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Abstract Perfluorinated compounds such as the perfluoroalkyl acids (PFAAs) and

their derivatives are important man-made chemicals that have wide consumer and

industrial applications. They are relatively contemporary chemicals, being in use

only since the 1950s and until recently have been considered as biologically

inactive. However, during the past decade, their global distribution, environmental

persistence, presence in humans and wildlife, and adverse health effects in labora-

tory animals have come to light, generating scientific, regulatory, and public

interest on an international scale. This chapter will provide a brief overview of

recent advances in understanding environmental and human exposure, toxicology,

and modes of action for this class of compounds in animal models, as well as a

summary of epidemiological findings to date.
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Introduction

Perfluorinated compounds are organic chemicals in which all hydrogens of the

carbon chain are substituted by fluorine atoms. Generally, there are two types of

perfluorinated compounds, the perfluoroalkanes that are used primarily for
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oxygenation and respiratory ventilation clinically and the perfluoroalkyl acids

(PFAAs) that are the subject of this chapter. Environmentally relevant PFAAs are

a family of about 30 chemicals that consist of a carbon backbone typically 4–14

atoms in length and a charged functional group composed of either sulfonates,

carboxylates, or phosphonates (and to a lesser extent, phosphinates). While many

(>100) derivatives of PFAAs (such as alcohols, amides, esters, and acids) are used

for industrial and consumer applications, they can be degraded or metabolized to

PFAAs as end-stage products. Thus, PFAAs, rather than their intermediates or

derivatives, have drawn the most public attention and research interest. The most

widely known PFAAs are the eight-carbon (C8) sulfonate (perfluorooctane sulfo-

nate, PFOS) and carboxylate (perfluorooctanoic acid, PFOA), although the C4 and

C6 sulfonates, as well as the C4, C6, and C9 carboxylates, have also been used in

commerce. The perfluoroalkyl phosphonates (PFPAs) are fairly new for this class of

chemicals. They are typically used as leveling and wetting agents, and defoaming

additives in the production of pesticides. They were considered biologically inert by

the US Environmental Protection Agency until 2006. Mabury and coworkers [1]

were the first to report the detection of PFPAs in the environment, and to date, only

one additional paper has been published to describe the pharmacokinetics of

PFPAs in the rat [2]. Discussion in this chapter will therefore focus on perfluor-

oalkyl sulfonates (PFSAs) and carboxylates (PFCAs), for which information is

readily available. Indeed, in the past few years, an increasing number of reports

concerning PFAAs have appeared in the literature, and over a dozen salient

topical reviews have been published to highlight the biomonitoring, toxicologi-

cal, and epidemiological findings for these compounds [3–15]. Hence, this

chapter will provide a brief, overarching description of these perfluorinated

chemicals, and readers are encouraged to consult the particular review papers

for specific details.

Background

Naturally occurring fluorinated organic chemicals are rare. PFAAs are fairly con-

temporary chemicals, synthesized since the 1950s by electrochemical fluorination

of an organic feedstock or by telomerization of tetrafluoroethylene units. Neither of

these manufacturing processes is precise, thus yielding a family of target com-

pounds as well as unintended by-products of various carbon-chain lengths

and isomers [16]. The unique hydrophobic and oleophobic nature of PFAAs

makes these chemicals ideal surfactants [17]. There are over 200 known industrial

and consumer applications of PFAAs, including water, soil and oil repellents,

lubricants, fire-fighting foams, and emulsifiers used in the production of fluoropo-

lymers. PFAAs were initially considered metabolically inert. They are stable,

nonreactive, and do not undergo metabolism. Structurally, they resemble fatty

acids. In fact, in the early literature, they were often referred to as perfluorinated

fatty acids. They bind to hepatic fatty acid-binding proteins, competing for
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binding with the natural ligands [18–20]; however, PFAAs are not known to

participate in biochemical reactions that use fatty acids as substrate. They also

bind to other proteins in serum, liver, kidney, and testes [21–26]. PFAAs are

known to serve as substrates and regulators of renal and hepatic organic anion

transporters [27, 28] and as activators of nuclear receptors that regulate fatty acid

and glucose metabolism and transport [29–38]. They have also been shown to

alter cell membrane fluidity and membrane function via their surfactant effects

[39–47], to interfere with intercellular communication through inhibition of gap

junctions [48–50], and to disrupt mitochondrial bioenergetics and biogenesis

[51–54, 203].

Historically, production of PFAAs is dominated by the C8 chemical, PFOS, and

to a lesser extent, PFOA. In 2002, the major manufacturer of PFOS in the USA

phased out production of this chemical, leading to a precipitous drop in global

production. However, this market void has since been replenished to some extent

by Asian (e.g., China) and European producers in recent years. In addition,

increased production of PFOA has made it the most common PFAA in com-

merce. In 2006, the US Environmental Protection Agency initiated the PFOA

Stewardship Program with industry, with the goal of eliminating emissions

and product content of these chemicals by 2015. To accomplish this goal, shorter

carbon-chain PFAAs such as perfluorobutane sulfonate (PFBS) and perfluoro-

hexanoic acid (PFHxA), as well as different chemistries (such as ammonium

4,8-dioxa-3H-perfluorononanoate, ADONA [55]), are poised to replace the C8

compounds in commerce.

Environmental Fate and Transport of PFAAs

A summary of global production, emission, and environmental inventory for PFOS

was provided by Paul et al. [56]. PFCAs are primarily derived from degradation of

fluorotelomer alcohols and polyfluoroalkyl phosphates in the atmosphere, soil, and

wastewater treatment plant (WWTP) sludge and from landfills [57–67]. The meta-

bolic pathways for some fluorotelomer alcohols in in vitro and in vivo systems have

been summarized [68–70]. These chemicals can be transferred from water to soil

and taken up by plants [71, 72]. Armitage et al. [73] have recently described a

model of global fate and transport of PFCAs. In general, two routes have been

proposed to account for the global distribution of PFAAs, including remote regions

such as the Arctic. The first hypothesis suggests an indirect atmospheric transport of

PFAA precursors and subsequent degradation to PFSAs and PFCAs [74–77],

whereas a second hypothesis favors a direct release of PFAAs and long-range

ocean water transport [78–81] to the remote locations. While these two hypotheses

remain a subject of debate, it is likely that both routes are involved in the distribu-

tion of these contaminants. At a local level, Davis et al. [82] have constructed a

model of PFOA migration from a point source, where PFOA vapor and particulates
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are emitted in the air, transported by wind, deposited on the surface soil, and

leached to surface water and then to groundwater within the aquifer.

Environmental Exposure of PFAAs

Several reviews have previously summarized the biomonitoring studies on PFAAs

in the environment, in wildlife, and in humans [3, 7, 9, 11, 12]. This chapter will

only highlight the key features of these descriptions and provide an update of

findings since the publication of these reviews. PFAAs are globally distributed

and ubiquitously detected in all environmental media, including air, surface and

drinking water, soil, sediment, and sludge recovered from wastewater treatment

plants (WWTP). A number of Asian, European, and North American studies have

documented PFAA particulates and telomer alcohol precursors in indoor air

(~450 ng/m3), house dust (~10–40 mg/g), and ambient air (~800 pg/m3) [83–90].

