

Whitestein Series in Software Agent Technologies and Autonomic Computing

Series Editors:
Monique Calisti (Editor-in-Chief)
Marius Walliser
Stefan Brantschen
Marc Herbstritt

The Whitestein Series in Software Agent Technologies and Autonomic Computing reports
new developments in agent-based software technologies and agent-oriented software
engineering methodologies, with particular emphasis on applications in the area of
autonomic computing & communications.

The spectrum of the series includes research monographs, high quality notes resulting
from research and industrial projects, outstanding Ph.D. theses, and the proceedings of
carefully selected conferences. The series is targeted at promoting advanced research and
facilitating know-how transfer to industrial use.

About Whitestein Technologies

Whitestein Technologies is a leading innovator in the area of software agent technologies
and autonomic computing & communications. Whitestein Technologies‘ offering includes
advanced products, solutions, and services for various applications and industries, as well
as a comprehensive middleware for the development and operation of autonomous,
self-managing, and self-organizing systems and networks.
Whitestein Technologies‘ customers and partners include innovative global enterprises,
service providers, and system integrators, as well as universities, technology labs, and
other research institutions.

www.whitestein.com

CASCOM:
Intelligent Service
Coordination in the
Semantic Web

Michael Schumacher
Heikki Helin
Heiko Schuldt
Editors

Birkhäuser
Basel · Boston · Berlin

���������	
����������	�������������������������������������
!""��#�����
$����%���������������'*�*!!�+#/�������'��	�%	��	0��1���/����	2�#/�������
'��	�%	��	��'��	�%	���#%	����������%	����3��	
������	/	��	���2����/2�������4�5*�*���
+'�6�/
���������/�%	���2�7	�/�	8�0��9���	�'�6�/
�������3��	
���;	�����	2��	/8��	�4�
5*�*<�+'�6�/
���������/�%	���2�7	�/�	8�0���3��	
����2���6�=�/	��1���/����	2��3��	
�*

>��/�/3��6����%/	�������/��?�
�	/������"��@�"

Bibliographic information published by Die Deutsche Bibliothek
1�	�1	�����	�F������	G�����������$���������������	�1	�����	�?�����������%/��	4�
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

'�F?�"@����@�<����@<���F�/G�N��	/�Q	/�%�#R��F��	�U�F������U�F	/��

This work is subject to copyright. All rights are reserved, whether the whole or part of
��	�
��	/����������	/�	2���$	�����3���	�/�%�����6��/����������/	$/�����%��/	���	��6�
����/��������/	�����������/��2������%��/	$/�2����������
��/��
���/�������	/�=�3�����2�
storage in data banks. For any kind of use permission of the copyright owner must be
obtained.

X������F�/G�N��	/�Q	/�%��Y*9*�F�Z�!�����5�<�!��F��	���=��[/��2
Part of Springer Science+Business Media
Printed on acid-free paper produced from chlorine-free pulp. TCF �
Y/���	2����R	/
��3�

'�F?�"@����@�<����@<��� � � � 	�'�F?�"@����@�<����@���

"���@�����<�����!� � � � � ===*��/G����	/*��

Editors:

Michael Schumacher Heikki Helin
Institute of Business Information Systems TeliaSonera
���8	/���3��6�#$$�	2����	��	��;	��	/���=��[/��2� Y*�9*�F�Z�"@�
�	����#/G��� � � � � ����!����	/�
�"�����	//	�� � � � �]����2
Switzerland e-mail: heikki.j.helin@teliasonera.com
e-mail: michael.schumacher@hevs.ch

Heiko Schuldt
1������	���2�'�6�/
�������3��	
��R/��$�
���8	/���N��F��	
F	/������/���	�!�
<����F��	
Switzerland
e-mail: heiko.schuldt@unibas.ch

Contents

Preface xxv

Acknowledgements xxvii

1 Introduction 1
1.1 Introduction . 1
1.2 Background . 2
1.3 Motivation: CASCOM in Emergency Assistance 3
1.4 Overview of the Approach . 5
1.5 Overall View of the Book . 6

I State of the Art 9

2 Intelligent Agent-based Peer-to-Peer Systems (IP2P) 11
2.1 Introduction . 11
2.2 IP2P Enabling Technologies . 11

2.2.1 Wireless Networks . 11
2.2.2 End-user Devices . 13
2.2.3 Seamless Mobility . 15
2.2.4 Ontologies in the Wireless World 16

2.3 Overlay Networks . 22
2.3.1 Centralized P2P Architecture 23
2.3.2 Pure P2P Architecture . 24
2.3.3 Hybrid P2P Architecture 25

2.4 Summary . 25

3 Semantic Web Service Description 31
3.1 Introduction . 31
3.2 Issues of Semantic Service Description 31

3.2.1 Functional and Non-Functional Service Semantics 32
3.2.2 Structured Representation of Service Semantics 32

vi Contents

3.2.3 Monolithic Representation of Service Semantics 32
3.2.4 Data Semantics . 33
3.2.5 Reasoning about Semantic Service Descriptions 33

3.3 SAWSDL . 33
3.3.1 Annotating WSDL Components 34
3.3.2 Limitations . 34

3.4 OWL-S . 36
3.4.1 Background: OWL . 36
3.4.2 Service Profile . 39
3.4.3 Service Process Model . 40
3.4.4 Service Grounding . 42
3.4.5 Software Support . 42
3.4.6 Limitations . 44

3.5 WSML . 44
3.5.1 WSMO Framework . 44
3.5.2 WSML Variants . 45
3.5.3 Services in WSML . 47
3.5.4 Software Support . 50
3.5.5 Limitations . 50

3.6 Monolithic DL-Based Service Descriptions 51
3.7 Critique . 52
3.8 Summary . 54

4 Semantic Web Service Coordination 59
4.1 Introduction . 59
4.2 Semantic Service Discovery . 59

4.2.1 Classification of Semantic Web Service Matchmakers 61
4.2.2 Logic-Based Semantic Service Profile Matching 64
4.2.3 Non-logic-based Semantic Profile Matching 69
4.2.4 Hybrid Semantic Profile Matching 69
4.2.5 Logic-based Semantic Process Matching 71
4.2.6 Non-logic-based and Hybrid Semantic Process Model

Matching . 72
4.2.7 Semantic Service Discovery Architectures 72

4.3 Semantic Service Composition Planning 79
4.3.1 Web Service Composition 79
4.3.2 AI-Planning-Based Web Service Composition 80
4.3.3 Classification of Semantic Service Composition Planners . . 80
4.3.4 Functional-Level Composition Planners 83
4.3.5 Process-Level Semantic Service Composition Planners . . . 83
4.3.6 Static Semantic Service Composition Planners 84
4.3.7 Dynamic Composition Planners 87
4.3.8 FLC Planning of Monolithic DL-Based Services 89

4.4 Interrelations . 90

Contents vii

4.4.1 Composition Planning and Execution 92
4.4.2 Negotiation . 92

4.5 Open Problems . 93
4.6 Summary . 95

5 Context-Awareness 105
5.1 Introduction . 105
5.2 Context Definitions . 107
5.3 General Design Principles and Context Modeling Approaches . . . 109
5.4 Context Dependency Architectures 112

5.4.1 Smart-Its Architecture . 114
5.4.2 Merino Architecture . 114
5.4.3 Architecture proposed by Cortese et al. 115
5.4.4 WASP Architecture . 115
5.4.5 CoBrA Architecture . 116
5.4.6 Context Taylor . 116

5.5 Summary . 118

6 Technology in Healthcare 125
6.1 Introduction . 125
6.2 Objectives . 126
6.3 Benefits of e-Health . 127

6.3.1 Improving the Quality of Healthcare 128
6.3.2 Improving the Access of Healthcare 128
6.3.3 Reducing Costs . 128

6.4 Barriers and Challenges of e-Health 129
6.5 Mobility (m-Health) . 129

6.5.1 m-Health Applications . 130
6.5.2 Technology Issues in m-Health 131
6.5.3 Overview of m-Health Projects 132

6.6 CASCOM in the Healthcare Domain 135
6.6.1 Concepts . 135

6.7 Summary . 136

II The CASCOM Solution 141

7 General Architecture 143
7.1 Introduction . 143
7.2 Technical Approach . 144
7.3 Conceptual Architecture . 145

7.3.1 IP2P Network Infrastructure 146
7.3.2 Agent Architecture . 147

7.4 The CASCOM Architecture in Detail 148

viii Contents

7.4.1 Networking Layer . 149
7.4.2 Service Coordination Layer 150
7.4.3 Context Subsystem . 152
7.4.4 Security & Privacy Subsystem 152

7.5 Instantiations of the CASCOM Architecture 153
7.5.1 Centralized P2P . 153
7.5.2 Super-Peer P2P . 153
7.5.3 Structured Pure P2P . 154
7.5.4 Unstructured Pure P2P . 155
7.5.5 Discussion . 156

7.6 Summary . 158

8 Agent Platform and Communication Architecture 161

8.1 Introduction . 161
8.2 Background . 162

8.2.1 FIPA Agent Platform . 162
8.2.2 Agent Platforms for Mobile Devices 163
8.2.3 CASCOM Agent Platform 165
8.2.4 CASCOM Agent Communication 167
8.2.5 Messaging Gateway . 174

8.3 Summary . 176

9 Distributed Directories of Web Services 181

9.1 Introduction . 181
9.2 Service Entries . 182
9.3 Directories . 183
9.4 Directory Services . 183
9.5 Directory Operations . 184
9.6 Policies . 186
9.7 CASCOM Service Directory Architecture 187

9.7.1 Network Topology . 188
9.7.2 Network Construction . 191
9.7.3 Used Directory Policies . 191
9.7.4 Examples of Network Interactions 192

9.8 Usability . 194
9.9 Vulnerability . 196

9.9.1 Breakdowns . 196
9.9.2 Recovery . 198
9.9.3 Security . 199

9.10 Related Work . 200
9.11 Summary . 202

Contents ix

10 Service Discovery 205
10.1 Introduction . 205
10.2 Overview . 205
10.3 The CASCOM Service Discovery Agent 207
10.4 The CASCOM Service Matchmaker 208

10.4.1 Configurations . 209
10.4.2 SMA Interface . 213

10.5 Hybrid Semantic Service Matchmaker OWLS-MX 214
10.5.1 Hybrid Matching Filters . 215
10.5.2 OWLS-MX Matching Algorithm 216
10.5.3 OWLS-MX Variants . 217
10.5.4 Implementation . 217

10.6 Service Precondition and Effect Matchmaker PCEM 218
10.6.1 Motivation . 218
10.6.2 PCEM Architecture . 219
10.6.3 PCEM Engine Module . 220
10.6.4 PCEM Languages Processing Module 221
10.6.5 Preconditions and Effects Matching 223
10.6.6 Implementation . 226

10.7 Role-Based Matchmaker ROWLS 226
10.7.1 Motivation . 226
10.7.2 Interaction Modelling . 227
10.7.3 Role-Based Service Advertisements 228
10.7.4 Role-Based Service Requests 228
10.7.5 Role-based Service Matching Algorithm 229
10.7.6 Implementation . 230

10.8 Summary . 230

11 Service Composition 235
11.1 Introduction . 235
11.2 CASCOM Service Composition Agent SCPA 235
11.3 Pre-Filtering for Service Composition 237

11.3.1 Generic Pre-Filtering Framework 237
11.3.2 Instantiation of Pre-Filters 241

11.4 Service Composition With OWLS-XPlan 243
11.4.1 Architecture . 243
11.4.2 Converter OWLS2PDDL 245
11.4.3 Static Composition . 252
11.4.4 Dynamic Composition . 254

11.5 Service Composition With MetaComp 256
11.5.1 Architecture . 256
11.5.2 Service Selection Methods 259
11.5.3 Implementation . 260

11.6 Summary . 260

x Contents

12 Semantic Web Service Execution 263
12.1 Introduction . 263
12.2 Composite Service Execution . 264

12.2.1 General OWL-S Execution Procedure 265
12.3 Centralized Approach for Service Execution 266

12.3.1 Service Execution and Context-Awareness 267
12.3.2 Service Execution Agent . 268
12.3.3 Implementation . 273

12.4 Distributed Approach for Service Execution 273
12.4.1 General Assumptions . 274
12.4.2 Execution Strategy . 274
12.4.3 Interaction Model . 280
12.4.4 Implementation . 281

12.5 Summary . 283
12.5.1 Late Binding of Service Provider Instance during Execution 284
12.5.2 Tight Integration of Service Providers and Execution Agents 285

13 Context-Awareness System 289
13.1 Introduction . 289
13.2 System Requirements . 290
13.3 Context Representation . 294

13.3.1 Base Ontology . 295
13.3.2 Distribution Ontology . 297
13.3.3 Context Data Ontology . 297

13.4 Context System Architecture . 298
13.4.1 System Overview . 298
13.4.2 Detailed Component Description 300
13.4.3 System Deployment . 304

13.5 Summary . 305

14 Security, Privacy and Trust 309
14.1 Introduction . 309
14.2 Two-Party Interactions . 310
14.3 A Model of Mediated Interactions 312

14.3.1 Abstractions . 313
14.3.2 Expectation of the Utility of Agents 314

14.4 Decision Making Strategy . 316
14.4.1 Trust PDF and the Risk Factor 316
14.4.2 The Role of the PDF of Trust 318
14.4.3 Worst-Case Analysis . 320

14.5 Integration in the CASCOM Platform 321
14.5.1 IP2P Network Layer . 322
14.5.2 Service Coordination Layer 322

14.6 Summary . 325

Contents xi

III Trials and Results 329

15 Qualitative Analysis 331
15.1 Introduction . 331
15.2 Usability Trials in Helsinki . 333

15.2.1 Test Set-Up . 334
15.2.2 Execution . 335
15.2.3 Results . 336

15.3 Field Trials in Innsbruck and Basel 339
15.3.1 Test Set-Up . 340
15.3.2 Execution . 341
15.3.3 Results . 342

15.4 Summary . 346

16 Quantitative Analysis 349
16.1 Introduction . 349
16.2 Service Matchmaker Agent . 349

16.2.1 Test Environment . 349
16.2.2 Test 1 . 350
16.2.3 Test 2 . 350
16.2.4 Test 3 . 350
16.2.5 Test 4 . 351

16.3 Service Discovery Agent . 353
16.3.1 Test Environment . 353
16.3.2 Test Results and Discussion 353

16.4 Service Composition Planner Agent 354
16.4.1 OWLS-XPlan . 354
16.4.2 MetaComp . 355

16.5 Service Execution Agent . 357
16.5.1 Test Environment . 357
16.5.2 Test Results and Discussion 358

16.6 WSDir . 358
16.6.1 Test Environment . 358
16.6.2 Topology and Scenario . 359
16.6.3 Test Results and Discussion 360

16.7 Summary . 360

List of Figures

1.1 CASCOM technologies . 2
1.2 Application of CASCOM in emergency assistance 4
1.3 Layered model of the CASCOM architecture 5

2.1 Wireless communication technologies 14
2.2 Seamless mobility . 15
2.3 Core concepts of the wireless network ontology 18
2.4 Concepts of QoS properties ontology 21
2.5 An overlay network . 23
2.6 Centralized P2P architecture . 24
2.7 Pure P2P architecture . 25
2.8 Hybrid P2P architecture . 26

3.1 Example of semantic annotation of WSDL elements in SAWSDL. 35
3.2 OWL-S service description elements. 36
3.3 OWL-S service profile structure. 39
3.4 Example of OWL-S 1.1 service profile. 40
3.5 OWL-S service process model. 41
3.6 Example of OWL-S service process model. 41
3.7 Grounding of OWL-S in WSDL. 43
3.8 WSML language variants. 46
3.9 Example of a service request (goal) in WSML. 48
3.10 Example of service capability in WSML. 48
3.11 Example of WSML service interface. 49
3.12 Example of a monolithic DL-based semantic service description. . 52

4.1 Categories of Semantic Web Service matchmakers 61
4.2 Categories of Semantic Web Service discovery architectures. . . . 73
4.3 Classes of Semantic Web Service composition planners 82

5.1 Context system architecture levels 112
5.2 Merino architecture . 114
5.3 WASP architecture . 115

xiv List of Figures

5.4 CoBrA architecture . 117
5.5 Context Taylor architecture . 118

6.1 Concept map of the use of the e-health term in different papers,
from [13] . 126

6.2 Layered model of e-health . 127

7.1 Network infrastructure . 146
7.2 P2P overlay network . 147
7.3 Semantic overlay network . 148
7.4 CASCOM architecture . 149
7.5 Instantiation CASCOM-1a . 153
7.6 Instantiation CASCOM-1b . 153
7.7 Instantiation CASCOM-2a . 154
7.8 Instantiation CASCOM-2b . 155
7.9 Instantiation CASCOM-3a . 156
7.10 Instantiation CASCOM-3b . 156
7.11 Instantiation CASCOM-4 . 157

8.1 Split container model of LEAP 164
8.2 Principle of CASCOM agent platform 166
8.3 Overview of CASCOM agent platform main components 167
8.4 A layered model of agent communication 168
8.5 Message transport protocols in the CASCOM agent platform . . 170
8.6 The envelope size in bytes using different encoding schemes . . . 172
8.7 The ACL message size in bytes using different encoding schemes 173
8.8 The effect compression to the message size 174
8.9 Message encoding time in Nokia 6680 mobile phone 175
8.10 Message decoding time in Nokia 6680 mobile phone 176
8.11 The CASCOM messaging gateway 177

9.1 Visual recapitulation of directory system concepts 184
9.2 Example use of policies . 187
9.3 Network topology . 189
9.4 Predefined policy tree . 192
9.5 Policies in the network topology 193
9.6 Query resolution (1) . 194
9.7 Query resolution (2) . 195
9.8 A WSDir Federation with all the Directory Services from each

Network layer is working correctly. The quadratic border defines
the group of currently accessible Service Descriptions stored in
the Federation. 197

List of Figures xv

9.9 A WSDir Federation with one Directory Service from the Body
Network layer is failing. The quadratic border defines the group
of currently accessible Service Descriptions stored in the Federation.198

9.10 A WSDir Federation with one Directory Service from the Top
Network layer is failing. The quadratic border defines the group
of currently accessible Service Descriptions stored in the Federation.199

9.11 A WSDir Federation with the Directory Services from the hid-
den Network layer is failing. The quadratic borders define several
groups of currently accessible Service Descriptions stored in the
Federation. 200

10.1 Service selection process in CASCOM 206
10.2 Example request message for relevant services 208
10.3 FIPA-request protocol of SDA . 209
10.4 Sequential configuration . 210
10.5 Aggregation of the three matchmakers’ results by the SMA . . . 212
10.6 Request message to SMA . 214
10.7 Inform message from SMA . 214
10.8 PCEM architecture . 220
10.9 OWL class representation . 221
10.10 OWL class representation in Prolog 221
10.11 Final preconditions and effects representation in Prolog 222
10.12 Domain specific inference rule 1 224
10.13 Prolog Representation of domain specific inference rule 1 225
10.14 Inference rule validation clause 225
10.15 Partial interaction type ontology 227
10.16 Degree of match function between two roles 231

11.1 OWLS-Xplan service composition agent 236
11.2 Architecture of the filter component 239
11.3 Architecture of OWLS-XPlan . 244
11.4 Conversion of OWL-S services to PDDXML actions 249
11.5 Conversion of OWL DL state ontologies to PDDXML states . . . 249
11.6 OWL-S example service . 251
11.7 The generated PDDXML action 252
11.8 Common class definitions . 253
11.9 OWL initial state ontology . 254
11.10 Structured functional service composition 255
11.11 MetaComp architecture . 257

12.1 SEA’s internal architecture and interactions between the several
components . 269

12.2 Example of AgentGrounding description 272
12.3 Message generated from the example in Figure 12.2 273

xvi List of Figures

12.4 Dynamically-distributed execution strategy with remote coupling
of execution agent and Web Services 277

12.5 Course of fully-distributed execution strategy with tight integra-
tion of SEA and service provider 279

12.6 Message flow for interactions of a client agent (initiator) with the
service execution agent (responder) 282

13.1 GCMAS ontology description . 295
13.2 GCMAS architecture . 300
13.3 Example of interaction . 305

15.1 CASCOM emergency assistance application scenario used for the
field trials . 332

15.2 Usability tests in Helsinki . 334
15.3 Test setup of smart phone for usability tests 335
15.4 Radio buttons . 337
15.5 Radio buttons improved . 337
15.6 Message for the patient . 338
15.7 Message slightly improved . 338
15.8 Crew of the emergency car . 341
15.9 Test environment . 342
15.10 Do you want to see a doctor? . 344
15.11 Early information . 345
15.12 TabletPC used in Helsinki . 346
15.13 Ultra mobile PC . 346

16.1 SMA response time as a function of concurrent requests 350
16.2 SMA response time as a function of matching services 351
16.3 SMA response time with non-matching services 351
16.4 Retrieval performance of the matchmaker as a whole 352
16.5 SDA response time as a function of non-matching services 353
16.6 SDA search time [ms] percentages 354
16.7 Service composition in the OMS domain for 100 requests. 355
16.8 Average service composition times vs. number of available services 356
16.9 SEA response time as a function of concurrent requests and service

failures . 357
16.10 WSDIR Average search request processing time per number of

services for scenario 1 . 359
16.11 WSDIR Average search request processing time per number of

services for scenario 2 . 360
16.12 WSDIR Average search request processing time per number of

services for scenario 3 . 361

List of Tables

2.1 Common communication systems 13
2.2 QoS terminology . 19

10.1 SMA predefined configurations. Luk. stands for Lukasiewicz t-
norm (max{0, x + y − 1}), while weigh stands for weighted sum
of the matching values returned by the 3 matchmakers (0.5 ·
OWLSMX+0.3 ·ROWLS+0.2 ·Pcem). The minimum degree of
match nn stands for nearest-neighbour, sub stands for subsumes,
while sub-by stands for subsumed-by 213

10.2 OWL-S service preconditions and effects in PDDXML 222
10.3 Second Opinion role-based service advertisement 228
10.4 Second Opinion role-based service request 229

11.1 Example of class information about historical plans 239
11.2 Conversion and semantics of OWL DL class descriptions to

PDDXML conditions . 250
11.3 Expansion of transitive and subsumed properties 250

13.1 Base ontology classes description 296
13.2 Functional test results . 307

Abbreviations

3GPP 3rd Generation Partnership Project
ABox Assertional Object Knowledge Base
ACC Agent Communication Channel
ACL Agent Communication Language
ADL Action Description Language
AI Artificial Intelligence
AIC Agent Interaction Component
ALL Abstract Logic Language
AMS Agent Management System
API Application Programming Interface
BAN Body Area Network
BPEL Business Process Execution Language
CAD Computer Aided Dispatching
CBD Criteria Based Dispatching
CDC Connected Device Configuration
CLDC Connected Limited Device Configuration
CMU Carnegie-Mellon University
CoBrA Context Broker Architecture
CORBA Common Object Request Broker Architecture
CORBA-ORB CORBA Object Request Broker
CQA Conjunctive Query Answering
CSCW Computer Supported Cooperative Worw
CWA Closed World Assumption
DAML DARPA Agent Mark-Up Language
DAML-S DAML for Services
DF Directory Facilitator
DHT Distributed Hash Table
DL Description Logic
DLP Description Logic Programming
DMZ demilitarized network zone
DS Directory Service
DSD DIANE Service Description of Project DIANE
EC European Community

xx Abbreviations

ECG Electrocardiogram
e-Health Electronic Health
ESSI European Semantic Systems Initiative
ETSI European Telecommunications Standards Institute
FIPA Foundation for Intelligent Physical Agents
FIPA ACL FIPA Agent Communication Language
FIPA SL FIAPA Semantic Language
FIPA-SL0 FIPA Semantic Language Profile 0
FLC Functional-Level Composition
FOL First-Order Logic
FP/FN False-Positives/False-Negatives
FP5 Framewok Programme 5
FP6 Framewok Programme 6
GCMAS Generic Context Management and Acquisition System
GPRS General Packet Radio Service
GPS global positioning system
GSM global system for mobile communications
GUI graphical user interface
HH home hospital
HIP Host Identity Protocol
HSDPA High-Speed Downlink Packet Access
HTN Hierarchical Task Network
HTTP HyperText Transfer Protocol
HTTPS Hypertext Transfer Protocol over Secure Socket Layer
I D E Itegrated Development Environment
I/O Input / Output
ICP3 International Planning Competition
ICT Information and Communication Technology
IDL Interface Description Language
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IIOP Internet Inter-Orb Protocol
IMTP Internal Message Transport Protocol
IOPE Input-Output-Precondition-Effect
IP Internet Protocol
IP2P Intelligent Peer-to-Peer
IR Information Retrieval
IRP Invocation and Reasonable Persistence
J2ME Java 2 Platform, Micro Edition
J2SE Java 2 Platform, Standard Edition
JADE Java Agent Development Framework
JDK Java SE Development Kit
JENA Semantic Web framework for Java
JESS Java Expert System Shell

Abbreviations xxi

JICP JADE Intercontainer Protocol
KIF Knowledge Interchange Format
LAN local area network
LARKS Language for Advertisement and Request for Knowledge Sharing
LCWA Local Closed World Assumption
LEAP Lightweight Extensible Agent Platform
LH local hospital
LL Linear Logic
LP Logic Programming
MaMaS MatchMaker-Service
MBU Mobile Base Unit
MDP Markov-Decision Process
m-Health Mobile Health
MIDP Mobile Information Device Profiles
MTP Message Transport Protocol
MTS Message Transport Service
NAT Network Address Translation
NFC Near Field Communication
NGG Next Generation Grid
OIL Onotlogy Interchange Language
OMA Open Mobile Alliance
OMS Online Medicine Selling Domain
OS operating system
OSIRIS Open Service Infrastructure for Reliable and Integrated process Support
OWA Open World Assumption
OWL Web Ontology Language
OWL-DL OWL Description Logic
OWL?S Web Ontology Language for Services
P2P Peer-to-Peer
PA Personal Agent
PAN Personal Area Network
PCEM Precondition-Effect Matchmaker
PDA Personal Digital Assistant
PDDL Planning Domain Definition Language
PDDLXML XML Surface Syntax of PDDL Language
PDF Probability Density Function
PLC Process-Level Composition
POMDP Partially Observable Markov Decision Process
QoS Quality of Service
RACER Renamed ABox and Concept Expression Reasoner
RAM Random Access Memory
RDF Resource Description Framework
RDFS RDF Schema
RDFS RDF Schema

xxii Abbreviations

REST REpresentational State Transfer
RFID Radio Frequency IDentification
RICA Role/Interaction/Communicative Action
RMI Remote Method Invocation
ROWLS Role-based Service Matchmaker
RP Relaxed Plan
RPG Relaxed Planning Graph
RS2D Risk Based Semantic Service Discovery
SAWSDL Semantically Annotated WSDL
SAX Simple API for XML
sCAP Smart Context-Aware Packets.
SCPA Service Composition and Planning Agent
SDA Service Discovery Agent
SEA Service Execution Agent
SEDA Staged Event-Driven Architecture
SL Semantic Language
SMA Service Matchmaking Agent
SOAP Simple Object Access Protocol
SPARQL Standard Semantic Web Ontology Query Language
STS State-Transition System
SWRL Semantic Web Rule Language
SWS Semantic Web Service
SWSL Semantic Web Service Language
TBox Terminological Knowledge Base
TMS Truth Maintenance System
TTL Time-To-Live
UDDI Universal Description, Discovery and Integration
UMA Unlicensed Mobile Access
UMBC University of Maryland at Baltimore County
UML Unified Modeling Language
UMTS Universal Mobile Telecommunications System
URI Uniform Resource Identifier
URL Uniform Resource Locator
VAT Value Added Tax
W3C World Wide Web Consortium
WAP Wireless Application Protocol
WASP Web Architectures for Service Platforms
WLAN wireless local area network
WS-CDL Web Service Choreography Description Langauge
WSDir Web Services Directories
WSDL Web Service Description Language
WSDL-S Web Service Semantics
WSMF WSMO Web Service Modelling Framework
WSML Web Service Modeling Language

Abbreviations xxiii

WSMO Web Service Modeling Ontology
WSMO4J WSMO for Java
WSMX WSMO Web Service Execution Environment
WSPDS Web Services Peer-to-peer Discovery Service
WWAN Wireless Wide Area Network
XML eXtensible Markup Language
XML Schema eXtensible Markup Language Schema
XSP eXtended Service Platform
YAWL Yet Another Workflow Language

Preface

CASCOM started with a vision of what could be achieved in the future for mobile
service environments. The challenge was to address how ubiquitous application
services could be flexibly coordinated and pervasively provided to mobile users
operating in highly dynamic environments. The CASCOM approach was sound
and involved combining and significantly extending existing complementary tech-
nologies (agent capability, Peer-to-Peer systems, mobile computing, and semantic
web services coordination) in order to develop an architecture capable of reaching
its vision.

From its outset the work had ambitious objectives. In order for these to be
fulfilled, many technical and scientific barriers would have to be met and overcome.
Many questions had to be answered, not least: If there is an assumption of no fixed
architecture what changes would be needed to deal with agent communication?
How can service coordination be provided with agents and P2P environments in
nomadic situations? What were the implications for service discovery architectures
taking into account the dynamic topology of IP2P networks, the fluctuating QoS of
wireless network connections, and the limited capacity of devices? What solutions
could be found for service discovery, service composition planning, service execu-
tion monitoring, and failure recovery for open, secure IP2P environments taking
into account resource-poor devices? Finally, how could the notions of context and
situation awareness be made more precise for IP2P environments.

The overall CASCOM system has involved many innovative solutions for in-
dividual problems such as service discovery, matching algorithms and service com-
position planning, etc. Furthermore, the integration of these components, together
with aspects dealing with privacy and context, etc. have resulted in a coherent and
impressive system.

In order to demonstrate the power of the architecture and to see how it could
truly support mobile users the group chose the challenging and fundamental ser-
vice of health care. Providing emergency medical assistance to travellers epitomises
the difficulties of integrating, coordinating and exchanging information between
physically distributed and nomadic actors operating over a variety of networks.
The team put a strong emphasis on user group input. This input has been essential
throughout the work, not only for testing but also for influencing the development.
It would have been easy to trial the system in simple and straightforward condi-

xxvi Preface

tions. However, the team chose a more difficult and realistic route trialling the
system in some extreme conditions and demanding environments. This was cou-
pled with quantitative performance testing of the system in the laboratory. The
results are impressive and the system is simplistically easy to use masking the
technological achievements of the work.

Technologically the CASCOM solution can be considered as being ahead of
its time. The principles of the approach have been demonstrated and the bene-
fits to the different actors involved in this arena (end users, network operators
and service providers) are clear. The potential use of both the individual CAS-
COM components and of the complete architecture itself is large. The components
dealing with service provision, discovery, composition and monitoring, etc. can be
taken and used individually. The open-source nature of much of the software will
greatly facilitate its adoption and use within the community. For the whole sys-
tem a critical factor in its potential uptake is the adaptability of the system to
other applications. Being domain independent the framework would require little
modification if applied to another scenario.

CASCOM met and exceeded its objectives pushing ahead and producing
advances in many domains. The CASCOM approach has demonstrated how it is
possible to have ubiquitous application services for mobile users using constrained
devices in dynamically changing open environments without any assumption of a
fixed architecture. At a purely theoretical level the results would be impressive.
However, the work is not merely blue-skies research but the demonstration of the
system in action has shown the potential of the approach, thus forging the way
for next-generation global, large-scale intelligent service environments.

Julie Dugdale, July 2008

Acknowledgements

This book is the result of a three years specific targeted research project (STREP)
supported by the European Commission under the project CASCOM (grant FP6-
IST-511632-CASCOM). The project Web site can be found under http://www.ist-
cascom.org, with all deliverables, publications and software.

All CASCOM partners:

• Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Germany,
• TeliaSonera AB, Finland,
• Associação para o Desenvolvimento das Telecomunicaões e Técnicas de In-
formática (ADETTI), Portugal,

• Universidad Rey Juan Carlos (URJC), Spain,
• Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland,
• University of Basel, Switzerland,
• FRAMeTech S.R.L., Italy,
• Emergency Medical Assistance Group Ltd., Finland,
• University for Medical Informatics and Technology (UMIT), Austria

thank the European Commission, the reviewers, and the additional partners from
the healthcare domain – especially from the Tyrolean Hospital Consortium TILAK
– for their support and enthusiasm for the CASCOM project.

The project was not only a pure research project in computer science. It
was a real human experience, which was very stimulating for every single partici-
pant. We thank all members of the ’CASCOM family’ warmly for their work and
contributions to the success of the project.

Chapter 1

Introduction
Heikki Helin, Michael Schumacher and Heiko Schuldt

1.1 Introduction

The ever-growing number of services on the Web provides enormous business
opportunities. In particular, there is a huge potential for creating added value
through service coordination. For this to happen, technology must be developed
to be capable of pervasively providing and flexibly coordinating ubiquitous busi-
ness application services to mobile users and workers in the dynamically changing
contexts of open, large-scale and pervasive application domains.

One possible step toward the realization of this vision is the development of
an intelligent agent-based peer-to-peer (IP2P) environment. IP2P environments
are extensions to conventional P2P architectures with components for mobile
and ad-hoc computing, wireless communications, and a broad range of mobile
devices. Basic IP2P facilities come as Web Services, while their reliable, task-
oriented, resource-bounded, and adaptive coordination-on-the-fly characteristics
call for agent-based software technology. A major challenge in IP2P environments
is to guarantee a secure spread of (personal) service requests across multiple trans-
mission infrastructures and ensure the trustworthiness of services that may involve
a broad variety of providers.

This book presents a general architecture for service delivery and coordi-
nation in IP2P environments that has been developed within the CASCOM re-
search project. This architecture aims at providing support for business services
for mobile workers and users across mobile and fixed networks. For end users, the
CASCOM architecture provides easy and seamless access to Semantic Web Ser-
vices anytime, anywhere, and using any device. This gives more freedom to mobile
workers to do their job whenever and wherever needed. For network operators, it
aims towards a vision of seamless service experience providing better customer
satisfaction, which in turn helps to retain current customer relations as well as
attract new customers. To service providers the CASCOM architecture offers an
innovative platform for various mobile business application services.

2 Chapter 1. Introduction

Figure 1.1: CASCOM technologies

1.2 Background

The CASCOM approach is an innovative combination of agent technology, Seman-
tic Web Service coordination, peer-to-peer, context-awareness, and mobile com-
puting for intelligent peer-to-peer mobile service environments (see Figure 1.1).

Software agents are a key technology to address the challenges of the CAS-
COM architecture as they offer an adequate abstraction for dealing with services
from pervasive devices in IP2P environments. On the other hand, IP2P networks
provide a suitable environment for agents to collaborate as peers sharing infor-
mation, tasks, and responsibilities with each other. Agents can help to manage
the complexity of P2P networks. The inherently autonomous nature of intelligent
agents helps achieving peer node autonomy, which is a requirement to operate ef-
ficiently in very dynamic environments. Innovations done in this domain concerns
the development of context-aware agent-based semantic Web services and flexible
resource-efficient co-ordination of such services in the nomadic computing field.
Using agents in nomadic computing has been studied extensively. We built on the
previous work by using existing agent platforms as a basis of the CASCOM archi-
tecture. However, the P2P aspects were insufficiently taken into account in these
platforms and therefore CASCOM research represented advancements in this di-
rection. For example, the architecture provides solutions for agent communication
between agents without assumption of any fixed infrastructure.

1.3. Motivation: CASCOM in Emergency Assistance 3

Service co-ordination mechanisms of P2P systems can be applied to multi-
agent systems to improve their efficiency. Although this may be accepted on a
conceptual level, the combination of agents and P2P environments certainly de-
served more innovative research, especially regarding nomadic environments. The
dynamic topology of IP2P networks, characteristics of wireless network connec-
tions, and the limited capacity or mobile devices pose several challenges that have
been addressed inadequately in conventional service discovery architectures. The
CASCOM architecture provides mechanisms for service discovery algorithms for
dynamic IP2P environments.

The problem of service co-ordination can be split into several sub problems:
discovery, composition planning, execution monitoring, and failure recovery. CAS-
COM carried out innovative research on how these problems can be solved in IP2P
environments. Especially, the architecture provides flexible and efficient matching
algorithms to be performed in large scale and resource-limited IP2P environments.

Agent-based IP2P applications may be largely pervasive thus inherit the main
characteristic of minimally intrusive pervasive applications: context-awareness.
These concepts have been intensively investigated in many contexts. In CAS-
COM, we investigated these issues in the context of IP2P environment and develop
context-aware agents which provide various business application services.

1.3 Motivation: CASCOM in Emergency Assistance

Consider the following use case (depicted in Figure 1.2) which exemplifies how
the CASCOM system supports mobile users in accessing information, relevant for
their current context, via Semantic Web Services.

Juha, a business man from Finland, is attending on a trade fair in Austria
when he suddenly feels severe pain in his chest. Before starting his trip, he in-
stalled the CASCOM mobile agent suite on his mobile phone. Thus, he can use
the CASCOM personal agent on this device for an emergency call even though
he does not speak German. The agent asks a few questions on the nature and
intensity of his pain and transfers the information, together with Juha’s identity
and his current location, in parallel to a local emergency dispatch center and the
Finnish Emergency Medical Assistance service center (EMA).

The dispatch center immediately sends an ambulance to Juha’s place. Usu-
ally, a major challenge in emergency healthcare is to make the best decision on
the treatment of a patient, without having seen him or her before, i.e., with-
out having any background knowledge of the patient’s medical history, allergies,
etc. In the case of Juha, the emergency physicians in the ambulance car are also
equipped with mobile devices which run the CASCOM system. After Juha’s case
has been transferred to them, the CASCOM system automatically selects the
Semantic Web Services which provide access to parts of Juha’s medical history.
Healthcare organizations more and more open up their information systems via
Semantic Web Services, in order to allow other physicians to access patient data,

4 Chapter 1. Introduction

1.4. Overview of the Approach 5

Users

Applications: Health Care

Service Modeling: OWL-S, Declarative

Service Discovery: DSD, Flexible Matching

Service Composition: Planning, Workflow management

Network Environment: P2P, QoS

Wireless/Wireline Networks (WLAN, WWAN, LAN)

Service Execution Platform: Consistent execution

Service co-ordination layer

Application layer

Network layer

C
o
n
te

x
t-a

w
a
re

n
e
ss

S
e
c
u
rity

&
P
riv

a
c
y

Figure 1.3: Layered model of the CASCOM architecture

and will be informed that Juha is allergic to certain drugs.
In order for the physician’s personal agent to finally retrieve all relevant

information, communication between the different agents of the CASCOM system
is required. However, since some of the involved agents are mobile, a fixed network
infrastructure cannot be guaranteed. Assume, for instance, that the application is
started in the base station of the emergency center where a WLAN connection is
available. As soon as the emergency car leaves the base station, it also leaves the
connection range of the WLAN and the agent communication has to be seamlessly
migrated to UMTS without affecting the CASCOM application.

Similarly, CASCOM technology can also be applied to organize Juha’s repa-
triation, if needed, and/or to exchange information between healthcare organiza-
tions in the process of his after-treatment.

1.4 Overview of the Approach

As stated in Section 1.2, the architecture aims at the innovative combination
of intelligent agent technology, Semantic Web Services, peer-to-peer, and mobile
computing for intelligent peer-to-peer mobile service environments. For this pur-
pose, conceptually, the architecture relies on a layered approach (see Figure 1.3).
The four main components of this architecture link the application layer with the
underlying networks and are described in more detail below.

The Networking Layer provides a generic, secure, and open Intelligent P2P
network infrastructure taking into account varying Quality of Service (QoS) of

6 Chapter 1. Introduction

wireless communication paths, limitations of resource-poor mobile devices, and
contextual variability of nomadic environments. Especially, it provides the follow-
ing functionality:

1. efficient, secure, and reliable agent message transport communication over
wireless (and wireline) communication paths independently of the access
technology.

2. provision the context subsystem with network-related context information,

3. low-level service discovery in IP2P environment, and

4. agent execution environment for resource-constrained mobile devices.

Setting out from the services of the networking layer, and based on the func-
tionalities offered by both the context-awareness and the security and privacy sub-
systems, the Service Coordination Layer takes an agent-based approach towards
flexible Semantic Web Service discovery and coordination. Its main functionality is
twofold: Semantic service discovery (service discovery and semantic matchmaking)
and service coordination (service composition and execution, and replanning).

The context subsystem, orthogonal to the above described layers, is in charge
of acquiring, storing, and providing context information to both layers. Generally
speaking, there will be contextual information for each of the system components.
Each of them will be able to acquire it using the following set of functionalities:
Discovery and acquisition of context information, subscription of context listen-
ers and acquisition of context events/changes in the environment, and access to
context information repository.

The Security and Privacy Subsystem, also orthogonal to the Networking and
Service Coordination Layer, is responsible for ensuring security and privacy of in-
formation throughout the different components of the infrastructure. One of the
main things we need to protect is the information (data) that every node of the
network maintains. In detail, data confidentiality, integrity, and availability are
topics of concern that any approach to security must address. The security and
privacy functionality was considered at every level of the CASCOM architecture.
This enables instant take-up of the CASCOM concepts for service-oriented busi-
ness applications.

1.5 Overall View of the Book

This book is divided into three parts.

Part I (Chapters 2 to 6) covers the overall technical themes of CASCOM and
describes the limitations of the current state of the art that CASCOM addressed.

Chapter 2 considers the state-of-the-art from the viewpoint of the network
and network environment of the CASCOM architecture. An overview of enabling

1.5. Overall View of the Book 7

technologies is given including wireless network technologies, end-user devices,
seamless mobility, agent communication in wireless environments, ontologies for
the wireless world, and overlay networks.

Chapters 3 and 4 give an overview of Semantic Web Services. Those chapters
survey different approaches to semantic service matchmaking and service compo-
sition planning.

Chapter 5 presents definitions of context-awareness and it presents a de-
scription of the solutions aimed at acquiring, modeling and processing context
information. Further, it describes developed architectures of context-aware sys-
tems.

Chapter 6 concludes Part I focusing on CASCOM’s main evaluation domain:
healthcare. The chapter describes the evolution of the use of technology in this do-
main, from medical informatics, telehealth and telemedicine to the newly extended
term e-health.

Part II (Chapters 7 – 13) introduces the CASCOM solution in detail. Chap-
ter 7 describes the technical approach at high level and envisions the conceptual
architecture able to provide the required functionality. The chapter concludes by
describing in which ways the architecture can be instantiated.

Chapter 8 presents some essential enablers for agents in wireless environ-
ments. Firstly, the chapter introduces an agent platform that is usable in resource-
constrained devices. Secondly, it describes how agent messaging over a wireless
communication path is implemented in the CASCOM architecture including a
performance analysis of implemented communication stack.

Chapter 9 introduces a federated directory system used in CASCOM called
WSDir. Its main functionality is to let heterogeneous semantic web service descrip-
tions be registered and searched by certain clients. As such, it realizes a lookup
function with basic retrieval schemes.

Chapter 10 provides an overview of semantic service discovery in CASCOM,
giving a detailed description of two agents intervening in this process, namely
service discovery agents and semantic service matchmaker agents. The chapter
gives details on the integrated service matchmaking algorithms.

Chapter 11 summarizes the CASCOM composition planning approach, fol-
lowed by the detailed description of a pre-filtering module, and two composition
planners for OWL-S services developed in the project.

Chapter 12 presents a framework to enable the execution of semantic web
services in the CASCOM architecture. The chapter describes two approaches to
reliable service execution: a centralized approach, where a single agent can exe-
cute an entire composite service; and a dynamically distributed approach, where
different coordinated and co-operating agents contribute to the execution of parts
of a composite service.

Chapters 13 and 14 present the orthogonal layers of the CASCOM architec-
ture. Chapter 13 addresses the CASCOM approach regarding context acquisition

8 Chapter 1. Introduction

and management. It presents context representation decisions (the content and
structure of the ontologies used to model context) and an architecture for ac-
quiring, monitoring, representation and storing context information. Chapter 14
deals with a stochastic model of trust that measurably captures trust in two-party
interactions and a general-purpose framework that the CASCOM architecture pro-
vides to enable the realization of secure, privacy-aware and trust-aware multiagent
systems.

Part III (chapters 15 and 16) present the qualitative and the quantitative
evaluation of the CASCOM solution. The main objective of all realized tests was
to verify that they can be effectively used in real world settings.

Chapter 15 discusses laboratory and field trials of the motivating application
scenario to obtain qualitative feedback from end users. To make those trials re-
alistic, they have been conducted under controlled conditions using real network
services, resources, devices, and terminals.

Finally, Chapter 16 deals with tests of the Service Matchmaker Agent, the
Service Discovery Agent, the Service Composition Planner Agent, the Service Ex-
ecution Agent, and the Distributed Directories WSDir.

Part I

State of the Art

Chapter 2

Intelligent Agent-based
Peer-to-Peer Systems (IP2P)
Heikki Helin and Ahti Syreeni

2.1 Introduction

One step toward the realization of the CASCOM vision is the development of an
intelligent agent-based peer-to-peer (IP2P) environment. IP2P environments are
extensions to conventional P2P architectures with components for mobile and ad
hoc computing, wireless communications, and a broad range of pervasive devices.
Software agents will be a key technology to address the challenges of CASCOM as
they offer an adequate abstraction for dealing with services from pervasive devices
in IP2P environments. However, agents in wireless environments need support from
the underlying architecture. For example, communication over wireless connection
needs to be designed carefully. Further, the underlying agent platform shall be
tailored to resource-constrained mobile devices.

This chapter considers the state-of-the-art from the network environment
viewpoint of the CASCOM architecture. The rest of this chapter is organized as
follows. In Section 2.2, an overview of enabling technologies is given, including
wireless network technologies, end-user devices, seamless mobility, agent commu-
nication in wireless environments, and existing ontologies for the wireless world.
In Section 2.3, a short overview of overlay networks is introduced.

2.2 IP2P Enabling Technologies

2.2.1 Wireless Networks

Wireless network technologies can be divided into three categories: wireless wide-
area networks (WWAN), wireless local area networks (WLAN), and personal
area networks (PAN). Further, wireless wide-area network technologies can be

12 Chapter 2. Intelligent Agent-based Peer-to-Peer Systems (IP2P)

divided into the following categories: (1) Analog cellular networks (e.g., Advanced
Mobile Phone System (AMPS), Total Access Communication Systems (TACS),
and Nordic Mobile Telephone (NMT) [28]), (2) digital cellular networks (e.g.,
GSM [23, 33]), and (3) mobile data networks (e.g., Mobitex [18] and CDPD [2, 5]).
Wireless local area networks can be divided into cordless networks and Wireless
LANs. At the transport layer, mobile data networks and WLANs are packet net-
works, and others are usually circuit switched networks. Circuit switched networks
are mainly designed for voice transmittal, but can also be used to transfer data.

Perhaps the most well known example of digital cellular networks is GSM.
In the first phase, it was possible to transfer data over GSM using relatively low
speeds (9.6 Kb/s). The High Speed Circuit Switched Data (HSCSD) [11, 13] made
it possible to transfer data in the GSM network using speeds up to 56 Kb/s. This
was possible by allocating more time slots per user and by using a different channel
coding. The General Packet Radio System (GPRS) [12] is a GSM Phase 2+ bearer
service that provides a packet data access to mobile GSM users. The main feature
of GPRS is that it allocates resources to users only when needed. Therefore it is
especially suitable for bursty traffic such as web browsing. GPRS supports data
rates up to 115 Kb/s. Further GSM evolution came with EDGE (Enhanced Data
rates for Global Evolution) [10]. EDGE allows usage of GSM radio bands at speeds
up to 384 Kb/s. Universal Mobile Telephone Service (UMTS) [43] will provide
even higher data rates, but only in limited areas. UMTS is a 3rd generation (3G)
mobile system being developed by ETSI within ITUs IMT-2000 framework. UMTS
provides data rates up to 2 Mb/s in certain areas. Further, HSDPA (High-Speed
Downlink Packet Access) is a technology which increases data transfer speed in
UMTS-based networks up to 14.4 Mb/s.

Examples of local area wireless networks include Wireless LANs (802.11,
802.16, HiperLAN) [6, 21, 27]. Wireless LANs are typically employed in closed
environments, for example, in offices, hotels, and so on. Emerging wireless LAN
standards such as IEEE802.16 (WIMAX) will provide more bandwidth with sig-
nificantly larger coverage area in the future. Technologies for implementing PANs
include Bluetooth [3], and Infrared [40] connections. Bluetooth and Infrared con-
nections are typically point-to-point connections, for example, between a PDA and
a laptop computer. Nowadays almost all equipment targeted for mobile computing
–smart phones, PDAs, laptops, and so on– are equipped with infrared communi-
cation capabilities.

The introduction of high-speed wireless capabilities, including GPRS and
UMTS, enables new services, such as multimedia, that mobile users can use wher-
ever needed and whenever needed. However, the gap between wireless and wireline
networks will remain. No matter how fast wireless networks will be in the future,
the wireline networks will be even faster. Furthermore, as the speed in the wireline
networks increases, the application programmers tend to develop new applications
that will take advantage of increased speeds. Soon after, the mobile users will also
want to use these new applications.

2.2. IP2P Enabling Technologies 13

Communication System Typical bandwidth
Ethernet LAN > 100 Mb/s
Wireless LAN (IEEE802.16; WiMax) < 75 Mb/s
Wireless LAN (IEEE802.11g) 54 Mb/s
HSDPA < 14.4 Mb/s
Wireless LAN (IEEE802.11b) 11 Mb/s
UMTS � 2 Mb/s
Infrared 19.2 Kb/s – 1 Mb/s
Bluetooth 720 Kb/s
EDGE < 384 Kb/s
xDSL < 24 Mb/s
GPRS < 115 Kb/s
PSTN < 56 Kb/s
HSCSD < 43.2 Kb/s
CDPD 19.2 Kb/s
GSM 9.6 Kb/s

Table 2.1: Common communication systems

The environment of nomadic computing –wireless data communications and
mobile devices– creates many challenges, which have been addressed insufficiently
in today’s distributed systems. First, in the wireless data communication environ-
ments the values of QoS parameters such as line-rate, delay, throughput, round-
trip time, and error rate may change dramatically when a nomadic end-user moves
from one location to another. While these new technologies will increase the per-
formance of the wireless data communications, the basic problem will remain.
Throughput, line rates, delays, and error rates may change, sometimes even more
dramatically than in today’s wireless networks. For example, when a nomadic-user
roams from WLAN coverage to highly utilized GPRS coverage, the throughput
may drop from (say) 10 Mb/s to 1 Kb/s. This has important consequences on
application development. Table 2.1 summarizes the common communication sys-
tems.

2.2.2 End-user Devices

The variety of end-system technologies that end-users can use to gain access to
Internet services are increasing rapidly. Nowadays there are several mobile com-
puting devices ranging from powerful laptop computers to very small devices such
as wristwatch computers. High-end laptop computers are typically almost as pow-
erful as their desktop counterparts, but the display size, for example, is typically
smaller.

These computing devices are able to run similar or almost all the same ap-
plications as the desktop computers if they operate in the same environment.

14 Chapter 2. Intelligent Agent-based Peer-to-Peer Systems (IP2P)

Figure 2.1: Wireless communication technologies

For example, they may have a similar connection to the network services, if such
services are needed in order to run the application.

Personal Digital Assistants (PDAs) are more restricted in all areas; the pro-
cessing power, amount of memory, and quality of display are significantly smaller.
Applications similar to desktop versions must therefore be redesigned in order to
catch the new restrictions. Furthermore, these computing devices typically have
a variety of input devices, such as touch screen or voice command, which make
the designing of the user interface somewhat different from designing the same
interface for desktop or laptop computers [17].

PDAs, however, allow more flexibility in the user mobility. Typically, end-
users are unwilling to carry their laptop computers everywhere. Small pocketsize
PDA devices are easy to transport along all the time. In spite of the limited factors
of PDAs, they still can be used for various tasks, such as reading email, word
processing, and web browsing. Mobile phones have similar features as the PDAs,
but are more restricted. Further, these devices typically have multiple wireless
interfaces (e.g., IrDA/Bluetooth/GSM/GPRS/EDGE).

Today’s devices are mainly used for standalone applications connecting if
needed to existing services on a network. However, considering only the situation
that the end-user has one device will be inadequate in the future. Instead, the
future solutions for mobile/wireless environment should consider end-user devices
as reconfigurable end-user systems [32]. In this view, the end-user has one core
device that probes its surroundings looking for other devices and dynamically
builds up the most appropriate auto-configurable end-user system. This obviously
causes problems for applications, as they cannot anymore assume that end-user’s
device remains static even for a short time period.

2.2. IP2P Enabling Technologies 15

Figure 2.2: Seamless mobility

Obviously, in order to handle reconfigurable end-user systems, a lot of system
support is needed. The best-known configuration descriptions today for wireless
devices are W3C’s CC/PP [45], OMA’s UAProf [26], and FIPA’s Device Ontol-
ogy Specification [8]. These allow describing the terminal capabilities, but han-
dling rapid and dynamic changes in the configuration is not considered in these
standards. In addition to these standards, OMA has on-going work on Device
Management [25] and W3C on Device Independence [44].

2.2.3 Seamless Mobility

Seamless mobility means that roaming from one location to another possibly
switching the underlying access technology occurs without inconvenience to the
user. Such a feature will be an important feature of the future nomadic applica-
tions. Figure 2.2 depicts a situation where the user drives through an urban area
having several different access technologies.

A lot of research work is done in order to enable the seamless mobility at the
IP layer. Relevant standardization organizations for IP mobility technologies at
the moment are IETF [42], 3GPP [43] and IEEE [41]. The main emphasis is on the
IETF standardization. However, it should be noted that seamless mobility cannot
be solved completely at the IP layer. IP layer mobility is a particularly difficult
problem in networking environment containing access networks with very different
characteristics (e.g., 3G vs. WLAN) and across different administrative domains
(e.g., handover between different operators). Seamless mobility will require tight
integration to used networking environment and co-operation between different
networking layers, and co-operation between different networking nodes. Further,
it is envisioned that management issues (handovers between network technologies,
IP address management, etc.) are going to be difficult to solve. This is mostly due
to legacy systems and the differences in the access technologies that a mobile node

16 Chapter 2. Intelligent Agent-based Peer-to-Peer Systems (IP2P)

(terminal, user equipment) can employ or access.
Currently the most relevant IP mobility technology is the Mobile IPv4 [29],

which has reached required level of maturity from both a standardization and an
implementation viewpoint. Mobile IPv4 is a standard track protocol, which adds
mobility support for IPv4 based systems. The basic technology is mature and has
been around since 1996. Both commercial and open source implementations are
available.

In the future Mobile IPv6 [16] will most probably have an important role as
an IP mobility enabling technology. Mobile IPv6 allows a mobile node to move
from one network to another without changing the Mobile Node’s home address.
Packets may be routed to the Mobile Node using this address regardless of the
Mobile Node’s current point of attachment to the Internet. The mobile node may
also continue to communicate with other nodes (stationary or mobile) after moving
to a new network. The movement of a Mobile Node away from its home network
is thus transparent to transport and higher-layer protocols and applications. The
Mobile IPv6 protocol is just as suitable for mobility across homogeneous media
as for mobility across heterogeneous media. For example, Mobile IPv6 facilitates
node movement from one Ethernet segment to another as well as it facilitates
node movement from an Ethernet segment to a WLAN, with the Mobile Node’s
IP address remaining unchanged in spite of such a movement. Mobile IPv6 does
not attempt to solve all general problems related to the use of mobile computers
or wireless networks.

Alternative IP mobility enabling protocols are also being actively developed.
The Host Identity Protocol (HIP) [22] is one example of new alternative IP mo-
bility enabling protocols being standardized in IETF. HIP is a new protocol that
aims to separate the IP layer (routing) and transport layer from each other with
a middle layer that defines a globally unique identity, the so-called Host Identity.
This Host Identity is a cryptographic public key to the host. It adds two main
features to Internet protocols. The first is a decoupling of the internetworking and
transport layers. This will allow for independent evolution of the two layers and
provide end-to-end services over multiple internetworking realms. The second fea-
ture is host authentication: because the Host Identifier is a public key, this key
can be used to authenticate security protocols like IPsec.

2.2.4 Ontologies in the Wireless World

In this section, we give an overview of several ontologies developed for wireless
environments.

Wireless Network Ontology

In [15], the authors introduce a wireless network ontology. The concepts defined in
that ontology are intended to be used when describing wireless network instances.
Three different use cases are identified. Firstly, a rather simple but useful use

2.2. IP2P Enabling Technologies 17

case could be that network operators provide information about their networks
in the Web using the (wireless) network ontology. Many network operators pro-
vide already this information, but it is mainly meant for humans and therefore
only usable for them. Developing an application that takes advantage of this in-
formation is hard if not impossible. The main reason for this is that the network
operators have their own way of presenting their descriptions. Further, an operator
may have different ways of presenting different kinds of networks. For example, if
the operator provides both GSM and WLAN networks, the network information
of these is presented in a different way, which further complicates the automatic
usage of this information. Using the wireless network ontology, operators can use
common terminology when defining instances of the networks they provide. This,
obviously, presupposes that the ontology contains sufficient concepts for defining
different kinds of networks.

Secondly, assuming that the majority of network providers publish the infor-
mation about their networks using a common ontology, this allows third parties
to develop value-added services based on this description. One such service could
be searching networks based on location. For example, such service could answer
questions like “Which networks are available at the Hotel Kmp Helsinki?” Some
primitive services for answering this question are already available. For example,
the GSM Association provides a database of GSM roaming agreements between
operators as well as coverage maps1. Again, this information is mainly for humans.
For example, coverage maps are not much of use for applications trying to reason
whether some network is available at a given location. Another example of such a
service is ’www.hotspot-locations.com’, which provides information about WLAN
access points available all over the world. Their interface is also meant for hu-
mans. Now, if both of these information sources could use the same terminology
(i.e., ontology), it would be possible (to some extent) to automatically answer the
aforementioned question about available networks at a given location. Obviously,
a comprehensive answer is impossible if information about only GSM and WLAN
networks is available.

The third use case comes from ISTAG2 future scenarios [7]. In these scenarios,
one of the requirements identified for the ambient intelligence is “a seamless mo-
bile/fixed communications infrastructure”. The (wireless) network ontology gives
the basis to build such infrastructure. As for an example, let us take a look at the
scenario 1: “Maria – The Road Warrior”. In this scenario the user, Maria, is on
a business trip and arrives at a foreign country. Maria is carrying a personalized
communications device, P-Com, which automates various tasks during her way
from the airport to the hotel: her visa is automatically checked at the immigra-
tion, her car rental is arranged beforehand, the P-Com recognizes and personalizes
the car for Maria, real-time traffic instructions are provided during the drive, and
finally, the hotel room facilities are customized for Maria by interactions between

1See http://www.gsmworld.com/roaming/gsminfo/index.shtml
2IST Advisory Group

18 Chapter 2. Intelligent Agent-based Peer-to-Peer Systems (IP2P)

Network

Class

WirelessNetwork

Class

WirelineNetwork

Class
disjointWith

subClassOf

subClassOf

GSM

Class

subClassOf

GPRS

Class

subClassOf

WLAN

Class

subClassOf

IEEE802.11a

Class

IEEE802.11b

Class

subClassOf

subClassOf

UMTS

Class

subClassOf

Property

Class

QoSProperty

Class

subClassOf

Service

Class

hasService

ObjectProperty

range

hasIdentifier

ObjectProperty

Operator

Class

operatedBy

ObjectProperty

domain

range availableAt

ObjectProperty

domain

Location

Class
range

hasProperty

ObjectProperty

domain range domain
Identifier

Class
range

domain

PacketSwitched

Class

CircuitSwitched

Class

subClassOf

subClassOf

subClassOf

subClassOf

WAN

Class

LAN

Class

PAN

Class

BlueTooth

Class

subClassOf

subClassOf

subClassOf

subClassOf

subClassOf

subClassOf

hasGPRS

ObjectProperty

range domain

subClassOf

Figure 2.3: Core concepts of the wireless network ontology

the P-Com and the hotel room computing infrastructure. All of these tasks require
the knowledge of the networking infrastructure at the given time. At the airport
there might be WLAN hotspots available, and at the immigration there could be
local Bluetooth coverage. During the walk from the airport arrival hall to the car
garage a GPRS network is available, and once arrived at the car, there could be a
Bluetooth network specific to the car. During the drive to the hotel, the traffic in-
formation is delivered through a GPRS network, and at the hotel, the hotel room
provides a WLAN hotspot to control room facilities and to access the Internet. To
make all the different network infrastructures transparent to Maria, the P-Com
can make use of the (wireless) network ontology and location information, and
based on these, change seamlessly from one network to another.

The ontology defines a concept of GSM network, but it does not specify
instances of GSM networks. An instance could be, e.g., the GSM network that

2.2. IP2P Enabling Technologies 19

Term Explanation

LineRate The bandwidth in one direction over a measured component.
Throughput The number of user data bits successfully transferred in one direc-

tion across a measured component. Successful transfer means that
no user data bits are lost, added or inverted in transfer.

RTT Round-trip time, that is, the time required for a data segment to be
transmitted to a peer entity and a corresponding acknowledgment
sent back to the originating entity.

Delay The (nominal) time required for a data segment to be transmitted
to a peer entity.

MeanUpTime The expected uptime of an established (logical) connection.
OmissionRate The probability that a data segment is lost.
BER The ratio of the number of bit errors to the total number of bits

transmitted in a given time interval.
FrameError-
Rate

The probability that a data segment is not transmitted correctly
over a measured component.

ConnSetup-
Delay

The delay to establish a connection between communicating enti-
ties.

ConnSetup-
FailureProb

The ratio of total call attempts that result in call setup failure to
the total call attempts in a population of interest.

Status The connectivity status of a measured component.

Table 2.2: QoS terminology

TeliaSonera provides in Finland. Such instances are obviously necessary for effec-
tive usage of the ontology, but defining a complete set of these is impossible for
individual organizations. However, we believe that if the ontology proves to be
useful, innovative network operators will provide instances of their networks. This
will lead towards achieving critical mass of users, and ultimately the ontology can
be used in various applications. Therefore, it is essential that leading network op-
erators provide initial sets of instances so that the critical mass of users is achieved
rapidly. Figure 2.3 depicts the core concepts of the wireless network ontology. For
details of this ontology, see [15].

QoS Ontology

Perhaps the most dominant characteristic of the wireless world is change of Qual-
ity of Service (QoS). This can happen both during the connection and between
connections. During the connection, the values may vary because of a new user
location or new radio conditions. Perhaps more significant changes occur between
connections, especially when using different technologies. For example, the QoS
changes significantly when roaming from a GSM network to a WLAN network,
even if the user location remains static.

20 Chapter 2. Intelligent Agent-based Peer-to-Peer Systems (IP2P)

A network QoS ontology allows describing QoS properties of networks pro-
viding agents with means to communicate using QoS related terms. The original
version of such an ontology was defined by FIPA (Foundation for Intelligent Phys-
ical Agents) [9]. It specifies several QoS attributes, and gives a natural language
definition for each of them (see Table 2.2 and Figure 2.4). A more formal –although
still quite informal– definition of this ontology is given in [14]. Both [9] and [14]
discuss it only in abstract level and do not give any concrete encoding. However,
in [15], a DAML encoding is presented (see Figure 2.4).

Device Ontology

In the environment of the CASCOM architecture, several different kinds of devices
could be used. For managing and processing properly perceptions from a device
–which may be a new one in the environment– a device ontology is needed. The
capabilities of different devices are best expressed using an ontology, against which
the profiles of those devices are validated.

There are several efforts to specify device ontologies. W3C has the Device
Independence activity, which works with CC/PP (Composite Capability / Prefer-
ence Profiles) [44] based on RDF [4]. A CC/PP profile contains CC/PP attribute
names and associated values. The profile is structured allowing an entity to de-
scribe its capabilities by reference to a standard profile, accessible to a peer entity,
and a smaller set of features that are in addition to or different than the standard
profile. A CC/PP vocabulary consists of a set of CC/PP attribute names, per-
missible values and associated meanings. CC/PP is compatible with IETF media
feature sets (CONNEG) [20] in the sense that all media feature tags and values can
be expressed in CC/PP. However, not all CC/PP profiles can be expressed as me-
dia feature tags and values, and CC/PP does not attempt to express relationships
between attributes.

FIPA has specified a device ontology that contains specifications for prop-
erties of devices [8]. Agents can use it when communicating about hardware and
software properties of various devices. They pass profiles of devices to each other
and validate them against the FIPA Device ontology. The profiles are useful, e.g.,
in a situation where memory- or processing-intensive actions take place; agent A1
can ask agent A2 whether device D has enough capabilities to handle some task
A1 has in mind.

In [19], the authors introduce another approach to use ontologies in the con-
text of devices. Ontology-based description of functional design knowledge of engi-
neering devices is presented. In the proposed model generic concepts representing
functionality of a device in the functional knowledge are provided by the functional
concept ontology, which makes this knowledge consistent and applicable to other
domains. In the case of CASCOM, the function concept ontology of wireless data
communications equipment could be integrated with context ontologies.

2.2. IP2P Enabling Technologies 21

QoSProperty

Class

LineRate

Class

subClassOf

Delay

Class
subClassOf

Throughput

Class

subClassOf

value

DataTypeProperty

Direction

Class

direction

ObjectProperty

Collection

oneOf

InBound OutBound

range xsd:nonNegativeInteger

range

RateValue

Class

hasRateUnit

ObjectProperty

hasRateValue

ObjectProperty

range

RateUnit

Class

range

Collection

oneOf

bits/s

kbits/s

mbits/s

Restriction

onProperty

subClassOf

1

cardinality

RestrictionsubClassOf

onProperty

1

cardinality

Restriction

onProperty

subClassOf

1cardinality

TimeValue

Class

hasTimeUnit

ObjectProperty

TimeUnit

Class

range

Collection

oneOf

ms

s

m

h

Restriction

subClassOf

1

cardinality

onProperty

Restriction

subClassOf

1

cardinality

onProperty

Restriction

subClassOf

1
onProperty

maxCardinality

ProbabilityValue

Class

Restriction

subClassOfRestriction

subClassOf

1

maxCardinality

onProperty

onProperty

RTT

Class
subClassOf

MeanUpTime

ClasssubClassOf

ConnSetupDelay

Class

subClassOf

TimeQoSProperty

Class

subClassOf

hasTimeValue

ObjectProperty

domain

range

RateQoSProperty

Class

subClassOf

domain

ProbQoSProperty

Class

subClassOf

hasProbValue

ObjectProperty

domain

range

BER

Class

subClassOf

OmissionRate

Class

subClassOf

FrameErrorRate

Class

subClassOf

ConnSetypFailureProb

Class

subClassOf

1

cardinality

Figure 2.4: Concepts of QoS properties ontology

22 Chapter 2. Intelligent Agent-based Peer-to-Peer Systems (IP2P)

Standard Ontology for Pervasive Ontology

The goal of the Pervasive Computing Standard Ontology (PERCOM-SO)3 is to
define an ontology to support knowledge representation and communication in-
teroperability in building pervasive computing applications. The PERCOM-SO
ontology will be defined using OWL and published in RDF/XML representation.
Even if it is a relatively new initiative, the following domains have been identified
so far: (1) Spatial ontology that describes physical space and spatial relations,
(2) temporal ontology that describes time and temporal relations, (3) person pro-
file/user model ontology that describes profiles of persons, (4) event ontology that
describes events that occur in a pervasive computing environment, (5) devices
profile ontology that describes hardware and software attributes associated to
a computing devices, (6) digital document ontology that describes attributes of
associated digital documents, and (7) security and privacy policy ontology that
describes policy rules for supporting access control and privacy protection in a
pervasive computing environment.

Other Examples of Wireless World Ontologies

An interesting wireless world related ontology is presented in [1]. The authors
introduce it for describing and discovering services in an ad-hoc networking en-
vironment like Bluetooth. This ontology enables far better service discovery than
simple UUID-based descriptions used in the Bluetooth SDP system. It does not
have a direct connection to our ontology, but gives an excellent example of using
ontologies for supporting applications in the wireless world.

An example of a higher level ontology for mobile communications area can
be found in [37]. This ontology defines concepts for services, networks, devices, as
an example4.

DAML-time5 is an ontology for expressing temporal aspects of the contents
of web resources and for expressing time-related properties of Web Services. Mod-
eling time is very important in context-aware architectures and applications, and
therefore ontologies, such as the DAML-time ontology, are an essential component
of such a system.

2.3 Overlay Networks

An overlay network6 consists of a collection of nodes implementing a network
abstraction on top of the network infrastructure. The underlying network infras-
tructure may consist of several different network technologies (see Figure 2.5). In

3http://pervasive.semanticweb.org/percom-so-proposal.html
4The specification of this ontology can be found at

http://www.ee.surrey.ac.uk/Personal/A.Zhdanova/ontologies/mobile ontology/docs/
5http://www.cs.rochester.edu/ ferguson/daml/
6Sometimes overlay networks are called virtual networks (see. e.g., JXTA documentation)

2.3. Overlay Networks 23

Figure 2.5: An overlay network

CASCOM, the functionality of the overlay network will be implemented using P2P
technologies.

The P2P network, in general, can be defined as [36]:

A distributed network architecture may be called a Peer-to-Peer (P-to-
P, P2P,...) network, if the participants share a part of their own hard-
ware resources (processing power, storage capacity, network link capac-
ity, printers,...). These shared resources are necessary to provide the
Service and content offered by the network (e.g. file sharing or shared
workspaces for collaboration). They are accessible by other peers di-
rectly, without passing intermediary entities. The participants of such
a network are thus resource (Service and content) providers as well as
resource (Service and content) requestors (Servent-concept).

Three basic architectures implementing overlay network can be identified:
centralized, pure, and hybrid. These will be described briefly below.

2.3.1 Centralized P2P Architecture

The centralized overlay P2P architecture is essentially a client/server architec-
ture [36]:

A Client/Server network is a distributed network which consists of one
higher performance system, the Server, and several mostly lower per-
formance systems, the Clients. The Server is the central registering unit
as well as the only provider of content and service. A Client only re-

24 Chapter 2. Intelligent Agent-based Peer-to-Peer Systems (IP2P)

Figure 2.6: Centralized P2P architecture

quests content or the execution of services, without sharing any of its
own resources.

In centralized (client/server) architecture, one node coordinates most of the
operations in the network (see Figure 2.6). The advantage of centralized overlay
network is fast resource lookup time (O(1)). However, the most significant dis-
advantage is that the centralized server is a single point of failure. Even though
centralized architecture is not really a P2P architecture, it has been used in some
P2P implementations (e.g., Napster [24]).

2.3.2 Pure P2P Architecture

A pure P2P network is defined as follows [36] (Figure 2.7):

A distributed network architecture has to be classified as a “Pure” Peer-
to-Peer network, if it is firstly a Peer-to-Peer network according to P2P
network definition (see above) and secondly if any single, arbitrary cho-
sen Terminal Entity can be removed from the network without having
the network suffering any loss of network service.

The essential feature of a pure P2P architecture is that existence of any single
node cannot be assumed. All the nodes are equal and can leave the network at
any given time. Such very dynamic nature of pure P2P architecture gives tough
requirements of any application relying on such architecture. For example, no
single application can rely on the existence of directory services, but the nodes
have to handle directory services in a highly distributed manner.

Example algorithms for pure P2P architectures include Pastry [35], Tapestry
[46], CAN [34], and Chord [38, 39]. The Plaxton algorithm [30] was the first at-
tempt towards massively scalable Distributed Hash Table (DHT) algorithms for
pure P2P architectures. However, there are several limitations in that algorithm

2.4. Summary 25

Figure 2.7: Pure P2P architecture

considering real-world applications. The most severe is that the algorithm lacks
adaptability, that is, no nodes can join or leave the network at runtime. However,
modern DHT algorithms do not have such limitations while preserving scalability
of the Plaxton algorithm. For example, both Pastry and Tapestry are (directly)
based on the Plaxton algorithm but overcome its limitations. The CAN (Content
Addressable Network) is based on d-dimensional space. The Chord algorithm is
perhaps the simplest algorithm of these four. However, same (or similar) computa-
tion complexity is achieved in Chord as in the other DHTs examples above. Given
this, most of the new DHT algorithms are based on Chord.

2.3.3 Hybrid P2P Architecture

A hybrid P2P network is defined as follows [36] (Figure 2.8):

A distributed network architecture has to be classified as a “Hybrid”
Peer-to-Peer network, if it is firstly a Peer-to-Peer network according
to P2P network definition (see above) and secondly a central entity is
necessary to provide parts of the offered network services.

Compared to pure P2P architecture, the hybrid architecture is a bit simpler,
because any given node can assume that there are some “super” nodes that can
host different kind of services (e.g., directory services). An example of hybrid P2P
architecture is JXTA [31]. However, since JXTA is basically only a collection of
(P2P) protocols, it does not enforce hybrid P2P architectures.

2.4 Summary

This chapter considered the state-of-the-art from the network environment view-
point of the CASCOM architecture. The foundation for wireless applications is

26 References

Figure 2.8: Hybrid P2P architecture

the availability of a wireless network. The development of different kind of wire-
less networks is rapid. Availability, reliability, and bandwidth are increasing at
accelerating speed. Many mobile device has a WLAN radio, which enables fast
communication but with limited mobility. There will always be different kind of
wireless networks. Therefore, it is essential that mobile device can switch between
network technologies without disturbing the user and applications. Technologies
like WiMAX will enable fast communication with greater mobility in the future.
At the same time, capabilities of mobile devices are increasing enabling more com-
plex applications in very small devices. However, small display size and limited
battery life still limits certain applications in mobile devices. But, new technolo-
gies, such as Near Field Communication (NFC), enable new kind of applications
that are usable only in mobile devices.

Building intelligent applications for mobile devices requires ontologies not
only related to application functionality but also to an environment in which
the application is used. In the wireless world, this implies that ontologies related
to wireless networks, network capabilities, and mobile devices are needed, as an
example. Several such ontologies have been developed, although so far those are
used only in small scale prototype applications.

References

[1] S. Avancha, A. Joshi, and T. Finin. Enhanced service discovery in bluetooth.
IEEE Computer, 35(6):96–99, 2002.

[2] N. G. Badr. Cellular digital packet data CDPD. In Proceedings of the IEEE
14th Annual International Phoenix Conference on Computers and Commu-
nications, pages 659–665, Scottsdale, AZ, USA, March 1995.

[3] Bluetooth Special Interest Group. The Official Bluetooth SIG Website, 2007.
Available from World Wide Web: <http://www.bluetooth.com>.

References 27

[4] D. Brickley and R. V. Guha, editors. Resource Description Framework (RDF)
Schema Specification 1.0. World Wide Web Consortium, March 2000. W3C
Candidate Recommendation.

[5] CDPD Consortium. Cellular Digital Packet Data System Specification, Rel
1.0, Books I-V. CDPD, 1993.

[6] B. P. Crow, I. Widjaja, J. G. Kim, and P. T. Sakai. IEEE 802.11 wireless local
area networks. IEEE Communications Magazine, 35(9):116–126, September
1997.

[7] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J.C. Burgelman,
editors. Scenarios for Ambient Intelligence in 2010. ISTAG, 2001.

[8] Foundation for Intelligent Physical Agents. FIPA Device Ontology Specifica-
tion. Geneva, Switzerland, April 2001. Specification number SC00091.

[9] Foundation for Intelligent Physical Agents. FIPA Quality of Service Ontol-
ogy Specification. Geneva, Switzerland, April 2001. Specification number
SC00094.

[10] A. Furuskär, S. Mazur, F. Müller, and H. Olofsson. EDGE: Enhanced data
rates for GSM and TDMA/136 evolution. IEEE Personal Communications,
6(3):56–66, June 1999.

[11] GSM Technical Specification, GSM 02.34. High speed circuit switched data
(HSCSD), stage 1, July 1997. Version 5.2.0.

[12] GSM Technical Specification, GSM 02.60. GPRS service description, stage 1,
1998. Version 6.1.0.

[13] GSM Technical Specification, GSM 03.34. High speed circuit switched data
(HSCSD), stage 2, May 1999. Version 5.2.0.

[14] H. Helin. Supporting Nomadic Agent-based Applications in the FIPA Agent
Architecture. PhD thesis, University of Helsinki, Department of Computer
Science, Helsinki, Finland, January 2003.

[15] H. Helin and M. Laukkanen. Wireless network ontology. In Proceedings of
the Wireless World Research Forum 9th Meeting, Zürich, Switzerland, July
2003.

[16] D. Jonhson, C. Perkins, and J. Arkko. Mobility support in IPv6. Request for
Comments 3755, IETF, June 2004.

[17] T. Kamba, S. A. Elson, T. Harpold, T. Stamper, and P. Sukaviriya. Using
small screen space more efficiently. In Proceedings of the Conference on Hu-
man Factors and Computing Systems (CHI’96), pages 383–390, Vancouver,
Canada, April 1996. ACM Press.

[18] M. Khan and J. Kilpatrick. MOBITEX and mobile data standards. IEEE
Communications Magazine, 33(3):96–101, March 1995.

28 References

[19] Y. Kitamura, T. Kasai, and R. Mizoguchi. Ontology-based description of
functional design knowledge and its use in a functional way server. In Pro-
ceedings of the Pacific Asian Conference on Intelligent Systems (PRIS’2001),
pages 400–409, 2001.

[20] G. Klyne. A syntax for describing media feature sets. Request for Comments
2533, IETF, March 1999.

[21] R. O. LaMaire, A. Krishna, P. Bhagwat, and J. Panian. Wireless LANs and
mobile networking: Standards and future directions. IEEE Personal Com-
munications, 34(8):86–94, August 1996.

[22] R. Moskowitz and P. Nikander. Host identity protocol (HIP) architecture.
Request for Comments 4423, IETF, May 2006.

[23] M. Mouly and M.-B. Pautet. The GSM System for Mobile Communications.
Mouly and Pautet, 1992.

[24] Napster. The napster home page. www.napster.com.

[25] Open Mobile Alliance. OMA Device Management Version 1.1.2, January
2004.

[26] Open Mobile Alliance. OMA User Agent Profile Version 2.0, 2006.

[27] K. Pahlavan, A. Zahedi, and P. Krisnamurthy. Wideband local access: Wire-
less LAN and wireless ATM. IEEE Communications Magazine, 35(11):34–40,
1997.

[28] J. D. Parson, D. Jardine, and J. G. Gardiner.Mobile Communication Systems.
Blackie, Glasgow, UK, 1989.

[29] C. Perkins. Ip mobility support for ipv4. Request for Comments 3344, IETF,
August 2002.

[30] C. G. Plaxton, R. Rajamanen, and A.W. Richa. Accessing nearby copies of
replicated objects in a distributed environment. Technical Report CS-TR-97-
11, University of Texas at Austin, 1997.

[31] Project JXTA. JXTA home page, 2007. Available from World Wide Web:
<http://www.jxta.org>.

[32] K. Raatikainen. A new look at mobile computing. In Proceedings of ANWIRE
Workshop, Athens, May 2004.

[33] M. Rahnema. Overview of the GSM system and protocol architecture. IEEE
Communication Magazine, 31(4):92–100, April 1993.

[34] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable
content-addressable network. In Proceedings of the ACM SIGCOMM 01, San
Diego, California, August 2001.

References 29

[35] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object loca-
tion and routing for large-scale peer-to-peer systems. In Proceedings of the
ACM/IFIP Middleware, 2001.

[36] R. Schollmeier. A definition of peer-to-peer networking for the classification
of peer-to-peer architectures and applications. In Proceedings of the First
International Conference on Peer-to-Peer Computing (P2P’01), pages 101–
102, Sweden, 2001.

[37] SPICE Consortium. Deliverable D3.1: Ontology Definition for the DCS and
DCS Resource Description, User Rules, 2006.

[38] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of the ACM SIGCOMM 01, San Diego, California, August 2001.

[39] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek, F. Dabek,
and H. Balakrishnan. Chord: A scalable peer-to-peer lookup protocol for
internet applications. IEEE/ACM Transactions on Networking Software,
11(1):17–32, 2003.

[40] The Infrared Data Association. IrDA homepage, 2007. Available from World
Wide Web: <http://www.irda.org/>.

[41] The Institute of Electrical and Electronics Engineers. IEEE Home Page, 2007.
Available from World Wide Web: <http://www.ieee.org>.

[42] The Internet Engineering Task Force. IETF Home Page, 2007. Available
from World Wide Web: <http://www.ietf.org>.

[43] Third generation partnership project web site, 2007. Available from World
Wide Web: <http://www.3gpp.org>.

[44] W3C. W3c device independence activity. Available from World Wide Web:
<http://www.w3.org/2001/di/>.

[45] W3C. Composite capability/preference profiles (cc/pp): Structure and vo-
cabularies, March 2003. W3C Working Draft.

[46] B. Y. Zhoa, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure
for fault-tolerant wide-area location and routing. Technical Report CSD-01-
1141, University of California at Berkeley, 2001.

Chapter 3

Semantic Web Service
Description
Matthias Klusch

3.1 Introduction

The convergence of Semantic Web with service-oriented computing is manifested
by Semantic Web service (SWS) technology. It addresses the major challenge of
automated, interoperable and meaningful coordination of Web services to be car-
ried out by intelligent software agents. In this chapter, we briefly discuss promi-
nent SWS description frameworks, that are the standard SAWSDL, OWL-S and
WSML1. This is complemented by a critique, and selected references to further
readings on the subject.

3.2 Issues of Semantic Service Description

Each semantic service description framework can be characterised with respect to
(a) what kind of service semantics are described, (b) in what language or formal-
ism, (c) allowing for what kind of reasoning upon the abstract service descriptions?
Further, we distinguish between an abstract Web Service, that is the description
of the computational entity of the service, and a concrete service as one of its
instances or invocations that provide the actual value to the user [22]. In this
sense, abstract service descriptions are considered complete but not necessarily
correct: There might be concrete service instances that are models of the capa-
bility description of the abstract service but can actually not be delivered by the
provider.

1Due to space limitations other semantic service description frameworks like SWSL (Semantic
Web Service Language) and the DIANE service description language are excluded.

32 Chapter 3. Semantic Web Service Description

3.2.1 Functional and Non-Functional Service Semantics

In general, the functionality of a service can be described in terms of what it does,
and how it actually works. Both aspects of its functional semantics (or capability)
are captured by a service profile, respectively, service process model. The profile
describes the signature of the service in terms of its input (I) and output (O)
parameters, and its preconditions (P) and effects (E) that are supposed to hold
before or after executing the service in a given world state, and some additional
provenance information such as the service name, its business domain and provider.
The process model of atomic or composite services describes how the service works
in terms of the interplay between data and control flow based on a common set of
workflow or control constructs like sequence, split+join, choice, and others.

This general distinction between profile and process model semantics is com-
mon to structured Web service description frameworks, while differences are in the
naming and formal representation of what part of service semantics. We can fur-
ther differentiate between stateless (IO), respectively, state-based (PE) abstract
service descriptions representing the set of its instances, that are concrete ser-
vices providing value to the user. The non-functional service semantics are usually
described with respect to a quality of service (QoS) model including delivery con-
straints, cost model with rules for pricing, repudiation, availability, and privacy
policy.

