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1. Introduction

The paper is devoted to examples of quantum spaces over non-archimedean fields
and is, in a sense, a continuation of [So1] (part of the material is borrowed from the
loc. cit). There are three classes of examples which I discuss in this paper: quantum
affinoid spaces, quantum non-archimedean Calabi-Yau varieties and quantum p-
adic groups. Let us recall the definitions and discuss the contents of the paper.

Quantum affinoid algebras are defined similarly to the “classical case” q = 1.
It is a special case of a more general notion of non-commutative affinoid algebra
introduced in [So1]. Let k be a Banach field and k〈〈T1, . . . , Tn〉〉 be the alge-
bra of formal series in free variables T1, . . . , Tn. For each r = (r1, . . . , rn), ri ≥
0, 1 ≤ i ≤ n we define a subspace k〈〈T1, . . . , Tn〉〉r consisting of series f =∑

i1,...,im
ai1,...,imTi1 · · ·Tim such that

∑
i1,...,im

|ai1,...,im |ri1 · · · rim < +∞. Here
the summation is taken over all sequences (i1, . . . , im),m ≥ 0 and | • | denotes
the norm in k. In this paper we consider the case when k is a valuation field (i.e.,
a Banach field with respect to a multiplicative non-archimedean norm). In the
non-archimedean case the convergency condition is replaced by the following one:
max |ai1,...,im |ri1 · · · rim → 0 as i1 + · · ·+ im →∞. Clearly each k〈〈x1, . . . , xn〉〉r is
a Banach algebra called the algebra of analytic functions on a non-commutative k-
polydisc ENC(0, r) centered at zero and having the (multi)radius r = (r1, . . . , rn).
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The norm is given by max |ai1,...,im |ri1 · · · rim . A non-commutative k-affinoid alge-
bra is an admissible noetherian quotient of this algebra (cf. [Be1], Definition 2.1.1).
Let us fix q ∈ k∗ such that |q| = 1, and r = (r1, . . . , rn), ri ≥ 0. A quan-
tum k-affinoid algebra is a special case of the previous definition. It is defined
as an admissible quotient of the algebra k{T }q,r := k{T1, . . . , Tn}q,r of the se-
ries f =

∑
l=(l1,...,ln)∈Zn

+
alT

l1
1 · · ·T ln

n such that al ∈ k, TiTj = qTjTi, j < i, and

max|al|r|l| → 0 as |l| := l1+· · ·+ln →∞. The latter is also called the algebra of an-
alytic functions on the quantum polydisc Eq(0, r). It is less useful notion than the
one of non-commutative affinoid algebra since there are few two-sided closed ideals
in the algebra k{T1, . . . , Tn}q,r. Nevertheless quantum affinoid algebras appear in
practice (e.g., in the case of quantum Calabi-Yau manifolds considered below). In
the case when all ri = 1 we speak about strictly k-affinoid non-commutative (resp.
quantum) algebras, similarly to [Be1]. Any non-archimedean extensionK of k gives
rise to a non-commutative (resp. quantum) affinoid k-algebra, cf. loc.cit. There is
a generalization of quantum affinoid algebras which we will also call quantum affi-
noid algebras. Namely, let Q = ((qij)) be an n×n matrix with entries from k such
that qijqji = 1, |qij | = 1 for all i, j. Then we define the quantum affinoid algebra
as an admissible quotient of the algebra k{T1, . . . , Tn}Q,r. The latter defined sim-
ilarly to k{T1, . . . , Tn}q,r, but now we use polynomials in variables Ti, 1 ≤ i ≤ n
such that TiTj = qijTjTi. One can think of k{T1, . . . , Tn}Q,r as of the quotient
of k〈〈Ti, tij〉〉r,1ij , where 1 ≤ i, j ≤ n and 1ij is the unit n × n matrix, by the
two-sided ideal generated by the relations

tijtji = 1, TiTj = tijTjTi, tija = atij ,

for all indices i, j and all a ∈ k〈〈Ti, tij〉〉r,1ij . In other words, we treat qij as
variables which belong to the center of our algebra and have the norms equal
to one. Having the above-discussed generalizations of affinoid algebras we can
consider their Berkovich spectra (sets of multiplicative seminorms). Differently
from the commutative case, the theory of non-commutative and quantum analytic
spaces is not developed yet (see discussion in [So1]).

Quantum Calabi-Yau manifolds provide examples of topological spaces
equipped with rings of non-commutative affinoid algebras, which are quantum
affinoid outside of a “small” subspace. More precisely, let k = C((t)) be the field
of Laurent series, equipped with its standard valuation (order of the pole) and
the corresponding non-archimedean norm. Quantum Calabi-Yau manifold of di-
mension n over C((t)), is defined as a ringed space (X,Oq,X) which consists of an
analytic Calabi-Yau manifold X of dimension n over C((t)) and a sheaf of C((t))-
algebras Oq,X on X such that Oq,X(U) is a non-commutative affinoid algebra for
any affinoid U ⊂ X and the following two conditions are satisfied:

1) X is a C((t))-analytic manifold corresponding to a maximally degenerate
algebraic Calabi-Yau manifold Xalg of dimension n (see [KoSo2] for the def-
initions).
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2) Let Sk(X) be the skeleton of X defined in [KoSo1], and let us choose a
projection π : X → Sk(X) described in the loc.cit. Then the direct im-
age π∗(Oq,X) is locally isomorphic (outside of a topological subvariety of
the codimension at least two) to the sheaf of C((t))-algebras Ocan

q,Rn on Rn

which is characterized by the property that for any open connected sub-
set U ⊂ Rn we have Ocan

q,Rn(U) = {∑l∈Zn alz
l} such that al ∈ C((t)) and

supl∈Zn(log |al|+〈l, x〉) <∞ for any x ∈ U . Here 〈(l1, . . . , ln), (x1, . . . , xn)〉 =∑
1≤i≤n lixi.

For a motivation of this definition see [KoSo1-2] in the “commutative” case q = 1.
Roughly speaking, in that case the above definition requires the Calabi-Yau man-
ifold X to be locally isomorphic (outside of a “small” subspace) to an analytic
torus fibration πcan : (Gan

m )n → Rn, where on C((t))-points the canonical pro-
jection πcan is the “tropical” map (z1, . . . , zn) �→ (log |z1|, . . . , log |zn|). This is a
“rigid-analytic” implementation of the Strominger-Yau-Zaslow conjecture in Mir-
ror Symmetry (see [KoSo1-2] for more on this topic). In present paper we discuss
the case n = 2, essentially following [KoSo1], [So1]. Perhaps the higher-dimensional
case can be studied by the technique developed in a recent paper [GroSie1] (which
in some sense generalizes to the higher-dimensional case ideas of [KoSo1]). We
plan to return to this problem in the future.

Finally, we discuss the notion of p-adic quantum group. Quantum groups
over p-adic fields and their representations will be discussed in more detail in
the forthcoming paper [So2]. We have borrowed some material from there. Recall
that quantum groups are considered in the literature either in the framework
of algebraic groups or in some special examples of locally compact groups over
R. In the case of groups over R or C there is the following problem: how to
describe, say, smooth or analytic (or rapidly descreasing) functions on a complex
or real Lie group in terms of the representation theory of its enveloping algebra?
Finite-dimensional representations give rise to the algebra of regular functions
(via Peter-Weyl theorem), but more general classes of functions are not so easy to
handle. The case of p-adic fields is different for two reasons. First, choosing a good
basis in the enveloping algebra, we can consider series with certain restrictions
on the growth of norms of their coefficients. This allows us to describe a basis
of compact open neighbourhoods of the unit of the corresponding p-adic group.
Furthermore, combining the ideas of [ShT1] with the approach of [So3] one can
define the algebra of locally analytic functions on a compact p-adic group as a
certain completion of the coordinate ring of the group. Dualizing, one obtains
the algebra of locally-analytic distributions. According to [ShT1] modules over
the latter provides an interesting class of p-adic representations, which contains,
e.g., principal series representations. The above considerations can be “quantized”,
giving rise to quantum locally-analytic groups.

The present paper contains a discussion of the above-mentioned three classes
of examples of non-commutative spaces. The proofs are omitted and will appear in
separate publications. We should warn the reader that the paper does not present
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a piece of developed theory. This explains its sketchy character. My aim is to
show interesting classes of non-archimedean non-commutative spaces which can be
obtained as analytic non-commutative deformations of the corresponding classical
spaces. They deserve further study (for the quantum groups case see [So2]).