Similarly, PFAAs in environmental and tap water have been detected worldwide,

and a summary of these findings is available in recent reviews [91, 92]. Typically,

PFAAs found in lakes and rivers may range from 0.3 to 2,600 ng/L and in drinking

water from 0.1 to 70 ng/L [93–97] (although a PFOA level as high as 3,550 ng/L has

been reported in West Virginia [98]). In that regard, health and safety guidelines for

PFOS and PFOA in drinking water have been issued recently by various regulatory

agencies [99–103]. Recent discoveries of PFAA-contaminated biosoils applied in

farms and fields in Germany [104, 105] and in the USA [66, 67, 106] have raised

significant research interests and public concerns [107]. These biosoils are derived

from sewage sludge generated from municipal and industrial WWTP. Various

studies have documented detection of PFAAs in both inflow and outflow of these

treatment plants, suggesting that WWTP can be significant sources of these che-

micals in the environment [108–112].

Since the seminal findings reported by Giesy and Kannan in 2001 [113–115],

numerous studies have documented the widespread contamination of PFAAs in

wildlife from the North Pole to the South Pacific. Several recent reviews have

summarized these monitoring findings [7, 9] and described the various trends of

bioaccumulation [116–120]. Human exposure to PFAAs was initially reported by

occupational biomonitoring conducted by the manufacturers [121–123], followed

by detection in selected samples from Red Cross blood donors [124]. Subsequently,

reports from the National Health and Nutrition Examination Survey (NHANES)

conducted by the Centers for Disease Control and Prevention (CDC) revealed

significant detection of PFOS, PFOA, perfluorohexane sulfonate (PFHxS), and

perfluorononanoic acid (PFNA) in the US general population [125–128]. Serum

levels of these chemicals from several NHANES reports are summarized in Table 1

and compared to levels in sera from occupational exposures and exposures of

residents at PFAA-contaminated areas. Serum PFAA levels are understandably

highest in the production workers who are routinely exposed to these chemicals.

In the general population, levels of PFOS are higher than those of PFOA, and the
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levels of PFHxS and PFNA are substantially lower. By and large, profiles of PFAA

exposure in humans comparable to those seen in the USA have been reported with

other populations worldwide [129–136]. Among the four NHANES reports, there is

a general trend for decline of serum PFAAs, with the exception of PFNA, the levels

of which have doubled in the recent surveys. Such a declining trend is consistent

with another report that follows the levels of PFAAs in sera from Red Cross blood

donors [137]. Although the data are limited, levels of PFOS and PFOA appear to be

higher in children than in adults, suggesting that children may be a vulnerable

subpopulation for chemical exposure [126, 136]. Indeed, exposure to PFAAs

appears to begin early in life, as PFOS and PFOA in particular have been detected

in umbilical cord blood and in breast milk [138–147]. The routes of human

exposure to PFAAs remain a subject of debate, although they likely involve

migration of chemical from food packaging [148, 149], food intake [150–152],

drinking water, and house dust. Exposure models from a recent review [153]

suggested that food intake is the major exposure pathway for the general popula-

tion, while drinking water exposure is dominant for populations near contaminated

sites. Tolerable daily intake (TDI) of 100–300 ng/kg (body weight) for PFOS and

0.1–3 mg/kg for PFOA in food has been recommended by the European food

regulatory authorities [154–156], and health advisories for PFOS (0.2 mg/L) and
PFOA (0.04–0.4 mg/L) in drinking water have been issued by federal and state

regulatory agencies in the USA [101–103] and in Europe [157] (Table 2). Consid-

erably higher levels of PFAAs have also been detected among residents in areas,

particularly in West Virginia, where contamination in drinking water was found

[105, 158], although it is heartening to note that these levels began to decline once

mitigation steps were taken.

Pharmacokinetic Disposition of PFAAs

Because of their physicochemical characteristics, most PFAAs possess unique

pharmacokinetic properties based on their carbon-chain lengths and functional

Table 1 Summary of major PFAAs reported in the National Health and Nutrition Examination

Surveys (NHANES) and examples of exposure to residents at contaminated areas and occupational

exposure [105, 121–123, 125–128, 158, 208]

PFOS PFOA PFHxS PFNA

NHANES 1999–2000 30.4 5.2 2.1 0.5

NHANES 2001–2002* 20.8 3.7 2.8 0.6

NHANES 2001–2002* (children) 30.5–42.5 6.1–7.6 4.5–18.7 0.6–1.2

NHANES 2003–2004 20.7 4.0 1.9 1.0

NHANES 2005–2006 17.1 3.9 1.7 1.1

NHANES 2007–2008 13.2 4.1 2.0 1.5

Arnsberg, Germany 2006 23.4–30.3 5.1–12.7 1.3–2.7 –

Little Hocking, WV 2007 23 368 – –

Production workers 1,500–2,000 500–1,000 ~500 Unknown
*denote values derived from pooled samples
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groups, as well as the species, gender, and age of the subjects evaluated. Animal

studies (typically with rodents) of various PFAAs have shown that they are well

absorbed orally (within hours), are not metabolized, undergo extensive enterohe-

patic circulation, and readily cross the placenta. PFAAs are poorly eliminated

(especially the long-chain PFAAs), and elimination is primarily via urinary excre-

tion [159–161]. These chemicals are distributed mainly to the serum, kidney, and

liver, with liver concentrations being several times higher than serum concentra-

tions (with the exception of PFBA, perfluorobutanoate). The volume of distribution

at steady state suggests that PFAA distribution is likely extracellular. These che-

micals also have high binding affinity for a variety of proteins [17–25].

The elimination half-lives of several PFAAs in animal models and humans are

summarized in Table 3 [158, 161–175, 179, 203]. In general, the rate of elimination

is enhanced with decreasing carbon-chain length. Thus, the elimination half-lives of

PFBS, PFBA, and PFHxA are shorter than those of PFOS, PFOA, and PFNA among

most species examined. The lone exception is PFHxS, where limited data indicate

that it does not follow this trend. Across the species evaluated, the rate of elimina-

tion is slowest in humans, with the half-life rank order being humans > monkey

> mouse > rat. Few gender differences in PFAA clearance are observed in

humans or monkeys. In contrast, marked sex differences are observed in the rat,

particularly with PFCAs. Most notably, the half-lives of PFNA and PFOA in female

rats are 20 and 50 times shorter than those in males, respectively. Interestingly, the

gender difference in PFOA elimination is developmentally regulated in rats. The

rapid elimination seen in female rats develops between 3 and 5 weeks of age [167].

Smaller sex differences are generally seen with PFSAs. On the other hand, the sex

differences in PFAA elimination are consistently much smaller in the mouse than in

the rat. In that regard, the mouse resembles humans more closely and thus provides

a rodent model more amenable for extrapolation of results from toxicological

studies, particularly those focusing on reproductive and developmental toxicity

where pharmacokinetics in the pregnant females play a major role in determining

the exposure of the conceptus.