3.2.2 Structured Representation of Service Semantics

A domain-independent and structured representation of service semantics is of-
fered by upper (top-level) service ontologies and languages such as OWL-S and
WSML with formal logic groundings, or SAWSDL which comes, in essence, with-
out any formal semantics. Neither OWL-S nor WSML provide any agreed formal
but intuitive, standard workflow-based semantics of the service process model
(orchestration and choreography). Alternatively, for abstract service descriptions
grounded in WSDL, the process model can be intuitively mapped to BPEL or-
chestrations with certain formal semantics.

3.2.3 Monolithic Representation of Service Semantics

The formal specification of service semantics agnostic to any structured service
description format can be achieved, for example, by means of a specific set of
concept and role axioms in an appropriate logic (cf. Section 3.6). Since the service
capability is described by means of one single service concept, this representation
of service semantics is called monolithic and allows to determine the semantic
relations between service descriptions fully within the underlying logical formalism
based on concept satisfaction, subsumption and entailment. However, it does not
provide any further information on how the service actually works in terms of the
process model nor any description of non-functional semantics.

3.3. SAWSDL 33

3.2.4 Data Semantics

The domain-dependent semantics of service profile parameters (also called data
semantics) are described in terms of concepts, roles (and rules) taken from shared
domain, task, or application ontologies. These ontologies are defined in a formal
Semantic Web language like OWL, WSML or SWRL. If different ontologies are
used, agents are supposed to automatically resolve the structural and semantic
heterogeneities for interoperation to facilitate better Web Service discovery and
composition. This process of ontology matching is usually restricted to ontologies
specified in the same language, otherwise appropriate inter-ontology mappings
have to be provided to the agents.

In subsequent sections, we briefly introduce prominent approaches to both
types of service representation. For structured semantic service descriptions, we
focus on OWL-S, WSML, and SAWSDL, and omit to discuss alternatives like DSD
(DIANE service description format) and SWSL (Semantic Web service Language).

3.2.5 Reasoning about Semantic Service Descriptions

The basic idea of formally grounded descriptions of Web Services is to allow agents
to better understand the functional and non-functional semantics through appro-
priate logic-based reasoning. For this purpose, it is commonly assumed that the
applied type of logic reasoning complies with the underlying semantic service de-
scription framework. Further, the concept expressions used to specify the data
semantics of service input and output parameters are assumed to build up from
basic concepts and roles taken from formal application or domain ontologies which
the requester and provider commonly refer to. We survey approaches to non-logic-
based, logic-based, and hybrid reasoning means for Semantic Web Service discov-
ery, and composition planning in the next chapter.

3.3 SAWSDL

The standard language WSDL for Web Services operates at the mere syntactic
level as it lacks any declarative semantics needed to meaningfully represent and
reason upon them by means of logical inferencing. In a first response to this prob-
lem, the W3C Working Group on Semantic Annotations for WSDL and XML
Schema (SAWSDL) developed mechanisms with which semantic annotations can
be added to WSDL components. The SAWSDL specification became a W3C can-
didate recommendation on January 26, 20072, and eventually a W3C recommen-
dation on August 28, 2007.

2http://www.w3.org/2002/ws/sawsdl/

34 Chapter 3. Semantic Web Service Description

3.3.1 Annotating WSDL Components

Unlike OWL-S or WSML, SAWSDL does not specify a new language or top-
level ontology for semantic service description but simply provides mechanisms
by which ontological concepts that are defined outside WSDL service documents
can be referenced to semantically annotate WSDL description elements. Based on
its predecessor and W3C member submission WSDL-S3 in 2005, the key design
principles for SAWSDL are that (a) the specification enables semantic annotations
of Web Services using and building on the existing extensibility framework of
WSDL; (b) it is agnostic to semantic (ontology) representation languages; and (c)
it enables semantic annotations for Web Services not only for discovering Web
Services but also for invoking them.

Based on these design principles, SAWSDL defines the following three new
extensibility attributes to WSDL 2.0 elements for their semantic annotation:

• An extension attribute, named modelReference, to specify the association
between a WSDL component and a concept in some semantic (domain)
model. This modelReference attribute is used to annotate XML Schema com-
plex type definitions, simple type definitions, element declarations, and at-
tribute declarations as well as WSDL interfaces, operations, and faults. Each
modelReference identifies the concept in a semantic model that describes the
element to which it is attached.

• Two extension attributes (liftingSchemaMapping and loweringSchema-
Mapping) are added to the set of XML Schema element declarations, com-
plex type definitions and simple type definitions. Both allow to specify map-
pings between semantic data in the domain referenced by modelReference
and XML, which can be used during service invocation.

An example of a SAWSDL service, that is a semantically annotated WSDL
service with references to external ontologies describing the semantics of WSDL
elements, is given in Figure 3.1: The semantics of the service input parameter
of type “OrderRequest” is defined by an equally named concept specified in an
ontology “purchaseorder” which is referenced (URI) by the element tag “model-
Reference” attached to “OrderRequest”. It is also annotated with a tag A tag
“loweringSchemaMapping” which value (URI) points to a data type mapping, in
this case an XML document, which shows how the elements of this type can be
mapped from the referenced semantic data model (here RDFS) to XMLS used in
WSDL.

3.3.2 Limitations

Major critic of SAWSDL is that it comes, as a mere syntactic extension of WSDL,
without any formal semantics. In contrast to OWL-S and (in part) WSML, there is

3http://www.w3.org/Submission/WSDL-S/

3.3. SAWSDL 35

Figure 3.1: Example of semantic annotation of WSDL elements in SAWSDL.

no defined formal grounding of neither the XML-based WSDL service components
nor the referenced external metadata sources (via modelReference). Quoting from
the SAWSDL specification: “Again, if the XML structures expected by the client
and by the service differ, schema mappings can translate the XML structures
into the semantic model where any mismatches can be understood and resolved.”
This makes any form of logic-based discovery and composition of SAWSDL service
descriptions in the Semantic Web rather obsolete but calls for “magic” mediators
outside the framework to resolve the semantic heterogeneities.

Another problem with SAWSDL today is its –apart from the METEOR-S
framework by the developers of SAWSDL (WSDL-S) and related ongoing de-
velopment efforts at IBM– still very limited software support compared to the
considerable investments made in research and development of software for more
advanced frameworks like OWL-S and WSMO world wide. However, the recent
announcement of SAWSDL as a W3C recommendation does not only support a
standardized evolution of the W3C Web service framework in principle (rather
than a revolutionary technology switch to far more advanced technologies like
OWL-S or WSML) but certainly will push software development in support of
SAWSDL and reinforce research on refactoring these frameworks with respect to
SAWSDL.

36 Chapter 3. Semantic Web Service Description

Figure 3.2: OWL-S service description elements.

3.4 OWL-S

OWL-S is an upper ontology used to describe the semantics of services based on
the W3C standard ontology OWL and is grounded in WSDL. It has its roots
in the DAML Service Ontology (DAML-S) released in 2001, and became a W3C
candidate recommendation in 2005. OWL-S builds on top of OWL and consists of
three main upper ontologies: the Profile, the Process Model, and the Grounding
(cf. Figure 3.2).

In the following, we briefly summarize the underlying standard ontology lan-
guage OWL and then present each of the main elements of OWL-S service de-
scriptions.

3.4.1 Background: OWL

The standard ontology language for the Semantic Web is OWL [2, 4, 12] which
is formally grounded in description logics (DL). OWL has its roots in the joint
initiative DAML+OIL of researchers from the US and Europe in 2000 to develop a
formal annotation or mark-up language for the Web. Only three years later, OWL
became a W3C recommendation, and has been widely adopted by both industry
and academics since then. The current version of OWL is OWL 1.14.

Variants

OWL comes in several variants, that are OWL-Full, OWL-DL, and OWL-Lite.
Each variant corresponds to a DL of different expressivity and complexity. OWL-
Lite and OWL-DL are an abstract syntactic form of the description logic SHIF(D),
respectively, SHOIN(D).

4http://www.w3.org/Submission/2006/10/

3.4. OWL-S 37

OWL-Full. The most expressive but undecidable variant OWL-Full provides full
compatibility with RDFS and covers the expressivity of the description logic
SHOIQ(D)* which offers not only simple data types (D) but inverse roles (I), roles
as subroles (a role hierarchy H), role transitivity (S) and qualified role cardinality
restrictions (Q), as well as derived classes (classes used as individuals) together
with non-primitive roles. Since OWL-Full allows in particular non-primitive roles
(which can either be transitive or have transitive subroles) in role cardinality re-
strictions (S*), it is undecidable [14].
OWL-DL. Unlike OWL-Full, the less expressive variant OWL-DL (SHOIN(D))
allows only for unqualified number (role cardinality) restrictions, and does not
permit to state that a role P is transitive or the inverse of another role Q �= P .
In particular, OWL-DL does not include relationships between (transitive) role
chains which would cause its undecidability. That is, in role number restrictions,
only simple roles which are neither transitive nor have transitive subroles are
allowed; otherwise we gain undecidability even in SHN [14]. OWL-DL also does not
allow classes to be used as individuals (derived classes), or to impose cardinality
constraints on subclasses.
OWL-Lite. The variant OWL-Lite (SHIF(D)) is even less expressive than OWL-
DL. It prohibits unions and complements of classes, does not allow the use of
individuals in class descriptions (enumerated classes, nominals O), and limits role
cardinalities to 0 or 1 (F). However, it is possible to capture all OWL-DL class
descriptions except those containing either individuals or role cardinalities greater
than 1 by properly exploiting the implicit negations introduced by disjointness
axioms, and introducing new class names [13]. In role cardinality restrictions, only
simple roles are allowed; however, it is unknown whether SHF or SHIF becomes
undecidable without this restriction [14].
The syntactic transformation from OWL-Lite and OWL-DL ontologies to corre-
sponding DL knowledge bases is of polynomial complexity. What makes OWL a
Semantic Web language is not its semantics (which are quite standard for a DL)
but the use of URI references for names, the use of XMLS datatypes for data
values, and the ability to connect to documents in the Web.

Relation to RDFS

The abstract syntax of OWL can be mapped to the normative syntax of RDF 5.
In general, OWL adds constructors to RDFS for building class and property (role)
descriptions (vocabulary) and new axioms (constraints) with model-theoretic se-
mantics. In particular, the use of intersection (union) within (sub-)class descrip-
tions, or universal/existential quantifications within super-/subclasses in OWL is
not possible in RDFS[13]. However, the variants OWL-DL and OWL-Lite are ex-
tensions of a restricted use of RDFS whereas OWL-Full is fully upward compatible
with RDFS. As mentioned above, OWL-DL and OWL-Lite do not allow classes to

5RDFS statements are equivalent to DL axioms of the form C � D, � � ∀P : C, � � ∀P−.C,
P � Q, a : C and (a, b) : P .

38 Chapter 3. Semantic Web Service Description

be used as individuals, or to impose cardinality constraints on subclasses, and the
language constructors cannot be applied to the language itself - which is possible
in OWL-Full and RDFS.

It has been shown only recently in [21] that the formal semantics of a sublanguage
of RDFS is compatible with that of the corresponding fragment of OWL-DL such
that RDFS could indeed serve as a foundational language of the Semantic Web
layer stack. Though checking whether a RDF graph is an OWL ontology and up-
grading from RDFS to OWL remains hard in practice, and is topic of ongoing
research. For a detailed treatment of this subject, we refer to [7]. The syntac-
tic transformation from OWL-Lite and OWL-DL ontologies to corresponding DL
knowledge bases is of polynomial complexity.

Complexity

As mentioned above, for OWL-Lite and OWL-DL, entailment reduced to con-
cept satisfiability and ABox consistency is decidable in EXPTIME (complete),
respectively, NEXPTIME (complete) [11, 26]. Though SHOIQ(D) is intractably
co-NEXPTIME hard [26], its variant with non-primitive transitive roles in role
cardinality restrictions (S*), hence OWL-Full, is undecidable [14]. Reasoning with
data types and values (D) can be separated from reasoning with classes and indi-
viduals by allowing the DL reasoner to access a datatype oracle that can answer
simple questions with respect to data types and values; this way, the language
remains decidable if data type and value reasoning is decidable, i.e., if the oracle
can guarantee to answer all questions of the relevant kind for supported datatypes.

Efficient query answering over DL knowledge bases with large ABoxes (in-
stance stores) and static TBoxes is of particular interest in practice. Unfortunately,
OWL can be considered insufficient for this purpose in general: Conjunctive query
answering (CQA) for SHIQ and SHIF underlying OWL-Lite is decidable but only
in time exponential in the size of the knowledge base (taxonomic complexity) and
double exponential in the size of the query [7] (query and combined complexity);
the CQA complexity for OWL-DL is unknown.

Another important inference on OWL ontologies is defined in terms of ontol-
ogy entailment: Ontology O1 entails another O2, O1 |= O2, iff all interpretations
that satisfy O1 also satisfy O2 in the DL sense. For both OWL-DL (SHOIN(D))
and OWL-Lite (SHIF(D)), ontology entailment checking can be polynomially re-
duced to the checking of the satisfiability of the corresponding DL knowledge bases
O1, O2 (ontology consistency checking) which is decidable for both variants. The
main criticism of the standard Semantic Web ontology language OWL is that it
only allows for static declarative knowledge representation of limited expressivity
and reasoning support.

3.4. OWL-S 39

Figure 3.3: OWL-S service profile structure.

3.4.2 Service Profile

The OWL-S profile ontology is used to describe what the service does, and is
meant to be mainly used for the purpose of service discovery. An OWL-S service
profile or signature encompasses its functional parameters, i.e. hasInput, hasOut-
put, precondition and effect (IOPEs), as well as non-functional parameters such
as serviceName, serviceCategory, qualityRating, textDescription, and meta-data
(actor) about the service provider and other known requesters. Please note that,
in contrast to OWL-S 1.0, in OWL-S 1.1 the service IOPE parameters are defined
in the process model with unique references to these definitions from the profile
(cf. Figure 3.3).

Inputs and outputs relate to data channels, where data flows between pro-
cesses. Preconditions specify facts of the world (state) that must be asserted in
order for an agent to execute a service. Effects characterize facts that become
asserted given a successful execution of the service in the physical world (state).
Whereas the semantics of each input and output parameter is defined as an OWL
concept formally specified in a given ontology, typically in decidable OWL-DL or
OWL-Lite, the preconditions and effects can be expressed in any appropriate logic
(rule) language such as KIF, PDDL, and SWRL. Besides, the profile class can
be subclassed and specialized, thus supporting the creation of profile taxonomies
which subsequently describe different classes of services. An example of a Semantic

40 Chapter 3. Semantic Web Service Description

Figure 3.4: Example of OWL-S 1.1 service profile.

Web service profile in OWL-S 1.1 is given in figure 3.4.

3.4.3 Service Process Model

An OWL-S process model describes the composition (choreography and orches-
tration) of one or more services, that is the controlled enactment of constituent
processes with respective communication pattern. In OWL-S this is captured by
a common subset of workflow features like split+join, sequence, and choice (cf.
Figure 3.5). Originally, the process model was not intended for service discovery
but the profile by the OWL-S coalition.

More concrete, a process in OWL-S can be atomic, simple, or composite.
An atomic process is a single, black-box process description with exposed IOPEs.
Simple processes provide a means of describing service or process abstractions
which have no specific binding to a physical service, thus have to be realized by an
atomic process, e.g. through service discovery and dynamic binding at runtime,
or expanded into a composite process. The process model of the example OWL-S
service above is provided in Figure 3.6.

Composite processes are hierarchically defined workflows, consisting of atom-
ic, simple and other composite processes. These process workflows are constructed
using a number of different control flow operators including Sequence, Unordered
(lists), Choice, If-then-else, Iterate, Repeat-until, Repeat-while, Split, and
Split+Join. In OWL-S 1.1, the process model also specifies the inputs, outputs,

3.4. OWL-S 41

Figure 3.5: OWL-S service process model.

Figure 3.6: Example of OWL-S service process model.

42 Chapter 3. Semantic Web Service Description

preconditions, and effects of all processes that are part of a composed service,
which are referenced in the profiles of the respective services6. An OWL-S process
model of a composite service can also specify that its output is equal to some out-
put of one of its subprocesses whenever the composite process gets instantiated.
Moreover, for a composite process with a Sequence control construct, the output
of one subprocess can be defined to be an input to another subprocess (binding).

Unfortunately, the semantics of the OWL-S process model are left undefined
in the official OWL-S documents. Though there are proposals to specify these
semantics in terms of, for example, the situation calculus [19], and the logic pro-
gramming language GOLOG based on this calculus [20].

3.4.4 Service Grounding

The grounding of a given OWL-S service description provides a pragmatic bind-
ing between the logic-based and XMLS-based service definitions for the purpose
of facilitating service execution. Such a grounding of OWL-S services can be, in
principle, arbitrary but has been exemplified for a grounding in WSDL to prag-
matically connect OWL-S to an existing Web service standard (cf. Figure 3.7).

In particular, the OWL-S process model of a service is mapped to a WSDL
description through a thin (incomplete) grounding: Each atomic process is mapped
to a WSDL operation, and the OWL-S properties used to represent inputs and
outputs are grounded in terms of respectively named XML data types of corre-
sponding input and output messages. Unlike OWL-S, WSDL cannot be used to
express pre-conditions or effects of executing services. Any atomic or composite
OWL-S service with a grounding in WSDL is executable either by direct invoca-
tion of the (service) program that is referenced in the WSDL file, or by a BPEL
engine that processes the WSDL groundings of simple or orchestrated Semantic
Web Services.

3.4.5 Software Support

One prominent software portal of the Semantic Web community is SemWebCen-
tral7 developed by InfoEther and BBN Technologies within the DAML program in
2004 with BBN continuing to maintain it today. As a consequence, it comes at no
surprise that this portal offers a large variety of tools for OWL and OWL-S service
coordination as well as OWL and rule processing. Examples of publicly available
software support of developing, searching, and composing OWL-S services are as
follows.

6This is in opposite to OWL-S 1.0, where the IOPES are defined in the profile and referenced
in the process model.

7http://projects.semwebcentral.org/

3.4. OWL-S 43

Figure 3.7: Grounding of OWL-S in WSDL.

• Development.
OWL-S IDE integrated development environment8, the OWL-S 1.1 API9

with the OWL-DL reasoner Pellet10 and OWL-S editors.

• Discovery.
OWL-S service matchmakers OWLS-UDDI11, OWLSM12 and OWLS-MX13

with test collection OWLS-TC2.

• Composition.
OWL-S service composition planners OWLS-XPlan14, GOAL15.

8http://projects.semwebcentral.org/projects/owl-s-ide/
9http://projects.semwebcentral.org/projects/owl-s-api/

10http://projects.semwebcentral.org/projects/pellet/
11http://projects.semwebcentral.org/projects/mm-client/
12http://projects.semwebcentral.org/projects/owlsm/
13http://projects.semwebcentral.org/projects/owls-mx/
14http://projects.semwebcentral.org/projects/owls-xplan/
15http://www.smartweb-project.de

44 Chapter 3. Semantic Web Service Description

3.4.6 Limitations

Main critics of OWL-S concern its limited expressiveness of service descriptions
in practice which, in fact, corresponds to that of its underlying description logic
OWL-DL. Only static and deterministic aspects of the world can be described in
OWL-DL, since it does not cover any notion of time and change, nor uncertainty.
OWL-S allows specifying conditional effects, that are possible effects of the service
each of which conditioned by its result (output) but not input. Besides, in contrast
to WSDL, an OWL-S process model cannot contain any number of completely
unrelated operations.

However, OWL-S bases on existing W3C Web standards, in particular the
Web Services protocol stack: It extends OWL and has a grounding in WSDL.
Furthermore, the large set of available tools and applications of OWL-S services,
as well as ongoing research on Semantic Web rule languages on top of OWL such
as SWRL and variants still support the adoption of OWL-S for Semantic Web
Services, though this might be endangered by the choice of SAWSDL as a W3C
standard just recently.

3.5 WSML

In this section, we informally introduce the reader to the basic elements of semantic
service description in the Web service modeling language (WSML).

3.5.1 WSMO Framework

TheWSMO (Web Service Modelling Ontology) framework16 provides a conceptual
model and a formal language WSML (Web Service Modeling Language) 17 for
the semantic markup of Web services together with a reference implementation
WSMX (Web Service Execution Environment). Historically, WSMO evolved from
the Web Service Modeling Framework (WSMF) as a result of several European
Commission funded research projects in the domain of Semantic Web Services like
DIP, ASG, Super, TripCom, KnowledgeWeb and SEKT in the ESSI (European
Semantic Systems Initiative) project cluster18.

WSMO offers four key components to model different aspects of Semantic
Web services in WSML (Web Service Modeling Language): Ontologies, goals, ser-
vices, and mediators. Goals in goal repositories specify objectives that a client
might have when searching for a relevant Web service. WSMO ontologies provide
the formal logic-based grounding of information used by all other modeling com-
ponents. Mediators bypass interoperability problems that appear between all these
components at data (mediation of data structures), protocol (mediation of mes-
sage exchange protocols), and process level (mediation of business logics) to ”allow

16http://www.wsmo.org/TR/d2/v1.4/20061106
17http://www.wsmo.org/TR/d16/d16.1/v0.21/20051005/
18http://www.sdkcluster.org/

3.5. WSML 45

for loose coupling between Web services, goals (requests), and ontologies”. Each of
these components, called top-level elements of the WSMO conceptual model, can
be assigned non-functional properties to be taken from the Dublin Core metadata
standard by recommendation.

3.5.2 WSML Variants

The Web service modeling language WSML allows to describe a Semantic Web
service in terms of its functionality (service capability), imported ontologies, and
the interface through which it can be accessed for orchestration and choreogra-
phy. The syntax of WSML is mainly derived from F-Logic extended with more
verbose keywords (e.g., ”hasValue” for − >, ”p memberOf T” for p:T etc.), and
has a normative human-readable syntax, as well as an XML and RDF syntax for
exchange between machines. WSML comes in five variants with respect to the
logical expressions allowed to describe the semantics of service and goal descrip-
tion elements. In the following, we informally introduce F-Logic and the WSML
variants in very brief.

F-Logic. F-Logic is an object-oriented extension of first-order predicate logic
with objects of complex internal structure, class hierarchies and inheritance, typ-
ing, and encapsulation in order to serve as a basis for object-oriented logic pro-
gramming and knowledge representation. For modeling ontologies, it allows to
define, for example, is-a object class (or type) hierarchies through subclass rela-
tionships like person::human denoting class ”person” as a subclass of ”human,
a class of objects with structured properties (object type signature) like per-
son[name *⇒ string, children *⇒ person], and instances of classes (typed objects)
like john:person as well as rules like (R:region :- R1:region, R::R1.) and (L:location
:- L:R, R:region.) denoting that every subclass ”R” of an object class ”R1” of type
”region” is a region and that every member L of a region ”R” is also a location.
Rules may also be used to define virtual classes like the rule (X:redcar :- X:car,
X[color → red].) defining the virtual class ”redcar”.

F-Logic comes in two flavors with respective variants: A first-order F-Logic
variant (F-Logic(FO)) that includes an (OWL-DL/WSML-DL) description logic
subset of classical predicate logic, and a full logic programming (LP) variant (F-
Logic(LP)) that is LP extended with procedural built-ins (functions), and non-
monotonic default inheritance and negation-as-(finite)-failure19. Non-monotonic
(default) inheritance of F-Logic(LP) allows to override default property values
of classes inherited by subclasses. For example, a class Elephant[color *→ grey]

19In nonmonotonic LP, like semi-decidable PROLOG and F-Logic(LP), the default negation
of fact p (not p) means ”p is true if p cannot be proven in a given knowledge base KB in finite
time” (under closed-world assumption). This is nonmonotonic, i.e., truth values of asserted and
implied knowledge in KB do not grow monotonically: (KB|= p) does not imply (KB ∪ {q} |= p),
e.g., KB = {(p :- not q)} implies p true (KB |= p), but KB* = {q, (p :- not q)} implies p false.

46 Chapter 3. Semantic Web Service Description

Figure 3.8: WSML language variants.

with default value ”grey” of property ”color” has a subclass royalElephant[color
*→ white] for which objects this default value of inherited property ”color” is
overriden by (default) value ”white”. Hence, one can assert object fred[color →
grey] as member of class ”Elephant” (but not ”royalElephant”), and clyde[color
→ white] as member of both classes. Semantics of F-Logic(LP) are derived from
Van Gelder’s well-founded (fix-point-based, minimal model) semantics of the non-
monotonic part of logic programming [27]. F-Logic(LP) is more commonly used
than F-Logic(FO) like in the LP-reasoners OntoBroker, Flora-2 and Florid. For
more details on the syntax and semantics of F-Logic, we refer to [29, 28].

WSML variants. The formal semantics of WSML service description elements
are specified as logical axioms and constraints in ontologies using one of five WSML
variants: WSML-Core, WSML-DL, WSML-Flight, WSML-Rule and WSML-Full
(cf. Figure 3.8).

Though WSML has a special focus on annotating Semantic Web services like
OWL-S it tries to cover more representational aspects from knowledge represen-
tation and reasoning under both classical FOL and nonmononotic LP semantics.
For example, WSML-DL is a decidable variant of F-Logic(FO) with expressiv-
ity close to the description logic SHOIN(D), that is the variant OWL-DL of the
standard ontology Web language OWL. WSML-Flight is a decidable Datalog vari-
ant of F-Logic(LP) (function-free, non-recursive and DL-safe Datalog rules) with
(nonmonotonic) default negation under perfect model semantics [23] of locally
stratified F-Logic programs with ground entailment. WSML-Rule is a fully-fledged
logic programming language with function symbols, arbitrary rules with inequality

3.5. WSML 47

and nonmontonic negation, and meta-modeling elements such as treating concepts
as instances, but does not feature existentials, strict (monotonic) negation, and
equality reasoning. The semantics of WSML-Rule is defined through a mapping
to undecidable (nonmonotonic, recursive) F-Logic(LP) variant with inequality and
default negation under well-founded semantics [27]. WSML-Full shall unify the DL
and LP paradigms as a superset of FOL with non-monotonic extensions to sup-
port nonmonotonic negation of WSML-Rule via Default Logic, Circumscription or
Autoepistemic Logic. However, neither syntax nor semantics of WSML-Full have
been completely defined yet.

3.5.3 Services in WSML

In general, the description of the semantics of a service and request (so-called
goal) in WSML is structured into the parts of the service capability, the service
interface used for orchestration and choreography, and the shared variables.

Goal. Like in OWL-S, a goal in WSMO represents the desired WSML service
which is indicated with a special keyword “goal” instead of “webservice” in front
of the service description. A goal refers to a desired state that can be described by
help of a (world state) ontology. Such an ontology provides a basic vocabulary for
specifying the formal semantics of service parameters and transition rules (TBox),
and a set of concept and role instances (ABox) which may change their values from
one world state to the other. It also specifies possible read-write access rights to
instances and their grounding. A state is the dynamic set of instances of concepts,
relations and functions of given state ontology at a certain point of time. The
interpretation of a goal (and service) in WSML is not unique: The user may want
to express that either all, or only some of the objects that are contained in the
described set are requested [16].

Figure 3.9 gives an example of a goal in WSML to find a service, which as a
result of its execution, offers to reserve a ticket for the desired trip. In this case,
the only element of the capability the user is interested in, is the postcondition of
the desired service.

Service Capability. A WSML service capability describes the state-based
functionality of a service in terms of its precondition (conditions over the in-
formation space), postcondition (result of service execution delivered to the user),
assumption (conditions over the world state to met before service execution), and
effect (how does the execution change the world state). Roughly speaking, a WSML
service capability consists of references to logical expressions in a WSML variant
that are named by the scope (precondition, postcondition, assumption, effect, ca-
pability) they intend to describe. It also specifies non-functional properties and
all-quantified shared variables (with the service capability as scope) for which the
logical conjunction of precondition and assumption entails that of the postcondi-
tion and the effect.

48 Chapter 3. Semantic Web Service Description

Figure 3.9: Example of a service request (goal) in WSML.

Figure 3.10: Example of service capability in WSML.

3.5. WSML 49

Figure 3.11: Example of WSML service interface.

Figure 3.10 provides an example of a Web Service capability specified in
WSML. This example service offers information about trips starting in Austria and
requires the name of the person and credit card details for making the reservation.
The assumption is that the credit card information provided by the requester must
designate a valid credit card that should be of type either PlasticBuy or Golden-
Card. The postcondition specifies that a reservation containing the details of a
ticket for the desired trip and the reservation holder is the result of the successful
execution of the Web Service. Finally, the effect in the world state is that the
credit card is charged with the cost of the ticket.

Service Interface. A WSML service interface contains the description of how
the overall functionality of the Web service is achieved by means of cooperation
of different Web service providers (orchestration) and the description of the com-
munication pattern that allows to one to consume the functionality of the Web
service (choreography). A choreography description has two parts: the state and
the guarded transitions. As mentioned above, a state is represented by an WSMO
ontology, while guarded transitions are if-then rules that specify conditional tran-
sitions between states in the abstract state space.

Figure 3.11 provides an example of a service interface with choreography,
and a guarded transition rule which requires the following to hold: If a reservation
request instance exists (it has been already received, since the corresponding con-
cept in the state ontology currently has the mode “in”) with the request for a trip

50 Chapter 3. Semantic Web Service Description

starting in Austria, and there exists a ticket instance for the desired trip in the
Web service instance store, then create a temporary reservation for that ticket.

3.5.4 Software Support

The project web site www.wsmo.org provides, for example, a comprehensive set of
links to software tools for developing WSMO oriented services (in WSML) most
of which available under open source related licenses at sourceforge.net. Examples
include the WSMO4J API20, the WSMO studio21 with WSML service editor,
WSML-DL and WSML-Rule reasoner, WSML validator, and the WSMX service
execution environment22.

Remarkably, there are still neither implemented semantic WSML service
composition planners nor full-fledged WSML service matchmakers available apart
from a rather simple keyword-based and non-functional (QoS) parameter oriented
WSML service discovery engine as part of the WSMX suite, and the hybrid match-
maker WSMO-MX. This situation of weak software support of services in WSML,
however, could drastically improve in near future for various reasons of both pol-
itics and science.

3.5.5 Limitations

The WSMO conceptual model and its language WSML is an important step for-
ward in the SWS domain as it explicitly overcomes some but not all limits of
OWL-S. Unfortunately, the development of WSMO and, in particular, WSML has
been originally at the cost of its connection to the W3C Web service standard
stack at that time. This raised serious concerns by the W3C summarized in its
official response to the WSMO submission in 2005 from which we quote23: “The
submission represents a development, but one which has been done in isolation of
the W3C standards. It does not use the RDFS concepts of Class and Property for
its ontology, and does not connect to the WSDL definitions of services, or other
parts of the Web Services Architecture. These differences are not clearly explained
or justified. The notion of choreography in WSMO is obviously very far from the
definition and scope presented in WS-CDL. The document only gives little detail
about mediators, which seem to be the essential contribution in the submission.”
To date, however, the connection of WSML with WSDL and SAWSDL (WSDL-S)
has been established in part, and is under joint investigation by both WSMO and
SAWSDL initiatives in relevant working and incubator groups of the standardis-
ation bodies OASIS and W3C.

Another main critic onWSML concerns the lack of formal semantics of service
capabilities in both the WSMO working draft as of 2006, and the WSML speci-

20http://wsmo4j.sourceforge.net/
21http://www.wsmostudio.org/download.html
22http://sourceforge.net/projects/wsmx/
23http://www.w3.org/Submission/2005/06/Comment

3.6. Monolithic DL-Based Service Descriptions 51

fication submitted to the Web consortium W3C in 2005. Recently, this problem
has been partly solved by means of a semi-monolithic FOL-based representation of
functional service semantics over abstract state spaces and (guarded) state space
transitions by service execution traces [24]. Though, the formal semantics of the
WSML service (orchestration and choreography) interface part is still missing —
which is not worse than the missing process model semantics of OWL-S.

Further, principled guidelines for developing the proposed types of WSMO
mediators for services and goals in concrete terms are missing. Besides, the software
support for WSML services provided by the WSMO initiative appears reasonable
with a fair number of downloads but is still not comparable to that of OWL-S in
terms of both quantity and diversity.

Finally, as with OWL-S, it remains to be shown whether the revolutionary but
rather academicWSMO framework will be adopted by major business stakeholders
within their service application landscapes in practice. In general, this also relates
to the key concern of insufficient scaling of logic-based reasoning to the Web scale
as mentioned in the previous chapter.

3.6 Monolithic DL-Based Service Descriptions

As mentioned above, an alternative to formally specifying the functional semantics
of a Web service agnostic to any structured service description formats like OWL-
S, SAWSDL, or WSML, is the pure DL-based approach: The abstract service
semantics is defined through an appropriate set of concept and role axioms in
a given description logic. Any instantiation of this service concept corresponds
to a concrete service with concrete service properties. That is, the extension SI

of a service concept S representing the abstract service to be described in an
interpretation I of the concept over a given domain contains all service instances
the provider of S is willing to accept for contracting with a potential requester of
S. An example of a monolithic DL-based description of an abstract service and
possible service instances is shown in Figure 3.12 ([8]).

In this example, the functional semantics or capability of the abstract Web
service S is described by a set DS of two DL concept axioms: The service concept
S for the shipping of items with a weight less than or equal to 50kg from cities
in the UK to cities in Germany; the concept Shipping (used to define S) which
assures that instances of S specify exactly one location for origin and destination
of the shipping. Semantic relations between such monolithically described service
semantics can be determined fully within the underlying logical formalism, that
is by DL-based inferencing. For a more detailed treatment of this topic, we refer
to [8].

52 Chapter 3. Semantic Web Service Description

Figure 3.12: Example of a monolithic DL-based semantic service description.

3.7 Critique

Main critiques of Semantic Web services range from limitations of proposed frame-
works via the lack of appropriate means of service coordination and software sup-
port to the legitimation of the research field as a whole. As one consequence, SWS
technology still appears too immature for getting adopted by both common Web
users and developers in practice, and industry for its commercial use on a large
scale.

Do we really need formal service semantics? Some recent critics of SWS tech-
nology argue against the significance of its claimed benefits for practical Web
service applications in general. Key justification of this argument, is related to the
general critics on Semantic Web technologies. In fact, the need of having formal
logic-based semantics specified for Web Services in practical human-centred ap-
plications is often questioned: It is completely unclear whether the complete lack
of formal service semantics turns out to be rather negligible, or crucial for what
kinds of service applications for the common Web user in practice, and on which
scale.

Just recently, van Harmelen and Fensel [6] argued for a more tolerant and
scalable Semantic Web reasoning based on approximated rather than strict logic-
based reasoning. This is in perfect line with experimental results available for hy-
brid SWS matchmakers that combine both logic and approximated reasoning like

3.7. Critique 53

the OWLS-MX [17], the WSMO-MX [15] and the syntactic OWLS-iMatcher [1].

Where are all the Semantic Web Services? Another interesting question concerns
the current reality of SWS technology in use. According to a recent survey of pub-
licly available Semantic Web service descriptions in the surface Web [18], revealed
that not more than around 1500 indexed semantic services in OWL-S, WSML,
WSDL-S or SAWSDL are accessible in the Web of which only about one hundred
are deployed outside special test collections like the OWLS-TC24. Though we ex-
pect the majority of Semantic Web Services being maintained in private project
repositories and sites of the deep Web [10], it certainly does not reflect the strong
research efforts carried out in the SWS domain world wide.

Of course, one might argue that this comes at no surprise in two ways. First,
SWS technology is immature (with a standard announced just recently, that is
SAWSDL) which still provides insufficient common ground supporting its exploita-
tion by end users. Though this is certainly true, the other related side of this
argument is that massive research and development of the field around the globe
should have produced a considerable amount of even publicly visible Semantic
Web service descriptions within the past half dozen of years.

Second, one might argue that it is not clear whether the surface Web and
academic publications are the right place to look for Semantic Web service descrip-
tions, as many of them would be intended for internal or inter-enterprise use but
not visible for the public. Though this is one possible reason of the low numbers
reported above, it indicates some lack of visibility to the common Web user to
date.

Where are the easy to use SWS tools for the public? As with Semantic Web
application building in general, apart from the project prototypes and systems
there is hardly any easy to use software support off the shelves available to the
common user for developing, reusing and sharing her own Semantic Web Services
— which might hamper the current confluence of the field with the Web 2.0 into
the so called service Web 3.0 in practice.

How to efficiently coordinate Semantic Web Services? Despite tremendous prog-
ress made in the field in European and national funded research projects like
DIP, Super, CASCOM, Scallops and SmartWeb, there still is plenty of room for
further investigating the characteristics, potential, and limits of SWS coordination
in both theory and practice. The Semantic Web Services Challenge25 attempts to
qualitatively measure the minimal amount of programming required to adapt the
semantics of given systems to new services. This acknowledges that the complete
automation of composing previously unknown services is impossible, rather being
a kind of Holy Grail of modern semantic technologies. Besides, the comparative

24projects.semwebcentral.org/projects/owls-tc/
25http://sws-challenge.org

54 Chapter 3. Semantic Web Service Description

evaluation of developed SWS discovery tools is currently hard, if not impossible,
to perform since the required large scale service retrieval test collections are still
missing even for the standard SAWSDL. Related to this, there are no large scale
experimental results on the scalability of proposed service coordination means in
practice available.

Apart from the problem of scalable and efficient SWS discovery and composi-
tion, another open problem of SWS coordination as a whole is privacy preservation.
Though there are quite a few approaches to user data privacy preservation for each
of the individual coordination processes (discovery, composition, and negotiation),
there is no integrated approach that allows to coherently secure SWS coordination
activities.

3.8 Summary

This chapter briefly introduced prominent frameworks of describing services in the
Semantic Web together with some major critics of the domain. Overall, the inter-
disciplinary, vivid research and development of the Semantic Web did accomplish
an impressive record in both theory and applications within just a few years since
its advent in 2000. Though we identified several major gaps to bridge before the
still immature Semantic Web services technology will make it to the common user
of the Web, the ongoing convergence of the Semantic Web, Web 2.0, and services
into a so called service Web 3.0 indicates its potential for future Web applica-
tion services. In the next chapter, we survey prominent approaches to semantic
discovery and composition planning of services in the Semantic Web.

Further readings. For more comprehensive information on Semantic Web Ser-
vices in general, we refer to the accessible readings on the subject [25, 3, 5]. Ex-
amples of major funded research projects on Semantic Web Services are

• the European funded integrated projects DIP26 and ASG (Adaptive semantic
services grid technologies)27

• SmartWeb — Mobile multi-modal provision of Semantic Web Services28,
• SCALLOPS29 — Secure Semantic Web Service coordination,
• the European funded specific targeted research projects CASCOM30,
ARTEMIS31 — Semantic Web Services for e-health applications (mobile,
P2P)

26dip.semanticweb.org/
27asg-platform.org
28http://www.smartweb-project.de/
29http://www-ags.dfki.uni-sb.de/klusch/scallops/
30http://www.ist-cascom.org
31http://www.srdc.metu.edu.tr/webpage/projects/artemis/

References 55

For more information about Semantic Web service description frameworks,
we refer to the respective documents submitted to the W3C:

• OWL-S32

• WSMO33

• SAWSDL34

• Semantic Web Services Framework SWSF35 with SWSL-Rule36 for mono-
lithic FOL-based service representation by means of different variants of rule
languages (DLP, HiLog, etc).

References

[1] A. Bernstein, C. Kiefer: Imprecise RDQL: Towards Generic Retrieval in On-
tologies Using Similarity Joins. Proc. ACM Symposium on Applied Computing,
Dijon, France, ACM Press, 2006.

[2] D. Calvanese, G. De Giacomo, I. Horrocks, C. Lutz, B. Motik,
B. Parsia, P. Patel-Schneider: OWL 1.1 Web Ontology Language
Tractable Fragments. W3C Member Submission, 19 December 2006.
www.w3.org/Submission/2006/SUBM-owl11-tractable-20061219/.
Updated version at www.webont.org/owl/1.1/tractable.html (6 April 2007)

[3] J. Cardoso, A. Sheth (Eds.): Semantic Web Services: Processes and Applica-
tions. Springer book series on Semantic Web & Beyond: Computing for human
Experience, 2006.

[4] D. Connolly, F. van Harmelen, I. Horrocks, D. McGuinness, P. Patel-Schneider,
L. Stein: DAML+OIL reference description. W3C Note, 18 December 2001.
Available at www.w3.org/TR/2001/NOTE-daml+oil-reference-20011218.

[5] D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman, J.
Domingue: Enabling Semantic Web Services — The Web Service Modeling
Ontology. Springer, 2006.

[6] D. Fensel, F. van Harmelen: Unifying reasoning and search to Web scale. IEEE
Internet Computing, March/April 2007.

[7] B. Glimm, I. Horrocks, C. Lutz, U. Sattler: Conjunctive Query Answering for
the Description Logic SHIQ. Proceedings of International Joint Conference on
AI (IJCAI), 2007.

32http://www.w3.org/Submission/OWL-S/
33www.w3.org/Submission/WSMO/
34www.w3.org/2002/ws/sawsdl/
35www.daml.org/services/swsf/
36www.w3.org/Submission/SWSF-SWSL/)

56 References

[8] S. Grimm: Discovery — Identifying relevant services. In [25], 2007.

[9] B. Grosof, I. Horrocks, R. Volz, S. Decker: Description Logic Programs: Com-
bining Logic Programs with Description Logic. Proceedings of the 12th Inter-
national World Wide Web Conference (WWW), 2003.

[10] B. He, M. Patel, Z. Zhang, K.Chang: Accessing the Deep Web. Communica-
tions of the ACM, 50(5), 2007.

[11] I. Horrocks, P. Patel-Schneider: Reducing OWL entailment to description
logic satisfiability. Proceedings of International Semantic Web Conference
(ISWC), 2003, Springer, LNCS, 2870, 2003.

[12] I. Horrocks, P. Patel-Schneider: A proposal for an OWL rules language. Pro-
ceedings of 13th International World Wide Web Conference (WWW), 2004.

[13] I. Horrocks, P. Patel-Schneider, F. van Harmelen: ¿From SHIQ and RDF to
OWL: The Making of a Web Ontology Language.Web Semantics, 1, Elsevier,
2004.

[14] I. Horrocks, U. Sattler, S. Tobies: Practical Reasoning for Very Expressive
Description Logics. Logic Journal of the IGPL, 8(3):239263, 2000.

[15] F. Kaufer and M. Klusch: Hybrid Semantic Web Service Matching
with WSMO-MX. Proc. 4th IEEE European Conference on Web Services
(ECOWS), Zurich, Switzerland, IEEE CS Press, 2006

[16] U. Keller, R. Lara, H. Lausen, A. Polleres, D. Fensel: Automatic Location of
Services. Proceedings of the 2nd European Semantic Web Conference (ESWC),
Heraklion, Crete, LNCS 3532, Springer, 2005.

[17] M. Klusch, B. Fries, K. Sycara: Automated Semantic Web Service Discovery
with OWLS-MX. Proc. 5th Intl. Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), Hakodate, Japan, ACM Press, 2006

[18] M. Klusch, Z. Xing: Semantic Web Service in the Web: A Preliminary Re-
ality Check. Proc. First Intl. Joint ISWC Workshop SMR2 2007 on Service
Matchmaking and Resource Retrieval in the Semantic Web, Busan, Korea,
2007.

[19] S. Narayanan, S. McIllraith: Simulation, verification and automated compo-
sition of Web Services. Proc. of 11th International COnference on the World
Wide Web (WWW), Hawaii, 2002.

[20] S. McIllraith, T.C. Son: Adapting Golog for composition of Semantic Web
Services. Proc. International Conference on Knowledge Representation and
Reasoning KRR, Toulouse, France, 2002.

[21] J. Pan, I. Horrocks: RDFS(FA): Connecting RDF(S) and OWL DL. IEEE
Transactions on Knowledge and Data Engineering, 19(2):192-206, 2007.

References 57

[22] C. Preist: Semantic Web Services — Goals and Vision. Chapter 6 in [25],
2007.

[23] T. C. Przymusinski: On the declarative and procedural semantics of logic
programs. Automated Reasoning, 5(2):167-205, 1989.

[24] M. Stollberg, U. Keller, H. Lausen, S. Heymans: Two-phase Web Service
discovery based on rich functional descriptions. Proceedings of European Se-
mantic Web Conference, Buda, Montenegro, LNCS, Springer, 2007.

[25] R. Studer, S. Grimm, A. Abecker (eds.): Semantic Web Services. Concepts,
Technologies, and Applications. Springer, 2007.

[26] S. Tobies: The Complexity of Reasoning with Cardinality Restrictions and
Nominals in Expressive Description Logics. Artificial Intelligence Research
(JAIR), 12, 2000.

[27] A. van Gelder, K. Ross, J. S. Schlipf: The well-founded semantics for general
logic programs. ACM, 38(3):620-650, 1991.

[28] G. Yang and M. Kifer: Well-Founded Optimism: Inheritance in Frame-Based
Knowledge Bases. Proceedings of 1st International Conference on Ontologies,
Databases and Applications of Semantics (ODBASE), Irvine, California, 2002.

[29] M. Kifer, G. Lausen, J. Wu: Logical Foundations of Object-Oriented and
Frame-Based Languages. Journal of the ACM, 42(4), 1995.

Chapter 4

Semantic Web Service
Coordination
Matthias Klusch

4.1 Introduction

Semantic service coordination aims at the coherent and efficient discovery, compo-
sition, negotiation, and execution of Semantic Web Services in a given environment
and application context. What makes coordination of services in the Semantic Web
different from its counterpart in the Web is its far more advanced degree of au-
tomation through means of logic-based reasoning on heterogeneous service and
data semantics.

In this chapter, we only focus on approaches to semantic discovery and com-
position planning of Semantic Web services, and briefly comment on their in-
terrelationships and selected open problems of both fields. For reasons of space
limitations, the set of presented examples is representative but not exhaustive.

4.2 Semantic Service Discovery

Service discovery is the process of locating existing Web services based on the
description of their functional and non-functional semantics. Discovery scenarios
typically occur when one is trying to reuse an existing piece of functionality (rep-
resented as a Web service) in building new or enhanced business processes. A
Semantic Web service, or in short semantic service, is a Web service which func-
tionality is described by use of logic-based semantic annotation over a well-defined
ontology (cf. Chapter 3). In the following, we focus on the discovery of semantic
services. Both service-oriented computing and the Semantic Web envision intelli-
gent agents to proactively pursue this task on behalf of their clients.

Semantic service discovery can be performed in different ways depending
on the considered service description language, means of service selection and

60 Chapter 4. Semantic Web Service Coordination

coordination through assisted mediation or performed in a peer-to-peer fashion. In
general, any service discovery framework needs to have the following components
([37]).

• Service description language: A service description language (more precisely
top-level ontologies, also called service description formats) is used to rep-
resent the functional and non-functional semantics of Web services. Exam-
ples of structured and logic-based semantic service description language are
OWL-S and WSML. The standard Semantic Web service description lan-
guage SAWSDL allows for a structured representation of service semantics
in XML(S) with references to any kind of non-logic-based or logic-based on-
tology for semantic annotation.1. Alternatively, in so-called monolithic logic-
based service descriptions the functionality of a service is represented by
means of a single logical expression of an appropriate logic, usually a de-
scription logic like OWL-DL or WSML-DL.

• Service selection means: Service selection encompasses semantic matching
and ranking of services to select a single most relevant service to be invoked,
starting from a given set of available services. This set can be collected and
maintained, for example, by front-end search engine, or given by providers
advertising their services at registries or middle-agents like matchmakers and
brokers. Semantic service matching, or in short: service matching, is the pair-
wise comparison of an advertised service with a desired service (query) to
determine the degree of their semantic correspondence (semantic match).
This process can be non-logic-based, logic-based or hybrid depending on the
nature of reasoning means used.

Non-logic-based matching can be perfomed by means of, for example,
graph matching, data mining, linguistics, or content-based information re-
trieval to exploit semantics that are either commonly shared (in XML names-
paces), or implicit in patterns or relative frequencies of terms in service de-
scriptions. Logic-based semantic matching of services like those written in the
prominent service description languages OWL-S (Ontology Web Language
for Services), WSML (Web Service Modeling Language) and the standard
SAWSDL (Semantically Annotated WSDL) exploit standard logic inferences.
Hybrid matching refers to the combined use of both types of matching.

• Discovery architecture: The conceptual service discovery architecture con-
cerns the environment in which the discovery is assumed to be performed.
This includes assumptions about the (centralized or decentralized P2P) phys-
ical or semantic overlay of the network, the kind of service information storage
(e.g., service distribution, registries, and ontologies) and location mechanisms
such as query routing, as well as the agent society in the network (e.g., service
consumers, providers, middle-agents).

1In this sense, SAWSDL services can be seen as a weaker form of semantic services while
WSDL services are no semantic services.

4.2. Semantic Service Discovery 61

Figure 4.1: Categories of existing semantic Web service matchmakers.

In the following, we survey existing approaches to semantic service matching and
discovery architectures. Examples of semantic service description languages were
presented in the previous chapter.

4.2.1 Classification of Semantic Web Service Matchmakers

Semantic service matching determines whether the semantics of a desired service
(or goal) conform to that of an advertised service. This is at the very core of
any semantic service discovery framework. Current approaches to semantic service
matching can be classified according to

• what kinds and parts of service semantics are considered for matching, and
• how matching is actually be performed in terms of non-logic-based or logic-
based reasoning on given service semantics or a hybrid combination of both,
within or partly outside the respective service description framework (cf.
Figure 4.1).

62 Chapter 4. Semantic Web Service Coordination

Non-Logic, Logic, and Hybrid Semantic Service Matching. The majority of Se-
mantic Web service matchmakers performs deductive, that is logic-based seman-
tic service matching. In this sense, they are keeping with the original idea of
the Semantic Web to determine semantic relations (thus resolve semantic het-
erogeneities) between resources including services based on logical inferencing on
their semantic annotations that are formally grounded in description logics (DL)
and/or rules (cf. Chapter 3). As shown in figure 4.1, pure logic-based semantic
matchmakers for services in OWL-S and WSML are currently prevalent. Non-
logic-based semantic service matchmakers do not perform any logic-based reason-
ing to determine the degree of a semantic match between a given pair of service
descriptions. Examples of non-logic-based semantic matching techniques are text
similarity measurement, structured graph matching, and path-length-based simi-
larity of concepts2.

Service Profile and Process Model Matching. Most Semantic Web service match-
makers perform service profile rather than service process model matching. Service
profile matching (so-called “black-box” service matching) determines the seman-
tic correspondence between services based on the description of their profiles. The
profile of a service describes what it actually does in terms of its signature, that
is its input and output (IO), as well as preconditions (P) and effects or postcondi-
tions (E), and non-functional aspects such as the relevant business category, name,
quality, privacy and pricing rules of the service. We classify additional context in-
formation for service matching such as the organisational (social or domain) roles,
or geographic location of service requesters and providers in their interaction as
non-functional.

Service process-oriented matching (so-called “glass-box” service matching)
determines the extent to which the desired operational behavior of a given ser-
vice in terms of its process control and data flow matches with that of another
service. Like with service profile matching, we can distinguish between non-logic
based, logic based and hybrid semantic process matching approaches depending on
whether automated reasoning on operational semantics specified in some certain
logic or process algebraic language (e.g. CCS, π-calculus) is performed, or not. An
overview of relevant approaches to process mining for process discovery is given
in [110].

Supported Semantic Web Service Description Formats. Each of the implemented
Semantic Web service matchmakers shown in Figure 4.1 supports only one of the
many existing Semantic Web service description formats (cf. Chapter 3) as follows.
This list is representative but not exhaustive.

2Please note that any kind of semantic service matching that identifies concepts or rules (which
are logically defined in a given ontology) by their names only does not classify as logic-based
matching in the strict sense. Without any formal verification of the semantic relation between
given (semantic service annotation) concepts based on their logical definitions, the matchmaker
performs non-logic-based semantic service matching.

4.2. Semantic Service Discovery 63

• OWL-S matchmakers: Logic-based semantic matchmakers for OWL-S ser-
vices are the OWLSM [45] and OWLS-UDDI [81] focussing on service IO-
matching, and the PCEM [18] that converts given OWL-S services to PDDL
actions for PROLOG-based service PE-matching. Further OWL-S match-
makers are the hybrid service IO-matchmaker OWLS-MX [59], the hybrid
non-functional profile matchmaker ROWLS [34], the hybrid (combined) pro-
file matchmaker FC-MATCH [16], the non-logic-based (full) service match-
maker iMatcher1 [14] and its hybrid successor iMatcher2 [51]. An approach to
logic-based OWL-S process model verification is in [109] while [11] presents
an approach to the matching of OWL-S process dependency graphs based on
syntactic similarity measurements, and [12] proposes a hybrid matchmaker
that recursively compares the DAML-S process model dependency graphs.

• WSML matchmakers: Implemented approaches to WSML service discovery
include the hybrid semantic matchmaker WSMO-MX [49], the logic-based
matchmaker GLUE [27], and the syntactic search engine for QoS-enabled
WSML service discovery in P2P networks [112]. Other approaches to logic-
based WSML service IOPE matchmaking are presented in [48, 103], though
it is unclear to what extent they have been implemented.

• WSDL-S/SAWSDL matchmakers: The METEOR-S WSDI discovery infras-
tructure [111] and the UDDI-based search component Lumina3 are the only
tool support of searching for SAWSDL services so far. While searching with
Lumina is keyword-based, the MWSDI discovery of SAWSDL services relies
on non-logic-based matching means.

• Monolithic DL-based matchmakers: Only very few matchmaker are agnostic
to the above mentioned structured Semantic Web Service description for-
mats without conversion by accepting monolithic descriptions of services in
terms of a single service concept written in a given DL. In this case, semantic
matching directly corresponds to DL inferencing, that is, semantic service
matching is done exclusively within the logic theory such as performed by
RACER [65], MaMaS4 [29, 30], and in [38]. Recently, an implemented ap-
proach to matching of monolithic service descriptions in OWL-DL extended
with (non-functional) pricing policies modeled in DL-safe SWRL rules ac-
cording to given preferences using SPARQL queries to a service repository is
presented in [62].

• Others: Non-logic-based service IOPE profile matchmakers for other struc-
tured service description formats are the DSD matchmaker [53] for DIANE
services, the numeric service IO type matching based HotBlu matchmak-
er [25], and the hybrid service IOPE matchmaker LARKS for services in an
equally named format [105].

3lsdis.cs.uga.edu/projects/meteor-s/downloads/Lumina/
4sisinflab.poliba.it/MAMAS-tng/

64 Chapter 4. Semantic Web Service Coordination

In the following, we discuss each category of Semantic Web service matching
together with selected representative examples of the above mentioned Semantic
Web service matchmakers in more detail. This is complemented by a classifica-
tion of existing service discovery architectures for which these matchmakers have
been designed for, or can be used in principle. As stand-alone implementation,
each matchmaker classifies as centralized service discovery system, though a few
matchmaker have been also tested for, or were originally developed for decen-
tralized P2P service retrieval systems like the OWLS-MX and the OWLS-UDDI
matchmaker, respectively, the WSMO-QoS search engine and the DReggie/GSD
matchmaker5.

4.2.2 Logic-Based Semantic Service Profile Matching

As mentioned above, logic-based semantic service matchmakers perform deduc-
tive reasoning on service semantics. The majority of such matchmakers pairwisely
compare logic-based descriptions of service profile semantics. In order to define
these semantics, logical concepts and rules are taken from respective ontologies
as first-order or rule-based background theories with a shared minimal vocabu-
lary. Different ontologies of service providers and service requester are matched
or aligned either at design time, or at runtime as part of the logic-based service
matching process.

Matching Degrees

The degree of logic-based matching of a given pair of semantic service profiles can
be determined either (a) exclusively within the considered logic theory by means
of logic reasoning, or (b) by a combination of logical inferences within the theory
and algorithmic processing outside the theory. Prominent logic-based matching
degrees are exact, plugin, subsumes, and disjoint which are defined differently
depending on the parts of service semantics and the logic theory that is used to
compute these degrees.

One prominent example for a software specification matching degree is the so-
called plug-in match. A specification S plugs into (plug-in matches with) another
specification R, if the effect of S is more specific than that of R, and vice versa for
the preconditions of S and R [115]. If this definition is restricted to effects only,
the matching degree is called a post plug-in match. Unfortunately, the original
notion of plug-in match has been adopted quite differently by most logic-based
Semantic Web service matchmakers for both monolithic and structured service
descriptions.

5For reasons of readability, the implemented (stand-alone) Semantic Web service matchmakers
shown in Figure 4.1 each representing a central discovery system by itself are not again listed
in Figure 4.2, and vice versa, that is, those matchmaking approaches being inherent part of the
functionality of each node of decentralized discovery systems (but not available as stand-alone
matchmaker) are not listed in Figure 4.1.

4.2. Semantic Service Discovery 65

Monolithic Logic-Based Service Matching

Matching of monolithic logic-based semantic service descriptions (cf. Chapter 3)
is performed exclusively by means of logic inferences within the considered logic
theory. That is, the functionality of a Web service is represented by a single (mono-
lithic) expression in an appropriate logic, usually a description logic like OWL-DL
or WSML-DL. As a consequence, monolithic logic-based semantic service match-
ing reduces to standard first-order (description) logic reasoning such as checking
the satisfiability of service and query concept conjunction, or the entailment of
concept subsumption over a given knowledge base. Furthermore, it is agnostic to
any form of structured stateless (I/O) or stateful (IOPE) representation of service
semantics like in OWL-S and WSML. The prominent degrees of semantic match-
ing used by the majority of monolithic logic-based semantic service matchmakers
are logic equivalence, post-plug-in match, subsumes, and fail.

For example, the logical so-called post-plug-in match of an advertised service
S with a service request R bases on the entailment of concept subsumption of
S by R over a given knowledge base kb extended by the axioms of S and R:
kb ∪ S ∪ R |= S � R. That is, the matchmaker checks if in each first-order
interpretation (possible world) I of kb, the set SI of concrete provider services
(service instances) is contained in the set RI of service instances acceptable to the
requester: SI ⊆ RI . This assures the requester that each provided service instance
offers at least the requested functionality, maybe even more. In other words, service
S is more specific than the request R, hence considered semantically relevant.
In contrast, the so-called logical subsumes match assures the requester that her
acceptable service instances are also acceptable to the provider: kb∪S∪R |= R � S.

Some monolithic DL-based service matchmakers also check for a so-called
intersection or potential match (Grimm, 2007)[37]. This matching degree indi-
cates the principled compatibility of service S with request R with respect to
the considered knowledge base kb by means of either concept intersection or non-
disjointness. In the first case, the advertised service concept S potentially matches
with the (desired service or) query concept R if their concept conjunction S ∩ R
is satisfiable with respect to kb in some possible world I such that SI ∩ RI �= ∅
holds. In the second case, the monolithic logic-based semantic service matchmaker
makes a stronger check by determining whether the intersection of both concept
extensions is non-empty in each possible world.

In general, the complexity of matching monolithic DL-based service descrip-
tions is equal to the combined DL complexity. For example, post-plug-in match-
ing of service concepts in OWL-Full, that is SHOIQ+ (including transitive non-
primitive roles) has been shown to be undecidable [10] but decidable for OWL-DL,
WSML-DL and DL-safe SWRL.

One problem of monolithic DL-based service matching is the risk to return
false positives due to incomplete knowledge specified in service descriptions S,R
or the domain ontology kb [38]. In other words, semantic matching of S with R
with respect to kb based on monotonic DL reasoning under open-world assump-

66 Chapter 4. Semantic Web Service Coordination

tion (OWA) can wrongly succeed due to the existence of possible but unwanted
interpretations of concepts or roles used in S or R over kb. Such unwanted possible
worlds of kb are intuitively ruled out by humans by default - which accounts for
their usually non-monotonic reasoning under closed-world assumption6.

One solution to this problem is to explicitly capture such default (common-
sense) knowledge by adding, for example, appropriate concept disjointness axioms
or object assertions to the knowledge base kb. This excludes possible worlds which
are ”obviously” wrong (but allowed due to open-world semantics) but is considered
impracticable as it requires the modeler to somewhat ”overspecify” the kb with
”obvious” information.

An alternative solution is to perform semantic matching of services with local
closed-world reasoning (cf. chapter 2) as proposed by [38]. Key idea is to exclude
the unwanted possible worlds of knowledge base kb by means of an additional au-
toepistemic logic operator K7 that allows to restrict the interpretation of certain
concepts C and roles r used in advertised and desired service descriptions S and
R to named individuals (nominals) in the ABox of kb which are definitely known
or not known to belong to them (C, r)8. However, this local closure of concepts
and roles in S,R for their interpretation in kb (i.e., locally closing off possible
worlds of kb in S and R without any occurrence of K in kb) under the local closed
world-assumption (LCWA)9 by use of the K-operator makes semantic matching
dependent on the state of the world: It requires the existence of named individuals
in the ABox of kb as representative (static) information on the locally closed con-

6The OWA states that the inability to deduce some fact from a knowledge base does not
imply its contrary by default, that is, the fact may hold (not in all but) in some possible world
(interpretations of kb). For example, the intersection match of R = F light � ∀from.UKCity
with S = F light � ∀from.USCity with respect to the knowledge base kb = {UKCity �
EUCity, F light � ∃from.�} wrongly succeeds. The reason is that kb is underspecified in the
sense that (due to the OWA) there can be possible worlds in which cities can be both in the UK
and the US, which causes a false positive for the intersection match.

7The epistemic logic operator K allows to refer to definitely known facts by intersecting
all possible worlds: (KC)I,E =

⋂
I∈E C

I,E . The epistemic concept KC is interpreted as the
intersection of extensions of concept C over all first-order interpretations of kb, that is the set of
all individuals that are known to belong to C (in the epistemic model E(kb) of kb, that is the
maximal non-empty set of all first-order interpretations of kb).

8In the above example, the intersection match of the request R = F light�∀from.KUKCity
with service S = F light�∀from.KUSCity with respect to the matchmaker knowledge base kb =
{UKCity � EUCity, F light � ∃from.�, UKCity(London)} correctly fails, hence avoids to
return a false positive. The satisfiability of the epistemic concept S�R requires the existence of a
named individual x in kb known to be both UKCity and USCity (that is kb entails UKCity(x)�
USCity(x), i.e. kb |= UKCity(x) and kb |= USCity(x), for every possible world I in the epistemic
model E(kb)). While the named individual London in the ABox of kb is definitely known to
belong to the concept UKCity, and also known to belong to EUCity due to the inclusion axiom
in the TBox of kb, it is not definitely known to also belong to USCity (kb � USCity(London)).
There is also no other named individual in kb which is both known to be in UKCity and
USCity such that S � R is not satisfied. An intersection match of R with different service
S′ = F light � ∀from.KEUCity correctly succeeds.

9The LCWA assumes that all individuals of some concept, or all pairs of individuals of some
role are explicitly known in the local knowledge base (selected local concept or role closure).

4.2. Semantic Service Discovery 67

cepts and roles10. Besides, using an autoepistemic extension of description logics
like OWL-DL or WSML-DL for semantic service matching is still uncommon in
practice, though (non-monotonic) reasoners such as for epistemic query answering
in ALCK11 can be easily integrated in a matchmaker.

Another application of non-monotonic reasoning to monolithic DL-based ser-
vice matching is proposed in [24, 30]. The respective matchmaker MAMAS pro-
vides non-standard explanation services, that are non-monotonic logical abduction
and contraction, for partial (also called approximated, intersection, or potential)
matches. For example, concept contraction computes an explanation concept G to
explain why a request concept R is not compatible with service concept S, that
is, why S � R is not satisfiable (S � R) �⊥. For this purpose, it keeps the least
specific concept expression K of concept R such that K is still compatible with S,
i.e. ¬(K � S) �⊥. The remaining set G of constraints of R represents the desired
explanation of mismatch. Such kind of non-monotonic logical service matching is
NP-hard already for the simple description logic ALN. However, research in this
direction has just begun and is, in part, related to research on non-monotonic
reasoning with Semantic Web rule languages.

Examples of implemented monolithic DL-based matchmakers for service con-
cepts written in OWL(-DL) and DAML+OIL are MAMAS [29, 30], respectively,
RACER. Remarkably, both matchmakers determine the degree of post-plug-in
match inverse to its original definition in [115].

Service Specification Matching

The logic-based semantic matching of service specifications (so-called PE-match-
ing) concerns the comparison of their preconditions (P) and effects (E) and orig-
inates from the software engineering domain. As mentioned above, the plug-in
matching of two software components S,R requires that the logic-based definition
of the effect, or postcondition of S logically implies that of R, while the precondi-
tion of S shall be more general than that of R [115]. In other words, a logic-based
semantic plug-in match of service specifications S,R requires (in every model of
given knowledge base kb) the effect of advertised service S to be more specific than
requested, and its precondition to be more general than requested in R. Depend-
ing on the Semantic Web service description framework (cf. Chapter 3), the logic
language for defining service preconditions and effects ranges from, for example,
decidable def-Horn (DLP), WSML-DL and OWL-DL to undecidable SWRL, KIF
and F-Logic(LP).

10In the above example, the intersection match S′�R would (wrongly) fail, hence causes a false
negative, if the named individual London would not have been explicitly stated in kb to belong to
UKCity as its representative by default: There would be no named individual definitely known
to belong to both UKCity and EUCity in all possible worlds. Though UKCity(London) has
to be added to the kb of the matchmaker to avoid false positives and negatives of intersection
matches by non-monotonic epistemic query answering kb with K, no (dynamic) information
about concrete flights, i.e. individuals of concpet F light, has to be additionally specified in kb.

11http://www.fzi.de/downloads/wim/KToy.zip

68 Chapter 4. Semantic Web Service Coordination

For example, the logic-based service-PE matchmaker PCEM (cf. Chapter 10)
exploits the Java-based light-weight Prolog engine tuProlog12 for logic-based exact
matching of service preconditions and effects written in Prolog. In particular, the
PCEMmatchmaker checks whether there is a possibly empty variable substitution
such that, when applied to one or both of the logical propositions (PE), this
results into two equal expressions, and applies domain specific inference rules (for
computing subPartOf relations).

The hybrid semantic WSML service matchmaker WSMO-MX [49] is checking
an approximated query containment over a given finite service instance base for
service effects (postconditions, constraints) written in undecidable F-Logic(LP) us-
ing OntoBroker. The approach to semantic service IOPE matchmaking described
in [103] uses the VAMPIRE theorem prover for matching pairs of preconditions and
effects written in FOL, while the hybrid service IOPE matchmaker LARKS [105]
performs polynomial theta-subsumption checking of preconditions and postcondi-
tions written in Horn. There are no non-logic-based or hybrid semantic service PE
matchmaker available yet.

Service Signature and IOPE Matching

Logic-based semantic matching of service signatures (input/output, IO), so called
service profile IO-matching, is the stateless matching of declarative data semantics
of service input and output parameters by logical reasoning within the theory and
algorithmic processing outside the theory. For example, the logic-based plug-in
matching of state-based service specifications (PE) can be adopted to the plug-in
matching of stateless service signatures (IO): Service S is expected to return more
specific output data whose logically defined semantics is equivalent or subsumed
by those of the desired output in request R, and requires more generic input data
than requested in R.

More concrete, the signature of S plugs into the signature of request R iff
∀ inS ∃ inR: inS < inR ∧ ∀ outR ∃ outS : outS ∈ LSC(outR), with LSC(C)
the set of least specific concepts (direct children) C′ of C, i.e. C′ is a immediate
sub-concept of C in the shared (matchmaker) ontology. The quantified constraint
that S may require less input than specified in R guarantees at a minimum that
S is, in principle, executable with the input provided by the user in R. This holds
if and only if the logical service input concepts are appropriately mapped to the
corresponding WSDL service input message data types in XMLS.

Examples of Semantic Web service matchmakers that perform logic-based se-
mantic matching of service signatures only are the OWLSM [45] and the OWLS-
UDDI [81]. Though the latter determines a signature plug-in matching degreee
which is defined inverse to the original definition and restricted to the output. Ap-
proaches to logic-based semantic IOPE matching of Web services are proposed in
[48, 103]. In general, logic-based matching of stateless service descriptions with I/O

12http://alice.unibo.it/xwiki/bin/view/Tuprolog/

4.2. Semantic Service Discovery 69

concepts and conjunctive constraints on their relationship specified in OWL-DL,
that is SHOIN has been proven decidable though intractable [42]. This indicates
the respective decidability of service IOPE-matching for OWL-S (with OWL-DL)
and WSML (with WSML-DL).

4.2.3 Non-logic-based Semantic Profile Matching

As mentioned above, non-logic-based Semantic Web service matchmaker do not
perform any logical inferencing on service semantics. Instead, they compute the
degree of semantic matching of given pairs of service descriptions based on, for ex-
ample, syntactic similarity measurement, structured graph matching, or numeric
concept distance computations over given ontologies. There is a wide range of
means of text similarity metrics from information retrieval, approximated pattern
discovery, and data clustering from data mining, or ranked keyword, and struc-
tured XML search with XQuery, XIRQL or TeXQuery [39, 6]. In this sense, non-
logic-based semantic service matching means exploit semantics that are implicit
in, for example, patterns, subgraphs, or relative frequencies of terms used in the
service descriptions, rather than declarative IOPE semantics explicitly specified
in the considered logic.

One example is the matchmaker iMatcher1 [14] which imprecisely queries a
set of OWL-S service profiles that are stored as serialized RDF graphs in a RDF
database with an extension of RDQL, called iRDQL, based on four (token and
edit based) syntactic similarity metrics from information retrieval. The imprecise
querying of RDF resources with similarity joins bases on TFIDF and the Leven-
shtein metric. The results are ranked according to the numerical scores of these
syntactic similarity measurements, and a user-defined threshold.

The DSD matchmaker [53, 61] performs, in essence, graph matching over
pairs of state-based service descriptions in the object oriented service description
language DSD (with variables and declarative object sets) without any logic-based
semantics. The matching process determines what assignment of IOPE variables
is necessary such that the state-based service offer is included in the set (of service
instances) defined by the request, and returns a numeric (fuzzy) degree of DSD
service matching.

4.2.4 Hybrid Semantic Profile Matching

Syntactic matching techniques are first class candidates for the development of
hybrid semantic service profile matching solutions that combine means of both
crisp logic-based and non-logic-based semantic matching where each alone would
fail. Indeed, first experimental evaluation of the performance of hybrid semantic
service matchmakers OWLS-MX and iMatcher2 show that logic-based semantic
service selection can be significantly outperformed by the former under certain
conditions.

70 Chapter 4. Semantic Web Service Coordination

LARKS [105, 105] has been the first hybrid semantic service IOPE match-
maker for services written in a frame-based language called LARKS. The match-
maker OWLS-MX [59] bases in part on LARKS, and is the first hybrid semantic
service signature (IO) matchmaker for OWL-S services. OWLS-MX complements
deductive (DL) reasoning with approximated IR-based matching. For this pur-
pose, each of its four hybrid variants OWLS-M1 to OWLS-M4 applies a selected
token-based string similarity metric (cosine/TFIDF, extended Jaccard, Jensen-
Shannon, LOI) to the given pair of service signature strings in order to determine
their degree of text similarity-based matching. If the text similarity value exceeds
a given threshold the failure of logic-based matching is tolerated, that means the
service is eventually classified as semantically relevant to the given query. The
ranking aggregates both types of matching degrees with respect to the total order
of logic-based matching degrees. Experimental evaluation results over the test col-
lection OWLS-TC together with a FP/FN-analysis of OWLS-MX showed that the
performance of logic-based semantic matching can be improved by its combination
with non-logic-based text similarity measurement [54, 55].

Similarly, the hybrid semantic service profile matchmaker iMatcher2 [51]
uses multiple edit- or token-based text similarity metrics (Bi-Gram, Levenshtein,
Monge-Elkan and Jaro similarity measures) to determine the degree of semantic
matching between a given pair of OWL-S service profiles. Like OWLS-MX, the
iMatcher2 transforms each structured service profile description into a weighted
keyword vector that includes not only the names but terms derived by means
of logic-based unfolding of its service input and output concepts. In this sense,
iMatcher2 classifies as a hybrid matchmaker. The experimental evaluation of
iMatcher2 over the test collection OWLS-TC2.1 confirmed, in principle, the pre-
viously reported results of the evaluation of OWLS-MX.

In its adaptive mode, iMatcher2 can also be trained over a given retrieval
training collection to predict the degree of semantic matching of unknown services
to queries by means of selected regression models (support vector regression with
a RBF kernel, linear and logistic regression). This regression-based induction is
performed over the set of (a) the binary value of subjective semantic relevance as
defined in the relevance sets, and (b) different text similarity values computed by
means of the selected similarity metrics for each pair of query and service of the
training collection. After training, the iMatcher2 first computes the text similar-
ity values (using the selected similarity metrics) of a given query to all services
of a given test collection, then uses the learned regression model to predict the
combined similarity (or likelihood) of a match, and finally returns the answers in
decreasing order of similarity. Experimental evaluation of the adaptive iMatcher2
showed that the combined logical deduction and regression-based learning of text
similarities produces superior performance over logical inference only.

The hybrid semantic service matchmaker FC-MATCH [16] does a combined
logic-based and text similarity-based matching of single service and query con-
cepts written in OWL-DL. A service concept S is defined as logical conjunction
of existential qualified role expressions where each role corresponds to a selected

4.2. Semantic Service Discovery 71

profile parameter: S = ∃hasCategory(C1) � ∃hasOperation(C2) � ∃hasInput(C3)
� ∃hasOutput(C4)). Hybrid matching degrees are computed by means of (a) com-
bined checking of logic-based subsumption of profile concepts (Ci) and (b) com-
puting the so-called Dice (name affinity) similarity coefficient between terms oc-
curing in these concepts according to the given terminological relationships of
the thesaurus WordNet. FC-MATCH (FC stands for functional comparison) per-
forms structured hybrid semantic matching of functional (I/O) and non-functional
profile parameters (hasCategory, hasOperation). That is a combined matching of
functional and non-functional parameters of OWL-S service profiles rewritten in
special OWL-DL expressions. To the best of our knowledge, FC-MATCH has not
been experimentally evaluated yet.

WSMO-MX [49] is the first hybrid semantic matchmaker for services written
in a WSML-Rule variant, called WSML-MX. The hybrid service matching scheme
of WSMO-MX is a combination of ideas of hybrid semantic matching as performed
by OWLS-MX, the object-oriented graph matching of the matchmaker DSD-MM,
and the concept of intentional matching of services in [48]. WSMO-MX applies dif-
ferent logic-based and text similarity matching filters to retrieve and rank services
that are relevant to a query. The hybrid semantic matching degrees are recur-
sively computed by aggregated valuations of (a) ontology-based type matching
(logical concept subsumption), (b) logical (instance-based) constraint matching in
F-logic(LP) through approximative query containment, (c) relation name match-
ing, and (d) syntactic similarity measurement as well. The experimental evaluation
of WSMO-MX over an initial WSML service retrieval test collection is ongoing
work.

However, it is not yet known what kind of hybrid service matching will scale
best to the size of the Web in practice. Research in this direction is in perfect
line with the just recent call in [33] for a general shift in Semantic Web research
towards scalable, approximative rather than strict logic-based reasoning.

4.2.5 Logic-based Semantic Process Matching

Semantic matching of service process models, in general, is very uncommon, and
not intended by the designers of current Semantic Web Service description for-
mats. Besides, the semantics of process models in OWL-S or WSML have not
been formally defined yet, while neither SAWSDL nor monolithic service descrip-
tions offer any process model. This problem can be partly solved by intuitively
rewriting the process model descriptions in an appropriate logic with automated
proof system and respective analysis tool support.

For example, in [109], OWL-S service process models are mapped into (intu-
itively) equivalent logical Promela statements that are then efficiently evaluated
by the SPIN model checker13. This allows to verify the correctness of a given ser-

13A model checker verifies if a given system (service process) model satisfies a desirable prop-

72 Chapter 4. Semantic Web Service Coordination

vice process model in terms of consistency and liveness properties of an advertised
service like the Delivery process always executes after the Buy process. The result
of such service process model checking could be used for process-oriented OWL-S
service selection (by identifying properties of service process models to be verified
with queries to match); this is a topic of ongoing research.

Alternatively, the matching of process models of OWL-S services that are
grounded in WSDL (cf. Chapter 3) can be, in principle, reduced to the matching
of corresponding WSDL service orchestrations in BPEL. As mentioned before, the
OWL-S process model captures a common subset of workflow features that can be
intuitively mapped to BPEL (used to define WSDL service compositions) which
offers an all-inclusive superset of such features (e.g. structured process activities
in BPEL like Assignment, Fault Handler, Terminate are not available in OWL-S)
[9]. Though BPEL has been given no formal semantics either yet, there are a few
approaches to fill this gap based on Petri nets [69] and abstract state machines [32]
that allow to verify liveness properties of WSDL service orchestrations in BPEL
[72]. However, there are no approaches to exploit any of the proposed formal BPEL
semantics for semantic matching of OWL-S process models that correspond to
BPEL orchestrations of WSDL services.

4.2.6 Non-logic-based and Hybrid Semantic Process Model Match-
ing

There are only a few approaches to non-logic-based Semantic Web service process
model matching. One approach to the matching of (business) process dependency
graphs based on syntactic similarity measurements is presented in [11]. [12] propose
a hybrid matchmaker (IO-RPTM) that recursively compares the DAML-S process
model dependency graphs based on given workflow operations and logical match
between IO parameter concepts of connected (sub-)service nodes of the process
graphs. On the other hand, means of functional service process matching can be
exploited to search for a set of relevant subservices of a single composite service.

4.2.7 Semantic Service Discovery Architectures

Existing Semantic Web service discovery architectures and systems in the liter-
ature can be broadly categorized as centralized and decentralized by the way
they handle service information storage and location in the considered service
network [5, 37]. A classification of implemented Semantic Web service discovery
systems is given in Figure 4.2.

Centralized service discovery systems rely on one single, possibly replicated,
global directory service (repository, registry) maintained by a distinguished so
called super-peer or middle agent like matchmaker, broker or mediator agent [58].

erty. If the property does not hold, it returns a counter-example of an execution where the
property fails.

4.2. Semantic Service Discovery 73

Figure 4.2: Categories of semantic Web service discovery architectures and sys-
tems.

Contrary, decentralized service discovery systems rely on distributing service stor-
age information over several peers in a structured, unstructured or hybrid P2P
network.

Semantic service discovery systems can be further classified with respect to
the kind of semantic service matching means used by the intelligent agents in
the network. For example, the exact keyword-based service location mechanisms
of all contemporary P2P systems like JINI, SLP, Gnutella flooding, and DHT
(distributed hash table) can be complemented or replaced by sophisticated logic-
based semantic matching means to improve the quality of the search result.

As mentioned above, due to its generic functionality, any service matchmaker
(cf. Figure 4.1) can be used in arbitrary discovery architectures and systems. In
the extremes, a matchmaker can either serve as a central service directory (index)
or look-up service, or can be integrated into each peer of an unstructured P2P
service network to support an informed adaptive service search like in RS2D [13].
In fact, a few means of semantic service matching were originally developed for
decentralized semantic P2P service retrieval in different applications.

74 Chapter 4. Semantic Web Service Coordination

Centralized Semantic P2P Service Discovery

In centralized semantic P2P service systems, a dedicated central service directory
or matchmaker returns a list of providers of semantically relevant services to the
requester. Contrary to centralized client-server middleware or brokering, the re-
quester then directly interacts with selected providers for service provision [58].
The advantage of such centralized discovery architectures is a fast resource or
service lookup time, though the central look-up server or registry like in JINI or
the CORBA-ORB interface registry is a single point of failure that can be only
partially mitigated by replication and caching strategies.

An application of centralized P2P service discovery is the Napster music file
sharing system, and the SETI@home system that is exploiting a vast set of dis-
tributed computional resources world wide to search for extraterrestrial signals.
From the Semantic Web Service discovery perspective, each of the above men-
tioned stand-alone Semantic Web Service matchmakers, in principle, realizes a
centralized logic-based semantic service discovery system by itself. For example,
the SCALLOPS e-health service coordination system uses the hybrid semantic
matchmaker OWLS-MX as a central matchmaker for the selection of relevant
e-health services in a medical emergency assistance application. The same match-
maker is distributed to each peer of an unstructured P2P network for decentralized
OWL-S service discovery [13].

MWSDI [111] is a centralized semantic P2P service system with non-logic-
based semantic service signature matching. Each peer in the system maintains
one domain specific WSDL-S (SAWSDL) service registry and respective ontologies;
multiple peers can form a domain oriented group. However, a distinguished central
gateway or super-peer provides a global registries ontology (GRO) that maintains
the complete taxonomy of all domain registries, the mappings between WSDL-
S service I/O message types and concepts from shared domain ontologies in the
system, associates registries to them, and serves as central look-up service for all
peers. This central super-peer is replicated in form of so called auxiliary peers for
reasons of scalability. For service location, any client peer (user) selects the relevant
domain registries via the central GRO at the super-peer which then performs non-
logic-based semantic matching (structural XMLS graph matching, NGram-based
syntactic similarity, synonyms/hyponyms/hypernyms in the GRO) of service input
and output concepts with those of the desired service. However, it would be hard
to build the GRO, and difficult for the user to query the GRO without knowing
its details in advance.

Decentralized Semantic P2P Service Discovery

Decentralized semantic service discovery systems rely on service information stor-
age and location mechanisms that are distributed over all peers in structured,
unstructured or hybrid P2P networks.

4.2. Semantic Service Discovery 75

Structured Semantic P2P Service Systems. Structured P2P systems have no cen-
tral directory server but a significant amount of structure of the network topology
(overlay) which is tightly controlled. Resources are placed neither at random peers
nor in one central directory but at specified locations for efficient querying. In other
words, the service index of the system is distributed to all peers according to a
given structured overlay enforcing a deterministic content distribution which can
be used for routing point queries.

Prominent examples of structured P2P systems are those with flat DHT-
based resource distribution and location mechanism like Chord rings, Pastry,
Tapestry, CAN, P-Grid and P2PAlvis, and structured hierarchic P2P systems.
Flat DHT-based systems allow to route queries with certain keys to particular
peers containing the desired data. But to provide this functionality all new con-
tent in the network has to be published at the peer responsible for the respective
key, if new data on a peer arrives, or a new peer joins the network.

In structured hierarchical or N-super-peer P2P systems (N>1), peers are or-
ganized in N domain oriented groups with possibly heterogeneous service location
mechanisms (e.g hierarchic DHT, that is, one group with Chord ring overlay, an-
other one with P-Grid overlay, etc.). Each group is represented by one super-peer
hosting the group/domain service index. The set of super-peers, in turn, can be hi-
erarchically structured with federated service directories in a super-peer top level
overlay of the network. Peers within a group query its super-peer which interacts
with other super-peers to route the query to relevant peer groups for response.
The functionality of a super-peer of one peer group is not necessarily fixed, but,
in case of node failure, transferable to a new peer of that group. Typically JXTA,
a collection of P2P protocols, is used to realize super-peer based P2P systems,
though it does not enforce such architectures.

Examples of decentralized Semantic Web service discovery in structured P2P
networks are WSPDS [47], SSLinkNet [66], CASCOM-P2P3b [19], Grid-Vine [1],
WSML-P2P [112] and Agora-P2P [60, 67]. SSLinkNet, Agora-P2P and WSML-
P2P exploit keyword-based discovery in a Chord ring, respectively, P-Grid system
with non-logic-based semantic profile matching of services in WSDL, respectively,
WSML. The Grid-Vine system performs non-logic-based semantic P2P content
retrieval by means of so-called semantic gossiping with the underlying P-Grid
system. The CASCOM and Agora-P2P systems have been demonstrated for logic-
based semantic OWL-S (DAML-S) service discovery in hierarchic structured P2P
networks.

