
Toxic plants: a chemist’s perspective

Bryan A. Hanson

Department of Chemistry and Biochemistry, DePauw University, Greencastle, IN, USA

Abstract. Chemistry has long been an integral part of toxicology, as the two fields originat-
ed in much the same way: the investigation of plants with interesting properties. In this chap-
ter I review the role that chemistry has played in understanding toxic and medicinal plants.
After some introductory remarks, three broad areas are addressed: the role of natural prod-
ucts in understanding plant taxonomy and evolution, recent developments in chemical syn-
thesis, especially efforts to discover and efficiently synthesize novel structures based upon
naturally occurring toxins, and finally, developments in the new field of systems toxicology,
which seeks to integrate all aspects of an organism’s response to toxic insult.

Introduction

“What the eyes perceive in herbs or stones or trees is not yet a remedy; the eyes
see only the dross. But inside, under the dross, there the remedy lies hidden.”
“Is not a mystery of nature concealed in every poison? What has God created
that He did not bless with some great gift for the benefit of man?… In all things
there is a poison, and there is nothing without a poison. It depends only upon
the dose whether a poison is poison or not.”

Paracelsus (1493–1541) [1, quoted in 2]

Natural products, the wide range of small molecules extracted from the dross
of the biological realm, are the gift to which Paracelsus refers. Natural prod-
ucts are also known as secondary metabolites. They include molecules from
plants, as well as those of bacterial, fungal, animal and marine origin. They
have played a critical role in modern medicine – a medicine that saves some-
one from cancer is a poison to the cancer cell, but deliverance for the patient.
Newman and Cragg at the National Cancer Institute in the United States have
monitored the sources of new drugs over several decades [3]. Over the 25-year
period from 1981 through mid-2006, 34% of candidate drug molecules were
natural products or were made from natural products (only small molecules
considered; vaccines and biologicals excluded). If one adds molecules pre-
pared synthetically, but whose pharmacophores were inspired by natural prod-
ucts, the total is 51%. Among anticancer agents over the period from the 1940s
to mid-2006, the numbers are even more impressive, 42 and 56%, respective-
ly. Although few surveys have broken out plant-based substances from the
entire spectrum of drug candidates, Butler has recently reported that of 225
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natural product-derived drugs in various stages of development, 49% of them
are of plant origin [4]. While individual pharmaceutical companies’ interest in
and emphasis on natural products has varied over the years, it is clear that nat-
ural products will continue to contribute significantly to drug discovery and
development [5].

The number and diversity of these plant natural products are enormous [6].
These compounds represent investments by the plant in defense against herbi-
vores such as insects and grazing animals, as well as infectious agents like
fungi, bacteria, and viruses. In many cases, the compounds also serve com-
munication functions. Defense is necessary due to the sessile lifestyle of
plants; escape is not an option. Table 1 gives a sense of the number and vari-
ety of structures known. Further, in a plant, the synthesis of a particular mole-
cule is not constant, but varies in a spatial and temporal manner. For instance,
defensive compounds are often present in young leaves, but as the growing
season progresses and the leaf matures, the type of compounds change. The
type of tissue is also important. Reproductive organs such as seeds are fre-
quently well-defended because of their importance to the survival of the organ-
ism, while fleshy fruits often have compounds designed to attract animals and
ensure their dispersion (the seeds inside the fruit survive the gastrointestinal
tract unharmed). Finally, it has recently become apparent that many com-
pounds originally believed to be of plant origin are actually produced by endo-
phytic fungi that live within the plant tissue [7–11]. This appears to be the case
with some of our most important anticancer agents, taxol [12, 13], camp-
tothecin [14, 15], and podophylum-derived compounds [16], as well as impor-
tant herbal medicines like St. John’s Wort [17] (Fig. 1).

Table 1. The diversity of natural products

Category Number

Alkaloids 12 000

Cyanogenic glycosides 60

Phenylpropanoids
(incl. tannins, anthocyanins, flavonoids, coumarins, lignans) 6000

Glucosinolates 100

Non-protein amino acids & miscellaneous amines 800

Polyacetylenes, alkylamides, fatty acids & waxes 1900

Terpenes
C10 (monoterpenes) 2500
C15 (sesquiterpenes) 5000
C20 (diterpenes) 2500
C30 (triterpenes) 5000
C40 (tetraterpenes) 500

Total terpenes 15 500

Grand total 43 560

Data adapted from Wink [35].
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Considering their importance, their variety, and their complex role in biol-
ogy, what then is the Chemist’s Perspective on toxic plants? The Chemist’s
Perspective is very broad: there is significant overlap between the chemical
viewpoint and toxicology, as well as pharmacology, pharmacognosy, medici-
nal chemistry, chemical synthesis, biosynthesis, ecology and alternative med-
icine. Plants are a rich source of useful materials and interesting scientific
investigations. As there are many excellent resources on the toxicology of
plants that consider the molecular action of particular molecules isolated from
toxic plants [18–20], here I take a different approach. To provide the Chemist’s
Perspective, or at least one chemist’s perspective, I take a more holistic look at
the natural products found in toxic plants, and illustrate the connections bet-
ween chemistry and other scientific disciplines.

Chemosystematics

Systematics is the science that attempts to reconstruct the evolutionary history
of life, with the results presented in the form of a phylogeny or “tree of life”.
Most authorities place taxonomy, which specifically addresses classification
issues, within the field of systematics, although not all agree [21]. In any case,
humans have been keen observers of plant characteristics and utility through-
out the full history of our species; we are all taxonomists whether we are con-
scious of it or not. Timothy Johns of McGill University makes a compelling
argument that humans and plants coevolved in a process in which some plants

Figure 1. Some important natural products/toxins that are now known to be synthesized by endophytic
fungi. Paclitaxel, podophyllotoxin and camptothecin are antitumor agents; hypericin is one compo-
nent of St. John’s Wort, an herb used for mild depression.
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were accepted as food, while others were found to be of medicinal value or
outright deadly [22]. While the human brain gradually developed an increased
capacity for observation and classification, sensory systems such as taste and
olfaction, the liver’s ability to detoxify an increasing range of xenobiotics and
other physiological traits all evolved in a coordinated fashion. At some point,
the human species was able to domesticate selected plants, in other words to
select and manipulate plants for less toxicity. The invention of cooking, includ-
ing the possible addition of acid or base, was another innovation to further
detoxify plants by chemical and physical means.

