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Abstract

Ameliorative effect of exogenously applied glycinebetaine (GB) on growth, photosynthetic and 
antioxidant capacities of two potential cereals wheat (cv. S-24) and maize (cv. Golden) grown 
under salt stress was assessed in two different independent experiments. Plants of maize were 
grown at 0 or 10 dS/m NaCl, while those of wheat were subjected to 2.17 or 14.67 dS/m NaCl salin-
ity. Different levels of GB, i.e., 0 (unsprayed), 50 and 100 mM (in 0.10% Tween-20 solution) were 
applied as a foliar spray to both wheat and maize plants at the vegetative growth stage. Salt stress 
reduced the growth and yield of both maize and wheat plants. However, salt-induced reduction 
in growth and yield of both maize and wheat was ameliorated by exogenous application of GB, 
but this enhancement effect was more in wheat than that in maize. Furthermore, this GB-induced 
growth and yield enhancement was positively associated with increased endogenous GB, photosyn-
thetic capacity, and superoxide dismutase (SOD) activity. Although exogenous application of GB 
improved photosynthetic capacity of both maize and wheat by increasing stomatal conductance, 
and thus favoring higher CO2 fixation rate, this effect seemed to be partial in maize. In addition, 
the GB-induced reduction in transpiration rate in wheat compared with that in maize was found 
to be an additional factor that might have contributed to a better growth and yield of wheat under 
salt stress. The activity of only SOD was enhanced by GB application in both maize and wheat 
under saline conditions. Thus, it is likely that both applied GB and intrinsic SOD scavenged reac-
tive oxygen species in these potential cereals under saline conditions. In view of all these findings, 
it can be concluded that the adverse effects of salt stress on cereals such as maize and wheat can 
be alleviated by the exogenous application of GB, which in turn enhances photosynthetic capacity 
and modulates activities of antioxidant enzymes. Furthermore, effectiveness of GB application on 
regulation of photosynthetic and antioxidant capacities was found to be species specific.

Introduction

Soil salinity is one of the major environmental stresses causing substantial 
crop losses worldwide. According to an estimate, salinity reduced the average 
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yield of major crops by more than 50% [1]. In view of rapidly increasing world 
population, crop production must increase substantially if food security is to be 
ensured, which is already considerably low for meeting world demands (http://
www.unfpa.org/swp/2007/english/introduction.html). It is estimated that there 
is a need to increase productivity by 20% in the developed countries and by 
60% in the developing countries [2]. Thus, reduction in soil salinization and 
increase in the salt tolerance of crops, particularly that of cereals, the demand 
for which is growing at 2% per year with growing urban population [2–5 ].

Hexaploid wheat is one of the world‘s most important cereal crop and it is 
grown under wide range of climatic conditions, particularly in Pakistan, India, 
China, the United Kingdom, the United States, Turkey, Australia, Russia, 
Germany and France (http://www.fao.org/statistics/yearbook/vol_1_1/site_
en.asp?page=production). Due to rapid urbanization (http://www.unfpa.org/
swp/2007/english/introduction.html) and economic growth, dramatic changes 
occur in dietary patterns, which have resulted in an increase demand for 
wheat production. It is calculated that wheat demand worldwide will increase 
by 40% from 552 metric ton in 1993 to 775 metric ton in 2020 [6]. Similarly, 
demand for maize is increasing day by day. According to projections, the 
demand of maize will increase from 526 metric tons to 784 metric tons from 
1993 to 2020, particularly in developing countries [7]. In view of this alarm-
ing situation, different effective measures need to be adopted to improve 
crop productivity, particularly in salt-affected soils where crop productivity is 
reduced by more than 50%.

