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The Reidemeister Number of Any Automorphism of a
Baumslag–Solitar Group is Infinite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

Pentagon Relation for the Quantum Dilogarithm and Quantized Mcyc
0,5 415

Brendan Guilfoyle and Wilhelm Klingenberg
Geodesic Flow on the Normal Congruence of a Minimal Surface . . . . . . . 429

Jaya N. Iyer and Carlos T. Simpson
The Chern Character of a Parabolic Bundle, and a Parabolic
Corollary of Reznikov’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Michael Kapovich
Kleinian Groups in Higher Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Volodymyr Lyubashenko and Oleksandr Manzyuk
A∞-bimodules and Serre A∞-functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

Vitali D. Milman
Geometrization of Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

Masanori Morishita
Milnor Invariants and l-Class Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669

Jean-Pierre Otal
Three Topological Properties of Small Eigenfunctions on Hyperbolic
Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685

Yan Soibelman
Quantum p-adic Spaces and Quantum p-adic Groups . . . . . . . . . . . . . . . . . 697

Mikhail Zaidenberg
Convolution Equations on Lattices: Periodic Solutions
with Values in a Prime Characteristic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 721

Alexander B. Goncharov



Preface

This book is a collection of selected papers on recent trends in the study of various
branches of mathematics. Most of the authors who contributed to this volume
were invited speakers at the International Conference “Geometry and Dynamics
of Groups and Spaces. In Memory of Alexander Reznikov” which was held at the
Max Planck Institute for Mathematics (Bonn), Germany, in September 22–29,
2006.

Alexander (Sasha) Reznikov (1960–2003) was a brilliant mathematician who
died unfortunately very early. This conference in his remembrance focused on
topics Sasha made a contribution to. In particular: hyperbolic, differential and
complex geometry; geometric group theory; three dimensional topology; dynamical
systems.

The list of participants: Belolipetsky Mikhail; Bismut Jean-Michel; Boileau
Michel; Breuillard Emmanuel; Danilenko Alexandre; Delzant Thomas; Deninger
Christopher; Esnault Hélène; Franks John; Gal S.R.; Gunesch Roland; Hai Phung
Ho; Kaimanovich Vadim; Kapovich Michael; Klingenberg Wilhelm; Makar-Limanov
Leonid; Milman Vitali; Morishita M.; Moree Pieter; Navas Andres; Neretin Yuri;
Papazoglu Panagiotis; Parker John R.; Porti Joan; Rosellen Markus; Simpson Car-
los; Swenson Eric L.; Szczepanski A.; Tomanov Georges; Tsygan Boris; Verjovsky
Sola Alberto; Wang Shicheng; Zakrzweski Wojtek.

Talks took place in an informal and constructive atmosphere, and it was a
pleasure to see discussions taking place between groups of participants all over
the Institute and at all times of day. The exceptional quality of the lectures and
the great interest they generated among the conference participants gave us, the
organizers of the conference, the idea of this book. The editors wish to record their
thanks to the staff at the Max-Planck Institute and to the many researchers who
participated for all their efforts in making this such a stimulating experience.

This volume is a collection of papers which aims at reflecting the present state
of the art in a most active area of research at the intersection of several branches
of mathematics. In the volume we include an unpublished manuscript “Analytic
Topology of Groups, Actions, Strings and Varietes” by Sasha (this article is posted,
essentially, in the form it appeared as the ArXive preprint math.DG/0001135 in
January of 2000; the referee corrected obvious typos, updated and added few
references, and made several comments in the form of footnotes and italicized
remarks) and some short speeches/recollections about Sasha.
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Topics discussed in the book include analytic topology of groups, actions,
strings and varieties, category theory, homological algebra, the quantum dilog-
arithm, Chow groups, parabolic bundles, quantum spaces over non-archimedean
fields, Nori’s fundamental group scheme, Baumslag-Solitar groups, finitely gen-
erated branch groups, Serre’s property (FA), hypoelliptic equations, Hodge the-
ory, index theory and related fixed point theorems, determinants and determinant
bundles, analytic torsion, Kleinian groups, hyperbolic manifolds, geometric func-
tional analysis, Chern character and cyclic homology, Milnor invariants and l-class
groups, geodesic flow, operads, algebras, inner cohomomorphisms, symmetry and
deformations in noncommutative geometry, Chebyshev-Dickson polynomials, con-
volution operators, lattices, discrete harmonic functions, ergodic transformations
and rank-one actions, hyperbolic surfaces, eigenfunctions, non-Archimedean met-
ric spaces.

The articles collected in this volume should be of interest to specialists in
such areas of mathematics as algebra, dynamical systems, geometry, group theory,
functional analysis, number theory, probability theory and topology. The broad
spectrum of topics covered should also present an exciting opportunity for graduate
students and young researchers working in any of these areas who are willing to
put their research in a wider mathematical perspective.



Alexander (Sasha) Reznikov (1960–2003)
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Alexander (Sasha) Reznikov was born in Kiev (Ukraine, former USSR) on
January 14, 1960. From a very early age he was fascinated with mathematics.
It took him only 8 years (instead of the usual 10 years) to finish the primary
and secondary schools. In 1975 (the last year of the secondary school), Sasha
won the second prize at the International Mathematical Olympiad. Because of
this, according to the former Soviet rules he got the right to be admitted as a
student to any University of the Soviet Union without the entrance exams. For
this reason, he, luckily, was able to avoid the enormous obstacles faced by other
Jewish students who tried to enter prestigious Soviet universities during the 1970s
and 1980s.1 Sasha was admitted to Kiev State University at the age of 15 and was
a brilliant student during his years at the University. He successfully participated
in the student mathematical life and started to do research early on. Despite his
success, the fact that he was a Jew effectively barred him from graduate programs
and jobs at research institutes. Sasha got a job at a state planning institution
which had nothing to do with mathematics. Outside of his working hours there,
he visited the Kiev Institute of Mathematics and worked on his PhD thesis under
the supervision of Myroslav Gorbachuk. Around that time he became interested in
Jewish history and joined a small group studying the history of the state of Israel.
Very soon, the Soviet secret service discovered this activity and reported Sasha to
his employer. He was forced to quit his job and to leave Kiev. Sasha started to travel
the country. He worked in Lithuania, Tajikistan and other remote regions, doing
mostly manual work, unable to continue his research in mathematics. Fortunately,
the times were changing and starting from 1988 Soviet Jews were again allowed
to emigrate. Sasha emigrated to Israel in 1989 and already a year later completed
his PhD thesis at the Tel Aviv University under the supervision of Vitali Milman.
After spending a year as a postdoc at ICTP in Trieste, he became a lecturer at
the Hebrew University in Jerusalem. He remained there until he took a chair in
Durham in 1997. Sasha Reznikov, Professor of Pure Mathematics at the University
of Durham, died on 5 September 2003, at the age of 43.

We will now describe briefly the most important mathematical contributions
of Sasha Reznikov. He started as a classical Riemannian geometer and one of
his most impressive results is a proof of the so-called weak Blaschke conjecture
[Re19]. A compact Riemannian manifold is called a Blaschke manifold if the length
of the maximal geodesic segment α starting at any point p, is independent of p
and α. The problem is whether the only possible Blaschke manifolds are spheres
and projective spaces over the reals, complex numbers, quaternions and Cayley
numbers, equipped with their canonical metrics. Sasha proved that all Blaschke
manifolds have the same volume as the spheres or projective spaces on which they
are modelled.

Sasha Reznikov’s most influential work is his proof of Spencer Bloch’s conjec-
ture on representations of the fundamental group of an algebraic variety. The proof

1This situation is described in the book by M. Shifman “You Failed Your Math Test, Comrade
Einstein: Adventures and Misadventures of Young Mathematicians”.
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is a remarkable combination of arithmetic and analytic methods. Sasha proved that
for any smooth complex projective variety, and any representation of its funda-
mental group into SL(2,C), the second Chern class in the Deligne cohomology
of the associated holomorphic bundle is torsion [Re14]. More generally, he later
showed that for all flat bundles on a smooth projective variety, all Chern classes
in the Deligne cohomology, except the first one, are torsion [Re17]. These are out-
standing results which opened new directions of the research in this field. C. Soulé
gave a talk at the Bourbaki Séminaire devoted to this theorem of Reznikov, [So].

For these results Sasha Reznikov was awarded a sectional talk at the Euro-
pean Congress of Mathematics in Barcelona in 2000 [Re2].

In the middle of 1990s he became interested in the geometry and topology
of 3-manifolds and geometric group theory. He attempted to prove the famous
Haken–Waldhausen–Thurston conjecture that any irreducible 3-manifold with in-
finite fundamental group has a finite covering with positive first Betti number (such
3-manifolds are called virtually Haken)2. During these years, he wrote a series of
important papers [Re4], [Re5], [Re6], [Re7] and [Re9]. In [Re9] he proved several
restrictions on manifolds which are not virtually Haken. In particular, it follows
from Reznikov’s theorem that if the manifold M is hyperbolic and is not virtually
Haken, then for every prime number p there exists a finite covering N →M such
that rank H1(N,Fp) ≥ 4. In the paper [Re4] he discussed similarities between
the 3-manifold topology and the theory of number fields. These are illustrated
by several interesting examples concerning Heegaard splittings of 3-manifolds. In
[Re8] Sasha developed an analogy between the symplectomorphism groups and
linear groups; he proved in particular that the inclusion of the compact Lie group
PSU(n+ 1) into the symplectomorphism group of the complex projective n-space
is injective on the rational homology.

The final work of Sasha Reznikov “Analytic topology of groups, actions,
strings and varieties” was written in 2000 and remained unpublished since then.
It contains many important ideas and results, in particular it was instrumental in
study of the property T (Kazhdan property) of groups of diffeomorphisms of the
circle S1. We are very glad that this paper is included in our Proceedings and we
thank the referee for his careful reading of the paper and many useful remarks and
corrections. We keep the referee’s comments in the form of footnotes and italicized
remarks.

Sasha Reznikov wrote 34 mathematical papers. Most of them are written
in a very short period during the 1990s. Their mathematical scope is enormous;
the results of Sasha Reznikov belong to several different areas of mathematics:
Riemannian and symplectic geometry, 3-dimensional topology, geometric group
theory, algebraic geometry and dynamical systems. This diversity of Sasha’s re-
search interests is reflected by the variety of topics covered by the articles which
appear in these Proceedings of the Conference dedicated to the memory of Sasha
Reznikov. The Conference was held at the Max-Planck Institute of Mathematics

2This problem remains open.
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in Bonn in 2006 from September 22 until September 29 as a satellite conference
to the annual meeting of the German Mathematical Society which in 2006 took
place in the period September 18–September 22 at the University of Bonn.

We are deeply thankful to Sasha’s mother, Ida Reznikova, for providing us
with the details of his biography which we used in the introduction of the volume.

Many thanks are due to all contributors, especially to Michael Kapovich and
Boris Tsygan for their contributions and help with the preparation of the volume.
We are very grateful to Birkhäuser for publishing this volume in the “Progress in
Mathematics” series.

Mikhail Kapranov, Yale
Sergiy Kolyada, Kiev
Yuri Manin, Bonn/

Northwestern
Pieter Moree, Bonn
Leonid Potyagailo, Lille
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[Re3] Reznikov, A. Knotted totally geodesic submanifolds in positively curved spheres,
Mat. Fiz. Anal. Geom. 7 (2000), no. 4, 458–463.

[Re4] Reznikov, A. Embedded incompressible surfaces and homology of ramified cov-
erings of three-manifolds, Selecta Math. (N.S.) 6 (2000), no. 1, 1–39.

[Re5] Regulators in analysis, geometry and number theory, Edited by Alexander
Reznikov and Norbert Schappacher. Progress in Mathematics, 171. Birkhäuser
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Short Recollections about Sasha

Ida Reznikova – (Sasha’s mother)

Sasha was born in Kiev on 14 January 1960. He was a quiet child, and seemed
similar in his development to our other children. He was bored in elementary
school, and the teacher advised us to let him skip a grade. In the sixth grade he
again became bored, and the mathematics teacher insisted that he skips grade
again, so he went to the eight grade of the mathematical school N 145.

He was so fascinated with mathematics that he was invited to the Interna-
tional Mathematical Olympiad in the last, 10th grade. The Soviet team shared
with the US one the third and fourth prizes, while Sasha personally was awarded
the second prize. He wanted to enter the Moscow University. He had the right to
be admitted, as the winner of the Olympiad. But since he was only 15 when he
graduated from the high school, he went to the Kiev University, as we lived in Kiev.

After attending all the lectures once, Sasha realized that he has nothing to
gain by going to the lectures, as he knew the material. He regretted very much
that he did not enroll in Moscow University, which he could have done without
entrance exams but missed the chance. Sasha remained in Kiev.

After graduating summa cum laude, he could not find a job in any research
institution, although he was a star at the university. The Dean told us right away
that “people such as Sasha” (i.e., Jews) will not be admitted to any research
institution, so Sasha got a job in a state planning establishment which had nothing
to do with mathematics.

. . . After a while he met a woman with background in humanities. He learned
that she wants to emigrate to Israel, but he had no plans to emigrate himself, and
neither did anyone in our family at that time. What he did not know was that she
was followed by the KGB, because she insisted on her right to emigrate.

The KGB reported Sasha to his employer, that he keeps company of “unde-
sirable” people. They wanted to use Sasha to uncover and punish all the people
involved, so they put pressure on the administration of his institute. The adminis-
tration organized a staff meeting with public criticism of Sasha’s lifestyle. Among
other things, he was accused of wearing jeans all the time. Jeans were considered
an expensive bourgeois excess, it is hard to believe this now, but it was for real.
Sasha’s father was a retired Army officer (32 years of service), he had a sizable
military pension while still working in his retirement, and I worked as well. So
we could afford to buy our children expensive items. Anyway, Sasha was expelled
from the Komsomol (Young Communist League). The local newspaper published
a very negative article about Sasha. The situation at work became intolerable and
he wanted to leave his job. They summoned his father, put him to shame for rais-
ing “such a son”. All the service that Sasha did to the university, his excellence
at the olympiads were ignored. The year before he was admitted to the Institute
of Mathematics for graduate study, and the people there treated him well and
wanted him to continue his studies. They were decent people who understood that
he was picked at for no reason.
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In August 1985 Sasha packed his things and left, without telling us where.
He wrote me a letter with no return address, saying that he leaves, that he can
stand up for himself and support himself if necessary.

His absence dragged on, we started a search, and when we located him, Misha,
his brother, came to see him with hope of influencing him somehow. But Sasha
did not return home, he worked at a meteorological station for a pittance. He was
afraid to look for a better job knowing that his expulsion from the Komsomol
would come out. He found a place in a small town in Lithuania. Misha said that
Sasha looks OK, he is fine, does not want to return and does not want any visitors.

In the Fall of 1986 I decided to come see Sasha, although I did not know the
address. Misha was strongly opposed to the idea. I knew only that Sasha lives in
Turmantas (Lithuania). Not knowing how would I find him there, I did not take
many things with me, and also did not take a lot of money or food. But Turmantas
was a small village and I easily found Sasha there. He looked good, one could tell
he spent a lot of time outdoors, I was glad to see that. But the hut where he lived,
was truly horrible, it had an outhouse in the backyard. His trousers were ragged,
I was walking around the hut thinking what to bring next time.

He received me well, told me about his life. I was in a good mood seeing my
son so tall and handsome, with bright shining eyes.

In a couple of days, Borya (our eldest son) took a couple of days off work
and went to see him with a full suitcase of necessities and a considerable sum of
money, but he did not find Sasha. Borya was told that Sasha quit his job and left
for an unknown destination. We could not imagine where could he be and how to
find him. Someone suggested to contact the police, which I was reluctant to do so
as not to get Sasha in more trouble. But there was no other option.

The police helped us, and in 1987 I learned that Sasha was in Dushanbe
(Tajikistan). This was in summer. Misha who flew in to see him, had to keep all
money and things and fly back. After this, Sasha went into hiding again. I did not
believe that and flew to Dushanbe the next week with the hope to find him there,
but he left already. I spoke with his former coworkers, they spoke with high regards
of him, regretted that he left. In fact, he was offered graduate study in the area
of agriculture which was related to his job. Whatever he started, he succeeded.
Everyone was so fond of him, and I cried when I saw his apartment.

We decided not to bother him for a while, but I could not stand being in
the dark for long. I started searching for him again and learned that he is in
Tselinograd (Kazakhstan), has a decent job, although still far from his beloved
mathematics. I flew to see him some time in 1988. I realized that his only choice
for normal life is to leave the USSR where he was forever branded as a “renegade”.

At that time several people began to emigrate, using invitations from Israel.
Sasha went to Israel in 1989, as he felt that a mathematician should do creative
work while he is still young, without wasting any time. This was the beginning of
a very happy period of our life. Sasha resumed contact with us, was calling home.
I decided that it would be better if we went to Israel as well since Sasha is there,
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wants us to be in his life, this was pure happiness. We emigrated with my husband
to Israel in December 1990.

Sergiy Kolyada

For the first time I met Sasha in 1974. I remember that day. We both took part
in one of the mathematical competitions (“mathematical battles”) which were at
that time so popular among high school and university students in Kiev as well as
in many other cities of the former Soviet Union.

In this picture you can see Sasha who congratulates Kostya Rybasov, the
captain of our winning team of Ukrainian physical-mathematical boarding high
school at the Kiev State University. Here, close to Sasha, you can see Borya Tsygan.
So, from that time we were close friends with Sasha.

By the way, in those years at the Ukrainian high schools there were many
students devoted to mathematics. Later many of them became outstanding math-
ematicians. Apart from Borya Tsygan and Kostya Rybasov already mentioned let
me add at least the names of Sasha Blokh and Mikhail Lyubich from those, who
were of the same age as we. Sasha Goncharov, another friend of Sasha Reznikov,
was one year younger.

After we finished our high school studies in 1975, Sasha, Borya Tsygan,
Kostya Rybasov, me and some others became students of the Kiev State Uni-
versity, while Lyubich and Blokh chose the Kharkov State University.

I will not speak on the life of Sasha during the Soviet era. Let me only add
that, for several reasons, at that time it was not easy for students of the Kiev
State University to work seriously in mathematics, although there were of course
many good mathematicians in Kiev. Being students, we were trying to participate
in good scientific seminars, for instance in the seminar of Sergei Samborski at
the Kiev Polytechnic Institute. I think we were second year students when Sasha
wrote his first paper (on inequalities in triangles). I remember it very well, since
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Sasha asked me to read his paper and tell him my opinion before submitting it to
the journal “In the world of Mathematics”. Though Sasha was in fact two years
younger than other students in our group, he always was the life and soul of the
group. He was an extraordinary person.

After graduation from the university, Sasha was a PhD student at the In-
stitute of Mathematics of the Ukrainian Academy of Sciences (a correspondence
post-graduate study). Formally, his supervisor was Prof. Myroslav Gorbachuk,
but he also had very close scientific contacts with Prof. Georgii Kats, Prof. Aleksei
Pogorelov and his group in Kharkov. Sasha often used to give lectures at scientific
seminars in Kharkov.

Unfortunately, that time a tragic event entered his life and this badly in-
fluenced all the rest of his life. Since in those years I was not in a contact with
him, I learnt about this matter too late. . . This is briefly described in his mother’s
recollection above.

Having left Kiev, Sasha interrupted contacts with all of us. The reason was
that he was afraid that we could have problems with the KGB because of him. In
1991 he sent me a letter from Trieste. To illustrate the situation, let me say that
the letter was not sent by post but was brought me by a Chinese mathematician
and the letter was put into three (!) envelopes.

From that time on, until his death we had been exchanging letters with Sasha
regularly. Unfortunately, since 1985 I could not meet him personally any more, but
I heard Sasha was very active, making a name for himself in mathematics, talking
to many mathematicians.

I believe that the conference and the volume in memory of Sasha Reznikov
will significantly contribute to the development of Mathematics.

Boris Tsygan

I knew Sasha since sixth or seven grade. We went to different schools and lived
in different parts of Kiev but we met at mathematical competitions. We went to
two Ukrainian Olympiads together as members of the Kiev team. I remember that
the mathematical battle that is described in this preface ended for us in a police
station. We were detained for playing cards in one of the parks for which the city
was famous. That particular park, or rather a forest resembling Bois de Boulogne,
was on the grounds of the Exhibition of Advanced Experience. I cannot recall the
policies or the logic behind the detention, but it seems that minors playing cards
were frowned upon. To recall a touching sign of the times, our cards were made
of perfocards that we used in our computer science program at school. In 1975 we
entered the same class of the Kiev University. That Sasha did not go to Moscow
was a disappointment for him but a blessing for me.

Sasha was my first mentor in advanced mathematics but he was to me much
more. He was the first real mathematical talent that I met. More generally, he
was the first person in my life with a talent to create intangible beautiful things
from the inside of his head. To meet such a person early in one’s life one has to
be lucky, especially if one lives outside of a few great cities. I was duly impressed.
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Sasha was always aiming high, both mathematically and otherwise. Back then,
when I read biographies of famous mathematicians, I noticed qualities and traits
that I recognized in Sasha (I still do). I also remember thinking that perhaps the
most interesting thing I will ever write will be memoirs about him.

We had a group of several undergraduates studying math. Sasha was an un-
disputed leader. He would go to Moscow, then come back and tell us what he
learned there from discussions with prominent mathematicians, in particular with
Joseph Bernstein. We were also reading and discussing books. Our studies tended
towards representation theory and geometry of manifolds, both ignored in the
undergraduate University curriculum at Kiev at the time. When we started the
second or third year, S.N. Samborsky and Yu.L. Daletsky at the Polytechnical
Institute organized a learning seminar on geometry and topology of manifolds.
We started by studying the book Analysis on Complex Manifolds, by Wells, and
Langs SL2(R). I was entranced (for Sasha, I think, all this was interesting but not
that new). Later we attended special topics courses and seminars by Yu.A. Drozd
at the University and A.N. Tolpygo at the Polytechnical, or later at A.N.’s place.
The topics were algebraic geometry, algebraic groups, Lie groups, etc. Looking
back, I can compare these to graduate courses and graduate seminars at the best
universities in the world. This was due partly to brilliant teaching and partly to
Sasha’s stellar presence. After the meetings we had long walks discussing poetry,
history, and mathematics.

It was with Sasha that I went to my first conference, or rather to a Summer
school in Kazan, Tatarstan. To make it in time, one of Sasha’s exams had to
be taken two days earlier. This was theoretical mechanics. Yu.L. Daletsky noted
that the professor was his classmate, and phoned her from his office. She was
friendly and nice and told us to come to take the exam early. When we came
and the exam started, suddenly we were subjected to a frontal assault that I had
experienced only once before or since, at my entrance exams at Moscow. After a
brutal examination, we are told that we failed but we are more than welcome to
come again when we learn the subject. Those long June days in Kiev, when we
were sitting in Shevchenko Park opposite the University and discussing classical
mechanics with Sasha, are among my best memories. We tried again, and failed.
(Sasha: “But Arnold writes. . . ” Professor: “Go to Arnold and ask him to pass
you”). Then came the day of my (not Sasha’s) regular exam. I come, enter the
classroom, get under yet another frontal assault, and exit with yet another failing
grade. Everybody is shocked, both me and my classmates who have never seen me
fail a test. One of them can’t believe that this happened, and asks me to swear by
crossing myself. Dazed and confused, I oblige her, and get a strong public rebuke
from Sasha: how can you, a Jew. . . One has to understand the atmosphere back
then, in 1977, to appreciate the audacity of this (not that the sign of the Cross
was wildly popular with the authorities). Two days later we come to the exam
with Sasha’s group, get a friendly and charming treatment and good grades, and
leave for Kazan two days after the Summer school started.
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When it was the time to graduate, we were told by head of the chair of
Analysis that he called all the places that asked for “young specialists” and only
one was willing to take a Jew. All other options were at high schools. He was sorry
and really did not know what to do. This left Sasha and me in a difficult situation.
Working at a place that had nothing to do with mathematics was a common thing
for many, especially for Jews; arrangements would be made for the person to have
enough time for research. The teaching load at high school did not allow this. I
recall that there was no shadow of ill will between us. The situation was resolved
when we arranged for me to work at the computing center of the factory where
my father worked. My position was proudly called mathematician, the salary was
slightly better than average, the supervisor was a PhD in functional analysis. I did
have to show up and to work there but I got some time for research and was quite
happy.

Sasha went to the place for which we were supposed to compete. Two years
later I entered the graduate school at Moscow University. Sasha’s life took a diffi-
cult turn. We did meet from time to time when he was still in Kiev. When he left,
we lost contact for years.

We resumed contact when he was in Israel and I at Penn State. In the Spring
of 1994 I visited him in Jerusalem. Apart from always exciting mathematical dis-
cussions, we talked about many other things, like in our youth. This was another
first for me: for the first time in my life I had a conversation with an Israeli. I
remember a calm, informed, nuanced, and intelligent view of the country’s situa-
tion, a sort of talk that I heard sometimes since then from Israelis and not so often
from others.

Mathematical conversations with Sasha were always a joy to me. For full
disclosure, I do remember a conversation in which mathematical arguments were
mixed with (my) threats of violence, but we were fourteen or fifteen at the time.
In more mature age, there could be an abrasive word now and then, but my
general recollection is of high intellectual charge, generosity, and a sense of high
purpose. A compliment from him was not frequent and meant a lot. Often he would
listen to your question or your plan of action, think hard, make a few interesting
remarks, and then quietly ask: but, in reality, does anyone care? This would help
me concentrate my mind on more important things.

Yan Soibelman

My recollections about Sasha are sparse. I recall meeting him for the first time
in Kiev, around 1980, at the seminar of Yuri Daletsky. At that time I was a
graduate student at the University of Rostov and returned to my relatives in Kiev
for vacations (perhaps, it was winter). Sasha gave an “educational” talk about
G-structures. I recall his attempt to visualize the latter notion on the blackboard,
and then asking the audience: “What is it?”. The suggested (by him) answer was
“a military unit”. “But in fact”, said Sasha, “it is a G-structure”.

At that time I was interested in papers by Krichever, Novikov and others on
non-linear integrable systems. I was surprised to see how enthusiastically Sasha
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responded to my questions, since, in my opinion, nobody in Kiev was interested
in such things. Later I realized that it was his typical reaction to any new and
interesting mathematics.

I found him a very pleasant person, but he explained me that it was all due
to his interest in the famous book of Dale Carnegie. “A few years ago I was a
completely different person”, he told me.

We had more time for discussions four (?) years later, when I returned to Kiev
as a fresh PhD, and quickly realized that my Jewish origin made it impossible to
find a job there. Sasha was not much lucky for the same reason. He got an obscure
job in Kiev. I recall visiting him there once. It was a typical agency, with a lot of
people in one room, a lot of noise, and an almost visible atmosphere of “killing” the
working time. Sasha’s work there had hardly any relation to serious mathematics.
Nevertheless he was still very optimistic about his future.

Perhaps during that period (it lasted 1.5 year) we went together to Vinnica,
the town of my childhood. In fact we joined a group of teachers from the school,
where my mother taught Russian literature. I still have a few photos from that trip.
I recall Sasha’s attempt to find a synagogue in Vinnica. Since nobody knew where
it was, he started to ask people in the street. Only a person who lived in USSR at
the beginning of 80’s can imagine how pedestrians reacted to that question.
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Two years later I returned to Rostov-on-Don, where friends found a job for
me at the university. Very soon I heard about Sasha’s problems with the KGB
in Kiev. He was looking for a place to escape from Kiev. I spoke to my former
scientific advisor, Igor Simonenko (without telling him all the details which I did
not know myself at the time), and he agreed to take Sasha as a graduate student.
Perhaps, things got worse in Kiev, since very soon Sasha asked me about a “not-
so-visible” position, e.g., a meteorologist at a station. Me and my wife Tanya tried
to find such a position at her agricultural institute in the Rostov region, but at
the time when we succeeded, Sasha left Kiev and went into hiding. First time I
was sending him letters to Latvia, but then he changed the place, and I lost him
for several years until we met in Bonn in 1993.

Jean-Michel Bismut

Je crois bien que c’est lors de l’une de mes premières rencontres avec Sasha qu’au
hasard d’une ballade dans le Quartier Latin, nous sommes allés voir un film de
Jean Renoir, ‘Le déjeûner sur l’herbe’. Je l’avais certes mis en garde sur le fait que
sans le secours de sous-titres, il risquait de s’ennuyer. J’ai le souvenir que dans les
éclats de rire des spectateurs qui ponctuaient la projection d’une œuvre poétique
et grinçante, se détachait, clair, le rire de Sasha. A la sortie, alors que je ne cachais
pas ma perplexité, il devait me dire qu’il avait apprécié chaque minute de ce film.

Venu un soir chez nous, alors qu’il était à peine entré et qu’il avait fait
connaissance de l’un de mes fils âgé de six ou huit ans, je ne sais plus, nous
entend̂ımes le bruit d’une cavalcade effrénée. Avec mon fils, et sans le secours des
mots, il avait improvisé un jeu de poursuite et de guerre, où mon fils avait enfin
trouvé à qui parler. Ayant souvent vu passer des mathématiciens, et croyant savoir
à qui ils avaient à faire d’ordinaire, mes enfants devaient souvent évoquer entre
eux le passage singulier de Sasha Reznikov.

Nous étions allés au Théâtre du Châtelet, à une représentation de ‘Fidelio’
par le Staatsoper de Berlin, dans une mise en scène qui devait, pour une fois,
être à la hauteur des espérances qu’on pouvait y mettre. Au dernier acte, dans
le balcon où nous nous trouvions, les portes s’étaient brusquement ouvertes, et
nous avions été bousculés par des personnages gigantesques, choristes introduits
au dernier moment parmi les spectateurs, entonnant le chœur final. Bouleversés,
nous achevâmes la soirée dans un bistro, où j’ai encore le souvenir de nos rires
mêlés.

Ce séminaire de Sasha à Orsay me revient aussi en mémoire. Il devait y
annoncer la preuve de la conjecture d’hyperbolisation. La veille, tard le soir, il
m’avait appelé pour me dire qu’un trou avait été trouvé dans la preuve. Je lui
avais proposé d’annuler le séminaire, ce qu’il avait refusé. Crânement, il avait fait
face. Ou quelques semaines avant, lorsqu’il expliquait sa preuve, à Jerusalem, dans
un contexte d’extrême tension, devant un auditoire souvent perplexe.

Et puis plus rien.
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An English translation:
If I remember correctly, it was during one of my first meetings with Sasha that
while strolling around the Latin Quarter, we decided to watch a movie by Jean
Renoir, ‘Le déjeûner sur l’herbe’. I had warned him that without the help of
subtitles, he would simply be bored. I vividly remember that among the bursts of
laughter coming from the audience watching this poetic and ironic movie, I could
also hear the unique laugh of Sasha. At the exit, while I was somewhat perplexed
by the movie, Sasha told me that he had enjoyed every minute of it.

One evening he came over to our place. He had just entered the apartment
and met one of my sons, who was six or eight years old, I am no longer sure,
we suddenly heard the noise of a frantic cavalcade. Without words, he and my
son had invented a game of chase and war, in which my son had finally found a
suitable partner. Having previously met mathematicians at home, and convinced
they knew what to expect, my children would often remember their surprising
meeting with Sasha Reznikov.

On another occasion, we had all gone to the Théâtre du Châtelet, to see
‘Fidelio’ by the Berlin Staatsoper, in a production which, for once, was at the
level that one might expect. During the final act, in our balcony, the back doors
opened suddenly, and we were pushed aside by gigantic characters, singers who
had been introduced into the audience to sing the final choir. Still in shock, we
completed the evening in a ‘bistro’ nearby, and I remember the common bursts of
laughter.

The seminar by Sasha at Orsay also comes back to my mind. He was to
announce the proof of the hyperbolisation conjecture. The day before, late in the
evening, he called to say a gap had been found in the proof. I hinted he could
cancel the seminar, which he bluntly refused. Or a few weeks earlier in Jerusalem,
when he was explaining the proof to a somewhat skeptical audience, at a time of
extreme tension outside.

And then nothing more.
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c© 2007 Birkhäuser Verlag Basel/Switzerland

Sipping Tea with Sasha

Pieter Moree

Dedicated to the memory of Alexander Reznikov

Abstract. In this non-mathematical note I describe how my one joint paper
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papers.
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1. Summer tea in 1996

One of my favorite moments in my mathematical career occurred when I met Sasha
Reznikov for the very first time. It was in the summer of 1996 and at that time the
arrival of new visitors at MPIM was not that frequent, so that often I would make
a chat with a new visitor. In this case the visitor was Sasha. I asked him what area
of mathematics he was working in. He did not like my attempt to pin him down
to a particular field of mathematics and told me that he considered himself not to
belong to any mathematical field in special, rather he considered himself to be an
amateur over a broad range of topics. The subsequent discussion, however, made
clear that mathematically I seemed to be very far removed from his mathematical
interests. The usual reaction from somebody mathematically quite removed from
me on hearing about my number theoretical interests would be disinterest. So I
got accustomed to anticipating on this, by just mumbling one sentence and then
changing topic. So I mumbled to Sasha that I was working on something called
the Artin primitive root conjecture and was about to change topic in the next
sentence. However, his reaction could not have been more different than what my
prejudices suggested: he was immediately extremely enthousiastic:

‘that is PRECISELY what I need !!’
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Sasha was close to making a lot of progress on a conjecture of Lubotzky and
Shalev. They had made the following conjecture:

Conjecture 1. LetM be a hyperbolic three-manifold. Let f(d) denote the number of
subgroups of index d in π1(M). Then, for all d sufficiently large, f(d) > exp(C1d),
where C1 > 0 is a constant that depends at most on M .

Modulo a number theoretic ingredient, Sasha [8] could prove: suppose the
three-manifold M is a rational homology sphere, then there exist α,C2 > 0 such
that for infinitely many d we have f(d) > exp(Cdα).

In order to complete his proof he needed a variation of the following celebrated
result of Heath-Brown regarding Artin’s primitive root conjecture [3].

Theorem 1. Let q, r and s be three distinct primes. Then at least one of them is a
primitive root for infinitely many primes.

Namely:

Theorem 2. Let q, r, s be three distinct primes each congruent to 3(mod 4). Then
for at least one of them, say q, there are infinitely many primes p such that q is a
primitive root modulo p and p ≡ ±1(mod q).

Recall that Artin’s primitive conjecture (1927) states that if g is not equal
to −1 or a square, then there should be infinitely many primes p such that g
is a primitive root modulo p. Thus the above theorems go some way towards
establishing this conjecture. (For an elementary introduction to this material, see,
e.g., Moree [4] or Ram Murty [6].)

The restriction 3(mod 4) on the three primes is quite essential. If l ≡ 1(mod 4),
then l is not a primitive root modulo p for any prime p ≡ ±1(mod l): by quadratic
reciprocity one has (p

l ) = ( l
p ) and since (p

l ) = (±1
l ) = 1, it follows that ( l

p ) = 1
and therefore, l(p−1)/2 ≡ 1(mod p), and so l is not a primitive root modulo p.

It was the last condition on p in Theorem 2 that was crucial to Sasha’s
proof. I quickly realized that the latter result can be obtained by making some
minor modifications in Heath-Brown’s proof. Two days after our tea discussion I
phoned Sasha and informed him that I had solved his problem. His enthusiasm
was boundless and he repeatedly told me that I had saved him about a half year
of work (since his experience with number theory was not that large, he said he
would need a lot of time to study the literature, etc.).

Unfortunately, the original Artin’s primitive root conjecture can be presently
only proved assuming the Generalized Riemann Hypothesis (GRH) and so I was
quite happy that what Sasha needed could be proved unconditionally. A result of
the form ‘Conjecture 1 is true assuming GRH’ would certainly have been a bit
comical!

Soon I had written down several pages of material, more or less equalling
the number of pages Sasha had written. To me it looked odd to have an appendix
about as large as the main text of the paper and so I proposed to Sasha to coauthor
the paper, but with the alphabetical order reversed so as to suggest my minor
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contribution to the paper. This is what Sasha agreed on and in this way we could
write a more homogeneous paper.

Sasha’s paper is closely related to his paper [7] where the analogy of covers
of three-manifolds and class field theory plays a big role (an analogy that was
apparently first noticed by B. Mazur). Sasha and Mikhail Kapranov (at the time
also at the institute) were both very interested in this analogy. Eventually, in
August 1996, Kapranov and Reznikov both lectured on this (and I explained in
about 10 minutes my contribution to Reznikov’s proof). I was pleased to learn
sometime ago that this lecture series even made it into the literature, see Morishita
[5]. Meanwhile several further authors studied the analogy in further detail: Nguyen
Quang Do, Sikora and Waldspurger, for example.

After the paper was finished, Sasha submitted it to a top mathematical jour-
nal. Much later, the editor informed us that he had not been able to get a referee
report and could understand our frustration and would not be insulted if we wanted
to publish our paper somewhere else. Ironically, with MathSciNet the paper suf-
fered a similar fate: it does not have a reviewer. (Since H.-W. Henn with whom I
discussed Sasha’s contribution to the paper told me he was impressed by the range
of techniques used by Sasha, I was not completely surprised by this outcome.)

Meanwhile S.-T. Yau, whom Sasha had sent a preprint, had written Sasha
that he wanted to publish the paper (provided all the other editors approved it) in
the journal he had recently founded: the Asian Journal of Mathematics, This is the
reason why the paper eventually ended up in the Asian Journal of Mathematics.
The referee of this journal described Sasha’s proof as ‘ingenious’.

2. Summer tea in 1997

About a year later, in the summer of 1997, I met Sasha again during tea time.
Whilst I was happily eating cookies he asked me without much ado whether I
knew how the drilling machines of dentists looked like in the old days. (Somehow
I immediately lost my appetite for further cookies. . . ) I told him I knew: of lots
of arms that can move in all directions. So if one has arms of length α1, . . . , αm,
then the vertical lengths the dentists arms can make form a subset of the positive
values amongst ±α1±α2±· · ·±αm. He then told me and Amnon Besser, who also
was present, that considerations in work he was doing with Luca Migliorini (then
also at the Max-Planck) on the cobordism theory of the moduli space of polygons
suggested the following to be true: Let m ≥ 3. Let α = (α1, α2, . . . , αm) ∈ Rm

>0

and suppose that there is no ε ∈ {±1}m satisfying 〈ε, α〉 = 0 (inner product is
zero). Let 1 ≤ i < j ≤ m. Let αi,j ∈ Rm−2

>0 be the vector obtained from α on
deleting αi and αj . Let

Si,j(α) := {ε ∈ {±1}m−2 : |αi − αj | <
〈
ε, αi,j

〉
< αi + αj}.

Then Sasha suggested that the cardinality of Si,j should be independent of the
choice of i and j. This claim seemed very implausible to Amnon and me and
so we immediately set out to disprove it. Indeed, the claim turns out to be false.
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However, this suggestion coming from somebody as mathematically gifted as Sasha
gave me the impression that perhaps there was a ‘twisted version’ of his proposed
variant that really would be invariant. We then considered the quantity defined
by Ni,j(α) =

∑
ε∈Si,j(α)

∏m−2
k=1 εk. We showed that in case m is odd, this quantity

is indeed independent of i and j. Moreover, (−1)#S(i,j) is independent of i and
j (this also holds for even m). In [1] Amnon and I gave three proofs for this, all
in principle accessible to talented high school students. We were proud of the fact
that our submitted version of the paper did not contain any reference whatsoever.
Unfortunately the referee insisted that a reference to Gradshtyn and Ryzhik be
included for the easy integral

1
2π

∫ 2π

0

cot(
x

2
) sin(βx) = sgn(β),

with β an integer. So this is how the paper ended up having one reference. . .
In Gijswijt and Moree [2] (a paper dedicated to the memory of Sasha) we

prove a simple combinatorial principle which has the main result of [1] has a
corollary. Several other examples of the combinatorial principle are given.

I am fully aware that the mathematical importance of the two papers de-
scribed in this section is far less than that of the first section, but I had comparable
fun in working on them and in both cases the initial discussion over tea with Sasha
is still engraved in my memory.

3. Outside tea time

A few times I had contact with Sasha outside the institute. Also in these situations
his originality shone through. Once the discussion, over dinner, was about the
importance of making the right choice for a PhD subject. According to Sasha this
was highly comparable with marrying the right wife. After all, one has to live at
least for four years with a PhD topic, so it better be suitable. Moreover, just as
one should avoid the temptation to marry a woman because she is rich and drives
around in a flashy yellow Lamborghini, one should avoid the temptation to go for
a PhD subject just because it is a popular/fashionable/hot topic at the time. The
basic point is that, in the first place, one should love his PhD topic.

It was always my impression (but based on a modest amount of time spent
together) that Sasha’s ideal was to be a mathematical butterfly who with ease
went from mathematician to mathematician to exchange ideas and carry out cross
fertilisation and who did not want be (mathematically) confined in any sense and
did his best to a ‘one-of-a-kind’ mathematician. On some moments I observed him
when he was working alone he made the impression that behind this lightness
projected to the outside world there was a much deeper, serious and very hard-
working side to him.

In any case, to me, being much more of ‘flower type of mathematician’ than
‘butterfly type’, Sasha was and in my memory will always be the butterfly that
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during two brief summers came along and made my ‘flowery’ existence more rosy
and fruitful.
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Analytic Topology of Groups, Actions,
Strings and Varieties
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Abstract. This paper is devoted to applications of Analysis to Topology. The
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Introduction

This paper is devoted to applications of Analysis to Topology. The latter is very
broadly understood and includes geometric theory of finitely generated groups,
group cohomology, Kazhdan groups, actions of groups on manifolds, superrigidity,
fundamental groups of Kähler and quaternionic Kähler manifolds and conformal
field theory. The motivation and philosophy which led to the present research will
be reflected upon in [107] and here we will merely say that we believe Analysis to
be a major tool in studying finitely generated groups. An alternative viewpoint is
provided by the arithmetic methods, notably by passing to the pro-p completion
and using Galois cohomology. This will be described in [108].

Each of the six chapters which constitute this paper opens with a short
overview. Below we describe the overall structure of the paper. Chapters 1 and 3
treat analytical aspects of geometry of finitely generated groups. Given an immer-
sion M ↪→ N of negatively curved manifolds (M is compact), there is a bound-
ary map ∂M̃ → ∂Ñ , and it has remarkable regularity properties. Invoking the
Thurston’s theory, we show that the actions A of pseudo-Anosov homeomorphisms
onW 1/p

p (S1)/const have striking properties from the viewpoint of functional anal-
ysis, namely, ∑

n∈Z

‖Anv‖p <∞

for some v �= 0. We apply this to the classical problem: when a surface fibration is
negatively curved and derive a strong necessary condition.

We then develop a theory of quantization for the mapping class group. The
classical work on Diff∞(S1) suggests a two-step quantization: First, obtaining
a symplectic representation in Sp(W 1/2

2 (S1)/const) with image in the restricted
symplectic group [98] and then using the Shale-Weil representation. The first step
meets obstacles and the second step breaks down completely for the mapping class
group: First, because Mapg,1 does not act smoothly on S1, so it is unclear why
it can be represented in Sp(W 1/2

2 (S1)/const). Second, even if it can be so rep-
resented (this happens to be the case), there is no way to show that the image
lies in the restricted symplectic group (it almost certainly does not). The solution
comes at the price of abandoning the classical scheme and developing a theory of
a new object which we call bicohomology spaces Hp,g. The mapping class group
Mapg acts on Hp,g and the latter shows some remarkable properties, like dual-
ity and existence of vacuum. The last property is translated into the fact that
H1(Mapg,1,W

1/p
p (S1)/const) is not zero. Finally, we find Mapg-equivariant maps

of the space of all discrete representations of the surface group into PSL2(C) to
our spaces Hp,g.

Chapter 2 uses Analysis to study groups acting on the circle (we need Diff1,α

regularity, so Mapg,1 is not included). Our first main theorem says roughly that
Kazhdan groups do not act on the circle. Very special cases of this result, for
lattices in Lie groups, were recently proved (see the references in Chapter 2). The
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Hilbert transform, which played a major role in Chapter 1, is crucial for the proof
of this result as well. We then develop a theory of higher characteristic classes for
subgroups of Diff1,α (the first being classically known as the integrated Godbillon-
Vey class). All these classes vanish on Diff∞(S1). It is safe to say that the less is
smoothness, the more interesting is the geometry “of the circle”.

Chapter 3 brings us back to the asymptotic geometry of finitely generated
groups. We propose, for a non-Kazhdan group, to study the asymptotic behavior
of unitary cocycles. We prove a general convexity result which shows that an
embedding of G in the Hilbert space, given by a unitary cocycle, is “uniform”.
We then prove a growth estimate for unitary cocycles of a surface group, using
very heavy machinery from complex analysis, adjusted to our situation. A similar
result for cocycles in H1(G, lp(G)) is proven in Chapter 1.

Chapter 4 studies the groups of symplectomorphisms. There is a mysterious
similarity between groups acting on the circle and groups acting symplectically
on a compact symplectic manifold. In parallel with the above-mentioned result in
Chapter 2 we show, roughly, that transformations of a Kazhdan group acting on
a symplectic manifold must satisfy a partial differential equation. An example is
Sp(2n,Z) acting linearly on T 2n and, very probably, Mapg acting on the space of
stable bundles over a Riemann surface. (I don’t know for sure if Mapg is Kazhdan.)1

In the dimension 2, the result is very easy and was known before. We also
introduce new characteristic classes for the symplectomorphism groups, in addition
to the two series of classes defined in our previous papers, and use them to express
a volume of a negatively curved manifold through the Busemann functions on the
universal cover.

Chapter 5 studies volume-preserving actions. We introduce a new technique
into the subject, that of (infinite-dimensional, non-positively curved) spaces of
metrics. We define a invariant of an action which is the infimum of the displacement
in the space of metrics and show that for the action of a Kazhdan group which
does not fix a logL2-metric, this invariant is positive (a weak version of this result
for the special case of lattices was known before). We then turn to a major open
problem, that of non-linear superrigidity and prove what seems to be first serious
breakthrough after many years of effort.

Chapter 6 deals with fundamental groups of Kähler and quaternionic Kähler
manifolds. The situation is exactly the opposite to the studied in Chapters 2
and 4, namely, these groups tend to be Kazhdan. We first extend our rationality
theorem for secondary classes of flat bundles over projective varieties to the case
of quasiprojective varieties, answering a question posed to us by P. Deligne. We
then prove that a fundamental group of a compact quaternionic Kähler manifold
is Kazhdan, therefore providing a very strong restriction on its topology. We also

1The group Map1 is not Kazhdan since it is virtually free. The group Map2 is not Kazhdan since
it is commensurable to the mapping class group of the 6 times punctured sphere and, hence,
virtually maps onto a free group. J. Andersen recently proved that Mapg is not Kazhdan for all

g, see [4].
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discuss polynomial growth of the group cohomology classes for Kähler groups,
proved nontrivial in a previous paper.

The paper uses many different analytic techniques. Within each chapter,
there is a certain coherence in the point of view adopted for study.

I started this project on a chilly evening of November, 1998 in an African
café in Leipzig and finished it on a hot afternoon of July, 1999 in Jerusalem. The
manuscript was written up by August, 11, 1999; I would appreciate any mention-
ing of a possible overlap with any paper/preprint which appeared before this date.
During the long time when the paper was being typed and then polished, I found
a proof of several statements which were conjectured in the paper. In particular, I
constructed a cocycle, with values in W 1/p

p (S1)/const, for the group of quasisym-
metric homeomorphisms, which was conjectured in Chapter 1. The proofs will
appear in a sequel to this paper.

Editor’s notes. This paper is published, essentially, in the form it appeared as
the ArXive preprint math.DG/0001135 in January of 2000. We corrected obvious
typos, updated and added few references, and made several comments in the form
of footnotes and italicized remarks.

1. Analytic topology of negatively curved manifolds, quantum
strings and mapping class groups

Chapter 1 opens with observations concerning the cohomology H1(G, l∞(G)) of a
finitely-generated group. If G is amenable we produce plenty of polynomial coho-
mology classes in H∗(G,R) given by an explicit formula (Theorem 1.3). Then we
prove a nonvanishing Theorem 1.4 saying that if there are Euclidean-type quasi-
geodesics in the Cayley graph of G, then G/[G,G] is infinite.2

We then review some standard facts about lp-cohomology in Sections 1.2–
1.4. One defines an asymptotic invariant of a finitely generated group G, called
the constant of coarse structure α(G), as the infimum of p, 1 ≤ p ≤ ∞, such that
H1(G, lp(G)) �= 0. For all nonelementary discrete groups of motions of complete
manifolds of pinched negative curvature, α(G) < ∞. For discrete subgroups G of
SO+(1, n), α(G) ≤ δ(G), where δ is the critical exponent of the group. In Section
1.4 we review function spaces. A classical result in weighted Sobolev spaces may be
reformulated as an identification of the lp-cohomology of cocompact real hyperbolic
lattices:

H1(G, lp(G)) =W (n−1)/p
p (Sn−1)/const.

It follows that α(G) = n− 1.
In Section 1.5 we prove the first result in the program to classify groups

according to the cocycle growth. For surface groups we show that, if

LgF − F ∈ lp(G), ∀g ∈ G,

2Provided that G is amenable.
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then
|F(g)| ≤ const · [length(g)]1/p′

, ∀p′ > p.
Here F : G→ R is any function (Theorem 1.14). This result, no doubt, generalizes
to higher-dimensional cocompact lattices in simple Lie groups of rank one.

In Section 1.6 we present a new theory for boundary maps of negatively
curved spaces, associated with immersions of closed manifolds. The most striking
is a partial regularity result (Theorem 1.16, part 4).

As is well known, the group of quasisymmetric (n = 2) or quasiconformal

(n ≥ 3) homeomorphisms of Sn−1 acts onW
n−1

p
p (Sn−1) for p > n−1. The action of

G1 onW 1/2
2 (S1)/const is in fact symplectic. We give application to the regularity of

quasisymmetric homeomorphisms (Theorem 1.27). In Corollary 1.29 we prove that
the unitary representation of a discrete subgroup G of SO(1, 2) inW 1/2

2 (S1)/const
is the same for all groups in the Teichmüller space T(G).

In Theorem 1.31 we establish some striking properties of invertible operators
A in the Banach spaces W 1/p

p (S1)/const, p > 2, induced by pseudo-Anosov maps
in Mapg,1, namely ∑

k∈Z

‖Akv‖p <∞

for some 0 �= v. In Theorem 1.33 we find a new inequality in topological Arakelov
theory, based on the work of [76]. In Theorem 1.34 we find very strong restrictions
on subgroups G ⊂Mapg, such that induced group extension G̃:

1 → π1(Σg)→ G̃→ G→ 1

is the fundamental group of a negatively curved compact manifold (this is a clas-
sical problem). In Section 1.10 we extend the theory to the limit case p = 1,
introducing an L1-analogue of Zygmund spaces, which we call Lk,α.

In Section 1.11 we start a new theory of secondary quantization of Teichmüller
spaces. We introduce the bicohomology spaces Hg,p and show that Mapg acts on
these spaces. We show (difficult!) that H2,p is an infinite-dimensional Hilbert space
and there is a symmetric bilinear nondegenerate form of signature (∞,m) which
is Mapg-invariant. What is the value of m, we don’t know at the time of writing
(August, 1999). So does the secondary quantization lead to ghosts? We provide
a holomorphic realization in the space of L2-holomorphic 2-forms on H2 ×H2/G

and H2 ×H2/G (Theorem 1.52). In Section 1.12 we interpret Hp,g as operator
spaces (Proposition 1.54), and prove the existence of vacuum (Theorem 1.57). We
prove that H1(Mapg,1,W

1/p
p (S1)/const) �= 0 for p ≥ 2. It still may be true that

Mapg,1 is Kazhdan, because the action is not orthogonal.
In Section 1.13 we construct Mapg-equivariant maps of the space of discrete

representations of the surface group into SO+(1, 3) = PSL2(C) to our spaces Hp,g

(Theorem 1.59). In Theorem 1.60 we summarize our knowledge of the functional-
analytic structure coming from hyperbolic 3-manifolds which fiber over the circle.
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1.1. Metric cohomology

1.1.1. Let G be a finitely generated group. Let K = R,C. Let V be a locally convex
topological K-vector space which is a G-module, that is, there is a homomorphism
G→ Aut(V ). If {gi, i = 1, . . . , n} is a finite generating set of G, then the evaluation
map f �→ {f(gi)} establishes an injective map Z1(G, V )→ ∏n

i=1 V of the space of
(inhomogeneous) 1-cocycles of G in V . One calls the induced topology on Z1(G, V )
the cocycle topology; it does not depend on the choice of generators. The image of
the coboundary map V → Z1(G, V ) is not necessarily closed. Let B1(G, V ) denote
its closure; the quotient Z1(G, V )/B1(G, V ) is called the reduced first cohomology
space. One way to produce nontrivial cohomology classes is to consider limits
of sequences of coboundaries, that is, nontrivial elements of B1(G, V )/B1(G, V ).
That amounts to considering nets {vα ∈ V } such that givα − vα → l(gi) for
i = 1, . . . , n.3

If V is a Banach space and G acts isometrically without invariant vectors,
then B1(G, V ) is closed in Z1(G, V ) if and only if there are no almost invariant
vectors, that is, sequences vj , ‖vj‖ = 1, such that ‖gi(vj) − vj‖ → 0 for all i =
1, . . . , n. This statement is an immediate consequence of the Banach theorem and
is called Guichardet’s lemma [48]. So if there are almost invariant vectors, then
H1(G, V ) �= 0, though the reduced cohomology H1

red(G, V ) may be zero.
If V is Banach and G acts isometrically, let l ∈ Z1(G, V ) be a cocycle. Then

‖l(g)‖ ≤ n
max
i=1

‖l(gi)‖ · length(g),

where length(g) is the length of the element g in the word metric induced by
{gi}. The proof is immediate by induction, using the cocycle equation l(gh) =
gl(h) + l(g).

Now let Vj , j = 1, . . . ,m be a collection of Banach spaces on which G acts
isometrically and let ϕ : ⊗m

j=1V → K be a continuous map in a sense that

ϕ(⊗m
j=1vj) ≤ const ·

m∏
j=1

‖vj‖.

Let lj ∈ Z1(G, Vj) and let l ∈ Zm(G,K) be the cup product l(g1, . . . , gm) =
ϕ(⊗m

j=1lj(gj)).

Lemma 1.1. l ∈ Zm(G,K) has polynomial growth, more precisely,

|l(g1, . . . , gm)| ≤ const ·
m∏

i=1

length(gi).

Proof. The proof is immediate from the remarks made above. �
A general definition of polynomial cohomology is to be found in [24]. As we

will see, Lemma 1.1 is a very powerful tool for constructing cocycles of polynomial
growth in concrete situations.

3Here l(gi) is the evaluation of the limiting cocycle l.
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Proposition 1.2. G be an infinite finitely generated group. Consider the left action
of G on l∞(G). Then H1(G, l∞(G)) �= 0. Moreover, H1(G, l∞0 (G)) �= 0.

Proof. Let {gi} be a finite set of generators of G, and let length(g) be the word
length of the element g. Define a right-invariant word metric by ρ(x, y) =
length(xy−1). Let x0 ∈ G and let F (x) = ρ(x0, x). Obviously, F is unbounded.
Now let l(g) = LgF − F where Lg is a left action on functions, that is, l(g)(x) =
F (g−1x)− F (x). We find

|l(g)(x)| = |ρ(x0, g−1x) − ρ(x0, x)| ≤ |ρ(g−1x, x)| = ρ(g−1, 1).

So l is a cocycle of G in l∞(G). If it were trivial, we would have a bounded function
f such that LgF−F = Lgf−f that is, F−f would be invariant, therefore constant,
a contradiction. The second statement of the proposition will be proved later, in
Section 1.3. �

1.1.2. Now let G be amenable. In this case we have a continuous map

ϕ :
m∏

j=1

l∞(G) → K

given by (f1, . . . , fm) �→
∫

G
f1 · · · fm. By the integral we mean the left-invariant

normalized mean of bounded functions. We obtain

Theorem 1.3. Let G be a finitely generated amenable group, let ρj , j = 1, . . . ,m be
a collection of right-invariant word metrics on G. Fix x0 ∈ G. Then the formula

l(g1, . . . , gm) =
∫

G

m∏
j=1

[ρj(x0, g−1
j x)− ρj(x0, x)]

defines a real-valued m-cocycle on G of polynomial growth:

|l(g1, . . . , gm)| ≤ const ·
m∏

j=1

length(gj)

for any word length length(·).

Examples. Let G = Z. If we choose the generators {−1, 1}, then length(g) = |g|
(the absolute value of the integer) and

ρ(x0, g−1x)− ρ(x0, x) = |x0 − x+ g| − |x0 − x| → ±|g|
as x→ ±∞ and ∫

Z

(|x0 − x+ g| − |x0 − x|) = 0.

However, if we choose the generators {−1, 2}, then

length(g) =

⎧⎨⎩
|g|, g ≤ 0
g
2 , g ≥ 0 and even

g+1
2 , g ≥ 0 and odd.
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Then
length(x0 + g − x)− length(x0 − x)

will have limits g
2 when x→ −∞ and −g when x→∞; hence∫

Z

[length(x0 + g − x)− length(x0 − x)] = −g
4
.

So we obtain a cocycle l : Z → R given by g �→ − g
4 . Now, if G = Zk, k ≥ 2, let

ρj , j = 1, . . . , k be the word metrics defined by the sets of generators

{e±1
1 , e

±1
2 , . . . , e

−1
j , e

2
j , e

±1
j+1, . . . , e

±1
k }

where es is the generator of the sth factor. If 1 ≤ j1 < j2 < · · · < jm ≤ k is a set
of indices, then Theorem 1.3 provides a cocycle

l(g1, . . . , gm) =
∫

Zk

m∏
r=1

[ρjr (x0, g−1
j x)− ρjr (x0, x)].

If πi : Zk → Z is the projection to the ith factor, then

l(g1, . . . , gm) = (−1
4
)m ·

m∏
r=1

πjr (gr).

It follows that classes of cocycles, given by Theorem 1.3, generate the real coho-
mology space of Zk.

Remark. IfG is amenable, ρ is a right-invariant word metric and for some x0, g ∈ G,∫
G

[ρ(x0, g−1x)− ρ(x0, x)] �= 0,

then H1(G,R) �= 0 and in fact gs /∈ [G,G] for all s �= 0. This is a direct corollary
of Theorem 1.3. A more interesting structure theorem is given below.

Theorem 1.4. Let G be a finitely generated amenable group, ρ a right-invariant
word metric. For g ∈ G assume the following convexity condition: there is some
C > 0, such that for any x ∈ G there exists N ≥ 0 such that ρ(gk, g−1x) −
ρ(gk, x) ≥ C for k ≥ N . Then H1(G,R) �= 0 and, moreover, gs /∈ [G,G] for all
s �= 0.

Remark. The functions

f(x) := ρ(x0, g−1x) − ρ(x0, x)
considered above, are quasi-morphisms, i.e., maps

G→ R

such that there exists a constant K so that

|f(xy)− f(x)− f(y)| ≤ K
for all x, y ∈ G. The same averaging procedure as above shows that every quasi-
morphism f of an amenable group G is within finite distance from a homomor-
phism f∗ : G→ R. Compare [59, 91].
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Corollary 1.5. Let G be the Heisenberg group

〈x, y, z|[x, y] = z, [x, z] = [y, z] = 1〉.
Then for any right-invariant word metric ρ, there exists a ∈ G such that

lim inf
k→∞

[ρ(zk, z−1a)− ρ(zk, a)] ≤ 0.

Proof of the corollary. Since z ∈ [G,G], the result follows from Theorem 1.4. In-
deed, G is nilpotent and, therefore, amenable. �

Proof of the theorem. Consider the 1-cocycle

l(γ)(x) = ρ(x0, γ−1x) − ρ(x0, x),
l ∈ Z1(G, l∞(G)). Set x0 = gn; thus

ln(g)(x) = ρ(gn, g−1x)− ρ(gn, x).
If for any x and sufficiently big n, ρ(gn, g−1x)− ρ(gn, x) > C, then the pointwise
limit limn→∞ ln(g)(x) exists and is ≥ C. Since |ln(z)(x)| ≤ ρ(z−1, 1), there is
a subsequence nk such that lnk

(z) converges pointwise for any z to a bounded
function l(z). One sees immediately that l : G→ l∞(G) is a cocycle, so z �→

∫
G
l(z)

is a homomorphism from G to R. Since l(g)(x) ≥ C > 0 for all x,
∫

G
l(g) ≥ C > 0,

so H1(G,R) �= 0 and gs /∈ [G,G], as desired. �

1.1.3. Let ϕ : R+ → R+ be a smooth function such that

lim
x→∞

ϕ(x) = ∞, lim
x→∞

ϕ′(x) = 0.

Let G be a finitely generated group and let ρ be a right-invariant word metric on
G. Consider F (x) = ϕ(ρ(x0, x)), where x0 ∈ G is a fixed element. Since

|(LgF − F )(x)| = |F (g−1x)− F (x)|
= |ϕ(ρ(x0, g−1x)) − ϕ(ρ(x0, x))|
≤ supt∈I |ϕ′(t)| · |ρ(g−1x, x)|
≤ supt∈I |ϕ′(t)|ρ(g−1, 1)

where
I = [min(ρ(x0, x), ρ(x0, g−1x)),max(ρ(x0, x), ρ(x0, g−1x))],

we see that LgF − F ∈ l∞0 . Therefore H1(G, l∞0 (G)) �= 0, because the cocycle
LgF − F cannot be trivial as a cocycle valued in l∞0 (by the same reasons as in
the proof of the first statement of Proposition 1.2). The proof of Proposition 1.2
is now complete. �

Notice that, since ρ(u, v) = length(u · v−1),

ρ(x0, x)− length(g) ≤ ρ(x0, g−1x) ≤ ρ(x0, x) + length(g),

so that
|(LgF − F )(x)| ≤ sup

|t−ρ(x0,x)|≤length(g)

|ϕ′(t)| × ρ(g−1, 1).
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Remark. Let S(N) = {g|length(g) = N}. If

lim
N→∞

S(N)/S(N − 1) = 1 and lim
N→∞

N∑
k=1

S(k)/S(N) = ∞,

then for p > 1 there is a radial function F (x) = ϕ(ρ(x)) such that LgF−F ∈ lp(G)
and the cocycle l : G→ lp(G) defined by g �→ LgF − F is not a coboundary. Note
that G is automatically amenable. On the other hand, if S(N) ∼ ecN , then such
radial function does not exist. This follows at once from the Hardy’s inequality.
To produce classes in H1(G, lp(G)), one needs to use some more elaborate geom-
etry than just distance function. In the next section we produce such classes for
negatively curved groups/manifolds, using the visibility angles.

1.2. Constants of coarse structure for negatively curved groups

1.2.1. Throughout this section we assume that G is a finitely generated, non-
amenable group, therefore B1(G, lp(G)) is closed in Z1(G, lp(G)) for p ≥ 1.4

Definition 1.6. The number

α(G) = inf
1≤p≤∞

{p|H1(G, lp(G)) �= 0}

is called the constant of coarse structure of G.

Remark. The definition makes sense since, by Proposition 1.2, we have

H1(G, l∞(G)) �= 0.

We will need a proof of the following well-known fact (see, for example [94]). The
argument below is a slightly modified, from the nonpositive curvature to negative
curvature, version of a classical argument of [81, 82].

Proposition 1.7. LetMn be a complete Riemannian manifold of negative curvature,
whose fundamental group G does not have a fixed point at infinity, and satisfying
K(M) ≤ −1,Ric(M) ≥ −(n− 1)K. Then α(G) ≤ (n− 1)

√
K.

Proof. Let q0 ∈ M̃ . Consider the map of G onto an orbit O of q0 : g �→ gq0; it is
equivariant with respect to the left action of G on itself. Let q /∈ O, s ∈ M̃ and
let vq(s) be the outward pointing vector from q to s, that is, the unit vector in
TsM̃ , tangent to the geodesic segment connecting q and s. For x ∈ G, consider
F (x) = vq(xq0). Note that F (x) takes values in Txq0M̃ . We can consider the
restriction of TM̃ to O as an equivariant vector bundle over O. Pulling back to
G, we obtain an left-equivariant vector bundle over G, equipped with an invariant
Euclidean structure. Then F is a section of this bundle. Now consider (LgF−F )(x).
Since the action of G on sections is given by LgF (x) = g∗F (g−1x), where g∗ is the
derivative map (g∗ : TsM̃ → TgsM̃), we get

(LgF −F )(x) = g∗F (g−1x)−F (x) = g∗vq(g−1xq0)−vq(xq0) = vgq(xq0)−vq(xq0).
4See [49] and [16].
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Hence

‖(LgF − F )(x)‖ = |2 sin
1
2
�(gq, xq0, q)| ≤ �(gq, xq0, q).

Let E|G be the equivariant Euclidean vector bundle considered above (the
pullback of G of TM̃ |O). Let Lp(E) be the Banach space of Lp-sections of E. We
claim that LgF − F ∈ Lp(E) for p > (n − 1)

√
K. Let r(x) = distM̃ (q0, xq0). For

g, q0, q fixed we have
�(gq, xq0, q) ≤ const1 · e−r(x)

by the standard angle comparison theorem, since K(M) ≤ −1. On the other hand,
for fixed δ > 0,

#(x|r − δ ≤ r(x) ≤ r + δ) ≤ const2e(n−1)
√

Kr

by the Bishop’s theorem. Therefore LgF − F ∈ Lp(E) for p > (n − 1)
√
K. Note

we only need that G acts discretely in M̃ .
The map l : G→ Lp(E) defined by l(g) = LgF − F is obviously a cocycle. If

it were trivial, we would have an Lp-section s ∈ Lp(E), such that F−s is invariant.
This means that

g∗(vq(g−1xq0)− s(g−1x)) = vq(xq0)− s(x),
or

vgq(xq0)− g∗s(g−1x) = vq(xq0)− s(x).
Note that since ‖F (x)‖ = 1, F − s is invariant and ‖s(g)‖ → 0 as length(g) →∞,
‖(F − s)(x)‖ = 1 for all x. In particular, w = vq(xq0)− s(x) has norm one. Fix x
and let g vary. We get

‖vgq(xq0)− w‖ = ‖g∗s(g−1x)‖ → 0

as length(g)→∞. Let P+, P− be the attractive and repelling fixed points of g on
the sphere at infinity of M̃ .

Let w+, w− be unit vectors in Txq0(M̃), tangent to geodesic rays, connecting
xq0 to P+, P−. Then

lim
|n|→∞

‖vgnq(xq0)− w±‖ → 0.

It follows that w± = w. Therefore all elements of G are parabolic and, hence, have
a common fixed point at infinity, which is a contradiction. So H1(G, lp(E)) �= 0.
However, lp(E) is equivariantly isometric to lP (G)⊗ Tp0(M̃). Thus

H1(G, lp(E)) � H1(G, lp(G)) ⊗ Tp0(M̃).

We deduce that H1(G, lp(G)) �= 0. �

The estimate of the proposition is sharp. We will see later that if G is a
cocompact lattice in SO+(1, n), i.e., K(M) = −1, then α(G) is exactly n − 1.
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Now, let G be a discrete nonamenable subgroup of SO+(1, n), or, equivalently,
K(M) = −1. Recall that the critical exponent δ(G) is defined by

δ(G) = inf{λ|
∑
g∈G

e−λr(g) <∞}

where r(g) = dist
M̃

(p0, gp0) for some fixed p0 ∈ M̃ . By a well-known theorem [90],
δ(G) is equal to the Hausdorff dimension of the conical limit set dim(Λc(G)) ⊂
Sn−1. Note that if G is geometrically finite and Λ(G) �= Sn−1, then dim Λ(G) <
n− 1 by [116] and [123]. We now have

Proposition 1.8. Let G be a discrete subgroup of SO+(1, n), without a fixed point
at infinity. Then α(G) ≤ δ(G).

Proof. The proposition follows from the proof of Proposition 1.7. Indeed, we only
need that

∑
g∈G e

−pr(g) <∞ to conclude that one has a cocycle l : G→ lp(G). It
has been proven already that this cocycle is not a coboundary. �
Remark. The relation of the constant of coarse structure to the “conformal dimen-
sion at infinity” is discussed in [95].

Remark. We refer the reader to [16] for a proof of a version of Proposition 1.8 in
the context of group actions on CAT (−1) spaces.

1.3. Function spaces: an overview

For s ≥ 0, the integer and fractional part of s are denoted [s] and{s} respectively.
The Sobolev-Slobodec̆ky space W s

p (Rn), (p > 1) consists of measurable locally
integrable functions f on Rn such that Dαf ∈ Lp(Rn) for |α| ≤ [s] and∑

|α|=[s]

∫∫ |Dαf(x)−Dαf(y)|p
|x− y|n+{s}p

dxdy <∞.

The space of Bessel potentials Hs
p consists of functions f for which the Liouville-

type operator
Dsf = ((1 + |ξ|2)s/2f̂(ξ))∧

satisfies Dsf ∈ Lp. Warning: Hs
p �= W s

p if s is not an integer. For p = 2 the
condition is equivalent to

(1 +�)s/2f̂ ∈ L2(Rn).

Here f(x) → f̂(ξ) is the Fourier transform and � = −∑
∂2

∂x2
i
.

The space of BMO functions BMO(Rn) is defined as the space of functions
f for which

sup
Q

1
|Q|

∫
Q

|f(x)− fQ| dx <∞,

where Q runs over all cubes in Rn and

fQ =
1
|Q|

∫
Q

f(x) dx,
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|Q| =
∫

Q
1 dx. One has Wn/p

p ⊂ BMO for all 1 < p < ∞, and, moreover,

H
n/p
p ⊂ Hn/p1

p1 for 1 < p < p1 < ∞ (this follows from Theorem 2.7.1 of [120]). In
some sense, BMO is the limit of Hn/p

p as p→∞.
If f ∈ W 1

p , the restrictions of f to the hyperplanes {xn = ε} ⊂ Rn (where
(x1, . . . , xn) are Euclidean coordinates) have both Lp and nontangential5 limits
a.e. on Rn−1 = {x|xn = 0}, and the limit function f |Rn−1 , called the trace of f ,
satisfies

f |Rn−1 ∈ W 1−1/p
p .

By the nontangential limit we mean the following. Let y ∈ Rn−1, δ > 0 and let Cδ

be a Stolz cone centered at y, that is, the set

{(z, xn)|xn ≥ δ · |z − y|}.
Then a function f defined in Rn

+ = {xn > 0} has the nontangential limit f(y) at
y if

f(x) →
x→y
x∈Cδ

f(y)

for all δ. Note that the points in Cδ are within a bounded distance from any
geodesic of the hyperbolic metric ∑n

i=1 dx
2
i

x2n
,

which has y as a point at infinity. The trace theorem mentioned above may be found
in [120], Section 2.7.2. Notice that functions in W 1

2 (R2) have traces in W 1/2
2 (R1).

Now let Ω ⊂ Rn be a bounded domain with a smooth boundary. We define
W s

p (Ω) as the space of locally integrable functions with Dαf ∈ Lp for |α| ≤ s and
such that ∑

|α|=[s]

∫∫ |Dαf(x)−Dαf(y)|p
|x− y|n+{s}p

<∞.

Equivalently, W s
p (Ω) is a space of restrictions of function from W s

p (Rn) to Ω. See
[120, Chapter 3]. One also defines Hs

p(Ω) as the space of restrictions of Hs
p(Rn)

on Ω. For a compact smooth manifold M without boundary (in particular, for the
boundary ∂Ω) one easily defines the spaces W s

p (M) and Hs
p(M) [120, Chapter 3]

(Hs
p is F s

p,2 in Triebel’s notations).
IfM is compact and g a Riemannian metric onM , let �g be the correspond-

ing Laplace–Beltrami operator. One can construct the space of Bessel potentials
(1 +�)−s/2(Lp(M)). It is known [100, Theorem 1, Section 2.3.2.5], [55], that this
space coincides with W s

p (and not Hs
p). Warning: our W s

p is called Hp,s in [100]
and in many other sources. In particular, W s

2 (S1) consists of functions

f =
∑
n∈Z

ane
inθ,

5usually called conical
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such that
∑ |n|2s|an|2 <∞. We will see that W 1/2

2 (S1) is especially important in
topology.

If f ∈ W 1
p (Ω) then f has an Lp nontangential limit a.e. on ∂Ω and f |∂Ω ∈

W
1−1/p
p (∂Ω). In particular, for the unit disc D ⊂ R2, and a function f ∈ W 1

2 (D),
we have f |S1 ∈W 1/2

2 (S1).
We will need trace theorems for weighted Sobolev-Lorentz spaces [69, 70],

[125], [71], [72, 73], [128]. Let Ω be as above and let ρ(x) = dist(x, ∂Ω). Consider
L1

p(Ω, ρα) as the space of functions f such that
∫
Ω |∇f |p · ρα dx <∞. Then f has

nontangential limits a.e. on ∂Ω and

1) f |∂Ω = 0 if α ≤ −1,

2) f |∂Ω ∈ W
p−1−α

p
p (∂Ω), α > −1.

Moreover,

‖f‖
W

p−1−α
p

p

≤ const ·
∫

Ω

|∇f |pρα dx

and for any f ∈W
p−1−α

p
p (∂Ω) and harmonic h, h|∂Ω = f , one has∫

Ω

|∇h|pρα dx ≤ const · ‖f‖
W

p−1−α
p

p

.

1.4. lp-cohomology of cocompact real hyperbolic lattices

The following result is an immediate corollary of the Poincaré inequality in the
hyperbolic space, which is equivalent to the Hardy’s inequality, and the classical
results on traces of functions in weighted Sobolev spaces, reviewed in the previous
section. It first appeared in print, with a different proof, in [94]. We include a proof
here, as many parts of the proof will be used later on.

Theorem 1.9. Part 1. Let G ⊂ SO+(1, n) be a cocompact (uniform) lattice. Then
there is a G-equivariant isomorphism of Banach spaces

H1(G, lp(G)) �W
n−1

p
p (Sn−1)/const

for p > n− 1. For 1 < p ≤ n− 1, H1(G, lp(G)) = 0.
Part 2. Let G be a cocompact lattice in SO+(1, n) and let l ∈ H1(G, lp(G)),

let F : G → R be a primitive function for l (unique up to a constant). Let ∂G ≈
Sn−1 be the boundary of G as a word-hyperbolic group. Then for almost all points
x ∈ ∂G, F(g) has nontangential limits as g → x, and the limit function

F|Sn−1 ∈W
n−1

p
p (Sn−1).

Corollary 1.10. The constant of coarse structure α(G) equals n− 1.
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Remarks.

1) Theorem 1.9 is the first step in the program of linearization of 3-dimensional
topology, which we will develop below in this chapter. The crucial fact is
that W 1/2

2 (S1) admits a natural action of the extended mapping class group
Mapg,1. This will be proved in Section 1.7 below.

2) Let Hn be the hyperbolic n-space. Since G = π1(Hn/G), by the work of [44]
we know that H1(G, lp(G)) is isomorphic to the Lp-cohomology of Hn. So
Theorem 1.9 computes the Lp-cohomology of the hyperbolic space.

Recall that any class l in H1(G, lp(G)) has a primitive function F : G→
R defined up to a constant, such that l(g) = LgF − F . This follows from the
fact that a module of all functions RG is coinduced from the trivial subgroup
and therefore cohomologically trivial [17].

Corollary 1.11. If 1 < p < p1 < ∞, then a natural map H1(G, lp(G)) →
H1(G, lp1(G)) is injective. In fact, for n − 1 < p < p1 < ∞ one has the com-
mutative diagram

H1(G, lp(G)) ∼−→ W
n−1

p
p (Sn−1)/const

↓ ↓
H1(G, lp1(G)) ∼−→ W

n−1
p1

p1 (Sn−1)/const

where the right vertical arrows exists by an embedding theorem of Sobolev-Slobodec̆ki
space [120, 2.7.1].

Proof of Corollary 1.11. The commutative diagram is implied by the proof of The-
orem 1.9. Injectivity follows immediately. �
Proof of Theorem 1.9. Though a shorter proof of part 1 of the theorem can be
given using [44], in order to prove part 2 we need to make an isomorphism
H1(G, lp(G)) � LpH1(Hn) explicit. Here LpH1(V ) is the Lp-cohomology of a
complete Riemannian manifold V .

Let l be a cocycle in Z1(G, lp(G)). We have then an affine isometric action
g

π�→ (v �→ Lgv + l(g)) of G on lp(G). Associate with this action a smooth locally
trivial affine Banach bundle over

E = [M̃ × lp(G)]/diagonal action

over the manifold M = Hn/G. By local triviality, smooth partition of unity and
affine structure on fibers one constructs a smooth section s of this bundle. It can
be interpreted as an equivalent smooth map s : M̃ → lp(G), that is, s(g−1x) =
Lgs(x) + l(g). We note that, since M is compact, there is a constant C > 0 such
that ‖∇s(x)‖ < C for all

x ∈ M̃ � Hn, ∇s ∈ T ∗
xM̃ ⊗ lp(G).

Now let F ∈ RG be a primitive for l, i.e., l(g) = LgF − F . Set σ(x) = s(x) + F .
This is a function

σ : M̃ → RG
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with the same derivative as s in the sense that for all g ∈ G, ∇σg = ∇sg, where σg,
sg means the gth coordinate. Next, we claim that σ is invariant, i.e., σ(g−1x) =
Lgσ(x). In fact, l(g) = LgF − F , hence

s(g−1x) = Lgs(x) + LgF − F ,
and σ(g−1x) = Lgσ(x). Therefore, for x ∈ M̃ and g, h ∈ G we have

σ(g−1x)(h) = σ(x)(g−1h).

Let f(x) = σ(x)(1), then σ(x)(g) = f(gx). Since ∇σ(x) = ∇s(x) ∈ lp and is
bounded in norm, we have for all x ∈ M̃ that∑

g∈G

|∇f(gx)|p < C.

In particular, ∫
M̃

|∇f |p =
∫

M̃/G

∑
g∈G

|∇f(gx)|p < C · Vol(M).

In other words, |∇f | ∈ Lp(Hn). Now, we can use the Poincaré disk model for the
hyperbolic space, that is, the unit ball Bn ⊂ Rn with the hyperbolic metric6

gh =
ge

(1− r2)2 .

Let μe, μh denote the Euclidean and the hyperbolic measures respectively,
|∇f |e, |∇f |h denote the norms of the gradient of a function in the Euclidean and
hyperbolic metrics respectively, ρ(z) = 1 − r(z) denote the Euclidean distance to
the boundary ∂Bn ≈ Sn−1. Then

const2 · ρp−n · |∇f |pe · μe ≤ |∇f |ph · μh ≤ const1 · ρp−n|∇f |peμe,

so we have
∫

Bn ρ
p−n|∇f |peμe <∞.

By the theorem of Kudryavcev–Vasharin–Lizorkin–Uspenski–Lions menti-
oned above, we find that f |(1−ε)Sn−1 has an Lp-limit f |Sn−1 to which it converges
nontangentially a.e., and, moreover,

f |Sn−1 ∈W
n−1

p
p (Sn−1)

for p > n− 1 and f |Sn−1 = const for p ≤ n− 1. We claim that the map l �→ f |Sn−1

is a well-defined bounded linear operator

H1(G, lp(G)) →W
n−1

p
p , p > n− 1.

First, we observe that since

s : M̃ → lp(G), σ(x) = s(x) + F
and σ(x)(g) = f(gx), we have for almost all x ∈ M̃ , f(gx) − F(g) ∈ lp(G) (as a
function of g). In particular, f(gx) − F(g) → 0 as length(g) → ∞. This proves

6Here ge is the flat metric on Rn, r = |x|.
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that, identifying G with an orbit of x, the function F(g) has a nontangential limit
a.e. on the boundary ∂G ≈ Sn−1 and

F|Sn−1 = f |Sn−1 ∈ W
n−1

p
p .

In particular, f |Sn−1 (mod constants) does not depend on the choice of a section
s. Since changing l by a coboundary leads to an isomorphic affine lp(G)-bundle,
f |Sn−1 (mod constants) depends only on the class [l] ∈ H1(G, lp(G)). So we get a
well-defined operator

H1(G, lp(G)) →W
n−1

p
p /const.

We claim that this operator is bounded. The affine flat bundle E was defined as

M̃ ×
G
lp(G),

where G acts on lp(G) by v �→ Lgv + l(g). It is enough to show, that there
is a constant C, depending only on G but not on l, such that E possesses a
Lipschitz section s with ‖∇s‖ < C · ‖l‖, where ‖l‖ = supi ‖l(gi)‖ for a choice
of generators gi, i = 1, . . . ,m. We note that l effectively controls the monodromy
of the flat connection in E. The construction of s mentioned above, that is, the
choice of an open covering ∪Uα =M , flat sections sα over Uα, a partition of unity∑
fα = 1 with suppfα ⊂ Uα, so that s =

∑
fαsα, gives a bound of |∇s| in terms

of monodromy, as desired.
We note that by [44],

H1(G, lp(G)) = LpH1(Hn),

so with any class in H1(G, lp(G)) we have associated a function f such that df
is in Lp, or, equivalently,

∫
Hn |∇f |phμh < ∞. What we in fact did above was an

explicit construction of this correspondence between lp- and Lp-cohomology.
So far we constructed a bounded operator

H1(G, lp(G)) →W
n−1

p
p (Sn−1), p > n− 1.

We wish to show that this operator is in fact an isomorphism of Banach spaces.
To this end, we will need the Poincaré inequality in hyperbolic space.

Proposition 1.12. (Poincaré inequality in Hn). Let f be a locally integrable mea-
surable function with

∫
Hn |∇f |ph dμh <∞. Then:

1) If p ≤ n− 1, then
∫

Hn |f − c|p dμh <∞ for some constant c.
2) If p > n− 1 and f |Sn−1 as an element of

W
n−1

p
p (Sn−1)

is zero, then ∫
Hn

|f |p dμh <∞.

Proof. This is a special case of a general theorem contained in [115]. �
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We now claim that H1(G, lp(G)) = 0 for p ≤ n − 1. This in fact follows
immediately from H1(G, lp(G)) = LpH1(Hn) [44] and Proposition 1.12. Now, if
p > n− 1, then we claim that the operator

H1(G, lp(G)) →W
n−1

p
p (Sn−1)/const

constructed above is injective. In fact, if f |Sn−1 = 0, then by Proposition 1.12,
f ∈ Lp(Hn, μh), and therefore,∫

M

Σg|f(gx)|p dμh <∞.

Hence, for almost all x ∈ M̃ ,
∑

g |f(gx)|p < ∞. But f(gx) − F(g) ∈ lp(G), so
F ∈ lp(G) and [l] = 0. Now, given

h ∈ W
n−1

p
p (Sn−1)

we let H denote its harmonic extension to Bn. Then [128], [73],∫
Bn

ρp−n|∇H |p dμe < ‖h‖
W

n−1
p

p (Sn−1)
,

so dH is an Lp 1-form on Hn. This shows that the injective operator

H1(G, lp(G)) = LpH1(Hn)→W
n−1

p
p (Sn−1)/const

has a bounded right inverse, and, hence, it is an isomorphism by the Banach
theorem. This proves Theorem 1.9. �

Corollary 1.13. Let G be a cocompact lattice in SO+(1, n) and let F : G → R be
such that LgF − F ∈ lp(G), for all g ∈ G (p > n− 1). Then the limit function
u = F|Sn−1 belongs to Lq(Sn−1) for all q > 1. In fact,

sup
1<q<∞

(
n− 1
q

)1/q

‖u‖Lq(Sn−1) <∞

Moreover, u is in the linear hull of all functions f satisfying∫
Sn−1

exp(|f |p) <∞.

Proof. This is an immediate corollary of Theorem 1.9 and the properties of the
Orlicz space L∞(logL)−a and the fact that

W (n−1)/p
p (Sn−1) ⊂ L∞(logL)−a(Sn−1)

for a ≥ 1/p, see [30]. �

We will use this corollary in a sequel to this paper [110] in analyzing the
local behavior of the Cannon-Thurston Peano curves, corresponding to fibers of
the hyperbolic 3-manifolds, fibered over the circle.
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1.5. Growth of primitives for lp-cocycles on the surface group

Theorem 1.14. Let G be a cocompact lattice in SO(2, 1) and let F : G → R be
such that for all g ∈ G, LgF −F ∈ lp(G), p > 1. Then for any word metric on G,

|F(g)| ≤ const · [length(g)]1/p′

for all p′ > p.

Proof. The result follows from Theorem 1.9 and the following lemma. �

Lemma 1.15. Let u be a harmonic function in the unit disc such that u|S1 ∈
W

1/p
p (S1). Then

|u(z)| ≤ const · [log(1− |z|)]1/p.

Proof. Here we only treat the case p = 2. The full proof will be given in Section
1.11. Let u(eiθ) =

∑
n∈Z ane

inθ. Since (1 + �)1/4u ∈ L2, we have {|n|1/2an} ∈
l2(Z), therefore for |z| < 1 (bn = |an|+ |a−n|), we obtain

u(z)− a0 ≤
∑

n>0(|an|+ |a−n|)|z|n
=

∑
|n|1/2bn · 1

|n|
1
2
|z|n

≤ (
∑
|n|b2n)1/2 · (

∑
1
|n| |z|2n)1/2

≤ const · [log(1− |z|)]1/2. �

1.6. Embedding of negatively curved manifolds and the boundaries
of their universal covers

A problem of fundamental importance in topology is the following: LetMm ϕ
↪→ Nn

be a smooth π1-injective embedding of manifolds of nonpositive curvature. Let
ϕ̃ : M̃ → Ñ be a lift of ϕ̃. Is there a limit map

Sm−1 ≈ ∂M̃ ∂ϕ̃→ ∂Ñ ≈ Sn−1

and if there is, how smooth it is? For instance, let N3 be a compact hyperbolic
3-manifold, and M2 be an incompressible embedded surface in N3. Then there
always exists a limit continuous map S1 ∂ϕ̃→ S2. Moreover, if M is not a virtual
fiber of a fibration over the circle, then ∂ϕ̃(S1) is a quasifuchsian Jordan curve. If
M is a virtual fiber, then ∂ϕ̃ : S1 → S2 is a Peano curve in a sense that its image
fills S2 [21]. This deep dichotomy follows from the result of [12].

Remark. In fact, whenever H is a finitely-generated subgroup of G = π1(N3), then
H is Gromov-hyperbolic and there exists a continuous equivariant map

f : ∂H → ∂G.
The map f is an embedding unless N3 is finitely covered by surface bundle over
the circle and H is commensurable to the fundamental group of the fiber. This
result is the combination of Thurston’s covering theorem, solution of the Tameness
Conjecture and [21].



Analytic Topology of Groups, Actions, Strings and Varieties 23

Conjecturally, the continuous map f exists for every discrete embedding
H ↪→ PSL(2,C). The proof of this conjecture was recently (2007) announced
by M. Mitra.

We have the following very general theorem (the embedding condition is
superfluous but makes the proof more transparent):

Theorem 1.16. Let Mm ϕ
↪→ Nn be a smooth π1-injective embedding of complete

Riemannian manifolds, of pinched negative curvature. Suppose M is compact. Let
ϕ̃ : M̃ → Ñ be a lift of ϕ̃. Let p0 ∈ Ñ and π : Ñ\{p0} → Sn−1(Tp0Ñ) be the
radial geodesic projection of Ñ\{p0} onto the unit tangent sphere. Identify Tp0Ñ

with Rn. Let q0 ∈ M̃ . Then:

1) For almost all unit tangent vectors v ∈ Tq0(M̃), the restriction of πϕ̃ to
the geodesic γ(q0, v) starting at q0 and having the tangent vector v, has an
L1-derivative as a map ϕ̃|γ(q0,v) : R+ → Rn.

2) For almost all v there exists a limit limt→∞ πϕ̃[γ(q0, v)(t)].

3) The resulting measurable map ∂M̃ ≈ Sm−1 ∂ϕ̃→ Sn−1 ≈ ∂Ñ does not depend
on the choice of p0, q0.

4) If both M , N are (real) hyperbolic, then for any p > n − 1, ∂ϕ̃ induces a
bounded linear operator

∂ϕ̃∗ :W
n−1

p
p (Sn−1)→W

m−1
p

p (Sm−1).

5) If M is hyperbolic and −K ≤ K(N) ≤ −1, then for p > (n − 1)
√
K, ∂ϕ̃

induces a bounded linear operator

∂ϕ̃∗ : C∞(Sn−1) →W
m−1

p
p (Sm−1)

for p > (n− 1)
√
K.

Theorem 1.17. Let N3 be a compact oriented hyperbolic three-manifold, let M2 ϕ
↪→

N3 be an incompressible immersed surface, and let x1, x2, x3 be Euclidean coordi-
nates on S2 ≈ ∂N3. Then:

1) If ∂ϕ̃ is quasifuchsian, then xi ◦ ∂ϕ̃ : S1 → R are in W 1/p
p for p ≥ 2.

2) If M2 is a virtual fiber, then xi ◦ ∂ϕ̃ : S1 → R are in W 1/p
p for p > 2 (but

probably not in W 1/2
2 ).

Proof of Theorem 1.16. We will assume −k ≤ K(M) ≤ −1,−K ≤ K(N) ≤ −1.
For x ∈ Ñ let r(x) = ρ(p0, x).

Lemma 1.18. For r0 > 0 and r(x) > r0, |∇π(x)| ≤ const(r0)e−r(x), where we view
π as a map N\{p0} → Rn.

Proof. The proof is an immediate application of the comparison theorem, men-
tioned above in the proof of Proposition 1.7. �
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Lemma 1.19. ∫
Ñ\B(p0,r0)

|∇π(x)|p <∞ for p > (n− 1)
√
K.

Proof. The proof repeats the argument in the proof of Proposition 1.7. �

Now consider a tubular neighborhood ofM in N . There exists an embedding
M × I → N where I = [−1, 1]. Moreover, the restriction of the Riemannian metric
gN onN toM×I is equivalent to the product metric gM +dx2. (We say two metrics
are equivalent if each one is bounded above by another one times a constant.) It
follows that there is an embedding

M̃ × I Φ→ Ñ
such that gÑ |M̃ × I is equivalent to g

M̃
+ dx2. Since ϕ is π1-injective, for any

r0 > 0 there is r1 > 0 such that if ρM (q0, z) > r1, then ρN (p0,Φ(z, t)) > r0 for
t ∈ [−1, 1]. It follows that∫∫

M̃\B(q0,r1)×I

|∇π ◦ Φ|p dV ol(M̃)dt <∞

Therefore for almost all t0 ∈ I,∫
M̃\B(q0,r1)

|∇(π ◦ Φ(z, t0))|p dV ol(M̃) <∞

Fix such t0 and let f = π ◦ Φ(z, t0) : M̃\B(q0, r1)→ Rn. We know that∫
M̃\B(q0,r1)

|∇f |p dV ol(M̃) <∞.

Expressing the integral in polar coordinates and taking into account that K(M) ≤
−1 we have ∫

Sm−1(Tq0M̃)

dv

∫ ∞

r1

e(m−1)t|∇f |p dt <∞.

In particular, for almost all v ∈ Sm−1(Tq0M̃),∫ ∞

r1

e(m−1)t|∂f
∂t
|p dt <∞.

In other words, for such v,

|∂f
∂t
| · e

(m−1)
p t ∈ Lp[r1,∞],

therefore

|∂f
∂t
| ∈ L1[r1,∞],

since
e−

m−1
p t ∈ Lp′

[r1,∞].
This proves 1). The statements 2) and 3) follow directly.
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Now suppose K(M) = K(N) = −1. Let u ∈ W
n−1

p
p (Sn−1), p > n− 1. Then

the harmonic extension g of u satisfies∫
Ñ

|∇g|p <∞.

as we know from [72], [128] and the proof of Theorem 1.14. By the argument above,
there is a t0 ∈ I, such that the composite function g ◦ Φ(z, t0) satisfies∫

M̃

|∇(g ◦ Φ(z, t0)|p <∞

But then the trace g ◦ Φ(z, t0)|∂M̃
lies in W

m−1
p

p (Sm−1). This proves part 4) of
Theorem 1.16. The proof of part 5) is identical. Theorems 1.16 and 1.17 (part 2)
are now proved. To prove part 1 of Theorem 1.17, we observe that the restriction
of any function u ∈ W 1

2 (S2) to a quasicircle belongs to the class W
1
2
2 (S1). This

follows immediately from the invariance of W 1
2 (S2) under quasiconformal home-

omorphisms, and the fact that functions from W 1
2 (B2) have traces in W

1
2
2 (S1).

(Note that the Dirichlet energy of a function of two variables is an invariant of the
conformal class of a metric.) �

As the reader has, probably, noticed, we could assume that π1(M) = π1(N),
so that π1(M) acts discretely in Ñ and N = Ñ/π1(M). On the other hand, the
proof does not use the fact that M is embedded, so Theorem 1.16 stays true for
(finite-to-one) immersions in N .

We will outline now, having in mind the applications in the sequel to this
paper, how to study the limit maps from the point of view of ergodic theory.
The results thus obtained are weaker then those proved above, but apply to non-
discrete representations. Our treatment can be seen as a development of the vague
remark of [121, 6.4.4]. Let Mm be a compact hyperbolic manifold, Ñ = Hn and
ρ : π1(M)→ Iso(Ñ) a discrete faithful representation. Let N = Ñ/ρ(π1(M)). We
would like to study a boundary map ∂ϕ̃ : M̃ → Ñ where ϕ is a smooth map
M → N , inducing ρ.

Lemma 1.20. There exists a π1(M)-equivariant measurable map ψ from ∂M̃ =
Sm−1 to the space of probability measures on ∂Ñ = Sn−1.

Proof. For any compact Riemannian manifold M , any compact metric space X
and any representation ρ : π1(M) → Homeo(X), there is a π1(M)-equivariant
harmonic function from M̃ to the affine space of charges on X , taking values in
probability measures. This simple fact in various degrees of generality was proved
in [35], [38], [63]. If M is hyperbolic, then the Poisson boundary of M̃ is ∂M̃ , and
the result follows. �
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Now let ψ0 +ψc be the decomposition of ψ into atomic and non-atomic parts.
Obviously, ψc is also π1(M)-equivariant. We claim that ψc = 0. First,

∫
ψc is a

π1(M)-invariant function on ∂M̃ = Sn−1, whence is constant, since π1(M) acts
on Sn−1 ergodically. Thus, if ψc �= 0 we may assume ψc is a probability measure.
Second, let G be the center of gravity map from the nonatomic measures on ∂Ñ
to N [36]. Then G ◦ φc is a π1(M)-equivariant map from ∂M̃ to N . In particular,
ρ(G ◦ ψc(x), G ◦ ψc(y)) is a π1(M)-invariant function on ∂M̃ × ∂M̃ whence a
constant by [54] and [118]. It follows easily that G◦ψc = const which is impossible
since ρ is discrete. So ψc = 0.

We deduce that ψ is atomic, ψ(z) =
∑∞

i=1miδ(ψi(z)),m1 ≥ m2 ≥ · · · .
Though ψi(z) : ∂M̃ → ∂Ñ are not uniquely defined, mi : ∂M̃ → R are. It follows
that mi are π1(M)-invariant, whence constant. Since

∑
mi = 1, there is some i

such that mi+1 < m1. Choose the first such i. Then m1 = · · · = mi and we get a
measurable equivariant map

∂M̃ = Sm−1 → Sn−1 × · · · × Sn−1︸ ︷︷ ︸
i

/Si,

where Si is the symmetric group in i letters.
So far we did not use the fact that ρ is discrete, but only that ρ(π1(M)) does

not have fixed points in Ñ = Hm. So:

Proposition 1.21. Let Mm be a compact hyperbolic manifold and let ρ : π1(M) →
SO+(1, n) be such that ρ(π1(M)) does not have fixed points in Hn. Then there
exists a π1(M)-equivariant measurable map

Sm−1 = ∂M̃
ψ→ (subsets of cardinality i of Sn−1 = ∂Hn)

for some i ≥ 1.

Remark. This proposition is a very special case of a general existence theorem
for equivariant measurable maps between boundaries of symmetric spaces, see, for
instance, to [134].

Using cross-ratios and ergodicity of the action of π1(M) on ∂M̃×∂M̃ , one can
easily show that i = 1. Now to any x ∈ M̃ one associates the Poisson measure μx on
Sm−1. Its pushforward ψ∗μx is a probability measure on Sn−1. The pushforward
of a measure by a multivalued map is defined by∫

Sn−1
f d[ψ∗μ] =

∫
Sm−1

∑
y∈ψ(x)

f(y) dμ,

where f ∈ C(Sn−1).

Now under some natural conditions ψ∗μx does not have atoms and using the
barycenter map G in Hn one can define s(x) = G(ψ∗μx). This can easily be shown
to be continuous equivariant map M̃ s→ Hn, again under some natural assumption
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on ρ. The multivalued map ψ should be regarded as a weak radial limit of s, but
we will not pursue this point any further.

1.7. The action of quasisymmetric and quasiconformal

homeomorphisms on W
(n−1)/p
p

The well-known result [99] characterizes quasiconformal maps between domains
D1, D2 in Rn, n > 2 as those which induce an isomorphism of the Banach spaces
BMO(D1) and BMO(D2). We will see now that this result in the caseD1 = D2 =
Rn is a limit as p→∞ of the following result which establishes a quasiconformal
invariance of fractional Sobolev spaces Wn/p

p . Of special importance is the fact
that the result holds for n = 1 and quasisymmetric homeomorphisms of S1. The
proof of the following lemma is “almost” contained in the remarks made in [94, 95].

Lemma 1.22. Let Gn−1, n ≥ 2 be the group of quasisymmetric (n = 2) or quasicon-
formal (n ≥ 3) homeomorphisms of Sn−1. Then for any p > 1 (n = 2) or p ≥
n−1 (n ≥ 3), Gn−1 leaves invariant the Sobolev-Slobodec̆ki space Wn−1/p

p (Sn−1).
For any Φ ∈ Gn−1, the corresponding map

Φ∗ :Wn−1/p
p (Sn)→Wn−1/p

p (Sn−1)

is an automorphism of the Banach space Wn−1/p
p (Sn−1).

Theorem 1.23. There exists for any n ≥ 2 a (nondegenerate) bounded antisym-
metric multi-linear map

W
n−1

n
n (Sn−1)/const× · · · ×W

n−1
n

n (Sn−1)/const︸ ︷︷ ︸
n

→ R ,

defined on the smooth functions by f1, . . . , fn →
∫

Sn f1 df2 · · · dfn, which is invari-
ant under Gn−1.

In particular, we have

Corollary 1.24. There exists a representation

G1 → Sp(W 1/2
2 (S1)/const),

defined by Φ(f) = f ◦ Φ−1.

Proof of Lemma 1.22. We will need a result, proved for n = 2 in [2], for n = 3 in
[22] and for n ≥ 4 in [124]:

Theorem 1.25. Let φ : Sn−1 → Sn−1 be quasisymmetric (n = 2) or quasiconformal
(n ≥ 3). Then there exists an extension φ̃ of φ as a homeomorphism of Bn, which
is a quasiisometry of the hyperbolic metric:

const2 · gh ≤ φ̃∗gh ≤ const1 · gh.
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Now let f ∈ W
n−1

p
p (p > n − 1). Let u be a harmonic function in Bn,

extending f . We know that∫
|∇u|ph dμh ≤ const3‖f‖

W
n−1

p
p (Sn−1)

.

It follows that ∫
|∇(u ◦ φ̃)|ph dμh ≤ const4‖f‖

W
n−1

p
p

<∞,

and by the trace theorem,

‖u ◦ φ̃‖
W

n−1
p

p

≤ const5‖f‖
W

n−1
p

p

,

which proves the theorem for p > n − 1. For p = n − 1, n ≥ 3, the result is
standard. �

Proof of Theorem 1.23. Let f1, . . . , fn ∈ W
n−1

n
n (Sn−1). Let ui be a harmonic ex-

tension of fi. The result follows at once from the formula∫
Sn−1

f1 df2 · · ·dfn =
∫

Bn

du1du2 · · · dun.

Since
∫
|∇ui|nh duh < ∞, the integral

∫
Bn du1 · · · dun is finite by the Hölder

inequality. The invariance is obvious. �

Proof of Corollary 1.24. The formula

〈f1, f2〉 =
∫

S1
f1 df2

givesW 1/2
2 /const the structure of a symplectic Hilbert space. This means that the

map
W

1/2
2 /const→ (W 1/2

2 /const)∗

given by f �→ 〈f, ·〉 is an isomorphism (not isometry) of Hilbert spaces. By
Sp(W 1/2

2 /const) we mean the group of invertible bounded operators which leave
this symplectic form invariant. The result now follows from Lemma 1.22 and The-
orem 1.23. �

1.8. Boundary values of quasiconformal maps and regularity
of quasisymmetric homeomorphisms

Proposition 1.26. Let φ be a quasiconformal map, defined in a neighborhood of the

unit ball Bn. Then φ|Sn−1 as a map Sn−1 → Rn belongs to the class W
n−1

n +δ
n for

some δ > 0. In particular, if n = 2 and

φ(eiθ) =
∑
n∈Z

ane
inθ,

then ∑
|n|1+δ|an|2 <∞.
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If φ is only defined in Bn then for almost all α ∈ Sn−1 there exists a limit

lim
r→1
φ(rx) and φ|Sn−1 ∈W n−1

n .

In particular, for n = 2 and

φ(eiθ) =
∑
n∈Z

ane
inθ,

∑
|n||an|2 <∞.

Remark. The last statement for conformal maps is the “Flächensatz”.

Proof. Since φ as a map Bn → Rn belongs to W 1
n , the last statement follows

immediately from the trace theorem. To prove the first, recall that φ is locally in
W 1

n+δ′ , δ′ > 0 [13], [39]. Therefore

φ|Sn−1 ∈W
n−1

n +δ
n ,

again by the trace theorem. �

Theorem 1.27. Let ϕ : S1 → S1 be a quasisymmetric homeomorphism. Then, as
a map S1 → R2, ϕ belongs to W 1/p+δ(p)

p , δ(p) > 0, for all p > 1. If ϕ(eiθ) =∑
n∈Z ane

inθ, then ∑
n∈Z

|n|p′/p+δ|an|p
′
<∞

for all 1 < p ≤ 2.

Proof. Let Φ : D2 → D2 be a quasiisometry of the hyperbolic plane, extending
ϕ. We know that Φ,Φ−1 are Hölder in the Euclidean metric. Let f be a smooth
function defined in a neighborhood of D2. Then for p > 1∫

D2
|∇f |phρ−ε

e (x, ∂D2) · dμh <∞

for ε > 0 small enough (one needs ε < p− 1).
Since Φ is a quasiisometry for the hyperbolic metric and bi-Hölder for the

Euclidean metric, we have for g = f ◦ Φ:∫
D2
|∇g|phρ−β

e (y, ∂D2) dμh <∞

for some β > 0. Rewriting in Euclidean terms, we have∫
D2
|∇g|pe · [ρ(y, ∂D2)]p−β−2 <∞,

therefore
g|S1 ∈W

1
p +δ

p

by the trace theorem for weighted Sobolev spaces. Letting f be a Euclidean coor-
dinate function, we get

ϕ ∈ W
1
p +δ

p .

The last statement follows from the Young-Hausdorff theorem. �
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Remark.It was a famous problem in the 1950s if ϕ is absolutely continuous (that
is, in W 1

1 ). Though the answer is well known to be negative, we see that ϕ is as
close to be absolutely continuous as one wishes. We will use Theorem 1.27 in a
sequel to this paper to prove the existence of the vacuum vector for quantized
moduli space for p > 1. We also notice that the argument above together with
the proof of Theorem 1.16 shows the following: if ϕ : M → N is an π1-injective
immersion of hyperbolic manifolds,M compact, such that for g ∈ π1(M) and some
fixed z0 ∈ Ñ

ρ(z0, ϕ∗(g)z0) ≥ const · length(g),

then ∂ϕ̃ is of class W (m−1)/p+δ
p and therefore is Hölder continuous. This does not

apply, however, in the case of the Cannon-Thurston curve. See [110] for the further
study.

Remark. The above assumption on ϕ is equivalent to the assumption that ϕ̃ is a
quasi-isometric embedding. It, hence, follows that ∂ϕ̃ is a quasi-symmetric embed-
ding.

1.9. Teichmüller spaces and quantization of the mapping class group

We denote by Mapg the mapping class group of the closed oriented surface Σg

of genus g and Mapg,1 the extended mapping class group, i.e., the mapping class
group of the surface Σg with one point removed. Let Γg = π1(Σg), then Mapg,1 is
isomorphic to Aut(Γg) and one has the exact sequence

1 → Γg → Mapg,1 → Mapg → 1,

see, e.g., [9].

Theorem 1.28. (Quantization of the moduli space) For any p > 1 there exists a
(nontrivial) representation

Mapg,1

πp→ Aut(W 1/p
p (S1)/const)

given by the formula
πp(ϕ)(f) = f ◦ Φ−1,

where Φ is a quasisymmetric homeomorphism of S1, induced by ϕ and a choice of
a hyperbolic structure in Σg. For p = 2 the representation

π2 : Mapg,1 → Aut(W 1/2
2 (S1)/const)

is symplectic, that is, π2(Mapg,1) ⊂ Sp(W
1/2
2 (S1)/const).

Proof. Fix a hyperbolic structure on Σ = Σg. Then, by the classical theorem of
Nielsen, one gets an embedding Mapg,1 → G1. The theorem now follows from
Theorem 1.23. �
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Now let G π0−→ PSL2(R) be a Fuchsian group, possibly infinitely generated.
We recall that the Teichmüller space T(G) is defined as follows: Points of T(G)
are equivalence classes of discrete representations

G
π−→ PSL2(R)

which are quasiconformally conjugate to π0, that is, there is a quasisymmetric
homeomorphism Φ of S1 such that π = Φ ◦ π0 ◦ Φ−1. Two representations are
equivalent if they differ by conjugation by an element of PSL2(R). Note that this
definition is equivalent to the standard one by [27].

Corollary 1.29. Let π0, π be two discrete representation of a group G. Then, if π
lies in the Teichmüller space of π0, then the unitary representations

G
π0→ PSL2(R)

β→ U(W 1/2
2 (S1)/const)

and
G

π→ PSL2(R)
β→ U(W 1/2

2 (S1)/const)

are unitarily equivalent.

Remarks.

1) The fact that PSL2(R) acts in W 1/2
2 (S1)/const by unitary operators (with

respect to the complex structure given by the Hilbert transform) is well known
[87]. In fact, this unitary representation belongs to the discrete series and may
be realized in L2 holomorphic 1-forms in B2.

2) This result should be contrasted with the rigidity theorem from [10] in the
case of representations which are not in the discrete series. In fact, a proof of
Corollary 1.29 is contained in the introductory remarks in Section 8 of [10].

Proof. Since π = Φ ◦ π0 ◦Φ−1 and G1 act in W 1/2
2 (S1)/const, we get an invertible

operator A such that β ◦ π = A β ◦ π0 A−1. By the polar decomposition A = UP
where P is positive self-adjoint, U is unitary, P commutes with β ◦ π0 and U
intertwines β ◦ π0 and β ◦ π, as desired. �

The following special case is very important. Let π0 : G → PSL2(R) be
a Fuchsian group corresponding to a Riemann surface of finite type (that is, a
torsion-free lattice in PSL2(R)). Let Σ = H2/G and let ϕ ∈ Map(Σ, x0), x0 ∈ Σ.
Let Φ be a quasisymmetric homeomorphism of S1 which is the boundary value of
a quasiconformal homeomorphism Ψ of (Σ, x0), representing ϕ. Then

π0 ◦ ϕ−1 = Φπ0Φ−1.

Let Aϕ : W 1/2
2 /const → W 1/2

2 /const be the invertible operator, representing ϕ.
Let P 2

ϕ = A∗
ϕAϕ. Then Pϕ commutes with β ◦ π0. We obtained the following

Theorem 1.30. Let π0 : G→ PSL2(R) be a torsion-free lattice. Let Σ = H2/G, x0 ∈
Σ, ϕ ∈ Map(Σ, x0), Ψ a quasiconformal homeomorphism inducing ϕ, Φ the trace
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of its lift to H2 on S1, Aϕ the invertible operator in W 1/2
2 (S1)/const given by

Aϕ(f) = f ◦ Φ−1. Then the self-adjoint bounded operator

P 2
ϕ = A∗

ϕAϕ

commutes with β ◦ π0. Moreover, if P 2
ϕ =

∫
λ dEλ is the spectral decomposition,

then Eλ commute with β ◦ π0.

Remarks.

1) If G is cocompact, then we know that W 1/2
2 /const ≈ H1(G, l2(G)), so

W
1/2
2 /const is a Hilbert module over the type II factor defined by G of di-

mension dimGW
1/2
2 /const = L2b1(G) = 2g − 2.

2) In practice, finding Aϕ is difficult. The reason is that Φ is not a diffeomor-
phism, so the explicit formulae of Chapter 2 do not make sense. Moreover,
Φ is given in a very implicit way as the boundary value of a quasiconformal
map, defined by a quadratic differential on H2 which is G-invariant!

We will now show that for p > 2 the operator Aϕ shows very unusual prop-
erties, from the point of view of functional analysis.

Theorem 1.31. Let G be the fundamental group of a closed hyperbolic surface Σg.
Let ϕ ∈Mapg,1 be such that its image in Mapg is represented by a pseudo-Anosov

homeomorphism Ψ. Let A = Aϕ be the operator, representing ϕ in W 1/p
p (S1), p >

2. Then there is an element v ∈W 1/p
p (S1) \ {0} such that∑

k∈Z

‖Ak(v)‖p <∞.

Proof. Let M be the mapping torus of Ψ, that is, R × Σ/Z where 1 ∈ Z acts
by (t, x) → (t + 1,Ψ(x)). Then M is hyperbolic [122], [92]. We will view M as a
fibration over the circle R/Z with coordinate t, 0 ≤ t < 1; the fiber over t will be

called Σt. We can trivializeM
ψ→ R/Z over I = [0, 1/2] so that (t, x0), 0 ≤ t ≤ 1/2

will be a horizontal curve. Let g be the hyperbolic metric on M and g0 be some
hyperbolic metric on Σ, then g and g0 + dt2 are equivalent on Σ × [0, 1/2] �
ψ−1([0, 1/2]) ⊂ M . Lifting to M̃ = H3, we get a fibration H3 ψ̃→ R with ψ̃−1(t) =
Σ̃t. Let γ ∈ π1(M) ⊂ PSL2(C) be the monodromy element, corresponding to ϕ.
Let f : H3 → R be such that ∫

H3
|∇f |p dμh <∞.

We then have ∑
k∈Z

∫
γk(ψ̃−1[0,1/2])

|∇f |p dμh ≤
∫

H3
|∇f |p dμh <∞;
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on the other hand the left-hand side is∑
k∈Z

∫
ψ̃−1[0,1/2]

|∇(f ◦ γk)|p dμh ≥ const ·
∫ 1

2

0

dt

∫
∑̃

t

∑
k∈Z

|∇(f ◦ γk)|p dV ol(g0).

It follows that for some t0,∫
Σ̃t0

∑
k∈Z

|∇(f ◦ γk)|p dV ol(g0) <∞.

Since g0 is a hyperbolic metric, for any function F on Σ̃∫
Σ̃

|∇F |p dV ol(g0) = const · ‖F |∂Σ̃‖p

W
1/p
p (S1)/const

,

actually, we may let the LHS be the definition of the norm in W 1/p
p (S1)/const,

making the constant equal one. So∑
k∈Z

‖f ◦ γk|∂Σ̃t0‖p

W
1/p
p (S1)/const

<∞.

We will now identify f ◦ γk|∂Σ̃t0 . We have a boundary map

∂Σ̃t0 = S1 α→ S2 = ∂H3.

We know that γk ◦ α = α ◦ ϕ−k, so f ◦ γk = Ak
ϕf and finally∑

k∈Z

‖Ak
ϕ(f |∂Σ̃t)‖p

W
1/p
p (S1)/const

<∞.

Now, for any u ∈W 2/p
p (S2) we let f be its harmonic extension. In particular,

any smooth function u will do. Since α : S1 → S2 is continuous and nonconstant,
we can take u such that V = u ◦ α is nonconstant. Then∑

k∈Z

‖Ak
ϕv‖p

W
1/p
p (S1)/const

<∞,

as desired. �

We remark that
∑

k∈Z ‖Ak
ϕv‖p <∞ will hold for all v which are in the image

of the bounded operator

W 2/p
p (S2)→W 1/p

p (S1),

induced by ∂Σ̃ → ∂H3.

Corollary 1.32. Suppose that the space of fixed vectors of Aϕ acting in W 1/p
p /const

possesses a complementary invariant subspace W . Then the specter of Aϕ in W
satisfies

σ(Aϕ|W ) ∩ S1 �= φ.
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Proof. Suppose the opposite, then W =W+⊕W− such that Ak
ϕ|W+ and A−k

ϕ |W−
are strict contractions for some k > 0. But then∑

k∈Z

‖Ak
ϕv‖p = ∞

for all v ∈W 1/p
p /const. �

We now turn to a generalization. Let G̃ ⊂ Mapg,1 be a subgroup, which
contains π1(Σg), so that we have an extension

1→ π1(Σg)→ G̃→ G→ 1.

Notice that G ⊂Mapg. A well-known problem in the hyperbolic topology is: when
there exists a fibration

Σ → Q
↓
T

with π1(Q) = G̃ such that Q is a compact manifold of negative curvature. In
case T is a closed surface, Corollary F.3 to Theorem F.1 of [109] provided some
necessary condition. This condition is unfortunately void, as we will show now.

Theorem 1.33. Let Σg1 → Q→ Σg2 be a surface fibration over a surface (Σgi are
hyperbolic and oriented). Let Σ be a section of this fibration. Then

|Σ ∩ Σ| ≤ 2g2 − 2.

Proof. Let ξ be the vertical tangent bundle7 for Σ, e(ξ) its Euler class, then Σ ∩
Σ = (e(ξ), [Σ]). We have the natural homomorphism π1(Q) → Mapg1,1 and the
composite homomorphism

π1(Σ)→ π1(Q)→ Mapg,1,

which we call ϕ. The inclusion

Mapg1,1 → G1

induces the Euler class ε in H2(Mapg,1) coming from the action of G1 on S1. By
[77], ϕ−1ε = e(ξ). Moreover, it is well known (and obvious) that ε is a bounded
class (see [78]). In fact, for any homomorphism π1(Σg)

ϕ→ Homeo(S1), the Milnor-
Wood inequality implies that

|(ϕ∗ε, [Σ])| ≤ 2g − 2.

This proves the theorem. �

7I.e., the restriction to Σ of the 2-plane bundle over Q tangent to the fibers of the fibration.
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Remark. If the fibration Q → Σg2 is holomorphic and the action of π1(Σg2) on
H1(Σg1 ,R) is simple, then a famous inequality of Arakelov [5] reads Σ∩Σ < 0 for
all holomorphic sections. By Theorem 1.33,

−(2g2 − 2) < Σ ∩Σ < 0.

We now have the following result, which seems to be a very strong restriction on G.

Theorem 1.34. Let 1 → π1(Σg) → G̃→ G→ 1 be an extension. Suppose G̃ is the
fundamental group of a compact manifold Qn (n = 4) of negative curvature

−K ≤ K(Qn) ≤ −1.

Then for p > (n− 1)
√
K there is a vector

const �= v ∈ W 1/p
p (S1),

such that ∑
g∈G

‖Agv‖p

W
1/p
p /const

<∞. (∗)

Proof. Since the proof is essentially identical to the proof of Theorem 1.31, we will
only indicate the differences. Let q0 ∈ Q̃ and let u : Sn−1(Tq0Q̃)→ R be a smooth
function. Composing with the geodesic projection Q̃\{0} → Sn−1(Tq0Q̃) we arrive
to a function f : Q̃\B(q0, r) → R with

∫
Q̃
|∇f |p dV ol < ∞ for p > (n − 1)

√
K.

Since Σ is embedded in Q, one has a limit map ∂Σ̃ = S1 → Sn−1 = Q̃ by Theorem
1.16. Let v = u ◦ α, where we identify ∂Q̃ and Sn−1(Tq0Q̃). Then v ∈ W 1/p

p (S1)
by Theorem 1.17. As in Theorem 1.31, we have the inequality (∗). Finally, if
v = const, for any choice of u, then α is almost everywhere a constant map, say
to z ∈ Sn−1. Since α is equivariant, it follows that π1(Σg) stabilizes z. This is
obviously impossible. �

1.10. Spaces L(n−1)
k,α and cohomology with weights

In this section we will describe a limit form of Theorem 1.9 when p = 1, and
discuss ln−1-cohomology with weights of cocompact lattices in SO+(1, n).

Let G be a finitely generated group, w : G → R+ a function such that
w(g) →∞ as length(g)→∞. Consider the space

lp(G,w) = {f :
∑

g

|f(g)|pw−1(g) <∞}.

Suppose
Lgw

w
= O(1), ∀g ∈ G

and the same for Rgw
w . Then lp(G,w) becomes a G–bimodule.
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Examples.

1. If r(g) = length(g), then consider w(g) = rα(g), α > 0 or

w(g) = r(g)α log r(g) log log r(g) · · · log log · · · log︸ ︷︷ ︸
k

r(g), α > 0.

2. Consider w(g) = eαr(g), α > 0.
Now let G be a cocompact lattice in SO+(1, n), We know by Theorem 1.14,

that H1(G, lp(G)) �= 0 exactly for p > n − 1. In particular, H1(G, ln−1(G)) = 0.
However, introduction of weights changes the situation.

Theorem 1.35. Let G be a cocompact lattice in SO+(1, n), then for any k ≥ 1 and
α > 0,

H1(G, lp(G,w)) �= 0
for p = n− 1 and w = r(g) log r(g) · · · (log log · · · log︸ ︷︷ ︸

k

r(g))α, α > 1, k ≥ 1.

Proof. The proof essentially repeats the arguments of Proposition 1.7. Let u :
Sn−1 → R be any smooth function and denote again by u its harmonic extension
in Bn. We have |∇u|e < const, therefore

|∇u|h(z) < const · ρe(z, Sn−1)−1.

Let F(h) = u(h−1z0), then a direct computation shows that LgF−F ∈ ln−1(G,w)
and F − const �= ln−1(G,w) so l(g) = LgF − F is a nontrivial cocycle if u is one
of the coordinate functions on Sn−1, as in Proposition 1.7. �

We would like to compute H1(G, ln−1(G,w)). The construction in Theorem
1.9 produces from any class in H1(G, lp(G,w)) a function in L1

w(Hn). The latter
space is defined as the space of locally integrable functions f with distributional
derivatives such that ∫

Hn

|∇f |n−1 · w−1(z) <∞ (∗)

where
w(z) = ρh(z0, z) log ρh(z0, z) · · · (log log · · · log︸ ︷︷ ︸

k

ρh(z0, z))α.

Definition 1.36. The space L(n−1)
k,α is defined as the Banach space of traces of

L1
w(Hn) on Sn−1. The norm in L(n−1)

k,α is defined as the infimum of integrals (∗)
taken over the set of all functions f with the given trace.

Remark. The norm just defined depends on z0. Therefore the natural action of
SO+(1, n) in L(n−1)

k,α is not isometric.

We will describe L1
k,α as a Zygmund-type space. One can analogously describe

L(n−1)
k,α for n > 2, of course, but we will not need it.
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Theorem 1.37. L1
k,α consists of all function u : S1 → R for which, whenever a > 0,

we have ∫ a

0

dh

∫ 2π

0

|u(x+ h)− u(x)|
h2 log h · · · log · · · log︸ ︷︷ ︸

k

αh
<∞.

Proof. The proof is the word-by-word repetition of the Uspenski’s argument in
[128]. One does not need to use Hardy’s inequality, since p = 1. �
Theorem 1.38. G1 acts on L1

k,α by

AΦu(x) = u ◦ Φ−1.

Corollary 1.39. If Φ : S1 → S1 is quasisymmetric, then, as a function S1 → R2,
φ belongs to L1

k,α.

We suggest the reader to compare this result to [23] and [37].

Proof. Let ψ : B2 → B2 be a quasiisometry of the hyperbolic metric, extending
Φ. If u satisfies (∗) then u ◦ Φ−1 satisfies (∗) as well, whence the result. �

Embedding Mapg,1 ⊂ G1 we obtain a representation

Mapg,1 → Aut(L1
k,α),

which is a limiting case of Theorem 1.28.

1.11. Bicohomology and the secondary quantization of the moduli space

We will now introduce a very important notion of bicohomology spaces which, to
some extent, linearize 3-dimensional topology.

Definition 1.40. Let G be a finitely generated group. For p > 1 define

Hp(G) = H1(Gr , H
1(Gl, l

p(G)),

where r and l stand for the right and left action, respectively.

Proposition 1.41. A group Out(G) of outer automorphism of G acts naturally in
Hp(G).

Proof. By definition, Out(G) = Aut(G)/(G/Z(G)). Obviously Aut(G) acts on
H1(Gl, l

p(G)) extending the right action of G, so Aut(G)/(G/Z(G)) will act on
H1(Gr, (H1(Gl, l

p(G))). �
For a surface group π1(Σg) we write Hp,g = Hp(G).

Theorem 1.42. There exists a natural representation

Mapg → Aut(Hp,g).

Moreover, for p > 1, Hp,g is a nontrivial Banach space. For p = 2, Hp,g is an
infinite-dimensional Hilbert space. There is a pairing

Hp,g ×Hp′,g → R ,
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which is Mapg-invariant. For p = p′ = 2 this pairing is a nondegenerate symmetric
bilinear form. Therefore, we obtain a representation

Mapg
ψ→ O(∞,m), 0 ≤ m ≤ ∞,

which we call the secondary quantization of the moduli space of Riemann surfaces.

Proof. The proof of this theorem will occupy the rest of this section.

For a compact oriented manifold M let Ω1/p be the space of measurable
1/p-powers of densities such that for ω ∈ Ω1/p∫

M

|ω|p <∞.

Then Ω1/p is a Banach space, and for p = 2, a Hilbert space. Let G be a finitely
generated group acting in M .

Lemma 1.43. Suppose that every element g ∈ G \ {1} has finitely many repelling
points, say x−1 , . . . , x

−
n , and finitely many attractive points, say x+1 , . . . , x

+
m, such

that for any set of neighborhoods U−
i , U

+
+ of x±i , there is N such that for k ≥ N ,

gk(M\
⋃
i

U−
i ) ⊂

⋃
i

U+
i .

Suppose there are g1, g2, g3, g4 ∈ G \ {1} such that the sets⋃
i

U−
i,s ∪ U+

i,s

are disjoint for different s = 1, 2, 3, 4. Then the action of G in Ω1/p does not have
almost invariant unit vectors.

Proof. Suppose the opposite, then there is a sequence ωj ∈ Ω1/p, ‖ωj‖ = 1 and
‖gksωj − ωj‖ →

j→∞
0 for all s, k. Choose ks, U±

i,s such that

gks
s (M\

⋃
i

U−
i,s) ⊂

⋃
i

U+
i,s

and
⋃

i U
−
i,s (respectively

⋃
i U

+
i,s) do not intersect for different s. Let ω be such

that ‖ω‖ = 1 and
‖gks

s (ω)− ω‖ < (2/3)1/p − (1/3)1/p.

For E ⊂M define C(E,ω) =
∫

E
|ω|p. We claim that

C(M\(
⋃
U−

s,i ∪
⋃
U+

s,i), ω) < 2/3.

Suppose the opposite, then, by the invariance of the density |ω|p,
C(M\(

⋃
U−

s,i ∪
⋃
U+

s,i), ω ◦ gks
s )

= C(gks
s (M\(⋃U−

s,i ∪
⋃
U+

s,i)), ω)
≤ C(gks

s (M\⋃
U−

s,i), ω) ≤ 1/3.
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It follows that

[
∫

M\(
⋃

U−
s,i∪

⋃
U+

s,i)
|ω − ω ◦ gks

s |p]1/p

≥ |[
∫

M\(⋃ U−
s,i∪

⋃
U+

s,i
)|ωp|]1/p − [

∫
M\(⋃ U−

s,i∪
⋃

U+
s,i)
|ω ◦ gks

s |p]1/p|
≥ (2/3)1/p − (1/3)1/p,

a contradiction.
Thus C(∪U−

s,i, ω) + C(∪U+
s,i, ω) ≥ 1/3. Since ∪U±

s,i are disjoint for different
s, we get

1 ≥
4∑

s=1

C(
⋃
U−

s,i, ω) + C(
⋃
U+

s,i, ω) ≥ 4/3,

a contradiction. This proves the lemma. �

Corollary 1.44. Let G ⊂ SO+(1, n) be a cocompact lattice. Then the natural iso-
metric action of G in W (n−1)/p

p (Sn−1) does not have almost invariant vectors. In
particular, H1(G,W (n−1)/p

p (Sn−1)) is Banach for p > (n− 1).

Proof. For u ∈W (n−1)/p
p (Sn−1)/const, let f be a harmonic extension of u so that

‖u‖ =
∫

Hn

|∇f |p.

Since the energy density |∇f |pdμh is invariant under the isometries of Hn, the
proof of the Lemma 1.43 applies directly. �

Corollary 1.45. The space Hp,g is Banach (Hilbert for p = 2).

Proof. H1(Gl, l
p(G)) =W 1/p

p (S1)/const. �

We now describe the pairing

Hp,g ×Hp′,g → R .

This pairing is given by the cup-product in cohomology

H1(Gr, H
1(G, lp(G))) ×H1(Gr, H

1(Gl, l
p′

(G)))

→ H2(Gr, H
2(Gl, l

p(G)⊗ lp′
(G)))

followed by the duality lp(G)×lp′
(G) → R and evaluating twice on the fundamental

cycle in H2(G,R). We have also an analytic description, namely a pairing

W 1/p
p (S1)/const×W 1/p′

p′ (S1)/const→ R

is given on smooth function by f, g →
∫

S1 fdg and then extended as a bounded
bilinear form. This induces a pairing

H1(G,W 1/p
p /const)×H1(G,W 1/p′

p′ /const) → R .
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Lemma 1.46. (Cf. [65]) Let G be a finitely presented group which is realized as
fundamental group of a compact Riemannian manifold M . Let ρ : G → O(H) be
an orthogonal representation, which does not have almost invariant vectors. Let
[l] ∈ H1(G,H). Let E be the flat vector bundle with fiber H over M , corresponding
to ρ. Then there is a harmonic 1-form ω ∈ Ω1(M,E), corresponding to [l].

Proof. This is a reformulation of [65]. �

Corollary 1.47. Let M be Kähler. Then, for ρ as in the previous lemma, we have
1) There is a natural complex structure in H1(G,H), making it a complex Hilbert

space.
2) The pairing

H1(G,H)×H1(G,H) → R ,

given by [l1], [l2]→ ([ω]n−1([l1], [l2]), [M ]) where [ω] is a Kähler class, [M ] is
the fundamental class and ([l1], [l2]) ∈ H2(G,R) is the cup-product composed
with the scalar product H×H → R, is a non-degenerate symplectic structure
on H1(G,H).

Proof. The proof is the same as for finite-dimensional H, once we have the Hodge
theory by the previous lemma. �

We are now ready to prove that the symmetric pairing

H2,g ×H2,g → R

is nondegenerate. Realize G as a lattice in SO(1, 2). Then H1(G, lp(G)) =
W

1/p
p (S1)/const. Recall that the Hilbert transform H is a bounded operator

H : Lp(S1)/const→ Lp(S1)/const (p > 1)

defined as follows. For u ∈ Lp(S1) let f be its harmonic extension to the unit disk
and g the conjugate harmonic function; then Hu = g|S1. Since∫

H2
|∇f |p =

∫
H2
|∇g|p.

H restricts to W 1/p
p (S1) as an isometry.

Now, the symplectic duality
∫
fdg in W 1/2

2 (S1)/const is simply equal to
(Hf, g). Moreover, H is SO(1, 2)-invariant. Then Corollary 1.47 implies that the
pairing of Theorem 1.42 is also nondegenerate.

We still have to prove that Hg,p �= 0 and for p = 2 is infinite dimensional. We
first describe an element of Hg,p associated to a given realization G ↪→ SO(1, 2)
as a cocompact lattice, which we will call a principal state.

Given a smooth compact oriented manifoldM , let Diff1(M) denote the group
of orientation-preservingC1-smooth diffeomorphisms ofM . Then one has a cocycle
l in Z1(Diff1(M), C0(M)) defined as [15]

l(φ) = log
φ∗μ

μ
,
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where μ is any smooth density on M , and φ∗μ a left action. The class [l] ∈
H1(Diff1(M), C0(M)) does not depend on μ. For r ≥ 1 one similarly gets a class in
H1(Diffr(M), Cr−1(M)). Now, letM = Sn−1 and consider the standard conformal
action of SO+(1, n) on Sn−1. We get the class

[l]p ∈ H1(SO+(1, n),W (n−1)/p
p (Sn−1)/const)

for all p > 1 simply because C∞(Sn−1) ⊂W (n−1)/p
p (Sn−1). We claim that [l]p �= 0

for n = 2 and p > n− 1. Since the action is isometric, it follows from the following
lemma (we prove and use it only for n = 2).

Lemma 1.48. Fix z0 ∈ Bn and let r(g) = ρh(z0, g−1z0). Then for any fixed μ,

lim
r(g)→∞

‖l(g)‖
W

(n−1)/p
p (Sn−1)/const

= ∞.

Proof. (Only for n = 2) We choose for μ the harmonic (Poisson) measure μ0,
associated with z0. Then l(g) = log g∗μ0

μ0
. For β ∈ Sn−1,

l(g)(β) = Bβ(z0, gz0)

where Bβ(z0, ·) is the Busemann function of Bn corresponding to β ∈ ∂Bn and
normalized at z0, that is, Bβ(z0, z0) = 0 (see, for example, [18]).

We will make the computation only for n = 2. Let z0 = 0, gz0 = w, then

Bβ(0, w) = log
(
(1− |w|2) · |w − β|−2

)
.

Notice that log | β−w
1−w̄β | = 0, since |β| = 1, so

Bβ(0, w) = log(1 − |w|2)− 2 log |1− w̄β| = −2 log |1− w̄β|(mod const).

Notice that log |1− w̄z| is defined and is harmonic in |z| ≤ 1, so

‖Bβ(0, w)‖p

W
1/p
p (S1)/const

= 2p
∫

B2 [∇(log |1− w̄z)|)]ph dμh

= 2p
∫

B2
|w|p

|1−w̄z|p
1

(1−|z|2)2−p dzdz̄.
(∗)

Sublemma. The integral (∗) grows as log(1− |w|) as |w| → 1.

Proof. Computing in the polar coordinates, we obtain∫ 1

0

dr
1

(1 − r2)2−p

∫ 2π

0

dθ

|1− r|w|eiθ |p .

It is elementary to see that the inner integral grows as 1
(1−r|w|)p−1 , so we arrive at∫ 1

0

dr
1

(1 − r)2−p

1
(1− r|w|)p−1

∼
∫ a

0

ds

s2−p(A+ s)p−1

where a > 0 is fixed and A = 1− |w|. Furthermore, we have (s = At)∫ a/A

0

dt

t2−p(1 + t)p−1
∼

∫ a/A

0

dt

t
∼ log |A|,

which proves the sublemma. �
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Finally,
‖Bβ(0, w)‖

W
1/p
p (S1)/const

∼ [log(1− |w|)]1/p,

where ∼ means that the ratio converges to a constant. �

The proof for n > 2 will be given elsewhere.
Note that for p = 2 we have (for n = 2)

‖l(g)‖
W

1/2
2 (S1)/const

∼ ‖g‖1/2

where ‖g‖ is the hyperbolic length of the (pointed) geodesic loop, representing g.
This exponent in the RHS is the maximal possible. We will prove later a general
theorem (Theorem 3.3) showing that for any orthogonal or unitary representation
of G = π1(Σ) in a Hilbert space H and any cocycle l ∈ Z1(G,H),

‖l(g)‖ ≤ const · length(g)1/2 log log length(g)

as g converges nontangentially to almost all θ ∈ S1 = ∂G.
Returning to the principal states [l]p ∈ H1(G,W (n−1)/p

p (Sn−1)/const), let E
be a flat affine bundle over M = Hn/G with fiber W (n−1)/p

p (Sn−1), associated
with the affine action

g �→ Rg + l(g).

Note that

s : z �→ log
μ(z)
μ(z0)

is a G-equivariant section of the lift of E to M̃ = Hn, or, equivalently, defines a
section of E. We claim that this section is harmonic. This immediately reduces
to the statement that Bβ(z0, z) is harmonic mod constants as a function of z. In
the upper half-plane model this simply means that (x, y) �→ log y is harmonic mod
constants. The harmonic section just defined does not lift to a harmonic section of
the flat affine bundle with fiber W (n−1)/p

p (Sn−1). For n = 2 we can say more. Let

H :W 1/p
p (S1)/const→W 1/p

p (S1)/const

be the Hilbert transform. It makes W 1/p
p (S1)/const into a complex Banach space.

Then a direct inspection shows that the section of E defined above is (anti)holo-
morphic (depending on the choice of a sign of H). The will be used later. Equiv-
alently, ds is an (anti)-holomorphic one-form on H2/G, valued in E. Again, this
holomorphic form does not lift to a d and δ-closed form of a flat bundle with fiber
W

1/p
p (S1) even for p = 2. This latter bundle is a flat bundle with fiber a Hilbert

space, but whose monodromy is not orthogonal. The Hodge theory of [65] and [60]
does not apply and, in fact, not every cohomology class is represented by a d and
δ-closed form. We will discuss these subtle obstructions to the Hodge theory in a
sequel to this paper [110].
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As an application of the computation made above, we will complete the proof
of Lemma 1.15 for p > 1. Let u ∈ W 1/p

p (S1)/const and let f : B2 → R be the
harmonic extension of u. We claim that

|f(w)| ≤ c · [log(1− |w|)]1/p′
.

Since the Hilbert transform is invertible in W 1/p
p (S1)/const, we can assume that

the Fourier coefficients û(n) = 0 for n < 0, so that f is holomorphic:

|f(w)| = | 1
2πi

∫
S1

u(ξ)dξ
ξ−w | = 1

2π |
∫ 2π

0
u(eiθ)eiθ

eiθ−w dθ|
= 1

2π |
∫ 2π

0
u(eiθ)dθ
1−w·e−iθ | = 1

2π |
∫ 2π

0
u(e−iθ)dθ
1−w·eiθ |

= | 1
2πi

∫ 2π

0
[u(e−iθ)·e−iθ ]ieiθdθ

1−weiθ |
= | − 1

2πiw

∫ 2π

0
[u(e−iθ) · e−iθ][log(1− weiθ)]′dθ|

= | − 1
2πiw < u(e

−iθ) · e−iθ, log(1− weiθ) > |
≤ 1

2π|w|‖u(e−iθ)e−iθ‖
W

1/p
p (S1)/const

· ‖ log(1 − weiθ)‖
W

1/p′
p′ /const

≤ c‖u‖
W

1/p
p (S1)/const

| log(1− |w|)|1/p′
.

It is very plausible that the result is also true for u ∈ W
n−1

p
p (Sn−1)/const and

n ≥ 3. Our proof obviously does not work in this case.
We now start to prove thatH2,g is infinite dimensional. LetM0,M

′
0 be factors

generated by the left (respectively, right) actions of G in l2(G) [85]. Notice that
H1(Gl, l

2(G)) can be viewed as the cohomology of the complex

l2(G) d0→
2g⊕

i=1

l2(G) d1→ l2(G), (∗)

computed from the standard CW-decomposition of Σg with one zero-dimensional
cell, 2g one-dimensional cells and one two-dimensional cell. Notice that d0, d1 are
given by matrices with entries in Z[G], acting on l2(G) from the left. Letting
Δl = d0d∗0 + d∗1d1 we can view H1(G, l2(G)) as KerΔl. Notice that Δl ∈ M0. It
follows that H1(G, l2(G)) is a module over M ′

0. Now, since M0 is type II, there is
a decomposition

W
1/2
2 (S1)/const = H1(Gl, l

2(G)) = Ker Δl =
m⊕

j=1

Hm,

for any m ≥ 1 where Hm are isomorphic right G-modules. Since we know al-
ready that H1(Gr ,W

1/2
2 (S1)/const) �= 0, and Hj are all isomorphic, it follows

that H(Gr, Hj) �= 0 for all j, therefore dimH1(G,W 1/2
2 (S1))/const ≥ m. This

concludes the proof of Theorem 1.42. �
There are natural invariant von Neumann algebras acting in H2,g. Indeed,

let M ′
1 be the double commutant of M ′

0 in H1(G, l2(G)) = KerΔl and M1 be
the commutant of M ′

0. We could define M ′
1 as a von Neumann algebra, generated
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by the right action of G in H1(G, l2(G)) and M1 as the commutant of M ′
1. It

follows that M1,M
′
1 do not depend on the choice of the complex (∗) and therefore

Mapg,1 = Aut(G) acts in H1(G, l2(G)) leaving M ′
1,M1 invariant. Now consider

H2,g = H1(Gr , H
1(Gl, l

2(G)). Then

H2,g = Ker Δr :
2g⊕

i=1

H1(Gl, l
2(G)) →

2g⊕
i=1

H1(Gl, l
2(G))

where the right Laplacian is defined exactly as the left one. It follows that H2,g

is a module over M1. Let M2 be the double commutant of M1 and M ′
2 be its

commutant. We proved the following theorem, except for the last statement.

Theorem 1.49. There are infinite-dimensional von Neumann algebras M2, M ′
2 act-

ing in H2,g, which are invariant under the action of Mapg. Moreover, there is an
involution τ of H2,g which commutes with the Mapg-action and permutes M2,M

′
2.

Proof. Everything is already proved except for the last statement. Observe that
there is an involution τ : l2(G) → l2(G) defined by τf(g) = f(g−1). The Lyndon-
Serre-Hochschild spectral sequence of the extension

1 → G→ G×G→ G→ 1

shows that H2,g = H2(G × G, l2(G)). Let σ be the involution of G × G defined
by σ(g, h) = (h, g). Then one has τ [(g, h)v] = (σ(g, h))τ(v) where g, h ∈ G and
v ∈ l2(G). It follows that τ induces an involution, which we also call τ , in H2,g,
which obviously commutes with Mapg-action and permutes M2 and M ′

2. This
completes the proof of Theorem 1.49. �

Note that, since the unitary representation of G in

H1(Gl, l
2(G)) =W 1/2

2 (S1)/const

extends to an irreducible representation of PSL2(R), the commutant M1 of G in
W

1/2
2 (S1)/const possesses a faithful trace defined by

tr(a) · Id =
∫

PSL2(R)/G

gag−1dg.

Proposition 1.50. Let H̃2,g be the completion of M1 under the norm tr xx∗. Then
H̃2,g is a Hilbert space and there is a representation

ρ̃ : Mapg → Aut(H̃2,g),

leaving invariant the nondegenerate form x �→ tr x2.
I do not know at the time of writing if H̃2,g is isomorphic to H2,g as a Mapg-

module.
We now turn to the holomorphic realization of H2,g. Fix a realization of G

as a cocompact lattice in SO+(1, 2), then H2,g = H1(G,W 1/2
2 (S1)/const). Recall

that G commutes with the Hilbert transform in W 1/2
2 (S1)/const. Let S = H2/G,

then S is a hyperbolic Riemann surface, homeomorphic to Σg. For any element w ∈
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H1(G,W 1/2
2 (S1)/const) we have, by Lemmata 1.43 and 1.46, a unique harmonic

form in the flat Hilbert bundle E with fiber W 1/2
2 (S1)/const, associated with the

action of G.
Uniqueness should be explained. We have the following general fact.

Lemma 1.51. Let M be a compact Riemannian manifold and ρ : π1(M) → O(H)
an orthogonal representation on a real Hilbert space, without fixed vectors, [ω] ∈
H1(π1(M), H). Then there is at most one harmonic form, ω ∈ Ω1(M,E), repre-
senting [ω].

Proof. If ω1 �= ω2 are two such forms, then ω1−ω2 is the derivative of a harmonic
section ofM . But the standard Bochner vanishing theorem shows that such section
should be parallel, hence ρ has a fixed nonzero vector. Contradiction. �

Observe that H makes W 1/2
2 (S1)/const into a complex Hilbert space. Then

1
2 (ω − H(ω ◦ J)), where J is a complex structure on S, will be a holomorphic
1-form in E, whereas 1

2 (ω + H(ω ◦ J)) will be an anti-holomorphic 1-form. Let
H±

2,g be the spaces of holomorphic (respectively, anti-holomorphic) 1-forms in E,

then H2,g = H+
2,g

⊕H−
2,g. Now, W 1/2

2 (S1)/const is identified with the space of
exact L2-harmonic 1-forms in the hyperbolic plane H2. The latter is isomorphic as
a complex Hilbert space (with the complex structure, defined by the Hodge star
operator) to the space of exact L2-holomorphic 1-form in H2. Thus, any element
in H+

2,g defines a holomorphic 1-form on S valued in the bundle with fibers L2-
holomorphic 1-forms on H2. In other words, let G act diagonally in H2 ×H2 and

Q = H2 ×H2/G,

then we have an L2-holomorphic 2-form onQ. The spaceH+
2,g therefore is identified

with the space of L2-holomorphic 2-forms on Q. Similarly, H−
2,g is identified with

the space of L2-holomorphic 1-form on

Q′ = H2 ×H2/G,

where H2 is obtained from H2 by reversing the complex structure (i.e., J̄ = −J).
Notice that as complex surfaces, Q and Q′ are not biholomorphic: Q contains a
compact curve (the quotient of the diagonal) whereas Q′ does not. We proved the
following:

Theorem 1.52. (Holomorphic realization of the quantum moduli space). Fix an
embedding G ↪→ SO+(1, 2) as a cocompact lattice. Then H2,g splits as H+

2,g⊕H−
2,g,

where H+
2,g (respectively, H−

2,g) is identified with the space of L2-holomorphic 2-
forms on Q = H2×H2/G (respectively, Q′ = H2×H2/G). Moreover, the splitting
is orthogonal with respect to the canonical symmetric scalar product in H2,g and
the restriction of this scalar product on H±

2,g is positive (respectively, negative).

Example. The principal state [l]2 lies in H−
2,g. We do not know at the time of

writing if H+
2,g = 0.
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1.12. Hp,g as operator spaces and the vacuum vector

In this section we will develop an algebraic and an analytic theory of Hp,g as
spaces of operators between W 1/q

q (S1)/const, which commute with the action of
G. We use rather rough estimates of matrix elements, so the ranges of indices for
which the action is established is certainly not the best possible. We start with
the following

Lemma 1.53. Let u ∈ W 1/p
p (S1) and a ∈ lq(G). Then

∑
a(g)Rgu ∈ W 1/r

r (S1)
where 1

p + 1
q − 1 = 1

r .

Remark. Rg means the action of G inW 1/p
p (S1) (a reminiscent of the actions from

the right in l2(G)).

Proof. Let f be a harmonic extension of u, so that∫
H2
|∇f |p dμh <∞.

By the Young–A. Weil inequality [53], lp ∗ lq ⊂ lr, so if h =
∑
agRgf , we have∫

H2 |∇h|r dμh =
∫

H2/G
dμh(z)

∑
g |∇h(g−1z)|r

≤
∫

H2/G dμh(z)‖∇h(g−1z)‖lr

≤ c ·
∫

H2/G dμh(z)‖a(g)‖lq(G)‖∇f(g−1z)‖lp

≤ c · ‖a(g)‖lq(G)

∫
H2 |∇f |pdμh.

The result follows from the estimate

‖
∑
a(g)Rgu‖W

1/r
r (S1)/const

≤ c · ‖a(g)‖lq(G)‖u‖W
1/p
p (S1)/const

. �

Now recall that we have a canonical pairing

B :W 1/r
r (S1)/const×W 1/r′

r′ (S1)/const→ R,

so that the formula
(u, v) �→ (a �→ B(

∑
a(g)Rgu, v))

defines a map
W 1/p

p (S1)/const×W 1/r′

r′ /const→ lq′
(G).

Now an element of W 1/r′

r′ (S1)/const defines an element of

HomG(W 1/p
p (S1)/const, lq

′
(G))

and the induced map

Hom(H1(G,W 1/p
p (S1)/const, H1(G, lq

′
(G))

= Hom(H1(G,W 1/p
p (S1)/const,W 1/q′

q′ (S1)/const).

In other words, we have a map

H1(G,W 1/p
p (S1)/const) → HomR(W 1/r′

r′ (S1)/const→W 1/q′

q′ (S1)/const),

and it is immediate to check that the image lies in HomG. Thus we have



Analytic Topology of Groups, Actions, Strings and Varieties 47

Proposition 1.54. The construction above defines a Mapg-equivariant map

Hp,g → HomG(W 1/r′

r′ (S1)/const,W 1/q′

q′ (S1)/const)

for p, q′, r′ satisfying 1
p ≥ 1 + 1

q′ − 1
r′ .

The induced map in H1(G, ·) produces a bounded Mapg-equivariant product

Hp,g ×Hr′,g → Hq′,g.

We again stress that the range of indices for which this product is defined should
be improved. We will see that viewing Hp,g as an operator space helps to un-
derstand Mapg-action. We turn now to an analytic description of the above. Let

l ∈ Z1(G,W 1/p
p (S1)/const). The construction of Theorem 1.9 produces a smooth

map
F : H2 →W 1/p

p (S1)/const,

satisfying F (g−1z) = RgF (z) + l(g), g ∈ G, In particular, g∗(∇F )(g−1z) =
Rg(∇F )(z). Now let v ∈ W 1/r′

r′ (S1)/const, where r ≥ p. Then we have a scalar
function

〈F, v〉 : H2 → R,

where 〈·, ·〉 is the pairing

W 1/r
r (S1)/const×W 1/r′

r′ (S1)/const→ R

defined in Theorem 1.23. Since r ≥ p, W 1/p
p (S1) ⊂W 1/r

r (S1), so 〈F, v〉 is defined.
Without further assumption one can only assert that

|∇〈F, v〉| ≤ const.

However, if we assume r > p, say 1
p = 1 + 1

q′ − 1
r′ , then 〈F, v〉 will satisfy∑

g

|∇〈F, v〉(gz)|q′
< const

for all z ∈ H2. Integrating over H2/G, we get∫
H2
|∇〈F, v〉|q′

<∞,

thus there exists 〈F, v〉|S1 ∈W 1/q′

q′ (S1). This defines the desired map

H1(G,W 1/p
p (S1)/const)→ HomG(W 1/r′

r′ (S1)/const,W 1/q′

q′ (S1)/const).

We will use this description now to compute the operator associated with the
principal state

[l]p ∈ H1(G,W 1/p
p (S1)/const).
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Proposition 1.55. For p, r′, q′ > 1, 1
p ≥ 1 + 1

q′ − 1
r′ , the operator in

HomG(W 1/r′

r′ (S1)/const,W 1/q′

q′ (S1)/const),

associated to the principal state [l]p is proportional to the Hilbert transform

H :W 1/r′

r′ (S1)/const→W 1/r′

r′ (S1)/const,

followed by the embedding W 1/r′

r′ (S1) ↪→W 1/q′

q′ (S1).

Proof. First, we observe that the Hilbert transform acts as an isometric operator
in W 1/p

p (S1)/const for all p > 1. This follows at once from the definition of the
norm as

‖u‖ =
∫

H2
|∇f |pdμh,

where Δf = 0 and f |S1 = u (mod const). We will prove the proposition by a
direct unimaginative computation. Let

g(z) =
z + z0
1 + z̄0z

, |z0| < 1, |z| < 1,

so that g(0) = z0. Then the Jacobian of g on the unit circle is

1− |z0|2
|z − z0|2

,

so
l(g) = log(1− |z0|2)− log |z − z0|2.

Let ϕ : S1 → R be smooth. Then

〈ϕ, l(g)〉 =
∫

S1
ϕ′(θ) · [log(1 − |z0|2)− log |eiθ − reiϕ|2]dθ,

where z0 = reiϕ. Obviously,∫
S1
ϕ′(θ) log(1− |z0|2) = 0,

so
〈ϕ, l(g)〉 = −

∫
S1 ϕ(θ) · [log |eiθ − reiϕ|2]′

= −
∫
ϕ(θ) · 2r sin(θ−ϕ)

1+r2−2r cos(θ−ϕ) .

As z0 = reiϕ →
r→1
eiϕ, this integral converges to

−v.p.
∫
ϕ(θ)

2 sin(θ − ϕ)
2 − 2 cos(θ − ϕ) = v.p.

∫
ϕ(θ) · 1

tan θ−ϕ
2

= πHϕ(θ)

almost everywhere on S1. The proposition is proved, since smooth functions are
dense in W 1/r′

r′ (S1). �
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Notice that since H commutes with the action of SO+(1, 2), for any cocy-
cle m ∈ Z1(G,W 1/p

p (S1)/const), Hm is also a cocycle. In particular, H [l]p ∈
H1(G,W 1/p

p (S1)/const). We wish to compute the corresponding operator

Hom(W 1/r′

r′ (S1)/const→W 1/q′

q′ (S1)/const).

Let F , as above, be a smooth map

F : H2 →W 1/p
p (S1)/const,

satisfying F (g−1z) = RgF (z) + lp(g). For v ∈ W 1/r′

r′ (S1) we need to find a limit
on the boundary of 〈HF, v〉. But H respects the pairing 〈·, ·〉 and H2 = −1,
so 〈HF, v〉 = −〈F,Hv〉, whose limit on S1 is πH(−Hv) = πv. We proved the
following lemma:

Lemma 1.56. For p, r′, q′ > 1, 1
p ≥ 1 + 1

q′ − 1
r′ , the operator in

HomG

(
W

1/r′

r′ (S1)/const,W 1/q′

q′ (S1)/const
)
,

associated with 1
πH [l]p, is the identity.

Theorem 1.57.

A. The element v = H [l]2 ∈ H2,g does not depend on the choice of the lattice
G ↪→ SO+(1, 2).

B. The action of Mapg in H2,g fixes v.

Remark. The theorem is, beyond doubt, true for all p > 1 and not only p ≥ 2,
however I cannot prove this at the moment of writing this paper (July, 1999).
(Added January, 2000). This is in fact true. The proof will appear in [110]).

The vector v is called a vacuum vector.

Proof. Consider two embeddings i1, i2 : G → SO+(1, 2) as cocompact lattices
and let v1, v2 be the corresponding vacuum vectors. We view v1, v2 as elements of
H1(Gr, H

1(Gl, l
2(G)). Let A1, A2 be the associated operators

A1, A2 : H1(Gl, l
r′

(G)) → H1(Gl, l
q′

(G)).

We know that A1 = A2 = id. It follows that the operator, associated with v1 − v2
is zero. We are going to show that v1 − v2 is zero. Since

v1 − v2 ∈ H1(Gr, V ),

where
V := H1(Gl, l

2(G)) �W 1/2
2 (S1)/const,

by the result of [65] cited above (Lemma 1.46), there exists a harmonic section F
of the affine Hilbert bundle over M = H2/G with fiber V and the monodromy

g �→ Rg(·) +m(g).
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Here m(g) is any cocycle, representing v1 − v2. Let v ∈ W 1/r′

r′ (S1)/const, then,
denoting by F again the lift of this section on M̃ = H2, we see that 〈F, v〉 is a
harmonic function such that∫

H2
|∇(〈F, v〉)|q′

dμh <∞,

and the trace of 〈F, v〉 on S1 is constant. It follows that 〈F, v〉 is constant itself,
therefore (since v is arbitrary) F = w = const and

m(g) = Rgw − w,
so v1 − v2 = 0. This proves A. Now, if φ ∈ Mapg,1 = Aut(π1(Σg)), simply apply
A to i1 and i1 ◦ φ. �

We wish to compute v. Recall that [l]2 is given by the cocycle

g �→ −2 log |β − w|,
β ∈ S1, w = g(0). This is equal to 2 log |1 − w̄β|. The latter function is the real
part of 2 log(1− w̄z) which is holomorphic in the disk {|z| ≤ 1}. Hence the Hilbert
transform of 2 log |1− w̄β| is 2Arg(1− w̄β). This means that the cocycle

m(g)(β) = 2Arg(W − β) (mod const)

where W = 1/w̄, w = g(0), represents v.

Theorem 1.58. H1(Mapg,1, H
1(Gl, l

p(G))) �= 0 for p ≥ 2.

Proof. We embed G as a lattice in SO+(1, 2) and identify H1(Gl, l
p(G)) and

W
1/p
p (S1)/const. We know that

H0(Mapg, H
1(Gr ,W

1/p
p (S1)/const) � v �= 0.

Notice that H0(Gr,W
1/p
p (S1)/const) = 0 since any G-invariant harmonic 1-form

in H2 has infinite p-energy. So in the spectral sequence

E2
i,j : Hi(Mapg, H

j(Gr,W
1/p
p (S1)/const))

=⇒ Hi+j(Mapg,1,W
1/p
p (S1)/const)

the second differential

d2 : H0(Mapg, H
1(Gr ,W

1/p
p (S1)/const)

=⇒ H2(Mapg, H
0(Gr,W

1/p
p (S1)/const)

must be zero. Therefore the vacuum vector v survives in E∞. �
It is plausible that, in fact,

H1(G1,W
1/p
p (S1)/const) �= 0 (p > 1)

for the group G1 of quasisymmetric homeomorphisms. (Added January, 2000. This
is in fact true. The formula

Φ → ArgΦ−1(β)−Arg(β) mod const
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defines a cocycle of G1 in W 1/p
p (S1)/const for any p > 1. The proof will appear

in [110]).

We will now give an improved version of the theory for p = 2. Recall that
W

1/2
2 (S1)/const is an irreducible unitary (with aspect to the complex structure

given by the Hilbert transform) SO+(1, 2)-module lying in the discrete series. It
follows that it is L2-integrable, that is, Lemma 1.53 holds with p = q = r = 2.
Therefore Proposition 1.54 holds for p = q′ = r′ = 2. In other words, we have a
Mapg-equivariant map

H2,g → EndG(W 1/2
2 (S1)/const)

A left inverse to this map is given by the evaluation on the vacuum vector. There-
fore H2,g is a direct summand in EndG(W 1/2

2 (S1)/const), which is M1 in the
terminology of Section 1.11.

1.13. Equivariant mappings of the Teichmüller Space, the space of quasifuchsian
representations and the space of all discrete representations, into Hp,g

Theorem 1.59. The map which associates to a discrete, faithful cocompact repre-
sentation

G→ SO+(1, 2)
its principal state

[l]p ∈ H1(Gr, H
1(Gl, l

p(G))
is an Mapg-equivariant map of the Teichmüller space Tg to Hp,g for all p > 1.

A. Let ϕ : G → SO+(1, 3) be a discrete and faithful representation. Let αϕ :
S1 → S2 be the limit map of the boundaries

S1 = ∂Σ̃→ ∂H3 = S2,

defined in Section 1.6, associated to ϕ. For p > 2 let

[l]p ∈ H1(SO+(1, 3),W 2/p
p (S2)/const)

be the principle state. Define the map

μ : ϕ �→ Aϕϕ
∗[l]p ∈ H1(Gr , H

1(Gl, l
p(G))),

by first pulling back [l]p to ϕ∗[l]p ∈ H1(G,W 2/p
p (S2)/const) and then applying

the operator

Aϕ :W 2/p
p (S2)/const→W 1/p

p (S1)/const,

induced by αϕ and defined in Section 1.6. Then μ is a Mapg-equivariant map

Homdiscrete(G,SO+(1, 3))/SO+(1, 3)→ Hp,g

for all p > 2.
B. The image of the restriction of μ to

Homquasifuchsian(G,SO+(1, 3))/SO+(1, 3),

is contained in H2,g.
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Proof. The proof is already contained in Sections 1.6–1.12. We observe that from
the operator viewpoint, the map of A sends any realization of G as a lattice in
SO+(1, 2) to the Hilbert transform of W 1/p

p (S1)/const, followed by the identifica-
tion

H1(Gl, l
p(G)) �W 1/p

p (S1)/const,

which depends on the lattice. In other words, fix one lattice embedding

β0 : G→ SO+(1, 2).

Then any other lattice embedding

β : G→ SO+(1, 2)

can be written as
β(g) = Φβ0,ββ0(g)Φ−1

β0,β ,

where Φβ0,β ∈ G1 is a quasisymmetric map. Then the operator, associated with
β is

Φβ0,βHΦ−1
β0,β ∈ Aut(W 1/p

p (S1)/const).

This gives a Mapg-equivariant map

Tg → AutG(W 1/p
p (S1)/const).

For p = 2 one gets a map

Tg → SpG(W 1/2
2 (S1)/const)

because the Hilbert transform and G1-action are symplectic (Section 1.7), which
can be described as follows. First, one embeds Tg in the universal Teichmüller
space

T = G1/SO
+(1, 2).

Then, using the representation,

G1 → Sp(W 1/2
2 (S1)/const)

defined in Section 1.7, one defines an embedding to Sp/U :

T→ Sp(W 1/2
2 (S1)/const)/U

where U is the group of operators in Sp = Sp(W 1/2
2 (S1)/const) which commutes

with H , the latter is regarded as a complex structure on the spaceW 1/2
2 (S1)/const.

Finally, one uses the Cartan embedding Sp/U → Sp. �

Theorem 1.60. (Linearization of pseudo-Anosov automorphisms). Let φ∈Mapg,1 =
Aut(π1(Σg)) be a pseudo-Anosov automorphism. Then for any p > 1 there exists
a nontrivial element Sp ∈ Hp,g with the following properties:

1) For p1 < p2, Sp2 is the image of Sp1 , under the natural map Hp1,g → Hp2,g.
2) Sp is invariant under φ̄ ∈Mapg.
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3) There is a cocycle l̃p ∈ Z1(G,W 1/p
p (S1)/const), representing Sp, such that

for any g ∈ G ∑
n∈Z

‖l̃p(g) ◦ Φn‖
W

1/p
p (S1)/const

<∞

where Φ : S1 → S1 is a quasisymmetric homeomorphism, associated with φ.
In other words, ∑

n∈Z

‖Am
ϕ l̃p(g)‖ <∞

where Aϕ ∈ Aut(H1(Gl, l
p(G)) is induced by φ.

Proof. This theorem is an immediate corollary of Theorems 1.59, 1.28 and 1.31
combined with [122] (see [92] for a complete proof), which shows that the mapping
torus of any homeomorphism Ψ : Σ→ Σ, representing ϕ is a hyperbolic 3-manifold.

�

It is plausible that such Sp is unique up to a multiplier. Knowing Sp is
essentially equivalent to knowing the hyperbolic volumes of all ideal simplices
with vertices on the limit curve S1 → S2.

2. Theory of groups acting on the circle

Our first main result in this chapter is Theorem 2.7 which says, roughly, that a
Kazhdan group cannot act on the circle. This general theorem is a culmination of
many years of study and various special results concerning the actions of lattices in
Lie groups, see [130], [31], [42]. One can see here a historic parallel with a similar,
but easier, general theorem of [3] and [129] concerning Kazhdan groups acting
on trees, which also followed a study of the actions of lattices. Our technique
is absolutely different from the cited papers and uses the fundamental cocycle,
introduced and studied in Section 2.1. We also use standard facts from Kazhdan
groups theory [52].

In Sections 2.2, 2.3 we quantize equivariant maps between boundaries of
universal covers, studied in Section 1.6. Our main tool is the theory of har-
monic maps into infinite-dimensional spaces, as developed in [65], see also [60].
In Section 2.4 we review some facts about Banach–Lie groups and regulators. In
Section 2.5 we describe a series of higher characteristic classes of subgroups of
Diff1,α(S1). We present two constructions. One uses an extension to a restricted
linear group of a Hilbert space of classes originally defined in [33] for infinite Ja-
cobi matrices. The other construction uses the action of a restricted symplectic
group Sp(W 1/2

2 (S1)/const) on the infinite-dimensional Siegel half-space. In both
constructions we use an embedding of Diff1,α into the restricted linear group by
the unitary and symplectic representation of Diff, respectively. Using the geometry
of the Siegel upper half-space, we prove that our classes have polynomial growth.
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There is a striking similarity between the theory of this chapter and the the-
ory of symplectomorphism group, see Chapter 4, [102] and [104]. Note that the
extended mapping class group action is not C1,α-smooth, so the results of this
chapter do not apply to this group. On the other hand, Mapg does act symplecti-
cally on a smooth compact symplectic manifold (i.e., the 2g-dimensional torus).

2.1. Fundamental cocycle

Let Diff1,α(S1) denote the group of orientation-preserving diffeomorphisms with
derivative in the Hölder space Cα(S1), which consists of functions f such that

|f(x)− f(y)| < c|x− y|α.

There is a series of unitary representations of Diff1,α(S1) in L2
C(S1, dθ) given by

(π(g)(f))(x) = f(g−1x) · [(g−1)′(x)]
1
2+iβ , β ∈ R.

We will mostly consider β = 0, in which case one has an orthogonal rep-
resentation in L2

R(S1, dθ). An invariant meaning is, of course, a representation
in half-densities on S1. Now consider the Hilbert transform H as an operator in
L2

R(S1, dθ) given by the usual formula

Hf(ϕ) =
1
π
v.p.

∫
S1

f(θ)
tan ϕ−θ

2

dθ.

We wish to consider [H,π(g−1)]. This is a bounded operator in L2(S1, dθ)
given by an integral kernel which we are going to compute. Observe that

1
tan ϕ−θ

2

=
2
ϕ− θ + smooth kernel.

A computation from [98] shows that

H [π(g)f ](ϕ) =
2
π
v.p.

∫
S1

dθ

ϕ− θ f(g
−1(θ))[(g−1(θ))′]1/2 + smooth kernel ◦ π(g),

so

(π(g−1)Hπ(g)f)(ϕ) = [g′(ϕ)]1/2 · 2
π
v.p.

∫
S1

dθf(g−1(θ))[(g−1(θ))′]1/2

g(ϕ)− θ
+ π(g−1) ◦ smooth kernel ◦ π(g).

Letting θ = g(η) we have

(π(g−1)Hπ(g)f)(ϕ)

= [g′(ϕ)]1/2 2
π
v.p.

∫
S1

f(η) · [g′(η)]1/2

g(ϕ)− g(η) dη + π(g−1) ◦ smooth kernel ◦ π(g)

=
2
π
v.p.

∫
S1

[g′(ϕ)g′(η)]1/2

g(ϕ)− g(η) f(η)dη + π(g−1) ◦ smooth kernel ◦ π(g).
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Finally,
[(π(g−1)Hπ(g)−H)](ϕ)

=
1
π

∫
S1

[g′(ϕ)g′(η)]1/2(ϕ− η)− (g(ϕ)− g(η))
(g(ϕ)− g(η))(ϕ − η) f(η)dη

+π(g−1) ◦ smooth kernel ◦ π(g) + smooth kernel.

(1.1)

For a Hilbert space H and p ≥ 1 we denote by Jp(H) the Shatten class of
operators such that the sum of the pth powers of their singular numbers converges.
By Jp+(H) we mean the intersection of all Jq(H) with q > p.

Now recall that g ∈ Diff1,α(S1). The following proposition sharpens that of
[98] for Diff∞(S1):

Proposition 2.1. A. For α > 1/2, π(g−1)Hπ(g)−H ∈ J2(L2(S1, dθ)).
B. For α > 0, π(g−1)Hπ(g)−H ∈ J1/α+(L2(S1), dθ).

Proof. As ϕ− η → 0,

[g′(ϕ)g′(η)]1/2(ϕ− η)− (g(ϕ)− g(η))
(g(ϕ)− g(η))(ϕ − η) < const · (ϕ− η)α−1,

so the kernel in (1.1) is in L2(S1 × S1, dθ ⊗ dθ) for α > 1/2. This proves A.
To prove B we notice that by [96], the estimate on the kernel implies that

the operator lies in J1/α+. Strictly speaking, the conditions of [96] require C∞

smoothness off the diagonal, whereas we have only the Hölder continuity, but the
result stays true. �

Observe that GL(L2(S1, dθ)) acts in Jp by conjugation. We deduce the fol-
lowing

Proposition 2.2. The map

l : g �→ π(g)Hπ(g−1)−H
is a 1-cocycle of Diff1,α(S1) in Jp(L2(S1, dθ)) for p > 1/α. In particular, l is a
1-cocycle of Diff1,α(S1) in J2 for α > 1/2.

We will call l the fundamental cocycle of Diff1,α(S1).

Now let G be a subgroup of Diff1,α(S1). We obtain a class in

H1(G, Jp(L2(S1, dθ))

by restricting l to G. We are going to show that this class is never zero, except for
completely pathological actions of G on S1.

Proposition 2.3. Let G be a subgroup of Diff1,α(S1), 0 < α < 1. Suppose p > 1/α.
If [l] ∈ H1(G, Jp) zero, then the unitary action of G in L2

C(S1, dθ) is reducible.
Moreover, if H1(G, Jp) = 0 then L2

C(S1, dθ) a direct sum of countably many closed
invariant subspaces.
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Proof. If [l] = 0 then there is A ∈ Jp such that

π(g)Hπ(g−1)−H = π(g)Aπ(g−1)−A.
Hence [π(g), H − A] = 0. Since H has two different eigenvalues with infinitely-
dimensional eigenspaces, H − A �= const · Id, so the action of G in L2

C(S1, dθ) is
reducible.

Next, consider the operator R in L2(S1, dθ) with the kernel

K(ϕ, η) =
1

| tan ϕ−η
2 |
.

One sees immediately that R is a self-adjoint unbounded operator. Repeat-
ing the computation above, we deduce that π(g)Rπ(g−1) − R ∈ Jp, so l̃(g) =
π(g)Rπ(g−1) − R is another cocycle. If this cocycle is trivial, then we get an un-
bounded self-adjoint operator R − A which commutes with the action of G. An
application of the spectral theorem shows that L2(S1, dθ) is a countable sum of
invariant subspaces. �

Corollary 2.4. The restriction of l, l̃ to SO+(1, 2) is not zero, for all α > 0.

Proof. SO+(1, 2) acts in L2
C(S1, dθ) as a representation of the principal series,

which are irreducible. �
We now specialize to α = 1/2 and p = 2. Since [l̃] ∈ H1(SO+(1, 2), J2) is

nonzero, ‖l̃(g)‖J2 is unbounded as a function of g [52]. In fact, one has the following

Proposition 2.5. Let π : SO+(1, 2) → U(H) be a unitary representation and let
l : SO+(1, 2)→ H be a continuous cocycle. Suppose [l] �= 0. Then:

A. For any cocompact lattice G ⊂ SO+(1, 2), [l]|G �= 0.
B. ‖l(gn)‖ is unbounded as n→∞ for any hyperbolic g.
C. ‖l(γn)‖ is unbounded as n→∞ for any parabolic γ �= 1.

Proof. Let V ⊂ SO+(1, 2) be compact and such that V · G = SO+(1, 2). For
v ∈ V, g ∈ G we have

l(vg) = π(v)l(g) + l(v),
so ‖l(vg)‖ ≤ ‖l(g)‖+ ‖l(v)‖. If l|G is bounded, then so is l. This proves A. Next,
let P be the image of SO+(1, 2)/K under the Cartan embedding, where K is a
maximal compact subgroup. For the same reason as above, l|P is unbounded. Let
S1 ⊂ P be a nontrivial orbit of K in P ≈ H2. Notice that P is closed under raising
into an integral power and there is a compact V ⊂ SO+(1, 2) such that

P ⊆
⋃
n≥1

(S1)n · V

where (S1)n is the image of S1 under raising to the nth power. We deduce that
l| ∪n≥1 (S1)n is unbounded. Let γ ∈ S1. Then any element in (S1)n is of the form
kγnk−1, k ∈ K, so

‖l(kγnk−1)‖ ≤ ‖l(k)‖+ ‖l(k−1)‖+ ‖l(γn)‖.
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Thus ‖l(γn)‖ is unbounded. Since γ can be any hyperbolic element, B follows.
Notice that we proved that ‖l(gk)‖ is unbounded for any sequence gk ∈ P , which
escapes all compact sets. Now let g ∈ SO+(1, 2) be parabolic �= 1, and let τ
be the involution fixing K. Then τ(gn) · g−n ∈ P and escapes all compact sets,
so ‖l[(τgn) · g−n]‖ is unbounded. It follows that either ‖l(τgn)‖ or ‖l(g−n)‖ is
unbounded. But all parabolics are conjugate in SO+(1, 2), so C follows. �

Proposition 2.6. Let G ⊂ Diff1,α(S1), α > 1/2. Suppose that G contains an
element g which is conjugate in Diff1,α(S1) to a hyperbolic or a nontrivial parabolic
fractional-linear transformation. Then [l]|G �= 0 in H1(G, J2).

Proof. Any such g is conjugate in Diff1,α(S1) to an element g′ ∈ SO+(1, 2) for
which ‖l(g′n)‖ is unbounded, so ‖l(gn)‖ is unbounded as well. �

We are ready to formulate the main result of this section.

Theorem 2.7. Let G ⊂ Diff1,α(S1), α > 1/2. Suppose that one of the following
holds:

1) The natural unitary action (β = 0) of G in L2(S1, dθ) given by

π(g)(f)(ϕ) = f(g−1(ϕ)) · [(g−1(ϕ))′]1/2,

is irreducible or is a direct sum of finitely many irreducible factors.
2) G contains an element, conjugate in Diff1,α(S1) to a hyperbolic fractional-

linear transformation.
3) G contains an element conjugate in Diff1,α(S1) to a parabolic (�= 1) fractional-

linear transformation.

4) sup
g∈G

∫
S1

∫
S1

[√
g′(ϕ)g′(η)(ϕ− η)− (g(ϕ) − g(η))

(g(ϕ)− g(η))(ϕ − η)

]2

dϕdη = ∞.

Then G is not Kazhdan.

Proof. The proof follows from the formula (1.1) on page 55 and Propositions 2.3,
2.5 and 2.6. �

Remark. The above proof shows that H1(G, J2) �= 0. In order to conclude that
G is not Kazhdan, one also has to introduce a G-invariant structure of a Hilbert
space on J2. We refer the reader to [88, 89] for a generalization of Reznikov’s ideas.

2.2. Construction of N = 2 quantum fields with lattice symmetry

It is possible that the physical space-time is discrete. Accordingly, in the axiomatic
quantum field theory it is possible that the fields are invariant not under the whole
Poincaré group, but only under a lattice in it. See [7] in this respect. We are going
to construct mathematical objects, which yield such invariance on one hand, and
quantize the equivariant measurable maps considered in Chapter 1, Section 1.6,
on the other. Below H is the Hilbert transform.
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Theorem 2.8. Let G be a cocompact lattice in SO+(1, 2). Let H = L2
R(S1, dθ) with

the orthogonal action π, corresponding to β ∈ R. Then there exists a measurable
map to the space of bounded operators

S1 ρ→ B(H)

with the following properties:

1) Equivariance: for s ∈ S1 and g ∈ G

ρ(gs) = π(g)ρ(s)π(g−1)

almost everywhere on S1.
2) One has ∫

S1
(ρ(s)−H)ψ(s)ds ∈ J2

for ψ ∈ C∞(S1).
3) There exists J ∈ J2(H) such that ρ(s) is a weak nontangential limit

ρ(s) = lim
g→s
π(g)(H + J)π(g−1)

as g ∈ G converges nontangentially to s ∈ S1 = ∂G a.e. on S1.

Proof. As a Hilbert space with orthogonal G-action,

J2 = L2(S1 × S1, dθ ⊗ dθ).

By the proof of Lemma 1.43 in Chapter 1,G does not have almost invariant vectors
in J2. Let Σ = H2/G and let E be a flat affine vector bundle over Σ with a fiber
J2 and monodromy

g �→ Adπ(g) + l(g).

Then by a result of [65], and [60, Lemma I.11.6], there exists a harmonic map

f̃ : H2 → J2
satisfying

f̃(gx) = π(g)f̃ (x)π(g−1) + l(g)

Consider f(x) = f̃(x) +H . Then

f(gx) = π(g)f(x)π(g−1),

in particular, ‖f(x)‖ is bounded in the operator norm. The operator version of
the Fatou theorem, see [86] and references therein, shows that f has nontangential
limit values a.e. on S1, say ρ(s). Obviously, ρ is G-invariant. On the other hand,
f̃ is a Bloch harmonic J2-valued function, that is,

sup
x∈H2

‖∇f̃‖J2 <∞.
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It follows that ‖f̃(w)‖J2 < c·log(1−|w|), w ∈ B2 = H2. This implies by a standard
argument (see, e.g., [45] that f̃ has a limit on S1 as an element of D′(S1, J2). So
for ψ ∈ C∞(S1), ∫

S1
(ρ−H)ψ ∈ J2,

which proves the theorem. �
Remarks. 1) As was mentioned above, the invariant meaning of the representation
π is that L2(S1, dθ) should be regarded as the space of half-densities. Accordingly,
an integral operator is defined by a kernel which is a half-density on S1×S1 of the
type K(ϕ, η)(dϕdη)1/2 . If K(ϕ, η) is smooth and has a zero of the second order
on the diagonal Δ ⊂ S1 × S1, then one has an invariant definition of its residue
or second derivative, which is a quadratic differential. A direct computation which
we leave to the reader shows that for g ∈ Diff∞(S1):

i) l(g) = π(g)Hπ(g−1)−H is given by a kernel which has a zero of second order
on Δ.

ii) The corresponding residue S(g) is the Schwarzian of g.
This shows that l(g) is a quantization of the Schwarzian cocycle. The operator
field ρ(s) of Theorem 2.8 seems therefore to be related to objects axiomatized, but
not constructed, in [8].

2) The theorem and its proof stay valid for any representation

ϕ : G→ Diff1,α(S1),

α > 1/2, such that the action on S1 × S1 satisfies the very mild conditions of
Lemma 1.43 in Chapter 1.

2.3. Construction of N = 3 quantum fields with lattice symmetry

The theory developed have for Diff(S1) does not generalize to Diff(Sn), for n ≥ 2.
The reason is that the action of Diff(S1) on S1 is conformal. There are two ways to
generalize various aspects of the theory to higher dimensions, by either considering
SO+(1, n) acting on Sn−1 or, very surprisingly, the group of symplectomorphisms
of a compact symplectic manifold M (see Chapter 4). Here we consider the action
of SO+(1, 3) � PSL2(C) on S2. We let d(x, y) denote the spherical distance on S2.
Let dθ denote the spherical measure and let H = L2(S2, dθ). For g ∈ SO+(1, 3) let
μg(x) denote the conformal factor, that is μ2

g(x) is the Jacobian of g with respect
to dθ. The formula

π(g)f(x) = f(g−1(x)) · μ1+iβ
g−1 (x), β ∈ R,

defines a unitary representation of SO+(1, 3) in H. Now we introduce the operator
H with the kernel

K(ϕ, θ) =
1

d2(ϕ, η)
.

This operator is self-adjoint and unbounded. Our goal is to compute

π(g)Hπ(g−1)−H = l(g).
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Proposition 2.9. l(g) ∈ J2 for all g ∈ SO+(1, 3) and β = 0.

Proof. The proof is a direct computation. One needs to show that as d(x, y) → 0,

d2(g(x), g(y))− μg(x)μg(y)d2(x, y)

is of order d4(x, y). In other words, for a fractional-linear transformation g of C
one needs to show that as x→ y, Im x, Im y > 0, g(x) = x,∣∣∣∣∣g(x)− g(y)g(x)− g(y)

∣∣∣∣∣
2

− |g′(x)||g′(y)| Im y
Im g(y)

∣∣∣∣x− yx− ȳ

∣∣∣∣2
is of order |x − y|4. This verifies the result for the hyperbolic metric instead of
spherical metric, which is of course equivalent. One computes directly using the
Taylor series for the holomorphic function g. �

Now arguing as in Section 2.2 we arrive at the following result:

Theorem 2.10. Let G be a cocompact lattice in SO+(1, 3). Let H = L2
R(S2, dθ) with

the orthogonal action of G corresponding to β = 0. Then there exists a harmonic
map

H3 ψ→ J2(H)

with the property that z �→ ψ(z) +H is equivariant:

ψ(gz) +H = π(g)(ψ(z) +H)π(g−1)

for all g ∈ G and z ∈ H3.

Since H is unbounded, the boundary value of ψ(z) + H does not exist as
a measurable map to the space of bounded operators. It is possible that there
is a more clever choice of a conformally natural singular integral operator which
is bounded, but I don’t know how to do it. Note in this respect that there is
a very different realization of the orthogonal representation of SO+(1, 3) in the
space of functions on S2, discovered in [101]. Namely, look at the natural action
of SO+(1, 3) on the smooth half co-densities, that is, sections of

√
Λ2TS2. Using

the spherical metric, we can identify this space with C∞(S2). Then the above-
mentioned action leaves invariant a nonnegative quadratic form

Q(f) =
∫

S2
((Δf)2 − 2|∇f |2)dArea

whose kernel consists of constants and linear functions. It is possible that there are
G-equivariant quantum fields valued in operators acting on the associated Hilbert
space.
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2.4. Banach-Lie groups and regulators: an overview

A Banach–Lie group is a Banach manifold with a compatible group structure. The
usual Lie theory largely extends to this case. In particular, if G is a Banach–Lie
group and g is its Banach-Lie algebra, then a continuous n-cocycle on g defines a
left-invariant closed form on G, so that one has a homomorphism

Hn
cont(g,K)→ Hn

(G,K)

whereH∗
 is the cohomology of a topological space. In [102] we defined K-homotopy

groups of a Lie algebra, so that there is a map

πi(G)⊗ K → πi(g)

which in the case G = SLn(C∞(M)), M a compact manifold, n � 1, reduces to
the Chern character

K
i (M)→ HCi(C∞(M)) = Ωi(M)/dΩi−1(M)⊕Hi−2(M,K)⊕ · · ·

(G is not a Banach-Lie group but a Fréchet-Lie group in this case). More interesting
is a secondary class (= regulator) map. Define the algebraic K-theory of G as

Kalg
i (G) = πi((BGδ)+)

and the augmented K-theory as a kernel of the map Kalg
i → K

i :

0→ Kalg

i (G) → Kalg
i (G) → πi(BG) = πi−1(G).

Then the regulator map is a homomorphism

r : K
alg

i (G) → coker(πi(G)⊗K → πi(g)).

Lifting this map to the cohomology, that is, constructing a map

H∗
cont(g,K)→ H∗(Gδ,K),

meets obstructions described in the van Est spectral sequence. If K ⊂ G is a closed
subgroup such that G/K is contractible, then these obstructions vanish and one
gets a map

H∗
cont(g, k)→ H∗(Gδ)

given explicitly by a Dupont-type construction [28]. This is essentially the same
as the geometric construction of the secondary classes of flat G-bundles, described
in [103]. In case G = SLn(C∞(M)) this gives the usual regulator map in the al-
gebraic K-theory. However, for various diffeomorphism groups one construct new
interesting classes. For the symplectomorphism groups, two series of classes, men-
tioned in the Introduction to Chapter 4, were constructed in [102] and [104], and
a new class associated to a Lagrangian submanifold, will be constructed in Chap-
ter 4. The symmetric spaces for Sympl(M), used in [102] are sort of continuous
direct products of finite-dimensional Siegel upper half-spaces. On the other hand,
the symmetric space which we will use in this chapter to construct classes in
H∗(Diff1,α(S1)) is an infinite-dimensional Siegel half-space. The trouble is, how-
ever, that, for a compact manifold Y , (say, S1) the group of diffeomorphisms of
finite smoothness, like Diffk(Y ), is not a Banach-Lie group: the multiplication
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from the right is not a diffeomorphism (the multiplication from the left is). This
is neatly explained in [1]. Luckily, to construct secondary classes we only use the
fact that the multiplication from the left is a diffeomorphism.

2.5. Characteristic classes of foliated circle bundles

It is well known that the continuous cohomology of Diff∞(S1) is generated by the
Euler class and by the integrated Godbillon-Vey class, see [40], [34] and references
therein. Moreover, the square of the Euler class is zero. This already shows that
the degree of smoothness is crucial. For if one considers the action of the extended
mapping class group

Mapg,1 ↪→ G1 ↪→ Homeo(S1),

then the pull-back of the Euler class has nonzero powers to a degree which goes
to infinity with g [80], [77], [84]. It appears that the scarcity of the cohomology
of Diff(S1) is a consequence of the (artificial) restriction of excessive degree of
smoothness. Notice that the proofs in [34] depend hopelessly on C∞- smoothness.
We will give two constructions of a series of new classes in H∗(Diff1,α(S1)), 0 <
α < 1, using both the unitary representation in L2(S1, dθ) and the symplectic
representation in Sp(W 1/2

2 (S1)/const). As in the case of the powers of the Euler
class, nonvanishing of these classes is an obstruction to smoothability, i.e., to a
conjugation to a subgroup of Diff∞(S1). We will also prove that our classes are
of polynomial growth if α > 1/2. A related result (but not the argument) for C∞

Gelfand-Fuks cohomology in all dimensions is to be found in [20]. Both in spirit
and technology, the construction of the classes in H∗(Diff1,α(S1)) resembles our
construction of a series of classes in Hk

cont(Sympl(M),R), k = 2, 6, 10, . . . , where
M is a compact symplectic manifold and Sympl(M) is its symplectomorphism
group [104].

We start with the construction using the unitary representation. By Propo-
sition 2.1, π(g)Hπ(g−1)−H ∈ Jp where g ∈ Diff1,α(S1), p > 1/α, π is a unitary
action in L2

C(S1, dθ), and H is the complexification of the Hilbert transform. In
other words, H(einθ) = sgn(n)·einθ . The subgroup of Φ ∈ GL(H), H = L2

C(S1, dθ)
such that ΦHΦ−1−H ∈ Jp will be denoted GLJp(H), following [98]. The unitary
subgroup ofGLJp(H) is denoted UJp(H). LetH+,H− be the eigenspaces ofH with
the eigenvalues +1 and −1 respectively. Let GrJp(H) denote the restricted Grass-
manian UJp/U(H+)× U(H−). Then GrJp(H) is a Banach manifold, modelled on
the Banach space Jp. The Banach-Lie group GLJp(H) acts smoothly on GrJp(H).
On the other hand, though Diff1,α(S1) is a group and a Banach manifold, it is
not a Banach-Lie group [1]. However, multiplication from the left Lg(h) = gh is a
diffeomorphism (but not the multiplication from the right). The embedding

Diff1,α(S1)→ UJp → GLJp(H)

is not continuous. However, the induced action of Diff1,α(S1) onGrJp(H) is smooth
[98].
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We will introduce a series of UJp-invariant differential forms on GrJp(H).
These forms induce cohomology classes in the Lie algebra cohomology

H∗(Lie(UJp)),

extending the classes introduced in [33] for the Lie algebra of Jacobi matrices.
Notice that the tangent space to the origin of GrJp(H) can be identified with the
space of matrices of the form

C =
(

0 B
A 0

)
where A ∈ Jp(H+,H−) and B ∈ Jp(H−,H+). Let

C1, . . . , C2k, (k odd)

be a collection of such matrices. Define

μk(C1, . . . , C2k) =
∑

σ∈S2k

sgn(σ)Pk(ρ(Cσ(1), Cσ(2)), . . . , ρ(Cσ(2k−1), Cσ(2k)) (†)

where Pk is the kth invariant symmetric functions of k matrices, which is a po-
larization of tr Ak (not an elementary symmetric polynomial, as in [34]). Now,
ρ(C1, C2) is defined as follows: let π(C) be the left upper corner of C, i.e., an
operator in B(H+). Then

ρ(C1, C2) = π([C1, C2])− [π(C1), π(C2)].

The “meaning” of π is that of a connection of a principal bundle on something like
the classifying space of the Lie algebra Lie(GLJp), and of ρ is that of the curvature
of this connection. Then μk becomes a characteristic class, somewhat analogous
to the characteristic classes in the standard Chern–Weil theory. Note that μk is
defined for all k ≥ [1/α] + 1. In [33], ρ(C1, C2) ∈ gl(∞,K) and μk is defined for all
k. The form μ2 defines the famous “Japanese cocycle”, [126].

Lemma 2.11. μk is UJp-invariant and closed.

Proof. The invariance is obvious. The proof of closedness is standard and left to
the reader, see the remarks above and [33]. �

Pulling back to Diff1,α(S1) (this is possible by the remarks made above) we
obtain a left-invariant closed differential form on Diff1,α(S1). Pulling back to the

universal cover D̃iff
1,α

(S1), we obtain a left-invariant closed differential form μ̃k

on D̃iff
1,α

(S1). The next theorem follows:

Theorem 2.12. The secondary characteristic class, corresponding to μ̃k is a well-
defined class r(μ̃k) in H2k([D̃iff

1,α
]δ,R).

Proof. The group D̃iff
1,α

(S1) is contractible. �
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Observe that for α > 1/2, the class μ1 ∈ H2(Diff1,α(S1)) is just the integrated
Godbillon-Vey class.

Our second construction uses the symplectic action. For simplicity, we only
treat the case α > 1/2. Recall (Corollary 1.24 in Chapter 1) that G1 acts symplec-
tically in V = W 1/2

2 (S1)/const. Restricting to Diff1,α(S1), we obtain a represen-
tation

Diff1,α(S1) π→ Sp(V ).

Let H be the Hilbert transform in V , normalized so that H2 = −1. Denote by
SpJp the subgroup of operators A ∈ Sp(V ) such that [A,H ] ∈ Jp. Let U = U(V )
denote the unitary group of A such that [A,H ] = 0. Denote by

X = SpJp/U

the restricted Siegel half-space. This is a Banach contractible manifold [93]. For
p = 2 this is a Hilbert manifold with the canonical SpJ2-invariant Riemannian
metric of nonpositive curvature. The metric is defined as follows. The tangent
space TH(X) is identified with the space of operators A such that A ∈ Lie(SpJ2)
and AH = −HA. It follows that A ∈ J2, and A = A∗. Then the metric is defined
as trA2. This definition is dimension-free and so the proof that the curvature is
nonpositive follows from the explicit formulae, as in finitely-dimensional case.

Lemma 2.13. For α > 1/2, π(Diff1,α(S1)) ⊂ SpJ2(V ).

Proof. We will use the computation of [113]. Let g ∈ Diff1,α(S1). We need to show
that

S =
∑

n,m>0

m

n

∣∣∣∣∫
S1
ei(ng(θ)+mθ) dθ

∣∣∣∣2 <∞.
As in [113] we have, using a trick of Kazhdan,

S =
∞∑

N=1

N−1∑
m=1

m

n

∣∣∣∣∫
S1
eiNϕ · [g−1

β ]′(ϕ)dϕ
∣∣∣∣2 ,

where β = n
N , n = N − m, gβ(θ) = βg(θ) + (1 − β)θ, θ ∈ S1 = R/2πZ. For

0 ≤ β ≤ 1, g−1
β are uniformly in Diff1,α(S1) with α > 1/2, so∫

S1
eiNϕ[g−1

β ]′(ϕ) dϕ ≤ const ·N−α · cN

with
∑∞

N=1 c
2
N <∞. Since

∑N−1
m=1

m
n ∼ logN , we have

S ≤ const ·
∞∑

N=1

N logNN−2α · c2N <∞. �
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Now let k be odd, A1, . . . , A2k ∈ TH(X), we define νk to be the form μk

defined in (†) restricted to the Lie subalgebra of symplectic matrices. It necessarily
vanishes for even k, so only odd k remain.8

Lemma 2.14. νk is closed and SpJ2-invariant.

Proof. The proof is identical to the finite-dimensional case, see [14]. �

Theorem 2.15. The secondary characteristic class corresponding to νk, defines an
element r(νk) in H2k

cont(SpJ2(V )) and in H2k([Diff1,α(S1)]δ,R), α > 1/2. All these
classes are of polynomial growth.

Proof. Only the last statement needs a proof. For points x0, . . . , xs ∈ X define the
geodesic span σ(x0, . . . , xs) inductively as follows:

σ(x0, x1) is the geodesic segment joining x0 and x1.
σ(x0, . . . , xs) is the union of geodesic segments joining x0 and points of

σ(x1, . . . , xs).
By the standard comparison theorems

Vols(σ(x0, . . . , xs)) ≤ const · [ max
0≤i≤j≤s

ρ(xi, xj)]s,

where ρ(·, ·) is the distance function (this is where we use non-positive curvature).
By [28], r(νk) can be represented by a cocycle

g1, . . . , g2k �→
∫

σ(x0,g1x0,g1g2x0,...,g1,g2···g2kx0)

νk

where gi ∈ SpJ2 and x0 ∈ X is fixed. Since νk is uniformly bounded, the result
follows. �

We will give an independent proof of polynomial growth of

μ2 ∈ H2(Diff1,1(S1)).

Let Var(S1) be a space of functions of bounded variation on S1 mod constants.
Then for f1, f2 ∈ Var(S1),∫

S1
f1 · d f2 ≤ c‖f1‖Var · ‖f2‖Var.

Now, Homeo(S1) acts isometrically in Var(S1) and there is a cocycle ψ ∈
H1(Diff1,1(S1),Var) given by g �→ log(g−1)′. By an formula of Thurston, μ2 can
be represented as ∫

S1
ψ(g1) dψ(g2).

The result now follows from Lemma 1.1 in Chapter 1. For μ2 as a class in
H2(Diff∞(S1)) see also [20]. �

8The Editors are grateful to Boris Tsygan for clarifying the definition of the form νk which was
absent in the original version of the paper.
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2.6. Examples

A typical example of a subgroup of Diff1,α(S1) is the following. Let K ⊂ R be
a subfield (i.e., a number field). Let S1(K) denote the set of K-rational points
of S1 ⊂ R2. Define GK as the group of C1-diffeomorphisms g such that there
are points x0, . . . , xn = x0 ∈ S1(K) in this order such that gk = g|[xk,xk+1] is
the restriction of an element of PSL2(K). The C1-condition simply means that
g′k(xk+1) = g′k+1(xk+1). Then automatically GK ⊂ Diff1,1(S1). Groups of this
type, or rather their obvious analogues which act by piecewise-affine transfor-
mations on S1 viewed as R/Z, appeared in [119], [46], [19], etc., where various
properties were studied. The “proper” Thompson group can be smoothed, that
is, embedded in Diff(S1) [43] so that the Theorem 2.7 applies. However, it also
acts on a tree so it is not Kazhdan already by the result of [3], [129]. Generally
speaking, subgroups of Diff1,α(S1), like the ones described above, do not have any
obvious action on a tree and one needs our Theorem 2.7 to show that they are
not Kazhdan. A parallel theorem for the symplectomorphism groups will be given
in Chapter 4. Note also that the proof that our characteristic classes constructed
in Section 2.5 are in polynomial cohomology agrees with a recent result on the
growth of the Dehn function of the Thompson group [50].

3. Geometry of unitary cocycles

In this chapter we return to the asymptotic geometry of finitely generated groups.
If G is not Kazhdan, then an orthogonal cocycle l ∈ Z1(G,H) should be viewed
as a way to linearize the geometry of G. Our first result is a convexity theorem 3.1
which says that the map of G into the Hilbert space H given by l coarsely respects
the geometry in a sense that inner points of big “domains” in G are mapped inside
the convex hull of the image of boundary points.

We have seen in Chapter 1 that primitive functions F : G → R of cocycles
in Z1(G, lp(G)) of a surface group satisfy

|F(g)| < c · length(g)1/p.

Here, we start a general study of cocycle growth. We show in Theorem 3.3 that
for any orthogonal cocycle l : G→ H,

‖l(g)‖ < c(θ)[length(g) log log length(g)]1/2

for almost all θ ∈ ∂G � S1 and g converging to θ nontangentially. We use in the
proof a modified version of Makarov’s law of iterated logarithm. The result extends
to all complex hyperbolic cocompact lattices of any dimension.

Using another deep result of Makarov, we show the following in Theorem 3.5.
Let G be a surface group, β : G→ Z a surjective homomorphism and G0 = Kerβ.
Then the conical limit set of G0 has Hausdorff dimension 1, in particular, the
critical exponent δ(G0) = 1. We do not know if this set has a full Lebesgue
measure (it is certainly a doable problem).
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Remark. More generally, if G is a discrete group of isometries of a CAT (−1) space,
H ⊂ G is a normal subgroup such that G/H is amenable, then δ(H) = δ(G), see
[111].

Notice that the proof of Lemma 1.48 in Chapter 1 shows that the estimate
on ‖l(g)‖ is essentially sharp. It also shows that this estimate does not hold in
other Banach spaces. However, imposing various restrictions on a Banach space,
one still hopes to get an estimate, reflecting a fine structure of G.

3.1. Smooth and combinatorial harmonic sections

Let G be a finitely generated group, π : G → O(H) an orthogonal representation
without almost invariant vectors and l : G→ H a nontrivial cocycle (with respect
to π). If M is a compact Riemannian manifold with π1(M) = G (so that G is
finitely presented) then one forms a flat affine bundle E over M with fiber H and
monodromy

g �→ (v �→ π(g)v + l(g)).
A result of [65] and [60, Lemma I.11.6] states that there is a harmonic section

f of E. IfM is Kähler then there is another cocyclem : G→ H so that the complex
affine bundle E ⊗ C with the monodromy

g �→ (v + iw �→ π(g)v + iπ(g)w + l(g) + im(g))

admits a holomorphic section. Our first result is a combinatorial version of this
theorem.

Let {γi} be a finite set of generators for G. Let V be the space of “sections”,
that is, G-equivariant maps

f : G→ H.
This simply means that f(g−1x) = π(g)f(x) + l(g). Obviously, every such map
is determined by f(1) ∈ H. Therefore, V ≈ H. The combinatorial Laplacian is
defined as

�f(x) =
∑

i

f(γix) + f(γ−1
i x)− 2f(x).

Theorem 3.1. There exists an equivariant map f : G→ H with �f = 0.

Proof. Let v = f(1), then f(x−1) = xv + l(x). Therefore

�f(x−1) =
∑
f(γix−1) + f(γ−1

i x
−1)− 2f(x−1)

=
∑
xγ−1

i v + l(xγ−1
i ) + xγiv + l(xγi)− 2xv − 2l(x)

=
∑
x(γ−1

i v + γiv − 2v) +
∑
xl(γ−1

i ) + l(x)+
+xl(γi) + l(x)− 2l(x)

= x
∑

(γ−1
i + γi − 2)v + x

∑
[l(γ−1

i ) + l(γi)],

so that we need only to solve the equation∑
(γ−1

i + γi − 2)v = −
∑

[l(γ−1
i ) + l(γi)].

Notice that �̃ : H → H defined by v �→∑
(γ−1

i +γi−2)v is self-adjoint. Moreover,
since �̃ = −

∑
(π(γi) − 1)∗(π(γi) − 1), �̃ is nonpositive and if 0 ∈ spec(�̃), then
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π : G → O(H) has almost invariant vectors. Therefore, �̃ is invertible and the
result follows. �

3.2. A convexity theorem

We keep the notation of 3.1. Any cocycle l : G→ H can be seen as an “embedding”
of G in the Hilbert space. If ‖l(g)‖ → ∞ as length(g)→∞, then this embedding is
uniform in the sense that ‖l(g)− l(h)‖ → ∞ as ρ(g, h)→∞ for any left-invariant
word metric on G.9

For instance, Proposition 1.7 in Chapter 1 implies that any group G acting
discretely (but possibly not cocompactly) on an Hadamard manifold of pinched
negative curvature, admits a uniform embedding into lp(G) for some p ∈ (1,∞).
We are, however, interested in a finer geometry of the cocycle embeddings.

For a finite A ⊂ G and C > 0, the C-interior intC(A) is defined as {x|ρ(x, y) <
C ⇒ y ∈ A}. The C-boundary ∂C(A) is defined as A\intC(A).

Theorem 3.2. Let π : G → O(H) be an orthogonal representation without almost
invariant vectors. Let l : G → H be a cocycle for π. Then there are constants
C1, C2(l) > 0 such that for any finite A ⊂ G and any x ∈ A,

distH(l(x)− conv(l(∂C1A))) ≤ C2. (∗)
Proof. Let f : G → H be an equivariant harmonic map of Theorem 3.1. Since
‖f(x−1)− l(x)‖ = ‖f(1)‖ = const, we can replace (∗) by the condition

distH(f(x)− convf(∂C1(A)) ≤ C′
2,

where however, one uses the right-invariant word metric on G in the definition of
∂C(A). This result follows from the maximum principle for harmonic functions.
Indeed, let x ∈ intC1(A) be such that distH(f(x) − convf(∂C1(A))) is maximal
possible (and > C2) (the choice of C1, C2 will be made later). Let v be a unit
vector, such that

(f(x)− y, v) = distH(f(x) − convf(∂C1(A))

for some y ∈ convf(∂C1(A)). Let h(z) = (f(z) − y, v). Then h(x) > C2 and
h(∂C1(A)) ⊂ (−∞, 0]. Moreover, �̃h = 0 and h(z) ≤ h(x) for z ∈ intC1(A). It
follows that h(γix) = h(x) for all i. Replacing x by γix and continuing until we
hit ∂C1A, we arrive to a contradiction with C1 = 2, C2 = 2‖f(1)‖+ 1. �

3.3. Cocycle growth for a surface group

In this section we continue, for general representations, the discussion started
in Chapter 1, Section 5.2. Recall that, for any group G, any primitive function
F : G→ R of a class in H1(G, lp(G)) satisfies

|F(g)| ≤ const · length(g)

9Existence of such cocycles is a strong negation of the Kazhdan property T, called the Haagerup
property or a-T-menability.
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at least if G is finitely presented. However, if G = π1(Σ), a surface group, then
one has much finer estimate, established in Theorem 1.14 in Chapter 1:

|F(g)| ≤ const · length(g)1/p′

for all p′ > p.

Theorem 3.3. Let G = π1(Σ) be a surface group. Let π : G → O(H) be an or-
thogonal representation without almost-invariant vectors and let l : G → H be a
cocycle. Then for almost all θ ∈ S1 ≈ ∂G,

‖l(g)‖ ≤ const(θ)[length(g) · log log length(g)]1/2 (∗)
as g converges nontangentially to θ. Here “almost all” refers to the Lebesgue mea-
sure on ∂G, identified with S1 under some lattice embedding G ↪→ SO+(1, 2).

Remark. Nontangential convergence of points of B2 to θ ∈ ∂B2 is an invariant of
quasi-conformal homeomorphism (since the latter are quasi-isometries of the hy-
perbolic metric). Therefore (∗) is Mapg,1-invariant. Let A ⊂ S1 be an exceptional
set where (∗) does not hold. It follows that

meas ϕ(A) = 0

for all ϕ ∈ Mapg,1, considered as a quasisymmetric homeomorphism of S1. Here
meas is the Lebesgue measure.

Proof. Complexifying, we find a holomorphic section of an affine bundle EC as in
Section 3.1. Lifting to H2, we obtain an equivariant holomorphic map (we replace
H by H⊗ C)

f̃ : H2 → H⊗ C.

Notice that f̃ is a Bloch function, that is, ‖∇f̃‖ ≤ const. The result now follows
from a version of the Makarov law [74] of iterated logarithms for Hilbert-space-
valued Bloch functions. �

Proposition 3.4. Let H be a complex Hilbert space. Let ψ : B2 → H be holomorphic
and ‖∇ψ‖h ≤ const. Then for almost all θ ∈ S1,

lim sup
z→θ

‖ψ(z)‖√
log(1− |z|) log log log(1− |z|)

<∞.

Proof. We will simply note which changes should be made in a proof for complex–
valued functions [97]. The Hardy’s identity [97, page 174] holds in the following
form. Let S be a Riemannian surface, z0 ∈ S, g : S → H a holomorphic function,
(x, y) normal coordinates in the neighborhood of z0. Let n be a positive integer.
Then

∂

∂x
(g, g)n+1 = (n+ 1)(g, g)[(g′x, g) + (g, g′x)],
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∂2

∂x2
(g, g)n+1 = n(n+ 1)(g, g)n−1[g′x, g) + (g, g′x)]2

+ (n+ 1)(g, g)n[2(g′x, g
′
x) + (g′′x , g) + (g, g′′x)]

and the same for ∂2

∂y2 . Summing up, we have

�(g, g)n+1 = (
∂2

∂x2
+
∂2

∂y2
)(g, g)n+1

= n(n+ 1)(g, g)n−1 · 4|(g′, g)|2 + (n+ 1)(g, g)n · 2(g′, g′),

because �g = 0 and g′y =
√
−1g′x. If S is a unit disc then in polar coordinates

z = reit

� =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2
∂2

∂t2
=

1
r

∂

∂r
(r
∂

∂r
) +

1
r2
∂2

∂t2
=

1
r2

[(r
∂

∂r
)2 +

∂2

∂t2
].

So
1
r2

((r
∂

∂r
)2 +

∂2

∂t2
)(g, g)n+1 = 4n(n+ 1)(g, g)n−1|(g′, g)|2 + 2(n+ 1)(g, g)n|g′|2.

Integrating over 0 ≤ t ≤ 2π and using the Cauchy-Schwartz inequality, we arrive
at the inequality of [97, Theorem 8.9]. The rest of the proof will go unchanged
once we know the Hardy-Littlewood maximal theorem for (g, g)n, which is used
in [97, page 187]. Let

g∗(s, ξ) = max
0≤r≤1−e−s

|g(rξ)|, e ≤ s <∞, ξ ∈ S1.

Since g : B2 → H is holomorphic, it is also harmonic and yields the Poisson
formula. Then a proof of the Hardy-Littlewood maximal theorem given in [68]
applies, since it reduces it to the Hardy-Littlewood inequality for the maximal
function of |g|. �

Remark. Theorem 3.3 holds for complex hyperbolic cocompact lattices10. This is
because Makarov’s law of iterated logarithms holds for the complex hyperbolic
space, as we can see by passing to totally geodesic spaces of complex dimension 1.
It is plausible that a version of Theorem 3.3 holds for real hyperbolic lattices (but
not quaternionic and Cayley, as these are Kazhdan, see a new proof in Chapter
4). On the other hand, another deep result of [75] saying that Bloch functions
are nontangentially bounded for a limit set of Hausdorff dimension one, fails for
Hilbert space valued functions. In fact, we have shown in Chapter 1 that there are
unitary cocycles on a surface group such that ‖l(g)‖ → ∞ as length(g)→∞.

If G is any finitely generated group, and we are given an orthogonal repre-
sentation π : G→ O(H) and a cocycle l ∈ Z1(G,H) with a control on ‖l(g)‖ from
below, then for any embedding of the surface group π1(Σ) into G we immediately
have a comparison inequality between the word lengthes of elements of π1(Σ) in
π1(Σ) and in G. To get a nontrivial result, we need a low bound on ‖l(g)‖ better

10Provided that f̃ can be chosen pluriharmonic.
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then [length(g) log log length(g)]1/2. To find such groups and cocycles seems to be
a very attractive problem.

We will now use similar ideas to estimate the Hausdorff dimension of limit
sets of some infinite index subgroups of G = π1(Σ).

Theorem 3.5. Let β : G → Z be a surjective homomorphism and let G0 = Kerβ.
Let A be the conical limit set of G0. Then dimA = 1.

Proof. Let [β] ∈ H1(G,Z) be the induced class. Realize G as a cocompact lattice
in SO+(1, 2) so that S = H2/G is a hyperbolic surface. Let ω be a holomorphic
1-form on S such that Re[ω] = [β] and let ω̃ be a lift of ω on H2. Let f : H2 → C
be holomorphic with df = ω. Then f is a Bloch function. By a result of [75], there
is a set B ⊂ S1 with dimB = 1 such that

lim sup
z→θ

|f(z)| <∞

for any θ ∈ B and nontangential convergence. Notice that f(gz) = f(z)+ ([ω], [g])
where g ∈ G and [g] is the image of g in H1(G,Z). Now it is clear that B ⊆ A, so
dimA = 1.
Remark. This result does not contradict a theorem of [116] and [123] because G0

is infinitely generated.

In the opposite direction we have the following. Let Σ1,Σ2 be two closed
surfaces and let ψ : Σ1 → Σ2 be a smooth ramified covering. Let Gi = π1(Σi) and
let G0 = Ker(ψ∗) : G1 → G2. Let G1 ↪→ SO+(1, 2) be a realization of G1 as a
lattice. Then for any z ∈ B2, ∑

g∈G0

|1− gz| <∞.

In other words, either δ(G0) < 1 or δ(G0) = 1 and G0 is of convergence type. In
the latter case, the Patterson-Sullivan measure of the conical limit set of G0 is
zero. To see this, notice that we can find hyperbolic structures on Σi, i = 1, 2 so
that ψ is holomorphic. Let ψ̃ be a lift of ψ as a map ψ̃ : B2 → B2. Since ψ̃ is a
bounded holomorphic function, ψ̃ has limit values almost everywhere on S1. By
Chapter 1, Section 6.5., |ψ̃|S1| = 1 almost everywhere. So ψ̃ is an inner function.
Let C ⊂ B2 be a countable set of zeros of ψ̃. We claim that C is a finite union
of orbits of G0. First, it is clear that C is G0-invariant. Let Q ⊂ B2 be compact
which contains a fundamental domain for G1. Then ψ̃(Q) is compact so there is
a finite set R ⊂ G2 such that g(0) /∈ ψ̃(Q) if g /∈ R. Let T ⊂ G1 be finite and
such that ψ∗(T ) ⊇ R. Let Q1 =

⋃
g∈T−1 gQ so that Q1 is compact and therefore

C ∩ Q is finite. Let x ∈ C, then x = gy with y ∈ Q. So 0 = ψ̃(x) = ψ∗(g)ψ̃(y),
i.e., ψ∗(g−1)(0) = ψ̃(y) ∈ ψ̃(Q). This means ψ∗(g−1) ∈ R so g−1 ∈ TG0, and
g ∈ G0T

−1, say g = g0t−1, g0 ∈ G0, t ∈ T . Then t−1y ∈ C and t−1y ∈ Q1, so
there are finitely many options for t−1y.
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We deduce that there are x1, . . . , xn such that C =
⋃n

i=1G0xi. The decom-
position formula for inner functions implies that

ψ̃(z) = c ·
∏

g0∈G0
1≤i≤n

g0xi

g0xi

z − g0xi

1− g0xiz

which gives an explicit formula for holomorphic maps between hyperbolic Riemann
surfaces (one still needs to find xi). By a well-known result on zeros of a bounded
holomorphic function [68, IV: B, Theorem 1],∑

g0∈G0

(1− |g0xi|) <∞.

The rest follows from [90]. �

4. A theory of groups of symplectomorphisms

We already observed the intriguing similarity between groups acting on the cir-
cle and groups acting symplectically on a compact symplectic manifold. The two
leading topics studied in Chapter 2, namely, (non-) Kazhdan groups acting on S1

and characteristic classes, have exact analogues for Sympl(M). In fact, a theory of
characteristic classes parallel to 2.5, was already presented in [102] and [104]. In the
second cited paper, we noticed that the Kähler action of Sympl(M) on the twistor
variety allows us to define a series of classes in H2k

cont(Sympl(M),R), k odd, which
are highly non-trivial. In the first cited paper, we introduced bi-invariant forms
on Sympl(M) and the classes in Hodd

 (Sympl(M)) and Hodd(Sympl(M)δ,R/A)
(cohomology of a topological space and a discrete group) where A is the group
of periods of the above-mentioned forms. Here we present a fundamental class in
H1(Sympl(M), L2(M)) whose nontriviality on a subgroup G ⊂ Sympl(M) implies
that G is not Kazhdan, similarly to the situation in Diff1,α(S1). From the nature
of our class it is clear that its vanishing imposes severe restriction on the sym-
plectic action, roughly, the transformations of G should satisfy a certain PDE. We
give an explicit formula for our class in the case of a flat torus.

We then introduce a characteristic class inHn+1(Symplδ(M2n),R) associated
with an immersed compact Lagrangian submanifold. This class is a symplectic
counterpart, and a generalization, of the Thurston-Bott class [15]. We use this
class to give a formula for the volume of compact negatively curved manifold
through Euclidean volumes of “Busemann bodies” (the images of the manifold
under Busemann functions).

4.1. Deformation quantization: an overview

Let F be a field and A|F a (commutative) algebra. A deformation of A is an
algebra structure of A[[�]] over F [[�]], extending that A, so that if x, y ∈ A, then

x ∗ y = x · y + b1(x, y)� + b2(x, y)�2 + · · ·
where x · y is the multiplication in A and x ∗ y is the deformed multiplication.
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If F = R,A = C∞(M), whereM is a symplectic manifold, then a deformation
quantization is a deformation of A with b1(f, g) = {f, g}, the Poisson bracket. A
deformation quantization always exists by a result of [79], [127], [6], [32]. For any
algebra A|F one defines the Hochschild cohomology HHk(A) = Extk

A⊗A(A,A).
There is a natural Lie superalgebra structure in HH∗(A), see [41]. There exists a
simple explicit complex, computing HHk(A) with

Ck(A) = HomF (
⊗k

i=1
A,A).

In particular, b1 above is a cocycle (for any deformation). If F = R and A is a
topological algebra, one modifies the definitions to obtain topological Hochschild
cohomology. If M is a smooth manifold and A = C∞(M) with the pointwise
multiplication, then

HHk(A) = Γ(M,ΛkTM),

a space of (anti-symmetric) poly-vector fields. The Lie superalgebra structure co-
incides with the classical bracket of poly-vector fields.

We will need an explicit form of the cocycle condition for a 2-cocycle b :
A⊗A→ R:

xb(y, z)− b(xy, z) + b(x, yz)− b(x, y)z = 0.

4.2. A fundamental cocycle in H1(Sympl(M), L2(M))
Let (M2n, ω) be a compact symplectic manifold. Fix a deformation quantization

f ∗ g = f · g + {f, g}� +
∞∑

i=2

ci(f, g) · �i.

Let Φ :M →M be symplectic and let

f ∗̃g = (f ◦Φ−1 ∗ g ◦ Φ−1) ◦ Φ
= f · g + {f, g}� +

∑∞
i=2 c

′
i(f, g) · �i.

Lemma 4.1. Let A|F be an algebra and let

f ∗ g = f · g + c1(f, g)� + · · ·+ ck−1(f, g)�k−1 +
∞∑

i=k

ci(f, g) · �i

and

f ∗̃g = f · g + c1(f, g)� + · · ·+ ck−1(f, g)�k−1 +
∞∑

i=k

c′i(f, g) · �i

be two deformations, which coincide up to the order �k−1. Then

ci − c′i : A⊗A→ A

is a Hochschild cocycle.
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Proof. (f ∗ g) ∗ p− (f ∗̃g)∗̃p
= ck(f, g) · p+ ck(f · g, p)− c′k(f, g) · p− c′k(f · g, p) (mod �k+1).

Similarly,

f ∗ (g ∗ p)− f ∗̃(g∗̃p)
= f · ck(g, p) + ck(f, g · p)− fc′k(g, p)− c′k(f, g · p) (mod �k+1).

Thus, for c = ck − c′k,

f · c(g, p) + c(f, g · p)− c(f, g)p− c(f · g, p) = 0,

which means that c is a 2-cocycle. �
Lemma 4.2. The formula

Φ �→
[
(f, g) �→ c2(f ◦ Φ−1, g ◦ Φ−1) ◦ Φ− c2(f, g)

]
defines a smooth cocycle of Sympl(M) in the space Z2(C∞(M), C∞(M)) of Hoch-
schild 2-cocycles for C∞(M).

Proof. Follows from Lemma 4.1. �
Passing to the Hochschild cohomology, we obtain a 1-cocycle of Sympl(M) in

HH2(C∞(M)) = Γ(M,Λ2TM).

Using the symplectic structure, we identify Γ(M,Λ2TM) with Ω2(M), the space
of 2-forms on M . Multiplying by ωn−1 we obtain a cocycle

μ ∈ H1(Sympl(M), C∞(M)).

4.3. Computation for the flat torus and the main theorem

If M is a coadjoint orbit of a compact Lie group, one can find an explicit formula
for the deformation quantization f ∗ g. The classical case M = T 2n, the flat torus,
is due to H. Weyl.

Proposition 4.3. One has the following deformation quantization on T 2n:

f ∗ g =
∞∑

k=0

1
k!

(
− i�

2

)k

σi1j1 · · ·σikjk
∂kf

∂yi1 · · ·∂yik

∂kg

∂yj1 · · · ∂yjk

where σij are entries of the matrix inverse to the matrix (σij) of a (constant)
symplectic form, and the “repeated indices” summation agreement is applied.

Now, since our definition of a fundamental cocycle is completely explicit,
one can derive an explicit formula for μ in this case. We give an answer for T 2

(the formula for T 2n is completely analogous). The computation is tedious (takes
several pages) but straightforward and is left to reader. Here is the formula for T 2:

Φ �→ ∂
2Φ2

∂y21

∂2Φ1

∂y22
− ∂

2Φ1

∂y21

∂2Φ2

∂y22

where Φ = (Φ1,Φ2) a symplectomorphism of the torus T 2.
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Summing up, we have:

Theorem 4.4. Let M2n be a compact symplectic manifold, let Sympl(M) be its
symplectomorphism group, acting orthogonally on the Hilbert space L2(M). There
exists a cocycle

μ ∈ Z1(Sympl(M), L2(M)),

defined canonically by the given deformation quantization of C∞(M) and satisfying
the following properties:

A. Let

f ∗̃g = (f ◦ Φ−1 ∗ g ◦ Φ−1) ◦ Φ = f · g + {f, g}� + c′2(f, g) · �2 + · · · ,
f ∗ g = f · g + {f, g}� + c2(f, g) · �2 + · · ·

and let us identify the class of the Hochschild cocycle c′2− c2 with a section ν
of Λ2TM . Let ν̂ be a 2-form obtained from ν by lifting the indices using the
symplectic form. Then

μ(Φ) · ωn = ν̂ · ωn−1.

B. μ(Φ) depends only on the second jet of Φ.
C. For M = T 2 and the Weyl deformation quantization, Φ = (Φ1,Φ2),

μ(Φ) =
∂2Φ2

∂y21

∂2Φ1

∂y22
− ∂

2Φ1

∂y21

∂2Φ2

∂y22
.

D. If G is a Kazhdan subgroup of Sympl(M), then

‖μ(Φ)‖L2 < const ∀Φ ∈ G.

Examples.

1) M = T 2n, G = Sp(2n,Z) (this group is Kazhdan for n ≥ 2). Then μ is
identically zero.

2) Let Γ be a surface group, and let M be a component of

Hom(Γ, SO(3))/SO(3),

consisting of representations with nontrivial Stiefel-Whitney class. Then M
is a compact symplectic manifold and Mapg acts symplectically onM . We do
not know if part D of Theorem 4.4 holds in this case and if Mapg is Kazhdan
or not. There is a “Teichmüller structure” on M defined by a holomorphic
map of the Teichmüller space into the twistor variety ofM , described in [104],
see also Chapter 5.