When talking about rigid analytic spaces we use the approach of Berkovich,
which seems to be more suitable in the non-commutative framework. For this
reason our terminology is consistent with [Be1].

Acknowledgements. I am grateful to many people who shared with me their ideas
and insights, especially to Vladimir Berkovich, Joseph Bernstein, Matthew Emer-
ton and Maxim Kontsevich. Excellent papers [SchT1-6] by Peter Schneider and
Jeremy Teitelbaum played a crucial role in convincing me that the theory of quan-
tum p-adic groups should exist. I thank IHES for the hospitality and excellent
research conditions. This work was partially supported by an NSF grant.

2. Quantum affinoid algebras

Let k be a valuation field.
We recall here the definition already given in the Introduction. Let us fix r =

(r1, . . . , rn) ∈ Rn
≥0. We start with the algebra k〈T 〉 := k〈T1, . . . , Tn〉 of polynomials

in n free variables and consider its completion k〈〈T 〉〉r with respect to the norm
|∑λ∈P (Zn

+) aλT
λ| = maxλ |aλ|rλ. Here P (Zn

+) is the set of finite paths in Zn
+

starting at the origin, and T λ = T λ1
1 T

λ2
2 · · · for the path which moves λ1 steps in

the direction (1, 0, 0, . . .) then λ2 steps in the direction (0, 1, 0, 0, . . .), and so on
(repetitions are allowed, so we can have a monomial like T λ1

1 T
λ2
2 T

λ3
1 ).

Definition 2.0.1. We say that a noetherian Banach unital algebra A is non-com-
mutative affinoid k-algebra if there is an admissible surjective homomorphism
k〈〈T 〉〉r → A (admissibility means that the norm on the image is the quotient
norm).

In particular, affinoid algebras in the sense of [Be1] belong to this class (un-
fortunately the terminology is confusing in this case: commutative affinoid algebras
give examples of non-commutative affinoid algebras!). Another class of examples
is formed by quantum affinoid algebras defined in the Introduction.

Let us now recall the following definition (see [Be1]).

Definition 2.0.2. Berkovich spectrum M(A) of a unital Banach ring A consists of
bounded multiplicative seminorms on A.

If A is a k-algebra, we require that seminorms extend the norm on k. It is
well-known (see [Be1], Th. 1.2.1) that if A is commutative then M(A) is a non-
empty compact Hausdorff topological space (in the weak topology). If ν ∈ M(A)
then Ker ν is a two-sided closed prime ideal in A. Therefore it is not clear whether
M(A) is non-empty in the non-commutative case.
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Algebras of analytic functions on the non-commutative and quantum poly-
discs carry multiplicative “Gauss norms” (see Introduction), hence the Berkovich
spectrum is non-empty in each of those cases. The following example can be found
in [So3], [SoVo].

Let L be a free abelian group of finite rank d, ϕ : L × L → Z be a skew-
symmetric bilinear form, q ∈ K∗ satisfies the condition |q| = 1. Then |qϕ(λ,μ)| = 1
for any λ, μ ∈ L. We denote by Aq(T (L,ϕ)) the algebra of regular functions on the
quantum torus Tq(L,ϕ). By definition, it is a k-algebra with generators e(λ), λ ∈ L,
subject to the relation

e(λ)e(μ) = qϕ(λ,μ)e(λ+ μ).
The algebra of analytic functions on the analytic quantum torus T an

q (L,ϕ)
consists by definition of series

∑
λ∈L a(λ)e(λ),a(λ) ∈ k such that for all r =

(r1, . . . , rd), ri > 0 one has: |a(λ)|rλ → 0 as |λ| → ∞ (here |(λ1, . . . , λd)| =∑
i |λi|).

Quantum affinoid algebra k{T }q,r discussed in the Introduction is the algebra
of analytic functions on quantum polydisc of the (multi)radius r = (r1, . . . , rn). It
was shown in [So1] that M(k{T }q,r) can be quite big as long as |q − 1| < 1. In
particular, it contains “quantum” analogs of the norms |f |E(a,ρ) which is the “max-
imum norm” of an analytic function f on the polydisc centered at a = (a1, . . . , an)
of the radius ρ = (ρ1, . . . , ρn), with the condition ai ≤ ρi < ri, 1 ≤ i ≤ n. Similar
result holds for the quantum analytic torus. This observation demonstrates an in-
teresting phenomenon: differently from the formal deformation quantization, the
non-archimedean analytic quantization “preserves” some part of the spectrum of
the “classical” object.

The conventional definition of the quatization can be carried out to the an-
alytic case with obvious changes. Indeed, the notion of Poisson algebra admits
a straightforward generalization to the analytic case (Poisson bracket is required
to be a bi-analytic map). Furthermore, for any commutative affinoid algebra A
there is a notion of non-commutative A-affinoid algebra, which is a natural gen-
eralization of the notion of k-affinoid algebra (we use A〈〈T1, . . . , Tn〉〉r instead of
k〈〈T1, . . . , Tn〉〉r).

Let now O(E(0, r)) be the algebra of analytic functions on a 1-dimensional
polydiscE(0, r) =M(k{r−1T }) of the radius r (the notation is from [Be1], Chapter
2). We say that a non-commutative O(E(0, r))-affinoid algebra A is an analytic
quantization of a k-affinoid commutative Poisson algebra A0 over the polydisc
E(0, r) if the following two conditions are satisfied:

1) A is a topologicalO(E(0, r))-algebra, free as a topologicalO(E(0, r))-module.
2) The quotient A/TA is isomorphic to A0 as a k-affinoid Poisson algebra.

Then a quantization of a k-analytic space (X,OX) iss a ringed space (X,Oq,X)
such that for any affinoid U ⊂ X the algebra Oq,X(U) is an analytic quantization
of OX(U) over some polydisc E(0, r).

Notice that the projection A → A0 induces an embedding of Berkovich
spectra M(A0) → M(A). Every element of A can be thought of as analytic
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function on E(0, r) with values in a non-commutative k-affinoid algebra. Sup-
pose that A � A0{r−1T } as a k{r−1T }-module. Then the topological vector
space A is isomorphic to the space of analytic functions on E(0, r) with values
in A0 (but the product is not a pointwise product of functions). Assume that
r ≤ 1 and consider the subspace A1 of analytic functions a(x) as above such that
|a(0)|A0 ≤ 1, |a(x) − a(0)|A0 ≤ |T (x)|, x ∈ E(0, r), where •|A0 denotes the norm
on A0. Here x is interpreted as a seminorm on the Banach k-algebra k{r−1T },
hence |T (x)| is the norm of the generator T in the completition of the residue
field k{r−1T }/Ker x. It is clear that A1 is in fact a Banach k-algebra. Hence the
natural projection a(x) �→ a(0) defines an embedding M(A0)→M(A1).

Suppose that X is an analytic spaces for which there is a notion of a skeleton
Sk(X) either in the sense of [KoSo1] (then X is assumed to be Calabi-Yau) or in
the sense of [Be2,Be3]. Then in either of these cases there is a continuous retraction
π : X → Sk(X). Suppose that the there is a quantization (X,Oq,X) of (X,OX)
in the above sense.

Conjecture 2.0.3. For any closed V ⊂ X there is a natural embedding iV : V ⊂
M(Oq,X(π−1(V ))) such that π◦iV = idV . Moreover if V1 ⊂ V2 then the restriction
of iV1 to V2 is equal to V2.

In other words, the skeleton survives an analytic quantization. The above
conjecture is not very precise, because there is no general definition of a skeleton.
The definition given in [KoSo1] is different from the one in [Be2,3] even for Calabi-
Yau manifolds. Hence the conjecture is an “experimental fact” at this time.

3. Quantum Calabi-Yau varieties

Let Xalg be a maximally degenerate (in the sense of [KoSo1-2]) algebraic Calabi-
Yau manifold over C((t)) of dimension n and X be the corresponding C((t))-
analytic space. Then one can associate with X a PL-manifold Sk(X) of real di-
mension n, called the skeleton of X (see [KoSo1-2]). A choice of Kähler structure
on Xalg defines (conjecturally) a continuous retraction π : X → Sk(X). This map
satisfies the condition 2) from the Introduction. In other words, it defines a (singu-
lar) analytic torus fibration over Sk(X) with the generic fiber, isomorphic to the
analytic space M(k[T±1

1 , . . . , T
±1
n ]/(|Ti| = ci, 1 ≤ i ≤ n)), where ci > 0, 1 ≤ i ≤ n

are some numbers. Since the projection is Stein (see loc. cit), one can reconstruct
X (as a ringed space) from the knowledge of (Sk(X), π∗(OX)), where OX is the
sheaf of analytic functions on X .

