tangents, osculating planes, and differentials of arc-length, but also the
developable surface generated by a curve’s normal planes, and evolutes.

2.4 Volume II: integral calculus (1798)

Although the second volume of Lacroix’s Traité is the largest of the three, it is
the one that receives the least attention in the general Preface at the beginning of
volume I.# The integral calculus, being just the inverse of the differential calculus,
did not offer much occasion for reflection: it consisted only of a “collection de
procédés analytiques, qu’il suffit d’ordonner de maniére & en faire appercevoir les
rapports”?® [Lacroix Traité, I, xxvii]. Lacroix proposes then to follow the ordering
of [Euler Integralis|, adding new developments and replacing some methods by
more recent and general ones. In the second edition Lacroix would be a little
more explicit in the characterization of Euler’s order: the methods are classified
according to the form of the functions to which they apply [Lacroix Traité, 2nd
ed, I, xxxix]|.

There are however two significant differences in structure from Euler’s inte-
gral calculus. One is the inclusion of a chapter on calculation of areas, lengths, and
volumes (chapter 2); [Euler Integralis| does not include geometrical applications.

The other difference lies in the way the material is divided, in particular the
structural relevance of integration of explicit functions versus integration of diffe-
rential equations. [Euler Integralis| is divided into two “books”, the first (volumes 1
and 2) on problems involving functions of one variable and the second (volume 3)

14This would change in the second edition, where the coverage of the second volume increases
from one small paragraph [Lacroix Traité, I, xxvii] to about six pages [Lacroix Traité, 2nd ed,
I, xxxviii-xliv]. This is more than the three pages for the third volume (one page in the first
edition), but still much less than the nineteen pages for the first volume (about three pages in
the first edition).

15%collection of analytical procedures, which is enough to order so as to make perceive their
connections”
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Volume IT
topics chapter | pages

Table of contents and bibliography Table ili-viii
Integration of polynomial functions 2-5
Integration of rational functions 5-29
Integration of irrational functions 29-33
Integration of binomial differentials 33-48
Trrational polynomial differentials (inc. elliptic integrals) Chapter 1: 48-66
Integration by series Integration 66-88
Integration of logarithmic and exponential functions of functions 89-100
Integration of trigonometric functions of one 100-118
Expansion of (a + bcos z)™ variable 118-135
General method for approximating integrals; integrals as
limits of sums; definite and indefinite integrals; Bernoulli 135-156
series
Integration of higher-order differentials 156-160
Quadrature of curves (calculation of areas under curves) | Chapter 2: 161-176
Rectification of curves (arc lengths) Quadratures, | 176-188
Volumes of solids and areas of surfaces; rectification of cur- | cubatures 189-206
ves of double curvature; double and triple integration and
Functions with algebraic integrals — squarable curves, etc. | rectifications | 206-220
Separation of variables 221-230
Integrating factors for 1st-order differential equations 230-251
1st-order eqs. with differentials raised to powers above 1 251-262
Particular solutions of 1st-order differential equations 262-284
Approximate solutions of 1st-order differential equations 284-296
Geometrical construction of 1st-order diff. equations 296-307
Integration of 2nd-order diff. egs. through transformations | Chapter 3: 307-332
(the simplest differential equations of order higher than 1) | Integration 364-365
Integrating factors for 2nd-order differential equations of differ. 332-349
Approximate solutions of 2nd-order differential equations | equations 349-364

. . . in two 365-378
1st-degree differential equations of any order variables 389-394
Systems of first-degree differential equations 378-389
Use of 1st-degree diff. egs. for approximate integration 394-407
Particular solutions of diff. egs. of order higher than 1 408-418
D'lff. eqs. that are easier to integrate after being differen- 418-423
tiated
On logarithmic and trigon. functions (from their diff. egs.) 423-427
On elliptic transcendents 427-452

Table 2.3: Volume II of Lacroix’s Traité (continued in table 2.4)

on problems involving functions of two or more variables; the first “book” is then
divided into two parts (corresponding to volumes 1 and 2), the first on first-order
problems and the second on higher-order problems; thus, integration of explicit
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functions does not have — at least in the table of contents — the prominence that
a modern reader might expect, being the subject only of the first section of the
first part of the first book and of both chapters 1 of the first and second sections
of the second part of the first book. In [Lacroix Traité, 11|, on the other hand, in-
tegration of explicit functions is awarded the entire first chapter out of 5, ranking
at the same level as integration of ordinary differential equations (chapter 3) and
integration of partial differential equations (chapter 4).

Apart from the ordering, Lacroix also admitted taking his examples from
Euler — in an explicit reference to chapters 2 and 3 (which should rather be to
chapters 1 and 3) of the second volume [Lacroix Traité, 2nd ed, I, xli].

Most of Chapter 1 is dedicated to finding antiderivatives of functions of one
variable: algebraic, rational, irrational, and transcendental (exponential, logarith-
mic and trigonometric). On the formalistic character of these procedures, see sec-
tions 5.1.1 and 5.2.3. It is in the section on integration of irrational functions that
the elliptic integrals

/ dx / dx / z2dx
(22 + a)\/a + Bz + ya?t’ Va+ Bz +~yat vVoa+ Bx+yat

first appear (with no particular name here; in chapter 2 they gain the name elliptic
transcendents, after Legendre); Lacroix remarks that they are new transcendental
functions that must be introduced in the calculus [Lacroix Traité, 1I, 59]. The
subject of elliptic integrals is resumed several times later, most importantly in
chapter 3.

There is also a section on “integration by series” (see section 5.2.1); and
another, on a “general method” by Euler for approximating integrals, which inclu-
des some very interesting remarks on the “nature of integrals” and the definitions
of definite and indefinite integrals (see sections 5.2.2 and 5.2.3).

Chapter 2 is dedicated to calculation of areas under curves, arc-lengths, and
volumes and areas of surfaces. Since the methods of integration had been studied
in the previous chapter, and the differentials of the area under a curve and of the
arc-length had already been found in the first volume, a large part of this chapter
consists of examples. But it still remained to derive the differentials of the volume
of a surface of revolution, of the volume under a surface, and of the area of a
surface.

It is in this context that double integration is introduced, as repeated inte-
gration [Lacroix Traité, 11, 192-193].16 Geometrical meaning is lost when Lacroix
analogously introduces also triple integration (because of its frequent occurrence in
mechanics) [Lacroix Traité, 11, 204-205]. Change of variables is discussed for both
double and triple integrals, arriving at the expressions nowadays called jacobians
[Lacroix Traité, 11, 203-206].

16Multiple integration of functions of only one variable had already appeared at the end of
chapter 1, but that is a very special case.
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This chapter ends with a small section on squarable curves (that is, functi-
ons with algebraic integrals), rectifiable curves (algebraic arc-length), and spatial
counterparts.

Chapter 3, dedicated to integration of differential equations in two variables,
is the largest in volume II. This is not surprising, as it corresponds to about half
of [Euler Integralis] (second and third sections of volume 1 and the whole volume
2). Like Euler’s work, this chapter is broadly organized by the order of the diffe-
rential equations: first order first; then higher, mostly second; and finally methods
unrelated to order (but mostly related to degree, namely “first degree”). Still, the
presence, location and relative weight of the latter methods are noteworthy depar-
tures from the more strictly order-based Eulerian organization. Naturally, it is in
connection to these methods that we notice the most significant novelties relative
to Euler’s work.

A certain peculiarity in terminology must be mentioned at once: Lacroix
[ Traité, 11, 225] rejects the application of the adjective “linear” to differential equa-
tions, since that word refers to straight lines (as in algebraic “linear equations”),
and of course linear differential equations usually belong to transcendental curves.
Instead, he uses the expression “first-degree differential equations”. This may be
particularly confusing to the modern reader, because Lacroix | Traité, 11, 365-366|
even restricts this expression to equations that are of first degree in regard to the
dependent variable and all its differentials (and thus, in modern terms, strictly
“linear”, as opposed to “quasi-linear” or “first-degree”, which need only be linear
in regard to the highest-order derivative). However, it is a quite fitting stand for
someone so concerned as Lacroix with geometrical interpretations of analytical
concepts.

Naturally this chapter starts with the most classic methods: separation of
variables and integrating factors, applied to first-order and first-degree equations.
But even in regard to these simpler cases, Lacroix complains about the imper-
fection of analysis, which does not provide a better algorithm than groping for
an integrating factor [Traité, 11, 251]. He alludes to general methods proposed by
Fontaine and Condorcet,!” but justifies not saying anything about them with their
unpracticality; still, their references appear in the table of contents [Lacroix Traité,
I1, vi].

After some considerations on “first-order equations where the differentials are
raised to powers higher than one” (either solving them algebraically for Z_Z first, or
using “analytical artifices”, particularly for homogeneous equations), come three
sections on special topics of first-order equations: singular solutions are examined
following mainly [Lagrange 1774], but using Laplace’s name “particular solutions”,
instead of Lagrange’s “particular integrals” (see section 6.2.1.2); a section on ap-
proximate integration includes the use of Taylor series, Euler’s “general method”
(which also serves to show that all first-order equations “are possible”), and a

7Very briefly, these methods relied on obtaining all possible forms for the solutions (or inte-
grating factors) of differential equations, and then trying to adequate one of those to the equation
to be solved (using the method of indeterminate coefficients) [Gilain 1988, 91-97].
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method of expansion in continued fractions (see section 5.2.4); a section on “geo-
metrical constructions” includes some historical remarks, trajectory problems, and
the geometrical interpretation of “particular solutions” as envelopes of the families
of curves given by the “complete integrals” (see section 6.2.3).

As for second-order equations, Lacroix starts by addressing several particular
cases that are easier to treat (for instance, by considering a new variable p = g—z).
This is followed by integrating factors. To finish come approximation methods
(mostly by expansion in series, but also including a brief mention to Euler’s “ge-
neral method”, and hence a “general construction” of second-order equations, that
shows their possibility and that they represent an infinity of curves — see section
5.2.4).

A section on “integration of differential equations of order higher than 2”
[Lacroix Traité, 11, 364-394] is in fact almost entirely dedicated to “first-degree”
equations of any order — both isolated and systems of such equations (including
what Gilain [2004; to appear| calls “d’ Alembert’s theory”!8).

The next section is still on “first-degree equations”, more precisely their use
for approximate integration. This refers to a method much used in astronomy.
Unfortunately, several mistakes occur here (see section 5.2.4, pages 175 {f.).

The final section in chapter 3 (“general reflections on differential equations
and on transcendents”) is a medley. First, particular (i.e., singular) solutions of
differential equations of order higher than 1 (section 6.2.1.3), followed by certain
equations that are easier to integrate after being differentiated. To finish, Lacroix
studies some transcendental functions from differential equations that characterize
them (particularly elliptic integrals). For motivation, he expresses the opinion that
the most useful result in integral calculus would be the exact classification of the
distinct transcendental functions [Lacroix Traité, I, 423].

The second largest chapter in the second volume, chapter 4, is mostly dedi-
cated to differential equations in more than two variables (both partial and total).
It is named “integration of functions of two or more variables”, probably because
of about two pages in the beginning, addressing the case in which the (first-order)
differential coefficients of the function are given explicitly — that is, the integration
of exact differentials like pdx + gdy or ndu + pdzx + g dy. But it turns out to be a
misnomer, because of its last section, on “total differential equations that do not
satisfy the conditions of integrability” — in the case of three variables (the most
common) these correspond to two functions of one independent variable.

Just after explicit functions, Lacroix addresses at some length the conditions
of integrability for total differential equations and the integration of those that

18 Consisting essentially in a method to solve systems of lst-order linear equations using
multipliers, and in the reduction of systems of higher-order equations to first order, conside-
ring new variables p = Z—Z,q = %, etc. Gilain stresses Lacroix’s role in the transmission of
d’Alembert’s theory, which was not particularly well known by his contemporaries (still, it
appears in [Cousin 1796, 1, 234-238]). Gilain focuses especially on the transmission through
|[Lacroix 1802a], and especially to Lacroix’s student Cauchy, who would give it in [1981] an im-
portance much greater than the marginal place it occupies in [Lacroix 1802a] (and, it may be
added, in [Lacroix Traité]).
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Volume IT
topics | chapter | pages

Igtegratlon of explicit differential functions of several va- A53-456
riables

Integration of total differential equations in three variables 456-466
Total differential equations in more than three variables Chapter 4: 466-471
Total differential equations of higher orders Integration 471-476
1st-order partial diff. eqs. (1st degree rel. to diff. coeffs.) of functions | 476-496
1st-order partial diff. eqs. (with raised diff. coefficients) of two or 496-520
Integration of higher-order partial differential equations more 520-608
Geometrical construction of partial diff. eqs.; determina- | variables 608-624
tion of the arbitrary functions contained in their integrals

Total diff. egs. not satisfying the conditions of integrability 624-643
Geometrical remarks on the previous section 643-654
Principles of the calculus of variations Chapter 5: 655-689
Application to problems of maxima and minima Method of 689-718
Distinguishing maxima from minima variations 718-724
Additions (on total and partial differential equations) Additions 725-727
Corrections to volumes I and II Errata 728-732

Table 2.4: Volume IT of Lacroix’s Traité (continued from table 2.3)

satisfy them (that is, those in which one variable may be taken as a function of the
others). Another issue of terminology: Lacroix never explains nor introduces the
expression “total differential equations”, and he does not even use it at this point,
although in the index he refers to these articles as being about “total differential
equations” [Traité, 111, 555-556]; and he uses it without further ado in page 492
and in the title of the last section of the chapter. In spite of such a familiar use,
this may be the first appearance of the adjective “total” in this context — at least
a contemporary author, the Belgian Nieuport [Mélanges, 11, xiii], attributed it to
Lacroix. It certainly was not at all common at the time — for instance Monge
[178/c] spoke of “équations aux différences ordinaires a trois variables”'?. Perhaps
Lacroix was just using “total” as the natural opposite of “partial”.

But of course most of the chapter is dedicated to partial differential equations.
There are three sections on these: first order, higher orders, and a much smaller
one on geometrical constructions and determination of the arbitrary functions that
appear in integrals. For the most simple first-order equations, Lacroix uses Euler
and d’Alembert’s early method of reducing to a total differential equation, to
which is then applied an integrating factor [Demidov 1982, 329]?°. This works for
all linear (“first-degree”) equations, but not for all quasi-linear ones, and naturally
Lacroix [Traité, 11, 482-484] expounds Lagrange’s method for quasi-linear first-
order partial differential equations (reducing them to a system of total differential

194equations of ordinary differences in three variables”

20For an example see equation (6.27), page 236 below.
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equations), minding to remark that Monge had also independently obtained it
[Lacroix Traité, II, 487].

As for nonlinear equations, we find one of the most directly influential passa-
ges of Lacroix’s Traité. In [1772b] Lagrange had reduced the integration of a general
first-order partial differential equation to that of a quasi-linear first-order partial
differential equation; but strangely, he did not combine this with the method
mentioned above. This was done by the young mathematician Paul Charpit in a
memoir presented to the Académie des Sciences of Paris in 1784. Unfortunately,
Charpit died soon after, and his memoir was never published. His name might
have been entirely forgotten, if Lacroix had not reported his work, citing his name,
in [Traité, 11, 496-520 (esp.496-497, 513-516)]; instead, this combination became
known as the “Lagrange-Charpit method” [Demidov 1982, 332; Grattan-Guinness
& Engelsman 1982]L.

Thus, Lacroix was fortunate enough to have at hand a theory of first-order
partial differential equations. Higher-order equations were a different matter al-
together, but in the long section (88 pages) dedicated to them Lacroix still tries
to have as much of a structure as possible, focusing on what we call linear and
quasi-linear second-order equations. What is perhaps most striking is the neglect
of physical motivations.

After considering a few cases in which the order may be lowered, Lacroix
addresses second-order equations in three variables, of first degree in regard to
the second-order differential coefficients (in modern terms, quasi-linear) [Traité,
IT, 524-535]. For these, he uses Monge’s method [1784b, 126-155], which is ana-
logous to Lagrange’s (and Monge’s) method for first-order quasi-linear equations,
and which gives (when it works) one or two first-order integrals.?? But Lacroix
[Traité, 11, 526] admits that this second-order version is less general than the
first-order one (it fails when a certain auxiliary differential equation in three vari-
ables does not satisfy the integrability condition). This method is also extended to
third-order equations in three variables and to second-order ones in four variables
[Lacroix Traité, 11, 535-546].

The failures of this method motivate a discussion about why sometimes there
are no first-order integrals of second-order differential equations (or fewer integrals
than expected), even if there are finite integrals. The way this is discussed leads
to the distinction between “complete” and “general” integrals, and to the conside-
ration of “particular” (i.e., singular) solutions (see sections 6.2.2.3 and 6.2.2.4).

After this theoretical interlude, Lacroix turns his attention to “first-degree”
second-order equations. He had already applied Monge’s method to them [ Traité,

21Kline [1972, 11, 535] also tells this story but, ignoring the existence of two manuscript
copies of Charpit’s memoir [Grattan-Guinness & Engelsman 1982], he still relies exclusively on
Lacroix’s information (carefully adding not to “know whether Lacroix’s statement is correct”).

22Lacroix’s basic version |Traité, 11, 524-526] is as usual much clearer and/or easier to follow
than Monge’s. Kline’s account [1972, II, 538-539], who claims to follow [Monge Feuilles| rather
than [Monge 1784b], in fact seems to draw on Lacroix. I also do not understand why Kline calls
“nonlinear” these equations which are “linear only in the second derivatives”, while a few pages
earlier he had used “linear” for first-order equations which are linear only in the derivatives.
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I1, 531-535]; but now [Traité, II, 565-590] he reports at length Laplace’s cascade
method [1775¢] (with a few complements by Legendre [1787]), based on a reduc-
tion to a simpler form d‘f;ﬂ +P g—i + Q(‘f—j + Nz = M via an appropriate change of
variables, which facilitates the use of indeterminate coefficients to find a solution
in the form of a finite series z = A + Bo(u) + C¢'(u) + D" (u) + etc. + By (v) +
C19' (v) + D1y (v) + ete.

The situation is more complicated for “first-degree” third-order equations,
but Lacroix still presents attempts at analogous finite series solutions [Traité, II,
590-594], and wider uses for Laplace’s change of variables [ Traité, IT, 595-596]. The
section finishes with miscellaneous integrations of particular equations, especially
of degree above 1 |Traité, II, 596-608].

After this comes a small section with the long title “on the geometrical cons-
truction of partial differential equations, and on the determination of the arbitrary
functions that appear in their integrals”. This deals mostly with Monge’s construc-
tions of surfaces corresponding to partial differential equations, forcing them to
pass through given curves. An offshoot is the argument that these curves, and
the arbitrary functions appearing in the integrals, need not be “continuous”. (See
section 6.2.3.3.)

The final section in chapter 4 is on “total differential equations that do not
satisfy the conditions of integrability”. Once again, this is based on Monge’s work:
in total differential equations in three variables that do not satisfy those conditions,
it is not possible to consider one of the variables as a function of the other two
(or, in Mongean fashion, these equations do not represent surfaces); but Monge
had shown that they represent families of curves in space. Lacroix gives his own
analytical theory of these equations (of which he was rather proud), followed by
the geometrical interpretations. (See section 6.2.4.)

Chapter 5, the last in the second volume, is dedicated to the “method of
variations”, an obligatory subject in any treatise of integral calculus at this time. It
is divided into two sections, the first [ Traité, 11, 656-688| on calculating variations
(interchangeability of d and ¢, formulas for § [Vdz, Euler-Lagrange equations),
and the second [Traité, 11, 689-724] on applications to problems of maxima and
minima. It must be remarked that (in this first edition) Lacroix makes no attempt
to suit the calculus of variations to the Lagrangian power-series foundation of the
calculus. Accordingly, he presents Lagrange’s § algorithm (which Lagrange was
abandoning by then [Fraser 1985]), in Leibnizian shape: ddy = ddéy is justified
using infinitesimal considerations; the rules of J-differentiation come from those
of d-differentiation by plain analogy. Todhunter [1861, 11-27] examined at length
the version of this chapter in the second edition, concluding that “on the whole the
calculus of variations does not seem to have been very successfully expounded by
Lacroix, and this is perhaps one of the least satisfactory parts of his great work”,
he also seemed to agree with another author, Richard Abbatt, who had called
Lacroix’s treatment of this subject “prolix and inelegant”. These negative opinions
may have been somewhat influenced by the fact that in the second edition Lacroix
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added a section to conform with Lagrange’s new foundation, but also maintained
the old treatment; but this is not a full justification — it does seem to be one of
the less clear parts of Lacroix’s Traité.

2.5 Volume III: differences and series (1800)

The third volume of Lacroix’s Traité bears, in the first edition, a separate title —
“Traité des Différences et des Séries”??, followed by the indication “faisant suite
au Traité du Calcul différentiel et du Calcul intégral”?4. This has given rise to
bibliographical descriptions in which it appears as a separate work. For example:
Taton [1953a, 589] mentions the Traité du calcul différentiel et du calcul intégral,
composed of two volumes, 1797-1798, the Traité des Différences et des Séries, one
volume, 1800, and then a “nouvelle édition de I’ensemble”2°, three volumes, 1800-
1814-1819; somewhat more radically, Jean Itard, in his list of works by Lacroix,
has “Traité du calcul différentiel et du calcul intégral, 2 vols. (Paris, 1797-1798);
2nd ed., 3 vols. (Paris, 1810-1819); Traité des différences et des séries (Paris,
1800)” [1978, 551| — the relationship between the Traité des différences et des
séries and the Traité du calcul... is only explained in the main text [1973, 550].
Although these bibliographical separations make sense, they are misleading. It is
clear enough that Lacroix viewed the Traité des différences et des séries as part
of the Traité du calcul...: its summary is included in the general Preface in the
first volume (calling it an “Appendix”) [ Traité, I, xxvii-xxviii]; the numbering of its
articles follows directly that of the second volume; the subject index at its end is
for the entire set of three volumes; in the “corrections and additions” it is referred
to as “tome III” [Traité, 111, 581]. Thus, it is called throughout this work simply
as the third volume of Lacroix’s Traité, or [Lacroix Traité, III].

The reason for the particular title of the third volume is probably that La-
croix wished to call attention to its greatest originality, namely its very subject
— a complete treatise on series (studied for themselves, rather than regarded as
expansions of functions) and finite differences. He remarked in the general Pre-
face that no one had assembled the whole “theory of sequences” in a single “corps
de doctrine” after Jacob Bernoulli and James Stirling (an obvious reference to
[Jac. Bernoulli Series| and [Stirling 1730]), in spite of the “prodigious” growth of
the area through later work by Euler, Lagrange, Laplace, and more recently Prony
[Lacroix Traité, 1, xxvii|; Lacroix repeated this claim for originality in his Compte
rendu [...] des progrés que les mathématiques ont faits depuis 1789 (see appendix
B, page 400, or [Delambre 1810, 109]).

In fact, finite differences were a topic sometimes found in books on differen-
tial calculus, but not as an autonomous subject with one dedicated section. The
most typical appearances happened in early chapters, preparing the way for diffe-

23«Treatise on Differences and Series”
24“being a continuation of the Treatise on differential and integral calculus”
25¢new edition of whole set”
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rentials, which might be introduced as infinitely small differences or as the terms
dy y

in the limit ¥ of a ratio of decreasing finite differences ﬁ—x (see sections 3.1.1
and 3.1.2). In advanced works we may find some other, scattered, occurrences: in
[Euler Differentialis], chapters 1 and 2 of the first part address finite differences
(in that typical introductory manner), while several chapters of the second part
address applications of the differential calculus to finite differences or to closely
related topics (such as interpolation, or summation of series), interspersed with
applications to unrelated issues (such as maxima and minima, or indeterminacies);
in [Cousin 1777; 1796] we find an introductory chapter on the “calculus of diffe-
rences in general” [1777, ch.1; 1796, 1, Intr., ch. 3], a section on finite difference
equations in the chapter on “integral calculus in general” [1777, 313-321; 1796,
I, 271-277], and finally, near the end, a chapter wholly dedicated to these equa-
tions [1777, ch.11; 1796, 11, ch.7]. Lacroix, on the other hand, thought it was
“convenient” to separate the calculus of differences from the first principles of the
differential calculus, and not to cut up (“morceler”) the former (see again appendix
B, page 400, or [Delambre 1810, 109]).

[Prony 1795a] is a different case, and quite unique. It is almost entirely de-
dicated to the calculus of finite differences; but, perhaps because it was intended
as an introductory course in analysis?%, there are several subjects absent — such
as “second-order powers” (i.e., factorials), Bernoulli numbers, generating functi-
ons, mixed difference equations — so that Lacroix apparently did not count it as
containing “the whole theory of sequences”.

Before entering in the contents of [Lacroix Traité, III], we must address an
issue of terminology: Lacroix keeps the 18th-century tradition of not distinguishing
between the words “series” and “sequence”; using both interchangeably (here I will
try to make a modern distinction, except when referring to the whole subject,
usually the “theory of series”, and of course in quotations). More confusingly still,
both words were applied not only to infinite series or sequences, but also to finite
sums or progressions. Thus, the “theory of series” was a theory of summations,
both finite and infinite — and closely linked to the inverse calculus of differences.

The main chapter in [Lacroix Traité, III] is by very far chapter one, “on the
calculus of differences”. It occupies more than half of the volume, and contains a
full account of the calculus of differences. In the second edition it was divided into
three chapters, and even in the first edition we can see clearly the three parts cor-
responding to those future chapters: direct calculus of differences; inverse calculus
of differences of explicit functions; and difference equations. This organization, of
course, reflects the perspective of the difference calculus as a discrete analogue of
the differential and integral calculus.

The first section [Lacroix Traité, III, 2-26] is dedicated to the pure direct
calculus of differences: the definition of differences of first and higher orders, and
several formulas for calculating them, and relations between the differential and

26The differential calculus is introduced at the end as the infinitesimal case [Prony 1795a, 1V,
543-551].
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Volume IIT
topics | chapter | pages
Table of contents and bibliography Table ili-viii
Direct calculus of differences — basic notions and analogy
. 1-26
between differences and powers
Interpolation of sequences of one variable 26-60
Differences and interpolation of functs. of several variables 60-64
. . . 65-74
Integration of rational functions 33-84
Digression on 2nd-order powers or factorials 74-82
Integration of transcendental functions 84-92
Expansions of ¥ integrals by differences and differentials | Chapter 1: 92-122
Applic. of difference calculus to summation of “sequences” | Calculus of 122-151
Application of summation of series to interpolation differences 151-175
Digression on elimination in algebraic equations 175-183
Integration of 1st-degree difference eqgs. in two variables 184-210
Equations where the difference of the independent variable
. 210-215
1s not constant
Determination of the arbitrary functions in integrals of
. . . . 215-225
partial differential equations
Systems of first-degree equations 225-229
Integrating factors for first-degree difference equations 229-231
On the nature of the arbitrary quantities introduced by the
. . . . . 231-237
integration of difference eqs., and on their construction
The different types of integrals of difference equations 237-247
Integration of difference egs. in three or more variables 247-288
Condition egs. for integrability of functions of differences 289-300
Functions of one variable Chapter 2: 301-326
Theory of
Transformation of series sequences fr. | 326-333
Expansions of differences, differentials, and integrals generating 333-338
Functions of two variables functions 338-355

Table 2.5: Volume IIT of Lacroix’s Traité (continued in table 2.6)

difference calculi (namely a new deduction of Taylor series). These relations lead
to formal expressions such as

duy, "
ATy = (e‘m -1,

where, after expanding the right-hand binomial, the powers du” of du must be re-
placed by higher differentials d*u. This formula, and this kind of analogy between
powers and differences, had been introduced by Lagrange [1772a]; Lacroix ack-
nowledges this, but gives also a demonstration by Laplace [1773b, 534-540]. The
next, longer section [Lacroix Traité, III, 26-64] addresses the main application of
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the direct calculus of differences — that is, its application to interpolation of sequen-
ces. We can find here the most familiar formulas — the Gregory-Newton formula
(without any specific name) | Traité, 111, 28], Newton’s and Lagrange’s interpola-
tion polynomials (with these attributions) [ Traité, I11, 32, 34|, the Newton-Stirling
formula (attributed to Stirling) [7Traité, III, 39] — as well as less familiar work —
such as an account of Mouton’s method, with developments by Prony [ Traité, 111,
55-60].

Next comes the inverse calculus of differences, for differences given explicitly.
Again, Lacroix starts by a section dedicated to the pure calculus [Traité, I1II,
65-122], followed by sections on applications. There are two operators here: the
“integral” ¥ is the inverse of the difference operator A, i.e. an analogue of the
indefinite integral — if Au = f(z,h) (where h = Ax) then u = X f(x, h) + const.;*"
the “summatory term” S is closer to the definite integral — Sf(x, h) is the sum
Au+Aui+. ..+ Auy,,?® where again the generic difference Au is given by f(x, h);?°
they are related by the equality S f(z,h) = X f(z, h) + f(z, h) — const.?* Naturally,
in the section on the pure inverse calculus, the integral receives almost exclusive
attention. Integration of polynomials leads to a detailed study of “second-order
powers”, that is, generalized factorials — products of equally spaced factors z(z +
Az)...(x 4+ nAx); Lacroix focuses mostly on the falling factorial

pp=1-2)...(p—n+1),
n
using Vandermonde’s notation [p] — which is quite convenient for enhancing ana-

logies between falling factorials in difference calculus and (common) powers in
differential calculus.3! After reporting the integration of the trigonometric functi-
ons and integration by parts (giving formulas by Taylor and Condorcet), Lacroix
addresses ways to express Yu through the differences and the differentials of u —
including Lagrange’s

1

dup, ™
du?

. . . P . o . . P
with similar provisions as above, for changing positive powers -7 into Zi—’,f
du"?

negative powers $%— into [ PudzP. The search for the coefficients in the series
expansion of Yu leads, through the particular case of Xz™, to the Bernoulli num-
bers.

In the section on the application of difference calculus to summation of series
[ Traité, 111, 122-151], the S operator comes to the foreground. This application

X"y =

and

27Jordan [1947, 100-101] calls this the “indefinite sum”.

28That is, Aug + Auy + ... + Aun.

29But in S f(x, h), = is presumably at its last value, that is such that f(z,h) = Aun,.

30Thus, we do not find here the true analogue of the definite integral, namely the modern
definite sum SLf(z) = f(a) + f(a+ 1)+ ...+ f(b—1) [Jordan 1947, 116; Goldstine 1977, 99].

n

31But he also gives the notation [z, A] (his own?) for z(x + Az)...(z + (n — 1)Az).
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consists essentially in substituting the expressions obtained in the previous section
for ¥ f(z, h) in the equation S f(z, h) = X f(z, h) 4+ f(z, h) — const (one of the most
important results is the Euler-Maclaurin summation formula | Traité, 111, 125]32).
It must be kept in mind that the “series” (or “sequences”) to be summed are usually
finite. Occasionally = is made infinite, so that the number of terms in the sum
S f(x, h) is infinite; but infinite series occur mainly because the integration process
introduces them, that is, because the expression for ¥ f(z, h) is an infinite series.
Thus, the finite sum S% =1+ % + % + i - % is obtained as the infinite series
lx+ % — 23712 + 5734 — (ﬁ% +etc. + A (A being what is nowadays called the Euler, or
Euler-Mascheroni, constant).?? As in volume 1, convergence of series is a practical
matter: convergent series are preferable because they provide approximate values.

S % is an example of what Euler had called “inexplicable functions”: not pos-
sessing a determinate expression or equation; in practice they corresponded to
sums and products of a variable number of terms not expressible algebraically
[Euler Differentialis, I1, § 367; Ferraro 1998, 311]. In a section called “application
of summation of series to interpolation” [ Traité, III, 151-175], Lacroix reports some
of Euler’s work on those sums such that the general term, or its differences of some
order, tend to a constant, and on their interpolation. The last section before dif-
ference equations, a “digression on elimination in algebraic equations” | Traité, 111,
175-183], may seem out of place, at first; but it is still an application of the cal-
culus of differences, making ample use of “second-order powers” — it gives a short
account of Bézout’s elimination method, and a proof of Bézout’s theorem, both
of which had been announced in [Lacroix Traité, I, 324] but needed preliminary
notions of difference calculus.?*

As has already been mentioned, the third, and larger, part of this chap-
ter is dedicated to difference equations [Lacroix Traité, 111, 184-300]. In the tre-
atises of Fuler there is nothing on difference equations, which is not so sur-
prising, as the subject was inaugurated not much prior to the publication of
[Euler Integralis|: it was Lagrange, in [1759b], who started applying to difference
equations (namely linear equations) methods originally intended for differential
equations [Cousin 1796, I, 272].3% Through the rest of the 18th century, most
of the work done on difference equations consisted in transferring methods and
concepts of differential equations [Wallner 1908, 1052].

This does not mean that Lacroix follows the same order as for differen-
tial equations — there is a significant difference, caused by the much greater

1
32With a typo, not mentioned in the errata: the coefficient of % is written Bi[1], that is %,

instead of the correct Bi[1] =

12°

33In modern notation, this series is written log z + % 5 T 4T T gt — -t

34Notice that the Introduction of [Bézout 1779] is a short account of the direct and inverse
calculus of differences.

35Much earlier, Moivre had determined the general term of recurrent sequences, which is
equivalent to solving linear finite difference equations with constant coefficients. But apparen-
tly it was Lagrange who first made the connection, and treated them as difference equations

|[Laplace 1773a, 38].
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importance of linearity (or “first degree’3®). The section entitled “on the inte-

gration of difference equations in two variables” [Lacroix Traité, 111, 184-231] is
almost entirely devoted precisely to “first-degree” difference equations. It starts
with a few preliminaries, and then Lagrange’s integration of Ay + Py = Q
(the historical beginning of the subject) and his later treatment of the general
first-degree equation yyin + Prlotin—1 + QulYzin—2. ..+ Uzys = Vi, reduced to
Zotn + Przogn—1+ Qu2zin—2 ...+ Uzzy =0, and especially of the equation with
constant coefficients z; 4, + Pzyin-1 + Q2o4n-2... + Uz, = 0 (the one most
effectively treated by Lagrange) [Grattan-Guinness 1990, I, 172-175|. Special at-
tention is then given to Laplace’s research on equations with variable coefficients
[1773a], as it had been him who had gone farther in that direction [Lacroix Traité,
ITI, 195]. Equations where the increment of the independent variable is not cons-
tant are reduced to equations where it is constant, again using a procedure by
Laplace. The main situation in which nonconstant increments of the independent
variable occur is also one of the most important analytical applications of diffe-
rence equations: the determination of the arbitrary functions in integrals of partial
differential equations; naturally, Lacroix reports Monge’s work on this. Systems
of first-degree difference equations are also treated using procedures analogous to
those for differential equations (including d’Alembert’s method |Traité, 111, 227-
229]). The section ends with a short account of a method by Paoli, using a sort of
integrating factor.

The next two sections (quite short) address special topics where the analo-
gies with differential equations are weaker or less straightforward. One is “on the
nature of the arbitraries introduced by the integration of difference equations, and
on the construction of those quantities” [ Traité, IT1, 231-237]: Euler had remarked
that difference equations are not “completed” by arbitrary constants, but rather
by arbitrary periodic functions ¢(sin %7, cos 5F), in the case of constant Az = h
(and rather more complicated expressions in the case of nonconstant Ax); the
determination of these functions requires data about an interval of length Aux;
likewise, the construction of a difference equation uses not just an arbitrary first
point, but rather an arbitrary first curve (whose projection onto the z axis has
length Az). The other section is “on the multiplicity of integrals of which diffe-
rence equations are capable” [Lacroix Traité, 111, 237-247]: Jacques Charles had
discovered the existence of new complete integrals of difference equations whose
formation was analogous to that of singular integrals of differential equations; but
he had taken the analogies too far and had fallen into paradoxes; Lacroix’s pro-
tégé Jean-Baptiste Biot clarified them, and Lacroix reported his work (before its
publication in full) — see section 7.2.

The section “on integration of difference equations in three or more varia-
bles” [Traité, 111, 247-288| addresses extensions of methods already exposed for
equations in two variables. Firstly, Lacroix reports the extension of Lagrange’s
integration of first-degree difference equations with constant coefficients. Then,

36 Naturally, Lacroix had not changed his mind about the use of the word “linear”.
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the extension of Laplace’s method for equations with variable coefficients. La-
croix remarks that although Laplace’s method is more complicated, it is not only
more general, as it “offers a real procedure of integration”, while the success of La-
grange’s rests on a particular substitution | Traité, 111, 279]. The rest of the section
is dedicated to a method by Paoli which comprises Lagrange’s.

Chapter 1 finally finishes with a section “on condition equations relative to
the integration of functions of differences” [Traité, 111, 289-300]. These equations
are the work of Condorcet — for whom integrability conditions was a favorite
topic. Lacroix explains having left them to last because they are “more curious
than useful”. But the connection between equations of integrability and those
for maxima and minima of integrals [Fraser 1985, 177-180] justifies that most of
this short section is in fact on the calculus of variations applied to integrals of
differences. It is a proper ending — volume II had ended with the common calculus
of variations.

The much shorter chapter 2 — “Theory of sequences, derived from the conside-
ration of their generating functions” | Traité, IT1, 301-355] — is yet another example
of the encyclopedic character of Lacroix’s Traité: it consists in readdressing matter
from chapter 1, this time following an approach by Laplace [1779], namely using
generating functions [Goldstine 1977, 185-209]: u is the generating function of y,
if

w=yo+ Y1t + Y21’ + ... + yut® + yp 1 t*T + ete.

The connection with differences and series comes easily: if u is the generating
function of y,, then u (% — 1)p is the generating function of APy, and u (% — 1)71)
is the generating function of ¥Py, [Lacroix Traité, III, 302-305]. In the preface to
the second edition, Lacroix explained that the “state of science” did not recommend
making a choice between generating functions and the calculus of differences: one
did not know which of these approaches would permit overcoming the difficulties
posed to science; that is why he exposed both, the second chapter being “for a
great part an abridgment of the first” [Lacroix Traité, 2nd ed, I, xlvi].

Chapter 3 [Lacroix Traité, III, 356-529] is an odd piece. It mixes the “theory of
series” with the integral calculus, in several ways, but often with little connection to
series or differences, making its title, “application of integral calculus to the theory
of sequences”, too restrictive and not quite correct. Lacroix explained later that he
had included here “quelques méthodes pour ainsi dire anomales, qu’on ne pouvait
rapporter que difficilement aux procédés d’intégration déduits du renversement
de la différentiation”” (see appendix B, page 400, or [Delambre 1810, 109]) —
an allusion to the large role played by definite integrals in this chapter. In the
preface to the second edition, he confirmed that the inclusion of these “anomalous
methods” would not only make a treatise on integral calculus (i.e., his second
volume) too large, as it would cause “une espéce de désordre, par le mélange

37“some anomalous methods, so to speak, which could only hardly be reported to the proce-

dures of integration derived from the reversal of differentiation”
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Volume II1
topics | chapter | pages

Summation of series 356-385
Interpolation of series 385-392
Investigation of values of definite integrals Chapter 3: 392-418
Digression on infinite products for sines and cosines Application 418-445
Continuation of the investig. of values of definite integrals | of integral 445-461
Series for evaluat. integrals that are functs. of large numbers | calculus to 461-475
Examination of the transcendent f PL% the theory 475-483
Use of definite integrals to express functions given by of sequences

. . . 483-519
differential equations
Application of the formulas [ e™*vdu, [uvdu, etc. 519-529
to integrate difference and differential equations
Analytical theory of mixed difference equations Chapter 4: 530-534
Application of mixed difference equations to geometrical | Mixed

. . 535-543

questions difference
Partial and mixed difference equations and conclusion equations 543-544
Subject index for the three-volume set Subject table | 545-578
Corrections and additions to vols. IT and 111 Corr. & addit.| 579-582

Table 2.6: Volume IIT of Lacroix’s Traité (continued from table 2.5)

continuel de procédés trop différens de ceux de l'intégration proprement dite”38

[ Traité, 2nd ed, I, xlvi]. The best way to try to understand the structure and
contents of this chapter is to divide it into three parts, corresponding to the three
chapters into which Lacroix split it in the second edition.

The first of these parts kept the title “application of integral calculus to the
theory of sequences”; it consists of the two sections that best fit under that name.
The first of these sections [Traité, 111, 356-385] is “on summation of series” — with
the aid of integral calculus, of course. Lacroix reports some methods by Euler,
consisting in manipulations of sums and series so as to transform them into others
known to be expansions of certain integrals. He also gives here Parseval’s formula
(in its pre-Fourier sense, of course) [Grattan-Guinness 1990, I, 204, 206], an “ana-
logous but less general” formula by Euler, and the remainder of the Taylor series,
in both “integral” and “Lagrange” forms (not using these names, of course). The
second section [Lacroix Traité, III, 356-385], even more Eulerian, is “on interpola-
tion of series” — using definite integrals that represent those series; we find here for
example the integral [ dz(11)? (to be taken between 0 and 1) for the “second-order

power” [pT, which provides the Euler Gamma function. We also find here Euler’s

interpolation of differentials, often misattributed to Lacroix (see section 10.1.2).
The second part of this chapter [Traité, III, 392-483] corresponds to the

chapter “investigation on the values of definite integrals” of the second edition.

38«3 kind of disorder, by the continued mixture of procedures too different from those of

integration in the strict sense”
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Its first section has that same title, and the third is a “continuation”. These two
sections give an abridged account of a favorite subject of Euler: the evaluation of
certain definite integrals of functions whose indefinite integrals cannot be obtai-
ned in finite form. The last example studied is Euler’s gamma function (without
this name) [Traité, 11, 453-460]. The intermediate section is a “digression on the
expressions of sines and cosines as indefinite products”; it deals with various ap-
plications of the expressions for the functions sine and cosine as infinite products.
It is still Eulerian but, interestingly, Lacroix substitutes some of I’'Huilier’s limit
considerations [1795] for Euler’s uses of infinity. The fourth section is “on series
appropriate to evaluate integrals that are functions of large numbers”™ this is a
method by Laplace for approximating functions given by definite integrals where
some terms are raised to very high powers, making exact calculations impractica-
ble [Gillispie 1997, 81, 89-91]. The final section in this part is an “examination of
the transcendent | 2—;”. This examination is done through several determinations
of limits of integration (the allocation of a separate section for this may be due to
the fact that it reports work by Mascheroni rather than Euler).

The third part of the chapter [ Traité, 111, 483-529] corresponds to the chapter
“on definite integrals applied to solving differential and difference equations” of the
second edition. It contains two sections. The first is on the “use of definite integrals
to express functions given by differential equations”; Lacroix reports a method by
Laplace [1779] for finding solutions to second-order linear (and some quasi-linear)
partial differential equations as definite integrals, antecedents by Euler, and some
developments by Parseval. The second section (the last in this chapter) is on
the “application of the formulas [ e “*vdu, [u*vdu, etc. to the integration of
difference and differential equations” — once again Laplace’s work [1782], namely
the ancestors of the Laplace transform [Grattan-Guinness 1997, 261-262)].

It is interesting to remark that although so much of chapter 3 is dedicated
to definite integrals, only in two articles | Traité, 111, 446-447, 475] (both in what
was called here the second part) does Lacroix use Euler’s notation

2" de [ 2=0
1+2" | x=inf

(that is, the integral taken from 0 to +00). Elsewhere, the limits of integration —
and the plain fact that there are limits of integration — is only indicated in the
main text.

Chapter 4, the last one, is also the shortest |Traité, ITI, 530-544]. It is “on
mixed difference equations”, that is, equations involving both differentials and
differences: an analytical theory followed by some geometrical applications. Lacroix
acknowledges that most of the chapter is taken from a memoir by Jean-Baptiste
Biot that had not yet been published (see section 7.3.2) — a very similar situation
to the one above on multiple integrals of difference equations.
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2.6 (Partial) translations of the Traité

Several of Lacroix’s textbooks were translated into other languages. We will see
in section 8.10 that his Traité élémentaire de Calcul... was translated into six
languages. But translating his large Traité would have been quite a different task,
given the difference in size. Moreover, not being a textbook, the public for such
a translation would be small. It is not a wonder that no complete translation is
known. Still, there were attempts, in Germany and Greece.

2.6.1 One or two German partial translations
2.6.1.1 J.P. Griison’s translation of volume I

A German translation of the first volume of Lacroix’s Traité was published in
Berlin with remarkable rapidity: 1799-1800.

The translator was Johann Philipp Griison (Neustadt-Magdeburg, 1768 —
Berlin, 1857). Griison moved to Berlin in 1794 to teach mathematics, first at the
Cadet School, from 1799 at the Bauakademie (Architecture/Construction Aca-
demy), later at the University (1816) and at the French Gymnasium (1817). In
1798 he became a member of the Berlin Academy of Sciences. He was a prolific
mathematician, but not a very good one: Moritz Cantor said in [1879] that his
original writings had justly fallen into oblivion. Neither was he very honest: in
1813 he plagiarized two papers by Parseval [Grattan-Guinness 1990, I, 208].

Apart from his original (and pseudo-original) works, Griison published se-
veral translations from the French. Among them are a translation of [Lagrange
Fonctions| in two volumes (1798 and 1799), and that of [Lacroix Traité, I|. This
translation, under the title Lehrbegriff des Differential- und Integralcalculs was pu-
blished in Berlin by F.T. Lagarde, also in two volumes [Lacroix 1799-1800]. The
first volume (1799) goes up to chapter 2 of [Lacroix Traité, I|, while the second
volume (1800) contains chapters 3, 4 and 5.39 Their format is octavo — half of the
original edition’s quarto.

Griison made an explicit connection between the translations of Lagrange’s
and Lacroix’s books: the latter was to function as an introduction and elucidation
(“Erlauterung”) of the former [Lacroix 1799-1800, 1, xlviii|.

It is clear that Griison planned to publish the translation of the whole Traité,
or at least of the second volume also (not in the least because of the title used). I
do not know why he did not accomplish it (possibly, as I have suggested above, it
was not very successful commercially; or he may have lost courage when the third
volume appeared in 1800). He also promised a translation of Lacroix’s textbook
on descriptive geometry [Lacroix 1799-1800, 11, 256-257], but I have not found
any trace of it.

39Both I [Domingues 2005, 277] and Grattan-Guinness [1990, 1, 140] have been tricked, by
the fact that the translation has two volumes, into thinking that it was a translation of the first
and second volumes of Lacroix’s Traité.
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The title pages of both volumes promise some additions and notes (“mit eini-
gen Zusétzen und Anmerkungen”). But in the second volume the only addition or
note that I have found is the promise mentioned in the previous paragraph. In the
first there are some, not many, notes by Griison — always signed “G”. In the table
of contents he indicates some German translations of books cited by Lacroix. An
interesting short note appears at the end of chapter 1. Lacroix finishes that chap-
ter by explaining that he will not speak of Newton’s theory of fluxions because of
its use of movement, a concept alien to analysis and geometry. Griison disagrees:
movement without consideration of forces belongs in geometry — as in the forma-
tion of the circle, sphere, cone, Archimedes’ spirals and Dinostratos’ quadratrix;
but he does not proceed to explain Newton’s fluxions [Lacroix 1799-1800, 1, 329].

2.6.1.2 A possible partial translation by F. Funck

Both the German national bibliographical catalogue |GV, LXXXIII, 198] and a
collective online catalogue Gemeinsamer Verbundkatalog?® mention an Einleitung
in die Differential- und Integralrechnung (i.e., Introduction to differential and in-
tegral calculus) by Lacroix, translated into German by Franz Funck, and published
in Berlin by Reimer in 1833. I have not seen this book, so I can only make some
conjectures, based on the information given in these catalogues.

The word Finleitung in the title suggests that this might be a translation of
Lacroix’s Traité élémentaire du calcul... [Lacroix 1802a], rather than of the large
Traité. But there are several details that do not fit well with that possibility. First
of all, both catalogues also indicate that this translation was made from the second
edition (of whatever the original book was), and that the same publisher Reimer
had published a translation of [Lacroix 1802a] in 1830-1831, made from the fourth
edition (see section 8.10.3). In addition, the Gemeinsamer Verbundkatalog informs
that the book has iv+167 pages and one folding plate; this is far too small to be
a translation of [Lacroix 1802a] (whose second edition has xii+606 pages and five
folding plates). But it fits very well with the possibility of being a translation of
the Introduction in [Lacroix Traité, 2nd ed, I] — which has 138 pages, and three
figures in the first folding plate.*!

Franz Funck (1803-1886) had studied at the University of Bonn from 1821
to 1823, and was a teacher of mathematics in the towns of Recklinghausen and
Kulm [Schubring 2005, 518].

2.6.2 The Greek partial and unpublished translation

Volume I and part of volume II of Lacroix’s Traité were translated by loannis
Carandinos, “I'initiateur des mathématiques modernes en Gréce’?, who coined

40 <http://gso.gbv.de> (accessed on 22 January 2007).

41Chapters 1, 2 and 3 have no figures, which excludes the possibility of this being a translation
of chapter 1, or chapters 1 and 2, for instance.

424the initiator of modern mathematics in Greece”



2.6. (Partial) translations of the Traité 51

the Greek words in use for such concepts as function and series [Phili 1996, 305]
— this section is based on this paper.

Toannis Carandinos (Twdvvns Kapavtivés)* was born in the Ionian island
of Cephalonia in 1784. From 1807 to 1814 the Ionian islands were occupied by the
French, who instituted in the chief island of Corfu an Ionian Academy. Teaching
at this academy was Charles Dupin (1784-1873), a graduate of the Ecole Polytech-
nique and admirer of Monge. Carandinos had started his studies of mathematics
in Corfu before the French period, but under Dupin he acquired contemporary
mathematics. In the 1810’s Carandinos taught at a public school in Corfu, fol-
lowing Lacroix, Laplace, and other French authors. In 1815 the British replaced
the French as occupiers of the islands. The new governor, Lord Guilford, instituted
a new lonian Academy, and he appointed Carandinos as rector and professor of
mathematics. The academy started functioning in 1823; but before that Guilford
sponsored periods of study abroad for the future professors. In spite of being Bri-
tish, the place where he sent Carandinos was Paris. In 1820 Carandinos was at
the Ecole Polytechnique. Returning to Corfu he taught higher mathematics at the
Academy from 1824 to 1832. In 1833 he suffered some mental problem, and was
sent to a psychiatric hospital in Naples, where he died in 1834.

In the 1820’s Carandinos published a few original works (namely, on the “na-
ture” of differential calculus, on combinations, on polygonometry, and on equations
of degree higher than 4), and translations of textbooks: Bourdon’s arithmetic, Le-
gendre’s geometry and trigonometry, and John Leslie’s geometrical analysis. Phili
[1996, 314-316] has noted Carandinos general preference for Lacroix’s textbooks,
but also his dislike of Lacroix’s Essais sur ’enseignement... [1805], and his choice
of the authors above for several reasons.

Still, starting in 1824 he translated several of Lacroix’s textbooks, as well
as the first volume of the Traité, and started translating the second volume
[Phili 1996, 318]. Unfortunately, this remained unpublished, along with his trans-
lations of [Lagrange Fonctions|, Poisson’s mechanics, and others. The manuscripts
appear to have been destroyed during the German bombardment of Corfu in World
War II.

43Phili [1996, 305] also gives the alternative spelling K apavdivos. The online library Hellinom-
nimon <http://www.lib.uoa.gr/hellinomnimon/main.htm> (accessed on 23 January 2007) uses
Kapavrnuds. The title pages of his books available there seem to alternate between Kapavdivos,
Kapavtiwés, and Kapavdnrds.



Chapter 3

The principles of the calculus

3.1 The principles of the calculus in the late 18th century

In the late 18th century there were various competing foundational approaches for
the differential calculus. In this section I will try to present them, drawing mainly
upon works that were published (not necessarily for the first time) while Lacroix
was preparing the first edition of his Traité, or that were then still widely used.

As for the integral calculus, it will not be mentioned here, since there were
no fundamental differences in opinion about it — integration was generally viewed
simply as the opposite operation of differentiation (or derivation) and no discus-
sions arose about this. The few relevant issues on the conception of the integral
will be discussed in chapter 5.

3.1.1 Infinitesimals

The approach that was most widely followed, at least at the educational level,
was still that of the Leibnizian infinitesimals.! It was well represented by Bézout’s
hugely successful Cours de Mathématiques [1796], on the section covering the
calculus (opening the fourth volume). Bézout’s Cours was a multi-volume textbook
(4 to 6 volumes, depending on the edition), which had multiple editions? in the
second half of the 18th century and even in the 19th. The section on the calculus
was translated into English in the United States as late as 1824 [Bézout 1824].

1L eibnizian” here does not refer necessarily to adherence to Leibniz’s personal views, but
rather to the “Leibnizian tradition”, which had other authors, among whom Jacob (I) and
Johann (I) Bernoulli. Leibniz’s personal views on infinitesimals are a quite complicated sub-
ject [Bos 1974, 52-66].

2With variants: there was one version to be used by the Gardes du Pavillon et de la Marine,
another by the Artillery, and there were separate editions and translations of some volumes or
sections.
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The main tool for Bézout is the consideration of infinitely great or infinitely
small quantities:

“Nous disons qu’une quantité est infinie ou infiniment petite a 1’égard
d’une autre, lorsqu’il n’est pas possible d’assigner aucune quantité assez
grande ou assez petite pour exprimer le rapport de ces deux-la, c’est-
a-dire, le nombre de fois que 1'une contient I'autre.”® [Bézout 1796, IV,

3]
Of course, if x is infinitely great wjth regargﬁl to a, then % is infinitely great
with regard to z, since a : @ = x : -, and - is infinitely small with regard

to a, since x : a :: a : % This entails the consideration of infinitely great or
infinitely small quantities of different orders. In order to express these relations
it is necessary to neglect, in algebraic expressions, the infinite quantities of the
inferior orders, that is, if « is infinitely small with regard to z, then x should be
taken for x + a. Bézout tries to convince the reader that this neglect is in fact
necessary to reflect the supposition of infinitely smallness, but he does not seem
to have any doubts about the validity of the supposition itself.

Bézout then considers “a variable quantity as increasing by infinitely small
degrees”, and, wishing to know its increments, he simply calculates its values for
any one instant and the “instant immediately following”; their difference is the in-
crement or decrement of the quantity and it is called its differential [Bézout 1796,
IV, 11-12; 1824, 13]. For example, the differential of xy, d(xy), is z dy + y dz, be-
cause the difference between two successive states of zy is (x + dz)(y +dy) — zy =
xdy+ydz+dydx, and dy dz is infinitely small with regard to both x dy and y dzx.

When applying the calculus to calculate tangents, Bézout conceives a “curve
to be a polygon of an infinite number of infinitely small sides”. A tangent is a
prolongation (to finite size) of one of these sides [Bézout 1796, IV, 34; 1824, 28].

The differential of a variable, being itself a variable, can be differentiated: the
differential of dz is ddx, that of ddx is dddx, or d®x, and so on; ddz is infinitely
small with regard to dx, so that ddz, dz? (which means (dz)?), and dxdx are all
infinitely small of the second order [Bézout 1796, IV, 20-21; 1824, 18-19]. When
several variables are involved, it is customary to suppose that one of the first
differentials — say, dz — is constant, so that ddx = d3z = ... = 0. This is possible
because “on peut toujours prendre une des différences premieres, pour terme fixe de
comparaison des autres différences premieres™ [Bézout 1796, IV, 22|. What this
means is that one can assume that the successive values of one of the variables
are equally spaced, or in other words, that that variable varies uniformly; this can
be done because a priori the progression of any variable (the spacing between its
successive values) is arbitrary.

3“We say that a quantity is infinitely great or infinitely small with regard to another, when it
is not possible to assign any quantity sufficiently large or sufficiently small to express the ratio
of the two, that is, the number of times that one contains the other” [Bézout 1824, 8|.

44we may always take one of the first differentials as a fixed term of comparison for the other
first differentials”[Bézout 1824, 20|
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Of course this entails a fundamental indeterminacy, since different results
occur according to the choice made about the progression of the Variables Bézout

, ives an example: the differential of ££ is — it dx
[1796’ IV, 22-23; 1824 20]g ple: the diff 1 f i dzddy i g

d T2
is taken as constant; but it is dd‘” if dy is taken as constant. There is a more serious

aspect of this indeterminacy that Bézout does not mention: when faced with an
expression like dd‘” , in order to know its meaning, one needs to know whether it is
dy that is taken as constant, or some other differential (certainly not dx, because
ddx occurs in the formula; but it could well be ds = /dz? + dy?, a common case
when studying curves; or it could be that no differential is taken as constant). Of
course usually one will know by the context which choice has been made about
the progression of the variables.

Bézout’s version of the differential calculus is essentially the same that had
been published in the first textbook on this subject: ["Hopital 1696].

A variant on this approach is presented in [Euler Differentialis]. For Euler,
those quantities usually called infinitely small were in fact equal to zero; however,
this did not mean that one could not reckon with them, since what really mattered
in the calculus was not the values of differentials, but rather those of their ratios.
For example, if dy = 2dz, although both dy and dx are null, dy : do = 2 : 1.
From the fact that they are zeros comes the neglect of infinitesimals of higher
orders: the ratio of dx + dz? to dz is dmg—j‘# = 1+ dx = 1 [Euler Differentialis,
I, § 88|, therefore dz may be taken for dx + dx?. In fact Euler only used these
arguments involving zeros in order to justify the validity of the rules for reckoning
with infinitely great and infinitely small quantities. His differential calculus is
presented as a particular case of the method of (usually finite) differences, the
case in which these are infinitely small.’

The most important aspect of his discussion is his assumption of the promi-
nent role of ratios of differentials, as opposed to differentials themselves. There is
a subtle distinction to be made here between ratios of differentials and quotients
of differentials. In spite of the dg”*;” example above, Euler’s ratios are usually
not the result of division between differentials; his point is that there is always a
finite P such that dy : de = P : 1 [Euler Differentialis, I, § 120]; and this P is
usually introduced as the finite quantity such that dy = Pdz.5

These differential ratios were especially useful for dealing with higher-order
differentiation; or perhaps we should say for dispensing with higher-order diffe-

5Tn the preface to [Euler Differentialis], Euler referred also to limits to explain the differential
calculus: the ratio of 2zdx + dz? to dx is exactly 2z + dx, but the smaller dz becomes the more
this ratio approaches 2z, and when dz finally vanishes the ratio effectively arrives at the value
2z. However, not only is this very vague and a very naive version of limits, but also Euler does
not use limits at all in the development of the calculus, so that his adherence to them seems to
be entirely rhetorical.

SEuler did not use any particular name for the differential ratios. In [Bos 1974] they are called
differential coefficients (opposed to differential quotients). But it seems that it was Lacroix who
introduced the expression differential coefficients (see page 73 below). Therefore, here I will use
the expression differential ratios when referring to Euler.
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rentials. Euler faced the fact that the meaning of a formula involving higher-order
differentials depends on the underlying choice made about the progression of the
variables, and concluded that because of this, higher-order differentials were un-
desirable in analysis. He did not exclude them completely — and in fact their
consideration was indispensable for some problems, such as changing the indepen-
dent variable (see page 77 below) — but he gave a method for removing them
and tried to avoid them as much as possible. This method used the differential
ratios: if p is a finite quantity such that dy = pdx, then it can be differentiated
giving something as dp = qdx, where ¢ is once again finite and can be differenti-
ated giving something as dq = rdzx, and so on; if x is taken as the independent
variable, so that ddz = 0, then ddy = dpdx = qdz?, d3y = dgdz? = rdz3, and
so on... [Euler Differentialis, § 126-133, 264]. In this way the differential calculus
can be seen as being not so much about infinitesimal differentials as about the
finite quantities p, q,r, ..., which are functions of x. This was a major step in the
evolution of the calculus towards a subject about functions, rather than variable
quantities, and a first step in setting as its main concept what would later be
known as the derivative [Bos 1974].

Lacroix was quite aware of this, as is clear from the preface to [Lacroix Traité]
where he claims that it was Euler “qui le premier sépara ce Calcul de son applica-
tion aux courbes, et qui, en exprimant par des lettres les rapports des différentielles,
avoit délivré des quantités infiniment petites, les équations que en contenoient””
[Lacroix Traité, I, xxiii|.

Because of what was explained above, it is natural to identify independent
variable and variable with constant differential. This identification helps modern
readers in making sense of many calculations in Leibnizian calculus, and it is
quite straightforward in one-variable calculus. It is trickier in multivariate cal-
culus, and in that situation it was actually rejected by Euler [Differentialis, I,
§246]; but it was adopted by Lagrange [1759a, 4-5] and later mathematicians
[Domingues 2004b].

Euler’s version of the infinitesimal approach (reckoning with zeros) was not
often followed by other authors, but one of those that did follow him was Charles
Bossut (1730-1814), in a treatise published almost at the same time as Lacroix’s
[Bossut 1798]. Like Euler, Bossut starts by expounding the calculus of finite dif-
ferences, supposing later that those differences become infinitely small, and then
“peuvent étre regardées ou traitées comme de véritables zéros, qui ont entr’eux
des rapports déterminables par I'état d’une question™® [1798, I, 94|. However, the
insistence on the finite quantities p, ¢, r, ... as the true object of the calculus is en-
tirely absent, perhaps due to Bossut’s less theoretical exposition, based essentially
on examples.

T“the first who separated this calculus from its application to curves, and who, using letters
to denote the ratios of differentials, delivered the equations containing them from infinitely small
quantities”

84can be viewed or treated as true zeros, which have between them ratios determinable by
the state of a question”.
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3.1.2 Limits

For most of the 18th century the most serious competitor to infinitesimals was
the method of limits. These had been propounded in 1754 by d’Alembert as the
basis for the true metaphysics of the differential calculus, in the article “Diffé-
rentiel” of the [Encyclopédie]. D’Alembert retraced this metaphysics to Newton,
“quoiqu’il se soit contenté de la faire entre-voir”?, referring to the theory of “ul-
timate ratios” of “vanishing quantities” in Quadratura curvarum and Principia
Mathematica [Boyer 1939, 195-201]. D’Alembert may have given a larger glimpse
than Newton of this metaphysics, but still only a glimpse: he proved the unique-
ness of the limit and gave an example of how limits could be used to calculate
the tangent to a parabola, but gave only an intuitive argument for the limit of
5,77 being g, and was satisfied to conclude, from that single example, that the
differential calculus (with infinitesimals) reached the same results as the method
of limits.

D’Alembert’s suggestion was taken up by a few mathematicians, among
whom was Cousin, in both [1777] and [1796] — the sections on the metaphysics of
the calculus are essentially the same.

The first chapter in [Cousin 1777]' is, just like that of [Euler Differentialis],
dedicated to the calculus of differences “in general”. The second is then devoted to
the method of limits. It starts by a definition of limit that is essentially the same
that the Abbé de la Chapelle had given in the article “Limite” of the [ Encyclopédie]:

“On dit d’une grandeur qu’elle a pour limite une autre grandeur, quand
on congoit qu’elle peut en approcher jusqu’a n’en différer que d’une
quantité aussi petite qu'on voudra, sans pouvoir jamais coincider avec
elle.”1! [Cousin 1777, 17; 1796, 1, 84]

Cousin concludes very quickly that the limit of a given magnitude is unique
and that if two magnitudes have a constant ratio, then their limits have the same
ratio. In spite of these being “the two propositions on which the whole method of
limits is founded”, for the first only a slim argumentation is given and for the second
not even that: it is plainly evident. He proceeds to give geometrical examples, in
which the handling of limits is extremely naive: to calculate the limit of a given
formula, he simply replaces magnitudes occurring in that formula with their limits.
A cone with base ABDF is simply stated, without any argumentation, to be the
limit of pyramids with the same vertex and having as bases polygons inscribed in
ABDE [Cousin 1777, 19; 1796, 1, 85].

Much of the chapter on limits is heavily based on geometrical considerations.
Moving towards the “transcendental geometry of the Moderns”, Cousin proposes to

9%although he was satisfied to give only a glimpse of it”.

10Third in [Cousin 1796], after two introductory chapters on analytic geometry and the method
of undetermined coefficients.

1141t is said of a magnitude that it has another as limit, when it is regarded as being able to
approach the latter until they differ by a quantity as little as wished, without ever being able to
coincide with it.
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find the subtangent of a curve, and is led to consider the limit of the ratio between
Ay dy

the ordinate and the abscissa, 2. He takes §% as a special symbol (“signe”) to
represent the limit of the ratio between the differences of the variables x and y
[Cousin 1777, 32]*2. “The terms dy, dz of the limit g—g” [Cousin 1777, 73; 1796, 1,
151] are then called differentials and are used throughout the rest of the book, in
spite of not having more than this vague definition (if it can be called a definition
at all).

This kind of naive consideration of limits did not usually lead to mistakes,
because the examples were very simple. But in section 7.2 we will see serious
mistakes being committed by a somewhat obscure member of the Academy of
Sciences of Paris, Jacques Charles. Of course, his examples were much less simple
— he dealt with the finite-difference equivalent of singular solutions of differential
equations, and tried to take their limits.

A quite different limit-based approach, and less naive, was that of the Swiss
mathematician Simon Huilier (1750-1840), in [I’'Huilier 1786]. The Mathematics
Section of the Academy of Berlin, of which Lagrange was the director, had propo-
sed a competition for 1786 on the subject of establishing a “clear and precise theory
of what is called Infinite in Mathematics”, namely an explanation for the strange
fact that so many correct theorems had been deduced from the contradictory sup-
position of the existence of infinite magnitudes. L’Huilier won this competition!'?
and his entry, Ezposition élémentaire des principes des calculs supérieurs, was pu-
blished as ['Huilier 1786]. An expanded Latin translation was later published as
[Huilier 1795].

L’Huilier proposed to establish the “higher calculi” on the basis of the Greek
method of exhaustion developing the ideas that d’Alembert had only sketched
[Huilier 1786, 6, 167; 1795, ii, 7]. L'Huilier is much more careful than Cousin,
and his work is thus much more rigorous. However, his views on rigour and on the
method of limits are too much based on the ancient Greeks and on the method
of exhaustion. L’Huilier insists on a distinction between quantities and ratios of
quantities (focusing his attention mainly on the latter). Instead of a single de-
finition of limit, he has two, for limit of a variable quantity and for limit of a
variable ratio, which in fact turn into four, since each is split into two cases: limit
in greatness and limit in smallness.'* To give an example:

“Soit un rapport variable toujours plus petit qu'un rapport donné, mais
qui puisse étre rendu plus grand qu’aucun rapport assigné plus petit
que ce dernier: le rapport donné est appelé la limite en grandeur du
rapport variable.”!> [I'Huilier 1786, 7|

12In [1796] Cousin uses % in the chapter on the method of limits, and changes to % later on,

when explicitly addressing the differential calculus.

13 Although the judges spoke in their report of his text not as the best, but as the least
unsatisfactory of the entries to the prize [Acad. Berlin 1786].

M1, Huilier took these definitions from a small tract by Robert Simson (De Limitibus Quanti-
tatum et Rationum Fragmentum), published posthumously in [Simson 1776].

15¢Let a variable ratio be always smaller than a given ratio, but capable of being rendered
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In the Latin versions of these definitions [1795, 1] it is even more obvious that
L’Huilier was assuming that the approaching quantity or ratio was monotonic: ap-
parently he viewed any limiting process as similar to those of either inscribed or
circumscribed polygons. He was certainly not the only one at the time, as is sugges-
ted by the assumption of la Chapelle in the article “Limite” in the [Encyclopédie],
that the approaching magnitude can never surpass its limit. But it was in fact
I’Huilier who, apparently for the first time, remarked that the approaching ratio
or variable need not be monotonic. He did so precisely in the Latin edition, where
he supplied a separate definition for the limit of an alternating ratio'®, remarking
that a similar definition could be given for the limit of an alternating quantity
[Huilier 1795, 16-18].

L’Huilier introduced, very casually, the abbreviation ‘lim.” (or ‘Lim.’) for
‘limit’ [1786, 24], which would later be turned into the standard symbol for limit
(namely after its use by Cauchy in the 1820’s).

Contrary to what was common practice at the time, ’'Huilier did use his
definitions of limits to prove theorems about them. That is, to prove that lim. A :
X = A: B (A: X increasing, say) he would propose an arbitrary ratio A : Y <
A : B and prove that it was possible to take X such that A : X > A : B. The
problem is that these demonstrations needed to be split into several different cases
and were too fastidious for any supporter of the modern mathematics.

Like Cousin, I’'Huilier defined j—i’ as the limit of % but, unlike Cousin, he

dy

saw 5% as a “single and non decomposable” symbol [I'Huilier 1786, 31-32; 1795,

36|, avoiding the use of dy and dz. He did call g—gyc a differential ratio, but that was
probably motivated by concerns on homogeneity: the limit of a ratio could not be
anything else; and a ratio could be treated as a single entity.

3.1.3 Carnot on the compensation of errors

Lazare-Nicolas-Marguerite Carnot (1753-1823), a French mathematician, engineer,
and politician, was another competitor for the Berlin Academy prize of 1786.
His entry, defeated, would stay forgotten in the Academy’s archives; but in 1797,
while Carnot was a member of the Executive Directory (then the governing body
of the French Republic), it was published in a revised version as Réflexions sur
la Métaphysique du Calcul Infinitésimal [Carnot 1797]. The original version was
published in facsimile in [Gillispie 1971, 171-262|.

Carnot adhered to the idea that the differential calculus worked by compen-
sation of errors: in the traditional process of infinitesimal calculus, we start by
regarding a curve as a polygonal line; here an error is being committed; afterwards,
during the calculations, the neglect of infinitesimals introduces a second error that

greater than any assigned ratio that is smaller than the latter: the given ratio is called the limit
in greatness of the variable ratio.”

16This was prompted from the study of the ratio of two decreasing quantities AX,CY, with
limits AB, CD, respectively; AX : CY may be made as close as wished to AB : CD, but it is
not necessarily always greater or always smaller [I'Huilier 1795, 16-17].
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cancels the first. This justification had been proposed by the idealist philosopher
George Berkeley (1685-1753), Anglican bishop of Cloyne, Ireland, in The Analyst
(London, 1734), a sharp critique on the logical inconsistencies of the method of flu-
xions or differential calculus. Around 1760 Lagrange agreed that compensation of
errors was the true “metaphysics of the calculus with infinitely small [quantities]”
[Lagrange 1760-61b, 598]. But Carnot decided to prove that it worked.

Carnot’s argumentation ran around what he called imperfect equations. The
members of one of these were in fact not equal, but had the same limit, which
means that they had to involve variables, or as Carnot said, “auxiliary quanti-
ties”; imperfect equations were operated upon by replacing quantities with other,
infinitely close, quantities; once all the auxiliary quantities had disappeared, an
exact equation would remain. Apparently Carnot did not truly convince his re-
aders, judging from the fact that he had no followers. Moreover, in 1797 (and
still in 1813, when Carnot’s work was widely known) Lagrange reasserted his
opinion that the compensation of errors explained the infinitesimal calculus, but
adding that “it would perhaps be difficult to give a general demonstration of that”
[Lagrange Fonctions, 1st ed, 3; 2nd ed, 17| — implying that Carnot had not given
one.

Nevertheless, Carnot’s book was quite successful, judging from the facts that
it had a second and enlarged edition in 1813 that was reprinted a few times until
1921, and that it was translated into Portuguese, German, English, Italian and
Russian [Youschkevitch 1971, 149]. It was also praised by Lacroix, who had read a
manuscript version (possibly the 1786 prize entry) and urged it to be published!”
[Lacroix Traité, I, xxi-xxii]. But what Lacroix probably liked most in Carnot’s
work (and possibly what made it popular) was not so much the “compensation
of errors”, as his discussion and comparison of the several points of view then
available for the calculus.

3.1.4 Power series

Joseph-Louis Lagrange had a special interest in the principles of the calculus, and,
being the most important mathematician at this time (or, at least, one of the
two most important, with Laplace), he was very influential in making the issue
fashionable, as it were, in the late 18th century.

As we have seen above, around 1760 Lagrange thought of compensation of
errors as the true metaphysics (that is, the reason why it works) of the Leibnizian
infinitesimal calculus; while the Newtonian method (that of ultimate ratios) was
perfectly rigorous, but entailed long and complicated demonstrations, which was
a reason to use infinitesimals instead [Lagrange 1760-610].

Later, Lagrange showed himself dissatisfied with these explanations. Com-
pensation of errors did not seem capable of demonstration [Fonctions, 3] and, for

17Carnot’s book appeared in print that same year of 1797 as [Lacroix Traité, I] and
|[Lagrange Fonctions|.
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the method of limits, it was not clear enough what happened to § when both a
and b became null [Fonctions, 3-4].

In 1772 Lagrange published in the Nouwveaur Mémoires de I’Académie de
Berlin a memoir that would be central to this story. Its title was “Sur une nou-
velle espéce de calcul relatif & la différentiation et & I'intégration des quantités
variables”. Its subject was not the principles, or metaphysics, of the calculus, but
rather results taken from analogies between power-raising and differentiation (and
between root-extracting and integration). However, Lagrange thought best to start
by establishing “quelques notions générales et préliminaires sur la nature des fonc-
tions d’une ou de plusiers variables, lesquelles pourraient servir d’introduction a
une théorie générale des fonctions”® |Lagrange 1772a, 442].

This was the first appearance of his power-series version of the differential
calculus. Lagrange knew from the theory of series that if w is a function of  and
we substitute x + £ for z, it will become

u+pE+p'&+p"E +p"et + (3.1)

“ott p,p’,p”, ... seront de nouvelles fonctions de x, dérivées d’une certaine maniére
de la fonction u”1? [Lagrange 1772a, §1|. He then characterized the differential
calculus as concerned with finding the functions p,p’,p”, ... derived from u. He
saw this as the clearest and simplest conception of the calculus ever given, being
“indépendante de toute métaphysique et de toute théorie des quantités infiniment
petites ou évanouissantes”?” [Lagrange 1772a, § 3].

Lagrange then proceeded to simultaneously explain how come this was a
definition of the calculus and arrive at Taylor’s formula: substituting z + £ + w
for z in the function v and expanding the result in two different ways — namely
substituting z + w for z and substituting £ + w for £ in (3.1) — and equating the
resulting power-series, comes

w,w’,w"”, ... had appeared in the expansions: w was derived from p, @’ from p’,
w” from p”, and so on, in the same manner that p was derived from u. This
prompted a change in notation that would be remarkably enduring: «’ instead of
p, the accent signifying this one-step derivation (and v signifying (u')’), so that
the p’ of (3.1) became -, p” became 4=, and so on, giving

U//£2 u///£3 ’LLIV£4

!
2
u+ué+ 5 +2.3+2'3.4+ (3.2)

184some general preliminary notions on the nature of functions of one or more variables, which

might serve as an introduction to a general theory of functions”.
19¢%where p,p’, p”, ... will be new functions of x, derived in a certain way from the function u”

20¢independent of all metaphysics and of any theory of infinitely small or vanishing quantities”.
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for the result of substituting x 4+ ¢ for z in the function u.?! Now, taking & to
be infinitesimal and neglecting its powers £2,£3,...; (3.2) gives only u’¢ for the
increment of u; using the traditional notations of du,dx, we get

du=v'de and ' = d_u;
dz
“ainsi, pour avoir la fonction u’, il n’y aura qu’a chercher la différentielle du par les
régles du calcul des infiniment petits, et la diviser ensuite par la différentielle dz”??
[Lagrange 1772a, §6]. Notice how u/ = 9% had to be proved, and how Lagrange
resorts to the infinitesimal calculus, including a differential quotient.

At this point it is clear enough that

2
— d% d2u u/// _ dgxg d3u

" e = ...
Y dx da?’ dx da3’

so that (3.2) becomes

Lagrange remarks that this seemed to him one of the simplest demonstrations of
Taylor’s theorem.

All of the above have multivariate equivalents, with the notation u""" for
d®u  _ d?
dz gy — dy Zitm

modern %. This allows a proof of

Y that relies heavily on the

ambiguity of u’’.

From then onwards the memoir proceeds on its true subject, ignoring these
foundational digressions and using only occasionally the notation u’.

It must be noted that the assumption that the increment of any function may
be expanded into a power series, or the use of such power series in the development
of the principles of differential calculus, are not exclusive of works following a
power-series foundation. We can see that assumption and uses of it for fundamental
results, for instance in [Euler Differentialis, I|, and in [Cousin 1777; 1796]. The
distinction between a technical use of power series and a foundation of the calculus
based on power series may sometimes be subtle; we will see borderline examples
shortly (Condorcet) and in sections 8.2 (Fourier and Garnier) and 8.5 (Lacroix).
The cases of Lagrange and Arbogast, treated below, are more clear-cut.

21 Change of notation within this memoir. The accent notation had already been used by
Lagrange in 1770 and possibly 1759 [Cajori 1928-1929, 11, 208|. And also, very clearly, by Euler
[Integralis, II1, § 138]: “in designandis functionibus hac lege utemur, ut sit d.f:v = dv{’wv, sicque
porro d.f v =dvf”:v et df":v =dvf"":v etc.” (“we will use this rule in designating functions,
so that d.f:v = dvf’:v, and so forth d.f":v =dvf":v et d.f":v = dvf’”:v etc.”). But most often
Euler used p, g, etc.; and of course it was [Lagrange Fonctions| that made the accent notation
popular.

22«therefore, to find the function u/, it is enough to find the differential du using the rules of
the infinitesimal calculus, and then divide it by the differential dz”
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A few years after publishing [1772a], Lagrange took a major part in proposing
the 1786 competition of the Berlin Academy on a “clear and precise theory of what
is called Infinite in Mathematics” and in judging the entries. It has been suggested
that this indicates that Lagrange was not entirely satisfied with his own suggestion
of basing the calculus on power series.?? It is possible that this interpretation is
correct, but it should be taken into account that, for Lagrange, a “theory of the
Infinite in Mathematics” and a sound foundation of the calculus were not the
same thing: his power-series version of the principles of the calculus was, in his
own words, “reduced to the algebraic analysis of finite quantities”* (my emphasis)
and, as we have seen above, even after he had published it, he still thought the
infinitesimal calculus worked because of compensation of errors. His power-series
approach could not be the basis for an entry for the competition, because, as he
saw it, it had nothing to do with the infinite.

After giving his foundational suggestion in [1772a], Lagrange did not develop
it until 1795 (as will be seen below). Meanwhile, one or two other mathematicians
took it up, in works that unfortunately have remained unpublished. In the late
1770’s and early 1780’s the marquis de Condorcet wrote the first two parts (five
parts were planned) of a very large Traité du Calcul intégral; the first few sections
(containing, in spite of the title, the principles of the differential calculus) were
printed [Condorcet Traité]|, apparently around 1786. In 1810 Lacroix attributed
to this work by Condorcet the priority in a purely analytical exposition of the
principles of the differential calculus [Traité, 2nd ed, I, xxii-xiii]. Youschkevitch
[1976, 76] confirms that in this treatise “Condorcet attempts to derive a Taylor
series formally for an arbitrary function, almost in the way Lagrange had done”.
But Gilain [1988, 135], while acknowledging Condorcet’s use of series expansions
for differentiation, thinks that there was not a foundational concern involved (so
that it would be an example of technical, rather than foundational, use of power
series). I have not been able to study [Condorcet Traité] thoroughly, but from what
I could gather I would say that Condorcet does give a power-series foundation for
the differential calculus, even though that is far from being his main concern —
after all, this was just an introduction to a treatise on the integral calculus. He
expands the finite difference of a function F' of x as

AF = AAx + BAz? + CAz? .. .

then he considers another increment for z, dz (presumably also finite) and observes
that expansions for F = F': (z + Az 4+ dx) may be obtained either by substituting
x + dx for =, or ACL’ + dz for Az (just as Lagrange had done, with a different
notation); calhng L the coefﬁc1ent of dz in the expansion of F : (z + dz), he

concludes that A = dF , B = d F for d(‘“) =44 (and

dz

2d’

23For instance, in [Grabiner 1966, 40-46] or in [Grattan-Guinness 1980, 101].

24From the full title of [Lagrange Fonctions|: Théorie des Fontions Analytiques, contenant
les Principes du Calcul Différentiel, dégagés de toute considération d’Infiniment Petits ou
d’Evanouissans, de Limites ou de Fluzions, et réduits a I’Analyse Algébrique des Quantités
Finies.
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so on) he arrives at Taylor’s theorem [Condorcet Traité, 26-28]. He then proceeds
using power series to obtain such results as what we would call the equality of
mixed derivatives, and the derivatives of the common functions. However, he fails
(as far as I could see) to do something as simple as giving a name to %; or to
argue for the possibility of expanding AF in a series of powers of Az — which may
be one of the reasons why Gilain does not recognize it a foundational character.
A different issue is whether Lacroix read the printed pages of Condorcet’s
treatise before the publication of the first edition of his Traité. Given his close asso-
ciation to Condorcet, this is very much possible. But the fact that he does not men-
tion it in the first edition casts serious doubts on this possibility. Moreover I have
not noticed any obvious influence from [Condorcet Traité] in [Lacroix Traité].?
The first person to devote a piece of work to the development of Lagrange’s
suggestion was L. F. A. Arbogast; he did this in a memoir entitled “Essai sur de
nouveaux principes de Calcul différentiel et intégral, indépendans de la théorie des
infiniment-petits et de celle des limites”, submitted to the Académie des Sciences
of Paris in 1789. This memoir was never published, although a book by Arbogast,
Du Calcul des Dérivations, in which he expanded and generalized his thoughts on
the subject, appeared in 1800.26 In his 1789 memoir, Arbogast tried to effectively
improve on [Lagrange 1772a]: he tried, for instance, to prove that (3.1) was valid,
whatever the function u, something that in [Lagrange 1772a| was simply assumed.
However, Arbogast’s attempt at a proof rested on a general validity of the binomial
formula and on the assumption that any function y of = could be written as

y = Az® + BaP + Cz" + Daf® + &e. (3.3)

where a, 3,7, d, &c. are any (real) numbers, in ascending or descending order [Frie-
delmeyer 1993, 78]. As is well known, Euler had taken for granted the possibility
of expanding an arbitrary function y of x as

y = A+ Bx + C2* + D2® + &c.

and had given (3.3) as an alternative for sceptics, so to speak [Euler Introductio,
I, §59; Youschkevitch 1976, 62-63].
After concluding that the difference Ay of y can be expanded into

3 1 4

1.2'37"Ax +1'2.3.48A$ + &ec. (3.4)

25For instance, Condorcet presents the calculus of finite differences as a fundamental prelimi-
nary to the differential calculus, while Lacroix postpones it to the third volume of his Traité; both
give expansions for a® by “purely finite” means, but while Lacroix’s is based on a® x a* = a® 1%,
Condorcet’s is based on a?* = (a®)2 — in the second edition Lacroix expressly mentioned his
preference for the former identity (see below page 264, footnote 19; Fourier, on the other hand,
may have been influenced by Condorcet).

26There are two surviving manuscripts of the 1789 memoir, one kept at the Biblioteca Medicea
Laurenziana in Florence, and the other at the Ecole des Ponts et Chaussées of Paris. Accounts
of the memoir can be found in [Grabiner 1966, 47-59|, [Panza 1985] and [Friedelmeyer 1993, 69-
131]. T have used them to write this passage and another in section 4.2.1.1 on contact of curves.
Later, I was able to make some improvements thanks to photocopies of the Florence manuscript,
kindly supplied to me by Marco Panza.

1
Ay = pAzx + 13 qAz? +
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Arbogast calls each of the terms in (3.4) — disregarding the numerical coefficients
— differentials: pAx the first differential, ¢gAz? the second differential, and so
on. They are given the predictable notation (dy = pAx,dy? = qAx?,&c.) and
then Az is identified with dz (because pAz, gAz?, &c. are differentials, not whole
differences), so that it is immediate to conclude that

dy d2y_ _ d3y_ L&

% =D; @ = dq; E =T C.
D, q,1,&c. being functions of x, called differential ratios (“rapports différentiels”)
[Friedelmeyer 1993, 80-81].

An interesting aspect in Arbogast’s memoir is his exposition and use of a

principle which I will call in this work Arbogast’s principle: given a series such as

d 1 d? 1 & .

Ay = %Am—k ﬁd—;;m? + 1_2.3d—;3{m3 + &e.

we can give Ax a value small enough for any of the terms in the series to exceed

(in absolute value) the sum of all that follow |[Friedelmeyer 1993, 81]. Arbogast

argued for this principle, trying to determine how small Ax had to be. But of

course his arguments are flawed (the fundamental flaws amount to using the lar-

gest of the terms %%, 1.1%%,
[Friedelmeyer 1993, 81-84].

A similar principle (but with a flavour of infinitesimal-neglecting) had already
been stated and used by Euler [Differentialis, § 122]: in a series Pw + Qw? + Rw3 +
&c, if w is given a value so small that the terms Qw?, Rw?, etc. become much
smaller than Pw, then this first term may be taken for the whole series — this in
computations that do not require “the highest rigour”. Grabiner calls this “Euler’s
criterion” [1981, 117]. Euler used this to establish the necessary condition Z_Z =0
for a local extreme, without recurring to geometrical considerations [ Differentialis,
I, §253-254].

It is not surprising that similarly to what Euler had done (or better, according
to Friedelmeyer [1993, 99]), Arbogast used his principle to study local extremes.
Apparently he regarded it as one of the most important points in his memoir:
in 1800 he made a summary of the unpublished memoir, listing six principles on
which it rested, and this was one of them [Grabiner 1966, 48-49, 54-55|. Arbogast’s
principle was later used in two developments of the calculus based on power series:
those by Lagrange and by Lacroix.?”

&c, of which there may be an infinite number)

27Tt is likely, but not certain, that Lacroix had direct access to the 1789 memoir. He does not
mention Arbogast at all while treating the principles of the calculus; he does allude to his memoir
in passing in chapter 4 [Lacroix Traité, I, 370], but only referring to the similarity between the
ways in which Arbogast and Lagrange treated curves - he might know this from elsewhere, namely
from Lagrange; while it is very clear that he had read another unpublished memoir by Arbogast,
on “arbitrary functions” [Lacroix Traité, 11, viii, 619], and that he was in contact with Arbogast
already in 1794 [Traité, III, 543|. It is of course possible that Lacroix read Arbogast’s memoir
but only in or after 1795, making that reading irrelevant for his development of the principles of
the calculus, but in time for the reference in a later chapter.



66 Chapter 3. The principles of the calculus

Lagrange, living in Paris and attending the sessions of the Académie des Sci-
ences since 1787, knew Arbogast’s memoir. Apparently he was very pleased with
it, and in 1797 the only fault he could find in it was that it remained unpublished
[Lagrange Fonctions, 5].

In 1795 Lagrange was charged with teaching the calculus at the Ecole Poly-
technique. This was the turning point in which he found the need (and the will) to
develop his suggestion of 1772 in detail. A book resulting from these lectures was
published in 1797 as Théorie des Fonctions Analytiques [Lagrange Fonctions|.