Table 2 Recommended tolerable intake (TDI) levels of PFAAs by regulatory bodies

PFOA PFOS References

US Environmental Protection Agency (drinking

water)

0.4 mg/L 0.2 mg/L [103]

Minnesota Department of Health (drinking water) 0.3 mg/L 0.3 mg/L [102]

New Jersey Department of Environmental

Protection (drinking water)

0.04 mg/L – [101]

Drinking Water Commission of German Ministry

of Health (drinking water)

100 ng/kg BW 100 ng/kg BW [100]

European Food Safety Authority (food) 1.5 mg/kg BW 150 ng/kg BW [154]

UK Committee on Toxicity in Food, Consumer

Products and the Environment (food)

3 mg/kg BW 300 ng/kg BW [155, 156]

German Federal Institute for Risk Assessment

(food)

100 ng/kg BW 100 ng/kg BW [157]

BW body weight
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The mechanisms underlying the sex difference for PFCA elimination in the rat

are presently under active investigation and likely are related to renal clearance of

the chemicals [176]. A number of studies have implicated the involvement of

organic anion transporters (OATs) that are regulated by sex hormones [161, 177,

178]. A recent study by Weaver et al. [27] indicated that OAT1 and OAT3 are

involved in renal secretion of perfluoroheptanoic acid (PFHpA), PFOA, and PFNA,

while OATP1a1 contributes to the reabsorption of PFOA, PFNA, and perfluorode-

canoic acid (PFDA). At present, it is not clear whether the diminished sex differ-

ence noted in the mouse for PFCA clearance is also related to these transporters.

Ljubojevic et al. [178] reported that the renal expression pattern of OAT2 in the

mouse resembles that in the rat, and both are under regulation by sex hormones. In

contrast, Buist et al. [177] indicated that renal OAT2 mRNA levels are markedly

higher in female than in male rat, but there is no sex difference in OAT2 expression

in the mouse kidney [180]. Additional studies are needed to resolve this issue. On

the other hand, it is encouraging that these transporters (such as OAT4 and urate

transporter 1, URAT1) have been shown to play a key role in renal reabsorption of

PFCA in humans [181], suggesting a potential common mechanism across species.

Toxicological Findings with PFAAs

The toxicology of PFOS and PFOA has been extensively reviewed in the past few

years [5, 6, 9, 10]. Readers are encouraged to consult with these reviews for detailed

descriptions. This chapter will highlight findings from primarily mammalian mod-

els, provide an update of information, and focus on recent discoveries with other

PFAAs. Generally speaking, six major adverse effects have been identified with

PFAA exposure in laboratory studies: tumor induction, hepatotoxicity, develop-

mental toxicity, immunotoxicity, endocrine disruption, and neurotoxicity.

Tumor Induction

Neither PFOS, PFHxA, PFOA, nor PFDA is known to be mutagenic [5, 182–185].

A recent study suggested the genotoxic potential of PFOA in HepG2 cells but was

likely associated with oxidative stress and ROS production [186]. However, DNA

damage was observed only at high concentrations of PFOA (50–100 mM). In

addition, while intracellular ROS production was increased by PFOA and PFOS

in another study [187], no corresponding DNA damage was observed. PFBS and

PFHxA did not generate ROS or DNA damage. PFNA caused DNA damage only at

a cytotoxic concentration.

Significant positive trends were noted in the incidence of hepatocellular adenoma

in rats exposed to high dietary doses of PFOS (20 ppm or 1.5 mg/kg/day) for 2 years

[182], although this evidence was considered equivocal for carcinogenicity [156].
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Significant increases in mammary fibroadenoma and adenoma were seen in the low-

dose groups (0.5 and 2 ppm), but there was no dose–response relationship with this

effect, as increases in the 5 ppm dose group were not statistically significant and a

slight decrease of tumor incidence was seen at 20 ppm.

A significant increase in the incidence of mammary fibroadenoma in rats

exposed to dietary doses of 30 or 300 ppm (16.1 mg/kg/day) PFOA for 2 years

was also reported [188], but these findings were subsequently refuted by a review

panel [189]. On the other hand, significant increases in the incidence of liver

adenomas, pancreatic acinar cell tumors, and testicular (Leydig) cell adenomas

were seen in rats exposed chronically to 300 ppm of PFOA in diet [5]. This

liver–pancreas–testes triad of tumors is typical of many agonists of the peroxisome

proliferator-activated receptor-alpha (PPARa). The hepatocellular tumors are most

likely related to activation of the PPARa molecular pathway. Tumors observed in

the testis have been associated with elevation of hepatic aromatase activity, leading

to increases of serum estradiol, in concert with testicular growth factors [190, 191].

The mechanism(s) responsible for the PFOA-induced pancreatic tumors remain the

subject of active investigation. In addition, using a unique tumor model of rainbow

trout, Tilton et al. [192] showed that chronic PFOA exposure for 30 weeks resulted

in enhanced liver tumor incidence, although the dose employed in this study

(1,800 ppm or 50 mg/kg/day) was quite high.

Hepatotoxicity

Hepatomegaly primarily involving hepatocytic hypertrophy is perhaps a hallmark

PFAA effect in laboratory animals, produced by PFOS, PFHxS, PFBS, PFDA,

PFNA, PFOA, PFHpA, PFHxA, and PFBA [5, 9, 182, 185, 188, 193–198] and is

likely associated with peroxisome proliferation. Chronic exposure to high doses of

PFOA and PFOS led to hepatocellular vacuolation, degeneration and necrosis,

accumulation of lipid droplets related to altered lipid metabolism and transport,

and tumor induction [182, 188]. PFAAs, particularly the PFCAs (C6–C10), are

known to induce hepatic peroxisomal fatty acid b-oxidation in rats and mice [194,

199, 200], leading to reduction of serum triglycerides and cholesterol [5, 201]. The

hypolipidemic effect of PFOA is due, in part, to the reduced synthesis of cholesterol

and an enhanced oxidation of fatty acids in the liver. However, despite an enhanced

b-oxidation of fatty acids, Kudo et al. [202] have demonstrated an increase of

glycerolipids and triglycerides in liver of rats treated with PFOA, which may be

linked to increased de novo synthesis [202, 303]. The increase in triglyceride

synthesis and accumulation in the liver, but a reduced level in circulation, prompted

these investigators to suggest impaired hepatic secretion of triglycerides. In view of

recent findings regarding the effects of PFAAs on various transporter proteins, this

hypothesis is entirely conceivable, although future research on hepatic transporters

that traffic lipids and other macromolecules are needed to clarify this issue. On the
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other hand, the potential adverse effects of the apparent “fatty liver” produced by

PFOA remain to be determined.

