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Abstract

Understanding the pathogenesis and working mechanisms of occupational asthma (OA) is cru-
cial towards optimizing prevention and management of the disease. The study of the sensitizing 
and asthma-inducing properties of low-molecular-weight (LMW) agents is evolving quickly. So 
far, experimental research has shown that OA caused by sensitization to LMW agents does not 
completely fit the pathways of the traditional allergic model, in which there is a central role for 
immunoglobulin E. Furthermore, recent evidence indicates that chemical respiratory allergens may 
induce respiratory tract sensitization by routes other than inhalation, such as dermal exposure. 
Knowledge on OA induced by LMW is increasing, but the pathogenesis remains largely vague. 
Dendritic cells, T cells, eosinophils, and several cytokines and chemokines are likely involved as 
in atopic asthma. However, through subtle differences in T cell subpopulations, cytokine balances 
and effector cells involved chemical-induced OA may well depend on processes that might differ 
substantially from those of atopic asthma. Furthermore, the involvement of the transient recep-
tor potential channels in chemical-induced OA and irritant-induced asthma is intriguing. Further 
research in both humans and animals remains necessary to clarify the process of sensitization by 
LMW allergens and the mode of action inducing the OA phenotype.

Introduction

The lungs are the primary target for a diverse spectrum or work-related dusts, 
gases, fumes and vapors. Depending on the amount inhaled and on their physical-
chemical properties, these agents have the capacity to cause annoyance, irritation, 
corrosive changes and/or sensitization in the respiratory tract. Occupational asthma 
(OA) is a type of asthma due to causes and conditions attributable to a particular 
work environment, rather than stimuli encountered outside the workplace [1]. It 
is characterized by a reversible airway obstruction of the airways associated with 
bronchial hyperresponsiveness upon inhalation of workplace-related agents [2]. OA 
has been implicated (directly or indirectly) in 9–15% of the cases of adult asthma, 
making OA one of the most common presentations of occupational lung diseases 
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in many industrialized countries [3]. More than 350 agents have been reported to 
cause OA [4]. 

Traditionally, OA is divided into two types. The first type is immunologically 
mediated (or allergic) OA, in which sensitization against a workplace agent occurs 
after a “latency period”. Immunologically mediated OA can be further divided into 
the well-known classical IgE-mediated form, and the more elusive “poly-immuno-
logical” cellular form (non-IgE-mediated). The second type, non-allergic OA or 
“irritant-induced” OA, is caused by exposure to irritant chemicals to which the 
host does not become sensitized. In its most typical presentation, irritant-induced 
asthma (IIA) is characterized by the absence of a latency period, because it is initi-
ated by a sudden, acute exposure to high concentrations of an irritant. This form 
of IIA is often called reactive airways dysfunction syndrome (RADS). Other forms 
of IIA, caused by repeated exposures to irritants, are more controversial. Besides 
these forms of OA, some exposures at work may also lead to pharmacological 
bronchoconstriction and reflex bronchospasms [1, 5], but these reactions will not 
be discussed further.

The prevalence of OA depends mainly on the causative agent and the intensity 
of exposure [6, 7], and to some extent also on the distribution of individual-
dependent factors, such as atopy and smoking status [8]. The highest prevalence 
of immunologically mediated OA has been reported in the detergent industry 
(up to 50%), in which workers are exposed to proteolytic enzymes. In cohorts 
of laboratory animal workers, prevalences of 30% of OA have been described. 
However, the prevalence of OA is generally much lower. In most occupational 
cohorts, prevalence varies between 9 and 15% [1]. Non-immunological OA is 
generally considered to occur less frequently than immunologically mediated 
asthma. The proportion of IIA among patients referred to an occupational lung 
disease clinic has been reported to be 2–3% [9, 10]. When criteria were expanded 
to one or more exposures to high levels of irritant, the prevalence of IIA doubled 
to 6%, accounting for 17% of all OA patients participating in a study of Tarlo and 
Broder [10]. One of the largest epidemiological studies published on IIA, concerns 
workers of the New York City Fire Department who were exposed to a variety of 
airway irritants during the rescue mission after the collapse of the World Trade 
Center on 11 September 2001: 16% of a sample of these workers met the criteria 
for IIA [11].