The presence of specific chemical entities in plants, and their uneven distri-
bution across the plant kingdom, did not escape early chemists. Morphine was
isolated in 1805, long before its structure was correctly described in 1925 [23,
24]. During the 19th century, an increasing number of pure natural products
were isolated, although, as with morphine, their structures were not known
until much later (Tab. 2, Fig. 2). Structural studies had to wait for organic

Figure 2. Natural products listed in Table 2.
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chemistry to mature, as a modern understanding of bonding and structure did
not coalesce until the latter half of that century. Significant improvements in
laboratory methods and technology were also needed before structures could
be confirmed. (The development of separation science, using paper chroma-
tography, is one example.) Nevertheless, broad chemical classification of nat-
ural products and at least a partial description of properties was possible.
Scientists began to realize that certain classes of chemicals were widely dis-
tributed, and others narrowly, in the plant kingdom as understood at that time.
De Candolle published perhaps the earliest description of this sort, but well
before any significant chemical understanding was available (1804) [25]. More
chemically enlightened botanical surveys were not available until about
100 years later, with the work of Abbott (in 1896) [26] and Greshoff (in 1909)
[27]. The latter coined the phrase “comparative phytochemistry” which was
described as “the knowledge of the connection between the natural relation-
ship of plants and their chemical composition”. This definition set the stage for
further development (see [28] for an excellent history of the field). Since that
time, information about the chemical constituents of plants and their distribu-
tion continued to accumulate at ever increasing rates. The state of the art by
the 1980s is exemplified by Harborne and Turner’s “Plant Chemosystematics”
[29]. Chapter 12, “Application of Chemistry at the Familial Level”, describes
surveys of various compound classes and maps them onto plant phylogenies
popular at the time. One of the more broadly accepted phylogenies originated
with Dahlgren [30]. Figure 3 shows his arrangement of plant superorders with
the distribution of benzylisoquinoline alkaloids (BIAs) superimposed. This

Figure 3. A Dahlgrenogram showing the distribution of benzylisoquinoline alkaloids (BIAs), as
understood in 1980. Superorders known to produce BIAs are shown in gray. Adapted from Dahlgren
[30] with permission of the publisher, Wiley-Blackwell.



Toxic plants: a chemist’s perspective 183

alkaloid family consists of about 2500 different structures and includes impor-
tant substances such as morphine, codeine and tubocurarine.

The entire landscape of chemosystematics changed dramatically, however,
in the 1980s with the biotechnology revolution. The ease and availability of
DNA sequencing, cloning and particularly the polymerase chain reaction
(PCR), changed the very nature of what was possible in two broad ways. First,
plant systematicists had entirely new information with which to construct a
phylogeny of plant families, as extensive sequences of chloroplast and mito-
chondrial DNA became available. These molecular phylogenies turned out to
be broadly similar to earlier phylogenies worked out based upon morphologi-
cal details, reproductive strategies and chemical markers. However, a number
of classifications were changed, particularly at the family level. By 1998,
enough data was available to assemble a truly modern phylogeny of flowering
plants, and in 2003 a significant update was issued [31, 32]. Consider the fol-
lowing simple example which illustrates the significant changes that occurred
in thinking about the relationships between plants. For decades, at some point
in their science education, young students have typically learned that plants
can be divided into two main groups, the monocots and dicots (strictly, mono-
cotyledons and dicotyledons). This grouping followed the scientific thinking
common up until the late 1980s. Indeed, readers may remember learning that
monocots have parallel leaf veination, while dicots have a network of veins, or
that monocots have flower parts in multiples of three’s. With the advent of
modern molecular phylogenetic methods, we now know that plants placed in
the monocots are indeed truly related to each other, because the molecular data
coincides with morphological and other data. Under scrutiny, however, the
dicots have not held up as a group, although a large portion of them are indeed
related and are now known as the eudicots, or true dicots [21, 33].

The second change made possible by biotechnology was that these tools
altered the way chemists could investigate the biosynthetic pathways leading
to natural products. Early approaches to biosynthesis studies involved detailed
tracking of molecular skeletons as they were gradually modified by the plant.
These approaches typically involved experiments in which isotopically labeled
simple precursor molecules were made available to the plant, such as acetate
ion labeled with 13C at either carbon. Later, the natural products were isolated,
and the location of the isotopic labels investigated spectroscopically.
(Herbert’s text [34] exemplifies this approach; but even earlier approaches
employed radioactive labels, with subsequent laborious chemical degradation.)
The steps employed by the plant to construct the molecule could then be
deduced. (Deducing the pathway was much easier if mutant strains could be
found or created that lacked certain enzymes along the biosynthetic route.
These individuals would accumulate the intermediate ahead of the missing
enzyme.) With the new biotechnology tools, one could investigate these
processes much more thoroughly and quickly by studying the enzymes that
carried out the transformations, rather than the products of those transforma-
tions. For example, once a particular enzyme had been identified as carrying
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out a reaction of interest, the DNA sequence coding for that enzyme could be
used to query databases for other species that possessed a similar or closely
related enzyme. As genomic sequence data became available for more and
more organisms, comparative studies over large numbers of plant species
became possible. Alternatively, the DNA sequence could be used to create a
probe for the mRNA coding for a particular enzyme in individual plants. A few
examples of this strategy in action are discussed here, but for a full perspective
of how biotechnology has changed the study of plants, please see the section
on systems toxicology later in this chapter.