Recent toxicogenomic analyses of rodent livers after exposure to PFOA and

PFOS revealed a strong PPARa signature [204–206] and supported previous find-

ings from an in vitro system [207]. The involvement of PPARa signaling was

further confirmed with studies using a transgenic mouse model where PPARa
function was deleted [36, 209–210]. However, in contrast to the responses elicited

by the potent PPARa agonist WY14, 643, where 99% of the observed changes in

gene expression were eliminated in the PPARa-null mice, about 20% of the PFOA-

induced genomic responses were still detected in the PPARa-knock out mice,

suggesting a PPARa-independent mechanism for the perfluorinated chemical

[211]. Further examination of the PPARa-independent genomic responses impli-

cated another nuclear receptor, the constitutive androstane receptor (CAR) [35, 38],

which is known to be involved in xenobiotic metabolism. Potential involvement of

other nuclear receptors such as pregnane X receptor (PXR) and liver X receptor

(LXR) in PFAA-induced hepatic responses is currently under active investigation

[33, 213]. These nuclear receptors (PPAR, CAR, PXR, and LXR) are important

regulators of fatty acid transport and metabolism, xenobiotic metabolism, and

cholesterol and glucose homeostasis, which can readily account for some of the

cellular responses elicited by PFAAs.

Developmental Toxicity

The adverse reproductive and developmental effects derived from exposure to

PFAAs have been summarized in detail in previous reviews [6, 9]; thus, only salient

features and updates of these effects are described here. Exposure to PFOS or PFOA

during pregnancy in rats and mice produced overt anatomical defects in offspring

(such as cleft palate) only at high doses, while other morphological abnormalities

noted in fetuses chiefly reflected developmental delays [214–217]. Early pregnancy

loss was noted with PFOA or PFBA exposure but only at very high doses, and the

etiology of this effect is not clear. No frank terata or fetotoxicity was observed after

gestational exposure to PFBA or PFDA [218, 219]. In contrast, when dams exposed

to PFOS were allowed to give birth, dose-dependent deleterious effects were seen in

the newborns [220, 221]. Although all pups were born alive and active, those

exposed to high doses (5 or 10 mg/kg) became moribund within the ensuing

hours and died soon afterward. Survival improved with lower PFOS exposure,

but postnatal growth of surviving pups was somewhat stunted, and reductions of

circulating thyroid hormones were observed. The PFOS-induced hypothyroxinemia

was confirmed in a recent study that correlated PFOS accumulation with hormonal

imbalance [222]. In addition, a critical prenatal window of PFOS exposure toward

late gestation was noted for the adverse postnatal effects [223], potentially impli-

cating immaturity of the newborn lung and pulmonary insufficiency as causes for

neonatal death. However, no evidence of changes in lung phospholipids or markers
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for alveolar differentiation was found to support underdevelopment of the neonatal

lung [224]. Alternatively, because PFOS itself is a surfactant, one can speculate that

the synthetic chemical may interact with endogenous pulmonary surfactant, thereby

interrupting its function to facilitate the inflation of the neonatal lung after birth.

The observation of a preferential accumulation of PFOS in the fetal lung adds

support to this hypothesis [225]. Importantly, Xie et al. [41, 45] reported that PFOS
(and to a lesser extent, PFOA) had a strong tendency to interact with dipalmitoyl-

phosphatidylcholine (DPPC) and partition into lipid bilayers. Because DPPC is a

major component of pulmonary surfactant, it is possible that such PFOS–DPPC

physical interactions may interfere with the physiological function of pulmonary

surfactant. However, the evidence available at present is still circumstantial, and

definitive results from in vivo studies are needed to confirm respiratory distress

related to impaired lung surfactant function as a pathophysiological mechanism for

the PFOS-induced neonatal mortality.

In contrast to PFOS, the reproductive toxicological findings in rats exposed to

PFOA were rather unremarkable [228], which might have been related to the

unique ability of female rats to clear the chemical efficiently (half-life of 2–4 h,

Table 3). Indeed, in mice, where elimination of PFOA is considerably less rapid

(half-life of 17 days, Table 3) and chemical accumulation occurs in the females, a

profile of neonatal mortality was noted when pregnant dams were exposed to high

doses of PFOA (>10 mg/kg) [216]. The newborn mice appeared to survive slightly

better and died less abruptly than those exposed to PFOS, perhaps partly due to a

lesser effect of PFOA in interrupting lung surfactant function [41]. Among the

surviving mice exposed to lower PFOA doses, neonatal growth deficits and devel-

opmental delays were seen. Evaluation of mammary differentiation of the nursing

dams indicated significant reductions at postnatal day 10, suggesting that abnormal

lactation function may play a role in the growth retardation of their offspring [229].

However, results from a cross-fostering study indicated that the developmental

deficits seen in mouse pups were largely due to prenatal exposure to PFOA [230].

Interestingly, although growth impairment was noted in neonates exposed to

relatively high doses (3–10 mg/kg) of PFOA during gestation, those exposed to

low doses (0.01–0.3 mg/kg) displayed significant increases in body weight and

serum insulin and leptin concentrations during mid-life [231]. In contrast, PFOA

exposure of adult mice at comparable doses did not produce any weight effect,

indicating a specificity of chemical perturbation during developmental periods.

These paradoxical findings are intriguing and will require further elaboration but

may reflect the subtle alterations of developmental programming of metabolic

processes, where the adverse outcomes are manifested latently at adult ages, akin

to a theory advanced by Barker [232]. In addition, mammary gland development in

female mouse offspring exposed to PFOA was significantly delayed, leading to

persistent abnormalities [233]. The functional sequelae of these morphological

abnormalities are currently unknown, and future work should explore whether the

lactational capability of these female mice (exposed to PFOA prenatally) is nega-

tively impacted.
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PFOA is known to be a PPARa agonist. In view of the important roles of this

nuclear receptor in reproduction and development [234], Abbott and colleagues

investigated the role of the PPARa molecular pathway in PFOA-induced develop-

mental toxicity using a transgenic PPARa-null mouse model [235]. Wild-type

(129 S1/SvlmJ) mice were slightly more sensitive to PFOA toxicity than CD-1

mice [216], but both strains displayed similar neonatal mortality, growth deficits,

and developmental delays. However, these adverse outcomes were markedly atte-

nuated in the PPARa-null mice, suggesting that PFOA developmental toxicity is

dependent on expression of PPARa. In contrast, results from a follow-up study by

the same investigators indicated that the developmental toxicity of PFOS was not

dependent on this nuclear receptor function [236], thus possibly delineating distinct

modes of action between PFCAs and PFSAs regarding their developmental effects.

This contention is further supported by a recent developmental study with PFNA,

where a near-identical profile of PPARa-dependent responses was detected [237].

Compared to long-chain PFAAs (>C8), the short-chain chemicals are much less

toxic to the developing animal, in part due to their faster rate of clearance (Table 3).

Thus, even at very high doses of PFBA (350 mg/kg, intended to match the body

burden of PFOA), neither neonatal survival nor postnatal growth was compromised,

although maternal hepatomegaly was detected (indicating the effectiveness of the

PFBA dose regimen) and neonatal liver weight was transiently elevated [218]. A

similar lack of overt reproductive and developmental toxicity has been reported for

PFHxA [185], PFBS [196], PFHxS [239], and ADONA [55].