Let B = Sk(X) and Bsing be the “singular subvariety” of real codimension
two (see Introduction). It was observed in [KoSo1] that the norms of elements of
the direct image sheaf π∗(O×

X) define an integral affine structure onB0 := B\Bsing.
Hence we would like to reconstruct the analytic space starting with a PL-manifold
equipped with a (singular) integral affine structure. As we will explain in the next
subsection the same data give rise to a sheaf of quantum affinoid algebras on B0.
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3.1. Integral affine structures and quantized canonical sheaf

Here we explain following [KoSo1] and [So1] how a manifold with integral affine
structure defines a sheaf of (quantum) affinoid algebras.

Recall that an integral affine structure (Z-affine structure for short) on an
n-dimensional topological manifold Y is given by a maximal atlas of charts such
that the change of coordinates between any two charts is described by the formula

x′i =
∑

1≤j≤n

aijxj + bi,

where (aij) ∈ GL(n,Z), (bi) ∈ Rn. In this case one can speak about the sheaf of
Z-affine functions, i.e., those which can be locally expressed in affine coordinates
by the formula f =

∑
1≤i≤n aixi + b, ai ∈ Z, b ∈ R. An equivalent description:

Z-affine structure is given by a covariant lattice TZ ⊂ TY in the tangent bundle
(recall that an affine structure on Y is the same as a torsion free flat connection
on the tangent bundle TY ).

Let Y be a manifold with Z-affine structure. The sheaf of Z-affine functions
AffZ := AffZ,Y gives rise to an exact sequence of sheaves of abelian groups

0→ R→ AffZ → (T ∗)Z → 0,

where (T ∗)Z is the sheaf associated with the dual to the covariant lattice TZ ⊂ TY .
Let us recall the following notion introduced in [KoSo1], Section 7.1. Let k

be a valuation field.

Definition 3.1.1. A k-affine structure on Y compatible with the given Z-affine struc-
ture is a sheaf Affk of abelian groups on Y , an exact sequence of sheaves

1 → k× → Affk → (T ∗)Z → 1,

together with a homomorphism Φ of this exact sequence to the exact sequence of
sheaves of abelian groups

0→ R→ AffZ → (T ∗)Z → 0,

such that Φ = id on (T ∗)Z and Φ = val on k×, where val is the valuation map.

Since Y carries a Z-affine structure, we have the corresponding GL(n,Z) �
Rn-torsor on Y , whose fiber over a point x consists of all Z-affine coordinate
systems at x.

Then one has the following equivalent description of the notion of k-affine
structure.

Definition 3.1.2. A k-affine structure on Y compatible with the given Z-affine struc-
ture is a GL(n,Z)�(k×)n-torsor on Y such that the application of val×n to (k×)n

gives the initial GL(n,Z) � Rn-torsor.

Assume that Y is oriented and carries a k-affine structure compatible with
a given Z-affine structure. Orientation allows us to reduce the structure group of
the torsor defining the k-affine structure to SL(n,Z) � (k×)n .
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Let q ∈ k, |q| = 1, and z1, . . . , zn be invertible variables such that zizj = qzjzi,
for all 1 ≤ i < j ≤ n. We define the sheaf of k-algebras Ocan

q on Rn, n ≥ 2 by the
formulas:

Ocan
q (U) =

⎧⎨⎩ ∑
I=(I1,...,In)∈Zn

cIz
I
∣∣∣

∀(x1, . . . , xn) ∈ U sup
I

⎛⎝log(|cI |) +
∑

1≤m≤n

Imxm

⎞⎠ <∞
⎫⎬⎭ ,

where zI = zI11 . . . z
In
n . Since |q| = 1 the convergency condition does not depend

on the order of variables.
The sheaf Ocan

q can be lifted to Y (we keep the same notation for the lifting).
In order to do that it suffices to define the action of the group SL(n,Z) � (k×)n

on the canonical sheaf on Rn. Namely, the inverse to an element (A, λ1, . . . , λn) ∈
SL(n,Z) � (k×)n acts on monomials as

zI = zI11 . . . z
In
n �→

(∏n
i=1λ

Ii

i

)
zA(I) .

The action of the same element on Rn is given by a similar formula:

x = (x1, . . . , xn) �→ A(x) − (val(λ1), . . . , val(λn)) .

Any n-dimensional manifold Y with integral affine structure admits a cov-
ering by charts with transition functions being integral affine transformations.
This allows to define the sheaf Ocan

q,Y as the one which is locally isomorphic to
Ocan

q = Ocan
q,Rn .

It is explained in [KoSo1] (see also [So1], Section 7.2) that for any open
U ⊂ Rn the topological spaceM(Ocan

q (U)) for q = 1 is an analytic torus fibration
in the sense of Introduction. Recall that an analytic torus fibration is a fiber bundle
(X,Y, π) consisting of a commutative k-analytic space, a topological manifold Y
and a continuous map π : X → Y such that it is locally isomorphic to the torus
fibration Gn

m → Rn from Introduction. In that case π is a Stein map, and we have:
π−1(U) = M(Ocan

q=1(U)). Therefore we can think of the ringed space (Y,Ocan
q,Y ) as

of quantization of this torus fibration.

3.2. Model sheaf near a singular point

In the case of maximally degenerate K3 surfaces the skeleton is homeomorphic to
B = S2 (the two-dimensional sphere) equipped with an integral affine structure
outside of the subset Bsing consisting of 24 points (see [KoSo1], Section 6.4, where
the affine structure is described). The construction of the previous subsection gives
rise to a sheaf of quantum C((t))-affinoid algebras over B0 = B \ Bsing. In order
to complete the quantization procedure we need to extend the sheaf Ocan

q,B0 to a
neighbourhood of Bsing. It is explained in [KoSo1] (case q = 1) and in [So1] (case
|q| = 1) that one has to modify this sheaf in order to extend it to singular points.
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Summarizing, the quantization is achieved in two steps. First, we define a sheaf of
non-commutative C((t))-affinoid algebras in a neighbourhood of Bsing such that it
is locally isomorphic to the canonical sheafOcan

q,B0 outside of Bsing and gives a “local
model” for the future sheaf π∗(Oq,X) at the singularities. Second, we modify the
sheaf Ocan

q,B0 by applying (infinitely many times) automorphisms associated with
edges of an infinite tree embedded in B, such that its external vertices belong to
Bsing. Those modifications ensure that the resulting sheaf can be glued with the
model sheaf at the singularities, and that it is indeed the direct image of the sheaf
of analytic functions on a compact C((t))-analytic K3 surface. More precisely, we
do the following.

We start with an open covering of R2 by the following sets Ui, 1 ≤ i ≤ 3. Let
us fix a number 0 < ε < 1 and define

U1 = {(x, y) ∈ R2|x < ε|y| }
U2 = {(x, y) ∈ R2|x > 0, y < εx }
U3 = {(x, y) ∈ R2|x > 0, y > 0}

Clearly R2 \ {(0, 0)} = U1 ∪U2 ∪U3. We will also need a slightly modified domain
U ′

2 ⊂ U2 defined as {(x, y) ∈ R2|x > 0, y < ε
1+εx }.

Let πcan : (Gan
m )2 → R2 be the canonical map defined in the Introduction (see

also [KoSo1]). We define the following three open subsets of the two-dimensional
analytic torus: Ti := π−1

can(Ui), i = 1, 3 and T2 := π−1
can(U ′

2). There are natural
projections πi : Ti → Ui given by the formulas

πi(| • |) = πcan(| • |) = (log |ξi|, log |ηi|), i = 1, 3

π2(| • |) =
{

(log |ξ2|, log |η2|) if |η2| < 1
(log |ξ2| − log |η2|, log |η2|) if |η2| ≥ 1

To each Ti we assign the algebra Oq(Ti) of series
∑

m,n cmnξ
m
i η

n
i such that

ξiηi = qηiξi, cmn ∈ C((t)), and for the seminorm |•| corresponding to a point of Ti

(which means that (log|ξi|, log|ηi|) ∈ Ui) one has: supm,n(mlog|ξi| + n log|ηi|) <
+∞. Similarly, we can define Oq(U) for any U ⊂ Ui. In this way we obtain a sheaf
of quantum C((t))-affinoid algebras on the set Ui. We will denote this sheaf by
πi∗(Oq,Ti).