A plethora of information is available in the literature on salinity tolerance 
of potential agricultural crops at cellular level as well as on whole plant level, 
on the basis of which a number of strategies have been devised to overcome 
the salinity problem [4, 5, 8–10]. These include screening and conventional 
breeding, wide crossing, and, more recently, marker-assisted selection and 
the use of transgenic plants. A number of researchers still emphasize the use 
of conventional selection and breeding, with the help of advanced molecular 
biology techniques, to improve crop salt tolerance [4, 5, 8–11]. However, com-
plex interactions between stress factors and various molecular, biochemical 
and physiological phenomena make it difficult to achieve the desired degree 
of salt tolerance [5, 8]. Thus, some alternative approaches need to be adopted 
to overcome the problem.

Recently, some rapid and economically feasible shotgun approaches have 
been proposed to alleviate the adverse effects of salt stress [10, 12]. A number 
of studies have emphasized that exogenous application of osmoprotectants 
is a useful approach in inducing salt tolerance in crops [12]. Of the different 
compatible solutes known, glycinebetaine (GB) is relatively more important 
as it is capable of promoting plant growth and yields under normal or stress 
conditions due to its osmoprotective influence on photosynthetic machinery 
[13–15], and regulation of antioxidant capacity and ion homeostasis [16, 17]. 
However, the detailed physiological basis of how GB regulates these phe-
nomena is not clearly understood. It is therefore necessary to confirm and 
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further elucidate the mode of action of GB in plants under stress conditions. 
In the present study, GB was exogenously applied as a foliar spray to assess 
up to what extent exogenously applied GB could mitigate the adverse effects 
of salt stress on plant growth and yields of the commonly grown cereal crops, 
wheat and maize.

Materials and methods

In our work, the influence of exogenously applied GB on maize and wheat 
grown under saline conditions was assessed in two independent experiments. 
Field grown 9-day-old wheat plants were subjected to 2.17 or 14.67 dS/m 
NaCl salinity for 47 days after which GB treatments (0, i.e., no spray; 50 and 
100 mM GB in 0.1% Tween-20 solution) were applied as a foliar spray. At 40 
days after the exogenous application of GB (when plants were 96 days old 
or at the initiation of the boot stage), nine plants from each treatment (three 
plants/replicate) were uprooted and washed with distilled water. After drying 
with filter paper, roots were carefully removed and all plant parts were dried 
at 65°C until constant dry weight. Before harvest, photosynthetic capacity, 
GB, proline, and activities of superoxide dismutase (SOD), catalase (CAT), 
and peroxidase (POD) were measured in the second leaf from the top of each 
plant following standard laboratory protocols.

The experiment with maize was conducted in a similar manner except 
with different cultural and growth conditions. Fourteen-day-old maize plants 
grown in plastic pots filled with sands were subjected to 0 or 10 dS/m NaCl 
salinity. When plants were 3 weeks old, GB treatments (0, 50 and 100 mM GB 
in 0.1% Tween-20 solution) were applied as a foliar spray. At 2 weeks after the 
exogenous application of GB, two plants from each replicate were harvested 
and their fresh weights recorded. After oven-drying at 65°C dry weights 
recorded. Before harvest, photosynthetic capacity, GB, proline, and activities 
of SOD, CAT, and POD were measured in the second leaf from top of each 
plant following standard laboratory protocols.