Immunotoxicity

DePierre and colleagues were the first to demonstrate the immunotoxic effects of

PFOA in the C57BL/6 mouse, where thymic and splenic atrophy associated with an

arrest of thymocyte and splenocyte proliferation and a marked reduction of cell

populations were observed after subchronic dietary exposure to the chemical

[240–242]. These effects appeared to be mediated by PPARa, as the PFOA-elicited
alterations of lymphoid organ weight and cellularity were attenuated in the PPARa-
null mice [243]. However, the precise role of this nuclear receptor and the extent of

its involvement in the immunotoxicity of PFAAs have been challenged recently

[244]. Fairley et al. [245] reported similar effects of thymic and splenic atrophy and

decreased cellularities in BALB/c mice after dermal exposure to PFOA, along with

an enhanced hypersensitive IgE response to ovalbumin. These results suggested

that exposure to PFOA, although not allergenic itself, might enhance an indivi-

dual’s response to commonly encountered environmental allergens. Son et al. [246]
administered PFOA in drinking water to ICR mice (50–250 ppm) and demonstrated

an immunomodulatory effect of the chemical that altered T-lymphocyte phenotype

in the spleen and thymus and elevated gene expression of proinflammatory cyto-

kines such as tumor necrosis factor-alpha (TNF-a), interleukin-1b (IL-1b), and
interleukin-6 (IL-6). Similar PFOA-induced immunomodulation was also observed
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in C57BL/6J and C57BL/6N female mice, where IgM antibody synthesis was

suppressed and IgG titer was elevated in response to a sheep red blood cell

(SRBC) challenge [247]. While thymic and splenic atrophy and decreased IgM

production were consistently seen in CD-1 (ICR) male mice given PFOA by oral

gavage, no effect on production of anti-SRBC antibodies was noted in the rat.

Moreover, an increase of serum corticosterone, increases in numbers of peripheral

blood neutrophils and monocytes, and a decrease in absolute lymphocyte numbers

were found in the PFOA-treated mice. This prompted the investigators to surmise

that the immunotoxic responses were secondary to systemic toxicity of the per-

fluorinated chemical and the attendant stress evoked [248]. However, results from

further investigation of this possibility with adrenalectomized mice (thereby

removing the element of stress response) indicated that suppression of humoral

immunity by PFOA was independent of the elevated serum corticosterone and not

likely associated with stress [249].

Adverse immunological outcomes from exposure to PFOA are extended to other

PFCAs such as PFNA [250–252]. Subchronic exposure to PFNA in mice led to

reduction of lymphoid organ weight, cell cycle arrest, and apoptosis in spleen and

thymus, accompanied by impaired production of IL-4 and interferon-g by splenic

lymphocytes and upregulation of IL-1b. Similar PFNA-induced histopathological

changes were seen in the rat, along with alterations of serum cytokines, which in

turn activated the mitogen-activated protein kinase (MAPK) signaling pathways

that modulate the immune system. In addition, the splenic apoptosis caused by

PFNA might be associated with oxidative stress, as the level of hydrogen peroxide

was increased and superoxide dismutase activity and Bcl-2 protein levels were

dramatically decreased in the spleen.

Immunotoxic responses are also detected in rodents treated with PFSA. Sup-

pression of humoral immunity after exposure to a perfluorinated insecticide that can

be metabolized to PFOS was reported [253]. Similar immunotoxic findings were

extended to mice directly exposed to high doses of PFOS in a diet that produced a

serum level of 340 mg/ml, although the effects were less pronounced than those seen

with PFOA [254]. Significant immunomodulatory effects of PFOS were also seen in

rats, although changes were generally less robust than those seen in mice [255].

Results from low-dose PFOS studies in mice were less definitive. Peden-Adams et al.
[256] reported that exposure to PFOS by oral gavage in B6C3F1 mice, which

produced serum concentrations of 0.09–0.67 mg/ml, suppressed T-cell-dependent

(to SRBC challenge) or T-cell-independent (to trinitrophenyl conjugated lipopoly-

saccharide challenge, TNP-LPS) IgM antibody responses. Similarly, He and collea-

gues [257–259] showed that PFOS reduced subpopulations of lymphocytes in

lymphoid organs and decreased natural killer cell activity in C57BL/6 mice, at

exposure that yielded higher serum concentrations of 0.67–121 mg/ml. However, in

a more recent study with B6C3F1mice where PFOSwas given in a diet that produced

serum concentrations of 0.048 mg/ml, no adverse effects on adaptive immunity were

evident [260]. The investigators speculated that routes of chemical administration

might have played a role in these apparently disparate findings. Additional work is

needed to clarify the low-dose effects of PFAAs on immune functions.
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Interestingly, in a preliminary study where PFOS was given to mice at a dose

that produced plasma levels of 0.19–0.67 mg/ml, thymus and spleen weights were

not altered but the responses of these animals (emaciation and mortality) to

influenza A virus challenge were increased significantly, suggesting that host

resistance to pathogens was compromised by exposure to the perfluorinated chemi-

cal [261]. Detailed immunological mechanisms responsible for this observation

remain to be explored. Gestational exposure to PFOS in mice has also been shown

to suppress immune function later in life, indicating that the developing immune

system is sensitive to PFAA insult and that these functional deficits might not be

apparent until the animals reach adulthood [262].

In addition to their effects on adaptive immunity, influences of PFAAs on innate

immunity have also been characterized [263, 264]. Short-term treatment with PFOS

or PFOA led to significant reduction of white blood cells involving lymphopenia,

reduction of macrophages in bone marrow, and augmented inflammatory responses

to LPS. Dietary administration of the PFAAs also altered hepatic immune status by

enhancing the number of intrahepatic immune cells, presumptive erythrocytes

progenitors, and hepatic levels of erythropoietin.

Endocrine Disruption

The endocrine disruptive potentials of PFAAs have been summarized in a brief

review [265]. In general, alterations of thyroid hormones and sex steroid hormones

have been shown after exposure to primarily PFOS and PFOA, although PFDA-

induced reductions of thyroid hormones have also been reported [266, 267]. Seacat

et al. [268] first described alterations of circulating thyroid hormones in cynomol-

gus monkeys during chronic exposure to PFOS, which entailed significant reduc-

tions of triiodothyronine (T3) (by about 50%) that were greater and more consistent

than those observed for total thyroxine (tT4, seen only in females) at serum levels of

PFOS that reached 70–170 mg/ml. Values of thyroid-stimulating hormone (TSH)

were quite variable and did not indicate compensatory elevation (by about twofold)

until the end of the exposure period. This profile of primarily T3 reduction without

an appreciative TSH response does not reflect classical hypothyroidism; rather, it

resembles aspects of nonthyroidal illness syndrome, which is typically associated

with a number of severe illnesses.