In the SSLinkNet [66], a Chord ring-based search is complemented by for-
warding the same Web service request by the identified peers to relevant neighbors
based on a given so-called semantic service link network. The semantic links be-
tween services are determined by non-logic-based semantic service matching, and
are used to derive semantic relationships between service provider peers based on
heuristic rules.

Similarly, the AGORA-P2P system [60, 67] uses a Chord ring as the under-
lying infrastructure for a distributed storage of information about OWL-S services

76 Chapter 4. Semantic Web Service Coordination

over peers. Service input and output concept names are hashed as mere literals
to unique integer keys such that peers holding the same key are offering services
with equal literals in a circular key space. A service request is characterized as a
syntactic multi-key query against this Chord ring. Both systems, SSLinkNet and
AGORA-P2P, do not cope with the known problem of efficiently preserving the
stability of Chord rings in dynamic environments.

The generic CASCOM semantic service coordination architecture has been
instantiated in terms of a hierarchic structured P2P network with N interacting
super-peers each hosting a domain service registry that make up a federated Web
Service directory. Each peer within a group can complement a keyword-based pre-
selection of OWL-S services in their super-peer domain registries with a more
complex semantic matching by a selected hybrid or logic-based semantic OWL-
S matchmaker (ROWL-S, PCEM or OWLS-MX) on demand. Both, the simple
service discovery agent and Semantic Web Service matchmaking module are inte-
grated into each peer (cf. Chapter 10).

The Grid-Vine system [1] performs a hybrid semantic search of semantically
annotated resources by means of so-called semantic gossiping between peers about
their actual semantic knowledge (also called logical layer or semantic overlay of the
P2P system). The semantic overlay is defined by (a) the set of peer ontologies in
RDFS or XMLS that are used to encode document annotations in RDF (each RDF
triple or concept in the peer schema represents a set of documents as its instances),
and (b) a set of user-specified peer schema (concept) mappings that are used by the
peers to translate received queries. The numeric ”semantic quality” value of these
directed concept mappings, hence the non-logic-based degree of semantic similarity
between query and resource annotation concept of two peers is locally assessed by
the requester through a quantitative analysis of (transitive) propagation cycles of
the mappings (and their previous semantic quality value) which might be wrong
but not by means of logic-based reasoning about concepts. The translation links,
that is the mapping and its numeric ”semantic quality” are continously exchanged
and updated by the peers: Semantic gossiping among peers is the propagation
of queries to peers for which no direct but transitive translation links exist. The
efficient location of resources for a given and translated query by the underlying
P-Grid system bases on keyword-based matching of their identifiers, that are DHT
keys.

Service discovery in structured P2P networks can provide search guarantees,
in the sense of total service recall in the network, while simultaneously minimiz-
ing messaging overhead. Typically, structured networks such as DHT-based P2P
networks of n peers offer efficient O(log(n)) search complexity for locating even
rare items, but they incur significantly higher organizational overheads (maintain-
ing DHT, publishing)14 than unstructured P2P networks. Alternatively, flooding-
based or random-walks discovery in unstructured P2P networks are effective for

14For example, peer pn publishes each of its hashed items (termi) over the DHT network,
that is the item gets stored in an inverted list (termi, [..., pn, ...]]) of some peer that is found in
O(log(n)) hops.

4.2. Semantic Service Discovery 77

locating highly replicated, means popular, but not rare items. Hybrid designs of
P2P networks aim to combine the best of both worlds such as using random-walks
(with state-keeping to prevent walkers from revisiting same peers) for locating
popular items, and structured (DHT) search techniques for locating rare items
[70].

Unstructured Semantic P2P Service Systems. In unstructured P2P systems,
peers initially have no index nor any precise control over the network topology
(overlay) or file placement based on any knowledge of the topology. That is, they
do not rely on any structured network overlay for query routing as they have no
inherent restrictions on the type of service discovery they can perform.

For example, resources in unstructured P2P systems like Gnutella or Mor-
pheus are located by means of network flooding: Each peer broadcasts a given
query to all neighbour peers within a certain radius (TTL) until a service is found,
or the given query TTL is zero. Such network flooding is extremely resilient to
network dynamics (peers entering and leaving the system), but generates high
network traffic.

This problem can be mitigated by a Random Walk search where each peer
builds a local index about available services of its direct neighbour peers over time
and randomly forwards a query to one of them in DFS manner until the service is
found15 as well as replication and caching strategies based on, for example, access
frequencies and popularity of services [71].

Approaches to informed probabilistic adaptive P2P search like in APS [108]
improve on such random walks based on estimations over dynamically observed
service location information stored in the local indices of peers. In contrast to the
structured P2P search, this only provides probabilistic search guarantees, that is
incomplete recall.

In any case, the majority of unstructured P2P service systems only performs
keyword-based service matching and does not exploit any qualitative results from
logic-based or hybrid semantic service matching to improve the quality of an in-
formed search. In fact, only a few system are available for logic-based or hybrid
Semantic Web service retrieval such as DReggie/GSD [22, 23], HyperCuP [95],
Sem-WSPDS [47], [82], Bibster [40], INGA [68], and RS2D [13]. These systems
differ in the way of how peers perform flooding or adaptive query routing based
on evolving local knowledge about the semantic overlay, that is knowledge about
the semantic relationships between distributed services and ontologies in unstruc-
tured P2P networks. Besides, all existing system implementations, except INGA
and Bibster, perform semantic service IO profile matching for OWL-S (DAML-S),
while HyperCuP peers dynamically build a semantic overlay based on monolithic
service concepts.

15This is valid in case the length of the random walk is equal to the number of peers flooded
with bounded TTL or hops).

78 Chapter 4. Semantic Web Service Coordination

For example, [82] proposes the discovery of relevant DAML-S services in un-
structured P2P networks based on both the Gnutella P2P discovery process and a
complementary logic-based service matching process (OWLS-UDDI matchmaker)
over the returned answer set. However, the broadcast or flooding-based search in
unstructured P2P networks like Gnutella is known to suffer from traffic and load
balancing problems.

Though Bibster and INGA have not been explicitly designed for Semantic
Web service discovery, they could be used for this purpose. In INGA [68], peers
dynamically adapt the network topology, driven by the dynamically observed his-
tory of successful or semantically similar queries, and a dynamic shortcut selection
strategy, which forwards queries to a community of peers that are likely to best
answer given queries. The observed results are used by each peer for maintaining
a bounded local (recommender) index storing semantically labelled topic specific
routing shortcuts (that connect peers sharing similar interests).

Similarly, in Bibster [40] peers have prior knowledge about a fixed semantic
overlay network that is initially built by means of a special first round advertise-
ment and local caching policy. Each peer only stores those advertisements that
are semantically close to at least one of their own services, and then selects for
given queries only those two neighbours with top ranked expertise according to
the semantic overlay it knows in prior. Further, prior knowledge about other peers
ontologies as well as their mapping to local ontologies is assumed. This is similar
to the ontology-based service query routing in HyperCuP [95].

In RS2D [13], contrary to Bibster and DReggie/GSD, the peers perform an
adaptive probabilistic risk-driven search for relevant OWL-S services without any
fixed or prior knowledge about the semantic overlay. Each peer uses an integrated
OWLS-MX matchmaker for hybrid semantic IO matching of local services with
given query, and dynamically learns the average query-answer behaviour of its
direct neighbours in the network. The decision to whom to forward a given se-
mantic service request is then driven by the estimated mixed individual Bayes’
conditional risk of routing failure in terms of both semantic loss and high commu-
nication costs. Peers are dynamically maintaining their local service (matchmaker)
ontology-based on observations of the results which, in particular, renders RS2D
independent from the use of any fixed global ontology for semantic annotation like
in DReggie/GSD.

Semantic Hybrid P2P Service Systems. Hybrid P2P search infrastructures com-
bine both structured and unstructured location mechanisms. For example, Edutella
combines a super-peer network with routing indices and an efficient broadcast.
In [70] a flat DHT approach is used to locate rare items, and flooding techniques
are used for searching highly replicated items. A similar approach of hybrid P2P
query routing that adaptively switches between different kinds of structured and
unstructured search together with preliminary experimental results are reported
in [94]. However, there are no hybrid P2P systems for semantic service discovery
available yet.

4.3. Semantic Service Composition Planning 79

Despite recent advances in the converging technologies of semantic Web and
P2P computing [102], the scalability of semantic service discovery in structured,
unstructured or hybrid P2P networks such as those for real-time mobile ad-hoc
network applications is one major open problem. Research in this direction has just
started. Preliminary solutions to this challenge vary in the expressivity of semantic
service description, and the complexity of semantic matching means ranging from
computationally heavy Semantic Web Service matchmakers like OWLS-MX in
SCALLOPS and CASCOM, to those with a streamlined DL reasoner such as
Krhype [52] suitable for thin clients on mobile devices in IASON [35]. An example
analysis of semantic service discovery architectures for realizing a mobile e-health
application is given in [21].

4.3 Semantic Service Composition Planning

Semantic Web service composition is the act of taking several semantically anno-
tated component services, and bundling them together to meet the needs of a given
customer. Automating this process is desirable to improve speed and efficiency of
customer response, and, in the semantic Web, supported by the formal grounding
of service and data annotations in logics.

4.3.1 Web Service Composition

In general, Web service composition is similar to the composition of workflows
such that existing techniques for workflow pattern generation, composition, and
management can be partially reused for this purpose [41]. Typically, the user has
to specify an abstract workflow of the required composite Web service including
both the set of nodes (desired services) and the control and data flow between these
nodes of the workflow network. The concrete services instantiating these nodes are
bound at runtime according to the abstract node descriptions, also called “search
recipes” [20]. In particular, the mainstream approach to composition is to have a
single entity responsible for manually scripting such workflows (orchestration and
choreography) between WSDL services of different business partners in BPEL [83,
2]. This is largely motivated by industry to work for service composition in legally
contracted business partner coalitions — in which there is, unlike in open service
environment, only very limited need for automated service composition planning,
if at all. Besides, neither WSDL nor BPEL or any other workflow languages like
UML2 or YAWL have formal semantics which would allow for an automated logic-
based composition.

In fact, the majority of existing composition planners for Semantic Web ser-
vices draws its inspiration from the vast literature on logic-based AI planning [84].
In the following, we focus on these approaches to Semantic Web service com-
position, and comment on the interleaving of service composition planning with
discovery, and distributed plan execution. Please note that, the set of presented

80 Chapter 4. Semantic Web Service Coordination

examples of Semantic Web Service composition planners is representative but not
exhaustive.

4.3.2 AI-Planning-Based Web Service Composition

The service composition problem roughly corresponds to the state-based planning
problem (I, A, G) in AI to devise a sound, complete, and executable plan which
satisfies a given goal state G by executing a sequence of services as actions in A
from a given initial world state I. Classical AI planning-based (planning from first
principles) composition focuses on the description of services as merely determin-
istic state transitions (actions) with preconditions and state altering (physical)
effects. Actions are applicable to actual world states based on the evaluation of
preconditions and yield new (simulated) states where the effects are valid. Fur-
ther, classical AI planning is performed under the assumption of a closed world
with complete, fully observable initial (world) state such that no conditional or
contingency planning under uncertainty is required. This is not necessarily appro-
priate for service composition planning in the dynamic and open-ended Semantic
Web [101] where (a) the initial state can be incomplete, and actions may have
several possible (conditional) outcomes and effects modeled in the domain but
not known at design time. However, all existing SWS composition planners are
closed-world planners of which some are able to cope with uncertainties about the
domain.
A given logical goal expression and set of logic-based definitions of semantic ser-
vice signature (I/O) concepts together with logic preconditions and effects from
a DL-based ontology (domain or background theory) can be converted into one
declarative (FOL) description of the planning domain and problem - which can
serve a given logic-based AI planner as input. In particular, service outputs are
encoded as special non-state altering knowledge effects, and inputs as special pre-
conditions. The standard target language for the conversion is PDDL (Planning
Domain Description Language) but alternative representation formalisms are, for
example, the situation calculus, linear logic [92], high-level logic programming lan-
guages based on this calculus like GOLOG [73], Petri nets, or HTN planning task
and method description format [99].

In the following, we classify existing Semantic Web service composition plan-
ners and comment on the principled interrelation between composition, discovery,
and execution. Please note that the set of presented examples is representative
but not exhaustive.

4.3.3 Classification of Semantic Service Composition Planners

In general, any AI planning framework for Semantic Web service composition can
be characterized by

• the representation of the planning domain and problem to allow for auto-
mated reasoning on actions and states,

4.3. Semantic Service Composition Planning 81

• the planning method applied to solve the given composition problem in the
domain, and

• the parts of service semantics that are used for this purpose.
We can classify existing Semantic Web service composition planners accord-

ing to the latter two criteria, which yields the following classes.

• Dynamic or static Semantic Web service composition planners depending on
whether the plan generation and execution are inherently interleaved in the
sense that actions (services) can be executed at planning time, or not.

• Functional-level or process-level Semantic Web service composition planners
depending on whether the plan generation relies on the service profile seman-
tics only, or the process model semantics in addition (data and control flown)
[63].

Figure 4.3 shows the respective classification of existing Semantic Web service
composition planners.

Static and Dynamic Composition

The majority of Semantic Web service composition planners such as GOAL [86],
MetaComp (cf. Chapter 11), PLCP [89], RPCLM-SCP [63] and AGORA-SCP [92]
are static classical planners. Approaches to dynamic composition planning with
different degrees of interleaving plan generation and execution are rare. Unlike
the static case, restricted dynamic composition planners allow the execution of
information gathering but no world state altering services, hence are capable of
planning under uncertainty about action outcomes at planning time. Examples
of such composition planners are SHOP2 [97, 99], GOLOG-SCP [73] and OWLS-
XPlan1 [56].

Advanced and reactive dynamic composition planners in stochastic domains
even take non-deterministic world state changes into account during planning.
While advanced dynamic planners like OWLS-XPlan2 [57] are capable of heuristic
replanning subject to partially observed (but not caused) state changes that affect
the current plan at planning time, their reactive counterparts like INFRAWEBS-
RTC [4] fully interleave their plan generation and execution in the fashion of
dynamic contingency and real-time planning.

Functional- and Process-Level Composition

As shown in Figure 4.3, most Semantic Web Service composition planners per-
form functional-level or service profile-based composition (FLC) planning. FLC
planning considers services as atomic or composite black-box actions which func-
tionality can solely be described in terms of their inputs, outputs, preconditions,

82 Chapter 4. Semantic Web Service Coordination

Figure 4.3: Classes of semantic Web service composition planners.

and effects, and which can be executed in a simple request-response without inter-
action patterns. Examples of FLC planners are GOAL [86], SAWSDL-SCP [113]
and OntoMat-S [3].

Process-level composition (PLC) planning extends FLC planning in the sense
that it also the internal complex behavior of existing services into account. Promi-
nent examples are SHOP2 [99], PLCP [87, 89] and OWLS-XPlan [56, 57]. Both
kinds of composition planning perform, in particular, semantic service profile or
process matching which is either inherent to the underlying planning mechanism,
or achieved by a connected stand-alone Semantic Web service matchmaker. We
will discuss the interrelation between composition and semantic matching later.

Support of Semantic Web Service Description Frameworks

Remarkably, most implemented Semantic Web Service composition planners sup-
port OWL-S like GOAL, OWLS-XPlan, SHOP2, GologSCP and MetaComp, while
there is considerably less support of the standard SAWSDL and WSML available
to date. In fact, the SAWSDL-SCP planner [113] is the only one for SAWSDL,
while the IW-RTC planner [4] is, apart from the semi-automated orchestration of

4.3. Semantic Service Composition Planning 83

WSML services in IRS-III, the only fully automated FLC planner for WSML yet.
Most composition planner feature an integrated conversion of Semantic Web

Services, goals and ontologies into the internally used format of the planning do-
main and problem description, though a few others like the frameworkWSPlan [85]
for static PDDL-based planning under uncertainty, and the recursive, progression-
based causal-link matrix composition planner RPCLM-SCP [63] do not.

In the following, we discuss each category and selected examples of Semantic
Web service composition planners in more detail.

4.3.4 Functional-Level Composition Planners

Intuitively, FLC planning generates a sequence of Semantic Web Services based
on their profiles that exact or plug-in matches with the desired (goal) service. In
particular, existing services Si, Si+1 are chained in this plan such that the output
of Si matches with the input of Si+1, while the preconditions of Si+1 are satisfied in
the world state after execution of Si. Depending on the considered Semantic Web
Service description format (cf. Chapter 3), different approaches to logic-based,
non-logic-based or hybrid semantic service profile IOPE matching are available
for this purpose (cf. Figure 4.1).

In order to automatically search for a solution to the composition prob-
lem, FLC planners can exploit different AI planning techniques with inherent
logic-based semantic profile IOPE- or PE-matching like WSPlan [85], respectively,
MetaComp (cf. 11). The recursive forward-search planner GOAL [86] as well as
the SAWSDL-SCP [113] apply non-logic-based semantic profile IO matching of
OWL-S, respectively, SAWSDL services.

In AGORA-SCP [92], theorem proving with hybrid semantic profile IO
matching is performed for OWL-S service composition: Both services and a re-
quest (theorem) are described in linear logic, related to classical FOL, while the
SNARK theorem prover is used to prove that the request can be deduced from
the set of services. The service composition plan then is extracted from the con-
structive proof.

The FLC planner in [75] uses proprietary composability rules for generating
all possible plans of hybrid semantic profile IO matching services in a specific
description format (CSSL). From these plans the requester has to select the one
of best quality (QoS).

4.3.5 Process-Level Semantic Service Composition Planners

Though FLC planning methods can address conditional outputs and effects of
composite services with dynamic planning under uncertainty, considering services
as black-boxes does not allow them to take the internal complex service behaviour
into account at planning time. Such behavior is usually described as subservice
interactions by means of control constructs including conditional and iterative

84 Chapter 4. Semantic Web Service Coordination

steps. This is the domain of process level composition (PLC) planning that extends
FLC planning in the aforementioned sense.

However, only few approaches to process level composition planning for Se-
mantic Web Services exist to date. For example, orchestration of WSML services in
IRS-III [31] synthesizes abstract state machines to compose individual services in
a given process flow defined in OCML16. Though, the functionality of the WSMX
orchestration unit has not been completely defined yet.

Other automated PLC planners of OWL-S services exploit different AI plan-
ning techniques such as

• HTN (Hierarchical Task Network) planning of OWL-S process models con-
verted to HTN methods like in SHOP2 [99],

• Neo-classical GRAPHPLAN-based planning mixed with HTN planning of
OWL-S services converted to PDDL in OWLS-XPlan [56, 57],

• Value-based synthesis of OWL-S process models in a given plan template of
situation calculus-based GOLOG programs [73, 74],

• Planning as model checking of OWL-S process models converted to equivalent
state transition systems (STS) in the PLCP [87, 89].

In the following, we discuss each class of static and dynamic Semantic Web
service composition planners together with selected examples, if available.

4.3.6 Static Semantic Service Composition Planners

The class of static AI planning-based composition covers approaches to both clas-
sical and non-classical planning under uncertainty.

Static Classical Planning

As mentioned above, classical AI planners perform (off-line) planning under the
assumption of a closed, perfect world with deterministic actions and a complete
initial state of a fully observable domain at design time. For example, Graphplan
is a prominent classical AI planning algorithm that first performs a reachability
analysis by constructing a plan graph, and then performs logic-based goal regres-
sion within this graph to find a plan that satisfies the goal. Classical AI planners
are static since their plan generation and execution is strictly decoupled.

Examples of Static Classical Composition Planners

One example of a static classical Semantic Web service composition planner is
GOAL [86] developed in the SmartWeb project. GOAL composes extended OWL-
S services by means of a classical recursive forward-search [36]. Both, the initial

16kmi.open.ac.uk/projects/ocml/

4.3. Semantic Service Composition Planning 85

state and the goal state are derived from the semantic representation of the user’s
question (goal) obtained by a multimodal dialogue system in SmartWeb. At each
stage of the planning process the set of services which input parameters are ap-
plicable to the current state is determined by signature (IO) matching through
polynomial subgraph isomorphism checking [76]: The instance patterns of input
parameters are matched against the graph representation of the state, and a ser-
vice is applied to a plan state (simulated world state) by merging the instance
patterns of its output parameters with the state. As a result, GOAL does not
exploit any logical concept reasoning but structural service I/O graph matching
to compose services. If plan generation fails, GOAL detects non-matching paths
within instance patterns and consequently produces a clarification request (ako
information gathering service) conveyed to the user by the dialogue system; on
response by the user the planning process is restarted in total.

Static service composition in the AGORA-SCP service composition sys-
tem [92] relies on linear logic (LL) theorem proving. The profiles of available
DAML-S services are translated in to a set of LL axioms, and the service request
is formulated as a LL theorem to be proven over this set. In case of success, the
composition plan can be extracted from the proof, transformed to a DAML-S
process model and executed as a BPEL script. The AGORA planner is the only
approach to decentralized composition planning in structured P2P networks [60].

An example of a static classical Semantic Web Service composition planner
based on a special logic-based PDDL planner is MetaComp which we describe in
detail in Chapter 11.

Static Planning under Uncertainty

Work on planning under uncertainty in AI is usually classified according to (a)
the representation of uncertainty, that is whether uncertainty is modeled strictly
logically, using disjunctions, or is modeled numerically (e.g. with probabilities),
and (b) observability assumptions, that is whether the uncertain outcomes of ac-
tions are not observable via sensing actions (conformant planning); partially or
fully observable via sensing actions (conditional or contingency planning) [26]. As
mentioned above, we can have uncertainty in the initial states and in the outcome
of action execution. Since the observation associated to a given state is not unique,
it is also possible to model noisy sensing and lack of information. Information on
action outcomes or state changes that affect the plan can be gathered either at
planning time (dynamic) or thereafter (static) for replanning purposes.

Static Conditional or Contingency Planning. Static conditional or contingency
planner like Cassandra and DTPOP devise a plan that accounts for each possi-
ble contingency that may arise in the planning domain. This corresponds to an
optimal Markov policy in the POMDP framework for planning under uncertainty

86 Chapter 4. Semantic Web Service Coordination

with probabilities, costs and rewards over a finite horizon. The contingency plan-
ner anticipates unexpected or uncertain outcomes of actions and events by means
of planned sensing actions, and attempts to establish the goals for each different
outcome of these actions through conditional branching of the plan in advance17.
The plan execution is driven by the outcome of the integrated sensing subplans
for conditional plan branches, and decoupled from its generation which classifies
these planners as static.

Static Conformant planning. Conformant planners like the Conformant-FF,
Buridan, and UDTPOP perform contingency planning without sensing actions.
The problem of conformat planning to search for the best unconditional sequence
of actions under uncertainty of intial state and action outcome can be formalized
as fully non-observable MDP, as a particular case of POMDP, with a search space
pruned by ignoring state observations in contingency planning. For example, con-
formant Graphplan planning (CGP) [100] expresses the uncertainty in the initial
state as a set of completely specified possible worlds, and generates a plan graph
for each of these possible worlds in parallel. For actions with uncertain outcomes
the number of possible worlds is multiplied by the number of possible outcomes
of the action. It then performs a regression (backward) search on them for a plan
that satisfies the goal in all possible worlds which ensures that the plan can be
executed without any sensory actions. Conformant planner are static in the sense
that no action is executed at planning time.

Examples of Static Composition Planners under Uncertainty

The PLCP [88, 89] performs static PLC planning under uncertainty for OWL-
S services. OWL-S service signatures and process models together with a given
goal are converted to non-deterministic and partially observable state transition
systems which are composed by a model checking-based planner (MBP)[87] to a
new STS which implements the desired composed service. This STS eventually gets
transformed to an executable service composition plan (in BPEL) with possible
conditional and iterative behaviors. No action is executed at planning time, and
uncertainty is resolved by sensing actions during plan execution.

An example of static FLC planning under uncertainty is the WSPlan frame-
work [85] which provides the user with the option to plug in his own PDDL-based
planner and to statically interleave planning (under uncertainty) with plan execu-
tion. Static interleaving refers to the cycle of plan generation, plan execution, and
replanning based on the result of the executed sensing subplans (in the fashion

17Examples of decision criteria according to which contingency branches are inserted in the
(conventional) plan, and what the branch conditions should be at these points, are the maxi-
mum probability of failure, and the maximum expected future reward (utility) as a function of,
for example, time and resource consumption. Uncertainty is often characterized by probability
distributions over the possible values of planning domain predicates.

4.3. Semantic Service Composition Planning 87

of static conditional planning) until a sequential plan without sensing actions is
generated that satifies the goal. There are no static classical PLC planner for Se-
mantic Web Services with deterministic (sequential) process models of composite
services only available.

4.3.7 Dynamic Composition Planners

The class of dynamic AI-planning-based composition covers approaches to re-
stricted, advanced and reactive dynamic planning under uncertainty.

Restricted Dynamic Planning

Dynamic planning methods allow agents to inherently interleave plan generation
and execution. In restricted dynamic planning, action execution at planning time
is restricted to information gathering (book-keeping callbacks) about uncertain ac-
tion outcomes. These special actions add new knowledge in form of ground facts to
the partial observable initial state under the known IRP (Invocation and Reason-
able Persistence) assumption [73] to ensure conflict avoidance18. Like in classical
planning, however, world state altering services with physical effects (in opposite
to knowledge effects of service outputs) are only simulated in local planning states
and never get executed at planning time.

Examples of Restricted Dynamic Composition Planners

Prominent examples of restricted dynamic composition planners are SHOP2, and
OWLS-XPlan1 [56] for OWL-S services of which we describe the latter in detail
in Chapter 11. SHOP2 [97, 98] converts given OWL-S service process models into
HTN methods and applies HTN-planning interleaved with execution of informa-
tion gathering actions to compose a sequence of services that satisfies the given
task. By mapping any OWL-S process model to a situation calculus-based GOLOG
program, the authors prove that the plans produced are correct in the sense that
they are equivalent to the action sequences found in situation calculus. HTN plan-
ning is correct and complete but undecidable due to possiblly infinite recursive
decomposition of given methods to executable atomic tasks. SHOP2 detects and
breaks such decomposition cycles.

Advanced Dynamic Planning

Advanced dynamic planning methods allow in addition to react on arbitrary
changes in the world state that may affect the current plan already during planning

18The IRP assumption states that (a) the information gathered by invoking the service once
cannot be changed by external or subsequent actions, and (b) remains the same for repeating the
same call during planning. That is, the incremental execution of callbacks would have the same
effect when executing them prior to planning in order to complete the initial state for closed
world planning.

88 Chapter 4. Semantic Web Service Coordination

such as in OWLS-XPlan2. This is in contrast to static planning under uncertainty
where sensing subplans of a plan are executed at run time only. However, in both
restricted and advanced dynamic planning the interleaved execution of planning
with world state altering services is prohibited to prevent obvious problems of
planning inconsistencies and conflicts.

Examples of Advanced Dynamic Composition Planners

To the best of our knowledge, OWLS-XPlan2 [57] still is the only one implemented
example of an advanced dynamic composition planner. OWLS-XPlan2 will be
described in Chapter 11.

Reactive Dynamic Planning

Finally, reactive dynamic planning like in Brooks’s subsumption architecture,
RETE-based production rule planners, and the symbolic model checking-based
planner SyPEM [15] allows the execution of arbitrary actions at planning time.
Pure reactive planner produce a set of condition-action (if-then) or reaction rules
for every possible situation that may be encountered, whether or not the cir-
cumstances that would lead to it can be envisaged or predicted. The inherently
interleaved planning and execution is driven through the evaluation of state con-
ditions at every single plan step to select the relevant if-then reaction rule and the
immediate execution of the respective, possibly world state altering action; This
cycle is repeated until the goal is hopefuly reached.

A variant of reactive dynamic planning is dynamic contingency planning like
in XII and SAGE. In this case, a plan that is specified up to the information-
gathering steps gets executed to that stage, and, once the information has been
gathered, the rest of the plan is constructed. Interleaving planning and execution
this way has the advantage that it is not necessary to plan for contingencies that
do not actually arise. In contrast to pure reactive planners, reasoning is only
performed at branch points predicted to be possible or likely.

In any case, reactive dynamic planning comes at the possible cost of plan
optimality, and even plan existence, that is suboptimality and dead-end action
planning or failure. The related ramification problem19 is usually addressed either
by restrictive assumptions on the nature of service effects on previous planning
states [15] in safely explorable domains, or by integrated belief revision (TMS) in
the planners knowledge base at severe computational costs.

Examples of Reactive Dynamic Composition Planners

One example of an implemented reactive dynamic composition planner is the real-
time composition planner IW-RTC [4] developed in the European research project

19The problem of ensuring the consistency of the planners knowledge base and the reachability
of the original goal in spite of (highly frequent) world state altering service execution during plan
generation.

4.3. Semantic Service Composition Planning 89

INFRAWEBS. It successively composes pairs of keyword-based IO matching ser-
vices, executes them and proceeds with planning until the given goal is reached.
Unfortunately, the authors do not provide any detailed description of the compo-
sition and matching process nor complexity analysis.

Problems of Composition Planning under Uncertainty

One problem with adopting planning under uncertainty for semantic service com-
position is that the execution of information gathering (book keeping) or even
world state altering services at design or planning time might not be charge free,
if granted by providers at all. That is, the planning agent might produce significant
costs for its users even without any return value in case of plan generation or exe-
cution failure. Another problem is the known insufficient scalability of conditional
or conformant planning methods to planning domains at Web scale or business
application environments with potentially hundreds of thousands of services and
vast instance bases. Research on exploiting conditional or conformant planning
methods for Semantic Web Service composition has just started.

4.3.8 FLC Planning of Monolithic DL-Based Services

Research on AI-based FLC planning with monolithic DL-based descriptions of ser-
vices has just started. Intuitively, the corresponding AI planning (plan existence)
problem for the composition of such services is as follows. Given an acyclic TBox
T describing the domain or background theory in a DL, ABoxes S and G which
interpretations I (consistent wrt T) over infinite sets of individual (object) names
are describing, respectively the initial and goal state, and a set A of operators
describing deterministic, parameterized actions α which precondition and effects
are specified in the same DL and transform given interpretations of concepts and
roles in T (I →T

α I ′), is there a sequence of actions (consistent with T)20 obtained
by instantiating operators with individuals which transforms S into G?

It has been shown in [10] that the standard reasoning problems on actions,
that are executability21 and projection22, are decidable for description logics be-
tween ALC and ALCOIQ. Furthermore, it has been shown in [77] only recently
that the plan existence problem for such actions in ALCOIQ is co-NEXPTIME de-
cidable for finite sets of individuals used to instantiate the actions, while it is known
to be PSPACE-complete for propositional STRIPS-style actions. In addition, the
extended plan existence problem with infinitely countable set of individuals was
proven undecidable, as it is for Datalog STRIPS actions, for actions specified in
ALCU with universal role U for assertions over the whole domain by reduction

20An action is consistent with TBox T , if for every model I of T there exists I ′ s.t. I →T
α I′.

21Action executability is equal to the satisfaction of action preconditions in given world states:
I |= pre1, ∀i, 1 ≤ i ≤ n, I′.I →T

α1...αi
I′ : I′ |= prei+1.

22Satisfaction of assertion φ as a consequence or conjunctive effect of applying actions to a
given state: For all models I of S and T ,I′.I →T

α1...αn
I′ : I′ |= φ

90 Chapter 4. Semantic Web Service Coordination

to the halting problem of deterministic Turing machines. However, there is no
implemented composition planner for monolithic DL-based services available to
date.

4.4 Interrelations

In the following, we briefly comment on the principled relations between semantic
service composition planning, discovery, and execution. Selected approaches to
interleaved semantic service composition planning with negotiation are presented
in the introduction to the next part of this thesis.

Semantic Web service composition planning and discovery. From the view of
semantic service discovery, the composition of complex services is of importance
if no available service satisfies the given request. In this case, the matchmaker or
requester agent can interact with a composition planner to successfully generate
a composite service that eventually satisfies the query.

On the other hand, semantic service composition planning agents require a
description of the planning domain and goal to start their planning. Both can
be semi-automatically generated from the set of available semantic service de-
scriptions together with related logic-based ontologies, the so-called background
theories. In fact, from the view of composition planning, semantic service discov-
ery is of importance for the following reasons: A semantic service matchmaker can
be used to

• Prune the initial search space of the composition planner with respect to
given application-specific preferences of available services, and

• Select semantically equivalent or plug-in, and execution compatible services
during planning as alternative (substitute) services in case of planning failures
(replanning).

There is no agreed-upon strategy for pruning the search space of Semantic Web
service composition planners. Such pre-filtering of services by a matchmaker can
be heuristically performed against non-functional and functional service semantics
in order to speed up the corresponding planning process - but at the cost of its
incompleteness. That is, composition planning over heuristically pruned search
space does not, in general, solve the plan existence problem.
Another source of rhe same problem, that is correct but incomplete composition
planning is the naive interleaving of planning with semantic service matching.
For example, the sequential composition of stateful services from a given intial
state by consecutive calls of a logic-based semantic service matchmaker by the
planner only does not guarantee to find a solution if it exists: Any (not specific
planning-oriented) matchmaker usually

4.4. Interrelations 91

• does not maintain any planning state information, thus ignores variable bind-
ings that hold for service signatures (IO) and specifications (PE) according
to the actual state reached by the calling (closed-world) planner, and

• performs pairwise service matching only, hence would not return services to
the calling planner which combined effects (even with provided state-based
instantiation) would eventually lead to a solution.

To the best of our knowledge, all available Semantic Web service matchmakers
(cf. introduction to part two) are implemented as a stand-alone tool for mere
semantic service matching without any composition planning support. However,
functional-level composition planning is a kind of state-based semantic plug-in
matching of the generated service plan with the given goal: Any FLC-planner
generates a sequence of Semantic Web services based on their profiles that exact
or plug-in matches with the desired (goal) service, whereas for each consecutive
pair of planned services S and S′ the output of S semantically matches with the
input of S′, and the preconditions of S′ are satisfied in the planning state including
the effects of S.

Examples. There are only a few implemented approaches that explicitly inter-
leave semantic matching with composition planning.

In [64], logic-based service matching is extended with concept abduction to
provide explanations of mismatches between pairs of service profiles that are iter-
atively used as constructive feedback during composition planning and replanning
when searching for alternative services to bridge identified semantic gaps between
considered IOPE profiles of services in the current plan step. A similar abduction-
based matchmaking approach is presented in [29]. This scenario of explicitly inter-
leaved discovery and composition has been implemented and tested in a non-public
France Telecom research project.

In [61], the functional level composition of services specified in the DIANE
service description language DSD is explicitly integrated with a DSD matchmaker
module that matches service requests asking for multiple connected effects of con-
figurable services. By using a value propagation mechanism and a cut of possible
(not actual) parameter value fillings for service descriptions that cover multiple
effects the authors avoid exponential complexity for determining an optimal con-
figuration of plug-in matching service advertisements used for a composition.

In [17], the syntactic functional level service composition is based on par-
tial matching of numerically encoded service IO data types in a service directory.
Unfortunately, the justification of the proposed numeric codings for matching ser-
vices appears questionable, though it was shown to efficiently work for certain
applications.

The composition planner OWLS-XPlan2 [93] integrates planning-specific ser-
vice IOPE matching on the grounding level: At each plan step, the planner calls
the component OWLS-MXP of the matchmaker OWLS-MX 1.1 to check the com-
patibility of XMLS types of input and output parameters of consecutive services.

92 Chapter 4. Semantic Web Service Coordination

This ensures the principled executablity of the generated sequential plan at the
service grounding level in WSDL.

The interactive OWL-S service composer developed at UMBC [98] uses the
OWLS-UDDI matchmaker to help users filter and select relevant services while
building the composition plan. At each plan step, the composer provides the user
with advertised services which signatures (IO) plug-in or exact match with that
of the last service in the current plan. This leads to an incremental forward chain-
ing of services which does not guarantee completeness without respective user
intervention.

The Agora-P2P service composition system [60] is the only approach to de-
centralized Semantic Web Service composition planning. It uses a Chord ring to
publish and locate OWL-S service descriptions keyword-based while linear logic
theorem proving and logic-based semantic service IO matching is applied to com-
pose (and therefore search for relevant subservices of) the desired service.

4.4.1 Composition Planning and Execution

The semantic compatibility of subsequent services in a plan does not guarantee
their correct execution in concrete terms on the grounding level. A plan is called
correct, if it produces a state that satifies the given goal [63]. The principled plan
executability, also called execution composability of a plan requires its data flow
to be ensured during plan execution on the service grounding level [75]. This can
be verified through complete (XMLS) message data type checking of semantically
matching I/O parameters of every pair of subsequent services involved in the plan.
For example, OWLS-XPlan2 calls a special matchmaker module that checks plan
execution compatibility at each plan step during planning.

The consistent, central or decentral plan execution can be achieved by means
of classical (distributed) transaction theory and systems. An advanced and imple-
mented approach to distributed Semantic Web Service composition plan execu-
tion is presented, for example, in Chapter 12 (Semantic Web Service Execution)
and [79]. However, the availability of non-local services that are not owned by
the planning agent can be, in principle, refused by autonomous service providers
without any prior commitment at any time. This calls for effective replanning
based on alternative semantic matching services delivered by the matchmaker to
the composition planner prior to, or during planning such as in OWLS-XPlan2.

4.4.2 Negotiation

Services may not be for free but pay per use. In particular, requester agents might
be charged for every single invocation of services at discovery or planning time.
Besides, the service pricing is often private which makes it hard, if not infeasible,
for any search or composition agent to determine the total expenses of coordinated
service value provision to its user.

4.5. Open Problems 93

Standard solution is to negotiate service level agreements and contracting of
relevant services based on non-functional service parameters such as QoS, pric-
ing, and reputation between service requester and provider agents involved [114].
Usually, such negotiation takes place after service discovery depending on service
configurations and user preferences, followed by contracting [90]. Most existing
Semantic Web service frameworks offer slots for non-functional provenance infor-
mation as part of their service description.

However, the problem of how to dynamically interleave composition (re-
)planning and negotiation remains open. Related work draw upon means of parallel
auctioning [91], and coalition forming [80] of planning agents in different compet-
itive settings.

4.5 Open Problems

The research field of Semantic Web service coordination is in its infancies. Hence, it
comes for no surprise that there are many open problems of both semantic service
discovery and composition planning that call for intensive further investigation
in the domain. Some major open problems of semantic service discovery are the
following.

• Approximated matching. How to deal with uncertain, vague or incomplete
information about the functionality of available services and user preferences
for service discovery? Fuzzy, probability, and possibility theory are first class
candidates for the design of approximated (hybrid) semantic service matching
algorithms to solve this problem. In particular, efficient reasoners for respec-
tive extensions of semantic Web (rule) languages like probabilistic pOWL,
fuzzyOWL, or pDatalog can be applied to reason upon semantic service an-
notations under uncertainty and with preferences.

However, there are no such semantic service matchmakers available yet. Apart
from the first hybrid matchmakers for OWL-S and WSML services, OWLS-
MX and WSMO-MX, the same holds for the integrated use of means of sta-
tistical analysis from data mining or information retrieval for approximative
matching of semantic service descriptions.

• Scalability. How to reasonably trade off the leveraging of expensive logic-
based service discovery means with practical requirements of resource bound-
ed, just-in-time and light-weight service discovery in mobile ad-hoc or un-
structured P2P service networks? What kind of approximated and/or adap-
tive semantic service discovery techniques scale best for what environment
(network, user context, services distribution, etc) and application at hand?
The required very large scale, comparative performance experiments under
practical real-world conditions have not been conducted yet.

• Adaptive discovery. How to leverage semantic service discovery by means of
machine learning and human-agent interaction? Though a variety of adaptive

94 Chapter 4. Semantic Web Service Coordination

personal recommender and user interface agents have been developed in the
field, none of the currently implemented semantic Web Service matchmakers
is capable of flexibly adapting to its changing user, network, and application
environment.

• Privacy. How to protect the privacy of individual user profile data that are
explicit or implicit in service requests submitted to a central matchmaker, or
relevant service providers? Approaches to privacy preserving Semantic Web
Service discovery are still very rare, and research in this direction appears
somewhat stagnant. Amongst the most powerful solutions proposed are the
Rei language for annotating OWL-S services with privacy and authorization
policies [28, 46], and the information flow analysis based checking of the
privacy preservation of sequential OWL-S service plans [43, 44]. However,
nothing is known about the scalability of these solutions in practice yet.

• Lack of tool support and test collections. Current easy to use tool support
of Semantic Web Service discovery is still lagging behind the theoretical ad-
vancements, though there are differences to what extent this is valid for
what service description framework (cf. Figure 4.1). In particular, there is no
official test collection for evaluating the retrieval performance of service dis-
covery approaches (matchmakers, search engines) for the standard SAWSDL
and WSML, while there are two publicly available for OWL-S (OWLS-TC2,
SWS-TC). There are no solutions for the integrated matching of different
services that are specified in different languages like SAWSDL, OWL-S and
WSML. Relevant work on refactoring OWL-S and WSML to the standard
SAWSDL is ongoing.

Some major challenges of research and development in the domain of Seman-
tic Web service composition planning are as follows.

• Scalable and resource efficient approaches to service composition planning
under uncertainty and their use in real-world applications of the Web 3.0
and in intelligent pervasive service applications of the so called “Internet of
Things” that is envisioned to interlink all kinds of computing devices without
limit on the global scale.

• Efficient means of distributed composition planning of Semantic Web Services
in peer-to-peer and grid computing environments.

• Easy to use tools for the common user to support discovery, negotiation,
composition and execution Semantic Web Services in one framework for dif-
ferent Semantic Web Service formats like the standard SAWSDL, and non-
standards like OWL-S, WSML, and SWSL.

• Interleaving of service composition planning with negotiation in competitive
settings.

4.6. Summary 95

4.6 Summary

This chapter provided a brief romp through the fields of Semantic Web service
discovery and composition planning. We classified existing approaches, discussed
representative examples and commented on the interrelationships between both
service coordination activities. Despite fast paced research and development in
the past years world wide, Semantic Web service technology still is commonly
considered immature with many open theoretical and practical problems as men-
tioned above. However, its current convergence with Web 2.0 towards a so-called
service Web 3.0 in an envisioned Internet of Things helds promise to effectively
revolutionize computing applications for our everday life.

References

[1] K. Aberer, P. Cudre-Mauroux, M. Hauswirth: Semantic Gossiping: fostering se-
mantic interoperability in peer data management systems. S. Staab, H. Stuck-
enschmidt (eds.): Semantic Web and Peer-to-Peer, Springer, Chapter 13, 2006.

[2] G. Alonso, F. Casati, H. Kuno, V. Machiraju: Web Services. Springer, 2003

[3] S. Agarwal, S. Handschuh, S. Staab: Annotation, composition and invocation
of Semantic Web Services. Web Semantics, 2, 2004.

[4] G. Agre, Z. Marinova: An INFRAWEBS Approach to Dynamic Composition
of Semantic Web Services. Cybernetics and Information Technologies (CIT),
7(1), 2007.

[5] M.S. Aktas, G. Fox, M. Pierce: Managing Dynamic Metadata as Context.
Proceedings of Intl. Conference on Computational Science and Engineering
(ICCSE), Istanbul, 2005

[6] S. Amer-Yahia, C. Botev, J. Shanmugasundaram: TeXQuery: A Full-Text
Search Extension to XQuery. Proceedings of the World-Wide-Web Conference
WWW 2004, 2004.

[7] A. Ankolekar, M. Paolucci, K. Sycara: Spinning the OWL-S Process Model -
Toward the Verification of the OWL-S Process Models. Proceedingsof Interna-
tional Semantic Web Services Workshop (SWSW), 2004

[8] I.B. Arpinar, B. Aleman-Meza, R. Zhang, A. Maduko: Ontology-driven Web
Services composition platform. Proc.of IEEE International Conference on E-
Commerce Technology CEC, San Diego, USA, IEEE Press, 2004.

[9] M.A. Aslam, S. Auer, J. Shen: ¿From BPEL4WS Process Model to Full OWL-S
Ontology. Proceedings of 2nd European COnference on Semantic Web Services
ESWC, Buda, Montenegro, 2006.

96 References

[10] F. Baader, C. Lutz, M. Milicic, U. Sattler, F. Wolter: Integrating Description
Logics and action formalisms: First results. Proc. 20th National Conference on
Artificial Intelligence (AAAI), Pittsburgh, USA, AAAI Press, 2005

[11] J. Bae, L. Liu, J. Caverlee, W.B. Rouse: Process Mining, Discovery, and
Integration using Distance Measures. Proceedings of International COnference
on Web Services ICWS, 2006.

[12] S. Bansal, J. Vidal: Matchmaking of Web Services Based on the DAMLS
Service Model. Proc. International Joint Conference on Autonomous Agents
and Multiagent Systems AAMAS, 2003.

[13] U. Basters and M. Klusch: RS2D: Fast Adaptive Search for Semantic Web Ser-
vices in Unstructured P2P Networks. Proceedings 5th Intl. Semantic Web Con-
ference (ISWC), Athens, USA, Lecture Notes in Computer Science (LNCS),
4273:87-100, Springer, 2006.

[14] A. Bernstein, C. Kiefer: Imprecise RDQL: Towards Generic Retrieval in On-
tologies Using Similarity Joins. Proceedings ACM Symposium on Applied
Computing, Dijon, France, ACM Press, 2006.

[15] P. Bertoli, A. Cimatti, P. Traverso: Interleaving Execution and Planning
for Nondeterministic, Partially Observable Domains. Proceedings of European
Conference on Artificial Intelligence (ECAI), 2004.

[16] D. Bianchini, V. De Antonellis, M. Melchiori, D. Salvi: Semantic-enriched
Service Discovery. Proceedings of IEEE ICDE 2nd International Workshop on
Challenges in Web Information Retrieval and Integration (WIRI06), Atlanta,
Georgia, USA, 2006.

[17] W. Binder, I. Constantinescu, B. Faltings, K. Haller, C. Tuerker: A Multi-
Agent System for the Reliable Execution of Automatically Composed Ad-hoc
Processes. Proceedings of the 2nd European Workshop on Multi-Agent Sys-
tems (EUMAS), Barcelona, Spain, 2004.

[18] L. Botelho, A. Fernandez, B. Fries, M. Klusch, L. Pereira, T. Santos, P. Pais,
M. Vasirani: Service Discovery. In M. Schumacher, H. Helin (Eds.): CASCOM -
Intelligent Service Coordination in the Semantic Web. Chapter 10. Birkh”auser
Verlag, Springer, 2008.

[19] C. Caceres, A. Fernandez, H. Helin, O. Keller, M. Klusch: Context-aware
Service Coordination for Mobile Users. Proceedings IST eHealth Conference,
2006.

[20] F. Casati, M.C. Shan: Dynamic and Adaptive Composition of E-services.
Information Systems, 6(3), 2001.

[21] CASCOM Project Deliverable D3.2: Conceptual Architecture Design.
September 2005.www.ist-cascom.org

References 97

[22] D. Chakraborty, F. Perich, S. Avancha, A. Joshi: DReggie: Semantic Ser-
vice Discovery for M-Commerce Applications. Proceedings of the International
Workshop on Reliable and Secure Applications in Mobile Environment, 2001.

[23] H. Chen, A. Joshi, and T. Finin: Dynamic service discovery for mobile com-
puting: Intelligent agents meet JINI in the aether. 4(4):343-354, 2001.

[24] S. Colucci, T.C. Di Noia, E. Di Sciascio, F.M. Donini, M. Mongiello: Con-
cept Abduction and Contraction for Semantic-based Discovery of Matches and
Negotiation Spaces in an E-Marketplace. Electronic Commerce Research and
Applications, 4(4):345361, 2005.

[25] I. Constantinescu, B. Faltings: Efficient matchmaking and directory services
Proceedings of IEEE Conference on Web Intelligence WI, 2003.

[26] R. Dearden, N. Meuleauy, S. Ramakrishnany, D.E. Smith, R. Washington:
Incremental Contingency Planning. Proc. of ICAPS-03 Workshop on Planning
under Uncertainty, Trento, Italy, 2003.

[27] E. Della Valle, D. Cerizza, I. Celino: The Mediators Centric Approach to Au-
tomatic Web Service Discovery of Glue. Proceedings of 1st International Work-
shop on Mediation in Semantic Web Services (MEDIATE), CEUR Workshop
proceedings, 168, 2005.

[28] G. Denker, L. Kagal, T. Finin, M. Paolucci, K. Sycara: Security For DAML
Web Services: Annotation and Matchmaking. Proceedings of the Second In-
ternational Semantic Web Conference (ISWC 2003), USA, 2003.

[29] T. Di Noia, E.D. Sciascio, F.M. Donini, M. Mogiello: A System for Principled
Matchmaking in an Electronic Marketplace. Electronic Commerce, 2004.

[30] T. Di Noia, E. Di Sciascio, F.M. Donini: Semantic Matchmaking as Non-
Monotonic Reasoning: A Description Logic Approach. Artificial Intelligence
Research (JAIR), 29:269–307, 2007.

[31] J. Domingue, S. Galizia, L. Cabral: Choreography in IRS-III: Coping with
Heterogeneous Interaction Patterns in Web Services. Proc. International Se-
mantic Web Conference, LNAI, Springer, 2005.

[32] D. Fahland, W. Reisig: ASM-based semantics for BPEL: The negative Con-
trol Flow. Proceedings of the 12th International Workshop on Abstract State
Machines (ASM’05), 2005.

[33] D. Fensel, F. van Harmelen: Unifying reasoning and search to Web scale.
IEEE Internet Computing, March/April 2007.

[34] A. Fernandez, M. Vasirani, C. Caceres, S. Ossowski: A role-based support
mechanism for service description and discovery. In: huang et al. (eds.),
Service-Oriented Computing: Agents, Semantics, and Engineering. LNCS 4504,
Springer, 2006.

98 References

[35] U. Furbach, M. Maron, K. Read: Location based informationsystems.
Künstliche Intelligenz, 3/07, BöttcherIT, 2007.

[36] M. Ghallab, D. Nau, P. Traverso: Automated planning. Elsevier, 2004.

[37] S. Grimm: Discovery - Identifying relevant services. In [104], 2007.

[38] S. Grimm, B. Motik, C. Preist: Matching semantic service descriptions
with local closed-world reasoning. Proc. European Semantic Web Conference
(ESWC), Springer, LNCS, 2006.

[39] L. Guo, F. Shao, C. Botev, J. Shanmugasundaram: XRANK: Ranked Key-
word Search over XML Documents. Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, San Diego, USA, 2003.

[40] P. Haase, R. Siebes, F. van Harmelen: Expertise-based Peer selection in Peer-
to-Peer Networks. Knowledge and Information Systems, Springer, 2006

[41] L. Henoque, M. Kleiner: Composition - Combining Web Service Functionality
in Composite Orchestrations. Chapter 9 in [104], 2007.

[42] D. Hull, U. Sattler, E. Zolin, R. Stevens, A. Bovykin, I. Horrocks: Deciding
semantic matching of stateless services. Proc. 21st National Conference on
Artificial Intelligence (AAAI), AAAI Press, 2006

[43] D. Hutter, M. Klusch, M. Volkamer: Information Flow Analysis Based Se-
curity Checking of Health Service Composition Plans. Proceedings of the 1st
European Conference on eHealth, Fribourg, Switzerland, 2006.

[44] D. Hutter, M. Volkamer, M. Klusch, A. Gerber: Provably Secure Execution
of Composed Semantic Web Services. Proccedings of the 1st International
Workshop on Privacy and Security in Agent-based Collaborative Environments
(PSACE 2006), Hakodate, Japan, 2006.

[45] M.C. Jäger, G. Rojec-Goldmann, C. Liebetruth, G. Mühl, K. Geihs: Ranked
Matching for Service Descriptions Using OWL-S. Proceedings of 14. GI/VDE
Fachtagung Kommunikation in Verteilten Systemen KiVS, Kaiserslautern,
2005

[46] L. Kagal, T. Finin, M. Paolucci, N. Srinivasan, K. Sycara, G. Denker: Au-
thorization and Privacy for Semantic Web Services. IEEE Intelligent Systems,
July/August, 2004.

[47] F. B. Kashani, C.C. Shen, C. Shahabi: SWPDS: Web Service peer-to-per
discovery service. Proceedings of Intl. Conference on Internet Computing, 2004.

[48] U. Keller, R. Lara, H. Lausen, A. Polleres, D. Fensel: Automatic Location of
Services. Proceedings of the 2nd European Semantic Web Conference (ESWC),
Heraklion, Crete, LNCS 3532, Springer, 2005.

References 99

[49] F. Kaufer and M. Klusch: Hybrid Semantic Web Service Matching
with WSMO-MX. Proc. 4th IEEE European Conference on Web Services
(ECOWS), Zurich, Switzerland, IEEE CS Press, 2006

[50] F. Kaufer and M. Klusch: Performance of Hybrid WSML Service Matching
with WSMO-MX: Preliminary Results. Proc. First Intl. Joint ISWC Workshop
SMR2 2007 on Service Matchmaking and Resource Retrieval in the Semantic
Web, Busan, Korea, 2007.

[51] C. Kiefer, A. Bernstein: The Creation and Evaluation of iSPARQL Strate-
gies for Matchmaking. Proceedings of European Semantic Web Conference,
Springer, 2008.

[52] T. Kleemann, A. Sinner: Description logic based matchmaking on mobile
devices. Proceedgins of 1st Workshop on Knowledge Engineering and Software
Engineering (KESE 2005), 2005.

[53] M. Klein, B. König-Ries: Coupled Signature and Specification Matching for
Automatic Service Binding. European Conference on Web Services (ECOWS
2004), Erfurt, 2004.

[54] M. Klusch, B. Fries: Hybrid OWL-S Service Retrieval with OWLS-MX: Ben-
efits and Pitfalls. Proceedings 1st International Joint Workshop on Service
Matchmaking and Resource Retrieval in the Semantic Web (SMR2), Busan,
Korea, CEUR vol. 243, 2007.

[55] M. Klusch, P. Kapahnke, B. Fries: Hybrid Semantic Web Service Retrieval: A
Case Study With OWLS-MX. Proceedings of 2nd IEEE Internataional Con-
ference on Semantic Computing (ICSC), Santa Clara, USA, IEEE Press, 2008.

[56] M. Klusch, A. Gerber, M. Schmidt: Semantic Web Service Composition Plan-
ning with OWLS-XPlan. Proc. 1st Intl. AAAI Fall Symposium on Agents and
the Semantic Web, Arlington VA, USA, AAAI Press, 2005.

[57] M. Klusch, K-U. Renner: Dynamic Re-Planning of Composite OWL-S Ser-
vices. Proc. 1st IEEE Workshop on Semantic Web Service Composition,
Hongkong, China, IEEE CS Press, 2006.

[58] M. Klusch, K. Sycara: Brokering and Matchmaking for Coordination of Agent
Societies: A Survey. In: Coordination of Internet Agents, A. Omicini et al.
(eds.), Springer

[59] M. Klusch, B. Fries, K. Sycara: Automated Semantic Web Service Discovery
with OWLS-MX. Proc. 5th Intl. Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), Hakodate, Japan, ACM Press, 2006

[60] P. Küngas, M. Matskin: Semantic Web Service Composition through a P2P-
Based Multi-Agent Environment. Proc. of the Fourth International Workshop
on Agents and Peer-to-Peer Computing (in conjunction with AAMAS 2005),
Utrecht, Netherlands, LNCS 4118, 2006.

100 References

[61] U. Küster, B. König-Ries, M. Stern, M. Klein: DIANE: An Integrated Ap-
proach to Automated Service Discovery, Matchmaking and Composition. Pro-
ceedings of the World Wide Web COnference WWW, Banff, Canada, ACM
Press, 2007.

[62] S. Lamparter, A. Ankolekar: Automated Selection of Configurable Web Ser-
vices. 8. Internationale Tagung Wirtschaftsinformatik. Universittsverlag Karl-
sruhe, Karlsruhe, Germany, March 2007.

[63] F. Lecue, A. Leger: Semantic Web Service composition through a match-
making of domain. Proc. of 4th IEEE European Conference on Web Services
(ECWS), Zurich, 2006.

[64] F. Lecue, A. Delteil, A. Leger: Applying Abduction in Semantic Web Service
Composition. Proceedings of IEEE International Conference on Web Services
(ICWS 2007), 2007.

[65] L. Li, I. Horrocks: A software framework for matchmaking based on seman-
tic Web technology. Proceedings of the world wide Web conference (WWW),
Budapest, 2003.

[66] J. Liu, H. Zhuge: A Semantic-Link-Based Infrastructure for Web Service.
Proc. of the International World Wide Web Conference, 2005.

[67] S. Liu, P. Küngas, M. Matskin: Agent-Based Web Service Composition with
JADE and JXTA. Proc. of Intl Conference on Semantic Web and Web Services
(SWWS), Las Vegas, USA, 2006.

[68] A. Löser, C. Tempich, B. Quilitz, W.-T. Balke, S. Staab, W. Nejdl: Searching
Dynamic Communities with Personal Indexes. Proceedings of Internatioanl
Semantic Web Conference, 2005.

[69] N. Lohmann: A Feature-Complete Petri Net Semantics for WS-BPEL 2.0.
Proceedings of the Workshop on Formal Approaches to Business Processes
and Web Services (FABPWS’07), 2007.

[70] B.T. Loo, R. Huebsch, I. Stoica, J.M. Hellerstein: The Case for a Hybrid
P2P Search Infrastructure. Proceedings of rd Intl Workshop on P2P Systems
(IPTPS), USA, Springer, LNCS, 2004.

[71] Q. Lu, P. Cao, E. Cohen, K. Li, S. Shenker: Search and Replication in Un-
structured Peer-to-Peer Networks. Procceedings of ACM 6th ACM Interna-
tional Conference on Supercomputing ICS, New York, USA, 2002.

[72] A. Martens: Analyzing Web Service based Business Processes. Proceedings of
Workshop on Fundamental Approaches to Software Engineering FASE, 2005.

[73] S. McIllraith, T.C. Son: Adapting Golog for composition of Semantic Web
Services. Proc. International Conference on Knowledge Representation and
Reasoning KRR, Toulouse, France, 2002.

References 101

[74] S. Narayanan, S. McIllraith: Simulation, verification and automated compo-
sition of Web Services. Proc. of 11th International COnference on the World
Wide Web (WWW), Hawaii, 2002.

[75] B. Medjahed, A. Bouguettyaya, A.K. Elmagarmid: Composing Web Services
on the semantic Web. Very Large Data Bases (VLDB), 12(4), 2003.

[76] B.T. Messmer: New approaches on graph matching. PhD Thesis, University
of Bern, Switzerland, 1995.

[77] M. Milicic: Planning in Action Formalisms based on DLS: First Results. Pro-
ceedings of the Intl Workshop on Description Logics, 2007.

[78] D.S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard,
S. Rollins, Z. Xu: Peer-to-peer computing. Technical Report HPL-2002-57,
Hewlett-Packard, 2002.

[79] T. Möller, H. Schuldt, A. Gerber, M. Klusch: Next Generation Applications
in Healthcare Digital Libraries using Semantic Service Composition and Co-
ordination. Health Informatics, 12 (2):107-119, SAGE publications, 2006.

[80] I. Müller, R. Kowalczyk, P. Braun: Towards Agent-Based Coalition Formation
for Service Composition. Proceedings of the IEEE International Conference on
Intelligent Agent Technology, Washington, USA, 2006.

[81] M. Paolucci, T. Kawamura, T.R. Payne, K. Sycara: Semantic Matching of
Web Services Capabilities. Proceedings of the 1st International Semantic Web
Conference (ISWC2002), 2002.

[82] M. Paolucci, K. Sycara, T. Nishimara, N. Srinivasan: Using DAML-S for
P2P Discovery. Proc. of International Conference on Web Services, Erfurt,
Germany, 2003.

[83] M. Papazoglou: Web Services: Principles and Technology. Pearson - Prentice
Hall, September 2007.

[84] J. Peer: Web Service Composition as AI Planning: A Survey. Tech-
nical Report, University of St. Gallen, Switzerland, 2005. Available at
elektra.mcm.unisg.ch/pbwsc/docs/pfwsc.pdf

[85] J. Peer: A POP-Based Replanning Agent for Automatic Web Service Compo-
sition. Proceedings of the 2nd European Semantic Web Conference (ESWC),
Heraklion, Crete, LNCS 3532, Springer, 2005.

[86] A. Pfalzgraf: Ein robustes System zur automatischen Komposition semantis-
cher Web Services in SmartWeb. Master Thesis, University of the Saarland,
Saarbrücken, Germany, Juni 2006.

[87] M. Pistore, P. Traverso: Planning as model checking for extended goals in
non-deterministic domains. In: Proceedings of the 7th International Joint Con-
ference on Artificial Intelligence (IJCAI-01), 2001.

102 References

[88] M. Pistore, P. Roberti, P. Traverso: Process-Level Composition of Executable
Web Services: On-the-fly Versus Once-for-all Composition Proceedings of the
2nd European Semantic Web Conference (ESWC), Heraklion, Crete, LNCS
3532, Springer, 2005.

[89] M. Pistore, P. Traverso, P. Bertoli, A. Marconi: Automated synthesis of com-
posite BPEL4WS Web Services. Proceedings of the 2005 IEEE International
Conference on Web Services, Orlando, USA, IEEE Press, 2005.

[90] C. Preist: Semantic Web Services - Goals and Vision. Chapter 6 in [104], 2007.

[91] C. Preist, C. Bartolini, A. Byde: Agent-based service composition through
simultaneous negotiation in forward and reverse auctions. Proceedings of the
4th ACM Conference on Electronic Commerce, San Diego, California, USA,
2003.

[92] J. Rao, P. Kuengas, M. Matskin: Composition of Semantic Web Services using
Linear Logic theorem proving. Information Systems, 31, 2006.

[93] K.-U. Renner, P. Kapahnke, B. Blankenburg, M. Klusch: OWLS-XPlan
2.0 - A Dynamic OWL-S Service Composition Planner. BMB+F project
SCALLOPS, Internal Project Report, DFKI Saarbrücken, Germany, 2007.
www.dfki.de/ klusch/owls-xplan2-report-2007.pdf

[94] A. Rosenfeld, C. Goldman, G. Kaminka, S. Kraus: An Agent Architecture for
Hybrid P2P Free-Text Search. Proceedings of 11th Intl Workshop on COoper-
ative Information Agents (CIA), Delft, Springer, LNAI 4676, 2007.

[95] M. Schlosser, M. Sintek, S. Decker, W. Nejdl: A Scalable and Ontology-based
P2P Infrastructure for Semantic Web Services. Proceedings of 2nd IEEE Intl
Conference on Peer-to-Peer Computing (P2P), Linkoping, Sweden, 2003

[96] B. Schnizler, D. Neumann, D. Veit, C. Weinhardt: Trading Grid Services -
A Multi-attribute Combinatorial Approach. European Journal of Operational
Research, 2006.

[97] E. Sirin, J. Hendler, B. Parsia: Semi-automatic Composition of Web Services
using Semantic Descriptions. Proceedings of Intl Workshop on Web Services:
Modeling, Architecture and Infrastructure workshop in conjunction with ICEIS
conference, 2002.

[98] E. Sirin, B. Parsia, J. Hendler: Filtering and Selecting Semantic Web Services
with Interactive Composition Techniques. IEEE Intelligent Systems, July/Au-
gust, 2004.

[99] E. Sirin, B. Parsia, D. Wu, J. Hendler, D. Nau: HTN planning for Web Service
composition using SHOP2. Web Semantics, 1(4), Elsevier, 2004.

[100] D.E. Smith, D.S. Weld: Conformant Graphplan. Proc. of 15th AAAI Con-
ference on on AI, Pittsburgh, USA, 1998.

References 103

[101] B. Srivastava, J. Koehler: Web Service Composition: Current Solutions and
Open Problems. Proceedings of the ICAPS 2003 Workshop on Planning for
Web Services, 2003.

[102] S. Staab, H. Stuckenschmidt (eds.): Semantic Web and Peer-to-Peer.
Springer, 2006.

[103] M. Stollberg, U. Keller, H. Lausen, S. Heymans: Two-phase Web Service
discovery based on rich functional descriptions. Proceedings of European Se-
mantic Web Conference, Buda, Montenegro, LNCS, Springer, 2007.

[104] R. Studer, S. Grimm, A. Abecker (eds.): Semantic Web Services. Concepts,
Technologies, and Applications. Springer, 2007.

[105] K. Sycara, M. Klusch, S. Widoff, J. Lu: LARKS: Dynamic Matchmaking
Among Heterogeneous Software Agents in Cyberspace. Autonomous Agents
and Multi-Agent Systems, 5(2):173 - 204, Kluwer Academic, 2002.

[106] D. Trastour, C. Bartolini, C. Priest: Semantic Web Support for the Business-
to-Business E-Commerce Lifecycle. Proceedings of the International World
Wide Web Conference (WWW), 2002.

[107] P. Traverso, M. Pistore: Automated Composition of Semantic Web Ser-
vices into Executable Processes. Int Semantic Web Conference, LNCS 3298,
Springer, 2004.

[108] D. Tsoumakos, N. Roussopoulos: Adaptive Probabilistic Search (APS) for
Peer-to-Peer Networks. Proc. Int. IEEE Conference on P2P Computing, 2003.

[109] R. Vaculin, K. Sycara: Towards automatic mediation of OWL-S process
models. IEEE International Conference on Web Services (ICWS 2007), 2007.

[110] W.M.P. van der Aalst, A.J.M.M. Weijters: Process mining: a research
agenda. Computers in Industry, 53, 2004.

[111] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, J. Miller:
METEORS WSDI: A Scalable P2P Infrastructure of Registries for Semantic
Publication and Discovery of Web Services. Information Technology and Man-
agement, Special Issue on Universal Global Integration, Vol. 6, No. 1, 2005.

[112] L.H. Vu, M. Hauswirth, F. Porto, K. Aberer: A Search Engine for QoS-
enabled Discovery of Semantic Web Services. Ecole Politechnique Federal de
Lausanne, LSIR-REPORT-2006-002, Switzerland, 2006. Also available in the
Special Issue of the International Journal of Business Process Integration and
Management (IJBPIM) (2006).

[113] Z. Wu, K. Gomadam, A. Ranabahu, A. Sheth, J. Miller: Automatic Com-
position of Semantic Web Services using Process Mediation. Proceedings of
the 9th Intl. Conf. on Enterprise Information Systems ICES 2007, Funchal,
Portugal, 2007.

104 References

[114] J. Yan, R. Kowalczyk, J. Lin, M.B. Chhetri, S.K.Goh, J. Zhang: Autonomous
service level agreement negotiation for service composition provision. Future
Generation Computing Systems, 23(6), Elsevier, 2007.

[115] A.M. Zaremski, J.M. Wing: Specification Matching of Software Components.
ACM Transactions on Software Engineering and Methodology, 6(4), 1997.

Chapter 5

Context-Awareness
Bruno Gonçalves, Paulo Costa and Luis Miguel Botelho

5.1 Introduction

Context-aware computing has increasingly gained the attention of the research
community because, as it is the case with human interactions, context information
provides the background against which it is possible to more accurately interpret
communicative acts without the need to explicitly state everything that might
be relevant. If, within an agent negotiation for buying some specific service, the
service provider says “the price is 20 Euros”, the receiver would not be capable of
fully interpreting the meaning of the message without using the context created by
the whole conversation. Context information provides the basis for more efficient
information processing mechanisms due to the possibility of discarding irrelevant
information in early stages of information processing. For instance, if some pa-
tient’s personal assistance agent is looking for a service that would sell him or her
a specific medicine and deliver it in the patient’s home, this would be achieved
through the creation of a compound service consisting of an on-line pharmacy and
a medicine transportation service. Using context information about the patient’s
location, the service composition process may discard service providers located
far away from the client and create the compound service considering only a very
small number of all existing services of the relevant categories. Context informa-
tion also enables better adapted behavior since, being context-aware, it may be
more directed towards clients requirements in the circumstances of the interaction.
For instance, if a personal assistance agent is looking for an internet movie critique
service for its owner, having to choose between services displaying a German, an
Italian, or anEnglish user interface, the use of context information regarding the
user’s profile, will enable the agent to choose the service whose interface language
is preferred to the client.

Context-aware computing increasing importance is manifest in the emergence
of a growing number of applications that use context information captured by soft-
ware and hardware sensors, such as the current time, the current temperature and

106 Chapter 5. Context-Awareness

humidity, the user’s location, current traffic in alternative internet connections,
availability and load of some service provider.

The CASCOM Project designed and implemented an architecture for con-
text-aware agent-based service coordination for static and mobile users. Context-
aware service coordination agents may adapt their behavior to their clients taking
into account the context in which interactions take place. For the sake of efficiency,
modularity and specialization, service coordination agents should not have to care
about the problems of acquiring context information from the large diversity of
sources actually existing or coping with the enormous variety of representation
and encoding formats used in these sources.

This chapter provides an overview of selected topics of context-aware com-
puting, focusing the problems of context information acquisition, modeling, and
management, which are those related with context acquisition and management
systems. Context information acquisition refers to the process of acquiring infor-
mation that is considered to be part of the context. Often, context acquisition is
implemented through software sensors (e.g., user spoken languages) or hardware
sensors (e.g., room temperature). Context modeling consists of creating the model
according to which context is represented. Context modeling allows to convert
raw data read from the sensors into something with meaning, generally following
a given ontology. For instance, the string “English” provided by a software sensor
implemented in the user’s personal assistance agent might mean “user spoken lan-
guages = {English}”. Context management refers to the whole activity of context
processing within the context system including storing context information, taking
care of context clients and their requests, and knowing when to discard particular
pieces of context information. The chapter will review context definitions, theories
and principles for context system design, context modeling, and context system
architectures. There is of course much more about context, for instance, about
the way context information may be used by context-aware systems. However, the
chapter will not address such topics in detail.

Maybe the first idea of context information was the user location however,
simultaneously with the effort to clarify and adequately extend its definition [2, 12,
13, 29], other kinds of information were used in context dependent applications,
such as the state of network connections, the existing devices available to the user,
and the social environment.

Several definitions of context can still be found, which does not contribute to
creating a clear picture of context-aware applications and context acquisition and
management systems. In spite of this diversity, maybe, the most accepted definition
of context is the one proposed by Dey and Abowd [13], according to which “context
is any information that can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and application themselves”.
Although the proposal by Dey and Abowd is still the most accepted, the definition
by Anagnostopoulos et al. is increasingly gaining more adepts [13]. They use the
definition of Dey and Abowd but they circumscribe the notion of context to a

5.2. Context Definitions 107

set of situations, which describe humans, applications, and environment related to
specific activities.

A context-aware system is a set of services that adapt to environmental
factors, such as the location in which the system is used, nearby people and objects,
as well as the changes that occur in these objects over time. With the appearance of
mobile devices, context became increasingly important to improve the performance
and effectiveness of applications for mobile users [17]. There are several projects [1,
5, 6, 3, 4, 16, 21, 33] that investigate how context information can be useful to
improve existing services and to create new services for the next generations of
mobile networks.

One of these projects is the WWI Ambient Networks [1]. This project is
aimed at creating solutions beyond the third generation, promoting a scalable
and low cost network that allows an easy access to the offered services. These
solutions include the use of the context-aware computing paradigm to select the
best connection, location services and geographical orientation among others.

Other project presented by Chalmers and Sloman [5] proposes the use of a
framework that allows the management of the quality of service in mobile networks,
using context information to analyze the user characteristics.

Several architectures and approaches that deal with context [2, 8, 9, 6, 10, 11,
22, 24, 27, 28] have been discussed over time, however there is still no normalized
solution that satisfies all possible uses of context information.

This chapter presents some definitions of context given by several authors.
Following, it presents several context models focusing context acquisition, context
modeling and context processing. Next, it describes some of the developed archi-
tectures of context-aware systems. Finally, overall comments about this subject
are presented.

5.2 Context Definitions

Context definitions, in computer applications, have been adapted from the way
context is used in everyday language. Since there are many everyday language uses
for context, an adequate and generally accepted definition of context information
and context-aware applications still does not exist. The meaning of context in
everyday language is related with the interpretation of written and spoken text.
Text is not an encapsulated representation of a specific meaning. Rather, it is an
indication that allows the anticipated construal of a meaning. That construal is
based on what comes with the text, namely its context. In a sentence, each word
has a meaning but the sentence global meaning can only be determined by doing
inferences over its context [31]. For instance, if someone looking from a window
at a car being stolen, says “isn’t that our neighbor’s car?” the pronoun “that”
can only be understood if the listener is also looking at the same scene, that is,
if the listener shares at least part of the same context with the speaker. “Our
neighbor” can also be understood by the listener depending on the context. If the

108 Chapter 5. Context-Awareness

listener leaves in the same place as the speaker, then the expression gains a certain
meaning. However the meaning would be different if the listener knows the speaker
is talking about him and his wife.

Linguists and philosophers have made a big effort to identify the several
context elements that give meaning to words. When trying to adjust everyday
context definitions to computer sciences, several authors have created their own
definitions of context for their applications, which lead to different views of context
and different approaches to acquire context information from the environment.

Winograd [31] defines context as not only the data structures in the operating
system (such as Windows and applications), but also something far beyond the
application being used. Context is an operational term; something is considered
context if it is used in an interaction.

For Schilit and Theimer [29], context consists of the identities of people, the
objects near the application, as well as their changes. Dey [12] adds to the definition
of context the emotional states, the user attention, location and orientation, date
and time, and objects and persons in the user environment. The meaning of the
noun phrase “the car that has just appeared in front of you” depends on the time
in which the phrase is uttered, it depends on the direction the listener is headed
to and on his or her location, and of course, on the objects (i.e., the car) on the
listener’s environment.

For Anagnostopoulos et al. [2], context is a set of situations that describe
people, applications and environment related with a specific activity. This provides
context to the context, which will enable to constrain the whole array of objects,
people and events that may be considered context to only those related to a
given activity. For instance, only the set of potential threats related to driving
in a particular road in a given moment, not the set of all possible threats in the
universe, is relevant to interpret the danger traffic sign.

The most accepted definition of context, for the scientific community, is the
one by Dey and Abowd [13] which states that context is defined as any information
that characterizes a situation or entity.

According to Schmidt et al. [30], context can be divided in two categories:
human factors and physical environment. Human factors include user, social envi-
ronment (people near the user, the relations among them, between them and the
user, and between them and the application) and task (which plays a similar role
to that played by the activity put forth by Anagnostopoulos and colleagues). The
physical environment includes location, infrastructure (supporting the application,
the user, the social context and the task) and conditions (e.g., current date and
time).

Analyzing current definitions, we conclude that they are either too restrictive
or too wide scoped, failing to distinguish context-aware computing from other
kinds of computing.

Taken together, the points of view of Schilit and Theimer [29], and of Anag-
nostopoulos et al. [2] mean context includes applications, environment, and people
related with a given activity, and their changes. Dey’s proposal [12] also includes

5.3. General Design Principles and Context Modeling Approaches 109

the emotional states, the user attention, location and orientation, date and time,
and the user environment. In a strict sense, these definitions would rule out for
instance current traffic conditions in a given network connection, the average wait-
ing time per request and the current number of requests of a given application. In
a broad sense, this definition would include almost everything.

For Dey and Abowd [13], context is defined as any information that charac-
terizes a situation or entity. For Winograd [31], something is considered context if
it is used in an interaction. These are obviously too broad definitions. Winograd’s
definition would include even the messages exchanged in the interaction. And for
Dey and Abowd, almost any information would be considered context. This way,
context-aware computing would be basically information processing which is not a
useful definition since it does not allow us distinguishing context-aware computing
from other kinds of computing.

The proposal of Schmidt et al. [30] identifies different classes of context infor-
mation but it also cannot distinguish context-aware computing from other kinds
of computing.

We propose that often the decision of considering or not a specific infor-
mation as context should be a design task. For instance, some applications would
consider the user location to be part of the context, while for others, location would
not be relevant. In any case, context information should be processed differently
from other classes of information or else it would not make sense to be concerned
about context-aware computing. A suggestion regarding the way context infor-
mation should be handled could be “in an interaction between the initiator and
the participant, it is the responsibility of the participant to acquire relevant context
information even if the participant has to ask the initiator to provide (part of) it”.

5.3 General Design Principles and Context Modeling

Approaches

The design principles reviewed in this chapter are important to evaluate spe-
cific context system architectures presented in the next section. Ideally, specific
architectures should comply with reviewed design principles. Whatever informa-
tion is considered context in an application, it must be acquired, modeled and
processed, which will transform context into something useful [2, 23]. According
to Anagnostopoulos and his colleagues [2], a context system should implement a
set of functionalities, such as acquisition, aggregation (creating new meaningful
compound data structures integrating context information from different types
of sources), discovery (discovering the relevant sources of context), and context
search (discovering the relevant context information), among others.

The acquisition stage is normally associated with sensors. A great amount of
context information is acquired from sensors implemented in software or hardware.
Several approaches have been proposed that focus on the task of creating an

110 Chapter 5. Context-Awareness

interpretation of the acquired context information that makes sense for the specific
application. This interpretation process is usually guided by a context ontology
conceptually close to the application. An example of context acquisition might be
the reading “001A” from a given temperature sensor placed inside a pool. The
result of context interpretation, in this case, could be “pool water temperature in
Tom’s place = 26 C”.

From the reviewed approaches we have identified several important aspects to
be considered when developing context systems. First, we have to separate context
information acquisition from context information interpretation. This separation
allows context interpretation to be independent of sensor interface details. Context
information acquisition can be done by software or hardware sensors. Context
interpretation normally requires tools and ontologies defined in or used by the
context system.

Context acquisition is not limited to only capturing context information in
the moment in which it is required. Context acquisition also includes the storage
of acquired context information as well as its changes over time. The variation of
context information over time is usually called historic context information [19].

During acquisition, we should take into account the errors and delays intro-
duced by processing this information. A way to avoid these errors is to use data
fusion [16] (i.e., using information from several sensors to try to identify and cor-
rect possible errors). For instance, if we have time readings from several clocks,
errors pertaining the reading of one of the clocks may be overcome if we use the
readings of the other clocks.

Some of the acquired context information is static, while other kinds of con-
text information may change over time. Examples of static context information
are the time schedule of a given service or the nationality of a given user. Exam-
ples of dynamic context information are the user location, current time and date,
and current temperature. According to Henricksen et al. [19], context information
is considered static when it does not vary much over time. Static context may
be directly acquired from the user or a service and stored in a central repository.
Dynamic context information should be acquired by sensors and locally stored in
the sensors themselves.

The proposal of Cortese et al. [8] shows the complexity of managing a large
number of sensors. The proposed model assumes that the whole interaction with
the user is made through sensors. This implies that the used context model has
to be extensible so it can be applied to different situations with more, less, or
with different sensors. These authors define two methods to get information from
sensors - the methods push and pull. Using these methods, the sensors can be
both proactive, always sending information to the system, or passive, sending the
information only when a request is received.

Context interpretation should draw upon the definition of context ontologies.
Context ontologies allow representing context information following a structure
and a level of abstraction independent from context sensors and other used sources
of information. Any entity that receives context information represented according

5.3. General Design Principles and Context Modeling Approaches 111

to some specified context ontology can understand it, if it knows the ontology [15].
Context ontologies may be organized according to several aspects, such as used
devices, application, and location, among others. The way context is acquired
(from software and hardware sensors) also represents a context aspect [18].

The proposal of Anagnostopoulos [2] and his colleagues concerning context
modeling states that context should be represented by classes with associations.
These associations connect context elements and deal with both dynamic and
static context. Additionally, the context model should allow the definition of de-
pendencies between context elements. Christopoulou et al. [7] present a similar
type of association, the synapse. These associations represent preferences and
needs of the associated elements. According to this proposal, the context model
should be defined by an ontology with two levels. The first level defines the model
used to describe the context ontology. Following this very proposal, the first level
would include the definition of “context element”, and “synapse”. The second level
describes the context ontology using the model defined in the first level. Sticking to
the same example, the second level would be the particular context elements and
the particular synapses in a given application domain. The context information
models presented by Anagnostopoulos and his colleagues and by Christopoulou et
al. are very comprehensive models. Both synapses and dependencies are important
aspects to focus when identifying the context elements.

A context acquisition and management system should be presented to appli-
cations as an abstract (i.e., hardware independent) context capturing and storage
component ensuring the independence of the application with respect to the used
context acquisition sensors [20]. The context system core can be built of compo-
nents that implement its functionalities. Each sensor can also be built as a com-
ponent that implements an abstract interface. This allows using the advantages of
the component-based systems paradigm such as modularity and the unification of
sensor access in a single interface [14]. As an example of a sensor implementing an
abstract interface, we could think of a temperature sensor that extracts the read-
ing “001E” from the environment but converts this into “environment temperature
= 30 C” before making this information available to its clients.

The storage of context information in a system can be implemented by a cen-
tralized repository modeled following a given ontology. This repository allows the
centralized access to context by context information producers and consumers [31].
The context system can also be presented as a peripheralware in a service net-
work [26]. Generally, peripheralware consists of additional software layers placed
between the middleware and services, and between the middleware and the client.
Those layers perform tasks transparent to the services and to the clients. Using
peripheralware allows context-awareness in services that are not prepared to deal
with context. All the context information processing is done by the peripheralware
in a transparent way to the services and the clients.

Prekop and Burnett [25] define a context model centered on the user activity,
which is significant only when the activity takes place. This vision differs signif-
icantly from those previously mentioned because, in the previous ones, context

112 Chapter 5. Context-Awareness

Figure 5.1: Context system architecture levels

information relates to entities, while in this one, context information relates to
activities in which the entities participate. For instance, in previous mentioned
models, the price of a book is context information relating to the book, and the
available money to buy it is context information related to the client; in this model,
both are context information of the book buying activity. This model assumes the
context definition of Anagnostopoulos et al. [2], according to which, context is a
set of situations that describe people, applications and environment related with
a specific activity.

Several architectures were developed from the models described in this sec-
tion.

5.4 Context Dependency Architectures

Context systems architectures may have two levels: operational and informative
levels, as presented in Figure 5.1. The operational level comprises the system
modules such as sensors, mediators that convert sensor data into higher level in-
formation, intelligent agents that gather the system knowledge, and context-aware
applications (if a global perspective is adopted that views both the context sys-
tem and its clients as unique system). The informative level comprises the acquired
context information and knowledge. This knowledge can be represented in a sim-
ple data model, in an object-oriented model, or in an ontology model [2]. Context
information is acquired by sensor networks and further subject to processes that
convert it into higher level representations, usually following a context ontology,
which might be more abstract or more specific of the application that requires

5.4. Context Dependency Architectures 113

it. Sensors can be used simply as data acquisition mechanisms but they can also
be more sophisticated. Often sensors are coupled with adaptation mechanisms
that create context information representations independent of the specific type
of sensor. This is called sensor adaptation. Pure sensor architectures only have
the operational level, since the way context information should be presented is
not defined in sensor networks. However, if context adaptation performed by the
sensors is done according to a given ontology, the informative level will also be
present.

This section starts with sensor network architectures such as the Smart-
Its Architecture. These simple architectures are totally distributed context sys-
tems consisting of a network of sensors that exchange context information packets
among them. Each sensor may create new context information packets or add in-
formation to received packets. When completed, packets are sent to the context
clients that have requested them.