We define the sheaf Ocan
q on R2 \ {(0, 0)} as πi∗ (Oq,Ti) on each domain Ui,

with identifications
(ξ1, η1) = (ξ2, η2) on U1 ∩ U2

(ξ1, η1) = (ξ3, η3) on U1 ∩ U3

(ξ2, η2) = (ξ3η3, η3) on U2 ∩ U3

The notation for the sheaf is consistent with the previous subsection since
Ocan

q is locally isomorphic to the canonical sheaf associated with the standard
integral affine structure.

Let us modify the canonical sheaf Ocan
q in the following way. On the sets

U1 and U2 ∪ U3 the new sheaf Omod
q is isomorphic to Ocan

q (by identifying of
coordinates (ξ1, η1) and glued coordinates (ξ2, η2) and (ξ3, η3) respectively). On
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the intersection U1 ∩ (U2 ∪U3) we identify two copies of the canonical sheaf by an
automorphism ϕ of Ocan

q given (we skip the index of the coordinates) by

ϕ(ξ, η) =
{

(ξ(1 + η), η) on U1 ∩ U2

(ξ(1 + η−1), η) on U1 ∩ U3

Finally we are going to introduce a sheaf of C((t))-algebras Osing
q on a

small open disc W ⊂ R2, {(0, 0)} ∈ W such that Osing
q |W\{(0,0)} is isomorphic

to Omod
q |W\{(0,0)}. The sheaf Osing

q provides a non-commutative deformation of
the “local model sheaf” near a singular point (see [KoSo1], Section 8 about the
latter).

Let us consider a non-commutative C((t))-algebra Aq(S) generated by α, β, γ
subject to the following relations:

αγ = qγα, qβγ = γβ,

βα − qαβ = 1− q,
(αβ − 1)γ = 1.

For q = 1 this algebra coincides with the algebra of regular functions on the
surface S ⊂ A3

C((t)) given by the equation (αβ − 1)γ = 1 and moreover, it is a flat
deformation of the latter with respect to the parameter q − 1. It is explained in
[KoSo1], Section 8, that there is a natural map p : San → R2 of the corresponding
analytic surface such that p∗(OSan) is a local model near a singularity of the sheaf
π∗(OX), where X is the maximally degenerate K3 surface and π is the projection
to the skeleton Sk(X).

Let us denote by Oq,r1,r2,r3(S
an) the non-commutative affinoid algebra which

is the quotient of C((t))〈〈α, β, γ〉〉r1 ,r2,r3 by the closed two-sided ideal generated by
the above three relations for Aq(S). Here ri, i = 1, 2, 3 are arbitrary non-negative
numbers. We denote by Oq(San) the intersection of all algebras Oq,r1,r2,r3(San).

We define homomorphisms of non-commutative algebras gi : Aq(S)→Oq(Ti),
1 ≤ i ≤ 3 by the following formulas (the notation is obvious):

g1(α, β, γ) = (ξ1−1, ξ1(1 + η1), η1−1)
g2(α, β, γ) = ((1 + η2)ξ2−1, ξ2, η2

−1)
g3(α, β, γ) = ((1 + η3)(ξ3η3)−1, ξ3η3, (η3)−1)

These homomorphisms correspond to the natural embeddings Ti ↪→ San, i =
1, 2, 3. One can use these homomorphisms in order to show an existence of non-
trivial multiplicative seminorms on Aq(S) and construct explicitly some of the
corresponding representations of Aq(S) in a k-Banach vector space.

For example, let us consider a Banach vector space Vr consisting of series∑
i∈Z aiT

i, ai ∈ k such that |ai|ri → 0 as |i| → ∞, where r > 0 is some number.
Let τ : Vr → Vr be the shift operator: τ(f)(T ) = f(qT ). Define α = T (operator of
multiplication by T ), γ = −τ−1 and β = T−1◦(1−τ). One checks that all the rela-
tions of Aq(S) are satisfied, and moreover, the seminorm on Aq(S) induced by the
operator norm is multiplicative. (Similar considerations apply to the analytic quan-
tum torus derived from ξη = qηξ. Then the element

∑
n,m∈Z anmξ

nηm transforms
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the series f =
∑

i∈Z ciT
i into

∑
n,m∈Z anmq

nmTmf(qnT ).) Rescaling the action
of α and γ by arbitrary non-zero numbers one can adjust the action of β in such a
way that the norms of operators α, β, γ “cover” an open neighborhood of the point
(1, 1, 1). More precisely, let us consider the map f :M(Oq(San)) → R3 defined by
the formula f(x) = (a, b, c) where a = max(0, log |α|x), b = max(0, log |β|x), c =
log |γ|x = − log |αβ − 1|x. Here | · |x = exp(−valx(·)) denotes the mulitplicative
seminorm corresponding to the point x ∈ M(Oq(San)). Then the image of f is
homeomorphic to R2, similarly to the case q = 1 considered in [KoSo1]. More
precisely, let us decompose M(Oq(San)) = S− ∪ S0 ∪ S+ according to the sign of
log |γ|x where x ∈M(Oq(San)). Then

f(S−) = { (a, b, c) ∈ R3 | c < 0, a ≥ 0, b ≥ 0, ab(a+ b+ c) = 0 }
f(S0) = { (a, b, c) ∈ R3 | c = 0, a ≥ 0, b ≥ 0, ab = 0 }
f(S+) = { (a, b, c) ∈ R3 | c > 0, a ≥ 0, b ≥ 0, ab = 0 }

In fact the image of the map f coincides with the image of the embedding j :
R2 → R3 given by formula

j(x, y) =
{

(−x , max(x + y, 0) , −y ) if x ≤ 0
( 0 , x+ max(y, 0) , −y ) if x ≥ 0

Proofs of the above observations are different from the case q = 1. Indeed,
there are no one-dimensional modules over Aq(S) corresponding to the points of
the surface S. Therefore it is not obvious that there are multiplicative seminorms
x on Aq(S) with the prescribed value of f(x). Seminorms on Aq(S) arise from
representations of this algebra in k-Banach vector spaces: if ρ : Aq(S) → Endk(V )
is such a representaion then we can define |a|ρ = ||ρ(a)||, where ||ρ(a)|| is the
operator norm in the Banach algebra Endk(V ) of bounded operators on V . Such
seminorms are, in general, submultiplicative: |ab|ρ ≤ |a|ρ|b|ρ. We are interested in
those which are multiplicative. This can be achieved, e.g., by mapping of Aq(S)
into an algebra which admits multiplicative seminorms. We discussed above the
homomorphisms gi of Aq(S) into analytic quantum tori. Let us consider a different
example of such homomorphism. Let δ = (αβ−1)γ. One checks that δ is a central
element in the quantum affinoid algebraBq(S) generated by the first three relations
for Aq(S) (i.e., we drop the relation δ = 1). Let us consider the quantum affinoid
algebra B generated by β±1, γ±1, δ subject to the relations:

βδ = δβ, γδ = δγ, γβ = qβγ,

and such that β−1 is inverse to β and γ−1 is inverse to γ. There is an embed-
ding of algebras Aq(S) → B/(δ − 1)B induced by the linear map Aq(S) → B
such that β and γ are mapped into the corresponding elements of B and α �→
(1 + δγ−1)β−1. Notice that for any r1 > 0, r2 > 0, r3 ≥ 0 one can define a mul-
tiplicative norm | • |r1,r2,r3 on B such that |∑n∈Z,m∈Z,l∈Z+

cnmlβ
nγmδl|r1,r2,r3 =

maxn,m,l |cnml|rn1 rm2 rl3. Moreover, we can complete B with respect to this multi-
plicative norm and obtain a quantum affinoid algebra Br1,r2,r3 . We can also invert
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δ and do the same construction. In this way we obtain the quantum affinoid alge-
bra denoted by B(1)

r1,r2,r3 . Since Aq(S) is embedded into the quotient of any of these
algebras by the central ideal, we obtain plenty multiplicative norms on Aq(S) and
on its completions.