After some introductory paragraphs (converted into an “Introduction” in the
1813 edition) this book proceeds with a study of the series expansion of f(x + 1),
where fz is an arbitrary function of x.2® Lagrange starts by proving that such a
series cannot include a fractional power of ¢, unless x is given certain particular
values.?? The argument is the following: a term of the form wi= will have n
different values; since f(x + ¢) and fz must have the same number of values, a
series involving the terms fr and wi» will have more values than f(x + i) and
therefore cannot represent it. The conclusion must be that only integral powers of
i may appear in the expansion of f(z + 7). No reference is made to the possibility
of irrational powers of i. [Lagrange Fonctions, 7-8]

Now, since f(z +0) = fz, f(z + ¢) must be equal to fx plus a function of x
and 4 that is zero when i = 0. Because of the argument above, this new function
must be an integral multiple of 7. In other words,

fle+i) = fz +iP (3.5)

where P is a function of z and i. But then P is in the same situation as f(x + 1),
so that calling p the value assumed by P when ¢ = 0 and repeating the reasonings
above,

P=p+iQ (3.6)

where (Q is a new function of x and 4. This can be repeated, so that
Q=ig+R, R=ir+5, etc, (3.7)
and, substituting,
flz+1i) = fo+ip+i%q+ i3 + &c.

where p, ¢, 7, &c. are certain new functions of x. [Lagrange Fonctions, 8-9|
The way in which the functions f,p,q,r, ... relate to each other is explained
in the same manner as in [Lagrange 1772a]: developing f(z+i+o0) as f((x+0)+1)

28 ike many 18th-century authors, Lagrange only used parentheses around the argument when
it involved more than one letter.

29Lagrange claims to be the first, as far as he knows, to try to prove this a priori [Fonctions,
7]. This claim is odd, because Arbogast, as we have seen, did try to prove it, and Lagrange was
well aware of this. Unless the fact that Arbogast assumed the binomial expansion prevented
his attempt from being a priori, to Lagrange’s eyes. Be as it may, Lagrange’s “proof” is quite
different, and much more interesting, than Arbogast’s.
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and as f(z + (i 4 0)) and equating the resulting series, arriving at

" " v
flz+i) = fo+ flui+ Txi2+ %i3+ 2f3f4

it + &ec.

where f’z is the first derived function of fz, f”z the first derived function of
f'x, and so on. fx earns the name primitive function, while the derived functions
'z, f"x, f" x, ... are respectively its first (“prime”), second (“seconde”), third (“tier-
ce”), ... functions.

Lagrange also gives a proof of Arbogast’s principle, assuming several proper-
ties of the function and its power series. In this proof he uses, rather untypically,
geometrical language, and considerations close to a limit approach. Given (3.5),
(3.6) and (3.7) above, it is enough to prove that i can be given a value small
enough that iP < fz, or iQ) < p, or... Now, considering the curve expressed by
iP (with i as abscissa), it must of course pass through the origin. Also, unless x
assumes one of those particular values mentioned above, the curve must be conti-
nuous near the origin, so that it approaches the x-axis little by little (“peu & peu”)
before meeting it, and therefore approaches it by less than any given quantity; it
is then enough to take fx as this given quantity; the same argument applies with
the curve given by iQ and the quantity p, and so on.?? Lagrange then comments
that this is “one of the fundamental principles of the theory we propose to develop”
and that it is tacitly assumed in the differential and fluxional calculi [Fonctions,
12]. This suggests that he thought of this principle as a substitute for the neglect
of higher-order infinitesimals.

Lagrange did not use Arbogast’s principle extensively in [Fonctions], at least
not in a direct way. But he used it to establish that if f’z is positive from z = a to
z =", b> a, then fb > fa [Fonctions, 45-46], and then used this result to derive
what is now called the Lagrange form of the remainder for Taylor’s series:

fz+x)=fz+af (z+u)

:fz+xf’z+x2—2f”(z+u) (3.8)

_ / x2 " 1'3 "
=fetafzt 5 2t 52 M+

2 3
&c

where in each case u is an indeterminate quantity between 0 and x [Fonctions,
49]. This he used often, especially in applications to geometry and mechanics; and
also, naturally, in the study of maxima and minima |Fonctions, 151-154].

30Grabiner [1966, 142] argues that this proof, and particularly the “characterization of the
continuity of ¢P” that Lagrange gives here, can be easily translated into algebra. But then, why
did not Lagrange, the algebraist par exzcellence, do so? The fact is that Lagrange does not really
characterize continuity here; he only uses a property of continuity. He did not have an algebraic
characterization of continuity — continuity was a fundamentally geometrical property — and
when he needed to appeal to continuity he had to resort to geometrical language.
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The most marked difference from [Lagrange 1772a] is the complete absence
of any rapport to differentials or to anything that might remind of them: no cor-
respondence between f’z and (g—f is established, because the latter is not even
mentioned. This is an important novelty relative to all other alternative foundati-
ons in the 18th century: Lagrange is not trying to justify the differential calculus,
but rather to build afresh a calculus (he would use the expression calculus of
functions) that he knows, or hopes, will be equivalent to the differential calculus.

In [Lagrange Fonctions] we can see the culmination of a tendency for alge-
braic formalism that comes from Euler [Fraser 1989]. While in Euler one can still
notice some remnants of the view that the calculus was concerned with quantities,
in Lagrange the calculus is entirely concerned with expressions (even if he is often
forced to call some of them “quantities” for lack of better words). It is clear, for
instance, that he struggles (not always successfully) to avoid calling ¢ (in f(x+1))
the increment or increase of x, so that instead of Euler’s “quantitas variabilis x
accipiat augmentum = w”3!, we have “4 la place de z on met = + 732

Moreover, Euler had focused the calculus on functions (which were regarded
as expressions) and had noticed that differential ratios were much more relevant
than differentials themselves; Lagrange took this one step further, abolishing dif-
ferentials and putting derivatives (derived functions) in the central place of the
calculus.

3.2 The principles of the calculus in Lacroix’s Traité

We have seen in section 2.1 that Lacroix presented [Lagrange 1772a] as one of the
main motivations for writing the Traité. From the start, it was to be a development
of Lagrange’s suggestion.

3.2.1 Dating the Introduction and first two chapters of volume I

Lagrange taught the calculus using the power-series foundation at the Ecole Polyte-
chnique in 1795 and 1796, but he only published it in detail [Lagrange Fonctions]
in 1797,33 the same year that Lacroix published the first volume of his Traité
(apparently Lacroix’s book appeared a little earlier that year than Lagrange’s
[Lacroix Traité, 1, xxx]). Lacroix seems to have attended Lagrange’s lectures, but
since he was working on the Traité at least since 1787, he probably had already
written its first chapters. This is what he had to say on this in the Preface to the
first volume:

“L’impression de mon Livre fut commencée en frimaire an 4 (novem-
bre 1795) et suspendue par des raisons particuliéres pendant quelques

3l«yariable quantity x receives an increase = w” [Euler Differentialis, I, § 112].
324nstead of x is put x + 4" [Lagrange Fonctions, 2|.
33Lagrange taught it again in 1799, from which originated [Lagrange Calcul], but that is

irrelevant here.
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mois; depuis cette époque Lagrange est revenu sur ses premiéres idées,
a l'occasion d’un Cours qu'il a fait & I’Ecole Polytechnique. J’ai suivi ses
legons avec tout l'intérét qu’elles devoient inspirer; mais ’etat ou étoit
mon ouvrage et la marche de I'impression me n’ont permis de profiter
que d’un petit nombre de ses remarques que j’ai eu soin de rapporter a
leur Auteur.”?* [Lacroix Traité, I, xxiv]

In his Compte rendu [...] des progrés que les mathématiques ont faits depuis 1789
(see appendix B, page 399), Lacroix was even more incisive. Speaking of a passage
of chapter 1 with similarities to [Lagrange Fonctions|, he said

“mais on observera que l'article du traité dont on parle ci dessus était
composé, imprimé, et entre les mains de plusieurs personnes, entr’autres
du C. Prony, avant que le C. Lagrange fit a 1’école polytechnique les
lecons qui ont donné naissance & la théorie des fonctions™3®.

There is a problem here. Lagrange gave those lectures for the first time in
year 3 [Prony 1795b]. If the printing of Lacroix’s Traité started in Frimaire year
4, then Lacroix’s claim for priority is false. There are several possibilities:

1 - Lacroix may have just lied, trying to pass off his Traité as more original than
it really was;

2 - he may have attended Lagrange’s lectures on the calculus only in the second
year of the Ecole Polytechnique, and assumed that in the first year Lagrange had
not really taught that subject (according to [Prony 1795b] Lagrange’s course of
analysis in 1795 started with arithmetic and covered several topics before finally
arriving at the calculus);

3 - Lacroix may have incorrectly remembered the date when the printing started,
and correctly remembered that it was before Lagrange’s course.

Be that as it may, we can add some evidence corroborating Lacroix’s claim
of early circulation of part of volume I. Prony indeed had access to it, and cited
it in [1795a, IV, 548]:

“J’ai donné une régle générale fort simple pour étendre le théoréme de
Taylor & un nombre quelconque de variables; cette matiére sera discutée
dans 'ouvrage de Lagrange, et se trouve aussi exposée avec beaucoup
de clarté et de détail dans le traité du calcul différentiel et intégral de
Lacroiz (tome 1, page 131 et suiv.).”3°

34“The printing of my book was started in Frimaire of year 4 (November 1795) and was
suspended for personal reasons for a few months; after that time Lagrange returned to his early
ideas, with regard to a course that he gave at the Ecole Polytechnique. I followed his lectures
with all the attention that they should inspire; but the state in which my work was and the
progress of its printing only allowed me to profit from a few of his observations, which I took
care in ascribing to their author.

35“hut it should be noted that the article of the Traité mentioned above was composed, printed,
and in the hands of several people, among whom citizen Prony, before citizen Lagrange had given
at the Ecole Polytechnique the lectures that gave rise to the Théorie des Fonctions”

364] have given a very simple general rule to extend Taylor’s theorem to any number of varia-
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[Prony 1795a, IV] is in the fourth cahier of the Journal de I’Ecole Polytechnique,
referring to the autumn of 1795 but published only in September-October 1796;
but this passage can also be found, with precisely the same words, in the version
of lecture notes” distributed to students in the first year (lecture n.° 30). So we
can say that by the end of the first school year of the Ecole Polytechnique (late
summer or autumn 1795) the first volume of Lacroix’s Traité was printed at least
until page 133 (Taylor’s theorem for functions of three or more variables is in pages
131-133).

Considering this, of the possibilities above number 3 seems the least unlikely.

In the following sections we will analyse Lacroix’s development of the La-
grangian foundations of the calculus, and we will see internal evidence for its
independence from [Lagrange Fonctions] (section 3.2.4). A deeper, more philo-
sophical, divergence will be referred to in section 3.2.8. But it is possible to locate
at least some of the few “remarques” of Lagrange from which Lacroix profited, as
will be seen in section 3.2.5. The conclusion is that the Introduction and chap-
ter 1 predate Lagrange’s lectures (or at least Lacroix’s attendance of Lagrange’s
lectures), and chapter 2, in its final form, is posterior.

3.2.2 Functions of one variable

Lacroix starts chapter 1 of the first volume by showing that f (x + k) can be expan-
ded in a power series of k, provided that the function f(x) be rational, exponential,
logarithmic or trigonometric. “By analogy”, this should happen for all functions;
Lacroix promises us that we will see in the following that this analogy is correct
[ Traité, 1, 85.

In fact, what he concludes some pages afterwards is somewhat weaker: that
we can always expand f(z + k) into a series like Xo + X1k + Xa2k?+ etc., “si on
sait trouver le coefficient de la premiére puissance de k [that is, how to find the
derivative of f|, quelque soit la fonction 38 [ Traité, 1, 92-93] — which sounds to us
like “if every function were differentiable, then every function would be analytic”;
but this is not what Lacroix had in mind.

Lacroix’s point is that each of these functions X1, X5, X3, etc. can be derived
from the previous one (and Xy from f) by the same procedure, and this proce-
dure is that of deriving Xy from f. He shows this by comparing f((z + k) + k')
with f(x + (k+ %)), just like Lagrange had done in [1772a] (and as he did in
[Fonctions]). A power series for the former is obtained from

f(x+k)=f(z) + X1k + Xok? + etc.

bles; this topic will be discussed in Lagrange’s work, and is also exposed with plenty of clarity and
detail in the traité du calcul différentiel et intégral by Lacroiz (vol. 1, pages 131 and following).”
37 Legons d’Analyse données o I’Ecole Centrale des Travauz Publics, par R. Prony. Premiére
Partie — Introduction a la Mécanique. Premiére Section — Méthode directe et inverse des diffé-
rences. [Ec. Pol. Arch].
384if we know how to find the coefficient of the first power of k [that is, how to find the
derivative of f], whatever the function {”
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expanding each term in the right side, so that the first becomes
f(z) + X1k + Xok'? + etc.,

the second becomes
(X1 + X1k + XTK? +ete.) k

(where X7, X], etc. are the functions derived from X; as X;, X5, X3, etc. are
derived from f(z)) , the third becomes

(Xz + Xok' + XK + etc.) k2,
and so on. Now, of course
fla+(k+E)) =f@)+ X1 (k+ &)+ Xo (k+ k) + et

Expanding each power of (k + k') and comparing these two power series, Lacroix

concludes that ) , ,
_ X _ X5 _ X3
XQ— 5 ,Xg,— 3 ,X4— 1 ,etc.
He then adopts the notation ' (z) for the coefficient of k in f(z + k) (that
is X1); £ (z) for the coefficient of k in f’(x + k) (that is X7); " (x) for the

coefficient of k in f” (z + k), etc., obtaining

@), @), @

k3 + ete.
1 1-2 1.2.3° Tete

f(z+k)=f(z)+

Thus the development into power series is reduced to this recursive process of
“dérivation”: knowing how to go from f(z) to f’(x) (whatever f), is enough to get
all the coefficients.

This also gives us an idea of the calculus that is “claire et indépendante des
notions vagues et paradoxales de I'infini”3°: the object of the differential calculus
is precisely this process of “descendre de la fonction génératrice aux fonctions déri-
vées’#0 and that of the integral calculus is the inverse process of “remonter de 'une
quelconque des fonctions dérivées, a la fonction génératrice”*! [Lacroix Traité, 1,
94].

The first term f'(x)k of the difference f(x + k) — f(x) is christened differential
because it is only “une portion de la différence”¥? and is given the symbol df(z).
This carries the introduction of the concept of “differentiation”: the search for the
differentials of quantities [Lacroix Traité, 94-96].

Now, for the full introduction of the Leibnizian notation, dx is also required:

39%clear and independent of the vague and paradoxical notions of infinity”

40«descending from the generating function to the derived functions”
4l¢reascending from any one of the derived functions to the generating function”
42«3 portion of the difference”
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“Pour mettre de 'uniformité dans les signes et faire de ’expression df,(f)

un type général qui puisse s’employer quelle que soit la lettre par laquelle
on représent la variable d’ott dépend la fonction proposée, on écrira dzx
au lieu de k”43 [Lacroix Traité, 1, 95].

Then,

is an immediate conclusion.

This means that to obtain the differential df(x) one expands f(z + dz) — dx
into a power series and then takes the first term. But is this definition any better
than the one by Cousin cited in page 58 above? What kind of object is dz? Trying
to explain this, Lacroix uses the expression “hypothetical increment” once, and
soon after he elaborates:

“dx n’est, & proprement parler, qu'un signe destiné a retracer la mar-
che qu’on a suivie pour arriver a l'expression de f’(z), et a rappeller
qu’on n’a considéré que le premier terme du développement de la dif-
férence indiquée; car d’ailleurs on fait toujours abstraction de la valeur
de P'accroissement qu’il représente.”** [Lacroix Traité, I, 95-96]

. . . .. . . df
There are some inconsistencies here: dz is just a sign, subordinate to f'(z) = d(;),

but it also represents an increment (although a “hypothetical” one, the value of
which is never taken into account). I think that Lacroix is struggling here with
a lack of appropriate language (or of more sophisticated mathematical concepts).
Unlike Lagrange, he wishes to keep differentials, but like Lagrange, he rejects
infinitesimals (at least in this section), and wishes to develop a calculus based on
functions, not variable quantities. What could then dx be? A later mathematician
could tell him that dx could be the identity function dz : k — k and df(x) the
linear function df(x) : k — f’(z)k, so that in fact df(z)(k) = {’(x) - dz(k). But you
would really need a later mathematician for this.

A slightly later mathematician, Cauchy [1823, 13|, moved a little in that
direction, identifying da with the differential of the identity function x — z (by
a certain confusion between a function and its value). But Cauchy did not yet
have an appropriate language to deal with a functional concept of differential (as
opposed to the variable-oriented, Leibnizian one): he defined df (z) as the limit,
when « tends to zero, of

fletah) = f(x)  fle+i)— f(x)

= - h’
« 7

43¢To introduce uniformity in the symbols and to turn the expression dfl<f> into a general form
that may be employed whatever the letter that represents the variable on which the proposed
function depends, dzx will be written instead of k”

44«dz is only, properly speaking, a sign intended to retrace the course followed to arrive at the
expression of f’(z), and to recall that only the first term of the development of the indicated
difference was considered; besides, abstraction is always made of the value of the increment that
it represents.”
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where h is a constant finite quantity and ¢ = ah, and therefore his differential
of f(x) always involved this constant h (which turned out to be equal to dx).
Presumably because h was a constant he did not explicitly draw the conclusion
that df (z) was a function of h (or of dz) — df (x) was apparently a function only
of 2.4

As has been seen above, f'(z), {(z), etc. are sometimes called “derived func-
tions” (an expression taken from [Lagrange 1772a]), because of the derivation pro-
cess, but the name that they gain in page 98 (and which will be used throughout
the three volumes) is differential coefficients (“coefficiens différentiels”). In fact,
“derivation” is not a common word at all in [Lacroix Traité], but “differentiation”
is. After all, this is a treatise on differential and integral calculus. It should be
noted that this is the first occurrence in print of the name “differential coeffici-
ent”, which would become very popular in the 19th century, being “adopted in all
languages” [Anonymous 1900; Cajori 1919, 272]. Lacroix had already used it in
1785, but in a memoir that remained unpublished, and only for partial derivatives
(that is, the coefficients in a differential like dz = p g—; +q g—;) (see footnote 1 in
page 355 below). This name was probably “on the air”: Bossut used it in [1798,
I1, 351], again only for partial derivatives.

In Lacroix’s Traité the differential notation

du d*u dPu
de’ da? dzd "
and even the Eulerian
DG, Ty ...

will also be much more frequent than

Often, particularly in differential equations, the differentials dx, dy, d?x, d%y, ... will
occur without explicit reference to differential coefficients. Overall this foundation
for the calculus is Lagrangian, but much closer to [Lagrange 1772a| than to [La-
grange Fonctions], where differentials have no place.

The results obtained in the Introduction allow easy deductions of the differen-
tials of one-variable algebraic, logarithmic, exponential and trigonometric functi-
ons: as has already been noted, it is only necessary to expand f(x+dx) and extract
the term with the first power of dzx.

3.2.3 Functions of two or more variables

Differentiation of functions of two variables is also inspired by [Lagrange 1772a],
but without resorting to the cumbersome notation employed by Lagrange there

45This was useful later in establishing higher-order differentials: the differential of dy = y'h
was of course dy’ - h = y"'h? = y""'dx?, since h was a constant [Cauchy 1823, 45]. The alterna-
tion between dx constant/variable according to z as independent/dependent variable followed
[Cauchy 1823, 48].
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(u”" for modern dag 5). f(z+h, y+k) is expanded in two steps and in two ways (via
f(x + h,y) and via f(z,y + k)), whence the conclusion is drawn that ddx;y = ;l;—dl;.
d*u

dyds is introduced as an abbreviation

It is worth mentioning that the notation

d(3)

for ~dy

quotient.
The definition of differential as the first-order term in the expanded series of

the incremented function is extended to the first order terms of u = f(x,y) giving

, so that this is to be understood as a differential coefficient, not as a

df(z,y) = du = d— dzr + le_u dy. (3.9)

The O notation, which had been used occasionally by Legendre [Cajori 1928-
1929, 11, 225] is absent, but proper warning is given about the fact that fl—;dx
is the differential of u regarding only x as variable and not to be confused with
du [Lacroix Traité, I, 121, 122-123]. Lacroix was well aware of the existence of
notations for partial derivatives: in volume III he mentions several of them, inclu-

ding Euler’s (£) and ( ) — but not Legendre’s 0 [Lacroix Traité, III, 10-11].

However, he believed that 2—; and g—z are equally clear.

Lacroix used a different kind of parentheses and only for a very special case:
if both x and y appear in the expression for u, and at the same time y is regarded
as a function of z, then % is the differential coefficient of u taken regarding y as
a constant (notwithstanding the supposition that it is a function of z) — a sort of
partial derivative; while

d(u)

dx
is the differential coefficient of u taking in account the supposition that y is a
function of x. In such a situation, v’ = % [Traité, 1, 163]; if z is an implicit
function of x and y given by an equation u = 0, then [Traité, I, 174]

d(u) du  dudz

dx _a—'_dzdx

In page 123 Lacroix criticizes the habit of calling 3“ du the first-order partial

differences of u.*® The real partial differences of u are f(x + h,y) — f(z,y) and
f(z,y + k) — f(z,y), while d“ Gedx and d—“dy should be called its first-order partial

differentials and Zg and @ 1ts first-order differential coefficients.

To find the hlgher—order differentials of v = f(z,y), Lacroix differentiates
(3.9) twice (assuming dz and dy as constant), notices a similarity to the binomial
formula and confirms this similarity by an impeccable proof by mathematical

46This habit can be seen for instance in [Bossut 1798, 11, 351|. Partial differential equations
were usually called “equations in partial differences” [Condorcet 1770; Lagrange 1772b; Laplace
1773¢c; Monge 1771].
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induction”: he looks for “la loi qui régne entre deux différentielles consécutives’*®

[ Traité, 1, 125] and confirms the result for the case n = 1. The final result is that

d™u n  d" _ nn—-1) d"w
d"u = —dx™ e dx™ ld e
R T * 1 dz"—1dy o S 1 2  dz"2dy?

dz"2dy? + etc.

that is, d"™u can be obtained by expanding (dz + dy)™ and introducing into each
term the corresponding differential coefficient.

A careful argument involving the general term of f(z+h, y+k) allows Lacroix
to prove the two-variable version of Taylor’s theorem:

fx+hy+k)=u
1
v { s o)
R
UEPY) ; 3{33_“h3+ d;iu h? ddd fzk?)}
etc.

Functions of more than two variables bring no surprises, and (3.10) is gene-
ralized to ) 3
du  d°u d>u
f - .
(x4 h,y+ k,etc.) =u+ 1 +1 2+1 5 3+etc

3.2.4 Differentiation of equations

After the sections on differentiation of (explicit) functions of one, two, and more
than two, variables, Lacroix has a large section on differentiation of equations
[Traité, 1, 134-178]. As in |[Euler Differentialis, 1, ch. 9], this is both a manner
of dealing with implicit functions and of preparing the way for the treatment of
differential equations in the integral calculus.

Here occur two passages that seem independent from Lagrange. The first is
about the differentiation of an equation in two variables v = f(z,y) = 0 (from
which y is to be regarded as an implicit function of z).

In the first edition of the Traité, it takes Lacroix almost three and a half pages
[Traité, 134-138] to arrive at the process to calculate d—y calling h the increment
of z, he concludes from the fact that the corresponding increment k of y is

/h //h2 y///h?,

1 + 1-2 +1~2'3

+ ete. (3.11)

47TBut without using the word induction: for him it still had the meaning of a generalization
drawn by analogy from a number of examples.
48«the law that reigns between two consecutive differentials”
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that f(x + h,y + k) must have the form
f(z,y) + Pih + Poh® + P3h® 4 etc. (3.12)

and since f(z + h,y+ k) = f(z,y) = 0 and h is indeterminate, P = 0, P» =
0, P; = 0, etc. He then proceeds to show that each of the coefficients in the
series (3.12) is derived from the previous one just as in the Taylor series of an
explicit function of one variable (invoking arguments analogous to those he had

"

used before), so that P, = v/, P, = {5, P3 = %, etc. and therefore v’ = 0,
v’ =0,u"” =0, ete.
To evaluate u’, Lacroix uses the fact that
du du 1 (d*u ,
f(x+hy+k)=u+ %h—I— d_yk+§ (@h +etc.> + etc,; (3.13)

substituting (3.11) for k& and disregarding all powers of h other than the first, he

gets

, du du ,
— + -

u_% dyy

= 0; (3.14)

and he still occupies a few more lines arguing that y' in (3.14) is precisely d—z

(although that is how he had introduced g’ for (3.11), three pages earlier), so

that naturally Z_Z is obtained by differentiating u as if x and y were independent,

putting the result equal to zero, and then solving for g—z.

By the second edition | Traité, 2nd ed, I, 188-90|, Lacroix had realized that he
did not need to establish the recursive relation between the coefficients in (3.12).
It was enough to substitute (3.11) for k in (3.13) to conclude that g% + S—Zy’ =0,
since that is the coefficient of h in the resulting series and all the coefficients should
be zero to allow f(z + h,y + k) = 0, h being indeterminate.

The way in which Lagrange handles this in [Fonctions, 31-32] is a little
different (and much simpler than Lacroix’s first edition): firstly he notices that
f (x,y) may be regarded as a function @z of x only (since y is itself being regarded
as a function of x); then, since ¢ (z +4) = 0 and ¢ is indeterminate, ¢’z must also
be zero (this is quite similar to Lacroix’s second edition); finally, to evaluate ¢z,
Lagrange uses a previously established result to the effect that the derivative of a
function of two variables is the sum of the partial derivatives, as well as the chain
rule; therefore @'z, being the derivative of f (x,y), is equal to f/ () +v'f’ (y) (this

is Lagrange’s way of writing % + g—g %). The conclusion is that

A C))
fy)

In the same section there is another passage that represents a small original
contribution by Lacroix, if we take his word for it [ Traité, 2nd ed, I, xxi|, although
he recognizes that similar reasonings appear in [Lagrange Fonctions|.
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In modern terms it would have to do with the inverse function theorem,
although for Lacroix (and for Lagrange) it only amounts to knowing what to do
to a differential equation on = and y if we want to revert from considering y as a
function of x to consider x as a function of y.

In [Euler Differentialis] this problem is related to the question of which first
differential is set as constant. After giving the method for removing higher-order
differentials that was seen in page 56 above, Euler taught how to revert the process,
and recover a formula where no first differential is supposed to be constant from
another formula with

_dy _dp _dg
b= %7(]_ %77‘_ %7
where dx is set constant. This is not very difficult: if no differential is constant,

then
_dxddy — dyddx

d,
P dx?
so that
_ dzddy — dyddx
q - dxg 9
similarly

B dz?d?y — 3dxddyddy + 3dyddz? — dxdyd%t'
"= dzxb ’
and so forth; it is then enough to substitute these expressions for p, ¢, 7, ... [Diffe-
rentialis, 1, § 271-278]. Now, if we want to have dy constant, we just have to put
ddr = d*x = ... = 0 |Differentialis, 1, § 279-280].

A process based on constant differentials was not suitable for [Lagrange Fonc-
tions|. Lagrange had to give an alternative approach. But there is a parallelism
between this alternative and Euler’s process: just as FEuler’s was a natural con-
sequence of a process to derive a formula where no differential was constant, La-
grange’s was a natural consequence of a process to start regarding both variables
x and y as functions of a third variable ¢. It is easy to see how this relates to
Euler’s approach: if x and y are functions of ¢, then neither is regarded as an in-
dependent variable. Lagrange deduced his process in two different ways. The first
is the following [Fonctions, 60]: if y = f(z), and 2 and y are functions of ¢, then
by the chain rule ¢ = 2’ f’(z); but if y were simply a function of x, we would have

y' = f'(x); so the difference is that z—: should replace 3’. Similarly,

2 x'3

should replace y”;*° and so forth.

49T, agrange does not explain this second part, but presumably its justification is that from
’ AN
Y. = f'(z) comes (%) = z'f'(z) and from v = f'(z) comes vy’ = f"(z), so that we have
i ’
’I),

7 instead of y".

l—~ 8
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Lagrange deduced these formulas in a second way, in the section on applicati-
ons to mechanics (where he explicitly said that ¢ was time). Although this second
deduction is in a chapter on applications, it is in fact closer to the basic principles
of the Lagrangian calculus.?® If ¢ becomes t + @, then z and y become respectively

x+0x + ﬁx" + ﬁx'" &e (3.15)
2 2.3 ’ '
and
y+9y/+ﬁy//+ﬁy/// &c (3 16)
2 2.3 ' '
However, if we regard y as a function of x, and = becomes i, then y becomes
. ! 22 ' 23 "
y—l—z(y)—l—;(y )—I-ﬁ(y )+ &e. (3.17)

where (v'), (y"), (y'"'), ... represent the derivatives of y as a function of x, as opposed
to y/,y”, 9", ... the derivatives of y as a function of ¢. Now, we have here two
expressions for the increment of x, namely 4, in (3.17), and 0z’ + %x” + &ec., in
(3.15); and we have two expressions for the development of y, namely (3.16) and
(3.17); putting ¢ = 6z’ + %x” + &ec. in (3.17), comparing with (3.16), and ordering
the terms by the powers of 8, we get

2

/ 9_// ﬁ/// A
Oy + 5 Y +2.3y + &e. = (y)2'0

whence we can take
n_ Y m Y — (y/)x Yy yx
(y ) - ;? (y ) - ) 12 /3

and so on [Fonctions, 239-241].
Of course, no matter how these formulas are deduced, to change from x
to y as independent variable it is enough to take y = t, so that ' = 1 and

y"”" =19" = ... =0 and they become
1 x//
(y’):;’ (y”):_ﬁ’ etc.

Lacroix, the encyclopédiste, managed to give three processes. Later, in his
Compte rendu [...] des progrés que les mathématiques ont faits depuis 1789 (see

50This second deduction is the only one used in [Lagrange Calcul] (which does not have sections
on applications) [Lagrange Calcul, 62-68].
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appendix B, page 399) and in [7Traité, 2nd ed, I, xxi], he claimed that he had felt
that Euler’s approach was not compatible with the foundation he was trying to
implement, so that he decided to substitute new considerations, and that he did
this independently from Lagrange. Indeed it seems that the first two processes
that he gives are his own. One obvious difference between them and Lagrange’s
is that these are direct methods, not consequences of methods for introducing a
third variable. Lacroix’s third process is not so original, but it comes from Euler,
not Lagrange.
For the first process | Traité, I, 149-150|, Lacroix reminds the reader that

dy = y/d,jj dr = Jf/dy
dy' =y"dx dz’ =2"d
dz;// :zfl/”dm and dx' — x///zy (3-18)

etc. etc.

Also, from (3.14) (in page 76 above)®! there exist M and N such that M—l—N;i—z =0,
or Mdx + Ndy = 0, which means that

M+ Ny =0 and Mz +N=0.

From this it is immediate that

(Would it not have been more immediate to conclude this from the first line in
(3.18)?) Differentiating this gives
d /
dr' = _%
Y

and using the second line in (3.18),

1

2 = y" da Yy

YAy P
Similarly he arrives at
o _y/y/// + 3y//2
"= — 5
And so on.

The second way to derive these results is closer to the first principles of the
foundation Lacroix is following: if A is the increment of x and k is the associated
increment of y, then

y’h y//h2 y///hS

=T +tT3t123

51The context of this passage is still the differentiation of an equation f(z,y) = 0. Of course
in such a situation y is an implicit function of z and z is an implicit function of y.

+ etc. (3.19)
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and

7'k .’E”kz 2" k&
T 12123
Now, using the method of reversion of series (a purely combinatorial method which
had been reported in the Introduction) to obtain a series for h from (3.19), the

result is
= l y// kj2 N (Sy/IZ _ y/y///> kS

k——%—
y’ y31-2 y’® 1-2-3

h= + etc. (3.20)

+ etc.

which, being compared with (3.20), confirms the previous results for 2/, 2", 2",
etc. [Traité, 1, 150-151]

After reporting these two processes, Lacroix gives a summary of Euler’s con-
siderations on differentiation without taking any first differential as constant (and
on recovering this situation, that is, given a second-order differential equation in
which, say dx is constant, to obtain an equivalent equation in which no first diffe-
rential is constant). The advantage of doing this is that afterwards we can regard
indifferently y as function of x or z as function of y. And it is then possible to
make the corresponding first differential constant [ Traité, I, 151-154].

3.2.5 Particular cases where the Taylor series does not apply

From what has been discussed in the paragraphs above, it is apparent that chapter
1 of the first volume of Lacroix’s Traité was not influenced by Lagrange’s lectures
at the Ecole Polytechnique. Rather, it presents an independent development of
Lagrange’s suggestion of 1772.

However, Lacroix recognized that he had profited somewhat (if not much)
from those lectures (see above, page 69). There must be some influence from
Lagrange’s lectures in [Lacroix Traité, I]. And in fact there is, but in chapter 2
(devoted to “the main analytical uses of the differential calculus”? — mainly the
use of the calculus to develop functions into series, to raise indeterminacies like %,
and to find maxima and minima).

We have seen above (page 66) that Lagrange gave a proof, in [Fonctions, 7-8]
and probably in his 1795 lectures at the Ecole Polytechnique, that the series for
f(xz+1) cannot include a fractional power of ¢, unless x is given certain particular
values. He also explored those particular cases: if the expression of fz includes a
radical that disappears for some particular value of x, then the argument quoted
above in page 66 does not apply to that value. For instance, let fo = (z—a)vz — b.
This function has two values, except when z = a or x = b, in which cases it has
only one. Because, in general, it has two values, so must its development

2
f(m+i):fx+if’x+%f”x+&c. (3.21)

52¢PDes principaux usages analytiques du Calcul différentiel”.
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where ¢ is indeterminate, have two values. This happens for z = a because the
radical v/z — b, which disappears in fz, reappears in f'z, f”z,... But it does not
happen for = b. In the latter case, (3.21) is faulty (“fautif”) — and in fact
f'b=f"b=...= oo (more generally, in such cases f"z = f""lz = ... = oo, for
some integer n). The correct development of f(x + i) for x = b is (b — a)V/i +i2.
The fractional powers of ¢ are necessary to give back to the function its double
value. [Lagrange Fonctions, 32-39]

Lacroix [ Traité, I, 232-236] reports this latter case, but not the former, where
the irrationality disappears only because it is multiplied by an expression that
becomes null. In fact, Lacroix even finds it obvious that “toutes les fois que la
fonction qu’on voudra développer sera irrationelle en général et que par la subs-
titution d’une valeur particuliére de x elle cessera de ’étre, alors lirrationalité
tombera nécessairement sur 1’acroissement”? (i for Lagrange, k for Lacroix). His
example, instead of (z — a)v/x — b, is b+ /x — a.

He takes the chance also to report Lagrange’s argument for the impossibility
of an irrational exponent in the expansion of f(z + k). However, he does not call it
a “proof”, but rather a “more solid foundation than the induction” used in chapter
1.54

Lacroix acknowledges Lagrange’s authorship of these considerations [Lacroix
Traité, 1, 235], but the one paper by Lagrange [1776] associated to this section in
the table of contents for [Lacroix Traité] is there by mistake: it relates in fact to
the previous section. Lacroix almost certainly got this from Lagrange’s lectures at
the Ecole Polytechnique in 1795 or 1796.

It is tempting to wonder if in those lectures Lagrange had not thought of
the case in which it is a multiplier of the irrationality that disappears (or maybe
he had thought of it but for some reason, say lack of time, chose not to address
it in class). For the second edition of the Traité Lacroix had of course access to
[Lagrange Fonctions] and he addressed both cases [Traité, 2nd ed, I, 333].

3.2.6 Foundations for algebraic analysis

Before the chapter on the principles of the calculus, [Lacroix Traité, I| includes an
“Introduction”. Its purpose is to give “series expansions of algebraic, exponential,
logarithmic and trigonometric functions” by algebraic means, without recourse to
the notion of infinity [ Traité, I, xxiv]. The goal of studying functions by expanding
them in series (before presenting the differential calculus) makes clear the intended
equivalence to the first volume of [Euler Introductio|. But Euler had used infinite
quantities quite freely, and Lacroix explicitly avoids them.

53[Lacroix Traité, 1, 233]: “Every time the function we want to expand is irrational in general,
but ceases to be so by the substitution of a particular value of z, the irrationality must then fall
upon the increment”.

54[Lacroix Traité, 1, 234]: “Nous offre [...] le moyen de 1’établir sur des fondemens plus soli-
des que 'induction dont nous ’avons déduite”. “Induction”, of course, is here used in the non-
mathematical sense — see footnote 47.



82 Chapter 3. The principles of the calculus

Together with chapter 3 (a “digression on algebraic equations”), the Intro-
duction also corresponds to what was known for some time as algebraic analysis
(“analyse algébrique”). Nowadays this expression is often used by historians to refer
to an algebraic conception of analysis, particularly Lagrange’s [Fraser 1989], but
also that of the German Combinatorial School [Jahnke 1998]. However, around
1800 the expression was somewhat ambiguous. It could have that meaning, as in
the full title of [Lagrange Fonctions|, where the principles of differential calculus
are declared to be “reduced to the algebraic analysis of finite quantities” (see fo-
otnote 24 above). But in the Ecole Polytechnique it was used to refer to a section
in the syllabus of analysis, composed of aspects of higher algebra that did not use
differential or integral calculus: the fundamental theorem of algebra, series expan-
sions of particular functions, algorithms for third- and fourth-degree equations,
etc. (see appendices C.2.2 and C.3.1 for details). It is in this latter sense of a sub-
ject, not a point of view, that this expression is used here. Lacroix, who did not use
this expression much (and may not have been very fond of it) would describe the
subject as “I’analyse intermédiaire entre les Elémens d’Algébre proprement dits, et
le Calcul différentiel”® [Traité, 2nd ed, 1, xx|. Cauchy’s Analyse algébrique |1821]
transformed radically the meaning of the expression, turning the subject into a
pre-calculus study of functions based on a theory of limits, and explicitly rejecting
the “generality of algebra’”.

This Introduction contains material that the modern reader regards as rela-
ted to the foundations of the calculus, but it must be stressed that in Lacroix’s
arrangement it comes before the differential calculus and of course before the
principles of the calculus are addressed.

The first issue addressed in the Introduction is one of those with a “founda-
tional” character: the concept of function. For Lacroix the content of this word
had been going through a progressive enlargement, until at that time it could be
defined as follows.

“Toute quantité dont la valeur dépend d’une ou plusieurs autres quanti-
tés, est dite fonction de ces derniéres, soit qu’on sache ou qu’on ignore
par quelles opérations il faut passer pour remonter de celles-ci a la pre-
miére.”"6

Grattan-Guinness [1990, 1, 141] compares this definition with the general
conception of function used by Dirichlet in 1829 (when he introduced the charac-
teristic function of the rationals). But he also notes that the functions with which
Lacroix worked were not that arbitrary: he “often stayed in or around power series
in his introduction”.

In fact, the example given by Lacroix of a function for which it is not known

55¢the intermediary analysis between the elements of algebra in the strict sense, and the diffe-
rential calculus”

56[Lacroix Traité, I, 1]: “Any quantity the value of which depends on one or more other quan-
tities is said to be a function of these latter, whether or not it is known which operations are
necessary to go from them to the former.”
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which operations are necessary to go from the argument to the corresponding
value of the function, is the root of a 5th degree equation: “in the present state
of algebra” it was not possible to assign an expression to it. It is doubtful that
Lacroix would recognize the characteristic of the rationals as a function. Be that
as it may, no function so strange ever occurs in Lacroix’s Traité.

The introduction of series®” is justified by two observations: first, that some
algebraic functions give rise to them, when one tries to express one such function
by an “assembly” (“assemblage”) of monomials (it is the case of —%— =1+ 2+ ﬁ—z

z—z + etc.); second, that some functions, as is the case of the logarithms, sine, and
cosine, are not expressible by a limited number of algebraic terms (these functions
are called transcendental).

This means that series are not studied here for their own sake, rather as
developments of functions, and therefore it is mainly power series that appear.

This use of series as developments of functions makes it necessary for Lacroix
to warn that a series does not always have the value of the corresponding function
[Traité, 1, 4]. This entails a discussion on convergence, illustrated by the example
of - =1+ 2 + z—z + ‘Z—z + etc., divided into the cases ¢ < a, x > a and
even r = a. It is a careful discussion, making use of the remainder m of
T4+ 45 4 2

It is here that Lacroix introduces a definition of limit:

“Dorénavant nous appellerons limite, toute quantité qu’une grandeur ne
sauroit passer dans son accroissement ou son décroissement, ou méme
qu’elle me sauroit atteindre, mais dont elle peut approcher aussi prés
qu’on le voudra.®®

So, if a given series has a limit, its value is that limit. But even if the series does
not converge, as long as it is the development of some known function it can be
used for some purposes as a representation of that function:

“Si une question nous conduisoit & une série telle que

x 2 g3
1+ =+ 5 + = +etc.
a a a
nous serions en droit de conclure que la fonction cherchée, n’est autre
que —%—: ou si nous découvrions quelques proprietés relatives a une suite
a—x

z

de termes tels que 1+ = + z—z + etc., nous pourrions affirmer qu’elle

appartient & la fonction —%—. Mais toutes les fois que qu’il s’agira de

57Lacroix uses the “series” and “sequence” (“suite”) interchangeably, but “series” occurs more
often and since in the Introduction he is almost always referring to what we call series, I will use
only this word here.

58[Lacroix Traité, 1st ed, I, 6]:“Henceforth, we will call limit, every quantity which a magnitude
cannot surpass as it increases or decreases, or even that it cannot achieve, but which it can
approach as close as one might wish.”
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la valeur absolue de cette quantité, nous ne saurions employer la suite
trouvée par son développement, qu’en ayant égard au reste.”%”

Lacroix duly reports the well-known fact that it is necessary, but not suffici-
ent, for a series to have a limit, that its terms be eventually decreasing | Traité, I,
9].

He thus seems to use the modern concept of convergent (equivalent to “ha-
ving a limit”) not the one that d’Alembert had used in the articles “Convergent”
and “Divergent” of the [Encyclopédie|: there d’Alembert had called convergent a
series the terms of which are always decreasing, and divergent one with increa-
sing terms.% This is in spite of Lacroix citing in the table of contents, associated
to the Introduction, a memoir where d’Alembert uses those concepts of conver-
gence/divergence (and gives two famous examples of a series that is convergent
until the 299th term and divergent from then on and of another that is divergent
until the 99th term and convergent from the 100th onwards [d’Alembert 1768,
175-176]).

But in fact Lacroix never defines convergent nor divergent explicitly, and in
those cases where a series might have decreasing terms but not have a limit, he
seems to avoid the words convergence and divergence: for instance, when stating
the necessary condition mentioned above, his wording is “pour qu’une série qui est
le développement d’une fonction finie, approche continuellement de la vraie valeur,
il faut que les termes qui la composent aillent en décroissant”®'. But at least in
one occasion Lacroix proves that a series (e* =1+ F + % + ete.) is convergent
just by arguing that its terms must be eventually decreasing [Lacroix Traité, I,
37].

It is also worth mentioning that Lacroix often speaks of one series being “more
convergent” than another, meaning that it converges more rapidly (as, for example,
in [Traité, 1, 42-47], on series for calculating logarithms): convergence is apparently
a practical issue: it concerns the usefulness of the series as a means to calculate
an approximate value of a function; convergence/divergence is about whether it
can be used at all for that purpose and the degree of convergence is about how

59[Lacroix Traité, 1, 7]:“If, while addressing some question, we were led to the series

1+—+—2+—3+etc.
a a a

we would be allowed to conclude that the function we were looking for is none other than af—z;

or if we discovered some properties relative to a series of terms such as 1 + % + Z—z + etc., we
would be able to state that they belong to the function —%—. But whenever the subject is the
absolute value of that quantity, we cannot employ the series found by developing it, without
taking the remainder into account.”

60By the article “Série”, d’Alembert’s ideas seem to have changed a little: a series was then
convergent if it approached more and more a finite quantity and, continued to infinity, it would
finally become equal to that quantity. That its terms would be decreasing was by then a conse-
quence, not the definition.

6l«for a series that is the development of a finite function to approach continuously its true
value, it is necessary that the terms that compose it decrease progressively”
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good it is for that purpose. But the status of the series as a representation of the
function of which it is a development is not affected by such questions.

There seems to be an odd mixture of rigour and carelessness. This can be
seen when Lacroix addresses what I have called in page 3.1.4 Arbogast’s principle;
Lacroix gives a more general version: given a series of terms like Az® + Bz® +
Cx"Y + etc., where @ > 3 > v > etc. or a < § < 7 < etc., it is possible to find
some value m to substitute for  such that Am® > Bm? + Cm" + etc.

The proposition is stated in this way (and is therefore wrong); it is proven
(in the first case; the second is analogous) by writing the difference between Am®
and the rest of the series as

af4 B C ¢
m — ma_ﬁ+W+GC. s

which shows that it increases with m, and therefore that “it is clear” that m can
be chosen so as to ensure Bm” + Cm?" + etc. < Am® [Traité, 1, 10-12].

However, Lacroix decides to show how such a number m can be found. He
uses the geometric series (with ratio 2) as a starting point, so that he wants an
m that will ensure that each term of the series will be larger than twice the next.
Analysing the case of a series A+ Bx+ Ca2?+ Dz3 + ..., he arrives at the condition
m > %, where P, () are the consecutive coefficients out of A, B, C, D, ... with the
largest ratio.

Of course the existence of such a pair P, is not assured for every power
series, and at the end of the argument just described Lacroix introduces the extra
condition that the ratios between consecutive coefficients must have an upper
bound [Traité, I, 13]. He even gives a counter-example(!):

1-2 1-2.3 1-2-3-4
_|_

1 + T + etc. (322)

x2 x3

Lacroix used Arbogast’s principle in chapter 2 (on analytical applications of
the differential calculus), to study maxima and minima, like Euler and Arbogast
had done before him and Lagrange was doing more or less at the same time in
[Fonctions]; and later in chapter 4 to apply the differential calculus to the theory
of plane curves (tangents, osculation, areas and arc-lengths), like Arbogast and
Lagrange — see section 4.2.1.2. But after the Introduction he did not seem to
worry about avoiding situations like (3.22).%2

Lacroix handles limits still very intuitively, in a way similar to d’Alembert or
Cousin (see subsection 3.1.2). Thus, in page 189, adapting the differential calculus
to the method of limits, the limit of p + qh + rh? + etc., when h vanishes, is p,
without further ado. In particular, he does not feel the need for prevention against
a counter-example similar to (3.22).

62In the Introduction there is a situation in which he does verify that the extra condition
holds and thus he can use Arbogast’s principle [Lacroix Traité, 58-59]. This is in a deduction of
a power series for the sine.
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Infinity (%) is introduced as a “negative” concept: an exclusive limit, a li-
mit that quantities can never reach [Lacroix Traité, I, 7, 9-10]. This is the “true
metaphysics” that should replace the actual infinity usually employed by mathe-
maticians. But in fact the actual infinite appears every once in a while throughout
the three volumes, when Lacroix feels the need or the usefulness of resorting to
the Leibnizian calculus. He does think that the way Leibniz presented the calculus
was less rigorous than limits or power series [Lacroix Traité, I, 193]. But rigour,
for Lacroix, seems to be a matter of more or less, rather than yes or no, just like
convergence.

3.2.7 Alternative principles for the differential calculus

Chapter 1 ends with a section about alternative foundations for the calculus:
d’Alembert’s limit approach and Leibniz’s infinitesimals. Lacroix does not address
Newton’s theory, “parce qu’elle tient & la considération du mouvement qui est
étrangére a I'analyse et a la géométrie”®3 |Traité, I, 194].

Because he has already addressed the theory of limits in the Introduction
(see subsection 3.2.6 above), Lacroix only needs to apply it to give limit-based
definitions of differential and differential coeflicient. But his power-series conside-
rations also play a role here (although a technical one). Given a function u of z,
when 2 becomes x + h, u will become u + ph + gh? + rh? + etc.; therefore, calling
k the increment of u, we have

% = p+ qgh + rh* + etc.
Letting the two increments k& and A vanish, the limit of % is then p, which is the
first differential coefficient of .

It is clear that Lacroix’s purpose in this section is to show that the same
results are achieved with the method of limits as with the power-series definition
of the differential coefficients. He gives a few examples of how some particular
differential coeflicients can be deduced using limits, including deducing those of
logarithmic and trigonometric functions, without resorting to series expansions.

Leibnizian infinitesimal differentials are also briefly introduced [ Traité, I, 193-
194], in spite of being less rigorous than both limits and power-series, because they
are “plus commode[s| dans les applications”%4. Perhaps Lacroix should have inclu-
ded here a footnote that appears only in chapter 4, when explaining the application
of infinitesimals to the study of curves: in that footnote, he quotes Leibniz to the
effect that the consideration of a curve as a polygon is an approximation, whose
error can be made as small as possible — so that the use of infinitesimals is simply
an abbreviation of “Archimedes’ style” (i.e., the method of exhaustion), or of the
method of limits [ Traité, I, 423-424].

63«because it draws on the consideration of motion which is foreign to analysis and geometry”
64“more convenient for applications”
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This section is typical of Lacroix’s encyclopédiste approach: to expound all
relevant alternative methods or theories (and trying to conciliate them). It is also
an essential instance of that approach because in future chapters Lacroix will
sometimes need to resort to one or another of those alternative foundations in
order to explain some particular method.

This is most marked in chapter 5 of volume I and chapter 5 of volume II.
Chapter 5 of volume I is dedicated to analytic and differential geometry in space,
and it is essentially based on work by Gaspard Monge. Lacroix had no choice but
to follow Monge in speaking, for instance, of envelopes of one-parameter families
of surfaces as the limits of their consecutive intersections (where “consecutive”
suggests infinitesimal considerations, mixed here with limits). Space curves are
regarded mainly as polygons in which three consecutive sides are not coplanar.

Chapter 5 of volume II is dedicated to the method of variations. Lacroix
makes no attempt to suit the calculus of variations to the Lagrangian power-series
foundation of the calculus, so he presents Lagrange’s §-algorithm in its Leibnizian
shape (the rules of §-differentiation come from those of d-differentiation by plain
analogy and ddy = ddy is justified using infinitesimal considerations).

3.2.8 A criticism of Lagrange

Lacroix’s approach to the principles of the calculus, although technically drawn
from Lagrange’s work, has a fundamental difference in relation to the latter’s view
on this issue. Lacroix saw in [Lagrange 1772a| a more rigorous and more elegant
way to justify the differential calculus than the other ways available, but he did
not seek to exclude these other views, as they were often useful.

They were useful not only for technical reasons, but also for the insights they
allowed. In the preface to the first volume he quoted a letter he had received from
Laplace in January 1792, while he was collecting material for the Traité:

“Le rapprochement des Méthodes que vous comptez faire, sert a les
éclaicir mutuellement, et ce qu’elles ont de commun renferme le plus
souvent leur vraie métaphysique: voila pourquoi cette métaphysique est
presque toujours la derniére chose que ’on découvre.”%?

These words from Laplace certainly mirror the way Lacroix felt about the princi-
ples of the calculus.

Lagrange, on the other hand, sought to establish a coherent and comprehen-
sive foundation for the calculus, excluding all alternative views. This included re-
naming the subject as calculus of functions, and abandoning notations that were
evocative of infinitesimals.

65[Lacroix Traité, I, xxiv]: “The reconciliation of the Methods which you are planning to make,
serves to clarify them mutually; and what they have in common contains very often their true
metaphysics: this is why that metaphysics is almost always the last thing that one discovers”.
This translation is taken from [Grattan-Guinness 1990, I, 139]
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Lacroix did not comment explicitly on the fundamentalism, as it were, of
Lagrange; but in volume III, which appeared in 1800 (three years after [Lagrange
Fonctions|), he did comment, rather disapprovingly, on Lagrange’s exclusion of
the traditional notations.

In a very lengthy footnote ([Traité, III, 10-12]: almost two and a half pa-
ges!), Lacroix argues that a change in metaphysics does not necessarily entail a
change in notation; that the first two volumes of his Traité are proof enough that
the traditional notations are compatible with the power-series approach; that La-
grange’s '-notation is not at all convenient for functions of more than two variables;
that Lagrange’s contributions to analysis using the calculus of functions could be
equally obtained using the differential calculus; that the passage from algebra to
the differential calculus, as presented in his own Traité or in [Lagrange 1772a], was
as simple as the passage from algebra to the calculus of functions; that everyone
who had already studied the calculus, reading [Lagrange Fonctions| was forced to
translate (at least mentally) its results into the usual symbols; and finally, that
original notations embarrass students.

His comparison between [Lagrange Fonctions] on one side, and [Lacroix
Traité] and [Lagrange 1772a] on the other, is particularly suggestive of Lacroix’s
disappointment with [Lagrange Fonctions|. Not a mathematical disappointment,
of course: he is very clear about the worth of [Lagrange Fonctions|, and about the
fact that he profited from it; more of a philosophical disappointment, as well as
pedagogical.



Chapter 4

Analytic and differential geometry

The two final chapters in volume I comprise a “complete theory of curves and
curved surfaces”; that is, not only the “application of the differential calculus to
the theory of curves” (and of curved surfaces) — what we now call differential
geometry — but also the “purely algebraic part of that theory” — analytic geometry.
Lacroix explained the inclusion of analytic geometry by his desire to offer a full
set (“ensemble complet”) and to relate notions that were usually presented from
very different points of view | Traité, I, xxv, 327].

Lacroix, a good teacher, divided these chapters according to number of di-
mensions: chapter 4 is devoted to both analytic and differential geometry on the
plane; chapter 5 in space. In this study the main division will be by subject: first
analytic geometry, then differential geometry.

The boundaries between analytic geometry and differential geometry are so-
metimes a little artificial, particularly when talking about the 18th century, an
age in which the study of infinite series could be regarded as “purely algebraic”. In
these two chapters it is often not clear into which of the two subjects a particular
passage should be classified. Nevertheless, there is an interesting story to be told
about analytic geometry, in which Lacroix plays an important role, and that was
decisive in the choice for this division.

In these two chapters the influence from Monge is most marked: he was one of
the chief authors of the version of analytic geometry that emerged in the late 18th
century; and as for chapter 5, the “theory of curved surfaces and curves of double
curvature” presented there “is almost entirely due to Monge” [Lacroix Traité, I,
435].

Another influence from Monge is in the parallelism that Lacroix tries to draw
between analysis and geometry. The purpose of these two chapters is perhaps most
fully explained in a draft letter dated 22 Nivose year 3 (11 December 1794), kept
at [Lacroix IF, ms.2397]":

IThe addressee is not identified, but was probably Regnard, possibly a private pupil, to whom
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“Ne croyez pas que les chapitres d’application que je veux intercaler
puissent deranger la marche analytique car ils seront isoles du reste, ils
ne serviront pas & decouvrir ou & demontrer aucun resultat de calcul.
Mais ils seront 'image des chapitres precedens. On les passera si on veut
sans nuire a la lecture du reste mais aussi ils reposeront et amuseront
I'imagination de ’eleve par des peintures sensibles des procedés de calcul
donnés dans les chapitres précedens.

Ainsi ’analyse et la geometrie ne seront point melées mais cet
ouvrage séparé que j’avais commencé avec soin? sur I’application de
lanalyse, se trouvera intercalé par chapitres dans 'autre. Ainsi apreés
les principes du calcul differentiel, on trouvera un traite des proprietes
generales des courbes, des courbes a double courbure et des surfaces
courbes qu’on lira ou qu’on passera a volonte. On y verra la peinture bien
complette et bien interessante de ce que c’est que differences partielles.”?

4.1 Analytic geometry

4.1.1 From “the application of algebra to geometry” to “analytic geo-
metry”’

This subsection is based mainly on [Boyer 1956] and [Taton 1951, 101-124]. It is
an attempt to explain how in a certain sense analytic geometry was a novel subject
in 1797. Lacroix’s presentation of it was one of the very first to take a certain new
point of view.

An explanation on terminology is in order here: the expression “application
of algebra to geometry” (very much common in the 18th century) will be used

Lacroix had been writing, at least since 1789, explaining several issues of mathematics.

2Belhoste [1992, 568] reads here “avec vous”; but given the teacher-pupil tone of the rest of the
letter, this does not sound very convincing (unless of course Lacroix was writing that separate
work as lectures for this student). Belhoste also interprets this whole passage as meaning that
Lacroix intended to interpose his “descriptive geometry” [Lacroix 1795] in the Traité. I disagree:
Lacroix certainly made many references to [Lacroix 1795] in chapter 5, but what he says here is
that a work he had been writing on the application of analysis (to geometry, presumably) was
going to be interposed in the Traité — that separate work must correspond to chapters 4 and 5.

3¢Do not think that the chapters of application which I wish to interpose might disturb
the analytical course: they will be isolated from the rest, they will not be used to discover or
demonstrate any result of calculus. But they will be the image of the preceding chapters. One
may pass over them, if one wishes, without hindering the reading of the rest, but they will also
rest and amuse the imagination of the student through sensible depictions of the procedures of
calculus given in the preceding chapters.

Thus analysis and geometry will not be mixed, but that separate work which I had begun with
care on the application of analysis will be found inserted by chapter in the other. Thus after the
principles of the differential calculus, one will find a treatise of the general properties of curves,
of curves of double curvature and of curved surfaces, which may be read or passed over as one
may wish. One will see there a quite complete and quite interesting depiction of what are partial
differentials.”
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for any application of techniques of symbolic algebra in geometry; the much less
common expressions “coordinate geometry” and “coordinate methods” will refer
to the kind(s) of application of algebra to geometry that used coordinates (not
necessarily orthogonal, not necessarily with explicit z- and y-axes), which allowed
one to represent the geometrical objects involved by means of equations; “analytic
geometry” will be used for a refinement of “coordinate geometry” that sought to
be as independent as possible from synthetic (i.e., non-algebraic) geometry. A very
simple example of “application of algebra to geometry” which is not “coordinate
geometry” is the following, taken from [Bézout 1796, III]: given the sides of a
triangle ABC, to find its height and the lengths of the segments it forms on the
basis. That is, we know AB, BC, AC, and wish to know BD, AD, DC'. Following

B

C

A D

the usual conventions of algebra, we put BC = a, AB = b, AC = ¢, and CD =
x, BD = y; of course AD = ¢ — x. The theorem of Pythagoras gives

rzr+yy =aa and cc— 2cx+ zxr+yy = bb

whence
_1+t@-b) 1

) p 2¢

“Application of algebra to geometry” was an umbrella term for all uses of
algebra in geometry, but we can say that its non-coordinate section (which by the
18th century was purely a school subject, not a research topic) focused on the
same objects as elementary synthetic geometry: triangles, squares, circles, and so
on. “Coordinate geometry”, on the other hand, focused on curves and surfaces. In
its common form, straight lines and planes were not included in those “curves and
surfaces”. “Analytic geometry” changed this.

4.1.1.1 From Descartes to Euler

One of the best known facts of the history of mathematics is that analytic geo-
metry was invented (or discovered) by the French philosopher and mathematician
René Descartes, and that he published this invention (or discovery) in 1637 in
[Descartes Géomeétrie]. What is somewhat less well known is that analytic geome-
try as we know it from school is only a distant relative from what we can find in
Descartes’ famous book. The object of [Descartes Géométrie] was the solution of
problems from classical (Greek) geometry.* Francois Viéte (1540-1603), in 1591,

4In the 16th century the possibility of access to ancient Greek mathematical works had increa-
sed considerably because of the printing of both original versions and (usually Latin) translations.
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had already used symbolic algebra in those problems (by reducing problems to
equations). But Descartes went much further in that direction and introduced
new algebraic techniques, namely — in a somewhat casual way — the use of coor-
dinates, which allowed one to deal algebraically with curves. Seeking an equation
for a curve EC drawn by a certain device, he wrote:

o

L N

“Je choisis une ligne droite, comme AB, pour rapporter a ses divers
poins tous ceux de cette ligne courbe EC, et en cette ligne AB je choisis
un point, comme A, pour commencer par luy ce calcul. [...] Aprés cela
prenant un point a discretion dans la courbe, comme C, sur lequel je
suppose que I'instrument qui sert a la descrire est appliqué, je tire de ce
point C' la ligne C'B parallele a GA, et pourceque C'B et BA sont deux
quantités indeterminées et inconnués, je les nomme 1'une y et 'autre
z. [...] I'equation qu’il falloit trouver est yy >O cy — Gy + ay — ac.”®
[Descartes Géométrie, 320-322]

However, this was just a new technique: his starting point (geometric problems)
and his goal (the geometric construction of the solutions) were two thousand
years old. Moreover, in Descartes’ Géométrie no curve is defined by an equation;
equations are just convenient means to handle curves that are already known;
and those curves are not the object of study; they are only auxiliary objects or
solutions to loci problems.

When the solution to a problem appeared as an equation, it still had to be re-
verted to geometry. This led to the rise of a mathematical theory: the “construction
of equations” [Bos 1984]. A process had to be found to construct geometrically

This (particularly the publication in 1588 of Commandino’s Latin translation of Pappos’ Mathe-
matical Collection) had given origin to what Bos calls “the early modern tradition of geometrical
problem solving” [Bos 2001, ch. 4].

54T choose a straight line, as AB, to which to refer all its points [i.e. those of the curve EC],
and in AB I choose a point A at which to begin the investigation. [...] Then I take on the
curve an arbitrary point, as C, at which we will suppose the instrument applied to describe the
curve. Then I draw through C the line C'B parallel to GA. Since CB and BA are unknown and
indeterminate quantities, I shall call one of them y and the other . [...] the required equation is
Y2 =cy— Sy + ay — ac.”’[Descartes Géométrie, 51-52]
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the roots of the equation. This construction was performed by intersecting sim-
pler curves. According to Bos [1984, 355], “after 1750 the construction of equations
quickly fell into oblivion”. It did disappear as a subject of research, but it survived
a little longer, although weakened, in school curricula, or at least in textbooks (as
for instance in [Lacroix 1798b, 250-260]).

The next two centuries would witness the gradual transformation of Descar-
tes’ coordinate techniques into analytic geometry. The first step was the use of
those techniques for the study of curves for their own sake, not as auxiliary ob-
jects. 1679 saw the posthumous publication of Varia Opera Mathematica by the
French lawyer Pierre de Fermat (c. 1608-1665). These included an Ad Locos Pla-
nos et Solidos Isagoge, composed before the publication of [Descartes Géométrie],
revealing that Fermat had independently created (or discovered) essentially the
same techniques. There were some important differences, and Fermat was more
interested in the analytic study of curves than Descartes; unlike Descartes, he
introduced them through their equations. However, making use of a more cum-
bersome algebraic notation than Descartes, and being published when Cartesian
geometry was already quite popular, Fermat’s work on coordinate geometry went
largely unnoticed.®

Mathematicians in the 17th century who used coordinate methods used them
to study old curves; new curves (such as the cycloid) were usually defined by non-
algebraic means, which parted them from the “application of algebra to geometry”.

According to Boyer, “Fermatian” geometry came into its own only in Newton’s
Enumeratio linearum tertii ordinis, written not later than 1676,” revised in 1695
and finally published in 1704 as an appendix to his Opticks. Being a study of
curves defined by cubic equations in two unknowns, it is “the first instance of a
work devoted to the theory of curves as such”[Boyer 1956, 139].

However, in spite of his contributions to the subject, Newton complained in
his Arithmetica Universalis (1707) about the mixture of algebra and geometry:
“The Ancients did so industriously distinguish them from one another, that they
never introduced Arithmetical Terms into Geometry. And the Moderns, by con-
founding both, have lost the Simplicity in which all the Elegancy of Geometry
consists”®. Boyer [1956, 148| suggests as a solution to the apparent contradiction
that Newton recognized the power of algebraic methods in geometry but did not
allow them in elementary geometry. The view would remain throughout most of
the 18th century that the circle and straight line belonged exclusively to the re-
alm of synthetic geometry (the conic sections were perhaps a debatable land): they
only appeared as auxiliary lines in coordinate geometry; this had consequences:

“La faiblesse essentielle d’une telle conception était de négliger ainsi les
problémes élémentaires sur les points et les droites qui, en dehors de leur

SBut it should be mentioned that several of Fermat’s works, including the Isagoge, had cir-
culated much before, in manuscript form, among the Parisian mathematicians [Boyer 1956, 82;
Bos 2001, 205-206].

"Hence before the publication of Fermat’s Opera. But see previous footnote.

8Quoted in [Boyer 1956, 148].
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intérét propre, permettent de simplifier considérablement la solution de
la plupart des problémes plus complexes.”® [Taton 1951, 102]

The fact that the circle and the straight line were not thoroughly studied in alge-
braic form made it necessary for propositions from elementary synthetic geometry
to be invoked once and again. Reliance on diagrams was much stronger than it
would later become.

Meanwhile the appearance of the differential and integral calculus had provi-
ded mathematicians with a much more powerful tool for the study of curves than
mere algebra. It is only natural that the field known as application of algebra to
geometry had a much slower evolution than the calculus.

“In formalization, infinitesimal analysis had [by the first half of the 18th
century] far outstripped Cartesian geometry |...]. Formulae had been a
natural outgrowth of the algorithms of Newton and Leibniz, but the
coordinate geometry of Descartes and Fermat still leaned heavily upon
auxiliary diagrams”[Boyer 1956, 170].

This is the explanation for the surprising claim by Boyer that the oldest known
appearance of the formula for the distance between two points dates only from
1731, almost a century after the publication of [Descartes Géométrie]. This ap-
pearance is to be found in the Recherches sur les courbes a double courbure by
the French mathematician Alexis Claude Clairaut (1731-1765).1° This does not
mean, of course, that previous mathematicians did not use that formula in some
way: it is implicit for example in the equations for a circle or a sphere; and it is a
close relative of the formula for the differential of the arc length ds = /dx? + dy?.
But apparently whenever someone needed to calculate a distance, or to write an
expression involving one, the basis for the result was the pythagorean theorem,
not an established formula.

In fact even the passage that Boyer claims to contain the distance formula
for the first time is mot explicitly about distance. It concerns the deduction of
the equation of a sphere whose centre is not the origin of the coordinates, making
use of the pythagorean theorem. The expression for the radius of such a sphere

is \/mz +m2 +z—:|202 [Clairaut 1731, 98] (the symbol F is due to some
uneasiness with the use of signs). Earlier in the same book Clairaut had given the
equation of a sphere with the origin as centre, using quite casually /zx + yy + 22
as an expression for its radius [Clairaut 1731, 8|. Boyer apparently saw a significant

difference between \/zz + yy + 2z and \/ TFa + m2 +ZF ¢°. Perhaps more
interesting is the plain fact that in neither occasion is a distance formula deduced
for its own sake — it is only equations of spheres that are sought. We will see
below that the formula for the distance from a point to the origin appeared in

9“The essential weakness in such a conception was the neglect of the elementary problems on
points and straight lines which, besides their own interest, allow one to simplify considerably the
resolution of most of the more complex problems.”

10For this claim, see [Boyer 1956, 168-170].
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[Euler Introductio], but the general distance formula would not appear explicitly
until the late 18th century.

The publication of [Euler Introductio] in 1748 was a big step in the direction
towards analytic geometry. The purpose of this book was to develop those parts
of algebra necessary for the study of calculus, and its second volume was devoted
to coordinate geometry. It is very much relevant that the usefulness of coordinate
methods was now related to the calculus; quite a different situation from that
when Descartes used them to solve problems from classical geometry. It is also
quite telling that [Euler Introductio, IT] has only one chapter (out of 28) dedicated
to the “construction of equations”.

Moreover the principal object of study in [Euler Introductio] is the function,
something which happens for the first time. Thus, in its second volume coordinate
geometry is a method for the study of functions. Each curve is associated with
a function but, more importantly, each function can be represented by a curve.
The functional approach allows Euler to start by giving a short general theory
of curves, instead of starting by the conic sections, as was usual (although conics
play a fundamental role in the introduction of several aspects of curves); it also
allows him to include a chapter on transcendental curves. He also strives to give
a thoroughly analytic treatment of conic sections: they are called “second-order
lines”, and their study is based upon the general second-order equation on two
unknowns; they are defined by their equations, not as sections of cones, nor as
planar geometrical loci (as was often the case: we will see two examples below, in
section 4.1.1.2).

However, Euler’s coordinate geometry still relied heavily (according to later
standards) on diagrams and elementary synthetic geometry. An example of this
is his deduction of the equation of a circle of centre C' and radius AC' = a, AB
being the axis and A the origin of the abscissas; the abscissa is AP = x and the
ordinate is PM = y. Then PM? = AP - PB and PB = 2a — z, so that the
equation is y? = 2ax — 2% [Euler Introductio, I1, §64]. The main result used here
is a well-known property of the circle given in Euclid’s Elements, VI, 13.

ff‘y 6
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It may be worth mentioning that the above deduction of the equation of
the circle appears as a detail in an example about “complex lines”: Euler finds
the equations of the circle and the straight line in the figure and multiplies them,



96 Chapter 4. Analytic and differential geometry

obtaining a “third-degree complex equation”. The chapter is on the “classification
of algebraic curves by order”.

A general equation for the straight line had been obtained previously [In-
troductio, 11, §39], in a chapter on “change of coordinates”, also in an incidental
manner. Boyer [1956, 182] says of Euler’s treatment of the straight line equation
that it “is characteristic for its generality, but it is startingly abbreviated”.

The length of a straight line from a point in space to the origin of coordinates
is given as /zx + yy + zz, without any justification (geometrical or otherwise),
but apparently the only use for this formula is to provide the equation of the sphere
[Euler Introductio, 11, Appendix § 10, 14]. On the plane, at least in three occasions
[Euler Introductio, II, §127,139,396] \/zx + yy appears as the distance to the
origin (also without an explicit justification); but they are somewhat incidental:
in the first two of these occasions its sole use lies in recognizing ellipses with
equal axes as circles; and the third is related to conversion of polar to rectangle
coordinates.

In the decade after the publication of [Euler Introductio], appeared two im-
portant treatises on algebraic curves, pointing in the same analytic direction:
[Cramer 1750] and [Goudin & du Séjour 1750]. They have a common characteris-
tic, that makes their treatments of curves seem even more general than Euler’s:
while in the latter’s work there are separate chapters for second, third and fourth-
order lines, and many properties of general curves are only studied afterwards,
in [Cramer 1750] and [Goudin & du Séjour 1750] those lines are not more than
interesting examples.

However analytic these three works are, each of them is a “study of higher
plane curves, rather than an analytic geometry in the modern sense”[Boyer 1956,
198]. But they represented what for some time seemed the definitive aspect of the
subject of coordinate geometry; until Lagrange made an important suggestion for
a somewhat new approach in 1773 (see section 4.1.1.3).

4.1.1.2 Two traditional elementary accounts: Bézout and Cousin

[Euler Introductio, I1], [Cramer 1750], or [Goudin & du Séjour 1756] do not seem
to represent accurately the version of coordinate geometry dominant in the second
half of the 18th century for educational purposes. A good example of the standard,
not-too-difficult, educational version of the subject at that time is more likely to
be found in the third part of Bézout’s Cours de Mathématiques [Bézout 1796, I11],
which is dedicated to algebra and contains a section on the application of algebra
to geometry, pages 289-488 (almost half of the volume, in fact)*!.

It was translated into English in the United States in 1820 instead of the
corresponding section in one of Lacroix’s textbooks.!? The reasons for this choice

1 According to [Boyer 1956, 272] its “treatment of analytic geometry is typical of the time
about 1775”.

12Lacroix had published a textbook Traité élémentaire de trigonométie et d’application de
Ualgebre a la géométrie [1798b], combining in one volume these two subjects; [Lacroix & Bézout
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were that “analytical geometry!'® [had until then| made no part of the mathematics
taught in the public seminaries of the United States”, and was to have little time
allotted and to be taught “in many instances [to students| at an age not sufficiently
mature for inquiries of an abstract nature” (although this book was intended “for
the use of the students of the University at Cambridge, New England™); so “it was
thought best to make the experiment with a treatise distinguished for its simplicity
and plainness” [Lacroix & Bézout 1826, iii].

Simple and plain it is. It is also much more old fashioned than [Euler In-
troductio, 11| (and incredibly more elementary). Because the results of operations
on geometrical magnitudes can be given either in numbers or in lines, the first
few pages are dedicated to the “geometrical construction of algebraic quantities”
from the construction of “Tb (a fourth proportional) to that of ad—g [Bézout 1796,

II1, 289-303]. Then comes a long section [Bézout 1796, III, 304-360] on the use of
equations to solve geometric problems, without using coordinates. These problems
range from inscribing a square in a given triangle to questions about volumes of
simple solids. An example of this was seen in page 91.

Coordinates are finally introduced for the study of “curved lines in general,
and conic sections in particular”. The first example [Bézout 1796, III, 361-372]| is
that of a curve defined by the property that its ordinate is a mean proportional
between its abscissa and the complement of the abscissa in a given segment; after
plotting the curve, Bézout deduces that it is a circle (using the defining property
and, of course, Pythagoras’ theorem) and proves a couple of properties about it.
The only change of coordinates considered is a change of origin, from an end point
of a diameter to the centre of the circle.

But the example of the circle is just an introduction. Apparently the main
(or sole) purpose of coordinate geometry is the study of the conic sections [Bézout
1796, 111, 372-456]. Each one is defined by the respective property of the distances
between its points and its foci (to express algebraically those distance properties,
right triangles are always invoked, of course). Various properties are found or
stated and proven (including ways of drawing the curves and equations for their
tangents). Some changes of coordinates are given, but each is particular to a conic
section, and their purpose is to be able to reduce any second-degree equation
(in two unknowns) to a conic section (and thus to construct that equation, a
deployment referred to in the preface [Bézout 1796, 111, ix|).14

After some examples [Bézout 1796, 111, 456-482|, the deduction of a few
trigonometric formulae [Bézout 1796, 111, 482-488] closes the volume.

1826] was a combined translation of Lacroix’s trigonometry and Bézout’s application of algebra
to geometry.

13By the 1820’s the expression “analytic(al) geometry” had already become popular enough
to be used in the “advertisement” to this American translation. Its author seems to use it as
synonymous with “application of algebra to geometry”

14[Lacroix & Bézout 1826] closes just after the study of the conic sections, so that it does
not include the construction of equations. It is unlikely that this is due to the obsolescence of
the subject, since an 1829 French edition of Bézout’s Cours (Paris: Bachelier) still includes that
section.
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Of course a comparison between [Euler Introductio, II] and [Bézout 1796, 111,
289-488| is unfair for several reasons. One of them is that the former was part of an
introduction to the calculus, while the latter was part of a general mathematical
education for naval personnel.

Closer in aim to [Euler Introductio, II] (and to [Lacroix Traité, I, ch. 4])
was the first chapter of the introduction to [Cousin 1796]. This chapter, enti-
tled “Application de I’Algébre a la Géométrie”, is one of the main additions in
[Cousin 1796], when compared to [Cousin 1777]. It is much less elementary than
[Bézout 1796, II1, 289-488], but not more modern in tone. This can be seen from
the start, in the following sentence, characterizing the way to solve problems by
applying algebra to geometry:

“Tout se réduit & se procurer des équations: & comme la Géométrie
ne nous offre pour cela que des triangles semblables ou des triangles
rectangles; il ne s’agit que de former triangles semblables ou des triangles
rectangles, au moyen de quelque construction simple que la nature du
probléme indique.”*® [Cousin 1796, 1, 1]

As in [Bézout 1796, I11], the first examples have little or nothing to do with
coordinate geometry. However, here the pre-coordinate section is much shorter
[Cousin 1796, 1, 1-6]. Two equations for the circle are deduced (from the radius
as hypotenuse of a right triangle): y = £1/r2 — 22 and hence, if r = 1, sinm? +
cosm? = 1; but this is done without explicit reference to coordinates, and its
purpose is not to study the circle, but rather to develop several trigonometric
formulas. In the second example Cousin, without any recourse to coordinates,
arrives at various formulas relating angles, sides, and area in a generic triangle.

Once again as in [Bézout 1796, I1I], coordinates are introduced for the study
of conic sections. These have definitions equivalent to those in [Bézout 1796, III],
but in an even more geometrical language: instead of speaking of distances, their
points are the intersections of circles, or of circles and straight lines (in the case
of the parabola) [Cousin 1796, I, 6-9].

The properties of the conic sections are then studied [1796, I, 9-20] (including
tangents, asymptotes, and infinite branches). Formulas are given for a general
change of coordinates (in a very unclear way), and they are used to prove that
any second-order curve is a conic section [1796, I, 10-12].

Unlike Bézout, Cousin considers curves of any order (although in practice
he does not go beyond the third order) [1796, I, 20-27]. The questions asked
about them have to do with their centres, diameters, and infinite branches. He
also considers curved surfaces in a short section (dealing mainly with solids of
revolution) [1796, 1, 27-30].

The chapter closes with a tiny and very awkwardly placed section on geome-
trical loci [1796, 1, 30-31] and another on “construction of determinate equations”

1541t all comes down to search for equations: & since Geometry does not offer for that but
similar triangles or right triangles; it amounts to form similar triangles or right triangles, by
means of some simple construction indicated by the nature of the problem.”
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[1796,1, 31-36]. It is somewhat mysterious what possible use this last section could
have in a treatise on differential and integral calculus published in 1796.

4.1.1.3 The analytic program for elementary geometry: Lagrange and Monge

Three-dimensional coordinate geometry had a much slower development than its
planar counterpart. The first major accounts of it [Clairaut 1731; Euler Introduc-
tio, 11, appendix| date from the 18th century, about a century after the appearance
of the subject. This was partly due to the facts that the space is much harder to
visualize than the plane, and that therefore space synthetic geometry is much more
difficult than plane synthetic geometry. Coordinate geometry as it was before the
end of the 18th century, relying heavily on diagrams and on frequent use of ele-
mentary synthetic geometry, was also much more well adapted to the plane than
to space.

It should be no surprise, then, that it was in relation to three-dimensional
geometry that further algebrization took place. Nor is it surprising that Lagrange
was involved in that.

[Lagrange 1773b] was the first published suggestion for a really algebrized
geometry. In that memoir Lagrange studied several properties of a generic te-
trahedron: the areas of its faces, its height, volume, inscribed and circumscribed
spheres, centre of gravity, etc. He regarded tetrahedra as the equivalent in solid
geometry of triangles in plane geometry; but he had noticed that while triangles
had always been an object of the geometers’ closest attention, on tetrahedra only
a handful of the many possible problems had been solved [Lagrange 1773b, 661].
However, this was not really the motivation behind this memoir: however useful
the results obtained might be

“elles serviront principalement a montrer avec combien de facilité et de
succes la méthode algébrique peut étre employée dans les questions qui
paraissent étre le plus du ressort de la Géométrie proprement dite, et
les moins propres & étre traitées par le calcul.”!% [Lagrange 1773b, 662]

We can see that there is a sense of novelty here. Lagrange feels the need to explain
the spirit and the method of the memoir: “Ces solutions sont purement analytiques
et peuvent méme étre entendues sans figures”!” [1773b, 661]. The memoir is in fact
devoid of diagrams. Using rectangular coordinates for the significant points of the
tetrahedron,

“tout se réduit a une affaire de pur calcul, et il est trés-facile de déter-
miner la valeur des lignes qu’on veut connaitre, puisqu’il ne faut que

164they will serve mainly to show how easily and how successfully the algebraic method can
be employed in those questions that most seem to fall within the scope of Geometry proper, and
appear the least suitable to be dealt with by calculation.”

17«These solutions are purely analytic and can even be understood without figures.”
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prendre la somme des carrés des différences des coordonnées qui répon-
dent aux deux extrémités de chaque ligne proposée.”'® [Lagrange 1773b,
662]

This is a much more explicit statement of the distance formula than Clairaut’s
(see above page 94) and more general than Euler’s (see above page 96). But the
main innovation is that here it is a fundamental tool throughout.

A typically analytic passage in this memoir is that in which Lagrange seeks
the height of the tetrahedron. Its summit being the origin of the coordinates, he
takes a generic point in the base plane, with coordinates s, t, u, so that the distance
between the point and the summit is v/s2 + 2 + u2; he then minimizes it, making
its differential equal to zero, and combines the equation v = [+ms-+nt of the base
plane, arriving at the result ﬁ [1773b, 670-672]. There is little geometrical
reasoning involved here. But there is another interesting aspect in this passage:
Lagrange has to resort to differential calculus, probably because perpendicularity
had not yet been properly expressed in algebraic form.

An algebraic treatment of perpendicularity in space would be published by
Monge [1785a]. This is a memoir on evolutes that contains important aspects
of analytic geometry, pointing in a direction very similar to the one suggested
in [Lagrange 1773b]. A version of Monge’s memoir was submitted to the Paris
Academy of Sciences in 1771 (thus before the publication of [Lagrange 1773b]),
but it is not clear whether that version already included those aspects of analytic
geometry — a preliminary manuscript of 1770 did not [Taton 1951, 114]. On the
paternity of this conception of analytic geometry, Lacroix would later say:

“Lagrange a donné, dans les Mémoires de I’Académie de Berlin (année
1773), une Théorie des Pyramides, qui est un chef-d’ceuvre dans ce
genre; mais Monge est, je crois, le premier qui ait pensé a présenter sous
cette forme I’application de I’Algébre a la Géométrie.”!? [Lacroix Traité,
I, xxvi

In [1785a, 524-527] Monge seeks the equation of the normal plane to a space
curve; for this he needs the equation of the plane perpendicular to a given straight
line that passes through a given point on that straight line. Starting from two
equations defining the straight line, he projects it on the three coordinate planes
(by eliminating each of the variables in turn); removes the constant terms so as to
have a parallel through the origin; determines the cosines of the angles between
this parallel and the three coordinate axes; using these and a little trigonometry he
arrives at the relation between the distances from the origin to the point where the
plane intersects the parallel and the points where the plane intersects the axes; this

18«it all amounts to an affair of pure calculation, and it is very easy to determine the value of

the lines we wish to know, since it is enough to take the sum of the squares of the differences
between the coordinates that correspond to the extremities of each proposed line.”

19¢Lagrange gave, in the Memoirs of the Berlin Academy (year 1773), a Theory of Pyramids
which is a masterpiece in this genre; but it was Monge, I believe, the first who thought of
presenting under this form the application of Algebra to Geometry.”
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relation gives a proportion between the coefficients in the plane’s equation (which
is the same as that between the coefficients «, 3,7 of y, x, z in the equations of the
projections); it only remains to force it to pass through the point with coordinates
z',1y’, z’, which is easily done putting its equation in the form

alz =21+ Bly =yl + vz — 2] = 0.

Next, to determine the distance from a point to a straight line, Monge just
has to determine the (equation of the) plane that is perpendicular to the straight
line and passes through the point, intersect this plane with the straight line (which
gives a point of coordinates x,y, z), and take the distance between this and the
original point (which had coordinates 2/, y', 2'): /(z — 2/)2 + (y — /)2 + (2 — 2/)2
[Monge 1785a, 527-528]. This is later applied in finding the radius of curvature of
a space curve in a given point.2°

What is interesting here is that these results are in a research paper. They are
only auxiliary tools, not the subject of the paper; but their explanation makes it
clear that the reader was not supposed to have seen them (or similar ones) before.

In the next few years Monge published a few more memoirs on differential
geometry, where he kept using elementary geometry in this analytic fashion.?!

This new algebrized version of elementary solid geometry would be systema-
tized by Monge in 1795, in his lectures at the newly founded Ecole Polytechnique.
Monge was quite influential in the setting up of the curriculum of the Ecole, and
he managed to include a course in “analysis applied to geometry” that addres-
sed differential geometry (“a branch of science which only Monge could teach”
[Taton 1951, 40]), and also those purely algebraic solutions for elementary geo-
metrical problems that he had been using in his research memoirs (as well as the
algebra and calculus necessary for these applications)?2.

Monge supplied his students with notes containing the applications of analy-
sis to geometry given in these lectures (Feuilles d’Analyse appliqué o la Géomé-
trie). The first edition of these notes, printed in 1795, was never published as a
volume and is very rare. I have only consulted the second edition, published in
1801, but according to Taton [1951, 121] the differences regarding analytic geome-
try between the first and the second edition amount only to insignificant details
(that is, differences in text; information provided in [Belhoste & Taton 1992, 292-
301] implies a stronger association of the first edition to the contemporary course

20 As the distance between that point and its corresponding straight line in the developable
surface.

21This included what according to Boyer [1956, 205-206] was perhaps the first explicit appea-
rance of the point-slope equation of the straight line: y — y’ = a(z — z’), where a is the tangent
of the angle between the straight line and the abscissa axis and z’,%’ are the coordinates of a
given point on it [Monge 1781, 669].

22 An abridged syllabus of this course is in [Langins 1987a, 130-131]. Of course, there is no
guarantee that Monge really followed this syllabus. One serious possibility is that he may have
taught only the geometrical applications, while others (Hachette, Malus, Dupuis) taught algebra
and the calculus [Langins 1987a, 78]. See also section 8.2.
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on descriptive geometry, which in teaching practice may have been a significant
difference — see below).

The introduction on analytic geometry in [Monge Feuilles| is composed by
its first 14 pages (leaves n® 1 — 3bis). It opens with a short paragraph on the
equation of the straight line on the plane. The coordinates involved are x and z,
and that is for a good reason: the objects of study in the introduction are planes
and straight lines in space, but the former’s traces and the latter’s projections
on the coordinate planes (especially the vertical ones) are fundamental tools (in
fact the coordinate planes are called “plans rectangulaires des projections” [Monge
Feuilles, n° 1-iii]).

The style is very concise. Immediately after that opening paragraph Monge
attacks several problems, such as finding equations for a straight line parallel to a
given straight line, or perpendicular to a given straight line, a given plane, or two
given straight lines; and the calculation of angles between planes and/or straight
lines of distances between points, a point and a plane, or the shortest distance
between skew straight lines.

On two occasions differential calculus is used [Feuilles, n° 1-iii; 2-i]. In both
passages the purpose of this use is to minimize distances in order to express per-
pendicularity (the first is very similar to [Lagrange 1773b, 671] — see above page
100). But an algebraic alternative is given, based on the “known fact” that if a plane
is perpendicular to a straight line, then their respective traces and projections are
also perpendicular?® [Monge Feuilles, n° 2-i].

This geometry is very much algebraized, but it is not easy to understand
how purely algebraic it was in practice. In 1795 Monge taught descriptive geome-
try to the same students and he tried to associate the two courses [Belhoste &
Taton 1992, 295]. This association is well illustrated by the fact that the problems
solved algebraically in [Monge Feuilles, n° 1-3 bis| are precisely the same (and
almost in the same order) that were treated in lectures 1-5 and 8 of his course
of descriptive geometry [Monge Stéréotomie, 11-12; 1992, 292-293]; in fact, each
of the leaves of that preliminary section in the first edition of [Monge Feuilles]
has an indication for the corresponding diagram in the lecture notes of descriptive
geometry [Belhoste & Taton 1992, 295-297]. Moreover, on several occasions the
reader was required to supply some basic geometrical reasoning (or to have some
previous knowledge of space geometry), particularly on how to operate with pro-
jections: one example is the known fact (“on sait que...”) about perpendicularity
quoted in the paragraph above.

But of course it would have been impossible to dispense with all geometrical
reasoning in the setting up of analytic geometry. Its purpose was to derive algebraic
formulas to be used subsequently instead of synthetic geometry; in the deduction
of those formulas, formulas previously obtained might be preferred to geometrical
reasonings, but the occasional recourse to the latter was unavoidable.