Depending on their molecular mass, agents causing OA can be divided into two 
categories: (a) biological agents of high molecular mass (HMW) (>5 kDa), such as 
proteins, glycoproteins and polysaccharides, and (b) chemicals of low molecular 
mass (LMW) (<5 kDa), such as synthetic chemicals, natural compounds, drugs and 
metals. HMW compounds generally induce OA via IgE-dependent mechanisms 
comparable with asthma induced by pollen or house dust mite allergens [12, 13], 
whereas many (although not all) LMW compounds appear to induce OA via path-
ways that do not involve IgE-dependent mechanisms.
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Pathophysiology

Immunologically mediated OA

LMW chemicals comprise an important subset of etiological agents of OA, includ-
ing approximately 100 chemical entities [4]. Isocyanates, acid anhydrides, plicatic 
acid from western red cedar, colophony fume, metals, complex platinum salts, per-
sulfate salts, and some acrylates are just a few examples of important chemicals 
causing OA. 

Since LMW agents are non-immunogenic in their native state, it is assumed that 
they must form a stable association with proteins to initiate an immune response. 
These protein-hapten conjugates can be recognized and internalized by professional 
antigen-presenting cells (APC) such as dendritic (DC) or Langerhans cells. Like 
most HMW agents, these conjugates are presented to T cells, which initiate an 
immune response and, possibly, asthma via an IgE-mediated mechanism or another 
mechanism. Complex platinum salts and trimellitic anhydride (TMA) are LMW 
asthmagens that are generally considered to induce asthma via specific IgE anti-
bodies. These agents most likely possess a unique inherent ability to react directly 
(or indirectly, after metabolic activation) with functional groups present on human 
proteins [14, 15]. Not only albumin, but also other proteins such as keratine and 
tubuline can serve as carriers to render LMW agents immunogenic [15, 16]. 

Wisnewski et al. [17, 18] showed that LMW asthmagens can conjugate with 
proteins present on the surface of epithelial cells, thereby permitting presentation of 
LMW asthmagens to the immune system in a hapten-like manner. This may facili-
tate the uptake of the protein-hapten conjugates by professional APC to initiate the 
T cell response. If this is true for these LMW agents, then overall, the mechanism 
by which LMW antigens are presented to T cells and the following cascade of B cell 
activation plus IgE class switching, cross-linking of antigen and IgE on mast cells 
and attraction of inflammatory cells would be relatively similar between LMW and 
HMW compounds. Nevertheless, there are some questions and differences. For 
example, it is not exactly known in which form LMW asthmagens are displayed 
to responsive T cells. The way an antigen or hapten is processed, is dependent on 
where the hapten-protein conjugate is produced. Endogenous antigens are processed 
inside the cell, while exogenous antigens are processed through the endosomal path-
way in DC. The binding of an LMW asthmagen (or its metabolite) to some lung 
intracellular protein may give rise to an endogenous antigenic determinant, and this 
may, therefore, be presented to CD8+ T cells by major histocompatibility complex 
(MHC) class I [19]. However, the hapten may escape endogenous processing by cells 
in the lung and enter the peripheral circulation to bind proteins in the circulation. 
Such a chemical-modified antigenic protein is then processed by professional APC, 
e.g., B cells, macrophages and DC, and presented to CD4+ T cells on MHC class 
II [20].
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Depending on the pathway of LMW antigen presentation (MHC class I or 
MHC class II), different types of immune responses might develop (CD4+ or 
CD8+), which are categorized by their dominant cytokine secretion profile into T 
helper (Th) type 1 (IL-2, IL-12, IFN- ), Th2 (IL-4, IL-13, IL-5), T regulatory (Treg) 
(TGF- , IL-10) and Th17 (IL-17). While previously it was suggested that Th1 and 
Th2 cytokines counterbalanced each other, it has become clear that both Th1 and 
Th2 cytokines are involved in OA caused by LMW antigens [21–23]. Th17 cells, 
producing IL-17 – a potent attractant of neutrophils – are the latest T cells sug-
gested to play a role in the proinflammatory pathway of OA [24]. While Th1, Th2 
and Th17 cells are involved in proinflammatory pathways, Treg cells are thought 
to dampen the immune (asthmatic) response, possibly explaining why the majority 
of individuals do not develop adverse reactions to LMW asthmagen exposure [23, 
25].