Remark. The case of two-dimensional M2 is much easier, simply because SL2(R)
is not Kazhdan. If Sympl(M,x0) denotes the subgroup of Sympl(M) fixing x0 ∈M
then one gets a nontrivial unitary cocycle on Sympl(M,x0) by pulling back from
SL2(R) under the tangent representation. Using the measurable transfer (i.e.,
Shapiro’s lemma) one constructs a cocycle of Sympl(M). See [131] for details.
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4.4. Invariant forms on the space of Lagrangian immersions and
new regulators for symplectomorphism groups

In this section we will “symplectify” the Thurston-Bott class in the cohomology of
diffeomorphism groups. LetM be any (possibly noncompact) symplectic manifold,
and let L0 ↪→ M be a Lagrangian immersion of a compact oriented manifold L0.
Let Lag(L0,M) be the space of Lagrangian immersions of L0 into M which can
be jointed to L0 by an exact Lagrangian homotopy. This means the following. If

ft : L0 →M is a smooth family of Lagrangian immersions, then
d

dt
ft|t=0 is a vector

field along L0. Projecting to the normal bundle NL0 and accounting that NL0 is
canonically isomorphic to T ∗L0, we get a 1-form on L0 which is immediately seen
to be closed. A Lagrangian homotopy ft is exact, if this form is exact for all t.
There is therefore a well-defined function F (modulo constants) on L which can
be seen as a tangent vector of such deformation.

Definition 4.5. The canonical (n+ 1)-form ν on Lag(L,M) is defined by

ν(F0 · · ·Fn) =
∫

L

F0dF1 · · ·Fn = Voln+1(Q̃) (∗),

where Q̃ is any chain in Rn+1 spanning (F0, . . . , Fn)(L).

Proposition 4.6. The form ν is closed.

Proof. This proof is left as an exercise for reader. �
Let Sympl0(M) be the group of Hamiltonian transformations of M . Then

Lag(L,M) is invariant under Sympl0(M). The following is obvious:

Proposition 4.7. The form ν is Sympl0(M)-invariant.

The standard theory of regulators [103], [102] implies that:

First, one has an induced class in Hn+1(g,R), where

g = Lie(Sympl0(M)) = C∞(M)/const,

which is given by (∗), where now Fi ∈ C∞(M).
Second, one has a class in

Hom(πn+1(BSymplδ0(M)
+
,R/A)) (n+ 1 ≥ 5),

where A is the group of periods of ν on maps Σn+1 → Sympl0(M) of homology
spheres to Sympl0(M). This class often lifts to a class in

Hn+1(Symplδ0(M),R)

under suitable conditions on the topology of Sympl0(M) (see discussion in the
papers cited above).

For instance, let Q be a compact oriented simply connected manifold, M =
T ∗Q and L0 = Q, the zero section. Then we obtain a class [ν] in

Hn+1(Sympl0(T
∗Q),R).
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Note that the restriction of this class to

Diff(Q) ↪→ Sympl0(T
∗Q)

is zero, as Diff(Q) fixes the zero section. However, our class is an extension of the
Thurston-Bott class [15] in Diff(Q) by means of the following construction. Let
G ⊂ Sympl0(T ∗Q) be the subgroup of symplectomorphisms of the form

px �→ φ∗px + df(x),

where f ∈ C∞(Q), φ ∈ Diff(Q), x ∈ Q, px ∈ T ∗
xQ. Then G is the extension

0→ C∞(Q)/const→ G→ Diff(Q)→ 1.

Any 1-cocycle ψ ∈ Z1(Diff(Q), C∞(Q)/const) induces a splitting of this exact
sequence:

Sψ : Diff(Q)→ G.

Now let μ be a smooth density on Q then ψ = φ∗μ
μ is a 1-cocycle, so it defines

such a splitting. The pull-back S∗ψ([ν]|G) of our class to Diff(Q) is precisely the
Thurston-Bott class.

We summarize this discussion:

Theorem 4.8. A. The formula

ν(F0, . . . , Fn) =
∫

L

F0dF1 · · ·dFn = Voln+1(Q̃)

defines an Sympl0(M)-invariant closed (n+1)-form in Lag(L,M). It induces
a class [ν] ∈ Hn+1(Lie(Sympl0(M),R) and a regulator

[ν] : πn+1(BSympl+0 (M))→ R, n+ 1 ≥ 5,

which lifts to a class

[ν] ∈ Hn+1(Symplδ0(M),R)

if H̃i(Lag(L,M),R)) = 0, 0 ≤ i ≤ n+ 1.
B. In particular, if Q is a smooth oriented simply-connected closed manifold,

then

[ν] ∈ Hn+1(Symplδ(T ∗Q),R)

pulls back to the Thurston-Bott class under any splitting

Diff(Q)→ C∞(Q)/const �Diff(Q),

coming from a smooth density on Q.
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4.5. A volume formula for negatively-curved manifolds

This section is ideologically influenced by [51] and discussions with G. Besson
(Grenoble, 1996). Let Nn be an Hadamard manifold, i.e., a complete, simply-
connected nonpositively curved Riemannian manifold. Let CN be the space of
oriented geodesics in N , which is a symplectic manifold of dimension 2n− 2. Any
point x ∈ N defines a Lagrangian sphere Sx ⊂ CN of geodesics passing through x.

Lemma 4.9. The pull-back S∗ν of the form ν ∈ Ωn(CN) to N is the Riemannian
volume form on N times a constant.

Proof. An exercise in Jacobi fields. �

Now, if G acts discretely, freely and cocompactly on N , preserving orienta-
tion, we have

〈S∗ν, [N/G]〉 = c ·Vol(N/G).
Here [N/G] is the fundamental class of N/G.

Corollary 4.10. Under the above assumptions, [ν] �= 0 in Hn(Symplδ(N),R).

We now assume that the curvature of N is strictly negative and, moreover,
the induced action of G on the sphere at infinity S∞ is of the class C1, n−1

n . For
n = 2 this is always the case [56], whereas for n ≥ 3 it seems to require a pinching
of the curvature. Notice that the map

s+ : CN → S∞,
sending any geodesic γ(t) to γ(∞), is a Lagrangian fibration. Therefore, if we fix
a Lagrangian section of s+, we will have a symplectomorphism CN � T ∗(S∞).
Fix p0 ∈ N , then Sp0 is such a section. Notice that the induced homomorphism
G→ Sympl(T ∗S∞) is given by,

g �→ (z �→ π(g)z + dF (p0, g−1p0, θ)),

where g ∈ G, z ∈ T ∗
θ S∞, π : G → Diff1, n−1

n (S∞) → Sympl(T ∗S∞) is induced
by the action of G on S∞ and B(p0, g−1p0, θ)) is the Busemann function. Our
assumption imply that B(p0, p1, ·) ∈ C

n−1
n (S∞) ⊂ Wn

n−1
n (S∞). Recall that for

F1, . . . , Fn ∈Wn

n−1
n (S∞) we have the n-form∫

S∞

F1dF2 · · · dFn =
∫

Bn

du1 · · · dun,

where ui is a harmonic extension of Fi.
We derive

Corollary 4.11. Let Nn/G be a compact negatively curved manifold such that the
induced action of G on S∞ is of class C1, n−1

n . If the fundamental class of G is∑
i

[g1(i) · · · gn(i)],
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then the following volume formula holds:

Vol(N/G) = c(n) ·
∑

i

∫
S∞

F1
(i)dF2

(i) · · ·dFn
(i),

where Fk
(i)(θ) = B

(
p0,

(
gk

(i)
)−1
p0, θ

)
.

One can say that the volume of a negatively curved manifold is a sum of
Euclidean volumes of Busemann bodies in Rn bounded by (F1, . . . , Fn)(S∞).

Replacing the Busemann cocycle by a Jacobian cocycle g∗μ
μ , where μ is a

smooth density on S∞, we arrive to a similar formula for the Godbillon-Vey-
Thurston-Bott invariant of N/G, under the same regularity assumptions. This
seems to have been also accomplished in a preprint [57] cited in [56], though I was
unable to obtain this paper from its author. The case n = 2 is, however, covered
in [56].

5. Groups of volume-preserving diffeomorphisms and
the nonlinear superrigidity alternative

In this chapter, we shift the focus from linear functional analytic techniques to
nonlinear PDE, notably harmonic maps into nonlocally compact spaces, a theory
recently developed in [65] and [60]. The main idea is to use twistor varieties,
which were in the center of the characteristic classes construction of [104], for a
deeper study of volume-preserving actions of groups. We introduce an invariant
Λ of a volume-preserving action, which is a sort of a logL2-version of the sup-
displacement studied in [132]. Our first main result, Theorem 5.6, states that if
G is a Kazhdan group acting on a compact manifold M preserving volume, then
either Λ > 0 or G fixes a logL2-metric. A much weaker analogue of this result for
the special case of lattices in Lie groups and sup-displacement was known before
[132, Theorem 4.8].

We then apply our technique to a major open problem in the field, that of the
nonlinear superrigidity of volume-preserving actions of lattices in Lie groups. From
a nonlinear version of Margulis theorem given in [133] one knows that a volume
preserving action of a lattice in a semisimple Lie group of rank ≥ 2 on a low
dimensional (with respect to the group) manifold fixes a measurable Riemannian
metric. Since measurable metrics do not define a geometry on a manifold, one
wishes, of course, to prove a much stronger result: that the action preserves a
smooth metric. Zimmer proved (see [132] and references therein) that such stronger
result would follow if one is able to find an invariant metric whose dilations with
respect to any smooth metric are in the class L2

loc. The central question of how
to find such a “bounded” invariant metric was left completely open. We present
a completely new approach to the problem which leads to Theorem 5.7. It states
that if a cocompact lattice in a Lie group acts on M preserving volume, then
either it nearly preserves a logL2-metric, or a sort of a G-structure. This theorem,
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though constituting a clear progress towards the main problem is still less than
what one wants in two respects: First, we deal with logL2-metrics, not L2-metrics,
second, we leave open a very delicate situation when an action nearly preserves a
logL2-metric, but does not exactly preserve such a metric. This situation is purely
infinite-dimensional: If an action on a proper space of nonpositive curvature nearly
preserves a point, it actually fixes a point either in the space or at infinity. As
already said, we use a heavy machinery: harmonic maps into twistor varieties and
vanishing results of [83] and [25]. These results will also be applied in the next
chapter to study quaternionic Kähler groups.

It is well-known that the original Kolmogorov’s definition of entropy used
extremum over all partitions and only became computable after it was realized by
Kolmogorov and Sinai that certain partitions realize entropy. In a way of a pleasant
similarity, we show how to compute our invariant Λ for G = Z in case G leaves
a geodesic in the twistor space invariant, like a hyperbolic element of SL(n,Z)
acting on T n. This clearly shows the advantage of the logL2-displacement over
the sup-displacement.

5.1. logL2-twistor spaces

C∞-twistor varieties were used in [104] to define secondary characteristic classes
for volume-preserving and symplectic actions. More specifically, we defined, for a
compact oriented manifold M equipped with a volume form ν, a series of classes
in H∗

cont(Diffν(M)) of dimension 5, 9, 13, . . . (where Diffν(M) is the group of
volume-preserving diffeomorphisms). Likewise, for a compact symplectic manifold
M we defined classes in H∗

cont(Sympl(M)) of dimensions of 2, 6, 10, . . .. For the
purposes of the present paper, we will need to work with a logL2-version of the
twistor varieties, defined below.

Remark. I would like to use an opportunity to note that for some strange
reasons I overlooked the integrated Euler class in Hn

cont(Diffν(Mn)). The defini-
tion is exactly like that in [104] for classes in dimensions 5, 9, . . . , if one realizes
that there exists an n-form on the twistor variety forM , which is Diffν-invariant.
Alternatively, if Diffν(M,p0) denotes the subgroup fixing a point p0, then one
pulls back the Euler class of SLn(R) under the tangent representation

Diffν(M,p0) → SLn(R),

and then applies the measurable transfer (see the above cited paper). The just
defined class, viewed as a class in Hn(Diffs

ν(M)), is bounded. This follows from
the fact that the Euler class is bounded [117] exactly in the same manner as in
[104].

We now define the logL2-twistor variety X for (M, ν). First, one defines a
bundle P of Riemannian metrics with the volume form ν as an SL(n)/SO(n)-
bundle, associated with a principal SL(n)-bundle, defined by ν. Fix a smooth
section (i.e., a Riemannian metric with the volume form ν) g0 of this bundle. For
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any other measurable section g of P define

ρ2(g0, g) =
∫

M

ρ2x(g0, g)dν, (∗)

where ρx is the distance in Px induced by the (fixed once and forever) SL(n)-
invariant metric on SL(n)/SO(n). Now the twistor variety X consists of logL2-
metrics, that is, measurable metrics g for which

ρ(g0, g) <∞.
Alternatively, let Ax be a self-adjoint (with respect to (g0)x) operator such that
gx = g0(Ax·, ·). Then (∗) can be written as∫

M

‖ logAx‖2dν <∞.

The crucial fact about P is a following

Proposition 5.1. P is a complete Hilbert–Riemannian manifold with nonpositive
curvature operator. The action of Diffν(M) on P is isometric.

Proof. We will only define the metric, leaving all routine checks to the reader. The
tangent space at g0 consists of L2-sections of S2T ∗M , with trace identically zero.
If A is such a section (so that Ax is g0-self-adjoint for all x ∈ M) then we define
the square of the length of A as ∫

M

trA2dν.

This metric is invariant under the SO(n)-valued gauge transformations. Now we
define a logL2 SL(n)-gauge group as the group of measurable sections A of
Aut(TM) such that, with respect to g0,∫

M

‖ log(A∗A)‖2dν <∞.

Then P is a homogeneous space under the action of this group. We define a Rie-
mannian metric on P as the unique invariant metric, which agrees at g0 with the
metric just defined.

Now let (M2n, ω) be a compact symplectic manifold. Let T be the twistor
bundle, that is, the Sp(2n)/U(n)-bundle, associated with the principal Sp(2n)-
bundle, defined by ω. A smooth section of T is exactly a tamed almost-complex
structure. One then defines a space Z of logL2-sections of T as above (the C∞-
version was used in [104]). �

Proposition 5.2. The spaces X and Z are nonpositively curved in the sense of
Alexandrov.

Proof. The proofs are standard. �
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5.2. A new invariant of smooth volume-preserving dynamical systems

Let (M, ν) be a compact oriented manifold with the volume form ν. Let G be a
finitely generated group which acts on M by smooth transformations, preserving
ν. We are going to define a new dynamical invariant which we call Λ. This is a
nonnegative real number. Though Λ depends on the choice of a system of gener-
ators of G, positivity of Λ is independent of the generating set. This relates our
Λ to the Kolmogorov’s entropy. The invariant Λ is highly nontrivial already for
G = Z, that is, as a new invariant of volume-preserving diffeomorphisms. It is also
an invariant under conjugation in Diffν(M). The central result of this section is
Theorem 5.6 below stating that if G is a Kazhdan group then either Λ > 0 or
G fixes a logL2-Riemannian metric (again this connects Λ to the Kolmogorov’s
entropy).

Let g1, . . . , gn be a system of generators for G. Let X = P be the twistor
variety for (M, ν). Let ρ be the distance function for X , introduced in Section 5.1.
We define Λ as the displacement of the G-action:

Λ = inf
z∈X

max
i
ρ(giz, z).

Proposition 5.3. Λ is invariant under conjugation in Diffν(M).

Proof. ρ is Diffν -invariant. �

Proposition 5.4. Let M = (T n, can) and let G = Z act by iterations of a hyperbolic
element of SL(n,Z). Then Λ > 0.

Proof. The proof is based on an observation about Alexandrov non-positively
curved spaces and a trick from [104].

Lemma 5.5. Let X be an Alexandrov non-positively curved space and let φ : X → X
be an isometry which leaves invariant a geodesic γ of X. Then the displacement
of φ is realized on the points of γ, that is, for y ∈ γ,

ρ(y, φy) = min
x∈X
ρ(x, φx).

Proof. For x ∈ X let y ∈ γ be a point which realizes the distance from x to γ.
Then ρ(y, φy) ≤ ρ(x, φx). �

Now let X be the twistor space of T n and let Y ⊂ X be the space of metrics,
invariant under the action of T n (we view T n as a Lie group). Then Y is totally
geodesic in X , because it is the manifold of fixed points of a family of isometries.
As a Riemannian manifold, Y � SL(n)/SO(n). Any hyperbolic matrix φ, by
definition leaves invariant a geodesic in Y . The result follows. �

The main result in the theory of the invariant Λ is as follows:

Theorem 5.6. Let G be a Kazhdan group acting on a compact oriented manifold
(M, ν) preserving a volume form ν. Then either Λ > 0 or G fixes a logL2-metric
on M .
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Proof. Consider an isometric action of G on X . If the displacement function
sup

i
ρ(giz, z) is not bounded away from zero, then either there is a fixed point

z0 ∈ X for G, or G is not Kazhdan, by a result of [65]. The theorem follows. �

5.3. Non-linear superrigidity alternative

Theorem 5.7. Let G be either a semisimple Lie group of rank≥ 2, or Sp(n, 1) or
Iso(CaH2). Let Γ ⊂ G be a cocompact lattice. Let (Mn, ν) be a compact oriented
manifold, on which Γ acts preserving the volume form ν. Then either

a) Γ preserves a logL2-metric on M , or
b) there exists a sequence g0, g1, . . . of smooth Riemannian metrics on M with

the volume form ν such that∫
M

‖ logAi‖2g0
dν →∞,

where gi = g0(Ai·, ·) and

0 < const1 < sup
j

∫
M

‖ logBij‖2gi
dν < const2, (i→∞),

γ∗j gi = gi(Bij ·, ·), {γj} is a fixed finite set of generators for Γ, or
c) there is a nonconstant totally geodesic Γ-invariant map

Ψ : G/K → X,
where K is a maximal compact subgroup of G.

Remarks.

1) In case b) we say that Γ nearly fixes a logL2-metric on M .
2) The case c) implies, for G simple, that dimG/K ≤ dimSL(n)/SO(n), a

so-called Zimmer conjecture.
3) For G = SL(m,R),m ≥ 3 and n = m, one deduces in case c) the existence

of a measurable frame field ê(x), ê = (e1, . . . , en), such that for almost all
x ∈M ,

π(γ)∗[ê(x)] = γê(π(γ)x)
where γ ∈ Γ and π(γ) is an action of γ on M .

4) Conversely, the standard action of Γ = SL(n,Z) on T n does not satisfy a)
(which is well known) and b). To see this, we notice that SL(n,Z) leaves
invariant a totally geodesic space Y introduced in the proof of Proposition
5.4. The argument of this proof implies that it is enough to show that the
displacement function of the action of Γ on Y diverges to∞ as one escapes all
compact subsets of Y . This follows from the fact that Y is a Riemannian sym-
metric space of non-compact type and Γ does not fix a point at infinity of Y .

5) The statement of Theorem constitutes a definite progress in the nonlinear
superrigidity problem. There is still a mystery in the option b) where one
would prefer the statement that Γ fixes a “point at infinity” of the space of
metrics X , perhaps a measurable distribution of k-dimension planes, k ≤ n.
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At the time of writing this chapter (August, 1999) I am unable to make such
a reduction.

Proof. The proof follows a long-established tradition [112], [25], [83], see also a
treatment of [61], in a new infinite-dimensional target context. If neither a) or
b) holds then, accounting that Γ is Kazhdan, we deduce that the displacement
function of Γ tends to infinity as one escapes all bounded sets in X . Let F →
Γ \G/K be a flat fibration with the fiber X , corresponding to the action of Γ in
X . A theorem of [65], or [60] implies that there is a harmonic section of F . By
Proposition 5.1 and the main theorem of [25] and [83], this section must be totally
geodesic. The result follows. �

In the case of a symplectic action of a lattice Γ on a compact symplectic
manifold (M,ω), we have a completely similar theorem, as follows.

Theorem 5.8. Let G be either a semi-simple Lie group of rank ≥ 2, or Sp(n, 1)
or Iso(CaH2), Γ a cocompact lattice in G which acts symplectically on a compact
symplectic manifold (M2n, ω). Then either

a) Γ fixes a logL2 tamed almost-complex structure J , or
b) there exists a sequence of tamed smooth almost-complex structures Ji ∈ Z

with ρ(J0, Ji) →∞ and

0 < const2 < sup
j
ρ(γjJi, Ji) < const1,

or
c) there is a Γ-invariant totally geodesic map

Ψ : G/K → Z.
Proof. The proof is exactly the same as above. �

In case c) and G simple it follows that dimG/K ≤ dimSp(2n)/U(n). If
M = (T 2n, can), G = Sp(2n,R) and case c) one deduces an existence of a
measurable symplectic frame ê(x) = (e1, . . . , e2n(x)), such that for γ ∈ Γ,

π(γ)∗[ê(x)] = γê(π(γ)(x)).

6. Kähler and quaternionic Kähler groups

In a letter to the author [26] P. Deligne asked if one can extend the author’s
theorem on rationality of secondary characteristic classes of a flat bundle over a
projective variety to quasiprojective varieties. In 1994 the author was able to an-
swer this question positively in the special case of noncompact ball quotients using
the analytic technique of [47] and the scheme of the original proof for projective
varieties. Here we present a full answer to Deligne’s question, Theorem 6.1, using
the analytic technique of [62], who produced harmonic maps of infinite energy but
controlled growth.
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We then turn to a well-known open problem of finding restrictions on topology
of compact quaternionic Kähler manifolds. In the case of positive scalar curvature
the situation is well understood, but in the case of negative scalar curvature the
twistor spaces of [114] are not Kähler and its technique fails. The only result
known was a theorem of [25] stating that the fundamental group does not have
infinite linear representations unless the manifold is locally symmetric. Our result,
Theorem 6.4, states that the fundamental group is Kazhdan. This is, of course, a
severe restriction (Kazhdan groups are rare). As a by-product of our technique, we
obtain a new proof of a classical theorem, stating that the lattices in semisimple Lie
groups of rank ≥ 2, Sp(n, 1) (n ≥ 2) and Iso(CaH2) are Kazhdan. We also show,
using Section 1.1, that the nontrivial classes in the second cohomology of a Kähler
non-Kazhdan group, constructed in [106], are of polynomial growth. This again
is very rare for “just a group”, as polynomial growth in cohomology is connected
to a polynomial isoperimetric inequality in the Cayley graph, which needs special
reasons to hold. This means that Kähler groups are rare, too.

6.1. Rationality of secondary classes of flat bundles over quasiprojective varieties

A rationality theorem for the secondary classes of flat bundles over compact Kähler
manifolds (previously known as the Bloch conjecture [11]) was proved in 1993 in
[103] and [105]. In a letter to the author [26] P. Deligne asked if one can prove such
a statement for local systems with logarithmic singularities over a quasiprojective
variety. It turns out that the answer is positive:

Theorem 6.1. Let X be a quasiprojective variety, ρ : π1(X) → SL(n,C) a rep-
resentation. Let bi(ρ) be the imaginary part and ChSi(ρ) be the R/Z-part of the
secondary class ci(ρ) ∈ H2i−1(X,C/Z) of the flat bundle with monodromy ρ. Then

A. bi(ρ) = 0 (i ≥ 2) (the Vanishing Theorem).
B. ChSi(ρ) ∈ H2i−1(X,Q/Z) (the Rationality Theorem).

Proof. For any smooth manifold, A implies B, as explained in the above cited
papers. So we only prove A. As explained in the above cited papers, we may assume
that ρ is irreducible. Then, by the recent result [62], the associated SL(n,C)/SU(n)
flat bundle overX possesses a pluriharmonic section s which satisfies the Sampson
degeneration condition. This means the following. The derivative Dsx, x ∈ X can
be viewed as an R-linear map to the space P of Hermitian matrices. Let

(Dsx)±C (Y ) = (Dsx(Y )±
√
−1Dsx(

√
−1Y ))

be the corresponding map of TX to P ⊗ C. Then the image of (Dsx)±C consists
of commuting matrices. Now the first proof of the Main Theorem in [105] applies
word-by-word and the result follows. �

6.2. Property T for Kähler and quaternionic Kähler groups

There are two ways to geometrize the group theory. One approach (the time ge-
ometry in the terminology of [107]) is to consider finitely generated groups which
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act on a (usually compact) space with some structure (a volume form, a symplec-
tic form, a tree, a circle, a conformal structure, etc). An amazing phenomenon,
amply demonstrated in the previous chapters is that these groups tend to be not
Kazhdan. Another approach (the space geometry) is to consider groups which are
fundamental groups of a compact (or close to compact) manifold with some struc-
ture (like Kähler). It happens that these groups tend to be Kazhdan. Therefore
these two families of “geometric” groups are essentially disjoint. The following is
the main result of [106].

Theorem 6.2. Let G be the fundamental group of a compact Kähler manifold. If G
is not Kazhdan, then H2(G,R) �= 0. Moreover, if H is not Kazhdan and ψ : G→ H
is surjective, then the map

ψ∗ : H2(H,R) → H2(G,R)

is nonzero.

I would like to mention an important property, which I overlooked in [106]:

Proposition 6.3. Under the conditions of the above theorem, there is a nontrivial
class of polynomial growth in H2(G,R).

Proof. It was proven in [106] that there exists a unitary representation ρ : G →
U(H) and a class l ∈ H1(G,H) such that the class γ in H2(G,R) given by 〈l, l〉
is nonzero. Here 〈l, l〉 is obtained by taking the imaginary part of the image of l
under the cup-product followed by the scalar product in H. Now the result follows
from Lemma 1.1 in Chapter 1. �

It is extremely rare for a finitely generated group to have nonzero polynomial
cohomology.

We now turn to quaternionic Kähler manifolds. If the scalar curvature is
positive, then the topology is very well understood due to the work of Solomon
[114]. To the contrary, if the scalar curvature is negative, the only known result
(due to Corlette) is that the fundamental group satisfy the geometric superrigidity
[25]. This means that if π1(X) admits a Zariski-dense representation in an algebraic
Lie group, then π1(X) is a lattice, and X a symmetric space of a certain type.
However, it is a rare occasion for a group to have any finite-dimensional linear
representations with infinite image. Using a combination of ideas of [25], [106] and
[65], we now prove a very strong structure theorem:

Theorem 6.4. Let X be a quaternionic Kähler manifold of negative scalar curva-
ture. Then π1(X) is Kazhdan.

Proof. Suppose not. Then by [65] there exists an affine flat Hilbert bundle E
over X with a nonparallel harmonic section. By the vanishing result of [25], this
section must be totally geodesic. Then X is covered by a flat torus, which is a
contradiction. �
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Remark. The same argument provides a new proof of the classical theorem [64],
[67], that the (cocompact) lattices in semisimple Lie groups of rank ≥ 2, Sp(n, 1)
and Iso(CaH2) are Kazhdan. One uses a vanishing result of [83] (see also the
treatment in [61]) for lattices in semisimple Lie groups of rank ≥ 2, and the
above-mentioned result of [25] for Sp(n, 1) and Iso(CaH2). Once established for
cocompact lattices, the result follows for all lattices because a Lie group is Kazhdan
if and only if all its lattices are Kazhdan.
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[51] U. Hämenstadt, A lecture at Leipzig conference “Perspectives in Geometry”, 1998.

[52] P. de la Harpe, A. Valette, La propriété (T ) de Kazhdan pour les groupes localement
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Abstract. Jørgensen’s inequality gives a necessary condition for a non-elemen-
tary group of Möbius transformations to be discrete. In this paper we gen-
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1. Introduction

In [6] Jørgensen proved a famous inequality giving a necessary condition for a
non-elementary subgroup of SL(2,C) to be discrete. Intuitively, this inequality
says that if two elements of SL(2,C) generate a non-elementary discrete group,
then they cannot both be very close to the identity. Jørgensen’s theorem both
makes this statement precise and gives explicit uniform bounds.

The methods used to prove this inequality have been generalised to a wide va-
riety of different contexts but, generally, the statements look rather different from
that given by Jørgensen. For example, a geometrical interpretation says there is al-
ways an embedded tubular neighbourhood of a very short geodesic in a hyperbolic
manifold and that this neighbourhood, or “collar”, has volume uniformly bounded
away from zero. Hence handles in hyperbolic manifolds cannot be both short and
thin.

In [7] Markham and Parker gave a general formulation of Jørgensen’s in-
equality for Möbius transformations on a metric space which recovers many known
versions as special cases. In these examples the one-point compactification of the
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metric space in question is the boundary of a rank one symmetric space of non-
compact type, that is one of real, complex or quaternionic hyperbolic spaces or the
octonionic hyperbolic plane. Additionally, this result applies when the metric space
is a field, for example the p-adic numbers Qp in which case Möb(Qp) = PSL(2,Qp).
In the main result of this paper, Theorem 3.1, we show that for non-Archimedean
metric spaces one obtains a better inequality than Theorem 2.4 of [7]. In the case
of Qp this improved version of Jørgensen’s inequality looks very similar to the
original statement given by Jørgensen in [6]; see Theorem 4.2. We interpret this
theorem geometrically in terms of the action of our group on an infinite, regular
p+ 1 valent tree.

In the final section, we consider function field spaces. There is a strong anal-
ogy between these spaces and the p-adic numbers. It is possible to give a version
of Theorem 4.2 in this case, but we leave details to the reader.

We would like to thank the referee for his/her valuable comments. Also, we
would like to thank Guyan Robertson for his help, in particular for telling us about
reference [3].

2. Non-Archimedean Möbius transformations

Let X be a non-empty set. A distance or metric on X is a function ρ from pairs
of elements (x, y) to the real numbers satisfying:

(i) ρ(x, y) ≥ 0 with equality if and only if x = y;
(ii) ρ(x, y) = ρ(y, x);
(iii) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all z ∈ X .
The inequality in (iii) is called the triangle inequality. A metric is said to be
non-Archimedean if the triangle inequality is replaced with the following stronger
inequality, called the ultrametric inequality:
(iv) ρ(x, y) ≤ max

{
ρ(x, z), ρ(z, y)

}
for all z ∈ X .

A simple consequence of the ultrametric inequality is the fact that every triangle
in a non-Archimedean metric space is isosceles:

Lemma 2.1. Suppose that ρ is a non-Archimedean metric on a space X. If x, y
and z are points of X so that ρ(x, y) < ρ(x, z), then ρ(x, z) = ρ(y, z).

Proof. We have
ρ(y, z) ≤ max

{
ρ(x, y), ρ(x, z)

}
= ρ(x, z)

by hypothesis. Likewise,

ρ(x, z) ≤ max
{
ρ(x, y), ρ(y, z)

}
= ρ(y, z)

since otherwise we would have ρ(x, z) ≤ ρ(x, y) which would be a contradiction.
Therefore, we have

ρ(y, z) ≤ ρ(x, z) ≤ ρ(y, z)
and hence these quantities are equal. �
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Many metrics arise from valuations on a ring. Let R denote a non-trivial ring.
An absolute value (or valuation or norm) on R is a real-valued function x �−→ |x|
on R satisfying:

(i) |x| ≥ 0 with equality if and only if x = 0;
(ii) |xy| = |x| |y|;
(iii) |x+ y| ≤ |x|+ |y|.
Once again, a valuation is said to be non-Archimedean if the inequality in (iii) is
replaced with the stronger inequality:

(iv) |x+ y| ≤ max
{
|x|, |y|

}
.

Given a valuation | | on a ring R we may define a metric on R by:

ρ(x, y) = |x− y|.

Examples.

(i) The standard absolute value on R or C, which gives rise to the Euclidean
metric.

(ii) Fix a prime number p and let r ∈ Q be non-zero. Write r = pfu/v where
f ∈ Z and u, v are coprime integers both of which are also coprime to p.
Then define a valuation | |p on Q by:

|r|p = p−f , |0|p = 0. (1)

One can then show that |r + s|p ≤ max
{
|r|p, |s|p

}
. This valuation is called

the p-adic valuation.

Let X be a complete non-Archimedean metric space with metric ρ. Following
[7], we now define the Möbius transformations on X . Let Aut(X) ⊂ Isom(X) be a
group of isometries ofX . This may be either the full isometry group or a sufficiently
large subgroup that preserves some extra structure on X . We will suppose that
Aut(X) acts transitively on X . The metric ρ induces a topology on X and we give
Aut(X) the corresponding compact-open topology. Let o be a distinguished point
of X . (Since Aut(X) acts transitively, in fact we may take o to be any point of
X .) Suppose that the stabiliser of o in Aut(X) is compact. We make some more
assumptions about X that allow us to extend Aut(X) to the group of Möbius
transformations on X .

Given d ∈ R+, a dilation with dilation factor d2 ∈ R+ is a map Dd : X −→ X
with Ddo = o and for all z, w ∈ X we have

ρ(Ddz,Ddw) = d2ρ(z, w). (2)

(It may seem more natural to have taken d rather than d2. However that would
have introduced square roots into our formulae, such as (7) below.) Note that if
d �= 1, then Dd has a unique fixed point in X .
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Let X ∪ {∞} be the one-point compactification of X . Suppose that there is
an involution R interchanging o and ∞ and so that if z, w ∈ X − {o}, then

ρ(Rz, o) =
1

ρ(z, o)
, (3)

ρ(Rz,Rw) =
ρ(z, w)

ρ(z, o)ρ(w, o)
. (4)

We may think of R as reflection in the unit sphere of centre o ∈ X .
Let Möb(X) be the group generated by Aut(X), Dd and R for all d in some

multiplicative subgroup of R+. We call Möb(X) the group of Möbius transforma-
tions of X . There is a natural topology on X ∪ {∞} induced from the metric ρ
(so neighbourhoods of ∞ are the exteriors of mpact subsets of X). This enables
us to define the compact-open topology for co
itself. We will be interested in discrete subgro
topology.

Proposition 2.2 (Proposition 2.1 of [7]). Let
the group generated by Aut(X), Dd and R sa

(i) Let A be any element of Möb(X) for w
positive number dA so that for all z, w ∈

ρ(Az,Aw) = dA2

(ii) Let B be any element of Möb(X) for w
positive number rB so that for all z, w ∈

ρ(Bz,Bw) =
rB

ρ(z,B−1

ρ(Bz,B∞) =
rB

2

ρ(z,B−1

The intuition behind Proposition 2.2(ii)
of radius rB followed by an isometry. Also, w
B∞ �= ∞ we have

ρ(Bz, z)
ρ(Bz,B∞)

=
ρ(z

ρ(B−

Lemma 2.3 (Lemma 2.2 of [7]). Let X be a met
on X, then Möb(X) acts 2-transitively on X
x1, y1; x2, y2 of points in X ∪ {∞}, there ex
B(y2) = y1.

Lemma 2.4 (Lemma 2.3 of [7]). Let X be a me
fixes distinct points x, y ∈ X ∪ {∞}. Then B
fixed points o and ∞. Moreover, the dilation f
conjugating map.
co

ntinuous functions from X ∪{∞} to
ups of Möb(X) with respect to this

X be a metric space and Möb(X) be
tisfying (2), (3) and (4).

hich A∞ = ∞. Then there exists a
X

ρ(z, w).

hich B∞ �= ∞. Then there exists a
X − {B−1∞}
2ρ(z, w)
∞)ρ(w,B−1∞)

,

∞)
.

is that B is like reflection in a sphere
e see that for all B ∈ Möb(X) with

, B−1z)
1z,B−1∞)

. (5)

ric space. If Aut(X) acts transitively
∪ {∞}. That is, given any two pairs
ists B ∈ G so that B(x2) = x1 and

tric space. Suppose that B ∈Möb(X)
is conjugate to A ∈ Möb(X) with

actor dA2 of A is independent of the
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Define the cross-ratio of quadruples of points in X ∪ {∞} by

X(z1, z2;w1, w2) =
ρ(w1, z1)ρ(w2, z2)
ρ(w2, z1)ρ(w1, z2)

,

X(z1,∞;w1, w2) =
ρ(w1, z1)
ρ(w2, z1)

.

Using Proposition 2.2 it is not hard to show that the cross-ratio of four points
is preserved by the action of Möb(X). Also, the cross-ratios satisfy the following
property that resembles the ultrametric inequality

Proposition 2.5. Let X be a non-Archimedean metric space. Let z1, z2, w1, w2 be
four distinct points in X ∪ {∞}. Then

X(w2, z2;w1, z1) ≤ max
{
1, X(z1, z2;w1, w2)

}
,

1 ≤ max
{

X(w2, z2;w1, z1), X(z1, z2;w1, w2)
}
.

Proof. When z2 = ∞ we have

X(z1,∞;w1, w2) =
ρ(w1, z1)
ρ(w2, z1)

, X(w2,∞;w1, z1) =
ρ(w1, w2)
ρ(w2, z1)

and the result follows directly from

ρ(w1, w2) ≤ max
{
ρ(w1, z1), ρ(w2, z1)

}
, ρ(w2, z1) ≤ max

{
ρ(w1, z1), ρ(w1, w2)

}
.

Now using the invariance of the cross-ratio under Möb(X) we get the result for
general quadruples of points. �

Let A be an element of Möb(X) fixing x, y ∈ X ∪ {∞} with dilation factor
dA

2 which may be 1 (see Lemma 2.4). Suppose that mA is a positive number so
that for all points z ∈ X ∪ {∞} − {x, y} we have

X(x,Az; y, z) ≤ dAmA. (6)

This is a conjugation invariant statement of the following inequality in the special
case when x = o and y =∞:

ρ(z,Az) ≤ dAmAρ(o, z). (7)

Observe that combining (7) with Proposition 2.2 gives

ρ(z,A−1z) ≤ dA−1mAρ(z, o)

and so mA−1 = mA. The number mA gives a quantitative measure of how near
A is to the identity: if A is close to the identity, then the distance from z to Az
should be small and hence mA must be small. We remark that such an mA always
exists. For example using Ao = o and the ultrametric inequality, we obtain

ρ(z,Az) ≤ max
{
ρ(o, z), ρ(o,Az)

}
= dA max

{
dA, 1/dA

}
ρ(o, z). (8)

Thus one may always take mA = max{dA, 1/dA} ≥ 1.
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Lemma 2.6. Let X be a non-Archimedean metric space. Suppose that A ∈Möb(X)
is conjugate to a dilation with dA �= 1. If mA is any positive number satisfying (6),
then mA ≥ max{dA, 1/dA} > 1.

Proof. Assume A fixes o and∞ and thatmA is any positive number satisfying (7).
Since dA �= 1, then ρ(z, o) �= ρ(o,Az). Hence, using Lemma 2.1, we have equality
in (8). In other words,

ρ(z,Az) = dA max
{
dA, 1/dA

}
ρ(o, z)

and so if mA satisfies (7) we have

dAmAρ(o, z) ≥ ρ(z,Az) = dA max
{
dA, 1/dA

}
ρ(o, z)

and mA ≥ max{dA, 1/dA} > 1 as claimed. �
The intuition behind Lemma 2.6 is that, when dA �= 1, the map A is uniformly

bounded away from the identity. For example, when A fixes o and ∞ we have

ρ(z,Az) = dA max
{
dA, 1/dA

}
ρ(z, o) ≥ ρ(z, o)

and so ρ(z,Az) is bounded below by a number depending on z but independent
of A.

3. The main theorem

The main result of this paper is:

Theorem 3.1. Let X be a complete non-Archimedean metric space and suppose
that Aut(X) is a group of isometries of X that acts transitively on X with com-
pact stabilisers. Suppose that Möb(X), the group of Möbius transformations on X,
satisfies hypotheses (2), (3) and (4). Let A be an element of Möb(X) with exactly
two fixed points, which we denote by x and y. Let mA be a positive number satis-
fying (6). If Γ is a discrete subgroup of Möb(X) containing A, then for all B ∈ Γ
so that {Bx, By} ∩ {x, y} = ∅ we have

m2
A max

{
1, X(Bx, y;x,By)

}
≥ 1. (9)

Using Lemma 2.3, since Aut(X) acts transitively on X we see that Möb(X)
acts 2-transitively on X∪{∞}. Thus, without loss of generality, in what follows we
shall suppose that A fixes x = o and y = ∞. Then the cross-ratio in (9) becomes:

X(Bo,∞; o,B∞) =
ρ(o,Bo)
ρ(B∞, Bo) .

We now begin the proof of Theorem 3.1. This will broadly follow Section 2.3
of [7]. The main difference will come from the fact that we are working with a
non-Archimedean metric. Our strategy is to assume that the hypothesis (9) fails.
In particular, we must havemA < 1 and so dA = 1, using Lemma 2.6. (Recall, that
as we saw above if dA �= 1, then A is uniformly bounded away from the identity
in the sense that ρ(z,Az) ≥ ρ(z, o).) We construct a sequence Bn for n = 0, 1, . . .
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as follows. Let Bn be defined by B0 = B and Bn+1 = BnAB
−1
n . Let xn = Bno

and yn = Bn∞ be the fixed points of Bn+1. Let rn denote rBn . We shall show
that when the hypothesis (9) is not true, then the Bn form a sequence of distinct
elements of Γ that tend to the identity as n tends to infinity. This contradicts our
hypothesis that Γ is discrete.

We begin by supposing that xn, yn �∈ {o,∞} for all n. We then show that xn

tends to o and yn tends to∞ as n tends to infinity, Corollary 3.8. This immediately
implies that the Bn are distinct.

Lemma 3.2. Let A be a dilation fixing o and ∞ with mA < 1. With the above
notation,

ρ(o, xn+1) ≤ mAρ(xn+1, yn)
ρ(o, xn)
ρ(xn, yn)

,

1
ρ(xn+1, yn+1)

≤ mA

ρ(xn+1, yn)
ρ(o, yn)
ρ(xn, yn)

.

Proof. This follows the proof of Lemma 2.5 of [7]. Using Lemma 2.6, since mA < 1
we have dA = 1. Using Proposition 2.2 and (7) we have

ρ(o, xn+1) = ρ(o,BnABn
−1o)

=
rn

2ρ(Bn
−1o,ABn

−1o)
ρ(ABn

−1o,Bn
−1∞)ρ(Bn

−1o,Bn
−1∞)

≤ mArn
2ρ(o,Bn

−1o)
ρ(ABn

−1o,Bn
−1∞)ρ(Bn

−1o,Bn
−1∞)

=
mAρ(BnAB

−1
n o,Bn∞)ρ(o,Bno)

ρ(Bno,Bn∞)

= mAρ(xn+1, yn)
ρ(o, xn)
ρ(xn, yn)

.

We have used (5) on the penultimate line. Similarly, we have

1
ρ(xn+1, yn+1)

=
1

ρ(BnABn
−1o,BnABn

−1∞)

=
ρ(ABn

−1o,Bn
−1∞)ρ(ABn

−1∞, Bn
−1∞)

rn2ρ(ABn
−1o,ABn

−1∞)

≤ mAρ(ABn
−1o,Bn

−1∞)ρ(o,Bn
−1∞)

rn2ρ(Bn
−1o,Bn

−1∞)

=
mAρ(o,Bn∞)

ρ(BnAB
−1
n o,Bn∞)ρ(Bno,Bn∞)

=
mA

ρ(xn+1, yn)
ρ(o, yn)
ρ(xn, yn)

.
�
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Suppose that

Xn = X(Bno,∞; o,Bn∞) =
ρ(o,Bno)
ρ(Bno,Bn∞)

=
ρ(o, xn)
ρ(xn, yn)

.

We may rewrite our hypothesis that (9) fails as

mA < 1 and m2
AX0 < 1.

We shall show, first, that if the hypothesis (9) fails to hold, then there is an N ≥ 1
so that XN ≤ 1 and, secondly, that this implies that Xn tends to zero as n tends
to infinity.

Lemma 3.3. Suppose that Xn > 1, then Xn+1 ≤ m2
AX2

n.

Proof. Since Xn > 1 we have ρ(xn, yn) < ρ(o, xn). Therefore, using Lemma 2.1,
we see that ρ(o, yn) = ρ(o, xn). This means that

Xn+1 =
ρ(o, xn+1)
ρ(xn+1, yn+1)

≤ m2
A

ρ(o, xn)ρ(o, yn)
ρ(xn, yn)2

= m2
A

(
ρ(o, xn)
ρ(xn, yn)

)2

= m2
AX2

n. �

Lemma 3.4. Suppose that Xn ≤ 1, then Xn+1 ≤ m2
AXn.

Proof. If Xn ≤ 1, then ρ(o, xn) ≤ ρ(xn, yn). Thus

ρ(o, yn) ≤ max
{
ρ(o, xn), ρ(xn, yn)

}
= ρ(xn, yn).

This means that

Xn+1 =
ρ(o, xn+1)
ρ(xn+1, yn+1)

≤ m2
A

ρ(o, xn)ρ(o, yn)
ρ(xn, yn)2

≤ m2
A

ρ(o, xn)
ρ(xn, yn)

= m2
AXn. �

Lemma 3.5. Suppose that m2
AX0 < 1. Then there exists N ≥ 0 so that XN ≤ 1.

Proof. If X0 ≤ 1, then we choose N = 0. Suppose that Xk > 1 for all 0 ≤ k ≤ n−1.
Then, using Lemma 3.3, we have

m2
AXn ≤

(
m2

AXn−1

)2 ≤ · · · ≤
(
m2

AX0

)2n

.

Since m2
AX0 < 1, this sequence is eventually at most m2

A. Therefore we can only
have Xn > 1 for finitely many values of n. Hence there exists N with XN ≤ 1. �

Lemma 3.6. Suppose that XN ≤ 1, then Xn ≤ m2n−2N
A for all n ≥ N . In particular,

if mA < 1, then Xn tends to zero as n tends to infinity.

Proof. We use induction. We have XN ≤ 1 = m0
A. Suppose that Xn ≤ m2n−2N

A for
some n ≥ N . Then, using Lemma 3.4, we have Xn+1 ≤ m2

AXn ≤ m2n+2−2N
A . The

result follows. �

We now use the fact that Xn tends to zero as n tends to infinity to show that
ρ(o, xn) tends to zero and ρ(xn, yn) tends to infinity as n tends to infinity.
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Lemma 3.7. Suppose that mA < 1 and XN ≤ 1. Then for all n ≥ N we have

ρ(o, xn) ≤ mn−N
A ρ(o, xN ) and

1
ρ(xn, yn)

≤ mn−N
A

ρ(xN , yN )
.

In particular, ρ(o, xn) tends to zero and ρ(xn, yn) tends to infinity as n tends to
infinity.

Proof. Using Lemma 3.6, we see thatmAXn ≤ m2n+1−2N
A ≤ mA < 1 for all n ≥ N .

Thus
ρ(o, xn+1) ≤ mAXnρ(xn+1, yn) < ρ(xn+1, yn),

and so, using Lemma 2.1, we see that ρ(o, yn) = ρ(xn+1, yn). As we already know
that ρ(o, yn) ≤ ρ(xn, yn), this means

ρ(xn+1, yn) = ρ(o, yn) ≤ ρ(xn, yn).

Using Lemma 3.2, we have

ρ(o, xn+1) ≤ mAρ(o, xn)
ρ(xn+1, yn)
ρ(xn, yn)

≤ mAρ(o, xn).

Using induction, we see that ρ(o, xn) ≤ mn−N
A ρ(o, xN ) as claimed.

Similarly, from the second part of Lemma 3.2, we have
1

ρ(xn+1, yn+1)
≤ mA

ρ(xn+1, yn)
ρ(o, yn)
ρ(xn, yn)

≤ mA

ρ(xn, yn)
.

Again, we use induction to get

1
ρ(xn, yn)

≤ mn−N
A

ρ(xN , yN )
. �

Corollary 3.8. The points xn tend to o and the points yn tend to ∞ as n tends to
infinity.

We claim that the Bn lie in a compact subset of Möb(X). Hence (a subse-
quence of) the Bn tend to the identity. Since the Bn are distinct, we see that 〈A,B〉
is not discrete. This will prove the main theorem in the case where xn, yn �= o,∞.

In order to verify the claim, observe that we may chooseDn lying in a compact
subset of Möb(X) so that DnBnDn

−1 fixes both o and ∞. Secondly, since Bn is
conjugate to A, using Lemma 2.4 we see that the dilation factor of DnBnDn

−1 is
1. Thus for all z, w ∈ X we have

ρ(DnBnDn
−1A−1z,DnBnDn

−1A−1w) = ρ(A−1z,A−1w) = ρ(z, w).

Hence DnBnDn
−1A−1 is in Aut(X) and fixes o. By hypothesis the stabiliser of o

in Aut(X) is compact. Hence Bn lies in a compact subset of Möb(X) as claimed.

We need to treat the case where there is an N ≥ 0 for which either xN or
yN is o or ∞, and so xN+1 = o or yN+1 = ∞. Without loss of generality, suppose
yN+1 =∞ and hence yn = ∞ for all n ≥ N + 1.

Suppose xn �= o for all n. We will not use (9) but only the fact that 〈A,B〉
is discrete. (Note that taking N = 0 this shows that if 〈A,B〉 is discrete, then
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{Bo,B∞}∩{o, ∞} cannot be just one point.) Consider the sequence Bn as defined
above. By construction, Bn is conjugate to A and fixes ∞ for n ≥ N + 1 and so
dBn = dA = 1. In other words, Bn is an isometry of X for n ≥ N + 1. Hence for
n ≥ N + 1 we have

ρ(xn+1, o) = ρ(BnABn
−1o, o)

= ρ(ABn
−1o,Bn

−1o)

≤ mAρ(Bn
−1o, o)

= mAρ(Bno, o)
= mAρ(xn, o)

≤ mn−N
A ρ(xN+1, o).

Therefore xn tends to o as n tends to infinity and, arguing as above, Bn is a
sequence of distinct elements of 〈A,B〉 converging to the identity. Again, 〈A,B〉
cannot be discrete.

Finally, suppose xN+1 = o and yN+1 = ∞ for some N ≥ 0. Thus Bn+1 fixes
both o and ∞ for all n ≥ N + 1. Again we will not use (9), but this time we
only use the fact that {Bo, B∞} ∩ {o, ∞} = ∅. Since A has precisely two fixed
points, if Bn+1 = BnABn

−1 fixes both o and ∞, then Bn either fixes both o and
∞ or interchanges them. Without loss of generality, suppose that N is the smallest
index for which xN+1 = o and yN+1 = ∞. Since {B0o, B0∞} ∩ {o, ∞} = ∅, we
may assume that N ≥ 1. Then BNo = ∞ and BN∞ = o and we see that BN has
an orbit of size 2. Thus B2

N fixes points that BN does not. Since BN is conjugate
to A, this is a contradiction. This proves the theorem.

4. The p-adic numbers

In this section we consider the case where X = Qp, the p-adic numbers, that is, the
completion of Q with respect to the p-adic valuation (1). We show that Möb(X)
is then the matrix group PSL(2,Qp) = SL(2,Qp)/{±I} acting on Qp ∪ {∞} by
Möbius transformations. Discrete subgroups of SL(2,Qp) have been considered by
Ihara [5] and Serre in Chapter II.1 of [8], in particular page 84. Our main theorem
gives a necessary condition for a subgroup of SL(2,Qp) to be discrete, Theorem
4.2. This is very similar to the standard version of Jørgensen’s inequality, [6]. In
[4] Gromov and Schoen considered more general p-adic representations of lattices
in non-compact, semisimple Lie groups. Our main result should apply in many of
these cases.

The construction of the p-adic numbers and their properties in terms of non-
Archimedean spaces is well known; see Artin [1], Cassels [2], and Serre [8], for
example. We recall that a p-adic integer is any p-adic number α with |α|p ≤ 1.
Thus, the ring of p-adic integers, denoted Zp, is the p-adic unit ball in Qp. Each
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p-adic integer α has an expansion

α =
∞∑

n=0

anp
n (10)

where an ∈ {0, 1, . . . , p − 1} and so Zp is compact; see Lemma 2 on page 10 of
Cassels [2]. Likewise, a p-adic unit is any u ∈ Qp so that u ∈ Zp and u−1 ∈ Zp.
That is, u has the form (10) with a0 �= 0. Since the set of units is the intersection
of two compact subsets of Qp, we see that it is compact.

We now show how to define a tree T whose boundary is Qp ∪{∞}. This idea
is due to Serre, [8], but our treatment will follow Figà-Talamanca [3]. The closed
balls in Qp are the vertices of T , that is

V =
{
x+ pkZp : x ∈ Qp, k ∈ Z

}
.

Two vertices x+pkZp and y+pjZp are joined by an edge of T if and only if either
k = j+1 and x− y ∈ pjZp or else j = k+1 and x− y ∈ pkZp; see page 8 of [3]. In
other words, |j − k| = 1 and one of the balls is contained in the other. Notice that
each ball x + pkZp of radius p−k is contained in exactly one ball x + pk−1Zp of
radius p−k+1 and contains exactly p balls x+ ypk + pk+1Zp of radius p−k−1 where
y = 0, 1, . . . , p− 1. Hence each vertex has exactly p+ 1 edges emanating from it.
Therefore the graph T we have just constructed is an infinite, regular p+ 1 tree.

We now find the boundary of T ; see [3]. We consider geodesic paths through T .
In other words, such a path is a (possibly infinite) sequence of vertices vj so that for
all j the vertices vj , vj+1 are joined by an edge and vj−1 �= vj+1, that is there is no
back tracking. The semi-infinite geodesic path p−kZp for k = 0, 1, 2, . . . identifies
a point of the boundary denoted by ∞. Every other semi-infinite geodesic path
starting at the vertex Zp eventually consists of a sequence of nested, decreasing
balls x + pkZp for k = K, K + 1, K + 2, . . .. The limit of this sequence is the
point x of Qp. Choosing a starting point other than Zp makes only finitely many
changes to these paths. Hence the boundary of T is Qp ∪ {∞}.

Any two distinct points z, w in Qp ∪ {∞} are the end points of a unique
doubly infinite geodesic path through T . We denote this path by γ(z, w). The
cross-ratio X(z1, z2;w1, w2) has the following interpretation in terms of T .

Lemma 4.1. Suppose that z1, z2, w1, w2 are four distinct points of Qp ∪ {∞}.
Let γ(z1, w2) and γ(z2, w1) be the geodesics joining z1, w2 and z2, w1. If
X(z1, z2;w1, w2) = pd > 1, then the shortest path in T from γ(z1, w2) to γ(z2, w1)
has d edges. If X(z1, z2;w1, w2) ≤ 1, then γ(z1, w2) and γ(z2, w1) intersect.

Proof. Without loss of generality we suppose that w1 = o and z2 = ∞. Then we
have X(x,∞; o, y) = ρ(o, x)/ρ(x, y). The geodesic γ(o,∞) passes through vertices
pjZp for j ∈ Z.

Suppose first that the first few terms in the expansion of x and y are the
same. In other words, we have x = pj(a + bpk) and y = pj(a + cpk) where k > 0
and a, b, c are units with b �= c. Then ρ(o, x) = p−j and ρ(x, y) = p−j−k and thus



108 J. Armitage and J.R. Parker

we have X(x,∞; o, y) = pk > 1. Every vertex on the geodesic γ(x, y) has the form
pj(a + bpk + plZp) or pj(a + cpk + plZp) where l ≥ k > 0. The points of γ(o,∞)
and γ(x, y) closest to each other are pjZp and pj(a+ pkZp). The geodesic segment
joining them has k edges and passes through the k + 1 vertices pj(a + plZp) for
l = 0, 1, . . . , k. This proves the first part of the lemma.

Suppose now that the first few terms of z1 and w2 are not the same. That
is, we have z1 = apj and w2 = bpk where a and b are units and either j �= k
or, if j = k, then a − b is a unit. Then ρ(o, z1) = p−j , ρ(w2, z1) = p−min(j,k)

and X(z1,∞; o, w2) = pmin(0,k−j) ≤ 1. Then the geodesic joining z1 and z2 passes
through pjZk, which also lies on the geodesic joining o and ∞. �

We claim that Möb(Qp) is PSL(2,Qp) acting on Qp via Möbius transforma-
tions. Let Aut(Qp) be the collection of maps Ax = (ax + b)a where a is a unit
in Qp and b is any element of Qp. For d = p−m the dilation Dd is defined by
Ddx = p2mx and satisfies (2):

ρ(Ddx,Ddy) = |p2mz − p2mw|p = |p2m|p|z − w|p = d2|z − w|p = d2ρ(z, w).

The inversion R is given by Rx = −1/x and clearly satisfies (3) and (4):

ρ(Rx, o) =
∣∣∣∣−1
x

∣∣∣∣
p

=
1
|x|p

=
1

ρ(x, o)
,

ρ(Rx,Ry) =
∣∣∣∣−1
x
− −1
y

∣∣∣∣
p

=
|x− y|p
|x|p|y|p

=
ρ(x, y)

ρ(x, o)ρ(y, o)
.

As elements of SL(2,Qp) these three maps are given by

A =
(
a b
0 a−1

)
, Dd =

(
pm 0
0 p−m

)
, R =

(
0 −1
1 0

)
.

The maps A, Dd and R also act on T . Consider the vertex v = pj(x+pkZp) where
x is a unit and k ≥ 0. The action of isometries and dilations is straightforward;
see pages 9 and 10 of [3]:

A
(
pj(x+pkZp)

)
= pj(a2x+pkZp)+ba, Dd

(
pj(x+pkZp)

)
= pj+2m(x+pkZp).

The action of R is slightly more complicated. Let y be the unit with xy = −1.
Then

R
(
pj(x + pkZp)

)
= p−j(y + pkZp).

if k > 0 andR(pjZp) = p−jZp. One may easily check thatR preserves the structure
of T .

Clearly Aut(Qp) acts transitively on Qp: For any b ∈ Qp the map A(x) = x+b
sends o to b. Notice that the stabiliser of o in Aut(Qp) comprises those maps
A(x) = a2x where a is a unit. Since the units form a compact subset of Qp, we
see that Aut(X) acts with compact stabilisers. This means that the hypotheses
of Theorem 3.1 are satisfied in this case. In fact, we can restate Theorem 3.1 in a
more familiar form:
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Theorem 4.2. Let A be a an element of SL(2,Qp) conjugate to a diagonal matrix.
Let B be any element of SL(2,Qp) so that, when acting on Qp ∪ {∞} via Möbius
transformations, B neither fixes nor interchanges the fixed points of A. If Γ =
〈A,B〉 is discrete, then

max
{∣∣∣tr2(A)− 4

∣∣∣
p
,

∣∣∣tr[A,B]− 2
∣∣∣
p

}
≥ 1.

Proof. Suppose that

A =
(
λ 0
0 λ−1

)
, B =

(
a b
c d

)
,

where λ, a, b, c, d ∈ Qp and ad − bc = 1. Then mA = |λ − λ−1|p and Bo = b/d,
B∞ = a/c. By hypothesis neither Bo nor B∞ is either o or ∞, so

X(Bo,∞; o,B∞) =
|b/d|p

|a/c− b/d|p
=

|b|p|c|p
|ad− bc|p

= |bc|p.

We can then calculate∣∣∣tr2(A)− 4
∣∣∣
p

= |λ− λ−1|2p = m2
A,∣∣∣tr[A,B]− 2

∣∣∣
p

= |λ− λ−1|2p |bc|p = m2
AX(Bo,∞; o,B∞).

The result follows directly from Theorem 3.1. �
We can interpret this result geometrically in terms of the action of 〈A, B〉

on T as follows. Let A be as in the proof of Theorem 4.2 and write λ = pja where
a = a0 + a1p+ · · · is a unit. Then λ−1 = p−jb where b = b0 + b1p+ · · · is the unit
with ab = 1.

Suppose that mA = |λ − λ−1| < 1. Then j = 0 and p divides a − b, that
is a0 = b0. Since ab = 1 this means that a0b0 = a20 is congruent to 1 (mod p);
that is λ2 is congruent to 1 (mod p). In this case, A(z) = λ2z fixes each vertex
pjZp. In other words, A fixes γ(o,∞). For such maps, Theorem 3.1 states that
X(Bo,∞; o,B∞) ≥ 1/mA > 1. Geometrically this means that γ(o,∞) does not
intersect its image under B.

On the other hand, if A has dA �= 1, then A maps the geodesic γ(o,∞) to
itself shifting each vertex along by a fixed number of edges (see page 77 of Serre
[8]). Recall that in this case mA ≥ 1 and ρ(z,Az) ≥ ρ(z, o). This corresponds to
the fact that A must translate each vertex by a whole number of edges and so
cannot have arbitrarily short translation length.

5. Function field spaces

We now explain how a function field can be thought of as resembling the p-adic
numbers Qp as developed in Section 4. We consider a field k and the field k(t) of
rational functions over k. The elements of k(t) are quotients of two elements of the
polynomial ring k[t] over k. Then k(t) is analogous to Q and k[t] to Z. We choose
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an irreducible polynomial p(t) in k[t] which plays the role analogous to the prime
p in the definition of Qp. We consider an element φ(t) ∈ k(t) and we write

φ(t) = p(t)f u(t)
v(t)

where f ∈ Z and u(t), v(t) are polynomials in k[t] without common factors and so
that p(t) does not divide either u(t) or v(t). Following (1) above, we define∣∣φ(t)∣∣

p(t)
= c−f (11)

where c > 1 and we develop the theory in a manner resembling the p-adic case.
There is another approach, which we prefer in this section; see Artin [1]

or Section II.1.6 of Serre [8]. If we replace the irreducible polynomial p(t) with
the rational function 1/t (which corresponds to ∞ at t = 0), then the valuation
corresponding to (11) is ∣∣∣∣u(t)v(t)

∣∣∣∣ = cdeg(u)−deg(v). (12)

Here the polynomials u(t) and v(t) have no common factors and have degree deg(u)
and deg(v) respectively. This valuation corresponds to the standard absolute value
in the case of Q. The valuation (12) is non-Archimedean and leads to an ultrametric
space.

In number theoretic applications (for example to the function fields of curves
defined over finite fields) it is natural to define the number c in (11) to be q, where
k is the field Fq of q elements.

We are led, accordingly, to consider u(t) = antn + an−1t
n−1 + · · ·+ a0 in k[t]

with an, an−1, . . . , a0 ∈ k and n ≥ 0. We introduce the valuation∣∣u(t)∣∣ =

{
cdeg(u) = cn if u(t) �= 0,
0 if u(t) = 0.

(13)

It follows that ∣∣u(t) v(t)∣∣ =
∣∣u(t)∣∣ ∣∣v(t)∣∣,∣∣u(t) + v(t)

∣∣ ≤ max
{∣∣u(t)∣∣ ∣∣v(t)∣∣},∣∣u(t) + v(t)

∣∣ =
∣∣u(t)∣∣ if deg(v) < deg(u).

If we take k = Fq and c = q, then
∣∣u(t)∣∣ = qdeg(u) (for u(t) �= 0) is the number

of residue classes of polynomials in Fq[t] modulo u(t), which is why c = q is the
natural choice. (Each residue class may be represented by a polynomial of degree
less than u(t). There are q choices for each of the deg(u) coefficients.)

If k(t) denotes the quotient field of k[t], then the the valuation defined by
(13) extends in the obvious way to (12). The field k{t} of formal Laurent series in
1/t consists of the series

φ = φ(t) = antn + an−1t
n−1 + · · ·+ a0 + a−1t

−1 + a−2t
−2 + · · ·
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which is the completion of k(t) with respect to the valuation (12) and is analogous
to the completion of Q with respect to the Archimedean valuation. For such a φ
we have

|φ| =
∣∣φ(t)∣∣ = cn. (14)

We may define Möb
(
k{t}

)
in terms of SL

(
2, k{t}

)
acting on k{t} via Möbius

transformations and, similarly, Aut
(
k{t}

)
. The dilations Dd are given by Dd(φ) =

t2mφ. We can prove the analogue of Theorem 4.2 with the valuation (14) in place
of the p-adic valuation.
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Abstract. In this paper, given a compact oriented spin Riemannian manifold
X, we construct a deformation of the classical Dirac operator DX into a hy-
poelliptic operator acting on the total space X of the tangent bundle TX.
This construction is parallel to the deformation of the de Rham Hodge op-
erator we had obtained in a previous work. If X is complex and Kähler, we
produce this way a deformation of the Hodge theory of the corresponding
Dolbeault complex.

By adapting results of Lebeau and ourselves already proved in the con-
text of de Rham theory, we show that the deformation of the Dolbeault Hodge
theory has essentially the same analytical properties as the corresponding de-
formation in de Rham theory.

We define hypoelliptic Quillen metrics, and we relate them to classical
Quillen metrics in a formula where the Gillet-Soulé genus R appears. This
formula is parallel to a formula we had proved with Lebeau for Ray-Singer
metrics in the context of de Rham theory.

We develop the theory in the equivariant setting, and also for holomor-
phic torsion forms.
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Introduction

The purpose of this paper is to show that if X is a compact Riemannian manifold,
the Dirac operator DX can be deformed into a family of first-order hypoelliptic
operators DYb

, b > 0 acting on the total space X of the tangent bundle, which
interpolates in the proper sense between DX and the geodesic flow on X . If X is a
complex Kähler manifold X , we obtain a deformation of the standard Dolbeault-
Hodge theory into a new Hodge theory whose corresponding Laplacian is a second-
order hypoelliptic differential operator on X .

First we will give the proper perspective to this work. In [B05], a similar
deformation was obtained in the context of the de Rham-Hodge theory of X . The
resulting Laplacian has properties formally similar to the ones described above.
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The underlying motivation for [B05] was the construction of a semiclassical ver-
sion of a Witten like deformation [W82] of a non existing de Rham-Hodge theory
of the loop space LX of X . The corresponding Laplacian was shown to be for-
mally self-adjoint with respect to a Hermitian form of signature (∞,∞). The
whole construction relies formally on a path integral representation of the Witten
deformation.

The program outlined in [B05] was in large part carried out in joint work with
Lebeau in [BL06]. In this work, we showed that indeed the de Rham hypoelliptic
Laplacian on T ∗X has many of the properties of the standard elliptic Laplacian,
and also that as b → 0, it converges in the proper sense to the standard elliptic
de Rham-Hodge Laplacian on X . The standard conclusions of Hodge theory were
shown to be correct except for a discrete family of values of the parameter b >
0, and also to be valid near b = 0. Moreover, the classical elliptic Ray-Singer
torsion [RS71] was proved to be equal to its hypoelliptic deformation, while the
corresponding equivariant versions were related by a topological formula. A whole
machinery was also developed to handle local index theoretic questions in the
hypoelliptic context.

The hypoelliptic deformation of the Dirac operator which is obtained here is
of a different nature from the geometric point of view, even if analytically, some
aspects are very similar.

We will first explain the construction from a functional analytic point of view,
and later describe the effective construction in the case of complex manifolds.

Let
(
X, gTX

)
be a compact Riemannian manifold, let LX be its loop space,

i.e., the set of smooth maps S1 → X . Then LX is naturally equipped with a natural
L2 Riemannian metric. Namely if Y ∈ TLX , so that Y is a smooth section of TX
along the given loop x·, then

|Y |2gT LX =
∫

S1
|Y |2gT X ds. (0.1)

Then S1 acts isometrically on LX by the maps ksx· = xs+·, and the associated
generating Killing vector field is the speed K = ẋ.

Now we proceed as in Atiyah [A85]. Let K ′ be the 1-form on LX dual to K
by the metric, so that if Y ∈ TLX , then

K ′ (Y ) =
∫

S1
〈Y, ẋ〉 ds. (0.2)

Set
dK = d+ iK . (0.3)

Then dK is the equivariant de Rham operator acting on Ω· (LX).
Let E be the energy,

E (X) =
1
2
|K|2 =

1
2

∫
S1
|ẋ|2 ds. (0.4)

Then
dKK

′ = E + dK ′. (0.5)
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Since K is Killing,
d2KK

′ = 0. (0.6)

Set
α = exp (−dKK ′/2) . (0.7)

From (0.6), (0.7), we get
dKα = 0. (0.8)

Let L (x, ẋ) be any Lagrangian, which has an associated Hamiltonian H. Let
I be the S1-invariant function on LX ,

I (x) =
∫

S1
L (x, ẋ) ds. (0.9)

Prominent among these functionals is the energy E, whose critical points are the
closed geodesics. Let ΦTLX be the Mathai-Quillen equivariant Thom form [MaQ86]
on TLX which is associated to the Levi-Civita connection ∇TLX .

In [B05], given b > 0, the following formal path integral is considered,

Jb =
∫

LX

α ∧
(
b2∇I

)∗
ΦTLX . (0.10)

If L (x, ẋ) = 1
2 |ẋ|

2, we can write the integral Jb in the form

Jb =
∫

LX

exp
(
−1

2

∫
S1

(
|ẋ|2 + b4 |ẍ|2

)
ds+ . . .

)
. (0.11)

In (0.11), we only wrote the bosonic part of the term appearing in the exponential,
the fermionic part, or differential form contribution, being ignored.

When b → 0, we recover formally the classical Brownian integral, and when
b → +∞, the integral should concentrate on closed geodesics. From a dynamical
point of view, it was argued in [B05] that the dynamics of the path x which
corresponds to the functional integral (0.11) is given by the differential equation

ẍ =
1
b2

(−ẋ+ ẇ) , (0.12)

where w is a standard Brownian motion. Making b = 0 in (0.12) leads to the
equation of Brownian motion, and b = +∞ to the equation of the geodesics.

The integral Jb should be thought as the Lagrangian counterpart to the
Hamiltonian theory which is precisely the theory of the hypoelliptic Laplacian in
de Rham theory which was developed in [B05].

At this stage, let us observe that if I = E, the energy functional appears
twice in (0.10), first in α and also in

(
b2∇E

)∗ ΦTLX .
Now we will explain the Lagrangian version of the construction of our hy-

poelliptic Dirac operator. We will assume X to be even dimensional, oriented and
spin. Let π : X → X be the total space of TX . The Levi-Civita connection ∇TX

induces the identification TX = π∗ (TX ⊕ TX), the second copy of TX being the
fibre of π. Given b > 0, we equip TX with the metric gTX

b = gTX ⊕ b4gTX .



The Hypoelliptic Dirac Operator 119

Let LX be the loop space of X , and let K be the corresponding generating
vector field. We can embed LX into LX by the map i : x→̇ (x,K), so that i∗K = K.
Since K = ẋ, using the splitting above, we get i∗K = (ẋ, ẍ).

Let gTLX
b = i∗gTLX

b . The metric gTLX
b is a H1 type metric on LX . Namely,

if Y ∈ TLX , let Ẏ be the covariant derivative of Y with respect to ∇TX along the
given loop x·. Then

|Y |2gT LX
b

=
∫

S1

(
|Y |2gT X + b4

∣∣∣Ẏ ∣∣∣2
gT X

)
ds. (0.13)

By (0.13), we find in particular that

|K|2gT LX
b

=
∫

S1

(
|ẋ|2gT X + b4 |ẍ|2gT X

)
ds. (0.14)

We introduce a vector bundle
(
E, gE ,∇E

)
on X equipped with a metric and

a unitary connection. Let LE be the loop space of E. Let ch
(
LE,∇LE

)
be the

even form on LX obtained in [B85], which lifts the Chern character form of E on
X to a dK-closed form on LX . Let K′

b be dual to K by the metric gTLX
b . In the

Lagrangian formulation, the idea will be to consider a path integral of the type

Jb =
∫

LX

exp (−i∗dKK′
b/2) ∧ ch

(
LE,∇LE

)
. (0.15)

We can rewrite (0.15) in the form,

Jb =
∫

LX

exp (−dKi∗K′
b/2) ∧ ch

(
LE,∇LE

)
. (0.16)

Let us make b = 0 in (0.15). We get

J0 =
∫

LX

exp (−dKK ′/2) ∧ ch
(
LE,∇LE

)
. (0.17)

Now by arguments of Witten explained in detail in [A85, B85], (0.17) is the La-
grangian counterpart to the well-known McKean-Singer heat equation formula
[MKS67] for the index of the classical Dirac operator acting on spinors ofX twisted
by E.

The question is to know what is the Hamiltonian counterpart to the path
integral in (0.15) for Jb for b > 0. Before doing this, observe that by (0.14), (0.15),
as b → +∞, the integral for Jb will localize on the closed geodesics of X . It is
useful to note the similarity of the path integrals in (0.11) and in (0.15), by simple
inspection of (0.14).

The construction which is done in the present paper is not exactly the Hamil-
tonian counterpart to (0.15). Indeed let RTX be the curvature of ∇TX . If Y is the
tautological section of π∗TX on X , we consider the 2-form R̂TXY on X with

values in the vertical fibre TX . Let R̂TXY
′
b be the corresponding three form on

X one obtains by duality on the vertical component with respect to the vertical
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metric b4gTX . This form is of horizontal degree 2 and vertical degree 1. Note that
π∗K = K. Consider the odd form on LX ,

Lb = K′ + R̂TXK
′
b. (0.18)

Then Lb is the sum of a 1-form and of a 3-form. Observe that

i∗iK+R̂T XK
Lb =

∫
S1

(
|ẋ|2 + b4

∣∣ẍ+RTX ẋ
∣∣2) ds. (0.19)

The path integral which is considered implicitly in this paper is given by

Jb =
∫

LX

exp (−dKi∗Lb/2) ∧ ch
(
LE,∇LE

)
. (0.20)

For reasons which should be obvious to the reader, the expression in (0.19) con-
tributes to dKi∗Lb.

Again for b = 0, Jb reduces to the classical expression in (0.17). When
b → +∞, the integrand in (0.20) should localize near the set of closed geodesics.
However elementary considerations show that there may be divergences of local
currents when b → +∞, which is not the case for the de Rham deformation of
[B05]. The Hamiltonian counterpart to the path integral (0.20) will precisely be
our hypoelliptic Dirac operator DYb

.
If the manifold X is complex and the metric gTX is Kähler, the path integral

can be written in another form. Indeed LX is a complex manifold, and K is a
holomorphic vector field. Put

∂K = ∂ + iK(1,0) , ∂K = ∂ + iK(0,1 , (0.21)

so that

∂
2

K = 0, ∂2
K = 0, dK = ∂K + ∂K . (0.22)

Let ωX be the Kähler form on X which is associated to the metric gTX , and let
ω̂TX be the fibrewise Kähler form associate to the metric ĝTX on the fibres of
TX . Note that we do not assume any more that ĝTX is related to gTX , nor that
ĝTX induces a Kähler metric on X . From the holomorphic Hermitian connection
∇̂TX on

(
TX, ĝTX

)
, we get a horizontal subbundle THX of TX , so that ω̂X can

be viewed as a (1, 1) form on X . For b ≥ 0, set

ωXb = π∗ωX + b4ω̂X . (0.23)

Note that for b > 0, the form ωXb on X is closed only if the metric ĝTX is flat.
The form ωXb lifts to a S1-invariant form on LX . Then the integral (0.20)

can be written in the form

Jb =
∫

LX

exp
(
i∂K∂Ki

∗ωLX
b

)
∧ ch

(
LE, gLE

)
. (0.24)

Working instead with the path integral Jb would mean that if y is the tautological
section of π∗TX on X , we would replace ω̂X by the closed form i∂∂ |y|2ĝT X (of
which ω̂X is the vertical component). Finally note that when b = 0, equation
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(0.24) is just the formula established in [B90a, eq. (15)] in the context of classical
elliptic Hodge theory.

Let us now briefly explain the explicit construction of the hypoelliptic Dirac
operator in the case where X is a compact complex manifold. Let

(
E, gE

)
be

a holomorphic Hermitian vector bundle on X . We still denote by π : X → X
the total space of TX . Let y be the tautological section of π∗TX on X . Let
i : X → X be the embedding of X into X as the zero locus of y. The Koszul com-
plex (Λ· (T ∗X) , iy) provides a resolution of i∗OX . Consider the Dolbeault-Koszul

complex
(
Ω(0,·) (X , π∗ (Λ· (T ∗X)⊗ E)) , ∂

X
+ iy

)
. Let ĝTX be a Hermitian metric

on the fibre TX of π, and let ∇̂TX be the corresponding holomorphic Hermitian
connection, from which we get a smooth identification TX = π∗ (TX ⊕ TX). Us-
ing this identification, we can write the operator A′′

Y = ∂
X

+ iy in the form,

A′′
Y = ∇I·′′ + ∂

V
+ iy. (0.25)

In (0.25), ∇I′′ is a horizontal Dolbeault operator, and ∂
V

the fibrewise Dolbeault
operator.

Let ωX be the Kähler form of a Kähler metric gTX on TX . Set

A′
Y = eiω

X
(
∇I·′ + ∂

V ∗
+ iy

)
e−iωX

. (0.26)

We have the obvious,

A′′2
Y = 0, A′2

Y = 0. (0.27)

Set

AY = A′′
Y +A′

Y . (0.28)

By a result of Hörmander [Hö67], ∂
∂u − A2

Y is a hypoelliptic differential operator
on X . The operator AY is a special case of the hypoelliptic Dirac operator.

For b > 0, when replacing ĝTX by b4gTX , the Laplacian A2
Y,b is shown to

interpolate between the classical Dolbeault-Hodge operator onX , and the geodesic
flow on X . Moreover,A2

Y,b is self-adjoint with respect to an explicit Hermitian form
of signature (∞,∞).

Set

λ = det H(0,·) (X,E|X) . (0.29)

Let gTX′ be another Kähler metric on TX . The metrics gTX′, gE determine a
classical Quillen metric [Q85b, BGS88c] on ‖ ‖2λ on λ via the classical Dolbeault-
Hodge Laplacian onX . On the other hand, by proceeding as in [BL06], the metrics
gTX , ĝTX , gE determine a hypoelliptic generalized metric ‖ ‖λ,h on λ.

An important result contained in this paper is a comparison formula relating
the elliptic and hypoelliptic Quillen metrics. Indeed let T̃d

(
TX, gTX′, ĝTX

)
be

the Bott-Chern class in the sense of [BoC65, BGS88a] of TX for the couple of
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metrics gTX′, ĝTX . Let R be the Gillet-Soulé additive genus [GS92] associated to
the formal power series

R (x) =
∑
n≥1
n odd

⎛⎝2
ζ′ (−n)
ζ (−n) +

n∑
j=1

1
j

⎞⎠ ζ (−n) x
n

n!
. (0.30)

In (0.30), ζ (s) is the Riemann zeta function.
We give the comparison formula established in Theorem 10.8.

Theorem 0.1. The generalized metric ‖ ‖2λ,h is a Hermitian metric. Moreover,

log

(
‖ ‖2λ,h

‖ ‖2λ

)
= −

∫
X

T̃d
(
TX, gTX′, ĝTX

)
ch

(
E, gE

)
+

∫
X

Td (TX)R (TX) ch (E) . (0.31)

By (0.31), we find that the hypoelliptic Quillen metric ‖ ‖λ,h does not depend
on the Kähler metric gTX , and also that it has all the nice properties of classical
Quillen metrics, even when ĝTX is not Kähler. In Subsection 10.8, we relate the
appearance of the genus R to the immersion formula of [BL91] for Quillen metrics,
where the genus R also appears.

We establish an analogue of Theorem 0.1 also in the equivariant case. The
equivariant genus R (θ, x) of [B94] appears instead. Moreover, for values of the
deformation parameter b > 0 small enough, we get corresponding formulas re-
lating the elliptic holomorphic torsion forms [BK92, M00a] to their hypoelliptic
analogues.

Let us also mention that for b > 0, the hypoelliptic Dirac operator DYb
is a

perturbation of a Quillen superconnection over X [Q85a] by an operator of order
0. In the context of the local families index theorem of [B86], superconnections
have appeared naturally as adiabatic limits of Dirac operators. Here the situation
is actually the opposite. The elliptic Dirac operator appears as the limit of a family
of perturbed superconnections.

When X is an oriented spin manifold of odd dimension, we extend the defi-
nition of the R/Z-valued reduced eta invariant of Atiyah-Patodi-Singer [APS75a,
APS75b, APS76] to DYb

, and we show that when the horizontal and vertical met-
rics coincide, this reduced eta invariant coincides with the reduced eta invariant
of the corresponding elliptic Dirac operator.

Our paper is organized as follows. In Section 1, given a section Z of π∗TX
on X , we define the Dirac like operator DZ on X , and we prove that if Y is the
tautological section of π∗TX , if b > 0 and Yb = Y/b2, the operator ∂

∂u − D2
Yb

is
hypoelliptic. Also we show that D2

Yb
interpolates in the proper sense between DX,2

as b→ 0 and the geodesic flow as b→ +∞.
In Section 2, we extend the above constructions in the context of families

of compact manifolds. The object to be deformed is the standard Levi-Civita
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superconnection [B86] of the given fibration, whose curvature is elliptic along the
fibres X . The deformation is still by superconnections whose curvature is now
hypoelliptic along the fibres X .

In Section 3, we consider the case of complex manifolds, and of holomorphic
families. We show in particular that under the proper Kähler condition, the de-
formation of the elliptic Dolbeault complex is a special case of what was done in
Sections 1 and 2.

In Section 4, we state known results on the local index theory for elliptic
Dirac operators, and on the local families index theorem. Also we briefly recall the
construction of holomorphic elliptic torsion forms.

In Section 5, we consider the case where the fibres X form a vector bundle E.
If E is holomorphic, we show that corresponding hypoelliptic torsion forms can be
expressed using the R-genus of [GS92]. This is a computation which is completely
distinct from the one in [B90b], where the genus R appears in the evaluation of
elliptic torsion forms for vector bundles equipped with a Koszul complex.

In Section 6, we prove local index results for the hypoelliptic Dirac operator.
In Section 7, by using arguments from [BL06], we show that as b→ 0, the hy-

poelliptic Dirac Laplacian converges in the proper sense to the standard Laplacian
DX,2, and we also construct holomorphic hypoelliptic torsion forms, and hypoel-
liptic Quillen metrics.

In Section 8, we compare the hypoelliptic torsion forms to their elliptic coun-
terparts in the case where the vertical metric ĝTX is proportional to the horizontal
metric gTX , and as a by-product, we compare the corresponding Quillen metrics.
The proof relies on two intermediate results whose proof is deferred to Section 9.

Section 9 is devoted to the proof of these intermediate results, one which
consists in studying the asymptotics as b→ 0 of an analogue of the L2-metric on
the harmonic forms.

In Section 10, we consider the case where the horizontal and vertical metrics
on X are unrelated, and we prove corresponding comparison formulas.

Finally in Section 11, we define the reduced eta invariant of the hypoelliptic
Dirac operator, and we show that it coincides modZ with the reduced eta invariant
of the associated elliptic Dirac operator.

Even though the construction of our operators is substantially different from
the one in [B05], the analytic arguments used in the paper are entirely taken from
our joint work with Lebeau [BL06] on the de Rham complex. We have tried to
make the references to [BL06] as explicit as possible.

In the whole paper, if A is a Z2-graded algebra, if a, b ∈ A, [a, b] denotes the
supercommutator of a and b.

The results contained in this paper have been announced in [B06].
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1. A Dirac operator on the total space of the tangent bundle

Let X be a compact Riemannian manifold and let π : X → X be the total space of
its tangent bundle TX . The purpose of this section is to construct a hypoelliptic
Dirac operator on X . Also we show that a family of such operators interpolates
between the ordinary Dirac operator on X and the geodesic flow.

This section is organized as follows. In Subsection 1.1, we recall elementary
facts on Clifford algebras and their relations to exterior algebras.

In Subsections 1.2 and 1.3, we briefly consider the spin representation in the
case of even- and odd-dimensional real vector spaces.

In Subsection 1.4, we recall elementary properties of the classical elliptic
Dirac operator DX on X .

In Subsection 1.5, we construct the tautological superconnection D on the
total space X of TX . The principal symbol of D is elliptic along the fibre, and
nilpotent horizontally.

In Subsection 1.6, given a section Z of π∗TX over X , we construct the oper-
ator DZ as a perturbation of D by an operator of order 0.

In Subsection 1.8, we show that if our section Z is antiinvariant under the
obvious involution of TX , the operator DZ is formally self-adjoint with respect to
a Hermitian form of signature (∞,∞).

In Subsection 1.9, we give a Lichnerowicz formula for D2
Z .

In Subsection 1.10, we show that if Z is regular, the operator ∂
∂u − D2

Z is
hypoelliptic. This includes the case where Z is the tautological section Y of π∗TX .

In Subsection 1.11, we introduce the obvious action of dilations on sections
of TX over X . We obtain a family of hypoelliptic Dirac operators DYb

.
In Subsection 1.12, after a suitable conjugation of DYb

, we relate the constant
term in the expansion of the conjugate operator EY,b to the elliptic Dirac operator
DX .

In Subsection 1.13, we prove a corresponding for E2
Y,b. The results of Sub-

sections 1.12 and 1.13 will later be used to justify the fact that as b → 0, the
hypoelliptic Laplacian D2

Yb
converges in the proper sense to the elliptic Laplacian

DX,2.
In Subsection 1.14, we show that as b → +∞, the family DYb

converges in
the proper sense to the geodesic flow on X .

The results obtained in this section are formally related to the results we
gave in [B05] in the context of de Rham theory.

1.1. The Clifford algebra

Let V be a real Euclidean vector space of dimension n. We identify V and V ∗ by
the scalar product of V . Let c (V ) be the Clifford algebra of V , i.e., the algebra
spanned by 1, X ∈ V , with the commutation relations for X,Y ∈ V ,

XY + Y X = −2 〈X,Y 〉 . (1.1)
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Then c (V ) is naturally filtered by length, and the corresponding Gr is just Λ· (V ∗).
Moreover, c (V ) and Λ· (V ∗) are canonically isomorphic as vector spaces.

Observe that if in the right-hand side of (1.1), we replace −2 〈X,Y 〉 by
2 〈X,Y 〉, we obtain a new Clifford algebra. When tensoring with C, this alge-
bra coincides with the original one. In the sequel, we will often not distinguish the
two algebras.

If e ∈ V , let e∗ ∈ V ∗ correspond to e by the scalar product. Consider the
operators acting on Λ· (V ∗),

c (e) = e∗ ∧ −ie, ĉ (e) = e∗ ∧+ie. (1.2)

If e, e′ ∈ V , then

[c (e) , c (e′)] = −2 〈e, e′〉 , [ĉ (e) , ĉ (e′)] = 2 〈e, e′〉 , [c (e) , ĉ (e′)] = 0. (1.3)

By (1.3), we find that Λ· (V ∗) is equipped with two Clifford actions. When iden-
tifying Λ· (V ∗) and c (V ) as vector spaces, e→ c (e) corresponds to the left action
of c (V ) on itself, and e → ĉ (e) induces the right action of c (V ) on itself, where
the right action takes into account the Z2-grading.

1.2. The even-dimensional case

Assume that n is even so that n = 2�, and also that V is oriented. Let SV =
SV

+ ⊕ SV
− be the Hermitian vector space of spinors. The dimension of SV , SV

± is
respectively 2�, 2�−1. Then c (V ) ⊗R C acts on SV and can be identified with
End

(
SV

)
, this identification being an identification of Z2-graded algebras, so that

c (V )⊗R C = SV ⊗̂SV ∗. (1.4)

By (1.4), we have the identification of vector spaces,

Λ· (V ∗)⊗R C � SV ⊗̂SV ∗. (1.5)

In the sequel, we will often omit the notation ⊗C
R, so that the real vector spaces

are implicitly complexified.
Using (1.5), we obtain

Λ· (V ∗) ⊗̂SV � SV ⊗̂SV ∗⊗̂SV . (1.6)

Note that (1.6) is now naturally equipped with three Clifford actions of c (V ). If
e ∈ V , the first two Clifford actions c (e) , ĉ (e) act on Λ· (V ∗) and were described
in (1.2). The last Clifford action operates on the second copy of SV . If e ∈ V , it
will be denoted c (ê). Of course these three actions of c (V ) anticommute.

Note that SV ⊗̂SV ∗⊗̂SV is canonically equipped with an involution i, in which
the two copies of SV are interchanged, with a corresponding sign. Under i, we get
the canonical isomorphism,

Λ· (V ∗) ⊗̂SV � SV ⊗̂Λ· (V ∗) . (1.7)

To distinguish the two copies of SV , we will denote the second copy by ŜV . Put

Λ̂· (V ∗) = ŜV ⊗̂SV ∗. (1.8)
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The canonical isomorphism (1.7) is now written in the form,

Λ· (V ∗) ⊗̂ŜV � SV ⊗̂Λ̂· (V ∗) . (1.9)

When acting on Λ· (V ∗), we will slightly modify the Clifford actions, by a
factor

√
2. Indeed we will write,

c (e) = e∗ ∧ /
√

2−
√

2ie, ĉ (e) = e∗ ∧ /
√

2 +
√

2ie, (1.10)

c (ê) = ê∗ ∧ −iê, ĉ (e) = ê∗ ∧+iê.

Note that instead of ĉ (e), we could have written instead ĉ (ê), the hat on e being
in this case irrelevant. The notation in (1.10) is entirely consistent. For instance
the operator ĉ (e) can be expressed in two ways, depending on which side of (1.9)
it acts.

By (1.10), we get

e∗∧ =
1√
2

(ĉ (e) + c (e)) , ie =
1

2
√

2
(ĉ (e)− c (e)) . (1.11)

1.3. The odd-dimensional case

Assume now that n = 2� − 1 is odd and that V is oriented. Let SV be the
corresponding Hermitian vector space of spinors. The dimension of SV is 2�−1.
Moreover,

c (V )⊗R C =
(
SV ⊗ SV ∗)⊕ (

SV ⊗ SV ∗) . (1.12)

From (1.12), we get the identification of vector spaces,

Λ· (V ∗) �
(
SV ⊗ SV ∗)⊕ (

SV ⊗ SV ∗) . (1.13)

By (1.13), we obtain

Λ· (V ∗)⊗ SV �
(
SV ⊗ SV ∗ ⊗ SV

)
⊕

(
SV ⊗ SV ∗ ⊗ SV

)
. (1.14)

Now exchanging the two copies of SV in each term in the right-hand side of
(1.14) produces an involution i. Equivalently i induces the canonical identification
similar to (1.9),

Λ· (V ∗) ⊗̂ŜV � SV ⊗̂Λ̂· (V ∗) . (1.15)

Even though SV is not Z2-graded, the ⊗̂ in (1.15) indicates that if σ = ±1, σ̂ = ±1
define the Z2-gradings on Λ· (V ∗) , Λ̂· (V ∗) if e ∈ V , c (ê) acts like σ ⊗ c (ê) on
Λ· (V ∗) ⊗̂SV , and c (e) acts like c (e) ⊗ σ̂ on SV ⊗̂Λ̂· (V ∗). This ensures that the
three Clifford actions on (1.15) anticommute. Also equations (1.10), (1.11) still
hold.

In the sequel, whether in the even- or odd-dimensional case, the Clifford
multiplication operators c (e) , ĉ (e) , c (ê) will always be considered as odd.
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1.4. The elliptic Dirac operator

Let X be a compact oriented spin manifold of dimension n. Let gTX be a Rie-
mannian metric on TX , let ∇TX,L be the Levi-Civita connection on TX , and let
RTX,L be the curvature of ∇TX,L. Let S be the Ricci tensor, and let K be the
scalar curvature of

(
X, gTX

)
.

Let c (TX) be the bundle of Clifford algebras of
(
TX, gTX

)
. If e ∈ TX , we

denote by c (e) the corresponding element in c (TX).
If n is even with n = 2�, let STX = STX

+ ⊕ STX
− be the Z2-graded Hermit-

ian vector bundle of
(
TX, gTX

)
spinors. Then STX is of dimension 2� and STX

±
of dimension 2�−1. If n is odd, let STX denote the Hermitian vector bundle of(
TX, gTX

)
spinors.

The Levi-Civita connection ∇TX,L lifts to a Hermitian connection ∇ST X ,L

on STX which preserves the Z2-grading when n is even.
Let

(
E, gE ,∇E

)
be a complex finite-dimensional Hermitian vector bundle on

X equipped with a Hermitian connection, whose curvature is denoted by RE . We
denote by ∇ST X⊗E,L the connection on STX ⊗E which is induced by ∇ST X ,L and
∇E .

We equip C∞ (
X,STX⊗̂E

)
with the obvious L2 Hermitian product. Let

e1, . . . , en be an orthonormal basis of TX .

Definition 1.1. Let DX be the Dirac operator,

DX = c (ei)∇ST X⊗̂E,L
ei

. (1.16)

Then DX is an elliptic first order differential operator acting on C∞ (
X,STX⊗̂E

)
.

Also DX is odd and formally self-adjoint.

Let ΔH be the Bochner Laplacian. If e1, . . . , en is a locally defined smooth
orthonormal basis of TX , then

ΔH = ∇ST X⊗E,L,2
ei

−∇ST X⊗E,L

∇T X,L
ei

ei
. (1.17)

The Lichnerowicz formula asserts that

DX,2 = −ΔH +
K

4
+

1
2
c (ei) c (ej)RE (ei, ej) . (1.18)

1.5. The superconnection D
By (1.9), (1.15), we have the canonical isomorphism,

Λ· (T ∗X) ⊗̂ŜTX � STX⊗̂Λ̂· (T ∗X) . (1.19)

Set
F = Λ· (T ∗X) ⊗̂ŜTX⊗̂E � STX⊗̂Λ̂· (T ∗X) ⊗̂E. (1.20)

Let π : X → X be the total space of TX . If x ∈ X , Y denotes the generic
element in the fibre TxX . To distinguish the elements of the fibre T ∗X dual to
TX from usual 1-forms on X , we will denote them with a hat.
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Let ∇TX be a Euclidean connection TX with respect to gTX , which is not
necessarily equal to ∇TX,L, and let RTX be its curvature.

Set
A = ∇TX −∇TX,L. (1.21)

Then A is a 1-form on X with values in antisymmetric sections of End (TX).
Let ∇ST X

be the connection induced by ∇TX on STX . We now denote by
∇ST X⊗̂E the connection induced by ∇ST X

,∇E on STX⊗̂E.
We view the curvature RTX as a section of Λ· (T ∗X) ⊗̂End (TX), so that

RTX =
1
2
ei ∧ ej ∧RTX (ei, ej) . (1.22)

The connection ∇TX induces a horizontal vector bundle THX ⊂ TX , so that

TX = THX ⊕ π∗TX. (1.23)

Also π∗ induces an isomorphism THX � π∗TX , so that we can write (1.23) in the
form,

TX = π∗ (TX ⊕ TX) . (1.24)
If e ∈ TX , let eH ∈ THX be the horizontal lift of e. Note that eH depends
explicitly on the connection ∇TX . In the sequel, we will write e instead of eH .

We denote by I the vector bundle C∞
(
TX, π∗

(
ŜTX⊗̂E

)
|TX

)
over X .

Let e1, . . . , en be an orthonormal basis of TX , and let e1, . . . , en be the corre-
sponding dual basis of T ∗X . We denote by ê1, . . . , ên the corresponding orthonor-
mal basis of the fibre TX of X , and by ê1, . . . , ên the dual basis.

Now we will use the notation of Subsections 1.2 and 1.3 with V = TX with
respect to the metric gTX . In particular if e ∈ TX , c (ê) acts on ŜTX⊗̂E.

Definition 1.2. Set
DV = c (êi)∇êi

. (1.25)
The operator DV acts on I.

Note that ∇ŜT X⊗̂E induces a connection ∇I on I. Indeed if U ∈ TX , if s is
a smooth section of I, set

∇I
Us = ∇ŜT X ⊗̂E

UH s. (1.26)
Let Ω· (X,R) denote the vector space of smooth differential forms on X .

More generally Ω· (X, I) denotes the space of smooth sections of Λ· (T ∗X) ⊗̂I over
X . Of course

Ω· (X, I) � C∞ (X , π∗F ) . (1.27)
The operator ∇I acts naturally on Ω· (X, I), its action on Ω· (X,R) being just the
de Rham operator dX .

It will be useful to equip Λ· (T ∗X) with the connection ∇Λ·(T∗X),L induced
by the Levi-Civita connection ∇TX,L with respect to gTX . The vector bundle F =
Λ· (T ∗X) ⊗̂ŜTX⊗̂E is then equipped with an Euclidean connection ∇F , induced
by the connections ∇Λ·(T∗X),L,∇ŜT X

,∇E . The canonical isomorphism in (1.20) is
parallel if and only if ∇TX = ∇TX,L.
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Proposition 1.3. The following identity holds,

∇I = ei ∧∇F
ei
. (1.28)

Proof. Since the Levi-Civita connection ∇TX,L is torsion free, the de Rham oper-
ator dX is given by

dX = ei ∧∇Λ·(T∗X),L
ei

. (1.29)
Equation (1.28) is now a trivial consequence of (1.29). �

We use the notation,

c
(
R̂TXY

)
=

1
2
ei ∧ ej ∧ c

(
̂RTX (ei, ej)Y

)
. (1.30)

Now we will use the formalism of Quillen’s superconnections [Q85a]. The
reader who is not familiar with superconnections can just treat them as ordinary
operators.

Definition 1.4. Let D be the superconnection on I,

D = ∇I +
DV

√
2
. (1.31)

Let ΔV be fibrewise Laplacian along the fibres of TX with respect to the
metric gTX .

Proposition 1.5. The following identities hold,

D2 = −1
2
ΔV −∇

R̂T XY
+

1
4

〈
RTXei, ej

〉
c (êi) c (êj) +RE . (1.32)

Proof. Clearly,

D2 = ∇I,2 +
1
2
DV,2. (1.33)

We have the trivial,
DV,2 = −ΔV . (1.34)

Moreover, one verifies easily that

∇I,2 = −∇
R̂TXY

+
1
4

〈
RTXei, ej

〉
c (êi) c (êj) +RE . (1.35)

Equation (1.32) follows from (1.34)–(1.35). �

Remark 1.6. At this early stage, the reader may ask why we did not choose instead
the Levi-Civita superconnection [B86],

DL = ∇I +
DV

√
2
−
c
(
R̂TXY

)
2
√

2
. (1.36)

Indeed this superconnection appears as such in [B90b, B94] in relation with local
index theory. We gave up writing up the present paper also for DL. One reason
is that in the case of holomorphic manifolds, the corresponding operator is well
defined only in the case where TX is nonpositive. Still in the real case, most of
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the arguments given for D also work for DL. It could also be that in certain cases,
using DL instead of D is more appropriate.

1.6. The operator DZ

Let Z be a smooth section of π∗TX over X . Let Z∗ be the section of T ∗X which
corresponds to Z by the metric gTX . By (1.10), ĉ (Z) acts on π∗Λ· (T ∗X) by the
formula

ĉ (Z) = Z∗ ∧ /
√

2 +
√

2iZ . (1.37)

Then ĉ (Z) acts naturally on C∞ (X , π∗F ). Similarly the superconnection D can
also be viewed as an operator acting on C∞ (X , π∗F ).

Definition 1.7. Let DZ be the operator acting on C∞ (X , π∗F ),

DZ = D +
ĉ (Z)√

2
. (1.38)

By (1.31), (1.37), (1.38), we get

DZ = ∇I +
DV

√
2

+
Z∗∧

2
+ iZ . (1.39)

Because of the presence of iZ in the right-hand side of (1.39), DZ is no longer
a superconnection on I.

Proposition 1.8. The following identities hold,
√

2DZ = (c (ei) + ĉ (ei))∇F
ei

+ c (êi)∇êi
+ ĉ (Z) . (1.40)

Proof. Using (1.11), (1.25), (1.28) and (1.39), we get (1.40). �

1.7. The time parameter

For t > 0, if the metric gTX is replaced by gTX/t, the corresponding operator Dt
tZ

is given by

Dt
tZ = ∇I +

√
t√
2
DV +

Z∗

2
∧+tiZ . (1.41)

Let NH be the number operator which counts the degree in the variables ei. By
(1.41), we get

tN
H/2Dt

tZt
−NH/2 =

√
tDZ . (1.42)

A key implicit assumption in the above constructions is that the metrics on
the two copies of TX in the right-hand side of (1.24) are the same. In fact the op-
erator DV and the morphism ĉ (Z) are calculated with respect to the same metric
gTX . This way, we also handle the case where these two metrics are proportional,
with a fixed constant of proportionality. Indeed given a ∈ R∗, let ra be the dilation
(x, Y ) → (x, aY ). The pull back of the vertical metric gTX by ra is just a2gTX .
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However we will temporarily relax this assumption. Given b > 0, t > 0,
we equip TX = π∗ (TX ⊕ TX) with the metrics gT X

t ⊕ b4

t3 g
TX . The associated

superconnection Db,t is given by

Db,t = ∇I +
t3/2

b2
DV

√
2
. (1.43)

If Z is a section of TX over X , by (1.10), the operator ĉt (Z) associated with the
metric gTX/t is given by

ĉt (Z) =
1
t
√

2
Z∗ ∧+

√
2iZ . (1.44)

Set

Db,t,Z = Db,t +
ĉt (Z)√

2
, (1.45)

so that

Db,t,Z = ∇I· +
t3/2

b2
DV

√
2

+
Z∗

2t
∧+iZ . (1.46)

For a > 0, let Ka be the map s (x, Y )→ s (x, aY ). Observe that

Kt/b2Db,t,ZKb2/t = ∇I· +
√
t√
2
DV +

Kt/b2Z
∗

2t
∧+iKt/b2Z . (1.47)

Comparison with (1.41) shows that

Kt/b2Db,t,YKb2/t = Dt
tY/b2 . (1.48)

Therefore when Z = Y , the two above constructions are equivalent.
The point of view developed in this subsection will play an important role in

Section 7.

1.8. A property of self-adjointness

We consider the operator DZ as acting on C∞
(
X , π∗

(
STX⊗̂Λ̂· (T ∗X) ⊗̂E

))
, i.e.,

we write temporarily the operator DZ in the form given in (1.40).
Consider the map r : Y → −Y . This map acts naturally on the fibrewise

sections of Λ̂· (T ∗X). Namely if α ∈ Λ̂i (T ∗X), then

r∗α (x, Y ) = (−1)i
α (−Y ) . (1.49)

Of course the involution r∗ extends to the full C∞ (X , π∗F ).
Let C∞,c (X , π∗F ) be the vector space of compactly supported sections of

π∗F over X . Let 〈 〉L2 be the obvious L2 Hermitian product on C∞,c (X , π∗F ). If
s, s′ ∈ C∞,c (X , π∗F ), put

η (s, s′) = 〈r∗s, s′〉L2 . (1.50)

Then η is a Hermitian form, i.e., it is nondegenerate, and moreover,

η (s′, s) = η (s, s′). (1.51)
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Let D†
Z be the adjoint of DZ with respect to η, so that

η (DZs, s
′) = η

(
s,D†

Zs
′
)
. (1.52)

Let Z− be the section of TX on X given by

Z− (x, Y ) = −Z (x,−Y ) . (1.53)

Theorem 1.9. The following identity holds,

D†
Z = DZ− . (1.54)

Proof. Observe that if e ∈ TX , c (e) , c (ê) are skew-adjoint operators in the usual
sense, while ĉ (e) is self-adjoint. Equation (1.54) now follows from (1.40). �

1.9. The Lichnerowicz formula for D2
Z

Theorem 1.10. The following identity holds,

D2
Z =

1
2

(
−ΔV + |Z|2 + c (êi) ĉ (∇êiZ)

)
−∇

R̂T XY
+

1
4

〈
RTXei, ej

〉
c (êi) c (êj)

+
ei√
2
ĉ
(
∇TX,L

ei
Z

)
+∇F

Z +RE . (1.55)

Proof. By (1.38), we get

D2
Z = D2 +

|Z|2
2

+
[
D, ĉ (Z)√

2

]
. (1.56)

By (1.25), (1.31), by equation (1.32) in Proposition 1.5 and by (1.37), (1.56), we
get (1.55). �

1.10. A hypoellipticity property

We will say that the section Z of π∗TX is fibrewise regular if the map Y → Z (x, Y )
is regular, or equivalently if ê ∈ TX → ∇êZ ∈ TX is invertible. This is the case
in particular if Z = cY, c �= 0.

Theorem 1.11. If Z is fibrewise regular, the operator ∂
∂u −D2

Z is hypoelliptic.

Proof. This is an easy consequence of equation (1.55) and of a result of Hörmander
[Hö67]. �

1.11. A rescaling on Y and the elliptic Dirac operator

Set
Zb = K1/b2Z. (1.57)

Then
Zb (x, Y ) = Z

(
x, Y/b2

)
. (1.58)
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Definition 1.12. For b > 0, set

EZ,b = KbDZb
K−1

b . (1.59)

By (1.40), (1.58), we get

√
2EZ,b = (c (ei) + ĉ (ei))∇F

ei
+

1
b

(
DV + ĉ

(
bZ

(
x,
Y

b

)))
. (1.60)

Of special interest is the case where Z (x, Y ) = Y . By (1.60), we get

√
2EY,b = (c (ei) + ĉ (ei))∇F

ei
+

1
b

(
DV + ĉ (Y )

)
. (1.61)

Equations (1.60), (1.61) should be put in parallel with [B05, Propositions
2.34 and 2.39], where corresponding results are proved for the de Rham complex.

1.12. The projection of the hypoelliptic Dirac operator

Now we use the fact that F = STX⊗̂Λ̂· (T ∗X) ⊗̂E, and also the representation of
the Clifford actions in the second line of (1.10).

Recall that a result of Witten [W82], [B05, Proposition 2.40] asserts that when
acting on smooth L2 sections of Λ̂· (T ∗X) along the fibres TX , ker

(
DV + ĉ

(
Ŷ

))
is 1-dimensional and spanned by exp

(
− |Y |2 /2

)
. When acting on smooth L2 sec-

tions of F along the fibre TX , the corresponding result is that ker
(
DV + ĉ

(
Ŷ

))
is spanned by STX⊗̂E ⊗ exp

(
− |Y |2 /2

)
.

We embed C∞ (
X,STX⊗̂E

)
into C∞ (X , π∗F ) by the L2 isometric embed-

ding s → π∗s exp
(
− |Y |2 /2

)
/πn/4. Let P be the orthogonal projection operator

on the image.
Evaluating P is quite easy. Indeed let p : Λ̂· (T ∗X) → Λ̂0 (T ∗X) = R be the

obvious projection. Then p maps F = STX⊗̂Λ̂· (T ∗X) ⊗̂E into STX⊗̂E. If s is a
L2 section of π∗F ,

Ps (x, Y ) =
exp

(
− |Y |2 /2

)
πn/4

∫
TX

ps (x, Y ′) exp
(
− |Y ′|2 /2

) dY ′

πn/4
. (1.62)

In the sequel, we identify C∞ (
X,STX⊗̂E

)
to its image by the above embedding.

Now we establish an analogue of [B05, Proposition 2.41].

Theorem 1.13. The following identity of operators holds,

P
(
(c (ei) + ĉ (ei))∇F

ei

)
P = DX . (1.63)
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Proof. By (1.10), ĉ (e) maps R = Λ̂0 (T ∗X) into its orthogonal. In the case where
∇TX = ∇TX,L, (1.63) is obvious.

Now we consider the general case. By (1.21),

∇ŜT X

· = ∇ŜT X ,L
· +

1
4
〈A (·) ej , ek〉 c (êj) c (êk) . (1.64)

Let ∇F,L be the connection on F which is induced by the connections ∇TX,L,∇E .
By (1.64), we deduce a similar equation relating ∇F and ∇F,L.

If U ∈ TX , let UH,L be the horizontal lift of U with respect to the connection
∇TX,L. By (1.21), we get

UH = UH,L − Â (U)Y . (1.65)

In (1.65), Â (U)Y denotes the vector field corresponding to A (U)Y . By (1.64),
(1.65), we get

∇F
UH = ∇F,L

UH,L −∇Â(U)Y
+

1
4
〈A (U) ej, ek〉 c (êj) c (êk) . (1.66)

Now we already proved (1.63) when ∇F is replaced by ∇F,L. Using the fact
that A takes its values in antisymmetric endomorphisms and (1.66), we still get
(1.63) in full generality. �

1.13. The hypoelliptic Laplacian and its relation to the elliptic Laplacian

By Theorem 1.10, we get

E2
Z,b =

1
2b2

(
−ΔV + |bZ (x, Y/b)|2 + c (êi) ĉ (∇êi

(bZ (x, Y/b)))
)
−∇

R̂T XY

+
1
4

〈
RTXei, ej

〉
c (êi) c (êj) +

ei√
2b
ĉ
(
∇TX,L

ei
bZ (x, Y/b)

)
+

1
b
∇F

bZ(x,Y/b) +RE .

(1.67)

We identify the canonical section Y of TX to the corresponding horizontal vector
field Y H on X . Note that this vector field still depends on ∇TX . If ∇TX = ∇TX,L,
we will write instead Y H,L. By (1.65),

Y H = Y H,L − Â (Y )Y . (1.68)

Using (1.66)–(1.68), we obtain,

E2
Y,b =

1
2b2

(
−ΔV + |Y |2 + c (êi) ĉ (ei)

)
−∇

R̂T XY
+

1
4

〈
RTXei, ej

〉
c (êi) c (êj)

+
1
b

(
∇F,L

Y −∇
Â(Y )Y

+
1
4
〈A (Y ) ej, ek〉 c (êj) c (êk)− e

i

√
2
ĉ (A (ei)Y )

)
+RE .

(1.69)
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By (1.69), we find that

E2
Y,b

2
=
α

b2
+
β

b
+ γ. (1.70)

In (1.70), we have the obvious identities,

α =
1
2

(
−ΔV + |Y |2 + c (êi) ĉ (ei)

)
,

β = ∇F,L
Y −∇

Â(Y )Y
+

1
4
〈A (Y ) ej , ek〉 c (êj) c (êk)− e

i

√
2
ĉ (A (ei)Y ) , (1.71)

γ = −∇
R̂T XY

+
1
4

〈
RTXei, ej

〉
c (êi) c (êj) +RE .

Note that

α =
1
2

(
DV + ĉ (Y )

)2
. (1.72)

The operator α is Witten’s harmonic oscillator [W82]. By [W82], when acting on
sections of Λ· (T ∗X) along the fibres T ∗X , its kernel is spanned by exp

(
− |Y |2 /2

)
.

In general the kernel is spanned by STX⊗̂E ⊗ exp
(
− |Y |2 /2

)
. Let kerα⊥ be the

orthogonal vector space to kerα with respect to the obvious L2 Hermitian product.
We denote by α−1 the inverse of the restriction of α to kerα⊥. Observe that β
maps kerα into kerα⊥.

Now we establish the obvious analogue of [B05, Theorem 3.14].

Theorem 1.14. The following identity holds,

P
(
γ − βα−1β

)
P =

DX,2

2
. (1.73)

Proof. By squaring the expansion (1.61) for EY,b, by proceeding as in [B05, Remark
3.15], and using Theorem 1.13, we can give a simple proof of (1.73). Here we give
a direct proof.

By (1.10), (1.11), (1.71), we get

PγP =
1
8

〈
RTX (ei, ej) ej , ei

〉
+

1
4
c (ei) c (ej)RE (ei, ej) . (1.74)

LetNV be the vertical number operator, i.e., the operator counting the degree
in the Grassmann variables êi. Then

α =
1
2

(
−ΔV + |Y |2 − n

)
+NV . (1.75)
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In other words, α is the sum of a bosonic and of a fermionic number operator. By
(1.10), (1.71) and (1.75), we get

α−1βP =

(
∇F,L

Y +
1
12
〈A (Y ) ej, ek〉 êj êk −

1
6
〈A (ej)Y, ek〉 êj êk +

1
2
〈A (ei) ei, Y 〉

− 1
4
〈A (ej) Y, ek〉 c (ej) êk

)
P, (1.76)

Pβ = P

(
∇F,L

Y +
1
4
〈A (Y ) ej , ek〉 iêj

iêk
− 1

2
〈A (ej) Y, ek〉 iêj iêk − 1

2
〈A (ei) ei, Y 〉

− 1
2
〈A (ej) Y, ek〉 c (ej) iêk

)
.

Moreover, ∫
R

x2 exp
(
−x2

) dx
πn/2

dx =
1
2
. (1.77)

By (1.76) and (1.77), we get

− Pβα−1βP =
1
2

(
−ΔH − 1

4
〈A (ei) ej, A (ej) ei〉+

1
4

∣∣∣∣∣
n∑
1

A (ei) ei

∣∣∣∣∣
2

− 1
2

〈
∇TX,L

ei
A (ej) ej, ei

〉)
. (1.78)

Finally from (1.21), we obtain,

〈
RTX (ei, ej) ej , ei

〉
− 〈A (ei) ej, A (ej) ei〉+

∣∣∣∣∣
n∑

i=1

A (ei) ei

∣∣∣∣∣
2

− 2
〈
∇TX,L

ei
A (ej) ej , ei

〉
= K. (1.79)

By (1.18), (1.74), (1.78), (1.79), we get (1.73). The proof of our theorem is com-
pleted. �

Remark 1.15. When A = 0, the proof is of course very simple. Also note that
the inverse α−1 contributes by factors 1, 1/2, 1/3 to Pβα−1βP , contrary to what
happens in [BL91, B05, BL06], where only the factor 1/2 appears.

1.14. Interpolating between the Laplacian and the geodesic flow

Definition 1.16. Put
FZ,b = Kb2DZb

K−1
b2 . (1.80)

By (1.28), (1.38), we get

FZ,b = ei∇F
ei

+
DV

√
2b2

+
ĉ (Z)√

2
. (1.81)
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Put
ĉ
(
∇TX,L

· Z
)

= −eiĉ
(
∇TX,L

ei
Z

)
. (1.82)

By (1.55), we get

F2
Z,b =

|Z|2
2
−∇

R̂T XY
+

1
4

〈
RTXei, ej

〉
c (êi) c (êj)

− ĉ
(
∇TX,L

· Z
)
/
√

2 +∇F
Z +RE +O

(
1/b2

)
. (1.83)

One can directly obtain (1.83) by squaring the expansion in (1.81).
The vector field Y H,L is just the generator of the geodesic flow on X . If

∇TX = ∇TX,L, the operator ∇F
Y is the obvious lift of the generator of the geodesic

flow. The constant term as b→ +∞ in the expansion of F2
Y,b is a perturbation of

the operator ∇F
Y .

2. A deformation of the Levi-Civita superconnection

In this section, we construct a hypoelliptic deformation of the Levi-Civita super-
connection of [B86], i.e., we extend the results of Section 1 to the case of families.

This section is organized as follows. In Subsection 2.1, given a submersion
p :M → S with compact fibre X , we briefly recall some aspects of the construction
of the Levi-Civita superconnection.

In Subsection 2.2, if π :M→M is the total space of TX , we construct a su-
perconnection A overM , which is the obvious extension to families of manifolds of
the superconnection D obtained in Section 1. Also we construct a superconnection
AZ over S, which extends the construction of DZ to the case of families.

In Subsection 2.3, we show that if Z is antiinvariant, then AZ is self-adjoint
with respect to the Hermitian form η.

In Subsection 2.4, we give a formula for the curvature A2
Z of AZ .

In Subsection 2.5, we give formulas which relate a family of such supercon-
nections, which depends on b > 0, to the Levi-Civita superconnection.

In Subsection 2.6, we show that this family of superconnections interpolates
in the proper sense between the Levi-Civita superconnection and the fibrewise
geodesic flow.

For simplicity, we consider only the case where the dimension of the fibres is
even.

This section is an analogue of [B05, Section 4], where similar results were
established in the context of the families of fibrewise de Rham complexes as in
[BLo95].

2.1. The Levi-Civita superconnection

Let p :M → S be a submersion of smooth manifolds with compact oriented fibre
X , of even dimension n. We assume that TX is a spin vector bundle on M . Let
gTX be an Euclidean metric on TX , let THM be a horizontal vector bundle on
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M , so that
TM = THM ⊕ TX. (2.1)

Let PTX : TM → TX be the projection associated to the above splitting. Let(
E, gE ,∇E

)
be a complex Hermitian vector bundle on M equipped with a Her-

mitian connection.
Let H = C∞ (

X,
(
STX⊗̂E

)
|X

)
be the infinite-dimensional vector bundle

over S of smooth sections of STX⊗̂E along the fibre X . This is a Z2-graded vector
bundle over S. Let DX be the family of Dirac operators considered in Subsection
1.4 acting along the fibres X .

Let us now briefly describe the construction of the Levi-Civita superconnec-
tion [B86]. First

(
THM, gTX

)
determines an Euclidean connection ∇TX on TX .

If gTM is any Euclidean metric on TM which is such that the splitting (2.1) is or-
thogonal, then ∇TX is the projection of the Levi-Civita connection ∇TM,L on TX
with respect to the splitting (2.1). In particular ∇TX restricts to the Levi-Civita
connection along the fibres. Let RTX be the curvature of ∇TX .

If U ∈ TS, let UH ∈ THM be the horizontal lift of U . If U is a vector field,
the Lie derivative operator LUH acts naturally on the smooth sections of the tensor
algebra associated to TX , and this action is also tensorial with respect to U .

In [B86, Section 1], we have constructed natural tensors which are associated
to the above data. First a 2-form T on M with values in TX is defined which is
such that:
• T vanishes on TX × TX .
• If U, V ∈ TS,

T
(
UH , V H

)
= −PTX

[
UH , V H

]
. (2.2)

• If U ∈ TS,A ∈ TX ,

T
(
UH , A

)
=

1
2

(
gTX

)−1 (
LUHgTX

)
A. (2.3)

It follows from (2.3) that if U ∈ TS,A,B ∈ TX , then〈
T

(
UH , A

)
, B

〉
=

〈
T

(
UH , B

)
, A

〉
. (2.4)

Let e1, . . . , en be an orthonormal basis of TX , let f1, . . . , fm be a basis of
TS. The corresponding dual bases are denoted the usual way.

Let dvX be the Riemannian volume element along the fibres X . By the above,
if U ∈ TS,

LUHdvX =
〈
T

(
UH , ei

)
, ei

〉
dvX . (2.5)

The connection∇TX induces a Hermitian connection on STX , which restricts
to the Levi-Civita connection along the fibres. Let ∇ST X ⊗̂E be the obvious con-
nection on STX⊗̂E.

Definition 2.1. If s ∈ C∞ (
M,STX⊗̂E

)
, U ∈ TS, set

∇H
U s = ∇ST X⊗̂E

UH s+
1
2

〈
T

(
UH , ei

)
, ei

〉
s. (2.6)

Then (2.6) defines a Hermitian connection on H .
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Let TH be the restriction of T to THM × THM . Note that TH is obtained
via equation (2.2). Set

c
(
TH

)
=

1
2
fαfβc

(
T

(
fH

α , f
H
β

))
. (2.7)

Definition 2.2. Let A be the Levi-Civita superconnection on H ,

A =
DX

√
2

+∇H − c
(
TH

)
2
√

2
. (2.8)

In [B86], the fibrewise connection 1∇Λ·(T∗S)⊗̂ST X⊗̂E along the fibres X was
defined,

1∇Λ·(T∗S)⊗̂ST X⊗̂E
· = ∇ST X⊗̂E

· +
1
2

〈
T

(
fH

α , ei
)
, ·

〉
fαc (ei) +

1
4

〈
TH , ·

〉
. (2.9)

For a > 0, let ψa ∈ End (Λ· (T ∗S)) be given by α→ adeg α/2α. Set

1∇Λ·(T∗S)⊗̂ST X⊗̂E
a,· = ψ−1

a
1∇Λ·(T∗S)⊗̂STX ⊗̂E

· ψa. (2.10)

Let K be the scalar curvature of the fibres X . The Lichnerowicz formula given in
[B86, Theorem 3.6] asserts that

A2 = −1
2

1∇ST X⊗̂E ,2
1/2,ei

+
K

8
+

1
4
c (ei) c (ej)RE (ei, ej)

+
1√
2
c (ei) fαRE

(
ei, f

H
α

)
+

1
2
fαfβRE

(
fH

α , f
H
β

)
. (2.11)

2.2. A construction of superconnections and fibrewise operators on TX

Here we are inspired by a construction in [B05, Subsection 4.22]. Let π :M→M
be the total space of the vector bundle TX over M . Let Y ∈ TX be the generic
element of the fibre TX . Then M fibres over M with fibre TX , and moreover,
TX is equipped with a connection ∇TX , which in turn induces a horizontal vector
bundle THM on M. Let H be the vector bundle of smooth sections of ŜTX⊗̂E
along the fibres TX .

We denote by T the tensor T defined in Subsection 2.1 which is associated
here to the fibration p : M→M . Note that by (2.2), (2.3), T vanishes on TX ×
THM, and moreover, if U, V ∈ TM ,

T
(
UH , V H

)
= ̂RTX (U, V )Y . (2.12)

We define the operator DV as in (1.25), and the connection ∇H as in (1.26).
Let A be the superconnection over H,

A = ∇H +
DV

√
2
. (2.13)

Let us observe that A depends on THM only indirectly through the choice of
∇TX . In fact, any other Euclidean connection could be used over TX , at the cost
of extra notational complication.
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Note that ∇H acts on smooth sections of Λ· (T ∗M) ⊗̂H, and that by con-
struction, it acts like the de Rham operator on smooth sections of Λ· (T ∗M). The
splitting (2.1) induces the identification,

Λ· (T ∗M) � π∗Λ· (T ∗S) ⊗̂Λ· (T ∗X) . (2.14)

The connection∇TX induces a connection ∇Λ·(T∗X) on Λ· (T ∗X). Moreover, using
(2.14), we find that the action of ∇Λ·(T∗X) induces a corresponding action on
the smooth sections of Λ· (T ∗M). By construction, the action of this operator on
smooth sections of Λ· (T ∗S) is given by the de Rham operator of S.

Note that the operator iT acts on sections of Λ· (T ∗M). A simple result is
that if dM is the de Rham operator of M , then

dM = ∇Λ·(T∗X) + iT . (2.15)

The operator ∇Λ·(T∗X) extends to an operator acting on smooth sections of
Λ· (T ∗M) ⊗̂H. By (2.15), we get

∇H = ∇Λ·(T∗X)⊗̂H + iT . (2.16)

As in (1.20), set

F = Λ· (T ∗X) ⊗̂ŜTX⊗̂E � STX⊗̂Λ̂· (T ∗X) ⊗̂E. (2.17)

Recall that e1, . . . , en is an orthonormal basis of TX . To fit with the notation
in Section 1, we denote by e1, . . . , en a copy of this base of TX , and by e1, . . . , en

the associated dual basis. In particular Λ· (T ∗X) is generated as an algebra by
e1, . . . , en. Note here that we specifically refer to the first copy of Λ· (T ∗X) which
appears in the right-hand side of (2.17).

By (1.25), (2.13), (2.16), we get

A = ei ∧ ∇F
ei

+ fα ∧ ∇F
fH

α
+ eifαiT (ei,fH

α ) + iT H +
c (êi)√

2
∇êi
. (2.18)

Observe that if S is reduced to a point, then

A = D. (2.19)

In this case ∇TX is just the Levi-Civita connection, and not any arbitrary Eu-
clidean connection as in Subsection 1.5.

Of course, we can still use the identities in (1.10), (1.11) to reexpress A in
terms of the Clifford variables c (ei) , c (êi) , ĉ (ei) , 1 ≤ i ≤ n.

Let now Z be a smooth section of π∗TX over M, let Z∗ be the smooth
section of π∗T ∗X which corresponds to Z by the metric gTX .

Definition 2.3. Set

AZ = A+
ĉ (Z)√

2
. (2.20)
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By (1.37), (2.18), (2.20), we get

AZ =
c (êi)√

2
∇êi

+Z∗∧/2+ iZ +ei∧∇F
ei

+fα∧∇F
fH

α
+eifαiT (ei,fH

α ) + iT H . (2.21)

Note that because of the term iZ in (2.21), in general, AZ is not a superconnection
over M . Still it can be viewed as a superconnection over S on the vector bundle
C∞ (X , π∗F |X ). Finally when S is a point, AZ is just DZ .

Proposition 2.4. The following identity holds,

AZ =
1√
2

(
(c (ei) + ĉ (ei))∇F

ei
+DV + ĉ (Z)

)
+ fα

(
∇F

fH
α

+
1
2

〈
T

(
fH

α , ei
)
, ei

〉
+

1
2
c (ei) ĉ (ej)

〈
T

(
fH

α , ei
)
, ej

〉)
− 1

2
√

2
(c− ĉ)

(
TH

)
. (2.22)

Proof. This is an obvious consequence of (1.10), (1.11), (2.4) and (2.21). �

2.3. A self-adjointness property of the superconnection AZ

We will now extend Theorem 1.9. We define the Hermitian form η on C∞ (X , π∗F )
as in (1.49). We define the adjoint of A†

Z of the superconnection AZ with respect to
η as in [BLo95, Section 1], by simply taking adjoints with respect to the Hermitian
form η instead of taking adjoints with respect to a classical fibrewise Hermitian
product. In the conventions of [BLo95], one important point is that (fα)† = −fα.

Theorem 2.5. The following identities hold,

A†
Z = AZ− . (2.23)

Proof. We use equation (2.22) in Proposition 2.4, which leads immediately to
(2.23). �

2.4. The curvature of the superconnection operator AZ

Now we extend Theorem 1.10, i.e., we give a formula for the curvature A2
Z of AZ .

We use the notation

ĉ
(
∇TX

· Z
)

= −eiĉ
(
∇TX

ei
Z

)
− fαĉ

(
∇TX

fH
α
Z

)
. (2.24)

Also we define the fibrewise connections 1∇Λ·(T∗S)⊗̂F
· , 1∇Λ·(T∗S)⊗̂F

a,· as in
(2.9), (2.10).

Theorem 2.6. The following identity holds,

A2
Z =

1
2

(
−ΔV + |Z|2 + c (êi) ĉ (∇êi

Z)
)
−∇

R̂T XY
+

1
4

〈
RTXei, ej

〉
c (êi) c (êj)

− 1√
2
ĉ
(
∇TX

· Z
)

+ 1∇F
1/2,Z +RE . (2.25)
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Proof. When Z = 0, the proof of (2.25) is the same as the proof of Proposition
1.5. The general case is obtained by using the formula for Z = 0, (1.3), (1.10),
(2.4), (2.18) and also the identity,

∇F
Z + fα

(
ei

2
− iei

) 〈
T

(
fH

α , Z
)
, ei

〉
+

1
2

〈
TH , Z

〉
= 1∇F

1/2,Z . (2.26)
�

We will say that the section Z of π∗TX is fibrewise regular if the map ê ∈
TX → ∇êZ (x, Y ) ∈ TX is invertible. The obvious extension of Theorem 1.11
holds when Z is fibrewise regular.

2.5. A rescaling on Y and the elliptic Levi-Civita superconnection

We still define Zb as in (1.57). As in (1.59), set

BZ,b = KbAZb
K−1

b . (2.27)

By (2.22), we get

BZ,b =
1√
2

(c (ei) + ĉ (ei))∇F
ei

+
1√
2b

(
DV + ĉ (bZ (x, Y/b))

)
+ fα

(
∇F

fH
α

+
1
2

〈
T

(
fH

α , ei
)
, ei

〉
+

1
2
c (ei) ĉ (ej)

〈
T

(
fH

α , ei
)
, ej

〉)
− 1

2
√

2
(c− ĉ)

(
TH

)
. (2.28)

Now we take Z = Y . Let A be the constant term in the expansion of BY,b.
We identify C∞ (

X,STX⊗̂E
)

to its image in C∞ (X , π∗F ) as in Subsection

1.11, i.e., by the isometric embedding s → π∗s exp
(
− |Y |2 /2

)
/πn/4. Recall that

the operator P was defined in Subsection 1.11. Now we establish the obvious
extension of Theorem 1.13.

Theorem 2.7. The following identity holds,

PAP = A. (2.29)

Proof. We use (2.28). The first term in the right-hand side of (2.28) was already
considered in Theorem 1.13. The first two terms in the second line of the same
equation contribute by ∇H to the right-hand side of (2.29), and the third term by
0. The last term in (2.28) contributes by −c

(
TH

)
/2
√

2. Comparing with (2.8),
we get (2.29). �

By (2.25) in Theorem 2.6, we get

B2
Z,b =

1
2b2

(
−ΔV + |bZ (x, Y/b)|2 + c (êi) ĉ (∇êi

(bZ (x, Y/b)))
)
−∇

R̂T XY

+
1
4

〈
RTXei, ej

〉
c (êi) c (êj)−

1√
2b
ĉ
(
∇TX

· bZ (x, Y/b)
)

+
1
b

1∇F
1/2,bZ(x,Y/b) +RE .

(2.30)
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By (2.30), as in (1.70), we get

B2
Y,b =

α

b2
+
β

b
+ γ. (2.31)

Also we have the identities,

α =
1
2

(
−ΔV + |Y |2 + c (êi) ĉ (ei)

)
,

β = 1∇F
1/2,Y , (2.32)

γ = −∇
R̂T XY

+
1
4

〈
RTXei, ej

〉
c (êi) c (êj) +RE .

The obvious extension of Theorem 1.14 is as follows.

Theorem 2.8. The following identity holds,

P
(
γ − βα−1β

)
P = A2. (2.33)

Proof. Again we give two proofs. The first proof uses Theorem 2.7 and proceeds
as the first proof of Theorem 1.14.

The second proof proceeds as the second proof of Theorem 1.14. We will here
concentrate on the proof of the analogue of (1.74), which is

PγP =
K

8
+

1
4
c (ei) c (ej)RE (ei, ej)

+
1√
2
c (ei) fαRE

(
ei, f

H
α

)
+

1
2
fαfβRE

(
fH

α , f
H
β

)
. (2.34)

First let us take the case where RE = 0. With respect to (1.74), we only have to
explain why there is no term containing any of the fα. There is no term of degree
1 in the fα because RTX takes its values in antisymmetric endomorphisms, and
also because kerα is concentrated in degree 0. There is no term of degree 2 in the
fα for the same reason. The case of RE is also very simple, but of course, there
are now contributions of the fα. This completes our second proof of (2.33). �

Now we replace S by S ×R∗
+, with b > 0 the generic element of R∗

+. This
means that AY,b is replaced by db ∂

∂b +AY,b. Then

Kb

(
db
∂

∂b
+AYb

)
K−1

b = BY,b + db
∂

∂b
− db
b
∇Ŷ , (2.35)

Kb

(
db
∂

∂b
+AYb

)2

K−1
b = B2

Y,b − 2
db

b2
ĉ (Y )√

2
.

2.6. Interpolating between the elliptic curvature and the geodesic flow

Definition 2.9. Put
CZ,b = Kb2AZb

K−1
b2 . (2.36)
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As in (1.81), by (2.16), (2.21), as b→∞,

CZ,b = ∇H +
ĉ (Z)√

2
+O

(
1/b2

)
. (2.37)

By (2.37), we get the strict analogue of (1.83), i.e.,

C2
Z,b =

|Z|2
2
−∇

R̂T XY
+

1
4

〈
RTXei, ej

〉
c (êi) c (êj)

− ĉ
(
∇TX

· Z
)
/
√

2 + 1∇F
1/2,Z +RE +O

(
1/b2

)
. (2.38)

Observe that the vector field Y H on X is the generator of the fibrewise geodesic
flow. Therefore as b→ +∞, C2

Y,b converges to a simple perturbation of this fibre-
wise generator.

3. The complex case

Let X be a compact complex Kähler manifold. In this section we construct a
holomorphic Hodge theory on the total space X of TX , whose Laplacian is a
hypoelliptic second order differential operator. This Laplacian still depends on a
parameter b > 0. We show that this family of operators interpolates between classi-
cal holomorphic Hodge theory on X and the geodesic flow. Families are considered
as well. This section should be understood as the analogue of [B05], where instead
the de Rham complex was considered. Also observe that part of the results which
are established in this section should be viewed as special cases of the results of
Sections 1 and 2.

This section is organized as follows. In Subsection 3.1, we recall elementary
results on Clifford algebras when the underlying vector space is complex.

In Subsection 3.2, we introduce our complex manifold X and the total space
X of TX .

In Subsection 3.3, we construct the holomorphic Levi-Civita superconnection
associated to the projection π : X → X .

In Subsection 3.4, given a holomorphic section z of π∗TX over X , we obtain
an operator AZ , which is an analogue of the operator DZ constructed in Section 1.

In Subsection 3.5, by a conjugation involving classical Hodge operators, we
obtain another operator BZ .

In Subsection 3.6, we show that if z is antiinvariant, AZ is self-adjoint with
respect to a Hermitian form ε of signature (∞,∞).

In Subsection 3.7, we give a Lichnerowicz formula for A2
Z .

In Subsection 3.8, if y is the tautological section of TX on X , we relate the
component A′′

Y of AY to the tautological Koszul complex on X .
In Subsection 3.9, from the dilations on X , we obtain a family of conjugate

superconnections CZ,b. We give a crucial formula which relates this family to the
Hodge operator ∂

X
+ ∂

X∗
on X , which suggests that along the lines of the argu-

ments in [B05], as b→ 0, this family converges in the proper sense to ∂
X

+ ∂
X∗

.
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In Subsection 3.10, we state various results on the Hodge theory of the hy-
poelliptic Laplacian, by showing that formally, corresponding results of [BL06],
which were obtained in the context of de Rham theory, can be adapted without
any change. A by-product of these considerations is that for b > 0 small enough,
the classical conclusions of elliptic Hodge theory still hold in this case.

In Subsection 3.11, we start considering the case of families of complex man-
ifolds. In this subsection, we recall the results of [BGS88b] on locally Kähler fibra-
tions and on the holomorphic version of the Levi-Civita superconnection.

In Subsection 3.12, we construct a superconnection AZ which extends to
families the construction of AZ .

In Subsection 3.13, when z is antiinvariant, we establish a self-adjointness
property of AZ with respect to a generalized Hermitian form ε.

In Subsection 3.14, we consider the superconnection AYb
, and we relate the

asymptotic expansion as b → 0 of a conjugate version of these superconnections
to the classical holomorphic Levi-Civita superconnection.

3.1. The Clifford algebra on a complex vector space

Let V be a real Euclidean vector space of even dimension 2n. Let J be a complex
structure on V , i.e., an antisymmetric endomorphism of V such that J2 = −1. Let
W,W ⊂ V ⊗R C be the eigenspaces of J associated to the eigenvalues i,−i, so
that V ⊗R C =W ⊕W . Then W is naturally equipped with a Hermitian product.
Let ω be the 2-form on V , such that if e, e′ ∈ V ,

ω (e, e′) = 〈e, Je′〉 . (3.1)

Then ω is a (1, 1) form on V .
We use the same notation as in Subsection 1.1. Note that W,W are identified

to W
∗
,W ∗ by the Hermitian product. If e ∈W , set

cW (e) =
√

2e∗∧, cW (e) = −
√

2ie, (3.2)

ĉW (e) =
√

2ie, ĉW (e) =
√

2e∗ ∧ .
We extend cW , cW by linearity to V ⊗R C. Then (3.2) defines actions of c (V ) and

ĉ (V ) on Λ·
(
W

∗)
,Λ

·
(W ∗).

As is well known [H74], we have the canonical isomorphism,

Λ·
(
W

∗) � SV ⊗ (detW )1/2 . (3.3)

so that the action of c (V ) on SV is precisely obtained via cW .
Let w1, . . . , wn be an orthonormal basis of W , and let w1, . . . , wn be the

corresponding dual base of W ∗. Set

L = −
√
−1wi ∧ wi, Λ =

√
−1iwiiwi . (3.4)

The operator L is just multiplication by ω. Moreover, L,Λ act on Λ· (V ∗) and are
adjoint to each other.
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Let N be the number operator acting on Λ· (V ∗)⊗R C. Set

H =
1
2

(N − n) . (3.5)

Then we have the sl2 commutation relations,

[H,L] = L, [H,Λ] = −Λ, [L,Λ] = 2H. (3.6)

If U ∈ V , set

c′ (U) = exp (−iΛ) cW (U) exp (iΛ) , ĉ′ (U) = exp (−iΛ) ĉW (U) exp (iΛ) . (3.7)

If U ∈ V , let u ∈W be the component of U in W , so that U = u+ u. Using (3.2),
we get easily

c′ (U) =
√

2 (u∗ ∧ −iU ) , ĉ′ (U) =
√

2 (u∗ ∧+iU ) . (3.8)

Of course (3.8) still provides us with two anticommuting representations of c (V )
and ĉ (V ). By (3.8), we find in particular that

1√
2

(c′ (U) + ĉ′ (U)) = U∗ ∧ . (3.9)

Note that
Λ· (V ∗ ⊗R C) = Λ·

(
W

∗) ⊗̂Λ· (W ∗) . (3.10)

We introduce another copy Λ̂·
(
W

∗)
of Λ·

(
W

∗)
, whose elements will wear hats.

By (3.10), we get

Λ· (V ∗ ⊗R C) ⊗̂Λ̂·
(
W

∗)
= Λ·

(
W

∗) ⊗̂Λ̂·
(
W

∗) ⊗̂Λ· (W ∗) . (3.11)

As in (1.6), (3.11) is equipped with three anticommuting Clifford actions. Also the
algebra in (3.11) is equipped with an involution exchanging the first two factors
in the right-hand side. Set

Λ̂· (V ∗ ⊗R C) = Λ̂·
(
W

∗) ⊗̂Λ· (W ∗) . (3.12)

Using this involution, we have a nontrivial isomorphism,

Λ· (V ∗ ⊗R C) ⊗̂Λ̂·
(
W

∗) � Λ·
(
W

∗) ⊗̂Λ̂· (V ∗ ⊗R C) . (3.13)

Note that the isomorphism in (3.13) is essentially the same as the one in (1.15).

3.2. A compact Hermitian manifold

Let X be a compact complex manifold of complex dimension n. Let TRX be the
real tangent space of X . Let J be the complex structure on TRX . We denote by
TX, TX the holomorphic and antiholomorphic tangent bundles to X . Let gTX be
a Hermitian metric on TRX , let ωX be the associated Kähler form as in (3.1).
Let ∇TX be the holomorphic Hermitian connection on TX , and let RTX be its
curvature. Let ∇TRX be the connection on TRX which is induced by ∇TX . The
connection ∇TRX coincides with the Levi-Civita connection ∇TRX,L if and only if
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gTX is Kähler. Let ∇Λ·(T∗X) be the connection on Λ· (T ∗X
)

which is induced by
∇TX .

Let T be the torsion of ∇TX . Then T maps TX × TX into TX , TX × TX
into TX and vanishes on TX × TX.

As in (2.15), we have the identity,

dX = ∇Λ·(T∗
RX) + iT . (3.14)

From (3.14), we obtain
dXωX = iTωX . (3.15)

Equation (3.15) allows us to express T in terms of dXωX .
Let

(
E, gE

)
be a holomorphic Hermitian vector bundle on X , let ∇E be the

corresponding holomorphic Hermitian connection, and let RE be its curvature.
Let 〈 〉Λ·(T∗X)⊗E be the Hermitian product on Λ· (T ∗X

)
⊗ E which is associated

to the metrics gTX , gE. Let dvX be the volume form on X which is associated
to gTX . Let ∇Λ·(T∗X)⊗̂E be the connection on Λ· (T ∗X

)
⊗̂E which is induced by

∇Λ·(T∗X),∇E .
Let

(
Ω(0,·) (X,E) , ∂

X
)

be the Dolbeault complex of smooth antiholomorphic

forms on X with coefficients in E. We equip Ω(0,·) (X,E) with the L2 Hermitian
product,

〈s, s′〉L2 = (2π)−n
∫

X

〈s, s′〉Λ·(T∗X)⊗E dvX . (3.16)

Let ∂
X∗

be the formal adjoint of ∂
X

with respect to the Hermitian product (3.16).
Set

DX =
√

2
(
∂

X
+ ∂

X∗)
. (3.17)

Then by [H74], if gTX is Kähler, DX is a Dirac operator of the kind already
considered in (1.16). In the right-hand side of (1.16), ∇STX ⊗̂E should be replaced
by ∇Λ·(T

∗
X)⊗̂E .

3.3. The holomorphic Levi-Civita superconnection

Let X be the total space of TX , and let π : X → X denote the obvious projection.
The fibre of the projection π will often be denoted T̂X, to distinguish it from
the genuine tangent fibre TX . Then X is still a complex manifold. The connection
∇TX induces a horizontal vector bundle THX ⊂ TX , so that we have the splitting
of smooth vector bundles,

TX = THX ⊕ π∗T̂X. (3.18)

If e ∈ TRX , let eH ∈ TH
R X denote its horizontal lift. As before, we will often omit

the upper script H .
Of course π∗ induces the identification THX � π∗TX , so that (3.18) can be

written in the form,
TX = π∗ (TX ⊕ TX) . (3.19)
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By (3.19), we get

Λ· (T ∗X
)

= π∗
(
Λ· (T ∗X

)
⊗̂Λ· (T ∗X

))
. (3.20)

Elements of the second copy of Λ· (T ∗X
)

in the right-hand side of (3.20) are
vertical antiholomorphic forms. These forms will often be hatted to distinguish
them from the elements of the first copy, which will be denoted in the standard
way. In particular instead of (3.20), we will now write

Λ· (T ∗X
)

= π∗
(
Λ· (T ∗X

)
⊗̂Λ̂· (T ∗X

))
. (3.21)

We will use the results of Subsection 3.1, with V = TRX . In particular by
(3.13), we have the isomorphism,

Λ· (T ∗
RX ⊗R C) ⊗̂Λ̂· (T ∗X

)
� Λ· (T ∗X

)
⊗̂Λ̂· (T ∗

RX ⊗R C) . (3.22)

By analogy with (1.20), we now set

F = Λ· (T ∗
RX ⊗R C) ⊗̂Λ̂· (T ∗X

)
⊗̂E � Λ· (T ∗X

)
⊗̂Λ̂· (T ∗

RX ⊗R C) ⊗̂E. (3.23)

Let ∇Λ·(T∗
RX),L be the connection on Λ· (T ∗

RX) which is induced by ∇TX,L. Then
using the first isomorphism for F in (3.23), the connections ∇Λ·(T∗

RX),L,∇TX ,∇E

induce a corresponding connection ∇F on F . This connection is compatible with
the isomorphisms in (3.23) only if gTX is Kähler.

Definition 3.1. Let F be the vector bundle of elements of Λ· (T ∗
RX ⊗R C) ⊗̂π∗E

whose restriction to the fibres TX is of type (0, ·).
Clearly C∞ (X ,F) ⊂ Ω(·,·) (X , E) is stable by the Dolbeault operator ∂

X
. By

(3.20), we get
F � π∗F. (3.24)

In view of the above, one can then say that ∂
X

acts naturally onC∞ (X , π∗F ).

Definition 3.2. Let I· be the vector bundle of sections of π∗
(
Λ̂· (T ∗X

)
⊗̂E

)
which

are smooth along the fibre TX .
Clearly,

C∞ (X , π∗F ) = Ω(·,·) (X, I·) . (3.25)
Also

C∞ (X , π∗F ) = Ω(0,·) (
X , π∗

(
Λ· (T ∗X) ⊗̂E

))
. (3.26)

We denote by y the generic section of TX , by Y the generic section of TRX ,
so that Y = y + y, and |Y |2 = 2 |y|2. Set

ωX = i∂∂ |y|2 . (3.27)

Let ωX ,V be the Kähler form along the fibres of TX , i.e., the restriction of ωX to
the fibres TX . Put

ωX ,H = i
〈
RTXy, y

〉
. (3.28)

Then a simple computation shows that

ωX = ωX ,V + ωX ,H. (3.29)



The Hypoelliptic Dirac Operator 149

Equation (3.29) gives the splitting of ωX into its vertical and horizontal parts.
The same equation indicates that π : X → X is a Kähler fibration in the sense of
[BGS88b]. Equivalently the horizontal vector bundle THX is just the orthogonal
bundle to the vertical vector bundle TX with respect to ωX .

Let ∂
V

denote the Dolbeault operator acting on I· along the fibres of TX . Also
∇Λ̂·(T∗X)⊗̂E determines a connection on I. Namely if U ∈ TRX , if UH ∈ TH

R X is
the horizontal lift of U , if s is a smooth section of I·, set

∇I·

Us = ∇Λ̂·(T∗X)⊗̂E

UH s. (3.30)

Since RTX is of type (1, 1), we find easily that

∇I′′,2 = 0, ∇I·′,2 = 0,
[
∇I· , ∂

V
]

= 0. (3.31)

In the sequel, our operators will act on Ω(0,·) (
X , π∗

(
Λ· (T ∗X) ⊗̂E

))
. Now we

establish a special case of [BGS88b, Theorem 2.8].

Proposition 3.3. We have the identity of operators,

∂
X

= ∇I·′′ + ∂
V
. (3.32)

Proof. Let dX be the de Rham operator on X . Let J· denote temporarily the
vector bundle on X of smooth sections of the vertical exterior algebra along the
fibre TX . Using a notation very similar to the notation in (2.15), we get

dX = ∇J·
+ dV + i

R̂TXY
. (3.33)

In (3.33), ∇J is the obvious connection on J which is induced by ∇TX . Since RTX

is of type (1, 1), from (3.37), we get

∂
X

= ∇J·′′ + ∂
V

+ i
R̂T Xy

. (3.34)

Now when acting on Ω(0,·) (
X , π∗

(
Λ· (T ∗X) ⊗̂E

))
, the operator i

R̂TXy
vanishes,

so that we get (3.32). �

By (3.31) or by (3.32), we get(
∇I·′′ + ∂

V
)2

= 0. (3.35)

Let ∂
V ∗

be the fibrewise adjoint of ∂
V

with respect to the obvious fibrewise
L2 Hermitian product. The operators ∇I·′, ∂

V ∗
verify identities similar to (3.31).

As in (3.35), we have (
∇I·′ + ∂

V ∗)2

= 0. (3.36)

Now we follow [BGS88b, Section 2] and [B97, eq. (2.35)],
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Definition 3.4. Set

A′′ = ∇I·′′ + ∂
V
, A′ = eiω

X
(
∇I·′ + ∂

V ∗)
e−iωX

, A = A′′ +A′. (3.37)

Of course,

A′′2 = 0, A′2 = 0. (3.38)

Equation (3.37) for A′′, A′ can be made more symmetric with respect to ωX . Our
conventions try to fit with various traditions.

When gTX is Kähler, conjugation by eiω
X

can be ignored. By (3.37), we get
in this case,

A = ∇I· + ∂
V

+ ∂
V ∗
. (3.39)

By comparing (1.31) and (3.39), we see that when gTX is Kähler, A is a
special case of D. This point will be made precise in equation (3.45).

3.4. The superconnection operator AZ

Let z be a holomorphic section of π∗TX over X . Let Z = z+z be the corresponding
section of TRX .

Let z∗ ∈ T ∗X correspond to z ∈ TX by gTX . Then iz, z∗∧, iz act on
Λ· (T ∗

RX ⊗R C). Ultimately these operators act on C∞ (X , π∗F ).
Put

A′′
Z = ∇I·′′ + ∂

V
+ iz, A′

Z = eiω
X

(
∇I·′ + ∂

V ∗
+ iz

)
e−iωX

, AZ = A′′
Z +A′

Z .

(3.40)

Note that

A′′2
Z = 0, A′2

Z = 0. (3.41)

Indeed the first identity in (3.41) is a trivial consequence of the fact that z is
holomorphic, and the second one is the obvious conjugate.

Clearly,

A′′
Z = A′′ + iz, A′

Z = A′ + iz + z∗ ∧ . (3.42)

Moreover, AZ is not a superconnection. By (3.8), (3.39), (3.42), we get

AZ = A+
ĉ′ (Z)√

2
. (3.43)

As we saw before, when gTX is Kähler, A is a special case of D. Similarly,
when gTX is Kähler, AZ is a special case of DZ .

Let e1, . . . , e2n be an orthonormal basis of TRX with respect to gTX , let
ê1, . . . , ê2n be the corresponding orthonormal basis of the vertical fibre T̂RX . Note
that

∂
V

+ ∂
V ∗

=
1√
2
cTX (êi)∇êi

. (3.44)
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Recall that the connection ∇F on F was defined after (3.23). By (3.8), (3.9),
(3.39), (3.43), (3.44), when gTX is Kähler, we get

AZ =
1√
2

(c′ (ei) + ĉ′ (ei))∇F
ei

+
1√
2

(cTX (êi)∇êi
+ ĉ′ (Z)) . (3.45)

3.5. A conjugation on AZ

Let ∇F,h be the connection on F which is induced by ∇TX and ∇E . This connec-
tion coincides with ∇F only if gTX is Kähler.

Let w1, . . . , wn be an orthonormal basis of TX with respect to gTX , let
w1, . . . , wn be the corresponding dual basis of T ∗X . We define the Hodge operators
L,Λ as in (3.4), i.e.,

L = −
√
−1wi ∧ wi, Λ =

√
−1iwiiwi . (3.46)

Note in particular that equation (3.46) contains only horizontal variables, and no
vertical hatted variables.

Definition 3.5. Set
BZ = exp (iΛ)AZ exp (−iΛ) . (3.47)

Let ∇I·∗ be the formal adjoint of the operator∇I· with respect to the obvious
L2 Hermitian product on C∞ (X , π∗F ). Then ∇I·∗ splits as

∇I·∗ = ∇I·′′∗ +∇I·′∗. (3.48)

In (3.48), ∇I·′′∗ decreases the horizontal antiholomorphic degree by 1, and ∇I·′∗

decreases the horizontal holomorphic degree by 1.

Theorem 3.6. The following identity holds,

BZ =
(
wi ∧+iwi

)
∇F,h

wi
+

(
wi ∧−iwi

)
∇F,h

wi

+
1
2

(
wi ∧+iwi

) (
wj ∧+iwj

)
iT (wi,wj) −

1
2

(
wi ∧ −iwi

) (
wj ∧ −iwj

)
T ∗ (wi, wj)∧

+ ∂
V

+ iz + ∂
V ∗

+ z∗ ∧ . (3.49)

If the metric gTX is Kähler, then

BZ = ∇I′′ +∇I·′ +∇I·′′∗ −∇I·′∗ + ∂
V

+ iz + ∂
V ∗

+ z∗ ∧ . (3.50)

Proof. By (3.14), (3.40), (3.42) and (3.46), we get

AZ = wi ∧ ∇F,h
wi

+ wi ∧∇F,h
wi

+ iT − T (1,0)∗ ∧+∂
V

+ ∂
V ∗

+ z∗ ∧+iZ . (3.51)

Under conjugation by exp (iΛ), wi∧, wi∧ are changed into wi ∧ −iwi
, wi + iwi

while the annihilation operators are not changed. From (3.51), we get (3.49). If
the metric gTX is Kähler, the terms containing T in (3.49) disappear and equation
(3.50) follows easily. The proof of our theorem is completed. �



152 J.-M. Bismut

3.6. A self-adjointness property

In this subsection, we assume the metric gTX to be Kähler.
Let N (0,1) be the number operator on Λ· (T ∗X

)
, let NH(1,0) be the number

operator on Λ· (T ∗X). Put

N = N (0,1) −NH(1,0). (3.52)

Then N defines a Z-grading on Ω(0,·) (
X , π∗

(
Λ· (T ∗X) ⊗̂E

))
. Clearly A′′

Z increases
the total degree by 1, and A′

Z decreases the total degree by 1.
Let dvX be the obvious volume form on X . We equip C∞,c (X , π∗F ) with the

normalized L2 Hermitian product,

〈s, s′〉L2 = (2π)−2n
∫
X
〈s, s′〉F dvX . (3.53)

We still denote by r the map Y → −Y . Let r∗ the corresponding action on
Λ̂· (T ∗

RX ⊗R C) � Λ· (T ∗X) ⊗̂Λ̂· (T ∗X
)
. Of course r∗ acts trivially on Λ· (T ∗X

)
.

Let η be the Hermitian form on C∞,c (X , π∗F ),

η (s, s′) = 〈r∗s, s′〉L2 . (3.54)

Put
ε (s, s′) = η

(
eiΛs, eiΛs′

)
. (3.55)

Then ε is still a Hermitian form.
In the sequel, the adjoints of A′′

Z , A
′
Z , AZ will be taken with respect to ε,

and the adjoints of B′′
Z , B

′
Z , BZ with respect to η. They will be denoted with an

upper †.
Theorem 3.7. The following identities hold,

A′′†
Z = A′

Z− , B′′†
Z = B′

Z− , (3.56)

A†
Z = AZ− , B†

Z = BZ− .

Proof. By making T = 0 in (3.49), we obtain the fourth identity in (3.56). The
third equation is an obvious consequence of the second one. Now AZ , BZ are the
sum of their components of degree 1 and −1. The first two equations in (3.56) are
now obvious. �
3.7. The Lichnerowicz formula for A2

Z

In this subsection, we assume the metric gTX to be Kähler. Let ΔV be the fibrewise
Laplacian with respect to the metric gTX . Let |Z| be the norm of Z with respect
to gTX . Let e1, . . . , e2n be an orthonormal basis of TRX , let e1, . . . , e2n be the
corresponding dual basis of T ∗

RX .

Theorem 3.8. The following identity holds,

A2
Z =

1
2

(
−ΔV + |Z|2 + c (êi) ĉ′ (∇êi

Z)
)
−∇

R̂T XY
+

1
4

〈
RTXei, ej

〉
c (êi) c (êj)

+
1
2
Tr

[
RTX

]
+
ei√
2
ĉ′

(
∇TXR

ei
Z

)
+∇F

Z +RE . (3.57)
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Proof. As we saw in Subsection 3.4, since gTX is Kähler, AZ is a special case of
DZ . We can then use equation (1.55) in Theorem 1.10. We claim that we get (3.57).
In fact the appearance of 1

2Tr
[
RTX

]
in the right-hand side is a consequence of

(3.3). The proof of our theorem is completed. �

3.8. The Koszul complex of X
By equation (3.32) in Proposition 3.3, by (3.37), (3.40), we get the identity of
operators acting on Ω(0,·) (

X , π∗
(
Λ· (T ∗X) ⊗̂E

))
,

A′′
Y = ∂

X
+ iy. (3.58)

We identify Λ· (T ∗X) ⊗̂Λ̂· (T ∗X
)

to the vertical exterior algebra.
Let i be the embedding of X into X as the zero set of y. Then i∗ maps

Ω(0,·) (
X , π∗

(
Λ· (T ∗X) ⊗̂E

))
into Ω(0,·) (X,E). Let S(0,·) (

X , π∗
(
Λ· (T ∗X) ⊗̂E

))
be the Schwartz space of sections of π∗

(
Λ· (T ∗X) ⊗̂E

)
on X . Note that the oper-

ator ∂
X

+ iy also acts on S(0,·) (
X , π∗

(
Λ· (T ∗X) ⊗̂E

))
.

Proposition 3.9. The map i∗ is a quasiisomorphism of Z-graded complexes(
Ω(0,·) (

X , π∗
(
Λ· (T ∗X) ⊗̂E

))
, ∂

X
+ iy

)
→

(
Ω(0,·) (X,E) , ∂

X
)
,

so that the cohomology of the complex
(
Ω(0,·) (

X , π∗
(
Λ· (T ∗X) ⊗̂E

))
, ∂

X
+ iy

)
is

H(0,·) (X,E). The map i∗ induces a quasiisomorphism(
S(0,·) (

X , π∗
(
Λ· (T ∗X) ⊗̂F

))
, ∂

X
+ iy

)
→

(
Ω(0,·) (X,E) , ∂

X
)
.

Proof. Note that the Koszul complex on (OX (π∗Λ· (T ∗X)) , iy) is a resolution of
the sheaf i∗OX . The first part of our theorem follows.

Put

L̂ = −
√
−1wi ∧ ŵi

, Λ̂ =
√
−1iŵi

iwi . (3.59)

In (3.59), L̂ is just the multiplication operator by the fibrewise Kähler form ω̂X ,V .
Clearly, [

∂
V

+ iy, ∂
V ∗

+ y∗∧
]

=
1
2

(
−ΔV + |Y |2 − i

(
L̂− Λ̂

))
. (3.60)

By [B90b, Proposition 1.5 and Theorem 1.6], we know that the operator in (3.60)
is essentially self-adjoint on S(0,·)

(
T̂X, π∗Λ· (T ∗X)

)
, its spectrum is N, and its

kernel is 1-dimensional and spanned by

β = exp
(
iω̂X ,V − |Y |2 /2

)
. (3.61)

Moreover, its resolvent acts on S(0,·)
(
T̂X, π∗Λ· (T ∗X)

)
. Clearly,(

∂
V

+ iy
)
β = 0. (3.62)
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From the above, it follows that in a given fibre, the cohomology of the complex(
S(0,·)

(
T̂X, π∗Λ· (T ∗X)

)
, ∂

V
+ iy

)
is concentrated in degree 0.

Using (3.32), (3.58) and (3.62), we get(
∂
X

+ iy
)
β = 0. (3.63)

Moreover,
i∗β = 1 (3.64)

Using the above and a form of the Leray-Hirsch theorem, we get the last part of
our proposition. �

Remark 3.10. In the above construction, we have assumed that the metric on
the vertical fibre T̂X is the same as the given metric on the tangent bundle TX
coming from the metric of X . When defining A′

Z , AZ in (3.40), we may as well
assume that the two metrics are indeed distinct. This extension will be developed
in full generality in Section 10. In Subsection 3.9 and in Section 7, we will already
relax this assumption, by only assuming the horizontal and vertical metrics to be
proportional, with a fixed constant of proportionality.

3.9. A rescaling on y and the elliptic Hodge operator on X

Given b > 0, we define the holomorphic section zb of TX as in (1.57).

Definition 3.11. For b ∈ R∗, set

CZ,b = KbBZb
K−1

b . (3.65)

By (3.49), we get

CZ,b =
(
wi ∧+iwi

)
∇F,h

wi
+

(
wi ∧ −iwi

)
∇F,h

wi

+
1
2

(
wi ∧+iwi

) (
wj ∧+iwj

)
iT (wi,wj) −

1
2

(
wi ∧ −iwi

) (
wj ∧ −iwj

)
T ∗ (wi, wj)∧

+
1
b

(
∂

V
+ ibz(x,Y/b) + ∂

V ∗
+ bz (x, Y/b)∗ ∧

)
. (3.66)

Set

E =
(
wi ∧+iwi

)
∇F,h

wi
+

(
wi ∧ −iwi

)
∇F,h

wi
+

1
2

(
wi ∧+iwi

) (
wj ∧+iwj

)
iT (wi,wj)

− 1
2

(
wi ∧−iwi

) (
wj ∧−iwj

)
T ∗ (wi, wj) ∧ . (3.67)

By (3.66), (3.67), we obtain,

CY,b = E +
1
b

(
∂

V
+ iy + ∂

V ∗
+ y∗∧

)
. (3.68)

As we already saw in the proof of Proposition 3.9, the kernel of the opera-
tor ∂

V
+ iy + ∂

V ∗
+ y∗∧ acting on S(0,·)

(
T̂X, π∗Λ· (T ∗X)

)
is 1-dimensional and



The Hypoelliptic Dirac Operator 155

spanned by β = exp
(
iω̂X ,V − |Y |2

2

)
. Note that

(2π)−n
∫

T̂X

|β|2 dvTX = 1. (3.69)

Let P be the orthogonal projection operator on this kernel.
We embed Ω(0,·) (X,E) into Ω (X , π∗F ) by the isometric embedding α →

π∗α ∧ β, so that Ω(0,·) (X,E) is identified with ker
(
∂

V
+ iy + ∂

V ∗
+ y∗∧

)
.

Theorem 3.12. The following identity holds,

PEP = ∂
X

+ ∂
X∗
. (3.70)

Proof. We find easily that

PEP = wi∇Λ·(T∗X)⊗E

wi
− iwi

∇Λ·(T∗X)⊗E
wi

+
1
2
wi ∧wj ∧ iT (wi,wj) −

1
2
iwi
iwj
T ∗ (wi, wj) ∧ . (3.71)

Using [B89, eqs. (1.41) and (2.21)], which gives an expression for ∂
X

+ ∂
X∗

, we
get (3.70). �

Remark 3.13. Theorem 3.12 is remarkable. Indeed it indicates that even in the
case of non Kähler metrics, the formalism of Theorem 1.13 remains valid.

3.10. The analytic and spectral properties of A2
Yb

In this subsection, we assume gTX to be Kähler. We will describe the analytic and
spectral properties of the operator A2

Yb
. We fix b > 0.

Inspection of equations (1.69) and (3.57) shows that the hypoelliptic operator
A2

Yb
has the same analytic properties as the hypoelliptic Laplacian considered in

[BL06, Sections 15 and 17]. In particular it has compact resolvent and discrete
spectrum which is located in the domain δ+ to the right of a curve γ indicated
in Figure 3.1. The precise description of γ is as follows. Given b > 0, constants
λ0 > 0, c0 > 0 depending on b > 0 are defined so that

γ =
{
λ = −λ0 + σ + iτ, σ, τ ∈ R, σ = c0 |τ |1/6

}
. (3.72)

Note that γ depends explicitly on b. Moreover, the corresponding characteristic
subspaces are finite dimensional and included in S(0,·) (

X , π∗
(
Λ· (T ∗X) ⊗̂E

))
. If

λ ∈ SpA2
Yb

, let Sλ ⊂ S(0,·) (
X , π∗

(
Λ· (T ∗X) ⊗̂E

))
denote the corresponding char-

acteristic subspace. By Theorem 3.7, the operator A2
Yb

is self-adjoint with respect
to the Hermitian form ε. By proceeding as in [BL06, Proposition 3.1] , we deduce
that the spectrum of A2

Yb
is conjugation invariant.

By proceeding as in [BL06, Subsection 3.2], we find that there is a natural
splitting

S(0,·) (
X , π∗

(
Λ· (T ∗X) ⊗̂E

))
= S0 ⊕ S∗, (3.73)
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0-λ0

γ

δ+δ−

Figure 3.1

which is is A′′
Yb
, A′

Yb
stable. In (3.73), S∗ is just the image of 1−P, where P is the

spectral projector on S0. By [BL06, Theorem 3.2],

S∗ = ImA′′
Yb
|S∗ ⊕ ImA′

Yb
|S∗ . (3.74)

The splitting (3.73) is ε-orthogonal, so that the restriction of the Hermitian form
ε to S0 and S∗ is nondegenerate. Also the complex

(
S∗, A′′

Yb

)
is acyclic. Combining

this result with Proposition 3.9, we get

H · (S0, A
′′
Yb

)
� H(0,·) (X,E) . (3.75)

Let us now describe the behaviour of A2
Yb

as b → 0. We replace AYb
by

its conjugate CY,b defined in (3.65). Inspection of equations (1.61), (1.63), (1.70),
(1.71), and (3.66)–(3.70) shows that the analysis of the operator C2

Y,b is formally
the same as the analysis of the operator A′2

φ,Hc
which is done in [BL06, Sections 3

and 17].
Recall that DX was defined in (3.17), and that the projector P was defined

in Subsection 3.9.
Let δ = (δ0, δ1, δ2) with δ0 ∈ R, δ1 > 0, δ2 > 0. Put

Wδ =
{
λ ∈ C,Reλ ≤ δ0 + δ1 |Imλ|δ2

}
. (3.76)
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0

δ0/b2

γb

-1/r

Figure 3.2

For r > 0, b > 0, set

Wδ′,b,r =
{
λ ∈ Wδ′/b2, rReλ+ 1 ≤ |Imλ|

}
. (3.77)

The domainWδ′,b,r is located to the left of γb and outside of the cone in Figure 3.2.
Using the results of [BL06, Section 3] and Theorem 3.12, we find that given

r > 0, there exists δ′ = (δ′0, δ
′
1, δ

′
2) with δ′0 ∈]0, 1], δ′1 > 0, δ′2 = 1/6 such that for

b > 0 small enough, for λ ∈ Wδ′,b,r, for N ∈ N∗ large enough, the norm of the
operator (

C2
Y,b − λ

)−N − P
(
DX,2/2− λ

)−N
P

can be suitably estimated in any natural Sobolev norm on the corresponding ker-
nels by Cbv, with v ∈]0, 1[.

By proceeding as in the proof of [BL06, Theorem 3.5], we find that given
M > 0, for b > 0 small enough,

SpC2
Y,b ∩ {λ ∈ C,Reλ ≤M} ⊂ R+, (3.78)

S0 = ker A′′
Yb
∩ ker A′

Yb
.

For b > 0 small enough, Figure 3.2 can be replaced by Figure 3.3.
By (3.78), we find that as in [BL06], for b > 0 small enough, the usual

conclusions of Hodge theory hold, i.e.,

S0 = kerA2
Yb
, S0 � H(0,·) (X,E) . (3.79)

Finally by proceeding as in [BL06, Theorem 3.8], one can show that the set
of b > 0 such that the usual conclusions of Hodge theory do not hold for A2

Yb
is

discrete.
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0

δ0/b2

γb

Figure 3.3

3.11. Kähler fibrations and the Levi-Civita superconnection

Let p : M → S be a holomorphic submersion of complex manifolds with complex
fibre X of dimension n. Let ωM be a smooth real (1, 1)-form onM which is closed,
and which restricts to the Kähler form along the fibre X associated to a fibrewise
Kähler metric gTX on the relative tangent bundle TX = TM/S. Let THM ⊂ TM
be the orthogonal bundle to TX with respect to ωM . Then we have the smooth
splitting,

TM = THM ⊕ TX. (3.80)

By (3.80), we deduce the smooth isomorphism,

Λ· (T ∗M) � π∗Λ· (T ∗S) ⊗̂Λ· (T ∗X) . (3.81)

By following the terminology in [BGS88b, Definition 1.4], we will say that the
triple

(
p, gTX , THM

)
defines a Kähler fibration with associated (1, 1) form ωM .

Let ωM,V , ωM,H be the restriction of ωM to TRX,TH
RM , so that

ωM = ωM,H + ωM,V . (3.82)

Note that ωM,V is just the Kähler form ωX along the fibre X which is associated
with the metric gTX . As in (3.16), gTX , gE induce a Hermitian product 〈 〉L2 , on
Ω(0,·) (X,E).

Let ∇TX be the holomorphic Hermitian connection on
(
TX, gTX

)
, and let

RTX be its curvature. Let dvX be the volume form along the fibre X which is
associated to gTX . Let ∇TRX be the connection on TRX which is induced by
∇TX . By [BGS88b, Theorem 1.5], [B97, Theorems 1.1 and 2.3], ∇TRX is exactly
the connection associated to

(
TH
RM, g

TRX
)

which was considered in Subsection
2.1. It is shown in the same references that the associated tensor T which was
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considered in Subsection 2.1 is of type (1, 1). Moreover, if A ∈ TS,B ∈ TX , then
T

(
AH , B

)
∈ TX and T

(
A

H
, B

)
∈ TX. Finally by [BGS88b, Theorem 1.7],

dXωM,H + iT HωM,V = 0. (3.83)

Let E be a holomorphic vector bundle on M , let gE be a Hermitian metric
on E, let ∇E be the holomorphic Hermitian connection on E, and let RE be its
curvature. Let ∇Λ·(T∗X)⊗E be the connection on Λ· (T ∗X

)
⊗ E which is induced

by ∇TX ,∇E . If U ∈ TRS, let UH ∈ TH
RM be its horizontal lift.

If s is a smooth section on S of Ω(0,·) (X,E), if U ∈ TRS, set

∇Ω(0,·)(X,E)
U s = ∇Λ·(T∗X)⊗E

UH s. (3.84)

By [BGS88b, Theorem 1.14], ∇Ω(0,·)(X,E) is a Hermitian connection on the vector
bundle Ω(0,·) (X,E), and its curvature is of type (1, 1).

By (3.80), we get the identification,

Ω(0,·) (M,E) = Ω(0,·)
(
S,Ω(0,·) (X,E)

)
. (3.85)

The operators ∇Ω(0,·)(X,E)′′ and ∂
X

act on Ω(0,·) (M,E). By [BGS88b, Theorem
2.8], we get the identity of operators acting on Ω(0,·) (M,E),

∂
M

= ∇Ω(0,·)(X,E)′′ + ∂
X
. (3.86)

By (3.86), we obtain, (
∇Ω(0,·)(X,E)′′ + ∂

X
)2

= 0. (3.87)

Similarly, by [BGS88b, Theorem 2.6],(
∇Ω(0,·)(X,E)′ + ∂

X∗)2

= 0. (3.88)

Now we follow [BGS88b, Section 2].

Definition 3.14. Put

B′′ = e−iωM,H/2
(
∇Ω(0,·)(X,E)′′ + ∂

X
)
eiω

M,H/2,

B′ = eiω
M,H/2

(
∇Ω(0,·)(X,E)′ + ∂

X∗)
e−iωM,H/2, (3.89)

B = B′′ +B′.

Then

B′′2 = 0, B′2 = 0. (3.90)

It is shown in [BGS88b] that B is a special case of a Levi-Civita supercon-
nection. In particular,

B = ∇Ω(0,·)(X,E) + ∂
X

+ ∂
X∗ − 1

2

(
TH(1,0)∗ ∧ −iT H(0,1)

)
. (3.91)
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In particular the curvature B2 is an elliptic operator of order 2 along the fibre X .
It was explicitly evaluated in [BGS88b, Theorem 2.10] using the formula of [B86,
Theorem 3.6] for the curvature of a general Levi-Civita superconnection, which is
also given in (2.11).

3.12. Kähler fibrations and the hypoelliptic superconnection

We make the same assumptions as in Subsection 3.11 and we use the corresponding
notation. Let M be the total space of TX , and let π :M→M, q :M→ S be the
obvious projections. We denote by X the fibre of π.

The connection ∇TX induces a smooth splitting,

TM = π∗ (TM ⊕ TX) . (3.92)

By (3.92), we get the identification

Λ· (T ∗M
)

= π∗
(
Λ· (T ∗M

)
⊗̂Λ̂· (T ∗X

))
. (3.93)

We still define F as in (3.23), and F ⊂ Λ· (T ∗
RM⊗R C) ⊗̂π∗E as in Definition

3.1. Instead of (3.24), we have the smooth isomorphism,

F � Λ (T ∗
RS ⊗R C)⊗ π∗F. (3.94)

Then the Dolbeault operator ∂
M

acts on C∞ (M,F).
Also we define I· as in Definition 3.2. Then I· is a Z-graded vector bundle

over M , on which ∂
V

acts naturally. The obvious analogue of equation (3.32) in
Proposition 3.3 holds, i.e.,

∂
M

= ∇I·′′ + ∂
V
. (3.95)

The obvious analogues of (3.35), (3.36) still hold.
Let y be the generic element of the fibre TX . Instead of (3.27), we now set

ωM = i∂∂ |y|2 . (3.96)

Let ωM,V be the Kähler form along the fibres TX . Put

ωM,H = i
〈
RTXy, y

〉
. (3.97)

Then the analogue of (3.29) still holds.
The form π∗ωM +ωM is a closed (1, 1) form on M. Let THM⊂ TM be the

horizontal lift of THM in TM with respect to the connection ∇TX . Then THM
is a horizontal subbundle with respect to the projection q : M → S. Moreover,
THM is orthogonal to TX with respect to the form π∗ωM + ωM.

Incidentally we do not claim that there is an associated Kähler fibration
p : M → S, because π∗ωM + ωM may well be degenerate along the fibre X .
However this will be totally irrelevant in the sequel.

Definition 3.15. Set

A′′ = ∇I·′′ + ∂
V
, A′ = ∇I·′ + ∂

V ∗
, A = A′′ +A′. (3.98)
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By comparing (2.13) and (3.98), we find that A is a special case of the
superconnection defined in (2.13).

Let z be a holomorphic section of π∗TX on M. Let Z = z + z be the
corresponding section of TRX . Put

A′′
Z = ∇I·′′ + ∂

V
+ iz, A′

Z = eiω
M

(
∇I·′ + ∂

V ∗
+ iz

)
e−iωM

, AZ = A′′
Z +A′

Z .

(3.99)

Then

A′′2
Z = 0, A′2

Z = 0. (3.100)

Observe that since the form ωM is closed,

A′
Z = ∇I·′ + ∂

V ∗
+ iz + z∗ ∧ . (3.101)

By (3.99), (3.101), we get

AZ = A+
ĉ′ (Z)√

2
. (3.102)

Using (3.8), (3.9), we find that the superconnection AZ in (3.99) is a special case
of the superconnection AZ in (2.20).

3.13. A self-adjointness property

Recall that the Hermitian forms ε, η were defined in (3.54), (3.55). We define the
forms ε, η on C∞,c (X , π∗F ) with values in

⊕
Λ(p,p) (T ∗

RS) by the formulas,

ε (s, s′) = ε
(
s, e−iωM,H

s′
)
, η (s, s′) = η

(
s, e−iωM,H

s′
)
, (3.103)

Let † be the antilinear involution acting on Λ· (T ∗
RS)⊗RC which is such that

(α ∧ α′)† = α′† ∧ α†, and moreover, if f ∈ T ∗S, f † = −f . Note that(
iωM,H

)†
= iωM,H. (3.104)

We claim that ε, η are Hermitian forms, in the sense that

ε (s′, s) = (ε (s, s′))† , η (s′, s) =
(
η (s, s′)

)†
. (3.105)

Indeed this is a consequence of the corresponding fact for the forms ε, η, and also
of (3.104).

By defining L,Λ as in (3.46), we can define the conjugate superconnection
BZ by the formula

BZ = exp (iΛ)AZ exp (−iΛ) . (3.106)
The operators B′′

Z ,B′
Z are obtained in the same way from A′′

Z ,A′
Z .

Let N (1,0),N (0,1) be the number operators on Λ· (T ∗M) ,Λ· (T ∗M
)
. Set

N = N (0,1) −N (1,0). (3.107)

Note that (3.52) and (3.107) are compatible. Let NH(0,1), NH(1,0) be the
number operators on Λ· (T ∗M

)
,Λ· (T ∗M). Let NV be the number operator on

Λ̂· (T ∗X
)
.
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We identify N to its restriction to Λ· (T ∗
RS) ⊗̂Rπ

∗F , which is given by

N = NV +NH(0,1) −NH(1,0). (3.108)

In what follows, we consider the operators defined in (3.98)–(3.108) as operators
acting on C∞ (

M,Λ· (T ∗
RS) ⊗̂Rπ

∗F
)
.

The vector space C∞ (
M,Λ· (T ∗

RS) ⊗̂Rπ
∗F

)
is naturally Z-graded by N .

Given k ∈ Z, we will say that an operator acting on C∞ (
M,Λ· (T ∗

RS) ⊗̂Rπ
∗F

)
is

of degree k if it increases the degree by k. Let ∇F,h be the connection on F which
is induced by ∇TX ,∇E .

Let f1, . . . , fm be a basis of TS, let f1, . . . , fm be the corresponding dual
basis. We will establish an analogue of Theorem 3.7. Adjoints will still be denoted
with a †. The adjoint of AZ will be taken with respect to ε, and the adjoint of BZ

with respect to η.

Theorem 3.16. The operator A′′
Z is of total degree 1, and the operator A′

Z is of
total degree −1. Moreover,

A′′†
Z = A′

Z− , B′′†
Z = B′

Z− , (3.109)

A†
Z = AZ− , B†

Z = BZ− .

Proof. We will first establish the fourth identity in (3.109). By the analogue of
(3.14), we get

dM = ∇Λ·(T∗
RX) + iT . (3.110)

Since ωM is closed, using (3.110), we get

∇V ωM,H + iT HωX = 0, ∇HωM,H = 0. (3.111)

In (3.111), ∇V ,∇H denote vertical and horizontal differentiation respectively. The
first equation in (3.111) just expresses the known fact [BGS88b, Theorem 1.7] that
TH is a fibrewise Hamiltonian vector field with Hamiltonian ωH . By (3.99), (3.101)
and (3.110), we get

BZ =
(
wi ∧+iwi

)
∇F,h

wi
+

(
wi ∧ −iwi

)
∇F,h

wi
+ f

α ∧∇F,h

f
H
α

+ fα ∧∇F,h
fH

α

+ f
α ∧

(
wi ∧ −iwi

)
i
T

(
f

H
α ,wi

) + fα ∧
(
wi ∧+iwi

)
iT (fH

α ,wi) + iT H

+ ∂
V

+ iz + ∂
V ∗

+ z∗ ∧ . (3.112)

By proceeding as in the proof of Theorem 3.7 and using (3.111), (3.112), the proof
of the fourth identity in (3.109) follows easily. The third equation in (3.109) now
follows from the fourth one. By splitting AZ ,BZ into their components of degree
1 and −1, we get the first two equations in (3.109). The proof of our theorem is
completed. �

Remark 3.17. The observations we made in Remark 3.10 remain still valid in the
families context.
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3.14. Hypoelliptic and elliptic superconnections

Given b ∈ R∗, we define CZ,b from BZb
as in (3.65).

Set

E = fα ∧∇F,h
fα

+ f
α ∧ ∇F,h

fα

+
(
wi ∧+iwi

)
∇F,h

wi
+

(
wi ∧ −iwi

)
∇F,h

wi

+ f
α ∧

(
wi ∧ −iwi

)
i
T

(
f

H
α ,wi

) + fα ∧
(
wi + iwi

)
iT (fα,wi) + fα ∧ fβ

i
T

(
fH

α ,f
H
β

) .
(3.113)

By (3.112), we get

CY,b = E +
1
b

(
∂

V
+ iy + ∂

V ∗
+ y∗∧

)
. (3.114)

We define the projector P as in Subsection 3.9. Finally recall that the super-
connection B was defined in Definition 3.14.

We establish the obvious extension of Theorem 3.12.

Theorem 3.18. The following identity holds,

e−iωM,H/2PEPeiωM,H/2 = B. (3.115)

Proof. By (3.113), we obtain

PEP = ∇Ω·(X,E) + ∂
X

+ ∂
X∗ − fα ∧ iwiiT

(
f

H
α ,wi

) + iT H(0,1) . (3.116)

Also by (2.4),

iwi
i
T

(
f

H
α ,wi

) =
〈
T

(
f

H

α , wi

)
, wj

〉
iwi
iwj

= 0. (3.117)

Finally by (3.83) and (3.116), we get

e−iωM,H/2PEPeiωM,H/2 = ∇Ω·(X,E) + ∂
X

+ ∂
X∗ − 1

2

(
TH(1,0)∗ ∧ −iT H(0,1)

)
.

(3.118)
Comparing (3.91) with (3.118), we get (3.115). The proof of our theorem is com-
pleted. �

4. The local index theory for the elliptic Laplacian and the elliptic
holomorphic torsion forms

In this section, we state the local families index theorem of [B86]. Also we ex-
plain the construction of the holomorphic analytic torsion forms associated to
Kähler fibrations, and we state the curvature theorem for Quillen metrics on the
determinant of the cohomology. These objects will be constructed using the usual
elliptic Hodge theory. In the next sections, we will extend these constructions to
hypoelliptic Hodge theory.

This section is organized as follows. In Subsection 4.1, we introduce the action
of a compact Lie group G which preserves the various geometric structures which
were considered before.
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In Subsection 4.2, we state the local families index theorem.
In Subsection 4.3, we give the double transgression formulas for the Chern

character forms in the case of Kähler fibrations, and we study their limit as t→ 0.
In Subsection 4.4, we obtain their limit as t→ +∞.
In Subsection 4.5, we construct the holomorphic analytic torsion forms in the

equivariant context.
In Subsection 4.6, we state the curvature theorem of [BGS88c] for Quillen

metrics.
Finally in Subsection 4.7, we give a curvature theorem for equivariant Quillen

metrics.

4.1. A group action

Let G be a compact Lie group. First we make the same assumptions as in Section 1.
We assume that G acts isometrically on X , and that the action of G is oriented and
lifts to the corresponding spin bundle. Then the action of G lifts as an isometric
action on TX , and also to a unitary action STX which preserves the Z2-grading
when n is even. Finally we assume that the action of G lifts to

(
E, gE,∇E

)
.

Then G acts on C∞ (
X,STX⊗̂E

)
, so that if g ∈ G, s ∈ C∞ (

X,STX⊗̂E
)
,

(gs) (x) = gs
(
g−1x

)
. (4.1)

Also G commutes with the elliptic Dirac operator DX which was constructed in
Definition 1.1.

Now we make the same assumptions as in Subsection 1.5. Also we assume the
connection ∇TX to be G-invariant. This is the case in particular if ∇TX = ∇TX,L.

Recall that the vector bundle F was defined in (1.20). Then G acts on X and
the action lifts to C∞ (X , π∗F ). Finally the operator D commutes with G.

Assume that Z is a G-invariant section of π∗TX over X . Then G also com-
mutes with DZ . Note here that the tautological section Y is G-invariant.

Now we consider the more general context of Section 2. We assume that G
acts onM along the fibres X . Also we assume that G preserves

(
THM, gTX

)
, and

that the action of G lifts to STX . Finally we still suppose that the action of G lifts
to E and preserves gE ,∇E . It should be clear that under obvious conditions, like
the G-invariance of the section Z, the superconnections which were constructed in
Section 2 commute with the action of G.

We work now in the context of Section 3. In the case of a single compact
complex Hermitian manifold X , we assume that G acts holomorphically on X and
preserves the Hermitian metric gTX . Also we assume that the action of G on X
lifts to a holomorphic action on E which preserves the metric gE .

Then G acts on Ω(0,·) (X,E) by a formula similar to (4.1), and this action
commutes with ∂

X
, ∂

X∗
, and so it commutes with the operator DX in (3.17).

Again G acts on C∞ (X , π∗F ), and this action commutes with the operators
in (3.37). If the holomorphic section z of TX is G-invariant, then G also commutes
with AZ .
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Finally we make the same assumptions as in Subsection 3.11. We assume
that G acts holomorphically along the fibres X , and we assume that the form
ωM is G-invariant. Then G commutes with the superconnection B. Under the
assumptions of Subsection 3.12, G acts on M and preserves ωM,H . It commutes
with the superconnectionA. If the section z of TX is G-invariant,G also commutes
with AZ .

4.2. The local families index theorem

We make the same assumptions as in Subsection 2.1, and we use the corresponding
notation. Let G be a compact Lie group as in Subsection 4.1. We assume that the
compatibility conditions of that subsection are verified.

Given t > 0, let At be the Levi-Civita superconnection on the Z2-graded
vector bundle H considered in (2.8) which is attached to THM, gTX/t,∇E. Recall
that for a > 0, ψa ∈ End (Λ· (T ∗S)) was defined before equation (2.10). Then one
verifies easily that

At = ψ1/t

√
tAψt. (4.2)

Also A2
t is an elliptic second order differential operator along the fibre X .

In the sequel we use the notation of Quillen [Q85a]. If L is trace class operator
acting on H , let Trs [L] denote the supertrace of L.

If αt, t ≥ 0 is a family of smooth forms on S depending on t > 0, we will say
that as t→ 0, αt = α0 +O (t) if given a compact subset K ⊂ S, for any k ∈ N, the
sup over K of the norm of the derivatives of order k of αt − α0 can be dominated
by CK,kt. We will use a similar notation when t→ +∞.

Let ind
(
DX

)
∈ K0 (S) be the index bundle associated to the family of oper-

ators DX in the sense of Atiyah-Singer [AS71]. Then ind
(
DX

)
is an equivariant

vector bundle. If g ∈ G, let chg

(
ind

(
DX

))
∈ H · (S,C) be the corresponding

equivariant Chern character.
Take g ∈ G. Let Mg ∈ M be the fixed point set of g. Then Mg fibres on S

with fibre Xg. Moreover, the restriction of THM to Mg is included in TMg.
Let Âg

(
TX,∇TX

)
, chg

(
E, gE

)
be the even closed smooth forms on Mg

in Chern-Weil theory which are associated to the connections of ∇TX ,∇E on
TX |Mg , E|Mg and to the Â and ch genera as in the Lefschetz fixed point formulas
of Atiyah-Bott [AB66, AB67, AB68]. Note that except when g = 1, there is a ±
ambiguity in the definition of Âg

(
TX,∇TX

)
. This sign ambiguity will be noted

explicitly.
Let ϕ be the endomorphism of Λ· (T ∗

RS ⊗R C) such that if α is a form of
degree p, then ϕα = (2iπ)−p/2

α. For t > 0, set

ut = ϕTrs
[
g exp

(
−A2

t

)]
. (4.3)

Now we state the local families index theorem in [B86, Theorems 4.12 and 4.16]
and [M00a, Theorem 2.10].
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Theorem 4.1. The even forms ut are closed, their cohomology class [ut] does not
depend on t and is given by

[ut] = chg

(
kerDX

)
. (4.4)

As t→ 0,

ut =
∫

Xg

±Âg

(
TX, gTX

)
chg

(
E, gE

)
+O (t) . (4.5)

4.3. The local index theorem in the holomorphic elliptic case and the double
transgression formulas

We make the same assumptions as in Subsection 3.11. Let G be a compact Lie
group. We assume that the compatibility conditions of Subsection 4.1 are verified.

Let PS be the vector space of smooth forms on S which are sums of forms
of type (p, p). Let PS,0 ⊂ PS be the space of forms α ∈ PS such that there exist
smooth forms β, γ on S for which α = ∂

S
β + ∂Sγ. We use a similar notation for

forms on other manifolds.
Take g ∈ G. Then Mg ⊂ M , the fixed point set of g, is a complex sub-

manifold of M which fibres on S with complex fibre Xg. For g ∈ G, the forms
Tdg

(
TX, gTX

)
, chg

(
E, gE

)
are the Todd and Chern character forms onMg which

appear in the context of the holomorphic fixed point formulas of Atiyah-Bott,
which are associated to the holomorphic Hermitian connections on the given vec-
tor bundles.

Let R·π∗E be the direct image of E. Then G acts on R·π∗E. Also let
chg (R·π∗E) ∈ H · (S,C) be the equivariant Chern character of R·π∗E.

For t > 0, let Bt be the superconnection defined in Definition 3.14 which is as-
sociated with

(
ωM/t, gE

)
. LetN be the number operator acting on Ω(0,·) (X,E|X).

Set

ut = ϕTrs
[
g exp

(
−B2

t

)]
, wt = ϕTrs

[
g

(
N − n+ i

ωM,H

t

)
exp

(
−B2

t

)]
. (4.6)

Theorem 4.2. For any t > 0, the forms ut, wt lie in PS. The forms ut are closed,
and their cohomology class does not depend on t > 0. More precisely,

[ut] = chg (R·π∗E) . (4.7)

Moreover,
∂

∂t
ut = − ∂∂

2iπt
wt. (4.8)

As t→ 0,

ut =
∫

Xg

Tdg

(
TX, gTX

)
chg

(
E, gE

)
+O (t) . (4.9)

There exists forms C−1 ∈ PS , C0 ∈ PS such that as t→ 0,

wt =
C−1

t
+ C0 +O (t) . (4.10)
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Moreover,

C−1 =
∫

Xg

ωM

2π
Tdg

(
TX, gTX

)
chg

(
E, gE

)
, (4.11)

C0 = −
∫

Xg

Td′
g

(
TX, gTX

)
chg

(
E, gE

)
inPS/PS,0.

Proof. The fact that the form ut is closed was established in [B86, Theorem 3.4]
and in [M00a, Theorem 2.10] in the equivariant case. By [BGS88b, Theorems 2.2
and 2.9], the forms ut, wt lies in PS . By [B86, Theorems 4.12 and 4.16] and by
[M00a, Theorem 2.10] in the equivariant case, we get (4.9). By [BGS88b, Theo-
rem2.16] and [M00a, Theorem 2.6], we get (4.10), (4.11). �

4.4. The limit as t→ +∞ of the superconnection forms

For s ∈ S, let H·
s ⊂ Ω(0,·)

s (X,E|X) be the vector space of harmonic forms on Xs,
i.e.,

H·
s = ker

(
∂

Xs + ∂
Xs∗

)
. (4.12)

By Hodge theory, for any s ∈ S,

H(0,·)
s (X,E|X) � H·

s. (4.13)

In the sequel we assume that the H(0,i) (X,E|X) , 1 ≤ i ≤ n have locally
constant dimension. They are the fibres of a holomorphic Z-graded vector bundle,
which we denote by H(0,·) (X,E|X). This assumption is equivalent to R·π∗E being
locally free.

Then H· is a finite-dimensional smooth subvector bundle of Ω(0,·) (X,E). It
inherits a smooth metric gH

·
from the Hermitian product (3.16) on Ω(0,·) (X,E).

Let gH
(0,·)(X,E|X) denote the corresponding metric on H(0,·) (X,E|X).

Recall that

chg

(
H(0,·) (X,E|X) , gH

(0,·)(X,E|X)
)

=
n∑
0

(−1)i chg

(
H(0,i) (X,E|X) , gH

(0,i)(X,E|X)
)
. (4.14)

Set

ch′
g

(
H(0,·) (X,E|X) , gH

(0,·)(X,E|X)
)

=
n∑
0

(−1)i ichg

(
H(0,i) (X,E|X) , gH

(0,i)(X,E|X)
)
. (4.15)
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Put

u∞ = chg

(
H(0,·) (X,E|X) , gH

(0,·)(X,E|X )
)
,

w∞ = ch′
g

(
H(0,·) (X,E|X) , gH

(0,·)(X,E|X)
)

(4.16)

− nchg

(
H(0,·) (X,E|X) , gH

(0,·)(X,E|X)
)
.

The following result was established in [BeGV92, Theorem 9.19].

Theorem 4.3. As t→∞,

ut = u∞ +O
(
1/
√
t
)
, wt = w∞ +O

(
1/
√
t
)
. (4.17)

4.5. The elliptic analytic torsion forms

We still assume that the assumption made after (4.13) holds.

Definition 4.4. For s ∈ C,Re s > 1, put

ζ1 (s) = − 1
Γ (s)

∫ 1

0

ts−1 (wt − w∞) dt. (4.18)

For s ∈ C,Re s < 1/2, set

ζ2 (s) = − 1
Γ (s)

∫ ∞

1

ts−1 (wt − w∞) dt. (4.19)

By Theorems 4.2 and 4.3, ζ1 (s) , ζ2 (s) are holomorphic functions which extend to
holomorphic functions near s = 0.

Following [BGS88b, Definition 2.19], [BK92, Definition 3.8], and [M00a, Def-
inition 2.11] in the equivariant case, we now define the holomorphic elliptic torsion
forms.

Definition 4.5. Set

Tg

(
ωM , gE

)
=
∂

∂s

(
ζ1 + ζ2

)
(s) |s=0. (4.20)

Then Tg

(
ωM , gE

)
is an even form on S which lies in PS . It is called an elliptic

equivariant analytic torsion form. In degree 0, it coincides with the equivariant
version of the classical Ray-Singer analytic torsion [RS73].

By (4.10), we get

Tg

(
ωM , gE

)
= −

∫ 1

0

(
wt −

C−1

t
− C0

)
dt

t
−

∫ ∞

1

(wt − w∞)
dt

t

+ C−1 + Γ′ (1) (C0 − w∞) . (4.21)

Now we recall the basic result of [BGS88b, Theorem 2.20], [BK92, Theorem
3.9] and [M00a, Theorem 2.12] in the equivariant case.
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Theorem 4.6. The following identity holds,

∂∂

2iπ
Tg

(
ωM , gE

)
= chg

(
H(0,·) (X,E|X) , gH

(0,·)(X,E|X)
)

−
∫

Xg

Tdg

(
TX, gTX

)
chg

(
E, gE

)
. (4.22)

Proof. This is an obvious consequence of Theorems 4.2 and 4.3. �

Remark 4.7. By results which were established in [BK92, Theorems 3.10 and
3.11], [B95, Theorem 2.5] and in [M00a, Theorem 2.13], the classes Tg

(
ωM , gE

)
∈

PS/PS,0 verify anomaly formulas, when ωM , gE vary, which can be expressed in
terms of Bott-Chern classes [BGS88a]. An important consequence of those results
is that the class of Tg

(
ωM , gE

)
only depends on the metrics gTX , gE.

In the sequel, when g = 1, we will write T
(
ωM , gE

)
instead of T1

(
ωM , gE

)
.

4.6. Quillen metrics and the curvature theorem

Set
λ = detR·π∗E. (4.23)

Then λ is a holomorphic complex line. Moreover, for any s ∈ S, we have the
canonical isomorphism,

λs = det H(0,·) (Xs, E|Xs) . (4.24)

If the Hi (X,E|X) have locally constant dimension, (4.24) extends to an isomor-
phism of holomorphic line bundles.

Let gTX be a smooth fibrewise Kähler metric on TX . We do not assume any
more that gTX is induced by the form ωM .

By (4.24), the L2 metric gH
(0,·)(X,E|X) on H(0,·) (X,E|X) induces a metric

| |λ on the fibres λs.
If α ∈ Λ· (T ∗

RS), let α(0) be the component of α which has degree 0.

Definition 4.8. Set

‖ ‖λs
= | |λs

exp
(

1
2
T

(
ωM , gE

)(0)

s

)
. (4.25)

If
(
μ, ‖ ‖μ

)
is a holomorphic Hermitian vector bundle on S, let c1

(
μ, ‖ ‖μ

)
be the real (1, 1) form in PS associated to the holomorphic Hermitian connection
on μ which represents the first Chern class of μ in Chern-Weil theory.

We now state a result which was established in [BGS88a, Theorem 0.1]

Theorem 4.9. The Quillen metric ‖ ‖λ is a smooth metric on the line bundle λ,
and moreover,

c1 (λ, ‖ ‖λ) =
[∫

X

Td
(
TX, gTX

)
ch

(
E, gE

)](2)

. (4.26)
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4.7. The equivariant determinant bundle

Here we follow [B95, Section 2]. For simplicity, we assume first that S is reduced
to a point.

Let Ĝ be the set of equivalence classes of complex irreducible representations
of G. An element of Ĝ is specified by a complex finite-dimensional vector space W
together with an irreducible representation ρW : G → End (W ). Let χW be the
character attached to this representation.

We have the isotypical decomposition,

H(0,·) (X,E|X) =
⊕

W∈Ĝ

HomG

(
W,H(0,·) (X,E|X)

)
⊗W, (4.27)

which is orthogonal with respect to gH
(0,·)(X,E|X).

If W ∈ Ĝ, set

λW = det
(
HomG

(
W,H(0,·) (X,E|X)

)
⊗W

)
. (4.28)

Put
λ =

⊕
W∈Ĝ

λW . (4.29)

Let | |λW
be the metric on λW induced by gH

(0,·)(X,E|X). Set

log
(
| |2λ

)
=

∑
W∈Ĝ

log
(
| |2λW

) χW

dimW
. (4.30)

The symbol | |2λ is said to be the equivariant L2 metric on λ.

Definition 4.10. If g ∈ G, set

log
(
‖ ‖2λ

)
(g) = log

(
| |2λ

)
(g) + Tg

(
gTX , gE

)
. (4.31)

The symbol ‖ ‖λ is called an equivariant Quillen metric on λ.

We go back to the case of a general base S. We make the same assumptions
as in Subsections 3.3 and 4.3. Let gTX be any fibrewise Kähler metric on TX .
In particular do not assume that gTX is induced by ωM . Let gE be a Hermitian
metric on E. Then by the above construction, the fibres λs are equipped with the
equivariant Quillen metric ‖ ‖2λs

.
Now we have the curvature theorem for equivariant Quillen metrics, which

follows from the arguments in [BGS88b], from [B95, Theorem 2.5] and from The-
orem 4.6.

Theorem 4.11. The metric ‖ ‖2λ is smooth on S. Moreover, for any g ∈ G,

c1 (λ, ‖ ‖λ) (g) =

[∫
Xg

Tdg

(
TX, gTX

)
chg

(
E, gE

)](2)

. (4.32)
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5. The case of a vector bundle

In this section, we apply the constructions of the previous sections to the case where
the fibres X are vector bundles. Also we evaluate explicitly certain supertraces. In
the case of holomorphic vector bundles, some of these supertraces will be evaluated
in terms of the genera R (x) , R (θ, x) of [GS91, B94]. The results of this section will
play a crucial role in Section 8 when proving the formula comparing the elliptic
and hypoelliptic holomorphic torsion forms.

This section is organized as follows. In Subsection 5.1, we introduce the func-
tions ϕ (u, x) , σ (u, η, x).

In Subsection 5.2, we give a formula for the hypoelliptic curvature in the case
where the fibres X form a vector bundle.

In Subsection 5.3, we evaluate certain supertraces of the corresponding heat
kernels.

In Subsection 5.4, we give a formula for the hypoelliptic curvature in the case
of holomorphic vector bundles.

In Subsection 5.5, we evaluate corresponding supertraces in the holomorphic
case in terms of the function σ (u, η, x).

Finally in Subsection 5.6, we give various formulas for the genus R (θ, x).

5.1. The functions ϕ (u, x) and σ (u, η, x)
We introduce the functions ϕ (u, x) , σ (u, η, x) which were defined in [B90b, Defi-
nition 6.1] and [B94, Definition 4.1],

ϕ (u, x) =
4
u

sinh

(
x+

√
x2 + 4u
4

)
sinh

(
−x+

√
x2 + 4u
4

)
, (5.1)

σ (u, η, x) = 4 sinh

(
x− 2η +

√
x2 + 4u

4

)
sinh

(
−x+ 2η +

√
x2 + 4u

4

)
.

Clearly,

ϕ (u, x) =
σ (u, 0, x)
u

. (5.2)

By [B90b, Theorem 6.2] and [B94, Proposition 4.2],

ϕ (u, x) =
∞∏

k=1

(
1 +

ix

2kπ
+

u

4k2π2

) (
1− ix

2kπ
+

u

4k2π2

)
, (5.3)

σ (u, iθ, x) =
(
θ2 + iθx+ u

) ∏
k∈Z∗

(
(θ + 2kπ)2 + i (θ + 2kπ)x+ u

4k2π2

)
.

Note that
ϕ (u, x) = ϕ (u,−x) . (5.4)

Recall that the Â (x) genus is given by,

Â (x) =
x/2

sinh (x/2)
. (5.5)
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Then
ϕ (0, x) = Â−1 (x) . (5.6)

In the sequel we will use the notation,

σ̂ (u, η, x) = σ (u, η,−x) . (5.7)

Let n be an even integer, and let A be an antisymmetric real (n, n) matrix.
Set

Φ (u,A) = det 1/2 [ϕ (u,A)] . (5.8)

Similarly, if A,B are commuting antisymmetric real (n, n) matrices, set

Σ (u,B,A) = det 1/2 [σ (u,B,A)] . (5.9)

Note that there is no ambiguity in taking the square root in the right-hand sides
of (5.8), (5.9). We define Σ̂ (u,B,A) in a similar way, so that

Σ̂ (u,B,A) = Σ (u,B,−A) . (5.10)

Set

Φ′ (u,A) =
∂

∂c
Φ (u,A+ c) |c=0, Σ′ (u,B,A) =

∂

∂c
Σ (u,B,A+ c) |c=0,

(5.11)

Σ̂′ (u,B,A) =
∂

∂c
Σ̂ (u,B,A+ c) |c=0.

5.2. The hypoelliptic curvature in the case of real spin vector bundles

Let S be a manifold. Let π : E → S be a real oriented spin vector bundle of even
dimension n. Let gE be a metric on E, let ∇E be a metric preserving connection
on E, and let RE be its curvature. Let SE = SE+ ⊕ SE− be the corresponding
Z2-graded vector bundle of

(
E, gE

)
spinors.

We can apply the constructions of Section 2 to the projection π. Here we take
the twisting bundle (denoted E in Section 2) to be trivial. The only difference with
Section 2 is that the fibres E are not compact, but this will be irrelevant.

Let E be the total space of E. Let E be the total space of the tangent bundle
TE to the fibre E. Note that

TE = E ⊕ E. (5.12)

In (5.12), the first copy represents the fibre E itself, and the second copy of E
represents the tangent bundle to the fibre.

We denote by U, Y the generic sections of the first and second copies of E.
As before, we will denote by Λ̂· (E∗) the exterior algebra of the dual of the second
copy of E. Also if e ∈ E, we denote by ∇e a differentiation operator along the first
copy of E, by ∇ê the differentiation operator along the second copy of E.

Clearly C∞ (
E ⊕ E,SE

)
is a vector bundle on S. Let AE

Yb
be the associated

superconnection considered in (2.21). Let BE
Y,b be the conjugate superconnection

defined in (2.27).
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Let ΔV be the fibrewise Laplacian along the second copy of E. By (2.25),

AE,2
Yb

=
1
2

(
−ΔV +

|Y |2
b4

+
1
b2
c (êi) ĉ (ei)

)
−∇

R̂EY
+

1
4

〈
REei, ej

〉
c (êi) c (êj)

+
1
b2

(
∇Y +

1
2

〈
REU, Y

〉)
. (5.13)

By (2.30), we obtain,

BE,2
Y,b =

1
2b2

(
−ΔV + |Y |2 + c (êi) ĉ (ei)

)
−∇

R̂EY
+

1
4

〈
REei, ej

〉
c (êi) c (êj)

+
1
b

(
∇Y +

1
2

〈
REU, Y

〉)
. (5.14)

There are no variables c (ei) appearing in (5.14). We may as well take the
second representation of the operators c (êi) , ĉ (ei) given in (1.10), i.e., assume that
these operators act on Λ̂· (E∗).

The operators in (5.13), (5.14) act on C∞
(
E ⊕ E,Λ· (T ∗S) ⊗̂Λ̂· (E∗)

)
, which

is a vector bundle on S.

5.3. The evaluation of the trace of the heat kernels

Let Pb ((U, Y ) , (U ′, Y ′)) be the smooth heat kernel associated to the operator
exp

(
−AE,2

Yb

)
with respect to the volume dUdY

(2π)n .

Let g be an oriented parallel isometry of E, whose action lifts to SE. Let E1

be the eigenbundle of E which corresponds to the eigenvalue 1, and let E1,⊥ be
the orthogonal subbundle of E1. Then E splits orthogonally as

E = E1 ⊕ E1,⊥, (5.15)

and g preserves the splitting. Let n1 = dim E1. Let o
(
E1

)
be the orientation

bundle of E1. Let E−1 be the eigenbundle of g associated to the eigenvalue −1 and
let n−1 be the dimension of E−1. Then n1, n−1 are even, and E1⊕E−1 is oriented.
The orientation bundle of E−1 is just o

(
E1

)
. More generally the orientation bundle

of E1,⊥ is o
(
E1

)
.

We can write g in the form

g = eB, (5.16)

where B is an antisymmetric parallel section of End (E) which commutes with g.
By using the conventions in (5.9), if A is an antisymmetric matrix which commutes
with g, set

Σg (u,A) = Σ (u,B,A) . (5.17)

Similarly, we set

Σg

(
u,E,∇E

)
= Σg

(
u,−R

E

2iπ

)
. (5.18)
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A similar notation will be used when replacing σ by σ̂, and Σ by Σ̂, so that

Σ̂g

(
u,E,∇E

)
= Σg

(
u,
RE

2iπ

)
. (5.19)

Finally, put

Σ′
g

(
u,E,∇E

)
= Σ′

(
u,B,−R

E

2iπ

)
, Σ̂′

g

(
u,E,∇E

)
= Σ̂′

(
u,B,−R

E

2iπ

)
, (5.20)

The vector bundle E1,⊥ is not necessarily oriented or spin. Let gE
1,⊥

be the
metric induced by gE on E1,⊥. Let SE1,⊥

be the locally defined vector bundle of
spinors for

(
E1,⊥, gE

1,⊥
)
. The action of g acts on SE1,⊥

is not necessarily well

defined. However since E is oriented and spin, TrsSE1,⊥
[g] is well defined as a

locally constant function on S.
Note that g acts on Λ̂ (E∗). In the sequel we will consider expressions of

the type TrsSE1,⊥ ⊗̂Λ̂·(E∗) [gA], which seem to be ambiguous. However A will act
trivially on SE1,⊥

, so that we have an identity of the type,

TrsSE1,⊥ ⊗̂Λ̂·(E∗) [gA] = TrsSE1,⊥
[g] TrsΛ̂

·(E∗) [gA] , (5.21)

so that there is no ambiguity left.
We will also manipulate infinite-dimensional determinants. We will use the

conventions in [B90b, Section 6] and [B94, Section 5]. The operators which we
will consider will be of the form 1 + A, with A trace class or A Hilbert-Schmidt.
When A is trace class, the definition is obvious. When A is Hilbert-Schmidt, in
the special cases which are considered here, the definition is also obvious, because
by indexing the eigenvalues of A by k ∈ Z, the product of the corresponding
eigenvalues

∏+k
−k λi will turn out to be absolutely convergent when k → +∞. We

will use the notation det for such determinants, and the notation det ′ when only
the obvious infinite terms in the product are excluded. These infinite terms appear
when considering the inverse of a noninvertible operator.

Theorem 5.1. The following identity holds,

ϕ

∫
E1,⊥×E

TrsSE1,⊥ ⊗̂Λ̂·(E∗)
[
gPb

(
g−1 (U, Y ) , (U, Y )

)] dUdY

(2π)n−n1/2
= ±Âg

(
E,∇E

)
.

(5.22)

Proof. Let p ((U, Y ) , (y′, Y ′)) be the smooth kernel associated to the hypoelliptic
heat kernel exp

(
ΔV

2 − ∇Y

b2

)
with respect to dUdY

(2π)n . Given (U, Y ) ∈ E ⊕ E, let
S(g,U,Y ) be the probability law over C ([0, 1], E ⊕ E) of the corresponding bridge
(yt, Yt) which starts at (U, Y ) at time 0, and returns to (gU, gY ) at time 1. Under
Sg,U,Y ,

U̇ = −Y
b2
. (5.23)
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By (5.23), we get

1
b2

∫ 1

0

Ytdt = − (g − 1)U. (5.24)

Using (5.13) and Itô’s formula, we get

Pb ((U, Y ) , g (U, Y )) = p ((U, Y ) , g (U, Y ))EPg,U,Y

[
exp

(
−1

2

(∫ 1

0

|Y |2
b4
dt

+
∫ 1

0

∣∣REY
∣∣2 dt− ∫ 1

0

〈
REY, 2Ẏ +

U

b2

〉
dt

)
(5.25)

exp
(
− 1

2b2
c (êi) ĉ (ei)−

1
4

〈
REei, ej

〉
c (êi) c (êj)

)]
.

When E is replaced by E′⊕E′′, both sides of (5.22) behave multiplicatively.
Therefore to establish this identity, we may and we will assume either that E = E1,
or that E1 = {0}.

1) The case where g = 1. First we assume that g = 1. Set

J =
d

dt
. (5.26)

Let P(Y,Y ) be the probability law of the Brownian bridge on C
(
S1, E

)
which starts

at Y at time 0 and returns at Y at time 1. Let F ∈ End (E) be a self-adjoint positive
endomorphism. Let QF be the probability measure on C

(
S1, E

)
of the Gaussian

process whose covariance is the operator
(
−J2 + F

)−1, with periodic boundary
conditions. Recall that by [B90b, eq. (7.36)] and [B94, eq. (5.25)], we have the
identity of measures on C

(
S1, E

)
,

exp
(
−1

2

∫ 1

0

〈FY, Y 〉 dt
)
P(Y,Y )

dY

(2π)n/2
=

QF

det 1/2 (F ) det′ 1/2 (1− FJ−2)
.

(5.27)
Set

h =
∫ 1

0

Y dt, Y ′
t = Yt − h. (5.28)

Let C0

(
S1, E

)
be the vector space of continuous functions f : S1 → E such that∫

S1 fdt = 0. Note that under QF , h and Y ′ are independent, the probability law
of h is a centred distribution with covariance F−1, and the probability law Q′

F of
Y ′ is the law of a Gaussian process Y ∈ C0

(
S1, E

)
with covariance

(
−J2 + F

)−1.
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Let L2
0 be the set of f ∈ L2 ([0, 1], E) such that

∫ 1

0
fdt = 0. Let J−1 be the

operator which is the inverse of J over L2
0. By (5.24), (5.27), (5.28), we get∫

E

TrsΛ̂
·(E∗) [Pb ((0, Y ) , (0, Y ))]

dY

(2π)n/2

= b2n 1
det ′1/2 (1− J−2 (1/b4 −RE,2))

·EQ′
1/b4−RE,2

[
exp

(
−1

2

∫ 1

0

〈
Y,RE

(
−J

−1

b4
+ 2J

)
Y

〉
dt

)]
·TrsΛ̂

·(E∗)

[
exp

(
− 1

2b2
c (êi) ĉ (ei)−

1
4

〈
REei, ej

〉
c (êi) c (êj)

)]
. (5.29)

We have the easy identity,

E
Q′

1/b4−RE,2

[
exp

(
−1

2

∫ 1

0

〈
Y,RE

(
−J

−1

b4
+ 2J

)
Y

〉
dt

)]
= det ′1/2

(
1− J−2

(
1/b4 −RE,2

))
· det ′−1/2

[(
1− J−1RE − J−2/b4

) (
1− J−1RE

)]
. (5.30)

By (5.29), (5.30), we get∫
E

TrsΛ̂
·(E∗) [Pb ((0, Y ) , (0, Y ))]

dY

(2π)n/2

= b2n det ′−1/2
[(

1− J−1RE − J−2/b4
) (

1− J−1RE
)]

·TrsΛ̂
·(E∗)

[
exp

(
− 1

2b2
c (êi) ĉ (ei)−

1
4

〈
REei, ej

〉
c (êi) c (êj)

)]
. (5.31)

By (5.3),
det ′1/2

[
1− J−1RE − J−2/b4

]
= Φ

(
1/b4, RE

)
. (5.32)

By using (5.6) and making b = +∞ in (5.32), we obtain,

det ′−1/2
[
1− J−1RE

]
= Â

(
−RE

)
. (5.33)

Moreover, by [B90b, Theorem 6.4],

TrsΛ̂
·(E∗)

[
exp

(
− 1

2b2
c (êi) ĉ (ei)−

1
4

〈
REei, ej

〉
c (êi) c (êj)

)]
= b−2nΦ

(
1/b4, RE

)
. (5.34)

By combining (5.33) with (5.31)–(5.34), we get (5.22) when g = 1.

2) The case where no eigenvalue of g is equal to 1. Now we assume that no eigen-
value of g is equal to 1. Let P(Y,gY ) be the probability law on C ([0, 1], E) of
the Brownian bridge which starts at Y at time 0 and ends at gY at time 1. Let
Cg ([0, 1], E) be the subspace of C ([0, 1], E) of the Y· such that Y1 = gY0. Let Jg be
the skew-adjoint operator d

dt acting on C∞ ([0, 1], E) with the boundary conditions
Y1 = gY0. Note that Jg is invertible.
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If F is taken as before, let QF,g be the probability law on Cg ([0, 1], E) of the
Gaussian process with covariance

(
−J2

g + F
)−1. Then by [B90b, proof of Theorem

7.3] and by [BL06, eq. (7.107)], we have the identity,

exp
(
−1

2

∫ 1

0

〈FY, Y 〉 dt− 1
2
|(1− g)Y |2

)
P(Y,gY )

dY

(2π)n/2

=
QF,g∣∣∣det

(
e
√

F/2 − e−
√

F/2g
)∣∣∣ . (5.35)

Also a simple identity established in [BL06, eq. (7.113)] shows that

det
(
e
√

F/2 − e−
√

F/2g
)

= det (1− g) det 1/2
(
1− FJ−2

g

)
. (5.36)

Moreover, underQF , the probability law of the random variable
∫ 1

0
Y dt is a centred

Gaussian with variance σ2 > 0. Finally note that under Sg,U,Y , since U1 = gU0,
by (5.23),

U· = −J−1
g Y·. (5.37)

By proceeding as in (5.24), (5.26) and in (5.29) , we get∫
E

TrsSE⊗̂Λ̂·(E∗) [gPb ((U, Y ) , g (U, Y ))]
dUdY

(2π)n

=
1

det 2 (1− g)
1

det 1/2
(
1− J−2

g (1/b4 −RE,2)
)

·EQ1/b4−RE,2,g

[
exp

(
−1

2

∫ 1

0

〈
Y,RE

(
−
J−1

g

b4
+ 2Jg

)
Y

〉
dt

)]

·TrsSE⊗̂Λ̂·(E∗)

[
g exp

(
− 1

2b2
c (êi) ĉ (ei)−

1
4

〈
REei, ej

〉
c (êi) c (êj)

)]
. (5.38)

By proceeding as in (5.30), we get

EQ1/b4−RE,2,g

[
exp

(
−1

2

∫ 1

0

〈
Y,RE

(
−
J−1

g

b4
+ 2Jg

)
Y

〉
dt

)]
= det 1/2

[
1− J−2

g

(
1/b4 −RE,2

)]
· det −1/2

[(
1− J−1

g R
E − J−2

g /b
4
) (

1− J−1
g R

E
)]
. (5.39)

By (5.38), (5.39), we obtain∫
E

TrsSE⊗̂Λ̂·(E∗) [gPb ((U, Y ) , g (U, Y ))]
dUdY

(2π)n

=
1

det 2 (1− g) det −1/2
[(

1− J−1
g R

E − J−2
g /b

4
) (

1− J−1
g R

E
)]

·TrsSE⊗̂Λ̂·(E∗)

[
g exp

(
− 1

2b2
c (êi) ĉ (ei)−

1
4

〈
REei, ej

〉
c (êi) c (êj)

)]
. (5.40)
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By [B94, Proposition 4.2],

det 1/2
[
1− J−1

g R
E − J−2

g /b
4
]

=
Σg

(
1/b4, RE

)
det (1− g) . (5.41)

Moreover, by [B94, Theorem 4.5], we get

TrsΛ̂
·(E∗)

[
g exp

(
− 1

2b2
c (êi) ĉ (ei)−

1
4

〈
REei, ej

〉
c (êi) c (êj)

)]
= Σg

(
1/b4, RE

)
.

(5.42)
By [B94, eq. (5.35)],

det −1/2
[
1− J−1

g R
E
]

=
Âg

(
−RE

)
Âg (0)

. (5.43)

Let us just mention here that if ±iθj, 0 < θj ≤ π, 1 ≤ j ≤ n/2 are the angles of
the action of g on E, then

Âg (0) =
n/2∏
1

(2i sin (θj/2))−1
. (5.44)

Moreover,

TrsSE

[g] = ±Â
−1

g (0) . (5.45)

By (5.40)–(5.45), we get (5.22).
The proof of our theorem is completed. �

5.4. The case of holomorphic vector bundles

Now we assume that S is a complex manifold, and that E is a complex holomor-
phic vector bundle on S, equipped with a Hermitian metric gE . Let ∇E be the
holomorphic Hermitian connection on

(
E, gE

)
, and let RE be its curvature.

We can then apply the prescriptions of Section 3.1 to the total space E of
E, which fibres on S with fibre E. The total space E of TE is the total space of
E ⊕ E. Let (u, y) be the generic section of E ⊕ E.

Let ωE be the closed (1, 1) form on E which is the obvious analogue of the
form ωM in (3.96), so that

ωE = i∂∂ |u|2 . (5.46)

We will denote by ∂
E
, ∂

Ê
the ∂ operators along the fibres of the first and second

copies of E ⊕ E, let ∂
Ê∗

be the fibrewise adjoint of ∂
Ê

. Then

A′′
Yb

= ∇·′′ + ∂
E

+ iREu + ∂
Ê

+ iy/b2,

A′
Yb

= eiω
E

(
∇I·′ + ∂E + iREu + ∂

Ê∗
+ iy/b2

)
e−iωE

, (5.47)

AYb
= A′′

Yb
+A′

Yb
.
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By (3.97) and (5.47), we obtain,

A′
Yb

= ∇I·′ + ∂E + iREu + +∂
Ê∗

+ iy/b2 + y∗ ∧ /b2. (5.48)

Let ΔV be the Laplacian along the second copy of E. By (5.13), we get

A2
Yb

= −1
2

(
−ΔV +

|Y |2
b4

+
1
b2
c (êi) ĉ′ (êi)

)
−∇

R̂EY
+

1
4

〈
REei, ej

〉
c (êi) c (êj)

+
1
2
Tr

[
RE

]
+

1
b2

(
∇Y +

1
2

〈
REU, Y

〉)
. (5.49)

5.5. An evaluation of supertraces in the holomorphic case

We make the same assumptions as in Subsection 5.4. Also we assume that g is
a holomorphic unitary parallel section of End (E). Let B ∈ End (E) be a skew-
adjoint locally parallel section of End (E) such that

g = eB. (5.50)

We will now write Σ̂g

(
E, gE

)
instead of Σ̂g

(
E,∇E

)
. By (5.9), we get

Σ̂g

(
E, gE

)
= det E

[
σ

(
u,B,

RE

2iπ

)]
. (5.51)

Let NV be the number operator on Λ̂· (E∗).