23Perpendicularity on the plane had been swiftly taken care of in the opening paragraph, using
the fact that, in x = az + b, a is the tangent of the angle between the straight line and the z-axis.
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It must also be noticed that in the second edition (whose text, as has already
been mentioned, seems to be almost unaltered) the association with descriptive
geometry is no longer apparent: at least, there is no indication for external dia-
grams, and no internal diagrams replacing them — which means zero diagrams for
this introduction on analytic geometry (the whole [Monge Feuilles, 2nd ed] has
only 10 figures). Thus, diagrams were not regarded as indispensable to the reader.

The reason for this entanglement is that Monge did never see analytic ge-
ometry as a replacement for synthetic (or descriptive) geometry; rather, he saw
these two as distinct ways of expressing the same objects. Each had its own ad-
vantages (the “evidence” of descriptive geometry, the “generality” of analysis) and
they should be cultivated simultaneously and in parallel [Monge 1795, 317|. In
later years Monge (quoted by Olivier [1843, vi]) would go as far as to claim that
if he were to rewrite |Feuilles|, it would have two columns with the same results:
one in analysis, and the other in descriptive geometry.

4.1.2 Lacroix and analytic geometry

Lacroix was familiar with Monge’s algebraic approach to geometry much before
the latter’s lectures at the Ecole Polytechnique (and more than the common reader
of Monge’s memoirs on differential geometry). In fact, it was one of the topics they
addressed in their correspondence, when Lacroix was in Rochefort and Besangon;
Taton [1951, 119-120] cites a letter from 1789, kept in [Lacroix IF, ms2396],
where Monge answers a problem proposed to him by Lacroix, about the minimum
distance between two straight lines. We have seen above (page 100) a reference
in the preface to Lacroix’s Traité to his belief on Monge’s priority on “analytic
geometry”.

In the preface to the first volume of his Traité, Lacroix gave a statement of
his adherence to the analytic program for geometry:

“En écartant avec soin toutes les constructions géométriques, j’ai voulu
faire sentir au Lecteur qu’il existoit une maniére d’envisager la Géo-
métrie, qu’on pourroit appeler Géométrie analytique, et qui consisteroit
4 déduire les propriétés de I’étendue du plus petit nombre possible de
principes, par des méthodes purement analytiques, comme Lagrange I’a
fait dans sa Méchanique & 1’égard des propriétés de 1’équilibre et du
mouvement.”?* [Lacroix Traité, 1, xxv]|

Apparently, in this passage Lacroix is even introducing the new name “analytic
geometry”, inspired by Lagrange’s “analytic(al) mechanics”?®, instead of the old

244In carefully avoiding all geometric constructions, I would have the reader realize that there
exists a way of looking at geometry which one might call analytic geometry, and which consists
in deducing the properties of extension from the smallest possible number of principles by pu-
rely analytic methods, as Lagrange has done in his mechanics with regard to the properties of
equilibrium and movement”. This translation is taken from [Boyer 1956, 211].

25That Lagrange’s méchanique analytique has been translated as analytical mechanics while
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“application of algebra to geometry”. The expression “analytic geometry” had oc-
curred before: it seems to have been used for the first time, in 1709, by the French
mathematician Michel Rolle (1632-1719); there were a few other occurrences in
the 1770s and 1780s, but not associated to the “analytic program” of Lagrange
and Monge [Boyer 1956, 155, 215-216]. However, these were isolated occurrences.
Lacroix may not have been aware of them or, if he was aware, he did not feel they
were enough to have given a definite meaning to the expression: it was available
to be used for the new kind of coordinate geometry.

Lacroix never wrote a work bearing the expression “analytic geometry” in the
title. The textbook [Lacroix 1798b] in which he included the subject was called
“Traité élémentaire de trigonométrie rectiligne et sphérique, et d’application de
I’algébre & la géométrie”: the old name surviving. But the chapter on “application
of algebra to geometry” contains more than what Lacroix had proposed to call
“analytic geometry”.? Its first sections are concerned with the use of “algebraic
operations to combine several theorems of geometry so as to deduce their conse-
quences” [Lacroix 1798b, 83]; this is non-coordinate algebraic geometry, similar to
that seen in the works of Bézout and Cousin (section 4.1.1.2), and in the style of
the example given in page 91. There are also a few small sections on the construc-
tion of equations. It is true that the bulk of it is in fact analytic geometry; but it
seems that conceptually, analytic geometry was only a part (although the major
part) of the application of algebra to geometry.

There is another possible explanation, given by Boyer [1956, 217], for the
absence of the phrase “analytic geometry” in the title of [Lacroix 1798b|: Lacroix
might have avoided it because of the confusion that existed at the time as to the
distinction(s) between analysis and synthesis. In fact, on a later text about that
distinction, he wrote that

“L’exactitude du langage semblerait demander qu’on prévint I’équivoque
occasionnée par les divers sens dans lesquels se prend le mot analyse, et
que pour cela on désignat autrement 'emploi du signe arbitraire [i.e.,
of algebraic symbolism|.”?7 [Lacroix 1805, 2nd ed, 232]

But what other designation could be adopted? After discussing briefly the pos-
sibilities of logistics and calculus-“calcul” (“too vulgar” — especially as it would
bring along the word “calculators”, easily confused with “arithmeticians”), Lacroix
concludes that

“le changement de dénomination est peu important en lui-méme dés que
I’on congoit nettement la différence des procédés; et par cette différence

analytic geometry is more common in English than analytical geometry is just an unfortunate
miscoincidence.

26That chapter and an appendix on analytic geometry in space, together comprise more than
two thirds of the book.

27«Exactitude in language would seem to demand that the ambiguity which is caused by the
different meanings in which the word analysis is taken be avoided, and that therefore the use of
arbitrary signs [i.e., of algebraic symbolism]| be designated differently.”
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on saura toujours bien quand une analyse méritera véritablement ce
nom, ou ne sera qu'une synthése réduite en calcul.”?® [Lacroix 1805,
2nd ed, 233|

It is worth noticing that Lacroix repeated in 1810 (in the preface to the second
edition) his suggestion for the name “analytic geometry” [ Traité, 2nd ed, I, xxxvii].
He had not changed his mind.

The phrase “analytic geometry” would be used for the first time in the title of
a work in 1804, in the second edition of a textbook by Frédéric-Louis Lefrangois;
that title was Essais de géométrie analytique; the title of the first edition (1801)
had been Essais sur la ligne droite et les courbes du second degré.?”

It is important to examine the relationship that Lacroix proposed between
analytic geometry and synthetic geometry. In the preface to the Traité, still refer-
ring to the chapters on geometry, Lacroix stated very clearly that his insistence on
the “advantages of algebraic analysis” did not mean a criticism of either synthesis
or geometrical analysis. He just thought that geometrical considerations and alge-
braic calculations should be kept apart as much as possible; and that its respective
results “s’éclairassent mutuellement, en se correspondant, pour ainsi dire, comme
le texte d’un livre et sa traduction”3%. This is remarkably similar to Monge’s views
mentioned above, and to Monge’s practice when teaching at the Ecole Polytechni-
que. The letter quoted in the beginning of this chapter shows that in 1794 Lacroix
already had this conception. It certainly is a very important conception in La-
croix’s Traité, not only in the two final chapters of volume 1, but also in several
passages in volume 2.

4.1.2.1 Analytic geometry on the plane in Lacroix’s Traité

In 1797 analytic geometry (in the new sense) had not yet been applied to the plane
— with the sole exception of the short opening paragraph of [Monge Feuilles]. It
was up to Lacroix to do this, systematically, for the first time. As Boyer [1956, 211]
puts it (speaking of both [Lacroix Traité] and [Lacroix 1798b]: “Here Lacroix did
for two dimensions what Lagrange and Monge had done for three-space”; he even
finds it “probably fair to speak of the new program as ‘analytic geometry in the
sense of Lagrange, Monge and Lacroix”. At least some of their contemporaries
had a similar perspective, as can be seen by the title of a book published in

28«the change in denomination is not very important in itself, as long as the difference between
the processes is clearly understood; and by that difference it will always be known when an
analysis is really worthy of that name, or is just a synthesis reduced to calculus”.

29Both Taton [1951, 135] and Boyer [1956, 220] wrongly ascribe this little priority to Jean-
Baptiste Biot. Biot published in 1802 a Traité analytique des courbes et des surfaces du second
degré; he changed the title of this work in the second edition (1805) to Essai de géométrie
analytique, appliqué aux courbes et aur surfaces du second degré. Boyer had the excuse that
he apparently did not see the first edition and assumed it had the same title as the second
[Boyer 1956, 273|; but Taton [1951, 132| gave all these (and more) bibliographic details.

304should serve for mutual clarification, corresponding, so to speak, to the text of a book and
its translation”. This translation is taken from [Boyer 1956, 212].
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1801 by Louis Puissant: Recueil de diverses propositions de géométrie résolues ou
démontrées par Uanalyse algébrique, suivant les principes de Monge et de Lacroiz!
[Taton 1951, 132].

Lacroix did include several diagrams, but usually their role is purely illus-
trative. Apart from a few exceptions (particularly those related to graphical re-
presentation), they could be omitted with only a pedagogical loss, not a logical
one.

The first few pages of chapter 4 are taken up by a short introduction to rec-
tangular coordinates and an extensive study of fundamental formulae for straight
lines and distances [Lacroix Traité, I, 327-332].

The usual form of the equation for a straight line will be y = ax + b; this
form is thoroughly explored: a is the tangent of the angle between the line and
the abscissa axis, b the ordinate at the origin, —% the abscissa at the origin. Much
attention is given to negative coordinates. The equation of a straight line that
passes through the points that have coordinates «, 8 and o, 3’ is easily found
combining § = aa + b with 3/ = aa’ + b; the equation of the straight line that
passes through the point with coordinates «, 8 and is parallel to y = o’z + b is
almost immediately given as y — 8 = a/(x — «) because y — 8 = a(x — «) is the
general equation of the lines satisfying the first condition and the coefficient o’
gives the second.

A slightly unnecessary geometrical intrusion occurs apropos of perpendi-
cularity: similar triangles are invoked to justify that —% is the slope coefficient
of a straight line perpendicular to y = ax + b; it would have been more alge-
braic to say that that is the cotangent of the angle which has a as tangent, as in
[Monge Feuilles, n° 1-i].

To justify the distance formula \/(0/ —a)? + (8 — B)® Lacroix invokes a
right triangle. It could not have been otherwise. But once these formulas have
been established, it takes Lacroix only six lines (and no diagram) to deduce a
formula for the distance of a point to a straight line | Traité, 1, 332].

The equation of the circle is explicitly derived from the distance formula,
much further along, in the section on osculation of curves [ Traité, I, 392].

Of course all of these preliminary results are quite elementary. Also its subs-
tance was not really new. But this form of exposition was. Boyer [1956, 213-214]
stresses as novel the “continued emphasis upon the almost automatic application
of formulas|, making] the subject resemble an algorithm, in which independent
reference to the geometrical properties of figures is dispensed with”.

Afterwards, Lacroix included those preliminary considerations in his [1798b]
and subsequently several textbooks were published that also contained them: Ta-
ton [1951, 132-133] lists six books on the new analytic geometry between 1801 and
1809, not including Monge and Hachette’s Application d’algébre a la géométrie of
1802. Because of this, in 1810 Lacroix was able to remove this preliminary section

31 Collection of several propositions of geometry solved or demonstrated by algebraic analysis,
following the principles of Monge and Lacroix.
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from the second edition [Traité, 2nd ed, I, xxxvii].

The rest of the plane analytic geometry is not so original: [Euler Introductio,
I1], [Cramer 1750] and [Goudin & du Séjour 1756] provided versions of coordinate
geometry of algebraic curves beyond the straight line and circle that would fit well
in an analytic geometry (these three works are cited in the Traité’s table of contents
for chapter 4).

Right after the preliminaries on the straight line comes a section in which
Lacroix addresses the graphical representation of algebraic curves, in the case
where it is possible to solve the equation in y (that is, to turn it into several
expressions such as y = f(x) — the roots of the equation). There is one instance in
which plotting by joining points is recommended [Lacroix Traité, I, 336-337]; but
the main tool is the study of the roots of f(z): they show the number of branches
of the curve, which of them are infinite, etc. Points of the curve with remarkable
characteristics (“particularités remarquables”) are called singular points (including
cases in which the partial derivatives at the point are not null). Several kinds of
singular points are introduced: multiple points, inflexion points, conjugate (i.e.
isolated) points, nodes and cusps (“points de rebroussement”). Lacroix strives to
give analytical characterizations of these singular points (speaking of multiple
values, situations in which certain coefficients are null, etc.); but that is not always
feasible, as when introducing inflexion points, where he appeals to the graph of an
example curve [Traité, I, 339].

Next comes transformation of coordinates. This is a very powerful tool. It
allows Lacroix to give a short study of second-order curves (without any diagram),
and briefly indicate how the same could be done for third-order curves [Traité, I,
345-351]. It also gives a means to find centres and diameters of curves [Traité, I,
351-353].

Transformation of coordinates also provides a “very elegant means” to deter-
mine the tangent to a curve in a given point M: M being the origin of the new
coordinates u, t (which will be oblique), and the u axis being parallel to the x axis,
one tries to get a ¢ axis that will be tangent to the curve. Imagining first that it
cuts the curve in some point m besides the origin, one approaches m and M until
they are the same; since there will be two null values of ¢ at the same time, the
new equation of the curve will be divisible by t? when u = 0 | Traité, 1, 353-355].32

Similar considerations on divisibility of a transformed equation by powers of
t give algebraic characterizations of multiple points and inflexion points.

This section finishes with a few considerations on the number of possible
intersections between two algebraic curves of given degrees, and the number of
points necessary to determine a curve of a given degree (and, in a footnote, a
statement of Cramer’s paradox).

32To be more precise, it will be divisible by t"*1, where n is the largest integer by which it
would be divisible in general (that is, the multiplicity of that point). This procedure can be found
in [Cramer 1750, 460-464] and [Goudin & du Séjour 1756, 77-78]. Transformation of coordinates
are fundamental tools in these books.
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Next comes a section on the “application of the expansion of functions into se-
ries to the theory of curves”. It might seem that such a section should be classified
as differential, rather than analytic, geometry, since it involves power-series ex-
pansions; but in the context of late 18th-century mathematics it is an application
of algebraic analysis. Therefore we will examine it here, although an important
passage on tangents will be postponed to the section on differential geometry
(4.2.1.2).

Lacroix takes up again an example he had given in chapter 2, to illustrate
a (non-differential) method by Lagrange [1776, §2-5] for obtaining “convergent”
series. From the equation

az® + J:Sy — ay3 =0
he had obtained [Lacroix Traité, I, 229-230] four power series:
22 4 5
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is “more convergent as x is smaller”; while
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are convergent for large values of x. (4.1) gives y = x as tangent to the curve at the
origin (we will see how in section 4.2.1.2); (4.2)-(4.4) give the asymptotes y = —a,
y = a"2x% and y = —a" 223, Asymptotes correspond to infinite branches of
the curve, and this is explored by Lacroix, including a classification in hyperbolic
and parabolic branches: the former have straight lines as asymptotes, as in the
hyperbola; the asymptotes of the latter are (generalized) parabolic curves. But
Lacroix does not spend an awful lot of time on this. He mentions that Euler and
Cramer had used the number and nature of infinite branches to classify third- and
fourth-order curves into genera, but “ces détails, plus curieux qu’utiles, sortent
entiérement du plan que je me suis proposé”®?® [Lacroix Traité, I, 368].

Analytic geometry seems to be concerned almost exclusively with algebraic
curves. Lacroix includes a section on transcendental curves, but only after having
introduced differential geometry (it is the penultimate section of chapter 4), and
it mixes analytic and differential considerations. He favours differential equations
over (non-differential) transcendental ones: for instance, he gives a differential
equation between the coordinates of the cycloid, but not a non-differential one,
because it would involve an inverse sine.

33«those details, more curious than useful, entirely depart from the plan I have proposed
myself”.
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Besides the cycloid, only the logarithmic and the spirals are dealt with. The
study of spirals brings the only really relevant aspect for analytic geometry in
this section: polar coordinates, with formulas for transformation of polar into
rectangular coordinates and vice-versa.

4.1.2.2 Analytic geometry in space in Lacroix’s Traité

The three-dimensional version of the new analytic geometry had already been
presented, in [Monge Feuilles| (see section 4.1.1.3). But Lacroix’s presentation
has significant differences in exposition. Lacroix explains the basics of coordinate
geometry in space carefully, not assuming a previous knowledge of descriptive
geometry, as Monge apparently had done. It is true that Lacroix refers occasionally
to his own textbook on descriptive geometry [1795] to justify certain reasonings;
but overall his exposition is much more self-contained than Monge’s — Lacroix’s
references to his [1795] seem sometimes superfluous. And when both he and Monge
explain the same thing, Lacroix is more detailed and clearer.

Lacroix starts by introducing projections in space, the three coordinate
planes, and their intersections (the three coordinate axes).

Then come two pages on how a first-degree equation corresponds to a plane
(culminating on the equations of its intersections with the coordinate planes) —
the closest to this one can find in [Monge Feuilles| is contained in problem II,
which occupies half a page. The equation of any plane will be presented as

Az +By+Cz+D =0

for reasons of symmetry. It must always be kept in mind that any one of the
constants may be regarded as equal to 1, or determined by particular conditions
ons.

A straight line is characterized by the intersection of any two planes that
contain it, but a clear preference is given to those that are perpendicular to the
coordinate planes, so that none of their equations contains all the three coordinates
(and of course, such that they represent the projections of the line).

Having established the equations of the plane and the straight line, Lacroix
proceeds to solve several problems, most of them similar to those found in [Monge
Feuilles|: for example, to determine the plane that passes through three given
points; or to find the equation of a plane perpendicular to a given straight line. In
this second example, the known fact to which Monge had appealed to, and that
was quoted in page 102 above, is also invoked, but here a clear reference is given
to [Lacroix 1795, 24].

Although the problems are very similar, the solutions are not always the
same. For example, to determine the angle between two planes, Monge |Feuilles,
n° 2-iv, 3-i] asks to conceive a perpendicular to one of the planes lowered from
any point on the other, and a perpendicular to this other plane lowered from the
foot of the first perpendicular; it is obvious (“il est évident”) that the quotient of
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the second perpendicular divided by the first is the cosine of the angle between the
planes (of course Monge is thinking here of the lengths of the segments of the lines
determined by the planes). In the next problem, to determine the angle between
two straight lines, he applies the formula just obtained to two planes perpendicular
to the given lines [Monge Feuilles, n° 3-i,ii].

Lacroix’s solution is simpler to follow, requiring less geometrical reasoning: he
had just deduced the distance formula and the equation of the sphere; to determine
the angle between two straight lines he intersects them with a sphere; the distance
between (two of) the intersections will be the chord of the angle, from which the
cosine is easily derived. Next, to determine the angle between two planes he only
has to calculate the cosine of the angle between two straight lines perpendicular
to the planes [Traité, 1, 444-446]. The cosine of this later angle is

A'A+ BB' + CC’
\/(A2—|—B2—|—C2)(A'2+B’2—|—C'2)

(where the planes are given by the equations Az + By + Cz+ D =0 and A’z +
B'y 4+ C'z 4+ D' = 0), so that it is immediate to conclude that if the planes are
perpendicular we will have

AA' + BB +CC' =0 (4.5)

(naturally this is to be found also in [Monge Feuilles]).

The preliminary section on planes and straight lines finishes with two formu-
las derived using differential calculus: one on the minimum distance between two
straight lines and the other on a straight line perpendicular to a given plane and
through a given point (which of course also amounts to a minimum distance). It
is interesting to note that Lacroix decided not to use the purely algebraic solution
to the former problem that Monge had given to him in 1789 (see page 103 above).

The second (and final) section on analytic geometry in space is entitled “On
second-order curved surfaces” [Lacroix Traité, I, 448-465|. But it contains a little
more than that, since to study properly those surfaces it is convenient to simplify
their general equation

Ax? + By? + C2%? + 2Dxy + 2Exz + 2Fyz
+2Gx + 2Hy + 2Kz % = 0. (4.6)
_I2

This is done by transformation of coordinates, which of course has to be discussed
previously.

This approach to the study of quadric surfaces came from chapter 5 in the
appendix to [Euler Introductio, 11|, “the first unified treatment of the subject”
[Boyer 1956, 189]. That chapter is the sole item cited in the table of contents of
Lacroix’s Traité for this section. But it must be noted that the formulas given by
Lacroix for the transformation of coordinates are not those given by Euler (which
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were non-symmetric and involved the sines and cosines of the angles between
the old and the new axes); instead he uses formulas given for the first time in a
paper by Lagrange “sur lattraction des sphéroides elliptiques” [Lagrange 1773a,
646-648]. He reports Lagrange’s derivation of those formulas: if the origin remains
the same (it is easy to translate it afterwards), the most general form for the old
coordinates in terms of the new is

r=at+ fu+yv
y=aot+Fu+~v
z=a"t+ p"u+~"v.

But of course the distance to the origin remains the same, that is, t? + u? +v? =
2?2+ 9%+ 2% = (at+ Bu+yv) 2 + (&'t + B'u+vv)% + ('t + B"u+~"v)?, whatever
the values of ¢, u, v, whence

042-1-0/2—1-0//2:1 aﬁ—i—o/ﬁ’—l—o/’ﬁ”:O
ﬁ2 + ﬁ/2 + ﬁ//2 =1 and ay + Oz/’}// + o/”y” =0 (4‘7)
,y2 +’Y/2 +’Y//2 =1 5,}/ +ﬂ/’}/ + ﬁ//’}’// =0.

These conditions allow us to determine six of the nine constants involved. The
other three are dependent on the particular transformation. [Lacroix Traité, I,
451-452]

But just prior to this Lacroix [Traité, I, 450-451] also presents a different
derivation for a set of similar formulas: given

At+ Bu+Cv =0
At+Bu+Cv=0 (4.8)
A"t +B"u+C"v=0

as the equations in the new coordinates for the old coordinate planes (y,z, x,z, and
x,y, respectively) and since the coordinates of a point are equal to its distances to
the coordinate planes, it follows from a formula obtained previously that

_ _At4+Bu+Cv

A2+ B24C?
_ A't4+B'ut+C'v 4.9
- A2+ B24(C"2 ( . )
_ _ A"t+B"u+C"v
- A2y B2 C2°

Tr =

Now, in each of the equations (4.8) there is one superfluous constant; therefore
it is possible to put
A2+ B*+(C?=1
A2+ B?+(0” =1 (4.10)
A//2 + B//2 + C//2 — 1

so that (4.9) become
x=—At — Bu—Cv
y=—-At—Bu—Cv
z=—-A"t — B"u — C"v.
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Also, because the coordinate planes are perpendicular, from (4.5) we have

AA'+ BB'+CC' =0
AA”" +BB"+CC" =0
A'A” + B'B" +C'C" = 0.

These formulas had been deduced by Monge [1784-1785, 28; 1784a, 112-114],
although without any reference to (4.9): (4.10) had been chosen “to simplify the
expressions” (but which expressions?).

Lacroix then combines both sets of formulas, arriving at several results, in-
cluding that a, 3,v,a’, 3, ..., taken with opposite signs, give the cosines of the
angles between the old and the new coordinate planes.

Although Lacroix does not cite either of the memoirs by Lagrange or Monge
in the table of contents for this section, he does cite their names in the text,
apropos of further calculations for the determination of the constants in particular
transformations. He refers the reader to Lagrange’s Méchanique analitique and
quotes (and praises) a few formulas that can be found in [Monge 1784a].

Of these two procedures, Lagrange’s is certainly shorter. But Monge’s, at least
in Lacroix’s version, seems clearer and it is a fine example of analytic geometry: it is
algebraic, but the calculations, while not requiring diagrams to be understood, can
be given geometrical meanings (perpendicularity, distance of a point to a plane) —
like “the text of a book and its translation” (see pages 89 and 105 above). Lagrange
does use a distance formula at the start, but apart from that he — typically —
compares coefficients.

Returning to (4.6), using a translation of the origin followed by a rotation of
the axes, Lacroix reduces it to

A2+ BuW?+Cv?-L%=0

which gives the second-degree surfaces that have a centre. Lacroix then studies
them by giving particular signs — or eliminating — each coefficient, and then cut-
ting plane sections and analysing the resulting second-degree curves. Recognizing
that the transformation of coordinates he had done is not always possible, Lacroix
returns to (4.6) for a second, more general one, in order to study the second-degree
surfaces that do not have a centre. The result is

Az + By? + CZ? +2K'2 =0

and a similar study follows.

Lacroix does not report Euler’s taxonomy (elliptic hyperboloid, etc.); he se-
ems more concerned with recognizing conic, cylindric, and revolution surfaces.

He also dedicates only one short article to asymptotes of second-degree surfa-
ces, something to which Euler had given considerably more attention, connected as
it was with the question of part(s) of the surface going to infinity. Similarly, while
FEuler had dedicated his whole final chapter to intersections of surfaces, Lacroix
has one article (half a page) on this.
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This section — and analytic geometry — finishes with another short article,
on “polar coordinates” in space. Only a few formulas are presented, but Lacroix
manages to introduce two different systems: the first corresponds to what we call
spherical coordinates, while the other, “more symmetrical”, uses the three angles
7,1, ¢ between the radius vector and the coordinate axes, so that

T =TCOST, Y =7rCcosy, 2Z=TCoSp

(where, of course, r is the distance of the point from the origin); clearly there is
one unnecessary coordinate: as it happens,

cos? 4 cos? 1 + cos® o = 1.

Both systems had been introduced by Lagrange: the first in [1773a, 626-627]; the
second in his Méchanique analitiqgue [Taton 1951, 127].

4.2 Differential geometry

4.2.1 Differential geometry of plane curves
4.2.1.1 Differential geometry of plane curves in the 18th century

Differential calculus developed in part from techniques used in the 17th century
to study certain properties of curves [Pedersen 1980]. It is only natural that the
most prominent of its applications in its initial period was precisely the study of
those properties of curves.

The first textbook on the differential calculus [’'Hopital 1696] is also a text-
book on differential geometry of plane curves, as can be seen from its full title:
Analyse des infiniment petits pour Uintelligence des lignes courbes*. It can also
be seen from its table of contents, where the titles of seven chapters, out of ten,
refer explicitly to curves. L’Hopital teaches how to use the differential calculus to
find the tangents of curves, their points of inflexion and cusps, their evolutes and
radii of curvature (called “radii of the evolute”), the caustic curves generated by
reflection, those generated by refraction, envelopes of families of curves, and a few
more things.

L’Hopital [1696, 3] puts as a postulate that a curve be considered as a polygon
with an infinite number of sides, each of them infinitely small. To find a tangent it is
enough to prolong one of these infinitely small sides (this is in fact his definition of
tangent [1696, 11]; see figure below). Given a curve AM by an equation between x
(AP) and y (PM), if we wish to draw the tangent M T, we should conceive another
ordinate, mp, infinitely close to PM, so that Pp = M R = dx and Rm = dy; the
triangles mRM and M PT are similar, so that dy.dx :: M P.PT, and therefore the

subtangent PT is equal to %. The subtangent is information enough to draw

(“mener”) the tangent.

34 Analysis of the infinitely small, for the understanding of curved lines.
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The treatment of curvature in ['Hopital 1696, ch. 5] is attached to the theory
of evolutes and involutes: given a curve BDF', one is asked to conceive a string
ABDF wrapped against it, fixed in F' and extended to A; keeping the string taut
and unwrapping it, the point A describes a new curve AHK; BDF is then the
evolute of AHK ;3 the straight portions of the string AB, HD, K F are the radii
of the evolute.

Regarding the curve BDF as a polygon with infinitely small sides (BC,
CD, DE, EF), AHK can be seen as composed of infinitely small arcs of circle
(AG,GH,HI,IK), the centres of those circles being the points of the evolute
(C,D, E, F).35 This means that the radii of the evolute are tangent to the evolute
and normal to the involute. It also means that curvature can be measured, since “la
courbure des cercles augmente & proportion que leurs rayons diminiient”3” [1696,
73].

["Hopital 1696] soon became the standard account of the application of dif-
ferential calculus to the theory of curves. It remained standard for a long time.
The corresponding sections in [Bézout 1796, IV] follow I'Hopital closely, and the
table of contents for the section on the “use of differential calculus to find the
tangents of Curves, their inflexions and their retrogressions” in [Lacroix Traité, 1,
xxxii| contains one single item: precisely ["Hopital 1696]. As we will see below,
Lacroix did have two more sources for this section — and he mentions them in the

35 AHK is usually called an involute (in French: développante) of BDF, but I’'Hopital does
not seem to give it any particular name.

36 An interesting remark is that between the curve and any of these circles it is impossible to
pass another circle [I"'Hopital 1696, 73]. It is interesting because Lagrange will use this property
as a definition of contact.

37¢the curvature of the circles increases proportionally to the decrease of their radii”
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text — but they were then very recent and not yet published.

Nevertheless, there were competing approaches to calculate these curve-re-
lated quantities. One of them, of course, was the method of limits. D’Alembert,
in the article “Différentiel” of the [Encyclopédie], gave a famous example of the
calculation of the ratio between the ordinate and the subtangent of a parabola
as the limit of the ratios between the ordinate and the subsecants. Cousin [1796]
calculated tangents, inflexion points, cusps, evolutes and radii of curvature in a
chapter dedicated to the method of limits, even before introducing the differential
calculus.

There were also algebraic approaches, regarded as belonging to the applica-
tion of algebra to geometry, rather than the application of differential calculus to
geometry. Algebraic methods were sometimes regarded as more appropriate for
the study of algebraic curves. That is the point of view in a book entitled Usages
de I’Analyse de Descartes, Pour découvrir, sans le secours du Calcul Différentiel,
les Proprietés, ou Affections principales des Lignes Géométriques de tous les Or-
dres3® [Gua de Malves 1740] — “lignes géométriques” referring in fact to algebraic
curves; a similar stand is found in [Cramer 1750] and [Goudin & du Séjour 1756].
We saw above (page 107) Lacroix use one of those algebraic methods, taken from
those books: an application of transformation of coordinates. But those methods
could only be justified with recourse to either infinitesimal or limit-oriented argu-
ments. In the case of the tangent method used by Lacroix, its justification involves
a point approaching another until both are the same, so that in fact this is not
very distant from the method of limits.

An interesting case, as usual, is that of Euler. [Euler Differentialis| does not
include any applications to geometry. But some of the problems that could be
treated as such are studied in [Euler Introductio, II]; in an algebraic fashion, of
course. The process to find tangents is the following: given a curve nMm, its
equation in x and y, and a point M in it with abscissa AP = p and ordinate
PM = q, we translate the origin of the coordinates to M, and call ¢, u the new
coordinates; the new equation for the curve is found simply by substituting p + ¢
for  and g + u for y; but since the curve passes through the new origin, the new
equation cannot have an independent term, so that it is of the form

0 = At + Bu + Ct* + Dtu + Eu® + Ft® + Gt?u + Htu® + &e.

Now, taking “very small” values of ¢, v will be also very small, but 2, tu and u?
will be even smaller, ¢3, t?u, tu?, u?, etc. much smaller even, and so on. Thus, all
these terms can be omitted, and

“remanebit ista aequatio 0 = At + Bu, quee est sequatio pro Linea recta
My per punctum M transeunte, atque indicat hanc rectam, si punctum

38 Uses of Descartes’ Analysis, To find, without the aid of the Differential Calculus, the main
Properties, or Affections of the Geometrical Lines of all Orders.
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939

m ad M proxime accedat, cam Curva congruere.”*” [Euler Introductio,

11, § 288

We recognize here the use of Arbogast’s principle, or rather of “Euler’s criterion”
(see page 65 above).

Later in the same book, Euler neglects only the terms of third and higher
orders to obtain an osculating parabola, the vertex of which coincides with the
infinitely small arc Mm. Because he wants to measure the curvature of a curve, he
decides that it is equal to the curvature of the osculating parabola at its vertex.
But a parabola is not the ideal figure to help measure curvature: the circle is,
because it has the same curvature at every point and because this curvature is
inversely proportional to its radius. So what he wants is an osculating circle. The
way to define this is through the parabola: the osculating circle is the circle that
shares its osculating parabola with the curve at the given point. The radius of this
circle is the osculating radius or radius of curvature of the curve [Introductio, 11,
§304-310].

So, Euler’s algebraic method rests on a mixture of naive limits (“m approa-
ches M”) and the neglect of higher-order infinitesimals. But it contains a fruitful
idea, typical of him: to take advantage of a power-series form of the equation of
the curve.

This idea was expanded by Arbogast in his 1789 memoir on the principles
of the calculus (see section 3.1.4), where he developed a theory of osculation.
Arbogast considered two curves with one common point M: one of the curves was
given, while on the other certain conditions were to be determined according to
how “intimately” it should touch the former. Their expressions should be put in
power-series form, so that we would have as equation for the given curve

dy d?y d3y .
= —~ZA Az? Az? .
Y=yt AT T AT Ty gttt e
and for the one to be specified
du dPu dBu
= —At At? _ A3 4 &40
wEu At Tt Y gt T

Now, in order to have them meet at the point M with coordinates x,y, we make
the first terms equal, that is, we put © = y and ¢ = z; and in order to have 7/’
and u' correspond to the same ordinate, we also put At = Az. So now we have

394t will remain this equation 0 = At + Bu, which is an equation of a straight line My passing

through the point M, and that indicates that if m approaches M this straight line will coincide
with the curve.”

40Two remarks on notation: 3’ and u’ are not derivatives, of course — 3’ stands for y(z 4+ Ax)
and u/ for u(t + At); also, the difference in coordinates (x,y for one curve and u,t for the
other) is related to the usual 18th-century conflation between symbols for variables and for their
values: z,y represent the coordinates of one fixed point (M) and z’,y’ represent the (values of)
coordinates assumed by the first curve — and could not be used for a different curve.
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u =y+ ‘fiqt‘Am—i— T thz Az? + 23dt3 Az + &c [Arbogast 1789, §47-48|. Putting

in addition ‘é—’; = dm, this curve is tangent to the other one [1789, §50|.
Why is it so? Arbogast argued that the two curves do not intersect other

than in M, at least not in the range of abscissas from x — Az to x + Ax; this for

a small Az — small enough for 2 iz gA:ﬂ and 4 dt2 4 Az? to be greater than the sums
of the remaining terms in the series. That is, he used “Arbogast’s principle” where
Fuler had used “Euler’s criterion”; but notice that Arbogast’s argument is much
more algebraic — instead of having the two curves “coincide” infinitesimally (or in
the limit), he argued that y’ is greater or smaller than v’ according to whether

% is greater or smaller than % [1789, §50].
There are other advantages in Arbogast’s theory. One is that the touching

curve does not need to be a straight line. Another is its adaptation to osculation.
Tangency is called first-order contact. If in addition we put 1 2 Todz = 1% S0z we get
a more intimate contact, called second-order contact; and so on. Of course this
gives a much more elegant way of defining the osculating circle than Euler’s resort
to the osculating parabola: it is just a circle with a second-order contact. In this
way tangency and curvature are united under the same theory.

However, this union was not so novel: the idea of orders of contact, and the
names “first-order”, “second-order”, etc., had already been presented by Lagrange
[1779, art.III]: given a curve with equation V = 0, for another curve to have a
first-order contact with it, it would have to satisfy (at the point of contact) the
equations V' = 0 and dV = 0; for a second-order contact, it should satisfy in
addition d?V = 0; and so on. But Lagrange had defined first-order contact by
the meeting of two points of intersection, second-order contact by the meeting of
three points of intersection, third-order contact by the meeting of four points of
intersection, and so on. Moreover, these definitions were perfunctory: he had not
given a justification based on them for the equations that the contacting curve
had to satisfy (nor any other justification). Arbogast’s theory of osculation can
thus be seen as a justification of Lagrange’s.

A justification of his theory of the contact of curves by comparison of coef-
ficients in power-series expansions was ideal for Lagrange, and he adopted it and
improved upon it in [Fonctions]. Lagrange starts the chapter on applications to
geometry by adopting a definition of tangent line inspired by the ancient (Greek)
geometers: “une ligne droite est tangente d’une courbe, lorsqu’ayant un point com-
mun avec la courbe, on ne peut mener par ce point aucune autre droite entre elle
et la courbe”!. He contrasts this definition with those used in the 17th and 18th
centuries: secants of which the two points of intersection are united; prolongation
of an infinitely small side of the curve seen as a polygon with infinite sides; and the
direction of the movement by which the curve is described.?? The methods based

4l«y straight line is tangent to a curve when, having a point in common with the curve, it is

not possible to draw any other straight line between them”
42The first of these definitions is the one used by himself in [1779]. We have also seen it being
used by Lacroix (following Cramer and Goudin and du Séjour) in a context of analytic geometry
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on these definitions were general and simple, but lacked the evidence and rigour
of the ancient proofs. Fortunately there was now his theory of analytic functions.
[Lagrange Fonctions, 117-118|

To apply his definition of tangency, Lagrange considers a curve with equation
y = f(z), a different one — supposed to be tangent to the first — with equation
y = F(x), and a third one — the one that will be proved not capable of being drawn
between the first two — with equation y = ¢(x).*> These curves are supposed to
intersect at a point of coordinates z and f(z) = F(z) = ¢(x). He then examines
what happens close to that point, that is, when the abscissa is x + . For this he
considers the differences between the ordinates of the first curve and the other two
curves:

D= f(zx+1i)— F(z+1),
A= flx+1)—o(x+1).

Expanding the functions using the Lagrange remainder (3.8), these differences
become

i2
D =i(f(@) ~ F'(2)) + 1"+ ) = "+ ),
A=i(f@) = @ @) + S+ )~ et k)

(where h, j and k are indeterminate quantities between 0 and i)**. Now, if f/(z) =
F'(z), D reduces to

i2
SU ) = F G+ )

and as long as f'(z) # ¢'(x), D will be less than A for values of ¢ small enough:
it is sufficient to take values of ¢ small enough for f'(x) — ¢'(z) to be larger than
L1¢"(x+j)— F"(z+h)].*> This means that if two curves have the same derivative
at a common point, then no curve with a different derivative can pass between
them [Lagrange Fonctions, 118-120]. In other words, they are tangent.

Likewise, if two curves have the same first and second derivatives at a common
point, then no curve with a different first or second derivative can pass between

(page 107 above); it is also used by Euler in the passage above, and it is implicit in the limit-
oriented works, like those by d’Alembert and Cousin referred to above. The second definition was
the one commonly used in differential calculus; its use by I’Hépital was mentioned above. The
third definition had fallen somewhat in disuse after the end of the 17th century, except possibly
in the English method of fluxions.

43In fact the equations are y = fz, ¢ = Fp, and s = ¢r, although the coordinate axes are
the same. That is because Lagrange also conflates variables and their values; taking the same
abscissa for the three curves is done by taking r = p = z, and the curves intersect at that point
ifs=qg=uy.

44In fact Lagrange calls all three of them j, but he remarks that j may take different values
in f"(z 4 j), F"(z + j) and " (z + j).

450f course some regularity is needed for this argument, namely that ¢ and F* be bounded in
a neighbourhood of z. On a different note, there is a printing error here: 5[f"(z+j) — F''(z +7)]

instead of %[go”(z + j) — F”(z + j)]; this was later corrected (at least in the (Fuvres printing
|[Lagrange Fonctions, 2nd ed, 187]).
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them; and so on. Thus we have different degrees of contact or osculation [Fonctions,
120-122; 127-128].

Lagrange applies this theory to tangent circles: in the general equation of
the circle (z — a)? + (y — b)?> = ¢?, which can be written as F(z) = y = b+
\/c2 — (z — a)? there are three indeterminate constants, a, b, c. Two of them (say,
a and b) can be determined by putting F'(z) = f(x) and F'(z) = f/(z); this leaves
one indeterminate constant (c¢), which means that for each value of ¢ there is a circle
of radius ¢ tangent to the curve y = f(x). But if in addition we put F”'(z) = f"(x),
c is determined and there will be no other circle between (x — a)? + (y — b)? = ¢?
and the curve. This is the osculating circle, or circle of curvature, and c is the
radius of curvature [Fonctions, 124-127].

It is interesting to remember here that Lagrange had used Arbogast’s princi-
ple to derive Lagrange’s remainder (page 67 above), so that his theory of osculation
not only seems to owe something to Arbogast’s, but is also an indirect use of Ar-
bogast’s principle.

There is more in the section on plane differential geometry in [Lagrange
Fonctions| than just a theory of contact of curves, but this theory is one of the
main driving forces there, along with the connection between envelopes (“courbes
enveloppantes”) and singular solutions (a connection that had been revealed in
[Lagrange 1774]; see section 6.1.3.3).

4.2.1.2 Differential geometry of plane curves in Lacroix’s Traité

We saw in page 108 that Lacroix, in order to study the curve az®+ 23y —ay® = 0,
expands it into the series
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“convergent” for small values of z. The discussion on how Lacroix concluded from
that series that y = x is tangent to the curve was then postponed. We will see it
now, because it is an introduction to his plane differential geometry.

Lacroix invokes his version of Arbogast’s principle (which we saw in section
z?
3a

% + % etc.) even smaller than z. This means that the curve differs as little
as we may wish from the straight line y = x, and a very small portion of it around
the origin will become undistinguishable (“se confondra sensiblement”) from that
straight line.

But Lacroix also presents another (and more interesting) argument in favour
of y = x being tangent to the curve at the origin: it is impossible to draw another
straight line through the origin passing between them. The argument is very similar
to Lagrange’s but it uses Arbogast’s principle directly: denoting now by 3’ the
ordinate of the straight line, so that y' = x is its equation,*® the difference between

3.2.6): we can take values of x small enough to make the rest of the series (

46 Apparently this is once again the conflation between symbols for variables and for their
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that ordinate and the ordinate of the curve is

,  a? x?

~ 3a  8ldd

He then considers another straight line through the origin, with equation 3" = Az,
so that the difference between the ordinates of the two straight lines is

y—y etc.

y' -y =(A-1)z

which can be made larger than % — % etc. by taking a value of x small enough
[Lacroix Traité, I, 363].

Lacroix then comments that “il est facile de voir qu’on peut prendre pour le
caractére de la tangente, 'impossibilité de faire passer une autre droite entr’elle
et la courbe”” to conclude that in fact y = x is the tangent at the origin | Traité,
I, 364]. Having already used the “two intersection points becoming one” charac-
terization of the tangent (page 107 above), he could not adopt, as Lagrange did,
the “no straight line between...” property as the definition. But he could use it as
a working definition (a “caractére”). He did not attempt to prove the equivalence
between the two characterizations.

When finally addressing directly the use of the differential calculus to study
curves | Traité, 1, 369], Lacroix returns to the considerations he had made apropos
of ax3+23y—ay® = 0, but this time in a general form, introducing local coordinates
(in that example he had only studied the tangent at the origin).

It is necessary here to remark some notational peculiarities that Lacroix
introduces at this point: he decides to distinguish the coordinates z’, 3’ from z,y,
the former referring to points of the curve under study, and the latter to any points
on the plane. We have seen Arbogast and Lagrange make similar distinctions, but
Lacroix seems clearer and more systematic.

If ',y are the coordinates of the point M through which we want to pass a
tangent, when z’ becomes z’ + h, 3’ becomes 3’ + k. h, k will be regarded as new
coordinates, the origin being M. By Taylor’s theorem

gk Ry R YR
Tde’'l  dx'?21-2  dx31-2-3

+ etc...
or more simply,
k = ph + qh® + rh® + etc. (4.11)

The argument given above (more precisely the “no straight line between...” version)
is repeated to conclude that k' = ph is tangent to the curve at M.*® It remains

values. But Lacroix only makes the distinction that is useful (and in fact necessary), that of the
ordinates: he is aware that he is comparing different ordinates for the same abscissas, so that the
latter remain plainly z.

4744t is easy to see that we can take as the character of the tangent, the impossibility of passing
another straight line between it and the curve”

481/ instead of k presumably because it is an ordinate not belonging to the curve, but this is

not very consistent with y’ for the curve.
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to return to the original coordinates: this is done by substituting z — 2’ for h and
y — 3’ for k’, so that the tangent at M is given by
d /
y—y =pl@-2a) o y-y'= d—z,(w—x’)'

The sign of the second term of k = ph + gh? + rh3 + etc. can be used to
study the concavity of the curve at M: the difference between the ordinates of the
curve and of the tangent is k — k' = gh? + rh3 + etc.; h can be given values small
enough for gh? to surpass rh3 + etc. and therefore for the sign of k — &k’ to be
the same as the sign of ¢; if ¢ (or Zi",’;) is positive, the curve is above the tangent
“immediately before and after M”, so that its convexity is turned to the abscissa
axis; if ¢ is negative, the opposite is the case [Traité, I, 368]. A similar discussion
had already occurred in the previous section about az? 4+ 23y —ay® = 0, and there
the association between inflexion point and ¢ = 0 had been noted (as it is noted
further ahead, in more detail, when Lacroix studies singular points).

Lacroix observes that the role of the differential calculus here is auxiliary: it
could be replaced by any other process that would give the development of k (as
in fact had been the case in the previous section).

He also remarks that Arbogast was the first person who presented under this
point of view the application of the differential calculus to the theory of curves;
Lagrange was also led to it by his way of viewing the calculus [Lacroix Traité, I,
370].

Lacroix then spends a few pages exploring this: for instance, he teaches how
to determine a tangent to a given curve with the condition that it passes through
a given point not on the curve, or parallel to a given straight line; and how to
calculate the subtangent, the normal and the subnormal.

Asymptotes are treated as limits of the tangent (as the point of tangency
moves away from the origin).

The study of cases in which certain terms of (4.11) are null or infinite permits
to characterize singular points: for instance, there is an inflexion point when the
first non-null term (after ph) is of odd degree (or in certain situations in which
Ly s infinite) [Traité, 1, 377-378).

Naturally, Lacroix presents the theory of osculation of Lagrange and Arbo-
gast, and it deserves its own section (under the title “Théorie des osculations des
courbes”) [Traité, 11, 388-401], which also includes a treatment of curvature. La-
croix starts his presentation, however, by considering only the simplest osculating
curves for each degree, that is, the parabolic curves

k' = ph, k" = ph+ qh?, k" = ph+ qh® + rh?, etc.

The second of these curves passes between the given curve and the first of these;
the third passes between the given curve and the second of these; and so on (this, of
course, is proved using Arbogast’s principle). Clearly, the first of these curves is the
tangent straight line; the second is called the osculating parabola (in the singular)
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and has a second-order contact with the given curve (unless r = 0, in which case it
has at least a third-order one); but all these curves (except apparently the tangent)
are called osculating parabolas (first osculating parabola: k" = ph + gh?; second
osculating parabola: k"’ = ph + gh? + rh3, etc.).

Probably the only reason for this introduction to osculation is pedagogical.*?
What is important, mathematically, is the general concept of osculating curves:
adopting the same local coordinate system as in the study of tangents, an arbitrary
curve that passes by M, having its ordinate named K, has an equation of the form

K = Ph+ Qh* + Rh® 4+ Sh* + etc.

Putting P = p, this curve will have the same tangent as the given curve, and a
first-order contact with it; if in addition @ = ¢, the contact is of second order; and
so forth.

The most obvious (and useful) example is the circle. Lacroix considers a
circle (z — a)? + (y — 3)? = a?, and determines the three arbitrary constants
a, 3, a by the conditions of passing by M and having a second-order contact. This
is the osculating circle and no other circle can pass between this and the given
curve. Since the circle has a uniform curvature, and this curvature is inversely
proportional to its radius, the osculating circle is used to estimate the curvature
of the given curve: for this “on compare la courbe a son cercle osculateur, de méme
qu’on la compare & sa tangente, pour connoitre la direction vers laquelle tendroit
a chaque instant le point qui la décriroit”® [Traité, 1, 396]. Because of this the
radius of the osculating circle is also called radius of curvature.

Lacroix defines the evolute of the curve as the curve formed by the centres
of all the osculating curves (and having, thus, coordinates a, §). He then proves
that the radii of the osculating circles are tangent to the evolute. He also alludes
to the relations between the behaviour of the evolute and singular points of the
involute (a topic favoured by I"'Hopital), but does not dwell long on them.

The next section is on transcendental curves, and it has already been men-
tioned briefly in the section on analytic geometry (page 108 above), since Lacroix
mixes analytic and differential considerations there.

For some reason, it is in this section that Lacroix calculates the differentials
of the arc-length of a curve and of the area under a curve. For this, he uses a
consequence of Arbogast’s principle that he had given in the Introduction and
which amounts to a pinching theorem: given three “expressions”

A + Bx + Cz2 + D23 + etc.
A+ Bax 4+ Cz22 + Dz + etc.
A// + B//x + C”x2 + D"x?’ + etc.

49Lagrange had also given these simplest osculating curves, but only as a comment, after
having dealt with the general theory [Fonctions, 129-130].

50«the curve is compared to its osculating circle, in the same way that it is compared to its
tangent to get to know the direction towards which would tend in each instant the point that
would describe it”
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such that the values of the second are always between those of the first and those
of the third, if A = A”, then also A = A’.

To prove this, he gives x a value small enough for A, A’, A” to be larger than
the rest of the respective series, and thus represents those series by A+ 48, A’ + 4,
A" +6”. Now, the differences between the second and the first, and between the
third and the second are A’ — A+ ¢ — and A” — A’ + 6” — §', respectively, and
if A= A", the latter is A — A" + 6" — §’; these differences must have the same
sign. Now, if A’ = A+d or A’ = A — d, with positive d, then those differences
reduce to d + & — 6 and —d + 8" — §’; but it is possible to take §,¢’,” smaller
than d (presumably by taking = even smaller than before) so that the signs of
the differences are those of d, —d, and thus not the same. The conclusion is that
A = A" [Traité, 1, 58-60].

The applications of this to area and arc-length are almost obvious. Lacroix
considers a curve DM, with abscissa + = AP and ordinate y = PM, and an
increment of the abscissa, h = PP’, small enough for the curve not to have any
inflexion between its ordinates PM and P’M’ (that is, for the function y of = to
be monotonic in the interval PP’).?! If the area ADM P, which is a function of

-
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x, is represented by s, then its increment PM M’P’ (corresponding to h) is

S/h 8//h2 s///hS

1 + 1-2+1-2-3

+ etc.

But “it is easy to see” that this increment is comprised between the rectangles
PP’ x PM and PP’ x P'M’, that is between

'h, 17,2
yh and h(y-ﬁ-yT-l-yl.Q—l—etc.)

so that s’ =y, or ds = ydx |Traité, 1, 416-417|.

51Tt was common belief in the 18th century that all functions were piecewise monotonic.
|[Lagrange Fonctions, 155-156] for instance, has a similar assumption (also in a proof that the
ordinate is the derivative of the area).
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As for the arc-length z, Lacroix inserts its increment between the segment of
straight line M M’ and the sum M N + NM' (where M N is tangent to the curve
DM), to arrive at 2/ = (1 +y2)z, or dz = \/da?® + dy? | Traité, 1, 414-416].

This section finishes with an interesting article [Traité, I, 418-419] on the
characterization of curves using equations other than those between rectangular or
polar coordinates; for instance, using an equation between the radius of curvature
and the arc length. Struik [1933, 114-115] locates here the origin of discussions on
intrinsic coordinates, soon to be taken up by Ampére and Carnot.>?

The last section of chapter 4 has a purpose very typical of Lacroix: to pre-
sent alternative points of view, namely an application of the method of limits to
find tangents and osculating lines and the Leibnizian consideration of curves as
polygons.

Consider an equation between z,y and three arbitrary constants, so that it
represents a family of curves; we can specify the curves by subjecting them to pass
through three particular points. Now imagine that these three points are in a curve
of which we have an equation on z’ and 3, and that their abscissas are equally
distanced: they are, say, 2/, 2’ + h,z’ + 2h. After having obtained the respective
conditions on the arbitrary constants (as power series on h), we make the three
points approach each other (that is, h tend to 0) until they are only one and we
have a second-order contact [ Traité, I, 419-421].

Adopting the Leibnizian approach, and interpreting curves as polygons with
infinitely small sides, then two curves have a contact if they have a certain number
of common sides (say n), and therefore they must have the same differentials, up
to order n (and of course that is a contact of order n) | Traité, I, 425]|.

But there is a different way, still in Leibnizian terms, to characterize the os-
culating circle, and that Lacroix thinks is “trop élégante et trop féconde”®® to be
omitted. This alternative way amounts to characterizing the centre of the oscula-
ting circle as the intersection of two normals to the curve infinitely close [ Traité,
I, 426].

It is “féconde” indeed because, giving also a characterization of the evolute
as formed by all such intersections, and the evolute being tangent to the radii of
curvature, it entails the more general consideration of envelopes of one-parameter
families of curves. Lacroix does not use the word enwvelope, but the concept is
there; his wording of the problem is: “trouver I’équation de la courbe qui en touche
une infinité d’autres d’une nature donnée et assujetties & se succéder suivant une
certaine loi"%* [ Traité, 1, 427].

Lacroix’s treatment of envelopes, as the wording above suggests, is the tra-

52 Actually, Struik only locates it there tentatively: he uses the second edition of Lacroix’s
Traité, posterior to Ampére and Carnot’s works; he recognizes the origin in Lacroix because of
Ampére’s acknowledgment. The change in this article introduced in the second edition amounts
to only one sentence, where Lacroix cites Ampére and Carnot.

53«00 elegant and too fruitful”

544t find the equation of the curve that is tangent to an infinity of other [curves| of a given
nature and subject to follow one another according to some law”
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dicional Leibnizian one, with just a little amount of very naive limit-oriented
language: for two intersecting curves in the family (Lacroix has an example with
circles), “it is evident” that the point of intersection will be the closer to the enve-
lope as the two curves are closer to each other (that is, as the parameter varies less
from one to the other); and if those two curves are made to coincide, their point
of intersection will coincide with the points where they touch the envelope. This
means that the envelope is formed by the successive intersections of the curves in
the family.?®

Thus, if the family is given by an equation V' = 0 in z, y, and a parameter «,
we should differentiate this equation relative to «, assuming that as o becomes a+
da (as we pass from one curve to the next) the coordinates z,y remain unchanged
(because we want the common point between the two curves). Since we want an
equation of the envelope (where y should be a function of z) we take V as a
function of = and «; differentiating V' = 0 relative to a gives

dV  dV dy
— =L =y,
da * dy da
but as we had assumed that g—z = 0, this becomes
dv
-0
do

Eliminating « between this and V' = 0 gives the equation of the envelope [ Traité,
I, 427-429].

But Lacroix also gives another justification for this procedure, without re-
sorting to “successive intersections”: at each point the envelope is tangent to one
of the curves in the family, and therefore has the same coordinates and the same
differential as that curve; it must therefore satisfy

V=0 and —dr+ —dy =0
€z Y

once the corresponding value of « has been substituted. Now, since z and y in fact
vary with «, they are functions of «; differentiating V' = 0 under this assumption

i dVdz | dV dy | dV _
8IVES 3r da + dy da + da 0, or

dVv dVv dVv
e+ Py + o —o;
dx S dy vt da 0

but since %dw + %dy = 0, we have % =0 [Traité, 1, 429].

Lacroix then remarks that the process of variation of constants is a very
important one in analysis, and very fruitful in geometry, and he ends the chapter
by applying it to the study of roulettes: the curves produced by the movement of a
determinate point on a curve that rolls over the perimeter of another (the cycloid

is the most important example of a roulette).

55This characterization of envelopes can be seen for instance in [I’Hopital 1696, ch. §].
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4.2.2 Differential geometry of surfaces and “curves of double curva-
ture”

4.2.2.1 Differential geometry of surfaces and “curves of double curvature” in the
18th century

It was mentioned in section 4.1.1.3 that the development of three-dimensional co-
ordinate geometry was slower than that of planar coordinate geometry. Differential
geometry needs a background of coordinate geometry, so that state of affairs re-
flected on spatial differential geometry [Taton 1951, 148]. It is revealing that the
origins of partial differentiation are related to the study of parameterized families
of (plane) curves, instead of the study of surfaces [Engelsman 198/]. The only pro-
blem in spatial differential geometry that appears to have been seriously studied
in the early stages of the differential calculus is that of geodesics®® on a surface.
In 1698 Johann Bernoulli gave a geometrical solution: the osculating planes to the
curve should be perpendicular to the tangent planes to the surface [Coolidge 1940,
324]; in 1728-1729 he and Euler gave solutions in the form of differential equations
[Enestrom 1899]. But apparently this did not lead into further studies on spatial
differential geometry.

The first major analytic (both algebraic and differential) study of space ge-
ometry was [Clairaut 1731]. Its second chapter is dedicated to the application of
the differential calculus to curves of double curvature®”, but does not go beyond
tangents and normals. A tangent to a curve can be found prolonging an infinitely
small side of the polygon-curve, or intersecting two planes perpendicular to the
vertical coordinate planes and passing through the tangents of the corresponding
projections of the curve. Either way, Clairaut’s goal is not to determine the equa-
tions of the tangent, but rather to calculate the subtangent (the length of the
projection into the horizontal coordinate plane of the segment of tangent between
that same plane and the point of tangency). The tangent plane to a surface in a
given point is determined by two of its straight lines, namely the tangents to the
sections of the surface through the given point that are parallel to the vertical
coordinate planes [Clairaut 1731, 49]. Curiously, this is only a lemma, and it does
not occur to Clairaut to calculate the equation of a tangent plane. The use for this
lemma is to deduce geometrical properties of the normal line to a surface at a point,
so that it is possible later to determine the equation of the curve generated by the
intersections of the horizontal coordinate plane with all those normals through the
points of a curve in the surface [1731, 57-58|. The third chapter of [Clairaut 1781],
dedicated to applications of the integral calculus, consists in calculations of arc
lengths, areas of surfaces, and volumes.

[Euler Introductio, II] contains an appendix on surfaces, but it is very uninte-

56In the sense of “shortest path between two points”.

57Henri Pitot had used the name “curves of double curvature” for space curves in 1724, but
it was Clairaut [1731] who established it as standard. It was used throughout the 18th century.
Neither Pitot nor Clairaut seemed to have in mind first curvature and torsion when using the
name [Struik 1958, 100-101].
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resting as far as differential geometry is concerned: the only problem tackled there
that might be regarded as part of the subject is tangency between surfaces, and it
is dealt with algebraically. Tangency is interpreted as a coincidence of two inter-
sections, so that enquiring whether two surfaces are tangent (and where, in case
they are) involves searching for double roots of equations expressing intersection
[Introductio, 11, appendix, §139-142]. There is no attempt to adapt directly the
power-series method for plane curves (page 115 above). There is a distinct process
for the search of tangent planes that uses it, but in a planar way: the tangent
plane to a point in a surface can be defined in the same way as in [Clairaut 1731];
this involves calculating tangents to two plane curves, so that that method can be
used. In neither process is the equation of a tangent plane actually written.

Euler’s great contributions to differential geometry in space came later. In
[1760] he addresses for the first time the problem of curvature of surfaces. He
calculates the osculating radius for an arbitrary plane section through a given
point, then concentrates on normal sections; taking one as the “principal section”,
he shows how to determine the osculating radius of any section using that of the
principal and the angle between them. He then notices that the normal sections
that give the largest and smallest radii make a right angle and arrives at the
formula

2fg

" T e (- g)cos2p
for an osculating radius r, where f is the largest osculating radius, g the smallest,
and ¢ the angle between the sections that give r and f.

In 1770 Euler wrote another important article, where he studied developable
surfaces (surfaces that can be unfolded onto a plane). There Euler tried to show
that every developable surface is a ruled surface (that is, composed of straight
lines) but, according to [Coolidge 1940, 331], without much success. In that arti-
cle Euler did show that the tangents to a space curve form a developable surface
[Struik 1933, 104]. He also gave a set of conditions for a surface to be developa-
ble, for which he represented the coordinates x,y, z of a point on the surface as
functions of two variables ¢, u. However, this idea was not followed before Gauss,
in the 19th century.

As we can see, in mid 18th century the differential geometry of surfaces and
space curves was not a very dynamic subject; but then appeared Gaspard Monge,
and it was set in motion. In an analytical age, Monge combined a knowledge of
analysis with a deep geometrical intuition. Speaking of a memoir in which Monge
took up Euler’s theory of developable surfaces, Struik [1933, 106] said that

“the formulas always follow the dynamics of geometrical development,
so that the integration of a partial differential equation becomes the
gradual building up of a geometrical system in space. Nobody except
Lie ever equalled Monge in that direction”.

Monge’s first article on differential geometry was a “Mémoire sur les déve-
loppées, les rayons de courbure, et les différens genres d’inflexions des courbes a
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double courbure”® [Monge 1785a|, submited to the Paris Academy of Sciences in
31 August 1771, and which has already been mentioned in section 4.1.1.3. In that
memoir Monge expands the theory of evolutes to the space.

The first third of the memoir contains the geometrical exposition of his study
(with many infinitesimal considerations). If at each point of a curve (plane or
of double curvature) we take its normal plane, the normal planes through two
infinitely close points will meet along a straight line. These straight lines form a
developable surface, nowadays called the polar developable®®. There is an infinity
of envelopes of straight lines normal to the given curve, they are all in the polar
developable, and he calls them the evolutes of the curve. In the case that the
given curve is plane (and only in that case), one of its evolutes is plane (it is
the usual evolute). The polar developable of a plane curve is a cylinder erected
upon the plane evolute. Unfortunately, unless the given curve is plane, its centres
of curvature do not form one of its evolutes.’% He also characterizes developable
surfaces as composed by a system of straight lines®! and introduces the concept
of edge of regression of a developable surface (other than cylinders and cones):
the curve formed by the intersections of consecutive generating lines.%? The edge
of regression of the polar developable of a curve is composed of the centres of
curvature of the curve (and therefore is not an evolute®?).

Monge then “applies analysis” to these considerations. After some prelimina-
ries of analytic geometry, he calculates the equations of the normal plane to a given
curve through a given point, of its polar developable, of the edge of regression of
this polar developable (and the radii of curvature of the curve), of a curve formed
by folding a straight line on a surface, and of an arbitrary evolute.

He then addresses points of inflexion. There are two types of inflexion: in a
simple inflexion, the curve is locally planar, that is, three consecutive “elements”
(sides of the polygon-curve) are in the same plane; in a double inflexion, the curve
is locally linear, that is, two consecutive elements are in a straight line. A simple
inflexion can be recognized because the polar developable behaves locally like a

58«\emoir on the evolutes, the radii of curvature, and the different kinds of inflexion of curves
of double curvature”

59Monge occasionally refers to it as the “surface des poles [de la courbe]”, because those straight
lines are seen as axes through the centres of the osculating circles, and their points are poles of
those circles; but he usually calls it “surface of the evolutes”, rather than “surface of the poles”.

60For each point in a curve, the radius of curvature is the radius of an evolute, but for two
consecutive points in a space curve, the radii of curvature are radii of different evolutes. In fact,
there is an important exception to this rule: when the curve is a line of least or greatest curvature
of a surface, its centres of curvature do form an evolute. Monge implicitly reported this in [1781,
690|, stating that the normals are tangent to that curve, but apparently he never recognized
explicitly that it is an evolute. Lagrange [Fonctions, 183], on the other hand, was quite explicit,
and Hachette cited him in a footnote in [Monge & Hachette 1799, 357].

61That is, they are ruled surfaces. But he does not attempt to prove this in general. The case
of polar developables is immediate from the definition.

62In the case of cones it can be said that the edge of regression is the vertex. In the case of
cylinders, the generating lines are all parallel.

63In fact, the edge of regression is such that none of its tangents meet the curve. There is,
however, the exception mentioned in footnote 60.
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cylinder%4; a double inflexion happens when the radius of curvature is 0 or oco.

In 1775 Monge submited to the Paris Academy a memoir on developable
surfaces [Monge 1780], where he proposed to simplify and amplify Euler’s work on
the subject, and where, naturally, he reworked some ideas from [Monge 1785a]. A
developable surface is one that, supposed flexible and inextensible, can be applied
on a plane, so as to touch it without gaps or duplication. The obvious examples
are cones and cylinders. The application process can be thought of the other way
around — a plane being wrapped on the surface — and that is the path that Monge
follows. He imagines the wrapping as consisting of an infinity of rotations along
straight lines tangent to the surface. These tangent straight lines must belong to
the surface, and two consecutive ones must be coplanar. If they are all parallel, we
have a cylinder; if they all meet in one point, we have a cone; but in the general
case they will meet along a curve (that is, they have an envelope) which is the
edge of regression.

This gives two characterizations of any developable surface: first, it is formed
by the tangents to some space curve; second, at each point it contains one of its
tangents, and two consecutive tangents are coplanar [Monge 1780, 383-385]. Using
this he arrives in three different ways at the differential equation for a developable
surface

80z - ddz = (6dz)?

(where 0 stands for partial differentiation relative to « and d relative to y). The
second of those characterizations also gives a distinction between developable sur-
faces and general ruled surfaces: a surface may be composed of straight lines,
but such that two consecutive ones are not coplanar (which is the case of skew
surfaces).

In the second section of the memoir, Monge applies this to the theory of
shadows and penumbrae: if a light source and an opaque body are given as surfaces,
then both the shadow and penumbra are delimited by developable surfaces.5

Monge then gives a few analytical applications [Monge 1780, 423-426], and
finishes the memoir with a study of ruled surfaces [Monge 1780, 427-440].56 He
gives the third-order partial differential equation for ruled surfaces and shows that
developable surfaces are a particular case of them.

Monge’s work on differential geometry soon generated disciples, and the first
two of them had been students of his at Méziéres. Charles Tinseau (1749-1822)
submited two memoirs to the Paris Academy shortly after leaving Méziéres in 1771
[Tinseau 1780a; 1780b].57 The first is a collection of problems revolving around

64Two consecutive generating lines are parallel.

65In the special case that the light source is a point, the penumbra does not exist and the
shadow is delimited by a cone, circumscribed to the opaque body and with vertex at the light
source.

66He does not use the expression ruled surface (“surface reglé”). This last section of the memoir
is ostensibly only about skew surfaces (“surfaces gauches”): surfaces composed of straight lines,
but such that no two consecutive ones are coplanar.

67| Tinseau 1780a, 593] has an indication of having been submitted in 1774, but according to
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Monge’s differential geometry, the kind of simple problems that the creators of
theories often do not bother to solve. In [Tinseau 1780a, 593-594| we find, appa-
rently for the first time [Taton 1951, 119], the determination of an equation for
the tangent plane to a surface. Unfortunately, Tinseau was not a master of nota-
tion, and choosing x,y, z for the coordinates of the point of tangency (and of the
surface) and 7, ¢, w for the coordinates of the plane, the equation obtained is

(x —m) x dy X <d_z> ~dx + (y — @)dr x <%> ~dy — (2 — w)dady = 0.8
dx dy
The second memoir deals with quadratures and cubatures of ruled surfaces.

Jean-Baptiste Meusnier (1754-1793) was also a student of Monge at Méziéres,
from 1774 to 1775. In 1776 he submitted to the Paris Academy his only work on
mathematics, a memoir on the curvature of surfaces [Meusnier 1785]. There he
derives Euler’s results in a different way and improves upon them. Meusnier takes
as element of curvature a small portion of a torus: he rotates a small arc of circle,
tangent to the tangent plane, around an axis that is parallel to the tangent plane;
this is done under such conditions that the resulting torus will have the same first
and second differentials that the surface at the touching point. The radius of the
arc of circle r, and the distance from the touching point to the axis p are called the
radii of curvature. He then proves that r and p correspond to Euler’s maximum
and minimum osculating radii, and Euler’s results follow. But he also addresses
the curvature of non-normal sections, arriving at what is still called Meusnier’s
theorem® [Meusnier 1785, 490-491].

Meusnier also interprets the signs of r and p in terms of convexity and con-
cavity, noting for instance that when those signs are different some sections are
concave and others convex [1785, 490-500]. He also proves that the only (presu-
mably curved) surface that has both equal radii of curvature everywhere is the
sphere; and determines a condition for minimal surfaces: that the radii of curva-
ture are “equal” with opposite signs [1785, 500-504]. This allows him to find two
examples, the twisted helicoid and the catenoid, the only minimal surfaces that
were known for a long time [Struik 71933, 107]. [Meusnier 1785] is a remarkable
piece, especially being the author’s single mathematical work.

Meanwhile, Monge kept working on differential geometry, and including con-
siderations of differential geometry in memoirs on other subjects. In fact, one of
the main themes of his mathematical work (since its beginning) was the associa-
tion of differential equations in three variables with families of surfaces sharing a
common form of “generation” (usually they are generated by the movement of a

Taton [1951, 76] the correct date is 7 December 1771. [Tinseau 1780b] has no date but, also
according to Taton [1951, 76|, appears to be contemporary of the former memoir.
68Which is finite: it is possible to divide each term by dxzdy; apparently Tinseau admitted only

the partial differentials <g—;) dz, <Z—;) dy, not the partial differential ratios <Z—i) s <Z—;)
69The curvature of a non-normal section that intersects the tangent plane in a straight line a
is the same as that of the section made by the same plane in a sphere tangent to the surface and

having as radius the radius of curvature of the normal section through a.
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curve; sometimes as envelopes of other surfaces). This is perhaps explained best in
[Monge 1784a, 85-86|: a “finite” equation in three variables may refer to a family
of surfaces by including arbitrary elements (particular values of which give rise to
specific surfaces in the family), which may be constants or (more commonly) func-
tions (as is the case with the family of surfaces of revolution around a fixed axis —
the arbitrary functions represent the coordinates of the revolving curve); we can
eliminate those arbitrary elements (constants or functions) between the “finite”
equation and its differentials, so that such a family of surfaces can be represented
by a differential equation, which expresses only the mode of generation. For more
on this see sections 6.1.3.2 (pages 202 ff.) and 6.1.3.4.

Monge managed to include a section on differential geometry of surfaces
[1781, 685-699] even in a memoir on the problem of minimizing the work done
in the transport of rubble (he studies the problem on the plane and in space, the
latter case essentially as a theoretical exercise [Taton 1951, 297]). In that memoir
Monge addresses the issue of curvature, not following precisely either Euler or
Meusnier. Instead, he considers the normal straight lines to the surface, and asks
when do two consecutive such normals intersect. The answer is that for each point
the normal only intersects the consecutive normals in two directions, and these
directions are orthogonal. Of course these correspond to the principal directions
of curvature, and the curvature of the surface along one of them is established as
the curvature of the sphere with centre in the corresponding intersection of the
normals. Following these directions from point to point in the surface, lines of
least, or greatest, curvature are formed.

As has already been mentioned (page 101 above), Monge taught differential
geometry at the Ecole Polytechnique from 1795, and from (or rather, for) that
teaching resulted [Monge Feuilles], the first textbook on differential geometry.

Most of [Monge Feuilles] is composed of studies of particular families of sur-
faces.™ For each family Monge seeks a differential equation and an equation “in
finite quantities”. Naturally, as the text proceeds other aspects are introduced and
studied from these equations. Those families are ordered by the complexity of the
differential equations that arise: first-order linear, first-order non-linear, second-
order, and third-order. But he manages to introduce them naturally through other
means: for instance those that have first-order linear equations are the cylindrical
and conical surfaces, surfaces of revolution and those generated by the movement
of a horizontal straight line that stays horizontal and always intersects a given
(static) vertical line.

Interspersed are a few chapters dealing with more general aspects: tangent
planes and normal straight lines [Monge Feuilles, n® 4-i,ii]; envelopes of families
of surfaces [Monge Feuilles, n° 7|; developable surfaces [Monge Feuilles, n°® 13-
iv - 15-iii]; curvature of surfaces [Monge Feuilles, n° 17-iv - 19-i; and evolutes,
radii of curvature and inflexions of curves of double curvature [Monge Feuilles,

70 As Taton [1951, 210] puts it, these studies take up a score (“une vingtaine”) of chapters out
of about twenty-five (“quelque vingt-cing”) in the differential part of [Monge Feuslles].
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n° 32-34].7

[Monge Feuilles| is then a reformulation and systematization of previous
work, containing also a few new results.

[Lagrange Fonctions| also includes a section on spatial differential geome-
try. It essentially attempts to address the same questions as its planar counter-
part (contact and curvature of curves, evolutes, contact and curvature of sur-
faces). For more advanced studies Lagrange refers the reader to Monge’s works
[Lagrange Fonctions, 168, 184, 187|. Occasionally it is apparent that Lagrange’s
fundamentalist approach was not very well suited for advanced differential geome-
try. For instance, he briefly mentions developable surfaces, giving their equation
and characterizing each of them as the “intersection continuelle”™ of a family
of planes, so that we can conceive that any of these planes “supposé flexible et
inextensible, s’applique et se plie sur la surface””3.

4.2.2.2 Differential geometry of surfaces in Lacroix’s Traité

Apart from a few considerations on tangency and contact, closer to Lagrange, we
will see that Lacroix essentially follows Monge in his account of the differential
geometry of surfaces.

In the first few pages Lacroix relates vertical sections with partial series

expansions:
+dzh+d22 h? +d3z h3
P T e W iiod
drl dz21-2 dx31-2-3

for a section parallel to the x, z plane, and
dzk d?z k2 d3z k3

it a2 T apT 23

+ etc.

+ etc.

for a section parallel to the y, z plane. Other vertical sections are obtained by
making the ratio % constant in
dz dz 1 <d2z d?z d

2
Ry Ay R (i hk+ 2282 + ete.
Z+dx +dy +2 dx? +dmdy +dy2 +ete

Of course this series is (3.10); the equality of mixed differential coefficients expres-
ses the fact that to go from a point of coordinates x,y to a point of coordinates
x + h,y + k one may use the first series first (to go to x + h,y, along the section
parallel to the z, z plane) and then the second (to to go to = + h,y + k, along the
section parallel to the y, z plane), or the second series first (to go to z,y+ k, along
the section parallel to the y, z plane) and then the first (to to go to « + h,y + k,
along the section parallel to the z, z plane), and that the two results must coincide
— as Lacroix [Traité, 1, 467 puts it, it expresses “la continuité de la surface”".

"1 This last chapter was absent from the first edition [Taton 1951, 219].
724continued intersection”

T3“supposed flexible and inextensible, is applied and folded onto the surface”
74“the continuity of the surface”



4.2. Differential geometry 133

There is some discussion of the contact of two surfaces using these series
expansions. If they have a common point with coordinates z’,7’, 2z’ and series
expansions

2+ ph+qk + = (rh2 + 2shk + tk?) + etc.

and
2+ Ph+Qk+ = (Rh2 + 2Shk + Tk?) + etc.,

a first-order contact will happen when p = P and ¢ = @Q; a second-order contact
when in addition r = R, s = S and ¢t = T'; and so on. This easily gives the equation

z—2 =pl@—-2)+qly—y)

for the tangent plane [Traité, I, 467-468].

But an alternative way is given for finding this equation — a “translation
into analysis” of a construction from [Lacroix 1795]: the tangent plane through a
point with coordinates z’, %', 2’ can be determined by the tangents to the sections
parallel to the vertical coordinate planes; these tangents have equations

z—z—@(az—x’), y—y =0
and ,
d

Z_Z/:d_;<y_y/), z—a' =0;

representing the equation of the tangent plane by z — 2/ = A(z — ') + B(y — ¢/'),
it follows that 0 0
= d_jc’ =p and B = d_Z’ =q.

Interestingly, Lacroix feels the need to argue that this plane is in fact tangent
to the surface, and not only to the two sections. This is so not only because the
result is the same as in the power-series argument above (and therefore, by tran-
sitivity, because of Arbogast’s principle); but also because it carries a coincidence
between the first-order differentials of the surface and the plane, and consequently
a coincidence of their points “immediately around” the point of tangency [ Traité,
I, 470-471]. As we move into this section, the power-series foundation gives way
to infinitesimal considerations.

Lacroix addresses osculating spheres next [ Traité, I, 471-472]. Using the con-
ditions for first-order contact, he finds that all spheres tangent to a surface at a
point M have their centres in the normal line through M. Trying next to use the
conditions for second-order contact poses a problem: he has three more equations
to satisfy and only one constant left to determine, so instead of r = R, s = S and
t =T, he takes Rh% +2Shk+ Tk? = rh? 4 2shk + tk:2 putting this as an equation
in £, he manages to find an osculating sphere (for each value of ) However,

@‘I??‘
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this osculation only happens along one direction indicated by %, that is along one
normal section to the surface.

Having an expression for the radii of curvature of normal sections through
a given point, Lacroix determines their maximum and minimum. Conceiving a
transformation of coordinates such that the new horizontal coordinate plane is
the tangent plane and the tangency point is the new origin, Lacroix shows that
the directions of maximum and minimum curvature are perpendicular. It remains
to establish Euler’s relation between the radius of curvature of an arbitrary normal
section, the maximum and minimum values of those radii, and the angles between
the arbitrary section and those of maximum and minimum radii [Traité, I, 473-
478|.

Naturally, Lacroix reports also Monge’s consideration of intersection of nor-
mals: the two directions in which this can happen, how they correspond to direc-
tions of maximum and minimum curvature, and the formation of lines of curva-
ture. This is done briefly [Traité, I, 478-480] and referring to equations obtained
previously. Even briefer is an argumentation for the possibility of obtaining the
conditions for surface contact from the “coincidence of their consecutive points”
[ Traité, 1, 480-481].

Also very brief is the reference to a surface with a complete second-order
contact: it is Meusnier’s torus [Lacroix Traité, I, 482]. However, Meusnier’s re-
sults are mostly absent. Meusnier’s theorem is not given, and the only mention
of concavity and inflexion of surfaces (and their relation to the signs of radii of
curvature) appears in a short footnote in the section on space curves | Traité, I,
519].

The rest of the section on surfaces [Traité, I, 482-504] appears in the subject
index under the general heading “Surfaces courbes, leur génération”” (but there
are also particular headings for many articles included there) [Traité, 111, 575]. Of
course this reflects Monge’s views on the study of families of surfaces — with a
nuance: Monge seemed to prefer generation by movement of a (usually straight)
line — at least for the simpler families —, while Lacroix gives preference to envelopes.

In the text Lacroix does not announce that he is to address the generation
of surfaces: instead he says that he wishes to follow the same order here as in
the chapter on plane curves, so that after having dealt with tangency, second-
order contact and curvature, he should address envelopes. Lacroix speaks of a
“surface formée par les intersections successives d’une infinité d’autres d’une nature
donnée”™® — these other surfaces sharing a general equation with an arbitrary
constant m [Traité, I, 482]. Maybe this language is too infinitesimal, so he tries
to be precise: for two very close values of m, the resulting surfaces must intersect
along a line; imagining these intersections to become closer, they “détermineront
un espace dont la surface que nous cherchons sera la limite””" [Traité, 1, 482|. He

754 Curved surfaces, their generation”
"6«surface formed by the successive intersections of an infinity of others of a given nature”
"74will determine a space, the limit of which is the surface that we seek”
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decides to use the name limit for the envelope: as in the planar case, the word
envelope is absent’8.

This is presented through examples. If the generating surfaces are planes, all
of them with a common point, we get of course a conical surface; if they are planes,
all perpendicular to a given one, then the result is a cylindrical surface; a sequence
of spheres with colinear centres gives a surface of revolution; a more complicated
case is that of an “annular surface”: generated by a sequence of spheres (first of
constant radius and such that their centres form a plane curve [ Traité, I, 488-489);
later the general case, but only briefly [ Traité, I, 497, 501]).

Let us look at an example: conical surfaces [ Traité, I, 483-486]. Lacroix starts
with the equation

f)(z—a)+n(y—=B)+(z—7)=0

of the generating planes (o, 3, are the coordinates of the common point to all
these planes — that is, the vertex; the equations of two of these planes must differ
only by two parameters, but we can put one as function of the other); differentia-
tion (on the surface, so to speak, so that x,y, z remain constant as they represent
the common points between one plane and the next) gives

_y-p

r—«

f'(n) =

so that n = (%), for some function 1, and therefore

_f{w(y—ﬁ)]_y—ﬁd}(y—ﬁ): z=7
r— r— r— r—

which can be simplified to

Z_7=<p<y_ﬁ> (4.12)

r—« r—«

where ¢ is an undetermined function. This is the general non-differential equa-
tion of conical surfaces. Eliminating ¢’ between the first-order differentials of this
equation yields

z=y=pE—a)+qly—>)

(where p, ¢ are such that dz = pdz + qdy).

The function ¢ can also be determined, particularizing the conical surface:
for instance by forcing it to pass through a given curve, or by imposing it to
circumscribe a given surface. This had been a favorite theme of Monge in his early
work (see below pages 202 f.).

78 Although Monge [Feuilles, n° T-i] had already used it in this sense, applied to surfaces.
Lagrange [Fonctions| spoke of “courbes enveloppantes” and “surfaces enveloppantes”.
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Addressing the general case: given an equation V = 0 in z,y,z and m to
represent a family of surfaces, the equation of the limit surface comes from the
elimination of the parameter m between V = 0 and % = 0. If, instead of elimi-
nating it, one assigns a particular value to m, these two equations give a curve,
along which the corresponding generating surface and the limit surface are tan-
gent. These curves, which are also the intersections of the successive generating
surfaces, are called, following Monge, characteristics [Lacroix Traité, 1, 490-491].

A special case is that in which the generating surfaces are planes: the limit
surface is then called a developable surface. The general equation of developable
surfaces comes from the elimination of m between

z—m=xp(m)+yy(m)  and —1=x¢'(m)+y'(m).
Eliminating ¢ and v by differentiation gives
rt—s>=0

(where 7, s,t are the second-order differential coefficients: dp = rdz + sdy and
dq = sdx+tdy). The characteristics of a developable surface also produce a curve
by successive intersections, and that curve is the edge of regression | Traité, 1, 494-
495]. Lacroix [Traité, I, 496-497] also pays some attention to the determination of
¢ and v, given particular conditions (partly because of the problem of shadows
and penumbrae).

In the final pages of the section |Traité, I, 498-504] surfaces are studied as
composed by lines (that is, generated by the movement of lines — straight lines or
curves in space), instead of as envelopes of other surfaces. The simplest example
is once again that of conical surfaces: if «, 3, are the coordinates of the vertex,
the equations of the straight lines that compose the surface are

y—p=a(zr—a), z—y=b(x— ).

Putting b = p(a) gives once again the equation (4.12).

This point of view allows Lacroix to characterize developable surfaces as
formed by straight lines with consecutive intersections, and skew surfaces as formed
by straight lines that do not intersect consecutively.”™

4.2.2.3 Differential geometry of “curves of double curvature” in Lacroix’s Traité

As everyone else in the 18th century, Lacroix takes any space curve to be the inter-
section between two surfaces.3? This seems particularly adequate for a geometry
based on projection planes. Given the equations F'(z,y, z) = 0 and f(z,y,z) = 0 of

790f course one has to allow here for some sloppiness in language: cylinders are developable
surfaces, despite the fact that their straight lines do not intersect; instead, they are parallel,
which should be mentioned by Lacroix as an alternative to intersection.

80Which is not correct in general. [Coolidge 1940, 136] gives the example of any non-planar
curve with prime order.
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the two surfaces that intersect in the curve, by eliminating for instance x between
them we get the projection of the curve in the horizontal coordinate plane; but
this equation is also that of the cylinder erected upon that projection; if we elimi-
nate one of the other variables, we get another projection and another cylinder.
The curve can be studied using two of those projections, and it is the intersection
between those cylinders [Lacroix Traité, I, 504].81

This idea can be found already in [Clairaut 1731, 1-3], but it is easy to see
how appealing it should be to Lacroix (and Monge), who appreciated a parallelism
(as it were) between descriptive geometry on one side and analytic and differential
geometry on the other.

However, besides being incorrect (which Lacroix does not seem to have been
aware of) it is not a very fruitful idea, and Lacroix does not insist much on it.
He uses it to give the equations of the tangent to a curve at a given point: the
projections of the tangent must also be tangent to the projections of the curve;
combining them,

d/
vy =) amd =Ty

are the equations of the tangent at the point with coordinates z’,y’, 2’

But he quickly moves on to another approach, that of power series: given a
curve with coordinates z’,y’, 2/, we can take two of them, for instance y’ and 2/,
as functions of the third (in this case z’). Then, when 2’ becomes z’ + h, y’ and
2’ become

/+dy’h+d2y/ h? et d ,+dz’h+d22/ h?
- —— +ete. an 2=t —=—
YT a1 T de?1 2 do' 1?12

+ etc.

while for an osculating line with coordinates z,y, z, when x becomes = + h, y and
z become

_’_alyh_’_al2yh2_’_t q +dzh+d2zh2+t

—— 4+ —— +etc. an 24+ ——+ ——— +etc.
YT 212 drl dz?21-2

For a first-order contact it is enough to put y = 3/, z = 2/, g—g = gg: and g—; = g;;

when x = 2. In the case of a straight line, this gives the same equations as in
(4.13).

This approach can also be followed to study the contact between a curve and
a surface. If x,y, z are the coordinates of the surface, when = becomes = 4+ h and

81 A very simple example can be given to show that this is not always so: take the helix
x = cos z,y = sin z; its vertical projection generates the cylinder z2 + y? = 1, and its projection
onto the plane z,z generates the cylinder x = cos z; however, the intersection of those two
cylinders is the double helix x = cos z,y = £sinz.
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y becomes y + k, z becomes

dz dz
—h+ —k
et dx + dy
1 (d% , d*z d?z
S —hP+2 hk + —k?
3 {dw2 * dxdy +dy2 }

+ etc.

But because we want to study the contact of this surface with a curve (with similar
conventions as above), not only should we put z = 2/, y = ¢/, and z = 2/, but also

dy by dz%’; % + etc. Substituting will give

the increment k of 3y’ must be equal to

dx’ 1 dz
a series of the form 2’ + Ph + Qh? + Rh? + etc. Then P = ch, gives a first-order
contact; this and @ = % gives a second-order contact; and so on. An obvious

example is the osculating plane to a curve.

But this is enough as a demonstration of the power-series theory of con-
tact. Lacroix intends to present Monge’s results about space curves, and so in the
rest of the section he regards curves of double curvature as polygons where three
consecutive sides are not coplanar.

This infinitesimal approach gives very easily the equations of tangents and
osculating planes, and the expression y/dz'2 + dy’? + dz’? for the differential of
arc-length.

The bulk of the section is dedicated to what is essentially an account of
Monge’s work on evolutes of space curves and polar developables [Monge 1785a]
(see page 127 above). There are only a few differences in the presentation: Lacroix
had already introduced developable surfaces (and their edges of regression) in
the previous section; he chooses to study the evolutes of a plane curve in space,
and then those of curves of double curvature, instead of taking the former as a
particular case of the latter; he adopts the unfortunate name radii of curvature for
the radii of the evolutes, and calls absolute radius of curvature the shortest one
(which Monge had called simply radius of curvature) [Lacroix Traité, I, 512-513)].

Lacroix repeats Monge’s mistake of stating that the centres of curvature
only form an evolute in the case of a plane curve, forgetting the case of the lines
of curvature of a surface (see footnote 60, page 128).