Besides LMW agents that initiate an IgE-mediated asthmatic response, there are 
also LMW agents, such as diisocyanates and plicatic acid that do not act via specific 
IgE antibodies, even though they lead to the same phenotypical characteristics as 
IgE-mediated OA [26–29]. In humans, the airway inflammation process is indeed 
similar in both IgE- and non-IgE-dependent asthma [13, 30, 31], and is character-
ized by the presence of eosinophils, lymphocytes, neutrophils, mast cells, and typical 
features of airway remodeling [6, 31, 32]. Airway inflammation is accompanied by 
a wide range of proinflammatory mediators and proteins. An influx of inflamma-
tory cells, along with proinflammatory mediators can lead to a broad variety of 
adverse effects, such as toxic damage, increased oxidative stress, and loss of barrier 
integrity, contributing to long-term airway remodeling. Although in OA to LMW 
asthmagens, CD4+ cells are associated with eosinophilia and airway inflammation 
[32, 33], a role has been suggested for CD8+ cells in non-IgE-dependent OA [4, 23]. 
Interestingly, a small but significant proportion of T lymphocytes from the periph-
eral blood of subjects with OA induced by red cedar produce IL-5 and IFN-  after 
stimulation with the conjugate of plicatic acid and human serum albumin, which is 
indicative of a mixed Th1/Th2 response [34].

The fate of inhaled diisocyanates in the human body and the nature of the 
antigen that is eventually produced are largely unknown, as is the case for most 
chemicals that can induce OA [4]. Extracellular glutathione was able to prevent iso-
cyanate induced toxicity in human epithelial cells [18]. Human monocytes exposed 
in vitro to toluene diisocyanate (TDI)-albumin conjugates, undergo activation and 
up-regulation of lysosomal genes, along with increased production of monocyte 
chemoattractant protein-1 (MCP-1), and chitinase-1 [35]. Repetitive antigenic stim-
ulation of in vitro cultured PBMCs obtained from subjects with diisocyanate asthma 
revealed that these cells synthesized TNF- , a non–IgE-dependent proinflammatory 
cytokine, and MCP-1, but not IL-4 or IL-5 [35]. These observations are consistent 
with the hypothesis that isocyanate-induced up-regulation of immune pattern-rec-
ognition receptors by monocytes and release of damage-associated molecular pat-
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terns from injured epithelium may be a mechanism by which isocyanates stimulate 
the human innate immune responses and consequently influence the hypersensitivity 
reactions [36].

Irritant-induced OA

Besides the allergic type of OA, there is another type of OA that is caused by expo-
sure to airway irritants and may occur without a latency period in its most typical 
presentation [9]. Originally, this disease entity was termed ‘reactive airway dysfunc-
tion syndrome’ (RADS). A case of RADS was defined as: (1) a documented absence 
of preceding respiratory complaints; (2) onset of symptoms after a single exposure 
incident or accident; (3) exposure to a gas, smoke, fume, or vapor with irritant 
properties present in very high concentrations; (4) onset of symptoms within 24 h 
after the exposure with persistence of symptoms for at least 3 months; (5) symp-
toms simulate asthma with cough, wheeze, and dyspnea; (6) presence of airflow 
obstruction on pulmonary function tests and/or presence of nonspecific bronchial 
hyperresponsiveness; and (7) other pulmonary diseases ruled out. In 1989 these 
diagnostic criteria were modified by Tarlo and Broder, in the sense that patients 
may have experienced ‘more than one’ high-level exposure to the irritant, since in 
many industries accidental spills are relatively common [10]. The term RADS was 
progressively replaced by ‘irritant-induced asthma’ (IIA), but this acronym remains 
often cited because of its high recognition value.

Only few studies are available to characterize the histopathology of the bron-
chial wall of patients with IIA. In general, nonspecific inflammatory infiltrates 
(lymphocytes, plasma cells, neutrophils) are present, often with thickening of the 
connective tissue [9, 37]. Gautrin et al. [38] described desquamation of bronchial 
epithelium and squamous cell metaplasia, as well as fibrosis of the bronchial 
wall and increased basement membrane thickness in five workers, 2 years after 
repeated exposures to high concentrations of chlorine. In biopsies from a patient 
exposed to chlorine, Lemière et al. [39] saw considerable epithelial desquamation 
with inflammatory exudates and swelling of the subepithelial space 2 weeks after 
the exposure; 2 months later, biopsies showed regeneration of the epithelium by 
basal cells and still a pronounced inflammatory infiltrate that recovered after 
steroid treatment [39]. Chan-Yeung et al. [40] were the first to show the presence 
of eosinophils in the bronchial inflammatory infiltrate of patients that suffered 
from ‘gassings’ in a pulp mill. These scarce data on histopathology suggest that 
inflammatory characteristics of IIA may be less extensive than in immunologically 
mediated OA, but this picture is nonspecific and cannot serve to make a definite 
diagnosis of IIA.