We denote by p the composition j−1 ◦ f . In the case q = 1 it is an analytic
torus fibration over the set R2 \{(0, 0)}. Let nowW be a small disc in R2 centered
at the origin. We need to define the non-commutative affinoid algebra Osing

q (W ).
In the commutative case q = 1 it is defined as Osing

San(p−1
∗ (W )) = p∗(OSan)(W ).

For each i = 1, 2, 3 we define the C((t))-affinoid algebras Osing
q (p−1(Ui)) such

that for every x ∈ M(Osing
q (p−1(Ui)) one has p(x) ∈ Ui (it coincides with the

intersection of all completions of Aq(S) with respect to multiplicative seminorms
x such that p(x) ∈ Ui, i = 1, 2, 3). Similarly we define algebrasOq

sing(p−1(W )) and
Oq

sing(p−1(W 0)), where W 0 =W \ {(0, 0)} or, more generally, any Osing
q (p−1(U))

for U being an open subset of W . Using homomorphisms gi, i = 1, 2, 3 one proves
that if U ⊂ Ui then Osing

q (p−1(U)) is isomorphic to Omod
q (π−1

i (U)). The latter
is defined as the set of series

∑
m,n∈Z cmnξ

m
i η

n
i such that πi(| • |) ∈ U for any

multiplicative seminorm |•| such that supm,n(log |cmn|+m log |ξi|+n log |ηi| <∞),
if (x, y) ∈ U . The isomorphism of sheavesOsing

q |W\{(0,0)} � Omod
q |W\{(0,0)} follows.

Details of this construction will be explained elsewhere.

3.3. Trees, automorphisms and gluing

As was explained in [KoSo1] in the case of q = 1 and in [So1] in the case |q| = 1,
one has to modify the canonical sheaf in order to glue it with Osing

q . Here we
explain the construction following [KoSo1], [So1], leaving the details to a separate
publication. The starting point for the construction is a subset L ⊂ B which is an
infinite tree. We called it lines in [KoSo1].

The definition is quite general. Here we discuss the 2-dimensional case, while a
much more complicated higher-dimensional case was considered in the recent paper
[GroSie1]. For a manifold Y which carries a Z-affine structure a line l is defined by
a continuous map fl : (0,+∞)→ Y and a covariantly constant (with respect to the
connection which gives the affine structure) nowhere vanishing integer-valued 1-
form αl ∈ Γ((0,+∞), f∗l ((T ∗)Z). A set L of lines is required to be decomposed into
a disjoint union L = Lin∪Lcom of initial and composite lines. Each composite line
is obtained as a result of a finite number of “collisions” of initial lines. A collision is
described by a Y -shape figure, where the bottom leg of Y is a composite line, while
two other segments are “parents” of the leg, so that the leg is obtained as a result of
the collision. A construction of the set L satisfying the axioms from [KoSo1] was
proposed in [KoSo1], Section 9.3. Generalization to the higher-dimensional case
can be found in [GroSie1]. In the two-dimensional case the lines form an infinite
tree embedded into B. The edges have rational slopes with respect to the integral
affine structure. The tree is dense in B0.

With each line l (i.e., edge of the tree) we associate a continuous family of
automorphisms of stalks of sheaves of algebras ϕl(t) : (Ocan

q )Y,fl(t) → (Ocan
q )Y,fl(t).
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Automorphisms ϕl can be defined in the following way (see [KoSo1], Section
10.4).

First we choose affine coordinates in a neighborhhod of a point b ∈ B \Bsing,
identifyin b with the point (0, 0) ∈ R2. Let l = l+ ∈ Lin be (in the standard affine
coordinates) a line in the half-plane y > 0 emerging from (0, 0) (there is another
such line l− in the half-plane y < 0, see [KoSo1] for the details). Assume that
t is sufficiently small. Then we define ϕl(t) on topological generators ξ, η by the
formula

ϕl(t)(ξ, η) = (ξ(1 + η−1), η).

In order to extend ϕl(t) to the interval (0, t0), where t0 is not small, we
cover the corresponding segment of l by open charts. Then a change of affine
coordinates transforms η into a monomial multiplied by a constant from (C((t)))×.
Moreover, one can choose the change of coordinates in such a way that η �→ Cη
where C ∈ (C((t)))×, |C| < 1 (such change of coordinates preserve the 1-form dy.
Constant C is equal to exp(−L), where L is the length of the segment of l between
two points in different coordinate charts). Therefore η extends analytically in a
unique way to an element of Γ((0,+∞), f∗l ((Ocan

q )×)). Moreover the norm |η|
strictly decreases as t increases, and remains strictly smaller than 1. Similarly to
[KoSo1], Section 10.4 one deduces that ϕl(t) can be extended for all t > 0. This
defines ϕl(t) for l ∈ Lin.

Next step is to extend ϕl(t) to the case when l ∈ Lcom, i.e., to the case when
the line is obtained as a result of a collision of two lines belonging to Lin. Following
[KoSo1], Section 10, we introduce a group G which contains all the automorphisms
ϕl(t), and then prove the factorization theorem (see [KoSo1], Theorem 6) which
allows us to define ϕl(0) in the case when l is obtained as a result of a collision of
two lines l1 and l2. Then we extend ϕl(t) analytically for all t > 0 similarly to the
case l ∈ Lin.

More precisely, the construction of G goes such as follows. Let (x0, y0) ∈ R2

be a point, α1, α2 ∈ (Z2)∗ be 1-covectors such that α1 ∧ α2 > 0. Denote by
V = V(x0,y0),α1,α2 the closed angle

{(x, y) ∈ R2|〈αi, (x, y)− (x0, y0)〉 ≥ 0, i = 1, 2 }

Let Oq(V ) be a C((t))-algebra consisting of series f =
∑

n,m∈Z cn,mξ
nηm,

such that ξη = qηξ and cn,m ∈ C((t)) satisfy the condition that for all (x, y) ∈ V
we have:

1. if cn,m �= 0 then 〈(n,m), (x, y)−(x0, y0)〉 ≤ 0, where we identified (n,m) ∈ Z2

with a covector in (T ∗
p Y )Z;

2. log |cn,m|+ nx+my → −∞ as long as |n|+ |m| → +∞.

For an integer covector μ = adx + bdy ∈ (Z2)∗ we denote by Rμ := R(a,b)

the monomial ξaηb. Then R(a,b)R(c,d) = qad−bcR(c,d)R(a,b) = q−bcR(a+c,b+d). We
define a prounipotent group G := G(q, α1, α2, V ) which consists of automorphisms
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of Oq(V ) having the form f �→ egfe−g where

g =
∑

n1,n2≥0,n1+n2>0

cn1,n2R
−n1
α1
R−n2

α2

where cn1,n2 ∈ C((t)) and

log |cn,m| − n1〈α1, (x, y)〉 − n2〈α2, (x, y)〉 ≤ 0 ∀ (x, y) ∈ V.
The latter condition is equivalent to log |cn,m| − 〈n1α1 + n2α2, (x0, y0)〉 ≤ 0. The
assumption |q| = 1 ensures that the product is well defined.

Let us consider automorphisms as above such that in the series for g the
ratio λ = n2/n1 ∈ [0,+∞]Q := Q≥0 ∪ ∞ is fixed. Such automorphism form
a commutative subgroup Gλ := Gλ(q, α1, α2, V ) ⊂ G. There is a natural map∏

λGλ → G, defined as in [KoSo1], Section 10.2. The factorization theorem proved
in the loc. cit states that this map is a bijection of sets.

Example 3.3.1. Let us consider the automorphism, discussed above:

ϕ(ξ, η) = (ξ(1 + η−1), η).

One can check that the transformation ξ �→ ξ(1 + η−1) has the form

exp(Li2,q(η−1)/(q − 1))ξexp(−Li2,q(η−1)/(q − 1)),

where Li2,q(x) is the quantum dilogarithm function (see, e.g., [BR]). It satisfies the
property (x; q)∞ = exp(Li2,q(−x)/(q − 1)), where (a; q)N =

∏
0≤n≤N(1− aqn) for

1 ≤ N ≤ ∞. Using the formula (x; q)∞ =
∑

n≥0
(−1)nqn(n−1)/2xn

(q;q)n
one can show that

limq→1Li2,q(x) = Li2(x) =
∑

n≥1(−1)nxn/n2, which is the ordinary dilogarithm
function (the latter appeared in [KoSo1], Section 10.4 in the reconstruction problem
of rigid analytic K3 surfaces).