This section (and the chapter, and the volume) finishes somewhat abruptly
with a short comment on inflexions. Lacroix mentions two kinds of inflexions of
space curves: the first happens when the radius of curvature of the polar develo-
pable changes sign; and the second when the absolute radius of curvature changes
sign. But

“Cette matiére demanderoit pour étre traité avec exactitude et clarté,
quelques détails, dans lesquels je ne puis entrer maintenant; il me suffit
d’avoir mis le lecteur sur la voie de ces recherches, dont ’application
d’ailleurs n’est pas fréquente.”8? [Lacroix Traité, 1, 519]

82¢To address this matter with exactitude and clarity would demand certain details in which
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Why could he not enter in those details? They do not require integral calculus,
so the reason is not one of order. One possible reason (but this is pure conjecture)
is that Lacroix, knowing that [Lagrange Fonctions| was about to appear, hurried
to print his first volume; having already failed to publish it in 1795, he might wish
to secure his proper place in the chronology of calculus books authors. Or perhaps
he really did not see those details as too important; in the second edition he did
not add much, and what he did add was motivated by a work by Lancret that had
appeared in the meantime.

On the whole, the two sections on spatial differential geometry in Lacroix’s
Traité seem to have offered around 1800 a more accessible introduction to the
subject than the more specialized [Monge Feuilles|, and a far more suitable one
for contemporary research than the corresponding sections in [Lagrange Fonctions]
(which were somewhat marred by the author’s fundamentalist approach to the
calculus).

I cannot enter at this point; I am content with having shown to the reader the path for these
researches, which anyway do not often have applications.”



Chapter 5

Approximate integration and
conceptions of the integral

5.1 Conceptions of the integral and approximate integra-
tion in the 18th century

5.1.1 Conceptions of the integral

It is well known that one of the first innovations introduced by the Bernoulli
brothers on the Leibnizian differential calculus was the answer to “what is [y dz?”.
Leibniz originally meant this to be the [um of the infinitesimally narrow rectangles
of sides y and dz ([ is a typical 18th-century italic s) — and therefore the area
under the curve represented by y. However, he later adopted the name integral,
coined by Johann I Bernoulli but first proposed in print by his brother Jacob,
suggestive of a different definition for the operation represented by [: simply the
inverse operation of differentiation [Bos 197/, 20-22; Boyer 1939, 205].

This was the definition adopted in the first account of the integral calculus,
the Lectiones Mathematice de Methodo Integralium (Mathematical Lectures on
the Method of Integrals), written by Johann Bernoulli in 1691-1692 for the use of
the Marquis de ’'Hépital, but published only in 1742:

“Vidimus in praecedentibus quomodo quantitatum Differentiales inve-
niendz sunt: nunc vice versa quomodo differentialium Integrales, id est,
eae quantitates quarum sunt differentiales, inveniantur, monstrabimus.”!
[Joh. Bernoulli Integralium, 387]

L\We have seen before how to find the Differentials of quantities: now, reversely, we will
show how to find the Integrals of the differentials, ie, those quantities of which they are the
differentials.”
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At least on one occasion this difference in approaches gave Leibniz an advan-
tage over Johann Bernoulli, namely when the issue of differentiating an integral
relative to a different variable occurred to the latter in 1697: trying to solve a
problem involving a one-parameter family of ellipses, he was not able to advance
when faced with the need to differentiate, relatively to the parameter a, an inte-
gral of the form [X(z,a)dz. Returning to the original view of the integral as a
sum, and remembering that “the sum of the differences of the parts is equal to the
difference of the sums of the parts”, Leibniz provided the answer:*> [d, X (z,a) dx
|[Engelsman 1984, 41-46].

But Bernoulli’s definition gained ground and was widely adopted throughout
the 18th century [Boyer 1939, 239, 278], consistently with an increasing formalism
in mathematics. In the 1710’s, Nicolaus I Bernoulli, nephew of Johann and Jakob,
discovered the equality of mixed second-order differentials, and derived from that
Leibniz’s result on differentiation under the integral sign [Engelsman 1984, 105-
107].3 This derivation made sense under Bernoulli’s definition of integral and was
adopted by Euler [Engelsman 198/, 128-131].

Another situation in which the conception of the integral as a sum was useful
at first occurred in the calculus of variations. In 1744 Euler published Methodus
inveniendi lineas curvas maximi minimive proprietate gaudentes®, the first book
on that subject. There, in order to study conditions under which the curve amnz

would extremize [Zdx (Z being a function of the abscissa x = AH, Al,... , AZ,
the ordinate y = Aa, Hh,...,Zz and p = Z—z), Euler regarded [Z dx as an infinite
sum of terms Z dx corresponding to the infinitely close abscissas AH, AI, ..., AZ.
Introducing an infinitesimal increment nv to the ordinate Nn and putting dZ =
M dx + N dy + Pdp, he derived the “Euler-Lagrange equation” N — % =0,a

fundamental result [Fraser 1985, 156-158; 1994, 104-105].
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But in 1755 the nineteen-year old Lagrange discovered another approach for

2Here in an anachronistic notation, where dg represents differentiation relative to a.

3A simple (although perhaps not very faithful) rendition of that derivation could be: put
y = [X(z,a)dz, so that dey = X(z,a)dz; from deday = dadzy comes dedy [X(z,a)ds =
do X (z,a) dz; integration (on z) gives do [ X(z,a)dz = [daX(z,a) dz. The original is in a very
geometrical language [Engelsman 1984, 202-203].

4 Method to find the curved lines which enjoy a property of mazimum or minimum

5The figure from Euler’s Methodus reproduced here may be a little misleading: it is a repre-
sentation only of x and y, and particularly of the succession of their values; the integral under
consideration does not correspond to the area under the curve amnz, nor to anything pictured
there.
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the calculus of variations, based on the introduction of a new operator J. Using
this he was able to derive the “Euler-Lagrange equation” without having to regard
the integral as a sum and avoiding any appeal to geometry [Fraser 1985, 155, 160-
162]. This new approach was adopted by Euler and “quickly became standard”
[Fraser 1994, 103].6

Naturally, when Euler wrote his very influential treatise on the integral cal-
culus, he used Bernoulli’s definition:

“functio, cuius differentiale est = X dx, huius vocatur integrale, et pra-
efixo signo [ indicari solet: ita ut [Xdz eam denotet quantitatem va-
riabilem, cuius differentiale est = Xdz.”” [Euler Integralis, 1, § 7|

In this book Euler referred to the conception of “integrale tanquam summa omnium
differentialium” (“integral as the sum of all the differentials”) as “parum idoneo”
(“too little appropriate”), no more reasonable than considering a line as composed
of points® [Integralis, I, § 11] (but see also page 152 for some compromise on these
principles). The idea of P = [Xdx as a solution to the differential equation dP =
Xdz introduced fewer complications (or at least confined them to the principles
of the differential calculus).’

It was also more elegant, because it gave a unified definition for integration
of functions and integration of equations:

“Calculus integralis est methodus, ex data differentialium relatione inue-
niendi relationem ipsarum quantitatum: et operatio, qua hoc praestatur,
integratio vocari solet.”? [Euler Integralis, I, § 1]

Whether the given relation was in the form dP = Xdz or in a more complicated
form (say, a third-degree, second-order differential equation) was, from the con-
ceptual point of view, irrelevant. Thus, when Euler divided the integral calculus
in two parts, and [Euler Integralis| in two “books”, the first referred to functions of
only one variable and the second to functions of two or more variables [Integralis,
I, §13-14, p. 16]; moreover, the further division of the first book was between a
first part for first-order and a second part for higher-order problems; only then was
the first part of the first book (corresponding to the first volume) divided between

6 A more serious challenge was posed by Euler’s “isoperimetric rule”’; Lagrange was able to
derive it without resorting to integral-as-sum considerations only in 1806. It is almost certainly
not a coincidence that isoperimetric problems were neglected in the meantime [Fraser 1992].

"“the function, whose differential is = Xdz, is called its integral, and is usually indicated by
the sign [ in front of it: that is [ Xdx denotes the variable quantity whose differential is = Xdz.”

8 Arguably, this is an incorrect analogy, since the rectangles X x dz, while infinitesimal, have
as many dimensions as f Xdzx; points, however, have one dimension less than lines.

9The conception of the integral as sum also carried — in theory at least — the danger of more
frequent appearances of infinitely large quantities of the form [y, where y is finite [Bos 1974,
22].

10«The integral calculus is the method for finding the relation between quantities, from a
given relation between their differentials: and the operation thus manifested is usually called
integration.”
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a first section for “integration of differential formulas” and a second section for
“integration of differential equations” [Integralis, I, § 17-20, pp. 16-17, 251].

The extent to which the conception of integration as inverse of differentiation
was successful in the 18th century can be assessed by looking at works based on
limits.

The method of limits was naturally related to the Greek method of exhaus-
tion; the first example given by Cousin in his chapter on the method of limits is
precisely that of the area of the circle as the limit of the areas of inscribed regular
polygons [1777, 17-19; 1796, 1, 84-85]; Newton had proved that the area under a
curve abcdFE is the limit of the sum of the areas of the inscribed parallelograms
AKbB, BLcC,CMdD, etc., or of the circumscribed ones AalB, BbmC, CenD, ete.
(lemmas IT and III, section I, book I of [Newton Principia]); I'Huilier gives this
same result (with the same argument) as an example of a limit situation [1786,
9-10].

o«

K b
L1
o
T

A BFRC D E

However, Cousin and I’Huilier’s examples were just that — introductory exam-
ples, and explicitly about areas.!! The integral calculus proper is introduced by
Cousin as the “inverse method of limits™ “remonter des limites des rapports entre
les différences, au rapport méme des quantités”'? [Cousin 1777, 56, 72; 1796, 1,
128, 150]. L’'Huilier gives a similar definition and explicitly rejects the association
between sums and integrals (the idea of integral as limit of sums simply does not
seem to have occurred to him) [1786, 32, 143-144].

Of course, the association between integrals and sums, even if nearly always
rejected, was never forgotten. Bézout gave the same definition of integral calculus
as everyone else:

“Il s’agit ici de revenir des quantités différentielles, aux quantités finies
dont la différentiation a produit celles-1a: la méthode qui enseigne com-
ment se fait ce retour, s’appelle le Calcul intégral.”*? [Bézout 1796, IV,
97]

11 As for [Newton Principial, it was a very explicit attempt at writing in a synthetic and
geometric style — soon very old fashioned; in his other writings it is the inverse relationship
between fluxions and fluents that we see [Bos 1980, 54-60; Boyer 1939, 190-202, 206; Guicciardini
2003, 78-84, 100-102].

124t6 reascend from the limits of the ratios of the differences to the ratio itself of the quantities”

13The American translation of this passage is not quite literal: “The method known by the
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Nevertheless, being an orthodox Leibnizian (see section 3.1.1), he accepted also
the infinite-sum interpretation of the integral:

“Pour indiquer I'intégrale d’une différentielle, nous nous servirons de la
lettre f que nous mettrons devant cette quantité: cette lettre équivau-
dra & ces mots somme de, parce que intégrer, ou prendre l’intégrale,
n’est autre chose que sommer tous les accroissements infiniment petits
que la quantité a di prendre pour arriver & un état fini déterminé.”!*
[Bézout 1796, IV, 98-99]

However, by the end of the 18th century the association between integrals
and sums seems to only occur either by pedagogical reasons (as to motivate the
symbol [) or to be rejected.!®

5.1.2 Constants of integration, particular integrals, and definite in-
tegrals

An aspect that is important in conceptions of the integral is the treatment of
arbitrary constants, and how they relate to definite integrals. This aspect becomes
more relevant as the concept of function becomes central in analysis: the definite
integral, in the sense of the integral “evaluated from = = a to = b” (suggesting
symmetrical roles for both endpoints), is a kind of quantity not particularly well-
suited to be expressed as a function.'®

Let us see how the issue is addressed in [Euler Integralis].

Let X be a function of x. Its integral (or rather the integral of Xdz) is also
a function of z; but of course it must contain an arbitrary constant: if X dx is the
differential of P, then it is also the differential of P+ C, whatever the constant C;
the “complete integral” of Xdz, [ Xdz = P+C is thus an indeterminate function of
x; however, if C' is somehow determined, we have a “particular integral” [Integralis,
I, § 31-39]. C (and therefore P + C) can be determined “from the nature of the
question” (but since the purpose of [Euler Integralis| is to treat integration in
genere, Euler warns that those constants will generally remain indeterminate).

name of Integral Calculus is the reverse of the Differential Calculus. It has for its object to
ascend from differential quantities to the functions from which they are derived” [Bézout 1824,
74]. Note that the word “function” is only defined three paragraphs below.

144To indicate the integral of a differential, the letter J is written before this quantity; this
letter is equivalent to the words sum of, because, to integrate, or take the integral, is nothing but
to sum up all the infinitely small increments which the quantity must have received, to arrive at
a determinate, finite state.” [Bézout 1824, 75|

15Except in the few situations in which it was technically unavoidable (see footnote 6).

16The difference F(b) — F(a) is obviously not a function, nor even a value of the function
F. Tt could be argued that it is a value of the two-variable function F(u) — F(v), but in the
18th century that would go against the obvious idea that the integral — definite or indefinite —
of a function of x must also be a function of x. Anyway, it will be seen below that, contrary
to intuition, definite integrals (or their equivalent) were not commonly (especially before the
1770’s?) evaluated automatically as the difference between two values of the antiderivative —
although, of course, their calculations can be easily interpreted in that way.
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A condition of the form “posito = a fiat y = b"!7 is quite enough for such

a determination. The “simplest” determination, and in fact the one that Euler
apparently prefers in the few examples he gives, amounts to asking that the integral
“euanescat, posito x = 0"'® [Integralis, 1, § 35, § 64, § 128].1°

What we would call a definite integral corresponds to the situation in which
we have a particular integral and then compute it for a specific value of x. Chapter
VIII (of the first section of the first part of “book” I), “de valoribus integralium
quos certis tantum casibus recipiunt”?? is precisely dedicated to such situations.
Euler calculates specific values of (particular) integrals which are not expressible
in terms of elementary functions: the first problem addressed in that chapter is:

z"dx
“Integralis / ———— valorem, quem posito x = 1 recipit, assignare,
g Vi quem p p g

integrali scilicet ita determinato, ut evanescat posito = 0.”2! [Euler
Integralis, 1, § 330]

which amounts to for integer m (in fact, separately for even and odd

/ Uogmde
o Vi—az
m).

Notice the asymmetry between the equivalent to limits of integration. It does
not seem completely obvious that an integral, supposed to vanish at x = a and
calculated at x = b, differs only in sign from the same integral calculated at x = a
and supposed to vanish at = b.

We would expect definite integrals to appear in a form closer to that of an
evaluation “from x = a to x = b” in a different situation: calculation of areas under
curves or calculation of other geometrical magnitudes expressible by integrals and
having naturally two endpoints. There also definite integrals would more natu-
rally appear as objects (rather than as particular values of other objects). Such
calculations do not occur in [Euler Integralis|, which addresses no applications of
integral calculus other than purely analytical ones. We then turn our attention to
[Bézout 1796, IV].

To calculate the area contained between the curve ALMm and the abscissa
axis AP, Bézout considers the curve as a polygon with infinitely small sides Mm;

1749et o = @ make y = b”

18«yanish, when « is set = 0”

190ften Euler forgets to include the constant of integration. Sometimes this is because C' was
previously set = 0 for the same or a similar integral. When that is not the case it might be
interpreted as an implicit setting of C' = 0, particularly if that would make the integral vanish
for = 0; this interpretation is weakened before a list of integrals such as in [Integralis, 1, § 77-
78], all lacking a constant of integration, and having different values for z = 0. Whatever the
case, often the integral is afterwards calculated for a specific value of the variable; this is what
happens, for instance, in the title of [Euler 1774a], which includes the expression “casu quo post
integrationem ponitur z = 1”7 (“when after the integration z is set = 17).

20«on the values that integrals receive in certain cases”

m
x

21«To assign the value that the integral / 51 takes when x = 1, naturally this integral

£ 1—
being determined so that it vanishes when x = 0.”
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then the differential of the area is the trapezium PpmM = PM%

w xXdr =ydx+ % = ydx (because dy dx is infinitely smaller than y dx)
[Bézout 1796, IV, 114-116; 1824, 85-86].

But Bézout remarks that PpmM is the differential both of the area APM
reckoned from A and of any other area such as K PM L reckoned from a point K.
The solution to distinguish these cases is to determine the constant C' accordingly:
if [ydx =Y +C, we must calculate Y for z = AK and set C' so that Y +C =0 at
that point [1796, TV, 115-118; 182/, 85-87]. In other words, the definite integral
“from K to P” is notoriously absent. Instead, what we see here is something very
similar to what we saw above in Euler: the determination of a “particular integral”
(although Bézout does not use this expression).

X Pp =

Curiously, soon after the publication of the third and last volume of the first
edition of [Euler Integralis] (1770) Euler started(?) to speak of integration “from
x = a tox = b”. The “fourth volume” in the second edition of [Euler Integralis] is in
fact a posthumous collection of memoirs on the integral calculus (mostly reprints,
but including a few unpublished memoirs that had been presented to the St. Pe-
tersburg Academy). Some are about or at least contain what we call calculations
of definite integrals. In those memoirs we watch an interesting oscillation in lan-
guage. [Euler 1774a] has terminology similar to what we have already seen: “post
integrationem ponitur z = 1722; “integrale euanescat posito z = 0” [Euler 177/a,
122-123]. An apparently previous memoir, [Euler 1771], seems to be the first (at
least in order of presentation to the Academy) to speak of a situation in which
“integratio a valore = 0 vsque ad x = 1 extendatur”?® [Euler 1771, 78].

But it is another memoir, presented only in 1774 [Euler 177/b], that seems
to most clearly show the evolution in language. It addresses calculation of definite
integrals, with substitution of variables. Euler starts by speaking of an integral
vanishing for z = 0, and then setting z = 1; however, he quickly introduces
a geometrical argument for [ (Z_l# (under those conditions) to be not much

larger than %, that is the area between the curve y = % “a termino z = 0 vsque

224after the integration z is set = 17

23¢integration extends from x = 0 till z = 1”
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ad terminum z = 1 extensa”?* to be only slightly larger than the triangle with
vertices on the origin, on the abscissa axis for z = 1 and on the curve for z = 1 (for
which y = 1); by the third page he is introducing (for another integral) a change of
variable z = z7 (i an infinite number!), calculating the new limits of integration2
and speaking of integration “a termino x = 0 vsque z = 17 [Euler 1774b, 260-
262].25 Notice how integration between two endpoints appears associated to a
geometrical visualization of the integral.

The next step was the introduction of a notation for this. The earliest occur-
rences of such a notation seem to be associated with changes in direction of integra-
tion: in [Euler 1775, 387], a couple of changes of variables lead from [ % =7
(the integral vanishing for = 0, and being set = co after the integration) to

dz a z=1
) VI [ ad z2=0 } =T

whence, permutating the limits of integration,

dz a z=0
1/_lz[ad 2:1]_ﬁ'
P~ 1d

[Euler 1776, 298] has a similar argument to prove that [ —2—%— “extended

from z = 0 till z = 17, being equal to — [y? 'dy(1 — y™) 5 “from y = 1 till
y = 07, is also equal to

Yy 1dy [ ab y=0 ]

YAy Lad v

Finally, the name definite integral was introduced by Laplace [1779, 209]:

‘Se nomme intégrale définie, une intégrale prise depuis une valeur déter-
minée de la variable jusqu’a une autre valeur déterminée.”2”

The context is that of a method to reduce the solution of a linear finite dif-
ference equation to that of a linear differential equation; for that Laplace uses
definite integrals on a new variable. In that memoir Laplace also used occasio-
nally the expression “indefinite integral”, without feeling the need for a definition
[Laplace 1779, 275].

24«

extending from the limit z = 0 till the limit z = 17

25Which happen to be the same numerically: 2 =0 -z =0and z=1 — 2 = 1.

26There is at least one precedent for this sort of thing: in [Euler Integralis, I, §304] Euler speaks
of the formula —2.92 = in the interval x = 1 — w to = = 1; he introduces the change x =1 — z, so

11—z
that the new bounds are z = 0 and z = w. The context is that of approximating integrals (see
section 5.1.3).

2741 call definite integral, an integral taken from a determinate value of the variable until
another determinate value.”
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By the end of the 18th century this special concept of a definite integral was
not yet standard enough to appear in every major treatise of integral calculus. It
is absent, for instance, from [Cousin 1796].

It is also absent from [Lagrange Fonctions|, but that is hardly surprising.
In fact, it would not fit very well in Lagrange’s scheme: Lagrange spoke not of
integrals, but of primitive functions, that is, antiderivatives; naturally, he was
much more comfortable with the conception described above (on [Euler Integralis,
I]) of determining the arbitrary constant when necessary (as for calculation of areas
[Lagrange Fonctions, 156]), thus obtaining a particular primitive function which
then might be calculated for specific values of the variable.?® Moreover, Lagrange
tried to base the calculus upon a small set of concepts; the definite integral was
an unnecessary object, which would spoil the economy of [Lagrange Fonctions].

[Bossut 1798] does contain a chapter on definite integrals (entitled “Intégra-
tion entre des limites données: Comparaison de certaines intégrales pour des inter-
valles aussi déterminés’®® [1798, 1, 415-431]). However, Bossut is only interested
in giving an introduction to Euler’s works on the subject.

We will see in section 5.2.3 that definite integrals did appear in Lacroix’s
Traité and that they seem to fit well in Lacroix’s conceptions of the integral.

5.1.3 Series integration and approximate integration
5.1.3.1 Series integration

Integration by means of series was a fundamental procedure since the earliest times
of the integral calculus. It was particularly important in the development of the
Newtonian “inverse method of fluxions”, and remained a traditional practice in
the “English school” [Chabert 1999, 434]. Its relevance lay at least as much in the
fact that a power series gave a very convenient representation of a quantity (for
instance, being easily integrable term by term), as in its approximative qualities
[Bos 1980, 54-56; Boyer 1959, 190, 192].

The first section of [Euler Integralis, I] includes two chapters dedicated to
series integration: chapter IIT addresses power series and chapter VI addresses tri-
gonometric series. In both chapters the basic idea is to integrate term by term.
There is not an openly declared purpose in these integrations, so that it all seems
like a pure exploration of the infinite-series form. Often FEuler already has a finite
expression for the integral, so that this looks like a means to obtain a series expan-

28This could be particularly cumbersome in the calculus of variations, where one tries to find
the function y of x for which “la fonction primitive de f(z,y,vy’,y" ...), fat un mazimum ou
un minimum, en supposant que cette fonction soit nulle lorsque x aura une valeur donnée a, et
qu’elle devienne un mazimum or a minimum lorsque = aura une autre valeur donnée b’ (“the
primitive function of f(z,y,v’,y” ...) is a mazimum or a minimum, supposing that that function
is null when = has a given value a, and that it becomes a mazimum or a minimum when z has
a different given value b”) [Lagrange Fonctions, 201].

29¢Integration between given limits: Comparison of certain integrals for intervals also determi-
ned”
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sion for such an expression. Only occasionally does the issue of practical usefulness

openly arise: an example occurs when Euler addresses the formula dy = - \/%;
he already knows that y = [2=¥1=22 hut he integrates it by series, arriving at

xT
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the problem is that for the series to converge it is necessary to have “z > 17 (that

is, || > 1), and in that case v/1 — 22 is imaginary, so that the series is useless

[Integralis, I, § 168-169).

Similarly, in the section dedicated to second-order ordinary differential equa-
tions (first section of the second part of “book I"30) there are two chapters (VII
and VIII) devoted to solutions by infinite series.3! It is essentially the method
of undetermined coefficients that is used there, along with many particular tricks
and strategies. The limitations in generality of these methods can be seen by
the fact that chapter VII is only about integration by series of the equation
ddy + a x™ y dz? = 0; chapter VIII is about integration by series of “other” second-
order ordinary differential equations, but to avoid too much complicated calcula-
tions Euler sticks to linear equations ddy + M dx dy + Ny dx? = Xdz? (actually,
he sticks to zz(a + ba")ddy + z(c + ex™)dx dy + (f + gz™)y dz? = 0). Again, the
relation between this and approximations is not made explicit. On the contrary,
the title of chapter XII, “De aequationum differentio-differentialium integratione
per approximationes”? (where series only appear as a last resource — see below)
suggests a distinct subject.

A different situation can be seen in [Bézout 1796, IV]. There series integra-
tion is addressed in a section entitled “De la maniere d’intégrer par approximation,
& quelques usages de cette Méthode™3 [1796, IV, 145-164]:

“I’art d’intégrer par approximation, consiste & convertir la quantité pro-
posée, en une suite de monomes dont la valeur aille continuellement en
diminuant; chaque terme s’intégre alors aisément, & il suffit d’en pren-
dre un certain nombre, pour avoir une valeur suffisante de I'intégrale.”3*
[Bézout 1796, IV, 145]

Bézout’s discussion revolves around finding series expansions that, once in-
tegrated, converge quickly enough. This is accompanied by an ad hoc evaluation

30The second part of “book I’ corresponds to volume II.

31For some reason, there is no such chapter in the section on first-order ordinary differential
equations.

32¢On the integration of differentio-differential equations by approximation”

33¢On the mode of integrating by approximation and some uses of that method” [Bézout 182/,
106-119]

34«The art of integrating by approximation, consists in converting the proposed quantity into a
series of simple quantities whose value continually diminishes; each term is then easily integrated
and it is sufficient to take a certain number of them, in order to obtain an approximate value for
the integral” [Bézout 1824, 106].
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of errors: calculating the length of an arc of a circle of diameter 1 “by means of its
versed sine AP [= z]”, i.e. calculating [ 2\/%, he arrives at

1 1 3 2 5 3
2 (1 — — — )
x ( +6m+40:ﬂ + 15" &:c>7
the fact that x is always smaller than 1 (the diameter) guarantees that the terms of
the series decrease, and that the smaller x is, the faster they decrease; for x = 0.01
each term is more than a hundred times less than the preceding, so that Bézout
is happy in taking the hundredth part of 5(0.01)3 to judge the error committed

112
by confining to the first four terms [1796, IV, 146-148; 182/, 106-108].

5.1.3.2 Euler’s “general method” for explicit functions

[Euler Integralis, I] also addresses approximation of integrals — only not, at least
not explicitly, in the chapter dedicated to series integration. He does so in chap-
ter VII (of the first section), entitled “Methodus generalis integralia quaecunque
proxime inueniendi”3°.

The general method given by Euler is (in its simpler form) an approximation
by rectangles, but introduced in a quite un-geometrical way [Integralis, I, § 297]:
we want to approximate y = [Xdz, knowing in some way that y takes the value b
for x = a;3% if x increases by an extremely small (“valde parva”) quantity o, X will
increase very little, so that it may be regarded as constant; X being constant, we
(would) have y = X« + Const.; because of the initial conditions, b = Xa + Const.,
so that Const. = b — Xa and consequently

y=b+ X(x —a)

(a convoluted argument to introduce the first rectangle without appealing to geo-
metrical intuition); now, dropping the assumption of constant X, when z = a + «
it will be y = b+ (; these values serve as new initial conditions, from which we
arrive at

y:b—l—ﬂ—i—X(x—a—a),

X being again assumed as constant (in fact a new one, its value for x = a +
«); repeating this process, and calling A, A’ A” ] A" Jetc., and b, b, " V" etc. the
values of X and y, respectively, for x = a,a’,a”,a"” ete. (where the differences
a' —a,a’ —d,a" —a", etc. are extremely small), we will have

b =b + A —a)

b// — b/ _"_A/(a// _a/)

b/// — b// + A//((L/// _ a//)
etc.

35¢[A] general method to find all integrals approximately”

36Notice the initial conditions, and how Euler seems to have in mind more a particular integral
than a definite integral.
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or, substituting,
b =b+ Ald —a)

)
b/// — b+A(a/ _ a) _"_A/(a// _a/) +A//(a/// _ a//)

this process is supposed to be continued until x is reached, that is, until the value
for which we wish to calculate the integral is reached; but in two out of three
examples given this value remains undetermined (that is, x remains a variable),
unlike the initial values a, b, which are always given in the usual form “euanescat
posito z = a” (b is always 0) [Euler Integralis, I, § 305-316].

For formula’s sake, the penultimate value for x is represented by 'z, and the
corresponding value of X by 'X, so that the integral is approximated by

b+A(@ —a)+ A(d" —d)+ A" (" —d")...+'X(z —"2) (5.1)

[Euler Integralis, 1, § 301].

This is followed by a few interesting considerations. Firstly, Euler revisits the
idea of integral as a sum (and even that of a line as an aggregate of points). What
in the beginning of the book had been qualified as “little appropriate” (see page
143) is now tolerable, as long as it is well explained: integration can be attained by
summation approximately, but not exactly, unless the differences o’ — a, a” — d’,
a — a”, etc. are infinitely small, that is, null; hence the elongated S as the
symbol for integration, and even the alternative name summation, are acceptable
[Euler Integralis, 1, § 302].

The other considerations have to do with the errors committed in the appro-
ximation. Since at the beginning of the first interval X = A and at itsend X = A’,
it seems more convenient to use some value between A and A’,%>7 instead of A as
above; this might suggest taking the (arithmetical) mean between A and A’, but
Euler does not do that yet — he will later take the arithmetic mean between two
estimates of y given by an improved version of the method (see below); in the
meantime he finds useful to give an estimate of y by excess and another by defect:
the true value of y should be contained between two “limites” (“bounds”) given by
an estimate that takes the initial value of X for each interval, that is, as before,

b+ Al —a)+ A'(a" —d')+ A" (" —d")...+'X(z —"x) (5.1)
and another taking the final value of X for each interval,
b+ A —a)+A"(d —d)+ A" —d")...+ X(xz —"2). (5.2)

This is not accompanied by any explicit imposition of monotonicity.?® Euler just
seems to assume that, for each interval, taking the initial value of X gives an

37“Medium quoddam inter A et A’ “some mean between A and A’”, as in arithmetical, geo-
metrical or some other mean?

38 According to [Grabiner 1981, 149], Euler did impose monotonicity: “first, he [Euler| said,
assume that the function is always increasing or always decreasing on the given interval”. 1
cannot locate any such passage in Euler’s text.
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estimate by defect and taking the final value gives an estimate by excess, or vice-
versa — or at least that this happens most frequently (“plerumque”); and that in
some way the sums of the interval estimates will maintain their excess or defect
character3? [Integralis, 1, § 303].

The last of these remarks is a warning about the importance of the rate of

change of the integrand function. The rate of change of \/: increases and tends

to infinity as x approaches 1, so that putting o’ —a=a" —a' =a"" —a”" = ... will

not be appropriate; the length of the intervals must decrease as the rate of change
of X increases [Euler Integralis, I, § 304].

Euler later gives an improved version of this method: it is not really true
in general that [Xdz = X(x — a), as was assumed for each interval, but an
integration by parts gives [Xdx = X(xz — a) — [P(x — a)dx, where dX = P dx;
assuming P to be constant in the first interval, we get b+ A(a’ —a) — 1 B(a’' — a)?
(where B is the value of P for = a), which is a better approximation than the
one used above, namely b 4+ A(a’ — a); this can be continued, as it is not really
true in general that fP(a: — a)dz = LP(x — a)? (P is not constant), but rather
[P(z—a)dz = L1P(x—a)?> -1 [Q(z— a)*dz (where dP = Q dz); and so on. This
leads to the formula

1 1 1
y=b+X(x—a)-— EP(a: —a)? + 6@(37 —a)’ - ﬂR(a: —a)* + etc. (5.3)
that is, to the Bernoulli series for y = [Xdx around z (equivalent to the Taylor
series for b around z). The improvement comes from substituting (5.3) for the

above linear approximations that is, the term A’(a’ — a) in (5.2) is replaced by
Al(d —a)—LiB'(a —a)?+ C'( '—a)®—etc., A”(a" —a’) is replaced by A" (a”

d)—3B"(d" —d)*+ 1C”( " —a')3 — etc., and so on, where B’, B”, ... are the
values of P = ‘fg fora’,a”,...,C’",C",...are the corresponding values of Q = %,

and so on [Euler Integralis, I, § 317].
A similar improvement can be made of (5.1) using the Taylor series for y
around a,

1 1 1
y=b+Ax—a)+ §B(x —a)? + EC(CL' —a)® + ﬂD(CL’ —a)* +etc. (5.4)
The final formula in this chapter is the arithmetic mean between these two impro-

ved “bounds” for ¥, in the case that the differences a’ — a,a” —d/,... are all equal
(to some «) |[Euler Integralis, 11, § 322]:

y=b+a(A+A +A"+ +X)_1a(A+X)+1a(B P)
1
+6a3(C+C’+C” Q) - @ JC+Q)+
etc.

B'(D-R) (55

39Because the initial values will (almost) always give excesses or (almost) always defects?
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Apparently both this method and the whole first section of [Euler Integralis]
were outside the mainstream development of numerical analysis. A recent “history
of algorithms” [Chabert 1999]| mentions four methods for approximate quadratu-
res up to Euler’s times: Gregory’s formula, Newton’s three-eighth rule, Newton-
Cotes formulas (including Simpson’s rule), and Stirling’s correction formulas (for
Newton-Cotes formulas) [Chabert 1999, 353-363]. None of these methods are men-
tioned in [Euler Integralis| and Euler’s “general method” is absent from [Chabert
1999|. Similar remarks can be made for the older (and less clearly organized)
|Goldstine 1977|. Euler’s “general method” seems to have been more influential in
the development of pure mathematics; partly via [Lacroix Traité].

5.1.3.3 Euler’s “general method” for differential equations

What has just been said about the influence of Euler’s “general method” applies
only to its first version, on integration of functions. Euler returns to this method in
the second section of [Integralis, 1], to find approximate solutions of first-order or-
dinary differential equations. This second appearance of the method is the subject
of a section in [Chabert 1999, 374-378] (the only one about differential equations
prior to the 19th century), and according to Goldstine [1977, 285] it “is basically
responsible for the present-day methods”. However, neither [Chabert 1999] nor
[Goldstine 1977] acknowledge the fact that Euler’s method for approximation of
solutions of differential equations is merely an adaptation of his “general method”
for approximation of integrals.4?

The differential equation whose solution is to be approximated is of the form
g—gyc =V, where V is a function of both z and y, subject to the initial condition
that y = b when & = a (that is, the only difference from the situation above is
the substitution of V(z,y) for X (z)). Now, we can calculate the value A of V for
x = a and y = b; if w is very small, we can assume V to be constant between
x =a and x = a’ = a + w, for which we will have y = b = b+ A(z — a); with
these new conditions we can calculate a new value A’ for V'; proceeding like this
we will generate, as above, three (finite) sequences,

T a, a/, a//’ a///’ aIV

y b y b’ y" bIV ’
74 A A; A/; A//; AIV,

the middle one giving the desired approximate solution [Euler Integralis, I, § 650].
Of course there are differences between this and the corresponding method
for integrals of functions. Although the solution is here still made up of products
such as A’(a” — a’), we cannot associate them to rectangles, since the constant A’
no longer represents an ordinate (a side of a rectangle), but rather a slope.
Much more importantly, in the former case we had a polygonal approximation
which had (at least) as many points in common with the true function X as the

40Tournés [2003, 458-463] indicates several geometrical antecedents of this method in its ver-
sion for differential equations.
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number of elements in the sequence a,a’,a”,...,x. Here, on the other hand, the
only point in which it is guaranteed that the slope V' is accurately evaluated is the
initial point. This is so because the calculation of each of A’, A”, A", ... involves
the previous approximated value of y (b',0”,0",...). And of course the errors
accumulate from one interval to the next, as Euler admits [Integralis, I, § 652].

For the same reason it would seem pointless to give a different approxima-
tion using the (estimated) final values of V' for each interval, that is, something
equivalent to (5.2).41

However, the relationship between the two methods is undeniable, and the
fact that the former was more developed (and developable) than the latter may
be a good sign of which one was prior.

In fact, Euler [Integralis, 1, § 656] expressly invokes the appropriate articles in
section I to justify the use of the Taylor series (5.4) also for differential equations
(the Bernoulli series (5.3) is not applicable since in this case X, P,Q, R, ... cannot
be calculated without knowing the final value of y). It is (5.4) that is then used in
the two examples of this chapter [Euler Integralis, § 661-662].

In the second volume of [Euler Integralis|*? a similar method is developed
for second-order differential equations (in chapter XII of the first section, entitled
“De aequationum differentio-differentialium integratione per approximationes™?).
However, in this case Euler pays very little attention to the intervals beyond the
first one. Given an equation in x,y, p, ¢, where dy = pdx and dp = qdx, ¢ may be
seen as a function V of z, y, p; if the initial conditions are that y = b and p = ¢ when
x = a, and if V is taken as constant (= F') between x = a and x = a + w (w being
very small), then at = a+w Euler concludes that p = ¢4+ Fw and y = b+cw; Euler
remarks that this can be repeated for further small intervals as in the methods
above, but he does not do it [Integralis, IT, § 1082]. What he does do is to improve
upon the method by regarding not V as constant, but rather %, similarly to
what he had done for integration of functions: integration by parts gives p =
c+V(z—a)— [(x—a)dV; putting dV = Pdz+Qdy+ Rdp = (P+Qp+ RV)dz,
and taking P+Qp+ RV as constant, gives p = ¢+ F(x—a)— %(P—i—Qc—i—RF)(an—a)2
andy =b+c(z —a)+ 3 F(z — a)? — (P4 Qc+ RF)(z — a)® (where P,Q, R are
calculated at = a) [Euler Integralis, IT, § 1094].

It must be mentioned that in this chapter the word “series” occurs, albeit
quite timidly: in case a power of x — a appears in P + Qp + RV, this cannot be
taken as constant; in that case a truncated series** approximation is used, of the
foomp=c+Alx —a)*;y=b+c(r —a)+ )\L_;_l(m —a) ! [Euler Integralis, 11, §
1094, 1098].

41 Although the arithmetic mean between these upper and lower estimates was used, namely
by Carl Runge (1856-1927), to obtain an improved method [Chabert 1999, 381-387].

42This second volume constitutes the second part of the first “book”, dedicated to higher-order
ordinary differential equations. It is divided into two sections: the first on second-order equations
and the second on third- and higher-order equations.

43¢On the integration of differentio-differential equations by approximation”.

444Seriei initium” (“beginning of a series”).
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In the third volume of [Euler Integralis], dedicated to partial differential equa-
tions, there is no chapter devoted to series integration or approximate integration.

5.1.3.4 Other methods for differential equations

In spite of Goldstine’s quote above about Euler’s “general method” being the
ancestor of (nearly all?) the modern methods, other methods can be found in the
18th century.

An important motivation for approximation of differential equations was as-
tronomy: the motion of celestial bodies is too complicated for rigorous solutions to
be achievable (because of multiple-body gravitational influences). But approximate
values are easily accessible, and can be improved using an adaptation of Newton’s
approximation method for numerical equations: one takes the initial approximate
value plus an undetermined quantity, which should be very small; then the terms
involving the square and higher powers of this undetermined quantity are neglec-
ted, resulting in a linear differential equation; by integrating this linear equation
(which is much easier), a new approximate value is obtained; and the procedure is
repeated with this new approximate value. Versions of this method are found in
works by d’Alembert on lunar theory [d’Alembert 1754-1756, 1, 31-34; Tisserand
1894, 60-62], by Euler on the three-body problem and by Lagrange [1766, 110] on
the satellites of Jupiter [Wilson 199/, 1049]; at least hints at this method were also
present in Clairaut’s earlier work on lunar theory [Tisserand 1894, 51-56]. Gillis-
pie [1997, 48] says that Laplace attributed this method to d’Alembert, but in fact
what Laplace [1772b, 267] attributes to d’Alembert is the use of indeterminate
coefficients for the integration of the linear differential equations involved in the
method. The method itself “se presenta naturellement aux Géométres, qui résolu-
rent les premiers le Probléme des Trois-corps™® [Laplace 1772b, 268], which would
include not only d’Alembert but also Clairaut and Euler (d’Alembert [1754-1756,
I, xxxv] himself referred to this as “Méthodes connues™6).

This method had problems, particularly in the case of the Moon (where it
introduced undesirable “arcs of circle” — terms containing integer powers of angles
instead of sines and cosines of angles, which are incompatible with the fact that
the Moon orbits the Earth and therefore its distance remains bounded) and in the
case of a planet with more than one satellite (where it mixed first-order terms in
the second-order solutions). D’Alembert [1754-1756, 1, 34-37] noticed the former
difficulty and gave a means to avoid it, and Lagrange overcame the latter difficulty
by “an elaborate algebraic process” [Wilson 1994, 1049]; nevertheless, Laplace pro-
posed a new method — also of successive approximations — consisting “a faire va-
rier les constantes arbitraires dans les intégrales approchées, et a trouver ensuite
par l'intégration, leurs valeurs pour un temps quelconque”®” [Laplace 1772b, 268].

45“[had] appeared naturally to the Geometers who first solved the three-body problem”
46«known methods”
474n varying the arbitrary constants in the approximate integrals and then determining their

values for a given time by integration.” |Gillispie 1997, 48]
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Later Laplace [1777] simplified this method of variation of arbitrary constants
|Gillispie 1997, 70]; there he summarized it in a rule: one should solve approxi-
mately the differential equation in the traditional way, and then erase the terms
containing “arcs of circle” and at the same time replace the arbitrary constants
with variables subject to certain differential condition equations [Laplace 1777,
381].

Lagrange was naturally quite sympathetic to techniques of variation of cons-
tants (see sections 6.1.2.3, 6.1.4.1 and 6.1.4.2), but in this particular case he
thought that Laplace’s method rested on a “metaphysics” that was not satisfying;
besides, it failed in cases in which an arbitrary constant occurred within the argu-
ment of a sine, cosine, or exponential [Lagrange 1783, 227]. He thus presented his
own method of variation of constants [Lagrange 1781, § 25-27; 1783], introducing
corrections to Laplace’s condition equations [1783, § 3-5].

An entirely different method for approximating solutions of differential equa-
tions, using continued fractions, was also proposed by Lagrange [1776]. Given a
differential equation in = and y, Lagrange’s method consisted in finding a first
approximation £ of y for very small z (£ should be of the form az?®); substitute
y= %y, in the given equation, resulting in a new equation in z and y’; and repeat
these steps, so that

N S
(A pr——
+—5

5

The method of series had “I'inconvénient de donner des suites infinies lors méme
que ces suites peuvent étre représentées par des expressions rationnelles finies”*®; a
continued fraction, on the other hand, would stop whenever the solution was finite
and rational [Lagrange 1776, 301]. This method, however, was not much pursued
in the 18th century [Chabert 1999, 373].4°

5.1.3.5 Two accounts in the 1790’s: Cousin and Bossut

To conclude this section on series and approximate integration, it remains to look
at how this subject is treated in important treatises at the end of the 18th century.

[Bézout 1796, IV] (not really an important treatise, but rather a standard
elementary textbook) has been seen above to conflate approximate integration
with series integration, but also to be more practical than [Euler Integralis|. Na-
turally for its level, it does not address approximations of solutions of differential
equations.

48«the inconvenience of giving infinite series even when such series can be represented by finite
rational expressions”

49Lagrange 1776] is nevertheless an important work, namely for the (pre-)history of Padé
approximants [Brezinski 1991, 137-139]. Also from that memoir Lacroix extracted a method
for expanding functions into series, which he reported in chapter 2 and used in chapter 4 of
|[Lacroix Traité, I] (see page 108).
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Cousin [1777 446-455; 1796 11, 30-40] uses two methods to approximate
integrals: undetermined coefficients to find a series for the integral; and what is
probably a version of Euler’s “general method”. Starting from Taylor’s theorem
around two different points, corresponding to Bernoulli series (5.3) and Taylor
series (5.4), Cousin decides to divide the interval between z and a into several
small subintervals, all of the same length Aa; then apply both formulas to each
subinterval, so that he gets two estimates for the integral y = [ X dx, corresponding
to (5.1) and (5.2) but with full series for each subinterval instead of just a linear
polynomial; and finally take the arithmetic mean between these two estimates
(which Euler, as we have seen, preferred not to do).

A little afterwards Cousin [1777, 484-508; 1796, 11, 59-77| returns to the
application of infinite series to differential equations, namely to separate variables,
but this seems to be equivalent to chapters VII and VIII of the first section of
[Euler Integralis, 11|, and approximation appears far from the point.

[Bossut 1798, 1] includes three chapters on approximation of integrals, in the
first part of the integral calculus. In chapter XII, “Méthodes pour intégrer par
approximation les Formules qui ne peuvent I'étre en rigueur”®° [1798, 1, 432-456],
the goal is to express integrals as infinite series. Bossut uses continued division, the
binomial formula, the method of undetermined coefficients, and Bernoulli series.
Although there is no attempt at evaluation of errors, there is much more concern
with the practical issues of convergence than in [Euler Integralis]|.

751

Chapter XIII, “Suite: Autres méthodes pour 'approximation des Intégrales
[Bossut 1798, 1, 457-471] is more geometrical. Firstly, Bossut presents a version of
Euler’s “general method”, in a geometrical guise: his idea is to consider the integral
as the area under a curve, and to approximate it by trapezia; the result is thus
the average between (5.1) and (5.2) that Euler did not calculate (but Bossut’s
reasoning is closer to Bézout’s calculation of areas — see page 146 above). In
the rest of the chapter Bossut interpolates curves and integrates the resulting
polynomials.

Chapter XIV [Bossut 1798, 1, 472-484] treats only of applications of previous
methods to the calculation of the arc-length of ellipses.

Volume 2 of [Bossut 1798] contains two small chapters on approximate so-
lutions of differential equations, one for first-order and another for higher-order
equations [1798, II, 197-205, 282-293|. Both deal in fact with finding series so-
lutions (namely using undetermined coefficients), the latter being a summary of
chapters VII and VIII in the first section of [Euler Integralis, II]. A scholion at
the end of the former suggests that approximate solutions be calculated along
small subintervals and then added together, but this is the only vague reference
to Euler’s “general method” within the context of differential equations.

50«Methods to integrate by approximation those formulas that cannot be [integrated] exactly”.
5l«Continuation: Other methods for the approximation of integrals”
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5.2 Approximate integration and conceptions of the inte-
gral in Lacroix’s Traité

5.2.1 Integration (of explicit functions) by series

In the chapter on integration of functions of one variable, Lacroix dedicates a
section to “intégration par les séries”5? [ Traité, 11, 66-88].

Its beginning is very typical, with a remark that, if a function has been
expanded into series, then it is easy to integrate it, because it is enough to integrate
each of the monomials that compose the series. Lacroix explores this, giving several
examples taken from [Euler Integralis|. But slightly more than half of the section
[ Traité, 11, 77-88] is taken up with a summary of a memoir by Lagrange on series
expansion of elliptic integrals [Lagrange 1784-1785]. There are also references to
integration by series in the section on integration of logarithmic and exponential
functions and especially in the section on integration of trigonometric functions
(namely a long passage on [dz (1 + ncosz)™ |Traité, 11, 118-133]).

Clearly there can be two different purposes in integration by series, as in
fact is the case for any use of infinite series (see also section 3.2.6): it can be
used to facilitate (or to enable) the operation of integration,®® which is but a
useful instance of the use of a series as a representation of a function; or it can be
used to “parvenir & des valeurs approchées des intégrales dont on ne peut obtenir
'expression algébrique”® [Lacroix Traité, I1, 73].

This latter purpose, however, only appears in the eighth page of this section,
and it is never deeply explored. It brings along the issue of convergence,?® which
Lacroix addresses in his down-to-earth manner: he suggests the importance of
having several series expansions for the same integral, so that it may be possible
to use the one that is convergent for the relevant value of z.

In fact, Lacroix remarks the inconvenience that integration by series does
not always give (any) convergent series, and that divergent series do not give
approximations [ Traité, IT, 135]. This motivates a distinct section, on a “méthode
générale pour obtenir les valeurs approchées des intégrales”®® | Traité, 11, 135-160)
— Euler’s “general method”.

5.2.2 Euler’s “general method”

Lacroix’s derivation of the method is not the same as Euler’s but it is not terribly
original either. The main difference is that Lacroix takes full advantage of Taylor

52¢integration by series”

53Reducing it either to the integration of expressions of the form az™ or to their differentiation,
in the case of the method of undetermined coefficients.
54¢arrive at approximate values of integrals whose algebraic expression is not obtainable”

55This issue had already appeared, apropos of an expansion for f% [Lacroix Traité, II,
68-69]. Apparently Lacroix always preferred convergent series.

56«general method to obtain approximate values of integrals”
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series as a well-established tool. In this context this might be evocative of Cousin,
were it not for the overall importance of Taylor series in Lacroix’s Traité. Lacroix
starts by considering the Taylor series

o /(al_a) //(al_a)2 ///(al_a)3
Y1=Y+Y T +Y 15 +Y 1.2.3 + etc. (5.6)
— 1) (CLQ — a1)2 (CLQ — CL1)3
Yo = v, 4yl o) |y Vo te. 5.7
2 1+ Yy 1 + Yy 19 + Yy 1.2.3 + etc (5.7)
and so on,

where Y,Y',Y" etc. are the values of y = [Xdx, g—z = X, % = %, etc. at
x = a; Y1,Y],Y/, etc. are the values of the same expressions at z = ay; Y3, Y3,
Yy, etc. the same at = ag; and so on. But unlike Cousin he follows Euler in
taking only linear polynomials: supposing that the quantities a1, a2, as, etc. are
chosen so that the second and higher powers of a; — a, a2 — a1, ag — az, etc. may
be neglected “sans erreur sensible”®”, the following approximations result

Yi=Y+Y(a1 —a)
Yo=Y +Y{(az —a1)
Y3 =Ys 4+ Yy (a3 —a2)
etc.;

these may be combined, giving
Y,=Y+Y (a1 —a)+Y(as —a1) + Ys(as —az) ...+ Y, _i(an — an—1) (5.8)

as an approximation for the value Y,, of [Xdz for x = a,. This approximation
will be “the more exact” as the quantities a, a1, as, etc. are closer to one another
[Lacroix Traité, II, 136-137].

Now for a second estimate. If the process were to start from a,, instead of a,
that is, to follow the sequence a,, an_1, an_o,..., a1, a instead of a, a1, as,...,
Qn_1, an, the first step would consist in the Taylor series

(an - an—l)

Yo=Y, Y/ +Y/

Proceeding with series for Y,,_s,Y,_3, etc., neglecting higher powers of a, —
An—1,0n—1 — Ap—2, etc., and combining the results gives

Y=Y,-Y (an —an-1) =Y, _1(an-1—an—2)...— Y{(a1 — a) (5.9)
which of course is the same thing as
Y, =Y+Y/(a1—a)+Y3(aa—ay1)...+Y, _(an_1—an—2)+Y,(an—an—1). (5.10)

57

'without noticeable error”
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That is, (5.8) uses the initial value of the function at each interval, and (5.10)
uses the final value (they are precisely the same as, respectively, (5.1) and (5.2))
[Lacroix Traité, 11, 138-139.

Further ahead in the same section Lacroix gives a geometrical interpretation
for these approximations |Traité, 11, 143-144]: if the curve BM Z represents the
function X (AP being the abscissa axis) and AP, AP’, AP", AP | etc. are respec-
tively equal to a, a1, as, as, etc., then Y’ (a1 —a) + Y/ (a2 — a1) + Y5 (a3 — az2) + etc.
is represented by the polygon PMRM'R'M"R", etc. and Y{ (a1 — a) + Y5 (a2 —
a1) + Yq (a3 — az) + etc. is represented by the polygon PSM'S'M"S" M etc. To
have an approximation of the value of the integral since the origin of the abscissas
one must add a first term Y, equal to the area ACM P. It must be stressed that
Lacroix gives this simply as a geometrical illustration of results already obtained
“from analysis” (cf. pages 89 and 105).

B A D » P P =B

The rest of Lacroix’s account of the method itself (how best to use it; exam-
ples) follows Euler closely (although somewhat shortened). For instance, Lacroix
reports Euler’s advice against taking the differences a1 — a, as — a1, ag — aq, etc.
all equal; instead, they should be smaller where X varies most |Traité, II, 145].

Lacroix also reports Euler’s improved method, and in fact it occurs more
naturally here: it is enough not to neglect the second and higher powers of a; — a,
as — ay, az — az, etc. Taking these differences to be all equal (to some «) gives the
estimates

Y,=Y+ Y +Y/+Yy...... +Y'r£71)%
YV Ly Ly v a—2 5.11
+ ( +Y +Yy + n_1) 1.9 (5.11)
m m m " o’
+ Y+ +Y) +Yn_1)1.2'3

+ etc.
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and
Yo=Y+ (Y +Ys+Y]...... +Y,;)%

Y// Y// Y// Y// a2 5 12

-+ Yy Y +n)ﬁ (5.12)
" " " 1 as

+ (V" + Yy +Y,.)")

1-2-3
— etc.

. . . . 2
According to Lacroix, in case “none of the coefficients X, %, %, etc. changes

sign in the interval from x = a til = b”°%, the true value of Y,, is between these
two estimates®®, and a better approximation is given by their arithmetic mean
(5.5) [Traité, 11, 147-148].

But Lacroix does much more than just report Euler’s method, and his addi-
tions and remarks make this one of the most interesting sections in his Traité. We
will look at that additional work by Lacroix in the next paragraphs and in section
5.2.3.

We saw above that Euler was not very clear about the monotonicity of the
function whose integral was to be approximated: he did not explicitly assume it,
yet his argument for (5.1) and (5.2) to be bounds for the true value of the integral
makes sense only if the function is monotonic.

Lacroix, on the contrary, was very clear about that. Included in his geo-
metrical interpretations of the method is a sort of counterexample: There is no

3’ M7 ”
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reason to assume that either of the polygons PMRM'R'M"S"M"' 8" P"" or

58See below a discussion about this condition.

2
59This is not always true. For a very simple example, take X = %, consider only one subin-
terval, from ¢ = 0 = a to * = 1 = a1, and truncate after the term with a2: (5.11) will give

2 2 2 2
0+0- % +0- 17 =0 and (5.12) will give 0+ 17 . % -1 17 = 0; yet fol Fdzr = %. An example with
less simple calculations, but where the truncation is less artificial, is X = sinx, with a = 0 and
a1 = 7; truncation is indispensable, because otherwise both (5.11) and (5.12) will give infinite

series; truncating after a2, (5.11) gives 3%w2 ~ .30843, and (5.12) gives é\/ﬁw - 6i4x/§7r2 ~

.33727; however, [,* sinzdz = —%\/ﬁ +1 & .29289.
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PSM'S'M"R"M" R" M""P"" is smaller (or larger) than the curvilinear area
PMM' M"M" M" P"" | Traité, 11, 144].

He also gives a sufficient condition: [Xdz is included between the values
given by (5.8) and (5.10) if X “conserve le méme signe et varie dans le méme
sens”% [Lacroix Traité, 11, 139).

Lacroix proves this by examining one of the subintervals, namely the first,
between a and a;. Dividing it further with a “great number” of intermediary values
a1, Q2, A3, . . ., @y of z, then (5.8) and (5.10), which in this case were Y +Y’ (a1 —a)
and Y + Y/ (a1 — a) respectively, become

Y+Y' (1 —a)+Y (ag—aq)...... +Y' (a1 — o) (5.13)

and
Y + Y{(al — (L) + lel(az — al) ...... + Yf(al — am). (514)

But if we consider the values yi,y),...y,, of X corresponding to the values
ay,Qs,...a, of z, then we can have better approximations of Y7, one of which is

Y +Y' (g —a)+yi(az—ai)...... + oy 1(m — am—1) + Yy (a1 — am). (5.15)

Now, if X is, for instance, always increasing between a and ai, then Y’, yi,
Yo, - Yh,, Y] is an increasing progression, and it is clear that (5.15) is between
(5.13) and (5.14). Finally (using a very interesting argument on which we will
comment below), “comme on peut concevoir que la [série (5.15)] soit aussi prés
qu’on voudra de la vraie valeur de Y7, en imaginant un nombre suffisant de termes
intermédiaires”®!, the conclusion must be drawn that that true value of Y7 is in
fact between Y + Y’ (a1 — a) and Y + Y{ (a1 — a) [Lacroix Traité, 11, 140].

Apparently mysterious is the condition that X should keep the same sign
(always positive or always negative): this condition does not seem to be used at
all in the proof. An explanation may lie in the concept of “increasing”: there are
plenty of examples in Lacroix’s Traité where expressions like z < a clearly mean,
in modern terms, |z| < |a| (see for instance section 3.2.6); in this very section
there is a passage which reinforces this view of “greater” and “less” referring to the
absolute size of magnitudes (see footnote 65 below); this would entail that, say,
—2,—1,0,1,2 was not an increasing progression, since 0, 1,2 was increasing but
—2,—1,0 was decreasing.5?

As we have already seen, when later on Lacroix reports Euler’s improved
method he gives as a sufficient condition that none of the coefficients X, %, (f;)f ,
etc. change sign for the true value of ;, to be included between (5.11) and (5.12).
This is clearly a generalization of the simpler proposition whose proof we have

60«keeps the same sign and varies in the same direction”

61l4since it is possible to conceive the [series (5.15)] as close as one may wish to the true value
of Y7 by imagining enough intermediary terms”

62Lagrange, on the other hand, in a passage equivalent to that referred to in footnote 65,
decided to have —1 > —2, but he had to state this explicitly [Lagrange Fonctions, 46].



164 Chapter 5. Approximate integration and conceptions of the integral

just examined, but the proof is not generalizable (the minus signs in (5.12) and
the fact that, say, % may be always positive and U(l;)a( always negative thwarts
argumentation involving the monotonicities — which may be in opposing directions
— of sequences appearing in the formulas). In fact, this latter proposition is wrong
— see footnote 59 above. Lacroix’s correction of Euler thus fails for the improved

method.

But Lacroix did not just impose extra conditions for (5.8) and (5.10) (and
(5.11) and (5.12), albeit wrongly) to be upper and lower bounds. He felt the need
for bounds that would be general, that would not require conditions of monoto-
nicity. This was possibly his motivation for remarking that one can divide the
interval into portions where the function is increasing and portions where it is
decreasing®, and treat them separately [Traité, 11, 140]. This might have given
something like

Y+Y'(a1—a)+Y{(ag—a1)+. . .+Y_(ai—ai—1)+Y/ 1 (aiy1—a;)+. . Y, (an—an_1)

as a lower bound, in case the function is increasing from = = a till x = a; and
decreasing thenceforward; however, Lacroix did not derive any explicit result from
that remark. Instead, he found much simpler (but also quite uninformative) ex-
pressions for bounds that do not require monotonicity in a passage from Lagrange’s
derivation of the remainder for Taylor series [Lagrange Fonctions, 46]: calling M
the greatest value®? that X takes between x = a and = b and m the smallest
value of X in the same interval,®® the difference Y, — Y, between the values of
[Xdzx for x = a and x = b is contained between M (b — a) and m(b — a).

These bounds are a straightforward result from a lemma which will be dis-
cussed below: if X is always positive between x = a¢ and x = b, then Y, — Y, is
also positive. This means that, since M — X and X — m are by definition positive,
the differences between the values of [(M — X)dz and [(X —m)dz for z = b and
x = a, are also positive; that is, Mb — Y, — (Ma —Y,) and Y, — mb — (Y, — ma)
are positive, whence mb — ma <Y, — Y, < Mb— Ma [Lacroix Traité, 11, 141].

This result for itself has of course very little use, but Lacroix also gives an
improvement: if X = PQ, M and m are the greatest and smallest values of P, and
it is possible to calculate Z = dem, then mZy, —mZ, <Y, — Y, < MZ,— MZ,.
He later uses this to prove that \/11+—r Ndu f\/H Ny < [Ed (all

Vr+u? u2-v/14+ru2 Vr+u?
the integrals taken from u = 0 till w = 1) [Lacroix Traité, II, 152-153].

63He assumed, as usual at the time, that every function is piecewise monotonic.

64As usual at the time, Lacroix did not distinguish between a maximum and a least upper
bound. Similarly, there was no distinction between positive and nonnegative, and the symbol <
might sometimes be interpreted as meaning <.

65 In case X takes negative values somewhere in the interval, m must be the “greatest” of these
— that is, the greatest in absolute value, what we would still call the smallest. Similarly, if X only
takes negative values, then M must be the “smallest”, not the “greatest” value [Lacroix Traité,
11, 142].
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5.2.3 “On the nature of integrals, and on the constants that must be
added to them”

When Lacroix published the first edition of his Traité élémentaire du calcul... he
kept this section on the “general method to obtain approximate values of integrals”
virtually unchanged [Lacroix 1802a, 284-309|. A very interesting detail is that in
the table of contents of [Lacroix 1802a] — which unlike that of [Lacroix Traité]
contains titles of subsections — we find the following subsection of this section: “De
la nature des intégrales, et des constantes qu’il faut y ajouter”®® [1802a, xxxviii|.
Indeed Lacroix had included, in a section supposedly devoted to approximate
integration, some conceptual remarks about that object called integral.

But should not such remarks appear before, at the start of the integral cal-
culus, that is at the beginning of the second volume? In that apparently more
suitable context Lacroix pays remarkably little attention to foundational or con-
ceptual issues: the integral calculus is simply the inverse of the differential calculus,
so that its purpose is, given X, to find y such that Z_Z = X, and this is done by
reversing the rules of differentiation | Traité, 11, 1-2].

A certain lack of care in writing this passage (as if it was not terribly impor-
tant?) can be seen in the fact that the names primitive or integral for the function
y are introduced only in a footnote — a not very large footnote (by Lacroix’s stan-
dards) whose purpose is to explain the origin of the notation [Xdx for y: [ for the
infinite [um of the infinitely small increments X dz, according to Leibniz’s views.
The name integral is then predominantly used throughout the volume, without
further ado.

Not even the issue of arbitrary constants receives much attention. It is only

introduced when dealing with the first example of a rational function ( [az™dx =
a1

1 + B because d(Az™ + B) = mAx™1dx), not when speaking of integrals in
general. For its arbitrariness, the reader is referred to the first volume.
This almost exclusive referral to the principles of the differential calculus is
consistent with what Lacroix had said in the general preface at the beginning of
the first volume:

“Lorsque les principes du Calcul différentiel sont bien établis, le Calcul
intégral, qui en est 'inverse, n’offre plus qu’une collection de procédés
analytiques, qu’il suffit d’ordonner de maniére & en faire appercevoir les
rapports.”®” [Lacroix Traité, I, xxvii|

It is also consistent with the usual approach to the integral calculus at the end of
the 18th century (see section 5.1.1).

After the small and perfunctory introduction to the integral calculus which
we have just discussed, Lacroix occupies over a hundred pages with “procédés

66«On the nature of integrals, and on the constants that must be added to them”

674Once the principles of the differential calculus are well established, the integral calculus,
which is its inverse, offers but a collection of analytical procedures, which is enough to order so
as to make perceive their connections.”
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analytiques”, that is, the integration of rational and irrational functions, series, and
logarithmic, exponential, and trigonometrical functions. And then, in the section
dedicated to approximate integration, he returns to conceptual issues.

First, Lacroix timidly introduces what we may interpret as limit considerati-
ons, and without pausing he substantiates Leibniz’s original concept of the integral
as an infinite sum of infinitesimals:

“Ces valeurs |approchées de [Xdz| seront d’autant plus exactes que les
quantités a, a1, as seront plus voisines les unes des autres. En regardant
les différences ay — a, as — a1, az — az, comme infiniment petites, les
quantités Y’ (a1 —a), Y{(aa—a1), Yy (as—as), etc. seront ce que devient la
différentielle X dx, lorsqu’on fait successivement x = a, x = a1, £ = as,
etc. C’est sous ce point de vue que l'on congoit l'intégrale comme la
somme d’un nombre infini d’élémens, égaux aux valeurs consécutives que
prend la différentielle par les divers changemens qu’éprouve la variable
2.7%® [Lacroix Traité, 11, 137]

This is followed by a reference to the footnote on the notation [Xdz at the
beginning of the volume.

But what Lacroix subsequently uses from this passage is the naive limit
approach, not the infinitesimal one. In the chapter dedicated to the calculus of
variations he would remark that

“il faut se rappeler qu'une intégrale peut étre envisagée (n°. 470 [the
article quoted above|), comme la limite des sommes d’un nombre indéfini
d’élémens”® [Lacroix Traité, 11, 686].

We have seen already (page 163) that Lacroix uses the property of the integral
Y7 being the limit of the approximating sum (5.15) to prove that (5.13) and (5.14)
are bounds for its true value. A naive limit argument is also used to prove that, if
X is always positive between z = a and x = a,, then Y,, — Y is also positive: for
this difference we may give the approximate equation

Y, -Y =Y(a; —a)+Y(az —a1)...+Y, _i(an —an_1),

the right side of which is clearly positive if all the coefficients Y, Y7, etc. are
positive (which is an obvious consequence of X being positive); but it is possible
to take the elements of the sequence a, a1, as, ..., a, as close together as necessary
to “porter ainsi le degré d’exactitude de I’équation ci-dessus, aussi loin qu’on le
jugera & propos”?; the conclusion follows.

68«These [approximate| values [of [ Xdz] will be the more exact as the quantities a, a1, as are
closer to one another. Regarding the differences a1 — a, a2 — a1, a3 — ag, as infinitely small, the
quantities Y/ (a1 — a), Y{ (a2 — a1), Y5 (a3 — az2), etc. will be the result of putting successively
T =a,x =a1, = az, etc. in the differential Xdz. It is from this point of view that the integral
is conceived as the sum of an infinite number of elements, equal to the consecutive values which
the differential receives through the varying changes experienced by the variable x.”

69%4one must remember that an integral may be viewed (n°. 470 [the article quoted above]), as
the limit of the sums of an indefinite number of elements”

704thus carry the degree of exactness of the above equation as far as deemed fit”
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This same lemma can be found in [Lagrange Fonctions, 45-46], but in a
different context (an important step in the derivation of the remainder for Taylor
series), and with a different proof: Lagrange invokes Arbogast’s principle to say
that one can take ¢ small enough for f(a+4) — f(a) =if'(a) + %f”(a) + etc. to
be positive, provided that f’(a) is positive; dividing the interval from a to b into
subintervals of length ¢ and applying this argument also to f(a + 2i) — f(a + 1),
fla + 3i) — f(a + 2i), etc., he concludes that f(b) — f(a) = f(a+1i) — f(a)+
fla+2i) — f(a+ 1) + ete. is positive, if f'(z) is always positive from z = a till
z = b. It is interesting to notice that Lacroix could have used Lagrange’s proof, or
at least a close adaptation — he had used Arbogast’s principle before (see sections
3.2.6 and 4.2.1.2) and we have seen that this section starts with Taylor series; but
instead he gave the above limit argument.

Of course these two proofs are of results ostensibly related to approximations
— a subject which suggests the issue of convergence and hence of limits. What then
has this to do with general conceptions of the integral? Well, first of all, whatever
the subject of the section, these are proofs in which the integral — the true value
of the integral — is represented as the limit of a sum.

Perhaps more importantly, in this section there are three articles, which have
not yet been discussed, whose relation to the subject of approximations is, to say
the least, not at all obvious. Those three articles address arbitrary constants of
integration, the distinction between primitive functions and integrals, the distinc-
tion between definite and indefinite integrals — issues notoriously overlooked in the
beginning of the volume — and a geometrical illustration of these considerations.

The first of those articles [Lacroix Traité, 137-138] is the one which, as men-
tioned above, was reproduced in [1802a, 287-288] with the title “On the nature
of integrals, and on the constants that must be added to them”. It occurs imme-
diately after the passage quoted above suggesting limit- and infinitesimal-based
approaches. Lacroix proposes to explain how the integral [Xdz differs from a “gi-
ven primitive function” (what Euler called a “particular integral”): if we assign a
value to x, that of a “given primitive function” becomes perfectly determined (i. e.,
it is a function only of x); according to Lacroix, the same does not happen to the
integral, because the same operation (the assignment of a value to z) only deter-
mines where the series Y, Y’ (a1 —a), Y{ (a2 —a1), Y5 (a3 —az), ete. should end, not
where it should start: “la somme de cette série restera encore indeterminée tant
qu’on n’aura rien statué sur la valeur de x, a laquelle doit répondre son premier
terme et sur celle de ce premier terme”™! [ Traité, 11, 138]. Although this is not the
clearest explanation one could wish for,”? it shows that for Lacroix the sum (or
limit of sums) approach is not limited to approximation of definite integrals or of
particular integrals; it also refers to indefinite integrals, by allowing the first term
in the series to remain indeterminate.

Tl4the sum of this series will remain indeterminate while one has not pronounced about the
value of x to which corresponds its first term nor about the value of this first term”

721t must have been clear enough for the textbook writer Jean-Guillaume Garnier, who repro-
duced it almost word for word in [Garnier 1812, 108].
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Lacroix’s conclusion from this (also not exposed too clearly) is that the in-
tegral [Xdxz “est une fonction de x, dont la valeur se trouve renfermée entre deux
limites qui sont indeterminées””. These limits are independent of the constant of
integration: if [Xdz = P + const. and A and B are the values of P for z = a
and = b respectively, then the difference between the respective values of [Xdz,
that is A+ const. and B+ const., is A— B.™ According to Lacroix, this difference
is nothing else than the sum of some of the terms in the series (5.8), namely those
from the one corresponding to z = a up to the one corresponding to = b (notice
once again the indeterminacy of the first term in the global series, which might
start before z = a).

The determination of the constant of integration (by forcing the integral to
take a certain value for a specified value of x) corresponds to the determination
of one term in the series, “Y, par exemple”, from which one proceeds to form the
other terms.”™ After this the integral becomes a primitive function, which only
requires the specification of = for its complete determination.

The second of the three articles mentioned above occurs, strangely enough,
four pages afterwards [Traité, IT, 142-143]. It addresses mainly issues of termino-
logy, introducing the terms indefinite integral (what he had been calling simply
integral, the general value of [ Xdxz, which must contain an arbitrary constant to
be complete) and definite integral (the result of giving a determined value to the
variable, after having determined the constant of integration), and the expression
“to take the integral [Xdz from z = a till z = b” (to calculate the difference
between the corresponding values of the integral).

Lacroix attributes these names, rather vaguely, to “the Analysts”’; presuma-
bly this is a reference to [Laplace 1779]. The names definite integral and indefinite
integral were by then rare enough for Cajori [1919, 272] to attribute their intro-
duction to Lacroix himself.”®

It must be said that these names do not occur often in the rest of the second
volume (and not at all in this section; apparently the next occurrence is in the
chapter on the calculus of variations [Traité, II, 685]); they, or rather “definite
integral”, only becomes frequent in the third volume, where Lacroix reports the
works of Euler and Laplace that bear on definite integrals | Traité, IT1, 392-418, 445-
529]. In two articles there Lacroix uses Euler’s notation for the limits of integration

734s a function of x whose value is enclosed between two indeterminate limits”

7 Sic; not only is this not corrected in the errata as it is repeated in [Lacroix 1802a, 288] and
[Lacroix Traité, 2nd ed, II, 134] (but, curiously, it appears as B — A in [1802a, 2nd ed, 303] and
subsequent editions). One can only assume that Lacroix is only concerned here with the absolute
difference. Nevertheless, as we have seen above, he speaks further ahead of this difference as
Y, — Ya.

75 Lacroix is quite clear about Y being completely independent from the other terms, so that
what this means must be that one proceeds from the corresponding specified value of x.

76In this same year (an VI = 1798) “indefinite integral” made a fleeting appearance in
[Bossut 1798, I, 415], but “definite integral” does not seem to have accompanied it there.
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(“lefthand” limit at the top) [Traité, 111, 446-447, 475]:
ij_l + xn—m—l =0

[ .
14 2n z=1

But naturally the concept of definite integral occurs without need for mention
of the name. It is clearly present, for instance, still in the section on approximation,
in “the integral [ \/%, from x = 0 until © = 1—§” [ Traité, 11, 145]. Similar expres-
sions appear in the chapter on areas, volumes, etc., particularly when using double
(repeated) integrals to calculate volumes [ Traité, I1, 195-197]. Integral splitting oc-
curs very casually (for instance in [Traité, I1, 152]); it may have been a motivation

for one the few uses of Euler’s notation [Traité, III, 447]:

xm—l =0 xm—l =0 xm—l r=1
dx . — dx = [ ——dx . .
/1—|—x" [x:lnf] /1-1-3;" [x:l} /1-1-3;" [x:lnf]
Of course this would not be as obvious in a context of particular integrals/primitive
functions.

Finally, the third of the certainly non-approxzimative articles |Traité, II, 143]
gives a geometrical illustration (it is followed by the geometrical interpretation
of the approximation method mentioned above): if the curve BCZ represents
the function X, the integral [Xdz may be regarded as representing “a variable
portion” of the area under it. This portion may be indeterminate — doubly inde-
terminate, in fact — while its limits are arbitrary; but once the outmost abscissas
are fixed — for instance AD and AP — it is determined — DEM P.

"
-

B A D T P ¥ 27

What can we make of Lacroix’s section on the “general method” for appro-
ximation of integrals? Is it really just about approximation of integrals? I hope
the preceding paragraphs will convince the reader that that section has another
subject: the “nature of integrals”.

Judith Grabiner [1981, 150-152] has concluded that that section was an im-
portant source of inspiration for Cauchy’s theory of the integral: not only was it
the most probable means through which Cauchy knew Euler’s “general method”,
but also “Lacroix had picked out the key property of the definite integral — the
integral is the limit of sums — and used it in a proof” (two proofs, actually), and
had implied, “though not saying explicitly, that for any piecewise monotonic func-
tion approximating sums can be found that are arbitrarily close to the function’s
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integral” (a reference to his remark about treating separately the portions where
the function is increasing and those where it is decreasing). But she adds that

“the technical similarities in their treatments of the definite integral
cannot dispel the differences in points of view between Cauchy and his
predecessors. For Euler and Lacroix, approximation by sums is just one
property of the integral, related to little else in the theory of the inte-
gral calculus. For Cauchy, it became the defining property. For Euler
and Lacroix, the integral is the antiderivative, whose value can be ap-
proximated by sums.” [Grabiner 1981, 152]

Also, “as usual, Lacroix had not intended to do anything new; in elaborating
Euler’s work, his goal was to present, explain, and clarify” [Grabiner 1981, 150].

Lacroix’s intentions regarding originality are not completely clear. In the
general Preface of the Traité he does suggest that there are some details that
belong to him [Traité, I, xxviii]; in later writings he claimed priority for some of
those details (see section 10.1.1). But this detail is not among them. Apparently
he did not see it as important enough. Perhaps because it still went against the
prevailing tendencies in analysis?

Clearly, the differences between Lacroix’s remarks on the “nature of integrals”
and Cauchy’s theory of the integral are huge. Lacroix did not give the limit of sums
as the definition of definite integral; he did not question the existence of integrals;
he did not prove that the limit of the approximating sums is independent of the
mode of partition of the interval; and, more importantly, his remarks occupy a
modest place in the structure of his integral calculus. It could not be otherwise:
the purpose of Lacroix’s Traité is to report the calculus as it was in the end of the
18th century and to prepare its readers to understand the research done in that
area; and the integral calculus at that time was almost exclusively based on the
conception of the integral as antiderivative.

However, there is enough evidence to say that for Lacroix, approximation by
sums was not just another property of the integral, “related to little else in the
theory of the integral calculus”. It is true that it was not its defining property,
but it was a property that allowed him to explore “the nature of integrals”, and to
explain the concepts of indefinite integral, primitive function, and definite integral.
This may be regarded as “related to little else” in the integral calculus, in the sense
that it had few technical consequences (if any), but such conceptual considerations
would certainly be quite relevant for the intended readers — training mathematici-
ans. It is also quite interesting to notice how Lacroix used this material in his first
course of analysis at the Ecole Polytechnique: of the 5 articles from this section
mentioned in the summary of that course (see page 408), only two are about the
approximation method (and one of these two is the geometrical illustration of the
method and the other also includes the interpretation of the integral as a sum of
infinitesimals or limit of sums); the other three are concerned with the distinctions
between integral and primitive function and between definite and indefinite inte-
gral, with the determination of constants of integration and with the geometrical



5.2. Lacroix’s Traité 171

interpretation of integrals.

I believe that in the passage quoted above Grabiner fails to take full account
of a fundamental distinction between Cauchy’s and Lacroix’s approaches. Cauchy
wanted one definition for each concept from which all the results concerning that
concept had to stem; Lacroix, on the other hand, thought that a concept could be
seen from several perspectives, and that different aspects of that concept might
be better illuminated from different perspectives.””

Thus for Lacroix the integral is the antiderivative and it is a limit of sums.

Another aspect of this that must be mentioned is its Leibnizian genealogy.
It was remarked in section 5.1.1 that the Leibnizian idea of the integral as a sum
of infinitesimals had never completely disappeared in the 18th century. Euler had
established a connection between his “general method” of approximation and that
idea, by allowing the differences between the abscissas used to be infinitelly small
(see page 152). However, he left that connection as an unconsequential remark.

What Lacroix did here, apart from improving on Euler’s method itself, was
to seriously pursue that connection, and give it a more solid ground. Believing
that the correct interpretation of the infinitesimal method lies in taking it as an
abbreviation for the method of limits [Lacroix Traité, 1, 423-424], it should not be
difficult for Lacroix to make the leap to the integral as “limit of sums”, in order to
provide a good explanation, an acceptable interpretation, of the Leibnizian infinite
sum of infinitesimals.

Why did he do it? Probably for two reasons: firstly, because the encyclopedic
character of his Traité demanded some acknowledgement of the original Leibnizian
approach to the integral; but also because it seemed a worthwhile perspective: it
made the integral a more concrete object, a better understandable one.

This concreteness helps us also to explain the puzzling location of Lacroix’s
remarks on the “nature of integrals”. If we look at chapter 1 of [Lacroix Traité,
IT], we see 135 pages of formalistic, algebraic integration, based on the integral as
antiderivative, followed by 21 pages of approximation and conceptual remarks.”®
For those first 135 pages, and indeed for most of the integral calculus, the quick
definition of integral as antiderivative and the matter-of-fact reference to arbi-
trary constants were quite enough. The perspective of the integral as a limit of
sums appears in a section which has a different flavour: an integral whose value
is approximated is something more concrete than an antiderivative; and, very im-
portantly, the derivation of formulas (5.8) and (5.10) is quite distinct from the
formal manipulation of series and other expressions that can be seen in those 135
initial pages.

77Grabiner is of course well aware of Lacroix’s “eclectic view” of the concepts of the calculus,

but explains it on purely technical grounds: “Lacroix, like most mathematicians of the time,
wanted to show how to solve problems; therefore his Traité included whatever techniques were
applicable to this end” [Grabiner 1981, 79-80]. This interpretation of Lacroix’s motivations, while
not at all wrong, is in my view too restrictive.

"8And then 5 final pages on integration of higher-order differentials, which in the second
edition of the Traité constitute a section, but in the first edition are included in this section on
the “general method” of approximation.
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In fact, what may be surprising is the occurrence at all of these conceptual
remarks, and the fact that they appear so early: it would be conceivable for them
(particularly the definition of definite integral) to appear in the chapter on calcu-
lation of lengths, areas, and volumes, or in the chapter on calculus of variations (a
subject naturally related to definite integrals), or yet in the third volume, which is
where definite integrals are effectively used.”™ Their occurrence in the first chapter
is of course a consequence of their connection to the method of approximation,
but this is not a full explanation: what depends on that method may appear at
any time after the method. The location of these remarks in the chapter on inte-
gration of functions also reflects, in my opinion, a more general significance than
they would have if they appeared only where they are more directly relevant.

To summarize: Euler’s “general method” for approximation of integrals pro-
vided Lacroix with the chance of exploring the “nature of integrals” in an original
way: referring back to the Leibnizian conception of the integral as a sum of differen-
tials, but reinterpreting this in terms of limits. Given that the dominant approach
at the time was that of the integral as antiderivative, the encyclopedic character of
Lacroix’s Traité would not allow this to be more than a detail (at least if evaluated
lengthwise); but it was also this encyclopedic character that allowed this detail to
appear at all. And how irrelevant could be to a training mathematician a detail
which explained the “nature of integrals”?

5.2.4 Approximation of solutions of differential equations

Approximation of solutions of differential equations does not provide such inte-
resting conceptual reflections. Or rather, it does, but in an incredibly fleeting
way (see below). Lacroix mainly reports several methods, divided into first-order
differential equations, second-order differential equations, and a combination of
successive substitutions with integration of “first-degree” differential equations.
All of this is in the chapter on ordinary differential equations: in section 5.1.3 we
saw no attempts to approximate partial differential equations in the 18th century
(apparently there were none), and we do not see them in Lacroix’s Traité.

In the section on approximate solutions of first-order differential equations
[Traité, 11, 284-296], Lacroix is more inclined than in the chapter on integration
of explicit functions to match series integration with approximate integration:

“Aprés avoir épuisé les moyens connus pour intégrer une équation diffé-
rentielle, il faut chercher & la résoudre par approximation, c¢’est-a-dire,
a en tirer la valeur de y en x, au moyen d'une série.”®? [Lacroix Traité,
11, 284]

791t is true that in the examples of the use of the approximation method Lacroix uses, if not
the name definite integral, at least the idea of integration “from x = a till x = b”. But of course
he did not have to: in the same context Euler had stuck to particular integrals.

80«After having exhausted all known means of integrating a differential equation, we must try
to solve it by approximation, that is, to extract from it the value of y as a series in x.”
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Naturally, he starts by undetermined coefficients [Lacroix Traité, 11, 284]: if
we know that y = b when z = a (a and b constants), we can put x = a + t,
y = b+u, and u = At® + Bt®t! + Ct**+2 + etc., substitute in the differential
equation (choosing « appropriately) and solve for A, B, C, etc.

Next Lacroix considers Taylor-series expansions. He uses them in deriving
the series

2 3
vi—v + v @ - ) 4y (a11 : ;) Y (‘f . .ag + etc. (5.16)
equivalent to (5.6), except in that now the coefficients Y, Y Y’ ... depend not
only on a but also on Y (since Z_Z depends on z and y). Euler’s “general method” is
a natural consequence, but Lacroix is extremely brief about it: he mainly remarks
that what had been said in the articles leading to (5.8), (5.9), and (5.11-5.12) also
applies here — in the latter case minding that the coefficients also depend on % and
its differentials; and it also seems that he has in mind formulas more complicated
than (5.11-5.12), involving differences a1 — a,a2 — ai,... not all equal, and in
the second case probably with Y, not Y,,, on the left side. It is not completely
clear whether Lacroix excludes from this the use of the average between (5.11)
and (5.12) (or rather between its correspondents), which had appeared in the case
of explicit functions [Traité, II, 148]; but his implicit reference to (5.9) instead
of (5.10) (“revenir de cette valeur [Y,] a celle de Y78 [Traité, 11, 286]) suggests
that what Lacroix had in mind for the differential-equation equivalents of (5.9)
and (5.12) was situations in which the initial conditions refer to a,, Y, and it is a
left-hand value of y that is approximated.
Here occurs a most interesting remark, although also very casual (it is the
fleeting conceptual remark announced above):

“Ce qui précéde fait voir que les équations différentielles du premier
ordre & deux variables sont toujours possibles, c’est-a-dire, qu’on peut
toujours assigner des valeurs soit rigoureuses, soit approchées de la fonc-
tion qu’elles déterminent”®? [Lacroix Traité, 11, 287).

(This opens an article which is somewhat out of place: Lacroix argues that the
“possibility” of first-order differential equations may also be shown by geometrical
considerations — by presenting a construction for those equations; details of the
construction will be given in section 6.2.3.2.) Is this not a (very crude) attempt at
an existence theorem? Of course, one must not exaggerate its relevance: it is very
far from Cauchy’s results of the 1820’s [Cauchy 1981]; and it is even much less
developed than Lacroix’s considerations on integrals of explicit functions using
similar approximations (section 5.2.3). But Lacroix’s concern with showing an

814to return from this value [Y3,] to that of Y”

82«The preceding shows that the differential equations of first order are always possible, that
is, that one can always assign values, either rigorous or approximate, to the function which they
determine”
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existence that most people around 1800 took for granted is noteworthy.?? Lacroix
may have been inspired by a similar remark by Leibniz: having constructed a
polygon approximating a certain transcendental curve starting at an arbitrary
point 1C, Leibniz concluded

“Et sic habebitur polygonum 1C2C3C &c. lineae quaesitae succeda-
neum, seu linea Mechanica Geometricae vicaria; simulque manifeste
cognoscimus, possibilem esse Geometricam per datum punctum 1C
transeuntem, cum sit limes, in quem tandem polygona continue ad-
vergentia evanescunt.”8* [Leibniz 1694, 374]

Still, Lacroix does not mention Leibniz in connection to this subject (either pos-
sibility /existence or approximation in general), nor does he cite this memoir in
the table of contents. A probable indirect influence, motivating the concern with
possibility, is Clairaut’s claim for the impossibility of some differential equations
in three variables (see section 6.1.3.1), as well as Monge’s denial of that impossi-
bility; in fact, this denial opens with a short remark [Monge 1784c, 502] on the
possibility of every first-order differential equation in two variables, based on the
argument that using the equation one can always find the slope of the tangent to
the (integral) curve — Lacroix’s remark is very likely an elaboration of Monge’s.

Next, Lacroix shows his awareness of insufficiencies in the Taylor series (5.6)
and (5.7) and in the formulas derived from them. But he reduces them to situations
in which some differential coefficient of the function y of z becomes infinite, and
solves those insufficiencies by considering more general power series — with non-
integer exponents — as he had done in chapter 2 of the first volume, extracting
a method for obtaining those series from a memoir by Lagrange on continued
fractions (see pages 108 and 157).

Lacroix does not dwell on Lagrange’s method for obtaining those power series,
since he already had done so [Traité, I, 220-230]; but he does dwell on Lagrange’s
use of it for obtaining continued fractions (see page 157). In fact, this takes up
about two thirds of the section on approximation methods for first-order differen-
tial equations | Traité, 11, 288-296]. However, it would be wrong to conclude from
the number of pages that this is the most important method for approximation.
It might need more pages to be explained, but was probably less relevant: it is
not taken up for second-order differential equations, and it is dropped off from
[Lacroix 1802a).

83 Concerning the influence of Lacroix’s Traité, it is also noteworthy that Cauchy’s first exis-
tence theorem derived from the same method of approximation [Cauchy 1981, 39-66]. Gilain
[1981, xxiv-xxv, xxxiii] compared Cauchy’s work with Lacroix’s Traité, but because he used
only the second edition of the latter he missed Lacroix’s connection between the analytical ver-
sion of this method and the “possibility” of differential equations.

84«And thus we will have a polygon 1C2C3C &c. replacing the required curve, that is, a
mechanical curve in place of the geometrical one; at the same time we clearly perceive that the
geometrical [curve], passing through a given point 1C, is possible, since it is the limit into which
the continually converging polygons finally vanish.”
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The section on approximation methods for second-order differential equations
[ Traité, 11, 349-364| is essentially an account of chapters VII and VIII of the
first section of [Euler Integralis, 11| — that is, power-series developments for ddy +
az"ydr® =0 and zz(a + bz")ddy + x(c + ex™)dz dy + (f + gx™)y dz? = 0.

Euler’s “general method” is mentioned also for second-order equations, but
only in a short article [ Traité, 11, 351], remarking that what was said about its use
for first-order equations also applies here, except that now in series such as (5.16)
the second term is arbitrary, since a second-order differential equation leaves the
first differential coefficient undetermined; one must then have as initial condition
not only the value of y but also that of %v for z = a.