Data on possible mechanisms inducing IIA are only speculative. Brooks et al. [9] 
proposed a ‘big bang’ theory in which the initial irritant exposure causes significant 
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epithelial damage associated with activation of the non-adrenergic, non-cholinergic 
(NANC) nerve system via axon reflexes, with the onset of a neurogenic inflamma-
tion through the release of neuropeptide transmitters such as Substance P and neu-
rokinins. This epithelial damage can lead to release of relaxing factors, along with 
non specific macrophage and mast cell activation, which release proinflammatory 
cytokines and other mediators such as leukotrienes B4 and C4 [41], resulting in epi-
thelial cell desquamation, smooth muscle cell hypertrophy and matrix degranulation 
[1, 38]. 

There is increasing evidence that chronic exposure to lower levels of irritants 
can also induce a form of OA [9, 42]. The fact that lower levels of irritant exposure 
could initiate asthma requires consideration of mechanisms other than airway dam-
age alone to induce the asthma attack. It was noteworthy that 87% of the individu-
als that developed IIA in a less sudden way were atopic. One theory is that atopic 
persons elicit a different response to irritant exposure [42]. Another theory suggests 
an augmentation of the sensitivity to respiratory allergens by irritants, possibly 
through disruption of the epithelial barrier [43]. However, so far, no evidence exists 
to prove these theories. Moreover, the very existence of the entity of “not so sudden 
IIA” is currently disputed.

Acute inhalation of irritant chemicals may lead to persisting upper airway symp-
toms, with complaints from nose, sinuses and larynx. This entity has been described 
by Meggs et al. [44] as ‘reactive upper airway dysfunction syndrome’ (RUDS), by 
analogy with its asthmatic counterpart. These authors studied patients with chronic 
rhinitis after a chlorine dioxide exposure. Even less is known about mechanisms 
causing these upper airway problems after irritant exposure, but they are thought 
to be similar to those causing IIA, and neurogenic inflammation in response to epi-
thelial damage is probably the key factor. Publications on RUDS or irritant-induced 
rhinitis are even rarer than those of RADS and irritant-induced asthma, so that the 
incidence and prevalence of this condition are even more obscure.

Animal models

In comparison with occupational diseases caused by inhaling mineral dusts or 
fibers, there has not been a lot of experimental research using laboratory animals 
to unravel the pathogenesis of OA. Yet, animal models can have a valuable role in 
gaining more information on the complex immunological and pathophysiological 
mechanisms involved in the development of allergies and asthma. At present a con-
siderable part of what we know about the pathogenesis of asthma has been derived 
from animal experiments [45]. However, this research has been conducted mostly 
with HMW agents, especially ovalbumin, and only few research groups have inves-
tigated chemical-induced asthma.
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Although no mouse model is currently able to mimic the full range of clinical 
manifestations that constitute human asthma, a number of models are available that 
reproduce several features that characterize its most common phenotypes. Never-
theless, important differences in airway development and morphology exist between 
humans and mice, thereby preventing the direct extrapolation of data between the 
species. Mouse airways have fewer airway generations and do not contain smooth 
muscle bundles. As a consequence, mouse models cannot be considered a surrogate 
for human asthma but they must be viewed as an opportunity to generate and test 
hypotheses in a relatively simple controlled system [46, 47].

The most common mouse strain used in this research area is the BALB/c mice, 
which exhibits a genetically determined tendency to develop Th2-biased immune 
responses. However, less Th2-prone mouse strains can also develop an asthma-
like response. Several protocols for the induction of asthma have been developed 
and published employing a wide variety of antigens, application routes, doses and 
sequences as well as readouts [48]. 

Stimulation of the cholinergic and sensory nerves

The chemicals are initially recognized by APC present in the airways. Once the 
chemical is taken up, the APC get activated and release proinflammatory signals that 
not only influence the status of other cells of the immune system but also stimulate 
sensory pathways that activate the central nervous system. The vagus nerve has been 
proposed as an immune-to-brain pathway and it has been suggested that acetylcho-
line may modulate the airway immune response. Cholinergic mechanisms represent 
the predominant constrictor neural pathway, of which airway hyperresponsiveness 
(AHR), an important phenotype of asthma, is a good example [49].