Influence of exogenously applied GB on wheat

The growth and grain yield of wheat plants were improved due to exogenous 
application of GB under saline conditions (Fig. 1a–d). This growth and yield 
enhancement in the salt-stressed plants of wheat was positively associated 
with enhanced endogenous level of GB, resulting from GB application (Fig. 
2a, b). Thus, higher endogenous levels of GB in wheat due to exogenous appli-
cation of GB can be related to enhanced salt tolerance. These findings are 
similar to some earlier studies in which it has been observed that exogenous 
application of GB alleviated the adverse effects of salt stress on the growth 
and/or yield of different crops, e.g., wheat [18, 19], tomato [20], and rape [14].
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From previous reports (e.g., [21]), it is evident that GB-induced increase 
in salt tolerance is associated with improved photosynthetic capacity of most 
crops under saline conditions (Fig. 3a ). The same was demonstrated in wheat 
in our present study. The GB-induced increase in photosynthetic capacity in 
wheat may have been due to stomatal or non-stomatal limitations (Fig. 3a–e), 
which are major controlling factors of photosynthetic rate [22, 23]. Further-
more, increase in photosynthesis was found to be primarily due to an increase 
in stomatal conductance, which caused higher CO2 diffusion inside the leaf, 
thereby favoring higher photosynthetic rate [23]. These results are similar to 
those of Mäkela et al. [14, 20] in which increase in salt tolerance of field-grown 
tomatos due to GB application was linked with increased net CO2 assimila-
tion rate and stomatal conductance under salt or water stress. However, the 
mechanism by which GB application reversed to some extent salt-induced 
injurious effects on photosynthesis through stomatal conductance was not 
clear [14, 20]. More importantly, rate of transpiration with GB application 
decreased in wheat under saline conditions, resulting in improved water-use 
efficiency (WUE). Another possibility for the GB-induced enhancement in 
photosynthetic rate could be a protective effect of GB on photosynthetic pig-
ments of wheat. However, in the present study, only chlorophyll ‘b’ content 

Figure 1. Fresh and dry weight of shoot, leaf area and grain yield of wheat when different amounts 
of glycinebetaine (GB) were exogenously applied to salt-stressed or non-stressed plants (0, no 
spray; 50, 50 mM GB; and 100, 100 mM GB foliar spray).
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was improved under saline conditions as a result of GB application (Fig. 2c, 
d). As chlorophyll ‘b’ is mainly associated with PS-II antenna, GB-induced 
improvement in Chl ‘b’ concentration might have been due to structural/con-
formational changes in the PS-II antennae, as suggested by Kocheva et al. [24]. 
This could be one of the additional factors causing an increase in photosyn-
thetic capacity due to exogenously applied GB.

It is now evident that under saline conditions plants up-regulate anti-
oxidant enzymes to detoxify salt-induced reactive oxygen species (ROS). A 
better antioxidant system can protect the plants from the adverse effects of 
salt stress [16, 25–27]. However, in the present study, the activity of only SOD 
was enhanced by GB application under saline conditions (Fig. 4a–c). From 
these results, it is possible that both SOD and GB scavenged ROS in wheat. 
Similarly, Demiral and Turkan [16], in a study on rice, found that 15 mM GB 
applied to the roots enhanced the SOD activity under saline conditions. These 
results are also in agreement with those of Shalata and Tal [28], who reported 
constitutively higher SOD and ascorbic acid peroxidase (APX) activities in 

Figure 2. Leaf GB, proline, chlorophyll ‘a’ and ‘b’ of wheat when different amounts of GB were 
exogenously applied to salt-stressed or non-stressed plants (0, no spray; 50, 50 mM GB; and 100, 
100 mM GB foliar spray).
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wild salt-tolerant tomato plants. If we draw parallels between the endogenous 
level of GB and antioxidant activities of each enzyme, it is evident that endog-
enous level of GB may have a significant protective effects on membranes by 
decreasing the levels of ROS in wheat plants, which thereby results in lower 
activities of other antioxidant enzymes (CAT and POD) under salt stress, 
because GB is known to scavenge hydroxyl radicals [29].

The results presented here, as well as those from some previous studies, 
clearly show that foliar application of GB improved the growth and yield 

Figure 3. Net CO2 assimilation rate (A), transpiration rate (E), sub-stomatal CO2 (Ci), stomatal 
conductance (gs), water use efficiency (WUE measured as A/E) of wheat when different levels of 
GB were exogenously applied to salt-stressed or non-stressed plants (0, no spray; 50, 50 mM GB; 
and 100, 100 mM GB foliar spray).
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of wheat plants by improving photosynthetic capacity and alleviating the 
adverse effects of salt-induced oxidative stress.