This is accompanied by an article on the construction of second-order equa-
tions [Traité, 11, 351-352], entirely analogous to the one on first-order equati-
ons mentioned above, and which has little to do with approximation (see section
6.2.3.2).

Lacroix includes one final section on approximate integration of differen-
tial equations, namely on the use of integration of “first-degree” (that is, linear)
differential equations to obtain successive approximate solutions of non-“first-
degree” differential equations [Traité, 11, 394-408]. That is, this section deals with
the methods used in obtaining approximations of planetary orbits (see page 156
above). However, Lacroix does not mention that motivation for these methods.
The only hint is when he refers the reader seeking further details to the “excellens
Mémoires d’Astronomie-physique de Lagrange et de Laplace”®® |Traité, 11, 407
Lacroix is clearly not interested in astronomy (not in the Traité, that is — “un ou-
vrage consacré uniquement a I’Analyse et a la Géométrie”®® | Traité, 11, 299]), but
rather simply in mathematical methods that happened to have originated from
astronomical problems. This idea is reinforced by his closing sentence saying that
he had had as only goal in this section to “rattacher a I’ensemble des méthodes du
Calcul intégral”®” several procedures which had thus far always been expounded
isolated — isolated, one gathers, from pure analysis.

Lacroix [Traité, 11, 394-397] introduces the traditional method through the
example

2
ZTZ +y+ay® =0,

where « is very small; neglecting « yields the first-degree equation
d*y
@z TY=h

whose integral is

y=0b+pcosx+ qsinx;

85¢,
86
87«

excellent memoirs of physical astronomy by Lagrange and Laplace”
a work solely devoted to analysis and geometry”
restore to the collection of methods of integral calculus”
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putting Y = b+p cosz+gq sinz, y = Y +ay’, substituting in the original equation,
and neglecting o and a3, yields
dzy/ r_ Y2 _ b2 2b o < -3 27 .
W—I—y—— [—— - (pcosx—i—qblnx)—(pcosa:—I—qslna:)],

from which a second approximate value for y is obtained; and so on. Next [ Traité,
IT, 398] he remarks that this ammounts to assuming

y=Y +aY' +?Y" +a3Y" + etc.,
obtaining Y, Y’ Y" etc. from

d2 Y//
dx?

A2y dazy’
—+Y =0
dz? + T dx?

+Y'=-Y? +Y" =-2YY', etc.

After two iterations Lacroix has something of the form

y=A+ (B+ Cx+ Dx?)cosx + (E + Fx) cos 2z + G cos 3z
+(B'+ C'r + D'z?)sinz + (E'+ F'z) sin 22 + G'sin 3z,

which he says is only an approximate value in case z is very small [ Traité, I, 400]
— a reference to the “arcs of circle”, i. e. to the powers of x higher than zero which
appear in the coeflicients of the sines and cosines; while if one had a result of the
form

y = Ay + Bi cos fx + Cy cosyx + ete.
+ B} sin Bx + O] sinyx + etc.,

“et que les coefficiens A;, By, Ba,... B}, B}, etc. formassent une suite conver-
gente”®8 the fact that the sine and cosine are bounded would assure the con-
vergence of the expression for y. Thus Lacroix presents as motivation for the avoi-
dance of “arcs of circle” the fact that they make convergence harder to achieve,
not any astronomical considerations.

Notice the twofold mistake above: the sequence A1, By, Ba, ... By, B}, ... does
not even make sense; and if we assume that it is a typo for Ay, B1,Cy,... B}, C, .. .,
we still have to face the fact that Lacroix should be asking for By, Cq,... and
Bi,C1,... to be two convergent sequences. This is only the first of a series of
strange mistakes in this section. The following ones become even stranger when
we notice that Lacroix was following [Lagrange 1783, §1-4] closely — where these
mistakes do not occur.

Thus Lacroix [Traité, II, 400-403] reports Lagrange’s method of variation of
constants: assuming

y=P+ Pz+P'2?*+ P"23 + etc.,

88«and the coefficients A1, B1, Ba, ... B}, B}, etc. formed a convergent sequence”.
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where P, P’, P, P"| etc. contain only exponentials, sines and cosines of multiples
of x, along with the arbitrary integration constants p, g, etc., differentiation yields

d dP dP’ dP"
—y——+P’+< —|—2P”)x—|—< +3P/”) z? + ete.,

dr  dx dx dx
d? d’P dP’ d*pP’ dpP”
R R L G e ER

and so on — here occurs the second mistake: in the equations above Lacroix writes
the differentials dy, dy? on the left-hand sides instead of the differential coefficients;
now, in order to have the equation free of powers of x, the coefficients in these
series must be null, and we must have

2 2 /
yop W _dP o Py PP AP

de  dx dx?  da? dx
2
— and another mistake: d?y instead of ng in the third equation (but a correct
dy

22 in the second one); and for this to make sense (if y = P, Z—Z should certainly
not be % + P’) it is necessary to regard the arbitrary constants as variables,
to differentiate accordingly and to determine them so as to verify the equations
above. Here occurs yet another mistake: Lacroix seems to forget the “etc.” in the

list of constants “p, ¢, etc.” which he had given, and writes

dy = %dm + %dp + %dq;
he proceeds using only p and ¢ in the next formulas (the corresponding formulas
in [Lagrange 1783, § 3] have the appropriate &c.’s), although also repeating the
list “p, ¢, etc.”; of course this might be simply dismissed as sloppy language, but
it is uncharacteristically sloppy for Lacroix, and culminates an uncharacteristic
sequence of typos/mistakes. This section seems to have suffered from a very poor
editorial job.

After extending this method to systems of equations |Traité, 11, 403-406],
Lacroix comments on the “arcs of circle” being terms from power series expansions
of sines and cosines, so that Lagrange’s method really amounts to replacing those
series with the original functions; he then mentions a method by Trembley which
uses this idea, by grouping the terms so as to form recognizable series — but which
entails calculations too long to be included in Lacroix’s Traité.

This section finishes with a footnote (slightly over a page in size), where
Lacroix | Traité, 11, 407-408] reports the first version of Lagrange’s method of vari-
ation of constants, following [Lagrange 1781, §25-26] (in the first edition Lacroix
forgets to mention [Lagrange 1781] in the table of contents — which may be why
in the second edition it receives a “N.B.” [Lacroix Traité, 2nd ed, II, xvi]).



Chapter 6

Types of solutions of differential
equations

This chapter deals with several aspects of differential equations relating to types
of solutions (complete, general, particular, and singular integrals or solutions),
as opposed to methods of solution. That is, the subject here is not so much the
processes for solving differential equations, as the conceptions about what kind
of object a final solution might be. For this reason, the word “solution” will be
used here in the sense of answer, but not in the sense of process for obtaining an
answer.

6.1 Types of solutions of differential equations in the 18th
century

It has been seen in section 5.1.1 that Euler tended not to distinguish conceptually
integrating functions from solving differential equations. Thus, his definitions of
complete and particular integral (from the general preface to [Integralis]) applied
to both situations:

“Integrale completum exhiberi dicitur, quando functio quaesita omni
extensione cum constante arbitraria representatur. Quando autem ista
constans iam certo modo est determinata, integrale vocari solet parti-
culare.”t [Euler Integralis, 1, § 36]

In these definitions, the phrase “arbitrary constant” should not be taken too li-
terally: Euler had mentioned a few articles earlier the possibility of the function

L«A complete integral is said to be presented when the required function is represented in all
its extension with an arbitrary constant. When, on the other hand, this constant has already
been determined in some way, the integral is usually called a particular one.”
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y being “defined by a relation between second-order differentials”, in which case
it would involve two arbitrary constants [Integralis, 1, § 33|; and the possibility of
y being a function of two variables x and ¢, in which case it also would seem to
involve an “arbitrary constant”, but apparently one for each value of ¢ — that is, in
fact an arbitrary function of ¢ [Integralis, I, § 34].

Given these definitions, it is easy to conclude that “integrale ergo comple-
tum omnia integralia particularia in se complectitur”® [Euler Integralis, 1, § 38].
Naturally this applies both to integrals of explicit functions and to solutions of
differential equations, which is confirmed at the beginning of a chapter on “par-
ticular integration of differential equations” a particular integral of a differential
equation must be contained in its complete integral [Integralis, I, § 540].

The following sections are partly dedicated to the story of how this neat
scheme got complicated. The first threat that it faced was the occurrence of singu-
lar solutions, that is, solutions not contained in the complete integral. But further
complications appeared in the case of partial differential equations when Lagrange
[177/] introduced a distinction between complete and general integrals, that is
between integrals containing arbitrary constants and integrals containing arbi-
trary functions.

6.1.1 Terminological complications

A modern reader faces additional difficulties when trying to understand the work
of 18th-century mathematicians on this subject, because of the use of different
terminologies, including sometimes the use of the same name for different objects.

Until around 1770 everything was simple: as above, “complete” integrals (or
synonymously “general” integrals [Laplace 1772a|) opposed to “particular” inte-
grals. The first complication arose when Laplace [1772a, 344] decided to distin-
guish “particular integrals” (contained in the general integral) from “particular
solutions” (not contained in the general integral). Rather confusingly, Lagrange
[1774] used the name “particular integrals” for what Laplace had called “parti-
cular solutions”; as for what Euler and Laplace had called “particular integrals”,
Lagrange used the term “incomplete integral” [1774, § 1, § 13]. Even more con-
fusingly, there are a few (fortunately only a few) situations in which “particular
integral” seems to refer to any solution which does not contain the necessary arbi-
trary elements to be complete, regardless of being contained or not in the complete
integral; for instance, Lagrange in a letter to Euler dated 1769, complimenting the
latter on his “methodes |...] pour reconnoitre si une integrale particuliere peut étre
comprise dans l'integrale générale™ |Euler & Lagrange Correspondance, 464]; or
Trembley [1790-91], who seems to usually employ the expression “particular in-
tegral” to refer to both particular instances of the complete integral and singular
solutions, but who when addressing the subject of singular solutions refers to

2“thus the complete integral embraces in itself all the particular integrals”
3“methods to recognize whether a particular integral might be contained in the general inte-
gral”
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“intégrales particuliéres proprement dites’*, to be distinguished from “incomplete
integrals” [Trembley 1790-91, 4|. Later Lagrange [Fonctions, 69| introduced the
adjective “singular”’®, which eventually solved the confusion by displacing the word
“particular” from names for singular solutions.%

A different complication occurs with partial differential equations, because
of Lagrange’s [1774] distinction between “complete” and “general” integrals, using
terms that until then had been synonymous. As will be seen below, not everyone
(not even Lagrange!) followed this terminological distinction in the late 18th cen-
tury. That is, more often than not “complete integral” of a first-order partial dif-
ferential equation still meant an integral with one arbitrary function [Lagrange
1779, 153; Monge 1784b, 120; Legendre 1787, 338].

An attempt has been made in this chapter to follow the original termino-
logies when reporting the work of 18th-century mathematicians. Therefore, say
“particular integral” will be used when speaking of Euler or Laplace with the same
meaning as “incomplete integral” when speaking of Lagrange. There is however
one important exception: “particular integral” in the sense of [Lagrange 177/] —
that is, with the meaning of singular solution — would be too confusing, so that in
the following sections it was replaced by “singular integral” (both when speaking
of Lagrange or of other authors that followed his terminology). Confusion arising
from conflicting uses of the expression “complete integral” is a necessary risk: the
choice of which kind of integral to name complete is an important conceptual clue.”

6.1.2 Singular solutions
6.1.2.1 Euler and Clairaut

Euler was well aware of the existence of what is now known as singular solutions
of differential equations. This existence had been noted in two works that had
appeared in 1736,% one of which was his Mechanica [Euler 1736]. In its second

4“particular integrals properly so called”

5He probably used this adjective because Taylor [1715], when encountering for the first time a
singular solution, had remarked that it was “singularis quaedam solutio”, which may be translated
as “a certain unique solution” — “unique” either in the sense of only one (of its kind) or of
remarkable.

SBut not immediately: in the 1820’s the syllabi of the Ecole Polytechnique still used Laplace’s
term “particular solutions” [Gilain 1989, 112, 116, 120, 126, 130], while Cauchy, in his lectures
there, changed from following that in 1819/1820 and 1821/1822 [Gilain 1989, 61, 67] to speaking
of “singular integrals” in 1823/1824, 1827/1828 and 1829/1830 [Gilain 1989, 73, 85, 93].

"Except for authors (possibly influenced by Laplace [1772a]) who seemed to prefer “general
integral” as the principal term: the syllabi of the Ecole Polytechnique from 1817 to 1830 spoke of
“general integrals” of ordinary differential equations [Gilain 1989, 108-130], and so did Cauchy
in his lectures [Gilain 1989, 56-94]. But among the authors studied here Laplace and Condorcet
[1765, 3, 67] were the only ones with that preference.

8Brook Taylor had encountered one before that, but he does not seem to have noticed its
significance [Taylor 1715, 26-27].
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volume Euler not only gives two examples of equations with singular solutions,’

but he also gives a rule to find such solutions: if V' is a function of u and T is a
function of ¢ such that T'= 0 for £ = 0, then the equation
dt

t=0 and /%:/Vdu;

moreover, even if T' is not null for ¢ = 0, T = 0 is a solution (since it implies
dt = 0) [Euler 1756, 11, §335].

The other work published in 1736 which mentions singular solutions is
[Clairaut 1734, 209-213]. Investigating a curve MON with two branches, each

is satisfied both by

of which is tangent to one of the two arms of a sliding set square MCN whose
vertex describes a given curve EC, Clairaut arrives at

rllu —ullu =y — du and @ =TIlu

dx
(where z,y are the coordinates AP, PM of MON; u,®u are the coordinates
AB, BC of the given curve EC; and TIu is used to express the fact that % is
a function of u). Differentiating, he gets dxTlu + z Audu — duTlu — u Audu =
IMu dz — Eu du (where dllu = Audu and d®u = Zu du); happily dx Iu cancels out
and all that remains is divisible by du, so that z Au — IIu — u Au = —Zu, whence
the solution

ITu + v Au — Zu
r=
Au

(Mu)? — Zullu + Pullu

and y= A

An interesting issue, which Clairaut remarks, is that this process does not involve
integration, although it is easy to think of a different process that would: to solve

9, _ _ —dz\/b 2, _ (1.2 (k> 4+1)do—k>du _ tdu
z =a for ds = T et T and k?u = (k% + 1)z for e e~ Ve [Euler

17536, § 335, §300].
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% = [u for u, substitute the result in z Iy — uIlu = y — ®u and integrate the
resulting differential equation; the problem is that this integral would inevitably
include an arbitrary constant which is absent from the solution obtained above;
so we have two non-equivalent solutions, and the one obtained by differentiation
would seem to be less general than the one obtained by integration. However,
argues Clairaut, the only step in the former that may cause a loss of generality is
the division by du, which might be zero; and in the case of du = 0, that is u = a
for some constant a, we would have only zIla — alla = y — ®a, the equation
of a straight line (an arm of the set square, in fact). Calculating two examples
(Ilu = ®u = u, and [lu = - and ®u = 0), he concludes that integration leads
only to the straight line solution, while the solution he is after is not obtainable
by integral calculus. He closes the subject (which is not the central topic of the
memoir) with the statement that, more generally, any equation of the form
d(Dzy)

——= = some function of x,y, dz, dy
Py

has the solution ®zy = 0, besides the one obtained by integration (®zy is
Clairaut’s notation for a function of the two variables z,y).

This is explained more clearly in [Euler 1756]. There Euler addresses these
two interrelated paradoxes: that some differential equations are more easily sol-
vable by further differentiation than by the normal methods of integral calculus,
and that some differential equations are satisfied by finite equations which are not
contained in their complete integral.

For the first paradox Euler gives four examples, the first of which is that of,
given a point A, to find a curve such that all the normals taken from it to A have
the same length a. This gives the differential equation

ydr — zdy = ar/dx? + dy?, (6.1)
which it takes two pages to solve by setting the differentials free of the square root:
aady — xx dy + vy dx = adzv/zx + Yy — aa, (6.2)
and separating the variables by substituting y = u\/aa — zx:
du adx

= 6.3
vu—1 aa—zxx (6.3)
to finally arrive at the solution
1
yzﬁ(a—l—x)—i——(a—x) (6.4)

2 2n

(n is the arbitrary constant; this is an equation of all the straight lines at distance
a from the origin). Instead of this, it is much easier to differentiate, after putting

(6.1) in the form
y=pxr+ay/1+pp
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(where dy = pdz); this allows us to cancel out pdx, and the remaining terms are
divisible by dp; this division and a few algebraic manipulations lead to the solution

xx + yy = aa; (6.5)
while the case dp = 0 quickly gives

y =nz+ aV1+ nn, (6.6)

(where once again n is the arbitrary constant; this also gives all the straight lines
at distance a from the origin). Not only is this much easier, Euler remarks, but it
can also be applied to equations such as

ydr — xdy = av/dx3 + dy3, (6.7)

whose variables cannot be separated. The other three examples are very similar:
after being differentiated, the only terms that are not multiples of dp are two
instances of p dx which cancel each other.

The same examples can be given for the second paradox. For instance, in
the first example the normal procedures give only the solution (6.4), which clearly
does not include the circle of radius a (6.5). Euler includes another example (it
is in fact the first in the text), where the singular solution is found in a more
immediate way: given the equation

rdr +ydy = dy\/rx + yy — aa, (6.8)

“it is evident” that zz + yy — aa = 0 is a solution, although it is not contained
in the complete integral \/zx + yy — aa = y + ¢ (of course the same immediate
reasoning could be applied to (6.2) or (6.3)).

Euler’s explanation for these two paradoxes relies heavily on the form of the
examples, more precisely on the forms such as (6.3) and (6.8): the equation

Vdz=Z(Pdz+ Qdy),
where z, P,@Q,V are functions of z,y and Z is a function of z, accepts the solution
Z =0,

since this implies z = Counst., that is, dz = 0 (a variant of the rule he had given in
[Euler 1756]). As for the first paradox, Euler simply argues that the cases in which
it occurs are precisely those in which the second occurs, and that those solutions
found by differentiation instead of integration are the ones that are not comprised
in the complete integral.

So, Euler had already studied the phenomenon of what are nowadays called
singular solutions. Yet, he never gave any special name to these solutions [Rothen-
berg 1908, 325, 344]. Moreover, in [Euler Integralis| he refused them the status of
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integrals; referring to them, he wrote: “Etiamsi scilicet omnia integralia sint eius-
modi valores, qui aequationi differentiali satisfaciant, tamen non vicissim omnes
valores, qui satisfaciunt, sunt integralia”!? [Euler Integralis, I, §546]; even if the pa-
radox had already been explained, these solutions were anomalies. They were also
tricky: when one is not capable of finding a complete integral, particular integrals
are very useful, but there is the danger of getting instead those solutions which are
not integrals at all. In [Euler 176/, § 34-35], he attributes a wrong result to the
existence of a singular solution!!, which caused Condorcet to say that “M. Euler a
remarqué [...| que ces solutions particuliéres non comprises dans I’équation générale
ne pouvaient étre emploiées a la solution des problémes”!? [Condorcet 1770-1773,
13-14]. This negative view of singular solutions motivates the study of the dis-
tinction between them and particular integrals [Euler Integralis, I, §546]; the sole
object of Euler’s researches on singular solutions in [Integralis| is to find criteria
for this distinction [Rothenberg 1908, 341-344]: for instance, in the case dy = %”’,
r = a is a particular integral if it makes not only @ = 0 but also [ ”é?—‘” = o0
[Euler Integralis, I, §547]; or, for y = X (where X is a function of z) to be a parti-
cular integral of Pdr = Qdy, it is necessary, when substituting y = X + w, that w
appears with an exponent greater or equal to 1 (in absolute value) [Euler Integralis,
I, §565].

An inconvenience in Euler’s work on the subject is that, as we have seen,
it was highly dependent on the forms of the solutions. For instance this last rule
(Euler’s most general) required the proposed particular integral to be in the form
y = X (x). However, it was quite fruitful, being adapted by Laplace and later used
also by Lagrange [Fonctions].

6.1.2.2 Laplace

[Laplace 1772a] was a turning point in several respects. First of all, it introduced
a name for those solutions not comprised in the complete integral (or general
integral, as Laplace calls it): particular solutions |Laplace 1772a, 344].

It also addressed the issue for the first time without relying on the speci-
fic forms of the solutions. To determine whether a certain solution p = 0 of a
differential equation dy = pdx is a particular integral, Laplace considers a curve
HCM representing ¢ = 0, and another curve LC'N obtained by determining the
arbitrary constant in the general integral ¢ = 0 of dy = pdx with the condition
that it should pass through a given point C of HC'M. In case p = 0 is a particular
integral, HCM and LCN are one and the same curve; if for any abscissa P the
points M and N in the two curves do not coincide, then p = 0 is a particular

10«Although obviously all integrals are values such that they satisfy a differential equation,
still on the other hand not all values that satisfy [it] are integrals.”

11[Blanc 1957, xx| presumes that some real mistake had slipped into Euler’s reasonings. He is
very critical of the whole memoir [Euler 1764].

12«M. Euler has remarked [...] that those particular solutions not contained in the general
equation could not be employed in the solution of problems”
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o

solution. To compare 3y’ = PM with Y/ = PN without knowing ¢ = 0, Laplace
uses Taylor’s theorem:

, ady a? %y a’? 5y
292 2y A
b T12 522 123 68 F

ady « d?y a? d3y

= - —= + &ec.
dz 1-2 dx2+1-2-3 dx3+
(where y = BC, o = BP, ¢ represents differentiation on the curve HCM, and d
represents differentiation on the curve LC'N). The conclusion is that 4 = 0 is a

particular integral if not only it is a solution to dy = p dx but also

by dy 6%y dly 8y dy
2 _2d A =— &ec.

Sxr  dr’ a2 dx2’ 3 dad’

Examining possible power expansions (with positive exponents) for p = g—gyc
(but in fact concentrating only on the term with the smallest exponent, n), Laplace
reduced the differential equation dy = pdzx (satisfied by p = 0) to the form
dp = p™ - hdx (where h is a function of x and p), arriving at two conclusions:
one, that if n > 1 then p = 0 is a particular integral, and if n < 1 then pu =0
is a particular solution (a development of one of Euler’s criteria, seen above)

[Laplace 1772a, 347-350]; and two, that p = 0 is a particular solution if and only
if it makes (%) +p (%) + (Z—ﬁ) (Z—Z) infinite [Laplace 1772a, 350-351].
Laplace also gave two methods to find all the particular solutions of a given
differential equation dy = pdx. The first method related to integrating factors:
let B be the integrating factor of the equation, so that G(dy — pdx) is an exact
differential; if 4 = 0 is a particular solution of dy = p dx, then u is a function of x
and y, and y is also a function of « and p, so that the integral of 5(dy — pdx) can
be put in the form ¥(z, 1) + C (C an arbitrary constant); but whatever value we
attribute to C, the condition p = 0 cannot make ¥(x, u) + C vanish (otherwise
i = 0 would be a particular integral) — and the same applies to its differential
B(dy — pdx); while 1 = 0 must make dy — pda = 0; therefore y = 0 must make
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[ infinite; the conclusion is that the particular solutions are factors of % =0
[Laplace 1772a, 352].

The second method could be used without knowing the integrating factor: if
w is a function of z and y, then u = 0 is a particular solution of dy = pdx if and
only if p is a common factor of

7< didé)y) and L
() (%)

(as in Euler, parentheses indicate partial differentiation) [Laplace 1772a, 355].

Laplace also extended these methods to second-order equations [1772a, 357-
365] and to partial differential equations (on three variables) [1772a, 365-370],
which was a multiple novelty, as until then only singular solutions of first-order
ordinary differential equations had been considered.

p+

6.1.2.3 Lagrange

But the major breakthrough in the theory of singular solutions was the memoir
[Lagrange 1774] “Sur les intégrales particuliéres des équations différentielles”!3.
Lagrange was able to explain them not as exceptions, but rather as natural out-
comes of the complete integrals [Lagrange 177/, §7].

For this Lagrange explored the relation between a differential equation

Z =0
where Z is a function of z,y and %7 and its complete integral
V=0

where V' is a function of x,y and of an arbitrary constant a which does not appear
in Z = 0: differentiation of V' = 0 gives something like

dy _
dx_p

where p is a finite function of x,y and a; Z = 0 must be the result of eliminating
a between V' = 0 and % — p = 0.1 Now, the process of elimination of a is not
dependent on the constancy of a; so what if a were a variable? Since that would
mean

dy = pdzx + ¢qda,

134On the particular [i.e. singular| integrals of differential equations”

14This idea of conceiving a differential equation as the result of the elimination of arbitrary
constants between a finite equation and its differentials had already been given by Fontaine, but
without connection to singular solutions (see section 6.1.4.1).
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we would need
gda=0

to ensure dy = pdz and that we arrive at the same result, namely Z = 0; for this
either da = 0 (that is, a is in fact a constant) or

qg=0.

Thus elimination of a between ¢ = d—Z = 0 and V = 0 provides a finite equation
which satisfies Z = 0 and does not contain an arbitrary constant: according to
Lagrange, this will be a singular integral’® of Z = 0 [Lagrange 177/, § 2-4].

As an example, let us look at the differential equation (6.1), that is (with a

slight change in notation)

ydr — xdy = by/dz? + dy?, (6.9)
whose complete integral is
= %lbta)+ —(b—2) (6.10)
YT T '
([Lagrange 1774, § 1,6] used y — ax — bv/'1 + a? = 0, that is, (6.6)). Differentiation
of (6.10) relative to a gives

d_y_b—i—at b—xa

da 2 2a2 "’

and elimination of a between £% — 2=2 = 0 (that is, a* = er—;f) and (6.10) gives
the singular integral 22 + y? = b2. This solution, although not contained in the
complete integral (6.10) (that is, it does not represent a determination of the
arbitrary constant a), is obtainable from it by this process of elimination.

This can be carried to higher orders: as differentiation of V' = 0 with a

constant gives g—z = p, further differentiations give

Py _ o Py
dxz_p? dxs_p?

So a second-order differential equation Z’ = 0 satisfied by V' = 0 must “be formed

2
by combination” of V = 0, g—z = p, and ng = p’; a third-order equation Z” = 0
2
satisfied by V' = 0 must “be formed by combination” of V = 0, g—g =p, ng =p
dsy

and T4 = p”; and so on (in all cases a being eliminated). But if a is variable, then

it is necessary for V = 0 to satisfy Z’ = 0 that not only g—z =0, but also d(fga =0

15As long as certain conditions apply: that at least one of z,y appears in % =0

dy a2 a3
[Lagrange 1774, § 4] and that not all of §¥, 34, ﬁ, s

are zero (see below).
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(i. e., that dp = p'dz + ¢’da = p’dx); for V = 0 to satisfy Z” = 0 that additionally

% = 0; and so on [Lagrange 1774, § 8- 11]
d?y  d%y

If, however, all the differentials SZ, dada’ dmzda’ ... are zero, then a is a cons-
tant and the solution at hand is in fact an “incomplete integral” [Lagrange 177/,
§13].

[Lagrange 1774, § 14-15] also gives a method to find the singular integral of
a first-order equation Z = 0, without knowing the complete integral. His proof
assumes that no transcendental functions occur in Z — but he argues that “it is
not difficult to be convinced” that it also applies whatever the nature and form of
Z. Further assuming that Z = 0 has been delivered of fractions and radicals, so
that the same happens to

4z = Ad.3 dy "+ Bdy+Cde

(Z is a function of z,y, and ﬂ) Lagrange concludes (using the above fact that at

dy d?y d3y . . .
least one of the quantities §Z, 74~ 5% ... is nonzero) that a singular integral

will make A = 0; since Z = 0 implies dZ = 0, we have on one hand B dy+C dx = 0,

s
and onlthe 1i)ther Ag% + Bg—z + C' = 0, whence 227‘2 = —Bd_%:c; thus a singular
integral makes

d?y 0

dz2 0

A simpler situation occurs when Z is such that B dy+C' dxz = 0 always; in that case,
of course, the condition for a singular integral is simply A = 0. The importance
of this special situation is that it is the case for the equations of the form y —
T+ f.52 dy (f being an arbitrary function); the examples given by Clairaut
and Euler fall within this category [Lagrange 177/, §16-17].16
The study of singular integrals of second-order equations is very similar, but
somewhat complicated by two facts: one, that the complete integral of a second-
order equation contains two arbitrary constants a, b instead of just one a; in order
to use the conditions mentioned above, and since a and b are both arbitrary,
Lagrange puts b = f.a, f being an arbitrary function!”; the conclusion is that a
singular integral to a second-order equation Z’ = 0 with complete integral V' = 0
is obtained by elimination of a,b, and % from

dy dy dy db d2y d?y db
= —_—— p— _— d P —
V=0 & ?77% Wi ™ et we @

=0 (6.11)

(where a and b are treated as variables) [Lagrange 177/, § 27-29]. The other com-
plicating fact is that the process to obtain a singular (finite) integral involves as an

164 — dzac +f ( ) = 0 is nowadays called Clairaut’s equation.

"Remarkably arbitrary for this period, particularly considering Lagrange’s view of functions
as analytic expressions (see section 6.1.3.2).
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intermediate step to obtain a singular first-order solution (whose integral, inclu-
ding an arbitrary constant «, is the requested singular finite integral); this, being
a first-order differential equation, may in turn have a singular integral, which may
or may not be a (singular) solution of the second-order equation [Lagrange 177/,
§30-31].

A more interesting extension of this theory of singular integrals is the one to
partial differential equations. This involved a new definition for complete integral
of a partial differential equation. In Euler’s conception, such a complete integral
was analogous to a complete integral of an ordinary differential equation, simply
with the arbitrary constant(s) replaced by arbitrary function(s) [Euler Integralis,
I, §34; III, §33, §37-38, §249]. In a paper on first-order partial differential equa-
tions published in the Berlin Memoirs for 1772, Lagrange (still following Euler’s
terminology) had noticed that “a particular solution [i.e., one without the neces-
sary arbitrary function| which contains two arbitrary constants is sufficient to
permit the derivation of the complete solution [i.e., with an arbitrary function]|”
[Engelsman 1980, 14]. He pursued this in [Lagrange 1774, §39]: if V' is a function
of x,y, and z involving two arbitrary constants a and b, and if differentiation of
V =0 yields dz = pdz + ¢dy, then a and b may be eliminated from

dz

v=o0 &
Todx

—p=0 and d—Z—q:O,
dy
resulting in a differential equation Z = 0. Lagrange then adopts V' = 0 as the
complete integral of Z = 0 — that is, the complete integral of a first-order equation
in three variables must contain two arbitrary constants (instead of an arbitrary
function).
Now, if a and b are regarded as variables, the differential of V' = 0 will become

dz =pdx + qdy + rda + sdb,
so that to obtain Z = 0 it is necessary to have
rda+ sdb=0. (6.12)

A singular integral arises analogously to the case of ordinary differential equations
by taking
r(=%)=0 and s(=%)=0

and combining with V = 0 [Lagrange 1774, §40-41].

There is, however, one other type of solution: S—Z = 0 and % = 0 is not the
only way of satisfying (6.12); if one assumes for instance b to be a function of a,

namely b = ¢ a, (6.12) becomes

the result of eliminating a between this equation and V' = 0 will also be a solution,
one which includes an arbitrary function (and which therefore corresponds to
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Euler’s complete integral). Because of that arbitrary function, argues Lagrange,
this solution is “beaucoup plus général que 'intégrale complette V = 07'%, so that
he calls it precisely general integral [Lagrange 1774, §47|'°

For the geometrical interpretations of all this, see section 6.1.3.3. For more
on complete and general integrals, see section 6.1.4.2.

Between [Lagrange 177/] and [Lacroix Traité] there appeared a few more
works devoted to or touching upon singular solutions: [Trembley 1790-91], [Legen-
dre 1790] and [Lagrange Fonctions|. However, they did not bring any dramatic
innovations, and will only be mentioned along with their treatment in Lacroix’s
Traité. Suffice to remark here that none of them was mentioned in the other main
treatises on the calculus published in the 1790’s [Cousin 1796; Bossut 1798].

6.1.3 Geometrical connections

Like every other branch of the calculus, differential equations had geometrical be-
ginnings. The French amateur mathematician Florimond de Beaune (1601-1652)
is often credited with initiating the subject by proposing a few problems to de-
termine curves given properties of their subtangents — the first inverse tangent
problems.

Also like every other branch of the calculus, differential equations were af-
fected by the tendency for algebraization of mathematics throughout the 18th
century. The problems, although often inspired by more concrete fields (mainly
mechanics), became more abstract and geometry was usually invoked only for il-
lustration, for helping in visualization. A good example is the study of singular
solutions, whose geometrical counterparts help to understand the relation between
types of solutions, even though their derivation is purely algebraic (sections 6.1.2.3
and 6.1.3.3).

But even in the age of analysis geometrical considerations played more im-
portant roles in certain aspects of the development of differential equations, and
namely in the study of their solutions. Gaspard Monge studied differential equa-
tions in three variables, interpreting their solutions as surfaces (section 6.1.3.4).
And the biggest and most famous challenge to the rule of analysis came also
from this subject: could the arbitrary functions involved in solutions of partial
differential equations be so arbitrary as to include not only functions defined by
analytic expressions, but also those defined by the coordinates of a curve drawn
“by the free stroke of the hand” (section 6.1.3.2)? Some of the supporters of this
“return to geometry” revived in their arguments an old concept — the construction
of differential equations — which requires some explanation (section 6.1.3.1).

18¢much more general than the complete integral V = 0”

9Before [Lagrange 1774] “general integral” had been simply an alternative name for “complete
integral”: we have seen above Laplace using it in that sense.
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6.1.3.1 Construction of differential equations until c. 1750

Henk Bos has called attention to the importance of the concept of construction in
17th-century analytic geometry (or rather, “application of algebra to geometry” —
see section 4.1.1) [Bos 1984; 1986; 2001| and in the early history of differential
equations [Bos 1986; 2004]. At a time when new curves were being introduced
in mathematics (such as the cycloid and the logarithmic), and the use of algebra
for the study of curves was also very recent, it was not obvious when a curve was
sufficiently known. Only gradually did equations become sufficient representations
of loci; therefore a geometrical problem was not fully solved simply by having an
equation (either algebraic or differential) corresponding to the solution: a geome-
trical construction for that equation was also demanded (although there was no
consensus on the best methods for construction). Naturally, the need for such a
construction was particularly felt when the solution equation involved a new curve
(such as a transcendental one) — it was a fundamental factor in the legitimation
of that new curve.

This changed around the turn of the 17th to the 18th century, with mathema-
ticians’ “habituation” to algebraic (and certain types of transcendental) equations
and their consequent acceptance as sufficient representations of curves. The cons-
truction of algebraic equations slowly died out, and disappeared (except as a school
subject) around 1750.

Bos [2004] suggests that the construction of differential equations had a
similar fate. As for differential equations in two variables, this indeed appears to
be the case: there are not many traces of their construction in the latter half of
the 18th century.2°

In the early 18th century, the most natural way to construct a differen-
tial equation was to integrate it first, and then to construct the resulting finite
equation; when an algebraic integral could not be achieved, some quadrature or
rectification had to be assumed. The only method for integration known in those
early days was separation of variables, and Johann (I) Bernoulli gave a simple
construction (described in [Montucla & Lalande 1802, 174-175|) for the separa-
ted equation Ydy = Xdx, which required drawing curves representing the areas
JYdy and [Xdz. Clairaut remarked in [1740, 293] that when variables in diffe-
rential equations are separated, “on peut toujours ou les intégrer, ou au moins les

201t is true that in [Euler Integralis, IT] (published in 1769) there are two chapters which refer
to construction of ordinary differential equations: chapters 10 and 11 of the first section, respec-
tively “de constructione aequationum differentio-differentialium per quadraturas curvarum” (“on
the construction of differentio-differential [i.e., second-order differential| equations by quadratures
of curves”) and “de constructione aequationum differentio-differentialium ex earum resolutione
per series infinitas petita” (“on the construction of differentio-differential [i.e., second-order diffe-
rential| equations from their required solution by infinite series”). But one would seek in vain for
geometrical constructions in those chapters. Rather, Euler seems to refine problems and techni-
ques which had appeared in the context of construction of differential equations (namely solving
an equation assuming certain quadratures or rectifications — see below), but which appear devoid
of geometrical meaning. Deakin [1985] finds integral transforms in chapter 10.
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construire, puisque la difficulté est réduite a la quadrature des Courbes”?!.

There were other methods, seen as alternatives to analytical integration. In
1694 Johann Bernoulli published a short paper entitled “modus generalis cons-
truendi sequationes differentiales primi gradus”?? [Joh. Bernoulli 1694], where he
tried to address precisely the construction of differential equations which he could
not integrate — that is, whose variables he could not separate. Given an equa-
tion g—g = m (m of course being a “quantity made up of z,y, and constants”),
the first step in Bernoulli’s method is to construct an infinite number of curves
m = constant (for very close values of m) — the isoclines or, as Bernoulli called
them, the “directrices”?3; Bernoulli assumed that these were algebraic curves (i.e.,
that m is an algebraic function) and hence relatively easy to construct. Then it was
enough to connect these curves by small straight lines having the corresponding
slopes.

The approximative nature of this method is evident. The same is true for
other methods of this period; for instance, Tournés [2003, 461-463| identifies a
polygonal approximation in a construction given by Leibniz [1694]. However, this
kind of graphical approximation was soon dropped in favour of analytical or nu-
merical methods [Traité, I1, 296; Montucla & Lalande 1802, III, 175] — such as
the ones mentioned in section 5.1.3; Euler’s “general method” is a very clear exam-
ple of an analytical version of a polygonal method. Graphical approximation only
regained importance in the 19th century [Tournés 2003].

A very interesting illustration of the loss of general relevance of the con-
cept of construction involves the Italian mathematician Vincenzo Riccati. Riccati
published in 1752 a treatise in which he proved that all first-order (ordinary) dif-
ferential equations conceivable at the time could be constructed using tractional
motion [Tournés 2003, 477; 2004].

“However, the work of Vincenzo Riccati was neither celebrated nor in-
fluential. [...] The book probably arrived too late, at the end of the time
of construction of curves, at the moment when geometry was giving way
to algebra” [Tournés 2004, 2742].

It may also be noted that although Cousin included a section on construction
of equations in the introductory chapter on “application of algebra to geometry”
of his Traité [Cousin 1796, I, 31-36], he did not do the same for construction of
differential equations. Of course in 1796 the relevance of construction of algebraic
equations was purely pedagogical; but Cousin seems to have thought that cons-
truction of differential equations lacked even that relevance.

But the construction of differential equations in three (or more) variables se-
ems to have a somewhat more complicated history, appearing with some regularity
in arguments on possibilities. Clairaut (1740, 307-311] wanted to show that there

214t is always possible to integrate them, or at least to construct them, since the difficulty is

reduced to the quadrature of curves”
224general method for constructing first-order differential equations”
23«directing [curves]”
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are differential equations in three variables which not only cannot be integrated,
but also cannot be constructed.?* The former impossibility had an algebraic proof:
elimination of an integrating factor p and of %, Z—Z, % between certain condition
equations gave
dP dN dN dM dP dM

Ndx de+Mdz Ndz Mdy+de =0 (6.13)
as a necessary condition for the integration of Mdx + Ndy + Pdz = 0 to be
possible. As for the latter impossibility: suppose that the surface expressed by
dz = wdx+19dy is constructed, PN is a section on it, perpendicular to the x-axis
AP, and QN is another section, perpendicular to the y-axis AQ); suppose also
that pn and qv are sections parallel and infinitely close to PN and QN ; they must

intersect in [, so that z + wdx + ¢ dy + % dx dy + % wdz dy must be equal to

z+vdy +wdx + Z—Zdydm—l— (é—jﬁdydx, that is,

dd dy  dw 9 dw

must hold — and this is the same condition as (6.13), with w = —2£ 9 = — 2.
Clairaut concludes from this that problems whose solution depends on Mdx +
Ndy + Pdz = 0 are impossible unless (6.13) is verified.

In the second half of the 18th century, geometrical arguments lost much
ground. But we will see in section 6.1.3.2 that arguments involving constructions
of partial differential equations played a relevant role in another discussion on
legitimation — the legitimation of so-called “discontinuous” functions.

6.1.3.2 The controversy on vibrating strings and arbitrary functions

One of the most famous controversies in 18th-century mathematics was the one
opposing Euler to d’Alembert over which functions could be admitted in the so-

24He assumed that any possible integral was composed of a single equation, and that any
possible construction led to a surface. Later, Monge would be more flexible (see section 6.1.3.5).
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lution to the partial differential equation ‘3273 = 0222732’; and more generally on
whether the arbitrary functions appearing in the general solutions to partial dif-
ferential equations could be arbitrary enough as to include “discontinuous” (~
non-analytic) ones.

First, let us examine the concepts of “function”, “continuous function”, and
“discontinuous function”. When Euler published his Introductio in Analysin Infi-

nitorum in 1748, he defined function as an “analytic expression”

“Functio quantitas variabilis, est expressio analytica quomodocunque
composita ex illa quantitate variabili, et numeris seu quantitatibus cons-
tantibus.”?% [Euler Introductio, 1, § 4]

Analytic expressions were composed by algebraic operations, and by (some) trans-
cendental ones, such as exponentiation, logarithms, and others “quas Calculus in-
tegralis suppeditat”?® [Euler Introductio, 1, § 6], and their most general form was
supposed to be power series:

“num vero per hujusmodi terminorum [A + Bz + Cz? + &c.] seriem
infinitam [Functio quaelibet ipsius z| exhiberi possit, si quis dubitet,
hoc dubium per ipsam evolutionem cujusque Functionis tolletur.”2”
[Euler Introductio, I, § 59|

However, this definition should not be taken too literally. Giovanni Ferraro
[2000] has analysed Euler’s concept of function and has noticed two levels in it:
a formalized level corresponding to the definition of function as an analytic ex-
pression involving variables and constants; and an intuitive level, corresponding
to an “idea of dependence or relation between variables” (a “functional relation”)
[Ferraro 2000, 111-112], present in explanations, applications, or other more infor-
mal contexts. Ferraro does not see these two levels as contradictory, partly because
in 18th-century mathematics “a definition did not necessarily exhaust the defined
notion”2®; and partly because, he argues, an analytic expression or formula was
the proper way for expressing a “functional relation” within analysis (how could
one calculate without an analytic expression?) — but not necessarily in geometry
or mechanics [Ferraro 2000, 112-113)].

One of those more informal contexts is the preface to [Euler Differentialis],
published in 1755, where we find an explicit characterization of the “functional
relation” aspect of the concept of function; just after giving a physical example of

25«A function of a variable quantity is an analytic expression composed in whatever way from
that variable quantity and numbers or constant quantities.”

26<turnished by integral calculus”

274f anyone doubts whether in fact [any function of z] may be displayed by an infinite series
of such terms [A + Bz + C2? + &c.], this doubt will be eliminated by the very development of
each function.”

281n fact Ferraro speaks only of Euler’s mathematics; but one might remember here Lacroix’s
encyclopedic views, particularly his exploration of the nature of integrals not from their ostensive
definition (see section 5.2.3).
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dependence involving four variables (amount of gunpowder, angle of fire, range of
shot, and length of time before the bullet hits the ground) Euler proceeds:

“Quae autem quantitates hoc modo ab aliis pendent, ut his mutatis
etiam ipsae mutationes subeant, eae harum functiones appellari so-
lent; quae denominatio latissime patet, atque ommnes modos, quibus
una quantitas per alias determinari potest, in se complectitur. Si igitur
x denotet quantitatem variabilem, omnes quantitates, quae utcunque
ab z pendent, seu per eam determinantur, eius functiones vocantur”2°.
[Euler Differentialis, vi]

This has often been regarded as a “new”, “general” definition of function [Yous-
chkevitch 1976, 69-70]. But it should be remarked that Ferraro [2000, 111] finds
examples of the “functional relation” aspect already in [Euler Introductio] — as in
fact Youschkevitch [1976, 69] himself had already found; and it must also be noti-
ced that all the functions studied in [Euler Differentialis| are within the scope of
the older definition — analytic expressions. This later observation and the fact that
Euler did not refer back to this definition when he eventually started talking about
“discontinuous” functions leads Liitzen [1983, 356] to a conclusion analogous to
Ferraro’s: Euler thought of this definition as equivalent to the older one.

Later, Euler would try to expand the realm of functions. Grattan-Guinness
[1970, 6] and Youschkevitch [1976, 64] both date the start of that expansion to
Euler’s definition of “discontinuous curves” in the second volume of his Introductio.
But as a matter of fact, while that definition may be seen as establishing a termi-
nology (“continuous” vs. “discontinuous”) that would later be applied to functions,
it reinforces the idea that a function must be expressible by one formula — cur-
ves which do not follow one single law are ipso facto not expressed by one single
function:

“Linea scilicet curva continua ita est comparata, ut ejus natura per
unam ipsius z Functionem definitam exprimatur. Quod si autem linea
curva ita sit comparata, ut variee ejus portiones BM, M D, DM, &c.,
per varias ipsius « Functiones exprimantur; [...] hujusmodi lineas curvas
discontinuas seu mixtas & irregulares appellamus: propterea quod non
secundum unam legem constantem formantur, atque ex portionibus va-
riarum curvarum continuarum componuntur.”®® [Euler Introductio, 11,

§ 9]

2%«Those quantities that depend on others in this way, so that if the latter change they also
change, are called functions of the latter; this denomination applies very broadly, and comprises
all the manners in which one quantity may be determined by others. If, therefore, x denotes a
variable quantity, all quantities which depend on z in whatever manner, or are determined by
it, are called functions of z”

304A continuous curved line is [one| so arranged that its nature is expressed by one definite
function of x. Whereas if a curved line is so arranged that several of its parts BM, M D, DM,
&c., are expressed by several functions of z; [...] we call curved lines of this kind discontinuous
or mized and irregular: on account that they are not formed according to one constant law, but
rather composed from parts of several continuous curves.”
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However, it was about that time that Euler started speaking of functions
not corresponding to analytic expressions. This happened in his first contribution
to the vibrating-string controversy, in a very matter-of-fact way: two arbitrary
functions had to be determined; having described an appropriate curve, “soit ré-
guliere, conteniie dans une certaine équation, soit irreguliere, ou méchanique, son
appliquée quelconque PM fournira les fonctions, dont nous avons besoin pour la
solution du Probléme™3! [Euler 1748, §XXII|.

It was only almost twenty years later that Euler [1765a| explained more or
less clearly his “continuous” and “discontinuous” functions. He did this recurring
once again to a correspondence between curves and functions: given a function y
of x, it is always possible to describe a curve with abscissa a and ordinate y; and in
turn, given a curve, its ordinates produce (“exhibent”) a function of its abscissas.
He now considered a curve to be continuous if its points follow a certain “law or
equation” (no longer simply a “function”; since this word had now a broader sense
than in his Introductio), and discontinuous otherwise — and discontinuous curves
provide (“suppeditant”) discontinuous functions.

Euler was very careful in explaining that the law of continuity does not
mean connectedness of trace: a hyperbola is a continuous curve, in spite of its
two branches, since it is defined by one equation. In discontinuous curves, Euler
included those drawn “libero manus tractu”3? and mixed curves (that is, those
composed of several parts, such as the perimeter of a polygon) [Euler 1765a, §
1-3]. It should be remarked that in practice Euler’s discontinuous functions were
almost always functions corresponding to mixed curves.?® Thus Euler’s (and gene-
rally 18th-century’s) “continuous” functions broadly correspond to modern analy-
tic functions, while most “discontinuous” functions would now be called piecewise
analytic. Naturally the 18th-century meanings (vague as they are) will be used in
the rest of this section.

Let us now turn to the controversy on the vibrating string. This dealt with
whether discontinuous functions could be allowed in solutions to the vibrating-
string problem, or other problems translated into partial differential equations.
It did not deal with the concept of function; that is, there was no disagreement
between Euler and d’Alembert on what a function was3*, but rather on what
curves or functions could be treated by analysis.

D’Alembert first treated the problem of the vibration of a stretched string,

3l¢gither regular — contained in a certain equation — or irregular or mechanical, its arbitrary

ordinate PM will furnish the functions which we need for solving the problem”

32¢hy the free stroke of the hand”

33With one possible exception, striking but very isolated: according to Youschkevitch [1976,
71] (following Truesdell) Euler [1765¢, § 39] introduced pulse functions (different from zero only
at one point); Liitzen [1982, 197-198] disagrees with the implication in Youschkevitch’s text that
those were delta functions; for myself, I am not completely convinced that Euler thought he was
talking about functions at all.

34That is, d’Alembert effectively accompanied Euler in this evolution: in [d’Alembert 1747],
the concept of function is the same as in [Euler Introductio|; while [d’Alembert 1780] is a memoir
on discontinuous functions.
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fixed at both ends, in a couple of memoirs published in the Berlin Academy volume
for 1747 [d’Alembert 1747]. Calling y the displacement of a point of the string, so
that y is equal to an unknown function (¢, s) of the time ¢ and of the arc length s
of the string from one end to that point, we have dy = pdt+ qds, dp = adt +v ds
and dg = vdt + Bds, where p, q, a, v and (8 are other unknown functions of ¢
and s; d’Alembert established then that o = 2’;2"1, that is, in modern notation,
something of the familiar form % = cz%; choosing a convenient time unit so
that 02 = 2aml (c = 1), d’Alembert arrived at

y=U(t+s)+T(t—s)

and, because of the boundary conditions y = 0 for s = 0 or s = (the total length
of the string) whatever ¢,

y=9({t+s)—¥(t-s),

and W is periodic with period 2! (the fact that the string only went from s = 0
to s =1 did not restrict the domain of the function ¥). If, in addition, the string
starts vibrating from the taut position (y = 0 for ¢ = 0), then ¥ must be an
even function, or as d’Alembert puts it, “¥s doit etre une fonction de s dans
laquelle il n’entre que des puissances paires, lorsqu’on I'aura reduite en serie”3?
[d’Alembert 1747, 217]. A more general solution depends on the initial form of
the string, given by a function ¥ = ¥s — ¥(—s), and on the initial velocity of
each point of the string, also given by another function o of s; the plain definition
Y = Us— U(—s) leads to the conclusion that ¥ must be an odd function of s,
that is, “ot il n’entre que des puissances impaires de s736; otherwise the problem
is impossible — one cannot find y = ¥ (¢t + s) — ¥(t — s) [d’Alembert 1747, 231].

Thus we see that d’Alembert naturally assumed these functions to have
power-series expansions — in the terminology of [Euler Introductio|, they were (sim-
ply) functions; in slightly later terminology, they were continuous functions.

But Euler expressed a different opinion, in a memoir which appeared in two
versions: the Latin original in 1749 in the Nowva acta eruditorum, and a French
translation in 1750 in the volume for 1748 of the Berlin Academy [Euler 1748].
Euler’s analysis is very similar to d’Alembert’s, arriving at the equation

y=f:(x+tVd) + :(z — tVb),

where f and ¢ are arbitrary functions subject to ¢ : —tvb = —f : —tv/b and
¢:(a—tvb) = —f: (a+tVb) (a is the length of the string). But there is a
significant difference: the curves which the string describes need not be “regular”,
because “la premiere vibration dépend de notre bon plaisir, puisq’on peut, avant
que de lacher la corde, lui donner une figure quelconque”” [Euler 1748, §III|.

35« s must be a function of s with only even powers, once expanded into a series”

36«with but odd powers of s”

374the first vibration depends on our goodwill, since we may give the string any shape what-
soever, before releasing it”
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This had consequences for the arbitrary functions f and ¢: a passage has already
been quoted above (page 197), where Euler considers these functions furnished by
the ordinate of an appropriate curve, even if it is “irregular”. Thus he effectively
introduces the consideration of discontinuous functions, even if not calling them
S0.

D’Alembert did not agree, and he rectified Euler, “de crainte que quelques
lecteurs ne prennent mal le sens de ses paroles”®: he insisted that in the equation
y = X of the initial curve, ¥ must be an odd function of s, with period 2[; otherwise
“le probléme ne pourra se résoudre, au moins par ma methode, et je ne say méme
s’il ne surpassera pas les forces de 'analyse connué”3? [d’Alembert 1750, 358].

Part of the discussion dealt with Euler’s construction of the extension of the
initial-shape curve (d’Alembert’s y = X): the string corresponds only to a section of
this extended curve, but both Euler and d’Alembert agreed that (what we would
call) the domain of the function ¥ should extend both ways indefinitely. Now,
Euler [1748, § XXI] simply took the initial shape AM B of the string and copied
it alternately on each side of the axis, so as to ensure the necessary periodicity
and oddness. But for d’Alembert, it was necessary not only that AM B would be

\_\m’ m (g‘iq /\

continuous, but also such that the curve ...n'omAMBNaM’ ... thus constructed
would be continuous.

The controversy proceeded for decades, in multiple publications. To analyse
d’Alembert’s later argumentation, suffice to mention two memoirs. One is in the
first volume of his Opuscules [d’Alembert 1761, 15-42]. D’ Alembert’s most impor-
tant argument (expounded in several ways) is that, for the vibrating-string equa-
tion jjg = ((11?3 to be satisfied, the radius of curvature of the initial curve cannot
‘Sump”; in modern terms, at every point the right-hand and left-hand second-order
derivatives of the initial-shape function must coincide. Now, the simple act of pul-
ling the string at one point (so as to release it and make it vibrate) introduces one
such forbidden shape: two straight lines making a finite angle.*"

Almost twenty years later, d’Alembert would refine this argument, in a me-
moir on discontinuous functions [d’Alembert 1780].4' Considering cases where

38«fearing that some readers might misunderstand the meaning of his words”

3%the problem cannot be solved, at least by my method, and I am not sure whether it does
not surpass the power of known analysis”

40Moreover, even if the initial shape of the string properly speaking is smooth, the curvature
in A and B should also be null; otherwise there is a “jump” in the curvature of the extended
curve.

4IWhich was an answer to Monge’s stand, rather than Euler’s (see below).
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these result from the junction of continuous functions (that is, which corres-
pond to Euler’s mixed curves),*? d’Alembert imposes the modern-looking con-
dition that, to appear in solutions to n-th order differential equations, the left-
hand and right-hand derivatives, up to n-th order, must be equal at the points
of discontinuity (not in these words, of course, but rather: if the discontinuity
is such that pz becomes (“devienne”) Az at z = a, then it is necessary that
d"oz  d"Az d oz B d" 1Az
dzn dzn’ dznl denl)
at z = a [d’Alembert 1780, 307]).*3 It is true that now d’Alembert admits dis-
continuous functions in solutions to differential equations, but this is hardly an
agreement with Euler, even a partial one: the obvious discontinuous solution for
the vibrating string (the angle) is still out of the question. Moreover, this argu-
ment by d’Alembert is at odds with the global way of thinking typical of Euler
— d’Alembert [1780, 307] requires that “pour toutes les valeurs possibles de z,
I'équation différentielle aura rigoureusement lieu”44.

Many years before this refinement, Euler [1765b] had dismissed d’Alembert’s
objections, using three arguments:

and so on, all these equalities considered

1 — He implied an equivalence between the differential equation (%) =
ce (%) and the integral equation y =T : (z + ct) + A(z — ct), “qui contient la

solution du probleme™® [Euler 1765b, § 44]; that is, Euler replaced the original
differential equation with a new, functional one.6

2 — He assumed that the “jumps” in the radius of curvature could occur only in
isolated points (once again, the curve would be piecewise analytic), and therefore
would be of no consequence: “quoiqu’on y commette quelque erreur, cette erreur
n’affectera qu'un seul élément, et sera par conséquent sans aucune conséquence,
étant toujours infiniment petite”” [Euler 1765b, § 47]; a fine example of the global
way of thinking that d’Alembert would contradict.

3 — Finally, in order to remove any objection to the second argument, he ar-
gued that “on n’auroit qu’a emousser infiniment peu les angulosités [...] et par cela
méme, qu’on n’auroit changé qu’infiniment peu la figure [...], toutes les conclusions
qu’on en tire, demeureront toujours les mémes”® [Euler 1765b, § 46].

4271t is not clear whether d’Alembert could conceive of any other kind of discontinuous functions.

43Condorcet [1771, 69-71] and Laplace [1779, 299-302] imposed a less strict condition: the
functions and the derivatives up to order n — 1 were forbidden to have “jumps”, but the n-
th derivative was not. Note however that Laplace admitted stronger discontinuities in physical
(rather than “geometrical”) solutions, using an argument similar to Euler’s number 3 below [1779,
302]. See also section 9.5.4.

4«for all possible values of z, the differential equation will take place strictly”

45¢which contains the solution of the problem”

467 {itzen [1982, 19] sees this as an anticipation of the most common technique in the 20th
century for obtaining generalized solutions to differential equations, although this technique
consists in replacing the differential equation with different types of integral equations.

47«although some error is made there, it will affect only one element, and will therefore be of
no consequence, as it will be infinitely small”

484it will be enough to blunt infinitely little the angularities [...] and because the figure [...] will



6.1. The eighteenth century 201

Euler also saw any objections possible to the second and third arguments as
similar to the objections against the infinitesimal calculus, and therefore wrong,
since “aujourd’hui ces doutes sont entierement dissipés”*® [Euler 17650, § 48] — a
wonderfully optimistic point of view (see section 3.1).

Several other mathematicians expressed their opinions on this issue during
the latter half of the 18th century (see for instance footnote 43 above). A curi-
ous one was that of Lagrange, combining some of d’Alembert’s scruples with the
generality of Euler’s solution. In fact, the first major work of the young Joseph-
Louis Lagrange was on the “nature and propagation of sound” [Lagrange 1759c].
Lagrange [1759c, § 15] agreed with d’Alembert that the differential and integral
calculus concerned only “fonctions algébriques”, whose values are necessarily “liées
ensemble par la loi de continuité”, so that d’Alembert’s and Euler’s solutions, as
it was deduced by them, was only applicable when the initial shape of the string
was a continuous curve. Finding this insufficient, Lagrange decided to analyse the
problem in a different way: he first considered a weightless string loaded with a
finite number m of bodies; and then he put m = oo, arriving at Euler’s solution
(applicable to discontinuous curves). That is, in modern terms Lagrange procee-
ded to a passage to the limit, which “is valid only subject to hypotheses essentially
the same as those necessary to justify the direct use of appropriate differentiations
and integrations” [Truesdell 1960, 263].5°

Lagrange was not very coherent on this issue. In a second memoir on the
same subject, Lagrange came closer to Euler’s stand, urging on the need to employ
discontinuous functions [Lagrange 1760-61a, § 5]. Later (in the 1760’s) he would
change his mind and support d’Alembert [Truesdell 1960, 279]; while in the end of
his life (in the second edition of his Mécanique Analytique, 1811) he would return
to his initial stand, and acknowledge that Monge’s work (see below) had led to
the general acceptance of discontinuous functions [Truesdell 1960, 295].

But what is most important for us to remark here is Lagrange’s longest
stand, similar to d’Alembert’s. In both [Fonctions, 1] and [Calcul, 6] Lagrange
defines function as an “expression de calcul” — a very similar phrase to that of
[Euler Introductio, 1, § 4]; it is a very important characteristic of Lagrange’s two
books on the “calculus of functions” that any function “is given by a single analy-
tical expression” [Fraser 1987, 40-41].

Although the issue of discontinuous functions appeared with the controversy
on the vibrating string, it was of course more general. Euler’s memoir [1765a],
cited above as his first clear mention of discontinuous functions, was a defence
of the need to consider these in the integral calculus of several variables (which
was then relatively recent — about 20 years old — and on whose novelty Euler
insisted; this memoir falls within Demidov’s “first period” in the history of partial
differential equations [Demidov 1982, 326]). Euler [1765a, § 6] recognized that

have been changed only infinitely little, all the conclusions drawn will remain the same”
49«pnowadays those doubts are entirely dispelled”
501t is interesting to compare this to Lagrange’s later attempt to avoid infinitesimals and limits
by recurring to... infinite series (section 3.1.4).
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discontinuous functions could not be admitted in the part of infinitesimal analysis
which had been treated chiefly until then — namely the calculus of functions of
one variable; however, in the “new” integral calculus, which treated functions of
two or more variables, discontinuous functions were indispensable, since arbitrary
functions took the place of arbitrary constants in “common” calculus (cf. page 180
above), and arbitrary functions could be discontinuous [Euler 1765a, § 18].

The fact that mathematicians did not really know how to work with discon-
tinuous functions was of course a problem. Euler might have this in mind when
he incited all geometers to gather their forces in cultivating multivariate analysis
[Euler 1765b, § 32]. Liitzen [1983] speaks of “Euler’s vision of a general partial
differential calculus for a generalized kind of function”, a vision which was only
fulfilled in the 20th century, especially through the theory of distributions. This
“vision” did not develop at all during the “age of rigorization of analysis” (most
of the 19th century) because of the restriction of differentiation to differentiable
functions [Liitzen 1982, 14, 24-25]. But neither did it develop in the pre-Cauchy
era, in spite of a growing consensus on the acceptability of discontinuous functions.
Euler, for one, did not do much more than what has been mentioned above.?' As
Fraser [1989, 326] puts it, “[Euler’s] notion of a general function was never incor-
porated into the analytical theory presented in his mid-century textbooks, and
indeed was at odds with its basic direction” — Grattan-Guinness [1970, 6] appro-
priately called Euler’s correspondence between arbitrary functions and curves a
“return to geometry”, but returning to geometry was not exactly the main current
in late 18th-century mathematics.

Nevertheless, in the late 18th century there was one important mathematician
“returning to geometry” in the study of partial differential equations: Gaspard
Monge.

At least from 1771 Gaspard Monge showed a deep interest in something that
would be a major theme in his work: the classification of surfaces in families,
each corresponding to a certain partial differential equation with two independent
variables, and to a certain form of generation. In November 27th that year he
presented to the Académie des Sciences de Paris a memoir [Monge 1771] related
to that theme, which is in part a defense of discontinuous functions/curves. In
spite of a report signed by Bossut, Vandermonde, and d’Alembert supporting its
publication in the Savans Etrangers, it remained unpublished until [Taton 1950].52

51Euler even found himself a serious objection to his geometrical correspondence between cur-
ves and arbitrary functions: integrating (jZ; )+aa( ggg) = 0 he arrived at z = f: (z+ayy/—1)+F':
(x — ayv/—1); what could an abscissa like x + ayy/—1 mean, not even he had any idea [Euler
Integralis, 111, § 301; Ferraro 2000, 128-129]. Nevertheless, Ferraro [2000, 130] exaggerates when
he says that the objects that Euler called discontinuous functions “substantially differed from
effective functions since only the latter could be manipulated and, therefore, accepted as solu-
tions to a problem”; the vibrating-string controversy shows that Euler did accept discontinuous
functions as solutions, and strived to be able to manipulate them.

52In fact only the second part of that memoir was devoted to this; the first part was on the
integration of a certain kind of linear partial differential equation. However, since that first part
is lost (its contents can only be guessed from the report and a letter by Monge), and the two
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[Monge 1771] starts from an analogy with ordinary differential equations:
just as the complete integral of an n-th order ordinary differential equation has to
contain n arbitrary constants, so too the complete integral of an n-th order partial
differential equation has to contain n arbitrary functions — a consensual idea then,
as [Lagrange 177/] was still some years away. Therefore, the complete solution of
such an equation corresponds not to a surface, but to a class of surfaces sharing
some property. The determination of those arbitrary functions corresponds to the
specification of a particular surface in the class; and the most natural way to do
this is to subject the surface to pass through n specific curves. This would be a
very important subject of research for Monge.

The issues in this memoir are this specification in the case of certain first-
order equations, and the claim that the specifying curve does not need to be
continuous.

Monge gives three examples, all with first-order equations (involving therefore
only one arbitrary function). In the first example he gives two proofs that every
horizontal cylindrical surface (that is, a surface generated by a horizontal straight
line that slides along some curve — continuous or discontinuous — keeping always the
same direction) has as differential equation (where § refers to partial differentiation
relative to z, and 0 to partial differentiation relative to y)

0z 0z

=t = 0. (6.15)
For the first proof, Monge notes that the vertical planes passing through the
generating straight line as it moves are all parallel, so that they have as equation
y = ax — [, where (3 is constant for each plane but varies from plane to plane; so
the surface is such that if one makes ax — y = constant, the result is a horizontal
straight line, that is, z = const., or dz = 0; therefore the equation of the surface
is z = ¢(ax — y), where the arbitrary function ¢ depends on the curve along
which the generating line slides, and is “assignable” or not according to whether
the curve is continuous; finally, z = ¢(az —y) always gives g—; —l—ag—; = 0, no matter
@. For the second proof, Monge assumes for simplification that a = 1, i.e. that
the generating line makes angles of 45° with the x and y axes; he then considers a
tangent plane to the surface, remarking that its intersection with the zy plane also
makes angles of 45° with the z and y axes, and examines right triangles formed by
that plane and planes parallel to the vertical coordinates planes; these are similar
to infinitesimal right triangles whose legs are dz, dx and 0z, dy, which leads him to
the desired conclusion that 2—; + da—Z = 0. The second example, with similar proofs,
is that of a surface of revolution around the z axis, whose differential equation is

b 0:
ydx dy

parts are quite independent, we may as well refer to the surviving second part as the memoir
[1950, 48; 1951, 280].
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(so that its finite equation is z = ¢ (2% + y?). The final example is that of a conical
surface with vertex at the origin, of which Monge only gives the finite equation®

e

and no proof, claiming that it is analogous to the preceding ones.

As corollaries, Monge states the possibility of “constructing” these equations
(either the differential or the finite ones), subject to a condition such as that put-
ting y = A(z) will make z = ¥(x) (the projections of the specifying curve). For
instance, in the first example, it is enough to construct a space curve with those
projections, to take a horizontal straight line whose projection is y = ax — b, and
to slide it along the curve. He also insists on the general validity of these construc-
tions, even when either or both of these functions A(x) and ¥(z) are “discontinu-
ous”, that is, not “de nature & étre exprimés par des équations”®* [Monge 1771,
50]; in that case the arbitrary function involved in the finite equation for the class
of surfaces is not “expressible analytically” — but Monge does not seem to think
that that situation might affect the validity of both the finite and the differential
equations.

Reading this, one is led to wonder what precisely Monge meant by “discon-
tinuous”. Both of his “proofs” above assume differentiability, of course: the first in
a direct way, so as to go from z = ¢(ax —y) to g—; + a% = 0; the second through
the existence of a tangent plane in any point of the surface. D’Alembert would
challenge these assumptions in [1780]. Although he does not mention Monge, it
seems clear for us®® who did d’Alembert have in mind: his main example is the
equation z = p(ax — y) and its relation to g—; + % = 0 — if ¢ changes form at
z = a, g—; = —‘Idﬁ does not (necessarily) hold at ax — y = a; moreover, the finite
angle described %y the generating line in such a case thwarts the existence of a
tangent plane to the surface at those points [d’Alembert 1780, 302-303, 305-307].
Apparently Monge never replied to d’Alembert (in 1780 he was no longer very
much concerned with this issue). But from his wording in [Monge 1771] it seems
that the fundamental characteristic of discontinuous curves or functions was that
they were not “expressible analytically” — they were objects of geometry, rather
than analysis; but their smoothness was always taken for granted.?®

For some time in the 1770’s Monge kept working on the determination of arbi-
trary functions. One very likely reason for [Monge 1771] not having been published
is that Monge soon wrote three others which superseded it. In [Monge 1770-1773],
he gives more general procedures for the determination of the arbitrary functions

531n a letter to Condorcet dated 2nd September 1771 (published by Taton [1947, 979-982]),
ydf';z
of such a nature as to be expressed by equations”
55Not so for the general 18th-century reader who did not know the manuscript of [Monge 1771].
56 A different possibility is that, similarly to Arbogast (see page 207 below), he assumed so-
mething like piecewise continuity and could work with two tangent planes at a point of discon-
tinuity. But I do not see any suggestion of this in his words.

= z — a for a conical surface.

he had given all of these equations plus Z—‘;Z +
54«
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given appropriate conditions, and for their geometrical construction. Most of the
examples involve two arbitrary functions, and the last one involves an indeter-
minate number of arbitrary functions, so that they correspond to second- and
higher-order equations. However, the differential equations themselves do not play
any role. [Monge 1773a] tries to address that flaw: to show that the surfaces that
satisfy the integral of a partial differential equation also satisfy that partial diffe-
rential equation. For instance, in problem IT [Monge 1773a, 273-275] he constructs
the surface-locus of

z=M+ NV (6.16)

(where M, N and V are given functions of z and y) such that it passes through
a curve with projections y = Fx and z = fx; in theorem II [Monge 1775a, 275-
280] he proves that for each point of the surface thus constructed the differential
equation (independent of the arbitrary function )

OV[NGSz — N6M — 25N + MSN] = 6V[NOz — NOM — zON + MON]  (6.17)

holds. [Monge 1773b] is a further exploration of the problem of determining ar-
bitrary functions in integrals of partial differential equations, associating it with
finite difference equations. Taton [1951, 281] complains about the fastidious and
repetitive nature of these memoirs: “ayant mis au point une théorie intéressante,
il Papplique a tous les exemples d’équations qu’il sait, sinon intégrer, du moins
étudier”®”. However, the feeling one gets from reading these works (besides lack
of patience for all the examples) is that Monge was trying to generalize ever more
a theory which had started as a set of very simple examples.

Later, Monge’s studies on differential equations in three variables and families
of surfaces proceeded in different directions (see section 6.1.3.4). However, and in
spite of d’Alembert’s objections, Monge always kept his belief in the acceptability
of discontinuous functions in the integrals of partial differential equations (see for
instance [Monge Feuilles, n° 4-iii] for cylindrical surfaces, which have always the

differential equation 1 = a (dz/> +b (d—z/>, even if the curve along which the

dz’ dy’
generating line slides is discontinuous).

It is worth stressing the importance of construction of differential equations
in Monge’s argumentation. True, it was not Monge who brought discussions on
constructions to the controversy on arbitrary functions: a great deal of the quarrel
between Euler and d’Alembert revolved around the former’s construction of the
extended curve n'bAM BaM' (page 199 above). But that was a discussion on one
isolated construction, and only of a curve involved in the solution, not of the
equation. Monge treated constructions much more generally: the construction of a
certain partial differential equation corresponded to the generation of the surfaces
of the family defined either by that construction/generation or by that equation.

57“having developed an interesting theory, he applies it to all the examples of equations which
he can, if not integrate, at least study”
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The last famous treatment of the issue of acceptability of discontinuous func-
tions in the 18th century [Arbogast 1791] was very much influenced by Monge.

[Arbogast 1791] was the winning entry to the 1787 prize of the St. Petersburg
Academy, devoted precisely to the question of whether the arbitrary functions in-
troduced by the integration of differential equations in more than two variables
may be discontinuous, or rather correspond only to curves capable of being ex-
pressed by algebraic or transcendental equations [Arbogast 1791, 95].

The only contribution of [Arbogast 1791] which has received any attention
[Grattan-Guinness 1970, 18; Youschkevitch 1976, 71] is his introduction of the
distinction between contiguous and discontiguous functions, more or less corres-
ponding to the modern idea of continuous and discontinuous. Besides the concern
about the change or conservation of the form of a function (that is, its “disconti-
nuity” or “continuity”), we have seen above that some mathematicians of the 18th
century noticed the relevance of occurrence or not of “jumps” in the course of a
function or of its derivatives. But they lacked words for this distinction; Arbogast
[1791, 11] proposed “courbes discontigues” and “fonctions discontigues” for those
composed of disconnected pieces, while keeping the word “discontinuous” with its
old meaning.

But it is interesting to look also at Arbogast’s arguments for accepting dis-
continuous and even discontiguous functions in the integrals of partial differential
equations, most of which may be seen as more direct uses of Monge’s arguments.
For most of his dissertation, Arbogast repeatedly takes a partial differential equa-
tion, translates it into a geometrical condition, and then constructs the surfaces
that obey this condition. Since these surfaces are so undetermined that they may
be subject to pass through a discontinuous or even discontiguous curve (or two such
curves, in the case of second-order equations), that is, since the construction can
be performed using continuous or even discontiguous curves, these curves must be
allowed, and also the corresponding discontinuous or even discontiguous functions
must be allowed in the integrals of the original partial differential equations.

dz
The simplest example is that of the equation — = a (where z is supposed to

be a function of x and y, so that the equation belongsxto a surface) [Arbogast 1791,
12-14]. This means that any section parallel to the zz plane is a straight line with
slope a. Everything else (in particular the sections parallel to the yz plane) is
undetermined. Therefore, if AB is the x axis, AC the y axis, and AD the z axis; a
straight line K' M is drawn on a plane perpendicular to BAC and making an angle
with MT whose tangent is a; an arbitrary curve GIKL is drawn on the plane
KRN perpendicular to AC; and if finally KM is made to slide along GIKL,
then it will generate a surface satisfying the equation Z—; = a. Now, the integral
of Z—; = ais z = ax + ¢.y, and if we put AR = b the equation of GIKL is
z = ab + ¢.y, so that the possibility of the curve GIK L being discontinuous and
discontinguous®® is passed on to the function ¢.y.

58In the figure it is possible to notice a point of discontiguity between I and G.
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A less convincing example (for a modern reader and probably for some con-

temporary reader who would agree with d’Alembert) is that of the equation

d d
é = d—; [Arbogast 1791, 23-25]. The geometrical condition expressed by this

is that if by any point of the surface one takes two sections perpendicular to the
xy plane, one parallel to the x and the other parallel to the y, and if one considers
a tangent to each of these sections, the slopes of these tangents are equal. Howe-
ver, in his construction of the surface Arbogast substitutes an equality between
the two sections for the equality of the tangents, arguing that if the sections are
equal, “leurs élémens seront toujours inclinés de la méme quantité au point ot
elles se rencontrent”®”. Thus Arbogast simply considers a straight line on the xy
plane making an angle of 45° with the z axis (clockwise from the x axis), and
imagines it to move freely and irregularly in space, but always keeping the same
direction — he completely bypasses the issue of the existence of the tangents to
the sections (or equivalently whether “their elements” are well defined), admitting
the possibility of these sections being discontinuous and discontiguous (which is
reflected on the possible discontinuity or discontiguity of the function ¢ in the
integral z = ¢(z + y)).

But from parts of Arbogast’s discussions of objections by Condorcet and
Laplace [Arbogast 1791, 39; 85-86] it is possible to conjecture why he is not con-
cerned about the existence of tangents: 1 — apparently he regards discontiguous
functions as piecewise contiguous; 2 — if a curve ABC' is discontiguous at B, ins-
tead of not having a definite value for the differential of the corresponding function
at B, one apparently has two definite values, each applying to one of the branches
AB and BC' (so presumably two semi-tangents). In modern terms, Arbogast is
content with left- and right-derivatives. As for difficulties arising from disconti-
nuity, they have to do with “jumps” — that is, discontiguity — not in the function,
but in its differentials, so that similar arguments apply.

Thus we see, in Monge and even more clearly in Arbogast, constructions of

594t the point where they meet their elements will always have the same inclination”



208 Chapter 6. Types of solutions of differential equations

equations being used once again in arguments of legitimation — this time, the legi-
timation of discontinuous (“and even discontiguous”) functions.®® This is likely not
a coincidence. The construction of equations (particularly of algebraic equations)
was dead as a research subject, but it was still very much alive as a school subject,
and was therefore well-known by all mathematicians and available to be used if it
were ever appropriate.

6.1.3.3 Lagrange: singular, complete, and general integrals, in geometrical guise

There are more direct connections between geometry and solutions of differential
equations than the constructions discussed in the previous section. Some of the
most direct ones are related to the problem of singular solutions, through the
identification between these and envelopes.

[Lagrange 1774] not only gives an analytical theory of singular integrals, but
it also provides a geometrical interpretation of that theory. In fact, the “third arti-
cle” of that memoir [Lagrange 1774, §21-26] purports to be a deduction through
the “consideration of curves” of the theory on singular integrals of first-order or-
dinary equations that had been set up analytically in the first two “articles”. If
V' = 0 is the complete integral of Z = 0, where Z is a function of z,y, and g—g,
then V is a function of x,y, and an arbitrary constant a, so that V = 0 represents
an infinite collection of curves, one for each possible value of a (including plus
and minus infinity); naturally, Z = 0 also represents these curves; but the key
point is that Z = 0 also represents the curve that is tangent to all these curves
(in modern terms: their envelope), since Z = 0 determines g—z for each point,
and therefore the position of the tangent line, which is shared with the envelope.
Considering two infinitely close points of the envelope, corresponding to two infi-
nitely close curves, and making these points coincide, Lagrange characterizes the
envelope as formed by “l'intersection mutuelle et successive des courbes données
par I'équation V = 0, en faisant varier le parametre o' [Lagrange 1774, §22|.
Since for the same abscissa x the ordinates of two infinitely close curves are y and
Y+ S—Zda, the intersection implies S—Z = 0; thus the equation of the envelope is
obtained by eliminating the parameter a between the two equations that it must
satisfy: Z = 0 and g—z = 0. Therefore the envelope corresponds perfectly to the
singular integral.

Lagrange [1774, §25-26] gives two examples, both of which can be found
in [Euler 1756]. The first is also Euler’s first (to find the curves such that all
perpendiculars from their tangents to a given point have the same given length),
a problem which as seen above has as complete solution a family of straight lines
y —ax — bv1+a?2 =0 ((6.6) above) and as singular solution a circle 2 + y? =
b% ((6.5) above). The second (Euler’s third) is quite similar, having as complete

60In the case of Monge there was at least one additional motivation: the determination of the
arbitrary functions involved in an integral.

61«the mutual and successive intersection of the curves given by the equation V = 0 by making
the parameter a vary”
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solution also a family of straight lines y — a(x — b) = /c?(1 + a?) — b? and as

singular solution the ellipse (x;b)Q + C2y_2b2 = 1. It seems quite likely that Lagrange’s
process of discovery involved the recognition that the singular solutions found by
Euler were envelopes of the complete solutions.

As for partial differential equations, geometrical considerations play a diffe-
rent role. Instead of having a separate “article” for a parallel geometrical deduction
of his theory, Lagrange uses geometry twice in the fifth and final “article” (on singu-
lar integrals of partial differential equations) to illustrate and explain his concepts
of singular, complete and general integral of a first-order differential equation in
three variables. In this case, a complete integral V' = 0 represents a two-parameter
family of surfaces, as it contains two arbitrary constants a, b; the singular integral
represents the surface that is tangent to all those surfaces (the envelope of the
family) [Lagrange 177/, § 43]. The example given in [Lagrange 1774, § 44| is not
surprising: consider the problem of finding the surfaces such that all perpendicu-
lars from their tangent planes to a given point have the same given length; taking
the given point to be the origin of coordinates, the sphere®?

z=/h? — 22 — 32

(where h is the given length) is an obvious solution, but since it does not have any
arbitrary constant, it must correspond to the singular integral; a complete integral
is represented by the family of planes that are at distance h from the origin

z=ax+ by + h\1+ a2+ b2,

which of course have the sphere as envelope. The general integral is more com-
plicated; [Lagrange 1774, § 49] uses the same example: the general integral is the
result of eliminating a between

z=ax+ ¢a-y+ h\/1+a?+ (¢a)?

and
a+oa-da

=0

This cannot be done in general, so Lagrange does it for two particular cases of ¢a.
¢a = m+ na (for some constant m and n) gives a right cylinder whose axis passes
through the origin (and centre of the sphere) and whose radius is h; this is of course
tangent to the sphere, although Lagrange does not mention it. ¢a = vVk% — 1 — a2
(for some constant k) gives a right cone, also tangent to the sphere, although
once again this is not mentioned. What Lagrange does mention, is that both the
singular solution and each of the surfaces in the general solution are tangent in
every point to one of the surfaces in the complete solution; but the singular solution
is tangent to all the surfaces of the complete solution (it is their envelope), while

z+da-y+h

62 As in many other occasions, one must read “\/” as meaning “:i:\/”.
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each of the surfaces in the general solution is tangent only to the surfaces in the
complete solution that correspond to some particular relation between a and b (if
we put b = ¢(a), and then eliminate a between V = 0 and %—Z = 0, we obtain
of course the envelope of the one-parameter family V' (z,y, 2z, a, #(a)) = 0, so that
the general integral is the collection of envelopes of one-parameter subfamilies of
V(z,y,z,a,b) = 0%).

Lagrange returned to geometrical considerations relating to singular integrals
in [Lagrange 1779]. In the first three articles of that memoir he gives examples of
problems in plane geometry (on evolutes, “roulettes”, and more generally on curves
having contact of some order) that are solved by considering singular solutions
instead of complete solutions. For instance, the problem of finding the involutes of a
given curve is a second-order problem in integral calculus, so that apparently there
are two indeterminate elements; nevertheless, there is only one, namely the first
point of the involute (in figure 65 in page 114, if BDF is given and AH K is sought,
the length, but not the direction, of AB is arbitrary); this is because the involute
is the envelope of a family of circles whose centres are on the evolute. Those
examples can be seen in coordination with a remark in [Lagrange 1774, §56]:
the most natural solution of the problem on surfaces above is the sphere, which
is not represented in the complete integral, but rather by the singular integral;
that shows “la nécessité d’avoir égard a ces sorts d’intégrales pour avoir toutes les
solutions possibles’%4. All this sounds like an answer to Euler’s previous objections
on singular integrals and especially to [Condorcet 1770-1773)].

The fourth “article” is quite different, having no direct connection to singu-
lar integrals, although it revolves around elimination of constants. Lagrange seeks
equations for surfaces composed of lines “of a given nature”;%® for this, he con-
siders the equations of the composing lines and differentiates them relatively to
the constants which characterize each line; he then eliminates all the constants,
obtaining the desired equation. We will see below that Monge carried this kind of
procedure much further.%6

6.1.3.4 Monge: geometrical integration

We have already mentioned in sections 4.2.2.1 and 6.1.3.2 Monge’s association
of differential equations in three variables to families of surfaces. In the latter

63 Although Lagrange does not do it, the example above can also be used to illustrate the
diversity of complete integrals: the family of all right cylinders with radius h and axis through
the origin is a complete solution (the two arbitrary constants m and n in ¢a = m + na ensure
that).

64“the necessity of taking into account this type of integrals to have all the possible solutions”

65Lagrange assumes that these lines must intersect consecutively (or be parallel, which may
be interpreted as intersection at infinity). In the case of straight lines this makes him miss the
case of skew surfaces [Lacroix Traité, I, 501].

66The fifth and final “article” in [Lagrange 1779] is also very different, but in another sense: it is
there that Lagrange presents his method for integrating quasi-linear first-order partial differential
equations. The connection with singular integrals is that it is a generalization of a method given
in [Lagrange 1774, § 52]. A geometrical example is given, but it is irrelevant for us here.
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section only his early studies, on the determination of arbitrary functions involved
in integrals, were addressed. In this section we will look at later developments.
In [Monge 1780] he put to work several aspects of the association just men-
tioned, the family in question being that of developable surfaces . We have already
seen (page 129) that he obtains in three different ways their differential equation

80z - ddz = (6dz)? (6.18)

(where ¢ still refers to partial differentiation relative to x, while d refers to partial
differentiation relative to y). For ruled surfaces he obtains

2
_ 2 _ _ 2 _
05 ( 0dz + /(0dz)? — §dzddz i 0dz + /(0dz)? — §dzddz o,

ddz ddz

of which (6.18) is clearly a particular case [Monge 1780, 431, 435]. A developa-
ble surface is completely determined by its edge of regression: if the latter has
projections y = 1 - x and z = ¢ - x, then the equation of the surface is

z=pV+(@-=V)¢'V, (6.19)

where V' is such that
y=v-V+(x-V)y'V, (6.20)

and ¢’ and 1’ are the derivatives of ¢ and ¢ [Monge 1780, 387, 415]. The first
derivation of (6.18) is precisely obtained through differentiation of (6.19) and (6.20)
[Monge 1780, 385-389].

In 1776 Monge received from Condorcet an offprint of [Lagrange 1774], and
he was delighted with it [Taton 1951, 190-192]. The association between envelopes
and singular integrals opened many possibilities for the associated study of surfaces
and partial differential equations, as did the elimination of arbitrary elements in
finite equations.

Some years later Monge wrote two memoirs on surfaces generated by the
movement of space curves.%” According to Taton [1951, 285-286], [Monge 178/-
1785] was written in 1783 and received a favourable report for publication by the
Turin Academy in February 1784. We will look only at the first problem studied:
that of a surface generated by a circle of constant radius which moves remaining
always perpendicular to the space curve described by its centre. If this curve has
equations x = 1z and y = ¢z, 2’ represents the third coordinate of the centre,

67We cannot exclude the possibility that Monge was inspired in this by the fourth article of
|[Lagrange 1779], which appeared in 1781, but apropos of a completely different issue Monge
claimed later not to have known [Lagrange 1779] (in [Monge 1784b, 118], which according to
Taton [1951, 289] was submitted only in 1786). The issue there was Lagrange’s method for inte-
grating quasi-linear first-order partial differential equations, which appeared in the fifth article
of [Lagrange 1779].
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and a is the radius of the circles, then the fact that each point of the surface is on
a circle is expressed by

(2224 (y—¢2) + (x—y2) > =d® (6.21)

and the fact that each point on the surface is on the normal plane to the curve
that passes through the centre of the corresponding circle is expressed by

z2—2 4+ (y— 92" )¢' 2 + (x — 2" )W = 0. (6.22)

If the curve is given, then all there is to be done is to eliminate z’ between these
two equations. But if we want the general equation of these surfaces, expressing its
generation without regard for a particular curve, then ¢ and ¢ are to be considered
as arbitrary and be eliminated using differentiation. The clumsy final result is the
second-order equation

4 dz\2\ddz dz dz ddz dz\2\ ddz 2 J ddz ddz ddz \2
k +ak{(1+(@) Vet 2@ g dsay + (14 () )d_y2}+a {WW — (Gaay) }
0,

where k% =1+ (£)? + (3—;)2. Monge [1784-1785, 22] does not fail to notice that
(6.21) is the equation of the spheres with centre in the curve and radius a, and that
(6.22) is the differential of (6.21) relative to z’, so that the surface is the envelope
of those spheres, or “a la maniére de Mr. De la Grange son équation est l'intégrale
particuliére de I’équation différentielle qui appartient & toutes les sphéres”8.
Notice that elimination of arbitrary elements plays here a double role. The
first, which had always been predominant in Monge’s studies of classes of surfaces,
is in keeping arbitrary the curve used in the generation of the surfaces in a class; the
second role can be thought of as obtaining a surface as the envelope of a family of
other surfaces, although it is not always explicitly presented that way: the surface
may be seen as generated by the movement of a curve (that Monge would later call
characteristic curve) which is in fact the intersection of two consecutive surfaces in
the family. A major difference is that the first role typically involves elimination of
arbitrary functions, while the second involves elimination of arbitrary constants.
The second role is of Lagrangian inspiration (although of course one can see it
in plane geometry since the late 17th-century studies of envelopes, and might
see traces of it in space geometry in the elimination of § for obtaining (6.15)
in [Monge 1771, 51-52]); the first role is essentially due to Monge: one can see
traces of it in the fourth article of [Lagrange 1779], but it clearly conforms to
Monge’s program, and moreover it can be seen applied in [Monge 1773a, 268],
where equation (6.17) is obtained by writing (6.16) as % = pV, taking partial
differentials relative to = (namely Ndz— NSM — 26N +MJSN = N2¢'V.5V) and to

68¢in the manner of Mr. De la Grange, its equation is the singular integral of the differential

equation which belongs to all the spheres”
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y (namely N9z — NOM — 20N — MON = N?¢'V.0V), and eliminating N2V 'V
between these .