PFOS-induced alterations of thyroid hormones were confirmed in adult rat

models [205, 214, 269]. However, in contrast to the monkeys, reductions of

circulating tT4 were more pronounced and consistent than those of T3. These

hormonal changes were abrupt. At an oral gavage dose that produced a serum

PFOS level of 88 mg/ml, marked depressions of tT4 (by 50–75%) were seen within

1–3 days. In fact, it is interesting to note that thyroid hormones seem to be altered

when serum PFOS level reaches the 70–90 mg/ml range, regardless of animal

species (rat or monkey) or route of administration (diet, gavage, or drinking

water), suggesting that PFOS effects on serum tT4 are directly related to
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endogenous concentrations of the chemical. Furthermore, similar to the observation

with monkeys, reductions of serum tT4 in rats failed to activate the hypothalamic–-

pituitary–thyroid (HPT) feedback mechanism to produce significant elevations of

serum TSH.

A pronounced fall in serum tT4 with corresponding increases in TSH is typically

noted during the course of pregnancy. Exposure of pregnant rats to PFOS exacer-

bated these hormonal shortfalls (both tT4 and T3) without further elevating the

levels of TSH [214]. The effective dose of PFOS for tT4 reduction corresponded to

maternal serum concentrations of 14–26 mg/ml (unpublished results). A similar

effect of PFOS on serum tT4 was also seen in the pregnant mouse, although this

rodent species appears to be less sensitive than the rat, with significant changes

noted only at the doses that produced serum levels of 114–261 mg/ml [214, 270].

In utero exposure to PFOS led to postnatal mortality in the rat neonates, in a

dose-dependent fashion [220]. Among the surviving pups, the ontogenetic increases

of serum tT4 during the first 2 weeks of life were delayed or attenuated, with a

lowest effective dose corresponding to serum PFOS levels of 60–72 mg/ml at 5 days

of age and 30 mg/ml by 2 weeks. In contrast, only small changes were noted in the

ontogenetic rises of T3 or TSH. Similar effects of PFOS on thyroid hormones in rats

during development were also reported by Luebker et al. [221], where significant

dose-related reductions of tT4 (46%) were noted on postnatal day 5 (serum PFOS

level of 36 mg/ml). Consistent with the previous study, serum TSH remained

unaltered. This lack of change in TSH was further corroborated by histological

and morphometric evaluations of the fetal and neonatal thyroid glands, which

indicated normal number and size distribution of follicles, as well as normal

follicular epithelial cell height and colloid area, despite the PFOS-induced tT4

deficits [270]. In a cross-fostering study, Yu et al. [222] showed that pre- and

postnatal exposure led to the most consistent effect of hypothyroxinemia and

significant tT4 deficits were detected at rather low serum levels of PFOS (7–9 mg/
ml). Although PFOS-related neonatal mortality was also observed in the mice, the

ontogenetic increases of serum tT4 were not altered significantly in this species, a

finding consistent with the relative insensitivity of mice to this chemical regarding

thyroid hormone disruption [220].

In addition to the evaluation of PFOS effects on serum tT4, several studies have

examined levels of circulating free T4 (fT4), the pool of hormone that is available

for uptake by target cells and actions [214, 220, 221]. In these studies, fT4 was

typically measured by analog radioimmunoassays (RIA) and reductions of free

hormone produced by PFOS were similar to those observed in tT4. However, when

the measurement of fT4 was carried out by including an equilibrium dialysis step

prior to the standard RIA (ED-RIA), fT4 levels in the PFOS-treated rats were found

to be comparable to those of controls [221]. Indeed, Chang et al. [271] further
elaborated the merits of ED-RIA to eliminate the negative bias of fT4 determination

produced by analog methods, primarily due to the high affinity for protein binding

by PFOS. In light of these findings, the values of fT4 reported in previous PFOS

studies may require reevaluation, and future investigations of these perfluorinated

chemicals should employ this reference method.
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Mechanisms underlying the PFOS-induced hypothyroxinemia are still under

active investigation but do not likely involve altered de novo biosynthesis of the

hormones or compromised integrity of the HPT axis. Yu et al. [269] reported no

significant effects of PFOS on sodium iodide symporter gene expression (for iodide

uptake) or thyroid peroxidase activity (for iodination of thyroglobulin and coupling

into iodothyronine) in the thyroid gland. Chang et al. [272] showed that release of

TSH from the pituitary in response to ex vivo TRH stimulation was not altered by

PFOS exposure. In addition, when the hypothyroid drug propylthiouracil (PTU)

was coadministered with PFOS, compensatory elevations of serum TSH that were

equivalent to those elicited by PTU treatment alone were seen, indicating that the

HPT axis in the PFOS-exposed rats was intact and fully functional. Importantly, in

an acute exposure study, these investigators observed an abrupt fall of tT4, a

transient increase in fT4 (determined by ED-RIA), and a corresponding transient

decrease in TSH in circulation, accompanied by a brief increase in the expression of

the gene for thyroid hormone-metabolizing enzyme UDP-glucuronosyltransferase

1A (UGT1A) in the liver, along with an increased urinary excretion of labeled

tracer from 125I-T4 over the course of 24 h following a single dose of PFOS. These

findings are consistent with the hypothesis advanced by Gutshall et al. [267] with
PFDA and suggest that PFOS may act by displacing thyroid hormones from their

transport proteins in circulation. Indeed, this hypothesis was confirmed by Weiss

et al. [273] who demonstrated that perfluorinated chemicals (including PFOS) are

capable of competing with T4 and displacing hormone binding to the human

thyroid hormone transport protein transthyretin (TTR). Hence, a plausible scenario

can be constructed to account for the hypothyroxinemic effects of PFOS in the rats.

PFOS in circulation competes with T4 and displaces the hormone from binding to

TTR (the primary thyroid hormone transport protein in the rat), initially leading to a

transient elevation of fT4 (within 6 h) and a brief compensatory decrease of TSH.

Concomitantly, hepatic metabolism of the hormone by UGT1A is enhanced (pre-

sumably in response to the transient elevation of free hormone), which results in an

increase of hormonal clearance and urinary excretion of iodide. As the fT4 level

returns subsequently to normal (within 24 h), a new equilibrium is reached between

normal complements of fT4 and TSH, but a net reduction of total T4 (resulted from

protein-binding displacement and metabolism) ensues. A lack of significant change

in TSH receptor gene expression in the thyroid gland is also consistent with the

transient nature of change in TSH [269, 270]. Moreover, maintenance of fT4 levels

is indirectly supported by a general lack of thyroid hormone-specific responses in

the rat [219, 272, 274], suggesting that the functional thyroid status has not been

compromised significantly by short-term exposure to the chemical. However, the

biochemical and physiological sequelae derived from long-term displacement of T4

as a result of chronic PFOS exposure have not been vigorously investigated.

Significant elevation of TSH in monkeys after 6 months of daily treatment with

PFOS does raise the possibility of compensatory responses of the HPT axis after

prolonged chemical exposure [268].