Theorem 5.2. The following identity holds,

ϕ

∫
E1,⊥×E

Trs
Λ·

(
E

1,⊥)
⊗̂Λ̂·(E∗

R⊗RC) [
gPb

(
g−1 (U, Y ) , (U, Y )

)] dUdY

(2π)2n−n1

= Tdg

(
E, gE

)
. (5.52)

Moreover,

ϕ

∫
E1,⊥×E

Trs
Λ·

(
E

1,⊥)
⊗̂Λ̂·(E∗

R⊗RC) [
g

(
NV −n

)
Pb

(
g−1 (U, Y ) , (U, Y )

)] dUdY

(2π)2n−n1

= Tdg

(
E, gE

) (
Σ̂′

g

Σ̂g

(
1/b4, E, gE

)
− n

2

)
. (5.53)

Proof. Equation (5.52) follows from Theorem 5.1. Also note that

NV − n = − i
4

〈
JEei, ej

〉
c (êi) c (êj)−

n

2
. (5.54)

First we consider the case where g = 1. Using (5.34) and (5.54), we get

TrsΛ̂
·(E∗

R)

[(
NV − n

)
exp

(
− 1

2b2
c (êi) ĉ (ei)−

1
4

〈
REei, ej

〉
c (êi) c (êj)

)]
= b−4n

(
−Φ′ (1/b4, RE

)
− n

2
Φ

(
1/b4, RE

))
. (5.55)

By (5.29)–(5.34) and (5.55), we get (5.53).
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Now we consider the case where no eigenvalue of g is equal to 1. By (5.42),
(5.54), we get

TrsΛ̂
·(E∗

R)

[
g

(
NV − n

)
exp

(
− 1

2b2
c (êi) ĉ (ei)−

1
4

〈
REei, ej

〉
c (êi) c (êj)

)]
= −Σ′

g

(
1/b4, RE

)
− n

2
Σg

(
1/b4, RE

)
. (5.56)

Moreover,
TrsΛ

·(E
∗) = det (1− g) . (5.57)

By (5.40)–(5.42), (5.56), (5.57), we also get (5.53) in the case where no eigenvalue
of g is equal to 1. The proof of our theorem is completed. �
Remark 5.3. We see easily that when u→ 0,

Tdg

(
E, gE

) (
Σ̂′

g

Σ̂g

(
u,E, gE

)
− n

2

)
= −Td′

g

(
E, gE

)
+O (u) . (5.58)

Equation (5.58) gives the asymptotics of the form in (5.53) as b→∞.

5.6. The genus R (θ, x)
Let

L (θ, s) =
+∞∑
n=1

einθ

ns
(5.59)

be the Lerch series. Let ζ (θ, s) and η (θ, s) be its real and imaginary parts, so that

ζ (θ, s) =
+∞∑
n=1

cos (nθ)
ns

, η (θ, s) =
+∞∑
n=1

sin (nθ)
ns

. (5.60)

We will introduce the genera D (θ, x) , R (θ, x) of [B94].

Definition 5.4. For θ ∈ R/2πZ, let R (θ, x) be the formal power series

D(θ, x) =
∑
n≥0
n odd

⎧⎨⎩
⎛⎝Γ′ (1) +

n∑
j=1

1
j

⎞⎠ ζ(θ,−n) + 2
∂ζ

∂s
(θ,−n)

⎫⎬⎭ xn

n!

+
∑
n≥0

n even

i

⎧⎨⎩
⎛⎝(Γ′ (1) +

n∑
j=1

1
j

⎞⎠ η(θ,−n) + 2
∂η

∂s
(θ,−n)

⎫⎬⎭ xn

n!
, (5.61)

R(θ, x) =
∑
n≥0
n odd

⎧⎨⎩
n∑

j=1

1
j
ζ(θ,−n) + 2

∂ζ

∂s
(θ,−n)

⎫⎬⎭ xn

n!

+
∑
n≥0

n even

i

⎧⎨⎩
n∑

j=1

1
j
η(θ,−n) + 2

∂η

∂s
(θ,−n)

⎫⎬⎭ xn

n!
.
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Set

Â (θ, x) = Â (x) if θ ∈ 2πZ, (5.62)

=
Â (x+ iθ)
x+ iθ

if θ /∈ 2πZ.

Note that as u→ 0,

∂σ/∂x

σ
(u, iθ,−x) =

∂Â/∂x

Â
(θ, x) +O (u) , (5.63)

and that as u→ +∞,
∂σ/∂x

σ
(u, iθ,−x) = O

(
1/
√
u
)
. (5.64)

Now we proceed as in [B94, Section 6].

Definition 5.5. For s ∈ C, 0 < Re (s) < 1/2, θ ∈ R, x ∈ C and |x| < 2π if
θ ∈ 2πZ,|x| < infk∈Z |θ + 2kπ| if θ /∈ 2πZ, set

C (s, θ, x) =
1

Γ (s)

∫ +∞

0

us−1 ∂σ/∂x

σ
(u, iθ,−x)du. (5.65)

By simple arguments given in [B94], C (s, θ, x) extends to a holomorphic function
near s = 0. By (5.63), (5.64), we get

∂

∂s
C (0, θ, x) =

∫ 1

0

(
∂σ/∂x

σ
(u, iθ,−x)− ∂Â/∂x

Â
(θ, x)

)
du

u

+
∫ +∞

1

∂σ/∂x

σ
(u, iθ,−x) du

u
− Γ′ (1)

∂Â/∂x

Â
(θ, x) . (5.66)

We state the result established in [B94, Theorems 7.2 and 7.8].

Theorem 5.6. The following identity holds,
∂

∂s
C (0, θ, x) = D (θ, x) . (5.67)

Moreover,

R (θ, x) = D (θ, x) − Γ′ (1)
∂Â/∂x

Â
(θ, x) . (5.68)

Put
R (x) = R (0, x) . (5.69)

The series R (x) and the corresponding additive genus were introduced by Gillet
and Soulé [GS91] when stating a conjectural arithmetic Riemann-Roch theorem.
It reappears in the immersion formula for Quillen metrics established in [BL91],
which was one important step in the proof by Gillet and Soulé of their Riemann-
Roch theorem. The series R (θ, x) was introduced in [B94], and its role in an
equivariant situation was made explicit in [B95]. The fact that it reappears in
Sections 8 and 10 of the present paper is remarkable.
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Let E be a complex holomorphic Hermitian vector bundle equipped with a
unitary automorphism g as in Subsection 5.5. Then E splits as

E =
⊕

θ∈R/2πZ

Eθ, (5.70)

so that g acts on Eθ by multiplication by eiθ. Set

Rg (E) =
∑

θ∈R/2πZ

R
(
θ, Eθ

)
. (5.71)

Similarly we identify R to the corresponding additive genus.

6. The local index theory of the hypoelliptic Dirac operator

In this section, we establish various local index theoretic results for the hypoelliptic
Dirac operator. One of the key results which is established in this section is that
this operator has the same local index theory as the elliptic Dirac operator. This
remarkable property will play a crucial role in the sequel. This section should
be considered as an analogue of [BL06, Sections 4 and 11], where corresponding
results are established for the hypoelliptic de Rham operator.

This section is organized as follows. In Subsection 6.1, we give various prop-
erties of the hypoelliptic heat kernel.

In Subsection 6.2, we recall a result given in [BL06] on the curvature of the
fibrewise connection 1∇Λ·(T∗S)⊗̂F

1/4 .

In Subsection 6.3, we construct a superconnection At
Y,b depending on the

parameters b > 0, t > 0.
In Subsection 6.4, given g ∈ G, we state a local index theorem as t → 0 for

the supertraces of the heat kernel associated to At,2
Y,b.

In Subsection 6.5, we show that the estimates which are needed to prove our
local index theorem can be localized near Mg.

In Subsection 6.6, we prove that given x ∈ Xg, we can locally replace X by
TxX ⊕ TxX .

In Subsection 6.7, we rescale our local coordinates on X , and also we intro-
duce a Getzler rescaling on our Clifford variables. This way, we obtain a rescaled
operator Pb,t.

In Subsection 6.8, we evaluate the limit Pb,0 of Pb,t as t→ 0.
In Subsection 6.9, we obtain the local trace for the heat kernel associated to

the scalar part of Pb,0.
In Subsection 6.10, we compute simple finite-dimensional supertraces.
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In Subsection 6.11, we evaluate the local supertrace of the heat kernel asso-
ciated to Pb,0.

In Subsection 6.12, we establish our local index theorem.
Finally in Subsection 6.13, we establish local index formulas when rescaling

b into
√
tb.

In the whole section, we make the same assumptions as in Section 2.

6.1. The hypoelliptic heat kernel

For b > 0, we consider the operators E2
Y,b, which have been explicitly computed in

(1.69). By Theorem 1.9, these operators are formally self-adjoint with respect to
the Hermitian form η in (1.50). Also by Theorem 1.11, ∂

∂u − E2
Y,b is hypoelliptic.

Let S (X , π∗F ) be the Schwartz space of sections of π∗F over X . Inspection
of equation (1.69) shows that the operators E2

Y,b are essentially of the same form
as the operators which were considered by Bismut-Lebeau in [BL06].

This makes in particular that all spectral and analytic properties which were
established in [BL06] remain valid in the present context. Some of these properties
were summarized in Subsection 3.10, with the possible exception that the picture of
the spectrum of D2

Yb
as b→ 0 remains the one given in Figure 3.2, and not the one

in Figure 3.3, simply because in general, there is no cohomological interpretation
for the characteristic subspace associated with the 0 eigenvalue for DX,2 or D2

Yb
.

Besides the properties already given in Subsection 3.10, the following facts
are known:

• Given b > 0, there exist λ0 > 0, c0 > 0 such that if

γ =
{
λ = −λ0 + σ + iτ, σ, τ ∈ R, σ = c0 |τ |1/6

}
, (6.1)

if δ± ⊂ C is the closed domain to the right or to the left of γ, then the
resolvent set of any of the above operators contains δ−, and moreover, if λ ∈
δ−, there are uniform bounds on the standard L2 norm of the corresponding
resolvent.

• For t > 0, the heat operator exp
(
−tE2

Y,b

)
is trace class, and given by smooth

kernels over X , which lie in the obvious Schwartz space over X × X .
• As b→ 0, the resolvents and the heat kernels for E2

Y,b converge in the proper
sense to the resolvent and heat kernel for DX,2. The precise meaning of this
sentence is explained in detail in [BL06, Sections 3 and 17].

The same arguments as in [BL06] allow us to conclude that under the as-
sumptions of Section 2, similar results hold for the hypoelliptic curvatures B2

Y,b

over compact subsets of S. In particular these operators converge in the proper
sense to B2 as b→ 0, and this uniformly over compact subsets of S.

6.2. The curvature of 1∇Λ·(T∗S)⊗̂F

We introduce another copy of Λ· (T ∗X), which will be denoted Λ· (T ∗X). This
exterior algebra is viewed specifically as the exterior algebra along the fibre X .
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Put

TH =
1
2

〈
T

(
fH

α , f
H
β

)
, ei

〉
ei ∧ fα ∧ fβ ,

T 0 = fα ∧ ei ∧ ej
〈
T

(
fH

α , ei
)
, ej

〉
, (6.2)

∣∣T 0
∣∣2 =

n∑
j=1

⎛⎜⎜⎝ ∑
1≤i≤n
1≤α≤m

〈
T

(
fH

α , ei
)
, ej

〉
fα ∧ ei

⎞⎟⎟⎠
2

.

Recall that for t > 0, the fibrewise connection 1∇Λ·(T∗S)⊗̂STX ⊗̂E
t,· was defined

in (2.10). We will denote it temporarily as 1∇Λ·(T∗S)⊗̂F
t instead of 1∇Λ·(T∗S)⊗̂F

t to
emphasize it is a fibrewise connection. Its curvature 1∇Λ·(T∗S)⊗̂F,2

t is a section of
Λ2 (T ∗X) ⊗̂Λ· (T ∗S) ⊗̂End (F ). When t = 1, we will write instead 1∇Λ·(T∗S)⊗̂F .
A straightforward computation, which is done in [BL06, eq. (11.16)], shows that

1∇Λ·(T∗S)⊗̂F,2
1/4 = −

〈
RTXei, ej

〉(
eiiej +

1
4
c (êi) c (êj)

)
+∇TXTH

−∇TXT 0
(
fH

α , ei
)
fα

(
ei − iei

)
−

∣∣T 0
∣∣2 +RE . (6.3)

In (6.3), RE is just the fibrewise curvature of ∇E
.

6.3. The parameters b > 0, t > 0
We replace S by S ×R∗

+ ×R∗
+. Over (b, t), we equip TX with the metric gTX/t

and we replace in the previous constructions b by b/
√
t. Let At

Yb/
√

t
be the super-

connection associated to the metric gTX/t and to the section Yb/
√

t.
Put

At
Y,b = K√

tAt
Yb/

√
t
K1/

√
t. (6.4)

Then

At
Y,b = A+

√
t

2b2
Y ∗ ∧+

t3/2

b2
iY . (6.5)

The main advantage of the superconnection in (6.5) is that the dependence on b, t
has been concentrated just on the terms where Y ∗∧, iY appear.

Set
A = At

Y,b + db
∂

∂b
+ dt

∂

∂t
. (6.6)

6.4. The hypoelliptic local index Theorem

Let g ∈ G. Let Mg ⊂ M be the fixed set of g. Then Mg is a submanifold of M ,
which fibres of S with compact fibre Xg ⊂ X . Moreover, THM |Mg ⊂ TMg is
a horizontal vector bundle THMg on Mg. Finally the connection ∇TX induces a
connection∇TX|Mg on TX |Mg . The action of g on TX |Mg is parallel with respect to
∇TX|Mg . Also its restriction ∇TXg to TXg is the connection canonically attached
to the given metric on TXg and to THMg.
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We have the identity,

ϕTrs
[
g exp

(
−A

2
)]

= mb,t + nb,t ∧ dt+ ob,t ∧ db+ pb,t ∧ db ∧ dt. (6.7)

In (6.7), mb,t, nb,t, ob,t, pb,t are smooth forms on S.
We prove a hypoelliptic version of the local families index theorem of [B86].

Theorem 6.1. The even form ϕTrs
[
g exp

(
−A2

)]
is closed on S ×R∗

+ ×R∗
+. The

even forms mb,t are closed on S, and their cohomology class does not depend on
b, t. For g = 1, these are real forms. As t→ 0,

mb,t =
∫

Xg

±Âg

(
TX |Xg ,∇TX|Xg

)
chg

(
E,∇E

)
+O (t) , (6.8)

nb,t = O (1) , ob,t = O (t) .

Proof. The first part of the theorem is standard. The fact that for g = 1 the
considered forms are real is a consequence of Theorem 2.5 and of the arguments
given in the proof of [BF86a, Theorem 1.5]. Subsections 6.5-6.12 will be devoted
to the proof of Theorem 6.1. �
6.5. Localization of the problem

From now on, we will assume S to be compact, to ensure the proper uniformity
of the estimates. If S is non compact, the estimates below will be valid uniformly
over compact subsets of S.

Put
Mb,t = KbA

2
K1/b. (6.9)

For t > 0, set

ct (U) = U∗ ∧ /
√

2t−
√

2tiU , ĉt (U) = U∗ ∧ /
√

2t+
√

2tiU . (6.10)

We denote by 2∇Λ·(T∗S)⊗̂F
t,· the fibrewise connection 1∇Λ·(T∗S)⊗̂F

t,· in (2.10),
in which the c (ei) have been replaced by ct (ei). This is in fact just the connection
1∇Λ·(T∗S)⊗̂F

· associated to the metric gTX/t.
By (2.30), we get

Mb,t =
1

2b2
(
−ΔV + t2 |Y |2 + tc (êi) ĉt (ei)

)
−∇

R̂T XY

+
1
4

〈
RTXei, ej

〉
c (êi) c (êj) +

t3/2

b
2∇Λ·(T∗S)⊗̂F

t/2,Y +RE

− 2
db

b2

(√
t

2
Y ∗ ∧+t3/2iY

)
+
dt

2b

(
Y ∗

2
√
t
∧+3

√
tiY

)
. (6.11)

Clearly,
Trs

[
g exp

(
−A

2
)]

= Trs [g exp (−Mb,t)] . (6.12)

Let dx be the volume element of X , let dY be the volume element along the fibre
TX . Let exp (−Mb,t) ((x, Y ) , (x′, Y ′)) be the smooth heat kernel associated to the
operator exp (−Mb,t) with respect to dxdY/ (2π)n.
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Clearly,

Trs [g exp (−Mb,t)] =
∫
X

Trs
[
g exp (−Mb,t)

(
g−1 (x, Y ) , (x, Y )

)]
dxdY/ (2π)n

.

(6.13)
Let dX be the Riemannian distance along the fibres X with respect to gTX . Let
aX be a lower bound for the injectivity radius of the fibres X .

Let NXg/X be the orthogonal bundle to TXg in TX |Xg . We identify Xg to
the zero section of NXg/X .

Given η > 0, let Vη be the η-neighbourhood ofXg inNXg/X . Then there exists
η0 ∈]0, aX/32] such that if η ∈]0, 8η0], the map (x, Z) ∈ NXg/X → expX

x (Z) ∈ X
is a diffeomorphism from Vη on the tubular neighbourhood Uη of Xg in X . In the
sequel, we identify Vη and Uη. This identification is g-equivariant. Let α ∈]0, η0]
be small enough so that if dX

(
g−1x, x

)
≤ α, then x ∈ Uη0 .

Let dvXg be the volume element on Xg, and let dvNXg/X
be the volume

element along the fibres of NXg/X . Let k (x, y) , x ∈ Xg, y ∈ NXg/X,x, |y| ≤ η0 be
the smooth function with values in R+ such that on Uη0 ,

dx = k (x, y) dvNXg/X
(y) dvXg (x) . (6.14)

Note that
k (x, 0) = 1. (6.15)

Using (6.11) and comparing with the corresponding equation [BL06, eq.
(4.47)], by proceeding as in [BL06, Subsection 4.7], we find that for any β > 0,
there exist C > 0, c > 0 such that for t ∈]0, 1], the part of the integral in (6.13)
which is integrated over π−1 (X \ Uβ) can be dominated by C exp (−c/t).

6.6. Replacing X by TxX ⊕ TxX

Let γ (s) : R→ [0, 1] be a smooth even function such that

γ (s) =1 if |s| ≤ 1/2, (6.16)

0 if |s| ≥ 1.

If y ∈ TX , set

ρ (y) = γ
( |y|

4η0

)
. (6.17)

Then

ρ (y) =1 if |y| ≤ 2η0, (6.18)

0 if |y| ≥ 4η0.

First we describe the case where S is reduced to one point, that is the case
of a single fibre X .

Take ε ∈]0, aX/2]. If s ∈ S, x ∈ Xg, let BX (x, ε) be the geodesic ball of centre
x and radius ε in X , and let BTxX (0, ε) be the open ball of centre 0 and radius ε
in TxX . The exponential map expx identifies BTxX (0, ε) to BX (x, ε).
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We fix ε such that 0 < ε < aX/2. Take x ∈ Xg. We use the geodesic coor-
dinates y ∈ TxX ∈ BTX (0, ε) → expx (y) ∈ Uε to parametrize a neighbourhood
of x in X . Also over Uε, we trivialize the vector bundle TX along the geodesics
based at x using the fibrewise Levi-Civita connection. This way we have identified
π−1Uε ⊂ X to BTX (0, ε)× TxX .

Also over Uε, we trivialize the vector bundle F along the geodesics based at
x using parallel transport with respect to the connection ∇F .

Definition 6.2. Let gTxX
x be the metric on TxX given by,

gTxX
x = ρ2 (y) gTyX +

(
1− ρ2 (y)

)
gTxX . (6.19)

In particular the metric gTX
x is just the given metric gTX on BTxX (0, 2η0) �

BX (x, 2η0), and coincides with the flat metric gTxX outside of BTxX (0, 4η0). Note
that the above constructions are g-invariant.

Similarly let gEx
x be the metric on Ex over TxX which is given by

gEx
x = ρ2 (y) gEy +

(
1− ρ2 (y)

)
gEx . (6.20)

Let Nb,t be the operator of the type Mb,t which is associated to the metrics
gTxX

x , gFx
x . Clearly Nb,t coincides with Mb,t for |y| ≤ 2η0.

Now we consider the case where S is not necessarily reduced to one point. We
proceed as in [BL06, Subsection 4.8]. Near x ∈ Mg, there is a coordinate system
which identifies an open neighbourhood V of x in Mg to an open ball centred at
0 in Rm ×R�, such that the projection πg : Mg → S coincides with the obvious
projection Rm ×R� → Rm. Also the vector bundle TX |Mg can be trivialized as
an Euclidean vector bundle over V , in such a way that the action of g on TX |Mg

is constant. In particular the vector bundle TX is trivialized near 0 on Rm×{0}.
If x′ ∈ V , we use the exponential map expX

x′ to identify the ball BTx′X (0, 4η0)
to an open ball along the fibre containing x′. The map (s, y) ∈ Rm × TxX →
expX

s y ∈M gives a coordinate chart for M near x ∈Mg, such that the projection
π : M → S is just (s, y) → s, and moreover, g (s, y) = (s, gY ). From this chart,
we find that the metric gTX pulls back to a metric on TxX , i.e., the metric gTs,yX

pulls back to a metric on TxX , which we still denote gTs,yX .
We still define the metric gTxX

x on TxX as in (6.19). In particular for |y| ≥ 4η0,
this new metric is a ‘constant metric’, which does not depend on (s, y). Note that
the metric gTxX

x is g-invariant.
Similarly we can choose a new g-invariant horizontal vector bundle THMx

which coincides with the given THM for |y| ≤ 2η0, and is given by a ‘constant’
horizontal vector space for |y| ≥ 4η0.

We will trivialize Λ· (T ∗
RS) ⊗̂F over Uε by parallel transport with respect to

the connection 2∇Λ·(T∗S)⊗̂F
t,· . Using this connection will actually play an essential

role only in Subsection 6.13. Let Nb,t be the operator of the type Mb,t which is
associated to gTxX

x , gEx , T
HMx.

We fix b0 > 0. We give an analogue of [BL06, Proposition 4.19].
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Proposition 6.3. There exist c > 0, C > 0 such that for a ∈
[
1
2 , 1

]
, t ∈]0, 1],

b ∈
[√
t, b0

]
, x ∈ Xg,∣∣∣∣∣

∫
π−1{U∈NXg/X,x,|U|≤η0}

(
Trs [g exp (−aMb,t) ((U, Y ) , g (U, Y ))] k (x, U)

− Trs [g exp (−aNb,t) ((U, Y ) , g (U, Y ))]
)dUdY

(2π)n

∣∣∣∣∣ ≤ C exp (−c/t) . (6.21)

Proof. Using equation (6.11) for Mb,t and comparing with [BL06, eq. (4.47)], the
proof of our proposition is identical to the proof of [BL06, Proposition 4.19]. �

6.7. A Getzler rescaling

For a > 0, let Ia be the map s (U, Y )→ s (aU, Y ). Set

Ob,t = It3/2Nb,tI1/t3/2 . (6.22)

In the sequel e1, . . . , en denotes an orthonormal basis of TxX , which is such
that e1, . . . , e� is an oriented orthonormal basis of TxXg, and e�+1, . . . , en is an
oriented orthonormal basis of NXg/X,x.

Now we still introduce another copy of TXg, whose elements are written in
Gothic. This means that e1, . . . , e� is an orthonormal basis of this third copy of
TXg. In the sequel, e1, . . . , e� will be considered as odd Grassmann variables, which
generate another copy of the exterior algebra Λ· (TXg).

Definition 6.4. Let Pb,t be the operator obtained from Ob,t by making the following
replacements:
• For 1 ≤ i ≤ �, we replace the operators iei by iei + ei/t

3/2.
• For �+ 1 ≤ i ≤ n, we replace ei∧ by

√
tei∧, and iei by iei/

√
t.

We do not write explicitly the dependence of these operators on x.

Let T̂rs be the linear map defined on the algebra A spanned by the ei, iei , ei,
for 1 ≤ i ≤ � with values in R, which up to permutation vanishes on all the
monomials except on the monomial

∏�
i=1 e

iei, with

T̂rs

[
�∏

i=1

eiei

]
= 1. (6.23)

We extend this functional to a functional mapping

Λ· (T ∗S) ⊗̂A⊗̂
(
End

(
ŜTX

)
⊗̂End

(
Λ·

(
N∗

Xg/X

))
⊗̂E

)
x

into Λ· (T ∗S), by taking the classical supertrace on the last factor.
Then we will consider monomials in the ei, iei +ei/t

3/2, 1 ≤ i ≤ �. To evaluate
T̂rs on such monomials, we first normal order them, i.e., we put the iej to the right
of any ei. Once this is done, we eliminate any term where one of the iei appears,
and we apply the rule (6.23). We extend T̂rs as above.
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Proposition 6.5. The following identity holds,

t3(n−�)/2Trs
[
g exp (−Nb,t)

(
g−1

(
t3/2U, Y

)
,
(
t3/2U, Y

))]
= (−i)�/2 T̂rs

[
g exp (−Pb,t)

(
g−1 (U, Y ) , (U, Y )

)]
. (6.24)

Proof. To establish (6.24), it is enough to consider the case where g = 1, so that
� = n. Note that when acting on Λ· (T ∗

xX),

Trs

[
n∏

i=1

eiiei

]
= 1. (6.25)

From (6.23), (6.25), we get (6.24). �

6.8. The limit as t→ 0 of Pb,t

Consider the vector bundle TX |Mg overMg. The total space of the tangent bundle
to the fibres is just π∗

(
TX |Mg ⊕ TX |Mg

)
. As in Section 5, we will denote with a

hat elements of the second copy. Here U is the canonical section of the first copy
of TX , and Y is the canonical section of the second copy. In particular ∇Y is a
vertical differentiation operator along the first copy of TX .

Definition 6.6. Put

Pb,0 =
1

2b2

(
−ΔV +

√
2

�∑
i=1

c (êi) ei

)
−∇ ̂i∗RT XY

+
1
4

〈
i∗RTXei, ej

〉
c (êi) c (êj) +

∇Y

b
+ i∗RE − 2

db

b2

�∑
1

〈Y, ei〉 ei. (6.26)

Of course these operators still depend on x ∈Mg.

In the next theorem, we make dt = 0.

Theorem 6.7. As t→ 0,
Pb,t → Pb,0. (6.27)

More precisely,

Pb,t = Pb,0 +
√
t

(
1

2b2

�∑
i=1

c (êi)
ei√
2
∧ −i∗

∑
�+1≤i≤n

ei ∧∇ ̂RT X (ei,·)Y

+ i∗
∑

�+1≤i≤n

ei
(

1
4

〈
RTX (ei, ·) em, em′

〉
c (êm) c (êm′) +RE (ei, ·)

)

− db
b2

�∑
i=1

〈Y, ei〉 ei
)

+O (t (1 + |Y |))

+O
(
t3/2 |y| (1 + |Y |)

)
+O

(
t2

b
|y| |Y |

)
+
db

b2

(
t3/2 |Y |

(
1 +

√
t |y|

))
. (6.28)
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Proof. Note that since the c (U) anticommute with the c
(
V̂

)
, ĉ (V ), the tensor∑n

i=1 c (êi) ĉ (ei) is parallel with respect to 1∇Λ·(T∗S)⊗̂F .
By (6.10), for 1 ≤ i ≤ �, tĉt (êi) is replaced by

√
t/2ei ∧ +

√
2
(
it3/2ei

+ ei

)
,

and for � + 1 ≤ i ≤ n, it is replaced by tĉ (ei). By (6.11) and the above, we find
that as t→ 0, once the above replacements are done,

n∑
i=0

tc (êi) ĉt (êi) →
√

2
�∑

i=0

c (êi) ei. (6.29)

Also when t→ 0,
∇

R̂T XY
→ ∇ ̂i∗RT XY

. (6.30)

Inspection of (6.11), (6.26) shows that to establish (6.27), we only need to show
that in the given trivialization,

It3/2t3/22∇Λ·(T∗S)⊗̂F
t/2,Y I1/t3/2 → ∇Y . (6.31)

Let Γ (y) be the connection form for 1∇Λ·(T∗S)⊗̂F in the given trivialization
of Λ· (T ∗S) ⊗̂F . By [ABP73], near x

Γy =
1
2

1∇Λ·(T∗S)⊗̂F,2
x (U, ·) +O

(
|y|2

)
. (6.32)

Now using (6.3) and (6.32), we get (6.31) easily.
To get the more precise expansion in (6.28), we need to control the remainders

in the above computations. We consider first the terms in (6.11) with the exception
of t3/2

b
2∇Λ·(T∗S)⊗̂F

t/2,Y . The coefficient of
√
t in the right-hand side of (6.28) is imme-

diately obtained from (6.11). Neither Pb,0 nor none of the terms which appear in
this coefficient contains annihilation operators iej . By (2.9), (2.10),

2∇Λ·(T∗S)⊗̂F
t = ∇STX⊗E

· +
1
2t

〈
T

(
fH

α , ei
)
, ·

〉
fα

(
ei − tiei

)
+

1
4t

〈
TH , ·

〉
. (6.33)

In view of (6.33), we find that when taking the Taylor expansion at t = 0 of such
terms, we get a remainder of the form O (t (1 + |Y |)) + O

(
t3/2 |y| (1 + |Y |)

)
. Be-

cause of (6.33), in the considered trivialization, the contribution to the remainder
of the term −2 db

b2 t
3/2iY is of the form,

db

b2
O

(
t3/2 |Y |

(
1 +

√
t |y|

))
, (6.34)

which accounts for the last term in the right-hand side of (6.28). Also the term
−2 db

b2

√
t

2 Y
∗ contributes to the remainder by a term of the same type.

As to the contribution to the remainder of 2∇Λ·(T∗S)⊗̂F
t,Y , using (6.3) and

(6.32), we find easily that this contribution is of the type O
(

t2

b |y| |Y |
)
. This

concludes the proof of our theorem. �
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6.9. An evaluation of the traces of certain heat kernels

We use the same notation as in Section 5. In particular E denotes a real vector
bundle of even dimension n.

Let R ∈ End (E) be antisymmetric. For b > 0, set

MR,b = − 1
2b2

ΔV −∇
R̂Y

+
∇Y

b
. (6.35)

We denote by pR,b (·, ·) the heat kernel associated to the operator exp (−MR,b)
with respect to the volume element dUdY

(2π)n on E ⊕ E.
We will assume that the eigenvalues λ of R are such that |λ| < 2π.

Theorem 6.8. The following identity holds,∫
E

pR,b ((0, Y ) , (0, Y ))
dY

(2π)n/2
= b2nÂ2 (R) . (6.36)

Proof. Note that when R = 0, equation (6.36) was already established in [BL06,
Proposition 4.27]. Using the multiplicativity of the integral in (6.36), we may and
we will assume that R is invertible.

Let M̂R,b,ξ be the partial Fourier transform ofMR,b in the variable y. Clearly,

M̂R,b,ξ = − 1
2b2

ΔV −∇
R̂Y

+
2iπ
b
〈Y, ξ〉 . (6.37)

Let qR,b,ξ (Y, Y ′) be the smooth kernel associated to the operator exp
(
−M̂R,b,ξ

)
with respect to the volume dY ′/ (2π)n/2. Then∫

E

pR,b ((0, Y ) , (0, Y ))
dY

(2π)n/2
=

∫
E×E

qR,b,ξ (Y, Y ) dY dξ. (6.38)

Set

NR,b = − 1
2b2

ΔV −∇
R̂Y
. (6.39)

Let t ∈ R → wt ∈ E be a standard Brownian motion. Consider the stochastic
differential equation,

Ẏ = RY +
ẇ

b
, (6.40)

with given a initial condition Y0 ∈ E. Then the infinitesimal generator associated
to the diffusion Y· is precisely NR,b.

Let sR,b (Y, Y ′) be the smooth kernel associated to exp (−NR,b) with respect
to the volume dY ′/ (2π)n/2. Given Y ∈ E, let PY

R,b be the probability law of the
diffusion bridge Y· whose infinitesimal generator is NR,b, starting at Y at time 0,
and returning to Y at time 1. By the Feynman-Kac formula, we get

qR,b,ξ (Y, Y ) = EP Y
R,b

[
exp

(
−2iπ
b

〈∫ 1

0

Ytdt, ξ

〉)]
sR,b (Y, Y ) . (6.41)
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Let JR be the first order differential operator on [0, 1],

JR =
d

dt
−R, (6.42)

with periodic boundary conditions. Under the given conditions on R, the operator
JR is invertible. If Y is as in (6.40), then there is a unique A ∈ E such that

Yt = etRA+
1
b
J−1

R ẇ, Y0 = A+
1
b

(
J−1

R ẇ
)
0
. (6.43)

We claim that the probability law of
(
J−1

R ẇ
)
0

is a nondegenerate centred
Gaussian distribution on E. In fact its covariance matrix is given by the Green
kernel on the diagonal associated to J−2

R . By using Fourier series, it is clear that
this is a non degenerate matrix. We denote the probability law of

(
J−1

R ẇ
)
0

by

m (z)dz/ (2π)n/2.
By (6.43), we get

Y1 = eR
(
Y0 −

1
b

(
J−1

R ẇ
)
0

)
+

1
b

(
J−1

R ẇ
)
0
. (6.44)

By (6.44), we find that

sR,b (Y0, Y1) =
bn

det (1− eR)
m

(
b
(
1− eR

)−1 (
Y1 − eRY0

))
. (6.45)

By (6.45), we get

sR,b (Y, Y ) =
bn

det (1− eR)
m (bY ) . (6.46)

Let Tb be the probability law on C
(
S1, E

)
of the process U = J−1

R ẇ/b. We
claim that we have the identity of positive measures,∫

E

sR,b (Y, Y )PY
R,b

dY

(2π)n/2
=

Tb

det (1− eR)
. (6.47)

Indeed let SZ
b be the probability law on C

(
S1, E

)
of the process U =

(
J−1

R ẇ
)

conditional on U0 = Z. By (6.43), (6.44), if f : C ([0, 1],R) → R, g : E → R are
bounded measurable functions, given Y0 ∈ R,

E [f (Y ) g (Y1)] =
∫

C([0,1],E)×E

f
(
e·R (Y − Z/b) + U·/b

)
· g

(
eR (Y − Z/b) + Z/b

)
dSZ

b (U·)m (Z)
dZ

(2π)n/2
. (6.48)
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We can rewrite (6.48) in the form,

E [f (Y ) g (Y1)]

=
bn

det (1− eR)

∫
C([0,1],E)×E

f
(
e·R

(
1− eR

)−1
(Y − Z) + U·/b

)
· g (Z) dS

b(1−eR)−1(Z−eRY )
b (U)m

(
b
(
1− eR

)−1 (
Z − eRY

)) dZ

(2π)n/2
. (6.49)

By (6.45), (6.49), we find that PY
R,b is the image of dSbY

b by the map U· → U·/b.
Equation (6.47) follows.

Under Tb, the probability law of
∫ 1

0
Ytdt is a centred Gaussian of variance

−R−2/b2. By (6.38), (6.41) and (6.47), we get∫
E

pR,b ((0, Y ) , (0, Y ))
dY

(2π)n/2
=
b2n det1/2

(
−R2

)
det (1− eR)

. (6.50)

Since R is invertible, detR > 0. Moreover,

det 1/2
(
−R2

)
= det (−R) . (6.51)

Now observe that
det (−R)

det (1− eR)
= Â2 (R) . (6.52)

By (6.50)–(6.52), we get (6.36). The proof of our theorem is completed. �

Now we will make another computation of traces. We assume that E is even
dimensional. Let g ∈ End (E) be an oriented isometry of E which commutes with
R. We assume that no eigenvalue of g is equal to 1. We can then write g in the
form

g = eB, (6.53)

where B ∈ EndE is antisymmetric and commutes with R. We may and we will
assume that the eigenvalues μ of B are such that 0 < |μ| < 2π.

Theorem 6.9. The following identity holds,∫
E×E

pR,b

(
g−1 (U, Y ) , (U, Y )

) dUdY
(2π)n =

1
det (1− g) det (1− g−1eR)

. (6.54)

Proof. We will use the same notation as in the proof of Theorem 6.8. Clearly,∫
E×E

pR,b

(
g−1 (U, Y ) , (U, Y )

) dUdY
(2π)n

=
∫

E×E×E

qR,b,ξ

(
g−1Y, Y

)
exp

(
−2iπ

〈(
g−1 − 1

)
U, ξ

〉)
dUdY dξ/ (2π)n/2 .

(6.55)
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By (6.55), we obtain,∫
E×E

pR,b

(
g−1 (U, Y ) , (U, Y )

) dUdY
(2π)n

=
1

det (1− g−1)

∫
E

qR,b,0

(
g−1Y, Y

) dY

(2π)n/2
. (6.56)

Since MR,b,0 = NR,b, we have qR,b,0 = sR,b. By (6.45), we get

qR,b,0

(
g−1Y, Y

)
=

bn

det (1− eR)
m

(
b
(
1− eR

)−1 (
1− g−1eR

)
Y

)
. (6.57)

By (6.56), (6.57), since det g = 1, we get (6.54). The proof of our theorem is
completed. �

6.10. A computation of certain finite-dimensional supertraces

We make the same assumptions as in Subsection 6.9. Now we state a basic formula
of Mathai-Quillen [MaQ86].

Proposition 6.10. The following identity holds,

T̂rs

[
exp

(
−c (êi) ei/

√
2b2 − 1

4
〈Rei, ej〉 c (êi) c (êj)

)]
= b−2nÂ−1 (R) . (6.58)

6.11. The generalized traces of the heat kernels associated to Pb,0

Now we make again the same assumptions as in Subsections 6.1. Recall that the
functional T̂rs was defined in Subsection 6.7.

If α is a smooth form on Mg, let αmax be the density of the component of α
which has maximal vertical degree � with respect to the volume form dvXg along
the fibre Xg.

Theorem 6.11. The following identity holds,

ϕ

∫
NXg/X×TX

T̂rs
[
g exp (−Pb,0)

(
g−1 (U, Y ) , (U, Y )

)] dUdY

(2π)n−�/2

= ±
[
Âg

(
TX |Mg ,∇TX|Mg

)
chg

(
E,∇E

)]max

. (6.59)

Proof. First we make db = 0. We will use the notation of Subsections 6.9 and
6.10. In the operator Pb,0, we replace TX |Mg by E, RE by 0 and RTX by an
antisymmetric matrix R ∈ End (E) commuting with g. These operators now act on
the total space of E⊕E. By splitting these operators according to the eigenspaces
of g, we may and we will assume that either g = 1 or that no eigenvalue of g is
equal to 1.
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Assume first that g = 1. Using (6.36) and (6.58), we get∫
TX

T̂rs [exp (−Pb,0) ((0, Y ) , (0, Y ))]
dY

(2π)n/2
= Â (R) . (6.60)

By (6.60), we get (6.59).
Let us now assume that no eigenvalue of g is equal to 1. Simple character

identities show that

TrsSE

[
g exp

(
−1

4
〈Rei, ej〉 c (êi) c (êj)

)]
= ± (−1)n/2

Â−1
g (−R) . (6.61)

Moreover, we have the trivial

det
(
1− g−1eR

)
= (−1)n/2 Â−2

g (−R) . (6.62)

Also

Trs
Λ·

(
N∗

Xg/X

)
[g] = det (1− g) . (6.63)

By (6.54) and by (6.61)–(6.63), we get (6.59).
Now we extend the above to the case where db is not made equal to 0. In

fact we will show that the term containing db in Pb,0 does not contribute to the
limit. To do this we simply observe that if we conjugate the operator Pb,0 by the

operator exp
(
−2 db

b

∑�
1 〈U, ei〉 ei

)
, the conjugated operator is just Pb,0, in which

db has been made equal to 0. This shows that there is no term db in the right-hand
side of (6.59). One can instead use the change of variables (U, Y ) → (−U,−Y ) to
obtain the vanishing of the contribution of db by a parity argument. The proof of
our theorem is completed. �

6.12. A proof of Theorem 6.1

First we make dt = 0. By Proposition 6.5, we get∫
{U∈NXg/X ,|U|≤η0}×TxX

Trs
[
g exp (−Nb,t)

(
g−1 (U, Y ) , (U, Y )

)] dUdY
(2π)n

=
∫
{U∈NXg/X ,|U|≤η0/t3/2}×TxX

(−i)�/2 T̂rs
[
g exp (−Pb,t)

(
g−1 (U, Y ) , (U, Y )

)]
· k

(
x, t3/2U

) dUdY
(2π)n . (6.64)

By proceeding as in [BL06, proof of Theorem 4.25], we find that as t→ 0,

T̂rs
[
g exp (−Pb,t)

(
g−1 (U, Y ) , (U, Y )

)]
→

T̂rs
[
g exp (−Pb,0)

(
g−1 (U, Y ) , (U, Y )

)]
. (6.65)
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By combining the above convergence with uniform estimates similar to the ones
in [BL06, Theorem 4.25], we find that as t→ 0,∫

{U∈NXg/X ,|U|≤η0/t3/2}×TxX

T̂rs
[
g exp (−Pb,t)

(
g−1 (U, Y ) , (U, Y )

)]
· k

(
x, t3/2U

) dUdY
(2π)n →∫

(NXg/X×TX)
x

T̂rs
[
g exp (−Pb,0)

(
g−1 (U, Y ) , (U, Y )

)] dUdY
(2π)n . (6.66)

By combining the estimates obtained in Subsection 6.5 with Proposition 6.3, The-
orem 6.11 and (6.66), we find that as t→ 0,

ϕTrs
[
g exp

(
−A

2
)]
→

∫
Xg

±Âg

(
TX |Xg ,∇TX|Xg

)
chg

(
E,∇E

)
. (6.67)

To obtain an estimate of the remainder as in Theorem 6.1, one should proceed
as in [BL06], by using in particular the expansion as t→ 0 of Pb,t which was given
in (6.28). If we proceed as in [BL06], we find that as t→ 0,

ϕTrs
[
g exp

(
−A

2
)]
→

∫
Xg

±Âg

(
TX |Xg ,∇TX|Xg

)
chg

(
E,∇E

)
+O

(√
t
)
.

(6.68)
Let us briefly explain how to get O (t) instead of O

(√
t
)

in (6.68). Indeed let
E be the coefficient of

√
t in the right-hand side of (6.28). We will now show that∫

NXg/X×TX

T̂rs
[
gE exp (−Pb,0)

(
g−1 (U, Y ) , (U, Y )

)] dUdY
(2π)n = 0. (6.69)

From (6.69), we conclude easily that in the right-hand side of (6.68), O
(√
t
)

can
be replaced by O (t).

Now we establish (6.69). The first term in E does not contribute to (6.69)
because the operator Pb,0 contains only even monomials in the Clifford variables
c (êi), and moreover, only even monomials in these Clifford variables contribute
to T̂rs. Moreover, Pb,0 does not contain creation or annihilation operators in the
variables ej , � + 1 ≤ j ≤ n. This explains why when taking the generalized su-
pertrace T̂rs, the second kind of terms in E does not contribute to (6.69). We are
left with the last term in E, which contains db

b2 . Its contribution also vanishes by
a parity argument already given in the proof of Theorem 6.11. This completes the
proof of the fact that O

(√
t
)

can be replaced by O (t). This way, we get the first
and third identities in (6.8).

Now we make db = 0. We will show that as t→ 0,

tnb,t = O (t) , (6.70)

which is just the second identity in (6.8). To evaluate the asymptotics as t → 0
of tnb,t, we may as well replace dt by tdt in equation (6.11) for Mb,t. Except for
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irrelevant coefficients, when multiplied by t, the term containing dt in the right-
hand side of equation (6.11) for Mb,t is of the same type as the term containing
db. We can then proceed as before, and we get (6.70). This completes the proof of
Theorem 6.1.

6.13. The forms m√
tb,t as t→ 0

In this subsection, we make dt = 0.

Theorem 6.12. Given b > 0, as t→ 0,

m√
tb,t =

∫
Xg

±Âg

(
TX,∇TX

)
chg

(
E,∇E

)
+O

(√
t
)
,
√
to√tb,t = O

(√
t
)
.

(6.71)

Proof. The remainder of the subsection is devoted to the proof of our theorem. �
Recall that the operator Mb,t was defined in (6.11), and also that we make

dt = 0. When replacing b by
√
tb, we will implicitly replace db by

√
tdb. Given

b > 0, set
Mb,t = K1/

√
tM

√
tb,tK

√
t. (6.72)

By equation (6.11), we get

Mb,t =
1

2b2
(
−ΔV + |Y |2 + c (êi) ĉt (ei)

)
−∇

R̂T XY

+
1
4

〈
RTXei, ej

〉
c (êi) c (êj) +

√
t

b
2∇Λ·(T∗S)⊗̂F

t/2,Y

+RE −
√

2
db

b2
ĉt (Y ) . (6.73)

Recall that NH is the number operator of Λ· (T ∗X). Put

M
′
b,t = tN

H/2Mb,tt
−NH/2. (6.74)

The effect of the conjugation in (6.74) is in particular to replace the ĉt (ei) in (6.74)
by ĉ (ei).

Take x ∈ Xg. We choose the same coordinate system near x as in Subsection
6.6. We define an operator N

′
b,t from M

′
b,t by the same principle as in Definition

6.2. Put
Ob,t = I√tN

′
b,tI1/

√
t. (6.75)

We will express the operator Ob,t in terms of the operators c (ei) , ĉ (ei) , c (êi).
In particular the operators ei, iei have temporarily disappeared from the scene. But
they will come back from another corner.

We define the operator Pb,t from the operator Ob,t by replacing the c (ei) , 1 ≤
i ≤ � by

√
2ei ∧ /

√
t−
√
tiei/

√
2 for 1 ≤ i ≤ �. It is here crucial that the operators

ĉ (ei) , 1 ≤ i ≤ � be left untouched in this procedure.
The vector bundle TX |Mg on Mg verifies all the assumptions verified by the

vector bundle E in Section 5. In particular we can define the operator BTX|Mg

Y,b
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acting on the fibres of TX |Mg ⊕ TX |Mg as in that section. This operator depends
implicitly on x ∈Mg.

Theorem 6.13. As t→ 0,

Pb,t → Pb,0 = BTX|Mg ,2

Y,b +RE −
√

2
db

b2
ĉ (Y ) . (6.76)

Proof. The considerations we made at the beginning of the proof of Theorem 6.7
remain valid here. Also note that under the suggested replacements, the ct (ei) are
first changed into c (ei), and later they are changed back to ct (ei) for 1 ≤ i ≤ �,
while remaining as they are for � + 1 ≤ i ≤ �. Because of (6.74), in (6.73), the
ĉt (ei) have been replaced by ĉ (ei), and the ei∧ have been changed into

√
tei∧.

When making the transformations indicated above, we obtain easily all the terms
which appear in equation (5.14) for the right-hand side of (6.76), except maybe
for the contribution of the term

√
t

b
2∇Λ·(T∗S)⊗̂F

t/2,Y which appears in (6.73).

Under the transformations indicated in (6.74), the operator 2∇Λ·(T∗S)⊗̂F
t/2,Y is

changed into 1∇Λ·(T∗S)⊗̂F
t/2,Y . Using (6.3) and (6.32), we find that after doing the

extra transformations indicated above, as t→ 0,

I√t

√
t1∇Λ·(T∗S)⊗̂F

t/2,Y I1/
√

t = ∇Y +
1
4

∑
1≤i,j≤�

〈
RTX (U, Y ) ei, ej

〉
ei ∧ ej

+
1
4
∇TXTH (U, Y )− 1

2
i∗∇TXT 0 (U, Y )− 1

4

∣∣T 0
∣∣2 (U, Y ) +O

(√
t
)
. (6.77)

By [BG04, Theorem 3.26] or [B05, Theorem 4.15], we can rewrite (6.77) in the
form,

I√t

√
t1∇Λ·(T∗S)⊗̂F

t/2,Y I1/
√

t = ∇Y +
1
2

〈
i∗RTXU, Y

〉
+O

(√
t
)
. (6.78)

This proof of our theorem is completed. �

Now we conclude the proof of Theorem 6.12. Indeed by proceeding as in
[BL06, Section 11] and using Theorems 5.1 and 6.13 and also the arguments given
in the proof of Theorem 6.1, we get (6.71).

7. Double transgression formulas and hypoelliptic holomorphic
torsion forms

This section is entirely devoted to the case of complex manifolds, along the lines of
Section 3. In the context of families of complex manifolds considered in Subsections
3.11–3.14 and also in Section 4, for b > 0 small enough, we obtain hypoelliptic
holomorphic torsion forms, which are the obvious analogues of the corresponding
objects which were obtained in Section 4 in the elliptic case. We show in particular
how to construct a hypoelliptic Quillen metric, the properties of which are very
close to the properties of classical elliptic Quillen metrics.
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In the whole section, we will assume for simplicity that the metrics on TX
and T̂X are proportional with a fixed constant of proportionality, which will be
itself made to vary. This assumption will be lifted in Section 10.

This section is organized as follows. In Subsection 7.1, for b > 0, t > 0, we in-
troduce the Hermitian forms ε̂b,t, and the associated hypoelliptic superconnections
AY,b,t.

In Subsection 7.2, we establish simple commutator identities in the case of a
single fibre.

In Subsection 7.3, we study the variation of our superconnections with respect
to the variables b, t.

In Subsection 7.4, we introduce holomorphic hypoelliptic superconnections
forms, and we establish double transgression formulas similar to the ones we gave
in Section 4.

In Subsection 7.5, we study the limit of these forms as t→ 0.
In Subsection 7.6, we show that the limits of the hypoelliptic forms as b→ 0

are precisely the associated elliptic forms. Also we study their limit as t → +∞.
Moreover, we establish crucial uniform estimates in the variables b, t.

In Subsection 7.7, we define the hypoelliptic holomorphic torsion forms.
In Subsection 7.8, we construct a hypoelliptic generalized Quillen metric on

the determinant of the cohomology.
In Subsection 7.9, we show that the hypoelliptic Quillen metric is smooth.
In Subsection 7.10, these results are extended to the equivariant case.
Finally in Subsection 7.11, we study the dependence on b of the hypoelliptic

Quillen metric.
We make the same assumptions as in Subsections 3.11–3.14 and in Subsec-

tions 4.1 and 4.4.

7.1. A metric formulation of the hypoelliptic Laplacian

We will sometimes denote by T̂X the fibre of π : M → M , to distinguish it
from the tangent bundle TX . For b > 0, let εb, εb be the obvious analogues of the
Hermitian forms ε, ε in (3.55), (3.103), in which the fibrewise metric gTX along
the fibre T̂X is replaced by b4gTX , while keeping fixed the metric gTX along the
fibres X . Clearly,

εb (s, s′) = b4nε
(
s, b−4NV

s′
)
, (7.1)

εb (s, s′) = b4nε
(
b−2NV

s, b−2NV

s′
)

= b4nε
(
s, b−4NV

e−iωM,H

s′
)
.

We use the same notation as in Subsection 3.11. We still define A′′
Y as in (3.99),

so that
A′′

Y = ∇I·′′ + ∂
V

+ iy. (7.2)

Let A′
Y,b be the adjoint of A′′

Y with respect to εb. Set

AY,b = A′′
Y +A′

Y,b. (7.3)
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Recall that NH is the number operator on Λ· (T ∗
RX ⊗R C), so that

NH = NH(0,1) +NH(1,0). (7.4)

For b > 0, t > 0, let εb,t be the Hermitian form defined as before which is
associated to the Hermitian metrics gTX/t, b4gTX/t3 on TX, T̂X. Using (3.55),
(7.1), we get

εb,t (s, s′) =
(
b

t

)4n

η

(
eitΛs,

(
t3

b4

)NV

tN
H

eitΛ−iωM,H /ts′
)
, (7.5)

which can also be written in the form,

εb,t (s, s′) =
(
b

t

)4n

η

(
s,

(
t3

b4

)NV

tN
H

eiL/teitΛ−iωM,H /ts′
)
. (7.6)

Set
ε̂b,t (s, s′) = tnεb,t (s, s′) . (7.7)

We denote by ε̂b,t the fibrewise restriction of ε̂b,t, which is obtained from (7.6),
(7.7) by making ωM,H = 0.

In the sequel we will use ε̂b,t instead of εb,t just for convenience. However the
objects we can associate to these two forms are essentially the same.

Theorem 7.1. The following identities hold,

ε̂−1
b,t

∂

∂b
ε̂b,t = −4

b

(
NV − n

)
, ε̂−1

b,t

∂

∂t
ε̂b,t =

1
t

(
3NV − 2n+ i

ωM

t

)
. (7.8)

Proof. The first identity in (7.8) is obvious. To establish the second identity, we
use the sl2 commutation relations in (3.6). We represent L,Λ, 2H = NH − n by
the matrices

L =
(

0 0
1 0

)
, Λ =

(
0 1
0 0

)
, 2H =

(
−1 0
0 1

)
. (7.9)

Set
Qt = t2HeiL/teitΛ. (7.10)

Then one verifies easily that

Qt =
(

1/t i
i 0

)
. (7.11)

By (7.11), we get

Q−1
t

∂

∂t
Qt =

(
0 0
i/t2 0

)
. (7.12)

We can rewrite (7.12) in the form,

Q−1
t

∂

∂t
Qt = i

L

t2
. (7.13)

By (7.6), (7.7) and (7.13), we get the second identity in (7.8). The proof of our
theorem is completed. �
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Definition 7.2. Let A′
Y,b,t be the adjoint of A′′

Y with respect to ε̂b,t. Set

AY,b,t = A′′
Y +A′

Y,b,t. (7.14)

By proceeding as in (3.99), (3.101), we get

A′
Y,b,t = ∇I·′ +

t3

b4
∂

V ∗
+
y∗

t
∧+iy. (7.15)

For a > 0, we denote by ρ∗a the obvious action of r∗a on smooth sections
of Λ̂· (T ∗X

)
. We extend the action of ρ∗a to C∞ (

M, π∗Λ· (T ∗
RS ⊗R C) ⊗̂F

)
. The

difference with r∗a is that ρ∗a has no action on Λ· (T ∗X).
By (7.2), (7.15),

ρ∗t3/2/b2AY,b,tρ
∗−1
t3/2/b2

= ∇I· + ∂
V

+ ∂
V ∗

+
√
t

b2
y∗ ∧+

t3/2

b2
iY . (7.16)

When taking into account equations (1.11) and (3.8), we find that the operator in
(7.16) is exactly the operator denoted At

Y,b in (6.5).
Now we prove an analogue of (4.2).

Proposition 7.3. The following identity holds,

t3/2NV +NH/2KtAY,b,tK
−1
t t

−3/2NV −NH/2 = ψ1/t

√
tAY,bψt. (7.17)

Proof. First note that the operator ∇I· preserves the vertical degree, is invariant
under conjugation by Kt and increases the total degree by 1. Its contribution
to AY,b,t then fits with (7.17). This is also obviously the case for ∂

V
+ iy and

t3

b4 ∂
V ∗

+ y∗

t ∧+iy. The proof of our proposition is completed. �

7.2. Commutator identities

Let A′′
Y,b, A

′
Y,b, AY,b be the fibrewise operator components of A′′

Y,b,A′
Y,b,AY,b, i.e.,

their components of degree 0 in Λ· (T ∗
RS ⊗R C). Let w1, . . . , wn be a basis of TX

and let w1, . . . , wn be the corresponding dual basis of T ∗X . We denote with hats
the corresponding bases of T̂X, T̂X

∗
. Set

∂V = wi ∧ ∇ŵi
, ∂

V
= wi ∧∇

ŵi
. (7.18)

Then ∂V can be viewed as the conjugate of the operator ∂
V

.
Let Ŷ denote the fibrewise radial vector field, which generates the group of

dilations ret . Let LŶ denote the corresponding Lie derivative operator, which acts
naturally on C∞ (X , π∗F ).

In the sequel, † denotes the adjoint with respect to ε̂b,t. This means that the
results which follow are only valid in the case where S is reduced to a point.

Now we establish an analogue of the commutator identities of [B05, Propo-
sition 4.34].
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Proposition 7.4. The following identities hold,

∂V † = −∂V
, i†

ŷ
=
b4

t3
ŷ∗ ∧ . (7.19)

Moreover,

LŶ = ∇Ŷ +NV +NH(1,0), L†
Ŷ

= −∇Ŷ +NV + i
L

t
−NH(0,1) − n. (7.20)

Also,

LŶ =
[
A′′

Y , ∂
V + iŷ

]
, L†

Ŷ
=

[
A′

Y,b,t,−∂
V

+
b4

t3
ŷ∗∧

]
. (7.21)

In particular,[
A′′

Y , ∂
V + iŷ

]
+

[
A′

Y,b,t,−∂
V

+
b4

t3
ŷ∗∧

]
= 2NV − n+NH(1,0) −NH(0,1) + i

L

t
. (7.22)

Proof. A simple computation shows that if f ∈ TX ,

tN
H

eiL/teitΛf
∗ ∧ e−itΛe−iL/tt−NH

= −if . (7.23)

Using (7.6), (7.18) and (7.23), we get the first identity in (7.19). A similar compu-
tation leads to the second identity in (7.19). The first identity in (7.20) is trivial.
Now we use the notation in the proof of Theorem 7.1. By using the commutation
relations in (3.6), we find that

e−itΛe−iL/t
(
NH − n

)
eiL/teitΛ = n−NH + 2iL/t. (7.24)

By (7.6), we find that (7.24) is just the identity,(
NH − n

)†
=

(
n−NH

)
+ 2iL/t. (7.25)

Since L,Λ commute with NH(0,1) −NH(1,0), we get(
NH(0,1) −NH(1,0)

)†
= NH(0,1) −NH(1,0). (7.26)

By (7.25), (7.26), we obtain,

NH(1,0)† = n−NH(0,1) + iL/t. (7.27)

Finally,
∇†

Ŷ
= −∇Ŷ − 2n. (7.28)

By the first identity in (7.20) and by (7.27), (7.28), we get the second identity in
(7.20).

The first identity in (7.21) is trivial, or can be proved directly using (7.20). By
(7.19) and taking adjoints in the first identity in (7.21), we get the second identity
in (7.21). This last identity can also be proved by a direct computation. Finally
(7.22) follows from (7.20), (7.21). The proof of our proposition is completed. �
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Remark 7.5. When replacing A′′
Y,b,t, A

′
Y,b,t by A′′

Y,b,t,A′
Y,b,t, the identities in (7.21),

(7.22) are no longer correct. In particular equation (7.22) should be adequately
modified. Extra terms involving the tensor T will appear in the right-hand side of
(7.22).

Moreover, our proposition remains valid even if the horizontal metric gTX

and the vertical metric gT̂X are unrelated, as long as ŷ∗ is calculated with respect
to the vertical metric.

7.3. The variation of A′
Y,b,t with respect to b, t

From now on, we assume S to be arbitrary.

Proposition 7.6. The following identities hold,

∂

∂b
A′

Y,b,t =
[
A′

Y,b,t, ε̂
−1
b,t

∂

∂b
ε̂b,t

]
,

∂

∂t
A′

Y,b,t =
[
A′

Y,b,t, ε̂
−1
b,t

∂

∂t
ε̂b,t

]
(7.29)

Proof. This is because A′
Y,b,t is the ε̂b,t adjoint of A′′

Y . �

7.4. The double transgression formulas

Set

ub,t = ϕTrs
[
g exp

(
−A2

Y,b,t

)]
,

vb,t = ϕTrs

[
gbε̂−1

b,t

∂

∂b
ε̂b,t exp

(
−A2

Y,b,t

)]
, (7.30)

wb,t = ϕTrs

[
gtε̂−1

b,t

∂

∂t
ε̂b,t exp

(
−A2

Y,b,t

)]
,

wb,t = ϕTrs

[
g

(
N − n+ i

ωM,H

t

)
exp

(
−A2

Y,b,t

)]
.

In the sequel dR
∗2
+ denotes the de Rham operator on R∗2

+ .

Theorem 7.7. For any (b, t) ∈ R∗
+×R∗

+, the forms ub,t, vb,t, wb,t, wb,t are sums of
forms of type (p, p). They are real for g = 1. The forms ub,t are closed, and their
common cohomology class does not depend on b, t. Also,

∂

∂t
ub,t = − ∂∂

2iπt
wb,t,

∂

∂b
ub,t = − ∂∂

2iπb
vb,t. (7.31)

Let a be the odd form on S ×R∗
+ ×R∗

+,

a =
dt

t
wb,t +

db

b
vb,t. (7.32)

Then
dR

∗2
+ a ∈ dbdtPS,0. (7.33)

Finally,
w

(0)
b,t = w(0)

b,t . (7.34)
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Proof. First we prove that the forms in (7.30) are sums of forms of type (p, p).
Clearly,

A2
Y,b,t =

[
A′′

Y ,A′
Y,b,t

]
. (7.35)

By Theorem 3.16 and by (7.35), the operator A2
Y is of total degree 0. Also the

operators NV , ωM , ωM,H are of total degree 0. Since supertraces vanish on super-
commutators, we deduce that the forms in (7.30) are sums of form of type (p, p).
As we saw in (7.16), after an explicit conjugation, the superconnection AY,b,t is a
special case of the superconnection At

tY/b2 which appears in Theorem 6.1. There-
fore the forms ub,t are special cases of the formsmb,t in Theorem 6.1. This gives the
fact that for g = 1, these forms are real. Also Theorem 3.16 shows that for g = 1,
the operators appearing in (7.30) are adequately self-adjoint, and this makes the
corresponding differential forms real.

By the same arguments as in [BGS88b, Theorem 2.9], we get (7.31). By
proceeding as in the proof of [B97, Theorem 4.1], we easily deduce the identities
in (7.33).

By (7.8), (7.30), we get

w
(0)
b,t −w

(0)
b,t = Trs

[(
2NV − n+NH(1,0) −NH(0,1) + i

L

t

)
exp

(
−A2

Y,b,t

)]
. (7.36)

By (7.22), (7.36), we get (7.34). This concludes the proof of our theorem. �

Remark 7.8. By proceeding as in [B97], the inclusion (7.33) can be turned into an
explicit equality. Moreover, Remark 7.5 indicates that our definition of the form
wb,t is not the right one in positive degree. Indeed by adding the extra terms which
appear in the right-hand side of (7.22) which involve the tensor T , we can make an
analogue of (7.34) valid in any degree where the equality is now taken in PS/PS,0.
Equations (7.31)–(7.33) would still be valid when replacing wb,t by wb,t.

7.5. The forms ub,t, vb,t, wb,t as t→ 0
Recall that

Td (x) =
x

1− e−x
. (7.37)

Let Td′ (x) be the derivative of Td (x). More generally set

Td (x1, . . . , xn) =
n∏

i=1

Td (xi) . (7.38)

Set

Td′ (x1, . . . , xn) =
∂

∂c
Td (x1 + c, . . . , xn + c) |c=0. (7.39)

We identify Td′ with the corresponding obvious genus. Then Td′/Td is an additive
genus.

By the same procedure, we can as well define the closed form Td′
g

(
TX, gTX

)
on Mg.
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Theorem 7.9. For any b > 0, as t→ 0,

ub,t =
∫

Xg

Tdg

(
TX, gTX

)
chg

(
E, gE

)
+O (t) , (7.40)

1
4
vb,t =

∫
Xg

Td′
g

(
TX, gTX

)
chg

(
E, gE

)
+O (t) .

As t→ 0, there are forms Cb,−1, Cb,0 ∈ PS such that

wb,t =
Cb,−1

t
+ Cb,0 +O (t) (7.41)

Moreover,

Cb,−1 =
∫

Xg

ωM

2π
Tdg

(
TX, gTX

)
chg

(
E, gE

)
,

Cb,0 = −3
∫

Xg

Td′
g

(
TX, gTX

)
chg

(
E, gE

)
(7.42)

+ n
∫

Xg

Tdg

(
TX, gTX

)
chg

(
E, gE

)
.

For b > 0, as t→ 0,

u√tb,t =
∫

Xg

Tdg

(
TX |Mg , g

TX|Mg

)
chg

(
E, gE

)
+O

(√
t
)
,

1
4
v√tb,t = −

∫
Xg

Tdg

(
TX, gTX

)(
Σ̂′

g

Σ̂g

(
1/b4, TX, gTX

)
− n

2

)
(7.43)

· chg

(
E, gE

)
+O

(√
t
)
.

Proof. As we saw in the proof of Theorem 7.7, the forms ub,t are special cases of
the forms mb,t in Theorem 6.1. By using this theorem, we obtain the first identity
in (7.40).

As we saw in (5.54),

NV − n = − i
4

〈
JTXei, ej

〉
c (êi) c (êj)−

n

2
. (7.44)

Also by Proposition 6.10, we get

TrsΛ̂
·(T∗X)

[(
NV − n

)
exp

(
−c (êi) ei/

√
2b2 − 1

4
〈
RTXei, ej

〉
c (êi) c (êj)

− 1
2
Tr

[
RTX

])]
= b−2n ∂

∂c
Â−1

(
RTX + icJTX

)
exp

(
−1

2
Tr

[
RTX + c1

])
|c=0

= −b−2n Td′

Td2

(
−RTX

)
exp

(
−Tr

[
RTX

])
. (7.45)
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By proceeding as in the proof of Theorem 6.11 and using (7.45), in the case
where E is trivial and g = 1, we get∫

T∗X

T̂rs
[(
NV − n

)
exp (−Pb,0) ((0, Y ) , (0, Y ))

] dUdY

(2π)n−�/2
= −Td′ (−RTX

)
.

(7.46)
By (7.8) and (7.30), we get the second identity in (7.40) when g = 1.

Assume now that no eigenvalue of g is equal to 1. Then by (6.61) and (7.44),
or by a simple direct computation, we get

TrsΛ̂
·(T∗X)

[
g

(
NV − n

)
exp

(
−1

4
〈
RTXei, ej

〉
c (êi) c (êj)−

1
2
Tr

[
RTX

])]
= (−1)n

∂

∂c
Td−1

g

(
−RTX + c1

)
det TX

[
ge−RTX

]
= − (−1)n

Td′
g

Td2
g

(
−RTX

)
det TX

[
ge−RTX

]
. (7.47)

By combining (6.54) with (6.62), (6.63) and (7.47), we get the second identity in
(7.40) also in this case.

Now we will establish (7.41), (7.42). Observe that by (7.8), (7.30),

ϕTrs
[
g

(
3NV − 2n

)
exp

(
−A2

Y,b,t

)]
= −3

4
vb,t + nub,t. (7.48)

By (7.40), we find that as t→ 0,

ϕTrs
[
g

(
3NV − 2n

)
exp

(
−A2

b,t

)]
= −3

∫
Xg

Td′
g

(
TX, gTX

)
chg

(
E, gE

)
+ n

∫
Xg

Tdg

(
TX, gTX

)
chg

(
E, gE

)
+O (t) . (7.49)

By (7.8) and (7.30), to obtain the asymptotics of wb,t as t→ 0, we now need

to study the behaviour of ϕTrs
[
giω

M

t exp
(
−A2

Y,b,t

)]
as t → 0. When perform-

ing the rescalings indicated in Definition 6.4, only the part of ωM which lies in
Λ·

(
N∗

Xg/X,x,R ⊗R C
)

is rescaled by a factor
√
t or t. One concludes easily that

as t→ 0,

ϕTrs

[
gi
ωM

t
exp

(
−A2

Y,b,t

)]
=
Cb,−1

t
+O (1) . (7.50)

By combining (7.8), (7.30), (7.49), (7.50), we get the first term in the asymptotic
expansion of wb,t as t→ 0 in (7.41).

More generally, we know that the left-hand side of (7.50) has an asymptotic
expansion as t→ 0. We will now proceed as in [BGS88b].
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Indeed using the fact that ωM is closed, we get

∂

∂t
Trs

[
gωM exp

(
−A2

Y,b,t

)]
=
∂

∂c
Trs

[
gωM exp

(
−A2

Y,b,t − c
[
A′′

Y ,
∂

∂t
A′

Y,b,t

])]
|c=0

= ∂
S ∂

∂c
Trs

[
gωM exp

(
−A2

Y,b,t − c
∂

∂t
A′

Y,b,t

)]
|c=0

− ∂
∂c

Trs

[
giyω

M exp
(
−A2

Y,b,t − c
∂

∂t
A′

Y,b,t

)]
|c=0. (7.51)

By (7.15),
∂

∂t
A′

Y,b,t =
3t2

b4
∂

V ∗ − y
∗

t2
∧ . (7.52)

Let da, da be odd Grassmann variables which anticommute with all the other
odd operators or Grassmann variables. If α ∈ Λ· (T ∗

RS ⊗R C) ⊗̂C
[
da, da

]
, let

αdada ∈ Λ· (T ∗
RS ⊗R C) be the coefficient which appears as a factor of dada in the

expansion of α. By (7.51), (7.52), we obtain

− ∂
∂c

Trs

[
giyω

M exp
(
−A2

Y,b,t − c
∂

∂t
A′

Y,b,t

)]
|c=0

= Trs

[
g exp

(
−A2

Y,b,t −
da

t
iyω

M − da
(

3t3

b4
∂

V ∗ − y
∗

t
∧
))]dada

. (7.53)

To handle (7.53), as suggested by (6.9) and (7.16), we conjugate the operator
in the exponential in the right-hand side of (7.53) by Kbρ

∗
t3/2/b2

. Note that

Kbρ
∗
t3/2/b2

(
da

t
iyω

M + da
(

3t3

b4
∂

V ∗ − y
∗

t
∧
))
ρ∗−1

t3/2/b2
K1/b

= da
√
t

b
iyω

M + da
(

3
b
∂

V ∗ −
√
t

b
y∗∧

)
. (7.54)

Using (3.2), (3.9), we find that performing the rescaling indicated in Definition
6.4, the right-hand side of (7.54) consists either of terms which are unaffected, or
which are rescaled by

√
t. Ultimately by defining the operator Pb,0 as in (6.26), we

find that to study the limit as t→ 0 of (7.53), the limit operator to be considered
is given by

Qb,0 = Pb,0 +
3da
b
∂

V ∗
. (7.55)

By proceeding as in the proof of Theorem 6.1, using (7.51)–(7.55) and the fact
that no term with da appears in Qb,0, we find that as t→ 0,

− ∂
∂c

Trs

[
giyω

M exp
(
−A2

Y,b,t − c
∂

∂t
A′

Y,b,t

)]
|c=0 = O (t) . (7.56)
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By proceeding as before and using the parity argument which was given at
the end of the proof of Theorem 6.11, we find that as t→ 0,

∂

∂c
Trs

[
gωM exp

(
−A2

Y,b,t − c
∂

∂t
A′

Y,b,t

)]
|c=0 = O (t) . (7.57)

By (7.51), (7.56), (7.57), we find that as t→ 0,

∂

∂t
Trs

[
gωM exp

(
−A2

Y,b,t

)]
= O (t) . (7.58)

By (7.8), (7.30), (7.49), (7.50), (7.58), we get the asymptotic expansion for
wb,t in (7.41) and (7.42).

Now we will establish the identities in (7.43). We modify the definition of Pb,0

in (6.76) by adding 1
2Tr

[
RTX

]
. The first identity in (7.43) is just a consequence of

Theorem 6.12. By proceeding as in the proof of Theorem 6.12, we find that given
b > 0, as t→ 0,

1
4
v√tb,b = −ϕ

∫
NXg/X×T∗X

T̂rs
[
g

(
NV − n

)
exp (−Pb,0)

(
g−1 (U, Y ) , (U, Y )

)]
· dUdY
(2π)2n−�

+O
(√
t
)
. (7.59)

By using equation (5.53) in Theorem 5.2 and (7.59), we get the second identity in
(7.43).

The proof of our theorem is completed. �

7.6. The limit of the hypoelliptic superconnection forms as b→ 0 and t→∞
Here we assume S to be compact. Also as in Subsection 4.4, we assume that the
H(0,i) (X,E|X) , 0 ≤ i ≤ n have locally constant rank, so that H(0,·) (X,E|X) is a
holomorphic Z-graded vector bundle on S.

By (7.16) with t = 1, we get

ρ∗1/b2AY,bρ
∗−1
1/b2 = AYb

. (7.60)

Recall that AYb
is the component of degree 0 in Λ· (T ∗

RS ⊗R C) of AYb
. By (7.60),

we get
ρ∗1/b2AY,bρ

∗−1
1/b2 = AYb

. (7.61)

We take b0 > 0 small enough so that the conclusions of Subsections 3.10 and
6.1 hold uniformly over the fibres Xs, s ∈ S for b ∈]0, b0]. In particular for s ∈ S,
the spectrum of A2

Yb
lies in the domain indicated in Figure 3.3, and moreover,

(3.79) holds.
By the above, for b ∈]0, b0], we have the canonical isomorphism,

kerA2
Y,b � H(0,·) (X,E|X) . (7.62)

It follows from the results of Subsection 3.10 that for b ∈]0, b0], the restriction of

the Hermitian form εb to kerA2
Y,b is nondegenerate. Let gH

(0,·)(X,E|X )
b denote the
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corresponding holomorphic Hermitian form on H(0,·) (X,E|X) via the canonical
isomorphism (7.62).

For b ∈]0, b0], the holomorphic vector bundle H(0,·) (X,E|X) is equipped

with the Hermitian form gH
(0,·)(X,E|X )

b . There is a corresponding holomorphic con-

nection ∇H(0,·)(X,E|X )
b on H(0,·) (X,E|X) preserving gH

(0,·)(X,E|X )
b . We denote by

ch
(
H(0,·) (X,E|X) , gH

(0,·)(X,E|X)
b

)
the associated Chern character form on S.

The operator N defines the grading on ker A2
Y,b � H(0,·) (X,E|X).

Let η > 0 be small, and let δ ⊂ C be the circle of centre 0 and radius η. Put

Pb =
1

2iπ

∫
δ

dλ

λ−A2
Y,b

. (7.63)

As we saw in Subsection 3.10, for b > 0 small enough, the operator Pb is well
defined. For b > 0 small enough, Pb is exactly the spectral projector for A2

Y,b

which is associated to the eigenvalue 0. By (3.79), for b > 0 small enough, the
associated characteristic subspace is just kerA2

Y,b � H(0,·) (X,E|X). In particular
the operators Pb

(
NV − n

)
Pb,Pb

(
3NV − 3n+ iL

)
Pb act on kerA2

Y,b, and so they
act on H(0,·) (X,E|X).

Definition 7.10. Set

ub,∞ = ch
(
H(0,·) (X,E) , gH

(0,·)(X,E)
b

)
,

vb,∞ = −4ϕTrs
[
Pb

(
NV − n

)
Pb exp

(
−∇H(0,·)(X,E),2

b

)]
, (7.64)

wb,∞ = ϕTrs
[
Pb

(
3NV − 2n+ iL

)
Pb exp

(
−∇H(0,·)(X,E),2

b

)]
,

wb,∞ = ϕTrs
[
(N − n) exp

(
−∇H(0,·)(X,E),2

b

)]
.

Proposition 7.11. The following identity holds,

wb,∞ = wb,∞. (7.65)

Proof. By (7.64),

wb,∞ − wb,∞ = ϕTrs

[
Pb

(
2NV − n+NH(1,0) −NH(0,1) + iL

)
Pb

· exp
(
−∇H(0,·)(X,E|X ),2

b

)]
. (7.66)

For b ∈]0, b0], A′′
Y , A

′
Y,b both vanish on ker A2

Y,b. By (7.22) with t = 1 and by
(7.66), we get (7.65). �

Recall that ut, wt were defined in (4.6).
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Definition 7.12. Set

u0,t = ut, v0,t = 2nut, w0,t = wt. (7.67)

Now we state a result which is an obvious analogue of [BL06, Theorem 5.4].

Theorem 7.13. There exists b0 > 0 such that given t0 > 0, there exists C > 0 such
that for b ∈]0, b0], t ≥ t0,

|ub,t − ub,∞| ≤
C√
t
, |vb,t − vb,∞| ≤

C√
t
, |wb,t − wb,∞| ≤

C√
t
. (7.68)

Moreover, given t0 > 0, v ∈]0, 1[, there exists Ct0,v > 0 such that for b ∈]0, b0],
t ≥ t0,
|ub,t − u0,t| ≤ Ct0,vb

v, |vb,t − v0,t| ≤ Ct0,vb
v, |wb,t − w0,t| ≤ Ct0,vb

v. (7.69)

Proof. We claim that the arguments which were given to establish [BL06, Theorem
5.4] can be easily modified to establish our theorem.

Indeed our theorem is about uniform convergence as t → ∞ of forms de-
pending on (b, t), and about uniform convergence as b→ 0 of such forms. However
inspection of equations (2.31), (2.32), of Theorems 2.7, 2.8, 3.18 and of (7.16),
(7.17), (7.60) shows that analytically the situation is essentially the same as in
[BL06]. The only point where we will give more details is when studying the con-
vergence of the forms ub,t, vb,t, wb,t as b→ 0.

By Theorem 3.18, the proof of the estimate in (7.69) for ub,t follows the same
lines as the proof of the corresponding result in [BL06]. Also vb,t, wb,t are of the
form

hb,t = ϕTrs
[
Et exp

(
−A2

Y,b,t

)]
, (7.70)

where Et is an endomorphism which does not depend on Y , and is invariant by
conjugation by ρ∗a,Ka, a > 0. Recall that the projector P was defined in Subsection
3.9. Set

Ft = e−iωM,H/2tP exp (itΛ)Et exp (−itΛ)Peiω
M,H/2t. (7.71)

Put
h0,t = ϕTrs

[
Ft exp

(
−B2

t

)]
. (7.72)

Inspection of the arguments in [BL06] and of (3.115), (7.16), (7.17), shows that
under the conditions on the parameters given before (7.69),

|hb,t − h0,t| ≤ Ct0,vb
v. (7.73)

The question then arises to calculate Ft in the two remaining cases to be
considered in (7.69). Note that in the case of vb,t,

Ft = −4P
(
NV − n

)
P. (7.74)

Now one verifies easily that
PNV P = n/2, (7.75)

so that in the case of vb,t,
Ft = 2n. (7.76)

This fits with equation (7.67) for v0,t.
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In the case of wb,t, by (7.8),

Et = 3NV − 2n+ i
ωM

t
, (7.77)

so that by (3.6),

exp (itΛ)Et exp (−itΛ) = 3NV − 3n+ i
ωM

t
+NH(1,0) +NH(0,1) + itΛ. (7.78)

Moreover, by (7.75), we get

PNH(1,0)P =
n

2
. (7.79)

Also we have the trivial,

PωMP = ωM,H , PΛP = 0. (7.80)

By (7.75), (7.77)–(7.80), we get

Ft = NH(0,1) − n+ i
ωM,H

t
. (7.81)

By comparing with (4.6), we find that as it should be, h0,t = wt. The proof of our
theorem is completed. �

Remark 7.14. Obvious analogues of (7.68) and (7.69) are also valid for wb,t, with
w0,t = w0,t. As was pointed out in Remark 7.8, there is a better definition of wb,t

in positive degree. When using this better definition, one still finds that Theorem
7.13 remains valid with this new definition, the extra terms disappearing in the
limit b→ 0 or t→ +∞.

7.7. The hypoelliptic holomorphic torsion forms

We still assume the assumptions of Subsection 7.6 to be in force.
We will imitate the construction of the elliptic torsion forms in Subsection

4.5. We take b ∈]0, b0].

Definition 7.15. For s ∈ C,Re s > 1, set

ζ1 (s) = − 1
Γ (s)

∫ 1

0

ts−1 (wb,t − wb,∞) dt. (7.82)

For s ∈ C,Re s < 1/2, set

ζ2 (s) = − 1
Γ (s)

∫ ∞

1

ts−1 (wb,t − wb,∞) dt. (7.83)

Observe that by Theorems 7.9 and 7.13, ζ1 (s) , ζ2 (s) are holomorphic on their
domain of definition, and they extend to holomorphic functions near s = 0.
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Definition 7.16. Set

Tb,g

(
ωM , gE

)
=
∂

∂s

(
ζ1 + ζ2

)
(s) |s=0. (7.84)

Then Tb,g

(
ωM , gE

)
is an even form on S which lies in PS . It is called an hypoellip-

tic equivariant holomorphic torsion form. When g = 1, we will write Tb

(
ωM , gE

)
instead of Tb,1

(
ωM , gE

)
.

The strict analogue of equation (4.21) is now

Tb,g

(
ωM , gE

)
= −

∫ 1

0

(
wb,t −

Cb,−1

t
− Cb,0

)
dt

t
−

∫ ∞

1

(wb,t − wb,∞)
dt

t

+ Cb,−1 + Γ′ (1) (Cb,0 − wb,∞) . (7.85)

The main result of this subsection is the obvious extension of Theorem 4.6.

Theorem 7.17. The following identity holds,

∂∂

2iπ
Tb,g

(
ωM , gE

)
= chg

(
H(0,·) (X,E|X) , gH

(0,·)(X,E|X)
b

)
−

∫
Xg

Tdg

(
TX, gTX

)
chg

(
E, gE

)
. (7.86)

Proof. This is an obvious consequence of equation (7.31) in Theorem 7.7, of equa-
tions (7.40)–(7.42) in Theorem 7.9, of equation (7.68) in Theorem 7.13 and of
(7.85). �

Remark 7.18. It is remarkable that the hypoelliptic torsion forms Tb,g

(
ωM , gE

)
verify an equation which is the obvious analogue of the corresponding equation for
the elliptic forms Tg

(
ωM , gE

)
in Theorem 4.6. This makes indeed the comparison

of the forms possible in PS/PS,0. By proceeding as in [BK92], one could also
establish anomaly formulas for the hypoelliptic torsion forms. However since we
will prove a comparison formula between the elliptic and the hypoelliptic torsion
forms, and since the anomaly formulas are already known for the elliptic torsion
forms, we obtain this way the corresponding anomaly formulas in the hypoelliptic
case. For other considerations related to the anomaly formulas, we refer the reader
to Section 10.

7.8. A generalized Quillen metric on the determinant of the cohomology

For the moment we assume that S is reduced to a point. Recall that the line λ
was defined in (4.24) by

λ = detH(0,·) (X,E|X) . (7.87)
We will use the results of Subsection 3.10, with the slight modification that

S0 ⊂ S(0,·) (
X , π∗

(
Λ· (T ∗X) ⊗̂E

))
now denotes the characteristic subspace asso-

ciated to the eigenvalue 0 for the operator A2
Y,b. By (3.75), we have the canonical

isomorphism,
λ � det S0. (7.88)
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Let gS0
b be the restriction of εb to S0. As we saw in Subsection 3.10, the

Hermitian form gS0
b is non degenerate.

Definition 7.19. Let | |2det S0
be the generalized metric on det S0 which is induced

by gS0
b . Let | |2λ be the corresponding generalized metric on λ via the isomorphism

(7.88).
Note that the above objects depend explicitly on b > 0.

In Definition 7.19, we follow the terminology in [B05, Section 1.4]. Indeed if
gS0

b turns out to be a standard Hermitian metric, then | |2λ is the corresponding
Hermitian metric on λ. The above notation is just the obvious extension to the
general case. Note here that the square in | |2λ is not meant to indicate any positivity.
To the contrary, as explained in detail in [B05, Section 1.4], the generalized metric
| |2λ has a definite sign ε

(
| |2λ

)
. If gS0 has signature (p, q), this sign is (−1)q.

Let
(
A2

Y,b

)−1

be the inverse of A2
Y,b on S∗. For g ∈ G, s ∈ C,Res� 0, set

ϑg(s) = −TrsS∗
[
g (N − n)

(
A2

Y,b

)−s
]
. (7.89)

When g = 1, we will write ϑ (s) instead of ϑ1 (s).
By proceeding as in [BL06, Subsection 6.3], we claim that the nonzero real

number eϑ
′(0) is well defined. Indeed we use the results on the spectrum of A2

Y,b in
Subsection 3.10 which are the strict analogues of corresponding results in [BL06],
and in particular the fact that the spectrum is conjugation invariant, and also
the results in (7.34) and in Theorem 7.9 on the asymptotic expansion on wb,t as
t→ 0. The sign of eϑ

′(0) depends only on the finite number of negative eigenvalues
of A2

Y,b.

Definition 7.20. Put
Sb

(
gTX , gE

)
= eϑ

′(0). (7.90)

Let ‖ ‖2λ,h be the generalized metric on λ,

‖ ‖2λ,h = Sb

(
gTX , gE

)
| |2λ . (7.91)

Let ε
(
‖ ‖2λ,h

)
be the sign of the generalized metric ‖ ‖2λ. By (7.91), we get

ε
(
‖ ‖2λ,h

)
= sign

(
Sb

(
gTX , gE

))
ε
(
| |2λ

)
. (7.92)

Now we adapt Definition 7.16 to the case where S is a point, so thatM = X .
Here THM = {0}. For b ∈ R∗

+ small enough, we have defined the real num-
ber Tb

(
gTX , gE

)
, which is just Tb,g

(
gTX , gE

)
in the case where g = 1. Here the

notation ωM has been dropped.
For b > 0 small enough, by the results of Subsection 3.10, there is no am-

biguity in the definition of ϑ (s), since the nonzero eigenvalues have positive real
part.
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Proposition 7.21. For b > 0 small enough, the following identity holds,

Tb

(
gTX , gE

)
=

1
2
ϑ′ (0) . (7.93)

Proof. By (7.34), we can replace wb,t by wb,t in the definition of Tb

(
gTX , gE

)
. Our

proposition is now obvious. �
By proceeding as in [BL06], i.e., by a suitable truncation procedure, there is

an analogue of Proposition 7.21 for arbitrary b > 0.

7.9. A smooth generalized metric on the determinant bundle

We suppose again that S is arbitrary. Moreover, we do no longer assume that the
H(0,i) (X,E|X) , 0 ≤ i ≤ n have locally constant rank. Let λ be the holomorphic
line bundle on S which was defined in (4.23). For every s ∈ S, we have the canonical
isomorphism in (4.24) which we repeat,

λs = det H(0,·) (Xs, E|Xs) . (7.94)

We replace temporarily S by S′ = S ×R∗
+. The line bundle λ lifts to S′. For

s′ = (s, b) ∈ S′, we can equip the fibres λs with the generalized metric ‖ ‖2λ,h,s,b.
For simplicity, this metric will be denoted as ‖ ‖2λ,h.

Theorem 7.22. The metric ‖ ‖2λ,h is a smooth generalized metric on the line bundle
λ over S′.

Proof. The proof of our theorem is strictly identical to the proof of [BGS88c,
Theorems 1.6 and 3.14] and of [BL06, Theorem 6.14]. �
7.10. The equivariant determinant bundle

First we assume that S is reduced to a point. We use the same notation as in
Subsection 4.7. In particular if W ∈ Ĝ, λW was defined in (4.28). Also λ was
defined in (4.29).

Clearly G commutes with A2
Y,b. The splitting (3.73) is preserved by G. The

generalized metric gS0
b is also G-invariant.

Now we proceed as in [B05, Subsection 1.12]. If W ∈ Ĝ, set

S0,W = HomG (W,S0)⊗W. (7.95)

Then we have the isotypical decomposition,

S0 =
⊕

W∈Ĝ

S0,W . (7.96)

By [B05, Proposition 1.24], the decomposition (7.96) is gS0
b orthogonal, and the

restriction of gS0
b to each term in the right-hand side of (7.96) is nondegenerate.

The S0,W are subcomplexes of S0. Set

μW = det S0,W , μ =
⊕

W∈Ĝ

μW . (7.97)
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There are canonical isomorphisms,

λW � μW . (7.98)

By (7.98), we have the canonical isomorphism,

λ � μ. (7.99)

We use the notation in [B05, Definition 1.25].

Definition 7.23. Let log
(
| |2μ

)
be the logarithm of the generalized equivariant met-

ric on μ which is associated to gS0
b , and let log

(
| |2λ

)
be the corresponding object

on λ via the canonical isomorphism (7.99).

Let log | |2det μW
be the logarithm of the generalized metric on μW associated to

the restriction of gS0
b to S0,W . Recall that χW is the character of the representation

associated to W . Then we have the identity

log
(
| |2μ

)
=

∑
W∈Ĝ

log
(
| |2μW

)
⊗ χW

rkW
. (7.100)

As before, some care has to be given to the fact that the generalized metrics
in (7.100) are not necessarily positive. Therefore each term log

(
| |2μW

)
contains

implicitly the logarithm of the sign of the corresponding metric. The logarithm of
the sign is just kiπ, with k ∈ Z determined modulo 2.

Recall that ϑg (s) was formally defined in (7.89). Note that there are still
ambiguities in the definition of ϑg (s), due to the negative part of the spectrum.
These ambiguities are lifted as before, by still splitting the spectrum of A2

Y,b. There
remain ambiguities of the type ∑

kW iπχW , (7.101)

with kW ∈ Z being unambiguously determined mod 2. In the case where G is
trivial, we got rid of the ambiguity in Subsection 7.8 by taking the exponential.

Now we imitate equation (7.91) in Definition 7.20.

Definition 7.24. Put

log
(
‖ ‖2λ,h

)
= log

(
| |2λ

)
+ ϑ′· (0) . (7.102)

The object in (7.102) will be called the logarithm of the generalized equivariant
Quillen metric on λ.

The same arguments as in Proposition 7.21 show that for b > 0 small enough,

Tb,g

(
gTX , gE

)
=

1
2
ϑ′g (0) . (7.103)

The obvious analogue of Theorem 7.22 is that the generalized equivariant Quillen
metric on λ is ‘smooth’ over S′ = S ×R∗. In the case where G is trivial, this was
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already proved in Theorem 7.22. In the general case, this means in particular that
the sign of the various metrics remains constant, or equivalently, that the integers
which express the logarithms of these signs remain constant modulo 2. The proof
is exactly the same as the proof of Theorem 7.22.

7.11. The dependence on b of the hypoelliptic Quillen metric

Proposition 7.25. For any g ∈ G, for b > 0, the following identity holds,

∂

∂b
log ‖ ‖2λ,h (g) =

4
b

∫
Xg

Td′
g

(
TX, gTX

)
chg

(
E, gE

)
. (7.104)

Proof. We may assume that S is reduced to a point. By Theorem 7.7, the form
a is closed. By proceeding as in the proof of [BL06, Theorem 6.19], where we use
Theorem 7.7 instead of [BL06, Theorem 4.3] and also equation (7.40) in Theorem
7.9 instead of [BL06, Theorem 4.8], we get (7.104). The proof of our proposition
is completed. �

Remark 7.26. The fact that the hypoelliptic Quillen metric ‖ ‖λ,h depends very
simply on b is remarkable. Proposition 7.25 will be considerably extended in Section
10, where it will be shown that the dependence of the Quillen metric on the metric
on the vertical fibre T̂X can be expressed in terms of Bott-Chern classes.

8. A comparison formula for the hypoelliptic torsion forms and the
hypoelliptic Quillen metrics

In this section, we give a formula comparing the hypoelliptic and the elliptic torsion
forms, for b > 0 small enough. We still assume that the horizontal and vertical
metrics on X are proportional with a fixed constant of proportionality. Corre-
sponding comparison formulas are also given for Quillen metrics. From the results
of this section and also using anomaly formulas, we will obtain an extension of
this result to the general case in Section 10.

This section is organized as follows. In Subsection 8.1, we recall the definition
of Bott-Chern classes.

In Subsection 8.2, we give the comparison formula.
In Subsection 8.3, we introduce a rectangular contour Γ ⊂ R∗2

+ . Our main
result will be obtained by integrating on Γ the form a of Theorem 7.7 and by
taking part of the contour Γ to infinity.

In Subsection 8.4, we state two intermediate results, whose proof is deferred
to Section 9.

In Subsection 8.5, we study the asymptotics of the contribution of the four
sides of Γ to the integral of a as Γ is taken to infinity.

In Subsection 8.6, we verify that the divergences in the asymptotics effectively
compensate in PS/PS,0.

In Subsection 8.7, we prove our main identity.
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In Subsection 8.8, we give a formula comparing elliptic and hypoelliptic
Quillen metrics.

In the whole section, we use the notation of Sections 4 and 7. Also the as-
sumptions of Subsections 7.6–7.7 are supposed to be in force. In particular S is
assumed to be compact.

8.1. Bott-Chern classes

Let Z be a complex manifold. Let PZ , PZ,0 be the space of smooth forms on Z
which were defined in Subsection 4.3. Let E be a holomorphic vector bundle on Z,
let gE, gE′ be two Hermitian metrics on Z. Let Q be a characteristic polynomial.
Then Q

(
E, gE

)
and Q

(
E, gE′) are closed forms in PZ , which lie in the same

cohomology class Q (E).
The theory of Bott-Chern classes [BGS88a, Section 1 f)] implies the existence

of a class Q̃
(
E, gE , gE′) ∈ PZ/PZ,0 such that

∂∂

2iπ
Q̃

(
E, gE, gE′) = Q

(
E, gE′)−Q (

E, gE
)
. (8.1)

Indeed [BGS88a, Theorem 1.29] asserts that the class Q̃
(
E, gE, gE′) is uniquely

characterized by (8.1), by the fact that it vanishes for gE′ = gE , and by functori-
ality.

Observe that the class of Tdg

(
TX, gTX

)
chg

(
E, gE

)
in PMg/PMg,0 does not

depend on gTX , gE . This class will be denoted Tdg (TX) chg (E).

8.2. The main result

Theorem 8.1. For b ∈]0, b0], 0 ≤ i ≤ n, the Hermitian forms gH
(0,i)(X,E|X)

b are
Hermitian metrics. For b ∈]0, b0], the following identity holds,

Tb,g

(
ωM , gE

)
− Tg

(
ωM , gE

)
− c̃hg

(
gH

(0,·)(X,E|X ), g
H(0,·)(X,E|X )
b

)
−

∫
Xg

Td′
g (TX) chg (E) log

(
b4

)
−

∫
Xg

Tdg (TX)Rg (TX) chg (E) = 0 inPS/PS,0. (8.2)

Proof. The remainder of the section is devoted to the proof of our theorem. �

8.3. A contour integral

Recall that the even differential form a was defined in equation (7.32). Let β, ε, A
be such that 0 < β < b0, 0 < ε < 1 < A. Let Γ be the oriented rectangular
contour in R∗2

+ indicated in Figure 8.1. The contour Γ is made of four oriented
pieces Γ1, . . . ,Γ4. It bounds a domain Δ.

By construction,
∫
Γ a lies in PS .
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t

A

0 b0

Γ3

Γ4

Γ2

Γ1

ε

Δ

 bβ

Figure 8.1

Proposition 8.2. The following identity of even forms holds on S,∫
Γ

a ∈ PS,0. (8.3)

Proof. Equation (8.3) follows from (7.33). �
As was explained in Remark 7.8, the form in (8.3) can be made completely

explicit.
For 1 ≤ k ≤ 4, set

I0k =
∫

Γk

a. (8.4)

We can rewrite equation (8.3) in the form,
4∑

k=1

I0k ∈ PS,0. (8.5)

To obtain Theorem 8.1, we will make A→∞, β → 0, ε→ 0 in this order in (8.5).
When S is compact and Kähler, PS,0 is closed in PS , so that limits can be

taken in (8.5) without difficulty. In the case of a general compact manifold S, we
should also control the right-hand side when taking the various limits. This can
be done along arguments similar to the ones which we will use in the sequel. A
similar problem was already studied in [B97]. The somewhat tedious details will
be left to the reader.

8.4. Two intermediate results

In view of equation (7.40) in Theorem 7.9, we will use the notation,

vb,0 = 4
∫

Xg

Td′
g

(
TX, gTX

)
chg

(
E, gE

)
. (8.6)
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For u > 0, set

mu = −
∫

Xg

Tdg

(
TX, gTX

) Σ̂′
g

Σ̂g

(
u, TX, gTX

)
chg

(
E, gE

)
. (8.7)

Recall that gH
(0,·)(X,E|X ) is the classical L2 metric on H(0,·) (X,E|X) which

was defined in Subsection 4.4, and that for b ∈]0, b0], g
H(0,·)(X,E|X)
b is the Hermitian

form on H(0,·) (X,E|X) introduced in Subsection 7.6.

Theorem 8.3. For any v ∈]0, 1[, when b→ 0,

g
H(0,·)(X,E|X)
b = b2n

(
gH

(0,·)(X,E|X ) +O (bv)
)
. (8.8)

Theorem 8.4. There exist C > 0, α ∈]0, 1] such that for ε ∈]0, 1], b ∈]0, 1],∣∣v√εb,ε − v0,ε

∣∣ ≤ Cbα. (8.9)

For any b′0 ≥ 1, there exist C > 0 such that for ε ∈]0, 1], b ∈ [
√
ε, b′0],

|vb,ε − vb,0| ≤ C
ε

b2
. (8.10)

Proof. The proof of Theorems 8.3 and 8.4 is deferred to Section 9. �

Remark 8.5. By Theorem 8.3, b ∈]0, b0], and for b small enough, for any i, 0 ≤ i ≤
n, gH

(0,i)(X,E|X )
b is a Hermitian metric. Since for b ∈]0, b0], the forms gH

(0,i)(X,E|X )
b

are nondegenerate, for b ∈]0, b0], the signature of these Hermitian forms remains

constant. Therefore for b ∈]0, b0], the gH
(0,i)(X,E)

b are Hermitian metrics, which is
the first part of Theorem 8.1.

By (4.9) in Theorem 4.2 and by (7.43) in Theorem 7.9, we can take the
limit as ε → 0 in (8.9), which is a known identity because of (5.64). Similarly by
replacing b by b

√
ε in (8.10) with b ≥ 1, and making ε→ 0, we obtain an inequality

which itself follows from (5.63).

8.5. The asymptotics of the I0k
We start from identity (8.5), which asserts that

4∑
k=1

I0k = 0 in PS/PS,0. (8.11)

1) The term I01. Clearly,

I01 =
∫ A

ε

wb0,t
dt

t
. (8.12)

α) A→∞. By Theorem 7.13, as A→∞,

I01 − wb0,∞ log (A) → I11 =
∫ 1

ε

wb0,t
dt

t
+

∫ ∞

1

(wb0,t − wb0,∞)
dt

t
. (8.13)

β) β → 0. The term I11 remains constant and equal to I21 .
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γ) ε→ 0. By equation (7.41) in Theorem 7.9, as ε→ 0,

I21 −
Cb0,−1

ε
+ Cb0,0 log (ε)→ I31 =

∫ 1

0

(
wb0,t −

Cb,−1

t
− Cb0,0

)
dt

t

+
∫ ∞

1

(wb0,t − wb0,∞)
dt

t
− Cb0,−1. (8.14)

δ) Evaluation of I31 .

Proposition 8.6. The following identity holds,

I31 = −Tb0,g

(
ωM , gE

)
+ Γ′ (1) (Cb0,0 − wb0,∞) . (8.15)

Proof. This follows from (7.85) and (8.14). �

2) The term I02. We have the identity,

I02 = −
∫ b0

β

vb,A
db

b
. (8.16)

α) A→∞. By Theorem 7.13, as A→∞,

I02 → I12 = −
∫ b0

β

vb,∞
db

b
. (8.17)

Also using (7.8), (7.64), (8.17) and [BGS88a, Corollary 1.30], we get

I12 = c̃hg

(
g

H(0,·)(X,E|X)
β , g

H(0,·)(X,E|X)
b0

)
in PS/PS,0. (8.18)

β) β → 0. Clearly,

I12 = c̃hg

(
gH

(0,·)(X,E|X ), g
H(0,·)(X,E|X)
b0

)
− c̃hg

(
gH

(0,·)(X,E|X), g
H(0,·)(X,E|X)
β

)
in PS/PS,0. (8.19)

By equation (8.8) in Theorem 8.3 and by [BGS88a, Corollary 1.30], as β → 0, for
any v ∈]0, 1[ ,

c̃hg

(
gH

(0,·)(X,E|X), g
H(0,·)(X,E|X)
β

)
= −2nchg

(
H(0,·) (X,E|X) , gH

(0,·)(X,E|X)
)

log (β) +O (βv) . (8.20)

So by (8.19), (8.20), we find that as β → 0,

I12 − 2nchg

(
H(0,·) (X,E|X) , gH

(0,·)(X,E|X)
)

log (β)

→ I22 = c̃hg

(
gH

(0,·)(X,E|X), g
H(0,·)(X,E|X )
b0

)
inPS/PS,0. (8.21)

γ) ε→ 0. As ε→ 0, I22 remains constant and equal to I32 .
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3) The term I03. We have the identity,

I03 = −
∫ A

ε

wβ,t
dt

t
. (8.22)

α) A→∞. By equation (7.68) in Theorem 7.13, as A→∞,

I03 + wβ,∞ log (A) → I13 = −
∫ 1

ε

wβ,t
dt

t
−

∫ ∞

1

(wβ,t − wβ,∞)
dt

t
. (8.23)

β) β → 0. By equations (7.68) and (7.69) in Theorem 7.13, as β → 0,

I13 → I23 = −
∫ 1

ε

w0,t
dt

t
−

∫ ∞

1

(w0,t − w0,∞)
dt

t
. (8.24)

γ) ε→ 0. By (4.10), (7.67) and (8.24), as ε→ 0,

I23 +
C−1

ε
− C0 log (ε)

→ I33 = −
∫ 1

0

(
wt −

C−1

t
− C0

)
dt

t
−

∫ +∞

1

(wt − w∞)
dt

t
+ C−1. (8.25)

δ) Evaluation of I33 .

Proposition 8.7. The following identity holds,

I33 = Tg

(
ωM , gE

)
− Γ′ (1) (C0 − w∞) . (8.26)

Proof. Our proposition follows from (4.21) and (8.25). �

4) The term I04. Clearly,

I04 =
∫ b0

β

vb,ε
db

b
. (8.27)

α) A→∞. The term I04 remains constant and equal to I14 .

β) β → 0. By Theorem 7.13, as β → 0,

I14 + v0,ε log (β) → I24 =
∫ b0

0

(vb,ε − v0,ε)
db

b
+ v0,ε log (b0) . (8.28)

γ) ε→ 0. Take ε > 0 small enough so that b0/
√
ε > 1. Set

J0
1 =

∫ 1

0

(
v√εb,ε − v0,ε

) db
b
, J0

2 =
∫ b0/

√
ε

1

(
v√εb,ε − v√εb,0

) db
b
. (8.29)
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Clearly,

I24 = J0
1 + J0

2 + v0,ε log
(√
ε
)

+ 4
∫

Xg

Td′
g

(
TX, gTX

)
chg

(
E, gE

) (
log (b0)− log

(√
ε
))
. (8.30)

By equation (4.9) in Theorem 4.2, by equation (7.43) in Theorem 7.9, by (7.67),
by equation (8.9) in Theorem 8.4, as ε→ 0,

J0
1 → J1

1 =
∫ 1

0

4m1/b4
db

b
=

∫ ∞

1

mu
du

u
. (8.31)

By (5.58), we know that as u→ 0,

mu = −
∫

Xg

(n
2

Tdg

(
TX, gTX

)
− Td′

g

(
TX, gTX

))
chg

(
E, gE

)
+O (u) . (8.32)

By (7.43) in Theorem 7.9, by (8.6), by (8.10) in Theorem 8.4 and by (8.32), as
ε→ 0,

J0
2 → J1

2 =
∫ 1

0

(
mu −

∫
Xg

(
Td′

g

(
TX, gTX

)
− n

2
Tdg

(
TX, gTX

))
chg

(
E, gE

))du
u
. (8.33)

Using again (4.9) in Theorem 4.2, and also (8.29)–(8.33), we find that as ε→ 0,

I24 +
∫

Xg

(
2Td′

g

(
TX, gTX

)
− nTdg

(
TX, gTX

))
chg

(
E, gE

)
log (ε)

→ I34 = J1
1 + J1

2 + 4
∫

Xg

Td′
g

(
TX, gTX

)
chg

(
E, gE

)
log (b0) . (8.34)

δ) Evaluation of I34 . Recall that the genus Rg was defined in (5.71). We define the

closed form
Â′

g

Âg

(
TX, gTX

)
in the same way as

Td′
g

Tdg

(
TX, gTX

)
in Subsection 7.5.

Proposition 8.8. The following identity holds,

I34 =
∫

Xg

Tdg

(
TX, gTX

) (
Rg + 2Γ′ (1)

Â′
g

Âg

) (
TX, gTX

)
chg

(
E, gE

)
+ 4

∫
Xg

Td′
g

(
TX, gTX

)
chg

(
E, gE

)
log (b0) . (8.35)

Proof. Observe that

Td′
g

Tdg

(
TX, gTX

)
=
Â′

g

Âg

(
TX, gTX

)
+
n

2
. (8.36)
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By (8.7), (8.33) and (8.36), we get

J1
2 =

∫
Xg

Tdg

(
TX, gTX

)
·
∫ 1

0

(
−

Σ̂′
g

Σ̂g

(
u, TX, gTX

)
−
Â′

g

Âg

(
TX, gTX

)) du
u

chg

(
E, gE

)
. (8.37)

Using (5.66), equations (5.67) and (5.68) in Theorem 5.6, and (8.31), (8.34), (8.37),
we get (8.35). �

8.6. Matching the divergences

Proposition 8.9. The following identity holds,
4∑

k=1

I3k = 0 in PS/PS,0. (8.38)

Proof. We start from equation (8.11). As A → ∞, by (8.13), (8.23), we have the
diverging terms

(wβ,∞ − wb0,∞) log (A) . (8.39)

By (7.64) and by equation (7.65) in Proposition 7.11, it is clear that the forms
wb,∞ ∈ PS are closed and that their cohomology class does not depend on b. Using
(8.39), we thus find that

4∑
k=1

I1k = 0 in PS/PS,0. (8.40)

By (7.67), (8.21), (8.28), as β → 0, we have the diverging terms,

2n
(
−chg

(
H(0,·) (X,E|X) , gH

(0,·)(X,E|X )
)

+ uε

)
log (β) . (8.41)

By Theorems 4.2 and 4.3, (8.41) lies in PS,0. So by (8.40), we get

4∑
k=1

I2k = 0 in PS/PS,0. (8.42)

By (8.14), (8.25), (8.34), as ε→ 0, we have the diverging terms,

(−Cb0,−1 + C−1)
1
ε

+

(
Cb0,0 − C0 +

∫
Xg

(
2Td′

g

(
TX, gTX

)
− nTdg

(
TX, gTX

))
chg

(
E, gE

))
log (ε) . (8.43)

By (4.11), (7.42), the expression in (8.43) vanishes in PS/PS,0. By (8.42), we get
(8.38). The proof of our proposition is completed. �
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8.7. A proof of Theorem 8.1
We will now establish Theorem 8.1. Indeed using Proposition 8.6, (8.21), Propo-
sitions 8.7, 8.8 and 8.9, we get

− Tb0,g

(
ωM , gE

)
+ Tg

(
ωM , gE

)
+ c̃hg

(
H(0,·) (X,E|X) , gH

(0,·)(X,E|X ), g
H(0,·)(X,E|X )
b0

)
+

∫
Xg

Tdg

(
TX, gTX

)
Rg

(
TX, gTX

)
chg

(
E, gE

)
+

∫
Xg

Td′
g

(
TX, gTX

)
chg

(
E, gE

)
log

(
b40

)
+ Γ′ (1)

(
Cb0,0 − C0 + 2

∫
Xg

Tdg

(
TX, gTX

) Â′
g

Âg

(
TX, gTX

)
chg

(
E, gE

))
+ Γ′ (1) (w∞ − wb0,∞) = 0 inPS/PS,0. (8.44)

Now we use (4.11), (7.42) as in (8.43), to conclude that the sum of the terms in
the last two lines of (8.44) vanishes in PS/PS,0. Therefore (8.44) is just (8.2) for
b = b0. The proof of (8.2) for 0 < b ≤ b0 is of course the same. We have completed
the proof of Theorem 8.1.

8.8. A comparison formula for the Quillen metrics

We make the same assumptions as in Subsections 4.6 and 7.8. We may as well
assume that S is reduced to a point.

First we assume that G is trivial. Put

λ = det
(
H(0,·) (X,E|X)

)
. (8.45)

Let ‖ ‖λ denote the elliptic Quillen metric on λ which was defined in Subsection
4.6. For b > 0, let ‖ ‖λ,h,b be the hypoelliptic generalized Quillen metric which was
defined in Subsection 7.8.

Theorem 8.10. For b > 0, the generalized metric ‖ ‖2λ,h,b is a Hermitian metric.
Moreover, the following identity holds,

log

(
‖ ‖2λ,h,b

‖ ‖2λ

)
=

∫
X

Td (TX)R (TX) ch (E) +
∫

X

Td′ (TX) ch (E) log
(
b4

)
.

(8.46)

Proof. By Theorem 7.25, it is enough to prove our theorem for one given b > 0.
For b > 0 small enough, by Theorem 8.1, gH

(0,·)(X,E|X )
b is a Hermitian metric.

Also as we saw in Subsections 3.10 and 7.8, for b > 0 small enough, exp (θ′ (0)) >
0. Therefore for b > 0 small enough, ‖ ‖2λ,h,b is a Hermitian metric. Finally for
b > 0 small enough, (8.2) in degree 0 is just (8.46). The proof of our theorem is
completed. �
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Now we consider the case of a general Lie group G. We define λ as in (4.29).
For b > 0, we define the elliptic equivariant Quillen metric ‖ ‖2λ as in Definition
4.10, and the generalized hypoelliptic equivariant metric ‖ ‖λ,h,b as in Definition
7.24.

Theorem 8.11. For b > 0, g ∈ G, the following identity holds,

log

(
‖ ‖2λ,h,b

‖ ‖2λ

)
(g) =

∫
Xg

Td′
g (TX) chg (E) log

(
b4

)
+

∫
Xg

Tdg (TX)Rg (TX) chg (E) . (8.47)

Proof. The proof of our theorem is the same as the proof of Theorem 8.10. �

Remark 8.12. By Theorem 8.1, for b > 0 small enough, (8.47) is an identity of
complex numbers. For an arbitrary b > 0, one should remember that (7.100) and
(7.102) are affected by mod 2 ambiguities, which cannot be ignored in (8.47).

9. A proof of Theorems 8.3 and 8.4

The purpose of this section is to establish Theorems 8.3 and 8.4. The methods
to establish these results are closely related to the methods used in [BL06] in the
context of de Rham theory.

This section is organized as follows. In Subsection 9.1, we prove Theorem 8.3.
In Subsection 9.2, we prove Theorem 8.4.

9.1. A proof of Theorem 8.3
In this subsection, we first assume that S is reduced to one point.

Recall that the vector space of harmonic forms H· on X was defined in (4.12),
and that we have the canonical isomorphism in (4.13).

For b > 0, set

βb = exp

(
b2iω̂X ,V − b2 |Y |

2

2

)
. (9.1)

The form βb is exactly the form β in (3.61) which is attached to the metric b2gTX .
If s ∈ H, put

sb = π∗s ∧ βb. (9.2)
Using equation (3.32) in Proposition 3.3 and (3.63), we get(

∂
X

+ iy
)
sb = 0, (9.3)

and moreover,
i∗sb = s. (9.4)

By Proposition 3.9 and by (9.3), (9.4), we find that sb is a suitable representative
in Ω(0,·) (

X , π∗
(
Λ· (T ∗X) ⊗̂E

))
of the class [s] ∈ H(0,·) (X,E|X).
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Recall that the spectral projector Pb on ker A2
Y,b is given by (7.63). For

b > 0 small enough, Pbsb is just the canonical representative in kerA2
Y,b of the

class [s] ∈ H(0,·) (X,E|X).
Take s, s′ ∈ H·. By definition,

〈[s] , [s′]〉
g

H(0,·)(X,E|X )
b

= εb (Pbsb,Pbs
′
b) . (9.5)

By (7.60),
AY,b = ρ∗b2AYb

ρ∗−1
b2 . (9.6)

Recall that the operator CY,b was defined in (3.65), and is given by equation (3.68).
By (3.47), (3.65),

AYb
= K−1

b exp (−iΛ)CY,b exp (iΛ)Kb. (9.7)

Moreover, we have the obvious,

ρ∗b2 = b2NV

Kb2 . (9.8)

By (9.6)–(9.8), we get

AY,b = b2NV

Kb exp (−iΛ)CY,b exp (iΛ)K−1
b b

−2NV

. (9.9)

Incidentally note that the order of the factors in the conjugating element in (9.9)
is irrelevant.

Set
Pb =

1
2iπ

∫
δ

dλ

λ− C2
Y,b

dλ. (9.10)

For b > 0 small enough, Pb is the spectral projector on ker C2
Y,b. By (9.9),

Pb = b2NV

Kb exp (−iΛ)Pb exp (iΛ)K−1
b b

−2NV

. (9.11)

By (3.54), (3.55), (7.1), (9.5), we get

〈[s], [s′]〉
g

H(0,·)(X,E|X )
b

= b2nη (Pb exp (iΛ)π∗s ∧ β,Pb exp (iΛ)π∗s′ ∧ β) . (9.12)

Recall that the projector P was defined in Subsection 3.9. Let P be the
orthogonal projection operator from Ω(0,·) (X,E) on H·. By proceeding as in [BL06,
eqs. (3.67) and (10.11)], since s ∈ H·, for v ∈]0, 1[, as b→ 0,

Pb exp (iΛ)π∗s ∧ β =
(
P⊗̂P

)
exp (iΛ)π∗s ∧ β +O (bv) ‖s‖ . (9.13)

Now observe that Λ decrease the degree in Λ· (T ∗X) by 1. Therefore when
grading forms in Λ· (T ∗X) ⊗̂Λ̂· (T ∗X

)
by NV −NH(1,0), (exp (iΛ)− 1)π∗s ∧ β is

of positive degree. Since P is a projector on forms of degree 0 and s ∈ H·, we find
that (

P⊗̂P
)
exp (iΛ)π∗s ∧ β =

(
P⊗̂P

)
π∗s ∧ β = π∗s ∧ β. (9.14)

Moreover, r∗β = β. Using (3.69) and (9.12)–(9.14), we find that

〈[s] , [s′]〉
g

H(0,·)(X,E|X )
b

= b2n
(
〈s, s′〉

gH(0,·)(X,E|X ) +O (bv) ‖s‖ ‖s′‖
)
, (9.15)

which is just Theorem 8.3 in the case of one single fibre.
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When S is compact and not reduced to a point, the above estimates can be
made uniform over S, so that we still get Theorem 8.3.

9.2. A proof of Theorem 8.4
Using the above arguments, one verifies easily that the proof of Theorem 8.4 can
be obtained by the same arguments as the proof of the corresponding statements
in [BL06, Theorem 8.6]. Details are left to the reader.

10. Generalized hypoelliptic torsion forms and anomaly formulas

The purpose of this section is to extend the results of Sections 3, 7 and 8 in the
case where the horizontal gTX on TX and the vertical metric ĝTX on T̂X are
distinct. Still gTX will still be assumed to be Kähler.

We show in particular that the hypoelliptic Quillen metric does not depend
on gTX , and moreover, that there is an explicit comparison formula with elliptic
Quillen metrics which extends the formula of Theorem 8.11. Similar results are
established in the equivariant context and also for hypoelliptic torsion forms.

This section is organized as follows. In Subsection 10.1, we briefly consider the
Hodge theory of a Dolbeault-Koszul complex associated to two distinct metrics.

In Subsection 10.2, we extend the results of Section 3 to the more general
situation which is considered here.

In Subsection 10.3, we extend certain results of local index theory of Section 7.
In Subsection 10.4, we construct corresponding hypoelliptic torsion forms.
In Subsection 10.5, we give anomaly formulas for these torsion forms.
In Subsection 10.6, we give a general formula comparing the hypoelliptic to

the elliptic torsion forms.
In Subsection 10.7, we state a corresponding comparison formula for Quillen

metrics.
Finally in Subsection 10.8, we relate our comparison formulas to the immer-

sion formulas for standard Quillen metrics or elliptic torsion forms of [BL91, B95,
B97].

10.1. The Dolbeault-Koszul complex on a complex vector space with two distinct
metrics

Let W be a complex vector space of dimension n, let WR be the corresponding
real vector space of dimension 2n. Let y be the tautological section of W .

The Dolbeault-Koszul complex
(
S(0,·) (W,Λ· (W ∗)) , ∂

W
+ iy

)
is naturally

Z-graded by the operator N (0,1) −N (1,0). The arguments given in Subsection 3.8
apply to this complex. In particular its cohomology is 1-dimensional and concen-
trated in degree 0.

Let gW , ĝW be two Hermitian metrics on W .
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We view W as a complex manifold equipped with the metric gW on its
tangent bundle. In particular Λ·

(
W

∗)
is equipped with the metric induced by

ĝW . Moreover, we equip Λ· (W ∗) with the metric induced by gW .
We equip S(0,·) (W,Λ· (W ∗)) with the L2 Hermitian product defined as in

(3.16). Here the volume element on W is calculated with respect to ĝW , and the
Hermitian product on Λ·

(
W

∗) ⊗̂Λ· (W ∗) incorporates the two metrics gW , ĝW .

The formal adjoint
(
∂

W
+ iy

)∗
of ∂

W
+ iy is given by(

∂
W

+ iy
)∗

= ∂
W∗

+ y∗ ∧ . (10.1)

In (10.1), ∂
W∗

is the adjoint of ∂
W

and only depends on ĝW , and y∗ ∈ W ∗

corresponds to y ∈W by the metric gW .
Set

L =
[
∂

W
+ iy, ∂

W∗
+ y∗∧

]
. (10.2)

The case where gW = ĝW was considered in detail in [B90b, Section 1]. We
will now use the results of [B90b] in this more general context.

Let c ∈ End (W ) be self-adjoint positive with

gW = ĝW c2, (10.3)

so that if U ∈W ,
|U |2gW = |cU |2ĝW . (10.4)

Let γ1, . . . , γn > 0 be the eigenvalues of c. The vector space W splits into n
mutually orthogonal complex lines. Using this splitting, we may as well assume
that W is 1-dimensional, and that given γ > 0, then

gW = γ2ĝW . (10.5)

In what follows, we will evaluate the Laplacian Δ and the norm |Y | with
respect to ĝW . Let w ∈ W be of norm 1 with respect to ĝW , and let w∗ ∈ W ∗ be
dual to w. An easy computation shows that

L =
1
2

(
−Δ + γ2 |Y |2

)
+ γ2w∗ ∧ w∗ − iwiw. (10.6)

For a > 0, let ra be the map y → ay. Set

M = r∗1/
√

γLr
∗√

γ . (10.7)

By (10.6), we get

M = γ
(

1
2

(
−Δ + |Y |2

)
+ w∗ ∧w∗ − iwiw

)
. (10.8)

Recall that βb was defined in (9.1). By [B90b, Proposition 1.5 and Theorem
1.6] and by (10.8), we find that the spectrum of L is just γN, and also that kerL
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is one dimensional and generated by the form

β√γ = exp
(
γw∗ ∧ w∗ − γ |Y |2 /2

)
. (10.9)

Clearly, (
∂

W
+ iy

)
β√γ = 0,

(
∂

W∗
+ γ2y∗∧

)
β√γ = 0. (10.10)

Also if i is the embedding of {0} in W , then

i∗β√γ = 1. (10.11)

Then β√γ is the canonical harmonic representative of 1 viewed as the generator
of the cohomology of {0}. An easy computation shows that∣∣β√γ

∣∣2
L2 =

1
γ
. (10.12)

The above results extend in the obvious way to the case where W is of
arbitrary dimension. The canonical harmonic representative β of the class 1 is
given by the obvious extension of (10.9). By (10.12), we get

|β|2L2 =
1

det c
. (10.13)

10.2. Horizontal and vertical metrics and the hypoelliptic Laplacian

We make the same assumptions and we use the same notation as in Subsections
3.11 and 3.12. In particular gTX denotes the metric on TX whose Kähler form
ωM,V is the restriction of the closed form ωM to TX .

Let ĝTX be another G-invariant metric on the vertical fibre T̂X. We denote
by ∇̂TX the corresponding holomorphic Hermitian connection, and by R̂TX its
curvature. Let c ∈ End (TX) be the ĝTX self-adjoint positive section such that

gTX = ĝTXc2. (10.14)

We still define the operator AZ as in (3.40), and the superconnection AZ as
in (3.99). All the other objects are now defined with respect ωM , ĝTX . There is
a Lichnerowicz formula for A2

Yb
as in (3.57). The vertical operator which appears

first in the right-hand side of (3.57) is fibrewise a harmonic oscillator similar to L
in (10.6).

The L2 Hermitian product in (3.53) which is used in the definition of ε in
(3.54) should be modified to take into account the fact that the horizontal and
vertical metrics are now different. Then we claim that these new operators have
essentially the same properties as the less general operators considered in Sections
3 and 7.

Theorems 3.12 and 3.18 have to be slightly modified. Indeed the map α ∈
Ω(0,·) (X,E)→ π∗α∧β is no longer an isometry because of (10.13). The metric on
Ω(0,·) (X,E) has to be suitably modified so that the isometry property is restored.

The adaptation of the methods and results of [BL06] to this new situation
has to be done with some care. Indeed the approach of [BL06] in the context of de
Rham theory uses in an essential way the fact that the fibrewise harmonic oscillator
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which appears there is covariantly constant. By the results of Subsection 10.1, this
is no longer the case for the fibrewise harmonic oscillators which appear in A2

Yb
. In

fact the methods used in [BL06] have to be suitably modified in a nontrivial way.
To define holomorphic torsion forms in this more general context for b > 0

small enough, we are forced to go all the way in extending the results of [BL06],
if only to know that the picture on the spectrum of A2

Yb
given in Figure 3.3 still

remains correct.
If we are only concerned with hypoelliptic Quillen metrics or their equivariant

versions, the methods used in [BL06] for fixed b > 0 suffice to obtain the results
which are needed in this section.

10.3. The local index theorem in the general case

For b > 0, t > 0, consider the metrics gTX/t, b4ĝTX/t3 on TX, T̂X. We define
εb,t, ε̂b,t, ε̂b,t as in Subsection 7.1. Otherwise we construct our superconnections as
in Section 7. Then the obvious analogue of Theorem 7.7 still holds.

Now we prove the suitable extension of part of Theorem 7.9 to this more
general situation.

Theorem 10.1. For any b > 0, as t→ 0,

ub,t =
∫

Xg

Tdg

(
TX, ĝTX

)
chg

(
E, gE

)
+O (t) , (10.15)

1
4
vb,t =

∫
Xg

Td′
g

(
TX, ĝTX

)
chg

(
E, gE

)
+O (t) .

As t→ 0, there are forms Cb,−1, Cb,0 ∈ PS such that

wb,t =
Cb,−1

t
+ Cb,0 +O (t) . (10.16)

Moreover,

Cb,−1 =
∫

Xg

ωM

2π
Tdg

(
TX, ĝTX

)
chg

(
E, gE

)
,

Cb,0 = −3
∫

Xg

Td′
g

(
TX, ĝTX

)
chg

(
E, gE

)
(10.17)

+ n
∫

Xg

Tdg

(
TX, ĝTX

)
chg

(
E, gE

)
.

Proof. We need to go again along the lines of the proof of Theorems 6.1 and 7.9,
having a keen interest in the rescalings of Definition 6.4 and in the convergence
result of Theorem 6.7. Let us just say here that we take e1, . . . , e2n to be an
orthonormal basis of TRX with respect to ĝTX , which is such that e1, . . . , e2� is an
orthonormal basis of TRXg. Let P̂b,0 be the operator in (6.26) which is associated
to the metric ĝTX .

Put
B = ∇TX − ∇̂TX . (10.18)
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Then B is a section of Λ· (T ∗M)⊗ End (TX). Set

Pb,0 = P̂b,0 +
1
b

2�∑
1

〈i∗BY, ei〉 ei. (10.19)

By proceeding as in the proof of Theorem 6.7, we find that the obvious analogue
of (6.27) still holds, with Pb,0 now given by (10.19).

Now we will use the same conjugation argument as in the proof of Theorem
6.11. Namely note that

exp

(
2�∑
1

〈i∗BU, ei〉 ei

)
Pb,0 exp

(
−

2�∑
1

〈i∗BU, ei〉 ei

)
= P̂b,0, (10.20)

so that when evaluating the trace of the heat kernel as in Theorem 6.11, we may
as well replace Pb,0 by P̂b,0, for which the computations of Theorem 6.11 are still
valid. Once we have observed this, the proof of our theorem continues as the proof
of Theorem 7.9. �

Remark 10.2. By changing the trivialization, we could as well get P̂b,0 as the
limit of Pb,t as t→ 0 instead of Pb,0. This is related to the fact that the operator[
∇I, iY

]
does not depend on gTX .

There are nontrivial analogues of equation (7.43) in Theorem 7.9. Still the
explicit formulas are harder to get at. This is left as an inspiring exercise to the
reader. Anyway we will not need this more general result.

10.4. The generalized hypoelliptic torsion forms

In the sequel, we assume S to be compact, and also that the H(0,i) (X,E|X) , 0 ≤
i ≤ n have locally constant rank. For b > 0 small enough, we still denote by
g

H(0,·)(X,E|X)
b the Hermitian form induced by εb on H(0,·) (X,E|X). This Hermitian

form depends on gTX , ĝTX , gE . We use otherwise the same notation as in Definition
7.10.

By arguments we already outlined, the analogue of equation (7.68) in Theo-
rem 7.13 still hold. The extension of equations (7.69) will not be needed.

We can then define hypoelliptic holomorphic torsion forms Tb,g

(
ωM , ĝTX , gE

)
as in Definition 7.16. If b = 1, we will write T h

g

(
ωM , ĝTX , gE

)
. Incidentally observe

that

Tb,g

(
ωM , ĝTX , gE

)
= T h

g

(
ωM , b4ĝTX , gE

)
. (10.21)

By (10.21), we find that by suitably rescaling ĝTX , we may as well assume that in
the above statements, b ∈]0, 2].

The obvious extension of Theorem 7.17 is the following result.
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Theorem 10.3. For b > 0 small enough,

∂∂

2iπ
T h

g

(
ωM , b4ĝTX , gE

)
= chg

(
H(0,·) (X,E|X) , gH

(0,·)(X,E|X )
b

)
−

∫
Xg

Tdg

(
TX, b4ĝTX

)
chg

(
E, gE

)
. (10.22)

Proof. Using Theorem 10.1, the proof of (10.22) is the same as the proof of The-
orem 7.17. �
10.5. The anomaly formulas for the hypoelliptic torsion forms

We denote by ωM′, ĝTX′, gE′ another triplet of data having the same properties
as ωM , ĝTX , gE. We denote by gH

(0,·)(X,E|X )′
b the corresponding generalized metric

on H(0,·) (X,E|X).

As in Subsection 9.1, for b > 0 small enough, gH
(0,·)(X,E|X)

b , g
H(0,·)(X,E|X)′
b are

standard Hermitian metrics. Therefore the Bott-Chern class

c̃hg

(
H(0,·) (X,E|X) , gH

(0,·)(X,E|X )
b , g

H(0,·)(X,E|X )′
b

)
is well defined.

Theorem 10.4. For b > 0 small enough ,the following identity holds,

T h
g

(
ωM′, b4ĝTX′, gE′)− T h

g

(
ωM , b4ĝTX , gE

)
= c̃hg

(
H(0,·) (X,E|X) , gH

(0,·)(X,E|X)
b , g

H(0,·)(X,E|X)′
b

)
−

∫
Xg

T̃dg

(
TX, b4ĝTX , b4ĝTX′) chg

(
E, gE

)
−

∫
Xg

Tdg

(
TX, b4ĝTX′) c̃hg

(
E, gE , gE′) inPS/PS,0. (10.23)

Proof. If ωM′ = ωM , we get (10.23) from Theorem 10.3 by the classical technique
of deformation of the given data over P1 explained in detail in [BGS88a, BGS90a].
In the sequel we may as well assume that ĝTX , ĝE are kept fixed and that only
ωM is made to vary.

Let c ∈ R → ωM
c be a smooth family of closed forms having the same

properties as ωM . Let gH
(0,·)(X,E|X)

b,c be the corresponding family of Hermitian
forms on H(0,·) (X,E|X). Then by proceeding as in [BK92] and using the same
local index theoretic techniques which were used in the proof of Theorem 7.9, and
in particular in equations (7.51)–(7.58), one can show that for b > 0 small enough,

∂

∂c
T h

g

(
ωM

c , b
4ĝTX , gE

)
=
∂

∂c
c̃hg

(
H(0,·) (X,E|X) , gH

(0,·)(X,E|X)
b , g

H(0,·)(X,E|X)
b,c

)
inPS/PS,0. (10.24)

By integrating (10.24), we get (10.23) in full generality.
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A simpler proof will be obtained as a consequence of the anomaly formulas
of [BK92] and of the general comparison formula of Theorem 10.6. This will be
explained in Remark 10.7. �

Remark 10.5. The most surprising aspect of formula (10.23) is that when varying
ωM , there is no local index contribution to the variation of T h

g

(
ωM , b4ĝTX , gE

)
.

Equivalently the dependence of the class T h
g

(
ωM , b4ĝTX , gE

)
on ωM ∈ PS/PS,0

only appears via the metric gH
(0,·)(X,E|X)

b . Nevertheless recall that when proving
Theorem 10.1, we used explicitly the fact that ωM is closed. This is already clear
in the proof of Theorem 7.9.

10.6. A comparison formula for hypoelliptic torsion forms

We will now give an extension of the comparison formula Theorem 8.1 to the case
of general ĝTX . Let ωM , ĝTX , gE be taken as before, and let ωM′ be another closed
form like ωM . Let gTX′ be the Hermitian metric induced by ωM′ on TX .

Let gH
(0,·)(X,E|X)′ be the L2 metric on H(0,·) (X,E|X) associated with the

metrics gTX′, gE as in Subsection 4.4.

Theorem 10.6. For b > 0 small enough, the Hermitian form gH
(0,·)(X,E|X)

b is a
Hermitian metric. Moreover,

T h
g

(
ωM , b4ĝTX , gE

)
− Tg

(
ωM′, gE

)
− c̃hg

(
H(0,·) (X,E|X) , gH

(0,·)(X,E|X), g
H(0,·)(X,E|X)
b

)
+

∫
Xg

T̃dg

(
TX, gTX′, b4ĝTX

)
chg

(
E, gE

)
−

∫
Xg

Tdg (TX)Rg (TX) chg (E) = 0 inPS/PS,0. (10.25)

Proof. By using the anomaly formulas for T h
g

(
ωM′, ĝTX , gE

)
with respect to ĝTX

which were established in Theorem 10.4, we only need to establish equation (10.25)
for one given choice of the metric ĝTX . Also using the anomaly formulas for the
holomorphic elliptic torsion forms of [BK92, Theorem 3.10], we only need to es-
tablish our theorem for only one choice of ωM′. Therefore we may as well take
ωM′ = ωM , and also ĝTX = gTX . Our formula then reduces to equation (8.2) in
Theorem 8.1. �

Remark 10.7. As a by-product of Theorem 10.6, we obtain the hard part of Theo-
rem 10.4, which describes the variation of T h

g

(
ωM , b4ĝTX , gE

)
as a function of ωM .

This way, one can avoid using any sophisticate local index techniques to obtain
these formulas.

10.7. Generalized hypoelliptic Quillen metrics

We will now assume that S is reduced to a point. Let gTX , gTX′ be Kähler metrics
on TX , let ĝTX be any other metric on TX , let gE be a Hermitian metric on E.
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By proceeding as in Subsections 7.8–7.10, we can define an equivariant gen-
eralized Quillen metric ‖ ‖2λ,h on λ, which is obtained using the construction of a
more general hypoelliptic Laplacian of Subsection 10.2, which is associated with
the metrics gTX , ĝTX , gE. The main point is that we do not need to introduce any
more the scaling parameter b > 0 in the whole construction.

Let ‖ ‖λ be the standard equivariant elliptic Quillen metric on λ, which is
attached to the metrics gTX′, gE.

Now we give an extension of Theorems 8.10 and 8.11.

Theorem 10.8. The following identity holds,

log

(
‖ ‖2λ,h

‖ ‖2λ

)
(g) = −

∫
Xg

T̃dg

(
TX, gTX′, ĝTX

)
chg

(
E, gE

)
+

∫
Xg

Tdg (TX)Rg (TX) chg (E) . (10.26)

Proof. The same local index theoretic as in the proof of Theorem 10.4 show that
equation (10.26) is compatible with the variation of the metric ĝTX . The anomaly
formulas of [BGS88c] in the case where g = 1, and of [B95, Theorem 2.5] in the
general case, show that equation (10.26) is also compatible with the variation of
gTX′. Therefore we are free to choose gTX′ = ĝTX = gTX , in which case our
formula is just equation (8.47) in Theorem 8.11. The proof of our theorem is
completed. �

Remark 10.9. When G is trivial, when taking g = 1, (10.26) is an equality of real
numbers. When G is arbitrary, the considerations in Remark 8.12 are still valid.

As a by-product of Theorem 10.8, we find that the hypoelliptic metric ‖ ‖2λ,h

does not depend on the metric gTX . This can be viewed also as a consequence
of Theorem 10.6. Nevertheless it is all the more striking. Indeed the hypoelliptic
metric does not depend on the Kähler metric which is needed in its definition, and
moreover, it is well defined for any metric ĝTX .

10.8. Hypoelliptic torsion forms and the immersion formulas

In [BL91, B95, B97, BM04], the behaviour of the Quillen metrics and of the elliptic
torsion forms under complex immersions was obtained. In these results, the genus
Rg appears in exactly the same form as in Theorems 10.6 and 10.8. Here we will
only discuss the case of the standard Quillen metric ‖ ‖λ, but the discussion can
be extended to all cases.

Indeed let i : Y → X be an embedding of complex manifolds, let η be a
holomorphic Hermitian vector bundle on Y , and let (ξ, v) a complex of holomor-
phic vector bundles on X which provides a resolution of the sheaf i∗OY (η). Let
λ (η) , λ (ξ) be the determinant lines associated to η, ξ. Then we have a canonical
isomorphism,

λ (η) � λ (ξ) . (10.27)
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Let ‖ ‖λ(η) , ‖ ‖λ(ξ) be Quillen metrics on λ (η) , λ (ξ). The main result of [BL91]

gives a formula for log
( ‖ ‖λ(ξ)

‖ ‖λ(η)

)2

.

The formula in [BL91] can be written in the form,

log

(
‖ ‖λ(ξ)

‖ ‖λ(η)

)2

=
∫

X

Td (TX)R (TX) ch (ξ)−
∫

Y

Td (TY )R (TY ) ch (η) + . . .

(10.28)
In (10.28), as explained in [BGS90b, BGS90a], . . . represents the ‘predictable’
part of the formula from the point of view of the theorem of Riemann-Roch-
Grothendieck in arithmetic geometry of Gillet and Soulé which was established in
[GS92]. The terms containing the exotic genus R were also anticipated in [GS91]
from this point of view.

By combining equation (10.26) in Theorem 10.8 with (10.28), we find that
when b = 1,

log

(
‖ ‖λ(ξ),h

‖ ‖λ(η),h

)2

= 2
∫

X

Td (TX)R (TX) ch (ξ)−2
∫

Y

Td (TY )R (TY ) ch (η)+ . . .

(10.29)
where the term . . . is exactly the same one as in (10.28).

It would certainly be interesting to give a direct proof of (10.29) along the
lines of [BL91]. The doubling of the genus R should appear because we would
handle the resolution of η in X and also the resolution of X in TX .

However Theorems 10.6 and 10.8 can also be given another interpretation.
Indeed consider the embedding i : X → X . Then the formulas in Theorems 10.6
and 10.8 are the exact analogues of the embedding formulas of [BL91, B95], the
model of which is (10.28).

These considerations explain why the genera R (x) or R (θ, x) reappear in the
present context. However the analogy is misleading. First X is non compact. This
is not serious an objection, since the harmonic oscillator compactifies X in a proper
way. More fundamentally, the Laplacian which is considered here is hypoelliptic.

One could try to reinterpret our result from the point of view of the adiabatic
limit results of [BerB94, M99, M00b]. However this would be wrong again. In
particular the fact that here Λ· (T ∗X) is at the same time the horizontal and the
vertical holomorphic exterior algebra is impossible to explain from this point of
view.

11. The eta invariant

The purpose of this section is to define the reduced eta invariant modZ of the
hypoelliptic Dirac operator DYb

, and to compare it to the reduced eta invariant
of the classical Dirac operator DX considered in Subsection 1.4. The reduced
eta invariant for DX was introduced by Atiyah-Patodi-Singer [APS75a, APS75b,
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APS76] in their study of index problems for elliptic Dirac operators on manifolds
with boundary.

The arguments given in this section being simpler than the corresponding
ones for hypoelliptic holomorphic torsion, we will only sketch the proofs.

This section is organized as follows. In Subsection 11.1, we consider the case
of finite-dimensional vector spaces.

In Subsection 11.2, we define the reduced eta invariant of DYb
as an element

of R/Z.
In Subsection 11.3, we obtain a variation formula for the reduced eta invari-

ant. In particular we show that it does not depend on b > 0.
Finally in Subsection 11.4, we show that when the horizontal and vertical

metrics are the same, the reduced eta invariants of the elliptic and hypoelliptic
Dirac operators coincide.

11.1. The finite-dimensional case

Let E be a finite-dimensional complex Z2-graded vector space, which is equipped
with a Hermitian form ε. Let A ∈ End (E) be self-adjoint with respect to ε. Then
the spectrum of A is conjugation invariant.

Consider the function of s ∈ C,

ηA (s) = Trs

[
A

(A2)(s+1)/2

]
. (11.1)

In (11.1), it is implicitly assume that the zero eigenvalue is excluded from the
supertrace. If λ1, . . . , λp are the eigenvalues of A, we can rewrite (11.1) in the
form,

ηA (s) =
∑
λ�=0

λ

(λ2)(s+1)/2
. (11.2)

Observe that equations (11.1) and (11.2) are ambiguous. The ambiguity can
be lifted for instance in the case where no eigenvalue λ is purely imaginary. In any
case, for whatever convention we take,

λ

(λ2)1/2
= ±1. (11.3)

By (11.3), we find that modulo 2Z, ηA (0) is unambiguously defined. More precisely

ηA (0) + dim kerA = dimEmod 2Z. (11.4)

11.2. The eta invariant of the operator DYb

We make the same assumptions as in Section 1. Here we will assume the dimension
n of X to be odd. The spinor bundle SX is then an ungraded vector bundle.

As we saw in Subsections 3.10 and 6.1, for b > 0, the spectrum of D2
Yb

is
discrete and conjugation invariant. Figures 3.1 and 3.2 indicate where the spectrum
of D2

Yb
is located.
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Since DYb
commutes with D2

Yb
, corresponding properties are immediately

derived for DYb
. In particular DYb

acts on the characteristic spaces of D2
Yb

, which
are finite dimensional. Therefore the spectrum of DYb

is itself discrete, and its
characteristic subspaces are also finite dimensional. By Theorem 1.9, the spectrum
of DYb

is conjugation invariant.
It follows in particular that among the eigenvalues of DYb

which are located
on the imaginary axis, except for the zero eigenvalue, these eigenvalues come by
pairs.

Definition 11.1. For b > 0, s ∈ C, set

ηb (s) = Trs

⎡⎣ DYb(
D2

Yb

)(s+1)/2

⎤⎦ . (11.5)

Of course the 0 eigenvalue is excluded from the supertrace in (11.5).

The function ηb (s) will be called the eta function associated to the operator
DYb

.

Theorem 11.2. The function ηb (s) can be defined as a holomorphic function of
s ∈ C,Re s > −2.

Proof. By the results of Subsection 3.10, the eigenvalues of D2
Yb

are of positive real
part, except for a finite number of them.

In a first part of the proof, we will first assume that the eigenvalues of D2
Yb

are either 0, or have positive real part. By proceeding as in [BL06, Subsection 5.3],
we find that there exists c > 0, C > 0 such that for t ≥ 1,∣∣∣Tr

[
DYb

exp
(
−tDX,2

Yb

)]∣∣∣ ≤ C exp (−ct) . (11.6)

We will give a formula for ηb (s) and later we will verify it does make sense
under the given conditions on s. Put

ηb (s) =
1

Γ
(

s+1
2

) ∫ +∞

0

t(s+1)/2Trs
[
DYb

exp
(
−tDX,2

Yb

)] dt
t
. (11.7)

From the above, it follows that for Re s large enough, the function ηb (s) in (11.7)
is just the one in (11.5).

To show that ηb (s) extends to a holomorphic function of s,Re s > −2, we
will show that as t→ 0,

Trs
[
DYb

exp
(
−tD2

Yb

)]
= O

(√
t
)
. (11.8)

Note that (11.8) is the precise analogue of the corresponding asymptotics for the
operator DX which was established by Bismut and Freed in [BF86b, Theorem
2.4], which in turn was used in [BF86b] to give a new proof of the fact that the
eta function of a classical Dirac operator is holomorphic at 0.

Now the proof of [BF86b, Theorem 2.4] relies on the local families index
theorem for odd-dimensional fibres, the proof of which is a simple modification of
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the corresponding proof in the case of even-dimensional fibres. Here we will show
how to adapt the arguments of [BF86b] in the present context.

We use the notation in Subsection 6.3. Clearly

tN
H/2At

Yb/
√

t
t−NH/2 = ψ1/t

√
tAYb

ψt. (11.9)

We deduce from (11.9) that

tN
H/2Dt

Yb/
√

t
t−NH/2 =

√
tDYb

. (11.10)

To make the correct adaptation of the arguments in [BF86b], we use the
formalism of Subsection 1.3. In particular the real vector space V is assumed to
be of odd dimension n. Set

B = End (Λ· (V ∗)) ⊗̂c
(
V̂

)
. (11.11)

Note that B acts on Λ· (V ∗) ⊗ ŜV , which is Z-graded by the grading of Λ· (V ∗).
If α ∈ B, let Trs [α] denote its supertrace. If α ∈ B, only the even component of α
in End (Λ· (V ∗)) contributes to the supertrace. In particular if α ∈ Bodd, only the
odd component of α in c

(
V̂

)
contributes to the supertrace.

Let e1, . . . , en be an orthonormal oriented basis of V . Let us recall that by
[BF86b, eq. (1.7)], among the odd monomials in the c (êi), up to permutation,
c (ê1) . . . c (ên) is the only monomial whose trace on ŜV does not vanish.

We proceed by establishing an analogue of the local families index theorem
of [BF86b, Theorem 2.10] similar to Theorem 6.1 for the superconnection A2 in
the case where the fibres X are odd dimensional. In [BF86b], the formalism of
Quillen [Q85a] of the so called odd traces was used. Let us briefly show how this
can be done here. As before we may consider the Clifford variables c (êi) as odd,
and we only consider the odd part of (2i)1/2

ϕTrs
[
g exp

(
−A2

)]
, which is denoted

(2i)1/2 ϕTrsodd
[
g exp

(
−A2

)]
. Another possibility is to consider the Clifford vari-

ables c (êi) as even, and to introduce an extra odd Clifford variable σ such that
σ2=1, while replacing c (êi) by c (êi)σ. We would then consider the σ-supertrace
(2i)1/2

ϕTrsσ
[
g exp

(
−A2

)]
The same arguments as in [BF86b, Subsection 2f)]

show that the two procedures are equivalent.
Using (11.9), (11.10) and proceeding as in [BF86b], we obtain this way a

proof of the required result for the function ηb (s).
Now we drop the assumption on the eigenvalues of D2

Y,b. Indeed there are only
a finite family of non zero eigenvalues λ of D2

Yb
such that Reλ ≤ 0. Recall that

by Lidskii’s theorem [RSi78, Corollary, p. 328], if A is a trace class operator, then
Tr [A] is the sum of its eigenvalues. Once we eliminate the eigenvalues λ such that
Reλ ≤ 0, whose contribution can be obtained by a formula similar to (11.2), we
are left with a Mellin transform like in (11.7), the integrand of which still verifies
the analogue of (11.6). The proof of our theorem is completed. �

From the above it follows that the definition of η (0) is somewhat ambiguous.
However η (0) can be unambiguously defined in R/2Z. Indeed by (11.3), each of
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the eigenvalues contributes by a sign±1, which introduces an ambiguity in 2Z. The
resulting formula for ηb (0) lies in R/2Z because the operator DYb

is self-adjoint
with respect to the Hermitian form η in (1.50).

Let S0,b be the characteristic subspace of D2
Yb

which is associated to the 0
eigenvalue.

Definition 11.3. Set

ηb (s) =
1
2

(ηb (s) + rkS0,b) . (11.12)

By the above, ηb (0) is unambiguously defined in R/Z. This quantity will be called
the reduced eta invariant of DYb

.

11.3. The variation formula for ηb (0)
We make the same assumptions as in Section 2, except that the fibres X are now
odd dimensional. Each fibre Xs carries an operator DYb

. Therefore ηb (0) can be
viewed as a function on S ×R∗

+.

Theorem 11.4. The R/Z valued function ηb (0) is smooth on S ×R∗
+. Moreover,

dηb (0) =
[∫

X

Â
(
TX,∇TX

)
ch

(
E,∇E

)](1)

. (11.13)

In particular ηb (0) ∈ R/Z does not depend on b.

Proof. Each nonzero eigenvalue of DYb
contributes to ηb (0) by ±1/2. When fol-

lowing such an eigenvalue, it is clear that only the eigenvalue 0 could be a source
of difficulty under deformation. However adding 1

2 rkS0,b exactly compensates for
that. We have thus proved that ηb (0) ∈ R/Z depends smoothly on all parameters.

We fix b > 0 temporarily. By proceeding as in [APS76, p.75 and Proposition
2.11] and in [BF86b, Section2], once we know the local version of the families
index theorem given in Theorem 6.1 in the case of odd-dimensional fibres, equation
(11.13) is just a consequence of equation (6.8) in Theorem 6.1. The proof of our
theorem is completed. �

Remark 11.5. As in Section 10, we could assume the horizontal and vertical metrics
on X to be unrelated. The obvious analogue of Theorem 11.4 would still hold,
where only the vertical metric and connection would appear.

11.4. A comparison formula for the eta invariants

Let DX be the elliptic Dirac operator of Definition 1.1 associated to the metric
gTX and the connection ∇E . Let η (0) be the reduced eta invariant of DX in the
sense of [APS75a]. It is the obvious analogue of ηb (0) in (11.12).

Theorem 11.6. For any b > 0,

ηb (0) = η (0) inR/Z. (11.14)
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Proof. We briefly indicate the principle of the proof, which closely resembles the
proof of Theorem 8.1.

We will use the notation of Subsection 6.4 adapted to the case where the
fibres X are odd dimensional. In particular the form (2i)1/2

ϕTrsodd
[
g exp

(
−A2

)]
is closed on S ×R∗

+ ×R∗
+. We define the even forms mb,t, nb,t as in (6.7). Set

a = nb,t ∧ dt+ ob,t ∧ db. (11.15)

Let
(
Ω· (S) , dS

)
be the de Rham complex on S. By the obvious analogue of The-

orem 6.1,

dR
∗2
+ a ∈ dSΩ· (S) . (11.16)

We introduce a rectangular contour Γ as in Figure 8.1. By (11.16),∫
Γ

a ∈ dSΩ· (S) . (11.17)

Now we take S to be a point, so that (11.17) just says that∫
Γ

a = 0. (11.18)

Set

ηb,ε (0) =
1√
π

∫ +∞

ε

Trs
[
DYb

exp
(
−tD2

Yb

)] dt√
t
. (11.19)

Note that there are still ambiguities in the definition of (11.19) associated with a
finite number of eigenvalues, but as ε → 0, these ambiguities disappear mod 2Z.
We will authorize ourselves to write an equality of objects depending on ε > 0
in R/Z when their limit as ε → 0 is well defined in R/Z and the corresponding
equality holds.

Set

ηb,ε (0) =
1
2

(ηb,ε (0) + dim kerS0,b) . (11.20)

By proceeding as in the proof of Theorem 11.4 and using (11.18)–(11.20), we get

ηb0,ε (0)− ηβ,ε (0) =
∫ b0

β

ob,εdb inR/Z. (11.21)

Now we make ε → 0 in (11.21). By using the second identity in (6.71), and by
proceeding as in the proof of Theorem 8.1, we get (11.14). The proof of our theorem
is completed. �

Remark 11.7. An analogue of Theorem 11.6 similar to Theorem 10.8 can be estab-
lished when the horizontal and vertical metrics are unrelated, in which the integral
of a Chern-Simons class appears. Details are left to the reader.
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Abstract. In this paper we introduce a notion of generalized operad containing
as special cases various kinds of operad-like objects: ordinary, cyclic, modu-
lar, properads etc. We then construct inner cohomomorphism objects in their
categories (and categories of algebras over them). We argue that they provide
an approach to symmetry and moduli objects in non-commutative geometries
based upon these “ring-like” structures. We give a unified axiomatic treatment
of generalized operads as functors on categories of abstract labeled graphs.
Finally, we extend inner cohomomorphism constructions to more general cat-
egorical contexts.
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0. Introduction

0.1. Inner cohomomorphisms of associative algebras

Let k be a field. Consider pairsA = (A,A1) consisting of an associative k-algebraA
and a finite-dimensional subspace A1 generating A. For two such pairs A = (A,A1)
and B = (B,B1), define the category A ⇒ B by the following data.

An object of A ⇒ B is a pair (F, u) where F is a k-algebra and u : A→ F⊗B
is a homomorphism of algebras such that u(A1) ⊂ F ⊗ B1 (all tensor products
being taken over k).

A morphism (F, u) → (F ′, u′) in A ⇒ B is a homomorphism of algebras
v : F → F ′ such that u′ = (v ⊗ idB) ◦ u.

The following result was proved in [Ma3] (see. Prop. 2.3 in Chapter 4):

0.1.1. Theorem. The category A ⇒ B has an initial object

(E, δ : A→ E ⊗B)
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defined uniquely up to unique isomorphism, together with a finite-dimensional sub-
space E1 ⊂ E generating E and satisfying δ(A1) ⊂ E1 ⊗B1.

This result can be reinterpreted as follows. Consider another category PAlg
whose objects are finitely generated k-algebras together with a presentation P , i. e.
a surjection ϕA : T (A1) → A where A1 is a finite-dimensional linear space, T (A1)
is its tensor algebra, and such that KerϕA∩A1 = {0} so that A1 can be considered
as a subspace of A (this condition is not really necessary and can be omitted as
is done in Sec. 2.) Morphisms (A,ϕA) → (B,ϕB) are algebra homomorphisms
u : A→ B such that u(A1) ⊂ B1.

This category has a monoidal symmetric structure given by (A,A1)©(B,B1)
:= (C,C1) where C1 = A1 ⊗ B1 and C is the subalgebra of A ⊗ B generated by
C1.

Theorem 0.1.1 establishes a functorial bijection between Hom’s in this cate-
gory

Hom ((A,A1), (F, F1)© (B,B1)) ∼= Hom ((E,E1), (F, F1)).
When there is no risk of confusion, we will omit A1, B1 etc in notation, and denote
(E,E1) by cohom (A,B) so that we have the standard functorial isomorphism in
(PAlg,©):

Hom (A,F ©B) ∼= Hom (cohom (A,B), F )
defining inner cohomomorphism objects.

The usual reasoning produces functorial comultiplication maps between these
objects

ΔA,B,C : cohom (A,C) → cohom (A,B)© cohom (B,C), (0.1)
which are coassociative (compatible with the ordinary associativity constraints for
©).

In particular coend (A) := cohom (A,A) has the canonical structure of a
bialgebra.

0.2. Interpretation and motivation

Theorem 0.1.1 was the base of the approach to quantum groups as symmetry
objects in noncommutative geometry discussed in [Ma1]–[Ma4]. Namely, consider
PAlg as a category of function algebras on “quantum linear spaces” so that the cat-
egory of quantum linear spaces themselves will be PAlgop. Then cohomomorphism
algebras correspond to “matrix quantum spaces”, and coendomorphism algeras,
after passing to Hopf envelopes, become Hopf algebras of symmetries. (In fact, to
obtain the conventional quantum groups, one has to add some “missing relations”,
cf. [Ma2], which also can be done functorially.)

In this paper we present several layers of generalizations of Theorem 0.1.1.
The first step consists in extending it to operads with presentation and algebras
over them, with an appropriate monoidal structure. We are motivated by the
same desire to understand symmetry objects (“quantum semi-groups”) in non-
commutative geometry based upon operads, or algebras over an operad different
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from ASS. In fact, as a bonus we also get an unconventional approach to the
deformation theory of operadic algebras.

Namely, let P be an operad, V a linear space, and OpEndV the operad of
endomorphisms of V . The set of structures of a P-algebra upon V is then

HomOper (P , OpEndV ). (0.2)

We suggest to consider the object (defined after a choice of spaces of linear gener-
ators of both operads)

cohom (P , OpEndV ) (0.3)

as (an operad of functions upon) a noncommutative space. Morphisms of (0.3) to
the unit object of the monoidal category of operads will then constitute its set of
“classical points” (0.2).

0.3. The phantom of the operad

The next extension of Theorem 0.1.1 involves replacing operads by any of the
related structures a representative list of which the reader can find, for exam-
ple, in [Mar]: May and Markl operads, cyclic operads, modular operads, PROPS,
properads, dioperads etc. In this paper, we use for all of them the generic name
“generalized operad”, or simply “operad”, and call operads like May’s and Markl’s
ones “ordinary operads”, or “classical operads”.

It was long recognized that one variable part of the definition of all these
structures is the combinatorics and decoration of underlying graphs (“pasting
schemes” of [Mar]), whereas another is the category in which components of the
respective operad are supposed to lie. Operad itself for us is a functor from a cat-
egory of labeled graphs to another symmetric monoidal category, as was stressed
already in [KoMa], [GeKa2] and many other works. We decided to spell out the un-
derlying formalism in Section 1 of this paper. If we appear to be too fussy, e.g., in
Definition 1.3, this is because we found out that uncritical reliance on illustrative
pictures can be really misleading.

One can and must approach operadic constructions from various directions
and with various stocks of analogies. In this paper, we look at operads, especially
those with values in abelian categories, as analogs of associative rings; collections
are analogs of their generating spaces. We imagine various noncommutative ge-
ometries based upon operads, and are interested in naturally emerging symmetry
and moduli objects in these noncommutative geometries.

But of course there are many more different intuitive ideas related to operads.

a) Operads provide tools for studying general algebraic structures determined
by a basic set, a family of composition laws, and a family of constraints
imposed upon these laws.

b) Operads embody a categorification of graph theory which can be used to
study knot invariants, Feynman perturbation series etc.
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c) Operads and their algebras are a formalization of computational processes
and devices, in particular, tensor networks and quantum curcuits, cf.
[MarkSh], [Zo] and references therein. With this in mind, we describe general
endomorphism operads in 2.5 below.
It is interesting to notice that the classical theory of recursive functions must

refer to a very special and in a sense universal algebra over a non-linear “computa-
tional operad”, but nobody so far was able to formalize the latter. Main obstacle
is this: a standard description of any partially recursive function produces a circuit
that may contain cycles of an a priori unknown multiplicity and eventually infinite
subprocesses producing no output at all.

0.4. Plan of the paper

In Section 1, we discuss the background topics. The centerpieces of the first part
related to graphs are definitions 1.2.1 and 1.3, and the rest is devoted to collections
and operads.

In Section 2, we state and prove our main theorems in two contexts: for
operads in abelian categories and for algebras. However, the latter requires serious
additional restrictions. We also discuss in 2.7, 2.8 some explicit descriptions of
cohomomorphism objects, whenever they are known, in particular, for quadratic
and more general N -homogeneous algebras and operads.

Notice that Theorem 0.1.1 was extended in [GrM] to include the case of
twisted tensor products of algebras: see also [Ma4] where the latter appeared in the
construction of the De Rham complex of quantum groups and spaces. For further
developments see [GrM] and references therein. Similar generalizations might exist
for operads as well.

Section 3 is dedicated to the next layer of generalizations. Namely, operads
considered in Section 2 and Section 3 can be viewed as algebras over a triple whose
main component is the endofunctor F on a category of collections, described in
1.5.5 and 1.5.6. Categories of collections in this context are abelian and endowed
with a symmetric monoidal structure. In Section 3, we consider more general
triples and, in particular, do not assume that the category on which the relevant
endofuctor acts, is abelian.

This line of thought is continued in Section 4, where in particular operads with
values in various categories of algebras are considered. This is partly motivated by
the quantum cohomology operad.

Finally, in Appendix we briefly treat Markl’s list ([Mar], p. 45) in terms of
labeled graphs and functors on them.

Acknowledgements. Yu. M. gratefully acknowledges Bruno Vallette’s comments on
the preliminary drafts of this paper and discussions with him, in particular related
to [Va2]. His numerous suggestions are incorporated in the text. D. B. would like
to thank Ezra Getzler for his remarks relating to model categories and the theory
of operads in 2-categorical setting.



Generalized Operads 251

1. Background

1.1. Graphs

We define objects of the category of (finite) graphs as in [KoMa], [BeMa], [GeKa2].
Geometric realizations of our graphs are not necessarily connected. This allows us
to introduce a monoidal structure “disjoint union” on graphs (cf. 1.2.4), and to
consider certain morphisms such as graftings and mergers which were not needed
in [GeKa2] but arise naturally in more general types of operads. Moreover, our
notion of a graph morphism is strictly finer than that considered in the literature:
as a part of a morphism, we consider the involution jh in the Definition 1.2.1
below. Our basic category of sets is assumed to be small.

1.1.1. Definition. A graph τ is a family of finite sets and maps (Fτ , Vτ , ∂τ , jτ )
Elements of Fτ are called flags of τ , elements of Vτ are called vertices of τ . The map
∂τ : Fτ → Vτ associates to each flag a vertex, its boundary. The map jτ : Fτ → Fτ

is an involution: j2τ = id.
Marginal cases. If Vτ is empty, Fτ must be empty as well. This defines an empty
graph. To the contrary, Fτ might be empty whereas Vτ is not. In [GeKa2] and
other places, in order to treat various units, a “non-graph” with one flag and no
vertices is considered. Its role in our constructions sometimes can be played by the
empty graph.
Edges, tails, corollas. One vertex graphs with identical jτ are called corollas. Let
v be a vertex of τ , Fτ (v) := ∂−1

τ (v). Then τv := (Fτ (v), {v}, evident ∂, identical
j) is a corolla, which is called the corolla of v in τ .
Flags fixed by jτ form the set of tails of τ denoted Tτ .

Two-element orbits of jτ form the set Eτ of edges of τ . Elements of such an orbit
are called halves of the respective edge.

1.1.2. Geometric realization of a graph. First, let τ be a corolla. If its set of flags is
empty, its geometric realization |τ | is, by definition, a point. Otherwise construct

a disjoint union of segments [0,
1
2
] and identify in it all points 0. This is |τ |. The

image of 0 thus becomes the geometric realization of the unique vertex of τ .
Generally, to construct |τ | take a disjoint union of geometric realizations of

corollas of all vertices and identify points
1
2

of any two flags forming an orbit of jτ .

A graph τ is called connected (resp. simply connected, resp. tree etc) iff its
geometric realization is such. In the same vein, we can speak about connected com-
ponents of a graph etc. Vertices v with empty Fτ (v) are considered as connected
components.

1.2. Morphisms of graphs and monoidal category Gr

Let τ , σ be two graphs.

1.2.1. Definition. A morphism h : τ → σ is a triple (hF , hV , jh), where hF :
Fσ → Fτ is a contravariant map, hV : Vτ → Vσ is a covariant map, and jh is an
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involution on the set of tails of τ contained in Fτ \hF (Fσ). This data must satisfy
the following conditions.

(i) hF is injective, hV is surjective.
(ii) The image hF (Fσ) and its complement Fτ \ hF (Fσ) are jτ -invariant subsets

of flags. The involution jh fixes no tail in Fτ \ hF (Fσ).
It will be convenient to extend jh to other flags in Fτ by identity.
We will say that h contracts all flags in Fτ \ hF (Fσ). If two flags in Fτ \
hF (Fσ) form an edge, we say that this edge is contracted by h. If two tails in
Fτ \ hF (Fσ) form an orbit of jh, we say that it is a virtual edge contracted
by h.

(iii) If a flag fτ is not contracted by h, that is, has the form hF (fσ), then hV sends
∂τfτ to ∂σfσ. Two vertices of a contracted edge (actual or virtual) must have
the same hV -image.

(iv) The bijection h−1
F : hF (Fσ) → Fσ maps edges of τ to edges of σ.

If it maps a pair of tails of τ to an edge of σ, we will say that h grafts these tails.
The composition of two morphisms corresponds to the set-theoretic composi-

tion of the respective maps hF and hV , and taking the union of two sets of virtual
edges.

The resulting category is denoted Gr.

1.2.2. Geometric realization of a morphism. On geometric realizations, the action
of h can be visualized as follows: we construct a subgraph of τ consisting only of
flags in hF (Fσ), then produce its quotient, and then identify this subquotient with
σ using (hF )−1.

The shortest description of this subquotient is this: merge in |τ | all vertices
belonging to each one fiber of hV , then delete all flags which are contracted by h.

It is easy to see that (hF )−1 identifies the geometric graph thus obtained
with |σ|.

This short and intuitive description may be misleading for important concrete
categories Γ of labeled graphs (see Definition 1.3). It might happen that such a
category does not allow morphisms which simply delete flags, and/or does not
allow morphisms that merge two vertices without contracting a path of edges
(actual or virtual) connecting such a pair.

The following sequence of steps has more chances to represent a sequence of
morphisms in Γ.

a) In each jh-orbit, graft tails of |τ | belonging to Fτ \ hF (Fσ) making an actual
edge from the virtual one.

Contract to a point each connected component of the union of all actual
or virtual edges whose halves belong to Fτ \ hF (Fσ). This point becomes a
new vertex.

Besides contracted halves of edges, all other flags adjacent to various
vertices of the contracted component are retained and become adjacent to
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the vertex that is the image of this component. Thus the set of remaining
flags consists exactly of the (geometric realizations of) hF (Fσ).

From Def. 1.2.1 (iii) it follows that all flags adjacent to the new vertex
are sent by (hF )−1 to a subset of flags adjacent to one and the same vertex
of σ.

b) Graft loose ends of each pair of remaining tails that are grafted by h.
c) Merge together those vertices of the obtained (geometric) graph whose preim-

ages are sent by hV to one and the same vertex of τ .

Finally, identify the resulting subquotient of |τ | with |σ| in such a way that
on flags this map becomes (hF )−1 : hF (Fσ)→ Fτ .

Notice that all steps a)–c) could have been done in arbitrary order, for exam-
ple c), b), a), with the same result. Notice also that in the geometric realization,
no trace of jh is remained: the virtual edges vanished, but we do not know how
their halves were paired. This information is encoded only in the combinatorial
description involving jh.

Each step above is in fact a geometric realization of a morphism in Gr. We
will now describe formally the respective classes of morphisms.

1.2.3. Contractions, graftings, mergers

a) Virtual contractions. A morphism h : τ → σ is called a virtual contraction, if
Fτ \ hF (Fσ) consists only of tails, restriction of jτ on hF (Fσ) coincides with
the image of jσ, and hV is a bijection.

b) Contractions and full contractions. A morphism is called a contraction, if hF

is bijective on tails, and if for any v ∈ Vσ, any two different vertices in h−1
V (v)

are connected by a path consisting of edges contracted by h.smallskip
Let σ be a graph. Define τ as follows: Fτ := Tσ, Vτ :={connected com-

ponents of σ}. Let hF be the identical injection Tσ → Fσ. Let hV send any
vertex to the connected component in which it is contained. The resulting
morphism is called the full contraction. Its image is a union of corollas, tails
of σ are distributed among them as they are among connected components
of σ. Morphisms isomorphic to such ones are also called full contractions (of
their source).

c) Grafting and total grafting. A morphism h is called a grafting, if hF and hV

are bijections.
Let τ be a graph. Denote by σ :=

∐
v∈Vτ

τv the disjoint union of corollas
of all its vertices. Formally, Fσ = Fτ , Vσ = Vτ , ∂σ = ∂τ , and jσ = id. Let
h : σ → τ consist of identical maps. Such a morphism is called total grafting,
and we will reserve for it a special notation:

◦τ :
∐

v∈Vτ

τv → τ (1.1)

It is defined uniquely by its target τ , up to unique isomorphism identical on
τ . Any isomorphism of targets induces an isomorphism of such morphisms.
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Its formal inversion cuts all edges of τ in half. Morphisms isomorphic to such
one are also called total grafting (of their target).

d) Mergers and full mergers. A morphism h is called a merger, if hF is bijective
and identifies jσ with jτ .

A full merger projects all vertices into one. All edges become loops; tails
remain tails.

Mergers play no role in the theory of ordinary operads, but are essential
for treating PROPs, cf. appendix.

Each graph τ admits a morphism to a corolla bijective on tails

conτ : τ → con (τ) (1.2)

It can be described as the full contraction of τ followed by the full merger.
It is defined uniquely by its source τ , up to unique isomorphism identical
on τ . Any isomorphism of sources induces a unique isomorphism of such
morphisms.

Isomorphisms constitute the intersection of all four classes.

A combinatorial argument imitating 1.2.2 shows that any morphism can be
decomposed into a product of a virtual contraction, a contraction, a grafting and
a merger. As soon as the order of the types of morphisms is chosen, one can define
such a decomposition in a canonical way, up to a unique isomorphism.

1.2.4. Disjoint union as a monoidal structure on Gr. Disjoint union of two abstract
sets having no common elements is an obvious notion. If we want to extend it to
“all” sets, an appropriate formalization is that of a symmetric monoidal structure
“direct sum” with empty set as the unit object. It exists, but is neither unique,
nor completely obvious: what is the “disjoint union of a set with itself”? One way
to introduce such a structure is described in [Bo2], Example 6.1.9.

We will focus on a small category of finite sets of all cardinalities and sketch
the following method which neatly accounts for proliferation of combinatorics of
symmetric groups in the standard treatments of operads.

The small category of finite sets of all cardinalities consisting of

∅, {1}, {1, 2}, . . . , {1, 2, . . . , n}, . . .
admits a monoidal structure “disjoint union”

∐
given by

{1, 2, . . . ,m}
∐
{1, 2, . . . , n} := {1, 2, . . . ,m+ n}

and evident commutativity and associativity constraints. For example, identifica-
tion of X

∐
Y with Y

∐
X proceeds by putting all elements of Y before those of

X and retaining the order inside groups. Empty set is the unit of this monoidal
structure.

In these terms, it is clear how to extend this construction to the category
of “all” totally ordered finite sets, and then to drop the orderings by passing to
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appropriate colimits. Thus, we can endow the category of finite sets by a monoidal
structure which we keep denoting

∐
and calling “disjoint union”.

This monoidal structure can then be extended to Gr: σ
∐
τ is determined by

disjoint unions of their respective flag and vertex sets, and ∂, j act on both parts
as they used to.

Finally, for any finite family {τs | s ∈ S}, we can define
∐

s τs functorially in
{τs} and S as is spelled out in [DeMi].

1.2.5. Atomization of a morphism. Let h : τ → σ be a morphism of graphs. We
define its atomization as a commutative diagram of the following form:∐

v∈Vσ

τv

k

∐
hv

∐
v∈Vσ

σv

◦σ

τ
h

σ

(1.3)

Here σv is the corolla of a vertex v ∈ Vσ, ◦σ is the total grafting morphism, and
the remaining data are constructed as follows.

Graph τv. We put for v ∈ Vσ:

Fτv := {f ∈ Fτ |hV (∂τf) = v}, Vτv := {w ∈ Vτ |hV (w) = v},
∂τv = ∂τ |τv , jτv = jτ |τv .

Morphism hv : τv → σv. We put

hF
v := hF |Fσv

: Fσv → Fτv , hv,V := hV |Vτv
: Vτv → Vσv , jhv := jh |Fτv

.

Morphism k. By definition, kF and kV are identical maps, hence k is a graft-
ing.

1.2.6. Heredity. Let now ◦σ :
∐

v∈Vσ
σv → σ be a total grafting morphism. Assume

that we are given a family of morphisms hv : τv → σv, v ∈ Vσ. Then this data can
be uniquely extended to the atomization diagram (1.3) of a morphism h : σ → τ .
1.3. Definition

An abstract category of labelled graphs is a category Γ endowed with a functor
ψ : Γ → Gr satisfying the following conditions:

(i) Γ is endowed with a monoidal structure which ψ maps to the disjoint union
in Gr. It will be denoted by the same sign

∐
.

(ii) ψ is faithful: if two morphisms with common source and target become equal
after applying ψ, they are equal.

(iii) Call a Γ-corolla any object τ of Γ such that ψ(τ) is a corolla. Any object
τ ∈ Γ admits a morphism to a Γ-corolla

conτ : τ → con (τ)

which is a lift to Γ of the diagram of the form (1.2) with the source ψ(τ). It
is defined uniquely up to unique isomorphism identical on τ .
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(iv) Any object of Γ is the target of a morphism from a disjoint union of Γ-corollas

◦τ :
∐

v∈Vψ(τ)

τv → τ

which is a lift to Γ of the diagram of the form (1.1) with the target ψ(τ). It
is defined uniquely up to unique isomorphism identical on τ .

(v) Any morphism h : τ → σ can be embedded into a commutative diagram of the
form (1.3) which is a lift of the atomization diagram for the morphism ψ(h) :
ψ(τ) → ψ(σ). Such a diagram is defined uniquely up to unique isomorphism.

(vi) Moreover, assume that we are given σ in Γ, and for each Γ-corolla σv, v ∈
Vψ(σ), a morphism hv : τv → σv where {τv} is a family of objects of Γ. Then
there exists a morphism τ → σ in Γ such that all this data fit into (a lift of)
the atomization diagram (1.3). Moreover, τ and σ are defined uniquely up to
unique isomorphism.

The last requirement formalizes what Markl calls “hereditary” property in
[Mar], p. 45.

1.3.1. Comments

a) It is helpful (and usually realistic) to imagine any object σ ∈ Γ as a pair
consisting of the “underlying graph” ψ(σ) and an additional structure on the
components of ψ(σ) such as decorating vertices by integers, a cyclic order on
flags adjoining to a vertex, etc (see examples below). We will generally refer
to such a structure as “labeling”.

As a rule, existence of labeling of a given type and/or additional alge-
braic properties required for a treatment a certain type of operadic structure
put some restrictions upon underlying graphs so that ψ need not be surjective
on objects. On the other hand, if these restrictions are satisfied, there might
be many different compatible labeling on the same underlying graph so that
ψ need not be injective on objects either.

The functor ψ on objects simply forgets labeling.
b) In the same vein, any morphism σ → τ in Γ should be imagined as a morphism
ψ(σ) → ψ(τ) of underlying graphs satisfying some constraints of two types:
purely geometric ones which can be stated in Gr, and certain compatibility
conditions with labelings (see below). This is the content of condition (ii)
above.

c) Let σ ∈ Γ. Slightly abusing the language, we will call flags, vertices, edges
etc. of ψ(σ) the respective components of σ, and write, say, Vσ in place of
Vψ(σ). Similar conventions will apply to morphisms in Γ. By extension, σ is
called a Γ-corolla (resp. tree etc), if ψ(σ) is a corolla (resp. tree etc).
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1.3.2. Examples of labeling

a) Oriented graphs. Any map Fσ → {in, out} such that halves of any edge are
oriented by different labels, is called an orientation of σ. On the geometric re-
alization, a flag marked by in (resp. out) is oriented towards (resp. outwards)
its vertex.

Tails of σ oriented in (resp. out) are called inputs (resp. outputs) of σ.
Similarly, Fσ(v) is partitioned into inputs and outputs of the vertex v.

Consider an orientation of σ. Its edge is called an oriented loop, if both
its halves belong to the same vertex. Otherwise an oriented edge starts at a
source vertex and ends at a different target vertex.

More generally, a sequence of pairwise distinct edges e1, . . . , en, is called
a simple path of length n, if ei and ei+1 have a common vertex, and the n−1
vertices obtained in this way are pairwise distinct. If moreover e1 and en also
have a common vertex distinct from the mentioned ones, this path is a wheel
of length n. A loop is a wheel of length one. Edges in a wheel are endowed
only with a cyclic order up to inversion.

Clearly, all edges in a path (resp. a wheel) can be oriented so that the
source of ei+1 is the target of ei.

If the graph is already oriented, the induced orientation on any path
(resp. wheel) either has this property or not. Respectively, the wheel is called
oriented or not.

A morphism of oriented graphs h is a morphism of graphs such that hF

is compatible with orientations.
b) Directed graphs. An oriented graph σ is called directed if it satisfies the fol-

lowing condition:
On each connected component of the geometric realization, one can de-

fine a continuous real valued function (“height”) in such a way that moving
in the direction of orientation along each flag decreases the value of this func-
tion.

In particular, a directed graph has no oriented wheels.

Notice that, somewhat counterintuitively, a directed graph is not nec-
essarily oriented “from its inputs to its outputs” as is usually shown on il-
lustrating pictures. In effect, take a corolla with only in flags and another
corolla with only out flags, and graft one input to one output. The resulting
graph is directed (check this) although its only edge is oriented from global
outputs to global inputs.

This is one reason why it is sometimes sensible to include in a category
Γ of directed graphs only those, which have at least one input and least one
output at each vertex (cf. the definition of reduced bimodules in Section 1.1
of [Va1]).
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Another reason for excluding certain marginal (“unstable”) types of
labeled corollas might be our desire to ensure essential finiteness of the cat-
egories denoted ⇒ σ in Section 1.5.5 (cf. a description of unstable modular
corollas below). In a category of (disjoint unions of) directed trees, for ex-
ample, this leads to the additional requirement: corolla of any vertex has at
least three flags.

This requirement might lead to some technical problems if we want to
consider unital versions of our operads.

c) Genus labeling. A genus labeling of σ is a map g : Vσ → Z≥0, v �→ gv. The
genus of a connected labeled graph σ is defined as

g(σ) :=
∑
v∈Vσ

gv + rkH1(|σ|) =
∑
v∈Vσ

(gv − 1) + cardEσ + 1.

Genus labeled graphs (or only connected ones) are called modular graphs.
Corolla of any vertex of a modular graph is a modular graph.

A morphism of modular graphs is a morphism of graphs compatible
with labeling in the following sense. Contraction of a looping edge raises the
genus of its vertex by one. Contraction of a non-looping edge prescribes to the
emerging vertex the sum of genera of two ends of the edge. Finally, grafting
flags does not change genera of vertices.

Thus, a morphism between two connected modular graphs can exist
only if their genera coincide.

A modular corolla with vertex of genus g and n flags is called stable iff
2g− 2 +n > 0. A modular graph is called stable, iff corollas of all its vertices
are stable.

d) Colored graphs. Let I be an abstract set (elements of which are called colors).
An I-colored graph is a graph τ together with a map Fτ → I such that two
halves of each edge get the same color. Morphisms are restricted by the
condition that hF preserves color.

In [LoMa], a topological operad was studied governed by a category of
colored graphs with two-element I = {black, white}. Halves of an edge in
this category are always white.

e) Cyclic labeling. A cyclic labeling of a graph τ is a choice of cyclic order upon
each set Fτ (v). Alternatively, it is a family of bijections Fτ (v) → μ|v| where
μ|v| is the group of roots of unity (in C) of degree |v| := Fτ (v); two maps
which differ by a multiplication by a root of unity define the same labeling.
Yet another description identifies a cyclic labeling of τ with a choice of planar
structure for each corolla τv, that is, an isotopy class of embeddings of |τv|
into an oriented plane.

In a category of cyclic labeled graphs, mergers are not allowed, whereas
contractions, say, of one edge, should be compatible with cyclic labeling in an
evident way: say (0, 1, . . . ,m) and (0, 1̄, . . . , n̄) turn into (1, . . . ,m, 1̄, . . . , n̄),
where by 0 we denoted the contracted halves of the same edge in two corollas.
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An interesting variant of cyclic labeling is unoriented cyclic labeling (it
has nothing to do with orientation of the graph itself): the cyclic orders
(0, 1, . . . ,m) and (m,m− 1, . . . , 0) are considered equivalent. In this version,
contraction of an edge leads generally to two different morphisms in Γ, with
two different targets.

Combinatorics of unoriented cyclic labeled trees is very essential in the
description of the topological operad of real points M0,∗(R), cf. [GoMa].

1.4. Ground categories G
Operads of various types in this paper will be defined as certain functors from
a category of labeled graphs Γ to a symmetric monoidal category (G,⊗) which
will be called ground category. The simplest example is that of finite-dimensional
vector spaces over a field, or that of finite complexes of such spaces.

In order to ensure validity of various constructions we will have to postulate
(locally) some additional properties of (G,⊗), the most important of which are
contained in the following list. At this stage, we do not assume that all of them,
or some subset of them, hold simultaneously.

a) Existence of a unit object.
b) Existence of internal cohom objects cohom (X,Z) for any objects X,Z in G.

By definition, they fit into functorial isomorphisms

HomG(X,Y ⊗ Z) = HomG(cohom (X,Z), Y ).

These isomorphisms are established by composition with coevaluation mor-
phisms

c = cX,Z : X → cohom (X,Z)⊗ Z
(cf. the diagram (2.3) in Section 2 below).

c) Existence of countable coproducts such that ⊗ is distributive with respect to
these coproducts.

d) Existence of finite (and sometimes infinite) colimits.
e) G is an abelian category, ⊗ is an additive bifunctor exact in each argument.
f) G is a closed model category.

1.5. ΓG-collections

We will denote by ΓCOR the subcategory (groupoid) of Γ consisting of Γ-corollas
and isomorphisms between them.

1.5.1. Definition. A ΓG-collection A1 is a functor A1 : ΓCOR → G. A morphism
of ΓG-collections A1 → B1 is a functor morphism (natural transformation.)

The category of ΓG-collections will be denoted ΓGCOLL.

1.5.2. Examples

a) If Γ is the category of stable modular graphs, the category ΓGCOLL is equiv-
alent to the category of double sequences A1((g, n)) of objects of G endowed
with an action of Sn upon A1((g, n)). A morphism A1 → B1 is a sequence of
morphisms in G, A1((g, n)) → B1((g, n)), compatible with Sn-actions.
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In effect, any Γ-collection A1 is determined up to an isomorphism by
its restriction to the category of modular corollas with flags {1, . . . , n} and
a vertex labeled by g. Their isomorphisms correspond to permutations of
{1, . . . , n}.

Such collections are called stable S-modules in [GeKa2], (2.1).
b) Let Γ be a category of oriented graphs, containing all oriented corollas. Then

the category ΓG-collections is equivalent to the category of double sequences
A1(m,n) of objects in G endowed with actions of Sm × Sn, and equivariant
componentwise isomorphisms.

This is clear: look at oriented corollas with inputs {1, . . . , n} and outputs
{1, . . . ,m}: see, e.g., [Va1], 1.1.

1.5.3. White product of collections. For two collections A1, B1, define their white
product by

(A1 ©B1)(σ) := A1(σ)⊗B1(σ)
for any Γ-corolla σ, with obvious extension to morphisms.

This determines a symmetric monoidal structure © on ΓGCOLL.
If (G,⊗) is endowed with a unit object u, then the collection U , U(σ) = u,

sending each morphism of corollas to idu is a unit object of (ΓGCOLL,©).

1.5.4. Inner cohomomorphisms for collections. If (G,⊗) admits internal cohom
objects, the same holds for (ΓGCOLL,©): just work componentwise.

1.5.5. Endofunctor F on ΓGCOLL. Let A1 be a ΓG-collection. Consider a Γ-corolla
σ and denote by⇒ σ the category whose objects are Γ-morphisms Γ-graphs τ → σ,
and whose morphisms are Γ-isomorphisms of morphisms identical on σ. Put

F(A1)(σ) := colim⇒σ ⊗v∈Vτ A1(τv) (1.4)

The existence of appropriate colimits in G such that ⊗ is distributive with respect
to them should be postulated at this stage.

In some important cases (e.g., stable modular graphs) any category ⇒ σ is
essentially finite (equivalent to a category with finitely many objects and mor-
phisms). Therefore existence of finite colimits in G suffices.

Clearly, this construction is functorial with respect to isomorphisms of Γ-
corollas so that we actually get a new collection F(A1). Moreover, the map A1 �→
F(A1) extends to an endofunctor of ΓGCOLL.

As is well known, functor composition endows the category of endofunctors
by the structure of strict monoidal category with identity.

1.5.6. Proposition. The endofunctor F has a natural structure of a triple, that is,
a monoid with identity in the category of endofunctors.

Proof (sketch). The argument is essentially the same as in (2.17) of [GeKa2]. We
have to construct a multiplication morphism μ : F ·F → F , an identity morphism
η : Id→ F , and to check the commutativity of several diagrams.
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In other words, for a variable collection A1, we need functorial morphisms
of collections μA1 : F2(A1) → F(A1), ηA1 : A1 → F(A1) fitting the relevant
commutative diagrams. In turn, to define them, we have to give their values (in
G) on any Γ-corolla σ, functorially with respect to σ.

The construction of μ essentially uses the hereditary property 1.3(vi) of the
category Γ. In fact, we have

F2(A1)(σ) = colimτ→σ ⊗v∈Vτ F(τv)
= colimτ→σ[colimρv→τv ⊗w∈Vρv

A1(ρv,w)] (1.5)

where ρv are objects of Γ, and ρv,w is the Γ-corolla of a vertex w of ρv. Using
heredity, we can produce from each family ρv → τv a morphism ρ → τ , and
replace the right-hand side of (1.5) by

colimρ→τ→σ ⊗w∈Vρ A1(ρw)

The latter colimit maps to F(A1)(σ) via composition of two arrows in ρ→ σ.
As Getzler and Kapranov suggest, this construction and various similar ones

needed to produce ηA1 and to check axioms, become more transparent if one uses
the simplicial formalism.

Given σ and k ≥ 0, define the category ⇒k σ: its objects are sequences of
morphisms (f1, . . . , fk) in Γ, f1 : τ0 → τ1, . . . , fk : τk−1 → τk together with an
augmentation morphism τk → σ. Morphisms in ⇒k σ are isomorphisms of such
sequences compatible with augmentation.

Categories ⇒k σ are interconnected by the standard face and degeneracy
functors turning them into components of a simplicial category.

Namely, di :⇒k σ →⇒k−1 σ skips τ0, f1 (resp. fk, τk) for i = 0 (resp. i = k);
skips τi and composes fi, fi+1 for 1 ≤ i ≤ k − 1.

Similarly, si :⇒k σ →⇒k+1 σ inserts id : τi → τi.
An argument similar to one which we sketched above for k = 1 will convince

the reader that one can identify the value of the (k + 1)-th iteration Fk+1(A1) at
σ with the functor sending σ to

colim⇒kσ ⊗v∈Vτ0
A1(τ0,v).

Thus the multiplication μ is the functor induced on colimits by d1 :⇒1 σ →
⇒0 σ. Monoidal identity maps A1 to F(A1) by sending A1(σ) to the diagram
id : A1(σ) → A1(σ).

Two morphisms F3 → F2 corresponding to two configurations of brackets
are induced by d1 and d2 respectively, and the associativity is expressed by the
simplicial identity d1d1 = d1d2. Identity η is treated similarly. �
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1.6. ΓG-operads as functors

Traditional approaches to operads in our context lead to three different but equiv-
alent definitions of it. Very briefly, they can be summarized as follows.
(I) An operad is a tensor functor (Γ,

∐
) → (G,⊗) satisfying certain additional

constraints.
(II) An operad is a collection together with a structure of an algebra over the

triple (F , μ, η).
(III) An operad is a collection together with a composition law which makes it a

monoid with respect to an appropriate symmetric monoidal structure upon
ΓGCOLL (to be described).
We will start with the first description, and proceed to the second one in

Section 1.7. As for the third description which requires first construction of a
special monoidal structure on collections, it seems to be less universal. In the
Appendix, we will sketch it for orientation labeling and directed graphs, following
[Va1].

Consider the category whose objects are functors A : Γ → G compatible with
the monoidal structures

∐
and ⊗ in the following sense: we are given functorial

isomorphisms
aσ,τ : A(σ

∐
τ) → A(σ) ⊗A(τ) (1.6)

for all σ, τ ∈ Γ such that inverse isomorphisms a−1
σ,τ satisfy conditions spelled out in

Def. 1.8 of [DeMi]. Such functors form a category, morphisms in which are functor
morphisms compatible with aσ,τ .

In [DeMi] such functors are called tensor functors, we will also use this ter-
minology.

1.6.1. Definition. The category ΓGOPER of ΓG-operads is the category of those
tensor functors (A, a) : Γ → G that send any grafting morphism, in particular ◦τ ,
in Γ to an isomorphism.

Morphisms are functor morphisms.

Informally, making grafting morphisms invertible means that A(τ) for any
τ ∈ Γ can be canonically identified with the tensor product ⊗vA(τv) where τv
runs over Γ-corollas of all vertices of τ (or rather, of ψ(τ)). To see this, one should
apply (1.6) (functorially extended to disjoint unions of arbitrary finite families) to
the l.h.s. of (1.1).

Moreover, the morphism (1.1) of “full contraction followed by a merger”,
◦τ : τ → con (τ) in Γ, combined with just described tensor decomposition produces
a morphism in G

⊗v∈VτA(τv) → A(con (τ)). (1.7)
This is our embodiment of operadic compositions.

We will omit a in the notation (A, a) for brevity, and simply treat (1.6) as
identical map, as well as its extensions to arbitrary families and their disjoint
unions.
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1.7. From functors to algebras over the triple (F , μ, η)
Let now A : Γ→ G be an operad. Denote by A1 its restriction to the subcategory
of Γ-corollas and their isomorphisms. Let σ be a Γ-corolla. We can treat any object
τ → σ in⇒ σ (cf. 1.5.5) as a morphism in Γ and apply to it the functor A. We will
get a morphism ⊗v∈VτA1(τv) → A1(σ) functorial with respect to isomorphisms of
τ identical on σ. Due to the universal property of colimits, these morphisms induce
a morphism in G

F(A1)(σ) → A1(σ).

The system of these morphisms is functorial in σ, so we get finally a morphism of
collections

αA1 : F(A1)→ A1. (1.8)

Similarly, among the objects of⇒ σ there is the identical morphism id : σ →
σ. As above, it produces a morphism of collections

ηA1 : A1 → F(A1). (1.9)

1.7.1. Proposition.

(i) The data (A1, αA1 , ηA1) constitute an algebra over the triple (F , μ, η) (see,
e.g., [MarShSt], pp. 88–89).

(ii) The map A �→ (A1, αA1 , ηA1) extends to a functor coll establishing equivalence
of the category of ΓG-operads and the category of algebras over the triple
(F , μ, η).

Proof (sketch). The proof is essentially the same as that of Proposition (2.23) in
[GeKa2]. The first statement reduces to the check of commutativity of several
diagrams.

The main problem in the second statement consists in extending each mor-
phism of operads as algebras to a morphism of operads as functors. In other words,
knowing the operadic compositions induced by full contractions and mergers (if
the latter occur in Γ), we want to reconstruct operadic compositions induced by
partial contractions such as τ → σ in (a Γ-version of) a diagram (1.3). To this
end, complete (1.3) by a morphism

f :
∐

w∈Vτ

τw →
∐

v∈Vσ

τv

which is the disjoint union of morphisms of total graftings with targets τv (so that
τw are corollas whereas τv generally are not). Since k · f is a total grafting with
target τ , in order to calculate the value of our functor on τ → σ it suffices to
know its value on the composition ◦σ(

∐
hv)f which involves only graftings, full

contractions and mergers of corollas. �

1.7.2. Algebra F(A1). As a general formalism shows, for any A1, the collection
F(A1) has the canonical structure of an operad, with αF(A1) := μA1 : F2(A1) →
F(A1).
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1.7.3. Proposition. For any collection A1 and an operad B, there exists a canonical
identification

HomΓGCOLL
(A1, coll(B)) = HomΓGOP ER

(F(A1), B)

functorial in both arguments.

This means that the functor F : ΓGCOLL→ ΓGOPER is a construction of
the free operad freely generated by a collection, and is thus an analog of tensor
algebra of a linear space.

1.8. White product of operads

For two ΓG-operads A,B, define their white product by

(A©B)(σ) := A(σ) ⊗B(σ)

for any object σ ∈ Γ. The extension to morphisms is evident.

This determines a symmetric monoidal structure © on ΓGOPER.

As before, if (G,⊗) is endowed with a unit object u, then the functor U : σ �→
u sending each morphism of labeled graphs to idu is a unit object of (ΓGOPER,©).

1.9. Morphism j

Morphism of operads j : F(E1 © B1) → F(E1) © F(B1) that is, a family of
morphisms

colim⇒σ ⊗v∈Vτ E1(τv)⊗B1(τv)

→ (colim⇒σ ⊗v∈Vτ′ E1(τv ′))⊗ (colim⇒σ ⊗v∈Vτ′′ B1(τv ′′))

comes from the “diagonal” part of the right-hand side: τ = τ ′ = τ ′′.

2. Inner cohomomorphism operads

2.1. Preparation

Fix a graph category Γ and a ground category G as above.

In this section, we will assume that (G,⊗) has inner cohomomorphism objects.
Moreover, for validity of the main Theorem 2.2, G must be abelian, with tensor
product exact in each argument.

Let A be a ΓG-operad, A1 a ΓG-collection, and iA : A1 → A a morphism
of collections such that the respective morphism of operads fA : F(A1) → A is
surjective. Denote by A the diagram iA : A1 → A. Such a diagram can be thought
of as a presentation of A.

Let B be a similar data iB : B1 → B.
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As in 0.1, denote by A ⇒ B the category whose objects are commutative
diagrams

A1

iA

u1
F © B1

idF ©iB

A
u
F ©B

(2.1)

where F is an operad, u is a morphism of operads, and u1 is a morphism of
collections. In the upper row, and below in similar situations, we write F in place
coll(F ) for brevity, identifying an operad with its underlying collection.

Notice that, unlike in 0.1, we do not assume that iA, iB are injective. Hence
the upper row of (2.1) has to be given explicitly.

Such a diagram can be denoted (F, u, u1) since the remaining data are deter-
mined by A, B.

A morphism (F, u, u1) → (F ′, u′, u′1) in A ⇒ B is a morphism of operads
F → F ′ inducing a morphism of commutative diagrams (2.1) constructed for F
and F ′ respectively.

2.2. Theorem

The category A ⇒ B has an initial object

A1

iA

δ1
E©B1

idE©iB

A
δ
E© B

(2.2)

defined uniquely up to unique isomorphism.

Moreover, E comes together with a presentation E, iE : E1 → E in which
E1 = cohom(A1, B1), inner cohomomorphism being taken in the category of ΓG-
collections.

If F is given together with its presentation F , that is iF : F1 → F , and u
is induced by u1 : A1 → F1 © B1, then the canonical homomorphism E → F is
induced by a unique morphism in the category E ⇒ F .

Proof. (i) Preparation. The morphism u1 : A1 → F © B1 corresponds to a
morphism ũ1 : E1 → F where E1 = cohom(A1, B1) as above. Recall that in-
ner cohomomorphism collections here can be constructed componentwise. Let
c : A1 → E1 ©B1 be the coevaluation morphism. Then the diagram

A1

idA1

c
E1 © B1

ũ1©idB1

A1
u1
F © B1

(2.3)
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is commutative. Composing (2.3) with (2.1), we get a commutative square of col-
lections

A1

iA

c
E1 © B1

A
u
F ©B

(2.4)

which produces a morphism of operads with presentations

F(A1)

fA

F(c)F(E1 ©B1)

g

A
u

F © B

(2.5)

This diagram can be completed by the commutative triangle

F(A1)

fA

F(c)F(E1 ©B1)

g

h F(E1)© B

ṽ©idB

A
u

F ©B

(2.6)

where h is the composition

F(E1 © B1)
j F(E1)©F(B1)

id©fB F(E1)© B

and j is described in Section 1.9.

(ii) Construction of main objects. Now we will construct in turn an ideal
(R̃) ⊂ F(E1), the operad E := F(E1)/(R̃) together with a morphism of operads
δ : A→ E©B and a morphism v : E → F.

Starting with this point, we will have to use our assumption that assume that
G is abelian, and ⊗ is exact.

Choose a subcollection R ⊂ Ker fA generating Ker fA as an ideal in the free
operad F(A1). Replace the morphism h ◦ F(c) : F(A1) → F(E1) © B by the
morphism canonically corresponding to it

cohom(F(A1), B)→ F(E1)

where the inner cohomomorphisms here and below are taken in the category of
collections.



Generalized Operads 267

Since inner cohomomorphisms are covariant functorial with respect to the
first argument, we have a commutative diagram

cohom (R,B)

cohom (F(A1), B) F(E1)

ṽ

cohom (A,B) F

(2.7)

where ṽ is taken from (2.6).
Denote by R̃ the image of the skew arrow in (2.7). Since the composition

R → F(A1) → A is zero, the same holds for the composition of the two left
vertical arrows in (2.7). This implies that the composition R̃ → F(E1) → F is
zero. Since ṽ is a morphism of operads, its kernel contains the ideal (R̃) generated
by R̃.

Rewrite the upper triangle in (2.7) as a commutative square

cohom (R,B) R̃

cohom (F(A1), B) F(E1)

Replacing the horizontal arrows with the help of coevaluation morphisms, we get
the commutative square

R R̃©B

F(A1) F(E1)© B

(2.8)

which induces a morphism of operads

δ : A = F(A1)/(R)→ F(E1)© B/(R̃©B) ∼= F(E1)/(R̃)©B = E©B (2.9)

(use the exactness of ⊗ in G.)
(iii) Completion of the proof. It remains to show that δ : A→ E©B has all

the properties stated in Theorem 2.2.
From our construction, it is clear that it fits into the diagram of the form

(2.2), and that it comes with the presentation iE : E1 → E.
The morphism ṽ : F(E1) → F descends to a morphism of operads v : E →

F , and from the commutativity of the diagram (2.6) one can infer that it induces
a morphism of objects (E, δ, δ1)→ (F, u, u1).

We leave the remaining checks to the reader. �
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2.3. Remark

Associative algebras (without unit) can be treated as operads: functors on linear
oriented trees and contractions with values in linear spaces. The Theorem 2.2 in
this case reduces to the Theorem 0.1.1, or rather its extension where presentations
are not supposed to be injective on components of degree 1.

2.4. Inner cohomomorphisms for operads with presentation

We can now reformulate Theorem 2.2 in the same way as it was done in the
Introduction for associative algebras.

Consider the following category OP of ΓG operads given together with their
presentation.

Objects of OP are pairsA as in 2.1. A morphismA → B is a pair consisting of
a morphism of collections A1 → B1 and a morphism of operads A→ B compatible
with iA, iB.

This category has a symmetric monoidal product
⊙

induced by © in the
following sense: A⊙B = C where C is represented by C1 := A1 © B1, C :=
the minimal suboperad containing the image (iA © iB)(C1) in A©B, and iC :=
restriction of iA © iB.

Theorem 2.2 can now be read as a statement that, functorially in all argu-
ments, we have

HomOP (A,F
⊙

B) = HomOP (E ,F) (2.10)

that is, E is an inner cohomomorphism object in OP :

E = cohomOP (A,B). (2.11)

General categorical formalism produces canonical comultiplication morphisms in
OP

ΔA,B,C : cohomOP (A, C) → cohomOP (A,B)
⊙
cohomOP (B, C) (2.12)

coassociative in an evident sense.
This is an operadic version of quantum matrices and their comultiplication.
In particular, the operad

coendOPA := cohomOP (A,A)

is endowed with a canonical coassociative comultiplication, morphism of operads

ΔA := ΔA,A,A : coendOPA → coendOPA
⊙
coendOPA. (2.13)

It is generally not cocommutative, as the case of associative rings amply demon-
strates.

We get thus a supply of “quantum semigroups”, or Hopf algebras in the
category of operads (ignoring antipode).

Notice finally that if G has a unit object u, we can sometimes define a unit
object U in (OP,

⊙
). Taking F = U in the adjunction formula (2.10), we see that

the space of “classical homomorphisms” A → B in OP coincides with space of
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points of E with values in U (here we implicitly imagine operadic affine quantum
spaces as objects of the dual category).

2.5. Algebras over an operad and their deformations

For certain labelings and respective graph categories Γ one can define a class of
“natural” ΓG-collections.

The basic example is this. Let J be an abstract set of “flavors” such that
a labeling of τ consists of a map Fτ → J (and possibly other data). (Imagine
orientations, colors, or pairs (orientation, color)).

Assume furthermore that automorphisms of any Γ-corolla σ form a subgroup
of permutations of its flags preserving flavors of flags. In this case any family of
objects V := {Vj | j ∈ J} determines the following Γ-collection:

Coll (V)(σ) := ⊗j∈JV
⊗F (j)

τ

j (2.14)

where F (j)
τ is the subset of flags of flavour j. Automorphisms of σ act in an evident

way.

Such a collection naturally extends to a functor on the groupoid of Γ-graphs
τ and their isomorphisms: simply replace σ by τ in (2.14).

In order to extend it to arbitrary Γ-morphisms, consider separately three
classes of morphisms.

a) Graftings. Graftings correspond to bijections of sets of flags preserving flavors.
Hence they extend to (2.14).

b) Mergers. They have the same property.
c) Contractions. In principle, in order to accommodate contractions, we have

to impose on V an additional structure, namely, a set of polylinear forms on
(Vj) which we denote v and axiomatize as follows:

Let S be a finite set and κ := {(js, ks) | s ∈ S} be a family of pairs
of flavors such that in some Γ-graph there exist two vertices (perhaps coin-
ciding) and connecting them edges which are simultaneously contracted by a
Γ-morphism. The respective component vκ of v is a morphism in G

vκ : ⊗s∈S(Vjs ⊗ Vks) → u (2.15)

where u is the unit object of G.

Given v, the prescription for extending our functor to contractions looks
as follows. To map a product (2.14) for the source of a contraction to the
similar product for its target, we must map identically factors corresponding
to uncontracted flags, and to “kill” factors of the type ⊗s∈SVjs ⊗ Vks with
the help of (2.15).

This prescription will not necessarily describe a functor Γ → G: one should
to impose upon v coherence conditions which we do not bother to spell out here.
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In real life, this problem is avoided by specifying only bilinear forms corre-
sponding to one-edge contractions, and then tensoring them to obtain full scale
(2.15).

We can now give the main definition of this section.

2.5.1. Definition.

a) Any functor as above Γ → G with underlying collection Coll (V) and struc-
ture forms v is called the endomorphism operad of (V,v) and denoted
OpEnd (V,v).

b) Let P be a ΓG-operad. Any morphism P → OpEnd (V,v) is called a structure
of P -algebra on (V,v).

Examples. We will illustrate this on three types of labelling discussed in 1.3.2
above.

a) Working with a subcategory of Gr itself (as in the case of cyclic operads) we
should choose one object V of G and a symmetric pairing g : V ⊗ V → u.

b) Let now Γ be a subcategory of oriented graphs. In that case one usually
chooses Vout = V , Vin = V t (the dual object), and takes for v the canonical
pairing V t ⊗ V → u.

c) Finally, let Γ be a category of colored graphs, I the set of colors. In this case,
one applies the full machinery of the definition above, simplifying it by caring
only about one-edge contractions. So we need Vi ⊗ Vi → u in the unoriented
case, or else choose Vout,i = V t

in,i.

Let us now return to our Definition 2.5.1. The whole space of structures of
P -algebra on (V,v) is thus

HomΓGOPER(P,OpEnd (V,v)). (2.16)

In the standard approach to the deformation theory of operadic algebras
one chooses a space of basic operations, that is, a presentation of P (and then
replaces the respective structure by a differential in an appropriate Hochschild-
type complex, the step that we will not discuss here). Sometimes, one can choose
a compatible presentation of OpEnd (V,v). For example, if connected graphs in
Γ consist of oriented trees and all basic operations are binary, one can choose for
generators the collection P1 which coincides with P on corollas with three flags and
is zero otherwise. Respectively, OpEndV is (hopefully) generated by hom(V ⊗2, V )
(at least, this is the case for G = V eck.)

Accepting this, we suggest to replace P by P which is i : P1 → P , to augment
OpEndV accordingly, and to replace (2.16) by an appropriate set of morphisms
in the category OP . After that, it is only natural to consider the operad

cohomOP (P ,OpEndV ) (2.17)

as a non-commutative space parameterizing deformations of (a chosen collection
of generators of) P -algebra structures.
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2.6. Inner cohomomorphisms for algebras over an operad

P -algebras form a category PALG. One can try to play with P -algebras the same
game as we did with associative algebras and operads of various types, and to
study existence of inner cohomomorphisms in a category of P -algebras with a
presentation. However, even in order to state the problem we need at least two
preliminary constructions:

a) Free P -algebra FP (V,v) generated by a family (V,v) as above. Generally, it
will take values in a monoidal category larger than G, e.g., that of inductive
systems.

This will allow us to define the notion of an algebra with presentation.
b) Symmetric white product on the category of P -algebras extending ⊗.

To this end, we need a symmetric comultiplication Δ : P → P©P and
an analog of the morphism j from Section 1.9 for free P -algebras.

Unfortunately, as our description of P -algebras above shows, we cannot do
even this preliminary work in the same generality as we treated operads themselves.
Therefore we step back, and for the remainder of Section 2.6 work with a version
of ordinary operads.

2.6.1. Ordinary operads and their algebras. Let Γ be the category of graphs whose
connected components are directed trees with exactly one output and at least one
input at each vertex. Morphisms are contractions and graftings; mergers are not
allowed. Let (G,⊗, u) be an abelian symmetric monoidal category, such that ⊗ is
exact in both arguments, and endowed with finite colimits and cohomomorphism
objects.

Consider a ΓG operad P . Denote by P (n) the value of P on the Γ-corolla with
inputs {1, . . . , n}, and let Sn be the automorphism group of this directed corolla.
Assume that P (1) = u and that contracting an edge one end of which carries a
corolla with one input produces canonical identifications Q⊗ u→ Q.

It is well known that a free P -algebra freely generated by V1 exists in an
appropriate category of inductive limits, and its underlying object is

FP (V1) = ⊕∞
n=1P (n)⊗Sn V

⊗n
1 . (2.18)

This construction is functorial in V1. A presentation of an algebra V is a surjective
morphism FP (V1)→ V ; it can be reconstructed from its restriction iV : V1 → V .

Assume that P is endowed with a symmetric comultiplication Δ : P →
P © P .

Then, given two objects E1,W1 of G, we can define a map

j : FP (E1 ⊗W1)→ FP (E1)© FP (W1). (2.19)

To construct it, first produce for each n a map

P (n)⊗ (E1 ⊗W1)⊗n → P (n)⊗ E⊗n
1 ⊗ P (n)⊗W⊗n

1
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combining Δ with regrouping, and then the induced map of colimits

j(n) : P (n)⊗Sn (E1 ⊗W1)⊗n → (P (n)⊗Sn E
⊗n
1 )⊗ (P (n)⊗Sn W

⊗n
1 ).

We put j = ⊕nj(n). One can check that this is a morphism of P -algebras.
If V,W are two P -algebras, presented by their structure morphisms α :

FP (V ) → V , β : FP (W ) → W , we can compose j(n) with α ⊗ β to define a
structure of P -algebra on V ⊗W . This gives a symmetric monoidal structure on
PALG still denoted ⊗. We can now state

2.6.2. Proposition. An analog of Theorem 2.2 holds in the category of P -algebras
with presentation.

We skip a proof which follows the same plan as that of Theorem 2.2.

2.7. Explicit constructions of cohomomorphism objects in the category of
associative algebras

Existence proof of cohomomorphism objects generally is not very illuminating.
In this and the following subsections, we cite several explicit constructions, valid
under additional assumptions.

a) Quadratic algebras. This was the case first treated in [Ma1] and [Ma2].
Briefly, a quadratic algebra A (over a field k) is defined by its presentation α :
FASS(A1) → A where FASS(A1) = T (A1) is the free (tensor) algebra freely gener-
ated by a finite-dimensional vector space A1, such that Kerα is the ideal generated
by the space of quadratic relations RA ⊂ A⊗2

1 . In particular, A1 is embedded in A,
each A is naturally graded (A1 in degree 1), and a morphism of quadratic presen-
tations is the same as morphism of algebras which preserves grading. Moreover,
each morphism is uniquely defined by its restriction to the space of generators.

This category Qalg has a contravariant duality involution: A �→ A! where
A! = T (A∗

1)/(R
⊥
A), A∗

1 denoting the dual space to A1.
It has also two different symmetric monoidal structures, which are inter-

changed by !: “white product” ◦ and “black product” •:
T (A1)/(RA) ◦T (B1)/(RB) = T (A1⊗B1)/(S(23)(RA⊗B⊗2

1 +A⊗2
1 ⊗RB), (2.20)

T (A1)/(RA) • T (B1)/(RB) = T (A1 ⊗B1)/(S(23)(RA ⊗RB), (2.21)

Here S(23) : A⊗2
1 ⊗B⊗2

1 → (A1 ⊗B1)⊗2 interchanges two middle factors.
Both categories have unit objects: polynomials of one variable for ◦, and dual

numbers k[ε]/(ε2) for • respectively. They are !-dual to each other. The generator
ε combined with general categorical constructions produces differential in various
versions of Koszul complex which is a base of Koszul duality.

The monoidal category (Qalg, •) has internal homomorphism objects. Ex-
plicitly,

hom•(A,B) = A! ◦B. (2.22)
The monoidal category (Qalg, ◦) has inner cohomomorphism objects. Explicitly,

cohom◦(A,B) = A •B!. (2.23)
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Claim. (2.23) is a valid description of the internal cohomomorphism object of two
quadratic algebras in the total category of (algebras with) presentations.

These formulas follow from a general functorial isomorphism (adjunction for-
mula)

HomQalg(A •B!, C) = HomQalg(A,B ◦ C) (2.24)
Abstract properties of Qalg expressed by (2.22)–(2.24) can be axiomatized

to produce an interesting version of the notion of rigid tensor category of [DeMi].
They justify the use of the name “quantum linear spaces” for objects of Qalg
although the category itself is not linear or even additive.

It might be worthwhile to consider (Qalg, ◦) and (Qalg, •) as ground cate-
gories for Γ-operads (and cooperads).

Notice that the cohomology spaces of M0,n+1, components of the Quantum
Cohomology cooperad, are quadratic algebras (Keel’s theorem).

b) N -homogeneous algebras. It was shown in [BerDW] that similar results
hold for the category HNalg of homogeneous algebras generated in degree 1 with
relations generated in degree N , for any fixed N ≥ 2. If one continues to denote
by RA ⊂ A⊗N

1 generating relations, A! is given by relations R⊥
A ⊂ (A∗

1)
⊗N . Thus

! =!N explicitly depends on N and gives, for example, different dual objects of
a free algebra, depending on where we put its trivial relations. In the definitions
(2.20) one should make straightforward modifications, replacing 2 by N . Formulas
(2.22)–(2.24) still hold in the new setup. Unit object for • is now k[ε]/(εN).

As a consequence, Koszul complexes become N -complexes leading to an in-
teresting new homological effects: see [BerM] and references therein.

c) Homogeneous algebras generated in degree one. This case is treated in
Chapter 3 of [PP] and in Section 1.3 of [GrM]; the approaches in these two papers
nicely complement each other.

White product (2.21) and its HNalg-version extend to this larger category
as (A ◦ B)n := An ⊗ Bn (Segre product). The duality morphism ! and the black
product do not survive in [PP], and internal homomorphism objects (2.22) perish.
The right-hand side of the formula (2.23) is replaced by a rather long combinato-
rial construction which we do not reproduce here, and (2.24) becomes simply the
characteristic property of cohom’s:

Hom(cohom (A,B), C) = Hom(A,B ◦ C)

However, if A is quadratic, then (2.23) can be resurrected in a slightly modified
form: B is the quotient of a quadratic algebra qB (leave the same generators and
only quadratic relations), and we have

cohom◦(A,B) = A • (qB)! (2.25)

(see [PP], Ch.3 , Proposition 4.3).
An important novelty of [PP] is a treatment of white products and cohom

objects in the categories of graded modules over graded rings.
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In [GrM], a version of ! and several versions of the black product are intro-
duced. They are not as neatly packed together however as in the cases Qalg and
HNalg. In particular, ! is not an involution. As a compensation, Theorem 1 of
[GrM] establishes a nice extension of (2.25) for general homogeneous A and B
involving a certain “triangle product”.

A logical next step would be the introduction of these notions into “non-
commutative projective algebraic geometry” where coherent sheaves appear à la
Serre as quotient categories of graded modules, and cohom’s of graded rings can
serve as interesting non-commutative correspondences.

2.8. Explicit constructions of cohomomorphism objects in the categories of
operads

One objective of the brief review above was to collect a list of patterns that could
be subsequently recognized in various categories of operads. Most of the exist-
ing results which we are aware of concern quadratic operads and Koszul duality
patterns. Cohomomorphism objects appear as a byproduct, although, as we have
seen above, their existence is the most persistent phenomenon, even when the neat
package (◦, •, !) cannot be preserved.

a) Binary quadratic operads. The pioneering paper [GiKa] defined (◦, •, !)
for binary quadratic (ordinary) operads. Their construction uses a description
of operads as monoids in (COLL,�), a category of collections endowed with a
monoidal structure � (in 1.6 above, this is description (III)). This description was
rather neglected here (see Appendix), but it makes clear the analogy between the
tensor algebra of a linear space and the free operad generated by a collection V .

B. Vallette in [Va3] describes a construction of a free monoid which allows
him to treat the cases when the relevant monoidal structure is not biadditive,
which is the case of operads. The resulting weight grading of the free monoid can
be used to define weight graded quotients, analogs of graded associative algebras:
see [Fr], [Va1], [Va2].

The subcategory of ordinary operads with presentation considered in [GiKa]
consists of weight graded operads generated by their binary parts (values on corol-
las with two inputs), with relations in weight 2. After introducing (◦, •, !), Ginzburg
and Kapranov prove the adjunction formula (2.24) and thus the formula (2.23) as
well.

b) Developing this technique, B. Vallette in [Va1] and [Va2] defines ◦ for prop-
erads (see Appendix) with presentation and studies the case of (weight) quadratic
relations for generators of arbitrary arity. The full adjunction formula (2.24) is
established for quadratic operads with generators of one and the same arity k ≥ 2
([Va2], Section 4.6, Theorem 26), thus generalizing the k = 2 case of [GiKa].
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Yet another version of this result is proved for k-ary quadratic regular operads,
with different definitions of black and white products ([Va2], Section 5.1, Theorem
40). (A regular operad is an ordinary symmetric operad which is induced by some
non-symmetric operad in a sense that will not be made precise here).

3. Non-abelian constructions

3.0. Introduction

In Section 2 it was proved that given an abelian category G with a symmetric
monoidal structure ⊗ and its left adjoint cohom, the categories of operads in G
and algebras over Hopf operads also possess cohom for the natural extension of ⊗.
In this section we prove a version of this result in a non-abelian setting.

More precisely, we start with the description of operads as algebras over the
triple (F , μ, η), cf. Proposition 1.7.1. Here F is an explicit endofunctor on the
category of collections ΓGCOLL which inherits from G a monoidal structure, an
abelian structure, and inner cohomomorphisms.

We replace ΓGCOLL with an abstract monoidal category (C,⊗) endowed
with an endofunctor T which has the structure of a triple that commutes (up to
a natural transformation) with the monoidal structure. In this case, with some
additional assumptions, extension of cohom is straightforward and is given by the
adjoint lifting theorem. In this formulation it is unnecessary to suppose that the
monoidal product is symmetric, however, when applied to operads, the triple itself
is produced using symmetric properties of the monoidal structure.

Finally we formulate the natural notion of the derived cohom and consider
some cases when such a functor exists.

3.1. Tensor product and cohom for algebras over a triple

It is well known that if a category is equipped with a monoidal structure dis-
tributive with respect to direct sums, then categories of algebras over ordinary
Hopf operads in this category will possess an extension of the monoidal structure.
We can treat more general operads considering them in the context of triples. In
this section we formulate conditions on the triples, needed to extend monoidal
structure to algebras over them.

Let (C,⊗) be a category with a coherently associative product (bifunctor).
We do not assume ⊗ to be symmetric or to possess a unit object.

3.1.1. Definition. A Hopf-like triple on C is a triple T : C → C, μ : T ◦ T → T ,
together with a natural transformation between bifunctors on C:

τ : T ◦ ⊗ → ⊗ ◦ (T × T ),

satisfying the following conditions:
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a) We have a commutative diagram of natural transformations:

T ◦ T ◦ ⊗
T (τ)

τ(μ◦Id) ⊗ ◦ (T × T )

T ◦ ⊗ ◦ (T × T ) τ ⊗ ◦ (T × T ) ◦ (T × T )

⊗(μ×μ)

where μ : T 2 → T is the structure natural transformation of T .
b) Let α : ⊗ ◦ (⊗ × Id) → ⊗ ◦ (Id × ⊗) be the associativity constraint for ⊗.

Then the following diagram of natural transformations is commutative:

T ◦ ⊗ ◦ (⊗× Id)

T (α)

τ ⊗ ◦ (T × T ) ◦ (⊗ × Id)⊗(τ×Id)⊗ ◦ ((⊗ ◦ (T × T ))× T )

α

T ◦ ⊗ ◦ (Id×⊗) τ ⊗ ◦ (T × T ) ◦ (Id×⊗)
⊗(Id×τ)⊗ ◦ (T × (⊗ ◦ (T × T )))

The conditions in the definition above allow us to define an associative prod-
uct on the category of T -algebras, by extending it from C. The functor morphism
τ provides a definition, condition a) ensures that different ways of composing τ
produce the same result, and condition b) implies coherent associativity of the
resulting product on the category of T -algebras by utilizing associativity isomor-
phisms of ⊗. Here is the formal reformulation of all this.

3.1.2. Definition. Let (A,α : T (A) → A), (B, β : T (B) → B) be two T -algebras in
C. We define (A,α)©(B, β) to be (A⊗B,α©β), where α©β : T (A⊗B) → A⊗B
is the composition

T (A⊗B) τ→ T (A)⊗T (B)
α⊗β→ A⊗B.

3.1.3. Lemma. Let A be the category of T -algebras in C. Defined as above, © is
a bifunctor on A. It satisfies associativity conditions together with coherence. The
associativity isomorphisms are preserved by the forgetful functor U : A → C.

Proof. To show that © is a bifunctor we have to show first that its value on a pair
of objects in A is again in A, i.e., that the following diagram is commutative

T 2(A⊗B)

T (α©β)

μ
T (A⊗B)

α©β

T (A⊗B)
α©β

A⊗B

This follows from condition a) in Definition 3.1.1 and the commutativity of the
following diagram:
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T (T (A)⊗ T (B))

τ

T (α⊗β)
T (A⊗B)

τ

T 2(A)⊗ T 2(B)

μ⊗μ

T (α)⊗T (β)
T (A)⊗ T (B)

α⊗β

T (A)⊗ T (B)
α⊗β

A⊗B
The upper square of this diagram is commutative because T and ⊗ are functors
and τ is a natural transformation. The lower square is commutative because it is
the result of an application of ⊗ to two commutative squares (representing the
fact that α and β are structure morphisms for T -algebras).