[Monge 1784a] (submitted to the Paris Academy in July 1785, according to
Taton [1951, 287]) is an elaboration of the previous memoir. There Monge insists
even more on the first role of elimination. An equation for a class of surfaces
defined by a form of generation involves arbitrary functions which represent the
curve that specifies each member of the class. The fact that a function is arbitrary
can be expressed in two ways: either by representing it by a special character; or
by eliminating it between the differentials of the finite equation, thus obtaining a
partial differential equation for the class of surfaces, where there is no trace of the
generating curve [Monge 1784a, 86]. Monge even develops a new method for the
elimination of an arbitrary function: the traditional method was to differentiate
relatively to x, then relatively to y, and then eliminate the arbitrary function and
its derivative (which had been introduced by the differentiations) between the three
equations (one finite and two differential); his new method consists in regarding
the argument of the arbitrary function as constant (that is, if the finite equation
involves p(w), where w is a known function of x, y and z, one puts w = const.,
and then takes the total differential, minding that ‘;—Z has now a determinate value
established by w = const.). The main advantage is that no new functions appear.

The second role of elimination gained importance in [Monge 1784¢| (see sec-
tion 6.1.3.5), and especially later in [Monge Feuilles|, where many surfaces are
studied as envelopes of families of other surfaces. In Lagrangian terms, this does
not mean that much attention is paid to singular solutions, but rather to general
solutions — we have seen that the geometrical interpretation of a general solution
is a collection of envelopes of one-parameter families of surfaces. Nor does Monge
dwell much on complete solutions (again, in the Lagrangian sense). He does con-
sider a finite equation F' = 0 for enveloped surfaces containing two parameters «
and (; but immediately (in the same sentence) he takes 8 = pa [Monge Feuilles,
n° 7-ii]; the two parameters are only useful for him to have a directing plane curve
y = wx. His first example is a simplified version of the one seen above: a surface
enveloping a family of spheres of constant radius a whose centres are on the curve
y = ¢x,z = 0 [Monge Feuilles, n° 7-ii — 8-i|; since in this case there is only one
arbitrary function, the differential equation is of first order:

dz\> dz\> 9
1+<dx> +(dy)]—a.

But one of the most important aspects of [Monge Feuilles| for differential
equations is its concern with characteristics. A characteristic curve of an envelope
is the intersection of two consecutive surfaces in the family (in the example above,
a vertical circle of radius a). Monge had given in [1784b] a method for reducing
the integration of a partial differential equation to that of a system of ordinary

differential equations. Oddly for Monge, this method did not come then with a
geometrical interpretation. This only appeared later, in [1784¢c| and more explicitly

22
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in [Feuilles]: those ordinary differential equations belonged to the projections onto
the coordinate planes of the characteristic curves of the integral surface of the
partial differential equation. Among other things, Monge |Feuilles, n° 27-iv — 28-
iv] used this method to integrate the equation of minimal surfaces [Taton 1951,
302-303].

6.1.3.5 Monge: integration of “ordinary” differential equations not satisfying the
conditions of integrability

The last example of Monge’s geometrical integration we will look at concerns what
he called “equations of ordinary differences in three variables” — that is, equations
involving ordinary, or total, differentials of three variables; in the first-order and
first-degree case, they correspond, in modern terms, to “Pfaffian equations” (in
three variables).%?

We have seen above (section 6.1.3.1) that Clairaut had arrived at a necessary
condition (6.13) for a differential equation in three variables to be solvable.”™ For
this, Clairaut had assumed that the integral of such a differential equation was
composed of one finite equation — or equivalently, that the geometrical construc-
tion of such a differential equation resulted in a surface. Euler [Differentialis, 1,
§ 307-318; Integralis, 111, ch. 1] had followed Clairaut’s assumption,”! in a more
functional manner: using an analogy with finite equations, he had concluded that
for a differential equation in three variables to be meaningful, one of those variables
had to be a function of the other two: “aequatio differentialis tres variabiles com-

69Monge also addressed ordinary differential equations in more than three variables, but we
will omit them here: he was clearly guided by analogy in that, his reasoning being essentially
geometrical.

"In fact, a slightly different version of this condition had already been found by Fontaine
[Greenberg 1982, 12, 20-26]. Clairaut, although critical of Fontaine’s style, acknowledged his
priority [1740, 310]. Furthermore, Cousin [1796, I, 258] attributed (6.13) to “N. Bernoulli” —
presumably Nicolaus (I) Bernoulli, in an extract of a letter published in an article by his cousin
Nicolaus (II) Bernoulli [1720, 442-443] (see [Engelsman 1984, 186-187] for the unravelling of this
“bibliographical monster”, which had been cited by Poggendorff and Fleckenstein as it if were an
independent article, with a wrong date, and in the latter case with wrong page numbers — and
still Engelsman [1984, 231] cites it simply as being § 30 in [Nic. Bernoulli 1720], apparently not
noticing that while it is indeed § 30 in Johann Bernoulli’s Opera Omnia, it is numbered § 29 in the
original publication in the Actorum Eruditorum Supplementa, 7 (1721), pp. 310-312, because of a
duplication of § 22). Now, a formula somewhat similar to (6.14) does occur in [Nic. Bernoulli 1720,
443] — namely, dg = T'qdy + Rdy, for dz = pdy + q da, where dp = T'dx + Sdy + Rda and dgq is
the dlfferentlal of q holdlng a constant 1n modern notation, and n0t1c1ng that holdlng a constant
makes dq = qd:): + qdy = pdy + —dy, this amounts to pdy + dy = qaz dy + 2 dy,
whence p aq +2 ay = q P + that is, the condition of 1ntegrab111ty of dz = pdy+qda. Not only
these later developments are not present, but also Bernoulli does not use the formula at all as a
criterion for integrability; rather, he uses it to obtain g, given p (i.e., to solve what Engelsman
[1984] has called the “completion problem”). What really appears in Bernoulli’s derivation of
that formula for the first time is something else, although essential for (6.13): the equality of
mixed second-order differentials — Lacroix noticed this in [Montucla & Lalande 1802, 344].

"n spite of Fontaine’s (and to some extent Nicolaus (I) Bernoulli’s) priority, it was Clairaut
who communicated (6.13) to Euler [Engelsman 1984, 198|.
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plectens determinabit, qualis functio una sit reliquarum”” [Euler Differentialis,
I, §307]. He had also reproduced Clairaut’s condition (6.13), but of course with
purely analytical proofs [Euler Differentialis, I, § 313-316; Integralis, II1, §,1]; an
equation was “real” if it verified this condition, and otherwise it was “imaginariam
seu absurdam””® [Euler Differentialis, 1, § 317].

In addition, and for similar reasons, Euler had also declared absurd those
equations in which the differentials were raised to powers higher than 1, such as
Pdz? + Qdy? + Rdz? 4+ 2S dx dy + 2T dx dz + 2V dy dz = 0, unless they could be
reduced to the form P dx + Q dy + Rdz = 0 | Differentialis, § 326; Integralis, § 27|.

In [1768, 15-16], Condorcet challenged this. He accepted that equations
“qu’on appelle absurdes” do not have integrals, but not that the related problems
are necessarily impossible: given an absurd first-order equation in three variables,
the problem is not satisfied by any surface; but if the equation is regarded as re-
presenting a curve of double curvature, one projection of which is arbitrary, the
problem is not only possible, but even has an infinity of solutions. He might have
been thinking of Newton [Fluzions, 83]: as Lacroix would point out (see page 253
below), Newton had already used, in order to solve fluxional equations in n varia-
bles, the technique of temporarily reducing them to equations in two variables by
establishing n — 2 relations between the n variables.

But Condorcet did not develop this idea. It was up to Monge to do it, in
[1784c]. For him, no differential equation in three variables is absurd; those that
verify the integrability condition (6.13) belong to curved surfaces, their integrals
being single equations, with single arbitrary constants; while those that do not,
rather than belonging to no geometrical object, or having no integral, belong to
families of curves in space, their integrals being systems of two equations’™. In
more modern (or more Eulerian) terms, an equation relating the differentials of
three variables may determine two functions of one independent variable, instead
of necessarily one function of two independent variables.

Monge addresses firstly higher-order equations, and his first example [1784c,
506-509] is

dz? = a®(dx® + dy?), (6.23)

which obviously belongs to the curves whose elements make a constant angle with
the x,y plane. Therefore, he considers the straight lines that make that angle:

1
r=az+, y:zwﬁ—cﬂ—kv. (6.24)

But this is not the “complete” integral of (6.23)75: eliminating « in (6.24) gives

724y, differential equation involving three variables determines which function one of them is of

the others”

73“imaginary or absurd”

74With the sole exception of M2dz?™ 4+ N2dy?™ 4 P2dz?™ = 0, whose integral was the system
T = a,y = b,z = c¢: one arbitrary point in space.

75That is, it is not the most general one. Monge never followed Lagrange’s distinction between
“complete” and “general” integrals (see section 6.1.4.2).
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(x—0B)2+(y—v)?= 2—2, that is, the cones with vertices on the x,y plane whose
constituent straight lines make that angle;’® putting v = ¢, i.e., making the ver-
tices follow an arbitrary curve, two consecutive cones will intersect along a straight
line, included in (6.24); but the envelope of these straight lines of intersection will
also satisfy (6.23); thus the complete integral will be the result of eliminating 3
between

2
(2—B)*+(y—¢B)* = 2_2 z—B+(y—pB)¢' B =0, and —1—(¢'B)*+(y—pB)¢"B =0

(the reason why there are three equations here instead of two is precisely that 3
has still to be eliminated; but this cannot be done explicitly, on account of the ar-
bitrariness of ). A particular case is the thread of a screw with axis perpendicular
to the x,y plane.

After a couple more examples, Monge [1784¢c, 518-520] provides a more ge-
neral picture: given an equation M = 0 of a family of surfaces (besides the co-
ordinates x,y and z, M is supposed to involve a parameter «, and an arbitrary
function of it v «), a partial differential equation V' = 0 for the envelope of those
surfaces may be obtained by eliminating o and ¢ a between M = 0, (%) =0,

77

and <M> = 0; but this envelope is composed of its characteristic curves’’, and

dy
they in turn intersect two by two, along a curve of double curvature, which Monge
calls here the “limit of the envelope”, but which he would call in [Feuilles] the
“edge of regression”"®; eliminating o and ¢ a between M = 0, (%) =0,dM =0,
and d.(%) = 0, one obtains an equation U = 0 for the edge of regression — an
ordinary differential equation in three variables, of degree higher than 1, which
would be absurd to Euler.

The most important practical consequence of all this is the equivalence, in a
sense, between U = 0 and V' = 0. Monge shows how to obtain one from the other
without knowing their integrals [1784¢c, 520-5], and that if the integral of V = 0
is the result of eliminating a from M =0 and (4£) = 0, then eliminating « from
M =0,(%) =0 and (L) = 0 gives the integral of U = 0 [178/c, 525-6].

As for linear”™ equations that do not satisfy the integrability condition,
Monge [1784c, 528-532] applies procedures derived by analogy from the consi-
derations above for higher-degree equations, using auxiliary partial differential
equations. In an “addition” at the end of the memoir [1784¢c, 574-576], he remarks
that he has not “constructed” any of these linear ordinary equations, and so he
gives an example, in order to show “ce que ces sortes d’équations signifient dans
Pespace”®0: the apparent contour of a surface of revolution seen from a point with

76 These cones are made up of straight lines satisfying (6.23), but unlike what Taton [1951,
298| says, they do not satisfy (6.23) themselves. The whole point is that these equations belong
to families of curves, not to surfaces.

7"Monge does not use this name here. Instead, he speaks of “curves of intersection”.

78Here this name is reserved for developable surfaces.

1. e., quasi-linear.

80«what is the spatial meaning of this kind of equations”
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coordinates a, b, ¢; this amounts to the curve where that surface is tangent to a
conical surface with vertex at that point; it is by combining the partial differen-
tial equations of the surface of revolution py — gz = 0 and of the conical surface
p(x —a) + q(y — b) = z — ¢ that Monge obtains the ordinary differential equation
for the apparent contour [x(z — a) +y(y —b)]dz = (z — ¢)(z dx + y dy); its integral
is given by the system

z=(z® +1%),

2[z(z —a) +y(y —b)l¢' = v —¢,

where ¢ is an arbitrary function. After this single example he concludes that any
linear first-order ordinary differential equation in three variables not satisfying the
integrability condition belongs to the curve of contact of two curved surfaces (each
given by a linear partial differential equation).

It is interesting to look at the first attempt to give an analytical version of
this, by an author whom Lacroix [Traité, 11, 629] appreciated particularly: the
Italian Pietro Paoli. Given a differential equation in x,y, z that does not satisfy
the integrability conditions, Paoli’s idea [1792, 4-8] is that if one establishes an
arbitrary relation y = ¢.z, that equation will be transformed into one in two
variables x, z — thus necessarily integrable; the integral of the original equation
will be the system formed by y = ¢.x and the integral of the secondary equation.
Of course this cannot be done in general; but we can obtain a “particular” integral
by establishing a particular, rather than arbitrary, relation between = and y; if we
include an arbitrary constant « in this relation, that particular integral will have
two arbitrary constants (o, and another § originating in the integration of the
secondary equation); then, by a Lagrangian procedure of variation of constants,
we can obtain the complete integral®'. He manages to derive from this Monge’s
procedure for integrating linear equations.

A rather less interesting analytical treatment of these equations was given
by a Belgian mathematician, Charles-Frangois de Nieuport [Mélanges, 1, 211-230],
focusing on systems of two or more such equations. It is only worth noting that
Nieuport is probably the only author to cite Condorcet (namely [1768, 15]) instead
of Monge (or even Newton), for the idea of establishing a relation between two of
the variables in an equation in three variables that does not satisfy the condition
of integrability.

In spite of these reactions by lesser-known mathematicians, this work by
Monge was ignored by textbook authors. As late as [1798, II, 129-135] Bossut
declared equations not satisfying the conditions of integrability to be not real and
having no integral. Cousin [1796, I, 258-259] was not so radical, but only because
he paid much attention to observations by Euler [Differentialis, 1, § 310, 323-325]
and Laplace [1772a, 368-370] on the occasional existence of particular integrals of
these equations.

810Of course, Lagrange would call this the “general”, rather than “complete”, integral.
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6.1.4 The formation of differential equations and their complete and
general integrals

6.1.4.1 Ordinary differential equations

[Lagrange 177/] represented somewhat more than a theory of singular solutions. It
entailed also a change in the theory of differential equations, in an aspect which (at
least in theoretical or pedagogical terms) could go beyond the subject of singular
integrals: it stressed the formation of differential equations by algebraic elimination
of arbitrary elements between a finite equation and its differential(s), as opposed to
focusing only on the process of integration (or on that of differentiation, as a simple
inverse process). Engelsman [1980, 16] put it nicely in the following diagram:

integration
—-—

Euler : Z(x,y, g—g) =0 V(z,y,a) =0,

Lagrange : Z(z,y, Z—z) —( Climingtion of a V(z,y,a) =0.

An early sign of this outside the area of singular integrals is the explanation
given in [Lagrange 177/, § 32| for the fact that a second-order differential equation
has two first-order integrals: if instead of eliminating both @ and b in (6.11) one
simply eliminates a between V' = 0 and g—z — p = 0, one will obtain precisely one
of those first-order integrals of Z' = 0; eliminating b one will obtain a different
first-order integral. Lagrange comments that this is “connu des Géometres”32.

Later, when Lagrange got around to writing his first treatise on the calcu-
lus, he introduced a distinction in terminology between the equations that are
obtained by immediate derivation of a primitive equation (“prime”; “second”; etc.
equations) and those obtained by combining the primitive equation with its prime
equation and/or second equation and/or etc. (“derivative equations”®?) [Lagrange
Fonctions, 51].8% He then explained the occurrence of arbitrary constants in primi-
tive equations obtained from derivative equations (i.e., in solutions of differential
equations) by their disappearance through elimination between those primitive
equations and their prime, second, etc. equations [Lagrange Fonctions, 56; Calcul,
151]. This should be compared to Euler’s explanation, which stressed differenti-
ation: to remove the constant a from the equation x® + y* = 3axy, one should
divide by xy to obtain ey’ 3a, where the constant a is isolated, so that it
disappears by differentiation [Euler Differentialis, 1, §289]; the arguments about
arbitrary constants in the preface to [Euler Integralis, I| make no specific refe-
rence to differential equations; and arbitrary constants appear casually in the first

82¢known by the Geometers”

83The original French being “équations derivées”, “derived equations” might be a better trans-
lation. But a nicer rendition in English of this distinction would be achieved by calling “derived
equations” those obtained by deriving a primitive equation and “derivative equations” those
obtained by combining the former.

841n [Lagrange Calcul, 112] he abandoned the distinction in terminology, calling both kinds of
equations either “prime equations” or “first-order derivative equations”, etc.
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chapters of the second section of [Euler Integralis, I] (on differential equations)
because the methods used (separation of variables, integrating factors) involved
integration of explicit functions. Euler’s tendency for analogy between integrating
explicit functions and solving differential equations has already been noted twice
(sections 5.1.1 and 6.1.2.1).

But did [Lagrange 1774] really introduce this new conception of formation of
differential equations? The idea of conceiving a differential equation as the result
of the elimination of arbitrary constants between a finite equation and its differen-
tials can already be found (probably for the first time) in [Fontaine 1764, 84-85]
(in a memoir which according to Fontaine was submitted to the Paris Academy in
1748) — together with the argument we saw above used by Lagrange for the exis-
tence of two first-order integrals of a second-order differential equation; a similar
one for the existence of three second-order integrals of a third-order differential
equation; related ones for the uniqueness of the differential equation derived from
a given finite equation and of the finite (complete) integral of a given differential
equation of any order [Fontaine 1764, 86-87]; and finally a claim for priority in
these results (included in the table of contents). Fontaine was not concerned with
singular solutions; rather, his purpose was the construction of tables of integrals
of differential equations, for which he conducted a combinatorial study of possible
forms for those equations and their solutions — in fact a study restricted to forms
not involving transcendental functions [Gilain 1988, 93]. Fontaine had a “difficult
personality”, his work was “of limited scope, often obscure, and willfully ignorant
of the contributions of other mathematicians” [Taton 1972, 54] and “keeping him-
self aloof, [he| published very little during the bulk of his career, waiting instead
until 1764 to bind his unpublished manuscripts together with a few things that
had appeared earlier, in the form of complete works”®> [Greenberg 1981, 252], so
that one might assume that his views on the formation of differential equations
were generally overlooked. However, as we will see below, Lacroix (section 6.2.1.1)
and Cousin were aware of them, and Condorcet tried to expand on them. One
wonders whether Lagrange might have been inspired by Fontaine’s work, realizing
the potential of that simple idea. And to what did Lagrange refer as “connu des
Géometres”? The plain fact of existence of two first-order integrals; or Fontaine’s
argument? Be as it may, around 1800 there was some public acknowledgement
of these ideas to Fontaine [Cousin 1777, 183; 1796, 1, 196; Montucla & Lalande
1802, 344].

It does seem very likely that [Lagrange 177/] brought a much wider accep-
tance to this conception of formation of differential equations — not in the least
because it used it to obtain results that were definitely non-trivial. However, that
acceptance varied among the writers of textbooks and treatises in the late 18th

85Not thoroughly complete, as he published three memoirs in the volumes of the Paris Academy
for 1767 and 1768 (thus after [Fontaine 1764]). We may also notice the contradiction between
the inclusion of “a few things that had appeared earlier”, namely in the memoirs of the Paris
Academy for 1734 and 1747, and the first title of [Fontaine 176/], which mentions the unpublished
character of the works contained within.
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century. Bossut used it when presenting singular integrals [1798, 11, 320-321], but
ignored it elsewhere, to the point of arguing for the existence of two first-order in-
tegrals of a second-order equation simply by giving examples [1798, 11, 266-267].
Cousin, on the other hand, not only followed Lagrange in using it for particu-
lar solutions [1777, 528-549; 1796, 11, 91-105] but also gave Fontaine’s argument
(crediting it to Fontaine) for the existence of n integrals of order n — 1 of any
differential equation of order n, and for the uniqueness of its finite integral [1777,
181-183; 1796, 1, 194-196].

From 1764 onwards, Condorcet studied the integral calculus in a way much
influenced by Fontaine. Like Fontaine, Condorcet tried to have a list of all the
possible forms of integrals for each type of differential equation. This led him (as
it had led Fontaine) to observe the formation of differential equations from finite
equations by differentiation and elimination [Condorcet 1765, 37-44, 67-69; Gi-
lain 1988, 91-95] — mainly elimination of transcendental functions, but taking the
arbitrary constants with them; [Condorcet 1770] is more focused on elimination
of arbitrary elements (constants and functions).®® While Condorcet did not share
at all Fontaine’s lack of social skills, he did share his obscurity of language when
writing mathematics, so that his mathematical works are and always were diffi-
cult to follow — which was publicly noticed by his friend and admirer S. F. Lacroix
in 1813 [Gilain 1988, 88, 117]. Lacroix also decided not to mention in his Traité
either of Fontaine’s or Condorcet’s “general methods of integration”, because of
their labouriousness [Lacroix Traité, II, 251]. However, we will see below that be-
sides the full adoption of Fontaine’s conception of the formation of differential
equations, Lacroix also made use of some of Condorcet’s reflections, namely on
partial differential equations.

6.1.4.2 Partial differential equations

What about the formation of partial differential equations: what is the equiva-
lent of Fontaine’s conception of ordinary differential equations as the result of
elimination of arbitrary constants? Given that in the traditional theory of partial
differential equations, as exemplified in [Euler Integralis, II1|, arbitrary functions
play a role entirely analogous to that of arbitrary constants for ordinary differen-
tial equations, one might expect to see partial differential equations regarded as
the result of elimination of arbitrary functions.

But as we have already seen [Lagrange 177/ takes a clearly different op-
tion: a first-order partial differential equation with two independent variables is
the result of eliminating two constants between a finite equation and its two first-
order partial differentials. This has serious consequences for the classification of

86 Condorcet’s researches would later evolve into a theory of integration in finite terms
[Gilain 1988], which remained mostly unpublished: his main work on this was a large trea-
tise of integral calculus which was only partly printed (152 of what would be about 1000 pages
|Gilain 1988, 127]; according to Lacroix [Traité, 2nd ed, I, xxii-xxiii] those printed pages cir-
culated at the time; but he was only able to study the whole manuscript in 1824 [Gilain 1988,
110].



6.1. The eighteenth century 221

types of solutions: the finite equation involving two arbitrary constants is the com-
plete integral of the differential equation; the general integral is obtained from the
complete integral by establishing an arbitrary functional relation between the two
constants and then eliminating the one which remains arbitrary — put b = ¢(a)
in the complete integral V(x,y, z,a,b) = 0, differentiate relative to a alone, and
eliminate a (see section 6.1.2.3). The name “general integral” is justified in that
it contains the complete integral: we can specify the arbitrary function included
in the general integral by giving it a form involving two arbitrary constants and
the result is a complete integral®” (a byproduct of this argument is the conclusion
that there are many different complete integrals for the same partial differential
equation) [Lagrange 177/, §56]. However, since the general integral may be ob-
tained from a complete integral through the process above, it appears that the
latter is equally powerful — and it is possible to pass from one complete integral to
another through the general integral (in practice, this argument is useless, because
it is usually not possible to obtain the general integral ezplicitly from a complete
integral — see below).

The historical literature on partial differential equations stresses this scheme
as a very important point. For example, [Kline 1972, II, 532]: “Lagrange’s termi-
nology, which is still current, must be noted first to understand his work” (fol-
lowed by definitions of complete, general and singular integral); [Engelsman 1980,
19-20]: “Euler’s complete solution is characterized by an arbitrary function. |...]
Lagrange’s complete solution, on the other hand, is characterized by the occur-
rence of two arbitrary constants. [...] But far from being the final result itself, it
is only an intermediary means for arriving at it. [...] Lagrange’s new concept of a
complete solution and the associated ‘variation of constants’ method provided a
structure for the set of all solutions of a first-order partial differential equation”;
[Demidov 1982, 330]: “The origin of Lagrange’s ‘theory’ [of first-order partial dif-
ferential equations] is connected with his gradual approach to the new concept of
a complete solution”.

[Lagrange Fonctions, 99-100] is consistent with this: a primitive equation

F(zr,y,2) =0,
where z is regarded as a function of x and y, has two prime equations:
F'(x)+2F(2)=0 and F'(y)+zF(z)=0

(i.e., ‘?0—1; + g—fc%—f = 0 and % + g—z% = 0). First-order derivative equations
are obtained by combining these three equations in any way; as we have three
equations, two constants may be eliminated, so that if we want to determine a
function z from an equation in z,y, z, 2’ and z,, “I’équation primitive entre x,y et

z devra contenir deux constantes arbitraires”8. In the very next page Lagrange

87Later, he would deny this inclusion [Lagrange Calcul, 372-381]. See section 9.5.3 below.
88«the primitive equation between z,y and z must contain two arbitrary constants”
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considers the possibility of one of the constants being a function of the other,
and concludes that “I’équation primitive qui satisfait en général & une équation
du premier ordre, doit renfermer une fonction arbitraire’®® (emphasis added); the
primitive equation with two arbitrary constants (i.e., the complete integral) is an
intermediate step towards the more general one with an arbitrary function (the
general integral), but it is enough to generate it, to generate the singular “primitive
equation” (see section 6.1.2.3), and to generate the differential equation. Thus, it
seems to occupy the central role in the structure of possible solutions.

However, there are a few problems with giving this scheme such an essen-
tial role in Lagrange’s theory of partial differential equations, and more generally
in the theory of partial differential equations of the late 18th century. The first
problem is that other works by Lagrange are not consistent with it. After the in-
troduction of this new scheme in [Lagrange 177/], Lagrange [1779] reverted to a
more traditional terminology, speaking of a complete integral as containing an ar-
bitrary function. [Lagrange 1779] is a memoir mainly on geometrical applications
of singular integrals (see section 6.1.3.3), but without ever addressing the dis-
tinction between complete and general integrals; its fifth “article” has little to do
with geometry, apart from some worked examples: it is Lagrange’s presentation of
his method for integrating (quasi-)linear first-order partial differential equations.
Given the partial differential equation

dz dz dz

d:p+de+th + &e. = Z,
where P, Q, ..., Z are functions of z,y,t, ..., z, Lagrange forms the ordinary diffe-
rential equations dy — Pdz = 0, dt — Qdz = 0,..., dz — Zdxz = 0, whose solutions
have one arbitrary constant each; from those solutions, these constants can be
expressed as functions of x,y,t, ..., z; doing this, and calling them «, 3,7, ..., the
equation

a=¢(B,7,&e.),

where ¢ is an arbitrary function, is an integral of the partial differential equa-
tion; “laquelle intégrale sera complette, puisqu’elle contient une fonction arbi-
traire”®” [Lagrange 1779, 153]. When some years later he gave a fuller proof of
this fundamental method, he once again used the expression “complete integral”
[Lagrange 1785, §5]. In this particular context, the concept of an integral with
arbitrary constants instead of arbitrary functions is in fact irrelevant.

It cannot be said to be entirely irrelevant in a different context: that of La-
grange’s method to reduce the integration of a first-order partial differential equa-
tion with two independent variables x, y (and one dependent u) to the integration
of a (quasi-)linear partial differential equation with an extra variable p = g—z
[Lagrange 1772b]. Lagrange noticed that it would be enough to find a value for p

89%the primitive equation which satisfies in general a first-order equation must contain an
arbitrary function”
90«this integral will be complete, as it contains an arbitrary function”



6.1. The eighteenth century 223

containing one arbitrary constant a; a procedure of variation of this constant « in-
troduces the necessary arbitrary function [Lagrange 1772b, §6]. At the end of the
memoir, in a series of paragraphs unrelated to the method of (quasi-)linearization,
Lagrange argues that such a procedure of variation of constants permits us to ob-
tain a value of u with an arbitrary function from one with two arbitrary constants
[Lagrange 1772b, §9-11]. Engelsman [1980] correctly points this out as the ori-
gin of the new conception of “complete integral” in [Lagrange 177/] — still, those
paragraphs at the end are not related to the main topic of [Lagrange 1772b]; a solu-
tion u with two arbitrary constants «, § does not occur in the (quasi-)linearization
method.

It is interesting to look at [Legendre 1787, 337-348|, where first-order non-
linear equations are examined. Legendre [1787, 337, 340] cites [Lagrange 1772b]
and [Lagrange 177/] explicitly, and [Lagrange 1779] implicitly. His version of the
complete/general integral — arbitrary constants/function issue may be summari-
zed thus: for an integral to be “complete” it must contain an arbitrary function; a
“particular integral” (that is, one without an arbitrary function) which contains as
many arbitrary constants as there are independent variables is usually enough to
deduce the “complete integral” by variation of constants?! [Legendre 1787, 338-
340]. It seems reasonable to assume that this was a common scheme (the most
common?) by the end of the 18th century: it keeps Euler’s terminology, but also
acknowledges some importance to integrals with arbitrary constants instead of
functions; however, it does not put them in the central place of the theory as
[Lagrange Fonctions] would do; it also fails to address the issue of the forma-
tion of partial differential equations (i.e., should they be studied as the result of
elimination of arbitrary constants, or of arbitrary functions?).

Similar schemes may be found in [Bossut 1798, II, 356-358, 429-434] (inte-
grals of partial differential equations are “completed” by arbitrary functions just
like integrals of ordinary differential equations are “completed by arbitrary cons-
tants”; integrals of partial differential equations containing arbitrary constants
instead of functions only appear very briefly when mentioning singular solutions)
and [Cousin 1777, 283, 702-710; 1796, 1, 253; II, 217-222] (complete integrals of
partial differential equations include arbitrary functions; arbitrary constants only
appear instead of arbitrary functions when mentioning particular solutions).

But there is a very important difference between these two traités. It was
seen above that Bossut mostly ignored Fontaine’s conception of the formation
of ordinary differential equations (except when reporting Lagrange’s theory of
singular integrals), while Cousin used it in at least one occasion, citing Fontaine.
Accordingly, Bossut [1798] does not address the formation of partial differential
equations — except, insofar as it is necessary, in his very brief account of Lagrange’s
theory of singular integrals of partial differential equations [Bossut 1798, II, 429-

91But not always: Legendre [1787, 340] gives two counter-examples in which the integrals thus
obtained, although including an arbitrary function, are not as general as the “complete” one
(because the functions involved have fewer arguments than the one in the “complete integral”).
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434].92 Cousin, on the other hand, often uses the idea that a differential equation
is the result of eliminating an arbitrary function contained in its integral “de
I'ordre immédiatement inférieur”®3 [Cousin 1777, 667;1796, 11, 181]. To integrate
M;li—; + Ng—; + Pz+ Q = 0 (where M, N, P and @ are functions of z and y),
he assumes that the “complete integral” has the form z = II + ¥ F': (w) (where
II, ¥ and w are unknown functions of x and y and F' is the arbitrary function);
he differentiates with respect to x and y separately, eliminates F:(w) and F':(w)
between the three equations, and compares the result with the proposed equation
[Cousin 1777, 295-296; 1796, 1, 260-261]. To integrate Mg—z +N% +V =0 (where
M and N are functions of x and y but V is a function of z,y and z), he gives
his own method, apparently submitted to the Paris Academy of Sciences in 1772,
which is similarly based on assuming the form (B) + F:(w) for the integral ((B)
being a function of z,y and z), differentiating, and eliminating F:(w) and F’:(w)
[Cousin 1777, 629-632; 1796, 11, 157-158].

Thus it seems that Cousin extended Fontaine’s conception of ordinary diffe-
rential equations to partial differential equations, not in Lagrange’s manner, but
rather according to the natural suggestion at the beginning of this section. This
turns out to be also a new form of Euler’s analogy between arbitrary constants
and functions.

This was followed, in a more explicit way, by an important riwval of Lagrange
in the study of partial differential equations in the late 18th century: Gaspard
Monge. It has been seen in section 6.1.3.4 that Monge gave much importance to
elimination of arbitrary functions. An example given was [Monge 1784a], a me-
moir on the determination of equations for classes of surfaces, with an emphasis
on the elimination of the functions that particularize each surface in the class. The
memoir that appears right after this in the volume of memoirs of the Paris Science
Academy for 1784 is also by Monge, but on the integration of partial differential
equations [Monge 1784b]. There Monge presents Lagrange’s method for (quasi-)
linear first-order partial differential equations (which he seems to have developed
independently), and extends it to higher-order and nonlinear equations (this would
later be known as the “method of characteristics”, after its geometrical interpre-
tation in [Monge Feuilles]). This memoir starts precisely with the elimination of
the arbitrary function ¢ from

U=¢V,

() (@) - (7)) () =

“C’est ce résultat nécessaire, exprimé en quantités différentielles, & dé-
livré de la fonction arbitraire ¢, que 'on nomme I’'équation auz dif-

resulting in

92Bossut [1798, TI, 373-386] reports Lagrange’s method for integrating (quasi-)linear first-
order partial differential equations, but not his method of quasi-linearization, which might have
motivated some reference to integrals with arbitrary constants instead of arbitrary functions.
93¢of immediatly lower order”
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férences partielles de la proposée, & dont celle-ci se nomme 1’intégrale
complete.”¥* [Monge 1784b, 120]

This conception is an important theme in this memoir. An example of its use is
Monge’s explanation for the nonlinearity of a partial differential equation as a
consequence of either an arbitrary function being raised to a power higher than
one in the complete integral, or of the arguments of an arbitrary function in the
complete integral being given by a nonlinear auxiliary equation; if neither of these
situations occur, then the elimination process produces a differential equation that
is linear with regard to the highest-order differentials [Monge 1784b, 164-168].

It was also mentioned above (section 6.1.3.4) that not much attention is paid
in [Monge Feuilles] to solutions with arbitrary constants (i.e. complete solutions
in the sense of [Lagrange 177/]. Accordingly, also there the expression “complete
integral” is used for solutions involving arbitrary functions [Monge Feuilles, n°
8-iii].

There are enough comparisons made by Monge between the roles of arbitrary
constants in integrals of ordinary differential equations and arbitrary functions in
integrals of partial differential equations [1771, 49; 1770-1773, 16; 1784a, 85-806]
to assume that, like Cousin, he was extending Fontaine’s conception of ordinary
differential equations to partial differential equations,”® in the way most natural
to him.

Thus, we can say that Cousin and Monge’s scheme is a more elaborate ver-
sion of the one seen above used by Legendre (and Bossut), with a choice on the
formation of partial differential equations: these are the result of elimination of
arbitrary functions contained in the complete integral; solutions containing arbi-
trary constants instead of functions may be useful for particular purposes but are
certainly not the central concept.

Condorcet also seems to have had such a scheme in mind. In [1770, 151-160],
he studied the number of arbitrary constants or functions that may be eliminated
between an equation and its differential(s); there he indicated (in a very unclear
way) important differences between ordinary and partial differential equations,
caused by the fact that partial differentiation of arbitrary functions introduces
more unknowns than equations with which to eliminate them. Below we will see
Lacroix’s much clearer version of this.

944Tt, is this necessary result, expressed in differentials and free from the arbitrary function ¢,
that is called the partial difference equation of the given [equation], and the latter is its complete
integral.”

95We may also notice that Fontaine’s conception is very clear in [Monge 1785b], a memoir on
ordinary differential equations.
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6.2 Types of solutions of differential equations in Lacroix’s
Traaté

6.2.1 Differential equations in two variables and their particular so-
lutions

6.2.1.1 The formation of differential equations in two variables

It has been seen in section 6.1.4.1 that in the late 18th century the adherence
to Fontaine’s conception of the formation of differential equations varied from
referring to it only when dealing with Lagrange’s theory of singular solutions to
making it a central piece in the presentation of differential equations. Lacroix was
definitely a supporter of the latter approach. How relevant he thought it to be can
be seen in a footnote signed by him included in [Montucla & Lalande 1802, 344|
(on Fontaine’s priorities in the history of differential equations):

“il ne faut pas oublier que I'on doit a Fontaine la maniére d’envisager
les équations différentielles comme le résultat de 1’élimination des cons-
tantes arbitraires entre une équation primitive et ses différentielles im-
médiates. Cette remarque contient le germe de la théorie de toutes les
espéces d’équations différentielles, ou aux différences, et sert de base a
lélégante théorie des solutions (ou intégrales) particuliéres, donnée en
1774, par Lagrange, dans les Mémoires de 1’académie de Berlin”%.

Indeed, traces of Fontaine’s conception can be seen in Lacroix’s Traité pre-
ceding the sections on particular solutions in volume II. It has been mentioned
above (section 3.2.4) that Lacroix included in the first chapter of volume I a sec-
tion “on differentiation of equations” [Lacroix Traité, I, 134-178], corresponding to
part of chapter 9 of [Euler Differentialis, I|. In that chapter Euler had remarked
on the possibility of using differentiation to remove constant, variable, irrational
or transcendental quantities. Lacroix [Traité, I, 144-147] duly reports this, but
with much less emphasis than Euler on the removal of non-constants;”” and, signi-
ficantly, he uses algebraic elimination of a constant between a primitive equation
and its differential, instead of Euler’s procedure of isolating the constant before
differentiating (see section 6.1.4.1). Lacroix remarks that although the resulting
equation is not the “immediate differential” of the primitive equation, it derives
from it in such a way that it expresses the relation that must hold between z,y
and % [Lacroix Traité, I, 145].

964it should not be forgotten that the manner of viewing differential equations as the result of

elimination of arbitrary constants between a primitive equation and its immediate differentials
is due to Fontaine. This remark contains the germ of the theory of all the types of differential
or [finite| difference equations, and is the basis of the elegant theory of particular solutions (or
integrals) given in 1774 by Lagrange in the Memoirs of the Berlin Academy”

97When he later pays more attention to elimination of functions, it is to eliminate arbitrary
functions from equations in more than two variables (see section 6.2.2) — something not in
[Euler Differentialis, I, ch. 9].



6.2. Lacroix’s Traité 227

The chapter on plane geometry in [Lacroix Traité, I] is not terribly relevant
here, because the theory of plane envelopes is much older than Lagrange’s theory
of singular solutions. But it is curious to note that just after explaining how to
arrive at the equation of the envelope of a family of plane curves, Lacroix remarks
that “le procédé par lequel on fait varier les constantes d’une équation, est un des
grands moyens de '’ Analyse”®® [Lacroix Traité, I, 429-430].

A reference to Fontaine’s conception of the formation of differential equations
that may seem much more surprising is in volume II, when introducing the method
of integrating factors. To explain this method, Lacroix reminds the reader that
differential equations are not in general the “immediate result” of the differentiation
of a primitive equation, but rather the result of the elimination of an arbitrary
constant between such an equation and its “immediate differential” [Lacroix Traité,
IT, 230] — this includes a reference to the passage of the first volume cited above
on elimination of constants, which reinforces the impression that in that passage
Lacroix had intended to (subtly) prepare the reader for “la théorie de toutes les
espéces d’équations différentielles”, and especially for Lagrange’s “élégante théorie
des solutions particuliéres” (see quote above from [Montucla & Lalande 1802]).

In case the primitive equation is in the form u = ¢, the elimination is imme-
diate: du = 0; if in addition it is not divided by any factor, it remains an exact
differential. But different situations may occur. Lacroix [Traité, 11, 234] gives the
example of first-degree equations, each of which, according to him, must be the
result of the elimination of a constant ¢ between a (primitive) equation of the
form P 4+ c¢@ = 0 (where P and @ are functions of = and y) and its differential
(dP + ¢d@ = 0); this elimination yields

QdP — PdQ = 0;

however, if we first put P+c¢@Q = 0 in the form v = ¢ (i.e., 5 = —c¢), differentiating

we arrive at

Ql'v

QdP — PdQ .

@
it is the disappearance of the factor -5, along with any possible common factor
to QdP and PdQ, that may prevent QdP — Pd(@ from being an exact differential.
This is quite an unusual explanation: given a differential equation Pdx +
Qdy = 0, Euler had assumed its complete integral V(z,y,a) = 0; considered it
put in the form F(z,y) = a; then differentiated, resulting in an exact differential
equation Mdx + Ndy = 0 that must be equivalent to Pdx + Qdy = 0; and finally
noticed that the equivalence implies that g = %, i,e, M = LP and N = LQ,
for some L [Euler Integralis, I, §459]. Arguments very similar to Euler’s were used
by Cousin [1777, 198-199; 1796, 1, 204-205] and Bossut [1798, II, 124-125]. Bé-
zout [1796, TV, 211] simply raised the possibility of making a differential exact

98«the procedure by which one makes the constants of an equation vary is one of the great
methods of analysis”
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through multiplication by a convenient factor, without any particular motivation.
[Lagrange Fonctions| does not address integrating factors.?”

Second- and higher-order differential equations also receive similar treatments
before the study of their particular solutions. For instance, Lacroix reports Fon-
taine’s (and Lagrange’s) explanation for the fact that a second-order equation has
two “first integrals” (that is, two first-order equations that satisfy it; the primi-
tive equation is its “second integral”): if U = 0 is a primitive equation containing
two arbitrary constants, ¢, ¢1, and if it is differentiated twice, then a second-order
differential equation W = 0 results from the elimination of ¢ and ¢; between
U =0,dU = 0, and d?U = 0; but there are two possible and distinct intermediate
steps, namely either to eliminate ¢ or ¢; between U = 0 and dU = 0, resulting in
different first-order equations — which may be called V = 0 and V; = 0, respecti-
vely; both the elimination of ¢; between V' = 0 and dV = 0 and that of ¢ between
Vi = 0 and dV; = 0 will result in W = 0; therefore both V =0 and V; = 0 are
first integrals of W = 0, while U = 0 is its second integral; similarly a third-order
equation has three first integrals and its corresponding primitive equation is its
third integral (and an n-th order equation has n first integrals and its correspon-
ding primitive equation is its n-th integral) [Lacroix Traité, II, 308-310; Fontaine
1764, 87; Lagrange 1774, §32].

Also integrating factors for second-order equations are explained by regarding
these as the result of eliminating a constant between a first-order equation and its
“immediate differential” — which may cause a factor to disappear [Lacroix Traité,
I1, 335].

6.2.1.2 Particular solutions of first-order differential equations in two variables

Obviously, Lacroix reports not only Fontaine’s view on the formation of differential
equations but also Lagrange’s theory of singular solutions.

However, he adopts Laplace’s terminology: “particular integrals” are particu-
lar cases of the complete integral; “particular solutions” are solutions not contained
in the complete integral, whatever values one might give to the arbitrary cons-
tant.'®° In a footnote, Lacroix warns the reader about Lagrange’s inverted use of
these expressions,'°! and argues for his choice: those solutions which are not contai-
ned in the complete integral, “ne s’obtenant point par les procédés de 'intégration,
ne doivent pas porter un nom qui rappelle ces procédés”0? [Traité, 11, 263]. An

99[Lagrange Calcul, 168-177] does, explaining their existence in a way similar to Lacroix’s,
although more detailed and generalized. But the first edition of [Lagrange Calcul] was first
printed in 1801 [Grattan-Guinness 1990, I, 196|, three years after [Lacroix Traité, II].

100There is one detail related to this in which Lacroix’s and Laplace’s terminologies are different:
Lacroix speaks of “complete integrals”, while Laplace [1772a] spoke of “general integrals”.

101Which is exaggerated: Lacroix incorrectly says that Lagrange called “particular solutions”
the “différens cas de I'intégrale compléte” (“several instances of the complete integral”) — Lagrange
had used the term “incomplete integrals” (see section 6.1.1).

102¢n0t being obtained by the procedures of integration, should not bear a name which reminds
of these procedures”
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argument which Lacroix does not invoke, but which might have some weight, is
that his choice is consistent with Euler’s terminology, unlike Lagrange’s.'%3

It is interesting to note that an option which was available at least since the
previous year in [Lagrange Fonctions, 69|, namely “singular primitive equation”
(or, adapting to the differential-integral language, “singular integral”, or even “sin-
gular solution”), is not even mentioned — although material from [Lagrange Fonc-
tions| (or at least from Lagrange’s lectures at the Ecole Polytechnique) is used in
this section (see below). The question about why Lacroix ignored this termino-
logy in the first edition of his Traité raises once again the issue of whether it was
more dependent on [Lagrange Fonctions| or on Lagrange’s 1795-1796 lectures at
the Ecole Polytechnique. One could speculate on whether Lagrange did use that
terminology in those lectures — he could have introduced it only when writing the
book, and Lacroix may have based the passage mentioned below on the lectures,
not on the book; the corresponding passage from [Lagrange Fonctions| is cited in
the table of contents [Lacroix Traité, II, vi] — but of course the table of contents
is the last item to print. Another possibility (which does not exclude this one) is
that the bulk of this section of Lacroix’s Traité (and of its other sections dealing
with singular solutions) was already advanced enough when Lacroix knew of this
material by Lagrange, so that his choice of terminology was beyond a point of re-
turn — the passage inspired by either Lagrange’s lectures or [Lagrange Fonctions|
is quite independent of the rest and could well be a later insertion; not having a
good reason to reject “singular solution” Lacroix might have preferred to omit the
possibility — but that is not consistent with his encyclopédiste approach; besides he
did mention Lagrange’s new terminology in the second edition, stressing the ana-
logy between “singular primitive equations” and “singular values” (i.e. non-analytic
points) of a function [Lacroix Traité, 2nd ed, II, 373, 388].194

Besides terminology, another small influence from Laplace can be seen in a
remark about a distinction to be made between trivial solutions (factors of the
given differential equation which do not involve either dx or dy; p = 0 trivially
satisfies uMdx + uNdy = 0) and particular solutions properly speaking |[Laplace
1772a, 344; Lacroix Traité, 11, 263]. Lacroix does not seem to have noticed Trem-
bley’s denial of this distinction (it is possible to transform the equation so that
the singular solution appears as a factor) [Trembley 1790-91, 10] — although he
did cite and use that memoir by Trembley (see below).

Apart from these two influences from Laplace and some different examples,
Lacroix [Traité, 11, 263-274] follows closely [Lagrange 1774, §3-20], that is, the
theory of singular integrals of first-order ordinary differential equations: given a
primitive equation U = 0 in the variables x, y and the constant ¢, the corresponding

103 And to a minor extent Laplace’s, as far as “general integral” goes.

104 As will be seen below, singular solutions (“singular primitive equations”) are introduced in
|[Lagrange Fonctions| in a way that associates them to failures in certain power series. But it
should be remarked that the adjective “singular” seems to have been associated with failures
in more general power-series expansions (non-analyticity, in modern terms) only in the second
edition of [Lagrange Fonctions| (dated 1813), and only in the title of chapter 5 — not in its text.
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differential equation V' = 0 is the result of eliminating ¢ between U = 0 and
%dm + %dy = 0 (with a reference to the first volume); if this is put in the form
dy = pdx, and if ¢ is regarded no longer as a constant, but rather as a function of
x, it will become dy = p dx + q dc; particular solutions are obtained by eliminating
¢ between ¢ = 0 and U = 0, in case V = 0 has particular solutions — otherwise
this will result in particular integrals; particular integrals satisfy not only % =0,

2 3
but also ﬁ% =0, dd?% = 0, etc., while particular solutions satisfy only a limited

number of these; particular solutions may be obtained directly from V' = 0 without

2
access to the complete integral U = 0 by putting ng = % or 32755 = %.

The rest of the section on “particular solutions of [ordinary] first-order diffe-
rential equations” [Lacroix Traité, II, 274-284] in fact oscillates between particu-
lar solutions and particular integrals. It is broadly dedicated to attempts to find
complete integrals from particular solutions (which can be deduced directly from
differential equations) and/or from particular integrals (which can sometimes be
found from careful examination of differential equations).

Lacroix gives a couple of examples related to the Riccati equation dy+y2dx+
Xdx = 0: if y = Q is a particular integral, then dQ + Q?dxz + Xdx = 0, so that
Xdr = —dQ — Q*dx; dy+1y*dr —dQ — Q*dx = 0 can be solved using an integrating
factor.'® But he remarks that the method involved usually leads to differential
equations more difficult to solve than the original.

He then turns his attention to the possibility of using power series for this
task. He does that in three articles [Lacroix Traité, II, 274-277] two of which are re-
ferred to in the subject index as “Solutions particuliéres, procédé de Laplace, pour
les déterminer par le développement de P'intégrale en série”1%¢ [Lacroix Traité, I11,
574]. This is an obvious reference to [Laplace 1772a], where such series expansions
do occur, although not with the purpose of “completing” particular integrals (see
page 186 above).

But what Lacroix does here is much closer to (and in fact clearly drawn from)
the section in [Lagrange Fonctions, 65-69] where singular solutions are introduced,
and which is an adaptation of part of [Laplace 1772a| and of [Integralis, 1, § 565].
This was a somewhat unusual way of introducing singular solutions, but quite
connected to the power-series foundation of the calculus: instead of presenting a
few examples of “derivative equations” together with solutions not contained in
their complete primitive equations, Lagrange had introduced singular solutions as
exceptions to a power-series expansion — an expansion used precisely to “complete”
particular primitive equations. In Lacroix’s version: let y = X be a particular
integral of dy = pdzx, and let y = V represent the complete integral; X is then a
function of x and V is a function of x and of an arbitrary constant ¢, such that
X(x) = V(z,d), for some appropriate value ¢’; thus, the complete integral may

105 This is similar to an example in [Euler Integralis, 1, §544].
106« porticular solutions, procedure by Laplace for their determination through the series ex-
pansion of the integral”
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be expanded into

h h? h3
Yy = X + V/T + V//ﬁ + V/Nm +€tC.

2 3
where V', V" V"' etc. are the values of %, ‘26‘2/, (fic‘?{7 etc. for c = ¢/; h = c—c’ plays

here the role of arbitrary constant. Lagrange [Fonctions, 66-67] gives a method
(and Lacroix [Traité, 11, 275-276] reports it) for finding V', V" V"', etc. using a
related expansion for p:

Wh W2h? o W3h3

P+P —+ P P —
+ 1 + 1-2 + 1-2-3

+ etc.

(P, P', P" etc. are the values of p, 2—5, Ziy’;, ete. for y = X). But it had already been
shown that there are cases in which series such as these are faulty for particular
values of the variable (see section 3.2.5); in those cases the derivatives from some
order upwards are infinite and the expansion must involve fractional exponents.
An analysis of the more general expansions

p=P+Qk™+ Rk" +etc. and y =X + qh+rh” + etc.

leads to the conclusions that if m < 1, or equivalently if y = X makes P'(= Z—Z)
infinite, then the completion is not possible — it is not a particular integral, but
rather a particular solution; this means that P’ must have the form %, such that
the particular solutions are factors of L [Lacroix Traité, 11, 276-278|. These results
are recognizable as Euler’s (m < 1) and Laplace’s; the characterization of singular
solutions as solutions which cannot be completed can also be traced back to Euler
[Integralis, I, § 565] — Lagrange did [Calcul, 237].

To finish the section, Lacroix addresses the relations between particular in-
tegrals or solutions and integrating factors, especially a method by Jean Trembley
to find the latter from the former [Trembley 1790-91]. Euler had noticed that,
given a differential equation Mdx 4+ Ndy = 0, firstly — if z is an integrating factor,
then z = 0 is a particular integral, as long as it does not make either M or N
infinite; and secondly — if % is an integrating factor, then again z = 0 is a par-
ticular integral, as long as it does not make either M = 0 or N = 0 [Integralis,
I, §572-574; Lacroix Traité, 11, 278-279|. Laplace had also noticed that particular
solutions make integrating factors infinite (see page 186 above) — they are factors
of 27! = 0. Trembley’s idea was to search for an integrating factor by multiplying
the known particular integrals and solutions of a given differential equation'?”,
each raised to an indeterminate power, and after substituting this product trying
to solve for those powers.!0%

107More correctly, as [Lacroix Traité, II, 281-282] puts it: the functions which when equaled to
zero yield those integrals/solutions.

108[TYembley 1790-91] is not always very easy to follow: his uses of the expression “particular
integrals” are particularly unhelpful (see section 6.1.1).
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6.2.1.3 Particular solutions of second- or higher-order differential equations in
two variables

Lacroix’s explanation for the existence of particular solutions of second- or higher-
order differential equations [Lacroix Traité, IT, 408-409] is, just like Lagrange’s,
a generalization of the latter’s explanation for first-order equations: if U = 0 is
the complete integral of the second-order equation V' = 0, then U contains two
arbitrary constants, ¢; and co, and V' = 0 is the result of eliminating ¢; and co
between

U=0, dU=0, and d°U =0;

now, if ¢; and co are taken as variables, in order to obtain the same results we
need to have

and

(where, for the sake of abbreviation, U’ = %dm + %dy, that is U’ = dU in
the cases of ¢1,ca constant or variable but verifying the first of these conditions);
co

particular solutions are obtained by eliminating c1, ¢2, and g—cl between

aU aU dU’ dU’
U=0, U =0, —dc;+—-—dco =0, and ——dc; + —dcy =0.
dcy deo dey dca

Nevertheless, the treatment of these particular solutions is mainly inspired
by [Legendre 1790],1%% although with some improvements. Legendre had based his
approach on the remark that a singular integral, “reduced to finite form”, always
contains fewer arbitrary constants than the complete integral (that is, if we have
a differential equation V' = 0 of order n, and a singular solution W = 0, say
of order n — i, the integral of W = 0 contains less than n arbitrary constants).
Legendre proved this for orders 1 and 2 and claimed that the same reasoning
applied to higher orders [Legendre 1790, 222]. Lacroix, on the other hand, gave a
proof for any order: let V' = 0 be an n-th order differential equation, and let U = 0
be its complete integral, containing the arbitrary constants cj,co,...cp; V =0
is obtained by eliminating these constants between U = 0 and its differentials
dU = 0,d?U = 0,...d"U = 0; now suppose ci, Ca, . ..c, vary, and let d’ represent
differentiation relative to them, so that the complete first differential of U is dU +

109 Legendre 1790] was only published in 1797, but it was already printed in 1794, along with
the other memoirs in the Paris Académie des Sciences’ volume for 1790 — the devaluation of
banknotes had prevented its sale in the meanwhile. Given the facts that Lacroix uses this memoir
both here and when dealing with particular solutions of partial differential equations (see below),
in a volume published in 1798, and that Lacroix had been elected a correspondent of the Académie
in 1789, it is very likely that he had access to the printed memoir while still unpublished.
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d'U, where
dU dU
dU dU dU
4 p— .
d'U = —d61 dei + _d62 deg...... + —dcn dep;

in order to still satisfy V' = 0, we need to keep this first differential equal to dU,
and in addition the second differential of U (which because of that condition is
d*U + d'dU) equal to d?U, and so on up to the n-th differential of U (d"U +
d'd"~'U) equal to d"U; in other words, we need to have

dU=0, ddU=0, ... dd"'U=0,
which thanks to the equality of mixed partial differentials can be transformed into
dU=0, ddU=0, ..., d"'dU=0;

since no differentials of either x or y appear in d’'U, this set of equations is at most
of order n— 1 relative to x and y, and so will be the result of eliminating the 2n—1

constants cq, ca, ... Cp, %, 3—2, . % between the 2n equations
U=0, dU=0, ... d'U=0, dU=0, ddU=0, ... d"'dU=0;

the integral of this result (which is a particular solution) will therefore contain at
most n — 1 arbitrary constants.*!?

This is a smart proof, not only because of its actual generality, but especially
because of the casual introduction of the operator d’. To apply this result Legendre
had used calculus of variations, something which Lacroix cannot do here, since he
is still more than 200 pages away from introducing that method. But this d’ is as
efficient here as the operator § in [Legendre 1790].'! Suppose that Y contains a
number of constants (not more than n) and that y = Y satisfies V' = 0; if those
constants are made to vary, V = 0 will become V + d'V = 0, whence d'V = 0,
which is of the form

ard'y d"d'y dd'y
M N———...... R Sd'Y = 0. 6.25
dx™ + dzn—1 * dx + (6.25)
Now, if we try to integrate this equation in order to obtain d'Y = %dcl +

%dcz + etc., we may have two different situations: either y = Y is contained in

110[Houtain 1852, 1181] claims that Legendre’s proof (and consequently Lacroix’s) rests on a
vicious circle. However, I believe that at least in the case of Lacroix the purpose of the proof is
not to demonstrate that a singular solution contains less than n arbitrary constants (something
which was taken for granted in the 18th century), but rather a simpler consequence: that the
finite (or primitive) equation obtained from it (that is, its integral) contains less than n arbitrary
constants.

M1 Lagrange 1779, 613-614], addressing singular integrals, introduces this operator using the
symbol § and then suddenly invokes the theory of variations (not the equality of mixed partial
differentials) for §dV = déV.
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the complete integral, and thus d’'Y" contains n arbitrary constants (which are the
de;’s), so that (6.25) is of order n and M # 0; or y = Y is a particular solution,
d'Y must contain less than n arbitrary constants, the equation is of order at most
n — 1, and therefore M = 0 [Legendre 1790, 222-224; Lacroix Traité, 411-412].

Lacroix | Traité, II, 417] is less convincing about the correspondence between
Legendre’s and Lagrange’s rules: he simply replaces d’ with d to get

dnJrly dny d2y
ML N + R 4 Sdy + Tdr = 0 (6.26)
whence
" dan d? d

d"tly  —NTE . —-RTE -SFE-T

dentl M
and since M = 0 yields N % ...... + R% + Sdy + Tdx = 0, it also yields
g;Ti?{ = %, as Lagrange [1774, §35, §37] had indicated. The problem is that d’-

differentiation is carried out holding = constant, unlike d-differentiation. So why
should the coefficients in (6.25) and (6.26) be the same?

6.2.2 Complete and general integrals and particular solutions of par-
tial differential equations

6.2.2.1 The formation of first-order partial differential equations and their ge-
neral (and complete) integrals

Given what we saw in section 6.1.4.2, it is natural to ask how does Lacroix present
the formation of first-order differential equations in three variables: as the result
of elimination of two arbitrary constants between a primitive equation and its two
immediate partial differentials like Lagrange [1774]; or as the result of elimination
of one arbitrary function like Monge [1784b]? (In other words, how does he extend
Fontaine’s formation of ordinary differential equations to partial differential equa-
tions?) We will see that although the former possibility is mentioned, Lacroix is
much closer to following the latter.

First of all, we may notice that Lacroix had a background of strict adherence
to Monge’s approach. In the memoir on partial differential equations that Lacroix
had submitted to the Paris Academy in 1785 (see appendix A.1) he had expressed
this very clearly: starting with the example z = ¢: (ax + y), Lacroix eliminated
¢t (ax + y) between its two differentials p = ¢': (az + y)a and q = ¢ : (ax + y),
arriving at p — aqg = 0; he then remarked that

“I’equation différentielle p — ag = 0, ou toute autre, peut toujours étre
envisagée comme produite par 1élimination d’une fonction arbitraire.
Cette methode est celle de M. Monge, et s’applique avec elegance aux
équations linéaires de tous les ordres: c’est aussi celle dont nous nous



6.2. Lacroix’s Traité 235

9112

servirons & peu prés dans la suite de ces recherches (see page 355).

The basis of the memoir was in fact an attempt to apply this approach to obtain
solutions of non-linear partial differential equations. It was not a very successful
attempt, and there seem to be no traces of the specific methods propounded there
in his Traité; but some basic ideas of Mongean inspiration (formation of partial
differential equations, their correspondence to families of surfaces) remain.

Returning to the Traité, let us look again at the section “on differentiation
of equations” in the first chapter of [Lacroix Traité, I|. There Lacroix does allude
briefly to the possibility, given an equation v = 0 in z,y and z, of eliminating two
constants between

u =0, M, and M,
dx dy

the result expressing the relation between the variables x, y, z and the differential
coefficients 2—;, :ii_zz; [Lacroix Traité, 1, 176].1*2 But he gives much more importance
to the possibility of eliminating a function whose form is unknown [Lacroix Traité,
I, 176-178]. For instance, if we have z = f(axz+by), we can put t = ax+ by, whence
z = f(t), so that

dz . dt , dz s dt ,
— =ft)==Ff'(t)- d — = f(t)=— = f'(t) - b;
IO =r0e wd F=rOL =10
now f/(t) may be eliminated, yielding
dz dz
b Ty =Y

a differential equation satisfied by z = az + by, z = Vaz + by, z = sin(ax + by),
or any other equation of the form z = f(ax + by). More generally, if . = 0 is an
equation in z,y, z and an indeterminate function f(t), where ¢ is a known function
of z,y, and z, then f(¢) and f/(¢) can be eliminated using

d() =0 and M

— =0.
dx dy

In the second volume, this latter passage on elimination of a function is referred
to as showing that “les équations différentielles du premier ordre se déduis|ent]
des équations primitives & trois variables, par I’élimination d’une fonction arbi-
traire”!* |Lacroix Traité, 11, 480], while there seems to be no reference to the
former, on elimination of two variables.

112¢the differential equation p — ag = 0, or any other, may always be viewed as produced by
the elimination of an arbitrary function. This is M. Monge’s method, and it applies elegantly
to linear equations of all orders: it is also pretty much the one we will use in the course of this
research”

113For the notation dc(l:>’ see page 74.
4«firgt-order differential equation |are| derived from primitive equations in three variables by
the elimination of an arbitrary function”
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This is why arbitrary functions occur in solutions of first-order differential
equations with two independent variables, but naturally it is not how they appear.
Instead, as in [Euler Integralis, 111, § 7, § 33], an arbitrary function appears when
integration is performed holding one of those variables constant: the arbitrary
constant thus introduced must be regarded as an arbitrary function of that variable
[Lacroix Traité, II, 458, 477]. More interestingly, and similarly to [Euler Integralis,
III, § 73, § 142|, an arbitrary function also appears when integrating equations of
the form

Pp+Qp=0 (6.27)

(where P and @ are functions of z and y, p = Z—;, and ¢ = g—Z): this yields

dz = %(Pdy — Qdwx); if pu is an integrating factor of Pdy — Qdx, we can put
uPdy — pQdx = dU,

and (since ¢ is indeterminate) Piu = ¢/(U), so that dz = ¢/(U) dU and therefore

z= /go/(U) dU = o(U) (6.28)

(¢ (U) and ¢(U) being arbitrary functions, subject only to the condition that
the former is the derivative of the latter) [Lacroix Traité, II, 478-479]. Ounly af-
ter this latter appearance does Lacroix remind the reader of the passage in the
first volume on the origin of first-order partial differential equations, establishing
a connection between the eliminated function and the one introduced by integra-
tion |[Lacroix Traité, 11, 480]. But something similar had happened with ordinary
differential equations: arbitrary constants appeared because the methods of solu-
tion resort to integration of explicit functions. It was not for introducing arbitrary
constants that Lacroix invoked the formation of ordinary differential equations by
their elimination (see section 6.2.1.1). Nevertheless, those references to the first
volume do feel like theoretical explanations for the practical fact of the appearance
of arbitrary elements.

Thus Lacroix seems to follow Cousin and Monge in keeping the old Eulerian
analogy between arbitrary constants for ordinary differential equations and arbi-
trary functions for partial differential equations, putting it on the new ground of
the formation of the equations by elimination. However, we will see below that
Lacroix had very serious reserves about extending this analogy to equations of
order higher than one, and that he did not follow Cousin and Monge in their use
of the name “complete integrals” for integrals with an arbitrary function.

Lacroix also mentions the possibility of having integrals containing arbitrary
constants instead of integrals containing an arbitrary function. He does so se-
veral times in the section dedicated to first-order partial differential equations
[Lacroix Traité, II, 480, 489, 497-499, 516|. But integrals with an arbitrary func-
tion are clearly more important, and as we have seen above they seem to be the
only ones involved in the formation of partial differential equations; when an inte-
gral with arbitrary constants appears it is always a means to obtain another one
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with an arbitrary function. Just after the reference to the first volume mentioned
above, and still addressing equation (6.27), Lacroix notices that if one puts PLH =a,
one obtains a result with two arbitrary constants, since this yields dz = a dU and
therefore

z=alU +b; (6.29)

he finds “quite remarkable” that although this is obviously less general than the
previous result (6.28), it is possible to restore (6.28) from (6.29): varying the
constants a and b, we have dz = a dU 4 U da + db, which is equal to a dU provided
that % = —U,; thus Lacroix puts b = v(a), 9 being an arbitrary function; then
Y¥'(a) = U, whence a = v, (U), where 1, is the inverse function of ¢’; therefore
(6.29) becomes z = U, (U) + ¥, (U)]; but U, (U) + [, (U)] is nothing more
than an arbitrary function of U, and can be written as z = ¢(U) [Lacroix Traité,
I, 480-481].

A similar argument is used for first-order partial differential equations with
three independent variables: from the equation V = aT + bU + c it is possible
to obtain the more general one V' = (T, U) by varying the arbitrary constants
a, b, ¢ [Lacroix Traité, I1, 489]. This is repeated and generalized when reporting the
Lagrange-Charpit method for solving first-order partial differential equations in th-
ree variables [Lacroix Traité, I, 496-497] (after all, the idea of varying an arbitrary
constant to obtain an arbitrary function had first appeared in [Lagrange 1772b],
included in the “first half” of the Lagrange-Charpit method — Lagrange’s method
for quasi-linearizing first-order partial differential equations). Since the elimination
of the arbitrary constants is usually not feasible, general integrals are represented
as systems of equations (from which the elimination is supposed to be done, even
if only conceptually): if Z = 0 is an integral of dz = pdx + ¢dy containing the
arbitrary constants a and b, and (Z) designates the result of substituting ¢(a) for
b in Z, then the general integral will be represented by
az) _ .

da
and analogously, if Z = 0 is an integral of a first-order partial differential equation
in five variables containing the arbitrary constants a,b, ¢, e, and (Z) stands for Z
with ¢(a, b, ¢) substituted for e, the general integral is represented by
(%) (%) a2) _

7)) = = = _— =
(2)=0, da 0, db 0, dc

(Z) = 07

6.2.2.2 Terminology: “general” and ‘“complete” integrals

Two issues related to our subject are very notably absent from the section on
first-order partial differential equations in [Lacroix Traité, II]. One is particular
solutions: they are addressed only later, together with the particular solutions of
higher-order partial differential equations (see section 6.2.2.4).
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More importantly, the issue of terminology is not addressed: Lacroix uses oc-
casionally the expression “general integral” for an integral containing an arbitrary
function, as opposed to one containing arbitrary constants [Lacroix Traité, IT, 498,
501, 508, 516], but he never defines explicitly “general integral”; moreover, in this
section he does not have any name for integrals containing arbitrary constants
instead of arbitrary functions. This is well illustrated by the first occurrence of the
expression “general integral”:

“En général, si Z = 0 désigne l'intégrale d'une équation différenti-
elle partielle du premier ordre, entre m variables, et que Z renferme
m — 1 constantes arbitraires, on en pourra tirer I'intégrale générale, qui
doit contenir une fonction arbitraire de m — 1 quantités différentes.”*!®
[Lacroix Traité, 11, 498|

Notice the awkward definite article applied to the integral containing arbitrary
constants, which is evidently not unique (but Lacroix might claim illustrious an-
tecedents: Lagrange [1774, § 57,59-61] repeatedly speaks of “I'intégrale complette”
after having argued for the existence of several complete integrals [Lagrange 177/,
§ 56]).

But the two most striking points here are on the one hand the use of “general
integral” instead of “complete integral” (the expression which Cousin and Monge
had used), and on the other hand the lack of conviction in that use.

Later, well into the section on partial differential equations of orders higher
than 1, the name “complete integral” is used for integrals with arbitrary constants.
That is, when Lacroix finally adopts a name distinction between types of integral
according to the kind of arbitrary element involved, it is the Lagrangian nomen-
clature that he adopts (the occasional uses of “general integral” in the section on
first-order partial differential equations are certainly only an anticipation of this
distinction). A likely reason for this is that it was the only nomenclature available:
the authors who used “complete integral” for integrals containing arbitrary functi-
ons did not have any name for integrals containing arbitrary constants. But even
then Lacroix does not seem fully committed to this nomenclature. He introduces
it saying that Lagrange uses the name “complete integral” to make a distinction
from general integrals [Lacroix Traité, 11, 555].

For someone who seemed to be so careful about terminology, all this is quite
unsatisfactory. It would not have been very difficult to adapt the Laplacian ter-
minology (see footnote 7), using “general integral” also for integrals of explicit
functions or of ordinay differential equations containing the appropriate arbitrary
constants (as well as for integrals of partial differential equations containing ar-
bitrary functions), and to use the name “complete integral” only for integrals of
partial differential equations containing arbitrary constants.

154n general, if Z = 0 represents the integral of a first-order partial differential equation in m
variables, and if Z = 0 contains m — 1 arbitrary constants, it will be possible to extract from it
the general integral, which must contain an arbitrary function of m — 1 distinct quantities.”
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6.2.2.3 Complete and general integrals of second- and higher-order partial dif-
ferential equations

The issues relating to types of solutions of partial differential equations are more
thoroughly addressed in the section on “integration of partial differential equations
of orders higher than one” [Lacroix Traité, II, 520-608].

It was mentioned above that Lacroix had reserves about the analogies between
solutions of ordinary and partial differential equations; that can be seen in this
section, where he exposes weaknesses in those analogies. For instance, he gives an
example of a second-order equation

(x+y)r—t)+4p=0

(Lacroix follows the usual conventions dz = pdx + qdy, dp = rdx + sdy, dqg =
sdx + tdy), which has only one first integral, namely

(z+y)(p—q) +22 =0y —x), (6.30)

instead of two as one would expect by analogy with second-order ordinary equa-
tions (see sections 6.1.4.1 and 6.2.1.1); nevertheless it has a second integral (i. e.,
a primitive equation) [Lacroix Traité, 11, 534-535]:

22

: (/eﬁ Cffgo(a’ —2x) +(a)) (6.31)

(where a’ is to be replaced by z + y after the integration). Even stranger seems to

be the equation

2p
—t—==0 6.32
T = (6.32)

[Lacroix Traité, 11, 547-548]: it does not have any first integral, and yet it has a
second integral:

z=py+a)+ ¢y —z) -zl (y+z) - ¢ (y — ). (6.33)

The reason for the non-existence of first integrals is that it is impossible to eli-
minate any of the arbitrary functions ¢, (each together with its derivatives)
between (6.33),

p=—zlp"(y+a) + 4" (y - 2)], (6.34)
and
qg=—x["(y+z)—V"(y—2)]+ & (y+z)+¢'(y — x); (6.35)
while from

r=—["(y+2) +¢"(y —2)] = 2[p" (y +x) =" (y — 2)]

and
t=—zle"(y+z) =" (y— )]+ ¢"(y+2)+¢"(y — x)
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we have
r—t=2[p"(y+z)+¢"(y -2,

which together with (6.34) gives precisely (6.32) — that is, ¢ and ¥ may be eli-
minated together, yielding the proposed differential equation, but not separately,
which is what would provide the existence of first integrals.''® Similarly, it is pos-
sible to eliminate 1) between (6.31) and its first-order differentials — thus arriving
at (6.30) — but to eliminate ¢ it is necessary to use second-order differentials.

Lacroix’s trigger for these reflections was almost certainly [Condorcet 1770].
That is probably why Lacroix [ Traité, 11, 546] says that this issue, “I'un des plus im-
portans de la théorie des équations différentielles partielles, n’a pas encore été suf-
fisamment éclairci, du moins dans tous les traités qui ont paru jusqu’a ce jour”'17:
a likely allusion to [Condorcet 1770], which is neither a treatise nor very clear.!!®
In his “Compte rendu [...] des progrés que les mathématiques ont faits depuis 1789
[...]” (appendix B) Lacroix would repeat this claim for priority in publication, in
a paragraph (page 400) that was not included in [Delambre 1810].

Lacroix proceeds to clarify the issue, examining the possibility of a second-
order partial differential equation being derived from a primitive equation with two
arbitrary functions [Lacroix Traité, II, 549-553]: if U = 0 is a primitive equation
in z,y and z, and if it is differentiated to the second order, we have six equations

aw) _, )

U=0 = =0 5 =0
(6.36)

PU)_, RO PO

de2 7 dxdy 0 dy2

so that in general only five quantities may be eliminated; however, if U includes two
arbitrary functions ¢(t), 1 (u), these differentiations introduce four new quantities
(@' (1), " (t), ¥’ (u), and ¥ (u)), so that we have in total six quantities to eliminate.
More generally, if we have a primitive equation with two independent variables and
if the differentiations are carried up to order n, we get W equations; and
if there are m arbitrary functions, each differentiation introduces m quantities,
so that there are m(n + 1) quantities to eliminate at order n; the conclusion is
that in the worst case scenario it is necessary to have m(n+1) < W, that
is n > 2m — 2; in other words, the differentiations must be carried up to order
2m—1. In the case of three independent variables, we must have w <
m—m+1)(n—m+2)(n—m+3).

1161t is possible to eliminate ¢ and v separately using the total differentials dp and dg, but
these differentials are of second order, and so are the resulting equations, which are the closest
one can have to first integrals [Lacroix Traité, 548-549].

H74%ne of the most important in the theory of partial differential equations, has not yet been
clarified enough, at least in the treatises published so far”

118With a safeguard about the possibility that Condorcet’s unpublished treatise might address
the subject? In 1798 Lacroix might know its beginning (he knew it in 1810), but he certainly did
not know yet the whole manuscript (see footnote 86 above).
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Of course, in many situations there are nice peculiarities in the equations
which allow for simultaneous eliminations, so that some lower order is sufficient.
Lacroix [Traité, 11, 552-555] examines in particular those situations in which the
arbitrary functions have the same argument (u = ¢ above): holding that argument
constant allows us to treat all the arbitrary functions as constants, which obviously
simplifies the elimination procedure.

The fact that from (6.36) it is possible to eliminate five constants motiva-
tes the consideration of complete integrals, that is, integrals containing arbitrary
constants instead of arbitrary functions (see also section 6.2.2.2). More precisely,
in the case of two independent variables an n-th partial differential equation may

result from the elimination of (”Héﬂ — 1 constants in a primitive equation.

Lacroix [Traité, 11, 555-556] remarks that this does not solve all the difficul-
ties with elimination, a remark that in fact goes back to [Lagrange 1774, §67],
and which results from the conclusion that a first complete integral must contain
two arbitrary constants, a second complete integral must contain five arbitrary
constants (i.e., three more than a first complete integral), a third integral must
contain nine arbitrary constants (four more than a second complete integral), and
so on.!'? The trouble is that it is then necessary to be able to eliminate three cons-
tants to go from the second integral to a first integral (and worse, to eliminate four
constants to go from the third integral to a second integral), which is generally
not possible. Therefore, there are second-order partial differential equations that
do not possess complete first integrals.

Naturally, the relationship between complete and general integrals of second-
order partial differential equations is an extension of the relationship between
primitive equations of first-order equations containing two arbitrary constants and
those containing one arbitrary function (page 237 above). A general first integral
is obtained from a complete first integral exactly in the same way, since as seen
just above a complete first integral contains two arbitrary constants, and a general
first integral contains one arbitrary function. As for second integrals, a complete
one U = 0 contains five arbitrary constants, a,b,a’,b’,¢’, which may be regarded

119This must be because it would be undesirable to sever the ties between first integral and single
integration, second integral and double integration, etc. Otherwise, the stress on elimination
instead of integration might allow us to consider a first integral of a second-order differential
equation in three variables (with primitive equation U = 0) as the result of eliminating two of
the five constants in U = 0 using g—g = 0 and %—Z = 0, so that it would contain three arbitrary
constants; a second integral of a third-order differential equation in three variables would likewise
contain seven arbitrary constants, and a first integral of such an equation would contain four
arbitrary constants (because the six equations (6.36) would permit the elimination of five of the
nine arbitrary constants in the primitive equation U = 0, or because the three second-order
differentials of the primitive equation would permit the elimination of three constants from a
second integral); and so on.
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as variables as long as

dz dz dz dz ., dz o
d_d +%db+Fd +wdb +Fd 0,
dpd +dpdb+d—d +%db’+d—d/—
dqd +dqdb+d—d +%db’+d—d/—

this means that there are three equations to determine five (arbitrary) quantities,
so that two of these may be regarded as (arbitrary) functions of the other three:

a= (b, ), b=1(d,b,c);

in practice this is even more complicated than its first-order analogue, and too
complicated to be useful [Lacroix Traité, II, 557-559; Lagrange 177/, § 65-66].

6.2.2.4 Particular solutions of partial differential equations

As has already been mentioned, Lacroix does not address particular solutions
in the section on first-order partial differential equations. He only treats the issue
(quite briefly) in the section on second- and higher-order equations [Lacroix Traité,
IT, 559-563]. This location seems much more a result of the late introduction of
complete integrals, rather than some desire for generality: most of these nearly
four pages are dedicated to particular solutions of first-order partial differential
equations.

The order “theory of general/complete integrals” — “particular solutions”
reflects (voluntarily?) the historical order: singular solutions of ordinary differential
equations had appeared spontaneously, as a paradox to be solved (see section
6.1.2.1); while singular solutions of partial differential equations had appeared
only in [Lagrange 1774], not as a problem but rather as a consequence of the very
theory which explained them. This is well expressed in Lacroix’s introduction of
them:

“La théorie que nous venons d’exposer sur les intégrales des équati-
ons différentielles partielles [intégrales complétes et intégrales générales],
montre que ce genre d’équations a aussi ses solutions particuliéres”!2°
[Lacroix Traité, II, 559].

Naturally, the presentation of these particular solutions is Lagrangian. If
U = 0 (U containing two arbitrary constants a,b) is the complete integral of a
first-order partial differential equation, according to Lacroix all the possibles ways
of satisfying that given equation are comprised in the system

U=0, d—Ud —I—d—Udb—O

120¢The theory which we have just set forth on integrals of partial differential equations [com-
plete and general integrals|, shows that that kind of equations also have particular solutions”
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The general integral is obtained by putting b = ¢(a) (and eliminating a) — see
page 237; but one can also put

dU au

da 0, db 0
and eliminate a and b: the result, containing no more arbitrary constants, is “the
most particular” solution of the differential equation. Lacroix’s single example
[Traité, 11, 560-561] is taken from [Lagrange 1774, § 42].

But the procedure that Lacroix gives for obtaining particular solutions di-
rectly from the differential equations is taken from [Legendre 1790]. It is of course
a development of what he had given for second- and higher-order ordinary dif-
ferential equations (see section 6.2.1.3). If the given partial differential equation
is of first order, its d’-differential (that is, its differential relative to the arbitrary
constants appearing in its complete integral'?!) is of the form

Pd/d—z + Qd’% +Rd'z=0,
dx dy

which can be transformed into

dd’ dd’
. 0 z

P
dx dy

+Rd'z2=0,

a first-order partial differential equation in d’'z; unless P = 0 and Q = 0, this
equation implies an expression for d’z containing an arbitrary function, which in
turn implies a value for z too general for a particular integral; thus the particu-
lar solution is obtained by combining P = 0 and Q = 0 with the given partial
differential equation [Lacroix Traité, II, 561-562].

Lacroix’s treatment of particular solutions of second-order partial differen-
tial equations amounts to two short paragraphs [Traité, II, 561, 563] indicating
generalizations of the theory and the procedure above.

6.2.3 Geometrical connections
6.2.3.1 Geometrical interpretation of particular solutions and complete integrals

It may be surprising at first to notice how little space Lacroix devotes in the second
volume of his Traité to the geometrical interpretation of particular solutions and
complete integrals of differential equations in two variables.

For first-order differential equations in two variables there is only §608
[ Traité, 11, 305-307], half of which is occupied with an example: Euler’s problem of
the curves whose normals through a given point are all equal (see pages 183-184

121Legendre (who as already mentioned, called “complete integral” one with an arbitrary func-
tion) considered here instead the variation 0 relative to the arbitrary function [Legendre 1790,
235-236].
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above), a problem which Lacroix [Traité, 11, 260-261, 265] had already addressed
simply as the equation ydr — xdy = ny/dz? + dy?, without any geometrical mo-
tivation. Now Lacroix notes that the singular solution is a circle tangent to the
straight lines which comprise the complete integral, and remarks that this relation
is general: particular solutions give envelopes of the curves corresponding to com-
plete integrals. In fact, 1 — a differential equation provides information precisely
about the direction of tangents, which are shared with the envelope; and 2 — the
procedure for obtaining the equation of the envelope (given in chapter 4 of the first
volume) is the same as that for obtaining the particular solution from the complete
integral. Geometrical considerations also permit us to arrive at Lagrange’s rule for
obtaining particular solutions directly (% = %).

The geometrical interpretation of particular solutions of higher-order equa-
tions is mentioned even more succinctly [Lacroix Traité, 11, 418]. The particular
integral still belongs to a curve enveloping the curves of the complete integral, but
with a higher order of contact (equal to the order of the equation).

Perhaps the reason for this conciseness is that Lacroix had already paid
enough attention to envelopes of families of curves in the first volume [Traité, I,
427-434] (see the end of section 4.2.1.2). It is enough in the second volume to
remark the connection.

Apart from the conciseness, it is interesting to notice the separation between
the analytical and geometrical versions of the solutions of differential equations:
the geometrical interpretation appears in the chapter on differential geometry,
and in the section on geometrical construction of first-order differential equations,
both clearly separated from the analytical development of the theory'?2. This
separation is quite consistent with Lacroix’s ideas about geometrical considerations
as depictions of analytical procedures (pages 89 and 105).

Much more surprising than this conciseness is the absence of even a remark
on the geometrical interpretation of particular solutions, complete integrals and
general integrals of partial differential equations. The study of envelopes of families
of surfaces in the first volume does not compensate the lack of geometrical versions
for these concepts (which are not that simple to understand). The fact that in the
second edition Lacroix supplied this interpretation [Lacroix Traité, 2nd ed, 11, 682-
685] supports the verdict that this absence is a flaw (a serious one) in the first
edition.

6.2.3.2 Construction of differential equations in two variables

One of the sections in the chapter on integration of differential equations in two
variables is entitled “De la construction géométrique des équations différentielles

122The case of higher-order equations is an exception: the analytical study of their particular
solutions is accompanied by the very short mention of their geometrical interpretation; perhaps
because the section in which this is included is assumedly a miscellany (“General reflections on
differential equations and transcendents”)
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du premier ordre”'?? [Lacroix Traité, 11, 296-307]. This section is clearly divided
into three parts, the first being the only one effectively dedicated to construction
of differential equations: the third part [Lacroix Traité, 11, 305-307], on the geo-
metrical interpretation of particular solutions, was already mentioned above; the
second part [Lacroix Traité, II, 299-305] is dedicated to the problem of trajectories
(given a one-parameter family a curves, to determine a curve that intersects all
the given curves in a given angle), which seems to be essentially an example of a
geometrical problem solved by integration of a differential equation.
As for the first part, it appears to have a mainly historical interest:

“Dans les premiers tems on chercha & déterminer par les aires ou méme
par les arcs de quelques courbes connues, 'ordonnée de la courbe de-
mandée ; depuis on a laissé ces constructions de coété, parce que, quel-
qu’élégantes qu’elles fussent dans la théorie, elles étoient toujours moins
commodes et sur-tout moins exactes dans la pratique, que les formules
approximatives qui ont pris leur place.”'?* [Lacroix Traité, 11, 296]

After remarking that usually (“en général”) differential equations can only be
constructed once their variables are separated,'?® Lacroix gives a construction
of % = X (where X is a function of ) which requires the construction of the

logarithmic curve!?® and the quadrature of mYQ (m is a constant which may be

supposed equal to 1) [Lacroix Traité, II, 297-298]. This is a generalization (pos-
sibly by Lacroix) of Jacob Bernoulli’s resolution [1696] of an already generalized
version of de Beaune’s problem: given a curve, to find another where the ratio of
the subtangent to the ordinate is equal to the ratio of a constant line m to the sum
or difference of the ordinates of the two curves, i.e., ‘;—Z = yilQ; Lacroix [Traité,
IT, 298-299] duly presents also this application.

In the table of contents Lacroix | Traité, I1, vi| cites both [Jac. Bernoulli 1696]
and [Joh. Bernoulli 1694 ] for this section, but does not use the matter of the latter
(a method for constructing non-separable equations; see section 6.1.3.1). Three
memoirs of Euler are also cited: two on orthogonal trajectories (the sources for
the second part); and one on construction of differential equations using tractorial
motion — something that Lacroix | Traité, 11, 299] quickly dismisses, as being related
to mechanics, rather than geometry.

Curiously enough, the most interesting constructions of differential equati-

12340On the geometrical construction of first-order differential equations”

1244Ty the early period [of the integral calculus| it was sought to determine the ordinate of
the required curve by the areas or even by the arc-lengths of some known curves; later these
constructions were abandoned because, however elegant they might be in theory, they were
always less convenient and especially less precise in practice than the approximation formulas
which took their place.”

1251n a sentence added in the errata, Lacroix [Traité, II, 730] explains that this is why in
the writings of the early analysts who dealt with integral calculus “to construct a differential
equation” is often the same as to integrate it or to separate its variables.

126 Lacroix suggests a construction by points, or the use of the asymptotic spaces of the hyper-
bola.
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ons in two variables are not in this section. Rather, they occur in the sections
on approximation of solutions of first- and second-order differential equations (see
section 5.2.4), in awkwardly placed articles on the “possibility” of those equations
[Lacroix Traité, 11, 287, 351-352]. These constructions are geometrical counter-
parts (depictions) of Euler’s “general method” for differential equations. A first-
order differential equation gives for each point the value of %, that is, the slope
of the tangent to the curve at that point; starting at a point M, one draws the
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straight line TM M’, such that the tangent of the angle M'M@Q (where MQ//AP)
is the value of % calculated using the abscissa AP and the ordinate PM; next
one takes a point P’ “infinitely close to P”, and draws the straight line T'M'M"
in the same way; carrying this on one gets a polygon which will be as closer to the
desired curve as the more sides it has. Lacroix concludes from this construction
not only that all first-order equations in two variables are “possible” (a conclusion
drawn also from the analytical version of the method) but also that each diffe-
rential equation represents an infinity of curves, since the point M is taken at
will.

In the case of a second-order equation, only the second-order coefficient %% is
determined; this means that the terms of the approximating series are of degree at
least 2, namely of the form Y, =Y +Y't+Y” % Thus, instead of having tangent
straight lines one has osculating parabolas. Also, the first parabola M M’N has
two arbitrary elements instead of one, so that in order to draw one needs to
fix not only M but also either another point in the parabola or the slope of its
tangent at M (i.e., the value of Y); next one takes an “infinitely close” point

A‘N\ "

P’ which determines the values of Y3 = P'M’ and Y{ = Y’ + Y"t (where t =
PP’), and therefore the second parabola M'M"” N'; naturally the process is carried
on, and the curve obtained by assemblage of the parabolas will be the closer
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to the required curve as the points P, P’, P”, etc. are closer to each other.'?”
Arguing that it is easy to extend this construction to any order, Lacroix [ Traité,
IT, 352] concludes that differential equations in two variables, “qui sont toujours
possibles’!2® represent an infinity of curves.