Phylogenies constructed prior to the widespread availability of sequence
information had always reflected some curiosities in the distribution of natu-
ral products. It seemed unlikely that some complex molecular skeletons,
which required a significant resource investment by the plants, would be iso-
lated from apparently unrelated families. However, it was difficult to deter-
mine if these observations were real, or were due to mistakes in construction
of the phylogenies, or perhaps due to incomplete information because an
insufficient number of plant species had been studied in detail. As modern
phylogenies became available, the occurrence of natural product families and
the presence of particular molecular skeletons were mapped onto the new phy-
logenies. The results were fascinating. In certain plant families for which
detailed data were available, it was clear that the presence of particular mole-
cular skeletons was not evenly distributed. A good illustration comes from the
laboratory of Michael Wink at University of Heidelberg [35]. Wink and
coworkers examined the distribution of quinolizidine alkaloids and non-pro-
tein amino acids, two toxin classes common in the Fabaceae family (the legume
or bean family). Figure 4 shows that the distribution of these two groups is not
even across a number of representative species in this family, which contains
about 18 000 species. This figure reveals another interesting finding, namely
that species that contain quinolizidine alkaloids typically do not contain non-
protein amino acids and vice versa; that is, the two categories do not overlap.
Apparently, certain lineages have committed to the use of one toxin rather
than the other, and resources are not wasted synthesizing both compound
classes.

This uneven distribution of compounds could be explained in a number of
ways. One could argue that at least some aspects of the distribution suffer from
artifacts, such as chemical analyses that are too crude to detect low levels of
compounds, or analyses that are not sufficiently selective and give false posi-
tives. Another possibility is that the compounds are not actually synthesized by
the plants, but rather by endophytic fungi as previously discussed, and hence
a plant phylogeny is irrelevant. However, if one assumes that these potential
artifacts are fairly rare and that true errors are randomly distributed, then the
observed distribution still begs for an explanation. Three explanations are con-
sistent with a modern understanding of the mechanisms of evolution: the same
enzymatic capacities have arisen several times independently (convergent evo-
lution), or the genes for synthesizing both compound categories are present in
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all members of the Fabaceae but are turned off in certain taxa, or the genes
have been lost in some taxa. Wink’s work does not directly address this dis-
tinction, however, as his phylogenies are constructed using the sequence of the
rbcL chloroplast gene, which reflects the overall evolution of the species, not
the actual enzymes synthesizing the compounds studied [36].

Figure 4. The distribution of quinolizidine alkaloids and non-protein amino acids in the Fabaceae.
Bold names are species which contain the compounds, grey names are species in which the com-
pounds are absent. After Wink [36]; based upon data deposited at the European Molecular Biology
Laboratory.
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Workers in Peter Fachinni’s laboratory at the University of Calgary have
pushed the analysis a step deeper in their study of the distribution of the BIAs
mentioned previously [37]. This group of compounds are found primarily in
the order Ranunculales but examples are known from other orders (see Fig. 5
for typical structures). A wide range of species were sampled for (S)-norco-
claurine synthase activity, the enzyme ultimately responsible for the synthesis
of all BIAs. Molecular phylogenies were constructed using the gene sequence
for the synthase along with the sequences for several other enzymes unique to
selected BIA subpathways. These data were compared with the distribution of
the alkaloids mapped onto a phylogeny constructed using chloroplast genes.
The results strongly suggest that the genes for the biosynthesis of BIAs are
present in a much wider range of plants than just those species from which the
alkaloids have been isolated. Hence, the hypothesis that genes for the synthe-
sis of natural products are widespread but turned off in various taxa appears to
be strongly supported. In the case of the BIAs, the data suggest that the nec-
essary genes originated prior to the origin of the eudicots; in other words, quite
early in the evolution of plants. These results (e.g., Fig. 4) can be compared to

Figure 5. The synthesis of all benzylisoquinoline alkaloids (BIAs) begins with the action of norco-
claurine synthase, and leads to a wide variety of structural skeletons. Only a few examples are shown
here.
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the Dahlgrenogram presented in Figure 3; clearly, modern analyses differ sig-
nificantly in their very nature and certainly in their detail.

In contrast, an alternative scenario appears to operate in the case of the
pyrrolizidine alkaloids (PAs), a diverse group of toxic substances. PAs are
found in rather distantly related plant groups, including eudicots (families
Asteraceae and Fabaceae) and monocots (family Orchidaceae). PAs have been
implicated in cases of poisoning with herbal medicines (due to contamination
[38–41]) and cause liver failure in livestock grazing on Senecio species (the
ragworts and groundsels, family Asteraceae). PAs are activated in the liver,
producing a metabolite that reacts with DNA to give a tumorigenic adduct [42,
43]. An early step in the synthesis of PAs is the conversion of the diamine
putrescine to homospermidine, by transferring a C4NH2 chain from spermi-
dine. This reaction is carried out by homospermidine synthase (HSS).
Elaboration of homospermidine leads eventually to the necine base character-
istic of PAs; additional steps add the diester-containing ring (Fig. 6). Work in
the laboratories of Dietrich Ober and Thomas Hartmann at the Technical
University of Braunschweig has revealed that HSS has likely arisen at least
four separate times over evolutionary history [44]. This conclusion was
reached by the analysis of amino acid sequences and genomic DNA of a num-
ber of species. It appears that the gene for a different enzyme, deoxyhypusine
synthase, was duplicated, and the second copy underwent additional evolution

Figure 6. The biosynthesis of pyrrolizidine alkaloids begins with homospermidine synthase, and leads
to a diverse array of toxic alkaloids.
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to become HSS [45]. Deoxyhypusine synthase also transfers a C4NH2 chain
from spermidine, but in this case the acceptor is a lysine side chain of a tran-
scription factor. This is an example of convergent evolution by change of func-
tion after duplication. Other examples in which a no-longer-needed copy of a
gene evolves to have a new function and eventually different product speci-
ficities and expression patterns are known from the terpene and flavonoid path-
ways [46].