The Merino architecture represents a sophistication of pure sensor networks
because it has three kinds of sensors of different sophistication; and it includes a
centralized context repository, and a user model.

All of the other reviewed architectures use similar ontology-based context
modeling techniques for providing a sensor-independent abstract view of context
to their clients. Besides providing sensor abstraction, all other architectures have
a central repository for context information. Besides the instantaneous context,
often the context repository stores historic context information. In addition to
these common features, each of these reviewed architectures introduce specific
differences with respect to the others.

WASP, CoBrA, Context Taylor architectures as well as the one proposed by
Cortese and colleagues separate sensor information capturing from its processing.
In all of them, the lower level layer extracts context information from sensors.
Then, a higher level layer adapts the acquired information according to a defined
ontology. This abstract representation of the context information is then subject
to diverse kinds of information processing such as context fusion and inference,
which result in additional pieces of context. Acquired and generated context in-
formation is stored in a repository. WASP and CoBrA have a system manager
that has knowledge about all elements belonging to the architecture, manages
context information requests, acquires information from the repositories and the
context interpreters, and delivers it to context clients. CoBrA manager, denomi-
nated Context Broker, is a distributed agent that communicates with client agents,
using an agent communication language. Besides context fusion and inference, the
Context Broker also supports privacy by imposing access policies defined by each
client, using a declarative language. Context Taylor has learning mechanisms that
extract patterns from the context information. These patterns may be used in
future context information requests.

Often, context acquisition and management architectures support both con-
text information requests and context information subscription (push and pull).
Information request mechanisms allow context clients to acquire context infor-

114 Chapter 5. Context-Awareness

Figure 5.2: Merino architecture

mation when needed (on demand); information subscription mechanisms allow
context clients to receive desired context information whenever it changes.

5.4.1 Smart-Its Architecture

The decentralized architecture proposed by Michachelles and Samulowitz [24] is
ideal for mobile environments and ad hoc networks. It stores the context infor-
mation acquired by sensors (Smart-its) in packets that are passed from sensor to
sensor. These packets are denominated sCAP (Smart Context-Aware Packets).
This architecture does not have a central control mechanism. Instead, sensors get
to know the information acquired by their neighbors through the context packets
they receive from them. A sensor only adds the context information to a packet it
receives if this information has some similarity with the context contained in the
packet. Each packet is organized in three parts: the acquisition plan, the probable
context, and the acquisition path. The acquisition plan is a plan based on an initial
model that is adapted each time the packet visits a sensor. The probable context
is the information retrieved from the sensors. The acquisition path represents the
list of sensors already visited. After visiting all the sensors specified in the acqui-
sition plan, the packets are directly sent to the user or system that has requested
them. The architecture proposed by Samulowitz et al. [28] also uses packets, in a
similarly way as the Smart-its architecture.

5.4.2 Merino Architecture

The Merino architecture presented by Kummerfeld et al. [22] integrates three
classes of sensors: normal sensors, intelligent sensors, and environment agents.
The architecture also has a context information repository and a user model (see
Figure 5.2). Sensors in higher layers produce higher level information, promoting
a more complex vision of context. Sensors in lower level layers are confined to
acquiring information from the environment. The repository stores the context
information acquired from the sensors. Agents retrieve context information from

5.4. Context Dependency Architectures 115

Figure 5.3: WASP architecture

the repository and produce new context information. The user model, which is
controlled by an intelligent personal assistant, represents the needs of the user.

5.4.3 Architecture proposed by Cortese et al.

The architecture proposed by Cortese et al. [8] defines a logical model of architec-
ture with two layers. This division separates sensor information capturing from its
processing. In the lower layer, denominated sensors layer, the sensor information
is extracted. In the upper layer, denominated semantic layer, the acquired infor-
mation is adapted according to a defined ontology. The information is published
in a repository where fusion agents generate additional information with a higher
abstraction level.

5.4.4 WASP Architecture

The WASP architecture (Web Architectures for Service Platforms) [9] defines a
general development environment that supports the execution of mobile services
with context dependency (see Figure 5.3). The fundamental idea of this architec-
ture is to hide the complexity introduced by context acquisition and processing
from the context clients. This is done using interpretation modules that offer
context to applications. These modules gather context information and make it
available for the remaining platform. The platform includes repositories to support
the monitoring component, which has knowledge about all elements belonging to
the system. This monitoring component is responsible for the integration of WASP
applications, for managing context information subscription requests, and for ac-
quiring information from the repositories and the context interpreters. Context

116 Chapter 5. Context-Awareness

information is subscribed by the services registered in the platform, being fur-
ther processed in the context interpreter. Ontologies are used to model context,
enabling the architecture components to share knowledge among them. In order
to obtain more complex context, different context supplying entities must share
the same context representation. The presented architecture enables applications
to obtain context information in a transparent way. Context processing problems
are solved within the architecture. However, context information acquisition must
be handled by the services that provide that information. The idea of hiding the
context information processing complexity is an important feature of a context
system.

5.4.5 CoBrA Architecture

The CoBrA architecture (Context Broker Architecture) [6] is an agent-based archi-
tecture that supports context awareness in intelligent systems, such as the systems
that make up an intelligent house, or an intelligent vehicle (see Figure 5.4). This
architecture has a central element - the context broker - that supplies a general
picture of the context to the remaining agents. The context broker also supports
privacy by imposing access policies defined by each client agent. The architecture
incorporates the operational level in its design. The informative level is repre-
sented by the context information model. The CoBrA architecture requires the
definition of a collection of ontologies to model the context. The CoBrA architec-
ture provides a declarative language of policies that users and devices may use to
limit the access to protected information. CoBrA architecture uses OWL [32] as
ontology language. The context broker is an agent created to manage the shared
context model. It is associated to the smart space in which the system operates,
for example an intelligent house. This agent aggregates several other agents that
represent smaller parts of the space.

Using this decentralized approach, communication overhead problems related
with the access to a centralized mediator can be avoided. The context broker can
also infer context information that cannot be easily acquired by sensors, which can
be used to complete missing context elements. The context agent main function
is the acquisition of context information from several sources, the fusion of this
information in a coherent model and the subsequent sharing of this model with
other entities in the environment. This architecture is ideal to agent networks.
The use of an agent as a context broker enables CoBrA to communicate with
other agent architectures, using an agent communication language. The distributed
context broker results in a highly robust system, since the failure of one of the
mediators does not compromise the functioning of the remaining system parts.

5.4.6 Context Taylor

This architecture proposed by Davis et al. [10, 11] is a component-based architec-
ture that has a context service that acquires data from a set of context generation

5.4. Context Dependency Architectures 117

Figure 5.4: CoBrA architecture

sources. The acquired context information is stored in a repository and made avail-
able to applications via an API. Learning mechanisms extract patterns from the
context information. These patterns may be used in future context information
requests. The components in the architecture include generation sources, a con-
text history repository, a learning engine, a context patterns repository, a context
patterns activator, and a server that coordinates the interaction between these
components. The context service works as a middleware repository that provides
context about specified entities. This service manages the connection with each
source of context, providing context information to applications. The structure of
this architecture is presented in Figure 5.5. The server registers the context re-
quests sent by context clients and stores all the provided context information in the
context repository service. Each context entry is composed of four fields: temporal
mark, user id, context type, and context state. The temporal mark allows selecting
context information pertaining to a specified time interval. The user identification
allows to store and access context information for different users. Each type of con-
text corresponds to a specific representation format. The context state contains
information about context of a certain type, which was observed in a certain mo-
ment. The learning mechanism applies learning algorithms to context information

118 Chapter 5. Context-Awareness

Figure 5.5: Context Taylor architecture

in the repository to abstract context patterns. These patterns are then stored in
the patterns repository. Each pattern is composed of a condition, a pre-condition,
a likelihood level (a value between 0 and 1 that represents the probability that
the precondition predicts the condition) and a support. The conditions and pre-
conditions define sets of events, and each event represents an instance of context
attributes.

5.5 Summary

From the presented set of definitions, models and architectures, we conclude that
a definitive solution to deal with context still does not exist. None of the described
proposals addresses the whole context subject, only presenting solutions to some
of the several problems related with context.

Some context definitions are too restricted ruling out important aspects of
context. However most of them are too general failing to provide criteria for distin-
guishing context information from other kinds of information. We propose that a
suitable definition of context, in the scope of context-aware computing, must allow
domain and application dependent context information to be identified at design
time (since particular information would righteously be considered and treated as
context information in some applications but not in others); and most importantly,
it should provide a clear basis for distinguishing context information from other
kinds of information in terms of the way context information, but not other kinds

5.5. Summary 119

of information, is processed. That is, definitions must have something to say about
the way context information is processed in context-aware applications.

Work of more theoretical nature especially focused on context modeling and
on general principles regarding context acquisition and processing proposes that
context acquisition should be clearly separated from context interpretation. This
work also proposes that static context information should be directly acquired
from the user or other applications and may be stored in centralized repositories;
while dynamic context information should be acquired by sensors and should be
locally stored.

According to some authors, context representation, as specified by context
ontologies, should contain several dimensions, the most important of which are en-
tities, context elements, activities, and several kinds of associations between these
(e.g., dependencies and needs). Besides individual samples of context information,
it is also useful to keep historic context information.

Domain independence, improved interoperability, and the possibility to dy-
namically extend the context model (context ontology) are desirable properties
of the context representation framework. These goals can be achieved if context
ontologies have two levels: the first level describing the model that is used to repre-
sent the context ontology; and the second level representing the context ontology
using the representation model defined in the first level.

Context acquisition and management systems play an important role in
context-aware computation because they provide an abstraction of the context
acquisition and management processes, hiding low level domain and hardware de-
pendent details from context users and client applications. These systems should
also support the two main modes of information conveying - push and pull - allow-
ing context clients to passively receive context information whenever it changes or
to receive it only upon request.

Several context acquisition and management system architectures have been
proposed. These may be organized in two groups: the sensor network systems,
which are more focused on the context acquisition problem; and the complete
architectures, addressing both the context acquisition stage and the context pro-
cessing stage, which should be totally separate processes.

Each of the proposed architectures addresses specific aspects of context ac-
quisition and processing. For instance, sensor network architectures, such as the
Smart-its, are focused on context acquisition and representation. The Merino ar-
chitecture main innovation is the organization of sensors according to their level
of sophistication / intelligence. It also proposes to use a context repository. Other
proposals such as the WASP architecture emphasize the interaction with other
applications instead of the context acquisition process.

The described complete architectures focus on important aspects that should
be taken into account when designing a context system (e.g., independence of con-
text processing from context acquisition, fusion and inference over context infor-
mation, learning, and context delivery). The CoBrA architecture is more adequate
for agent networks, since it provides an agent-based interface with applications,

120 References

through context broker agents. The access to context information, by applications,
in the other architectures is ensured by APIs. Ideally, these APIs should be flexible
enough to allow adding several types of information and sensors, and to support
flexible types of context searching requests. Unfortunately this is not the case.

The described architectures propose different solutions to deal with specific
aspects of context-aware computing. However, none of them addresses the whole
array of relevant problems. A more complete context acquisition and management
system should be based on the integration of ideas put forth by the described
proposals. Most of the presented architectures store all context information in
central repositories which might not be a good idea, especially when there are
many different sources of context acquiring a huge amount of information, and
many client applications competing for system resources. A new proposal should
give more attention to the integration of the sensors layer, allowing the existence
and management of several types of sensors, with the context processing layer. The
acquired context information should be stored in a distributed fashion. Static con-
text information may be stored in centralized repositories; while dynamic context
information should be stored locally in the sensors.

None of the architectures can be dynamically extended with new sensors
of new classes of context information, in run-time. None of them supports the
dynamic addition of new ontology definitions in run-time either. This is also an
important feature of the context acquisition and management system developed
in the CASCOM architecture.

Finally, each of the described architectures provides only one type of interface
(e.g., agent-based, or API). Since context systems should be independent of their
client applications, it would be a good idea to implement at least the most common
types of interface.

References

[1] Ambient Networks Consortium. Ambient Networks. http://www.ambient-
networks.org, 2006.

[2] C. Anagnostopoulos, A. Tsounis and S. Hadjiefthymiades: Context Awareness
in Mobile Computing Environments: A Survey. Mobile e-conference, Informa-
tion Society Technologies, 2004.

[3] L. Capra, W. Emmerich and C. Mascolo: Reflective Middleware Solutions
for Context-Aware Applications. Proceedings of the Third international Con-
ference on Metalevel Architectures and Separation of Crosscutting Concerns
LNCS, Vol. 2192. Springer-Verlag, London, 126-133. 2001.

[4] L. Capra, W. Emmerich and C. Mascolo: CARISMA: Context-Aware Re-
flective mIddleware System for Mobile Applications. IEEE Transactions on
Software Engineering, vol. 29, no. 10, pp. 929-945, Oct., 2003.

References 121

[5] D. Chalmers and M. Sloman: QoS and Context Awareness for Mobile Com-
puting. Proceedings of the 1st international Symposium on Handheld and
Ubiquitous Computing, LNCS Vol. 1707. Springer-Verlag, London, 380-382.
1999.

[6] H. Chen, T. Finin and A. Joshi: An Intelligent Broker for Context-Aware
Systems. Adjunct Proceedings of Ubicomp 2003, Seattle, Washington, USA,
October 12-15, 2003.

[7] E. Christopoulou, C. Goumopoulos, I. Zaharakis and A. Kameas: An Ontology-
based Conceptual Model for Composing Context-Aware Applications. In Re-
search Academic Computer Technology Institute, 2004.

[8] G. Cortese M. Lunghi and F. Davide: Context-Awareness for Physical Service
Environments. Ambient Intelligence, IOS press, 2004.

[9] P. D. Costa, J. G. P. Filho and M. van Sinderen: Architectural Requirements
for Building Context-Aware Services Platforms. IFIP workshop on Next Gen-
eration Networks, Balatonfured, Hungary, 8-10 September, 2003.

[10] J. S. Davis, D. M. Sow, M. Blount and M. R. Ebling: Context tailor: Towards
a programming model for context-aware computing. Proceedings of the first
International Workshop on Middleware for Pervasive and Ad Hoc Computing
(MPAC)., pages 68-75, Rio De Janeiro, Brazil, 16-20 June, 2003.

[11] J. S. Davis, D. M. Sow and M. R. Ebling: Context-sensitive Invocation Using
the Context Tailor Infrastructure. System Support for Ubiquitous 94 Com-
puting Workshop at the Fifth Annual Conference on Ubiquitous Computing,
October 2003.

[12] A. K. Dey: Context-Aware Computing: The CyberDesk Project. AAAI 1998
Spring Symposium on Intelligent Environments, Technical Report SS-98-02,
pp 51-54, 1998.

[13] A. K. Dey and G. D. Abowd: Towards a better understanding of context
and context awareness. In GVU Technical Report GIT-GVU-99-22, College of
Computing, Georgia Institute of Technology, 1999.

[14] A. K. Dey, D. Salber and G. D. Abowd: A conceptual framework and a toolkit
for supporting the rapid prototyping of context-aware applications. Human
Computer Interaction, 2001.

[15] J. G. P. Filho and M. van Sinderen: Web Service architectures, semantics
and context-awareness issues in Web Services platforms. WASP/D3.3, 16-26,
2003.

[16] H. W. Gellersen, A. Schmidt and M. Beigl: Multi-sensor context-awareness
in mobile devices and smart artifacts. Mobile Networks Applications 7, 5,
341-351, October, 2002.

122 References

[17] R. Gold and C. Mascolo: Use of Context-Awareness in Mobile Peer-to-Peer
Networks. Proceedings of the 8th IEEE Workshop on Future Trends of Dis-
tributed Computing Systems. IEEE Computer Society, Washington, DC, 142,
2002.

[18] K. Goslar, S. Burchholz, A. Schill and H. Vogler: A Multidimensional ap-
proach to Context-Awareness. In Proceedings of the 7th World Multiconfer-
ence on Systemics, Cybernetics and Informatics (SCI2003), 2003.

[19] K. Henricksen, J. Indulska and A. Rakotonirainy: Modeling Context Infor-
mation in Pervasive Computing Systems. In Pervasive ’02: Proceedings of the
First International Conference on Pervasive Computing, pp. 167-180, 2002.

[20] J. I. Hong and J. A. Landay: An Infrastructure Approach to Context-Aware
Computing. Human-Computer Interaction, 16:287-303, 2001.

[21] P. Korpipää and J. Mäntyjärvi: An Ontology for Mobile Device Sensor-Based
Context Awareness. Fourth International and Interdisciplinary Conference on
Modeling and Using Context (CONTEXT 2003): 451-458. Stanford, California
(USA), June 23-25, 2003.

[22] B. Kummerfeld, A. Quigley, C. Johnson and R. Hexel: Merino:Towards an
intelligent environment architecture for multigranularity context description.
User Modeling for Ubiquitous Computing, 2003.

[23] H. Laamanen and H. Helin: Contex-Awareness, Overview and State-of-Art.
CASCOM project Technical Report, TeliaSonera, 2004.

[24] F. Michahelles and M. Samulowitz: Smart CAPs for Smart Its Context
Detection for Mobile Users. Personal Ubiquitous Computing 6, 4, 269-275.
January, 2002.

[25] P. Preko and M. Burnett: Activities, context and ubiquitous computing.
Elsevier Science PII: S0140-3664(02)00251-7, 2002.

[26] M. Ritchie: Pre and Post Processing for Service Based Context-Awareness.
Technical Report Equator-02-023, University of Glasgow / Department of
Computing Science, 2002.

[27] H. K. Rubinsztejn, M. Endler, V. Sacramento, K. Gonalves and F. Nasci-
mento: Support for Contex-Aware Collaboration. Mobility Aware Technologies
and Applications, LNCS 3284, pp. 37-47, 2004.

[28] M. Samulowitz, F. Michahelles and C. Linnhoff-Popien: Adaptive interaction
for enabling pervasive services. Proceedings of the 2nd ACM international
Workshop on Data Engineering For Wireless and Mobile Access (Santa Bar-
bara, California, United States). S. Banerjee, Ed. MobiDe ’01. ACM Press,
New York, NY, 20-26. 2001.

[29] B. Schilit and M. Theimer: Disseminating Active Map Information to Mobile
Hosts. IEEE Network, 8(5):22-32, 1994.

References 123

[30] A. Schmidt, M. Beigl and H. W. Gellersen: There is more to Context than Lo-
cation. Proceedings of the International Workshop on Interactive Applications
of Mobile Computing (IMC98), Rostock, Germany, November 1998.

[31] T. Winograd: Arquitectures for Context. HI Journal, 2001.

[32] World Wide Web Consortium. OWL-S 1.0 Release.
http://www.daml.org/services/owl-s/1.0, 2005.

[33] S. S. Yau and F. Karim: Reconfigurable Context-Sensitive Middleware for
ADS Applications in Mobile Ad Hoc Network Environments. In Proceedings
of the Fifth international Symposium on Autonomous Decentralized Systems.
ISADS. IEEE Computer Society, Washington, DC, 319. March, 2001.

Chapter 6

Technology in Healthcare
Gert Brettlecker, César Cáceres, Alberto Fernández, Nadine Fröhlich,
Ari Kinnunen, Sascha Ossowski, Heiko Schuldt, Matteo Vasirani

6.1 Introduction

The term “e-health” was born in 1999 to represent the provision of healthcare
services through Internet [11], and was heavily promoted by the industry and
commercial sectors in order to take advantage of the power and excitement that
other “e-” terms like e-commerce and e-business had recently created in society [8,
6]. Nevertheless, the academic world would soon adopt it, leading to what some
authors call “the death of telemedicine” [14].

The term was so wide that anything to do with technology and health was
included. In this direction, the European Commission proposed the following def-
inition for e-health [7]: “the use of modern information and communication tech-
nologies to meet needs of citizens, patients, healthcare professionals, healthcare
providers, as well as policy makers”. In this definition, other disciplines like med-
ical informatics, health informatics or telemedicine would be included.

There are numerous definitions of e-health, as the Figure 6.1 from [13] shows,
but most of them reduce to the same basic idea: e-health is the use of ICT for
health.

In order to illustrate the multiple applications that e-health embraces, a
five layer model is proposed [2, 5], as shown in Figure 6.2. At the base there
are two basic layers, the physical infrastructure and the informatic and telematic
services layers, both corresponding to the ICT. Those layers support all the basic
e-health services which will build the health applications higher up, depending on
the particular scenario. Sometimes a health application is based on only one e-
health service, which could even coincide with the use case scenario. For example,
a remote surgical operation (scenario) will be carried out from the surgery clinical
specialty (application), using the e-health service of telesurgery.

126 Chapter 6. Technology in Healthcare

Figure 6.1: Concept map of the use of the e-health term in different papers,
from [13]

6.2 Objectives

Central to all the e-health definitions is that the use of information and commu-
nication technology, such as the Internet, is required for long distance delivery of
health services. The use of the Internet in e-health is likely to increase as more
healthcare organizations switch to broadband Internet connections. Wireless con-
nectivity is also another interesting characteristic that technologies are offering for
this particular domain, especially for mobility that will be discussed in the next
section of the chapter.

One of the main objectives of ICT in healthcare is achieving the interoper-
ability of medical information systems and Electronic Health Records, by creating
a common architecture (middleware) for delivering healthcare services and also
collaborative platforms (CSCW) to improve cooperation between different disci-
plines in the healthcare domain.

The use of ICT is also a key stone to respond to privacy needs related with
healthcare, like preserve confidentiality with a high level of security and promoting
the use of e-cards in healthcare to facilitate mobility and identification.

Another objective that ICT addresses is facilitating the mobility: develop
services that cover every situation we could think of (anyone, anywhere, anytime,
anyhow, ...), or walking towards m-health with wireless solutions and portable
devices.

Finally, ICT makes easier the management of the huge amount of information

6.3. Benefits of e-Health 127

Figure 6.2: Layered model of e-health

that healthcare generates, by creating repositories of validated health information
on the Internet to win the battle with bad and misleading information now existing.

In the next section we will show how the healthcare domain benefits from
new technologies and what barriers exist for their implementation.

6.3 Benefits of e-Health

The benefits of using ICT for health could be grouped in three aspects [1]: im-
proving the quality of healthcare, facilitate the access to healthcare and reducing
costs.

128 Chapter 6. Technology in Healthcare

6.3.1 Improving the Quality of Healthcare

One of the main contributions that ICT can make to improve the quality of health-
care is to provide the healthcare professional with the information needed at the
right time about the health of the patients. Now, thanks essentially to the comput-
erization of the health records and the use of decision support or expert systems,
some aspects can be achieved. The transfer of complex health records globally and
in real time, increases the accessibility, unifies the information at every healthcare
level and improves care continuity and the professional info exchange.

Collecting data and and take decision can be done in real time by workers
equipped with mobile devices. Also a more efficient patient care management is
possible, thanks to the optimization of healthcare resources, the improvement on
the care demand management, the reduction of hospital stays and the decrease on
extra medical acts and tests.

This not only leads to an improvement on productivity (e.g. time spent with
bureaucratic tasks may be reduced), but also to a better care than the conventional
care model, by the development of a new patient centred healthcare model.

6.3.2 Improving the Access of Healthcare

Technologies offer the possibility for anyone to access from anywhere (remote areas,
for instance), anytime and in the most convenient way, to the needed healthcare or
health information. In this way, ICT technologies can promote the universality and
equity of healthcare access and mitigate the lack of health professionals, especially
for geographically or socially isolated patients.

ICT also speeds up consultations between primary and specialized care in
acute cases (enabling the possibility of a second opinion for diagnosis), and im-
proves patient follow-up, specially in chronic illnesses.

By increasing the homecare services, it is possible to reduce the number of
patient’s visits and waiting lists, preventing unnecessary waste of time for both pa-
tients and professionals. In this way, treatments can be provided more rapidly and
in the right place, preventing the unnecessary transfer of patients and improving
their quality of life.

ICT plays also a fundamental role for the provision of information to patients.
Informing patients about preventive care strategies in a faster and easier way
enhances people’s health knowledge and promoting self-care. The professionals can
receive continuous education, preventing the professional isolation and stimulating
their abilities using teleconsultations and videoconferences as learning tools

6.3.3 Reducing Costs

It is widely known that paper based systems are inefficient, with a lot of admin-
istrative procedures and possible health fraud. By improving the financial and
management information administration, ICT facilitates health fraud detection.

6.4. Barriers and Challenges of e-Health 129

The introduction of technologies can improve both the provision of health ser-
vices and the reduction of costs in some of the processes. ICT can help to optimize
administrative procedures, simplify request circuits and reduce administrative er-
rors, for example eliminating information duplicates and redundant analysis with
their associated costs.

It can also reduce both direct costs, like travel expenses (for both patients
and professionals) or hospital stays, and indirect costs, speeding up the patients
incorporation to their jobs. Globally, it reduces global health expenses enhanc-
ing an earlier assistance and preventing the need of further care (usually more
expensive).

6.4 Barriers and Challenges of e-Health

Despite all the benefits just presented, the introduction of ICT in healthcare has
had many difficulties from the technical, social, political, legal or economical point
of view [12, 1, 10, 9, 3, 4, 15]. Many of these barriers are a consequence of the
incredible speed of development of the technologies and the number of people and
disciplines involved in the process.

The main challenges that e-health must tackle are, from a technological point
of view, the lack of standards in the health industry as well as the need of the
newest and leading technologies.

Also human organizations poses social barriers to the adoption of e-health.
From one side, the distrust of ICT when the data are sensible and protecting elec-
tronic information’s privacy, security, integrity and confidentiality is necessary.
From the other side, the the users’ inexperience with technologies, the limited
access of patients to ICT (not only in knowledge, but also for economical or avail-
ability limitations), the adaptation of doctors to new ways of caring patients may
slow down the introduction of ICT in healtcare.

Again, since e-health can (and must) be transnational, it is absolutely nec-
essary the European Medical License for the professionals to work across borders.

Finally, the distance between the actual research and the real needs of the
health system poses several problems to a wide adoption of ICT. The lack of data
and methodology for the economic evaluation of e-health projects (e.g. e-health
services reimbursement is not well defined) is an obstacle for the clinical routine
implementation of the e-health systems as well as to obtain funds for new e-health
projects.

6.5 Mobility (m-Health)

M-health means mobile healthcare. It mainly addresses mobile services which col-
lect, transmit, filter, and processe vital patient data in real time, e.g., heart rate
and blood pressure. It is especially important in applications that remotely mon-

130 Chapter 6. Technology in Healthcare

itor patients with chronic ailments or in home care. The overview of research in
the mobile healthcare area (m-health) presented in this section is organized as
follows: Firstly, we introduce m-health applications and describe their major re-
quirements. Secondly, we present orthogonal technology research issues tackled
by the investigated m-health projects. Thirdly, we give an overview of current
and recent academic and commercial research and already available commercial
products in this area.

6.5.1 m-Health Applications

Generally, m-health applications are driven by the demand of access to medical
information in a mobile and ubiquitous setting. This access may either be relevant
medical information retrieval by healthcare practitioners, e.g., a hospital doctor on
his/her ward round, or the acquisition of relevant medical information generated by
patients, e.g., telemonitoring the patient’s health state outside of the hospital. In
both cases, the person retrieving or generating information wants to interact with
the m-health infrastructure without any obstruction or adaptation of the normal
workflow or style of working. The most characteristic application requirements
are:

• Human computer interaction through mobile devices that provide access to
relevant health-related information independent of the current physical lo-
cation of the user. This includes the exploitation of networking and wireless
communication.

• Context and location awareness, i.e., the access to or the visualization of
health-related information might depend on location and/or context.

• Unobtrusive sensor technology which allows for gathering physiological infor-
mation from a patient without hampering his/her daily life.

• Signal processing and pattern recognition to derive medical relevant informa-
tion out of sensor signals.

• Fault-tolerance and reliability. This is a unique feature in e-health applica-
tions and thus also in m-health where the usage of IT might potentially be life
saving, and downtimes due to erroneous behaviour of the m-health system
cannot be tolerated.

Smart Hospital / Smart Emergency Applications

At the caregiver’s site, m-health applications appear in the context of smart-
hospital scenarios [16, 17, 19]. These applications try to improve the daily ac-
tivities of doctors and nurses. This is done by providing tools to access patient
records or, more generally, clinical information systems, as well as to schedule and
track patients and hospital resources in a wireless, mobile, and context-aware way.

6.5. Mobility (m-Health) 131

Moreover, recent projects introduce the use of RFID technology to further improve
this scenario [40].

Another application of m-health at the caregiver’s site is smart emergency
management [16], where information access by using mobile devices is used to
support emergency services. Emergency physicians are able to access the records
of their patients in advance while they are still in the ambulance car approaching
the current location of a patient. If we also consider the triggering of emergency
situations and access of current physiological signals, this scenario spans the bridge
between the caregiver’s and patient’s site. Therefore, this scenario closely interacts
with the m-health scenario presented in the next section.

Physiological Telemonitoring

Telemonitoring, the continuous monitoring of patients at home, is becoming a more
and more important application domain in the context of m-health [22, 23, 24, 28],
mainly due to the progression of chronic ailments in an aging society. First, such
applications enable healthcare institutions to take care of and control therapies
regarding their patients while they are out of hospital. Second, they serve as in-
strument for performing research and for accomplishing medical studies. Third,
they allow for triggering of emergency services in case of severe health conditions.
Due to the nature of the application which is continuously monitoring physio-
logical signals, unobtrusiveness and mobility of the patient are key requirements.
Finally, these applications can offer additional comfort services as by-product, like
assistive services, information services and communication services, which leads
us to the next m-health scenario.

Assistive Living Applications

The integration of smart-home automation is an essential aspect of assisted living
for the elderly or for impaired people [16, 25, 18, 30]. The projects in this domain
are the most challenging ones, because the issues of telemonitoring mentioned
above are also relevant here. Elderly people tend to suffer from at least one chronic
disease, which requires telemonitoring. Additional age-related impairments make
independent living at home difficult and therefore assistance for daily activities is
required. Moreover, the additional context information provided by a smart-home
environment enhances a better interpretation of physiological sensor information,
e.g., whether the patient is running or sleeping has significant influence on the
blood pressure. Blood pressure readings which are normal for physical activity,
may indicate a severe health condition if occurring while sleeping.

6.5.2 Technology Issues in m-Health

The different projects have different technological emphases. They either focus on
infrastructure, networking and/or hardware (embedded systems and sensors).

132 Chapter 6. Technology in Healthcare

Infrastructure

M-health projects which focus on the infrastructure have to deal with different
network density and different devices (PDAs, PCs). One point of interest is the
dynamic assembly of new devices. They have to solve problems in routing, naming,
discovery, quality of service and security and therefore they use different kinds of
architectures.
Projects which focus, among other aspects, on infrastructure issues include Ako-
grimo [16], projects at BMI [18], Equator [20], Pervasive Healthcare [17], and
projects at VTT [25].

Networking

When projects focus on networking important research themes are smooth han-
dovers in roaming situations, limitations in bandwidth of used respectively usable
wireless networks.
Projects that address specific aspects in networking include MobiHealth [22], My-
Heart [23], U-R-Safe [24], Code Blue [19].

Hardware

In m-health projects it is especially important that sensors are small, lightweight,
and wearable since they are used in mobile environments and the people that wear
these devices are ill and/or old. An additional constraint is low power sensing,
computation, and communication as huge batteries make the devices heavy and
bulky for mobile use. Thus also the memory used for data sampling and processing
has to be small. It is also important that the collected data can be shown in real
time.
Projects that focus on hardware include Code Blue [19], Equator [20], IM3 [21],
MobiHealth [22], MyHeart [23], and U-R-Safe [24].

6.5.3 Overview of m-Health Projects

In this section, we give an overview of current research in the area of m-health.
For this reason, we selected a few representative projects for a more detailed
presentation.

Akogrimo

Akogrimo [16] is funded by the EC under FP6. The project integrates Next Gen-
eration Grids (NGG) and next Generation Networks. The application scenarios
of Akogrimo cover smart hospitals, telemonitoring and emergency assistance. The
Akogrimo NGGs are able to deal with an environment with rapidly changing
context such as bandwidth, device capabilities, and location. Furthermore the
architecture can be immediately deployed in Unlicensed Mobile Access (UMA)

6.5. Mobility (m-Health) 133

environments such as hot-spot infrastructures because it assumes a pure IP-based
underlying network infrastructure.

MobiHealth

The generic BAN (body area network) software platform is the heart of the ar-
chitecture of the FP5-EU project MobiHealth. It provides plug and play sensor
connectivity and handles related issues such as security, QoS and hand-over. It
enables monitoring, storage, and wireless transmission (e.g., by using GPRS and
UMTS technologies) of vital signals data coming from the patient BAN. Possi-
ble hardware platforms for this architecture are PDAs or programmable mobile
phones which can serve as Mobile Base Units (MBUs). The investigated applica-
tion scenario is telemonitoring of patients at home.

MyHeart

MyHeart [23] is a research project funded by the EU under FP6. The focus of My-
Heart is on preventing cardiovascular diseases by applying m-health applications.
The work focuses, in particular, on the telemonitoring scenario, where sensors in-
tegrated in clothing are used to monitor heart activity and physical activity of
the patient. This project emphasizes the importance of specialized sensor and de-
vice hardware to allow unobtrusive measurements. Moreover, application-specific
issues and benefits for patients are evaluated.

U-R-Safe

U-R-Safe [24] is a research project funded by the EU under FP5. U-R-Safe builds a
telemonitoring environment for elderly people and patients with chronic diseases.
The project develops a portable device which continuously monitors physiological
signals (heart activity, oxygen saturation, and fall detection) and is able to send
an alarm to a medical center if an abnormality is detected. The technology issues
tackled in this project cover sensor devices and wireless communication. Moreover
application issues are investigated in this work.

Academic Research Projects

Some projects are hardware and sensor oriented as Code Blue. Here wireless vi-
tal signal sensors are designed to collect vital data and transmit them over a
short-range wireless network to receiving devices. Furthermore a scalable software
infrastructure for wireless medical devices is created. It provides routing, naming,
discovery, and security for wireless medical sensors, and devices for monitoring and
treating of patients. Thereby Code Blue can adapt to different network densities
and different powerful wireless devices.
Equator is another sensor-based project. It aims at continuously monitoring and

134 Chapter 6. Technology in Healthcare

analyzing a patient at home by using mobile low-cost wearable devices. The de-
vices send medical signals via wireless network connections to the grid, thereby
automatically updating the patients records.
In IM3 new medical services allow wireless monitoring of vital signals independent
of time and place. Patients use wearable sensors. The sensor data are collected and
communicated by Medical hub devices (e.g., a cell phone or a PDA) and stored in
the IM3 back-end server for remote follow-ups.
Other work in this field is more focused on the infrastructure issues and require-
ments demanded by m-health applications [18, 26, 25, 17]. In particular the Center
for Pervasive Healthcare [17] is focused on aspects of infrastructure and application
requirements in order to apply pervasive and nomadic computing to healthcare.

Commercial Research

Also commercial research is focusing on the area of mobile healthcare. Healthser-
vice 24 [27] a commercial oriented follow-up project of Mobihealth [22] is aimed at
testing the feasibility of the services provided by Mobihealth in real world settings.

IBM Research [28] is working with medical device and mobile phone manu-
factures in order to develop Personal Care Connect to track vital signals.

Microsoft research [29] is developing a similar application, called HealthGear
in order to allow for wearable and wireless monitoring of physiological signals.

The Proactive Health Lab of Intel research [30] is focusing on the assistive
living scenario, where ubiquitous computing is improving the wellness and daily
life of elderly citizens.

Continuous monitoring of physiological signals is also a research topic of HP
Labs within their BioStream project [31]. BioStream offers a realtime operator for
managing sensor streams, i.e., operators that continuously process physiological
signals generated by the sensors attached to a patient.

The Philips Healthcare Systems Architecture Group [32] works on various
subjects within the personal healthcare domain. One aspect of the project is to
help people with chronic diseases by telemonitoring facilities. Another aspect is a
smart personal coach for wellness management.

Commercial Products

There are already commercial products available that support m-health applica-
tions. These solutions are mostly device-oriented monitoring systems where sensors
or in-home devices collect vital data and send them to a central system for access
and analysis by physicians. Currently, these products are rather limited to spe-
cific tasks or diseases. The developed products rather focus on sensor technology
or wireless communication; a product offering a reliable information management
infrastructure as a backbone for m-health applications is still missing.

A group of products in this field are using telemetry functions provided by
pacemakers or defibrillators in the context of cardiovascular diseases [33, 34, 35].

6.6. CASCOM in the Healthcare Domain 135

The sensor readings acquired by implanted devices are wireless transmitted via a
mobile phone to the caregiver.

Bodymedia [36] and MedStar [37] allow a more general setup where mobile
sensors attached to the patients body acquire the physiological signals.

Philips is offering a large set of telemonitoring solutions [38], in particular
wireless measurement devices. These include, for instance, blood pressure and
pulse units, pulse oximeters, ECG heart rhythm strip recorders, glucose meter
devices, and even bluetooth-enabled electronic scales.

Finally, the Lifeshirt system of Vivometrics of is offering one of the most
sophisticated sensor devices. The offered Lifeshirt senses more than 30 physio-
logical parameters, such as pulmonary, cardiac, and other physiologic data, and
producing roughly one gigabyte of data per day.

6.6 CASCOM in the Healthcare Domain

Although the CASCOM project has been designed to be general and is not re-
stricted to a particular domain, the healthcare domain is an interesting and chal-
lenging domain for an application based on the CASCOM platform. Before analyz-
ing the possible benefits of CASCOM in the patient care, it is useful to introduce
some technical concepts related with the healthcare domain.

6.6.1 Concepts

Definitive Care

Definitive care is the set of treatments and practices to apply in order to guarantee
a patient’s perfect recovery from an illness or injury.

Final Outcome

The final outcome is nowadays not only the survival of the patient, but also his/her
quality of life. In the best case, the period of incapacity is very short and afterward
no permanent handicap can be seen or felt.

Total Costs

Total costs of healthcare services are rarely known with great accuracy, or at
least it is very time consuming to calculate them. Total costs are considered to
encompass all the expenses sustained from the beginning of the illness to the
complete recovery. Generally it is believed that by making the right diagnosis and
starting the definitive care on time, the total costs can be sensitively reduced.

136 Chapter 6. Technology in Healthcare

Medical Emergency Service

A medical emergency service is the kind of healthcare services that must be deliv-
ered in an out-of-hospital phase.

Emergency Patient

Emergency patients are those people that run a high risk of dying or suffering
from a permanent handicap, if the patient is not reached and treated on time.
Emergency patients should be monitored by an alarm centre and attended by a
paramedic as soon as possible, even before they can receive specialized treatment.

Alarm (or Dispatch) Centre

An alarm centre is an institution that handles emergency calls. In most countries
common alarm numbers (e.g., 112, 911) are used to guarantee that anyone can
rapidly get in contact with the appropriate authorities (police, rescue, emergency
care), if needed. An alarm centre operator – on the basis of the information pro-
vided by the caller – determines the appropriate response, which in most cases
means dispatching relevant units (e.g., a fire engine or an ambulance).

Criteria Based Dispatching (CBD)

In criteria based dispatching, an alarm centre operator follows a predefined flow-
chart to interrogate the caller to estimate the medical risk, on the basis of his/her
symptoms.

Computer Aided Dispatching (CAD)

In computer aided dispatching different technological solutions are used to estimate
the patient’s medical risk and to locate him/her and the nearest emergency medical
service unit (e.g., ambulance), which can provide emergency care.

Emergency Care

Emergency care aims to keep the patient’s airway open and secure, in order to
maintain sufficient ventilation and circulation. By starting emergency care on-site
and continuing it during the transfer to the healtcare centre, some additional time
can be gained to start definitive care still in time.

6.7 Summary

The impact of the Information and Communication Technologies on the healthcare
domain increased during the last years at an incredible pace. The evolution of the
Internet provided a new empowering environment for e-health to become a reality.

References 137

In this chapter some of the benefits of the application of ICT on healthcare are
described, such as improving the access to a better quality care at a lower cost. But
also the drawbacks have to be taking into account, like the lack of standardization
and some social and legal barriers.

One of the great advantages of e-health is the provision of services in mobil-
ity scenarios (the so called m-health). The huge investment on mobile technologies
have now provided better infrastructure, networks and hardware, offering in this
way an excellent opportunity for building m-health applications, like telemoni-
toring physiological parameters, smart emergency scenarios or assisted living for
the elderly or for impaired people. In this chapter some of the main research and
commercial projects on m-health are described as examples of these new services.

Although the CASCOM project has been designed to be general and is not
restricted to a particular domain, the healthcare domain is quite interesting and
challenging for building an application based on the CASCOM platform, as intro-
duced in this chapter and described in the rest of the book.

References

[1] G.A. Barnes, M. Uncapher, Getting to e-Health: The Opportunities for Us-
ing IT in the Health Care Industry. Information Technology Association of
America (ITAA), 2000.

[2] C. Caceres, New telemedical procedures for the follow-up and caring of chronic
HIV patients. PhD Thesis. Universidad Politecnica de Madrid, 2007.

[3] Strategy and e-Health: How to Harness the Power of the Internet for Compete-
tive Advantage in Health Care. A Health Care Study by Deloitte Consulting
and Deloitte & Touche, 2001.

[4] Promoting Physician Adoption of Advanced Clinical Information Systems: A
Deloitte Point of View. Deloitte Center for Health Solutions, 2006.

[5] F. Del Pozo, M. E. Hernando, and E. J. Gómez, Telemedicine: Ubiquitous
patient care. Wiley Encyclopedia of Biomedical Engineering. John Wiley &
Sons Inc., 2006.

[6] V. Della Mea, What is e-Health (2): The death of telemedicine?, Journal of
Medical Internet Research 2001;3(2):e22.

[7] European eHealth Ministerial Declaration. Brussels, 22 May 2003. Available at:
http:/ec.europa.eu/information society/eeurope/ehealth/conference
/2003/doc/min dec 22 may 03.pdf

[8] G. Eysenbach, What is e-health?, Journal of Medical Internet Research
2001;3(2):e20.

[9] A. R. Jadad, V. Goel, C. Rizo, J. Hohenadel, and A. Cortinois, The Global
e-Health Innovation Network - Building a Vehicle for the Transformation of

138 References

the Health System in the Information Age. Business Briefing: Next Generation
Healthcare, pp. 48-54, 2000.

[10] S. Laxminarayan, and B. H. Stamm, Technology, Telemedicine and Telehealth,
Business Briefing: Global Healthcare Issue 3: pp. 93-6, 2002.

[11] K. McLendon, E-commerce and HIM: Ready or not, here it comes, Journal of
the American Health Information Management Association, 71 (1), pp. 22-23,
2000.

[12] A. Ohinmaa, D. Hailey, and R. Roine, The Assessment of Telemedicine: Gen-
eral principles and a systematic review. INAHTA Joint Project. Finnish Office
for Health Care Technology Assessment and Alberta Heritage Foundation for
Medical Research, 1999.

[13] C. Pagliari, D. Sloan, P. Gregor, F. Sullivan, D. Detmer, J. P. Kahan, W.
Oortwijn, S. MacGillivray, What Is eHealth (4): A Scoping Exercise to Map
the Field. Journal of Medical Internet Research 2005;7(1):e9.

[14] E. Rosen, The death of telemedicine?, Telemedicine Today 2000;8(1):14-17.

[15] P. Wilson, C. Leitner, and A. Moussalli, Mapping the Potential of eHealth:
Empowering the Citizen through eHealth Tools and Services, eHealth Confer-
ence, Cork, Ireland, 5-6 May 2004.

[16] Access to Knowledge through the Grid in a Mobile World (Akogrimo). EU
IST FP6 Project: http://www.mobilegrids.org

[17] Centre for Pervasive Healthcare. University of Aarhus, Denmark:
http://www.pervasivehealthcare.dk

[18] Biomedical Informatics Laboratory, Institute of Computer Sci-
ence, Foundation for Research and Technology, Hellas, Greece:
http://www.ics.forth.gr/eHealth/r-d-activities.html

[19] CodeBlue: Wireless Sensor Networks for Medical Care, School of En-
gineering and Applied Sciences, Harvard University, Cambridge, MA:
http://www.eecs.harvard.edu/~mdw/proj/codeblue/

[20] Equator - Digital Care, Project funded by the En-
gineering and Physical Sciences Research Council, UK:
http://www.equator.ac.uk/index.php/articles/summary/c63/

[21] Interactive Medical Monitoring (IM3), Interdisciplinary Institute for Broad-
Band Technology, Belgium: https://projects.ibbt.be/im3/

[22] Mobihealth. EU IST FP5 Project: http://www.mobihealth.org/

[23] MyHeart. EU IST FP6 Project:
http://www.hitech-projects.com/euprojects/myheart/

References 139

[24] Universal Remote Signal Acquisition For hEalth (U-R-SAFE). EU IST FP5
Project: http://ursafe.tesa.prd.fr/ursafe/index.html

[25] Technical Research Centre of Finland, Wellness and Healthcare:
http://www.vtt.fi/

[26] Upkar Varshney, ”Managing Wireless Health Monitoring for Patients with
Disabilities,” IT Professional, vol. 08, no. 6, pp. 12-16, Nov/Dec, 2006

[27] HealthService 24. EU eTen Project: http://www.healthservice24.com

[28] Personal Care Connect (PPC). IBM Research Zurich:
http://www.zurich.ibm.com/pcc/

[29] HealthGear: Real-time Wearable System for Monitoring
and Analyzing Physiological Signals. Microsoft Research:
http://research.microsoft.com/ nuria/healthgear/healthgear.htm

[30] Proactive Health Lab. Intel Research:
http://www.intel.com/research/prohealth/

[31] Bar-Or, et. Al., ”BioStream: A System Architecture for Real-Time
Processing of Physiological Signals”, EEE Engineering in Medicine
and Biology Society Conference (EMBS), San Francisco, CA, 2006:
http://www.hpl.hp.com/techreports/2004/HPL-2004-128.html

[32] The Healthcare Systems Architecture Group (HSA). Philips Research:
http://www.extra.research.philips.com/swa/index.html

[33] Cardionet: http://www.cardionet.com/

[34] Medtronic Carelink: http://www.medtronic.com/carelink/

[35] Biotronik Home Monitoring Service:
http://www.biotronik-healthservices.com/

[36] Bodymedia: http://www.bodymedia.com/main.jsp

[37] Cybernet Medical, Medstar: http://www.cybernetmedical.com/

[38] Philips Telemedicine Solutions:
http://www.medical.philips.com/in/products/telemonitoring/

[39] Vivometrics, Continuous Ambulatory Monitoring, The Lifeshirt System:
http://www.lifeshirt.com/

[40] Siemens Business Services, Jacobi Medical Center Case Study:
http://www.it-solutions.usa.siemens.com/press/docs/
jacobimedical-casestudy.pdf

Part II

The CASCOM Solution

Chapter 7

General Architecture
Alberto Fernández, Sascha Ossowski, Matteo Vasirani

7.1 Introduction

The CASCOM approach is a combination of agent technology, Semantic Web Ser-
vice coordination, P2P, and mobile computing for intelligent peer-to-peer (IP2P)
mobile service environments. IP2P environments (see Chapter 2) are extensions
to conventional P2P architectures with components for mobile and ad hoc com-
puting, wireless communications, and a broad range of pervasive devices. Basic
IP2P facilities come as Web Services, while their reliable, task-oriented, resource-
bounded, and adaptive co-ordination-on-the-fly characteristics call for agent-based
software technology.

A major challenge in IP2P environments is to guarantee a secure spread
of service requests across multiple transmission infrastructures and ensure the
trustworthiness of services that may involve a variety of providers. The services of
the CASCOM infrastructure are provided by peer software agents exploiting the
co-ordination infrastructure to efficiently operate in dynamic environments. The
IP2P infrastructure includes efficient communication means, support for context-
aware adaptation techniques, as well as dynamic and secure service discovery and
composition planning.

Given that the CASCOM architecture builds on an assumption that users are
providing services to other users, it is essential that these services work on a broad
range of devices. Therefore, the focus is on solutions that can be applied to mobile
devices lacking processing capabilities of their office counterparts. Another point
that is vital when adapting software to mobile devices is the limitation of wireless
communication paths, in terms of data bandwith, which these devices typically
employ. In the CASCOM architecture, the services are adapted not only to the
constraints of mobile devices but also to the constraints of wireless communication
paths (e.g., by optimizing the communication over wireless connection). In the
latter case, the concept of seamless service experience is essential. Seamless service

144 Chapter 7. General Architecture

experience means an environment in which users have an easy and seamless access
to electronic services, applications, and information anywhere and anytime.

The chapter is structured as follows: in Section 7.2 the technical approach
of the CASCOM project is described, in Section 7.3 is envisioned a conceptual
architecture that is able to provide the required functionalities, in Section 7.4 is
presented an in depth description of the different elements composing the sys-
tem, while in Section 7.5 are described the different possible instantiations of the
CASCOM architecture.

7.2 Technical Approach

Software agents are a key technology to address the challenges of the CASCOM
architecture as they offer an adequate abstraction for dealing with services from
pervasive devices in IP2P environments. In turn, IP2P networks provide a suitable
environment for agents to collaborate as peers sharing information, tasks, and
responsibilities with each other. Agents can help manage the complexity of P2P
networks, and they can be used to improve the functionality of conventional P2P
systems and protocols. The inherently autonomous nature of intelligent agents
helps achieving peer node autonomy, which is a requirement to operate efficiently
in highly dynamic environments. The innovations of CASCOM in the agent domain
concern the development of context-aware agent-based services in the Semantic
Web, and flexible resource-efficient co-ordination of such services in the nomadic
computing field.

Using agents in wireless environments has been an active research area in the
past few years [27]. Several researchers have addressed these issues by developing
agent platforms for resource-poor devices enabling them to run agent-based soft-
ware (e.g., [26, 2]). However, the IP2P aspects are typically insufficiently taken
into account and thus the CASCOM project aims at producing a relevant ad-
vancement in this direction. Wireless communication in agent systems has been
addressed in many levels [12]. However, agent communication methods for wireless
environments typically assume proxies in the fixed network. On the other hand,
the CASCOM project provides solutions for agent communication in wireless en-
vironments with minimal assumption of fixed infrastructure.

Service co-ordination mechanisms of P2P systems can be applied to multia-
gent systems to improve their efficiency. Although this may be accepted on a con-
ceptual level, the combination of agents and P2P environments certainly deserves
more innovative research and development, especially regarding nomadic environ-
ments. However, many modern P2P overlay network algorithms (e.g., [21, 22, 24,
29]) lack support for rapid node movements and expect that the network topol-
ogy remains relatively static. This assumption no longer holds in highly dynamic
environments, where a node providing a service may be mobile and connected to
the overlay network using a wireless connection. However, some distributed hash
table algorithms taking mobility and wireless environments into account have been

7.3. Conceptual Architecture 145

developed (e.g., M-CAN [20] and Warp [28]). But, the dynamic topology of IP2P
networks, the fluctuating QoS of wireless network connections, and the limited ca-
pacity of mobile devices connected to such networks pose several challenges that
typically have been addressed inadequately in service co-ordination architectures.

The problem of service co-ordination can be split into several subproblems:
service discovery, service composition planning, execution of composite services,
service execution monitoring and failure recovery by contingency re-planning. The
CASCOM project advanced the state of the art in these research areas by carrying
out innovative research on how these problems can be solved in open, secure IP2P
environments taking into account resource-poor devices.

Most existing service discovery technologies focus on matchmaking algo-
rithms [16]. Despite the large efforts made by the research community so far to
semantically describe and reason on Web Services, efficient methods for reason-
ing on such descriptions still remain to be invented, and to be widely adopted by
industry. That particularly holds for flexible and efficient matching algorithms to
be performed in large scale and resource limited IP2P environments.

Service composition and planning can be addressed using existing artificial
intelligence planning methods. However, these methods were developed for prob-
lems where the number of operators is relatively small but where plans can be
quite complex. In contrast, in Web Service composition for open, large-scale IP2P
service environments planning methods that can deal with huge number of pos-
sible service are required. However, plans are not necessarily very complex. This
means that planning methods must follow more closely the structure of the ser-
vice directories rather than be geared to generating highly complex plans. The
CASCOM project developed planning mechanisms that establish plan fragments
directly on top of the service directory to solve this problem.

Agent-based IP2P applications may be largely pervasive thus inherit the main
characteristic of minimally intrusive pervasive applications: Context-awareness
(e.g., [6]). These concepts have been intensively investigated in many contexts.
However, there were neither well defined, nor commonly agreed concepts of con-
text, situation, and context-awareness in P2P environments, not to speak about
the notion of situation-aware agents and multi-agent systems in IP2P environ-
ments. The CASCOM project investigated these issues in the context of IP2P
environment and developed context-aware agents providing various business ap-
plication services.

7.3 Conceptual Architecture

The agent-based IP2P service co-ordination infrastructure is the basis of the CAS-
COM architecture, providing functionality such as efficient, secure, and reliable
communication independent of the access technology. The CASCOM architecture
is an extension to conventional P2P architectures with a support for mobile com-
puting and a broad range of mobile and pervasive devices. Users are logically

146 Chapter 7. General Architecture

Figure 7.1: Network infrastructure

connected to the system either by using a wireless access network or by using a
wireline access network. In the former case, the user most likely has a mobile de-
vice with a necessary equipment to employ the selected access technology, whereas
in the latter case, a desktop computer may be used.

7.3.1 IP2P Network Infrastructure

The IP2P network infrastructure is logically situated on top of the combination
of various wireless and wireline access networks providing seamless mobility be-
tween access technologies (see Figure 7.1). In general, seamless mobility means
that roaming from one location to another possibly switching the underlying ac-
cess technology occurs without inconvenience to the user. Such a feature will be
important for the future nomadic applications and therefore an essential part of
the CASCOM architecture. Figure 7.1 depicts a situation where the user drives
through an urban area having available several different access technologies.

On top of seamless mobility environment, a P2P overlay network architec-
ture is built (see Figure 7.2), which takes into account characteristics of wireless
networks and resource-poor mobile devices. The fact that many P2P systems and
algorithms are designed for fixed network environments implies that these solu-
tions are not directly applicable in environments where wireless communication
paths are involved. The dynamic topology of P2P networks, the fluctuating QoS
of wireless connections, and the limited processing capacity of many of the devices
connected to such networks, pose several challenges that have been addressed in-
adequately so far. Some P2P platforms consider that a client may be situated in a
resource-poor device (e.g, JXTA [10]), but the communication over slow wireless
connections is typically insufficiently taken into account. However, agents should
be able to communicate efficiently with one another also in wireless environments.

7.3. Conceptual Architecture 147

Figure 7.2: P2P overlay network

Sometimes, efficiency is not as important as, for example, reliability. The CAS-
COM architecture provides necessary, efficient, and reliable agent communication
means for IP2P environments.

Agent-based service discovery in IP2P environments is difficult due to the
lack of a fixed infrastructure configuration and support of dynamic topologies
with a changing set of members. As nodes of a P2P network move, new agents,
devices, and hosts may join, or leave the network; in this way, the interconnection
patterns among them change, so new routes must be dynamically discovered and
maintained with minimal routing overhead and bandwidth cost.

Another challenge here is that distributed hash table (DHT) algorithms pro-
vide only keywordbased searches. However, such search method is very limited and
does not fit well together with searches based on semantics. By our knowledge, for
DHTs, even for multiple keyword queries, there are not known efficient approaches.
Therefore, the CASCOM project considers an architecture, where the directory
service plays a central role. The P2P system is used mainly for publishing and
searching meta-services, which are needed for the coordination architecture to be
functional for all coordination tasks. The (functional) services are then discovered
through the directory service, simply because it is only possible to expose a key
on a P2P infrastructure i.e., no semantic information can be taken into account.

7.3.2 Agent Architecture

The IP2P service agent and multi-agent system architecture is logically situated
on top of the IP2P network infrastructure. This can be called semantic overlay

148 Chapter 7. General Architecture

7.4. The CASCOM Architecture in Detail 149

Figure 7.4: CASCOM architecture

generic architecture comprises two layers, Networking layer and Service Coordina-
tion layer, as well as two orthogonal subsystems Context and Security & Privacy
subsystems.

Finally, applications that use CASCOM technology will access its function-
alities through the agents at service coordination layer. A common way of doing
this is through Personal Agents (PAs) representing particular users. In Figure 7.4,
third party (domain) services (Web Services, agents, etc) are also located at this
level.

The abstract architecture must be instantiated into a concrete one, in which
several components of the same type may coexist.

7.4.1 Networking Layer

The Networking Layer is located just above the networks (Network Infrastructure,
Figure 7.1), as a middleware to cope with the variability of the connections below,
providing a generic, secure, and open intelligent P2P network infrastructure with
the following functionalities:

• Efficient, secure, and reliable agent message transport communication over
wireless (and wireline) communication paths independently of the access

150 Chapter 7. General Architecture

technology. Bit-efficient ACL encoding [7] has been chosen due to the re-
quirement for efficient communication over slow communication networks
and resource limited devices. The simplicity and ease of implementation on
small devices has been a key issue to choose FIPA-HTTP [8] as the message
transport protocol. The performance of this protocol is a concern, which the
CASCOM project addressed by using HTTP 1.1 persistent connections.

• Provide network-related context information, like QoS of a connection, net-
work availability, etc., to the context subsystem. This context subsystem (see
Section 7.4.3) will then acquire, store, and update context information about
network/communication environment, including data about (available) net-
works and QoS of data communication that will be used within the network-
ing layer to adapt the overlay network to changing environmental situations.

• Agent runtime environment for resource-constrained mobile devices. Among
different agent platforms, JADE/LEAP [1] is chosen as the most appropriate
for CASCOM: it follows the FIPA standard, allows agents to be efficiently
executed on small devices, and is an active open source project.

• Low-level service discovery in IP2P environment. The networking layer pro-
vides some support, mainly the “low-level” IP2P service look-up, to higher
layers where the semantic service discovery takes place.

Requesters search dynamically for services published by different providers in
a directory service (DS), which can be centralized or distributed. In the latter case,
a federation of DSs could be built, where each DS registers itself in other DSs as a
service. Thus, a DS can be found by querying entries in a DS. Such an approach was
used in the Agentcities project [5], where the directories were federated accordingly
to “application domains”. Among the multiple combinations for interacting with
DSs, the CASCOM abstract architecture favours a transparent access to federated
DSs for reasons of simplicity, so that the requester interacts with a single DS that
is federated with other DSs.

Services are represented as structured objects within the directory using
OWL-S. However, directory entries are described in FIPA-SL0 language [9] because
it is independent from the descriptions of the Web Services, is general enough, has
a strong expressiveness, and keeps the architecture homogeneity. Translators were
developed to transform service descriptions into directory entries.

7.4.2 Service Coordination Layer

The Service Coordination Layer (Semantic overlay network in the conceptual ar-
chitecture, Figure 7.3) is located between the Networking Layer and the Applica-
tions, and uses the services offered by both the Context Subsystem and the Security
& Privacy Subsystem. This layer has two main functionalities:

• Semantic service discovery (service discovery and semantic matchmaking)

7.4. The CASCOM Architecture in Detail 151

• Service coordination (service composition, service execution, monitoring and
contingency replanning)

In the CASCOM abstract architecture, the semantic service discovery func-
tionality is realised by two different types of agents: Service Discovery Agents
(SDA) and Service Matchmaking Agents (SMA). This was done for reasons of
efficiency and flexibility, as in some application domains the matchmaking func-
tionality may not be necessary. In much the same way, the service coordination
functionality is realised by Service Composition Planning Agents (SCPA) and Ser-
vice Execution Agents (SEA). Also in this case, the service composition planning
might not always be required, i.e., if pre-defined (atomic and composite) services
only need to be executed.

SDAs manage the discovery of required services, handling both abstract ser-
vice descriptions and concrete service groundings. Usually, SDAs receive service
queries from the users’ Personal Agents (PA) and acquire relevant contextual
information from the context subsystem (see Section 7.4.3). With that informa-
tion, they use the service discovery functionality of the networking layer and the
semantic matching functionality of SMAs, to determine services that fulfil the re-
ceived service discovery request. SDAs return then a set of descriptions and their
corresponding service process model and/or grounding.

SMAs provide the means to compare service specifications in a context depen-
dent fashion. Again, they may focus on abstract service descriptions, on concrete
service groundings, or both. Several semantic matchmaking approaches have been
proposed [19, 25]. In CASCOM, an OWL-S service matchmaker called OWLS-
MX [14] is the main component. The OWLS-MX matchmaker takes any OWL-S
service as a query, and returns an ordered set of relevant services that match the
query, each of which annotated with its individual degree of matching, and syn-
tactic similarity value. The user may extend the query by specifying the desired
degree, and syntactic similarity threshold.

SCPAs are capable of creating value-added composite services that match
specific service specifications. Once SCPAs receive service specifications, they con-
tact SDAs to discover existing services in a given domain (high level descriptions
or concrete service groundings), constrained to the current context (that can be
acquired either by receiving information from other agents or by accessing the
context subsystem), and plan a composite value-added service matching the re-
ceived service specification. The SCPAs make use of the OWLS-Xplan [15]. Xplan
is a heuristic hybrid search planner based on the FF-planner [13]. The generated
composite service will orchestrate one or more simpler services. The generated
valued-added composite service may or may not contain service grounding infor-
mation. In a typical interaction, when no single service is found matching a given
service specification, the Service Composition functionality is used to dynamically
create a value-added composite service matching the service specification, the out-
put of which is a service description. These service descriptions may be stored or
cached in some directory for later use (by agents looking for similar services’ spec-

152 Chapter 7. General Architecture

ifications).
SEAs manage the execution of composite as well as atomic service descrip-

tions, either generated by SCPAs or pre-existing. Since the received compound
service description relies on simpler services, SEAs will also coordinate the execu-
tion of these simpler services. Whenever necessary, SEAs will use SDAs to discover
appropriate available service groundings for each of the simpler services invoked
from the compound service description. The execution, namely the discovery of
necessary service providers, will be dependent on the current context. The execu-
tion agent is based on principles of the OSIRIS process management system [23].

7.4.3 Context Subsystem

The Context Subsystem [17] is accessed by both the Networking Layer and the
Service Coordination Layer, working as a gateway of context information between
the layers. Its main functionality is to discover, acquire and store useful context
information (e.g. the geographical position or the user preferences). This kind of
information can be accessed by both layers either by explicitly querying the con-
text subsystem (“pulling”) or by subscribing a listener that is in charge of notifying
changes and events occurring in the environment (“pushing”). The “pulling” solu-
tion permits to save resources, because the context is accessed only when needed.
On the other hand, it requires more time to discover and acquire information, in
the case that the needed information is not stored in a repository of historical
data. The “pushing” solution offers less latency, because the context information
is regularly sent to the subscriber so that it’s always available, but on the other
hand it uses more resources.

7.4.4 Security & Privacy Subsystem

The Security & Privacy Subsystem is also orthogonal to the the Networking Layer
and the Service Coordination Layer. It is responsible for ensuring security and pri-
vacy of information throughout the different components of the CASCOM infras-
tructure. Every node of the network should keep its data confidentiality, integrity,
and availability (CIA)1. But not only data is a security concern, also the software
that deals with it, especially for network-centric systems, where the misuse, theft,
and unauthorized usage of computing resources is well studied. The security and
privacy requirements identified are: identification, authentication, authorisation,
single sign-on, and local and network security. Also the integrity of transmitted
data, non-repudiability, traceability, privacy, delegation, and nationalization need
to be guaranteed.

In order to guarantee the correct treatment of data, the CASCOM project re-
lies on two novel architectural abstractions [3]. These abstractions, namely Valida-
tion-Oriented Ontologies and Guarantors, are somehow known concepts in the

1http://www.infosecpedia.org/pedia/index.php/Main Page

7.5. Instantiations of the CASCOM Architecture 153

Figure 7.5: Instantiation CASCOM-1a Figure 7.6: Instantiation CASCOM-1b

realm of security and trust management, but they have been reformulated to
make them first class architectural elements.

7.5 Instantiations of the CASCOM Architecture

The CASCOM abstract architecture, in reference to service discovery, can be in-
stantiated in different ways, on the basis of the possible network infrastructures.
Four possible solutions have been considered: (1) a centralized, (2) a super-peer,
(3) a structured, and (4) an unstructured pure peer-to-peer solution.

7.5.1 Centralized P2P

The first application of the CASCOM architecture is a central solution. A central
directory system is used by the peers as a lookup mechanism to find services.
This directory acts as a centralized peer-to-peer system: peers search for service
descriptions by querying directly and only the directory.

A very simple scheme for discovering the directory service can be used by
setting the access information of the directory within the SDA.

Additionally, two possibilities exist: either the matchmaker is centralized on
the same host as the directory (CASCOM-1a, see Figure 7.5) or it is integrated
within the peers (CASCOM-1b, see Figure 7.6).

7.5.2 Super-Peer P2P

The second instantiation of the CASCOM architecture is a super-peer P2P con-
figuration, where multiple directories exist in a federation and they construct the
look-up mechanism for the peers to find adequate services.

154 Chapter 7. General Architecture

Figure 7.7: Instantiation CASCOM-2a

In addition to this super-peer structure, a pure peer-to-peer layer (typically
a Distributed Hash Table) is used by the peers to find a bootstrap directory in the
directory federation. This also means that some of the directories are accessible
through this pure peer-to-peer system.

The basic search mechanisms invoke the federated directory services in a
transparent manner, i.e. a search query may be forwarded to other federated di-
rectories. This would be totally transparent to the agents.

Concerning the matchmaker, multiple matchmakers may be hosted together
with each directory (CASCOM-2a, see Figure 7.7) using an internal or an external
integration. Running the SMA on the peers that query the directory is a second
option (CASCOM-2b, see Figure 7.8).

7.5.3 Structured Pure P2P

The third instantiation of the CASCOM architecture is a structured pure P2P
solution. Structured pure P2P systems are based on distributed indices, spread
over all peers in the network. No central index is available. In contrast to hier-
archical P2P systems this architecture avoids bottlenecks and asymmetries by a
regular distribution of the index information over the peers. Therefore the peers
of a structured P2P-system have parts of the overall index stored locally and have
also parts of the routing tables.

7.5. Instantiations of the CASCOM Architecture 155

Figure 7.8: Instantiation CASCOM-2b

In relation to the underlying search strategy, a query must be forwarded
from one peer to another based on the routing tables. To avoid that all peers
are contacted during service discovery, additional policies must be to be included.
Before starting the search, the relevant peers that hold the relevant part of the
overall index must be semantically filtered. Then the search is started using only
the selected peers.

The respective CASCOM architecture has no directory component, because
every agent holds its own local index and it is completely decentralised. Every
peer has to discover services by itself and the functionality of this agent for service
discovery then depends on the chosen indexing mechanism. In CASCOM 3a (see
Figure 7.9) there is no semantic matchmaker agent and the service discovery uses
only the index, while in CASCOM 3b (see Figure 7.10) a matchmaker agent is
used for pre-filtering the relevant peers, so that the communication load to find
relevant peers in the distributed index can be reduced.

7.5.4 Unstructured Pure P2P

The fourth application of the CASCOM architecture is an unstructured pure P2P
solution. In contrast to CASCOM-3, there is no information about the distributed
indexing and routing tables. Examples of respective P2P service discovery solu-
tions are Bibster [4] and GSD [11].

156 Chapter 7. General Architecture

Figure 7.9: Instantiation CASCOM-3a Figure 7.10: Instantiation CASCOM-3b

For CASCOM, our partner DFKI also developed an approach to unstruc-
tured P2P service discovery, called RS2D (risk based semantic service discovery).
Each RS2D peer observes the messages it receives from the neighbourhood within
a message propagation range r. These can be advertisements, queries and service
replies. By caching the messages service descriptions, RS2D clusters its neighbour-
hood. For each direct neighbour, from whom the local peer received a message,
a cluster is constructed. RS2D detects interconnections between neighbours, so
clusters can be merged (see cluster c1 in Figure 7.11).

For each of these clusters RS2D stores a list of service descriptions. By using
a semantic matchmaker, e.g. OWLS-MX, it determines the neighbouring peers
to route a query to based on the risk of failure with respect to expected return
of semantically relevant services. This is in contrast to Bibster and GSD. If two
disjoint clusters contain a semantic similar service description the query can be
routed to only one or both clusters depending on the risk-function evaluations.

Please note that RS2D is executed by each peer agent locally. That is, each
peer has its own representation of its surrounding in the network. Globally viewed,
the clusters may overlap each other, such that even if p0 does not find a matching
service, its neighbour might do, as it has other clusters containing peers that are
just one propagation hop out of p0 propagation range. In Figure 7.11 it’s possible
to see the overlapping clusters of peer p0 (dark grey - c1; c2; c3) and peer p1 (grey
- c4; c5).

7.5.5 Discussion

The central setting described in Section 7.5.1 has the advantage of simplicity of
maintenance. The main disadvantages are lack of robustness (i.e., single point of
failure) and lack of scalability, that is the directory may form a bottleneck if many
queries are sent and the query results are large. Still, the search and communica-
tion may be much more efficient, because algorithms can take advantage of the
centralization of all service descriptions.

This instantiation fits well for applications in which the number of services
is limited, however, for scenarios where a high number of service providers exists

7.5. Instantiations of the CASCOM Architecture 157

Figure 7.11: Instantiation CASCOM-4

this central configuration is not recommended due to its scalability problem.
The main advantage of the super-peer solution described in Section 7.5.2 is

enhancing robustness and decentralization. As the network is highly structured,
queries are satisfied very efficiently. The decision of how to organise services among
directories (super peers) depends on the different applications, since in some do-
mains spatial location of services is preferable to logical (categorised) distribution.

The pure P2P solution described in Section 7.5.3 has the advantage of avoid-
ing bottlenecks and having a high degree of robustness as the directory is dis-
tributed over the peers. However, in this setting the discovery of services takes
more time than with a central or hybrid directory. In addition, the computational
resources needed in the peers are higher.

Finally, the main advantage of the unstructured pure P2P option (see Sec-
tion 7.5.4 is the complete decentralization of the architecture with the peers having
full autonomy. However, it has the drawback of resource consuming, traffic over-
head and privacy concerns.

158 References

Due to the fact that the super-peer solution enhances robustness and decen-
tralization, keeping the time a query is satisfied reasonably low, as the network is
highly structured, this was the option chosen in the CASCOM project.

7.6 Summary

The driving vision of CASCOM is that ubiquitous services are provided and coor-
dinated by an agent-based IP2P infrastructure. The architecture described in this
chapter identifies the main elements necessary to attain this goal. Furthermore, it
defines the interfaces between these elements and outlines their general structure,
putting forward the high-level design and functionality of several software compo-
nents and agents. The design is intented to impose as little restrictions as possible
to concrete implementations so as to maximise flexibility and adaptability.

The architecture tends to minimise the need for user intervention through
the Personal Agent. In particular, the whole process of service coordination is
transparent to the user. Although in some application domains this can be seen as
a disadvantage, in the emergency assistance scenarios that the CASCOM demon-
strator addresses it is essential to limit the cognitive load of the user. Furthermore,
this approach allows for simpler Personal Agents running on mobile devices. Fi-
nally, it is worth mentioning that if these restrictions were dropped, the CASCOM
abstract architecture could easily be adapted to support more interactive archi-
tecture instantions.

References

[1] F. Bergenti, and A. Poggi. LEAP: A FIPA Platform for Handheld and Mobile
Devices, Intelligent Agents VIII, pages 436-446, Springer, 2002.

[2] F. Bergenti, A. Poggi, B. Burg, and G. Caire. Deploying FIPA-compliant sys-
tems on handheld devices. IEEE Internet Computing, 5(4):20-25, 2001.

[3] R. Bianchi, A. Fontana, and F. Bergenti. A Real-World Approach to Secure
and Trusted Negotiation in MASs. Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems (AAMAS), 2005.

[4] http://bibster.semanticweb.org/

[5] I. Constantinescu, S. Willmott, and J. Dale. Deliverable 2.3: Agentcities Net-
work Architecture. 2003.

[6] A. K. Dey. Understanding and using context. Personal and Ubiquitous Com-
puting, 5(1):4-7, 2001.

[7] Foundation for Intelligent Physical Agents, FIPA ACL Message Representa-
tion in Bit-Efficient Specification. Geneva, Switzerland. Specification number
SC00069G, 2002

References 159

[8] Foundation for Intelligent Physical Agents, FIPA Agent Message Transport
Protocol for HTTP Specification. Geneva, Switzerland. Specification number
SC00084F, 2002

[9] Foundation for Intelligent Physical Agents, FIPA SL Content Language Spec-
ification. Geneva, Switzerland. Specification number SC00008I, 2002

[10] L. Gong. JXTA: A network programming environment. IEEE Internet Com-
puting, 5(3):88-95, 2001

[11] D. Chakraborty, A. Joshi, T. Finin and Y. Yesha. GSD: A Novel Group-based
Service Discovery Protocol for MANETs. 4th IEEE Conference on Mobile and
Wireless Communications Networks (MWCN), Stockholm, Sweden, 2002.

[12] H. Helin and M. Laukkanen. Performance analysis of software agent com-
munication in slow wireless networks. In R. Luijten, E. Wong, K. Makki, and
E. K. Park, editors, Proceedings of the Eleventh International Conference on
Computer Communications and Networks (ICCCN’02), pages 354-361. IEEE,
Oct. 2002.

[13] J. Hoffmann, and B. Nebel. The FF Planning System: Fast Plan Generation
Through Heuristic Search. Journal of Artificial Intelligence Research (JAIR),
(14):253?302, 2001.

[14] M. Klusch, B. Fries, M. Khalid, and K. Sycara. OWLS-MX: Hybrid Semantic
Web Service Retrieval. Proceedings 1st International AAAI Fall Symposium
on Agents and the Semantic Web, Arlington VA, USA, 2005.

[15] M. Klusch, A. Gerber, and M. Schmidt. Semantic Web Service Composition
Planning with OWLS-Xplan. Proceedings 1st International AAAI Fall Sympo-
sium on Agents and the Semantic Web, Arlington VA, USA, 2005.

[16] M. Klusch and K. P. Sycara. Brokering and matchmaking for coordination of
agent societies: A survey. In Coordination of Internet Agents: Models, Tech-
nologies, and Applications, pages 197-224, 2001.

[17] A. Lopes, and L. Botelho. SEA: a Semantic Web Services Context-aware Ex-
ecution Agent. Proceedings 1st International AAAI Fall Symposium on Agents
and the Semantic Web, Arlington VA, USA, 2005.

[18] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith, S.
Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan and K.
Sycara. OWL-S: Semantic Markup for Web Services - W3C Member Submis-
sion 22 November 2004, http://www.w3.org/Submission/2004/SUBM-OWL-
S-20041122/

[19] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of
Web Services capabilities. In Proceedings of the First International Semantic
Web Conference on The Semantic Web, pages 333-347. Springer-Verlag, 2002.

160 References

[20] G. Peng, S. Li, H. Jin, and T. Ma.M-CAN: A lookup protocol for mobile peer-
to-peer environment. In Proceedings of the 7th International Symposium on
Parallel Architectures, Algorithms and Networks (ISPAN’04), pages 544-549,
2004.

[21] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable
contentaddressable network. In Proceedings of the ACM SIGCOMM 01, Aug.
2001.

[22] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location
and routing for large-scale peer-to-peer systems. In Proceedings of the ACM/I-
FIP Middleware, 2001.

[23] C. Schuler, R. Weber, H. Schuldt, and H. J. Schek. Scalable Peer-to-Peer
Process Management - The OSIRIS Approach. In Proceedings of the 2nd In-
ternational Conference on Web Services (ICWS), pages 26-34, San Diego, CA,
USA, IEEE Computer Society, 2004.

[24] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. In Pro-
ceedings of the ACM SIGCOMM 01, San Diego, California, Aug. 2001.

[25] K. Sycara, M. Klusch, S. Widoff, and J. Lu. Larks: Dynamic matchmaking
among heterogeneous software agents in cyberspace. Journal of Autonomous
Agents and Multi-Agent Systems, 5(2). Kluwer Academic Press, 2002.

[26] S. Tarkoma and M. Laukkanen. Facilitating agent messaging on PDAs. In
Fourth International Workshop on Mobile Agents for Telecommunication Ap-
plications (MATA-2002), pages 259-268, Barcelona, Spain, 2002. Springer.

[27] S. Tarkoma, M. Laukkanen, and K. Raatikainen. Software agents for ubiqui-
tos computing. In R. Khosla, N. Ichalkaranje, and L. Jain, editors, Design of
Intelligent Multi-Agent Systems: Human-Centredness, Architectures, Learning
and Adaptation Series: Studies in Fuzziness and Soft Computing, volume 162,
pages 31-60. 2004.

[28] B. Y. Zhao, L. Huang, A. D. Joseph, and J. D. Kubiatowicz. Rapid mobility
via type indirection. In Proceedings of Third International Workshop on Peer-
to-Peer Systems (IPTPS), San Diego, CA, USA, Feb. 2004.

[29] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure
for fault-tolerant wide-area location and routing. Technical Report CSD-01-
1141, University of California at Berkeley, 2001.

Chapter 8

Agent Platform and
Communication Architecture
Heikki Helin and Ahti Syreeni

8.1 Introduction

The progress in wireless network technologies and mobile devices changes the way
in which people can access digital services. A user may access the same services as
she would use her desktop computer, but in the nomadic environment she is able to
do so anywhere, at any time and even using a variety of different kinds of devices.
Such an environment places new challenges on the architecture implementing the
services.

Nomadic environments differ from stationary environments in two funda-
mental ways. Firstly, the user is situated in an environment, where multiple data
communication networks may be available. Because of the different network types
and characteristics of the networks, for instance the values of Quality-of-Service
(QoS) parameters (e.g., throughput, delay, or reliability) may change dramatically
based on the network that the user is currently connected to. Secondly, the user
may access the services using a variety of different mobile or stationary devices.
The characteristics and limitations of a particular device dictate the constraints
on how the user is able to access the services and what kind of content the user is
provided with.

As the CASCOM architecture is based on software agent technology, we need
to have an agent platform that is usable for devices with limited processing power
and memory. Furthermore, the agent platform situated in a mobile device should
not require any components at the fixed network. The agent communication to and
from the mobile device must be designed taking into account the characteristics
of wireless communication paths.

In this chapter, we present some essential enablers for agents in wireless en-
vironments. An agent platform that is usable in resource-constrained devices is

162 Chapter 8. Agent Platform and Communication Architecture

an essential component of the CASCOM architecture. In contrast to previous re-
search, the CASCOM Agent Platform, which is based on JADE/LEAP [2], is fully
FIPA compliant without requiring any infrastructure components. Given that the
platform contains all the components dictated by FIPA specifications, it is not that
small when considering memory requirements, but it is usable in modern mobile
phones. Then, we describe how agent communication over a wireless communica-
tion path is implemented in the CASCOM architecture. An appropriate commu-
nication needs a reliable message transport and efficient encoding of the messages.
Agents situated in mobile devices need to communicate with other agents which
may be situated in other mobile devices or in fixed network hosts. This commu-
nication may happen fully or partially over wireless communication paths. This
must be taken into account when designing and implementing the communication
stack (message transport and message encoding). In the CASCOM architecture,
we use efficient encoding of messages by employing bit-efficient message encodings
specified by FIPA [7, 9]. Further, since typically mobile devices do not have a
public IP-address, which implies that mobile terminated messages cannot be sent
directly, we introduce a component called CASCOM Messaging Gateway, which
takes care of such situations and also improves the messaging reliability especially
in cases where the mobile device changes wireless communication path (e.g., from
GPRS to WLAN).

8.2 Background

In this section, we briefly summarize the FIPA architecture and give an overview
of agent platforms developed for resource-limited mobile devices.

8.2.1 FIPA Agent Platform

The Foundation for Intelligent Physical Agents (FIPA) was founded in 1996 as a
non-profit organization with the remit of producing standards for heterogeneous
and interacting agents and agent-based systems across multiple vendors’ platforms.
FIPA’s official mission statement expresses this more formally: “The promotion
of technologies and interoperability specifications that facilitate the end-to-end
interoperability of intelligent agent systems in modern commercial and industrial
settings”. The emphasis here is on the practical commercial and industrial uses of
agent systems. The aim is to bring together the latest advances in agent research
with industry best practice in software, networks and business systems.

A FIPA agent platform provides an infrastructure for deploying agents. To-
day’s operating systems do not provide the services required for agent systems
or agent societies. Therefore, there is a need for agent platforms implemented
as middleware software running on top of an operating system. FIPA does not
specify the internal design of an agent platform, because FIPA’s main concern is
achieving interoperability between agent platforms. However, FIPA requires every

8.2. Background 163

FIPA-compliant agent platform to implement two mandatory services The Agent
Management System (AMS), and the Agent Communication Channel (ACC). Ad-
ditionally, FIPA has specified the Directory Facilitator (DF), but implementing
this component is optional. The purpose of the AMS is to manage the agents’
life cycles, such as starting, stopping, and quitting agents residing on the FIPA
agent platform. It also maintains the mapping between an agent’s identifier and
its transport addresses thus acting as an agent naming service. Furthermore, the
AMS is responsible for maintaining the platform profile, which describes the plat-
form properties such as communication capabilities. The ACC is a service that
implements the FIPA Message Transport Service (MTS). The ACC routes mes-
sages both between agents within one FIPA agent platform and between agents
residing on different FIPA agent platforms. The DF is an optional agent maintain-
ing information about the skills that agents have advertised with it, that is, the DF
provides the FIPA agent platform with a “yellow pages” service. In the CASCOM
architecture, FIPA’s DF functionality is not used, but a directory system called
WSDir is used (see Chapter 9 for details).

The heart of the FIPA’s model for the agent systems is agent communication,
where agents can pass semantically meaningful messages to one another. FIPA
has specified several choices for Message Transport Protocol (MTP) and encoding
of the message components. In the CASCOM architecture, HTTP is be used as
a MTP and messages are encoded using FIPA’s bit-efficient message encoding
specifications.

8.2.2 Agent Platforms for Mobile Devices

JADE [1] is a distributed FIPA-compliant agent platform that allows agents to be
executed on desktop computers in J2SE environment. When an extra component,
LEAP add-on for JADE, is added to JADE, it can be also compiled for small
devices, e.g., PDAs and mobile phones supporting CLDC 1.0 and MIDP 2.0 [2].
This combination is called JADE-LEAP platform (Lightweight Extensible Agent
Platform). JADE-LEAP was the first FIPA compliant agent platform running
on PDAs and mobile phones. In addition to the MIDP and J2SE versions, there
has been a version also for PersonalJava environment, which was a predecessor of
today’s Java CDC configuration. However, as the PersonalJava is now obsolete, the
PersonalJava version is not recommended in most recent JADE-LEAP versions.

JADE-LEAP platform supports different transport protocols and message
encodings for agent messaging. Currently string encoding for Agent Communi-
cation Language (ACL) messages is supported and bit-efficient encoding is also
available as an additional package. For message delivery, FIPA HTTP (restricted
to XML-based message envelope encoding) and FIPA IIOP transport protocols
are provided in J2SE version of JADE-LEAP. In addition, JADE-LEAP provides
quite good support for FIPA compliant agent messaging as FIPA-SL content lan-
guage support is available for agents. In the J2SE version of JADE-LEAP, also
the subsets of FIPA-SL are provided. However, the MIDP version of JADE-LEAP

164 Chapter 8. Agent Platform and Communication Architecture

Figure 8.1: Split container model of LEAP

supports only SL0. In the J2SE version users can create their own ontologies eas-
ily as Java classes and JADE-LEAP translates the Java-objects into the content
language automatically at runtime.