Scheerens et al. [50] found an involvement of sensory neuropeptides in TDI-
induced AHR in mouse airways. Sensory nerves are found in abundance around 
pulmonary blood vessels and in the epithelium of the trachea and bronchi of many 
species. Scheerens et al. found that tachykinins (substance P and neurokinin A) 
are involved in the effector phase of TDI-induced AHR when mice were sensi-
tized (via epicutaneous application) and intranasally challenged. Furthermore, the 
tachykinins did not seem to act directly on the tracheal smooth muscle but via 
the activation of other cells (T lymphocytes and mast cells). Beside the effect on 
AHR, substance P also plays a role in the influx of inflammatory cells, particularly 
neutrophils [51].

It is also important to mention that many reactive chemicals, including sensi-
tizers such as diisocyanates, have strong irritant properties when they are used in 
high concentrations. The airway responses to these irritants result partly also from 
reflexes mediated by sensory and autonomic nerve fibers in the airways [51]. 
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Lung function measurements

A change in breathing pattern immediately after airway exposure has been docu-
mented in various mouse models of chemical-induced asthma. Pauluhn et al. 
[52–54] described a decrease in breathing frequency after nose-only exposure to 
diphenylmethane-4,4’-diisocyanate (MDI), 1,6-hexamethylene diisocyanate (HDI) 
and TMA in sensitized guinea pigs and rats. Vanoirbeek et al. [55–57] showed dif-
ferences in enhanced pause (Penh), a parameter representing bronchoconstriction, 
immediately after intranasal challenge with TDI or TMA.

Nonspecific AHR is generally measured 1 or 2 days after challenging the mice 
with a specific antigen. Many research groups focusing on chemical-induced asthma 
have found an increase in AHR to methacholine [52, 55–62]. Scheerens et al. [50] 
were the first to find in vitro AHR after carbachol exposure. As mentioned above, 
they found that sensory neuropeptides played an important role. Furthermore, 
Matheson et al. [63] and Tarkowski et al. [56] showed the absence of AHR in 
athymic mice and severe combined immunodeficiency (SCID) mice, respectively, 
suggesting an important function for T-lymphocytes in these models. Herrick et al. 
[64] and Matheson et al. [59] showed that both CD4+ and CD8+ lymphocytes are 
crucial in mouse models of asthma caused by HDI and MDI, respectively.

Airway inflammation

In comparison with asthma induced by HMW agents, where eosinophils and 
lymphocytes are the characteristic cell types present in the bronchoalveolar lavage 
(BAL) fluid, asthma induced by LMW agents has been associated with an influx 
of mainly neutrophils and eosinophils [50, 55, 56, 62, 63, 65]. The type of inflam-
mation is also highly dependent on the duration of exposure and the route of chal-
lenge. For example, Vanoirbeek et al. [55, 60] found mainly an influx of neutrophils 
when TDI-dermally sensitized mice received a single intranasal challenge with TDI, 
whereas De Vooght et al. [62] found an influx of neutrophils as well as eosinophils, 
using the same dermal sensitization protocol, but altering the challenge route from 
intranasal instillation to oropharyngeal aspiration.

Herrick et al. [66] used HDI conjugated to mouse serum albumin (MSA) to chal-
lenge their mice. Using this complex they found an inflammation in the BAL that 
correlated with the phenotype of atopic asthma, i.e., an influx of eosinophils and 
lymphocytes.

The influx of inflammatory cells is mediated by several cytokines and chemok-
ines. Increases of Th2 (IL-4, IL-5, IL-13) and Th1 (IFN- ) cytokines was found in 
homogenates of lung tissue [59, 66]. Macrophage inflammatory protein 2 (MIP-2), 
a chemokine for neutrophils in mice, was found to be increased [56]. IL-1 also seems 
to be an important mediator in chemical-induced asthma. IL-1 stimulates the release 
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of IL-5, which is important for the recruitment and activation of eosinophils, and 
induces the production of intercellular adhesion molecule-1 (ICAM-1) and vascu-
lar cell adhesion molecule-1 (VCAM-1), important for leukocyte recruitment [67]. 
Matrix metalloproteinase 9 (MMP-9) is the major proteinase that induces bronchial 
remodeling in asthma. In addition, MMP-9 as well as vascular endothelial growth 
factor (VEGF) induce the migration of eosinophils and neutrophils [65, 68]. Tumor 
necrosis factor  (TNF- ) is a major initiator and propagator of airway inflamma-
tion and promotes the migration of DC [69]. In addition, through their effect on 
airway inflammation, IL-1, MMP-9, VEGF and TNF- , lead to AHR. 