Thus on objects © behaves like a bifunctor on A. We have to show that
f©g is a morphism in A for any two morphisms f : (A1, α1) → (A2, α2) and
g : (B1, β1) → (B2, β2) in A, i.e., the following diagram is commutative:

T (A1 ⊗B1)

α1©β1

T (f⊗g)
T (A2 ⊗B2)

α2©β2

A1 ⊗B1
f⊗g

A2 ⊗B2

By the definition of ©, this diagram can be decomposed as

T (A1)⊗ T (B1)

τ

T (f⊗g)
T (A2 ⊗B2)

τ

T (A1)⊗ T (B1)

α1⊗β1

T (f)⊗T (g)
T (A2)⊗ T (B2)

α2⊗β2

A1 ⊗B1
f⊗g

A2 ⊗ B2

The upper square of this diagram is commutative because ⊗ and T are functors
and τ is a natural transformation. The lower square is commutative because it is
the result of an application of ⊗ to two commutative squares (expressing the fact
that f and g are morphisms of T -algebras).

Clearly pairs of identities are mapped to identities by© and the composition
is preserved, i.e., © is a bifunctor on A.

It remains to show that © is coherently associative and that the forgetful
functor to C preserves the associativity isomorphisms. The former claim actually
follows from the latter, since ⊗ is coherently associative. So all we have to do
is to show that the ⊗-associativity isomorphisms between the images of the for-
getful functor belong to A, i.e., the outer rectangle of the following diagram is
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commutative for all A1, A2, A3 ∈ A,

T ((A1⊗A2)⊗A3)
(τ ⊗ Id) ◦ τ� (T (A1)⊗T (A2))⊗T (A3)

(α1 ⊗ α2) ⊗ α3� (A1⊗A2)⊗A3

T (A1⊗(A2⊗A3))

T (α)

� (Id ⊗ τ ) ◦ τ� T (A1)⊗(T (A2)⊗T (A3))

α

� α1 ⊗ (α2 ⊗ α3)� A1⊗(A2⊗A3)

α

�

The right-hand square of this picture is commutative because ⊗ and T are functors
and α is a natural transformation. Commutativity of the left-hand square is the
contents of condition b) of Definition 3.1.1. �

Having extended the product ⊗ from C to A, we would like to know if this
extension possesses a left adjoint, given ⊗ does so on C. We can infer it easily
from the adjoint lifting theorem, if we assume that A has all coequalizers. For the
question of when a category of algebras over a triple has all coequalizers see, e.g.,
[BarW], Section 9.3.

3.1.4. Proposition. Suppose that A has all coequalizers and for every A ∈ A the
functor U(A)⊗− : C → C has a left adjoint. Then the functor A©− : A → A has
a left adjoint as well.

Proof. It is clear that U is a monadic functor ([Bo1], Definition 4.4.1) and by our
construction U(A©−) = U(A)⊗U(−), therefore (e.g., [Bo2], Theorem 4.5.6) since
U(A)⊗− has a left adjoint, so does A©−. This shows our assertion. �

Here we define cohom(A,B) is an object that represents Hom(A,B©−).
From the last proposition we know that on A there is a cohom(−,−) that is
functorial in the first argument. Since Yoneda embedding is full and faithful, we
conclude that our construction is actually a bifunctor.

3.2. Derived cohom

By now we have constructed cohom(−, A) for an algebra A ∈ A, given existence
of cohom on C. Now assume that C carries in addition a closed model structure,
such that C⊗− is a right Quillen functor for any C ∈ C, i.e., it has a left adjoint
and it maps fibrations and trivial fibrations to the like. Then, by a general result,
cohom(−, C) is a left Quillen functor and we can define its left derived version.

Suppose that we can transport closed model structure from C to A through
the adjunction of the free algebra and the forgetful functor, i.e., we can introduce a
closed model structure on A so that a map in A is a weak equivalence or fibration
if and only its image under the forgetful functor is such. Then for any A ∈ A we
have that A©− is a right Quillen functor on A, and hence cohom(−, A) is a left
Quillen functor and we can define derived cohom as follows:

Lcohom(−, A) := cohom(L(−), A),

where L is a cofibrant replacement functor on A.
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It remains only to analyze when such a transport of model structure is pos-
sible. The general situation of a transport was considered in several papers, e.g.,
[Bek], [Bl], [CaGa], [Cra], [Q], [R], [S]. For our purposes it is enough to consider
locally presentable categories with cofibrantly generated model structures. In this
case the conditions on the forgetful functor are quite mild.

Moreover, we are mostly interested in the particular case of operads in the
category of algebras over a Hopf operad in the category of dg complexes of vector
spaces over a field. In the next section we will show that categories of such operads
can be constructed as categories of algebras over certain triples on the category of
dg complexes of vector spaces. Then the machinery of transport of model structure
can be applied to these triples directly.

4. Iteration of algebraic constructions

4.0. Introduction

As it is described in Section 3, if a triple is Hopf-like with respect to a monoidal
structure, it is easy to extend cohom from the ground category to the category
of algebras over this triple. Hopf operads provide examples of such triples, given
that monoidal structure on the ground category is distributive with respect to the
direct sum. However, this is not always the case.

Consider the category A of associative algebras in the category of vector
spaces over a field. Since the operad of associative algebras is Hopf, A has a sym-
metric monoidal structure, given by the tensor product of algebras. On A this
monoidal structure is not distributive with respect to direct sums, that is, free
products of algebras. In fact, given A1, A2, A2 ∈ A, in general we have no isomor-
phism between A1⊗(A2

∐
A3) and (A1⊗A2)

∐
(A1⊗A3). Thus we cannot represent

operads in A as algebras over a triple, and constructions of Section 3 concerning
existence of cohom do not apply to the category of operads in A.

However, we can overcome these difficulties by working with the operads
instead of their categories of algebras. In the example above we can represent
operads in the category of associative algebras as algebras over a colored operad in
the category of vector spaces.

For example, a classical operad in A is a sequence A := {An}n∈Z>0 of objects
of A and morphisms

γm1,...,mn : An⊗Am1⊗ . . .⊗Amn → Am1+···+mn ,

satisfying the usual axioms. The additional structures of associative algebras on
An’s are described by a sequence of morphisms of vector spaces: αn : An⊗An →
An, that satisfy the usual associativity axioms.

Compatibility of the operadic structure morphisms with the structures of
associative algebras on individual An’s is expressed by commutativity of the fol-
lowing diagrams:
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(An ⊗An)⊗ (⊗n
i=1Ami ⊗ Ami)

αn ⊗ (⊗n
i=1αmi)� An ⊗Am1 ⊗ . . . Amn

Am1+···+mn ⊗Am1+···+mn

(γm1,...,mn ⊗ γm1,...,mn) ◦ σ

� αm1+···+mn � Am1+···+mn

γm1,...,mn

�

where σ is the appropriate rearrangement of factors in the tensor products of
vector spaces.

It is easy to see that we can express all of these conditions on the sequence
{An} as an action of a colored symmetric operad. Thus the category of classical
operads in A is equivalent to a category of algebras over a colored operad in vector
spaces. Therefore we have the free algebra construction, results of Section 3 apply,
and cohom extends to classical operads in A.

We would like to do the same in the case of general operads, as described in
Section 1. To achieve the necessary degree of generality we will work with triples,
which will include all operadic cases, given that the ground category has monoidal
structure, which is distributive with respect to the direct sums.

The usual definition of a triple on a category C consists of three parts: a
functor T : C → C, and natural transformations ζ : T ◦ T → T , η : Id → T ,
satisfying certain associativity and unit axioms. The functor T is supposed to
represent the “free algebra” construction, while ζ and η represent composition
and the identity operation respectively.

Often we have more information about the triple than contained in its def-
inition as above. We have a grading on the “free algebra” construction, given by
the arity of operations involved, i.e., we can decompose T (C) (C ∈ C) into a direct
sum of Tn(C) (n ∈ Z>0), where Tn(C) stands for applying to “generators” C all
of the “n-ary operations” Tn.

Such decomposition of T is very helpful, since usually Tn’s behave better
with respect to monoidal structure and other triples than the whole T : see [Va3]
for a closely related discussion. Using this we can mimic construction of a colored
operad, as in the case of classical operads in associative algebras above, in the
more general situation of decomposed triples.

In order to do so we have to formalize the notion of triples admitting such
a decomposition. We should axiomatize the relationship between Tn’s for differ-
ent n’s, so that the combined object would satisfy the associativity and the unit
axioms, stated in the usual definition of a triple. The best way to do so is via
representations of operads in categories.

It is often the case (in particular it is so for operads as described in Section
1) that the “n-ary operations” Tn is not just a functor on C, but is given as a
composition

C Δ→→ C×n Gn→→ C,
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where Δ is the diagonal functor and Gn is some functor C×n → C. In such cases it
is convenient to work with representations of operads on C, i.e., with morphisms
of operads with codomain {Fun(C×n

, C)}n∈Zn>0.

So we will consider strict operads in the category of categories and work
with lax morphisms of such operads (i.e., with morphisms that commute with the
structure functors only up to a natural transformation). A lax morphism into an
endomorphism operad of a category will give us a generalized triple that under
some conditions can be transformed into a usual triple. In such cases we will say
that the triple is operad-like. The technique of lax morphisms was invented long
ago (cf. [KS]) and applied recently to the case of operads in [Bat].

We proceed as follows: we start with the well known notion of strict pseudo-
operads in categories, we organize them in a category and then extend it to include
lax morphism of operads, which satisfy natural conditions of coherence (later these
conditions will be shown to correspond to the associativity axioms of triples). Then
we consider the notion of a strict operad in categories (i.e., with a unit) and define
lax morphisms of such objects. Again we will need some coherence conditions,
which later will turn out to be the unit axioms of a triple. Finally we define operad-
like triples as lax morphisms into the endomorphism operad of a category and we
finish by proving that iteration of algebraic constructions preserves existence of
cohom.

4.1. Notation

We will denote functors usually by capital letters (both Greek and Latin), whereas
natural transformations will be denoted by small letters.

Commutative diagrams of functors will be rarely commutative on the nose,
instead we will have to endow them with natural transformations, making them
commutative. When we draw a diagram as follows

A

F

G
B

F ′

A′

α

G′ B′

and say that α makes the diagram commutative, we mean that α is a natural
transformationG′◦F → F ′◦G. Notice that α is not supposed to be an isomorphism
of functors, any functor morphism is acceptable. Similarly for the diagram

A

F

G
B

F ′
β

A′
G′ B′
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We will often encounter one of the following two situations:

A

F

G
B

F ′

H
C

F ′′

A

F

G
B

F ′
β

H
C

β′

F ′′

A′
G′

α

B′
H′

α′

C′ A′
G′ B′

H′ C′

There is a well-known procedure of pasting natural transformations in such cases.
In order to fix notation, we will write the relevant formulas explicitly.

4.1.1. Definition. These compositions are defined as follows:

(α′∗α)a := α′G(a) ◦H ′(αa), a ∈ A,
(β∗β′)a := H ′(βa) ◦ β′G(a), a ∈ A.

Direct computation easily shows that both compositions are indeed natural
transformationsH ′◦G′◦F → F ′′ ◦H ◦G and F ′′◦H ◦G→ H ′◦G′◦F respectively.
Moreover, the composition ∗ is associative.

4.2. Strict pseudo-operads in categories

Let CAT be a small category whose objects are some small categories and mor-
phisms are functors. We will assume that it is sufficiently rich so that all the
following constructions make sense. In particular, we have a symmetric monoidal
structure × given by the direct product and a choice of a category E with one
object and one morphism (identity). Thus we can consider pseudo-operads in CAT .

Although our goal is to prove existence of cohom for operads, these being
defined in the general way as in Section 1, the categorical operads that we will
use will be solely the classical ones. The reason for this is that the categories of
graphs themselves, that were used in Section 1 in definition of operads, are in fact
examples of classical operads in categories: see Section 4.9.3 below. Thus for our
purposes there is no need to consider more general categorical operads, than the
classical ones.

4.2.1. Definition. A strict pseudo-operad in categories is a classical non-symmetric
pseudo-operad in (CAT ,×) (e.g., [MarShSt], Definition 1.18). We will denote the
category of strict pseudo-operads in CAT by ΨOPst(CAT ). The structure functors
of an object of ΨOPst(CAT ) will be denoted by {Υm1,...,mn}mi∈Z>0 .

We could have used of course the notion of a 2-pseudo-operad in categories
and work in the more general setting of higher operads, but for our needs in this
paper strict operads in categories will suffice. One of the reasons for this restriction
is the following example.

4.2.2. Example. One of the most important examples of a strict pseudo-operad in
categories is the endomorphism pseudo-operad E(C) of a category C. It is defined
as follows:

E(C)n := Fun(C×n

, C), n ∈ Z>0,
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where Fun stands for the category of functors. The structure morphisms are given
by compositions of functors.

4.3. Lax morphisms between strict pseudo-operads

As we have noted above we could have worked with 2-operads in categories instead
of the usual ones, i.e., we could have incorporated natural transformations in
operadic structure. However, as the example of the endomorphism operad of a
category shows, it is enough for many purposes, and in particular for ours, to
consider only classical operads. Yet when we start organizing these operads in
categories we have to take into account the natural transformations, that we have
omitted before.

We have already the category ΨOPst(CAT ), whose morphisms are sequences
of functors, that commute on the nose with the structure functors of pseudo-
operads. This rarely happens. In most cases we have a natural transformation
making these diagrams commutative. Later we will see that it is these natural
transformations that define the multiplication for the triples that we will consider.
So we need to enlarge ΨOPst(CAT ) to include not only strict but also lax mor-
phisms of operads. Lax morphisms were invented a long time ago (see, e.g., [KS]
Section 3). For completeness we reproduce explicit definitions here. Our treatment
will deviate from the classical one only when we will consider relative version of the
construction (i.e., categories of lax morphisms with constant codomain) and more
importantly when we introduce the notion of an equivariant operad in categories.
Both of these constructions are specifically tailored for treatment of triples.

4.3.1. Definition. Let P , P ′ be two strict pseudo-operads in categories. A lax mor-
phism from P to P ′ is a sequence of functors {Fn : Pn → P ′

n}n∈Z>0 and a sequence
of natural transformations {ζm1,...,mn}, making the following diagram commuta-
tive:

Pn × Pm1 × · · · × Pmn

F×n+1

Υm1,...,mn
Pm1+···+mn

F

P ′
n × P ′

m1
× · · · × P ′

mn

ζm1,...,mn

Υ′
m1,...,mn

P ′
m1+···+mn

Given two lax morphisms ({Fn}, {ζm1,...,mn}) : P → P ′ and ({F ′
n}, {ζ′m1,...,mn

}) :
P ′ → P ′′ we define their composition to be ({F ′

n ◦ Fn}, {ζm1,...,mn∗ζ′m1,...,mn
}),

where ∗ is composition of natural transformations, as defined in 4.1.1.

It is easy to see that pseudo-operads in categories and lax morphisms form
a category. From the the pasting theorem of [Pow], we know that composition of
ζ’s is associative and therefore composition of the whole morphisms is associative.
There is an identity lax morphism for every category, given by the identity functor
and the trivial natural automorphism of it.

However, we are interested in a subcategory of this category, consisting of lax
morphisms, that have the property of coherence. As usual coherence means that
different ways of composing natural transformations are equal. Later we will see
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that these conditions will translate into associativity properties of the multiplica-
tion natural transformations of triples that we will construct.

4.3.2. Definition. Let P and P ′ be two strict pseudo-operads in categories. Let
(F, ζ) : P → P ′ be a lax morphism between them. We say that (F, ζ) is coherent
if the ∗-compositions of natural transformations in the following two diagrams are
equal:

Pm × Pm × Pn
Υm×Id

F

Pn × Pn

F

Υn

Pβ1+···+βn

F

P ′
m × P ′

m × P ′
n

Υ′
m×Id

ζm×Id

P ′
n × P ′

n
Υ′

n

ζn

P ′
β1+···+βn

Pm × Pm × Pn
Id×Υn

F

Pm × Pm′

F

Υm′
Pβ1+···+βn

F

P ′
m × P ′

m × P ′
n

Id×Υ′
n

Id×ζn

P ′
m × P ′

m′
Υ′

m′

ζm′

P ′
β1+···+βn

(4.1)

where m := {α1, . . . , αm}, n := {β1, . . . , βn}, m′ := {β1 + · · · + βα1 , . . . ,
βα1+···+αm−1+1 + · · · + βn}, α1 + · · · + αm = n, αi, βi ∈ Z>0, and Pm :=
Pα1 × · · · × Pαm , similarly for Pn, Pm′ and P ′.

4.3.3. Proposition. Strict pseudo-operads in categories and coherent lax morphisms
form a subcategory of the category of strict pseudo-operads and lax morphisms

Proof. It is clear that the identity lax morphism for any strict pseudo-operad is
coherent. We have to prove that composition of coherent lax morphisms is again
coherent.

Let P
(F,ζ)→ →P ′ (F ′,ζ′)→ →P ′′ be a sequence of coherent lax morphisms be-

tween strict pseudo-operads in categories. We have to show that the ∗-product of ζ
and ζ′ provides a unique way of making diagrams commutative, i.e., compositions
of the natural transformations as in diagrams (4.1) are equal. But these diagrams
are the outer rectangles of the following diagrams:

Pm × Pm × Pn

F

Υm×Id
Pn × Pn

F

Υn

Pβ1+···+βn

F

P ′
m × P ′

m × P ′
n

F ′

ζm×Id

Υ′
m×Id

P ′
n × P ′

n

F ′

Υ′
n

ζn

P ′
β1+···+βn

F ′

P ′′
m × P ′′

m × P ′′
n

ζ′
m×Id

Υ′′
m×Id

P ′′
n × P ′′

n
Υ′′

n

ζ′
n

P ′′
β1+···+βn
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Pm × Pm × Pn

F

Id×Υn
Pm × Pm′

F

Υm′
Pβ1+···+βn

F

P ′
m × P ′

m × P ′
n

F ′

Id×ζn

Id×Υ′
n

P ′
m × P ′

m′

F ′

Υ′
m′

ζm′

P ′
β1+···+βn

F ′

P ′′
m × P ′′

m × P ′′
n

Id×ζ′
n

Id×Υ′′
n

P ′′
m × P ′′

m′
Υ′′

m′

ζ′
m′

P ′′
β1+···+βn

Since (F, ζ) is coherent, compositions of natural transformations in the first rows
of these diagrams are equal, similarly for the second rows. Therefore compositions
of first the rows and then the columns are equal. We would like to show that
compositions of first the columns and then the rows are equal as well.

This follows from the pasting theorem in [Pow]. �

4.3.4. Notation. We will denote the category of strict pseudo-operads in categories
and coherent lax morphisms by ΨOP(CAT ).

4.4. Categories of pseudo-operads over a pseudo-operad

As with any category, it is necessary sometimes to consider an object P in
ΨOP(CAT ) and all morphisms in ΨOP(CAT ) with codomain P . It will be very
important for us when we will work with representations of categorical operads on
a category, i.e., when P is the endomorphism operad for some category C.

We would like of course to organize all these morphisms into a category –
the category of pseudo-operads over P . But first we have to decide what shall we
call a morphism between two such morphisms. In the standard way (i.e., without
presence of 2-morphisms) we would define a morphism to a be a commutative (on
the nose) triangle as follows

P ′

(F ′,ζ′)

(F,ζ)

P ′′

(F ′′,ζ′′)

P

However, we have natural transformations and we should take them into account,
i.e., we should define a morphism to be a diagram with a natural transformation
making it commutative

P ′

F ′

F
P ′′

F ′′

P

α

Id
P

(4.2)

Now we have to decide how ζ, ζ′, ζ′′ and α should relate to each other. If we
did not have α, then the relation would have been ζ′ = ζ∗ζ′′. Having α we can



286 D.V. Borisov and Y.I. Manin

put all of these natural transformation into one big diagram

P ′
m × P ′

m

F ′×m+1

F×m+1

Υ′
m

P ′
|m|

F ′

F

P ′′
m × P ′′

m

F ′′×m+1

Υ′′
m

ζ

P ′′
|m|

F ′′

Pm × Pm

α

Id
Pm × Pm

ζ′′

Υm

P|m| P|m|
Id

α

(4.3)

where for typographical reasons we have omitted ζ′, that makes the outer rectangle
commutative.

We see that there are two ways to construct natural transformations

Υm ◦ F ′×m+1

→ F ′′ ◦ F ◦Υ′
m.

One is ζ∗ζ′′∗α and the other is α∗ζ′. Their equality is the natural condition of
compatibility.

4.4.1. Definition. The category ΨOP(CAT )//P has coherent lax morphisms with
codomain P as objects, and for any two such morphisms (F ′, ζ′) : P ′ → P ,
(F ′′, ζ′′) : P ′′ → P , a morphism from the first one to the second is a pair ((F, ζ), α),
where (F, ζ) : P ′ → P ′′ is a coherent lax morphism of strict pseudo-operads, and
α is a natural transformation, making diagram (4.2) commutative and satisfying

ζ∗ζ′′∗α = α∗ζ′.

4.4.2. Proposition. Constructed as above ΨOP(CAT )//P is indeed a category.

Proof. A morphism in ΨOP(CAT )//P consists of a coherent lax morphism and a
natural transformation. From Definition 4.1.1 and Proposition 4.3.3 we know how
to compose both types, so the composition in ΨOP(CAT )//P is clear.

Since by the pasting theorem composition of natural transformations is asso-
ciative ([Pow]) and we know that this is true for coherent lax morphisms (Propo-
sition 4.3.3), all we have to do now is to show that the condition, formulated in
Definition 4.4.1 is satisfied by the composition.

So let (F ′, ζ′) : P ′ → P , (F ′′, ζ′′) : P ′′ → P and (F ′′′, ζ′′′) : P ′′′ → P be
three coherent lax morphisms, with codomain P . Suppose we have two morphisms
((G,ψ), α) : (F ′, ζ′) → (F ′′, ζ′′), ((G′, ψ′), α′) : (F ′′, ζ′′) → (F ′′′, ζ′′′), that satisfy
conditions of Definition 4.4.1. We can organize everything into one diagram as
follows:
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P ′
m × P ′

m

F ′

G

Υ′
m

P ′
|m|

F ′

G

P ′′
m × P ′′

m

ψm

Υ′′
m

G′

F ′′

P ′′
|m|

F ′′

G′

P ′′′
m × P ′′′

m

ψ′
m

Υ′′′
m

F ′′′

P ′′′
|m|

F ′′′

Pm × Pm

α

Id
Pm × Pm

α′

Id
Pm × Pm

ζ′′′
m

Υm

P|m| P|m|
Id

α′

P|m|
Id

α

Since ((G,ψ), α) and ((G′, ψ′), α′) satisfy the conditions of Definition 4.4.1 we have
the equalities

ψ′∗ζ′′′∗α′ = α′∗ζ′′, ψ∗ζ′′∗α = α∗ζ′.
Using these equalities we get the following:

(α′∗α)∗ζ′ = α′∗ψ∗ζ′′∗α = ψ∗α′∗ζ′′∗α = (ψ∗ψ′)∗ζ′′′∗(α′∗α),
where the second equality is justified by the pasting theorem ([Pow]). The com-
bined equality is exactly the condition as in Definition 4.4.1 for the composi-
tion. �

Later we will often work with representations of categorical operads on a
category, i.e., we will study lax morphisms into the endomorphism operad. We
will want to construct a functor from the category of certain representations to
the category of triples on that category. For that we will need a notion of the
category of representations. One candidate is obviously the category of operads
over the endomorphism operad, as constructed above. However, it will prove to
be too relaxed. We will need a somewhat more restricted notion. Namely we will
consider the subcategory with the same objects but only strict morphisms.

4.4.3. Notation. We will denote by ΨOPst(CAT )//P the subcategory of
ΨOP(CAT )//P , consisting of the same objects as ΨOP(CAT )//P , but for any
pair of them (P ′, F ′, ζ′) and (P ′′, F ′′, ζ′′), a morphism ((F, ζ), α) from the first to
the second is in ΨOPst(CAT )//P if (F, ζ) is strict, i.e., ζ is the identity.

Since strict morphisms form a subcategory of the category of lax morphisms,
we see that ΨOPst(CAT )//P is indeed a subcategory of ΨOP(CAT )//P .

4.5. Strict operads in categories

Until now we have considered pseudo-operads. Now we would like to discuss also
the unital version of our constructions. Since the category CAT is monoidal with
a unit, we have the natural notion of an operad in CAT , as before we restrict our
attention only to the classical operads. Recall that E is a choice of a category with
one object and one morphism (identity).
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4.5.1. Definition. A strict operad in categories is a classical non-symmetric operad
(e.g., [MarShSt], Section 1.2) in the monoidal unital category (CAT ,×, E). We
will denote the category of strict operads in categories by OPst(CAT ).

As with pseudo-operads, we would like to extend the category OPst(CAT )
to include lax morphism of operads. As usual that should mean making all dia-
grams, that before were commutative on the nose, commutative only up to natural
transformations. First we list the relevant diagrams from the classical definition of
operads.

As defined above, a strict operad in categories is a pseudo-operad P with a
strict morphism of strict pseudo-operads U : E → P , where we consider E as a
pseudo-operad with En := ∅ for n > 1, and the obvious structure morphism. The
strict morphism U should make the following diagrams commutative:

Pn

Id

E × Pn
U×Id

P1 × Pn

Υn

Pn

Id

Pn × E×nId×U×n

Pn × P×n

1

Υ1,...,1

Pn Pn

A strict morphism between strict operads commutes with these U ’s on the
nose, i.e., we have the following commutative diagram for a strict morphism of
operads F : P → P ′:

E

Id

U
P

F

E
U ′ P ′

We would like our lax morphisms to do that only up to a natural transformation,
that satisfies some coherence conditions. Later we will see that these conditions
are translated into the usual unit axioms for triples.

4.5.2. Definition. Let U : E → P and U ′ : E → P ′ be two strict operads in
categories. A coherent lax morphism from P to P ′ is a coherent lax morphism
of pseudo-operads (F, ζ) : P → P ′ and a natural transformation η, making the
following diagram commutative,

E
U

Id

P

F

E
U ′

η

P ′

such that compositions of natural transformations in the following diagrams are
identities,
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Pn

Fn

E × Pn

Id×Fn

U×Id
P1 × Pn

F

Υn
Pn

Fn

P ′
n E × P ′

n
U ′×Id

η×Id

P ′
1 × P ′

n Υn

ζ

P ′
n

Pn

Fn

Pn × E×n

Fn×Id

Id×U×n

Pn × P×n

1

F

Υ1,...,1
Pn

Fn

P ′
n P ′

n × E×n

Id×U ′×n

Id×η×n

P ′
n × P ′×n

1 Υ′
1,...,1

ζ

P ′
n

4.5.3. Proposition. Strict operads in categories and lax morphisms between them
constitute a category.

Proof. Let (F, ζ, η) : P → P ′ and (F ′, ζ′, η′) : P ′ → P ′′ be two lax morphisms be-
tween strict operads in categories. We define their composition as (F ′◦F, ζ∗ζ′, η∗η′),
where ∗ denotes composition of natural transformations as defined in 4.1.1.

It is clear that for any strict operad, sequence of identity functors and identity
natural transformations in place of ζ and η constitute a lax morphism, and this
morphism satisfies the conditions of identity with respect to the composition above.
It remains to show that composition of lax morphisms is again a lax morphism
and that this composition is associative.

To prove that composition is well defined we have to show that composition
of natural transformations in the following diagrams are identities:

Pn

Fn

E × Pn

Id×Fn

U×Id
P1 × Pn

F

Υn
Pn

Fn

P ′
n

F ′
n

E × P ′
n

Id×F ′
n

U ′×Id

η×Id

P ′
1 × P ′

n

F ′

Υ′
n

ζ

P ′
n

F ′
n

P ′′
n E × P ′′

n U ′′×Id

η′×Id

P ′′
1 × P ′′

n Υ′′
n

ζ′

P ′′
n

Pn

Fn

Pn × E×n

Fn×Id

Id×U×n

Pn × P×n

1

F

Υ1,...,1
Pn

Fn

P ′
n

F ′
n

P ′
n × E×n

F ′
n×Id

Id×U ′×n

Id×η

P ′
n × P ′×n

1

F ′

Υ′
1,...,1

ζ

P ′
n

F ′
n

P ′′
n P ′′

n × E×n

Id×U ′′×n

Id×η′

P ′′
n × P ′′×n

1 Υ′′
1,...,1

ζ′

P ′′
n
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Arguing as in the proof of Proposition 4.3.3 we see that indeed compositions of
these natural transformations are identities and hence composition of lax mor-
phisms between strict operads in categories is well defined.

Since the composition of natural transformations is associative, in particular
this is true for η’s, hence strict operads in categories and lax morphisms between
them indeed form a category. �

4.5.4. Notation. We will denote the category of strict operads in categories and lax
morphisms between them by OP(CAT ).

4.6. Categories of operads over an operad

Since the endomorphism pseudo-operad of a category is obviously an operad, we
would like to have a notion of a category of operads over an operad, similarly to
the case of pseudo-operads, that we have considered in 4.4.

Let U : E → P be a strict operad in categories. We want to organize mor-
phisms in OP(CAT ) with codomain (P,U) into a category. Given two of them
((F ′, ζ′), η′) : (P ′, U ′) → (P,U) and ((F ′′, ζ′′), η′′) : (P ′′, U ′′) → (P,U) we would
like to have the notion of a lax morphism from the first to the second. If we wanted
only the ones coming from OP(CAT ), we would have defined such a morphism
as a lax morphism of operads (Definition 4.5.2) ((F, ζ), η) : (U ′, P ′) → (P ′′, U ′′),
such that the following diagram is commutative,

E

Id

U ′

P ′

F

F ′E

Id

U ′′

η

P ′′

F ′′

E
U

η′′

P

and we have the equality η∗η′′ = η′.

However, as in the case of pseudo-operads, we do not want an equality F ′′ ◦
F = F ′, but we usually have a natural transformation α, making the following
diagram commutative,

P ′ F

F ′

P ′′

F ′′

P

α

Id
P

Obviously this natural transformation should satisfy the conditions of a mor-
phism in ΨOP(CAT )//P , spelled out in Definition 4.4.1. In addition it should
respect, in a sense, the unital structures η, η′ and η′′.
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In the diagram

E

Id

U ′

P ′

F

F ′

E

Id

U ′′

η

P ′′

F ′′
P

α

Id

E

η′′

U
P

we see that there are two natural transformations U → F ′′◦F ◦U ′. One is η∗η′′ and
the other is α∗η′. Their equality is the natural compatibility condition between α
and the unital structures.

4.6.1. Definition. We will denote by OP(CAT )//P the category whose objects are
coherent lax morphisms of strict operads with codomain (P,U). Given two such
morphisms ((F ′, ζ′), η′) : (P ′, U ′)→ (P,U) and ((F ′′, ζ′′), η′′) : (P ′′, U ′′)→ (P,U)
a morphism from the first one to the second is a morphism ((F, ζ), η) : (P ′, U ′) →
(P ′′, U ′′) in OP(CAT ) and a natural transformation α, such that ((F, ζ), α) is
morphism F ′ → F ′′ in ΨOP(CAT )//P , and in addition we have

α∗η′ = η∗η′′.

4.6.2. Proposition. Defined as above OP(CAT )//P is indeed a category.

Proof. Composition of two morphisms is inherited from the category of pseudo-
operads over a pseudo-operad. Identities are obviously present. All we have to do
is to show that the composition of two morphisms, that satisfy conditions of the
above definition, also satisfies these conditions.

Let (F ′, ζ′, η′) : (P ′, U ′) → (P,U), (F ′′, ζ′′, η′′) : (P ′′, U ′′) → (P,U),
(F ′′′, ζ′′′, η′′′) : (P ′′′, U ′′′) → (P,U) be three objects of OP(CAT )//P . Let
((G,ψ), φ, α) be a morphism from the first to the second, and let ((G′, ψ′), φ′, α′)
be a morphism from the second to the third. We can organize everything into one
diagram:

E

Id

U ′

P ′

G F ′

E

Id

φ

U ′′

P ′′

G′ F ′′

P
α

Id

E

φ′

U ′′′

Id

P ′′′

F ′′′
P

α′

Id

E

η′′′

U
P
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By assumption we have

α∗η′ = φ∗η′′ α′∗η′′ = φ′∗η′′′.

Using these equalities we get a sequence

(α′∗α)∗η′ = α′∗φ∗η′′ = φ∗α′∗η′′ = (φ∗φ′)∗η′′′,

where in the second equality we have used the pasting theorem of [Pow]. The
composite equality is exactly the condition, which α′∗α should satisfy according
to Definition 4.6.1. �

As it was noted in 4.4, when we will consider representations of categorical
operads on a category, we would like to consider lax morphisms into the endomor-
phism operad of that category, and we will want to organize these representations
into a category, where as morphisms we take a strict subset of morphisms in
OP(CAT )//P .

4.6.3. Definition. Let (P,U) be a strict operad in categories. We define the category
OPst(CAT )//P as a subcategory of OP(CAT )//P , consisting of the same objects,
but for any morphism ((F, ζ), η, α) in OP(CAT )//P , it is also a morphism in
OPst(CAT )//P if ζ and η are identities.

4.7. Operad-like triples as lax representations

So far we have considered categorical operads abstractly. In this subsection we
will work with specific operads, namely the endomorphism operads of categories.
Example 4.2.2 shows that for any category C, E(C) is a pseudo-operad. Mapping
E to the identity functor on C obviously defines a structure of an operad on E(C).

In this section we are interested in representations of categorical operads, i.e.,
with lax morphisms P → E(C). As Proposition 4.6.2 shows, such representations
form a category. We will work with them a lot, so we introduce a special term.

4.7.1. Definition. A generalized triple on a category C is a coherent lax representa-
tion on it of a strict operad in categories P . The category of generalized triples on
C will be denoted by T(C).

To justify the term “generalized triple” we give the following example, which
is illustrative but inessential in our considerations. It was considered in [Ben]
Section 5.4.

4.7.2. Example. Let P be the strict operad E. A lax representation of E on a
category C is simply triple on C in the usual meaning of the term.

Indeed such representation consists first of a functor F : E → Fun(C, C),
which amounts to choosing a functor T : C → C, secondly of a natural transfor-
mation ζ : T ◦ T → T , thirdly of a natural transformation η : IdC → T , such that
the conditions stated in Definitions 4.5.2 and 4.3.2 are satisfied.
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The condition spelled out in Definition 4.3.2 translates into associativity of
ζ, i.e., into commutativity of the diagram

T 3

T (ζ)

ζ
T 2

ζ

T 2
ζ

T

The condition stated in Definition 4.5.2 means that η is a unit for the oper-
ation ζ, i.e., the following diagram is commutative

T

Id

η×Id
T 2

ζ

T
Id×η

Id

T

The main reason for the development of the theory of categorical operads,
that we have done, is the notion of an “operad-like” triple on a category. As we
have explained in introductory Section 4.0, we want to construct triples as colimits
of a sequence of functors where each element of the sequence represents “operations
of some arity”.

However, in order for the combined object to satisfy the usual axioms of
a triple, the individual elements should behave in a certain prescribed way with
respect to colimits. So first we describe the conditions, which these individual
functors should satisfy. Obviously we can consider colimits of any diagrams, but
we will restrict our attention only to colimits of groupoids. Most of our results can
be generalized to the case of arbitrary diagrams.

Consider a functor F : C → C, and a diagram D : D → C in C. Since F is a
functor we have a natural transformation

χF : colim(F ◦D)→ F (colim(D)),

where we consider both sides as functors from Fun(D, C) to C. We will say that a
functor F commutes with colimits of groupoids if χF is an isomorphism, whenever
D is a groupoid.

In dealing with generalized triples we have a more general case of functors
of the type F : C×n → C. We would like to extend the notion of commutativity
with colimits to this case too. There is an obvious way to do that, namely we
will say that F commutes with colimits of groupoids if for every 1 ≤ i ≤ n
and every (n − 1)-tuple {C1, . . . , Ci−1, Ci+1, . . . , Cn} of objects of C the functor
F (C1, . . . , Ci−1,−, Ci+1, . . . , Cn) commutes with colimits of groupoids.

Having a functor F : C×n → C that commutes with colimits of groupoids,
we will encounter situations when we have n-diagrams {Di}1≤i≤n, {Di : Di → C},
and we will consider F (D1, . . . , Dn). Since F is a functor we have a morphism

colim(F (D1, . . . , Dn)) → F (colim(D1), . . . , colim(Dn)).
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It is easy to see that this morphism factors through colimits in each variable of
F , which are by assumption isomorphisms. Therefore this morphism is an isomor-
phism as well.

Remark. Our construction of generalized triples was specifically tailored for de-
scription of triples, i.e., monoids in the monoidal category of functors. However,
since we work with operads in categories we obviously can use generalized triples
to represent other objects, for example monoidal structures.

Indeed, consider a non-symmetric operad in categories, generated by one bi-
nary operation, and having isomorphisms in the category of ternary operations,
connecting the two different ways of composing the binary operation with itself.
If we demand that these isomorphisms satisfy the usual pentagon conditions of
coherence, then a strict representation of this operad on a category is nothing else
but a coherently associative product on this category. If we start with two generat-
ing operations and demand coherent associativity of both and in addition certain
compatibility morphisms between their mixed compositions (these morphisms do
not have to be isomorphisms), then a representation of such operad would be a
2-monoidal category as described in [Va2].

Before we proceed with the definition of operad-like triples and provide a way
of constructing ordinary triples from them, we need a technical preparation. We
need to prove a lemma, that allows us to combine functors, that commute with
colimits of groupoids, and get a functor commuting with such colimits as well. This
will be needed in the proof of associativity of the structure natural transformation
of the triple, that we construct from an operad-like one.

4.7.3. Lemma. Let F , G be two functors C → C, that commute with colimits of
groupoids. Then F◦G commutes with such colimits as well. Moreover, let D′ : D′ →
Fun(C, C) be a diagram of functors, commuting with colimits of groupoids, and D′

being a groupoid itself. Then for any groupoid D and any diagram D : D → C we
have the following commutative diagram of natural transformations:

colim
Gm∈D′(D′)

(colim(F ◦Gm ◦D))

χF◦G

χF F ( colim
Gm∈D′(D′)

(colim(Gm ◦D)))

F (χG)

colim
Gm∈D′(D)

(F ◦Gm(colim(D)))
χF

F ( colim
Gm∈D′(D′)

(Gm(colim(D))))

Proof. Let C be in the image of F ◦G◦D. There are two morphisms going out of C:
one to F (colim(G◦D)) and another one to F ◦G(colim(D)). Since F is a functor,
F (χG) completes these morphisms to a commutative triangle. Therefore we have a
factorization of the natural transformation colim(F ◦G◦D)→ F ◦G(colim(D)) as
χF applied to G◦D, followed by F (χG). Both of these are isomorphisms, therefore
so is their composition. This proves the first claim of the lemma.
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The second claim is proved in a similar manner. One traces different ways
to get from a object in the image of D to F ( colim

Gm∈D′(D′)
(Gm(colim(D)))) and finds

that they are equal, due to functoriality of F and Gm’s and the assumption that
these functors commute with colimits of groupoids. �

4.7.4. Definition. An operad-like triple on a category C is a generalized triple P →
E(C), such that each component of P is a groupoid and for each object of Pn its
image in Fun(C×n

, C) commutes with colimits of groupoids.

We have defined the category T(C) of all generalized triples on C by utilizing
all possible morphisms of operads over an operad. With operad-like triples we want
to restrict our attention to only strict subcategories as in definition 4.6.3.

We will denote by P(C) the category whose objects are operad-like triples on
C and whose morphisms are strict morphisms over E(C) as defined in Definition
4.6.3.

4.7.5. Proposition. Let ((F, ζ), η) : P → E(C) be an operad-like triple on C. Then
if we define a functor Tot(F ) : C → C as follows,

Tot(F )(C) :=
∐

n∈Z>0

colim
Gn∈Fn(Pn)

(Gn(C×n

)),

we get a triple on C, with the multiplication and the unit given by ζ and η re-
spectively. In this way we get a functor Tot : P(C) → T (C) from the category of
operad-like triples on C to the category of triples on it.

Proof. First we give the definition of the multiplication and the unit natural trans-
formations for Tot(F ). The multiplication Tot(ζ) is defined as composition of the
following sequence of natural transformations:∐

n∈Z>0

colim
Gn∈Fn(Pn)

(Gn((
∐

m∈Z>0

colim
G′

m∈Fm(Pm)
(G′

m(C×m

)))×
n

))

→
∐

n,m1,...,mn

colim
Gn,G′

mi
∈F (P )

(Gn(G′
m1

(C×m1 ), . . . , G′
mn

(C×mn

)))

→
∐

n,m1,...,mn

colim
Gn,G′

mi
∈F (P )

(F (Gn ◦ (G′
m1
, . . . , G′

mn
))(C×m1+···+mn

)),

where the first arrow is given by commutativity of Gn with colimits of groupoids
and the second arrow is the sum of natural transformations ζm1,...,mn , given by
the lax representation.

The unit Tot(η) is given as composition of the following sequence of natural
transformations

IdC → F1(e) →
∐

n∈Z>0

colim
Gn∈Fn(Pn)

(Gn),

where e is the image under F of the identity in P , the first arrow is given by the
unit η in the lax representation ((F, ζ), η), and the second arrow is the natural
inclusion of an object of a diagram into the colimit of the diagram.
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We have to show that associativity and unit axioms hold. We know from
definition of coherent lax morphisms of operads (Definition 4.3.2) that the natural
transformation ζ satisfies associativity conditions. The multiplication for Tot(F )
is given as a colimit of ζ’s, using commutativity with colimits of groupoids of
individual functors in F (P ). From lemma 4.7.3 we know that different ways of
composing χ’s for colimits of functors produce the same result, therefore from
associativity of ζ follows associativity of Tot(ζ). Similarly unit properties of η
with respect to ζ imply the same for Tot(η) with respect to Tot(ζ).

It remains to show that Tot is a functor from P(C) to T (C). Given two operad-
like triples ((F, ζ), η) : P → E(C), ((F ′, ζ′), η) : P ′ → E(C) and a morphism (F ′′, α)
from the first to the second we have a natural transformation Tot(α) : Tot(F ) →
Tot(F ′), given by α. Indeed, each G ∈ F (P ) is mapped by α to F ′(F ′′(G)) in
F ′(P ′). The latter is canonically included into Tot(F ′).

Now we see that the compatibility conditions for α with ζ, ζ′′ and with η, η′

translate exactly to the fact that Tot(α) is a map between monoids in the monoidal
category of endofunctors on C. �
4.8. Symmetric operad-like triples

So far we have dealt with non-symmetric operads, and therefore with non-symme-
tric operad-like triples. Now we would like to introduce action of symmetric groups
in our construction. Since the monoidal category (CAT ,×, E) is symmetric there
is a standard notion of a symmetric strict operad in categories.

4.8.1. Definition. A symmetric strict operad in categories is a classical symmetric
operad (e.g., [MarShSt], Section 1.2) in the category (CAT ,×, E), i.e., it is a
strict operad P and for each n ∈ Z>0 an action of the symmetric group Σn on
the category Pn is given. We will denote the functor on Pn, that corresponds to
an element σn ∈ Σn, by the same symbol σn. A coherent lax morphism between
two symmetric strict operads is a coherent lax morphism between the operads (as
defined in Definition 4.5.2), such that the functors Fn commute (on the nose) with
the action of symmetric groups.

Action of symmetric groups by means of functors provides definition of a
symmetric operad in categories, but it is not useful for defining symmetric operad-
like triples, since we need natural transformations for that. Therefore we introduce
the notion of an equivariant symmetric operad in categories.

In order to do that we need more notation. We will denote by Σn the category
whose objects are elements of the symmetric group Σn and the set of morphisms
Hom(σn, σ

′
n) between any two of them consists of one element: σ−1

n σ
′
n ∈ Σn.

Composition is obvious. One could call this “a regular groupoid” version of the
symmetric group Σn.

4.8.2. Definition. An equivariant symmetric operad in categories is a symmetric
strict operad P , such that for every object pn ∈ Pn there is a functor Sn : Σn → Pn,
such that any object σn ∈ Σn is mapped to σn(pn), and the following compatibility
conditions are satisfied. Let pmi ∈ Pmi 1 ≤ i ≤ n. Then for every (n + 1)-tuple
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of morphisms σn ∈ Σn, σmi ∈ Σmi
, the composition functor Υm1,...,mn : Pn ×

Pm1 ×· · ·×Pmn → Pm1+···+mn maps Sn(σn)× Id×n

to Sm1+···+mn(σn), where the
morphism σn ∈ Σm1+···+mn

is σn-permutation of the n blocks. Also the composition
functor maps Id× Sm1(σm1)× · · · × Smn(σmn) to Sm1+···+mn(σm1 × · · · × σmn),
where the morphism σm1 × · · · × σmn ∈ Σm1+···+mn

corresponds to the product of
permutations.

It is clear that the compatibility conditions in the last definition are meant
to reflect the standard equivariance properties of operads in symmetric categories.
Indeed, when we will define symmetric operad-like triples we will see that these
compatibility conditions translate into the usual equivariance.

4.8.3. Example. Let C be a category and consider the endomorphism operad E(C)
of C (Example 4.2.2.). There is one obvious symmetric structure on E(C), namely
for any σn ∈ Σn we define a functor σn : Fun(C×n

, C)→ Fun(C×n

, C) as follows

Fun(C×n

, C) � F �→ F ◦ σn,

where we consider σn as a functor C×n → C×n

, permuting the variables. It is clear
that in this way we get a symmetric structure on E(C) and we will always consider
endomorphism functors with symmetric structures chosen in this way.

Note that in general an endomorphism operad is not an equivariant sym-
metric operad. However, we do not require equivariance in the definition of a lax
morphism between two symmetric operads in categories, and consequently we can
consider lax morphisms from an equivariant operad to one which is not. When the
codomain is an endomorphism operad as in the last example we will have a special
name for it.

4.8.4. Definition. We will call a lax morphism from an equivariant symmetric op-
erad P to an endomorphism operad E(C) a symmetric generalized triple. If every
component of P is a groupoid and every functor in the image of the generalized
triple commutes with colimits of groupoids, we will call such a generalized triple a
symmetric operad-like triple. We organize symmetric operad-like triples into a cat-
egory, where morphisms are lax morphisms as in Definition 4.7.4, and in addition
commuting (on the nose) with the symmetric structure (as in Definition 4.8.1).
We will denote this category by Ps(C).

We have proved a proposition (Proposition 4.7.7) stating that we can get
a usual triple from an operad-like one, and that this correspondence is a func-
tor. Since equivariant symmetric operads differ from the non-symmetric ones by
presence of an action of symmetric groups (functors) and representations of the
“regular symmetric groupoids” (invertible morphisms) we see that the same proof
applies to equivariant operad-like triples as well. So we get a functor Tot : Ps(C)→
T (C).

We would like to illustrate the role of equivariance in representation of an
equivariant symmetric operad on a category. So let P be an equivariant symmetric
operad. Let C be a category and let ((F, ζ), η) be a representation of P on C. Let
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pn, {pmi}1≤i≤n be elements of Pn and {Pmi}1≤i≤n respectively. Let σn, {σmi}
be morphisms in Σn and {Σmi

}. Writing explicitly the conditions for ζ to be
a natural transformation we get the following commutative diagrams of natural
transformations between functors on C,

F (pn) ◦ (F (pm1)× · · · × F (pmn))

ζm1,...,mn

F (pn) ◦ σn ◦ (F (pm1)× · · · × F (pmn))

ζm1,...,mn

F (Υ(pn × pm1 × · · · × pmn)) F (Υ(σn(pn)× pm1 × · · · × pmn))

where the upper horizontal arrow is F (S(σn)) ◦ (Id×
n

), and the lower horizontal
arrow is F (S(σn)).

F (pn) ◦ (F (pm1) × · · · × F (pmn))

ζm1,...,mn

F (pn) ◦ (F (pm1) ◦ σm1 × · · · × F (pmn) ◦ σmn)

ζm1,...,mn

F (Υ(pn × pm1 × · · · × pmn)) F (Υ(pn × σm1(pm1) × · · · × σmn(pmn)))

where the upper horizontal arrow is Id◦(F (S(σm1)×· · ·×S(σmn)), and the lower
horizontal arrow is F (S(σm1 × · · · × σmn)).

When we apply Tot to a symmetric operad-like triple we see that these dia-
grams translate to the usual equivariance diagrams for operads.

4.9. Example: operads as algebras over symmetric operad-like triples

In this subsection we would like to show that operads, as they were defined in
Section 1, can be described as algebras over certain triples, that lie in the image
of Tot, as described above. Until now we have considered operad-like triples as
lax representations of classical operads. However, operadic constructions require
working with colored operads, rather than the classical ones. The passage to the
colored context is straightforward and we indicate the main steps below.

One could define colored operads in categories as colored operads in the
monoidal category (CAT ,×, E) in the usual meaning of the term. However, be-
cause we have 2-morphisms in the background, there are some minor adjustments
to be made. As in the usual case, a colored operad is different from a classical one
by a restriction on possible compositions. Before we define it we need a technical
preparation.

Suppose we have three categories C, C′, C′′, and each object in all of them is
given two colors from a set of colors Ω. One of the colors will be called incoming
and the other outgoing. We will say that we have a colored functor C ×C′ → C′′ if
for every two objects C, C′ of C and C′ respectively, such that the incoming color
of C is equal to the outgoing one of C′ (we will call such pairs composable), we
are given an object C′′ of C′′ whose incoming color is that of C′ and outgoing –
that of C. On morphisms such a functor should act as a usual functor, where we
allow morphisms only between composable pairs in C × C′.
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4.9.1. Definition. Let Ω be a set. A strict Ω-colored categorical operad is a sequence
of categories {Pn}n∈Z>0, for each object in Pn a set of incoming colors (ω1, . . . , ωn)
and an outgoing color ω, and a set of colored functors {Υm1,...,mn : Pn × Pm1 ×
· · · × Pmn → Pm1+···+Pmn

}, satisfying the obvious associativity and unit axioms.

Just as in case of monochrome operads we can introduce the notion of a
symmetric colored operad in categories. For that we need an action of symmetric
groups on the components. However, since we need to be able to permute different
sets of incoming colors differently we have to use colored symmetric groups, i.e.,
for every set of incoming colors we have a copy of the symmetric group, that
acts (by functors) on all objects with the same set of incoming colors. We omit
writing explicitly the colored extension of the usual equivariance axioms (it is
straightforward but long).

Similarly the equivariance structure (Definition 4.8.2) can be generalized to
the colored context in a very straightforward manner. Indeed it requires connecting
objects by isomorphisms with their images under permutation functors, such that
the compatibility conditions from Definition 4.8.2. are satisfied. We leave writing
the details explicitly to the reader.

Let C and C′ be two categories. Suppose that objects in C have incoming and
outgoing colors from a set of colors Ω and objects in C′ - from Ω′. Suppose we have
a map f : Ω → Ω′. Then we will say that a functor F : C → C′ preserves colors if
an object C ∈ C with colors (ωin, ωout) is mapped by F to an object C′ ∈ C′ with
colors (f(ωin), f(ωout)).

4.9.2. Definition. A coherent lax morphism between symmetric strict colored oper-
ads in categories (colored by Ω and Ω′) is a set of color preserving functors (for
a choice of a map f : Ω → Ω′) and natural transformations ((F, ζ), η), satisfying
the colored versions of coherence conditions as in Definitions 4.3.2 and 4.5.2.

4.9.3. Example. The main example for us of a colored categorical operad is the
operad, produced by abstract categories of labelled graphs, described in Section
1. Let Γ be a category as in Definition 1.3. Let Ω be the set of Γ-corollas. This is
our set of colors.

We define a strict Ω-colored operad G as follows. We set Gn to be the category,
whose objects are pairs of morphisms in Γ:∐

v∈Vτ

σv → τ → σ,

where τ is an object of Γ, σ is a Γ-corolla, and the first arrow is one of the possible
atomizations of τ , provided by property (iv) of Definition 1.3. We will denote such
object simply by τ . Note that corollas in the direct product are ordered.

A morphism from one such object to another is a pair of morphisms between
τ ’s and coproducts of corollas, such that together with the identity on σ they make
up a commutative ladder.
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The coloring on each object of Gn is obvious: as it is written above the
outgoing color is σ and the incoming colors are {σv}v∈Vτ . Actions by symmetric
groups are obvious as well: we just rearrange summands in the direct sum of
corollas for the atomization.

To define composition functors we use property (vi) of Definition 1.3. Suppose
we have n+1 objects of G: τ1, . . . , τn, τ , such that the incoming colors of the latter
are exactly the outgoing ones of the former n-tuple. According to property (vi) we
have an object τ ′ of Γ, and a morphism τ ′ → τ , fitting into diagram of the type
(1.3). Here we assume that a choice of a particular τ ′ is made in each case. We
will call this a choice of grafting. It is clear that we can choose atomization of τ ′

to be the direct sum of atomizations of τi’s. Doing that and taking τ ′ → τ → σ
as the outgoing color we get a composition on G. Colored units are chosen in the
obvious way: they are identity maps of the corollas.

Now we have to check the associativity and unit axioms. The unit ones are
obvious. Associativity conditions are obvious if we take Gr itself as Γ, indeed all
we do is substituting graphs in place of corollas, and this operation is associative.
In case of a general Γ we make this associativity condition part of the choice of
grafting.

Actions of symmetric groups obviously satisfy the conditions of Definition
4.8.1. We also have a natural equivariance structure (Definition 4.8.2) on G. Indeed
if we take a direct sum and rearrange the summands the result is connected to the
original sum by a unique isomorphism, that gives us the representation of Σ. Here
we should check that compatibility conditions from 4.8.2 are satisfied. In case Γ is
Gr itself they are obvious. In general we make them part of the requirements for
the choice of grafting. So we have a structure of an equivariant symmetric operad
on G.

Now let (C,⊗) be a symmetric monoidal category. We would like to define a
representation of ρ : G→ E(Fun(Ω, C)) as follows: given an object of G∐

1≤i≤n

σi → τ → σ,

and an object F : Ω → C, ρ(τ) acts on F by mapping it to the functor Ω → C,
whose value on σ is

⊗
1≤i≤n

F (σi) and on the rest of colors the value is the initial

object of C.
If we did not have non-identity morphisms on Ω, then this definition would

have been obviously correct. Indeed, then a functor from the category of colors
would have been equivalent to just a choice of objects in C, and the above choice is
obviously functorial in F . However, we have to take into account the non-identity
morphisms in Ω.

Let σ and σ′ be two corollas. And let φ : σ → σ′ be an isomorphism. Then
for any object

∐
1≤i≤n

σi → τ → σ of G we have a new object
∐

1≤i≤n

σi → τ → σ′,

where the last arrow is the last arrow in the original object, followed by φ. We will
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denote this new object of G by φ∗(τ). In this way, given an object of G we get
a sort of Ω-diagram of such objects (it is not exactly a diagram because we have
excluded morphisms from G, that are non-identities on the corollas).

Note that for any isomorphism φ as above the values of ρ(τ)(F ) on σ and
of ρ(φ∗(τ))(F ) on σ′ are the same. Therefore, if given a F , a τ ∈ G we define for
each corolla σ′ ∈ Ω, that is isomorphic to σ

σ′ �→
∐ ⊗

1≤i≤n

F (σ′i),

where the coproduct is taken over all objects from G, that are in the Ω-diagram
corresponding to τ as described above, then we would get a new functor Ω →
C. Indeed, every morphism in Ω (as for example φ) is mapped to the identity
automorphism of

⊗
1≤i≤n

F (σi).

So we get a representation of G on Fun(Ω, C), and we will denote it by ρ. As
it was noted above G is an equivariant symmetric operad and hence the operad-like
triple ρ is symmetric.

From Proposition 4.7.5 we conclude that there is a triple Tot(ρ) on Fun(Ω, C).
This triple is exactly the triple F from Section 1.5.4, and the algebras over it are
the ΓC-operads.

4.10. Existence of cohom for operads in algebras

Let T be a Hopf-like triple (Definition 3.1.1) on a category C, that commutes with
colimits of groupoids. From Lemma 3.1.3 we know that the category A of algebras
over T has monoidal structure, and hence for any abstract category of labelled
graphs Γ we can consider the category ΓAOPER of ΓA-operads. Now we would
like to show that if C possesses cohom, so does ΓAOPER.

The key to the proof is the observation that the forgetful functor U : A → C
maps ΓA-operads to ΓC-operads. Therefore an object of ΓAOPER is a sequence
(parameterized by Γ-corollas) of objects in C, such that each one of them is a T -
algebra and altogether they make up a Γ-operad in C. Of course certain compat-
ibility conditions between these two structures should be satisfied. This situation
is just a triple version of the usual instance of an action of a colored operad.

First we are going to consider sequences of objects in C, that have both of
the above structures, but with the compatibility conditions omitted. We need a
very simple lemma for this, whose proof is straightforward and we leave it to the
reader.

4.10.1. Lemma. Let T and T ′ be two triples on C, such that both commute with
colimits of groupoids. Then the category A′′ of objects in C, that are simultaneously
algebras over T and T ′ is equivalent to the category of algebras over the following
triple:

T
∐
T ′ : C �→

∐
T (. . . T ′(. . . (C))),
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where the coproduct is taken over all possible words of positive length, composed of
T and T ′.

In our situation we have one T (one for each Γ-corolla) but instead of T ′

we have a sequence (parameterized by objects of G) of functors C×n → C (for all
n ∈ Z>0). Each of these functors commutes with colimits of groupoids so we can
form a triple out of them and T by forming all possible compositions and summing
them up. This is an obvious generalization of Lemma 4.10.1. We will denote the
resulting triple by T

∐
Tot(ρ).

By construction T
∐
Tot(ρ) is the direct product, i.e., its algebras are equiva-

lent to operads in C and algebras over T , and these two structures being unrelated.
Now we make this direct product into an amalgamated sum. The needed relations
are provided by the Hopf-like properties of T . Recall that for T to be Hopf-like
means that there is a natural transformation

τ : T ◦ ⊗ → ⊗ ◦ (T × T ),

satisfying certain conditions, spelled out in Definition 3.1.1.
According to property b) in Definition 3.1.1. there is a definite natural trans-

formation
T ◦ (⊗ ◦ (Id×⊗)) → ⊗ ◦ (Id×⊗) ◦ (T×3

),

and similarly for all other possible iterations of the monoidal structure. Note that
functors on both sides of the last arrow are summands in T

∐
Tot(ρ) (for each

Γ-corolla), therefore there are two ways to include the left side in the sum, i.e., we
have a pair of parallel natural transformations (for each Γ-corolla separately):∐

n≥1

T ◦ ⊗◦n ⇒ T
∐
Tot(ρ).

These are our relations. The left side of the two arrows is just a functor, but we have
an adjunction from functors (commuting with coproducts) to triples, therefore we
have a pair of morphisms between triples

F(
∐
n≥1

T ◦ ⊗◦n

) ⇒ T
∐
Tot(ρ),

where F denotes the free triple. The coequalizer (in the category of triples) of these
two morphisms is a triple whose algebras are exactly Γ-operads in A.

Here we should discuss existence of coequalizers in the category of triples on
C. The opposite category of Fun(C, C) is equivalent to Fun(Cop, Cop), and hence
the question of existence of colimits in Fun(C, C) is equivalent to the question
of existence of limits in Fun(Cop, Cop). The latter can be answered by existence
of colimits in C (e.g., [Bo1], Proposition 2.15.1.) Thus if we assume that C has
coequalizers, so does Fun(C, C). So the question of existence of coequalizers in the
category of triples on C is the usual question of lifting colimits from a category to
a category of algebras over a triple. General conditions for their existence are very
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restrictive, so we will assume existence of the coequalizers above as a condition
imposed on C itself and on T .

So far we have considered algebras over a triple, that commutes with colimits
of groupoids. However, it is not always the case, as for example the triple of
associative algebras in vector spaces does not commute with such colimits (in
general it does not commute even with coproducts). Yet often triples that do not
commute can be represented as colimits of ones, which do commute, such as the
operad-like triples.

We need a reformulation of the property of a triple to be Hopf-like in the
language of operad-like triples. The following definition expresses in the operad-
like triple setting the property of an operad to be Hopf. This notion is well known,
so we will only outline the main parts of the definition and omit the necessary
coherence properties. Examples of such operad-like triples are provided by Hopf
operads.

4.10.2. Definition. Let F : P → E(C) be an operad-like triple on C. It is Hopf-like
if for every Gn ∈ Fn(Pn), n ∈ Z>0 we have a natural transformation

τn : Gn ◦ ⊗×n → ⊗ ◦ (Gn ×Gn) ◦ σ2n,

where σ2n is the permutation that moves all elements in the even places of a se-
quence to the end of it. This natural transformation should satisfy coherence con-
ditions expressing its associativity and compatibility with the composition natural
transformation on F (P ).

Now assume that we have a Hopf-like symmetric operad-like triple F : P →
E(C). The family {τn} provides us with a Hopf-like structure on Tot(F ). Thus
the category A of algebras over Tot(F ) has a symmetric monoidal structure. Let
Γ be an abstract category of labelled graphs. We would like to have objects of
ΓAOPER as algebras over a triple on C.

Just as we did in case of a single T we first consider the coproduct
Tot(F )

∐
Tot(ρ). Here, as before, we take all possible compositions, but now we

have to compose functors in several variables. Also we want to take coproduct of
symmetric operad-like triples, i.e., we add up not only all compositions, but also
applications to them of permutations of variables.

Finally, as before, we have a pair of parallel morphisms of triples, with
codomain Tot(F )

∐
Tot(ρ). Their coequalizer (if it exists) is the required triple.

In total we have the following proposition.

4.10.3. Proposition. Let (C,⊗) be a symmetric monoidal category. Let F : P →
E(C) be a symmetric operad-like triple on C. Suppose that F is Hopf-like, and let Γ
be an abstract category of labelled graphs. Then, if the category of triples on C has
necessary coequalizers, the category of Γ-operads in the category of algebras over
Tot(F ) is equivalent to a category of algebras over a triple on C.

Now using results of Section 3.1. we establish existence of cohom for operads
in algebras over operad-like triples, given that cohom exists on C.
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Appendix A. Labeled graphs corresponding to various operads

This will last out a night in Russia
When nights are longest there.

W. Shakespeare, Measure for measure, 2.1.132–3

0. Operads, cyclic operads, modular operads. The graph geometry behind these
structures is basically well known, and we will only briefly repeat it.

Operads. Objects: disjoint unions of directed trees with one output each.
Morphisms: (generated by) contractions and graftings of an output to an input. If
one considers only linear directed graphs (each vertex carries one input and one
output), one gets associative algebras.

Cyclic operads. Objects: disjoint unions of (unlabeled) trees. Morphisms: con-
tractions and graftings.

If one adds cyclic labeling, one gets the non-symmetric version of operads,
resp. cyclic operads.

Modular operads. Objects: graphs of arbitrary topology with genus labeling.
Morphisms: contractions and graftings compatible with labelings in the following
sense.

Contraction of an edge having two distinct vertices of genera g1, g2, produces
a new vertex of genus g1 + g2. Contraction of a loop augments the genus of its
vertex by one. The effect of a general contraction is the result of the composition
of contraction of edges. Grafting does not change labels.

1. PROPs. Consider first the category Γc whose objects are disjoint unions of ori-
ented corollas, and morphisms are mergers (including isomorphisms). Any tensor
functor (Γc,

∐
) → (G,⊗) is determined up to an isomorphism by the following

data:

(i) Its values on corollas with inputs {1, . . . , n} and outputs {1, . . . ,m} (m = 0
and n = 0 are allowed). Let such a value be denoted P (m,n).

(ii) Its values upon automorphisms of such corollas. This means that each P (m,n)
is endowed by commuting actions of Sm (left) and Sn (right).

(iii) Its values upon merger morphisms of such corollas which are called horizontal
compositions:

P (m1, n1)⊗ · · · ⊗ P (mr, nr)→ P (m1 + · · ·+mr, n1 + · · ·+ nr). (A.1)

Consider now a larger category Γ of directed graphs without oriented wheels.
This puts restrictions to morphisms compatible with orientations. In particular,
if we contract an edge, we must simultaneously contract all edges connecting its
ends. Mergers of two vertices connected by an oriented path also are excluded.

A tensor functor Γ→ G then produces data (i)–(iii) and moreover,
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(iv) Vertical compositions: values of the functor upon full contractions of two-
vertex directed graphs such that all inputs belong to one vertex, all outputs
to another, and edges are oriented from inputs to outputs:

P (m,n)⊗ P (n, k)→ P (m, k), n �= 0. (A.2)

These data must satisfy some compatibility conditions which can be rephrased
as existence of a monoidal category with objects ∅, . . . , {1, . . . , n}, . . . (as in
1.2.3) enriched over G in such a way that its morphisms become P (m,n) and their
composition is given by (A.2).

Allowing mergers in PROPs, we get generally big categories ⇒ σ which are
main building blocks of the triple (F , μ, η) and the respective operads. In the
following three operadic structures, we again exclude them.

2. Properads. Objects: all directed graphs as above. Morphisms: contractions and
graftings.

3. Dioperads. Objects: all directed graphs with whose connected components are
simply connected. Morphisms: contractions and graftings.

4. 1
2 -PROPs. Objects: directed graphs with simply connected components trees

such that each edge is either unique output of its source, or unique input of its
target. Morphisms: contractions and graftings.

5. Monoidal structures on the collections. Following [Va1], we will introduce the
following definition, working well for the categories of directed graphs without
mergers.

A directed graph τ is called two-level one, if there exists a partition of its
vertices Vτ = V 1

τ

∐
V 2

τ such that

a) Tails at V 1
τ are all inputs of τ , tails at V 2

τ are all outputs of τ .
b) Any edge starts at V 1

τ and ends at V 2
τ .

Clearly, such a partition is unique, if it exists at all.

Denote by ⇒(2) σ the full subcategory of ⇒ σ consisting of objects whose
sources are two-level graphs.

For any two collections A1, A2, define the third one by

(A2 �c A
1)(σ) := colim (⊗v∈V 1

τ
A1(τv))⊗ (⊗v∈V 2

τ
A2(τv))

where colim is taken over ⇒(2) σ.

B. Vallette proves that this is a monoidal structure on collections, and that
the respective operads are monoids in the resulting monoidal category.

B. Vallette treats also the case of PROPs, but here one must restrict oneself
to “saturated” collections.
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Université de Montréal, 1988, 91 pp.

[Ma3] Yu. Manin, Topics in noncommutative geometry. Princeton University Press,
1991, 163 pp.

[Ma4] Yu. Manin, Notes on quantum groups and quantum de Rham complexes. Teo-
reticheskaya i Matematicheskaya Fizika 92 (1992), no. 3, 425–450. Reprinted
in Selected papers of Yu.I. Manin, World Scientific, Singapore 1996, 529–554.

[Mar] M. Markl, Operads and PROPs. Preprint math.AT/0601129.

[MarShSt] M. Markl, St. Shnider and J. Stasheff, Operads in Algebra, Topology and
Physics. Math. Surveys and Monographs, vol. 96, AMS 2002.

[MarkSh] I. Markov and Y. Shi, Simulating quantum computation by contracting tensor
network. Preprint quant-ph/0511069.

[Mer] S. Merkulov, PROP profile of deformation quantization and graph complexes
with loops and wheels. Preprint math.QA/0412257.

[PP] A. Polishchuk and L. Positselski, Quadratic algebras. University Lecture series,
No. 37, AMS 2005.

[Pow] A.J. Power, A 2-categorical pasting theorem. Journ. of Algebra 129 (1990),
439–445.

[Q] D. Quillen, Homotopical Algebra. Springer Lecture Notes in Mathematics 43,
Berlin, 1967.

[R] C. Rezk, Spaces of algebra structures and cohomology of operads. Ph.D. Thesis,
Massachusetts Institute of Technology, Cambridge, MA, 1996.
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Abstract. We construct the Chern character from the K-theory of twisted
perfect complexes of an algebroid stack to the negative cyclic homology of
the algebra of twisted matrices associated to the stack.
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1. Introduction

The Chern character from the algebraic K theory to the cyclic homology of asso-
ciative algebras was defined by Connes and Karoubi [C], [Kar], [L]. Goodwillie and
Jones [Go], [J] defined the negative cyclic homology and the Chern character with
values there. In this paper we generalize this Chern character to the K-theory of
twisted modules over twisted sheaves of algebras.

More precisely, we outline the construction of the Chern character of a per-
fect complex of twisted sheaves of modules over an algebroid stack A on a space
M . This includes the case of a perfect complex of sheaves of modules over a sheaf
of algebras A. In the latter case, the recipient of the Chern character is the hyper-
cohomology of M with coefficients in the sheafification of the presheaf of negative
cyclic complexes. The construction of the Chern character for this case was given
in [BNT1] and [K]. In the twisted case, it is not a priori clear what the recipi-
ent should be. One can construct [K2], [MC] the Chern character with values in
the negative cyclic homology of the category of perfect complexes (localized by
the subcategory of acyclic complexes); the question is, how to compute this cyclic
homology, or perhaps how to map it into something simpler.

Ideally, the recipient of the Chern character would be the hypercohomology
of M with coefficients in the negative cyclic complex of a sheaf of associative
algebras. We show that this is almost the case. We construct associative algebras



310 P. Bressler, A. Gorokhovsky, R. Nest and B. Tsygan

that form a presheaf not exactly onM but rather on a first barycentric subdivision
of the nerve of a cover of M . These algebras are twisted matrix algebras. We used
them in [BGNT] and [BGNT1] to classify deformations of algebroid stacks.

We construct the Chern characters

K•(Perf(A)) −→ Ȟ−•(M,CC−
• (Matrtw(A))) (1.1)

K•(PerfZ(A)) −→ Ȟ−•
Z (M,CC−

• (Matrtw(A))) (1.2)

where K•(Perf(A)) is the K-theory of perfect complexes of twisted A-modules,
K•(PerfZ(A)) is the K-theory of perfect complexes of twisted A-modules acyclic
outside a closed subset Z, and the right-hand sides are the hypercohomology ofM
with coefficients in the negative cyclic complex of twisted matrices, cf. Definition
3.4.2 .

Our construction of the Chern character is more along the lines of [K] than
of [BNT1]. It is modified for the twisted case and for the use of twisted matrices.
Another difference is a method that we use to pass from perfect to very strictly
perfect complexes. This method involves a general construction of operations on
cyclic complexes of algebras and categories. This general construction, in partial
cases, was used before in [NT], [NT1] as a version of noncommutative calculus.
We recently realized that it can be obtained in large generality by applying the
functor CC−

• to the categories of A∞ functors from [BLM], [K1], [Ko], [Lu], [KS],
and [Ta].

The fact that these methods are applicable is due to the observation that a
perfect complex, via the formalism of twisting cochains of O’Brian, Toledo, and
Tong, can be naturally interpreted as an A∞ functor from the category associated
to a cover to the category of strictly perfect complexes. The fourth author is
grateful to David Nadler for explaining this to him.

In the case when the stack in question is a gerbe, the recipient of the Chern
character maps to the De Rham cohomology twisted by the three-cohomology
class determined by this gerbe (the Dixmier-Douady class). A Chern character
with values in the twisted cohomology was constructed in [MaS], [BCMMS], [AS]
and generalized in [MaS1] and [TX]. The K-theory which is the source of this
Chern character is rather different from the one studied here. It is called the
twisted K-theory and is a generalization of the topological K-theory. Our Chern
character has as its source the algebraic K-theory which probably maps to the
topological one.
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2. Gerbes and stacks

2.1.

Let M be a topological space. In this paper, by a stack on M we will mean an
equivalence class of the following data:

1. an open cover M = ∪Ui;
2. a sheaf of rings Ai on every Ui;
3. an isomorphism of sheaves of rings Gij : Aj |(Ui∩Uj) ∼= Ai|(Ui∩Uj) for every
i, j;

4. an invertible element cijk ∈ Ai(Ui ∩ Uj ∩ Uk) for every i, j, k satisfying

GijGjk = Ad(cijk)Gik (2.1)

such that, for every i, j, k, l,

cijkcikl = Gij(cjkl)cijl. (2.2)

To define equivalence, first recall the definition of a refinement. An open cover
V = {Vj}j∈J is a refinement of an open cover U = {Ui}i∈I if a map f : J → I
is given, such that Vj ⊂ Uf(j). Open covers form a category: to say that there
is a morphism from U to V is the same as to say that V is a refinement of U.
Composition corresponds to composition of maps f .

Our equivalence relation is by definition the weakest for which the two data
({Ui},Ai, Gij , cijk) and

({Vp},Af(p)|Vp, Gf(p)f(q), cf(p)f(q)f(r))

are equivalent whenever {Vp} is a refinement of {Ui} (the corresponding map
{p} → {i} being denoted by f).

If two data ({U ′
i}, A′

i, G
′
ij , c

′
ijk) and ({U ′′

i }, A′′
i , G

′′
ij , c

′′
ijk) are given on

M , define an isomorphism between them as follows. First, choose an open cover
M = ∪Ui refining both {U ′

i} and {U ′′
i }. Pass from our data to new, equivalent

data corresponding to this open cover. An isomorphism is an equivalence class of
a collection of isomorphisms Hi : A′

i
∼= A′′

i on Ui and invertible elements bij of
A′

i(Ui ∩ Uj) such that
G′′

ij = Hi Ad(bij)G′
ijH

−1
j (2.3)

and
H−1

i (c′′ijk) = bijG′
ij(bjk)c′ijkb

−1
ik . (2.4)

If {Vp} is a refinement of {Ui}, we pass from ({Ui},Ai, Gij , cijk) to the
equivalent data ({Vp}, Af(p)f(q), cf(p)f(q)f(r)) as above. We define the equivalence
relation to be the weakest for which, for all refinements, the data (Hi, bij) and
(Hf(p), bf(p)f(q)) are equivalent.

Define composition of isomorphisms as follows. Choose a common refinement
{Ui} of the covers {U ′

i}, {U ′′
i }, and {U ′′′

i }. Using the equivalence relation, identify
all the stack data and all the isomorphism data with the data corresponding to
the cover {Ui}. Define Hi = H ′

i ◦H ′′
i and bij = H ′′

i
−1(b′ij)b

′′
ij . It is easy to see that

this composition is associative and is well defined for equivalence classes.
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Now consider two isomorphisms (H ′
i, b

′
ij) and (H ′′

i , b
′′
ij) between the stacks

({U ′
i}, A′

i, G
′
ij , c

′
ijk) and ({U ′′

i }, A′′
i , G

′′
ij , c

′′
ijk). We can pass to a common

refinement, replace our data by equivalent data, and assume that {U ′
i} = {U ′′

i } =
{Ui}. A two-morphism between the above isomorphisms is an equivalence class of
a collection of invertible elements ai of A′

i(Ui) such that H ′′
i = H ′

i ◦ Ad(ai) and
b′′ij = a−1

i b
′
ijG

′
ij(aj). The equivalence relation is the weakest for which, whenever

{Vp} is a refinement of {Ui}, {ai} is equivalent to {af(p)} : (H ′
f(p), b

′
f(p)f(q)) →

(H ′′
f(p), b

′′
f(p)f(q)). The composition between {a′i} and {a′′i } is defined by ai = a′ia

′′
i .

This operation is well-defined at the level of equivalence classes.
With the operations thus defined, stacks form a two-groupoid.
A gerbe on a manifold M is a stack for which Ai = OUi and Gij = 1. Gerbes

are classified up to isomorphism by cohomology classes in H2(M,O∗
M ).

For a stack A define a twisted A-module over an open subset U as an equiv-
alence class of a collection of sheaves of Ai -modules Mi on U ∩Ui, together with
isomorphisms gij : Mj → Mi on U ∩ Ui ∩ Uj such that gik = gijGij(gjk)cijk on
U ∩ Ui ∩ Uj ∩ Uk. The equivalence relation is the weakest for which, if {Vp} is a
refinement of {Ui}, the data (Mf(p), gf(p)f(q)) and (Mi, gij) are equivalent.

We leave it to the reader to define morphisms of twisted modules. A twisted
module is said to be free if the Ai-module Mi is.

2.2. Twisting cochains

Here we recall the formalism from [TT], [OTT], [OB], generalized to the case
of stacks. For a stack on M = ∪Ui as above, by F we will denote a collection
{Fi} where Fi is a graded sheaf which is a direct summand of a free graded Ai-
module of finite rank on Ui. A p-cochain with values in F is a collection ai0...ip ∈
Fi0(Ui0 ∩ . . .∩Uip); for two collections F and F ′ as above, a p-cochain with values
in Hom(F ,F ′) is a collection ai0...ip ∈ HomAi0

(Fip ,F ′
i0

)(Ui0 ∩ . . .∩Uip) (the sheaf
Ai0 acts on Fip via Gi0ip). Define the cup product by

(a � b)i0...ip+q = (−1)|ai0...ip |qai0...ipGipip+q(bip+1...ip+q)ci0ipip+q (2.5)

and the differential by

(∂̌a)i0...ip+1 =
p∑

k=1

(−1)kai0...îk...ip+1
. (2.6)

Under these operations, Hom(F ,F)-valued cochains form a DG algebra and F -
valued cochains a DG module.

If V is a refinement of U then cochains with respect to U map to cochains
with respect to V. For us, the space of cochains will be always understood as the
direct limit over all the covers.

A twisting cochain is a Hom(F ,F)-valued cochain ρ of total degree one such
that

∂̌ρ+
1
2
ρ � ρ = 0. (2.7)
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A morphism between twisting cochains ρ and ρ′ is a cochain f of total degree zero
such that ∂̌f + ρ′ � f − f � ρ = 0. A homotopy between two such morphisms f
and f ′ is a cochain θ of total degree −1 such that f − f ′ = ∂̌θ + ρ′ � θ + θ � ρ.
More generally, twisting cochains form a DG category. The complex Hom(ρ, ρ′) is
the complex of Hom(F ,F ′)-valued cochains with the differential

f �→ ∂̌f + ρ′ � f − (−1)|f |f � ρ .

There is another, equivalent definition of twisting cochains. Start with a col-
lection F = {Fi} of direct summands of free graded twisted modules of finite rank
on Ui (a twisted module on Ui is said to be free if the corresponding Ai-module is).
Define Hom(F ,F ′)-valued cochains as collections of morphisms of graded twisted
modules ai0...ip : Fip → F ′

i0 on Ui0 ∩ . . . ∩ Uip . The cup product is defined by

(a � b)i0...ip+q = (−1)|ai0...ip |qai0...ipbip+1...ip+q (2.8)

and the differential by (2.6) . A twisting cochain is a cochain ρ of total degree 1
satisfying (2.7).

If one drops the requirement that the complexes F be direct summands of
graded free modules of finite rank, we get objects that we will call weak twisting
cochains. A morphism of (weak) twisting cochains is a quasi-isomorphism if fi is
for every i. Every complexM of twisted modules can be viewed as a weak twisting
cochain, with Fi = M for all i, ρij = id for all i, j, ρi is the differential in M, and
ρi0...ip = 0 for p > 2. We denote this weak twisting cochain by ρ0(M). By ρ0 we
denote the DG functor M �→ ρ0(M) from the DG category of perfect complexes
to the DG category of weak twisting cochains.

If {Vs} is a refinement of {Ui}, we declare twisting cochains (Fi, ρi0...ip) and
(Ff(s)|Vs, ρf(s0)...f(sp)) equivalent. Similarly for morphisms.

A complex of twisted modules is called perfect (resp. strictly perfect) if it is
locally isomorphic in the derived category (resp. isomorphic) to a direct summand
of a bounded complex of finitely generated free modules. A parallel definition can
of course be given for complexes of modules over associative algebras.

Lemma 2.2.1. Let M be paracompact.

1. For a perfect complex M there exists a twisting cochain ρ together with a
quasi-isomorphism of weak twisting cochains ρ

φ−→ ρ0(M).
2. Let f :M1 →M2 be a morphism of perfect complexes. Let ρi, φi be twisting

cochains corresponding to Mi, i = 1, 2. Then there is a morphism of twisting
cochains ϕ(f) such that φ2ϕ(f) is homotopic to fφ1.

3. More generally, each choice M �→ ρ(M) extends to an A∞ functor ρ from
the DG category of perfect complexes to the DG category of twisting cochains,
together with an A∞ quasi-isomorphism ρ→ ρ0. (We recall the definition of
A∞ functors in 3.1, and that of A∞ morphisms of A∞ functors in 3.2).

Sketch of the proof. We will use the following facts about complexes of modules
over associative algebras.



314 P. Bressler, A. Gorokhovsky, R. Nest and B. Tsygan

1) If a complex F is strictly perfect, for a quasi-isomorphism ψ :M→ F there
is a quasi-isomorphism φ : F → M such that ψ ◦ φ is homotopic to the
identity.

2) If f : M1 → M2 is a morphism of perfect complexes and φi : Fi → Mi,
i = 1, 2, are quasi-isomorphisms with Fi strictly perfect, then there is a
morphism ϕ(f) : F1 → F2 such that φ2ϕ is homotopic to fφ1.

3) If F is strictly perfect and φ : F → M is a morphism which is zero on
cohomology, then φ is homotopic to zero.

Let M be a perfect complex of twisted modules. Recall that, by our definition, lo-
cally, there is a chain of quasi-isomorphisms connecting it to a strictly perfect com-
plex F . Let us start by observing that one can replace that by a quasi-isomorphism
from F to M. In other words, locally, there is a strictly perfect complex F and a
quasi-isomorphism φ : F →M. Indeed, this is true at the level of germs at every
point, by virtue of 1) above. For any point, the images of generators of F under
morphisms φ, resp. under homotopies s, are germs of sections of M, resp. of F ,
which are defined on some common neighborhood. Therefore quasi-isomorphisms
and homotopies are themselves defined on these neighborhoods.

We get a cover {Ui}, strictly perfect complexes Fi with differentials ρi, and
quasi-isomorphisms φi : Fi →M on Ui. Now observe that, at any point of Uij , the
morphisms ρij can be constructed at the level of germs because of 2). As above,
we conclude that each of them can be constructed on some neighborhood of this
point. Replace the cover {Ui} by a locally finite refinement{U ′

i}. Then, for every
point x, find a neighborhood Vx on which all ρij can be constructed. Cover M by
such neighborhoods. Then pass to a new cover which is a common refinement of
{U ′

i} and {Vx}. For this cover, the component ρij can be defined.
Acting as above, using 2) and 3), one can construct all the components of

the twisting cochain ρ(M), of the A∞ functor ρ, and of the A∞ morphism of A∞
functors ρ → ρ0. �

Remark 2.2.2. One can assume that all components of a twisting cochain ρ lie
in the space of cochains with respect to one and the same cover if the following
convention is adopted: all our perfect complexes are locally quasi-isomorphic to
strictly perfect complexes as complexes of presheaves. In other words, there is
an open cover {Ui} together with a strictly perfect complex Fi and a morphism
φi : Fi →M on any Ui, such that φi is a quasi-isomorphism at the level of sections
on any open subset of Ui.

2.3. Twisted matrix algebras

For any p-simplex σ of the nerve of an open cover M = ∪Ui which corresponds
to Ui0 ∩ . . . ∩ Uip , put Iσ = {i0, . . . , ip} and Uσ = ∩i∈IσUi. Define the algebra
Matrσ

tw(A) whose elements are finite matrices∑
i,j∈Iσ

aijEij
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such that aij ∈ (Ai(Uσ)). The product is defined by

aijEij · alkElk = δjlaijGij(ajk)cijkEik.

For σ ⊂ τ, the inclusion

iστ : Matrσ
tw(A) → Matrτ

tw(A),∑
aijEij �→

∑
(aij |Uτ )Eij , is a morphism of algebras (not of algebras with unit).

Clearly, iτρiστ = iσρ. If V is a refinement of U then there is a map

Matrσ
tw(A) → Matrf(σ)

tw (A)

which sends
∑
aijEij to

∑
(af(i)f(j)|Vf(σ))Ef(i)f(j).

Remark 2.3.1. For a nondecreasing map f : Iσ → Iτ which is not necessarily
an inclusion, we have the bimodule Mf consisting of twisted |Iσ| × |Iτ | matrices.
Tensoring by this bimodule defines the functor

f∗ : Matrσ
tw(A) −mod→ Matrτ

tw(A) −mod

such that (fg)∗ = f∗g∗.

3. The Chern character

3.1. Hochschild and cyclic complexes

We start by recalling some facts and constructions from noncommutative geometry.
Let A be an associative unital algebra over a unital algebra k. Set

Cp(A,A) = Cp(A) = A⊗(p+1).

We denote by b : Cp(A) → Cp−1(A) and B : Cp(A) → Cp+1(A) the standard
differentials from the Hochschild and cyclic homology theory (cf. [C], [L], [T]).
The Hochschild chain complex is by definition (C•(A), b); define

CC−
• (A) = (C•(A)[[u]], b+ uB);

CCper
• (A) = (C•(A)[[u, u−1], b+ uB);

CC•(A) = (C•(A)[[u, u−1]/uC•(A)[[u]], b+ uB).

These are, respectively, the negative cyclic, the periodic cyclic, and the cyclic com-
plexes of A over k.

We can replace A by a small DG category or, more generally, by a small A∞
category. Recall that a small A∞ category consists of a set Ob(C) of objects and
a graded k-module of C(i, j) of morphisms for any two objects i and j, together
with compositions

mn : C(in, in−1)⊗ . . .⊗ C(i1, i0) → C(in, i0)
of degree 2−n, n ≥ 1, satisfying standard quadratic relations to which we refer as
the A∞ relations. In particular, m1 is a differential on C(i, j). An A∞ functor F
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between two small A∞ categories C and D consists of a map F : Ob(C)→ Ob(D)
and k-linear maps

Fn : C(in, in−1)⊗ . . .⊗ C(i1, i0)→ D(Fin, F i0)

of degree 1 − n, n ≥ 1, satisfying another standard relation. We refer the reader
to [K1] for formulas and their explanations.

For a small A∞ category C one defines the Hochschild complex C•(C) as
follows:

C•(C) =
⊕

i0,...,in∈Ob(C)

C(i1, i0)⊗ C(i2, i1)⊗ . . .⊗ C(in, in−1)⊗ C(i0, in)

(the total cohomological degree being the degree induced from the grading of C(i, j)
minus n). The differential b is defined by

b(f0 ⊗ . . . fn) =
∑
j,k

±mk(fn−j+1, . . . , f0, . . . , fk−1−j)⊗ fk−j ⊗ . . .⊗ fn−j

+
∑
j,k

±f0 ⊗ . . .⊗ fj ⊗mk(fj+1, . . . , fj+k)⊗ . . .⊗ fn.

The cyclic differential B is defined by the standard formula with appropriate signs;
cf. [G].

3.2. Categories of A∞ functors

For two DG categories C and D one can define the DG category Fun∞(C,D).
Objects of Fun∞(C,D) are A∞ functors C → D. The complex Fun∞(C,D)(F,G)
of morphisms from F to G is the Hochschild cochain complex of C with coefficients
in D viewed as an A∞ bimodule over C via the A∞ functors F and G, namely∏

i0,...,in∈Ob(C)

Hom(C(i0, i1)⊗ . . .⊗ C(in−1, in),D(Fi0, Gin)).

The DG category structure on Fun∞(C,D) comes from the cup product. More
generally, for two A∞ categories C and D, Fun∞(C,D) is an A∞ category. For a
conceptual explanation, as well as explicit formulas for the differential and com-
position, cf. [Lu], [BLM], [K1], [KS].

Furthermore, for DG categories C and D there are A∞ morphisms

C ⊗ Fun∞(C,D) → D (3.1)

(the action) and

Fun∞(D, E)⊗ Fun∞(C,D) → Fun∞(C, E) (3.2)

(the composition). This follows from the conceptual explanation cited below; in
fact these pairing were considered already in [Ko]. As a consequence, there are
pairings

CC−
• (C)⊗ CC−

• (Fun∞(C,D)) → CC−
• (D) (3.3)

and
CC−

• (Fun∞(D, E))⊗ CC−
• (Fun∞(C,D))→ CC−

• (Fun∞(C, E)). (3.4)
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Indeed, recall the Getzler-Jones products [GJ]

CC−
• (C1)⊗ . . .⊗ CC−

• (Cn)→ CC−
• (C1 ⊗ . . . Cn)[2− n]

which satisfy the usual A∞ identities. To get (3.3) and (3.4), one combines these
products with (3.1) and (3.2).

Example 3.2.1. Let F be an A∞ functor from C to D. Then idF is a chain of
CC−(Fun∞(C,D)) (with n = 0). The pairing (3.3) with this chain amounts to the
map of the negative cyclic complexes induced by the A∞ functor F :

f0 ⊗ . . .⊗ fn �→
∑

±Fk0(. . . f0 . . .)⊗ Fk1(. . .)⊗ . . .⊗ Fkm(. . .).

The sum is taken over all cyclic permutations of f0, . . . , fn and all m, k0, . . . , km
such that f0 is inside Fk0 .

Remark 3.2.2. The action (3.1) and the composition (3.1) are parts of a very
nontrivial structure that was studied in [Ta].

As a consequence, this gives an A∞ category structure CC−( Fun∞) whose
objects are A∞ categories and whose complexes of morphisms are negative cyclic
complexes CC−

• (Fun∞(D, E)).
From a less conceptual point of view, pairings (3.3) and (3.4) were defined,

in partial cases, in [NT1] and [NT]. The A∞ structure on CC−(Fun∞) was con-
structed (in the partial case when all f are identity functors) in [TT]. Cf. also [T1]
for detailed proofs.

3.3. The prefibered version

We need the following modification of the above constructions. Let B be a category.
Consider, instead of a single DG category D, a family of DG categories Di, i ∈
Ob(B), together with a family of DG functors f∗ : Di ← Dj , f ∈ B(i, j), satisfying
(fg)∗ = g∗f∗ for any f and g. In this case we define a new DG category D :

Ob(D) =
∐

i∈Ob(B)

Ob(Di)

and, for a ∈ Ob(Di), b ∈ Ob(Dj),

D(a, b) = ⊕f∈B(i,j)Di(a, f∗b).

The composition is defined by

(ϕ, f) ◦ (ψ, g) = (ϕ ◦ f∗ψ, f ◦ g)

for ϕ ∈ Di(a, f∗b) and ψ ∈ Dj(b, g∗c).
We call the DG category D a DG category over B, or, using the language

of [Gil], a prefibered DG category over B with a strict cleavage. There is a similar
construction for A∞ categories.
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Let C, D be two DG categories over B. An A∞ functor F : C → D is called an
A∞ functor over B if for any a ∈ Ob(Ci) Fa ∈ Ob(Di), and for any ak ∈ Ob(Cik

),
(ϕk, fk) ∈ C(ak, ak−1), k = 1, . . . , n,

Fn((ϕn, fn), . . . , (ϕ1, f1)) = (ψ, f1 . . . fn)

for some ψ ∈ Din . One defines a morphism over B of two A∞ functors over B by
imposing a restriction which is identical to the one above. We get a DG category
FunB

∞(C,D). As in the previous section, there are A∞ functors

C ⊗ FunB
∞(C,D) → D (3.5)

(the action) and

FunB
∞(D, E)⊗ FunB

∞(C,D) → FunB
∞(C, E) (3.6)

(the composition), as well as

CC−
• (C)⊗ CC−

• (FunB
∞(C,D)) → CC−

• (D) (3.7)

and
CC−

• (FunB
∞(D, E))⊗ CC−

• (FunB
∞(C,D))→ CC−

• (FunB
∞(C, E)). (3.8)

3.3.1. We need one more generalization of the above constructions. It is not
necessary if one adopts the convention from Remark 2.2.2.

Suppose that instead of B we have a diagram of categories indexed by a
category U (in other words, a functor from U to the category of categories. In our
applications, U will be the category of open covers). Instead of a B-category D
we will consider a family of Bu-categories Du, u ∈ Ob(U), together with a functor
Dv → Du for any morphism u→ v in U, subject to compatibility conditions that
are left to the reader. The inverse limit of categories lim←−

U

Du is then a category

over the inverse limit lim←−
U

Bu. We may proceed exactly as above and define the DG

category of A∞ functors over lim←−Bu from lim←−Du to lim←−Eu, etc., with the following
convention: the space of maps from the inverse product, or from the tensor product
of inverse products, is defined to be the inductive limit of spaces of maps from
(tensor products of) individual constituents.

In this new situation, the pairings (3.6) and (3.8) still exist, while (3.7) turns
into

CC−
• (FunB

∞(C,D)) → lim−→Hom(CC−
• (Cu), lim←−CC−

• (Dv)). (3.9)

3.4. The trace map for stacks

Let M be a space with a stack A. Consider an open cover U = {Ui}i∈I such that
the stack A can be represented by a datum Ai, Gij , cijk. Let BU be the category
whose set of objects is I and where for every two objects i and j there is exactly
one morphism f : i→ j. Put CU = k[BU], i.e., (CU)i = k for any object i of BU.

There is a standard isomorphism of the stack A|Ui with the trivial stack
associated to the sheaf of rings Ai. Therefore one can identify twisted modules on
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Ui with sheaves of Ai-modules. We will denote the twisted module corresponding
to the free module Ai by the same letter Ai.

Definition 3.4.1. Define the category of very strictly perfect complexes on any
open subset of Ui as follows. Its objects are pairs (e, d) where e is an idempotent
endomorphism of degree zero of a free graded module

∑N
a=1Ai[na] and d is a

differential on Im(e). Morphisms between (e1, d1) and (e2, d2) are the same as
morphisms between Im(e1) and Im(e2) in the DG category of complexes of modules.
A parallel definition can be given for the category of complexes of modules over an
associative algebra.

Let (DU)i be the category of very strictly perfect complexes of twisted A-
modules on Ui. By U we denote the category of open covers as above.

Strictly speaking, our situation is not exactly a partial case of what was
considered in 3.3. First, (DU)i is a presheaf of categories on Ui (in the most naive
sense, i.e., it consists of a category (DU)i(U) for any U open in Ui, and a functor
GUV : (DU)i(V ) → (DU)i(U) for any U ⊂ V, such that GUV GV W = GUW ).
Second, f∗ are defined as functors on the subset Ui ∩ Uj. Also, the pairing (3.7)
and its generalization (3.9) are defined in a slightly restricted sense: they put in
correspondence to a cyclic chain i0 → in → in−1 → . . .→ i0 a cyclic chain of the
category of very strictly perfect complexes of A-modules on Ui0 ∩ . . .∩Uin . Finally,
in the notation of 3.3.1, for a morphism f : U → V in U and an object j of IV,
the functor (DV)j → (DU)f(j) induced by f is defined only on the open subset Vj .

We put B = lim←−BU and D = lim←−DU.

Let Perf(A) be the DG category of perfect complexes of twisted A-modules
on M . We denote the sheaf of categories of very strictly perfect complexes on
M by Perfvstr(A). If Z is a closed subset of M then by PerfZ(A) we denote the
DG category of perfect complexes of twisted A-modules on M which are acyclic
outside Z.

Definition 3.4.2. Define

Č−•(M,CC−
• (Matrtw(A))) = lim−→

U

∏
σ0⊂σ1⊂...⊂σp

CC−
• (Matrσp

tw(A))

where σi run through simplices of U. The total differential is b+ uB + ∂̌ where

∂̌sσ0...σp =
p−1∑
k=0

(−1)ksσ0...σ̂k...σp
+ (−1)psσ0...σp−1 |Uσp .

For a closed subset Z of M define Č−•
Z (M,CC−

• (Matrtw(A))) as

Cone(Č−•(M,CC−
• (Matrtw(A))) → Č−•(M \ Z, CC−

• (Matrtw(A))))[−1] .

Let us construct natural morphisms

CC−
• (Perf(A)) → Č−•(M,CC−

• (Matrtw(A))) (3.10)

CC−
• (PerfZ(A)) → Č−•

Z (M,CC−
• (Matrtw(A))). (3.11)
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First, observe that the definition of a twisted cochain and Lemma 2.2.1 can be
reformulated as follows.

Lemma 3.4.3.

1. A twisting cochain is an A∞ functor C → D over B in the sense of 3.3.
2. There is an A∞ functor from the DG category of perfect complexes to the DG

category Fun∞(C,D).

The second part of the lemma together with (3.7) give morphisms

CC−
• (Perf(A)) → CC−

• (FunB
∞(C,D)) → Hom(CC−

• (C),CC−
• (D)) .

As mentioned above, the image of this map is the subcomplex of those morphisms
that put in correspondence to a cyclic chain i0 → in → in−1 → . . . → i0 a
cyclic chain of the category of very strictly perfect complexes of A-modules on
Ui0 ∩ . . . ∩ Uin . We therefore get a morphism

CC−
• (Perf(A)) → Č−•(M,CC−

• (Perfvstr(A))).

Now replace the right-hand side by the quasi-isomorphic complex

lim−→
U

∏
σ0⊂σ1⊂...⊂σp

CC−
• (Perfvstr(A(Uσp)))

where σi run through simplices of U. There is a natural functor

Perfvstr(A(Uσp)) → Perfvstr(Matrσp

tw(A))

where the right-hand side stands for the category of very strictly perfect complexes
of modules over the sheaf of rings Matrσp

tw(A) on Uσp . This functor acts as follows:
to a twisted module M it puts in correspondence the direct sum ⊕i∈Iσ0

Mi; an
element aijEij acts via aijgij .

Next, let us note that one can replace CC−
• (Perfvstr(Matrσp

tw(A))) by the
complex CC−

• (Matrσp

tw(A)): indeed, for any associative algebraA there is an explicit
trace map

CC−
• (Perfvstr(A)) → CC−

• (A). (3.12)
To construct the trace map, we use a modification of Keller’s argument from [K].
We define this map as a composition

CC−
• (Perfvstr(A)) → CC−

• (Proj(A)) → CC−
• (A);

the DG category in the middle is the subcategory of complexes with zero differen-
tial. The morphism on the left is exp(−(1 ⊗ d)×?); the morphism on the right is
ch(e)×? followed by the standard trace map from [L]. Let us explain the notation.
The multiplication × is the binary multiplication of Getzler-Jones. The chain ch(e)
is the Connes-Karoubi Chern character of an idempotent e, cf. [L]. To multiply
f0 ⊗ . . . ⊗ fn by ch(e), recall that fk : Fik

→ Fik−1 , Fik
are free of finite rank,

e2k = ek in Hom(Fik
,Fik

), Fi−1 = Fin , e−1 = en, and fkek = ek−1fk. Write the
usual formula for multiplication by ch(e), but, when a factor e stands between fi
and fi+1, replace this factor by ei. Similarly for the morphism on the left: if a
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factor d stands between fi and fi+1, replace this factor by di (the differential on
the ith module). This finishes the construction of the morphism (3.10).

Next, we need to refine the map (3.12) as follows. Recall [D] that for a DG
category D and for a full DG subcategory D0 the DG quotient of D by D0 is
the following DG category. It has same objects as D; its morphisms are freely
generated over D by morphisms εi of degree −1 for any i ∈ Ob(D0), subject to
dεi = idi. It is easy to see that the trace map (3.12) extends to the negative cyclic
complex of the Drinfeld quotient of Perfvstr(A) by the full DG subcategory of
acyclic complexes. Indeed, a morphism in the DG quotient is a linear combination
of monomials f0εi0f1εi1 . . . εin−1fn where fk : Fik → Fik−1 and Fik

are acyclic for
k = 0, . . . , n − 1. An acyclic very strictly perfect complex is contractible. Choose
contracting homotopies sk for Fik

. Replace all the monomials f0εi0f1εi1 . . . εin−1fn
by f0s0f1s1 . . . sn−1fn. Then apply the above composition to the resulting chain
of CC−

• (Perfvstr(A)). We obtain for any associative algebra A

CC−
• (Perfvstr(A)Loc)→ CC−

• (A) (3.13)

where Loc stands for the Drinfeld localization with respect to the full subcategory
of acyclic complexes.

To construct the Chern character with supports, act as above but define
Di to be the Drinfeld quotient of the DG category Perfvstr(A(Ui)) by the full
subcategory of acyclic complexes. We get a morphism

CC−
• (Perf(A)) → Č−•(M,CC−

• (Perfvstr(A)Loc)) → Č−•(M,CC−
• (A)).

From this, and from the fact that the negative cyclic complex of the localization
of PerfZ is canonically contractible outside Z, one gets easily the map (3.11).

3.5. Chern character for stacks

Now let us construct the Chern character

K•(Perf(A)) → Ȟ−•(M,CC−
• (Matrtw(A))) (3.14)

K•(PerfZ(A)) → Ȟ−•
Z (M,CC−

• (Matrtw(A))). (3.15)

First, note that the K-theory in the left-hand side can be defined as in
[TV]; one can easily deduce from [MC] and [K2], section 1, the Chern charac-
ter from K•(Perf(A)) to the homology of the complex Cone(CC−

• (Perfac(A)) →
CC−

• (Perf(A))). Here Perfac stands for the category of acyclic perfect complexes.
Compose this Chern character with the trace map of 3.4. We get a Chern

character from K•(Perf(A)) to

Ȟ−•(M,Cone(CC−
• (Perfvstr

ac (A)Loc) → CC−
• (Perfvstr(A)Loc))).

One gets the Chern characters (3.14), (3.15) easily by combining the above with
(3.13).
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3.6. The case of a gerbe

If A is a gerbe on M corresponding to a class c in H2(M,O∗
M ), then (in the C∞

case) the right-hand side of (3.14) is the cohomology of M with coefficients in the
complex of sheaves

Ω−•[[u]], udDR + u2H∧
where H is a closed three-form representing the three-class of the gerbe. In the
holomorphic case, the right-hand side of (3.14) is computed by the complex
Ω−•,•[[u]], ∂+α∧+u∂ where α is a closed (2, 1) form representing the cohomology
class ∂logc. This can be shown along the lines of [BGNT], Theorem 7.1.2.
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(C, F )-Actions in Ergodic Theory

Alexandre I. Danilenko

Abstract. This is a survey of a recent progress related to the (C, F )-construct-
ion of funny rank-one actions for locally compact groups. We exhibit a variety
of examples and counterexamples produced via the (C, F )-techniques in ev-
ery of the following categories: (i) probability preserving actions, (ii) infinite
measure preserving actions, (iii) non-singular actions (Krieger’s type III).

Mathematics Subject Classification (2000). Primary 37A15; Secondary 37A25,
37A30, 37A40.

Keywords. Ergodic transformation, mixing, rank-one action.

1. Introduction

The (C,F )-construction is a useful machinery to produce examples and coun-
terexamples in ergodic theory. It appeared in [34] and, independently, in [19] (in a
different but essentially equivalent way) as an algebraic counterpart of the classi-
cal geometric cutting-and-stacking technique. The latter has a long history but we
will not discuss it here (see [46] and references therein). The (C,F )-formalism is
convenient where the usual intuition related to ‘stacking towers’ and ‘moving levels
upwards’ does not help much. This is the case when one constructs funny rank-
one actions of general locally compact second countable (l.c.s.c.) groups without
invariant ordering or groups with torsions or groups with infinitely many genera-
tors, etc. The (C,F )-construction is well suited to study Cartesian products since
the product of two (C,F )-actions is again a (C,F )-action. The orbit structure of
(C,F )-actions is explicit: the corresponding orbit equivalence relation is a count-
able inductive limit of tail equivalence relations on infinite product spaces. This is
convenient to construct ergodic non-singular measures for these actions.

The outline of the paper is as follows. Section 2 is devoted to finite measure
preserving (C,F )-actions. It consists of three subsections. The first one describes
the (C,F )-construction. Subsection 2.2 shows how to use (C,F )-actions of aux-
iliary amenable groups to build the following counterexamples in the theory of
probability preserving Z-actions:
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• 2-fold simple mixing transformation without prime factors [34],
• 2-fold simple mixing transformation which has square roots of all orders but

no infinite square root chain [70],
• 2-fold simple mixing transformation with non-unique prime factors [28],
• mixing quasi-simple near simple transformation which is disjoint from any

simple transformation [25],
• weakly mixing rigid rank-one transformations conjugate to their composition

squares [27],
• weakly mixing rigid transformations with homogeneous spectra [23].

It is worthwhile to note here that the method of considering auxiliary Z2-actions
was used earlier by Rudolph [75] to show that the second centralizer of a Bernoulli
shift is just its powers and by Johnson and Park [61] to construct a simple map
whose centralizer is isomorphic to Z2.

In Subsection 2.3 we discuss how to produce mixing rank-one actions of the
following amenable groups:
• infinite direct sums of finite groups [24],
• countable locally normal groups [26],
• Rd1 × Zd2 [32].

Section 3 is devoted to infinite measure preserving dynamical systems. In Subsec-
tions 3.1 and 3.2 we review various examples of (C,F )-actions from [19], [22] and
[31] with ‘unusual’ – specific to infinite measure – properties of weak mixing and
multiple recurrence respectively. Subsection 3.3 contains a ‘constructive’ answer to
Krengel-Silva-Thieulen’s question concerning possible values of the Krengel’s en-
tropy for the product of two transformations one of which is finite measure preserv-
ing. Section 4 deals with non-singular (C,F )-actions. In Subsection 4.1 we recall
some concepts of non-singular ergodic theory: associated Mackey flow, AT-flow,
non-singular actions of funny rank one. In Subsection 4.2 we exhibit non-singular
counterparts of actions from Section 3 [19]. In Subsection 4.3 we discuss the weak
mixing properties of non-singular Chacon transformations with 2-cuts (i.e., with 3
copies of the n-tower in the (n+ 1)-tower and a single spacer between the second
and the third copies) [22]. In the final Section 5 we state 13 open problems which
– on our opinion – may be solved with the use of the (C,F )-construction.

The definitions, motivation and brief historical remarks will be given below
in the main text of the paper.

Acknowledgements. The author thanks V. Ryzhikov and the anonymous referee
of this paper for the useful remarks.

2. Finite measure preserving (C, F )-actions

2.1. (C,F )-construction

We introduce here the (C,F )-construction in the most general setting (cf. [34],
[19]–[32]) and review the basic properties of the (C,F )-actions.
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Let G be a unimodular l.c.s.c. amenable group. Fix a (σ-finite) left Haar
measure λG on it. Given two subsets E,F ⊂ G, by EF we mean their product,
i.e., EF = {ef | e ∈ E, f ∈ F}. The set {e−1 | e ∈ E} is denoted by E−1. If E is a
singleton, say E = {e}, then we will write eF for EF . For an element g ∈ G and
a subset E ⊂ G, we let E(g) = E ∩ (g−1E).

To define a (C,F )-action of G we need two sequences (Fn)n≥0 and (Cn)n>0

of subsets in G such that the following conditions are satisfied:

(Fn)∞n=0 is a Følner sequence in G, (2.1)

Cn is finite and #Cn > 1, (2.2)

FnCn+1 ⊂ Fn+1, (2.3)

Fnc ∩ Fnc
′ = ∅ for all c �= c′ ∈ Cn+1. (2.4)

We putXn := Fn×
∏

k>n Ck, endowXn with the standard Borel product σ-algebra
and define a Borel embedding Xn → Xn+1 by setting

(fn, cn+1, cn+2, . . . ) �→ (fncn+1, cn+2, . . . ). (2.5)

It is well defined due to (2.3) and (2.4). Then we have X1 ⊂ X2 ⊂ · · · . Hence
X :=

⋃
nXn endowed with the natural Borel σ-algebra, say B, is a standard

Borel space. Given a Borel subset A ⊂ Fn, we put

[A]n := {x ∈ X | x = (fn, cn+1, cn+2 . . . ) ∈ Xn and fn ∈ A}

and call this set an n-cylinder. It is clear that the σ-algebra B is generated by the
family of all cylinders.

Now we are going to define a ‘canonical’ measure on (X,B). Let κn stand for
the equidistribution on Cn and νn := (#C1 · · ·#Cn)−1λG � Fn on Fn. We define a
product measure μn on Xn by setting μn = νn × κn+1 × κn+2 × · · · , n ∈ N. Then
the embeddings (2.5) are all measure preserving. Hence a σ-finite measure μ on X
is well defined by the restrictions μ � Xn = μn, n ∈ N. To put it in another way,
(X,μ) = inj limn(Xn, μn). Since

μn+1(Xn+1) =
νn+1(Fn+1)
νn+1(FnCn+1)

μn(Xn) =
λG(Fn+1)

λG(Fn)#Cn+1
μn(Xn),

it follows that μ is finite if and only if

∞∏
n=0

λG(Fn+1)
λG(Fn)#Cn+1

<∞, i.e.,
∞∑

n=0

λG(Fn+1 \ (FnCn+1))
λG(Fn)#Cn+1

<∞. (2.6)

For the rest of Section 2 we will assume that (2.6) is satisfied. Moreover, we choose
(i.e., normalize) λG in such a way that μ(X) = 1.
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To construct μ-preserving action of G on (X,μ), we fix a filtration K1 ⊂
K2 ⊂ · · · of G by compact subsets. Thus

⋃∞
m=1Km = G. Given n,m ∈ N, we set

D(n)
m :=

( ⋂
k∈Km

(k−1Fn) ∩ Fn

)
×

∏
k>n

Ck ⊂ Xn and

R(n)
m :=

( ⋂
k∈Km

(kFn) ∩ Fn

)
×

∏
k>n

Ck ⊂ Xn.

It is easy to verify that D(n)
m+1 ⊂ D

(n)
m ⊂ D(n+1)

m and R(n)
m+1 ⊂ R

(n)
m ⊂ R(n+1)

m .

We define a Borel mapping Km × D(n)
m � (g, x) �→ T (n)

m,gx ∈ R(n)
m by setting for

x = (fn, cn+1, cn+2, . . . ),

T (n)
m,g(fn, cn+1, cn+2 . . . ) := (gfn, cn+1, cn+2, . . . ).

Now let Dm :=
⋃∞

n=1D
(n)
m and Rm :=

⋃∞
n=1R

(n)
m . Then a Borel mapping

Tm,g : Km ×Dm � (g, x) �→ Tm,gx ∈ Rm

is well defined by the restrictions Tm,g � D(n)
m = T (n)

m,g for g ∈ Km and n ≥ 1. It
is easy to see that Dm ⊃ Dm+1, Rm ⊃ Rm+1 and Tm,g � Dm+1 = Tm+1,g for all
m. It follows from (2.1) that μn(D(n)

m ) → 1 and μn(R(n)
m ) → 1 as n → ∞. Hence

μ(Dm) = μ(Rm) = 1 for allm ∈ N. Finally we set X̂ :=
⋂∞

m=1Dm∩
⋂∞

m=1Rm and
define a Borel mapping T : G × X̂ � (g, x) → Tgx ∈ X̂ by setting Tgx := Tm,gx

for some (and hence any) m such that g ∈ Km. It is clear that μ(X̂) = 1. Thus,
we obtain that T = (Tg)g∈G is a free Borel measure preserving action of G on a
conull subset of the standard probability space (X,B, μ). It is easy to see that T
does not depend on the choice of filtration (Km)∞m=1. Throughout the paper we
do not distinguish between two measurable sets (or mappings) which agree almost
everywhere.

Definition 2.1. T is called the (C,F )-action of G associated with (Cn, Fn)n.

We now list some basic properties of (X,μ, T ). Given Borel subsets A,B ⊂
Fn, we have

[A ∩B]n = [A]n ∩ [B]n, [A ∪B]n = [A]n ∪ [B]n,

[A]n = [ACn+1]n+1 =
⊔

c∈Cn+1

[Ac]n+1,

Tg[A]n = [gA]n if gA ⊂ Fn,

μ([A]n) = #Cn+1 · μ([Ac]n+1) for every c ∈ Cn+1,

μ([A]n) =
λG(A)
λG(Fn)

μ(Xn),

where the sign & means the union of mutually disjoint sets.
In caseG = Z, it is easy to notice a similarity between the (C,F )-construction

and the classical cutting-and-stacking construction of rank-one transformations
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[48], [86]. Indeed, Fn−1 (or, more precisely, the set of (n−1)-cylinders) corresponds
to the levels of the (n−1)-tower and Cn corresponds to the locations of the copies
of Fn−1 inside the n-th tower Fn. (The copies Fn−1c, c ∈ Cn, are disjoint by (2.4)
and they sit inside Fn by (2.3).) The remaining part of Fn, i.e., Fn \ (Fn−1Cn),
is the set of spacers in the n-th tower. Thus the (C,F )-construction may be re-
garded as a ’modified’ arithmetical counterpart of the cutting-and-stacking. It is
also worthwhile to note that the (C,F )-construction ‘respects’ Cartesian products.
Namely, the product of two (C,F )-actions (T (i)

g )g∈Gi associated with (C(i)
n , F

(i)
n )n,

i = 1, 2, is the (C,F )-action of G1×G2 associated with (C(1)
n ×C(2)

n , F
(1)
n ×F 2

n)n.
We recall now the definition of funny rank one (see [45], [46], [88]).

Definition 2.2. Let T be a measure preserving action of G on a σ-finite measure
space (X,B, μ).

(i) A Rokhlin tower or column for T is a triple (Y, f, F ), where Y ∈ B, F is a
relatively compact subset of G and f : Y → F is a measurable mapping such
that for any Borel subset H ⊂ F and an element g ∈ G with gH ⊂ F , one
has f−1(gH) = Tgf

−1(H).
(ii) We say that T is of funny rank-one if there exists a sequence of Rokhlin

towers (Yn, fn, Fn) such that limn→∞ μ(Yn) = 1 and for any subset B ∈ B,
there is a sequence of Borel subsets Hn ⊂ Fn such that

lim
n→∞

μ(B�f−1
n (Hn)) = 0.

It is easy to see that any funny rank-one action is ergodic. Each (C,F )-action
is of funny rank-one. Note that what we call funny rank-one is called rank-one by
del Junco and Yassawi in case G is discrete and countable and G �= Z [40].

2.2. Group action approach and some counterexamples in ergodic theory

Suppose we have a problem to construct an ergodic dynamical system possessing
certain dynamical properties, say (D). The idea of the group action approach to
this problem is to find an appropriate amenable group G, fix an element h ∈ G of
infinite order and to construct some special (C,F )-action V = (Vg)g∈G of G such
that the structure of G plus the properties of V enforce the transformation Vh to
possess (D). We illustrate this idea by 6 examples below. (See also [75] and [61]
for earlier examples.)

2.2.1. 2-fold simple mixing transformation without prime factors. Let T be an
ergodic invertible transformation of a standard probability space (X,B, μ). A T -
invariant sub-σ-algebra of B is called a factor of T . If {∅, X} and B are the only
factors of T then T is called prime. A 2-fold self-joining of T is a measure λ on
B ⊗B which is T × T -invariant and has both projections equal to μ. We denote
by Je

2 (T ) the space of all ergodic 2-fold self-joinings of T . C(T ) stands for the
centralizer of T , i.e., the set of invertible μ-preserving maps commuting with T .
We endow C(T ) with the weak topology [59]: Sn → S if μ(SnA�SA) → 0 for
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all A ∈ B. For S ∈ C(T ), the off-diagonal joining μS ∈ Je
2 (T ) supported on the

graph of S is given by

μS(A×B) := μ(A ∩ S−1B).

If T is weakly mixing then μ × μ is also an ergodic self-joining of T . If Je
2 (T ) ⊂

{μS | S ∈ C(T )} ∪ {μ × μ} then T is called 2-fold simple. This definition is due
to Veech [90] who proved the following result which was a starting point for the
theory of simple maps (see [37], [89], [52], [80]).

Theorem 2.3. Let T be 2-fold simple and let F be a non-trivial factor. Then there
is a compact subgroup K of C(T ) such that

F = Fix(K) := {A ∈ B | μ(A�kA) = 0 for all k ∈ K}.
If T is 2-fold simple then it is easy to see that either T has pure point

spectrum (this case may be regarded as the trivial one) or T is weakly mixing.
Many examples of weakly mixing 2-fold simple systems are constructed in [76],
[37], [38], [61] [53], [28] (see also [36], [74], [89] where the simplicity of the Chacon
map and some horocycle flows was established). All of these systems are either
themselves prime or have prime factors. This leads naturally to the question:
(Q1) Must every weakly mixing 2-fold simple map have a prime factor?

Del Junco answers this question in negative in [34] via the group action approach.
LetG = Z⊕⊕∞

i=1 Z/2Z. The special (C,F )-action V = (Vg)g∈G ofG is constructed
in such a way that the ‘time-one’ transformation V(1,0) is weakly mixing, 2-fold
simple and C(V(1,0)) = {Vh | h ∈ G}. Then by Theorem 2.3, every non-trivial
factor F of V(1,0) equals to Fix(K) for a finite subgroup K ⊂

⊕∞
i=1 Z/2Z. Hence,

for n large enough, F � Fix(
⊕n

i=1 Z/2Z). Therefore V(1,0) � F is not prime. To
construct such a V , del Junco defines the corresponding sequence (Cn+1, Fn)∞n=0

in the following inductive way. Fix a sequence εn → 0. Define recurrently two
sequences (an)∞n=0 and (ãn)∞n=0 by setting:

a0 = ã0 = 1, an+1 := ãnrn, ãn+1 := an+1 + (n+ 1)ãn,

where rn is an integer parameter to be specified below. Given a > 0, we let I[a] :=
{m ∈ Z | 0 ≤ m < a}. LetGn := {(g1, g2, . . . ) ∈

⊕∞
i=1 Z/2Z | gj = 0 for all j > n}

and Fn := I[an]×Gn. To define Cn+1, we first introduce some auxiliary notation.
Let F̃n := I[ãn]×Gn and Sn := I[nãn−1]×Gn and let φn : Z → G denote a ‘tiling’
homomorphism given by φn(i) := (iãn, 0). We now have Sn ⊂ Fn, Fn + Sn ⊂ F̃n,

Fn+1 =
⊔

h∈I[rn]

F̃n + φn(h) and Sn =
⊔

h∈I[n]

F̃n−1 + φn−1(h).

Given two finite sets A,B and a map φ : A → B, the probability 1
#A

∑
a∈A δφ(a)

on B will be denoted by dista∈Aφ(a). Given two measures κ, ρ on a finite set B,
we let ‖κ− ρ‖1 :=

∑
b∈B |κ(b)− ρ(b)|.

To define a so-called ‘random spacer map’ sn : I[rn] → Sn del Junco first
proves the following lemma.
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Lemma 2.4. If a positive integer rn is sufficiently large then there exists a map
sn : I[rn]→ Sn such that for any δ ≥ n−2rn,

‖distt∈I[δ](sn(h+ t), sn(h′ + t))− λSn × λSn‖1 < εn
whenever h �= h′ ∈ I[rn] with {h, h′} + I[δ] ⊂ I[rn], where λSn denotes the equi-
distribution on Sn.

Select now rn large so that the conclusion of Lemma 2.4 is satisfied. Take a
map sn whose existence is asserted in the lemma and finally put Cn+1 := {sn(h)+
φn(h) | h ∈ I[rn]}. It is not difficult to see that the conditions (2.1)–(2.4) and (2.6)
are satisfied for the sequence (Fn, Cn+1)n≥0. Hence the associated (C,F )-action
V of G is well defined.

Note that del Junco’s construction incorporates the Ornstein’s idea of random
spacer from [72]. Indeed, the (n+ 1)-‘tower’ Fn+1 is partitioned into rn ‘windows’
F̃n + φn(h), h ∈ I[rn]. Every window contains a copy Fn + φn(h) of the n-tower
Fn which is, in addition, ‘randomly perturbed’ by sn(h) inside the window.

Now we state the main result from [34].

Theorem 2.5. The transformation V(0,1) is weakly mixing and 2-fold simple. More-
over, C(V(0,1)) = {Vg | g ∈ G}.

2.2.2. 2-fold simple mixing transformation which has diadic roots of all orders but
no infinite square root chain. In [66] King rised a question:

(Q2) Is there a transformation T with diadic roots of all orders but no infinite
square root chain?

In [70] Madore, a student of del Junco, answers this question in positive. He
constructs a transformation T which has roots of order 2n for any n > 0 and such
that there is no action (Vh)h∈H of the group of 2-adic rationals H with V1 = T . To
achieve this he uses the group action approach. The auxiliary group G is a non-
splitting extension of the group L =

⊕∞
n=1 Z/2nZ via Z. More precisely, G = Z×L

with the following multiplication law:

(i, l) + (j,m) := (i+ j +
∞∑

n=1

[(ln +mn)/2n], l +m),

where [.] denotes the integer part and ln and mn are the n-th coordinates of l and
m respectively and we assume that 0 ≤ ln,mn < 2n. It is clear that the 2n-th
power of the element (0; 0, . . . , 0,︸ ︷︷ ︸

n−1 times

1, 0, . . . ) ∈ G is (1, 0). On the other hand, it

is obvious that H does not embed into G. Slightly modifying the argument of
del Junco from [34], Madore constructs a (C,F )-action V of G such that V(1,0) is
2-fold simple and mixing and C(V(1,0)) = {Vg | g ∈ G}. It remains to note that
every root of V(1,0) belongs to C(V(1,0)). In fact, Madore proves a more general
fact generalizing Theorem 2.5.
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Theorem 2.6. Let G be a countable Abelian group including Zd as a subgroup and
such that the quotient group G/Zd is locally finite. Let e = (1, 0, . . . , 0) ∈ Zd. Then
there exists a (C,F )-action V of G such that the transformation Ve is 2-fold simple
and mixing and C(Ve) = {Vg | g ∈ G}.

This theorem answers (Q2). Moreover, it has other applications. For instance,
it provides first examples of mixing 2-fold simple transformations whose centralizer
is Zd or Q. Non-mixing weakly mixing simple transformation T with C(T ) = Z2

has been constructed earlier in [61].

2.2.3. 2-fold simple mixing transformation with non-unique prime factors. The
first example of a 2-fold simple T with non-unique prime factors was constructed
by Glasner and Weiss [53] as an inverse limit of certain horocycle flows. Some
subtle results of M. Ratner on joinings of horocycle flows [74] play a crucial role
in [53]. We notice also that T from [53] has many non-prime factors as well. Note
that for some time it was not obvious at all whether it is possible to construct a
2-fold simple map with non-unique prime factors by means of the more elementary
cutting-and-stacking technique (see [89]). To achieve this purpose del Junco and
the author use the group action approach [28]. We consider an auxiliary amenable
group G = Z× (Z � Z/2Z) with multiplication as follows

(n,m, a)(n′,m′, a′) = (n+ n′,m+ (−1)am′, a+ a′).

Notice that G is non-Abelian. As in 2.2.1 and 2.2.1 we construct a (C,F )-action
V of G such that the transformation V(1,0,0) is 2-fold simple and has centralizer
coinciding with the full G-action. Then apply Theorem 2.3. All non-trivial finite
subgroups of G are as follows: {Gg | b ∈ Z, b �= 0}, where Gg = {(0, b, 1), (0, 0, 0)}.
Note that all of them are maximal. Hence the corresponding factors Fix(Gb) are
prime. To construct such a V we apply again Ornstein’s random spacer techniques
in the recurrent process of building an appropriate sequence (Cn+1, Fn)∞n=0. See
[28] for details. Now we state the main result of [28].

Theorem 2.7. The transformation V(1,0,0) is weakly mixing and 2-fold simple. All
non-trivial proper factors of V(1,0,0) are 2-to-1 and prime. They are as follows:
Fix(Gb), b ∈ Z \ {0}. Two factors Fix(Gb) and Fix(Gb′ ) are isomorphic if and
only if b and b′ are of the same evenness.

2.2.4. Mixing quasi-simple near simple transformation which is disjoint from any
simple transformation. Let F be a factor of an ergodic dynamical system
(X,B, μ, T ). If there exists a compact subgroup K ⊂ C(T ) such that F = Fix(K)
then T is called a compact extension of F. Each ‘intermediate’ factor E of T , i.e.,
F ⊂ E ⊂ B, is called an isometric extension of F. For instance, every finite-to-one
extension is isometric. A 2-fold simple transformation T is called simple if it is
3-fold PID, i.e., μ× μ× μ is the only T × T × T -invariant measure on X ×X ×X
whose coordinate plane projections are all (the three of them) equal to μ× μ [37]
(see also [89] and [52]). Two dynamical systems (X,BX , μ, T ) and (Y,BY , ν, S)
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are called disjoint if μ × ν is the only T × S-invariant measure on X × Y whose
marginals are μ and ν respectively [49].

An ergodic transformation T is called 2-fold quasi-simple if for each ν ∈
Je

2 (T ), either ν = μ × μ or the transformation (T × T, ν) is isometric over each
of the two marginals. A 2-fold simple transformation which is 3-fold PID is called
quasi-simple. These concepts were introduced by Ryzhikov and Thouvenot in [80]
and [85] (see also [35] for related, more general concepts of distal simplicity). The
class of quasi-simple systems contains many natural examples. For instance, a
factor of a 2-fold simple transformation is 2-fold quasi-simple. Each non-zero time
transformation of any flow with a so-called R-property is quasi-simple [89]. The
flows with R-property include the horocycle flows [74] and some smooth flows
on 2-dimensional manifolds [47]. It was shown in [89] that each non-zero time
automorphism of a horocycle flow is a factor of a simple map. In view of that
Thouvenot asks (see also [35] for an analogous question):
(Q3) Whether each quasi-simple transformation is a factor of (an isometric exten-

sion of) a simple map?

We answer this question in negative in [25] by constructing a quasi-simple
map which is disjoint from any simple transformation. Hence it is disjoint from
any isometric extension of any simple map [49]. It remains to note that disjoint
systems do not have isomorphic factors. To construct such a map we utilize the
group action approach. Let G = (

⊕∞
i=1 Z/3Z)�Z with the following multiplication

law:
(h, n)(k,m) := (h+ (−1)nk, n+m).

Notice that the center of G is {0} × 2Z. We need the concept of near simplicity
introduced in [25]. Recall that the group Aut0(X,μ) of all μ-preserving transfor-
mations is Polish when endowed with the weak topology [59]. Fix a weakly mixing
transformation T . Denote by Ξe

T the space of probability measures on Aut0(X,μ)
which are invariant and ergodic with respect to the transformation S �→ T−1ST .
Then every ξ ∈ Ξe

T determines an ergodic self-joining μξ of T by the formula

μξ(A×B) :=
∫

Aut0(X,μ)

μ(A ∩ SB) dξ(S).

If Je
2 (T ) = {μξ | ξ ∈ Ξe

T } ∪ {μ × μ} then T is called 2-fold near simple. Clearly,
a 2-fold near simple transformation is 2-fold simple if and only if Ξe

T consists of
Dirac measures only (i.e., measures supported by singletons). As was shown in
[25], the theory of near simple maps is more or less parallel to the theory of simple
maps. Below we will use the following fact: a factor of a 2-fold simple map is either
2-fold simple itself or non-2-fold near simple [25, Corollary 3.5, Proposition 3.6].
Utilizing the random spacer method once again we construct in [25, Section 6] a
(C,F )-action V of G such that the following holds.

Theorem 2.8. (i) Je
2 (V(0,1)) = {0.5(μV(g,i) +μV(−g,i)) | g ∈

⊕∞
i=1 Z/3Z}∪{μ×μ}.

(ii) V 2
(0,1) is simple.

(iii) Every non-trivial factor of V(0,1) is near simple but not 2-fold simple.
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It follows from (i) that V(0,1) is weakly mixing and 2-fold quasi-simple (and
hence quasi-simple in view of (ii)).

Corollary 2.9. V(0,1) is disjoint from any isometric (even any distal) extension of
any simple transformation.

Proof. Let S be a simple transformation. If V(0,1) and S are not disjoint then they
have a non-trivial ‘common’ factor F by [35, Proposition 7]. Since F is a factor of
S, it follows that either S � F is simple or S � F is not 2-fold near simple. However
this contradicts to Theorem 2.8(iii) because S � F is isomorphic to T(0,1) � F. �

2.2.5. Weakly mixing rigid rank-one transformations conjugate to their composi-
tion squares. We first state a well known question (see [55], [56], [54]).

(Q4) Whether there exist weakly mixing rank-one transformations T conjugate to
T 2?

Recently Ageev used Baire category argument to answer this question in
positive [10] (see also [27, Section 1] for a short simplified proof). However these
proofs are not constructive and thus no concrete example appeared in [10]. The
first explicit example answering (Q4) is constructed in [27, Section 2]. For that the
author used the group action approach. The auxiliary group under question is the
groupH of 2-adic rationals. The corresponding sequence (Cn+1, Fn) is constructed
in such a way that

(i) Fn = {2−kn , 2 · 2−kn , 3 · 2−kn , . . . , αn},
(ii) C2n = {0, α2n−1, 2α2n−1 + 1},
(iii) #(C2n+1 ∩ (C2n+1 + α2n))/#C2n+1 is ‘close’ to 1,
(iv) for any even n, there exists an enumeration (fi)

#Fn−1
i=0 of the elements of Fn

such that i+ 2−kn ≡ fi (mod αn), 0 ≤ i < #Fn.
(v) The cardinality of the subset C+

2n+1 := {c ∈ C2n+1 | 2 · F2n + 2c ⊂ F2n+1} is
0.5#C2n+1.

The parameters αn and kn are chosen in an explicit way in [27]. This is in
contrast with the procedures described in 2.2.1–2.2.4, where the parameters related
to the ‘spacer mappings’ are based on ‘random’ choice. Denote by T = (Th)h∈H

the associated (C,F )-action.

Theorem 2.10 ([27]). The transformation T1 is weakly mixing and has rank one.
Moreover, T1 is conjugate to T2.

Idea of the proof. The weak mixing of T1 can be deduced from (ii) in a rather
standard way originated from [15]. The fact that T1 has rank one follows from (iii)
and (iv). Given x = (f2n, c2n+1, c2n+2, . . . ) ∈ X , we ‘define’ Sx by setting Sx :=
(2f2n, 2c2n+1, 2c2n+2, . . . ). One can make this definition rigorous by using (v).
Then S is measure preserving transformation of X and ST1S

−1 = T2. �
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2.2.6. Weakly mixing rigid transformations with homogeneous spectra. For each
transformation S ∈ Aut0(X,μ), we denote by M(S) the set of essential values
for the multiplicity function of the unitary operator f �→ f ◦ S−1 on the Hilbert
space L2

0(X,μ) := L2(X,μ)'C. The following Rokhlin’s problem on homogeneous
spectrum was open for several decades:
(Q5) given n > 1, is there an ergodic transformation S with M(S) = {n}?
The affirmative answer to this problem was given for n = 2 in [81] and indepen-
dently in [7] by showing that M(S×S) = {2} for a generic S ∈ Aut0(X,μ). Some
concrete examples were shown to have homogeneous spectrum of multiplicity 2
in [82] and [8]. Some of these transformations are even mixing. For n > 2, Ageev
developed in [9] another approach to prove the existence of ergodic transformation
with homogeneous spectrum of multiplicity n. (See also [23, Section 1] for a simple
proof of this fact.) This approach is based on Baire category arguments and it is
not constructive.

We now present an explicit construction that appeared in [23, Section 3]. It
is based on an application of the group action approach. Fix a family e1, . . . , en of
generators for Zn. Define a ‘cyclic’ group automorphism A : Zn → Zn by setting
Ae1 := e2, . . . , Aen−1 := en and Aen := e1. Let G denote the semidirect product
Zn �A Z with the multiplication law as follows

(v,m)(w, l) := (v +Amw,m+ l), v, w ∈ Zn, m, l ∈ Z.

Then we have a natural embedding v �→ (v, 0) of Zn into G. We also let e0 :=
(0, 1) ∈ G and en+1 := en0 . Notice that G is generated by e1 and e0. Moreover,
e0eie

−1
0 = Aei for all i = 1, . . . , n. Let H be the subgroup of G generated by

e1, . . . , en+1. Then H is a free Abelian group with n + 1 generators. It is normal
in G and the quotient G/H is a cyclic group of order n. Moreover, A extends
naturally to H via the conjugation by e0. We denote this extension by the same
symbol A. We need the following auxiliary result.

Theorem 2.11 ([23]). Let (Tg)g∈G be a measure preserving action of G. If the trans-
formation Tel+1−e1 is weakly mixing for each l|n and Te0 has a simple spectrum
then Ten+1 has a homogeneous spectrum of multiplicity n.

Thus to produce an explicit transformation with homogeneous spectrum it
suffices to construct a (C,F )-action T of G satisfying the condition of Theo-
rem 2.11. This is done in [23]. The corresponding sequence (Cm+1, Fm)∞m=0 is
determined via an inductive process. Since the construction procedure is rather
involved, we will not reproduce it here (see [23, Section 3]) for details. The trans-
formation Te0 appears to be rigid and of rank one. Hence Te0 has a simple spectrum
[11].

Notice also that the explicit structure of transformations with homogeneous
spectra turned out convenient to prove the following statement [23].

Theorem 2.12. Given n > 1 and a subset M ⊂ N such that M � 1, there exists a
weakly mixing transformation T with M(T ) = n ·M .
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This extends the main results of [69] and [57], where a particular case n = 1
was under consideration.

2.3. Mixing rank-one actions of amenable groups G

Let G be a non-compact l.c.s.c. group and T = (Tg)g∈G a measure preserving
action of G on a standard probability space (X,B, μ).

Definition 2.13.

(i) T is called mixing if for all subsets A,B ∈ B we have

lim
g→∞

μ(TgA ∩B) = μ(A)μ(B).

(ii) T is called mixing of order l if for any ε > 0 and A0, . . . , Al ∈ B, there exists
a finite subset K ⊂ G such that

|μ(Tg0A0 ∩ · · · ∩ Tgl
Al)− μ(A0) · · ·μ(Al)| < ε

for each collection g0, . . . , gl ∈ G with gig−1
j /∈ K if i �= j

In this subsection we are concerned with the following problem
(Q6) To construct mixing (funny) rank-one actions for various amenable l.c.s.c.

groups.
We recall that mixing rank-one transformations (and actions of more general

groups) have been of interest in ergodic theory since 1970 when Ornstein con-
structed an example of mixing transformation without square root [72]. Since then
the dynamical properties of mixing rank-one transformations have been deeply
investigated. Such transformations are mixing of all orders and have minimal self-
joinings of all orders [63], [78], [65] (see also [84]). This implies in turn that they
are prime and have trivial centralizer [76]. These results were extended partly
to rank-one mixing actions of Rd and Zd [79], [78], [83] and some other discrete
countable Abelian groups [40]. Despite this progress, there are not many exam-
ples of rank-one mixing actions that are known. Most of them were obtained via
stochastic cutting-and-stacking techniques using “random spacers” [72], [76], [73].
Non-random explicit rank-one constructions were shown to be mixing in [3], [18]
for Z-actions and in [6] for Z2-actions. Fayad constructed a smooth mixing rank-
one R-action on the 3-torus [44]. However it is not clear yet: which other amenable
groups admit mixing rank-one actions and how to construct such actions?

2.3.1. G is an infinite sum of finite groups (method of ‘random rotation’). Let
G =

⊕∞
i=1Gi, where Gi is a non-trivial finite group for any i. If T is a funny

rank-one action of G and every subset Fn from Definition 2.2(ii) equals
⊕kn

i=1Gi

for some kn →∞ then we say that T has rank one.
In [24] we construct mixing rank-one (C,F )-actions of G. For this, we use

a modified Ornstein’s idea of random spacer [72]. However unlike the previously
known examples of (C,F )-actions, the actions in [24] are constructed without
adding any spacer. Instead of that on the n-th step we just cut the n-th ‘tower’
into ‘sub-towers’ and then rotate the sub-towers ‘in a random way’. Thus in this
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context the term ‘random rotation’ seems to be more appropriate than the ‘random
spacer’.

Before passing to the construction process we state an auxiliary lemma which
is analogous to Lemma 2.4. Given a finite set A, a finite group H and elements
h1, . . . , hl ∈ H , we denote by πh1,...,hl

the map AH → (Al)H given by

(πh1,...,hl
x)(k) = (x(h1k), . . . , x(hlk)).

Lemma 2.14. Given l ∈ N and ε > 0, there exists m ∈ N such that for any finite
group H with #H > m, one can find s ∈ AH such that

‖distπh1,...,hl
s− λl‖ < ε (2.7)

for all h1 �= h2 �= · · · �= hl ∈ H.

Suppose now that a sequence of integers 0 < k1 < k2 < · · · is given. Then we
define (Fn)n≥0 by setting F0 := {1G} and Fn :=

⊕kn

i=1Gi for n ≥ 1. We also set
H0 :=

⊕k1
i=0Gi and Hn :=

⊕kn+1
i=kn+1Gi for n ≥ 1. Suppose now that we are also

given a sequence of maps sn : Hn → Fn. Then we define cn+1, φn : Hn → Fn by
setting φn(h) := (0, h) and cn+1(h) := (sn(h), h) and put Cn+1 := cn+1(Hn). It is
easy to see that the conditions (2.1)–(2.4) and (2.6) are satisfied for (Cn+1, Fn)n≥0.
To complete the definition of (Cn+1, Fn)n≥0 it remains to choose (kn+1, sn)n≥0.
This will be done recurrently. Fix a sequence of reals εi → 0. Suppose we have
defined kn and sn−1. Then apply Lemma 2.14 with A := Fn, l := n and ε := εn to
find kn+1 large so that there exists sn ∈ AHn satisfying (2.7). Assume, in addition,
that kn grows exponentially fast. Denote by T the (C,F )-action of G associated
with (Cn+1, Fn)∞n=0.

Theorem 2.15 ([24]). T is mixing of any order.

Moreover, by perturbing sn in an appropriate way we may obtain an uncount-
able collection of pairwise non-isomorphic (even pairwise disjoint in the sense of
Furstenberg [49]) mixing rank-one actions of G.

2.3.2. G is a locally finite group (method of ‘random rotation’). A countable dis-
crete amenable group G is called locally normal if G =

⋃∞
i=1Gi for a nested

sequence G1 ⊂ G2 ⊂ · · · of normal finite subgroups of G. We call such a sequence
a filtration of G. The class of locally normal groups includes the countable direct
sums of finite groups and all Abelian torsion groups. If T is a funny rank-one action
of G and the corresponding sequence Fn from Definition 2.2(ii) forms a filtration
of G then we say that T has rank one.

Developing further the stochastic ‘random rotation’ method from [24] we
prove the following result in [26].

Theorem 2.16. There exists an uncountable family of pairwise disjoint (and hence
pairwise non-isomorphic) mixing of any orders rank-one (C,F )-actions of G.
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2.3.3. G = Rd1 × Zd2 (concrete examples with explicit ‘polynomial spacers’). In
this subsection we present the main result of [32] – explicit construction of mixing
rank-one actions of Rd1×Zd2 . Unlike the stochastic constructions presented in 2.3.1
and 2.3.2, these actions are ‘absolutely concrete’, i.e., the parameters in the con-
struction are all explicitly specified. The ‘spacer mappings’ here are polynomials
with known coefficients.

We recall that a funny rank-one action T of G is said to have rank one (or
rank-one by cubes) if there are an ∈ R such that the subsets Fn from Defini-
tion 2.2(ii) are as follows:

Fn = {(t1, . . . , td1+t2) ∈ G | 0 ≤ ti < an for all i = 1, . . . , d1 + d2}.
Let d = d1 + d2. We set H := Zd. To define a sequence sn : H � x �→ sn(x) ∈ G
of ‘spacer polynomials’ we first introduce an auxiliary concept. Fix a family of
reals ξ1, . . . , ξm. For a nonempty subset J ⊂ {1, . . . ,m}, we let ξJ :=

∏
i∈J ξi. We

also let ξ∅ := 1. If the family of reals ξJ , J runs all the subsets of {1, . . . ,m}, is
independent over Q then we say that ξ1, . . . , ξm is good.
Case 1. If d = d1 > 1, we consider a polynomial s(x) = (s(x)1, . . . , s(x)d) given
by

s(x)i := (αixi + γi)(x1 + · · ·+ xd) + βx2i + δixi, 1 ≤ i ≤ d.
Here αi, βi, γi, δi are real coefficients satisfying the following conditions: Q � αi >
0, γi ≥ 0, αi + 2β1 ≥ 0, αi + βi + γi ≥ 0 for all i and the family of reals α1 +
2β1, . . . , αd + 2βd is good. We now set sn ≡ s.
Case 2. If d = d1 = 1, i.e., G = R, we set

s(x) := αx2 + βx, s̃(x) := α̃x2 + β̃x at all x ∈ Z,

where α and α̃ are rationally independent positive reals and α+β ≥ 0, α̃+ β̃ ≥ 0.
Case 3. If d = d2, we set sn ≡ s, where the polynomial s is given by

s(x)i = xi(x1 + · · ·+ xd)− (x2i + xi)/2, i = 1, . . . , d.

Case 4. If d1 �= 0 and d2 �= 0, we let s̃n : Zd1 → Rd1 and ŝn : Zd2 → Zd2 stand for
the sequences of polynomials defined in Case 1 if d1 > 1 (or in Case 2 if d1 = 1)
and Case 3 respectively. Then we put

sn(x1, . . . , xd1+d2) := (s̃n(x1, . . . , xd1), ŝn(xd1+1, . . . , xd1+d2))

for all (x1, . . . , xd1+d2) ∈ H .
Next, for (g1, . . . , gd) ∈ G, we let ‖g‖∞ := max1≤i≤d |gi|. If gi ≥ 0 for all

i = 1, . . . , d we write g ≥ 0. Given an increasing sequence of positive integers
(rn)∞n=1, we define recurrently a real sequence (an)∞n=0 by setting

an+1 := the integer part of anrn + max
h∈Hn

‖sn(h)‖∞,

where Hn := {h ≥ 0 | ‖h‖∞ < rn}. We impose the following restrictions on the
growth of (rn)n≥1:

∞∑
n=1

rn
an
<∞ and

r2n
an
→ 0.
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Now we are ready to determine the sequence (Cn+1, Fn)∞n=0:

Fn := {g ≥ 0 | ‖g‖∞ < an}, Cn+1 := (φn + sn)(Hn),

where φn : H → G is a ‘tiling’ homomorphism given by φn(h) := anh. One can
verify that (2.1)–(2.4) and (2.6) are all satisfied. Hence the associated rank-one
(C,F )-action T of G is well defined.

Theorem 2.17 ([32]). T is mixing.

3. Infinite measure preserving (C, F )-actions

Recall that the canonical invariant measure for a (C,F )-action defined in 2.1 is
infinite if (2.6) does not hold. This is achieved easily in the examples below. When
constructing (Cn+1, Fn)n we follow a simple rule: after a set Cn has been already
determined, just take any ‘sufficiently large’ Følner set for Fn+1 (see [19], [22], [31]
for details).

3.1. Weak mixing in infinite measure spaces

Let T be an ergodic transformation of a σ-finite measure space (X,B, μ). A com-
plex number λ ∈ T is called an L∞-eigenvalue of T if there exists a measurable
function f : X → C such that f ◦T = λ◦f . It follows from the ergodicity of T that
the module of f is constant a.e. The set of all L∞-eigenvalues is called the L∞-
spectrum of T . The L∞-spectrum of T is a subgroup of T. It can be uncountable.
The concept of L∞-spectrum extends naturally to the ergodic actions of Abelian
groups H (an eigenvalue of such an action is now a character of H).

We say that T has infinite ergodic index if T × T × · · · (p times) is ergodic
for any p. T is power weak mixing if T n1×T n2×· · ·×T np is ergodic for each finite
sequence of non-zero integers n1, . . . , np.

We recall that for finite measure preserving transformations the following
properties are equivalent: (a) T has trivial L∞ (=L2)- spectrum, (b) T × T is
ergodic, (c) T has infinite ergodic index, (d) T is power weakly mixing. For infinite
measure preserving ergodic transformations we have only (d) ⇒ (c) ⇒ (b) ⇒ (a).
In [19] we prove the following theorem.

Theorem 3.1. Let G be a countable Abelian group. Given i ∈ {1, . . . , 5}, there
exists an infinite measure preserving free (C,F )-action T = {Tg}g∈G of G such
that the property (i) of the following list is satisfied:
(1) for every g ∈ G of infinite order, the transformation Tg has infinite ergodic

index,
(2) for each finite sequence g1, . . . , gn of G-elements of infinite order, the trans-

formation Tg1 × · · · × Tgn is ergodic,
(3) for each g ∈ G of infinite order, Tg has infinite ergodic index but T2g × Tg is

non-conservative,
(4) the action (Tg × Tg)g∈G is non-conservative,
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(5) T has trivial L∞-spectrum, non-ergodic Cartesian square but all k-fold Carte-
sian products conservative.

We note that the first counterexamples to (b) ⇒ (c) and (a) ⇒ (b) for
infinite measure preserving actions of Z were given in [62] and [1] respectively.
Those transformations are infinite Markov shifts. They possess ‘strong’ stochastic
properties and are quite different from our (C,F )-actions. Moreover, as it was
noticed in [4] it is impossible to construct Markov shifts satisfying the condition
(5) of Theorem 3.1. Another sort of counterexamples which are similar to our ones
appeared earlier in [4], [5], [33] and [71] for Z-actions only. Moreover, an example
of Zd-action satisfying (2) have been constructed in [71].

In connection with Theorem 3.1(3) Silva asks:

(Q7) Is there a non-power weakly mixing infinite measure preserving transfor-
mation T with infinite ergodic index and such that the Cartesian products
T n1 × · · · × T np are all conservative?

The following assertion is proved in [22]. It answers (Q7) if one takes G = Z.

Theorem 3.2. Let G∞ stand for the set of G-elements of infinite order. There
exists an infinite measure preserving (C,F )-action T of G such that the following
properties are satisfied:

(i) the transformation Tg has infinite ergodic index for every g ∈ G∞,
(ii) the transformation Tg × T2g is not ergodic for any g ∈ G,
(iii) the transformation Tg1 × · · · × Tgn is conservative for every finite sequence

g1, . . . , gn of elements from G.

3.2. Multiple recurrence of infinite measure preserving actions

Definition 3.3.

(i) Let p be a positive integer. A transformation T of a σ-finite measure space
(X,B, μ) is called p-recurrent if for every subset B ∈ B of positive measure
there exists a positive integer k such that

μ(B ∩ T−kB ∩ · · · ∩ T−kpB) > 0.

(ii) If T is p-recurrent for any p > 0, then it is called multiply recurrent.

By the Furnstenberg theorem [50], every finite measure preserving transfor-
mation is multiply recurrent. The situation is different in infinite measure (see [43],
[2], [58]). We note that only Z-actions are considered in those papers. In [31] Silva
and the author produced new examples of infinite measure preserving actions of
arbitrary countable discrete Abelian groups.

Theorem 3.4. Given p ∈ N ∪ {∞}, there exists a (C,F )-action T = (Tg)g∈G such
that the transformation Tg is p-recurrent but (if p �= ∞) not (p+ 1)-recurrent for
every g ∈ G∞.

Definition 3.3 extends naturally to actions of Abelian groups as follows.
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Definition 3.5. Let G be a countable discrete infinite Abelian group and T =
(Tg)g∈G a measure preserving action of G on a σ-finite measure space (X,B, μ).

(i) Given a positive integer p > 0, the action T is called p-recurrent if for every
subset B ∈ B of positive measure and every g1, . . . , gp ∈ G, there exists a
positive integer k such that μ(B ∩ Tkg1B ∩ · · · ∩ TkgpB) > 0.

(ii) If T is p-recurrent for any p > 0, then it is called multiply recurrent.

Clearly, T is 1-recurrent if and only if it is conservative. Every finite measure
preserving G-action is multiply recurrent [51]. However in infinite measure we
demonstrate the following

Theorem 3.6.

(i) Given p > 0, there exists a p-recurrent (C,F )-action T such that no one
transformation Tg is (p + 1)-recurrent, g ∈ G∞. (Hence T is not (p + 1)-
recurrent.)

(ii) There exists a multiply recurrent (C,F )-action.

Now let us compare Theorem 3.6(ii) with Theorem 3.4. It is easy to see that
in case G = Z, T is multiply recurrent if and only if so is T1. Moreover, T1 is
multiply recurrent if and only if so is Tn for every 0 �= n ∈ Z. Thus the multiple
recurrence is equivalent to the “individual” multiply recurrence. The same holds for
G = Q or any other group of free rank one. Hence for such groups the statements
of Theorems 3.6(ii) and 3.4 are equivalent. However this is no longer true for the
groups of higher free rank.

Theorem 3.7. If the free rank of G is more than one, then there exists a (C,F )-
action T = (Tg)g∈G which is non-2-recurrent but is individually multiply recurrent,
i.e., each transformation Tg is multiply recurrent.

Let P := {q ∈ Q[t] | q(Z) ⊂ Z and q(0) = 0}. The following refinement of the
concept of multiple recurrence was introduced in [14].

Definition 3.8. Let T be a measure preserving transformation of (X,B, μ).
(i) T is called p-polynomially recurrent if for every q1, . . . , qp ∈ P and B ∈ B of

positive measure there exists n ∈ N with

μ(B ∩ T q1(n)B ∩ · · · ∩ T qp(n)B) > 0.

(ii) If T is p-polynomially recurrent for every p ∈ N then it is called polynomially
recurrent.

In [14] it was shown that any ergodic probability preserving transformation
is polynomially recurrent. The polynomial recurrence in ‘infinite measure’ was
investigated by Silva and the author in [31].

Theorem 3.9.

(i) Given p ∈ N ∪ {∞}, there exists a p-polynomially recurrent (C,F )-transfor-
mation which (if p �= ∞) is not (p+ 1)-recurrent.
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(ii) There exists a (C,F )-transformation which is rigid (and hence multiply re-
current) but not 2-polynomially recurrent.

(iii) The subset of polynomially recurrent transformations is generic in the group
of infinite measure preserving transformations endowed with the weak topol-
ogy.

3.3. Krengel’s entropy of the product of two transformations one of which is finite
measure preserving

In [67] Krengel introduced an entropy of a conservative measure preserving trans-
formation T of an infinite σ-finite measure space (X,B, μ). If T is ergodic and A
is a subset of X with μ(A) = 1 then he put hKr(T ) := h(TA), where TA stands for
the transformation induced by T on A and h(.) denotes the Kolmogorov-Sinai en-
tropy. Notice that hKr(T ) is well defined and it does not depend on the particular
choice of A. In [67] Krengel rose a question (see also [87]):

(Q8) Given an ergodic probability preserving transformation S with h(S) = 0,
what is the value of hKr(T × S) if hKr(T ) = 0? In particular, whether it is
possible to have hKr(T × S) =∞?

In [30] Rudolph and the present author develop a conditional entropy theory
for infinite measure preserving dynamical systems with respect to a σ-finite factor.
Notice that T can be considered as a σ-finite factor of T × S. It is not difficult to
show that hKr(T × S) = 0 whenever S is distal (see [67] and [87] for particular
cases when T has pure point spectrum). A ‘converse’ statement to that is one of
the main results in [30]:

Theorem 3.10. If h(S) = 0 but S is not distal then there is a rank-one transfor-
mation T with hKr(T ) = 0 but hKr(T × S) = +∞.

This rank-one transformation T is produced via the (C,F )-construction. The
key ingredients of the proof of Theorem 3.10 are: recent results of Begun and
del Junco on the existence of finite partitions with independent iterates [12], [13]
and the relative orbit equivalence of the conditional entropy in the space with in-
finite invariant measure. The latter extends the framework of the orbital approach
to the entropy theory initiated at [77] and developed further in [20] and [29] for
finite measure preserving dynamical systems. Silva informed the present author
that he with Thieullen had proved Theorem 3.10 independently of (and earlier
than) [30]. As far as we know, no written version of their work is available yet.

4. Non-singular (C, F )-actions of Abelian groups

4.1. Associated flows, AT-flows and non-singular actions of funny rank one

Let G be a countable discrete amenable group and let V = (Vg)g∈G be an ergodic
non-singular action of G on a σ-finite measure space (X,B, μ). We define a non-
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singular action Ṽ = (Ṽg)g∈G of G on the product space (X ×R, μ× λ) by setting

Ṽg(x, t) = (Vgx, t− log
dμ ◦ Vg

dμ
(x)),

where λ is a probability measure on R equivalent to Lebesgue measure. Notice
that Ṽ commutes with the R-action on X × R by translations along the second
coordinate. Hence the restriction of the latter action to the σ-algebra of Ṽ -invariant
subsets is well defined. It is called the Mackey flow associated to V . Denote it by
W = (Wt)t∈R. It is non-singular and ergodic. Hence one of the following has place:
• W is transitive and free,
• W is transitive but non-free. The stabilizer of W is (log λ)Z for some λ ∈

(0, 1),
• W is trivial (on a singleton),
• W is free and non-transitive.

V is said to be of (Krieger’s) type II, IIIλ, III1, III0 respectively. We note that
V is of type II if and only if there exists a V -invariant measure μ′ equivalent to
μ. The V -invariant measure in the class of μ is unique up to scaling. If it is finite
then V is said to be of type II1, otherwise V is said to be of type II∞.

An action V ′ of another amenable group G′ on (X ′,B′, μ′) is called orbit
equivalent to V if there is a non-singular isomorphism S ofX ′ ontoX with S{V ′

g′x′ |
g′ ∈ G′} = {VgSx

′ | g ∈ G} for a.a. x′ ∈ X ′. We now state a fundamental result
about the orbit equivalence of amenable actions.

Theorem 4.1. Two ergodic actions V and V ′ are orbit equivalent if and only if one
of the following is fulfilled:

(i) they are both of type II1,
(ii) they are both of type II∞,
(iii) they are both of type III and the flows associated to them are conjugate.

We note that originally particular cases of this theorem were established by
H. Dye [42] (finite measure preserving Abelian actions) and Krieger [68] (non-
singular Z-actions). Later that was extended to general amenable actions in [16].

Definition 4.2. A non-singular flow {Wt}t∈R on a standard measure space (X,μ) is
called approximately transitive (AT) if given ε > 0 and finitely many non-negative
functions f1, . . . , fn ∈ L1

+(X,μ) there exists a function f ∈ L1
+(X,μ) and reals

t1, . . . , tn such that∣∣∣∣∣
∣∣∣∣∣fi −

m∑
k=1

aikf ◦Wtk
· dμ ◦Wtk

dμ

∣∣∣∣∣
∣∣∣∣∣
1

< ε, i = 1, . . . , n,

where aik, i = 1, . . . , n, j = 1, . . . ,m, are some non-negative reals.

Let (X,μ) =
⊗∞

n=1({0, 1, . . . ,mk − 1}, μn), where μn is a non-degenerated
distribution on {0, 1, . . . ,mk−1}. We assume that μ is non-atomic. Let T : X → X
be the ‘adding machine’, i.e., Tx := x + (1, 0, 0, . . . ) coordinatewise with ‘carry’.
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Then T is μ-non-singular and ergodic. It is called an odometer (corresponding to
the sequence (μn)∞n=1). The following statement is due to Connes and Woods [17].

Theorem 4.3. The Mackey flow associated to an odometer is AT. Conversely, for
every AT-flow W there is an odometer whose associated flow is conjugate to W .

The following definition extends Definition 2.2 to non-singular actions.

Definition 4.4. A non-singular action S of G on a σ-finite Lebesgue space (Y,A, ν)
has funny rank one if there is a sequence (Yn)∞n=1 of measurable subsets of Y and
a Følner sequence (Fn)∞n=1 in G such that

(i) the subsets SgYn, g ∈ Fn, are pairwise disjoint for each n > 0,
(ii) given A ∈ A of finite measure, then infP⊂Fn ν(A�

⋃
g∈P SgYn) → 0 as n →

∞,
(iii)

∑
g∈Fn

inf
r∈R

∫
SgYn

|dν◦g
dν − r|dν → 0 as n→∞.

4.2. Weak mixing for non-singular (C,F )-actions

Let a sequence (Cn+1, Fn)∞n=0 of finite subsets in G satisfy (2.1)–(2.4) and F0 =
{0}. If we assume that

for each g ∈ G, there is N with gFjCj+1 ⊂ Fj+1 for all j > N (4.1)

then D(n+1)
m ⊃ Xn eventually in n for any m. It follows that Dm = Rm = X̂ =

X for all m (we utilize the notation from Subsection 2.1). This means that the
associated (C,F )-action T of G is defined everywhere on X . Two points x =
(xj)j≥n, y = (yj)j≥n ∈ Xn belong to the same orbit of T if and only if xj = yj for
all sufficiently large j.

Given a sequence (κn)∞n=1 of non-degenerated distributions on Cn such that⊗∞
n=1 κn is non-atomic, one can construct inductively a sequence (τn)∞n=0 of mea-

sures on (Fn)∞n=0 such that

τ0(0) = 1 and τn(fc) = τn−1(f)κn(c) for all f ∈ Fn−1, c ∈ Cn. (4.2)

We furnish Xn = Fn ×
∏

k>n Ck with the product measure μn := τn ⊗
⊗

k>n κk.
Clearly, μn = μn+1 � Xn. Hence an inductive limit μ of (μn)∞n=1 is well defined.
Clearly, μ is a σ-finite measure on X . We call it a (C,F, κ)-measure. Notice that
the equivalence class of μ is determined completely by (κn)n>0 (it does not depend
on a particular choice of (τn)n>0). One can verify that T is μ-non-singular and

dμ ◦ Tg

dμ
(x) =

τn(yn)
τn(xn)

·
∏
k>n

κk(yn)
κk(xn)

,

whenever x = (xk)k≥n and Tgx = (yk)k≥n belong to Xn. Moreover, the dynamical
system (X,μ, T ) has funny rank one.

We now record a non-singular counterpart of Theorem 3.1. (In a similar way
one can obtain non-singular counterparts of the other theorems of Section 3.)
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Theorem 4.5 ([19]). Let G be Abelian and let W be an AT-flow (see Definition 4.2).
Given i ∈ {1, . . . , 5}, there is a non-singular funny rank-one (C,F )-action T of
G such that the associated flow of T is W and the property (i) of Theorem 3.1 is
satisfied.

We note that some very particular cases of Theorem 4.5 were established
earlier in [4], [5] and [71] (under assumptions that G = Z, T is of type IIIλ and
0 < λ ≤ 1).

4.3. Non-singular Chacon transformations

In the rest of the paper let G = Z. We are going to distinguish a special subclass
of non-singular (C,F )-actions of Z. To this end we define a sequence (hn)∞n=1 of
positive integers recurrently by setting h1 := 1, hn+1 := 3hn + 1. It is easy to see
that the sequences of sets Fn−1 := {0, 1, . . . , hn − 1} and Cn := {0, hn, 2hn + 1}
satisfy (2.1)–(2.4) but does not satisfy (4.1). Nevertheless it is not difficult to verify
that the domain of the corresponding (C,F )-action is X̂ = X \D, where

D :=
⋃
n≥0

{x = (xk)k≥n ∈ Xn | either xk = 0 eventually

or xk = 2hk + 1 eventually}.
Next, given a sequence (κ′n)∞n=1 of non-degenerated distributions on {0, 1, 2}

with non-atomic product
⊗∞

n=1 κ
′
n, we define measures κn on Cn as follows:

κn(0) := κ′n(0), κn(hn) := κ′n(1) and κn(2hn + 1) := κ′n(2). Now take any se-
quence τn of measures on Fn satisfying (4.2) and denote by μ the corresponding
(C,F, κ)-measure.

Definition 4.6. The corresponding dynamical system (X,μ,T ), or simply T1, is
called the non-singular 2-cuts Chacon transformation associated with (Cn,Fn,κn)n.
We call T
• symmetric if κ′n(0) = κ′n(2),
• stationary if κ′1 = κ′2 = · · · ,
• κ-weakly stationary for a distribution κ on {0, 1, 2} if for each n > 0 there

exists m > n with κ′m = · · · = κ′n+m = κ.

Since μ is non-atomic and D is countable, T is well defined on the μ-conull
subset X̂.

The main theorem of [60] states that every λ-weakly stationary symmetric
non-singular Chacon transformation has ergodic Cartesian square, where λ is the
equi-distribution on {0, 1, 2}. A stronger result was obtained in [5] for stationary
symmetric Chacon transformations. It was shown that they are power weakly
mixing. However, as was noticed by the authors of [5], their methods do not work
with the transformations considered in [60]. They raised the following question:
(Q9) Whether the weakly stationary symmetric Chacon transformations have in-

finite ergodic index?
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We answer this question affirmatively in [22] by demonstrating

Theorem 4.7. Each weakly stationary non-singular Chacon transformation with
2-cuts is power weakly mixing.

5. Concluding remarks. Open problems

In these short notes we were unable to enlighten topological aspects of the (C,F )-
construction. It appears that in many natural cases the (C,F )-actions appear as
minimal uniquely ergodic actions on totally disconnected locally compact (or even
compact) spaces. Moreover, while proving some ‘measurable’ statements for the
(C,F )-actions we often obtain as a byproduct their topological counterparts. For
this, we just need to replace the terms “ergodic index”, “measurable recurrence”,
etc. with “index of topological transitivity”, “topological recurrence”, etc. See [19],
[31], [22], [24], [26] for details.

We note also that the (C,F )-construction was utilized in the theory of topo-
logical orbit equivalence of locally compact minimal Cantor systems as a tool for
constructing natural illustrative examples [21].

We conclude this paper by recording a list of open problems and questions
which – as we believe – may be solved or answered with the use of the (C,F )-
construction.

(P1) To construct a simple transformation whose centralizer is a Heizenberg group
(of some order).

(P2) (Glasner, del Junco) To construct a simple Z2-action T = (Tg)g∈Z2 which is
isomorphic to (TAg)g∈Z2 , where A is an aperiodic automorphism of Z2.

(P3) To construct a mixing rank-one action for each countable FC-group (i.e., a
group with the finite conjugacy classes).

(P4) To construct an explicit (non-random) example of mixing rank-one action of⊕∞
i=0 Z/2Z.

(P5) To construct non-mixing weakly mixing (or even mildly mixing) counterparts
of the transformations discussed in 2.2.1–2.2.4.

(P6) (Ward) Is there a rank-one non-mixing Z2-action T = (Tg)g∈Z2 such that
every transformation Tg, g �= 0, is mixing?

(P7) (Katok) Is there an ergodic transformation T such that M(T ) = {2, 5}?
(P8) For n > 2, to construct a mixing transformation with homogeneous spectrum

of multiplicity n.
(P9) (Ryzhikov) For n > 1, to construct an ergodic R-action with homogeneous

spectrum of multiplicity n.
(P10) (Bergelson) Is there an infinite measure preserving transformation T with

infinite ergodic index but such that T × T−1 is not ergodic?
(P11) (Silva) To construct a rank-one infinite measure preserving action T =

(Tg)g∈R2 of R2 such that the transformation Tg has infinite ergodic index
for each g �= 0.
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(P12) To remove the restriction that W is AT from the statement of Theorem 4.5.
We think that the main result of [41] (that any ergodic non-singular trans-
formation is orbit equivalent to a non-singular Markov odometer) may help
to solve this problem.

(P13) Whether the results of del Junco and Silva [39] on the centralizer and factors
of Cartesian products of some special non-singular Chacon transformations
extend to the weakly stationary non-singular Chacon transformations?
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c© 2007 Birkhäuser Verlag Basel/Switzerland

Homomorphic Images of Branch Groups, and
Serre’s Property (FA)

Thomas Delzant and Rostislav Grigorchuk

Dedicated to the memory of Sasha Reznikov
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Introduction

The study of groups acting on trees is a central subject in geometric group the-
ory. The Bass-Serre theory establishes a dictionary between the geometric study
of groups acting on trees and the algebraic study of amalgams and HNN ex-
tensions. A central topic of investigation is the fixed point property for groups
acting on trees, introduced by J.-P. Serre in his book as the property (FA)[Ser80].
A fundamental result due to Tits states that a group without a free subgroup
on two generators which acts on a tree by automorphisms fixes either a vertex
or a point on the boundary or permutes a pair of points on the boundary; see
[Tit77, PV91]. The group SL(3,Z), and more generally, groups with Kazdhan’s
property (T), in particular lattices in higher rank Lie groups have the property
(FA) ([dlHV89, Mar91]). A natural problem is to understand the structure of the
class of (FA)-groups (the class of groups having the property (FA)). There is an
algebraic characterization of enumerable (FA)-groups, due to J.-P. Serre. ([Ser80],
Theorem I.6.15, page 81).

An enumerable group has the property (FA) if and only if it satisfies the
following three conditions:

Partially supported by NSF grants DMS-0600975 and DMS-0456185.
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(i) it is not an amalgam,
(ii) it is not indicable (i.e., admits no epimorphism onto Z),
(iii) it is finitely generated.
But even such a nice result does not clarify the structure of the class of (FA)-
groups, as the first of these properties is usually difficult to check.

The class of (FA)-groups contains the class of finite groups and is closed
under quotients. As every infinite finitely generated group surjects onto a just-
infinite group (i.e., an infinite group with all proper quotients finite) a natural
problem is to describe just infinite (FA)-groups.

In [Gri00] (by using [Wil71]) the class (JINF) of just infinite groups is divided
in three subclasses: the class (B) of branch groups, the class (HJINF) of finite
extensions of finite powers of hereditary just infinite groups and the class (S) of
finite extensions of finite powers of simple groups. For example, the group SL(3,Z)
belongs to the class (JINF); all infinite finitely generated simple torsion groups
constructed in [Ol′79] are (FA)-groups and belong to the class (S).

A precise definition of a branch group is given in Section 1. Roughly speak-
ing a branch group is a group which acts faithfully and level transitively on a
spherically homogeneous rooted tree, and for which the structure of the lattice of
subnormal subgroups mimics the structure of the tree. Branch groups may enjoy
unusual properties. Among them one can find finitely generated infinite torsion
groups, groups of intermediate growth, amenable but not elementary amenable
groups and other surprising objects. Profinite branch groups are also related to
Galois theory and other topics in Number Theory [Bos00].

In this article we discuss fixed point properties for actions of branch groups on
Gromov hyperbolic spaces, in particular on R-trees, and apply Bass-Serre theory
to branch groups. Recall (see [Ser80]) that a group G is an amalgam (resp. an HNN
extension) if it can be written as a free product with amalgamation G = A ∗C B,
with C �= A,B (resp. G = A∗tCt−1=C′). We say that this amalgam (resp. HNN
extension) is strict if the index of C in A is at least 3 and the index of C in B is
at least 2 (resp. the indexes of C and C′ in A are at least 2).

One of the corollaries of Theorem 3 is:

Theorem 1. Let G be a finitely generated branch group. Then G is not a strict
amalgam or HNN. Therefore a branch group cannot be an amalgam unless it sur-
jects onto ∞. It has Serre’s property (FA) if and only if it is not indicable and
has no epimorphism onto ∞.

We say that a group is (FL) if it has no epimorphism onto Z or ∞. A f.g.
group is (FL) if and only if it fixes a point whenever it acts isometrically on a line.

All proper quotients of branch groups are virtually abelian [Gri00]. A quotient
of a branch group may be infinite: the full automorphism group of the binary rooted
tree is a branch group and its abelianization is the infinite cartesian product of
copies of a group of order two. It is more difficult to construct examples of finitely
generated branch groups with infinite quotients (especially in the restricted setting
of self-similar groups). The corresponding question was open since 1997 when the
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second author introduced the notion of a branch group. Perhaps the main difficulty
was psychological, as he (and some other researches working in the area) was sure
that all finitely generated branch groups are just infinite. Now we know that this
is not correct and the second part of the paper (Section 3) is devoted to the
construction of an example of an indicable finitely generated branch group (thus
providing an example of a finitely generated branch group without the property
(FA)). This example is the first example of a finitely generated branch group
defined by a finite automaton that is not just infinite. Another example is related
to Hanoi Towers group on 3 pegs H (introduced in [GŠ06] and independently
in [Nek05]). Hanoi Towers group H is a 3-generated branch group [GŠ07] that has
a subgroup of index 4 (the Apollonian group) which is also a branch group and is
indicable (this is announced in[GNŠ06]). The groupH itself is not indicable (it has
finite abelianization), but it surjects onto ∞, as was recently observed by Zoran
Šunić. Thus H is the first example of a finitely generated branch group defined by
a finite automaton that surjects onto ∞.

The example of an indicable branch group presented in this paper is an
elaboration of the 3-generated torsion 2-group G = 〈a, b, c, d〉 firstly constructed
in [Gri80a] and later studied in [Gri89, GM93, Gri98a, Gri99] and other papers
(see also the Chapter VIII of the book [dlH00] and the article [CSMS01].

Let L be the group generated by the automaton defined in Figure 1.

Theorem 2. The group L is a branch contracting group that surjects onto Z.

Starting from this example, a construction of a branch group surjecting onto
∞ has been proposed by Dan Segal. Let L be an indicable branch group and
l : L → an epimorphism. It is easy to see that the semi-direct product H =
/2 � (L × L) is branch. Furthermore, its surjects onto ∞ = /2 � by

the unique morphism l′ whose restriction to /2 is the identity and such that
l′(g, h) = l(g)− l(h).

An interesting question is to understand which virtually abelian group can be
realized as a quotient of a finitely generated branch group. This question is closely
related to the problem of characterization of finitely generated branch groups hav-
ing the Furstenberg-Tychonoff fixed ray property (FT) [Gri98b]) (existence of an
invariant ray for actions on a convex cone with compact base). The problem of
indicability of branch groups is also related to the recent work of D.W. Morris [Mo]
who studied the action of an amenable group by homemorphisms on the line.

Acknowledgments. The authors are thankful to Zoran Šunić and Laurent Barthol-
di for valuable discussions, comments, and suggestions.

1. Basic definitions and some notation

Let T be a tree, G be a group acting on T (without inversion of edges) and TG

the the set of fixed vertices of T .
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Definition 1. A group G has the property (FA) if for every simplicial tree T on
which G acts simplicially and without inversion, TG �= ∅.

The class of (FA)-groups possesses the following properties.
(i) The class of (FA)-groups is closed under taking quotients.
(ii) Let G be a group with the property (FA). If G is a subgroup of an amal-

gamated free product G1 ∗A G2 or an HNN extension G = G1∗A, then G is
contained in a conjugate of G1 or G2.

(iii) The class of (FA)-groups is closed under forming extensions.
(iv) If a subgroup of finite index in a group G has the property (FA), then the

group G itself has the property (FA).
(v) Every finitely generated torsion group has the property (FA).

The class of (FA)-groups has certain nice structural properties and is inter-
esting because of the strong embedding property given by (ii) and by the fact that
the eigenvalues of matrices in the image of a linear representation ρ : G→ GL2(k)
are integral over Z for any field k (Prop. 22, [Ser80]).

The property (i), the existence of just infinite quotients for finitely generated
infinite groups and the trichotomy from [Gri00] mentioned in the introduction
make the problem of classification of finitely generated just infinite (FA)-groups
worthwhile. We are reduced to the classification of finitely generated (FA)-groups
in each of the classes (B), (HJINF) and (S). Below we solve this problem, in a
certain sense, for the class (B).

If a group G has a quotient isomorphic to Z, then it acts by translations on a
line and cannot be an (FA)-group. Similarly, if G surjects onto the infinite dihedral
group ∞, then it acts on the line via the obvious action of ∞. This suggests
the following definition (the first part being folklore):

Definition 2. a) A group is called indicable if it admits an epimorphism onto Z.
b) A group has property (FL) (fixed point on line) if every action of G by

isometry on a line fixes a point. If G is finitely generated this means that G
has no epimorphism onto Z or ∞.

In this article we will often use two other notions: the notion of a hyperbolic
space and that of a branch group.

For the definition and the basic properties of Gromov hyperbolic spaces we
refer the reader to [CDP90]. The theory of CAT(0)-spaces is described in [BH99].
For the definition and the study of basic properties of branch groups we refer the
reader to [Gri00, BGŠ03].

Let us recall the main definition and a few important facts and notations
that will be often used later.

Definition 3. A group G is an algebraically branch group if there exists a sequence
of integers k = {kn}∞n=0 and two decreasing sequences of subgroups {Rn}∞n=0 and
{Vn}∞n=0 of G such that
(1) kn ≥ 2, for all n > 0, k0 = 1,
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(2) for all n,

Rn = V (1)
n × V (2)

n × · · · × V (k0k1...kn)
n , (1.1)

where each V (j)
n is an isomorphic copy of Vn,

(3) for all n, the product decomposition (1.1) of Rn+1 is a refinement of the
corresponding decomposition of Rn in the sense that the j-th factor V (j)

n of
Rn, j = 1, . . . , k0k1 . . . kn contains the j-th block of kn+1 consecutive factors

V
((j−1)kn+1+1)
n+1 × · · · × V (jkn+1)

n+1

of Rn+1,
(4) for all n, the groups Rn are normal in G and

∞⋂
n=0

Rn = 1,

(5) for all n, the conjugation action of G on Rn permutes transitively the factors
in (1.1),
and

(6) for all n, the index [G : Rn] is finite.

A group G is a weakly algebraically branch group if there exists a sequence of
integers k = {kn}∞n=0 and two decreasing sequences of subgroups {Rn}∞n=0 and
{Vn}∞n=0 of G satisfying the conditions (1)–(5).

There is a geometric counterpart of this definition.
Let (T , ∅) be a spherically homogeneous rooted tree, where ∅ is the root and

G be a group acting on (T , ∅) by automorphisms preserving the root. Let v be
a vertex, and Tv be the subtree consisting of the vertices w such that v ∈ [w, ∅]
(geodesic segment joining w with the root). The rigid stabilizer ristG(v) of a vertex
v consists of elements acting trivially on T \Tv. The rigid stabilizer of the n-th level,
denoted ristG(n), is the group generated by the rigid stabilizers of the vertices on
level n.

The action of G on T is called geometrically branch if it is faithfull, level
transitive, and if, for any n, the rigid stabilizer ristG(n) of n−th level of the tree
has finite index in G.

Observe that, in the level transitive case, the rigid stabilizers of the vertices of
the same level are conjugate in G. In this case ristG(n) is algebraically isomorphic
to the product of copies of the same group (namely the rigid stabilizer of any vertex
on the given level). Hence the rigid stabilizers of the levels and vertices play the
role of the subgroups Rn and Vn of the algebraic definition. A geometrically branch
group is therefore algebraically branch. The algebraic definition is slightly more
general than the geometric one but at the moment it is not completely clear how
big the difference between the two classes of groups is. Observe that in Section
2 we will assume that the considered groups are algebraically branch, while in
sections 3 and 4 we construct examples of geometrically branch groups.
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When constructing these examples, we will deal only with actions on a rooted
binary tree and our notation and the definition below are adapted exactly for this
case. Let G be a branch group acting on a binary rooted tree T . The vertices of T
are labeled by finite sequences of 0 and 1. Let T0, T1 be the two subtrees consisting
of the vertices starting with 0 or 1, respectively.

Notation. If A,B,C ⊂ Aut(T ) are three subgroups, we write A ( B × C if A
contains the subgroup B ×C of the product Aut(T0)×Aut(T1) via the canonical
identification of Aut(T ) with Aut(Ti).

Recall that a level transitive group G acting on a regular rooted binary tree
is called regular branch over its normal subgroup H if H has finite index in G,
H ( H ×H and if moreover the last inclusion is of finite index.

A level transitive group G is called weakly regular branch over a subgroup H
if H is nontrivial and H ( H ×H .

Definition 4. A group G acting on the rooted binary tree (T , ∅) is called self-
replicating if, for every vertex u, the image of the stabilizer stG(u) of u in Aut(Tu)
(the automorphism group of the rooted tree Tu) coincides with the group G after
the canonical identification of T with Tu.

Obviously a self-replicating group is level transitive if and only if it is tran-
sitive on the first level (see also Lemma A in [Gri00]).

We will use the notations 〈R〉G for the normal closure in G of a subset R ⊂ G,
xy = y−1xy, [x, y] = x−1y−1xy. Given two subgroups, A,B in a group G, [A,B]
is the subgroup of G generated by the commutators [a, b] of elements in A and B,
and [A,B, ]G its normal closure. If G is a group, γ3(G) denote the third member of
its lower central series.

2. Fixed point properties of branch groups

Let X be a Gromov hyperbolic metric space, and ∂X its Gromov’s boundary.
Recall (see [Gro87] or [CDP90] Chap. 9 for instance) that a subgroup G of the
group Isom(X) of isometries of X is called elliptic if it has a bounded orbit (or
equivalently if every orbit is bounded), parabolic if it has a unique fixed point
on ∂X but is not elliptic, and loxodromic if it is not elliptic and if there exists a
pair w+, w− of points in ∂X preserved by G. A group which is either elliptic, or
parabolic or loxodromic is called elementary; this terminology is inspired by the
theory of Kleinian groups. There are no constraints on the algebraic structure of
elementary groups due to the following remark.

Remark. Every f.g. group G can be realized as a parabolic group of isometries
of some proper geodesic hyperbolic space: if C is the Cayley graph of G, C ×
admits aG-invariant hyperbolic metric ( [Gro87], 1.8.A, note that this construction
is equivariant). One can also construct a finitely generated group acting on a tree
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with a unique fixed point at infinity. For instance the lamplighter group (semi-
direct product of and 2[t, t−1]) fixes a unique point in the boundary of the
tree of GL2( 2[t−1, t]). In fact, the lamplighter group can indentify with upper
triangular matrices with one eigenvalue equal to 1, the other being tn. As all these
matrices have a common eigenspace, they fix one point in the boundary of the
tree of GL2 (the projective line on 2[t, t−1]]); but this group contains the Jordan
matrix and therefore cannot fix two points in the boundary of this tree.

In what follows, X denotes a complete Gromov hyperbolic geodesic space.
We will assume that either X is proper (closed balls are compact) or that X
is a complete -tree, i.e., a complete 0-hyperbolic geodesic metric space. In the
first case, X ∪ ∂X is a compact set (in the natural topology) and an unbounded
sequence of points in X admits a subsequence which converges to a point in ∂X .
Important examples of such spaces are Cayley graphs of hyperbolic groups (see
[Gro87] for instance). Other examples are universal covers of compact manifolds
of non positive curvature. Note that properness implies completness for a metric
space, but the converse is false. Recall also that a geodesic space is proper if and
only if it is complete and locally compact [Gro99]. The Gromov hyperbolicity of
a geodesic space can be defined in several ways (thineness of geodesic triangles,
properties of the Gromov product etc.) which are equivalent (see [CDP90] Chap. 1);
we will prefer the definition in terms of the Gromov product ( [CDP90] Chap. 1,
Def. 1.1).

For the rest of the statements in this section we will assume that the following
condition on the pair (X,G) holds:

(C) X is a complete geodesic space and X is either proper hyperbolic or is an
-tree. G is a group and ϕ : G → Isom(X) is an isometric action of G on
X .

Note that such an action extends uniquely to a continuous action on X ∪ ∂X .

Theorem 3. Let G be a branch group acting isometrically on a hyperbolic space X.
Suppose the pair (X,G) satisfies the condition (C). Then:

a) The image of G in Isom(X) is elementary.
b) Suppose furthermore that G satisfies the property (FL), and X is a hyperbolic

graph with uniformly bounded valence of vertices. Then ϕ(G) is elliptic or
parabolic.

c) If X is CAT(0) and if the group ϕ(G) is elliptic, then it has a fixed point in
X.

d) If X is CAT(−1), or is an -tree, then ϕ(G) fixes a point in X or in ∂X,
or preserves a line in X.

e) Let X be an -tree. Suppose further that G is f.g.; then G cannot be parabolic.

Corollary 1. Let G be a f.g. branch group. G has fixed point property for actions
on -trees if and only if it has property (FL).
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Proof. A tree is CAT (−1), so if G acts on a tree and does not fix a point, it must
either preserve a line or a unique point on ∂X . The last possibility is excluded
by e). �

From d) we also deduce:

Corollary 2. If X is CAT (−1) and G acts on X ∪ ∂X by isometries, then G fixes
a point or contains a subgroup of index 2 which fixes two points in ∂X.

Recall (see [Ser80]) that a group G is an amalgam (resp. an HNN extension) if
it can be written as a free product with amalgamation G = A∗CB, with C �= A,B
(resp. G = A∗tCt−1=C′). We say that this amalgam (resp. HNN extension) is strict
if the index of C in A is at least 3 and the index of C in B is at least 2 (resp.
the indexes of C and C′ in A are at least 2). If G splits as an amalgam or HNN
extension, then G acts on a simplicial tree T without edge inversion s.t. T/G has
one edge and 2 vertices in the case of an amalgam, and one edge and one vertex in
the case of an HNN extension. It is easy too see that if a group is a strict amalgam
or HNN extension its action on Serre’s tree is not elementary. If G = A ∗C B with
C of index 2 in A and B Serre’s tree is a line, and G permutes the two ends of
this line. If G = A∗tCt−1=C′ and C = C′ = A, Serre’s tree is a line and G fixes
the two ends of this line. If G = A∗tCt−1=C′ is a strictly ascending HNN extension
(C′ = A, but C �= A), the group G contains a hyperbolic element (the letter t
for instance) and fixes exactly one end of the the tree. Therefore the property e)
implies the following:

Corollary 3. Let G be a f.g. branch group. Then G is neither a strict amalgam nor
a strict HNN extension nor a strictly ascending HNN extension.

Before proving Theorem 3 let us state and prove some statements that have
independent interest and will be used later.

Recall that an isometry f of a hyperbolic space X is called elliptic (resp. par-
abolic, resp. hyperbolic) if the subgroup generated byf is elliptic (resp. parabolic,
resp. loxodromic). It can be proved (see [CDP90], chap. 9) that an isometry is
either elliptic, or parabolic or hyperbolic, and that if X is an −tree an isometry
cannot be parabolic. An elliptic group cannot contain a hyperbolic or a parabolic
element, a loxodromic group cannot contain a parabolic element. In order to sim-
plify the notation, if φ : G→ Isom(X) is an action of the group G, we denote by
gx the image of x under the isometry φ(g).

Proposition 1. Let the pair (X,G) satisfy (C). Assume that each element of G is
either elliptic or parabolic. Then G is either elliptic or parabolic; if X is an -tree,
and G is finitely generated, then G is elliptic.

The proof of this proposition is of dynamical nature and based on the follow-
ing

Lemma 1. ([CDP90], Chap. 9, Lemma 2). Let X be a δ-hyperbolic space. Let g, h
be two elliptic or parabolic isometries of X. Suppose that min(d(gx, x), d(hx, x)) �
2〈gx, hx〉x + 6δ. Then g−1h is hyperbolic.
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Recall that the Gromov product 〈x, y〉z is defined as 1/2(d(x, z) + d(y, z)−
d(x, y))

Proof of Proposition 1. Let us first consider the case where X is an -tree, which
we denote by T , and G is finitely generated. Recall that the projection of a point
x in a CAT (0) space onto a complete convex subset Y is the unique closest point
to x in Y (see [BH99], page 176). We claim that in an -tree T , if g is some
elliptic isometry, and T g the subtree of fixed points of g, then for every x the
midpoint of the segment [x, gx] is the projection of x on T g: indeed let p be this
projection, so that the image of the segment [x, p] is [gx, p]; if the Gromov product
〈x, gx〉p = d is strictly positive, we can consider the point q ∈ [p, x] s.t. d(p, q) = d;
it is fixed by g as it belongs to [p, x] and it is the unique point on this segment with
d(q, p) = d, but q is closer than p to x, contradiction. Thus 〈x, gx〉p = 0, and as the
two segments [x, p] and [gx, p] = g[x, p] have the same length, p is the midpoint of
[x, gx]. For every subset Σ ⊂ G, let TΣ be the fixed subset of Σ. Let {g1, . . . .gn} be
a finite generating subset of G, and let us prove by induction that T {g1,...gn} is not
empty. For n = 1 this is the hypothesis. Suppose that T {g1,...gn−1} ∩ T {gn} = ∅.
The minimal distance between these two subtrees is achieved along a segment
[a, b], with a ∈ T {g1,...,gn−1}, b ∈ T {gn}. Let x0 be the midpoint of this segment:
x0 �∈ T {gn}. Therefore b ∈ [x0, gnx0] is the midpoint. As x0 �∈ T {g1,...gn−1}, we
have that x0 �∈ T {gi}, for some i. The intersection T {gi} ∩ [a, x0] is a segment
[a, c]; the right extremity c of this segment is the projection of x0 on T {gi}, and
therefore c ∈ [x0, gix0] is the midpoint. Thus x0 ∈ [gix0, gnx0] and, in other
words, 〈gix0, gnx0〉x0 = 0. Lemma 1 applies and proves that the isometry gign is
hyperbolic, a contradiction.

Suppose now that X is a proper geodesic hyperbolic space. Let G be as in
the statement, and x0 ∈ X be some base-point. If the orbit Gx0 is bounded, then
it is a bounded G invariant set, and G is elliptic. Assume that Gx0 is not bounded.
We consider the set Gx0 ∩ ∂X .

1) Assume that this set has only one point a. It must be G invariant. Let us
prove that G is parabolic. Suppose that G fixes another point b on the boundary.
Then it acts on the union Y of geodesic lines between a and b. Let L ⊂ Y be a
geodesic between a and b, so that every point in Y is at distance < 100δ of L.
Let x0 ∈ L; as Gx0 ∩ ∂X = {a}, we can find two isometries g, h in G such that
d(x0, gx0) > 1000δ, d(x0, hx0) > d(x0, gx0)+1000δ and the projections of gx0 and
hx0 on L are on the right of x0.

Considering these projections of gx0 and hx0 on L, we see that d(x0, hx0) ≥
d(x0, gx0) + d(gx0, hx0) − 200δ, thus 〈x0, hx0〉g(x0) ≤ 100δ. By isometry, we get
〈g−1x0, g

−1hx0〉x0 < 100δ < 1/2(min(d(x0, g−1x0), d(x0, g−1hx0)) − 3δ, and h
must be hyperbolic by Lemma 1.

2) Assume thatGx0∩∂X has at least two points, a, b ∈ Gx0∩∂X . There exists
two sequences gn and hn such that gnx0 → a, and hnx0 → b. Then d(gnx0, x0) →
∞ as well as d(hnx0, x0), but 〈gnx0, hnx0〉x0 → 〈a, b〉x0 and remains bounded
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(by the very definition of the Gromov boundary). Lemma 1 applies and we get a
contradiction. �
Corollary 4. Let (G,X) satisfy (C). If G has a subgroup of finite index which is
elliptic or parabolic, then G is also elliptic or parabolic.

Proof. No element of G can be hyperbolic, as any power of a hyperbolic element
is hyperbolic. �
Proposition 2. Let the pair (X,G) satisfy (C). If G is elliptic, then it has an orbit
of diameter � 100δ. If, furthermore, X is CAT (0), then G has a fixed point.

Proof. In a metric space, the radius of a bounded set Y is the infimum of r s.t.
there exists x with Y ⊂ B(x, r). A center is a point c s.t. Y ⊂ B(c, r′) for every
r′ > radius(Y ). The proof of Proposition 2 is a direct consequence of the following
generalization of Elie Cartan center’s theorem [BH99], II.2.7. �
Proposition 3. In a proper geodesic δ-hyperbolic space, the diameter of the set of
centers of a bounded set is � 100δ. In a complete CAT (0) space, every bounded
set admits a unique center.

Proof. The second point is proved in [BH99], II.2.7. Let us prove the first assertion.
Let a, b be two centers and suppose that d(a, b) > 100δ. Let c be a midpoint of
a, b. Let us prove that for every x in Y , d(y, c) < r − 10δ and in such way get a
contradiction. By assumption d(a, x) and d(b, x) are less than r+δ. By the 4 points
definition of δ-hyperbolicity ([CDP90] Prop. 1.6) we know that d(x, c) + d(a, b) ≤
max(d(x, a) + d(b, c), d(x, b) + d(x, c))− 2δ. As d(b, c) = d(a, c) = 1/2d(a, b) > 50δ
we get that d(x, c) ≤ max(d(x, a), d(x, b)) − 48δ ≤ r − 48δ and we are done. �
Proposition 4. Let the pair (X,G) satisfy (C). If the G-orbit of some point of ∂X
is finite and has at least 3 elements, then G is elliptic.

Proof. If the orbit is finite and has at least 3 elements w1, . . . , wk, let us construct
a bounded orbit of G in X . For every triple of different points wi, wj , wk in this
orbit, let us consider the set Cijk consisting of all points being at a distance less
than 24δ from all geodesics between wi, wj , and wk. By hyperbolicity this set is
not empty and has diameter ≤ 100δ. This follows from [CDP90], Chap. 2, Prop.
2.2, p. 20. A finite union of bounded sets is bounded. Therefore, the union of the
sets Cijk is a bounded G invariant set. �
Proposition 5. Let X be a δ−hyperbolic graph of bounded valence. If G ⊂ Isom(X)
is loxodromic, then there exists an epimorphism m : G→ or m : G→ ∞ such
that kerm is elliptic.

Proof. We will construct a combinatorial analogue of the Busemann cocycle (com-
pare [RS95]). As G is loxodromic, the action of G fixes two points w± at infinity.
It contains a subgroup of index at most two G+ which preserves these two points,
and contains some hyperbolic element h. Let U be the union of all geodesics be-
tween these two points at infinity, and choose a preferred oriented line L between
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this two points. If x ∈ U , there exists a point in L such that d(x, p(x)) < 24δ
([CDP90], Chap. 2, Prop. 2.2, p. 20). Choose such a point and call it a projec-
tion of x. If x ∈ U , let R(x) = {y ∈ U |d(x, y) > 1000δ, and the projection of
y to L is on the right to that of x}. Note that our hypothesis implies that for
every pair x, y, {R(y)/R(x)} is contained in the ball centered at y and of radius
d(x, y) + 2000δ and is therefore finite: by definition, a point of R(y) which is at
distance > d(x, y)+2000δ from y must project on L on a point which is at the dis-
tance > 1000δ of x. Note also that if h is hyperbolic, R(hnx) is strictly contained in
R(x) if n is � 1. Let c(x, y) = Card{R(y)\R(x)}−Card{R(x)\R(x)}. Note that
c(y, x) + c(x, y) = 0, and that c(x, y) + c(y, z) = c(x, z). Moreover, if g is in G+,
then R(gx) = gR(x). Choose some point x0 ∈ U . The formula m(g) = c(x0, gx0)
defines a nontrivial morphism G+ → . The orbit of x0 under the action of the
kernel of m is bounded, contained in B(x0, 2000δ), and kerm is elliptic. If G/G+

is not trivial, and ε ∈ G \G+, then m−m(εgε−1) = d(g) extends to a nontrivial
epimorphism G→ ∞. �

Proof of Theorem 3. Let H1 be the rigid stabilizer of the first level of G. It is a
product of n subgroups of G, H1 = L1 × . . .× Ln conjugate in G.

i) Suppose first that L1 contains no hyperbolic element.
Then L1 has either (1) a bounded orbit or (2) a unique fixed point w at

infinity.
(1) In the first case, let C1 = {x|∀g ∈ L1, d(gx, x) < 100δ} (by Proposition 2

this set is nonempty). As L2 commutes with L1 it preserves C1. Being conjugate
to L1, every orbit of L2 is bounded. If x0 ∈ C1 and D = diam(L2x0), we see
that the diameter of (L1 × L2)x0 is � D + 2 · 100δ, hence L1 × L2 is elliptic, and
the set C2 = {x|∀g ∈ L1 × L2, d(gx, x) ≤ 100δ} is not empty (Proposition 2). By
induction we prove that Ck = {x|∀g ∈ L1 × L2 × . . .× Lk, d(gx, x) < 100δ} is not
empty; thus G admits a subgroup of finite index which is elliptic, and G is itself
elliptic.

(2) In the second case, the unique fixed point w is stable under the action of
the subgroup L2×. . .×Ln, and G has a subgroup of finite index which is parabolic,
thus G is parabolic itself.

ii) Suppose L1 contains some hyperbolic element h. Let w± be the two distinct
fixed points of h at infinity. As L2× . . .×Ln commutes with h this group fixes this
set. Now L2 contains a hyperbolic element h2, conjugated to h: thus h2 has the
same fixed points at infinity as h, and H1 must also fix the set {w,w−}. Thus the
orbit of w± is finite and Proposition 4 applies. The orbit of G cannot have more
than 2 elements unless G is elliptic: therefore it has exactly two elements, and G
is loxodromic.This proves a).

To prove b) apply Proposition 5. Proposition 2 and Proposition 3 (the unique
center for bounded sets) give rise to the desired fixed point for c). Claim d) follows
from the fact that between two points at infinity in a CAT(-1) space there exists
a unique geodesic (visibility property). For claim e), let w be an end of a tree
fixed by the group G. Let t → r(t) be a geodesic ray converging to w. Note that
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when the point x is fixed, the function t → d(x, r(t)) − t is constant for t >> 1.
The value of the constant bw(x) is called the Busemann function associated to w
(see [BH99], Chap. II.8. for a study of Busemann functions in CAT(0) spaces).
If the point w is fixed by some isometry g, then g.r(t) is another ray converging
to w. But two rays converging to the same point in a tree must coincide outside
a compact set. Therefore d(gr(t), r(t)) = b(g) is constant for t >> 1, and this
constant is bg.w− bw. By construction, g → b(g) is a homomorphism from G to ,
which is non-trivial unless every element of G is elliptic, and takes values in if X
is a combinatorial tree. Suppose that the restriction of b to L1 is trivial. Then L1

consists of elliptic elements. Since G is finitely generated, L1 is finitely generated
as well. Thus L1 is elliptic and i) applies. Otherwise, L1 contains a hyperbolic
element and ii) applies.

Theorem 3 is proved. �

3. An indicable branch group

Let G be a branch group acting on a rooted tree T . It is proved in [Gri00] that, if
N �G is a nontrivial normal subgroup, then the group N contains the commutator
subgroup of the rigid stabilizer ristG(n)′, for some level n. As ristG(n) is of finite
index in G, G/ristG(n) is finite, G/ristG(n)′ is virtually abelian and we have:

Proposition 6. A proper quotient G/N of a branch group is a virtually abelian
group.

We construct in this section an example of a finitely generated branch group
which surjects onto the infinite cyclic group. The construction starts from the
finitely generated torsion 2-group firstly defined in [Gri80b] and later studied
in [Gri84] and other papers (see also the Chapter VIII of the book [dlH00]).

We will list briefly some properties of G that will be used later.
Let (T , ∅) be the rooted binary tree whose vertices are the finite sequences

of 0, 1 with its natural tree structure (see [dlH00], VIII.A for details), the empty
sequence ∅ being the root. If v is a vertex of T we denote by Tv the subtree
consisting of the sequences starting in v. In other words, the subtree Tv of T
consists of vertices w that contain v as a prefix. Deleting the first |v| letters of
the sequences in Tv yields a bijection between Tv and T , called the canonical
identification of these trees.

The group G (see [dlH00], VIII.B.9 for details) acts faithfully on the binary
rooted tree (T , ∅) and is generated by four automorphisms a, b, c, d of the tree
where a is the rooted automorphism permuting the vertices of the first level, while
b, c, d are given by the recursive rules

b = (a, c), c = (a, d), d = (1, b).

This means that b acts trivially on the first level of the tree, it acts on the left
subtree T0 as a and acts on the right subtree T1 as c, with similarly meaning
of the relations for c and d. Here we use the canonical identifications of T with
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Ti, i = 0, 1. An alternative description of G is that it is the group generated by the
states of the automaton drawn on the figure 1.

The group G is 3-generated as we have the relations

a2 = b2 = c2 = d2 = bcd = 1

there are many other relations and G is not finitely presented [Gri84].

Figure 1. The automaton defining L

In order to study groups acting on the binary rooted tree T , it is convenient
to use the embedding

ψ : Aut(T ) �−→ Aut(T ) ) S2,

g �−→ (g0, g1)α.
In this representation S2 is a symmetric group of order 2, α ∈ S2 describes the
action of g on the first level of the tree and the sections g0, g1 describe the action
of g on the of subtrees T0 T1. We will usually identify the element g and its image
(g0, g1)α. Relations of this type will be often used below.

Let x be the automorphism of T defined by the recursive relation x = (1, x)a.
This automorphism is called the adding machine as it imitates the adding of a unit
in the ring of diadic integers [GNS00]. An important property of x is that it acts
transitively on each level of T and therefore has infinite order.

Let L = 〈x,G〉 be the subgroup of Aut(T ) generated by G and the adding
machine x.

Theorem 4. The group L is branch, amenable, and has infinite abelization.

The next two lemmas are the first steps towards the proof of the fact that L
is a branch group.

Lemma 2. The following formulas hold in the group L:
[x, a] = (x−1, x),
[x, d] = (x−1bx, b)
[[x, a], d] = (1, [x, b]),
(1, [[x, b], c]) = [[[x, a], d], b].
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Proof. This follows by direct computation:
[x, a] = x−1axa = a(1, x−1)a(1, x)aa = (x−1, 1)(1, x) = (x−1, x).
[x, d] = x−1dxd = a(1, x−1)(1, b)(1, x)a(1, b) = (x−1bx, b)
[[x, a], d] = [(x−1, x), (1, b)] = ([x−1, 1], [x, b]) = (1, [x, b]).
[[[x, a], d], b] = [(1, [x, b]), (a, c)] = (1, [[x, b], c]). �

Lemma 3. The group L is self-replicating, and hence level transitive.

Proof. Consider the elements b = (a, c), c = (a, d), d = (1, b), aba = (c, a),
xa = (1, x). They stabilize the two vertices of the first level of T , and their pro-
jections on Aut(T1) � Aut(T ) are c, d, b, a, x, i.e., the generators of L. Note
that these elements generate L. Hence the projection of stL(1) on Aut(T1) is L
modulo the canonical identification of T and T1. The conjugation by a permutes
the coordinates of elements in stL(1), hence the same holds for the first projection.
The self-replicating property (Definition 4) follows by induction on the level. The
level transitivity is an immediate consequence of the transitivity of L on the first
level and the self-replicating property. �

Let
K = 〈[a, b]〉G, S = [〈x〉, G]L,

R = 〈K,S, γ3(L)〉L = KSγ3(L).
These subgroups will play an important role in our further considerations.

Lemma 4. We have the following inclusions: γ3(G) ( γ3(G)× γ3(G),K ( K ×K,
and R ( S × S.
Proof. The first two inclusions are known [Gri89, Gri00].

Using the commutator relations and the fact that conjugation by a permutes
the coordinates we have

(1, [c, x]) = [(a, c), (1, x)] = [b, xa] = [b, a][b, x][[b, x], a] ∈ R,
(1, [x, b]) = [[x, a], d] ∈ R

by Lemma 2,

(1, [a, x]) = a[(a, c), (x, 1)]a = a[b, (x, 1)]a = ab−1(x−1, 1)b(x, 1)a.

But x = (1, x)a and axa = (x, 1)a which leads to

(1, [a, x]) = ab−1x−1abaxa = ab−1ab[b, axa] = [a, b][b, axa].

Now we have
[b, axa] = a[aba, x]a ∈ S,

and [a, b] ∈ K which gives (1, [a, x]) ∈ R.
Finally

(1, [x, d]) = (1, [x, bc]) = (1, [x, c][x, b][[x, b], c]) = (1, [x, c])(1, [x, b])(1, [[x, b], c])

and
(1, [[x, b], c]) = [[[x, a], d], b] ∈ R
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by Lemma 2. Therefore the elements (1, [a, x]), (1, [b, x]), (1, [c, x]), (1, [d, x]) belong
to R and, as S = 〈[a, x], [b, x], [c, x], [d, x]〉L, the lemma is proved. �
Lemma 5. We have the inclusion: γ3(L) ( γ3(L)× γ3(L).

Proof. Consider the subgroup Q = 〈d, c, aca, xa〉 ⊂ L. As d = (1, b), c = (a, d),
aca = (d, a), xa = (1, x), the group Q is a subdirect product in D4 × L where
D4 � 〈a, d〉 is a dihedral group of order 8. As γ3(D4) = 1 we get

γ3(Q) = (1, γ3(L)),

γ3(aQa) = (γ3(L), 1),
and therefore

γ3(L) ( γ3(L)× γ3(L). �
Lemma 6. The group L is a weakly regular branch group over R.

Proof. We know that K ( K × K, γ3(G) ( γ3(G) × γ3(G), γ3(L) ( γ3(L) ×
γ3(L) and R ( S × S. But R is generated by S, γ3(L) and K. This implies the
statement. �

In order to prove that L is a branch group, we consider its subgroup P =
〈R, 〈x4〉〉L.

Lemma 7. The group P has finite index in L.

Proof. Every element g ∈ L can be written as a product g = xiajckdlhfx4t, where
h ∈ [G,G], f ∈ S, i ∈ {0, 1, 2, 3}, j, k, l = 0, 1, t ∈ Z. This implies that the index of
P in L is � 128. �

Let Pn � P × · · · × P ⊂ Aut(T ) (2n factors) be the subgroup of Aut(T )
that is the product of 2n groups isomorphic to P that act on the corresponding
2n subtrees rooted at the vertices on the n-th level.

Lemma 8. The group L contains Pn for every n.

Proof. For n = 0 the statement is obvious. For n = 1, let us consider (xa)4 =
(1, x4) which is an element of L. As L is self-replicating, for any given element
h ∈ L there exists an element k in L s.t. k = (f, h). Conjugating (1, x4) by an
element of L of the form (f, h), we get that (1, (x4)h) ∈ L. But P is generated by
conjugates of x4. This together with Lemma 6 proves the inclusion 1 × P ( L.
The inclusion P × 1 ( L is obtained by conjugating L by a. Then we get that
P × P = P1 < L.

In order to prove the lemma for n = 2 we observe that

L � [x, a] = (xa)2 = (1, x2) = (1, 1, x, x)2
(the index 2 indicates that we rewrite the considered while considering its action
on the second level; we will use such type of notations for further levels as well).
Multiplying (1, x2) (which is in L) by

(1, [x, a]) = (1, 1, x−1, x)2,
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we get (1, 1, 1, x2)2 ∈ L. Therefore (1, 1, 1, x4)2 ∈ L and hence P2 < L (by level
transitivity and the self-replicating property of Lwe see that (x4, 1, 1, 1), (1, x4, 1, 1)
and (1, 1, x4, 1) also belong to L.

Let us prove the lemma by induction on n ≥ 2. Suppose that, for every k � n,
the inclusion Pk < L holds and let us prove that Pn+1 < L. Consider the element μ

L � μ = (1, . . . , 1, x4)n−2 = (1, . . . , 1, x2, x2)n−1,

As L is self-replicating, there exists an element ρ ∈ StG(un−2), where un−2 is the
last vertex on the (n − 2)-th level, whose projection at this vertex is equal to b.
We have

L � [μ, ρ] = (1, . . . , 1, [x2, a], [x2, c])n−1

= (1, . . . , 1, [x, a], [x, d])n = (1, . . . , 1, x−1, x, x−1bx, b)n+1,
(3.1)

As b2 = 1 we get the relation

[μ, ρ]2 = (1, . . . , 1, x−2, x2, 1, 1)n+1

Now we have
L � η = (1, , , 1, x4, 1)n = (1, . . . , 1, x2, x2, 1, 1)n+1,

[μ, ρ]2 η = (1, . . . , 1, x4, 1, 1)n+1
(3.2)

and we come to the conclusion that 1 × 1 × . . . × 1 × P × 1 × 1 ( L, hence
P × . . .× P︸ ︷︷ ︸

2n+1

( R, and Pn+1 < L, as L is level transitive. �

We can now prove that L is a branch group. This group acts transitively on
each level of the rooted tree T , and contains Pn for every n = 1, 2 . . . . In order to
prove that it is branch, as Pn < ristL(n), and L is level transitive, it is enough to
check that Pn has finite index in L. We have the following diagram

L
↑ ψn

stL(n) 	 H̃ < L × . . .× L
↑
ristL(n) ↑ ↑ . . . ↑
↑ ψn

Pn 	 P̃n = P × . . .× P

(the vertical arrows are inclusions, H̃ and P̃n are ψn images of stL(n) and Pn

respectively, where ψn is the n-th iteration of ψ).
As the group P has finite index in L, we get that P̃n has finite index in H̃

and therefore Pn has finite index in stL(n) and hence in L. This establishes the
first statement of Theorem 4.

The group L is the self-similar group generated by the states of the automaton
in Figure 1. The diagram of this automaton satisfies the condition of Proposition
3.9.9 of [Nek05]: it is therefore a bounded automaton in the sense of Sidki [Sid00].
This proposition states that an automaton is bounded if and only if its Moore
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diagram has the following property: every two nontrivial cycles are disjoint and
are not connected by a directed path; a cycle is called trivial if all of its states
represents the identity automorphism of the tree.

It is easy to see that automaton determining the group L satisfies this prop-
erty.

By a theorem of Bondarenko and Nekrashevych (Theorem 3.9.12 in [Nek05])
every group generated by the states of a bounded automaton is contracting. More-
over, by a theorem of Bartholdi, Kaimanovich, Nekrashevych and Virag [BKNV06]
such a group is amenable. This establishes the amenability of L, as well as its con-
tracting property.

In order to compute the abelianization of L, we need to combine the contract-
ing property of L with a rewriting process which corresponds to the embedding
ψ. The combination of this rewriting process and the contraction property will
produce an algorithm for solving the word problem in L: the branch algorithm.
This type of algorithm appeared in [Gri84] for the first time: it is a general fact
that the branch algorithm solves the word problem for contracting groups [Sav03].

The group

Γ = 〈a, b, c, d, x : a2 = b2 = c2 = d2 = bcd = 1〉,
defined by generators and relations, naturally covers L. It is isomorphic to the free
product

Z/2Z ∗ (Z/2Z× Z/2Z) ∗ Z.

Therefore, the elements in Γ are uniquely represented by words w = w(a, b, c, d, x)
in the reduced form (for this free product structure).

Similarly the group G is naturally covered by the group

〈a, b, c, d : a2 = b2 = c2 = d2 = bcd = 1〉 � Z/2Z ∗ (Z/2Z× Z/2Z).

The elements in G can be represented by reduced words (with respect to this free
product structure).

Let w be a word representing an element of Γ, w = u1xi1u2x
i2 . . . ukx

ikuk+1,
where ui are reduced words in a, b, c, d, ui is nonempty for i �= 1, k+1, and ij �= 0,
for j = 1, . . . , k.

Let us consider the following rewriting process:
1) In each word ui replace b, c, d by the corresponding element of the wreath

product L ) S2, using the defining relations b = (a, c), c = (a, d) d = (1, b),
x = (1, x)a.

2) Move all the letters a to the right using the relations a(v0, v1) = (v1, v0)a. Use
the relation a2 = 1 for simplification of words, and take the componentwise
product of all involved pairs. One obtains in such a way a relation of the form
w = (w0, w1)aε with ε ∈ {0, 1}, which holds in L.

3) Reduce the words wi in Γ, obtaining a pair (w0, w1) of reduced words.
Note that the length of wi, i = 0, 1 is strictly shorter than of w if at least one

letter a appears in the word w.
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We can represent this rewriting process as a pair ϕ = (ϕ0, ϕ1) (or a product
ϕ0×ϕ1) of two rewritings w → w0 and w → w1. We will apply these maps to words
with an even number of occurences of a, i.e., words representing the elements in
stL(1): in this case ε = 0. We can therefore iterate this rewriting procedure ϕ n
times for words representing elements in stL(n), and get 2n words wi1,...in with
ij ∈ {0, 1}. (For formal definition of ϕ0, ϕ1 in case of the group G see [Gri98a], for
L the formal description is similar. For the definition of core see [Nek05].)

Proposition 7. The rewriting process is 3-step contracting with core N = {1, b,
c, d, x, x−1, bx, cx, dx, x−1b, x−1c, x−1d, x−1bx, x−1cx, x−1dx}. Moreover,
for every word w representing an element in stabL(3), ϕ3(w) consists of 8 words
wi,j,k, i, j, k ∈ {0, 1} of strictly shorter length than w.

Proof. Let the word w = w1x
i1w2x

i2 . . . wkx
ikwk+1 be as above and represents an

element in stabL(3). As we already have noted, if the letter a occurs in some of
the wi, then rewriting process is strictly shortening in one step. In order to study
reduced words without the letter a, we will make use of the relations in Table 1.

Observe that w is a product of subwords in the form presented by the left
side in the relations in Table 1, followed by an element of the set

{1, b, c, d, xbx, cx, dx, xb, xc, xd, x−1b, x−1c, x−1d, bx−1, cx−1, dx−1}.
In all relations marked by A or B the rewriting process gives shortening in one
step (case A) or in two steps (case B); in the latter case note the presence of the
letter a, which insures reduction of length in one more step.

If the word w is not shortened after applying twice the rewriting procedure,
then either it belongs to N , or it is of the form ∗x−1 ∗ x . . . x−1 ∗ x ∗ t, with
∗ ∈ {b, c, d}except for the the first or last ∗ which may also represent the unit, and
t ∈ {x−1b, x−1c, x−1d, bx−1, cx−1, dx−1}.

Let x−1bx = b̃, x−1cx = c̃, x−1dx = d̃. These elements are of order two, and
satisfy the relations b̃ = (c̃, a), c̃ = (d̃, a), d̃ = (b̃, 1). Since these relations are of
the same form as the relations that hold for b, c and d, the group G̃ generated by
〈a, b̃, c̃, d̃〉 is isomorphic to G.

Let A < L be the subgroup generated by 〈b, c, d, b̃, c̃, d̃〉. Note that A stabilizes
the first level of the tree. Consider the embedding ψ : A → G̃ × G obtained by
projecting the elements of A on the left and right subtrees (we use the same
notation ψ for the embedding as before).

Lemma 9. The group ψ(A) is a subdirect product of finite index in G̃×G.

Proof. We have c̃ = (d̃, a), c = (a, d), d̃ = (b̃, 1), d = (1, b), b̃d̃ = c̃ and bd = c.
Therefore the projection of ψ(A) on each of two factors is onto.

Let B = 〈b〉G and B̃ = 〈b̃〉G̃.
As d = (1, b) ∈ ψ(A) and as for every g ∈ G there exists some h such

that (g, h) ∈ ψ(A), we see that (1, gbg−1) ∈ ψ(M). Therefore the group 1 × B
is contained in ψ(A) and, by a symmetric argument, B̃ × 1 is contained in ψ(A).
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bx = (a, c)(1, x)a = (a, cx)a
cx = (a, d)(1, x)a = (a, dx)a
dx = (1, b)(1, x)a = (1, bx)a

x−1b = a(1, x−1)(a, c) = (x−1c, a)a
x−1c = a(1, x−1)(a, d) = (x−1d, a)a
x−1d = a(1, x−1)(1, b) = (x−1b, 1)a
xb = (1, x)a(a, c) = (c, xa)a B

xc = (1, x)a(a, d) = (d, xa)a B

xd = (1, x)a(1, b) = (b, x)a A

bx−1 = (a, c)a(1, x−1) = (ax−1, c) B

cx−1 = (a, d)a(1, x−1) = (ax−1, d) B

dx−1 = (1, b)a(1, x−1) = (x−1, b) A

xbx = (1, x)a(a, c)(1, x)a = (1, x)(c, a)(x, 1) = (cx, xa), A

x−1bx−1 = a(1, x−1)(a, c)a(1, x−1) = (x−1c, ax−1) A

xbx−1 = (1, x)a(a, c)a(1, x−1) = (1, x)(c, a)(1, x−1) = (c, xax−1) B

x−1bx = a(1, x−1)(a, c)(1, x)a = (x−1cx, a), C

xcx = (1, x)a(a, d)(1, x)a = (1, x)(d, a)(x, 1) = (dx, xa) A

x−1cx−1 = a(1, x−1)(a, d)a(1, x−1) = (x−1, 1)(d, a)(1, x−1) = (x−1d, ax−1) A

xcx−1 = (1, x)a(a, d)a(1, x−1) = (1, x)(d, a)(x−1, 1) = (dx−1, xa) A

x−1cx = a(1, x−1)(a, d)(1, x)a = (x−1dx, a) C

xdx = (1, x)a(1, b)(1, x)a = (1, x)(b, 1)(x, 1) = (bx, x) A

x−1dx−1 = a(1, x−1)(1, b)a(1, x−1) = (x−1, 1)(b, 1)(1, x−1) = (x−1b, x−1) A

xdx−1 = (1, x)a(1, b)a(1, x−1) = (b, 1) A

x−1dx = a(1, x−1)(1, b)(1, x)a = (x−1bx, 1) C

x2 = (x, x) A

x−2 = (x−1, x−1). A

Table 1. Some relations in L

Thus B̃×B < ψ(A) < G̃×G. But the groups B and B̃ have finite index in G and
G̃, respectively, and the lemma is proved. �

We now finish the proof of Proposition 7. Consider a reduced word u which
represents an element of L. Suppose that this element stabilizes the first level but
is not shortened after applying twice the rewriting process. The word u has to be
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of the form u = wb, where w represents an element of A and

t ∈ {x−1b, x−1c, x−1d, bx−1, cc−1, dx−1}.

Rewrite it as a word in the letters 〈b, c, d, b̃, c̃, d̃〉. Use the relations b̃ = (c̃, a),
c̃ = (d̃, a), d̃ = (b̃, 1), b = (a, c), c = (a, d) d = (1, b) to rewrite it as an element
(w̃0, w1) of G̃×G.

Recall that, endowed with its natural system of generators, the groupG is one
step contracting with core N0 = {1, b, c, d} (and contracting coefficient 1

2 [Gri84]).
In other words,applying the rewriting procedure to reduce a word v in a, b, c, d
with an even number of occurrences of the letter a yields a couple a words of
length � 1/2|v| unless v ∈ {1, b, c, d}. More precisely, if v → (v0, v1) is obtained
by rewriting in the group G, then |vi| � |v|/2 + 1.

By isomorphism the same property is true for a reduced word in the alphabet
a, b̃, c̃, d̃ determining an element in G̃ (and the core in this case is Ñ0 = {1, b̃, c̃, d̃}).

Split the word w as a product of monads ∗ and triads x−1 ∗ x. If there are at
least two monads or at least two triads we get after rewriting shortening at each
of coordinates. The remaining case is the case of a word of the form x−1 ∗ x∗ and
∗x−1 ∗ x for which one checks that reduction of length occurs in the second step.

This completes the proof of Proposition 7. �

From this proposition we get an algorithm to solve the word problem: the
branch algorithm for L. Let us describe it further.

Let w be a word in the letters a, b, c, d, x. The problem is to check if w = 1 in
L. The notation w ≡L w

′ means that the two elements of L defined by the words
w and w′ are equal.

1) Reduce w in Γ. If w is the empty word, then in L, w ≡L 1. If it is not the
empty word, compute the exponent expa w (that is the sum of exponents of a in
w). Check if this number is even. If NO, then w �≡L 1. If YES go to 2).

2) Rewrite w as a pair (w0, w1) using the rewriting map ϕ = (ϕ0, ϕ1). Apply
1) successively to w0, w1 and follow steps 1) and 2) alternatively. Either, at some
step one obtains a word with odd expa or (after n steps) one obtains that all 2n

words represent the identity element in Γ (observe that the word problem in Γ is
solvable by using the normal form for elements).

Note that w ≡L 1 ⇔ (w0 ≡L 1 and w1 ≡L 1). Applying this procedure 3
times yields either the answer NO (the elemnt is not the identity) or a set of 8
words wi,j,k with i, j, k ∈ {0, 1} which - by Proposition 7- are strictly shorter than
w. This algorithm solves the word problem.

Lemma 10. Let w be a word in the generators. Let w ≡L (w0, w1)α, α = a or
α = 1 depending on the parity of the exponent expa w, and the triple (w0, w1), α
is obtained from w by applying once the rewriting process described above. Then

expx(w) = expx(w0) + expx(w1).
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Proof. The rewriting process uses the relations b = (a, c), c = (a, d), d = (1, b) and
x = (1, x)a, x−1 = (x−1, 1)a which do not change the total exponent of x. The
reduction in group Γ also doesn’t change the exponent. �

Lemma 11. The abelianization L/[L,L] is infinite. The image of x in L/[L,L] is
of infinite order.