In contrast to these more complex scenarios, there are some compound fam-
ilies which are narrowly distributed, suggesting that their biosynthetic path-
ways originated more recently. Perhaps the best example is that of the betalain
pigments, which are found exclusively in the order Caryophyllales and serve
as a reliable marker for this order [47, 48].

These examples demonstrate that there is a great deal to be learned from the
distribution of natural products in light of modern molecular phylogenies.
Unfortunately, the hope of systematicists that natural products would serve as
simple taxonomic characters has proven to be too good to be true. They cer-
tainly can serve as useful markers, but a ‘present/not present’ interpretation is
clearly a too-simple approach. The reality is that the study of natural products
and the enzymes that produce them will enlighten systematics and the mecha-
nisms of plant evolution greatly, but considerable investment will be needed to
work out the details [28].

Chemical synthesis and structural diversity

The laboratory synthesis of natural toxins and medicinal substances has
always been of great importance; it is the basis for the modern pharmaceutical
industry. Typically, once the structure of a natural product has been described,
there are always chemists ready to undertake its synthesis, although in one cel-
ebrated instance, these steps were reversed. In 1856, William Perkin undertook
the synthesis of the critically important antimalarial quinine starting from ani-
line, even though he did not know the structure of quinine, which was not
described until 1918. While this experiment was extraordinarily naïve in ret-
rospect, Perkin did discover the compound mauveine, which launched the
entire synthetic dye industry [49]. The synthesis of quinine was ultimately a
much more difficult task, as it was not until 1944 that the synthesis was
achieved (but not all agree about this, as described below).

“It is well worth looking at the proposition that chemical synthesis is an art
form, needing no justification because it permits self-expression in its creators
and produces aesthetic pleasure in those who examine its products.”

J.W. Cornforth [50]

There are a number of reasons that chemists pursue synthesis. There are those
who view the synthesis of complex molecules as a Mount Everest to be climb-
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ed or a chess game to be won [51–53]. Since the resulting synthetic schemes
are generally long and complex, it is hard to argue that the process will lead to
the preparation of large quantities of material for clinical or commercial use.
Along the way, however, new reactions may be invented, which might be more
efficient with regard to building up the skeleton or controlling stereochemistry,
or which may be more environmentally friendly. The preparation of simpler
analogs, often undertaken as an intermediate step in the synthesis of a more
complex target compound, may lead to compounds that retain biological activ-
ity, which in turn gives insight into the pharmacophore and suggests other
compounds to prepare.

Occasionally, the synthesis of a reported compound leads to the discovery
of errors in the original structure, and to their correction [54]. And controver-
sies arise from time to time. The synthesis of quinine, reported in 1944 [55],
has been called into question with the publication of a stereoselective synthe-
sis in 2001 [56]. The interesting story about who made what compound and
when they made it has been analyzed in detail by Seeman [57] and reveals
quite a bit about the science of total synthesis (see also the account by
Kaufman and Rúveda [58]). Similarly, the synthesis of physostigmine, an
ordeal poison used in traditional jurisprudence by certain African cultural
groups, was achieved by African-American chemist Percy Julian working at a
small college in rural America in 1935 [59]. This was an extraordinary
achievement at the time, and all the more interesting because Julian complet-
ed the synthesis ahead of the very accomplished research group of Sir Robert
Robinson at Oxford. In addition, Julian showed that Robinson had been wrong
in some of his earlier publications. Addison Ault has provided a concise
description of how Julian did it, and how Robinson was misled [60].

One of the most interesting debates in the field of synthesis is the issue of
what molecules to make, and how to go about making them. A traditional
approach favored by those who see synthesis as a chess game is to choose bio-
logically active molecules that have high degrees of complexity or which have
carbon skeletons that have not previously been made. (Funding is much easi-
er to obtain for molecules which have biological activity of potential medical
interest.) The chosen molecules are then synthesized by some combination of
known reactions, or reactions which must be invented, often in very long
sequences. This approach does not correspond to the needs of the pharmaceu-
tical industry, where simpler molecules with high biological activity and good
therapeutic profiles are mandatory, and shorter syntheses are critical.
Consequently, a great deal of thought and strategy has gone into inventing
alternative methods for choosing and making molecules, with the goal of min-
imizing the time necessary for discovering novel (i.e., patentable) active com-
pounds which are easily made at reasonable cost.

Over the long haul Nature has provided a large fraction of our useful mole-
cules, and the natural world continues to be a source of inspiration and ideas
as discussed in the first section. However, it can be argued that most molecules
with high biological activity, and which are present in modest quantities in
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their natural sources, were easy to discover and have already been exploited;
hence, different approaches are needed to develop new drug candidates. One
approach to thinking about this issue is to recognize that the potential struc-
tural diversity of small to medium-sized organic molecules is enormous, and
can be described in a number of ways, some of which may lead us to new
ideas. These descriptors include such things as connectivity, lipophilicity,
topology, the functional groups present, chirality, flexibility and so forth.
Collectively, these and other descriptors have been called the “chemical space”
in which molecules exist [61]. The challenge in finding new useful molecules
is then twofold: first, to describe this chemical space accurately, and second,
to map the chemical space onto the corresponding biological-activity space in
such a way that useful activity is found more quickly. One could argue that this
is exactly what Nature has done through the process of evolution: sampling a
wide swath of chemical space in search of a hit in biological-activity space.
Biologically active natural products have been described as “evolutionarily
selected”, “prevalidated” or “privileged” by various authors.