Effects of PFOA on thyroid hormones are generally not as well characterized as

those of PFOS. Butenhoff et al. [164] evaluated the toxicity of PFOA in male
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cynomolgus monkeys and reported that T3 was reduced significantly within

5 weeks of treatment when a serum level of 158 mg/ml was attained. Recovery of

T3 deficits was noted upon cessation of PFOA exposure. Serum tT4, fT4, or TSH

was not altered throughout the study. The preferential effects of PFOA on serum T3

and a lack of TSH compensatory response are similar to those observed with PFOS.

Martin et al. [205] showed that serum tT4 and fT4 (measured by analog RIA) were

markedly (by about 80%) and abruptly (1 day after oral gavage treatment)

depressed by PFOA in adult male rats, while serum T3 was also reduced, though

to a lesser extent (by 25%). In contrast, none of these thyroid hormones were

affected by PFOA in mature female rats, primarily because these animals were

able to clear the chemical effectively (Table 3), confirming that the endocrine

disrupting effects of PFOA are directly related to endogenous accumulation of

the chemical. PFOA may also act by displacing T4 from its binding protein, as the

chemical has been shown to compete for binding to human TTR at a potency

equivalent to that of PFOS [273]. Alternatively, based on a toxicogenomic analysis

of rat liver after an acute exposure to PFOA, Martin et al. [205] suggested a possible
role of peroxisome proliferators in the thyroid hormone imbalance, although this

hypothesis has yet to be explored in detail.

In addition to thyroid hormone disruption, changes in sex steroid hormone

biosynthesis by PFAAs have also been reported. Some of this information has

been summarized previously [9]. In brief, PFOA has been shown to decrease serum

and testicular testosterone and to increase serum estradiol in male rats, presumably

via induction of hepatic aromatase [190, 275]. PFOS, PFOA, and telomer alcohols

have been shown to exhibit estrogenic activity in cultured tilapia hepatocytes, yeast

cells, and medaka hepatocytes [276–278] and to inhibit testicular steroidogenic

enzymes [279, 341]. In addition, the long-chain PFAA perfluorododecanoic acid

(PFdoDA) has recently been shown to decrease testosterone synthesis in male rats

and to decrease serum estradiol and gene expression of estrogen receptors in the

female rats, possibly through oxidative stress pathways [281–285].

Neurotoxicity

Slotkin et al. [286] characterized the neurotoxic potential of perfluorooctane sul-

fonamide (PFOSA), PFOS, PFBS, and PFOA in a neuronotypic PC12 cell model.

PFOSA was found to enhance differentiation of cells into cholinergic and dopami-

nergic phenotypes, PFOS promoted the cholinergic phenotype at the expense of

dopaminergic cells, PFBS suppressed differentiation of both phenotypes, and

PFOA had little to no effect. Changes in synaptic transmission and inhibition of

neurite outgrowth brought forth by PFOS were reported in cultured rat hippocampal

neurons; the effects were more pronounced with PFSAs than PFCAs, and C8 being

the optimum chain length [280, 287]. Subtle behavioral changes were noted in adult

mice exposed to PFOS [288]. Expression of transcription factors, c-fos and c-jun, and

calcium-dependent signals were altered in the hippocampus and cerebral cortex of
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rats given PFOS [289]. However, after a single oral treatment of PFOS at doses

(125–250 mg/kg) where convulsion was noted in rats and mice, no morphological

changes were seen in the brain and changes of CNS neurotransmitter levels were not

detected [290].

Although Butenhoff et al. [291] reported no significant developmental neuro-

toxicity associated with gestational and lactational exposure to PFOS, using the

current testing guidelines, subtle effects have been shown in the brain after devel-

opmental exposure to PFAAs. Liu and colleagues have shown aberrant expression

of genes involved in calcium signaling pathways, neuroactive ligand-receptor

interactions, and long-term potentiation/depression in neonatal and adult brains

exposed to PFOS during perinatal periods [292, 293]. Johansson et al. [294, 295]
also demonstrated changes in proteins involved in neurogenesis and synaptogenesis

in the developing mouse brain after neonatal exposure to PFOS or PFOA, which

were accompanied by neurobehavioral defects in adulthood. Similar perturbed

cognitive performance was also reported in an avian model after exposure to

PFOS or PFOA in ovo [296]. Overall, investigation of PFAA neurotoxicity is

only emerging. Because the blood–brain barrier is not completely closed to chemi-

cal trafficking until late in gestation (human) or postnatally (rodent), PFAAs may

readily reach the immature brain to produce long-lasting effects. Hence, future

work should focus on the developing nervous system to better explore the neuro-

toxic potential of these perfluorinated chemicals.

Modes of Action for PFAAs

A clear understanding of the key events involved in the mode of action (MOA) of

an adverse outcome will be instrumental to health risk assessment of chemical

exposure. Although the toxicities of PFAA exposure have been better characterized

with animal models in the past decade, little progress has been made to clarify the

MOA for these chemicals. The lone exception is activation of nuclear receptors by

PFAAs, particularly PPARa, for which there is a preponderance of evidence. Wolf

et al. [297] have compared the relative potency of various PFAAs using mouse and

human PPARa reporter cell constructs, and their results are summarized in Table 4.

In general, PFCAs are more active than PFSAs, the long-chain PFCAs (>C6) are

more potent than the short-chain homologues, and mouse PPARa appears to be

more sensitive than that of human. As discussed above, PPARa activation has been

shown to be associated with carcinogenicity, hepatotoxicity, developmental toxic-

ity, immunotoxicity, and perhaps even endocrine disruption in laboratory rodents.

In fact, key events of the PPARa pathway may play a critical role in the interpreta-

tion of PFAA-induced tumors observed in the rodent model, as expert panels have

previously surmised that this mode of action is not likely to be relevant for humans

[298, 299]. Recent studies using humanized PPARa mice also supported this

species difference [198, 300]. However, this assertion has recently been challenged

[301], and a final verdict for human relevance of the PFAA-related tumor induction
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must await further clarification. In the same vein, the relevance of other PFAA-

evoked, PPARa-dependent effects (such as disruption of lipid metabolism, hepato-

toxicity, developmental toxicity, and immunotoxicity) to human health risks will

require additional scrutiny. In addition to PPARa and other nuclear receptor path-

ways, several possible mechanisms for PFAA toxicity have been suggested. These

include oxidative stress [253, 286, 302–304], effects on other cell signaling path-

ways [252, 305, 306], and epigenetic changes [307]. Other putative mechanisms

undoubtedly will emerge as investigation in this area intensifies in the future.