Proof. Any element in the commutator group can be expressed as a product of
commutators [u, v]. Choosing the words in a, b, c, d, x representing u and v, we get
that any element in [L,L] can be written as a word w with expx w = 0. Suppose
that for some n � 1, xn ∈ [L,L]. We get a word w = xnΠ[ui, vi] in the letters
a, b, c, d, x with total exponent n for x which represents the identity element in L.
Choose w of minimal length with this property. Applying the rewriting process
at most 3 times to w, we get a set of 8 words wijk, i, j, k ∈ 0, 1 representing the
identity element in L with the sum of exponents of the symbol x different from
zero. Hence at least one of them has non zero expx. The words wijk are shorter
than w, a contradiction. �

The proof of Lemma 11 completes the proof of Theorem 4.
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2000, pp. 329–348. MR 1765126 (2001h:11073)

[CDP90] M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des
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On Nori’s Fundamental Group Scheme
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Abstract. The aim of this note is to give a structure theorem on Nori’s fun-
damental group scheme of a proper connected variety defined over a perfect
field and endowed with a rational point.
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1. Introduction

For a proper connected reduced scheme X defined over a perfect field k Nori
introduced in [8] and [9] the notion of essentially finite bundles. He shows that they
form a k-linear abelian rigid tensor category, denoted subsequently by CN (X). A
k-rational point x of X endows CN(X) with a fiber functor V �→ V |x with values
in the category of finite-dimensional vector spaces over k. This makes CN(X) a
Tannaka category, thus by Tannaka duality ([1, 12]), the fiber functor establishes
an equivalence between CN(X) and the representation category Rep(πN (X,x)) of
an affine group scheme πN (X,x), which turns out to be a pro-finite group scheme
(see Section 2 for an account of Nori’s construction). The purpose of this note is
to study the structure of this Tannaka group scheme.

To this aim, we define two full tensor subcategories C ét(X) and CF (X). The
objects of the first one are étale finite bundles, that is bundles for which the corre-
sponding representation of πN (X,x) factors through a finite étale group scheme,
and the objects of the second one are F -finite bundles, that is bundles for which
the corresponding representation of πN (X,x) factors through a finite local group
scheme. As Tannaka subcategories they are the representation categories of Tan-
naka group schemes πét(X,x) and πF (X,x).

In fact πét(X,x) relates closely to the more familiar fundamental group
π1(X, x̄) defined by Grothendieck ([4, Exposé V]), where x̄ is a geometric point

Partially supported by the DFG Leibniz Preis, the DFG Heisenberg program and the grant NFSC
10025103.
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above x, which is a pro-finite group. One has

πét(X,x)(k̄) ∼= π1(X ×k k̄, x̄) (1.1)

(see Remarks 2.10 for a detailed discussion). Thus the étale piece of Nori’s group
scheme takes into account only the geometric fundamental group and ignores some-
how arithmetics. On the other hand, πF (X,x) reflects the purely inseparable cov-
ers of X . That k is perfect guarantees that inseparable covers come only from
geometry, and not from the ground field.

The inclusion of C ét(X) (resp. CF (X)) in CN (X) as a full tensor subcategory
induces a surjective homomorphism of groups schemes rét : πN (X,x) → πét(X)
(resp. rF : πN (X)→ πF (X)). Our first remark is that the natural homomorphism

(rét, rF ) : πN (X,x) → πét(X,x)× πF (X,x) (1.2)

is surjective but generally not injective. We give an example which is based on
Raynaud’s work [11] on coverings of curves producing a new ordinary part in
the Jacobian (see Corollary 3.7). In particular, it is given as a rank 1 bundle
in Pic of this covering, and thus does not come from a rank 1 bundle on X . The
referee observes here that the morphism induced from (1.2) on the maximal abelian
quotients of CN (X), CF (X), C ét(X) is however an isomorphism. This provides one
reason for the determination of the representation category of the kernel of (1.2):
our work gives some information on the non-abelian part of Nori’s category.

The central theorem of our note is the determination by its objects and
morphisms of a k-linear abelian rigid tensor category E , which is equivalent to the
representation category of Ker(rét, rF ) (see Definition 4.3 for the construction and
Proposition 4.4 and Theorem 4.5 to see that it computes what one wishes). This
is the most delicate part of the construction. If S is a finite subcategory of CN (X)
with an étale finite Tannaka group scheme π(X,S, x), then the total space XS of
the π(X,S, x)-principal bundle πS : XS → X which trivializes all the objects of S
has the same property as X . It is proper, reduced and connected. However, if S is
finite but π(X,S, x) is not étale, then Nori shows that XS is still proper connected,
but may not be reduced. We give a concrete example in Remark 2.3, 2), which is
due to P. Deligne.

In order to describe E , we need in some sense an extension of Nori’s theory to
those non-reduced covers. We define on each such XS a full subcategory F(XS) of
the category of coherent sheaves, the objects of which have the property that their
push down on X lies in CN (X) (see Definition 2.4). We show that indeed those
coherent sheaves have to be vector bundles (Proposition 2.7), so in a sense, even if
the scheme XS might be bad, objects which push down to Nori’s bundles on X are
still good. In particular, CN (XS) = F(XS) if π(X,S, x) is étale (Theorem 2.9), so
the definition generalizes slightly Nori’s one. For given finite subcategories S and
T of CN(X), with π(X,S, x) étale and π(X,T, x) local, we introduce in Definition
4.1 a full subcategory E(XS∪T ) ⊂ F(XS∪T ) consisting of those bundles V , the
push down of which on XS is F -finite. Now the objects of E are pairs (XS∪T , V )
for V an object in E(XS∪T ). Morphisms are subtle as they do take into account the
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whole inductive system of such T ′ ⊂ CF (X). We can formulate our main theorem
(see Theorem 4.5 for a precise formulation).

Main Theorem. The functor CN(X)→ E which assigns (XS , π
∗
S(V )) to V , where S

is the maximal étale subcategory of the subcategory 〈V 〉 spanned by V∈Obj(CN(X)),
identifies the representation category of Ker(rét, rF ) with E.

We now describe our method of proof. We proceed in two steps. As mentioned
above, the homomorphism rét : πN (X,x) → πét(X, s) is surjective. We denote its
kernel by L(X,x) and determine its representation category in section 3. The
computation is based on two results. The first one of geometric nature asserts
that sections of an F -finite bundle can be computed on any principal bundle
XS → X with finite étale group scheme (see Proposition 3.2). The second one is
the key to the categorial work and comes from [3, Theorem 5.8]. (For the reader’s
convenience, we give a short account of the categorial statement in Appendix A.)
It gives a criterion for the exactness of a sequence of affine group schemes

1→ L→ G→ A→ 1

in terms of their representation categories. Roughly speaking, assuming the exact-
ness at L and A then the exactness atG holds if and only if the following conditions
hold: (i) a representation of G becomes trivial when restricted to L if and only
if it comes from a reprsentation of A; (ii) for a representation V of G considered
as representation of L, its subspace of L-invariants is invariant under G; (iii) each
representation of L is embedable into the restriction to L of a representation of G.

We show that the category Rep(L(X,x)) of (finitely-dimensional) represen-
tations of L(X,x) is equivalent to the category D, whose objects are pairs (XS , V )
where XS → X is a principal bundle under an étale finite group scheme and V is
a F -finite bundle on XS . Morphisms are defined naturally via Proposition 3.2.

By definition of L(X,x), the kernel of (rét, rF ) is the kernel of restriction
rF |L : L(X,x) → πF (X,x) of rF to L(X,x). The second step consists in showing
that the category E constructed in Section 4 is equivalent to the representation cat-
egory of the kernel of rF |L. The proof is based on the strengthening of Proposition
3.2, namely Proposition 3.6 and Proposition 4.6 as well as the criterion mentioned
above.

Beyond the technicalities of the proof, let us remark that any finite k-group
scheme G has two natural quotients: its maximal étale quotient Gét and its maxi-
mal local quotient GF . The kernel G0 := Ker(G→ Gét) is the 1-component of G,
in particular is local. If G is abelian, the morphism G0 → GF is an isomorphism,
and then G is the product of Gét with GF . In general, G0 → GF is surjective. The
article here deals in some sense with the prosystem of the kernels of G0 → GF .

Acknowledgements. Pierre Deligne sent us his enlightening example which we re-
produced in Remark 2.3, 2). It allowed us to correct the main definition of our
category E (Section 5)) which was wrongly stated in the first version of this arti-
cle. We profoundly thank him for his interest, his encouragement and his help. We
also warmly thank Michel Raynaud for answering all our questions on his work
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on theta characteristics on curves and on their Jacobians. Finally we thank the
referee for careful reading, accurate remarks and helpful suggestions.

2. Nori’s category

Throughout this work we shall fix a proper reduced scheme X over a perfect field
k, which is connected in the sense that H0(X,OX) = k. We assume that X(k) �= ∅
and fix a rational point x ∈ X(k).

In [8], [9], Nori defines a category of “essentially finite vector bundles” which
we recall now. A vector bundle on X is called semi-stable of degree 0 if it is
semi-stable of degree 0 while restricted to each proper curve in X . This is a full
subcategory of the category Qcoh(X) of quasi-coherent sheaves on X , is abelian
[8, Lemma 3.6] and will be denoted by S(X). A vector bundle V on X is called
finite if there are polynomials f �= g whose coefficients are non-negative integers
such that f(V ) and g(V ) are isomorphic. Nori proves that finite bundles are semi-
stable of degree 0 [8, Corollary 3.5] and that the full abelian subcategory of S(X),
consisting of those bundles which are subquotients in S(X) of a direct sum of finite
bundles, is a k-linear abelian rigid tensor category. We shall denote this category
by CN (X) and call its objects Nori finite bundles.

The fiber functor at x (where by assumption κ(x) = k)

|x : CN(X)→ Vectk, V �→ V |x := V ⊗OX κ(x) (2.1)

with values in the category of finite-dimensional k-linear vector spaces, implies that
CN (X) is a Tannaka category. We denote by πN (X,x) the corresponding Tannaka
group scheme over k. Tannaka duality ([1, Theorem 2.11]) yields an equivalence
of categories

CN(X)
|x ∼=−−−→ Rep(πN (X,x)). (2.2)

We denote by η the inverse functor

η : Rep(πN (X,x)) → CN (X). (2.3)

Recall that for an affine group scheme G over k, a k-morphism j : P → X is
said to be a principal G-bundle on X if

(i) j is a faithfully flat affine morphism
(ii) φ : P ×G→ P defines an action of G on P such that j ◦ φ = j ◦ p1
(iii) (p1, φ) : P ×G→ P ×X P is an isomorphism.

Given such a principalG-bundle P one associates to it an exact tensor functor

ηP : Rep(G) → Qcoh(X) (2.4)

as follows. For each representation V of G, one has the diagonal action of G on
the trivial bundle OP ⊗k V . Using Grothendieck flat descent [4, Exposé VIII], one
obtains a vector bundle ηP (V ) onX by taking the G invariants ofOP⊗kV , denoted
by P ×G V . Conversely, consider the regular representation of G in k[G] given by
(gf)(h) = f(hg), g, h ∈ G, h ∈ k[G]. Then a functor η : Rep(G) → Qcoh(X) yields
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a principalG-bundle onX , which is the spectrum of the OX -algebra η(k[G]). These
two constructions are inverse to each other.

Consider the regular representation of πN (X,x) in k[πN (X,x)]. Then the dis-
cussion above applied to functor η in (2.3) yields a (universal) principal πN (X,x)-
bundle π̃ : X̃ → X together with the identity π̃−1(x) = πN (X,x). The unit
element of πN (X,x) yields a distinguished rational point of X̃ lying above x.

The projection π̃ : X̃ → X is in fact pro-finite in the following sense. Let S
be an abelian tensor full subcategory of CN (X) generated by finitely many objects
Si, i = 1, . . . , r. That is, objects of S are subquotients of direct sums of tensor
products of copies of Si and Si

∨ (the dual bundle to Si). In the sequel we shall
simply call S a finitely generated tensor subcategory of CN(X). S is a Tannaka
category by means of the fibre functor at x and denote its Tannaka group by
π(X,S, x). The discussion above applied to the forgetful functor ηS : S → Qcoh(X)
yields a π(X,S, x)-principal bundle πS : XS → X and a rational point xS lying
above x. Then π(X,S, x) is a finite group scheme, which is a quotient of πN (X,x)
and

πN (X,x) = lim←−
S

π(X,S, x), X̃ = lim←−
S

XS , π̃ = lim←−
S

πS , x̃ = lim←−
S

xS , (2.5)

where S runs in the pro-system of finitely generated full abelian tensor subcate-
gories of CN (X). Moreover the scheme XS is connected:

H0(XS ,OXS ) = k (2.6)

Furthermore, πS is universal in the following sense:

V ∈ Obj(S) ⇐⇒ π∗S(V ) trivializable. (2.7)

Indeed, if π∗SV is trivializable on XS , then the injective map V ↪→ πS∗π∗SV
∼=

πS∗O⊕d
XS

, where d is the rank of V , shows that V ∈ Obj(S). Conversely, for V ∈ S
the construction in (2.4) shows that π∗V is trivializable on XS .

Finally we notice that πN (X,x) respects base change for algebraic extensions
of k, that is

πN (X ×k K,x×k K) ∼= πN (X,x)×k K (2.8)

for any algebraic extension K ⊃ k, in particular for K = k̄. We refer to [9,
Chapters I,II] for the exposition above.

For a finite bundle V , denote by 〈V 〉 the tensor subcategory generated by V .

Definition 2.1. An étale finite bundle is a Nori finite bundle for which π(X, 〈V 〉, x)
is étale (equivalently is smooth). If k has characteristic p > 0, an F -finite bundle
is a Nori finite bundle for which π(X, 〈V 〉, x) is local. We denote by C ét(X), resp.
CF (X), the full tensor subcategory of CN(X) of étale, resp. F -, finite bundles.

The categories C ét(X) and CF (X) are both abelian tensor full subcategories,
thus via the fiber functor at x they yield Tannaka k-group schemes πét(X,x) and
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πF (X,x), respectively. Furthermore, one has

C ét(X) ∩ CF (X) = {trivial objects} (2.9)

where {trivial objects} means the full subcategory of CN(X) consisting of trivial-
izable bundles.

Following the method of [9, II, Proposition 5] we obtain the following lemma.

Lemma 2.2. The group schemes πét(X,x) and πF (X,x) respect base change for
algebraic extensions of k, that is 2.8 holds with N replaced by ét and F .

Remark 2.3. 1) It is shown in [7, Section 2] that a Nori finite bundle V is F -finite
if and only if there is a natural number N > 0, such that (FN

abs)
∗(V ) is trivial,

where Fabs is the absolute Frobenius.

2) If S ⊂ CN (X) is a finite subcategory, with π(X,S, x) étale, then XS is still
proper, reduced and connected. However, if π(X,S, x) is finite but not étale, XS

is still proper and connected [9, Chapter II, Proposition 3], but not necessarily
reduced. Indeed there are principal bundles Y → X under a finite local group
scheme, such that the total space Y is not reduced. We reproduce here an example
due to P. Deligne. Let k be algebraically closed of characteristic p > 0, and let
X ⊂ P2 be the union of a smooth conic X ′ and a tangent line X ′′. Thus X ′ ∩X ′′

is isomorphic to Spec k[ε]/(ε2) as a k-scheme. One constructs π : Y → X by
gluing the trivial μp-torsors X ′×k μp to X ′′×k μp along a non-constant section of
Spec k[ε]/(ε2)×kμp → Spec k[ε]/(ε2). For example, one may take the non-constant
section Spec k[ε]/(ε2) → Spec k[ε]/(ε2) ×k μp defined by k[ξ, ε]/(ξp − 1, ε2) →
k[ε]/(ε2), ξ �→ 1+ε. Then Y is projective, non-reduced, and yet fulfills the condition
H0(Y,OY ) = k.

If XS is not reduced, there is no good notion of semi-stable vector bundles on
XS . However, for later use in this article, we introduce a category F(XS) on the
principal π(X,S, x)-bundle πS : XS → X where S ⊂ CN(X) is a finitely generated
full tensor subcategory. F(XS) will play on XS the rôle CN (X) plays on X .

Definition 2.4. Let S ⊂ CN(X) be a finitely generated abelian tensor full subcat-
egory. Define F(XS) ⊂ Qcoh(XS) to be the full subcategory of Qcoh(XS), the
objects of which are quasi-coherent sheaves V on XS such that (πS)∗V ∈ CN (X).

Notice that F(XS) is an abelian category. In fact, for a morphism f : V →
W in F(XS), by the exactness of (πS)∗, we have (πS)∗Kerf = Ker((πS)∗f) ∈
CN (X), as CN(X) is full in Qcoh(X), and the same holds for imf . We will show in
Proposition 2.7 below that F(XS) is k-linear abelian rigid tensor category and its
objects are vector bundles on XS, and when π(X,S, x) is reduced F(XS) coincides
with CN (XS).
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Let S ⊂ S′ ⊂ CN (X) be finitely generated abelian tensor full subcategories.
Then one has the following commutative diagram

XS′
πS′,S ��

πS′
���

��
��

��
� XS

πS
����

��
��

��

X

(2.10)

Further one has a surjective (hence faithfully flat) homomorphism

GS′ := π(X,S′, x) → π(X,S, x) =: GS (2.11)

Lemma 2.5. The morphism πS′,S : XS′ → XS is a principal bundle under a group
GS′,S which is the kernel of the homomorphism (2.11).

Proof. It is well known that the morphism GS′ → GS is a principal bundle under
the group GS′,S. In fact, the map GS′ ×GS GS′ → GS′ ×GS′,S is given by (g, h) �→
(g, g−1h) and its inverse is given by (g, k) �→ (g, gk), where g, h ∈ GS′ , k ∈ GS′,S .
Now apply the fibre functor ηS′ to the corresponding function algebras k[GS′ ] and
k[GS ] we obtain the required isomorphism

XS′ ×XS XS′ ∼= XS′ ×GS′,S

(recall that ηS′(k[GS′ ]) is theOX -algebra that determinesXS′ , similarly ηS′(k[GS ])
= ηS [k(GS)] is the one that determines XS). �

The principal bundle πS′,S : XS′ → XS yields a tensor functor

ηS′,S : Rep(GS′,S) → Qcoh(XS), ηS′,S(V ) := XS′ ×GS′,S V. (2.12)

Lemma 2.6. The functor ηS′,S in (2.12) is fully faithful and exact. Consequently
GS′,S is isomorphic to the Tannaka group of the category im(ηS′,S).

Proof. It is enough to check that η := ηS′,S is full, i.e., any morphism η(V ) →
η(W ) in Qcoh(XS) is induced by a morphism V → W in Rep(GS′,S). This is
equivalent to showing H0(XS , η(V )) ∼= V GS′,S for any V ∈ Rep(GS′,S). Recall
that η(V ) := XS′ ×GS′,S V . Thus

H0(XS , η(V )) ∼= H0(XS′ ,OXS′ ⊗k V )GS′,S ∼= V GS′,S (2.13)

since H0(XS′ ,OXS′ ) = k. �

Proposition 2.7. The category F(XS) defined in Definition 2.4 is a Tannaka cat-
egory, whose objects are vector bundles.

Proof. We first show that for any V ∈ F(XS), there are W1, W2 ∈ CN (X) and
a morphism f : π∗SW1 → π∗SW2 in Qcoh(XS) such that V = coker(f). One takes
W2 := (πS)∗V which by definition lies in CN (X), and defines V1 to be the kernel
of the surjection π∗SW2 	 V. Then W1 := (πS)∗V1 ∈ CN(X) and f : π∗SW1 	
V1 ↪→ π∗SW2 satisfying coker(f) = V .
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Let S′ ⊂ CN(X) be the full tensor subcategory generated by W1, W2 and S.
Then the pullbacks of π∗SW1 and π∗SW2 to XS′ (under πS′,S : XS′ → XS) become
trivial, thus π∗SW1 and π∗SW2 are in the image of

ηS′,S : Rep(GS′,S)→ Qcoh(XS). (2.14)

By Lemma 2.6, the functor ηS′,S is fully faithful, thus V = coker(f) is also in the
image of ηS′,S . In particular, V is a vector bundle.

It is now easy to check that F(XS) is a k-linear abelian rigid tensor category.
Since XS has a rational point xS , F(XS) is a Tannaka category. �

Next we show F(XS) = CN (XS) when π(X,S, x) is reduced. To this aim,
recall that a bundle V on X is said to be strongly semi-stable of degree 0 if for any
non-singular projective curve C and any morphism f : C → X , the pullback f∗V is
semi-stable of degree 0 on C. It is known that strongly semi-stable bundles of degree
0 on X form a k-linear Tannaka full subcategory of Qcoh(X) [10, Theorem 3.23].
On the other hand as Nori finiteness is preserved under pull-back by any f : C →
X , we see that CN (X) is a full subcategory of the category of strongly semi-stable
bundles of degree 0.

Lemma 2.8. If π(X,S, x) is a smooth finite group scheme, and if V ∈ CN (XS),
then π∗S(πS∗V ) ∈ CN(XS) and W := πS∗V is strongly semi-stable of degree 0.

Proof. Let G := π(X,S, x), π := πS , Y := XS and y := xS . Since strong semi-
stability and Nori finiteness are compatible with base change by algebraic field
extensions of k, we can assume that k = k̄. Consider

Y ×k G

μ

��∼= ��

p1

������������� Y ×X Y ��

��
�

Y

π

��
Y π

�� X

(2.15)

where μ : Y ×k G → Y is the action of G, p1 is the projection to the first factor
and Y ×k G ∼= Y ×X Y is induced by (p1, μ). Then

π∗π∗V ∼= p1∗μ∗V =
⊕

g∈G(k)

Vg (2.16)

where Vg is the translation of V by g. Thus π∗π∗V ∈ CN (Y ).
To show that W := π∗V is strongly semi-stable, we consider the fiber square

YC

�

g ��

πC

��

Y

π

��
C

f
�� X
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So in particular, πC is still a principal bundle under G. Since π is finite, one has

f∗W = f∗(π∗V ) = πC∗(g
∗V ).

Denote VC := g∗V. Since VC ∈ CN(YC), the discussion above shows that π∗C(f∗W )
= π∗C(πC∗VC) ∈ CN (YC). In particular, π∗C(f∗W ) is semi-stable of degree 0, which
implies that f∗W is semi-stable of degree 0. Indeed, for any subbundle U ⊂ f∗W ,
the bundle π∗CU is a subbundle of π∗C(f∗W ), hence has negative degree, conse-
quently the degree of U is also negative. �

Theorem 2.9. Assume that π(X,S, x) is a smooth finite group scheme. Then F(XS)
= CN(XS) and there is an exact sequence of group schemes

1→ πN (XS , xS)→ πN (X,x) → π(X,S, x) → 1 (2.17)

Proof. By Proposition 2.7, F(XS) ⊂ CN(XS). We prove the inverse inclusion.
Thus let V ∈ CN(XS). By Lemma 2.8, W := πS∗V semi-stable of degree 0 and
π∗SW ∈ CN(XS). Let 〈W 〉 ∪ S be the full tensor subcategory generated by W and
objects of S in the Tannaka category of strongly semi-stable bundles of degree 0
and denote by G its Tannaka group with respect to the fiber functor at x. To show
W ∈ CN (X), it suffices to show that G is a finite group scheme (see construction
in (2.4)).

The full subcategory of 〈W 〉 ∪ S whose objects become trivial when pulled-
back to XS is precisely S (see (2.7)). The functor π∗S : 〈W 〉 ∪ S → 〈π∗SW 〉 yields a
sequence of homomorphisms of group schemes

1 → π(XS , 〈π∗SW 〉, xS)→ G→ π(X,S, x) → 1 (2.18)

which we claim to be exact.
The surjectivity ofG→ π(X,S, x) and the injectivity of π(XS , 〈π∗SW 〉, xS) →

G follow from the definition and A.1, (i), (ii). We show the exactness at G, using
Theorem A.1, (iii). Condition (a) in A.1, (iii), follows from (2.7).

We check condition (c). Let M ∈ 〈π∗SW 〉. By definition, M is a subquotient
of π∗SN , N ∈ 〈W 〉∪S. Thus πS∗M is a subquotient of πS∗π

∗
SN = N⊗πS∗π

∗
SOXS ∈

〈W 〉 ∪ S. Hence πS∗M lies in 〈W 〉 ∪ S. Now we have the required surjective map
π∗S(πS∗M)→M .

As for (b) we use projection formula

H0(XS , π
∗
SN) = H0(X,πS∗π

∗
SN) = HomOX (πS∗O∨

XS
, N) =

r⊕
i=1

k · φi (2.19)

where φi : (πS∗OXS )∨ → N . Let N0 =
∑

i im(φi) ⊂ N . Then N0 is in S and any
morphism φ : (πS∗OXS )∨ → N has image in N0. By comparing the ranks, we see
that π∗SN0 is the maximal trivial subbundle in π∗SN .

Thus the sequence in (2.18) is exact, hence G is finite. The exactness of (2.17)
follows from the exactness of (2.18) by taking the projective limit on S. �
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Remarks 2.10. The group scheme πét(X,x) can be considered as the k- lineariza-
tion of Grothendieck’s fundamental group ([4, Exposé V]), which we recall now.
Grothendieck considers the category of finite étale coverings of X with morphisms
being X-morphisms. A geometric point x̄ ∈ X(K) (K = K̄) defines a fiber functor
from this category to the category of finite sets: Gr : (Y π−→ X) �→ π−1(x̄). The
fundamental group π1(X, x̄) of the connected scheme X with base point x̄ is de-
fined to be the automorphism group of the fiber functor. This is a pro-finite group,
hence has a natural topology in which subgroups of finite index are open and form
a basis of topology at the unit element. The main theorem claims an equivalence
between the category of finite étale coverings and the category of finite sets with
continuous action of Gr (finite sets are endowed with discrete topology). Further
there exists a pro-finitie étale covering π̂ : X̂ → X which is universal in the sense
that

MorX(X̂, Y ) ∼= Gr(Y ) (2.20)

for any finite covering Y → X ([4, Theorem V.4.1]). One recovers the group
π1(X, x̄) as the fiber π̂−1(x̄). Notice that it suffices to check (2.20) for Galois cov-
erings Y → X .

Assume that k is moreover algebraically closed. Then the fundamental group
π1(X,x) with base point at x is called the geometric fundamental group. Upon the
algebraically closed field k, a reduced finite group scheme is uniquely determined
by its k-points, which is a finite group. Therefore for any S ⊂ C ét(X), πS : XS → X
is a Galois covering of X under the group π(X,S, x)(k). Conversely, any Galois
covering Y π−→ X under a finite group H can be considered as a principal bundle
under the constant (finite) group scheme defined by H . It is easy to check that the
covering πét : XCét(X) → X given in (2.5) satisfies the universal property (2.20).
We conclude that the group of k-points of πét(X,x) is isomorphic to π1(X,x).

If k is perfect but not algebraically closed, take X = Spec(k) with the rational
point point x = X ∈ X(k). Then C ét(X) is equivalent via the fibre functor to
Vectk, and consequently πét(X,x) = {1}. On the other hand, Grothendieck’s fun-
damental group is then Gal(k̄/k), which is highly nontrivial. However, according
to Lemma 2.2 we have an isomorphism of k̄-group schemes

πét(X ×k k̄, x×k k̄)
∼=−→ πét(X,x)×k k̄.

So we conclude in general

π1(X ×k k̄, x̄) = πét(X,x)(k̄).

The aim of our article is to understand the relationship between the groups
πN (X,x), πét(X,x) and πF (X,x). We first notice that Theorem A.1, (i), applied
to the full subcategories C ét(X)→ CN(X), resp. CF (X)→ CN(X), shows that the

restriction homomorphisms πN (X,x) rét

−−→ πét(X,x), resp. πN (X,x) rF

−−→ πF (X,x)
are faithfully flat.
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Notation 2.11. We set L(X,x) = Ker(πN (X,x) → πét(X,x)).

3. The representation category of the difference between Nori’s
fundamental group scheme and it’s étale quotient

We continue to fix X/k and x ∈ X(k) as in section 2. The purpose of this section
is to determine the representation category of the kernel L of the map πN (X,x) →
πét(X,x). To this aim, we first observe the following.

Lemma 3.1. The group scheme πét(X,x) is the largest quotient pro-finite group
scheme of πN (X,x) which is reduced.

Proof. For S ⊂ CN (X) an abelian tensor full subcategory generated by finitely
many objects we set

S ét := S ∩ C ét(X), (3.1)

i.e., the full subcategory consisting of objects in CN(X), isomorphic both to an
object in S and an object in C ét(X). Thus π(X,S ét, x) is a reduced quotient of
π(X,S, x). We claim that this is the largest quotient of π(X,S, x).

Tannaka duality shows that any quotient map π(X,S, x) 	 H of group
schemes over k yields a fully faithful functor from Rep(H) to CN(X) with im-
age, say (H), lying in S, and consequently yielding an H-principal bundle π(H) :
X(H) → X which is proper, connected, with a rational point x(H) mapping to x,
so that V ∈ (H) if and only if π∗(H)(V ) is trivial. If H is reduced then (H) consists
only of étale finite bundles, thus (H) ⊂ S ét. Hence π(X,S, x) → H factors through
π(X,S, x) → π(X,S ét, x) → H . This shows that π(X,S ét, x) is the maximal re-
duced quotient of π(X,S, x). Now the claim of Lemma follows by passing to the
limit. �

In the rest of this section, S will denote a finitely generated tensor subcate-
gory of C ét(X). Thus πS : XS → X is étale and XS is reduced.

Proposition 3.2. Let X be a proper reduced connected scheme defined over a perfect
field k. Let V be an F -finite bundle on X. Then

π∗S : H0(X,V )→ H0(XS , π
∗
SV )

is an isomorphism.

Proof. To simplify the notations, we set Y := XS, π := πS . Let V0 be the maximal
trivial subobject of V . Since π is étale, the bundles associated to π∗OY , and
therefore to (π∗OY )∨, are étale finite. The image under a morphism of (π∗OY )∨

to V is therefore at the same time étale- and F -finite, hence (see (2.9)) lies in the
maximal trivial subobject V0 of V . By projection formula we have

H0(Y, π∗V ) = H0(X, (π∗OY )⊗ V ) ∼= HomX((π∗OY )∨, V ) (3.2)

⊂ HomX((π∗OY )∨, V0) ∼= H0(Y, π∗V0) = H0(X,V0).
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as H0(Y,OY ) = k by (2.6). Hence

H0(X,V0) ⊂ H0(X,V ) ⊂ H0(Y, π∗V ) ⊂ H0(Y, π∗V0) = H0(X,V0), (3.3)

so one has everywhere equality. �

Denote by S ét the directed system of finitely generated tensor subcategories
of C ét(X) with respect to the inclusion

S ét =
{
S ⊂ C ét(X), finitely generated

}
. (3.4)

Let X̃ ét → X denote the universal pro-étale covering associated to πét(X,x),
defined similarly as in (2.5). Thus

X̃ ét = lim←−
S∈Sét

XS , π̃S : X̃ 	 XS . (3.5)

By means of Proposition 3.2 we have the following isomorphism for any V ∈
CF (XS),

H0(XS , V ) ∼= H0(X̃, π̃∗SV ). (3.6)

Definition 3.3. The category D has for objects pairs (XS , V ) where S ∈ S ét,
V ∈ CF (XS), and for morphisms

Hom((XS1 , V ), (XS2 ,W )) := HomX̃(π̃∗S1
V, π̃∗S2

W ).

For any two abelian tensor full subcategories S1, S2 ∈ S ét, denote S1 ∪ S2

the abelian tensor full subcategory generated by objects of S1 and S2. One has
S1 ∪ S2 ∈ S ét. We also extend this notation for several subcategories.

Proposition 3.4. The category D is an abelian, rigid k-linear tensor category, with
the tensor structure defined by

(XS1 , V )⊗ (XS2 ,W ) = (XS1∪S2 , π
∗
S1∪S2,S1

(V )⊗ π∗S1∪S2,S2
(W )) (3.7)

The functor

ω : D → Vectk, (XS , V ) �→ V |xS (3.8)

makes D a Tannaka category.

Proof. We define the kernel, the image and the cokernel of a homomorphism f :
(XS1 , V ) → (XS2 ,W ) in D as follows. By means of (3.6), one has an isomorphism

HomX̃ ét(π̃∗S1
V, π̃∗S2

W ) ∼= HomXS (π∗S1∪S2,S1
V, π∗S1∪S2,S2

W ), (3.9)

under which f corresponds to fS . Then the kernel, image and cokernel of f are
defined to be the kernel, image and cokernel of fS respectively. It is clear that D
is an abelian category.

The unit object is (X,OX), the endomorphism ring of the unit object is thus
k. The dual object is given by (XS , V )∨ = (XS , V

∨). �



On Nori’s Fundamental Group Scheme 389

We observe that (XS ,OXS ) is isomorphic to (X,OX) in D. More generally,
for S1 ∈ S ét,

(XS1 , V ) is isomorphic to (XS1∪S2 , π
∗
S1∪S2,S1

V ) in D for all S2 ∈ S ét. (3.10)

For V ∈ CN (X), the category 〈V 〉ét is defined as in (3.1). According to Lemma
2.5, for S′ = 〈V 〉 and S = 〈V 〉ét, X〈V 〉 → X〈V 〉ét is a principal bundle under the
group H = Ker(G〈V 〉 → G〈V 〉ét), which, according to the proof of Lemma 3.1,
is a local group. Therefore π∗〈V 〉ét(V ) is an F -finite bundle on X〈V 〉ét . Define the
functor

q : CN (X)→ D, V �→ (X〈V 〉ét , π∗〈V 〉ét(V )). (3.11)

Then q is an exact tensor functor which is compatible with the fiber functors ω
and |x. Thus q yields a homomorphism of group schemes

q∗ : G(D) → πN (X,x). (3.12)

Denote by G(D) the Tannaka group scheme over k with respect to ω. The functor
q has the property that V ∈ CN (X) is étale finite if and only if q(V ) is trivial in
D. Therefore the composition

G(D)
q∗
−→ πN (X,x)→ πét(X,x) (3.13)

is the trivial homomorphism. That is q∗ factors though a homomorphism (denoted
by the same letter) to L (see Notation 2.11).

Theorem 3.5. The representation category of the kernel L(X,x) of the homomor-
phism rét : πN (X,x)→ πét(X,x) is equivalent to D by means of the functor q.

Proof. We show that the sequence of k-group schemes (3.13) is exact. We shall use
the criterion given in Theorem A.1, (iii). Condition (a) there is satisfied by (2.8).

Let (XS , V ) be an object in D. Then, by Theorem 2.9, W := (πS)∗V is an
object in CN (X). Moreover one has a surjection q(W ) 	 (XS , V ) in D. Thus every
object of D is a quotient of the image by q of an object in CN (X). Condition (c)
of A.1, (iii), is satisfied.

It remains to check condition (b) of A.1, (iii). For V ∈ CN (X) set S = 〈V 〉ét

then q(V ) = (XS , π
∗
SV ). Applying projection formula we obtain

H0(XS , π
∗
S(V )) = HomOX ((πS∗OXS )∨, V ) =

r⊕
i=1

k · ϕi, (3.14)

where ϕi : (πS∗OXS )∨ → V . Let Vét ⊂ V be the image of

⊕r
1ϕi :

r⊕
1

(πS∗OXS )∨ → V. (3.15)

As (πS∗OXS )∨ is étale finite, Vét is étale finite and lies in S, hence π∗SVét is a trivial
bundle by (2.7). Thus q(Vét) is a trivial subobject of q(V ). We show that it is the
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largest one. By the definition of Vét, one has

H0(X, (πS∗OXS )⊗ V ) = H0(X, (πS∗OXS )⊗ Vét). (3.16)

Applying the projection formula again, one has

H0(X, (πS∗OXS )⊗ Vét) = H0(XS , π
∗
S(Vét)). (3.17)

That is, q(Vét) is the maximal trivial subobject of q(V ). �

Our next aim is to study the kernel of rét × rF . For this we shall need a
strengthening of Proposition 3.2.

Proposition 3.6. Let S ⊂ C ét(X) be a finitely generated tensor subcategory. Then
the homomorphism of group schemes πF (XS , xS) → πF (X,x) induced by π∗S is
surjective.

Proof. To simplify notations, we set Y := XS , π := πS in the proof. According to
Lemma 2.2 if suffices to consider the case where k is algebraically closed. According
to Theorem A.1, (i), one has to show that for any V ∈ CF (X) and any inclusion
ϕ : W ↪→ π∗V in CF (XS), there exists an inclusion ι : V0 ↪→ V in CF (X), such
that ϕ = π∗ι : π∗V0 → π∗V . We first assume that W is simple. The bundle V
has a decomposition series V0 ⊂ V1 ⊂ . . . ⊂ VN = V with Vi/Vi−1 simple. Then
there exists an index i such that the image of ϕ(W ) in π∗(Vi/Vi−1) is not zero.
Thus we may assume that V itself is simple. It suffices now to show that ϕ is an
isomorphism.

Using the adjointness between π∗ and π∗ we have

HomXS (W,π∗V ) ∼= HomXS (π∗V ∨,W∨) ∼= HomX(V ∨, π∗(W∨)) (3.18)
∼= Hom((π∗(W∨))∨, V ).

Thus ϕ corresponds to a non-zero morphism ψ : π∗(W∨)∨ → V . Since V is simple,
ψ is surjective and hence so is π∗ψ : π∗π∗(W∨)∨ → π∗V . On the other hand, as
in Lemma 2.8, we have

π∗π∗W =
⊕

g∈G(k)

Wg. (3.19)

Since W is simple, so are Wg, g ∈ G(k). This shows that π∗V , being a quotient of
a direct sum of simple objects, is semi-simple. According to Proposition 3.2, π∗V
has to be simple. Therefore W = π∗V .

The general case follows by induction on the length of the decomposition
of W . �

Corollary 3.7. The natural map πN (X,x) rét×rF

−−−−−→ πét(X,x)× πF (X,x) is surjec-
tive and in general not an isomorphism.

Proof. In fact, the surjectivity of rét×rF holds for any pro-finite group, as it holds
for finite groups. In our case this can also be seen from the proof of Proposition
3.6.



On Nori’s Fundamental Group Scheme 391

The claim of the corollary is equivalent to showing that the induced homomor-
phism rF |L : L(X,x)→ πF (X,x) is surjective and not necessarily an isomorphism.
This homomorphism is Tannaka dual to the restriction q|CF (X) : CF (X) → D, for
functor q defined in (3.11), which is the identity functor q|CF (X)(V ) = (X,V ).
Now the proof of Proposition 3.6 and the injectivity criterion A.1, (ii), prove the
corollary.

It remains to exhibit an example when rF |L is not an isomorphism. According
to the discussion above, this amounts to finding an F -finite bundle on XS which
does not come from X . By [11], Théorème 4.3.1, if X is a smooth projective curve
of genus g ≥ 2 over an algebraic closed field k of characteristic p > 0, then for
� �= p prime with �+ 1 ≥ (p− 1)g, there is a cyclic covering π : Y → X of degree
� (thus étale), such that Pic0(Y )/Pic0(X) is ordinary. Since π is Galois cyclic of
order �, it is defined as SpecX(⊕�−1

0 Li) for some L étale finite of rank 1 over X
and of order �, thus π = π〈L〉 and Y = X〈L〉. We conclude that there are p-power
torsion rank 1 bundles on X〈L〉 which do not come from X . �

4. The representation category of the difference between Nori’s
fundamental group and the product of its étale and local
quotients

The aim of this section is to describe the representation category of the kernel
of the homomorphism rét × rF . Recall that X is a reduced proper scheme over a
perfect field of characteristic p > 0 with a rational point x ∈ X(k) and is connected
in the sense that H0(X,OX) = k.

In order to determine the representation category E of the kernel of rét × rF
we shall need an auxiliary category E(XS∪T ), where S is a finitely generated tensor
full subcategory of C ét(X) and T is a finitely generated tensor full subcategory of
CF (X).

Definition 4.1. For S a finitely generated tensor subcategory of C ét(X) and T
a finitely generated tensor full subcategory of CF (X), one defines E(XS∪T ) ⊂
F(XS∪T ) (for the definition of F(XS ∪ T ), see Definition 2.4) to be the full sub-
category whose objects V have the property that (πS∪T,S)∗V ∈ CF (XS).

Denote by T � the directed system of finitely generated tensor subcategories
of CF (X) with respect to inclusion

T � :=
{
T ⊂ CF (X), finitely generated

}
. (4.1)

Lemma 4.2. Let S ⊂ S′ ∈ S ét, T ⊂ T ′ ∈ T � and V ∈ E(XS∪T ). Then:
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1) The following commutative diagram is cartesian:

XS′∪T

πS′∪T,S′
��

πS′∪T,S∪T

��

XS′

πS′,S

��
XS∪T πS∪T,S

�� XS

2) E(XS∪T ) is a k-linear abelian, rigid tensor category.
3) π∗S∪T ′,S∪TV ∈ E(XS∪T ′).
4) π∗S′∪T,S∪TV ∈ E(XS′∪T ).
5) The canonical homomorphism

H0(XS∪T , V ) → H0(XS′∪T , π
∗
S′∪T,S∪TV ) (4.2)

is an isomorphism.

Proof. 1) We first show that the following commutative diagram

XS∪T

πS∪T,S ��

πS∪T,T

��

XS

πS

��
XT πT

�� X

(4.3)

is cartesian. Indeed, πS : XS → X is a principal bundle under π(X,S, x), and
similarly for πT , πS∪T . So the assertion is equivalent to showing that the natural
homomorphism

π(X,S ∪ T, x)→ π(X,S, x) × π(X,T, x) (4.4)

induced by the embeddings S ⊂ (S ∪ T ), T ⊂ (S ∪ T ) of categories is an iso-
morphism. Since π(X,S, x) (resp. π(X,T, x)) is a reduced (resp. local) quotient of
π(X,S ∪ T, x), (4.4) is surjective. On the other hand, by definition, every object
in S ∪ T is a subquotient of tensors of objects in S and objects in T , thus by A.1,
(ii), (4.4) is injective. Therefore we have

XS′ ×XS XS∪T = XS′ ×XS (XS ×X XT ) = XS′∪T . (4.5)

This shows 1).
2) Note that πS∪T,S : XS∪T → XS is a principal π(X,T, x)-bundle since (4.3)

is cartesian, thus (πS∪T,S)∗OXS∪T is F -finite onXS . The pullback by πS∪T,S of any
F -finite bundle on XS lies in E(XS∪T ). Then it is easy to write any V ∈ E(XS∪T )
as a cokernel of a morphism π∗S∪T,SW1 → π∗S∪T,SW2, where W1, W2 ∈ CF (XS).
Thus 2) follows.

3) and 4) are easy by chasing diagrams and using the projection formula, as
we did already many times.
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To show 5), one uses Proposition 3.2 and the projection formula

H0(XS′∪T , π
∗
S′∪T,S∪TV ) = H0(XS′ , (πS′∪T,S′)∗π∗S′∪T,S∪TV ) (4.6)

= H0(XS′ , π∗S′,S(πS∪T,S)∗V )
(Prop. 3.2)

= H0(XS , (πS∪T,S)∗V ) = H0(XS∪T , V ).

�

Fix S in S ét and consider the principal bundle XS∪CF (X) associated to S ∪
CF (X), that is

XS∪CF (X) = lim←−
T∈T 

XS∪T , π̃S,T : XS∪CF (X) 	 XS∪T . (4.7)

The cartesian diagram in (4.3) implies that XS∪CF (X) is the product of XS with
X̃F = XCF (X) over X . For each V ∈ E(XS∪T ), set

H0
T (XS∪T , V ) := H0(XS∪CF (X), π̃

∗
S,TV ). (4.8)

Recall that (2.6) implies that H0(XS∪CF (X),O) = k. Consequently, the k-vector
space H0(XS∪CF (X), π̃

∗
S,TV ) is finite dimensional and one has

H0(XS∪CF (X), π̃
∗
S,TV ) = lim−→

T⊂T ′∈T 

H0(XS∪T ′ , π∗S∪T ′,S∪TV ). (4.9)

So in fact,

H0(XS∪CF (X), π̃
∗
S,TV ) = H0(XS∪T ′ , π∗S∪T ′,S∪TV ) for some T ′ ⊃ T, T ′ ∈ T �.

(4.10)

Denote U := C ét(X) ∪ CF (X) and XU the associated principal bundle. Thus

XU = lim←−
S∈Sét

T∈T 

XS∪T , π̃S∪T : XU 	 XS∪T . (4.11)

Then for any bundle V ∈ E(XS∪T ) we have, by means of (4.2),

H0(XU , π̃
∗
S∪TV ) ∼= H0

T (XS∪T , V ). (4.12)

Definition 4.3. The category E has for objects pairs (XS∪T , V ), where S ∈ S ét,
T ∈ T � and V ∈ E(XS∪T ), and for morphisms

HomE((XS1∪T1 , V ), (XS2∪T2 ,W )) := HomXU (π̃∗S1∪T1
V, π̃∗S2∪T2

W ). (4.13)

Proposition 4.4. The category E in Definition 4.3 is a Tannaka cateogry over k,
with tensor product defined by (S := S1 ∪ S1, T := T1 ∪ T2)

(XS1∪T1 , V )⊗ (XS2∪T2 ,W ) := (XS∪T , π
∗
S∪T,S1∪T1

(V )⊗ π∗S∪T,S2∪T2
(W ))

the unit object is (X,OX), and a fiber functor

E → Vectk, (XS∪T , V ) �→ V |xS∪T . (4.14)
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Proof. We first show that E is an abelian category. The kernel, image and cok-
ernel of a morphism f : ((XS1∪T1 , V ), (XS2∪T2 ,W )) are defined as follows. Set
S := S1 ∪ S2, T := T1 ∪ T2. By means of (4.12), f corresponds to an ele-
ment fS of H0

T (XS∪T , π
∗
S∪T,S1∪T1

V ∨ ⊗ π∗S∪T,S2∪T2
W ), which by means of (4.10)

is represented by an element fS∪T ′ in HomXS∪T ′ (π∗S∪T ′,S1∪T1
V, π∗S∪T ′,S2∪T2

W ).
Now we define the kernel, image and cokernel of f to be the kernel, image and
cokernel of fS∪T ′ respectively. It is clear that E is thus an abelian category.
With respect to the tensor product in E , the dual of an object is defined by
(XS∪T , V )∨ = (XS∪T , V

∨). �
One notices that the kernel (image, cokernel) of f does depend on the choice

of T ′, in particular, for an object (XS∪T , V ) in E , and for any T ′ ∈ T �, T ′ ⊃ T
(XS∪T , V ) is isomorphic with (XS∪T ′ , π∗S∪T ′,S∪T (V )) in E . (4.15)

Let G(E , x) be the Tannaka group scheme of E with respect to the given fiber
functor. Consider the tautological functor p : D → E , (XS , V ) �→ (XS , V ) which is
clearly compatible with the fiber functors of D and E . It yields a homomorphism
p∗ : G(E , x) → L(X,x) which is clearly injective.

Theorem 4.5. The k-group scheme homomorphism q∗ : G(E , x) → L(X,x) is the
kernel of the homomorphism L(X,x) → πF (X,x) and consequently is the kernel
of rét × rF : πN (X,x) → πét(X,x)× πF (X,x). In other words the representation
category of Ker(rét × rF ) is equivalent to E.
Proof. We use Theorem A.1, (iii), to show that the sequence

G(E) → L(X,x)→ πF (X,x) (4.16)

is exact.
If (XS∪T , V ) is an object in E , then

π∗S∪T,S(πS∪T,S)∗V 	 V (4.17)

and since (XS , (πS∪T,S)∗V ) is an object of D, every object of E is the quotient of
an object coming from D via q. Thus condition (c) in A.1, (iii), is fulfilled.

The maximal trivial subobject of (XS , V ) in E is an object (XS∪T , V0) for
some T ∈ T � and V0 is the maximal trivial subobject of π∗S∪T,S(V ) in E(XS∪T ).
Proposition 4.6 below shows that there exists an F -finite bundle W ∈ T on X and
an inclusion j : π∗SW ↪→ V , such that

π∗S∪T,S(j) : π∗S∪TW
∼= V0.

Thus condition (b) in A.1, (iii), is fulfilled.
Finally recall that the homomorphism L(X,x) → πF (X,x) is induced from

the functor CF (X,x) → D, V �→ (X,V ). On the other hand the above discussion
also shows that (XS , V ) is trivial if and only if the inclusion j : π∗SW → V is
an isomorphism, that is (XS , V ) is isomorphic to (X,W ) in D (see 3.10). Thus
condition (a) is also fulfilled. �

It just remains to prove
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Proposition 4.6. Let V ∈ CF (XS), and V0 ⊂ π∗S∪T,S(V ) be the maximal trivial
subobject of π∗S∪T,S(V ) in E(XS∪T ). Then there exists an F -finite bundle W ∈ T
on X equipped with an inclusion j : π∗S(W ) ↪→ V such that

π∗S∪T,S(j) : π∗S∪T (W ) = V0 ⊂ π∗S∪T,S(V ).

Proof. Using the Cartesian diagram (4.3), we have

H0(XS∪T , π
∗
S∪T,SV ) ∼= H0(XT , πS∪T,T∗π

∗
S∪T,SV ) (4.18)

(4.3)∼= H0(XT , π
∗
TπS∗V ) ∼= H0(X,πT ∗OXT ⊗ πS∗V )

∼= HomX((πT ∗OXT )∨, πS∗V ) = ⊕r
1k · ϕi

for some morphisms ϕi : (πT ∗OXT )∨ → πS∗V . Let W ⊂ πS∗V be the image of

⊕r
1ϕi : ⊕r

1(πT ∗OXT )∨ → πS∗V. (4.19)

Then W is trivializable by πT and in particular W ∈ T is F -finite. We show that
the map j : π∗SW → V , induced from the inclusion i :W ↪→ πS∗V , is injective.

Indeed, let V ′ = imj ⊂ V thus V ′ is a quotient of π∗SW and according
to Proposition 3.6 and Theorem A.1, (i), we conclude that there is a quotient
q : W → W ′ of W such that the quotient map π∗W → V ′ is the pull-back π∗Sq :
π∗SW → π∗SW ′. Now the inclusion π∗SW

′ = V ′ ⊂ V corresponds to a morphism
i′ :W ′ → V which is compatible with i in the sense that i = i′ ◦ q. By assumption
q is surjective and i is injective, hence i′ is an isomorphism, consequently j is
injective.

On the other hand, one has from (4.19)

HomX((πT ∗OXT )∨, πS∗V ) = HomX((πT ∗OXT )∨,W ) (4.20)

Thus

H0(XS∪T , π
∗
S∪T,SV ) = H0(XT , π

∗
TW ) = H0(XS∪T , π

∗
S∪TW ) (4.21)

which means that π∗S∪T (W ) = V0 ⊂ π∗S∪T,S(V ). �
Remark 4.7. Using Proposition 2.7, replacing X by XS and XS by XS∪T , one
sees that the objects of E(XS∪T ) are precisely those bundles which come from a
representation of a local fundamental group over k.

Appendix A. Exact sequences of Tannaka group schemes

In this appendix, we summarize the material on Tannaka categories which we used
throughout the article. The statements and their proofs are taken from [3], but for
the reader’s convenience, we gather the information in a compact form here.

Let L
q−→ G p−→ A be a sequence of homomorphism of affine group scheme over

a field k. It induces a sequence of functors

Rep(A)
p∗
−→ Rep(G)

q∗
−→ Rep(L) (A.1)

where Rep denotes the category of finite-dimensional representations over k.
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Theorem A.1. With the above settings we have
(i) The map p : G→ A is faithfully flat (and in particular surjective) if and only

if p∗Rep(A) is a full subcategory of Rep(G), closed under taking subquotients.
(ii) The map q : L→ G is a closed immersion if and only if any object of Rep(L)

is a subquotient of an object of the form q∗(V ) for some V ∈ Rep(G).
(iii) Assume that q is a closed immersion and that p is faithfully flat. Then the

sequence L
q−→ G

p−→ A is exact if and only if the following conditions are
fulfilled:
(a) For an object V ∈ Rep(G), q∗(V ) in Rep(L) is trivial if and only if
V ∼= p∗U for some U ∈ Rep(A).

(b) Let W0 be the maximal trivial subobject of q∗(V ) in Rep(L). Then there
exists V0 ⊂ V in Rep(G), such that q∗(V0) ∼=W0.

(c) Any W in Rep(L) is embeddable in (hence, by taking duals, a quotient
of) q∗(V ) for some V ∈ Rep(G).

Proof. The statements (i) and (ii) are due to Saavedra [12]. We refer also to [1,
Proposition 2.21] for a nice proof. We show (iii).

Assume that q : L→ G is the kernel of p : G→ A. Then (a), (b) follow from
the well-known properties of normal subgroups (cf. [13, Chapter 13]). It remains
to show (c).

Let Ind : Rep(L) → Rep(G) be the induced representation functor, it is the
right adjoint functor to the restriction functor Res : Rep(G) → Rep(L) that is,
one has a functorial isomorphism

HomG(V, Ind(W ))
∼=−→ HomL(Res(V ),W ). (A.2)

It is easy to check

Ind(W ) ∼= (k[G]⊗k W )L (A.3)

where L acts on k[G] on the right. It is well known that k[G] is faithfully flat over
it subalgebra k[A] ([13, Chapter 13]) and there is the following isomorphism

k[G]⊗k[A] k[G] ∼= k[L]⊗k k[G] (A.4)

which precisely means that G→ A is a principal bundle under L. Consequently

k[G]⊗k[A] Ind(W ) ∼= k[A]⊗k V (A.5)

Thus the functor Ind : Rep(L)→ Rep(G) is exact.
Setting V = Ind(W ) in (A.2), one obtains a canonical map uW : Ind(W ) →

W in Rep(L) which gives back the isomorphism in (A.2) as follows:

HomG(V, Ind(W )) � h �→ uW ◦ h ∈ HomL(Res(V ),W ).

The map uW is non-zero whenever W is non-zero. Indeed, since Ind is faithfully
exact, Ind(W ) is non-zero whenever W is non-zero. Thus, if uW = 0, then both
sides of (A.2) were zero for any V . On the other hand, for V = Ind(W ), the right
hand side contains the identity map. This show that uW can’t vanish.
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We want to show that uW is always surjective. Let U = Im(uW ) and T =
W/U . We have the following diagram

0 �� Ind(U) ��

uU

��

Ind(W ) ��

uT

��

Ind(T ) ��

uW

��

0

0 �� U �� W �� T �� 0

(A.6)

By assumption, the composition Ind(W ) 	 Ind(T ) → T is 0, therefore Ind(T ) →
T is a zero map, implying T = 0.

Since Ind(W ) is the union of its finite-dimensional subrepresentations, we can
find a finite-dimensional G-subrepresentation W0(W ) of Ind(W ) which still maps
surjectively on W . In order to obtain the statement on the embedding of W , we
dualize W0(W∨) 	 W∨.

Conversely, assume that (a), (b), (c) are satisfied. Then it follows from (a)
that for U ∈ Rep(A), q∗p∗(U) ∈ Rep(L) is trivial. Hence pq : L → A is the
trivial homomorphism. Recall that by assumption, q is injective, p is surjective.
Let q̄ : L̄→ G be the kernel of p. Then we have commutative diagram

L
i ��

q
���

��
��

��
L̄

q̄		��
��

��
�

G

⇐⇒ Rep(L) Rep(L̄)i∗



Rep(G)
q∗

������������ q̄∗

�����������

(A.7)

with injective homomorphisms. It remains to show that i is surjective, which
amounts to saying that the category i∗Rep(L̄) in Rep(L) is full and closed un-
der taking subquotients.

We first show the fullness. Let W̄0, W̄1 be objects in Rep(L̄) and ϕ : W0 :=
i∗(W̄0)→ i∗(W̄1) =:W1 be a morphism in Rep(L). Since Rep(L̄) also satisfies (c),
there exists V0, V1 in Rep(G) with a surjective morphism π : q̄∗(V0) → W̄0, and
an injective morphism ι : W̄1 → q̄∗(V1). These yield a morphism

ψ := i∗(ι)ϕi∗(π) : q∗(V0)→ q∗(V1) (A.8)

The morphism ψ induces and element in H0(L, q∗(V ∨
0 ⊗ V1)). Now, by (b) and

by the fact that Rep(L̄) also satisfies (b) we conclude that ψ = i∗(ψ̄), for some
ψ̄ : q̄∗(V0) → q̄∗(V1). Since ι is injective and π is surjective, we conclude that
ϕ = ϕ̄, for some ϕ̄ : W̄0 → W̄1 in Rep(L̄). Thus the category i∗Rep(L̄) is full in
Rep(L).

On the other hand, for any W ∈ Rep(L), by (c) there exist V0, V1 in Rep(G)
and ϕ : q∗(V0) → q∗(V1) such that W ∼= imϕ. By the fullness of i∗Rep(L̄) in
Rep(L), ϕ = i∗ϕ̄, hence W ∼= i∗(imϕ̄). Thus we have proved that any object in
Rep(L) is isomorphic to the image under i∗ of an object in Rep(L̄). Together with
the discussion above this implies that L ∼= L̄. �
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The Reidemeister Number of Any
Automorphism of a Baumslag–Solitar
Group is Infinite

Alexander Fel’shtyn and Daciberg L. Gonçalves

Abstract. Let φ : G → G be a group endomorphism where G is a finitely
generated group of exponential growth, and let R(φ) denote the number of
φ-conjugacy classes. Fel’shtyn and Hill [10] conjectured that if φ is injective,
then R(φ) is infinite. In this paper, we show that the conjecture holds for
the Baumslag-Solitar groups B(m,n), where either |m| or |n| is greater than
1 and |m| �= |n|. We also show that in the cases where |m| = |n| > 1 or
mn = −1 the conjecture is true for automorphisms. In addition, we derive
few results about the coincidence Reidemeister number.

Mathematics Subject Classification (2000). 20E45, 37C25, 55M20.

Keywords. Reidemeister number, twisted conjugacy classes, Baumslag-Solitar
groups.

1. Introduction

J. Nielsen introduced the fixed point classes of a surface homeomorphism in [28].
Subsequently, K. Reidemeister [29] developed the algebraic foundation of the Niel-
sen fixed point theory for any map of any compact polyhedron. As a result of
Reidemeister’s work, the twisted conjugacy classes of a group homomorphism were
introduced. It turns out that the fixed point classes of a map can easily be iden-
tified with the conjugacy classes of lifting of this map to the universal covering
of compact polyhedron, and conjugacy classes of lifting can be identified with
the twisted conjugacy classes of the homomorphism induced on the fundamental

This work was initiated during the visit of the second author to Siegen University from September
13 to September 20, 2003. The visit was partially supported by a grant of the “Projeto temático
Topologia Algébrica e Geométrica-FAPESP”. The second author would like to thank Professor
U. Koschorke for making this visit possible and for the hospitality.
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group of the polyhedron. Let G be a finitely generated group and let φ : G → G
be an endomorphism. Two elements α, α′ ∈ G are said to be φ-conjugate if there
exists γ ∈ G with α′ = γαφ(γ)−1. The number of φ-conjugacy classes (or twisted
conjugacy classes) is called the Reidemeister number of an endomorphism φ,
denoted by R(φ). If φ is the identity map, then the φ-conjugacy classes are the
usual conjugacy classes in the group G. Let X be a connected compact polyhedron
and f : X → X be a continuous map. The Reidemeister number R(f), which is
simply the cardinality of the set of φ-conjugacy classes where φ = f# is the
induced homomorphism on the fundamental group, is relevant for the study of
fixed points of f in the presence of the fundamental group. In fact the finiteness
of Reidemeister number plays an important rôle. See for example [32], [19], [10],
[13] and the introduction of [18].

A current important problem concerns obtaining a twisted analogue of the
celebrated Burnside-Frobenius theorem [10, 12, 14, 11, 13]. For this purpose it
is important to describe the class of groups G, such that R(φ) = ∞ for any
automorphism φ : G → G. A. Felshtyn and R. Hill [10] made first attempts to
localize this class of groups.

Later it was proved in [7, 27] that the non-elementary Gromov hyperbolic
groups belong to this class. Furthermore, using the co-Hofian property, it was
shown in [7] that, if in addition G is torsion-free and freely indecomposable, then
R(φ) is infinite for every injective endomorphism φ. This result gives supportive
evidence to a conjecture of [10] which states that R(φ) = ∞ if φ is an injec-
tive endomorphism of a finitely generated torsion-free group G with exponential
growth.

This conjecture was shown to be false in general. In [18] were constructed
automorphisms φ : G → G on certain finitely generated torsion-free exponential
growth groups G that are not Gromov hyperbolic with R(φ) <∞.

In the present paper we study this problem for a family of finitely generated
groups which have exponential growth but are not Gromov hyperbolic. These
are the Baumslag-Solitar groups, which we now define. Being indexed by pairs of
integer numbers different from zero, they have the following presentation:

B(m,n) = 〈a, b : a−1bma = bn〉,m, n �= 0.

The present work extends substantially in several directions the preliminary results
obtained in [8], and simplifies some of the proofs.

The family of the Baumslag-Solitar groups has different features from the one
given in [18], which is a family of groups which are metabelian having as the kernel
the group Zn. Hence they contain a subgroup isomorphic to Z + Z. In the case of
Baumslag-Solitar groups this happens if, and only if, m = n. For m = n = 1 the
group B(1, 1) = Z+ Z does not have exponential growth and it is also known that
there are automorphisms φ : B(1, 1) → B(1, 1) with R(φ) < ∞. For more details
about these groups B(m,n) see [1, 5].
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Some results in this work could be obtained by means of the classification of
some of the endomorphisms of a Baumslag-Solitar group (for those, see [16] and
[25]). We use only one direct consequence of the main result of [25] which concerns
injective homomorphisms.

Our main results are:

Theorem. For any injective endomorphism of B(m,n) where |n| �= |m| and |nm| �=
0, the Reidemeister number is infinite. For any automorphism of B(m,n) where
0 < |m| = |n| and mn �= 1, the Reidemeister number is also infinite.

This result summarizes the results of Theorems 3.4, 4.4, , 5.4, 6.4 and Propo-
sition 5.1 for the various values of m and n.

Theorem 7.1. The coincidence Reidemeister number is infinite for any pair of
injective endomorphisms of the group B(m,n), where |n| �= |m| and |nm| �= 0.

We do not know if Theorems 5.4 and 6.4 are also true for injective homomor-
phisms. See Remarks 5.5 and 6.5.

We say that a group G has property R∞ if any of its automorphisms φ
has R(φ) = ∞. After the preprint (in arXiv: math.GR-0405590) of this article
was circulate, it was proved that the following groups have property R∞ : (1)
generalized Baumslag-Solitar groups, that is, finitely generated groups which act
on a tree with all edge and vertex stabilizers infinite cyclic [26]; (2) lamplighter
groups Zn ) Z iff 2|n or 3|n [20]; (3) the solvable generalization Γ of BS(1, n)
given by the short exact sequence 1 → Z[ 1

n ] → Γ → Zk → 1 as well as any
group quasi-isometric to Γ [30]; (4) groups which are quasi-isometric to BS(1, n)
[31] (while this property is not a quasi-isometry invariant); (5) saturated weakly
branch groups (including the Grigorchuk group and the Gupta-Sidki group) [15];
(6) the R. Thompson’s groups [2].

We would like to complete the introduction with the following conjecture.

Conjecture 1.1. Any relatively hyperbolic group has property R∞. In particular,
any Kleinian group has property R∞.

This paper is organized into six sections besides this one. In Section 2, we
make some simple reduction of the problem to certain cases and develop some
preliminaries about the Reidemeister classes of a pair of homomorphisms between
short exact sequences. In Section 3, we study the case B(±1, n) for |n| > 1, with
main result Theorem 3.4. In Section 4, we consider the cases B(m,n) for 1 <
|m| �= |n| > 1, with main result Theorem 4.4. In Section 5, we consider the cases
B(m,−m) for |m| > 0, with main results Propositon 5.1 and Theorem 5.4. In
Section 6 we consider the cases B(m,m) for |m| > 1, with main result Theorem
6.4. In Section 7 we derive few results about the coincidence Reidemeister number,
with main result Theorem 7.1.
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Acknowledgments. The authors would like to thank G. Levitt for his helpful com-
ments improving an earlier version of this manuscript. The first author would like
to thank B. Bowditch, T. Januszkiewicz, M. Kapovich and E. Troitsky for stim-
ulating discussions and comments. The second author would like to express his
thanks to D. Kochloukova for very helpful discussions.
The first author would alsom like to thank the Max-Planck-Institute für Mathe-
matik, Bonn for its kind hospitality and support.

This article is dedicated to the memory of Sasha Reznikov.

2. Generalities and Preliminaries

In this section we first describe few elementary properties of the groups B(m,n) in
order to reduce our problem to certain cases. Then we recall some facts about the
Reidemeister classes of a pair of homomorphisms of a short exact sequence. Recall
that a group G has property R∞ if any of its automorphisms φ has R(φ) = ∞.

Recall that the Baumslag-Solitar groups are indexed by pairs of integer num-
bers different from zero and they have the following presentation:

B(m,n) = 〈a, b : a−1bma = bn〉,m, n �= 0.

The first observation is that form = n = 1 this group is Z+Z. It is well known
that this group does not have exponential growth and there are automorphisms
φ : Z + Z → Z + Z with finite Reidemeister number. So Z + Z does not have
property R∞.

The second observation is that B(m,n) is isomorphic to B(−m,−n). It suf-
fices to see that the relations a−1bma = bn and a−1b−ma = b−n each one generates
the same normal subgroup, since one relation is the inverse of the other.

The last observation is that B(m,n) is isomorphic to B(n,m). Suppose that
B(m,n) = 〈a, b : a−1bma = bn〉,m, n �= 0 and B(n,m) = 〈c, d : c−1dnc =
dm〉,m, n �= 0. The map which sends a → c−1 and b → d extends to an iso-
morphism of the two groups.

Based on the above, we will consider only the groups B(r, s), rs �= 0, 1 and
we can show:

Proposition 2.0. Each group B(r, s), rs �= 0, 1 is isomorphic to some B(m,n),
where m,n satisfy 0 < m ≤ |n| and n �= 1.

So we will divide the problem into 4 cases. Case 1) is when 1 = m < |n|; Case
2) is when 1 < m < |n|; Case 3) when 0 < m = −n; Case 4) when 1 < m = n.

The set of the Reidemeister classes will be denoted by R[ , ] and the number
of such classes by R( , ). When the two sequences are the same and one of the
homomorphisms is the identity, then we have the usual Reidemeister classes and
Reidemeister number. The main reference for this section is [17] and more details
can be found there.
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Let us consider a diagram of two short exact sequences of groups and maps
between these two sequences:

1 → H1
i1→ G1

p1→ Q1 → 1

f ′ ↓↓ g′ f ↓↓ g f ↓↓ g

1 → H2
i2→ G2

p2→ Q2 → 1

(2.1)

where f ′ = f |H1 , g′ = g|H1 .
We recall that the set of the Reidemeister classes R[f1, f2] relative to homo-

morphisms f1, f2 : K → π is the set of the equivalence classes of elements of π
given by the following relation: α ∼ f2(τ)αf1(τ)−1 for α ∈ π and τ ∈ K.

The diagram (2.1) provides maps between sets

R[f ′, g′] î2→ R[f, g]
p̂2→ R[f, g]

where the last map is clearly surjective. An obvious consequence of this fact will
be used to solve some of the cases that we will discuss, and that will appear below
as Corollary 2.2. For the remaining cases we need further information about the
above sequence and we will use Corollary 2.4.

Proposition 1.2 in [17] says:

Proposition 2.1. Given the diagram (2.1) we have a short sequence of sets

R[f ′, g′] î2→ R[f, g]
p̂2→ R[f, g]

where p̂2 is surjective and p̂−1
2 [1] = im (̂i2), where 1 is the identity element of Q2.

An immediate consequence is

Corollary 2.2. If R(f, g) is infinite, then R(f, g) is also infinite.

Proof. Since p̂2 is surjective the result follows. �

In order to study the injectivity of the map î2, for each element α ∈ Q2 let
H2(α) = p−1

2 (α), Cα = {τ ∈ Q1|g(τ )αf(τ−1) = α} and let Rα[f ′, g′] be the set
of equivalence classes of elements of H2(α) given by the equivalence relation β ∼
g(τ)βf(τ−1), where β ∈ H2(α) and τ ∈ p−1

1 (Cα). Finally, let R[fα, gα] be the set
of equivalence classes of elements of H2(α) given by the relation β ∼ g(τ)βf(τ−1),
where β ∈ H2(α) and τ ∈ G1.

Proposition 1.2 in [17] says:

Proposition 2.3. Two classes of R(fα, gα) represent the same class of R(f, g) if
and only if they belong to the same orbit by the action of Cα. Further the isotropy
subgroup of this action at an element [β] is G[β] = p1(Cβ) ⊂ Cα where β ∈ [β].

An immediate consequence of this result is:
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Corollary 2.4. If Cα is finite and R(fα, gα) is infinite for some α, then R(f, g) is
also infinite. In particular, this is the case if Q2 is finite.

Proof. The orbits of the action of Cα on R[fα, gα] are finite. So we have an infinite
number of orbits. The last part is an easy consequence of the first part. �

3. The Cases B(m, n), 1 = |m| < |n|
From Section 2 the cases in this section reduce to Case 1), namely B(1, n) for
1 < |n|. Let |n| > 1 and B(1, n) = 〈a, b : a−1ba = bn, n > 1〉.
Recall from [5] that the Baumslag-Solitar groups B(1, n) are finitely generated
solvable groups which are not virtually nilpotent. These groups have exponential
growth [23], and they are not Gromov hyperbolic. Furthermore, those groups are
metabelian and torsion free.

Consider the homomorphisms | |a : B(1, n) −→ Z which associates for each
word w ∈ B(1, n) the sum of the exponents of a in the word. It is easy to see that
this is a well defined map into Z which is surjective.

Proposition 3.1. We have a short exact sequence

0 −→ K −→ B(1, n)
| |a−→ Z −→ 1,

where K, the kernel of the map | |a, is the set of the elements which have the
sum of the powers of a equal to zero. Furthermore, B(1, n) = K � Z (semi-direct
product).

Proof. The first part is clear. The second part follows because Z is free, so the
sequence splits. �

Proposition 3.2. The kernel K coincides with N〈b〉, the normalizer of 〈b〉 in B(1, n).

Proof. We have N〈b〉 ⊂ K. But the quotient B/N〈b〉 has the following presenta-
tion: ā−1b̄ā = b̄n, b̄ = 1. Therefore this group is isomorphic to Z and the natural
projection coincides with the map | |a under the obvious identification of Z with
B/N〈b〉. Consider the commutative diagram

0→N〈b〉→ B(1, n)→ B/N〈b〉→ 1
↓ ↓ ↓

0→K→ B(1, n)→ Z→ 1

where the last vertical map is an isomorphism. From the well-known five Lemma
the result follows. �

The groups B(1, n) are metabelian. Let ε be the sign of n. We recall the result
that B(1, n) is isomorphic to Z[1/|n|] �θ Z where the action of Z on Z[1/|n|] is
given by θ(1)(x) = x/nε. To see this, first observe that the map defined
by φ(a) = (0, 1) and φ(b) = (1, 0) extends to a unique homomorphism
φ : B → Z[1/|n|] � Z which is clearly surjective. It suffices to show that this
homomorphism is injective. Consider a word w = ar1bs1 · · · artbst such that
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r1 + · · · + rt = 0. Thus w ∈ K, and using the relation of the group this word
is equivalent to bs1/nεr1

bs2/nε(r1+r2) · · · bst−1/nε(r1+···+rt−1)
.bst . If we apply φ to this

element, which belongs to the kernel of φ, we obtain that the sum of the powers
s1/n

r1 + s2/nε(r1+r2) + · · ·+ st−1/n
ε(r1+···+rt−1) + st is zero. But this means that

w is the trivial element, hence φ restricted to K is injective. Therefore the result
follows.

Proposition 3.3. Any homomorphism φ : B(1, n)→ B(1, n) is a homomorphism of
the short exact sequence given in Proposition 3.2.

Proof. Let φ̄ be the homomorphism induced by φ on the abelianization of B(1, n).
The abelianization of B(1, n), denoted by B(1, n)ab, is isomorphic to Z|n−1| + Z.
The torsion elements of B(1, n)ab form a subgroup isomorphic to Z|n−1| which
is invariant under any homomorphism. The preimage of this subgroup under the
projection to the abelianization B(1, n)→ B(1, n)ab is exactly the subgroup N(b),
i.e., the elements represented by words where the sum of the powers of a is zero.
So it follows that N(b) is mapped into N(b). �

Theorem 3.4. For any injective homomorphism of B(1, n) the Reidemeister number
is infinite.

Proof. Let φ be an injective endomorphism. By Proposition 3.3 it is an endo-
morphism of the short exact sequence given by Proposition 3.2. The induced ho-
momorphism on the quotient is a non-trivial endomorphism of Z. Otherwise we
would have an injective homomorphism from the non-abelian group B(1, n) into
the abelian group K. If the induced endomorphism φ̄ is the identity, by Corollary
2.2 the number of Reidemeister classes is infinite and the result follows. So, as-
sume that φ̄ is multiplication by k �= 0, 1 and we will get a contradiction. Now we
claim that there is no injective endomorphism of B(1, n) such that the induced
homomorphism on the quotient is multiplication by k with k �= 0, 1. When we
apply the homomorphism φ to the relation a−1ba = bn, using the isomorphism
B(1, n) → Z[1/n] � Z we obtain: a−kφ(b)ak = (nkφ(b), 0) = (nφ(b), 0), which
implies that either n1−k = 1 or φ(b) = 0. Since φ(b) �= 0 and n is neither 1 or −1
we get a contradiction and the result follows. �

Remark 3.5. From the proof above we conclude that any injective homomorphism
ϕ : B(1, n) → B(1, n) has the property that it induces the identity on the quotient
Z given by the short exact sequence in Propositon 3.2. This fact will be used to
study coincidence Reidemeister classes in Section 7.

4. The Case B(m, n), 1 < |m| �= |n| > 1

From Section 2 the cases in this section reduce to Case 2), namely (m,n) for
1 < m < |n|. The groups in this section are more complicated than the ones
in the previous section. Nevertheless in order to obtain the results we will use
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a similar procedure to the one in the previous section. Let 1 < m < |n| and
B(m,n) = 〈a, b : a−1bma = bn〉. Recall that such groups are non-virtually solvable.

Consider the homomorphism | |a : B(m,n) −→ Z which associates to each
word w ∈ B(m,n) the sum of the powers of a in the word. It is easy to see that
this is a well defined homomorphism into Z which is surjective.

Proposition 4.1. We have a short exact sequence

0 −→ K −→ B(m,n) −→ Z −→ 1,

where K, the kernel of the map | |a, is the set of the elements which have the sum
of the powers of a equals to zero. Furthermore, B(m,n) = K � Z is a semi-direct
product where the action is given with respect to some fixed section.

Proof. The first part is clear. The second part follows because Z is free, so the
sequence splits. Since the kernelK is not abelian, the action is defined with respect
to a specific section (see [3]). �

Proposition 4.2. The kernel K coincides with N〈b〉 which is the normalizer of 〈b〉
in B(m,n).

Proof. Similar to Proposition 3.2. �

Proposition 4.3. Any homomorphism φ : B(m,n) → B(m,n) is a homomorphism
of the short exact sequence given in Proposition 4.1.

Proof. Let φ̄ be the homomorphism induced by φ on the abelianized of B(m,n).
The abelianized of B(m,n), denoted by B(m,n)ab, is isomorphic to Z|n−m| + Z.
The torsion elements of B(m,n)ab form a subgroup isomorphic to Z|n−m| which
is invariant under any homomorphism. The preimage of this subgroup under the
projection to the abelianized B(m,n)→ B(m,n)ab is exactly the subgroup N(b),
i.e., the elements represented by words where the sum of the powers of a is zero.
So it follows that N(b) is mapped into N(b). �

In order to have a homomorphism φ of B(m,n) which has finite Reidemeister
number, the induced map on the quotient Z must be different from the identity
by the same argument used in the proof of Theorem 3.4.

Now we will give a presentation of the group K. The group K is gener-
ated by the elements gi = a−ibai i ∈ Z which satisfy the following relations:
{1 = a−j(a−1bmab−n)aj = gmj+1g

−n
j } for all integers j. This presentation is a

consequence of the Bass-Serre theory, see [4], Theorem 27, page 211.
Now we will prove the main result of this section. Denote by Kab the abelian-

ization of K.

Theorem 4.4. For any injective homomorphism of B(m,n) the Reidemeister num-
ber is infinite.
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Proof. Let us consider the short exact sequence, obtained from the short exact
sequence given in Proposition 4.1, by taking the quotient with the commutators
subgroup of K, i.e.,

0 −→ Kab −→ B(m,n)/[K,K] −→ Z −→ 1.

Thus we obtain a short exact sequence where the kernel Kab is abelian. From
the presentation of K we obtain a presentation of Kab given as follows: It is
generated by the elements gi, i ∈ Z, which satisfy the following relations: {1 =
gmj+1g

−n
j , gigj = gjgi} for all integers i, j. This presentation is the same as the

quotient of the free abelian group generated by the elements gi, i ∈ Z (so the
direct sum of Z′s indexed by Z), modulo the subgroup generated by the relations
{1 = gmj+1g

−n
j }. Thus an element can be regarded as an equivalence class of a

sequence of integers indexed by Z, where the elements of the sequence are zero but a
finite number. By abuse of notation we also denote by φ the induced endomorphism
on B(m,n)/[K,K].

Let φ(a) = akθ for θ ∈ Kab and k �= 1. Recall that if k = 1 it follows imme-
diately that the Reidemeister number is infinite. Since the kernel of the extension
is abelian, after applying φ to the relation a−1bma = bn we obtain

θ−1a−kφ((b)m)akθ = a−kφ(b)mak = φ(bn) = φ(b)n.

From the main result of [25], the element φ(b) is a conjugate of a power of b, i.e.,
φ(b) = γbrγ−1 for some r �= 0. In the abelianization the element γbrγ−1 is the
same as the element asba−s for some integer s. So any power of φ(b) with exponent
different from zero is a nontrivial element. Now we take both sides of the equation
above to the power mk. If k = 0 it follows immediately that m = n. Let us take
k > 1. After applying the relation several times we obtain

a−kφ(b)mmk

ak = φ(b)mnk

= φ(b)nmk

.

Therefore it follows that mnk = nmk or nk−1 = mk−1. If n is positive, since k �= 1,
then the only solutions are m = n, which is a contradiction. If n is negative then
the only solutions are, m = n or m = −n and k even. In either case we get a
contradiction. The case where k < 0 is similar and the result follows. �

Remark 4.5. If we apply the proof of the Theorem 4.4 above to the groupB(m,−m)
we can conclude that any injective homomorphism ϕ : B(m,−m) → B(m,−m)
has the property that it induces the multiplication by an odd number on the
quotient Z, where Z is given by the short exact sequence in Propositon 3.2.

5. The Case B(m,−m), 1 ≤ |m|
From Section 2 the cases in this section reduce to Case 3), namely B(m,−m) for
0 < m.

We will start with the group B(1,−1). This case is done in (see [9]). For sake
of completeness we write another proof which is more in the spirit of the techniques
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used in this work. The group B(1,−1) is isomorphic to the fundamental group of
the Klein bottle.

Proposition 5.1. For any automorphism φ of Z � Z the Reidemeister number is
infinite.

Proof. Let us consider the short exact sequence

0 → Z → Z � Z → Z,

where the inclusion Z → Z�Z sends 1 → x. It is well known that Z is characteristic
in Z�Z, so any homomorphism ϕ : Z�Z → Z�Z induces a homomorphism of short
exact sequence. Let ϕ be an automorphism. Then the induced automorhism on the
quotient ϕ̄ : Z → Z is either the identity or minus the identity. In the first case we
have that the Reidemeister number of ϕ is infinite and the result follows. So let us
assume that ϕ̄ is −id. The induced map on the fiber ϕ′ is also either the identity
or minus the identity. In either case, in order to compute the Reidemeister number
of ϕ, by means of the formula given in [18], Lemma 2.1 we need to consider the
homomorphism given by the composition of ϕ′ with the conjugation by y, which
is the multiplication by −1, i.e., −ϕ′. So either ϕ′ or −ϕ′ is the identity. Again by
the formula given in [18], Lemma 2.1, the result follows. �

The above result is not true for injective homomorphisms. Take for example
the homomorphism defined by ϕ(x) = x2, ϕ(y) = y3. It is an injective homomor-
phism and R(ϕ) is 4.

From now on let 1 < m. The groups B(m,−m), in contrast with others
Baumslag-Solitar groups already considered, have subgroups isomorphic to Z�Z =
B(1,−1), the fundamental group of the Klein bottle.

It is straightforward to verify that Propositions 4.1, 4.2 and 4.3 are also true
for m = −n (this is not the case for Proposition 4.3 when m = n). So we have a
short exact sequence

0 −→ K −→ B(m,−m) −→ Z −→ 1,

where K is the kernel of the map | |a. This kernel coincides with the normal
subgroup generated by the element b and any homomorphism φ : B(m,−m) →
B(m,−m) is a homomorphism of the short exact sequence. Denote by φ̄ the in-
duced homomorphism on the quotient Z and by φ′ : K → K the restriction of φ.
Our proof have some similarities with the proof for the group B(1,−1).

Proposition 5.2. Given any automorphism φ : B(m,−m) → B(m,−m), then the
induced automorphism on the quotient φ̄ is either the identity or minus the identity.
In the former case we have R(φ) infinite.

Proof. Follows immediately from Corollary 2.2. �

Proposition 5.3. Given any automorphism φ : B(m,−m) → B(m,−m) such that
the induced homomorphism on the quotient φ̄ : Z → Z is multiplication by −1,
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either the automorphism φ′ or the automorphism τa◦φ′, where τa is the conjugation
by the element a, have infinite Reidemeister number.

Proof. From [25] φ′(b) = aibεa−i for some integer i, where ε is either 1 or −1
since we have an automorphism. For the other automorphism we have τa ◦φ′(b) =
ai+1bεa−i−1. We certainly have either ε = (−1)i or ε = (−1)i+1. Let ϕ be φ′ or
τa ◦ φ′ according to ε = (−1)i or ε = (−1)i+1, respectively. A presentation of the
group K was given in Section 4 before Theorem 4.4. Consider the extra relation
in K given by b = ab−1a−1. Then it follows that the quotient group is Z and the
automorphism ϕ induces a homomorphism on the quotient which agrees with the
identity. So it follows that the Reidemeister number of ϕ is infinite. �

Theorem 5.4. For any automorphism of B(m,−m) the Reidemeister number is
infinite.

Proof. Let φ : B(m,−m) → B(m,−m) an automorphism. From Proposition 5.2
we can assume that φ̄ is multiplication by −1. From Propositon 5.3 we know that
either φ′ or τa ◦φ′ has infinite Reidemeister number. By the formula given in [18],
Lemma 2.1, the result follows. �

Remark 5.5. We do not know an example of an injective homomorphism on
B(m,−m), for m > 1, which has finite Reidemeister number.

6. The Case B(m, m), |m| > 1

From Section 2 the cases in this section reduce to Case 4), namely B(m,m) for
1 < m. The proof of this case is not similar to the previous cases.

As we noted before, if m = 1, the group is Z + Z. Then there are auto-
morphisms of the group which have a finite number of Reidemeister classes. For
m > 1, in order to study its automorphisms, we describe the groups B(m,m)
as certain extensions. Finally we show that any automorphism of this group has
infinite Reidemeister number.

These groups, in contrast with the Baumslag-Solitar groups already consid-
ered, have subgroups isomorphic to Z + Z. We remark that for n = 2 this is not
the fundamental group of the Klein bottle. There is a surjection from B(2, 2) onto
the fundamental group of the Klein bottle.

We start by describing these groups. Let | |b : B(m,m) → Z be the homo-
morphism which associates to a word the sum of the powers of b which appears in
the word. This is a well-defined surjective homomorphism and we have:

Proposition 6.1. There is a splitting short exact sequence

0→ F → B(m,m) → Z → 1,

where F is the free group on m generators x1, . . . , xm and the last map is | |b.
Further, the action of the generator 1 ∈ Z is the automorphism of F which, for
j < m, sends xj to xj+1 and xm to x1.
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Proof. Let F � Z be the semi-direct product of F by Z, where F is the free group
on x1, ..., xm and the action is given by the automorphism of F which, for j < m,
maps xj to xj+1 and xm to x1. We will show that B(m,m) is isomorphic to F �Z.
For this consider the map ψ : {a, b} → F � Z which sends a to x1 and b to
1 ∈ Z. This map extends to a homomorphism B(m,m) → F � Z, which we also
denote by ψ, since the relation which defines the group B(m,m) is preserved by
the map. Also ψ is a homomorphism of short exact sequences. The map restricted
to the kernel of | |b is surjective to the free group F . Also the kernel admits
a set of generators with cardinality n. So the map restricted to the kernel is an
isomorphism and the result follows. �

Proposition 6.1 above shows that the groupsB(m,m) are policyclic. For more
about the Reidemeister number of these groups see [9].

Proposition 6.2. The center of B(m,m) is the subgroup generated by bm. Moreover,
any injective homomorphism φ : B(m,m) → B(m,m) leaves the center invariant.

Proof. For the first part, from Proposition 6.1, we know thatB(m,m) is of the form
F�Z. Let (w, br) ∈ F�Z be in the center and (v, 1) ∈ F�Z where v is an arbitrary
element of F . We have (w, br)(v, 1) = (w · br(v), br) and (v, 1)(w, br) = (v · w, br).
We can assume that w is a word written in the reduced form which starts with
xmi

i , for some 1 ≤ i ≤ m. Let r0 be the integer, 0 ≤ r0 ≤ m − 1, congruent to r
mod m. Now we consider three cases:

(1) r0 = 0. Take v = xi+1 if i < m and v = x1 if i = m. We claim that
w.br(v) �= v.w, so the elements do not commute. To see that they do not commute
observe first that v.w is in the reduced form. If w.br(v) is not reduced they cannot
be equal. If it is reduced, also they can not be equal either, since they start with
different letters. The argument above does not work if w = 1, but this is the case
where the element is in the center.

(2) r0 �= 0 and w �= 1. Take v = xmi

i . Again v.w is in the reduced form
starting with x2mi

i . If w ·br(v) is not reduced they cannot be equal. If it is reduced,
also they cannot be equal either, since they start with different powers of xi, even
if the word contains only one letter, since br(v) is not a power of xi (r is not
congruent to 0 mod m).

(3) r0 �= 0 and w = 1. Then r = km+ r0, and from the relation in the group
it follows that a−1bra = a−1bkm+r0ra = bkma−1br0a. But a−1br0a = br0 implies
br0ab−r0 = a, which in terms of the notation in Proposition 5.1 means x1 = xr0 ,
which is a contradiction. So the result follows.

For the second part we have to show that φ(bm) is in the center. Since φ is
injective, from the main result of [25], the element φ(b) is conjugated to a power
of b, i.e., φ(b) = γbrγ−1 for some r �= 0. Therefore φ(bm) = γ(br)mγ−1 = bmr and
the result follows. �
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Next we consider the group which is the quotient of F � Z by the center,
where the center is the subgroup < bm >. This quotient is isomorphic to F � Zn

and we denote the image of the generator b in Z by b̄ in Zm.

Proposition 6.3. Any automorphism of the group F �Zm has infinite Reidemeister
number.

Proof. We know that F is the free group on the letters x1, ..., xm and let θ :
F � Z → Zn be the homomorphism defined by θ(xi) = 1 and θ(b̄) = 0. The
kernel of this homomorphism defines a subgroup of F � Z of index m which is
isomorphic to F ′ �Zn, where F ′ is the kernel of the homomorphism θ restricted to
F . Now we claim that F ′ is invariant with respect to any homomorphism, i.e, F ′ is
characteristic. Let (w, 1̄) be an arbitrary element of the subgroup F ′ with w �= 1.
First observe that θ(φ(xi)) = θ(φ(x1)), for all i. This follows by induction since
xi+1 = b̄.xi.b̄

−1, θ(φ(xi+1)) = θ(φ(b̄)).θ(φ(xi)).θ(φ(b̄−1)) = θ(φ(xi)). Therefore
θ(φ(w, 1̄)) = θ((w, 1̄))θ(φ(x1)) and the subgroup F ′ is invariant. Therefore the
automorphism φ provides an automorphism of the short exact sequence

0→ F ′ → F � Zm → Zm + Zm → 0

where the restriction to the kernel is an automorphism of a free group of finite
rank. Hence, by Corollary 2.4 the result follows. �

Now we proof the main result.

Theorem 6.4. Any automorphism φ of B(m,m) has an infinite Reidemeister num-
ber.

Proof. Any automorphism φ, from Proposition 5.2, induces an automorphism on
F�Zm, which we denote by φ̄. In order to prove that φ has an infinite Reidemeister
number, it suffices to show the same statement for φ̄. By Proposition 5.3 the
statement is true for φ̄, so the theorem follows. �

Remark 6.5. Proposition 6.3 and Theorem 6.4 use only Proposition 6.2 for auto-
morphisms, which, under this assumption, its second part of the Proposition 6.2
becomes obvious. Nevertheless, using Proposition 6.2 as stated, it is not difficult
to see that Proposition 6.3 and Theorem 6.4 can be extended for injective homo-
morphisms if one knows the result for injective homomorphisms of a free group of
finite rank. However this is still an open question.

7. Coincidence Reidemeister classes

For a pair of homomorphisms φ, ψ : G → G one can ask similarly when a pair of
homomorphisms (φ, ψ) has infinite coincidence Reidemeister number. If one of the
homomorphisms, let us say φ, is an automorphism, then the problem is equivalent
to the classical problem for the homomorphism φ−1 ◦ ψ. So we can apply all the
results above. Theorems 3.4, 4.4, 6.2, and 6.4 can be generalized to coincidences
as follows:
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Theorem 7.1. The coincidence Reidemeister number is infinite for any pair of
injective endomorphisms of the group B(m,n), where |n| �= |m| and |nm| �= 0.

Proof. For the cases in question, we have proved that an injective homomorphism
induces a homomorphism of the short exact sequences given by Propositions 3.1
and 4.1., depending on the values of m and n, respectively. Further in any of the
cases above, by the proof of the Theorems 3.4, 4.4, 6.2 and 6.4, we have that the
induced homomorphisms φ̄ and ψ̄ on the quotients are the identity on Z. So the
pair (φ̄, ψ̄) has infinite coincidence Reidemeister number and the result follows
from Corollary 2.2. �

The extension of Theorem 7.1 for the groups B(m,m), will follow if the
same result is true for a pair of injective homomophisms of a free group of finite
rank. But, as pointed out in Remark 6.5, this is not known even if one of the
homomorphisms is the identity.
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Abstract. We give a proof of the pentagon relation for the quantum diloga-
rithm by using functional analysis methods. We introduce a related Schwartz
space and prove that it is preserved by the intertwiner operator defined using
the quantum dilogarithm. Using this we can define a representation of the
quantized moduli space of configurations of 5 points on the projective line.
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1. Introduction

Let � > 0. The quantum dilogarithm function is given by the following integral:

Φ�(z) := exp
(
−1

4

∫
Ω

e−ipz

sh(πp)sh(π�p)
dp

p

)
, sh(p) =

ep − e−p

2
.

Here Ω is a path from −∞ to +∞ making a little half-circle going over the zero.
So the integral is convergent. It goes back to Barnes [Ba], and appeared in many
papers during the last 30 years: [Bax], [Sh], [Fad1], . . . . The function Φ�(z) enjoys
the following properties (cf. [FG3], Section 4):

• The function Φ�(z) is meromorphic. Its zeros are simple zeros in the upper
half-plane at the points

{πi((2m− 1) + (2n− 1)�)|m,n ∈ N}, N := {1, 2, . . .}. (1)

Its poles are simple poles, located in the lower half-plane, at the points

{−πi((2m− 1) + (2n− 1)�)|m,n ∈ N}. (2)
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• The function Φ�(z) is characterized by the following difference relations. Let
q := eπi� and q∨ := eπi/�. Then

Φ�(z + 2πih) = Φ�(z)(1 + qez), Φ�(z + 2πi) = Φ�(z)(1 + q∨ez/�), (3)

• One has |Φ�(z)| = 1 when z is on the real line.
• The function Φ�(z) is related in several ways to the dilogarithm, e.g., its

asymptotic expansion when � → 0 is

Φ�(z) ∼ exp
(L2(ez)

2πi�

)
, where L2(x) :=

∫ x

0

log(1 + t)
dt

t

is a version of the Euler’s dilogarithm function.
When � is a complex number with Im � > 0, there is an infinite product

expansion

Φ�(z) =
Ψq(ez)

Ψ1/q∨(ez/�)
, where Ψq(x) :=

∞∏
a=1

(1 + q2a−1x)−1.

The function Φ�(z) provides an operator K : L2(R) → L2(R), defined as
a rescaled Fourier transform followed by the operator of multiplication by the
quantum dilogarithm Φ�(x).

Kf(z) :=
∫ ∞

−∞
f(x)Φ�(x)exp(

−xz
2πi�

)dx.

Since |Φ�(x)| = 1 on the real line, 2π
√

�K is unitary.

Theorem 1.1. (2π
√

�K)5 = λ · Id, where |λ| = 1.

In the quasiclassical limit it gives Abel’s five term relation for the dilogarithm.

The pentagon relation for the simpler version Ψq(x) of the quantum diloga-
rithm was discovered in [FK]. A similar pentagon relation for the function Φ�(z),
which is equivalent to Theorem 1.1, was suggested in [Fad1] and proved, using dif-
ferent methods, in [Wo] and [FKV]. Theorem 1.1 was formulated in [CF]. However
the argument presented there as a proof has a significant problem, which put on
hold the program of quantization of Teichmüller spaces.

In this paper we show that the operator K is a part of a much more rigid
structure, called the quantized moduli spaceMcyc

0,5 – this easily implies Theorem 1.1.
Namely, consider the algebra generated by operators of multiplication by ex

and ex/� and shifts by 2πi and 2πi�, acting as unbounded operators in L2(R). We
use a remarkable subalgebra L of this ∗-algebra, and introduce a Schwartz space
SL ⊂ L2(R), defined as the common domain of the operators from L. It comes
with a natural topology. Our main result, Theorem 2.6, tells that the operator K
preserves the space SL, and the conjugation by K intertwines an order 5 automor-
phism γ of the algebra L, see Fig. 1. This characterises the operator K up to a
constant. The proof uses analytic properties of the space SL developed in Theorem
2.3. Theorem 2.6 easily implies Theorem 1.1.
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Figure 1. Quantized moduli space Mcyc
0,5 .

We define a space of distributions S∗L as the topological dual to SL. So there
is a Gelfand triple SL ⊂ L2(R) ⊂ S∗L. The operator K acts by its automorphisms.
It would be interesting to calculate it on some distributions explicitly.

The story is similar in spirit to the Fourier transform theory developed using
the algebra of polynomial differential operators:

The Fourier transform ←→ The operator K
The algebra D of polynomial The algebra L of

differential operators ←→ difference operators
The automorphism ϕ of D given by

ix→ d/dx, d/dx→ −ix ←→ The automorphism γ of L
The classical Schwartz space ←→ The Schwartz space SL.

Let Mcyc
0,5 ⊂ M0,5 be the moduli space of configurations of 5 cyclically or-

dered points on P1, where we do not allow the neighbors to collide. It carries an
atlas consisting of 5 coordinate systems, providing Mcyc

0,5 with a structure of the
cluster X -variety of type A2. The algebra L is isomorphic to the algebra of reg-
ular functions on the modular double of the non-commutative q-deformation of
the cluster X -variety. The automorphism γ corresponds to a cyclic shift acting on
configurations of points.

The triple (L, SL, γ), see Fig. 1, is called the quantized moduli space Mcyc
0,5 .

The results of this paper admit a generalization to a cluster set-up, where the
role of the automorphism γ plays the cluster mapping class group. In particular
this gives a definition of quantized higher Teichmüller spaces, and allows to state
precisely the modular functor property of the latter.1

The structure of the paper. In Section 2.1 we recall the cluster X -variety
of type A2 [FG2]. In Section 3 we identify it with Mcyc

0,5 . This clarifies formulas
in Section 2.1-2.2. In Section 2.2 we recall a collection of regular functions on
our cluster X -variety. Theorem 3.2 tells that they form a basis in the space of
regular functions, and in particular closed under multiplication. We introduce a
q-deformed version of this basis/algebra. Its tensor product with a similar algebra
for q∨ is the algebra L. In Sections 2.3–2.5 we prove our main results.

1In previous versions of quantization of Teichmüller spaces/cluster X -varieties the pair (L, SL)
was missing, making the resulting notion rather flabby.
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2. Quantized moduli space Mcyc
0,5

2.1. Cluster varieties of type A2

The cluster X -variety is glued from five copies of C∗ × C∗, so that i-th copy is
glued to (i + 1)-st (indexes are modulo 5) by the map acting on the coordinate
functions as follows:2

γ∗X : X �−→ Y −1, Y �−→ (1 + Y )X. (4)

Similarly, the cluster A-variety is glued from five copies of C∗ × C∗, so that i-th
copy is glued to (i+1)-th by the map acting on the coordinate functions as follows:

γ∗A : (A,B) �→ ((1 +A)B−1, A). (5)

(Accidently, these two cluster varieties are canonically isomorphic.)
The fifth degree of each of these maps is the identity. Thus the map identi-

fying the i-th copy of C∗ × C∗ with the (i + 1)-st one in the standard way is an
automorphism of order 5 acting on the X - and A-varieties. We denote it by γ.

Recall the tropical semifield Zt. It is the set Z with the operations of addition
a⊕ b := max{a, b}, and multiplication a⊗ b := a+ b. The set A(Zt) of Zt-points
of the A-variety is defined by gluing the five copies of Z2 via the tropicalizations
of the map (5). The map γ acts on the tropical A-space by

γa : (a, b) �→ (max(a, 0)− b, a), γ5 = Id.

There are five cones in the tropicalA-space, shown on Fig. 2. The map γ shifts
them cyclically counterclockwise. It is a piecewise linear map, whose restriction to
each cone is linear.

2.2. The ∗-algebra L

The canonical basis for the cluster X -variety of type A2. A rational function
F (X,Y ) is a universally positive Laurent polynomial on X , if (γ∗X)iF (X,Y ) is a
Laurent polynomial with positive integral coefficients for every i. Equivalently, it
belongs to the intersection of the ring of regular functions on the scheme X over

2We use a definition which differs slightly from the standard one, but delivers the same object.
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Figure 2. The five domains in the tropical A-space.

Z with the semifield of rational functions with positive integral coefficients. There
is a canonical γ-equivariant map, defined in Section 4 of [FG2]:3

IA : A(Zt) −→ The space of universally positive Laurent polynomials on X ,
γ∗XIA(γa(a, b)) = IA(a, b), (6)

given by:

IA(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

XaY b for a ≤ 0 and b ≥ 0(
1+X
XY

)−b
Xa for a ≤ 0 and b ≤ 0(

1+X+XY
Y

)a (
1+X
XY

)−b
for a ≥ 0 and b ≤ 0

((1 + Y )X)b
(

1+X+XY
Y

)a−b
for a ≥ b ≥ 0

Y b−a((1 + Y )X)a for b ≥ a ≥ 0.

(7)

Or equivalently, showing that the leading monomial is always XaY b:

IA(a, b) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
XaY b for a ≤ 0 and b ≥ 0
XaY b(1 +X−1)−b for a ≤ 0 and b ≤ 0
XaY b(1 +X−1)−b(1 + Y −1 +X−1Y −1)a for a ≥ 0 and b ≤ 0
XaY b(1 + Y −1)b(1 + Y −1 +X−1Y −1)a−b for a ≥ b ≥ 0
XaY b(1 + Y −1)a for b ≥ a ≥ 0.

One can easily verifies that the formulae agree on the overlapping domains of
values of a and b. The i-th row of (7) describes the restriction of the canonical
map to the i-th cone.

The quantum X -variety and the quantum canonical basis. Let Tq be the algebra
generated over Z[q, q−1] by X±1, Y ±1, subject to the relation q−1XY − qY X =
0. It is called the two-dimensional quantum torus algebra. It has an involutive
antiautomorphism ∗ such that

∗q = q−1, ∗X = X, ∗Y = Y.

Consider the following q-deformation of the ∗-equivariant map γ:

γ∗q : X �−→ Y −1, Y �−→ (1 + qY )X. (8)

3Observe that γ∗
X tells how the automorphism γ acts on functions, while γa tells the action on

the tropical points.
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One checks that it is an order 5 automorphism of the fraction field of Tq. The
quantum X -space Xq is nothing else but a pair (Tq, γ

∗
q ).4

An element F (X,Y ) of the fraction field of Tq is a universally positive Laurent
polynomial on Xq if (γ∗q )iF (X,Y ) is a Laurent polynomial in X,Y, q with positive
integral coefficients for every i.

Proposition 2.1. There is a canonical γ-equivariant map

Iq
A : A(Zt) −→ The space of universally positive Laurent polynomials on Xq.

Construction. It is obtained by multiplying each monomial in (7) by a (uniquely
defined) power of q, making it ∗-invariant. For example, the quantum canonical
map on the first cone is given by

Iq
A(a, b) = q−abXaY b, a ≤ 0, b ≥ 0.

Then we can use (6), which is valid in the q-deformed version as well.5

Denote by Lq the image of the map Iq
A. It is closed under multiplication. Set

L := Lq ⊗ Lq∨ .

2.3. The Schwartz space SL

Let W ⊂ L2(R) be the space of finite C-linear combinations of the functions

e−ax2/2+bxP (x), where P (x) is a polynomial in x, and a ∈ R>0, b ∈ C. (9)

Set
X̂(f)(x) := f(x+ 2πi�), � ∈ R>0, Ŷ (f)(x) := exf(x).

X̂∨(f)(x) := f(x+ 2πi), � ∈ R>0, Ŷ ∨(f)(x) := ex/�f(x).
These are symmetric unbounded operators. They preserve W and satisfy, on W ,
relations

X̂Ŷ = q2Ŷ X̂, q := eπi�.

X̂∨Ŷ ∨ = (q∨)2Ŷ ∨X̂∨, q∨ := eπi/�.

The second pair of operators commute with the first one. Therefore these operators
provide an ∗-representation of the algebra Tq ⊗ Tq∨ in W .

Remark. Consider a smaller subspace W0 ⊂ W , with a = 1, b ∈ 2πi�Z + 2πiZ +
Z +1/�Z and deg(P ) = 0. Then acting on e−x2/2 we get an isomorphism of linear
spaces Tq ⊗ Tq∨

∼=W0.

In particular an element A ∈ L acts by an unbounded operator Â in W .

Definition 2.2. The Schwartz space SL for the ∗-algebra L is a subspace of L2(R)
consisting of vectors f such that the functional w → (f, Âw) on W is continuous
for the L2-norm.

4Alternatively, using a geometric language, the quantum X -space Xq is glued from five copies of
the spectrum Spec(Tq) of the quantum torus Tq , so that i-th copy is glued to (i + 1)-st along

the map (8)
5We do not use the fact that Laurent q-polynomials in the basis have positive integral coefficients.
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Denote by (∗, ∗) the scalar product in L2. The Schwartz space for the ∗-
algebra L is the common domain of definition of operators from L in L2(R).
Indeed, since W is dense in L2(R), the Riesz theorem implies that for any f ∈ SL
there exists a unique g ∈ L2(R) such that (g, w) = (f, Âw). We set ∗̂Af := g.
Equivalently, let W ∗ be the algebraic linear dual to W . So L2(R) ⊂W ∗. Then

SL = {v ∈W ∗|Â∗v ∈ L2(R) for any A ∈ L} ∩ L2(R).

The Schwartz space SL has a natural topology given by seminorms

ρB(f) := ||Bf ||L2 , B runs through a basis in L.

The key properties of the Schwartz space SL which we use below are the following.

Theorem 2.3. The space W is dense in the Schwartz space SL.

One can interpret Theorem 2.3 by saying that the ∗-algebra L is essentially
self-adjoint in L2(R).

Proof.

Lemma 2.4. For any w ∈ W, s ∈ SL, the convolution s ∗ w lies in SL.

Proof. Set Tλf(x) := f(x− λ). Write

s ∗ w(x) =
∫ ∞

−∞
w(t)(Tts)(x)dt.

For any seminorm ρB on SL the operator Tλ : (SL, ρB) −→ (SL, ρB) is a bounded
operator with the norm bounded by e|λ|. Thus the operator

∫ ∞
−∞w(t)Ttdt is a

bounded operator on (SL, ρB). This implies the lemma. �

Let wε := (2π)−
1
2 ε−1e−

1
2 (x/ε)2 ∈ W be a sequence converging as ε → 0 to

the δ-function at 0. Clearly one has in the topology of SL

lim
ε→0
wε ∗ s = s(x). (10)

Lemma 2.5. For any w ∈ W, s ∈ SL, the Riemann sums for the integral

s ∗ w(x) =
∫ ∞

−∞
s(t)ω(x− t)dt =

∫ ∞

−∞
s(t)Ttw(x)dt. (11)

converge in the topology of SL to the convolution s ∗ w.

Proof. Let us show first that (11) is convergent in L2(R). The key fact is that a
shift of w ∈ W quickly becomes essentially orthogonal to w. More precisely, in
the important for us case when w = exp(−ax2/2 + bx), a > 0, (this includes any
w ∈W0) we have

(w(x), Tλw(x)) < Cwe
−aλ2/2+(b−b)λ. (12)
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Therefore in this case(∫ ∞

−∞
s(t)Ttw(x)dt,

∫ ∞

−∞
s(t)Ttw(x)dt

)
(12)

≤ Cw

∫ ∞

−∞

∫ ∞

−∞
e−a(t1−t2)2/2+(b−b)(t1−t2)|s(t1)s(t2)|dt1dt2

= Cw

∫ ∞

−∞
e−aλ2/2+(b−b)λ

∫ ∞

−∞
|s(t)s(t+ λ)|dtdλ

≤ Cw||s||2L2

∫ ∞

−∞
e−aλ2/2+(b−b)λdλ.

We leave the case of an arbitrary w to the reader: it is not used in the proof of the
theorem. �

The convergence with respect to the seminorm ||Bf || is proved by the same
argument using the fact that W0 ⊂W is stable under the algebra L. The theorem
follows from Lemma 2.4, (10) and Lemma 2.5. �

Remark. The same arguments show that the space W is dense in the space SL′

defined for any subalgebra L′ of L.

2.4. The main result

Theorem 2.6. The operator K preserves the Schwartz space SL. It intertwines the
automorphism γ of the algebra L, i.e., for any A ∈ L and s ∈ SL one has

K−1ÂKs = γ̂(A)s. (13)

Proof. We need the following key result.

Proposition 2.7. For any A ∈ L, w ∈ W one has Kγ̂(A)w = ÂKw. Therefore
ÂKw ∈ L2(R).

Proof. Let L′
q be the space of Laurent q-polynomials F in X,Y such that γ(F ) is

again a Laurent q-polynomial. The following elements belong to L′
q:

XaY m, XaY −n(1 + qX−1)(1 + q3X−1) . . . (1 + q2n−1X−1), a ∈ Z, m, n ≥ 0.
(14)

Indeed, γ(Y −n) = ((1 + qY )X)−n = X−n
∏n

a=1(1 + q(2a−1)Y )−1.

Lemma 2.8.

(i) The monomials (14) span the space L′
q.

(ii) For every A ∈ L′
q ⊗ L′

q∨ , w ∈W one has Kγ̂(A)w = ÂKw.

Lemma 2.8 implies Proposition 2.7. Thanks to the very definition of the spaces
Lq and L′

q, the part (ii) of the Lemma is stronger than the commutation relation
from Proposition 2.7. �
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Proof of Lemma 2.8. (i) is obvious.
(ii) Let us prove first the following three basic identities:

K(1 + qŶ )X̂w = Ŷ Kw; KŶ −1w = X̂Kw; (15)

KX̂−nw = Ŷ −1(1 + qX̂−1)Kw.

The general case follows from this. To see this, observe that if A1, A2 ∈ L and
KÂiw = ̂γ−1(Ai)Kw for i = 1, 2, then, since Â2w ∈W , one has

KÂ1Â2w = ̂γ−1(A1)KÂ2w = ̂γ−1(A1A2)Kw.

The first identity. Denote by Cs the line x+ is parallel to the x-axis. One has

K(1 + qŶ )X̂w =
∫

C0

(1 + qex)w(x + 2πi�)Φ�(x)e−xz/2πi�dx

(3)
=

∫
C0

w(x + 2πi�)Φ�(x+ 2πi�)e−xz/2πihdx

=
∫

C2πi�

w(x)Φ�(x)e−(x−2πi�)z/2πihdx

(∗)
= ezKw = Ŷ Kw.

To obtain the equality (∗) we have to move the contour C2πi� down to C0. We can
justify this because: (i) the function Φ�(z) is analytic in the upper half-plane, see
(2), and (ii) the function Φ�(z) growth on any horizontal line at most exponentially,
while w(x) decays there much faster, like e−x2

.

Remark. We used here � > 0. We would not be able to move a similar contour
with negative imaginary part, since it will hit the poles of Φ�(z).

The second identity.

KŶ −1w(z) = Ke−xw =
∫ ∞

−∞
w(x)Φ�(x)e−x(z+2πi�)/2πi�dx = X̂Kw(z).

The third identity. We have∫
C0

w(x − 2πi�)Φ�(x)e−xz/2πi�dx

=
∫

C−2πi�

w(x)Φ�(x + 2πi�)e−(x+2πi�)z/2πi�dx

= e−z

∫
C−2πi�

w(x)Φ�(x+ 2πi�)e−xz/2πi�dx.

We can move the contour C−2πi� up towards C0 since the function Φ�(x+2πi�) is
holomorphic above the line C−2πi�, and grows in horizontal directions in the area
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between the two contours at most exponentially, while w(x) decays like e−x2
. So

we get

e−z

∫
C0

w(x)Φ�(x+ 2πi�)e−xz/2πi�dx

= e−z

∫
C0

w(x)Φ�(x)(1 + qex)e−xz/2πi�dx

= Y −1(1 + qX̂−1)
∫

C0

w(x)Φ�(x)e−xz/2πi�dx.

Lemma 2.8 is proved. �
To show that Ks ∈ SL for an s ∈ SL we need to check that for any B ∈ L

the functional w → (Ks, B̂∗w) is continuous. Since W is dense in SL by Theorem
2.3, there is a sequence vi ∈W converging to s in SL. This means that

lim
i→∞

(B̂vi, w) = (B̂s, w) for any B ∈ L, w ∈W. (16)

One has

(Ks, B̂∗w) = (s,K−1B̂∗w)
Prop. 2.7

= (s, γ̂(B∗)K−1w)
(16)
= lim

i→∞
(vi, γ̂(B∗)K−1w)

def= lim
i→∞

(γ̂(B)vi,K−1w)
(16)
= (γ̂(B)s,K−1w) = (Kγ̂(B)s, w).

Since the functional on the right is continuous, Ks ∈ SL, and we have (13). The
theorem is proved. �

Since γ5 = Id, Theorem 2.6 immediately implies

Corollary 2.9. For any A ∈ L one has K−5ÂK5 = Â on S.

2.5. Proof of Theorem 1.1
Let E = {f ∈ L2(R)|enxf(x) ∈ L2(R) for any n > 0}.
Lemma 2.10. K5(E) ⊂ E.

Proof. Indeed, since Ŷ = ex and Y n ∈ L for any n > 0, one has K5enxf = enxK5f
for any n > 0, f ∈ S by Corollary 2.9. So using the remark in the end of Section
2.3, we see that W , and hence S is dense in E, we get the claim. �
Lemma 2.11. K5 is the operator of multiplication by a function F (x).

Proof. We claim that the value (K5f)(a) depends only on the value f(a). Indeed,
for any f0(x) ⊂ E, f0(a) = f(a) we have f = (ex − ea)φ(x) + f0(x), where φ(x) =
(f − f0)/(ex − ea) ∈ E. Thus K5f = (ex − ea)K5φ(x) + K5f0(x). So K5f(a) =
K5f0(a). Now define F (a) from K5f0(a) = F (a)f0(a). The lemma is proved. �
Proposition 2.12. The function F (z) is a constant.

Proof. Let S1 be the common domain of definition of the operators X̂aŶ b, a ≤
0, b ≥ 0.
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Lemma 2.13. The space S1 consists of the functions f(x) in L2 which admit an
analytic continuation to the upper half-plane y > 0, and decay faster then eax for
any a > 0 on each line x+ iy.

Proof. Indeed, it is invariant under multiplication by ebx, b > 0, and shift by 2πia,
a > 0, which means that the Fourier transform of a function from S1 is invariant
under multiplication by eax, a > 0. The lemma is proved. �

SinceK5S ⊂ S, it follows that F (x)w ∈ S ⊂ S1 for w ∈W , and hence F (z) is
analytic in the half-plane y > 0. The operator of multiplication by F (z) commutes
with the shifts by 2πi and 2πi�. Thus it commutes with the shift by 2πi(n+m�),
m,n > 0. This implies that F (z) is invariant under the shifts by 2πi(m + n�)
where m+n� > 0. Thus F (z) is a constant when � is irrational. Since K5 depends
continuously on �, we get Proposition 2.12, and hence Theorem 1.1. �

3. Algebraic geometry of Mcyc
0,5

Recall the cross-ratio r(x1, x2, x3, x4) of four points on P1:

r(x1, x2, x3, x4) :=
(x1 − x2)(x3 − x4)
(x1 − x4)(x2 − x3)

, r(∞,−1, 0, z) = z.

It satisfies the relations

r(x1, x2, x3, x4) = r(x2, x3, x4, x1)−1 = −1− r(x1, x3, x2, x4).
Let M0,5 be the moduli space of configurations of five distinct points on

P1 considered modulo the action of PGL2. The moduli space M0,5 is a smooth
algebraic surface compactifying M0,5. There are 10 projective lines Dij , 1 ≤ i <
j ≤ 5, inside of M0,5, forming “the divisor at infinity” D = ∪Dij . The line Dij

parametrizes configurations of points (x1, x2, x3, x4, x5) where “xi collides with
xj”. So M0,5 −D = M0,5.

We picture points x1, . . . , x5 at the vertexes of an oriented pentagon, whose
orientation agrees with the cyclic order of the points. Given a triangulation T
of the pentagon, let us define a pair of rational functions on the surface M0,5,
assigned to the diagonals of the triangulation. Given a diagonal E, let z1, z2, z3, z4
be the configuration of four points at the vertexes of the rectangle containing E
as a diagonal, so that z1 is a vertex of E. Then we set

XT
E := r(z1, z2, z3, z4).

Example. Given a configuration (∞,−1, 0, x, y), and taking the triangulation re-
lated to the vertex at ∞, we get functions X = x, Y = (y − x)/x, see Fig. 1.1.

Definition 3.1. Mcyc
0,5 := M0,5 − ∪5

c=1Dc,c+1, where c is modulo 5.

The space Mcyc
0,5 is determined by a choice of cyclic order of configurations

of points (x1, . . . , x5).
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Let us define embeddings ψc : C∗ × C∗ ↪→M0,5 for c ∈ {1, . . . , 5}. Set

ψ1 : (X,Y ) �−→ (∞,−1, 0, X,X(1 + Y )).

One easily checks that it is an embedding. The map ψc is obtained from ψ1 by the
cyclic shift of the configuration of five points by 2c. So it is also an embedding.

The following function is regular on the surface Mcyc
0,5 :

Xa,b;c := r(xc, xc+1, xc+2, xc+3)ar(xc, xc+2, xc+3, xc+4)b, a ≥ 0, b ≤ 0.

Indeed, the poles of the first factor are at the divisor Dc,c+1 ∪Dc+2,c+3, and the
poles of the second one are at the divisor Dc+2,c+3 ∪Dc,c+4. The set of functions
{Xa,b;c} coincides with the one defined in Section 2.2. Indeed, one checks this for
c = 1 using Fig. 3, and use equivariance with respect to the shifts and Fig. 4.

x

x

x

x x

1

2

3 4

5 x

x

x

x x

1

2

3 4

5

X(1+Y)

Y−1

YX

Figure 4. Change of the coordinates under a flip.

Theorem 3.2.

(i) The surface Mcyc
0,5 is the union of the five open subsets ψc(C∗×C∗) in M0,5.

(ii) The functions Xa,b;c, where a, b ∈ Z, a ≥ 0, b ≤ 0 and c is mod 5 form a basis
of the space of regular functions on the surface Mcyc

0,5 .

Proof. (i) Straightforward.
(ii) The algebra of regular functions on M0,5 is defined as follows. Take

the configuration space Conf5(V2) of 5-tuples of vectors (v1, . . . , v5) in generic
position in a two-dimensional symplectic vector space V2, modulo the SL2-action.
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The group H := (C∗)5 acts on it by multiplying each vector vi by a number λi.
Let Δij is the area in V2 of the parallelogram 〈vi, vj〉. Then

Z[M0,5] = Z[Conf5(V2)]H = Z[Δ±1
ij ]H . (17)

The subspace Z[Mcyc
0,5 ] is spanned by the monomials∏

1≤i<j≤5

Δaij

ij , (18)

where ai,i+1 ∈ Z, and aij ∈ Z≥0 unless j = i±1 mod 5. Write the integers aij on the
diagonals and sides of the pentagon. Call them the weights and the corresponding
picture the chord diagram. The H-invariance means that the sum of the weights
assigned to the edges and sides sharing a vertex is 0. We erase diagonals of weight
0. A monomial is regular if its chord diagram has no intersecting diagonals. Using
the Plücker relations ΔacΔbd = ΔabΔcd + ΔadΔbc, 1 ≤ a < b < c < d ≤ 5, and
arguing by induction on the sum of the products of the weights of diagonals in the
intersection points, we reduce any sum of monomials (18) to a sum of the regular
ones. An easy argument with the “sum of the weights at a vertex equals zero”
equations shows that for a regular monomial there exists a vertex of the pentagon
such that its weights are as in Fig. 5. So the functions Xa,b;c span the space of
regular functions on Mcyc

0,5 . To check that they are linearly independent, look at
the monomials with maximum value of a+ b. The theorem is proved. �

−b

b
b a

−a−b

a

−a

Figure 5. The weight diagram of a basis monomial; a, b ≥ 0.

The quantized Mcyc
0,5 at roots of unity. Assume that q is a primitive N -th root of

unity. Then the functions xa,b;c := XNa,Nb;c generate the center of the algebra Lq.
In particular x := XN , y := Y N are in the center. One checks ([FG2], Section 3)
that the elements x, y behave under flips just like the corresponding coordinates
on Mcyc

0,5 . Therefore the spectrum of the center of Lq is identified with Mcyc
0,5 .

Restricting to an affine chart of Mcyc
0,5 with coordinates (α, β) we see that the

localization of the algebra Lq at this chart is identified with the algebra generated
by X,Y with the relations XN = α, Y N = β,XY = q2Y X . It is well know that it
is a sheaf of central simple algebras over C∗ × C∗. So we get

Proposition 3.3. Let q be a root of unity. Then the algebra Lq gives rise to a sheaf
of Azumaya algebras on Mcyc

0,5 .
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The real positive part of Mcyc
0,5 is given by configurations of points

(∞,−1, 0, x, y) with 0 < x < y. Its closure in M0,5(R) is the pentagon. Its sides
are real segments on the divisors Dc,c+1.
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Abstract. We study the geodesic flow on the normal line congruence of a
minimal surface in R3 induced by the neutral Kähler metric on the space
of oriented lines. The metric is lorentz with isolated degenerate points and
the flow is shown to be completely integrable. In addition, we give a new
holomorphic description of minimal surfaces in R3 and relate it to the classical
Weierstrass representation.
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1. Introduction

In a recent paper [4] a neutral Kähler metric was introduced on the space L of
oriented affine lines in R3. This metric is natural in the sense that it is invariant
under the action induced on L by the Euclidean action on R3. Moreover, a surface
in L is Lagrangian with respect to the associated symplectic structure iff there
exist surfaces orthogonal to the associated 2-parameter family of oriented lines (or
line congruence) in R3.

In this paper we characterise the set of oriented normals to a minimal surface
in R3 and study the geodesic flow on the line congruence induced by this neutral
Kähler metric. Along the way, we give a new holomorphic description of minimal
surfaces in R3 and relate it to the classical Weierstrass representation.

The induced metric on a Lagrangian line congruence is either lorentz or
degenerate. The null geodesics of the lorentz metric correspond to the principal
foliation on the orthogonal surface and the degeneracy occurs precisely at umbilic
points. We show that on the normal congruence of a minimal surface the geodesic
flow is completely integrable and find the first integrals. Recently the geodesic flow
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on certain non-Lagrangian line congruences was investigated [5]. In that case, the
metric was Riemannian with degeneracies along a curve.

The picture that emerges is this: every minimal surface carries a completely
integrable dynamical system [2] [7] [9]. This is generated by geodesic motion of a
lorentz metric whose null geodesics are the lines of curvatures and whose sources
are the isolated umbilic points of the minimal surface. To illustrate this we compute
the geodesics explicitly for the case of pure harmonic minimal surfaces. These have
a unique index −N umbilic point (for N > 0) and we show that the scattering
angle for non-null geodesics is 2π/(N + 2).

The next section describes the normal line congruence to a minimal surface -
all background details on the geometry of the space of oriented affine lines in R3 can
be found in [3] [4] and references therein. In [8] and papers quoted there, Reznikov
studied this symplectic structure in another context. We relate the present work
to the Weierstrass representation in Section 3. We then prove the result about the
geodesic flow in Section 4, while we look at the case of pure harmonic minimal
surfaces in the final section.

2. The Normal Line Congruence to a Minimal Surface

Let L be the space of oriented lines in R3 which we identify with the tangent
bundle to the 2-sphere [6]. Let π : L → P1 be the canonical bundle and (J,Ω,G)
the neutral Kähler structure on L [4].

A line congruence is a 2-parameter family of oriented lines in R3, or equiv-
alently, a surface Σ ⊂ L. We are interested in characterising the line congruence
formed by the oriented normal lines to a minimal surface S in R3:

Theorem 2.1. A Lagrangian line congruence Σ ⊂ L is orthogonal to a minimal
surface without flat points in R3 iff the congruence is the graph ξ �→ (ξ, η = F (ξ, ξ̄))
of a local section of the canonical bundle with:

∂̄

(
∂F̄

(1 + ξξ̄)2

)
= 0, (2.1)

where (ξ, η) are standard holomorphic coordinates on L − π−1{south pole} and ∂
represents differentiation with respect to ξ.

Proof. Let S be a minimal surface without flat points and Σ be its normal line
congruence. Since the line congruence is not flat, it can be given by the graph
of a local section. In terms of the canonical coordinates (ξ, η = F (ξ, ξ̄)) the spin
coefficients of such a line congruence are [3]:

ρ =
ψ

∂̄F∂F̄ − ψψ̄ σ = − ∂F̄

∂̄F∂F̄ − ψψ̄ ,

with

ψ = ∂F + r − 2ξ̄F
1 + ξξ̄

.
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As this line congruence is orthogonal to a surface in R3, ρ is real, and, as the mean
curvature vanishes, ρ = 0 on S.

Now, the graph of a Lagrangian section satisfies the following identity:

(1 + ξξ̄)2∂̄
(

σ0

(1 + ξξ̄)2

)
= −∂ψ, (2.2)

where we have introduced σ0 = −∂F̄ . This follows from the fact that partial
derivatives commute: firstly the left-hand side is

(1 + ξξ̄)2∂̄
(

σ0

(1 + ξξ̄)2

)
= −∂̄∂F̄ +

2ξ∂F̄
1 + ξξ̄

,

while the right-hand side is

−∂ψ = −∂
(
∂̄F̄ + r − 2ξF̄

1 + ξξ̄

)
= −∂∂̄F̄ +

2ξ∂F̄
1 + ξξ̄

.

Here we have used the Lagrangian condition ρ = ρ̄ and the equivalent local exis-
tence of a real function r : Σ → R such that

∂̄r =
2F

(1 + ξξ̄)2
. (2.3)

Thus, since ρ = 0, we have ψ = 0 and according to the identity (2.2), the
normal congruence to a minimal surface must satisfy the holomorphic condition
(2.1).

Conversely, suppose (2.1) holds for a Lagrangian line congruence Σ which is
given by the graph of a local section. Then, by the identity (2.2) ψ = C for some
real constant C. As the orthogonal surfaces move along the line congruence in R3,
ψ changes by ψ → ψ + constant. Thus there exists a surface S for which ψ = 0,
and therefore ρ = 0, i.e., there is a minimal surface orthogonal to Σ. �

The previous theorem has two immediate consequences:

Corollary 2.2. The normal congruence to a minimal surface is given by a local
section F of the bundle π : L → S2 with

F =
∞∑

n=0

2λnξ
n+3 − λ̄nξ̄

n+1
(
(n+2)(n+3) + 2(n+1)(n+3)ξξ̄ + (n+1)(n+2)ξ2ξ̄2

)
,

for complex constants λn. The potential function r : Σ → R satisfying (2.3) is:

r = −2
∞∑

n=0

(3 + n+ (1 + n)ξξ̄)(λξn+2 + λ̄ξ̄n+2)
1 + ξξ̄

.

Proof. Since the minimal surface condition is a holomorphic condition we can
expand in a power series about a point:

∂F̄

(1 + ξξ̄)2
=

∞∑
n=0

αnξ
n.
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This can be integrated term by term to

F̄ =
∞∑

n=0

βnξ̄
n + αnξ

n+1
(

1
n+1 + 2

n+2ξξ̄ + 1
n+3ξ

2ξ̄2
)
,

for complex constants βn. Now we impose the Lagrangian condition, that

(1+ξξ̄)∂̄F̄−2ξF̄ =
∞∑

n=0

βnξ̄
n−1(n+(n−2)ξξ̄)−2αnξ

n+2
(

1
(n+1)(n+2) + 1

(n+2)(n+3)ξξ̄
)
,

is real. This implies that β0 = β1 = β2 = 0 and (n+ 1)(n+ 2)(n+ 3)βn+3 = −2ᾱn

for n ≥ 0. Letting αn = −(n+ 1)(n+ 2)(n+ 3)λn gives the stated result.
Finally it is easily checked that the expressions for r and F satisfy (2.3). �

On a minimal surface flat points are also umbilic points (and vice versa).
Such points are now shown to be isolated:

Corollary 2.3. Umbilic points on minimal surfaces are isolated and the index of
the principal foliation about an umbilic point on a minimal surface is less than or
equal to zero.

Proof. An umbilic point is a point where ∂F̄ = 0.
Moreover, the argument of ∂̄F gives the principal foliation of the surface [3].

Given that minimality implies the holomorphic condition (2.1), the zeros of ∂F̄
are isolated and have index greater than or equal to zero. �

3. The Weierstrass Representation of a Minimal Surface

The classical Weierstrass representation constructs a minimal surface from a holo-
morphic curve in L [6]. The minimal surface in R3 determined by a local holomor-
phic section ν �→ (ν, w(ν)) of the canonical bundle is given by

z =
1
2
w′′ − 1

2
ν̄2w′′ + ν̄w′ − w̄

t =
1
2
νw′′ − 1

2
w′ +

1
2
ν̄w′′ − 1

2
w′,

where a prime represents differentiation with respect to the holomorphic parameter
ν and z = x1 + ix2, t = x3 for Euclidean coordinates (x1, x2, x3). The relationship
between this and our approach is as follows.

Proposition 3.1. The normal congruence of the minimal surface, in terms of the
canonical coordinates ξ and η, is

ξ = −ν̄ η =
1
4
(1 + ξξ̄)3

∂2

∂ξ̄2

(
w

1 + ξξ̄

)
− 1

2
w̄.
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Proof. We have that
∂

∂ν
=

1
2
w′′′

(
∂

∂z
− ν2 ∂

∂z̄
+ ν
∂

∂t

)
.

The unit vector in R3 which corresponds to the point ξ ∈ S2 is

e0 =
2ξ

1 + ξξ̄
∂

∂z
+

2ξ̄
1 + ξξ̄

∂

∂z̄
+

1− ξξ̄
1 + ξξ̄

∂

∂t
.

The normal direction is given by the vanishing of the inner product of the preceding
2 vectors, which is easily seen to imply (for w′′′ �= 0) ξ = −ν̄. At w′′′ = 0 there
is an umbilic point. The remainder of the proposition follows from the incidence
relation [3]:

η =
1
2

(
z − 2tξ − z̄ξ2

)
. �

The holomorphic functions of our method and that of the Weierstrass repre-
sentation are related by

1
(1 + ξξ̄)2

∂F

∂ξ̄
=

1
4
∂3w

∂ξ̄3
.

4. The Geodesic Flow

We now look at the metric on Lagrangian sections:

Proposition 4.1. The metric induced by the neutral Kähler metric on the graph of
a Lagrangian section η = F (ξ, ξ̄) is:

ds2 =
2i

(1 + ξξ̄)2
(
σ0dξ ⊗ dξ − σ̄0dξ̄ ⊗ dξ̄

)
,

where σ0 = −∂F̄ . Thus, for |σ0| �= 0 the metric is Lorentz and for |σ0| = 0 the
metric is degenerate.

Proof. The neutral Kähler metric has local expression (see equation (3.6) of [4]):

G =
2i

(1 + ξξ̄)2

(
dη ⊗ dξ̄ − dη̄ ⊗ dξ +

2(ξη̄ − ξ̄η)
1 + ξξ̄

dξ ⊗ dξ̄
)
. (4.1)

We pull the metric back to the section:

G|Σ =
2i

(1+ξξ̄)2

[
∂̄F dξ̄⊗dξ̄−∂F̄ dξ⊗dξ+

(
∂F − ∂̄F̄ +

2(ξη̄− ξ̄η)
1+ξξ̄

)
dξ⊗dξ̄

]
.

Now the Lagrangian condition says precisely that the coefficient of the dξ ⊗ dξ̄
term vanishes, and the result follows. �

We turn now to the geodesic flow. Since the metric above is flat on the normal
congruence of a minimal surface, this flow is completely integrable:

Proposition 4.2. Consider the normal congruence to a minimal surface Σ ⊂ L
given by (ξ, η = F (ξ, ξ̄)). The geodesic flow on Σ is completely integrable with first
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integrals

I1 =
2i

(1 + ξξ̄)2

(
σ0ξ̇

2 − σ̄0 ˙̄ξ2
)

I2 =
σ

1
2
0 ξ̇ + σ̄

1
2
0

˙̄ξ
1 + ξξ̄

.

Proof. Consider the affinely parameterised geodesic t �→ (ξ(t), η = F (ξ(t), ξ̄(t)))
on Σ with tangent vector

T = ξ̇
∂

∂ξ
+ ˙̄ξ
∂

∂ξ̄
.

The geodesic equation Tj∇jTk = 0, projected onto the ξ coordinate is

ξ̈ + Γξ
ξξ ξ̇

2 + 2Γξ

ξ̄ξ
ξ̇ ˙̄ξ + Γξ

ξ̄ξ̄
˙̄ξ2 = 0.

For the induced metric (as given in Proposition 4.1) a straightforward calculation
yields the Christoffel symbols:

Γξ
ξξ =

1
2σ0

(
∂σ0 −

2σ0ξ̄
1 + ξξ̄

)
Γξ̄

ξξ =
1

2σ̄0

(
∂̄σ0 −

2σ0ξ
1 + ξξ̄

)
Γξ

ξξ̄
=

1
2σ0

(
∂̄σ0 −

2σ0ξ
1 + ξξ̄

)
.

For the normal congruence of a minimal surface the holomorphic condition (2.1)
implies that Γξ̄

ξξ = 0 and Γξ

ξξ̄
= 0. Thus the geodesic equation reduces to

ξ̈ = −1
2
∂

[
ln

(
σ0

(1 + ξξ̄)2

)]
ξ̇2.

The fact that I1 is constant along a geodesic comes from the fact that the
geodesic flow preserves the length of the tangent vector Tj . On the other hand,
differentiating I2 with respect to t:

İ2 =
1
2

(
σ0

(1 + ξξ̄)2

)− 1
2

[
∂

(
σ0

(1 + ξξ̄)2

)
ξ̇2 + ∂̄

(
σ0

(1 + ξξ̄)2

)
ξ̇ ˙̄ξ

]
+

1
2

(
σ̄0

(1 + ξξ̄)2

)− 1
2

[
∂

(
σ̄0

(1 + ξξ̄)2

)
ξ̇ ˙̄ξ + ∂̄

(
σ̄0

(1 + ξξ̄)2

)
˙̄ξ2

]
+
σ

1
2
0

1 + ξξ̄
ξ̈ +

σ̄
1
2
0

1 + ξξ̄
¨̄ξ

=
1
2

(
σ0

(1 + ξξ̄)2

)− 1
2

∂

(
σ0

(1 + ξξ̄)2

)
ξ̇2 +

1
2

(
σ̄0

(1 + ξξ̄)2

)− 1
2

∂̄

(
σ̄0

(1 + ξξ̄)2

)
˙̄ξ2

− 1
2
σ

1
2
0

1 + ξξ̄
∂

[
ln

(
σ0

(1 + ξξ̄)2

)]
ξ̇2 − 1

2
σ̄

1
2
0

1 + ξξ̄
∂̄

[
ln

(
σ̄0

(1 + ξξ̄)2

)]
˙̄ξ2

= 0,

as claimed. �
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5. Examples: The Pure Harmonics

We now consider the geodesic flow for the pure harmonics, that is, the minimal
surfaces with

∂F̄

(1 + ξξ̄)2
= αNξ

N ,

for some N ∈ N. These have isolated umbilic points of index −N < 0 at ξ = 0,
which is also an N + 1 −fold branch point. By a rotation we can make αN real
and rescaling the first integrals we will set it to 1.

By Proposition 4.2 above, the first integrals are

I1 = 2i
(
ξN ξ̇2 − ξ̄N ˙̄ξ2

)
I2 = ξN/2ξ̇ + ξ̄N/2 ˙̄ξ.

These can be integrated to:

4iI2
N + 2

(
ξ

N+2
2 − ξ̄ N+2

2

)
= I1t+ c1

2
N + 2

(
ξ

N+2
2 + ξ̄

N+2
2

)
= I2t+ c2,

for real constants of integration c1 and c2.
For null geodesics I1 = 0, and if we let ξ = Reiθ we get two sets of null

geodesics (future- and past-directed) which are given implicitly by:

R
N+2

2 sin
(
N + 2

2

)
θ = c1 R

N+2
2 cos

(
N + 2

2

)
θ = c2.

For N = 0, these form a rectangular grid, while for N > 0 they form the standard
index −N foliation about the origin. Figures 1 and 2 below shows the N = 1
minimal surface, and the foliation of null geodesics about the index −1 umbilic.

For non-null geodesics I1 �= 0 and I2 �= 0. Then the geodesics can be written
parametrically:

R
N+2

2 sin (N+2
2 ) θ = −N + 2

8I2
(I1t+ c1) R

N+2
2 cos (N+2

2 ) θ =
N + 2

4
(I2t+ c2) .

The umbilic acts as a source of repulsion and the scattering angle can be found by
noting that

tan (N+2
2 ) θ = − 1

2I2
I1t+ c1
I2t+ c2

.

Thus, as t→ ±∞ we have tan (N+2
2 ) θ → − I1

2I22
. We deduce then that the scattering

angle is 2π
N+2 . Figure 3 illustrates the scattering angle for a non-null geodesic about

the N = 1 umbilic.
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Abstract. In this paper, we obtain an explicit formula for the Chern charac-
ter of a locally abelian parabolic bundle in terms of its constituent bundles.
Several features and variants of parabolic structures are discussed. Parabolic
bundles arising from logarithmic connections form an important class of exam-
ples. As an application, we consider the situation when the local monodromies
are semi-simple and are of finite order at infinity. In this case the parabolic
Chern classes of the associated locally abelian parabolic bundle are deduced
to be zero in the rational Deligne cohomology in degrees ≥ 2.
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1. Introduction

Parabolic bundles were introduced by Mehta and Seshadri [Me-Se] [Se] over curves
and the definition was extended over higher-dimensional varieties by Maruyama
and Yokogawa [Ma-Yo], Biswas [Bi], Li [Li], Steer-Wren [Sr-Wr], Panov [Pa] and
Mochizuki [Mo2]. A parabolic bundle F on a variety X is a collection of vector
bundles Fα, indexed by a set of weights, i.e., α runs over a multi-indexing set 1

nZ×
1
nZ×· · ·× 1

nZ, for some denominator n. Further, all the bundles Fα restrict on the
complement X−D of some normal crossing divisor D = D1+ · · ·+Dm to the same
bundle, the index α is anm-tuple and the Fα satisfy certain normalization/support
hypothesis (see §2.1).

This work is a sequel to [Iy-Si], which in turn was motivated by Reznikov’s
work on characteristic classes of flat bundles [Re], [Re2]. As a long-range goal
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we would like to approach the Esnault conjecture [Es2] that the Chern classes of
Deligne canonical extensions of motivic flat bundles vanish in the rational Chow
groups. Reznikov’s work shows the vanishing of an important piece of these classes,
over the subset of definition of a flat bundle. We think that it should be possible
to define secondary classes over a completed variety for flat connections which are
quasi-unipotent at infinity, and to extend Reznikov’s results to this case. At the
end of this paper we treat a first and essentially easy case, when the monodromy
transformations at infinity have finite order. We hope to treat the general case
in the future and regain an understanding of characteristic classes such as Sasha
Reznikov had.

A different method for obtaining a very partial result on the Esnault conjec-
ture, removing a hypothesis from the GRR formula of Esnault-Viehweg [Es-Vi3],
was done in [Iy-Si]. There we used a definition of the Chern character obtained from
the correspondence between locally abelian parabolic bundles and usual vector
bundles on a particular Deligne–Mumford stack denoted by Zm = X〈D1

n , . . . ,
Dm

n 〉
(see [Bo], [Iy-Si, §2.3], [Cad], [Ma-Ol], [Me-Se], [Bd], [Bi]). The Chern character
of F is defined to be the Chern character of the corresponding vector bundle on
this stack. This was sufficient for our application in [Iy-Si], however it is clearly
unsatisfactory to have only an abstract definition rather than a formula.

The aim of this note is to give an explicit formula for the Chern character
in terms of the Chern character of the constituent bundles Fα and the divisor
components Di in the rational Chow groups of X . This procedure, using a DM
stack to define the Chern character and then giving a computation, was first done
for the parabolic degree by Borne in [Bo], however his techniques are different from
ours. The parabolic aspect of the problem of extending characteristic classes for
bundles from an open variety to its completion should in the future form a small
part of a generalization of Reznikov’s work and we hope the present paper can
contribute in that direction.1

With our fixed denominator n, introduce the notation

[a1, . . . , am] := (
a1
n
, . . . ,

am
n

)

for multi-indices, so the parabolic structure is determined by the bundles F[a1,...,am]

for 0 ≤ ai < n with ai integers.
We prove the following statement.

Theorem 1.1. Suppose F is a locally abelian parabolic bundle on X with respect to
D1, . . . , Dm, with n as the denominator. Then we have the following formula for
the Chern character of F :

ch(F ) =

∑n−1
a1=0 · · ·

∑n−1
am=0 e

−∑ m
i=1

ai
n Dich(F[a1,...,am])∑n−1

a1=0 · · ·
∑n−1

am=0 e
−

∑
m
i=1

ai
n Di

. (1)

1Note added in July 2007: we have now been able to treat the case of unipotent monodromy
along a smooth divisor, see our preprint “Regulators of canonical extensions are torsion: the
smooth divisor case”.
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In other words, the Chern character of F is the weighted average of the Chern
characters of the component bundles, with weights e−

∑m
i=1

ai
n Di .

The proof is by showing that the parabolic bundle obtained by twisting F
by a direct sum of line bundles involving Di is componentwise isomorphic to a
direct sum of the constituent bundles F[a1,...,am] twisted by parabolic line bundles
involving Di (see Corollary 5.7). The proof is concluded by proving the main
theorem on the invariance of the Chern character under componentwise Chow
isomorphism (see Theorem 2.9). It says: given locally abelian parabolic bundles F
and G whose constituent bundles F[a1,...,am] and G[a1,...,am] have the same Chern
character, for all ai with 0 ≤ ai < n, then F and G also have the same Chern
character in the rational Chow groups of X .

We also give variants of the Chern character formula. One can associate a
parabolic structure F to a vector bundle E on X and given filtrations on the
restriction of E on the divisor components of D (see §2, §6). If X is a surface
this is automatically locally abelian, but in higher dimensions it is not always the
case (see Lemma 2.3). When the structure is locally abelian, we obtain a formula
for ch(F ) which involves ch(E) and terms under the Gysin maps on the multiple
intersections of the divisor components of D (see Corollary 7.4 and Corollary 7.5).
The shape of the formula depends on the way the filtrations intersect on the
multiple intersections of the divisor components.

In §6 we give two easy counterexamples which show that the Chern character
of a parabolic bundle cannot be obtained easily from just the Chern character of
the underlying bundle and that of its filtrations taken separately, nor from the
data of a filtration of subsheaves indexed by a single parameter for the whole
divisor (Maruyama-Yokogawa’s original definition [Ma-Yo]). These show that in
order to obtain a good formula we should consider all of the bundles F[a1,...,am].
This version of parabolic structure was first introduced by Li [Li], Steer-Wren
[Sr-Wr] and Mochizuki [Mo2].

We treat parabolic bundles with real weights in §8. The aim is to define pull-
back of a locally abelian parabolic bundle as a locally abelian parabolic bundle.
This is done by approximating with the rational weights case (see Lemma 8.5).
Properties like functoriality, additivity and multiplicativity of the Chern character
are also discussed. In §9, on a smooth surface, parabolic structures at multiple
points are discussed and a Chern character formula is obtained. Logarithmic con-
nections were discussed by Deligne in [De]. We discuss some filtrations defined by
the residue transformations of the connection at infinity. When the eigenvalues
of the residues are rational and non-zero, a locally abelian parabolic bundle was
associated in [Iy-Si], and this construction is considered further in §10. When the
residues are nilpotent, we continue in §9 with something different: assign arbitrary
weights to the pieces of the monodromy weight filtration of the nilpotent residue
operators, creating a family of parabolic bundles indexed by the choices of weights.
If X is a surface then these are automatically locally abelian, and as an example
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we make explicit the computation of the parabolic Chern character ch(F ) in the
case of a weight one unipotent Gauss-Manin system F , see Lemma 9.3.

In §10 we consider the extension of Reznikov’s theory to flat bundles with
finite order monodromy at infinity. Such bundles may be considered as flat bun-
dles over a DM-stack of the form Zm = X〈D1

n , . . . ,
Dm

n 〉, and Reznikov’s theorem
[Re2] applies directly (or alternatively, over a finite Kawamata covering). The only
knowledge which we can add is that our formula of Theorem 1.1 gives parabolic
Chern classes in terms of the parabolic structure on X deduced from the flat bun-
dle, and Reznikov’s theorem can be stated as vanishing of these classes. This might
have computational content in explicit examples.

Proposition 1.2 (Parabolic corollary of Reznikov’s theorem). Suppose (EU ,∇U )
is a flat bundle on U with rational and semisimple residues, or equivalently the
monodromy transformations at infinity are of finite order. Let F denote the cor-
responding locally abelian parabolic bundle. Recall that F[a1,...,am] is the unique
bundle on X extending EU such that the residues of the connection over Di have
eigenvalues in the interval [−ai, 1− ai). Using the same formula as (1) define the
Deligne Chern character of F by

chD(F ) :=

∑n−1
a1=0 · · ·

∑n−1
am=0 e

−
∑ m

i=1
ai
n DichD(F[a1,...,am])∑n−1

a1=0 · · ·
∑n−1

am=0 e
−∑ m

i=1
ai
n chD(Di)

in the rational Deligne cohomology, and the Chern classes cDp (F ) by the usual
formula. Then the classes cDp (F ) for all p ≥ 2 vanish. This is equivalent to saying
that chD

p (F ) = chD
1 (F )p/p!.

Acknowledgements. We thank P. Deligne for having useful discussions. The first
named author is supported by NSF. This material is based upon work supported
by the National Science Foundation under agreement No. DMS-0111298. Any opin-
ions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarliy reflect the views of the National Science
Foundation.

2. Parabolic bundles

Let X be a smooth projective variety over an algebraically closed field of charac-
teristic zero, with D a normal crossing divisor on X . Write D = D1 + · · · +Dm

where Di are the irreducible smooth components and meeting transversally. We
use an approach to parabolic bundles based on multi-indices (α1, . . . , αm) of length
equal to the number of components of the divisor. This approach, having its ori-
gins in the original paper of Mehta and Seshadri [Me-Se], was introduced in higher
dimensions by Li [Li], Steer-Wren [Sr-Wr], Mochizuki [Mo2] and contrasts with
the Maruyama-Yokogawa definition which uses a single index [Ma-Yo].
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2.1. Definition

A parabolic bundle on (X,D) is a collection of vector bundles Fα indexed by
multi-indices α = (α1, . . . , αk) with αi ∈ Q, together with inclusions of sheaves of
OX -modules

Fα ↪→ Fβ

whenever αi ≤ βi (a condition which we write as α ≤ β in what follows), subject
to the following hypotheses:

– (normalization/support) let δi denote the multiindex δii = 1, δij = 0, i �= j,
then Fα+δi = Fα(Di) (compatibly with the inclusion); and

– (semicontinuity) for any given α there exists c > 0 such that for any multi-
index ε with 0 ≤ εi < c we have Fα+ε = Fα.

It follows from the normalization/support condition that the quotient sheaves
Fα/Fβ for β ≤ α are supported in a schematic neighborhood of the divisor D, and
indeed if β ≤ α ≤ β+

∑
niδ

i then Fα/Fβ is supported over the scheme
∑k

i=1 niDi.
Let δ :=

∑k
i=1 δ

i. Then

Fα−δ = Fα(−D)

and Fα/Fα−δ = Fα|D.
The semicontinuity condition means that the structure is determined by the

sheaves Fα for a finite collection of indices α with 0 ≤ αi < 1, the weights.
A parabolic bundle is called locally abelian if in a Zariski neighbourhood of

any point x ∈ X there is an isomorphism between F and a direct sum of parabolic
line bundles. By Lemma 3.3 of [Iy-Si], it is equivalent to require this condition on
an etale neighborhood.

The locally abelian condition first appeared in Mochizuki’s paper [Mo2], in
the form of his notion of compatible filtrations. The condition that there be a
global frame splitting all of the parabolic filtrations appears as the conclusion of
his Corollary 4.4 in [Mo, §4], cf Theorem 2.2 below. A somewhat similar com-
patibility condition appeared earlier in Li’s paper [Li, Definition 2.1(a)], however
his condition is considerably stronger than that of [Mo2] and some locally abelian
cases such as Case B in §7.1 below will not be covered by [Li]. The notion of
existence of a local frame splitting all of the filtrations, which is our definition of
“locally abelian”, did occur as the conclusion of [Li, Lemma 3.2].

Fix a single n which will be the denominator for all of the divisor components,
to make notation easier. Letm be the number of divisor components, and introduce
the notation

[a1, . . . , am] := (
a1
n
, . . . ,

am
n

)

for multi-indices, so the parabolic structure is determined by the bundles F[a1,...,am]

for 0 ≤ ai < n with ai integers.
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2.2. Parabolic bundles by filtrations

Historically the first way of considering parabolic bundles was by filtrations on
the restriction to divisor components [Me-Se], [Se], see also [Ma-Yo], [Bi], [IIS] [Li]
[Sr-Wr] [Mo2] [Pa]. Suppose we have a vector bundle E and filtrations of E|Di by
saturated subbundles:

E|Di = F i
0 ⊃ F i

−1 ⊃ · · · ⊃ F i
−n = 0

for each i, 1 ≤ i ≤ m.
Consider the kernel sheaves for −n ≤ j ≤ 0,

0 −→ F i
j −→ E −→

E|Di

F i
j

−→ 0

and define
F[a1,a2,...,am] := ∩m

i=1F
i
ai
, (2)

for −n ≤ ai ≤ 0. In particular F[0,...,0] = E. This can then be extended to sheaves
defined for all values of ai using the normalization/support condition

F[a1,...,ai+n,...,am] = F[a1,a2,...,am](Di). (3)

We call this a parabolic structure given by filtrations.
Conversely, suppose we are given a parabolic structure F· as described in (2.1)

when all the component sheaves F[a1,...,am] are vector bundles. Set E := F[0,...,0],
and note that

E|Di = E/F[0,...,−n,...,0]

where −n is put in the ith place. The image of F[0,...,−ai,...,0] in E|Di is a sub-
sheaf, and we assume that it is a saturated subbundle. This gives a parabolic
structure “by filtrations”. We can recover the original parabolic structure F· by
the intersection formula (2).

We feel that these constructions only make good sense under the locally
abelian hypothesis. We note some consequences of the locally abelian property.

Lemma 2.1. Suppose {F[a1,a2,...,am]}−n≤ai≤0 define a locally abelian parabolic bun-
dle on X with respect to (D1, . . . , Dm). Let E := F[0,...,0], which is a vector bundle
on X. Then F comes from a construction as above using unique filtrations of E|Di

and we have the following properties:
(a) the F[a1,a2,...,am] are locally free;
(b) for each k and collection of indices (i1, . . . , ik), at each point in the k-fold

intersection P ∈ Di1 ∩ · · · ∩ Dik
the filtrations F i1· , . . . , F

ik· of EP admit a
common splitting, hence the associated-graded

GrF
i1

j1 · · ·GrF ik

jk
(EP )

is independent of the order in which it is taken (see [De2]); and
(c) the functions

P �→ dim GrF
i1

j1 · · ·GrF ik

jk
(EP )

are locally constant functions of P on the multiple intersections Di1∩· · ·∩Dik
.
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Proof. Direct. �

The above conditions are essentially what Mochizuki has called “compatibil-
ity” of the filtrations [Mo, §4], and he shows that they are sufficient for obtaining
a compatible local frame. Compare with [Li, Lemma 3.2] where the proof is much
shorter because the compatibility condition in the hypothesis is stronger.

Theorem 2.2 (Mochizuki [Mo, Cor. 4.4]). Suppose given a parabolic structure which
is a collection of sheaves F[a1,a2,...,am] obtained from filtrations on a bundle E as
above. If these satisfy conditions (a), (b) and (c) of the previous lemma, then the
parabolic structure is locally abelian.

The situation is simpler in the case of surfaces which we describe here.

Lemma 2.3. Suppose X is a surface with a normal crossings divisor D = D1 +
· · ·+Dm ⊂ X. Suppose given data of a bundle E and strict filtrations of E|Di as
in Lemma 2.1. Then this data defines a locally abelian parabolic bundle on (X,D).

Proof. One way to prove this is to use the correspondence with bundles on the
DM-stack covering Z := X〈D1

n , . . . ,
Dm

n 〉 (see [Iy-Si, Lemma 2.3]). Let Z ′ be the
complement of the intersection points of the divisor. On Z ′ the given filtrations
define a vector bundle, as can be seen by applying the correspondence of [Bo]
[Iy-Si] in codimension 1, or more concretely just by using the filtrations to make
a sequence of elementary transformations. Then, since Z is a smooth surface, this
bundle extends to a unique bundle on Z, which corresponds to a locally abelian
parabolic bundle on X [Iy-Si].

Another way to prove this is to note that there are only double intersections.
At a point P where Di and Dj intersect, the filtrations coming from Di and Dj

have a common splitting. This can then be extended along both Di and Dj as
a splitting of the respective filtrations, and extended in any way to the rest of
X . The resulting direct sum decomposition splits the parabolic structure. This is
illustrated by an example in §7.1. �

We mention here a more general notation used by Mochizuki [Mo2, §3.1] for
parabolic bundles given by a filtration, starting with an origin c = (c1, . . . , cm)
which may be different from (0, . . . , 0). In this case, the underlying bundle is

E := F[c1,...,cm]

and the filtrations on E|Di are denoted F i
j indexed by ci − n ≤ j ≤ ci with

F i
ci

= E|Di and F i
ci−n = 0. We can go between different values of c by tensoring

with parabolic line bundles.

2.3. Parabolic sheaves in the Maruyama-Yokogawa notation

In their original definition of parabolic structures on higher-dimensional vari-
eties, Maruyama and Yokogawa considered the general notion of parabolic sheaf
with respect to a single divisor, even if the divisor is not smooth [Ma-Yo]. Call
this a MY parabolic struture. We can apply their definition to the full divisor
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D = D1 + · · ·+Dm. This is what was done for example in Biswas [Bi], Borne [Bo]
and many other places. Of course for the case of curves, the two are completely
equivalent because a divisor is always a disjoint union of its components; multi-
indexed divisors were used by Mehta and Seshadri [Me-Se]. Some of the first places
where multi-indexed divisors were used in higher dimensions were in Li [Li], Steer-
Wren [Sr-Wr], Panov [Pa] and Mochizuki [Mo2]. In the MY case the parabolic
structure is given by a collection of sheaves indexed by a single parameter Fα

for α ∈ Q, with Fα+1 = Fα(D). We use upper indexing to distinguish this from
our notation (although they would be the same in the case of a single smooth
divisor). If F· is a parabolic structure according to our notation, then we get a
MY-parabolic structure by setting

Fα := Fα,...,α.

Conversely, given a MY-parabolic structure F ·, if we assume that E := F 0 is a
bundle, then the images of F− ai

n in EDi define subsheaves at generic points of
the components Di, which we can complete to saturated subsheaves everywhere.
If F · is locally abelian (that is to say, locally a direct sum of MY-parabolic line
bundles) then these saturated subsheaves are subbundles and we recover the par-
abolic structure via filtrations, hence the parabolic structure F· in this way. This
construction is tacitly used by Biswas in [Bi2, pp. 599, 602], although he formally
sticks to the MY-parabolic notation.

In the locally abelian case, all of these different points of view permit us to
represent the same objects and going between them by the various constructions
we have outlined, is a commutative process in the sense that by any path we
get back to the same objects in each notation. We don’t attempt to identify the
optimal set of hypotheses, weaker than locally abelian, on the various structures
which would allow to give a more general statement of this sort of commutation of
the various constructions. This doesn’t seem immediately relevant since, for now,
it doesn’t seem clear what is the really good notion of parabolic sheaf.

2.4. Parabolic bundles on a DM-stack

Recall from [Bo] [Cad] [Ma-Ol] [Iy-Si] that given (X,D) and a denominator n, we
can form a DM-stack denoted Z := X〈D1

n , . . . ,
Dm

n 〉, and there is an equivalence of
categories between parabolic bundles on (X,D) with denominator n, and vector
bundles on the DM-stack Z. The Chern character will be defined using this equiv-
alence, and we would like to analyse it by an induction on the number of divisor
components m. Thus, we are interested in intermediate cases of parabolic bundles
on DM-stacks.

We can carry out all the above constructions in the case when X is a DM
stack and Di are smooth divisors, i.e., smooth closed substacks of codimension 1,
meeting transversally on X .

Lemma 2.4. The construction (X,D) �→ Z := X〈D
n 〉 makes sense for any smooth

DM stack X and smooth divisor D ⊂ X. The stack Z is then again smooth with
a morphism of stacks Z → X.
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Proof. Since the construction [Cad] [Ma-Ol] [Bo] of the DM-stack X〈D
n 〉 when X

is a variety is local for the étale topology (see [Iy-Si, §2.2]), the same construction
works when X is a DM-stack. �

Let Zk := X〈D1
n , . . . ,

Dk

n 〉. This is a DM-stack (see [Cad] [Ma-Ol] [Bo] [Iy-Si,
§2.2]) and we have maps

. . .→ Zk → Zk−1 → . . .→ Z0 = X.

On Zk we have divisors D(k)
j which are the pullbacks of the divisors Dj from X .

When j > k the divisor D(k)
j is smooth, whereas for j ≤ k the divisor D(k)

j has
multiplicity n.

Lemma 2.5. With the above notation, we have the inductive statement that for any
0 ≤ k < m,

Zk+1 = Zk〈
D

(k)
k+1

n
〉.

Proof. Recall the definition of Zk+1 : if we assume Di for i = 1, . . . , k+1 is defined
by equations zi = 0 and on any local chart (for the étale topology) some of the
components say D1, . . . , Dk′ occur then the local chart for Zk+1 with coordinates
ui is defined by the equations zi = un

i for i = 1, . . . , k′ and zi = ui for i > k′.

Now Zk〈
D

(k)
k+1
n 〉 is obtained from Zk by defining local chart with coordinates wi and

repeating the above construction by considering the component divisor D(k)
k+1 on

Zk, by applying Lemma 2.4 and having the same denominator n. It is now clear
that both the constructions define the same stack. �

Suppose X is a smooth DM stack and D ⊂ X is a smooth divisor. Then
we define the notion of parabolic bundle on (X,D) (with n as denominator) as
follows. A parabolic structure is a collection of sheaves Fα on X (with α ∈ 1

nZ)
with F[a] → F[a+1] (remember the notation at the start here with m = 1 so
[a] = ( a

n )). This is a parabolic bundle if the F[a] are bundles and the quotient
sheaves

F[a+1]/F[a]

are bundles supported on D. This is equivalent to a locally abelian condition
in the étale topology of X . Indeed, we can attach weights a

n to the graded pieces
F[a+1]/F[a] whenever this is non-zero and define locally on a general point of the di-
visor D a direct sum L of parabolic line bundles such that if the rank of F[a+1]/F[a]

is na then L =
∑

aO(− a
nD)⊕na .

Lemma 2.6. There is an equivalence of categories between bundles on X〈D
n 〉 and

parabolic bundles on (X,D) with n as denominator.

Proof. This is proved by Borne [Bo, Theorem 5] when X is a smooth variety. In
the case of a DM stack since everything is local in the étale topology it works the
same way. �
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Similarly if Di are smooth divisors meeting transversally on a DM stack X
then we can define a notion of locally abelian parabolic bundle on (X ;

∑
iDi), as

in §2.1. Here the locally abelian condition is local in the etale topology which is
the only appropriate topology to work with on X .

Lemma 2.7. With the notation of the beginning, the categories of locally abelian
parabolic bundles on

(Zk;D(k)
k+1, . . . , D

(k)
m )

are all naturally equivalent.

Proof. When k = m and for any k, so we consider Zm and Zk, the equivalence
of vector bundles on Zm and locally abelian parabolic bundles on Zk is proved in
[Iy-Si, Lemma 2.3] (actually it is proved when Zk is a variety but as earlier the
same proof holds for the DM-stack Zk). This gives the equivalences of categories
on any Zk and Zk′ . �

In particular the cases k = 0 so Zk = X and k = m where there are no
further divisor components, correspond to the equivalence of categories of [Iy-Si,
Lemma 2.3]:

Corollary 2.8. The category of locally abelian parabolic bundles on X is equivalent
to the category of vector bundles on Zm = X〈D1

n , . . . ,
Dm

n 〉.
2.5. Chern characters

We recall here the abstract definition of the Chern character of a parabolic bun-
dle. If F· is a parabolic bundle with rational weights having common denomi-
nator n, then it corresponds to a vector bundle FDM on the DM-stack Zm =
X〈D1

n , . . . ,
Dm

n 〉. Let π : Zm → X denote the projection. By Gillet [Gi] and Vistoli
[Vi] it induces an isomorphism of rational Chow groups

π∗ : CH(Zm)Q
∼=−→ CH(X)Q. (4)

In [Iy-Si], following an idea of Borne [Bo], we defined the Chern character of F to
be

ch(F ) := π∗(ch(FDM )) ∈ CH(X)Q. (5)
It is a formal consequence of this definition that Chern character is compatible
additively with direct sums (or more generally extensions), multiplicatively with
tensor products, and the pullback of the Chern character is the Chern character of
the pullback bundle for a morphism f of varieties if the normal-crossings divisors
are in standard position with respect to f .

2.6. Statement of the main theorem

Our goal is to give a formula for the Chern character defined abstractly by (5).
The first main theorem is that the Chern character depends only on the Chern
characters of the component bundles, and not on the inclusion morphisms between
them. This is not in any way tautological, as is shown by the examples we shall
consider in §5 below which show that it is not enough to consider the Chern
characters of the bundle E plus the filtrations, or just the Maruyama-Yokogawa
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components. The full collection of component bundles F[a1,...,am] is sufficient to
account for the incidence data among the filtrations, and allows us to obtain the
Chern character.

Theorem 2.9. Suppose F and G are locally abelian parabolic bundles on a DM stack
X with n as denominator. Suppose that for all ai with 0 ≤ ai < n the bundles
F[a1,...,am] and G[a1,...,am] have the same Chern character in the rational Chow
groups of X. Then the parabolic bundles F and G have the same Chern character
in the rational Chow group of X.

When we have two parabolic bundles F and G satisfying the hypothesis of
the theorem, we say that F and G are componentwise Chow equivalent. A stronger
condition is to say that F and G are componentwise isomorphic, meaning that the
F[a1,...,an] and G[a1,...,an] are isomorphic bundles on X . This obviously implies that
they are componentwise Chow equivalent, and so the theorem will imply that they
have the same Chern character.

Once we have Theorem 2.9, it is relatively straightforward to give an explicit
calculation of the Chern character by exhibiting a componentwise isomorphism
of parabolic bundles. The componentwise isomorphism which will come into play,
will not, however, come from an isomorphism of parabolic structures because the
individual isomorphisms on component bundles will not respect the inclusion maps
in the parabolic structure. The resulting formula is a weighted average as stated
in Theorem 1.1, proven as Theorem 5.8 below.

3. Reduction to the case of one divisor

In this section and the next, we prove Theorem 2.9. In this section we will use the
intermediate stacks Zk in order to reduce to the case of only one smooth divisor
component; then in the next section we prove the formula for that case. To see
how the reduction works we have to note what happens to the component bundles
in the equivalence of Lemma 2.7.

Fix 0 < k ≤ m and consider the equivalence of Lemma 2.7 which we denote
(a) in what follows: suppose E is a locally abelian parabolic bundle on

(Zk−1;D
(k−1)
k , . . . , D(k−1)

m ),

then it corresponds to F which is a locally abelian parabolic bundle on

(Zk;D(k)
k+1, . . . , D

(k)
m ).

Recall that Zk = Zk−1〈D
(k−1)
k

n 〉 and that we have an equivalence (b) between
bundles on Zk, and parabolic bundles on Zk−1 with respect to the divisor D(k−1)

k .
For any bk+1, . . . , bm we can let ak vary, and using E we obtain a parabolic bundle

H [bk+1,...,bm] := ak �→ E[ak,bk+1,...,bm]

on Zk−1 with respect to the divisor D(k−1)
k .
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Lemma 3.1. Suppose that E and F correspond via the equivalence (a) as in the
above notation, and define the parabolic bundle H [bk+1,...,bm] as above, which for any
bk+1, . . . , bm is a parabolic bundle on Zk−1 with respect to the divisor D(k−1)

k . Then
this parabolic bundle H [bk+1,...,bm] is the one which corresponds via the equivalence
(b) to the component vector bundle F[bk+1,...,bm] of the parabolic bundle F .

Proof. We use the definition of the pushforward ([Iy-Si, §2.2]) which provides the
explicit equivalence in Lemma 2.7. For simplicity, we assume that k = m − 1 so
we are looking at the case

Zm
p−→ Zm−1

q−→ Zm−2.

Let G be the vector bundle on Zm corresponding to E or F , using the equivalence
in Lemma 2.7. Consider the vector bundle F[bm] on Zm−1. We want to check that
the associated parabolic bundle q∗F[bm] is Hbm . The following equalities prove this
claim.

(q∗F[bm])am−1 = q∗(F[bm](am−1R
(m−1)
m−1 ))

= q∗((p∗G)[bm](am−1R
(m−1)
m−1 ))

= q∗(p∗(G(bmR(m)
m ))(am−1R

(m−1)
m−1 ))

= (q ◦ p)∗(G(bmR(m)
m + am−1R

(m)
m−1))

= E[am−1,bm]

= (H [bm])[am−1].

Here R(m−1)
m−1 , R(m)

m−1 and R(m)
m are the n-th roots of Dm−1, Dm−1, and Dm respec-

tively, over Zm−1, Zm and Zm respectively. �

A corollary of this observation is that we can reduce for Theorem 2.9 to the
case of a single divisor.

Corollary 3.2. Suppose that Theorem 2.9 is known for m = 1, that is, for a single
smooth divisor. Then it holds in general.

Proof. Fix X with D1, . . . , Dm and define the sequence of intermediate stacks Zk

as above. Suppose F and G are locally abelian parabolic bundles on X = Z0

which are componentwise Chow equivalent. For any k let F (k) and G(k) denote
the corresponding locally abelian parabolic bundles on Zk with respect to the
remaining divisors D(k)

k+1, . . . , D
(k)
m . We claim by induction on 0 ≤ k ≤ m that

the F (k) and G(k) are componentwise Chow equivalent. This is tautologically true
for k = 0. Fix 0 < k ≤ m and suppose it is true for k − 1. Then F (k−1) and
G(k−1) induce for any bk+1, . . . , bm parabolic bundles which we can denote by
H

[bk+1,...,bm]
F and H [bk+1,...,bm]

G , as in Lemma 3.1. These are parabolic bundles on
Zk−1 with respect to the single smooth divisor D(k−1)

k . The components of these
parabolic bundles are Chow equivalent, since they come from the components of
F (k−1) and G(k−1) which by the induction hypothesis are componentwise Chow
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equivalent. Therefore, considered as parabolic bundles with respect to a single
divisor, H [bk+1,...,bm]

F and H [bk+1,...,bm]
G are componentwise Chow equivalent. In the

present corollary we are assuming that Theorem 2.9 is known for the case m = 1
of a single divisor. Applying this case of Theorem 2.9 we get that the bundles on
Zk associated to H [bk+1,...,bm]

F and H [bk+1,...,bm]
G are Chow equivalent. However, by

Lemma 3.1 applied to the comparison between F (k−1) and F (k), the bundle on Zk

corresponding to the parabolic bundle H [bk+1,...,bm]
F is exactly the component

F
(k)
[bk+1,...,bm].

Similarly, applying Lemma 3.1 to the comparison between G(k−1) and G(k), the
bundle on Zk corresponding to the parabolic bundle H [bk+1,...,bm]

G is exactly the
component

G
(k)
[bk+1,...,bm].

Thus the result of our application of the single divisor case of Theorem 2.9 is that
the bundles F (k)

[bk+1,...,bm] and G(k)
[bk+1,...,bm] are Chow equivalent. This exactly says

that the parabolic bundles F (k) and G(k) are componentwise Chow equivalent,
which completes our induction step.

When k = m at the end of the induction, F (m) and G(m) are componentwise
Chow equivalent. But these are usual bundles on Zm, so their Chern characters
coincide. The Chern characters of F andG are defined as the pushforwards of those
of F (m) and G(m), so these are the same too, giving the statement of Theorem
2.9. �

4. The single divisor case

By Corollary 3.2, it now suffices to prove Theorem 2.9 in the case m = 1. Simplify
notation. Suppose we have a smooth DM stack X and a smooth divisor D, and
suppose we have a parabolic bundle F on X with respect to D. It is a collection of
bundles denoted F[a] with a ∈ Z (as usual without saying so we assume that the
denominator is n). Let Z := X〈D

n 〉, so F corresponds to a vector bundle E on Z.
According to the definition (5) we would like to show that the Chern character of
E in the rational Chow group of Z depends only on the Chern characters of the
F[a] in the rational Chow group of X , noting the identification (4).

Let p : Z → X denote the map of DM stacks. The inverse image p∗(D) is
a divisor in Z which has multiplicity n, because p is totally ramified of degree n
over D. In particular, there is a divisor R ⊂ Z such that

p∗(D) = n ·R.

This R is well defined as a smooth closed substack of codimension 1 in Z. However,
R is a gerb over D. More precisely, we have a map R→ D and there is a covering



452 J.N. Iyer and C.T. Simpson

of D in the etale topology by maps U → D such that there is a lifting U → R. If
we are given such a lifting then this gives a trivialization

U ×D R ∼= U ×B(Z/n),

where B(Z/n) is the one-point stack with group Z/n. This can be summed up by
saying that R is a gerb over D with group Z/n. It is in general not trivial. (We
conjecture that the obstruction is the same as the obstruction to the normal bundle
ND/X having an n-th root as line bundle on D.) On the other hand, the character
theory for R over D is trivialized in the following sense. There is a line bundle
N := OX(R)|R on R with the property that on any fiber of the form B(Z/n), N
is the primitive character of Z/n.

Using N , we get a canonical decomposition of bundles on R. Suppose E is a
bundle on R. Then pR,∗E is a bundle on D which corresponds in each fiber to the
trivial character. Here pR is the map p restricted to R. For any i we have a map

p∗R(pR,∗(E ⊗N⊗−i))⊗N⊗i → E.
Lemma 4.1. If E is a bundle on R then the above maps put together for 0 ≤ i < n
give a direct sum decomposition

n−1⊕
i=0

p∗R(pR,∗(E ⊗N⊗−i))⊗N⊗i ∼=−→ E.

Proof. The maps exist globally. To check that the map is an isomorphism it suffices
to do it locally over D in the etale topology (since the map pR is involved). As
noted above, locally over D the gerb R is a product of the form U × B(Z/n). A
bundle E on the product is the same thing as a bundle on U together with an
action of the group Z/n. In turn this is the same thing as a bundle with action of
the group algebra OU [Z/n] but relative Spec of this algebra over U is a disjoint
union of n copies of U , so E decomposes as a direct sum of pieces corresponding
to these sections. This decomposition may be written as E =

⊕
χ Eχ where the χ

are characters of Z/n and Z/n acts on Eχ via the character χ. In terms of the DM
stack this means that E decomposes as a direct sum of bundles on U tensored with
characters of Z/n considered as line bundles on B(Z/n). Using this decomposition
we can check that the above map is an isomorphism (actually it gives back the
same decomposition). �

Now suppose E is a bundle on Z. Then its restriction to R, noted ER, de-
composes according to the above lemma. Define two pieces as follows: ER,fix is the
piece corresponding to i = 0 in the decomposition. Thus

ER,fix = p∗R(pR,∗ER).

On the other hand, let ER,var denote the direct sum of the other pieces in the
decomposition. The decomposition of Lemma 4.1 thus gives a direct sum decom-
position

ER = ER,fix ⊕ ER,var.
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Define the standard elementary transformation e(E) of a bundle E over Z,
as the kernel

0→ e(E)→ E → ER,var → 0. (6)

Lemma 4.2. Suppose E is a bundle on Z. Then we have the following exact se-
quence for the restriction of the standard elementary transformation of E:

0→ ER,var ⊗N∗ → (e(E))R → ER,fix → 0.

Proof. Consider the exact sequence :

0 −→ E ⊗O(−R) −→ E −→ ER −→ 0.

Since ER = ER,fix ⊕ ER,var, and e(E) is the kernel of the composed map

E −→ ER −→ ER,var

there is an induced injective map

E ⊗O(−R) −→ e(E)

inducing the restriction map on R

(ER,fix ⊕ ER,var)⊗O(−R)|R −→ e(E)|R
The kernel of the restriction

(e(E))R −→ ER −→ ER,fix

is clearly ER,var ⊗O(−R)|R = ER,var ⊗N∗. �

Suppose E is a bundle on Z. Define ρ(E) to be the largest integer k with
0 ≤ k < n such that the piece

p∗R(pR,∗(ER ⊗N⊗−k))⊗N⊗k

in the decomposition of Lemma 4.1 is nonzero.
Actually we may consider this definition for any vector bundle on R.

Corollary 4.3. The invariant ρ decreases under the standard elementary transfor-
mation: if ρ(E) > 0 then

ρ(e(E)) < ρ(E).

Proof. Consider the exact sequence from Lemma 4.2 :

0→ ER,var ⊗N∗ → (e(E))R → ER,fix → 0.

Using the pushforward and pullback operations on this exact sequence, after twist-
ing by powers of N , we notice that it suffices to check that ρ(ER,var⊗N∗) < ρ(E)
and ρ(ER,fix) = 0.

Now

p∗RpR ∗(ER,fix ⊗N−k)⊗Nk = p∗RpR ∗(p∗RpR ∗E ⊗N−k)⊗Nk

= p∗R(pR ∗E ⊗ pR ∗N
−k)⊗Nk

= 0 if k �= 0.
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Also,

p∗RpR ∗(ER,var ⊗N−1 ⊗N−k)⊗Nk

= p∗RpR ∗
(
(
∑ρ(E)

i=1 p
∗
RpR ∗(ER ⊗N−i)⊗N i)⊗N−1 ⊗N−k

)
⊗Nk

= p∗R

(∑ρ(E)
i=1 pR ∗(ER ⊗N−i)⊗ pR ∗N i−1−k

)
⊗Nk.

The summands in the above term corresponding to i−1−k �= 0 are zero. In other
words, the only term left is for i = k + 1, but if k ≥ ρ(E) then this doesn’t occur
and the whole is zero. Hence ρ(ER,var ⊗N∗) < ρ(E). �

We now describe the pieces in the decomposition of Lemma 4.1 for ER in
terms of the parabolic structure on X . Introduce the following notation: if F is
a parabolic bundle on X along the divisor D, then for any a ∈ Z set gr[a](F ) :=
F[a]/F[a−1]. It is a vector bundle on the divisor D.

Lemma 4.4. Suppose E is a bundle on Z corresponding to a parabolic bundle F
over X. Then for any a ∈ Z we have

pR,∗(ER ⊗N⊗a) ∼= gr[a](F ).

Proof. We have
F[a] = p∗(E(aR)).

Note that R1p∗ vanishes on coherent sheaves, since p is a finite map in the etale
topology. Thus p∗ is exact. This gives

gr[a](F ) = p∗(E ⊗ (OZ(aR)/OZ((a− 1)R))).

However, (OZ(aR)/OZ((a − 1)R)) is a bundle on R which is equal to N⊗a. This
gives the statement. �

We say that two bundles on R are Chow equivalent relative to Z if their Chern
characters map to the same thing in the rational Chow group of Z. Caution: this
is different from their being Chow equivalent on R, because the map CH(R)Q →
CH(Z)Q might not be injective.

Lemma 4.5. Suppose p : Z = X〈 1
n 〉 −→ X is a morphism of DM-stacks as in the

beginning of this section. Then the following diagram commutes:

CH ·(R)Q −→ CH ·(Z)Q

↓∼= ↓ ∼=

CH ·(D)Q −→ CH ·(X)Q

Proof. Use composition of proper pushforwards [Vo]. The vertical isomorphisms
come from the fact that Z → X and R→ D induce isomorphisms of coarse moduli
schemes, and [Vi] [Gi]. �
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Corollary 4.6. Suppose E and G are vector bundles on Z corresponding to para-
bolic bundles F and H respectively on X. If F and H are componentwise Chow
equivalent then each of the components in the decompositions of Lemma 4.1 for
ER and GR are Chow equivalent relative to Z.

Proof. Since F and H are componentwise Chow equivalent the graded pieces
gr[a](F ) and gr[a](H) are Chow equivalent on X . Hence by Lemma 4.4, pR∗(E ⊗
Na) and pR∗(G ⊗ Na) are Chow equivalent on X , in other words they are vec-
tor bundles on D which are Chow equivalent relative to X . The pullback of Chow
equivalent objects on D relative to X are Chow equivalent objects on R relative to
Z, by Lemma 4.5. Thus, in the sum decomposition of ER and GR as in Lemma 4.1,
we conclude that the component sheaves are Chow equivalent relative to Z. �

Corollary 4.7. Suppose E and G are vector bundles on Z corresponding to parabolic
bundles F and H respectively on X. Suppose that F and H are componentwise
Chow equivalent. Then the sheaves ER,fix and GR,fix are Chow equivalent on Z.
Similarly, the sheaves ER,var and GR,var are Chow equivalent on Z.

Proof. These sheaves come from the components of the decomposition for ER

and GR. �

Lemma 4.8. Suppose E and G are vector bundles on Z corresponding to parabolic
bundles F and H respectively on X. Suppose that F and H are componentwise
Chow equivalent. As a matter of notation, let eXF and eXH denote the parabolic
bundles on X corresponding to the vector bundles eE and eG. Then eXF and
eXH are componentwise Chow equivalent.

Proof. Firstly, we claim that

(eXF )[0] = F[0]. (7)

To prove the claim, note that F[0] = p∗(E). On the other hand, since ER,var has
only components which have trivial direct images, we have p∗(ER,var) = 0, so the
left exact sequence for the direct image of (6), shows that

p∗(eE) = p∗(E).

This gives the claim.
The same claim holds for H .
Now twist the exact sequence in Lemma 4.2 by Na, and take the pushforward

(which is exact). Do this for both bundles E and G, yielding the exact sequences

0 −→ pR∗(ER,var ⊗N−1+a) −→ p∗(e(E)R ⊗Na) −→ p∗(ER,fix ⊗Na) −→ 0

and

0 −→ pR∗(GR,var ⊗N−1+a) −→ p∗(e(G)R ⊗Na) −→ p∗(GR,fix ⊗Na) −→ 0.

By the hypothesis, Corollary 4.6 applies to say that the various components in the
decomposition of Lemma 4.1 for ER,var and ER,fix are Chow equivalent relative
Z to the corresponding components of GR,var and GR,fix. Thus the left and right
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terms of both exact sequences are Chow equivalent relative toX , so p∗(e(E)R⊗Na)
and p∗(e(G)R ⊗Na) are Chow equivalent relative to X .

Hence by Lemma 4.4, gr[a](eXF ) and gr[a](eXH) are Chow equivalent rel-
ative to X . Together with the above claim (7), we deduce that the constituent
bundles of eXF and eXH are Chow equivalent on X . �

We can iterate the operation of doing the elementary transform, denoted
E �→ epE. This corresponds to a parabolic bundle on X denoted by F �→ ep

XF .
Note that this is indeed the iteration of the notation eX

Exercise 4.9. Give an explicit description of eX in terms of parabolic bundles.

Because the invariant ρ(E) decreases under the operation of doing the stan-
dard elementary transform (until we get to ρ = 0) it follows that ρ(epE) = 0 for
some p ≤ n.
Lemma 4.10. Suppose E is a bundle on E with ρ(E) = 0. Then E is the pullback
of a bundle on X.

Proof. In this case, we have ER � p∗RpR∗ER. Hence by Lemma 4.4, it follows that
gr[a](F ) = 0 for a > 0. This implies that F has only one constituent bundle F[0]

and is a usual bundle on X . Hence E is the pullback of F[0]. �
The next lemma gives the induction step for the proof of the theorem.

Lemma 4.11. Suppose E and G are vector bundles on Z corresponding to parabolic
bundles F and H respectively on X. Suppose that F and H are componentwise
Chow equivalent. Suppose also that eE and eG are Chow equivalent on Z. Then
E and G are Chow equivalent on Z.

Proof. The componentwise Chow equivalence gives from Corollary 4.7 that ER,var

and GR,var are Chow equivalent relative to Z. The exact sequence of Lemma 4.2
gives that E and G are Chow equivalent on Z. �

Finally we can prove Theorem 2.9 in the single divisor case.

Theorem 4.12. Suppose E and G are vector bundles on Z corresponding to para-
bolic bundles F and H respectively on X. Suppose that F and H are componentwise
Chow equivalent. Then E and G are Chow equivalent on Z.

Proof. Do this by descending induction with respect to the number p given above
Lemma 4.10. There is some p0 such that ρ(ep0E) = 0 and ρ(ep0G) = 0. These come
from bundles on X . By Lemma 4.8, these bundles (which are the zero components
of the corresponding parabolic bundles) are Chow equivalent. Thus ep0E and ep0G
are Chow equivalent. On the other hand, by Lemma 4.8, all of the ep

XF and ep
XH

are componentwise Chow equivalent. It follows from Lemma 4.11, if we know
that ep+1E and ep+1G are Chow equivalent then we get that epE and epG are
Chow equivalent. By descending induction on p we get that E and G are Chow
equivalent. �

Using Corollary 3.2, we have now completed the proof of Theorem 2.9.
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5. A formula for the parabolic Chern character

Now we would like to use Theorem 2.9 to help get a formula for the Chern
classes. Go back to the general situation of a smooth variety X with smooth
divisors D1, . . . , Dm intersecting transversally. Once we know the formula for
the Chern character of a line bundle, we will no longer need to use the stack
Z = X [D1

n , . . . ,
Dm

n ].

Lemma 5.1. Let F be a parabolic bundle on X with respect to D1, . . . , Dm. Then
we can form the twisted parabolic bundle F⊗O(

∑m
i=0

bi

nDi). We have the formulae(
F ⊗O(

m∑
i=0

bi
n
Di)

)
[a1,...,am]

= F[a1+b1,...,am+bm]

and

ch

(
F ⊗O(

m∑
i=0

bi
n
Di)

)
= e

∑ m
i=0

bi
n Dich(F ).

Proof. Consider the projection p : Z = X〈D1
n , . . . ,

Dm

n 〉 −→ X . Let E be the
vector bundle on Z corresponding to F on X and O(

∑
i biRi) be the line bundle

on Z corresponding to O(
∑

i
bi

nDi) on X . Here Ri denotes the divisor on Z such
that p∗Di = n.Ri.

Notice that(
F ⊗O(

∑
i

bi
n
Di)

)
[a1,...,am]

= p∗(E ⊗O(
∑

i

biRi)⊗O(aiRi))

= p∗(E ⊗O(
∑

i

(ai + bi)Ri))

= F[a1+b1,...,am+bm].

The formula for the Chern character is due to the fact that the Chern character
defined as we are doing through DM-stacks is multiplicative for tensor products,
and coincides with the exponential for rational divisors, see [Iy-Si]. �

Lemma 5.2. We have the formula for the trivial line bundle O considered as a
parabolic bundle:

O[a1,...,am] = O(
m∑

i=0

[
ai
n

]Di)

where the square brackets on the right signify the greatest integer function (on the
left they are the notation we introduced at the beginning).

Proof. This follows from the definition as in Lemma 5.1. �
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Corollary 5.3. Suppose E is a vector bundle on X considered as a parabolic bundle
with its trivial structure. Then(

E ⊗O(
m∑

i=0

bi
n
Di)

)
[a1,...,am]

= E(
m∑

i=0

[
ai + bi
n

]Di).

Proof. Use the definition of associated parabolic bundle as in Lemma 5.1. �

Suppose F is a parabolic bundle on X with respect to D1, . . . , Dm. We will
now show by calculation that the two parabolic bundles(

n−1⊕
k1=0

· · ·
n−1⊕

km=0

O(−
m∑

i=1

ki
n
Di)

)
⊗ F

and (
n−1⊕
u1=0

· · ·
n−1⊕

um=0

F[u1,...,um] ⊗O(−
m∑

i=1

ui

n
Di)

)
are componentwise isomorphic (and hence, componentwise Chow equivalent). No-
tice that the second bundle is a direct sum of vector bundles on X , the component
bundles of F , tensored with parabolic line bundles, whereas the first is F tensored
with a bundle of positive rank. This will then allow us to get a formula for ch(F ).

Lemma 5.4. For any 0 ≤ ai < n we have((
n−1⊕
k1=0

· · ·
n−1⊕

km=0

O(−
m∑

i=1

ki
n
Di)

)
⊗ F

)
[a1,...,am]

∼=
n−1⊕
k1=0

· · ·
n−1⊕

km=0

F[a1−k1,...,am−km].

Proof. Indeed, we have(
O(−

m∑
i=1

ki
n
Di)⊗ F

)
[a1,...,am]

∼= F[a1−k1,...,am−km]

by Lemma 5.1 above. �

Lemma 5.5. (
n−1⊕
u1=0

· · ·
n−1⊕

um=0

F[u1,...,um] ⊗O(−
m∑

i=1

ui

n
Di)

)
[a1,...,am]

∼=
n−1⊕
u1=0

· · ·
n−1⊕

um=0

F[u1,...,um] ⊗O(
m∑

i=1

[
ai − ui

n
]Di).

Proof. We have (
O(−

m∑
i=1

ui

n
Di)

)
[a1,...,am]

= O(
m∑

i=1

[
ai − ui

n
]Di)
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and hence, since F[u1,...,um] is just a vector bundle on X ,(
F[u1,...,um] ⊗O(−

m∑
i=1

ui

n
Di)

)
[a1,...,am]

∼= F[u1,...,um] ⊗O(
m∑

i=1

[
ai − ui

n
]Di). �

We put these two together with the following.

Lemma 5.6.
n−1⊕
u1=0

· · ·
n−1⊕

um=0

F[u1,...,um] ⊗O(
m∑

i=1

[
ai − ui

n
]Di)

∼=
n−1⊕
k1=0

· · ·
n−1⊕

km=0

F[a1−k1,...,am−km].

Proof. For given integers 0 ≤ ai < n and 0 ≤ ui < n, set

ki := ai − ui − n · [
ai − ui

n
],

so that

ai − ki = ui + n · [ai − ui

n
].

With this definition of ki we have

F[u1,...,um] ⊗O(
m∑

i=1

[
ai − ui

n
]Di) ∼= F[a1−k1,...,am−km],

due to the periodicity of the parabolic structure.
Note that 0 ≤ ki < n, because ai−u− i < 0 if and only if the greatest integer

piece in the definition of ki is equal to −1 (otherwise it is 0).
For a fixed (a1, . . . , am), as (u1, . . . , um) ranges over all possible choices with

0 ≤ ui < n the resulting (k1, . . . , km) also ranges over all possible choices with
0 ≤ ki < n. Thus we get the isomorphism which is claimed. �

Corollary 5.7. If F is a parabolic bundle on X with respect to D1, . . . , Dm then
the parabolic bundles (

n−1⊕
k1=0

· · ·
n−1⊕

km=0

O(−
m∑

i=1

ki
n
Di)

)
⊗ F

and
n−1⊕
u1=0

· · ·
n−1⊕

um=0

F[u1,...,um] ⊗O(−
m∑

i=1

ui

n
Di)

are componentwise isomorphic, hence componentwise Chow equivalent.
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Proof. Putting together Lemmas 5.4, 5.5 and 5.6 gives, for any 0 ≤ ai < n((
n−1⊕
k1=0

· · ·
n−1⊕

km=0

O(−
m∑

i=1

ki
n
Di)

)
⊗ F

)
[a1,...,am]

∼=
(

n−1⊕
u1=0

· · ·
n−1⊕

um=0

F[u1,...,um] ⊗O(−
m∑

i=1

ui

n
Di)

)
[a1,...,am]

. �

We can now calculate with the previous corollary.

Theorem 5.8. Suppose F is a parabolic bundle on X with respect to D1, . . . , Dm,
with n as denominator. Then we have the following formula for the Chern char-
acter of F :

ch(F ) =

∑n−1
a1=0 · · ·

∑n−1
am=0 e

−
∑ m

i=1
ai
n Dich(F[a1,...,am])∑n−1

a1=0 · · ·
∑n−1

am=0 e
−

∑
m
i=1

ai
n Di

.

In other words, the Chern character of F is the weighted average of the Chern char-
acters of the component bundles in the range 0 ≤ ai < n, with weights e−

∑ m
i=1

ai
n Di .

Proof. By Theorem 2.9, two componentwise Chow equivalent parabolic bundles
have the same Chern character. From the general theory over a DM stack we
know that Chern character of parabolic bundles is additive and multiplicative,
and Lemma 5.1 says that it behaves as usual on line bundles. Therefore the Chern
characters of both parabolic bundles appearing in the statement of Corollary 5.7
are the same. This gives the formula

(
n−1∑
a1=0

· · ·
n−1∑

am=0

e−
∑m

i=1
ai
n Di) · ch(F ) =

n−1∑
a1=0

· · ·
n−1∑

am=0

e−
∑ m

i=1
ai
n Dich(F[a1,...,am]).

The term multiplying ch(F ) on the left side is an element of the Chow group which
has nonzero term in degree zero. Therefore, in the rational Chow group it can be
inverted and we get the formula stated in the theorem. �

Remark 5.9. The function

(a1, . . . , am) �→ e−
∑ m

i=1
ai
n Dich(F[a1,...,am])

is periodic in the variables ai, that is, the value for ai +n is the same as the value
for ai.

Remark 5.10. Also the formula is clearly additive.

6. Examples with parabolic line bundles

We verify the formula of Theorem 5.8 for parabolic line bundles, and then give
some examples which are direct sums of line bundles which show why it is necessary
to include all of the terms F[a1,...,am] in the formula.
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6.1. Verification for line bundles

Suppose L = O(α.D) is a parabolic line bundle on (X,D) whereD is an irreducible
and smooth divisor and α = h

n ∈ Q. The formula of Theorem 5.8 is obviously
invariant if we tensor the parabolic bundle by a vector bundle on X , in particular
we can always tensor with an integer power of O(D) so it suffices to check when
0 ≤ h < n.

Notice that the constituent bundles are

L[ai] = O if 0 ≤ ai ≤ n− h− 1
= O(D) if n− h ≤ ai < n.

We have to check that the Chern character of L is

ch(L) = eα.D.

The formula in Theorem 5.8 gives

ch(L) =
1 + e−

1
n .D + · · ·+ e− (n−h−1)

n .D + e−
(n−h)

n .D.eD + · · ·+ e− (n−1)
n .D.eD

1 + e−
1
n .D + · · ·+ e− (n−1)

n .D

=
1 + e−

1
n .D + · · ·+ e− (n−h−1)

n .D + e−
(n−h)

n .D.eD + · · ·+ e− (n−1)
n .D.eD

( 1

e
h
n

.D
)(e

h
n .D + e

h−1
n .D + · · ·+ 1 + · · ·+ e−n−1−h

n .D)

= e
h
n .D.

Suppose D1, D2, . . . , Dm are distinct smooth divisors which have normal
crossings on X . Let Li = O(αi.Di) be parabolic line bundles with αi ∈ Q, for 1 ≤
i ≤ m. Then the constituent bundles of the tensor product L := L1⊗L2⊗· · ·⊗Lm

are

(L1 ⊗ L2 ⊗ · · · ⊗ Lm)[a1,a2,...,am] = (L1)[a1] ⊗ (L2)[a2] ⊗ · · · ⊗ (Lm)[am]

and

ch
(
(L1 ⊗ L2 ⊗ · · · ⊗ Lm)[a1,a2,...,am]

)
= ch

(
(L1)[a1]

)
.ch

(
(L2)[a2]

)
· · · ch

(
(Lm)[am]

)
.

The formula in Theorem 5.8 is now easily verified for the case when L is a parabolic
line bundle as above, once it is verified for the parabolic line bundles Li. Indeed,
the formula in this case is essentially the product of the Chern characters of Li,
for 1 ≤ i ≤ m.

6.2. The case of two divisors and n = 2
Suppose we have two divisor componentsD1 andD2, and suppose the denominator
is n = 2. Then a parabolic bundle may be written as a 2× 2 matrix

F =
(
F[0,0] F[0,1]

F[1,0] F[1,1]

)
.
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In particular by Lemma 5.2 we have

O
(
D1

2

)
=

(
O O

O(D1) O(D1)

)
, O

(
D2

2

)
=

(
O O(D2)
O O(D2)

)
,

O(D1) =
(
O(D1) O(D1)
O(D1) O(D1)

)
, O

(
D1 +

D2

2

)
=

(
O(D1) O(D1 +D2)
O(D1) O(D1 +D2)

)
,

and

O
(
D1

2
+
D2

2

)
=

(
O O(D2)

O(D1) O(D1 +D2)

)
.

6.3. Counterexample for filtrations

Giving a parabolic bundle by filtrations amounts essentially to considering the
bundle E = F[0,0] together with its subsheaves F[−1,0] and F[0,−1]. By the formula
(3) these subsheaves are determined by F[1,0] and F[0,1], that is, the upper right
and lower left places in the matrix. The lower right place doesn’t intervene in the
filtration notation. This lets us construct an example: if

F := O
(
D1

2

)
⊕O

(
D2

2

)
, G := O ⊕O

(
D1

2
+
D2

2

)
then F and G have the same underlying bundle E = O ⊕O, and the Chern data
for their filtrations are the same, however their Chern characters are different. For
example if X = P2 and D1 and D2 are two distinct lines whose class is denoted H
then

ch(F ) = ch
(
OX

(
1
2
D1 +

1
2
D2

)
⊕OX

)
= 1 + e

1
2 D1+ 1

2 D2 = 2 +H +
H2

2
(8)

and

ch(G) = ch
(
OX

(
1
2
D1

)
⊕OX

(
1
2
D2

))
= e

1
2 D1 + e

1
2 D2 = 2eH/2 = 2 +H +

H2

4
.

(9)

6.4. Counterexample for MY structure

Similarly, the MY-parabolic structure consists of F[0,0] and F[1,1], that is, the di-
agonal terms in the matrix, and the off-diagonal terms don’t intervene. A different
example serves to show that there is no easy formula for the Chern character in
terms of these pieces only. Put

F := O
(
D1

2
+
D2

2

)
⊕O(D1), G := O

(
D1 +

D2

2

)
⊕O

(
D1

2

)
.

Then
F[0,0] = O ⊕O(D1) = G[0,0]

and
F[1,1] = O(D1 +D2)⊕O(D1) = G[1,1].
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On the other hand, again in the example X = P2 and D1 and D2 are lines whose
class is denoted H we have

ch(F ) = e
1
2 D1+

1
2 D2 + eD1 = 2eH = 2 + 2H +H2

whereas

ch(G) = eD1+
D2
2 + e

D1
2 = e

3H
2 + e

H
2 = 2 + 2H +

5
4
H2.

In both of these examples, of course the structure with filtrations or the MY-
parabolic structure permits to obtain back the full multi-indexed structure and
therefore to get the Chern character, however these examples show that the Chern
character cannot be written down easily just in terms of the Chern characters of
the component pieces.

7. A formula involving intersection of filtrations

In this section we will give another expression for the parabolic Chern character
formula, when the parabolic structure is viewed as coming from filtrations on the
divisor components. This formula will involve terms on the multiple intersections
of the divisor components, of intersections of the various filtrations. To see how
these terms show up in the formula, we first illustrate it by an example below.

7.1. Example on surfaces

We consider more closely how the intersection of the filtrations on D1 and D2

comes into play for determining the Chern character. Panov [Pa] and Mochizuki
[Mo2] considered this situation and obtained formulas for the second parabolic
Chern class involving intersections of the filtrations.

For this example we keep the hypothesis that X is a surface and the denom-
inator is n = 2, also assuming that there are only two divisor components D1

and D2 intersecting at a point P . The typical example is X = P2 and the Di are
distinct lines meeting at P .

Let E = F[0,0] be a rank two bundle. Consider rank one strict subbundles
Bi ⊂ E|Di . Note that

E|D1 = F[0,0]/F[−2,0], E|D2 = F[0,0]/F[0,−2].

There is a unique parabolic structure with

B1 = F[−1,0]/F[−2,0],

and
B2 = F[0,−1]/F[0,−2].

The quotient (E|D1)/B1 is a line bundle on D1 and similarly for D2, and if the
parabolic structure corresponds to the Bi as above then

(E|D1)/B1 = F[0,0]/F[−1,0]

and similarly on D2.
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In particular, F[−1,0] is defined by the exact sequence

0 → F[−1,0] → E → (E|D1 )/B1 → 0.

Similarly, F[0,−1] is defined by the exact sequence

0 → F[0,−1] → E → (E|D2 )/B2 → 0.

Note that the Chern characters of F[−1,0] and F[0,−1] don’t depend on the
intersection of the Bi over D1∩D2. On the other hand, F[−1,−1] is a vector bundle,
by the locally abelian condition. Furthermore, as a subsheaf of E it is equal to
F[−1,0] along D1 and F[0,−1] along D2. Thus, in fact F[−1,−1] is the subsheaf of
E which is the intersection of these two subsheaves. To prove this note that the
intersection of two reflexive subsheaves of a reflexive sheaf is again reflexive because
it has the Hartogs exension property. In dimension two, reflexive sheaves are vector
bundles, and they are determined by what they are in codimension one.

We have a left exact sequence

0→ F[−1,−1] → E → (E|D1)/B1 ⊕ (E|D2 )/B2.

Here is where the intersection of the filtrations comes in: in our example D1 ∩D2

is a single point, denote it by P . We have one-dimensional subspaces of the two-
dimensional fiber of E over P :

B1,P , B2,P ⊂ EP .

There are two cases: either they coincide, or they don’t.

Case A: they coincide – In this case we can choose a local frame for E in which B1

and B2 are both generated by the first basis vector. We are basically in the direct
sum of two rank one bundles, one of which containing the two subspaces and the
other not. In this case there is an exact sequence

0→ F[−1,−1] → E → (E|D1)/B1 ⊕ (E|D2 )/B2 → Q→ 0

whereQ is a rank one skyscraper sheaf at P . This is because the fibers of (E|D1 )/B1

and (E|D2 )/B2 coincide at P , and Q is by definition this fiber with the map being
the difference of the two elements. Things coming from E go to the same in both
fibers so they map to zero in Q.

An example of this situation would be the parabolic bundleOX(1
2D1+ 1

2D2)⊕
OX .

Case B: they differ – In this case we can choose a local frame for E in which B1

and B2 are generated by the two basis vectors respectively. In this case the map
in question is surjective so we get a short exact sequence

0→ F[−1,−1] → E → (E|D1 )/B1 ⊕ (E|D2)/B2 → 0.

An example of this situation would be the parabolic bundle OX(1
2D1) ⊕

OX(1
2D2).
The formula for the Chern character will involve the Chern character of E,

the Chern characters of the bundles Bi, and a correction term for the intersection.
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All other things being equal, the formulas in the two cases will differ by ch(Q)
at the place F[1,1] (this is the same as for F[−1,−1]). When the weighted average
is taken, this comes in with a coefficient of ( 1

4 + · · · ), but the higher-order terms
multiplied by the codimension 2 class ch(Q) come out to zero because we are on
a surface. Therefore, the formulae in case A and case B will differ by 1

4ch(Q).
Fortunately enough this is what actually happens in the examples of the previous
section!

7.2. Changing the indexing

When describing a parabolic bundle by filtrations, we most naturally get to the
bundles F[a1,...,am] with −n ≤ ai ≤ 0. On the other hand, the weighted average in
Theorem 5.8 is over ai in the positive interval [0, n− 1]. It is convenient to have a
formula which brings into play the bundles in a general product of intervals. The
need for such was seen in the example of the previous subsection.

We have the following result which meets up with Mochizuki’s notation and
discussion in [Mo2, §3.1].

Proposition 7.1. Let b = (b1, . . . , bm) be any multi-index of integers. Then the
Chern character of the parabolic bundle ch(F ) is obtained by taking the weighted
average of the ch(F[a1,...,am]) with weights e−

∑ m
i=1

ai
n Di , over the product of inter-

vals bi ≤ ai < bi + n, and then multiplying by e−
∑ m

i=1
bi
n Di (that is the weight for

the smallest multi-index in the range). This formula may also be written as:

ch(F ) =

∑b1+n−1
a1=b1

· · ·∑bm+n−1
am=bm

e−
∑ m

i=1
ai
n Dich(F[a1,...,am])∑n−1

a1=0 · · ·
∑n−1

am=0 e
−

∑
m
i=1

ai
n Di

. (10)

Proof. If ai and a′i differ by integer multiples of n then by using condition (3) of
§2.2, we have

e−
∑m

i=1
a′

i
n Dich(F[a′

1,...,a′
m]) = e−

∑ m
i=1

ai
n Dich(F[a1,...,am]).

Thus, the numerator in the formula (10) is equal to the numerator of the formula
in Theorem 5.8. The denominators are the same. On the other hand, if we form
the weighted average as described in the first sentence of the proposition, then the
numerator will be the same as in (10). The denominator of the weighted average
is

b1+n−1∑
a1=b1

· · ·
bm+n−1∑
am=bm

e−
∑m

i=1
ai
n Di = e−

∑m
i=1

bi
n Di

n−1∑
a1=0

· · ·
n−1∑

am=0

e−
∑ m

i=1
ai
n Di .

Hence, when we multiply the weighted average by e−
∑ m

i=1
bi
n Di we get (10). �

Remark 7.2. If we replace the denominator n by a new one np then the formulae
of Theorem 5.8 or the previous proposition, give the same answers.
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Indeed, the parabolic structure F̃ for denominator np contains the same
sheaves, but each one is copied pm times:

F̃[pa1+q1,...,pam+qm] = F[a1,...,am]

for 0 ≤ qi ≤ p − 1. Therefore, both the numerator and the denominator in our
formulae are multiplied by

p−1∑
q1=0

· · ·
p−1∑

qm=0

e−
∑ m

i=1
qi
np Di ,

and the quotient stays the same.

7.3. A general formula involving intersection of filtrations

We can generalize the example of surfaces in §7.1, to get a formula which general-
izes the codimension 2 formulae of Panov [Pa] and Mochizuki [Mo2].

In this section we suppose we are working with the notation of a locally
abelian parabolic structure F given by filtrations, on a vector bundle E := F[0,...,0]

with filtrations
E|Di = F i

0 ⊃ F i
−1 ⊃ · · · ⊃ F i

−n = 0.

Then for −n ≤ ai ≤ 0 define the quotient sheaves supported on Di

Qi
[ai]

:=
E|Di

F i
ai

and the parabolic structure F· is given by

F[a1,...,am] = ker
(
E → ⊕m

i=0Q
i
[ai]

)
. (11)

More generally define a family of multi-indexed quotient sheaves by

Qi
[ai]

:=
E|Di

F i
ai

on Di

Qi,j
[ai,aj ]

:=
E|Di∩Dj

F i
ai

+ F j
aj

on Di ∩Dj

...

Q[a1,a2,...,am] :=
E|D1∩...∩Dm

F 1
a1

+ · · ·+ Fm
am

on D1 ∩D2 ∩ . . . ∩Dm.

In these notations we have −n ≤ ai ≤ 0.
If we consider quotient sheaves as corresponding to linear subspaces of the

Grothendieck projective bundle associated to E, then the multiple quotients above
are multiple intersections of the Qi

[ai]
. The formula (11) extends to a Koszul-style

resolution of the component sheaves of the parabolic structure.
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Lemma 7.3. Suppose that the filtrations give a locally abelian parabolic structure,
in particular they satisfy the conditions of Lemma 2.1. Then for any −n ≤ ai ≤ 0
the following sequence is well defined and exact:

0 → F[a1,a2,...,am] → E →
m⊕

i=1

Qi
[ai]
→

⊕
i<j

Qi,j
[ai,aj]

→ · · · → Q[a1,a2,...,am] → 0.

Proof. The maps in the exact sequence are obtained from the quotient structures
of the terms with alternating signs like in the Ĉech complex. We just have to
prove exactness. This is a local question. By the locally abelian condition, we may
assume that E with its filtrations is a direct sum of rank one pieces. The formation
of the sequence, and its exactness, are compatible with direct sums. Therefore we
may assume that E has rank one, and in fact E ∼= OX .

In the case where E is the rank one trivial bundle, the filtration steps are
either 0 or all of ODi . In particular, there is −n < bi ≤ 0 such that F i

j = ODi for
j ≥ bi and F i

j = 0 for j < bi. Then

Qi1,...,ik

[ai1 ,...,aik
] = ODi1∩···∩Dik

if aij < bij for all j = 1, . . . , k, and the quotient is zero otherwise.
The sequence is defined for each multiindex a1, . . . , am. Up to reordering the

coordinates which doesn’t affect the proof, we may assume that there is p ∈ [0,m]
such that ai < bi for i ≤ p, but ai ≥ bi for i > p. In this case, the quotient is
nonzero only when i1, . . . , ik ≤ p. Furthermore,

F[a1,...,am] = O(−D1 − · · · −Dp).

In local coordinates, the divisors D1, . . . , Dp are coordinate divisors. Everything
is constant in the other coordinate directions which we may ignore. The complex
in question becomes

O(−D1−· · ·−Dp)→ O → ⊕1≤i≤pODi → ⊕1≤i<j≤pODi∩Dj → . . .→ OD1∩···∩Dp .

Etale locally, this is exactly the same as the exterior tensor product of p copies of
the resolution of OA1(−D) on the affine line A1 with divisor D corresponding to
the origin,

OA1(−D) −→ OA1 −→ OD −→ 0.

In particular, the exterior tensor product complex is exact except at the beginning,
where it resolves O(−D1 − · · · −Dp) as required. �

Using the resolution of Lemma 7.3 we can compute the Chern character of
F[a1,a2,...,am] in terms of the Chern character of sheaves supported on intersection
of the divisors Di1 ∩ · · · ∩Dir . This gives us

ch(F[a1,a2,...,am]) = ch(E) +
m∑

k=1

(−1)k
∑

i1<i2<···<ik

ch(Qi1,...,ik

[ai1 ,...,aik
]).
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Substituting this formula for ch(F[a1,a2,...,am]) into Theorem 5.8, or rather
into (10) of Proposition 7.1 with bi = −n, we obtain the following formula for
the associated parabolic bundle. Note that the limits of the sums are different in
the numerator and denominator, as in (10). Also the term ch(E) occurs with a
different factor in the numerator and denominator; the ratio of these factors is
e

∑m
i=1 Di = eD.

Corollary 7.4. If F is a locally abelian parabolic bundle then

ch(F ) = eDch(E)+∑−1
a1=−n · · ·

∑−1
am=−n e

−
∑m

i=1
ai
n Di

∑m
k=1(−1)k

∑
i1<i2<···<ik

ch(Qi1,...,ik

[ai1 ,...,aik
])∑n−1

a1=0 · · ·
∑n−1

am=0 e
−

∑
m
i=1

ai
n Di

.

In fact, we can also write the formula in terms of an associated graded.
For this, fix 1 ≤ i1 < · · · < ik ≤ m and analyze the quotient Qi1,...,ik

[ai1−1,...,aik
−1]

along the multiple intersectionDi1···ik
. There, the bundle E|Di1···ik

has k filtrations

F
ij
aij
|Di1···ik

indexed by −n ≤ aij ≤ 0, leading to a multiple-associated-graded
defined as follows. For −n ≤ aij ≤ 0 put

F i1,...,ik

[ai1 ,...,aik
] :=

k⋂
j=1

F ij
aij
|Di1···ik

.

Then define

Gri1,...,ik

[ai1 ,...,aik
] :=

F i1,...,ik

[ai1 ,...,aik
]∑k

q=1 F
i1,...,ik

[ai1 ,...,aiq−1,...aik
]

(12)

where the indices in the denominator are almost all aij but one aiq − 1. A good
way to picture this when k = 2 is to draw a square divided into a grid whose sides
are the intervals [−n, 0]. The filtrations correspond to horizontal and vertical half-
planes intersected with the square. Pieces of the associated-graded are indexed by
grid squares, indexed by their upper right points. Thus the pieces are defined for
1− n ≤ aij ≤ 0.

If the parabolic structure is locally abelian then the filtrations admit a com-
mon splitting and we have

Gri1,...,ik

[ai1 ,...,aik
] = GrF

i1

ai1
GrF

i2

ai2
· · ·GrF ik

aik
(E|Di1···ik

),

or more generally the same thing in any order. Without the common splitting
hypothesis, the multi-graded defined previously would not even have dimensions
which add up.

The multi-quotient has an induced multiple filtration whose associated-graded
is a sum of pieces of the multi-graded defined above. In the k = 2 picture, the multi-
quotient corresponds to a rectangle in the upper right corner of the square. For
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example, we have

Gri1,...,ik

[ai1 ,...,aik
]
∼= ker

⎛⎝Qi1,...,ik

[ai1−1,...,aik
−1] →

k⊕
j=1

Qi1,...,ik

[ai1−1,...,aij
,...,aik

−1]

⎞⎠
where in the direct sum, the indices are all ail

− 1 except for one which is aij .
Thus in the Grothendieck group of sheaves on Di1 ∩ · · · ∩ Dik

, we have an
equivalence

Qi1,...,ik

[ai1 ,...,aik
] ∼

⊕
c, aij

<cij
≤0

Gri1,...,ik

[ci1 ,...,cik
].

This gives us the following formula, based on Corollary 7.4 which in turn comes
from (10) of Proposition 7.1 (thus as before the limits of the sum in the numerator
and denominator are different).

Corollary 7.5. Suppose F is a locally abelian parabolic structure. Define the multi-
associated-graded by (12) above. Then we have the formula

ch(F ) = eDch(E)+∑
−n≤a1,...,am<0 e−

∑m
i=1

ai
n

Di
∑m

k=1(−1)k ∑
i1<i2<···<ik

∑
aij

<cij
≤0 ch(Gri1,...,ik

[ci1 ,...,cik
])∑n−1

a1=0 · · ·
∑n−1

am=0 e−
∑m

i=1
ai
n

Di
.

7.4. The case of a single smooth divisor

In the case when there is only one smooth divisor component D this formula
becomes

ch(F ) = eDch(E)−
∑

−n<c≤0

(∑
−n≤a<c e

− a
n D

)
ch(Gr[c])∑

0≤a<n e
− a

n D
. (13)

This can be simplified using the identity (1 + x+ · · ·+ xn−1) = (1− x)−1(1− xn)
applied to x = e−

1
n D, which gives

ch(F ) = eDch(E)−
∑

−n<c≤0

eD − e− c
n D

1− e−D
ch(Gr[c]).

We can again rewrite this in terms of the rational indexing in the interval (−1, 0],
denoting by Grα the graded Gr[nα]. The formula becomes

ch(F ) = eDch(E)−
∑

−1<α≤0

eD − e−αD

1− e−D
ch(Grα). (14)

The expression on the right should be interpreted formally, in the sense that the
exponentials are written as power series, then the division is done formally, and
finally the resulting power series is applied to D ∈ CH1(X)Q. The result is a
polynomial in D because of the nilpotence of the product structure on CH>0(X)Q.

Our formula still is not in optimal form. One checks that it gives the right
formula for a line bundle F = O( b

nD). We leave it to the reader to make the
analogous transformations of the formula in the case of several divisors, possibly
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meeting only pairwise as a start, and to compare the result with the codimension
2 formulae of Panov [Pa] and Mochizuki [Mo2].

A.J. de Jong pointed out that one would also like to compare this with the
formula given by Esnault and Viehweg [Es-Vi, Corollary (B.3), p. 186] for the
global Newton class of a flat bundle in terms of local contributions. Given a flat
bundle on X − D, one associates a parabolic bundle in a natural way and we
would expect the formula of [Es-Vi] to be a simple consequence of the fact that
the parabolic Chern classes of the resulting bundle are zero at least in rational
cohomology. Indeed, the overall shape of the formula in [Es-Vi] is very similar to
the ones we are considering here, namely the global contribution from the bundle
on X is balanced out by local contributions from the graded pieces of the parabolic
structure. However, it seems that the comparison with [Es-Vi] is not immediate:
one would need to make use of some additional special identities which must be
satisfied by the ch(Grα(E)) due to the fact that the parabolic structure comes
from a flat bundle. All in all, it seems clear that there is much room for further
progress in understanding this question.

8. Parabolic bundles with real weights

In this section we consider parabolic bundles with real weights and define their
Chern character and pullback bundles.

Let X be a smooth variety and D be a normal crossing divisor on X . Write
D = D1 + · · ·+Dm where Di are the irreducible smooth components and meeting
transversally.

A parabolic bundle on (X,D) is a collection of vector bundles Fα indexed
by multi-indices α = (α1, . . . , αk) with αi ∈ R, satisfying the same conditions as
recalled in §2. The structure is determined by the sheaves Fα for a finite collection
of indices α with 0 ≤ αi < 1, the weights.

Remark 8.1. A parabolic bundle with rational weights and denominator n can be
considered as a parabolic bundle with real weights by setting

F(t1,t2,...,tm) := F[[nt1],[nt2],...,[ntm]] = F
(
[nt1]

n ,
[nt2]

n ,..., [ntm]
n )

where [nti] is the greatest integer less than or equal to nti, for any ti ∈ [0, 1) ⊂ R.

We say that F is locally abelian if in a Zariski neighbourhood of any point x ∈
X , F is isomorphic to a direct sum of parabolic line bundles with real coefficients.

8.1. Perturbation of parabolic bundles with real weights

The following construction is a simplified version of the one Mochizuki [Mo2, §3.3]
considered, and which suffices for our purpose. Variations of parabolic weights
were considered earlier in [Me-Se], [Bd-Hu], [Th].

Suppose F is a parabolic bundle with real weights on a smooth variety (X,D).
Consider the real weights

{α = (α1, α2, . . . , αm) : 0 ≤ αi ≤ 1}.
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By definition

Fα|Di =
Fα

Fα−δi

and denote the image

Fα;Di,γi := Im
(
F(α1,...,γi,...,αm) −→ Fα|Di

)
whenever αi − 1 < γi ≤ αi.

Note that if γ is a multiindex with αi − 1 < γi ≤ αi then we have an exact
sequence

0 → Fγ → Fα →
⊕

i

Fα|Di

Fα;Di,γi

.

Consider the graded sheaves

gri
α;γi
F :=

Fα|Di

Fα;Di,γi

.

By the semicontinuity condition there are finitely many indices and γi such that
the graded sheaves gri

αi−γi
F are non-zero.

Let
rαi = min{|αi − γi| : gri

αi/γi
F �= 0}

Choose εαi such that εαi < rαi and αi + εi is a rational number, for each i.
The following construction was used by Mochizuki in [Mo2, §3.4].

Definition 8.2. A parabolic bundle F ε with rational weights ai = αi + εαi is defined
by setting:

F ε
[a1,a2,...,am] := Fα1+εα1 ,...,αm+εαm

.

We call F ε an ε–perturbation of F on X.

For any rational weights t = [t1, . . . , tm], we have the inclusion of sheaves

Ft ↪→ F ε
t

In other words, we can write
F ↪→ F ε.

Write ε={εαi}, where αi runs over the finite set of real weights which determine F .
Suppose {F i}i∈I is a projective system of parabolic bundles indexed by an

ordered set I with inclusions F i ↪→ F j for i ≤ j. Define the intersection by the
formula (⋂

i∈I

F i

)
α

:=
⋂
i∈I

F i
α.

This defines a parabolic sheaf. We say that the collection {F i}i∈I is simultaneously
locally abelian if there is an etale covering of X such that on the pullback to this
etale covering, each of the F i admits a direct sum decomposition as a sum of
parabolic line bundles, and the inclusion maps are compatible with these direct
sum decompositions. Inclusions of parabolic line bundles are just inequalities of real
divisors, and the intersection of a family of parabolic line bundles just corresponds
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to taking the inf of the family of real coefficients. Thus we have the following
useful fact.

Lemma 8.3. If {F i}i∈I is a simultaneously locally abelian projective system of
inclusions of parabolic bundles, then the intersection

⋂
i∈I F

i is a locally abelian
parabolic bundle.

Lemma 8.4. Suppose F is a locally abelian parabolic bundle with real weights α =
(α1, . . . , αm) on (X,D). Then any ε–perturbation F ε of F is also locally abelian
with the same decomposition. Thus the family of F ε is a simultaneously locally
abelian projective system of inclusions. Taking the intersection we have

F =
⋂
ε→0

F ε.