Let us now assume that lines l1 and l2 collide at p = fl1(t1) = fl2(t2),
generating the line l ∈ Lcom. Then ϕl(0) is defined with the help of factorization
theorem. More precisely, we set αi := αli(ti), i = 1, 2 and the angle V is the
intersection of certain half-planes Pl1,t1∩Pl2,t2 defined in [KoSo1], Section 10.3. The
half-plane Pl,t is contained in the region of convergence of ϕl(t). By construction,
the elements g0 := ϕl1(t1) and g+∞ := ϕl2(t2) belong respectively to G0 and G+∞.
The we have:

g+∞g0 =
∏

→
(
(gλ)λ∈[0,+∞]Q

)
= g0 . . . g1/2 . . . g1 . . . g+∞.

Each term gλ with 0 < λ = n1/n2 < +∞ corresponds to the newborn line l
with the direction covector n1αl1(t1) + n2αl2(t2). Then we set ϕl(0) := gλ. This
transformation is defined by a series which is convergent in a neighborhood of p,
and using the analytic continuation we obtain ϕl(t) for t > 0, as we said above.
Recall that every line carries an integer 1-form αl = adx + bdy. By construction,
ϕl(t) ∈ Gλ, where λ is the slope of αl.

Having automorphisms ϕl assigned to lines l ∈ L we proceed as in [KoSo1],
Section 11, modifying the sheaf Ocan

q along each line. We denote the resulting
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sheaf by Omod
q . It is isomorphic to the previously constructed sheaf Omod

q in a
neighborhood of the point (0, 0).

Remark 3.3.2. The appearance of the dilogarithm function in the above example
can be illustrated in the picture of collision of two lines (say, (x, 0) and (0, y)
x, y ≥ 0) which leads to the appearance of the new line, which is the diagonal
(x, x), x ≥ 0. Then the factorization theorem gives rise to the five-term identity
g∞g0 = g0g1g∞, which is the quantum version of the famous five-term identity for
the dilogarithm function.

4. p-adic quantum groups

4.1. How to quantize p-adic groups

Let L be a finite algebraic extension of the field Qp of p-adic numbers, and K be
a discretely valued subfield of the field of complex p-adic numbers Cp containing
L. All the fields carry non-archimedean norms, which we will denote simply by
| • | (sometimes we will be more specific, using the notation like |x|K in order to
specify which field we consider). We denote by OL the ring of integers of L and
by mL the maximal ideal of OL. Let G be a locally L-analytic group, which is the
group of L-points of a split reductive algebraic group G over L. Let H ⊂ G be
an open maximal compact subgroup. We would like to define quantum analogs of
the algebras Cla(G,K), Cla(H,K) of locally analytic functions on G and H , as
well as their strong duals Dla(G,K), Dla(H,K), which are the algebras of locally
analytic distributions on G and H respectively (see [SchT1], [Em1]). Modules over
the algebras of locally analytic distributions were used in [SchT1-5], [Em1] for
a description of locally analytic admissible representations of locally L-analytic
groups. Our aim is to derive “quantum” analogs of those results. In this paper we
will discuss definitions of the algebras only.

First of all we are going to define locally analytic functions and locally ana-
lytic distributions on the quantized compact groupH . Let us explain our approach
in the case of the “classical” (i.e., non-quantum) group H . We are going to present
definitions of Cla(H,K) and Dla(H,K) in such a way that they can be generalized
to the case of quantum groups. The difficulty which one needs to overcome is to
define everything using only two Hopf algebras: the universal enveloping algebra
U(g), g = Lie(G) and the algebra K[G] of regular functions on the algebraic group
G. Our construction consists of three steps.

1) For a “sufficiently small” open compact subgroup Hr ⊂ H we define the
algebra Can(Hr,K) of analytic functions on Hr. Here 0 < r ≤ 1 is a param-
eter, such that H1 = H , and if r1 < r2 then Hr1 ⊂ Hr2 . The strong dual
to Can(Hr,K) is denoted by Dan(Hr,K). It is, by definition, the algebra
of analytic distributions on Hr. It can be described (see [Em1], Section 5.2)
as a certain completion of the universal enveloping algebra U(g) of the Lie
algebra g = Lie(G).
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2) For any r ≤ 1 we define a norm on the algebra of regular functions K[G] such
that the completion with respect to this norm is the algebra of continuous
functions C(Hr,K) on the group Hr.

3) In order to define locally analytic functions onH we consider a family of semi-
norms |f |l on K[G], where f ∈ K[G] and l runs through the set Dan(Hr,K).
More precisely, for every l ∈ Dan(Hr,K) we define a seminorm |f |l =
||(id ⊗ l)(δ(f))||, where δ is the coproduct on the Hopf algebra K[G] and
|| • || is the norm defined above on the step 2). The completion of K[G] with
respect to the topology defined by the family of seminorms |• |l is the algebra
Cla(H,K) of locally analytic functions on H defined in [SchT1]. The strong
dual Dla(H,K) := Cla(H,K)′b is the algebra of locally analytic distributions
introduced in [SchT1].

We recall that the locally analytic representation theory of G developed in [SchT1-
6] is based on the notion of coadmissible module over the algebra Dla(H,K),
where H ⊂ G is an open compact subgroup. Therefore, from the point of view of
representation theory, it suffices to quantize Dla(H,K).

4.2. Quantization of “small” compact subgroups

We would like to quantize Dla(H,K) following the above considerations. We will
do that for the class of algebraic quantum groups introduced by Lusztig (see [Lu1],
[Lu2]). Let us fix q ∈ L× such that |q| = 1 (this restriction is not necessary for
algebraic quantization, but it will be important when we discuss convergent series).
We will assume that there is h ∈ OL such that |h| < 1, exp(h) = q. Let G be a
semisimple simply-connected algebraic group over Z, associated with a Cartan
matrix ((aij)) (more precisely, in order to be consistent with the terminology of
[Lu1] we start with a root datum of finite type associated with a Cartan datum,
see [Lu1], Chapter 2. These data give rise to the Cartan matrix in the ordinary
sense). The algebraic group G(C) of C-points of G was quantized by Drinfeld
(see, e.g., [KorSo] Chapters 1,2). We will need a Z-form of the quantized algebraic
group G introduced by Lusztig (see [Lu1]). It allows us to define the quantized
group over an arbitrary field. We need to be more specific when speaking about
“quantized” group. More precisely, following [Lu1] one can define Hopf L-algebras
Uq(gL) and L[G]q, which are the quantized enveloping algebra of the Lie algebra
gL of G(L) and the algebra of regular functions on the algebraic quantum group
G(L) respectively. Extending scalars to K we obtain Hopf K-algebras Uq(gK) =
K ⊗L Uq(gL) and K[G]q = K ⊗L L[G]q. We will also need Z-forms of the above
Hopf algebras, which will be denoted by U := UA and A[G]v respectively. The
latter are Hopf algebras over the ring A = Z[v, v−1], where v is a variable. The
algebras UL and L[G]q are obtained by tensoring of U and A[G]v respectively with
L in such a way that v acts on L by multiplication by q.