The JADE agent platform may consist of several hosts distributed over the
network. Each host runs an agent container that connects to a main container. The
main container hosts the basic FIPA services (e.g., AMS and DF), and internal
messaging protocol (based on Java RMI) is being used for internal communication
in platform. The main container can be replicated by a host to increase the reli-
ability of the platform. To manage the platform easily, the J2SE version provides
an optional graphical user interface for managing the agents.

The key feature of JADE-LEAP as compared to JADE is that JADE-LEAP
supports the use of a split container for low-end devices, as illustrated in Fig-
ure 8.1. The container is split into two parts: the front-end and the back-end,
where only the front-end part is run on the mobile device. The split container
approach requires a permanent connection between these two parts of a container;
agent mobility is not supported. In JADE-LEAP a new internal protocol is in-
troduced to be used for internal communication in platform, between hosts and
between the front-end and back-end. The protocol is called JICP [3] and it re-
places the Java RMI based internal messaging protocol of JADE. The host in
fixed network hosting the back-end of the container(s) is called the Mediator and
it is mandatory; the JADE-LEAP cannot be started in a mobile device without
the presence of the Mediator in a fixed network.

In addition to JADE-LEAP, there are also other agent platforms that could
be used in mobile devices. MicroFIPA-OS [18] is an agent development toolkit
and platform based on the FIPA-OS toolkit. This system targets at medium to

8.2. Background 165

high-end PDA devices that have sufficient resources to execute the PersonalJava
compatible virtual machine. The MicroFIPA-OS architecture is extensible by plug-
ging in components that either replace or extend the architecture. An example of
this kind of contribution is FIPA Nomadic Application Support [15], which pro-
vides support for wireless environments, including components for efficient message
transport over slow wireless communication paths [17]. The FIPA Nomadic Appli-
cation Support incorporates the bit-efficient envelope and ACL messages discussed
earlier. MicroFIPA-OS is no longer developed further nor supported.

Yet another example of providing an agent platform to wireless environments
is A-Globe [21]. The components of the A-Globe include the agent platform, agent
container, various services, and an environment simulator agent. Unlike LEAP and
MicroFIPA-OS, A-Globe is not a FIPA compliant agent platform. However, this
relaxation gives more freedom to design components for wireless communication
and therefore more efficient solution can be made. The obvious drawback is that
agents on A-Globe platform cannot directly communicate with agents residing on
LEAP or MicroFIPA-OS platforms.

8.2.3 CASCOM Agent Platform

The CASCOM Agent Platform is a modified version of the JADE agent platform
for devices supporting the J2ME CLDC 1.1 configuration with the MIDP 2.0
profile [4]. The version provides all the functionality of the current MIDP version
of JADE-LEAP. The split-container model used in JADE-LEAP is not appropriate
for the CASCOM architecture which has to support P2P architecture. In a pure
P2P architecture, all devices must be able to host a complete agent platform. The
issue of limited resources in mobile devices has to be solved without splitting the
container.

The CASCOM Agent Platform is able to run in mobile devices and it con-
tains limited features of JADE. This is illustrated in Figure 8.2. Agent platforms
in a fixed network running on desktop computers can be original JADE, JADE-
LEAP, or other FIPA-compliant platforms, and the communication between all
platforms is performed using FIPA compliant protocols. In this way, there is no
need to implement separate new version of JADE for J2SE environment. In addi-
tion, some features have been added from the current J2SE version or implemented
as new features so that the true stand-alone execution presented in Figure 8.2 was
implemented.

The CASCOM Agent Platform contains an implementation of the FIPA
Agent Management System and the Agent Communication System. Agent Com-
munication System provides a FIPA-compliant message delivery service for agents
to communicate with each other. Especially the FIPA HTTP protocol is used as
a message transport protocol and ACL messages are encoded using bit-efficient
encoding as specified by FIPA. Details of the CASCOM agent communication
architecture can be found in the next section. However, given the limitations of
mobile devices and the differences between J2SE and J2ME, there are some restric-

166 Chapter 8. Agent Platform and Communication Architecture

Figure 8.2: Principle of CASCOM agent platform

tions compared to full JADE. In the following, we summarize the main differences.
Further details of them can be found in [5]. Firstly, the CASCOM Agent Platform
cannot automatically use user-defined ontology classes written as Java classes. One
has to use either abstract descriptors or add internalize and externalize methods
specified by the jade.content.onto.Introspectable interface and use MicroIntrospec-
tor instead of ReflectiveIntrospector. Secondly, the distribution of the platform is
not supported. Only the MainContainer is realized and all agents must run in it.
Thirdly, reflection-based persistence is not implemented due to the lack of reflec-
tion APIs in MIDP, thus application-specific persistence should be implemented
when needed. Lastly, agent mobility is not supported.

The architecture of the CASCOM Agent Platform follows the design of the
original JADE platform. The main components are depicted in Figure 8.3. The core
services of JADE are loaded at startup. The main difference to the original JADE
is that internal message protocol (IMTP) does not exist, thus there cannot be
more than one container because the messaging between containers would require
an IMTP implementation.

Although Figure 8.3 gives a simplified overview of the CASCOM Agent Plat-
form main components, details are more complicated as most of the JADE core

8.2. Background 167

Figure 8.3: Overview of CASCOM agent platform main components

classes are still there. Many of those classes are needed to start the MainContainer
and cannot be removed unless making intensive changes to the current JADE ar-
chitecture.

8.2.4 CASCOM Agent Communication

In wireless environments, agents need to communicate efficiently and reliably.
Therefore, the communication stack should be tailored for wireless environments.
Here we took a pragmatic view to agent communication. In particular, we con-
sider neither the reason agents are communicating, nor the semantics of messages.
However, we assume that agents are communicating with one another and at
least part of the communication path is implemented using wireless technologies.
The latter assumption is an additional requirement in the sense that many of the
solutions provided in this section are applicable also in environments where the
whole communication path is implemented using wireline technologies. The agent
communication in the CASCOM architecture is based on FIPA standards.

Figure 8.4 depicts a layered model of agent communication. The transport
and signalling protocol layer should provide an efficient and reliable data trans-
port service. Usually this layer should be transparent to agents, and therefore we
will not discuss this layer issues in more detailed here. An overview of transport
protocol issues in wireless environments can be found for example in [19].

Message Transport

A message transport protocol (MTP) defines the structure of messages sent us-
ing a transport protocol. FIPA has specified three message transport protocols:
IIOP [12], HTTP [11], and WAP [13]. Out of these three protocols, HTTP is best
candidate for the CASCOM architecture. In fact, assuming an off-the-shelf imple-

168 Chapter 8. Agent Platform and Communication Architecture

Figure 8.4: A layered model of agent communication

mentation of IIOP, it surely needs much more code than HTTP, which makes IIOP
inappropriate in small devices. However, although IIOP protocol is a quite com-
plex when employing all its features, FIPA uses only one-way request messages,
and that functionality can be implemented more easily. Further, IIOP is not a
good protocol in wireless environments, although its performance is acceptable
given that IIOP uses binary messages. The protocol assumes a quite high band-
width and a reliable connection because the IIOP protocol is unable to re-establish
the connection after a transport connection breaks. In addition, the IIOP protocol
does not allow transport connection endpoint changes. FIPA-IIOP uses a one-way
request message which makes connection unreliable because the sender cannot be
sure that sending the message was successful. The WAP has similar problems as
IIOP, and using it in the CASCOM architecture is not recommended. Further,
WAP as a FIPA message transport protocol has not standard status.

In addition to message transport protocols, at least two other options could
be used in the CASCOM architecture. First, the JICP protocol, that is a message
transport protocol implemented in LEAP. This protocol is designed for wireless
communication and therefore it seems to be suitable for the CASCOM architec-
ture. However, it is not clear how JICP protocol fits to a pure P2P architecture
as the protocol is designed on the basis of the LEAP split-container model.

The second option is the design of a CASCOM message transport protocol
that takes into account the requirements of the CASCOM architecture. However,
there are several drawbacks with this option. First, designing a totally new protocol
would require a significant amount of work. Second, such a protocol would be
clearly proprietary and most likely would not be used widely outside of CASCOM.

The FIPA-HTTPmessage transport protocol [11] specifies the usage of HTTP

8.2. Background 169

as message transport protocol. HTTP provides somewhat better reliability than
IIOP protocol because IIOP uses the one-way request method. It is fairly easy
to implement at-least-once semantics with HTTP. Exactly-once semantics needed
for transferring FIPA agent messages is also possible, if both peers maintain some
state information.

Given all of the above, HTTP is used as a message transport protocol in
the CASCOM communication architecture. It is a relatively simple protocol that
can be easily implemented in small devices. The performance of HTTP is not
that good, but still acceptable. Furthermore, the performance of HTTP can be
improved by using persistent HTTP connections. In the CASCOM communication
architecture, a persistent HTTP connection is always used between a mobile agent
platform and the messaging gateway.

The design of the CASCOM Agent Platform message transport system fol-
lows the design of the JADE platform. The main principle underneath the system
design was to do only small modifications to existing source codes and preserve
the compatibility with JADE and FIPA standards.

Only the FIPA HTTP Transport Protocol was implemented for the J2ME
environment and for the CASCOM Agent Platform. In order to meet the required
security constraints of CASCOM, the platform provides an encryption service for
the payload of HTTP messages. This does not mean that CASCOM implements
a full-featured SSL and HTTPS. Instead, only the payload of HTTP messages is
encrypted using a third party open source cryptography API available for MIDP
2.0. This solution guarantees the desired level of security, while avoiding the hard
job of providing a full SSL implementation that would result in a piece of software
that would hardly fit the constraints of today’s mobile devices.

The overall design of the message transport system used in the CASCOM
Agent Platform is illustrated in Figure 8.5. The JADE Messaging Service delivers
encoded ACL Messages to the transport protocol component and the component
uses available ACL Message Envelope Codecs to encode the envelope (the envelope
is included in the message) to the proper FIPA encoding. The requested encoding
type is specified as a parameter with the ACL Message and the message envelope.
The message transport protocol component adds the encoded envelope and FIPA
HTTP headers to the message and delivers it using a TCP/IP connection. If
something goes wrong during the delivery, an exception is thrown to the Messaging
Service.

The FIPA HTTP Transport Protocol component includes a server. When the
component has been installed by the Messaging Service it has to listen to incoming
messages and deliver messages to the Messaging Service once they arrive, until the
component has been stopped or uninstalled by the Messaging Service. Whenever
a FIPA HTTP Transport Protocol component receives a message it reads the
used encoding of message envelope from the HTTP headers. If the encoding is
supported, the proper ACLMessage Envelope Codec is used to decode the envelope
to a Java object. Then the envelope and the encoded ACL Message are passed
to the JADE Messaging Service for further processing. If the envelope encoding

170 Chapter 8. Agent Platform and Communication Architecture

Figure 8.5: Message transport protocols in the CASCOM agent platform

is not supported (i.e., there is no available codec for it), an HTTP response error
code is sent back to the sender.

The CASCOM Agent Platform design differs from that of JADE in the mes-
sage envelope Codecs, in the options to use the CASCOM Message Gateway, and
in the option of securing the message payload. In CASCOM, there can be different
envelope Codecs available, and different message transport protocol components
can use the same Codecs. The support for the CASCOM Message Gateway adds
a buffer and lost a message detection mechanism for the FIPA HTTP MTP im-
plementation. The encryption option allows securing HTTP communications even
if HTTPS is not available (this is the case in most MIDP 2.0 devices).

Message Encoding

The purpose of the message encoding layer is to provide message encoding that
utilizes wireless communication paths efficiently. Agent messages are encoded as
follows. First the message content (expressed in some content language) and the
FIPA ACL message are encoded to a payload. Then additional parameters/at-
tributes are added to the message. In the FIPA architecture, the latter is done
using message envelopes. After this, the message can be sent using a message
transport protocol. Given this process, the message encoding consists of three dif-
ferent encodings: message envelope, ACL, and message content. Encoding of these
message parts are discussed below.

Message Envelope. The purpose of the message envelope layer is to enable
transport-protocol independent message handling. For example, it enables message
routing so that routers (e.g., the CASCOM Messaging Gateway) do not have to
understand ACL. This enables non-ACL-aware routers to forward the messages
without having to concern with the message contents. On the other hand, the
message envelope enables end-to-end control of messaging, when using several

8.2. Background 171

message transport protocols between the sender and the receiver.
FIPA has defined three concrete message envelope syntaxes. In the FIPA

IIOP message transport protocol [12], the message envelope is embedded in the
message transport protocol, that is, the IDL interface [20] defines the structure of
the message envelope. [10] specifies an XML-based syntax for the message envelope
and [8] specifies an XML-based syntax for FIPA ACL to be used in the message
payload. When HTTP is used for transport protocol, HTTP MTP [12] specifies
the entire agent message including the message envelope in an HTTP request.
For wireless environments, there is the bit-efficient syntax for message [9]. When
using it, [7] specifies a bit-efficient syntax for FIPA ACL to be used in that message
payload. The bit-efficient encoding scheme encodes message envelopes efficiently
by using one-octet codes for predefined message envelope parameters and other
common parts of message envelope.

Bit-efficient encoding is used as the encoding scheme of message envelopes for
the CASCOM communication architecture. Figure 8.6 shows the sizes (in bytes)
of the message envelope transport syntaxes for the “Minimal Envelope” and the
“Typical Envelope” cases, using all the different encoding options. “Minimal enve-
lope” is an envelope which contains only the mandatory fields and the field content
is the smallest possible. “Typical envelope” is more realistic one, in which there
are most widely used fields with realistic field content. The bit-efficient message
envelope is the most compact in both cases. This was expected. However, when
the message envelope size increases, the relative difference between the encodings
decreases, especially when compared to IIOP/IDL. The reason for this is that in
the case of more realistic message envelope, the ratio between additional overhead
and the message envelope content (i.e., the field values) increases. None of the se-
lected encoding schemes handles the information content efficiently. As expected,
the XML encoding and Java object serialization produce big message sizes. But
again, the relative difference decreases when the message envelope size increases.
However, for example in the case of Object serialization, the output size is still
approximately four times the output size of bit-efficient encoding even in the case
of realistic envelope.

Agent Communication Language (ACL). The agent communication language
defines the outer language used in communication. Here we concentrate on FIPA
ACL since FIPA standards are used in the CASCOM agent communication. FIPA
ACL has three standard encoding schemes. The first one is based on ASCII strings,
and therefore it is non-optimal and redundant. The second one is based on XML [8],
which has a very verbose syntax. The third one is a bit-efficient syntax [7], which
is especially suitable for wireless environments.

In the bit-efficient FIPA ACL, there are two primary ways to reduce the
transfer volume over the wireless link: data reduction and intelligent caching. First,
FIPA ACL messages are encoded efficiently by using one-octet codes for predefined
message parameters and other common parts of the message. This is a significant
improvement compared to a simple string-based coding, as it typically reduces
extra overhead by 50%. Furthermore, this improvement is easy to implement and

172 Chapter 8. Agent Platform and Communication Architecture

8.2. Background 173

174 Chapter 8. Agent Platform and Communication Architecture

0

5000

10000

15000

20000

25000

30000

35000

40000

E
n
c
o
d
e
d
 M
e
s
s
a
g
e
 L
e
n
g
th
 (
b
yt
e
s
)

M essage Content Length (bytes)

BE codec without
com pression

BE codec with srank
com pression

BE codec with Zlib

Figure 8.8: The effect compression to the message size

to the message size. Obviously, compression reduces the file size. However, the
compression and decompression requires significant amount of processing power
and thus it should not always be used. The CASCOM Agent Platform allows
setting the threshold when the message should be compressed and when it should
be sent as plain text. Figures 8.9 and 8.10 show the encoding and decoding times of
a message using Nokia 6680 mobile phone. It can be seen, that although Zlib gives
the best compression ratio, it also requires significantly more time to compress
and decompress the content than the S-rank algorithm.

8.2.5 Messaging Gateway

Due to unreliable wireless connections, possible firewalls and NAT, the current
JADE message transport system has to be improved for mobile devices. Connec-
tion to mobile devices can be lost in any time so message buffering is needed. As
illustrated in Figure 8.11, devices are often in a private network (e.g., in most cases
when using a GPRS connection) and also many devices in a fixed network can be
behind a firewall. For these cases, there should be a gateway for agent platforms.
The messaging gateway is an optional component of the CASCOM communica-
tion architecture. It is only needed in cases where mobile device has no public
IP-address, but it can be used in other cases as well.

The CASCOM Messaging Gateway is a buffer for messages going to the
agent platforms in mobile devices. The gateway does not address translations as
the agent platforms using the gateway are expected to use the address of the
gateway. That is, the agents situated in an agent platform in a private network
never use their private IP-addresses as their transport addresses, but instead use

8.2. Background 175

0

200

400

600

800

1000

1200

E
n
c
o
d
in
g
 T
im
e
 (
m
s
)

M essage Content Length (bytes)

BE codec without com pression

BE codec with srank
com pression

BE codec with Zlib

Figure 8.9: Message encoding time in Nokia 6680 mobile phone

the gateway’s address. Further, the messaging gateway is totally transparent to
agents. For the time being, the address of the gateway has to be given as a pa-
rameter to the CASCOM Agent Platform situated in a mobile device . This way,
using the gateway is fully invisible to the agents. Besides, the gateway does not
have to parse ACL messages. It forwards the messages (both directions) based on
information found in the message envelope.

Once the agent platform has established connection to the CASCOM Mes-
saging Gateway, the (HTTP) connection must be left open so that the gateway
is able to send messages to the agent platform which is behind a firewall. When
the connection is closed (by the platform or because of unreliable wireless con-
nection), the gateway leaves messages in the buffer waiting for the next time the
connection is established. When the connection is established again by the same
agent platform, the gateway must know whether or not it should deliver all the
buffered messages. In the case the agent platform has been restarted and agents
have not saved their state, there is no need to send the buffered messages and they
can be discarded. The information whether buffered messages should be delivered
after reconnection is provided by the mobile agent platform when opening the
connection.

The messaging gateway does not buffer mobile-originated messages. Plat-
forms use their own buffers for outgoing messages, but they send them through
the gateway, which routes them to the destination. However, the protocol used
between the CASCOM Agent Platform and the messaging gateway ensures that
no message is lost or duplicated in the case of unexpected wireless link discon-
nection. The protocol between the agent platform and the messaging gateway is

176 Chapter 8. Agent Platform and Communication Architecture

0

200

400

600

800

1000

1200

1400

D
e
c
o
d
in
g
 T
im
e
 (
m
s
)

M essage Content Length (bytes)

BE codec without
com pression

BE codec with srank
com pression

BE codec with Zlib

Figure 8.10: Message decoding time in Nokia 6680 mobile phone

based on HTTP. The protocol uses session identifiers in order to keep track of
mobile devices. This is an important feature, since it allows roaming between dif-
ferent network technologies while preserving logical connections. For example, an
agent situated in a mobile device can send a message to another agent in a fixed
network over a GPRS connection. Before getting a reply, the mobile device roams
from GPRS network to a WLAN network, and the agent at the mobile device gets
a reply to its original message over a WLAN connection. The whole process is
transparent to both agents.

A message transfer over a wireless connection may be in progress when an
unexpected disconnection happens. In such cases, the message may be lost. The
protocol of the communication between the mobile device and the messaging gate-
way uses message sequence numbers in order to detect if a message is lost. Should
this be the case, the message is automatically retransmitted. Again, this happens
transparently to the agents. Details of this protocol can be found in [5].

8.3 Summary

The agent platform and communication described above suits well for developing
agent based applications for resource-poor devices. However, there are some issues
that could be improved in the future.

As mentioned in Chapter 7, the end user has only one agent (the PA) in
her mobile device in the CASCOM trial application. Having a full-blown FIPA-
compliant agent platform for only one agent may be overkill. If only one agent in

8.3. Summary 177

Figure 8.11: The CASCOM messaging gateway

the mobile device is needed, the agent functionality could be implemented without
an agent platform and thus valuable resources in the mobile device would be saved.
This, however, compromises the FIPA compliancy and thus such support was not
implemented to the CASCOM architecture.

The implemented communication stack has very good support for delivering
agent messages over a wireless communication path efficiently and reliably. How-
ever, more attention should be paid how agents are actually communicating. For
example, if agents are sending more messages that would be absolutely necessary,
scarce bandwidth will be wasted. Agents could improve their communication by
choosing such communications patterns so that agent message exchanges are car-
ried out with a minimal number of round-trips. This is especially important when
using a high-latency communication path.

The CASCOM messaging gateway provides reliability to the agent commu-
nication. For example, if the wireless link is unexpectedly disconnected, no agent
message is lost. However, typically applications need other kind of communication
protocols as well (e.g., Web Service communication). The messaging gateway has
support only for ACL communication which may not be enough for all applica-
tions. However, since the communication between a mobile device and messaging
gateway is based on HTTP, it would be rather simple to add support for SOAP,
as an example.

178 References

References

[1] F. Bellifemine, G. Caire, Poggi, and G. Rimassa. Jade — a white paper.
EXP — in search of Innovation (TiLab Technical Magazine), 3(3):20–31,
September 2003.

[2] F. Bergenti, A. Poggi, B. Burg, and G. Caire. Deploying FIPA-compliant
systems on handheld devices. IEEE Internet Computing, 5(4):20–25, 2001.

[3] G. Caire, N. Lhuillier, and G. Rimassa. A communication protocol for agents
on handheld devices. InWorkshop on Ubiquitous Agents on Embedded, Wear-
able and Mobile Devices, Bologna, Italy, July 2002.

[4] CASCOM Consortium. CASCOM Project Deliverable D4.1: IP2P Network
Architecture, 2006.

[5] CASCOM Consortium. CASCOM Project Deliverable D4.2: Technical Guide
to the IP2P Service Network Environment, 2006.

[6] P. Fenwick. A fast, constant-order, symbol ranking text compressor. Technical
Report 145, Department of Computer Science, The University of Auckland,
1997.

[7] Foundation for Intelligent Physical Agents. FIPA ACL Message Representa-
tion in Bit-Efficient Specification. Geneva, Switzerland, October 2000. Spec-
ification number SC00069.

[8] Foundation for Intelligent Physical Agents. FIPA ACL Message Representa-
tion in XML Specification. Geneva, Switzerland, October 2000. Specification
number SC00071.

[9] Foundation for Intelligent Physical Agents. FIPA Agent Message Transport
Envelope Representation in Bit Efficient Specification. Geneva, Switzerland,
November 2000. Specification number SC00088.

[10] Foundation for Intelligent Physical Agents. FIPA Agent Message Transport
Envelope Representation in XML Specification. Geneva, Switzerland, Novem-
ber 2000. Specification number SC00085.

[11] Foundation for Intelligent Physical Agents. FIPA Agent Message Transport
Protocol for HTTP Specification. Geneva, Switzerland, October 2000. Speci-
fication number SC00084.

[12] Foundation for Intelligent Physical Agents. FIPA Agent Message Transport
Protocol for IIOP Specification. Geneva, Switzerland, November 2000. Spec-
ification number SC00075.

[13] Foundation for Intelligent Physical Agents. FIPA Agent Message Transport
Protocol for WAP Specification. Geneva, Switzerland, October 2000. Specifi-
cation number XC00076.

References 179

[14] Foundation for Intelligent Physical Agents. FIPA Content Languages Speci-
fication. Geneva, Switzerland, October 2000. Specification number SC00007.

[15] Foundation for Intelligent Physical Agents. FIPA Nomadic Application Sup-
port Specification. Geneva, Switzerland, November 2000. Specification number
XC00014.

[16] H. Helin and M. Laukkanen. Performance analysis of software agent commu-
nication in slow wireless networks. In R. Luijten, E. Wong, K. Makki, and
E. K. Park, editors, Proceedings of the Eleventh International Conference on
Computer Communications and Networks (ICCCN’02), pages 354–361. IEEE,
October 2002.

[17] M. Laukkanen, H. Helin, and H. Laamanen. Supporting nomadic agent-
based applications in the FIPA agent architecture. In C. Castelfranci and
W. L. Johnson, editors, Proceedings of the First International Joint Confer-
ence on Autonomous Agents & Multi-Agent Systems (AAMAS 2002), pages
1348–1355, Bologna, Italy, July 2002.

[18] M. Laukkanen, S. Tarkoma, and J. Leinonen. FIPA-OS agent platform for
small-footprint devices. In J.-J. Meyer and M. Tambe, editors, Intelligent
Agents VIII, Proceedings of the Eighth International Workshop on Agent The-
ories, Architectures, and Languages (ATAL-2001), volume 2333 of Lecture
Notes in Artificial Intelligence, pages 447–460. Springer-Verlag: Heidelberg,
Germany, 2002.

[19] G. Montenegro, S. Dawkins, M. Kojo, V. Magret, and N. Vaidya. Long thin
networks. Request for Comments 2757, January 2000.

[20] Object Management Group. Common Object Request Broker Architecture:
Core Specification version 3.0.3, March 2004.

[21] D. Šǐslák, M. Rollo, and M. Pěchouček. A-globe: Agent platform with in-
accessibility and mobility support. In M. Klusch, S. Ossowski, V. Kashyap,
and R. Unland, editors, Cooperative Information Agents VIII, pages 199–214,
2004.

Chapter 9

Distributed Directories of Web
Services
Michael Schumacher, Alexandre de Oliveira e Sousa,
Ion Constantinescu, Tim van Pelt and Boi Faltings

9.1 Introduction

This chapter presents WSDir, the federated directory system used in CASCOM.
Its main functionality is to let heterogeneous Semantic Web Service descriptions
be registered and searched by certain clients. As such, it realizes a lookup function
with basic retrieval schemes.

There are several main requirements for a distributed directory system. First,
it should be easy to invoke by any client. This led us to define a Web Service
interface to WSDir: it is a universally accepted standard, it provides a well-defined
method to use the directory, and it allows for interacting with a heterogeneous set
of clients. The sole requirement on the part of the client is that it should be able to
communicate over a Web Service interface. Second, the nature of the applications
to be realized requires the directory system to be distributed, for instance applying
a geographical specialization of the directories. Third, the construction of the
network should induce minimal overhead and should be scalable; also, the network
should be robust to changes in topology and the number of interactions with
the system. Fourth, the directory should allow a great number of services to be
registered, and this in a very dynamic way, including lease times.

Our system is modeled as a federation: directory services form its atomic
units, and the federation emerges from the registration of directory services in
other directory services. Directories are virtual clusters of service entries stored in
one or more directory services. To create the topology, policies are defined on all
possible operations to be called on directories. For instance, they allow for routed
registration and selective access to directories.

The chapter is organized as follows. In Section 9.2, we explain the service

182 Chapter 9. Distributed Directories of Web Services

entries of Semantic Web Services that can be stored in WSDir. Sections 9.3 to 9.6
explain the architecture of WSDir by presenting directories, directory services,
directory operations, and policies. In Section 9.7, we give the concrete network
architecture used in CASCOM. Sections 9.8 and 9.9 discuss respectively usability
and vulnerability issues of WSDir. After referring related work in Section 9.10, we
conclude the chapter in Section 9.11.

9.2 Service Entries

Services are described using the Web Ontology Language for Web Services, OWL-
S [4]. Internally, the directory system stores then service entries in the FIPA SL0
description language. SL0 has been chose because the whole CASCOM infrastruc-
ture is using this language for interpretability between agents. Furthermore, as we
achieve with SL0 an independent way to store any kind of services and not only
OWL-S descriptions.

The internal service representation contains a subset of the information pro-
vided in the original service description. This information can be used to find
matching services in the directory. In addition, the original service description
in OWL-S is stored in a separate slot. This field is used to retrieve the original
description, e.g., to retrieve the grounding(s) of a service at service execution.

In the following, we present the information that a service entry in WSDir
contains:

ServiceCategories Refers to an entry in some ontology or taxonomy of services.
The value of the property is a set containing elements of the class ServiceCat-
egory, which is defined in the OWL-S ontology. The information is ultimately
derived from the service categories defined in the service profile.

ServiceProfileURIs This slot contains a set of profile URIs that is referred to in
the service description. If the profiles are included in the service description
as full-text, no URIs are stored. The URIs point to an externally stored, but
(web-)retrievable service profile.

ServiceProcessURI A process URI that is defined in the service description. If
none is included for the service description, the slot will be empty. If the
process is included in the service description as full-text, no URI is stored.
The process URI points to an externally stored, retrievable service process.

ServiceGroundings The slot that contains a set of full-text service groundings for
the service. Empty set if no grounding is associated with the service (abstract
service). Makes it possible to retrieve only service groundings.

OWLSServiceDescription The slot that contains the original OWL-S service de-
scription as a full-text entry. Service profile(s) and process may be referred
to as URIs, though service groundings must be included as full-text.

9.3. Directories 183

9.3 Directories

A directory comprises a set of service entries which are managed by a collection
of one or more directory services. All service entries, including directory service
entries, are registered at a directory service as belonging to a specific directory.
Such, directory services can form an arbitrary organisational structure (peer-to-
peer, hierarchy etc.). Specifically:

• A directory can contain other directories.
• A directory supported by one or more directory services.
The above is used to characterize directories by two different types of inter-

actions:

1. Client-Directory interactions: in which clients registering, deregistering, and
querying the directory interact with directory services supporting the direc-
tory. They may or may not have any idea about the internals of the directory.

2. Director-Directory interactions: in which directory services supporting the
directories interact with one another to perform the internal management of
the directory (data propagation, federated queries, managing the membership
of the directory service group managing the directory).

The first interaction style (Client-Directory) is part of the base for the cre-
ation and maintenance of a domain directory. The second interaction style
(Directory-Directory) is the base for the creation and maintenance of a network
directory. As directories can be used to support other directories they are seen
as organizational structures. These concepts will be elaborated and exemplified in
Section 9.7.1 on network topology.

9.4 Directory Services

Directory services provide a Web Service interface to a repository that holds ser-
vice entries. The service entries in this store are all registered as belonging to a
certain directory. The directory service forms the atomic unit of the directory fed-
eration. It allows clients to register, deregister, modify and search registrations in
its repository. These registrations include service descriptions of services offered
by clients as well as profiles of other directory service. By registering directory
services in other directory service stores, the system becomes federated.

Figure 9.1 visually summarizes the relationship between service entries, di-
rectories and directory services. In the illustration, the directory service holds
regular service entries and a directory service entry belonging to a Hospitals di-
rectory as well as entries belonging to an Insurers directory. Both directories are
contained in the Body directory, which in turn is contained in the all-encompassing
“.” directory.

184 Chapter 9. Distributed Directories of Web Services

. (dot)

Body

Directory Service

Hospitals Insurers

Regular service entry

Directory

Directory service

name

Directory service entry

Figure 9.1: Visual recapitulation of directory system concepts

9.5 Directory Operations

The directory is able to handle five types of operations, corresponding to data
manipulation primitives (register, deregister, modify, search) and the retrieval of
meta-data information (get-profile). The methods are accessible remotely through
a Web Service interface.

We present the operations the directory service interface offers. Before that,
some of the objects that are passed as parameters are defined:

Identity-info The identity-info element is to be used for providing identification
information regarding the invoker of a given operation in the form of an
actor-identifier. This object can contain also a structured object providing
credentials information that can be relevant to some form of authentication
(e.g., a password, a X.509 certificate or a more sophisticated session key).

Directory-id The directory-id is a string that uniquely identifies a directory in
the frame of a given directory service. It can include the names of other
directories if the directory service uses a path like scheme for identifying
nested directories.

Directory-token A directory-token refers to an entry registered within the direc-
tory and can be used to identify the registration entry. A directory-token
contains a key (string) that uniquely identifies a particular entry in a given

9.5. Directory Operations 185

directory. The directory service usually generates these keys but some di-
rectories may support the registration of entries under keys specified by the
client of the directory service.

Structured-object structured-object(s) are the data elements stored in the direc-
tory which are subsequently available for search. The only assumption about
structured objects is that they have a frame-like structure similar to RDF,
the SOAP XML encoding or FIPA SL0. In principle, there are no restrictions
on the content of the data of the structured objects. For our experiments,
the structured-objects are encoded in FIPA SL0.

Hereafter, we describe all operations on WSDir (except get-profile):

Registration

register (identity-info, directory-id, directory-token, structured-objects,
lease-time)

The register operation enables a client to register a service description
entry (as specified in the structured-objects) into a directory for a time period
given by the lease-time parameter. If a directory-token is specified when the
operation is requested then the directory should try to register the new entry
using the key specified in the directory-token. Upon successful registration
the directory service returns an ok message containing either a new directory-
token or the original directory-token if it was specified by the user together
with a new lease-time.

The directory-service can also return a redirect message pointing to an-
other directory where the client could try to register its object. The detailed
semantics of the redirect message are dependent on the policies governing the
directory for which the redirect was issued. For example, this may happen for
load-balancing reasons in top-level directories. To uphold the transparency
of the federated nature of the system to the client, the redirection will be
opaque. Note that a register policy of the directory may also forward the
registration request to another directory, e.g., to balance the load of the di-
rectory.

Deregistration

deregister (identity-info, directory-id, directory-token)

The deregister operation de-registers a service that previously has been
registered identified. The entry to be de-registered is included in the directory-
token that has been obtained at registration.

Modification

modify (identity-info, directory-id, directory-token, structured-objects,
lease-time)

186 Chapter 9. Distributed Directories of Web Services

The modify operation allows modifying a registered service. The struc-
tured object itself can be modified or the parameters of the entry, such as
the lease-time.

Search

search (identity-info, directory-id, structured-objects, search-constraints)

The search operation looks in the directory for services that match
a template (structured-objects). The request can possibly be forwarded to
supporting directories, depending on the implemented search policy at the
directory. As the internal service descriptions are expressed as SL0 expres-
sions, the structured element used in the operation is also an SL0 expression.
Search-constraints can be specified in order to restrain the search:

• The max-time specifies a deadline by which the constrained search
should return the results.

• The max-depth specifies the maximum depth of propagation of the
search to federated directories.

• The max-results element specifies the maximum number of results to be
returned.

In Section 9.7.4, we show an example of how a search procedure is
internally handled.

9.6 Policies

Directory services employ directory policies to regulate the operation of directo-
ries. Policies are defined per directory service in the directory service profile and
determine the behaviour of a specific directory. Two types of policies can be dis-
tinguished:

Pro-active policies Policies of this type are typically used for internal management
of the directories. A policy may be attached to a directory to establish the
number of times per hour data is propagated within the directory, how often
old entries are removed etc.

Reactive policies These policies assign a behaviour to combinations of directories
and operations. The policies are executed whenever a bound operation is
called. They are defined as a triple: (directory name, operation, policy).

Policies can also be applied to the default directory named “*” which matches
all directories that don’t have a policy explicitly assigned.

From the consequent application of policies, the network topology emerges.
Policies can for example define how much entries can be registered per directory,
which directories can be searched by which clients, and which types of services

9.7. CASCOM Service Directory Architecture 187

188 Chapter 9. Distributed Directories of Web Services

multiple roots. This topology is the network architecture that has been used in
the CASCOM infrastructure.

9.7.1 Network Topology

The nodes of the tree are made up by the individual directory services. This
hierarchical structure with multiple entry points effectuates:

• No replication or data caching within the directory: each directory service is
responsible for registrations made in its local store;

• Forwarding search only: since there is no replication, directory services will
forward queries to other directory services;

• Query message duplicate checking: a given directory service will handle only
the first of several identical query messages from several sources and discard
the others while returning the appropriate failure message;

• No results duplicate checking: identical results may be returned by one or
more directory services for a single query. This enhances the robustness of
the federation at the cost of shifting the burden of filtering the results to the
client.

In the network, we distinguish two types of directories: network directories
and domain directories. Network directories are a reserved set of directories that
are used for the construction of the network. In a directory federation, we can
distinguish three different network directories:

• Hidden network directory: the directory service that forms the root of the
federation by registering the top-level nodes of the network. Neither the di-
rectory service nor its registered services will be visible to the other nodes in
the federation.

• Top network directory: visible to the network as being one of the roots of
the federation multi-rooted tree. A directory service with this role could
typically serve as a bootstrap service to leaf directory services. These services
constitute the Top network directory.

• Body network directory: regular directory services that form the body of
the multi-rooted tree. These directory services provide the interface to the
directories that will contain most of the service registrations in the network.

Domain directories emerge from the registrations of service descriptions at
the directory services that make up the directory system. By definition, domain
directories are contained in the “Body Members” directory.

Hereafter, we explain the network directories in more detail. The above-
mentioned roles and their place in a WSDir federation topology are depicted in
Figure 9.3.

9.7. CASCOM Service Directory Architecture 189

Figure 9.3: Network topology

Hidden Network Directory

The Hidden directory service node responds only to requests coming from Top
directory services and exclusively regarding the “Top Members” directory. For that
it holds authentication information regarding a pre-configured list of possible top-
level nodes and uses this information together with information in the identity-info
field of the requests. Search queries are not propagated to other directory services.
The location of the hidden directory service node is pre-defined.

The existence of this domain ensures that directory services belonging to the
“Top Members” directory know of their respective existence and such makes sure
that every node in the network can be reached if needed. The hidden directory
service is only used for bootstrapping of the top member directory services. After
the system has been initialized, the hidden directory service will only be used by
the top member directory services to poll to see whether new directory services
have been added to the “Top” network directory. Thus, queries, registrations and
other requests do not go through the hidden directory service, but will be directed
at a top or body member directory service.

190 Chapter 9. Distributed Directories of Web Services

Top Network Directory

Upon start-up the Top directory services join the network by registering their
directory-service-profiles inside the “Top Members” directory of the Hidden direc-
tory service. Also they keep track of other Top directory services currently mem-
bers of the “Top Members” directory by continuously polling the “Top Members”
directory of the Hidden directory service for directory-service-profiles entries. In
the case that the Hidden directory service fails the Top directory services should
continue to use the last retrieved membership information until the Hidden di-
rectory service will be back online. In terms of response to registration requests
from clients, a Top directory service allows only for the registration of directory-
service-profile entries inside the “Body Members” directory. Once the number of
registrations that are hold locally goes over a given threshold the Top directory
service returns redirect messages pointing requestors. Normal directory services
directly registered with the current directory service. For any other kind of regis-
tration requests the Top directory services will issue redirect responses pointing at
Normal directory services registered with the current directory services or other
Top directory services that might be more appropriate for use. Top directory ser-
vices will respond to all search requests by first trying to fulfil them locally and in
the case that more results can be returned (the value of the max-results parame-
ter in the search-constraints object has not been reached yet) it will forward the
query to all other Top directory services members of the “Top Members” network
directory. For determining the other Top directory services members of the “Top
Members” directory the information from the last successful polling of the Hidden
directory service will be used. Top directory services will respond with a failure to
all other kinds of requests.

Body Network Directory

At start-up, a Body directory service will try to register its directory-service-profile
in the “Body Members” directory of a Top directory service randomly picked from
a pre-configured list of Top directory services. If the Top directory service cannot
be reached another one is randomly picked until either the joining procedure (see
next) succeeds or the list is exhausted. In the latter case the directory service will
report a join failure. The directory service will follow redirect responses until the
entry is successfully registered with a directory service (either Top or Body). Upon
failure of the directory service used for registration the current directory service
will sleep for a random time period and after than will re-initiate the initial join
procedure.

For other Body directory services that try to register directory-service-profile
entries inside the “Body Members” directory a Body directory service will act as a
Top directory service: once the number of registrations that are hold locally goes
over a given threshold the Body directory service will return redirect messages
pointing requestors to child Body directory services directly registered with the

9.7. CASCOM Service Directory Architecture 191

current directory service.
A Body directory service will respond positively to all other requests. In

particular it will forward search queries for which it could return more results than
locally available to directory services locally registered in the “Body Members”
directory.

9.7.2 Network Construction

At boot time, the directory makes use of a pre-defined network configuration
to create a network topology. The configuration specifies management and data
relations between members of the network.

Some of the network nodes might have fixed well-known addresses in order
to serve as bootstrap hosts for other directory services. Depending on their role,
different parts of the network are visible to bootstrapping directory services.

As mentioned before, in a typical setting, the node at the highest level will
be hidden to all nodes not belonging to the “Top Members” directory.

The process of directory service registration is equivalent to the process of
registering regular service entries. Directory services are registered invoking the
same register method as is used for registering regular services. Instead of an
OWL-S Profile, the passed structured object contains a directory-service-profile
object.

9.7.3 Used Directory Policies

WSDir employs a set of pre-defined pro-active policies, mainly for routing pur-
poses. Figure 9.4 gives an overview of the pre-defined policies and their hierarchy.
We do note present here the details of each policy. However, we show in Fig-
ure 9.5 how these policies are applied to construct the basic network topology .
Per network directory, the set of policies in place is listed.

For example, a registration request directed at a directory belonging to the
“Hidden” network directory triggers the application of the ChildRegisterPolicy.
The service registration request is forwarded to its known children, which them-
selves apply (by default) the ChildSiblingRegisterPolicy. This in turn selects the
least loaded directory service among its children and among its siblings to put the
service entry in its store.

The procedure for a search operation is similar. Requests directed at a direc-
tory service either belonging to the “Hidden” network directory or to the “Top”
network directory will forward the search request to its registered children and its
known siblings. The directory service instances belonging to the “Body” network
directory apply the DefaultSearchPolicy, only searching their local store.

For the modify, deregister and get-profile operation, the policies that are
assigned to the operations also depend on the network directory the directory
service instance belongs to.

192 Chapter 9. Distributed Directories of Web Services

RegisterPolicyRegisterPolicy

DefaultRegister
Policy

DefaultRegister
Policy

ChildRegister
Policy

ChildRegister
Policy

ModifyPolicyModifyPolicy

ChildModify
Policy

ChildModify
Policy

SiblingChildRegister
Policy

SiblingChildRegister
Policy

DefaultModify
Policy

DefaultModify
Policy

DeregisterPolicyDeregisterPolicy

DefaultDeregister
Policy

DefaultDeregister
Policy

ChildDeregister
Policy

ChildDeregister
Policy

SearchPolicySearchPolicy AbstractSearch
Policy

AbstractSearch
Policy

DefaultSearch
Policy

DefaultSearch
Policy

ChildSiblingSearch
Policy

ChildSiblingSearch
Policy

DefaultGetProfile
Policy

DefaultGetProfile
Policy

GetProfilePolicyGetProfilePolicy

GenericPolicyGenericPolicy

Figure 9.4: Predefined policy tree

9.7.4 Examples of Network Interactions

The following section describes two examples of the policy-governed query opera-
tion of the network of directories as presented previously. The visible network is
formed from a number of “well-known” top nodes (Top-1, Top-2, Top-3) with a
fixed name and transport address (but which can possibly fail) and an arbitrary
number of leaf nodes which are organized in a tree topology with one of the top
nodes as root.

We illustrate the process of query resolution in Figure 9.6 and 9.7: a client
issues a search request for service profiles matching a template in the Hospital
domain directory. The template is provided in the form of a structured-object.

1. First, the client issuing the query randomly selects one of the top level nodes
(Top-1, Top-2, Top-3). In this example, Top-2 is picked.

2. The Top-2 directory service forwards the query to its siblings.

3. Directory services that have an entry for the Hospital domain directory in
their service profile propagate the query down.

9.7. CASCOM Service Directory Architecture 193

Hidden

Body-1 Body-2

Top-1 Top-2

Hid
den

Top

Bod
y

Body-5 Body-6

Body-4Body-3

* :
search

 : D
efaultSi

blingSe
arch

Policy

* :
regist

er :
DefaultR

egist
erPolicy

* :
modify

: D
efaultM

odifyP
olicy

* :
deregist

er :
DefaultD

eregist
erPolicy

* :
get-p

rofile
 : D

efaultG
etProfile

Policy

* :
search

 : C
hildSib

lingSe
arch

Policy

* :
regist

er :
Sib

lingChildRegist
erPolicy

* :
modify

: C
hildModifyP

olicy

* :
deregist

er :
ChildDeregist

erPolicy

* :
get-p

rofile
 : D

efaultG
etProfile

Policy

* :
search

 : D
efaultSe

arch
Policy

* :
regist

er :
ChildRegist

erPolicy

* :
modify

: C
hildModifyP

olicy

* :
deregist

er :
ChildDeregist

erPolicy

* :
get-p

rofile
 : D

efaultG
etProfile

Policy

Body-7

Figure 9.5: Policies in the network topology

4. To guarantee full query resolution, the query is forwarded to all directory
services that are known to store entries for the Hospital domain directory.

5. Finally, upon finding results, the nodes holding the results will send a mes-
sage back (depicted by “R=x” in the figure, where x denotes the number of
matched services) to the directory service it was queried by, until it reaches
the original requester. In this case, the matching service profiles in the direc-
tory services supporting the Hospital domain directory will be returned.

The next sections will now discuss the usability, vulnerability and perfor-
mance of WSDir.

194 Chapter 9. Distributed Directories of Web Services

Hidden

Body-1 Body-2

Top-1 Top-2

Hid
den

Top

Body-7 Body-8

Insurance

Body-4Body-3

Service entry

Network directory

Domain directory

Directory service

Top-3

Bod
y

Body-6Body-5

Body-9

Hospital

Search(„Hospital“
,[template])

1.

2.

2.

3.3.

4.

Figure 9.6: Query resolution (1)

9.8 Usability

For every instance of a WSDir’s Directory Service, the user must write its own
configuration file. This configuration file is accessed and read by the Directory
Service during its starting procedure. The name of this file must be explicitly
written in a file web.xml of the Directory Service.

The syntax of this file is based on FIPA SLO. It contains all the necessary
information for the Directory Service to create its directories, associate the policies
and start building a predefined network topology with other Directory Services.
The user must specify the following information: i) name and address of the Direc-
tory Service; ii) name(s), address(es) and credentials of the Directory Services it
should register in; iii) name of the directories it manages; iv) name of the policies
that applies to directories for each operation.

Another issue regarding the WSDir’s usability is monitoring its’s run time
activity. There are currently two ways to do this. The first one is to use a Java
client which enables a human user to browse through the Directory Services and
their directories. Directories and services entries are displayed in a visual tree. The
user can fold/unfold directories and check which services are currently registered
in a Directory Service. The second way to monitor WSDir’s activity is to deploy

9.8. Usability 195

Hidden

Body-1 Body-2

Top-1 Top-2

Hid
den

Top

Body-7 Body-8

Insurance

Body-4Body-3

Service entry

Network directory

Domain directory

Directory service

Top-3

Bod
y

Body-6Body-5

Body-9

Hospital

Search(„Hospital“
,[template])

R=0

R=2

R=2

R=3

R=5
R=5

Figure 9.7: Query resolution (2)

a servlet on the same server where an instance of a Directory Service is running.
Depending on this Directory Service’s configuration, a user will be able to access a
web page that displays a set of logs of registration requests made on it. Thus, the
user can check whether his requests (registration, modification or remove) were
successfully executed.

In either way, no performance information nor disfunction messages are be-
ing displayed to the user monitoring WSDir’s activity. The user is then leaded
to check the logs files if something wrong happened. Monitoring Directory Ser-
vices performance at run time as well as errors would be a major contribution to
WSDIR’s usability.

On the other hand, once a topology has been decided and the configuration
files have been written correctly, it is very easy to launch a federation. There
exists a Java class (Startservices) that takes an ordered list of Directory Service
addresses and automatically launch all of them. The user can also take advantage
of another graphical tool that enables him to directly send a request to a specific
Directory Service.

196 Chapter 9. Distributed Directories of Web Services

9.9 Vulnerability

In this section, we discuss two major issues in WSDir’s vulnerability. The first
one concerns server failures and breakdowns. The second one concerns more the
security restrictions and users rights. In both cases, WSDir copes with those issues
by using specific mechanisms. WSDir uses its loosely coupled directories and a data
backup system to efficiently handle breakdowns. It implements an authentication
mechanisms to identify the clients sending incoming requests.

9.9.1 Breakdowns

In the CASCOM project, we have used the network topology presented in 9.7.1,
where the federation is structured in three Network layers: the Hidden layer, the
Top layer and the Body layer. Although all Directory Services, regardless from
which Network they belong to, can operate all requests, only those situated in
the Top layer are accessed by the CASCOM’s Discovery Agents. As each Network
layer plays a specific role in WSDir’s Federation, three breakdown scenario are
discussed. Figure 9.8 illustrates the accessible Service Descriptions stored in a
WSDir’s Federation when all the Directory Services are running correctly. All
descriptions can be accessed by a Client (the group of accessible Directory Services
is defined by the quadratic border).

In a first failure scenario, a Directory Service located in the Body Network
layer fails (see Figure 9.9). This failing Directory Service does not affect the rest
of the Federation. However, the local set of stored Service Descriptions becomes
unaccessible for any clients. The rest of the Descriptions stored in the other Direc-
tory Services are still available for the Clients, enabling them to continue working
with a restricted number of Service Descriptions. The Federation still processes
all five operations (search, register, deregister, modify and get Meta Data). There
exists a mechanism allowing Directory Services to recover after a breakdown. This
is explained in the recovery section below.

In a second failure scenario, it is a Directory Service located in the Top Net-
work layer that fails (see Figure 9.10). The Federation is ’amputated’ by the failing
Directory Service’s branch. In this case also, the rest of the Federation remains
operational but all the Service Descriptions stored under the failing Directory Ser-
vice become unavailable. Thus, several actions can be triggered while the Directory
Service is down:

1. The clients (Discovery Agents) have a pre-configured list of addresses of Di-
rectory Services that are operating on the Top Layer Network. Thanks to
this list, the clients can still access the Federation by picking up a new ad-
dress from the list and simply contacting another Directory Service in the
Top layer Network.

2. Directory Services in the Body layer Network that are operating under the
failing Directory Services can also have a list of addresses of Directory Ser-

9.9. Vulnerability 197

Hidden

Body-1 Body-2

Top-1 Top-2

Hid
den

Top

Bod
y

Body-5 Body-6

Body-4Body-3

Body-7

Service entry

Network directory

Directory service

Figure 9.8: A WSDir Federation with all the Directory Services from each Network
layer is working correctly. The quadratic border defines the group of currently
accessible Service Descriptions stored in the Federation.

vices in the Top layer Network. Being notified that the current Directory
Service in which they registered fails, they can register themselves in another
Directory Service operating in the Top layer Network. Most of the Service
Descriptions stored in the Federation would then be accessible again.

These two mechanisms enable the clients to continue working with the Federa-
tion as well as providing the maximum number of Service Descriptions available
to those Clients. The failing Directory Service can recover using the recovering
mechanism described in the following section.

In a third failure scenario, it is the Directory Service in the Hidden layer
that breaks down (see Figure 9.11). In this case, the Directory Services in the Top
layer cannot communicate with each other anymore. This has the effect of creating
groups of available Service Descriptions. A Client requesting a Directory Service
from the top layer will only receive a restricted number of Service Description.
Although the Federation is still operational, it would be better for Clients to access
all Service Descriptions. Thus, to cope with that, Top Network layer’s Directory
Services use the same mechanism as those in the Body Network layer. They can be
set with a list of addresses of Directory Services operating in the Hidden Network
layer and registered in them when the regular one fails. In this case, several backup

198 Chapter 9. Distributed Directories of Web Services

Hidden

Body-1 Body-2

Top-1 Top-2

Hid
den

Top

Bod
y

Body-5 Body-6

Body-4Body-3

Body-7

Service entry

Network directory

Directory service

Figure 9.9: A WSDir Federation with one Directory Service from the Body Net-
work layer is failing. The quadratic border defines the group of currently accessible
Service Descriptions stored in the Federation.

Directory Services must be ready. The failing Directory Service can recover using
the recovering mechanism described in the following section.

9.9.2 Recovery

WSDir has been designed to cope with breakdowns by always keeping some parts
of the Federation operational. When a Directory Service is down, the Service De-
scriptions stored in its memory are not accessible. Once the server works fine again,
the Directory Service can be restarted1. When it restarts, it searches for a specific
internal database that has been specified in the Directory Service’s configuration
file. Directory Services use this database to log all insert and modification requests
coming from outside clients. Delete requests erase a specific entry in the database.
It contains the following columns: i) the directory token of the Service Description;
ii) the lease time during which the Service Description is supposed to stay stored
in the Directory Service; iii) the full registration/modification request as sent by
the Client.

The directory token is the primary key of the table. It is a unique identifier

1The starting procedure is done by invoking a start method on the particular Directory Service

9.9. Vulnerability 199

200 Chapter 9. Distributed Directories of Web Services

9.10. Related Work 201

cation of all Web Services based on domains. Their approach relies on annotating
semantically service registries (for a particular domain) and exploiting such anno-
tations during discovery. This system can be deployed in a Peer-to-Peer network,
relying on the JXTA4 project, making it scalable. Two algorithms have been im-
plemented. One for semantic publication of Web Services and the second one for
discovery of those Web Services.

This project differs from WSDir by allowing multiple ontologies to be used at
the same time. This approach solves an interoperability issue that WSDir doesn’t
treat, although WSDir has an open architecture for any types of ontologies. In
contrast to METEOR-S which implements a dedicated algorithm for discovery,
WSDir can use many matchmaking modules for discovery. This thus allows WSDir
to be more flexible for specific use cases.

GLUE [3] is a WSMO5 compliant discovery engine that aims at developing
an efficient system for the management of semantically described Web Services
and their discovery. GLUE is built around an open source f-logic inference engine
called Flora-26 that runs over XSB7. The basis of the GLUE infrastructure is
a set of facilities for registering and looking up WSMO components (ontologies,
goals, Web Service descriptions and mediators). With the use of these components,
GLUE implements a matching mechanism that relies on wgMediators. Requester
entities register a class of goals. Discovery is then performed by submitting goals.
Similarly, providers register first a class of Web Service descriptions and then
publish Web Service descriptions. The link between a class of Web Services and a
class of goals is embedded in a dedicated wgMediator, that uses a set of f-logic rules
to assert similarities. In contrast to the GLUE approach where a central storage
unit is used with a single inference engine, WSDir avoids bottle neck problems
by distributing its Directory Services; therefore, all requests are splitted between
several Directory Services.

The WSPDS system [1] is also a peer-to-peer discovery system that is enabled
with semantic matchmaking. In WSPDS, WSDL files need to be semantically
annotated in order to be available for discovery. This is done by using the WSDL-
S framework8. By doing so, the WSDL-S file doesn’t have to know anything about
the ontology being used by a Web Service description file such as OWL-S or
WSMO. The system is built around a peer-to-peer architecture, where peers act
as servants (acting both as clients and servers). Discovery queries can be sent to
any servant, that will forward the query to its neighbors. All the communication is
done via SOAP messages. WSDir aligns itself very closely to the WSPDS service.
They use both a Web Service interface and they rely on a peer-to-peer architecture.
The main difference is in the work to be done for new ontologies. In WSPDS, each

4See https://jxta.dev.java.net/
5WSMO - Web Service Modeling Ontology, see http://www.wsmo.org/
6See http://flora.sourceforge.net/
7XSB is an open source implementation of tabled-prolog and deductive database system. See

http://xsb.sourceforge.net/
8see http://www.w3.org/Submission/WSDL-S/

202 Chapter 9. Distributed Directories of Web Services

WSDL file needs to be re-written using the WSDL-S framework. In contrast,
WSDir simply needs to add the appropriate matchmaking module.

[5] describes a framework for Semantic Web Service discovery. This frame-
work is based on context specific mappings from a user ontology to a specific
domain ontology. Using these mappings, the user queries are then transformed
into a specific form of query. These queries can be processed by a match mak-
ing engine that takes in consideration the domain ontologies and the stored Web
Services. In the prototype implementation, the match making engine is based on
JESS and JENA, that uses a JESS knowledge base. When service providers store
their services, the Service Registery API parses and converts the OWL ontology
into a collection of JESS facts, and stores them in a knowledge base. This project
unifies multiple ontologies and copes with interoperability issues, making them
transparent for the user. But like the GLUE project, it has a bottle neck archi-
tecture because of its central storing unit. In contrast, WSDir uses a distributed
architecture.

9.11 Summary

WSDir has been tested thoroughly in a real distributed setting spread over dif-
ferent countries. The system has proven to be scalable and very stable. We have
integrated the system in the CASCOM use case scenario. Among others, future
work could enhance the following aspects.

From the security and privacy-awareness point of view, we currently employ
standard security mechanisms for accessing the directory services. In particular, if
a directory service requires protecting messaging from overhearing or if it would
require privacy sensible data as parameters, the access to this Web Service will be
based on HTTPS. In cases where no HTTPS is available, we could couple WSDir
with Guarantor agents [2] spread in the architecture in order to provide a secure
tunneling between agent messages and HTTPS.

Another improvement could define security measures directly within the di-
rectory system by defining specific policies. A policy can be employed to restrict
the right to perform a certain operation on a directory to only those clients that
can provide the right credentials. Using this method, registration of services to a
directory and search operations on directories can be restricted. For example, a
directory service that does not forward any queries pertaining to a Hospital do-
main directory will simply return its entries for the domain and nothing more.
This would be completely transparent to the requestor, as its view of the network
topology is determined by the application of policies of the directory services un-
derneath it.

As mentioned in the usability Section 9.8, administrating and monitoring
WSDir was not a major priority during its development. Although several tools
have been developed to cope with testing issues, the system lacks consistency.
Some of these tools should be enhanced and packaged into a single administra-

References 203

tion package. Beyond that, a complete WSDir editor should be developed to help
administrators setting up easily networks of Directory Services.

References

[1] F. Banaei-Kashani, C.-C. Chen, and C. Shahabi. Wspds: Web Services peer-
to-peer discovery service. In Proceedings of the International Symposium on
Web Services and Applications(ISWS’04), Nevada, June 2004.

[2] R. Bianchi, A. Fontana, and F. Bergenti. A real-world approach to secure
and trusted negotiation in mass. In AAMAS ’05: Proceedings of the fourth
international joint conference on Autonomous agents and multiagent systems,
pages 1163–1164, New York, NY, USA, 2005. ACM Press.

[3] E. Della Valle, D. Cerizza, and I. Celino. The mediators centric approach to
automatic Web Service discovery of glue. In Proceedings of the First Inter-
national Workshop on Mediation in Semantic Web Services: MEDIATE 2005,
Amsterdam, Netherlands, December 2005.

[4] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuin-
ness, B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara.
Bringing semantics to Web Services: The owl-s approach. In Proceedings of
the First International Workshop on Semantic Web Services and Web Process
Composition (SWSWPC 2004), 2004.

[5] J. Pathak, N. Koul, D. Caragea, and Honavar V. A framework for Semantic
Web Services discovery. In ACM, editor, Proceedings of the ACM 7th Intl.
workshop on Web Information and Data Management (WIDM-2005), 2005.

[6] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and J. Miller.
METEOR-S WSDI: A Scalable Infrastructure of Registries for Semantic Pub-
lication and Discovery of Web Services. Journal of Information Technology
and Management, 2004.

Chapter 10

Service Discovery
Luis Botelho, Alberto Fernández, Benedikt Fries, Matthias Klusch, Lino Pereira,
Tiago Santos, Pedro Pais, Matteo Vasirani

10.1 Introduction

Semantic service discovery is the process of locating Web Services based on the
description of their functional and non-functional semantics. Both service oriented
computing and the semantic Web envision intelligent agents to proactively pursue
this task on behalf of their clients. Service discovery can be performed in differ-
ent ways depending on the service description framework, on means of service
selection, and on its coordination through assisted mediation or in a peer-to-peer
fashion.

In the CASCOM system, semantic service discovery is realised by the in-
terplay between a service discovery agent (SDA), a project distributed service
repository (WSDir), and a semantic service matchmaker (SMA). On request, the
SDA searches for relevant services in both the WSDir and in its own local service
repository. Service selection is implemented through means of a rather coarse-
grained keyword-based matching of services as a quick filtering operation by the
SDA which is complemented by a more fine-grained logic-based analysis of service
semantics by the SMA.

This chapter is structured as follows. First, we provide an overview of the
discovery approach based on the interaction between SDA, WSDir, and SMA. This
is followed by a more detailed description of both agents, the SDA and the SMA
with focus on the integrated service matchmaking algorithms. The chapter ends
with a conclusions section.

10.2 Overview

In the CASCOM system, service discovery results of the cooperation between the
requester (Personal Agent), the Service Discovery Agent (SDA) that coordinates

206 Chapter 10. Service Discovery

Figure 10.1: Service selection process in CASCOM

the search process, the WSDIR (a distributed service directory described in Chap-
ter 9), and the Service Matchmaking Agent (SMA) with several integrated match-
making algorithms. The WSDIR stores advertised OWL-S service descriptions
and supports searching for them according to both functional and non-functional
service semantics. The typical semantic service discovery process in CASCOM is
depicted in Figure 10.1.

In step 1, the requester asks the SDA for services or service providers match-
ing specified criteria. In step 2, the SDA extracts the specified service category
from the received request and consults its own service database and the WSDIR
to acquire the services that match the specified category. This coarse-grained step
corresponds to a quick filtering operation that is part of the whole service selection
process.

Next, the SDA matches the services that passed the quick filter with the
remaining criteria specified in the request. Service selection can be entirely per-
formed by the SDA itself based on its internal service repository or consultance
of the distributed service directory (WSDir), or by calling the semantic service
matchmaker SMA depending on the service selection criteria specified in the re-
ceived request.

If all specified criteria involve only simple matching operations (e.g., category
matching) the matching process is done by the SDA only. If the specified criteria
require complex matching processes, such as preconditions and effects matchmak-
ing, subsumption reasoning, or role-based matchmaking, the matching process is
performed by the SMA. If the SDA can solely perform the matching process with-
out the SMA, it sends the resultant set of services to the requester (step 3a). If
it is necessary to involve the SMA, the SDA sends the discovered set of services
together with the original request to the SMA (step 3b).

In the fourth step, the SMA selects the set of services that match according
to the specified criteria. In step 5, the results are returned to the SDA and conse-
quently to the requester. Although context processing is not explicitly represented
in Figure 10.1, each agent acquires relevant context information, possibly from
the context acquisition and management system (see Chapter 13), and uses it to
better adapt its performance to the current situation.

10.3. The CASCOM Service Discovery Agent 207

In summary, the SDA can initially prune the set of available services to those
that match according to a given criteria. The SDA may trigger an additional logic-
based matching process on those initially selected services by the SMA. Finally, the
SDA internal service database and the WSDIR store service descriptions according
to different policies and ensure privacy and security.

Finally, please note that the separation between the SDA, the SMA and the
WSDir, although allowing for better and easier system development and man-
agement, also has the disadvantage of requiring more intense communication of
service descriptions. Besides, it has to be appropriately upgraded to also work for
service discovery in totally distributed networks without service directories.

10.3 The CASCOM Service Discovery Agent

Besides service discovery, the SDA may also be used by service providers to register
their services in the WSDIR or in its database. This is an important feature
because the WSDIR, being a Web Service, does not provide an agent interface.
Therefore, if a service registration agent interface with WSDir is desired, the SDA
may be used. Currently, the SDA offers the following functionalities:

• Request a set of complete service descriptions, service profiles, service pro-
cesses, or service groundings that match the specified criteria

• Register a complete service description, a service profile, a service process or
service grounding.

• Associate a profile, a process, or grounding to a specified service
• Remove a complete service description, or a service profile, service process
or service grounding

• Register or remove a service provider.
The separated manipulation of the several elements of the service description

(service profile, service process and service grounding) is an important feature
because a service can have several profiles or several groundings. Unfortunately,
this separation is possible only when using the SDA internal service database;
The WSDir does not support such separation. The SDA, as all other agents of
the CASCOM service coordination system, uses the FIPA ACL communication
language with FIPA SL contents. Figure 10.2 shows an example of a message used
to request a set of complete service descriptions that match a given service profile,
which is specified through an URL.

The interaction with the Service Discovery Agent is based on the FIPA Re-
quest interaction protocol, which is used for an agent to request another one to
perform some specified action Figure 10.3.

The receiving agent can accept or refuse to perform the requested action.
If the receiver refuses to execute the requested action, the conversation stops,

208 Chapter 10. Service Discovery

(REQUEST

:sender (agent-identifier :name client@cascom)

:receiver (set (agent-identifier :name sda@cascom))

:content "((action

(agent-identifier :name sda@cascom)

(getMatchingServices

:profileURI

\"http://www.daml.org/services/owl-s/1.1/BravoAirProfile.owl\"

:profileLocation \"http//localhost/BravoAirProfile.owl

:useMatchmaker false\")))"

:language fipa-sl

:protocol fipa-request)

Figure 10.2: Example request message for relevant services

otherwise, the receiver must try to execute it. In case of success, the receiver sends
the results to the sender or merely informs it that the action was successfully
executed. In case of failure, the receiver must inform the sender that the execution
failed, and the reasons of failure.

The SDA was completely implemented in JAVA. It uses the OWL-S API1 to
read and process OWL-S service descriptions2. For results of evaluating the SDA
discovery agent, we refer to Chapter 16.

10.4 The CASCOM Service Matchmaker

Within the CASCOM coordination system, the semantic service selection func-
tionality is provided by the Service Matchmaking Agent (SMA). This agent is
constituted by three building blocks, each of them corresponding to a different Se-
mantic Web Service matchmaker: the hybrid service I/O matchmaker OWLS-MX,
the Precondition and Effect matchmaker PCEM, and the Role-based matchmaker
ROWLS.

The OWLS-MX matchmaker (see Section 10.5) performs hybrid service sig-
nature matching through complementing logic-based semantic I/O matching with
syntactic token-based similarity metrics to obtain the best of both worlds - descrip-
tion logics and information retrieval. The Precondition and Effect matchmaker
PCEM (see Section 10.6) exploits pre-conditions and effects of service descriptions,
converting them in logic predicates and using a Prolog reasoner to determine exact
and inferred relations. The Role-based matchmaker ROWLS (see Section 10.7) ex-
ploits the structuring of services in terms of organisational concepts such as roles
and types of social interactions.

1See http://www.mindswap.org/
2Further details about SDA (including a Demo) can be found at http://www.we-b-

mind.org/sda

10.4. The CASCOM Service Matchmaker 209

Figure 10.3: FIPA-request protocol of SDA

10.4.1 Configurations

How to properly integrate these different matchmakers into the CASCOM service
matchmaker? In the project, we implemented the following configurations:

1. Sequential. Using the three matchmakers sequentially, where each match-
maker acts as a pre-filter of the next one in the sequence. A possible config-
uration can be the one depicted in Figure 10.4, where the role-based match-
maker possibly reduces the number of input services of OWLS-MX, which in
turn reduces the number of input services of the PCEM matchmaker. This
order has been chosen on the basis of the computational complexity of the
matchmakers.

2. Concurrent. Running all three matchmakers with the same set of services and
then combining the returned degrees of match with an aggregation function
(Figure 10.5).

At the time the SMA is called by another agent, the individual configuration
of utilizing the matchmaking modules can be chosen by setting a special parameter
in the request message.

210 Chapter 10. Service Discovery

Figure 10.4: Sequential configuration

Sequential Matching by the SMA. A possible configuration is executing firstly
the role-based matchmaker. The role-based matchmaker assigns to every service
a real valued number between 0 and 1.

Then, a reduced set of these services are given to OWLS-MX as input. This
reduced set can be composed by

• All the services which have a role-based degree of match greater than a
threshold

• The first K services of the ordered set, where K is fixed
• The first M services of the ordered set, where M is a percentage of the
original set size

OWLS-MX performs the matchmaking with this reduced set of services, and
returns an ordered list of services, depending of the parametrization of the match-
maker. There are five possible instantiations of OWLS-MX, M0 to M4, where M0
stands for a purely logic-based semantic matching, while the others instantiations
additionally use a token-based syntactic similarity metric (namely, the known
“Loss-of-information”, “Extended Jacquard”, “Cosine”, and “Jensen-Shannon di-
vergence” based similarity measure). The configurable parameters comprise the
minimum degree of match, the matchmaker type and, in case of use of syn-
tactic similarity metric, the syntactic similarity threshold. The minimum degree
of match can be EXACT, PLUG IN, SUBSUMES, SUBSUMED BY or NEAR-

10.4. The CASCOM Service Matchmaker 211

EST NEIGHBOUR, while the syntactic similarity threshold is a real value used
only for SUBSUMED BY or NEAREST NEIGHBOUR match.

Finally, the output of OWLS-MX is passed to the PCEM matchmaker as
input. Since this matchmaker does not return a real valued degree of matching,
the SMA calculates the (final) matching value as follows (cf. Section 10.6)

(Precondition Exact Matching ∨ Precondition Reasoning Matching) ∧
(Effect Exact Matching ∨ Effect Reasoning Matching)

The return value of this formula (TRUE or FALSE) is used to create the final
returned set of services. We have chosen this order of the matchmakers because
the computational complexity of the role-based matchmaker ROWLS is lower than
the computational complexity of OWLS-MX, which is in turn lower than the
computational complexity of the PCEM matchmaker. Hence, the matchmaker
that is supposed to work with the greatest set of services is the role-based one
(ROWLS); OWLS-MX will work with a smaller set of services, and PCEM with
an even smaller one.

The parameters that need to be set in this configuration of the SMA are

• The filter parameter of the role-based matchmaker ROWLS (threshold or K
or M);

• The type of OWLS-MX matchmaker (M0, M1, M2, M3, M4), the minimum
degree of match and the similarity threshold.

Aggregated Matching by the SMA. Another possible configuration of the SMA
is the execution of all three matchmakers in parallel with the same set of services,
and the aggregation of the results by means of special aggregation function.

For this purpose, it is necessary that every matchmaker assigns a matching
value for every service. However, only the role-based matchmaker returns a real
number between 0 and 1 as degree of match, while a degree of match for the
PCEM matchmaker can be generated applying the above logic formula (returning
a value equal to either 0 or 1). The OWLS-MX, on the other hand, returns the
degree of match as a category, which can be EXACT, PLUG IN, SUBSUMES,
SUBSUMED BY and NEAREST NEIGHBOUR, while all the other services that
are not returned can be considered having a degree of match equal to FAIL. So,
for the OWLS-MX it is necessary to assign to every category, a real valued number
between 0 and 1 (for example, EXACT = 1, PLUG IN = 0.7, SUBSUMES = 0.5,
SUBSUMED BY = 0.3, NEAREST NEIGHBOUR = 0.1, FAIL = 0).

Having assigned a degree of match for every service matched by every match-
maker, it is possible to combine the three results with an aggregation function,
and order the original set of services on the basis of the aggregation value. Possi-
ble aggregation functions are the minimum, the product, the weighted product or
more complex ones.

The parameters that need to be set in this configuration are

212 Chapter 10. Service Discovery

Figure 10.5: Aggregation of the three matchmakers’ results by the SMA

• The type of OWLS-MX matchmaker (M0, M1, M2, M3, M4), the minimum
degree of match and the similarity threshold

• The aggregation function

Predefined Configurations. In order to make easier to select the parameters
of the different components of the SMA, several configurations have been pro-
grammed, which can be selected whenever the getMatchingServices action is re-
quested (through the FIPA-Request protocol). Table 10.1 shows the predefined
configurations.

10.4. The CASCOM Service Matchmaker 213

SMA ROWLS OWLS-MX

Param. Mode thres. k % type min. sim. Aggr.
filter filter DOM thres. fun.

Default seq. - - 60 M0 exact - -
Exact seq. 1 - - M0 exact - -
Plugin seq. 0.7 - - M1 plugin - -
Sub seq. 0.5 - - M2 sub - -
Sub-by seq. 0.3 - - M3 sub-by 0.5 -
NN 1 seq. - 20 - M4 nn 0.2 -
NN 2 seq. 0.3 - - M2 nn 0.5 -
Aggr. 1 aggr. - - - M1 nn 0.7 Luk.
Aggr. 2 aggr. - - - M2 nn 0.5 prod
Aggr. 3 aggr. - - - M3 nn 0.3 min
Aggr. 4 aggr. - - - M4 nn 0.5 weigh
OwlsMx - - - - M4 nn 0.5 -
Rowsl+
OwlsMx seq. 0.4 - - M4 nn 0.5 -
OwlsMx+
Pcem seq. - - - M4 nn 0.5 -

Table 10.1: SMA predefined configurations. Luk. stands for Lukasiewicz t-norm
(max{0, x+ y − 1}), while weigh stands for weighted sum of the matching values
returned by the 3 matchmakers (0.5 · OWLSMX + 0.3 · ROWLS + 0.2 · Pcem).
The minimum degree of match nn stands for nearest-neighbour, sub stands for
subsumes, while sub-by stands for subsumed-by

For each possible configuration, the values for the different parameters of its
internal components are reported. In case that no parameter is provided in the
invocation of the matchmaking, a default configuration is selected.

10.4.2 SMA Interface

The communication protocol followed by the SMA is the FIPA-Request protocol.
Only one action can be requested to the SMA, getMatchingServices. It accepts as
parameter a URI of a OWL-S service profile as query (request), one or more service
profiles (services) and, optionally, a parameter that defines the configuration of the
three matchmakers (matchType). Figure 10.6 shows an example of a message sent
to the SMA.

After having received the message, the SMA performs the match of the re-
quest against the list of service descriptions and, in case of successful execution of

214 Chapter 10. Service Discovery

(REQUEST

:sender(agent-identifier :name sda@host1:1099/JADE

:addresses (sequence http://host1:7778/acc))

:receiver(set(agent-identifier :name sma@host2:1099/JADE))

:content "(

(action(agent-identifier :name sda@host1:1099/JADE

:addresses (sequence http://host2:7778/acc))

(getMatchingServices

:request "http://query.owl"

:services (sequence "http://service1.owl"

"http://service2.owl"..."http://serviceN.owl")

:matchType DEFAULT)))"

:language fipa-sl

:ontology cascom-ontology

)

Figure 10.6: Request message to SMA

(INFORM

:sender(agent-identifier :name sma@host2:1099/JADE

:addresses (sequence http://host2:7778/acc))

:receiver(set(agent-identifier :name sda@host1:1099/JADE))

:content "(

(result

(action(....))

(sequence "http://service2.owl"

"http://serviceN.owl"..."http://service1.owl")))"

:language fipa-sl

:ontology cascom-ontology

)

Figure 10.7: Inform message from SMA

the matchmaking operation, it returns a sorted set of services (Figure 10.7).

10.5 Hybrid Semantic Service Matchmaker OWLS-MX

One option of the CASCOM matchmaker agent SMA to find relevant OWL-S
services in the semantic Web is through its OWLS-MX matchmaker module.
This module exploits both logic-based reasoning and content-based information
retrieval (IR) techniques for OWL-S service profile I/O matching. In the follow-
ing, we define the hybrid semantic filters of OWLS-MX, the generic matching
algorithm, and its five variants according to the used IR similarity metrics. Famil-
iarity with OWL-S and description logics is assumed. More details and evaluation

10.5. Hybrid Semantic Service Matchmaker OWLS-MX 215

results can be found in [4].

10.5.1 Hybrid Matching Filters

OWLS-MX computes the degree of semantic matching for a given pair of service
advertisement and request by successively applying five different filters exact,
plug in, subsumes, subsumed-by and nearest-neighbor. The first three are
logic-based only whereas the last two are hybrid due to the required additional
computation of syntactic similarity values.

Let T be the terminology of the OWLS-MX matchmaker ontology specified
in OWL-DL (SHOIN(D)); CTT the concept subsumption hierarchy of T ; LSC(C)
the set of least specific concepts (direct children) C′ of C, i.e. C′ is immediate sub-
concept of C in CTT ; LGC(C) the set of least generic concepts (direct parents)
C ′ of C, i.e., C′ is immediate super-concept of C in CTT ; SimIR(A,B) ∈ [0, 1]
the numeric degree of syntactic similarity between strings A and B according to
chosen IR metric IR with used term weighting scheme and document collection,
and α ∈ [0, 1] given syntactic similarity threshold; .= and � denote terminological
concept equivalence and subsumption, respectively.

Exact Match. Service S exactly matches request R⇔ ∀ inS ∃ inR: inS
.= inR ∧

∀ outR ∃ outS : outR
.= outS . The service I/O signature perfectly matches

with the request with respect to logic-based equivalence of their formal se-
mantics.

Plug-in Match. Service S plugs into request R ⇔ ∀ inS ∃ inR: inS � inR ∧ ∀
outR ∃ outS : outS ∈ LSC(outR). Relaxing the exact matching constraint,
service S may require less input than it has been specified in the request R.
This guarantees at a minimum that S will be executable with the provided
input iff the involved OWL input concepts can be equivalently mapped to
WSDL input messages and corresponding service signature data types. We
assume this as a necessary constraint of each of the subsequent filters.

In addition, S is expected to return more specific output data whose
logically defined semantics is exactly the same or very close to what has been
requested by the user. This kind of match is borrowed from the software engi-
neering domain, where software components are considered to plug-in match
with each other as defined above but not restricting the output concepts to
be direct children of those of the query.

Subsumes Match. Request R subsumes service S ⇔ ∀ inS ∃ inR: inS � inR

∧ ∀ outR ∃ outS : outR � outS. This filter is weaker than the plug-in
filter with respect to the extent the returned output is more specific than
requested by the user, since it relaxes the constraint of immediate output
concept subsumption. As a consequence, the returned set of relevant services
is extended in principle.

216 Chapter 10. Service Discovery

Subsumed-by Match. Request R is subsumed by service S⇔ ∀ inS ∃ inR: inS �
inR ∧ ∀ outR ∃ outS : (outS

.= outR ∨ outS ∈ LGC(outR)) ∧ SimIR(S,
R) ≥ α. This filter selects services whose output data is more general than
requested, hence, in this sense, subsumes the request. We focus on direct par-
ent output concepts to avoid selecting services returning data which we think
may be too general. Of course, it depends on the individual perspective taken
by the user, the application domain, and the granularity of the underlying
ontology at hand, whether a relaxation of this constraint is appropriate, or
not.

Logic-Based Fail. Service S fails to match with request R according to the above
logic-based semantic filter criteria.

Nearest-Neighbor Match. Service S is nearest neighbor of request R ⇔ ∀ inS

∃ inR: inS � inR ∧ ∀ outR ∃ outS : outR � outS ∨ SimIR(S, R) ≥ α.

Fail. Service S does not match with request R according to any of the above filters.

The OWLS-MX matching filters are sorted according to the size of results
they would return, in other words according to how relaxed the semantic matching.
In this respect, we assume that service output data that are more general than
requested relaxes a semantic match with a given query. As a consequence, we
obtain the following total order of matching filters

Exact < Plug-In < Subsumes < Subsumed-By <
Logic-based Fail < Nearest-neighbor < Fail.

10.5.2 OWLS-MX Matching Algorithm

The core idea of the OWLS-MX matchmaker is to complement crisp logic-based
with approximate IR-based matching where appropriate to improve the retrieval
performance. It takes any OWL-S service as a query, and returns an ordered set of
relevant services that semantically match the query each of which annotated with
its individual degree of logical matching, and the syntactic similarity value. The
user can specify the desired degree, and individual syntactic similarity threshold.

For each given service query, OWLS-MX first classifies the respective service
I/O concepts into its local matchmaker ontology. For this purpose, it is assumed
that the type of computed terminological subsumption relation determines the
degree of semantic relation between pairs of input and concepts.

Auxiliary information on whether an individual concept is used as an input or
output concept by a registered service is attached to this concept in the ontology.
The respective lists of service identifiers are used by the matchmaker to compute
the set of relevant services that match the given query according to the five hybrid
filters.

In particular, OWLS-MX does not only pairwisely determine the degree of
logical match but syntactic similarity between the conjunctive I/O concept ex-
pressions in OWL-Lite. These expressions are built by recursively unfolding each

10.5. Hybrid Semantic Service Matchmaker OWLS-MX 217

query and service input (output) concept in the local matchmaker ontology. As a
result, the unfolded concept expressions are including primitive components of a
basic shared vocabulary only.

Any failure of logical concept subsumption produced by the integrated de-
scription logic reasoner of OWLS-MX will be tolerated, if and only if the degree of
syntactic similarity between the respective unfolded service and request concept
expressions exceeds a given similarity threshold.

10.5.3 OWLS-MX Variants

We implemented different variants of the generic OWLS-MX algorithm, called
OWLS-M1 to OWLS-M4, each of which uses the same logic-based semantic fil-
ters but different IR similarity metric SIMIR(R,S) for content-based service I/O
matching. Based on the experimental results of measuring the performance of sim-
ilarity metrics for text information retrieval provided by Cohen et.al (2003), we
selected the top performing ones to build these variants. The variant OWLS-M0
performs logic-based only semantic service I/O matching.

OWLS-M0. The logic-based semantic filters Exact, Plug-in, and Subsumes are
applied as defined above, whereas the hybrid filter Subsumed-By is utilized
without checking the syntactic similarity constraint.

OWLS-M1 to OWLS-M4. The hybrid semantic matchmaker variants OWLS-M1,
OWLS-M3, and OWLS-M4 compute the syntactic similarity value SimIR

(outS , outR) by use of the loss-of-information measure, extended Jacquard
similarity coefficient, the cosine similarity value, and the Jensen-Shannon
information divergence based similarity value, respectively.

10.5.4 Implementation

We implemented the OWLS-MX matchmaker version 1.1 in Java using the OWL-S
API 1.1 beta with the tableaux OWL-DL reasoner Pellet developed at the univer-
sity of Maryland3. As the OWL-S API is tightly coupled with the Jena Semantic
Web Framework, developed by the HP Labs Semantic Web research group4, the
latter is also used to modify the OWLS-MXmatchmaker ontology. The OWLS-MX
matchmaker is available as open source from the portal semwebcentral.org5.

The results of the evaluation of OWLS-MX are provided in Chapter 16.

3cf. http://www.mindswap.org
4cf. http://jena.sourceforge.net/
5http://projects.semwebcentral.org/projects/owls-mx/

218 Chapter 10. Service Discovery

10.6 Service Precondition and Effect Matchmaker
PCEM

Another option of the CASCOM matchmaker agent to determine the degree to
which two service descriptions semantically match is to logically compare their
pre-conditions and effects by means of its Pre-conditions and Effects Matchmaker
(PCEM) module.

10.6.1 Motivation

As mentioned above, the main goal of service matchmaking algorithms is to deter-
mine the degree to which two service descriptions match. In general, matchmaking
algorithms receive a description that represents the requested service, and a set
of published service descriptions; and returns the degree to which each of the
published service descriptions matches the request. Service matchmaking is essen-
tial for service coordination because it helps select services that better satisfy the
specified requirements.

Currently, most of the matchmaking algorithms, like LARKS (Language for
Advertisement and Request for Knowledge Sharing) [13], the OWL-S/UDDI [8],
the RACER [6], the MaMaS (MatchMaker-Service) [7], the HotBlu [2] and the
OWLS-MX (Hybrid OWL-S Web Service Matchmaker) [4] take into account the
input parameters, the output parameters and the categories of the service descrip-
tions being compared.

However, considering only their inputs, outputs and categories is often not
enough for flexible service matchmaking. Sometimes, it is better to consider other
service characteristics, such as service preconditions and service effects. Service
matchmaking using service preconditions and effects may bring about three main
advantages. First, the matching process may be much more precise than using
inputs, outputs and categories alone. Matchmaking using inputs and outputs pay
attention only to the classes of the service inputs and outputs and, at most, to
constraints relating these parameters (see, for instance [13]). Since it is perfectly
possible to have two services with input and output parameters of the same class
and satisfying the same constraints, that play completely different roles, this simple
matching process is not an accurate one.