This notion of chemical space and characterizing it is not really new; it is
the basis for much of medicinal chemistry and rational drug design using
quantitative structure-activity relationships (QSAR). However, the growth of
publicly available databases has facilitated new approaches. Lipkus and col-
leagues at the Chemical Abstracts Service have analyzed their database of
more than 24 million organic compounds described in the literature to meas-
ure their structural diversity [62]. Their results demonstrate that the number of
known skeletons is actually quite limited and that most compounds are deriv-
atives of these known skeletons, suggesting that true structural diversity is low
(Bohacek has estimated the number of possible structures at 1060 [63]). Feher
and Schmidt [64] have conducted a statistical analysis of the similarity of nat-
ural products, drugs on the market, and molecules made by combinatorial
chemistry. (Combinatorial chemistry is the rapid, high-throughput assembly of
modest size molecules from a set of building blocks in a somewhat randomly
selected fashion. The result is a set – library – of molecules from which the
active ones can hopefully be fished out by an appropriate assay.) They found
that the chemical space explored by combinatorial chemistry appears to be sig-
nificantly limited by the reactions typically employed in combinatorial work.
In contrast, drugs in use and natural products cover a much greater volume of
chemical space. Waldmann and colleagues at the Max Planck Institute of
Molecular Physiology in Germany have carried out a similar structural classi-
fication of known natural products but have gone beyond mere description and
used the results to design new drugs [65]. They have also reviewed recent
approaches to describing chemical space [66]. Finally, researchers at Uppsala
University and AstraZeneca have described ChemGPS-NP, whose name
emphasizes the need to navigate within this chemical space [67]. All these
studies reach the same general conclusion, namely that the information and
diversity in natural product structures is underutilized relative to the full poten-
tial of chemical space.
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As descriptions of chemical space have been refined, the questions of how
this space relates to biological-activity space and which compounds to make
has developed simultaneously [61, 68–71]. New approaches have been devel-
oped that consider, in principle, all (or at least more) of the possible chemical
space, and which try to address a broad region of biological-activity space as
well. These explorations have led to a number of interesting drug discovery
strategies.

Foremost among these are investigations in which the principles and con-
cepts of combinatorial chemistry are merged with the notion of using natural
products directly as scaffolds, or as the inspiration for scaffolds [72]. The basic
procedure is to begin with a natural product or perhaps a simplified version,
and attach it to a resin for subsequent modifications by solid-phase synthesis.
One then uses the existing functional groups to modify the structure, in effect
adding a wide variety of “side chains” at several different sites. An alternative
approach is to introduce the same building blocks, but with differing chirality.
An example based upon the toxin galanthamine is shown in Figure 7 (the
spelling in some publications is galantamine). Galanthamine is a selective and
competitive acetylcholinesterase inhibitor found in the family Amarylidaceae
[73], such as the bulb of the common daffodil (Narcissus pseudonarcissus).
Developed from indigenous knowledge, it has recently become available for
the treatment of Alzheimer’s disease [74]. Shair and colleagues at Harvard
have developed a library of compounds that are based upon a modified galan-

Figure 7. (a) Galanthamine; (b) strategy for construction of a library based upon galanthamine; (c)
secramine, a structure isolated from the library with completely different biological activity.
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thamine structure [75]. Beginning with an analog constructed on a solid resin,
a variety of side chains were introduced in all possible combinations using the
instrinsic reactivity of the analog’s functional groups, leading to a library of
2527 different molecules (about 85% of the theoretical number). Screening of
this library lead to the isolation of secramine (Fig. 7c), which is an inhibitor of
protein trafficking, a biological activity completely unrelated to that of galan-
thamine. Many other examples employing a similar combinatorial approach
have been reported [76, 77] and there is great promise for discovery of new
structures with new activities.

Another approach to generating structural diversity takes advantage of the
fact that many natural products are present as glycosides, that is, in combina-
tion (conjugation) with sugars. The function of these sugars is to increase the
solubility of the often non-polar molecule (the aglycone) in the aqueous envi-
ronment of the cell. The nature of these sugars, as well as their presence or
absence, often has a large effect on their biological activity [78]. A typical and
important example is that of digitoxin, derived from the Foxglove plant
(Digitalis purpurea, Plantaginaceae), the subject of one of the earliest known
clinical trials [79] (Fig. 8). Thorson and colleagues at the University of
Wisconsin have developed several means of generating structural diversity by
adding non-natural sugars to the aglycones, as well as methods for randomiz-
ing the sugars present using glycosyltransferases which are able to accept a
variety of sugars as substrates (so-called promiscuous enzymes). Applying this
approach to digitoxin, they created a library of 78 analogs by replacing the
triose of digitoxin with a variety of monosaccharides, and varying the stereo-
chemistry at the point of attachment [80]. The normal activity of digitoxin is to
increase the force of heart-muscle contraction by inhibiting Na+/K+ ATPase
activity. It also exhibits modest but non-specific cytotoxic effects on cancer cell
lines. Bioassay of this library against various cancer cell lines led to the dis-
covery of members with much more potent or selective cytotoxicity (but not
both). Thorson has also created a library of 58 glycosides of the tubulin poly-
merization inhibitor colchicine (Fig. 2), a molecule that does not normally exist
as a glycoside [81]. Once again, some members of this library exhibited greater
potency or selectivity, and two members stabilized the structure of tubulin, the

Figure 8. The structure of digitoxin, a glycoside that acts to increase the force of heart contraction.
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opposite effect of colchicine. Digitoxin and colchicine are compounds from
toxic plants, but the Thorson group has demonstrated the broad applicability of
this approach with medicinal compounds from bacteria and fungi, and has
shown that the enzymes involved can be engineered to great advantage [82–85].