So far, most mouse models are based on an “acute” form of OA. The main focus 
has been on the inflammation found in the BAL, while structural changes of the lung 
and airways tissue have not often been investigated. Some degree of peribronchial 
and perivascular inflammation, epithelial shedding, mucus hypersecretion by prolif-
eration of the goblet cells and some perivascular remodeling have been described in 
the lungs of mice with diisocyanate-induced OA [62, 66, 70].

Immunoglobulins

Both increases in specific antibodies, as well as total serum immunoglobulins (IgE 
and IgG) have been described in diisocyanate-treated mice. However, a consistent 
observation in isocyanate-induced OA is the absence of any meaningful association 
between these serological findings and the presence or absence of airway responses, 
or with airway inflammation [71].

Scheerens et al. [72] found that by altering the exposure time and/or cumula-
tive dosage, TDI is capable of inducing different immunological reactions. When 
sensitizing the animals longer they were able to find specific IgE and IgG in serum, 
compared to a shorter protocol. Matheson et al. [58] and Herrick et al. [64] also 
found specific immunoglobulins (IgG) after a low-level subchronic exposure to 
TDI and exposure to HDI-MSA, respectively. Vanoirbeek et al. found increases in 
total serum IgE, IgG1 and IgG2a in TDI and TMA asthmatic mice. In isocyanate-
induced OA it is known that immune responses can emerge from IgE-dependent 
or non-IgE-dependent mechanisms, but the functional meaning of this in animal 
models remains unclear and probably non-essential. It is known that immuno-
logical sensitization to LMW asthmagens is often lifelong. The only ‘remedy’ to 
avoid the symptoms of OA is removal from the exposure place [73]. If asthmatic 
workers can avoid contact with the causal asthmagen, improvement of AHR can 
occur [74]. This was confirmed in the TDI mouse model of Vanoirbeek et al. [60]. 
In this set of experiments, the researchers increased the time between sensitization 
and intranasal challenge, resulting in a decrease of the AHR and airway inflamma-
tion, regardless of the high concentrations of IgE, IgG1 and IgG2a in the serum of 
TDI-treated mice. This is further confirmation that immunoglobulins are present 
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in chemical-induced asthma; however, their role in the pathophysiology of OA is 
uncertain at best.

Controversial issues

Neutrophils and OA

In the pathophysiology of OA due to LMW asthmagens, discussion often occurs 
concerning the presence and the role of neutrophils, as the main BAL inflammatory 
cell. In non-OA the presence of neutrophils is considered a marker of disease sever-
ity [75]; however, this is not yet established in OA. Moscato et al. [31] found that 
a positive response to the specific inhalation challenge (SIC) of persulfate salts was 
correlated with an increased sputum eosinophilia, while in symptomatic workers 
with a negative response to the SIC a neutrophilic inflammation was predominant. 
Park et al. [76] found a predominant neutrophilic inflammation in TDI-induced 
asthmatics, which was linked to IL-8, a chemokine involved in neutrophil attrac-
tion. This dichotomy between a predominant BAL neutrophil or eosinophil inflam-
mation is also found in animal model of OA [52, 58, 60, 62, 66, 70]. Probably, the 
nature of the pulmonary inflammation in asthma is heavily dependent on the time 
course of the disease, the pattern of the exposure and individual susceptibility fac-
tors [28, 31, 77].