Epidemiology

Occupational biomonitoring studies have been conducted for PFAAs over the past

several decades. Olsen and colleagues reported a lack of changes in serum hepatic

enzymes, cholesterol, lipoproteins, or thyroid hormones associated with serum

PFOS levels less than 6 mg/ml in the fluorochemical production plant workers

(only few individuals had levels greater than 6 mg/ml) [122, 123]. Little change

in mortality rate was seen in production workers, although the risk of death from

bladder cancer was increased (with only three cases reported) [308]. Further

analysis with larger cohorts of all living current and former employees did not

support an association between bladder or other cancers and PFOS exposure [309,

310]. In fact, examination of health claim data (episodes of care) showed that illness

and disorders reported among workers in the PFOS production plant were compa-

rable to that of the non-PFOS-related work forces [311]. These investigators have

also extended their epidemiological examination to PFOA occupational exposure

and reported no significant associations between serum PFOA and reproductive

hormones in men [121], serum cholesterol, or low-density lipoprotein; although

high-density lipoprotein and free T4 were negatively associated with PFOA, trigly-

cerides and T3 tended to be positively associated. Several explanations were

offered by these authors to account for the inconsistent and marginal changes

observed [313]. Results from a mortality study showed no association between

PFOA exposure and liver, pancreatic, or testicular cancer (a tumor triad seen in

Table 4 Comparative potency of PFAAs for PPARa [297]

Compound C20max (mM)

Mouse Human

PFNA (C9) 5 11

PFOA (C8) 6 16

PFDA (C10) 20 No activity

PFHxA (C6) 38 47

PFBA (C4) 51 75

PFHxS (C6) 76 81

PFOS (C8) 94 262

PFBS (C4) 317 206
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rodent models) in the production workers, but an inconsistent association was noted

with prostate cancer, cardiovascular disease, and diabetes [314]. In reviewing 30

years of medical surveillance of PFOA production workers, Costa et al. [315]
concluded that no specific clinical disease was associated with exposure to the

fluorochemical, and biochemical parameters reflecting hepatic, renal, and hormonal

functions appeared to be within reference ranges; however, a significant association

of serum cholesterol and uric acid with PFOA was evident, indicating that further

investigation of PFOA influences on intermediary metabolism is warranted. Based

on the available information, Butenhoff et al. [316] provided a health risk charac-

terization of PFOA exposure for the general population and suggested a wide

“margin of exposure” that would represent a substantial protection of children,

adult, and the elderly. Similarly, an epidemiological study of workers exposed to

surfactant containing PFNA for more than a decade has been conducted, and no

adverse clinical effects were detected from occupational exposure to this fluoro-

chemical [317].

Prompted by the toxicity findings in animal models, a myriad of epidemiological

investigations in general population have been launched over the past 5 years. The

reproductive and developmental effects of PFOS and PFOA have by far attracted

the most attention. Examining “time-to-pregnancy” among 1,240 pregnant women

in the Danish National Birth Cohort from 1996 to 2002, Fei et al. [318] suggested
that PFOA and PFOS exposure might be associated with a reduction of fecundity.

Fetal growth, birth weight, and size have been negatively associated with maternal

blood levels of both PFOS and PFOA in several cohort studies [139, 319, 320],

although absence of such effects has also been reported in other studies [321–323].

Stein et al. [324] examined self-reported pregnancy outcomes in Mid-Ohio Valley

residents between 2000 and 2006 (2,000–5,000 cases) and identified modest asso-

ciations of PFOA with preeclampsia and birth defects and of PFOS with preeclamp-

sia and low birth weight. Nolan et al. [325] evaluated a smaller Ohioan cohort

exposed to PFOA-contaminated drinking water and found that PFOA was asso-

ciated with maternal anemia and dysfunctional labor but not with congenital

anomalies or delivery complication. The strengths and weaknesses of these studies

and interpretations of their findings have been addressed in a thorough review [13].

Follow-up evaluations of infants and children in the Danish National Birth Cohort

indicated no associations between prenatal exposure to PFAAs and risk of infec-

tious diseases, developmental milestones, and behavioral and motor coordination

problems [326–328]. A recent British cohort study also did not find an association

between maternal PFAA exposure and altered age at menarche of their offspring

[329].

The “C8 Health Project” was launched to investigate the potential health effects

of exposure to PFOA from drinking water in the Mid-Ohio Valley areas. Associa-

tions of PFOS and PFOA with serum lipids and uric acid were reported among the

local residents, although those with type II diabetes were not indicated [330–333].

A number of exploratory cross-sectional studies analyzing NHANES results have

also been conducted. Lin et al. [334, 335] suggested that serum PFAAs were

associated with altered glucose homeostasis, indicators of metabolic syndrome,
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and elevated liver enzymes (particularly in obese subjects); Nelson et al. [336]
indicated a positive association between serum PFAAs and cholesterol; Melzer

et al. [337] showed a significant association of PFOS and PFOA with thyroid

disease; and Hoffman et al. [338] reported an increased odds ratio of attention

deficit hyperactivity disorder with higher serum PFAA levels. Typically, the odds

ratios for these clinical disorders range from 1 to 2, although the trends are

statistically significant. In light of the structural resemblance of PFAAs to fatty

acids and their biochemical actions on PPAR pathways, iterative research with

animal models to better elucidate the effects of these fluorochemicals on interme-

diary metabolism is a logical next step. On the other hand, in Danish cohorts, high

PFAA levels were associated with fewer normal sperm [339], but no association

was found with risk of prostate, bladder, or liver cancer in this population [340].

Steenland et al. [14] recently reviewed the epidemiological literature for PFOA and

noted that available data were insufficient to draw firm conclusions regarding the

role of fluorochemicals for any of the diseases of concern.

Summary

Since a smattering of papers on PFAAs first appeared in the literature before the

turn of the century, there has been an explosion of studies on these chemicals just in

the last 5 years. This chapter provides a summary of our current understanding of

PFAA exposure in the environment and in human populations, their toxicological

profiles in laboratory animals, and epidemiological findings in general and targeted

populations. Improved sensitivity and reproducibility of analytical methods to

readily detect multiple PFAAs at the parts per trillion level have afforded cross-

study comparisons and the ability to track changes in trends. Continuous biomoni-

toring studies should provide updates regarding changes in PFAA exposure in the

future. These changes in exposure are likely to occur as PFAAs in commerce (such

as the C8 chemicals) are replaced by the short-chain homologues or entirely

different chemistries. Descriptive characterization of the overt toxicity of PFAAs

(particularly the long-chain homologues) in animal models should open the door for

further investigation of the more subtle biochemical and physiological perturba-

tions potentially elicited by these chemicals. These combined advances will facili-

tate an informed and reliable risk assessment of human and environmental health

for these perfluorinated chemicals. However, two issues must be considered in

extrapolating the data from animal studies to human health risks. As shown in

Table 3, the accumulation of these chemicals varies tremendously between con-

geners of different chain length and functional group, and most importantly, the

species differences between rodents and humans are profound. Simple correction

factors will not be sufficient or appropriate to address these differences. Rather, a

better understanding of the cellular and molecular mechanisms (such as the

involvement of transporters, i.e. OATs) that control the clearance of these chemi-

cals as well as possible homology between species is needed. Secondly, as indicated
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by NHANES and numerous other monitoring studies, multiple PFAAs are detected

in human and wildlife populations, and the profile of PFAA exposure is expected to

change with time. Thus, the combined health risks of a mixture of these chemicals

must be considered. In closing, many discoveries have been made with this

intriguing family of chemicals in the past decade, but much more information

will be needed to ascertain their adverse health effects.
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