“… I see no reason why we should not welcome enzymes and microbes as
friends and colleagues. Since they work for even less than graduate students,
perhaps we should at least acknowledge them…”

J.W. Cornforth [50]

In addition to strategies designed to create a greater diversity of chemical
structures, scientists have sought to carry out the syntheses of naturally occur-
ring compounds in more efficient ways, an approach that has benefited great-
ly from the developments in biotechnology described earlier [86]. One ap-
proach is to abandon traditional synthesis and develop cell cultures and other
systems that produce the natural products of interest.

Several excellent examples exist; perhaps the most important is that of
paclitaxel (trade name Taxol). This compound was one of several to be devel-
oped principally by Wall and Wani at Research Triangle Park [87]. Paclitaxel
was first isolated from a thin layer of inner bark of the pacific yew tree (Taxus
brevifolia, Taxaceae) in 1971. Its mode of action was unique at the time (tubu-
lin stabilization [88]) and it was eventually marketed by Bristol-Meyers
Squibb for the treatment of ovarian, breast and lung cancers. As its efficacy
became apparent, problems quickly arose with the supply of the drug. Isolation
from the tree was clearly untenable as it would create a considerable environ-
mental disaster if pursued (one mature tree would produce about one dose)
[89]. Subsequently, related species were found that produced paclitaxel or
related structures, and these provided the supply necessary for clinical use.
Even so, the compound is still quite expensive, about $ 300 000 per kilogram.
Consequently, much effort has gone into studying the biosynthetic pathways
leading to paclitaxel in the hopes of harnessing the enzymes. In addition, many
investigators have worked on developing plant cell culture methods for the
production of paclitaxel or a related molecule that can be converted to it in a
cost-effective manner [90, 91]. Phyton Corporation produces paclitaxel in a
75 000-L fermentation/cell culture system. Current research is aimed at opti-
mizing the cell culture conditions for initial growth, after which the cells are
transferred to a different media that enhances the production of paclitaxel. The
discovery that paclitaxel is apparently synthesized by an endophytic fungus
(detailed earlier) has both complicated and simplified efforts. The important
antimalarial artemisinin from Artemisia annua (Asteraceae) is currently going
through much the same development cycle as paclitaxel [92].

A strategy that is both potentially very efficient and amenable to generating
structural diversity is to genetically engineer microorganisms to carry out the
syntheses [93]. In this so-called combinatorial biosynthesis, genes from a plant
(possibly more than one) are moved into a different organism such as a bac-
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terium or a yeast, and in combination with the native genes of that organism,
they may be coaxed into synthesizing a desired product. The hope is that the
heterologous system may be more practical in terms of the ease of culture and
the production efficiency (Kayser and colleagues have reviewed a number of
such investigations [94]). In addition to making the synthesis more efficient,
such systems may be engineered to rearrange the order of genes and even com-
bine genes from different organisms to produce novel structures, which may
have novel mechanisms of action.

A good illustration of the first approach involves the BIAs discussed earli-
er. These compounds are synthesized in plants beginning with the action of
norcoclaurine synthase, followed by a wide variety of additional enzymes
depending upon the carbon skeleton found in a particular species (Fig. 5).
Minami and Sato in Japan developed a two-organism, one-culture method for
the efficient preparation of BIAs. These workers first prepared and cultured a
transgenic Escherichia coli line with the plant genes for the synthesis of (S)-
reticuline, a key branch point in the pathways leading to diverse BIAs. After a
period of time, they added to the growing bacterial culture a transgenic
Saccharomyces cerevisiae that contained additional genes for the transforma-
tion of reticuline into magnoflorine. In a second experiment, the added trans-
genic yeast contained the genes for the synthesis of scoulerine. These co-cul-
ture systems, containing transgenic plant genes carried in two different organ-
isms, and supplemented by bacterial enzymes, were able to produce good
quantities of structurally diverse alkaloids (Fig. 9) [95]. Both magnoflorine
and scoulerine are of medicinal interest, but the success of this method opens
the door to the synthesis of BIAs of even greater medical importance. A simi-
lar investigation has been reported by Hawkins and Smolke at the California

Figure 9. The Minami and Sato co-culture system for the preparation of benzylisoquinoline alkaloids
(BIAs).
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Institute of Technology using yeast cells containing plant and human enzymes
[96]. This system was shown to synthesize a morphine precursor, in addition
to sanguinarine/berberine skeletons.

A second and particularly ambitious example is the attempt by Verpoorte
and colleagues to produce Vinca (Catharanthus) alkaloids in heterologous sys-
tems (Fig. 10) [97]. Vincristine and vinblastine are very important antineoplas-
tic compounds and among the most structurally complex plant natural products
known. They are produced in plants at extremely low levels, and cell culture
methods have not been successful. Hence, there is great interest in a biotech-
nological solution. Unfortunately, the biosynthetic pathway involves at least 32
genes and 35 intermediates, along with 7 subcellular compartments (which is
consistent with the structural complexity of the compounds). While portions of
the pathways have been successfully transferred to E. coli, S. cerevisiae and
Nicotina tabacum, efficient expression of the entire biosynthetic apparatus has
not yet been achieved. However, McCoy and O’Connor at Harvard University
have reported that seedlings and hairy root cultures of Catharanthus roseus are
able to accept a wide variety of substituted tryptamine precursors and carry
them through to compounds late in the biosynthetic sequence [98, 99].