What is the purpose of these constructions? Certainly not historical, like that
of Bernoulli’s mentioned above. Possibly practical: providing graphical approxi-
mations. But the text suggests only theoretical purposes: showing the possibility
and infinity of solutions. Their location also suggests purposes similar to those of
the geometrical illustration of Euler’s “general method” for approximation of ex-
plicit functions — only much less developed, as the method is much less developed
for differential equations; and the purpose of that was clearly theoretical (sections
5.2.2-5.2.3).12% Another very likely purpose is that of preparing the reader for the
construction of partial differential equations.

6.2.3.3 Construction of differential equations in three variables and arbitrary
functions

Chapter 4 of the second volume includes a section “on the geometrical construc-
tion of partial differential equations, and on the determination of the arbitrary
functions contained in their integrals” [Lacroix Traité, II, 608-624]. Naturally,
Monge and Arbogast are the main influences (more specifically, according to the
table of contents, the memoirs [Monge 1770-1773; 1773a] and the dissertation
[Arbogast 1791]); but that of Clairaut [1740] is also very clear (|Clairaut 1740]
appears in the table of contents for the first section of the same chapter).

The first construction presented by Lacroix [Traité, II, 608-609] is an analo-
gue of the construction of first-order differential equations in two variables based
on Euler’s general approximation method; we might say it combines that construc-
tion with the vertical-section approach present in [Clairaut 1740] and several of
Arbogast’s constructions. Given a first-order partial differential equation in three
variables V' = 0, Lacroix considers the value of g—; as a function of x,y, z, and

%, which are indeterminate; he then takes an arbitrary curve X Mm on a plane
parallel to the x, z plane BAD, and regards it as a section of the solution surface
(along which, of course, y is constant and z and g—; are functions of z); for each
point M (or m) of that section he draws a straight line M N (resp. mn) on a plane
parallel to the y, z plane C AD, having as slope the corresponding value of g—;; then

a plane xNn, parallel to X M'm and very close to it, will intersect these straight

127 An alternative construction, unrelated to Euler’s “general method” and yielding a polygon
instead of an assemblage of parabolas, is relegated to a footnote.

128«which are always possible”

129In the second edition Lacroix is more direct in dismissing any usefulness of these constructions
for approximation, and in explaining that they serve to prove the “reality” of differential equations
(see section 9.5.3); in the second edition he also seems less convinced of the practical usefulness
of the analytical version of Euler’s “general method” for approximating differential equations (see
section 9.4.2). The third and later editions of [Lacroix 1802a] also suggest non-approximative
purposes (see section 8.8.2).
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lines in points N, n which may be regarded as belonging to the surface, since the
closer the two planes X M'm, xNn the less x/Nn will differ from the section “paral-
lel and consecutive” to X Mm; carrying this on, one obtains the desired surface.
Thus, concludes Lacroix, the first section X Mm is in fact entirely arbitrary, and
possibly not even continuous (see below).

Lacroix also uses a similar construction to show the difference in indetermi-
nacy between partial and total differential equations'3®. If we have one of the

dz dz

latter, the differential coefficients 72 and 92 will both be given, independently of
3 Y

each other, and only a first point M (not a first section X Mm) may be taken

arbitrarily: the differential equation % = p allows us to construct the point m,

and the equation Z—Z = ¢ to construct the point NV; then the point n may be cons-
tructed using the former equation, starting at N, or the latter equation, starting
at m. For both constructions to give the same point n one needs an additional
condition (which amounts to the condition of integrability of the original total
differential equation): Z_p = j—g (cf. with [Clairaut 1740], section 6.1.3.1). But
this is a parenthesis in tll'/le section — the rest of it is entirely dedicated to partial
differential equations.

These two constructions are in a certain sense the only constructions of diffe-
rential equations in this section; true, Lacroix presents a few more constructions,
but of integrals of differential equations — with some proofs that the constructed
surface satisfies the respective equation.

The first of these is the construction [Lacroix Traité, II, 610-611] of the in-
tegral of Pp+ Q¢ = 0 (where P and @ are functions of z and y only) — namely
z = ¢(U) (where U is a function of z and y such that dU = pPdy — pQ dx,
and ¢ is an arbitrary function). This construction had appeared as “Problem I”
in [Monge 1773a, 269-271]. It is a point-wise construction (i.e., for each point M’
on the z,y plane BAC, or equivalently for each set of z,y coordinates, we wish to
find the z-ordinate M’M of the corresponding point M of the surface). Of course

130That is, total differential equations that satisfy the integrability condition: Lacroix assumes
that their construction, like that of partial differential equations, results in a surface
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the surface is indeterminate, unless we force it to pass through a given curve NR
(with projections N'R’ and N”R"). The basic idea is that U constant makes z
constant: if we draw a curve M’'N’ of equation U = a on the z,y plane, and if
we intersect the cylindrical surface raised on it with the desired surface, we get a
curve M N13! of constant z-ordinate z = b(= ¢(a)); the value of b may be easily
obtained by intersecting the curve M’N’ with the projection N'R’ of NR, and
inspecting the z-ordinate QN of the intersection N; M’M will be equal to QN"'.

The proof [Lacroix Traité, II, 611-612] that the surface thus constructed
effectively satisfies the equation Pp + Q¢ = 0 is also taken from Monge [1775a,
271-272]: consider the tangents M X’ and MY” to the sections through M parallel
to the z, z plane and to the y, z plane, respectively; then M’ X' = Z and MY = pt
consider also M'N’" and M N as above; the “element” Mn of M N is in the tangent
plane X’ MY’ and because M N is parallel to the plane BAC, Mn is also parallel
to the intersection XY’ of BAC with X’'MY"; therefore, M'n’ is also parallel to
Y'X" and M'm' : m/n’ :: M'Y' : M'X'; now, if m'n’ is dx, then M'm/’ is —dy,'3?

131The figure is misleading, as M N is not necessarily straight.
132 acroix says that M’m/ is dy, keeps all terms of the proportion apparently positive, and only
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taken along the curve M'N’ of equation U = a (and therefore Pdy — Q dx = 0);
combining the latter with dy = —% taken from the proportion above gives
Pp+ Qq = 0, as required.

The construction [Lacroix Traité, II, 612-613] of the integral V = ¢(U) of
the “general equation” Pp+ Qq = R (P,Q,R,U and V are functions of z,y and
z) is also taken from Monge [1773a, 285-288]. It is also based on the idea that
U = a constant makes V = b constant; but it is more complicated, particularly
so because the intersection of U = a with V' = b must also intersect a given curve
NR (through which the constructed surface is supposed to pass). The construction
given by Arbogast [1791, 30-33| was much simpler, because Arbogast disregarded
this condition: the required surface was simply the “continued intersection” of the
surfaces of equations U = a and V = b. Lacroix does not attempt to report
Monge’s proof [1773a, 291-293] of the validity of this construction; instead, he
invokes its suitability to the conditions of the integral, and refers the reader to
Monge’s memoir.

One may wonder why does Lacroix give a construction (probably his own)
for “any” first-order partial differential equation — directly from the equation —
and then two constructions for less general equations (first-degree) — and which
need their integrals? The reason is probably the same as why he prefers Monge’s
construction to Arbogast’s: the initial condition should be as general as possible
— that is, one should be able to determine the surface that satisfies the equation
and passes through any given curve of double curvature; the initial condition in
his construction of first-order equations is a plane curve, and therefore not general
enough.

As we would expect, Lacroix uses these constructions also to argue for the
admissability of discontinuous functions. When giving the first construction above
he remarks that the first section XM is entirely arbitrary, and it is not even
necessary for it to be subject to the law of continuity, that is, it does not have
to happen “que toutes ses parties puissent étre décrites par une méme loi, ou
dépendent de la méme équation”!33 [Lacroix Traité, 11, 609]. He had mentioned
that the differential coefficient % (which may appear in the equation, and therefore
in the expression for g—;) represents the slope of the tangent to X M; but he seems

completely unconcerned about whether 2—; exists or not in the case of discontinuous
XM.

In another article [Traité, II, 610] which seems to be about the same issue
of discontinuity, Lacroix discusses the equation p = f(z,y, z). If he were to follow
exactly the construction he had just given (taking in account that now he cannot
have an expression for ¢ = g—;), Lacroix would start by fixing an arbitrary constant-
x section M NY (see figure on page 248) and then construct the constant-y sections
X Mm,xNn; instead, Lacroix starts by particularizing a value PM’ for y in the

argues about signs when reverting to fractional notation — that is, when abandoning geometry
and turning to analysis.
133«that all its parts may be described by one single law, or depend on the same equation”
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equation fil—; = f(z,y, z) and using it to construct the corresponding constant-y

section X M (for which he must fix some arbitrary point); then he does the same
with a very similar value PN’ for y (for which he must also fix some other arbitrary
point); and so on. The only real difference is that with this order it is clearer that
the constant-x sections may be completely random, and quite discontinuous. Of
course, the fact that Z—Z does not occur in the equation is important for this. But
that is not such a particular case as it may seem: Lacroix includes a footnote to
say that the equation Pp+ Qg = R (that is, any quasi-linear first-order equation)
may be reduced to this form, using a change of variables: it is reduced to g—; = %,
if y is replaced by a new variable v such that P g—; +Q g—; = 0, which is of course
possible!34. This is a very interesting argument, but once again it overlooks the
issue of the existence of ¢ (assumed in the equation Pp + Qg = R) when the
constant-z sections (which correspond to functions of y) are discontinuous.
Lacroix refers more directly to the controversy on discontinuous functions
apropos of second-order partial differential equations [Traité, 11, 618-620]. He

gives a construction for the integral z = p(x) +1(y) of d‘f;y =0, and a proof that

it satisfies the differential equation (which, predictably, assumes the existence of

dw—(‘”)l%). The reason for the choice of this equation is that the vibrating-string

dx

equation r = a?t is transformed into d‘f{;} = 0 by putting v = z4+ay and v = x—ay
(so that its integral is z = p(z + ay) + ¥ (x — ay)). Lacroix addresses very quickly
the controversy itself, mentioning that it opposed Euler to d’Alembert, but not
giving any hint at all of d’Alembert’s arguments (nor even of Euler’s); he simply
expresses his adherence to Arbogast’s position, and to his reasonings, “analogues
a ceux que je viens de rapporter”3® — this is not the most encyclopédiste passage
in Lacroix’s Traité. Apparently he thought that the issue was settled, and the
details were no longer relevant.'37

6.2.4 Total differential equations not satisfying the conditions of in-
tegrability

6.2.4.1 The memoir of 1790

The first sign of interest shown by Lacroix on equations in three variables not sa-
tisfying the conditions of integrability appears in the final pages of the memoir that
he submitted to the Paris Academy in August 1790 (see appendix A.2, particularly
pages 391 1f.).

Naturally, Lacroix follows Monge’s approach. He does so much more faith-
fully (much more geometrically) than he would later do in his Traité. However,

134provided that P and Q are well behaved; but around 1800 they surely were well behaved:
discontinuous functions were conceived of only in solutions, expressing initial conditions.

a2z d.pdzx -0
dedy — dy 7

1351t conmsists in verifying that p = dflf(;’) does not vary with y, so that

1364analogous to those I have just reported”

137 This changed a little in the second edition, because of Laplace (see section 9.5.4).
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unlike Monge, he focuses mainly on first-order (quasi-)linear equations, elaborating
on their geometrical interpretation: he assumes that any first-order (quasi-)linear
ordinary differential equation in three variables is the result of the elimination of p
and ¢ between two partial differential equations; in good Mongean fashion, these
partial differential equations represent families of surfaces, and in case there are
surfaces common to these families, they satisfy the ordinary equation (which in
turn satisfies the condition of integrability); in case there are no common surfaces,
the ordinary equation represents the curves of contact between the surfaces of the
two families. For higher-degree equations, in spite of Monge’s results, Lacroix can-
not give a full picture of the solutions; nor can he do it for higher-order equations,
whose situation is even less clear.

The issue that Lacroix wants to address is the determination of the solutions
of these equations that are algebraic. But he does not do much about it: Monge
had related the integration of Mdz + Pdx + Qdy = 0 to those of Mp+ P = 0
and Mg + @ = 0; Lacroix remarks that other systems of (quasi-)linear partial
differential equations will do, as long as they produce Mdz 4+ Pdx + Qdy = 0 by
combination with dz = pdz + g dy, and that those other equations may be chosen
so as to have algebraic integrals.

6.2.4.2 The analytical theory in Lacroix’s Traité

Lacroix could not fail to treat these equations in his Traité. Already in the first
volume, in the section on “differentiation of equations”, he uses a couple of examples
in which variables disappear by differentiation to remark that

‘il n’y a point d’équation différentielle qu’on puisse regarder comme
réellement absurde ou insignifiante; il faut seulement entendre qu’'une
équation différentielle ne se rapporte pas toujours a une seule équation
primitive, et que pour y satisfaire il faut en supposer plusieurs, qui
quelquefois renfermeront de nouvelles variables.”*3® [Lacroix Traité, I,
167).

He is more specific in the second volume, when addressing the conditions of in-
tegrability for equations in more than two variables [Traité, II, 457]: given a
differential equation in three variables, we cannot always assume that one of the
variables is a function of the others; but Monge has shown that those in which
this does not happen are not absurd, rather they belong to an infinity of curves
of double curvature, instead of curved surfaces.

Lacroix addresses then only those that do satisfy the conditions, leaving “to-
tal differential equations that do not satisfy the integrability conditions” for their
own section [Traité, 11, 624-654], the last one of the large chapter 4 of the second

138«there are absolutely no differential equations that we may regard as absurd or meaningless; it
must simply be understood that a differential equation does not always refer to a single primitive
equation, and to satisfy it we must assume several, which sometimes will contain new variables.”
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volume, on “integration of functions of two or more variables” (which is understan-
dable, even if they do in fact usually refer to two functions of one variable). This
section is roughly divided in two halves, in typical Lacroix fashion: in the first
half he gives a purely analytical theory and in the second he gives the geometrical
interpretation.
As with Paoli [1792], Lacroix’s first idea is that if we have a differential
equation of the form
Pdx + Qdy+ Rdz =0 (6.37)

which does not satisfy the integrability condition
p@_RQ R@— ar dP_p@:

dy dy dx dx dz dz 0, (6.38)

we can change it into a differential equation in two variables only (and thus neces-
sarily integrable) by establishing some relation between z,y and z. For instance,

% = % does not satisfy (6.38), unless a = b = 0; but if we put
y = x, it becomes Zd_zc = sz_d(f_b, whose integral is z — ¢ = C(2x — a — b); thus,
dz rdx+ydy

T = TGty _p) 15 satisfied by the system

Y=, z—c=0C(2x—a-0).

An interesting detail here is that Lacroix, unlike Condorcet, Monge, Paoli, or
Nieuport, attributes this technique to Newton. In fact, Newton had given it as
the solution to the “third case” (equations involving fluxions of three or more
quantities) of the “second problem” (given an equation containing fluxions, to find
the relation between their fluents) of his Method of Fluzions [Newton Fluzions,
83].

After remarking the serious inconvenience in this technique that one would
need to perform a separate integration for each particular relation between z,y
and z, Lacroix [ Traité, 11, 625-626] gives Monge’s procedure for integrating (6.37),
which introduces an arbitrary function in the solution (thus solving the inconve-
nience). Lacroix’s version of this procedure is presented as an adaptation of the
method for integrating equations that do satisfy (6.38) — which seems clearer and
more natural than the version in [Monge 1784c].

Naturally Lacroix refers to the problem of determining algebraic solutions.
He would even mention this reference in his “Compte rendu |[...] des progrés que les
mathématiques ont faits depuis 1789 [...]” (appendix B, page 399). Nevertheless,
it is only a short reference — one article [Traité, 11, 626-627]. The most interesting
point made is the possibility of choosing the argument of the arbitrary function.

After some remarks on equations in more than three variables, Lacroix proce-
eds to higher-degree equations. He reports Monge’s first example dz? = m?(dx? +
dy?) [1784c, 506-509] (without the geometrical considerations) and its genera-

lization F (3—;‘, %) = 0 [1784¢c, 515-516]. Here solutions with three arbitrary
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constants are obtained easily, and then used to obtain solutions with an arbitrary
function by varying the constants!'3?.

This was certainly the inspiration for what is the core of this section: the
analytical theory of the formation of differential equations in three variables that
do not satisfy the conditions of integrability [Lacroix Traité, II, 634-638]. Lacroix
was clearly proud of it: not only did he mention it in his “Compte rendu [...]”
(appendix B, page 399), but he even published it in advance as [Lacroix 1798a].

Of course, as with all other Fontaine-like theories of formation of particular
types of differential equations, Lacroix starts with finite equations; since in this
case the solutions are composed of two equations, he starts with two equations

v=0 and v =0 (6.39)

in three variables z,y, z. Now, in (6.39) any two variables are functions of the third
one (“and of the constants that may be found” in there); so, Lacroix differentiates
(6.39), putting dy = pdx and dz = g dz, resulting in
/! !/ /!

%quj—Zerj—;:o and (Zizq—I— %p+%=0; (6.40)
it is possible to eliminate three constants between (6.39) and (6.40), and the result
of this elimination is a first-order differential equation W = 0, which does not
satisfy the integrability conditions'#?. The equations v = 0 and v/ = 0, containing
three constants a, b, ¢, constitute the complete integral of W = 0. But, as always,
there are other ways to satisfy W = 0: the quantities a, b, c may vary instead of
being constants, as long as

dv dv dv dv’ dv’ dv’
%da—i— %db—i— %dC—O and %da—i- %db—i— %dC— 0

(so as to keep (6.40)); there are twenty-five ways to satisfy these conditions, from
the most particular

d_v dv dv dv’ dv’ dv’

da 0, db 0, de 0, da 0, db 0, de 0 (6.:41)
to the most general

dv dv dv dv’ dv’ dv’

—da + —db+ —dc =0, —da + ——db+ —dc = 0; 42

T a+db +dc c=0, da a+ 7 + e e 0; (6.42)

(in [Traité, 11, 635] — but not in [1798a] — Lacroix reports three other possibilities,

dv _ dv _ dv dv’ _ dv’ v’ g
such as 52 =0, 7 =0, £ =0, &= =0, G-db+ G-dc =0).

139In Monge’s version, the process of varying constants was geometrical: one was eliminated in
order to obtain conical surfaces out of straight lines, another was put as a function of the last
one in order to have the vertices follow a curve, and finally differentiation was performed relative
to this last one in order to have the characteristics and the edge of regression.

140WWell, does not necessarily satisfy them. Lacroix concedes later that under certain conditions
v =0 and v/ = 0 may be reduced to a single equation, corresponding to a curved surface.
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Presumably all these possibilities, except for (6.42), correspond to particular
solutions (in different degrees of particularity); however, Lacroix only addresses
the case in which the six equations (6.41) are compatible and additionally they
reduce v = 0 and v = 0 to a single equation — in this case we have a very
remarkable “particular solution” belonging to a curved surface.

The general integral comes from (6.42): putting b = ¢(a), c = 1(a), we have
instead of W = 0 the system

dv dv dv dv' v dv’
v=0, v =0, da T %¢’(a) + %W(a) =0 ot '(a) + %w’(a) =0;
if one of the functions ¢(a), ¥ (a) can be eliminated along with its derivative, then
we will have a system of three equations containing one arbitrary function — that
is, a general integral.

It is compelling to compare this with Paoli’s analytical theory. Not only
[Paoli 1792] appears in the table of contents for this section, Lacroix also cites
it in the text |Traité, 11, 629] — although not in direct relation to the theory of
formation of the equations and their types of integrals. Both Paoli’s and La-
croix’s theories are based on what Lacroix called Lagrange’s “general theory of
integrals and particular solutions” (see page 399 below). But the similarities end
there: in [Paoli 1792] we see solutions with two arbitrary constants, while La-
croix’s complete integrals have three arbitrary constants. Paoli’s theory is much
more practical, arising from an integration technique, and unconcerned with the
formation of the equations; Lacroix’s theory, with all its similarities to the for-
mations of other types of differential equations, seems to arise from a desire for
systematization. It is also clear from what we have seen above that the direct
technical source for Lacroix’s theory was Monge’s work and not Paoli’s.

Just after presenting the theory, Lacroix works out another example | Traité,
I, 636-638]

(ydx —xdy)* + (zdx — xd2)* + (ydz — zdy)? = m*(do* + dy? + dz?)

already addressed (geometrically) by Monge [1784¢, 512-514]; Lacroix’s complete
integral corresponds to the immediate solution that occurs in Monge’s example
(the straight lines tangent to a certain sphere); in the end he manages to eliminate
one of the arbitrary functions and arrive at a result in the form

v U

V=0 3 =% 4z=°

where U contains the other arbitrary function.

Lacroix concedes that his theory carries the same practical difficulties as
Lagrange’s derivation of general integrals from complete integrals for equations
of orders higher than 1 (see page 242 above). But for practical purposes there
is Monge’s “very remarkable correspondence”, which Lacroix proceeds to report
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[Traité, 11, 638-643], between the general integral

dU

U=0 — =0
" da

of a first-order partial differential equation V' = 0 and the general integral

w_, U

U=0 — = =0
" da " da?

of a total differential equation W = 0 obtained by eliminating p (or ¢) between
V =0 and dz = pdx + gdy and then g (or p) between the result V/ = 0 and
v’ _ av’ _

d_q =0 (OI' d_p = 0)

6.2.4.3 Geometrical considerations in Lacroix’s Traité

The articles on geometrical considerations do not bring anything new, being taken
up mostly with examples.

The first example leads to the geometrical interpretation in Lacroix’s me-
moir of 1790: if we take two families of surfaces represented by first-order partial
differential equations, and combine them with dz = pdz + ¢, dy, we obtain a total
differential equation; this equation represents the curves along which the surfaces
of one family touch those of the other; if the equation satisfies the integrability
conditions, then there is a series of surfaces common to the two surfaces, which
contain the curves of contact [Lacroix Traité, 11, 643-645].

The geometrical interpretation of the correspondence between partial and
total differential equations is very short — little over half a page [Lacroix Traité,
IT, 649-650]; Lacroix shows succinctly that the procedure to go from V' = 0 to
W = 0 (see above) also leads from a “limit surface” (that is, an envelope) to its
edge of regression.
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Aspects of differences and series

7.1 Indices

This section is concerned with the indexed (subscript) notation for sequences or
series, as in ug +u1 + ...+ u, + ... This may seem a rather trivial subject, but the
dedication of a section to it is justified for three reasons: 1 — the standard reference
on the history of notations pays very little attention to it [Cajori 1928-1929, 1I,
265-266], making it only a detail in the notations on finite differences, and see-
mingly giving priority to Lagrange in 1792 (while it had been used nearly twenty
years before by Laplace); 2 — the question of “when the subscript notation arose”
has been asked very recently, at the end of a paper that illustrates the importance
of unifying terminologies and powerful notations [Sandifer 2007, 299]; and finally
3 — its use by Lacroix has caused some confusion, its creation or its introduc-
tion in France being misattributed to him. Thus, Dhombres [1986, 156], quoting
[Lacroix Traité, 2nd ed, I, 33|, remarks that “c’est a cette occasion que Lacroix
introduit la notation indexée Ay + A1z + Asx? + Azx® 4+ ...”t. While Schubring
[2005, 386] gives a lengthy footnote on the subject, which is worth quoting in full
(citations of Lacroix have been adapted):

“Standard French textbooks up to about 1800 do not give sequences
of quantities or variables with a notation identifying the single term of
a sequence as part of a generally labeled sequence, for example, a3 as
part of a sequence (a,,) with the general term a,,. Lagrange used letters
in alphabetic order to label elements as part of a sequence, for exam-
ple, the function terms in developing it into a series as P, @, R, and so
forth or coefficients with A, B, C, and so forth. With such an unspecific
approach, he was not able to label the last term of a sequence or a
general term. It is notable that Crelle shifted to indexed series in the

14Tt is at this point that Lacroix introduces the indexed notation Ag+Ajz+Asx?+Aga3 ...
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sections he added to his translation of the Théorie des fonctions ana-
lytiques, for example: By, By ..., B, or P, P, P; with P, as general
term (Lagrange 1823, Vol. 2, 332 fI.). Lacroix had already used gene-
ral indexed quantities a1,as...,a, in both 1798 and 1802, but only in
a narrowly restricted field of calculus: within integral calculus to ope-
rate with the sequence of approximate values in using approximation
to determine integral values [Lacroix Traité, 11, 135ff.; 1802a, 28511
Lacroix, who had studied the contemporary literature intensively, may
have been encouraged to introduce this usage—even though very partial—
by the publications of the German school of combinatorics, which used
indexed quantities as one of their everyday tools.”

We will see that both Dhombres and Schubring were mistaken.?

7.1.1 Indices from Leibniz to Laplace

It is a fact that in the 18th century the most common way of naming the coefficients
in a power series, or the terms of a (finite or infinite) sequence, was to use the
alphabetic order. Thus, for instance, Euler argued for the possibility of expanding
any function of z in the form A+ Bz + Cz? + D23 + &ec., or at least Az® + B2° +
C2Y + D2° + &c. [Introductio, §59).

Interestingly, a complaint about the insufficiency of letters occurs as early as
[Leibniz 1700, 208|:

“literas Algebraicas indiscriminatim adhibitas non satis [sunt] utiles,
quia ob vagam generalitatem suam non admonent mentem relationis,
quam ex prima suppositione sua habent inter se invicem. Hinc ut
nonnihil succurramus defectui, solemus interdum (inprimis cum mul-

tae adhibendae sunt) in ordine earum subsidium queerere”?.

“Their order” might be a reference to the alphabetic order, or it might be a re-
ference to Leibniz’s occasional use of numbers in labelling successive points in a
construction (for instance, 1C,2C, 3C — see page 174 above?). But Leibniz’s pro-
posal in [1700] was more radical: to use “fictitious” numbers instead of letters —

2t is not completely clear whether Dhombres, in the sentence quoted above, means that
Lacroix introduces the indexed notation absolutely (as in, say, “in his first article on differential
calculus, Leibniz introduces the d notation”), or only in the context of his book (“in [1696]
I’Hopital introduces differentials as infinitely small differences”). If the latter is the case, he was
not mistaken. But the former seems much more likely (a few pages earlier he had remarked that
Euler had not used that notation [Dhombres 1986, 153]). In [1988, 19] Dhombres and Pensivy
were more cautious, speaking only of Lacroix having diffused the modern indexed notation.

3“algebraic letters employed indiscriminately are not useful enough, as because of their vague
generality they do not remind us of the mutual relation they hold from their introduction. Hence,
in order to mitigate somewhat this defect, sometimes (especially when there are many [letters|
to be employed) we seek aid in their order”

4Notice that these are not subscripts, but rather “old-style numerals”. Transcribing to “lined
numerals” (more common nowadays), we would have 1C,2C,3C — but Leibniz did not mean
1xC,2xC,3xC.



7.1. Indices 259

that is, he put the indices not as subscripts, but in the place of the coefficients
themselves, as in Z = 101Y + 102Y? 4 103Y + 104Y* + 105° + &c [1700, 207].
This allowed him to use determinant methods, but almost all of his work on this
remained unpublished until recently [Knobloch 199/, 767-769].

Lacroix [Traité, 2nd ed, I, xxvili-xxix| saw in [Leibniz 1700] the inspiration
for the German Combinatorial School®. But that group of mathematicians only
flourished by the end of the 18th century (and only in Germany). Meanwhile,
as has already been said, most authors relied on alphabetic order — but often,
especially in the “theory of series”® and in the calculus of finite differences, they
resorted to other notational devices. For instance, Stirling [1730, 3| combined
the alphabetic order with the special letter T for a general term, and superscript
roman numerals (which we now interpret as primes, or accents) for the following
ones:

“Terminos seriei initiales designo literis Alphabeti initialibus A, B, C,
D, éc. A est primus, B secundus, C tertius, & sic porro. Et Terminum
quemvis in genere denoto literd T, atque reliquos ordine succedentes
eadem literd, adjunctis numeris Romanis I, 11, III, IV, V, VI, VII, &c.
distinctionis gratia. Ut si T sit decimus, erit T/ decimus primus, T”
decimus secundus, T"” decimus tertius, & sic deinceps. Et in genere
quicunque Terminus definitur per T, succedentes definientur universa-
liter per T/, T/, T, TV, &c.’7

In [Differentialis| Euler also used superscript roman numerals, with a slightly
different meaning, and printed more clearly as roman numerals: for instance, y
being a function of z, he called y', y™, y" ™V, 4V, ... the results of substituting

T+ w,z+2w,z+ 3w,z + 4w,z + 5w, ... for x [Euler Differentialis, I, §2].

In Euler’s theory of series the notion of index was fundamental, but it did not
correspond exactly to these roman numerals; instead of representing the changes
in a variable, indices gave the place of a term in a series: “Indices seu exponentes in
qualibet serie vocantur numeri, qui indicant quotus quisque terminus sit in ordine:
sic, termini primi index erit 1, secundi 2, tertius 3, & ita porro.”® [Differentialis,

50n the German Combinatorial School, see for example [Jahnke 1993].

SThat is, the study of finite or infinite sequences and summation of finite sums or infinite
series.

74l denote the initial terms of the series by the initial letters of the alphabet A, B, C, D, etc.
A is the first, B the second, C the third, and so on. And I denote an arbitrary term generally
by the letter 7" with the Roman numerals I, II, III, IV, V, VI, VII, etc. attached to distinguish
them. Thus if T is the tenth term, then T’ will be the eleventh , 7' will the twelfth, T"" will be
the thirteenth, and so on. And in general, whatever term is defined by 7', the succeeding ones
will be defined universally by T, 7", T"" TV, etc.” [Stirling 1780, Eng transl, 21]

8¢The numbers that indicate the place of each term in order are called indices or exponents.
Thus, the index of the first term is one, that of the second is 2, that of the third is 3, and so on.”
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I, §40]. For notation he often used tables such as

INDICES

1, 2, 3, 4, 5 6, 7, &ec
TERMS

A, B, C, D, E, F, G, &ec

and the following example [Differentialis, I, §43] is telling of the lack of corres-
pondence between the roman numerals and indices:

INDICES

1, 2, 3, 4, 5 6, &ec
TERMS

a, ', ab, o oV @V, e

Naturally, the “general term” of a series or sequence was a fundamental con-
cept for Euler also. He defined it as a function of the index, not only in [Differen-
tialis, 1, §39], but as early as 1730 [Ferraro 1998, 293|. And he was able to refer
to a general term or to the last term of a sequence, although with cumbersome
notations. For instance: in [Differentialis, II, § 105] he explains that if we have a
series with general term y

1 2 3 4 . . . L. z—1 T
a + b + ¢ + d + . . . . 4+ v + y

and the term corresponding to the index 0 is A, then v is the general term of the
series

1 2 3 4 5 . . . . . . =z
A+ a + b + ¢ + d + . . . . + w

(and therefore Sv = Sy — y + A, S denoting sums); we have also seen on page
152 Euler’s use of left-hand accents (‘z, ‘X)) for penultimate values in certain finite
sequences.

Sandifer [2007, 288-299] has surveyed Euler’s notations for series and indices
— including those we have seen above, S(1), S(2), etc., S(n) (but not S(n +
1)) in 1772, and [0], [1], etc., [n] (and [n + 1]) in 1773. Sandifer remarks that
Euler developed “several different ad hoc indicial notations”, but that he “failed to
discover a powerful” one, so that his indicial notations “were not generally adopted
by the mathematical community”.

However, I believe that one of Euler’s notations is a direct ancestor of our
subscript indices, namely the roman numeral superscript notation. I have only
noticed one occasion in which Euler extends it to refer to a general term: as
yb T,y result from substituting 2 +w, x4 2w, 2+ 3w, . .. for z, he wrote this
one time y(™ for the result of substituting y 4 nw for x [Differentialis, I, § 23]. But
as far as I know this is an isolated occurrence, and elsewhere Euler’s notations for
general terms were entirely separate from the roman numeral superscript notation.
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Lagrange [1759b], on the other hand, used a (cumbersome) version of Eu-
ler’s notation to represent general terms; he wrote y' for “le terme qui suit y dans
la suite des 3%, and also y™ for the general term (“the same as y”), m being
the “number that denotes the place of the terms”, and thus he used indifferently
y' = Ry + S or y™ ! = Ry™ + S [1759, §3-4]. Of course, this invites confusion
with exponentiation, which may partially explain why the editors of Lagrange’s
(Buvres substituted Y1, ¥m, Ym1 for yb,y™, y™ ! respectively!? — but this substi-
tution caused Dugac [1983, 181] to wrongly ascribe to [Lagrange 1759b| the first
use of the subscript index notation.

The next step in this evolution, resulting in the introduction of the modern
subscript notation for indices, appears to be due to Laplace, in 1773. In [177/]
(submitted in 1772 |Gillispie 1997, 297]), he still used Lagrange’s notation: “si ¢
exprime une fonction quelconque de x, et que l'on y substitue successivement au
lieu de x, 1, 2, 3, &c. on formera une suite de termes dont je designe par y*, celui
qui répond au nombre 2”!!; for double sequences (¢ being a function of x and n),
of which his “recurro-recurrent” series are a particular case, he used "y* [1774,
353].12 But in his next memoir on finite difference equations [1773a] Laplace
adopted a clearer notation, changing the right-hand superscripts into subscripts:

“Y’imagine la suite

Yis Y2, Y3, Ydy Y5 vovvnnnn. Yz, &ec.

formée suivant une loi [...] les nombres 1,2,3...z, placés au bas des
y, indiquent le rang qu’occupe 'y dans la suite, ou, ce qui revient au
méme, l'indice de la série”!? [Laplace 1773a, 39].

Laplace really needed a clearer notation in this memoir, not only because of the
danger of confusion with exponentiation'*, but also because he wanted to play with
indices in different ways: for instance, using 'H, 2H, 3H for different quantities that

9the term that follows g in the sequence of the y’s”

10They did the same for [Lagrange 1759¢|: compare (my emphases) “si I’ ezposant de y exprime
toujours la place qui tient la particule qui parcourt ’espace y, en comptant depuis la premiére
F” in [Lagrange 1759c, 1lst ed, 9], with “si I'indice de y exprime toujours la place qui tient la
particule qui parcourt ’espace y, en comptant depuis la premiére F” in [Lagrange (Buvres, I,
55].

H4f o expresses a function whatsoever of z, and if we substitute successively 1, 2, 3, &c. for
xz, we will form a sequence of terms in which I designate by y* the one corresponding to the
number z”

12In this matter, the editors of Laplace’s (Buvres Complétes (which are not complete), were
more faithful than those of Lagrange’s — they kept these notations.

134T imagine the sequence

YLy Y2, Y35 Ydy Y5 vnnennn- Yo, &ec.

formed following a law [...] the numbers 1,2,3...z, placed in the lower part of the y, indicate
the rank occupied by the y in the sequence, or, equivalently, the index of the series”

14For instance, in [Laplace 1773a, 57| we see p* and 1p® meaning p and lp raised to the zth
power.
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might not have any relation (such as several particular integrals of a given equation
[1773a, 46]), and Hy, Ha, Hs ... H, for the terms of a sequence following some law
[1773a, 41].

Indices were also an essential component of “generating functions”, a tool
that Laplace developed in [1779] and that was to be very important to him (na-
mely being the analytical foundation for his Théorie analytique des probabilités
[1812]).1% If y, is a function of z, then

u:y0+y1't+y2~t2+y3't3...+y$-t””+y$+1't””+1...+yoo~t°°

is the generating function of the variable y,; and reciprocally, “la variable corres-
pondante d’une fonction génératrice, est le coéfficient de ¢* dans le développement
de cette fonction suivant les puissances de ¢"1¢ [Laplace 1779, 211-212]. His first
example is that if u is the generating function of y,, then w - t" is that of y,_, —
which should be enough to show the central role of index manipulation.

It must be remarked that, after Laplace had introduced the subscript no-
tation, it was used by Lagrange for recurrent series /finite difference equations
[1775; 1792-1793]. True, he did not use it in [Fonctions| nor in [Calcul], where
power series are fundamental. But the fact is that in these books he did not work
with combinatorial properties of the indices of those power series. Therefore he
could use what around 1800 was still simpler notations: alphabetical order, or
accents similar to the superscript roman numerals used by Stirling — whence our
prime or accent notation for derivatives.

It is also true that even in works on finite differences Laplace’s notation
was not universal. Bossut, in the introduction on finite differences to his treatise
on the calculus, used only ,z,z,2’, 2", 2", 2!V for successive values of the variable
[1798, 1, 7], and a traditional functional notation ¢:(z) when, addressing recurrent
sequences, he felt the need for a general term (here indexed by z, of course) [1798,
I, 76].

But in advanced (or non purely introductory) works a more systematic form
of referring to general terms was required, leading to notations more or less equiva-
lent to Laplace’s. Prony wrote z=", 27, 20 (or 2), 2/, 2", 2", 21V, 2V for successive
terms, and z(") (sometimes z™) for the general term, as well as 2= 2(n=2) with
obvious meanings [1795a, 11, 1-2].}7 The Italian Anton Mario Lorgna, in his me-
moir [1786-87] developing the analogy between differentiation and exponentiation
that had been proposed by Lagrange [1772a], wrote y*’, y'/,y* &c. for the suc-
cessive values of y, and y*/ for the general term [Lorgna 1786-87, 412-413]. This
notation was meant to keep a distinction, but also an analogy, with the powers
v,y y2, ...,y he also wrote d, AN for the iterated operators d*, A*.

15Euler had already used generating functions, but Laplace “was perhaps the first to exploit
fully” this concept [Goldstine 1977, 127, 185].

16«the variable corresponding to a generating function is the coefficient of t* in the expansion
of that function in powers of t”

7 Towards the final lectures, Prony also wrote zg, 2/, 2/, &c . . . 2(n) [1795a, TV, 544].
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7.1.2 Indices in Lacroix’s Traité

It is clear enough from the previous section that contrary to Schubring’s sugges-
tion, Lacroix did not need German encouragement to use subscript indices. But
there is another mistake in the quotation from [Schubring 2005, 386] given above:
that Lacroix used “general indexed quantities a1, as ..., a, in both 1798 and 1802,
but only in a narrowly restricted field of calculus: within integral calculus to ope-
rate with the sequence of approximate values in using approximation to determine
integral values” — that is, in his version of Euler’s “general method” for appro-
ximate integration (see sections 5.2.2-5.2.4). It is quite true that Lacroix uses
subscript indices in that context — see for instance equation (5.8), page 160 above.
But this is very far from being the “only field” in which he uses them.

The first use of subscript indices in Lacroix’s Traité (their introduction, ac-
cording to Dhombres), is in the first volume, in the Introduction, for the expansion
in power series of a” :

“Nous supposerons que a” soit représenté par la série
AO + Al.lf + A2.132 + A3.133 + etc.

Ay, Ay, A sont des coefficiens indépendans de x, et les chiffres inférieurs
0,1,2 etc. marquent I’exposant de la puissance de x qui multiplie la
lettre a laquelle ils sont attachés, ainsi A,, sera le coefficient de . Ce
qui m’a déterminé & employer cette notation, quoiqu’elle paraisse un
peu compliquée, c’est que par son moyen il sera facile de découvrir la
loi qui régne entre les valeurs des coefficiens.”*® [Lacroix Traité, 1, 33

Lacroix makes effective use of this notation, not only in the expansion of the
exponential function, but also in those of the logarithm, cosine, and sine. For the
exponential function, he uses the functional equation a* x a* = a®*T%, so that

(Ag+A1z+ A,y 22 “+ete.)x (A +Aju+ A +etc.) = Ag+Ar(z+u)+As (x+u)2 +ete.

Expanding the product on the right side and the powers on the left, and comparing
the coefficients, Lacroix concludes first that A2 = Ay, whence Ay = 1, and thus
the coefficients of z, 22, z3, etc. are A;, Ay, As, etc., on both sides; next, analysing
the coefficients of u, ux, uz?, etc., he sees that

Ay = Ay, A1Ay =2A5, A1 Ay = 3A3, ete., and in general A1 A, 1 = mA,,

18«\We will suppose that a® is represented by the series
Ao + A1z + Asz® + Asz® + etc.

Ao, A1, Az are coefficients independent of x, and the inferior numerals 0,1,2 etc. mark the
exponent of the power of x that is multiplied by the letter to which they are attached; thus
A, will be the coefficient of ™. Although this notation appears a little complicated, I have
decided to employ it because by using it it will be easy to discover the law ruling the values of
the coefficients.”
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whence

Ay A2 A3 AP
A== Ay =L A;=—1_ etc., and in general 4,, = ——L1
LT R Ty BT Ty & mT 123 m
(A, which depends on «, is to be determined later). So far the indexed notation
only makes this a little clearer. But Lacroix also needs to confirm that these values
for the coefficients satisfy the rest of the equality, and that is where indices really
make generalization easier: an arbitrary term from the left side is of the form

AT A} At
A A ™ = 1 1 mon _ 1 m_.n,
mAnUTT 1.2.3...m><1.2.3...nu r 1.2...m><1.2...nu s
now, on the right side, u™a™ obviously comes from (z + «)™*", and has as coef-
ficient
(m+n)(m+n—-1)---(m+1)
Am+n
1.2.3...n
_ At ><(m—i—n)(m—i—n—1)~~(m—|—1): At
1.23.(m+n) 1.2.3...n 1.2...mx1.2...n
as above.!?

Lacroix regarded this method as important enough to be mentioned in his
Compte rendu [...] des progres que les mathématiques ont faits depuis 1789 (see
appendix B, page 398). In the preface to the second edition of his Traité, he also
stressed the advantages of his method, namely over those that used infinite or
infinitely small quantities (he might have been thinking of [Euler Introductio]):

“La méthode dont j’ai fait usage pour le développement des fonctions,
ne s’appuie sur aucune considération de ce genre; aucun terme n’y est
négligé; toutes les équations de condition y sont vérifiées en quelque
nombre qu’elles soient, par un calcul fondé sur les indices des quantités
a déterminer, et trés-propre, je crois, a faire sentir les avantages de la
symétrie dans les calculs, et la puissance d’une notation quand elle est
analogue aux idées qu'elle représente.”?° [Lacroix Traité, 2nd ed, I,
Xix-Xx]

19Around the same time, Fourier, in his lectures at the Ecole Polytechnique [1796, 54-55],
gave a similar proof for the expansion of a”, with two differences: 1 — he did not use indices, but
rather the alphabetical order A, B,C,...; 2 — instead of a® X a® = a®t* he used the property
a?* = (a®)?, which makes calculations much easier, and indices dispensable. In the second edition
of his Traité, Lacroix mentioned this approach in a footnote, but he preferred a® x a* = a®T%
for being more general and expressing the most extensive definition of a® [Traité, 2nd ed, I, 35].

20«The method which I used for the expansion of functions does not rely on any consideration
of that kind; no term is neglected; all the equations of condition are verified, whatever their
number, by a calculation based on the indices of the quantities to be determined, and which I
believe to be very proper to make perceive the advantages of symmetry in calculations and how
powerful is a notation that is analogous to the ideas for which it stands.”
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Now, Lacroix does not adopt the subscript index as default notation in the
first two volumes of his Traité; most often, he keeps the use of alphabetic order for
coefficients of series. Still, he does occasionally use subscript indices — probably in
those occasions where they do seem useful, even if not terribly so. For instance,
in the chapter on the principles of differential calculus (see section 3.2.2), deriving
Taylor’s theorem, where we find [Traité, I, 88]:

X1, Xo, X3, ete. for the coefficients in the expansion of the increment of f(x);
X1, Xy, X{", etc. for the coefficients in the expansion of the increment of X7;
X}, XY, XY, ete. for the coefficients in the expansion of the increment of Xs;

In precisely the same context, Lagrange had used

p,p’,p", etc. for the coefficients in the expansion of the increment of u;
m, p, 0, etc. for the coefficients in the expansion of the increment of p;
7', p’, o', ete. for the coefficients in the expansion of the increment of p';

— somewhat more cumbersome [Lagrange 1772a, §4].

The situation in the third volume is a little different. Subscript indices be-
come much more frequent — which is natural, given that it was within the context
of series and finite differences that they had appeared, and that this is a more
combinatorial subject. In fact, the first numbered paragraph of the third volume
starts with a reintroduction of indices:

“Supposons qu’on ait une série de la forme
AO —|— Al.lf + A2.132 —|— Ag.]?g —|— etc.

dans laquelle les chiffres inférieurs affectés aux coefliciens des puissan-
ces de x, et que je nommerai indices, font connoitre le rang qu’occupe
chaque terme |[...| si l'on avoit lexpression du terme général A,z™,
qui répond & un indice quelconque, on en déduiroit tous les autres, en
donnant & n différens valeurs”?!. [Lacroix Traité, 111, 2]

Unlike what this reintroductory example suggests, Lacroix usually abstains
from writing 0 as a subscript. This sometimes results in ambiguity (probably
intentional) between a variable z and its first value z¢ (in these cases we might
see the variable x as distinct from its general value ) .

2l«Suppose that we have a series of the form
Ao+ Az + Asz? + A3:):3 + etc.

in which the inferior numerals affected to the coefficients of the powers of x, and which I will call
indices, display the rank occupied by each term |[...| if we had the expression for the general
term Ap,z™, corresponding to an arbitrary index, we would deduce all the others from it, giving
different values to n”
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Thus, given a sequence u, u1, Uz, U3, ..., the difference Awu is defined as u; —u;
Auy is defined as ug — uq; and more generally Au,_1 as u, —u,—1 (and naturally
A%y = Auy — Au, and so on). Some calculations follow, giving

n nn—1) ., nn—1)(n—-2) 4
= —A ——2A — A . .1
Up, u—i—l u+ 15 u+ T9.3 u+ ete (7.1)
and
n n(n—1 nn—1)(n—2
A"y = Up — Tun_l + %UH_Q — %(.?))Un_:; + etc. (72)

(7.1) is found in [Euler Differentialis, § 22| — it is the single occurrence of (™ for a
general term, mentioned in the previous section; (7.2), which requires a systematic
notation for general terms, appears in [Euler Differentialis, §10] only as a set of
examples, up to A%y = yV — 5yV + 10y — 104 + 597 — .
Lacroix [ Traité, 111, 6] also presents (7.1) and (7.2) as the symbolic expressi-
ons
up = (1 + Au)” and Aty = (u—1)" (7.3)

in the expansion of (1 + Au)", one has to remember to change the powers (Au)*
into higher differences A*u; and in the expansion of A"u = (u — 1)" one has to
remember to change the powers u™ into terms u,.22 These symbolic expressions,
as such, come from [Lorgna 1786-87],3 but Lacroix abstains from expounding
Lorgna’s “new kind of calculus”, which consisted in using the analogy between
exponents of powers on one side and indices of iteration on the other to obtain
formulas. Lacroix limits himself to notice the analogy, both in (7.3) and in La-
grange’s

Ay = (edsh —1)" (7.4)
(where v is a function of z, h = Az, and the powers %Z must be changed into
the higher derivatives fl%ﬁ)

Naturally, the sections on difference equations are written in the language of
indices. Thus, the general first-degree equation is:

Yz4n T+ nyernfl + meeran .ot Umym = Vm

(the subscripts in P, Q, etc. are not indices: they mean that those are functions
of x) [Traité, 111, 188]. It is certainly not necessary to speak here of chapter 2, on
generating functions, where Laplace’s notations are followed.

22Notice that 0-powers are included: in the first case, (Au)® must be changed into Au = u,
and in the second case, u® must be changed into ug = u.

23In [Domingues 2005, 289] 1 said that (7.3) come from [Lagrange 1772a]. 1 was wrong:
|[Lagrange 1772a] gives analogies between powers and higher differences and derivatives (like
(7.4)), and it is the inspiration for [Lorgna 1786-87], but (7.3) are not found there. Incidentally,
(7.1) is, but with uy, referred to only verbally [Lagrange 1772a, §17].
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What seems to be correct in Schubring’s and Dhombres’ suggestions (and
especially in [Dhombres & Pensivy 1988, 19]) is that Lacroix diffused the use of
subscript indices. Their use in volume III was obvious enough; but their uses in
volumes I and II, limited as they are (although far from being as limited as Schu-
bring has it), probably contributed to their adoption outside the area of “theory
of series” and finite differences.

7.2 The “multiplicity of integrals” of difference equations

7.2.1 The peculiar equivalent to singular integrals in finite difference
equations

The subject of finite difference equations started with |[Lagrange 1759b|. This
memoir consists in applications to linear finite difference equations of existing
methods for linear differential equations: separation of variables for first order,
and d’Alembert’s reduction of higher-order linear equations to systems of first-
order ones. According to Wallner [1908, 1052] the majority of works on finite
difference equations in the 18th century remained dependent on analogies with
differential equations. The area in which this analogy was trickier was that of
singular integrals.

We will not start by the exact beginning, but by something close enough.
On the 30th November 1785 Monge read to the Paris Academy of Sciences a very
short memoir [1785¢| on integration of nonlinear finite difference equations. As
usual, this consisted in adapting a method for differential equations (proposed
in [Monge 1785b]). This method involved differentiating the equation enough
times as to be able to eliminate all constants, or at least enough times as to
obtain a quasi-linear equation. In the case of finite difference equations, there
were remarkable consequences. Monge gives the very simple example

(Ay)* = b7,
where b is a constant?*: the common integration of Ay = +b gives
b
y=xt-z+A
a
(where the constant @ = Az and A is the arbitrary constant); but differentiating

(Ay)? = b? we obtain
2AyAAY + (AAy)? =0,

248ic. Probably what Monge means is that Ab = 0, that is, that b is constant for va-
lues of x that differ by Az. FEuler had already remarked that this is also satisfied when
b= p(sin =, cos X7, for constant Azx. This is not terribly important for the subject of multiple
integrals, and so I will avoid the issue, using the word “constant” when the author studied uses

it, and speaking of “arbitrary quantities” otherwise.
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which can be split into the factors
AAy =0 and 2Ay+ AAy =0;

the first gives

b
Y= +2 A
a
as above; the second, however, gives
b z

The latter is a solution of the given equation which is not contained in y = + gm—l—A.
Thus, Monge had come across a Clairaut-like situation — an extra solution obtained
via differentiation. With a surprising difference: the equivalent to the singular
integral, namely y = C' £+ %(—1)%, also contains an arbitrary constant — C' — and
is therefore as general as the equivalent to the complete integral.

The reason why this was not the beginning is that precisely one week before,
Jacques Charles (“le géometre”) had read to the same academy an even shorter
work stating that “there are finite difference equations that have two complete
integrals” [Charles 1785b]. While Monge’s observation is similar to Clairaut’s and
Euler’s “paradoxes”, Charles’s approach is an adaptation of Lagrange’s theory of
singular integrals. He considers the integral

V=0

of a finite difference equation
Z =0,

V being a function of x,y and of a constant a not in Z; if V' is (finitely) differenti-
ated holding a constant, and if the result is denoted §V, then Z = 0 must be the
result of eliminating a between

V=0 and 6V =0;%
but if a is also varied, then we get
AV =46V 4+ RAa; (7.5)

the result of eliminating a between V' = 0 and AV = 0 will still be Z = 0, provided
that R = 0; thus a singular integral should be obtained by eliminating a between

V=0 and R =0;

the problem is that while the equivalent to R in differential equations does not
contain da, most often this R does contain Aa; thus, to eliminate a one must

25Charles [1785b, 560] has “V = 0, & V = 0", which is clearly a typo.
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integrate R = 0 beforehand, and this introduces an arbitrary constant, which will
also appear in the not-so-singular integral. Charles gives two examples, the first
of which will suffice. Consider

A 2
gy = Ay + % (7.6)

(where the constant g = Az), whose complete integral is
gy = 2nax + a® (7.7)

(where a is the arbitrary quantity); the finite difference of this integral, holding a
constant, is
Ay = 2na;

and if a is varied, it is
Aa
Ay = 2na + o [2n(z + g) + 2a + Aal; (7.8)

(7.8) reduces to Ay = 2na by putting
2n(z+g) +2a+ Aa =0, (7.9)

where, as had been warned, we find Aa; now, the integral of (7.9) is
z z /g
—a(~1)% =b+n(-1)3 (5 n x)
(where b is an arbitrary quantity), and substituting this value of a in (7.7) we get
212
gy = —n?a? + {% + b(—l)?} (7.10)

as a second complete integral of (7.6). Charles also remarks that following this
procedure with (7.10) as the first integral, we would arrive at (7.7) — as Wallner
[1908, 1053] put it, the singular integral of the singular integral is the original
complete integral.

This would have remained as a nice observation, but unfortunately Charles
decided to elaborate — in a misguided direction that made him arrive at strange
paradoxes. In [1788] he retook (7.6), writing it as

Ay Ay?

— A1
R 3 (7.11)

and writing its two complete integrals as

y = 2nax + a* (7.12)
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and )
y = —n’z? + (bcos.B + %> ; (7.13)
g 2
it must be remarked that cos .”7;’ is precisely the same as the (—1)§ that occurred

in (7.10), as x is a discrete variable with difference Az = g, and therefore £ takes
only integral values. But in order to have a locus for the equation, Charles needs
a continuous x; he divides the abscissa axis into equal segments TV, VR, RS, ...
of length g, and puts x = X + gu — the integer p indicates the division where z

§ (S .
TjN, L
5 L?y,.'..

v\

/IO

X T v [ B \\

lies and, in modern terms, X is  modulo g; (7.13) is thus transformed into

n2g?
y=0b>+ 3 n?x? — nbgcos .mu. (7.14)
He then constructs the parabola C EG with equation
2 2
z:b2—|—n4g 22

(that is, the difference between y and z is —nbg cos .7u), and since —nbg cos .y is
alternately —nbg and nbg, he alternately adds and subtracts nbg to the division
ordinates TT",VV’',RR',SS’, ..., obtaining new points H, L, N, O, ... that belong
to (7.14). Then he decides that the polygon ... HLNO... obtained by joining
these new points may be regarded as the locus of (7.14); also each side of the
polygon is of the form (7.12) — luckily the first complete integral was a linear
equation; Charles concludes that the polygon must verify (7.11).

As if this were not confused enough, Charles goes on: making the difference
¢ diminish until it becomes zero, the polygon becomes the parabola C EG, which
therefore must be an integral of “la proposée dans le cas des différences infiniment
petites’2® — presumably

xdy dy?

= -2 7.15
4 dx + An2dx?’ ( )

26«the given equation in the case of infinitesimal differences”
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although he does not write it explicitly. Now, this second integral retains the
arbitrary constant b: it is

y = b* — n*z% + nbdx cos.(rp). (7.16)

Charles’s grand conclusion is that singular integrals are in fact only incomplete
integrals taken from a second complete integral that no one had noticed before
[Charles 1788, 118].

The last problem to be mentioned is the term nbdz cos.(rp) in (7.16). The
real infinitesimal equivalent to (7.13) or (7.14) would have been simply y = b% —
n222. But Charles noticed that this would not satisfy (7.15). Thus he decided to
keep the “differential term” n bdx cos.(mu), which allowed him to obtain the “true
value” of %, namely —2n(nz +bcos.mu) = —2n(nz £ b).2" The need to keep this
“differential term” led him to ramble on about not all (sequences of) polygons that
converge to a curve being valid to obtain the tangents to that curve, and about
the need, when studying a differential equation, to carefully consider the finite
difference equation from which it derives.

Charles goes on with this in what appear to be two additions: on page 121
(the seventh of the memoir) there is a sidenote “presented on the 4th March 17907,
presumably referring to pages 121 to 132, which suggests that they form one such
addition; pages 132 to 139 constitute explicitly a “suite du mémoire”. One can
imagine the negative reactions at the Academy meetings, and Charles coming up
with new examples and arguments. This was probably not easy — he was quite ill
by then, suffering from paralysis of his right hand, and was to die the next year
[Hahn 1981, 85-86]. But summing up, we have to conclude that Charles thought
too much in terms of finite differences, and was not able to grasp how a limiting
process works.

In [1795a, IV, 502-509] Prony addressed this subject of “multiplicity of in-
tegrals”, as an example of the difficulty in dealing with nonlinear finite diffe-
rence equations (all the examples of multiple integrals were of nonlinear equa-
tions, for very good reasons — see below). But he gives only examples taken from
[Monge 1785¢], adding geometrical constructions for the two double integrals of
(Az)? = a? that Monge had found. He referred the students who would like
further details to the memoirs published by Monge and Charles in the volumes of
the Paris Academy from 1783 to 1788, and mentioned “paradoxical results”, but
did not give details.

7.2.2 Biot’s work and Lacroix’s account

One of Prony’s students in the first year of the Ecole Polytechnique was Jean-
Baptiste Biot. Grattan-Guinness [1990, I, 224] says that Biot began his scientific
career by taking Prony’s advice, mentioned in the previous section, of looking into
Monge’s and Charles’s memoirs on the multiplicity of integrals of finite difference

2"Even then, I cannot understand how this value is supposed to satisfy (7.15).
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equations. In fact, Biot’s first research work [1797] addressed that problem. But
the story of Biot’s motivation may have been a little more complicated.

Biot completed his studies at the Ecole Polytechnique in 1795 [Grattan-
Guinness 1990, 1, 188] or 1796 [Frankel 1978, 37|, and he quickly created a re-
lationship of patronage with Lacroix, described in [Frankel 1978]. Lacroix was
preparing a new edition of Clairaut’s Elémens d’Algébre to be used in the newly
founded écoles centrales, and it was Biot who wrote the introduction on arithme-
tic. In November 1796 Biot applied for a job as teacher of mathematics at the
Ecole centrale of the Oise department, in Beauvais, with the support of Lacroix,
Prony, and Cousin (he was appointed in February 1797).

It is the correspondence dating from Biot’s Beauvais period (1797-1800) that
best tells us of the relationship between him and Lacroix:

“Lacroix was the ‘master’, who suggested problems to his pupil, eva-
luated his solutions, helped him to become known to other scientists,
generated publication and guided his career. Biot was the protégé who
worked diligently on the tasks set to him by his ‘master’, edited and
made additions to Lacroix’s textbooks, dutifully followed his advice on
matters affecting his career and thanked him profusely for his services.”
[Frankel 1978, 38|

This relationship probably changed after 1800, when Biot was appointed both as
an associate member of the Institut National and as a professor of the Collége de
France. He and Lacroix were now on similar levels. But it is reasonable to assume
that Lacroix’s patronage had started before Biot’s move to Beauvais forced it to
be expressed in writing.

Thus Frankel [1978, 40] has suggested that [Biot 1797] may have been writ-
ten specifically to be included in the third volume of Lacroix’s Traité. This is
probably an exaggeration, as it is somewhat exaggerated to say that [Biot 1797]
“appeared intact” in [Lacroix Traité, III|: the changes from [Biot 1797] to [La-
croix Traité, 111, 237-247] are not very substantial — there are a few differences
in notation, terminology, one less example, occasionally less detail, and the whole
is rewritten by Lacroix — but enough not to consider this a section of Lacroix’s
Traité commissioned to Biot. Lacroix’s section is rather a close account of Biot’s
work.2?8

Still, it is very likely that Lacroix suggested the topic to Biot, and maybe
even some hints at how to deal with it. It is also very likely that Lacroix had his
third volume in mind — that he wished to have a better source on the multiplicity

280ddly, Grattan-Guinness [1990, I, 224] has said that in the first edition Lacroix “mentioned”
Biot’s memoir, “and gave a lengthy account of it in the second edition”. In fact, the lengthy
account of the second edition is virtually identical to that of the first edition [Lacroix Traité, 1st
ed, III, 237-247; 2nd ed, III, 250-260]. He has also said [1990, I, 227| that Lacroix used Biot’s
paper on mixed difference equations [Biot 1799] only in the second edition of his Traité, but
as we will see below that already happened in the first edition. Grattan-Guinness must have
underestimated the degree of collaboration between Lacroix and Biot.
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of integrals of difference equations than the confused [Charles 1788] or the laconic
[Prony 1795a].

The similarity between [Biot 1797] and [Lacroix Traité, III, 237-247] and
the possibility of Lacroix having suggested the topic are two reasons to address
together Biot’s work and Lacroix’s account. One final reason has to do with dates
of publication. Biot submitted his memoir “Considérations sur les intégrales des
équations aux différences finies” to the Institut National on the 6 Ventose of year 5
(24 February 1797) [Acad. Sc. Paris PV, I, 174|. Laplace and Prony were charged
with reporting on it, but the report (written by Prony) only appeared over two and
a half years later (6 Frimaire year 8 = 27 November 1799) [Acad. Sc. Paris PV,
I1, 45-48]; it recommended either the publication of Biot’s memoir in the Savants
FEtrangers, or of the report itself in the Mémoires; it was the latter option that
was followed, in the volume that appeared in 1801. Biot’s memoir was finally
published in the Journal de I’Ecole Polytechnique in 1802 (it is this version that
is cited here as [Biot 1797]). But as [Lacroix Traité, III] had appeared in 1800,
Lacroix’s account constitutes the first publication of Biot’s work.

Still about dates: the publication in the Journal de I’Ecole Polytechnique
mentions that the memoir had been submitted to the Institut on the “6 Ventose
year 8”; this is a typo for year 5, corrected in the errata at the end of the volume;
moreover, Biot did not submit anything at the meeting held on the 6 Ventose
year 8 [Acad. Sc. Paris PV, II, 110-114]. He did submit another memoir on the
11 Pluviose year 8 (31 January 1800), but it was on the integration of linear finite
difference equations [Acad.Sc. Paris PV, II, 87|; this was never published, and
the report (of which Laplace and Lacroix were charged) was never made; thus, we
do not know what were its contents; but the fact that it was about linear finite
difference equations indicates that it had little or nothing to do with his memoir on
the multiplicity of integrals (which, as has been noted above and will be explained
below, occurred only for nonlinear equations); in particular, it was not another
version of it, as Grattan-Guinness [1990, 1, 224] has suggested. Frankel [1978, 41|
made a similar claim, even quoting a letter from Biot to Lacroix, which he dates
of the winter of 1799-1800:

“T have started again from scratch and I have arrived at the same re-
sults but in a much simpler manner. . . using powers of the second order.
You can see that I am profiting from what you tell me, because it was
you who engaged me to read your third volume carefully, and the high
opinion you have of powers of the second order led me to use them to
good advantage.”

As T have not seen this letter, which is kept at the David Eugene Smith Collec-
tion, in Columbia University, New York, I cannot discuss in detail Frankel’s claim
that it refers to Biot’s memoir on the multiplicity of integrals of finite difference
equations; but I find it more likely to refer to Biot’s memoir on linear finite dif-
ference equations, which may very well have been through two versions. It is
noteworthy that the version of the former that we know, published only in 1802,
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has no second-order powers whatsoever.?? If there ever was a second version of
it, it is not the one published in the Journal de I’Ecole Polytechnique. 1 assume
that this published version is the original (or only) one, and that is why I cite it
as [Biot 1797].

After all these introductory considerations, let us examine [Biot 1797], to-
gether with the section in Lacroix’s Traité “on the multiplicity of integrals of
which difference equations are capable” [Traité, II1, 237-247]. The main differen-
ces between the two will be noted. Otherwise, where one reads “Biot” one may
also read “Lacroix”. As for notation, it is Lacroix’s that will be followed.

It could go without saying that Lacroix acknowledges Biot’s authorship. As
always for manuscripts, he does not include Biot’s memoir in the table of contents
[Lacroix Traité, 111, vi], but he cites it at the beginning of the section [ Traité, 111,
237] as the source from where he took what follows.

Biot starts with a similar approach to that of Charles — namely, adapting
Lagrange’s explanation for singular integrals of differential equations; Lacroix does
not fail to highlight the analogy [Traité, III, 237]. But instead of using a complete
integral and its finite difference, Biot uses a complete integral

F{z,a,Yzq} =0 (7.17)

(the notation y, , is used to exploit the fact that y is a function of x and particu-
larly of a) and the consecutive equation

F{z1,a,Yz1,a} =0; (7.18)

that is, (7.17) is the complete integral of the difference equation Z = 0 that results
from eliminating a between (7.17) and (7.18).3° This is of course equivalent to
using (7.17) and its difference, since that difference is precisely F{z1,a,yz,,a} —
F{z,a,ys .} = 0; but this format is more appropriate than Charles’s (7.5), since
it allows us to deal better with different values for a. If a is varied along with z,
(7.17) becomes

F{xlaalay:cl,al} =0; (719)

but the same difference equation Z = 0 may result using (7.19) instead of (7.18),
as long as in these two equations we have Y, o, = Yz,,qa, that is, as long as we
have

F{z1,a,Yz1,0} =0 and F{z1,a1,Yz, 0} =0. (7.20)

Elimination of y,, , between these two equations results in an equation in z,z1,a
and ay (a difference equation) that gives the law that the values of a must follow

29«Second-order powers” are generalized factorials. See page 43 above.

30This is Lacroix’s notation. Biot has z’ instead of z1. The brackets instead of parentheses,
as well as the subscript z and a, are in both Biot and Lacroix. In both cases, one must be aware
that = and a stand both for the variables (sometimes constant, in the case of a) and for their
first values, which Lacroix might have noted zo and ag. This ambiguity has been remarked in
section 7.1.2.



7.2. The “multiplicity of integrals” of difference equations 275

for Z = 0 to be satisfied. Since this a difference equation, it must be integrated
in order to get an expression for a, which when substituted in (7.17) will result in
a new integral for Z = 0; as that expression for a contains an arbitrary quantity,
this new integral is “aussi générale que la premiére”®! [Biot 1797, 183], or “encore
une intégrale compléte |. .. ], au lieu d’une intégrale particuliére”3? [Lacroix Traité,
I1I, 238].

This “new integral” is not necessarily new: if (7.17) is linear in a, then (7.20)
gives the trivial equation a; = a, so that no new integral arises;>? but if a is raised
to some power in (7.17), then there should be a new integral. Incidently, this is
why all the examples of multiple integrals were of nonlinear equations: if (7.17)
is not linear in a, then the elimination of this quantity between (7.17) and (7.18)
should result in a nonlinear difference equation; but neither Lacroix nor Biot make
this remark.34

At this point a difference in terminology between Lacroix and Biot must be
noted: Lacroix | Traité, II1, 240] calls the new integrals (those truly new) “indirect
integrals”; while Biot simply calls them “new integrals”. Curiously, later in [1799,
311] Biot was to refer to this memoir as a “théorie des intégrales indirectes des
équations aux différences”3.

Something that Biot introduces very early in his memoir [1797, 183; Lacroix
Traité, 111, 239] is a geometrical interpretation: a difference equation is the locus
of a sequence of points corresponding to abscissas that “follow a certain law” (that
of x,x1, 22, ...); assigning distinct particular values to a, (7.17) gives us distinct
particular integrals

F{w,aayﬂv,a} - 07 F{waalaym,al} - 07 F{.’E, a27yx,a2} - 07 v ,36 (72]—)

so that (7.20) — or equivalently, the equality Yz, a; = Yz, — means that the first
two particular integrals in (7.21) intersect at a point of abscissa z1; now, if the
successive values of a follow the law mentioned above for Z = 0 to be satisfied
(that is, the integral of the difference equation obtained by elimination of y, 4
from (7.20)), then we will have Yz, 4, = Yus,a, as well, so that the second and
third particular integrals in (7.21) will intersect at a point of abscissa x2; and so
on; these points of intersection

Z, T, T2, e Ip

Yz,ay Yzi,0a = Yzi1,a19 Yzo,ar = Yzo,any - - - ym(n),a(n_l) = ym(n),a(n)

form a sequence that satisfies Z = 0 and is an indirect integral.

31
32

as general as the first”
yet a complete integral [...], instead of a particular solution”

33This is better explained in [Biot 1797, 184-185] than in [Lacroix Traité, IT1, 238].

34 Apparently it was Poisson who first made it [1800, 180].

35«theory of indirect integrals of difference equations”

36[Biot 1797, 183] has F{z,a,yz o} = 0, F{x',a’,yy oo} = 0, F{a',a",yy oo} = 0, which
must be a triple typo for F{z,a,yz o} =0, F{z,d',y; oo} =0, F{z,a",y, o} = 0.
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It is when presenting this geometrical interpretation that Biot remarks that
the new integral, although coinciding with the original one as far as first-order dif-
ferences go, deviates from it at second-order differences. Lacroix is a little clearer
on why this is so: the sequence above does not necessarily verify ¥z, o = Yz,,q4,, and
the like. Lacroix also uses a more precise language when explaining that distinct
integrals of the same difference equation cannot coincide indefinitely at differences
of all orders, so that two integrals of one first-order equation should, in general,
correspond to distinet second-order equations [Traité, 111, 243|. This property is
another analogue between indirect integrals of difference equations and singular
integrals of differential equations (see page 189 above). And it is important —
Biot uses it to explain Monge’s example Ay? = 2, and similar situations, and
to propose a general method for finding new integrals, without recurring to the
ordinary integral: differentiating (finitely) the difference equation, if the result is
factorizable, then each of the factors corresponds to an integral; but he recognizes
the disadvantage of introducing higher-order equations [1797, 192].

The refutation of Charles’s paradoxes is more detailed in [Biot 1797, 195-198]
than in [Lacroix Traité, III, 246-248]. Let us sum it up.

Charles had treated differential equations and their integrals as limits of
difference equations and their integrals, respectively; but his handling of limits was
very naive. Both Biot and Lacroix agree with Charles that putting Az = 0, Ay =0
in a difference equation results in the differential equation that is its limit;3” but
Charles also assumed that putting Az = 0, Ay = 0 in an integral of the difference
equation was enough to obtain an integral of the differential equation, and this
was his big mistake. Taking y;, o = f(z1,a) and yg, 4, = f(x1,a1) from (7.20),
we get f(x1,a1) — {(z1,a) = 0; writing a; as a + Aa, Biot argues that this can be
written in the form

Aaf,(z1,a,Aa) =0,

whence the two possibilites Aa = 0 (that is, a is a constant and the original
integral results) and
f,(z + Az, a,Aa) = 0.

Now, this difference equation can be integrated, resulting in an indirect integral;
but if we put Az = 0, Aa = 0,%® it becomes a “primitive equation” [Lacroix Traité,
ITI, 247], so that a can be retrieved from it without integration, and therefore
without an arbitrary quantity (resulting in a particular solution). Thus, to go
from the indirect integral of the difference equation to the particular solution of
the differential equation it is necessary to drop the arbitrary quantity.

It was because Charles arrived at false integrals that he needed an extra
“differential term”. Both Lacroix and Biot remark that this term, destroying the
“homogénéité qui fait la base du calcul différentiel”?® [Biot 1797, 198; Lacroix

370f course this language of “putting Az = 0, Ay = 0” is also very naive. But we understand
that it means taking the limit as Az — 0, Ay — 0, taking in account the limit % of A—z
38That is, if we take the limit as Az — 0, Aa — 0.

39“homogeneity that is the basis of the differential calculus”
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Traité, 111, 247], should have made him realize how wrong he was. The error of
concluding that not every inscribed polygon tends to the curve, as the number of
sides is assumed infinite, but does not even deserve a counter-argument — it seems
to be presented as yet another silly conclusion (not in so many words).

To finish this, we must look at the citations of Charles, where we find one of
the few mistakes in Lacroix’s references. Biot cites only [Charles 1788] — which is
enough for his purposes. Lacroix has a more historical concern — and gets it wrong:
he correctly points out Charles’s priority in noticing the multiplicity of integrals of
difference equation, but cites [Charles 1785a] as the place where that happened,
instead of [Charles 1785b]; [Charles 1785a] is a memoir on difference equations,
but not on what Lacroix called indirect integrals, and certainly prior to Charles’s
discovery of them*’. To make this mistake worse: 1 - Lacroix | Traité, I11, vi] cites
[Monge 1785¢|, which was published in the same volume as [Charles 1785b]; 2 -
he fails to include [Charles 1788] in the table of contents. This omission (which
is not serious, since [Charles 1788] is mentioned in the main text) was rectified in
the second edition, but the confusion between [Charles 1785b] and [Charles 1785a]
was not [Lacroix Traité, 2nd ed, III, xiv, 259]. There is some further evidence that
Lacroix did not really know [Charles 1785a| (see footnote 53 below).

7.3 Mixed difference equations

7.3.1 “Equations in finite and infinitely small differences”

Equations containing both finite differences and differentials appeared for the first
time in [Condorcet 1771]. In this memoir, Condorcet reduced to finite difference
equations the determination of the arbitrary functions occurring in integrals of
partial differential equations; but in some cases, where those arbitrary functi-
ons are originally given by non-algebraic equations, the resulting finite difference
equations contain also differentials [1771, 51-52]; hence Condorcet dedicating the
third “article” of the memoir [1771, 56-66] to “équations aux différences finies et
infiniment petites’*!.

Condorcet starts by the easy possibilities: if regarding the differentials as new
variables in a finite difference equation this finite difference equation is integrable,
then we should integrate it — the result will be a differential equation, which we
then integrate; and of course if regarding the finite differences as new variables
we get an integrable differential equation, then we should integrate it, and then
integrate the resulting finite difference equation. But he notices that these two
cases do not cover all equations in finite and infinitesimal differences. Therefore
Condorcet tries to get a general mode of solution through different means (“more

40|Charles 1785a] is probably the result of combining several memoirs submitted to the Pa-
ris Academy in 1779 and 1780, and possibly one submitted in May 1785 [Hahn 1981, 84].
[Charles 1785b], as we have noticed above, was read in November 1785.

4l«equations in finite and infinitely small differences”
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direct principles”, according to him). His answer is typically Condorcetian: try
to find the form of the solution (how many transcendental functions, and of what
types)*?, and then use the method of indeterminate coefficients.

Laplace also occasionally addressed this kind of equation. In [1779, 302-
305] he applied his calculus of generating functions to “équations aux différences
partielles, en partie finies, et en partie infiniment petites’®3. In [1782, 31-53]
he addressed approximate integration of linear finite difference equations, also
extending it to linear differential equations and linear equations in finite differences
and differentials [1782, 42-43].

According to Wallner [1908, 1065], Lorgna and Paoli also treated these equa-
tions (in the latter case using Laplace’s generating functions).

Finally, we must mention Jacques Charles — the same of the paradoxical
results in finite difference equations. From 1779 to 1785 Charles submitted seven
memoirs to the Paris Académie des Sciences, in an effort to be elected a member
(he was successful in 1785); out of these, two were expressly about “equations
containing both finite differences and infinitesimal differences” — one submitted in
1779, and the other submitted in 1785 (the last in the series of seven memoirs)
[Hahn 1981, 84].

Although both these memoirs were recommended for publication in the Sa-
vants étrangers, none of them was published, at least not in its entirety. [Charles
1785a] seems to be a combination of some of those seven memoirs, but little survi-
ved from these two. The subject of the 1779 memoir was the construction of equa-
tions containing both finite differences and differentials, according to the report
made by Vandermonde, Bossut and Condorcet [Acad.R.Sc. PV, XCVIII, 224r-
224v], also quoted by Hahn [1981, 84]; while in the one submitted in 1785 Charles
reduced the integration of these equations to that of partial equations in finite
differences only (according to the reporters** [Acad.R.Sc. PV, CIV, 80v-81r]).
But in the published memoir there are less than two full pages [Charles 1785a,
584-585] dedicated to “equations containing both differentials and finite differen-
ces”; these contain a “probléme”; indeed solved through a partial finite difference
equation, which suggests that it is taken from the memoir submitted in 1785, and
a “remarque” on the application of this kind of equation to Lagrange’s version of
the vibrating string with discrete weights — there is no trace of constructions of
equations in both differentials and finite differences (that is, no trace of the 1779
memoir).

Still, this is one of the few publications in the 18th century on equations
containing both differentials and finite differences. And its larger part (the "pro-
bléeme”) was reprinted, already in 1785, as one of Charles contributions to the

42Condorcet’s underestimation of the variety of transcendental functions is one of the biggest
problems with his “general” theory of integration |Gilain 1988, 93|.

434gquations in partial differences, partly finite, and partly infinitesimal”

44The proces-verbal says that the reporters were Lavoisier, Cadet and Darcet, which must be
a mistake (these were all chemists). According to Hahn [1981, 84] the reporters were Cousin
and Condorcet.
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Encyclopédie Méthodique — the article “INTEGRAL (Calcul intégral des équations
en différences mélées)” [Charles 1785d].4° Incidentally, the title of this latter ver-
sion seems to be the first occurrence of the expression “différences mélées” (“mixed
differences”), which was to become standard with Biot’s work and Lacroix’s ac-
count of it.

7.3.2 Biot’s work and Lacroix’s account

We saw above that it is possible that it was Lacroix who proposed to Biot to
study the multiplicity of integrals of finite difference equations. As for the topic
of Biot’s second submission to the Institut, namely mixed difference equations, we
know that it was suggested by Lacroix, in 1797 [Frankel 1978, 40].

Biot did not produce a memoir then, but he resumed his research in early
1799, and on the 1st Brumaire of year 8 (23 October 1799) he read to the Institut
his “Considérations sur les équations aux différences mélées” [Acad. Sc. Paris PV,
IT, 18]. Laplace, Bonaparte and Lacroix were charged with reporting on it, and
the report (written by Lacroix*%) was read twenty days later, recommending the
publication in the Savans Etrangers [Acad. Sc. Paris PV, 11, 30-32]. Unlike what
happened to his memoir on integrals of finite difference equations, this recommen-
dation was eventually followed, and the memoir was published in the new series
of the Savans Etrangers, in 1806 — this is what is cited here as [Biot 1799]; but
of course Biot was not very confident that this would happen (no one would be
— the Savans Etrangers was not published between 1786 and 1806), and he sub-
mitted the memoir also to the Société Philomatique, in whose Bulletin appeared
a summary |Biot 1800].47

The issue with that summary was published in Pluviose year 8 (January-
February 1800). That same year appeared the third volume of Lacroix’s Traité;
and most of its final chapter (chapter 4, “On mixed difference equations”) is an
account of [Biot 1799] — although it must be said that it does not follow Biot’s
work as close as the section on the multiplicity of integrals of difference equations.
Lacroix starts by mentioning Condorcet and Laplace as the originators of the
subject (Biot omits this); then he gives a couple of examples; and only then he
picks up the beginning of Biot’s memoir. We will also see below that he actually
has more to say than Biot on “mixed difference equations in the strict sense”. On

45 Another contribution, immediately preceding that one, is the article “INTEGRAL (Calcul
intégral des équations en différences finies)” [Charles 1785¢], more than half of which is also
reproduced from [Charles 1785a, 574-579]

46Both Frankel [1978, 41] and Grattan-Guinness [1990, I, 227] attribute it to Lacroix, and
there is no reason to question this attribution; on the contrary — its terminology (“differen-
ces” instead of “finite differences”; “partial differentials” instead of “partial differences”; “indirect
integrals”; “differential coefficients”) points to Lacroix, and so does a reference to Fontaine’s
authorship of the “important remark” that a differential equation is the result of elimination of
constants between a “primitive equation” and its differentials.

47Biot was an associé-correspondant of the Société Philomatique. Although this summary has
an indication “Institut Nat.” on the side, the report of the activities of the Société states that
Biot also read the memoir to its members [Soc. Phil. Rapp, IV, 14].
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the other hand, it is noticeable that Biot follows Lacroix’s notation (z; instead of
2’) and terminology more closely here than in [1797] — to the point of referring to
his previous memoir as being about “indirect integrals” [Biot 1799, 311].

[Biot 1799] is divided into two parts, corresponding to the two sections in
[Lacroix Traité, III, ch.4]: the analytical theory and geometrical applications.
Although Biot does not cite Condorcet (or anyone else for that matter, except him-
self on indirect integrals, and Euler as a source of geometrical problems), the analy-
tical theory seems to be a clarification of some parts of that in [Condorcet 1771].48
Like Condorcet, Biot’s starting point is that a mixed difference equation results
from combining an equation with its differences and differentials. This is an ex-
tension of Fontaine’s conception of differential equations (see sections 6.1.4.1 and
6.2.1.1), similar to what Charles and Biot himself had done for difference equations,
as Lacroix refers in the report on [Biot 1799] for the Institut [Acad. Sc. Paris PV,
II, 30-31]. But Biot is much clearer than Condorcet in how that “combination”
happens: elimination of constants.?

In the case of first-order equations (the only one considered by Biot), there
are four possibilities for this elimination. Writing them as in Lacroix’s version®®,
the first two consist in eliminating two constants between

V=0, dV =0, and AV =0
or eliminating four constants between
V=0, dv =0, AV =0 and dAV =0;
the third possibility consists in eliminating one constant between
V=0 and dV’' =0,

where V' = 0 is already a difference equation (Lacroix notes that V' = 0 is
obtained by eliminating an “arbitrary function of the type that complete integrals
of difference equations” between V' = 0 and AV = 0); while the fourth possibility
consists in eliminating an arbitrary quantity between

dV'=0 and dAV’' =0,

where dV’ represents “a first-order differential function of two variables” (and
presumably is obtained by eliminating a constant between ¥V = 0 and dV = 0).

48 As has been remarked above, Lacroix does mention Condorcet, but he does not say anything
about the contents of [Condorcet 1771], nor establishes any relation between Condorcet’s and
Biot’s theories.

49Well, mostly constants. In some cases, more or less obvious, what is intended is elimination
of functions of period Az (constant for values of x that differ by Az). One reference by Biot
[1799, 297] to the possibility of a “more general” characterization may be an allusion to this
issue.

50The main difference from Biot’s version is that the latter uses Vi (= V + AV) instead of
AV.
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This division into several possibilities suggests another point of contact with
[Condorcet 1771] — Biot’s third and fourth cases correspond to Condorcet’s easy
possibilities: the mixed difference equation obtained in Biot’s third case is such
that regarding Ay as a new variable we get an integrable differential equation,
whose integral is of course V/ = 0; and the fourth case is such that dV’ = 0 is the
finite difference integral of the mixed difference equation, when dy is regarded as
a new variable. Biot [1799, 300] calls these two cases “équations aux différences
successives” — “successive difference equations”, because they result “d’une diffé-
rence succédant & une différentiation, ou d’une différentiation effectuée sur une
différence”®! [Lacroix Traité, 111, 532]. Successive difference equations are easily
recognizable because they must satisfy their respective conditions of integrability
(an observation that Condorcet would have appreciated); for instance, in the third
case, the successive difference equation must satisfy the conditions for integrability
of differential equations in three variables — these three variables being x,y and
Ay.

When both a finite difference integration and a differential integration can
be performed, it is the latter that should be done done first — it only introduces
an arbitrary constant, while the former introduces an arbitrary function that is
constant for values of z differing by Az, and this function must be particularized
before the differential integration can be performed.

As for Biot’s first and second cases, he calls them “équations aux différences
mélées proprement dites”5? [1799, 300]. Biot does not give any method for solving
them, and he explicitly avoids the complicated topic of the extent (“étendue”) of
their integrals [Biot 1799, 303]. Lacroix is a little more helpful: he makes it clearer
that this extent problem is similar to that of partial differential equations, and
refers the reader to the proper passages in the second volume (see section 6.2.2.3)
[ Traité, 111, 534]. And he briefly addresses a method of solution, admittedly very
difficult to actually use: to replace Az with

W Py Ey
derl dz21-2 dz31-2-3

+ etc.

and Aj—i’ with

d?yh Py h?

— - 4+ — —— + etc,,

21 a1
thus converting the mixed difference equation into an indefinite-order differential
equation [Traité, 111, 533]. He uses this method in one geometrical example (see
below).

The only analytical issue about mixed differences in the strict sense that Biot

really develops is that of their indirect integrals; he occupies eight pages with this

51¢from a difference succeeding to a differentiation, or from a differentiation effected on a
difference”
52¢mized difference equations in the strict sense”
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[1799, 303-310]. Lacroix, on the other hand, devotes less than a page [ Traité, 111,
534] to results that are “very analogous” to those on difference equations.

As has already been mentioned, the second sections of both [Biot 1799] and
[Lacroix Traité, II1, ch.4| are dedicated to applications to geometrical problems
(essentially problems that had been treated by Euler using other means, and
namely the problem of reciprocal trajectories). Also both authors present this as
the main interest of mixed difference equations [Biot 1799, 297; Lacroix Traité,
ITI, 535]. However, we will not dwell much on this, as they are mostly that —
applications.

But there are a couple of issues to point out, constituting two more differences
between Biot’s memoir and Lacroix’s chapter. The first is that all problems treated
by Biot lead to successive difference equations, while Lacroix includes one that
leads to a mixed difference equation in the strict sense. In this problem he manages
to use the method mentioned above of using the series expansion of Ay to reduce
the equation to a differential one of indefinite order. And in addition he gives
Charles’s treatment of this problem — the mixed difference equation in question is
the one that Charles had solved in [1785a, 584-585] and [1785d].5

The second issue is that, unlike Biot, Lacroix includes one short paragraph
on analytical applications of mixed difference equations [Lacroix Traité, 111, 543|.
He briefly mentions an unpublished work by “Francais de Colmar”®* on the use
of mixed difference equations in Laplace’s cascade method, and also the original
context of mixed difference equations — the determination of arbitrary functions
occurring in integrals of partial differential equations.

All things considered, Lacroix’s 14-page chapter, although more concise, se-
ems a little more substantial than Biot’s 32-page memoir.

53The fact that in the table of contents Lacroix only mentions [Charles 1785d] is the final
indication that he did not really know, or did not pay attention to, [Charles 1785a].
54Francois-Joseph Francais (1768-1810), who was for some time a teacher in Colmar.



Chapter 8

The Traité élémentaire

In 1802 Lacroix published a Traité élémentaire du calcul différentiel et du calcul
intégral (Elementary treatise of differential and integral calculus) [Lacroix 1802a].
According to the publisher’s list of elementary works by Lacroix, it was “tiré en
partie”! from the large Traité [Lacroix 1802a, ii]. Indeed it is mostly an abridged
version of the latter. It is divided into a “first part: differential calculus”, a “second
part: integral calculus” and an “appendix: on differences and series”. The corres-
pondence between these three parts and the three volumes of the large Traité is
perfect.

But before we compare [Lacroix 1802a] with [Lacroix Traité] we must see
where and how the former fits in the context of Lacroix’s pedagogical ccuvre and
in the curriculum of the Ecole Polytechnique.

8.1 The Traité élémentaire de calcul... and the Cours
élémentaire de mathématiques

The first edition of the Traité élémentaire opens with a discours préliminaire en-
titled “Réflexions sur la maniére d’enseigner les Mathématiques”?. There Lacroix
mentions that he is publishing “la derniére partie du Cours élémentaire [de Mathé-
matiques]”® [Lacroix 1802a, v]. This Cours was probably thought of as composed
by a set of works advertised in the same volume as being sold at Duprat and col-
lectively referred to as the “collection compléte des ouvrages élémentaires, publiés

Lepartly taken”

2The full title is “Réflexions sur la maniére d’enseigner les Mathématiques, et d’apprécier
dans les examens le savoir de ceux qui les ont étudiées” (“Reflexions on the manner of teaching
Mathematics, and of evaluating in examinations the knowledge of those who have studied it”)
[Lacroix 1802a, v-xxxii]. These “Refléxions” were afterwards included in [Lacroix 1805] and
therefore omitted from later editions of [Lacroix 1802a].