Proof. Since this is a local question, we assume that

F = ⊕jO(
∑
γi

j .Di)nj

for some γi
j ∈ R. Any ε-perturbation of F is

F ε = ⊕jO(
∑
aij .Di)nj

where aij = γi
j + εij are rational numbers and εij are small. Hence F ε is locally

abelian. �

8.2. Pullback of parabolic bundles with real weights

Consider a morphism
f : (Y,D′) −→ (X,D)

such that f−1(D) ⊂ D′. Here X, Y are smooth varieties and D,D′ are normal
crossing divisors on X and Y respectively.

In [Iy-Si, Lemma 2.6], the pullback of a locally abelian parabolic bundle with
rational weights was defined, using its correspondence with usual vector bundles
on a DM-stack. Our aim here is to define the pullback f∗F on (Y,D′) of a locally
abelian parabolic bundle F with real weights on (X,D).

Lemma 8.5. Suppose F is a locally abelian parabolic bundle with real weights on
(X,D). For any morphism f : (Y,D′) −→ (X,D) such that f−1D ⊂ D′, we can
define the pullback f∗F on (Y,D) as a locally abelian parabolic bundle with real
weights.

Proof. By Lemma 8.4, we can write

F =
⋂
ε→0

F ε.

By [Iy-Si, Lemma 2.6], f∗F ε is a locally abelian parabolic bundle with rational
weights.
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Locally, by Lemma 8.4, each F ε is locally abelian, and the decompositions
are compatible for different ε. Thus we can write locally

f∗F ε = ⊕jO(
∑
aij(ε).D

′
i)

nj

where aij(ε) are rational numbers depending on ε. In other words, the pullbacks
form a simultaneously locally abelian projective system. By Lemma 8.4, we can
define the pullback of F as the intersection

f∗F :=
⋂
ε→0

f∗F ε,

and it is a locally abelian parabolic bundle. In fact, locally let αi
j = limε→0 ai

j(ε)
(which converges and is a real number), then

f∗F = ⊕jO(
∑
aij .D

′
i)

nj . �

8.3. Tensor products of parabolic bundles with real weights

Suppose F and G are two locally abelian parabolic bundles with real weights. We
would like to define their tensor product. Recall that by [Iy-Si, Lemma 2.3], the
tensor product of locally abelian parabolic bundles with rational weights can be
defined using the correspondence with usual vector bundles on a DM–stack.

Lemma 8.6. Suppose F and G are locally abelian parabolic bundles with real weights
on (X,D). Then we can define F ⊗ G as a locally abelian parabolic bundle with
real weights.

Proof. By Lemma 8.4, we can write

F =
⋂
ε→0

F ε, G =
⋂
ε→0

Gε

The families {F ε}ε→0 and {Gε′}ε′→0 are simultaneously locally abelian, and we can
take a common refinement of the two coverings so that they are locally abelian with
respect to the same covering. Then the family of tensor products {F ε⊗Gε′}ε,ε′→0

is again simultaneously locally abelian with respect to the same decomposition
and we can define

F ⊗G :=
⋂

ε,ε′→0

F ε ⊗Gε′ .

�

One can also consider duals and internal Hom.

8.4. Description by filtrations on a linear constructible decomposition of the space
of weights

For both of the operations defined above, the description in terms of filtrations
can jump when the parabolic weights cross “walls”. Fix a vector bundle E and
filtrations of EDi . These filtrations determine an open subset of possible assign-
ments of weights αj

i to the filtrations F j
i with αj−1

i < αj
i . This defines an open
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subset W (E, {F j
i }) ⊂ RN . Note that the locally abelian condition doesn’t depend

on the choice of weights but is just a statement about the filtrations. However,
when we apply the pullback operation for a map (Y,D′) → (X,D) the filtrations
on the pullback bundle might depend on the choice of weights α ∈W (E, {F j

i }).
A subset of RN is linear-constructible if it is defined by a finite number of

linear equalities and inequalities. It is Q-linear-constructible if the equalities and
inequalities have coefficients in Q.

The filtrations for the pullback parabolic bundle are fixed over a Q-linear
constructible stratification of the space of weights. This phenomenon is somewhat
similar to what was observed by Budur in [Bu].

Proposition 8.7. Suppose f : (Y,D′) → (X,D) is a morphism of smooth vari-
eties with normal crossings divisors in good position. Suppose (E, {F j

i }) is a lo-
cally abelian datum of filtrations for a parabolic structure on (X,D). There is a
stratification of W (E, {F j

i }) into a finite disjoint union of Q-linear constructible
sets W (p) such that over each stratum, there is a fixed collection of filtrations
F̃ j

i (p) for the pullback bundle Ẽ := f∗E and a Q-linear function of weights
f∗(p) : W (p) → W (Ẽ, {F̃ j

i (p)}) such that for α ∈ W (p) the pullback of the para-
bolic bundle (E, {F j

i }, α) is equal to (f∗E, {F̃ j
i (p)}, f∗(p)(α)).

We leave the proof to the reader.
A similar statement holds for tensor product, which is again left to the reader.

8.5. Chern character of parabolic bundles with real weights

Suppose K ⊂ R is a subfield, and suppose V is a K-vector space. If f ∈ V ⊗K[x]
then we can define in a formal way

∫ 1

0
f ∈ V . The same is true if f is a formal

piecewise polynomial function whose intervals of different definitions are defined
overK. A similar remark holds for multiple integrals – in the case we shall consider
the domains of piecewise definition will be products of intervals defined over K
but this could also extend to K-linear constructible regions.

Using this meaning, the formula of Theorem 5.8 may be rewritten replacing
sums by integrals:

ch(F ) =

∫ 1

α1=0
· · ·

∫ 1

αm=0
e−

∑m
i=1 αiDich(Fα)∫ 1

α1=0
· · ·

∫ 1

αm=0
e−

∑m
i=1 αiDi

. (15)

In this formula note that the exponentials of real combinations of divisors are
interpreted as formal polynomials. The power series for the exponential terminates
because the product structure of CH>0(X) is nilpotent.

If F is a parabolic bundle with rational weights, then this still takes values
in CH ·(X)Q.

If F is a parabolic bundle with real weights, then the formula (15) may
be taken as the definition of ch(F ) ∈ CH ·(X)R := CH ·(X)⊗Z R. No topology or
metric structure is needed on CH ·(X)R because the integrals involved are piecewise
polynomials.
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Theorem 8.8. The Chern character of locally abelian parabolic bundles with real
weights, is additive for exact sequences, multiplicative for tensor products, and
functorial for pullbacks along good morphisms of varieties with normal crossings
divisors.

Proof. Additivity for exact sequences follows from the shape of the formula. Sup-
pose f : (Y,D′) → (X,D) is a good morphism of varieties with normal crossings
divisors. Fix a bundle and collection of filtrations (E, {F j

i }) on (X,D). The Chern
character may then be viewed as a function

ch : W (E, {F j
i })→ CH ·(X)R.

This function is obtained as a polynomial with coefficients which are rational linear
combinations of the various Chern classes of the intersections of the filtrations, see
§7.3. The same may be said of the Chern character of parabolic bundles over
(Y,D′) once filtrations are fixed. Use Proposition 8.7 to decompose the space
W (E, {F j

i }) into a finite union of Q-linear constructible subsets on which the
filtrations of the pullback parabolic structure will be invariant. Over these subsets
the Chern character of the pullback parabolic structures are again polynomials
with coefficients in CH ·(X)Q. On the other hand, by [Iy-Si, Lemma 2.8], whenever
the weights are rational we have that the Chern character of the pullback is the
pullback of the Chern character. We therefore have two polynomials with CH ·(X)Q

coefficients which agree on the rational points of a certain Q-linear constructible
set. It follows that the polynomial functions into CH ·(X)R agree on the real points
of the Q-linear constructible set. This proves compatibility of the Chern character
for pullbacks of real parabolic bundles.

The proof for tensor products is similar, using the analogue of Proposition
8.7. �

9. Variants

In this section we consider a variant of the notion of parabolic structures for the
case of a divisor with multiple points, and also a variant of the construction of
parabolic bundle associated to a logarithmic connection, concerning the case of
unipotent monodromy at infinity. In both cases, we will restrict to the case when
X is a smooth projective surface.

9.1. Parabolic structures at multiple points

Let X be a nonsingular projective surface. Let D ⊂ X be a divisor such that
D = ∪m

i=1Di and Di are smooth and irreducible curves. Let P = {P1, . . . , Pr} be
a set of points. Assume that the points Pj are crossing points of Di, and that they
are general multiple points, that is, through a crossing point Pj we have divisors
D1, . . . , Dk which are pairwise transverse. Assume that D has normal crossings
outside of the set of points P .
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Let π : X ′ −→ X be the blow–up of X at P and E be the exceptional
divisor on X ′; note that E is a sum of disjoint exceptional components Ej over
the points Pj respectively. The pullback divisor D′ =

∑m
i=1D

′
i + E is a normal

crossing divisor, where D′
i is the strict transform of Di, for 1 ≤ i ≤ m.

We define a notion of exceptionally constant parabolic structure on (X,D,P ).
The term “exceptionally constant” means that the parabolic structure pulls back
to one which is constant along the exceptional divisors. Following notation of
Mochizuki [Mo2] we fix an origin for the filtrations which is a multi-index c. This
may be important in the present case since the structures might differ for different
values of c.

Definition 9.1. Fix a positive integer n for the denominator, and an uplet of inte-
gers c = (cD,1, . . . , cD,m, cP,1, . . . , cP,r). An exceptionally constant parabolic struc-
ture on (X,D,P ) (denoted by (H,F ·

· , G
·
·)) with origin c consists of a vector bundle

H on X together with filtrations F i on the restrictions HDi of H on Di, and fur-
thermore filtrations Gj of the vector spaces HPj . The indexing of these filtrations
is F i

j for cD,i − n ≤ j ≤ cD,i with F i
cD,i

= H |Di and F i
cD,i−n = 0, and Gj

k for
cP,j − n ≤ k ≤ cP,j with analogous end conditions.

Let H ′ = π∗H be the pullback of the vector bundle H . The filtrations F j
i

along the D′
i and Gj

k along the exceptional divisors Ej determine a parabolic
structure denoted Φ(H,F ·

· , G
·
·) over (X ′, D′+E). By Lemma 2.3, it is automatically

locally abelian.
We can use the formula of Theorem 5.8 to obtain a formula for the Chern

character of Φ(H,F ·
· , G

·
·)

Consider the push–forward map

π∗ : CH.(X ′)⊗Q −→ CH.(X)⊗Q

We define the Chern character of the exceptionally constant parabolic struc-
ture on X , (H,F ·

· , G
·
·), to be

ch(H,F ·
· , G

·
·) := π∗ch Φ(H,F ·

· , G
·
·).

9.2. Parabolic bundles associated to unipotent monodromy at infinity

Recall that one can associate a parabolic bundle to a logarithmic connection with
rational residues, in a canonical way, such that the weights correspond to the
eigenvalues of the residues (see [Iy-Si] or §10 below). In this section, we point out
that one can do something substantially different, in the case of nilpotent residues.
Suppose (E,∇) is a logarithmic connection onX , with singularities along a normal-
crossings divisor D = D1 + · · ·+Dm, such that the residue ηi of ∇ are nilpotent,
for each i = 1, . . . ,m. In other words, (E,∇) is the Deligne extension of a flat
bundle with unipotent monodromy at infinity.

In this case, we still have some different natural filtrations along divisor com-
ponents, but the eigenvalues of the residue are zero so there is no canonical choice
of weights. Instead, define some characteristic numbers by arbitrarily assigning
weights to these filtrations. Assume that X is a surface here, so that the resulting
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parabolic structures will automatically be locally abelian. It seems to be an in-
teresting question to determine when the locally abelian condition holds for these
kinds of filtrations in the case of dimension ≥ 3.

Consider the Image filtration on the restriction EDi of E to a divisor compo-
nent:

EDi = F i
0 ⊃ F i

1 ⊃ · · · ⊃ F i
li−1 ⊃ F i

li+1 = 0
where

F i
j := image (ηji : EDi −→ EDi),

ηji := ηi ◦ ηi ◦ · · · ◦ ηi (j-times) and li + 1 is the order of ηi.
Alternatively, we can consider the Kernel filtration induced by the kernels of

the operator ηi: write

F i
j := kernel (ηli+1−j

i : EDi −→ EDi).

Mixing these two filtrations gives rise to the monodromy weight filtration
{Wl} defined by Deligne [De3]. This is an increasing filtration

{0} ⊂W0 ⊂W1 ⊂ · · · ⊂W2li = EDi

uniquely determined by the conditions:
• ηi(Wl) ⊂Wl−2

• the induced map ηli : Grk+l(W∗)→ Grk−l(W∗) is an isomorphism for each l.
Here Grl(W∗) :=Wl/Wl−1.

Explicitly, the filtration is defined by induction as follows: let

W0 = image(ηlii ) and W2li−1 = ker(ηlii ).

Now fix some l < li + 1; if

0 ⊂Wl−1 ⊂W2li−l ⊂W2li = EDi

has already been defined in such a way that

ηli−l+1
i (W2li−l) ⊂Wl−1

then we define

Wl/Wl−1 = image(ηli−l
i :W2li−l/Wl−1 −→W2li−l/Wl−1)

and Wl,W2li−l−1 to be the corresponding inverse images. Notice that

Wl/Wl−1 ⊂W2li−l−1/Wl−1

so that Wl ⊂ W2li−l−1. Clearly, ηli−1
i (W2li−l−1) ⊂ Wl, so that the induction

hypothesis is satisfied.

Lemma 9.2. Suppose X is a surface. Consider the Image or the Kernel or the
monodromy weight filtrations considered above, on the restrictions EDi of E to
the divisor components. We can associate a locally abelian parabolic bundle on
(X,D) with respect to (EU ,∇U ) together with either of these filtrations by assigning
aribitrary weights.
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Proof. By Lemma 2.3, the parabolic structure defined by the filtrations is auto-
matically locally abelian. �

9.3. Examples arising from families

Suppose π : X −→ S is a semi-stable family of projective varieties such that
πU : XU −→ U is a smooth morphism, for some open subvariety U ⊂ S and
D := S − U is a normal crossing divisor. Let d be the relative dimension of
X −→ S.

In this situation, the Gauss–Manin bundles Hl := Rlπ∗(Ω•
X/S(π−1D)) for

0 ≤ l ≤ 2d, are equipped with a logarithmic flat connection. Furthermore, the local
monodromies are unipotent and Hl is the Deligne extension of the restriction Hl

U

(see [St]). Let ηi be the residue transformations along the divisor components Di.
Unipotency of the monodromy operators implies nilpotency of ηi and the order of
nilpotency is at most l+1 (see [La]). In particular, the length of the Image and the
Kernel filtrations in the previous subsection is at most l + 1 and the monodromy
weight filtration is of length at most 2l + 1. We make an explicit computation
of the Chern character of the associated locally abelian parabolic bundle in the
following case:

Suppose S is a surface andX −→ S is a semi-stable family of abelian varieties.
We consider the Gauss-Manin systemH1 of weight one on S. For simplicity assume
that D is a smooth irreducible divisor. Then the residue transformation η has order
of nilpotency two and in this case the monodromy weight filtration is written as

H1
|D =W2 ⊃W1 ⊃W0 ⊃W−1 = 0.

Here W1 = kernel(η) and W0 = image(η). The graded pieces

grm :=
Wm

Wm−1

carry a polarized pure Hodge structure of weight m (see [Sc]). Also, the graded
piece of weight two is isomorphic to the piece of weight zero, by the monodromy
operator N (in [Sc], N polarizes the mixed Hodge structures).

By Lemma 9.2, we can associate a locally abelian parabolic bundle F on S
corresponding to {W.}, with arbitrary weights (α0, α1, α2) with −1 < α0 < α1 <
α2 ≤ 0.

Lemma 9.3. Suppose X −→ S is a semi-stable family of abelian varieties of genus
g. Let gi denote the rank of gri for i = 0, 1, 2, thus g = g0 + g1 + g2 and g0 = g2.
With notation as above, assigning weights (α0, α1, α2), the Chern character of the
locally abelian parabolic bundle F is given by the formula

ch(F ) =
2∑

i=0

gie
−αiD ∈ CH ·(S)Q.

In other words it is Chow-equivalent to a direct sum of parabolic line bundles.
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Proof. Let k : D ↪→ X denote the inclusion. Suppose A is a rank r bundle along
D whose Chern character is r ∈ CH0(D)Q. Then, the sheaf k∗(A) on X has
Chern character given by a Riemann-Roch formula. This formula depends only on
the Chern character of A on D, in particular it is r times the value for the case
A = OD. In that case we can use the exact sequence

0→ O(−D)→ O → OD → 0

to conclude that the Chern character of k∗(A) is r(1 − e−D).
Turn now to the situation of the lemma. By [vdG] or [Es-Vi3], we have

ch(F ) = g ∈ CH0(S)Q

and similarly for ch(gr1) which corresponds to a family of abelian varieties along
D, we get

ch(gr1) = g1 ∈ CH0(D)Q.

Clearly, ch(gr0) = g0 ∈ CH0(D)Q, thus ch(gr2) = g2 ∈ CH0(D)Q by the iso-
morphism between the weight two and weight zero piece given by the monodromy
operator. Plugging these into the formula (14) of §7.4 and using the previous
paragraph for the Chern characters of k∗(A) we get the formula

ch(F ) = eDg −
2∑

i=0

eD − e−αiD

(1− e−D)
gi(1 − e−D) ∈ CH ·(S)Q.

Simplifying with g = g0 + g1 + g2 gives the stated formula. �

10. Extended Reznikov theory for finite order monodromy
at infinity

Suppose U is a nonsingular variety defined over the complex numbers. Consider a
nonsingular compactification X of U such that D := X − U is a normal crossing
divisor. Suppose (EU ,∇U ) is a bundle with a flat connection on U . Consider the
canonical extension (E,∇) of (EU ,∇U ) on X (see [De]). Here ∇ is a logarithmic
connection on E, i.e.,

∇ : E −→ E ⊗ ΩX(logD)
is a C-linear map and satisfies the Leibniz rule. Flatness implies that ∇ ◦∇ = 0.

Consider the sequence induced by the Poincaré residue map

E −→ E ⊗ ΩX(logD) res−→ E ⊗OD.

This induces an operator

ηi : EDi −→ (E ⊗ ΩX(logD))|Di

res−→ EDi

called the residue transformation along the component Di and ηi ∈ End(EDi).

Definition 10.1. We say that (E,∇) has rational residues if the eigenvalues of the
residue transformations ηi above are rational numbers.
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This is equivalent to saying that the local monodromy transformations around
the divisor components Di of D are quasi-unipotent.

If αi are the rational residues then [De]

e2πiαi = eigenvalues of the local monodromy.

Suppose the residues of (E,∇) are non-zero and rational. In [Iy-Si, Lemma
3.3], a locally abelian parabolic bundle E on (X,D) was associated to (E,∇). In
fact, E was associated to the flat connection (EU ,∇U ) on U and the constituent
bundles were defined, using a construction due to Deligne-Manin. If we choose the
extension (E,∇) on X such that the rational residues lie in the interval [0, 1) then
the weights are precisely the negatives of the rational residues. In other words, if
0 ≤ −α1

i < −α2
i < · · · < −αni

i < 1 are the rational residues along Di then the
weights are α1

i > α
2
i > · · · > αni

i along Di.

10.1. Residues are rational and semisimple

Suppose that the residues are rational and furthermore on the associated-graded
of the parabolic structure, the residue of the connection induces a semisimple op-
erator. In this case, the monodromy transformations of the corresponding local
system are semisimple with eigenvalues which are roots of unity, thus they are
of finite order. If n denotes a common denominator for the rational residues of
the connection (and hence for the corresponding parabolic weights) then the mon-
odromy transformations have order n. This implies that the connection extends
to a flat connection on the DM-stack Z := X〈D1

n , . . . ,
Dm

n 〉. Conversely any flat
connection on the DM-stack Z gives rise to a connection on U with semisimple
and rational residues.

The locally abelian parabolic bundle on X corresponds to the vector bundle
on Z underlying the flat bundle as extended over Z. Indeed, when the monodromy
transformations have order n, the monodromy around the divisor at infinity in
Z is trivial, and in this case the Deligne canonical extension is the vector bundle
underlying the extended flat bundle. By [Iy-Si] the Deligne canonical extension
over Z is the vector bundle corresponding to the parabolic bundle on X .

10.2. Reznikov’s theory in the case of rational semisimple residues

The theory of secondary characteristic classes works equally well on the DM-stack
Z. In particular, we can define the rational Deligne cohomology

H2p
D (Z,Q(p)) := H2p(Zan; Q(p)→ Ω0

Zan → . . .→ Ωp
Zan),

and also the cohomology

H2p−1(Z,C/Q) = H2p(Zan; Q → Ω·
Zan).

Dividing by the Hodge filtration provides a map

H2p−1(Z,C/Q)→ H2p
D (Z,Q(p)). (16)
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On the other hand, the Deligne cycle class map from Chow groups to Deligne
cohomology is a map

CHp(Z)Q → H2p
D (Z,Q(p)). (17)

If E is a vector bundle on Z then its Chern character in CH ·(Z)Q maps to its
Chern character in ⊕pH

2p
D (Z,Q(p)).

Lemma 10.2. Pullback for the map Z → X gives an isomorphism of Deligne co-
homology groups

H2p
D (X,Q(p)).

∼=−→ H2p
D (Z,Q(p))

compatible with the isomorphism of rational Chow groups and the map (17). It
also induces an isomorphism

H2p−1(X,C/Q)
∼=−→ H2p−1(Z,C/Q)

and this is compatible with the projection (16).

Suppose F is a locally abelian parabolic bundle on X . Define the Chern
character of F in Deligne cohomology of X by using the formula of Theorem 5.8
and taking the Chern characters of the pieces F[a1,...,am] in the Deligne cohomology
of X . Thus

chD(F ) :=

∑n−1
a1=0 · · ·

∑n−1
am=0 e

−∑m
i=1

ai
n cD1 (Di)chD(F[a1,...,am])∑n−1

a1=0 · · ·
∑n−1

am=0 e
−∑m

i=1
ai
n cD1 (Di)

. (18)

The products are taken with the product structure of Deligne cohomology which
is compatible with the intersection product in Chow groups [Es-Vi2].

Corollary 10.3. Suppose F is a locally abelian parabolic bundle on X with n as
common denominator for the rational weights, corresponding to a vector bundle E
on Z. Then chD(F ) as given by the above formula (18), pulls back to chD(E) on
Z via the isomorphism of Lemma 10.2.

Proof. By Theorem 5.8 this is the case for the Chern character in Chow groups, and
we have the compatibility of the isomorphism of Lemma 10.2 with the projection
(17). �

Now, go back to the situation where (EU ,∇U ) is a flat bundle on U with
rational and semisimple residues. It extends to a flat bundle (E,∇) on Z and also
the local system LU on U extends to a local system L on Z.

Consider a Kawamata cover (see [Kaw])

f : Y −→ X
so that Y is a smooth projective variety. Then there is a factorization

Y
h−→ Z π−→ X

such that f = π ◦ h. The flat connection on Z pulls back to a flat connection
(EY ,∇Y ) on Y . Thus, Esnault’s theory of secondary classes for flat bundles [Es]
gives a class ĉp(L) ∈ H2p−1(Z,C/Q). By [Es], this class projects under the map
(16) to the Deligne Chern class cDp (E) for the vector bundle E on Z.
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Proposition 10.4. Reznikov’s result on the vanishing of the rational secondary
classes works equally well over a smooth projective DM-stack. Thus, with the above
notation ĉp(L) = 0 in H2p−1(Z,C/Q), for p ≥ 2.

Proof. Either of Reznikov’s proofs of [Re] work equally well over the DM-stack
Z. Alternatively, we can reduce to the utilisation of [Re] on the finite cover Y as
follows: by Reznikov’s theorem the secondary classes of (EY ,∇Y ) are trivial in
the C/Q-cohomology in degrees ≥ 3 of Y . The map Y → Z induces an injection
Hi(Z, V ) ↪→ Hi(Y, V ) for any Q-vector space V , in particular V = C/Q. This
implies that the secondary classes vanish on Z

ĉp(L) = 0 ∈ H2p−1(Z,C/Q)

for p ≥ 2. �

Combining with our formula of Theorem 5.8 we obtain a formula for an ele-
ment of the Deligne cohomology over the compactification X of U which vanishes
by Reznikov’s theorem.

Corollary 10.5. Suppose (EU ,∇U ) is a flat bundle on U with rational and semisim-
ple residues, or equivalently the monodromy transformations at infinity are of finite
order. Let F denote the corresponding locally abelian parabolic bundle. Define the
Deligne Chern character chD(F ) on X by the formula (18). Then the rational
Deligne Chern classes cDp (F ) in all degrees ≥ 2 vanish.

Proof. This follows from Corollary 10.3 and Proposition 10.4. �

References

[Bi] I. Biswas, Parabolic bundles as orbifold bundles, Duke Math. J. 88 (1997), no.
2, 305–325.

[Bi2] I. Biswas, Chern classes for parabolic bundles, J. Math. Kyoto Univ. 37 (1997),
no. 4, 597–613.

[Bl-Es] S. Bloch and H. Esnault, Algebraic Chern-Simons theory, Amer. J. Math. 119
(1997), no. 4, 903–952.

[Bd] H.U. Boden, Representations of orbifold groups and parabolic bundles, Com-
ment. Math. Helv. 66 (1991), no. 3, 389–447.

[Bd-Hu] H.U. Boden and Y. Hu, Variations of moduli of parabolic bundles, Math. Ann.
301 (1995), no. 3, 539–559.

[Bo] N. Borne, Fibrés paraboliques et champ des racines, preprint 2005,
math.AG/0604458.

[Bu] N. Budur, Unitary local systems, multiplier ideals, and polynomial periodicity of
Hodge numbers, preprint 2006, math.AG/0610382.

[Cad] C. Cadman, Using stacks to impose tangency conditions on curves, Preprint
math.AG/0312349.



Parabolic Chern Character 483

[Ch-Sm] J. Cheeger and J. Simons, Differential characters and geometric invariants, Ge-
ometry and topology (College Park, Md., 1983/84), 50–80, Lecture Notes in
Math., 1167, Springer, Berlin, 1985.

[Cn-Sm] S.S. Chern and J. Simons, Characteristic forms and geometric invariants, Ann.
of Math. (2) 99 (1974), 48–69.
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Part I, Preprint math.AG/0309342.

[IKN] L. Illusie, K. Kato and C. Nakayama, Quasi-unipotent logarithmic Riemann-
Hilbert correspondences, J. Math. Sci. Univ. Tokyo 12 (2005), no. 1, 1–66.

[Iy-Si] J.N. Iyer and C.T. Simpson, A relation between the parabolic Chern characters
of the de Rham bundles, arXiv math.AG/0604196, to appear in Math. Annalen.

[KN] K. Kato and C. Nakayama, Log Betti cohomology, log étale cohomology, and log
de Rham cohomology of log schemes over C, Kodai Math. J. 22 (1999), no. 2,
161–186.

[Kaw] Y. Kawamata, Characterization of abelian varieties, Compositio Math. 43
(1981), no. 2, 253–276.

[Kr] A. Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1999), no. 3, 495–
536.

[La] A. Landman, On the Picard-Lefschetz transformation for algebraic manifolds
acquiring general singularities, Trans. Amer. Math. Soc. 181 (1973), 89–126.



484 J.N. Iyer and C.T. Simpson

[Li] J. Li, Hermitian-Einstein metrics and Chern number inequalities on parabolic
stable bundles over Kähler manifolds. Comm. Anal. Geom. 8 (2000), no. 3, 445–
475.

[Ma-Yo] M. Maruyama and K. Yokogawa, Moduli of parabolic stable sheaves, Math. Ann.
293 (1992), no. 1, 77–99.

[Ma-Ol] K. Matsuki and M. Olsson, Kawamata-Viehweg vanishing and Kodaira vanishing
for stacks, Math. Res. Lett. 12 (2005), 207–217.

[Me-Se] V.B. Mehta and C.S. Seshadri, Moduli of vector bundles on curves with parabolic
structures, Math. Ann. 248 (1980), no. 3, 205–239.

[Mo] T. Mochizuki, Asymptotic behaviour of tame harmonic bundles and an applica-
tion to pure twistor D-modules, Preprint math.DG/0312230.

[Mo2] T. Mochizuki, Kobayashi-Hitchin correspondence for tame harmonic bundles
and an application, Preprint math.DG/0411300, preprint Kyoto-Math 2005-15.

[Mu] D. Mumford, Towards an Enumerative Geometry of the Moduli Space of Curves,
Arithmetic and geometry, Vol. II, 271–328, Progr. Math., 36, Birkhäuser
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[Vo] C. Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés
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Abstract. This is a survey of higher-dimensional Kleinian groups, i.e., discrete
isometry groups of the hyperbolic n-space Hn for n ≥ 4. Our main emphasis
is on the topological and geometric aspects of higher-dimensional Kleinian
groups and their contrast with the discrete groups of isometry of H3.
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1. Introduction

The goal of this survey is to give an overview (mainly from the topological per-
spective) of the theory of Kleinian groups in higher dimensions. The survey grew
out of a series of lectures I gave in the University of Maryland in the Fall of 1991.
An early (much shorter) version of this paper appeared as the preprint [110]. In
this survey I collect well-known facts as well as less-known and new results. Hope-
fully, this will make the survey interesting to both non-experts and experts. We
also refer the reader to Tukia’s short survey [219] of higher-dimensional Kleinian
groups.

There is a vast variety of Kleinian groups in higher dimensions: It appears
that there is no hope for a comprehensive structure theory similar to the theory
of discrete groups of isometries of H3. I do not know a good guiding principle
for the taxonomy of higher-dimensional Kleinian groups. In this paper the higher-
dimensional Kleinian groups are organized according to the topological complexity
of their limit sets. In this setting one of the key questions that I will address is the
interaction between the geometry and topology of the limit set and the algebraic
and topological properties of the Kleinian group.

During this work the I was partially supported by various NSF grants, especially DMS-8902619
at the University of Maryland and DMS-04-05180 at UC Davis. Most of this work was done when
I was visiting the Max Plank Institute for Mathematics in Bonn.
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This paper is organized as follows. In Section 2 we consider the most basic
concepts of the theory of Kleinian groups, e.g., domain of discontinuity, limit set,
geometric finiteness, etc. In Section 3 we discuss various ways to construct Kleinian
groups and list the tools of the theory of Kleinian groups in higher dimensions. In
Section 4 we review the homological algebra used in the paper. In Section 5 we
state topological rigidity results of Farrell and Jones and the coarse compact core
theorem for higher-dimensional Kleinian groups. In Section 6 we discuss various
notions of equivalence between Kleinian groups: From the weakest (isomorphism)
to the strongest (conjugacy). In Section 7 we consider groups with zero-dimensional
limit sets; such groups are relatively well understood. Convex-cocompact groups
with 1-dimensional limit sets are discussed in Section 8. Although the topology
of the limit sets of such groups is well understood, their group-theoretic structure
is a mystery. We know very little about Kleinian groups with higher-dimensional
limit sets, thus we restrict the discussion to Kleinian groups whose limit sets are
topological spheres (Section 9). We then discuss Ahlfors finiteness theorem and its
failure in higher dimensions (Section 10). We then consider the representation va-
rieties of Kleinian groups (Section 11). Lastly we discuss algebraic and topological
constraints on Kleinian groups in higher dimensions (Section 12).

Acknowledgments. I am grateful to C. McMullen, T. Delzant, A. Nabutovsky and
J. Souto for several suggestions, and to L. Potyagailo for a number of comments,
suggestions and corrections. I am also grateful to the referee for numerous correc-
tions.
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2. Basic definitions

Möbius transformations. For the lack of space, our discussion of the basics of
Kleinian groups below is somewhat sketchy. For the detailed treatment we refer
the reader to [18, 39, 116, 138, 190]. We let Bn+1 denote the closed ball Hn+1∪Sn;
its boundary Sn is identified via the stereographic projection with Rn = Rn∪{∞}.
A horoball B in Hn+1 is a round ball in Hn+1 which is tangent to the boundary
sphere Sn. The point of tangency is called the (hyperbolic) center of B.

Let Mob(Sn) denote the group of all Möbius transformations of the n-sphere
Sn, i.e., compositions of inversions in Sn. The group Mob(Sn) admits an extension
to the hyperbolic space Hn+1, so that Mob(Sn) = Isom(Hn+1), the isometry group
of Hn+1.

For elements γ ∈Mob(Sn) define the displacement function

dγ(x) := d(x, γ(x)), x ∈ Hn+1.

The elements γ of Mob(Sn) are classified as:

1. Hyperbolic: The function dγ is bounded away from zero. Its minimum is
attained on a geodesic Aγ ⊂ Hn+1 invariant under γ. The ideal end-points
of Aγ are the fixed points of γ in Sn.

2. Parabolic: The function dγ is positive but has zero infimum on Hn+1; such
elements have precisely one fixed point in Sn.

3. Elliptic: γ fixes a point in Hn+1.
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The group Mob(Sn) is isomorphic to an index 2 subgroup in the Lorentz
group O(n + 1, 1), see, e.g., [190]. In particular, Mob(Sn) is a matrix group. Sel-
berg’s lemma [203] implies that every finitely generated group of matrices contains
a finite index subgroup which is torsion-free. A group Γ is said to virtually satisfy
a property X if it contains a finite index subgroup Γ′ ⊂ Γ, such that Γ′ satisfies X .
Therefore, every finitely generated group of matrices is virtually torsion-free. More-
over, every finitely-generated matrix group is residually finite, i.e., the intersection
of all its finite-index subgroups is trivial, see [151, 203]. This, of course, applies to
the finitely generated subgroups of Mob(Sn) as well.

Definition 2.1. A discrete subgroup Γ ⊂Mob(Sn) is called a Kleinian group.

Dynamical notions. The discontinuity set Ω(Γ) of a group Γ ⊂ Mob(Sn), is the
largest open subset in Sn where Γ acts properly discontinuously. Its complement
Sn \ Ω(Γ) is the limit set Λ(Γ) of the group Γ. Equivalently, the limit set of a
Kleinian group can be described as the accumulation set in the sphere Sn of an orbit
Γ · o. Here o is an arbitrary point in Hn+1. A Kleinian group is called elementary
if its limit set is finite, i.e., is either empty, or consists of one or of two points.

We will use the notation Mn(Γ) for the n-dimensional quotient Ω(Γ)/Γ and
M̄n+1(Γ) for the n+ 1-dimensional quotient (Hn+1 ∪Ω(Γ))/Γ.

For a closed subset Λ ⊂ Sn, let Hull(Λ) denote its convex hull in Hn+1, i.e.,
the smallest closed convex subset H of Hn+1 such that

clBn+1(H) ∩ Sn = Λ.

Clearly, if Λ is a point, then Hull(Λ) does not exist. Otherwise, Hull(Λ) exists
and is unique. We declare Hull(Λ) to be empty in the case when Λ is a single
point.

One way to visualize the convex hull Hull(Λ) is to consider the projective
model of the hyperbolic space, where the geodesic lines are straight line segments
contained in the interior of Bn+1. Therefore, the Euclidean notion of convexity
coincides with the hyperbolic notion. This implies that the convex hull in this
model can be described as follows: Hull(Λ) is the intersection of the Euclidean
convex hull of Λ with the interior of Bn+1.

Suppose that Λ = Λ(Γ) is the limit set of a Kleinian group Γ ⊂ Mob(Sn).
The quotient Hull(Λ)/Γ is called the convex core of the orbifold N = Hn+1/Γ.
It is characterized by the property that it is the smallest closed convex subset in
N , whose inclusion to N is a homotopy-equivalence. For ε > 0 consider the open
ε-neighborhood Hullε(Λ) of Hull(Λ) in Hn+1. Since Hullε(Λ) is Γ-invariant, we
can form the quotient Hullε(Λ)/Γ. Then Hullε(Λ)/Γ is the ε-neighborhood of the
convex core.

Geometric finiteness. We now arrive to one of the key notions in the theory of
Kleinian groups:
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Definition 2.2. A Kleinian group Γ ⊂Mob(Sn) is called geometrically finite if:

(1) Γ is finitely generated, and
(2) vol(Hullε(Λ(Γ))/Γ) <∞.

In a number of important special cases, e.g., when Γ is torsion-free, or n = 2,
or when Λ(Γ) = Sn, the assumption (1) follows from (2), see [39]. However, E.
Hamilton [93] constructed an example of a Kleinian group Γ ⊂Mob(S3) for which
(2) holds but (1) fails. This group contains finite order elements of arbitrarily high
order; by Selberg’s lemma such groups cannot be finitely-generated.

A Kleinian group Γ ⊂Mob(Sn) is called a lattice if Hn+1/Γ has finite volume.
Equivalently, Λ(Γ) = Sn and Γ is geometrically finite. A lattice is cocompact (or
uniform) if Hn+1/Γ is compact.

One can characterize geometrically finite groups in terms of their limit sets.
Before stating this theorem we need two more definitions.

Definition 2.3. A limit point ξ ∈ Λ(Γ) is called a conical limit point if there exists
a geodesic α ⊂ Hn+1 asymptotic to ξ, a point o ∈ Hn+1, a number r <∞, and a
sequence γi ∈ Γ so that

1. limi γi(o) = ξ.
2. d(γi(o), α) ≤ r.

The reason for this name comes from the shape of the r-neighborhood of
the vertical geodesic α in the upper half-space model of Hn+1: It is a Euclidean
cone with the axis α. Equivalently, one can describe the conical limit points of
nonelementary groups as follows (see [14, 39]):

ξ ∈ Λ(Γ) is a conical limit point if and only if for every η ∈ Λ(Γ) \ {ξ} there
exists a point ψ and a sequence γi ∈ Γ such that:

1. limi γi(ζ) = ξ for every ζ ∈ Λ(Γ) \ {ψ}.
2. limi γ

−1
i (ξ) �= limi γ

−1
i (η).

The set of conical limit points of a Kleinian group Γ is denoted Λc(Γ).

Definition 2.4. A point ξ ∈ Λ(Γ) is called a bounded parabolic point if it is the fixed
point of a parabolic subgroup Π ⊂ Γ and (Λ(Γ)− {ξ})/Π is compact.

Below is a dynamical characterizations of geometrically finite groups:

Theorem 2.5. (A.Beardon and B.Maskit [14], B.Bowditch [39]) A Kleinian group
Γ is geometrically finite if and only if each limit point ξ ∈ Λ(Γ) is either a conical
limit point or a bounded parabolic point.

C. Bishop [32] proved that one can drop the word bounded in the above
theorem. We refer the reader to Bowditch’s paper [39] for the proof of other criteria
of geometric finiteness collected in Theorems 2.6, 2.7, 2.8 below. (The case n = 2
is treated in [152] and [213].)
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Theorem 2.6.

1. If a Kleinian subgroup Γ ⊂Mob(Sn) admits a convex fundamental polyhedron
with finitely many faces then it is geometrically finite.

2. Let Γ ⊂ Mob(Sn) be a geometrically finite Kleinian group so that either (a)
n ≤ 2, or (b) Γ contains no parabolic elements, or (c) Γ is a lattice.

Then Γ admits a convex fundamental polyhedron with finitely many
faces.

On the other hand, there are geometrically finite subgroups of Mob(S3)
which do not admit a convex fundamental polyhedron with finitely many faces,
see [10].

Theorem 2.7. Let Γ ⊂ Mob(Sn) be a Kleinian subgroup containing no parabolic
elements. Then the following are equivalent:
(a) Γ is geometrically finite.
(b) Hull(Λ(Γ))/Γ is compact.
(c) M̄n+1(Γ) is compact.

If Γ is geometrically finite and contains no parabolic elements, it is called
convex-cocompact. We will frequently use the fact that every convex-cocompact
Kleinian group is Gromov-hyperbolic, see, e.g., [44].

The criterion given in Theorem 2.7 generalizes to the case of groups with
parabolic elements, although the statement becomes more complicated:

Theorem 2.8. The following are equivalent:
(a) Γ is geometrically finite.
(b) There exists a pairwise disjoint Γ-invariant collection of open horoballs Bi ⊂

Hn+1, i ∈ I, which are centered at fixed points of parabolic subgroups of Γ,
such that the quotient (

Hull(Λ(Γ)) \
⋃
i∈I

Bi

)
/Γ

is compact.
(c) Let Πi, i ∈ I be the collection of maximal (virtually) parabolic subgroups of Γ.

For each i there exists a Πi-invariant convex subset Ci ⊂ Bn+1, so that the
quotient (

Hn+1 ∪ Ω(Γ) \
⋃
i∈I

Ci

)
/Γ

is compact. If Ω(Γ) = ∅, then one can take Ci = Bi, a horoball in Hn+1.

If n = 1, then every finitely generated Kleinian group is geometrically finite.
The proof is rather elementary, see, e.g., [53]. For n ≥ 2 this implication is no
longer true. The first (implicit) examples were given by L. Bers, they are singly-
degenerate groups:
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Definition 2.9. A finitely generated nonelementary Kleinian subgroup of Mob(S2)
is singly degenerate if its domain of discontinuity is simply-connected, i.e., home-
omorphic to the 2-disk.

L. Bers [19] proved that singly degenerate Kleinian groups exist and are never
geometrically finite. The first explicit examples of finitely generated geometrically
infinite Kleinian subgroups Γ of Mob(S2) were given by T. Jørgensen [104]. In
Jørgensen’s examples, Γ appears as a normal subgroup of a lattice Γ̂ ⊂ Mob(S2)
with Γ̂/Γ ∼= Z. Remarkably, all known examples of finitely-generated geometrically
infinite Kleinian subgroups of Mob(Sn) can be traced to the 2-dimensional exam-
ples. More precisely, every known finitely-generated geometrically infinite Kleinian
subgroup Γ ⊂Mob(Sn) admits a decomposition as the graph of groups

(G,Γv,Γe),

where at least one of the vertex groups Γv is either a geometrically infinite subgroup
contained in Mob(S2), or is a quasiconformal deformations of such.

Problem 2.10. Construct examples of finitely-generated geometrically infinite sub-
groups of Mob(Sn), n ≥ 3, which do not have the 2-dimensional origin as above.

Assumption 2.11. From now on we will assume that all Kleinian groups are finitely
generated and torsion-free, unless stated otherwise.

Note that the second part of this assumption is not very restrictive because
of Selberg’s lemma.

Cusps and tubes. The Γ-conjugacy classes [Π] of maximal parabolic subgroups Π
of a Kleinian group Γ are called cusps of Γ. More geometrically, cusps of Γ can
be described using the thick-thin decomposition of the quotient manifold M =
Hn+1/Γ. Given a positive number ε > 0, let M(0,ε] denote the collection of points
x in M such that there exists a homotopically nontrivial loop α based at x, so
that the length of α is at most ε. Then M(ε,∞) is the complement of M(0,ε] in M .
According to Kazhdan-Margulis lemma [130], there exists a number μ = μn+1 > 0
such that for every Kleinian group Γ and every 0 < ε ≤ μ, every component
of M(0,ε] has a virtually abelian fundamental group. The submanifold M(0,ε] is
called the thin part of M and its complement the thick part of M . The compact
components of M(0,ε] are called tubes and the noncompact components are called
cusps.

Then the cusps of Γ are in bijective correspondence with the cusps in M(0,ε]:
For every cusp [Π] in Γ, there exists a noncompact component C ⊂ M(0,ε],

so that Π = π1(C). Conversely, for each cusp C ⊂ M , there exists a maximal
parabolic subgroup Π ⊂ Γ such that Π = π1(C).
Taking the Γ-conjugacy class of Π reflects the ambiguity in the choice of the base-
point needed to identify π1(M) and Γ.

If n ≤ 2 and the manifold M is oriented, then the components Ci of M(0,ε]

are convex: The cusps in M are quotients of horoballs in Hn+1, while the compact
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components Ti of M(0,ε] are metric Ri-neighborhoods of closed geodesics γi ⊂M .
In higher dimensions (n ≥ 3) convexity (in general) fails. However every tube Ti in
M(0,ε] is a finite union of convex sets containing a certain closed geodesic γi ⊂ Ti.
In particular, every tube Ti is homeomorphic to a disk bundle over S1. A simi-
lar, although more complicated description, holds for the cusps, where one has to
consider (in general) a union of infinitely many convex subsets. See, e.g., [121].

Möbius structures. In this paper we shall also discuss the subject closely related
to the theory of Kleinian groups, namely Möbius structures. When M is a smooth
manifold of dimension ≥ 3, a Möbius (or flat conformal) structure K on a M is
the conformal class of a conformally-Euclidean Riemannian metric on M . Topo-
logically, K is a maximal Möbius atlas on M , i.e., an atlas with Möbius transition
maps. Thus, for each Kleinian group Γ and Γ-invariant subset Ω ⊂ Ω(Γ), the
standard Möbius structure on Ω ⊂ Sn projects to a Möbius structure KΓ on the
manifold Ω/Γ. The Möbius structures of this type are called uniformizable.

Complex-hyperbolic Kleinian groups. Instead of considering the isometry group of
the hyperbolic space, one can consider other negatively curved symmetric spaces,
for instance, the complex-hyperbolic n-space CHn and its group of automorphisms
PU(n, 1). From the analytical viewpoint, CHn is the unit ball in Cn and PU(n, 1)
is the group of biholomorphic automorphisms of this ball. The Bergman metric on
CHn is a Kähler metric of negative sectional curvature. The discrete subgroups
of PU(n, 1) are complex-hyperbolic Kleinian groups. They share many properties
with Kleinian groups. In fact, nearly all positive results stated in this survey for
Kleinian subgroups of Mob(Sn) (n ≥ 3) are also valid for the complex-hyperbolic
Kleinian groups! (One has to replace virtually abelian with virtually nilpotent in
the discussion of cusps.) There exists an isometric embedding Hn → CHn which
induces an embedding of the isometry groups and therefore complex-hyperbolic
Kleinian groups (n ≥ 4) also inherit the pathologies of the higher-dimensional
Kleinian groups. We refer the reader to [80, 81, 199] for detailed discussion.

3. Ways and means of Kleinian groups

3.1. Ways: Sources of Kleinian groups

The following is a list of ways to construct Kleinian groups.

(a) Poincaré fundamental polyhedron theorem (see, e.g., [190] for a very
detailed discussion, as well as [157]). This source is, in principle, the most general.
The Poincaré fundamental polyhedron theorem asserts that given a polyhedron
Φ in Hn+1 and a collection of elements γ1, γ2, . . . , γk, . . . of Mob(Sn), pairing
the faces of Φ, under certain conditions on this data, the group Γ generated by
γ1, γ2, . . . , γk, . . . is Kleinian and Φ is a fundamental domain for the action of the
group Γ on Hn+1.

Every Kleinian group has a convex fundamental polyhedron (for example, the
Dirichlet fundamental domain). However, in practice, the Poincaré fundamental
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polyhedron theorem is not always easy to use, especially if Φ has many faces and n
is large. This theorem was used, for instance, to construct non-arithmetic lattices
in Mob(Sn) (see [149, 150, 221]), as well as other interesting Kleinian groups, see,
e.g., [60, 98, 111, 139, 191].

(b) Klein–Maskit Combination Theorems (see, e.g., [138] and [157]). Suppose
that we are given two Kleinian groups Γ1,Γ2 ⊂ Mob(Sn) which share a common
subgroup Γ3, or a single Kleinian group Γ1 and a Möbius transformation τ ∈
Mob(Sn) which conjugates subgroups Γ3,Γ′

3 ⊂ Γ1. The Combination Theorems
provide conditions which guarantee that the group Γ ⊂Mob(Sn) generated by Γ1

and Γ2 (or by Γ1 and τ) is again Kleinian and is isomorphic to the amalgam

Γ ∼= Γ1 ∗Γ3 Γ2,

or to the HNN extension

Γ ∼= Γ1∗Γ3 = HNN(Γ1, τ).

The proofs of the Combination Theorems generalize the classical “ping-pong” ar-
gument due to Schottky and Klein. The Combination Theorems also show that the
quotient manifold Mn(Γ) of the group Γ is obtained from Mn(Γ1), Mn(Γ2) (or
M(Γ1)) via some “cut-and-paste” operation. Moreover, Combination Theorems
generalize to graph of groups. There should be a generalization of Combination
Theorems to complexes of groups (see, e.g., [44] for the definition); however, to
the best of my knowledge, nobody worked out the general result, see [118] for a
special case.

(c) Arithmetic groups and their subgroups (see, e.g., [148] and [222]). A
subgroup Γ ⊂ O(n, 1) is called arithmetic if there exists an embedding

ι : O(n, 1) ↪→ GL(N,R),

such that the image ι(Γ) is commensurable with the intersection

ι(O(n, 1)) ∩GL(N,Z).

Recall that two subgroups Γ1,Γ2 ⊂ G are called commensurable if Γ1 ∩ Γ2 has
finite index in both Γ1 and Γ2.

Below is a specific construction of arithmetic groups. Let f be a quadratic
form of signature (n, 1) in n+1 variables with coefficients in a totally real algebraic
number field K ⊂ R satisfying the following condition:
(*) For every nontrivial (i.e., different from the identity) embedding σ : K → R,

the quadratic form fσ is positive definite.
Without loss of generality one may assume that this quadratic form is diag-

onal. For instance, take

f(x) = −
√

2x20 + x21 + · · ·+ x2n.
We now define discrete subgroups of Isom(Hn) using the form f . Let A denote

the ring of integers of K. We define the group Γ := O(f,A) consisting of matrices
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with entries in A preserving the form f . Then Γ is a discrete subgroup of O(f,R).
Moreover, it is a lattice: its index 2 subgroup

Γ′ = O′(f,A) := O(f,A) ∩O′(f,R)

acts on Hn so that Hn/Γ′ has finite volume. Such groups Γ (and subgroups of
Isom(Hn) commensurable to them) are called arithmetic subgroups of the simplest
type in O(n, 1), see [222].

Remark 3.1. If Γ ⊂ O(n, 1) is an arithmetic lattice so that either Γ is non-
cocompact or n is even, then it follows from the classification of rational structures
on O(n, 1) that Γ is commensurable to an arithmetic lattice of the simplest type.
For odd n there is another family of arithmetic lattices given as the groups of
units of appropriate skew-Hermitian forms over quaternionic algebras. Yet other
families of arithmetic lattices exist for n = 3 and n = 7. See, e.g., [222].

We refer the reader to [148] for the detailed treatment of geometry and topol-
ogy of arithmetic subgroups of Mob(S2).

(d) Small deformations of a given Kleinian group. We discuss this construc-
tion in detail in Section 11.1. The idea is to take a Kleinian group Γ ⊂ Mob(Sn)
and to “perturb it a little bit”, by modifying the generators slightly (within
Mob(Sn)) and preserving the relators. The result is a new group Γ′ which may or
may not be Kleinian and even if it is, Γ′ is not necessarily isomorphic to Γ. How-
ever if Γ is convex-cocompact, Γ′ is again a convex-cocompact group isomorphic
to Γ, see Theorem 11.12.

(e) Limits of sequences of Kleinian groups, see Section 11.3. Take a sequence
Γi of Kleinian subgroups of Mob(Sn) and assume that it has a limit Γ: It turns out
that there are two ways to make sense of this procedure (algebraic and geometric
limit). In any case, Γ is again a Kleinian group. Even if the (algebraic) limit does
not exist as a subgroup of Mob(Sn), there is a way to make sense of the limiting
group as a group of isometries of a metric tree. This logic turns out to be useful
for proving compactness theorems for sequences of Kleinian groups.

(f) Differential-geometric constructions of hyperbolic metrics. The only (but
spectacular) example where it has been used is Perelman’s work on Ricci flow and
proof of Thurston’s geometrization conjecture. See [134, 173, 183, 184]. However
applicability of this tool at the moment appears to be limited to 3-manifolds.

A beautiful example of application of (b) and (c) is the construction of
M. Gromov and I. Piatetski-Shapiro [88] of non-arithmetic lattices in Mob(Sn).
Starting with two arithmetic groups Γj (j = 1, 2) they first “cut these groups in
half”, take “one half” Δj ⊂ Γj of each, and then combine Δ1 and Δ2 via Maskit
Combination. The construction of Kleinian groups in [89] (see also Section 9.1) is
an application of (b), (c) and (d). Thurston’s hyperbolic Dehn surgery theorem is
an example of (e). One of the most sophisticated constructions of Kleinian groups
is given by Thurston’s hyperbolization theorem (see, e.g., [116], [180], [181]); still,
it is essentially a combination (a very complicated one!) of (b), (d) and (e).
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Remark 3.2. There is potentially the sixth source of Kleinian groups in higher
dimensions: monodromy of linear ordinary differential equations. However, to the
best of my knowledge, the only example of its application relevant to Kleinian
groups, is the construction of lattices in PU(n, 1) (i.e., the isometry group of the
complex-hyperbolic n-space) by Deligne and Mostow, see [62].

3.2. Means: Tools of the theory of Kleinian groups in higher dimensions

Several key tools of the “classical” theory of Kleinian subgroups of Mob(S2)
(mainly, the Beltrami equation and pleated hypersurfaces) are missing in higher
dimensions. Below is the list of main tools that are currently available.

(a) Dynamics, more specifically, the convergence property. Namely, every
sequence of Möbius transformations γi ∈ Mob(Sn) either contains a convergent
subsequence or contains a subsequence which converges to a constant map away
from a point in Sn. See, e.g., [116].

(b) Kazhdan-Margulis lemma and its corollaries.
It turns out that the lion share of the general results about higher-dimensional

Kleinian groups is a combination of (a) and (b), together with some hyperbolic
geometry.

(c) Group actions on trees and Rips theory. This is a very potent tool for
proving compactness results for families of representations of Kleinian groups, see
for instance Theorem 11.16.

(d) Barycentric maps. These maps were originally introduced by A. Douady
and C. Earle [65] as a tool of the Teichmüller theory of Riemann surfaces. In the
hands of G. Besson, G. Courtois and S. Gallot these maps became a powerful
analytic tool of the theory of Kleinian groups in higher dimensions, see, e.g., [21,
22], as well as Theorems 10.21 and 11.24 in this survey. In contrast, equivariant
harmonic maps which proved so useful in the study of, say, Kähler groups, seem
at the moment to be only of a very limited use in the theory of Kleinian groups
in higher dimensions.

(e) Ergodic theory of the actions of Γ on its limit set and Patterson–Sullivan
measures. See for instance [177, 208] and the survey of P. Tukia [219].

(f) Conformal geometric analysis. This is a branch of (conformal) differential
geometry concerned with the analysis of the conformally-flat Riemannian metrics
on Mn(Γ) = Ω(Γ)/Γ. This tool tends to work rather well in the case when Mn(Γ)
is compact. The most interesting examples of this technique are due to R. Schoen
and S-T. Yau [198], S. Nayatani [176], A. Chang, J. Qing, J. and P. Yang, [54],
and H. Izeki [100, 101, 102].

(g) Infinite-dimensional representation theory of the group Mob(Sn). The
only (but rather striking) example of its application is Y. Shalom’s work [204].

(h) Topological rigidity theorems of Farrell and Jones: See Section 5.
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4. A bit of homological algebra

Why does one need homological algebra in order to study higher-dimensional
Kleinian groups?

Essentially the only time one encounters group cohomology with twisted co-
efficients in the study of Kleinian subgroups of Mob(S2), is in the proof of Ahlfors’
finiteness theorem, see [136]. Another (minor) encounter appears in the proof of
the smoothness theorem for deformation spaces of Kleinian groups, Section 8.8 in
[116]. Otherwise, homological algebra is hardly ever needed. The main reason for
this, I believe, is 3-fold:

1. Solvability of the 2-dimensional Beltrami equation, which implies smooth-
ness of the deformation spaces of Kleinian groups in the most interesting situations.

2. Scott compact core theorem [201, 202] ensures that every finitely-generated
Kleinian group Γ ⊂Mob(S2) satisfies a very strong finiteness property: Not only
it is finitely-presented, it is also (canonically) isomorphic to the fundamental group
of a compact aspherical 3-manifold with boundary (Scott compact core).

3. The separation between Kleinian groups of the cohomological dimension 1,
2 and 3 comes rather easily: Free groups, “generic” Kleinian groups, and lattices.
Moreover, every Kleinian group Γ ⊂Mob(S2) which is not a lattice, splits as

Γ ∼= Γ0 ∗ Γ1 ∗ · · · ∗ Γk, (4.1)

where Γ0 is free and each Γi, i ≥ 1, is freely indecomposable, 2-dimensional group.
In the language of homological algebra, the group Γ0 has cohomological dimension
1, while the groups Γi, i ≥ 1, are two-dimensional duality groups.

All this changes rather dramatically in higher dimensions:
1. Solvability of the Beltrami equation fails, which, in particular, leads to

non-smoothness of the deformation spaces of Kleinian groups, Theorem 11.4. In
order to study the local structure of character varieties one then needs the first
and the second group cohomology with (finite-dimensional) twisted coefficients.

2. Scott compact core theorem fails for Kleinian subgroups of Mob(S3), for
instance, they do not have to be finitely-presented, see Section 10. Therefore,
it appears that one has to reconsider the assumption that Kleinian groups are
finitely-generated. It is quite likely, that in higher dimensions, in order to get good
structural results, one has to restrict to Kleinian groups of finite type, i.e., type
FP , defined below. This definition requires homological algebra.

3. One has to learn how to separate k-dimensional fromm-dimensional in the
algebraic structure of Kleinian groups. For the subgroups of Mob(S2) this separa-
tion comes in the form of the free product decomposition (4.1). It appears at the
moment that “truly” m-dimensional groups are the m-dimensional duality groups.
For instance, for Kleinian subgroups Γ of Mob(Sn) which are n-dimensional du-
ality groups, one can prove a coarse form of the Scott compact core theorem,
[124]. In particular, every such group admits the structure of an n+1-dimensional
Poincaré duality pair (Γ,Δ). The latter is a homological analogue of the funda-
mental group of a compact aspherical n + 1-manifold with boundary (where the
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boundary corresponds to the collection of subgroups Δ in Γ). See Section 5.3 for
more details.

4. The (co)homological dimension appears to be an integral part of the dis-
cussion of the critical exponent of higher-dimensional Kleinian groups, see Section
10.2 and Izeki’s papers [100, 101].

(Co)homology of groups. Some of the above discussion was rather speculative;
we now return to the firm ground of homological algebra. We refer the reader to
[29, 47] for the comprehensive treatment of (co)homologies of groups.

Throughout this section we let R be a commutative ring with a unit. The
examples that the reader should have in mind are R = Z, Z/pZ and R = R. The
group ring RΓ of a group Γ consists of finite linear combinations of the form∑

γ∈Γ

rγγ,

with rγ ∈ R equal to zero for all but finitely many γ ∈ Γ. Let V be a (left) RΓ-
module. Basic examples include V = R (with the trivial RΓ-module structure)
and V = RΓ. If R is a field, then V is nothing but a vector space over R equipped
with a linear action of the group Γ. The very useful (for the theory of Kleinian
groups) example is the following:

Let G = Mob(Sn), g be the Lie algebra of G. Then G acts on g via the
adjoint representation Ad = AdG. Therefore g becomes an RG-module. For every
abstract group Γ and a representation ρ : Γ → G we obtain the RΓ-module

V = gAd(ρ),

where the action of Γ is given by the composition Ad ◦ ρ. We will abbreviate
this module to Ad(ρ). From the theory of Kleinian groups viewpoint, the most
important example of this module is when Γ is a Kleinian subgroup of G and ρ is
the identity embedding.

A projective RΓ-module, is a module P , such that every exact sequence of
RΓ-modules

Q→ P → 0

splits. For instance, every free RΓ-module is projective.

Assume now that V be an RΓ-module. A resolution of V is an exact sequence
of RΓ-modules:

· · · → Pn → · · · → P0 → V → 0.

Every RΓ-module has a unique projective resolution up to a chain homotopy
equivalence.

Example. Let V = Z, be the trivial ZΓ-module. Let K be a cell complex which is
K(Γ, 1), i.e., K is connected, π1(K) ∼= Γ and πi(K) = 0 for i ≥ 2. Let X denote
the universal cover of K. Lift the cell complex structure from K to X . The group
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action Γ 	 X , determines a natural structure of a ZΓ-module on the cellular chain
complex C∗(X). Since the latter is acyclic, we obtain a resolution of Z with

Pi = Ci(X),

and the homomorphism P0 → Z given by the augmentation. Moreover, as the
group Γ acts freely on X , each module Pi is a free ZΓ-module:

Pi
∼= ⊕j∈CiZΓ,

where Ci is the set of i-cells in K.

A group Γ is said to be of finite type, or FP (over R), if there exists a
resolution by finitely generated projective RΓ-modules

0→ Pk → Pk−1 → · · · → P0 → R→ 0.

For example, if there exists a finite cell complexK = K(Γ, 1), then Γ has finite type
for an arbitrary ring R. Every group of finite type is finitely generated, although
it does not have to be finitely-presented, see [24].

The cohomology of Γ with coefficients in an RΓ-module V , H∗(Γ, V ), is de-
fined as the homology of chain complex

HomRΓ(P∗,M),

where P∗ is a projective resolution of the trivial RΓ-module R. The homology of
Γ with coefficients in V , H∗(Γ, V ), is the homology of the chain complex

P∗ ⊗RΓ V.

An example to keep in mind is the following. Suppose that K is a manifold,
or, more generally, a cell complex, which is an Eilenberg-MacLane space K(Γ, 1).
Then one can use the chain complex C∗(X,R) as the resolution P∗. Therefore, for
the trivial Γ-module R we have

H∗(Γ, R) ∼= H∗(K,R), H∗(Γ, R) ∼= H∗(K,R).

For the more general modules V , in order to compute H∗(Γ, V ) and H∗(Γ, V ), one
uses the (co)homology of K with coefficients in an appropriate bundle over K.

Similarly, given a collection Π of subgroups of Γ, one defines the relative
(co)homology groups H∗(Γ,Π;V ) and H∗(Γ,Π;V ). Whenever discussing (co)ho-
mology with R = Z, trivial ZΓ-module, we will use the notation H∗(Γ), H∗(Γ).

The (co)homology of groups behaves in a manner similar to the more familiar
(co)homology of cell complexes. For instance, if Γ admits an n-dimensionalK(Γ, 1),
then Hi(Γ, V ) = Hi(Γ, V ) = 0 for all i > n and all RΓ-modules.

(Co)homological dimension. For a group Γ, let cdR(Γ) and hdR(Γ) denote the
cohomological and homological dimensions of Γ (over R):

cdR(Γ) = sup{n : ∃ an RΓ-module V so that Hn(Γ, V ) �= 0},
hdR(Γ) = sup{n : ∃ an RΓ-module V so that Hn(Γ, V ) �= 0}.

We will omit the subscript Z whenever R = Z.
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Using the relative (co)homology one defines the relative (co)homological
dimension of Γ with respect to a collection Π of its subgroups, cdR(Γ,Π) and
hdR(Γ,Π).

We will use this definition in the case when Γ is a Kleinian group as follows.
Let P denote the set of all maximal (elementary) subgroups of Γ which contain
Z2. For every Γ-conjugacy class [Πi] in P , choose a representative Πi ⊂ Γ. Then
Π will denote the set of all these representatives Πi. By abusing the notation, we
will refer to the set Π as the set of cusps of virtual rank ≥ 2 in Γ.

If Γ is of type FP , then

hdR(Γ) = cdR(Γ), ∀ rings R,

see for instance [29]. In general,

hdR(Γ) ≤ cdR(Γ) ≤ hdR(Γ) + 1.

Example. Let Γ be a free group of finite rank k > 0. Then hdR(Γ) = cdR(Γ) for
all rings R. Indeed, Γ admits a finite K(Γ, 1) which is the bouquet B of k circles.
Since B is 1-dimensional,

hdR(Γ) = cdR(Γ) ≤ 1.

On the other hand, by taking the trivial RΓ-module V = R we obtain

H1(B,R) = Rk,

the direct sum of k copies of R, and hence is nontrivial.

It turns out that the converse to this example is also true, which is an appli-
cation of the famous theorem of J. Stallings on the ends of groups:

Theorem 4.1. (J. Stallings [205].) If Γ is a finitely generated group with cd(Γ) = 1,
then Γ is free.

This result was generalized by M. Dunwoody:

Theorem 4.2. (M. Dunwoody [66].) Let R be an commutative ring with a unit.
1. If Γ is a finitely generated torsion-free group with cdR(Γ) = 1, then Γ is free.
2. If Γ is finitely-presented and cdR(Γ) = 1 then Γ is a free product of finite

and cyclic groups with amalgamation over finite subgroups. In particular, Γ
is virtually free.

Duality groups. A group Γ is said to be an m-dimensional duality group, if Γ has
type FP and

Hi(Γ, RΓ) �= 0, for i = m and Hi(Γ, RΓ) = 0, for i �= m.
For instance, a finitely-presented group Γ is a 2-dimensional duality group (over
Z) if and only if cd(Γ) = 2 and Γ does not split as a nontrivial free product.

Poincaré duality groups. Poincaré duality groups are homological generalizations
of the fundamental groups of closed aspherical manifolds.
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Definition 4.3. A group Γ is an (oriented) m-dimensional Poincaré duality group
over R (a PD(m)-group for short) if Γ is of type FP and

Hi(Γ, RΓ) ∼= R, for i = m and Hi(Γ, RΓ) = 0, for i �= m.

The basic examples are the fundamental groups of closed oriented aspherical n-
manifolds.

This definition generalizes to (possibly non-oriented) PD(n)-groups, where
we have to twist the module V = RΓ by an appropriate orientation character
χ : RΓ → R. The basic examples are the fundamental groups of closed aspherical n-
manifoldsM . The character χ in this case corresponds to the orientation character
π1(M)→ R.

We will need (in Section 5.3) the following relative version of the PD(n)
groups.

Definition 4.4. Let Γ be an (n− 1)-dimensional group of type FP , and let

Δ1, . . . ,Δk ⊂ Γ

be PD(n−1) subgroups of Γ. Set Δ := {Δ1, . . . ,Δk}. Then, the group pair (Γ,Δ)
is an n-dimensional Poincaré duality pair, or a PD(n) pair, if the double of Γ over
the Δi’s is a PD(n) group.

We recall that the double of Γ over the Δi’s is the fundamental group of the
graph of groups G, where G has two vertices labelled by Γ, k edges with the i-th
edge labelled by Δi, and edge monomorphisms are the inclusions Δi → Γ.

An alternate homological definition of PD(n) pairs is the following: A group
pair (Γ,Δ) is a PD(n) pair if Γ and each Δi has type FP , and

H∗(Γ,Δ; ZΓ) � H∗
c (Rn).

If (Γ,Δ) is a PD(n) pair, where Γ and each Δi admit a finite Eilenberg–MacLane
space X and Yi respectively, then the inclusions Δi → Γ induce a map

&iYi → X
whose mapping cylinder C gives a Poincaré pair (C,&iYi). The latter is a pair
which satisfies Poincaré duality for manifolds with boundary with local coefficients,
where &iYi serves as the boundary of C. The most important example of a PD(n)
pair is the following. Let M be a compact manifold which is K(Γ, 1). We suppose
that the boundary of M is the disjoint union

∂M = N1 ∪ · · · ∪Nk,

of π1-injective components, each of which is a K(Δi, 1), i = 1, . . . , k. Then the
pair

(Γ, {Δ1, . . . ,Δk})
is a PD(n) pair. See [30] for the details.

The following is one of the major problems in higher-dimensional topology:
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Conjecture 4.5. (C.T.C. Wall, see a very detailed discussion in [131].) Suppose
that Γ is an finitely-presented n-dimensional Poincaré duality group over Z. Then
there exits a closed n-dimensional manifold M which is K(Γ, 1).

This problem is open for all n ≥ 3. The case n = 1 is an easy corollary
of the Stallings-Dunwoody theorem. In the case n = 2, the positive solution is
due to Eckmann, Linnel and Muller, see [67, 68]. This result was extended to the
case of fields R by B. Bowditch [41] and for general rings R by M. Kapovich and
B. Kleiner [123] and B. Kleiner [133]. Cannon’s conjecture below is a special case
(after Perelman’s work) of Wall’s problem for n = 3:

Conjecture 4.6 (J. Cannon). Suppose that Γ is a Gromov-hyperbolic group whose
ideal boundary is homeomorphic to S2. Then Γ admits a cocompact properly dis-
continuous isometric action on H3.

5. Topological rigidity and coarse compact core theorem

First, few historical remarks. After the work of B. Maskit [156] and A. Marden
[152], it became clear that the major developments in the 3-dimensional topol-
ogy occurring at that time (in the 1960s and the early 1970s) were of extreme
importance to the theory of Kleinian groups. The key topological results were:

1. Topological rigidity theorems of Stallings and Waldhausen. Under appro-
priate assumptions they proved that homotopy equivalence of Haken manifolds
implies homeomorphism, see [95] for the detailed discussion. In the context of
Kleinian groups, it meant that the (properly understood) algebraic structure of a
geometrically finite Kleinian group Γ ⊂ Mob(S2) determines the topology of the
associated hyperbolic 3-manifold H3/Γ.

2. Dehn Lemma, Loop Theorem and their consequences. The most impor-
tant (for Kleinian groups) of these consequences was the Scott compact core theo-
rem [201, 202]. This theorem meant for (possibly geometrically infinite) Kleinian
groups, that the hyperbolic 3-manifold M = H3/Γ admits a deformation retrac-
tion to an (essentially canonical) compact submanifoldMc ⊂M (the compact core
of M).

Remark 5.1. Of course, after W. Thurston entered the area of Kleinian groups, the
theory experienced yet another radical change and became the theory of hyperbolic
3-manifolds. However, this is another story.

We now turn to the higher dimensions.

5.1. Results of Farrell and Jones

The following conjecture is a natural generalization of the topological rigidity of
3-manifolds:

Conjecture 5.2 (A. Borel). Let M,N be closed aspherical n-manifolds and f :
M → N is a homotopy-equivalence. Then f is homotopic to a homeomorphism.
(There is also a relative version of this conjecture.)
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We refer the reader to [131] for a detailed discussion of Borel’s Conjecture
and its relation to Wall’s Conjecture 4.5. Although, in full generality, Conjecture
5.2 is expected to be false, in the last 20 years there has been a remarkable progress
in proving this conjecture in the context to Kleinian groups. Most of these results
appear in the works of T. Farrell and L. Jones. We collect some of them below.

Theorem 5.3. (T. Farrell and L. Jones [71].) Suppose that Γ ⊂ Mob(Sn) is a
convex-cocompact Kleinian group, n ≥ 4, N is a compact aspherical manifold
(possibly with nonempty boundary ∂N) and f : (M̄n+1(Γ),Mn(Γ)) → (N, ∂N) is
a homotopy-equivalence which is a homeomorphism on the boundary. Then f is
homotopic to a homeomorphism (rel. Mn(Γ)).

Theorem 5.4. (T. Farrell and L. Jones, [72, Theorem 0.1]) Suppose that X is a
nonpositively curved closed Riemannian manifold, Y is a closed aspherical man-
ifold of dimension ≥ 5 and f : X → Y is a homotopy-equivalence. Then f is
homotopic to a homeomorphism.

Theorem 5.5. (T. Farrell and L. Jones, [73, Proposition 0.10]) For each Kleinian
group Γ the Whitehead group Wh(Γ) is trivial.

By combining Theorem 5.5 with the s-cobordism theorem (see, e.g., [137,
186, 196]), one gets:

Corollary 5.6. Suppose that Wn+1 is a topological (resp. PL, smooth) h-cobordism
so that n ≥ 4 and π1(Wn+1) is isomorphic to a Kleinian group. Then W is trivial
in the topological (resp. PL, smooth) category.

5.2. Limit sets and homological algebra

Let Γ ⊂ Mob(Sn) be a convex-cocompact subgroup with the limit set Λ and R
be a ring. (One can also deal with geometrically finite groups by using relative
cohomology, see [121].) The following theorem establishes a link between topology
of the limit sets and the cohomology of Γ:

Theorem 5.7. (M. Bestina, G. Mess [28].)

H∗(Γ, RΓ) ∼= H∗
c (Hull(Λ), R) ∼= H̃∗−1(Λ, R).

Here we are using the Chech cohomology of the limit set.

In particular, Γ is an m + 1-dimensional duality group over Z (see Section 4) iff
H̃∗−1(Λ) vanishes except in dimension m. In this case Λ, homologically, looks like
an infinite bouquet of m-spheres. Moreover

cd(Γ) = dim(Λ),

which gives a geometric interpretation of the cohomological dimension of Γ.
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5.3. Coarse compact core

In this section we state the best (presently) available higher-dimensional gener-
alization of the Scott compact core theorem. The main drawback of this result
is that it applies only to Kleinian groups Γ ⊂ Mob(Sn) which are n-dimensional
duality groups.

We first need some definitions. We recall that every end e of a manifold M
admits a basic system of neighborhoods, which is a decreasing sequence (Ej) of
nested connected subsets of M with compact frontier, so that⋂

j∈N

Ej = ∅.

Given such (Ej), we obtain the inverse system of the fundamental groups (π1(Ej)).
Consider the image Γj of π1(Ej) in π1(M) = Γ. Then

Γ1 ⊃ Γ2 ⊃ · · ·
The fundamental group of e (or, rather, its image in Γ) is defined as

π1(e) =
⋂
j∈N

Γj .

An end e is called almost stable if every sequence (Γj) as above is eventually
constant, in which case

π1(e) = Γj

for all sufficiently large j. (This notion is weaker than the notion of semistabe
ends, which the reader might be familiar with.) For instance, if M is an open
handlebody of finite genus, then M has unique end e, which is almost stable,
whose fundamental group π1(e) is the free group π1(M). On the other hand, if S
is a surface of infinite genus with a unique end e, then e is not almost stable. If
M is the complement to a Cantor set in S2, then no end of M is almost stable.

The following is the Coarse Compact Core Theorem proved in [124] in the
general context of coarse Poincaré duality spaces.

Theorem 5.8. (M. Kapovich, B. Kleiner [124].) Let Γ ⊂ Mob(Sn) be a Kleinian
subgroup which is an n-dimensional duality group. Then the manifoldM = Hn+1/Γ
contains a compact submanifold Mc (the coarse compact core) satisfying the fol-
lowing:

1. Γ contains a finite collection Δ of PD(n− 1) subgroups Δ1, . . . ,Δk.
2. The pair (Γ,Δ) is an n-dimensional Poincaré duality pair.
3. The group π1(Mc) maps onto π1(M) = Γ.
4. The manifold M has exactly k ends e1, . . . , ek, each of which is almost stable;

the components E1, . . . , Ek of M \Mc are basic neighborhoods of e1, . . . , ek.
5. For every i = 1, . . . , k, π1(ei) = Δi is the image of π1(Ei) in Γ.

See Figure 1. In the case when n = 3, this theorem, of course, is a special
case of the Scott compact core theorem [201, 202]. More precisely, it covers the case
when Scott compact core has incompressible boundary, for otherwise Γ splits as a
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M
Mc

E

Δ = π1(e)

Figure 1. A coarse compact core.

free product and is not a 2-dimensional duality group. If M is a tame manifold,
e.g., Γ is geometrically finite, this theorem is also obvious. At the moment, all
known examples of Kleinian groups in Mob(Sn), n ≥ 3, which are n-dimensional
duality groups, are geometrically finite.

Problem 5.9. Generalize Theorem 5.8 to groups of type FP which are not n-dimen-
sional duality groups. (Of course, the conclusion of Part 1 of Theorem 5.8 would
have to be suitably modified.)

6. Notions of equivalence for Kleinian groups

In this section we discuss various equivalence relations for Kleinian subgroups
Γ1,Γ2 of Mob(Sn). We start with the weakest one and end with the strongest.
(0) Algebraic: Γ1 is isomorphic to Γ2 as an abstract group.
(1) Dynamical: there exists a homeomorphism f : Λ(Γ1) → Λ(Γ2) such that
fΓ1f

−1 = Γ2; i.e., the groups Γ1 and Γ2 have the same topological dynamics
on their limit sets. Thus, Γ1 is geometrically finite iff Γ2 is, since geometric
finiteness can be stated in terms of topological dynamics of a group on its
limit set (Theorem 2.5).

(2) Topological conjugation: there exists a homeomorphism f : Sn → Sn such
that fΓ1f

−1 = Γ2. (One can relax this by assuming that f is defined only
on the domain of discontinuity of Γ1.)

(3) Quasiconformal conjugation: in (2) one can find a quasiconformal homeomor-
phism. In the case n = 1 one should replace quasiconformal with quasisym-
metric.
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(4) Topological isotopy: in (2) there exists a continuous family of homeomor-
phisms ht : Sn → Sn such that: h0 = id, ∀t, htΓ1h

−1
t ⊂ Mob(Sn) and

h1Γ1h
−1
1 = Γ2.

(5) Quasiconformal isotopy: in (4) all homeomorphisms are quasiconformal (qua-
sisymmetric).

(6) Möbius conjugation: there is f ∈Mob(Sn) such that fΓ1f
−1 = Γ2.

We refer the reader to [94, 99] for the definitions of quasisymmetric and quasicon-
formal homeomorphisms.

Below is a collection of facts about the relation between different notions of
equivalence of Kleinian groups.

Suppose that both groups Γj are geometrically finite and ϕ : Γ1 → Γ2 is
an isomorphism which preserves the type of elements, i.e., for γ ∈ Γ1, ϕ(γ) is
hyperbolic if and only if γ is hyperbolic. It is clear that the above assumptions are
necessary for getting the equivalence (1). The following theorem shows that these
assumptions are also sufficient.

Theorem 6.1. (P. Tukia [217].) Under the above assumptions, the isomorphism ϕ
can be realized by the equivalence (1), i.e., there exists a (quasisymmetric) home-
omorphism f of the limit sets, so that fγf−1 = ϕ(γ) for all γ ∈ Γ1. Moreover,
if f : Ω(Γ1) → Ω(Γ2) is a ϕ-equivariant quasiconformal (quasisymmetric) homeo-
morphism, then f admits a ϕ-equivariant quasiconformal (quasisymmetric) exten-
sion to the entire sphere.

Question 6.2. (Quasiconformal vs. topological.) Suppose that two Kleinian groups
Γ1,Γ2 ⊂ Mob(Sn) are topologically conjugate by a homeomorphism f (defined
either on Ω(Γ1), or on Λ(Γ1), or on the entire Sn), which induces a type-preserving
isomorphism ϕ : Γ1 → Γ2. Does it imply that ϕ is induced by a quasiconformal
(quasisymmetric) homeomorphism with the same domain as f?

Note that, for every n, the above question actually consists of 3 subques-
tions, depending on the domain of f . Here is what is currently known about these
questions:

1. If n = 1 then all three questions have the affirmative answer and the proof
is rather elementary. It also follows for instance from Theorem 6.1.

2. If n = 2 then the answer to all three questions is again positive, but
the proof is highly nontrivial. The easiest case is when the homeomorphism f is
defined on Ω(Γ1). Then we get the induced homeomorphism f̄ of the quotient sur-
faces S1 → S2, where Si = Ω(Γi)/Γi. The existence of a diffeomorphism S1 → S2

homotopic to f̄ follows from the uniqueness of the smooth structure on surfaces.
If S1 is compact, then this diffeomorphism lifts to an equivariant quasiconformal
homeomorphism Ω(Γ1)→ Ω(Γ2). Two noncompact surfaces can be diffeomorphic
but not quasiconformally homeomorphic: For instance, the open disk is not quasi-
conformally equivalent to the complex plane. However, since ϕ is type-preserving,
Ahlfors Finiteness Theorem [3] in conjunction with a lemma of Bers and Maskit
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(see, e.g., [116, Corollary 4.85]), implies the existence of a quasiconformal homeo-
morphism S1 → S2.

If f is defined on the limit set and Γ1,Γ2 are geometrically finite, then the
positive answer is a special case of Tukia’s theorem 6.1. However, if the groups
Γi are not geometrically finite, the proof becomes very difficult and is a corollary
of the solution of the Ending Lamination Conjecture in the work of J. Brock,
R. Canary and Y. Minsky in [46, 166, 167], and M. Rees [193].

Combination of the Ahlfors Finiteness Theorem with the Ending Lamination
Conjecture also gives the positive answer in the case when f is defined on S2.

3. If f is defined on Ω(Γ1), then the answer is positive provided that n �= 4
and Mn(Γ1) is compact. This is a consequence of the theorem of D.Sullivan [207],
who proved uniqueness of the quasiconformal structure on compact n-manifolds
(n �= 4): Apply Sullivan’s theorem to the manifolds Mn(Γi), i = 1, 2, and lift the
quasiconformal homeomorphism to the domain of discontinuity.

Remark 6.3. An alternative proof of Sullivan’s theorem and its generalization was
given by J. Luukkainen in [147], see also [220].

If n = 4, f is defined on Ω(Γ1), andM4(Γ1) is compact, then the situation is
unclear but one probably should expect the negative answer since the uniqueness
of quasiconformal structures in dimension 4 was disproved by S. Donaldson and
D. Sullivan [64].

Question 6.4. Is there a pair of Kleinian groups Γ1,Γ2 ⊂ Mob(Sn) so that the
manifolds Mn(Γ1),Mn(Γ2) are homeomorphic but not diffeomorphic?

Note that in view of the examples in [70], the positive answer to the above
question would not be too surprising.

If f is defined on Ω(Γ1) and we do not assume compactness of Mn(Γ1), then
the answer to Question 6.2 is negative in a variety of ways.

(a) For instance, take singly degenerate groups Γ1,Γ2 ⊂Mob(S2), which are
both isomorphic to the fundamental group of a closed oriented surface S, contain
no parabolic elements and have distinct ending laminations. Then Ω(Γi) ⊂ S2 are
open disksDi for both i. There exists an equivariant homeomorphism h : D1 → D2,
which induces an isomorphism ϕ : Γ1 → Γ2. However, since the ending laminations
are different, there is no equivariant homeomorphism Λ(Γ1) → Λ(Γ2).

Now extend both groups to the 3-sphere so that Γi ⊂Mob(S3), i = 1, 2. Then
the 3-dimensional domains of discontinuity Bi of both groups are diffeomorphic to
the open 3-ball, i = 1, 2; the quotient manifolds are

M3(Γi) = Bi/Γi
∼= S × R, i = 1, 2.

Therefore there exists an equivariant diffeomorphism f : B1 → B2. We claim
that this map cannot be quasiconformal. Indeed, otherwise it would extend to an
equivariant homeomorphism of the limit sets (which are planar subsets of R3).
This is a contradiction.
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(b) One can construct geometrically finite examples as well. The reason is
that even though all (orientation-preserving) parabolic elements of Mob(S2) are
quasiconformally conjugate, the analogous assertion is false for the parabolic ele-
ments of Mob(S3). Suppose that τ is the translation in R3 by a nonzero vector v.
Let Rθi , i = 1, 2, denote the rotations around v by the angles θ1, θ2 ∈ [0, π]. Then
the skew motions

γi = Rθi ◦ τi, i = 1, 2
are parabolic elements of Mob(S3). One can show that

Proposition 6.5. The Möbius transformations γ1 and γ2 are quasiconformally con-
jugate in S3 if and only if θ1 = θ2.

The proof is based on a calculation of the extremal length of a certain family
of curves in R3 and we will not present it here.

Note that the cyclic groups Γi = 〈γi〉 are geometrically finite, the isomor-
phism ϕ : Γ1 → Γ2 sending γ1 to γ2 is type-preserving. The quotient manifolds
M3(Γi) are both diffeomorphic to R2 × S1, therefore there exists a ϕ-equivariant
diffeomorphism f : Ω(Γ1)→ Ω(Γ2) which, of course, extends to a homeomorphism
S3 → S3. However, according to Proposition 6.5, this homeomorphism cannot be
made quasiconformal.

These examples do not resolve the following:

Question 6.6. Suppose that Γ1,Γ2 ⊂ Mob(Sn), n ≥ 3, are Kleinian groups and
f : Λ(Γ1) → Λ(Γ2) is a homeomorphism which induces an isomorphism Γ1 → Γ2.
Does it follow that f is quasisymmetric?

If n ≤ 2, then (in the list of equivalences between Kleinian groups) we have
the implication

(3)⇒ (5).
Indeed, consider a quasiconformal homeomorphism f conjugating Kleinian groups
Γ1 and Γ2 and let μ denote the Beltrami differential of f . Then for t ∈ [0, 1] the
solutions of the Beltrami equation

∂ft
∂z̄

= tμ
∂f

∂z

also conjugate Γ1 to Kleinian subgroups of Mob(S2), see, e.g., [20]. This gives the
required quasiconformal isotopy. Since (2) is equivalent to (3) for n ≤ 2, it follows
that for n ≤ 2 we have

(2) ⇐⇒ (3) ⇐⇒ (4) ⇐⇒ (5)

This argument however fails completely in higher dimensions, since the Bel-
trami equation in Rn for n ≥ 3 is overdetermined.

Question 6.7. In the list of equivalences between Kleinian groups:
(a) Does (2) ⇒ (4) ?
(b) Does (3) ⇒ (5) ?
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One can show (using quasiconformal stability, see Section 11.2, cf. [154, Theo-
rem 7.2]) that for convex-cocompact groups parts (a) and (b) of the above question
are equivalent. In Theorem 11.11 we give examples of convex-cocompact Kleinian
groups in Mob(Sn), n ≥ 5, for which the answer to Question 6.7 is negative. The
situation in dimensions 3 and 4 at the moment is unclear, but we expect in these
dimensions the answer to be negative as well.

The implications (i)⇒(6) for i≤ 5 are, of course, extremely rare. The most
celebrated example is provided by the Mostow rigidity theorem:

Theorem 6.8. Suppose that Γ1,Γ2 ⊂Mob(Sn) are lattices and n ≥ 2. Then (0)⇒
(6) for these groups.

See [175] for G. Mostow’s original proof or [120] for a more elementary ar-
gument along the same lines which uses only the analytical properties of quasi-
conformal mappings. A completely different argument due to M. Gromov can be
found in [18]. Yet another proof is an application of the barycentric maps [21].
Note that, presently, there are no proofs using equivariant harmonic maps.

Mostow’s ergodic arguments were greatly generalized by D. Sullivan in [208],
see also [5]:

Theorem 6.9. (D. Sullivan [208].) Suppose that Γ1,Γ2 ⊂ Mob(Sn) are Kleinian
groups whose limit set is the entire Sn and so that the action of Γ1 on Sn is
recurrent. Then (3) ⇒ (6) for these groups.

The action of Γ ⊂Mob(Sn) on Sn is called recurrent if for every measurable
subset E ⊂ Sn of positive Lebesgue measure, the measure of the intersection
γ(E) ∩E is positive for some γ ∈ Γ \ {1}.

7. Groups with zero-dimensional limit sets

In what follows, we let dim denote the covering dimension of topological spaces,
see for instance [96]. Suppose that Γ ⊂ Mob(Sn) is a non-elementary Kleinian
subgroup of Mob(Sn) and dim(Λ(Γ)) = 0; hence Λ(Γ) is totally disconnected (its
only connected components are points). Recall that a discontinuum is a nonempty
perfect totally disconnected compact topological space, see, e.g., [8]. Hence Λ(Γ)
is a discontinuum. It follows (see, e.g., [8]) that Λ(Γ) is homeomorphic to the
standard Cantor set K ⊂ [0, 1]. Below is a couple of examples of Kleinian groups
whose limit sets are totally disconnected.

Example. (A Schottky group, see, e.g., [138, 157].) Let n, k ≥ 1. Suppose that we
are given a collection of disjoint closed topological n-balls

B+
1 , . . . , B

+
k , B

−
1 , . . . , B

−
k ⊂ Sn

and Möbius transformations γj ∈ Mob(Sn) so that γj(int(B+
j )) = ext(B−

j ). We
assume that for each pair B+

j , B
−
j there exists a diffeomorphism of Sn which carries
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these balls to the round balls.1 Then

Φ := Sn −
k⋃

j=1

(B+
j ∪ int(B−

j ))

is a fundamental domain for the group Γ generated by γ1, . . . , γk. The group Γ is
called a Schottky group. It is isomorphic to a free group of rank k, and the limit
set of Γ is a discontinuum provided that k ≥ 2. Every nontrivial element of Γ is
hyperbolic.

B+
2

B−
2

B+
1

B−
1

γ2

γ1

Figure 2. A Schottky group.

Before giving the next example we need a definition. Suppose that Γ ⊂
Mob(Sn) is a nontrivial elementary subgroup. Then, after conjugating Γ if neces-
sary, we can assume that either:

1. Γ fixes 0,∞ ∈ Rn = Sn and therefore is generated by γ(x) = Ax, where A is
the product of a scalar c > 1 by an orthogonal matrix.

2. Or Γ acts on Rn ⊂ Sn by Euclidean isometries.

1By the smooth Schoenflies theorem, for n �= 4 it suffices to assume that the balls B+
j have

smooth boundary.
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In the first case we take the fundamental domain Φ for the action of Γ on Sn to
be an annulus bounded by two disjoint round spheres. In the second case we take
a Dirichlet fundamental domain Φ ⊂ Rn for Γ.

We refer to the fundamental domains Φ as standard fundamental domains. A
fundamental domain for Γ is topologically standard if it is the image of a standard
fundamental domain of Γ under a diffeomorphism of Ω(Γ) commuting with Γ.
For instance, the fundamental domain for a rank 1 Schottky group is topologically
standard. Therefore, the fundamental domain Φ for the Schottky group satisfies the
property that it is the intersection of topologically standard fundamental domains

Φj = Sn − (B+
j ∪ int(B−

j ))

for the groups Γj = 〈γj〉.
Given a domain Φ ⊂ Sn, we let Φc ⊂ Sn denote the closure of the complement

of Φ. We are now ready for the second example which is a generalization of the
first.

Example. (Schottky-type groups, see, e.g., [138, 157].) Start with a collection of
elementary Kleinian groups Γi ⊂Mob(Sn), i = 1, . . . , k. Let Φi ⊂ Sn be topolog-
ically standard fundamental domains for these groups. Assume that

Φc
i ∩ Φc

j = ∅
for all i �= j. Let Γ ⊂Mob(Sn) be the group generated by Γ1, . . . ,Γk. Then:

1. As an abstract group, Γ is isomorphic to the free product Γ1 ∗ · · · ∗ Γk.
2. Φ := Φ1 ∩ · · · ∩ Φk is a fundamental domain for the group Γ.
3. The limit set of Γ is totally disconnected.

The groups Γ obtained in this fashion are called Schottky-type groups.

A Schottky-type group is called classical if it admits a fundamental domain
Φ := Φ1 ∩ . . .∩Φk, so that each Φi is geometrically standard. It is not difficult to
see that Schottky-type groups are geometrically finite. For instance, consider the
case of a Schottky group Γ of rank k, for n ≥ 2. We have the map

j : Z = Hn(Mn(Γ)) → Hn(M̄n+1(Γ))

induced by the inclusion of manifolds. Since the manifold M̄ = M̄n+1(Γ) isK(Γ, 1),
it follows that

Hn(M̄) = Hn(Γ) = Hn(B) = 0,
where B is the bouquet of k circles. Therefore j = 0. Hence M̄ is compact and
hence Γ is convex-cocompact. A similar argument works for Schottky-type groups,
provided that one uses cohomology relative to the cusps.

The quotient manifolds of the Schottky-type groups Γ have a rather simple
topology, as it follows from the explicit description of their fundamental domains.
Namely, let Mi = Mn(Γi), i = 1, . . . , k. Then we get the smooth connected sum
decomposition

Mn(Γ) =M1# · · ·#Mk.

By combining this with Theorem 6.1 we obtain
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γ1

α2

β2

Φc
1

Φc
1

Φc
2

Figure 3. A classical Schottky-type group isomorphic to Z ∗ Z2

with Z = 〈γ1〉, Z2 = 〈α2, β2〉.

Proposition 7.1. 1. Suppose that Γ,Γ′ are Schottky groups of the same rank.
Then there exists a quasiconformal homeomorphism f : Sn → Sn which con-
jugates Γ to Γ′, i.e., fΓf−1 = Γ′.

2. Suppose that Γ,Γ′ are Schottky-type groups and ϕ : Γ → Γ′ is a type-
preserving isomorphism, so that for every free factor Γi in Γ, the restriction
ϕ : Γi → Γ′

i ⊂ Γ′ is induced by a quasiconformal homeomorphism of Sn. Then
there exists a quasiconformal homeomorphism f : Sn → Sn which induces the
isomorphism ϕ.

Question 7.2. Let n ≥ 3. Is there a quasiconformal isotopy between Γ and Γ′ in
the above theorem (either part 1 or part 2)?

In the case when Γ and Γ′ are both classical, the positive answer follows
rather easily. In the non-classical case the above question is open even if n = 3
and Γ is a Schottky group.

Schottky subgroups of Mob(S2) can be characterized as follows:

Theorem 7.3. (B. Maskit [155].) A Kleinian subgroup Γ ⊂Mob(S2) is a Schottky
group if and only if Γ is free, has nonempty domain of discontinuity in S2 and
consists only of hyperbolic elements.
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This result was generalized by N. Gusevskii and N. Zindinova [92]:

Theorem 7.4. Let Γ ⊂ Mob(S2) be a Kleinian subgroup, which has nonempty
domain of discontinuity in S2 and is isomorphic to a Schottky-type group Γ′ via a
type-preserving isomorphism Γ → Γ′. Then Γ is a Schottky-type group.

Both theorems are easy under the assumption that Γ is geometrically finite,
the key point here is that (in dimension 2) one can prove geometric finiteness
under the above mild assumptions.

If Γ is a Kleinian subgroup of Mob(S3), then the above results are not longer
true, moreover, Γ can be geometrically infinite. For instance, take a free finitely
generated purely hyperbolic discrete subgroup of PSL(2,C), whose limit set is the
2-sphere (the existence of such groups was first established by V. Chuckrow [56]).
The Möbius extension of this group to S3 has nonempty domain of discontinuity,
but is not geometrically finite.

Tameness of limit sets. Below we address the following:

Question 7.5. Suppose that Γ ⊂ Mob(Sn) is a Kleinian group, whose limit set is
a discontinuum. What can be said about the embedding Λ(Γ) ⊂ Sn?

A discontinuum D ⊂ Sn is called tame if there exists a homeomorphism
f : Sn → Sn which carries D to the Cantor set K ⊂ [0, 1] and is called wild
otherwise. It is a classical (and easy) result that every discontinuum in S2 is tame,
see, e.g., [31]. The (historically) first example of a wild discontinuum was the
Antoine’s necklace A ⊂ S3:

π1(S3 \A) �= {1},
which explains why A is wild, see [31]. D. DeGryse and R. Osborne [61] constructed
for every n ≥ 3 examples of wild discontinua Dn ⊂ Sn, such that

π1(Sn \Dn) = {1}.
See also [77] for infinitely many inequivalent 3-dimensional examples of this type.

The algebraic structure of Kleinian groups with totally disconnected limit
sets is given by

Theorem 7.6. (R. Kulkarni [141].) Suppose that a Kleinian group Γ ⊂ Mob(Sn)
has a totally disconnected limit set. Then Γ is isomorphic to a Schottky-type group.

One can even describe (to some extent) fundamental domains of such groups:

Theorem 7.7. (N. Gusevskii [90].) Suppose that the limit set of Γ ⊂ Mob(Sn) is
totally disconnected. Then Γ admits a fundamental domain Φ of the same shape
as in Example 7, only the fundamental domains Φi for Γi’s are not required to be
topologically standard.

The proof of Theorem 7.7 is based on the following
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Theorem 7.8. (M.Brin [45].) Let M̃ be a smooth oriented n-manifold of dimension
> 2, so that H1(M̃) = 0. Let Γ 	 M̃ is a smooth properly discontinuous free
action.

Then, for every smooth oriented compact hypersurface Σ in M̃ and an open
neighborhood U of Γ · Σ, there exists a smooth compact connected oriented hyper-
surface Σ∗ ⊂ U such that for every γ ∈ Γ either γΣ∗ ∩Σ∗ = ∅ or γΣ∗ = Σ∗.

This theorem allows one to split (inductively) the Kleinian group Γ as a
free product in a “geometric fashion”: Start with a compact hypersurface in Ω(Γ)
which separates components of Λ(Γ). Find Σ∗ as in Brin’s theorem which still
separates. Then cut open the manifold Mn(Γ) along the projection of Σ∗. This
decomposition yields a free product decomposition Γ = Γ′ ∗ Γ′′ so that Γ is a
Klein combination of the groups Γ′,Γ′′. Continue inductively. Finite generation of
Γ implies that the decomposition process will terminate and the terminal groups
must be elementary. Note that if all Σ∗ were spheres, then this decomposition
would be of Schottky-type.

Corollary 7.9. Every Kleinian group with a totally disconnected limit set is geo-
metrically finite.

Proof. Repeat the arguments which we used to establish geometric finiteness of
Schottky groups. �
Problem 7.10. Suppose that Γ ⊂ Mob(Sn) is such that Λ(Γ) is a tame discontin-
uum. Does is follow that Γ is a Schottky-type group?

If n = 2 then the affirmative answer to this question follows for instance from
Maskit’s theorem. If n = 3 then the answer is again positive; moreover,

Proposition 7.11. Suppose that Γ ⊂ Mob(S3) is such that Λ(Γ) is totally discon-
nected and π1(Ω(Γ)) = 1. Then Γ is a Schottky-type group

Proof. Under the above assumptions, π2(Ω(Γ)) �= {0}; hence, by the Sphere The-
orem (see, e.g., [95]), we can find a smooth hypersurface Σ∗ as in Brin’s theorem,
so that Σ∗ is diffeomorphic to S2. Therefore, as we saw above, it follows that Γ is
a Schottky-type group. �

This argument however fails for n ≥ 4, where Problem 7.10 is still open. On
the other hand, there are Kleinian subgroups of Mob(S3) with wild discontinua
as limit sets. The first such example was given by M. Bestvina and D. Cooper:

Theorem 7.12. (M. Bestvina, D. Cooper [25].) There exists a Kleinian group Γ ⊂
Mob(S3) which contains parabolic elements, so that Λ(Γ) is a wild discontinuum.

The proof that π1(Ω(Γ)) �= 1 presented in [25] was incomplete; however the
gap was filled several years later by S. Matsumoto:

Theorem 7.13. (S.Matsumoto [158, 159], see also [91].) There are Kleinian groups
Γ in Mob(S3) without parabolic elements whose limit sets are wild discontinua.
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8. Groups with one-dimensional limit sets

The simplest examples of 1-dimensional limit sets of Kleinian groups are topo-
logical circles. For instance, the limit set of a lattice Γ ⊂ Isom(H2) is the round
circle. Of course, even if the limit set of Γ ⊂ Mob(Sn) is a topological circle, its
embedding in Sn can be complicated. We will discuss this issue later on. For now,
we are only interested in the topology of the limit set itself.

Given convex-cocompact Kleinian groups Γ1,Γ2 ⊂ Mob(Sn) with 1-dimen-
sional limit sets, one can use Klein–Maskit Combination theorems in order to get
convex-cocompact Kleinian groups Γ ⊂Mob(Sn) isomorphic to

Γ1 ∗Δ Γ2,

where Δ is either trivial or infinite cyclic. The limit sets of the resulting groups
are again 1-dimensional. For instance, if Λ(Γi) is a topological circle for i = 1, 2
then the limit set of Γ = Γ1 ∗ Γ2 will be disconnected: The connected components
of Λ(Γ) are topological circles and points. Similarly, if Δ = Z, then the limit set
of Γ = Γ1 ∗Δ Γ2 will have cut pairs: The complement to the 2-point set Λ(Δ) in
Λ(Γ) is disconnected.

Λ(Γ1)

Λ(Γ2)

Λ(Δ)

Λ(Δ)

Figure 4. Combination of two 1-quasifuchsian groups: Γ = Γ1 ∗Z Γ2.

These constructions are, of course, not very illuminating. Therefore we are
interested in examples of 1-dimensional limit sets which are connected and which
do not contain cut-pairs. It turns out that there are only two such examples:
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1. The Sierpinski carpet S. Start with the unit square S = I × I. Subdivide
this square into 9 squares of the size 1

3 × 1
3 and then remove from S the

open middle square (1
3 ,

2
3 ) × (1

3 ,
2
3 ). Repeat this for each of the remaining

1
3 × 1

3 sub-squares in S and continue inductively. After removing a countable
collection of open squares we are left with a compact subset S ⊂ R2, called
the Sierpinski carpet.

2. The Menger curve M. Start with the unit cube Q = I × I × I. Each face Fi

of Q contains a copy of the Sierpinski carpet Si. Let pi : Q→ Fi denote the
orthogonal projection. Then

M :=
⋂
i

p−1
i (Si)

is called the Menger curve.

Example. There exists a convex-cocompact subgroup G ⊂ Mob(S2) whose limit
set is homeomorphic to the Sierpinski carpet S.

To construct such an example start with a compact hyperbolic manifold M3

with nonempty totally-geodesic boundary. Thus we get an embedding of Γ =
π1(M3) into Mob(S2) as a convex-cocompact Kleinian subgroup. The limit set
of Γ is homeomorphic to the Sierpinski carpet. To see this note that the convex
hull Hull(Λ(Γ)) in H3 is obtained by removing from H3 a countable collection of
disjoint open half-spaces Hj ⊂ H3. The ideal boundary of each Hj is the open
round disk Dj ⊂ S2. Thus

Λ(Γ) = S2 \
⋃
j

int(Dj).

Clearly, Dj ∩ Di = ∅, unless i = j; since Λ(Γ) has empty interior. See Figure 5.
According to Claytor’s theorem [57], it follows that Λ(Γ) is homeomorphic to S.
Moreover, it is easy to see that this homeomorphism extends to the 2-sphere, since
it sends the boundary circles of Λ(Γ) to the boundary squares of S.

The construction of Kleinian groups whose limit sets are homeomorphic to
M is more complicated:

Example. (M.Bourdon [37]; see also [118].) There exists a convex-cocompact sub-
group Γ ⊂Mob(S3) whose limit set is homeomorphic to the Menger curve M.

The following theorem is proved in [122] in the more general context of
Gromov-hyperbolic groups:

Theorem 8.1. (M. Kapovich, B. Kleiner [122].) Suppose that Γ ⊂ Mob(Sn) is a
(torsion-free) nonelementary convex-cocompact subgroup such that:
(a) Γ does not split as a free product,
(b) Γ does not split as an amalgam over Z,
(c) dim(Λ(Γ)) = 1.

Then Λ(Γ) is either homeomorphic to the Sierpinski carpet or to the Menger curve.
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Figure 5. A limit set homeomorphic to the Sierpinski carpet.

Conjecture 8.2. (M. Kapovich, B. Kleiner [122].) If Γ ⊂ Mob(Sn) is a (torsion-
free) convex-cocompact Kleinian group whose limit set is homeomorphic to the Sier-
pinski carpet, then Γ is isomorphic to a convex-cocompact subgroup in Mob(S2).

It was proved in [122] that this conjecture would follow either from the posi-
tive solution of the 3-dimensional Wall’s problem (Problem 4.5) or from Cannon’s
conjecture (Conjecture 4.6).

Topology of the limit sets of geometrically infinite Kleinian groups can be
more complicated. A dendroid is a compact locally connected simply-connected
1-dimensional topological space.

Theorem 8.3. (J. Cannon and W. Thurston [51], see also [1] and [58].) There exist
singly-degenerate Kleinian groups whose limit sets are dendroids.

Conjecturally, limit sets of all singly-degenerate Kleinian groups are den-
droids and the following problem is open even for n = 2:
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Problem 8.4. Suppose that Γ ⊂ Mob(Sn) is a Kleinian group whose limit set is
connected and 1-dimensional. Is it true that Λ(Γ) is locally connected?

See [163], [165] and [168, 169] for partial results in dimension 2.

9. Groups whose limit sets are topological spheres

Definition 9.1. A Kleinian group Γ ⊂ Mob(Sn) is called i-fuchsian2 if Λ(Γ) is a
round i-dimensional sphere in Sn.

To construct examples of i-fuchsian groups start with a lattice Γ ⊂Mob(Si).
The limit set of Γ is the round sphere Si. Define the canonical embedding

ι : Mob(Si) ↪→Mob(Sn)

induced by the embedding of the Lorentz groups

O(i+ 1, 1) ↪→ O(n+ 1, 1)

A �→
[
A 0
0 I

]
,

where I is the identity matrix. Therefore we get the canonical embedding

ι : Γ ↪→Mob(Sn) .

One can modify this construction as follows. Note that the stabilizer of Si in
Mob(Sn) contains Mob(Si)×SO(n−i). Choose a homomorphism φ : Γ → SO(n−
i). For instance, being residually finite, the group Γ will have many epimorphisms
to finite groups, which then can be embedded in SO(n − i) if n− i is sufficiently
large. Alternatively, in many cases the group Γ will have infinite abelianization
Γab. The abelian group Γab admits many embeddings into SO(n− i) provided that
n− i ≥ 2. Then the image of

ρ = ι× φ : Γ →Mob(Si)× SO(n− i) ⊂Mob(Sn)

is also an i-fuchsian group, since ρ(Γ) preserves Si and the action of ρ(Γ) on Si is
the same as the action of Γ.

Definition 9.2. A Kleinian group Γ ⊂Mob(Sn) is called i-quasifuchsian if its limit
set is a topological i-dimensional sphere.

We will refer to the number n − i as the codimension of a (quasi)fuchsian
group Γ.

Example. Suppose that Γ is an i-fuchsian subgroup of Mob(Sn) and Γ′ ⊂Mob(Sn)
is another group which is topologically conjugate to Γ (with a homeomorphism f
defined on the entire n-sphere). Then Γ′ is i-quasifuchsian. However, as we will
see, there are i-quasifuchsian groups (for n ≥ 3) which cannot be obtained in this
fashion.

2Our definition is somewhat different from the classical: fuchsian subgroups of PSL(2, C) are
usually required to preserves a round disk in S2.
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The (quasiconformal) homeomorphisms f as in the previous example exist in
abundance if i = 1, n = 2, due to the solvability of the Beltrami equation. If i ≥ 2,
the situation is very different and it is not so easy to construct nontrivial examples
of i-quasifuchsian groups which are not fuchsian. Some of these examples will be
discussed below.

The following result was proved by M. Bestvina and G. Mess [28] in the
context of Gromov-hyperbolic groups:

Theorem 9.3. Each convex-cocompact i-quasifuchsian group is a Poincaré duality
group (over Z) of dimension i + 1. Conversely, if Γ ⊂ Mob(Sn) is a convex-
cocompact Poincaré duality group, then Λ(Γ) is a homology manifold which is a
homology sphere.

Question 9.4. Is it true that each convex-cocompact quasifuchsian group is isomor-
phic to the fundamental group of a closed aspherical manifold?

This is, of course, a special case of Wall’s problem (Problem 4.5).

Question 9.5. Is there a convex-cocompact group Γ ⊂ Mob(Sn) whose limit set is
a homology manifold which is homology sphere, so that Λ(Γ) is not homeomorphic
to a sphere?

9.1. Quasifuchsian groups of codimension 1

The situation in the case of n = 2 is completely understood due to the following:

Theorem 9.6. (B. Maskit [156], see also [152].) Let Γ ⊂ Mob(S2) be a Kleinian
group whose domain of discontinuity Ω(Γ) consists of precisely two components.
Then:

1. Γ is 1-quasifuchsian and geometrically finite.
2. Γ is quasiconformally conjugate to a 1-fuchsian group.
3. M̄3(Γ) = (H3∪Ω(Γ))/Γ is homeomorphic to an interval bundle over a surface
S, which is 2-fold covered by Ω(Γ)/Γ.

Our goal is to compare the higher-dimensional situation with this theorem.
Suppose that Γ ⊂ Mob(Sn) is a codimension 1 quasifuchsian group. Then Ω(Γ)
consists of two components, Ω1,Ω2. After replacing Γ by an appropriate index 2
subgroup, we can assume that each Ωi is Γ-invariant; hence Mn(Γ) = M1 ∪M2,
where Mi := Ωi/Γ. Then, by the Alexander duality, H∗(Ωi) ∼= H∗(point), i = 1, 2.
Therefore, if Ωi is simply-connected, then Ωi is contractible. Below we discuss
what is currently known about such quasifuchsian groups for n �= 4.

Theorem 9.7. Suppose that both Mi are compact and both Ωi are simply-connected.
Then M̄n+1(Γ) is diffeomorphic to M1 × [0, 1] provided that n ≥ 5.

Proof. Note that, for homological reasons, W = M̄n+1(Γ) is compact, hence Γ is
convex-cocompact, see Theorem 2.7. Since both Ω1,Ω2,Hn+1 are contractible, the
inclusions

Mi ↪→W, i = 1, 2
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are homotopy-equivalences. Therefore W defines a smooth h-cobordism between
the aspherical manifoldsM1 andM2. According to Corollary 5.6, this h-cobordism
is smoothly trivial. �

Suppose that n = 3 and both Ω1,Ω2 are contractible. Then

π1(M1) ∼= π1(M2) ∼= Γ,

the manifolds M1 and M2 are both irreducible and have infinite fundamental
groups. If Γ were to contain a subgroup Π isomorphic to Z2, the subgroup Π would
be parabolic. This would contradict compactness of W . Therefore, according to
Perelman’s solution of Thurston’s hyperbolization conjecture, there exists a closed
hyperbolic 3-manifold M0 which is homeomorphic to M1 and M2. Since M0 is
hyperbolic, its fundamental group Γ0 acts as a 2-fuchsian group on S3. Therefore,
according to our discussion in Section 6, the group Γ is quasiconformally conjugate
to Γ0. It is not difficult to see that passage to the index 2 subgroup which we used
above does no harm and we obtain:

Proposition 9.8. Suppose that Γ ⊂Mob(S3) is a codimension 1 quasifuchsian sub-
group, so that both components of Ω(Γ) are simply-connected and M3(Γ) is com-
pact. Then Γ is quasiconformally conjugate to a 2-fuchsian group Γ0 ⊂Mob(S3).

On the other hand, we do not know if the 4-dimensional manifold M̄(Γ) is
homeomorphic (or diffeomorphic) to an interval bundle over a 3-manifold.

Proposition 9.8 fails for n ≥ 4:

Theorem 9.9. For every n ≥ 4 there are codimension 1 convex-cocompact quasi-
fuchsian subgroups Γ ⊂ Mob(Sn), so that both components of Ω(Γ) are simply-
connected, but Γ is not isomorphic to a fuchsian group.

Proof. We give only a sketch of the proof, the details will appear elsewhere. Fix
n ≥ 4. M. Gromov and W. Thurston in [89] construct examples of negatively
curved compact conformally-flat n-manifolds Mn, so that Mn is not homotopy-
equivalent to any closed hyperbolic n-manifold Nn. (See also [119] for a review
of the Gromov–Thurston examples and for a construction of a convex projective
structure on Mn.)

By choosing parameters in the construction of [89] more carefully, one can
construct an example of a uniformizable flat conformal manifold Mn with the
same properties. Moreover, Mn = Ω1/Γ, Γ ⊂ Mob(Sn) is convex-cocompact,
and Ω(Γ) = Ω1 ∪ Ω2 is the union of two simply-connected components. Then
Λ(Γ) is homeomorphic to Sn−1, since the limit set of Γ is homeomorphic to the
ideal boundary of the universal cover of the negatively curved manifold Mn. If Γ
were isomorphic to an n−1-fuchsian group Γ′, then Γ′ would be isomorphic to the
fundamental group of a closed hyperbolic n-manifold Nn, which is a contradiction.

�

The above examples have another interesting property. Let Ωn+1 denote the
domain of discontinuity of the group Γ (regarded as a subgroup of Mob(Sn+1)).
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Note that Ωn+1 is connected and π1(Ωn+1) ∼= Z. Since both Ω1,Ω2 are contractible,
it follows that

πi(Ωn+1) = 0, i ≥ 2.
Set Mn+1 = Ωn+1/Γ. We have the short exact sequence

1→ Z = π1(Ωn+1)→ π1(Mn+1)→ Γ → 1.

The embedding M1 → Mn+1 determines a splitting of this sequence. Hence the
manifolds Mn+1 and S1 ×Mn are homotopy-equivalent. Given the existence of a
metric of negative curvature on Mn, we obtain a metric of nonpositive curvature
on S1 ×Mn. Therefore, by Theorem 5.4, the manifolds Mn+1 and S1 ×Mn are
homeomorphic.

Let kZ ⊂ Z ⊂ π1(Mn+1) be the index k subgroup in the center of π1(Mn+1).
Then we obtain the k-fold covering Xk → X1 =Mn+1, where

π1(Xk) = kZ× Γ ⊂ π1(X1).

Since the manifolds Xk have isomorphic fundamental groups and πi(Xk) = 0 for
all i ≥ 2, k ∈ N, these manifolds are all homeomorphic to the smooth manifold X1

by Theorem 5.4. By [132, Essay IV], there only finitely many smooth structures on
the manifold X1. Therefore we obtain an infinite family of diffeomorphic manifolds

Mn+1
j := Xkj , j ∈ N

and smooth covering maps pj :Mn+1
j →Mn+1.

The (n + 1)-manifold Mn+1 = Ωn+1/Γ has the flat conformal structure K1

uniformized by the group Γ. Let Kj denote the flat conformal structure on Mn+1,
which is the lift of K1 via pj .3 We thus obtain an infinite family of diffeomorphic
flat conformal manifolds

(Mn+1
j ,Kj), j = 1, 2, . . .

Question 9.10. Suppose that M is a closed hyperbolic n-manifold. Is there a finite
cover f : M ′ → M such that the pull-back map f∗ : H3(M,Z/2) → H3(M ′,Z/2)
is trivial? (Recall [132] that the group H3(M,Z/2) classifies PL structures on M
if n ≥ 5.)

We regard the structures Kj as elements of M(X), the moduli space of the
flat conformal structures on a fixed smooth manifold X . The proof of the following
claim is similar to [108], where it was proved in the context of 3-manifolds:

Proposition 9.11. For different i, j the structures Ki,Kj lie in different connected
components of the moduli space M(X). Thus M(X) consists of infinitely many
connected components.

We note that K. Scannell in [197] constructed examples of hyperbolic 3-
manifolds X for which M(X) consists of infinitely many connected components.

3The structures Kj are obtained via grafting of (Mn+1, K1) along the hypersurface Mn.
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To get the same phenomenon in dimension 4 consider one of the hyperbolic
manifolds M3 obtained by Dehn surgery on a 2-bridge knot, so that the natural
embedding

Γ = π1(M) ↪→Mob(S3)

is (locally) rigid (see Example 11.1.2). Then the natural embedding of Γ →
Mob(S4) is also rigid and hence the manifold M4 = M4(Γ) ∼= M × S1 has rigid
flat conformal structure. Taking k-fold covers of this manifold we obtain infinitely
many rigid flat conformal structures onM4. By combining these results we obtain

Theorem 9.12. For every n ≥ 3 there exists a smooth compact n-manifold Xn such
that M(Xn) consists of infinitely many connected components.

We now return to our discussion of Kleinian groups, restricting to n = 3.
Suppose that Γ is a convex-cocompact 2-quasifuchsian group, such that both com-
ponents of Ω(Γ) are simply-connected. Then, by proposition 9.8, the limit set of
Γ is tame, i.e., there is a homeomorphism of S3 which maps Λ(Γ) to the round
sphere.

Theorem 9.13. (B.Apanasov and A.Tetenov [11].) There exists a convex-cocompact
2-quasifuchsian group Γ ⊂Mob(S3) whose limit set is a wild 2-sphere, i.e., there
is no homeomorphism of S3 which maps Λ(Γ) to the round sphere. Moreover, one
component of Ω(Γ) is simply-connected.

9.2. 1-quasifuchsian subgroups of Mob(S3)
Given a Kleinian subgroup Γ ⊂Mob(S3) whose limit set is a topological circle C,
we would like to analyze the embedding C ↪→ S3. It is clear that C could be an
unknot in S3 (i.e., there exists a homeomorphism of S3 which maps C to a round
circle), take for instance any 1-fuchsian subgroup of Mob(S3).

A topological circle C in S3 is called tame if it is isotopic to a polygonal knot
in S3; if C is not tame, it is called wild.

Proposition 9.14. 1. If Γ is a 1-quasifuchsian subgroup of Mob(S3), then either
Λ(Γ) is an unknot or it is a wild knot K such that π1(S3 \ K) is infinitely
generated.

2. Each 1-quasifuchsian group is geometrically finite.

Proof. Since Γ is a 1-quasifuchsian subgroup of Mob(S3), this group is nonele-
mentary. The fundamental group of M = M3(Γ) is finitely generated (since Γ is)
and we have the exact sequence:

1 → π1(Ω(Γ)) → π1(M)→ Γ → 1.

Suppose that π1(Ω(Γ)) is finitely generated. Then, according to Jaco-Hempel’s
Theorem [95], π1(Ω(Γ)) ∼= Z. This immediately excludes tame nontrivial knots
(the result proved by R. Kulkarni [140]). It remains to exclude wild knots with

Δ := π1(Ω(Γ)) ∼= Z.
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Without loss of generality (after passing to an index 2 subgroup in Γ), we can
assume that Δ is contained in the center of π1(M). Note thatM is a Seifert mani-
fold since its fundamental group has infinite center. HenceM admits an S1-action.
Lift this action to Ω(Γ) and then extend it to the entire 3-sphere (so that the fixed
point set is the limit set). Raymond’s classification [192] of topological S1-actions
on S3 implies that this S1-action is topologically conjugate to the orthogonal ac-
tion, hence Λ(Γ) is an unknot. This proves (1).

To prove (2) note that the group Γ acts as a convergence group on S1 = Λ(Γ)
(see [218]). Hence, according to [218], there exists a homeomorphism f : Λ(Γ)→ S1

such that
fΓf−1 = Γ′ ⊂ PSL(2,R).

Since finitely generated discrete subgroups of PSL(2,R) are geometrically finite,
it follows that Γ′ is geometrically finite. As geometric finiteness is an invariant
of the topological dynamics on the limit set (see Theorem 2.5), the group Γ is
geometrically finite as well. �

On the other hand, even if Λ(Γ) is an unknot, the 3-manifold Ω(Γ)/Γ is not
necessarily a product:

Theorem 9.15. (M. Gromov, B. Lawson, W. Thurston [87], N. Kuiper [139], and
M. Kapovich [107, 112].) There are 1-quasifuchsian groups Γ ⊂Mob(S3) such that
Λ(Γ) are unknotted but Γ are not topologically conjugate to 1-fuchsian groups.

In the examples constructed in this theorem, the manifolds M3(Γ) are non-
trivial oriented circle bundles over orientable surfaces. On the other hand, for every
1-fuchsian group Γ0 ⊂ Mob(S3), the manifold M3(Γ0) is a 3-dimensional Seifert
manifold with the zero Euler number, since it admits a natural H2 ×R-structure.
Hence, in this case, M3(Γ0) admits a finite cover which is homeomorphic to the
product of S1 and a surface.

Theorem 9.16. (B. Apanasov [10], B. Maskit [157], see also [87].) There are 1-
quasifuchsian groups Γ ⊂Mob(S3) such that Λ(Γ) are wild knots.

Proof. (Sketch.) Start with a necklace of round balls

B0, B1, . . . , Bm−1 ⊂ S3,

so that Bi is tangent to Bj , if j = i+1 ∈ Z/mZ and is disjoint otherwise. Assume
that this necklace is knotted, i.e., the polygonal knot obtained by connecting the
consecutive points of tangency is a nontrivial knot K ⊂ S3. See Figure 6.

Let γi ∈Mob(S3) denote the inversion in the sphere ∂Bi, i = 0, 1, . . . ,m−1.
Let Γ ⊂ Mob(Sn) be the group generated by these inversions. By the Poincaré
fundamental polyhedron theorem,

Φ = S3 \
m−1⋃
i=0

Bi
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Bi

Figure 6

is a fundamental domain for Γ, the group Γ is geometrically finite and is iso-
morphic to a 1-fuchsian group Γ′. Therefore, Tukia’s theorem 6.1 applied to the
isomorphism Γ → Γ′, implies that Γ is 1-quasifuchsian. By Seifert–van Kampen
Theorem, π1(S3 \ K) embeds in π1(Ω(Γ)). Therefore π1(Ω(Γ)) is not isomorphic
to Z and, hence, the limit set of Γ is a wild knot. �

By modifying the above construction, S. Hwang proved

Theorem 9.17. (S. Hwang [97].) Let L be a polygonal link in S3. Then there exists
a (torsion-free) convex-cocompact Kleinian group Γ ⊂ Mob(S3) with a funda-
mental domain Φ ⊂ S3 such that the complement S3 \ Φ is isotopic to a regular
neighborhood of L.

The above theorem is the key for proving

Theorem 9.18. (S. Hwang [97].) Let M3 be a closed oriented 3-manifold. Then
there exists a closed oriented 3-manifold N3 such that the connected sum M3#N3

admits a Möbius structure.
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Results similar to Theorems 9.17 and 9.18 hold in dimension 4, see [117],
although one has to assume thatM4 is a Spin-manifold. One of the key ingredients
in [117] is the following:

Theorem 9.19. Let Q ⊂ R4 ⊂ S4 be a finite 2-dimensional subcomplex in the
standard cubulation of R4. Then there exists a convex-cocompact Kleinian subgroup
Γ ⊂Mob(S4) (generated by reflections) with a fundamental domain Φ ⊂ S4, such
that the complement S4 \ Φ is isotopic to a regular neighborhood of Q.

Very little is known about quasifuchsian groups in Mob(Sn) whose limit sets
have dimension between 2 and n − 2. Perhaps the most interesting result here is
obtained by I. Belegradek [15] who used the construction from [87] to get

Theorem 9.20. There exist convex-cocompact 2-quasifuchsian subgroups Γ1,Γ2 ⊂
Mob(S4) so that:

1) Λ(Γ1) is a wild 2-sphere in S4.
2) Λ(Γ2) is tame but the group Γ2 is not topologically conjugate to a 2-fuchsian

group: M4(Γ2) is a nontrivial circle bundle over a hyperbolic 3-manifold.

Similar results probably hold for codimension 2 quasifuchsian subgroups in
Mob(Sn), n ≥ 5.

10. Ahlfors finiteness theorem in higher dimensions:
Quest for the holy grail

10.1. The holy grail

One of the most fundamental results of the theory of Kleinian subgroups of
Mob(S2) is the Ahlfors Finiteness Theorem (the “Holy Grail”), which we state
here together with its companions:

Theorem 10.1. Suppose that Γ ⊂ PSL(2,C) is a Kleinian group4 which may have
torsion. Then the following hold:

1. (L. Ahlfors [3], L. Greenberg [83].) The group Γ is analytically finite, i.e.,
the quotient O := Ω(Γ)/Γ is a complex orbifold of finite conformal type5. In
particular, O is homotopy-equivalent to a finite CW complex.

2. (D. Sullivan [209].) Γ has only finitely many cusps.
3. (M. Feighn and G. Mess [75].) Γ has only finitely many Γ-conjugacy classes

of finite order elements.
4. (P.Scott [201, 202].) Γ is finitely presentable and the orbifold H3/Γ is finitely

covered by a manifold H3/Γ′, which is homotopy-equivalent to a compact 3-
manifold.

4Recall that all Kleinian groups are assumed to be finitely generated.
5I.e., as a Riemann surface it biholomorphic to a compact Riemann surface with a finite subset
removed; as an orbifold it has only finitely many singular cone-points.
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5. (L. Ahlfors [4].) The action of Γ on Λ(Γ) is recurrent with respect to the
Lebesgue measure μ.

Alternative analytical proofs of Part 1 (i.e., the original Ahlfors’ finiteness
theorem) are given for instance in [116, Section 8.14] and [153]. A geometric proof
(valid even in the context of manifolds of negative curvature) follows from the
solution of Tameness Conjecture, see [2].

Corollary 10.2. If Γ is as above, then:
(a) For each component Ω0 of Ω(Γ), the limit set of the stabilizer of Ω0 in Γ

equals ∂Ω0 (follows directly from Part 1 of Theorem 10.1). In particular, no
component of Ω(Γ) has trivial stabilizer.

(b) Kleinian subgroups Γ of Mob(S2) are coherent, i.e., each finitely generated
subgroup of Γ is also finitely presented (follows from Part 4 of Theorem 10.1).

(c) (W.Thurston, see [170].) If Γ ⊂Mob(S2) is geometrically finite with Ω(Γ) �=
∅, then each finitely generated subgroup Δ ⊂ Γ is geometrically finite as well.

We also now fully understand the topology of the manifold (orbifold) H3/Γ:

Theorem 10.3 (Former tameness conjecture). The quotient H3/Γ is tame, i.e., it
is homeomorphic to the interior of a compact manifold (orbifold) with boundary.

The above theorem was proved for freely indecomposable groups Γ by F. Bo-
nahon [34] and by I. Agol [2], D. Calegari and D. Gabai [49] in the general case.

The next theorem is a combination of a result by Thurston [213], who proved
ergodicity for tame Kleinian subgroups of Mob(S2), and the proof of the tameness
conjecture:

Theorem 10.4. If Γ is as above, then the action of Γ on Λ(Γ) is ergodic with respect
to the Lebesgue measure: each measurable Γ-invariant function on Λ(Γ) is constant
a.e..

Note, that the conglomerate of assertions presented above contains state-
ments of different nature: algebraic, topological, dynamical. For a while it was
hoped that a theorem analogous to Theorem 10.1 can be proved for Kleinian groups
in higher dimensions; an attempt to develop analytical technique to achieve this
was made by Ahlfors in [6] (see also [179]).

Nearly all algebraic and topological assertions of Theorem 10.1 and the Corol-
lary 10.2 have been disproved in the case of Kleinian groups acting in higher di-
mensions (M. Kapovich and L. Potyagailo [114], [127], [128], [187], [188]):

Theorem 10.5. There exist Kleinian subgroups Γ1, . . . ,Γ5 ⊂Mob(S3) so that:
1. The group Γ1 is not finitely presentable.
2. For each i, the manifold M(Γi) = Ω(Γi)/Γi contains a component with in-

finitely generated fundamental group.
3. Γ2 is free and has infinitely many cusps (of rank 1).
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4. Γ3 is not torsion-free and has infinitely many conjugacy classes of finite order
elements.

5. Γ4 is a normal subgroup of a convex-cocompact group Γ̂4 ⊂ Mob(S3) and
satisfies (1), (2) and (4).

6. (B. Bowditch, G. Mess [42].) The group Γ5 satisfies (1) and (2) and is con-
tained in a cocompact lattice Γ̂5 ⊂Mob(S3).

7. Groups Γi, i = 1, . . . , 4 are normal subgroups of geometrically finite groups
Γ̂i so that Γ̂i/Γi

∼= Z.

Remark 10.6. By modifying Γ3 one can also construct an example Γ6 ⊂Mob(S3)
such that Ω(Γ6)/Γ6 has infinitely many connected components.

At the time when the above examples were constructed, they were regarded
as a “rare pathology”. It appears however that such examples are rather common:

Conjecture 10.7. (M. Kapovich, L. Potyagailo, E. Vinberg [129].) Suppose that
Γ ⊂ Mob(Sn) is an arithmetic lattice, where n ≥ 3. Then Γ is noncoherent, i.e.,
it contains a finitely generated subgroup Δ which is not finitely presentable.

This conjecture was proved in [129] in a number of special cases, e.g., for all
non-cocompact arithmetic lattices provided that n ≥ 5.

All the examples Γi in the above theorem are based upon the existence of
hyperbolic 3-manifolds M3 of finite volume which fiber over the circle: the groups
Γi are obtained by manipulating with the normal surface subgroups in π1(M3).

Problem 10.8. Find examples similar to Γi’s without using hyperbolic 3-manifolds
fibering over the circle.

Problem 10.9. Construct a finitely generated Kleinian subgroup Γ ⊂ Mob(Sn)
such that Part (a) of Corollary 10.2 fails for Γ.

Problem 10.10. (G. Mess.) Construct a finitely-presented Kleinian subgroup of
Mob(Sn) (n ≥ 3) which contains no parabolic elements and for which any of the
assertions of Theorem 10.1 fail. (In Part (a) one would need to replace analytical
finiteness with finiteness of the homotopy type.)

Problem 10.11. Construct a finitely generated Kleinian subgroup Γ ⊂ Mob(S3)
such that Ω(Γ) contains a contractible component Ω0 so that:

The stabilizer Γ0 of Ω0 in Γ is finitely-generated, but the manifold Ω0/Γ0 is
not tame.

Note however that although algebra and topology fail, the assertions of dy-
namical nature (part 5 of Theorem 10.1, part (a) of Corollary 10.2, and Theorem
10.4) remain open in higher dimensions. Moreover, an attempt to construct a
higher-dimensional counter-example to Theorem 10.1 (part 5) along the lines of
the examples Γi, is doomed to failure:
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Theorem 10.12. (K. Matsuzaki [160].) Let Γ̂ be a geometrically finite subgroup6 in
Mob(Sn). Suppose that Γ ⊂ Γ̂ is a normal subgroup (which does not have to be
finitely generated). Then the action of Γ on its limit set is recurrent.

Ergodicity fails however for discrete subgroups of PU(2, 1) (it probably also
fails for Kleinian groups in higher dimensions but an example would be difficult
to construct):

Theorem 10.13. There exists a finitely generated (but not finitely presentable!)
discrete group Γ of isometries of complex-hyperbolic 2-plane CH2 so that the limit
set of Γ is the 3-sphere and the action of Γ on S3 is not ergodic.

Proof. There are examples (the first was constructed by R. Livne in his thesis
[145], see also [62]) of cocompact torsion-free discrete subgroups Γ̂ ⊂ PU(2, 1)
such that the complex 2-manifoldM = CH2/Γ̂ admits a nonconstant holomorphic
map f :M → S to a Riemann surface S of genus ≥ 2. The fundamental group of
the generic fiber of f maps onto a normal subgroup Γ in Γ̂, so that Γ is finitely
generated but is not finitely presentable [115]. By lifting f to the universal covers
we get a nonconstant holomorphic Γ-invariant function

f̃ : CH2 → H2.

Then the bounded harmonic function Re(f̃) is also Γ-invariant and nonconstant.
This harmonic function admits a measurable extension h to S3, the boundary of
the complex ball CH2, so that h is Γ-invariant and not a.e. constant. �
10.2. Groups with small limit sets

So far, our quest for the holy grail mostly resembled Monty Python’s: We are not
sure what to look for in higher dimensions. Nevertheless, there is a glimmer of
hope.

Recall that the Hausdorff dimension dimH of a subset E ⊂ Rn is defined as
follows. For each α > 0 consider the α-Hausdorff measure of E:

mesα(E) = lim
ρ→0

inf{
∑

i

rαi : ri ≤ ρ,E is contained in the union of ri-balls}.

The Hausdorff dimension of E is

dimH(E) = inf
α
{α : mesα(E) = 0}.

According to [96], for every bounded subset E ⊂ Rn one has the inequality

dim(E) ≤ dimH(E)

between topological and Hausdorff dimensions. In particular, if Γ is a Kleinian
group with dimH(Λ(Γ)) < 1, then Γ is geometrically finite and is isomorphic to a
Schottky-type group, see Theorem 7.7.

Conjecture 10.14. If dimH(Λ(Γ)) < 1, then Γ is a Schottky-type group. Moreover,
Γ is classical.

6Actually, the proof also works for subgroups of any rank 1 Lie group.
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The critical exponent of a Kleinian group Γ ⊂Mob(Sn) is

δ(Γ) := inf{s > 0 :
∑
γ∈Γ

e−sd(x,γx) <∞},

where d is the hyperbolic metric in Hn+1. The following theorem is the result of
combined efforts of a large number of mathematicians, including P. Tukia, D. Sul-
livan and P. Nicholls, we refer to [177], [33] for the proofs:

Theorem 10.15. For every Kleinian subgroup Γ ⊂Mob(Sn),

δ(Γ) = dimH(Λc(Γ)).

Recall that Λc(Γ) is the conical limit set of Γ.
The critical exponent relates to λ0, the bottom of the spectrum of Laplacian

on the hyperbolic manifold Hn+1/Γ, by the following

Theorem 10.16. (D. Sullivan [211])

λ0 =
(n

2

)2

, if 0 ≤ δ(Γ) ≤ n
2
,

λ0 = δ(Γ)(n− δ(Γ)), if
n

2
< δ(Γ) ≤ n.

The expectation is that Kleinian groups in Mob(Sn) with small limit sets
behave analogously to the Kleinian subgroups of Mob(S2).

Conjecture 10.17. Suppose that Γ is a (finitely generated) subgroup of Mob(Sn)
so that Λ(Γ) has Hausdorff dimension < 2. Then Γ is geometrically finite.

For n = 2, this conjecture is a theorem of C. Bishop and P. Jones [33]. A
partial generalization of [33] was proved by A. Chang, J. Qing, J. and P. Yang
[54]:

Theorem 10.18. Suppose that Γ is a (finitely generated) conformally finite7 sub-
group of Mob(Sn) such that dimH(Λ(Γ)) < n. Then Γ is geometrically finite.

The converse to the above theorem was proved earlier by P. Tukia [216].

Theorem 10.19. (Y.Shalom [204].) Suppose that Γ is a geometrically finite subgroup
of Mob(Sn) such that dimH(Λ(Γ)) < 2 and Δ ⊂ Γ is a finitely generated normal
subgroup. Then Δ has finite index in Γ. In particular, Δ is geometrically finite as
well.

Thus, attempts to construct geometrically infinite groups using normal sub-
grooups in geometrically finite Kleinian groups with small limit sets, are doomed
to failure. On the other hand, the assumption that δ(Γ) is small should impose
strong restrictions on the algebraic properties of the group Γ.

Conjecture 10.20. Suppose that Γ is a Kleinian group in Mob(Sn) which does not
contain parabolic elements. Then:

7I.e., Mn(Γ) = Ω(Γ)/Γ is compact modulo cusps.
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1. cd(Γ)− 1 ≤ δ(Γ).
2. In the case of equality, Γ is an i-fuchsian convex-cocompact group, i = δ(Γ).

Recall that cd and hd stand for the cohomological and homological dimensions
of a group. A partial confirmation of Part 1 of this conjecture is obtained in

Theorem 10.21. (M. Kapovich [121].) Suppose that Γ ⊂ Mob(Sn) is a Kleinian
group. Then for every ring R,

hdR(Γ,Π)− 1 ≤ δ(Γ),

where Π ⊂ Γ is the set of virtually abelian subgroups of Γ of (virtual) rank ≥ 2
and hdR(Γ,Π) is the relative homological dimension.

We refer the reader to the series of papers by H. Izeki [100, 101, 102] for the
related results.

Corollary 10.22. (M. Kapovich [121].) Suppose that the group Γ is finitely-presented
and δ(Γ) < 1. Then Γ is free.

Proof. Since δ(Γ) < 1, it follows that Γ contains no rank 2 abelian subgroups.
Then we have the inequalities

cd(Γ) ≤ 1 + hd(Γ) ≤ δ(Γ) + 2 < 3.

Combined with finite presentability of Γ, the inequality cd(Γ) ≤ 2 implies that Γ
has finite type; therefore

cd(Γ) = hd(Γ) ≤ δ(Γ) + 1 < 2.

Hence Γ is free by Stallings’ Theorem 4.1. �

An inequality similar to Conjecture 10.20 was proved by A. Reznikov: For a
(finitely-generated) group Γ define

α(Γ) := inf{p ∈ [1,∞] : �pH1(Γ) �= 0}.
Here �pH1 is the first �p-cohomology of the group Γ, see [38] for the precise defi-
nition. Then

Theorem 10.23. (A. Reznikov [194], see also [38] for the detailed proof in the case
of isometries of CAT (−1) spaces.) For every Kleinian group Γ ⊂Mob(Sn),

α(Γ) ≤ max(δ(Γ), 1).

Question 10.24. What can be said about Γ in the case of equality in Reznikov’s
theorem?

In the case of geometrically finite groups, Part 2 of Conjecture 10.20 holds:

Theorem 10.25. 1. (Chenbo Yue [228], see also [22] and [35].) Suppose that Γ is
convex-cocompact and i = δ(Γ) = cd(Γ)− 1. Then Γ is i-fuchsian.
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2. (M. Kapovich [121].) Suppose that Γ is geometrically finite. Then the following
three conditions are equivalent:

i = δ(Γ) = cd(Γ,Π) − 1,
i = dim(Λ(Γ)) = dimH(Λ(Γ)),
Γ is i-fuchsian.

Conjecture 10.26. Suppose that Γ is a Kleinian group in Mob(Sn) whose limit set
is not totally disconnected and has Hausdorff dimension 1. Then Γ is 1-fuchsian.

This conjecture is known to be true for n = 2, see [50].

Problem 10.27. (The gap problem, L. Bowen, cf. [206].)
1. Is there a number dn < n such that for every Schottky subgroup Γ ⊂Mob(Sn),
n ≥ 3, we have:

δ(Γ) < dn.
2. More generally, consider a sequence Γj ⊂ Mob(Sn) of convex-cocompact

groups isomorphic to a fixed group Γ so that: Λ(Γj) �= Sn for each j. Is
it true that

lim sup
j→∞

δ(Γj) < n ?

By the work of R. Phillips and P. Sarnak [185], the answer to the Part 1 of
this question is positive in the class of classical Schottky groups.

11. Representation varieties of Kleinian groups

For a finitely-generated Γ consider the representation variety of Γ:

Rn(Γ) := Hom(Γ,Mob(Sn)).

If Γ has the presentation

Γ = 〈x1, . . . , xm|r1, . . . , rk, . . .〉,
the representation variety is given by

{(g1, . . . , gm) ∈ (Mob(Sn))m : r1(g1, . . . , gm) = 1, . . . rk(g1, . . . , gm) = 1, . . . .}.
The group Mob(Sn) acts on Rn(Γ) via conjugation:

θ · ρ(γ) = θρ(γ)θ−1, θ ∈Mob(Sn) .

Given this action, one can form the quotient variety

Xn(Γ) := Rn(Γ)//Mob(Sn),

called the character variety. Roughly speaking, the elements of Xn(Γ) are repre-
sented by conjugacy classes of representations ρ : Γ → Mob(Sn). This is literally
true for “most” representations, the ones for which ρ(Γ) does not contain a nor-
mal parabolic subgroup, see [103]. In general, the representations ρ1, ρ2 project to
the same point in Xn(Γ) iff the closures of their Mob(Sn)-orbits have nonempty
intersection. We let [ρ] denote the projection of ρ ∈ Rn(Γ) to Xn(Γ).
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A trivial deformation of a representation ρ0 ∈ Rn(Γ) is a connected curve
ρt ∈ Rn(Γ) which projects to a point in Xn(Γ). A representation ρ0 is called rigid
if it admits no nontrivial deformations.

We will be mostly interested in representations ρ ∈ Rn(Γ) which have dis-
crete, nonelementary image, however much of our discussion is more general.

In this section we address the following issues related to the character vari-
eties:

(i) Local structure of Xn(Γ) and existence of small deformations of a given
Kleinian group (rigidity vs. flexibility).

(ii) Connectedness of the subspace Dn(Γ) of discrete and faithful representations
in Xn(Γ).

(iii) Structural stability: What happens to a Kleinian group in Mob(Sn) if we
deform it a little bit? Does it stay Kleinian?

(iv) Compactness of Dn(Γ) and estimates on various natural continuous function-
als on Dn(Γ).

(v) Difficulties in constructing “truly higher-dimensional” geometrically infinite
Kleinian groups.

11.1. Local theory

We start by considering the local structure of Xn(Γ). Given an abstract group Γ
and a representation ρ ∈ Rn(Γ), we have the adjoint action of ρ(Γ) on the Lie
algebra g of Mob(Sn) and the associated first cohomology group

H1(Γ, Ad(ρ)) = Z1(Γ, Ad(ρ))/B1(Γ, Ad(ρ)),

see Section 4. It was first observed by A. Weil [226] (in the general context of repre-
sentations to Lie groups) that if Xn(Γ) is smooth at [ρ] ∈ Xn(Γ) thenH1(Γ, Ad(ρ))
is isomorphic to the tangent space to Xn(Γ) at [ρ]. Moreover, Weil proved that if
H1(Γ, Ad(ρ)) = 0 then [ρ] is an isolated point on Xn(Γ), i.e., ρ is rigid.

Therefore, the elements of H1(Γ, Ad(ρ)) can be regarded as infinitesimal de-
formations of the representation ρ. An infinitesimal deformation [ξ] ∈ H1(Γ, Ad(ρ))
is called integrable if it is tangent to a smooth curve in Xn(Γ). The obstruc-
tions to integrability are cohomological in nature, they are certain elements of
H2(Γ, Ad(ρ)), called Massey products. However, in practice, these cohomology
classes are very difficult to compute. The first such obstruction is the cup-product:

φ([ξ]) = [ξ] ∪ [ξ] ∈ H2(Γ, Ad(ρ)),

see for instance [82]. Here φ([ξ]) is represented by the 2-cocycle

τ(x, y) = [ξ(x), Ad ◦ ρ(x)ξ(y)],

where [, ] is the Lie bracket on the Lie algebra g. If the first obstruction vanishes
and Γ is the fundamental group of a surface, then Xn(Γ) is smooth at ρ, see [82],
where a much more general result is proved.
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We will be mostly interested in the case where ρ : Γ ↪→Mob(Sn) is a discrete
embedding, whose image we will identify with Γ. Then, by abusing the terminology,
we will talk of small deformations of ρ in Rn(Γ) as small deformations of Γ itself.

11.1.1. Small deformations of 1-quasifuchsian groups. Recall that Mob(Sn) has
dimension d = (n+ 2)(n+ 1)/2. Suppose that Γ ⊂Mob(Sn) is 1-quasifuchsian; in
this subsection we allow Γ to have nontrivial finite order elements. We assume how-
ever that Γ contains no elements fixing the circle C = Λ(Γ) pointwise. Therefore
we obtain the injective map

Γ → Isom(H2)
given by the restriction of the elements of Γ to the round circle C. To simplify the
discussion we assume that Γ preserves the orientation on C. Then Γ embeds as a
lattice in PSL(2,R).

If Γ contains no parabolic elements then it has the presentation:

〈a1, b1, . . . ., aq, bq, c1, . . . , ck|[a1, b1] · · · · [aq, bq] ·c1 · · · · ·ck = 1, crj

j = 1, j = 1, . . . , k〉.
For a representation ρ : Γ →Mob(Sn) we let

ej := d− dim{ξ ∈ g : Ad ◦ ρ(cj)(ξ) = ξ};
in other words, ej is the codimension of the centralizer of ρ(cj) in Mob(Sn). Let
s denote the dimension of the centralizer of ρ(Γ) in Mob(Sn).

Theorem 11.1. (A. Weil [226].)

h = dimH1(Γ, Ad(ρ)) = (2q − 2)d+ 2s+ e1 + · · ·+ ek. (11.1)

Moreover, if s = 0, then Xn(Γ) near [ρ] is a smooth h-dimensional manifold.

For instance, if n = 1, Γ ⊂ PSL(2,R) ⊂ Mob(S1); therefore d = 3, we get
ei = 1 for each i = 1, . . . , k, s = 0. Hence

h = 6q − 6 + k,

which is the familiar formula for the dimension of the Teichmüller space of the
orbifold O = H2/Γ. If n = 2, we, of course, obtain h = 2(6q − 6 + k) which is the
(real) dimension of the space of the quasifuchsian deformations of Γ in PSL(2,C).

To better understand the difficulties which one encounters in the case of
i-fuchsian groups for i ≥ 2, we consider the hyperbolic triangle groups Γ. The
reason for considering these groups is that they are rigid in PSL(2,R) (similarly
to rigidity of lattices in Mob(Sn), n ≥ 2).

The triangle groups are the 1-fuchsian groups with q = 0, k = 3; every such
Γ has the presentation

〈c1, c2, c3|c1 · c2 · c3 = 1, crj

j = 1, j = 1, 2, 3〉,
where r−1

1 + r−1
2 + r−1

3 < 1. Such group embeds discretely into PSL(2,R) and we
will denote the image of this embedding by Δ = Δ(r1, r2, r3)

As a subgroup of Mob(S2), the group Δ is rigid (which follows from vanishing
of H1). Moreover, triangle groups are “strongly rigid” in Mob(S2), i.e., every
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discrete embedding of Γ into Mob(S2) is induced by conjugation of the identity
embedding, see [84] for the complete description of X2(Γ).

The situation changes somewhat if we consider representations into Mob(S3).
First, let ρ0 : Δ→ Γ′ ⊂Mob(S3) be the embedding obtained as the composition

Δ ⊂Mob(S1) ↪→Mob(S2) ↪→Mob(S3).

of natural embeddings. Then dimH1(Δ, Ad(ρ0)) = 0 and hence ρ0 is still rigid in
Mob(S3). The easiest way to see this is to use Weil’s formula (11.1):

d = 10, s = 1, ej = 6, for j = 1, 2, 3

and hence

h = −20 + 2 + 6 + 6 + 6 = 0.

However, instead of ρ0 we can take a twisted extension. Suppose that we can find
numbers mj ∈ Z, 1 < |mj | < rj − 1 (j = 1, 2, 3) such that:

m−1
1 +m−1

2 +m−1
3 = 0, and ∀j, mj divides rj .

(This is satisfied for instance by m1 = m2 = 4,m3 = −2 and rj = 8 for all j.)
Define a homomorphism θ : Δ → SO(2) by sending ci to the rotation by

2π/mi. Then define ρ : Δ →Mob(S1)× SO(2) ⊂Mob(S3) by twisting ρ0 via θ:

ρ(γ) = ρ0(γ)× θ(γ), γ ∈ Δ.

It is clear that ρ(Δ) is again a 1-fuchsian subgroup in Mob(S3). If rj > 3 for
each j, then ej = 8, s = 1 and the formula (11.1) gives the dimension h = 6 for
H1(Δ, Ad(ρ)). I do not know if any of these infinitesimal deformations is integrable.
To decide this one has to analyze the quadratic form

φ : H1(Δ, Ad(ρ)) → H2(Δ, Ad(ρ)) = R,

given by the cup-product. According to [82], the quadratic cone {φ = 0} is ana-
lytically isomorphic to a neighborhood of [ρ] in X3(Δ); hence it suffices to find a
nontrivial 1-cocycle ξ for which φ([ξ]) = 0 to get nontrivial deformations of the
representation ρ.

On the other hand, one can use (11.1) to show that every representation ρ
of the group Δ = Δ(2, 3, r3) into Mob(S3) has zero cohomology H1(Δ, Ad(ρ)).
Therefore X3(Δ) is a zero-dimensional algebraic variety and, hence, is a finite set.

This situation is somewhat typical for representations of lattices in Mob(Sn)
(n ≥ 2) into Mob(Sn+1): In a number of cases we can prove rigidity by making co-
homological computations; in some cases we can only conclude that H1 is nonzero,
without being able to make a definitive conclusion about existence of nontrivial
deformations.
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11.1.2. Small deformations of i-quasifuchsian groups for i ≥ 2. In the case of
(n − 1)-quasifuchsian groups Γ (n ≥ 2), the existence of nontrivial deformations
of Γ in Mob(Sn) is not at all clear. Suppose that Γ ⊂ Isom(Hn) is a cocompact
lattice. Then the identity embedding

ι : Γ ↪→ Isom(Hn),

is rigid by Mostow’s theorem.

Remark 11.2. Actually, (local) rigidity of ι was known prior to the work of Mostow;
it was first established by E. Calabi [48], whose proof was later generalized by
A. Weil [224, 225]. These arguments were based on proving that H1(Γ, Ad(ι)) = 0.

Consider now the composition of ι with the natural embedding:

ρ : Γ → Isom(Hn) ↪→ Isom(Hn+1).

Then
H1(Γ, Ad(ι)) ∼= H1(Γ, Vn),

where Vn = Rn,1 and Γ acts on the Lorentz space Rn,1 via the usual embedding
Γ ↪→ O(n, 1).

It turns out that ρ may or may not be rigid, even if Γ is torsion-free: Rigidity
depends on the lattice Γ. One has the following list ((a) through (e)) of construc-
tions of deformations and infinitesimal deformations of [ρ] in Xn(Γ):

(a) Bending, see [103], [135]. Given a connected properly embedded totally-
geodesic hypersurface S ⊂ M = Hn/Γ, one associates with S a smooth curve
through [ρ] in Xn(Γ), called the bending deformation of [ρ]. More generally, given
a disjoint collections of such hypersurfaces S1, . . . , Sk, one obtains a k-dimensional
smooth submanifold in Xn(Γ) containing [ρ]. This construction is completely anal-
ogous to bending deformations of 1-fuchsian subgroups in Mob(S2) defined by
W. Thurston in [213]. We let [ξS ] denote the element of H1(Γ, Ad(ρ)) correspond-
ing to a connected totally-geodesic hypersurface S ⊂M .

There are numerous groups Γ satisfying assumptions of the bending con-
struction. Namely, start with an arithmetic group O′(f,A) of the simplest type
(see Section 2), where

f = a0x20 + a1x21 + · · ·+ anx2n,
and a0 < 0, ai > 0, i = 1, . . . , n. Identify Hn with a component of the hyperboloid
{f(x) = −1}. Then the stabilizer of the hyperplane P = {xn = 0} in O′(f,A) is
an arithmetic lattice in Isom(Hn−1). The intersection H = P ∩Hn is a hyperplane
in Hn. After passing to an appropriate finite-index subgroup Γ in O′(f,A), one
obtains a totally-geodesic embedding of the hypersurface S = H/Γ′ into H/Γ,
where Γ′ = Γ ∩O′(f,A). We refer the reader to [164] for the details.

Problem 11.3 (I. Rivin). Construct examples of hyperbolic n-manifolds M of finite
volume (n ≥ 4) such that M contains a separating properly embedded totally-
geodesic hypersurface S ⊂M . Note that the main objective of [164] was to construct
nonseparating hypersurfaces.
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The idea of bending deformations of representations is quite simple and has
nothing to do with the hyperbolic space. Below is a general description of bending
as defined by D. Johnson and J. Millson in [103]. Suppose that we are given a graph
of groups G with the vertex groups Γv and the edge groups Γe. Let Γ = π1(G) be
the fundamental group of G. For instance, the amalgam

Γ = Γv1 ∗Γe Γv2 (11.2)

is the fundamental group of a graph of groups which is a single edge e with two
vertices v1, v2. Let ρ0 : Γ → G be a representation of Γ to a Lie group G. A bending
deformation of ρ0 is a curve of representations ρt : Γ → G, t ∈ [−1, 1], such that
for each vertex group Γv, we have

ρt|Γv = gv,t(ρ0|Γv)g−1
v,t ,

for some curve gv,t of elements of G.
Therefore, the restriction of ρt to each vertex group determines a trivial

deformation of the representation of this group. The trick is that the deformation
of the representation of the entire group Γ may be still nontrivial. For instance,
in the case of the amalgam (11.2), let gt ∈ G, g0 = 1, be a curve of elements
centralizing ρ(Γe), but not ρ(Γv1), ρ(Γv2). Define the family of representations

ρt : Γ → G, ρt|Γv1 = ρ0|Γv1 , ρt|Γv2 = gt(ρ0|Γv1)g
−1
t .

In the case of the HNN extension

Γ = Γv1∗Γe

generated by Γv1 and τ ∈ Γ such τΓeτ
−1 = Γ′

e ⊂ Γv1 , we take

ρt|Γv1 = ρ0|Γv1 , ρt(τ) = ρ0(τ)gt.

This is a nontrivial deformation of the representation ρ0.
We now return to the case when Γ = π1(M), M is a hyperbolic n-manifold

containing pairwise disjoint totally geodesic hypersurfaces Si, i = 1, . . . , k. Then
the group Γ splits as the graph of groups G, so that the vertex subgroups Γvj are
the fundamental groups of the components of M \ (S1 ∪ · · · ∪ Sk) and the edge
groups Γei are the fundamental groups π1(Si). Therefore

1. The centralizer of each Γei = π1(Si) in Mob(Sn) is 1-dimensional (the group
of elliptic rotations around the limit set of Γei).

2. The centralizer in Mob(Sn) of the fundamental group of each Γvj is zero-
dimensional (i.e., Z2).

Hence one obtains nontrivial bending deformations ρt of the identity embedding of
ρ : Γ ↪→Mob(Sn). The set of bending parameters t = (t1, . . . , tk) can be identified
with (S1)k, as the centralizer of each Γei in Mob(Sn) is the circle SO(2).

Theorem 11.4. (D. Johnson and J. Millson [103].) For every n≥4 there exists a
uniform lattice Γ⊂ Isom(Hn) and intersecting hypersurfaces S1,S2⊂Hn/Γ, so that

[ξS1 ] ∪ [ξS2 ] ∈ H2(Γ, Ad(ρ)) �= 0.

In particular, Xn(Γ) is not smooth at [ρ].
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In contrast with this result, the character varieties X2(Γ) tend to be smooth:

Theorem 11.5. (M. Kapovich [116, Theorem 8.44].) Let Γ ⊂Mob(S2) be a discrete
subgroup. Then the identity embedding ι : Γ → Mob(S2) determines a smooth
point on X2(Γ).

On the other hand, there are cocompact lattices Γ ⊂Mob(S2) and (nondis-
crete) representations ρ : Γ →Mob(S2) for which X2(Γ) has nonquadratic singu-
larity at [ρ], see [126].

(b) Generalized bending associated with a collection of compact totally-geo-
desic submanifolds with boundary in Mn, see [12]8, [125], [161], [13].

The idea of the generalized bending is that instead of considering fundamental
groups of graphs of groups, one looks at the more general complexes of groups.
The only examples which had been worked out are 2-dimensional complexes of
groups. Let X be such a complex with the vertex groups Γv. Let π1(X ) = Γ and
ρ0 : Γ → G be a representation to a Lie group. Then, as in the definition of bending,
a generalized bending of ρ0 is a curve of representations ρt : Γ → G, t ∈ [−1, 1],
whose restrictions to each vertex subgroup Γv are trivial deformations of ρ0|Γv.

(c) Suppose that a lattice Γ ⊂ Isom(Hn) is a reflection group, i.e., it is
generated by reflections in the faces of a convex acute polyhedron Φ ⊂ Hn of finite
volume (the fundamental domain of Γ). If f is the number of facets of Φ, then one
can show that

dimH1(Γ, Ad(ρ)) = f − n− 1,

see [113]. The facets of Φ correspond to vectors spanning H1. If n ≥ 4, it is unclear
which (if any) of these infinitesimal deformations are integrable. Of course, in some
examples some of these infinitesimal deformations are integrable, since they appear
as infinitesimal bending deformations. If n = 3, then X3(Γ) is smooth near [ρ] and
has dimension f − 4, see [113].

And that’s all for n ≥ 3.

Problem 11.6 (P. Storm). Let M be a compact hyperbolic (n + 1)-dimensional
manifold with nonempty totally-geodesic boundary, n ≥ 3. Let Γ := π1(M) ⊂
Mob(Sn). Is it true that Γ is rigid in Mob(Sn)?

Note that (by Mostow rigidity) rigidity of Γ would follow if we knew that for
each component S of ∂M , the fundamental group ΓS := π1(S) is rigid in Mob(Sn).
At the moment, we do not have results in either direction of this problem:

1. It is unclear if any of the rigid hyperbolic 3-manifolds, or their disjoint union
(see Example 11.1.2), bounds a compact hyperbolic 4-manifold.

2. Even if some ΓS is not rigid, it is unclear if its deformations extend to defor-
mations of Γ.

8Some of the theorems stated in this paper are probably incorrect since they do not take into
account the restrictions on the angles between the totally-geodesic submanifolds.
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The only known example of a rigid group Γ (as in Problem 11.6) is the fun-
damental group of a 4-dimensional hyperbolic orbifold. Moreover, in this example
the group ΓS is not rigid:

Consider the 120-cell D4 ⊂ H4 which appears in [60]. Pick a facet F ⊂ D4.
Let Γ ⊂ Mob(S3) be the Kleinian group generated by reflections in all facets of
D4 except for F . Then Γ is the fundamental group of a right-angled 4-dimensional
reflection orbifold O with boundary (the boundary S = ∂O corresponds to the
facet F ). The subgroup ΓS := π1(S) is the Coxeter group generated by reflections
in the facets of the regular right-angled hyperbolic dodecahedron. In particular,
X3(Γ) is a smooth 8-dimensional manifold near [ι], where ι : ΓS ↪→ Mob(S2) ↪→
Mob(S3) is the identity embedding.

Theorem 11.7 (M. Kapovich). Γ is rigid in Mob(S3).

Assume now that n = 3.

(d) The first obstruction to integrability of infinitesimal deformations is al-
ways zero, see [126].

Question 11.8. Suppose that Γ ⊂ Mob(S2) is a cocompact lattice. It it true that
the character variety X3(Γ) is smooth at the point [ρ]?

(e) Finally, there are several constructions which work for specific examples
of lattices Γ ⊂Mob(S2), e.g., stumping deformations [9], generalized in [212].

We recall the following

Conjecture 11.9. Suppose that Γ ⊂Mob(Sn) is a lattice. Then Γ contains a finite-
index subgroup Γ′ such that Γ′ has infinite abelianization, i.e., H1(Γ′,R) �= 0.

We refer the reader to [144, 146, 164, 189, 200] for various results towards
this conjecture in the case of arithmetic lattices in Isom(Hn). The methods used in
these papers for proving virtual nonvanishing of the first cohomology group usually
also apply to the cohomology groups H1(Γ, Ad(ρ)), where ρ : Γ → Isom(Hn+1) is
the natural embedding. On the other hand, the proofs of special cases of Conjecture
11.9 for hyperbolic 3-manifolds which use the methods of 3-dimensional topology
(see, e.g., [142]), usually provide no information about rigidity of Γ in Isom(H4).

Conjecture 11.10. Suppose that Γ ⊂ Isom(Hn) is a lattice. Then there exists a
finite-index subgroup Γ′ ⊂ Γ so that H1(Γ′, Ad(ρ)) �= 0.

On the other hand, some uniform torsion-free lattices in Mob(S2) are rigid
in Mob(S3):

Example. In [113] we constructed examples of (torsion-free) cocompact lattices Γ
in Mob(S2) for which H1(Γ, Ad(ρ)) = 0, where ρ : Γ → Mob(S3) is the natu-
ral embedding. The quotient manifolds H3/Γ in these examples are non-Haken.
K. Scannell [197] constructed analogous examples with Haken quotients H3/Γ.
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More specifically, it was proved in [113] that for every hyperbolic 2-bridge
knot K ⊂ S3, there are infinitely many (hyperbolic) Dehn surgeries on K, so that
for the resulting manifolds Mj , j ∈ N, we have

H1(Γj , Ad(ρ)) = 0, where Γj = π1(Mj).

11.1.3. Failure of quasiconformal isotopy. The goal of this section is to construct
examples of Kleinian groups which are quasiconformally conjugate, but cannot be
deformed to each other. As the reader will see, the tools for constructing such
examples were available 12 years ago. I realized that such examples exist only
recently, while working on this survey.

Theorem 11.11. There exists a pair of convex-cocompact Kleinian groups Δ1,Δ2 ⊂
Mob(S5) and a quasiconformal homeomorphism f : S5 → S5 conjugating Δ1 to
Δ2, which is not isotopic to the identity through homeomorphisms ht : S5 → S5

such that
htΔ1h

−1
t ⊂Mob(S5) .

Proof. We begin with a lattice Γ = π1(N), where N = Mj is as in the discussion
of Example 11.1.2 and K ⊂ S3 is the figure 8 knot. Consider the representation

ρ1 : Γ ↪→Mob(S2) ↪→Mob(S5)

obtained by the composition of natural embeddings. Then

H1(Γ, Ad(ρ1)) = H1(Γ, V3 ⊕ V3 ⊕ V3 ⊕ R3),

where V3 = R3,1 and R3 is the trivial 3-dimensional RΓ-module. Since H1(Γ, V3) =
0 by [113] and H1(Γ,R3) = 0 since N is a rational homology sphere, we obtain

H1(Γ, Ad(ρ1)) = 0.

Therefore ρ1 is rigid. If N is an integer homology 3-sphere, then nonvanishing of
the Casson invariant of K implies that Γ admits a nontrivial homomorphism

θ : Γ → SO(3),

which lifts to SU(2), see [7]. If Mj is not an integer homology sphere, then Γ has
nontrivial abelianization and hence we also obtain a nontrivial homomorphism
θ : Γ → SO(3) with cyclic image. In any case, we twist the representation ρ1 by θ:

ρ2 = ρ1 × θ : Γ →Mob(S2)×SO(3) ⊂Mob(S5) .

It is clear that [ρ1], [ρ2] are distinct points of X5(Γ). The images of ρ1 and ρ2 are
2-fuchsian, convex-cocompact groups Δ1,Δ2 ⊂ Mob(S5). We obtain the isomor-
phism

ρ := ρ2 ◦ ρ−1
1 : Δ1 → Δ2

Clearly,
M5(Δ1) = N × S2,

while M5(Δ2) is the 2-sphere bundle over N associated with θ. It is easy to see
that the latter bundle is (smoothly) trivial. Therefore we obtain a diffeomorphism

h :M5(Δ1)→M5(Δ2)
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which lifts to a ρ-equivariant diffeomorphism f : Ω(Δ1) → Ω(Δ2). The latter
extends to a quasiconformal homeomorphism f : S5 → S5 by Theorem 6.1. If
there was a continuous family of homomorphisms ρt connecting ρ to the identity
embedding Δ1 → Δ2, then the representation ρ1 would not be rigid in X5(Γ).
Contradiction. �

By embedding naturally the groups Δ1,Δ2 to Mob(Sn) for n ≥ 6 one obtains
higher-dimensional examples.

11.2. Stability theorem

Let Γ ⊂ Mob(Sn) be a geometrically finite Kleinian group. Consider the set of
cusps in Γ:

[Π1], . . . , [Πm],
where Πi are maximal parabolic subgroups of Γ. We define the (topologically)
relative representation variety

Rtop
n (Γ) = {ρ : Γ →Mob(Sn) : ρ(Πi) is topologically conjugate to Πi in Sn, ∀i}

and the (quasiconformally) relative representation variety

Rqc
n (Γ) = {ρ : Γ →Mob(Sn) : ρ(Πi) is quasiconformally conjugate to Πi in Sn}.

Let Homeo(Sn) and QC(Sn) be the groups of homeomorphisms and qua-
siconformal homeomorphisms of Sn with the topology of uniform convergence.
Let Xtop

n (Γ), Xqc
n (Γ) be the projections of Rtop

n (Γ), Rqc
n (Γ) to Xn(Γ). Let ι : Γ →

Mob(Sn) be the identity embedding. Then the Stability Theorem for geometri-
cally finite groups states that every homomorphism ρ of Γ sufficiently close to
ι is induced by a (quasiconformal) homeomorphism hρ close to the identity and
depending continuously on ρ. More precisely:

Theorem 11.12. (Stability theorem, see [40, 69, 79, 108, 152, 210].) There exist
neighborhoods U top, U qc of ι in Rtop

n (Γ), Rqc
n (Γ) respectively, and continuous maps

Ltop : U top → Homeo(Sn), Lqc : U qc → QC(Sn)

so that
Ltop(ι) = Lqc(ι) = Id,

and for every ρ ∈ U top, resp. ρ ∈ U qc, the homeomorphism Ltop(ρ), resp. Lqc(ρ)
is ρ-equivariant.

This theorem was first proved by A. Marden in [152] in the case n = 3.
Marden was using convex finitely-sided fundamental domains with simplicial links
of vertices: Such polyhedra are generic among the Dirichlet fundamental domains,
see [106]. Marden then argued that a small perturbation of such fundamental
domain is again a fundamental domain (by the Poincaré fundamental polyhedron
theorem). Moreover, the simplicial assumption implies that the combinatorics of
the fundamental domain does not change under a small perturbation. This allowed
Marden to construct an equivariant quasiconformal homeomorphism close to the
identity. This argument does not readily generalize to higher dimensions, mainly
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because finiteness of the number of faces is not equivalent to geometric finiteness.
(Otherwise, the same argument goes through.)

D. Sullivan [210] considered the case of general n, but assumed that Γ is
convex-cocompact. Then he proved the existence of a homeomorphism hρ defined
on the limit set of Γ and the fact that it depends continuously on ρ. The fact that

hρ : Λ(Γ)→ Λ(ρ(Γ))

is necessarily quasi-symmetric, then follows from Tukia’s theorem 6.1. One then has
to show existence of a ρ-equivariant diffeomorphism of the domains of discontinuity

fρ : Ω(Γ)→ Ω(ρ(Γ))

smoothly depending on ρ. This is achieved by appealing to Thurston’s holonomy
theorem (see [69, 79]) for the Möbius structures on the manifold Mn(Γ), as it is
done in [101, 108]. The homeomorphisms hρ and fρ yield a ρ-equivariant quasi-
conformal homeomorphism of the n-sphere by Theorem 6.1.

The proof in [69] is a good alternative to the above argument; it is also
sufficiently flexible to handle the case of geometrically finite Kleinian groups with
cusps. Namely, instead of working with the n-dimensional manifold Mn(Γ) one
works with the convex hyperbolic (n+ 1)-manifold

H(Γ) := Hullε(Λ(Γ))/Γ.

An analogue of Thurston’s holonomy theorem for manifolds with boundary applies
in this case. Thus, for ρ ∈ U top, there exists a hyperbolic structure s(ρ) (with the
holonomy ρ) on the thick part

H(Γ)[μ,∞)

of the manifold H(Γ). Moreover, convexity of the boundary for the new hyper-
bolic structures (away from the cusps) persists under small perturbations of the
hyperbolic structure. Therefore, if Γ is convex-cocompact, Γ′ := ρ(Γ) is again
convex-cocompact and ρ : Γ → Γ′ is an isomorphism. If Γ is merely geometrically
finite, because ρ belongs to the relative representation variety, it follows that the
hyperbolic structure s(ρ) extends to a convex complete hyperbolic structure on
the cusps. This argument also yields a ρ-equivariant diffeomorphism

Hullε(Λ(Γ)) → Hullε(Λ(Γ′))

depending continuously on ρ. To get from the convex hulls to the domain of discon-
tinuity one uses the existence of the canonical equivariant diffeomorphisms (“the
nearest-point projections”)

Ω(Γ) → ∂Hullε(Λ(Γ)), Ω(Γ′)→ ∂Hullε(Λ(Γ′)).

We refer the reader to [69] for the details.

Sullivan also had a converse to the Stability Theorem for (finitely-generated)
subgroups on Mob(S2):
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Theorem 11.13. (D. Sullivan, [210, Theorem A′]) If a (finitely-generated) Kleinian
subgroup of Mob(S2) is stable in the sense of Theorem 11.12, then it is geometri-
cally finite or its identity embedding in Mob(S2) is rigid in X2(Γ).

It was proved in [116] that every rigid Γ in the above theorem has to be
geometrically finite. Now it, of course, follows from the positive solution of the
Bers–Thurston density conjecture (geometrically finite groups are dense among
Kleinian subgroups of Mob(S2)).

Question 11.14. Does Theorem 11.13 hold for subgroups of Mob(Sn), n ≥ 3?

We expect the answer to be negative.

11.3. Space of discrete and faithful representations

Let Dn(Γ) ⊂ Xn(Γ) denote the subset corresponding to discrete, injective and
nonelementary representations of Γ.

Theorem 11.15 (Chuckrow–Jørgensen–Wielenberg). Dn(Γ) ⊂ Xn(Γ) is closed. See
for instance [227, 154].

It turns out that there exists another way to construct limits of sequences of
Kleinian groups, by regarding them as closed subsets of Mob(Sn). This leads to
the topology of geometric convergence of Kleinian groups. With few exceptions,
the space of Kleinian groups is again closed in this topology (see, e.g., [215, 116]).
In general, Dn(Γ) is not compact. Nevertheless, this space can be compactified
by projective classes of nontrivial Γ-actions on real trees. This compactification
generalizes Thurston’s compactification of the Teichmüller space. The compactifi-
cation by actions on trees was first defined by J. Morgan and P. Shalen [172] and
J. Morgan [171] using algebraic geometry. More flexible, geometric, definitions of
this compactification were introduced by M. Bestvina [23] and F. Paulin [182]. See
also [116] for the construction of this compactification using ultralimits of metric
spaces.

This viewpoint provides a powerful tool for proving compactness of Dn(Γ)
for certain classes of groups: If Dn(Γ) is non-compact then Γ admits nontrivial
action on a certain R-tree. One then proves that such action cannot exist. The
tools for proving such non-existence theorems are originally due to Morgan and
Shalen (but limited to the fundamental groups of 3-manifolds, see [172]); a much
more general method is due to E. Rips (Rips theory), see [27]. One then obtains
the following (see, e.g., [116]):

Theorem 11.16 (Rips–Thurston Compactness theorem). Suppose that Γ is a fini-
tely-presented group which does not split as an amalgam over a virtually abelian
group. Then Dn(Γ) is compact.

Remark 11.17. W. Thurston [214] proved this theorem for a certain class of 3-
manifold groups in the case n = 2.

Unfortunately, none of the known proofs of Theorem 11.16 gives an explicit
bound on the “size” of Dn(Γ).
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Problem 11.18. Find a “constructive” proof of Theorem 11.16. More precisely,
consider a group Γ with a finite presentation 〈g1, .., gk|R1, .., Rm〉. Given [ρ] ∈
Dn−1(Γ) define

Bn−1([ρ]) := inf
x∈Hn

max
i=1,...,k

d(x, ρ(gi)(x)).

Find an explicit constant C, which depends on n, k,m and the lengths of the words
Ri, so that the function Bn−1 : Dn−1(Γ)→ R is bounded from above by C.

Remark 11.19. In the case of Coxeter groups Γ, such explicit bound was obtained
by Y. Lai [143]: The constant C depends only on the rank of the Coxeter group
and n.

Theorem 11.16 suggests that one should also look for geometric bounds on [ρ] ∈
Dn(Γ): Even if Dn(Γ) is noncompact (or its “size” is unknown), one can still try
to find some natural functionals on Dn(Γ) and obtain explicit bounds (from below
and from above) on these functionals.

Definition 11.20 (Diameter of a representation). Given a discrete embedding ρ :
Γ → Γ′ = ρ(Γ) ⊂ Mob(Sn), consider the set S of connected subgraphs σ ⊂
Hn+1/Γ′ with the property: The map π1(σ) → π1(M) is surjective.

Then the diameter of ρ is

diam(ρ) := inf{length(σ) : σ ∈ S}.

Problem 11.21. Given a group Γ as in Theorem 11.16, find explicit bounds on
diam(ρ) (in terms of the presentation of Γ) for representations [ρ] ∈ Dn(Γ).

Note that the positive lower bound on diam(ρ) is an easy corollary of the
Kazhdan-Margulis lemma.

Definition 11.22. (Volumes of a representation) Fix a homology class [ζ] ∈ Zp(Γ),
2 ≤ p ≤ cd(Γ). For a representation ρ ∈ Dn(Γ) consider the quotient manifold
M = Hn/ρ(Γ). Define the set E(ζ) of singular p-cycles ζ′ ∈ Zp(M) which represent
the homology class [ζ] under the isomorphism

Hp(Γ) → Hp(M)

induced by the isomorphism ρ : Γ → π1(M). Lastly, define the ρ-volume of the
class [ζ] by

V olρ(ζ) := inf{V ol(ζ′) : ζ′ ∈ E(ζ)}.

Let ||ζ|| denote the Gromov-norm of the class [ζ] and let cp denote the vol-
ume of the regular ideal geodesic p-simplex in Hp. Then an easy application of
Thurston’s “chain-straightening” is the inequality

V olρ(ζ) ≤ cp||ζ||
for all ρ, [ζ] and p ≥ 2. However good lower bounds on the volume are considerably
more difficult to get.
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Given a hyperbolic manifoldM define Hpar
p (M) to be the image in Hp(M) of

the p-th homology group of the union of all cusps of M . Then for every parabolic
class [ζ] ∈ Hpar

p (M) and every ρ, we clearly have

V olρ(ζ) = 0.

However there exists a positive constant ε = ε(p, n) such that for every p > 0,
every non-cuspidal class [ζ] and every ρ, we obtain

V olρ(ζ) ≥ ε,
see [121]. Below are some more interesting lower bounds on the volume:

Theorem 11.23. (Follows directly from [86, Theorem 5.38]9). Let Γ be isomorphic
to the fundamental group of a compact aspherical k-manifold N and [ζ] = [N ]
be the fundamental class of M . Then there exists a universal (explicit) constant
c(p, n) > 0 depending only on p and n, such that

V olρ(ζ) ≥ c(p, n)||N ||.
One gets better estimates using the work of Besson, Courtois and Gallot [21]

10:

Theorem 11.24. Fix a representation [φ] ∈ Dn(Γ). Then for every [ρ] ∈ Dn(Γ) and
p ≥ 3 we obtain ( p

n

)p+1

V olφ(ζ) ≤ V olρ(ζ).

For instance, if Γ′ := φ(Γ) happens to be a uniform lattice in Isom(Hp), we
obtain

Corollary 11.25. For every [ρ] ∈ Dn(Γ) and p ≥ 3 we have( p
n

)p+1

V ol(M ′) ≤ V olρ(ζ),

where M ′ = Hp/Γ′ and [ζ] is the fundamental class.

11.4. Why is it so difficult to construct higher-dimensional geometrically infinite
Kleinian groups?

(i). The oldest trick for proving existence of geometrically infinite groups is due to
L. Bers [19]:

Start with (say) a convex-cocompact subgroup Γ ⊂ Mob(Sn). Let Q(Γ) ⊂
Dn(Γ) be the (open) subset of representations induced by quasiconformal conju-
gation. Let Q0(Γ) denote the component of Q(Γ) containing the (conjugacy class
of) identity representation [ρ0]. We assume that the closure of Q0(Γ) is not open
in Xn(Γ). Then there exists a curve [ρt] ∈ Xn(Γ), t ∈ [0, 1], so that ρ1 is either
nondiscrete or non-injective. Since Dn(Γ) is closed, it follows that there exists
s ∈ (0, 1) such that [ρs(Γ)] belongs to Dn(Γ) but ρs(Γ) is not convex-cocompact.

9I am grateful to A. Nabutovsky for this reference.
10I am grateful to J. Souto for pointing this out.
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If Γ′ = ρs(Γ) contains no parabolic elements, it would follow that Γ′ is isomorphic
to Γ and is not geometrically finite. However, it could happen that the frontier of
Q0(Γ) consists entirely of the classes [ρ] for which ρ(Γ) contains parabolic elements.

The latter cannot occur if n = 2 for dimension reasons: The set of parabolic
elements of PSL(2,C) has real codimension 2 and, hence, does not separate. How-
ever for all n �= 2, the set of parabolic elements has real codimension 1 and this
argument is inconclusive.

One can try to apply the above argument in the case of a codimension 1
fuchsian group Γ ⊂ Mob(Sn) which acts as a cocompact lattice on Hn ⊂ Hn+1.
Suppose thatM = Hn/Γ contains a totally-geodesic compact hypersurface S. Then
we have the circle S1 worth of bending deformations ρt along S. As t = π, the
image of ρt is again contained in Mob(Sn−1). Therefore ρπ is either nondiscrete
or non-injective. However, conceivably, in all such cases, for [ρs] ∈ ∂Q0(Γ) the
representation ρs is geometrically finite (because its image may contain parabolic
elements). It happens, for instance, if Γ is a reflection group.

Note that even when n = 2 and we are bending a 1-fuchsian group Γ, it
is hard to predict which simple closed geodesics α ⊂ H2/Γ yield geometrically
infinite groups (via bending along α).

(ii). One can try to construct explicit examples of fundamental domains,
following, say, T. Jørgensen [104] or A. Marden and T. Jørgensen [105].

The trouble is that constructing fundamental polyhedra with infinitely many
faces in H4 is quite a bit harder than in H3. One can try to find a lattice Γ̂ ⊂
Mob(S3) which contains a nontrivial finitely-generated normal subgroup Γ of in-
finite index.11 This is, probably, the most promising approach, since it works for
complex-hyperbolic lattices in PU(2, 1), cf. [115]. One can try to imitate Livne’s
examples, by constructing Γ ⊂ Γ̂ such that Γ̂/Γ is isomorphic to a surface group.
This would require coming up with a specific compact convex polyhedron in H4

such that the associated 4-manifold appears as a (singular) fibration over a surface.

(iii). One can try to use combinatorial group theory. Note that there are
plenty of examples of (mostly 2-dimensional) Gromov-hyperbolic groups Γ̂ which
contain nontrivial finitely-generated normal subgroups Γ of infinite index. See,
e.g., [26, 43, 174, 195] for the examples which are not 3-manifold groups. However
embedding a given hyperbolic group Γ̂ in Mob(Sn) is a nontrivial task, cf. [37, 118]
and discussion in Section 12. The groups considered in [118], probably provide
the best opportunity here, since most of them do not pass the perimeter test of
J. McCammond and D. Wise [162]. (If a geometrically finite group Γ̂ satisfies the
perimeter test, then every finitely-generated subgroup of Γ̂ is geometrically finite.)

(iv). What would geometrically infinite examples look like? Let Γ ⊂Mob(S2)
be a singly-degenerate group; assume for simplicity that the injectivity radius of

11If Γ̂ is a Kleinian group containing a nontrivial normal subgroup Γ of infinite index, then Γ is
necessarily geometrically infinite.
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H3/Γ is bounded away from zero. Let S denote the boundary of

Hull(Λ(Γ))/Γ

and λ ⊂ S be the ending lamination of Γ. Then every leaf of λ lifts to an expo-
nentially distorted curve κ in H3: Given points x, y ∈ κ, their extrinsic distance
d(x, y) in H3 is roughly the logarithm of their intrinsic distance along κ.

One would like to imitate this behavior in dimension 4. Let M be a closed
hyperbolic 3-manifold containing an embedded compact totally-geodesic surface
S ⊂ M . Let λ ⊂ S be an ending lamination from the above example. One would
like to construct a complete hyperbolic 4-manifold N homotopy-equivalent to M ,
so that under the (smooth) homotopy-equivalence f :M → N we have:

For every leaf L of λ, f(L) lifts to an exponentially distorted curve in H4.
Then π1(N) will necessarily be a geometrically infinite subgroup Γ of Mob(S4).
At the moment it is not even clear how to make this work with a hyperbolic metric
on N replaced by a complete Riemannian metric of negatively pinched sectional
curvature, although constructing a Gromov-hyperbolic metric with this behavior is
not that difficult. (Recall that a Riemannian metric is said to be negatively pinched
if its sectional curvature varies between two negative numbers.) An example Γ of
this type is likely to have two components of Ω(Γ): One contractible and one not.

More ambitiously, one can try to get a singly degenerate group Γ ⊂Mob(S3)
(so that Ω(Γ) is contractible andM3(Γ) is compact). How would such an example
look like? One can imagine taking a 1-dimensional quasi-geodesic foliation λ of the
3-manifold M as above and then requiring that for every leaf L ⊂ λ, the curve
f(L) lifts to an exponentially distorted curve in H4. At the moment I do not see
even a Gromov-hyperbolic model of this behavior. Another option would be to
work with 2-dimensional laminations ν (with simply-connected leaves) in M and
require every leaf L ⊂ ν to correspond to an exponentially distorted surface in
H4 (or a negatively-curved simply-connected 4-manifold), which limits to a single
point in S3.

Problem 11.26. Construct a complete negatively pinched 4-dimensional Riemann-
ian manifold N homotopy-equivalent to a hyperbolic 3-manifold M , so that the
convex core of N either has exactly one boundary component or equals N itself.

Question 11.27. Is there a geometrically infinite Kleinian subgroup of Mob(Sn)
whose limit is homeomorphic to the Menger curve? Is there a geometrically infinite
Kleinian subgroup of Mob(Sn) which is isomorphic to the fundamental group of a
closed aspherical manifold of dimension ≥ 3? Are there examples of such groups
acting isometrically on complete negatively pinched manifolds? Are there examples
of hyperbolic (or even negatively curved) 4-manifolds M such that π1(M) = Γ fits
into a short exact sequence

1→ π1(S)→ Γ → π1(F )→ 1,

where S, F are closed hyperbolic surfaces? Note that there are no complex-hyperbolic
examples of this type, see [115].
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12. Algebraic and topological constraints on Kleinian groups

Sadly, there are only few known algebraic and topological restrictions on Kleinian
subgroups in Mob(Sn) that do not follow from the elementary restrictions, which
come from the restrictions on geometry of complete negatively curved Riemannian
manifolds. Examples of the elementary restrictions on a Kleinian group Γ are:

1. Every solvable subgroup of a Kleinian group is virtually abelian.
2. The normalizer (in Γ) of an infinite cyclic subgroup of Γ is virtually abelian.
3. Every elementary (i.e., virtually abelian) subgroup Δ ⊂ Γ is contained in a

unique maximal elementary subgroup Δ̃ ⊂ Γ.
4. Every Kleinian group has finite (virtual) cohomological dimension.

In this section we review known nonelementary algebraic and topological
restrictions on Kleinian groups.

12.1. Algebraic constraints

Definition 12.1. An abstract Kleinian group is a group Γ which admits a discrete
embedding in Mob(Sn) for some n. Such a group is called elementary if it is
virtually abelian.

In order to eliminate trivial restrictions on abstract Kleinian groups one can
restrict attention to Gromov-hyperbolic Kleinian groups. Below is the list of known
algebraic constraints on Kleinian groups under this extra assumption:

1. Kleinian groups are residually finite and virtually torsion-free.12 (This, of
course, holds for all finitely generated matrix groups.)

2. Kleinian groups satisfy the Haagerup property, in particular, infinite Kleinian
groups do not satisfy property (T), see [55].

3. If a Kleinian group Γ is Kähler, then Γ is virtually isomorphic to the fun-
damental group of a compact Riemann surface. This is a deep theorem of
J. Carlson and D. Toledo [52], who proved that every homomorphism of a
Kähler group to Mob(Sn) either factors through a virtually surface group,
or its image fixes a point in Bn+1.
Recall that a topological group G is said to satisfy the Haagerup property

if it admits a (metrically) proper continuous isometric action on a Hilbert space
H . An action of a metrizable topological group G on H is metrically proper if for
every bounded subset B ⊂ H , the set

{g ∈ G : g(B) ∩B �= ∅}
is a bounded subset of G. Since Mob(Sn) satisfies the Haagerup property for every
n (see, e.g., [55]), all Kleinian groups also do.

A group π is called Kähler if it is isomorphic to the fundamental group of a
compact Kähler manifold. For instance, every uniform lattice in CHn is Kähler;
therefore it cannot be an abstract Kleinian group unless n = 1.

12It is widely believed that there are Gromov-hyperbolic groups which are not residually finite.



Kleinian Groups 549

Remark 12.2. A (finitely-generated) group satisfies the Haagerup property if and
only if it admits an isometric (metrically) properly discontinuous action on the
infinite dimensional hyperbolic space H∞, see [85, 7.A.III]. The result of Carlson
and Toledo shows that (for Gromov-hyperbolic groups) there are nontrivial ob-
structions to replacing these infinite-dimensional actions with finite-dimensional
ones.

Observation 12.3. All currently known nontrivial restrictions on abstract Kleinian
groups can be traced to 1, 2 or 3.

Problem 12.4. Find other restrictions on abstract Kleinian groups.

Potentially, some new restrictions would follow from the Rips-Thurston com-
pactness theorem. The difficulty comes from the following. Let Γ be a Gromov-
hyperbolic group which admits no nontrivial isometric actions on R-trees. Then
(see [116]) there exists C < ∞, such that for every sequence [ρj ] ∈ Dn(Γ), we
obtain a uniform bound

Bn([ρj ]) ≤ C, (12.1)

where Bn : Dn(Γ)→ R is the minimax function defined in Problem 11.18. If n were
fixed, then the sequence (ρj) would subconverge to a representation to Mob(Sn)
(for some choice of representations ρj in the classes [ρj ]). However, since we are
not fixing the dimension of the hyperbolic space on which our Γ is supposed to act,
the inequality (12.1) does not seem to yield any useful information. By taking an
ultralimit of ρj ’s we will get an action of Γ on an infinite-dimensional hyperbolic
space. This action, however, may have a fixed point, since

lim
n→∞

μn = 0,

where μn is the Margulis constant for Hn+1. See also Remark 12.2.

Example. Let M3 be a closed non-Haken hyperbolic 3-manifold, so that Π :=
π1(M) contains a maximal 1-fuchsian subgroup F . For each automorphism φ :
F → F we define the HNN extension

Γφ := Π∗F∼=φF = 〈Π, t|tgt−1 = φ(g), ∀g ∈ F 〉.
Then Γφ is Gromov-hyperbolic for all pseudo-Anosov automorphisms φ, see [27].
It is a direct corollary of Theorem 11.16 that for every n, only finitely many of the
groups Γφ embed in Mob(Sn) as Kleinian subgroups. Is it true that there exists a
pseudo-Anosov automorphism φ such that Γφ is not an abstract Kleinian group?

Infinite finitely-generated Gromov-hyperbolic Coxeter groups are all linear,
satisfy the Haagerup property and are not Kähler (except for the virtually surface
groups).

Problem 12.5. Is it true that every finitely-generated Gromov-hyperbolic Coxeter
group Γ is an abstract Kleinian group?
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Note that there are Gromov-hyperbolic Coxeter groups Γ which do not admit
discrete embeddings ρ : Γ →Mob(Sn) (for any n), so that the Coxeter generators
of Γ act as reflections in the faces of a fundamental domain of ρ(Γ), see [76].

The answer to the next question is probably negative, but the examples would
be tricky to construct:

Question 12.6. Is it true that a group weakly commensurable to a Kleinian group
is also a Kleinian group? Even more ambitiously: Is the property of being Kleinian
a quasi-isometry invariant of a group?

Recall that two groups Γ and Γ′ are called weakly commensurable if there
exists a chain of groups and homomorphisms

Γ = Γ0 → Γ1 ← Γ2 → Γ3 · · · .← Γk−1 → Γk = Γ′,

where each arrow Γi → Γi±1 is a homomorphism whose kernel and cokernel are
finite.

There are few more known algebraic restrictions on geometrically finite Klei-
nian groups. All such groups are relatively hyperbolic.

We recall that a group Γ is called cohopfian if every injective endomorphism
Γ → Γ is also surjective.

Remark 12.7. A group Γ is called hopfian if every epimorphism Γ→ Γ is injective.
Every residually finite group Γ is hopfian, see [151]. In particular, every Kleinian
group is hopfian.

For instance, free groups and free abelian groups are not cohopfian. More
generally, if Γ splits as a nontrivial free product,

Γ ∼= Γ1 ∗ Γ2,

then Γ is not cohopfian: Indeed, for nontrivial elements γ1 ∈ Γ1, γ2 ∈ Γ2, set
α := γ1γ2, and

Γ′
1 := αΓ1α

−1.

Then
Γ ∼= Γ′

1 ∗ Γ2

is a proper subgroup of Γ. On the other hand, lattices in Isom(Hn), n ≥ 3, and
uniform lattices in Isom(H2) are cohopfian. Indeed, Mostow rigidity theorem im-
plies that if M1,M2 are hyperbolic n-manifolds of finite volume (and n ≥ 3) or
compact hyperbolic surfaces, and M1 →M2 is a d-fold covering, then

V ol(M1) = dV ol(M2).

On the other hand, if M is a hyperbolic manifold of finite volume (or a compact
hyperbolic surfaces), then every proper embedding

π1(M)→ π1(M)

induces a d-fold coveringM →M , with d ∈ {2, 3, . . . ,∞}. Hence π1(M) is cohop-
fian.
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If a Kleinian group Γ ⊂ Mob(Sn) fails to be cohopfian, we can iterate a
proper embedding φ : Γ → Γ, thereby obtaining a sequence of discrete and faithful
representations

ρi = φ ◦ · · · ◦ φ︸ ︷︷ ︸
i times

of Γ into Mob(Sn). By analyzing such sequences, T. Delzant and L. Potyagailo
[63] obtained a characterization of geometrically finite Kleinian groups which are
cohopfian. We will need two definitions in order to describe their result.

Definition 12.8. If Γ is a Kleinian group and Δ ⊂ Γ is an elementary subgroup,
let Δ̃ denote the maximal elementary subgroup of Γ containing Δ.

Definition 12.9. Suppose a group Γ splits as a graph of groups

Γ ∼= π1(G,Γe,Γv), (12.2)

and suppose that edge groups Γe of this graph are elementary. We say that the edge
group Γe is essentially non-maximal if the subgroup Γ̃e ⊂ Γ, is not conjugate into
any of the vertex subgroups of the graph of groups G. The splitting is essentially
non-maximal if there exists at least one such an edge group. Otherwise we say that
the splitting is essentially maximal.

For instance, if every edge subgroup is a maximal elementary subgroup of Γ,
then the splitting is essentially maximal.

Theorem 12.10. (T. Delzant and L. Potyagailo [63].) Let Γ be a non-elementary,
geometrically finite, one-ended Kleinian group without 2-torsion. Then Γ is cohop-
fian if and only if the following two conditions are satisfied:

1) Γ has no essentially non-maximal splittings.
2) Γ does not split as an amalgamated free product

Γ = Γ1 ∗Γ3 Γ̃3,

with Γ̃3 maximal elementary, such that the normal closure of the subgroup Γ3

in Γ̃3 is of infinite index in Γ̃3.

One of the ingredients in the proof of this theorem was the fact that nonele-
mentary geometrically finite groups Γ do not contain subgroups Γ′, which are
conjugate to Γ in Mob(Sn), see [223].

Question 12.11 (L. Potyagailo). Let Γ ⊂ Mob(Sn) be a finitely generated non-
elementary Kleinian group. Suppose that α ∈Mob(Sn) is such that

Γ′ = αΓα−1 ⊂ Γ.

Does it follow that Γ′ = Γ?

The affirmative answer to this question for n = 2 was given in a paper of
L. Potyagailo and K.-I. Ohshika [178] (modulo Tameness Conjecture, Theorem
10.3).



552 Michael Kapovich

Question 12.12. Is the isomorphism problem solvable within the class of all finitely-
presented Kleinian groups? Note that the work of F. Dahmani and D. Groves [59]
implies solvability of the isomorphism problem in the category of geometrically
finite Kleinian groups.

It was proved by M. Bonk and O. Schramm [36] that every Gromov-hyperbolic
group Γ embeds quasi-isometrically in the usual hyperbolic space Hn for some
n = n(Γ). A natural question is if one can prove an equivariant version of this re-
sult. Note that there are many Gromov-hyperbolic groups which are not Kleinian,
e.g., groups with property (T) and Gromov-hyperbolic Kähler groups. Therefore
one has to relax the isometric assumption. The natural category for this is the
uniformly quasiconformal actions. Such an action is a monomorphism

ρ : Γ ↪→ QC(Sn)

whose image consists of K-quasiconformal homeomorphisms with K depending
only on ρ.

Problem 12.13. Let Γ be a Gromov-hyperbolic group. Does Γ admit a uniformly
quasiconformal discrete action on Sn for some n? For instance, is there such an
action if Γ is a uniform lattice in PU(n, 1) or satisfies the property (T)?

T. Farrell and J. Lafont [74] proved that the topological counterpart of this
problem has positive solution. A corollary of their work is that every Gromov-
hyperbolic group Γ admits a convergence action ρ on the closed n-ball, so that
the limit set of Γ′ = ρ(Γ) is equivariantly homeomorphic to the ideal boundary
of Γ and Ω(Γ′)/Γ′ is compact and connected. We refer the reader to [78] for the
definition of a convergence action.

12.2. Topological constraints

The basic problem here is to find topological restrictions on the hyperbolic man-
ifold Hn+1/Γ and on the conformally-flat manifold Ω(Γ)/Γ, which do not follow
from the algebraic restrictions on the group Γ and from the general algebraic topol-
ogy restrictions (e.g., vanishing of the characteristic classes). There are only few
nontrivial results in this direction. For n = 3 we have:

Theorem 12.14. (M. Kapovich [109].) There exists a function c(χ) with the follow-
ing property. Let S be a closed hyperbolic surface. Suppose that M4 is a complete
hyperbolic 4-manifold which is homeomorphic to the total space of an R2-bundle
ξ : E → S with the Euler number e(ξ). Then

|e(ξ)| ≤ c(χ(S)).

More generally,

Theorem 12.15. (M. Kapovich [109].) There exists a function C(χ1, χ2) with the
following property. Suppose that M4 is a complete oriented hyperbolic 4-manifold.
Let σj : Σj → M4 (j = 1, 2) be π1-injective maps of closed oriented surfaces Σj.
Then

|〈σ1, σ2〉| ≤ C(χ(Σ1), χ(Σ2)).
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Here 〈, 〉 is the intersection pairing on H2(M4). The bounds appearing in
these theorems are explicit but astronomically high. The expected bounds are
linear in χ(S) and χ(Si), i = 1, 2, cf. [87].

Other known restrictions are applications of the compactness theorem 11.16
and therefore explicit bounds in the following theorems are unknown.

Theorem 12.16. (M. Kapovich [111].) Given a closed hyperbolic n-manifold B (n ≥
3) there exists a number c(B) so that the following is true. Suppose that M2n a
complete hyperbolic 2n-manifold which is homeomorphic to the total space of an
Rn-bundle ξ : E → B with the Euler number e(ξ). Then

|e(ξ)| ≤ c(B).

I. Belegradek greatly improved this result:

Theorem 12.17. (I. Belegradek [16].) Given a closed hyperbolic n-manifold B (n ≥
3) there exists a number C(B, k) so that the number of inequivalent Rk-bundles
ξ : E → B whose total space admits a complete hyperbolic metric, is at most
C(B, k).

Given a group π, let Mπ,n denote the set of n-manifolds, whose fundamental
group is isomorphic to π and which admit complete hyperbolic metrics.

Theorem 12.18. (I. Belegradek [17].) Suppose that π is a finitely-presented group
with finite Betti numbers. Assume that π does not split as an amalgam over a
virtually abelian subgroup. The set Mπ,n breaks into finitely many intersection
preserving homotopy types.
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1987, pp. 48–106.

[104] T. Jørgensen, Compact 3-manifolds of constant negative curvature fibering over
the circle, Ann. of Math., 106 (1977), pp. 61–72.

[105] T. Jørgensen and A. Marden, Two doubly degenerate groups, Quart. J. Math.
Oxford Ser. (2), 30 (1979), pp. 143–156.

[106] , Generic fundamental polyhedra for Kleinian groups, in “Holomorphic func-
tions and moduli”, Vol. II (Berkeley, 1986), vol. 11 of Math. Sci. Res. Inst. Publ.,
Springer, New York, 1988, pp. 69–85.

[107] M. Kapovich, Flat conformal structures on three-dimensional manifolds: the exis-
tence problem. I, Sibirsk. Mat. Zh., 30 (1989), pp. 60–73.



Kleinian Groups 559

[108] , Deformation spaces of flat conformal structures, in “Proceedings of the Sec-
ond Soviet-Japan Symposium of Topology” (Khabarovsk, 1989). Questions and
Answers in General Topology, 8 (1990), pp. 253–264.

[109] , Intersection pairing on hyperbolic 4-manifolds. Preprint, MSRI, 1992.

[110] , Topological aspects of Kleinian groups in several dimensions. Preprint,
MSRI, 1992.

[111] , Flat conformal structures on 3-manifolds. I. Uniformization of closed Seifert
manifolds, J. Differential Geom., 38 (1993), pp. 191–215.

[112] , Hyperbolic 4-manifolds fibering over surfaces. Preprint, 1993.

[113] , Deformations of representations of discrete subgroups of SO(3, 1), Math.
Ann., 299 (1994), pp. 341–354.

[114] , On the absence of Sullivan’s cusp finiteness theorem in higher dimensions,
in “Algebra and analysis” (Irkutsk, 1989), Amer. Math. Soc., Providence, RI, 1995,
pp. 77–89.

[115] , On normal subgroups in the fundamental groups of complex surfaces.
Preprint, 1998.

[116] , Hyperbolic manifolds and discrete groups, Birkhäuser Boston Inc., Boston,
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(1970/1971), Exp. No. 392, Springer, Berlin, 1971, pp. 197–219. Lecture Notes in
Math., Vol. 244.

[187] L. Potyagailo, The problem of finiteness for Kleinian groups in 3-space, in “Knots
90” (Osaka, 1990), de Gruyter, Berlin, 1992, pp. 619–623.

[188] , Finitely generated Kleinian groups in 3-space and 3-manifolds of infinite
homotopy type, Transactions of the AMS, 344 (1994), pp. 57–77.

[189] M.S. Raghunathan and T.N. Venkataramana, The first Betti number of arith-
metic groups and the congruence subgroup problem, in “Linear algebraic groups
and their representations” (Los Angeles, 1992), vol. 153 of Contemp. Math., Amer.
Math. Soc., 1993, pp. 95–107.

[190] J. Ratcliffe, Foundations of hyperbolic manifolds, Springer, 1994.

[191] J. Ratcliffe and S. Tschantz, Some examples of aspherical 4-manifolds that are
homology 4-spheres, Topology, 44 (2005), pp. 341–350.



Kleinian Groups 563

[192] F. Raymond, Classification of the actions of the circle on 3-manifolds, Trans. Amer.
Math. Soc., 131 (1968), pp. 51–78.

[193] M. Rees, The Ending Laminations Theorem direct from Teichmuller geodesics.
Preprint, math.GT/0404007, 2004.

[194] A. Reznikov, Analytic topology of groups, actions, strings and varietes. Preprint,
1999.

[195] E. Rips, Subgroups of small cancellation groups, Bull. London Math. Soc., 14 (1982),
pp. 45–47.

[196] C. Rourke and B. Sanderson, Introduction to piecewise-linear topology, Springer
study edition, Springer, 1982.

[197] K. Scannell, Local rigidity of hyperbolic 3-manifolds after Dehn surgery, Duke
Math. J., 114 (2002), pp. 1–14.

[198] R. Schoen and S.-T. Yau, Conformally flat manifolds, Kleinian groups and scalar
curvature, Invent. Math., 92 (1988), pp. 47–71.

[199] R. Schwartz, Complex hyperbolic triangle groups, in Proceedings of the Interna-
tional Congress of Mathematicians, Vol. II (Beijing, 2002), Beijing, 2002, Higher
Ed. Press, pp. 339–349.

[200] J. Schwermer, Special cycles and automorphic forms on arithmetically defined
hyperbolic 3-manifolds, Asian J. Math., 8 (2004), pp. 837–859.

[201] P. Scott, Compact submanifolds of 3-manifolds, Journ. of the LMS, 6 (1973),
pp. 437–448.

[202] , Compact submanifolds of 3-manifolds, Journ. of the LMS, 7 (1973), pp. 246–
250.

[203] A. Selberg, On discontinuous groups in higher-dimensional symmetric spaces, in
“Contributions to function theory”, Bombay, Tata Institute, 1960, pp. 147–164.

[204] Y. Shalom, Rigidity, unitary representations of semisimple groups, and fundamen-
tal groups of manifolds with rank one transformation group, Ann. of Math. (2), 152
(2000), pp. 113–182.

[205] J. Stallings, On torsion-free groups with infinitely many ends, Ann. of Math., 88
(1968), pp. 312–334.

[206] B. Stratmann, A note on geometric upper bounds for the exponent of convergence
of convex cocompact Kleinian groups, Indag. Math. (N.S.), 13 (2002), pp. 269–280.

[207] D. Sullivan, Hyperbolic geometry and homeomorphisms, in “Proceedings of Geor-
gia Conference on Geometric Topology”, Academic Press, 1977, pp. 543–555.

[208] , On ergodic theorey at infinity of arbitrary discrete groups of hyperbolic mo-
tions, Ann. Math. Stud., 97 (1981), pp. 465–496.

[209] , On finiteness theorem for cusps, Acta Math., 147 (1981), pp. 289–299.

[210] , Quasiconformal homeomorphisms and dynamics. Structural stablity implies
hyperbolicity, Acta Math., 155 (1985), pp. 243–260.

[211] , Related aspects of positivity in Riemannian geometry, Journal of Differential
Geometry, 25 (1987), pp. 327–351.

[212] S. Tan, Deformations of flat conformal structures on a hyperbolic 3-manifold, J.
Differential Geom., 37 (1993), pp. 161–176.



564 Michael Kapovich

[213] W. Thurston, Geometry and topology of 3-manifolds. Princeton University Lec-
ture Notes, 1978–1981.

[214] , Hyperbolic structures on 3-manifolds, I, Ann. of Math., 124 (1986), pp. 203–
246.

[215] , Three-Dimensional Geometry and Topology, I, vol. 35 of Princeton Mathe-
matical Series, Princeton University Press, 1997.

[216] P. Tukia, The Hausdorff dimension of the limit set of a geometrically finite
Kleinian group, Acta Math., 152 (1984), pp. 127–140.

[217] , On isomorphisms of geometrically finite Moebius groups, Mathematical Pub-
lications of IHES, 61 (1985), pp. 171–214.

[218] , Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math., 391
(1988), pp. 1–54.
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Abstract. We define A∞-bimodules similarly to Tradler and show that this
notion is equivalent to an A∞-functor with two arguments which takes val-
ues in the differential graded category of complexes of k-modules, where k
is a ground commutative ring. Serre A∞-functors are defined via A∞-bimod-
ules likewise Kontsevich and Soibelman. We prove that a unital closed under
shifts A∞-category A over a field k admits a Serre A∞-functor if and only if
its homotopy category H0A admits a Serre k-linear functor. The proof uses
categories enriched in K, the homotopy category of complexes of k-modules,
and Serre K-functors. Also we use a new A∞-version of the Yoneda Lemma
generalizing the previously obtained result.
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Serre–Grothendieck duality for coherent sheaves on a smooth projective vari-
ety was reformulated by Bondal and Kapranov in terms of Serre functors [BK89].
Being an abstract category theory notion Serre functors were discovered in other
contexts as well, for instance, in Kapranov’s studies of constructible sheaves on
stratified spaces [Kap90]. Reiten and van den Bergh showed that Serre functors
in categories of modules are related to Auslander–Reiten sequences and triangles
[RvdB02].

Often Serre functors are considered in triangulated categories and it is reason-
able to lift them to their origin – pretriangulated dg-categories or A∞-categories.
Soibelman defines Serre A∞-functors in [Soi04], based on Kontsevich and Soibel-
man work which is a sequel to [KS06]. In the present article we consider Serre
A∞-functors in detail. We define them via A∞-bimodules in Section 6 and use
enriched categories to draw conclusions about existence of Serre A∞-functors.

A∞-modules over A∞-algebras are introduced by Keller [Kel01]. A∞-bimod-
ules over A∞-algebras are defined by Tradler [Tra01, Tra02]. A∞-modules and
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A∞-bimodules over A∞-categories over a field were first considered by Lefèvre-
Hasegawa [LH03] under the name of polydules and bipolydules. A∞-modules over
A∞-categories were developed further by Keller [Kel06]. We study A∞-bimodules
over A∞-categories over a ground commutative ring k in Section 5 and show that
this notion is equivalent to an A∞-functor with two arguments which takes values
in the dg-category Ck of complexes of k-modules. A similar notion of A∞-modules
over an A∞-category C from Section 4 is equivalent to an A∞-functor C → Ck.
The latter point of view taken by Seidel [Sei06] proved useful for ordinary and
differential graded categories as well, see Drinfeld’s article [Dri04, Appendix III].

Any unital A∞-category A determines a K-category kA [Lyu03, BLM06],
where K is the homotopy category of complexes of k-modules. Respectively, an
A∞-functor f determines a K-functor kf . In particular, a Serre A∞-functor S :
A→ A determines a Serre K-functor kS : kA→ kA. We prove also the converse: if
kA admits a Serre K-functor, then A admits a Serre A∞-functor (Corollary 6.3).
This shows the importance of enriched categories in the subject.

Besides enrichment in K we consider in Section 2 also categories enriched in
the category gr of graded k-modules. When k is a field, we prove that a Serre
K-functor exists in kA if and only if the cohomology gr-category H•A

def= H•(kA)
admits a Serre gr-functor (Corollary 2.16). If the gr-category H•A is closed under
shifts, then it admits a Serre gr-functor if and only if the k-linear category H0A

admits a Serre k-linear functor (Corollary 2.18, Proposition 2.21). Summing up, a
unital closed under shifts A∞-category A over a field k admits a Serre A∞-functor
if and only if its homotopy category H0A admits a Serre k-linear functor (Theo-
rem 6.5). This applies, in particular, to a pretriangulated A∞-enhancement A of
a triangulated category H0A over a field k.

In the proofs we use a new A∞-version of the Yoneda Lemma (Theorem A.1).
It generalizes the previous result that the Yoneda A∞-functor is homotopy full and
faithful [Fuk02, Theorem 9.1], [LM04, Theorem A.11], as well as a result of Seidel
[Sei06, Lemma 2.12] which was proven over a ground field k. The proof of the
Yoneda Lemma occupies Appendix A. It is based on the theory of A∞-bimodules
developed in Section 5.

Acknowledgment. The second author would like to thank the Mathematisches
Forschungsinstitut Oberwolfach and its director Prof. Dr. Gert-Martin Greuel per-
sonally for financial support. Commutative diagrams were typeset with the package
diagrams.sty by Paul Taylor.

0.1. Notation and conventions

Notation follows closely the usage of the book [BLM06]. In particular, U is a
ground universe containing an element which is an infinite set, and k denotes
a U -small commutative associative ring with unity. A graded quiver C typically
means a U -small set of objects ObC together with U -small Z-graded k-modules
of morphisms C(X,Y ), given for each pair X,Y ∈ ObC. For any graded k-module
M there is another graded k-module sM =M [1], its suspension, with the shifted
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grading (sM)k =M [1]k =Mk+1. The mapping s :M → sM given by the identity
maps Mk ===⇀⇁ M [1]k−1 has degree −1. The composition of maps, morphisms,
functors, etc. is denoted fg = f · g =

f→ g→ = g ◦ f . A function (or a
functor) f : X → Y applied to an element is denoted f(x) = xf = x.f = x•f and
occasionally fx.

Objects of the (large) Abelian U -category Ck of complexes of k-modules
are U -small differential graded k-modules. Morphisms of Ck are chain maps. The
category Ck is symmetric closed monoidal: the inner hom-complexes Ck(X,Y ) are
U -small, therefore, objects of Ck. This determines a (large) differential graded
U -category Ck. In particular, Ck is a non-small graded U -quiver.

Speaking about a symmetric monoidal category (C,⊗,1, c) we actually mean
the equivalent notion of a symmetric Monoidal category (C,⊗I , λf ) [Lyu99, Defi-
nitions 1.2.2, 1.2.14], [BLM06, Chapter 3]. It is equipped with tensor product func-
tors ⊗I : (Xi)i∈I �→ ⊗i∈IXi, where I are finite linearly ordered (index) sets. The
isomorphisms λf : ⊗i∈IXi → ⊗j∈J ⊗i∈f−1jXi given for any map f : I → J can be
thought of as constructed from the associativity isomorphisms a and commutativ-
ity isomorphisms c. When f is non-decreasing, the isomorphisms λf can be ignored
similarly to associativity isomorphisms. The coherence principle of [BLM06, Sec-
tion 3.25] allows to write down canonical isomorphisms ωc (products of λf ’s and
their inverses) between iterated tensor products, indicating only the permutation
of arguments ω. One of them, σ(12) : ⊗i∈I ⊗j∈J Xij → ⊗j∈J ⊗i∈I Xij is defined
explicitly in [BLM06, (3.28.1)]. Sometimes, when the permutation of arguments
reads clearly, we write simply perm for the corresponding canonical isomorphism.

A symmetric multicategory Ĉ is associated with a lax symmetric Monoidal
category (C,⊗I , λf ), where natural transformations λf are not necessarily invert-
ible, see [BLM06, Section 4.20].

The category of graded k-linear quivers has a natural symmetric Monoidal
structure. For given quivers Qi the tensor product quiver �i∈IQi has the set of
objects

∏
i∈I ObQi and the graded k-modules of morphisms

(�i∈IQi)((Xi)i∈I , (Yi)i∈I) = ⊗i∈IQi(Xi, Yi).

For any graded quiver C and a sequence of objects (X0, . . . , Xn) of C we use
in this article the notation

T̄ nsC(X0, . . . , Xn) = sC(X0, X1)⊗ · · · ⊗ sC(Xn−1, Xn),

T nsC(X0, Xn) = ⊕X1,...,Xn−1∈Ob CT̄
nsC(X0, . . . , Xn).

When the list of arguments is obvious we abbreviate the notation
T̄ nsC(X0, . . . , Xn) to T̄ nsC(X0, Xn). For n = 0 we set T 0sC(X,Y ) = k if X = Y ,
and 0 otherwise. The tensor quiver is TsC = ⊕n�0T

nsC = ⊕n�0(sC)⊗n.
An A∞-category means a graded quiver C with n-ary compositions bn :

T nsC(X0, Xn) → sC(X0, Xn) of degree 1 given for all n � 1 (we assume for
simplicity that b0 = 0) such that b2 = 0 for the k-linear map b : TsC → TsC of
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degree 1
b =

∑
r+n+t=k
r+1+t=l

1⊗r ⊗ bn ⊗ 1⊗t : T ksC→ T lsC. (0.1)

The composition b · pr1 = (0, b1, b2, . . . ) : TsC→ sC is denoted b̌.
The tensor quiver TC becomes a counital coalgebra when equipped with the

cut comultiplication Δ0 : TC(X,Y )→ ⊕Z∈Ob CTC(X,Z)
⊗

k TC(Z, Y ), h1 ⊗ h2 ⊗
· · · ⊗ hn �→

∑n
k=0 h1 ⊗ · · · ⊗ hk

⊗
hk+1 ⊗ · · · ⊗ hn. The map b given by (0.1) is a

coderivation with respect to this comultiplication. Thus b is a codifferential.
We denote by n the linearly ordered index set {1 < 2 < · · · < n}.
An A∞-functor f : A → B is a map of objects f = Ob f : Ob A → ObB,

X �→ Xf and k-linear maps f : TsA(X,Y ) → TsB(Xf, Y f) of degree 0 which
agree with the cut comultiplication and commute with the codifferentials b. Such
f is determined in a unique way by its components fk = f pr1 : T ksA(X,Y ) →
sB(Xf, Y f), k � 1 (we require that f0 = 0). This generalizes to the case of
A∞-functors with many arguments f : (Ai)i∈n → B. Such A∞-functor is a quiver
map f : �i∈nTsAi → TsB of degree 0 which agrees with the cut comultiplication
and commutes with the differentials. Denote f̌ = f · pr1 : �i∈nTsAi → sB.
The restrictions f(ki)i∈n

of f̌ to �i∈nT kisAi are called the components of f . It is
required that the restriction f00...0 of f̌ to �i∈nT 0sAi vanishes. The components
determine coalgebra homomorphism f in a unique way. Commutation with the
differentials means that the following compositions are equal(
�i∈nTsAi

f−→TsB b̌−→sB
)
=

(
�i∈nTsAi

∑ n
i=1 1�(i−1)�b�1�(n−i)

→ �i∈n TsAi
f̌−→sB

)
.

The set of A∞-functors (Ai)i∈n → B is denoted by A∞((Ai)i∈n; B). There is a
natural way to compose A∞-functors, the composition is associative, and for an
arbitrary A∞-category A, the identity A∞-functor idA : A → A is the unit with
respect to the composition. Thus, A∞-categories and A∞-functors constitute a
symmetric multicategory A∞ [BLM06, Chapter 12].

With a family (Ai)n
i=1,B of A∞-categories we associate a graded quiver

A∞((Ai)n
i=1; B). Its objects are A∞-functors with n entries. Morphisms are A∞-

transformations between such A∞-functors f and g, that is, (f, g)-coderivations.
Such coderivation r can be identified with the collection of its components ř =
r · pr1, thus,

sA∞((Ai)n
i=1; B)(f, g) �

∏
X,Y ∈

∏
n
i=1 Ob Ai

Ck

(
(�i∈nTsAi)(X,Y ), sB(Xf, Y g)

)
=

∏
(Xi)i∈n,(Yi)i∈n∈

∏n
i=1 Ob Ai

Ck

(
⊗i∈n[TsAi(Xi, Yi)], sB((Xi)i∈nf, (Yi)i∈ng)

)
.

Moreover, A∞((Ai)n
i=1; B) has a distinguished A∞-category structure which to-

gether with the evaluation A∞-functor

evA∞ : (Ai)n
i=1,A∞((Ai)n

i=1; B)→ B, (X1, . . . , Xn, f) �→ (X1, . . . , Xn)f
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turns the symmetric multicategory A∞ into a closed multicategory [BLM06]. Thus,
for arbitrary A∞-categories (Ai)i∈n, (Bj)j∈m, C, the map

ϕA∞ : A∞((Bj)j∈m; A∞((Ai)i∈n; C)) −→ A∞((Ai)i∈n, (Bj)j∈m; C),

f �−→ ((idAi)i∈n, f) evA∞

is bijective. It follows from the general properties of closed multicategories that
the bijection ϕA∞ extends uniquely to an isomorphism of A∞-categories

ϕA∞ : A∞((Bj)j∈m; A∞((Ai)i∈n; C)) → A∞((Ai)i∈n, (Bj)j∈m; C)

with ObϕA∞ = ϕA∞ . In particular, if C is a unital A∞-category, ϕA∞ maps iso-
morphic A∞-functors to isomorphic.

The components evA∞
k1,...,kn;m of the evaluation A∞-functor vanish if m > 1

by formula [BLM06, (12.25.4)]. For m = 0, 1 they are

evA∞
k1,...,kn;0 : [⊗i∈nT kisAi(Xi, Yi)]⊗ T 0sA∞((Ai)n

i=1; B)(f, f)
fk1,...,kn→ sB((Xi)i∈nf, (Yi)i∈nf),

evA∞
k1,...,kn;1 =

[
(⊗i∈nT kisAi(Xi, Yi))⊗ sA∞((Ai)n

i=1; B)(f, g)
1⊗prk1,...,kn→

[⊗i∈nT kisAi(Xi, Yi)]⊗ Ck

(
⊗i∈n[T kisAi(Xi, Yi)], sB((Xi)i∈nf, (Yi)i∈ng)

)
evCk

→ sB((Xi)i∈nf, (Yi)i∈ng)
]
. (0.2)

When (Ai)n
i=1,B are unital A∞-categories, we define Au

∞((Ai)n
i=1; B) as a full

A∞-subcategory of A∞((Ai)n
i=1; B), whose objects are unital A∞-functors.

Equipped with a similar evaluation evAu
∞ the collection Au

∞ of unital A∞-cate-
gories and unital A∞-functors also becomes a closed multicategory. Similarly to
the case of A∞, there is a natural bijection

ϕAu
∞ : Au

∞((Bj)j∈m; Au
∞((Ai)i∈n; C)) −→ Au

∞((Ai)i∈n, (Bj)j∈m; C),

f �−→ ((idAi)i∈n, f) evAu
∞

for arbitrary unital A∞-categories (Ai)i∈n, (Bj)j∈m, C.
In the simplest version graded spans P consist of a U -small set Obs P of

source objects, a U -small set Obt P of target objects, and U -small graded k-mod-
ules P(X,Y ) for all X ∈ Obs P, Y ∈ Obt P. Graded quivers A are particular cases
of spans, distinguished by the condition Obs A = Obt A. The tensor product P⊗Q

of two spans P, Q exists if Obt P = Obs Q and equals

(P⊗ Q)(X,Z) =
⊕

Y ∈Obt P

P(X,Y )⊗k Q(Y, Z).