The second broad approach, to generate novel structures by combining and
re-ordering genes from several plants, has only recently begun to be explored.
Polyketide synthases (PKS) are responsible for the synthesis of a wide range
of interesting natural products. These modular enzyme complexes are able to
build up a carbon chain from a variety of starting units, add multiple extender
units, and modify the resulting structure by various combinations of cycliza-
tions, reductions and dehydrations. Over evolutionary time, the individual
genes in these complexes have been duplicated and subsequently modified,
creating a set of tools that can accept different substrates, and be used in dif-
ferent orders for different results. In other words, Nature has been employing

Figure 10. The biosynthesis of the Vinca alkaloids vincristine and vinblastine.
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a sort of combinatorial biochemistry that humans have only recently recog-
nized and tried to manipulate. The chemistry and genetic engineering of PKS
have been exploited for sometime in bacteria [100], but the plant enzymes have
only recently been cloned and put to use [101, 102]. By rearranging the order
of individual enzymes that carry out the cyclizations and other modifications,
new structures can be created. Some PKS are promiscuous as they will accept
a variety of starter units not found in Nature, which permits additional struc-
tural diversity. Figure 11 illustrates the overall process and structures of a few
important plant natural products generated by PKS.

Choosing a target for synthesis has clearly moved well beyond early moti-
vations. The means of synthesis have also changed significantly. The examples
described above demonstrate that the field of synthesis remains a very creative
and practical endeavor. While Nature has provided numerous useful drugs and
toxins, it is clear that creative chemists and molecular biologists will continue
to harness the tools that Nature has been using to create even more structural
variety and to do so by increasingly efficient means.

Figure 11. A typical plant biosynthetic pathway leading to polyketide intermediates, which can be
cyclized to give a variety of structures. PKS, polyketide synthase. THC (Δ9-tetrahydrocannabinol) is
the active ingredient in marijuana. Urushiols are the active ingredients in poison ivy.
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Systems toxicology

One of the most interesting recent developments bridging chemistry and biol-
ogy is the development of systems biology, which seeks to integrate knowl-
edge of the molecular workings of living organisms across several levels.
Crick’s “central dogma” is the unifying concept in molecular biology, which
describes the flow of information in an organism, from DNA to RNA and
finally to proteins [103]. The development of biotechnology led to an under-
standing of this information flow on a much grander scale within a single
organism, and in a comparative fashion between organisms. Beginning with
genomics (e.g., the human genome project), and later proteomics and tran-
scriptomics, the available information has exploded in quantity and improved
in quality. More recently, the field of metabolomics has made its debut –
metabolomics studies the result of the flow of information out of the central
dogma as well as its regulation – in other words, the identity and concentra-
tions of all metabolites in an organism. Systems biology is an attempt to use
all this information at once to study how the pieces function in an integrated
fashion. Figure 12 illustrates the relationship between these concepts.

The systems biology approach can provide a great deal of information about
an organism under normal conditions, but the greatest insight is derived by
comparing this reference state to some sort of perturbed or stressed state. For
instance, one might study the metabolism of carbohydrates by comparing
growth under normal conditions to one in which a particular substrate is lack-
ing or enhanced [104, 105]. Systems toxicology in particular is the study of
organisms stressed by some sort of xenobiotic toxin, and has great potential in
the pharmaceutical industry. Applications are being developed that use
metabolomics to speed drug development by improving the preclinical screen-
ing process, the elucidation of metabolic pathways, and the determination of
mechanisms of toxicity [106, 107]. Not surprisingly, there is also enormous
interest in using these methods to develop diagnostic biomarkers for a wide
variety of disease states, and in some cases molecular changes can be detect-
ed long before a disease makes its appearance via traditional clinical indica-
tions [108]. A good illustration of the strategy and potential of the systems tox-
icology approach is a study conducted by Nicholson’s group at Imperial
College London and colleagues at AstraZeneca [109]. These investigators
studied the necrosis of liver tissue induced by methapyrilene in rats using a
combination of gene expression analysis (transcriptomics), a comprehensive
analysis of protein levels (proteomics) and NMR spectroscopy of urine and
liver tissue samples (metabolomics). These methods were linked to more tra-
ditional histological analysis and revealed complex changes in the molecular
systems that react to oxidative stress as well as those responsible for energy
usage.

As with all applications of systems biology, one of the key challenges is the
management of the flood of data that results from these complex studies.
Several recent reviews have discussed the development of knowledge bases in
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toxicology that endeavor to integrate the systems approach with more tradi-
tional types of toxicological studies [110, 111]. The development of the
Chemical Effects in Biological Systems (CEBS) depository is one effort to
organize data from a variety of experimental methods in a comprehensive
manner so that the results can be mined for insights and compared across lab-
oratories and organisms [112].

Systems toxicological studies of medicinal and toxic plants have only
recently appeared in the literature. An area that has been a rich source of
research programs are the traditional healing methods of China and India,
known as Traditional Chinese Medicine (TCM) and ayurveda, respectively
[113]. Both of these traditions are holistic healing paradigms that use a wide
variety of individual herbs and especially mixtures of herbs. They are ideal

Figure 12. The relationship between the Central Dogma of molecular biology and systems biology
concepts. Genomics is the study of the entire DNA sequence of an organism. Transcriptomics is the
study of all transcribed mRNA sequences, normally a subset of the entire genome. Proteomics is the
study of all expressed (and modified) proteins. Metabolomics is the study of all metabolites and their
levels, which result from the action of the proteins through both enzymatic and regulatory activities.
Each of these fields has associated techniques, which lead to large data sets that must be analyzed by
appropriate statistical methods. MS, mass spectrometry; NMR, nuclear magnetic resonance; LC, liq-
uid chromatography; GC, gas chromatography; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide
gel electrophoresis.
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candidates for the systems approach as the presence of multiple medicinal and
toxic substances would be expected to have effects on a wide variety of organ
systems. The broad and sometimes subtle effects produced by the phytomedi-
cinal mixtures typical of these traditions are not easily identified or quantified
by the usual drug discovery and development processes, which are strongly
oriented toward single chemical entities [114]. In addition, the synergistic
effects often claimed for herbal mixtures do not fit well with the Western para-
digm for healing [115–117]. Several authors have pointed out that the systems
approach is an excellent match for understanding the biological effects of these
herbal mixtures, one that can provide a bridge between toxicology, molecular
pharmacology and ethnopharmacology [118–125].