The skin and OA

In OA it is generally assumed that exposure to the respiratory tract is the key route 
and site for the initiation of the immune responses. Accordingly, research, regulation 
and prevention focus almost exclusively on airborne exposures. However, despite 
reductions in workplace respiratory exposures, isocyanate asthma continues to 
occur, and this has prompted a focus on skin as a route of exposure [78, 79]. Evi-
dence that skin exposure may increase risk for isocyanate sensitization and asthma 
in humans is mainly derived from case reports and limited cross-sectional studies 
[78, 80, 81]. Recently, isocyanate skin exposure has been documented using newly 
developed qualitative and quantitative methodologies in car body shop workers and 
painters. The authors found substantial skin exposure to isocyanates, while these 
workers were occupied in a setting where airborne exposure was minimal, and 
despite the use of standard personal protective equipment such as gloves [81–83]. 
Several animal models have shown convincingly that skin exposure to chemical sen-
sitizers (predominantly isocyanates, but also anhydrides) can induce systemic sensi-
tization, which may result in asthma-like respiratory responses when the animal is 
later challenged via the airways [56, 64, 70]. These murine studies suggest that the 
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occurrence of respiratory responses depend on several factors related to both the 
nature and timing of the sensitization and that of the challenge [55, 60, 61]. 

Specific antibodies and OA

Controversy still exists regarding the role of specific antibodies in asthma induced 
by LMW asthmagens. While some LMW asthmagens (e.g., complex platinum salts 
and TMA) consistently produce specific IgE antibodies, other LMW asthmagens, 
most notably TDI and western red cedar (plicatic acid), do not. For example, in 
TDI-asthmatics specific IgE antibodies are only found in 0–50% of exposed work-
ers [84]. It has been suggested that sensitization to isocyanates can be achieved via 
other immunological mechanisms, such as direct T cell activation [20]. On the other 
hand, it has been suggested that IgE antibodies go undetected for largely technical 
and methodological reasons [4]. A technical limitation was shown by Son et al. 
[85], who showed that the variable results in the presence of specific IgE antibod-
ies to TDI in serum of exposed workers depended on the heterogeneous binding of 
specific IgE of a TDI-asthmatic to an antigenic determinant of TDI-human serum 
albumin conjugate in vitro. This binding can differ between one individual and 
another. So, it remains unclear whether IgE-mediated responses contribute to the 
development of asthmatic symptoms in workers exposed to TDI. Not only the role 
of specific IgE responses, but also the role of specific IgG is under debate. After TDI 
exposure, specific serum IgG can persist for many years [26]. Although the sensitiv-
ity for measuring specific IgG in serum of TDI-induced asthmatics is higher than 
specific IgE, the sensitivity is still poor. Therefore, it is rather suggested that IgG 
could be used to monitor exposure to diisocyanates, rather than act as a marker of 
sensitization [26, 86]. 

Mechanisms of IIA

Little or no experimental research has been conducted to clarify the mechanisms 
of persistent airway hyperreactivity that occurs in some victims of a single acute 
inhalation injury. Morris et al. [87] showed that capsaicin treatment could reverse 
the respiratory effects of chlorine gas inhalation in mice, suggesting an important 
role of sensory receptor channels on the nerve endings in the respiratory mucosa. 
Martin et al. [88] described histological changes in the airways and increases in 
bronchial reactivity to methacholine in mice after a single inhalation of chlorine 
gas, but their experiments did not go beyond 7 days. Further publications by the 
same group point to acute immunological changes and airway remodeling [89, 90], 
but these studies do not yet help us understanding the determinants of RADS in 
humans. Both Guo et al. [91] and Venglarik et al. [92] have shown a reduction in 
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bronchial transepithelial electric resistance in response to hypochlorite exposure. 
However, no phenotypic responses have been linked to this finding so far. The pos-
sible role of repeated exposures to low concentrations of occupational chemical 
irritants in the causation of asthma has been studied even less. An ozone-induced 
asthma model has been set up by the group of Pichavant et al. [93], in which iNKT 
cells and IL-17 seem to be important disease markers. Furthermore, findings related 
to co-exposures of antigens with ozone, cigarette smoke or diesel exhaust particles, 
involving DC priming, GM-CSF and leading to up-regulation of Th2 related cytok-
ines, may contribute to understanding the mechanisms of IIA [94–98].