Influence of exogenously applied GB on maize

Undoubtedly, in the present study, salt stress caused a reduction in growth 
and yield of maize; however, this reduction in growth and yield was com-

Figure 4. Activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) of 
wheat when different amounts of GB were exogenously applied to salt-stressed or non-stressed 
plants (0, no spray; 50, 50 mM GB; and 100, 100 mM GB foliar spray).
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pensated by foliar application of GB (Fig. 5a–d). These results are similar 
to some earlier findings in which foliar application of GB resulted in a sig-
nificant improvement in salt tolerance of maize plants [21, 30]. Similarly, in 
rice, a marked improvement in salt tolerance was observed on exogenous 
application of GB [31, 32]. However, these changes in the growth of maize 
due to imposition of salt stress or foliarly applied GB were found to be asso-
ciated with leaf growth, as biomass production is closely related to leaf area 
index (LAI) in different agricultural crops [33] and other vegetation types 
[34]. Exogenous application of GB also increased the endogenous level of 
GB of both salt-stressed and non-stressed plants of maize plants. It is widely 
accepted that GB protects higher plants against salt/osmotic stresses by sta-
bilizing many functional units, like the oxygen-evolving PS-II complex [31], 
membranes [35], quaternary structures of complex proteins [13], and enzymes 
such as rubisco [36]. Furthermore, increased salt tolerance of maize may to 
be due to enhanced endogenous GB level caused by exogenously applied GB 
(Fig. 6a, b). Such a relationship between salt tolerance and endogenous GB 
level has been reported previously in different crops such as tomato and rape 
[20], kidney beans [37], and rice [16].

Photosynthesis in maize was reduced due to salt stress; however, foliarly 
applied GB ameliorated this inhibitory effect (Fig. 7a). It has already been 

Figure 5. Fresh and dry weight of shoots, leaf area and grain yield of maize when different levels 
of GB were exogenously applied to salt-stressed or non-stressed plants (0, no spray; 50, 50 mM 
GB; and 100, 100 mM GB foliar spray).
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reported that the enhancement in net CO2 assimilation rate due to foliarly 
applied GB is correlated with the degree of salt tolerance of different crops, 
e.g., in tomato [14] and wheat [15]. In the present study, foliar application of 
GB significantly increased the stomatal conductance in maize plants. Further-
more, net CO2 assimilation rate (A) and stomatal conductance (gs) showed a 
significant positive relationship. Similarly, A and gs were also positively cor-
related with sub-stomatal CO2 (Ci) (Fig. 7a–d). Foliar application of GB also 
improved WUE in salt-stressed plants (Fig. 7e). Furthermore, enhanced WUE 
in the salt-stressed maize plants due to GB application under saline condi-
tions showed a positive relationship with growth and yield. These results can 
be related to those of Ashraf and Bashir [38] that demonstrated a positive 
relationship between WUE and grain yield of wheat.

Although the relationship between A, gs and Ci was significant, the pat-
tern of increase in A, along with gs and Ci was not consistent with increasing 
level of GB applied (Fig. 7a–d), indicating that this effect was partial. These 
findings are similar to those of Mäkela et al. [14, 36], who reported that exog-
enous application of GB increased photosynthetic capacity of tomato through 

Figure 6. Leaf glycinebetaine, proline, chlorophyll ‘a’ and ‘b’ of maize when different levels of GB 
were exogenously applied to salt-stressed or non-stressed plants (0, No spray; 50, 50 mM GB; and 
100, 100 mM GB foliar spray).
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stomatal limitations as well as by improving activity of rubisco. Likewise, 
Yang and Lu [21] reported that 10 mM GB applied to the roots enhanced 
salt tolerance of wheat plants by improving photosynthesis through stomatal 
conductance. In another study with maize, Yang and Lu [30] reported that 
GB improved photosystem-II (PS-II) efficiency in maize plants. This view 
was further supported by the beneficial effect that foliar application of GB 
had on photosynthetic pigments (chlorophyll ‘a’ and ‘b’) in the salt-stressed 
plants of maize (Fig. 6c, d). In addition, leaf chlorophyll ‘a’ of both cultivars 

Figure 7. Net CO2 assimilation rate (A), transpiration rate (E), sub-stomatal CO2 (Ci), stomatal 
conductance (gs), water use efficiency (WUE measured as A/E) of maize when different levels of 
GB were exogenously applied to salt-stressed or non-stressed plants (0, no spray; 50, 50 mM GB; 
and 100, 100 mM GB foliar spray).
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was positively correlated with A. A similar positive relationship between A 
and chlorophyll ‘a’ has already been observed in sunflower [39], and wheat 
[15]. Thus, GB-induced enhancement of photosynthetic capacity was due to 
both stomatal and non-stomatal limitations.