The same kind of argument applies to the service categories. In most cases,
service selection aims at identifying services that achieve a given effect if they are
executed in some specified circumstances. This is exactly the information provided
by service preconditions and effects. Second, it is not always necessary to know all
the service input and output parameters. Not all services that achieve some desired
effect have the same set of input and output parameters. For example, a given book
selling service may require as input parameters the book name and the author
name, while another one may also require the client’s identification. If the request
specifies only the book name and the author name, the two mentioned services

10.6. Service Precondition and Effect Matchmaker PCEM 219

would yield different matching degrees with the request. However, considering the
user’s actual needs, maybe each of them is as good as the other.

Third, using preconditions and effects allows the matching algorithm to rea-
son about the compared preconditions and the compared effects. Usually, it is not
necessary to find a service that achieves exactly the specified effect. Most often,
like in plug-in IOPE matching (IOPE - Inputs, Outputs, Preconditions and Ef-
fects), it is enough to find a service whose effects imply the specified effects. By the
same token, it is often enough to find a service whose preconditions are implied
by the specified preconditions.

Only (additional) preconditions and effects matchmaking may take the men-
tioned facts into account. For example, if the client wants to find a service that
can radiograph his finger, it is perfectly acceptable to select a service that can
radiograph the client’s hand or even the client’s limbs. Since finger is neither a
subclass of hand nor a subclass of limb, inputs, outputs and categories matchmak-
ing algorithms would not select the service that radiographs hands or the service
that radiograph limbs.

Given the described motivation, the CASCOM project decided to include pre-
conditions and effects matchmaking in its service matchmaking agent SMA. This
section describes the PCEM (Pre Conditions and Effects Matchmaking) compo-
nent that implements this type of matchmaking process.

10.6.2 PCEM Architecture

This section describes the architecture of the developed preconditions and effects
matchmaking component PCEM as shown in Figure 10.8.

The architecture is composed of three main modules. The first module (“Mod-
ule 1 — Component Engine”) controls the two other modules and determines the
global matching degree of the service request with each of the available service
descriptions. A detailed description of this module can be found in the section
“Component Engine Module”.

The second module (“Module 2 — Languages Processing”) is responsible
for language processing. It converts OWL ontologies into Prolog ontologies and
OWL-S preconditions and effects into Prolog preconditions and effects. A detailed
description of this module is presented in section “Languages Processing Module”.

The third module (“Module 3 — Preconditions and Effects Matchmaking”)
implements the actual preconditions and effects matchmaking algorithms. It per-
forms both exact matchmaking (“Pre-conditions and Effects Exact Match”) and
matchmaking using reasoning (“Pre-conditions and Effects Reasoning-based
Match”). The latter uses both general purpose inference rules (e.g., deduction)
and domain specific inference rules valid for certain service effects or for certain
preconditions. These matchmaking algorithms are described in the section “Pre-
conditions and Effects Matching”.

220 Chapter 10. Service Discovery

Figure 10.8: PCEM architecture

10.6.3 PCEM Engine Module

The PCEM Engine module is responsible for controlling the other two modules
and for determining the final matching degree of the matched service descriptions.
All matchmaking requests sent to the component are received by the Component
Engine. After receiving a matchmaking request the module retrieves the OWL-S
description that represents the desired service specification and the set of OWL-S
descriptions of the published available services. The descriptions in the received
request are sent to the Languages Processing module where the Prolog language
descriptions are generated.

The next step consist of sending a request to the Preconditions and Effects
Matchmaking module for determining four partial matching degrees for each of the
received service descriptions: exact preconditions matching degree, exact effects
matching degree, preconditions reasoning matching degree and effects reasoning
matching degree. After receiving the four partial matching degrees for all service
descriptions, the Component Engine computes the global matching degree for

10.6. Service Precondition and Effect Matchmaker PCEM 221

1: <owl:Class rdf:ID="RightIndexFinger">

2: <rdfs:subClassOf rdf:resource="#RightFinger">

3: <rdfs:subClassOf>

4: <owl:Restriction>

5: <owl:onProperty rdf:resource="#subPartOf">

6: <owl:allValuesFrom rdf:resource="#RightHand">

7: </owl:Restriction>

8: </rdfs:subClassOf>

9: </owl:Class>

Figure 10.9: OWL class representation

subClassOf(rightFinger:rightIndexFinger, finger:rightFinger).

subPartOf(rightFinger:rightIndexFinger, hand:rightHand).

Figure 10.10: OWL class representation in Prolog

each received service description and returns the list containing the received ser-
vice descriptions and the corresponding degrees to which they match the received
specification of the desired service. Unfortunately, the current implementation of
the PCEM component does not sort the returned list of service descriptions by
matching degree.

10.6.4 PCEM Languages Processing Module

The CASCOM service coordination layer, including the Service Matchmaker Agent
SMA, uses the W3C (World Wide Web Consortium) standard OWL and de-facto
standard OWL-S respectively for ontology and service descriptions. Often the
representation languages used internally in the several service coordination agents
differ from OWL and OWL-S therefore it is necessary to perform language con-
versions. Since there is no agreed upon standard for describing preconditions and
effects available yet, apart from the proposal of (undecidable) SWRL, the PCEM
uses Prolog as its internal representation language and reasoning tool. Therefore
it is necessary to convert relevant OWL and OWL-S representations involved in
any service description into the component internal Prolog representations.

OWL-S service descriptions specify, among many other things such as the
already mentioned preconditions and effects, the service input and output param-
eters and their classes. The service parameter classes are described in domain
ontologies which are represented in OWL. Therefore, it is necessary to convert
the OWL representations pertaining to the classes of service parameters into the
component internal Prolog format. The OWL2Prolog processing mechanism of the
Languages Processing module performs those conversions.

Figure 10.10 shows the Prolog internal representations generated from the
OWL representation presented in Figure 10.9.

222 Chapter 10. Service Discovery

service(preconditions,
[availableBook(book:BookName),
registeredUser(number:UserID)]).

service(effect,
[requestedBook(book:BookName),
not(availableBook(book:BookName))]).

Figure 10.11: Final preconditions and effects representation in Prolog

OWL-S service description language does not directly support the represen-
tation of service preconditions and effects [7]. Instead, the OWL-S specification
suggests that conditions (including preconditions and effects) should be repre-
sented in SWRL or in PDDL among other possibilities. Since one of the most
important uses of preconditions and effects is service composition planning, the
project decided to choose PDDLXML, a project brewed XML surface syntax of
PDDL, because PDDL is the lingua franca of the planning algorithms used in
service composition. The OWL-S/PDDLXML processing mechanism of the Lan-
guages Processing module converts PDDLXML representations of preconditions
and effects into the chosen internal Prolog representations. The conversion use the
OWLS2PDDL converter developed at DFKI for the OWLS-XPlan composition
planner (cf. Chapter 11).

<and>
<pred name="AvailableBook">
<param>?Book</param>

</pred>
<pred name="RegisteredUser">
<param>?IDUser</param>

</pred>
</and>

<and>
<and>
<pred name="RequestedBook">
<param>?Book</param>

</pred>
</and>
<not>
<pred name="AvailableBook">
<param>?Book</param>

</pred>
</not>

</and>

(a) Preconditions (b) Effect

Table 10.2: OWL-S service preconditions and effects in PDDXML

Figure 10.11 shows the Prolog internal representations of the preconditions
and effects that were generated from the OWL-S/PDDLXML representations of
Table 10.2.

10.6. Service Precondition and Effect Matchmaker PCEM 223

10.6.5 Preconditions and Effects Matching

The PCEM component performs two kinds of matching: exact matching and
reasoning-based matching. Since these matching operations are done in Prolog, the
module directly benefits from the Prolog built in pattern matching and reasoning
capabilities. Preconditions and effects exact matching of two service descriptions
(the desired service specification and the available service description) checks if the
preconditions of one of the service descriptions exactly match the preconditions of
the other service descriptions and if the effects of one of the service descriptions
exactly match the effects of the other service description.

The exact matching of two propositions (representing either two precondi-
tions or two effects) checks if there is a possibly empty variable substitution that,
when applied to one or both propositions, results into two equal expressions. This
operation is entirely performed by the matching operator of the Prolog language.
As would be expected, reasoning-based matching is more complex than exact
matching. Reasoning-based matching uses general inference rules (i.e., all deduc-
tion inference rules) and domain specific inference rules. All general inference rules
are applicable to all kinds of effects and preconditions. Domain specific rules are
applicable only to some preconditions or effects.

General purpose inference is performed by the built in Prolog reasoning mech-
anism using resolution and the closed world assumption. Domain specific inference
rules are explicitly represented in Prolog and uniquely identified by rule identifiers.
These rule identifiers are used to specify the domain specific rules that may be
used with each precondition or effect. The representation of the domain specific
inference rules and the specification of such rules that may be used with each
precondition or effect integrate the domain specific knowledge.

The following example will help understand the developed reasoning algo-
rithm, when domain specific inference rules are used. The example request is a
service that radiographs the client right hand index finger. The only available
service in the example is a service that radiographs hands. Using conventional
inputs/outputs matchmaking algorithms, or using exact matching of effects, the
service description does not match the request. However the two effects will be
found to match, if the matching algorithm uses the domain specific inference rule
according to which, if a given service causes a certain effect on a specified object
then it will cause the same effect on any of the object subparts.

The following paragraphs provide a more formal account of the way service
invocations, service effects and preconditions, and domain specific inference rules
are represented and used by the reasoning-based preconditions and effects match-
ing algorithm. In the following explanations, L is a first order logic language whose
terms are used to represent service invocations and whose propositions are used
to represent service effects and preconditions. The relationship between services
and their effects and preconditions as well as domain specific inference rules are
represented in the first order language ML, which is a meta language whose terms
include the propositions and terms of L.

224 Chapter 10. Service Discovery

Figure 10.12: Domain specific inference rule 1

ML possesses several predicates, among them ServiceEffect/2, ServicePrecon-
dition/2, Class/2, and SubPartOf/2. ServiceEffect(α,φ) means that φ is an effect
of the service represented by α. α is a term of L representing a service invocation.
φ is a proposition of L representing a service effect. ServicePrecondition(α, φ)
means that φ is a precondition of the service represented by α . Class(ρ,τ) means
that τ is the class of ρ. ρ is a term of L, while τ is an atom of ML representing
the name of a class of a given domain. Finally, SubPartOf(ρ, σ) means that σ is
a subpart of ρ. ρ and σ are both terms of L.

Using ML, the relevant aspects of the available service are represented through
the following expressions:

1. ServicePrecondition(XRayService(hand), Class(hand, Hand))

2. ServiceEffect(XRayService(hand), Radiographed(hand))

In these expressions, hand is the input parameter of the XRayService service
and “Hand” is the name of a class that represents hands. The requested effect is
represented in the expression ServiceEffect(s, radiographed(RightIndexFinger)) in
which s is an uninstantiated variable representing the desired service and RightIn-
dexFinger is a constant representing the specific finger that has to be radiographed.
The informally stated domain specific inference rule is formally represented in Fig-
ure 10.12.

In the rule represented in Figure 10.12, —x/y represents the expression that
is obtained by replacing x with y. Assuming the matching algorithm learns that
the rule in Figure 10.12 may be applied to the effect Radiographed/1 of the x
ray service, it will apply the rule replacing its variables with their specific val-
ues in the described example as follows: α = XRayService(hand), x = hand,
τ = Hand, i = RightHand, φ = Radiographed (hand), y = RightIndexFinger,
φ—hand/RightIndexFinger = Radiographed (RightIndexFinger).

The rule premise ∃i Class(i, Hand) ∧ SubPartOf(i, RightIndexFinger) is sat-
isfied since the right hand (i = RightHand) is an instance of the class Hand and the
right hand index finger (RightIndexFinger) is a subpart of the right hand. Using
these replacements, the instantiated conclusion of the inference rule is ServiceEf-
fect(XRayService(RightIndexFinger), Radiographed(RightIndexFinger)), which is
exactly the required effect. The rule in Figure 10.12 is translated into Prolog as
shown in Figure 10.13.

10.6. Service Precondition and Effect Matchmaker PCEM 225

rule(1, (serviceEffect(ReplacedService, ReplacedEffect):-
servicePrecondition(Service, class(Object, Class)),
serviceEffect(Service, Effect),
class(I, Class),
subPartOf(I, Part),
replace(Part, Object, Effect, ReplacedEffect),
replace(Part, Object, Service, ReplacedService))

).

Figure 10.13: Prolog Representation of domain specific inference rule 1

validation(service(xRayService(hand:Hand)),
serviceEffect(radiographed(hand:Hand),
validRule(1)).

Figure 10.14: Inference rule validation clause

The Prolog representation of domain specific inference rules uses predicate
rule/2. The first argument of rule/2 is the rule identifier; and its second argument
is a Prolog clause representing the rule itself. The rule conclusion is represented by
the head of the clause, and the rule premises are represented by the clause body.
With this design choice, the reasoning-based matching algorithm just has to assert
the clauses representing domain specific rules and then rely on the Prolog built
in inference mechanism to apply the rules to the desired effects and preconditions
whenever necessary.

The inference rule being used in the example is not a general rule, in the sense
that it cannot be applied to all preconditions and effects. For instance, it cannot
be applied to a car painting service. If a car is painted blue, the car engine will
not become blue, although the car engine is a subpart of the car. A given domain
specific inference rule may only be applied to specified effects or preconditions.
Such specifications are represented in Prolog through the predicate validation/3.
The first argument of the validation/3 predicate is the service specification. The
second argument is the specification of the service effect or precondition to which
the rule is applicable. The third argument is the rule identifier of the applicable
rule.

The validation/3 clause in Figure 10.14 states that rule number 1 may be ap-
plied to the effect radiographed(hand:Hand) of the service
xRayService(hand:Hand). The hand:Hand argument means that the service in-
put parameter Hand is of class hand.

226 Chapter 10. Service Discovery

10.6.6 Implementation

The PCEM component was developed using the OWL-S API [12], which was
extended to enable processing PDDLXML conditions (in conditioned instructions),
preconditions and effects for OWL-S processing; the Protege OWL-API [5] for
OWL processing; and the tuProlog [9], a Java based Prolog, for the matchmaking
algorithm. Prolog was chosen mainly because of its built in pattern matching and
reasoning capabilities.

For results of evaluating the PCEM matchmaker, we refer to Chapter 16.

10.7 Role-Based Matchmaker ROWLS

In the following, we briefly describe the third alternative to semantic service match-
ing used by the service matchmaker agent of the CASCOM system: the ROWLS
matching component.

10.7.1 Motivation

In order to improve both the efficiency and the usability of agent-based service-
oriented architectures, common organisational concepts such as social roles and
types of interactions can be exploited to further characterise the context that
certain semantic services can be used in.

The CASCOM abstract architecture conceives services to be delivered essen-
tially by agents. An agent could provide an implemented Web Service by wrapping
the service within an ACL interface in such a way that any agent can invoke its
execution by sending the adequate (request) message.

However, agents are not only able to execute a service but can also engage
in different types of interaction with that service. For example, in the healthcare
assistance scenario, an agent providing a second opinion service should not only
be able to provide a diagnostic; it may also be required to explain it, give more
details, recommend a treatment, etc.

This means that the service provider is supposed to engage in several different
interactions during the provision of a service. Thus, if a physician or a patient
needs one or more second opinions, they should look for agents that include those
additional interaction capabilities around the “basic” second opinion service. In a
certain sense, this approach is similar to the abstraction that an object makes by
providing a set of methods to manipulate the data it encapsulates. In this case,
the agent provides a set of interaction capabilities based on the service.

Taking in consideration roles and interaction types can improve the efficiency
of the matchmaking process, for example by previously filtering out those services
that are incompatible in the terms of roles and interactions.

Also the effectiveness of the matchmaking process can be enhanced by includ-
ing information regarding roles and interactions. For instance, a diagnosis service
may require symptoms and medical records as inputs and produce a report as

10.7. Role-Based Matchmaker ROWLS 227

Figure 10.15: Partial interaction type ontology

output. However, the service functionality can be achieved either (i) by actually
generating the report, (ii) by retrieving a previously done or (iii) by a brokering
service to contact other (external) healthcare experts. In all the three cases the
input and output are the same, but the role the service plays in the corresponding
interactions is different.

10.7.2 Interaction Modelling

In order to develop role-based extensions to service matchmaking mechanisms, a
subset of the RICA organisational model described in [11] and [10] was used.

Setting out from this basis, the first step was analysing different use case of
the application domain scenario. For each use case, the types of social interaction
as well as the roles (usually two) that take part in that interaction have been
identified. The next step is an abstraction process in which the social (domain)
roles/interactions are generalised into communicative roles/interactions.

The result of this analysis is a basic ontology of types of interactions and roles
that take part in those interactions. Figure 10.15 shows an example, where the
SecondOpinion interaction can be generalized in a MedicalAdvisement interaction
and then in an Advisement interaction, in which the Advisor informs the Advisee
about his beliefs with the aim of persuading the Advisee of the goodness of these
beliefs. This ontology, and especially its generic (communicative) part, will be used
in the service description and matchmaking extensions.

228 Chapter 10. Service Discovery

Main Role Necessary Roles
Advisor Informer

Explainer -
Informer -

Table 10.3: Second Opinion role-based service advertisement

10.7.3 Role-Based Service Advertisements

Role-based service descriptions comprise two kinds of information related to the
interactions in which the service provider agent can engage:

1. the main role played in the interaction, e.g. the advisor role in the second
opinion service;

2. a set of roles that may be necessary to be played by the requester for the
correct accomplishment of the service. For instance, in an advisement in-
teraction of a second opinion service, the provider may need to initiate an
information exchange interaction in which it plays the informee role, and the
requester plays the informer role. Necessary roles are given by a formula in
disjunctive normal form, i.e. a disjunction of conjunctions of roles.

These two fields are repeated for each main role the service can play. A service
advertisement can be graphically represented by a table with two rows, in which
each column contains the main role (first row) and the necessary roles (second
row). Table 10.7.3 shows a role-based service advertisement for the second opinion
example.

10.7.4 Role-Based Service Requests

In the case of a service requests, a query comprises two elements:

1. Main roles searched. Although one role will be enough in most cases, more
complex search patterns are allowed, in which the provider is able to play
more than one role. As in the case of service advertisements, this expression
comes as a formula in disjunctive normal form.

2. A set of roles that define the capabilities of the requester. These are roles the
requester is able to play. This information is important if the provider requires
interaction capabilities from the requesters. For example, the requester of a
second opinion can inform that it is able to provide information (informer)
if needed.

Table 10.4 shows a role-based service request for the second opinion example.
The request specifies that the requester is able to play the informer and explainer
roles if necessary.

10.7. Role-Based Matchmaker ROWLS 229

Main Roles Advisor ∧ Explainer
Capabilities Informer,Explainer

Table 10.4: Second Opinion role-based service request

Notice that this approach is compatible with services that do not make use
of the role-based extensions in their description. In case a service description does
not include the role-based approach, it is assumed that it has a main role Commu-
nicator (the top and most general concept of the ontology) and no necessary roles
are required from the requester. If the request does not include a role description,
it is assumed that the requester is not interested in the role-based approach and
the matchmaker will omit that phase in the service matching process.

10.7.5 Role-based Service Matching Algorithm

Within the CASCOM project, a role-based matching algorithm has been devel-
oped, which takes as input a service request (R) and a service advertisement (S),
and returns the degree of match (dom) between them. Essentially, it searches the
role in the advertisement S that best matches the one in the query (R).

The matching algorithm is built around the matching between two roles in the
taxonomy. The semantic match of two roles RA (advertisement) and RQ (query)
is a function that depends on two factors:

1. Level of match. This is the (subsumption) relation between the two concepts
(RA, RQ) in the ontology. A subset of the OWLS-MX filters is considered,
just the same levels of match proposed in [8]:

(a) exact : if RA = RQ

(b) plug-in : if RA subsumes RQ

(c) subsumes : if RQ subsumes RA

(d) fail : otherwise

2. The distance (number of arcs) between RA and RQ in the taxonomy.

All roles have the same importance and the generality (depth in the taxon-
omy) of the roles is not relevant. Both criteria are combined into a final degree of
match which is a real number in the range [0, 1], so service providers can be se-
lected by simply comparing these numbers. In this combination, the level of match
always has higher priority: the value representing the degree of match is equal to
1 in case of an exact match, it varies between 1 and 0.5 in case of a plug-in match,
rests between 0.5 and 0 in case of a subsumes match, and it is equal to 0 in case of
a fail. Actually, any triple would work but 0.5 seems reasonable to keep the same
scale in both levels (plug-in and subsumes).

230 Chapter 10. Service Discovery

There are infinite functions that fulfil that precondition. One equation that
implements this behaviour is that in equation 10.1, where ‖ RA, RQ ‖ is the
distance between RA and RQ (depth(RA) − depth(RQ)) in the role ontology (if
there is a subsumption relation between them). This kind of function guarantees
that the value of a plug-in match is always greater than the value of a subsumes
match, and it only considers the distance between the two concepts, rather than
the total depth of the ontology tree6, which may change depending on the domain.
Furthermore, the smaller the distance between concepts (either in the case of plug-
in or subsumes match), the more influence will have a change of distance in the
degree of match (see Figure 10.16).

dom(RA, RQ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if RA = RQ

1
2 +

1

2·e‖RA,RQ‖ if RA is subclass of RQ

1
2 · e‖RA,RQ‖ if RQ is subclass of RA

0 otherwise

(10.1)

The matching algorithm compares every role in the request with the ser-
vice advertisement roles, given the set of capabilities of the requester, using the
aforementioned function, and returns the maximum degree of match. It uses the
minimum and maximum as combination functions for the values in conjunctive
and disjunctive logical expressions respectively.

10.7.6 Implementation

The role-based matchmaker was developed in Java 1.5, relying on the Mindswap
OWL-S API 1.1 beta7 for parsing OWL-S service profiles. Regarding the manage-
ment of OWL ontologies, we adopted Jena Semantic Web Framework, a framework
for building Semantic Web applications developed by the HP Labs Semantic Web
research group8.

For evaluation of the ROWLS matchmaker, we refer to Chapter 16.

10.8 Summary

The CASCOM project designed and implemented a service discovery process com-
prising a stage where desired services are sought and a stage where services found
in the first stage are sorted according to the degree to which they satisfy specified

6Note that, for instance, if a linear function is used, the maximum possible distance between
two concepts must be known a priori to establish the equation (e.g. dom(x) = 1− x/6).

7http://www.mindswap.org
8http://jena.sourceforge.net/

10.8. Summary 231

Figure 10.16: Degree of match function between two roles

criteria. In the first stage, services are sought according to simple selection crite-
ria. The second stage uses more sophisticated matching criteria involving complex
information processing such reasoning (e.g., subsumption) and role-based match-
making.

The service discovery stage is carried out by the Service Discovery Agent
(SDA), which looks for services in its own database and in the project distributed
service directory (WSDir). In addition to seeking desired services, the SDA also
registers, modifies and deletes service descriptions and service providers in its
own database and in WSDir. The WSDir can be used directly without the SDA
mediation. However, since WSDir is a Web Service, it does not offer an agent-based
interface. If such an interface is required, the SDA should be used.

The fine grained service selection is performed by the Service Matchmak-
ing Agent (SMA), using three different matching algorithms, each of which was
implemented as a separated module integrated in the SMA architecture:

1. Hybrid input and output subsumption and information retrieval matchmak-
ing algorithm (OWLS MX);

2. Preconditions and effects matchmaking algorithm, which performs exact, do-

232 References

main dependent and domain independent reasoning-basedmatching (PCEM);
and

3. Role-based matchmaking (ROWLS).

The use of these three sophisticated matchmaking algorithms provides clear
advantages in terms of both efficiency and effectiveness. For instance, role-based
matchmaking may significantly reduce the number of considered services in early
stages of the whole service coordination process; and reasoning-based matchmak-
ing may identify perfectly good services, services that meet specified criteria, that
would otherwise be discarded.

The three matchmaking algorithms may be combined in two distinct ways
to produce the final SMA output. One of the possibilities is a sequential combi-
nation; the other is a parallel combination. In the sequential combination, each
algorithm is used as a pre-filter of the next one. In the sequential combination,
we have chosen to apply first the less complex algorithm (ROWLS), followed by
the one with intermediate complexity (OWLS-MX), followed by the most com-
plex of all (PCEM). This way, the more complex algorithms process fewer service
descriptions. Sequential combination of the matching algorithms favors efficiency.

In the parallel combination, all algorithms are used in parallel. The results
produced by each of them are aggregated in an aggregation function. Several aggre-
gation functions (e.g., product, and minimum) may be used. Parallel combination
of the algorithms favors effectiveness. Sequential or parallel combinations as well
as other configuration parameters, such as the similarity threshold, are dynami-
cally chosen during the interaction with SMA. Since these choices may be hard
for SMA clients, we have predefined configurations including one that is used by
default. Therefore, the SMA client has only to select one of the predefined configu-
rations or the default one. This greatly enhances flexibility without compromising
seamless interaction.

SMA and SDA interaction uses interaction protocols, agent communication
language, and content language defined by FIPA; and uses ontology and service
descriptions specified by the W3 Consortium. The use of standardized technologies
improves interoperability and system’s usability.

References

[1] A. Bernstein and C. Kiefer: Imprecise RDQL: Towards Generic Retrieval in
Ontologies Using Similarity Joins. Proc. ACM Symposium on Applied Com-
puting, Dijon, France, ACM Press, 2006.

[2] I. Constantinescu and B. Faltings: Efficient matchmaking and directory ser-
vices. Proceedings of IEEE/WIC International Conference onWeb Intelligence.
2003.

[3] A. Fernández, M. Vasirani, C. Cáceres and S. Ossowski: A Role-Based Support
Mechanism for Service Description and Discovery. Service-Oriented Comput-

References 233

ing: Agents, Semantics, and Engineering. LNCS, 4504, pp. 132–146, Springer,
2007.

[4] M. Klusch, B. Fries and K. Sycara: Automated Semantic Web Service Dis-
covery with OWLS-MX. Proceedings of 5th International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS 2006); Hakodate; Japan;
ACM Press. 2006.

[5] H. Knublauch et al.: Protege-OWL API. Available online at
http://protege.stanford.edu/. September 21, 2006.

[6] L. Li and I. Horrocks: A software framework for matchmaking based on se-
mantic web technology. Proceedings of the twelfth international conference on
World Wide Web, pages 331-339. ACM Press. 2003.

[7] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIl-
raith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srini-
vasan, and K. Sycara: OWL-S 1.1 Release; http://www.daml.org/services/owl-
s/1.1/overview/. 2004.

[8] M. Paolucci, T. Kawamura, T. Payne and K. Sycara: Semantic matching of
Web Services capabilities. In Proceedings of the First International Semantic
Web Conference on The Semantic Web, Springer-Verlag (2002) 333-347

[9] E. Denti, A. Omicini and A. Ricci: tuProlog: A Light-weight Prolog for In-
ternet Applications and Infrastructures. Proceedings of the 3rd International
Symposium on Practical Aspects of Declarative Languages (PADL 2001); Las
Vegas; NV; USA; 11-12; LNCS 1990, Springer-Verlag, 2001.

[10] J. M. Serrano and S. Ossowski: A compositional framework for the specifica-
tion of interaction protocols in multiagent organizations. Web Intelligence and
Agent Systems: An international Journal. IOS Press. 2006.

[11] J. M. Serrano, S. Ossowski and A. Fernández: The Pragmatics of Software
Agents - Analysis and Design of Agent Communication Languages. Intelligent
Information Agents - The European AgentLink (Klusch et al. ed.), pp 234-274,
Springer. 2002.

[12] E. Sirin and B. Parsia: The OWL-S Java API. Proceedings of the Third
International Semantic Web Conference. 2004.

[13] K. Sycara, S. Widoff, M. Klusch and J. Lu: LARKS: Dynamic Matchmaking
Among Heterogeneous Software Agents in Cyberspace; Journal of Autonomous
Agents and Multiagent Systems. Kluwer Academic Press. 2002.

Chapter 11

Service Composition
Bastian Blankenburg, Luis Botelho, Fábio Calhau, Alberto Fernández,
Matthias Klusch, Sascha Ossowski

11.1 Introduction

One of the striking advantages of Web Service technology is the fairly simple
aggregation of complex services out of a library of other composite or atomic
services. The same is expected to hold for the domain of Semantic Web Services
such as those specified in WSMO or OWL-S. The composition of complex services
at design time is a well-understood principle which is nowadays supported by
classical workflow and AI planing based composition tools (cf. Chapter 4).

In CASCOM, we developed two composition planners for OWL-S services,
OWLS-XPlan and MetaComp, together with an approach to heuristically pre-
filtering the set of all available services which are delivered by the SMA (cf. Chap-
ter 10) to significantly reduce the search space for both planners. Accordingly, the
CASCOM service composition planning agent, called SCPA, can be configured to
use one of the planners and either exploiting the pre-filtering module, or not.

This chapter is structured as follows. We briefly summarize the CASCOM
composition planner agent SCPA, followed by the detailed description of the pre-
filtering module, and both the OWLS-XPlan and MetaComp planning modules of
the SCPA.

11.2 CASCOM Service Composition Agent SCPA

In CASCOM, two different Service Composition Agents (SCPA) have been devel-
oped which differ in the planning engine used: one SCPA is based on XPlan [11]
while the other relies on SAPA [8]. In any case, the CASCOM SCPA takes a set of
OWL-S services, a description of the initial state and the goal state to be achieved
as input, and returns a plan that corresponds to a composite service that gets
invoked using the FIPA-Request interaction protocol.

236 Chapter 11. Service Composition

Figure 11.1: OWLS-Xplan service composition agent

The first type of SCPA, called OWLS-XPlan SCPA, relies on the service
composition planner OWLS-XPlan (cf. Section 11.4). Figure 11.1 shows its inter-
nal architecture, which also contains a pre-filter component which is detailed in
Section 11.3. The OWLS-XPlan SCPA may be configured to apply this prefiltering
component to the set of available OWL-S services returned by the SDA which,
according to the CASCOM architecture (cf. Chapter 7), is in charge of retrieving
services from accessible service directories. This reduction is expected to further
increase the efficiency of the overall planning process. The final service composi-
tion plan is generated by the OWLS-XPlan planner component from the given set
of services, the initial and goal state ontologies, and returned for execution and to
its internal prefiltering component for experience based learning.

The MetaComp SCPA (cf. Section 11.5) uses the SAPA planner instead of
the XPlan planner, and does not use the prefiltering component. In fact, Meta-
Comp asks the SDA itself for a reduced number of services so that fewer service
descriptions have to be conveyed between the two agents.

The availability of two different kinds of service composition agents in CAS-
COM provides potential clients with added flexibility to adapt composition plan-
ning to their individual needs. More concrete, the client agent can ask the context
acquisition and management system (cf. Chapter 13) for the following context
information regarding the two Service Composition Agents:

11.3. Pre-Filtering for Service Composition 237

• Agents availability: if the agent is available (on-line) or not
• Average waiting time per request
• Service waiting list: number of requests waiting for a service
• Average execution time
In addition, the client agent might have built its own model based on past

experiences or uses third party services (such as trust and reputation) for making
its decision on the selection of the composition planner agent.

11.3 Pre-Filtering for Service Composition

According to the CASCOM Architecture, the SCPA (Service Composition Plan-
ning Agent) is in charge of creating a composite service that includes several
pre-existing services. In order to be able to generate such a plan that matches the
original query, the SCPA needs a set of input services to set out from.

Ideally, the set of services taken into account by the SCPA to create a com-
posite plan should comprise all services registered in the directory. However, this
can be impracticable as the number of services increases, as it is expected to occur
in the open IP2P environments that CASCOM targets. To overcome that problem,
CASCOM suggests to reduce the set of input services that are passed on to the
SCPA’s composition planning component. For this purpose, filters that sort out
those services registered within the directories that are less relevant to the plan-
ning process are proposed. This activity is also called plan based service matching
of a respective service matchmaker that is cooperating with a service composition
planner like in CASCOM.

Pre-selecting the set of candidate services for composition planning is not an
easy task. Several ad-hoc heuristics can be thought of (e.g. services that share at
least one input or output with the query, etc). In this section a more informed
method for filtering services that make use of service class information is proposed.
First, a generic framework for service-class based filtering is described, and then
it is instantiated for different filters on the basis of (a) organizational information
obtained from the CASCOM role ontology and (b) the service category derived
from the directory structure.

11.3.1 Generic Pre-Filtering Framework

At a high level of abstraction, the service composition planning problem can be
conceived as follows: let P = {p1, p2, ..., pm} be the set of all possible plans (com-
posite services) for a given service request R, and D = {s1, s2, ..., sn} the set of
input services for the proper service composition planner (i.e. the directory avail-
able). The objective of a filter F is to select a given number l of services from D,
such that the search space is reduced, but the best plan of P can still be found.

238 Chapter 11. Service Composition

Put in another way: the larger the subset of plans P ′ ⊆ P that the planner
can choose from, the higher the probability that the plan of maximum quality is
among them. A good heuristic to this respect is based on plan dimension and on
the number of occurrences of services in plans: a service is supposed to be the
more important, the bigger the number of plans from P that it is necessary for,
and the shorter the plans from P that it is required for. This information can
be approximated by storing and processing the plans historically created. So, in
principle, matrices might store, for every possible query, the number of plans in
which each service appeared, classified by each plan dimension.

However, it soon becomes apparent that the number of services and possible
queries is too big to build up all matrices of the above type. Furthermore, the
continuous repetition of a very same service request R is rather unlikely. And,
even more important, this approach would not be appropriate when a new service
request (not planned before) is required (which, in fact, is quite usual). To over-
come this drawback, it is assumed the availability of service class information, so
as to cluster services based on certain properties. If the number of classes is not
too big, the aforementioned approach becomes feasible computationally.

Figure 11.2 depicts the structure of the CASCOM approach to service com-
position filtering. With each outcome of a service composition request, a Historical
Information Matrix H is updated. Setting out from this information, a Relevance
Matrix v is revised and refined. Based on this matrix, service relevance can be
determined in a straightforward manner. For each service composition request,
the filtering method is based on this estimated service relevance function.

Computing Pre-filter Information

The Historical Information Matrix (Table 11.1) for a service class r compiles
relevant characteristics of plans (composite services) that were created in the past
in response to requests for services belonging to that class. In particular, for each
plan dimension i and service class s it stores the number of plans of length i that
made use of services of class r. Historical Information Matrices are updated as
newly generated plans come in. If the service request is a logical formulae (given
in disjunctive normal form), the contribution of the resulting plan is distributed
among the affected Historical Information Matrices.

As commented above, the aim of ranking services is to try and select a set of
services that cover the largest subset of the plan space, as an attempt to maximise
the chance of the best plan to be contained in it. Services that formed smaller
plans in the past are considered more relevant, since it is easier to cover small
plans that large ones, so with less services more plans can be covered.

The Relevance Matrix specifies the relevance of a service class s to be part of
a plan (composite service) that matches the query for a certain service class r. The
following function is used to aggregate the information about plans contained in
the Historical Information Matrixes (remember that all this information is about
a single request class r):

11.3. Pre-Filtering for Service Composition 239

Figure 11.2: Architecture of the filter component

HR: Historical information about plans for service class R (Request)
Dimension 1 2 3 ...
of plans 0 50 70 ...

C1 0 7 24 ...
C2 0 10 55 ...
C3 0 30 21 ...
...

Table 11.1: Example of class information about historical plans

Relevance(C,R) =

m∑
d=1

nd

dc

m∑
d=1

Nd

dc

(11.1)

where d is the dimension of the plan, m is the dimension of the longest plan
stored, nd is the number of times that C was part of a composite plan of dimension
d for the request R, and Nd is the total number of plans of dimension d for that
request. Note that each appearance of class C in a plan contributes to the relevance
value, and that this contribution is the higher the smaller the plan dimension. c is
a constant > 0 that allows adjusting the level of importance of plan dimensions.
A relevance value between 0 and 1 is obtained with this calculus for every given

240 Chapter 11. Service Composition

service class C with respect to the composition of a service of class R.
The Relevance Matrix v(s, r) can be further refined in order to take tran-

sitivity into account. Consider the following situation: A plan that achieves C1

is searched for, and that a potential solution is to compose the services C2 and
C3 (C2 ⊕ C3 for short). However there is no service provider for C3, but instead
C3 can be composed as C4 ⊕ C5 ⊕ C6, so the final plan is C2 ⊕ C4 ⊕ C5 ⊕ C6.
Unfortunately, the value v(C4, C1) is low and the service providing C4 is dis-
carded and not taken into account in the planning process, so the aforemen-
tioned plan cannot be found by the planner. Therefore, the relevance matrix is
refined by taking transitivity into account, e.g. through the following update:
v(C4, C1) = v(C4, C3) · v(C3, C1). The same holds for third-level dependencies
(e.g.: v(C7, C1) = v(C7, C4) · v(C4, C3) · v(C3, C1)). This example motivates the
definition of the vk(s, r) as a k step relevance matrix

v1(s, r) = v(s, r)
vk(s, r) =Max(vk−1(s, r), vk−1(s, s1) · vk−1(s1, r),

vk−1(s, s2) · vk−1(s2, r), ..., vk−1(s, sn) · vk−1(sn, r))
(11.2)

As shown in the equation, the product is used as combination function and
the maximum to aggregate the results. Note that the higher the value of k the
better the estimation of the relevance of service classes. The refinement of the
relevance matrix is repeated until it converges or until a timeout is received. The
elevated time complexity of O(n3) for each refinement step is attenuated by the
anytime properties of the approximation algorithm. Furthermore, recall that the
number of classes n is supposed to be fixed and not overly high. Finally, note that
several updates and refinements can be combined into a “batch” to be executed
altogether when the system’s workload is low.

There are several ways of obtaining the initial relevance matrix. If there
are historical records of plans they can be used to calculate the matrix. Also,
an a priori distribution can be assigned using expert (heuristic) knowledge. Still,
the simplest solution is to let the service composition planning component work
without filtering services until the number of plans generated is representative
enough to start computing and refining the matrixes.

Service Relevance Calculus

The first step to calculate the relevance of a service s for a request r is the mapping
of both to classes of services. Then, the relevance between the classes is calculated.
v(s, r) is used to represent the relevance of class s for the class r in the request,
and V (S,R) as the relevance of service S for the service request R.

Considering that, in general, the service S belongs to several classes (s1,s2,
..., sn), if a request R only includes a class (r) in its description, then

V (S,R) = max(v(s1, r), v(s2, r), ..., v(sn, r))

11.3. Pre-Filtering for Service Composition 241

However, if the request specifies a logical expression containing several classes
of services (r1, r2, ..., rm), logical formulas are evaluated using the maximum for
disjunctions and theminimum for conjunctions; and inside themaximum is used to
aggregate the service classes specified by the provider. For example, if the request
R includes the formula r1 ∨ (r2 ∧ r3), and the service S belongs to the classes s1
and s2, the calculus is as follows:

V (S,R) = max[max(v(s1, r1), v(s2, r1)),min(max(v(s1, r2), v(s2, r2)),
max(v(s1, r3), v(s2, r3)))]

Types of Pre-filter Composition

When a service request is analysed by the pre-filter, the set of services are first
ranked by an estimation of the relevance of the service class for that request. Then,
only the services belonging to the best ranked classes are passed on to the planner.
In order to determine the concrete services that pass the filter three major options
are considered:

a) To establish a threshold and filter out those services whose classes have a degree
of relevance lower than that threshold.

b) To return the estimated k best services based on the relevance of their corre-
sponding classes. In this case the number of services that pass the filter is
pre-determined.

c) To return a percentage of the original set of services (based on the relevance of
their corresponding classes). In this case the number of services considered
in the planning process depends on the directory size.

When designing the algorithms corresponding to these filters configurations,
an additional problem needs to be taken into account. Services with low (or even
zero) relevance values would never be considered for planning, so they could never
be part of a plan (composite service), remaining with low relevance forever. This
is obviously too restrictive, as our relevance values are only estimations based on
the information available at some point in time. To overcome this some services
are allowed to be fed into the planner even though they are not supposed to be
relevant enough according to the filter policy. Those additional services are chosen
randomly. This random option is combined with the three aforementioned filter
types to allow for an exploration of the service (class) space.

11.3.2 Instantiation of Pre-Filters

In the following we present two different approaches to apply the filtering frame-
work proposed in this section. For each approach the mapping of services to classes
is defined. Both methods are based on information available in the OWL-S service
descriptions used by CASCOM.

242 Chapter 11. Service Composition

Role-based Pre-filtering

In many service-oriented systems, agents are conceived as mere wrappers for Web
Services. However, agents are not only able to execute a service but may also
engage in different types of interaction related to that service, in the course of
which they play several roles. For example, in a medical emergency assistance
scenario, an agent providing a second opinion service should not only be able
to provide a diagnostic; it may also be required to explain it, give more details,
recommend a treatment, etc. Therefore, a service provider may need to engage
in several different interactions, and play a variety of different roles, during the
provision of a service.

Our role-based filtering method relies on taxonomies of roles and type of
interactions (see Figure 10.15 in Chapter 10) to determine service classes. The idea
is to relate roles searched in the query to roles played by agents in the composite
service, that is, which are the roles typically involved in a plan when a role r
is included in the query. For example, it is common that a medical assistance
service include travel arrangement, arrival notification, hospital log-in, medical
information exchange and second opinion interactions.

Following the CASCOM role-based service description approach (Section 10.7
in Chapter 10), each service provider advertises a set of possible roles from the role
ontology that it can play. Similarly, in service requests it is allowed to specify the
roles searched from the role ontology as a logical expression in disjunctive normal
form. By establishing a mapping from the elements of the role ontology to service
classes, the above filtering framework becomes applicable.

In the CASCOM role based modelling approach, the role taxonomy is sup-
posed to be static over significant amounts of time. Still, the ontology can be
extended to include new roles and types of interaction not considered before. In
that case, the relevance matrix is updated with new rows and columns for those
new roles. The relevance values for those new roles are unknown initially, but
this can be overcome by randomly including some services with low relevance
and, in general, by applying the bootstrapping techniques, both described in Sec-
tion 11.3.1.

Category-Based Pre-Filtering

Another pertinent strategy for service classification is based on the categories
(travel, medical) they belong to. Such categories are considered important infor-
mation in service descriptions (in fact, the OWL-S language includes a specific
field for this characteristic). There are several well known category taxonomies
(NAICS, UNSPSC,. . .). However, CASCOM does not choose one in particular,
keeping it open to the service describer.

In this filtering framework, each category is considered a class of service. Ser-
vice descriptions include a set of categories. In the case of a service advertisement,
this fits exactly our classes approach (set of classes). In the case of service requests,

11.4. Service Composition With OWLS-XPlan 243

the set of categories specified are interpreted as a logical formula by connecting
them with the operator or (∨).

If the number of different classes (categories) is too big, the computational
complexity (regarding both space and time) can become rather high. In that case,
the granularity of the classes can be decreased by clustering several categories into
the same class based on inheritance relations in the taxonomy tree.

The two types of classification of services presented in this section can be
combined as follows:

Relevance(S,R) = α ·RelRB(S,R) + (1− α) ·RelCB(S,R)with α ∈ [0..1] (11.3)

where RelRB(S,R) and RelCB(S,R) are the relevance values obtained by
the role and category-based filtering approaches, respectively.

11.4 Service Composition With OWLS-XPlan

Though the composition of complex Web Services attracted much interest in differ-
ent fields related to service oriented computing, there are only a few implemented
composition planning tools publicly available for the semantic Web such as the
HTN composition planner SHOP2 for OWL-S services [15]. One problem with
HTN planners is that they require task specific decomposition rules and methods
developed at design time, hence are not guaranteed to solve arbitrary planning
problems. That, in particular, motivated the development of our hybrid composi-
tion planner OWLS-XPlan for OWL-S 1.1 services which always finds a solution if
it exists, though the corresponding planning problem remains to be NP-complete.
Like SHOP2, OWLS-XPlan does perform closed world planning prepared through
its integrated converter OWLS2PDDL (cf. Section 11.4.2).

While its original version enables static composition of OWL-S services in
static domains, an upgraded version OWLS-XPlan 2.0 (cf. Section 11.4.4) also
allows to compose OWL-S services in dynamic and stochastic environments in
which changes of the world state can non-deterministically (stochastic) occur dur-
ing (dynamic) planning. Such changes concern the availability of services; changes
of predicates, facts, objects of the plan base. In such environments XPlan 2.0
offers an event based dynamic sequential planning of composite services. It lis-
tens for events of state changes during its planning process with heuristic partial
re-planning of a new minimal and valid composition plan. This is in contrast to
non-classic reactive planning with interleaved service execution, and non-classic
off-line planning such as conformant, conditional, or contingency planning.

11.4.1 Architecture

The Semantic Web Service composition planner OWLS-XPlan consists of several
modules for pre-processing and planning (cf. Figure 11.3). It takes a set of available

244 Chapter 11. Service Composition

Figure 11.3: Architecture of OWLS-XPlan

OWL-S 1.1 services, related OWL ontologies, and a planning request (goal) as
input, and returns a planning sequence of relevant services that satisfies the goal.

For this purpose, it first converts the domain ontology and service descrip-
tions in OWL and OWL-S, respectively, to equivalent planning problem and do-
main descriptions in PDDL 2 (“Planning Domain Definition Language”) using
the integrated OWLS2PDDL converter (cf. Section 11.4.2). For reasons of conve-
nience, we developed a XML dialect of PDDL, called PDDXML, that simplifies
parsing, reading, and communicating PDDL descriptions using SOAP.

The planning domain description contains the definition of all types, predi-
cates and actions, whereas the problem description includes all objects (grounded
predicates, constants), the initial state, and the goal state. An operator of the
planning domain corresponds to a service profile in OWL-S since both operator
and profile describe patterns of how an action or service as an instance should look
like. A method is a special type of operator for fixed complex services that OWLS-
XPlan may use during its planning process. Both descriptions are then used by
the state based action planner XPlan to create a plan in PDDL that solves the
given problem in the actual domain.

Key to the translation from OWL-S to PDDXML is that any service in OWL-
S corresponds to an equally named action with the same set of input parameters,
logical preconditions, and effects. However, for classical (STRIPS like) action plan-
ning in AI, PDDL does not allow to describe concrete input or output values of
operators such as information on specific train connections returned by a service.
So we have to add special precondition and effect predicates to tell the planner
that it does in general know about the output values as an effect of executing the

11.4. Service Composition With OWLS-XPlan 245

respective action on the current world state, or the values of typed input variables
allowing to match value based restrictions in preconditions of possible successor
actions.

Its core AI planning module called XPlan is a heuristic hybrid FF planner
based on the FF planner developed by Hoffmann and Nebel [9] (cf. Section 11.4.3).
It combines guided local search with relaxed graph planning, and a simple form
of hierarchical task networks (HTN) to produce a plan sequence of actions that
solves a given problem. If equipped with methods, XPlan uses only those parts
of methods for decomposition that are required to reach the goal state with a
sequence of composed services. For stochastic domains in which the world state is
changing during planning, we developed an event driven heuristic planning module
XPlan 2.0 for dynamic composition of services (cf. Section 11.4.4).

11.4.2 Converter OWLS2PDDL

The purpose of the OWLS2PDDL converter is to tranlate a given OWL-DL expres-
sion in OWL-S 1.1 service descriptions and a given service composition problem
into an equivalent PDDL planning problem which can be understood by AI plan-
ners such as XPlan. More concrete, the structured functional service composition
problem (SWS, I,G) consists of two (user-provided) OWL-DL ontologies that
represent an intial (I) and a goal (G) world state, respectively, and a set SWS
of OWL-S services. In the following, we assume familiarity with OWL-DL and
OWL-S. The initial state I consists of the domain knowledge base KB0 (available
services, imported OWL ontologies T with asserted instances), and the goal state
G represented by a goal service functionality SG (IOPE = input, output, precon-
dition, effect). The problem is to find a composition sequence P = S1 ◦ ... ◦ Sn,
Si ∈ SWS that satisfies G (P reaches G from I).

Overview

The converter OWLS2PDDL is mapping this service composition problem to a
classical action based AI planning problem in PDDL. PDDL is a modular language
that allows to control its expressiveness by specifying certain requirements. The
converter itself uses a XML dialect of PDDL 1.2, called PDDXML, with the ADL
and open-world requirements for both PDDL 1.2 [2], and the Action Description
Language (ADL) [13] and additional syntax for predicate cardinality restrictions
1. An action planning problem is defined as a triple (Init,Goal, Ops) consisting of

1. an initial state Init,

2. a goal state Goal,

1The PDDXML grammar in compact RelaxNG (see [5]) can be
found at http://www.dfki.de/˜blankenb/owls2pddl/PDDXMLDomain.rnc and
http://www.dfki.de/˜blankenb/owls2pddl/PDDXMLProblem.rnc for domain and problem
instance definitions, respectively.

246 Chapter 11. Service Composition

3. and a set of Operators Ops, where each operator describes a possible action
in the considered domain. An operator is characterised by its parametrised
precondition and effect, such that

(a) an action is applicable in a given world state if and only if its precon-
dition is fulfilled in that state.

(b) the effect describes how a state s is transformed to its successor state if
the action is applied to s.

PDDL aggregates Init and Goal states in a PDDL problem definition. Opera-
tors are contained in a PDDL domain definition. Init is a conjunction of predicates,
whereas Goal is a function-free first-order logical sentence. An action precondition
is, like the goal state, a function-free first-order logical sentence, whereas an effect
can only be a conjunction of predicates or negated predicates, a universal quanti-
fied effect, or a conditional effect; non-deterministic disjunctions are not allowed
in effect constraints (in contrast to ADL).

In summary, the OWLS2PDDL converter implements a function

(O ×O × 2S) �→ (D × P)

where O is the set of all OWL DL ontologies, S is the set of all OWL-S
1.1 services, D is the set of all PDDL domains and P is the set of all PDDL
problems. The main idea of the conversion is to map OWL-S services to planning
domain operators, and to produce the PDDL problem from given OWL “Initial
State” and “Goal State” ontologies. In particular, expressions in PDDL are then
interpreted with standard FOL semantics corresponding to those of the decidable
FOL subset OWL-DL. The interpretation of PDDL operators corresponds to that
of respective ADL (Action Description Language [13]) operators which can be
reduced to STRIPS operators (see [7]), which in turn are interpreted using Lifs-
chitz’ semantics (see [12]). In contrast to STRIPS, both PDDL and ADL assume
the open world, but only ADL allows both disjunctions and negated literals in
effect constraints (PDDL disallows disjunctive effects). The additional cardinality
restrictions are interpreted under the standard description logic (DL) semantics
for non-qualifying number restrictions (DL part “N”).

PDDL has close to SOIN expressivity with only subsumption, equivalence
and transivity of roles from OWL-DLs SHOIN expressivity missing. But these
missing features can be represented by fully expanding any role specification to
include also any parent and transitively holding roles. This is explained in Sub-
section 11.4.2. Thus, PDDL’s expressiveness is sufficient to equivalently represent
an OWL-S service composition problem.

The converter OWLS2PDDL generates the planning problem in PDDL for
the planner XPlan, and comes in two versions: OWLS2PDDL 1.0 (2.0) of OWLS-
XPlan (OWLS-XPlan 2.0) converts expressions of EXPTIME description logic
SI(D) (NEXPTIME description logic SHOIN(D), corresponding to OWL-DL) to

11.4. Service Composition With OWLS-XPlan 247

PDDL 1.2. However, there are a few obstacles to be discussed in the following
together with a simple example of a conversion.

Operators and Service Outputs

While an OWL-S service has inputs, outputs, preconditions and effects, a planning
domain operator only has the latter two. The OWL-S specification states that as
opposed to preconditions and effects, which refer to the world state, inputs and
outputs represent information that is made available for or produced by the service.
For an PDDL object, however, its existence cannot be bound to certain states (even
with the open-world requirement).

As a solution of this problem, we model the possible creation of information
by services with the help of a special agentHasKnowledgeAbout predicate. This
predicate is set

• in the PDDL initial state: for each object representing an individual of the
OWL initial state ontology;

• in the PDDL goal state: for each object representing an individual of the
OWL goal state ontology;

• in the effect definition of a PDDL operator: for each PDDL operator param-
eter representing an output parameter of the respective OWL-S service.

We require this predicate to hold for all PDDL operator parameters represent-
ing input parameters of OWL-S services. This ensures that an action is rendered
unapplicable in a state if the corresponding service’s required input information
is not available in that state.

Service Preconditions and Effects

OWL-S does not prescribe a specific language for defining preconditions and
effects of services. Instead, one can specify the language with the OWL-S 1.1
expressionLanguage property. We extended the to OWL-S 1.1 Expression and
Condition classes to allow for PDDXML preconditions and effects. The defi-
nition of these extended classes, PDDXML-Expression and PDDXML-Condition2.
Currently, the converter converts only such PDDXML expressions and conditions.

Restrictions of Initial State and Action Effect

In OWL-DL, the class description of an OWL individual in any given ontology
can be arbitrarily complex in the scope of OWL-DL. Since there is no notion of
“initial ontologies” in OWL, restrictions resembling those of PDDL can hardly
be imposed. Thus, expressions in the given OWL initial ontology which violate
these restrictions are ignored by the converter when generating the initial state

2see http://www2.dfki.de/˜babla/owls2pddl/pddxml.owl

248 Chapter 11. Service Composition

and action effects. We assume that individuals which are stated to be in a given
OWL class do indeed fulfill all necessary restrictions of that class.

Open vs. Closed World

Both OWL and PDDL make the open world assumption (OWA) calling for mono-
tonic reasoning. However, XPlan does perform closed world reasoning like many
action planners and service composition planners like SHOP2. Thus, the initial
state is implicitly “closed” when feeding the generated PDDL planning problem
description into XPlan3. It is not possible to include the latter (disjunctive) ex-
pression in a PDDL initial state or action effect, since disjunctions are not allowed
there. Thus, when interpreting the problem as being closed-world, the conversion
might not be complete.

Other Issues of Conversion

Other issues of converting OWL-DL to PDDL are as follows.

• The PDDL type system is not general enough to reflect the possibly complex
relationships of OWL classes. Thus, the explicitly specified classes of an OWL
individual are represented for the corresponding PDDXML object by unary
predicates of the classes’ names (this includes all superclasses).

• No language construct for enumerations: OWL classes which are defined via
oneOf are converted using a disjunction of special identity predicates. These
predicates are defined for every object in the initial state and for output
parameters.

• No domain axioms. Our XML dialect of PDDL does not support domain
axioms (which XPlan also does not support). Thus, the conversion of an
OWL class definition has to be inserted at every place in the PDDXML
where an object or parameter which corresponds to an OWL individual or
OWL-S service parameter of that class occurs.

Conversion Rules

Figures 11.4 and 11.5 illustrate how OWL-S service descriptions, intial and goal
state ontologies are translated to PDDXML. Table 11.2 summarizes how each
SHOIN-expressivity OWL DL construct is converted to an equivalent PDDXML
condition. In this table, the leftmost column “DL Ex.” denotes the expressiveness
class, Δ denotes the domain, and XI denotes the interpretation of X . Table 11.3
summarises the conversion of transitive properties and subsumption of properties.
Follwing these rules, an equivalent PDDL planning problem representation of the
service composition problem can be obtained, albeit with factorial runtime and

3That is, anything which cannot be deduced (e.g. property predicate p) in the initial state is
assumed to be false (i.e. ¬p), as opposed to being unknown (i.e. p ∨ ¬p).

11.4. Service Composition With OWLS-XPlan 249

Figure 11.4: Conversion of OWL-S services to PDDXML actions

Figure 11.5: Conversion of OWL DL state ontologies to PDDXML states

space requirements in the worst case. Please note that in the current version of the
converter implementation (OWLS2PDDL 2.0), the conversion of the description
of equivalent classes in the goal state, transitive properties and subsumption of
properties are not implemented yet; this is ongoing work.

Example of OWLS2PDDL Conversion

In the following, we provide a brief and simple example of conversion by
OWLS2PDDL. Suppose that the given service, initial and goal ontologies all im-
port a common ontology which includes some class definitions, and that there is
just one service to convert as shown in Figure 11.6. The converter generates the
PDDXML action shown in see Figure 11.7 for this service. The service has one
input of type Class_2, whose definition is shown in Figure 11.8.

First, the agentHasKnowledgeAbout predicate is required on the input. Sec-
ond, it must be ensured that only objects of the required type can be instantiated

250 Chapter 11. Service Composition

DL OWL PDDXML
Ex. Syntax Semantics

A AI ⊆ ΔI Class Unary Predicate
� �I = ΔI Thing PDDL type “object”
R RI ⊆ ΔI ×ΔI Property Binary Predicate

R ∈ R+ RI = (RI)+ Trans. Property Multiple Predicates,
effect

C �D CI ∩DI conjunctionOf <and/>

S C �D CI ∪DI disjunctionOf <or/>

¬C ΔI\CI complementOf <not/>

∃R.C {x|∃y.(x, y) ∈ RI someValuesFrom <exists/>

and y ∈ CI}
∀R.C {x|∀y.(x, y) ∈ RI allValuesFrom <forall/>

implies y ∈ CI}
H R ⊆ S RI ⊆ SI subPropertyOf Multiple Predicates,

effect

I R− {(x, y)|(y, x) ∈ RI} inverseOf Predicate

≥ nR.C {x|#{y.(x, y) ∈ RI minCardinality <cardinality

N and y ∈ CI} ≥ n} min=’’ . . . "/>
≤ nR.C {x|#{y.(x, y) ∈ RI maxCardinality <cardinality

and y ∈ CI} ≤ n} max=" . . . "/>

{o} {o}I = {oI} XML Type + Object
O RDF-value

∃T.{o} ∃C : {o}I ∈ T hasValue <exists/> + special
identity predicate

Table 11.2: Conversion and semantics of OWL DL class descriptions to PDDXML
conditions

Context OWL PDDXML
Initial state Transitive Property

p
For all predicates p(i, k), p(k,m)
, i �= k �= m: predicate p(i,m)

p subPropertyOf p′ For all predicates p(i, k): predi-
cate p′(i, k)

Actions’ effect Transitive Property
p

<forall> i, k,m <if> <and>
(i �= k �= m) p(i, k) p(k,m)
</and> p(i,m) </if> </forall>

p subPropertyOf p′ <forall> i, k <if> p(i, k) p′(i, k)
</if> </forall>

Table 11.3: Expansion of transitive and subsumed properties

11.4. Service Composition With OWLS-XPlan 251

Figure 11.6: OWL-S example service

with the action. The service input class is a defined class, i.e. any individual
which has a minimum cardinality of 2 on property objectProperty_1 is a mem-
ber of this class. Thus, the generated PDDXML condition contains a disjunction
that states that either the parameter must explicitly be stated to be of type
Class_2, or the cardinality restirction on the property must hold. Similarly, the
conversion of the output type is also included in the action’s precondition. The
agentHasKnowledgeAbout, on the other hand, is only set in the effect, reflecting
the information gain that is achieved by the service execution. The resulting ini-
tial and goal states are rather simple. The initial state consists of the following
definition of Individual_1:

<Class_3 rdf:ID="Individual_1">

<j.0:objectProperty_1>

<Class_4 rdf:ID="Individual_2"/>

</j.0:objectProperty_1>

</Class_3>

The resulting PDDXML expression which is written into the PDDXML prob-
lem definition is shown in Figure 11.9. It includes the agentHasKnowledgeAbout
predicate, the explicit class membership statement, the identity predicate and
the binary predicate that represents OWL property objectProperty_1

252 Chapter 11. Service Composition

Figure 11.7: The generated PDDXML action

11.4.3 Static Composition

As mentioned above, XPlan performs a static composition under closed world
assumption. In fact, the solution of XPlan to the problem of structured functional
service composition at hand corresponds to finding a sequence of services that
globally plug-in matches with the given goal service functionality (cf. Figure 11.10).

XPlan Solution of the Service Composition Problem

As mentioned in previous section, the functional service composition planning
problem can be mapped to a classical action planning problem by (a) identifying
the given services with actions and (b) describing the domain together with the
requested service in an initial, respectively, goal state ontology in the standard
planning language PDDL. The solution of XPlan for this problem corresponds to a

11.4. Service Composition With OWLS-XPlan 253

Figure 11.8: Common class definitions

plug-in match of the plan P considered as one composed service to the goal service
SG with goal ontology G together with an IOPE (input, output, precondition,
effect) chaining of the sequecence of services within P (cf. Figure 11.10).

In addition, the executability of P on the grounding level of the recon-
verted actions to OWL-S services can be guaranteed by the interleaved checking
of whether the I/O parameter data types in XMLS of subsequent services of P
grounded in WSDL are compatible with each other which ensure the data flow
within the sequence of services to be executed after planning. The reconversion is
done by OWLS2PDDL 2.0 and the compatibility check is performed by the plan-
ner by means of its integrated OWLS-MXP component (partially reused from the
OWLS-MX matchmaker, cf. Chapter 10).

Graphbased FF Planning with XPlan

For each sub-goal g of the determined goal agenda, at each planning step i, XPlan
quickly builds a relaxed planning graph RPG(i) in a fast goal reachability test
heuristically ignoring negative effects of actions A, and the corresponding relaxed
plan RP (i) in a backward pass from g to Si. The relaxed plan contains all paths of
applicable actions that lead from g to Si, of which only those in its first action-layer
0 are called helpful.

In the following, XPlan focuses on the helpful actions of RP (i) only, hence
reduces the search space. Please note that the relaxed plan is not necessarily
correct due to ignorance of the Del-lists, i.e., negative effects of actions. In order
to decide which helpful action to select as the next action in a valid plan sequence,
XPlan applies each of them to Si and adds the previously ignored Del-list facts
yielding the complete state Sij , where j ∈ {1, .., l}, denotes the j-th helpful action
applied to state Si.

For each of these states the relaxed plan RPG(i, j) is then built to heuris-
tically search for the relaxed plan RP (i, j) with heuristically minimal length
h(RP (i, j)). In this context, the “plan length” h(RP (i, j)) just denotes the sum
of all actions in all action-layers of the RP.

Finally, XPlan retains the actionAij with heuristically minimal goal distance,
and starts the next planning step i+1 with Sij . If there are multiple RPs of equal
length, it repeats the same decision process starting at state Si1 (like a breadth

254 Chapter 11. Service Composition

Figure 11.9: OWL initial state ontology

first search restricted on helpful actions), and then Si2, ..., Sil until a minimum is
found.

Eventually, all created plans for sub-goals g of the goal agenda are respec-
tively concatenated which yields the final plan sequence P . The plan then gets
executed, and if it fails, XPlan allows re-planning from the most recent valid state
produced by action execution, to avoid a total re-planning, if possible.

As mentioned above, XPlan also checks at each planning step whether the
selected pairs of services to be composed are data type compatible to ensure the
executability of the generated plan. For this purpose, it utilizes respective infor-
mation it got from the service matchmaker (OWLS-MXP) about the available
services prior to the planning process. For more details on OWLS-XPlan in gen-
eral, and XPlan in particular, together with examples of service translation from
OWL-S to PDDXML we refer the reader to [10, 14].

11.4.4 Dynamic Composition

For OWLS-XPlan 2.0, which has been eventually used in CASCOM, we modified
the original XPlan module of OWLS-XPlan to allow for event driven heuristic re-
planning of composite services during the actual planning process. The modified

11.4. Service Composition With OWLS-XPlan 255

Figure 11.10: Structured functional service composition

planner XPlan 2.0 does perform, in essence, highly frequent event driven off-line
re-planning under closed world asumption with heuristic computation of best re-
entry points for re-planning at the end of each planning step if the currently
produced plan, or plan fragment is affected by the observed change.

External changes of the world state concern converted OWL ontologies, indi-
viduals and the set of available services during the internal planning process each
of which potentially affecting the respective operators, actions, predicates, facts
and objects in the PDDXML problem and domain descriptions as well as already
generated partial plans. For event monitoring, we equipped XPlan 2.0 with an
event listener for distinguished classes of events.

In particular, in each plan step i, before applying selected helpful action A
to the state Si, however, XPlan 2.0 listens for events of state changes. If no events
are in its event queue, it applies A to Si and proceeds with plan step i+1. The
plan fragment from initial state S0 to Si is correct and, due to the selection of
helpful actions in the minimal relaxed plan, approximatively optimal.

XPlan 2.0 triggers re-planning in the following cases of observed events of
world state changes: (1) An operator (service) instantiation (action) becomes avail-
able. This is the case if (a) a new operator has been introduced, or (b) the world
state (set of facts) changed such that an operator whose instantiation was im-
possible before can be instantiated now, or (c) new predicates which are part of
the preconditions or effects of an operator are introduced, making it possible to
instantiate this operator; (2) An operator (service) of the plan is not possible any-
more, if any of the opposites of cases 1.a – 1.c holds; (3) The goal state changed
due to a change of the original planning request.

Each of these cases is handled separately as described in subsequent sections.
If facts or objects change, the planner searches for the first operator which pre-
condition is satisfied by the new fact, and starts re-planning from there, while the
helpful actions get instantiated with the new fact(s). The case in which a predicate
p changes can be reduced (a) to the latter case of changed facts, if new facts are
added; (b) to the case of change of operator o (action A), if preconditions or effects

256 Chapter 11. Service Composition

of o include p; or (c) to the case of fact changes, if the deletion of p implies the
deletion of all instances of p. It is assumed that the planning state consistency is
checked by means of an appropriate module as intergal part of both XPlan and
XPlan 2.0.

Both versions of OWLS-XPlan have been implemented in Java and are avail-
able at the semantic Web community portal semwebcentral.org.

11.5 Service Composition With MetaComp

MetaComp is one of the service composition agents developed in the CASCOM
project. Although MetaComp has been designed and implemented following ba-
sically the same approach as the OWLS-XPlan module described in the previous
section, we emphasize two main differences.

First, MetaComp service discovery approach is different from that used in
the filtering component of OWLS-XPlan. Second, MetaComp uses the SAPA plan-
ner [8] instead of the XPlan planner. Whereas the filtering process of OWLS-XPlan
is applied to the services returned by the service discovery agent (SDA), the service
discovery strategy designed for MetaComp asks the SDA for a reduced number of
services so that fewer service descriptions have to be conveyed between the two
agents.

Besides, MetaComp service discovery strategy is simpler than the one used in
the filtering component of OWLS-XPlan. It is based on service categories (which
have to be provided by the agent client), on service inputs, outputs, precondi-
tions and effects, and it uses context information. Although simpler, we feel this
strategy might yield reasonable results. However, for the purpose of the CASCOM
selected problems, any of the planners (SAPA or XPlan), means either MetaComp
or OWLS-XPlan would have been a good choice. The remaining of this section
provides some details regarding MetaComp development and results.

11.5.1 Architecture

MetaComp receives service composition requests from its clients. Service compo-
sition requests include a partial OWL-S description specifying the service to be
composed, that is, the initial state and the composition goal. The service speci-
fication (initial state and composition goal) and the descriptions of the services
available to be integrated in the final compound service are sent to the planning
algorithm for it to generate the compound service.

However, since both the desired service specification and the descriptions
of the available services are represented in OWL-S whereas the used planning
algorithm accepts only PDDL, these OWL-S descriptions, as in OWLS-XPlan, are
first translated to PDDL. The planning algorithm output is merely the sequence
of the elemental services that actually make up the compound service. This has
to be reconverted to OWL-S so that it can be sent to the agent’s client.

11.5. Service Composition With MetaComp 257

Figure 11.11: MetaComp architecture

This conversion involves two steps. First, it is necessary to generate the com-
pound service (global) inputs, outputs, preconditions and effects from the (local)
inputs, outputs, preconditions and effects of the elemental services that make up
the compound service. Second, the sequence of elemental services comprising the
compound service and its global inputs, outputs, preconditions and effects (gen-
erated in the first step) are converted to OWL-S. Figure 11.11 shows MetaComp
component based architecture and the interactions between its components.

The agentified service composition module MetaComp consists of the follow-
ing five key components:

1. the MetaComp agent interaction component AIC;

2. the converter OWLS2PDDL as described in previous section;

3. the planning component SAPA;

4. the IOPE generation component;

5. the OWL-S description generation component.

The AIC of the MetaComp agent was developed as an extension of the

258 Chapter 11. Service Composition

JADE platform. Its main purpose is to provide an interaction framework to FIPA-
compliant agents. It uses the FIPA-Request interaction protocol [6] when inter-
acting with its clients and when interacting with the service discovery agent SDA
requesting the services to be used during composition. AIC is responsible for receiv-
ing/sending messages and parsing them into a suitable format for the interaction
with other components and with agents.

The purpose of the OWL-S to PDDL conversion component, the
OWLS2PDDL converter taken from OWLS-XPlan, is to generate the PDDL de-
scriptions from the received initial state description, composition goal specifica-
tion, and the OWL-S descriptions of the services available for composition. For
more information about the OWLS2PDDL converter we refer to Section 11.4.2.

The planning component SAPA [8] of MetaComp is responsible for generating
a sequence of component services (i.e., actions) that satisfies the client request
(i.e., planning goal) from the specified initial state. MetaComp uses SAPA, a
domain-independent heuristic forward planner that can handle durative actions,
metric resource constraints, and deadline goals. SAPA is designed to be capable
of handling the multi-objective nature of metric temporal planning.

Though SAPA accepts PDDL level three (version 2.1) descriptions, following
a CASCOM project decision, we have used only SAPA PDDL level one capabilities.
The processing in SAPA, since it receives the two PDDL sections until it produces
the plan, is made up of three steps:

1. reading and parsing the PDDL descriptions, which in case they are grammat-
ically correct, should be transformed into a data structure to be processed
by SAPA;

2. instantiation of the parameters of the available actions with object instances
represented in the planning problem;

3. searching for a planning solution.

In the instantiation step, all static conditions presented in the initial state are
evaluated. Static conditions are those whose truth value do not change as a result
of some service execution. If a certain static condition is true in the initial state, it
continues to be true in all subsequent states that result of service execution. Since
their truth value never changes, once SAPA checks that they are true in the initial
state, static conditions are removed from the PPDL description. This increases
the planner performance.

The IOPE generation component receives the generated action sequence and
the (local) parameters, preconditions and effects of each of the actions of the new
composite service and generates the (global) inputs, outputs, preconditions and
effects of the compound service.

The purpose of the OWL-S description generation Component is to generate
the OWL-S description of the generated compound service from the sequence
of component services generated by the planning component (SAPA) and the

11.5. Service Composition With MetaComp 259

service inputs, outputs, preconditions and effects produced by the Inputs, Outputs,
Preconditions and Effects generation Component.

11.5.2 Service Selection Methods

The service composition process requires a set of existing services that may be
chained to form the compound service. The first step of service composition is to
request the descriptions of those services to the service discovery agent. If this is
not a carefully crafted process, it may result either in a huge, computationally
intractable collection of services, most of which may turn out to be useless for the
composition problem at hand, or in a small set of services which may be insufficient
to create the desired compound service.

In this respect, we assume context information of great importance since it
allows reducing the set of services requested to the service discovery agent (SDA)
to only those matching the current context. This will improve efficiency in two
ways. First, the SDA will only return fewer but relevant services. Second, service
composition with fewer services is more efficient. Besides efficiency, context compli-
ant services will hopefully be more adequate to the current state of affairs. Service
availability and cost, and user profile are the context information considered in
the service selection process.

Two service selection methods have been designed: a service category based
method, where services are selected according to their category; and a method in
which services are selected if at least one of their inputs, outputs, preconditions or
effects matches the composition problem. However, currently, none of the designed
methods has been integrated in the implemented MetaComp; this is future work.

Search Based on Service Categories

The method is focused on the service categories specified in the service composition
request. In this approach, service categories are organized in a hierarchic taxonomy.
After receiving the composition request, the service composition agent MetaComp
asks the SDA for all available services that match the specified categories and the
current context information (service availability and cost, and user profile).

The returned services (after transformation to PDDL) are used by the plan-
ning component SAPA to create the new compound service. In case the service
composition is successful, the new compound service is sent to the client agent.
If the services of the specified categories are not enough to perform the compo-
sition, the solution is to look for services of the category immediately above the
specified category, in the given hierarchy. This process will repeat itself until the
composition is successful, the maximum composition time specified by the client
is reached, or no more upper levels can be found in the categories hierarchy.

260 Chapter 11. Service Composition

Search Based on Problem Characteristics

In this method, the service composition agent MetaComp asks the SDA for all
available services that match the context information and have at least one input
or one precondition, one output, or one effect of the desired service. MetaComp
uses the returned services in order to try to create the desired compound service.
If the composition is successful, the compound service is sent to the client agent.
If the service composition fails, MetaComp will ask the SDA for more services.
This time, MetaComp will ask for all available services that match the context
information and at least one precondition, input, output or effect that matches
with the previously provided services.

MetaComp uses the newly received services plus the previously received ones
and starts a new composition. The process continues until a compound service is
created, the maximum composition time specified by the user is reached, or the
maximum number of considered services, as specified by the client, is reached.

11.5.3 Implementation

MetaComp (with the exception of the service selection methods) was implemented
in the Java programming language. Several Java based tools were used in its devel-
opment: JADE (Java Agent DEvelopment Framework) [3], SAX (Simple API for
XML) [4], ALL (Abstract Logic Language) [1], OWLS2PDDL (cf. Section 11.4.2)
and OWL-S API [16].

JADE was used as the agent platform and for the development of Meta-
Comp interaction component. SAX was used for reading PDDXML preconditions
and effects. ALL provides support for the internal representation of PDDXML
preconditions and effects. The OWLS2PDDL of OWLS-XPlan was used for the
conversion of OWL-S service descriptions, and OWL descriptions of the initial
state of the world and goal, to PDDL. The OWL-S API was used for writing the
OWL-S descriptions of the compound services generated by MetaComp agent.

11.6 Summary

In this chapter, we presented that the CASCOM composition planner agent SCPA,
a detailed description of the prefiltering module, and both the OWLS-XPlan and
MetaComp planning modules of the SCPA. For static SWS composition planning,
the SCPA can use MetaComp while OWLS-Xplan2 allows for advanced dynamic
service composition (cf. Chapter 4). In any case, the search space can be tuned by
prefiltering of relevant services according to the non-functional role-based match-
maker described in the previous chapter. The SCPA has been fully implemented in
Java and successfully demonstrated in the CASCOM e-health application scenario.

References 261

References

[1] Adetti: Abstract Logic Language; ALL Specification. Available online at
http://clts.we-b-mind.org/files/all.doc. 2002.

[2] The AIPS-98 Planning Competition Committee: PDDL the planning do-
main definition language. Technical Report CVC TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and Control, October 1998. Available at:
ftp://ftp.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz.

[3] F. Bellifemine, G. Caire, A. Poggi and G. Rimassa: JADE - A White Pa-
per. EXP Magazine, In search of innovation, 3(3). 2003. Available on-line at
http://exp.telecomitalialab.com

[4] D. Brownell: SAX2. O’Reilly; ISBN: 0596002378. 2002.

[5] J. Clark (Ed.): Relax NG Compact Syntax, November 2001.
http://relaxng.org/compact-20021121.html.

[6] FIPA Commitee Members: Foundation for Intelligent Physical
Agents: Interaction Protocol Specifications. 2002. Available on-line at
http://www.fipa.org/repository/ips.php3

[7] B.C. Gazen and C.A. Knoblock: Combining the expressivity of ucpop with the
efficiency of graphplan. Proceedings of the 4th European Conference ECP on
Planning, London, UK, Springer-Verlag, 1997.

[8] M. B. Do and S. Kambhampati: Sapa: A Scalable Multi-objective Heuristic
Metric Temporal Planner. Journal of AI Research, 20:155–194, 2003.

[9] J. Hoffmann and B. Nebel: The FF Planning System: Fast Plan Generation
Through Heuristic Search. Journal of Artificial Intelligence Research (JAIR),
(14):253302, 2001.

[10] M. Klusch, A. Gerber and M. Schmidt: Semantic Web Service Composition
Planning with OWLS-XPlan. Proceedings of the AAAI Fall Symposium on
Semantic Web and Agents, Arlington VA, USA, AAAI Press, 2005.

[11] M. Klusch and K-U. Renner: Fast Dynamic Re-Planning of Composite OWL-
S Services. Proceedings of 2nd IEEE Intl Workshop on Service Composition
(SerComp), IEEE CS Press, Hongkong, China, 2006.

[12] V. Lifschitz: On the semantics of STRIPS. MP. Georgeff, Amy L. Lansky
(eds): Proceedings of the Intl Workshop on Reasoning about Actions and Plans,
Timberline, Oregon, Morgan Kaufmann, 1986

[13] E.P. Pednault: ADL: Exploring the middle ground between STRIPS and the
situation calculus. Proceedings of the Conference on Knowledge Representation
and Reasoning KRR, San Francisco, CA, USA, Morgan Kaufmann, 1998.

262 References

[14] K-U. Renner, B. Blankenburg, P. Kapahnke and M. Klusch: OWLS-XPlan
2.0 - Dynamic Composition Planning of OWL-S Services (Reference Manual).
SCALLOPS Project Report, 2007. Available at www.dfki.de/ klusch/owlsx-
plan2.pdf

[15] E. Sirin, B. Parsia, D. Wu, J. Hendler and D. Nau: HTN planning for Web
Service composition using SHOP2. Journal of Web Semantics, 1(4), 2004.

[16] E. Sirin and B. Parsia: The OWL-S Java API. Proceedings of the Third
International Semantic Web Conference. 2004.

Chapter 12

Semantic Web Service
Execution
Lúıs M. Botelho, António L. Lopes, Thorsten Möller and Heiko Schuldt

12.1 Introduction

Service execution comprises all the activities that need to be carried out at runtime
to invoke one or several (Web) services in a coordinated manner. These activities
include initiation, control and validation of service invocations. Since each service
is supposed to create side effects as manifested by the functionality that it im-
plements, both the service user and service provider are interested that certain
properties for execution are guaranteed. The two most prominent properties are
guaranteed termination and reliability, that is, sustaining a consistent state before
and after execution even in the presence of failures. Those aspects become of par-
ticular interest when it comes to (i) execution in distributed environments where
more than one software entity might be involved, and (ii) execution of composite
services, i.e., processes.

In the conventional approach to service composition1, the act of assembling
individual atomic or composite services to a process is a manual task, done by
a process designer2. CASCOM follows a more innovative approach in which pro-
cesses are generated automatically by the service composition planning agent,
using planning techniques, see Chapter 11. This chapter describes two approaches
to reliable service execution, which take into account both atomic and composite
services. These include augmenting the planned service composition with moni-
toring assertions that can be checked in order to determine if the service has been
successfully executed, and in the case of failure, to allow necessary re-planning by
the planning agent.

1In the literature also referred to as service orchestration.
2This is commonly referred to as business process modeling.

264 Chapter 12. Semantic Web Service Execution

As input, service execution takes service descriptions represented by the Web
Ontology Language for Services (OWL-S) and a set of actual values of the services
input parameters. On successful execution a set of output values (results) will be
returned to the invoker whereby the values are associated to the output parameters
in the service description. Either input or output sets might be empty, or both –
in this case the invoked service produces just side effects. Furthermore, execution
requires grounding for each service. It consists of (i) an address to a concrete
service instance and (ii) information about the protocol to be used to interact
with the service instance. Consequently, leaving out the grounding in an OWL-S
document results in an abstract service description independent from how it is
realised. To integrate state of the art Web Services that are based on WSDL [4]
and SOAP, OWL-S allows specifying so-called WSDL groundings. In this chapter
we concentrate on this type as it is broadly used today. However, to underpin
the applicability of OWL-S to agent-based systems, we also introduce an agent
grounding. In principle, there are no limitations to develop other grounding types
like for instance, grounding to methods of Java classes.

Two approaches were developed for delivering the service execution func-
tionality in the CASCOM environment: a centralized approach (see Section 12.3),
where a single specialized Service Execution Agent (SEA) can execute an en-
tire composite service; and a dynamically distributed approach see Section 12.4),
where different well coordinated and co operating Service Execution Agents in the
environment contribute to the execution of parts of a composite service.

We have decided to adopt the agent paradigm, creating SEAs to facilitate
the integration of this work in open agent societies [10], enabling these not only
to execute Semantic Web Services but also to seamlessly act as service providers
in a large network of agents and Web Services interoperation.

12.2 Composite Service Execution

Today’s business, e.g., healthcare, and even scientific applications often involve
interactions with several service providers to realize use cases that can be found in
the applications. As a consequence, the services involved will be composed into pro-
cesses that reproduce the use cases when executed. The composition can be done
either manually by process designers probably supported by design tools, or au-
tomatically by service composition planning systems, see Chapter 11. Eventually,
the planned processes and input data will be issued directly to execution systems.
In a centralized approach composite services would be executed completely by one
single software agent. On the opposite end, execution can also be split up at each
inner service that is part of a composite service. The so produced chunks can be
executed in a well coordinated manner by different while co-operating software
agents, i.e., in a distributed way. Of course, all the properties that are declared in
the composite service with respect to control and data flow must be maintained the
same way as in a centralized approach to ensure consistent and reliable execution.

12.2. Composite Service Execution 265

The motivation to distribute composite service execution is always to be
found either in demands for scalability or by needs to optimize the execution pro-
cess in inherently distributed environments such as service-oriented architectures.
The reasons for optimization almost automatically emerge and can be manifold.
Examples are mostly related to nonfunctional aspects like interoperability, effi-
ciency, performance, scalability, availability, reliability, security, and so on. One
concrete example that has a direct impact on efficiency, performance, and scal-
ability is the reduction of overall data amount that has to be transferred in a
distributed execution. Another one might be the automatic selection of execution
agents that are currently idle, thus providing load balancing, which in turn has
a positive effect on scalability. Since these advanced mechanisms always require
the collection and availability of additional information at runtime this also gives
motivation for the presence of a generic context information system that allows to
store, handle and query them, see Chapter 13.

12.2.1 General OWL-S Execution Procedure

OWL-S [6] is an OWL-based service description language. OWL-S descriptions
consist of three parts: a Profile, which describes what the service does ; a Process
Model, which describes how the service works ; and a Grounding, which specifies
how to access a particular provider for the service. The Profile and Process Model
are considered to be abstract specifications in the sense that they do not specify
the details of particular message formats, protocols, and network addresses by
which an abstract service description is instantiated. The role of providing more
concrete details belongs to the grounding part. WSDL (Web Service Description
Language) provides a well-developed means of specifying these kinds of details.

For the execution of OWL-S services, the most relevant parts of an OWL-S
service description are the Process Model and the Grounding. The Profile part
is more relevant for discovery, matchmaking and composition processes, hence no
further details will be provided in this chapter.

The Process Model describes the steps that should be performed for a suc-
cessful execution of the whole service that is described. These steps represent two
different views of the process: first, it produces a data transformation of the set
of given inputs into the set of produced outputs; second, it produces a transi-
tion in the world from one state to another. This transition is described by the
preconditions and effects of the process.

There are three types of processes: atomic, simple, and composite. Atomic
processes are directly evocable (by passing them the appropriate messages). Atomic
processes have no sub-processes, and can be executed in a single step, from the
perspective of the service requester. Simple processes are not evocable and are not
associated with a grounding description but, like atomic processes, they are con-
ceived of as having single-step executions. Composite processes are decomposable
into other (atomic or composite) processes. These represent several-steps execu-
tions, whereby the control flow can be described using different control constructs,

266 Chapter 12. Semantic Web Service Execution

such as Sequence (representing a sequence of steps) or If-Then-Else (representing
conditioned steps).