Transient receptor potential channels and IIA

As already mentioned, neural activation causes pain and irritation, neurogenic 
inflammation, mucus secretion, and reflex responses such as cough, sneezing, and 
bronchoconstriction [99, 100]. Recently, members of the transient receptor poten-
tial (TRP) superfamily of ion channels have been proposed to play a key role in the 
response of sensory neurons to inflammatory mediators [99, 101, 102]. The two 
major proinflammatory TRP ion channels in sensory neurons are TRPV1, the cap-
saicin receptor, and TRPA1, activated by mustard oil [99, 103]. Agonists of TRPV1 
and TRPA1, such as capsaicin, acrolein, diisocyanates or chlorine, are potent tussive 
agents and have been associated with allergic and occupational asthma and RADS 
[101, 104–106]. In TRPA1–/– KO mice or when a TRPA1 antagonist is used in an 
animal model, inflammation and acute airway responses to chemical exposure are 
substantially decreased [104–107]. These data suggest that activation of TRPA1 
and TRPV1 on airway sensory fiber terminals by hazardous irritants could evoke 
noxious respiratory sensation, sensitization of respiratory reflexes, and the local 
release of proinflammatory neuropeptides, which can lead (in the long term) to OA 
or IIA [99].

Putative mechanism of action

Combining all data from human and mice, sketches have been made trying to give 
an overview of the mechanisms of OA induced by LMW asthmagens. Keeping in 
mind that the skin is a relevant site for initiation of sensitization, Figure 1A gives an 
overview of the sequential events that presumably take place after dermal contact 
with LMW sensitizers that could lead to sensitization. When applied on the skin, 
LMW sensitizers bind to proteins (e.g., keratine) [16] and form hapten-protein 
complexes. Langerhans cells in the epidermis internalize these hapten-protein com-
plexes. The activated Langerhans cells mature and migrate to the draining lymph 
nodes, while processing the protein complex. The processed protein complex is 
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Figure 1. 
(A) Hypothetical scheme to describe the dermal sensitization phase. (B) Hypothetical model 
of the immunopathogenesis of asthma induced by LMW agents. These two models give an 
overview of findings in the literature. APC, antigen presenting cell; GM-CSF, granulocyte-
macrophage colony stimulating factor IFN, interferon; IgE, immunoglobulin E; IL, interleukin; 
KC, keratinocyte; LC, Langerhans cells; LMW, low-molecular-weight; MHC, major histocom-
patibility complex; MIP, macrophage inflammatory protein; MMP, matrix metalloproteinase; 
MCP, monocyte chemotactic protein; TNF, tumor necrosis factor; VEGF, vascular endothelial 
growth factor. Figure adapted and modified from [71, 108, 109].
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presented to naïve T cells via the MHC, hereby activating the T cells. T cells dif-
ferentiate to both memory Th1 (via IL-12) and Th2 (via IL-4) cells. IL-4 and IL-13 
released from Th2 cells also stimulate B cells to produce IgE, which is released into 
the blood. Activated and memory T cells (Th1 and Th2) and B cells migrate from 
the local draining lymph nodes to the peripheral tissues and the blood [108, 109].

Subsequently, Figure 1B illustrates the possible pathogenic cascade leading to 
LMW asthmagen-induced OA. The primary event in this process, after the LMW 
asthmagens have reached the respiratory mucosa, is the conjugation of asthmagens 
with proteins in the airways, such as albumin and possibly other epithelial cell pro-
teins (e.g., tubulin on top of the cilia and actin) [16, 17, 110]. The antigenic epitopes 
resulting from the interaction of LMW asthmagens with the proteins will lead to 
airway inflammation, but this remains poorly characterized. Probably the antigenic 
epitopes of the protein-hapten complex will be presented to the Th1, Th2 and B 
cells by APC. IgE from the B cells will cross-link the protein-hapten complex with 
mast cells that release their mediators (e.g., histamine) and cause an acute asthmatic 
response. Moreover, via the T cells several cytokines and chemokines get released, 
which mediate several cellular responses and activate neutrophils, eosinophils and 
basophils, leading to a chronic state of asthma [20, 71, 79, 109, 111].

Admittedly, in this schematic overview we only focused on the well-known aller-
gic pathway of OA and we did not included the neurogenic mechanisms of action 
(TRP-receptors, substance P, neurokinines), which recently have been suggested 
to play a (important) role in both IIA and OA. Multiple questions remain to be 
answered, including the determination of relevant routes of exposure, better char-
acterization of the immune response, the inflammatory cells involved and media-
tors responsible for LMW asthmagen-induced sensitization and OA, along with the 
identification of the genetic factors that regulate airway inflammation. Although 
the mouse models of LMW asthmagen-induced asthma share features common 
with human chemical-induced OA, none of them perfectly replicates real-life human 
exposures or the disease in humans. Nevertheless, good models are important to 
protect workers from compounds that act as respiratory sensitizers, which can lead 
to asthma after repeated exposures.
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