Figure 8. Activities of SOD, CAT and POD of maize when different levels of GB were exog-
enously applied to salt-stressed or non-stressed plants (0, no spray; 50, 50 mM GB; and 100, 
100 mM GB foliar spray).
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Environmental stresses such as drought and salinity are known to increase 
the production of ROS, such as H2O2 (hydrogen peroxide), O•

2
– (superoxide), 

1O2 (singlet oxygen) and OH• (hydroxyl), by enhanced leakage of electrons 
from electron transport chains in the chloroplasts and mitochondria to 
molecular oxygen [40]. It is known that cytotoxic ROS can destroy normal 
metabolism through oxidative damage of lipids, proteins and nucleic acids 
[41]. Membrane injury induced by salt stress is related to an enhanced produc-
tion of highly toxic ROS [42]. To scavenge these ROS, plants either synthesize 
different antioxidant compounds or activate antioxidant enzymes [42]. SOD 
is an important antioxidant enzyme [43, 44] because it is present in differ-
ent cellular compartments such as chloroplasts, mitochondria, microsomes, 
glyoxysomes, oxysomes, apoplasts, and cytosol [44]. In the present study, salt 
stress caused the reduction in SOD activity of maize plants, but the exogenous 
application of GB enhanced its activity (Fig. 8a). In contrast, the activities of 
POD and CAT were inconsistently increased or decreased due to both salt 
stress and foliar application of GB (Fig. 8c, d). These results suggest that GB-
induced enhancement in SOD activity may have protected photosynthetic 
machinery from salt-induced oxidative damage. These results can be related 
to those of Ma et al. [45] who found that GB-treated wheat plants that exhib-
ited increased SOD and APX activities showed higher photosynthetic activity 
and water stress tolerance. In view of these findings, it is suggested that higher 
SOD activity in the salt-stressed plants of maize due to GB applied at the veg-
etative stage might be one of the additional factors in improving salt tolerance 
in maize cultivars as recently proposed by Cuin and Shabala [46].

From these results, it is clear that foliar application of GB was effective 
in ameliorating the adverse effects of salinity on photosynthesis and yield of 
maize plants. GB-induced enhancement in photosynthetic capacity of maize 
was found to be associated with both stomatal and non-stomatal limiting fac-
tors. Furthermore, exogenous application of GB also scavenged free radicals 
generated by salt stress directly and by enhancing SOD activity.

Conclusions

Although exogenous application of GB induced salt tolerance in potential 
cereals (wheat and maize) by enhancing photosynthetic and antioxidant 
capacities, its effect seems to be greater in wheat plants assessed as percent 
increase in growth and yield under saline conditions. However, GB-induced 
improvement in photosynthetic capacity in wheat was found to be mainly 
through stomatal limitations, while that in maize it was through both sto-
matal and non-stomatal factors, suggesting that the mechanism by which 
GB-induced salt tolerance is species specific. Furthermore, because naturally 
produced GB does not normally break down in plants [1], it can easily be 
extracted from high-producing plants such as sugar beets. According to an 
estimate, exogenous application of GB, with a cost of US$ 20–25 kg–1 ha–1, the 



Growth enhancement in maize and wheat under salt stress 33

net benefit appears to be as high as US$ 580 ha–1 [47]. Thus, the easy extraction 
and its exogenous application make the use of GB an economically feasible 
approach to counteract adverse effects of environmental stresses on crop 
productivity.

Overall, exogenous application of GB is a promising means to improve 
growth and crop yield under salt stress.
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