The Grounding specifies the details of how to access the service. These de-
tails mainly include protocol and message formats, serialization, transport, and
addresses of the service provider. The central function of an OWL-S Grounding
is to show how the abstract inputs and outputs of an atomic process are to be
concretely realized as messages, which carry those inputs and outputs in some spe-
cific format. The Grounding can be extended to represent specific communication
capabilities, protocols or messages. WSDL and AgentGrounding are two possible
extensions.

The general approach for the execution of OWL-S services consists of the fol-
lowing sequence of steps: (i) validate the service’s pre-conditions, whereas the ex-
ecution continues only if all pre-conditions are true; (ii) decompose the compound
service into individual atomic services, which in turn are executed by evoking
their corresponding service providers using the description of the service providers
contained in the grounding section of the service description; (iii) validate the ser-
vice’s described effects by comparing them with the actual effects of the service
execution, whereas the execution only proceeds if the service has produced the
expected effects; (iv) collect the results, if there are any results, and send them
to the client who requested the execution. Notice that the service may be just a
change-the-world kind of service, i.e., it produces just side effects.

12.3 Centralized Approach for Service Execution

This section presents the research on agent technology development for context-
aware execution of Semantic Web Services, more specifically, the development of
a Service Execution Agent for Semantic Web Services execution. The agent uses
context information to adapt the execution process to a specific situation, thus
improving its effectiveness and providing a faster and better service.

Being able to engage in complex interactions and to perform difficult tasks,
agents are often seen as a vehicle to provide value-added services in open large-
scale environments. Using OWL-S service descriptions it was not possible up to
now to have service provider agents in addition to the usual Web Services because
the grounding section of OWL-S descriptions lacks the necessary expressiveness
to describe the complex interactions of agents. In order to overcome this limita-
tion, we have decided to extend the OWL-S grounding specification to enable the
representation of services provided by intelligent agents. This extension is called
the AgentGrounding [13].

We have also introduced the use of Prolog [5] for the formal representation
of logical expressions in OWL-S control constructs. To our knowledge, the only
support for control constructs that depend on formal representation of logical
expressions in OWL-S is done through the use of SWRL [12] or PDDL [14].

12.3. Centralized Approach for Service Execution 267

12.3.1 Service Execution and Context-Awareness

Context-aware computing is a computing paradigm in which applications can dis-
cover and take advantage of context information to improve their behaviour in
terms of effectiveness as well as performance. As described in [2] context is any
information that can be used to characterize the situation of an entity. Entities
may be persons, places or objects considered relevant to the interaction between
a user and an application, including users and applications themselves.

We can enhance this definition by stating that the context of a certain entity
is any information that can be used to characterize the situation of that entity
individually or when interacting with other entities. The same concept can be
transferred to application-to-application interaction environments.

Context-aware computing can be summarized as being a mechanism that
collects physical or emotional state information on an entity; analyses that infor-
mation, either by treating it as an isolated single variable or by combining it with
other information collected in the past or present; performs some action based
on the analysis; and repeats from the first step, with some adaptation based on
previous iterations [1].

SEA uses a similar approach as the one described in [1] to enhance its service
execution process, by adapting it to the specific situation in which the agent and
its client are involved, at the time of the execution process. This is done by inter-
acting with a general purpose (i.e., domain independent) context system [7] (see
also Chapter 13) for obtaining context information, subscribing desired context
events and providing relevant context information. Other agents, Web Services
and sensors (both software and hardware) in the environment will interact with
the context system as well, by providing relevant context information related to
their own activities, which may be useful to other entities in the environment.

Throughout the execution process, SEA provides and acquires context in-
formation from and to this context system. For example, SEA provides relevant
context information about itself, such as its queue of service execution requests
and the average time of service execution. This will allow other entities in the
environment to determine the service execution agent with the smallest workload,
and hence the one that offers a faster execution service.

During the execution of a compound service, SEA invokes atomic services
from specific service providers (both Web Services, and service provider agents).
SEA also provides valuable information regarding these service providers’ avail-
ability and average execution time. Other entities can use this information to rate
service providers or to simply determine the best service provider to use in a
specific situation.

Furthermore, SEA uses its own context information (as well as information
from other sources and entities in the environment) to adapt the execution process
to a specific situation. For instance, when selecting among several providers of some
service, SEA will choose the one with better availability (with less history of being
offline) and lower average execution time.

268 Chapter 12. Semantic Web Service Execution

In situations such as the one where service providers are unavailable, it is
faster to obtain the context information from the context system (as long as ser-
vice providers can also provide context information about their own availability)
than by simply trying to use the services and finding out that they are unavail-
able after having waited for the connection timeout to occur. If SEA learns that a
given service provider is not available it will contact the service discovery agent or
the service composition agent requesting that a new service provider is discovered
or that the compound service is re planned. This situation-aware approach us-
ing context information on-the-fly helps SEA to provide a value-added execution
service.

12.3.2 Service Execution Agent

The Service Execution Agent (SEA) is a broker agent that provides context-aware
execution of services on the semantic web (whether they are provided by Web
Services or agents). The agent was designed and developed considering the inter-
actions described in Section 12.3.1 and the need to adapt to situations where the
interaction with other service-oriented agents is required. Its internal architecture
was clearly designed to enable the agent to receive requests from client agents,
acquire and provide relevant context information, interacting with other service
coordination agents when necessary and execute remote services.

This section is divided into four parts. Sections 12.3.2 and 12.3.2 describe
SEA internal architecture, explaining in detail the internal components and their
interactions. Section 12.3.2 describes AgentGrounding, an extension of the OWL-
S Grounding specification that allows agents to act as service providers in the
Semantic Web. Section 12.3.3 provides some details on the implementation of the
agent.

Internal Architecture

The developed agent is composed of three components: the Agent Interaction
Component (also referred to as Interaction Component), the Engine Component
and the Service Execution Component (also referred to as Execution Component).
Figure 12.1 illustrates SEA internal architecture and the interactions that occur
between its components.

The Interaction Component was developed as an extension of the JADE
platform and its goal is to provide an interaction framework with FIPA-compliant
agents, such as its client agents (Figure 12.1, steps 1 and 10), service discovery and
service composition agents (whenever SEA requests the re discovery or the re plan-
ning of specific services). This component extends the JADE platform with extra
features regarding language processing, behavior execution, database information
retrieval and inter components communication.

Among other things, the Interaction Component is responsible for receiving
messages, parsing them into a format suitable for the Engine Component to use

12.3. Centralized Approach for Service Execution 269

Figure 12.1: SEA’s internal architecture and interactions between the several com-
ponents

(Figure 12.1, step 2). The reverse process is also the responsibility of the Interac-
tion Component — receiving data from the Engine Component and converting it
into the suitable format to be sent as FIPA-ACL messages (Figure 12.1, step 9).

The Engine Component is the main component of the execution agent as
it controls the agent’s overall activity. It is responsible for pre processing service
execution requests by acquiring/providing context information from/to the context
system and deciding when to interact with other agents (such as service discovery
and composition agents).

When the Engine Component receives an OWL-S service execution request
(Figure 12.1, step 2), it acquires suitable context information (regarding poten-
tial service providers and other relevant information, such as client location Fig-
ure 12.1, step 3) and schedules the execution process.

The Service Execution Agent interacts with a service discovery agent
(through the Interaction Component — Figure 12.1, steps *) to discover avail-
able providers for the atomic services that are used in the OWL-S compound
service. If the service discovery agent cannot find adequate service providers, the
Engine Component can interact with a service composition agent (again through
the Interaction Component — Figure 12.1, steps *) asking it to create an OWL-S
compound service that produces the same effects as the original service.

After having a service ready for execution, with suitable context information,

270 Chapter 12. Semantic Web Service Execution

the Engine Component sends it to the Service Execution Component (Figure 12.1,
step 4), for execution. Throughout the execution process, the Engine Component is
also responsible for providing context information to the context system, whether
it is its own information (such as its queue of service execution requests, average
execution time) or other entities’ relevant context information (such as availability
of providers and average execution time of services).

The Execution Component was developed as an extension of the OWL-S API
and its goal is to execute OWL-S service descriptions (Figure 12.1, steps 5a and
6a) with WSDL grounding information. The extension of the OWL-S API allows
performing the evaluation of logical expressions in conditioned constructs, such as
the If-then-Else and While constructs, and in services’ pre-conditions and effects.
OWL S API was also extended in order to support the execution of services that
are grounded on service provider agents (Figure 12.1, steps 5b, 6b). This extension
is called AgentGrounding and it is explained in detail in Section 12.3.2.

When the Execution Component receives a service execution request from
the Engine Component, it executes it according to the description of the service’s
process model. This generic execution process is described in Section 12.2.1.

After the execution of the specified service and the generation of its results,
the Execution Component sends them to the Engine Component (Figure 12.1,
step 7) for further analysis and post processing, which includes sending gathered
context information to the context system (Figure 12.1, step 8) and sending the
results to the client agent (through the Interaction Component — Figure 12.1,
steps 9 and 10).

Agent Interface

When requesting the execution of a specified service, client agents interact with
the Service Execution Agent through the FIPA-request interaction protocol [9].
This protocol states that when the receiver agent receives an action request, it can
either agree or refuse to perform the action. The receiver (i.e., the execution agent)
should notify the sender of its decision through the corresponding communicative
act (FIPA-agree or FIPA-refuse).

The decision to whether or not to accept a given execution request depends
on the results of a request evaluation algorithm which involves acquiring and
analysing adequate context information. The Service Execution Agent (SEA) will
only agree to perform a specific execution if it is possible to execute it, according
to the currently available context information. For example, if necessary service
providers are not available and the time required to find alternatives is longer
than the given timeframe in which the client agent expects to obtain a reply to
the execution request, then the execution agent refuses to perform it.

On the other hand, if the execution agent is able to perform the execution
request (because service providers are immediately available), but not in the time
frame requested by the client agent (again, according to available context infor-
mation) it also refuses the request. The execution agent can also refuse execute

12.3. Centralized Approach for Service Execution 271

requests if its workload is already too high (if its requests queue is longer than a
certain defined constant).

If during the execution process the execution agent is unable to perform
the entire request, it notifies the client agent by sending a FIPA-Failure message,
which includes the reason for the execution failure. The FIPA-request interaction
protocol also states that after successful execution of the requested action, the
executer agent should return the corresponding results through a FIPA-inform
message. After executing a service, SEA can send one of two different FIPA-
inform messages: a message containing the results obtained from the execution
of the service, or a message containing just a notification that the service was
successfully executed (when no results are produced by the execution).

OWL-S Grounding Extension for Agents: AgentGrounding

WSDL is an XML format for describing network services as a set of endpoints op-
erating on messages containing either document-oriented or procedure oriented in-
formation. The operations and messages are described abstractly, and then bound
to a concrete network protocol and message format to define an endpoint. Re-
lated concrete endpoints are combined into abstract endpoints (services). WSDL
is extensible to allow description of endpoints and their messages regardless of
what message formats or network protocols are used to communicate [4]. In short,
WSDL describes the access to a specific service provider for a described OWL-S
service.

WSDL currently lacks a way of representing agent bindings, i.e., a repre-
sentation for complex interactions such as the ones that take place with service
provider agents. To overcome this limitation, we decided to create an extension
of the OWL-S Grounding specification, named AgentGrounding [13]. This exten-
sion is the result of an analysis of the necessary requirements for interacting with
agents when evoking the execution of atomic services. In order for an agent to act
as a service provider in the Semantic Web, its complex communication schema has
to be mapped into the OWL-S Grounding structure.

The AgentGrounding specification includes most of the elements that are
present in Agent Communication. The AgentGrounding specification includes ele-
ments such as the name and the address of the service provider, the protocol and
ontology that are used in the process, the agent communication language, and
the content language. At the message content level, the AgentGrounding specifi-
cation includes elements such as name and type of the service to be evoked and
its input and output arguments, including the types and the mapping to OWL-S
parameters.

Figure 12.2 is an example of an OWL-S service grounding using the proposed
AgentGrounding extension. This description illustrates a service, provided by a
FIPA compliant agent, of finding books within several different sources, with a
given input title.

The AgentGrounding extension allows the specification of groundings such

272 Chapter 12. Semantic Web Service Execution

< !−− Ground i n g d e s c r i p t i o n −−>
<ag:AgentGrounding rdf : ID=”HospitalFinderGrounding ”>

<s :supportedBy r d f : r e s o u r c e=”#Hospi ta lF i nde rServ i c e ”/>
<g:hasAtomicProcessGrounding r d f : r e s o u r c e=”#HospitalFinderProcessGrounding ”/>

</ag:AgentGrounding>
<ag:AgentAtomicProcessGrounding rd f : ID=”HospitalFinderProcessGrounding ”>

<g :ow l sProce s s r d f : r e s o u r c e=”#Hospi ta lF inderProce s s ”/>
<ag:agentName>hosp i ta l in fo@cascom</ag:agentName>
<ag:agentAddress>ht tp : / / . . .</ ag:agentAddress>
< !−− S e r v i c e I d e n t i f i c a t i o n −−>
<ag:serviceName>f ind−ho sp i ta l
</ ag:serviceName>
< !−− S e r v i c e Ar gumen t s −−>
<ag:hasArgumentParameter>

<ag:ArgumentParameter rd f : ID=” l o c a t i on ”>
<ag:argumentType>java . lang . St r ing</ag:argumentType>
<ag:owlsParameter r d f : r e s o u r c e=”#Location ”/>
<ag:paramIndex>1</ ag:paramIndex>

</ag:ArgumentParameter>
</ag:hasArgumentParameter>
<ag : s erv i ceOutput>

<ag:ArgumentVariable rd f : ID=” hosp i ta l−i n f o ”>
<ag:argumentType>java . lang . St r ing</ag:argumentType>
<ag:owlsParameter r d f : r e s o u r c e=”#Hosp i ta l I n f o ”/>

</ ag:ArgumentVariable>
</ ag : s erv ic eOutput>

< !−− Ot h e r i n f o r m a t i o n −−>
<ag : s erv ic eType>ac t ion</ ag: s e rv i c eType>
<ag : p r o t o co l>f i pa−r eque s t</ ag : p ro to c o l>
<ag:agentCommunicationLanguage>f i pa−ac l</ag:agentCommunicationLanguage>
<ag:contentLanguage>f i pa−s l</ ag:contentLanguage>
<ag : s e rv i c eOnto logy>hosp i ta l−f i nder−ontology</ ag : s erv i ceOnto logy>

</ag:AgentAtomicProcessGrounding>

Figure 12.2: Example of AgentGrounding description

as the one described in Figure 12.2. These groundings can be executed through a
request sent to the Service Execution Agent, which in turn executes the service
by invoking the specified service providers. This invocation is made by sending a
message directly to the agent providing the service. All the information that is
needed for sending the message is included in the AgentGrounding description.

The example depicted in Figure12.2 describes a service named HospitalFind-
erService, which is grounded to an action find-hospital that accepts, as input, a
single string named location. This location argument is linked to the OWL-S ser-
vice input parameter Location. The action returns, as output, also a string, named
hospital-info, which is linked to the OWL-S service output parameter HospitalInfo.
Other information that can be extracted from this grounding is the interaction
protocol (fipa-request), the agent communication language (fipa-acl), the ontology
(hospital-finder-ontology) and the content language (fipa-sl) to be used in the in-
vocation message. The Service Execution Agent can use this information to send
the FIPA message that is described in Figure 12.3.

The information extracted from the AgentGrounding example in Figure 12.2
plus the information regarding the concrete service input (in this example, the
string ’9,8324W 38,12345N’), which comes in the received service execution re-
quest, is enough for the agent to be able to create the message in Figure 12.3.

The AgentGrounding specification allows the representation of several in-
stances of messages that can be sent to FIPA compliant agents, including the use
of different performatives, agent communication languages and content languages.

12.4. Distributed Approach for Service Execution 273

12.3.3 Implementation

The Service Execution Agent was implemented using Java and component-based
software as well as other tools that were extended to incorporate new function-
alities into the service execution environment. These tools are the JADE agent
platform [3] and the OWL-S API [19].

The JADE agent platform was integrated into the Agent Interaction Compo-
nent (see Section 12.3.2) of the Service Execution Agent to enable its interaction
with client agents and service provider agents. The OWL-S API is a Java im-
plementation of the OWL-S execution engine, which supports the specification
of WSDL groundings. The OWL-S API was integrated into the Execution Com-
ponent of the Service Execution Agent to enable it to execute both atomic and
compound services. In order to support the specification and execution of Agent-
Grounding descriptions (see Section 12.3.2), we have extended the OWL-S APIs
execution process engine. The extension of the execution engine allows convert-
ing AgentGrounding descriptions into agent-friendly messages, namely FIPA ACL
messages, and sending these to the corresponding service provider agents. To en-
able the support for control constructs that depend on formal representation of
logical expressions using Prolog, we extended the OWL-S API with a Prolog en-
gine that is able to process logical expressions present in If/While clauses and
pre-conditions. This extension was done through the use of TuProlog [8], an open
source Java based Prolog.

12.4 Distributed Approach for Service Execution

The distributed approach for service execution differs from the centralised ap-
proach (see Section 12.3) in the sense that at runtime execution is not limited
to being handled by just one execution agent but might involve several distinct
agents3. This fundamental expansion results in the advantages described earlier

3Whether they are actually physically separated, i.e., run on different peers, is a matter of
the agent platform used and the concrete deployment of agent instances. Consequently, the dis-
tributed approach imposes no constraints on the organisation of agents beyond what is implicated
by the agent platform used. On the other hand, not physically separated would mean that they
run on one peer within different threads or processes.

(REQUEST
: sender (agent− i d e n t i f i e r : name sea@cascom)
: r e c e i v e r (s e t (agent− i d e n t i f i e r : name hosp i ta l in fo@cascom

: addre s se s (sequence http : / / . . .)))
: content ”((ac t ion

(agent− i d e n t i f i e r : name hosp i ta l in fo@cascom)
(f ind−ho sp i t a l : l o c a t i o n \”9 ,8324W 38 ,12345N\”)))”
: language f ipa−s l
: ontology hosp i ta l−f i nde r−ontology
: pr otoco l f ipa−r eques t)

Figure 12.3: Message generated from the example in Figure 12.2

274 Chapter 12. Semantic Web Service Execution

in this chapter but brings in new characteristics that need to be tackled in order
to retain reliable execution.

The following sections present presents research results in the area of dis-
tributed execution of composite Semantic Web Services. Section 12.4.1 starts by
pointing to the general assumptions. The main part of this chapter describes the
basic concept and structure of the distributed approach and the protocol that
represents the interaction model between client agents and execution agents. The
chapter concludes by briefly presenting the implementation of the service execution
system that was developed at the University of Basel.

To start out, distributed service execution invariably requires a certain strat-
egy to organise and co-ordinate distribution. Basically, such a strategy includes a
method to control the flow of execution among the participating agents and the
invocation of the service itself. In general, various kinds of such strategies can be
designed. The properties of the approach that has been developed in the CASCOM
project will be described in Section 12.4.2.

12.4.1 General Assumptions

For distributed service execution, we first assume that a composite service contains
an arbitrary number of service invocations whereby the composition structure is
equal to a directed acyclic graph, i.e., combined sequential and parallel flows to-
gether forming processes as denoted in [16]. Second, as a basis for correct process
execution, each service invocation is assumed to be atomic and compensatable.
This means that the effects of a service can be undone, if necessary, after the
invocation has returned. Otherwise, unwanted side effects of aborted or reset exe-
cutions may remain and exactly-once execution semantic could not be guaranteed.
For services which do not comply with the atomicity requirement, we assume that a
wrapper can be built which adds this functionality. Third, we assume that services
are stateless, i.e., that they never have to remember anything beyond interaction.
In our approach, execution state (i.e., intermediate results) is solely stored by the
execution system, as part of the process (composite service) instance. Finally, our
approach considers the crash failure model, which means that components such
as services and machines may fail by prematurely halting their execution.

12.4.2 Execution Strategy

Carrying out execution of composite services in a distributed environment consist-
ing of more than one execution agent requires the definition of a certain strategy.
The strategy is built on three core properties: First, it defines how to divide the
composite service into sections which can be executed in a distributed way after-
wards. Second, it defines where and when to distribute those sections to different
execution agents. Finally, it defines a mechanism for control between the partic-
ipating agents to guarantee consistent execution. Altogether they imply the way
execution will be actually done at runtime.

12.4. Distributed Approach for Service Execution 275

The selection or design of an execution strategy needs always to be accom-
panied by an analysis of the service environment. The two main aspects that such
an analysis would cover are (i) the technologies used, like SOAP based Web Ser-
vice interactions, and (ii) the deployment structure of service providers and their
(physical) relation to service clients (agents in the CASCOM architecture).

In the following, three different dimensions for categorisation of execution
strategies are described. Sections 12.4.2 and 12.4.2 describe two general purpose
approaches, which have their own characteristics regarding the three dimensions.
The former one was chosen for implementation of the distributed service execution
agent and we will outline some advantages and disadvantages.

In general, a strategy for distributed execution of composite services must
initially define whether execution control takes place in a centralised or decen-
tralised way. The centralised approach requires a dedicated manager agent that
takes the responsibility of supervising and co-ordinating execution after receipt of
the composite service. In doing so, the manager agent invokes the actual execution
agents according to the control structure of the composite service. The execution
agents in turn invoke the actual services and await the results of the service invo-
cations. In contrast to the centralised approach the decentralised approach does
not require a dedicated agent, that is, the co-ordination role is no longer limited
to stay at a single manager agent. In theory, the co-ordination role either can be
forwarded among the participating agents or the agents coalesce to share the co-
ordination role. Whereas the manager agent in the centralised approach turns out
to become a bottleneck and a single point of failure both problems are eliminated
in the decentralised approach. On the other hand, a decentralised approach comes
with the trade-off that more advanced control mechanisms are required, accom-
panied by higher (communication) efforts in case of failure handling and initial
preparation before execution (see Section 12.4.2). In addition, the decentralized
approach allows for balancing the load among different agents and for taking into
account the dynamics of practical settings where agents might frequently leave or
others join.

Starting from the process model of OWL-S services, execution can be fur-
ther classified depending on whether the services are atomic or composite (see
Section 12.2.1). While execution of an atomic OWL-S service implicates just one
service invocation, the number of service invocations for composite OWL-S services
intuitively relates to the number of atomic services out of which they are composed.
In general, we always refer to composite services since execution of atomic services
in fact does not require an advanced distributed execution strategy. The reason is
that invocation of a Web Service is defined as a request reply pattern between a
service client and the provider that cannot be further split up. As a conclusion,
it is now obvious what the smallest granularity for sections of a composite ser-
vice is: the atomic services. At the same time it is also the preferred granularity
as it directly maps to the OWL-S process model4. Hence, it is not remarkable

4The process model basically relates to a directed graph, whereby the nodes are (atomic)

276 Chapter 12. Semantic Web Service Execution

that most execution strategies would size the sections for distribution equal to
the atomic services. Finally, the general assumption is that agents execute those
sections of the composite service. For instance, the most straightforward approach
would associate each atomic service within a composite service to one execution
agent which invokes it, i.e., a composite service consisting of n atomic services
would require n execution agents (n ≥ 1).

Yet another aspect for categorisation of execution strategies relates to wheth-
er execution agents and (Web) service providers are tightly integrated/coupled or
not. By tightly integrated we mean that an execution agent basically wraps one or
more services, that is, both run on the same machine, probably even in the same
process. In addition, the implementation of the invocation of the Web Service
by the wrapper agent itself might bypass the whole Web Services communication
stack and might be done without this overhead by direct programmatic calls.
Furthermore, this type mostly comes along with the intention that an execution
agent wraps a fixed set of services, i.e., the set of services is expected to never
change. As opposed to tight integration, remote coupling means that the execution
agent and the (Web) service provider are distant from each other, that is, the
execution agent invokes the service in the standard way using its communication
layer and protocol. For instance, the today’s broadly adopted Web Service stack:
HTTP based SOAP or REST. Finally, this type mostly comes along with a generic
design of the execution agent which is able to invoke any remote service.

Dynamically Distributed Execution Strategy with Remote Coupling of Execution
Agent and Web Services

The approach described hereafter was designed to address recent developments
in service-oriented architectures in which the spreading and application of Web
Service standards like WSDL and SOAP have reached a level where Web Service
providers almost always apply those technologies to publish and provide access to
their Web Services. As a matter of fact, the question had to be raised whether
a tight coupling of execution agents and Web Services is appropriate, assumable,
even feasible in practice or whether a strategy can be found which fits well to the
current exploitation of Web Services: A strategy which considers remote invocation
of services using the common Web Services communication stack and which is still
robust against failures. As a result, this strategy supports the requirement that
service providers want to remain Web Services conform with respect to the service
interfaces.

Figure 12.4 illustrates the course of the dynamically-distributed and decen-
tralized excution strategy based on a very simple scenario where a composite ser-
vice containing a sequence of three Web Service invocations WS1 to WS3 should
be executed. It is also assumed that a composite service is split up into sections
equal to the atomic services inside. The strategy works as follows.

services and vertices represent the control flow.

12.4. Distributed Approach for Service Execution 277

SEA3

Client Agent
SEA2

1. submit composite service,
input data, and request execution

4. invoke

2. invoke5. send result data

WS1

WS3

WS2

3. invoke

SEA1

Figure 12.4: Dynamically-distributed execution strategy with remote coupling of
execution agent and Web Services

1. The client agent submits a valid OWL-S composite service description to-
gether with the input data to one available execution agent, SEA1 in this
case.

2. SEA1 parses the service description and immediately starts invoking the first
Web Service WS1. After return of the result from WS1 the first section is
finished.

3. A decision step follows to determine whether execution of the next section
should be made by the same agent or whether the execution state should be
transferred to another execution agent and continue there. In this decision
step arbitrary heuristics can be used to figure out how to continue, i.e., on
which agent to continue. For instance, it would be possible to design context
based heuristics making it possible to adapt dynamically to overloaded, slow,
expensive, or failure-prone context situations and transfer execution state to
other execution agents with superior context situations. Additionally, it is
also possible to face the effort for transferring execution state to another
execution agent with the benefit available there. As a result, the system can
be adapted to the circumstances that exist in practical settings by designing
distribution heuristics that incorporate the characteristics5.

4. Execution of the next section might continue on SEA1 until WS3 returned
its result. The same decision step is done after each section.

5. In step 5 the composite service output (result) is returned to the client agent.

The heuristics based approach for distribution is able to cope with external
5Two simple heuristics have been implemented for the prototype. First, a CPU load based

heuristic. A transfer of the execution state takes place only if the average CPU load on the current
execution agent exceeded a certain threshold in a preceding timeframe. For validation purposes,
a round-robin heuristic has been implemented that transfers to another execution agent in either
case but always selects that execution agent that has been used least recently.

278 Chapter 12. Semantic Web Service Execution

failure situations but not with crash situations of the current execution agent itself.
To overcome this problem, two possibilities exist. It is either possible to persist
the current execution state at the current agent, or to replicate the execution state
online to another execution agent. Whereas the first solution is only appropriate
for short interruptions whereby the agent gets rebooted immediately afterwards
and restarts the interrupted execution, the second solution is more robust since
execution can be immediately overtaken by the agent which has the replicated
execution state. Therefore we intend to extend the implementation of the execution
agent with the latter solution.

Provided that the heuristics based decision always returns with the result
to continue at the same execution agent, execution is in fact not distributed and
the communication effort is minimal. According to the actual heuristic used, this
situation represents the optimal execution environment then. On the opposite
end, transfer to another agent on each decision computation represents the most
suboptimal execution environment according to the heuristic and also involves the
highest communication overhead. Therefore it turns out that the more precarious
the context environment is the more efforts must be undertaken.

Another characteristic of this strategy is that its properties do not deteriorate
assuming that (Web) service providers would be tightly integrated with agents.
Assuming this change the execution agent which currently does invocations should
then communicate to other agents using ACL messages instead of using the Web
Services stack. Consequently, only the message layer for service invocations needs
to be replaced/extended by a communication layer for ACL messages.

Fully Distributed Execution Strategy with Tight Integration of Execution Agent
and Web Services

The determinative characteristic of this strategy is the assumption that execution
agents and (Web) service providers are tightly or locally integrated, as described
above. Consequently, execution agents need to be deployed and made available for
every pre-existing service provider in the infrastructure. This property distinguishs
it from the dynamically-distributed strategy described in the preceding section.
This approach for distributed while decentralized composite service execution is
related to techniques described in [18] and [15].

Figure 12.5 illustrates the course of the fully-distributed and decentralized
execution strategy. Likewise Figure 12.4 it also assumes a very simple scenario
where a composite service containing a sequence of three Web Service invocations
WS1 to WS3 should be executed. The client agent — according to the setting
in the CASCOM architecture this would actually be the SCPA — submits the
valid OWL-S composite service description together with the input data to any
available execution agent, for instance SEA0. This execution agent parses the given
service description for the first atomic service provider, which is WS1. With this
information the agent resolves the execution agent SEA1 as it is the wrapper of
WS1 — notice that we assume the availability of some kind of directory containing

12.4. Distributed Approach for Service Execution 279

Client Agent SEA1

SEA3

SEA2

1. submit composite service,
input data, and request execution

3. service and result 1

4. service and result 1, 2

5. service and result 1, 2, 3

6. send result data

WS1

WS2

WS3

SEA0

2. start

Figure 12.5: Course of fully-distributed execution strategy with tight integration
of SEA and service provider

a mapping from service providers to execution agents. In the next step SEA0

forwards the complete service description and input data to SEA1 co-requesting
execution start. By forwarding the complete service description each agent is able
to resolve the next agent to forward control and results to because this information
can be read from the process model of the service description. Remember that the
process model specifies the control and data flow, i.e., the order and type of service
invocations. In the scenario, after completion of execution of WS1, SEA1 would
resolve the agent for WS2 which is SEA2 and again forward the complete service
description together with the input data and result 1 produced by WS1. This
procedure continues until SEA3 has finished invocation of WS3 with result 3. In
step 5 SEA3 sends results 1 to 3 back to SEA0 which just maps them to the
composite service’s output (result). Provided that all service invocations returned
without failures the result is sent back to the client agent in step 6.

In case of failures on one execution agent, failed service invocations, or in
case of violated pre- or post-conditions execution either has to be rolled back or
a re-planning could be initiated trying to find alternative services and continue
execution if an alternative was found. Assuming transactional properties of the
services (as stated in Section 12.4.1) a roll back can be done based on the fact
that each execution agent knows its adjacent predecessor(s) from the process model
of the composite service. A rollback then requires moving back along the control
path step by step and rolling back each service invocation done.

The downside of the simple variant of this approach is that intermediate re-
sults produced by service invocations and input data will be forwarded in any case
no matter if they are actually required on every execution agent, i.e., the data flow

280 Chapter 12. Semantic Web Service Execution

is not optimal and that SEA and atomic service need to be tightly coupled. For
instance, in the scenario illustrated in Figure 12.5, ifWS1 produces large volumes
of data as result 1 they will be forwarded to SEA2 and SEA3 in any case. In a first
optimised version data (input and output data, intermediate results) would only
be forwarded between the agents where it is required, thus reducing the overall
data communication amount. Furthermore, it is not necessary to forward the com-
posite OWL-S service description from agent to agent. In a second optimisation
step this can be optimised to split the composite service into its atomic services
sections and extend the execution strategy with an initial distribution of the sec-
tions to each agent, i.e., each execution agent receives just its own task within the
composite service. In the scenario above this initial step could be done by SEA0.
To complete this optimisation each agent also needs knowledge about its adjacent
predecessor(s) and successor(s) for control flow navigation. The successor(s) is/are
required for normal forward navigation whereas the predecessor(s) is/are required
for backwards navigation in case of roll back.

12.4.3 Interaction Model

The execution agent shows a non-proactive behaviour. It must be actively con-
tacted by a client agent that wants to request execution of a composite OWL-S
service6. In general, there is no limitation about what kind of agent can act as the
client agent. However, the overall CASCOM architecture was designed for dynamic
planning of composite services by a dedicated planner agent. This planner agent
issues a service (together with the actual inputs) to the execution agent after it
has finished the planning, triggers execution start, and asynchronously awaits the
results. As problems might occur during execution — for instance, a Web Service
invocation might fail because it might be temporarily not available — the inter-
action model also includes a re-planning sub-interaction. In case of a problem the
execution agent would temporarily suspend execution and ask the planner agent
for planning of a contingency service. As a result, the types of interactions that
have to be supported are extended asynchronous request/reply interactions.

Each execution agent publishes a main interaction interface by which all
communication with a client agent takes place. This main interface is formalized
by an agent ontology that defines the concepts, predicates, and actions to create
meaningful ACL message content. Furthermore, an internal interaction interface
exists by which execution agents communicate among themselves during execution;
the latter one is not described here.

Not just because of the asynchronous invocation model but especially be-
cause of the required usage patterns which are beyond the simple request/reply
pattern, all interactions between calling agent and execution agent are stateful,
thus forming an interaction protocol. Each new invocation of one of the execution

6In fact, both atomic and composite OWL-S services can be issued the same way to an
execution agent.

12.4. Distributed Approach for Service Execution 281

agent’s methods implicitly creates a new session which lasts until the final result
was sent back to the invoking agent — no matter if the result is positive or nega-
tive. The state on both sides is encapsulated by finite state automata as provided
by the JADE framework. As a recommended starting point for simple request/re-
ply agent conversations FIPA has specified the standard Achieve Rational Effect
protocol [9]. However, we have specified and implemented an extended version of
the protocol, named Achieve Rational Effect * protocol, since the original protocol
is not sufficient with respect to the requirements of service execution interaction.
For example, if some client agent requests the execution of some composite OWL-
S service from an execution agent, it is useful even necessary for monitoring and
re-planning purposes that the requestor gets notified about execution progress.
This notification informs about the position of control flow within the composite
service, respectively the effects achieved so far. In short, the Achieve Rational Ef-
fect * protocol extends the standard FIPA Achieve Rational Effect protocol with
two optional features:

1. The possibility to send any kind of intermediate or feedback ACL messages
(information) to the initiator before the final result (inform or failure) is
sent to the initiator. Consecutive messages of this kind can be sent, but may
alternate with 2.).

2. The possibility to send return requests (ACL messages) back to the initiator
to ask for additional information which might be required to achieve the
original rational effect. A return request must be answered by the initiator
until a new return request can be done or a new feedback message can be
sent.

Figure 12.6 shows the defined order and cardinalities of the ACL message flow
for the Achieve Rational Effect * protocol. For the interfacing with the execution
agent the extension part is used to provide the initiating agent with up to date
information about the current state of the execution. The second part is used
to trigger re-planning of composite OWL-S services in case of problems during
execution, for instance, if an atomic service part of the composite service became
suddenly unavailable.

12.4.4 Implementation

The distributed service execution is implemented in Java as autonomous agents
that can be deployed within the CASCOM agent platform [11] as well as the
JADE platform [3]. The implementation derives from and incorporates concepts
of the OSIRIS process management system [17]. This system essentially repre-
sents a peer-to-peer message oriented middleware with an integrated component
framework. The component framework allows to implement and run custom com-
ponents each delivering a pre-defined service and able to communicate with other
(remote) components. The messaging layer basically realizes the publish/subscribe

282 Chapter 12. Semantic Web Service Execution

Initiator Responder

request

[agree | refuse | not_understood]

[propagate]

[return_request]

inform | failure

inform | failure

Sub Achieve Rational
Effect Protocol

Extension part

re
pe

tit
io

ns
 w

ith
 n

o
sp

ec
ifi

c
or

de
r

propagate,
return_request

inform

out of sequence discard

mandatory, exactly once
optional, exactly once
optional with repetitions

Figure 12.6: Message flow for interactions of a client agent (initiator) with the
service execution agent (responder)

12.5. Summary 283

messaging paradigm as well as addressing of specific receivers. Furthermore, it in-
corporates advanced concepts such as eager and lazy replication, and freshness
properties. On top of the middleware, a distributed while decentralized process
execution engine (implemented as components) was developed. This means that
several peers may be involved in the execution of a composite service whereby no
central co-ordinator is required. Its execution strategy can be compared to the one
presented in Section 12.4.2. Finally, the internal design of the OSIRIS system is
strictly multithreaded, comparable to the SEDA approach [20].

The OSIRIS system was extended to support execution of Semantic Web
Services. All its functionality is represented to the outside by agents, whereby for
a minimum deployment just one agent is sufficient — of course, such a deployment
in fact would be not distributed. Furthermore, all execution agents in a distributed
deployment are equal in their functionality accessible by client agents, which means
that all of them are available to be used in the same way, thus presenting a true
P2P structure. In fact, all the functionality implemented is encapsulated by one
so called agent Behaviour. Conceptually, a behaviour represents a task that an
agent can carry out. Each agent can be added any number of different behaviours
at any time, thus adding it any number of tasks that it can do. Consequently,
a great flexibility is achieved with respect to who can implement OWL-S service
execution functionality: The behaviour can be added to any agent, thus extending
the agent to which it is added with OWL-S service execution functionality.

Another aspect that has been incorporated in the implementation is the dis-
tinction between call-by-value and call-by-reference semantics. Execution requests
by a client agent can be made in either of those types with respect to both the
OWL-S service description itself and the actual input data. Using the call-by-value
style means to embed the data value itself in a request7. On the other hand, call-
by-reference style means to embed only a reference8 to the data value in a request
that must be resolved by the execution agent afterwards.

12.5 Summary

In this chapter an agent based framework has been presented that enables the ex-
ecution of composite (as well as atomic) Semantic Web Services that are described
based on OWL-S and WSDL. From a systems point of view, two comprehensive
approaches are provided: (i) a centralized solution where a single Execution Agent
solely takes over the responsibility for executing a given service and (ii) a dis-
tributed approach where a set of P2P-organized Execution Agents co-operate to
share the execution task among them. The centralized solution employs context
information to determine the appropriate service providers for each situation to
distribute and balance the execution work. The distributed approach goes even

7The data format for both the OWL-S service description and input data is serialised XML.
8The implementation allows using URLs to reference (external) data that is available some-

where in the Web.

284 Chapter 12. Semantic Web Service Execution

one step further by providing built-in scalability support not only with respect
to the number of service providers but also in terms of an increasing number of
client agents. Here, scalability is supported at two levels: First, at a micro level by
a multithreaded implementation that allows an Execution Agent to handle mul-
tiple execution requests concurrently. Second, at a macro or infrastructure level
by the possibility to dynamically migrate execution from one agent to another.
This is beneficial when for instance the overall execution time and/or throughput
can be optimized, or when the load among the different execution agents can be
balanced. This optimization is based on a generic cost model that is open to incor-
porate different measures like, for instance, service costs, data and communication
costs, reliability of computing resources, and resource consumption of services.
This means that the assessment whether an ongoing execution would profit from
a transfer to another agent is open to allow (i) incorporating domain-specific re-
quirements and (ii) context information. This gives a great flexibility to apply this
approach to various environments having different preconditions, requirements,
and properties. Furthermore, the migration procedure does not require any cen-
tralized supervision and was developed to happen completely self-dependent and
decentralized.

The following two subsections discuss alternative approaches to service exe-
cution that can be taken into account when starting from different assumptions.

12.5.1 Late Binding of Service Provider Instance during Execution

The overall CASCOM architecture approch considers that Execution Agents take
instantiated service descriptions as their input, that is, service descriptions that
are already grounded to a particular service provider (instance). This means that
in the CASCOM setting the Service Composition Planner Agent already decides
about which concrete service provider it will use when creating a new composite
service. This approach is highly beneficial for services which are created ad-hoc,
and are only very infrequently executed, immediately after the service is composed.

However, when services are executed frequently or when the execution of the
service is time-consuming, then it can no longer be guaranteed that the groundings
are still valid, while the service type may still be appropriate. In this case, it is
beneficial when planning and service execution is further decoupled. A first ap-
proach considers only service types as output of the planner, while the groundings
for the complete service is done at instantiation time. This approach is particularly
useful for short running services such that the groundings remain valid during ser-
vice execution. Second, the grounding might be done prior to the invocation of an
atomic service during the execution of a composite service. Deferring the decision
on the service grounding to instantiation or execution time frees the composition
planner agent from this additional task and will reduce the composition time. This
shift of service provider selection to happen closer to the service invocation has
the potential to improve the overall system behaviour in very dynamic service
environments. The higher the probability that an optimal service provider selec-

References 285

tion that was done at time t1 becomes suboptimal at a later point in time t2, the
more important this becomes. An example that illustrates this would be either a
long delay between service composition and execution, or a (very) long running
composite service consisting of, say, three subsequent atomic service invocations.
If service providers are already selected before execution it might happen that
the one associated to the third atomic service is not available anymore when the
actual service invocation is due, thus, would raise a failure. The task of binding
the abstract service type to an instance will be under the responsibility of the
execution agent. To accomplish this binding, additional queries to discover service
providers must be done by the execution agent.

However, this aspect is of rather minor importance to the CASCOM system:
First, service execution immediately follows service composition, i.e., there is al-
most no delay in between. Second, the envisioned application scenarios are rather
characterized by short running composite services compared to the extent that is
considered usual in other application domains like scientific workflows. Finally, the
dynamic failure handling by composition re-planning provides a method to cope
with services that become unavailable during execution.

Nevertheless, the implementations of both the centralized and the distributed
approach are prepared for late binding of service instances during execution but
need to be extended to closely integrate with the Service Discovery Agent.

12.5.2 Tight Integration of Service Providers and Execution Agents

The discussion of tight integration versus remote coupling of service providers and
execution agents has already been raised and discussed in detail in Section 12.4.2.
The CASCOM systems assumes a remote coupling of service providers and execu-
tion agents because of the status quo in the way Web Services are deployed today
and how they can be accessed – not only from a technical point of view but also
from a organizational point of view: Service providers are unwilling to deploy addi-
tional software layers that would integrate their services with inter-organizational
service infrastructures for several reasons. The most important one is that they
are afraid of loosing control over their services.

Still, in intra-organizational deployments it would be more easily possible to
use the approach for distributed execution of composite services that has been
described in Section 12.4.2. Even then one aspect remains to be further consid-
ered, which is the adequacy for ad hoc automated service composition where the
resulting composite services are usually executed only once.

References

[1] D. Abowd, A. K. Dey, R. Orr and J. Brotherton: Context-awareness in wear-
able and ubiquitous computing. Virtual Reality, 3:200–211, 1998.

286 References

[2] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith and P. Steggles:
Towards a better understanding of context and context-awareness. In HUC
’99: Proceedings of the 1st international symposium on Handheld and Ubiq-
uitous Computing, pages 304–307, London, UK, 1999. Springer-Verlag.

[3] F. Bellifemine and G. Rimassa: Developing multi-agent systems with a FIPA-
compliant agent framework. Software-Practice and Experience, 31(2):103–
128, 2001.

[4] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana: Web Services
Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, 2001.

[5] W F. Clocksin and C. S. Mellish: Programming in Prolog. Springer-Verlag
New York, Inc., New York, NY, USA, 1981.

[6] OWL Services Coalition. OWL-S: Semantic Markup for Web Services, 2003.

[7] P. Costa and L. Botelho: Generic context acquisition and management frame-
work. In Proceedings of the First European Young Researchers Workshop on
Service Oriented Computing, 2005.

[8] E. Denti, A. Omicini and A. Ricci: Multi-paradigm java-prolog integration in
tuProlog. Sci. Comput. Program., 57(2):217–250, 2005.

[9] Foundation for Intelligent Physical Agents. FIPA Communicative Act Library
Specification. http://www.fipa.org/specs/fipa00037, 2000. Specification
number SC00037.

[10] H. Helin, M. Klusch, A. Lopes, A. Fernandez, M. Schumacher, H. Schuldt,
F. Bergenti, and A. Kinnunen: Context-aware Business Application Service
Co-ordination in Mobile Computing Environments. In Proceedings of the 2005
Workshop on Ambient Intelligence - Agents for Ubiquitous Environments,
Ultrecht, The Netherlands, July 2005.

[11] H. Helin, T. van Pelt, M. Schumacher and A. Syreeni. Efficient Networking
for Pervasive eHealth Applications. In GI-Edition, editor, Proceedings of the
European Conference on EHealth (ECEH06), volume P-91 of Lecture Notes
in Informatics, October 2006.

[12] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and M. Dean:
SWRL: A Semantic Web Rule Language combining OWL and RuleML.
http://www.w3.org/Submission/SWRL, 2004.

[13] A. Lopes and L.M. Botelho: SEA: a Semantic Web Services Context-aware
Execution Agent. In AAAI Fall Symposium on Agents and the Semantic Web,
Arlington, VA, USA, 2005.

[14] D. McDermott: PDDL – the planning domain definition language, 1998.

[15] M. G. Nanda, S. Chandra and V. Sarkar: Decentralizing execution of com-
posite Web Services. In OOPSLA ’04: Proceedings of the 19th annual ACM

References 287

SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, pages 170–187, New York, NY, USA, 2004. ACM Press.

[16] H. Schuldt, G. Alonso, C. Beeri and H.-J. Schek: Atomicity and Isolation for
Transactional Processes. ACM Transactions on Database Systems (TODS),
27(1):63–116, March 2002.

[17] C. Schuler, H. Schuldt, C. Türker, R. Weber and H.-J. Schek: Peer-to-peer
execution of (transactional) processes. International Journal of Cooperative
Information Systems (IJCIS), 4(14):377–405, 2005.

[18] C. Schuler, R. Weber, H. Schuldt and H.-J. Schek: Scalable Peer-to-Peer
Process Management - The OSIRIS Approach. In Proceedings of the 2nd

International Conference on Web Services (ICWS), pages 26–34, San Diego,
CA, USA, July 2004. IEEE Computer Society.

[19] E Sirin: OWL-S API project website.
http://www.mindswap.org/2004/owl-s/api, 2004.

[20] M. Welsh, D. E. Culler and E. A. Brewer: SEDA: An architecture for well-
conditioned, scalable internet services. In Symposium on Operating Systems
Principles (SOSP-18), pages 230–243, Banff, Canada, 2001.

Chapter 13

Context-Awareness System
Paulo Costa, Bruno Gonçalves and Luis Miguel Botelho

13.1 Introduction

Computer application basic inputs, such as keyboard strokes or pointing devices,
supply only limited information about the surrounding environment. The necessity
of context information grows as applications need to adapt to the environment in
which they are used. This adaptation increases the application’s performance and
makes sure that the results are well adapted to the specific circumstances. The
main objective of context-aware computing is the development of applications that,
without being limited by usual input devices, acquire and use context information
to better adapt to the circumstances in which interactions take place.

Since context can be acquired by a wide range of input devices (i.e., domain
dependent sensors), context systems were created to provide a simple and unique
source of information for applications. Context systems can then be understood
as extensions of the basic input that an application can receive [4].

This chapter describes the CASCOM approach to context acquisition and
management — GCMAS (General Context Management and Acquisition System).
The proposal was developed under the assumption that specific information is
considered context if it complies with the following definition:

“Context is all the information related to persons, objects, loca-
tions and applications, participating or being referred in a specific in-
teraction, which is not strictly necessary for the interaction to be ac-
complished, although the use of this information allows improving the
quality of the interaction and often the system’s performance.”

The presented definition integrates aspects from the definitions put forth by Anag-
nostopoulos et al. [1], and by Dey and Abowd [4], which are probably the most
accepted ones in the scientific community. It emphasizes the central role of in-
teractions, and sets a clear distinction between information that is essential to
the interaction and context information which, although not being essential, may

290 Chapter 13. Context-Awareness System

be used to improve it. This distinction is humbly suggested by the authors of
this chapter with the goal of providing some guidance about the difference be-
tween context-aware computing and computing in general. According to this view
of context information, while non-context information (i.e., information that is
strictly necessary for the task at hand) should be explicitly provided to the system
when requesting it to perform some task, context information (i.e., information
not strictly necessary) should be acquired by the system that receives the request,
even if it has to ask it back to the requester.

The following example may shed some light on this issue. Imagine someone,
say Tom, that wants to use the CASCOM Agent System to locate a Healthcare
Centre. Tom might send a request to the CASCOM Agent System saying ”Find
me a Healthcare Centre“. This is the information explicitly sent in the message
initiating the interaction. However, being a context-aware system, the CASCOM
Agent System knows that Tom’s location is important for discovering a Healthcare
Centre more appropriate to Tom’s situation. Therefore, it asks Tom’s location to
GCMAS, the CASCOM Context System. Having Tom’s location, the CASCOM
Agent System will be capable of discovering the Healthcare Centre closest to Tom.
In this example, Tom’s location is context information hence acquiring it is the
responsibility of the CASCOM Agent System.

Other context definitions may be found in the context-awareness state of the
art chapter (Chapter 5), in particular in Section 5.2.

GCMAS is responsible for acquiring, monitoring, representing and storing
context information. The system is organized in two layers - an infrastructure
layer and an application layer. The infrastructure layer incorporates mechanisms
that allow applications to provide context information, request context information
and subscribe information about selected context events. Application dependent
context processing mechanisms are included in the application layer, which pro-
vides mechanisms for context modeling, aggregation, and reasoning adapted to
the type of application that accesses the system.

The chapter begins with the system requirements. Following, it presents con-
text representation decisions, namely the content and structure of the ontologies
used to model context in GCMAS. Next, it presents the description of GCMAS
architecture explaining each of its components and functionalities. Finally, in the
last section, it presents a discussion of the context system, briefly describing an
example in which GCMAS is used in one of the CASCOM medical emergency
scenarios, and presenting results and conclusions.

13.2 System Requirements

This section presents a set of requirements assuming, without loosing generality,
that context information is acquired by sensors, which is in fact the most accepted
choice. The described requirements are classified in two types: functional and non-
functional. The discussed requirements were identified through a review of the

13.2. System Requirements 291

literature on context acquisition and management (see Chapter 5), in particular
those aspects proposing design principles for context systems and context modeling
(Section 5.3).

The following functional requirements, which apply in general to all context
systems, are analyzed:

• Separating context capturing from context interpretation;
• Sensor information acquisition should not depend on the specific sensor but
on its interface, which must comply with the specified ontology;

• Capability of acquiring information from sensors according to the specified
ontology regarding the sensor;

• Easy communication between remote or local sensors and applications;
• Supporting client applications implemented using diverse paradigms and
technologies;

• Provide historical context information;
• Provide static context information volunteered by applications;
• Transparent mechanism for locating the best source of context information
for each context request, using sensor properties (e.g., sensor owner and host-
ing device);

• Run-time addition of new sensors; and
• Context information subscription mechanism.

Context capturing should be isolated from context interpretation. In this require-
ment, context capturing refers, for example, to reading “0300000050” from a spe-
cific location sensor; and context interpretation would be generating the following
information “Ann’s location is (x =30.0 m, y= 0.5 m) relative to the central point
in the north doorway of the Interdisciplinary Complex building”. This separa-
tion allows the interpretation mechanisms to be developed without the concern
of how context information is obtained. In GCMAS this requirement is fulfilled
because context interpreters, aggregators and reasoners (application layer) allow
an additional abstraction of the data provided by the sensor widgets, generating
application dependent information.

The context extraction mechanisms should not depend on sensors, but on
the interfaces that sensors present to the system. This requirement is satisfied in
GCMAS through sensor widgets, which provide an abstraction of the data acquired
by each sensor.

Context systems should be capable of acquiring information from sensors
according to the specified ontology regarding the sensor. This ensures compati-
bility between sensors and applications. GCMAS is capable of acquiring context
information from any registered sensor, in accordance with the specified ontology.

292 Chapter 13. Context-Awareness System

Both remote and local sensors and applications should be allowed to easily
communicate. The fact of sensors and applications being distributed (remote)
should not have a negative impact on the easiness with which they communicate.
GCMAS includes interfaces that allow sensors and applications, both remote and
local, to connect to each other without difficulties. The same interface is used
irrespective of whether or not the client application and the sensor widget are
running on the same or on different devices.

Context systems should be prepared to receive requests from applications im-
plemented with diverse paradigms and technologies (e.g., object oriented technolo-
gies, component-based technologies, or agent-based technologies), which commu-
nicate using different protocols. This was achieved through the inclusion of several
types of system interfaces. Currently, we have implemented interfaces suitable for
component-based applications and for agent-based applications. The application
designer just has to select the kind of interface more adequate to the application
technology.

Context systems should provide historical context information. When re-
quested by the application, the system should provide historical information about
specified aspects of the context. GCMAS includes a history storing mechanism
that allows accessing to historic context information. The interface for requesting
context information allows specifying the desired number of context information
samples.

Context systems should also store static context information provided by
their client applications. Static context is context information that does not change
much over time. Rapidly changing context information is dynamic or volatile con-
text. GCMAS has a context repository and a specific interface through which it
may receive and store context information requested or volunteered by its client
applications. For example, some Personal Assistance Agent may want to provide
its owner gender, nationality and birth date to the context system. This infor-
mation may then be requested by the physician agent where the user is being
treated.

Context systems must be capable of transparently locating the best source
of context information for each context information request. GCMAS has a yellow
pages service where sensors register themselves as they are added to the system.
This service allows GCMAS to locate required sources of context information. For
instance, if a given client application requests the patient’s location in a medi-
cal emergency scenario, and GCMAS has different classes of context information
sources (e.g., location, gender, spoken language, birth date and nationality among
others), and several specific sensors within the same class (e.g., location sensors
for several users), GCMAS yellow pages service will identify the location sensor of
the specific patient. Sensor descriptions in the GCMAS yellow pages service allow
the inclusion of sensor properties which may be used to guide their location.

It should be possible to add new sensors to the system anytime while the
system is running, without requiring the system to be reinitialized. GCMAS sup-
ports the dynamic addition of new sensors in run-time. Besides, it should also be

13.2. System Requirements 293

possible to add new sensors even if the information they provide is not specified
in the system ontology at the moment of their addition. GCMAS supports this
requirement by allowing the sensor registration mechanism to add the definitions
of the new sensor information to the context ontology. Imagine, as an example,
that a software sensor providing the room temperature is to be added to GCMAS.
Suppose also that the used context ontology does not include the “room tem-
perature” concept. The sensor addition mechanism will start adding the “room
temperature” concept to the ontology, and then it will register the new sensor in
the system’s yellow pages.

Finally, context systems should implement an alert mechanism that notifies
their client applications when changes occur in specified aspects of the context.
GCMAS design includes a context subscription mechanism through which client
applications may subscribe specified classes of context information. When context
information of the specified classes changes, the subscription mechanism sends
the subscribed context information to the subscriber. In an fictitious scenario, the
hospital Intensive Care Unit Agent needs to be informed of the updated heart
rate and blood pressure values of a patient being carried by an ambulance to the
hospital. Instead of repeatedly issuing requests for the patient’s heart rate and
blood pressure to GCMAS,it just needs to subscribe these two classes of context
information. GCMAS will autonomously send updated information to the agent.

This section considers also a set of non-functional requirements, which apply
to context systems in general and even to the generality of information manage-
ment systems: performance/response time, usability, generality and reliability/ro-
bustness.

Context systems should have short response times. To fulfill this requirement
GCMAS was developed with the concern of optimizing its performance, by avoid-
ing unnecessary processing, component communication and memory usage. Since
GCMAS allows the existence of redundant components, adequate load balance
policies could be defined which would improve the systems response time.

To ensure their usability, context systems should provide intuitive and com-
plete interfaces to their functionalities. GCMAS implements a set of interfaces
that enable adding new sensors easily, and a simple access of applications to the
system functionalities.

Context systems should be as general as possible so that they can be used
by several types of applications. Any application of any domain can use GCMAS,
providing that it knows its communication protocols and the applicable context
ontology.

To ensure their reliability context systems should possess sensor failure con-
trol system so that they continue to function even if several sensors fail. GCMAS
fulfills this requirement. GCMAS allows redundant components, for instance re-
dundant sensors. This way, even if one instance of a given component fails, the
redundant one will replace it.

294 Chapter 13. Context-Awareness System

13.3 Context Representation

To enable GCMAS and their client applications to interpret context, GCMAS
represents context according to specified publicly available ontologies, as suggested
by most authors, such as Dey and Abowd [4], Anagnostopoulos [1], and Chen and
Kotz [2], whose work is described in the section on design principles and context
modeling (Section 5.3) of Chapter 5. The definition of the context ontology, also
known as context modeling, is a very important step for the development of a
context system.

The simplest way to define the context ontology is proposed by Dey and his
colleagues [5]. According to these authors, two of the main components of the
context ontology are context elements (sources of context information), such as
sensors; and context entities representing persons, places, applications and objects
which the sensors refer to.

GCMAS ontology uses a similar approach. It defines the class “context el-
ement”, representing a context information supplier such as a sensor or a record
in the context repository. It also defines the class “context entity”, representing
the person, object, application or place referred by each context supplier (i.e., a
location sensor is represented by a context element; the person that is located by
that sensor is represented by a context entity). Each individual sensor can then
be located in the context ontology as a “context entity”/“context element” pair.
The context ontology used in GCMAS is organized in three layers: the base on-
tology, the distribution ontology and the context data ontology (see Figure 13.1).
The base ontology describes the basic concepts of the GCMAS ontology such as
context element, context entity, context value, context property and the relations
between these concepts. The base ontology may also be seen as a meta-ontology
defining the primitive concepts used to actually represent the context ontology of
a specific domain.

The distribution ontology represents the distribution of context elements
and entities on a specific scenario. The distribution ontology uses the base classes
defined in the base ontology. Context information of a specific domain is described
in terms of context elements, context entities, context values, and the relations
between them.

The context data ontology represents a view of the context information that
is closer to object oriented implementation languages. It defines the classes of
context information, from the point of view of the implementation.

Both the base ontology and the distribution ontology are described in OWL
ontology definition language [9]. Since the context data ontology needs to be close
to the description of an object oriented programming language, it is defined in
XML Schema [8].

13.3. Context Representation 295

Figure 13.1: GCMAS ontology description

13.3.1 Base Ontology

The base ontology defines all the basic concepts that may be used to define a con-
crete domain context ontology. These include context elements, which represent
context sources; context entities, which represent relevant persons and objects;
and relations, which represent associations between context elements and entities.
All elements defined in the domain context ontology must extend the classes de-
fined in the base ontology. Besides the fundamental concepts (context elements,
context entities and relations), the base ontology also defines relation links to the
context data ontology, which represent the path of the classes of a specific context
information, the XML Schema of the context data ontology defining those context
information classes, and the actual value of the context information. These are
represented by the hasClass, hasSchema and hasValue relations, as can be seen in
Figure 13.1.

The classes defined in this ontology represent general context entities, general
context elements and the basic relations between them. All context entities must be
uniquely identified through the hasID relation. Entities are associated with their
context objects by the hasProperty relation. Entities may also be associated with

296 Chapter 13. Context-Awareness System

Class Description
ContextObject Represents the context element and associated

context information. Contains the context element
ontology class, the object oriented class path, the
XML Schema representation of context, and the
context information itself.

ContextEntity Represents a context entity. Contains the entity
unique identifier, and the entity ontology class and
description.

Link Represents a relation that connects two ontology
classes.

SensorProperty Represents sensor properties. This class does not
have direct connection to the ontology but uses its
information. It is used for sensor registration and
discovery.

Table 13.1: Base ontology classes description

other entities using the connectedTo relation (see Figure 13.1). This relation allows
the association between entities and elements that are related on the application
scenario (i.e., the entity userA connects to entity deviceA through a connectedTo
relation meaning that this user has an associated device).

Each context element has three properties: value, representing the context
information itself, linked through the hasValue relation; schema, representing its
XML Schema [8], linked through the hasSchema relation; and its class path in-
formation, representing the class of context information (as represented in the
object oriented implementation language), linked through the hasClass relation
(i.e., the LocationSensor context element is represented by the object oriented
class gcmas.ontology.element.LocationSensor). Context elements are also associ-
ated to their related context entities by the hasOwner relation.

The base ontology concepts defined above are represented by the classes
ContextObject, ContextEntity, Link and SensorProperty. Table 13.1 represents a
brief description of these classes. All context information supplied by the system
is represented as instances of the ContextObject class. The system is responsible
for translating sensorial information into ContextObjects. These objects represent
both the context element and the context information itself. Context information
is structured according to the corresponding XML Schema and stored, in XML
serialized form, in the value attribute, representing the hasValue ontology relation.

Storing context in serialized form allows the system to store all relevant types
of context information (i.e., a ContextObject object for a room temperature sensor
could be like this one: context element — temperatureSensorForRoomA, the ontol-
ogy instance of the class TemperatureSensor, representing the sensor that measures

13.3. Context Representation 297

that room temperature; hasClass - gcmas.ontology.element.Temperature, the class
path to the context class (as represented in the object oriented implementation
language); hasSchema, XML Schema representation context class or a path to the
file where it is represented; hasValue, an XML representation of context informa-
tion).

As described in the base ontology, the ContextObject is related to a con-
text entity represented by a ContextEntity object. This object represents context
entities used in the context system and possesses information about them.

Link objects represent relations between ontology classes. Although most
of the relations between ContextObjects and ContextEntities are made directly
through the defined class attributes, it may be necessary to represent other rela-
tions such as those between entities.

SensorProperty objects were created to normalize sensor registration in the
system. These objects specify the context element the sensor belongs to, and the
context entity associated to it (i.e., a SensorProperty object for a room temper-
ature sensor could be like this one: context entity roomA, the instance of the
class Room (which extends the base ontology class ContextEntity) representing
the room where the temperature is measured which is associated with context el-
ement temperatureSensorForRoomA, the instance of the class TemperatureSensor,
representing the sensor that measures that room’s temperature).

13.3.2 Distribution Ontology

The distribution ontology represents the specific context information in a given
domain. This ontology extends the classes defined in the base ontology to represent
the context entities and context elements identified in the given scenario.

In a simple example of a distribution ontology, in a scenario where there is
a need to locate people, each person is identified as a context entity and belongs
to the ontology class Person, extending the ContextEntity base class. All persons
are instances of this class. The location sensor is identified as a context element
and belongs to the LocationSensor ontology class, extending the ContextElement
base class. All location sensors will be instances of this class (i.e., BobSensor is
an instance of LocationSensor). Each instance of a LocationSensor is linked to the
corresponding instance of Person by the hasSensor relation. This relation extends
the hasProperty base ontology relation (see Figure 13.1).

The context distribution ontology represents all defined context elements,
context entities and all their instances for a given application scenario.

13.3.3 Context Data Ontology

The context data ontology defines the structure of context information in a way
that is closer to object oriented implementation languages.

Although Jena [6] framework is used to process OWL descriptions, there is
not a direct link between OWL classes and those in object oriented programming

298 Chapter 13. Context-Awareness System

languages.
XML Schema language is used to define context in the context data ontology

layer because XML Schema definitions are very close to object oriented program-
ming language descriptions. The context data ontology creates a bridge between
the OWL ontology description and an object oriented implementation language.
The XML Schema declarations define classes of context information (as repre-
sented in its object oriented implementation language) and are directly connected
to the sources of context information, the context elements, through the hasS-
chema relation. The other properties, hasValue and hasClass, point to the value
and class path of the context element.

The LocationSensor context element is a simple example of a context data
ontology definition. This element connects to the gcmas.ontology.element.Loca-
tionSensor program class, defined by the hasClass relation. The XML Schema
description of this class is defined by the hasSchema relation. The description
specifies that location is represented by three floating point values — latitude,
longitude and altitude.

When the system acquires information from a given sensor, the information
is transformed according to the defined XML Schema and stored into the hasValue
attribute of the returned ContextObject object (see Section 13.3.1).

13.4 Context System Architecture

GCMAS architecture is a mixed of a component-based system and a develop-
ment framework. System components represent sensors, repositories and system
functionalities as identified in the system requirements section. To enable appli-
cations to easily access the system, GCMAS provides a set of alternative kinds of
interfaces to all its functionalities. The system also provides the necessary tools
to convert information provided by low level context sources such as sensors into
higher abstraction level representations. The provided tools also support the sim-
ple inclusion of new sensor types into the system in run-time.

Different architectures were presented in the section on context system archi-
tectures (Section 5.4) of the context state of the art review chapter (Chapter 5).
GCMAS includes many of the desirable features, which are scattered by several
of these architectures.

13.4.1 System Overview

GCMAS operates in two perspectives, as a sensor development framework and as
an application interface.

In the sensor developing perspective, the system is responsible for sensor
adaptation which provides hardware independent access to sensor information.
Sensor adaptation consists of acquiring and transforming the context information
provided by sensors into a higher level representation compliant with the context

13.4. Context System Architecture 299

ontology. This adaptation is made by specific components, the sensor widgets.
Since there is a large range of sensor types, in order for the system to be easily
adapted to all of them, general sensor adaptation tools were developed and are
distributed with the system. These tools provide the means to interact with the
system core components in a general way. New sensors and corresponding ontology
definitions may be dynamically added to the system using these tools.

From an application perspective, the system has to implement ways of com-
municating with different types of applications, by providing basic interfaces to
the system functionalities. The system allows the search for context and context
historic information, the subscription of context events, and it also allows ap-
plications to provide context to the system. System functionalities are directly
associated to specific components.

Each of the system functionalities is accessible through several types of inter-
faces (component-based interfaces and agent-based interfaces). This variety allows
different types of applications to communicate with the system using more conve-
nient communication protocols.

The system architecture consists of two main layers (see Figure 13.2) — the
system infrastructure layer, which contains most of the system core functionalities;
and the application specific layer, which contains functionalities more specific to
each type of application. The application layer can be seen as an extension to
GCMAS.

The system infrastructure layer possesses the basic components for context
acquisition, storage and delivery. These components provide methods to process
context information as defined by the context ontology, allowing context to be
treated in a transparent way. By abstracting away from sensor extracted data, the
system becomes open to all classes of context information, as long as they can be
defined in the context ontology. The context ontology may be modified in run-time
(e.g., new elements may be added when a new sensor is added to the system in
run-time), allowing the system to handle new types of context information without
being previously specifically prepared for that.

The functionalities provided by the system infrastructure layer allow applica-
tions to request context and context historic information, using the context query
component; to register themselves on the system for receiving notifications each
time context changes, using the event subscription component; and to provide
context information to the system, so that it can be available to other applica-
tions, using the context storage component. Core components such as ontology
manipulators, yellow pages server, and the sensor development tools also belong
to the system infrastructure layer.

The application specific layer allows converting existing context information
into a format more close to the application, aggregating information from several
sources into single objects that make more sense to the application, and inferring
new context information from existing context information acquired by the context
system. Given its domain dependent nature, the components in the application
layer must be developed on the side of the application.

300 Chapter 13. Context-Awareness System

Figure 13.2: GCMAS architecture

13.4.2 Detailed Component Description

GCMAS is presented to applications as a black-box system. Its architecture is
depicted in Figure 13.2. The figure shows only the existing application interfaces
but the system can be extended with new ones. The system infrastructure layer
is composed of sensors and sensor widgets, repository components, context query
components, event subscription components, yellow pages server and the system
core. Currently, the application layer consists only of the context interpreter which
converts context information as provided by the system into a different application
oriented format. The context interpreter has been designed but it has not been
implemented yet.

In order to maintain the desired system redundancy, which is responsible for
its robustness and efficiency, each of the system infrastructure layer components
can have multiple instances running simultaneously possibly on different devices,
allowing the distribution of the received requests. This is mandatory for sensor
widgets since they run on the sensor side.

As shown in Figure 13.2, GCMAS provides interfaces to communicate with
Jini-based applications [7], XSP-based1 applications (both of which are component-

1XSP (eXtended Service Platform) is a tool for component-based systems development and

13.4. Context System Architecture 301

based interafces), and agent-based applications. GCAMS allows the inclusion of
more types of application interfaces.

Sensor Widgets

Sensor widgets allow sensors to communicate with GCMAS. They provide mech-
anisms to register sensors on the system’s yellow pages server. They convert sen-
sorial information into objects of the defined context ontology. Sensor widgets
implement interfaces that handle system requests, such as context queries, and
context event subscriptions.

Sensor registration allows GCMAS to be aware of their existence. Sensor reg-
istration is done by registering the widget associated to that sensor in the system’s
yellow pages server (see Section 13.4.2). Since widgets are seen by the system as
any other component, their registration in the system’s yellow pages is similar to
the registration of other components. The widget must supply information about
the instance of context element that represents the sensor, and the instance of con-
text entity that represents the entity associated to the sensor (see Section 13.3).
This information is encapsulated in a SensorProperty object and stored on the
yellow pages to be used as an identifier.

When the context query component (see Section 13.4.2) processes the re-
ceived context request, it locates the appropriate sensor widget and sends it the
request. In response, the sensor widget, after extracting and transforming the sen-
sorial information, supplies the requested context information, encapsulated in a
ContextObject object, to the query component (see Section 13.3.1).

Context extracted from the sensor is transformed according to the defined
context ontology. This results in creating an object defined by the corresponding
XML Schema included in the context data ontology. This object is then serialized
and encapsulated inside a ContextObject object, so that the system can manipulate
it in a transparent way.

A set of tools named Schema Class Builder are used to support the XML
Schema manipulation and serialization. These tools allow the creation of Java
classes from XML Schema, and the serialization and de-serialization of instances
of these classes. The Schema Class Builder was developed by the “We, the Body,
and the Mind” research lab of ADETTI in partnership with Accedo.

System requests for event notification (i.e., event subscription) work in a
different way. The system component responsible for this functionality, the event
subscription component (see Section 13.4.2), requests the sensor widget to start
supplying it the new context information each time it detects a change in the sub-
scribed context. The event subscription component supplies the sensor widget an
internal event notification interface in order for the widget to send the information
to applications through it. Each time a change is detected, the widget sends the

deployment developed by the We, the Body, and the Mind research group of Adetti2 and by
Accedo Consulting3.

302 Chapter 13. Context-Awareness System

new context information encapsulated in a ContextObject through the supplied
interface.

Context historic information is also managed by the sensor widget. Context
history is locally stored, in the sensor widget, as a limited list of context samples,
and can be requested by applications. Each time a new sample of context is ac-
quired from the sensor it is stored on the historic list. Older samples are deleted
when the list’s retention time or list size is reached. Context historic information
is made available by the sensor widgets as an array of ContextObjects, each one
containing an encapsulated sample of context.

Since the sensor widget component is the only one in the system infrastruc-
ture layer that needs to be developed according to each specific type of sensor, the
system provides basic sensor development tools named the general sensor adapta-
tion tool. These tools allow the development of new sensor widgets, including all
necessary system interfaces, yellow pages registration and ontology updating.

New classes of context information can be added to the system’s ontology
by the sensor widget. The general sensor adaptation tools provide the necessary
means for sensor widget developers to incorporate new ontology information into
GCMAS during sensor registration. New ontology definitions can include new
classes of context elements and entities, along with their instances, and new XML
Schema definitions of context information, or only new instances of already defined
context elements and entities. Ontology update requests are then processed by the
system core (see Section 13.4.2).

Repository Component

The repository component, which relies on a relational database, is responsible
for storing and supplying context information provided by applications. Since the
process of information storage in the repository is slower than context storage in
sensors, the repository should only be used for context information that does not
change frequently, that is, for static context.

The information sent by applications must be transformed accordingly to the
XML Schema defined by the context ontology and incorporated into a ContextOb-
ject object (see Section 13.3.1). This way, any type of information can be received
and stored as long as it is defined in the ontology. This same type of object is
returned by the repository component when a context query is made.

The information in the repository is stored in serialized format, which is
retrieved from the hasValue attribute of the received ContextObject. This ensures
that GCMAS remains independent of the type and contents of context information.

The external interfaces implemented by this component only define context
storage methods and ontology update methods. Context queries are made through
the context query interface (see Section 13.4.2).

Although the context repository should in principle be used for static context
information, it is also possible to obtain context historic information from the
repository. Context historic information samples are stored in the database in

13.4. Context System Architecture 303

the same way as context information. Historic information is retrieved from the
repository as an array of ContextObjects, each containing a context sample.

Context Query Component

The context query component is responsible for processing and responding to con-
text queries. Context queries may be encapsulated in one of two possible objects:
the QueryObject and the HistoryQueryObject. Both objects provide information
about the entity which the context refers to and the context element that provides
it. History queries also require information about the timestamp or number of
samples to be retrieved from the history. This information allows the query com-
ponent to precisely identify the necessary source of context information, and the
associated sensor widget (see Section 13.4.2) or repository database records (see
Section 13.4.2).

Event Subscription Component

Event subscription implies that external applications must register themselves on
the system in order to receive the new context information each time the desired
context changes. Each new sample of context information is encapsulated in a
ContextObject object. In order to do so the system must know the interface to
invoke on the application side so that applications can receive the new context.
The system offers several application side interfaces, developed to simplify the task
of sending context to applications. All applications that want to receive context
events must implement these interfaces. For each type of application, a specific
interface of this kind can be developed as long as it extends the basic application
side interface.

Context subscriptions are encapsulated in SubscribeObject objects. This ob-
ject contains the same information as QueryObject. Additionally, applications must
also supply a link to the application side interface that will receive the new infor-
mation. After locating the responsible sensor widget on the yellow pages, the event
subscription component requests it (see Section 13.4.2) to start sending context
information to the specified event subscription interface. Each time new context
information is received from a sensor, the event subscription component consults
the relation of applications that have subscribed it, and subsequently sends them
the new information.

Yellow Pages Server

The system’s yellow pages server is the point where all system components are
registered, allowing system components to locate each other. In the proposed ar-
chitecture, it is possible to have multiple instances of the system components
running simultaneously. The yellow pages server is responsible for differentiating
each instance of the components and for locating the requested instances. Each

304 Chapter 13. Context-Awareness System

component instance may be distinguished from the others through an attribute
representing its sequential number.

System Core

The system core is responsible for system startup and for ontology related func-
tionalities. System startup may be configured in configuration files. These files
define which interfaces are made available by the system, the number of instances
for each component to be launched, and the specification of the file containing
the ontology. Ontology manipulation tools enable system components to search
for ontology descriptions and for relations between sensors, context elements and
context entities. It also supplies the system with methods for translating ontology
instances into ontology representative objects (see Section 13.3.1). The system
uses the Jena framework [6] to store and manipulate its ontology. The ontology is
stored in a system database for faster access, and made available for applications
through an ontology definition file.

Context Interpreter

In the application layer, the context interpreter (i.e., context interpretation mod-
ule) converts the gathered context information into an application suitable repre-
sentation, in accordance to the specified context ontology. The context interpreter
uses the aggregation mechanism to integrate information from several sensors into
a single data structure, and the context reasoning mechanism to infer new con-
text information from already existing information. The aggregation mechanism
is used when it is necessary to create new compound pieces of context information
from existing correlated context information. The reasoning mechanism is used
when it is necessary to infer new context. It defines reasoning mechanisms that
produce new context from collected context information, enriching it with new
information.

13.4.3 System Deployment

Until this moment, the current section has presented GCMAS as a general purpose
tool for the creation of particular context acquisition and management systems for
specific applications. This subsection presents some brief guidelines pertaining the
development and deployment of a context system for a specific application. Since
the application to be developed is a context information acquisition and manage-
ment system, the analysis process includes the identification of the context entities
and the context elements in the chosen application domain. Following the context
definition presented in the introductory text of this chapter, the identification of
relevant context elements and entities may be achieved, starting with identifying
the relevant interactions of the context client application. After identifying all en-
tities, we identify the context information associated with them, their properties

13.5. Summary 305

Figure 13.3: Example of interaction

and relationships.

13.5 Summary

GCMAS was developed to be used with the CASCOM system. The following
example shows the way GCMAS and the CASCOM Agent System cooperate to
provide valuable and context-aware assistance in a specific imagined scenario. As
described in Section 1.3 (emergency assistance application), when the CASCOM
Agent System needs to find the medical care centre nearest to the patient, it first
needs to know where the patient is. The CASCOM Agent System simply needs to
request the patient’s location to the developed context system. This interaction is
depicted in Figure 13.3. The interaction starts when the user logs in the CASCOM
system, through his or her Personal Agent, and issues a help request, requiring
medical assistance (1). The request is passed to the CASCOM Agent System (2).
Since user location information is necessary to select the closest medical centre, the
CASCOM Agent System queries the CASCOM service discovery for a GCMAS
instance (3) and requests the user location from GCMAS query interface (4).
The query component of GCMAS locates the sensor widget representing the user
location’s sensor, using the GCMAS internal yellow pages (5). For this, the query
component uses the user and sensor classes described in the ontology supplied by
the CASCOM Agent System. After locating the adequate sensor widget (a) (the

306 Chapter 13. Context-Awareness System

widget of the user location sensor, which has a remote interface coupled with the
sensor on the user’s mobile phone), the query component requests it to provide its
current context information (6). The sensor widget gets the information from its
sensor (7), transforms it into an ontology defined object and sends it to the query
component (8), which in turn passes it to the CASCOM Agent System (9), which
requested it. The CASCOM Agent System then uses the user’s location to locate
the medical centre closest to the user.

Since GCMAS is an innovative application we cannot establish a direct
comparison with other approaches. Analyzing the proposals described in context
awareness state of the art chapter (see Chapter 5), it is possible to state that these
applications were designed to solve specific problems of context-aware computing.

GCMAS, the proposed context system, represents a domain independent and
adaptable solution to most of the problems related with context acquisition and
management. GCMAS is adaptable to any situation as long as its context can be
described using the proposed framework for context ontology representation. The
system domain independence (i.e., the possibility to be used in different domains)
arises from the ontology design and from the total independence from particular
context information contents.

Tests made to GCMAS after its development provide evidence regarding
the relative advantages of its architecture over related approaches. In terms of do-
main independence and adaptation, GCMAS goes beyond other analyzed systems.
These results can be seen on Table 13.2.

The system evaluation was based on some of the interactions extracted from
the CASCOM main scenario. Comparison with other approaches was based on a
mere qualitative analysis of the architectures. The possibility of having multiple
instances of the system components improves its robustness. If an instance of the
component fails other instances can replace it. The system continues to work even
if some of its components are not available.

The existence of several external interfaces allows client applications to in-
teract with the context system using the application preferred type of interface.

The system may be extended to the application level through the context
interpretation module. This allows the system to become more adapted to specific
domains requiring more information than explicitly available from the system’s
context sources. Context interpretation also changes the way context information
is represented so that applications can better understand it.

GCMAS supports the introduction of ubiquitous computing paradigm into
applications. By removing the burden of obtaining information from sensors, regis-
tering and locating sensorial devices, and managing stored contextual information,
application developers can focus only on application specific problems and on using
the information provided by GCMAS. Applications and application designers may
use the context ontology to know what kind of context information is available in
the system.

By combining this system with other platforms, for instance the CASCOM
agent-based service coordination platform, it is possible to take advantage of

References 307

Test Result
Context In-
formation
Retrieval

Applications were able to retrieve context information (regarding
context entities and elements in the context ontology) from the
system. These results apply to both sensorial context information
and repository context information.

Context In-
formation
Diversity

Applications were able to retrieve different types of context in-
formation from the system, all of them defined by the system
ontology.

Application
Connec-
tivity
Diversity

Different types of applications interacted with GCMAS using dif-
ferent interfaces, and obtaining the same context information for
the same type of request. Tests were made with three different
application interfaces — XSP, Jini and agent-based interfaces.

Context In-
formation
Storage

The system was able to store a predetermined number of context
samples in its sensors. Queries where made to each one of these
in order to obtain this information and to show its availability.
Location sensors and battery sensors where used in these tests.

Sensor
Property
Search

The system was capable of distinguishing two instances of sensor
widgets of the same class. Queries to both instances were made in
order to test their availability. These tests involved two location
sensors belonging to different users.

Ontology
Updates

The system was able to update a new definition in the context
ontology. This new definition was necessary to the addition of
a new sensor in run-time. After the new sensor has been added
to the system, the client application was able to retrieve context
information from it. Ontology update was made during sensor
registration.

Table 13.2: Functional test results

context-awareness without the burden of acquiring the relevant context infor-
mation. CASCOM service coordination system uses context information to find,
compose and execute services required by the user so that they become better
adapted to the situation. Future versions of this system may include the definition
and implementation of new types of external interfaces and the implementation of
context interpretation modules.

References

[1] C. Anagnostopoulos, A. Tsounis and S. Hadjiefthymiades: Context Awareness
in Mobile Computing Environments: A Survey. Mobile e-conference, Informa-
tion Society Technologies, 2004.

308 References

[2] G. Chen and D. Kotz: A Survey of Context-Aware Mobile Computing Re-
search. Dartmouth College, Hanover, NH, USA, 2000.

[3] E. Christopoulou, C. Goumopoulos, I. Zaharakis and A. Kameas: An Ontology-
based Conceptual Model for Composing Context-Aware Applications. Re-
search Academic Computer Technology Institute, 2004.

[4] A. K. Dey and G. D. Abowd: Towards a better understanding of context
and context awareness. GVU Technical Report GIT-GVU-99-22, College of
Computing, Georgia Institute of Technology, 1999.

[5] A. K. Dey, G. D. Abowd, Gregory, D. and Salber, D: A Conceptual Frame-
work and a Toolkit for Supporting the Rapid Prototyping of Context-Aware
Applications. Human-Computer Interaction - Special Issue: Context-aware
Computing, 16, 2-4, pp. 97-166, 2001.

[6] B. McBride: Jena: A Semantic Web Toolkit. IEEE Internet Computing, 6-
6, 1089-7801, pp.55-59, IEEE Educational Activities Department, Piscataway,
NJ, USA, 2002.

[7] Sun Microsystems. JINI Network Technology.
http://www.sun.com/software/jini, 1999

[8] World Wide Web Consortium. XML Schema 1.1 Release.
http://www.w3.org/XML/Schema, 2004.

[9] World Wide Web Consortium. OWL-S 1.0 Release.
http://www.daml.org/services/owl-s/1.0, 2005.

Chapter 14

Security, Privacy and Trust
Federico Bergenti

14.1 Introduction

The literature about trust in multiagent systems collects a huge number of works
that analyse almost any facets of this concept from nearly every point of view.
Nevertheless, an accepted and stable formal model of trust in agent societies is still
missing. In this chapter, we address this remarkable flaw of the current research
by reporting the main contributions of the CASCOM project on this topic: (i) a
stochastic model of trust that measurably captures trust in two-party interactions,
and (ii) a general-purpose framework that the CASCOM platform provides to
enable the realization of secure, privacy-aware and trust-aware multiagent systems.

Interaction is a key feature of agenthood (“the” key feature, we may say)
and secure, trusted and privacy-aware interactions are what we truly want from
real-world multiagent systems. While it is easy to identify a minimum set of re-
quirements capable of providing guarantees for security in multi-party interactions,
e.g., authorization and authentication, we are not yet ready to identify similar re-
quirements for trusted and privacy-aware interactions.

The work done in the CASCOM project on these problems is along the lines
of the research that is trying to identify a set of abstractions and mechanisms to
guarantee trust- and privacy-awareness in multi-agent interactions. In particular,
the final objective of our work is about providing the CASCOM platforms with
a set of facilities to allow developers to easily and intuitively create not only
secure but also privacy- and trust-aware multiagent systems. In order to achieve
our goal, we developed a stochastic model of trust capable of formally showing
that interactions mediated by a trusted third party, that we call guarantor, are
rationally convenient over direct interactions. This result ensures that privacy-
and trust-awareness can be obtained by mediated interactions and it provides a
solid base for the design of the framework for privacy and trust awareness that we
integrated in the CASCOM platform.