As an A-module the algebra U is isomorphic to the tensor product U � U+⊗
U0 ⊗ U− where U± are the quantized Borel subalgebras and U0 is the quantized
Cartan subalgebra (see [Lu2]). Recall that U+ (resp. U−) is an A-algebra generated
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by the divided powers E(N)
i (resp F (N)

i ) of the Chevalley generators Ei (resp. Fi) of
the quantized enveloping Q(v)-algebra U, where 1 ≤ i ≤ n := rank gL (see [Lu2]).
The algebra U0 is generated over A by the generators Ksi

i

(
Ki

ni

)
v
, where

(
Ki

ni

)
v

=∏
1≤m≤ni

Kiv
di(−m+1)−K−1

i vdi(m−1)

vdim−v−dim . Here ni ∈ Z+, si ∈ {0, 1}, and Ki, 1 ≤ i ≤ n
are the standard Chevalley generators of U. The integer numbers di ∈ {1, 2, 3}
satisfy the condition that ((diaij)) is a symmetric positive definite matrix with
aii = 2, and aij ≤ 0 if i �= j. Recall that there is a canonical reduction of UA at
v = 1, which is a Hopf Z-algebra UZ. It is the universal enveloping of the integer
Lie algebra gZ of the corresponding Chevalley group. We will denote by ti ∈ gL the
generators at v = 1 corresponding to Ki, keeping the same notation E(N)

i , F
(N)
i

for the rest of the generators of gZ. Thus we have the standard decompostion
gZ = g+Z ⊕ hZ ⊕ g−Z , where the Lie algebra g+Z is generated (as a Lie algebra over
Z) by E(N)

i , the Lie algebra g−Z is generated by F (N)
i and the commutative Lie

algebra hZ is generated by
(

ti

N

)
:= ti(ti − 1) · · · (ti − N + 1)/N !, 1 ≤ i ≤ n (see

[St], Theorem 2). Lie algebra gL is generated by the standard Chevalley generators
Ei = E(1)

i , Fi = F (1)
i , ti, 1 ≤ i ≤ n. The Hopf algebra U/(v − 1)U is the universal

enveloping algebra U(gL) of gL.
In what follows, while keeping the above notation, we will assume for sim-

plicity that L = Qp.
We will need the following extension of Uq(gL). Let us fix a basis {αi}1≤i≤n

of simple roots of gL, as well as invariant bilinear form on this Lie algebra such
that (αi, αj) = diaij .

Let hOL = ⊕1≤i≤nZpti. We fix a global chart ψ : hOL → T 0, where T 0 =
T(OL) is the maximal compact torus. Then any element a ∈ T 0 can be written as
an analytic function t = ψ(

∑
1≤i≤n xiti) := t(x1, . . . , xn), where xi ∈ Zp. Let us

introduce a unital topological Hopf L-algebra Uan
q (gL) which is a Hopf L-algebra

generated by E(N)
i , F

(N)
i , 1 ≤ i ≤ n,N ≥ 1 and the elements t(x) = t(x1, . . . , xn) ∈

T 0 as above, such that the relations between E(N)
i , F

(N)
i are the same as in Uq(gL),

and t(x)Ei = Eit(x + vi), t(x)Fi = Fit(x − vi), where vi = (a1i, a2i, . . . , ani). The
elements K±1

i = exp(±dih) (recall that exp(h) = q) belong to this algebra and
together with E(N)

i , F
(N)
i , 1 ≤ i ≤ n,N ≥ 1 generate the Hopf algebra isomorphic

to Uq(gL).
There is a natural non-degenerate pairing Uan

q (gL) ⊗ L[G]q → L which ex-
tends the natural non-degenerate pairing UA⊗A[G]v → A defined in [Lu2]. Extend-
ing scalars we obtain the algebra Uan

q (gK) and the pairing Uan
q (gK)⊗K[G]q → K.

For the rest of this subsection we will assume that di = 1, i.e., ((aij)) is
symmetric, and L = Qp. These conditions can be relaxed. We make them in order
to simplify formulas.

There is a natural action Uan
q (gK)⊗K[G]q → K[G]q (right action) given by

the formula l(f) = (id⊗ l)(δ(f)), where l ∈ Uan
q (gK), f ∈ K[G]q and δ : K[G]q →

K[G]q ⊗K[G]q is the coproduct.
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Recall that K[G]q � ⊕ΛmΛV (Λ) which is the sum of irreducible finite-
dimensional highest weight Uq(gK)-modules V (Λ) with multiplicities mΛ. This
is also an isomorphism of Uan

q (gK)-modules. Each element E(N)
i , F

(N)
i acts locally

nilpotently on K[G]q, while each t(x) acts as a semi-simple linear map.
Let R = ⊕1≤i≤nZαi be the set of roots of gZ. We denote by R+ (resp R−)

the set of positive (resp. negative) roots. We will often write α > 0 (resp. α < 0) if
α ∈ R+ (resp. α ∈ R−). Following [KorSo], Chapter 4, or [Lu1], Chapter 3, 41, one
can construct quantum root vectors E(N)

α , F
(N)
α ∈ Uq(gK), α > 0, N ≥ 1, such that

E
(N)
αi = E(N)

i , F
(N)
αi = F (N)

i (in order to keep track of integrality of the coefficients
we are going to use the formulas from [Lu1]). Let us fix a convex linear order on
the set of roots, such that all negative roots preceed all positive roots (convexity
means that α < α + β < β for positive roots and the oppoiste inequalities for
negative roots) .

For every 0 < r ≤ 1 we define Uq(gK)(r) as a K-vector space consisting of
series

ξ =
∑

m∈Zn,α>0,sα,pα≥0

cm,s,pt
m/m!

∏
α>0

F (pα)
α E(sα)

α ,

such that cm,s,p ∈ K, tm/m! = tm1
1 /m1! · · · tmn

n /mn!, |cm,s,p|r−(|s|+|p|+|m|) → 0
as |m| + |s| + |p| → ∞. Here and below m, s, p denote multi-indices. We define
|ξ|r = supm,s,p |cm,s,p|r−(|s|+|p|+|m|). Let tαi(x), 1 ≤ i ≤ n be an ordered basis
of T 0 (see [SchT1], Section 4). Then, as a topological K-vector space (with the
topology defined by the norm | • |r) the space Uq(gK)(r) is isomorphic to the
K-vector space of infinite series

η =
∑

Ni,Mi≥0,li∈Z

bM,N

∏
1≤i≤n

(tαi(x) − 1)liF
(Mi)
i E

(Ni)
i ,

such that M = (Mi), N = (Ni), and |bM,N,l||tαi(x)− 1|rr−(|M|+|N |) → 0 as |M |+
|N |+ |l| → ∞, equipped with the norm defined by

|η|′r = sup
M,N,l

|bM,N,l||tαi(x)− 1|rr−(|M|+|N |).

It is easy to see that Uq(gK)(r) is aK-Banach vector space. It contains Banach vec-
tor subspaces U+

q (gK)(r) (resp. U−
q (gK)(r)) which are closures of vector subspaces

generated by all the elements E(N)
α (resp. F (N)

α ). It also contains an analytic neigh-
borhood of 1 ∈ T 0, which is an analytic group isomorphic to the ball of radius r in
the Lie algebra hOL . The latter is an analytic Lie group via Campbell-Hausdorff
formula. We can always assume that r belongs to the algebraic closure of L, thus
the corresponding analytic groups are in fact affinoid.

Proposition 4.2.1. The norm |ξ|r (equivalently the norm |η|′r) gives rise to a Ba-
nach K-algebra structure on Uq(gK)(r).

Similarly to the case q = 1 (see [Em1], Section 5.2) one can ask whether
the algebra Uq(gK)(r) corresponds to a “good” analytic group. Let us consider
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the completion of the tensor product Uq(gK)(r) ⊗ Uq(gK)(r) with respect to the
minimal Banach norm. Then we have the following result.

Proposition 4.2.2. The Hopf algebra structure on Uan
q (gK) admits a continuous

extension to Uq(gK)(r), making it into a topological Hopf algebra.

Let us consider the topological K-algebra U (1)
q (gK) which is the projective

limit of Uq(gK)(r) for all 0 < r < 1. Then we have the following result, which is a
corollary of the previous proposition.

Proposition 4.2.3. The Hopf algebra structure on Uan
q (gK) admits a continuous

extension to U (1)
q (gK), making it into a topological Hopf algebra.

Since the elements Eα, Fα act locally nilpotently on K[G]q, there is a well-
defined action of Uq(gK)(r) on K[G]q, which extends to the action of U (1)

q (gK)
on K[G]q. Notice that the pairing Uq(gK)(r) ⊗K[G]q → K, (l, f) �→ l(f) is non-
degenerate. In particular we can define the norm on K[G]q by the formula ||f ||r =
supl �=0

|l(f)|
|l|r , l ∈ Uq(gK)(r).

Let now Hr, r = p−N be a “small” compact open subgroup of G. This means
that the exponential map exp : Zd = hZ ⊕ g+Z ⊕ g−Z → G defines an analytic
isomorphism B(0, r) → Hr, where B(0, r) ⊂ Zd

p is the ball consisting of points
(xi, xα, yα) ∈ Zd

p, 1 ≤ i ≤ n, α > 0 such that xα, yα ∈ pNZp, xi ∈ pNZp, for all
α > 0, 1 ≤ i ≤ n.