3“the last part of the elementary course [of mathematics|”.
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par S. F. Lacroix, membre de I'Institut national”?:

1. Traité élémentaire d’Arithmétique o lusage de ’Ecole centrale des Quatre-
Nations

Elémens d’Algébre [Lacroix 1799]
Complément des Elémens d’Algébre |Lacroix 1800]

Elémens de Géométrie

G

Complément des Elémens de Géométrie, ou FEssais de Géométrie sur les plans
et les surfaces courbes [Lacroix 1795]

6. Traité élémentaire de Trigonométrie et d’application de I’Algébre a la Géo-
métrie [Lacroix 1798b|

7. Traité élémentaire du calcul différentiel et du calcul intégral [Lacroix 1802a|

This same list of works appears explicitly in two advertisements by the publisher
of [Lacroix 1805] (Courcier, successor of Duprat), as a “Cours de Mathématiques
a 'usage de 'Ecole centrale des Quatre-Nations, par S. F. Lacroix, membre de
I'Institut national, ouvrages adoptés par le gouvernement pour les Lycées et les
Ecoles secondaires, 7 vol. in-8”5 [Lacroix 1805, iv, 391]. In 1819, this cours (now
with the extra adjective “complet”) had grown to nine volumes [Lacroix Traité,
2nd ed, I11, ii], including a Traité élémentaire de Calcul des Probabilités and even
[Lacroix 1805, 2nd ed|, which was not a textbook, but rather a collection of wri-
tings about mathematical education.

However, that same book [Lacroix 1805] includes an analysis by Lacroix of
his “Cours élémentaire de Mathématiques pures, a I'usage de I’Ecole Centrale des
Quatre-Nations” (our emphasis), where it is made clear that the author thought
of it as comprising only items 1-2 and 4-6 above.® He does include a few words
on the Traité élémentaire de calcul [Lacroix 1802a], probably because it had been
written to follow immediately the cours élémentaire, but does not dwell on it,
since “[il] ne fait point partie du Cours élémentaire”” [Lacroix 1805, 384, 386]. As
to item 3, the Complément des Elémens d’Algébre [Lacroix 1800], it is even more
distant from the cours élémentaire.

Lacroix does not give a reason for [Lacroix 1802a] not being part of the
cours €lémentaire, but the fact that it was directed at higher-education students

4“complete collection of elementary works published by S. F. Lacroix, member of the Institut

national”

5“Course of Mathematics for the use of the Ecole centrale des Quatre-Nations, by S. F.
Lacroix, member of the Institut national, works adopted by the government for the Lycées and
secondary schools, 7 vols. in-8”

60r even just 1, 2, 4 and 6. Item 5 [Lacroix 1795] was not “essentiellement partie du cours élé-
mentaire de Géométrie” (“essentially part of the elementary course of geometry”) [Lacroix 1805,
346]. That minimal version of the cours élémentaire is the one that appears in the first edi-
tion of [Lacroix Traité, III] (in the usual advertisement for books by Lacroix), [Lacroix 1795],
|[Lacroix Traité], and the Complément des Elémens d’Algébre appearing apart. But it is not of
much concern here whether [Lacroix 1795] should be included in Lacroix’s cours élémentaire.

74[it] is really not part of the cours élémentaire”
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(although not exclusively — see below) must have been relevant. A much more
interesting problem is the status of [Lacroix 1800]; and although it is not this
book that we are studying here, its stronger separation from the cours élémentaire
had important consequences for [Lacroix 1802a]. This separation was motivated
by Lacroix’s views on mathematical education and on what a good curriculum
should include:

“le nombre des matiéres qui doivent entrer dans l'instruction de la jeu-
nesse est si grand, qu’il faut écarter, quelque intéressant qu’il puisse
étre en lui-méme, tout sujet qui n’est pas d’une application fréquente.”®
[Lacroix 1805, 389]

In other words, the encyclopédiste approach that is so clear in [Lacroix Traité] was
not present in Lacroix’s pedagogical works.? Instead, he sought to avoid too many
metaphysical details, attempts to present all the artifices employed by geometers,
and duplications:

“présenter [les matiéres aux éléves| sous de points de vue différens, serait
les éblouir et non les éclairer”!? [Lacroix 1805, 117];

“ne convient-il pas mieux d’employer le temps des éléves a leur faire
connoitre des résultats nouveaux, plutdot que des procédés différens pour
parvenir au méme résultat|?]"!! [Lacroix 1802a, x-xiv; 1805, 177-181]

[Lacroix 1800] deals with several questions on the theory of equations (symme-
tric functions of their roots, the fundamental theorem of algebra and complex
numbers, etc.) and an algebraic treatment of series: that is, it roughly compri-
ses what was then often referred to as algebraic analysis (and also corresponds
to the introduction and chapter 3 of [Lacroix Traité, 1st ed|) — see the begin-
ning of section 3.2.6. According to Lacroix, these topics were very convenient for
those who wished to study pure mathematics, and would even facilitate the study
of [Lacroix 1802a]; but were dispensable for the physico-mathematical applicati-
ons. Being dispensable, they should be dispensed with in the cours élémentaire
[Lacroix 1805, 389-390].

One might ask then, to whom was [Lacroix 1800] addressed. Its full title
does say it is “a 'usage de I'Ecole Centrale des Quatre-Nations”!?, which seems

8“the number of subjects that must be studied by the youth is so large, that it is necessary to
put aside any topic that is not of frequent application, however interesting in itself it may be.”

9At least it was not present within each subject. Lacroix was an ardent supporter of the
model of the écoles centrales, which offered a much wider range of subjects than either the
pre-revolutionary colléges or the lycées that later replaced them. “[T]he avowed aim of [the
écoles centrales] was a sound but encyclopedic education, covering all ‘positive’ knowledge”
[Dhombres 1985, 125|. Dhombres [1985, 130] seems to attribute an encyclopedic character also
to each of Lacroix’s textbooks by extrapolating from the characteristics of [Lacroix Traité].

10440 present [the subjects to the pupils] under different points of view would be to dazzle,
rather than to enlighten them”

1145 it not more convenient to employ the pupil’s time acquainting them with new results,
rather than with different procedures to arrive at the same result|?]”

12¢for the use of the Ecole Centrale des Quatre-Nations”
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clear enough: it was a textbook at secondary-school level; but a special, advanced
secondary-school level. According to Dhombres [1985, 125, 127], “special clas-
ses for higher mathematics (“mathématiques transcendantes”) were added to [the
écoles centrales|”. They certainly existed in the lycées which replaced the écoles
centrales in 1802.'> These special classes seem to solve our riddle, since in the
list [Liycées 1803] of textbooks adopted in 1803 for the lycées, [Lacroix 1800] and
[Lacroix 1802a] are chosen for “transcendental mathematics”.

The motivation that Dhombres [1985] presents for these special classes is the
preparation of pupils for admission to the Ecole Polytechnique — this admission was
through a nationwide selection, at first based on information given by more than
22 local examiners, and from 1798 onwards it was carried out by four or five itine-
rant examiners [Belhoste 2003, 54-56]; the programme for the entrance exams was
published every year. However, this seems to have soon excluded the topics treated
in [Lacroix 1800] (and to have never included those in [Lacroix 1802a]): the first
regulation of admission spoke quite vaguely on “connaissance de l'arithmétique et
des élémens d’algébre et de la géométrie”* [Fourcy 1828, 30; Belhoste 1995, 73];
after a first year in which the lack of mathematical preparation of the students
caused many difficulties [Langins 1987a, 76-79|, the requirements in algebra were a
little detailed (and probably much enlarged) to include “la résolution des équations
des quatre premiers degrés, et la théorie des suites”!® [Fourcy 1828, 82; Belhoste
1995, 73], an expression that might cover a large part of algebraic analysis; but in
1798 they were relaxed back to ‘“I’algébre jusqu’aux équations du deuxiéme degré
inclusivement”!6 [Fourcy 1828, 155; Belhoste 1995, 73]. A more detailed admis-
sion programme, written by Monge, was adopted in 1800. It was sent by the
minister of the interior (Lucien Bonaparte) to the teachers of mathematics of the
écoles centrales throughout the country, together with a letter, containing metho-
dological advices for their teaching, signed by the minister but in fact, according

13The curriculum at each école centrale was decided by a local commission. On mathematics
the law only stipulated that at each école centrale there should be one teacher of that subject,
placed at the “second section” (to which only pupils aged 14 and over were admitted). All
subjects being optional for the students, the “special” character of some is doubtful. Moreover,
transcendental mathematics might be taught in some écoles centrales but not in others. At
the Ecole Centrale du Doubs at Besancon, for instance, the most advanced topic seems to have
been the application of algebra to geometry (no theory of series or calculus) [Troux 1926, 167-
170]. On the other hand, infinitesimal calculus (which would qualify as transcendental) was
taught at the école centrale of Nantes; and yet, very few students from Nantes applied for the
Ecole Polytechnique [Lamandé 1988-1989, 134-143|. The lycées, created by law in 1802, were
on the contrary highly centralized. At each lycée there should be six “classes” of mathematics
(two per year, giving a total of three years), taught by three teachers, plus two “classes” of
“transcendental mathematics” (two years, one teacher). Transcendental mathematics included
topics such as “application of differential [and integral] calculus to mechanics and to the theory
of fluids” or “general principles of high physics, especially electricity and optics” [Lycées 1802,
307].

14“knowledge of arithmetic and the elements of algebra and analysis”

154the solution of equations up to the fourth degree and the theory of series”

16«g]lgebra up to and including the equations of second degree”
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to Belhoste [1995, 73], written by none other than Lacroix!” [Fourcy 1828, 203-
208; Belhoste 1995, 73-76].'® This programme remained essentially unchanged
until 1854 [Belhoste 1995, 73].1° The topics covered in algebra are: the solution
of equations of second degree; the proof of Newton’s binomial formula for positive
integer exponents, using combinations; the composition of equations and their nu-
merical solution, using the method of commensurable factors and approximation;
elimination in equations of higher degrees in two unknowns; and finally, the theory
of logarithms (apparently as inverse functions of exponentials), explicitly exclu-
ding their series expansions from the requirements. All of these required subjects
were included in [Lacroix 1799]. The candidates to the Ecole Polytechnique were
not compelled to study [Lacroix 1800] or any similar textbook.

However, the candidates to the Ecole Polytechnique were certainly advised
to study some matters not required for the entrance exams but taught there in
the first year. This was strongly defended by a competitor of Lacroix as textbook
writer, Jean-Guillaume Garnier, who was an examiner (and a teacher) of candida-
tes to the Ecole Polytechnique and also taught there from 1798 to 1802 (replacing
Fourier, away in the Egyptian campaign):

“pour qu'un candidat soit suffisamment préparé, je pense qu’il faut non-
seulement qu’il posséde toutes les connoissances énumeérées dans le pro-
gramme d’admission, mais encore qu’il ne soit pas étranger a I’analyse
algébrique qui fait partie de ’enseignement mathématique de la pre-
miére division de 'Ecole’?°. |Garnier 1801, vii.

Lacroix might not agree with this (he did not think that teaching algebraic analysis
at the Ecole Polytechnique was a good idea); but we have seen above that he
found some usefulness in his Complements of algebra [1800] as facilitator of more
advanced studies. In 1804 he was appointed teacher of transcendental mathematics
at the Lycée Bonaparte, where he had to teach algebraic analysis as a secondary-
school subject (and he certainly had done the same at the Ecole Centrale des
Quatre-Nations, possibly only to a few more advanced students).

Summing up, we can picture Lacroix’s cours de mathématiques as containing
several layers:

a) The cours élémentaire consisted in items 1, 2, 4 and 6 above ( Traité élémen-
taire d’Arithmétique, Elémens d’Algebre [Lacroix 1799], Elémens de Géomé-

1"Dhombres [1987, 95], on the other hand, suspects that the letter had been prepared by the
predecessor of Lucien Bonaparte, Laplace.

18Thus the Ecole Polytechnique, through its entrance exams, would serve as a factor of unifi-
cation in a highly decentralized educational system. Whether that occurred in the two or three
years between this letter and the replacement of the écoles centrales by the centralized lycées, is
a good question.

9A very similar programme can be seen in [Ec. Pol. Concours 1802] (1802, incidentally, is
the year of publication of the first edition of Lacroix’s Traité élémentaire du calcul...).

20¢for a candidate to be prepared well enough, I find it necessary not only that he possess all
the knowledge detailed in the admission program, but also that he be familiar with the algebraic
analysis that is part of the mathematical teaching in the first division of the Ecole”
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trie and Traité élémentaire de Trigonométrie et d’application de [’Algébre
a la Géomeétrie [Lacroix 1798b]). This probably corresponded to the usual
curriculum in the écoles centrales (special classes excepted); it certainly cor-
responded to the curriculum of “mathematics” stricto sensu (that is, exclu-
ding transcendental mathematics) in the lycées;?! and also to the required
knowledge for admission to the Ecole Polytechnique.

In addition, item 5 (Complément des Elémens de Géométrie [Lacroix 1795])
was apparently included in Lacroix’s teaching at the Ecole Centrale des
Quatre-Nations [Lacroix 1805, 346], at an elementary level.

The Traité élémentaire du calcul différentiel et du calcul intégral [Lacroix
1802a], in spite of the title, was no longer at an elementary level: it was used
mainly in higher education; in secondary education it was studied only at
special classes. However, it had a close connection with the cours élémentaire,
as it had been written so as to follow immediately the latter’s final part
(namely the application of algebra to geometry in [Lacroix 1798b]), and thus
formed a natural continuation [Lacroix 1805, 384].

The Complément des Elémens d’Algébre [Lacroix 1800] was not more ele-
mentary than [Lacroix 1802a] (being absent from the normal curriculum of
mathematics at secondary schools), and was dispensable for the study of
applications, so that it stayed outside of the progression from the cours élé-
mentaire to [Lacroix 1802a].

In 1805 these books constituted a cours de mathématiques at least in the commer-
cial sense that Courcier would sell them as a set for 28 fr. 50 c. [Lacroix 1805, iv]*?
In 1819 the cours complet de mathématiques included two more items, costing in
total 38 fr. 50 c. [Lacroix Traité, 2nd ed, 111, ii]?3:

e)

f)

The FEssais sur l’enseignement [Lacroix 1805] were a natural complement
to the cours élémentaire, a useful aid for those teachers who would follow
Lacroix’s cours (especially the cours élémentaire).

The Traité élémentaite du Calcul des Probabilités, first published in 1816, was
also included in the 1819 cours complet. Unfortunately Lacroix does not seem
to have inserted any reference to it in subsequent editions of [Lacroix 1805].

21 These were precisely the textbooks adopted in 1803 for the six normal “classes” of mathe-
matics [Lycées 1803].

22This apparently meant a modest discount, as bought separately they would cost 29 fr. 50 c.
But it may be a misprint, the Elémens d’algébre costing 4 fr., not 5 [Lacroix 1805, iv, 391].

23 And very clearly there was no discount.
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8.2 Analysis in the early years of the Ecole Polytechni-
que

The history of the teaching of analysis in the early years of the Ecole Polytech-
nique is quite a complicated subject. The first year of the Ecole (1794-1795)%*
was chaotic, with frequent changes of staff due to illnesses and political troubles
(including imprisonment), and unrealistic syllabi which most students could not
follow — resulting in improvised solutions [Langins 1987a]; in the following years
the situation stabilized, but there were only official, fixed programmes of teaching
from 1800 onwards. Moreover, the habit of taking down summaries of the lectu-
res only started in 1805, which does not facilitate the understanding of what was
going on before that. Still, work has been done on this. [Langins 1987a| is an
excellent study of the first year of the Ecole, and [Belhoste 2003, 235-252| gives a
very good survey of mathematics there before and during Lacroix’s time.

One very important characteristic of the teaching of analysis at the Ecole
Polytechnique is its novelty. I believe that Belhoste exaggerates somewhat in
his claim that “la méthode analytique n’[a] été enseignée nulle part de maniére
réguliére et compléte avant 1794. [...] ’étude des séries et surtout celle du calcul
infinitésimal rest|aient] exceptionnelles”?® [Belhoste 2003, 234]: Bézout included
a section on the calculus in his course for the Gardes du Pavillon et de la Marine
[Bézout 1796]; and so did Marie in [La Caille & Marie 1772], a textbook that he
probably followed in his lectures at the Collége Mazarin.?® But the high level of
the mathematics taught at the Ecole Polytechnique seems really unprecedented
— far beyond the level of Bézout’s or Marie’s textbooks. This means that a lot
of experimenting was being done in the early years of the Ecole, regarding what
could be taught to a large number of students and how.

The first instituteur (i.e., professor) of analysis was Lagrange. His lectures
are famous because of [Lagrange Fonctions|, but it is not easy to know what in
that book was taught in class. According to Prony [1795b] Lagrange’s course of
analysis in 1795 started with arithmetic (even number systems!), proceeded with
the theory of series, and then went on to his power-series version of the calculus
(so that [Fonctions] corresponds only to this last part). After a few lectures very
few students could follow him, and his course was soon regarded as optional, and
attended only by the best students.

24During this first year its name was Ecole Centrale des Travauz Publics. But I will ignore
this detail here.

25“the analytical method was not taught in a regular and complete manner anywhere before
1794. [...] the study of series and especially that of infinitesimal calculus were exceptional”

261t may also be relevant that the statutes of the University of Coimbra of 1772 established
the regular teaching of differential and integral calculus in the second year of the new Faculty
of Mathematics [Univ. Coimbra FEstatutos 1772, II1, pt. 2] — for this teaching the calculus section
in Bézout’s course was translated into Portuguese; even Belhoste acknowledges that Lagrange
taught the calculus in an artillery school in Turin in 1758 and 1759, and that Euler appears to
have done the same in St. Petersburg in the late 1720’s [2003, 477].
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Meanwhile, in this first year of the Ecole Polytechnique Prony taught a course
in “analysis applied to mechanics”, with a quite surreal syllabus: his lecture notes
[Prony 1795a] are almost entirely devoted to the calculus of finite differences; they
also include a summary of the six lectures where he addressed the fundamental
principles of the differential calculus [Prony 1795a, IV, 543-569]; and near the end
he mentions in passing that he also gave lectures on mechanics [Prony 1795a, 567].
Another surreal aspect of Prony’s course is that it was for second- and third-year
students, in spite of this being the first year that the Ecole functioned (this was a
consequence of the “revolutionary courses”, and is explained in [Langins 1987al).

The first-year students had a course in “analysis applied to geometry”. If
the programme for this course was similar to that of the corresponding revoluti-
onary course [Langins 1987a, 130-131], and it probably was, it had three parts:
the first part consisted in some advanced algebra (equations up to fourth degree,
including approximation methods) culminating in analytic geometry; the second
part included the rest of algebraic analysis (series, logarithms and exponentials,
elementary probabilities), differential and finite difference calculus, and differen-
tial geometry; and the third part was mainly integral calculus (including partial
differential equations and the method of variations).

According to Langins [Langins 1987a, 78] this course was initially given by
Monge, but many students could not follow it, and an easier course was given
by Hachette (until both Monge and Hachette had to disappear temporarily for
political reasons, further confusion ensuing). However, according to Belhoste and
Taton [1992, 294-299] Monge’s course was restricted (“restricted” may not be a
good word) to the application of analysis to geometry — i.e., analytic and dif-
ferential geometry; from this resulted [Monge Feuilles]. Presumably, either the
students were initially expected to acquire the necessary analysis to be applied
in Lagrange’s lectures; or the more elementary course by Hachette was meant to
cover that. An aspect that resulted from this confusion, and remained for seve-
ral years, was some lack of correspondence between teaching posts and courses:
the teachers of descriptive geometry (Monge and Hachette) would systematically
teach part(s) of the course of “analysis applied to geometry” [Langins 1981, 206].
Of course this makes it harder to understand what was going on. In 1800 the
application of analysis to geometry was officially annexed to descriptive geometry
[Ec. Pol. Rapport, an 9).

In the middle of the confusion, Fourier was recruited in 30 Floreal (19 May)
to give a course in (algebraic?) analysis. But he was arrested less than three weeks
later for being a Jacobin, and stayed in prison until Vendemiaire (October).

As has been said above, the situation became much more stable afterwards.
In years 4 to 6 of the French Republic (1795-1796 to 1797-1798) Fourier gave regu-
lar lectures of analysis, “des mathématiques pour tous les éléves”?” [Belhoste 2003,
245]. Two manuscripts containing Fourier’s own notes survive — one is kept at the
Bibliotheque de UInstitut de France, and the other at the Ecole Nationale des

27“mathematics for all students”
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Ponts et Chaussées; unfortunately none of these has been published. But another
one, with notes taken by one of his students (C.L. Donop) has been transcribed
and published [Fourier 1796]; and it gives us a good idea of Fourier’s lectures in
analysis (except for the integral calculus, which is not included there).

It seems that Fourier gave two courses in analysis: presumably one was for
first-year students (but, at least in year 4, open to all students), while the other
was for second-year students (and possibly third).?® The first course was on “al-
gebraic analysis” (the expression occurs, but is not yet predominant). Fourier was
helpful in dividing it for us in two parts: “la 1°'® considére les équations; la 29
comprend les séries, suites arithmétiques, géométriques et récurrentes, les fractions
continues, les logarithmes et le théoréme de Cotes”?” [Fourier 1796, 19] — although
he does not seem to have followed this particular order. The “séries” in the second
part included expanding the usual transcendental functions (trigonometrical, ex-
ponential, logarithmic). There was some concern with convergence [Fourier 1796,
89-90, 103]. Fourier sometimes used infinite and infinitesimal quantities, but he
also gave alternative, algebraic methods (such as indeterminate coefficients), re-
garded as more rigorous.

Fourier’s other course was on differential and integral calculus. His approach
was a mixture of limits with power series. Foundationally, it was mainly based on
limits: “L’objet du calcul des différences est de trouver le rapport de la différence de
la fonction a la différence de la variable. [...] Le calcul différentiel ne considére que
la limite de ce rapport”® [Fourier 1796, 114].3! But the fundamental technique
used for differentiation was the expansion of the difference of the function into a
series of powers of the difference of the variable; then, the limit of

A
=Y — A+ BA2? + CAZ® + &c.
Ax
is easily obtained as
dy
24 A
dx

But this technique also shared some of the conceptual burden: it is not clear
whether he defined the differential dy as the first term in the expansion of Ay

28 Apart or in connection with these he also taught descriptive geometry, Euclidean geometry,
statics, hydrostatics and dynamics [Fourier 1796, xv; Grattan-Guinness 1972, 6-7|. But these
subjects are not our concern here.

2%the 1st regards equations; the 2nd comprises series, arithmetic, geometric and recurring
sequences, continued fractions, logarithms, and Cotes’ theorem”

30«The purpose of the calculus of differences is to find the ratio between the difference of the
function and the difference of the variable. |...] The differential calculus examines only the limit
of that ratio”

31Belhoste [2003, 245], as well as Lorrain and Pepe [Fourier 1796, xviii], associate Fourier’s
use of finite differences in introducing the differential calculus to Prony’s lectures of year 3
[Prony 1795a]. But Fourier uses finite differences in a traditional manner, similar to what Euler
| Differentialis] and Cousin [1777; 1796] had done, and Bossut [1798] was about to do. Prony’s
use of the calculus of finite differences instead of differential calculus is something quite different,
and not necessary to explain Fourier’s short references.
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(changing Az into dx), or he gave this only as a means to calculate the differential;
but either way, he added that “le calcul différentiel considéré analytiquement est
le calcul des 1°™ termes des différences”3? (my emphasis) [Fourier 1796, 118].
Of course the expansions obtained previously in algebraic analysis were applied
here. Differentials were used throughout, but derivatives (“fonctions dérivées”)
also appeared [Fourier 1796, 172]. Fourier tried to combine an analytical with a
geometrical approach: for instance, he introduced the treatment of maxima and
minima by studying behaviour of curves [1796, 183-190], but followed it with a
power-series analysis, using what I call Arbogast’s principle [1796, 190-192]. Good
students would then be able to follow Lagrange and/or Monge.

As for integral calculus, the published manuscript [Fourier 1796] does not in-
clude it. Grattan-Guinness [1972, 6-7|, based on the Paris manuscripts, mentions
“foundations of integral calculus™3?, applications to geometry (probably calculation
of areas, and so on), and calculus of variations. Ordinary differential equations
were likely to be included, but not partial differential equations. The latter were
probably taught by Monge and Hachette, associated with differential geometry.

In May 1798 Fourier was invited to join the scientific expedition that accom-
panied Napoleon’s Egyptian campaign. He accepted and Jean-Guillaume Garnier
was recruited to replace him during his absence. Garnier stayed in the Ecole Poly-
technique until 1802. There are plenty of sources to study Garnier’s teaching, but
most of them not published (at least in the usual sense) or rare: a manuscript
programme of his course of differential and integral calculus, sent to the exami-
ners Laplace and Bossut at the end of year 7 (1798-1799) is kept at [Ec. Pol. Arch,
ITI3b]; he published textbooks on algebraic analysis and differential and integral
calculus [1801; 1800]**; and he had printed lecture notes distributed to the stu-
dents |Garnier 1800-1802].3° True, [Garnier 1800-1802; 1800; 1801] are all con-
taminated by the official programmes approved in 1800, when Lacroix was already
at the Ecole. But the similarities with his personal programme of 1799 and with
Fourier’s lectures suggest a deep continuity.

But let us start with the time allocation for courses decided by the Council of
the Ecole on 12 Frimaire year 7 (2 December 1798) [Ec. Pol. Extraits Conseil, 62|:
first-year students would have a year-long course on “the method of indeterminate
coeflicients, the theory of higher-degree equations, the application of algebra to
geometry, the introduction to differential calculus, and the differential calculus™;
while the second-year students would have a 4-month course on integral calculus,

32«the differential calculus, regarded analytically, consists in calculating the first terms in the
differences”

33Presumably, in this context “foundations” means introductory remarks and integration of
explicit functions, not elaborated conceptual work.

34|Garnier 1801] is relatively common. But [Garnier 1800] seems quite rare — no copies at
the Ecole Polytechnique, Bibliothéque Nationale de France, or British Library; oddly, there are
copies in the Faculty of Science of Porto and Science Museum of Lisbon (with some differences
between them — see the Bibliography below).

35The text of these lecture notes seems very close to that of his published textbooks, although
with frequent changes in order.
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with applications taken from [Monge Feuilles|36. The analytic and differential
geometry implied in the last sentence were certainly taught by Hachette3”. The
rest was taught by Garnier.

It is clear that Garnier gave considerable importance to algebraic analysis.
His first-year lecture notes [Garnier 1800-1802, I-111| contain 16 leaves of algebraic
analysis, against 18 of differential calculus, and 9 of integral calculus; and in the
preface to that set, he implies that he taught more on algebraic analysis than
what was specified in the official programme recently approved®. Interestingly,
and unlike Fourier’s case, his algebraic analysis does not include the expansions
in series of transcendental functions — these are only dealt with in the differential
calculus. Instead, it mostly addresses the theory of equations.

As for differential calculus, Garnier’s approach is very similar to Fourier’s:
there are introductory sections on finite differences and on limits; then it is proven
that the increment f(z + Az) of a function may be expanded into a series of
powers of Ax; from this follows that the limit of a ratio such as % is the first
term in its expansion; and the differential calculus consists in determining these
first terms; the differential is “the part of the difference suitable to give the limit,
having substituted d for A [Garnier 1800, 380-381; 1800-1802, 11, n°® 5]. The main
difference from Fourier, as has already been noted, is that Garnier does not have
the expansions of transcendental functions beforehand, and so he has to obtain
them here;3? one might think that this is an influence from the official programme
approved in 1800, but Garnier’s programme of differential calculus of 1799 already
used Taylor’s theorem for those expansions. We may also notice some greater detail
on limits and differences, and less pedagogical use of geometrical considerations;
but these may be due to the difference between manuscript notes and printed,
more or less published notes — and possibly also to the increase in allocated time
to analysis lectures from year 4 to year 9 [Belhoste 2003, 247].

There is not much to say about the integral calculus, except that Garnier does
not address either the calculus of variations or partial differential equations. He
explicitly mentions that the teaching on partial differential equations was trusted
to Monge and Hachette [Garnier 1800, 826] or Monge [Garnier 1800-1802, VI, n°
32].

36«Cours de Calcul intégral dont on prendra des applications dans la suite des feuilles de
l’analyse géometrique de Monge”

3"Monge was in Egypt. Hachette published that year [Monge & Hachette 1799] to compensate
for the lack of material on space curves in the first edition of [Monge Feuilles|

38¢orsque le programme nous fut remis, mes legons d’algébre [était] préparées et le cours
engagé |...] et si le cours d’analyse algébrique que j’ai fait n’est pas textuellement celui qui est
exigé, au moins le comprend-il en entier” (“when the programme was sent to us, my lectures in
algebra [were| prepared and the course had began |...] and if the course in algebraic analysis that
I have given is not word for word the one that is required, at least it comprises it in full”)

39But, according to an addition (“Note sur les numéros 6, 7, 8 et 9”) to [Garnier 1800-1802, 11|,
in one of his courses Fourier used functional equations (“propriété[s| caractéristique[s]”) to obtain
the differentials of transcendental functions, and then used these to arrive at their expansions.
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8.3 Lacroix in the Ecole Polytechnique

In Brumaire year 8 (November 1799) Lagrange resigned from his post of instituteur
for health reasons. Lacroix was chosen to replace him. Lagrange had suggested
that the person who was to replace him should teach obligatory courses. It appe-
ars that at first the Conseil d’Instruction of the Ecole did not wish to follow this
suggestion: in the meeting of 28 Brumaire (19 October) Garnier was charged with
a first-year course in algebra (45 lectures) and differential calculus (40 lectures),
and a second-year course in differential and integral calculus (40 lectures); while
Lacroix was invited to give an optional course for the best students (with only one
lecture every 10 days) [Ec. Pol. Arch, X2¢/30, II, 53-54]. But in later meetings
there were some discussions on how to improve the course distribution, and at
the end of that school year the examinations of first-year students followed La-
croix’s programme of algebra and differential calculus, while those of second-year
followed Garnier’s programme of differential and integral calculus [Ec. Pol. Arch,
I, 109-110].4° For the following year it was decided that Lacroix would teach
the second year and Garnier the first year [Ec. Pol. Arch, II, 102]. This scheme
of alternation, so that each student would have the same teacher for the two ye-
ars (provided he passed), was kept thenceforth. Lacroix taught first-year courses
in 1799-1800, 1801-1802, 1803-1804, 1805-1806, and 1807-1808; and second-year
courses the alternating years until 1808-1809 (inclusive). In 1809 he left the post
of teacher for the higher-ranking one of permanent examiner,*! which he kept until
1815.

On 25 Frimaire year 8 (16 December 1799), little over two months after
Lacroix’s appointment, a new organization for the Ecole was decreed. One of the
novelties was that a new body, the Conseil de Perfectionnement, should fix official
syllabi every year. Monge, Garnier and Lacroix prepared the project of syllabus
of analysis [Belhoste 2003, 248]. Lacroix prepared a document that is transcribed
in appendix C.2.1 below. It contains the radical proposal of abolishing algebraic
analysis. For Lacroix, the subject that was really important for the students of
the Ecole Polytechnique was the differential and integral calculus; he did not see
the point in teaching them the theory of equations — excepting the best students,
those attracted by pure mathematics. Thus the binomial formula in the cases of
negative or fractionary exponent, and the series expansions of trigonometric and
logarithmic functions, would be obtained with differential calculus, using Taylor’s
theorem. This is fully consistent with what we have seen in section 8.1 on his
opinion about [Lacroix 1800].

40Considering the summaries of Lacroix’s lectures on differential and integral calculus trans-
cribed in appendix C.1 and almost certainly related to this year, it is possible that Garnier gave
25 lectures on algebraic analysis, and Lacroix took over afterwards; or that Lacroix started the
course afresh and hence gave only 54 lectures (including algebraic analysis) instead of the 85
assigned.

41 According to the Registre de Controle des Instituteurs et Agents [Ec. Pol. Arch, X2c26], he
had already fulfilled the duties of examiner in 1808 (seemingly in a temporary way), but was
only appointed for the post in 1809.
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But the programme that was approved by the Conseil de Perfectionnement
was not the one propounded by Lacroix: it included extensive sections in algebraic
analysis, both in the first and second years (see appendix C.2.2). In the following
years the programme became less detailed, and the section on algebraic analysis
was shortened. But it was never short enough for Lacroix. When we compare the
official programmes for 1805-1806 and 1806-1807 with the summaries of Lacroix’s
lectures in those years (appendices C.3.1 and C.3.2), we see that Lacroix did not
teach all of the algebraic analysis that he should in the first year (he missed the
expansion of functions using indeterminate coeflicients), and he ignored it in the
second year (it was his adjoint Ampére who gave three lectures on solving 3rd-
and 4th-degree equations, after Lacroix had declared the course finished; he had
been explicit in 1800 about the limited usefulness of this).

8.4 From the large Traité to the Traité élémentaire

In the first year(s) that he taught at the Ecole Polytechnique, Lacroix used his large
Traité as a supporting text. We know this from a manuscript syllabus kept at the
Wellcome Institute, London (appendix C.1): next to each lecture it indicates the
corresponding articles in the Traité.

But of course the large Traité was not a textbook, and the same manuscript
also shows how Lacroix adapted it. The first, obvious, change is the reduction in
covered subject matter: the Traité addresses much more that what the students
at the Polytechnique had to (or could) study, and we can see that out of the 403
articles in the first volume of the Traité, only about 100 appear in the syllabus.

A second change is in the order in which some topics of differential calculus
are treated®?: the exposition is more driven by pedagogical concerns and less tigh-
tly packed into subjects — for instance, Taylor series for functions of one variable
appear before the differential calculus of functions of two variables, and maxima,
and minima appear in the middle of the discussion of special points of curves.

A third change is in foundations: limits instead of power series (more on this
in section 8.5 below). Fortunately, Lacroix had addressed limits in the Introduction
of the large Traité, and so he could support his first lecture on the principles of
differential calculus with some articles from the Introduction.

In 1802 Lacroix took the obvious next step: the publication of this adapted
version of the large Traité (with some further changes) as a book — a textbook, to
be followed in his lectures; this was his Traité élémentaire de Calcul différentiel et
de Calcul intégral [1802al).

Table 8.1 shows the contents of the first edition of the Traité élémentaire
(succinctly), and how they correspond to the chapters of the large Traité.

Here we see a further change in the order of subjects (once again, only for
differential calculus): first, functions of one variable, including analytical and geo-
metrical applications; only after that are treated functions of two or more variables.

42The order in integral calculus is kept.
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Part I — differential calculus Large Traité

Topics Pages (vol. 1)
Differentiation of functions of one variable and of equations
. . 1-55 Ch. 1
in two variables
Maxima .and 'minima of functions of one variable; 55.75 Ch. 2
indeterminacies
Application of differential calculus to the theory of curves | 75-143 Ch. 4
Change of independent variable; differentiation of functions 143-172 Ch. 1

of two or more variables
Maxima and minima of functions of two variables 172-179 Ch. 2
General notions on the application of differential calculus

to curves of double curvature and surfaces 179-186 Ch. 5
Part II — integral calculus Large Traité
Topics Pages (vol. 2)
Integration of functions of one variable 187-309 Ch. 1
A.;pphcatlon of integral calculus to quadrature, rectifica- 309-341 Ch. 2
tion, and cubature
Integration of differential equations in two variables 341-430 Ch. 3
Integration of functions of two or more variables 430-461 Ch. 4
Method of variations 461-488 Ch. 5
Appendix — Differences and series Large Traité
Topics Pages (vol. 3)
Cal.culus of differences (direct; inverse; equations in two 489-557 Ch. 1
variables)
Application of integral calculus to the theory of sequences | 557-570 Ch. 3

Table 8.1: Lacroix’s Traité élémentaire de Calcul différentiel et de Calcul intégral

In the Preface to the second edition of the large Traité, Lacroix remarked that in
chapter 1 of the first volume he had given the complete exposition of the principles
of differential calculus, “at one stroke”; but “dans un livre élémentaire, cette mar-
che retarderait trop les applications, si nécessaires pour soutenir le courage d’un
lecteur qui s’engage pour la premiére fois dans une carriére dont il n’appercoit pas
le but”*3 [Traité, 2nd ed, I, xx].**

We can also confirm the difference in size: the three volumes of the first
edition of the large Traité have 1790 quarto pages in total; the first edition of
the Traité élémentaire has 574 octavo pages — the latter is about one sixth of the

4340 an elementary book, that process would delay applications too much, [and they are] so

necessary to keep up the heart of a reader who does not notice the goal of a course that he
undertakes for the first time”

44For some reason, from the third edition of the Traité élémentaire onwards Lacroix reverted to
an order closer to that of the large Traité: differentiation of functions of more than one variable
and of equations in two variables before any applications (but change of independent variable and
differentiation of equations in more than two variables between applications to planar geometry
and space geometry).
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former. Naturally, the most advanced subjects are the ones that suffer most in
this reduction: differential geometry in space, partial differential equations, and
the whole appendix on differences and series (but especially difference equations).
For example, in the Traité élémentaire partial differential equations have one third
of the space dedicated to ordinary differential equations, while in the large Traité
they have almost the same number of pages; “differences and series” are reduced
from about one third of the large Traité to one seventh of the Traité élémentaire.

With these rearrangements and reduction, and with the loss of such special
characteristics as the subject index and the bibliography in the table of contents,
Lacroix’s Traité élémentaire became less encyclopedic than his large Traité. But
that is only natural in a textbook. Its scope was much narrower than that of
the large Traité. Still, it was a landmark textbook. It was very far from the
common textbooks of the 18th century, such as Bézout’s, both in content and
in mathematical style. Pierre Lamandé [1988] compared [Lacroix 1802a] with
Bézout’s section on the calculus; the comparison is quite relevant because Bézout’s
text was popular well into the 19th century. Lamandé remarked the huge gap
that existed between Bézout’s text (and other pre-revolutionary textbooks) and
mathematical research [1988, 23].#° Lacroix’s Traité élémentaire, on the other
hand, pointed in the direction of contemporary mathematics, even if it did not
prepare the students for understanding research works (which was the aim of the
large Traité).

The success and influence of [Lacroix 1802a] are undeniable. It had five edi-
tions in Lacroix’s lifetime (1802, 1806, 1820, 1828, 1837), and four posthumous
ones (1861-1862, 1867, 1874, 1881)%5; less than his textbooks on more elementary
subjects, but much more than usual for a calculus textbook. Translations were
published in Portuguese, English, German (two), Polish, and Italian; in addition,
a Greek translation was made but not published (see below). The English trans-
lation is famous for its importance in introducing Continental calculus in Britain.

Of course, part of its influence came from being the “reference work” on the
calculus in the Ecole Polytechnique until about 1815 [Belhoste 2003, 249].47 But
it must not be reduced to a Polytechnicien text. As was mentioned in section
8.1, it was adopted also for the Lycées; Lacroix probably used it in the Faculté
des Sciences and in the College de France; and only two out of its nine editions
appeared during its Polytechnicien period. Moreover, it was never a perfect fit for
the course of analysis at the Ecole Polytechnique: it does not contain algebraic
analysis, and it does address partial differential equations. It could and did live a

45Lamandé has also compared [Lacroix 1802a] with [I'Hépital 1696], in [Lamandé 1998]. A
detail in the title of this paper is quite eloquent: “Une méme mathématique?” (“The same
mathematics?”). Still, there is a point in common between [Lacroix 1802a| and [I'Hépital 1696]:
both were modern when they were written; the same cannot be said of Bézout’s text.

46The posthumous editions, in two volumes, contain extensive endnotes by Joseph Alfred
Serret and Charles Hermite, necessary to bring it up to date.

47 Actually, part of its influence may have been lost before 1815. From 1808, Ampére had
introduced some developments of his own on the use of limits; and in 1812, limits were officially
replaced by infinitesimals [Fourcy 1828, 303].
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life of its own.

Garnier’s texts [1800; 1800-1802] are comparable to [Lacroix 1802a], if we
except their lack of treatment of partial differential equations, calculus of variati-
ons, and finite differences. These are important exceptions; but one can imagine
that, if Garnier’s textbooks had not had such a restricted distribution, they might
have been serious competitors. As it happened, [Lacroix 1802a] was the fore-
most textbook on the calculus in the early 19th century (when Garnier published
enlarged editions [1811; 1812] it was a little too late to make a stand).

Of course, in spite of the differences, much of the quality and modernity of
[Lacroix 1802a] result from the fact that it is a by-product of [Lacroix Traité].
Certainly not many textbooks have resulted from such an amount of work.

In the following sections we will look at what happened in the Traité élé-
mentaire to the aspects of the large Traité that have been studied in chapters
3-7. We will focus mainly on the first edition (1802), but also look at the second
(1806) and third (1820) editions, still chronologically close to the large Traité;
only occasionally will later editions be mentioned.

8.5 The principles of the calculus

The most famous difference between [Lacroix Traité] and [Lacroix 1802a] is foun-
dational: in the latter Lacroix wished “un degré suffisant de rigueur et de clarté”*8,
but without the lengths entailed by certain unnecessary details [1805, 384], and
for this reason he decided to use limits (always calculated naively). These “unne-
cessary details” were almost certainly the whole Introduction of the large Traité,
and the proof that f(x + k) — f(z) may be expanded into a series of powers of k
prior to the introduction of differential coefficients.

However, in the first edition of [Lacroix 1802a] we still find several remnants
of the power-series foundation of the large Traité. Let us examine the foundations
of the calculus in [Lacroix 1802a, 1st ed].

After defining function, variable and constant, Lacroix explores the relations
(and particularly the ratios) between the increments of a variable and of functions
of that variable. If u = az?, putting = + h in the place of = and calling «’ the new

value of u, we have

u —u

h

This ratio is clearly divided into two parts, one independent of and the other
dependent on h. As h is supposed to decrease, the ratio keeps approaching 2az,
not reaching it unless h = 0. Thus, 2ax is the limit of “/; L “c’est-a-~dire, la valeur
vers laquelle il tend & mesure que la quantité A diminue et dont il peut approcher

autant qu’on le voudra™? |Lacroix 1802a, 3|.

= 2ax + ah.

48«3 sufficient degree of rigour and clarity”

49¢that is, the value towards it tends as the quantity h diminishes, and which it can approach
as much as one might wish”.
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3

A similar situation occurs if u = ax”, since in that case

u —u

h

= 3az?® + 3azh + ah?,

which has 3ax? as limit. Lacroix then remarks that to find such a limit it is enough
to consider the first term in the difference

u' —u = 3ax®h + 3axh® + ah®, (8.1)

and he extrapolates this for every function. He assumes that the increment of any
function can be expanded into a power series of the increment of the variable; but
he never states this explicitly — only that “this first term, or this limit” of the ratio
between the increments always exists.

Later in the book, when introducing the geometrical applications of the dif-
ferential calculus, Lacroix emphasizes this point: it is an analytical fact that all
functions admit a limit in the ratio between their increments and those of the
independent variable; consideration of limits allows to express the “law of conti-
nuity” in the calculus [1802a, 75-76]. The “law of continuity” is not very easy to
understand, but refers to the situation in which “les point consécutifs d’une méme
ligne se succédent sans aucun intervalle”®?; in the “calcul” one always presumes an
interval between consecutive values, but limits compensate for this. Lacroix proves
the existence of the limit between the ratios of the increments, by establishing an
equivalence between a function and a (graph-)curve and assuming the existence
of a tangent at any point of this curve [1802a, 76-77|.

Back to the beginning of the book: the first term in (8.1) receives the
name differential, because it is only a portion of the difference of the function
[Lacroix 1802a, 4]. Tt is also given the notation du, so that in this case du = 3az>h.
But in the case of a simple variable, the difference and the differential are the same,
that is, dz = 2’ —x = h. Thus, h is replaced by dzx “afin de mettre de 1’'uniformité
dans les calculs”®!, and

du = 3az?dz d_u = 3az>.

dz

du
1 is christened differential coefficient because it is the multiplier of dz in the
x

expression of the differential. Notice how all these fundamental concepts are in-
troduced by examples, presumed to be generalizable.

The immediate relations between differential and differential coefficient are
useful, because in some cases it is easier to find the former and in others to find
the latter. It is more direct to substitute x 4+ dz for z, expand the function in
powers of dz, and extract the term with the first power; but this requires that one

50«consecutive points of a line succeed each other without interval”

5l«to put uniformity in the calculations”
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knows how to expand the proposed function, which in some cases demand “secours
étrangers’®? — in those cases, limits often save us that trouble.

Thus, in most cases Lacroix uses power-series arguments: for instance, the
differential of u = a® is obtained by putting a*T4* — ¢* = a%(a?® — 1), and
expanding a%* = (1 + b)% using the binomial theorem [1802a, 23-24].5® But
the series expansions of the trigonometric functions are much more involved, and
when it comes to sinx he uses an argument free of power-series: using a few
trigonometric identities,

sin(z + dz) —sinz (si sindx . )sin dx
= (singz———— + cosz)———;
dz 1+ cosdz dz ’

and, as dx vanishes, sin dz becomes 0, cosdz becomes 1, and % tends also to
1, so that the right side of this equality tends to cosx [1802a, 33-34].

Lacroix declares that the differential calculus consists in finding “la limite
du rapport des accroissemens simultanés d’une fonction et de la variable dont elle
dépend”* [1802a, 5]; in the introduction to the geometrical applications he also
expresses the following opinion:

“Il me paroit maintenant trés-évident que la métaphysique précédente
renferme ’explication philosophique des propriétés du Calcul différen-
tiel et du Calcul intégral, soit par rapport aux recherches sur les cour-
bes, soit par rapport a celles qui concernent le mouvement.”®® [Lacroix
1802a, 76]

Nevertheless, one cannot fail to notice several passages similar to those in
[Traité, 1], where the power-series approach was followed; the definition of the
differential as the first term in the development of the difference of the function is
striking.

Also striking is the similarity between this approach and those of Fourier and
Garnier: limits as the main foundation; power series as the main technique and
intervening in the definition of the differential. Where Lacroix departs from his
predecessors, he is a little less rigorous: both Fourier and Garnier had tried to
prove the general validity of the power-series expansion; Lacroix simply assumes
it.

It is not inconceivable that this similarity with Fourier and Garnier is a result
of influence from them (or from a tradition in the Ecole Polytechnique). But
Lacroix’s advocacy of limits in [1802a] seems quite sincere (and there are several

52«extraneous assistance”

53There is a serious (but common) problem here. Lacroix had obtained the binomial expansion
in two ways, but both dependent on the differential coefficient of 2™ being nz™~!; and he had
only derived this for rational n.

544the limit of the ratio between the simultaneous increments of a function and of the variable
on which it depends”

554It now seems to me very clear that the preceding metaphysics comprises the philosophical
explanation of the properties of the differential and integral calculus, both in relation to researches
on curves and in relation to researches concerning movement.”
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later texts supporting it). And it is not necessary to invoke such an influence in
order to explain his use of power series: it was mentioned in section 3.1.4 that
Cousin [1777; 1796], for instance, used power-series expansions in a context of
limit-based calculus; moreover, would it not be easier for Lacroix to simply adapt
most of the power-series arguments in his large Traité, rather than create new
ones?

In the second edition there are a few little, but important, changes. Most of
the preliminary considerations remain, but Lacroix adds two simple theorems on
limits, includes a proof of the chain rule (in the first edition it was simply assumed,
in a Leibnizian way), and replaces the assumption of power-series expansion for
something a little different, when deriving some differentiation rules involving
general functions (such as the product rule, or the chain rule itself). The two
theorems on limits are: the limit of a product is the product of the limits; and the
limit of the quotient is the quotient of the limits. The former is proved thus: let
p and ¢ be the limits of P and @, respectively; then P = p+ «, and Q = g+ 3,
where a and 3 are “quantités susceptibles de s’évanouir en méme tems, aprés avoir

passé par tous les degrés de petitesse”®%; we have

PQ=(p+a)g+B)=pqg+pB+qa+ap,

and the limit of the rightmost expression is p ¢, as we can see by putting a = 0 and
0 = 0, and noticing that “en donnant aux quantités « et 3 des valeurs convenables,
on peut rendre aussi petite qu’on voudra la différence”®” [1802a, 2nd ed, 8]. As
for the limit of the quotient, the argument is similar: the difference turns out to

be
P p qu—pp

Q q qlg+p)

and can also be made as small as we wish.?®
The theorem on the limit of the product is applied to prove the chain rule:
let v be a function of u and u be a function of x; let them simultaneously become

. . /_ /_ . .
v’, v’ and 2'; the limits of 5= and %=+ will be S—Z and %, respectively; therefore

the limit g—; of Z=2 = Z=2 x L=t will be pq = g—z X g—g [1802a, 2nd ed, 9].

Another limit argument is used to derive the differential of the product of
two functions v and v. In the first edition, Lacroix had written v 4+ pdx + etc.
and v 4+ gdz + etc., multiplied these series, and extracted the dz term [1802a, 1st

ed, 9], reproducing [Traité, I, 102]. In the second edition, instead of assuming the

56«quantities capable of vanishing simultaneously, after passing through every degree of little-

ness”

57«assigning appropriate values to o and 3, we can make the difference as small as we wish”

58Grabiner found these simple arguments “important because they exemplify translations of
a verbal limit concept into algebraic language, however simple” [Grabiner 1981, 84]. That is
true, but she appears to speak of them only as examples of a kind of argument that sometimes
appeared around 1800; in other words, they are not major breakthroughs. For instance, the
Portuguese mathematicians José Anastacio da Cunha and Francisco Gargao Stockler had given
more sophisticated arguments [Domingues 2004a|, as had 1'Huilier.
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power-series expansions, he writes the incremented states of u and v as v+ « and
v + 3; we have
(u+a)(v+8)—uv 3

dx Yz Ve T A

and since (8 vanishes with dz, the limit of this is u 4% +v% [1802a, 2nd ed, 11-12].

Thus, while a case could be made for a mixture of approaches in the first
edition, the second edition has a more clear-cut option for limits.

In the third edition, this option is a little strengthened. There remained in the
second edition at least one instance of the assumption of power-series expansion
of the difference of any function; now it disappears [Lacroix 1802a, 2nd ed, 6;
3rd ed, 6]. And more importantly, an endnote on “the method of limits” is added
[1802a, 3rd ed, 625-631], developing Lacroix’s advocacy of limits, mainly based on
geometrical arguments. It is interesting to read that the consideration of limits
“est aujourd’hui la meilleure base que I’on puisse donner au Calcul différentiel”®?
[1802a, 3rd ed, 628]; this was published in 1820 — his former student Cauchy was
then giving these words a meaning that far surpassed Lacroix’s.

In fact, in spite of the option for limits, there seems to be no trace in the
fourth and fifth editions (1828 and 1837) of Cauchy’s new foundations for the
differential calculus. Or, to be more precise, the little trace that there is is negative.
In 1822 Cauchy published a refutation of Lagrange’s power-series foundation (and
of similar uncritical uses of power series as representatives of functions): taking
f(z) = e~%, we have f(0) = f/(0) = f”(0) = ... = 0, so that its Taylor series
around zero is null, although f(x) is not. Moreover, this means that for any
function g(x), the Taylor series of g(x) + f(z) around zero is indistinguishable
from that of g(z), and therefore does not represent any of them in particular. A
counter-refutation, attributed by Grattan-Guinness [1990, 11, 735-736] to Poisson,
appeared quickly, arguing that not all of the differential coeflicients of e~ in zero
are null; and this explanation was included as a footnote in [Lacroix 1802a, 4th
ed, 338-339].°

8.6 Analytic and differential geometry

First of all, let us note that, contrary to the large Traité, there is practically
no analytic geometry in Lacroix’s Traité élémentaire de calcul... The place for

5945 nowadays the best basis we can give to the differential calculus”

60 Actually, the fact that all the differential coefficients at * = 0 of 67% are zero had ap-
peared in [Euler Integralis, I, §327|, in [Lacroix Traité, II, 149], and in the earlier editions of
[Lacroix 1802a] (in the context of the application of the improved version of Euler’s “general
method” for approximation of integrals; it is at this point in the fourth edition that Lacroix
includes Poisson’s explanation). But this did not seem to bother anyone, probably because they
were used to the Taylor series to fail in particular points (see section 3.2.5). The detail added
by Cauchy to the effect that this destroys what we would call the bijection between functions
and Taylor series was certainly more disturbing.
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analytic geometry in his Cours de mathématiques was the Traité élémentaire de
Trigonométrie [...] et d’Application de I’Algébre o la Géométrie [1798b] — and
when applying the calculus to geometry Lacroix often invokes results from that
other textbook, in the form “( Trig. 146)” [1802a, 80).

The only exception to the absence of analytic geometry is the introduction
of polar coordinates and their transformation to and from rectangular coordinates
[1802a, 134; 136-137]. The context is the study of spirals, which are not treated
in [Lacroix 1798b]. In the large Traité polar coordinates also appeared apropos of
spirals and separated from the rest of analytic geometry.

On differential geometry of plane curves, or rather “application of differential
calculus to the theory of curves” [1802a, 75-143], the most important difference
relative to the large Traité is the exclusive use of limits (recall from above that
this section starts with considerations on the metaphysics of the calculus based
on limits). We have seen in sections 4.1.2.1 and 4.2.1.2 that in [Traité, I, ch.4]
Lacroix had used five approaches to calculate tangents to curves: 1 - using trans-
formation of coordinates (supported by a limit argument); 2 - using the series ex-
pansion of the equation of the curve, obtained by algebraic means (supported by
Arbogast’s principle); 3 - using differential calculus (also supported by Arbogast’s
principle); 4 - using the method of limits directly; and 5 - using infinitesimals. In
[Lacroix 1802a] there is only one approach (recall from section 8.1 his rejection of
duplications in textbooks): consider a given curve, and another having two points
in common with the former; if the coordinates of the first point of intersection are
z',1y’, and the general coordinates of the second curve are z,y, then for that first
point of intersection we will have y = ¢/; if in addition h is the difference between
the abscissas of the points of intersection, then

d dy’
Y+ Y h 4+ ete. = y + —yh—i—etc.,
dx da’

whence d w
Y _ a9y .
dxh + etc. = dx’h + etc.;

now, dividing the latter equation by i and then taking the limit for h = 0, we get
g—g = gz,; if the second curve is to be a straight line y = Az + B, then g—g = A,
and thus the equation of the tangent of the first curve at z/, 7/’ is

d /
y—y = d—gyc,(x — ).

That is, we have a naive limit argument with a little help from Taylor series.

Similarly, and since three points determine a circle, the osculating circle to a
curve is introduced by considering those three points on the given curve, and then
examining what happens when the three points coincide [Lacroix 1802a, 112-114].

There is also some reduction in topics addressed. The most marked absence
is that of envelopes — except in the particular case of the evolute, which is seen to
be the “limit” of the intersections of the normals [Lacroix 1802a, 117].
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As for differential geometry in space, it is reduced to just some “general
notions on the application of differential calculus to the theory of curves of double
curvature and of curved surfaces” [Lacroix 1802a, 179-186]. Only the most simple
problems. For space curves: tangent lines, osculating planes and normal planes.
For curved surfaces: the “law of continuity” (ﬁ:(fy = d‘;%, differential equations
of sections, tangent planes, and normal planes. No evolutes of space curves, no
curvature of surfaces, no families of surfaces. Notice also the order (curves first,
then surfaces), reversed from that of the large Traité.

I have not noticed any relevant changes in the second edition.

The same cannot be said for the third edition: the space dedicated to diffe-
rential geometry in space more than triples. There are now three sections. The
first is on the “application of differential geometry to the theory of curved surfaces”
[Lacroix 1802a, 3rd ed, 189-205]: apart from what was already in the first and
second editions, it includes generation of surfaces (that is, a short introduction
to families of surfaces), and curvature of surfaces. The following section is not
exclusively on differential geometry, but rather “on singular points of curved sur-
faces, and on maxima and minima of functions of several variables” [1802a, 3rd ed,
205-212|. Finally, the third of these sections is “on the application of differential
calculus to curves of double curvature, and on developable surfaces” [1802a, 3rd
ed, 212-224]: apart from what was already in the first and second editions, and
from an introduction to developable surfaces, it contains more details than the
large Traité on the two “curvatures, or flexions” of space curves [1802a, 3rd ed,
221-224; Traité, 2nd ed, 1, 632-633].

8.7 Approximate integration and conceptions of the inte-
gral

8.7.1 Conceptions of the integral and approximate integration of ex-
plicit functions

Lacroix’s conceptual reflections on integrals, treated in sections 5.2.2 and 5.2.3,
were naturally appropriate for inclusion in an educational version of his Traité.

The syllabus of the first course of analysis given by Lacroix at the Ecole
Polytechnique effectively includes them, under the heading “de la determination
des Constantes dans les Intégrales”®! (see page 408). From the articles linked to
this entry we can conclude that in the 6th lecture on integral calculus Lacroix spoke
about Euler’s approximation method (with very few details and no applications),
about his interpretation of the integral as a sum or a limit of sums (but did not
give either of the two proofs involving limits), about the distinctions between
the integral and a given primitive function and between definite and indefinite
integrals, and about the geometrical interpretations of all this.

61«on the determination of the constants in the integrals”
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In [Lacroix 1802a] he was a lot more detailed. In fact, he reproduced prac-
tically the entire section on the “general method to obtain approximate values of
integrals” from the large Traité [Lacroix 1802a, 284-309]. The extra details were
almost certainly not taught at the lectures, but rather left for smart students to
read.

Significant alterations were introduced in the second edition of [Lacroix
1802a]. The articles directly addressing definite and indefinite integrals and arbi-
trary constants were joined and transferred to the beginning of the section. This
made Lacroix’s explanations clearer, but also more conventional and less attached
to the conception of the integral as sum or limit of sums [1802a, 2nd ed, 303-304]:

“Si [Xdx = P+ C, P désignant la fonction variable déduite immeédi-
atement du procédé de l'intégration, C' la constante arbitraire, et que
Iintégrale doive, s’évanouir pour une valeur x = a qui change P en A;
on posera ’équation A + C' = 0, de laquelle on tire

C=—-A et [Xdz=P-A

Sous cette forme I'intégrale [Xdz n’est plus que la différence entre la
valeur que prend la fonction P lorsque x = a, et celle qu’elle acquiert
pour toute autre valeur de la méme variable. Si, par exemple, x = b,
change P en B, il vient

[Xdz=B— A6

This, of course, is the “definite integral”, taken “from x = a to x = b”, and so on.

The derivation of the approximation formulas is also different. Lacroix post-
pones the neglecting of higher-order terms in the Taylor series, but assumes quite
early that the subintervals are all equal, so that the formula at which he arrives
first is equivalent to (5.11). (5.8) does not occur; instead, we see

fde:Aa—l—Aloz—l—AQoz ...... + A, 1«

(the A;’s correspond to the Y;’s in [Lacroix Traité]). Notice that because of the
change in the order of presentation, the approximation formulas can be introduced
as formulas for definite integrals (as is the case for this one).

62¢1f JXdx = P+ C, P denoting the variable function immediately deduced by the process of
integration, C' the arbitrary constant, and if the integral ought to vanish for a value of z = a,
which changes P into A; we shall then have the equation A 4+ C = 0, from which we deduce

C=-A, and [Xdz=P-A.

Under this form the integral [Xdz is nothing more than the difference between the value of the
function P, when z = a, and that which it acquires for every other value of the same variable.
If, for example, x = b, changes P into B, there arises

[Xdz=B— A
[Lacroix 1816, 271-272]
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Finally, the consideration of limits is very diminished, or even completely
gone in this section of [Lacroix 1802a, 2nd ed|.®® The last formula above is used
to explain the conception of the integral as an infinite sum — clearly not as a
limit of sums — by putting = equal to a,a + a,a + 2a, etc., and dz equal to «
[Lacroix 1802a, 2nd ed, 306-307]. Naturally the two proofs that used the property
of the integral being the limit of approximating sums are now absent.

Overall, in the second edition this section seems to be much more pedago-
gically oriented: clearer, more neatly organized. But also, probably for the same
reason, less complex and less interesting mathematically.

From the third edition onwards Lacroix returns to limits, reusing material
from the second edition of [Lacroix Traité] (see section 9.4.1) but keeping the
order of [Lacroix 1802a, 2nd ed]. The introduction to the section is the same,
with the explanation of the definite integral quoted above. But after arriving
at the formulas equivalent to (5.11) and (5.12), Lacroix sets out to prove their
convergence. For this he invokes Arbogast’s principle, and concludes that, in case
X is increasing and we restrict ourselves to the terms in «,

a(A+A1+ Ay .+ A1) < [Xdo < a(A1+ Az + Az ...+ Ay)

and that the difference between these two “bounds” for the integral, that is
a(A, — A), can be made always smaller by decreasing «, so that each of them can
approach the true value of [Xdz as close as one wishes. As in the original version
of the section [Lacroix Traité, 11, 137; 1802a, 287, this is given as the justification
for the possibility of viewing the integral as a sum of differentials (the difference
being that here there is a stronger emphasis on the limit process). Also as in the
original version [Lacroix Traité, IT, 140; 1802a, 291], the problem of the necessity
for the function to be monotonic and non-infinite is addressed by suggesting that
the interval of integration be split into several intervals where those conditions
hold [Lacroix 1802a, 3rd ed, 315-317].

After this oscillation in the first three editions, this section did not suffer
any more major changes in the two last editions during Lacroix’s lifetime. It did
however gain a more modern look, thanks to a modernization of notation: some
use of f(x) for y, and especially the adoption of Fourier’s notation f; Xdx; hence
[Lacroix 1802a, 4th ed, 324; 5th ed, 341]:

/b Xdx = {(b) — f(a)

(instead of [Xdx = B—A as above) and the ezplicit conclusion in the introduction

631t may be said to survive timidly in the passage giving the geometrical interpretation of
the approximation method [Lacroix 1802a, 2nd ed, 310-312], and in the argument that because
Aa+Aiat+Aza.. +Apn—1a < Amna = Am(b—a), where Ay, is the largest of A, A1, Aa, ... Ap—1
and a,b are the limits of integration, then [Xdz < M(b — a), where M is the largest value of
X between ¢ = a and = = b (and similarly for [ Xdz > m(b — a)) [Lacroix 1802a, 2nd ed, 307].
But this argument might also be interpreted in terms of infinitesimals.
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/de—/Xd:E—l—/ Xdz

(simply because f(c) — f(a) = {(b) — f(a) + f(c) — {(b)) and even, in a footnote, the
statement that “fab Xdz = {(b) — f(a ) est la limite dont ’expression

a{f'(a)+f'(a+a)...... +f'la+ (n—1)a]}

to the section that

s’approche de plus en plus, & mesure que le nombre n augmente et que «, qui est
b’Ta, diminue”®® [Lacroix 1802a, 4th ed, 329; 5th ed, 346].

8.7.2 Approximate integration of differential equations

In the first edition of [Lacroix 1802a] there are two short sections on methods for
solving differential equations by approximation: one for first-order [Lacroix 1802a,
383-387] and another for second-order differential equations [Lacroix 1802a, 412-
415]. Each is a shortened version of the corresponding section in the large Traité;
there is no trace of the section on successive approximations using integration of
“first-degree” differential equations.

The section on first-order equations is a copy of the beginning of the corres-
ponding section in the large Traité: undetermined coefficients and Taylor series.
The reference to insufficiencies of Taylor series is omitted, as well as Lagrange’s
method of continued fractions. There is an advantage in this: the use of Taylor
series for approximation finishes this section, being immediately followed by the
section on the geometrical construction of first-order equations, which opens with
the remark on the “possibility” of those equations — because of Taylor series and
because of their geometrical construction; this article, which seemed out of place
in the large Traité, fits nicely here.

Very similar comments can be made about the section on second-order equati-
ons. Lacroix says very little about approximation properly speaking, and includes
a subsection on “geometrical constructions” [1802a, 414-415] with the same text
as the corresponding article in [Lacroix Traité, IT, 351-352].

In the second edition the order is yet improved: there is only one section on
approximation methods, for both first- and second-order equations [Lacroix 1802a,
2nd ed, 420-428] (including a subsection on geometrical constructions of those
equations [Lacroix 1802a, 2nd ed, 426-428]). Lacroix speaks first of first-order
equations: undetermined coefficients and Taylor series (including now its insuffi-
ciencies — but with simpler techniques to try to overcome them than Lagrange’s
continued fractions); then second-order equations, similarly to the first edition.
As for the subsection on geometrical constructions, see section 8.8.2.

64 [ X da = £(b) — f(a) is the limit which the expression
a{f'(a)+f(a+a)...... +f'la+ (n—1)a]}

approaches more and more as the number n increases and «, that is I’_T“, decreases”



308 Chapter 8. The Traité élémentaire

From the third edition onwards Lacroix pays less attention to approximation
methods (consistently with what had happened in the second edition of the large
Traité). This section [Lacroix 1802a, 3rd ed, 450-454] is shortened (even consi-
dering that the geometrical constructions are no longer included here), and most
of it is taken up with two examples of use of undetermined coefficients. The use
of Taylor series is only alluded to very quickly®, and Euler’s “general method” is
not even mentioned (the associated constructions do appear, but without appro-
ximative purposes — see section 8.8.2). The section finishes with the remark that
these approximation methods are seldom convergent enough, and that in “physico-
mathematical” problems one usually just tries to determine small corrections to
values that one already knows to be approximate (see pages 156 and 175 ff above,
and the end of section 9.4.2 below) — but the methods used for this are too varied
to be included in “elements”.

8.8 Types of solutions of differential equations

8.8.1 Formation of differential equations and their types of solution

The most significant alterations on this subject from the large Traité to the Traité
élémentaire are a consequence of the radical decrease in attention given to partial
differential equations and (a little less so) to ordinary differential equations of
degree higher than 1.

The idea that ordinary differential equations are formed by eliminating cons-
tants between finite equations in two variables and their differentials is present
in the same places as in the large Traité: a section on “elimination of constants”
[Lacroix 1802a, 48-50]; the explanation for the method of integrating factors for
first-order equations [Lacroix 1802a, 354, 359-361] (integrating factors for second-
order equations are not treated in [Lacroix 1802a|); the explanation for the exis-
tence of n first integrals of an nth-order equation [Lacroix 1802a, 397-399]; and of
course the section on particular solutions of first-order equations [Lacroix 1802a,
371-385] (particular solutions of second-order equations are also not treated in
[Lacroix 1802a]).

There are no differences in this respect in the second edition. From the third
edition onwards, however, we see in two subsections on the number of arbitrary
constants and the number of integrals [Lacroix 1802a, 3rd ed, 402-409] a combi-
nation of this idea with a use of Taylor series, inspired by Lagrange [Fonctions;
Calcul]. This is an adaptation of changes introduced in the second edition of the
large Traité (see section 9.5.1).

As for the section on particular solutions of first-order differential equations in
two variables [Lacroix 1802a, 371-383], it is a close reproduction of [Lacroix Traité,
IT, 262-274], that is, the essential part of the corresponding section in the large

65In fact, Lacroix refers to a previous article, where Taylor series had been used to argue for
the existence of solutions [Lacroix 1802a, 3rd ed, 402-404].
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Traité, with material taken from [Lagrange 177/]: the explanation for the exis-
tence of particular integrals, their characterization as satisfying all the equations

2 3
% =0, d‘i ¥ =0, d;{vgc = 0, etc. (while particular integrals satisfy only a finite

number of these), and the procedure to obtain particular solutions directly from

2
differential equations by putting ng =Y or dQ—‘;” = 8;

0 T attempts to obtain com-
plete integrals from particular solutions or particular integrals are entirely omitted.
Also omitted are particular solutions of higher-order differential equations in two

variables.

There are a couple of significant changes on this in the second edition: first,
Lacroix [1802a, 2nd ed, 434-436] cites [Poisson 1806]% to the effect that the form
of a differential equation may be changed so as to have its particular solution
as a factor®”; more importantly, the method given to obtain particular solutions
directly from the differential equations [Lacroix 1802a, 2nd ed, 436-440] is no
longer that of [Lagrange 1774], but rather that of [Lagrange Fonctions, 65-69],
based on a power-series completion of particular integrals. This had been reported
in the first edition of the large Traité, but would become much more important in
the second one, where we see an expansion of the changes introduced here, with
several pages simply reproduced (see section 9.5.1). Lacroix seems to have been
quite happy with this new version, so much so that he kept this section practically
unchanged in the third edition.

As for reflections on the formation of partial differential equations, the only
trace of them in the first and second editions of the Traité élémentaire is the
reproduction, in the section on differentiation of functions of two or more variables,
of the passages from volume I of the large Traité on elimination of either two
constants or one arbitrary function between a finite equation in three variables
and its two first-order partial differentials [Lacroix 1802a, 168-171]. But unlike
in the large Traité, neither is later referred to as showing how partial differential
equations are formed. As has been noted already, partial differential equations
receive much less attention, and particular solutions are not even mentioned.

This changes a little in the third edition. Partial differential equations do
not get much more coverage than in previous editions (particular solutions are
still entirely absent), but Lacroix includes two new mentions to their formation: a
brief reference to the passage on elimination of arbitrary functions when arriving
at the solution N = ¢(M) of Pp + Qq = R [Lacroix 1802a, 3rd ed, 478|; and a
new short article about the limitations of the analogy between arbitrary functions
and arbitrary constants [Lacroix 1802a, 3rd ed, 497-498|.

66Notice the dates: [Lacroix 1802a, 2nd ed] was also published in 1806.

67In spite of this, in the introduction to the section Lacroix keeps a distinction between parti-
cular solutions which are simply factors of the differential equation and others “intimately linked”
to it [1802a, 2nd ed, 429-430].
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8.8.2 Connections between differential equations and geometry

Once again, the most relevant modifications are simple consequences of the de-
crease in importance of partial differential equations. All considerations on their
construction are reduced to a short footnote [Lacroix 1802a, 457], associating the
determination of the arbitrary functions involved in their integrals to making the
corresponding surfaces pass through given curves, and claiming that those cur-
ves and functions may be discontinuous — no details on either the claim or the
association.

Still, there are a couple of novelties in organization which are worth mentio-
ning, since they throw light on the geometrical versions of Euler’s “general method”,
showing them openly as constructions. It has been mentioned already how the di-
minution of the section on approximate integration of differential equations allows
for that geometrical version to open the section on “geometrical construction of
first-order differential equations” [Lacroix 1802a, 387-396]%%. Moreover, the article
giving the geometrical version of Euler’s general method for second-order equati-
ons, which is also reproduced [Lacroix 1802a, 414-415], is referred to in the table
of contents as “geometrical constructions of [second-order differential] equations”
[Lacroix 1802a, xl].

This neat order is a little affected in the second edition, due to a reorgani-
zation of the chapter on differential equations in two variables: the special topics
of approximate integration (for both first- and second-order equations), particular
solutions, and geometrical problems are treated, in this order, at the end of the
chapter (this is an anticipation of the second edition of the large Traité, where
they have separate chapters). Thus the geometrical version of Euler’s “general
method”, being in the section on approximation, becomes separated again from
the geometrical section; still, it is entitled to its own subsection in the table of con-
tents “geometrical constructions of [first- and second-order differential] equations”
[Lacroix 1802a, 2nd ed, x].

This is reverted again from the third edition onwards, due to the decrease in
importance given to approximation methods, and especially to the disappearance
of the analytical version of Euler’s “general method” for differential equations.
The corresponding geometrical constructions [Lacroix 1802a, 3rd ed, 460-462] ap-
pear in the middle of the section on “resolution of some geometrical problems”,
are referred to in the table of contents as “geometrical constructions of differen-
tial equations” [Lacroix 1802a, 3rd ed, ix| and, in case someone might wrongly
suspect that they have something to do with approximation, Lacroix had a few
pages previously finished the section on approximate integration, saying precisely
that he was “terminant [...] ce qui regarde 'intégration approchée des équations
différentielles”®® [1802a, 3rd ed, 454].

68The rest of this section is a shortened version of the one in the large Traité, omitting Jacob
Bernoulli’s construction of 3—2 = & and some technical details on construction of trajectories,
but mostly reproducing it word for word.

69«concluding what regards the approximate integration of differential equations”
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8.8.3 Total differential equations not satisfying the conditions of in-
tegrability

These equations have their own section, albeit a short one [Lacroix 1802a, 458-
461]. Tt is a plain reproduction of the first two articles of the corresponding
section in the large Traité: the idea of establishing a relation between z,y and z
(and its attribution to Newton), and Monge’s procedure for integrating equations
Pdz+Qdy+ Rdz = 0, presented as an adaptation of the method for integrating
them when they do satisfy the condition of integrability.

This section remained unchanged throughout the several editions of the
Traité élémentaire, except for being moved, from the third edition onwards, from
the end of the chapter on “Integration of functions of two, or more, variables” to
right after the section addressing the conditions of integrability and the integration
of total differential equations that satisfy them (and thus before the integration
of partial differential equations).

8.9 Aspects of differences and series

8.9.1 Indices

Subscript indices have a smaller presence in the Traité élémentaire than in the
large Traité. There are two main reasons for this. One, is that their first appea-
rance in the large Traité (and one of the most innovative) is in the Introduction,
which is absent from the Traité élémentaire. The other reason is that the appendix
on differences and series has a lesser weight in the Traité élémentaire than volume
IIT in the large Traité. Moreover, the occurrence of indices in the expansion of ar-
bitrary functions (Taylor’s theorem) [Lacroix Traité, I, 87-91| disappears with the
change of foundations for differential calculus. Still, other occasional occurrences
seem to be kept; for instance, in approximate integration.

8.9.2 The “multiplicity of integrals” of difference equations

The subject of the different types of integral of difference equations was clearly
too complicated, or at least too finicky, for the Traité élémentaire. Lacroix did
not include anything on it.

8.9.3 Mixed difference equations

Mixed difference equations seem also too specific for the Traité élémentaire. In
the first and second edition there is nothing on them. However, from the third
edition onwards Lacroix included one short article about them, at the end of the
section on difference equations [1802a, 3rd ed, 602-603]; but this article only gives
two very simple examples, refers the interested reader to the large Traité, and cites
the authors that had addressed the subject.
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8.10 Translations of the Traité élémentaire

Around 1800 French mathematical (and generally scientific) books seem to have
circulated widely in Europe. Among them, Lacroix’s textbooks were very popular.
It is not easy to give a quantitative perspective on this, but at least in good British
and Portuguese libraries it is certainly easy to find copies of them (although not
always of the earlier editions).

Translating French textbooks into other languages was also a common acti-
vity [Grattan-Guinness 2002, 20-24]. Once again, Lacroix’s textbooks were popu-
lar targets. Below we will see translations of his Traité élémentaire into Portuguese
(made in Brazil), English, German, Polish (made in what is nowadays Lithuania),
Italian, and Greek. Notice that translations of some of his other textbooks into
Portuguese, Italian, and Greek will also be mentioned; several more German and
Spanish translations are mentioned in [Grattan-Guinness 2002, 39-40]; we have
mentioned in section 4.1.1.2 an English translation, made in America, of his tri-
gonometry text, and this was part of a series of translations of European text-
books that also included Lacroix’s Arithmetic and Algebra [Ackerberg-Hastings
2004, 7); Danny Beckers [2000] has discussed the unfaithful Dutch translation
of Lacroix’s algebra textbook; farther away, an English translation of his algebra
textbook was made and printed in Calcutta to be used at the local Hindu College
[Aggarwal 2006, 111]; and it would be surprising if this list were exhaustive.

8.10.1 The Portuguese translation (Rio de Janeiro, 1812-1814)

Lacroix’s Traité élémentaire was translated into Portuguese during a very peculiar
period in Portuguese history. In November 1807 the royal family fled to Brazil
from a French invasion, only to return in June 1821. During those nearly 14
years, Rio de Janeiro was the capital of Portugal. Naturally, this situation had
far-reaching consequences for Brazil, including the foundation of the first printing
press and of the first higher-education institutions.

Among these institutions was the Royal Military Academy (Academia Real
Militar do Rio de Janeiro), created in 1810 by the Prince Regent, John (later king
John VI). It had a 7-year course, of which four years were devoted to mathematics
[C.P.Silva 1992, 51-57]. Several French textbooks were translated to be used
by the students of this Academy, and among them several by Lacroix, including
the Tratado Elementar de Calculo Diferencial e Calculo Integral [Lacroix 1812-
1814].7°

70 And also the Tratado elementar de Arithmetica (1810, translated by Francisco Cordeiro da
Silva Torres e Alvim; I have not seen this book, but it is mentioned by Inocéncio [DBP, 11, 367]
and Circe M. S. Silva [1996, 82]), the Elementos d’Algebra (1811, translation of [Lacroix 1799],
also by Francisco Cordeiro da Silva Torres), the Tratado Elementar de Applicagdo de Algebra d
Geometria (1812, partial translation of [Lacroix 1798b], with an appendix on geometry in space,
by José Victorino dos Santos e Souza), and the Complemento dos Elementos d’Algebra (1813; 1
have not seen this book, which is mentioned in [NUC, CCCX, 654]).
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Like all those textbooks, the [Lacroix 1812-1814] was published in Rio de
Janeiro by the Royal Press (Impressdo Regia). It appeared in two volumes: the
first in 1812, dedicated to differential calculus, and corresponding to the first
part of [Lacroix 1802a]; the second in 1814, dedicated to integral calculus, and
corresponding to [Lacroix 1802a, 187-461] — that is, the second part minus the
method of variations. Thus, it is an incomplete translation, as the method of
variations and the appendix on finite differences and series are missing.

The translator was Francisco Cordeiro da Silva Torres (often called Francisco
Cordeiro da Silva Torres e Alvim). Silva Torres was born in Ourém (European
Portugal) in 1775 and died in Rio de Janeiro in 1856. He was at the time of this
translation sergeant-major in the Royal Corps of Engineers and a lecturer at the
Royal Military Academy (according to Clovis P. Silva [1992, 56| he taught higher
algebra, analytic geometry, and differential and integral calculus). He stayed in
Brazil after the independence (1822) and became viscount of Jerumarim, state
councillor, etc. Apart from translating Lacroix, Silva Torres also published a few
works on weights and measures and on finance [Inocéncio DBP, 11, 367; IX, 281-
282; C.M.S. Silva 1996, 82].

As to the translation itself, there is nothing to say, except that it was clearly
made from the first edition of [Lacroix 1802a]| — although the second had already
been published in 1806; presumably it was not easily available in Rio de Janeiro.

In spite of this, and of the incompleteness of the translation, the students
of the Royal Military Academy of Rio de Janeiro were undoubtedly well served
with this textbook; at least much better than their colleagues at the University of
Coimbra: the adopted textbook there was still Bézout’s, and would be until the
late 1830’s, when it was replaced by Francoeur’s.”

In Brazil, this translation remained as the adopted textbook for a long time,
and was probably still used in 1871. It is also remarkable that what seems to have
been the first textbook on the calculus written by a Brazilian, José Saturnino
da Costa Pereira, in 1842, was entitled “Elementos de Calculo Differencial e de
Calculo Integral, segundo o systema de Lacroix” — i.e., “Elements of differential
and integral calculus, following Lacroix’s system” [C.M.S. Silva 1996, 84].

8.10.2 The English translation (Cambridge, 1816)

The most famous, and probably the most interesting, translation of Lacroix’s
Traité élémentaire was the English one, published in Cambridge in 1816 by Ge-
orge Peacock (1791-1858), Charles Babbage (1791-1871) and John Herschel (1792-
1871).

During the 18th century the British method of fluxions had grown apart from
the Continental differential and integral calculus. In the beginning of that century
the difference was mainly one of notation and a few distinct conceptions. But

71Tt seems that not many copies of the Brazilian editions of Lacroix crossed the Atlantic to
Portugal. At least, they are not very common in Portuguese libraries nowadays.
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from the 1740’s onwards the British were not able to follow Continental develop-
ments such as partial differential equations [Guicciardini 2003, parts 2 and 3]. At
the University of Cambridge mathematics had a prominent role in education and
particularly in examinations; but it was seen as a mere exercise in reasoning, and
there were no incentives for doing research nor simply for keeping up to date with
external research.

By the late 18th century and the early years of the 19th, a number of mathe-
maticians tried to change this state of affairs. It is only fair to mention the Scot
William Wallace (1768-1843), who held teaching posts at Perth Academy (1794-
1803), the Royal Military College (1803-1819), and the University of Edinburgh
(1819-1838). Wallace published in 1815 an 86-page article on “Fluxions” in the
Edinburgh Encyclopedia [Wallace 1815], using the differential notation and inclu-
ding “partial fluxions” (i.e., partial differentials) and “fluxional coefficients” (i.e.,
partial derivatives) [1815, 433].7 In spite of the words “Aluxion” and “fluent”, this
was in fact a complete account of the (Continental) differential and integral cal-
culus — the first one in Britain [Guicciardini 2003, 120|. However, partly because
this was an encyclopedia article instead of a book, and partly because he used li-
mits instead of Lagrangian power series, his contribution was disregarded by more
influential British mathematicians, and soon forgotten [Panteki 1987; Craik 1999,
253].

A more influential figure was Robert Woodhouse (1773-1827), a fellow of Gon-
ville and Caius College, Cambridge (from 1795), Lucasian Professor of Mathema-
tics (1820-1822), Plumian Professor of Astronomy and Experimental Philosophy
(1822-1827), and director of the Cambridge Observatory (from 1824). Starting in
1790’s, Woodhouse was also a reviewer of mathematics for the London Monthly
Review. This made him read the works of French mathematicians, and soon he was
a Lagrangian. He published in 1803 a book entitled Principles of Analytical Cal-
culation, where he adopted the power-series approach (although criticizing some
details of Lagrange), and used the differential notation, as well as Arbogast’s D
operator [Guicciardini, 2003, 126-131; Philips 2006, 70-71].7 Later, he published
books on trigonometry and the calculus of variations, that according to Philips
[2006] had much greater influence in Cambridge education than his 1803 book.

Woodhouse was certainly also an inspirational figure for the famous Analyti-
cal Society. This society was formed in 1812 by a group of undergraduate students,
among whom were Babbage, Peacock, and Herschel, later to be active researchers
in mathematics. The Analytical Society started as a joke on societies devoted to
distributing Bibles — instead, it would distribute Lacroix’s Traité élémentaire, as

72«Fluxional coefficient” is of course evocative of Lacroix’s “differential coefficient”. Wallace
gave a long list or works on the calculus, both British and Continental, [1815, 388-389], but
lamenting the absence of up-to-date books in English. Anyone wishing to study it “beyond its
mere elements” should recur to Euler’s books, or French treatises — among the latter, he stressed
Lacroix’s large Traité.

73But apparently this was not a complete account of the calculus, rather just a reflection on
its principles.
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a way of propagating the “pure d-ism against the Dot-age of the University” (that
is, the Continental dz against the Newtonian i) [Guicciardini 2003, 135; Enros
1983, 26-27|. Setting the joke aside, the society was formed and met regularly,
discussing “analytics” and putting out a volume of memoirs in 1813.

The society dissolved in early 1814, but nearly three years later its three
more prominent members published [Lacroix 1816] — a partial English translation
of [Lacroix 1802a, 2nd ed], with additions.

The division of labour between the three of them, according to the “adver-
tisement” [Lacroix 1816, iii-iv] was thus: Babbage translated part 1 (differential
calculus); Peacock and Herschel translated part 2 (integral calculus); Peacock
alone wrote twelve endnotes (A-M)™ on the differential and integral calculus;
Herschel alone wrote four more endnotes (N-Q) on differential equations and the
calculus of variations, and an appendix on differences and series to replace that of
Lacroix.

Some of the endnotes are quite extensive. In particular, those written by
Peacock are one of the main points of interest in this translation: the advertisement
tells us that they “were principally designed to enable the Student to make use of
the principle of Lagrange” — that is, to compensate for the fact that in the Traité
élémentaire Lacroix had “substituted the method of limits of D’Alembert, in the
place of the more correct and natural method of Lagrange”. Let us see some of
the most important examples.

Note (A) [Lacroix 1816, 581-596] is in fact about limits. Peacock gives a
historical account of them (and also of infinitesimals and indivisibles), starting
with the “Method of Exhaustions”, and he establishes some results, probably taken
from the Introduction of Lacroix’s large Traité. In particular, he gives Arbogast’s
principle (and Lacroix’s counter-example), and uses it for the pinching theorem
for power series, useful for geometrical applications (see section 3.2.6 and page 122
above).

Note (B) [Lacroix 1816, 596-620] is the most substantial one, and the one
that most closely corresponds to the design announced in the “advertisement” —
that is, it is an attempt to establish the differential calculus on a power-series
basis (still using the differential notation). Peacock acknowledges that he used
[Lagrange Calcul] and [Lacroix Traité] to write the note, but probably he used
the latter more than the former. The last pages of this note are dedicated to com-
parisons between the power-series approach, the method of limits, infinitesimals,
and the method of fluxions (including a criticism of the fluxional notation).

Note (D) [Lacroix 1816, 622-633] is dedicated to finding the differentials
of exponential and trigonometric functions, by other means than those used in
[Lacroix 1802a] — using power series, of course.

Note (G) [Lacroix 1816, 654-660] is on “the application of differential calculus
to the theory of curves, without the introduction of limits” — power series again,
and the pinching theorem proved in note (A).

" There is no note (J).
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Some other notes give details that Lacroix had omitted (or much reduced) in
the Traité élémentaire. For instance, note (F) [Lacroix 1816, 647-654] addresses
the particular values for which Taylor’s series was seen to fail.

According to the “advertisement”, Herschel’s appendix on differences and se-
ries purported to include “many important subjects [...] which had been either
entirely omitted, or very imperfectly considered” in Lacroix’s. Clearly, one such
important subject was the “determination of functions from given conditions”
[Lacroix 1816, 544-550] — that is, functional equations, a favorite topic for Herschel
and Babbage [Grattan-Guinness 1994, 559-560]. But there is an overall increase
in size: Herschel’s appendix occupies about 20% of the book (endnotes excluded)
against about 15% for Lacroix’s.

One gets the distinct feeling that this translation aimed at a kind of compro-
mise between the large Traité and the Traité élémentaire.

As for the influence of [Lacroix 1816], the traditional view was quite enthusi-
astic: “the year 1816, in which Lacroix’s shorter work was translated into English
[...] witnessed the triumph in England of the methods used in the Continent”
[Boyer 1939, 265-266]. This opinion is no longer held by historians of the period
[Enros 1983; Guicciardini 2003; Philips 2006]. There had been precursors, like
Wallace and Woodhouse; and the actual reform in Cambridge teaching was a slow
process, in which the role of [Lacroix 1816] is not clear. But eventually it was
seen as a landmark, at least by research mathematicians. When De Morgan fi-
nished his book on The Differential and Integral Calculus, he expressed its extent
by saying that it was “more than double in matter of the Cambridge translation
of Lacroix, and full half as much as the great work of the same author in three
volumes quarto” [De Morgan 1836-1842, iii|.

8.10.3 The German translations (Berlin, 1817; 1830-1831)

There were two (or possibly three) German translations of Lacroix’s Traité élé-
mentaire du calcul....

I have not been able to consult the first of these. The following information
is taken from the catalogues [NUC, CCCX, 657] and |GV, LXXXIII, 198|: it
had the title Handbuch der Differential- und Integral-Rechnung; it was made by
C. F. Bethke, from the second French edition”, and it was published in 1817 by
G. Reimer in Berlin. [NUC, CCCX, 657] indicates the publisher as Realschul-
buchhandlung, while [GV, LXXXIII, 198] indicates Reimer; but this is not so
strange — Georg Andreas Reimer (1776-1842) had taken over the Buchhan