310 Chapter 14. Security, Privacy and Trust

This chapter is organized as follows: next section frames the problem that we
address in order to focus on the ideas and the abstractions behind our stochastic
model. Section 14.3 provides the foundations of our model and it quantifies the
increment of the utility that agents perceive because of the mediation of a guaran-
tor. Then, Section 14.4 deals with the decision-making strategies of rational agents
and it shows a worst-case specialization of our model that justifies why agents are
more likely to choose guarantor-mediated over direct interactions. Section 14.5 re-
ports on how our stochastic model is concretized into the CASCOM platform by
means of a framework that facilitates the realization of trust- and privacy-aware
multiagent systems. This framework relies on secure messaging within the CAS-
COM platform and Section 14.5 also gives some technical details on this. Finally,
Section 14.6 summarizes the lessons learned from this work.

14.2 Two-Party Interactions

Most of the work reported in this chapter is about the study of the interaction
between two agents only, X and Y. This study is very generic and its results can be
applied in many situations. In any case, we needed to focus our work on a special
case of general interest in order to devise a formal framework for our study. This
is the reason why we take the assumption that, from the point of view of security,
trust and privacy, we can always reduce any two-party interaction to the special
case of two agents mutually signing a contract. With no loss of generality, from
now on we will always refer to the joint act of signing a contract as a means to
study any other form of two-party interaction.

Having said this, we can state our working scenario as follows: X is interested
in signing a contract with Y and it is in the process of deciding whether to do it
directly or through the mediation of a trusted third party, the guarantor G, that
can act as a middleman for transactions. We take a rational standpoint and we
assume that X discriminates between direct and mediated interaction on the basis
of its utility function. Moreover, we assume incomplete information and we say
that X cannot take a fully-informed decision; rather, it has to face some risks.

This scenario models some interesting properties of real-world interactions
and it provides a sufficiently simple case to allow for a formal analysis. More-
over, we believe that many interactions that are possibly occurring in nowadays
multiagent systems can be approximated with acceptable accurancy to a network
of two-party interactions. The comprehensive study of scenarios involving many
jointly interacting agents is still in progress and it is subject of a future work.

The two-party scenario that we use to define our stochastic model of trust
relies on an underlying assumption that is worth some discussion. In particular, we
always assume that agents exchange the terms of the contract under negotiation
using individuals of a known and shared ontology, which is described in some
known and shared logic formalism, e.g., OWL [14]. This assumption allows agents
to manage the information contained in the contract in a friendly way and to

14.2. Two-Party Interactions 311

reason about the contract with a reasonable accurancy.
All in all, the assumption of modelling contracts between negotiating agents

in terms of individuals of known and shared ontologies is absolutely general and
has some remarkable advantages. First, complex contracts can be described using
a combination of simple ontologies, with a potential reduction of the complexity
of published ontologies. We can freely compose simple ontologies into complex
descriptions of contracts, thus avoiding duplication of definitions and possible am-
biguities. The second advantage that we see in using ontologies for modelling
contracts is that it greatly simplifies the creation and validation of proposals and
agreements. The creation of a proposal is reduced to the creation of one or more
individuals of known ontologies. The control of the suitability of a proposal re-
duces to checking whether a candidate proposal actually belongs to the family of
admissible proposals described in the referenced ontology. The problems of cre-
ation and validation of individuals of ontologies are both well studied and they are
largely supported by a number of available tools like reasoners (see, e.g., [15]) and
query engines (see e.g., [10]). We need no special-purpose instrument to manage
contracts: any available tool capable of processing ontologies is suitable for the
purpose. Finally, ontologies expressed in common formats are easily mapped into
human-readable documents for a subsequent inspection of the agreements that
agents may have autonomously signed.

Nevertheless, the obvious assumption of using ontologies to describe the
terms of a contract has some important drawbacks that we need to consider
carefully. In fact, any attempt to use them in real-world scenarios immediately
encounters a problem: How an agent could trust the constraint of a new ontology?
Suppose that a seller requires possible customers to sign contracts using an on-
tology that it made available in some public repository. This ontology may model
some property as being “required by local laws.” How could customers trust this
requirement if they have no trust relationship with the seller that created the on-
tology? Could a customer (in some sense) validate the ontology to decide whether
to trust it or not? Obviously, there is no way to validate the adherence of an on-
tology to real-world laws without involving highly specialized jurists. No potential
customer would be in the position of performing this sort of validation.

Another facet of this problem occurs in the case of an ontology that is par-
tially non-disclosed to final users. Let us suppose that the aforementioned seller
splited its ontology into two parts: a public part describing valid proposals and
agreements, and a private part used to model the policies that it employees to fix
prices and accept orders, i.e., the policies that it uses to reason on proposals. This
last part contains background knowledge on the marketing strategies of the seller
and it is vital not to disclose it to potential competitors. In this case, a full fledged
reasoning on the ontology is possible only by accessing the whole ontology, and
only partial reasoning is available to customers.

All in all, these exemplified facets of the problem all root in the requirement
that ontologies used to model contracts must be provided by trusted and liable
signers. Unfortunately, this is not sufficient to provide a solid base for modelling

312 Chapter 14. Security, Privacy and Trust

the trust relationships in real-world contracts. In fact, we need to take into account
legal validity in a larger scope and therefore the problem of checking the identities
of involved agents is obviously crucial. A simple static control of identities by
means of certificates [6, 7] is inadequate because, e.g., certificates can be revoked
and keys can be stolen. We definitely need a dynamic approach to the validation
of identities, i.e., the identification of agents in a secure, privacy- and trust-aware
multiagent system can be performed only through a set of runtime services capable
of validating certificates and thus performing a trusted source of identification.

The problem of checking identities is closely related to the concrete represen-
tation of identities. For example, in some European countries persons are uniquely
identified by an alphanumeric code that groups the full name of the person, his/her
birth date, his/her birthplace and a checksum. Similarly, corporations are desig-
nated with their VAT identification number. The identification code is the only
means that we have to validate the identity of a legal person, whether physical or
not. Therefore, one of the very basic issues that we have to tackle is how to repre-
sent identities in an agent-processable way. In our model, we decided to design an
ontology describing legal persons and their attributes and to associate this ontol-
ogy with a set of general-purpose services for addressing the majority of problems
related to identification. The connection between this ontology and its services is
reinforced by means of a common trusted signer.

It is worth noting that, in order to fully exploit the possibility of having
runtime services capable of providing warranties regarding sensitive tasks on an
ontology, both the ontology and its associated services must have the same levels of
trust and security. In fact, we have — at least — two interesting cases. In the first,
two negotiating agents both trust the publisher of the ontology. They exchange
proposals until an agreement is reached and they mutually check their identities
using an untrusted service. Since they do not trust the identity-verification service,
they can both suppose that they are signing an agreement with an unknown party.
The second case is about an identity-verification service that receives both an
ontology and an identity as input, and that it verifies the identity in a secured
database. What happens if someone gives formally valid — compliant with the
ontology — but legally void identity? Since the given identity matches the record
in the database of identities, the service would return an affirmative answer, but
this identity is legally void and therefore unusable in signing real-world contracts.
These two simple examples show that both ontology and associated services must
be trusted and secured. If any of the two does not have a suitable level of trust
and security, their combined use will result in an insecure interaction.

14.3 A Model of Mediated Interactions

This section presents a set of abstractions and accounts for their relationships in
order to setup a stochastic model of interactions between agent X, agent Y and
(possibly) guarantor G.

14.3. A Model of Mediated Interactions 313

14.3.1 Abstractions

The problem of providing a quantitative definition of trust in societies of rational
agents has been addressed in many different ways, e.g., see [13]. While we recognize
the critical importance of cognitive models of trust, e.g., see [5], we date back to the
abstract and coarse-grained definition of trust given in [8] to come to a stochastic
interpretation of this notion. In particular, if we recall that:

“Trust is the subjective probability by which an individual, A,
expects that another individual, B, performs a given action on which
its welfare depends,”

it is quite reasonable to model trust as an estimation of the probability by which B
will perform the target action. Many factors contribute to this estimation [11, 12];
nonetheless we prefer to adopt a blackbox approach that discards all these factors
and we model trust as a random variable t that ranges in the interval [tmin, tmax].
Clearly tmin and tmax are both between zero and one and we assume tmax ≥ tmin

with no loss of generality.
Then, we assume the rationality of agent A and we require that the estima-

tion of the probability by which B will perform the target action is done using
some reasonable amount of information regarding B and its actual intention of
performing the action. This guarantees that the real probability of B performing
the action lays in [tmin, tmax], with tmin and tmax reasonably close around it.

Having said this, our model of two-party interactions is based on the following
quantities, where X and Y are agents and c is a contract:

• pc,X : the probability that X would carry out successfully all the obligations
stated in c.

• tc,X,Y : the measure of trust that X has in Y with respect to c, i.e., an
estimation of pc,Y from the point of view of X.

The study of all possible different forms of contracts is subject of a large lit-
erature and even restricting it to the types of contracts that we normally consider
in multiagent systems [4], the diversity of possibilities is remarkable. We acknowl-
edge this literature but, for the sake of simplicity and for the need of quantitative
tractability, we stick on a very simple model of contract. This model involves only
two signers, X and Y, and it is totally described by two triples — each signer
knows only one of the two triples. In detail, from the point of view of agent X —
the notation is symmetrical for Y — a contract c is described by a triple, that we
call subjective evaluation of c, which contains:

• A reward Rc,X that agent X receives upon success of contract c;

• An investment Ic,X that agent X makes in contract c, i.e., a certain assured
value that it releases when signing contract c; and

• A penalty Pc,X that agent X receives if the contract fails because of Y.

314 Chapter 14. Security, Privacy and Trust

Such values are not restricted to be monetary, rather they quantify the level of
satisfaction of X. All in all, such quantities are subjective and therefore we cannot
assess any mathematical relations between the values of the triples of two different
agents, even though they refer to the same contract.

More in detail, a contract c has the following properties from the point of
view of X :

• If the contract is honoured, then agent X will receive Rc,X with probability
one; and

• If the contract fails because of agent Y, agent X will receive Pc,X with prob-
ability one.

Another assumption that we take concerns the relative ordering of reward,
investment and penalty in a single subjective evaluation. We are interested in
contracts whose parameters are ordered as follows:

Pc,X ≤ Ic,X ≤ Rc,X (14.1)

This inequality captures the essence of risky contracts. Moreover, it implies that
we are interested in agents that sign contracts with the intent of honouring them.
Any failure in honouring a contract turns into a loss of utility (see later on)
Ic,X − Pc,X . Furthermore, agents in our model do not reason about their possible
failure in honouring a contract, they just assume that they can honour all contracts
they sign; nevertheless the uncertainty about the other signer remains.

The abstraction of guarantor was introduced and discussed in detail in [3, 2].
For the sake of completeness, we recall here that guarantors are sources of highly
trusted information and they are sort of trust catalysts, i.e., they are trusted by
other agents and they form connecting nodes in the network of trust. If agent X
requests a piece of information from guarantor G, it assigns a correctness prob-
ability of one to the received response. Nevertheless, we introduce some failure
probability in order to account for the idea that the use of additional information,
i.e., the information that guarantor G provides, always introduces some risk, even
though the information source is highly trusted and reliable.

14.3.2 Expectation of the Utility of Agents

We analyse here the utility that agents estimate in the process of signing a con-
tract. This utility is considered in two forms: with and without the mediation of
a guarantor. We refer to the first case as mediated interaction, and we say that
the second case is a direct interaction. We start with the formalization of direct
interactions because their treatment is obviously simpler.

Direct Interaction

Taking into account the abstractions that we previously defined, we can explicitly
write the expected value of the utility that agentX receives from signing a contract

14.3. A Model of Mediated Interactions 315

with agent Y as:
U

r

X,c = Rc,X · pc,Y + Pc,X · (1 − pc,Y) (14.2)

where the superscript “r” indicates that the real probability is used in this equa-
tion, and not an estimation of its value.

Unfortunately, this utility is not available to any agent since pc,Y is not
observable. Instead, agent X estimates the expected utility using its trust in the
other party (agent Y):

U
e

X,c = Rc,X · tc,X,Y + Pc,X · (1 − tc,X,Y) (14.3)

Taking into account that agentX invests a certain value when it signs the contract,
and that any contract has some probability ps

c,X of being finally signed, the total
average utility perceived by agent X is:

U
r

X = U
r

X,c · ps
c,X + Ic,X · (1− ps

c,X)
= [Rc,X · pc,Y + Pc,X · (1− pc,Y)] · ps

c,X + Ic,X · (1− ps
c,X) (14.4)

As before, the agent can only estimate the total utility, thus obtaining:

U
e

X = U
e

X,c · ps
c,X + Ic,X · (1− ps

c,X)
= [Rc,X · tc,X,Y + Pc,X · (1− tc,X,Y)] · ps

c,X + Ic,X · (1 − ps
c,X) (14.5)

Mediated Interaction

We can adapt the previous equations to the case in which the contract is evaluated
using additional information obtained from a guarantor. In this case, the failure
probability that we associate with a guarantor has to be considered. This failure
probability accounts for the possible uncertainty of the information that the guar-
antor provides. In particular, we assume that an error of a guarantor may cause a
failure of the contract. In this case agent X receives Pc,X . This risk is acceptable
if we assume that in the case of an error, the guarantor itself, and not contractors,
pays the penalty.

Under this assumption, the new expected value of the utility of signing con-
tract c is:

U
G,r

X,c = Rc,X · P{c honoured}+ Pc,X · P{c not honoured} (14.6)

where the superscript “G” indicates that some information from the guarantor is
considered when signing the contract.

Under the assumption that pG
k is the probability of the guarantor to provide

erroneous information and that any error of the guarantor immediately causes
the contract to fail, it is possible to express the total contract success and failure
probabilities:

P{c honoured} = pc,Y · pG
k (14.7)

P{c not honoured} = (1− pc,Y) · pG
k + 1− pG

k

= 1− pc,Y · pG
k (14.8)

316 Chapter 14. Security, Privacy and Trust

where the latter is obtained by means of:

P{c not honoured} = P{c not honoured|Guarantor succeeds}+
P{c not honoured|Guarantor fails} (14.9)

Using (14.7), we can rewrite (14.4) as:

U
G,r

X,c = Rc,X · pc,Y · pG
k + Pc,X · (1 − pc,Y · pG

k) (14.10)

Then, using this equality in (14.4), we obtain the total average utility of signing
the contract using information from a guarantor as:

U
G,r

X = U
G,r

X,c · ps
c,X + Ic,X · (1 − ps

c,X)

= [Rc,X · pc,Y · pG
k + Pc,X · (1− pc,Y · pG

k)] · ps
c,X +

+Ic,X · (1− ps
c,X) (14.11)

Since agents assign a trust of 1 to guarantors, most of the estimations of agent
X are not changed by the mediation. In particular, the estimation of the contract
success probability remains unchanged; therefore the estimation of the average
utility of the contract does not change. Also, the estimation of the expected utility
as a function of the probability of signing (14.5) is not influenced. As explained in
the following section, the mediation of the guarantor influences only the decision
making strategy.

14.4 Decision Making Strategy

Using the previous results, we can introduce a rationality principle in our model
by means of a decision making strategy that use a utility function to discriminate
on the inclusion of the mediation of a guarantor into a generic interaction.

14.4.1 Trust PDF and the Risk Factor

As we said in the introductory part of Section 14.3, we model trust from the
point of view of an agent as the estimation of the probability of having a contract
honoured by its counterpart. An underlying assumption of this definition is that
this estimation, and the real probability of the contract being honoured, both lie in
the interval [tmin, tmax]. In essence, trust is a random variable t whose Probability
Density Function (PDF) depends on the decision making strategies of the agents
involved in the contract.

Taking t and a rationality principle into account, it is easy to evaluate the
probability of agent X signing a given contract c. In particular, we can state
our rationality principle as follows: X decides to sign a contract c with Y if the

14.4. Decision Making Strategy 317

estimated expected utility that it perceives is greater than the investment required
to sign the contract. Which leads immediately to the following:

ps
c,X = P{Ue

X,c > Ic,X}
= P{Rc,X · tc,X,Y + Pc,X · (1− tc,X,Y) > Ic,X}

(14.12)

A further elaboration of this equation yields to:

ps
c,X = P{tc,X,Y · (Rc,X − Pc,X) > Ic,X − Pc,X}

= P

{
tc,X,Y >

Ic,X − Pc,X

Rc,X − Pc,X

}

(14.13)

Where we supposed that Rc,X − Pc,X is not zero. Now, if we define:

κc,X
.=

Ic,X − Pc,X

Rc,X − Pc,X
(14.14)

it is possible to express ps
c,X as:

ps
c,X = P{tc,X,Y > κc,X} (14.15)

This last equation indicates that agentX signs contract c if its trust in the counter-
part with respect to c exceeds κc,X , which we call risk factor. This factor depends
only on X ’s subjective evaluation of contract c and it describes the risk that X per-
ceives in signing contract c. This, allows to rephrase the decision making strategy
as:

Agent X signs a contract c with a counterpart Y if and only if its
trust in Y for contract c is greater then the risk factor of c.

It is worth noting that the risk factor κc,X is a number between zero and one.
Furthermore, it is the quotient of two quantities that have a precise meaning on
their own:

• The numerator Nc,X = Ic,X − Pc,X expresses the gain that agent X obtains
when rejecting contract c, compared to the case in which the contract is
accepted but actually not honoured.

• The denominator Hc,X = Rc,X − Pc,X represents the gain that the contract
yields in case of success with respect to failure.

Then, e.g., if we consider the boundary cases:

• κc,X = 1 means that the contract will never be signed, because the investment
equals the utility, but the first is guaranteed while the second is not.

318 Chapter 14. Security, Privacy and Trust

• κc,X = 0 means that the contract has no risk, since the investment equals
the penalty, which is assured with probability 1. Therefore the contract will
always be accepted.

More generally, if κc,X ≤ tmin the contract is always rejected, while if tmax ≤
κc,X the contract is always accepted. This consideration accounts also for the
boundary cases analysis explained above.

Having introduced the risk factor κc,X , it is possible to rewrite (14.4) with
some emphasis on it. In particular:

U
r

X = [Rc,X · pc,Y + Pc,X · (1− pc,Y)] · ps
c,X + Ic,X · (1− ps

c,X)
= [(Rc,X − Pc,X)pc,Y + Pc,X] · ps

c,X + Ic,X(1− ps
c,X). (14.16)

Now, explicitly showing ps
c,X and subsequently (Rc,X − Pc,X):

U
r

X = [(Rc,X − Pc,X)pc,Y + Pc,X − Ic,X] · ps
c,X + Ic,X

= (Rc,X − Pc,X) · (pc,Y − κc,X) · ps
c,X + Ic,X . (14.17)

This last equation gives the possibility to draw some interesting considerations.
First, U

r

X is bounded between Pc,X and Rc,X . Furthermore, U
r

X is a linear function
of ps

c,X and its slope is (Rc,X − Pc,X) · (pc,Y − κc,X). Since (Rc,X − Pc,X) is non
negative because of (14.1), the sign of the slope is influenced by (pc,Y −κc,X) only.
This ultimately means that the risk factor is an indicator of convenience in terms
of the average utility:

• If the success probability of the contract is greater than κc,X , then the average
utility (of X) increases with the probability of signing the contract, i.e., the
contract is advantageous.

• If the risk factor is lower than κc,X , the contract is disadvantageous and the
average utility decreases with ps

c,X .

• If κc,X = pc,Y , the average utility is constant.

14.4.2 The Role of the PDF of Trust

The only working assumption on t that we accepted up to now is that t is a random
variable bounded by tmin and tmax. Here, we further elaborate on trust as a
random variable and, without breaking our blackbox approach, we go for the worst
case and we assume that t is uniformly distributed in the interval [tmin, tmax]. This
new assumption allows us to study the influence of the mediation of a guarantor
on the average utility perceived by agents.

In accordance with (14.15), we can express the signing probability as the
probability that tc,X,Y ≥ κc,X . Therefore:

ps
c,X = P{tc,X,Y > κc,X} =

∫ +∞

κc,X

f(tc,X,Y) dtc,X,Y (14.18)

14.4. Decision Making Strategy 319

Then,

ps
c,X =

⎧⎨
⎩
1 κc,X ≤ tmin
tmax−κc,X

tmax−tmin
tmin < κc,X < tmax

0 tmax ≤ κc,X

(14.19)

Now, we focus our analysis of the utility on the most interesting case in which
tmin ≤ κc,X ≤ tmax, i.e., we exclude the edge cases. Moreover, we assume that t
has a symmetric PDF. Introducing (14.19) in (14.17) we obtain the average utility
as a function of tmin and tmax:

U
r

X = (Rc,X − Pc,X) · (pc,Y − κc,X) · tmax − κc,X

tmax − tmin
+ Ic,X . (14.20)

Then, using the symmetry of the PDF of t with width δ it is possible to rewrite
(14.19) as:

ps
c,X =

⎧⎨
⎩
1 κc,X ≤ tmin
tmax−κc,X

tmax−tmin
tmin < κc,X < tmax

0 tmax ≤ k

(14.21)

And then:

ps
c,X =

⎧⎨
⎩
1 κc,X ≤ tmin
pc,Y +δ−κc,X

2δ tmin < κc,X < tmax

0 tmax ≤ k

(14.22)

which expresses ps
c,X as a function of δ. Substituting this equation in (14.20) and

excluding the edge cases, we obtain:

U
r

X = (Rc,X − Pc,X) · (pc,Y − κc,X) · pc,Y + δ − κc,X

2δ
+ Ic,X . (14.23)

This equation expresses the average utility as a function of the width of the PDF of
t. Moreover, since the utility U

r

X is a hyperbolic function of δ, any small decrease
of δ implies a much higher increase of the average utility and vice versa.

(14.23) has the following interesting consequence on the behaviour of the
utility. If agent X takes its decision of signing a contract c using a symmetric
PDF centred around pc,Y and if the contract does not fail because of X, then for
all δ ∈ �+ such that tmin − δ ≥ 0 and tmax + δ ≤ 1, we have that U

r

X(δ) is
non-increasing. In fact, U

r

X is piecewise differentiable and the differentiation of
(14.23) for tmin < κc,X < tmax yields:

∂U
r

X

∂δ
= (Rc,X − Pc,X) · (pc,Y − κc,X) · 2δ − 2(pc,Y − κc,X + δ)

4δ2

= − (Rc,X − Pc,X) · (pc,Y − κc,X)2

2δ2
(14.24)

Taking into account that a subjective evaluation is well formed if Rc,X ≥ Pc,X ,
the partial derivative is always non-positive, i.e., an increment of the estimation

320 Chapter 14. Security, Privacy and Trust

(which introduces uncertainty), always worsens the performance of the agent’s
decision strategy and its relative utility.

The explicit choice of a PDF for t allows elaborating on the inclusion of me-
diation into an interaction. The two parameters κc,X and pc,Y are kept fixed, since
the mediation of a guarantor does not change or influence them. On the contrary,
the total error probability is modified to account for the additional probability of
error that the guarantor brings. Using (14.7), it is possible to directly substitute
pc,Y with pc,Y · pG

k in (14.23) to express the total success and failure probabilities,
thus obtaining a version of (14.23) for the case of mediated interactions. To stress
the fact that the width of the estimation is different when introducing a guarantor
in the interaction, we use the notation δG instead of δ:

U
G,r

X =

⎧⎨
⎩

Hc,X ·MG + Ic,X κc,X ≤ tmin

Hc,X ·MG · pc,Y +δG−κc,X

2δG + Ic,X tmin < κc,X < tmax

Ic,X tmax ≤ κc,X

(14.25)

Where we defined (see later on) MG = (pc,Y · pG
k − κc,X).

14.4.3 Worst-Case Analysis

In order to study the effect of mediation in our model, we recall that our main
working assumption is that guarantors provide additional information to agents,
thus allowing for a more precise, i.e., narrower, estimation of pc,Y . Anyway, guar-
antors, although highly reliable, introduce additional error probability that must
be compensated by improvements in the estimation of trust.

In order to quantify the performance of a guarantor as a middleman in an
interaction between agent X and Y, we calculate the amount of additional infor-
mation that a guarantor needs to provide in order to keep the average utility of
agent X fixed.

The comparison of the two utilities expressed in (14.23) and (14.25) allows
calculating the width of the guarantor-mediated estimation of trust for which the
utility equals the case without mediation. If we introduce δ̂G in

[
0, 12

]
as a function

of δ and pG
k such that:

U
r

X(δ , pc,Y) = U
G,r

X (δ̂
G , pc,Y · pG

k) (14.26)

we can compare (14.23) and (14.25) to obtain:

(pc,Y − κc,X) · pc,Y + δ − κc,X

δ
= (pc,Y pG

k − κc,X) · pc,Y + δ̂G − κc,X

δ̂G
(14.27)

where we subtracted Ic,X on both sides and multiplied by 2
Rc,X−Pc,X

. Then, intro-
ducing M = (pc,Y − κc,X) and MG = (pc,Y pG

k − κc,X):

M · δ +M

δ
=MG · δ̂

G +M

δ̂G
(14.28)

14.5. Integration in the CASCOM Platform 321

and dividing by MG yields:

M

MG
· δ +M

δ
=

δ̂G +M

δ̂G
(14.29)

which allows making δ̂G explicit:

δ̂G =
M

M
MG · δ+M

δ − 1 =
M MG δ

M(δ +M)−MG δ
(14.30)

that holds if MG �= 0.
It should be quite clear that 2 δ̂G is the breakeven point that makes agent X

choose to go for a mediated interaction rather than for a direct interaction:

• If the guarantor provides enough information to restrict the estimation of
trust to a width less than 2 δ̂G, the use of mediation is advantageous.

• If the estimation remains larger than 2 δ̂G, the error probability introduced
by the guarantor decreases the average utility.

Finally, it is worth noting that this decision strategy is purely ideal because
agent X does not know pG

k .
In order to ground our model in everyday experience, we recall that we are

interested in guarantors that introduce a very low error probability, and therefore
we study the behaviour of δ̂G as pG

k tends to 1. What we obtain from this study
is that if agent X makes its decisions assuming that t has a symmetric PDF and
that the contract will not fail because of X itself, for all δ ∈ [

0, 1
2

]
, δ − δ̂G tends

to 0 in a hyperbolic way as pG
k tends to 1.

Because of editorial reasons, we cannot provide details on the demonstration
of this result. Anyway, this result shows that if a guarantor introduces a (suffi-
ciently) low probability of error, the use of its mediation is advantageous and the
rewards that it brings rapidly increase as the probability of error decreases.

14.5 Integration in the CASCOM Platform

Security, privacy- and trust-awareness are crosscutting features of the CASCOM
platform that are spread across all its layers to provide application developers
with different services at different layers. For the sake of readability, we somehow
oversimplify the description and we allocate such features to the IP2P Network
Layer and to the Service Coordination Layer only. See other chapters in this book
for an in-depth description of these layers and of the overall architecture of the
CASCOM platform.

322 Chapter 14. Security, Privacy and Trust

14.5.1 IP2P Network Layer

The IP2P Network layer provides application developers with most of the standard
security features that we need to guarantee an adequate level of security for real-
world communications between software entities. In detail, this layer transparently
accommodates cryptography and non-repudiability of pairwise communications.
Application developers are not involved in securing communications and, once
activated, the secured transport mechanism is in charge of the whole process of
encryption and decryption of all inbound and outbound messages.

Basically, messages are filtered using a standard asymmetric cryptography
method; security and non-repudiability are guaranteed because agents are re-
quested mandatory to complete the registration of their services with Directory
Facilitators with an X.509 certificate to be used in communications. Client agents
accessing the services of service-provider agents provide their X.509 certificate in
the act of requesting services.

The adopted cryptography scheme may be very demanding in terms of com-
munication bandwidth and this is not always acceptable in a mobile environment.
In order to provide application developers with a fine-grained control over the
cryptography overhead, we allow the level of security to be customized on a mes-
sage basis. For each and every single outbound message, an agent can choose to
encrypt the message or not, and for encrypted messages it can choose between
encrypting the whole ACL message or only its SL content.

The security module of the IP2P Network Layer is embedded deep in the core
of the CASCOM platform as a pluggable service and it is ubiquitously deployable
because it is both MIDP and J2SE compliant. It uses a downsized version of the
Bouncy Castle Crypto API [1] and its memory footprint and runtime requirements
are compatible with nowadays mobile devices. New ACLCodec and SLCodec [9] im-
plementations are provided to guarantee the possibility of fine tuning the overhead
of encryption on message basis.

14.5.2 Service Coordination Layer

The Service Coordination layer sits on top of the IP2P Network layer and it
exploits its services to provide novel, agent-level services with a high level of ab-
straction. This is the reason why we use to say that the Service Coordination
layer raises the level of abstraction of the secure messaging services of the IP2P
Network layer towards the realization of full privacy- and trust-awareness services.
In detail, such services provide:

• Guarantor-mediated ACL messaging that ensures trustworthy and possibly
anonymized communications.

• Privacy-awareness storage mechanisms.
Unfortunately, we cannot provide application developers with a transpar-

ent tool like we did for secure messaging at the IP2P Network layer. Policies

14.5. Integration in the CASCOM Platform 323

for ensuring privacy-awareness have to take into account the intended usage and
the inherent nature of transmitted data for being correctly applied. At the ser-
vice coordination layer, transmitted data is no longer an opaque stream of bytes,
rather it is a source of possibly classified information that agents may need to
protect against malevolent usage. ACL messages containing classified data are
easily interleaved with messages that do not contain them and we need applica-
tion developers to classify which message is potentially privacy-critical. Therefore,
the CASCOM privacy- and trust-awareness services are agent-level services that
developers must explicitly address. This is the reason why we developed a frame-
work for CASCOM-based applications capable of providing a direct support to
developers in the classification of data for communication and storage.

We designed our framework to match a set of fundamental requirements, that
resulted in strict development guidelines, as follows.

• Security. All communications must be secured and directed to trusted parties.
• Traceability. Messages must be signed by senders, while responses must be
signed, directly or indirectly, by a guarantor. The framework transparently
enforces this property and it provides a transparent tracing service that logs
all communications.

• Locality. The number of trusted parties involved in a communication must
be kept minimal.

• Transparency. The use of guarantors in trustworthy communications must
be transparent to application developers, i.e., she/he is not directly involved
in the use guarantors’ services.

• Ease of use. The framework must provide high level procedures to perform
common tasks, as well as low level, more specific procedures devoted to fine-
grained and less common tasks.

• Standardization. Information exchange, including messages and certificates,
must be performed using well-known and accepted formats.

Following such requirements, the design of the CASCOM framework for
privacy- and trust-awareness is split into two views: (i) the Client view that groups
the classes that agents exploit to access the services of the privacy- and trust-
awareness framework, and (ii) the Guarantor view that contains the components
that guarantors use to implement their functionality. These views are connected
through a Java interface, named Guarantor, that plays the logical role of a remote
interface that guarantors implement and that agents exploit to communicate with
guarantors. Such a design uses the well-known half object plus protocol design pat-
tern and application developers are only interested in the use of the stubs of the
Guarantor interface.

It is worth noting that the client view represents a mandatory interface while
the guarantor view is only one of the possible internal implementation of guar-

324 Chapter 14. Security, Privacy and Trust

antors. Obviously, the client view plays a substantially more relevant role in this
design.

The use of the services that the client view of the framework provides always
starts with an authentication phase that clients perform to achieve a mutual recog-
nition with a guarantor. Once a client is authenticated with a guarantor, it can
exploit the mediation of the guarantor to request for services in a trustworthy and
possibly anonymized way. In detail, a client can perform three kinds of requests
for services:

• Direct requests: requests for services whose outcome is used by the client
itself;

• Indirect requests: requests that are performed on behalf of some other client.
Direct requests are ordinary requests for services, except for the following

two constraints:

• Parameters and results are transported on a secured channel;
• The guarantor acts as a middleman and it is responsible for tracing the
request to guarantee non-repudiability;

• The client is responsible for providing a distributed timestamp to allow for
traceability of complex interactions.

Indirect requests are a delegation mechanism that allow a client (B, del-
egated) to have a service performed on behalf of another client (A, delegator).
Indirect requests are implemented with the following steps:

• Client A requests its guarantor to grant indirect requests to client B;
• If the guarantor can honor the request of A, it accepts requests from B and
serve them as if they were requested by A;

• The guarantor stops serving indirect requests from B when the delegation
expires, e.g., because the maximum number of requests from B is reached or
because of time limitations.

An indirect request starts when A creates a delegation token for B using the
Guarantor interface. If the guarantor can grant the delegation, a globally unique
token that identifies the delegation is created and it is provided toB. The delegated
client B uses this token to finally access the services through the guarantor with
no further authentication, i.e., there is no mutual recognition between B and the
guarantor.

Indirect requests allows chaining trust and constructing a network of trust
on the fly, thus avoiding static structures that mutual recognition of guarantors
imply. Moreover, they are a good way to allow a third party having a service done
without explicitly requesting mutual recognition, i.e., it is a good way to carry out
anonymized communications.

14.6. Summary 325

The guarantor view of the framework describes how guarantors implement
their services with the requested level of security and privacy awareness. Every
guarantor decides its own optimized approach to provide services as long as the
Guarantor interface is honoured and therefore the guarantor view of the frame-
work is only one of the possible ways to implement guarantors. Anyway, high-
quality guarantors are not easy to implement because they need to deal with
somehow tricky issues, e.g., the global uniqueness of the generated tokens and the
correct tracing of invocations, and therefore the guarantor view of the framework
plays an important role for real-world applications.

One of the principal components of the guarantor view of the framework
is the so called sensitive data storage. This is a general-purpose means for data
storage that is meant to allow for a seamless treatment of sensitive data. It is worth
noting that every Nation in the European Community adopted laws to provide
guarantees to citizens regarding the treatment of their sensitive data. Such laws
are all rooted in a note of the European Commission and they all contain strict
technical requirements that databases of sensitive data must follow. The sensitive
data store ensures that the basic principles of the correct treatment of sensitive
data are respected and it ensures the possibility of fine tuning its policies to comply
with national laws.

The second part of the guarantor view of the framework is the so called
message tracer. This component provides all needed mechanisms for tracing direct
and indirect requests served or rejected by the guarantor. Such requests are stored
in a sensitive data store that saves all information regarding requests. It is worth
noting that the use of a distributed time stamp in indirect requests allows to
correlate traces of different guarantors, and therefore it supports backward tracing
of communications across a complex network of clients and guarantors.

14.6 Summary

The work reported in this chapter has two main objectives: (i) it studies trust from
a quantitative point of view and it demonstrates that mediated interactions are
mandatory to achieve privacy- and trust-awareness in real-world multiagent sys-
tems; and (ii) it shows an overview of the infrastructure that CASCOM platform
provides to provide application developers with a real-world support for these ab-
stractions. Such an infrastructure provides notable features that are not discussed
here and that play a fundamental role from the point of view of scalability and re-
liability of CASCOM-based applications (see other chapters in this book regarding
these issues).

This work is not meant to be conclusive and many points remain open. One
of the major planned developments regards the study of concrete trust estimators,
and the introduction of the resulting PDFs in our model.

Another very important open point regards the study of the effects of dele-
gation of tasks and goals through a chain of delegated guarantors.

326 References

Finally, the study of one of the main features of guarantors, i.e., the possi-
bility of anonymising interactions, is still in search of a formalization — and of a
stochastic model — even though its characteristics and possible uses are clearly
understood [2] because this kind of interaction allows to prevent unwanted spread
of sensitive information.

Acknowledgment

The author would like to thank Roberto Bianchi, Andrea Fontana and Danilo
Bonardi for their inspired contribution to the ideas and the results reported in
this chapter.

References

[1] Bouncy Castle Crypto API Web site. http://www.bouncycastle.org

[2] F. Bergenti, R. Bianchi and A. Fontana: Secure and Trusted Interactions
in Societies of Electronic Agents. In Proceedings of The 4th Workshop on
the Law and Electronic Agents (LEA 2005), 1–12. Bologna, Italy. 2005. Wolf
Legal Publishers.

[3] R. Bianchi, A. Fontana and F. Bergenti: A Real–World Approach to Secure
and Trusted Negotiation in MASs. In Proceedings of The 4th International
Joint Conference on Agents and Multi-Agents Systems (AAMAS), 1163–1164.
Utrecht. The Netherlands. 2005. ACM Press.

[4] R.W.H. Bons: Designing Trustworthy Trade Procedures for Open Electronic
Commerce. Ph.D.diss., EURIDIS and Faculty of Business Administration,
Erasmus University, Rotterdam, The Netherlands. 1999.

[5] C. Castelfranchi and R. Falcone: Principles of Trust for MAS: Cognitive
Anatomy, Social Importance, and Quantification. In Proceedings ofThe Inter-
national Conference of Multi-agent Systems (ICMAS), 72–79. Paris, France.
2005. ACM Press.

[6] C. Ellison: SPKI Requirements. IETF RFC 2692. 1999.

[7] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas T. Ylonen: SPKI
Certificate Theory. IETF RFC 2693. 1999

[8] D. Gambetta (Ed.).Trust: Making and Breaking Co-operative Relations. Basil
Blackwell, Inc. 1988.

[9] JADE Team. JADE Programmers Guide. Available at
http://jade.tilab.it

[10] JENA Web site. http://jena.sourceforge.net

References 327

[11] N.R. Jennings, S. Parsons, C. Sierra and R. Faratin: Automated Negotiation.
In Proceedings of The 5th International Conference on the Practical Appli-
cation of Intelligent Agents and Multi-Agents Systems (PAAM-2000), 23–30.
Manchester, UK. 2000.

[12] S. Marsh: Formalising Trust as a Computational Concept. Ph.D. dissertation,
Department of Mathematics and Computer Science, University of Stirling,
Stirling, UK. 1994.

[13] MINDSWAP Team. A Definition of Trust for Computing with Social Net-
works Technical report, University of Maryland, College Park, February 2005.

[14] OWL Web site. http://www.w3.org/2004/OWL

[15] Racer Web site. http://www.sts.tu-harburg.de/∼r.f.moeller/racer

Part III

Trials and Results

Chapter 15

Qualitative Analysis
Mihael Cankar, Nadine Fröhlich, Heimo Laamanen, Thorsten Möller, and Heiko
Schuldt

15.1 Introduction

Software development aims at providing support for users in order to better cope
with specific problems they face in their professional and/or daily life. Thus, de-
velopers have to carefully analyze requirements and needs of prospective users.
But this process is very difficult and often characterized by misunderstandings
between developers and users. In a trial, users evaluate a software application and
give valuable feedback whether or not it meets their expectations and how it can
be improved.

The CASCOM project involves laboratory trials and field trials to obtain
qualitative feedback from end users. The main objectives of the trial activities in
the CASCOM project are the following:

• Proving the CASCOM architecture and its implementation.
• Evaluating the acceptance of the system and the suitability of the selected
technology in the chosen application domain.

• Verify whether the CASCOM service coordination framework meets the busi-
ness needs of multiple service providers and network operators.

To make the trials realistic, they are conducted under controlled conditions
using real network services, resources, devices, and terminals.

As the CASCOM architecture is very generic and universally applicable,
the trials are based on a concrete application scenario in a concrete application
domain. The partners of the CASCOM project decided to use emergency medical
assistance as application domain (see Chapter 1). The concrete trial scenario of
the trials in Innsbruck and Basel is shown in Figure 15.1. The scenario used in
the Helsinki trials slightly differs in details. This scenario is based on the fact that

332 Chapter 15. Qualitative Analysis

Figure 15.1: CASCOM emergency assistance application scenario used for the field
trials

people on the move can get into situations where they need immediate medical
assistance. It consists of two phases, a pre-hospital and a hospital phase.

Pre-hospital phase: In the scenario it is assumed that a Finnish tourist, is on
vacation in Austria when he feels a pain in his chest. Before leaving for Austria, he
has installed the necessary CASCOM software on his smart phone and activates
it to initiate an emergency call. After initiation he has to answer a few questions
about his symptoms. The questions appear on the GUI of the smart phone. Sub-
sequently an emergency call is set up by the patient’s personal agent, and the 112
agent (emergency dispatch center) is contacted. This agent contacts the nearest
ambulance and informs about the medical case of the patient. This information
basically contains data collected on the initial questionnaire, old patient data (e.g.,
ECGs, X-rays), some personal data but also the patient’s position determined by a
location-based service. The location-based service allows directing the emergency
car to the patient. Through all this information physicians in the ambulance are
able to prepare the patient’s treatment. Furthermore EMA— a Finnish emergency
assistance organization — is contacted by the 112 agent. Meanwhile the patient
receives a message that the ambulance is on its way.

15.2. Usability Trials in Helsinki 333

After primary care, the ambulance physicians decide about the local hospital
(LH) for the patient and bring him there. The emergency physicians at the hospital
also receive patient information to prepare the patient’s treatment.

Then the hospital phase follows: The LH needs further patient data and
requests it from EMA. EMA makes this data immediately available which signifi-
cantly saves time in this critical situation. Subsequently, the LH requests EMA to
provide a translation of the patient records. Moreover, EMA monitors the quality
of the patient’s treatment. If the quality is not adequate, it requests the LH to do
further examinations. When the patient’s situation demands repatriation to the
home hospital (HH), EMA takes care of calling the insurance and asking about
cost coverage. It organizes the transport to an private LH or the transfer back
home and informs the hospital about the arrival of the patient. Furthermore the
home hospital can get patient data via CASCOM services and use them to pre-
pare the continuation of the patient’s treatment. The scenario demands flexible
planning and re-planning activities that are transparent to the user.

For the trials, only the first part of this scenario (the pre-hospital phase) was
implemented and tested.

In what follows, the different trial activities will be described in more detail.
The CASCOM consortium has successfully carried out the following trials: a us-
ability lab trial in Helsinki (Finland) and field trials in Basel (Switzerland) and
Innsbruck (Austria). The latter has been strongly supported by both emergency
physicians and IT staff at the University Hospital in Innsbruck. The description
of the CASCOM trials is structured as follows:

• Test set-up (testers and test environment.)
• Execution (test sequences and assessment.)
• Results (including proposed and implemented improvements on the different
agents.)

This chapter concludes with a summary on all the activities related to the quan-
titative analysis of the CASCOM system.

15.2 Usability Trials in Helsinki

The test of the personal agent that is the patient’s system view took place in
a usability laboratory at TeliaSonera’s premises in Helsinki and the test of the
physician’s system view was executed in a non-moving ambulance.

The purpose of these activities was to study the usability and handling of
the user interface and to eliminate worst usability failures before the field trials in
order to get better usability at the Innsbruck trials. The user feedback captured
in this trial provided valuable information to improve the user interface of the
system. It has been proven that such laboratory tests executed with expert testers
and rigorous analysis give accurate results even for mobile services [3]. But they

334 Chapter 15. Qualitative Analysis

Figure 15.2: Usability tests in Helsinki

do not necessarily reveal whether the product will be usable in its eventual usage
context. For example, disruptions in a mobile environment may cause problems
if the patient’s tasks are cognitively heavy. Emulating the mental state of a user
in a medical emergency is impossible in a test situation. This has implications
that may bias the results in this report. The field tests that were conducted in a
real environment and thus under more realistic conditions answered some of these
issues.

15.2.1 Test Set-Up

Testers

As described before, for the work in the project it is important to capture feedback
from the users to prove the concept of CASCOM and improve the CASCOM
software. But the primary goal of the tests was not statistical validity and therefore
a small number of users was sufficient. In Helsinki there were four testers for testing
the patient’s emergency application and two paramedics were interviewed in the
ambulance to study the needs of the ambulance unit. Furthermore two doctors and
a nurse were interviewed for background information on the recovery of patients
from abroad.

Test Environment

The equipment used for the trials in Helsinki was the following: Nokia N93 Series
60 phones for testing the patient’s view of the system and an IBM ThinkPad
tablet PC with pen control for testing the physician’s view. A backend system
consisting of Dell Precisions equipped with Windows XP Pro SP 2, Java JDK
1.5.0 10, JADE 3.4 and Linux Fedora Core 3 OS, Java JDK 1.5.0 05, and the

15.2. Usability Trials in Helsinki 335

Figure 15.3: Test setup of smart phone for usability tests

CASCOM trial version. Thereby the server Dell Precision 690 has the following
configuration: Intel Xeon 5160 with 3.00 GHz, 1333 MHz, 4 MB Cache, and 4
GB RAM. The other server, a Dell PowerEdge 1800, has a 2 kpl Intel Xeon 3
Ghz Processor and 4 GB RAM. For the network connections WLAN (TeliaSonera
HomeRun) and UMTS as wireless networks (TeliaSonera 3G service) were used.
Furthermore, as fixed network TeliaSonera ethernet was used.

15.2.2 Execution

The actual usability trials started with a warm-up phase for getting familiar with
devices and their usage. Here testers had to solve simple tasks such as sending a
text message to a friend, playing a game and finding the CASCOM application.
After that, testers tested the application. They were asked to imagine themselves
in the following situation: “You suddenly feel a pressing, continuous, and strong
pain in your chest. There is no-one nearby and you do not know the local language.
Thus you decide to use the application to get help.” The testers were encouraged to
think aloud during the test as these comments are valuable clues for improvement.
Thereby testers were recorded with a video camera, which made it possible to
check details and user feedback later. During the trials, a special camera directly
installed on the smartphone was used (see Figure 15.3). The duration of each test
was about 40 minutes except the test in the ambulance, which needed more time.

336 Chapter 15. Qualitative Analysis

15.2.3 Results

The usability trials gave important suggestions for improving the software for
better matching the user’s requirements. Some of the suggested changes were im-
plemented before the field trials.

As these usability tests were the very first tests with potential users, the
evaluation of the test results concentrated on flaws in the usability in order to
avoid failures in the actual field trial. Thus, good and well working functionali-
ties were not the main topic. However, in general, all the test users expressed as
their opinion that they would use in the future emergency services based on the
CASCOM technology even though they had some psychological hindrance related
to trustworthiness of this kind of systems. This kind of service conflicts with their
learned behaviour in case of emergency situation.

In addition, they were willing to pay for the service either directly as an
annual or monthly fee or embedded in other services, such as travel insurance.

The overall flow (input from the users and output to the users) of requesting
emergency help worked in an acceptable way, and users did not request any major
changes. Intelligent phones, such as Nokia N93, seem to be proper user equipment
for the CASCOM service. The computing and communication power and quality
of display are adequate for the CASCOM services.

In the following sections, the main suggestions and possible solutions are
described.

Personal Agent

Reporting emergencies: Participants said they would rather call 112 to report an
emergency, as it is a learned way of behaving. They like the personal contact and
find comfort in talking to someone. The CASCOM system cannot offer this, but
the traditional way fails in unknown environments (e.g., foreign countries). But
the CASCOM application could be improved by giving additional feedback such
as information about the arrival of the ambulance, self-help recommendations and
contact information of the hospital.

Starting the application: Participants not familiar with the series 60 devices
had trouble finding the application. This is mostly caused by the user interface of
the phone, but it needs to be addressed. One idea is to make the application visible
in the idle state of the phone and thus easier to find. Another idea is to have an
additional hardware button, but this idea is discarded as it is too expensive.

Confirmation of emergency reports: Participants expressed varying levels of
need for privacy control. Of course, local legislation in countries may make ad-
ditional requirements. If a confirmation or authorization proves to be necessary,
there are many possible methods, all of which have their pros and cons. The PIN
code of the phone is usually well remembered, but perhaps less so in an emer-
gency? Voice and fingerprint recognition are interesting, but people’s behavior in
an emergency may make recognition more difficult than in ideal conditions. Until

15.2. Usability Trials in Helsinki 337

Figure 15.4: Radio buttons Figure 15.5: Radio buttons improved

now, no viable solution has been identified.
Terminology: The test setting of the usability test did not allow to properly

verify the understandability of the questions used to report a medical situation.
The users were in a very artificial situation and seemed to answer something just
to get on with the test. As it is not possible to create a less artificial environment
the texts have to be checked again with medical experts.

Radio buttons not clear: It is possible to move focus without moving selection.
Users had to verify that they have chosen the correct option. Moving the cursor
should also move the selection, then middle-clicking should accept it and move to
the next screen, i.e., the same way as on the main page of the application. Also,
fonts on the screen changed depending on where the focus was. This should be
corrected so that font size remains fixed. These suggestions are implemented now.
Figure 15.4 shows the situation before and Figure 15.5 shows the situation after
the improvement.

Next and Back do not work as expected: The left softkey of the old version
leads to a new menu with ’next’ or ’previous’. The user should always be able to
get back to the previous screen while making selections. Returning to the main
menu should be possible from ’Options’ (left softkey). The softkeys should follow
a familiar logic. On a series 60 Nokia handset, for example, the following should
be used: Pressing the left softkey label should open the ’Options’ menu with the
choices: ’Next’, ’Main menu’, Help’, ’Exit’ (see Figure 15.5). Pressing the right
softkey label should effect a ’Back’, that is, it should take the user one step back.

Permission to use network: Before opening a new wireless link the mobile
phone’s policy is to ask for a permission. The application should not make a request
to use the network while the user is doing something. In the worst case, the user
has spent time answering the questions, then finds the network does not work for

338 Chapter 15. Qualitative Analysis

Figure 15.6: Message for the patient Figure 15.7: Message slightly improved

some reason. The application should open a network session when it is launched.
At this time users are not surprised about it, and any problems with the network
are obvious before answering any questions. Ideally the application should know
which network to use and just open it.

This problem can be solved by configuration and it is Java Microedition
specific. Thus for the prototype it is not really relevant but it should be fixed in
the end version.

Not enough feedback: After placing an emergency call the message “Ambu-
lance is on its way” is not comforting enough. Users wanted to be sure the am-
bulance knows where they are and would have liked to have the estimated arrival
time. The message should be adapted adequately. Furthermore, it was not clear
to the testers what the ’Cancel’ button means - cancel the emergency or cancel
the application? In response to this feedback, the message has been improved but
it should still be made more concrete. The cancel button has been replaced by a
’Main Menu’ button. The screen used in the Helsinki trials is shown in Figure 15.6
and the improved screen is shown in Figure 15.7.

Ambulance Unit

Given that only two paramedics tested the ambulance units, the results are less
detailed than those for the personal agent. However, given the very early state
of the prototype user interface, the following recommendations can be made even
with the small number of participants.

When driving to the scene: The address and navigation guidance are the
most important information. These should be made prominent on the first view.
As most ambulances already have a separate navigation system, the CASCOM

15.3. Field Trials in Innsbruck and Basel 339

application should concentrate on giving the crucial patient details in a clear way.
The paramedics have little time to get familiar with the patient’s medical back-
ground. Only the most critical patient information is useful. If a summary of the
medical history is available, it should be highlighted. Images (ECG etc.) are not
always needed.

Device form factor: The device must suit a variety of needs. Paramedics need
to view the information in the driver’s cabin, as well as enter data on location and
in the back of the ambulance. The device must be easily portable and rugged.
Writing (entering data) must be easy and not prone to errors. Handwriting recog-
nition is not currently very good at this. Either it should be possible to enter data
by choosing options from a list, or a keyboard should be used. The screen should
be sufficiently sized for legibility and viewing patient history images. The device
has to be relatively small as there is already a lot of stuff to carry on the car. Thus
it should be no larger than the A4 format.

Device placement: The paramedics’ focus is on the patient. Entering infor-
mation must be easy without having to concentrate on the device trying to keep
it from falling. The device should have a docking station to keep it in place and
provide power. Writing should be possible in the docking station while helping the
patient. One further idea is to consider a different or an additional display in the
driver’s cabin for viewing the navigation map and the patient info.

Patient recovery from abroad: As it was not possible to study a recovery
scenario on location, the following is a very general list of suggestions. Talking
to the patient can be very helpful to assess the gravity of the situation. Once
EMA is contacted by the local hospital, the patient’s agent could be updated
with EMA contact information and advice to get in touch. Several interviewees
mentioned that seeing the patient would be very helpful. Perhaps the patient could
use the personal agent to upload images of himself. Once the system is running
and electronic data from many patients are in, they can be analyzed to notice
patterns. Currently EMA nurses depend on talking to other personnel to notice
such patterns.

15.3 Field Trials in Innsbruck and Basel

The field trials consisted of two parts. The first part has evaluated the personal
agent and was executed at the University of Basel (Switzerland) with students
from the university as testers. The second part of the field trials did analyze the
physician’s view of the system was conducted in Innsbruck (Austria). It took
place at the trauma station and in a driving emergency car at TILAK (Tiroler
Krankenanstalten GmbH, the umbrella organization of the state hospitals of the
Austrian state Tyrol). Here two internationally renowned physicians thoroughly
and carefully tested the CASCOM application and provided highly positive and
valuable feedback.

The aim of the usability trials in Helsinki described in Section 15.2 was to

340 Chapter 15. Qualitative Analysis

improve usability by finding worst failures before the actual trial and correct them.
It was conducted under controlled conditions as this is a good way for first usability
testings. In contrast, the field trials were conducted under more realistic conditions
partly in a real hospital environment. Furthermore we got the possibility to use real
healthcare Web Services in the trials, the health@net Web Services. These services
provide access to patient health records. They were developed in the health@net
project where TILAK and the University for Health Science, Medical Informatics
and Technology (UMIT) cooperate to implement a local health network that allows
Tyrolean hospitals and general practitioners to share health-related information
of patients [5, 6].

TILAK and UMIT offered professional support for the trials as they are in-
terested in working with new and innovative technologies. Therefore, the experts
evaluation of the CASCOM application is of high relevance. All physicians at
TILAK have been very much in favour of the overall CASCOM idea and its tech-
nical implementation. In particular, they very positively evaluated the CASCOM
system as a whole, both from a functional (early access to important patient data)
and from a non-functional point of view (response time, etc.).

Hence, the field trials focus more on the interaction with the overall system
and problems that cannot be recognized under laboratory conditions, e.g., the
handling of the application and the devices in special places. Nevertheless, it has
turned out that the usability tests gave valuable feedback to improve the CASCOM
user interfaces -- these improvements have been applied before the start of the
Innsbruck field trials.

15.3.1 Test Set-Up

Testers

In the field trials in Innsbruck two physicians tested the physician’s application
view in their daily working environment (the emergency department and the emer-
gency car). In the part of the field trials executed in Basel, there were six stu-
dents who took over the role of patients equipped with mobile devices where the
CASCOM application suite has been installed.

Test Environment

In these trials not exactly the same hardware and software configuration as in the
usability trials in Helsinki was used, in order to have a broader test field. Thus the
equipment used for the trials in Innsbruck and Basel was the following: Smart-
phones of type HTC TyTN using UMTS for testing the patient application, and
Ultra Mobile PCs of type Asus R2H for testing the physician’s view. In addition,
ANYCOM GP-700 Bluetooth GPS Receivers were used for the HTC TyTNs, as
these smartphones do not support GPS but GPS location tracking was needed for
the execution of the trials. For each platform a Java Virtual Machine implemen-
tation needed to be available. In the case of mobile devices this is defined to be

15.3. Field Trials in Innsbruck and Basel 341

Figure 15.8: Crew of the emergency car

at least a Java Micro Edition compatible runtime (J2ME MIDP 2.0). For fixed
devices this is defined to be at least a Java 2 Standard Edition 1.4.2. As server
a computer located at the TILAK with the following parameters was used: HP
ML530 G2, Dual Xeon 2,4 GHz, 6 GB RAM, Vmware machines using 1*1 Gbit
LAN connection, Vmware ESX 2.5.3. Up to 8 machines can be hosted in parallel
on this device.

For security reasons, this server was placed inside the local demilitarized net-
work zone (DMZ). The network setup mostly relied on wireless and fixed network
communication technologies. In the TILAK buildings, wireless network (WLAN)
has been available. It was used for the trial in the stationary emergency depart-
ment. For trial activities carried out in the emergency car we used UMTS and
GSM (GPRS) based communication. The test environment used during this trial
is depicted in Figure 15.9. The patient data which has been accessed during the
trial activities was provided by the health@net project via dedicated Semantic
Web Services. It has turned out that CASCOM is an even more challenging use
case for health@net. Due to the good liaison to health@net, CASCOM has re-
ceived excellent support and has been able to make use of the health@net services
(for privacy reasons not on productive data from the TILAK clinical information
system but on anonymous patient data).

15.3.2 Execution

Before starting the trials, all testers received a short introduction to the system
and its functions as well as an explanation of the handling of the devices to present
an overview of the overall system. The real trials started with a warm-up phase
for getting familiar with the devices and their usage. Here testers had to solve a

342 Chapter 15. Qualitative Analysis

TILAK Server
EMA-Server

Ultra Mobile PCs for
physiciansSmart phones

for patients

Health@Net
Services

KIS
(Clinical

Information
System)

Firewall

Fi
re

w
al

l

Wireless connection

Figure 15.9: Test environment

simple task such as opening a website. After that, testers tried out the application
by using it as if they were involved in a real medical emergency. They were asked
to perform tasks and were encouraged to think aloud during the test as these
comments are valuable clues for improvement. All activities during the actual
trials were recorded with a video camera. When studying usability details, portable
cameras allow a moderator to follow a user and record his/her interaction with a
mobile device [4]. Thus, it was possible to check details and user feedback later. The
trial was completed by interviews based on questionnaires to capture main points
of feedback. The interviews were done immediately after the tests to be as reliable
as possible. The Innsbruck trials with the physicians lasted approximately two
hours each. The duration of the Basel trials with the students was approximately
30 minutes per person.

15.3.3 Results

The results of the trials were very valuable as they proved the architecture and the
implementation of the CASCOM software. Moreover they gave important sugges-
tions for further improvements of the software so that it even better fits the user’s
requirements.

15.3. Field Trials in Innsbruck and Basel 343

Personal Agent (Basel)

The Basel students who tested the patient’s view had a good overall opinion about
the software. They said the application’s functionality would meet their needs and
they thought the masks and the structure of the application are good and it is
easy to learn and easy to use. Furthermore the application is stable and has a good
performance. All these points are especially important in emergency situations.

Testers had different opinions about what is the most relevant functionality
of the system. Some stated it is that the application tries to find the best hospital,
others liked most that the application submits medical patient data to the hospital
before the patient arrives there, and it was also seen as an important feature that
she/he might be able to have such a service in a country where the patient does
not speak the local language.

Three persons said they would feel safer with the application, one said he
would not and two did not know. All six students like the application and four
would recommend it to others. Although the testers liked the application, they
gave very good suggestions for improving it. Subsequently these suggestions are
listed:

Reporting emergencies: Similar to the testers in Finland, participants said it
is not easy for them to think of using an application in an emergency situation
instead of making a call, as there is nobody who calms them, no explanations, no
feedback. Some testers wanted to have the additional possibility to make a call
to the hospital or to receive a call from the hospital to get direct feedback from
a physician. Other testers proposed to extend the application for non-emergency
cases. When a patient does not need a emergency car, the application could provide
a map with the way to the hospital.

Starting the application: Testers doubted that the number of questions that
have to be answered before the emergency call is appropriate. Some noticed there
are not enough questions; others thought there are too many questions for an
emergency case. As in the Helsinki trials, testers proposed to have a software
emergency button or maybe a key combination for starting the application very
quickly and avoiding trouble in finding the application.

Terminology: Another point of criticism was that the questions are often
very specific and sometimes participants do not know what to answer. E.g., for
some of them it was not clear what to answer in the mask ’Severity of pain’ (see
Figure 15.10). A proposal was to have in all the dialogs the possibility to answer
’I don’t know’. This suggestion is quite similar to that given in the Helsinki trials
but we have to discuss with medical emergency professionals whether this is the
right way to improve the user interface.

Not enough feedback: As in the usability trial the users stated that the mes-
sage ’Ambulance is on its way’ is not comforting enough in an emergency situation.
Users wanted to be sure the emergency car knows where they are and would have
liked to have the estimated arrival time. The message should be adapted ade-
quately. The improvements that have been made until now are not enough (see

344 Chapter 15. Qualitative Analysis

Figure 15.10: Do you want to see a doctor?

Figure 15.7).
Readability problems: Users thought that the font size of the application and

buttons is too small. Further, they reported that the title of some dialogs could
not be seen in full length (see Figure 15.10).

No save prompt: There is no saving prompt after the user has filled in the
fields for personal data. Thus if the wrong button is pressed, all inputs are lost.
Furthermore, it is possible to make nonsensical entries, e.g., impossible dates,
which is not relevant in an emergency case, but improving it might increase the
confidence in the system.

Inconsistent handling: The handling of the application is not always consis-
tent. Sometimes switching between keyboard and stylus is necessary to complete
a task. This is not intuitive and can be confusing in emergency situations.

Ambulance Unit (Innsbruck)

The trials in Innsbruck in which the physicians view of the system was tested
were also very successful as all parts of the system worked very well and there
were only minor problems with the network. Thus, the participants were highly
pleased with the application. Their feedback indicated that the user interface is
comfortable and easy to use, design and handling are consistent, the structure is
clear and data is well readable.

In particular, they liked the early availability of patients’ medical records be-
cause it makes the preparation of upcoming medical cases easier (see Figure 15.11).
They also think the CASCOM application might help to lower wrong diagnoses
and to save the lives of old people and people with chronic diseases.

Although the testers were very satisfied with our prototype they had valuable

15.3. Field Trials in Innsbruck and Basel 345

Figure 15.11: Early information

ideas for improving the application. Suggestions from the test physicians were:
When driving to the scene: In contrast to the testers in Helsinki the par-

ticipants thought the navigation dialog is not needed as they have a separate
navigation system in their car. For them, only the address is relevant. The physi-
cian of the emergency car thought just like the participants in Helsinki a whole
discharge letter is too much. He only needs the most relevant data. But the physi-
cian at the station needs all information (but not older than 5 years). Maybe it
would make sense to split up the application for using in the hospital and in the
emergency car.

Device form factor: We used a different device than in the Helsinki trials. It is
smaller and better portable, but the display is still large enough for showing patient
data. But it does not fulfil the requirement of break resistance and protection the
physicians in the emergency car need, and maybe it is too heavy. By contrast, the
physicians at the trauma station do not need such a device. They would prefer to
use the already available laptops or PCs. In Figure 15.12 the devices used in the
usability trials in Helsinki and in the field trials in Innsbruck are shown.

Device placement: The smaller device makes the device placement much eas-
ier.

Furthermore we received following suggestion for improving the software:
Contact information of relatives: The physicians said it would be useful to

store contact information especially telephone numbers of relatives, to inform them
in an emergency case.

346 Chapter 15. Qualitative Analysis

Figure 15.12: TabletPC used in Helsinki Figure 15.13: Ultra mobile PC

Integration with other devices: The participant of the emergency car team
expressed the wish to integrate online monitoring systems, e.g. an ECG device, to
reduce efforts for manual data input during an emergency situation especially in
the emergency car.

Integration with clinical information system: The participants at the trauma
station said they would need integration with the clinical information system to
avoid handling too many applications. In emergency cases, this is particularly im-
portant. More precisely, this means that they should be able to enter information
on the patient using the ambulance agent in case it is made sure that this infor-
mation is automatically transferred to the patients health record in the hospitals
clinical information system.

15.4 Summary

In summary, all trials activities have proven the functionality and the expected
properties of the overall system. However, in addition to that positive feedback, all
groups of testers had some ideas for further improvements. Some problems found
in the Helsinki trials were improved before the trials in Innsbruck and Basel.

Especially the trials with emergency physicians in real-world environments
in Innsbruck were very successful. The application and in particular the P2P
communication infrastructure was very stable and reliable even under demand-
ing conditions. The physicians participating in these trials had no problems with
the structure and the user interface of the application. They were very satisfied
with the main idea behind application and stated in the interviews that they are
convinced of the usefulness of the application. They finally confirmed that they
would use the system, when finally available, both in their professional life (as
emergency physician on the way to or waiting for patients) and in their private
life when travelling abroad. It is also important to note that the physicians at the
trauma station and in the emergency car have partly different requirements, e.g.,

References 347

regarding the devices on which the application runs. This needs to be taken into
account when devices for particular usage are selected.

References

[1] J. Nielsen. Why You Only Need to Test With 5 Users.
http://www.useit.com/alertbox/20000319.html, 2000.

[2] K. A. Ericsson and H. A. Simon. Verbal reports as data. Psychological Re-
view 87, American Psychological Association, Washington, DC, USA, 1980.

[3] A. Kaikkonen, Kallio T., A. Keklinen, A. Kankainen, and M Cankar. Usability
Testing of Mobile Applications: A Comparison between Laboratory and Field
Testing. Journal of Usability Studies, 1:4–16, November 2005.

[4] V. Roto, A. Oulasvirta, T. Haikarainen, H. Lehmuskallio, and T. Nyyssnen.
Examining mobile phone use in the wild with quasi-experimentation. Technical
Report 2004-1, HIIT, August 2004.

[5] T. Schabetsberger, E. Ammenwerth, R. Breu, G. Goebel, A. Hoerbst, R. Penz,
K. Schindelwig, H. Toth, R. Vogl, and F. Wozak. E-Health Approach to Link-
up the Actors in the Health Care System of Austria. In Ubiquity: Technologies
for Better Health in Aging Societies. Proceedings of MIE2006, volume 124 of
Studies in Health Technology and Informatics, Amsterdam, 2006. IOS Press,
A. Hasman and R. Haux and J. van der Lei and E. De Clercq and F. France.

[6] F. Wozak, M. Breu, R. Breu, R. Penz, T. Schabetsberger, R. Vogl, and E. Am-
menwerth. Medical Datagrids as Infrastructure for a Shared Electronic Health
Record (SEHR) as an Open Source Reference Implementation for Austria.
In Gesundheitsversorgung im Netz, pages 121–124, Germany Berlin, 2006.
Akademische Verlagsgesellschaft AKA GmbH, G. Steyrer and T. Tolxdorf.

Chapter 16

Quantitative Analysis
Danilo Bonardi, Lúıs Botelho, Matthias Klusch, António L. Lopes,
Thorsten Möller, Alexandre de Oliveira e Sousa, and Matteo Vasirani

16.1 Introduction

The different software agents and technologies that were introduced in earlier
chapters of this book were also subject to a quantitative evaluation. The main
objective of these tests was to verify that they can be effectively used in real world
settings. Consequently, the measurements taken are mainly targeted to assess per-
formance and scalability of CASCOM’s meta services. Qualitative measures on the
application level are not covered in this chapter and can be found in Chapter 15.

All tests that are subsequently described must be considered in the context
of their network characteristics. Where possible, controlled environments and local
services have been used, but in some cases it is opportune to use and rely on the
standard Internet infrastructure respectively public services.

16.2 Service Matchmaker Agent

16.2.1 Test Environment

We have done four kinds of tests with the SMA. All the service descriptors were lo-
cated on a local server at URJC. This was done so that the performance evaluation
could not be affected by external factors like network delays or bandwidth.

Along all the tests, two different SMA configurations were evaluated. In the
first configuration (in what follows, we will refer to it as cfg. 1), all the three
matchmakers were invoked sequentially (first the role-based matchmaker, then
OwlsMX and finally the precondiftion-effect matchmaker). This is the most fine-
grained configuration of the SMA, but also the most time consuming, due to the
presence of the logic reasoning matchmaker. In the second configuration (cfg. 2),
only the role-based matchmaker and OwlsMX were invoked sequentially.

350 Chapter 16. Quantitative Analysis

n t1r t2r
1 44735 8116

2 84023 11727

3 117200 14400

4 150816 14100

5 198588 17411

10 373209 25113

15 488944 39685

20 580619 44734

n concurrent requests

t1r response time cfg.1

t2r response time cfg.2

Figure 16.1: SMA response time as a function of concurrent requests

16.2.2 Test 1

The objective of the first test was to understand how the SMA reacts to an in-
creasing number of requests, sent by several agents, with the same services and
query combination. The services to match were nine services from the medical
domain, with a query that matches with all the descriptors.

The results are depicted in Figure 16.1. The plot shows that the response
time grows linearly with the number of requests in both of the two configurations,
although in the second case the response time of SMA is considerably lower.

16.2.3 Test 2

The second test aimed at evaluating how the SMA manages an increasing number
of services that match with the given query. The services and the query were the
same as in the previous test. In this test we used only one agent request.

The results are depicted in Figure 16.2. Also in this case the response time
of SMA, with a growing number of matching services, increases almost linearly.

16.2.4 Test 3

The objective of the third test was to understand how the presence of matching
and non-matching services affects the computation of the SMA. The request was
composed of fifty non-matching services from the medical transportation domain,
and an increasing number of matching services.

The result of the last test depicted in Figure 16.3 is aligned with the previous
tests. It is worth noting that for the first configuration (cfg. 1), even if the total
number of services in the request is greater with respect to the second test, the
response time is similar. For example, in the second test, the response time of
a request with 20 matching services was 71399 ms, while in the third test, the

16.2. Service Matchmaker Agent 351

n t1r t2r
1 21514 4475

2 30438 7261

3 26773 5941

4 28662 7674

5 35828 6192

10 50039 8859

15 56260 12837

20 71399 12224

n matching services

t1r response time cfg.1

t2r response time cfg.2

Figure 16.2: SMA response time as a function of matching services

n t1r t2r
1 34401 23889

2 38468 21961

3 45175 20380

4 48004 20099

5 46704 25124

10 73168 28135

15 77410 26077

20 88509 26221

n matching services

t1r response time cfg.1

t2r response time cfg.2

Figure 16.3: SMA response time with non-matching services

response time of a request with 20 matching services and 50 non-matching services
was 88509 ms. This shows that the SMA response time is more sensitive to the
number of matching services than to the total number of services. This is because
if one of the three matchmakers detects a non-matching service, this service is
filtered out and not passed to the other matchmakers in the sequence.

16.2.5 Test 4

The objective of the last test is to check the retrieval performance of the match-
maker as a whole, that is, to determine the quality of the answer set of the five
variants of the hybrid OWLS-MX matchmaker in terms of recall and precision
(R/P). For details about the hybrid matching filters and text similarity measure
from information retrieval (IR) used by each of the OWLS-MX variants and the

352 Chapter 16. Quantitative Analysis

Figure 16.4: Retrieval performance of the matchmaker as a whole

R/P experiments conducted we refer to [2]. The R/P performance measurements
were done against the OWL-S service retrieval test collection OWLS-TC21 that
also includes the CASCOM services and adopted the evaluation strategy of micro-
averaging the individual recall/precision (R/P) curves. The micro-averaged R/P
curves of the top and worse performing IR similarity metric together with those
for the OWLS-MX variants are shown in Figure 16.4.

This preliminary result provides strong evidence in favor of the proposition
that building Semantic Web Service matchmakers purely on crisp logic based rea-
soning may be insufficient. A preliminary quantitative analysis of these results
showed that even the best IR similarity metric (Cosine/TF-IDF) alone performed
close to the pure logic based OWLS-M0 which can be significantly outperformed
by hybrid semantic matching with OWLS-M1 to OWLS-M4 in terms of both re-
call and precision. Second, the hybrid matchmakers OWLS-MX, in turn, can be
outperformed by each of the selected syntactic IR similarity metrics to the extent
additional parameters with natural language text content are considered.

1The OWLS-TC2 is available at http://projects.semwebcentral.org/projects/owls-tc

16.3. Service Discovery Agent 353

n tfr tnf
r

1 44250 46125

5 33141 30078

10 44593 37203

15 76984 39844

20 81281 42864

25 89203 43453

30 84360 45123

35 85157 46983

40 94672 48223

45 111453 50241

50 126047 52123

n concurrent requests

tfr service found [ms]

tnf
r service not found [ms]

Figure 16.5: SDA response time as a function of non-matching services

16.3 Service Discovery Agent

16.3.1 Test Environment

The SDA possesses a large variety of functionality. In the evaluation, we decided
to concentrate on the find service feature because this is related to OWL-S and
exhibits some algorithmic complexity. We performed two kinds of test, that both
comprise a growing number of requests to the SDA agent. In the first test, all
the requests were executed successfully; in the second, all the agents requested a
service which could not be found.

16.3.2 Test Results and Discussion

The results of the test depicted in Figure 16.5 evidence a consistent difference
between the two kinds of requests. The results also show that the find service
feature of the SDA is quick, especially since the SDA cache has been bypassed in
these tests.

If we analyze the detail each request sent to the SDA, we can determine what
the most time-consuming tasks are in the overall process. Figure 16.6 shows a pie
chart which illustrates the sub-tasks that have to be performed by each search
request sent to the SDA.

The results depicted in Figure 16.6 were obtained by the average result of 200

354 Chapter 16. Quantitative Analysis

Figure 16.6: SDA search time [ms] percentages

search requests sent to the SDA, which had, at the time, 200 services registered in
the service directories. As can be seen from the picture, the most time-consuming
tasks (around 73%) is in fact the matching process that is carried out together
with the SMA. The remaining time (around 27%) is consumed by the operations
related to the acquisition of services from the service directories and processing
the acquired service descriptions using the OWL-S API.

16.4 Service Composition Planner Agent

As mentioned in Chapter 11, two different Service Composition Agents (SCPA)
have been developed in CASCOM that differ in the planner engine used: one is
based on XPlan [4] while the other relies on SAPA [1]. In any case, the chosen
CASCOM SCPA takes a set of OWL-S services, a description of the initial state
and the goal state to be achieved as input, and returns a plan that corresponds to a
composite service that gets invoked using the FIPA-Request interaction protocol.

16.4.1 OWLS-XPlan

We evaluated the performance of XPlan, using the publicly available benchmark
of the international planning competition IPC3, and compared the results with
that of the four top performing IPC3 participants, i.e., FF planner, Sim-Planner,
and the HTN planners TLPlan, and Shop2. XPlan was tested without task spe-
cific methods. Planning performance was measured in terms of (a) the planning
completeness, i.e., the total percentage of solved problems, (b) the average plan
length, and (c) the average plan quality, i.e., the average distance of individual
plans from the optimal plan length in relation to the complexity of the given
problems2. In summary, the experimental performance results of both versions
of OWLSXPlan show that service composition planning can be done reasonably

16.4. Service Composition Planner Agent 355

Figure 16.7: Service composition in the OMS domain for 100 requests.

efficient and effective for low to medium complex planning domains (up to 15k ob-
jects), in particular the limited e-health planning domain considered in the project
CASCOM during the field trial.

For more information and preliminary evaluation of XPlan 2.0, we refer to [4].
Evaluation results for the static version OWLS-XPlan 1.0 are provided in [3].

16.4.2 MetaComp

The alternative composition planner that can be used by the CASCOM SCPA,
that is SAPA as part of the module MetaComp (cf. Chapter 11), was evaluated
with respect to domain independence, performance and scalability. The evalua-
tion tests were carried out using an Intel(R) Pentium(R) M processor 1.60 GHz,
equipped with 512 MB of RAM memory. Since the designed service selection meth-
ods have not been integrated in MetaComp, the evaluation tests address only the
agent remaining features.

The domain independence hypothesis was evaluated through testing the
agent in different application domains namely the medical records translation
domain (Medical Records), the online medicine selling domain, the box depots
transport (Depots) domain, the package delivery domain (DriverLog), and the
aero travel domain (ZenoTravel). The agent successfully generated compound ser-
vices in all of these domains. Although this does not prove that MetaComp is
completely domain independent, it constitutes significant evidence supporting the
domain independence hypothesis.

356 Chapter 16. Quantitative Analysis

Figure 16.8: Average service composition times vs. number of available services

MetaComp performance and scalability were assessed in the Online Medicine
Selling Domain (OMS). Of all the domains we have used in our tests, the OMS
domain was chosen because it is the only one for which OWL-S descriptions of its
services exist, allowing us to estimate the complete execution time, including the
OWL-S to PDDL conversion. Figure 16.7 shows the performance results in the
OMS domain, with 100 requests and no additional services besides those required
to achieve the composition goal.

The total execution time per request was about 3.4 seconds. The average
planning was 26.95 ms per request, which is practically imperceptible for the end
user. Another component that is also hardly noticeable by the user (in this test)
is the OWLS2PDDL converter, due to the reduced number of services to convert.
OWL-S API is responsible for about 95% of the total execution time.

We have increased the number of services considered for composition to assess
the agent scalability. Fifty compositions for 503, 703, 1503 and 2503 services were
carried out in the OMS domain. The average times are presented in Figure 16.8.
For 503 services, the average time spent in composition was 8 seconds. For 703
services, this time was 12 seconds. For 1503, the average total time was 24 seconds.
Finally, for 2503 services, the average time spent in composition increased to 43
seconds.

These results show that MetaComp performs within a reasonable time frame
while the number of services considered for composition is less than 500 services.
Unfortunately, when this number increases, performance rapidly worsens to im-
practical values. The times spent writing the OWL-S description of the compound

16.5. Service Execution Agent 357

n twr tfr
1 14688 12703

5 54594 38828

10 92390 64031

15 129422 92484

20 170875 127172

25 224891 179266

30 263907 190141

35 369875 206688

40 399031 254610

45 422203 302968

50 451468 312734

n concurrent requests

twr service working [ms]

tfr service failure [ms]

Figure 16.9: SEA response time as a function of concurrent requests and service
failures

service, and generating its inputs, outputs, preconditions and effects do not change
because the solution plan is always the same. As the number of available services
for composition increases, the planning time also increases, becoming larger than
the time for writing the OWL-S description. Given the enormous growth of the
number of considered services, the largest increase happens in the OWL-S to
PDDL conversion time.

In summary, the results show the excellent performance of SAPA as one
alternative planning component of the CASCOM SCPA. For compound services
involving a small number of elemental services (which we assume to be the case for
most service composition environments), the generation of the OWL-S description
of the compound service from the output of the planning component consumes
about 95% of the total time spent to handle each composition request. This quite
unexpected result is due to using the OWLS-API, which is still under considerable
development. It is assumed that this may be improved in the near future.

16.5 Service Execution Agent

16.5.1 Test Environment

Probably the most interesting measure to explore the performance of the Service
Execution Agent (SEA) is the time it takes to execute a given service as a function
of concurrent requests (using alternating input data). Consequently, this test has
been conducted in two different cases: one where the service is correctly executed
and the other where the service execution has some (random) run time error in

358 Chapter 16. Quantitative Analysis

input. In these two tests, the real existing Healt@Net Web Service Find Patient
has been used, annotated by a locally stored OWL-S descriptor. This means that
the test environment can not be taken as entirely controlled since it uses — and
relies on — the standard Internet infrastructure and its properties. However, this
decision was made on purpose to include the dynamics of the Internet and to get
insights on how this might effect the test in terms of time variations.

16.5.2 Test Results and Discussion

As it can be seen from Figure 16.9, the SEA is initially fast in both cases. Never-
theless, the plot evidences a continuous raise of the execution time with increasing
number of concurrent requests higher than what was expected. As detailed analy-
sis revealed, there is one main reason for this, which goes back to implementation
details: the current implementation of the FIPA interaction protocol part of the
JADE platform – used as a basis by the SEA – works as a barrier that serializes
incoming parallel requests, that is, incoming requests are put into a queue and
each request is handled one after the other. This means that the SEA currently
conducts just one execution at a time although its internal structure behind this
barrier was particularly designed and implemented to support concurrent (com-
posite) service executions. Only by an extension of this behavior in the near future
the SEA can demonstrate its full potential in terms of responsiveness to increasing
load.

The observation that the execution in case of input failure is faster than the
normal one is no surprise and a result of the fact that in this case the invoked
Web Service produces a fault, that is, it does not run the functionality that it
represents.

Because of the fact that the standard Internet infrastructure was part of the
test, the results must be considered in the context of its network and utilization
characteristics. The plot in Figure 16.9 does not show strong outliers. This indi-
cates that both the Internet infrastructure as well as the invoked service offered
nearly constant runtime characteristics at the time when the test was conducted.

16.6 WSDir

16.6.1 Test Environment

The objective of the test environment was to compare the response time of the
directory federation towards multiple simultaneous search requests (only abstract
search) coming from an increasing number of clients and registered services de-
scriptions. For that, we have decomposed the evaluation of WSDir into three sce-
narios. Based on the topology used in CASCOM, the number of directory services
were different for each scenario. Actually, each time a set of service descriptions is
stored in the federation (evenly balanced) and the set of clients accesses as much

16.6. WSDir 359

Figure 16.10: WSDIR Average search request processing time per number of ser-
vices for scenario 1

as possible different directory services in the Top Network layer. All the directory
services were partially distributed (some were running on the same servers) in a
secured network. The clients were all running at the same time in threads on the
same computer. Each client performed three random searches to produce different
results.

16.6.2 Topology and Scenario

In CASCOM, WSDIR is distributed across three network layers: a Hidden Layer,
a Top Layer and a Body Layer. Agents only access the directory services located
on the Top Layer. Each scenario has a specific number of directory services in the
Top Layer and the Body Layer (the Hidden Layer always contains one directory
service). The three used scenarios were the following:

1. Scenario 1: three directory services on the Top Layer and six on the Body
Layer.

2. Scenario 2: six directory services on the Top Layer and six on the body layer.

3. Scenario 3: ten directory services on the Top Layer and twenty on the Body
Layer.

360 Chapter 16. Quantitative Analysis

Figure 16.11: WSDIR Average search request processing time per number of ser-
vices for scenario 2

16.6.3 Test Results and Discussion

The following figures show the average response time in milliseconds per number
of stored services. Each line corresponds to a given number of simultaneous clients
requesting the federation.

Note that scenario 2 (see Figure 16.11) shows the best results. This implies
that Top Layer’s directory services play an essential role in the scalability of the
system. This observation can be explained as follows: not enough directory services
on the Top Layer (scenario 1) cannot serve too many clients and too many directory
services on the Top Layer (scenario 3) produce too many messages within the
federation, thus loosing more time on internal communication. For a given number
of clients, we see that the time increases linearly. The abstract search algorithm is
in O(n) complexity. The variations on the lines are due to run time performance
clean up of the directory services and random queries (a query that matches a lot
of services takes more time to be processed).

16.7 Summary

To complement the qualitative analysis presented in Chapter 15 which has proven
the applicability of the overall CASCOM system to the healthcare domain, also
CASCOM’s performance and scalability characteristics underwent a series of quan-
titative evaluations.

References 361

Figure 16.12: WSDIR Average search request processing time per number of ser-
vices for scenario 3

For the quantitative analysis, each component of the CASCOM system was
evaluated independently, i.e., without interactions and dependencies with the other
components. This approach has the advantage that it allows to individually focus
on the most crucial aspects and the most important characteristics of each agent.
The results showed that no agent is a potential performance bottleneck or limits
the scalability of the overall system.

References

[1] M. B. Do and S. Kambhampati. Sapa: A Scalable Multi-objective Heuristic
Metric Temporal Planner. Journal of AI Research, 20:155–194, 2003.

[2] M. Klusch, B. Fries, and K. Sycara. Automated Semantic Web Service Dis-
covery with OWLS-MX. In Proceedings of the 5th Int’l Conf. on Autonomous
Agents and Multi-Agent Systems (AAMAS), Hakodate, Japan, 2006. ACM
Press.

[3] M. Klusch, A. Gerber, and M. Schmidt. Semantic Web Service Composition
Planning with OWLS-XPlan. In Proceedings of the AAAI Fall Symposium on
Semantic Web and Agents, Arlington VA, USA, 2005. AAAI Press.

362 References

[4] M. Klusch and K-U. Renner. Fast Dynamic Re-Planning of Composite OWL-S
Services. In Proceedings of 2nd IEEE Intl Workshop on Service Composition
(SerComp), Hongkong, China, 2006. IEEE CS Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [7200.000 7200.000]
>> setpagedevice