Definition 4.2.4. The space of analytic functions on the quantum group Hr (notation
Can(Hr ,K)q) is the completion of K[G]q with respect to the norm || • ||r.

Proposition 4.2.5. The space Can(Hr,K)q is a Banach Hopf K-algebra.

Definition 4.2.6. The algebra of analytic distributions on the quantum group Hr

(notation Dan(Hr,K)q) is the strong dual to Can(Hr,K)q.

One can define a norm || • || on K[G]q such that the completion with respect
to this norm is by definition the algebra C(H,K)q of continuous functions on the
open maximal compact subgroup H = H1 (in the case of q = 1 this is a theorem,
not a definition). Then we proceed as follows.

Any linear functional l ∈ Dan(Hr,K)q defines a seminorm | • |l on K[G]q
such that

|f |l = ||(id⊗ l)δ(f)||.
The collection of seminorms | • |l, l ∈ Dan(Hr,K)q gives rise to a locally convex
topology on K[G]q.

Definition 4.2.7. The space Can(H,Hr,K)q of functions on the quantum group H
which are locally analytic with respect to the quantum group Hr is the completion
of K[G]q in the topology defined by the collection of seminorms | • |l.
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Definition 4.2.8.

a) The space Cla(H,K)q of locally analytic functions on the quantum group H
is the inductive limit lim−→r≤1

Oan(H,Hr,K) (i.e., it consists of functions on
quantum group H which are locally analytic with respect to some Hr, r < 1).

b) The space Dla(H,K)q of locally analytic distributions on the quantum group
H is the strong dual to Cla(H,K)q.

Since some details related to the proof of the following results are not finished,
I formulate it as a conjecture.

Conjecture 4.2.9. Both spaces Cla(H,K)q and Dla(H,K)q are topological Hopf
K-algebras. Furthermore, Dla(H,K)q is a Frechét-Stein algebra in the sense of
[SchT1].

In the next subsection we will explain the definition of the norm || • || in the
case of the group SL2(Zp). The general case is similar, but requires more details.
It will be considered in [So2].

4.3. The GL2(Zp)-case
We will use the notation K[GL2(Qp)]q for the algebra of regular K-valued func-
tions on the algebraic quantum group GL2(Qp). It is known (see [KorSo], Chapter
3) that K[GL2(Qp)]q is generated by generators tij , 1 ≤ i, j ≤ 2 subject to the
relations

t11t12 = q−1t12t11, t11t21 = q−1t21t11, (1)
t12t22 = q−1t22t12, t21t22 = q−1t22t21, (2)
t12t21 = t21t12, t11t22 − t22t11 =

(
q−1 − q

)
t12t21, (3)

The element detq = t11t22 − q−1t12t21 generates the center of the above
algebra. As a result, the algebra K[SL2(Qp)]q of regular functions on quantum
group SL2(Qp) is obtained from the above algebra by adding one more equation

t11t22 − q−1t12t21 = 1. (4)
We are going to use the ideas of the representation theory of quantized alge-

bras of functions (see [KorSo]).
Let V be a separable K-Banach vector space. This means that V contains a

dense K-vector subspace spanned by the orthonormal basis em,m ≥ 0 (orthonor-
mal means that ||em|| = 1 for all m). Let us consider the following representations
Vc, c ∈ K of K[GL2(Qp)]q in V (cf. [KorSo], Chapter 4, Section 4.1):

t11(em) = a11(m)em−1, t21(em) = a21(m)em,

t12(em) = a12(m)em, t22(em) = a22(m)em+1,

detq = c.
Here aij(m) ∈ K and em = 0 for m < 0. In particular the line Ke0 is invariant
with respect to the subalgebra A+ generated by t11, t21. Let us assume that not
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all a11(m) are equal to zero. Then it is easy to see from the commutation relations
between tij that

a21(m) = a21(0)q−m, a12(m) = a12(0)q−m,m ≥ 0.

Moreover

a11(m+ 1)a22(m)− a11(m)a22(m− 1) = (q−1 − q)q−2mh0,

where h0 = a21(0)a12(0). Let s(m) = a11(m)a22(m− 1),m ≥ 1. Then we have

s(m+ 1)− s(m) = (q−1 − q)q−2mh0, s(1) = (q−1 − q)h0.
It follows that

s(m) = (q−1 − q)(1 + q−2 + · · ·+ q−2(m−1))h0 = q(q−2m − 1)h0,

for all m ≥ 1. Since the quantum determinant is equal to c, we have

s(m+ 1) = a11(m+ 1)a22(m) = c+ q−2m−1h0.

Comparing two formulas for s(m) we see that

h0 = a21(0)a12(0) = −cq−1.

From now on we will assume that |1− q| < 1.

Then the operators t12 and t21 are bounded. We also have |s(m)| =
|c(q−m − 1)| = |c|,m ≥ 1.

Assume that a21(0) �= 0. Then the above representations (which are alge-
braically irreducible as long as q is not a root of 1) depend on the parame-
ters a21(0), a11(m), a22(m),m ≥ 0 subject to the relations a11(m)a22(m − 1) =
c(1 − q−2m). We will further specify restrictions on these parameters. The idea
is the same as in [KorSo], Chapter 3, where in order to define continuous func-
tions on the quantum group SU(2) we singled out irreducible representations of
C[SL2(C)]q corresponding to the intersection of the group SU(2) with the big
Bruhat cell for SL2(C). This intersection is the union of symplectic leaves of the
Poisson-Lie group SU(2). Kernel of an irreducible representation defines a sym-
plectic leaf (“orbit method”) which explains the relationship of representation
theory and symplectic geometry. Notice that in the case q = 1 one can define the
algebra of continuous function C(SU(2)) in the following way. For any function
f ∈ C[SL2(C)] one takes its restriction to the above-mentioned union of sym-
plectic leaves. Since the latter is dense in SU(2), the completion of the algebra
C[SL2(C)] with respect to the sup-norm taken over all irreducible representations
corresponding to the symplectic leaves is exactly C(SU(2)). Now we observe that
symplectic leaves in SL2(C) are algebraic subvarieties, therefore they exist over
any field. We will use the same formulas in the case of any p-adic field L (in this
section we take L = Qp). In order to specify a symplectic leaf in GL2(C) we need
in addition to fix the value of the determinant (it belongs to the center of the
Poisson algebra C[GL2(C)]).

Let us recall (see [KorSo], Chapter 3) that to every element t, c ∈ K× one
can assign a 1-dimensional representation Wc,t = Qpe0 of K[GL2(L)]q such that
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t11(e0) = te0, t22(e0) = ct−1e0, and the rest of generators act on e0 trivially. Recall
(see [KorSo], Chapter 1) that complex 2-dimensional symplectic leaves of GL2(C)
are algebraic subvarieties Sc,t given by the equations:

t11t22 − t21t12 = c, t12 = t2t21,

where c, t are non-zero complex numbers. We define symplectic leaves over Qp by
the same formulas, taking c, t ∈ Qp. In order to define the norm of the restriction
of a regular function f ∈ C[GL2(Qp)] on GL2(Zp) we can choose a subset in
the set of symplectic leaves Sc,t such that the union of their intersection with
GL2(Zp) is dense in the latter group. It suffices to take those leaves Sc,t for which
|c| ≤ 1, t ∈ Z×

p , and both t12 and t21 are non-zero.
Let us consider infinite-dimensional representation Vc,t as above for which

a12(0) = t2a21(0), |c| ≤ 1 for a fixed i ≥ 0, and a21(0) �= 0. We will also assume
that the norm of the operators corresponding to t11 and t22 is less or equal than
1. It follows from the equality t2a221(0) = −cq−1 that |a21(0)| = |c|, hence the
norm of the operators corresponding to t12 and t21 is less or equal than |c| ≤ 1.
It follows that the norm of the operator πc,t(f) corresponding to an element f ∈
K[GL2(Qp)]q acting in Vc,t is bounded from above as Vc,t run through the set
of irreducible representations with the above restrictions on c, t. In addition, we
are going to consider only those c ∈ K× for which −cq−1 is a square in K. We
define the norm ||f ||GL2(Zp),q, f ∈ K[GL2(Qp)]q as the supremum of norms of the
operators πc,t(f) corresponding an element f in all representations Vc,t as above.
This is the desired sup-norm which we used in our definition of the algebra of
locally analytic functions.
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