Details can be found in [BLM06].
Next we explain our notation for closed symmetric monoidal categories which

differs slightly from [Kel82, Chapter 1].
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Let (V,⊗,1, c) be a closed symmetric monoidal U -category. For each pair of
objects X,Y ∈ ObV, let V(X,Y ) denote the inner hom-object. Denote by evV :
X ⊗V(X,Y ) → Y and coevV : Y → V(X,X ⊗Y ) the evaluation and coevaluation
morphisms, respectively. Then the mutually inverse adjunction isomorphisms are
explicitly given as follows:

V(Y,V(X,Z))←→ V(X ⊗ Y, Z),

f → (1X ⊗ f) evX,Z ,

coevX,Y V(X, g) ← g.

There is a V-category V whose objects are those of V, and for each pair of
objects X and Y , the object V(X,Y ) ∈ ObV is the inner hom-object of V. The
composition is found from the following equation:[
X ⊗ V(X,Y )⊗ V(Y, Z)

1⊗μV→ X ⊗ V(X,Z)
evV

→ Z
]

=
[
X ⊗ V(X,Y )⊗ V(Y, Z)

evV ⊗1→ Y ⊗ V(Y, Z)
evV

→ Z
]
. (0.3)

The identity morphism 1V
X : 1→ V(X,X) is found from the following equation:[

X
∼→ X ⊗ 1

1⊗1
V
X→ X ⊗ V(X,X)

evV

→ X
]

= idX .

For our applications we need several categories V, for instance the Abelian
category Ck of complexes of k-modules and its quotient category K, the homotopy
category of complexes of k-modules. The tensor product is the tensor product of
complexes, the unit object is k, viewed as a complex concentrated in degree 0, and
the symmetry is the standard symmetry c : X ⊗Y → Y ⊗X , x⊗ y �→ (−)xyy⊗ x.
We shorten up the usual notation (−1)deg x·degy to (−)xy. Similarly, (−)x means
(−1)deg x, (−)x+y means (−1)deg x+deg y, etc. For each pair of complexes X and
Y , the inner hom-object K(X,Y ) is the same as the inner hom-complex Ck(X,Y )
in the symmetric closed monoidal Abelian category Ck. The evaluation morphism
evK : X⊗K(X,Y )→ Y and the coevaluation morphism coevK : Y → K(X,X⊗Y )
in K are the homotopy classes of the evaluation morphism evCk : X⊗Ck(X,Y )→ Y
and the coevaluation morphism coevCk : Y → Ck(X,X ⊗ Y ) in Ck, respectively.

It is easy to see that μK = mC
k

2 and 1K
X = 1C

k

X , therefore K = kCk.
Also we use as V the category gr = gr(k-Mod) of graded k-modules, and

the familiar category k-Mod of k-modules.
The following identity holds for any homogeneous k-linear map a : X → A

of arbitrary degree by the properties of the closed monoidal category Ck:(
Ck(A,B)⊗ Ck(B,C)

m2→ Ck(A,C)
C

k
(a,C)→ Ck(X,C)

)
=

(
Ck(A,B)⊗ Ck(B,C)

C
k
(a,B)⊗1→ Ck(X,B)⊗ Ck(B,C)

m2→ Ck(X,C)
)
. (0.4)

Let f : A⊗X → B, g : B⊗Y → C be two homogeneous k-linear maps of arbitrary
degrees, that is, f ∈ Ck(A⊗X,B)•, g ∈ Ck(B⊗Y,C)•. Then the following identity
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is proven in [LM04] as equation (A.1.2):(
X ⊗ Y coevA,X ⊗ coevB,Y→ Ck(A,A ⊗X)⊗ Ck(B,B ⊗ Y )

C
k
(A,f)⊗C

k
(B,g)→ Ck(A,B)⊗ Ck(B,C)

m2→ Ck(A,C)
)

=
(
X⊗Y coevA,X⊗Y→ Ck(A,A⊗X⊗Y )

C
k
(A,f⊗1)→ Ck(A,B⊗Y )

C
k
(A,g)→ Ck(A,C)

)
.

(0.5)

1. V-categories

We refer the reader to [Kel82, Chapter 1] for the basic theory of enriched cate-
gories. The category of unital (resp. non-unital) V-categories (where V is a closed
symmetric monoidal category) is denoted V-Cat (resp. V-Catnu).

1.1. Opposite V-categories

Let A be a V-category, not necessarily unital. Its opposite Aop is defined in the
standard way. Namely, ObAop = ObA, and for each pair of objects X,Y ∈ ObA,
Aop(X,Y ) = A(Y,X). The composition in Aop is given by

μAop =
[
Aop(X,Y )⊗Aop(Y, Z) = A(Y,X)⊗A(Z, Y )

c→

A(Z, Y )⊗A(Y,X)
μA→ A(Z,X) = Aop(X,Z)

]
.

More generally, for each n � 1, the iterated n-ary composition in Aop is

μnAop =
[
⊗i∈nAop(Xi−1, Xi) = ⊗i∈nA(Xi, Xi−1)

ω0
c→

⊗i∈n A(Xn−i+1, Xn−i)
μn

A→ A(Xn, X0) = Aop(X0, Xn)
]
, (1.1)

where the permutation ω0 =
(

1 2 ... n−1 n
n n−1 ... 2 1

)
is the longest element of Sn, and

ω0
c is the corresponding signed permutation, the action of ω0 in tensor products

via standard symmetry. Note that if A is unital, then so is Aop, with the same
identity morphisms.

Let f : A → B be a V-functor, not necessarily unital. It gives rise to a
V-functor fop : Aop → Bop with Ob fop = Ob f : ObA→ ObB, and

fop =
[
Aop(X,Y ) = A(Y,X)

f→ B(Y f,Xf) = Bop(Xf, Y f)
]
, X, Y ∈ ObA.

Note that fop is a unital V-functor if so is f . Clearly, the correspondences A �→ Aop,
f �→ fop define a functor −op : V-Catnu → V-Catnu which restricts to a functor
−op : V-Cat → V-Cat. The functor −op is symmetric monoidal. More precisely,
for arbitrary V-categories Ai, i ∈ n, the equation �i∈nA

op
i = (�i∈nAi)op holds.

Indeed, the underlying V-quivers of both categories coincide, and so do the identity
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morphisms if the categories Ai, i ∈ n, are unital. The composition in �i∈nA
op
i is

given by

μ�i∈nAop
i

=
[(
⊗i∈nA

op
i (Xi, Yi)

)
⊗

(
⊗i∈nA

op
i (Yi, Zi)

)
σ(12)→ ⊗i∈n (Ai(Yi, Xi)⊗Ai(Zi, Yi))

⊗i∈nc→ ⊗i∈n (Ai(Zi, Yi)⊗Ai(Yi, Xi))
⊗i∈nμAi→ ⊗i∈n Ai(Zi, Xi) = ⊗i∈nA

op
i (Xi, Zi)

]
.

The composition in (�i∈nAi)op is given by

μ(�i∈nAi)
op =

[
(�i∈n

Ai)
op((Xi)i∈n, (Yi)i∈n) ⊗ (�i∈n

Ai)
op((Yi)i∈n, (Zi)i∈n)

=
(⊗i∈n

Ai(Yi, Xi)
) ⊗ (⊗i∈n

Ai(Zi, Yi)
) c→ (⊗i∈n

Ai(Zi, Yi)
) ⊗ (⊗i∈n

Ai(Yi, Xi)
)

σ(12)→ ⊗i∈n (Ai(Zi, Yi) ⊗ Ai(Yi, Xi))
⊗i∈nμAi→ ⊗i∈n

Ai(Zi, Xi) = ⊗i∈n
A

op
i (Xi, Zi)

]
.

The equation μ�i∈nAop
i

= μ(�i∈nAi)op follows from the following equation in V:

[(⊗i∈n
Ai(Yi, Xi)

) ⊗ (⊗i∈n
Ai(Zi, Yi)

) σ(12)→ ⊗i∈n (Ai(Yi, Xi) ⊗ Ai(Zi, Yi))

⊗i∈nc→ ⊗i∈n (Ai(Zi, Yi) ⊗ Ai(Yi, Xi))
]

=
[(⊗i∈n

Ai(Yi, Xi)
) ⊗ (⊗i∈n

Ai(Zi, Yi)
) c→ (⊗i∈n

Ai(Zi, Yi)
) ⊗ (⊗i∈n

Ai(Yi, Xi)
)

σ(12)→ ⊗i∈n (Ai(Zi, Yi) ⊗ Ai(Yi, Xi))
]
,

which is a consequence of coherence principle of [BLM06, Lemma 3.26, Re-
mark 3.27]. Therefore, −op induces a symmetric multifunctor −op : ̂V-Catnu →
̂V-Catnu which restricts to a symmetric multifunctor −op : V̂-Cat→ V̂-Cat.

1.2. Hom-functor

A V-category A gives rise to a V-functor HomA : Aop � A → V which maps a
pair of objects (X,Y ) ∈ ObA × ObA to A(X,Y ) ∈ ObV, and whose action on
morphisms is given by

HomA =
[
Aop(X,Y )⊗A(U, V ) = A(Y,X)⊗A(U, V )

coevV

→

V(A(X,U),A(X,U)⊗A(Y,X)⊗A(U, V ))
V(1,(c⊗1)μ3

A)→ V(A(X,U),A(Y, V ))
]
.

Equivalently, HomA is found by closedness of V from the diagram

A(X,U)⊗A(Y,X)⊗A(U, V )
1⊗HomA→ A(X,U)⊗ V(A(X,U),A(Y, V ))

A(Y,X)⊗A(X,U)⊗A(U, V )

c⊗1↓
μ3

A → A(Y, V )

evV

↓ (1.2)

Lemma 1.3. Let A be a V-category. Then

HomAop =
[
A � Aop c→ Aop � A

HomA→ V
]
.
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Proof. Using (1.1), we obtain:

HomAop =
[
A(X,Y )⊗Aop(U, V ) = Aop(Y,X)⊗Aop(U, V )

coevV

→ V(Aop(X,U),Aop(X,U)⊗Aop(Y,X)⊗Aop(U, V ))
V(1,(c⊗1)μ3

Aop )→ V(Aop(X,U),Aop(Y, V ))
]

=
[
A(X,Y )⊗A(V, U)

coevV

→ V(A(U,X),A(U,X)⊗A(X,Y )⊗A(V, U))
V(1,(c⊗1)ω0

cμ3
A)→ V(A(U,X),A(V, Y ))

]
,

where ω0 = (13) ∈ S3. Clearly, (c⊗ 1)ω0
c = (1⊗ c)(c⊗ 1), therefore

HomAop =
[
A(X,Y )⊗A(V, U)

coevV

→ V(A(U,X),A(U,X)⊗A(X,Y )⊗A(V, U))
V(1,(1⊗c)(c⊗1)μ3

A)→ V(A(U,X),A(V, Y ))
]

=
[
A(X,Y )⊗A(V, U)

c→ A(V, U)⊗A(X,Y )
coevV

→

V(A(U,X),A(U,X)⊗A(V, U)⊗A(X,Y ))
V(1,(c⊗1)μ3

A)→ V(A(U,X),A(V, Y ))
]

=
[
A(X,Y )⊗A(V, U)

c→ A(V, U)⊗A(X,Y )
HomA→ V(A(U,X),A(V, Y ))

]
.

The lemma is proven. �

An object X of A defines a V-functor X : 1 → A, ∗ �→ X , 1(∗, ∗) =

1
1A

X→ A(X,X), whose source 1 is a V-category with one object ∗. This V-cate-
gory is a unit of tensor multiplication �. The V-functors A( , Y ) = HomA( , Y ) :
Aop → V and A(X, ) = HomA(X, ) : A→ V are defined as follows:

A( , Y ) =
[
Aop ∼→ Aop � 1

1�Y→ Aop � A
HomA→ V

]
,

A(X, ) =
[
A

∼→ 1 � A
X�1→ Aop � A

HomA→ V
]
.

Thus, the V-functor A( , Y ) maps an object X to A(X,Y ), and its action on
morphisms is given by

A( , Y ) =
[
Aop(W,X) = A(X,W )

coevV

→ V(A(W,Y ),A(W,Y )⊗A(X,W ))
V(1,cμA)→ V(A(W,Y ),A(X,Y ))

]
. (1.3)

Similarly, the V-functor A(X, ) maps an object Y to A(X,Y ), and its action on
morphisms is given by

A(X, ) =
[
A(Y, Z)

coevV

→ V(A(X,Y ),A(X,Y )⊗A(Y, Z))
V(1,μA)→ V(A(X,Y ),A(X,Z))

]
. (1.4)



574 V. Lyubashenko and O. Manzyuk

1.4. Duality functor

The unit object 1 of V defines the duality V-functor V( ,1) = HomV( ,1) : Vop →
V. The functor V( ,1) maps an object M to its dual V(M,1), and its action on
morphisms is given by

V( ,1) =
[
Vop(M,N) = V(N,M)

coevV

→ V(V(M,1),V(M,1)⊗V(N,M))
V(1,c)→

V(V(M,1),V(N,M)⊗ V(M,1))
V(1,μV)→ V(V(M,1),V(N,1))

]
. (1.5)

For each objectM there is a natural morphism e :M → V(V(M,1),1) which
is a unique solution of the following equation in V:

V(M,1)⊗M c → M ⊗ V(M,1)

V(M,1)⊗ V(V(M,1),1)

1⊗e↓
evV

→ 1

evV

↓

Explicitly,

e =
[
M

coevV

→ V(V(M,1),V(M,1)⊗M)
V(1,c)→

V(V(M,1),M ⊗ V(M,1))
V(1,evV)→ V(V(M,1),1)

]
.

An object M is reflexive if e is an isomorphism in V.

1.5. Representability

Let us state for the record the following

Proposition 1.6 (Weak Yoneda Lemma). Let F : A → V be a V-functor, X an
object of A. There is a bijection between elements of F (X), i.e., morphisms t : 1→
F (X), and natural transformations A(X, ) → F : A→ V defined as follows: with
an element t : 1→ F (X) a natural transformation is associated whose components
are given by

A(X,Z)
t⊗FX,Z→ F (X)⊗ V(F (X), F (Z))

evV

→ F (Z), Z ∈ ObA.

In particular, F is representable if and only if there is an object X ∈ ObA and an
element t : 1 → F (X) such that for each object Z ∈ ObA the above composite is
invertible.

Proof. Standard, see [Kel82, Section 1.9]. �

2. Serre functors for V-categories

Serre functors for enriched categories are for us a bridge between ordinary Serre
functors and Serre A∞-functors.



A∞-bimodules and Serre A∞-functors 575

2.1. Serre V-functors

Let C be a V-category, S : C → C a V-functor. Consider a natural transformation
ψ as in the diagram below:

Cop � C
1�S→ Cop � C

Vop

Homop
Cop ↓

V( ,1)
→

ψ

⇐===
===

===

V

HomC↓ (2.1)

The natural transformation ψ is a collection of morphisms of V

ψX,Y : 1→ V(C(X,Y S),V(C(Y,X),1)), X, Y ∈ ObC.

Equivalently, ψ is given by a collection of morphisms ψX,Y : C(X,Y S) →
V(C(Y,X),1) of V, for X,Y ∈ ObC. Naturality of ψ may be verified variable-by-
variable.

Definition 2.2. Let C be a V-category. A V-functor S : C → C is called a right
Serre functor if there exists a natural isomorphism ψ as in (2.1). If moreover S is
a self–equivalence, it is called a Serre functor.

This terms agree with the conventions of Mazorchuk and Stroppel [MS05]
and up to taking dual spaces with the terminology of Reiten and van den Bergh
[RvdB02].

Lemma 2.3. Let S : C → C be a V-functor. Fix an object Y of C. A collection of
morphisms (ψX,Y : C(X,Y S)→ V(C(Y,X),1))X∈ObC of V is natural in X if and
only if

ψX,Y =
[
C(X,Y S)

coevV

→ V(C(Y,X),C(Y,X)⊗ C(X,Y S))
V(1,μC)→

V(C(Y,X),C(Y, Y S))
V(1,τY )→ V(C(Y,X),1)

]
, (2.2)

where

τY =
[
C(Y, Y S)

1C
Y ⊗1→ C(Y, Y )⊗C(Y, Y S)

1⊗ψY,Y→ C(Y, Y )⊗V(C(Y, Y ),1)
evV

→ 1
]
.

(2.3)

Proof. The collection (ψX,Y )X∈Ob C is a natural V-transformation

Cop C( ,Y S) → V

Vop

ψ−,YQ
RRRR

V( ,1)

→

C(Y, )op →
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if the following diagram commutes:

C(Z,X)
C( ,Y S) → V(C(X,Y S),C(Z, Y S))

= V(C(X,Y S),V(C(Y, Z),1))

V(1,ψZ,Y )↓

V(C(Y, Z),C(Y,X))

C(Y, )

↓
V( ,1)→ V(V(C(Y,X),1),V(C(Y, Z),1))

V(ψX,Y ,1)
↑

By closedness, this is equivalent to commutativity of the exterior of the following
diagram:

C(X, Y S) ⊗ C(Z, X)
1⊗C( ,Y S) → C(X, Y S)⊗

⊗V(C(X,Y S), C(Z, Y S))
=

C(Z, X) ⊗ C(X, Y S)

c

→

=

V(C(Y, X),1) ⊗ C(Z, X)

ψX,Y ⊗1

↓
C(Z, Y S)

evV

↓
μC

→

C(Z, X) ⊗ V(C(Y,X),1)

1⊗ψX,Y

↓c

→
V(C(Y,X),1)⊗
⊗V(C(Y, Z), C(Y,X))

1⊗C(Y, )

↓
=

V(C(Y,Z), C(Y, X))⊗
⊗V(C(Y, X),1)

C(Y, )⊗1

↓c→

=
V(C(Y,X),1)⊗
⊗V(V(C(Y,X),1),V(C(Y, Z),1))

1⊗V( ,1)

↓
evV

→ V(C(Y,Z),1)

ψZ,Y

↓
μV

→

The right upper quadrilateral and the left lower quadrilateral commute by defi-
nition of C( , Y S) and V( ,1) respectively, see (1.3) and its particular case (1.5).
Since c is an isomorphism, commutativity of the exterior is equivalent to commu-
tativity of the pentagon. Again, by closedness, this is equivalent to commutativity
of the exterior of the following diagram:

C(Y, Z) ⊗ C(Z, X) ⊗ C(X, Y S)
1⊗μC → C(Y, Z) ⊗ C(Z, Y S)

C(Y, Z) ⊗ C(Z, X) ⊗ V(C(Y, X),1)

1⊗1⊗ψX,Y ↓
C(Y,Z) ⊗ V(C(Y, Z),1)

1⊗ψZ,Y↓

1

evV

↓

C(Y, Z) ⊗ V(C(Y,Z), C(Y, X)) ⊗ V(C(Y, X),1)

1⊗C(Y, )⊗1

↓
evV ⊗1→ C(Y, X) ⊗ V(C(Y, X),1)

evV

↑
μC⊗1

→
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The triangle commutes by definition of C(Y, ), see (1.4). It follows that naturality
of ψ−,Y is equivalent to commutativity of the hexagon:

C(Y, Z)⊗ C(Z,X)⊗ C(X,Y S)
1⊗μCψZ,Y→ C(Y, Z)⊗ V(C(Y, Z),1)

C(Y,X)⊗ V(C(Y,X),1)

μC⊗ψX,Y ↓
evV

→ 1

evV

↓ (2.4)

Assume that ψ−,Y is natural, so the above diagram commutes, and consider a
particular case, Z = Y . Composing both paths of the diagram with the morphism
1C

Y ⊗ 1⊗ 1 : C(Y,X)⊗ C(X,Y S)→ C(Y, Y )⊗ C(Y,X)⊗ C(X,Y S), we obtain:

C(Y,X)⊗ C(X,Y S)
μC→ C(Y, Y S)

C(Y,X)⊗ V(C(Y,X),1)

1⊗ψX,Y ↓
evV

→ 1

τY↓ (2.5)

where τY is given by expression (2.3). By closedness, the above equation admits a
unique solution ψX,Y , namely, (2.2).

Assume now that ψX,Y is given by (2.2). Then (2.5) holds true. Plugging it
into (2.4), whose commutativity has to be proven, we obtain the equation

C(Y, Z)⊗ C(Z,X)⊗ C(X,Y S)
1⊗μC→ C(Y, Z)⊗ C(Z, Y S)

μC→ C(Y, Y S)

C(Y,X)⊗ C(X,Y S)

μC⊗1↓
μC → C(Y, Y S)

τY → 1

τY↓

which holds true by associativity of composition. �

Lemma 2.4. Let S : C → C be a V-functor. Fix an object X of C. A collection of
morphisms (ψX,Y : C(X,Y S) → V(C(Y,X),1))Y ∈Ob C of V is natural in Y if and
only if for each Y ∈ ObC

ψX,Y =
[
C(X,Y S)

coevV

→ V(C(Y,X),C(Y,X)⊗ C(X,Y S))
V(1,S⊗1)→

V(C(Y,X),C(Y S,XS)⊗ C(X,Y S))
V(1,cμC)→ V(C(Y,X),C(X,XS))

V(1,τX)→ V(C(Y,X),1)
]
, (2.6)

where τX is given by (2.3).

Proof. Naturality of ψX,− presented by the square

C
S → C

Vop

C( ,X)op↓
V( ,1)→

ψX,−

⇐===
===

===

V

C(X, )↓
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is expressed by commutativity in V of the following diagram:

C(Y, Z)
S → C(Y S,ZS)

V(C(Z,X),C(Y,X))

C( ,X)↓
V(C(X,Y S),C(X,ZS))

C(X, )↓

V(V(C(Y,X),1),V(C(Z,X),1))

V( ,1)↓
V(ψX,Y ,1)→ V(C(X,Y S),V(C(Z,X),1))

V(1,ψX,Z)↓

By closedness, the latter is equivalent to commutativity of the exterior of the
diagram displayed on the facing page. Since c is an isomorphism, it follows that
the polygon marked by ∗ is commutative. By closedness, this is equivalent to
commutativity of the exterior of the following diagram:

C(Z, X) ⊗ C(X, Y S) ⊗ C(Y,Z)
1⊗1⊗S→ C(Z, X) ⊗ C(X, Y S) ⊗ C(Y S, ZS)

C(Z, X) ⊗ C(Y, Z) ⊗ C(X, Y S)

1⊗c↓
C(Z, X) ⊗ C(X, ZS)

1⊗μC↓

C(Z, X) ⊗ C(Y, Z) ⊗ V(C(Y,X),1)

1⊗1⊗ψX,Y ↓
C(Z, X) ⊗ V(C(Z, X),1)

1⊗ψX,Z↓

1

evV

↓

C(Z, X) ⊗ V(C(Z, X), C(Y,X)) ⊗ V(C(Y, X),1)

1⊗C( ,X)⊗1

↓
evV ⊗1→ C(Y,X) ⊗ V(C(Y, X),1)

evV

↑
cμC⊗1

→

The triangle commutes by (1.3). Therefore, the remaining polygon is commutative
as well:

C(Z,X)⊗ C(X,Y S)⊗ C(Y, Z)
1⊗1⊗S→ C(Z,X)⊗ C(X,Y S)⊗ C(Y S,ZS)

C(Y, Z)⊗ C(Z,X)⊗ C(X,Y S)

(123)∼↓
C(Z,X)⊗ C(X,ZS)

1⊗μC↓

C(Y,X)⊗ C(X,Y S)

μC⊗1↓
C(Z,X)⊗ V(C(Z,X),1)

1⊗ψX,Z↓

C(Y,X)⊗ V(C(Y,X),1)

1⊗ψX,Y ↓
evV

→ 1

evV

↓

(2.7)

Suppose that the collection of morphisms (ψX,Y : C(X,Y S)→V(C(Y,X),1))Y∈ObC

is natural in Y . Consider diagram (2.7) with Z = X . Composing both paths with
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C
(X
,Y
S

)⊗
C
(Y
,Z

)
1
⊗

S →
C
(X
,Y
S

)⊗
C
(Y
S
,Z
S

)
1
⊗

C
(X

,
) →

C
(X
,Y
S

)⊗
⊗

V
(C

(X
,Y
S

),
C
(X
,Z
S

))

V
(C

(Y
,X

),
1
)
⊗

C
(Y
,Z

)

ψ
X

,Y
⊗

1

↓
C
(Y
,Z

)
⊗

C
(X
,Y
S

)

c

→
C
(X
,Z
S

)

e
v

V

↓

μ
C

→

V
(C

(Y
,X

),
1
)⊗

⊗
V
(C

(Z
,X

),
C
(Y
,X

))

1
⊗

C
(

,X
)

↓

C
(Y
,Z

)
⊗

V
(C

(Y
,X

),
1
)

1
⊗

ψ
X

,Y

↓

c

→
∗

V
(C

(Z
,X

),
C
(Y
,X

))
⊗

⊗
V
(C

(Y
,X

),
1
)

C
(

,X
)⊗

1

↓
c

→

V
(C

(Y
,X

),
1
)⊗

⊗
V
(V

(C
(Y
,X

),
1
),

V
(C

(Z
,X

),
1
))

1
⊗

V
(

,1
)

↓
e
v

V

→
V
(C

(Z
,X

),
1
)

ψ
X

,Z

↓

μ
V

→

Figure 1.
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the morphism 1C
X ⊗ 1⊗ 1 : C(X,Y S)⊗ C(Y,X)→ C(X,X)⊗ C(X,Y S)⊗ C(Y,X)

gives an equation:

C(Y,X)⊗ C(X,Y S)
S⊗1→ C(Y S,XS)⊗ C(X,Y S)

cμC→ C(X,XS)

=

C(Y,X)⊗ V(C(Y,X),1)

1⊗ψX,Y ↓
evV

→ 1

τX↓ (2.8)

The only solution to the above equation is given by (2.6).
Conversely, suppose equation (2.8) holds. It suffices to prove that diagram

(2.7) is commutative. Plugging in the expressions for (1 ⊗ ψX,Y ) evV and (1 ⊗
ψX,Z) evV into (2.7), we obtain (cancelling a common permutation of the factors
of the source object):

C(X,Y S)⊗ C(Y, Z)⊗ C(Z,X)
1⊗S⊗S→ C(X,Y S)⊗ C(Y S,ZS)⊗ C(ZS,XS)

C(X,Y S)⊗ C(Y,X)

1⊗μC↓
C(X,ZS)⊗ C(ZS,XS)

μC⊗1↓

C(X,Y S)⊗ C(Y S,XS)

1⊗S↓
C(X,XS)

μC↓

C(X,XS)

μC↓
τX → 1

τX↓

Commutativity of the diagram follows from associativity of μC and the fact that
S is a V-functor. The lemma is proven. �

Proposition 2.5. Assume that S : C → C is a V-functor, and ψ is a natural
transformation as in (2.1). Then the following diagram commutes (in V):

C(Y,X)
e→ V(V(C(Y,X),1),1)

C(Y S,XS)

S↓
ψY S,X→ V(C(X,Y S),1)

V(ψX,Y ,1)↓

In particular, if for each pair of objects X,Y ∈ ObC the object C(Y,X) is reflexive,
and ψ is an isomorphism, then S is fully faithful.
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Proof. By closedness, it suffices to prove commutativity of the following diagram:

C(X,Y S)⊗ C(Y,X)
1⊗e→ C(X,Y S)⊗ V(V(C(Y,X),1),1)

C(X,Y S)⊗ C(Y S,XS)

1⊗S↓
C(X,Y S)⊗ V(C(X,Y S),1)

1⊗V(ψX,Y ,1)↓

C(X,Y S)⊗ V(C(X,Y S),1)

1⊗ψY S,X ↓
evV

→ 1

evV

↓

Using (2.5) and the definition of e, the above diagram can be transformed as
follows:

C(X,Y S)⊗ C(Y,X)
c → C(Y,X)⊗ C(X,Y S)

C(X,Y S)⊗ C(Y S,XS)

1⊗S↓
C(Y,X)⊗ V(C(Y,X),1)

1⊗ψX,Y↓

C(X,XS)

μC↓
τX → 1

evV

↓

It is commutative by (2.8). �

Proposition 2.5 implies that a right Serre functor is fully faithful if and only if
C is hom-reflexive, i.e., if C(X,Y ) is a reflexive object of V for each pair of objects
X,Y ∈ ObC. If this is the case, a right Serre functor will be a Serre functor
if and only if it is essentially surjective on objects. The most natural reason for
hom-reflexivity is, of course, k being a field. When k is a field, an object C of
gr(k -vect) is reflexive iff all spaces Cn are finite-dimensional. The ring k being
a field, the homology functor H• : K → gr(k -vect) is an equivalence (see e.g.
[GM03, Chapter III, § 2, Proposition 4]). Hence, an object C of K is reflexive
iff all homology spaces HnC are finite-dimensional. A projective module of finite
rank over an arbitrary commutative ring k is reflexive as an object of a rigid
monoidal category [DM82, Example 1.23]. Thus, an object C of gr(k-Mod) whose
components Cn are projective k-modules of finite rank is reflexive.

Proposition 2.6. Let C be a V-category. There exists a right Serre V-functor S :
C→ C if and only if for each object Y ∈ ObC the V-functor

HomC(Y, )op · V( ,1) = V(C(Y, )op,1) : Cop → V

is representable.

Proof. Standard, see [Kel82, Section 1.10]. �
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2.7. Commutation with equivalences

Let C and C′ be V-categories with right Serre functors S : C→ C and S′ : C′ → C′,
respectively. Let ψ and ψ′ be isomorphisms as in (2.1). For objects Y ∈ ObC,
Z ∈ Ob C′, define τY , τ ′Z by (2.3). Let T : C → C′ be a V-functor, and suppose
that T is fully faithful. Then there is a natural transformation κ : ST → TS′ such
that, for each object Y ∈ ObC, the following equation holds:[

C(Y, Y S)
T→ C′(Y T, Y ST )

C′(Y T,κ)→ C′(Y T, Y TS′)
τ ′

Y T→ 1
]

= τY . (2.9)

Indeed, the left-hand side of equation (2.9) equals

[
C(Y, Y S)

T→ C′(Y T, Y ST )
1⊗κY→ C′(Y T, Y ST )⊗ C′(Y ST, Y TS′)

μC′→ C′(Y T, Y TS′)
τ ′

Y T→ 1
]
.

Using relation (2.5) between τ ′Y T and ψ′Y ST,Y T , we get:

[
C(Y, Y S)

T→ C′(Y T, Y ST )
1⊗κY→ C′(Y T, Y ST )⊗ C′(Y ST, Y TS′)

1⊗ψ′
Y ST,Y T→ C′(Y T, Y ST )⊗ V(C′(Y T, Y ST ),1)

evV

→ 1
]
.

Therefore, equation (2.9) is equivalent to the following equation:

[
C(Y, Y S)

1⊗κY→ C(Y, Y S)⊗ C′(Y ST, Y TS′)
1⊗ψ′

Y ST,Y T→

C(Y, Y S)⊗V(C′(Y T, Y ST ),1)
1⊗V(T,1)→ C(Y, Y S)⊗V(C(Y, Y S),1)

evV

→ 1
]

= τY .

It implies that the composite

1
κY→ C′(Y ST, Y TS′)

ψ′
Y ST,Y T→ V(C′(Y T, Y ST ),1)

V(T,1)→ V(C(Y, Y S),1)

is equal to τY : 1 → V(C(Y, Y S),1), the morphism that corresponds to τY by
closedness of the category V. Since the morphisms ψ′Y ST,Y T and V(T,1) are in-
vertible, the morphism κY : 1→ C′(Y ST, Y TS′) is uniquely determined.

Lemma 2.8. The transformation κ satisfies the following equation:

ψX,Y =
[
C(X,Y S)

T→ C′(XT, Y ST )
C′(XT,κ)→ C(XT, Y TS′)

ψ′
XT,Y T→ V(C′(Y T,XT ),1)

V(T,1)→ V(C(Y,X),1)
]
,

for each pair of objects X,Y ∈ ObC.
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Proof. The exterior of the following diagram commutes:

C(Y, Y S)
τY → 1

C(Y,X)⊗ C(X,Y S)

μC
→

C′(Y T, Y ST )

T↓
C′(Y T,κ) → C′(Y T, Y TS′)

τ ′
Y T

↑

C′(Y T,XT )⊗ C′(XT, Y ST )

μC′
↑

1⊗C′(XT,κ)→
T⊗T →

C′(Y T,XT )⊗ C′(XT, Y TS′)

μC′
↑

The right upper square commutes by the definition of κ, commutativity of the
lower square is a consequence of associativity of μC′ . The left quadrilateral is
commutative since T is a V-functor. Transforming both paths with the help of
equation (2.5) yields the following equation:

[
C(Y,X)⊗ C(X,Y S)

1⊗ψX,Y→ C(Y,X)⊗ V(C(Y,X),1)
evV

→ 1
]

=
[
C(Y,X)⊗ C(X,Y S)

T⊗T→ C′(Y T,XT )⊗ C′(XT, Y ST )
1⊗C′(XT,κ)→

C′(Y T,XT )⊗ C′(XT, Y TS′)
1⊗ψ′

XT,Y T→ C′(Y T,XT )⊗ V(C′(Y T,XT ),1)
evV

→ 1
]

=
[
C(Y,X)⊗ C(X,Y S)

1⊗T→ C(Y,X)⊗ C′(XT, Y ST )
1⊗C′(XT,κ)→ C(Y,X)⊗ C′(XT, Y TS′)

1⊗ψ′
XT,Y T→ C(Y,X)⊗ V(C′(Y T,XT ),1)

1⊗V(T,1)→ C(Y,X)⊗ V(C(Y,X),1)
evV

→ 1
]
.

The required equation follows by closedness of V. �

Corollary 2.9. If T is an equivalence, then the natural transformation κ : ST →
TS′ is an isomorphism.

Proof. Lemma 2.8 implies that C′(XT,κ) : C′(XT, Y ST ) → C′(XT,XTS′) is an
isomorphism, for eachX ∈ ObC. Since T is essentially surjective, it follows that the
morphism C′(Z,κ) : C′(Z, Y ST ) → C′(Z, Y TS′) is invertible, for each Z ∈ ObC′,
thus κ is an isomorphism. �

Corollary 2.10. A right Serre V-functor is unique up to an isomorphism.

Proof. Suppose S, S′ : C → C are right Serre functors. Applying Corollary 2.9 to
the functor T = IdC : C→ C yields a natural isomorphism κ : S → S′. �
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2.11. Trace functionals determine the Serre functor

Combining for a natural transformation ψ diagrams (2.5) and (2.8) we get the
equation

C(Y,X)⊗ C(X,Y S)
μC → C(Y, Y S)

τY → 1

=

C(Y S,XS)⊗ C(X,Y S)

S⊗1↓
c→ C(X,Y S)⊗ C(Y S,XS)

μC→ C(X,XS)

τX

↑
(2.10)

The above diagram can be written as the equation

C(X,Y S)⊗ C(Y,X)
1⊗S→ C(X,Y S)⊗ C(Y S,XS)

=

C(Y,X)⊗ C(X,Y S)

c↓
φX,Y → 1

φY S,X↓ (2.11)

When S is a fully faithful right Serre functor, the pairing

φX,Y =
[
C(Y,X)⊗ C(X,Y S)

μC→ C(Y, Y S)
τY→ 1

]
(2.12)

is perfect. Namely, the induced by it morphism ψX,Y : C(X,Y S)→ V(C(Y,X),1)
is invertible, and induced by the pairing

c · φX,Y =
[
C(X,Y S)⊗ C(Y,X)

c→ C(Y,X)⊗ C(X,Y S)
φX,Y→ 1

]
the morphism ψ′ : C(Y,X)→ V(C(X,Y S),1) is invertible. In fact, diagram (2.11)
implies that

ψ′ =
[
C(Y,X)

S→ C(Y S,XS)
ψY S,X→ V(C(X,Y S),1)

]
.

Diagram (2.11) allows to restore the morphisms S : C(Y,X) → C(Y S,XS)
unambiguously from ObS and the trace functionals τ , due to ψY S,X being iso-
morphisms.

Proposition 2.12. A map ObS and trace functionals τX , X ∈ ObC, such that
the induced ψX,Y from (2.2) are invertible, define a unique right Serre V-functor
(S, ψX,Y ).



A∞-bimodules and Serre A∞-functors 585

Proof. Let us show that the obtained morphisms S : C(Y,X) → C(Y S,XS) pre-
serve the composition in C. In fact, due to associativity of composition we have[

C(X,ZS)⊗ C(Z, Y )⊗ C(Y,X)
1⊗S⊗S→ C(X,ZS)⊗ C(ZS, Y S)⊗ C(Y S,XS)

1⊗μC→ C(X,ZS)⊗ C(ZS,XS)
φZS,X→ 1

]
=

[
C(X,ZS)⊗ C(Z, Y )⊗ C(Y,X)

1⊗S⊗S→ C(X,ZS)⊗ C(ZS, Y S)⊗ C(Y S,XS)
μC⊗1→ C(X,Y S)⊗ C(Y S,XS)

μC→ C(X,XS)
τX→ 1

]
=

[
C(X,ZS)⊗ C(Z, Y )⊗ C(Y,X)

(1⊗S⊗1)(μC⊗1)→ C(X,Y S)⊗ C(Y,X)
1⊗S→ C(X,Y S)⊗ C(Y S,XS)

μC→ C(X,XS)
τX→ 1

]
=

[
C(X,ZS)⊗ C(Z, Y )⊗ C(Y,X)

(1⊗S⊗1)(μC⊗1)→ C(X,Y S)⊗ C(Y,X)
c→ C(Y,X)⊗ C(X,Y S)

μC→ C(Y, Y S)
τY→ 1

]
=

[
C(X,ZS)⊗C(Z, Y )⊗C(Y,X)

(123)c(1⊗1⊗S)→ C(Y,X)⊗C(X,ZS)⊗C(ZS, Y S)
1⊗μC→ C(Y,X)⊗ C(X,Y S)

μC→ C(Y, Y S)
τY→ 1

]
=

[
C(X,ZS)⊗C(Z, Y )⊗C(Y,X)

(123)c(1⊗1⊗S)→ C(Y,X)⊗C(X,ZS)⊗C(ZS, Y S)
μC⊗1→ C(Y, ZS)⊗ C(ZS, Y S)

μC→ C(Y, Y S)
τY→ 1

]
=

[
C(X,ZS)⊗ C(Z, Y )⊗ C(Y,X)

(123)c(μC⊗1)→ C(Y, ZS)⊗ C(Z, Y )
1⊗S→ C(Y, ZS)⊗ C(ZS, Y S)

μC→ C(Y, Y S)
τY→ 1

]
=

[
C(X,ZS)⊗ C(Z, Y )⊗ C(Y,X)

(123)c(μC⊗1)→ C(Y, ZS)⊗ C(Z, Y )
c→ C(Z, Y )⊗ C(Y, ZS)

μC→ C(Z,ZS)
τZ→ 1

]
=

[
C(X,ZS)⊗ C(Z, Y )⊗ C(Y,X)

(321)c→ C(Z, Y )⊗ C(Y,X)⊗ C(X,ZS)
1⊗μC→ C(Z, Y )⊗ C(Y, ZS)

μC→ C(Z,ZS)
τZ→ 1

]
.

On the other hand[
C(X,ZS)⊗ C(Z, Y )⊗ C(Y,X)

1⊗μC→ C(X,ZS)⊗ C(Z,X)
1⊗S→ C(X,ZS)⊗ C(ZS,XS)

φZS,X→ 1
]

=
[
C(X,ZS)⊗ C(Z, Y )⊗ C(Y,X)

1⊗μC→ C(X,ZS)⊗ C(Z,X)
c→ C(Z,X)⊗ C(X,ZS)

φX,Z→ 1
]

=
[
C(X,ZS)⊗ C(Z, Y )⊗ C(Y,X)

(321)c→ C(Z, Y )⊗ C(Y,X)⊗ C(X,ZS)
μC⊗1→ C(Z,X)⊗ C(X,ZS)

μC→ C(Z,ZS)
τZ→ 1

]
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=
[
C(X,ZS)⊗ C(Z, Y )⊗ C(Y,X)

(321)c→ C(Z, Y )⊗ C(Y,X)⊗ C(X,ZS)
1⊗μC→ C(Z, Y )⊗ C(Y, ZS)

μC→ C(Z,ZS)
τZ→ 1

]
.

The last lines of both expressions coincide, hence (S ⊗ S)μC = μCS.
Let us prove that the morphisms S : C(X,X) → C(XS,XS) of V preserve

units. Indeed, the exterior of the following diagram commutes:

C(X,XS)
τX → 1

C(X,XS)
λ . I(1X⊗1)

→
======

=====
=====

===⇀⇁

C(X,X)⊗ C(X,XS)

μC

↑

= =

C(X,XS)⊗ 1

λI . �↓
1⊗1X → C(X,XS)⊗ C(X,X)

c
↑

C(X,XS)⊗ C(XS,XS)

1⊗S↓
μC→

1⊗?

1⊗1XS →
C(X,XS)

τX

↑

Therefore, both paths from C(X,XS) to 1, going through the isomorphism λI . ,
sides of triangle marked ‘1⊗?’, μC and τX , compose to the same morphism τX .
Invertibility of ψX,X implies that the origin ‘?’ of the mentioned triangle commutes,
that is,

1XS =
[
1

1X→ C(X,X)
S→ C(XS,XS)

]
.

Summing up, the constructed S : C→ C is a V-functor. Applying Lemma 2.3
we deduce that ψ−,Y is natural in the first argument for all objects Y of C. Recall
that ψX,Y is a unique morphism which makes diagram (2.5) commutative. Due
to equation (2.10) ψX,Y makes commutative also diagram (2.8). This means that
ψX,Y can be presented also in the form (2.6). Applying Lemma 2.4 we deduce that
ψX,− is natural in the second argument for all objects X of C. Being natural in
each variable ψ is natural as a whole [Kel82, Section 1.4]. �

2.13. Base change

Let V = (V,⊗I
V, λ

f
V), W = (W,⊗I

W, λ
f
W) be closed symmetric Monoidal U -cat-

egories. Let (B, βI) : (V,⊗I
V, λ

f
V) → (W,⊗I

W, λ
f
W) be a lax symmetric Monoidal

functor. Denote by B̂ : V̂ → Ŵ the corresponding multifunctor. According to
[Man07], (B, βI) gives rise to a lax symmetric Monoidal Cat-functor (B∗, βI

∗) :
V-Cat → W-Cat. Since the multicategories V̂ and Ŵ are closed, the multifunctor
B̂ determines the closing transformation B̂. In particular, we have a W-functor
B∗V → W, X �→ BX , which is denoted by B̂ by abuse of notation, whose action
on morphisms is found from the following equation in W:[

BX ⊗B(V(X,Y ))
1⊗B̂→ BX ⊗W(BX,BY )

evW

→ BY
]

= B̂(evV). (2.13)
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Let B̂∗ : V̂-Cat→ Ŵ-Cat denote the symmetric Cat-multifunctor that corresponds
to the lax symmetric Monoidal Cat-functor (B∗, βI

∗). Clearly, B̂∗ commutes with
taking opposite.

In the sequel, the tensor product in the categories V and W is denoted by ⊗,
the unit objects in both categories are denoted by 1.

Let A be a V-category. We claim that the W-functor

B̂∗ HomA ·B̂ =
[
B∗(A)op �B∗(A)

B̂∗ HomA→ B∗V
B̂→ W

]
coincides with HomB∗A. Indeed, both functors send a pair of objects (X,Y ) ∈
ObA × ObA to the object B(A(X,Y )) = (B∗A)(X,Y ) of W. Applying B̂ to
equation (1.2) yields a commutative diagram

B(A(X,U))⊗B(A(Y,X))⊗B(A(U,V ))
1⊗B̂ HomA→ B(A(X,U))⊗BV(A(X,U),A(Y,V ))

B(A(Y,X))⊗B(A(X,U))⊗B(A(U,V ))

c⊗1

↓ B̂(μ3
A)

‖
μ3

B∗A

→ B(A(Y,V ))

B̂(evV)

↓

Expanding B̂(evV) according to (2.13) we transform the above diagram as follows:

B(A(X,U))⊗B(A(Y,X))⊗B(A(U,V ))
1⊗B̂ HomA ·B̂→ B(A(X,U))⊗W(B(A(X,U)),B(A(Y,V )))

B(A(Y,X))⊗B(A(X,U))⊗B(A(U,V ))

c⊗1

↓
μ3

B∗A → B(A(Y,V ))

evW

↓

It follows that the functors B̂∗ HomA ·B̂ and HomB∗A satisfy the same equation,
therefore they must coincide by closedness of W.

There is a natural transformation of W-functors ζ′ as in the diagram below:

B∗V
op B∗V( ,1)→ B∗V

Wop

(B̂)op↓
W( ,B1)→

ζ′

⇐===
===

==

W

B̂↓

For each object X , the morphism ζ′X : B(V(X,1)) → W(BX,B1) in W comes
from the map B̂(evV) : BX⊗BV(X,1)→ B1 by closedness of W. In other words,
ζ′X = B̂X,1. Naturality of ζ′ is expressed by the following equation in W:

BV(Y,X)
BV( ,1) → BV(V(X,1),V(Y,1))

W(BY,BX)

B̂↓
W(BV(X,1), BV(Y,1))

B̂↓

W(W(BX,B1),W(BY,B1))

W( ,B1)↓
W(ζ′

X ,1)→ W(BV(X,1),W(BY,B1))

W(1,ζ′
Y )↓
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By closedness of W, it is equivalent to the following equation:

BV(X,1)⊗BV(Y,X)
1⊗BV( ,1)→ BV(X,1)⊗BV(V(X,1),V(Y,1))

W(BX,B1)⊗W(BY,BX)

ζ′
X⊗B̂↓

BV(Y,1)

B̂(evV)↓

W(BX,B1)⊗W(W(BX,B1),W(BY,B1))

1⊗W( ,B1)↓
evW

→ W(BY,B1)

ζ′
Y↓

By (1.3), the above equation reduces to the equation

BV(Y,X)⊗BV(X,1)
B̂(μV)

‖
μB∗V

→ BV(Y,1)

W(BY,BX)⊗W(BX,B1)

B̂⊗ζ′
X = B̂Y,X⊗B̂X,1↓

μW→ W(BY,B1)

B̂Y,1 = ζ′
Y↓

which expresses the fact that B̂ : B∗V→W is a W-functor.
Suppose that β∅ : 1 → B1 is an isomorphism. Then there is a natural

isomorphism of functors

W(1, (β∅)−1) : W( , B1)→W( ,1) : Wop →W.

Pasting it with ζ′ gives a natural transformation ζ as in the diagram below:

B∗V
op B∗V( ,1)→ B∗V

Wop

(B̂)op↓
W( ,1)→

ζ

⇐===
===

==

W

B̂↓ (2.14)

Proposition 2.14. Suppose ζ is an isomorphism. Let C be a V-category, and suppose
S : C→ C is a right Serre V-functor. Then B∗(S) : B∗(C) → B∗(C) is a right Serre
W-functor.

Proof. Let ψ be a natural isomorphism as in (2.1). Applying the Cat-multifunctor
B̂∗ and patching the result with diagram (2.14) yields the following diagram:

B∗(C)op �B∗(C)
1�B∗(S)→ B∗(C)op �B∗(C)

B∗V
op

B̂∗(HomCop )op↓
B∗V( ,1) →

B̂∗(ψ)

⇐====
====

====
===

B∗V

B̂∗ HomC↓

Wop

(B̂)op↓
W( ,1) →

ζ

⇐====
====

====
====

=

W

B̂↓

(2.15)
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Since B̂∗ HomC ·B̂ = HomB∗(C) and B̂∗ HomCop ·B̂ = HomB∗(C)op , we obtain a
natural transformation

B∗(C)op �B∗(C)
1�B∗(S)→ B∗(C)op �B∗(C)

Wop

Homop
B∗(C)op ↓

W( ,1) →⇐====
====

====
====

W

HomB∗(C)↓

It is invertible since so are ψ and ζ. It follows that a right Serre V-functor S : C→ C

induces a right Serre W-functor B∗(S) : B∗(C) → B∗(C). �
2.15. From K-categories to gr-categories

Consider the lax symmetric Monoidal base change functor (H•, κI) : K → gr,
X �→ H•X = (HnX)n∈Z, where for each I ∈ Ob S the morphism κI : ⊗i∈IH•Xi →
H•⊗i∈IXi is the Künneth map. There is a gr-functor Ĥ• : H•

∗K → gr,X �→ H•X ,
that acts on morphisms via the map

K(X [−n], Y ) = HnK(X,Y )→ gr(H•X,H•Y )n =
∏
d∈Z

k-Mod(Hd−nX,HdY )

which sends the homotopy class of a chain map f : X [−n] → Y to (Hd(f))d∈Z.
Note that H• preserves the unit object, therefore there is a natural transformation

H•
∗Kop H•

∗K( ,k)→ H•
∗K

grop

(Ĥ•)op↓
gr( ,k)

→

ζ

⇐===
===

===

gr

Ĥ•

↓

Explicitly, the map ζX = Ĥ•
X,k : H•(K(X, k)) → gr(H•X,H•k) = gr(H•X, k)

is given by its components

K(X [−n], k) = HnK(X, k)→ gr(H•X, k)n = k-Mod(H−nX, k), f �→ H0(f).

In general, ζ is not invertible. However, if k is a field, ζ is an isomorphism. In fact,
in this case H• : K → gr is an equivalence. A quasi-inverse is given by the functor
F : gr→ K which equips a graded k-module with the trivial differential.

Corollary 2.16. Suppose k is a field. Let S : C → C be a (right) Serre K-functor.
Then H•

∗ (S) : H•
∗ (C)→ H•

∗ (C) is a (right) Serre gr-functor. Moreover, H•
∗ reflects

(right) Serre functors: if H•
∗ (C) admits a (right) Serre gr-functor, then C admits

a (right) Serre K-functor.

Proof. The first assertion follows from Proposition 2.14. For the proof of the sec-
ond, note that the symmetric Monoidal functor F : gr → K induces a symmet-
ric Monoidal Cat-functor F∗ : ĝr-Cat → K̂-Cat. The corresponding K-functor
F̂ : F∗gr → K acts as the identity on morphisms (the complex K(FX,FY )
carries the trivial differential and coincides with gr(X,Y ) as a graded k-mod-
ule). Furthermore, F preserves the unit object, therefore Proposition 2.14 ap-
plies. It follows that if S̄ : H•

∗ (C) → H•
∗ (C) is a right Serre gr-functor, then
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F∗(S̄) : F∗H•
∗ (C) → F∗H•

∗ (C) is a right Serre K-functor. Since the K-category
F∗H•

∗ (C) is isomorphic to C, the right Serre K-functor F∗(S̄) translates to a right
Serre K-functor on C. �

2.17. From gr-categories to k-categories

Consider a lax symmetric Monoidal base change functor (N, νI) : gr → k-Mod,
X = (Xn)n∈Z �→ X0, where for each I ∈ ObS the map νI : ⊗i∈INXi = ⊗i∈IX0

i →
N⊗i∈IXi = ⊕∑

i∈I ni=0X
ni

i is the natural embedding. The k-functor N̂ : N∗gr→
k-Mod, X �→ NX = X0, acts on morphisms via the projection

Ngr(X,Y ) = gr(X,Y )0 =
∏
d∈Z

k-Mod(Xd, Y d)

→ k-Mod(X0, Y 0) = k-Mod(NX,NY ).

The functor N preserves the unit object, therefore there exists a natural transfor-
mation

N∗grop N∗gr( ,k)
→ N∗gr

k-Modop

(N̂)op↓
k-Mod( ,k)→

ζ

⇐===
===

===
==

k-Mod

N̂↓

Explicitly, the map ζX = N̂X,k is the identity map

Ngr(X, k) = gr(X, k)0 → k-Mod(X0, k) = k-Mod(NX, k).

Corollary 2.18 (to Proposition 2.14). Suppose S : C→ C is a right Serre gr-func-
tor. Then N∗(S) : N∗(C)→ N∗(C) is a right Serre k-functor.

If N∗(C) possess a right Serre k-functor, it does not imply, in general, that
C has a right Serre gr-functor. However, this will be the case if C is closed under
shifts, as explained in the next section.

2.19. Categories closed under shifts

As in [BLM06, Chapter 10] denote by Z the following algebra (strict monoidal
category) in the symmetric monoidal category of dg-categories, K-categories or
gr-categories. As a graded quiver Z has ObZ = Z and Z(m,n) = k[n−m]. In the
first two cases Z is supplied with zero differential. Composition in the category Z

comes from the multiplication in k:

μZ : Z(l,m)⊗k Z(m,n) = k[m− l]⊗k k[n−m]→ k[n− l] = Z(l, n),

1sm−l ⊗ 1sn−m �→ 1sn−l.

The elements 1 ∈ k = Z(n, n) are identity morphisms of Z.
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The object Z of (V-Cat,�) (where V is dg, K or gr) is equipped with an alge-
bra (a strict monoidal category) structure, given by multiplication – the V-functor

⊗ψ : Z � Z → Z, m× n �→ m+ n,

⊗ψ : (Z � Z)(n×m, k × l) = Z(n, k)⊗ Z(m, l)→ Z(n+m, k + l),

1sk−n ⊗ 1sl−m �→ (−1)k(m−l)sk+l−n−m.

Therefore, for the three mentioned V the functor − � Z : V-Cat → V-Cat,
C �→ C � Z, is a monad. It takes a V-category C to the V-category C � Z with the
set of objects Ob C � Z = ObC × Z and with the graded modules of morphisms
(C � Z)((X,n), (Y,m)) = C(X,Y ) ⊗ k[m − n]. The composition is given by the
following morphism in V:

μC�Z =
[
(C � Z)((X,n), (Y,m))⊗ (C � Z)((Y,m), (Z, p)) =

C(X,Y )⊗k[m−n]⊗C(Y, Z)⊗k[p−m]
1⊗c⊗1→ C(X,Y )⊗C(Y, Z)⊗k[m−n]⊗k[p−m]

μC⊗μZ→ C(X,Z)⊗ k[p− n] = (C � Z)((X,n), (Z, p))
]
. (2.16)

The unit u[ ] = id�1Z : C → C � Z of the monad − � Z : V-Cat → V-Cat is the
natural embedding X �→ (X, 0) bijective on morphisms. Here 1Z : k → Z, ∗ �→ 0 is
the unit of the algebra Z, whose source is the graded category k with one object.

The V-category C � Z admits an isomorphic form C[ ] whose set of objects
is Ob C[ ] = ObC × Z, likewise C � Z. The graded k-modules of morphisms are
C[ ]((X,n), (Y,m)) = C(X,Y )[m − n]. This graded quiver is identified with C � Z

via the isomorphism

ß =
[
C(X,Y )[m− n] sn−m

→ C(X,Y )
λI . (1⊗sm−n)→ C(X,Y )⊗ Z(n,m)

]
in [BLM06, Chapter 10]. Therefore, in the cases of V = Ck or V = K the
graded k-module C[ ]((X,n), (Y,m)) is equipped with the differential
(−1)m−nsn−mdCs

m−n. Multiplication in C[ ] is found from (2.16) as

μC[ ] =
[
C(X,Y )[m−n]⊗C(Y, Z)[p−m]

ß⊗ß→ C(X,Y )⊗k[m−n]⊗C(Y, Z)⊗k[p−m]
μC�Z→ C(X,Z)⊗ k[p− n] ß−1

→ C(X,Z)[p− n]
]

=
[
C(X,Y )[m− n]⊗ C(Y, Z)[p−m]

(sm−n⊗sp−m)−1

→ C(X,Y )⊗ C(Y, Z)
μC→ C(X,Z)

sp−n

→ C(X,Z)[p− n]
]
. (2.17)

Definition 2.20. We say that a V-category C is closed under shifts if every object
(X,n) of C[ ] is isomorphic in C[ ] to some object (Y, 0), Y = X [n] ∈ ObC.
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Clearly, −[ ] : V-Cat → V-Cat is also a monad, whose unit u[ ] : C → C[ ] is
the natural embedding X �→ (X, 0) identity on morphisms. Immediately one finds
that a V-category C is closed under shifts if and only if the functor u[ ] : C → C[ ]

is an equivalence.
The lax symmetric Monoidal base change functor (H•, κI) : K → gr gives,

in particular, the Künneth functor κ : H•C � H•Z → H•(C � Z), identity on
objects. It is an isomorphism of gr-categories because Z(m,n) = k[n−m] are flat
graded k-modules. Clearly, Z coincides with H•Z as a graded k-quiver, hence we
have the isomorphism κ : (H•C)�Z→ H•(C�Z). Equivalently we may write the
isomorphism (H•C)[ ] � H•(C[ ]). From the lax monoidality of (H•, κI) we deduce
the following equation:

H•(u[ ]) =
[
H•C

u[ ]→ (H•C) � Z
κ

∼→ H
•(C � Z)

]
.

Therefore, if C is a K-category closed under shifts, then H•C is a gr-category
closed under shifts.

For a gr-category C, the components of the graded k-module C(X,Y ) are
denoted by C(X,Y )n = Cn(X,Y ), X,Y ∈ ObC, n ∈ Z. The k-category N∗(C) is
denoted by C0.

Proposition 2.21. Let C be a gr-category closed under shifts. Suppose S0 : C0 → C0

is a right Serre k-functor. Then there exists a right Serre gr-functor S : C → C

such that N∗(S) = S0.

Proof. Let ψ0 = (ψ0
X,Y : C0(X,Y S0) → k-Mod(C0(Y,X), k))X,Y ∈Ob C be a natu-

ral isomorphism. Let φ0
X,Y : C0(Y,X)⊗ C0(X,Y S) → k, X,Y ∈ ObC, denote the

corresponding pairings from (2.12). Define trace functionals τ0X : C0(X,XS)→ k,
X ∈ ObC, by formula (2.3). We are going to apply Proposition 2.12. For this we
need to specify a map ObS : ObC→ ObC and trace functionals τX : C(X,XS)→
k, X ∈ ObC. Set ObS = ObS0. Let the 0-th component of τX be equal to the
map τ0X , the other components necessarily vanish since k is concentrated in degree
0. Let us prove that the pairings φX,Y given by (2.12) are perfect. For n ∈ Z, the
restriction of φX,Y to the summand Cn(Y,X)⊗ C−n(X,Y S) is given by

φX,Y =
[
Cn(Y,X)⊗ C−n(X,Y S)

μC→ C0(Y, Y S)
τ0

Y→ k
]
.

It can be written as follows:

φX,Y =
[
Cn(Y,X)⊗ C−n(X,Y S) = C[ ]((Y, 0), (X,n))0 ⊗ C[ ]((X,n), (Y S, 0))0

(−)nμ
C[ ]→ C[ ]((Y, 0), (Y S, 0))0 = C0(Y, Y S)

τ0
Y→ k

]
.
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Since C is closed under shifts, there exist an object X [n] ∈ ObC and an isomor-
phism α : (X,n)→ (X [n], 0) in C[ ]. Using associativity of μC[ ] , we obtain:

φX,Y =
[
Cn(Y,X)⊗ C−n(X,Y S) = C[ ]((Y, 0), (X,n))0 ⊗ C[ ]((X,n), (Y S, 0))0

C[ ](1,α)0⊗C[ ](α−1,1)0→ C[ ]((Y, 0), (X [n], 0))0 ⊗ C[ ]((X [n], 0), (Y S, 0))0

(−)nμ
C[ ]→ C[ ]((Y, 0), (Y S, 0))0 = C0(Y, Y S)

τ0
Y→ k

]
=

[
Cn(Y,X)⊗ C−n(X,Y S) = C[ ]((Y, 0), (X,n))0 ⊗ C[ ]((X,n), (Y S, 0))0

C[ ](1,α)0⊗C[ ](α−1,1)0→ C[ ]((Y, 0), (X [n], 0))0 ⊗ C[ ]((X [n], 0), (Y S, 0))0

= C0(Y,X [n])⊗ C0(X [n], Y S)
(−)nμC0→ C0(Y, Y S)

τ0
Y→ k

]
=

[
Cn(Y,X)⊗ C−n(X,Y S) = C[ ]((Y, 0), (X,n))0 ⊗ C[ ]((X,n), (Y S, 0))0

C[ ](1,α)0⊗C[ ](α−1,1)0→ C[ ]((Y, 0), (X [n], 0))0 ⊗ C[ ]((X [n], 0), (Y S, 0))0

= C0(Y,X [n])⊗ C0(X [n], Y S)
(−)nφ0

X[n],Y→ k
]
.

Since φ0
X[n],Y is a perfect pairing and the maps C[ ](1, α)0 and C[ ](α−1, 1)0 are

invertible, the pairing φX,Y is perfect as well. Indeed, it is easy to see that the
corresponding maps ψ−n

X,Y and ψ0
X[n],Y are related as follows:

ψ−n
X,Y =

[
C−n(X,Y S)

C[ ](α−1,1)0→ C0(X [n], Y S)
(−)nψ0

X[n],Y→

Homk(C0(Y,X [n]), k)
Homk(C

[ ](1,α))0,1)→ Homk(Cn(Y,X), k)
]
.

Proposition 2.12 implies that there is a right Serre gr-functor S : C → C. Its compo-
nents are determined unambiguously by equation (2.10). Applying the multifunc-
tor N̂ to it we find that the functor N∗(S) : C0 → C0 satisfies the same equation
the functor S0 : C0 → C0 does. By uniqueness of the solution, N∗(S) = S0. �

3. A∞-categories and K-categories

In this section we recall and deepen the relationship between A∞-categories and
K-categories. It is implemented by a multifunctor k : Au

∞ → K̂-Cat from [BLM06,
Chapter 13], where K-Cat is the symmetric Monoidal category of K-categories and
K-functors, and K̂-Cat is the corresponding symmetric multicategory. This multi-
functor extends to non-unital A∞-categories as a sort of multifunctor k : A∞ →
K̂-Catnu, where K-Catnu is the symmetric Monoidal category of non-unital K-cate-
gories and K-functors, and K̂-Catnu is the corresponding symmetric multicategory
[loc. cit.].
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3.1. Opposite A∞-categories

Recall the following definitions from [LM04, Appendix A]. Let A be a graded
k-quiver. Then its opposite quiver Aop is defined as the quiver with the same class
of objects ObAop = ObA, and with graded k-modules of morphisms Aop(X,Y ) =
A(Y,X).

Let γ : TsAop → TsA denote the following anti-isomorphism of coalgebras
and algebras (free categories):

γ = (−1)kω0
c : sAop(X0, X1)⊗ · · · ⊗ sAop(Xk−1, Xk)

→ sA(Xk, Xk−1)⊗ · · · ⊗ sA(X1, X0), (3.1)

where ω0 =
(

1 2 ... k−1 k
k k−1 ... 2 1

)
∈ Sk. Clearly, γΔ0 = Δ0(γ⊗γ)c = Δ0c(γ⊗γ), which

is the anti-isomorphism property. Notice also that (Aop)op = A and γ2 = id.
When A is an A∞-category with the codifferential b : TsA → TsA, then

γbγ : TsAop → TsAop is also a codifferential. Indeed,

γbγΔ0 = γbΔ0c(γ ⊗ γ) = γΔ0(1⊗ b+ b⊗ 1)c(γ ⊗ γ)
= Δ0(γ ⊗ γ)c(1⊗ b+ b⊗ 1)c(γ ⊗ γ) = Δ0(γbγ ⊗ 1 + 1⊗ γbγ).

The opposite A∞-category Aop to an A∞-category A is the opposite quiver,
equipped with the codifferential bop = γbγ : TsAop → TsAop. The components of
bop are computed as follows:

bopk = (−)k+1
[
sAop(X0, X1)⊗ · · · ⊗ sAop(Xk−1, Xk)

ω0
c→

sA(Xk, Xk−1)⊗ · · · ⊗ sA(X1, X0)
bk→ sA(Xk, X0) = sAop(X0, Xk)

]
. (3.2)

The sign (−1)k in (3.1) ensures that the above definition agrees with the definition
of the opposite usual category, meaning that, for an arbitrary A∞-category A,
k(Aop) = (kA)op. Indeed, clearly, both categories have ObA as the set of objects.
Furthermore, for each pair of objects X,Y ∈ ObA,

mop
1 = sbop1 s

−1 = sb1s−1 = m1 : Aop(X,Y ) = A(Y,X)→ A(Y,X) = Aop(X,Y ),

therefore (kAop)(X,Y ) = (Aop(X,Y ),mop
1 ) = (A(Y,X),m1) = (kA)op(X,Y ). Fi-

nally, the compositions in both categories coincide:

μkAop = mop
2 = (s⊗ s)bop2 s−1 = −(s⊗ s)cb2s−1 = c(s⊗ s)b2s−1 = cm2 = μ(kA)op .

In particular, it follows that Aop is unital if so is A, with the same unit elements.
For an arbitrary A∞-functor f : �i∈nTsAi → TsB there is another A∞-func-

tor fop defined by the commutative square

�i∈nTsAi
f → TsB

�i∈nTsAop
i

�nγ↓
fop

→ TsBop

γ↓
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Since γ2 = id, the A∞-functor fop is found as the composite

fop =
[
�i∈nTsAop �nγ→ �i∈n TsAi

f→ TsB γ→ TsBop
]
.

A non-unital K-functor kf : �i∈nkAi → kB is associated with f in [BLM06,
Chapter 13]. This K-functor acts on objects in the same way as f . It is determined
by the components fej , ej = (0, . . . , 0, 1, 0, . . . , 0):

kf =
[
⊗j∈nkAj(Xj , Yj)

⊗j∈n(sfej
s−1)
→

⊗j∈nkB
(
((Yi)i<j , (Xi)i�j)f, ((Yi)i�j , (Xi)i>j)f

) μn
kB→ kB

(
(Xi)i∈nf, (Yi)i∈nf

)]
,

The case of n = 1 was considered in [Lyu03, Proposition 8.6]. According to
[BLM06] an A∞-functor f is called unital, if the K-functor kf is unital. The set of
unital A∞-functors �i∈nTsAi → TsB is denoted Au

∞((Ai)i∈n; B). The assignment
A �→ kA, f �→ kf gives a multifunctor k : Au

∞ → K̂-Cat, see [BLM06, Chapter 13].

Lemma 3.2. For an arbitrary A∞-functor f : �i∈nTsAi → TsB, the K-functors
kfop, (kf)op : �i∈nkAop

i → kBop coincide.

Proof. The case n = 1 is straightforward. We provide a proof in the case n = 2,
which we are going to use later.

Let f : TsA � TsB → TsC be an A∞-functor. The components of fop are
given by

fop
kn = (−)k+n−1

[
sAop(X0, X1)⊗ · · · ⊗ sAop(Xk−1, Xk)⊗

⊗ sBop(U0, U1)⊗ · · · ⊗ sBop(Un−1, Un)

= sA(X1, X0)⊗ · · · ⊗ sA(Xk, Xk−1)⊗ sB(U1, U0)⊗ · · · ⊗ sB(Un, Un−1)
πkn

c→ sA(Xk, Xk−1)⊗ · · · ⊗ sA(X1, X0)⊗ sB(Un, Un−1)⊗ · · · ⊗ sB(U1, U0)
fkn→ sC((Xk, Un)f, (X0, U0)f) = sCop((X0, U0)f, (Xk, Un)f)

]
, (3.3)

where πkn =
(

1 2 ... k k+1 k+2 ... k+n
k k−1 ... 1 k+n k+n−1 ... k+1

)
∈ Sk+n, and πkn

c is the corresponding
signed permutation.

Clearly, both kfop and (kf)op act as Ob f on objects. Let X,Y ∈ ObA,
U, V ∈ ObB. Then

kfop =
[
Aop(X,Y )⊗Bop(U, V )

sfop
10 s−1⊗sfop

01 s−1

→

Cop((X,U)f, (Y, U)f)⊗ Cop((Y, U)f, (Y, V )f)
μkCop→ Cop((X,U)f, (Y, V )f)

]
.

By (3.3),

fop
10 = f10 : sAop(X,Y )→ sC((Y, U)f, (X,U)f) = sCop((X,U)f, (Y, U)f),

fop
01 = f01 : sBop(U, V )→ sC((Y, V )f, (Y, U)f) = sCop((Y, U)f, (Y, V )f),
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therefore

kfop =
[
A(Y,X)⊗B(V, U)

sf10s−1⊗sf01s−1

→

C((Y, U)f, (X,U)f)⊗ C((Y, V )f, (Y, U)f)
c→

C((Y, V )f, (Y, U)f)⊗ C((Y, U)f, (X,U)f)
μkC→ C((Y, V )f, (X,U)f)

]
=

[
A(Y,X)⊗B(V, U)

c→ B(V, U)⊗A(Y,X)
sf01s−1⊗sf10s−1

→

C((Y, V )f, (Y, U)f)⊗ C((Y, U)f, (X,U)f)
μkC→ C((Y, V )f, (X,U)f)

]
.

Further,

(kf)op =
[
A(Y,X)⊗B(V, U)

sf10s−1⊗sf01s−1

→

C((Y, V )f, (X,V )f)⊗ C((X,V )f, (X,U)f)
μkC→ C((Y, V )f, (X,U)f)

]
.

We must therefore prove the following equation in K:

[
A(Y,X)⊗B(V, U)

c→ B(V, U)⊗A(Y,X)
sf01s−1⊗sf10s−1

→

C((Y, V )f, (Y, U)f)⊗ C((Y, U)f, (X,U)f)
μkC→ C((Y, V )f, (X,U)f)

]
=

[
A(Y,X)⊗B(V, U)

sf10s−1⊗sf01s−1

→ C((Y, V )f, (X,V )f)⊗C((X,V )f, (X,U)f)
μkC→ C((Y, V )f, (X,U)f)

]
. (3.4)

By definition of an A∞-functor the equation fb = (b� 1+1� b)f : TsA�TsB→
TsC holds. Restricting it to sA � sB and composing with pr1 : TsC → sC, we
obtain

(f10 ⊗ f01)b2 + c(f01 ⊗ f10)b2 + f11b1
= (1 ⊗ b1 + b1 ⊗ 1)f11 : sA(Y,X)⊗ sB(V, U) → sC((Y, V )f, (X,U)f).

Thus, (f10 ⊗ f01)b2 + c(f01 ⊗ f10)b2 is a boundary. Therefore,

(s⊗ s)(f10 ⊗ f01)b2 = c(s⊗ s)(f01 ⊗ f10)b2
in K. This implies equation (3.4). �

In particular, fop is a unital A∞-functor if f is unital.

Proposition 3.3. The correspondences A �→ Aop, f �→ fop define a symmetric
multifunctor −op : A∞ → A∞ which restricts to a symmetric multifunctor −op :
Au
∞ → Au

∞.

Proof. Straightforward. �
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As an arbitrary symmetric multifunctor between closed multicategories, −op

possesses a closing transformation op : A∞((Ai)i∈I ; B)op → A∞((Aop
i )i∈I ; Bop)

uniquely determined by the following equation in A∞:

[
(Aop

i )i∈I ,A∞((Ai)i∈I ; B)op
1,op
→ (Aop

i )i∈I ,A∞((Aop
i )i∈I ; Bop)

evA∞
→ Bop

]
= (evA∞)op. (3.5)

The A∞-functor (evA∞)op acts on objects in the same way as evA∞ . It follows
that (Xi)i∈I(f)op = (Xi)i∈If for an arbitrary A∞-functor f : (Ai)i∈I → B and a
family of objects Xi ∈ ObAi, i ∈ I. The components

(evA∞)op(mi),m
= −

[
�i∈ITmisAop

i � TmsA∞((Ai)i∈I ; B)op
�I(γ)I�γ→

�i∈I TmisAi � TmsA∞((Ai)i∈I ; B)
evA∞

(mi),m→ sB
]

(3.6)

vanish unless m = 0 or m = 1 since the same holds for evA∞
(mi),m

. From equa-
tions (3.5) and (3.6) we infer that

(⊗i∈I1⊗mi ⊗Ob op) evA∞
(mi),0

= −
[
⊗i∈I ⊗pi∈mi sAop

i (X i
pi−1, X

i
pi

)⊗ T 0sA∞((Ai)i∈I ; B)op(f, f)

� ⊗i∈I ⊗pi∈mi sAop
i (X i

pi−1, X
i
pi

)
⊗i∈I (−)miω0

c→

⊗i∈I ⊗pi∈misAi(X i
mi−pi

, X i
mi−pi+1)

f(mi)→ sB((X i
0)i∈If, (X i

mi
)i∈If)

]
,

therefore (f)op = fop : (Aop
i )i∈I → Bop. Similarly,

(⊗i∈I1⊗mi ⊗ op
1
) evA∞

(mi),1

=
[
⊗i∈I ⊗pi∈mi sAop

i (X i
pi−1, X

i
pi

)⊗ sA∞((Ai)i∈I ; B)op(f, g)
⊗i∈I(−)miω0

c⊗1→ ⊗i∈I ⊗pi∈misAi(X i
mi−pi

, X i
mi−pi+1)⊗ sA∞((Ai)i∈I ; B)(g, f)

⊗i∈I⊗pi∈mi1⊗pr→ ⊗i∈I ⊗pi∈misAi(X i
mi−pi

, X i
mi−pi+1)

⊗ Ck(⊗i∈I ⊗pi∈mi sAi(X i
mi−pi

, X i
mi−pi+1), sB((X i

mi
)i∈Ig, (X i

0)i∈If))
evCk

→ sB((X i
mi

)i∈Ig, (X i
0)i∈If) = sBop((X i

0)i∈If
op, (X i

mi
)i∈Ig

op)
]
.

It follows that the map

op
1

: sA∞((Ai)i∈I ; B)op(f, g) → sA∞((Aop
i )i∈I ; Bop)(fop, gop)
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takes an A∞-transformation r : g → f : (Ai)i∈I → B to the opposite A∞-trans-
formation rop def= (r)op

1
: fop → gop : (Aop

i )i∈I → Bop with the components

[(r)op
1
](mi) = (−)m1+···+mn

[
⊗i∈I ⊗pi∈mi sAop

i (X i
pi−1, X

i
pi

)
⊗i∈Iω0

c→

⊗i∈I ⊗pi∈misAi(X i
mi−pi

, X i
mi−pi+1)

r(mi)→ sB((X i
mi

)i∈Ig, (X i
0)i∈If)

]
.

The higher components of op vanish. Similar computations can be performed in
the multicategory Au

∞. They lead to the same formulas for op, which means that
the A∞-functor op restricts to a unital A∞-functor op : Au

∞((Ai)i∈I ; B)op →
Au
∞((Aop

i )i∈I ; Bop) if the A∞-categories Ai, i ∈ I, B are unital.
As an easy application of the above considerations note that if r : f → g :

(Ai)i∈I → B is an isomorphism of A∞-functors, then rop : gop → fop : (Aop
i )i∈I →

Bop is an isomorphism as well.

3.4. The k-Cat-multifunctor k

The multifunctor k : Au
∞ → K̂-Cat is defined in [BLM06, Chapter 13]. Here we con-

struct its extension to natural A∞-transformations as follows. Let f, g : (Ai)i∈I →
B be unital A∞-functors, r : f → g : (Ai)i∈I → B a natural A∞-transformation. It
gives rise to a natural transformation of K-functors kr : kf → kg : �i∈IkAi → kB.
Components of kr are given by

(Xi)i∈I
kr = (Xi)i∈I

r0s
−1 : k → B((Xi)i∈If, (Xi)i∈Ig), Xi ∈ ObAi, i ∈ I.

Since r0b1 = 0, kr is a chain map. Naturality is expressed by the following equation
in K:

�i∈IkAi(Xi, Yi)
kf → kB((Xi)i∈If, (Yi)i∈If)

=

kB((Xi)i∈Ig, (Yi)i∈Ig)

kg↓
((Xi)i∈I

kr⊗1)μkB→ kB((Xi)i∈If, (Yi)i∈Ig).

(1⊗(Yi)i∈I
kr)μkB↓

Associativity of μkB allows to write it as follows:

[
⊗i∈IkAi(Xi, Yi)

⊗i∈Isfei
s−1⊗(Yi)i∈I

r0s−1

→
⊗i∈I kB(((Yj)j<i, (Xj)j�i)f, ((Yj)j�i, (Xj)j>i)f)⊗ kB((Yi)i∈If, (Yi)i∈Ig)

μI1
kB→ kB((Xi)i∈If, (Yi)i∈Ig)

]
=

[
⊗i∈IkAi(Xi, Yi)

(Xi)i∈I
r0s−1⊗⊗i∈Isgei

s−1

→
kB((Xi)i∈If, (Xi)i∈Ig)⊗⊗i∈IkB(((Yj)j<i, (Xj)j�i)g, ((Yj)j�i, (Xj)j>i)g)

μ1I
kB→ kB((Xi)i∈If, (Yi)i∈Ig)

]
.
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This equation is a consequence of the following equation in K:

(s(f |(Yj)j<i,(Xj)j>i

i )1s−1 ⊗ (Yj)j�i,(Xj)j>i
r0s

−1)μkB

= ((Yj)j<i,(Xj)j�i
r0s

−1 ⊗ s(g|(Yj)j<i,(Xj)j>i

i )1s−1)μkB :

A(Xi, Yi) → B(((Yj)j<i, (Xj)j�i)f, ((Yj)j�i, (Xj)j>i)g),

which in turn follows from the equation (rB1)ei = 0:

(sfeis
−1 ⊗ r0s−1)m2 − (r0s−1 ⊗ sgeis

−1)m2 + sreis
−1m1 +m1sreis

−1

= s[(fei ⊗ r0)b2 + (r0 ⊗ gei)b2 + reib1 + b1rei ]s
−1 = 0 :

A(Xi, Yi) → B(((Yj)j<i, (Xj)j�i)f, ((Yj)j�i, (Xj)j>i)g).

The 2-category K-Cat is naturally a symmetric Monoidal k-Cat-category,
therefore K̂-Cat is a symmetric k-Cat-multicategory. According to the general
recipe, for each map φ : I → J , the composition in K̂-Cat is given by the k-linear
functor

μK̂-Cat
φ =

[
�J�1[(K-Cat(�i∈φ−1jAi,Bj))j∈J ,K-Cat(�j∈JBj ,C)]

Λφ
k-Cat

∼→

�j∈J K-Cat(�i∈φ−1jAi,Bj) � K-Cat(�j∈JBj ,C)
�J�1→

K-Cat(�j∈J�i∈φ−1jAi,�j∈JBj)�K-Cat(�j∈JBj ,C)
λφ·−·−→ K-Cat(�i∈IAi,C)

]
.

In particular, the action on natural transformations is given by the map

⊗j∈J K-Cat(�i∈φ−1jAi,Bj)(fj , gj)⊗K-Cat(�j∈JBj ,C)(h, k)

→ K-Cat(�i∈IAi,C)((fj)j∈J · h, (gj)j∈J · k), ⊗j∈Jrj ⊗ p �→ (rj)j∈J · p,

where for each collection of objects Xi ∈ Ai, i ∈ I,

(Xi)i∈I
[(rj)j∈J · p] =

[
k

λ∅→J1

∼ → ⊗J�1 k
⊗j∈J

(Xi)i∈φ−1j
rj⊗((Xi)i∈φ−1j

gj)j∈J
p

→

⊗j∈J B((Xi)i∈φ−1jfj , (Xi)i∈φ−1jgj)⊗ C(((Xi)i∈φ−1jgj)j∈Jh, ((Xi)i∈φ−1jgj)j∈Jk)
h⊗1→ C((Xi)i∈I(fj)j∈Jh, (Xi)i∈I(gj)j∈Jh)⊗ C((Xi)i∈I(gj)j∈Jh, (Xi)i∈I(gj)j∈Jk)

μC→ C((Xi)i∈I(fj)j∈Jh, (Xi)i∈I(gj)j∈Jk)
]
.

The base change functor H0 : Au
∞ → k-Cat turns the symmetric Au

∞-mul-
ticategory Au

∞ into a symmetric k-Cat-multicategory, which we denote by Au
∞.

That is, the objects of Au
∞ are unital A∞-categories, and for each collection

(Ai)i∈I , B of unital A∞-categories, there is a k-linear category Au
∞((Ai)i∈I ; B) =

H0Au
∞((Ai)i∈I ; B), whose objects are unital A∞-functors, and whose morphisms

are equivalence classes of natural A∞-transformations. The composition in Au
∞ is
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given by the k-linear functor μAu
∞

φ = H0(μ
Au
∞

φ ) = H0(kμ
Au
∞

φ ), where

kμ
Au
∞

φ =
[
⊗j∈JAu

∞((Ai)i∈φ−1j ; Bj)(fj , gj)⊗ Au
∞((Bj)j∈J ; C)(h, k)

⊗j∈J sMej0s−1⊗sM0...01s−1

→
⊗j∈J Au

∞((Ai)i∈I ; C)(((gl)l<j , (fl)l�j)h, ((gl)l�j , (fl)l>j)h)

⊗ Au
∞((Ai)i∈I ; C)((gj)j∈Jh, (gj)j∈Jk)

μJ1
kAu∞((Ai)i∈I ;C)

→ Au
∞((Ai)i∈I ; C)((fj)j∈Jh, (gj)j∈Jk)

]
.

Proposition 3.5. There is a symmetric k-Cat-multifunctor k : Au
∞ → K̂-Cat.

Proof. It remains to prove compatibility of k with μAu
∞

φ on the level of transforma-
tions. Let rj ∈ sAu

∞((Ai)i∈φ−1j ; Bj)(fj , gj), j ∈ J , p ∈ sAu
∞((Bj)j∈J ; C) be natural

A∞-transformations. Then ((rjs−1)j∈J , ps
−1)μAu

∞
φ is the equivalence class of the

following A∞-transformation:

[⊗j∈J ((gl)l<j , r
j , (fl)l>j , h)Mej0s

−1 ⊗ ((gj)j∈J , p)M0...01s
−1]μJ�1

kAu
∞((Ai)i∈I ;C).

In order to find k[((rjs−1)j∈J , ps
−1)μAu

∞
φ ] we need the 0-th components of the

above expression. Since [(t ⊗ q)B2]0 = (t0 ⊗ q0)b2, for arbitrary composable A∞-
transformations t and q, it follows that

(Xi)i∈I
k[((rjs−1)j∈J , ps

−1)μAu
∞

φ ]

= (⊗j∈J
(Xi)i∈φ−1j

[((gl)l<j , r
j , (fl)l>j , h)Mej0]0s

−1⊗
⊗ (Xi)i∈I

[((gj)j∈J , p)M0...01]0s−1)μJ�1
kC

= (⊗j∈J
(Xi)i∈φ−1j

rj0s
−1s(h|((Xi)i∈φ−1lgl)l<j ,((Xi)i∈φ−1lfl)l>j

j )1s−1⊗
⊗ ((Xi)i∈φ−1jgj)j∈J

p0s
−1)μJ�1

kC .

By associativity of μkC, this equals

(⊗j∈J
(Xi)i∈φ−1j

rj0s
−1 · ⊗j∈Js(h|((Xi)i∈φ−1lgl)l<j ,((Xi)i∈φ−1lfl)l>j

j )1s−1μJ
kC

⊗ ((Xi)i∈φ−1jgj)j∈J
p0s

−1)μkC

= (⊗j∈J
(Xi)i∈φ−1j

krj · kh⊗ ((Xi)i∈φ−1jgj)j∈J
kp)μkC = (Xi)i∈I

[(krj)j∈J · kp].

Therefore, k[((rjs−1)j∈J , ps
−1)μAu

∞
φ ] = ((krj)j∈J , kp)μK̂-Cat

φ , hence k is a multi-
functor. �

The quotient functor Q : dg = Ck → K equipped with the identity transfor-
mation ⊗i∈IQXi → Q⊗i∈I Xi is a symmetric Monoidal functor. It gives rise to a
symmetric Monoidal Cat-functor Q∗ : dg-Cat→ K-Cat. Let Q̂∗ : d̂g-Cat→ K̂-Cat
denote the corresponding symmetric Cat-multifunctor.
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Proposition 3.6. There is a multinatural isomorphism

Au
∞×d̂g-Cat

� → Au
∞

K̂-Cat× K̂-Cat

k×Q̂∗↓
�→

ξ

⇐===
===

===
=

K̂-Cat

k↓

where 
 : Au
∞ �d̂g-Cat → Au

∞ is the action of differential graded categories on
unital A∞-categories constructed in [BLM06, Appendices C.10–C.13].

Proof. Given a unital A∞-category A and a differential graded category C, define
an isomorphism of K-quivers ξ : k(A 
 C) → kA � Q∗C, identity on objects, as
follows. For X,Y ∈ ObA, U, V ∈ ObC, we have

k(A 
 C)((X,U), (Y, V )) = ((A 
 C)((X,U), (Y, V )),mA�C
1 )

= ((sA(X,Y )⊗ C(U, V ))[−1], sbA�Cs−1),

(kA �Q∗C)((X,U), (Y, V )) = kA(X,Y )⊗Q∗C(U, V )

= (A(X,Y )⊗ C(U, V ),m1 ⊗ 1 + 1⊗ d).

Define ξ by

ξ = s(s−1 ⊗ 1) : (sA(X,Y )⊗ C(U, V ))[−1]→ A(X,Y )⊗ C(U, V ).

The morphism ξ commutes with the differential since

mA�C
1 · ξ = sbA�Cs−1 · s(s−1 ⊗ 1) = s(b1 ⊗ 1− 1⊗ d)(s−1 ⊗ 1)

= s(s−1 ⊗ 1)(sb1s−1 ⊗ 1 + 1⊗ d) = ξ · (m1 ⊗ 1 + 1⊗ d),

therefore it is an isomorphism of K-quivers. We claim that it also respects the
composition. Indeed, suppose X,Y, Z ∈ ObA, U, V,W ∈ ObC. From [BLM06,
(C.10.1)] we find that

μk(A�C) = mA�C
2 =

[
(A 
 C)((X,U), (Y, V ))⊗ (A 
 C)((Y, V ), (Z,W ))

s⊗s→

(sA(X,Y )⊗ C(U, V ))⊗ (sA(Y, Z)⊗ C(V,W ))
σ(12)→

(sA(X,Y )⊗ sA(Y, Z))⊗ (C(U, V )⊗ C(V,W ))
b2⊗μC→

sA(X,Z)⊗ C(U,W )
s−1

→ (A 
 C)((X,U), (Z,W ))
]
,

μkA�Q∗C =
[
(A(X,Y )⊗ C(U, V ))⊗ (A(Y, Z)⊗ C(V,W ))

σ(12)→

(A(X,Y )⊗A(Y, Z))⊗ (C(U, V )⊗ C(V,W ))
m2⊗μC→ A(X,Z)⊗ C(U,W )

]
.
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It follows that

μk(A�C) · ξ =
[
(A 
 C)((X,U), (Y, V ))⊗ (A 
 C)((Y, V ), (Z,W ))

s⊗s→

(sA(X,Y )⊗ C(U, V ))⊗ (sA(Y, Z)⊗ C(V,W ))
σ(12)→

(sA(X,Y )⊗ sA(Y, Z))⊗ (C(U, V )⊗ C(V,W ))
b2s−1⊗μC→ A(X,Z)⊗ C(U,W )

]
,

(ξ ⊗ ξ) · μkA�Q∗C =
[
(A 
 C)((X,U), (Y, V ))⊗ (A 
 C)((Y, V ), (Z,W ))

s(s−1⊗1)⊗s(s−1⊗1)→ (A(X,Y )⊗ C(U, V ))⊗ (A(Y, Z)⊗ C(V,W ))
σ(12)→

(A(X,Y )⊗A(Y, Z))⊗ (C(U, V )⊗ C(V,W ))
m2⊗μC→ A(X,Z)⊗ C(U,W )

]
=

[
(A 
 C)((X,U), (Y, V ))⊗ (A 
 C)((Y, V ), (Z,W ))

s⊗s→

(sA(X,Y )⊗ C(U, V ))⊗ (sA(Y, Z)⊗ C(V,W ))
σ(12)→

(sA(X,Y )⊗sA(Y, Z))⊗(C(U, V )⊗C(V,W ))
−(s−1⊗s−1)m2⊗μC→ A(X,Z)⊗C(U,W )

]
,

therefore μk(A�C) · ξ = (ξ ⊗ ξ) · μkA�Q∗C, as b2s−1 = −(s−1 ⊗ s−1)m2. The
morphism ξ also respects the identity morphisms since

1k(A�C)
(X,U) ξ = (X iA0 ⊗ 1C

U)s−1 · s(s−1⊗ 1) = (X iA0 s
−1⊗ 1C

U ) = (1kA
X ⊗ 1C

U ) = 1kA�Q∗C
(X,U) .

Thus, ξ is an isomorphism of K-categories.
Multinaturality of ξ reduces to the following problem. Let f : �i∈ITsAi →

TsB be an A∞-functor, g : �i∈ICi → D a differential graded functor. Then the
diagram

�i∈Ik(Ai 
 Ci)
�Iξ→ �i∈I(kAi �Q∗Ci)

k(B 
 D)

k(f�g)↓
ξ → kB �Q∗D

σ(12)·(kf�Q̂∗g)↓

must commute; let us prove this. Let Xi, Yi ∈ ObAi, Ui, Vi ∈ ObCi, i ∈ I, be
families of objects. Then

k(f 
 g) =
[
⊗i∈I(Ai 
 Ci)((Xi, Ui), (Yi, Vi))

⊗i∈Is(f�g)ei
s−1

→
⊗i∈I (B 
 D)

(
(((Yj)j<i, (Xj)j�i)f, ((Vj)j<i, (Uj)j�i)g),

(((Yj)j�i, (Xj)j>i)f, ((Vj)j�i, (Uj)j>i)g)
)

μI
k(B�D)→ (B 
 D)

(
((Xi)i∈If, (Ui)i∈Ig), ((Yi)i∈If, (Vi)i∈Ig)

)]
.
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From [BLM06, (C.5.1)] we infer that

(f 
 g)ei =
[
sAi(Xi, Yi)⊗ C(Ui, Vi)

fei
⊗gei→

sB(((Yj)j<i, (Xj)j�i)f, ((Yj)j�i, (Xj)j>i)f)⊗
⊗D(((Vj)j<i, (Uj)j�i)g, ((Vj)j�i, (Uj)j>i)g)

]
,

where

gei =
[
Ci(Ui, Vi)

λi:1↪→I ·⊗j∈I [(1Vj
)j<i,id,(1Uj

)j>i]→
⊗j∈I [(Cj(Vj , Vj))j<i,Ci(Ui, Vi), (Cj(Uj , Uj))j>i]

g→ D(((Vj)j<i, (Uj)j�i)g, ((Vj)j�i, (Uj)j>i)g)
]
.

Therefore

k(f 
 g) · ξ =
[
⊗i∈I(Ai 
 Ci)((Xi, Ui), (Yi, Vi))

⊗i∈Is(fei
⊗gei

)s−1

→
⊗i∈I (B 
 D)

(
(((Yi)j<i, (Xj)j�i)f, ((Vi)j<i, (Uj)j�i)g),

(((Yj)j�i, (Xj)j>i)f, ((Vj)j�i, (Uj)j>i)g)
)

⊗i∈Iξ→ ⊗i∈I [B(((Yi)j<i, (Xj)j�i)f, ((Yj)j�i, (Xj)j>i)f)

⊗D(((Vi)j<i, (Uj)j�i)g, ((Vj)j�i, (Uj)j>i)g)]
μI

kB�Q∗D→ B((Xi)i∈If, (Yi)i∈If)⊗D((Ui)i∈Ig, (Vi)i∈Ig)
]

since ξ respects the composition. The above expression can be transformed as
follows:

k(f 
 g) · ξ =
[
⊗i∈I(Ai 
 Ci)((Xi, Ui), (Yi, Vi))

⊗i∈Is(s−1⊗1)→

⊗i∈I (Ai(Xi, Yi)⊗ Ci(Ui, Vi))
⊗i∈I(sfei

s−1⊗gei
)→

⊗i∈I [B(((Yi)j<i, (Xj)j�i)f, ((Yj)j�i, (Xj)j>i)f)

⊗D(((Vi)j<i, (Uj)j�i)g, ((Vj)j�i, (Uj)j>i)g)]
σ(12)→

(
⊗i∈IB(((Yj)j<i, (Xj)j�i)f, ((Yj)j�i, (Xj)j>i)f)

)
⊗

(
⊗i∈ID(((Vj)j<i, (Uj)j�i)g, ((Vj)j�i, (Uj)j>i)g)

)
μI

kB⊗μI
D→ B((Xi)i∈If, (Yi)i∈If)⊗D((Ui)i∈Ig, (Vi)i∈Ig)

]
=

[
⊗i∈I(Ai 
 Ci)((Xi, Ui), (Yi, Vi))

⊗i∈Iξ→

⊗i∈I (Ai(Xi, Yi)⊗ Ci(Ui, Vi))
σ(12)→ (⊗i∈IAi(Xi, Yi))⊗ (⊗i∈ICi(Ui, Vi))

(⊗i∈Isfei
s−1)μI

kB⊗(⊗i∈Igei
)μD→ B((Xi)i∈If, (Yi)i∈If)⊗D((Ui)i∈Ig, (Vi)i∈Ig)

]
= ⊗i∈Iξ · σ(12) · (kf ⊗ g),
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due to the definition of kf and the identity[
⊗i∈ICi(Ui, Vi)

⊗i∈Igei→ ⊗i∈I D(((Vj)j<i, (Uj)j�i)g, ((Vj)j�i, (Uj)j>i)g)
μI

D→ D((Ui)i∈Ig, (Vi)i∈Ig)
]

= g,

which is a consequence of g being a functor and associativity of μD. The proposition
is proven. �

3.7. A∞-categories closed under shifts

Unital A∞-categories closed under shifts are defined in [BLM06, Chapter 15] sim-
ilarly to Definition 2.20. A unital A∞-category C is closed under shifts if and only
if the A∞-functor u[ ] : C→ C[ ] � C 
 Z = C � Z is an equivalence.

For an arbitrary A∞-category C the operations in C[ ] are described explicitly
in [BLM06, (15.2.2)]. In particular,

bC
[ ]

2 = (−)p−n
[
sC[ ]((X,n), (Y,m)) ⊗ sC[ ]((Y,m), (Z, p))

= sC(X,Y )[m− n]⊗ sC(Y, Z)[p−m]
(sm−n⊗sp−m)−1

→ sC(X,Y )⊗ sC(Y, Z)
bC
2→ sC(X,Z)

sp−n

→ sC(X,Z)[p− n] = sC[ ]((X,n), (Z, p))
]
.

The above proposition implies that the binary operation mC[ ]

2 = (s ⊗ s)bC[ ]

2 s
−1

in C[ ] is homotopic to multiplication in kC[ ] given by formula (2.17). Actually,
mC[ ]

2 is given precisely by chain map (2.17), as one easily deduces from the above
expression for bC

[ ]

2 .
We have denoted the algebra Z in dg-Cat, “the same” algebra Q∗Z in K-Cat

and “the same” algebra H•(Q∗Z) in gr-Cat all by the same letter Z by abuse of
notation. Since units of the monads −
Z and −�Z reduce essentially to the unit
of the algebra Z, Proposition 3.6 implies the following relation between them:[

kA
ku[ ]→ k(A 
 Z)

ξ

∼→ kA �Q∗Z
]

=
[
kA

u[ ]→ kA � Z = kA �Q∗Z
]
.

Thus, if one of the K-functors ku[ ] : kA → k(A 
 Z) and u[ ] : kA→ kA � Z is an
equivalence, then so is the other. The former is a K-equivalence if and only if the
A∞-functor u[ ] : A → A 
 Z is an equivalence. Therefore, the A∞-category A is
closed under shifts if and only if the K-category kA is closed under shifts.

3.8. Shifts as differential graded functors

Let f = (f i : Ci → Di+deg f )i∈Z ∈ Ck(C,D) be a homogeneous element (a k-lin-
ear map f : C → D of certain degree d = deg f). Define f [n] = (−)fns−nfsn =

(−)dn
(
C[n]i = Ci+n fi+n

→ Di+n+d = D[n]i+d
)
, which is an element of

Ck(C[n], D[n]) of the same degree deg f .
Define the shift differential graded functor [n] : Ck → Ck as follows. It takes

a complex (C, d) to the complex (C[n], d[n]), d[n] = (−)ns−ndsn. On morphisms
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it acts via Ck(s
−n, 1) · Ck(1, s

n) : Ck(C,D) → Ck(C[n], D[n]), f �→ f [n]. Clearly,
[n] · [m] = [n+m].

4. A∞-modules

Consider the monoidal category (Q/S,⊗) of graded k-quivers. When S = 1 it
reduces to the category of graded k-modules used by Keller [Kel01] in his definition
of A∞-modules over A∞-algebras. Let C, D be coassociative counital coalgebras;
let ψ : C → D be a homomorphism; let δ : M → M ⊗ C and δ : N → N ⊗ D
be counital comodules; let f : M → N be a ψ-comodule homomorphism, fδ =
δ(f ⊗ψ); let ξ : C → D be a (ψ, ψ)-coderivation, ξΔ0 = Δ0(ψ⊗ ξ+ ξ⊗ψ). Define
a (ψ, f, ξ)-connection as a morphism r :M → N of certain degree such that

M
δ→ M ⊗ C

=

N

r↓
δ→ N ⊗D

f⊗ξ+r⊗ψ↓

compare with Tradler [Tra01]. Let (C, bC) be a differential graded coalgebra. Let
a counital comodule M have a (1, 1, bC)-connection bM : M → M of degree 1,
that is, bMδ = δ(1 ⊗ bC + bM ⊗ 1). Its curvature (bM )2 : M → M is always a
C-comodule homomorphism of degree 2. If it vanishes, bM is called a flat connection
(a differential) on M .

Equivalently, we consider the category (dQ/S,⊗) of differential graded quiv-
ers, and coalgebras and comodules therein. For A∞-applications it suffices to con-
sider coalgebras (resp. comodules) whose underlying graded coalgebra (resp. co-
module) has the form TsA (resp. sM⊗ TsC).

Let M ∈ ObQ/S be graded quiver such that M(X,Y ) = M(Y ) depends
only on Y ∈ S. For any quiver C ∈ ObQ/S the tensor quiver C = (TsC,Δ0) is
a coalgebra. The comodule δ = 1 ⊗ Δ0 : M = sM ⊗ TsC → sM ⊗ TsC ⊗ TsC
is counital. Let (C, bC) be an A∞-category. Equivalently, we consider augmented
coalgebras in (dQ/S,⊗) of the form (TsC,Δ0, b

C). Let bM : sM⊗TsC→ sM⊗TsC
be a (1, 1, bC)-connection. Define the matrix coefficients of bM to be

bMmn = (1 ⊗ inm) · bM · (1⊗ prn) : sM⊗ TmsC→ sM⊗ T nsC, m, n � 0.

The coefficients bMm0 : sM ⊗ TmsC → sM are abbreviated to bMm and called com-
ponents of bM.

A version of the following statement occurs in [LH03, Lemme 2.1.2.1].

Lemma 4.1. Any (1, 1, bC)-connection bM : sM⊗ TsC→ sM⊗ TsC is determined
in a unique way by its components bMn : sM ⊗ T nsC → sM, n � 0. The ma-
trix coefficients of bM are expressed via components of bM and components of the
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codifferential bC as follows:

bMmn = bMm−n ⊗ 1⊗n +
∑

p+k+q=m
p+1+q=n

1⊗1+p ⊗ bCk ⊗ 1⊗q : sM⊗ TmsC→ sM⊗ T nsC

for m � n. If m < n, the matrix coefficient bMmn vanishes.

Such comodules are particular cases of bimodules discussed below. That is
why statements about comodules are only formulated. We prove more general
results in the next section.

The morphism (bM)2 : sM ⊗ TsC → sM ⊗ TsC is a (1, 1, 0)-connection of
degree 2, therefore equation (bM)2 = 0 is equivalent to its particular case (bM)2(1⊗
pr0) = 0 : sM ⊗ TsC → sM. Thus bM is a flat connection if for each m � 0 the
following equation holds:

m∑
n=0

(bMm−n ⊗ 1⊗n)bMn +
∑

p+k+q=m

(1⊗1+p ⊗ bCk ⊗ 1⊗q)bMp+1+q = 0 :

sM⊗ TmsC→ sM. (4.1)

Equivalently, such a TsC-comodule with a flat connection is the TsC-comodule
(sM⊗TsC, bM) in the category (dQ/S,⊗). It consists of the following data: a graded
k-module M(X) for each object X of C; a family of k-linear maps of degree 1

bMn : sM(X0)⊗ sC(X0, X1)⊗ · · · ⊗ sC(Xn−1, Xn)→ sM(Xn), n � 0,

subject to equations (4.1). Equation (4.1) for m = 0 implies (bM0 )2 = 0, that is,
(sM(X), bM0 ) is a chain complex, for each object X ∈ ObC. We call a TsC-co-
module with a flat connection (sM⊗ TsC, bM), M(∗, Y ) = M(Y ), a C-module (an
A∞-module over C). C-modules form a differential graded category C -mod. The
notion of a module over some kind of A∞-category was introduced by Lefèvre-
Hasegawa under the name of polydule [LH03].

Proposition 4.2. An arbitrary A∞-functor φ : C→ Ck determines a TsC-comodule
sM⊗TsC with a flat connection bM by the formulae: M(X) = Xφ, for each object
X of C, bM0 = s−1ds : sM(X)→ sM(X), where d is the differential in the complex
Xφ, and for n > 0

bMn =
[
sM(X0)⊗ sC(X0, X1)⊗ · · · ⊗ sC(Xn−1, Xn)

1⊗φn→ sM(X0)⊗ sCk(M(X0),M(Xn))
(s⊗s)−1

→ M(X0)⊗ Ck(M(X0),M(Xn))
evCk

→ M(Xn)
s→ sM(Xn)

]
. (4.2)

This mapping from A∞-functors to C-modules is bijective. Moreover, the differen-
tial graded categories A∞(C; Ck) and C -mod are isomorphic.

A C-module (an A∞-module over C) is defined as an A∞-functor φ : C→ Ck

by Seidel [Sei06, Section 1j]. The above proposition shows that the both definitions
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of C-modules are equivalent. In the differential graded case C-modules are actively
used by Drinfeld [Dri04].

Definition 4.3. Let C be a unital A∞-category. A C-module M determined by an
A∞-functor φ : C → Ck is called unital if φ is unital.

Proposition 4.4. A C-module M is unital if and only if for each X ∈ ObC the
composition[

sM(X) � sM(X)⊗ k
1⊗X iC0→ sM(X)⊗ sC(X,X)

bM
1→ sM(X)

]
is homotopic to identity map.

Proof. The second statement expands to the property that[
sM(X) � sM(X)⊗ k

s−1⊗X iC0→ M(X)⊗ sC(X,X)
1⊗φ1s−1

→ M(X)⊗ Ck(M(X),M(X))
evCk

→ M(X)
s→ sM(X)

]
is homotopic to identity. That is,

X iC0φ1s
−1 = 1sM(X) + vmC

k

1 , or, X iC0φ1 = 1M(X)s+ vsbCk

1 .

In other words, A∞-functor φ is unital. �

5. A∞-bimodules

Consider monoidal category (Q/S,⊗) of graded k-quivers. When S = 1 it reduces
to the category of graded k-modules used by Tradler [Tra01, Tra02] in his definition
of A∞-bimodules over A∞-algebras. We extend his definitions of A∞-bimodules
improved in [TT06] from graded k-modules to graded k-quivers. The notion of a
bimodule over some kind of A∞-categories was introduced by Lefèvre-Hasegawa
under the name of bipolydule [LH03].

Definition 5.1. Let A, C be coassociative counital coalgebras in (Q/R,⊗) resp.
(Q/S,⊗). A counital (A,C)-bicomodule (P, δP ) consists of a graded k-span
(gr-span) P with Obs P = R, Obt P = S, ParP = Obs P × Obt P , src = pr1,
tgt = pr2 and a coaction δP = (δ′, δ′′) : P → (A ⊗R P ) ⊕ (P ⊗S C) of degree 0
such that the following diagram commutes

P
δ → (A⊗R P )⊕ (P ⊗S C)

(A⊗R P )⊕ (P ⊗S C)

δ

↓
(1⊗δ)⊕(1⊗Δ)→ (A⊗R A⊗R P )⊕ (A⊗R P ⊗S C)

⊕(P ⊗S C ⊗S C)

(Δ⊗1)⊕(δ⊗1)↓

and δ′ · (ε⊗ 1) = 1 = δ′′ · (1 ⊗ ε) : P → P .
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The equation presented on the diagram consists in fact of three equations
claiming that P is a left A-comodule, a right C-comodule and the coactions com-
mute.

Let A, B, C, D be coassociative counital coalgebras; let φ : A→ B, ψ : C →
D be homomorphisms; let χ : A → B be a (φ, φ)-coderivation and let ξ : C → D
be a (ψ, ψ)-coderivation of certain degree, that is, χΔ = Δ(φ⊗ χ+ χ⊗ φ), ξΔ =
Δ(ψ⊗ξ+ξ⊗ψ). Let δ : P → (A⊗P )⊕(P⊗C) be a counital (A,C)-bicomodule and
let δ : Q→ (B⊗Q)⊕(Q⊗D) be a counital (B,D)-bicomodule. A k-span morphism
f : P → Q of degree 0 with Obs f = Obφ, Obt f = Obψ is a (φ, ψ)-bicomodule
homomorphism if fδ′ = δ′(φ⊗f) : P → B⊗Q and fδ′′ = δ′′(f ⊗ψ) : P → Q⊗D.
Define a (φ, ψ, f, χ, ξ)-connection as a k-span morphism r : P → Q of certain
degree with Obs r = Obφ, Obt r = Obψ such that

P
δ→ (A⊗ P )⊕ (P ⊗ C)

Q

r↓
δ→ (B ⊗Q)⊕ (Q⊗D)

(φ⊗r+χ⊗f)⊕(f⊗ξ+r⊗ψ)↓

Let (A, bA), (C, bC) be differential graded coalgebras and let P be an (A,C)-
bicomodule with an (idA, idC , idP , b

A, bC)-connection bP : P → P of degree 1,
that is, bP δ′ = δ′(1 ⊗ bP + bA ⊗ 1) and bP δ′′ = δ′′(1 ⊗ bC + bP ⊗ 1). Its curvature
(bP )2 : P → P is always an (A,C)-bicomodule homomorphism of degree 2. If it
vanishes, bP is called a flat connection (a differential) on P .

Taking for (A, bA) the trivial differential graded coalgebra k with the trivial
coactions we recover the notions introduced in Section 4. Namely, an (A,C)-bi-
comodule P with an (idA, idC , idP , b

A, bC)-connection bP : P → P of degree 1 is
the same as a C-comodule with a (1, 1, bC)-connection, both flatness conditions
coincide, etc.

Equivalently, bicomodules with flat connections are bicomodules which live
in the category of differential graded spans. The set of A-C-bicomodules be-
comes the set of objects of a differential graded category A-C -bicomod. For dif-
ferential graded bicomodules P , Q, the k-th component of the graded k-module
A-C -bicomod(P,Q) consists of (idA, idC)-bicomodule homomorphisms t : P → Q
of degree k. The differential of t is the commutator tm1 = tbQ− (−)tbP t : P → Q,
which is again a homomorphism of bicomodules, naturally of degree k + 1. Com-
position of homomorphisms of bicomodules is the ordinary composition of k-span
morphisms.

The main example of a bicomodule is the following. Let A, B, C, D be graded
k-quivers. Let P, Q be gr-spans with Obs P = ObA, Obt P = ObC, Obs Q = ObB,
Obt Q = ObD, ParP = Obs P× Obt P, ParQ = Obs Q × Obt Q, src = pr1, tgt =
pr2. Take coalgebras A = TsA, B = TsB, C = TsC, D = TsD and bicomodules
P = TsA⊗sP⊗TsC,Q = TsB⊗sQ⊗TsD equipped with the cut comultiplications
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(coactions)

Δ0(a1, . . . , an) =
n∑

i=0

(a1, . . . , ai)⊗ (ai+1, . . . , an),

δ(a1, . . . , ak, p, ck+1, . . . , ck+l) =
k∑

i=0

(a1, . . . , ai)⊗ (ai+1, . . . , p, . . . , ck+l)

+
k+l∑
i=k

(a1, . . . , p, . . . , ci)⊗ (ci+1, . . . , ck+l).

Notice that a graded quiver M ∈ ObQ/S such that M(X,Y ) = M(Y )
depends only on Y ∈ S is nothing else but a gr-span M with Obs M = {∗},
Obt M = S. Thus, TsC-comodules of the form sM⊗TsC from Section 4 are noth-
ing else but TsA-TsC-bicomodules TsA⊗sM⊗TsC for the graded quiver A = 1u

with one object ∗ and with 1u(∗, ∗) = 0. Furthermore, A∞-modules M over an
A∞-category C are the same as 1u-C-bimodules, as defined before Proposition 5.3.

Let φ : TsA → TsB, ψ : TsC → TsD be augmented coalgebra morphisms.
Let g : P → Q be a k-span morphism of certain degree with Obs g = Obφ,
Obt g = Obψ. Define the matrix coefficients of g to be

gkl;mn = (ink⊗1⊗ inl) · g · (prm⊗1⊗ prn) :

T ksA⊗ sP⊗ T lsC→ TmsB⊗ sQ⊗ T nsD, k, l,m, n � 0.

The coefficients gkl;00 : T ksA⊗ sP⊗ T lsC→ sQ are abbreviated to gkl and called
components of g. Denote by ǧ the composite g · (pr0⊗1 ⊗ pr0) : TsA ⊗ sP ⊗
TsC → sQ. The restriction of ǧ to the summand T ksA ⊗ sP ⊗ T lsC is precisely
the component gkl.

Let f : P → Q be a (φ, ψ)-bicomodule homomorphism. It is uniquely recov-
ered from its components similarly to Tradler [Tra01, Lemma 4.2]. Let us supply
the details. The coaction δP has two components,

δ′ = Δ0 ⊗ 1⊗ 1 : TsA⊗ sP⊗ TsC→ TsA⊗ TsA⊗ sP⊗ TsC,
δ′′ = 1⊗ 1⊗Δ0 : TsA⊗ sP⊗ TsC→ TsA⊗ sP⊗ TsC⊗ TsC,

and similarly for δQ. As f is a (φ, ψ)-bicomodule homomorphism, it satisfies the
equations

f(Δ0 ⊗ 1 ⊗ 1) = (Δ0 ⊗ 1 ⊗ 1)(φ ⊗ f) : TsA ⊗ sP ⊗ TsC → TsB ⊗ TsB ⊗ sQ ⊗ TsD,

f(1 ⊗ 1 ⊗ Δ0) = (1 ⊗ 1 ⊗ Δ0)(f ⊗ ψ) : TsA ⊗ sP ⊗ TsC → TsB ⊗ sQ ⊗ TsD ⊗ TsD.

It follows that

f(Δ0 ⊗ 1⊗Δ0) = (Δ0 ⊗ 1⊗Δ0)(φ⊗ f ⊗ ψ) :
TsA⊗ sP⊗ TsC→ TsB⊗ TsB⊗ sQ⊗ TsD⊗ TsD.

Composing both sides with the morphism

1⊗ pr0⊗1⊗ pr0⊗1 : TsB⊗ TsB⊗ sQ⊗ TsD⊗ TsD→ TsB⊗ sQ⊗ TsD, (5.1)
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and taking into account the identities Δ0(1⊗pr0) = 1, Δ0(pr0⊗1) = 1, we obtain

f = (Δ0 ⊗ 1⊗Δ0)(φ⊗ f̌ ⊗ ψ). (5.2)

This equation implies the following formulas for the matrix coefficients of f :

fkl;mn =
∑

i1+···+im+p=k
j1+···+jn+q=l

(φi1 ⊗ · · · ⊗ φim ⊗ fpq ⊗ ψj1 ⊗ · · · ⊗ ψjn) :

T ksA⊗ sP⊗ T lsC→ TmsB⊗ sQ⊗ T nsD, k, l,m, n � 0. (5.3)

In particular, if k < m or l < n, the matrix coefficient fkl;mn vanishes.
Let r : P → Q be a (φ, ψ, f, χ, ξ)-connection. It satisfies the following equa-

tions:

r(Δ0 ⊗ 1⊗ 1) = (Δ0 ⊗ 1⊗ 1)(φ⊗ r + χ⊗ f) :
TsA⊗ sP⊗ TsC→ TsB⊗ TsB⊗ sQ⊗ TsD,

r(1 ⊗ 1⊗Δ0) = (1 ⊗ 1⊗Δ0)(f ⊗ ξ + r ⊗ ψ) :
TsA⊗ sP⊗ TsC→ TsB⊗ sQ⊗ TsD⊗ TsD.

They imply that

r(Δ0 ⊗ 1⊗Δ0) = (Δ0 ⊗ 1⊗Δ0)(φ⊗ f ⊗ ξ + φ⊗ r ⊗ ψ + χ⊗ f ⊗ ψ) :
TsA⊗ sP⊗ TsC→ TsB⊗ TsB⊗ sQ⊗ TsD⊗ TsD.

Composing both side with the morphism (5.1) we obtain

r = (Δ0 ⊗ 1⊗Δ0)(φ⊗ f̌ ⊗ ξ + φ⊗ ř ⊗ ψ + χ⊗ f̌ ⊗ ψ). (5.4)

From this equation we find the following expression for the matrix coefficient
rkl;mn:

p+1+q=n∑
i1+···+im+i=k

j+j1+···+jp+t+jp+1+···+jp+q=l

φi1⊗· · ·⊗φim⊗fij⊗ψj1⊗· · ·⊗ψjp⊗ξt⊗ψjp+1⊗· · ·⊗ψjp+q

+
∑

i1+···+im+i=k
j+j1+···+jn=l

φi1 ⊗ · · · ⊗ φim ⊗ rij ⊗ ψj1 ⊗ · · · ⊗ ψjn

+
a+1+c=m∑

i1+···+ia+u+ia+1+···+ia+c+i=k
j+j1+···+jn=l

φi1⊗· · ·⊗φia⊗χu⊗φia+1⊗· · ·⊗φia+c⊗fij⊗ψj1⊗· · ·⊗ψjn :

T ksA⊗ sP⊗ T lsC→ TmsB⊗ sQ⊗ T nsD, k, l,m, n � 0. (5.5)

Let A, C be A∞-categories and let P be a gr-span with Obs P = ObA,
Obt P = ObC, ParP = Obs P × Obt P, src = pr1, tgt = pr2. Let A = TsA, C =
TsC, and consider the bicomodule P = TsA⊗sP⊗TsC. The set of (1, 1, 1, bA, bC)-
connections bP : P → P of degree 1 with (bP00)

2 = 0 is in bijection with the set
of augmented coalgebra homomorphisms φP : TsAop � TsC → TsCk. Indeed,
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collections of complexes (φP(X,Y ), d)X∈Ob A
Y ∈Ob C are identified with the dg-spans

(P, sbP00s−1). In particular, for each pair of objects X ∈ ObA, Y ∈ ObC holds
(φP(X,Y ))[1] = (sP(X,Y ),−bP00). The components bPkn and φP

kn are related for
(k, n) �= (0, 0) by the formula

bPkn =
[
sA(Xk, Xk−1)⊗ · · · ⊗ sA(X1, X0)⊗ sP(X0, Y0)⊗ sC(Y0, Y1)⊗ · · ·

⊗ sC(Yn−1, Yn)
γ̃⊗1⊗n

→
sP(X0, Y0)⊗sAop(X0, X1)⊗· · ·⊗sAop(Xk−1, Xk)⊗sC(Y0, Y1)⊗· · ·⊗sC(Yn−1, Yn)

1⊗φP
kn→ sP(X0, Y0)⊗ sCk(P(X0, Y0),P(Xk, Yn))

1⊗s−1

→ sP(X0, Y0)⊗ Ck(P(X0, Y0),P(Xk, Yn))
1⊗[1]→ sP(X0, Y0)⊗ Ck(sP(X0, Y0), sP(Xk, Yn))

evCk

→ sP(Xk, Yn)
]
,

where γ̃ = (12 . . . k + 1) · γ, and anti-isomorphism γ is defined by (3.1).
The components of bP can be written in a more concise form. Given objects

X,Y ∈ ObA, Z,W ∈ ObC, define

b̌P+ =
[
TsA(Y,X)⊗ sP(X,Z)⊗ TsC(Z,W )

c⊗1→ sP(X,Z)⊗ TsA(Y,X)⊗ TsC(Z,W )
1⊗γ⊗1→ sP(X,Z)⊗ TsAop(X,Y )⊗ TsC(Z,W )

1⊗φ̌P

→ sP(X,Z)⊗ sCk(P(X,Z),P(Y,W ))
(s⊗s)−1

→ P(X,Z)⊗ Ck(P(X,Z),P(Y,W ))
evCk

→ P(Y,W )
s→ sP(Y,W )

]
=

[
TsA(Y,X)⊗sP(X,Z)⊗TsC(Z,W )

c⊗1→ sP(X,Z)⊗TsA(Y,X)⊗TsC(Z,W )
1⊗γ⊗1→ sP(X,Z)⊗ TsAop(X,Y )⊗ TsC(Z,W )

1⊗φ̌P

→ sP(X,Z)⊗ sCk(P(X,Z),P(Y,W ))
1⊗s−1[1]→ sP(X,Z)⊗ Ck(sP(X,Z), sP(Y,W ))

evCk

→ sP(Y,W )
]
, (5.6)

where γ : TsA → TsAop is the coalgebra anti-isomorphism (3.1), and φ̌P =
φP pr1 : TsAop � TsC → sCk. Conversely, components of the A∞-functor φP can
be found as

φ̌P =
[
TsAop(X,Y )⊗ TsC(Z,W )

γ⊗1→ TsA(Y,X)⊗ TsC(Z,W )
coevCk

→ Ck(sP(X,Z), sP(X,Z)⊗ TsA(Y,X)⊗ TsC(Z,W ))
C

k
(1,(c⊗1)b̌P

+)→ Ck(sP(X,Z), sP(Y,W ))
[−1]s→ sCk(P(X,Z),P(Y,W ))

]
. (5.7)
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Define also

b̌P0 =
[
TsA(Y,X)⊗ sP(X,Z)⊗ TsC(Z,W )

pr0 ⊗1⊗pr0→ sP(X,Z)
bP
00→ sP(X,Z)

]
.

(5.8)
Note that b̌P+ vanishes on T 0sA(Y,X)⊗ sP(X,Z)⊗T 0sC(Z,W ) since φ̌P vanishes
on T 0sAop(X,Y )⊗ T 0sC(Z,W ). It follows that b̌P = b̌P+ + b̌P0 .

The following statement was proven by Lefèvre-Hasegawa in assumption that
the ground ring is a field [LH03, Lemme 5.3.0.1].

Proposition 5.2. bP is a flat connection, that is, (TsA⊗ sP ⊗ TsC, bP) is a bico-
module in dQ, if and only if the corresponding augmented coalgebra homomorphism
φP : TsAop � TsC→ TsCk is an A∞-functor.

This is proven by a straightforward computation. The full proof is given in
archive version [LM07] of this article.

Let A, C be A∞-categories. The full subcategory of the differential graded cat-
egory TsA-TsC -bicomod consisting of dg-bicomodules whose underlying graded
bicomodule has the form TsA⊗ sP ⊗ TsC is denoted by A-C -bimod. Its objects
are called A∞-bimodules, extending the terminology of Tradler [Tra01].

Proposition 5.3. The differential graded categories A-C -bimod and A∞(Aop,C; Ck)
are isomorphic.

Proposition 5.2 establishes a bijection between the sets of objects of the
differential graded categories A∞(Aop,C; Ck) and A-C -bimod. It extends to an
isomorphism of differential graded categories. The full proof is given in archive
version [LM07] of this article.

Let us write explicitly the inverse map

Φ−1 : A-C -bimod(P,Q)→ A∞(Aop,C; Ck)(φ, ψ).

It takes a bicomodule homomorphism t : TsA⊗ sP⊗ TsC→ TsA⊗ sQ⊗ TsC to
an A∞-transformation rs−1 ∈ A∞(Aop,C; Ck)(φ, ψ) given by its components

ř = (−)t
[
TsAop(Y,X)⊗ TsC(Z,W )

γ⊗1→ TsA(X,Y )⊗ TsC(Z,W )
coevCk

→

Ck(sP(Y, Z), sP(Y, Z)⊗ TsA(X,Y )⊗ TsC(Z,W ))
C

k
(1,(c⊗1)ť)→

Ck(sP(Y, Z), sQ(X,W ))
[−1]s→ sCk(P(Y, Z),Q(X,W ))

]
. (5.9)

5.4. Regular A∞-bimodule

Let A be an A∞-category. Extending the notion of regular A∞-bimodule given
by Tradler [Tra01, Lemma 5.1(a)] from the case of A∞-algebras to A∞-categories,
define the regular A-A-bimodule R = RA as follows. Its underlying quiver coincides
with A. Components of the codifferential bR are given by

b̌R =
[
TsA⊗ sA⊗ TsA μT sA→ TsA b̌A

→ sA
]
,
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where μTsA is the multiplication in the tensor quiver TsA. Equivalently, bRkn =
bAk+1+n, k, n � 0. Flatness of bR in the form

(bA ⊗ 1⊗ 1 + 1⊗ 1⊗ bC)b̌P + (Δ0 ⊗ 1⊗Δ0)(1⊗ b̌P ⊗ 1)b̌P = 0. (5.10)

is equivalent to the A∞-identity bA · b̌A = 0. Indeed, the three summands of the
left-hand side of (5.10) correspond to three kinds of subintervals of the interval
[1, k+1+n]∩Z. Subintervals of the first two types miss the point k+1 and those
of the third type contain it.

Definition 5.5. Define an A∞-functor HomA : Aop,A→ Ck as the A∞-functor φR

that corresponds to the regular A-A-bimodule R = RA.

The A∞-functor HomA takes a pair of objects X,Z ∈ ObA to the chain
complex (A(X,Z),m1). The components of HomA are found from equation (5.7):

(HomA)kn =
[
T ksAop(X,Y )⊗ T nsA(Z,W )

γ⊗1→ T ksA(Y,X)⊗ T nsA(Z,W )
coevCk

→ Ck(sA(X,Z), sA(X,Z)⊗ T ksA(Y,X)⊗ T nsA(Z,W ))
C

k
(1,(c⊗1)bA

k+1+n)→ Ck(sA(X,Z), sA(Y,W ))
[−1]s→ sCk(A(X,Z),A(Y,W ))

]
. (5.11)

Closedness of the multicategory A∞ [BLM06, Theorem 12.19] implies that
there exists a unique A∞-functor Y : A → A∞(Aop; Ck) (called the Yoneda
A∞-functor) such that

HomA =
[
Aop,A

1,Y→ Aop,A∞(Aop; Ck)
evA∞
→ Ck

]
.

Explicit formula [BLM06, (12.25.4)] for evaluation component evA∞
k0 shows that

the value of Y on an object Z of A is given by the restriction A∞-functor

ZY = HZ = HZ
A = HomA

∣∣Z : Aop → Ck, X �→ (A(X,Z),m1) = HomA(X,Z)

with the components

HZ
k = (HomA)k0 = (−1)k

[
T ksAop(X,Y )

coevCk

→

Ck(sA(X,Z), sA(X,Z)⊗ T ksAop(X,Y ))
C

k
(1,ω0

cbA
k+1)→

Ck(sA(X,Z), sA(Y, Z))
[−1]s→ sCk(A(X,Z),A(Y, Z))

]
, (5.12)

where ω0 =
(

0 1 ... k−1 k
k k−1 ... 1 0

)
∈ Sk+1, and ω0

c is the corresponding signed per-
mutation. Restrictions of A∞-functors in general are defined in [BLM06, Sec-
tion 12.18], in particular, the k-th component of HomA

∣∣Z
1

described by [loc. cit.,
(12.18.2)] equals (1,ObY ) evA∞

k0 . Equivalently, components of the A∞-functor
HZ : Aop → Ck are determined by the equation

s⊗kHZ
k s

−1 = (−1)k(k+1)/2+1
[
T kAop(X,Y )

coevCk

→

Ck(A(X,Z),A(X,Z)⊗ T kAop(X,Y ))
C

k
(1,ω0

cmA
k+1)→ Ck(A(X,Z),A(Y, Z))

]
.
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Notice that evA∞
km vanishes unless m � 1. Formula [BLM06, (12.25.4)] for the

component evA∞
k1 implies that the component (HomA)kn is determined for n � 1,

k � 0 by Ynk which is the composition of Yn with

prk : sA∞(Aop; Ck)(H
Z , HW )→ Ck(T

ksAop(X,Y ), sCk(XH
Z, Y HW ))

as follows:

(HomA)kn =
[
T ksAop(X,Y )⊗ T nsA(Z,W )

1⊗Ynk→ T ksAop(X,Y )⊗ Ck

(
T ksAop(X,Y ), sCk(A(X,Z),A(Y,W ))

)
evCk

→ sCk(A(X,Z),A(Y,W ))
]
.

Conversely, the component Yn is determined by the components (HomA)kn for all
k � 0 via the formula

Ynk =
[
T nsA(Z,W )

coevCk

→ Ck(T
ksAop(X,Y ), T ksAop(X,Y )⊗ T nsA(Z,W ))

C
k
(1,(HomA)kn)→ Ck

(
T ksAop(X,Y ), sCk(A(X,Z),A(Y,W ))

)]
.

Plugging in expression (5.11) we get

Ynk =
[
T nsA(Z,W )

coevCk

→ Ck(T
ksAop(X,Y ), T ksAop(X,Y )⊗ T nsA(Z,W ))
C

k
(1,coevCk )→

Ck

(
T ksAop(X,Y ),Ck(sA(X,Z), sA(X,Z)⊗ T ksAop(X,Y )⊗ T nsA(Z,W ))

)
C

k
(1,C

k
(1,(1⊗γ⊗1)(c⊗1)bA

k+1+n))→ Ck

(
T ksAop(X,Y ),Ck(sA(X,Z), sA(Y,W ))

)
C

k
(1,[−1]s)→ Ck

(
T ksAop(X,Y ), sCk(A(X,Z),A(Y,W ))

)]
.

Another kind of the Yoneda A∞-functor Y : A → A∞(Aop; Ck) was intro-
duced in [LM04, Appendix A]. Actually, it was defined there as an A∞-functor
from Aop to A∞(A; Ck). It turns out that Y which we shall call the shifted Yoneda
A∞-functor differs from Y by a shift:

Y = Y · A∞(1; [1]) : A→ A∞(Aop; Ck). (5.13)

Indeed, an object Z of A is taken by Y to the A∞-functor ZY = hZ : Aop → Ck,
X �→ (sA(X,Z),−b1) = (A(X,Z),m1)[1] = (XHZ)[1]. The components ofHZ ·[1]

HZ
k s

−1[1]s = (−1)k
[
T ksAop(X,Y )

coevCk

→

Ck(sA(X,Z), sA(X,Z)⊗ T ksAop(X,Y ))
C

k
(1,ω0

cbA
k+1)→

Ck(sA(X,Z), sA(Y, Z))
s→ sCk(sA(X,Z), sA(Y, Z))

]
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coincide with the components hZ
k by [LM04, Appendix A]. Therefore, hZ = HZ ·[1].

Furthermore, the components Yn are determined by Ynk = Yn · prk, which turn
out [loc. cit.] to coincide with

Ynk · Ck(1, s
−1[1]s) =

[
T nsA(Z,W )

coevCk

→

Ck(T
ksAop(X,Y ), T ksAop(X,Y )⊗ T nsA(Z,W ))

C
k
(1,coevCk )→

Ck

(
T ksAop(X,Y ),Ck(sA(X,Z), sA(X,Z)⊗ T ksAop(X,Y )⊗ T nsA(Z,W ))

)
C

k
(1,C

k
(1,(1⊗γ⊗1)(c⊗1)bA

k+1+n))→ Ck

(
T ksAop(X,Y ),Ck(sA(X,Z), sA(Y,W ))

)
C

k
(1,s)→ Ck

(
T ksAop(X,Y ), sCk(sA(X,Z), sA(Y,W ))

)]
=

[
T nsA(Z,W )

coevCk

→
Ck(sA(X,Z)⊗ T ksAop(X,Y ), sA(X,Z)⊗ T ksAop(X,Y )⊗ T nsA(Z,W ))

C
k
(1,(1⊗γ⊗1)(c⊗1)bA

k+1+n)→ Ck(sA(X,Z)⊗ T ksAop(X,Y ), sA(Y,W ))
ϕ−1

∼→ Ck

(
T ksAop(X,Y ),Ck(sA(X,Z), sA(Y,W ))

)
C

k
(1,s)→ Ck

(
T ksAop(X,Y ), sCk(sA(X,Z), sA(Y,W ))

)]
.

The natural isomorphism ϕCk : Ck(A,Ck(B,C)) → Ck(B⊗A,C) is found from the
equation

[
B ⊗A⊗ Ck(A,Ck(B,C))

1⊗evCk

→ B ⊗ Ck(B,C)
evCk

→ C
]

=
[
B ⊗A⊗ Ck(A,Ck(B,C))

ϕCk

→ B ⊗ A⊗ Ck(B ⊗A,C)
evCk

→ C
]
.

Its solvability is implied by closedness of Ck. Summing up, (5.13) holds and the
two Yoneda A∞-functors agree.

5.6. Restriction of scalars

Let f : A → B, g : C → D be A∞-functors. Let P be a B-D-bimodule, φ :
Bop,D → Ck the corresponding A∞-functor. Define an A-C-bimodule fPg as the
bimodule corresponding to the composite

Aop,C
fop,g→ Bop,D

φ→ Ck.

Its underlying gr-span is given by fPg(X,Y ) = P(Xf, Y g), X ∈ ObA, Y ∈ ObC.
Components of the codifferential bf Pg are found using formulas (5.6) and (5.8):
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b̌f
Pg

+ =
[
TsA(X,Y )⊗ sP(Y f, Zg)⊗ TsC(Z,W )

c⊗1→ sP(Y f, Zg)⊗ TsA(X,Y )⊗ TsC(Z,W )
1⊗γ⊗1→ sP(Y f, Zg)⊗ TsAop(Y,X)⊗ TsC(Z,W )

1⊗[(fop,g)φ]∨→ sP(Y f, Zg)⊗ sCk(P(Y f, Zg),P(Xf,Wg))
1⊗s−1[1]→ sP(Y f, Zg)⊗ Ck(sP(Y f, Zg), sP(Xf,Wg))

evCk

→ sP(Xf,Wg)
]

=
[
TsA(X,Y )⊗ sP(Y f, Zg)⊗ TsC(Z,W )

f⊗1⊗g→

TsB(Xf, Y f)⊗ sP(Y f, Zg)⊗ TsD(Zg,Wg)
c⊗1→

sP(Y f, Zg)⊗ TsB(Xf, Y f)⊗ TsD(Zg,Wg)
1⊗γ⊗1→

sP(Y f, Zg)⊗ TsBop(Y f,Xf)⊗ TsD(Zg,Wg)
1⊗φ̌→

sP(Y f, Zg)⊗ sCk(P(Y f, Zg),P(Xf,Wg))
1⊗s−1[1]→

sP(Y f, Zg)⊗ Ck(sP(Y f, Zg), sP(Xf,Wg))
evCk

→ sP(Xf,Wg)
]
,

b̌f
Pg

0 =
[
TsA(X,Y )⊗ sP(Y f, Zg)⊗ TsC(Z,W )

pr0 ⊗1⊗pr0→ sP(Y f, Zg)
bP
00→ sP(Y f, Zg)

]
.

These equations can be combined into a single formula

b̌f Pg =
[
TsA(X,Y )⊗ sP(Y f, Zg)⊗ TsC(Z,W )

f⊗1⊗g→

TsB(Xf, Y f)⊗ sP(Y f, Zg)⊗ TsD(Zg,Wg)
b̌P

→ sP(Xf,Wg)
]
. (5.14)

Let f : A → B be an A∞-functor. Define an (idTsA, idTsA)-bicomodule
homomorphism tf : RA = A→ fBf = f (RB)f of degree 0 by its components

ťf =
[
TsA(X,Y )⊗ sA(Y, Z)⊗TsA(Z,W )

μT sA→ TsA(X,W )
f̌→ sB(Xf,Wf)

]
,

or in extended form,

tfkn =
[
sA(Xk, Xk−1)⊗ · · · ⊗ sA(X1, X0)⊗ sA(X0, Z0)⊗

⊗ sA(Z0, Z1)⊗ · · · ⊗ sA(Zn−1, Zn)
fk+1+n→ sB(Xkf, Znf)

]
. (5.15)

We claim that tfd = 0. As usual, it suffices to show that (tfd)∨ = 0. From the
identity

(tfd)∨ = tf · b̌f (RB)f − bRA · ťf = (Δ0 ⊗ 1⊗Δ0)(1 ⊗ ťf ⊗ 1)b̌f (RB)f

− (bA ⊗ 1⊗ 1 + 1⊗ 1⊗ bA)ťf − (Δ0 ⊗ 1⊗Δ0)(1⊗ b̌RA ⊗ 1)ťf



A∞-bimodules and Serre A∞-functors 617

it follows that

(tfd)∨ =
[
TsA(X,Y )⊗ sA(Y, Z)⊗ TsA(Z,W )

Δ0⊗1⊗Δ0→⊕
U,V ∈Ob A

TsA(X,U)⊗TsA(U, Y )⊗sA(Y, Z)⊗TsA(Z, V )⊗TsA(V,W )
∑

1⊗μT sA⊗1→

⊕
U,V ∈Ob A

TsA(X,U)⊗ TsA(U, V )⊗ TsA(V,W )
∑

1⊗f̌⊗1→

⊕
U,V ∈Ob A

TsA(X,U)⊗ sB(Uf, V f)⊗ TsA(V,W )
∑

f⊗1⊗f→

⊕
U,V ∈ObA

TsB(Xf,Uf)⊗ sB(Uf, V f)⊗ TsB(V f,Wf)
μT sB→

TsB(Xf,Wf)
b̌B

→ sB(Xf,Wf)
]

−
[
TsA(X,Y )⊗ sA(Y, Z)⊗ TsA(Z,W )

bA⊗1⊗1+1⊗1⊗bA

→

TsA(X,Y )⊗ sA(Y, Z)⊗ TsA(Z,W )
μT sA→ TsA(X,W )

f̌→ sB(Xf,Wf)
]

−
[
TsA(X,Y )⊗ sA(Y, Z)⊗ TsA(Z,W )

Δ0⊗1⊗Δ0→⊕
U,V ∈Ob A

TsA(X,U)⊗ TsA(U, Y )⊗ sA(Y, Z)⊗ TsA(Z, V )⊗ TsA(V,W )

∑
1⊗μT sA⊗1→

⊕
U,V ∈Ob A

TsA(X,U)⊗ TsA(U, V )⊗ TsA(V,W )
∑

1⊗b̌A⊗1→

⊕
U,V ∈Ob A

TsA(X,U)⊗ sA(U, V )⊗ TsA(V,W )
∑

μT sA→ TsA(X,W )

f̌→ sB(Xf,Wf)
]
.

Likewise Section 5.4 we see that the equation (tfd)∨ = 0 is equivalent to f · b̌B =
bA · f̌ .
Corollary 5.7. Let f : A→ B be an A∞-functor. There is a natural A∞-transfor-
mation rf : HomA → (fop, f) ·HomB : Aop,A→ Ck depicted as follows:

Aop,A
HomA → Ck

Bop,B

rfQ
RRRR

HomB

→
fop,f →

It is invertible if f is homotopy full and faithful.

Proof. Define rf = (tf )Φ−1s ∈ sA∞(Aop,A; Ck)(HomA, (fop, f)HomB), where
tf : A→ fBf is the closed bicomodule homomorphism defined above. Since Φ is an
invertible chain map, it follows that rf is a natural A∞-transformation. Suppose f
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is homotopy full and faithful. That is, its first component f1 is homotopy invertible.
This implies that the (0, 0)-component

X,Zr
f
00 =

[
k

coev→ Ck(sA(X,Z), sA(X,Z))
C

k
(1,f1)→

Ck(sA(X,Z), sB(Xf,Zf))
[−1]s→ sCk(A(X,Z),B(Xf,Zf))

]
,

found from (5.9) and (5.15), is invertible modulo boundaries in

sCk(A(X,Z),B(Xf,Zf)),

thus rf is invertible by [BLM06, Lemma 13.9]. The corollary is proven. �

5.8. Opposite bimodule

Let P be an A-C-bimodule, φ : Aop,C→ Ck the corresponding A∞-functor. Define
an opposite bimodule Pop as the Cop-Aop-bimodule corresponding to the A∞-func-
tor

(idC, idAop , φ)μA∞
X:2→2 =

[
TsC � TsAop c→ TsAop � TsC φ→ TsCk

]
.

Its underlying gr-span is given by Pop(Y,X) = P(X,Y ), X ∈ ObA, Y ∈ ObC.
Components of the differential bP

op
are found from equations (5.6) and (5.8):

b̌P
op

+ =
[
TsCop(W,Z)⊗ sPop(Z, Y )⊗ TsAop(Y,X)

c⊗1→

sP(Y, Z)⊗TsCop(W,Z)⊗TsAop(Y,X)
1⊗γ⊗1→ sP(Y, Z)⊗TsC(Z,W )⊗TsAop(Y,X)

1⊗c→ sP(Y, Z)⊗TsAop(Y,X)⊗TsC(Z,W )
1⊗φ̌→ sP(Y, Z)⊗sCk(P(Y, Z),P(X,W ))

1⊗s−1[1]→ sP(Y, Z)⊗ Ck(sP(Y, Z), sP(X,W ))
evCk

→ sP(X,W ) = sPop(W,X)
]

=
[
TsCop(W,Z)⊗ sPop(Z, Y )⊗ TsAop(Y,X)

(13)∼→

TsAop(Y,X)⊗ sP(Y, Z)⊗ TsCop(W,Z)
γ⊗1⊗γ→

TsA(X,Y )⊗ sP(Y, Z)⊗ TsC(Z,W )
b̌P
+→ sP(X,W ) = sPop(W,X)

]
,

b̌P
op

0 =
[
TsCop(W,X)⊗ sPop(Z, Y )⊗ TsAop(Y,X)

pr0 ⊗1⊗pr0→ sP(Y, Z)
bP
00→ sP(Y, Z)

]
.

These equations are particular cases of a single formula:
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b̌P
op

=
[
TsCop(W,Z)⊗ sPop(Z, Y )⊗ TsAop(Y,X)

(13)∼→

TsAop(Y,X)⊗ sP(Y, Z)⊗ TsCop(W,Z)
γ⊗1⊗γ→

TsA(X,Y )⊗ sP(Y, Z)⊗ TsC(Z,W )
b̌P

→ sP(X,W ) = sPop(W,X)
]

= −
[
TsCop(W,Z)⊗ sPop(Z, Y )⊗ TsAop(Y,X)

(13)∼→

TsAop(Y,X)⊗ sPop(Z, Y )⊗ TsCop(W,Z)
γ⊗γ⊗γ→

TsA(X,Y )⊗ sP(Y, Z)⊗ TsC(Z,W )
b̌P

→ sP(X,W ) = sPop(W,X)
]
. (5.16)

Proposition 5.9. Let A be an A∞-category. Then R
op
A = RAop as Aop-Aop-bimod-

ules.

Proof. Clearly, the underlying gr-spans of the both bimodules coincide. Comput-
ing b̌R

op
A by formula (5.16) yields

b̌R
op
A = −

[
TsAop(W,Z)⊗ sAop(Z, Y )⊗ TsAop(Y,X)

(13)∼→

TsAop(Y,X)⊗ sAop(Z, Y )⊗ TsAop(W,Z)
γ⊗γ⊗γ→

TsA(X,Y )⊗ sA(Y, Z)⊗ TsA(Z,W )
μT sA→ TsA(X,W )

b̌A

→ sA(X,W )
]

= −
[
TsAop(W,Z)⊗ sAop(Z, Y )⊗ TsAop(Y,X)

μT sAop→ TsAop(W,X)
γ→ TsA(X,W )

b̌A

→ sA(X,W )
]

since γ : TsAop → TsA is a category anti-isomorphism. Since bA
op

= γbAγ, it
follows that b̌A

op
= −γb̌A : TsAop(W,X)→ sA(W,X), therefore

b̌R
op
A =

[
TsAop(W,Z)⊗ sAop(Z, Y )⊗ TsAop(Y,X)

μT sAop→

TsAop(W,X)
b̌Aop

→ sAop(W,X)
]

= b̌RAop .

The proposition is proven. �

Corollary 5.10. Let A be an A∞-category. Then

HomAop =
[
TsA � TsAop c→ TsAop � TsA HomA→ TsCk

]
.

Proposition 5.11. For an arbitrary A∞-category A, k HomA = HomkA : kAop �
kA→ K.

Proof. Let X,Y, U, V ∈ ObA. Then

k HomA =
[
Aop(X,Y )⊗A(U, V )

s(HomA)10s−1⊗s(HomA)01s−1

→

Ck(A(X,U),A(Y, U))⊗ Ck(A(Y, U),A(Y, V ))
m

Ck

2→ Ck(A(X,U),A(Y, V ))
]
.
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According to (5.12),

s(HomA)10s−1 = −
[
A(Y,X)

s→ sA(Y,X)
coevCk

→ Ck(sA(X,U), sA(X,U)⊗ sA(Y,X))

C
k
(1,cb2)→ Ck(sA(X,U), sA(Y, U))

[−1]

‖
C

k
(s,1)·C

k
(1,s−1)

→ Ck(A(X,U),A(Y, U))
]

= −
[
A(Y,X)

coevCk

→ Ck(A(X,U),A(X,U)⊗A(Y,X))
C

k
(1,s⊗s)→

Ck(A(X,U), sA(X,U)⊗ sA(Y,X))
C

k
(1,cb2s−1)→ Ck(A(X,U),A(Y, U))

]
=

[
A(Y,X)

coevCk

→ Ck(A(X,U),A(X,U)⊗A(Y,X))
C

k
(1,c)→

Ck(A(X,U),A(Y,X)⊗A(X,U))
C

k
(1,m2)→ Ck(A(X,U),A(Y, U))

]
. (5.17)

Similarly we obtain from equation (5.11)

s(HomA)01s
−1 =

[
A(U,V )

s→ sA(U, V )

coevCk→ Ck(sA(Y,U), sA(Y,U) ⊗ sA(U, V ))

C
k
(1,b2)→ Ck(sA(Y,U), sA(Y, V ))

[−1]→ Ck(A(Y,U), A(Y,V ))
]

=
[
A(U, V )

coevCk→ Ck(A(Y, U), A(Y, U) ⊗ A(U, V ))
C

k
(1,m2)→ Ck(A(Y, U), A(Y, V ))

]
.

It follows that

kHomA =
[
A(Y, X) ⊗ A(U, V )

coevCk ⊗ coevCk→
Ck(A(X, U), A(X, U) ⊗ A(Y, X)) ⊗ Ck(A(Y,U), A(Y,U) ⊗ A(U, V ))

C
k
(1,cm2)⊗C

k
(1,m2)→

Ck(A(X, U), A(Y, U)) ⊗ Ck(A(Y,U), A(Y,V ))
m

Ck

2→ Ck(A(X, U), A(Y, V ))
]
.

Equation (A.1.2) of [LM04] allows to write the above expression as follows:

k HomA =
[
A(Y,X)⊗A(U, V )

coevCk

→ Ck(A(X,U),A(X,U)⊗A(Y,X)⊗A(U, V ))
C

k
(1,cm2⊗1)→ Ck(A(X,U),A(Y, U)⊗A(U, V ))

C
k
(1,m2)→ Ck(A(X,U),A(Y, V ))

]
=

[
A(Y,X)⊗A(U, V )

coevCk

→ Ck(A(X,U),A(X,U)⊗A(Y,X)⊗A(U, V ))
C

k
(1,c⊗1)→

Ck(A(X,U),A(Y,X)⊗A(X,U)⊗A(U, V ))
C

k
(1,(m2⊗1)m2)→ Ck(A(X,U),A(Y, V ))

]
= HomkA .

The proposition is proven. �

5.12. Duality A∞-functor

The regular module k, viewed as a complex concentrated in degree 0, determines
the duality A∞-functor D = Hk = hk · [−1] : Ck

op → Ck. It maps a complex M to
its dual (Ck(M, k),m1) = (Ck(M, k),−Ck(d, 1)). Since Ck is a differential graded
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category, the components Dk vanish if k > 1, due to (5.12). The component D1 is
given by

D1 = −
[
sCk

op(M,N) = sCk(N,M)
coevCk

→

Ck(sCk(M, k), sCk(M, k)⊗ sCk(N,M))
C

k
(1,cb

Ck

2 )→ Ck(sCk(M, k), sCk(N, k))
[−1]→ Ck(Ck(M, k),Ck(N, k))

s→ sCk(Ck(M, k),Ck(N, k))
]
.

It follows that

sD1s
−1 =

[
Ck

op(M,N) = Ck(N,M)
coevCk

→

Ck(Ck(M, k),Ck(M, k)⊗ Ck(N,M))
C

k
(1,cm

Ck

2 )→ Ck(Ck(M, k),Ck(N, k))
]
,

cf. (5.17). It follows from (1.5) that kD = K( , k) : kCk
op = Kop → kCk = K.

5.13. Dual A∞-bimodule

Let A, C be A∞-categories, and let P be an A-C-bimodule with a flat (1, 1, 1, bA, bC)-
connection bP : TsA⊗ sP⊗TsC→ TsA⊗ sP⊗TsC, and let φP : TsAop �TsC→
TsCk be the corresponding A∞-functor. Define the dual C-A-bimodule P∗ as the
bimodule that corresponds to the following A∞-functor:

φP∗
= ((φP)op, D)μA∞

2→1• A∞(X; Ck) : Cop,A→ Ck,

where X : 2→ 2, 1 �→ 2, 2 �→ 1, and the map A∞(X; Ck) is given by the composite

A∞(A,Cop; Ck)
idCop × idA ×1→ A∞(Cop; Cop)× A∞(A; A)× A∞(A,Cop; Ck)

μA∞
X:2→2→ A∞(Cop,A; Ck).

Equivalently,

φP∗
=

(
TsCop � TsA c→ TsA � TsCop γ�γ→

TsAop � TsC φP

→ TsCk
γ→ TsCk

op D→ TsCk

)
. (5.18)

The underlying gr-span of P∗ is given by Obs P∗ = Obt P = ObC, Obt P∗ =
Obs P = ObA, ParP∗ = Obs P∗ × Obt P∗, src = pr1, tgt = pr2, P∗(X,Y ) =
Ck(P(Y,X), k), X ∈ ObC, Y ∈ ObA. Moreover,

φ̌P∗
= φP∗

pr1 =
[
TsCop(Y, Z)⊗ TsA(X,W )

c(γ⊗γ)→

TsAop(W,X)⊗ TsC(Z, Y )
φ̌P

→ sCk(P(W,Z),P(X,Y ))
coevCk

→

Ck(sCk(P(X,Y ), k), sCk(P(X,Y ), k)⊗ sCk(P(W,Z),P(X,Y )))
C

k
(1,cb

Ck

2 )→

Ck(sCk(P(X,Y ), k), sCk(P(W,Z), k))
[−1]→ Ck(Ck(P(X,Y ), k),Ck(P(W,Z), k))

s→ sCk(Ck(P(X,Y ), k),Ck(P(W,Z), k))
]
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(the minus sign present in γ : sCk
op → sCk cancels that present in D1). According

to (5.6),

b̌P
∗

+ =
[
TsC(X,Y )⊗ sP∗(Y, Z)⊗ TsA(Z,W )

c⊗1→

sP∗(Y, Z)⊗TsC(X,Y )⊗TsA(Z,W )
1⊗γ⊗1→ sP∗(Y, Z)⊗TsCop(Y,X)⊗TsA(Z,W )

1⊗c→ sP∗(Y, Z)⊗ TsA(Z,W )⊗ TsCop(Y,X)
1⊗γ⊗γ→

sP∗(Y, Z)⊗ TsAop(W,Z)⊗ TsC(X,Y )
1⊗φ̌P

→ sP∗(Y, Z)⊗ sCk(P(W,X),P(Z, Y ))
1⊗coevCk

→ sP∗(Y, Z)⊗Ck(sCk(P(Z, Y ), k), sCk(P(Z, Y ), k)⊗sCk(P(W,X),P(Z, Y )))

1⊗C
k
(1,cb

Ck

2 )→ sP∗(Y, Z)⊗ Ck(sP
∗(Y, Z), sP∗(X,W ))

evCk

→ sP∗(X,W )
]

=
[
TsC(X,Y )⊗sP∗(Y, Z)⊗TsA(Z,W )

(123)→ TsA(Z,W )⊗TsC(X,Y )⊗sP∗(Y, Z)
γ⊗1⊗1→ TsAop(W,Z)⊗ TsC(X,Y )⊗ sP∗(Y, Z)

φ̌P⊗1→

sCk(P(W,X),P(Z, Y ))⊗ sCk(P(Z, Y ), k)
b
Ck

2→ sCk(P(W,X), k) = sP∗(X,W )
]
,

by properties of closed monoidal categories. Similarly, by (5.8)

b̌P
∗

0 =
[
TsC(X,Y )⊗ sP∗(Y, Z)⊗ TsA(Z,W )

pr0 ⊗1⊗pr0→ sP∗(Y, Z)
−s−1C

k
(d,1)s→ sP∗(Y, Z)

]
,

where d is the differential in the complex φP(Z, Y ) = P(Z, Y ).

Proposition 5.14. The map b̌P
∗

: TsC⊗ sP∗ ⊗ TsA → sP∗ satisfies the following
equation:

[
sP(W,X)⊗TsC(X,Y )⊗sP∗(Y, Z)⊗TsA(Z,W )

1⊗b̌P∗

→ sP(W,X)⊗sP∗(X,W )
s−1⊗s−1

→ P(W,X)⊗ Ck(P(W,X), k)
evCk

→ k
]

= −
[
sP(W,X)⊗ TsC(X,Y )⊗ sP∗(Y, Z)⊗ TsA(Z,W )

(1234)→

TsA(Z,W )⊗ sP(W,X)⊗ TsC(X,Y )⊗ sP∗(Y, Z)
b̌P⊗1→ sP(Z, Y )⊗ sP∗(Y, Z)

s−1⊗s−1

→ P(Z, Y )⊗ Ck(P(Z, Y ), k)
evCk

→ k
]
.
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Proof. It suffices to prove that the pairs of morphisms b̌P+, b̌P
∗

+ and b̌P0 , b̌P
∗

0 are
related by similar equations. The corresponding equation for b̌P+, b̌P

∗
+ is given below:

[
sP(W,X)⊗TsC(X,Y )⊗sP∗(Y, Z)⊗TsA(Z,W )

1⊗b̌P∗
+→ sP(W,X)⊗sP∗(X,W )

s−1⊗s−1

→ P(W,X)⊗ Ck(P(W,X), k)
evCk

→ k
]

= −
[
sP(W,X)⊗ TsC(X,Y )⊗ sP∗(Y, Z)⊗ TsA(Z,W )

(1234)→

TsA(Z,W )⊗ sP(W,X)⊗ TsC(X,Y )⊗ sP∗(Y, Z)
b̌P
+⊗1→ sP(Z, Y )⊗ sP∗(Y, Z)

s−1⊗s−1

→ P(Z, Y )⊗ Ck(P(Z, Y ), k)
evCk

→ k
]
. (5.19)

Its left-hand side equals[
sP(W,X)⊗ TsC(X,Y )⊗ sP∗(Y, Z)⊗ TsA(Z,W )

1⊗(123)→

sP(W,X)⊗ TsA(Z,W )⊗ TsC(X,Y )⊗ sP∗(Y, Z)
1⊗γ⊗1⊗1→

sP(W,X)⊗ TsAop(W,Z)⊗ TsC(X,Y )⊗ sP∗(Y, Z)
1⊗φ̌P⊗1→

sP(W,X)⊗ sCk(P(W,X),P(Z, Y ))⊗ sCk(P(Z, Y ), k)
1⊗b

Ck

2→

sP(W,X)⊗ sCk(P(W,X), k)
s−1⊗s−1

→ P(W,X)⊗ Ck(P(W,X), k)
evCk

→ k
]
.

Note that (1234)(c⊗ 1 ⊗ 1) = 1 ⊗ (123). Using (5.6), the right-hand side can be
written as follows:

−
[
sP(W,X)⊗ TsC(X,Y )⊗ sP∗(Y, Z)⊗ TsA(Z,W )

1⊗(123)→

sP(W,X)⊗ TsA(Z,W )⊗ TsC(X,Y )⊗ sP∗(Y, Z)
1⊗γ⊗1⊗1→

sP(W,X)⊗ TsAop(W,Z)⊗ TsC(X,Y )⊗ sP∗(Y, Z)
1⊗φ̌P⊗1→

sP(W,X)⊗ sCk(P(W,X),P(Z, Y ))⊗ sCk(P(Z, Y ), k)
1⊗s−1⊗1→

sP(W,X)⊗ Ck(P(W,X),P(Z, Y ))⊗ sCk(P(Z, Y ), k)
1⊗[1]⊗1→

sP(W,X)⊗ Ck(sP(W,X), sP(Z, Y ))⊗ sCk(P(Z, Y ), k)
evCk ⊗1→

sP(Z, Y )⊗ sCk(P(Z, Y ), k)
s−1⊗s−1

→ P(Z, Y )⊗ Ck(P(Z, Y ), k)
evCk

→ k
]
.

Equation (5.19) follows from the following equation, which we are going to prove:

[
sP(W,X)⊗ sCk(P(W,X),P(Z, Y ))⊗ sCk(P(Z, Y ), k)

1⊗b
Ck

2→

sP(W,X)⊗ sCk(P(W,X), k)
s−1⊗s−1

→ P(W,X)⊗ Ck(P(W,X), k)
evCk

→ k
]

= −
[
sP(W,X)⊗ sCk(P(W,X),P(Z, Y ))⊗ sCk(P(Z, Y ), k)

1⊗s−1⊗1→



624 V. Lyubashenko and O. Manzyuk

sP(W,X)⊗ Ck(P(W,X),P(Z, Y ))⊗ sCk(P(Z, Y ), k)
1⊗[1]⊗1→

sP(W,X)⊗ Ck(sP(W,X), sP(Z, Y ))⊗ sCk(P(Z, Y ), k)
evCk ⊗1→

sP(Z, Y )⊗ sCk(P(Z, Y ), k)
s−1⊗s−1

→ P(Z, Y )⊗ Ck(P(Z, Y ), k)
evCk

→ k
]
.

Composing both sides with the morphism −s ⊗ s ⊗ s we obtain an equivalent
equation:[

P(W,X)⊗ Ck(P(W,X),P(Z, Y ))⊗ Ck(P(Z, Y ), k)
1⊗m

Ck

2→

P(W,X)⊗ Ck(P(W,X), k)
evCk

→ k
]

= −
[
P(W,X)⊗ Ck(P(W,X),P(Z, Y ))⊗ Ck(P(Z, Y ), k)

s⊗1⊗s→

sP(W,X)⊗ Ck(P(W,X),P(Z, Y ))⊗ sCk(P(Z, Y ), k)
1⊗[1]⊗1→

sP(W,X)⊗ Ck(sP(W,X), sP(Z, Y ))⊗ sCk(P(Z, Y ), k)
evCk ⊗1→

sP(Z, Y )⊗ sCk(P(Z, Y ), k)
s−1⊗s−1

→ P(Z, Y )⊗ Ck(P(Z, Y ), k)
evCk

→ k
]
.

It follows from the definition of dg-functor [1] that

(s⊗ 1)(1⊗ [1]) evCk s−1 = (s⊗ 1)(s−1 ⊗ 1) evCk ss−1 = evCk ,

therefore the right-hand side of the above equation is equal to (evCk ⊗1) evCk , and
it equals the left-hand side by the definition of mC

k

2 .
The corresponding equation for b̌P0 and b̌P

∗
0 reads as follows:[

sP(W,X)⊗ T 0sC(X,Y )⊗ sP∗(Y, Z)⊗ T 0sA(Z,W )
1⊗b̌P∗

0→

sP(W,X)⊗ sP∗(X,W )
s−1⊗s−1

→ P(W,X)⊗ Ck(P(W,X), k)
evCk

→ k
]

= −
[
sP(W,X)⊗ T 0sC(X,Y )⊗ sP∗(Y, Z)⊗ T 0sA(Z,W )

(1234)→

T 0sA(Z,W )⊗ sP(W,X)⊗ T 0sC(X,Y )⊗ sP∗(Y, Z)
b̌P
0 ⊗1→

sP(Z, Y )⊗ sP∗(Y, Z)
s−1⊗s−1

→ P(Z, Y )⊗ Ck(P(Z, Y ), k)
evCk

→ k
]
.

It is non-trivial only if X = Y and Z =W . In this case, up to obvious isomorphism
the left-hand side equals[
sP(Z,X)⊗ sP∗(X,Z)

s−1⊗s−1

→ P(Z,X)⊗ Ck(P(Z,X), k)
1⊗C

k
(d,1)→ P(Z,X)⊗ Ck(P(Z,X), k)

evCk

→ k
]

=
[
sP(Z,X)⊗ sP∗(X,Z)

s−1⊗s−1

→ P(Z,X)⊗ Ck(P(Z,X), k)
d⊗1→ P(Z,X)⊗ Ck(P(Z,X), k)

evCk

→ k
]

= −
[
sP(Z,X)⊗ sP∗(X,Z)

s−1ds⊗1→ sP(Z,X)⊗ sCk(P(Z,X), k)
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s−1⊗s−1

→ P(Z,X)⊗ Ck(P(Z,X), k)
evCk

→ k
]
,

which is the right-hand side (up to obvious isomorphism). �

Proposition 5.15. Let A be an A∞-category. Denote by R the regular A-bimodule.
Then

φR∗
= (Homop

Aop , D)μA∞
2→1 = Homop

Aop ·D : Aop,A→ Ck.

Proof. Formula (5.18) implies that

φR∗
=

[
TsAop � TsA c→ TsA � TsAop γ�γ→ TsAop � TsA

HomA→ TsCk
γ→ TsCk

op D→ TsCk

]
=

[
TsAop � TsA γ�γ→ TsA � TsAop c→ TsAop � TsA

HomA→ TsCk
γ→ TsCk

op D→ TsCk

]
.

By Corollary 5.10, HomAop = [TsA � TsAop c→ TsAop � TsA HomA→ TsCk],
therefore

φR∗
=

[
TsAop�TsA γ�γ→ TsA�TsAop HomAop→ TsCk

γ→ TsCk
op D→ TsCk

]
=

[
TsAop � TsA Homop

Aop→ TsCk
op D→ TsCk

]
.

The proposition is proven. �

5.16. Unital A∞-bimodules

Definition 5.17. An A-C-bimodule P corresponding to an A∞-functor φ : Aop,C→
Ck is called unital if the A∞-functor φ is unital.

Proposition 5.18. An A-C-bimodule P is unital if and only if for all X ∈ ObA,
Y ∈ ObC the compositions[

sP(X,Y ) = sP(X,Y )⊗ k
1⊗Y iC0→ sP(X,Y )⊗ sC(Y, Y )

bP
01→ sP(X,Y )

]
,

−
[
sP(X,Y ) = k⊗ sP(X,Y ) X iA0 ⊗1→ sA(X,X)⊗ sP(X,Y )

bP
10→ sP(X,Y )

]
are homotopic to the identity map.

Proof. The second statement expands to the property that[
sP(X,Y )

s−1⊗Y iC0 φ01s−1

→ P(X,Y )⊗ Ck(P(X,Y ),P(X,Y ))
evCk s→ sP(X,Y )

]
,[

sP(X,Y )
s−1⊗X iA0 φ10s−1

→ P(X,Y )⊗ Ck(P(X,Y ),P(X,Y ))
evCk s→ sP(X,Y )

]
are homotopic to identity. That is,

Y iC0
(
φ01|XC

)
− 1sP(X,Y )s ∈ Im b1, X iA0

(
φ10|YAop

)
− 1sP(X,Y )s ∈ Im b1

for all X ∈ ObA, Y ∈ ObC. By [BLM06, Proposition 13.6] the A∞-functor φ is
unital. �
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Remark 5.19. Suppose A is a unital A∞-category. By the above criterion, the
regular A-bimodule RA is unital, and therefore the A∞-functor HomA : Aop,A→
Ck is unital. In particular, for each object Z of A, the representable A∞-functor

HZ = HomA |Z1 : Aop → Ck

is unital, by [BLM06, Proposition 13.6]. Thus, the Yoneda A∞-functor Y : A →
A∞(Aop; Ck) takes values in the full A∞-subcategory Au

∞(Aop; Ck) of A∞(Aop; Ck).
Furthermore, by the closedness of the multicategory Au

∞, the A∞-functor Y is
unital.

Let A, B be unital A∞-categories. A unital A∞-functor f : A → B is called
homotopy fully faithful if the corresponding K-functor kf : kA → kB is fully
faithful. That is, f is homotopy fully faithful if and only if its first component is
homotopy invertible. Equivalently, f is homotopy fully faithful if and only if it
admits a factorization

A
g→ I ⊂ e→ B, (5.20)

where I is a full A∞-subcategory of B, e : I → B is the embedding, and g : A→ I

is an A∞-equivalence.

Lemma 5.20. Suppose f : A → B is a homotopy fully faithful A∞-functor. Then
for an arbitrary A∞-category C the A∞-functor A∞(1; f) : A∞(C; A)→ A∞(C; B)
is homotopy fully faithful.

Proof. Factorize f as in (5.20). Then the A∞-functor A∞(1; f) factorizes as

A∞(C; A)
A∞(1;g)→ A∞(C; I)

A∞(1;e)→ A∞(C; B).

The A∞-functor A∞(1; g) is an A∞-equivalence since A∞(C;−) is a Au
∞-2-func-

tor, so it suffices to show that A∞(1; e) is a full embedding. Since e is a strict
A∞-functor, so is A∞(1; e). Its first component is given by

sA∞(C; I)(φ, ψ) =
X,Y ∈Ob C∏

n�0

Ck(T
nsC(X,Y ), sI(Xφ, Y ψ))

C
k
(1,e1)→

sA∞(C; B)(φe, ψe) =
X,Y ∈Ob C∏

n�0

Ck(T
nsC(X,Y ), sB(Xφ, Y ψ)),

that is, r = (rn) �→ re = (rne1). Since sI(Xφ, Y ψ) = sB(Xφ, Y ψ) and e1 :
sI(Xφ, Y ψ) → sB(Xφ, Y ψ) is the identity morphism, the above map is the iden-
tity morphism, and the proof is complete. �

Example 5.21. Let g : C → A be an A∞-functor. Then an A-C-bimodule Ag is
associated to it via the A∞-functor

Ag =
[
Aop,C

1,g→ Aop,A
1,Y→ Aop,A∞(Aop,Ck)

evA∞
→ Ck

]
=

[
Aop,C

1,g→ Aop,A
HomA→ Ck

]
. (5.21)
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As we already noticed, A-C-bimodules are objects of the differential graded
category A∞(Aop,C; Ck) � A∞(C; A∞(Aop; Ck)). Thus it makes sense to speak
about their isomorphisms in the homotopy category H0(A∞(Aop,C; Ck)).

Proposition 5.22. There is an A∞-functor A∞(C; A) → A∞(Aop,C; Ck), g �→ Ag,
homotopy fully faithful if A is a unital A∞-category. In that case, A∞-functors
g, h : C → A are isomorphic if and only if the bimodules Ag and Ah are isomorphic.
If both C and A are unital, then the above A∞-functor restricts to Au

∞(C; A) →
Au
∞(Aop,C; Ck). Moreover, g is unital if and only if Ag is unital.

Proof. The functor in question is the composite

A∞(C; A)
A∞(1;Y )→ A∞(C; A∞(Aop; Ck))

ϕA∞

∼→ A∞(Aop,C; Ck),

where Y is the Yoneda A∞-functor. When A is unital, Y : A → Au
∞(Aop; Ck) is

homotopy fully faithful by Corollary A.9, see also [LM04, Theorem A.11]. Thus,
the first claim follows from Lemma 5.20.

Assume that A∞-categories C and A are unital, and A∞-functor (5.21) is
unital. Let us prove that g : C→ A is unital. Denote f = g ·Y : C→ A∞(Aop; Ck).
The A∞-functor

f ′ =
[
Aop,C

1,f→ Aop,Au
∞(Aop,Ck)

ev→ Ck

]
is unital by assumption. The bijection

ϕA∞ : A∞(C; A∞(Aop; Ck)) → A∞(Aop,C; Ck)

shows that given f ′ can be obtained from a unique f . The bijection

ϕAu
∞ : Au

∞(C; Au
∞(Aop; Ck)) → Au

∞(Aop,C; Ck)

shows that such A∞-functor f is unital.
Thus, the composition of g : C → A with the unital homotopy fully faithful

A∞-functor Y : A→ Au
∞(Aop; Ck) is unital. Denote by Rep(Aop,Ck) the essential

image of Y , the full differential graded subcategory of Au
∞(Aop; Ck) whose ob-

jects are representable A∞-functors (X)Y = HX . The composition of g with the
A∞-equivalence Y : A→ Rep(Aop,Ck) is unital. Denote by Ψ : Rep(Aop,Ck) → A

a quasi-inverse to Y . We find that g is isomorphic to a unital A∞-functor g ·Y ·Ψ :
C→ A. Thus, g is unital itself by [Lyu03, (8.2.4)]. �

Proposition 5.23. Let A,C be A∞-categories, and suppose A is unital. Let P be an
A-C-bimodule, φP : Aop,C→ Ck the corresponding A∞-functor. The A-C-bimodule
P is isomorphic to Ag for some A∞-functor g : C→ A if and only if for each object
Y ∈ ObC the A∞-functor φP|Y1 : Aop → Ck is representable.

Proof. The “only if” part is obvious. For the proof of “if”, consider the A∞-func-
tor f = (ϕA∞)−1(φP) : C → A∞(Aop; Ck). It acts on objects by Y �→ φP|Y1 ,
Y ∈ ObC, therefore it takes values in the A∞-subcategory Rep(Aop,Ck) of repre-
sentable A∞-functors. Denote by Ψ : Rep(Aop; Ck)→ A a quasi-inverse to Y . Let
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g denote the A∞-functor f · Ψ : C → A. Then the composite g · Y = f · Ψ · Y :
C→ A∞(Aop; Ck) is isomorphic to f , therefore the A∞-functor

ϕA∞(g · Y ) =
[
Aop,C

1,g·Y→ Aop,A∞(Aop; Ck)
evA∞
→ Ck

]
,

corresponding to the bimodule Ag, is isomorphic to ϕA∞(f) = φP. Thus, Ag is
isomorphic to P. �
Lemma 5.24. If A-C-bimodule P is unital, then the dual C-A-bimodule P∗ is unital
as well.

Proof. The A∞-functor φP∗
is the composite of two A∞-functors, (φP)op : A,Cop→

Ck
op and D = Hk : Ck

op → Ck. The latter is unital by Remark 5.19. The former
is unital if and only if φP is unital. �

6. Serre A∞-functors

Here we present Serre A∞-functors as an application of A∞-bimodules.

Definition 6.1 (cf. Soibelman [Soi04], Kontsevich and Soibelman, sequel to [KS06]).
A right Serre A∞-functor S : A→ A in a unital A∞-category A is an A∞-functor
for which the A-bimodules AS =

[
Aop,A

1,S→ Aop,A
HomA→ Ck

]
and A∗ are

isomorphic. If, moreover, S is an A∞-equivalence, it is called a Serre A∞-functor.

By Lemma 5.24 and Proposition 5.22, if a right Serre A∞-functor exists, then
it is unital and unique up to an isomorphism.

Proposition 6.2. If S : A → A is a (right) Serre A∞-functor, then kS : kA → kA
is a (right) Serre K-functor.

Proof. Let p : AS → A∗ be an isomorphism. More precisely, p is an isomorphism

(1, S,HomA)μAu
∞

id:2→2 → (Homop
Aop , D)μAu

∞
2→1 : Aop,A→ Ck.

We visualize this by the following diagram:

Aop,A
1,S→ Aop,A

Ck
op

Homop
Aop ↓

D →

p

⇐===
===

==

Ck

HomA↓

Applying the k-Cat-multifunctor k, and using Lemma 3.2, Proposition 5.11, and
results of Section 5.12, we get a similar diagram in K-Cat:

kAop � kA
1�kS→ kAop � kA

Kop

Homop
kAop ↓

K( ,k)
→

kp

⇐===
===

===
==

K

HomkA↓

Since kp is an isomorphism, it follows that kS is a right Serre K-functor.
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The A∞-functor S is an equivalence if and only if kS is a K-equivalence. �

When A is an A∞-algebra and S is its identity endomorphism, the natural
transformation p : A → A∗ identifies with an ∞-inner-product on A, as defined
by Tradler [Tra01, Definition 5.3].

Corollary 6.3. Let A be a unital A∞-category. Then A admits a (right) Serre
A∞-functor if and only if kA admits a (right) Serre K-functor.

Proof. The “only if” part is proven above. Suppose kA admits a Serre K-functor.
By Proposition 2.6 this implies representability of the K-functor

HomkA(Y, )op ·K( , k) = k[HomA(Y, )op ·D] : kAop → K = kCk,

for each object Y ∈ ObA. By Corollary A.6 the A∞-functor

HomA(Y, )op ·D = (Homop
Aop , D)μA∞

2→1|Y1 : Aop → Ck

is representable for each Y ∈ ObA. By Proposition 5.23 the bimodule A∗ cor-
responding to the A∞-functor (Homop

Aop , D)μA∞
2→1 is isomorphic to AS for some

A∞-functor S : A→ A. �

Corollary 6.4. Suppose A is a Hom-reflexive A∞-category, i.e., the complex
A(X,Y ) is reflexive in K for each pair of objects X,Y ∈ ObA. If S : A → A

is a right Serre A∞-functor, then S is homotopy fully faithful.

Proof. The K-functor kS is fully faithful by Proposition 2.5. �

In particular, the above corollary applies if k is a field and all homology
spaces Hn(A(X,Y )) are finite dimensional. If A is closed under shifts, the latter
condition is equivalent to requiring thatH0(A(X,Y )) be finite dimensional for each
pair X,Y ∈ ObA. Indeed, Hn(A(X,Y )) = Hn(kA(X,Y )) = H0(kA(X,Y )[n]) =
H0((kA)[ ]((X, 0), (Y, n))). The K-category kA is closed under shifts by results of
Section 3.7, therefore there exists an isomorphism α : (Y, n) → (Z, 0) in (kA)[ ], for
some Z ∈ ObA. It induces an isomorphism (kA)[ ](1, α) : (kA)[ ]((X, 0), (Y, n)) →
(kA)[ ]((X, 0), (Z, 0)) = kA(X,Z) in K, thus an isomorphism in homology

Hn(A(X,Y )) = H0((kA)[ ]((X, 0), (Y, n))) � H0(kA(X,Z)) = H0(A(X,Z)).

The latter space is finite dimensional by assumption.

Theorem 6.5. Suppose k is a field, A is a unital A∞-category closed under shifts.
Then the following conditions are equivalent:

(a) A admits a (right) Serre A∞-functor;
(b) kA admits a (right) Serre K-functor;

(c) H•A
def
= H•(kA) admits a (right) Serre gr-functor;

(d) H0(A) admits (right) Serre k-linear functor.
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Proof. Equivalence of (a) and (b) is proven in Corollary 6.3. Conditions (b) and
(c) are equivalent due to Corollary 2.16, because H• : K→ gr is an equivalence of
symmetric monoidal categories. Condition (c) implies (d) for arbitrary gr-category
by Corollary 2.18, in particular, for H•A. Note that H•A is closed under shifts by
Section 3.7 and the discussion preceding Proposition 2.21. Therefore, (d) implies
(c) due to Proposition 2.21. �

An application of this theorem is the following. Let k be a field. Drinfeld’s
construction of quotients of pretriangulated dg-categories [Dri04] allows to find a
pretriangulated dg-category A such that H0(A) is some familiar derived category
(e.g. categoryDb

coh(X) of complexes of coherent sheaves on a projective varietyX).
If a right Serre functor exists for H0(A), then A admits a right Serre A∞-functor
S by the above theorem. That is the case of H0(A) � Db

coh(X), where X is a
smooth projective variety [BK89, Example 3.2]. Notice that S : A → A does not
have to be a dg-functor.

Proposition 6.6. Let S : A → A, S′ : B → B be right Serre A∞-functors. Let
g : B → A be an A∞-equivalence. Then the A∞-functors S′g : B → A and
gS : B → A are isomorphic.

Proof. Consider the following diagram:

Bop,B
1,S′

→ Bop,B

⇐=======
(rg)op

∼
Aop,A

1,S→

gop,g

→
Aop,A ⇐======

rg

∼

gop,g

←

Ck
op

Homop
Bop

↓
D →

Homop
Aop←

Ck

HomB

↓HomA →

Here the natural A∞-isomorphism rg is that constructed in Corollary 5.7. The
exterior and the lower trapezoid commute up to natural A∞-isomorphisms by
definition of right Serre functor. It follows that the A∞-functors (gop, S′g)HomA :
Bop,B → Ck and (gop, gS)HomA : Bop,B → Ck are isomorphic. Consider the
A∞-functors

B
S′g→ A

Y→ Au
∞(Aop; Ck)

Au
∞(gop;1)

→ Au
∞(Bop; Ck)

and
B

gS→ A
Y→ Au

∞(Aop; Ck)
Au
∞(gop;1)

→ Au
∞(Bop; Ck)

that correspond to (gop, S′g)HomA : Bop,B→ Ck and (gop, gS)HomA : Bop,B→
Ck by closedness. More precisely, the upper line is equal to

(ϕAu
∞)−1((gop, S′g)HomA)

and the bottom line is equal to

(ϕAu
∞)−1((gop, gS)HomA),
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where
ϕAu

∞ : Au
∞(B; Au

∞(Bop; Ck)) → Au
∞(Bop,B; Ck)

is the natural isomorphism of A∞-categories coming from the closed structure.
It follows that the A∞-functors S′ · g · Y · Au

∞(gop; 1) and g · S · Y · Au
∞(gop; 1)

are isomorphic. Obviously, the A∞-functor gop is an equivalence, therefore so is
the A∞-functor Au

∞(gop; 1) since Au
∞( ; Ck) is an Au

∞-2-functor. Therefore, the
A∞-functors S′ · g ·Y and g ·S ·Y are isomorphic. However, this implies that the
A∞-functors (1, S′g)HomA = ϕAu

∞(S′ · g · Y ) and (1, gS)HomA = ϕAu
∞(g · S ·Y )

are isomorphic as well. These A∞-functors correspond to (A,B)-A∞-bimodules
AS′g and AgS respectively. Proposition 5.22 implies an isomorphism between the
A∞-functors S′g and gS. �

Remark 6.7. Let A be an A∞-category, let S : A → A be an A∞-functor. The
(0, 0)-component of a cycle p ∈ A∞(Aop,A; Ck)(A

S ,A∗)[1]−1 determines for all
objects X , Y of A a degree 0 map

k � T 0sAop(X,X)⊗ T 0sA(Y, Y )
p00→ sCk(A(X,Y S),A∗(X,Y ))

s−1

→ Ck(A(X,Y S),Ck(A(Y,X), k)).

The obtained mapping A(X,Y S)→ Ck(A(Y,X), k) is a chain map, since p00s−1m1

= 0. Its homotopy class gives ψX,Y from (2.1) when the pair (S, p) is projected to
(kS, ψ = kp) via the multifunctor k.

6.8. A strict case of a Serre A∞-functor

Let us consider a particularly simple case of an A∞-category A with a right Serre
functor S : A → A which is a strict A∞-functor (only the first component does
not vanish) and with the invertible natural A∞-transformation p : AS → A∗ :
Aop,A → Ck whose only non-vanishing component is p00 : T 0sAop(X,X) ⊗
T 0sA(Y, Y ) → sCk(A(X,Y S),Ck(A(Y,X), k)). Invertibility of p, equivalent to
invertibility of p00, means that the induced chain maps r00 : A(X,Y S) →
Ck(A(Y,X), k) are homotopy invertible for all objects X , Y of A. General for-
mulae for pB1 give the components (pB1)00 = p00b1 and

(pB1)kn = ([(1, S)HomA]kn ⊗ p00)bCk

2 + (p00 ⊗ [Homop
Aop ·D]kn)bCk

2 (6.1)

for k+ n > 0. Since p is natural, pB1 = 0, thus the right-hand side of (6.1) has to
vanish. Expanding the first summand we get

(−)k
[
T ksAop(X0, Xk)⊗ T nsA(Y0, Yn)

coev→
Ck

(
sA(X0, Y0S), sA(X0, Y0S)⊗ T ksAop(X0, Xk)⊗ T nsA(Y0, Yn)

)
C

k
(1,ρc(1⊗k+1⊗S⊗n

1 )bk+1+nr00)→ Ck

(
sA(X0, Y0S), sCk(A(Yn, Xk), k)

)
[−1]s→ sCk

(
A(X0, Y0S),Ck(A(Yn, Xk), k)

)]
.
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Expanding the second summand we obtain

− (−)k
[
T ksAop(X0, Xk)⊗ T nsA(Y0, Yn)

coev→ Ck

(
sA(Yn, Xk), sA(Yn, Xk)⊗ T ksAop(X0, Xk)⊗ T nsA(Y0, Yn)

)
C

k
(1,(123)c(1⊗1⊗ω0

c ))→ Ck

(
sA(Yn, Xk), T nsA(Y0, Yn)⊗ sA(Yn, Xk)⊗ T ksA(Xk, X0)

)
C

k
(1,bn+1+k)→ Ck

(
sA(Yn, Xk), sA(Y0, X0)

) [−1]s→ sCk

(
A(Yn, Xk),A(Y0, X0)

)
coev→ Ck

(
sA(X0, Y0S), sA(X0, Y0S)⊗ sCk(A(Yn, Xk),A(Y0, X0))

) C
k
(1,(r00⊗1)cb2)→

Ck

(
sA(X0, Y0S), sCk(A(Yn, Xk), k)

) [−1]s→ sCk

(
A(X0, Y0S),Ck(A(Yn, Xk), k)

)]
.

The sum of the two above expressions must vanish. The obtained equation can be
simplified further by closedness of Ck. The homotopy isomorphism r00 induces the
pairing

q00 =
[
A(Y,X)⊗A(X,Y S)

1⊗r00→ A(Y,X)⊗ Ck(A(Y,X), k)
ev→ k

]
.

Using it we write down the naturality condition for p as follows: for all k � 0,
n � 0[

A(Yn, Xk)⊗ T kA(Xk, X0)⊗A(X0, Y0S)⊗ T nA(Y0, Yn)
(1⊗3⊗(sS1s−1)⊗n)(1⊗mk+1+n)→ A(Yn, Xk)⊗A(Xk, YnS)

q00→ k
]

= (−)(k+1)(n+1)
[
A(Yn, Xk)⊗ T kA(Xk, X0)⊗A(X0, Y0S)⊗ T nA(Y0, Yn)

(1234)c→ T nA(Y0, Yn)⊗A(Yn, Xk)⊗ T kA(Xk, X0)⊗A(X0, Y0S)
mn+1+k⊗1→ A(Y0, X0)⊗A(X0, Y0S)

q00→ k
]
. (6.2)

Let us give a sufficient condition for this equation to hold true.

Proposition 6.9. Let A be an A∞-category, and let S : A→ A be a strict A∞-func-
tor. Suppose given a pairing q00 : A(Y,X) ⊗ A(X,Y S) → k for all objects X, Y
of A. Assume that for all X,Y ∈ ObA

(a) q00 is a chain map;
(b) the induced chain map

r00 =
[
A(X,Y S)

coev→ Ck(A(Y,X),A(Y,X)⊗A(X,Y S))
C

k
(1,q00)→ Ck(A(Y,X), k)

]
is homotopy invertible;

(c) the pairing q00 is symmetric in a sense similar to diagram (2.11), namely,
the following diagram of chain maps commutes:

A(X,Y S)⊗A(Y,X)
1⊗sS1s−1

→ A(X,Y S)⊗A(Y S,XS)

=

A(Y,X)⊗A(X,Y S)

c↓
q00 → k

q00↓ (6.3)
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(d) the following equation holds for all k � 0 and all objects X0, . . . , Xk, Y

[
A(Y,Xk)⊗T kA(Xk, X0)⊗A(X0, Y S)

1⊗mk+1→ A(Y,Xk)⊗A(Xk, Y S)
q00→ k

]
= (−)k+1

[
A(Y,Xk)⊗ T kA(Xk, X0)⊗A(X0, Y S)

m1+k⊗1→ A(Y,X0)⊗A(X0, Y S)
q00→ k

]
. (6.4)

Then the natural A∞-transformation p : AS → A∗ : Aop,A → Ck with the only
non-vanishing component p00 : 1 �→ r00 is invertible and S : A → A is a Serre
A∞-functor.

Notice that (6.4) is precisely the case of (6.2) with n = 0. On the other hand,
diagram (2.11) written for K-category C = kA and the pairing φ = [q00] says that
(6.3) has to commute only up to homotopy. Thus, condition (c) is sufficient but
not necessary.

Proof. We have to prove equation (6.2) for all k � 0, n � 0. The case of n = 0
holds by condition (d). Let us proceed by induction on n. Assume that (6.2) holds
true for all k � 0, 0 � n < N . Let us prove equation (6.2) for k � 0, n = N . We
have

(−)(k+1)(n+1)(13524)c · (mn+1+k ⊗ 1) · q00
(d)
= (−)(k+1)(n+1)+k+n+1(13524)c · (1⊗mn+k+1) · q00
= (−)kn(12345)c · (mn+k+1 ⊗ 1) · c · q00
(c)
= (−)kn(12345)c · (mn+k+1 ⊗ sS1s

−1) · q00
= (−)(k+2)n(1⊗3 ⊗ sS1s

−1 ⊗ 1) · (12345)c · (mn+k+1 ⊗ 1) · q00
by (6.2)

=
for k+1,n−1

(1⊗3 ⊗ sS1s
−1 ⊗ 1) · (1⊗4 ⊗ T n−1(sS1s

−1)) · (1⊗mk+1+n) · q00 :

A(Yn, Xk)⊗ T kA(Xk, X0)⊗A(X0, Y0S)⊗A(Y0, Y1)⊗ T n−1A(Y1, Yn) → k.

This is just equation (6.2) for k, n. �

Some authors like to consider a special case of the above in which S = [d] is
the shift functor (when it makes sense), the paring q00 is symmetric and cyclically
symmetric with respect to n-ary compositions, cf. [Cos04, Section 6.2]. Then A is
called a Calabi–Yau A∞-category. General Serre A∞-functors cover wider scope,
although they require more data to work with.
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Appendix A. The Yoneda Lemma

A version of the classical Yoneda Lemma is presented in Mac Lane’s book [Mac88,
Section III.2] as the following statement. For any category C there is an isomor-
phism of functors

evCat �
[
C× Cat(C, Set)

Y op×1→ Cat(C, Set)op × Cat(C, Set)
HomCat(C,Set)→ Set

]
,

where Y : Cop → Cat(C, Set), X �→ C(X, ), is the Yoneda embedding. Here we
generalize this to A∞-setting.

Theorem A.1 (The Yoneda Lemma). For any A∞-category A there is a natural
A∞-transformation

Ω : evA∞ →
[
A,A∞(A; Ck)

Y op,1→ A∞(A; Ck)
op,A∞(A; Ck)

HomA∞(A;Ck)→ Ck

]
.

If the A∞-category A is unital, Ω restricts to an invertible natural A∞-transfor-
mation

A,Au
∞(A; Ck)

evAu
∞ → Ck

Au
∞(A; Ck)

op,Au
∞(A; Ck)

ΩQ
RRRR

HomAu∞(A;Ck)

→

Y op,1 →

Previously published A∞-versions of Yoneda Lemma contented with the
statement that for unital A∞-category A, the Yoneda A∞-functor Y : Aop →
Au
∞(A; Ck) is homotopy full and faithful [Fuk02, Theorem 9.1], [LM04, Theo-

rem A.11]. A more general form of the Yoneda Lemma is considered by Seidel
[Sei06, Lemma 2.12] over a ground field k. We shall see that these are corollaries
of the above theorem.

Proof. First of all we describe the A∞-transformation Ω for an arbitrary A∞-cat-
egory A. The discussion of Section 5.6 applied to the A∞-functor

ψ =
[
A,A∞(A; Ck)

Y op,1→ A∞(A; Ck)
op,A∞(A; Ck)

HomA∞(A;Ck)→ Ck

]
presents the corresponding Aop-A∞(A; Ck)-bimodule Q = Y A∞(A; Ck)1 via the
regular A∞-bimodule. Thus,

(Q(X, f), sbQ00s
−1) = (A∞(A; Ck)(H

X , f), sB1s
−1).

According to (5.12) HX = Aop( , X) = A(X, ) has the components

HX
k = (HomAop)k0 =

[
T ksA(Y, Z)

coevCk

→ Ck(sA(X,Y ), sA(X,Y )⊗T ksA(Y, Z))
C

k
(1,bA

1+k)→ Ck(sA(X,Y ), sA(X,Z))
[−1]s→ sCk(A(X,Y ),A(X,Z))

]
. (A.1)
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We have bQ00 = B1 and, moreover, by (5.14)

b̌Q =
[
TsAop(Y,X)⊗ sQ(X, f)⊗ TsA∞(A; Ck)(f, g)

Y ⊗1⊗1→ TsA∞(A; Ck)(H
Y , HX)⊗ sA∞(A; Ck)(H

X , f)⊗ TsA∞(A; Ck)(f, g)
B̌→ sA∞(A; Ck)(H

Y , g) = sQ(Y, g)
]
.

Since A∞(A; Ck) is a differential graded category, Bp = 0 for p > 2. Therefore,
bQkn = 0 if n > 1, and bQk1 = 0 if k > 0. The non-trivial components are (for k > 0)

bQk0 =
[
T ksAop(Y,X)⊗ sQ(X, f)⊗ T 0sA∞(A; Ck)(f, f)

Yk⊗1⊗1→

sA∞(A; Ck)(H
Y , HX)⊗sA∞(A; Ck)(H

X , f)
B2→ sA∞(A; Ck)(H

Y , f) = sQ(Y, f)
]
,

bQ01 =
[
T 0sAop(X,X)⊗ sQ(X, f)⊗ sA∞(A; Ck)(f, g)

B2→ sA∞(A; Ck)(H
X , g) = sQ(X, g)

]
. (A.2)

Denote by E the Aop-A∞(A; Ck)-bimodule corresponding to the A∞-functor
evA∞ : A,A∞(A; Ck) → Ck. For any objectX of A and any A∞-functor f : A→ Ck

the complex (E(X, f), sbE00s
−1) is (Xf, d). According to (5.6)

b̌E+ =
[
TsAop(Y,X)⊗ sE(X, f)⊗ TsA∞(A; Ck)(f, g)

c⊗1→ sE(X, f)⊗ TsAop(Y,X)⊗ TsA∞(A; Ck)(f, g)
1⊗γ⊗1→

sE(X, f)⊗ TsA(X,Y )⊗ TsA∞(A; Ck)(f, g)
1⊗ěvA∞

→ sE(X, f)⊗ sCk(Xf, Y g)
1⊗s−1[1]→ Xf [1]⊗ Ck(Xf [1], Y g[1])

evCk

→ Y g[1] = sE(Y, g)
]
.

Explicit formula (0.2) for evA∞ shows that bEkn = 0 if n > 1. The remaining
components are described as

bEk0 =
[
T ksAop(Y,X)⊗ sE(X, f)⊗ T 0sA∞(A; Ck)(f, f)

c⊗1→ sE(X, f)⊗ T ksAop(Y,X)
1⊗γ→ sE(X, f)⊗ T ksA(X,Y )

1⊗fk→

Xf [1]⊗sCk(Xf, Y f)
1⊗s−1[1]→ Xf [1]⊗Ck(Xf [1], Y f [1])

evCk

→ Y f [1] = sE(Y, f)
]

for k > 0, and if k � 0 there is

bEk1 =
[
T ksAop(Y,X)⊗ sE(X, f)⊗ sA∞(A; Ck)(f, g)

c⊗1→ sE(X, f)⊗ T ksAop(Y,X)⊗ sA∞(A; Ck)(f, g)
1⊗γ⊗1→ sE(X, f)⊗ T ksA(X,Y )⊗ sA∞(A; Ck)(f, g)

1⊗1⊗prk→ sE(X, f)⊗ T ksA(X,Y )⊗ Ck(T
ksA(X,Y ), sCk(Xf, Y g))

1⊗evCk

→

Xf [1]⊗sCk(Xf, Y g)
1⊗s−1[1]→ Xf [1]⊗Ck(Xf [1], Y g[1])

evCk

→ Y g[1] = sE(Y, g)
]
.
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The A∞-transformation Ω in question is constructed via a homomorphism

� = (Ωs−1)Φ : TsAop ⊗ sE⊗ TsA∞(A; Ck) → TsAop ⊗ sQ⊗ TsA∞(A; Ck)

of TsAop-TsA∞(A; Ck)-bicomodules thanks to Proposition 5.3. Its matrix coeffi-
cients are recovered from the components via formula (5.3) as

�kl;mn =
∑

m+p=k
q+n=l

(1⊗m ⊗ �pq ⊗ 1⊗n) :

T ksAop ⊗ sE⊗ T lsA∞(A; Ck)→ TmsAop ⊗ sQ⊗ T nsA∞(A; Ck).

The composition of the morphism

�pq : T psAop(X0, Xp)⊗Xpf0[1]⊗ T qsA∞(A; Ck)(f0, fq) → sA∞(A; Ck)(H
X0 , fq)

with the projection

prn : sA∞(A; Ck)(H
X0 , fq) → Ck(T

nsA(Z0, Zn), sCk(A(X0, Z0), Znfq)) (A.3)

is given by the composite

�pq;n
def= �pq · prn = (−)p+1

[
T psAop(X0, Xp)⊗Xpf0[1]⊗ T qsA∞(A; Ck)(f0, fq)

coevCk

→ Ck(sA(X0, Z0)⊗ T nsA(Z0, Zn),

sA(X0, Z0)⊗T nsA(Z0, Zn)⊗T psAop(X0, Xp)⊗Xpf0[1]⊗ T qsA∞(A; Ck)(f0, fq))
C

k
(1,perm)→ Ck(sA(X0, Z0)⊗ T nsA(Z0, Zn),

Xpf0[1]⊗ T psA(Xp, X0)⊗ sA(X0, Z0)⊗ T nsA(Z0, Zn)⊗ T qsA∞(A; Ck)(f0, fq))
C

k
(1,1⊗evA∞

p+1+n,q)
→ Ck(sA(X0, Z0)⊗ T nsA(Z0, Zn), Xpf0[1]⊗ sCk(Xpf0, Znfq))

C
k
(1,1⊗s−1[1])→ Ck(sA(X0, Z0)⊗ T nsA(Z0, Zn), Xpf0[1]⊗ Ck(Xpf0[1], Znfq[1]))

C
k
(1,evCk )→ Ck(sA(X0, Z0)⊗ T nsA(Z0, Zn), Znfq[1])

(ϕCk )−1

→ Ck(T
nsA(Z0, Zn),Ck(sA(X0, Z0), Znfq[1]))

C
k
(1,[−1]s)→ Ck(T

nsA(Z0, Zn), sCk(A(X0, Z0), Znfq))
]
. (A.4)

Thus, an element x1 ⊗ · · · ⊗ xp ⊗ y ⊗ r1 ⊗ · · · ⊗ rq ∈ T psAop(X0, Xp)⊗Xpf0[1]⊗
T qsA∞(A; Ck)(f0, fq) is mapped to an A∞-transformation (x1⊗· · ·⊗xp⊗y⊗r1⊗
· · · ⊗ rq)�pq ∈ sA∞(A; Ck)(HX0 , fq) with components

[(x1 ⊗ · · · ⊗ xp ⊗ y ⊗ r1 ⊗ · · · ⊗ rq)�pq]n : T nsA(Z0, Zn)→ sCk(A(X0, Z0), Znfq),

z1 ⊗ · · · ⊗ zn �→ (z1 ⊗ · · · ⊗ zn ⊗ x1 ⊗ · · · ⊗ xp ⊗ y ⊗ r1 ⊗ · · · ⊗ rq)�′
pq;n,
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where �′
pq;n

def= (1⊗n ⊗ �pq;n) evCk = (1⊗n ⊗ �pq · prn) evCk = (1⊗n ⊗�pq) evA∞
n1 is

given by

�′
pq;n = (−)p+1

[
T nsA(Z0, Zn) ⊗ T psAop(X0, Xp) ⊗ Xpf0[1] ⊗ T qsA∞(A;Ck)(f0, fq)

coevCk→ Ck(sA(X0, Z0), sA(X0, Z0) ⊗ T nsA(Z0, Zn)

⊗ T psAop(X0, Xp) ⊗ Xpf0[1] ⊗ T qsA∞(A;Ck)(f0, fq))

C
k
(1,perm)→ Ck(sA(X0, Z0), Xpf0[1] ⊗ T psA(Xp, X0)

⊗ sA(X0, Z0) ⊗ T nsA(Z0, Zn) ⊗ T qsA∞(A;Ck)(f0, fq))

C
k
(1,1⊗ev

A∞
p+1+n,q)→ Ck(sA(X0, Z0), Xpf0[1] ⊗ sCk(Xpf0, Znfq))

C
k
(1,1⊗s−1[1])→ Ck(sA(X0, Z0), Xpf0[1] ⊗ Ck(Xpf0[1], Znfq [1]))

C
k
(1,evCk )→ Ck(sA(X0, Z0), Znfq [1])

[−1]s→ sCk(A(X0, Z0), Znfq)
]
.

It follows that �pq : T psAop ⊗ sE ⊗ T qsA∞(A; Ck) → sQ vanishes if q > 1. The
other components are given by

�′
p0;n = (−)p+1

[
T nsA(Z0, Zn)⊗ T psAop(X0, Xp)⊗Xpf [1]

coevCk

→ Ck(sA(X0, Z0), sA(X0, Z0)⊗T nsA(Z0, Zn)⊗T psAop(X0, Xp)⊗Xpf [1])
C

k
(1,perm)→ Ck(sA(X0, Z0), Xpf [1]⊗T psA(Xp, X0)⊗sA(X0, Z0)⊗T nsA(Z0, Zn))

C
k
(1,1⊗fp+1+n)→ Ck(sA(X0, Z0), Xpf [1]⊗ sCk(Xpf, Znf))

C
k
(1,1⊗s−1[1])→ Ck(sA(X0, Z0), Xpf [1]⊗ Ck(Xpf [1], Znf [1]))

C
k
(1,evCk )→ Ck(sA(X0, Z0), Znf [1])

[−1]s→ sCk(A(X0, Z0), Znf)
]

(A.5)

and

�′
p1;n = (−)p+1

[
T nsA(Z0, Zn)⊗ T psAop(X0, Xp)⊗Xpf [1]⊗ sA∞(A; Ck)(f, g)

coevCk

→ Ck(sA(X0, Z0), sA(X0, Z0)⊗ T nsA(Z0, Zn)

⊗ T psAop(X0, Xp)⊗Xpf [1]⊗ sA∞(A; Ck)(f, g))
C

k
(1,perm)→ Ck(sA(X0, Z0), Xpf [1]⊗ T psA(Xp, X0)

⊗ sA(X0, Z0)⊗ T nsA(Z0, Zn)⊗ sA∞(A; Ck)(f, g))
C

k
(1,1⊗1⊗p+1+n⊗prp+1+n)→ Ck(sA(X0, Z0), Xpf [1]⊗ T psA(Xp, X0)⊗ sA(X0, Z0)

⊗T nsA(Z0, Zn)⊗Ck(T
psA(Xp, X0)⊗sA(X0, Z0)⊗T nsA(Z0, Zn), sCk(Xpf, Zng)))

C
k
(1,1⊗evCk )→ Ck(sA(X0, Z0), Xpf [1]⊗ sCk(Xpf, Zng))

C
k
(1,1⊗s−1[1])→ Ck(sA(X0, Z0), Xpf [1]⊗ Ck(Xpf [1], Zng[1]))
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C
k
(1,evCk )→ Ck(sA(X0, Z0), Zng[1])

[−1]s→ sCk(A(X0, Z0), Zng)
]
.

Naturality of the A∞-transformation Ω is implied by the following

Lemma A.2. The bicomodule homomorphism � is a chain map.

This is proven by a straightforward computation. The full proof is given in
archive version [LM07] of this article.

Let A be an A∞-category, and let f : A → Ck be an A∞-functor. Denote by
M the A-module determined by f in Proposition 4.2. Denote

Υ = �00 : sM(X) = sE(X, f) = Xf [1]→ sA∞(A; Ck)(H
X , f) (A.6)

for the sake of brevity. The composition of Υ with the projection prn from (A.3)
is given by the particular case p = q = 0 of (A.4):

Υn = −
[
sM(X)

coevCk

→
Ck(sA(X,Z0)⊗ T nsA(Z0, Zn), sA(X,Z0)⊗ T nsA(Z0, Zn)⊗ sM(X))

C
k
(1,τc)→ Ck(sA(X,Z0)⊗ T nsA(Z0, Zn), sM(X)⊗ sA(X,Z0)⊗ T nsA(Z0, Zn))

C
k
(1,bM

n+1)→ Ck(sA(X,Z0)⊗ T nsA(Z0, Zn), sM(Zn))
(ϕCk )−1

→ Ck(T
nsA(Z0, Zn),Ck(sA(X,Z0), sM(Zn)))

C
k
(1,[−1])→ Ck(T

nsA(Z0, Zn),Ck(A(X,Z0),M(Zn)))
C

k
(1,s)→ Ck(T

nsA(Z0, Zn), sCk(A(X,Z0),M(Zn)))
]
,

where n � 0, τ =
(

0 1 ... n n+1
1 2 ... n+1 0

)
∈ Sn+2. An element r ∈ sM(X) is mapped to

an A∞-transformation (r)Υ with the components

(r)Υn : T nsA(Z0, Zn) → sCk(A(X,Z0),M(Zn)), n � 0,

z1 ⊗ · · · ⊗ zn �→ (z1 ⊗ · · · ⊗ zn ⊗ r)Υ′
n,

where

Υ′
n = −

[
T nsA(Z0, Zn)⊗ sM(X)

coevCk

→

Ck(sA(X,Z0), sA(X,Z0)⊗ T nsA(Z0, Zn)⊗ sM(X))
C

k
(1,τc)→

Ck(sA(X,Z0), sM(X)⊗ sA(X,Z0)⊗ T nsA(Z0, Zn))
C

k
(1,bM

n+1)→

Ck(sA(X,Z0), sM(Zn))
[−1]→ Ck(A(X,Z0),M(Zn))

s→ sCk(A(X,Z0),M(Zn))
]
.

Since � is a chain map by Lemma A.2, the map

�00 = Υ : (sM(X), bE00 = s−1dXfs = bM0 )→ (sA∞(A; Ck)(H
X , f), bQ00 = B1)

is a chain map as well. The following result generalizes previously known A∞-ver-
sion of the Yoneda Lemma [Fuk02, Theorem 9.1], [LM04, Proposition A.9], and
gives the latter if f = HW for W ∈ ObA. It can also be found in Seidel’s book
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[Sei06, Lemma 2.12], where it is proven assuming that the ground ring k is a field,
and the proof is based on a spectral sequence argument. The proof presented in
archive version [LM07] of this article is considerably longer than that of Seidel,
however it works in the case of an arbitrary commutative ground ring.

Proposition A.3. Let A be a unital A∞-category, let X be an object of A, and let
f : A→ Ck be a unital A∞-functor. Then the map Υ is homotopy invertible.

Proof. The A∞-module M corresponding to f is unital by Proposition 4.4. The
components of f are expressed via the components of bM as follows (k � 1):

fk =
[
T ksA(Z0, Zk)

coevCk

→ Ck(sM(Z0), sM(Z0)⊗ T ksA(Z0, Zk))
C

k
(1,bM

k )→ Ck(sM(Z0), sM(Zk))
[−1]→ Ck(M(Z0),M(Zk))

s→ sCk(M(Z0),M(Zk))
]
. (A.7)

Define a map α : sA∞(A; Ck)(H
X , f)→ sM(X) as follows:

α =
[
sA∞(A; Ck)(H

X , f)
pr0→ sCk(A(X,X),M(X))

s−1

→ Ck(A(X,X),M(X))
[1]→ Ck(sA(X,X), sM(X))

C
k
(X iA0 ,1)→ Ck(k, sM(X)) = sM(X)

]
. (A.8)

The map α is a chain map. Indeed, pr0 is a chain map, and

s−1[1]Ck(X iA0 , 1)bM0 = s−1[1]Ck(X iA0 , 1)Ck(1, b
M
0 )

= s−1[1](−Ck(1, b
M
0 ) + Ck(b1, 1))Ck(X iA0 , 1) = s−1[1]mC

k

1 Ck(X iA0 , 1)

= s−1m
C

k

1 [1]Ck(X iA0 , 1) = bCk

1 s
−1[1]Ck(X iA0 , 1),

since X iA0 is a chain map, and [1] is a differential graded functor. Let us compute
Υα:

Υα = Υ0s
−1[1]Ck(X iA0 , 1) = −

[
sM(X)

coevCk

→ Ck(sA(X,X), sA(X,X)⊗sM(X))
C

k
(1,c)→ Ck(sA(X,X), sM(X)⊗ sA(X,X))

C
k
(1,bM

1 )→ Ck(sA(X,X), sM(X))
C

k
(X iA0 ,1)→ Ck(k, sM(X)) = sM(X)

]
=

[
sM(X)

coevCk

→ Ck(sA(X,X), sA(X,X)⊗ sM(X))
C

k
(X iA0 ,1)→

Ck(k, sA(X,X)⊗ sM(X))
C

k
(1,cbM

1 )→ Ck(k, sM(X)) = sM(X)
]

=
[
sM(X)

coevCk

→ Ck(k, k⊗ sM(X))
C

k
(1,X iA0 ⊗1)→ Ck(k, sA(X,X)⊗ sM(X))

C
k
(1,cbM

1 )→ Ck(k, sM(X)) = sM(X)
]

=
[
sM(X)

1⊗X iA0→ sM(X)⊗ sA(X,X)
bM
1→ sM(X)

]
. (A.9)
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Since M is a unital A∞-module by Proposition 4.4, it follows that Υα is homotopic
to identity. Let us prove that αΥ is homotopy invertible.

The graded k-module sA∞(A; Ck)(H
X , f) is V =

∏∞
n=0 Vn, where

Vn =
∏

Z0, ..., Zn∈Ob A

Ck(T̄
nsA(Z0, Zn), sCk(A(X,Z0),M(Zn)))

and all products are taken in the category of graded k-modules. In other terms,
for d ∈ Z, V d =

∏∞
n=0 V

d
n , where

V d
n =

∏
Z0, ..., Zn∈Ob A

Ck(T̄
nsA(Z0, Zn), sCk(A(X,Z0),M(Zn)))d.

We consider V d
n as Abelian groups with discrete topology. The Abelian group V d

is equipped with the topology of the product. Thus, its basis of neighborhoods
of 0 is given by k-submodules Φd

m = 0m−1 ×
∏∞

n=m V
d
n . They form a filtration

V d = Φd
0 ⊃ Φd

1 ⊃ Φd
2 ⊃ . . . . We call a k-linear map a : V → V of degree p

continuous if the induced maps ad,d+p = a
∣∣
V d : V d → V d+p are continuous for all

d ∈ Z. This holds if and only if for any d ∈ Z and m ∈ N
def= Z�0 there exists an

integer κ = κ(d,m) ∈ N such that (Φd
κ)a ⊂ Φd+p

m . We may assume that

m′ < m′′ implies κ(d,m′) � κ(d,m′′). (A.10)

Indeed, a given function m �→ κ(d,m) can be replaced with the function m �→
κ′(d,m) = minn�m κ(d, n) and κ′ satisfies condition (A.10). Continuous linear
maps a : V → V of degree p are in bijection with families of N × N-matrices
(Ad,d+p)d∈Z of linear maps Ad,d+p

nm : V d
n → V d+p

m with finite number of non-
vanishing elements in each column of Ad,d+p. Indeed, to each continuous map
ad,d+p : V d → V d+p corresponds the inductive limit overm of κ(d,m)×m-matrices
of maps V d/Φd

κ(d,m) → V d+p/Φd+p
m . On the other hand, to each family (Ad,d+p)d∈Z

of N × N-matrices with finite number of non-vanishing elements in each column
correspond obvious maps ad,d+p : V d → V d+p, and they are continuous. Thus,
a = (ad,d+p)d∈Z is continuous. A continuous map a : V → V can be completely re-
covered from one N×N-matrix (anm)n,m∈N of maps anm = (Ad,d+p

nm )d∈Z : Vn → Vm

of degree p. Naturally, not any such matrix determines a continuous map, however,
if the number of non-vanishing elements in each column of (anm) is finite, then
this matrix does determine a continuous map.

The differential D def= B1 : V → V , r �→ (r)B1 = rb − (−)rbr is continuous
and the function κ for it is simply κ(d,m) = m. Its matrix is given by

D = B1 =

⎡⎢⎢⎢⎣
D0,0 D0,1 D0,2 . . .

0 D1,1 D1,2 . . .
0 0 D2,2 . . .
...

...
...

. . .

⎤⎥⎥⎥⎦ ,
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where

Dk,k = Ck(1, b
C

k

1 )− Ck

( ∑
p+1+q=k

1⊗p ⊗ b1 ⊗ 1⊗q, 1
)

: Vk → Vk,

rkDk,k = rkb
C

k

1 − (−)r
∑

p+1+q=k

(1⊗p ⊗ b1 ⊗ 1⊗q)rk,

(one easily recognizes the differential in the complex Vk),

rkDk,k+1 = (rk ⊗ f1)bCk

2 + (HX
1 ⊗ rk)bCk

2 − (−)r
∑

p+q=k−1

(1⊗p ⊗ b2 ⊗ 1⊗q)rk.

Further we shall see that we do not need to compute other components.
Composition of αΥ with prn equals

αΥn = −
[
sA∞(A; Ck)(H

X , f)
pr0→ sCk(A(X,X),M(X))

s−1[1]→ Ck(sA(X,X), sM(X))
C

k
(X iA0 ,1)→ Ck(k, sM(X)) = sM(X)

coevCk

→ Ck(sA(X,Z0)⊗ T nsA(Z0, Zn), sA(X,Z0)⊗ T nsA(Z0, Zn)⊗ sM(X))
C

k
(1,τc)→ Ck(sA(X,Z0)⊗ T nsA(Z0, Zn), sM(X)⊗ sA(X,Z0)⊗ T nsA(Z0, Zn))

C
k
(1,bM

n+1)→ Ck(sA(X,Z0)⊗ T nsA(Z0, Zn), sM(Zn))
(ϕCk )−1

→ Ck(T
nsA(Z0, Zn),Ck(sA(X,Z0), sM(Zn)))

C
k
(1,[−1]s)→ Ck(T

nsA(Z0, Zn), sCk(A(X,Z0),M(Zn)))
]
.

Clearly, αΥ is continuous (take κ(d,m) = 1). Its N× N-matrix has the form

αΥ =

⎡⎢⎢⎢⎣
∗ ∗ ∗ . . .
0 0 0 . . .
0 0 0 . . .
...

...
...

. . .

⎤⎥⎥⎥⎦ .
Lemma A.4. The map αΥ : V → V is homotopic to a continuous map V → V ,
whose N × N-matrix is upper-triangular with the identity maps id : Vk → Vk on
the diagonal.

The proof is analogous to proof of [LM04, Lemma A.10]. The full proof is
given in archive version [LM07] of this article.

The continuous map of degree 0

αΥ +B1(K −K ′) + (K −K ′)B1 = 1 +N : V → V,
obtained in Lemma A.4, is invertible (its inverse is determined by the upper-
triangular matrix

∑∞
i=0(−N)i, which is well-defined). Therefore, αΥ is homotopy

invertible. We have proved earlier that Υα is homotopic to identity. Viewing α,
Υ as morphisms of the homotopy category H0(Ck), we see that both of them are
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homotopy invertible. Hence, they are homotopy inverse to each other. Proposi-
tion A.3 is proven. �

Homotopy invertibility of Υ = �00 implies invertibility of the cycle Ω00 up to
boundaries. Hence the natural A∞-transformation Ω is invertible and Theorem A.1
is proven. �

Corollary A.5. There is a bijection between elements of H0(M(X), d) and equiva-
lence classes of natural A∞-transformations HX → f : A→ Ck.

The following representability criterion has been proven independently by
Seidel [Sei06, Lemma 3.1] in the case when the ground ring k is a field.

Corollary A.6. A unital A∞-functor f : A→ Ck is isomorphic to HX for an object
X ∈ ObA if and only if the K-functor kf : kA→ K = kCk is representable by X.

Proof. The A∞-functor f is isomorphic to HX if and only if there is an invertible
natural A∞-transformation HX → f : A → Ck. By Proposition A.3, this is the
case if and only if there is a cycle t ∈ M(X) of degree 0 such that the natural
A∞-transformation (ts)Υ is invertible. By [Lyu03, Proposition 7.15], invertibility
of (ts)Υ is equivalent to invertibility modulo boundaries of the 0-th component
(ts)Υ0 of (ts)Υ. For each Z ∈ ObA, the element Z(ts)Υ0 of Ck(A(X,Z),M(Z))
is given by

Z(ts)Υ0 = −
[
A(X,Z)

s→ sA(X,Z)
(ts⊗1)bM

1→ sM(Z)
s−1

→ M(Z)
]

= −
[
A(X,Z)

s→ sA(X,Z)
ts⊗f1s−1

→ sM(X)⊗ Ck(M(X),M(Z))
1⊗[1]→

sM(X)⊗ Ck(sM(X), sM(Z))
ev→ sM(Z)

s−1

→ M(Z)
]

= −
[
A(X,Z)

s→ sA(X,Z)
ts⊗f1s−1

→ sM(X)⊗ Ck(M(X),M(Z))
s−1⊗1→

M(X)⊗ Ck(M(X),M(Z))
ev→ M(Z)

]
=

[
A(X,Z)

t⊗sf1s−1

→ M(X)⊗ Ck(M(X),M(Z))
ev→ M(Z)

]
.

By Proposition 1.6, the above composite is invertible in Ck(A(X,Z),M(Z)) mod-
ulo boundaries, i.e., homotopy invertible, if and only if kf is representable by the
object X . �

Proposition A.7. So defined Ω turns the pasting

HomAop

=

A,Aop 1,Y → A,A∞(A; Ck)
evA∞

→ Ck

↓

A∞(A; Ck)
op,A∞(A; Ck)

Y op,1↓ HomA∞(A;Ck)

→
Ω

⇐====
====

====
===

=

Y op,Y →
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into the natural A∞-transformation rY defined in Corollary 5.7. Equivalently, the
homomorphism of TsAop-TsAop-bicomodules tY : RAop → Y A∞(A; Ck)Y coin-
cides with (1 ⊗ 1⊗ Y ) ·� : 1EY → Y A∞(A; Ck)Y . In other terms,[
TsAop ⊗ sAop ⊗ TsAop μT sAop→ TsAop Y̌→ sA∞(A; Ck)

]
=

[
TsAop⊗sAop⊗TsAop 1⊗1⊗Y→ TsAop⊗sEY ⊗TsA∞(A; Ck)

�̌→ sA∞(A; Ck)
]
.

This is proven by a straightforward computation. The full proof is given in
archive version [LM07] of this article.

Corollary A.8 (Fukaya [Fuk02] Theorem 9.1, Lyubashenko and Manzyuk [LM04]
Proposition A.9). The A∞-functor Y : Aop → Au

∞(A; Ck) is homotopy fully faith-
ful.

Proof. We have

Y1 = �00 : sAop(X,Y ) → sAu
∞(A; Ck)(H

X , HY ),

for each pair X,Y ∈ ObA. By Proposition A.3, the component �00 is homotopy
invertible, hence so is Y1. �

Let Rep(A,Ck) denote the essential image of Y : Aop → Au
∞(A; Ck), i.e., the

full differential graded subcategory of Au
∞(A; Ck) whose objects are representable

A∞-functors (X)Y = HX : A → Ck, for X ∈ ObA, which are unital by Re-
mark 5.19. The differential graded category RepAu

∞(A,Ck) is U -small. Thus, the
Yoneda A∞-functor Y : Aop → Au

∞(A; Ck) takes values in the U -small subcate-
gory Rep(A,Ck).

Corollary A.9 (Fukaya [Fuk02] Theorem 9.1, Lyubashenko and Manzyuk [LM04]
Theorem A.11). Let A be a unital A∞-category. Then the restricted Yoneda A∞-
functor Y : Aop → Rep(A,Ck) is an equivalence.

In particular, each U -small unital A∞-category is A∞-equivalent to a U -
small differential graded category.
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c© 2007 Birkhäuser Verlag Basel/Switzerland

Geometrization of Probability

Vitali D. Milman

Dedicated to the memory of Alexander (Sasha) Reznikov, a remarkable math-
ematician with tragic fate, and who called me his advisor, of which I was
always proud.

Abstract. It was recently observed that asymptotic theory of high-dimensional
convexity is extended in a very broad sense to the category of log-concave mea-
sures, and moreover, this extension is needed to understand and to solve some
problems of asymptotic theory of high-dimensional convexity proper. Many
important geometric inequalities were interpreted and extended to such cat-
egory. On the other hand, some typical probabilisitic results are interpreted
and proved in a geometric framework. Even more importantly, such extension
to the log-concave category was needed to solve some central problems of a
purely geometric nature. The goal of this article is to outline this development
and to demonstrate examples of results which confirm this picture.

Mathematics Subject Classification (2000). 60D, 52A.

Keywords. Asymptotic geometric analysis; functional unequalities; log-con-
cave measures; isotropicity.

1. Introduction

1.a. A few historical remarks

The framework of the subject we will discuss in this survey involves very high
dimensional spaces (normed spaces, convex bodies) and accompanying asymptotic
(by increasing dimension) phenomena.

The starting point of this direction was the open problems of Geometric
Functional Analysis (in the ’60s and ’70s). This development naturally led to the
Asymptotic Theory of Finite Dimensional spaces (in ’80s and ’90s). See the books
[MS86], [Pi89] and the survey [LM93] where this point of view still prevails.

Supported in part by an Israel Science Foundation Grant and by the Minkowski Minerva Centre
for Geometry.
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During this period, the problems and methods of Classical Convexity were
absorbed by the Asymptotic Theory (including geometric inequalites and many
geometric, i.e., “isometric” as opposed to “isomorphic” problems).

As an outcome, we derived a new theory: Asymptotic Geometric Analysis.
(Two surveys, [GM01] and [GM04] give a proper picture of this theory at this
stage.)

One of the most important points of already the first stage of this development
is a change in intuition about the behavior of high-dimensional spaces. Instead
of the diversity expected in high dimensions and chaotic behavior, we observe a
unified behavior with very little diversity. We analyze this change of intuition in
[M98] and [M00]. We refer the reader to [M00] for some examples which illustrate
this. Also in [M04], we attempt to describe the main principles and phenonema
governing the asymptotic behavior of high-dimensional convex bodies and normed
spaces.

Acknowledgement. I would like to thank B. Klartag for very useful advice.

1.b. “Convergence” of geometric functional analysis and classical convexity,
creating asymptotic geometric analysis

In this introduction, we will give only one result from the past, but will present it
in two different forms: one which corresponds to the spirit of Functional Analysis,
and the other in the spirit of Convexity Theory. We will meet this result in our
main text later. I mean the result which is often called the “Quotient of a Subspace
Theorem”.

Theorem [M85]. There is a universal constant c > 0 such that for any λ, 1/2 ≤
λ < 1, and any n-dimensional normed space X, there exist subspaces F ↪→ E ↪→ X
with

k = dimE/F ≥ λn ,
and

dist(E/F, �k2) ≤ c | log(1− λ)|
1− λ .

Here dist(X,Y ) is the (multiplicative) distance between two normed spaces
X and Y which is called the Banach–Mazur distance, and which is formally defined
by

dist(X,Y ) = inf
{
‖T ‖ · ‖T−1‖

∣∣ T : X → Y is an invertible

linear operator between spaces X and Y
}
.

This distance is defined as infinity if such an invertible operator does not exist.
Some additional remarks: Of course, we may consider the proportion λ > 0

to be below 1/2. In this case (i.e., for 0 < λ < 1/2) there is another universal
constant C > 0 such that

dist
(
E/F, �k2

)
≤ 1 + C

√
λ .
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However, this is already an automatic consequence of the well-known and old
results of the Asymptotic Theory (see [MS86]).

But the case of λ to be close to 1 is of very special importance. This is already
a structural fact. One may start to feel how we can approach and deal with an
arbitrary convex body and normed space.

We now present the above theorem in a geometric form. We often call it the
global version of the QS-Theorem.

Theorem [M91]. Let K ⊂ Rn be a convex compact body and 0 be its barycenter.
There are two linear operators u1, u2 ∈ SLn, such that if T = K ∩ u1K then
Q = Conv(T ∪ u2T ) is c-isomorphic to an ellipsoid E (for a universal constant
c > 0), i.e., 1

cE ⊂ Q ⊂ cE. Also, the volume of E remains the same as the volume
of the original body K.

Note, that constant c doesn’t depend on the dimension n or the body K. It
is universal, and to feel the meaning of the theorem, one should think of n being
very large. In this sense, both theorems above are asymptotic and their meaning
and strength are revealed when dimension n increases to infinity.

2. Extension of the category of convex bodies to the category of
log-concave measures

Let us first define the class of log-concave measures and functions.

Definitions. A Borel measure μ on Rn is log-concave iff for any 0 < λ < 1 and
any A,B ⊂ Rn such that all involved sets (A,B, λA+ (1 − λ)B) are measurable

μ
(
λA+ (1− λ)B

)
≥ μ(A)λμ(B)1−λ.

Here λA is a homothety and + is the Minkowski sum, i.e., λA + (1 − λ)B =
{λx+ (1− λ)y | x ∈ A and y ∈ B}.

A few very important examples of log-concave measures:
(i) The standard volume on Rn, μ(K) = VolK (by Brunn–Minkowski inequal-

ity).
(ii) The restriction of volume on a convex setK: μK(A) = Vol(K ∩A),K-convex.
(iii) Marginals of volume restricted to a convex set.

Let μ be a measure on Rn with the density function f(x), i.e., dμ = f(x)dx.
Let E be a subspace of Rn. Then we define marginal ProjE μ of μ on E the measure
on E with density

(ProjE f) =
∫

x+E⊥
f(y)dy ,

where E⊥ is the orthogonal subspace of E.
Obviously, marginals of log-concave measures are log-concave measures. In

particular, for a convex set K, we consider the measure μK = 1Kdx (where 1K is
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the characteristic function ofK) and the marginals of this measure are log-concave
measures.

Function f(x) ≥ 0 is called log-concave if log f is concave, i.e., f(x) = e−ϕ(x)

and ϕ is convex.
The connection between log-concavity of measures and functions was estab-

lished by C. Borell [Bo74]: Let the support of a measure μ, Suppμ, not belong
to any affine hyperplane. Then μ is log-concave iff μ is absolutely continuous on
Suppμ and the density f is a log-concave function.

Now we have many more examples of log-concave densities: Let |x| define the
standard euclidean norm on Rn and ‖x‖ be any norm on Rn. Then any of the
following functions is the density of a log-concave measure:

(i) e−|x| (exponential distribution);
(ii) 1

(
√

2π)n
e−|x|2/2 (the gaussian distribution);

(iii) e−‖x‖p/p, for any norm and 1 ≤ p <∞.

Log-concavity was used in Convexity Theory already from the 1950s (Hen-
stock–MacBeath) and later, say, Prékopa–Leindler extension of Brunn–Minkowsky
inequality (see [Pi89]), or the use of log-concave functions to study volume of sec-
tions of �np by Meyer–Pajor [MP88]. But a purely geometric study of log-concavity
waited until the end of the 1980s, and was initiated by K. Ball [Ba86], who ex-
tended the study of some geometric problems of convexity to a larger category
of log-concave measures. In particular, he studied isotropicity of such measures
and connected it with isotropicity of convex bodies. He also considered some im-
portant geometric inequalities in the extended framework of log-concave measures
(“functional versions” of geometric inequalities). However, just recently it was ob-
served that such an extension is much broader than we thought, and is needed to
understand and to solve some problems of asymptotic theory of high-dimensional
convexity proper.

Three features characterize this extension.

(i) On the one hand, important geometric inequalities (and other kinds of geo-
metric statements) are interpreted, extended and proved for log-concave mea-
sures.

(ii) On the other hand, some typical probabilistic results (and thinking) are in-
terpreted and proved in a geometric framework.

(iii) And most importantly, an extension of the geometric approach to the log-
concave category is needed to solve some central problems of a purely geo-
metric nature.

The goal of this article is to demonstrate examples of results to confirm this picture.
We consider only finite measures, and only normalization distinguishes them

from probability measures. This is the reason I call this extension “Geometrization
of Probability”. In this extension we identify K with the measure

μK := Vol|K (i.e., μ(A) = Vol(A ∩K)) .
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3. Functional form of some geometric inequalities

3.a. Prékopa–Leindler inequality (functional version of Brunn–Minkowski
inequality)

We introduce first sup-convolution which we call, following [AKM04], the Asplund
product:

(f " g)(x) = Supx1+x2=x f(x1)g(x2).

Example. 1K " 1T = 1K+T .
Also λ-homothety for function is defined by

(λ · f)(x) := fλ
(x
λ

)
, λ > 0

(So f " f = 2 · f)

In this language, the Prékopa–Leindler inequality stated that, for
f, g : Rn → [0,∞), 0 < λ < 1,∫

(λ · f) "
(
(1− λ) · g

)
≥

( ∫
f

)λ

·
( ∫

g

)1−λ

.

In this formulation, Prékopa-Leindler is a functional analogue of the multiplicative,
dimensional free, form of Brunn–Minkowski inequality:

Vol
(
λA+ (1 − λ)B

)
≥ (VolA)λ · (VolB)1−λ

(for any subsets A and B of Rn and 0 < λ < 1 such that all sets involved are mea-
surable). Also “isomorphic” inequalities have their functional form. E.g. geometric
statement:

Reverse Brunn–Minkowski inequality (Milman [M86]):
∃C such that for any convex, symmetric K,P ⊂ Rn, there are linear transforms
TK , TP ∈ SLn (where TK depends solely on K, and TP depends solely on P ), such
that if K̃ = TK(K), P̃ = TP (P ), then

Vol(K̃ + P̃ )1/n < C
[
Vol(K̃)1/n + Vol(P̃ )1/n

]
.

Its functional analogue is the following statement (Klartag–Milman,
[KM05]): For any even log-concave f, g : Rn → (0,∞) there are Tf , Tg ∈ SLn,
such that f̃ = f ◦ Tf , g̃ = g ◦ Tg satisfy[ ∫

f̃ " g̃

]1/n

< C

[( ∫
f̃

)1/n

+
( ∫

g̃

)1/n]
where Tf depends solely on f and Tg solely on g (and C is, as before, a universal
constant).
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3.b. Notion of polarity for log-concave measures; functional version of the
Santaló inequality

Let K ⊂ Rn, convex, 0 ∈ K. The polar set K◦ is defined by

K◦ :=
{
x ∈ Rn : (x, y) ≤ 1 ∀ y ∈ K

}
.

[Functional Analysis interpretation: If K = −K, ‖x‖K – Minkowski functional of
K, i.e., K is the unit ball of X = (Rn, ‖ · ‖K). Then X∗ = (Rn, ‖ · ‖∗K) has K◦ its
unit ball.]

Let D be the unit euclidean ball. The following well-known geometric fact is
called Blaschke–Santaló inequality:

Let K = −K, then

|K| · |K◦| ≤ |D|2

(i.e., maximum is achieved on K := D).
Let us recall a well-known problem: What is min |K| · |K◦| (Mahler, ∼’39)?

The asymptotic answer to this problem is given in Bourgain–Milman [BM85;87]:
∃c > 0 universal such that

c ≤
( |K| · |K◦|

|D|2
)1/n

.

Very recently, G. Kuperberg [Ku07] gave a different proof of this inequality
which does not use the standard technique of the Asymptotic Theory.

For a general not necessarily centrally-symmetric convex body K, the Blasch-
ke–Santaló inequality is also correct for a suitable shift of K: There exists x0 such
that, for K̂ = K − x0,

|K̂| · |K̂◦| ≤ |D|2

(minx |K| · |(K − x)◦| is achieved for x0 called the Santaló point of K; then 0 is
the barycenter of (K − x0)◦.)

Now the functional version of these inequalities:
We start with Legendre transform

Lϕ(x) = sup
y∈Rn

[
(x, y)− ϕ(y)

]
.

If ϕ is convex and low semi-continuous, then LLϕ = ϕ.
We define polarity for non-negative functions by [AKM04]

f◦ = e−L(− log f) , i.e.,− log f◦ = L(− log f) ,

or

f◦(x) = inf
y∈Rn

e−(x,y)

f(y)
.

If f is log-concave upper semi-continuous then (f◦)◦ = f .
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Examples. For any convex body K, such that 0 ∈
◦
K,

1◦K = e−‖x‖K◦ ,
(
e−‖x‖2

K/2
)◦ = e−‖x‖2

K◦/2.

So, the following triple is associated with K:(
1K ; e−‖x‖2

K/2; e−‖x‖K
)

and its polar (
1K◦ ; e−‖x‖2

K◦/2; e−‖x‖K◦
)
.

The only f such that f◦ = f is the standard Gaussian density, which plays the
role of Euclidean ball D, in the “functional” extension of convexity theory we are
discussing.

Some elementary properties of polarity:

(f " g)◦ = f◦ · g◦

(and therefore, for log-concave functions (f · g)◦ = f◦ " g◦);

(λ · f)◦ = (f◦)λ

(note, that the dot-product λ · f here is the λ-homothety defined in 3a).

Theorem (Artstein, Klartag, Milman [AKM04]). Let f : Rn → R+,
∫
f <∞.

Then:
(i) For some x0 and f̃(x) = f(x− x0),∫

f̃ ·
∫
f̃◦ ≤ (2π)n . (1)

For log-concave f , we may take x0 =
∫
xf

/∫
f .

In the case of f -even, obviously x0 = 0, and the inequality (1) was proved by
K. Ball in his thesis [Ba86].

(ii) minx0

∫
f̃ ·

∫
f̃◦ = (2π)n iff f is a.e. a gaussian density.

The standard geometric Santaló inquality for convex bodies follows from (1):
apply (1) to f = e−‖x‖2

K/2. Then
∫

Rn f dx = cn|K| where cn = (2π)n/2/|D|, and
similarly for f◦ which implies Blaschke–Santaló’s inequality.

Let us repeat the statement without using the polarity notion:

Theorem [AKM04]. Let f : Rn → R+,
∫
f <∞. Then, for some x0,∫

f ·
∫ [

inf
y∈Rn

e−(x,y)

f(y)

]
e−(x,x0)dx ≤ (2π)n. (2)

For log-concave f , we may take xo =
∫
xf/

∫
f . Also, minx0 of that expression

is equal to (2π)n iff f is a.e. a gaussian density function f(x) = exp[(Ax, x) +
(x, z) + a] for some vector z, and a ∈ R and an operator A ≥ 0.

Also the reverse inequality is true in the functional form.
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Theorem (Klartag–Milman [KM05]). ∃c > 0, such that for every log-concave f :
Rn → R+,

∫
f <∞, we have

c <

(∫
Rn

f ·
∫

Rn

f◦
)1/n

.

We call a function f ≥ 0 α-concave (0 < α <∞) if f1/α is concave on Supp f .

Important Example: Let K ⊂ Rn+α be a convex set and E be a subspace, dimE =
n. Then, f := ProjE 11K is α-concave. Obviously, an α-concave function is log-
concave.

Fact. Any log-concave function f : Rn → [0,∞) is locally uniform on Rn approx-
imated by α-concave functions fα, fα(x) → f(x) (α→∞), for

fα(x) =
(

1 +
log f(x)
α

)α

+

≤ f(x) ,

Here, ϕ(x)+ = max{ϕ(x); 0}.
Define “α-duality” by

Lαf(x) = inf
y;f(y)>0

(
1− (x,y)

α

)α

+

f(y)
≤ f◦(x) ,

for α ≥ 1, and

Lαf(x) = inf
y;f(y)>0

(1− (x, y))α
+

f(y)
,

for 0 < α < 1. Clearly, Lαf is α-concave. Note also that Lαf → f◦ for α → ∞
and Lα1K → 1K◦ for α→ 0 and 1T is the characteristic function of the set T .

Fact. If f is upper semicontinuous and α-concave, f(0) > 0, then LαLαf = f .

Theorem [AKM04]. Let f be α-concave on Rn, α is an integer, Ef < ∞ and∫
xf(x) = 0. Then∫

Rn

f ·
∫

Rn

Lα(f) ≤ α
nκ2n+α

κ2α

(
−→

α→∞
(2π)n

)
, (3)

where κk = VolDk, and the inequality is exact.

Historical remark : The origin of the transform Lα is from the 1960s. I searched for
duality for new moduli, I worked with. Today they are called “asymptotic moduli”.

The necessary transform was [M71a]

Kϕ = Supy

(x, y) + 1
ϕ

.

To deal with this transform we consider the following substitutions. We consider
the function f = ϕ− 1 and the transform L1f = Kϕ− 1 to come to

L1(f) = Supy

(x, y)− f(y)
1 + f(y)

.
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Consider it as a part of the family Lμ:

Lμ(f) = Supy∈Rn−1
(x, y)− f(y)
1 + μf(y)

,

where f is convex on Rn−1. Of course, μ = 0 gives the Legendre transform.
To understand the meaning and inversion formula introduce a norm on Rn:∥∥∥∥(

y;
1√
μ

)∥∥∥∥ =
1 + μf(y)√

μ
.

Then ∥∥∥∥(
x;

1√
μ

)∥∥∥∥∗
=

1 + μLμf(y)√
μ

.

Reflexivity of finite-dimensional space implies

LμLμf = f .

Interestingly, only μ = 0, i.e., the case of the Legendre transform proper, lacks
this geometric interpretation.

The inequality (3) was written in [AKM04] only for integer value of α. We
take later α → ∞ to derive the inequality (2). However, a natural tensoration
argument provides a similar inequality for any rational α > 0 and, taking the
limit, also any α > 0. Such tensoration arguments were used by Klartag for proving
Theorem 2.1 in [K07a]. At the same time, it is also a particular case of the result
by Fradelizi–Meyer [FM07]. They prove the following fact.

Theorem [FM07]. Let ρ : R+ → R+ be a log-concave nonincreasing function and
let ϕ be a convex function such that 0 <

∫
Rn ρ(ϕ(x)))dx < ∞. Define a shifted

Legendre transform Lz by

Lzϕ(y) = Supx

(
(x− z, y − z)− ϕ(x)

)
for any y ∈ Rn. Then, for some z ∈ Rn,∫

Rn

ρ(ϕ(x))dx
∫
ρ
(
Lz(ϕ(y))

)
dy ≤

( ∫
Rn

ρ

( |x|2
2

)
dx

)2

.

([FM07] also provides equality conditions under the condition that ρ is a decreasing
function). The particular cases corresponding to functions ρ(t) = e−t and ρ(t) =
(1− t)α

+ lead to the previous results from [AKM04].

There are many inequalities in the spirit of the above theorems. Some of them
may be developed by the original approach of Ball [Ba86], and also by the method
of [AKM04] or using the correspondence between log-concave functions and convex
bodies as was put forward by Ball in [Ba86], [Ba88] and used in [KM05]. For other
inequalities in this style, see [FM07]. However, we will concentrate our attention
on some surprizing extensions which appeared in attempts to answer a question
raised by D. Cordero-Erausquin.

He conjectured the following (very unusual) inequality:
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Let K and T be any convex centrally symmetric bodies and D be the Eu-
clidean ball. Is it true that

V ol(K ∩ T ) · (K◦ ∩ T ) ≤ Vol(D ∩ T )2? (4)

He proved this conjecture [C02] for the case where K and T ⊂ R2n could
be realized as unit balls of complex Banach norms and, in addition T is invariant
under complex conjugation. One may see (4) as a “ localization” of the standard
Blaschke–Santaló inequality.

The surprizing fact is that the functional version of (4) has been proved by
Klartag [K07a] and Barthe–Cordero-Erausquin (unpublished) but the geometric
conjecture (4) does not follow from it (or, at least, we can’t see how it may follow).
So, the proved theorem is

Theorem (Klartag [K07a]; Barthe–Cordero-Erausquin). Let f : Rn→(−∞,∞] be
an even measurable function, and assume that μ is an even log-concave measure
on Rn. Then, ∫

Rn

e−fdμ

∫
Rn

e−Lfdμ ≤
( ∫

Rn

e−
|x|2
2 dμ

)2

,

whenever at least one of the integrals on the left-hand side is both finite and non-
zero.

To describe one geometric consequence, we need the following:

Definition. If A is the unit ball of the norm ‖ · ‖A and B is the unit ball of
the norm ‖ · ‖B, then A ∩2 B is defined as the unit ball of the norm ‖x‖A∩2B =√
‖x‖2A + ‖x‖2B.

Corollary (Klartag [K07a]). Let K,T ⊂ Rn be centrally-symmetric, convex bod-
ies. Then,

Voln(K ∩2 T )Voln(K◦ ∩2 T ) ≤ Voln(D ∩2 T )2.

Note that A∩B ⊂ A ∩2 B ⊂
√

2(A ∩B) for any centrally-symmetric convex
sets A,B ⊂ Rn. Thus, the theorem immediately implies that

Voln(K ∩ T )Voln(K◦ ∩ T ) ≤ 2n Voln(D ∩ T )2.

Let us show one more fact in this spirit from [K07a].

Let ψ : Rn → (−∞,∞] be a convex, even function, and let α > 0 be a
parameter. Let μ be a measure on Rn whose density F = dμ/dx is

F (x) =
∫ ∞

0

tn+1e−αt2e−ψ(tx)dt .

Then, for any centrally-symmetric, convex body K ⊂ Rn,

μ(K)μ(K◦) ≤ μ(D)2.

An example of a measure which is covered by this theorem is, e.g. the measure
with density 1

(1+‖x‖2)n+2 where ‖ · ‖ is a norm on Rn. So, such measures may have
“heavy tails” and not be log-concave.
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3.c. Functional form of Urysohn inequality
(Urysohn inequality for log-concave functions)

Recall the classical Urysohn inequality:(
VolK
VolD

)1/n

≤M�(K) :=
∫

Sn−1
sup
y∈K

(x, y)dσ(x)

and, by Steiner formula,

Vol(D + εK) = VolD + εnM�(K)VolD +O(ε2) .

So, we may define the analogous quantity. Let G(x) = e−|x|2/2. Then define

VG(f) = lim
ε→O+

∫
G " [ε · f ]−

∫
G

ε

(one may show that lim exists).
Denote M�(f) = 2VG(f)

n
∫

G
= VG(f)

n
2 (2π)n/2 . Then M�(G) = 1.

If f = 1K then (calculation)

VG(1K) =
(2π)

n−1
2 nκn

κn−1
M�(K)

(κn = VolDn).
So M�(K) = cnM�(1K) for cn ∼

√
n.

The quantity M∗(f) has the following properties:

(i) Linearity:: M�(f " g) =M�(f) +M�(g);
(ii) Homogenuity:: M�(λ · f) = λM�(f), λ > 0.

Theorem [KM05]. Let f : Rn → [0,∞] be an even log-concave function such that∫
f =

∫
G (= (2π)n/2). Then

M�(f) ≥M�(G) = 1 .

3.d. Mixed measures – what are they?

Introducing M∗(f) in the previous section creates a feeling that there is a natural
and clear notion of mixed measures which extends the notion of mixed volumes.
However, the situation is not so, and what mixed measures are is absolutely not
yet clear to me. This stage of “geometrization of probability” is still ahead of us.

We see only some examples, mostly on the level of “experiments”, which
demonstrate, however, the high interest the theory should generate. I will describe
below a couple of examples (from Klartag [K07a]).

For f : Rn → [0,∞), concave on Supp f , define a variant of the Legendre
transform

L′f = sup
y;f(y)>0

[
f(y)− (x, y)

]
(note L′f is convex).
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For fi : Rn → [0,∞), i = 0, 1, . . . , n, compactly supported, concave on their
Supp, denote

V (f0, . . . , fn) =
∫

Rn

[L′fo](x)D
(
Hess[L′f1](x), . . . ,Hess[L′fn]

)
dx .

(See the Appendix for a definition and a few properties of mixed discriminants
D(A1, . . . , An) of matrices Ai ≥ 0.)

Then the following is true: The multilinear form V is
(i) fully symmetric with respect to permutations of {0, 1, . . . , n};
(ii) monotone; i.e., if fi and gi as above and fi ≤ gi then V (f0, . . . , fn) ≤
V (g0, . . . , gn).

(iii) satisfies “hyperbolic” Alexandrov–Fenchel type inequality

V (f0, f1, . . . , fn)2 ≥ V (f0, f0, f2 . . . , fn) · V (f1, f1, f2, . . . , fn).

And now “the dual” statement:
Let K ⊂ Rn be convex compact. Let fi : Rn → [0,∞), i = 0, 1, . . . , n, be

concave, vanishing on ∂K, with bounded second derivatives in
◦
K. Denote:

I(f0, . . . , fn) =
∫

K

f0(x)D(−Hess f1, . . . ,−Hess fn)dx .

Then, the multilinear form I is:
(i) fully symmetric with respect to permutations;
(ii) monotone (in the above class of functions);
(iii) the following “elliptic-type” inequality is satisfied:

I(f0, f1, . . . , fn)2 ≤ I(f0, f0, f2 . . . , fn) · I(f1, f1, f2, . . . , fn) .

So, the Legendre transform “transforms” elliptic type inequalities into hyperbolic
type! Why? We could not observe this kind of phenomenon in the category of
convex sets because the functional duality is not closed in this category.

4. A Central Limit Theorem (CLT) for convex sets and log-concave
measures

In the classical geometric approach, we study a geometric shape of projections (or
sections) of convex body K, and we know that they are, with high probability,
close to euclidean balls for small enough rank of projections.

The exact old estimate stated [M71b] that, with high probability, a random
projection PE of a convex body K in Rn of rank k∗ < cn

(M∗(K)
diam K

)2 is isomorphic
upto a constant 2 to a euclidean k∗-dimensional ball. Here c is a universal constant,
M∗(K) was defined in 3.c and diamK is the diameter of K.

But what about measure projections (marginals) of convex bodies in place
of geometric projections? This question was first asked by Gromov [Gr88]. He
made some initial observations, but recently the structure of random marginals
was understood completely. To describe the results we need some notions.
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Normalize the convex body K ⊂ Rn such that

VolK = 1,
∫

K

#xdx = 0,
∫

K

〈x, θ〉2dx = |θ|2L2
K ,

for any θ ∈ Rn. We say that K is in “isotropic” position and the constant LK is
called the isotropic constant of K.

Theorem (Klartag [K07b], [K07c]). Suppose K ⊂ Rn is convex and isotropic, and
X is distributed uniformly in K. Then ∃Θ ⊂ Sn−1 with σn−1(Θ) ≥ 1 − δn, such
that for θ ∈ Θ,

sup
A⊂R

∣∣∣∣Prob
{
〈X, θ〉 ∈ A

}
− 1
LK

√
2π

∫
A

e−t2/2L2
Kdt

∣∣∣∣ ≤ εn .
Here, say, δn < exp(−cn0.9), εn < Cn−1/100.

Progress towards this goal was obtained earlier by Brehm–Voigt [BV00] and
Anttila–Ball–Perissinaki [ABP03]. There is an analogue multi-dimensional version

Theorem (Klartag [K07b]). Let K ⊂ Rn be convex and isotropic. The r.v. X is
distributed uniformly in K. Suppose ε > 0 and k < cε2 log n

log log n .
Then ∃E ⊂ Gn,k with σn,k(E) ≥ 1− exp(−cn0.9), such that for E ∈ E,

sup
A⊂E

∣∣∣∣Prob
{

ProjE(X) ∈ A
}
− 1
Lk

K

∫
A

e−|x|2/2L2
K

(2π)k/2
dx

∣∣∣∣ ≤ ε .
Very recently, Klartag [K07c] improved all estimates in the two previous re-

sults: instead of log-type estimates in the previous result, he proved a polynomial
type estimate. This means that there is a principle difference between the dimen-
sion k∗ such that geometric shape of projections on subspaces of this dimension
can be approximately euclidean and the dimension of marginals which are approx-
imately gussian. In the first case, in some examples, say a cross-polytope – the
unit ball of �n1 space, k∗ cannot be above ∼ logn, but in the second case we have
∼ gaussian marginals in dimensions of the order of say n1/20.

5. Isotropic position and isotropic constant

We again recall that a convex body K ⊂ Rn, with the barycenter of K at 0, is in
isotropic position iff VolK = 1 and, ∀i, j = 1, . . . , n,∫

K

xixids = δijL2
K

(x = (x1, . . . , xn)). We call LK the isotropic constant of K. It is an old and famous
problem of Bourgain if isotropic constants {LK} are uniformly bounded (by dim. n
and convex bodies in Rn). A well-known 20-year-old estimate of Bourgain’s states
that LK ≤ Cn1/4 logn. However, recently Klartag proved
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Theorem (Klartag [K06]). For any convex body K ⊂ Rn and ε > 0 there exists a
convex body T ⊂ Rn, such that

(1− ε)T ⊂ K − x0 ⊂ (1 + ε)T

and LT < c/
√
ε.

Corollary (Klartag [K06], relying on Paouris’ recent theorem [P06]).

LK < Cn
1/4 when K ⊂ Rn .

It is important to note that the proof of the last theorem requires the exten-
sion of Asymptotic Theory of Convexity to the category of log-concave measures.

In a very rough sketch of his proof, Klartag considered the ‘momentum’ map

F (x) = log
∫

K

e〈x,y〉dy

(K is a convex body in the isotropic position) which produces (by considering
gradient) the transportation of measure from Rn to K. This creates the family
{fx(y) = e〈x,y〉1K(y)}x∈nK◦ of log-concave densities.

The boundedness of the isotropic constant for any of these measures (the
isotropic constant of a measure should be defined) would imply the theorem (it
would construct an approximation T ). In the next step, this fact is proved in
the average (which means the existence of one such measure). The proof uses the
reverse Santaló inequality [BM87].

To give some details of the proof of the theorem, we need to establish a
connection between log-concavity and convex bodies.

For any even log-concave f : Rn → R
+

we associate a norm (K. Ball [Ba86])

‖x‖f =
(∫ ∞

0

nf(rx)rn−1dr

)−1/n

.

Denote Kf be the unit ball of ‖ · ‖f .
Let us note a few properties of this correspondence:

1. VolKf =
∫
f

2. Define Kf = {x ∈ Rn : f(x) > e−n}. Then, for a universal c > 0,

Kf ⊂ Kf ⊂ cKf .

3. Let f and g be log-concave functions and f(0) = g(0) = 1. Then, for some
universal constants c1 and c2

c1Kf�g ⊂ Kf +Kg ⊂ c2Kf�g

and
c1nK

◦
f ⊂ Kf◦ ⊂ c2nK◦

f .
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Let us now define the isotropic constant of a log-concave measure. We say that f
is in the isotropic position if

Supx∈Rn f(x) = 1 =
∫
f(x)dx and∫

x∈Rn

xixj fdx = δijL2
f

and the constant Lf is called the isotropic constant of the measure fdx.
One may write a formula for Lf without “putting” fdx in the isotropic

position,

Lf =
(

Supx∈Rn f(x)∫
Rn fdx

)1/n

(detCov f)1/2n

where covariance matrix

Cov f =
(
Covf (xi, xj)

)
,

Covf (xi, xj) =

∫
Rn xixjfdx∫
fdx

−
∫
xif∫
f
·
∫
xjf∫
f
.

Then, for any K convex, LK = L1K .

A sketch of Klartag’s proof of a solution of the “isomorphic” slicing problem. Let
K be convex compact, O ∈ K, VolK = 1. We will divide the proof into a few
steps, and we will refer to [K06] for the proofs which will not be presented.

1. Let f : K → [0,∞) be a log-concave function. Assume(
Supx∈K f

infx∈K f

)1/n

< C .

Then Kf isomorphic to K, i.e., ∃ c1 := c1(C) such that
1
c1
Kf ⊂ K ⊂ c1Kf

(here, as before,

Kf =
{
x ∈ Rn;

∫ ∞

0

nf(rx)rn−1dr ≥ 1
}

and is a convex set by K. Ball).
2. (K. Ball [Ba86]) Lf � LKf

. So, our goal is to find such an f that Lf < const.
(which implies that LKf

< const.).
3. Consider a (convex) function FK(x) := F (x)

F (x) = log
∫

K

e〈x,y〉dy .

(a) This function produces a transportation of measure

∇F := ψ : Rn −→
◦
K
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(similar to the so called ‘momentum’ map). Recall the notation of trans-
portation. Let μ1 and μ2 be two Borel measures in Rn and T : Rn → Rn

such that, for any measurable set A ⊂ Rn,

μ2(A) = μ1(T−1A) .

Then we say that T transports μ1 to μ2. Equivalently, ∀ϕ ∈ C+(Rn)∫
Rn

ϕ(x)dμ2(x) =
∫

Rn

ϕ(Tx)dμ1(x) .

The following fact is straightforward.

Fact. Let F : Rn → R be C2-smooth strictly convex and K = Im(∇F ).
Let measure μ have density dμ

dx = detHessF (x). Then ∇F : Rn → Rn

transports μ to Vol|K .

Applying this to our situation, we see that ∇F transports the measure
μ to the uniform measure on K.
Using this, we see that, for any measurable set A ⊂ Rn,∫

A

det HessF = Vol((∇F )A) ≤ 1 .

(b) Note that ∇F (x) =
∫
y dμK,x(y) and the density of μK,x is

e〈x,y〉1K(y)∫
K e

〈x,z〉dz
.

Also Hess(F )(x) = Cov(μK,x). Therefore

detHessF (x) =
( ∫

fx/ Sup fx

)2

· L2n
fx

where fx(y) = e〈x,y〉1K(y).
So, we consider the family of log-concave functions and we search for a
function as in 1. and 2. inside this family.

4. Let x ∈ nK◦. (Note that the volume |K| = 1 implies |nK◦|1/n ∼ 1 by the
Bourgain–Milman reverse Santaló inequality [BM87].)
(a) Then (

Supy∈K fx(y)
infy∈K fx(y)

)1/n

< C.

Indeed, Supy∈K fx(y) = Supy∈K e
〈x,y〉 ≤ e‖x‖∗ ≤ en. (Similarly for

inf ≥ e−n.) So we know that Kfx ∼ K for any x ∈ nK◦.
(b) We want to find x ∈ nK◦ such that Lfx < Const., i.e., to estimate from

above by some constant(
det HessF (x)

)1/2n
(

Sup fx∫
fx

)1/n

.
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Actually, it is enough to find x ∈ nK◦ such that

detHessF (x) < Const.n.

We prove this “on average”:

1
|nK◦|

∫
nK◦

detHessF (x) ≤ 1
|nK◦| Vol(Im(∇F )) ≤ 1

|nK◦| ≤ C
n

(this is the reverse Santaló inequality we already mentioned).

6. Is further extension possible?

Does the family of log-concave measures (we discussed in Sections 2 and 3) rep-
resent the largest class of probability measures where Geometry is extended so
naturally?

This is not clear. But let us consider a much larger class of “convex measures”
(I also like the terminology “hyperbolic measures”).

In Section 3b, we introduced the class of α-concave functions for 0 < α <∞.
We used there the terminology from [GrM87]. We now extend this class to negative
α but also we will change the notation and follow C. Borell’s approach. The new
“s-concavity”, for positive s, will correspond to 1/α-concavity above, i.e., s = 1/α.

Definition (C. Borell, ’74). Fix −∞ ≤ s ≤ 1; a measure μ on Rn is s-concave
iff ∀A,B ⊂ Rn non-empty and measurable, t ∈ (0, 1),

μ
(
tA+ (1 − t)B

)
≥

(
tμ(A)s + (1− t)μ(B)s

)1/s
.

Note, for s = 0, it is exactly the log-concavity condition:

μ
(
tA+ (1− t)B

)
≥ μ(A)tμ(B)1−t,

and, for s = −∞,

μ
(
tA+ (1− t)B

)
≥ min

(
μ(A), μ(B)

)
. (5)

Denote M(s) the class of all finite s-concave measures. Clearly M(s1) ⊇M(s2)
for s1 < s2, and so for any s an s-concave measure satisfies (5).

New example: Cauchy distribution with density

p(x) =
cn

(1 + |x|2)n+1
2

;

in this case s = −1 (the so-called “heavy tails” distributions).
C. Borell:

(i) ∀μ ∈ M(−∞) has a convex suppK ⊂ Rn and μ is absolutely continuous
(w.r.t Lebesgue measure) on K;

(ii) If μ is s-concave, then s ≤ 1/ dimK;
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(iii) If dimK = n, the density p of μ satisfies ∀x, y ∈ K

p
(
tx+ (1 − t)y

)
≥

(
tp(x)sn + (1− t)p(y)sn

)1/sn

for sn = s
1−ns . (So, if μ is log-concave then also its density is a log-concave

function; however, if s = −∞ then its density is (−1/n)-concave.)
Also, levels of densities of convex measures are boundaries of convex sets. Recently,
interest in s-concave measures for negative s has been revived; see [B06].

Connection with the classical convexity. The definition of convex measures corre-
sponds to the unified principle behind most (or, perhaps, all) geometric inequalites,
a principle of minimization:

f(A;B) ≥ min
{
f(A;A), f(B;B)

}
[“the minimum is achieved on equal objects”].

Examples.
(i) Alexandrov–Fenchel inequality is equivalent to the above miminization prin-

ciple

V (A;B;C1, . . . ) ≥ min
(
V (A;A;C1, . . . );V (B;B;C1, . . . )

)
.

(ii) Brunn–Minkowski inequality: ∀ t, τ > 0 and A,B convex:

|tA+ τB|1/n ≥ t|A|1/n + τ |B|1/n

is again equivalent to the minimization principle:

|tA+ τB| ≥ min
(
|(t+ τ)A|, |(t + τ)B|

)
.

And so on (see, [GM04] for more examples and a discussion on this subject).

Is this an incidental similarity? Or does a deeper meaning lie behind it?

Appendix: Mixed discriminants

Consider the space Sn of real symmetric n× n matrices. We polarize the function
A→ detA to obtain the symmetric multilinear form

D(A1, . . . , An) =
1
n!

∑
ε∈{0,1}n

(−1)n+
∑

εi det
(∑

εiAi

)
,

where Ai ∈ Sn. Then, if t1, . . . , tm > 0 and A1, . . . , Am ∈ Sn, the determinant of
t1A1 + · · ·+ tmAm is a homogeneous polynomial of degree n in ti, which we write
in the form

det(t1A1 + · · ·+ tmAm) =
∑

1≤i1≤···≤in≤m

n!D(Ai1 , . . . , Ain)tin · · · tin ,

where the coefficientsD(Ai1 , . . . , Ain) are independent of permutations of variables
Ai. The coefficient D(A1, . . . , An) is called the mixed discriminant of A1, . . . , An.
Note that D(A, . . . , A) = detA. The fact that the polynomial P (t) = det(A +
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tI) has only real roots for any A ∈ Sn plays the central role in the proof of a
number of very interesting inequalities connecting mixed discriminants, which are
quite similar to the classical Newton inequalities. They were first discovered by
Alexandrov [Al38] in one of his approaches to what is now called Alexandrov–
Fenchel inequalities. Today, they are part of a more general theory (see, e.g., [H94]
or the Appendix in [K07a]). For example, if all matrices involved are positive,
Alexandrov proved,

D(A1, . . . , An−2, B, C)2 ≥ D(A1, . . . , An−2, B,B) ·D(A1, . . . , An−2, C, C) .

There are many interesting inequalities for matrices which are corollaries of this
remarkable inequality. For example,

D(A1, A2, . . . , An) ≥
n∏

i=1

[detAi]1/n.

References

[Al38] Alexandrov, A.D, On the theory of mixed volumes of convex bodies IV :
Mixed discriminants and mixed volumes (in Russian), Math. Sb. N.S. 3 (1938),
227–251.

[ABP03] Anttila, M., Ball, K., Perissinaki, I., The central limit problem for convex
bodies, Trans. Amer. Math. Soc. 355:12 (2003), 4723–4735.

[AKM04] Artstein-Avidan, S., Klartag, B., Milman, V., The Santaló point of a
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orie locale des espaces normés [An inverse form of the Brunn-Minkowski in-
equality, with applications to the local theory of normed spaces], C.R. Acad.
Sci. Paris Ser. I Math. 302:1 (1986), 25–28.

[M91] Milman, V., Some applications of duality relations, Geometric Aspects of
Functional Analysis (1989–90), 13–40, Lecture Notes in Math., 1469, Springer,
Berlin, 1991.



Geometrization of Probability 667

[M98] Milman, V., Surprising geometric phenomena in high-dimensional convexity
theory, European Congress of Mathematics, Vol. II (Budapest, 1996), 73–91,
Progr. Math. 169, Birkhäuser, Basel, 1998.
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Introduction

Let k be a quadratic field Q(
√
d), d = p1 · · · pn, where pi’s are distinct prime num-

bers and assumed to be congruent to 1 mod 4 for simplicity. A classical theorem
by C. F. Gauss [G] asserts that the 2-rank of the narrow ideal class group Hk of
k is n− 1 so that the 2-primary part Hk(2) of Hk has the form

Hk(2) =
n−1⊕
i=1

Z/2aiZ (ai ≥ 1)

as abelian group. Since Gauss’ time, it has been a problem to determine the whole
structure of Hk(2), namely to describe the 2q-rank for an integer q ≥ 1

eq := #{i | ai ≥ q }.
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Among many works on this problem, L. Rédei [R1] showed the following formula

e2 = n− 1− rankF2(L2), L2 =

⎛⎜⎜⎜⎜⎜⎜⎝

(
d/p1
p1

) (
p2
p1

)
· · ·

(
pn

p1

)(
p1
p2

) (
d/p2
p2

)
· · ·

(
pn

p2

)
...

...
. . .

...(
p1
pn

) (
p2
pn

)
· · ·

(
d/pn

pn

)

⎞⎟⎟⎟⎟⎟⎟⎠ (0.1)

where
(

p
q

)
∈ {±1} denotes the Legendre symbol identified with an element of the

field F2 with 2 elements, and further he gave similar formulas for e3 in some cases
using the triple symbol introduced by himself [R2]. Though many authors have
studied this problem, in particular the case of n = 2, by using the power residue
symbols and arithmetical consideration such as Pell’s equation (see for example
[B], [BS], [Ha], [Y] etc), it still remains a problem to obtain general formulas
extending the above-mentioned one, due to Rédei, for higher eq’s.

As one can easily see, this problem has an immediate generalization for a
cyclic extension k over Q of arbitrary prime degree l and is formulated as a problem
on the Galois module structure of the l-primary part Hk(l) of the narrow ideal
class group Hk of k. Let p1, . . . , pn be the distinct prime numbers ramified in k/Q
which are congruent to 1 mod l, and let γ be a generator of the Galois group of
k over Q. The narrow l-class group Hk(l) is then regarded as a module over the
complete discrete valuation ring O = Zl[〈γ〉]/(γl−1 + · · ·+ γ+1) = Zl[ζ] where Zl

denotes the ring of l-adic integers and ζ = γ mod (γl−1 + · · ·+ γ + 1). Then the
genus theory by Iyanaga-Tamagawa [IT] tells us that the O-module Hk(l) has the
form

Hk(l) =
n−1⊕
i=1

O/mai (ai ≥ 1)

where m is the maximal ideal of O generated by ζ − 1. Hence the determination
of the O-module structure of Hk(l) is again equivalent to the determinination of

the mq-rank eq := #{i | ai ≥ q } (q ≥ 1).

The results on this generalized problem have not been obtained along the line of
the case of l = 2 (cf.[R3]).

The purpose of this paper is to study this problem (for general l) in light of
the analogy with knot theory. To explain our underlying idea more precisely, let us
recall a part of the basic analogies between knots and primes ([Ka], [Mo4], [Re]):

knot K : S1 =K(Z, 1) ↪→ S3 ←→ prime : Spec(Fp)=K(Ẑ, 1) ↪→ Spec(Z) ∪ {∞}
link L = K1 ∪ · · · ∪Kn primes S = {(p1), . . . , (pn)}
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tubular n.b.d VK ←→ p-adic integers Spec(Zp)
boundary ∂VK p-adic field Spec(Qp)

π1(VK) = 〈β〉 ←→ πét1 (Spec(Zp)) = 〈σ〉
π1(∂VK) = 〈α, β | [α, β] = 1〉 πtame

1 (Spec(Qp)) = 〈τ, σ | τp−1[τ, σ] = 1〉
α : meridian τ : monodromy
β : longitude σ : Frobenius automorphism

π1(S3 \ L) ←→ πét1 (Spec(Z) \ S)

3-manifoldM → S3 ←→ number ring Spec(Ok)→ Spec(Z)

C2(M,Z) ∂→ C1(M,Z) ←→ k× →
⊕

p:primes

Z

Σ �→ ∂Σ a �→ aOk

H1(M,Z) ←→ Hk

linking number ←→ power residue symbol

Milnor invariant ←→ arithmetic Milnor invariant

where πtame
1 denotes the tame fundamental group. The analogy between linking

numbers and power residue symbols was studied and arithmetic analogues for
prime numbers of the Milnor link invariants [Mi] (higher linking numbers) were
introduced in our previous papers [Mo2,3] (see also [V]). For a systematic account
on analogies between 3-dimensional topology and algebraic number theory, we
consult [Mo4].

Based on the analogies above, we can consider a link-theoretic counterpart
of our problem as follows. Let M → S3 be an l-fold cyclic covering branched
along a link L = K1 ∪ · · · ∪ Ln with Galois group 〈γ〉 � Z/lZ (l being a prime
number). Assume that M is a rational homology 3-sphere so that the homology
group H1(M,Z) is finite. Then, as in the case of the l-class group Hk(l), the
l-primary part H1(M,Z)(l) of H1(M,Z) is regarded as a module over the the
complete discrete valuation ring O and a result in [Mo1] shows that the m-rank of
H1(M,Z)(l) is n− 1 so that H1(M,Z) has the form

H1(M,Z)(l) =
n−1⊕
i=1

O/mai (ai ≥ 1).

In [HMM], we described the mq-rank eq of H1(M,Z)(l) by introducing the higher
linking matrices obtained by the truncating the l-adic Traldi matrix. This is seen
as an l-adic strengthening of the method by W. Massey [Ma] and L. Traldi [Tr].
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We note that for the m2-rank e2, our formula reads

e2 = n− 1− rankFl
(C mod l) (0.2)

where C = (Cij) is the linking matrix defined by Cij := lk(Ki,Kj) := the linking
number of Ki and Kj for i �= j and Cii = −∑

j �=i lk(Ki,Kj). Note that (0.2) is
exactly analogous to (0.1) in view of the analogy between the linking number and
the power residue symbol.

Now the main idea of this paper is to regard Rédei’s matrix L2 as the mod 2
arithmetic linking matrix for prime numbers and describe the eq’s by introducing
the arithmetic higher linking matrices in terms of the arithmetic Milnor invariants
(Theorem 4.5). Our argument is the adaptation of the method of [HMM] in our
arithmetic situation. The analogies are so close that we can translate the whole
argument of topology side into arithmetic.

The contents of this paper are as follows. In Section 1, we recall the Milnor
invariants for prime numbers which play a central role as analogues of higher
linking numbers in our approach. In Section 2, we introduce the Alexander module
for prime numbers and give its presentation matrix by the universal higher linking
matrix, called the Traldi matrix, in terms of the Milnor invariants. In Section 3,
we give the relation between the Alexander module and the l-class group. This is
seen as an analog of the connection between the Alexander module of a link and
the homology of a cyclic branched cover of the link. Combining these, we present
formulas for eq’s above in terms of the higher linking matrices.

Acknowledgement. I would like to thank M. Kapranov for suggesting an applica-
tion of my Milnor invariants to the 2-class groups of quadratic fields. This work is
partly supported by the Grants-in-Aid for Scientific Research, Ministry of Educa-
tion, Culture, Sports, Science and Technology, Japan.

1. Milnor invariants for prime numbers

In this section, we recall the Milnor invariants for prime numbers introduced in
[Mo2,3] and review their basic properties. Throughout this paper, we fix a prime
number l.

Let S be a finite set of n distinct prime numbers p1, . . . , pn such that pi ≡ 1
mod l, 1 ≤ i ≤ n. We write pi − 1 = lfiqi, (l, qi) = 1, 1 ≤ i ≤ n, and set
e = min{fi | 1 ≤ i ≤ n} and mS = le. In the following, we fix a power m of l with
1 < m ≤ mS . Let GS be the maximal pro-l quotient of the étale fundamental group
of the complement of S in Spec(Z) which is the Galois group of the maximal pro-l
extension QS of the rational number field Q unramified outside S ∪ {∞} where
∞ denotes the infinite prime of Q. Choose a prime Pi of QS lying over pi for
1 ≤ i ≤ n and let Di be the decomposition group of Pi which is identified with
the Galois group Gi of the maximal pro-l extension Qpi(l) of the pi-adic field Qpi .
Let ζj be a primitive lj-th root of 1 so that ζlj+1 = ζj for j ≥ 1 and we fix an
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embedding of Q(ζj) into Qpi(l). (Note Q(ζe) ⊂ Qpi .) The field Qpi(l) is generated
over Qpi by ζj and lj

√
pi for j ≥ 1 and the local Galois group Gi is topologically

generated by 2 elements τi and σi defined by

τi(ζj) = ζj , τi( lj
√
pi) = ζj lj

√
pi,

σi(ζj) = ζpi

j , σi( lj
√
pi) = lj

√
pi

subject to the relation τpi−1
i [τi, σi] = 1. We denote by the same τi and σi the

corresponding elements in Di so that τi is a topological generator of the inertia
group Ii of Pi and σi is an extension of the Frobenius automorphism over pi of
the subfield of QS fixed by Ii. We call τi a monodromy over pi and σi a Frobenius
automorphism over pi. Then the Galois group GS has the following presentation
as a pro-l group [Ko]. Let F be the free pro-l group on n generators x1, . . . , xn

and let π : F → GS be the continuous homomorphism defined by π(xi) = τi for
1 ≤ i ≤ n. Then π is surjective and the kernel of π is the closed subgroup of F
generated normally by xp1−1

1 [x1, y1], . . . , xpn−1
n [xn, yn] where yi ∈ F represents σi

in GS and [xi, yi] = xiyix
−1
i y

−1
i :

GS = 〈x1, . . . , xn | xp1−1
1 [x1, y1] = · · · = xpn−1

n [xn, yn] = 1〉. (1.1)

On the other hand, for a link L consisting of n knots K1, . . . ,Kn in the 3-sphere
S3, the pro-l completion ĜL of the topological fundamental group GL = π1(S3\L)
of the complement of L in S3 is shown to have the following presentation [HMM]

ĜL = 〈x1, . . . , xn | [x1, y1] = · · · = [xn, yn] = 1〉 (1.2)

where xi and yi represent a meridian αi and a longitude βi aroundKi respectively.
Our idea is to regard (1.1) as an arithmetic analogy of (1.2). Note that the pair
(τi, σi) of a monodromy and a Frobenius automorphism over pi corresponds to the
pair (αi, βi) of a meridian and a longitude around Ki. In view of this analogy, we
introduce an arithmetic analogue for prime numbers S of the Milnor link invariants
(higher linking numbers) [Mi],[Tu].

Let Zl be the ring of l-adic integers. For a pro-l group G, we denote by
Zl[[G]] the completed group ring of G over Zl. Let ∂i = ∂

∂xi
: Zl[[F ]] → Zl[[F ]]

be the Fox derivative on the free pro-l group F for 1 ≤ i ≤ n ([F],[Ih]), and let
ε : Zl[[F ]] → Zl be the augmentation map. For a multi-index I = (i1 · · · ir), we
set

εI(α) = ε(∂i1 · · · ∂ir (α)), α ∈ Zl[[F ]]. (1.3)

Let Zl〈〈X1, . . . , Xn〉〉 be the formal power series ring over the ring Zl in non-
commuting variablesX1, . . . , Xn which is compact in the topology taking the ideals
I(r) of power series with homogeneous components of degree ≥ r as the system
of neighborhood of 0. The pro-l Magnus embedding M : F → Zl〈〈X1, . . . , Xn〉〉×
defined by

M(xi) = 1 +Xi, M(x−1
i ) = 1−Xi +X2

i − · · · (1 ≤ i ≤ n),



674 M. Morishita

gives the isomorphism Zl-algebra isomorphism Zl[[F ]] � Zl〈〈X1, . . . , Xn〉〉 of com-
pact Zl-algebras. The resulting expansion of α ∈ Zl[[F ]] is then given by the form

M(α) = ε(α) +
∑

I

εI(α)XI (1.4)

where I ranges over multi-indices I of length |I| ≥ 1 and we set XI = Xi1 · · ·Xir

for I = (i1 · · · ir). We write εI(α)m = ε(∂i1 · · ·∂ir (α))m for the image of εI(α)
under the natural projection Zl → Z/mZ. We then define, for I = (i1 · · · ir),

μ(I) = εI′(yir ), and μm(I) = εI′(yir )m (1.5)

where I ′ = (i1 · · · ir−1). By convention, we set μ(I) = 0 for |I| = 1. We call μ(I)
(resp. μm(I)) the (resp. mod m) Milnor number. For a multi-index I, 1 ≤ |I| <
mS , we define the indeterminacy Δ(I) to be the ideal of Z/mZ generated by the
binomial coefficients

(
mS

t

)
and μm(J) where 1 ≤ t < |I| and J ranges over all

cyclic permutations of proper subsequences of I. We set

μm(I) = μm(I) mod Δ(I) (1.6)

and we call them the Milnor μm invariant for prime numbers S.

The Milnor invariants are interpreted as arithmetic symbols describing the
prime decomposition law in Heisenberg extensions. Let Nr(R) be the upper Heisen-
berg group of degree r over a commutative ring R, namely the group of all upper
triangular r×r matrices with 1 along the diagonal entries over R. For a multi-index
I = (i1 · · · ir), 2 ≤ r < mS such that Δ(I) �= Z/mZ, we define a representation

ρI : F −→ Nr((Z/mZ)/Δ(I))

by

ρI(f) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 ε(∂i1(f))m ε(∂i1∂i2 (f))m · · · ε(∂i1 · · ·∂ir−1 (f))m

1 ε(∂i2 (f))m · · · ε(∂i2 · · ·∂ir−1 (f))m

. . . . . .
...

0 .. . ε(∂ir−1 (f))m

1

⎤⎥⎥⎥⎥⎥⎥⎦ mod Δ(I).

Theorem 1.7. ([Mo3]). Notation being as above,
(1) the representation ρI factors through GS, and it gives a surjective represen-

tation of GS onto Nr((Z/mZ)/Δ(I)) if i1, . . . , ir−1 are distinct each other;
(2) suppose i1, . . . , ir−1 are distinct each other; if kr denotes the extension of Q

corresponding to Ker(ρI), kr/Q is a Galois extension ramified over pi1 , . . . ,
pir−1 with Galois group Nr((Z/mZ)/Δ(I)) and we have

ρI(σir ) =

⎡⎢⎢⎢⎢⎢⎣
1 0 · · · 0 μm(I)

1 0 · · · 0
. . . . . .

...0 1 0
1

⎤⎥⎥⎥⎥⎥⎦ mod Δ(I)
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The following theorem tells us that the power residue symbol and the Rédei
triple symbol [R2] are arithmetic analogues of the linking number and the triple
linking number respectively.

Theorem 1.8. ([Mo2], [V]).

(1) For i �= j, we have
(

pj

pi

)
m

= ζμm(ij)
m where

(
pj

pi

)
m

denotes the m-th power
residue symbol in Qpi .

(2) Assume that pi ≡ 1 mod 4 and the Legendre symbols
(

pj

pi

)
= 1 for 1 ≤ i �=

j ≤ 3, and let [pi, pj , pk] be the Rédei triple symbol for any permutation ijk
of 123. Then we have

[pi, pj , pk] = (−1)μ2(ijk).

2. The Alexander module of the Galois group GS

In this section, we recall the Alexander module of the Galois group GS introduced
in [Mo2] and give its presentation matrix explicitly in terms of the Milnor numbers.
We keep the same notations as in Section 1.

Let HS be the abelianization of GS and let ψ : Zl[[GS ]] → Zl[[HS ]] be the
Zl-algebra homomorphism of the completed group rings induced by the natural
map GS → HS . Since HS � Z/m1Z × · · · × Z/mnZ, Zl[[HS ]] is isomorphic to
Zl[t1, . . . , tn]/(tm1

1 − 1, . . . tmn
n − 1) which is identified with ΛS = Zl[[X1, . . . , Xn]]/

((1 +X1)m1 − 1, . . . , (1 +Xn)mn − 1) by sending ti to 1 +Xi. Let π : Zl[[F ]] →
Zl[[GS ]] be the Zl-algebra homomorphism of the completed group rings induced
by π so that the composite ψ ◦ π is regarded as a Zl-algebra homomorphism
Zl[[F ]] → ΛS . The Alexander module AS of the Galois group GS is defined to
be the ψ-derived module over ΛS and is also given by using the pro-l Fox free
differential calculus as follows [Mo2]. By virtue of the presentation (1.1) of GS , we
define the Alexander matrix PS = (PS(i, j)) of GS by

PS(i, j) = ψ ◦ π
(
∂j(x

pi−1
i [xi, yi])

)
(2.1)

and then the Alexander module AS of GS is given as the ΛS-module presented by
PS :

AS = Coker(ΛS
n PS−→ ΛS

n). (2.2)
Let H be the cyclic group 〈t | tm = 1〉 of order m and let λ : HS → H be
the homomorphism defined by λ(ti) = t for 1 ≤ i ≤ n. The group ring Zl[H ] is
identified with Zl[t]/(tm − 1) � Zl[[X ]]/((1 + X)m − 1) by which we denote Λ.
We use the same λ for the Zl-algebra homomorphism ΛS → Λ induced by λ. The
reduced Alexander matrix PS is then defined by λ(PS) and the reduced Alexander
module AS of GS by the Λ-module presented by PS :

AS = Coker(Λn P S−→ Λn) = AS ⊗ΛS Λ. (2.3)

Next, we introduce the arithmetic analog of the Traldi matrix [Tr] as follows.
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Definition 2.4. The Traldi matrix TS = (TS(i, j)) of GS over ΛS is defined by

TS(i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X−1

i ((1 + Xi)
pi−1 − 1) −

∑
r≥1

∑
1≤i1,...,ir≤n

ir 	=i

μ(i1 · · · iri)Xi1 · · ·Xir , i = j

μ(ji)Xi +
∑
r≥1

∑
1≤i1···ir≤n

μ(i1 · · · irji)XiXi1 · · ·Xir , i �= j.

where TS(i, j) is regarded as an element of ΛS and we also define the reduced
Traldi matrix TS of GS over Λ by

TS = λ(TS) = TS(X, . . . ,X).

Our theorem is then stated as follows.

Theorem 2.5. The Traldi matrix TS (resp. reduced Traldi matrix T S) gives a pre-
sentation matrix of the Alexander module AS (resp. reduced Alexander module AS)
over ΛS (resp. Λ).

Proof. By (2.1), (2.2) and (2.3), it suffices to show ψ ◦ π
(
∂j(x

pi−1
i [xi, yi])

)
=

TS(i, j). We compute ∂j(x
pi−1
i [xi, yi]) by the Fox differential calculus. Since

∂j(x
pi−1
i [xi, yi]) = ∂j(x

pi−1
i )+xpi−1

i ∂j([xi, yi]) and ψ◦π(xpi−1
i ) = (1+Xi)pi−1 = 1

in ΛS , we have

ψ ◦ π
(
∂j(x

pi−1
i [xi, yi])

)
= ψ ◦ π

(
∂j(x

pi−1
i )

)
+ ψ ◦ π (∂j([xi, yi])) . (1)

For the 1st term, ∂j(x
pi−1
i ) = x

pi−1
i −1

xi−1 ∂j(xi) yields

ψ ◦ π
(
∂j(x

pi−1
i )

)
= X−1

i ((1 +Xi)pi−1 − 1)δi,j . (2)

For the 2nd term, ∂j([xi, yi]) = (1 − xiyix
−1
i )∂j(xi) + xi(1 − yix−1

i y
−1
i )∂j(yi)

together with yi = 1+
∑
r≥1

∑
1≤i1,...,ir≤n

μ(i1 · · · iri)(xi1 − 1) · · · (xir − 1) ((1.3)–(1.5))

yields

ψ ◦ π (∂j([xi, yi])) = δi,j −
∑
r≥1

∑
1≤i1,...,ir≤n

μ(i1 · · · iri)Xi1 · · ·Xir

+μ(ji)Xi +
∑
r≥1

∑
1≤i1,...,ir≤n

μ(i1 · · · irji)XiXi1 · · ·Xir .

(3)
Putting (1), (2) and (3) together, we get the assertion. �

Finally, we introduce the truncated Traldi matrices as follows.
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Definition 2.6. For q ≥ 2, the q-th truncated Traldi matrix TS
(q) = (TS

(q)(i, j)) is
defined by

TS
(q)(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
X−1

i ((1 + Xi)
pi−1 − 1) −

q−1∑
r=1

∑
1≤i1,...,ir≤n

ir 	=i

μ(i1 · · · iri)Xi1 · · ·Xir , i = j

μ(ji)Xi +

q−2∑
r=1

∑
1≤i1,...,ir≤n

μ(i1 · · · irji)XiXi1 · · ·Xir , i �= j

and we also define the q-th truncated reduced Traldi matrix T S
(k)

by

TS
(q)

:= λ(TS
(q)) = TS

(q)(X, . . . ,X).

Remark 2.7. We note TS
(2)

= X · L(2) where L(2) = (L(2)(i, j)) is given by
L(2)(i, i) = −

∑
j �=i μ(ji), L

(2)(i, j) = μ(ji) for i �= j. By (1) of Theorem 1.8,
Rédei’s matrix L2 [R1] mentioned in the introduction is essentially same as the
linking matrix L(2). Thus our Traldi matrix TS is regarded as a universal higher
linking matrix.

3. Relation between the Alexander module and the l-class group

In this section, we give the relation between the Alexander module AS and the
l-class group of a cyclic subextension of QS/Q of degree l. We keep the same
notations as in Sections 1, 2.

Let K be the subextension of QS/Q corresponding to the kernel Y of λ ◦ψ :
GS → H so that K is a cyclic extension of degree m over Q with Galois group
Gal(K/Q) = H = 〈t〉. Let k be the (unique) subfield of K of degree l over Q
so that k is a cyclic extension of Q with Galois group Gal(k/Q) = H/H l = 〈γ〉,
γ = t mod H l. Let M be the maximal abelian subextension of QS/K and let X
denote the Galois group of M over K, X = Y/[Y,Y], on which H acts via inner
automorphism so that X is regarded as a Λ-module. Let k̃ be the narrow Hilbert
l-class field of k (the maximal abelian extension of k which is unramified at all
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finite primes) so that the Galois group Gal(k̃/k) is isomorphic to the narrow l-class
group Hk(l) of k by the Artin reciprocity map.

Firstly, we recall an arithmetic analog of the Crowell exact sequence ([Mo2])
in our context, which gives the relation between the reduced Alexander module
AS and the Galois group X .

Theorem 3.1 ([Mo2,Theorem 2.2.9]). There is a split exact sequence of Λ-modules

0 −→ X ι−→ AS
κ−→ IΛ −→ 0

where IΛ is the augmentation ideal of Λ and ι and κ are given as follows:

ι(g mod [Y,Y]) = (λ ◦ ψ ◦ π(∂i(f))) for π(f) = g,

κ((αi) mod Im(PS)) = (t− 1)
n∑

i=1

αi.

Next, we give the connection between X and the narrow l-class group Hk(l).
We set νl(t) = 1 + t + · · · + tl−1. Since the norm νl(γ) acts trivially on Hk(l),
Hk(l) is regarded as a module over the complete discrete valuation ring O :=
Zl[H ]/(νl(t)) = Λ/(νl(1 +X)) = Zl[ζ] where ζ = t mod (νl(t)). Then we have the
following.

Theorem 3.2. Notation being as above, we have an isomorphism of O-modules

X/νl(t)X � Hk(l).

The proof of this theorem is similar to the standard argument in Iwasawa
theory (e.g, [W,§13.3]).

Let pi be the prime ofM lying below Pi and let Ii(M/k) be the inertia group
of pi over k, which is generated by sli where si = τi|M . Since k̃ is the maximal
abelian subextension of M/k which is unramified over S, we have

Hk(l) � Gal(k̃/k) � Gal(M/k)/〈Gal(M/k)′, Ii(M/k) (1 ≤ i ≤ n)〉 (3.3)

where Gal(M/k)′ denotes the topological commutator subgroup of Gal(M/k) and
〈A〉 stands for the closed subgroup generated by A. Since si|L = s1|L = t for
1 ≤ i ≤ n, we have X si = X s1 and so si = uis1 for some ui ∈ X (1 ≤ i ≤ n). In
the following, we write xα for the action αxα−1 of α ∈ H on x ∈ X if the notation
α(x) may cause confusion. Two lemmas are in order.

Lemma 3.4. Gal(M/k) = X Ii(M/k) and one has sli = uνl(t)
i · sl1 for 1 ≤ i ≤ n.

Proof. Since si|L = t, the inertia group Ii(M/k) = 〈sli〉 is mapped onto 〈tl〉 =
Gal(L/k) = Gal(M/k)/X . Hence the first assertion follows. The second assertion
is shown by

sli = (uis1)l

= uis1uis
−1
1 s

2
1 · · · sl−1

1 uis
−(l−1)
1 sl1

= uiu
s1
i · · ·u

sl−1
1

i sl1
= uνl(t)

i sl1. �
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Lemma 3.5. Gal(M/k)′ = (tl − 1)X .

Proof. Take a, b ∈ Gal(M/k) and write a = αx and b = βy where x, y ∈ X and
α = t̃li, β = t̃lj , t̃ being a lift of t to Gal(M/k). Then one has

[a, b] = αxβyx−1α−1y−1β−1

= xα(yx−1)αβαβα−1y−1β−1

= (xα)1−β(yβ)α−1 (〈tl〉 is abelian).

Letting β = 1 and α = t̃l in the above equation, we have yt̃
l−1 = [a, b] for

any y ∈ X . Hence we have (tl − 1)X ⊂ Gal(M/k)′. On the other hand, since
1− β = 1− t̃lj = (1− t̃l)νj(t̃l), (xα)1−β ∈ (tl − 1)X . Similarly, we have (yβ)α−1 ∈
(tl − 1)X . Hence we have [a, b] ∈ X for any a, b ∈ Gal(M/k), which yields the
converse inclusion Gal(M/k)′ ⊂ (tl − 1)X . �

Proof of Theorem 3.2. By (3.3) and Lemmas 3.4 and 3.5, we have O-isomorphisms

Gal(k̃/k) � X I1(M/k)/〈(tl − 1)X , νl(t)ui · sl1 (1 ≤ i ≤ n)〉
� X/νl(t)〈(t − 1)X , ui (1 ≤ i ≤ n)〉. (3.6)

Replacing k by Q, the same argument as above yields

1 = X/〈(t− 1)X , ui (1 ≤ i ≤ n)〉 (3.7)

since the narrow Hilbert l-class field of Q is Q itself.
Putting (3.6) and (3.7) together, we get the assertion. �

By Theorems 3.1 and 3.2, we obtain the following relation between the re-
duced Alexander module AS and the l-class group Hk(l), which is analogous to
the relation between the reduced Alexander module of a link and the homology of
a cyclic branched cover (cf. [Hi, 5.4, 5.7]).

Theorem 3.8. We have an isomorphism of O-modules

AS ⊗Λ O � Hk(l)⊕O.

Proof. This follows from tensoring AS � X ⊕ Λ with O = Λ/(νl(1 + X)) over
Λ. �

4. Galois module structure of the l-class group

In this section, combining the results in Sections 2 and 3, we determine the Galois
module structure of the narrow l-class group Hk(l) in terms of the higher linking
matrices. We keep the same notations as in the previous sections.

We first recall the genus theory for the number field k ([IT]). Let m be the
maximal ideal of O generated by $ = ζ − 1 with residue field O/m = Fl of l
elements.

Lemma 4.1. The dimension of Hk(l)⊗O Fl over Fl is n− 1.
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Proof. Let 〈ζ1〉 be the group generated by the primitive l-th root ζ1 of 1 chosen in
Section 1. The genus theory [IT] tells us that the map χ : Hk(l) → 〈ζ1〉n defined
by

χ([a]) =
((
Na

p1

)
l

, . . . ,

(
Na

pn

)
l

)
gives rise to the isomorphism

Hk/(γ − 1)Hk � {(z1, . . . , zn) ∈ 〈ζ1〉n |
n∏

i=1

zi = 1} � Fn−1
l

where Na is the norm of an integral ideal a and
(

∗
pi

)
l

is the l-th power residue

symbol in Qpi (Note that 〈ζ1〉 ⊂ Qpi). Since Hk/(γ − 1)Hk = Hk(l)⊗O O/($) =
Hk(l)⊗O Fl, the assertion follows. �

By Lemma 4.1, we have the isomorphism

Hk(l) �
n−1⊕
i=1

O/mai (ai ≥ 1) (4.2)

of O-modules. Hence the determination of the O-module structure of Hk(l) is
equivalent to that of the mq-rank

eq = #{i | ai ≥ q} = dimFl
Hk(l)⊗O mq−1/mq (q ≥ 1).

We describe the mq-rank eq in terms of the higher linking matrices obtained
from the truncated reduced Traldi matrices (2.6) evaluated at X = $.

Definition 4.3. The higher linking matrix LS = (LS(i, j)) over O is defined by

LS(i, j) = TS(i, j)($) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

∑
r≥1

∑
1≤i1,...,ir≤n

ir �=i

μ(i1 · · · iri)$r, i = j

μ(ji)$ +
∑
r≥1

∑
1≤i1,...,ir≤n

μ(i1 · · · irji)$r+1, i �= j.

For q ≥ 2, the q-th truncated higher linking matrix L(q)
S is defined by

L
(q)
S (i, j) = T

(q)

S (i, j)($) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−

q−1∑
r=1

∑
1≤i1,...,ir≤n

ir �=i

μ(i1 · · · iri)$r, i = j

μ(ji)$ +
q−2∑
r=1

∑
1≤i1,...,ir≤n

μ(i1 · · · irji)$r+1, i �= j.

By Theorems 2,5 and 3.8, we have

Theorem 4.4. The higher linking matrix LS gives a presentation matrix for the O-
module Hk(l) ⊕O. For q ≥ 2, the q-th truncated higher linking matrix L(q)

S gives
a presentation matrix for the O/mq-module (Hk(l)⊗O O/mq)⊕O/mq.

Restating Theorem 4.4 in terms of eq, we obatin our main formula.
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Theorem 4.5. For q ≥ 2, let ε(q)1 , . . . , ε
(q)
n−1, ε

(q)
n = 0 be the elementary divisors of

L
(q)
S , where ε(d)

i |ε(d)
i+1 (1 ≤ i ≤ n− 1). Then we have

eq = #{i | ε(q)i ≡ 0 mod mq} − 1.

For the initial term of k = 2, we recover Rédei’s formula for arbitrary l.

Corollary 4.6. We have

e2 = n− 1− rankFl
(L mod l)

where L = (Lij) is the linking matrix defined by Li,i = −∑
j �=i μ(ji), Lij = μ(ji)

for i �= j.

Proof. In fact, L(2)
S = $L and so e2 = n−1−rankFl

(L mod l) by Theorem 4.5. �

Let us see the case of n = 2. By Lemma 4.1, Hk(l) has m-rank 1

Hk(l) = O/mai (ai ≥ 1)

and eq = 0 or 1. By Theorem 4.5 we have

eq = 1 ⇐⇒ L(q)
S ≡ O2 mod $q.

where O2 is the 2 by 2 zero matrix. Since L(q)
S (1, 2) = −L(q)

S (1, 1), L(q)
S (2, 2) =

−L(q)
S (2, 1), we have the following.

Corollary 4.7. Suppose n = 2. For each q ≥ 1, assuming eq = 1, we have

eq+1 = 1 ⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

q∑
r=1

∑
i1,...,ir−1=1,2

μ(i1 · · · ir−121)$r ≡ 0 mod $q+1,

q∑
r=1

∑
i1,...,ir−1=1,2

μ(i1 · · · ir−112)$r ≡ 0 mod $q+1.

Example 4.8. (Borromean primes) D. Vogel [V] computed many Milnor invariants
by making the computer program. He finds that the triple S = {13, 61, 937} is
really a mod 2 arithmetical analog of the Borromean ring in the sense that μ2(ij) =
0 for all 1 ≤ i, j ≤ 3 and μ2(ijk) = 1 for any permutation ijk of 123 and μ2(ijk) =
0 for other ijk.
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Further, we have all μ4(ij) = 0 (I owe this computation to K. Yamamura).
We then find that L(2)

S ≡ O3 mod 4 and

L
(3)
S ≡

⎛⎝ 0 4 4
4 0 4
4 4 0

⎞⎠ ∼

⎛⎝ 4 0 0
0 4 0
0 0 0

⎞⎠ mod 8

and so e2 = 2 and e3 = 0 by Theorem 4.4. Hence Hk(2) = Z/4Z ⊕ Z/4Z for
k = Q(

√
13 · 61 · 937).

On the other hand, for the triple {5, 101, 8081}, all Milnor number μ2(I)
vanishes if |I| ≤ 3 ([V]). Further all μ4(ij) = 0 (Yamamura) and so L(3)

S ≡ O3

mod 8. Hence e3 = 2 and Hk ⊗ Z/8Z = Z/8Z⊕ Z/8Z for k = Q(
√

5 · 101 · 8081).
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Three Topological Properties of Small
Eigenfunctions on Hyperbolic Surfaces
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To the memory of Sasha Reznikov

Abstract. We apply topological methods for studying eigenfunctions on finite
volume hyperbolic surfaces. From the Lemma saying that any non-zero eigen-
function on an hyperbolic surface with eigenvalue ≤ 1

4
has an incompressible

nodal set, we deduce the following propositions: 1) the non-existence of cus-
pidal eigenfunctions with eigenvalue ≤ 1

4
on surfaces of genus 0 or 1 (a result

already obtained by Huxley); 2) the dimension of a cuspidal eigenspace with
eigenvalue ≤ 1

4
is not more than 2g−3 (a generalization of 1)); 3) a dichotomy

for functions in an eigenspace with eigenvalue ≤ 1
4
: either an eigenfunction

exists which has a smooth nodal set / or all functions in the eigenspace have
common zeroes.
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1. Introduction

Let S be a hyperbolic surface, identified with the quotient H/Γ of the Poincaré up-
per half-plane H by a Fuchsian group Γ; i.e., a discrete and torsion-free subgroup
of PSL(2,R). The Laplacian on H is the differential operator which associates to

a C2-function f the function Δf(z) = y2(
∂2f

∂x2
+
∂2f

∂y2
). It induces a differential op-

erator on S which extends to a self-adjoint operator ΔS densely defined on L2(S).
Its domain is the Sobolev space H consisting of the functions φ ∈ L2(S) whose
gradient in the sense of distributions is a measurable vector field which satisfies∫

S ‖∇φ‖2dv <∞. The Laplacian is a non-positive operator whose spectrum is con-
tained in a smallest interval ] −∞,−λ0(S)] ⊂ R− ∪ {0}. The Rayleigh quotients
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allow to characterize (the bottom of the spectrum) λ0(S):

λ0(S) = inf

∫
S
‖∇φ‖2dv∫
S φ

2dv
,

the infimum being taken over all the non-zero functions φ ∈ H. By density, the
infimum is the same if one restricts to C∞-functions with compact support. The
bottom of the spectrum of the Laplacian on H is λ0(H) = 1

4 (cf. [Cha]).

Definition. Let λ > 0. A function f : S → R is a λ-eigenfunction if f ∈ L2(S) and
satisfies Δf + λf = 0. When 0 < λ ≤ 1

4 , f is called a small eigenfunction. We
denote by Eλ the space of λ-eigenfunctions.

Recall that if S is a finite area hyperbolic surface, then S is conformally
equivalent to a compact Riemann surface S from which some points have been
removed ; these points are the punctures. We say that f is cuspidal if f(z) tends
to 0 when z tends to the punctures. One denotes by Ec

λ the space of the cuspidal
λ-eigenfunctions (when S is compact, Eλ = Ec

λ).

Definition. Let f be a non-zero λ-eigenfunction. The nodal set of f is the set of
points where f vanishes; we denote this by Z(f).

Let us recall now a theorem of S.-Y. Cheng [Che] which describes locally the
nodal set. In a neighborhood of a regular point p ∈ Z(f) (such that ∇f(p) �= 0),
the implicit function theorem says that Z(f) is a submanifold. In a neighborhood
of a critical point p ∈ Z(f), a theorem due to Bers [Be] implies that in a geodesic
chart around p, f is asymptotic to an harmonic polynomial (in our setting, that
is in constant curvature, it is just a consequence of the analyticity of f which
implies that f vanishes up to a finite order). Hence there is some integer k ≥ 2
such that in an exponential chart around p, f is asymptotic to some polynomial
c.(zk). Cheng has shown that after composition with a diffeomorphism which is
defined in a neighborhood of p and which is tangent to the identity map at p, f
becomes equal to this polynomial. In particular, the intersection of Z(f) with a
small neighborhood of p is diffeomorphic to the set of zeroes of .(zk). When S is
compact, Z(f) is therefore a finite graph; its vertices are the critical points which
are contained in Z(f), the valency at a vertex is twice k, k ≥ 2 being the vanishing
order of f at this vertex.

The starting point of this paper is a simple topological property of the nodal
set.

Definition. A graph in a surface Σ is incompressible if the fundamental group of
any of its connected components maps injectively into π1(Σ).

Lemma 1. Let S be a hyperbolic surface. Let 0 < λ ≤ 1
4 and let f : S → R be a λ-

eigenfunction. Then, the graph Z(f) is incompressible and the Euler characteristic
of each connected component of S −Z(f) is negative.

We deduce from this lemma the following propositions.
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Proposition 2. Let S be a finite area hyperbolic surface with genus 0 or 1. Then S
does not carry any non-zero cuspidal eigenfunction with 0 < λ ≤ 1

4 .

This result had also been obtained by Huxley using another method [Hu].

Proposition 3. Let S be a finite area hyperbolic surface and let λ be any non-zero
eigenvalue of the Laplacian on S. Then, if λ ≤ 1

4 , the dimension of the eigenspace
Eλ is at most −χ(S) − 1 and the dimension of the cuspidal eigenspace Ec

λ is at
most −χ(S)− 1 = 2g − 3.

The proof of Proposition 3 is an adaptation of the proof by Bruno Sevennec
of the existence of an upperbound for the multiplicity of the second eigenvalue of
Schrödinger operators on compact surfaces [Se]. In our case, the incompressibility
of the components of S − Z(f) allows one to simplify certain arguments and to
obtain a better bound.

Proposition 4. Let S be a finite area hyperbolic surface. Let E ⊂ Eλ be a vector
space of cuspidal λ-eigenfunctions with λ ≤ 1

4 . Then one of the following holds:
1. E contains a non-zero function whose nodal set is a smooth submanifold;
2. there is a finite set {p1, · · · , pn} ⊂ S and integers ≥ 2, {k1, · · · , kn} such that

any function in E vanishes at the points pi with an order ≥ ki.
Remark on surfaces with variable curvature. The results above all follow from
topological arguments. They hold more generally when S is a surface of negative
Euler characteristic carrying a finite area complete Riemannian metric, after re-

placing in the statements the constant
1
4

by λ0(S̃), the bottom of the spectrum of
the Laplacian on the universal cover of S. Such eigenvalues and their eigenfunc-
tions are called small. (More generally, an eigenfunction is said to be parabolic if
its nodal set enters each puncture arbitrarily far.)

2. Incompressibility of the nodal set. Proof of Proposition 2

Proof of Lemma 1. In order to prove the incompressibility of the graph, we argue
by contradiction. Let us consider a closed curve contained in Z(f) which is essential
on this graph but which is homotopic to 0 on S. This curve can be lifted to H, and
we can also suppose that its lift is a Jordan curve, bounding a disc D̃. Denote by
π the covering map H → S and by f̃ the function f ◦ π. Denote by φ : H → R the
function which equals f̃ on D̃ and which vanishes identically on H− D̃. One has∫

H

φ2dv =
∫

D̃

f̃2dv ≤
∫

S

f2dv <∞.

Since φ vanishes on ∂D̃, its gradient (in the distribution sense) is the vector field
on H which is 0 outside from D̃ and which equals ∇f on D̃. One has∫

H

‖∇φ‖2dv =
∫

D̃

‖∇f̃‖2dv ≤
∫

S

‖∇f‖2dv <∞.
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Therefore, φ belongs to the Sobolev space H, which is the domain of the Laplacian
on H. Using the Green’s formula and the fact that f vanishes on ∂D̃, one sees that

the Rayleigh quotient
∫
‖∇φ‖2dv∫
φ2dv

is equal to λ. This contradicts the fact that

the bottom of the spectrum of the Laplacian on H is
1
4
. Indeed, if the Rayleigh

quotient of a function in the Sobolev space H equals
1
4
, then this function has to

be a
1
4
-eigenfunction; in particular, it does not vanish on any open sets.

Now let C be a connected component of S − Z(f). Saying that its Euler
characteristic is negative is equivalent to saying that C is not homeomorphic to
a disc or to an annulus. Let us show by contradiction that both situations are
impossible. We suppose first that C is homeomorphic to a disc. Let C̃ be a con-
nected component of the preimage of C in the universal covering. Observe that
the difference with the foregoing situation is that C̃ is not necessarily compact.
However, the covering map π, when restricted to C̃, is a homeomorphism onto its
image. Let us denote again by φ the function which is equal to f̃ on C̃ and which
vanishes in the complement H−C̃. One shows as before that φ belongs to H. Since
its Rayleigh quotient is λ we get a contradiction.

We suppose now that C is homeomorphic to an annulus. Let us consider
the hyperbolic annulus S̃, which is the covering of S with fundamental group the
image of π1(C) in π1(S). The annulus C can be lifted to an annulus C̃ in S̃. The
function φ which equals f̃ on C̃, and which is zero on S̃ − C̃ is in the domain of
the Laplacian on S̃ and its Rayleigh equals λ. Since S̃ is the quotient of H by an
amenable group (or after an explicit computation), we know that the bottom of

the spectrum on S̃ equals
1
4
. Once again, one obtains a contradiction. �

Lemma 1 is a particular case of the next result which can be proven in the
same way.

Lemma 5. Let S be a hyperbolic surface and f ∈ S → R be λ-eigenfunction with
λ ≤ 1

4 . Let C be a connected component of S − Z(f), C be its closure in S and
S̃C be the covering of S with fundamental group π1(C). Then the bottom of the
spectrum of the Laplacian on S̃C satisfies λ0(SC) < λ.

Remark on the Hausdorff dimension of subgroups. When S has finite area, it is
well-known that the fundamental group of C is geometrically finite (a Schottky

group in our case). The last Lemma implies in particular : λ0(SC) <
1
4
. Hence,

by Patterson and Sullivan, the Hausdorff dimension δC of the limit set of π1(C)

is bigger than
1
2

[Pa, Su] ; the bottom of the spectrum is reached by the positive
eigenfunction which is the Poisson-Helgason transform of the Hausdorff measure
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on the limit set ([He], [O]). If one writes the eigenvalue λ as λ = s(1− s) choosing

s ≥ 1
2
, one thus has : s < δ.

The Theorem of Cheng says that the nodal set of an eigenfunction is a locally
finite graph but nothing does guarantee, even for a finite area surface that the
number of critical points of f which are contained in Z(f) is finite. However, for

the eigenvalues λ ≤ 1
4
, Cheng’s result generalizes as follow. Let us recall first a

definition of a cuspidal eigenfunction which is equivalent to the one that was given
in the introduction.

Definition. Let S be a hyperbolic surface with finite area. A neighborhood of a
puncture in S is isometric to an horoball VA, the quotient of a slit z = x + iy ∈
H, y ≥ A by the translation z → z+1. This neighborhood is foliated by the images
of the horizontal lines, called horocycles. Let f : S → R be a λ-eigenfunction. One
says that f is cuspidal at the puncture p when the average of f on each horocycle
centered at p is 0 (this definition agrees with the one given in the introduction).
One says that f is cuspidal when it is cuspidal at any puncture.

Let us identify a neighborhood of p in S with the horoball VA: when f is
cuspidal at p, one has: f(z) = o(e−2πy) [I, p. 64].

Lemma 6. Let S be a hyperbolic surface with finite area and let f : S → R be a
λ-eigenfunction with λ ≤ 1

4 .

1. The closure of Z(f) in S is a graph;
2. when f is cuspidal, each puncture in S − S is a vertex of this graph which

has even valency.

It may be that this lemma holds also for all the eigenvalues λ, however the
proof that will follow uses Lemma 1 and depends therefore strongly on the hy-
pothesis λ ≤ 1

4 . When S has variable curvature, this lemma also holds when the
eigenvalue λ > 0 is less than the bottom of the spectrum of the Laplacian on the
universal covering.

Proof of Lemma 6. Each connected component of S − Z(f) has Euler character-
istic ≤ −1. Since S has finite area, its topological type is finite also; in particular
S can only contain a finite number of incompressible surfaces which are disjoint
and have negative Euler characteristic. Therefore S−Z(f) has only finitely many
connected components. Let C+ be the reunion of the connected components where
f is positive. Denote by si the vertices of the graph Z(f) (a priori, there could
be infinitely many such vertices). All these vertices are in the closure of C+. If,
in a neighborhood of si, f is conjugate to the polynomial ci.(zki), then si ap-
pears with multiplicity ki in the frontier of C+. The Euler characteristic χ(C+)
equals χ(C+)−∑

(ki−1). As the frontier of C+ is contained in the incompressible
graph Z(f), the fundamental group of C+ maps injectively to π1(S) and therefore
: χ(C+) ≥ χ(S). It follows that the set of vertices of Z(f) is finite.
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Furthermore, only finitely many connected components of Z(f) are homeo-
morphic to a circle. Indeed there exists an integer n(S) which depend only on the
topology of S and which has the following property: if n(S) disjoint curves are
drawn on S, then two of them bound an annulus. If the graph Z(f) did contain
more than n(S) connected components, the complement of Z(f) would contain a
disc or an annulus, contradicting Lemma 1.

Let p be a puncture of S; let us choose as neighborhoods of p in S the
quotients VA of the half-planes z = x+ iy ∈ H, y > A by the translation z → z+1.
Let us write λ as λ = s(1 − s) with s ≥ 1

2 . Since f ∈ L2(S), there exists (cf. [I])
α ∈ R and a function g : S → R such that one can write f(z) = αy1−s + g(z) with

1. g(z) = o(e−2πy) and
2.

∫ 1

0 g(x+ iy)dx = 0 for all y.

If (the Fourier coefficient) α is not 0, then |f(z)| → ∞ when z → p. Thus there is
a neighborhood of p in S which is disjoint from Z(f) ; the level lines of f in this
neighborhood are closed curves around p.

If α = 0, property (2) implies that Z(f) accumulates on p. Let us choose
A sufficiently large so that the horoball VA does not contain any vertex of the
graph Z(f) : the intersection of this graph with VA is therefore a 1-dimensional
submanifold ZA of VA. Each connected component of ZA is homeomorphic to one
of the following :

1. an arc which connects the boundary of the annulus VA to itself ;
2. an arc properly embedded in VA which connects ∂VA to the puncture p ;
3. an arc which connects the puncture p to itself.

Let us show that ZA does not contain any arc of type (3). Otherwise, the connected
component of the complement of this arc which is contained in the annulus VA

would be simply connected. This component would contain a component of S −
Z(f) which would also be simply connected in contradiction with the Lemma 1.

It follows that ZA is the reunion of a finite number of arcs connecting ∂VA

to itself and a finite number of arcs connecting ∂VA to the puncture p. Therefore,
if we complete VA in a disc DA by adding the puncture p, the closure of Z(f) is
a graph in DA. It is not hard to see that the valency of p is even (maybe 2).

When f is cuspidal, the constant in the Fourier expansion is 0 at each punc-
ture. The closure of Z(f) in S is then a graph which contains all the punctures. �

Proof of Proposition 2. Let S be a hyperbolic surface with finite area. Let f be a
non-zero λ-eigenfunction. Let S be the closed surface obtained from S by filling
in the punctures. One applies the Euler-Poincaré formula to the folllowing cell-
decomposition of S : the 2 skeleton is the complement in S of the nodal set Z(f),
the 1-skeleton is the nodal set and the 0 skeleton is the set of the punctures of S
which are not in Z(f). If k is the number of those punctures the Euler-Poincaré
formula states :

χ(S)− k = χ(C+) + χ(C−) + χ(Z(f)).
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Suppose that f is cuspidal. Then each cusp of S is contained in Z(f) so
that k = 0. Since the Euler characteristic of each connected component of C± is
negative and since χ(Z(f)) ≤ 0, one has : χ(S) < 0. �

The same method also gives:

Proposition 7. Let S be a hyperbolic surface with finite area, which is homeomor-
phic to a once punctured torus or to a thrice punctured sphere. Then S does not
possess any non-zero λ-eigenfunction with 0 < λ ≤ 1

4 .

Proof. Let us suppose first that S is an once punctured torus and that there exists
a non-zero λ-eigenfunction f defined on S. By Proposition 2, we can suppose that
f is not cuspidal ; it keeps therefore a constant sign near the puncture, say it is
positive. Thus the connected components of C− are contained in the complement
of the closure of the component of C+ which contains this neighborhood. Since
this complement is an annulus or a reunion of discs, we find a contradiction with
Lemma 1.

Let S be homeomorphic to a thrice-punctured sphere. If f is a λ-eigenfunction
on S, with λ ≤ 1

4 , we can suppose that f is not cuspidal. Then one of the compo-
nents of S −Z(f) is an annulus, which is impossible again. �
Remark on groups with torsion. Lemma 1 can be generalized to cofinite Fuchsian
groups Γ which contain torsion elements. The quotient S = H/Γ is then a hyper-
bolic orbifold, locally isometric to the quotient of H be a finite elliptic subgroup.
It is homeomorphic to a compact surface with finitely many punctures and with
finitely many marked points : these points are in 1-1 correspondance with the
conjugacy classes of non-trivial elliptic subgroups, and are marked by an integer
invariant, the order of the isotropy group. In this generality, Lemma 1 states the
same but in the language of orbifolds : the components of C+ and C− are orbifolds
with negative Euler characteristic. This excludes that a component of C± be a disc
or an annulus, but also a disc with one marked point with order n ≥ 2 or a disc
with two marked points of order 2. One deduces that when S has genus 0 or 1,
then S does not admit any non-zero λ-eigenfunction for λ ≤ 1

4 which is cuspidal
and which vanishes at all singular points on S except at at most 3 points when
the genus is 0, or at at most 1 when the genus is 1 (cf. [Hu, p. 352]). (When all
singular points have order 2, one can say little more.)

Remark. Proposition 2 can be compared with a theorem of Peter Zograf, which
says roughly that when the number of punctures on a hyperbolic orbifold with
finite area is large with respect to the genus, then this orbifold admits a non-zero
small eigenfunction. The proof given in [Z] consists in constructing, under this
hypothesis, a function with 0 average and whose Rayleigh quotient is less than
1
4
. The existence of a non-zero λ-eigenfunction for some λ <

1
4

follows from the
variational characterization of eigenvalues ; however, it can not be guaranteed in
general that this eigenfunction is cuspidal. In the same paper, Zograf constructs a
family of hyperbolic orbifolds which admit cuspidal λ-eigenfunctions for arbitrarily
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small values of λ : these are genus 1 orbifolds with a single puncture and several
singular points of order 2.

Remark. Proposition 2 applies to certain congruence groups Γ0(N), Γ1(N), Γ(N),
those such that the associated hyperbolic surface has genus 0 or 1 (cf. [Hu, p. 353];
see also [CP], [CL], [Cum] for tabulations of the subgroups of PSL(2,Z) with small
genus).

3. The multiplicity of the small eigenvalues. Proof of Proposition 3

We study now some consequences of Lemma 1 on the dimension of the eigenspaces

Eλ when λ ≤ 1
4
.

We follow closely the proof of [Se, Theorem 4] which rests on a beautiful
application of the Borsuk-Ulam Theorem. As we said in the introduction, the
proof gets simplified in our setting, thanks to the incompressibility of the nodal
components. In particular, we will consider a stratification analoguous to the one
introduced in [Se] ; but it will be a stratification of the eigenspace itself and not
of the space of pairs of disjoint open sets in S like in [Se]. However, besides this,
the proof is the same.

Proof of Proposition 3. Let E be one of the vector spaces Eλ or Ec
λ. Let m be the

dimension of E. Denote by Sm−1 the unit sphere of this space (for an arbitrary
norm), by τ the antipodal involution and by Pm−1 the quotient projective space.
The covering Sm−1 → Pm−1 is described by a cohomology class H1(Pm−1,Z2)
denoted by α.

For i ∈ Z, one defines P̃(i) ⊂ Sm−1 as the set of the functions f such that

X (f) = χ(C+(f)) + χ(C−(f)) = i.

By Lemma 1, one has : Sm−1 =
i=−2⋃

i=χ(S)

P̃(i) if E = Eλ and Sm−1 =
i=−2⋃

i=χ(S)

P̃(i) if

E = Ec
λ. We observe that (although that won’t be used in the proof) for any j

with χ(S) ≤ j ≤ −2, the sets ∪i=−2
i=j P̃(i) are closed in Sm−1 (see also the proof

of Proposition 4). Therefore each atom P̃(i) is locally closed in Sm−1 and the
P̃(i)’s can be viewed as the strata of a stratification P̃ of Sm−1. Each stratum is
invariant under the involution τ and one obtains therefore a stratification P of
Pm−1 by taking the quotient spaces P(i) = P̃(i)/τ . The covering P̃(i) → P(i) is
described by the Čech-cohomology class α|P(i).

Let us show that for each i, the covering P̃(i) → P(i) is trivial. The rea-
sonning in [Se, Proposition 13] gets simplified thanks to the incompressibility of
the connected components of C±(f). Indeed, for g sufficiently near to f , there is
an isotopy of S which sends C+(g) (resp. C−(g))) onto C+(f) (resp. C−(f))). To
see this, let us consider compact cores C+, C− of C+(f), C−(f), i.e., compact
surfaces C+, C− which are respectively contained in C+(f), C−(f) and are such
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that the inclusion into C+(f), C−(f) is an homotopy equivalence. Then for g in a
neighborhood V(f) of f in Sm−1, C+ et C− are incompressible surfaces which are
contained in C+(g) and C−(g) respectively: the Euler characteristic of C+ (resp.
of C−) is thus not more than that of C+(g) (resp. of C−(g)) with equality if and
only if C+ (resp. C−) is a compact core of C+(g) (resp. of C−(g)). But, if g̃ ∈ P̃(i),
then X (g) = X (f) = χ(C−) + χ(C+) : hence C+ (resp. C−) is a compact core of
C+(g) (resp. of C−(g)). One deduces, for g ∈ V(f) ∩ P̃(i), an isotopy of S which
sends C±(f) to C±(g). An isotopy with the same property exists therefore when
f and g are in the same connected component of P̃(i). One has also that C+(f)
is not isotopic to C−(f) since both are incompressible subsurfaces of S disjoint
and with negative Euler characteristic. Thus, each connected component of P̃(i)
meets each fiber of the covering P̃(i) → P(i) in at most one point : this covering
is therefore trivial.

Thus, the Čech-cohomology class α|P(i) vanishes. It follows that the cup-
product αk vanishes also, where k is the number of strata in the stratification P
(cf. [Se, Lemma 8]). It is classical that α has order m in the Z2-cohomology ring
of Pm−1. Therefore m ≤ k. Since k is not more than −χ(S)− 1 when E = Eλ and
−χ(S)− 1 = 2g − 3 when E = Ec

λ, this proves Proposition 3. �

Remark. Note that this upperbound for the dimension of any eigenspace with
eigenvalue below 1

4 goes (slowly) in the direction of the conjectural bound λ2g−2 ≥
1
4 (cf. [Bu, p. 223], [Sc]). In fact, if Lemma 1 were true for functions f in the vector

space which is the direct sum of the eigenspaces Eλi , for 0 < λi ≤
1
4
, then the

method for proving Proposition 3 would give the bound 2g − 3 for the dimension
of this space. As a consequence, we would have λ2g−2 >

1
4 .

4. Common zeros to eigenfunctions. Proof of Proposition 4

Let λ ≤ 1
4 and consider a vector space E ⊂ Eλ. Let f be a function in E which

minimizes the functional g → X (g) = χ(C+(g)) + χ(C−(g)).
If X (f) = −2χ(S), then, the nodal set of f is a submanifold of S, by the

Euler-Poincaré formula.
Let us suppose that X (f) > −2χ(S). We are going to show that any function

in E vanishes at all vertices of the graph Z(f). Let us choose a chart Vj around
each finite vertex pj of this graph in which f can be written f(z) = cj.(zkj ). Let
V be a neighborhood of the set of vertices, which is the union of the Vi’s and of a
neighborhood of the punctures of S. The norm of the gradient of f on Z(f) − V
is bounded from below. For any function h ∈ E, there exists thus some ε0 > 0 so
that for all ε, |ε| ≤ ε0, the intersections of the nodal sets of f + εh and f with
S − V are isotopic relatively to ∂V . Let h ∈ E and suppose that h(pi) �= 0. After
eventually replacing Vj by a smaller open set, h keeps a constant sign, say positive,
on Vj . Then, for all ε > 0 sufficiently small, the nodal set of f + εh intersects Vj
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as a union of kj arcs properly embedded (each of those arcs is contained in one of
the kj sectors where f is negative). In particulier, one has

χ(Vj ∩ C+(f + εh)) < χ(Vj ∩ C+(f)), χ(Vj ∩ C−(f + εh)) = χ(Vj ∩ C−(f)),

whereas the other components V of V satisfy χ(V ∩C+(f + εh)) ≤ χ(V ∩C+(f))
and also χ(V ∩ C−(f + εh)) ≤ χ(V ∩ C−(f)). Using the additivity of the Euler
characteristic, we find X (f + εh) < X (f). This contradicts that f minimizes the
functional X .

Proof of Proposition 4. Let us choose, among the functions which minimize the
functional X a function f which maximizes the number of finite vertices on the
nodal set.

Let p1, · · · , pn be the vertices of the graph Z(f) which are contained in S and
suppose that f vanishes up to the order kj (kj ≥ 2) at the point pj. Let h ∈ E.
Choose a chart around each vertex pj in which f can be written as an harmonic
polynomial cj.(zkj ). As before, there exists some ε0 > 0 such that if |ε| ≤ ε0, the
intersections Z(f) ∩ (S − V) et Z(f + εh) ∩ (S − V) are isotopic relatively to ∂V .
We know already that h vanishes at all points pi : let κi be its vanishing order at
pi. Then, in the chart Vj around pj , f + εh vanishes at pj up to the order exactly
κj if κj < kj and up to the order kj at least if κj ≥ kj . For ε ≤ ε0, the nodal set
Z(f + εh) intersects Vj as a graph denoted by Zj(f + εh) ; this graph is properly
embedded in Vj and it has exactly 2kj vertices on ∂Vj . Since f minimizes X , one
has, for all ε :

χ(Z(f + εh)) ≤ χ(Z(f)).
For ε ≤ ε0, the additivity of the Euler characteristic gives :∑

j

χ(Zj(f + εh)) ≤
∑

j

χ(Zj(f)).

Thus, for all j, Zj(f+εh) is connected (in fact a tree). Let us suppose that there is
some index ι such that κι < kι. Then Zι(f+εh) is a graph with Euler characteristic
+1, which has one vertex of valency 2κι and 2kι free vertices (of valency 1). There
must be therefore another vertex of valency ≥ 3. This contradicts the property of
f that it maximizes the number of vertices on its nodal set.

�
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1. Introduction

The paper is devoted to examples of quantum spaces over non-archimedean fields
and is, in a sense, a continuation of [So1] (part of the material is borrowed from the
loc. cit). There are three classes of examples which I discuss in this paper: quantum
affinoid spaces, quantum non-archimedean Calabi-Yau varieties and quantum p-
adic groups. Let us recall the definitions and discuss the contents of the paper.

Quantum affinoid algebras are defined similarly to the “classical case” q = 1.
It is a special case of a more general notion of non-commutative affinoid algebra
introduced in [So1]. Let k be a Banach field and k〈〈T1, . . . , Tn〉〉 be the alge-
bra of formal series in free variables T1, . . . , Tn. For each r = (r1, . . . , rn), ri ≥
0, 1 ≤ i ≤ n we define a subspace k〈〈T1, . . . , Tn〉〉r consisting of series f =∑

i1,...,im
ai1,...,imTi1 · · ·Tim such that

∑
i1,...,im

|ai1,...,im |ri1 · · · rim < +∞. Here
the summation is taken over all sequences (i1, . . . , im),m ≥ 0 and | • | denotes
the norm in k. In this paper we consider the case when k is a valuation field (i.e.,
a Banach field with respect to a multiplicative non-archimedean norm). In the
non-archimedean case the convergency condition is replaced by the following one:
max |ai1,...,im |ri1 · · · rim → 0 as i1 + · · ·+ im →∞. Clearly each k〈〈x1, . . . , xn〉〉r is
a Banach algebra called the algebra of analytic functions on a non-commutative k-
polydisc ENC(0, r) centered at zero and having the (multi)radius r = (r1, . . . , rn).
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The norm is given by max |ai1,...,im |ri1 · · · rim . A non-commutative k-affinoid alge-
bra is an admissible noetherian quotient of this algebra (cf. [Be1], Definition 2.1.1).
Let us fix q ∈ k∗ such that |q| = 1, and r = (r1, . . . , rn), ri ≥ 0. A quan-
tum k-affinoid algebra is a special case of the previous definition. It is defined
as an admissible quotient of the algebra k{T }q,r := k{T1, . . . , Tn}q,r of the se-
ries f =

∑
l=(l1,...,ln)∈Zn

+
alT

l1
1 · · ·T ln

n such that al ∈ k, TiTj = qTjTi, j < i, and

max|al|r|l| → 0 as |l| := l1+· · ·+ln →∞. The latter is also called the algebra of an-
alytic functions on the quantum polydisc Eq(0, r). It is less useful notion than the
one of non-commutative affinoid algebra since there are few two-sided closed ideals
in the algebra k{T1, . . . , Tn}q,r. Nevertheless quantum affinoid algebras appear in
practice (e.g., in the case of quantum Calabi-Yau manifolds considered below). In
the case when all ri = 1 we speak about strictly k-affinoid non-commutative (resp.
quantum) algebras, similarly to [Be1]. Any non-archimedean extensionK of k gives
rise to a non-commutative (resp. quantum) affinoid k-algebra, cf. loc.cit. There is
a generalization of quantum affinoid algebras which we will also call quantum affi-
noid algebras. Namely, let Q = ((qij)) be an n×n matrix with entries from k such
that qijqji = 1, |qij | = 1 for all i, j. Then we define the quantum affinoid algebra
as an admissible quotient of the algebra k{T1, . . . , Tn}Q,r. The latter defined sim-
ilarly to k{T1, . . . , Tn}q,r, but now we use polynomials in variables Ti, 1 ≤ i ≤ n
such that TiTj = qijTjTi. One can think of k{T1, . . . , Tn}Q,r as of the quotient
of k〈〈Ti, tij〉〉r,1ij , where 1 ≤ i, j ≤ n and 1ij is the unit n × n matrix, by the
two-sided ideal generated by the relations

tijtji = 1, TiTj = tijTjTi, tija = atij ,

for all indices i, j and all a ∈ k〈〈Ti, tij〉〉r,1ij . In other words, we treat qij as
variables which belong to the center of our algebra and have the norms equal
to one. Having the above-discussed generalizations of affinoid algebras we can
consider their Berkovich spectra (sets of multiplicative seminorms). Differently
from the commutative case, the theory of non-commutative and quantum analytic
spaces is not developed yet (see discussion in [So1]).

Quantum Calabi-Yau manifolds provide examples of topological spaces
equipped with rings of non-commutative affinoid algebras, which are quantum
affinoid outside of a “small” subspace. More precisely, let k = C((t)) be the field
of Laurent series, equipped with its standard valuation (order of the pole) and
the corresponding non-archimedean norm. Quantum Calabi-Yau manifold of di-
mension n over C((t)), is defined as a ringed space (X,Oq,X) which consists of an
analytic Calabi-Yau manifold X of dimension n over C((t)) and a sheaf of C((t))-
algebras Oq,X on X such that Oq,X(U) is a non-commutative affinoid algebra for
any affinoid U ⊂ X and the following two conditions are satisfied:

1) X is a C((t))-analytic manifold corresponding to a maximally degenerate
algebraic Calabi-Yau manifold Xalg of dimension n (see [KoSo2] for the def-
initions).
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2) Let Sk(X) be the skeleton of X defined in [KoSo1], and let us choose a
projection π : X → Sk(X) described in the loc.cit. Then the direct im-
age π∗(Oq,X) is locally isomorphic (outside of a topological subvariety of
the codimension at least two) to the sheaf of C((t))-algebras Ocan

q,Rn on Rn

which is characterized by the property that for any open connected sub-
set U ⊂ Rn we have Ocan

q,Rn(U) = {∑l∈Zn alz
l} such that al ∈ C((t)) and

supl∈Zn(log |al|+〈l, x〉) <∞ for any x ∈ U . Here 〈(l1, . . . , ln), (x1, . . . , xn)〉 =∑
1≤i≤n lixi.

For a motivation of this definition see [KoSo1-2] in the “commutative” case q = 1.
Roughly speaking, in that case the above definition requires the Calabi-Yau man-
ifold X to be locally isomorphic (outside of a “small” subspace) to an analytic
torus fibration πcan : (Gan

m )n → Rn, where on C((t))-points the canonical pro-
jection πcan is the “tropical” map (z1, . . . , zn) �→ (log |z1|, . . . , log |zn|). This is a
“rigid-analytic” implementation of the Strominger-Yau-Zaslow conjecture in Mir-
ror Symmetry (see [KoSo1-2] for more on this topic). In present paper we discuss
the case n = 2, essentially following [KoSo1], [So1]. Perhaps the higher-dimensional
case can be studied by the technique developed in a recent paper [GroSie1] (which
in some sense generalizes to the higher-dimensional case ideas of [KoSo1]). We
plan to return to this problem in the future.

Finally, we discuss the notion of p-adic quantum group. Quantum groups
over p-adic fields and their representations will be discussed in more detail in
the forthcoming paper [So2]. We have borrowed some material from there. Recall
that quantum groups are considered in the literature either in the framework
of algebraic groups or in some special examples of locally compact groups over
R. In the case of groups over R or C there is the following problem: how to
describe, say, smooth or analytic (or rapidly descreasing) functions on a complex
or real Lie group in terms of the representation theory of its enveloping algebra?
Finite-dimensional representations give rise to the algebra of regular functions
(via Peter-Weyl theorem), but more general classes of functions are not so easy to
handle. The case of p-adic fields is different for two reasons. First, choosing a good
basis in the enveloping algebra, we can consider series with certain restrictions
on the growth of norms of their coefficients. This allows us to describe a basis
of compact open neighbourhoods of the unit of the corresponding p-adic group.
Furthermore, combining the ideas of [ShT1] with the approach of [So3] one can
define the algebra of locally analytic functions on a compact p-adic group as a
certain completion of the coordinate ring of the group. Dualizing, one obtains
the algebra of locally-analytic distributions. According to [ShT1] modules over
the latter provides an interesting class of p-adic representations, which contains,
e.g., principal series representations. The above considerations can be “quantized”,
giving rise to quantum locally-analytic groups.

The present paper contains a discussion of the above-mentioned three classes
of examples of non-commutative spaces. The proofs are omitted and will appear in
separate publications. We should warn the reader that the paper does not present



700 Y. Soibelman

a piece of developed theory. This explains its sketchy character. My aim is to
show interesting classes of non-archimedean non-commutative spaces which can be
obtained as analytic non-commutative deformations of the corresponding classical
spaces. They deserve further study (for the quantum groups case see [So2]).

When talking about rigid analytic spaces we use the approach of Berkovich,
which seems to be more suitable in the non-commutative framework. For this
reason our terminology is consistent with [Be1].

Acknowledgements. I am grateful to many people who shared with me their ideas
and insights, especially to Vladimir Berkovich, Joseph Bernstein, Matthew Emer-
ton and Maxim Kontsevich. Excellent papers [SchT1-6] by Peter Schneider and
Jeremy Teitelbaum played a crucial role in convincing me that the theory of quan-
tum p-adic groups should exist. I thank IHES for the hospitality and excellent
research conditions. This work was partially supported by an NSF grant.

2. Quantum affinoid algebras

Let k be a valuation field.
We recall here the definition already given in the Introduction. Let us fix r =

(r1, . . . , rn) ∈ Rn
≥0. We start with the algebra k〈T 〉 := k〈T1, . . . , Tn〉 of polynomials

in n free variables and consider its completion k〈〈T 〉〉r with respect to the norm
|∑λ∈P (Zn

+) aλT
λ| = maxλ |aλ|rλ. Here P (Zn

+) is the set of finite paths in Zn
+

starting at the origin, and T λ = T λ1
1 T

λ2
2 · · · for the path which moves λ1 steps in

the direction (1, 0, 0, . . .) then λ2 steps in the direction (0, 1, 0, 0, . . .), and so on
(repetitions are allowed, so we can have a monomial like T λ1

1 T
λ2
2 T

λ3
1 ).

Definition 2.0.1. We say that a noetherian Banach unital algebra A is non-com-
mutative affinoid k-algebra if there is an admissible surjective homomorphism
k〈〈T 〉〉r → A (admissibility means that the norm on the image is the quotient
norm).

In particular, affinoid algebras in the sense of [Be1] belong to this class (un-
fortunately the terminology is confusing in this case: commutative affinoid algebras
give examples of non-commutative affinoid algebras!). Another class of examples
is formed by quantum affinoid algebras defined in the Introduction.

Let us now recall the following definition (see [Be1]).

Definition 2.0.2. Berkovich spectrum M(A) of a unital Banach ring A consists of
bounded multiplicative seminorms on A.

If A is a k-algebra, we require that seminorms extend the norm on k. It is
well-known (see [Be1], Th. 1.2.1) that if A is commutative then M(A) is a non-
empty compact Hausdorff topological space (in the weak topology). If ν ∈ M(A)
then Ker ν is a two-sided closed prime ideal in A. Therefore it is not clear whether
M(A) is non-empty in the non-commutative case.
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Algebras of analytic functions on the non-commutative and quantum poly-
discs carry multiplicative “Gauss norms” (see Introduction), hence the Berkovich
spectrum is non-empty in each of those cases. The following example can be found
in [So3], [SoVo].

Let L be a free abelian group of finite rank d, ϕ : L × L → Z be a skew-
symmetric bilinear form, q ∈ K∗ satisfies the condition |q| = 1. Then |qϕ(λ,μ)| = 1
for any λ, μ ∈ L. We denote by Aq(T (L,ϕ)) the algebra of regular functions on the
quantum torus Tq(L,ϕ). By definition, it is a k-algebra with generators e(λ), λ ∈ L,
subject to the relation

e(λ)e(μ) = qϕ(λ,μ)e(λ+ μ).
The algebra of analytic functions on the analytic quantum torus T an

q (L,ϕ)
consists by definition of series

∑
λ∈L a(λ)e(λ),a(λ) ∈ k such that for all r =

(r1, . . . , rd), ri > 0 one has: |a(λ)|rλ → 0 as |λ| → ∞ (here |(λ1, . . . , λd)| =∑
i |λi|).

Quantum affinoid algebra k{T }q,r discussed in the Introduction is the algebra
of analytic functions on quantum polydisc of the (multi)radius r = (r1, . . . , rn). It
was shown in [So1] that M(k{T }q,r) can be quite big as long as |q − 1| < 1. In
particular, it contains “quantum” analogs of the norms |f |E(a,ρ) which is the “max-
imum norm” of an analytic function f on the polydisc centered at a = (a1, . . . , an)
of the radius ρ = (ρ1, . . . , ρn), with the condition ai ≤ ρi < ri, 1 ≤ i ≤ n. Similar
result holds for the quantum analytic torus. This observation demonstrates an in-
teresting phenomenon: differently from the formal deformation quantization, the
non-archimedean analytic quantization “preserves” some part of the spectrum of
the “classical” object.

The conventional definition of the quatization can be carried out to the an-
alytic case with obvious changes. Indeed, the notion of Poisson algebra admits
a straightforward generalization to the analytic case (Poisson bracket is required
to be a bi-analytic map). Furthermore, for any commutative affinoid algebra A
there is a notion of non-commutative A-affinoid algebra, which is a natural gen-
eralization of the notion of k-affinoid algebra (we use A〈〈T1, . . . , Tn〉〉r instead of
k〈〈T1, . . . , Tn〉〉r).

Let now O(E(0, r)) be the algebra of analytic functions on a 1-dimensional
polydiscE(0, r) =M(k{r−1T }) of the radius r (the notation is from [Be1], Chapter
2). We say that a non-commutative O(E(0, r))-affinoid algebra A is an analytic
quantization of a k-affinoid commutative Poisson algebra A0 over the polydisc
E(0, r) if the following two conditions are satisfied:

1) A is a topologicalO(E(0, r))-algebra, free as a topologicalO(E(0, r))-module.
2) The quotient A/TA is isomorphic to A0 as a k-affinoid Poisson algebra.

Then a quantization of a k-analytic space (X,OX) iss a ringed space (X,Oq,X)
such that for any affinoid U ⊂ X the algebra Oq,X(U) is an analytic quantization
of OX(U) over some polydisc E(0, r).

Notice that the projection A → A0 induces an embedding of Berkovich
spectra M(A0) → M(A). Every element of A can be thought of as analytic
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function on E(0, r) with values in a non-commutative k-affinoid algebra. Sup-
pose that A � A0{r−1T } as a k{r−1T }-module. Then the topological vector
space A is isomorphic to the space of analytic functions on E(0, r) with values
in A0 (but the product is not a pointwise product of functions). Assume that
r ≤ 1 and consider the subspace A1 of analytic functions a(x) as above such that
|a(0)|A0 ≤ 1, |a(x) − a(0)|A0 ≤ |T (x)|, x ∈ E(0, r), where •|A0 denotes the norm
on A0. Here x is interpreted as a seminorm on the Banach k-algebra k{r−1T },
hence |T (x)| is the norm of the generator T in the completition of the residue
field k{r−1T }/Ker x. It is clear that A1 is in fact a Banach k-algebra. Hence the
natural projection a(x) �→ a(0) defines an embedding M(A0)→M(A1).

Suppose that X is an analytic spaces for which there is a notion of a skeleton
Sk(X) either in the sense of [KoSo1] (then X is assumed to be Calabi-Yau) or in
the sense of [Be2,Be3]. Then in either of these cases there is a continuous retraction
π : X → Sk(X). Suppose that the there is a quantization (X,Oq,X) of (X,OX)
in the above sense.

Conjecture 2.0.3. For any closed V ⊂ X there is a natural embedding iV : V ⊂
M(Oq,X(π−1(V ))) such that π◦iV = idV . Moreover if V1 ⊂ V2 then the restriction
of iV1 to V2 is equal to V2.

In other words, the skeleton survives an analytic quantization. The above
conjecture is not very precise, because there is no general definition of a skeleton.
The definition given in [KoSo1] is different from the one in [Be2,3] even for Calabi-
Yau manifolds. Hence the conjecture is an “experimental fact” at this time.

3. Quantum Calabi-Yau varieties

Let Xalg be a maximally degenerate (in the sense of [KoSo1-2]) algebraic Calabi-
Yau manifold over C((t)) of dimension n and X be the corresponding C((t))-
analytic space. Then one can associate with X a PL-manifold Sk(X) of real di-
mension n, called the skeleton of X (see [KoSo1-2]). A choice of Kähler structure
on Xalg defines (conjecturally) a continuous retraction π : X → Sk(X). This map
satisfies the condition 2) from the Introduction. In other words, it defines a (singu-
lar) analytic torus fibration over Sk(X) with the generic fiber, isomorphic to the
analytic space M(k[T±1

1 , . . . , T
±1
n ]/(|Ti| = ci, 1 ≤ i ≤ n)), where ci > 0, 1 ≤ i ≤ n

are some numbers. Since the projection is Stein (see loc. cit), one can reconstruct
X (as a ringed space) from the knowledge of (Sk(X), π∗(OX)), where OX is the
sheaf of analytic functions on X .

Let B = Sk(X) and Bsing be the “singular subvariety” of real codimension
two (see Introduction). It was observed in [KoSo1] that the norms of elements of
the direct image sheaf π∗(O×

X) define an integral affine structure onB0 := B\Bsing.
Hence we would like to reconstruct the analytic space starting with a PL-manifold
equipped with a (singular) integral affine structure. As we will explain in the next
subsection the same data give rise to a sheaf of quantum affinoid algebras on B0.
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3.1. Integral affine structures and quantized canonical sheaf

Here we explain following [KoSo1] and [So1] how a manifold with integral affine
structure defines a sheaf of (quantum) affinoid algebras.

Recall that an integral affine structure (Z-affine structure for short) on an
n-dimensional topological manifold Y is given by a maximal atlas of charts such
that the change of coordinates between any two charts is described by the formula

x′i =
∑

1≤j≤n

aijxj + bi,

where (aij) ∈ GL(n,Z), (bi) ∈ Rn. In this case one can speak about the sheaf of
Z-affine functions, i.e., those which can be locally expressed in affine coordinates
by the formula f =

∑
1≤i≤n aixi + b, ai ∈ Z, b ∈ R. An equivalent description:

Z-affine structure is given by a covariant lattice TZ ⊂ TY in the tangent bundle
(recall that an affine structure on Y is the same as a torsion free flat connection
on the tangent bundle TY ).

Let Y be a manifold with Z-affine structure. The sheaf of Z-affine functions
AffZ := AffZ,Y gives rise to an exact sequence of sheaves of abelian groups

0→ R→ AffZ → (T ∗)Z → 0,

where (T ∗)Z is the sheaf associated with the dual to the covariant lattice TZ ⊂ TY .
Let us recall the following notion introduced in [KoSo1], Section 7.1. Let k

be a valuation field.

Definition 3.1.1. A k-affine structure on Y compatible with the given Z-affine struc-
ture is a sheaf Affk of abelian groups on Y , an exact sequence of sheaves

1 → k× → Affk → (T ∗)Z → 1,

together with a homomorphism Φ of this exact sequence to the exact sequence of
sheaves of abelian groups

0→ R→ AffZ → (T ∗)Z → 0,

such that Φ = id on (T ∗)Z and Φ = val on k×, where val is the valuation map.

Since Y carries a Z-affine structure, we have the corresponding GL(n,Z) �
Rn-torsor on Y , whose fiber over a point x consists of all Z-affine coordinate
systems at x.

Then one has the following equivalent description of the notion of k-affine
structure.

Definition 3.1.2. A k-affine structure on Y compatible with the given Z-affine struc-
ture is a GL(n,Z)�(k×)n-torsor on Y such that the application of val×n to (k×)n

gives the initial GL(n,Z) � Rn-torsor.

Assume that Y is oriented and carries a k-affine structure compatible with
a given Z-affine structure. Orientation allows us to reduce the structure group of
the torsor defining the k-affine structure to SL(n,Z) � (k×)n .
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Let q ∈ k, |q| = 1, and z1, . . . , zn be invertible variables such that zizj = qzjzi,
for all 1 ≤ i < j ≤ n. We define the sheaf of k-algebras Ocan

q on Rn, n ≥ 2 by the
formulas:

Ocan
q (U) =

⎧⎨⎩ ∑
I=(I1,...,In)∈Zn

cIz
I
∣∣∣

∀(x1, . . . , xn) ∈ U sup
I

⎛⎝log(|cI |) +
∑

1≤m≤n

Imxm

⎞⎠ <∞
⎫⎬⎭ ,

where zI = zI11 . . . z
In
n . Since |q| = 1 the convergency condition does not depend

on the order of variables.
The sheaf Ocan

q can be lifted to Y (we keep the same notation for the lifting).
In order to do that it suffices to define the action of the group SL(n,Z) � (k×)n

on the canonical sheaf on Rn. Namely, the inverse to an element (A, λ1, . . . , λn) ∈
SL(n,Z) � (k×)n acts on monomials as

zI = zI11 . . . z
In
n �→

(∏n
i=1λ

Ii

i

)
zA(I) .

The action of the same element on Rn is given by a similar formula:

x = (x1, . . . , xn) �→ A(x) − (val(λ1), . . . , val(λn)) .

Any n-dimensional manifold Y with integral affine structure admits a cov-
ering by charts with transition functions being integral affine transformations.
This allows to define the sheaf Ocan

q,Y as the one which is locally isomorphic to
Ocan

q = Ocan
q,Rn .

It is explained in [KoSo1] (see also [So1], Section 7.2) that for any open
U ⊂ Rn the topological spaceM(Ocan

q (U)) for q = 1 is an analytic torus fibration
in the sense of Introduction. Recall that an analytic torus fibration is a fiber bundle
(X,Y, π) consisting of a commutative k-analytic space, a topological manifold Y
and a continuous map π : X → Y such that it is locally isomorphic to the torus
fibration Gn

m → Rn from Introduction. In that case π is a Stein map, and we have:
π−1(U) = M(Ocan

q=1(U)). Therefore we can think of the ringed space (Y,Ocan
q,Y ) as

of quantization of this torus fibration.

3.2. Model sheaf near a singular point

In the case of maximally degenerate K3 surfaces the skeleton is homeomorphic to
B = S2 (the two-dimensional sphere) equipped with an integral affine structure
outside of the subset Bsing consisting of 24 points (see [KoSo1], Section 6.4, where
the affine structure is described). The construction of the previous subsection gives
rise to a sheaf of quantum C((t))-affinoid algebras over B0 = B \ Bsing. In order
to complete the quantization procedure we need to extend the sheaf Ocan

q,B0 to a
neighbourhood of Bsing. It is explained in [KoSo1] (case q = 1) and in [So1] (case
|q| = 1) that one has to modify this sheaf in order to extend it to singular points.
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Summarizing, the quantization is achieved in two steps. First, we define a sheaf of
non-commutative C((t))-affinoid algebras in a neighbourhood of Bsing such that it
is locally isomorphic to the canonical sheafOcan

q,B0 outside of Bsing and gives a “local
model” for the future sheaf π∗(Oq,X) at the singularities. Second, we modify the
sheaf Ocan

q,B0 by applying (infinitely many times) automorphisms associated with
edges of an infinite tree embedded in B, such that its external vertices belong to
Bsing. Those modifications ensure that the resulting sheaf can be glued with the
model sheaf at the singularities, and that it is indeed the direct image of the sheaf
of analytic functions on a compact C((t))-analytic K3 surface. More precisely, we
do the following.

We start with an open covering of R2 by the following sets Ui, 1 ≤ i ≤ 3. Let
us fix a number 0 < ε < 1 and define

U1 = {(x, y) ∈ R2|x < ε|y| }
U2 = {(x, y) ∈ R2|x > 0, y < εx }
U3 = {(x, y) ∈ R2|x > 0, y > 0}

Clearly R2 \ {(0, 0)} = U1 ∪U2 ∪U3. We will also need a slightly modified domain
U ′

2 ⊂ U2 defined as {(x, y) ∈ R2|x > 0, y < ε
1+εx }.

Let πcan : (Gan
m )2 → R2 be the canonical map defined in the Introduction (see

also [KoSo1]). We define the following three open subsets of the two-dimensional
analytic torus: Ti := π−1

can(Ui), i = 1, 3 and T2 := π−1
can(U ′

2). There are natural
projections πi : Ti → Ui given by the formulas

πi(| • |) = πcan(| • |) = (log |ξi|, log |ηi|), i = 1, 3

π2(| • |) =
{

(log |ξ2|, log |η2|) if |η2| < 1
(log |ξ2| − log |η2|, log |η2|) if |η2| ≥ 1

To each Ti we assign the algebra Oq(Ti) of series
∑

m,n cmnξ
m
i η

n
i such that

ξiηi = qηiξi, cmn ∈ C((t)), and for the seminorm |•| corresponding to a point of Ti

(which means that (log|ξi|, log|ηi|) ∈ Ui) one has: supm,n(mlog|ξi| + n log|ηi|) <
+∞. Similarly, we can define Oq(U) for any U ⊂ Ui. In this way we obtain a sheaf
of quantum C((t))-affinoid algebras on the set Ui. We will denote this sheaf by
πi∗(Oq,Ti).

We define the sheaf Ocan
q on R2 \ {(0, 0)} as πi∗ (Oq,Ti) on each domain Ui,

with identifications
(ξ1, η1) = (ξ2, η2) on U1 ∩ U2

(ξ1, η1) = (ξ3, η3) on U1 ∩ U3

(ξ2, η2) = (ξ3η3, η3) on U2 ∩ U3

The notation for the sheaf is consistent with the previous subsection since
Ocan

q is locally isomorphic to the canonical sheaf associated with the standard
integral affine structure.

Let us modify the canonical sheaf Ocan
q in the following way. On the sets

U1 and U2 ∪ U3 the new sheaf Omod
q is isomorphic to Ocan

q (by identifying of
coordinates (ξ1, η1) and glued coordinates (ξ2, η2) and (ξ3, η3) respectively). On
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the intersection U1 ∩ (U2 ∪U3) we identify two copies of the canonical sheaf by an
automorphism ϕ of Ocan

q given (we skip the index of the coordinates) by

ϕ(ξ, η) =
{

(ξ(1 + η), η) on U1 ∩ U2

(ξ(1 + η−1), η) on U1 ∩ U3

Finally we are going to introduce a sheaf of C((t))-algebras Osing
q on a

small open disc W ⊂ R2, {(0, 0)} ∈ W such that Osing
q |W\{(0,0)} is isomorphic

to Omod
q |W\{(0,0)}. The sheaf Osing

q provides a non-commutative deformation of
the “local model sheaf” near a singular point (see [KoSo1], Section 8 about the
latter).

Let us consider a non-commutative C((t))-algebra Aq(S) generated by α, β, γ
subject to the following relations:

αγ = qγα, qβγ = γβ,

βα − qαβ = 1− q,
(αβ − 1)γ = 1.

For q = 1 this algebra coincides with the algebra of regular functions on the
surface S ⊂ A3

C((t)) given by the equation (αβ − 1)γ = 1 and moreover, it is a flat
deformation of the latter with respect to the parameter q − 1. It is explained in
[KoSo1], Section 8, that there is a natural map p : San → R2 of the corresponding
analytic surface such that p∗(OSan) is a local model near a singularity of the sheaf
π∗(OX), where X is the maximally degenerate K3 surface and π is the projection
to the skeleton Sk(X).

Let us denote by Oq,r1,r2,r3(S
an) the non-commutative affinoid algebra which

is the quotient of C((t))〈〈α, β, γ〉〉r1 ,r2,r3 by the closed two-sided ideal generated by
the above three relations for Aq(S). Here ri, i = 1, 2, 3 are arbitrary non-negative
numbers. We denote by Oq(San) the intersection of all algebras Oq,r1,r2,r3(San).

We define homomorphisms of non-commutative algebras gi : Aq(S)→Oq(Ti),
1 ≤ i ≤ 3 by the following formulas (the notation is obvious):

g1(α, β, γ) = (ξ1−1, ξ1(1 + η1), η1−1)
g2(α, β, γ) = ((1 + η2)ξ2−1, ξ2, η2

−1)
g3(α, β, γ) = ((1 + η3)(ξ3η3)−1, ξ3η3, (η3)−1)

These homomorphisms correspond to the natural embeddings Ti ↪→ San, i =
1, 2, 3. One can use these homomorphisms in order to show an existence of non-
trivial multiplicative seminorms on Aq(S) and construct explicitly some of the
corresponding representations of Aq(S) in a k-Banach vector space.

For example, let us consider a Banach vector space Vr consisting of series∑
i∈Z aiT

i, ai ∈ k such that |ai|ri → 0 as |i| → ∞, where r > 0 is some number.
Let τ : Vr → Vr be the shift operator: τ(f)(T ) = f(qT ). Define α = T (operator of
multiplication by T ), γ = −τ−1 and β = T−1◦(1−τ). One checks that all the rela-
tions of Aq(S) are satisfied, and moreover, the seminorm on Aq(S) induced by the
operator norm is multiplicative. (Similar considerations apply to the analytic quan-
tum torus derived from ξη = qηξ. Then the element

∑
n,m∈Z anmξ

nηm transforms
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the series f =
∑

i∈Z ciT
i into

∑
n,m∈Z anmq

nmTmf(qnT ).) Rescaling the action
of α and γ by arbitrary non-zero numbers one can adjust the action of β in such a
way that the norms of operators α, β, γ “cover” an open neighborhood of the point
(1, 1, 1). More precisely, let us consider the map f :M(Oq(San)) → R3 defined by
the formula f(x) = (a, b, c) where a = max(0, log |α|x), b = max(0, log |β|x), c =
log |γ|x = − log |αβ − 1|x. Here | · |x = exp(−valx(·)) denotes the mulitplicative
seminorm corresponding to the point x ∈ M(Oq(San)). Then the image of f is
homeomorphic to R2, similarly to the case q = 1 considered in [KoSo1]. More
precisely, let us decompose M(Oq(San)) = S− ∪ S0 ∪ S+ according to the sign of
log |γ|x where x ∈M(Oq(San)). Then

f(S−) = { (a, b, c) ∈ R3 | c < 0, a ≥ 0, b ≥ 0, ab(a+ b+ c) = 0 }
f(S0) = { (a, b, c) ∈ R3 | c = 0, a ≥ 0, b ≥ 0, ab = 0 }
f(S+) = { (a, b, c) ∈ R3 | c > 0, a ≥ 0, b ≥ 0, ab = 0 }

In fact the image of the map f coincides with the image of the embedding j :
R2 → R3 given by formula

j(x, y) =
{

(−x , max(x + y, 0) , −y ) if x ≤ 0
( 0 , x+ max(y, 0) , −y ) if x ≥ 0

Proofs of the above observations are different from the case q = 1. Indeed,
there are no one-dimensional modules over Aq(S) corresponding to the points of
the surface S. Therefore it is not obvious that there are multiplicative seminorms
x on Aq(S) with the prescribed value of f(x). Seminorms on Aq(S) arise from
representations of this algebra in k-Banach vector spaces: if ρ : Aq(S) → Endk(V )
is such a representaion then we can define |a|ρ = ||ρ(a)||, where ||ρ(a)|| is the
operator norm in the Banach algebra Endk(V ) of bounded operators on V . Such
seminorms are, in general, submultiplicative: |ab|ρ ≤ |a|ρ|b|ρ. We are interested in
those which are multiplicative. This can be achieved, e.g., by mapping of Aq(S)
into an algebra which admits multiplicative seminorms. We discussed above the
homomorphisms gi of Aq(S) into analytic quantum tori. Let us consider a different
example of such homomorphism. Let δ = (αβ−1)γ. One checks that δ is a central
element in the quantum affinoid algebraBq(S) generated by the first three relations
for Aq(S) (i.e., we drop the relation δ = 1). Let us consider the quantum affinoid
algebra B generated by β±1, γ±1, δ subject to the relations:

βδ = δβ, γδ = δγ, γβ = qβγ,

and such that β−1 is inverse to β and γ−1 is inverse to γ. There is an embed-
ding of algebras Aq(S) → B/(δ − 1)B induced by the linear map Aq(S) → B
such that β and γ are mapped into the corresponding elements of B and α �→
(1 + δγ−1)β−1. Notice that for any r1 > 0, r2 > 0, r3 ≥ 0 one can define a mul-
tiplicative norm | • |r1,r2,r3 on B such that |∑n∈Z,m∈Z,l∈Z+

cnmlβ
nγmδl|r1,r2,r3 =

maxn,m,l |cnml|rn1 rm2 rl3. Moreover, we can complete B with respect to this multi-
plicative norm and obtain a quantum affinoid algebra Br1,r2,r3 . We can also invert
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δ and do the same construction. In this way we obtain the quantum affinoid alge-
bra denoted by B(1)

r1,r2,r3 . Since Aq(S) is embedded into the quotient of any of these
algebras by the central ideal, we obtain plenty multiplicative norms on Aq(S) and
on its completions.

We denote by p the composition j−1 ◦ f . In the case q = 1 it is an analytic
torus fibration over the set R2 \{(0, 0)}. Let nowW be a small disc in R2 centered
at the origin. We need to define the non-commutative affinoid algebra Osing

q (W ).
In the commutative case q = 1 it is defined as Osing

San(p−1
∗ (W )) = p∗(OSan)(W ).

For each i = 1, 2, 3 we define the C((t))-affinoid algebras Osing
q (p−1(Ui)) such

that for every x ∈ M(Osing
q (p−1(Ui)) one has p(x) ∈ Ui (it coincides with the

intersection of all completions of Aq(S) with respect to multiplicative seminorms
x such that p(x) ∈ Ui, i = 1, 2, 3). Similarly we define algebrasOq

sing(p−1(W )) and
Oq

sing(p−1(W 0)), where W 0 =W \ {(0, 0)} or, more generally, any Osing
q (p−1(U))

for U being an open subset of W . Using homomorphisms gi, i = 1, 2, 3 one proves
that if U ⊂ Ui then Osing

q (p−1(U)) is isomorphic to Omod
q (π−1

i (U)). The latter
is defined as the set of series

∑
m,n∈Z cmnξ

m
i η

n
i such that πi(| • |) ∈ U for any

multiplicative seminorm |•| such that supm,n(log |cmn|+m log |ξi|+n log |ηi| <∞),
if (x, y) ∈ U . The isomorphism of sheavesOsing

q |W\{(0,0)} � Omod
q |W\{(0,0)} follows.

Details of this construction will be explained elsewhere.

3.3. Trees, automorphisms and gluing

As was explained in [KoSo1] in the case of q = 1 and in [So1] in the case |q| = 1,
one has to modify the canonical sheaf in order to glue it with Osing

q . Here we
explain the construction following [KoSo1], [So1], leaving the details to a separate
publication. The starting point for the construction is a subset L ⊂ B which is an
infinite tree. We called it lines in [KoSo1].

The definition is quite general. Here we discuss the 2-dimensional case, while a
much more complicated higher-dimensional case was considered in the recent paper
[GroSie1]. For a manifold Y which carries a Z-affine structure a line l is defined by
a continuous map fl : (0,+∞)→ Y and a covariantly constant (with respect to the
connection which gives the affine structure) nowhere vanishing integer-valued 1-
form αl ∈ Γ((0,+∞), f∗l ((T ∗)Z). A set L of lines is required to be decomposed into
a disjoint union L = Lin∪Lcom of initial and composite lines. Each composite line
is obtained as a result of a finite number of “collisions” of initial lines. A collision is
described by a Y -shape figure, where the bottom leg of Y is a composite line, while
two other segments are “parents” of the leg, so that the leg is obtained as a result of
the collision. A construction of the set L satisfying the axioms from [KoSo1] was
proposed in [KoSo1], Section 9.3. Generalization to the higher-dimensional case
can be found in [GroSie1]. In the two-dimensional case the lines form an infinite
tree embedded into B. The edges have rational slopes with respect to the integral
affine structure. The tree is dense in B0.

With each line l (i.e., edge of the tree) we associate a continuous family of
automorphisms of stalks of sheaves of algebras ϕl(t) : (Ocan

q )Y,fl(t) → (Ocan
q )Y,fl(t).
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Automorphisms ϕl can be defined in the following way (see [KoSo1], Section
10.4).

First we choose affine coordinates in a neighborhhod of a point b ∈ B \Bsing,
identifyin b with the point (0, 0) ∈ R2. Let l = l+ ∈ Lin be (in the standard affine
coordinates) a line in the half-plane y > 0 emerging from (0, 0) (there is another
such line l− in the half-plane y < 0, see [KoSo1] for the details). Assume that
t is sufficiently small. Then we define ϕl(t) on topological generators ξ, η by the
formula

ϕl(t)(ξ, η) = (ξ(1 + η−1), η).

In order to extend ϕl(t) to the interval (0, t0), where t0 is not small, we
cover the corresponding segment of l by open charts. Then a change of affine
coordinates transforms η into a monomial multiplied by a constant from (C((t)))×.
Moreover, one can choose the change of coordinates in such a way that η �→ Cη
where C ∈ (C((t)))×, |C| < 1 (such change of coordinates preserve the 1-form dy.
Constant C is equal to exp(−L), where L is the length of the segment of l between
two points in different coordinate charts). Therefore η extends analytically in a
unique way to an element of Γ((0,+∞), f∗l ((Ocan

q )×)). Moreover the norm |η|
strictly decreases as t increases, and remains strictly smaller than 1. Similarly to
[KoSo1], Section 10.4 one deduces that ϕl(t) can be extended for all t > 0. This
defines ϕl(t) for l ∈ Lin.

Next step is to extend ϕl(t) to the case when l ∈ Lcom, i.e., to the case when
the line is obtained as a result of a collision of two lines belonging to Lin. Following
[KoSo1], Section 10, we introduce a group G which contains all the automorphisms
ϕl(t), and then prove the factorization theorem (see [KoSo1], Theorem 6) which
allows us to define ϕl(0) in the case when l is obtained as a result of a collision of
two lines l1 and l2. Then we extend ϕl(t) analytically for all t > 0 similarly to the
case l ∈ Lin.

More precisely, the construction of G goes such as follows. Let (x0, y0) ∈ R2

be a point, α1, α2 ∈ (Z2)∗ be 1-covectors such that α1 ∧ α2 > 0. Denote by
V = V(x0,y0),α1,α2 the closed angle

{(x, y) ∈ R2|〈αi, (x, y)− (x0, y0)〉 ≥ 0, i = 1, 2 }

Let Oq(V ) be a C((t))-algebra consisting of series f =
∑

n,m∈Z cn,mξ
nηm,

such that ξη = qηξ and cn,m ∈ C((t)) satisfy the condition that for all (x, y) ∈ V
we have:

1. if cn,m �= 0 then 〈(n,m), (x, y)−(x0, y0)〉 ≤ 0, where we identified (n,m) ∈ Z2

with a covector in (T ∗
p Y )Z;

2. log |cn,m|+ nx+my → −∞ as long as |n|+ |m| → +∞.

For an integer covector μ = adx + bdy ∈ (Z2)∗ we denote by Rμ := R(a,b)

the monomial ξaηb. Then R(a,b)R(c,d) = qad−bcR(c,d)R(a,b) = q−bcR(a+c,b+d). We
define a prounipotent group G := G(q, α1, α2, V ) which consists of automorphisms
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of Oq(V ) having the form f �→ egfe−g where

g =
∑

n1,n2≥0,n1+n2>0

cn1,n2R
−n1
α1
R−n2

α2

where cn1,n2 ∈ C((t)) and

log |cn,m| − n1〈α1, (x, y)〉 − n2〈α2, (x, y)〉 ≤ 0 ∀ (x, y) ∈ V.
The latter condition is equivalent to log |cn,m| − 〈n1α1 + n2α2, (x0, y0)〉 ≤ 0. The
assumption |q| = 1 ensures that the product is well defined.

Let us consider automorphisms as above such that in the series for g the
ratio λ = n2/n1 ∈ [0,+∞]Q := Q≥0 ∪ ∞ is fixed. Such automorphism form
a commutative subgroup Gλ := Gλ(q, α1, α2, V ) ⊂ G. There is a natural map∏

λGλ → G, defined as in [KoSo1], Section 10.2. The factorization theorem proved
in the loc. cit states that this map is a bijection of sets.

Example 3.3.1. Let us consider the automorphism, discussed above:

ϕ(ξ, η) = (ξ(1 + η−1), η).

One can check that the transformation ξ �→ ξ(1 + η−1) has the form

exp(Li2,q(η−1)/(q − 1))ξexp(−Li2,q(η−1)/(q − 1)),

where Li2,q(x) is the quantum dilogarithm function (see, e.g., [BR]). It satisfies the
property (x; q)∞ = exp(Li2,q(−x)/(q − 1)), where (a; q)N =

∏
0≤n≤N(1− aqn) for

1 ≤ N ≤ ∞. Using the formula (x; q)∞ =
∑

n≥0
(−1)nqn(n−1)/2xn

(q;q)n
one can show that

limq→1Li2,q(x) = Li2(x) =
∑

n≥1(−1)nxn/n2, which is the ordinary dilogarithm
function (the latter appeared in [KoSo1], Section 10.4 in the reconstruction problem
of rigid analytic K3 surfaces).

Let us now assume that lines l1 and l2 collide at p = fl1(t1) = fl2(t2),
generating the line l ∈ Lcom. Then ϕl(0) is defined with the help of factorization
theorem. More precisely, we set αi := αli(ti), i = 1, 2 and the angle V is the
intersection of certain half-planes Pl1,t1∩Pl2,t2 defined in [KoSo1], Section 10.3. The
half-plane Pl,t is contained in the region of convergence of ϕl(t). By construction,
the elements g0 := ϕl1(t1) and g+∞ := ϕl2(t2) belong respectively to G0 and G+∞.
The we have:

g+∞g0 =
∏

→
(
(gλ)λ∈[0,+∞]Q

)
= g0 . . . g1/2 . . . g1 . . . g+∞.

Each term gλ with 0 < λ = n1/n2 < +∞ corresponds to the newborn line l
with the direction covector n1αl1(t1) + n2αl2(t2). Then we set ϕl(0) := gλ. This
transformation is defined by a series which is convergent in a neighborhood of p,
and using the analytic continuation we obtain ϕl(t) for t > 0, as we said above.
Recall that every line carries an integer 1-form αl = adx + bdy. By construction,
ϕl(t) ∈ Gλ, where λ is the slope of αl.

Having automorphisms ϕl assigned to lines l ∈ L we proceed as in [KoSo1],
Section 11, modifying the sheaf Ocan

q along each line. We denote the resulting
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sheaf by Omod
q . It is isomorphic to the previously constructed sheaf Omod

q in a
neighborhood of the point (0, 0).

Remark 3.3.2. The appearance of the dilogarithm function in the above example
can be illustrated in the picture of collision of two lines (say, (x, 0) and (0, y)
x, y ≥ 0) which leads to the appearance of the new line, which is the diagonal
(x, x), x ≥ 0. Then the factorization theorem gives rise to the five-term identity
g∞g0 = g0g1g∞, which is the quantum version of the famous five-term identity for
the dilogarithm function.

4. p-adic quantum groups

4.1. How to quantize p-adic groups

Let L be a finite algebraic extension of the field Qp of p-adic numbers, and K be
a discretely valued subfield of the field of complex p-adic numbers Cp containing
L. All the fields carry non-archimedean norms, which we will denote simply by
| • | (sometimes we will be more specific, using the notation like |x|K in order to
specify which field we consider). We denote by OL the ring of integers of L and
by mL the maximal ideal of OL. Let G be a locally L-analytic group, which is the
group of L-points of a split reductive algebraic group G over L. Let H ⊂ G be
an open maximal compact subgroup. We would like to define quantum analogs of
the algebras Cla(G,K), Cla(H,K) of locally analytic functions on G and H , as
well as their strong duals Dla(G,K), Dla(H,K), which are the algebras of locally
analytic distributions on G and H respectively (see [SchT1], [Em1]). Modules over
the algebras of locally analytic distributions were used in [SchT1-5], [Em1] for
a description of locally analytic admissible representations of locally L-analytic
groups. Our aim is to derive “quantum” analogs of those results. In this paper we
will discuss definitions of the algebras only.

First of all we are going to define locally analytic functions and locally ana-
lytic distributions on the quantized compact groupH . Let us explain our approach
in the case of the “classical” (i.e., non-quantum) group H . We are going to present
definitions of Cla(H,K) and Dla(H,K) in such a way that they can be generalized
to the case of quantum groups. The difficulty which one needs to overcome is to
define everything using only two Hopf algebras: the universal enveloping algebra
U(g), g = Lie(G) and the algebra K[G] of regular functions on the algebraic group
G. Our construction consists of three steps.

1) For a “sufficiently small” open compact subgroup Hr ⊂ H we define the
algebra Can(Hr,K) of analytic functions on Hr. Here 0 < r ≤ 1 is a param-
eter, such that H1 = H , and if r1 < r2 then Hr1 ⊂ Hr2 . The strong dual
to Can(Hr,K) is denoted by Dan(Hr,K). It is, by definition, the algebra
of analytic distributions on Hr. It can be described (see [Em1], Section 5.2)
as a certain completion of the universal enveloping algebra U(g) of the Lie
algebra g = Lie(G).
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2) For any r ≤ 1 we define a norm on the algebra of regular functions K[G] such
that the completion with respect to this norm is the algebra of continuous
functions C(Hr,K) on the group Hr.

3) In order to define locally analytic functions onH we consider a family of semi-
norms |f |l on K[G], where f ∈ K[G] and l runs through the set Dan(Hr,K).
More precisely, for every l ∈ Dan(Hr,K) we define a seminorm |f |l =
||(id ⊗ l)(δ(f))||, where δ is the coproduct on the Hopf algebra K[G] and
|| • || is the norm defined above on the step 2). The completion of K[G] with
respect to the topology defined by the family of seminorms |• |l is the algebra
Cla(H,K) of locally analytic functions on H defined in [SchT1]. The strong
dual Dla(H,K) := Cla(H,K)′b is the algebra of locally analytic distributions
introduced in [SchT1].

We recall that the locally analytic representation theory of G developed in [SchT1-
6] is based on the notion of coadmissible module over the algebra Dla(H,K),
where H ⊂ G is an open compact subgroup. Therefore, from the point of view of
representation theory, it suffices to quantize Dla(H,K).

4.2. Quantization of “small” compact subgroups

We would like to quantize Dla(H,K) following the above considerations. We will
do that for the class of algebraic quantum groups introduced by Lusztig (see [Lu1],
[Lu2]). Let us fix q ∈ L× such that |q| = 1 (this restriction is not necessary for
algebraic quantization, but it will be important when we discuss convergent series).
We will assume that there is h ∈ OL such that |h| < 1, exp(h) = q. Let G be a
semisimple simply-connected algebraic group over Z, associated with a Cartan
matrix ((aij)) (more precisely, in order to be consistent with the terminology of
[Lu1] we start with a root datum of finite type associated with a Cartan datum,
see [Lu1], Chapter 2. These data give rise to the Cartan matrix in the ordinary
sense). The algebraic group G(C) of C-points of G was quantized by Drinfeld
(see, e.g., [KorSo] Chapters 1,2). We will need a Z-form of the quantized algebraic
group G introduced by Lusztig (see [Lu1]). It allows us to define the quantized
group over an arbitrary field. We need to be more specific when speaking about
“quantized” group. More precisely, following [Lu1] one can define Hopf L-algebras
Uq(gL) and L[G]q, which are the quantized enveloping algebra of the Lie algebra
gL of G(L) and the algebra of regular functions on the algebraic quantum group
G(L) respectively. Extending scalars to K we obtain Hopf K-algebras Uq(gK) =
K ⊗L Uq(gL) and K[G]q = K ⊗L L[G]q. We will also need Z-forms of the above
Hopf algebras, which will be denoted by U := UA and A[G]v respectively. The
latter are Hopf algebras over the ring A = Z[v, v−1], where v is a variable. The
algebras UL and L[G]q are obtained by tensoring of U and A[G]v respectively with
L in such a way that v acts on L by multiplication by q.

As an A-module the algebra U is isomorphic to the tensor product U � U+⊗
U0 ⊗ U− where U± are the quantized Borel subalgebras and U0 is the quantized
Cartan subalgebra (see [Lu2]). Recall that U+ (resp. U−) is an A-algebra generated
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by the divided powers E(N)
i (resp F (N)

i ) of the Chevalley generators Ei (resp. Fi) of
the quantized enveloping Q(v)-algebra U, where 1 ≤ i ≤ n := rank gL (see [Lu2]).
The algebra U0 is generated over A by the generators Ksi

i

(
Ki

ni

)
v
, where

(
Ki

ni

)
v

=∏
1≤m≤ni

Kiv
di(−m+1)−K−1

i vdi(m−1)

vdim−v−dim . Here ni ∈ Z+, si ∈ {0, 1}, and Ki, 1 ≤ i ≤ n
are the standard Chevalley generators of U. The integer numbers di ∈ {1, 2, 3}
satisfy the condition that ((diaij)) is a symmetric positive definite matrix with
aii = 2, and aij ≤ 0 if i �= j. Recall that there is a canonical reduction of UA at
v = 1, which is a Hopf Z-algebra UZ. It is the universal enveloping of the integer
Lie algebra gZ of the corresponding Chevalley group. We will denote by ti ∈ gL the
generators at v = 1 corresponding to Ki, keeping the same notation E(N)

i , F
(N)
i

for the rest of the generators of gZ. Thus we have the standard decompostion
gZ = g+Z ⊕ hZ ⊕ g−Z , where the Lie algebra g+Z is generated (as a Lie algebra over
Z) by E(N)

i , the Lie algebra g−Z is generated by F (N)
i and the commutative Lie

algebra hZ is generated by
(

ti

N

)
:= ti(ti − 1) · · · (ti − N + 1)/N !, 1 ≤ i ≤ n (see

[St], Theorem 2). Lie algebra gL is generated by the standard Chevalley generators
Ei = E(1)

i , Fi = F (1)
i , ti, 1 ≤ i ≤ n. The Hopf algebra U/(v − 1)U is the universal

enveloping algebra U(gL) of gL.
In what follows, while keeping the above notation, we will assume for sim-

plicity that L = Qp.
We will need the following extension of Uq(gL). Let us fix a basis {αi}1≤i≤n

of simple roots of gL, as well as invariant bilinear form on this Lie algebra such
that (αi, αj) = diaij .

Let hOL = ⊕1≤i≤nZpti. We fix a global chart ψ : hOL → T 0, where T 0 =
T(OL) is the maximal compact torus. Then any element a ∈ T 0 can be written as
an analytic function t = ψ(

∑
1≤i≤n xiti) := t(x1, . . . , xn), where xi ∈ Zp. Let us

introduce a unital topological Hopf L-algebra Uan
q (gL) which is a Hopf L-algebra

generated by E(N)
i , F

(N)
i , 1 ≤ i ≤ n,N ≥ 1 and the elements t(x) = t(x1, . . . , xn) ∈

T 0 as above, such that the relations between E(N)
i , F

(N)
i are the same as in Uq(gL),

and t(x)Ei = Eit(x + vi), t(x)Fi = Fit(x − vi), where vi = (a1i, a2i, . . . , ani). The
elements K±1

i = exp(±dih) (recall that exp(h) = q) belong to this algebra and
together with E(N)

i , F
(N)
i , 1 ≤ i ≤ n,N ≥ 1 generate the Hopf algebra isomorphic

to Uq(gL).
There is a natural non-degenerate pairing Uan

q (gL) ⊗ L[G]q → L which ex-
tends the natural non-degenerate pairing UA⊗A[G]v → A defined in [Lu2]. Extend-
ing scalars we obtain the algebra Uan

q (gK) and the pairing Uan
q (gK)⊗K[G]q → K.

For the rest of this subsection we will assume that di = 1, i.e., ((aij)) is
symmetric, and L = Qp. These conditions can be relaxed. We make them in order
to simplify formulas.

There is a natural action Uan
q (gK)⊗K[G]q → K[G]q (right action) given by

the formula l(f) = (id⊗ l)(δ(f)), where l ∈ Uan
q (gK), f ∈ K[G]q and δ : K[G]q →

K[G]q ⊗K[G]q is the coproduct.
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Recall that K[G]q � ⊕ΛmΛV (Λ) which is the sum of irreducible finite-
dimensional highest weight Uq(gK)-modules V (Λ) with multiplicities mΛ. This
is also an isomorphism of Uan

q (gK)-modules. Each element E(N)
i , F

(N)
i acts locally

nilpotently on K[G]q, while each t(x) acts as a semi-simple linear map.
Let R = ⊕1≤i≤nZαi be the set of roots of gZ. We denote by R+ (resp R−)

the set of positive (resp. negative) roots. We will often write α > 0 (resp. α < 0) if
α ∈ R+ (resp. α ∈ R−). Following [KorSo], Chapter 4, or [Lu1], Chapter 3, 41, one
can construct quantum root vectors E(N)

α , F
(N)
α ∈ Uq(gK), α > 0, N ≥ 1, such that

E
(N)
αi = E(N)

i , F
(N)
αi = F (N)

i (in order to keep track of integrality of the coefficients
we are going to use the formulas from [Lu1]). Let us fix a convex linear order on
the set of roots, such that all negative roots preceed all positive roots (convexity
means that α < α + β < β for positive roots and the oppoiste inequalities for
negative roots) .

For every 0 < r ≤ 1 we define Uq(gK)(r) as a K-vector space consisting of
series

ξ =
∑

m∈Zn,α>0,sα,pα≥0

cm,s,pt
m/m!

∏
α>0

F (pα)
α E(sα)

α ,

such that cm,s,p ∈ K, tm/m! = tm1
1 /m1! · · · tmn

n /mn!, |cm,s,p|r−(|s|+|p|+|m|) → 0
as |m| + |s| + |p| → ∞. Here and below m, s, p denote multi-indices. We define
|ξ|r = supm,s,p |cm,s,p|r−(|s|+|p|+|m|). Let tαi(x), 1 ≤ i ≤ n be an ordered basis
of T 0 (see [SchT1], Section 4). Then, as a topological K-vector space (with the
topology defined by the norm | • |r) the space Uq(gK)(r) is isomorphic to the
K-vector space of infinite series

η =
∑

Ni,Mi≥0,li∈Z

bM,N

∏
1≤i≤n

(tαi(x) − 1)liF
(Mi)
i E

(Ni)
i ,

such that M = (Mi), N = (Ni), and |bM,N,l||tαi(x)− 1|rr−(|M|+|N |) → 0 as |M |+
|N |+ |l| → ∞, equipped with the norm defined by

|η|′r = sup
M,N,l

|bM,N,l||tαi(x)− 1|rr−(|M|+|N |).

It is easy to see that Uq(gK)(r) is aK-Banach vector space. It contains Banach vec-
tor subspaces U+

q (gK)(r) (resp. U−
q (gK)(r)) which are closures of vector subspaces

generated by all the elements E(N)
α (resp. F (N)

α ). It also contains an analytic neigh-
borhood of 1 ∈ T 0, which is an analytic group isomorphic to the ball of radius r in
the Lie algebra hOL . The latter is an analytic Lie group via Campbell-Hausdorff
formula. We can always assume that r belongs to the algebraic closure of L, thus
the corresponding analytic groups are in fact affinoid.

Proposition 4.2.1. The norm |ξ|r (equivalently the norm |η|′r) gives rise to a Ba-
nach K-algebra structure on Uq(gK)(r).

Similarly to the case q = 1 (see [Em1], Section 5.2) one can ask whether
the algebra Uq(gK)(r) corresponds to a “good” analytic group. Let us consider
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the completion of the tensor product Uq(gK)(r) ⊗ Uq(gK)(r) with respect to the
minimal Banach norm. Then we have the following result.

Proposition 4.2.2. The Hopf algebra structure on Uan
q (gK) admits a continuous

extension to Uq(gK)(r), making it into a topological Hopf algebra.

Let us consider the topological K-algebra U (1)
q (gK) which is the projective

limit of Uq(gK)(r) for all 0 < r < 1. Then we have the following result, which is a
corollary of the previous proposition.

Proposition 4.2.3. The Hopf algebra structure on Uan
q (gK) admits a continuous

extension to U (1)
q (gK), making it into a topological Hopf algebra.

Since the elements Eα, Fα act locally nilpotently on K[G]q, there is a well-
defined action of Uq(gK)(r) on K[G]q, which extends to the action of U (1)

q (gK)
on K[G]q. Notice that the pairing Uq(gK)(r) ⊗K[G]q → K, (l, f) �→ l(f) is non-
degenerate. In particular we can define the norm on K[G]q by the formula ||f ||r =
supl �=0

|l(f)|
|l|r , l ∈ Uq(gK)(r).

Let now Hr, r = p−N be a “small” compact open subgroup of G. This means
that the exponential map exp : Zd = hZ ⊕ g+Z ⊕ g−Z → G defines an analytic
isomorphism B(0, r) → Hr, where B(0, r) ⊂ Zd

p is the ball consisting of points
(xi, xα, yα) ∈ Zd

p, 1 ≤ i ≤ n, α > 0 such that xα, yα ∈ pNZp, xi ∈ pNZp, for all
α > 0, 1 ≤ i ≤ n.

Definition 4.2.4. The space of analytic functions on the quantum group Hr (notation
Can(Hr ,K)q) is the completion of K[G]q with respect to the norm || • ||r.

Proposition 4.2.5. The space Can(Hr,K)q is a Banach Hopf K-algebra.

Definition 4.2.6. The algebra of analytic distributions on the quantum group Hr

(notation Dan(Hr,K)q) is the strong dual to Can(Hr,K)q.

One can define a norm || • || on K[G]q such that the completion with respect
to this norm is by definition the algebra C(H,K)q of continuous functions on the
open maximal compact subgroup H = H1 (in the case of q = 1 this is a theorem,
not a definition). Then we proceed as follows.

Any linear functional l ∈ Dan(Hr,K)q defines a seminorm | • |l on K[G]q
such that

|f |l = ||(id⊗ l)δ(f)||.
The collection of seminorms | • |l, l ∈ Dan(Hr,K)q gives rise to a locally convex
topology on K[G]q.

Definition 4.2.7. The space Can(H,Hr,K)q of functions on the quantum group H
which are locally analytic with respect to the quantum group Hr is the completion
of K[G]q in the topology defined by the collection of seminorms | • |l.
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Definition 4.2.8.

a) The space Cla(H,K)q of locally analytic functions on the quantum group H
is the inductive limit lim−→r≤1

Oan(H,Hr,K) (i.e., it consists of functions on
quantum group H which are locally analytic with respect to some Hr, r < 1).

b) The space Dla(H,K)q of locally analytic distributions on the quantum group
H is the strong dual to Cla(H,K)q.

Since some details related to the proof of the following results are not finished,
I formulate it as a conjecture.

Conjecture 4.2.9. Both spaces Cla(H,K)q and Dla(H,K)q are topological Hopf
K-algebras. Furthermore, Dla(H,K)q is a Frechét-Stein algebra in the sense of
[SchT1].

In the next subsection we will explain the definition of the norm || • || in the
case of the group SL2(Zp). The general case is similar, but requires more details.
It will be considered in [So2].

4.3. The GL2(Zp)-case
We will use the notation K[GL2(Qp)]q for the algebra of regular K-valued func-
tions on the algebraic quantum group GL2(Qp). It is known (see [KorSo], Chapter
3) that K[GL2(Qp)]q is generated by generators tij , 1 ≤ i, j ≤ 2 subject to the
relations

t11t12 = q−1t12t11, t11t21 = q−1t21t11, (1)
t12t22 = q−1t22t12, t21t22 = q−1t22t21, (2)
t12t21 = t21t12, t11t22 − t22t11 =

(
q−1 − q

)
t12t21, (3)

The element detq = t11t22 − q−1t12t21 generates the center of the above
algebra. As a result, the algebra K[SL2(Qp)]q of regular functions on quantum
group SL2(Qp) is obtained from the above algebra by adding one more equation

t11t22 − q−1t12t21 = 1. (4)
We are going to use the ideas of the representation theory of quantized alge-

bras of functions (see [KorSo]).
Let V be a separable K-Banach vector space. This means that V contains a

dense K-vector subspace spanned by the orthonormal basis em,m ≥ 0 (orthonor-
mal means that ||em|| = 1 for all m). Let us consider the following representations
Vc, c ∈ K of K[GL2(Qp)]q in V (cf. [KorSo], Chapter 4, Section 4.1):

t11(em) = a11(m)em−1, t21(em) = a21(m)em,

t12(em) = a12(m)em, t22(em) = a22(m)em+1,

detq = c.
Here aij(m) ∈ K and em = 0 for m < 0. In particular the line Ke0 is invariant
with respect to the subalgebra A+ generated by t11, t21. Let us assume that not
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all a11(m) are equal to zero. Then it is easy to see from the commutation relations
between tij that

a21(m) = a21(0)q−m, a12(m) = a12(0)q−m,m ≥ 0.

Moreover

a11(m+ 1)a22(m)− a11(m)a22(m− 1) = (q−1 − q)q−2mh0,

where h0 = a21(0)a12(0). Let s(m) = a11(m)a22(m− 1),m ≥ 1. Then we have

s(m+ 1)− s(m) = (q−1 − q)q−2mh0, s(1) = (q−1 − q)h0.
It follows that

s(m) = (q−1 − q)(1 + q−2 + · · ·+ q−2(m−1))h0 = q(q−2m − 1)h0,

for all m ≥ 1. Since the quantum determinant is equal to c, we have

s(m+ 1) = a11(m+ 1)a22(m) = c+ q−2m−1h0.

Comparing two formulas for s(m) we see that

h0 = a21(0)a12(0) = −cq−1.

From now on we will assume that |1− q| < 1.

Then the operators t12 and t21 are bounded. We also have |s(m)| =
|c(q−m − 1)| = |c|,m ≥ 1.

Assume that a21(0) �= 0. Then the above representations (which are alge-
braically irreducible as long as q is not a root of 1) depend on the parame-
ters a21(0), a11(m), a22(m),m ≥ 0 subject to the relations a11(m)a22(m − 1) =
c(1 − q−2m). We will further specify restrictions on these parameters. The idea
is the same as in [KorSo], Chapter 3, where in order to define continuous func-
tions on the quantum group SU(2) we singled out irreducible representations of
C[SL2(C)]q corresponding to the intersection of the group SU(2) with the big
Bruhat cell for SL2(C). This intersection is the union of symplectic leaves of the
Poisson-Lie group SU(2). Kernel of an irreducible representation defines a sym-
plectic leaf (“orbit method”) which explains the relationship of representation
theory and symplectic geometry. Notice that in the case q = 1 one can define the
algebra of continuous function C(SU(2)) in the following way. For any function
f ∈ C[SL2(C)] one takes its restriction to the above-mentioned union of sym-
plectic leaves. Since the latter is dense in SU(2), the completion of the algebra
C[SL2(C)] with respect to the sup-norm taken over all irreducible representations
corresponding to the symplectic leaves is exactly C(SU(2)). Now we observe that
symplectic leaves in SL2(C) are algebraic subvarieties, therefore they exist over
any field. We will use the same formulas in the case of any p-adic field L (in this
section we take L = Qp). In order to specify a symplectic leaf in GL2(C) we need
in addition to fix the value of the determinant (it belongs to the center of the
Poisson algebra C[GL2(C)]).

Let us recall (see [KorSo], Chapter 3) that to every element t, c ∈ K× one
can assign a 1-dimensional representation Wc,t = Qpe0 of K[GL2(L)]q such that
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t11(e0) = te0, t22(e0) = ct−1e0, and the rest of generators act on e0 trivially. Recall
(see [KorSo], Chapter 1) that complex 2-dimensional symplectic leaves of GL2(C)
are algebraic subvarieties Sc,t given by the equations:

t11t22 − t21t12 = c, t12 = t2t21,

where c, t are non-zero complex numbers. We define symplectic leaves over Qp by
the same formulas, taking c, t ∈ Qp. In order to define the norm of the restriction
of a regular function f ∈ C[GL2(Qp)] on GL2(Zp) we can choose a subset in
the set of symplectic leaves Sc,t such that the union of their intersection with
GL2(Zp) is dense in the latter group. It suffices to take those leaves Sc,t for which
|c| ≤ 1, t ∈ Z×

p , and both t12 and t21 are non-zero.
Let us consider infinite-dimensional representation Vc,t as above for which

a12(0) = t2a21(0), |c| ≤ 1 for a fixed i ≥ 0, and a21(0) �= 0. We will also assume
that the norm of the operators corresponding to t11 and t22 is less or equal than
1. It follows from the equality t2a221(0) = −cq−1 that |a21(0)| = |c|, hence the
norm of the operators corresponding to t12 and t21 is less or equal than |c| ≤ 1.
It follows that the norm of the operator πc,t(f) corresponding to an element f ∈
K[GL2(Qp)]q acting in Vc,t is bounded from above as Vc,t run through the set
of irreducible representations with the above restrictions on c, t. In addition, we
are going to consider only those c ∈ K× for which −cq−1 is a square in K. We
define the norm ||f ||GL2(Zp),q, f ∈ K[GL2(Qp)]q as the supremum of norms of the
operators πc,t(f) corresponding an element f in all representations Vc,t as above.
This is the desired sup-norm which we used in our definition of the algebra of
locally analytic functions.
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Introduction

These notes are inspired by the theory of linear cellular automata. Such an au-
tomaton on the integer lattice Zs can be viewed as a discrete dynamical system
generated by a convolution operator f �−→ Δaf = f ∗ a, acting on functions
f : Zs → K with values in a Galois field K = GF(p). Usually the kernel a of Δa

is concentrated in the nearest neighborhood of 0 ∈ Zs. We are interested more
generally in systems of convolution equations

Δajf = 0, j = 1, . . . , t (1)

with kernel ā = (a1, . . . , at) of bounded (and so finite) support. We address the
following questions.

Problem. Describe the set of all possible pluri-periods of the pluri-periodic solutions
of (1). More precisely, given a pluri-period n̄ ∈ Ns compute the spectral multiplic-
ities of (1) on the space of all n̄-periodic functions on Zs and the dimension of
the corresponding kernel kerΔā.

At present these problems seem to be out of reach. We provide however
different interpretations that could be useful in future approaches.

Counting pluri-periods amounts to counting points on the associated affine
algebraic variety Σā (called symbolic variety) according to their multi-orders. The
symbolic variety Σā is a subvariety in the algebraic torus (K̄×)s, where K̄ stands
for the algebraic closure of K. The multiplicative group K̄× being a torsion group,
the torus is covered by the finite subgroups. We are interested in the distribution
of points on Σā according to the filtration of (K̄×)s by finite subgroups.

The spectral multiplicities which appear in the above problem can be de-
scribed via Chebyshev-Dickson polynomial systems. Such a system associates a
degree d polynomial in K[λ] to any sublattice of Zs of index d, namely the char-
acteristic polynomial of (1) in the corresponding function space. The classical
Chebyshev-Dickson polynomials appear in the simplest case where s = 1. In The-
orem 0.1 we establish the divisibility property for Chebyshev-Dickson systems.
Besides, we give in Proposition 2.11 a description of these systems via iterated
resultants.

Using the harmonic analysis we interpret the points of Σā as ā-harmonic lat-
tice characters; see Theorem 0.2 below. Here ‘ā-harmonic’ simply means ‘satisfying
(1)’. In the classical case, for a solution of (1) the value in a lattice point is a sum
of its values over the neighbor points1; this explains our terminology.

Resuming, in these notes we explore interplay between periods of solutions of
a system of convolution equations on a lattice, on one hand, torsion orders of points
on the associate symbolic variety, on the other hand, and harmonic characters. Let
us develop along these lines in more detail.

1In positive characteristic, one has to replace averaging by summation.
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1. σ+-automaton. In [Za1] we gave a survey on the σ+-automata on rectangular
and toric grids. Let us recall the setup. On the integral lattice Λ = Zs we consider
the following function a+ with values in the binary Galois field GF(2):

a+ = δ0 +
s∑

i=1

(δei + δ−ei) , (2)

where e1, . . . , es stands for the canonical lattice basis. We let Δa+ denote the
convolution operator f �−→ f ∗ a+ acting on binary functions f : Λ → GF(2). It
generates a discrete dynamical system on Λ called a σ+-automaton studied e.g.,
in [MOW], [Su], [GKW], [BR], [SB], [HMP]; see further references in [Za1].

2. σ+-game. The σ+-automaton on the plane lattice Λ = Z2 is related to the soli-
taire game ‘Lights Out’, also called a σ+-game. Let us describe the game. Suppose
that the offices in a department, which will be our table of game, correspond to the
vertices of a grid Pm,n = Lm × Ln, where Lm stands for the linear graph with m
vertices. Suppose also that the interrupters are synchronized in such an uncommon
way that turning off or on in one room changes automatically to the opposite the
states in all rooms neighbors through a wall. The question arises whether the last
person leaving the department can always manage to turn all the lights off.

It is possible to reduce this problem to an analogous one for the toric grid
Tm′,n′ = Cm′ ×Cn′ , where m′ = m+ 1, n′ = n+ 1 and Cm stands for the circular
graph with m vertices. We let F = F(Tm,n,GF(2)) be the function space on the
torus equipped with the standard bilinear form 〈·, ·〉. The move at a vertex v of
Tm,n in the σ+-game, applied to a function (a ‘pattern’) f ∈ F(Tm,n,GF(2)),
consists in the addition

f �−→ f + a+v mod 2 ,

where a+v (u) = a+(u + v) is the shifted star function (2) centered at v ∈ Tm,n.
Thus the σ+-game on the torus Tm,n is winning starting with the initial pattern
f0 if and only if f0 can be decomposed into a sum of shifts of the star function a+.

The linear invariants of the σ+-game form a subspace H ⊆ F orthogonal to
all shifts a+v , v ∈ Tm,n. Indeed

h ∈ H ⇐⇒ 〈h, f + a+v 〉 ≡ 〈h, f〉 mod 2 ∀v ∈ Tm,n, ∀f ∈ F .
Moreover the initial pattern f0 is winning if and only if f0 ∈ H⊥. The functions
h ∈ H are called harmonic [Za1]. This is justified by the following property: for
any vertex v of the grid Tm,n, the value h(v) is the sum modulo 2 of the values of
h over the neighbors of v in Tm,n. Actually H = ker(Δa+). Thus the σ+-game on
a toric grid Tm,n is winning for any initial pattern if and only if 0 /∈ spec(Δa+).
The latter is known to be equivalent to the condition gcd(Tm, T

+
n ) = 1, where

Tm stands for the classical mth Chebyshev-Dickson polynomial over GF(2) and
T+

n (x) = Tn(x+ 1), see [Za1, 2.35] and the references therein.

3. This discussion leads to the following problems.
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• Determine the set of all winning toric grids Tm,n. Equivalently, determine the
set of all pairs (m,n) such that the polynomials Tm and T+

n are coprime. Or,
which is complementary, determine the set of all toric grids Tm,n admitting
a nonzero binary harmonic function.

• Given (m,n) ∈ N2 compute the dimension d(m,n) of the subspace H of all
harmonic functions on Tm,n or, equivalently, the dimension of the subspace
H⊥ of all winning patterns.

For m,n odd we provide several different interpretations of d(m,n). In par-
ticular we will show that, over the algebraic closure K̄ of the base fieldK = GF(2),
there is an orthonormal basis of H⊗ K̄ consisting of harmonic characters on Tm,n

with values in the multiplicative group K̄×. An initial pattern f0 on Tm,n is win-
ning if and only if f0 is orthogonal to all harmonic characters on Tm,n. The latter
ones are in one-to-one correspondence with the (m,n)-bi-torsion points on the
symbolic hypersurface. In our case the symbolic hypersurface is the elliptic cubic
in the torus (K̄×)2 = (A1

K̄
\ {0})2 with equation

x+ x−1 + y + y−1 + 1 = 0 . (3)

Thus to determine all toric grids Tm,n admitting a nonzero binary harmonic func-
tion is the same as to determine all bi-torsion orders of points on the cubic (3),
see [Za1].

4. Linear cellular automata on abelian groups. In the present paper we consider
similar problems for general linear cellular automata on abelian groups. Recall that
the theory of cellular automata aims, in particular, to provide a model for inter-
cellular or inter-molecular interactions. One can regard a linear cellular automaton
on a group, or rather on the Caley graph of a group, as a discrete dynamical
system generated by a convolution operator with kernel concentrated in a nearest
neighborhood of the neutral element [MOW].

In more detail, suppose we are given a collection (a colony) of ‘cells’ placed
at the vertices of a locally finite graph Γ. This determines the relation ‘neighbors’
for cells; neighbors can interact. Each cell can be in one of n cyclically ordered
states; thus the state of the whole collection at a moment t is codified by a function
ft : Γ → Z/nZ. In the subsequent portions of time, the cells simultaneously change
their states. According to a certain local rule, the new state of a cell depends on
the previous states of the given cell and of all its neighbors.

To define a cellular automaton, say, σ on Γ means to fix at each vertex v
of Γ such a local rule, which does not depend on t. Such a collection of local
rules determines a discrete dynamical system σ : ft �−→ ft+1. Usually the edges
[v0, v1], . . . , [v0, vs] at v0 are ordered. So the local rule at v0 is a function φv0 :
(Z/nZ)s+1 → Z/nZ, and

ft+1(v0) = φv0 (ft(v0), ft(v1), . . . , ft(vs)) . (4)

In the case where the graph Γ is homogeneous under a group action on Γ, it
is natural to assume that the family of local rules is as well homogeneous. Consider
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for instance the Caley graph Γ of a finitely generated group G with a generating
set {g1, . . . , gs}. Given a local rule φe for the neutral element e ∈ G, we can define
φg for any vertex g ∈ G as the shift of φe by g.

For an additive cellular automaton the local rule φe is a linear function.
Consequently such an automaton is generated by a convolution operator Δa :
f �−→ f ∗ a on G with kernel a supported in the nearest neighborhood of e. This
kernel is just the coefficient function of φe. The evolution equation (4) can be
written in this case as a heat equation

∂t(ft) := ft+1 − ft = Δa′(ft), where a′ = a− δe .
Here we restrict to additive cellular automata on lattices or toric grids, viewed

as the Caley graphs of finitely generated free abelian groups and finite abelian
groups, respectively. In contrast with the classical setting, we allow distant inter-
actions. So we deal with general convolution operators.

5. Convolution operators on lattices and Chebyshev-Dickson systems. For a field
K of characteristic p > 0 and for a group G we let F(G,K) and F0(G,K) denote
the vector space of all functions f : G → K, of all those with finite support,
respectively. We consider the convolution

∗ : F(G,K)×F0(G,K) � (f, a) �−→ f ∗ a ∈ F(G,K) ,

where
f ∗ a(g) =

∑
h∈G

f(h)a(h−1g) ∀g ∈ G .

Fixing a we get the convolution operator Δa : f �−→ f ∗ a acting on the space
F(G,K). All such operators form aK-algebra ConvK(G) with Δa1◦Δa2 = Δa2∗a1 .

6. For a subgroupH ⊆ G we let Δa|H denote the restriction of Δa to the subspace
FH(G,K) ⊆ F(G,K) of all H-periodic functions. Clearly FH(G,K) is of finite
dimension whenever H is of finite index in G, and dimFH(G,K) = [G : H ].

In the sequel G = Λ will be a lattice i.e., a free abelian group of finite rank.
We let L denote the set of all finite index sublattices in Λ. Ordered by inclusion,
L can be regarded as an ordered graph. Given a function a ∈ F0(Λ,K) with finite
support, we consider the spectra and the spectral multiplicities of Δa|Λ′, Λ′ ∈ L,
in the algebraic closure K̄ of K. In particular we consider the function

d(a,Λ′) = dim ker (Δa|Λ′), Λ′ ∈ L . (5)

The family of characteristic polynomials

CharPolya,Λ′ = CharPoly(Δa|Λ′), Λ′ ∈ L,
will be called a Chebyshev-Dickson system. Recall that the nth Dickson polynomial
Dn(x, α) over a finite field F is the unique polynomial verifying the identityDn(x+
α/x, α) = xn +αn/xn, where α ∈ F . Whereas for F = GF(2), the nth Chebyshev-
Dickson polynomial of the first kind is Tn(x) = Dn(x, 1). We recover the latter one
as Tn = CharPolya,Λ′ when taking K = GF(2), a = a+ − δe, Λ = Z and Λ′ = nZ.
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The classical Chebyshev-Dickson system (Tn) possesses a number of interest-
ing properties [LMT]. It forms a commutative semigroup under composition that
is, Tn ◦ Tm = Tmn. Furthermore Tm divides Tn if m | n, moreover, gcd(Tm, Tn) =
Tgcd(m,n), etc. The composition property is not stable under shifts in the argu-
ment, and so does not hold in our more general setting. However, the divisibility
property does hold. Namely we have the following

Theorem 0.1. CharPolya,Λ′′ divides CharPolya,Λ′ whenever Λ′ ⊂ Λ′′. Moreover, if
the index of Λ′ in Λ′′ equals pα then CharPolya,Λ′ = (CharPolya,Λ′′)pα

.

The second assertion allows to restrict to the subgraph L0 ⊆ L of all sublat-
tices Λ′ ⊆ Λ with indices coprime with p. For a sublattice Λ′ ∈ L0, the dimension
d(a,Λ′) of the kernel of Δa equals the multiplicity of the zero root of the polyno-
mial CharPolya,Λ′ .

7. Systems of convolution equations. We let K = GF(p) be the Galois field of
characteristic p > 0, K̄ be the algebraic closure of K and K̄× be the multiplicative
group of K̄. We fix a cortege ā = (a1, . . . , at) consisting of functions aj : Λ → K̄
with bounded supports.

Given a lattice Λ we consider the system of convolution equations

Δaj (f) := f ∗ aj = 0, j = 1, . . . , t, where f : Λ→ K̄ . (6)

We let d(ā, n̄) denote the number of linearly independent n̄-periodic solutions of
(6). We call these solutions ā-harmonic.

We let

CharPolyā,Λ′ = gcd
(
CharPolyaj ,Λ′ : j = 1, . . . , t

)
,

ker(Δā|Λ′) =
t⋂

j=1

ker
(
Δaj |Λ′) and d(ā,Λ′) = dim ker(Δā|Λ′) .

Thus CharPolyā,Λ′(λ) = 0 if and only if there exists a nonzero Λ′-periodic eigen-
function f ∈ FΛ′(Λ, K̄) of Δā with

Δaj (f) = λ · f ∀j = 1, . . . , t .

The set of zeros of CharPolyā,Λ′ counted with multiplicities is called the spectrum
of Δā|Λ′, and is denoted by spec (Δā|Λ′). The set of spectra forms a graph Ξ or-
dered by inclusion. Due to the divisibility property in Chebyshev-Dickson systems,
the map spec : L → Ξ of ordered graphs is monotonous.

8. Symbolic variety. Given a basis V = (v1, . . . , vs) of Λ we can identify Λ with Zs.
To a function a : Λ = Zs → K̄ with bounded support we associate the Laurent
polynomial

σa =
∑

u=(u1,...,us)∈Zs

a(u)x−u ∈ K̄[x1, x−1
1 , . . . , xs, x

−1
s ], j = 1, . . . , t.
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A cortege ā = (a1, . . . , an) determines an affine algebraic variety

Σā = {σaj = 0 : j = 1, . . . , t}
in the torus (K̄×)s. We call Σā the symbolic variety associated with the system
(6).

The logarithm of the Weil zeta function counts the points on Σā over the
Galois fields GF(q), where q = pr, r ≥ 0. Whereas our purpose is to count, for
every multi-index n̄ = (n1, . . . , ns) ∈ Ns with all ni coprime to p, the number

dā(n̄) = card (Σā,n̄)

of n̄-torsion points on the symbolic variety Σā, where

Σā,n̄ = {ξ = (ξ1, . . . , ξs) ∈ Σā : ξni

i = 1, i = 1, . . . , s} .
Due to Theorem 0.2(a) below this same quantity arises in the spectral problem:

dā(n̄) = d(ā, n̄) .

9. Harmonic characters. We let Char(Λ, K̄×) denote the set of all K̄×-valued
characters of Λ, that is of all homomorphisms χ : Λ→ K̄×. A character χ is called
ā-harmonic if the function χ : Λ→ K̄ is; Charā−harm(Λ, K̄×) stands for the set of
all ā-harmonic characters of Λ.

We denote by Nco(p) the set of all naturals coprime with p. Given a multi-
index n̄ ∈ Ns

co(p) we consider the finite subgroup of the torus (K̄×)s

μn̄ := {ξ = (ξ1, . . . , ξs) ∈ (K̄×)s : ξni

i = 1, i = 1, . . . , s} .
Fixing a basis V = (v1, . . . , vs) of Λ we consider the product sublattices

Λ′ = Λn̄,V =
s∑

i=1

niZvi ⊆ Λ .

For such a sublattice Λ′ ⊆ Λ, the Fourier transform provides a natural one to one
correspondence between the set of all ā-harmonic characters of the quotient group
G = Λ/Λ′ and the set of points on the symbolic variety with multi-torsion order
dividing n̄. Namely the following hold.

Theorem 0.2.

(a) For any sublattice L′ ∈ L0, the subspace ker(Δā|Λ′) possesses an orthonormal
basis of ā-harmonic characters. In particular there are

d(ā,Λ′) = multλ=0 (CharPolyā,Λ′)

such characters.
(b) Fixing a basis V of Λ provides a natural bijection Char(Λ, K̄×)

∼=−→ (K̄×)s.
This bijection restricts to

Charā−harm(Λ, K̄×)
∼=−→ Σā ⊆ (K̄×)s .

Moreover ∀n̄ ∈ Ns
co(p) it further restricts to

Charā−harm(Λ/Λn̄,V , K̄
×)

∼=−→ Σā,n̄ := Σā ∩ μn̄ .
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In Section 1 we prove the second part of Theorem 0.1, see Corollary 1.5.
The first parts of Theorems 0.1 and 0.2 are proven in Section 2, see Corollary 2.2
and Theorem 2.4, respectively. We also deduce an expression of polynomials in a
Chebyshev-Dickson system via iterated resultants, see Proposition 2.11.

In Section 3 we prove Theorem 0.2(b) (see Proposition 3.1). Besides, we
provide in Theorem 3.2 a dynamical criterion for existence of a nonzero periodic
ā-harmonic function with a given pluri-period. Or what is the same, for existence
of a point on the symbolic variety2 with a given multi-torsion order. In addition we
provide a formula for the orthogonal projection onto the space of all ā-harmonic
functions.

In the final Section 4 we study similar problems over finite fields. Assuming p-
freeness, in Theorem 4.4 we show that any ā-harmonic function with values in the
original Galois field GF(p) is a linear combination of traces of harmonic characters.

The interested reader will find some additional information and many con-
crete examples in [Za1] and in the preliminary version [Za2] of this paper. In par-
ticular, he will find there a discussion concerning the partnership graph; especially
Zagier’s observation on finiteness of every connected component of this graph in
the case of the σ+-automaton over the Galois field GF(2) on a plane lattice.

The author is grateful to Don Zagier for clarifying discussions, in particular
for the idea of processing in the present generality. Our thanks also to Vladimir
Berkovich for a kind assistance.

1. Sylow p-subgroups and Chebyshev-Dickson systems

The Dickson polynomials Dn(x, a) ∈ Z[x, a] (En(x, a) ∈ Z[x, a], respectively) of
degree n of the first (second) kind can be characterized by the identities [LMT,
ACZ]:

Dn(μ1 +μ2, μ1μ2) = μn
1 +μn

2 resp. En(μ1 +μ2, μ1μ2) = μn+1
1 −μn+1

2 /(μ1−μ2) .

Being reduced modulo a prime p, they also satisfy the relations [LMT, BZ]:

Dpαm = (Dm)pα

resp. Epαm = (Em)pα

.

In this section we show that analogous relations hold for any Chebyshev-Dickson
polynomial system CharPolya : L → K[x] (see Corollary 1.5). Here K denotes a
field of characteristic p > 0, Λ a lattice, a ∈ F0(Λ,K) a K-valued function on Λ
with bounded support and L the ordered graph of all finite index sublattices Λ′ ⊆
Λ, see §6 in the Introduction. This allows to recover CharPolya by its restriction
to the subset L0 ⊆ L of all sublattices with indices coprime to p.

2Which can be an arbitrary affine algebraic variety in a torus.
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For a finite group G and a subset A ⊆ G we let δA =
∑

u∈A δu denote the
characteristic function of A, where δu stands for the delta-function on G concen-
trated on u ∈ G. For a function a =

∑
u∈G a(u)δu on G we let

|a|A| =
∑
u∈A

a(u), CharPolya,G = det(Δa − λ · 1) and d(a,G) = dimker(Δa) .

The following Pushforward Lemma is simple, so we leave the proof to the
reader.

Lemma 1.1. For a normal subgroup H ⊆ G and for any a ∈ F0(G,K), the function

a∗(v +H) = |a|(v +H)| =
∑

v′∈H

a(v + v′) (7)

is a unique function in F0(G/H,K) satisfying a∗◦π = a∗δH, where π : G	 G/H
is the canonical surjection. Moreover, there is a commutative diagram

FH(G,K)
Δa� FH(G,K)

F(G/H,K)

∼=
� Δa∗� F(G/H,K) ,

∼=
�

where

FH(G,K) = {f ∈ F(G,K) : τh(f) = f ∀h ∈ H} and τh(f)(g) = f(gh) .

The convolution algebra ConvK (G) consists of all operators on the space
F0(L,K) commuting with shifts. Moreover the shifts (τu : u ∈ G) generate
ConvK (G) as a K-vector space. Indeed ∀a ∈ F0(G,K) one has

Δa =
∑
g∈G

a(g)τg−1 . (8)

Notice that τg−1 = Δδg and a = Δa(δe), where e ∈ G denotes the neutral element.
For an endomorphism A ∈ End(An

K) we let A = SA + NA be the Jordan
decomposition, where SA is semisimple, NA nilpotent and SA, NA commute. It is
defined over the algebraic closure K̄ of K.

Proposition 1.2. Let G = F ×H be a direct product of two abelian groups, where
H =

⊕n
i=1 Z/priZ. Then for any a ∈ F0(G,K) the following hold.

(a) SΔa = SΔa∗ ⊗ 1H, where a∗ ∈ F(F,K) is as in (7) above.
(b) CharPolya,G = (CharPolya∗,F )ord H .

Consequently there exists a nonzero a-harmonic function on G if and only if there
is a nonzero a∗-harmonic function on F .
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Proof. (a) follows by induction on n, once it is established for n = 1. Letting
H = Z/prZ we will show that

Δpr

a = Δpr

a∗ ⊗ 1H . (9)

To this end, decomposing u ∈ G as u = u′ + u′′ with u′ ∈ F and u′′ ∈ H , we
obtain

Δpr

a =
∑
u∈G

[a(u)]p
r

(τ−u)pr

=
∑
u′∈F

( ∑
u′′∈H

[a(u′ + u′′)]p
r

)
(τ−u′)pr

=

( ∑
u′∈F

a∗(u′)τ−u′

)pr

⊗ 1H = Δpr

a∗ ⊗ 1H .

This proves (9). By virtue of (9) we get

Spr

Δa
+Npr

Δa
= Spr

Δa∗
⊗ 1H +Npr

Δa∗
⊗ 1H .

By the uniqueness of the Jordan decomposition we have Spr

Δa
= Spr

Δa∗
⊗ 1H and so

(a) follows. Now (b) is immediate from (a). �

From Proposition 1.2 we deduce the following corollary.

Corollary 1.3. If G =
⊕k

i=1 Z/priZ, where p = charK, then

CharPolya,G = (x− |a|)ord G .

In particular there exists an a-harmonic function on G if and only if the constant
function 1 on G is a-harmonic, if and only if |a| = 0.

Remark 1.4. LettingK = GF(2), G = Z/4Z and a = a+ = δ0̄+δ1̄+δ−1̄ ∈ F(G,K)
we obtain CharPolya,G = (x+1)4. Hence the algebraic multiplicity of the spectral
value λ = 1 of Δa equals 4. Although SΔa = 1G, the nilpotent part NΔa is present
and dim ker(Δa + 1G) = 2.

Given ā = (a1, . . . , at) ∈ (F0(G,K))t we let as before

ker (Δā) =
t⋂

j=1

ker (Δaj ), d(ā, G) = dimker (Δā)

and

CharPolyā,G = CharPoly(Δā) = gcd
(
CharPoly(Δaj ) : j = 1, . . . , t

)
.

For a subgroup H ⊆ G we let

CharPolyā∗,G/H = CharPoly(Δā|FH(G,K)) ,

where ā∗ = ((a1)∗, . . . , (an)∗) ∈ F(G/H,K).
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Corollary 1.5. Let Λ be a lattice and Λ′ ⊆ Λ a sublattice of index pαq, where
q �≡ 0 mod p. Then there exists a unique intermediate sublattice Λ′′ of index q in
Λ, where Λ′ ⊆ Λ′′ ⊆ Λ. Moreover ∀ā ∈ (F0(Λ,K))t one has

CharPolyā,Λ′ = (CharPolyā,Λ′′)pα

. (10)

Proof. It is enough to show (10) for t = 1; then it follows easily for any t ≥ 1. So
letting t = 1 and a1 = a we decompose

G = Λ/Λ′ = F ⊕G(p) ,

where G(p) is the Sylow p-subgroup of G and ordF = q. We let Λ′′ = π′−1(G(p)),
where π′ : Λ 	 G, so that Λ/Λ′′ ∼= F . Due to the Pushforward Lemma 1.1,

CharPolya,Λ′ = CharPolyπ′
∗a,G and CharPolya,Λ′′ = CharPolyπ′′

∗ a,F , (11)

where π′′ : Λ 	 F . Now (10) follows from (11) in view of Proposition 1.2(b). �

2. Chebyshev-Dickson systems in the p-free case

2.1. Naive Fourier transform on convolution algebras

For a finite group G there are natural isomorphisms

(F(G,K), ∗) ϕ−→ ConvK (G)
ψ−→ K[G] ,

where ϕ : a �−→ Δa, ConvK (G) is the convolution algebra and K[G] is the group
algebra of G over K. For instance [MOW], the group ring of a finite abelian group

G =
s⊕

i=1

Z/niZ

is the truncated polynomial ring

K[G] =
s⊗

i=1

K[xi]/(xni

i − 1) .

The ideals of F(G,K) are called convolution ideals. In particular, for any subgroup
H ⊆ G, the translation invariant subspace

FH(G,K) = {f ∈ F(G,K) : τh(f) = f ∀h ∈ H}
is a convolution ideal.

The composition ψ ◦ ϕ : F(G,K) → K[G], a �−→ ã, provides a naive
Fourier transform, which sends Δa to the operator of multiplication by ã in K[G]
and ker(Δa) to the annihilator ideal Ann(ã), where (ã) ⊆ K[G] is the principal
ideal generated by ã. Thus G possesses a nonzero a-harmonic function if and only
if ã ∈ K[G] is a zero divisor.

The next result follows immediately from the Burnside Theorem. Alterna-
tively it can be deduced using the Fourier transform, see below.

Lemma 2.1. For any finite abelian group G of order coprime to p the following
hold.
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(a) F(G, K̄) admits a decomposition into a direct sum of one-dimensional
ConvK̄(G)-submodules generated by characters:

F(G, K̄) =
⊕

g∨∈G∨

(g∨) .

(b) Any convolution ideal I ⊆ F(G, K̄) is principal, generated by the sum of
characters contained in I. Furthermore there is a decomposition

F(G, K̄) = I ⊕Ann(I) .

In particular, for any subgroup H ⊆ G one has

F(G, K̄) = FH(G, K̄)⊕Ann(FH(G, K̄)) ,

where
FH(G, K̄) =

∑
H⊆ker(g∨)

(g∨) .

2.2. Dual group and Fourier transform

In the sequel we let K = GF(pr). Thus the multiplicative group K̄× is a torsion
group, with torsion orders coprime with p. We let G be a finite abelian group of
order coprime with p, and Nco(p) be the set of all positive integers coprime to p.

The field K̄ contains all roots of unity with orders dividing ordG. Hence
the characters of G can be realized as homomorphisms G → K̄×. This defines a
natural embedding G∨ ↪→ F(G, K̄).

The Fourier transform F : F(G, K̄) → F(G∨, K̄) is defined as usual [Nic] via

F : f �−→ f̂ , where f̂(g∨) =
∑
g∈G

f(g)g∨(g), g∨ ∈ G∨ . (12)

Its inverse F−1 : F(G∨, K̄)→ F(G, K̄) can be defined via

F−1 : ϕ �−→ ϕ̂, where ϕ̂(g) =
1

ord (G)

∑
g∨∈G∨

ϕ(g∨)g∨(g−1), g ∈ G .

With this notation ˆ̂
f = f and ˆ̂ϕ = ϕ, which does not lead to a confusion as we

never exploit the Fourier transform on the dual group G∨.
Furthermore F sends the convolution in the ring F(G, K̄) into the pointwise

multiplication on F(G∨, K̄) giving an isomorphism of K̄-algebras. The convolution
operator Δa is sent to the operator of multiplication by â. The Fourier transform
of a character is proportional to a delta-function. So up to a scalar factor, any
character g∨ ∈ G∨ is a convolution idempotent, and any convolution idempotent
of (F(G, K̄), ∗) is proportional to a sum of characters.

In the K̄-vector space F(G, K̄) we consider the non-degenerate symmetric
bilinear form

〈f1, f2〉1 =
1

ord (G)

∑
g∈G

f1(g)f2(g−1) =
1

ord (G)
f1 ∗ f2(e) .
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Its Fourier dual is the following bilinear form in F(G∨, K̄):

〈ϕ1, ϕ2〉2 =
1

(ord (G))2
∑

g∨∈G∨

ϕ1(g∨)ϕ2(g∨) .

Indeed we have 〈f̂1, f̂2〉2 = 〈f1, f2〉1 . The characters (g∨ : g∨ ∈ G∨) form an
orthonormal basis in F(G, K̄) with respect to the form 〈·, ·〉1.
2.3. Divisibility in Chebyshev-Dickson systems

In this section G denotes a finite abelian group of order coprime to p. For a t-tuple
ā = (a1, . . . at) ∈ (F0(G, K̄))t we let as before ker (Δā) =

⋂t
j=1 ker (Δaj ) and

CharPolyā,G = CharPoly(Δā) = gcd
(
CharPoly(Δaj ) : j = 1, . . . , t

)
.

By the Pushforward Lemma 1.1, for a subgroup H ⊆ G we have

CharPolyā∗,G/H = CharPoly(Δā|FH(G, K̄)) .

We let

V (aj) = â−1
j (0) ⊆ G∨ and V (ā) =

t⋂
j=1

V (aj) ⊆ G∨ .

We also let Charā−harm(G, K̄×) denote the set of all ā-harmonic characters of G.
The following corollary is straightforward from Lemma 2.1.

Corollary 2.2. (a) For any a ∈ F0(G, K̄), the characters form an orthonormal
basis F(G, K̄) of eigenfunctions of Δa, the matrix of Δa in this basis is
diagonal and so

CharPoly(Δa) =
∏

g∨∈G∨

(x− â(g∨)) .

Consequently spec(Δa) = â(G∨) ⊆ K̄, ker(Δa) =
(
δ̂V (a)

)
and

d(a,G) = card V (a) = mult0CharPoly(Δa) .

(b) Similarly for any ā = (a1, . . . , at) ∈ (F0(G, K̄))t, the ā-harmonic characters
form an orthonormal basis in ker(Δā),

ker (Δā) =
(
δ̂V (ā)

)
and d(ā, G) = card V (ā) .

Moreover there is a bijection V (ā) ∼= Charā−harm(G, K̄×). Consequently the
group G admits a nonzero ā-harmonic function if and only if it admits an
ā-harmonic character.

A convolution ideal I ⊆ F(G, K̄) and the annihilator ideal Ann(I) being Δā-
stable (see Lemma 2.1), the Pushforward Lemma 1.1 yields the following result.

Proposition 2.3. For any convolution ideal I ⊆ F(G, K̄), any subgroup H ⊆ G
and any ā ∈ (F0(G, K̄))t one has

CharPoly(Δā|I) | CharPoly(Δā) and CharPolyā∗,G/H | CharPolyā,G . (13)
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Now we can readily deduce the divisibility property in Chebyshev-Dickson
systems disregarding the assumption of p-freeness.

Theorem 2.4. For any Λ1,Λ2 ∈ L we have:

CharPolyā,Λ1+Λ2
| gcd(CharPolyā,Λ1

, CharPolyā,Λ2
)

and
lcm(CharPolyā,Λ1

, CharPolyā,Λ2
) | CharPolyā,Λ1∩Λ2

.

Consequently CharPolyā,Λ2
| CharPolyā,Λ1

whenever Λ1 ⊆ Λ2.

Proof. It suffices to show the latter assertion, then the former ones follow imme-
diately. For a chain of finite index sublattices Λ′ ⊆ Λ′′ ⊆ Λ we let G = Λ/Λ′,
H = Λ′′/Λ′ so that G/H = Λ/Λ′′, and

ā′ = π′∗ā ∈ F(G, K̄), ā′′ = π′′∗ ā ∈ F(G/H, K̄) ,

where π : G	 G/H , π′ : Λ 	 G and π′′ = π ◦ π′ : Λ 	 G/H .
We assume first that the index of Λ′ in Λ is coprime with p and so Λ′,Λ′′ ∈ L0.

By the Pushforward Lemma 1.1 we obtain

CharPolyā,Λ′ = CharPolyā′,G and CharPolyā,Λ′′ = CharPolyā′′,G/H .

Hence by (13)

CharPolyā,Λ′′ | CharPolyā,Λ′ . (14)

In the general case, assuming that Λ1 ⊆ Λ2 we consider the decomposition
G1 = Λ/Λ1 = F ⊕ G1(p), where G1(p) ⊆ G1 is the Sylow p-subgroup. Letting
G2 = Λ2/Λ1 ⊆ G1 we obtain G2(p) = G1(p) ∩ G2. For the sublattices Λ′′

i =
π−1(Gi(p)) ⊆ Λ, i = 1, 2, where π : Λ 	 G1, we have Λ′′

i ⊇ Λi and Λ′′
1 , Λ

′′
2 ∈ L0.

Since also Λ′′
1 ⊆ Λ′′

2 , by virtue of (14) we obtain CharPolya,Λ′
2
| CharPolya,Λ′

1
. By

(10) CharPolya,Λi
= (CharPolya,Λ′′

i
)pαi , i = 1, 2, where α2 ≤ α1. Now the result

follows. �

Remark 2.5. Letting Λ′′ = Λ we deduce that (x − |a|) | CharPolya,Λ′ ∀Λ′ ∈
L, ∀a ∈ F0(Λ, K̄). We note that the eigenspace in F(Λ, K̄), which corresponds to
the eigenvalue |a| of Δa, contains the constant function 1; cf. Corollary 1.3.

Examples 2.6. 1. Letting G = G1 × G2 and a = a1 ⊗ a2 ∈ F(G, K̄), where
ai ∈ F(Gi, K̄), i = 1, 2, we obtain

CharPoly(Δa) =
∏
i,j

(x− λiμj) ,

where λ1, . . . , λord (G1) and μ1, . . . , μord (G2) denote the eigenvalues of Δa1 and Δa2 ,
respectively.

2. Similarly, letting a = a1⊗1⊕1⊗a2 ∈ F(G, K̄), where again G = G1×G2,
we obtain

CharPoly(Δa) =
∏
i,j

(x− (λi + μj)) .
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The latter formula applies in particular to the graph Laplacians with kernels a−i =
a+Gi

− δ0, i = 1, 2 and a− = a+G − δ0, respectively, where a+ is the star-function as
in (2). In the characteristic 2 case cf. Bacher’s Lemma 2.10(a) in [Za1].

2.4. Symbol of a convolution operator

Definition 2.7. Fixing a lattice Λ of rank s, a basis V = (v1, . . . , vs) of Λ and an
n-tuple n̄ = (n1, . . . , ns), where ni ∈ N, we let

Λn̄,V =
s∑

i=1

niZvi ∼=
s⊕

i=1

niZ

be the product sublattice of Λ generated by n1v1, . . . , nsvs. There is an isomor-
phism of K-algebras

σV : ConvK(Λ)
∼=−→ K[x1, x−1

1 , . . . , xs, x
−1
s ], Δa �−→ σa,V ,

which associates to a convolution operator Δa on Λ its V-symbol, that is the
Laurent polynomial in s variables

σa,V =
∑

v=
∑ s

i=1 αiei∈Λ

a(v)x−α(v) =
∑

v=
∑ s

i=1 αiei∈Λ

a(v)x−α1
1 · . . . · x−αs

s . (15)

The inverse σ−1
V is given by

x−1
i �−→ τvi and xi �−→ τ−vi , i = 1, . . . , s .

The algebraic hypersurface in the s-torus

Σa,V = σ−1
a,V(0) ⊆ (K×)s (16)

associate with Δa will be called the symbolic hypersurface. Similarly, for a sequence
of convolution operators Δā = (Δaj : j = 1, . . . , t) its symbolic variety is the affine
subvariety in the torus

Σā,V =
t⋂

j=1

σ−1
aj ,V(0) ⊆ (K×)s . (17)

Example 2.8. (see [Za1]) For K = GF(2), Λ = Z2, V = (e1, e2) and a = a+ the
symbolic hypersurface Σa+,V is the elliptic cubic (3) in (K̄×)2. Alternatively, this
cubic can be given by the equation

x2y + xy2 + xy + x+ y = 0 .

For a finite abelian group G = Zn̄ =
⊕

Z/niZ, where n̄ = (n1, . . . , ns) ∈
Ns

co(p), we let U = (e1, . . . , es) denote the standard base of G. We let also

μn̄ =
s⊕

i=1

μni ⊆ (K̄×)s ,

where μn ⊆ K̄× stands for the cyclic group of nth roots of unity. The correspon-
dence

g∨ �−→ (g∨(e1), . . . , g∨(e1))
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yields an isomorphism
ϕ : G∨ ∼=−→ μn̄ .

This isomorphism relates the symbol of a convolution operator Δa and the Fourier
transform â of its kernel.

Lemma 2.9. For any a ∈ F(G, K̄) we have

â = (σa,V |μn̄) ◦ ϕ .
Consequently

CharPolya,n̄,V := CharPolya,Λn̄,V =
∏

ξ∈μn̄

(x− σa,V(ξ)) . (18)

Proof. For any g ∈ G, g∨ ∈ G∨, letting ξi = g∨(ei), i = 1, . . . , s, by (8) and (15)
we obtain:

â(g) · g∨(g) = Δa(g∨)(g) =

(∑
v∈G

a(v)τ−v

)
(g∨)(g) =

∑
v∈G

a(v)τ−v(g∨)(g)

=
∑

v=
∑ s

j=1 αjej∈G

a(v)g∨(g − v) = σa,V(ξ1, . . . , ξs) · g∨(g) = σa,V(ξ) ,

where ξ = (ξ1, . . . , ξs) ∈ μn̄. Indeed

g∨(g − v) = g∨(g)g∨(−v) = g∨(g)g∨

⎛⎝− s∑
j=1

αjej

⎞⎠ = g∨(g)
s∏

j=1

ξ−αi

i .

The equality (18) follows now from Proposition 2.2. �

2.5. Chebyshev-Dickson systems and iterated resultants

Definition 2.10. We consider a Laurent polynomial Ω = P/yα, where P ∈
K̄[y1, . . . , ys] is a polynomial coprime with yα = yα1

1 · . . . ·yαs
s . Given a multi-index

n̄ = (n1, . . . , ns) ∈ Ns, we define recursively the iterated resultant resn̄(Ω) := Qs ∈
K̄[x] via

Q0(x, y1, . . . , ys) = yαx− P (y1, . . . , ys)
and

Qi(x, yi+1, . . . , ys) = resyi (Qi−1(x, yi, . . . , ys), yni

i − 1) ∈ K̄[x, yi+1, . . . , ys],

i = 1, . . . , s. In detail

resn̄(Ω) = resys (. . . resy1 (yα1
1 . . . y

αs
s x− P (y1, . . . , ys), yn1

1 − 1) , . . . , yns
s − 1) .

Clearly λ = Ω(ξ) = P (ξ)/ξα for some ξ ∈ μn̄ if and only if resn̄(Ω)(λ) = 0.

Given a lattice Λ of rank s, a basis V of Λ and a multi-index n̄ ∈ Ns
co(p), we

let as before Λn̄,V denote the product sublattice
⊕
niZvi of Λ. In the p-free case

we deduce from Lemma 2.9 the following expression for the Chebyshev-Dickson
polynomial CharPolya,n̄,V in (18) as the multivariate iterated resultant of the
symbol σa,V in (15). We leave the details to the reader.
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Proposition 2.11. In the notation as above, the characteristic polynomial of the re-
striction Δa|Λn̄,V , where a ∈ F(Λ, K̄) and n̄ ∈ Ns

co(p), can be expressed as follows:

CharPolya,n̄,V = resn̄(σa,V) .

Cf. [HMP, 3.3] for an alternative expression of the characteristic polynomials
of σ+-automata on multi-dimensional grids in terms of iterated resultants.

Example 2.12. Using the above proposition we derive the following expression for
the classical Chebyshev-Dickson polynomials Tn of the first kind over the Galois
field GF(2):

Tn(x) = resy(y2 + xy + 1, yn + 1) .

3. Counting points on symbolic variety

3.1. Harmonic characters as points on symbolic variety

We let as before K = GF(pr). Given ā = (a1, . . . , at) ∈ (F0(Λ, K̄))t, we establish
in Proposition 3.1 below a natural bijection between the set of points on the
symbolic variety Σā,V in (17) and the set Charā−harm(Λ, K̄×) of all ā-harmonic
characters of Λ.

Since K̄× is a torsion group, given a basis V = (v1, . . . , vs) of Λ, any char-
acter g∨ ∈ Char(Λ, K̄×) is (n̄,V)-periodic for n̄ = (n1, . . . , ns), where ni =
ord (g∨(vi)) ∈ Nco(p), i = 1, . . . , s. Letting G = Gn̄,V = Λ/Λn̄,V we have g∨ = h∨◦π
for a character h∨ ∈ G∨, where π : Λ 	 G. By virtue of the Pushforward Lemma
1.1, g∨ is ā-harmonic if and only if h∨ is ā∗-harmonic. Consequently

Charā−harm(Λ, K̄×) =
⋃

n̄∈Ns
co(p)

(Gn̄,V)∨ā∗−harm .

For any ā = (a1, . . . , at) ∈ (F0(Λ, K̄))t and n̄ = (n1, . . . , ns) ∈ Ns
co(p), we consider

the following over-determined system of algebraic equations, cf. (15):

σaj ,V(x1, . . . , xs) = 0, xni

i = 1, i = 1, . . . , s, j = 1, . . . , t . (19)

We let Σā,n̄,V = Σā,V ∩μn̄ denote the set of all solutions of (19), or in other words
the set of all points on the symbolic variety Σā,V in (15) whose multi-torsion
orders divide n̄ = (n1, . . . , ns). The following result yields (b) of Theorem 0.2 in
the Introduction.

Proposition 3.1. Given a basis V of Λ, the natural bijection

Char(Λ, K̄×)
∼=−→ (K̄×)s

restricts to
Charā−harm(Λ, K̄×)

∼=−→ Σā,V

and further yields the bijections

Σā,n̄,V = Σā,V ∩ μn̄

∼=−→ (Gn̄,V)∨ā∗−harm

∼=−→ V (ā∗) , (20)
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where ā∗ = π∗ā is the pushforward of ā under the canonical surjection π : Λ 	
Gn̄,V = Λ/Λn̄,V . Consequently

d(ā,Λn̄,V) = card V (ā∗) = cardΣā,n̄,V .

Proof. For a character h∨ ∈ G∨
n̄,V , letting g∨ = h∨ ◦ π ∈ Char(Λ, K̄×) and ξi =

g∨(vi) ∈ K̄× we obtain ξni

i = 1 ∀i = 1, . . . , s (indeed nivi ∈ Λn̄,V ∀i). Moreover
h∨ ∈ (Gn̄,V)∨ā∗−harm if and only if ∀j = 1, . . . , t,

h∨ ∗ (aj)∗ = 0 ⇐⇒ g∨ ∗ aj = 0 ⇐⇒ g∨ ∗
(∑

v∈L

aj(v)δv

)
= 0

⇐⇒
∑

v=
∑

s
i=1 αivi∈L

aj(v)(g∨)−1(v) = 0 ⇐⇒ σaj ,V(ξ1, . . . , ξs) = 0 ,

and so ξ = (ξ1, . . . , ξs) ∈
⋂t

j=1 Σaj ,V = Σā,V . Vice versa, given a solution ξ =
(ξ1, . . . , ξs) ∈ (K̄×)s of (19), letting g∨(vi) = ξi defines an (n̄,V)-periodic charac-
ter g∨ ∈ Char(Λ, K̄×). By the same argument as above, g∨ and the pushforward
character h∨ = π∗(g∨) ∈ (Gn̄,V)∨ are ā- and ā∗-harmonic, respectively. The cor-
respondence ξ = (ξ1, . . . , ξs) ←→ h∨ yields the first bijection in (20). As for
the second one, see 2.2(b). �

3.2. Criteria of harmonicity

We let as beforeK = GF(pr). Given a basis V of Λ, a sequence ā ∈ (F0(Λ, K̄))t and
a multi-index n̄ ∈ Ns

co(p), we let G = Λ/Λn̄,V and ā∗ = π∗ā, where π : Λ 	 G. We
fix a minimal q0 = q(ā∗) = pr0 (r0 > 0) such that âj(G∨) ⊆ GF(q0) ∀j = 1, . . . , t.
The preceding results lead to the following criteria.

Theorem 3.2.

(a) With the notation as above, the following conditions are equivalent.
(i) There exists a nonzero (n̄,V)-periodic3 ā-harmonic function on Λ.
(ii) V (ā∗) :=

⋂t
j=1 V (aj∗) �= ∅.

(iii) The system (19) has a solution ξ = (ξ1, . . . , ξs) ∈ Σā,n̄,V = Σā,V ∩ μn̄.
(b) Furthermore ker(Δā∗) ⊆

(
F(G, K̄), ∗

)
coincides with the principal convolu-

tion ideal generated by the function
∏t

j=1

(
δe −Δq0−1

(aj)∗
(δe)

)
, and

t∏
j=1

(
1G −Δq0−1

(aj)∗

)
: F(G, K̄) 	 ker(Δā∗)

is an orthogonal projection.
(c) For t = 1 and a1 = a, (i)–(iii) are equivalent to every one of the following

conditions:
(iv) (Δa∗)q0−1(δe) �= δe or, equivalently, (Δa∗)q0−1 �= 1G.
(v) The sequence

(
Δk

a∗(δe)
)
k≥0

⊆ F(G, K̄) is not periodic.

3I.e., stable under the shifts by elements of Λn̄,V .
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Proof. The equivalences (i)⇐⇒(ii)⇐⇒(iii) follow immediately from 2.2 and 3.1.
Since the function (̂aj)∗ ∈ F(G∨, K̄) takes values in the field GF(q0) we have

δ
V ((̂aj)∗)

= 1 − (̂aj)∗
q0−1

. For every j = 1, . . . , t the Fourier transform sends

1G − Δq0−1
(aj)∗

to the operator of multiplication by δV ((aj)∗) in F(G∨, K̄), which
coincides with the orthogonal projection onto the corresponding principal ideal.
This yields (b) and (c). �

Remarks 3.3. 1. For t = 1 and a = a1 we have â∗
q0 = â∗ and so Δq0+1

a∗ (δe) =
Δa∗(δe) = a∗. Consequently the truncated sequence

(
Δk

a∗(δe)
)
k≥1

(which starts
with a∗) is periodic with period l dividing q0 − 1. Whereas the sequence in (iv)
(which starts with δe) is periodic if and only if Λ does not admit a nonzero a-
harmonic (n̄,V)-periodic function. In the latter case Δa∗ is invertible of finite
order in the group AutF(G, K̄).

2. For K = GF(2) and G = Z/nZ, according to [J, 1.1.7] or [MOW], we have

K[G]× = (K[x]/(xn − 1))× ∼= Z/νZ ,

where

ν = ν(n) = 2n
∏
d|n

(
1− 1

2f(d)

)g(d)

with f(n) = ordn(2) = min{j : 2j ≡ 1 mod n} and g(n) = ϕ(n)/f(n). Here
ϕ stands for the Euler totient function. We recall that G admits a nonzero a+-
harmonic function if and only if n ≡ 0 mod 3. Otherwise the minimal period l as
in (1) above coincides with the order of ã+ in the cyclic group Z/νZ, so l | ν.

3. For K = GF(2), t = 1 and a = a+, Δq0−1
a∗ : F(G, K̄) 	 (ker(Δa∗))⊥

is the orthogonal projection onto the space (ker(Δa∗))
⊥ of all winning patterns

of the ’Lights Out‘ game on the toric grid G = Zn̄; see [Za1, §2.8] or §2 in the
Introduction.

4. Convolution equations over finite fields

We fix a Galois field K = GF(q) with q = pr and a finite abelian group G of order
coprime with p. Let Δā = (Δa1 , . . . ,Δat) be a system of convolution operators with
kernel ā ∈ (F0(G,K))t. Clearly the dimension of the space of solutions ker(Δā)
is the same in F(G,K) and in F(G, K̄). We show in Theorem 4.4 below that,
moreover, the former subspace can be recovered by taking traces of ā-harmonic
K̄-valued characters.

We let φq : ξ �−→ ξq denote the Frobenius automorphism of K̄ = GF(q). By
the same letter we denote the induced action φq : f �−→ fφq = f q on the function
spaces F(G, K̄) and F(G∨, K̄), respectively.

The rings of invariants

[F(G, K̄)]φq = F(G,K) and [F(G∨, K̄)]φq = F(G∨,K)
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do not correspond to each other under the Fourier transform. The restriction
Dq = φq|G∨ to the image of G∨ ↪→ F(G, K̄) is just the multiplication by q
in the abelian group G∨. We keep again the same symbol Dq for the induced
automorphism of the function space F(G∨, K̄). The latter one being different from
φq, we let αq denote the automorphism φq ◦ (Dq)−1 of F(G∨, K̄) which measures
this difference. In the next simple lemma (cf. [J]) we show that αq is the Fourier
dual of the Frobenius automorphism acting on F(G, K̄).

Lemma 4.1. The automorphism αq ∈ Aut(F(G∨, K̄)) is the Fourier dual of φq ∈
Aut(F(G, K̄)). Hence the Fourier image F (F(G,K)) coincides with the subalgebra
(F(G∨, K̄))αq ⊆ F(G∨, K̄) of αq-invariants.

Proof. For any f ∈ F(G, K̄) we have(
f̂
)φq

= f̂φq ◦Dq .

Indeed, for any g∨ ∈ G∨,(
f̂(g∨)

)q

=

(∑
v∈G

f(v)g∨(v)

)q

=
∑
v∈G

fφq(v)(g∨)φq (v) = f̂φq((g∨)φq) .

Therefore

f ∈ F(G,K) ⇐⇒ f = fφq ⇐⇒ f̂ = f̂φq ⇐⇒ f̂ ◦Dq = (f̂)φq ⇐⇒ f̂ = α(f̂ ) ,

as stated. �

Now one can easily deduce the following fact.

Corollary 4.2. For any ā ∈ (F(G,K))t, the locus V (ā) ⊂ G∨ of ā-harmonic
characters is Dq-stable.

This leads to a direct sum decomposition of the space of solutions, see 4.3(b)
below. For a function f ∈ F(G, K̄) we let GF (q(f)), where q(f) = qr(f), denote
the minimal subfield of K̄ generated byK and by the image f(G). The trace of f is

Tr(f) = TrGF (q(f)):GF (q)(f) = f + f q + . . .+ f qr(f)−1 ∈ F(G,K) .

Proposition 4.3. For any ā ∈ (F(G,K))t the following hold.

(a) There is a bijection between the set of traces Tr(g∨) ∈ F(G,K) of all ā-
harmonic characters g∨ ∈ V (ā) and the orbit space V (ā)/〈Dq〉 of the cyclic
group 〈Dq〉 acting on V (ā).

(b) Given a set of representatives g∨1 , . . . , g∨m of the 〈Dq〉-orbits on V (ā), there is
a decomposition into orthogonal direct sum of convolution ideals

ker(Δā) =
m⊕

i=1

(Tr(g∨i )) ⊆ F(G,K) .
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(c) For any g∨ ∈ G∨ one has

g∨ =
1

ord(G)

∑
g∈G

g∨(g−1)hg, where hg(x) = Tr(g∨(gx)) = τg (Tr(g∨(x))) .

Proof. By virtue of 4.2 for any character g∨ ∈ V (ā) we have

h = Tr(g∨) = g∨ + (g∨)q + . . .+ (g∨)qr(g∨)−1 ∈ ker(Δā) ∩ F(G,K) .

Letting

O(g∨) = {g∨, (g∨)q, . . . , (g∨)qr(g∨)−1}
be the orbit of g∨ under the action of the cyclic group 〈Dq〉 on V (ā), one can easily
deduce that card (O(g∨)) = r(g∨) and, by (12),

ĥ = ord(G)
r(g∨)−1∑

i=0

δ(g∨)−qi = ord(G)δO((g∨)−1) .

Now h ←→ O((g∨)−1) is the correspondence required in (a). In turn (a)
implies (b). Whereas (c) follows by using the orthogonality relations for characters.
Indeed by virtue of (12), for any x ∈ G one has

∑
g∈G

g∨(g−1)hg(x) =
∑
g∈G

g∨(g−1)
r(g∨)−1∑

i=0

(g∨)qi

(gx)

=
r(g∨)−1∑

i=0

⎛⎝∑
g∈G

(g∨)−qi

(g−1)g∨(g−1)

⎞⎠ (g∨)qi

(x) =
r(g∨)−1∑

i=0

̂(g∨)−qi (g∨)(g∨)qi

(x)

= ord(G)
r(g∨)−1∑

i=0

δ(g∨)qi (g∨)(g∨)qi

(x) = ord(G)g∨(x) .

�

The following result is straightforward from 3.1 and 4.3(c).

Theorem 4.4. (a) For a finite abelian group G of order coprime to p and for any
ā ∈ (F(G,K))t, where K = GF(pr), the kernel ker (Δā) is spanned over K
by the shifts of traces of ā-harmonic characters g∨ ∈ G∨

ā−harm.
(b) Similarly, for any sublattice Λ′ ⊆ Λ of finite index coprime to p and for

any ā ∈ (F(Λ,K))t, the kernel ker (Δā|FΛ′(Λ,K)) is spanned over K by
the shifts of traces of ā-harmonic characters g∨ ∈ Charā−harm(Λ, K̄×) with
Λ′ ⊆ ker(g∨).
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