The most common systems toxicological studies involving plant extracts so
far are transcriptomic studies using microarrays to measure changes in gene
expression (i.e., mRNA expression levels). An early example demonstrating
the power of the approach was the report by Watanabe et al. in 2001 [126]
regarding the effect of herb Ginkgo biloba (Ginkgoaceae) on the cortex and
hippocampus of mice. Ginkgo is an ancient Chinese herb used to treat a vari-
ety of cognitive deficits [127]. A number of the individual components of this
herb are known to be biologically active as antioxidants and as platelet-acti-
vating factor antagonists [128–130]. The study analyzed ~12 000 mRNA tran-
scripts and identified 10 genes that were up-regulated more than 3-fold in mice
fed a supplement containing ginkgo. Functional annotation of these genes
identified proteins with a role in neurotransmission, cell growth and neuro-
protection. Another study involving brain function was designed by Wang et
al. [131]. In this work, cerebral ischemia was induced in mice that had been
maintained on various dosages of a standardized TCM herbal glycoside
recipe, consisting of the compounds baicalein and dioscin (see Fig. 13 for
structures of compounds mentioned in this section). These compounds are
found in the Chinese herb Scutellaria baicalensis (Lamiaceae), which is one
of the most important herbs in TCM. Microarray analysis of the hippocampus
was coupled with measurements of spatial learning memory, measured by per-
formance in a water maze. These authors found that the herbal treatment led
to improved recovery from the ischemia (i.e., a better performance in the maze
and a decreased infarct volume). Nine genes were observed to be up- or down-
regulated by more than 1.8-fold in the two highest dosages of the herbal treat-
ment. As with the previous study, the roles of these genes could reasonably be
associated with improved learning and cognitive function; for instance,
expression of the 5-hydroxytryptophan (serotonin) receptor decreased in a
dose-dependent manner.

Phytoestrogens are plant compounds that mimic the effect of estrogen in
humans. As a type of endocrine disruptor, they are of interest not only from a
toxicological perspective, but also as potential treatments for estrogen-sensi-
tive cancers. It is not surprising therefore that a number of researchers have
examined the action of phytoestrogens using microarrays. A recent example is
the study by several groups in Japan, who examined the effect of various phy-
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toestrogens on human breast cancer cells [132]. Both pure phytochemicals
(e.g., the isoflavone genistein) as well as extracts of soy beans (Glycine max,
Fabaceae) were investigated using a custom microarray composed of genes
known to be estrogen responsive. About 20 genes were identified that respond-
ed to the phytoestrogens differently than to estrogen. The majority of these
genes have a known role in signal transduction in cancer. Another study using
breast cancer cells was conducted by Dong and colleagues using extracts of
licorice (Glycyrrhiza glabra, Fabaceae; licorice is also part of the TCM phar-
macopeia) [133]. This extract promotes the growth of cancer cells due to cer-
tain components that activate the estrogen receptor. Analysis of the expression
profiles allowed the authors to conclude that glycyrrhizin, the main triterpene
in licorice, did not induce estrogen-responsive genes or cell proliferation.

Figure 13. Structures of compounds mentioned in the section on systems toxicology.
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Rather, it appears that a number of components acting in concert are responsi-
ble for the proliferation. As with the previous study, many genes associated
with signaling are affected by the licorice extract. Endocrine disruptors are
also known to affect development of the sexual organs in utero. Adachi et al.
[134] demonstrated that neonatal exposure to genistein had a long-term effect
on the expression of the estrogen and androgen receptors in mice testes, even
though there were no morphological changes. Naciff and colleagues [135] at
Proctor and Gamble also found that genistein had a significant transplacental
effect on rat testes, and identified 23 genes that were up- or down-regulated by
at least a factor of 1.5. At the highest dosages, 46 genes were significantly
affected. The pattern observed for genistein was similar to an estrogen deriva-
tive as well as the important industrial toxin bisphenol A, suggesting that these
compounds act in a similar fashion.

Several other transcriptomic studies of botanicals have been conducted.
Hsieh and colleagues investigated Scutellaria baicalensis, mentioned above in
a study of cognitive performance, regarding its role as an anti-inflammatory
herb, another TCM-use for the plant [136]. Using human embryonic kidney
cells, these researchers identified changes in expression of several genes asso-
ciated with inflammatory and immune responses as the likely mechanism of
action of the plant. Some of the same investigators reported a study of the rat
hippocampus treated with scopolamine, a substance that induces memory
impairment [137]. Key differences between treated and untreated rats involved
genes related to the muscarinic receptors, and several others were genes asso-
ciated with the development of Alzheimer’s disease.

Proteomic studies have also been conducted on plants of toxic and medici-
nal interest, and not surprisingly plants from TCM have been the focus [138].
Two studies have been reported on the genus Scutellaria. Ong’s group in
Singapore studied S. baicalensis and its effect on proteins of the mouse liver
[139]. At low doses no changes were observed, but at high doses, bile duct
damage was observed along with changes in expression of proteins involved in
triglyceride-rich particle processing, carbohydrate metabolism, cell signaling
and xenobiotic transformation. The same group investigated S. barbata and its
effect on human colon cancer cell lines [140]. A combined cell-cycle analysis
and proteomic investigation revealed that the botanical extract induced cell
death, apparently via changes in transcription factors and regulation of the cell
cycle. Some members of the same group have studied the effect of rhubarb
root (Rheum palmatum, Polygonaceae), also used in TCM, on human liver
cancer cells [141]. Rhubarb contains bioactive anthroquinones such as aloe-
emodin that are believed to be responsible for its biological action. The effect
of rhubarb seemed to be mediated primarily by up-regulation of proteins
involved in the oxidative stress response, which was confirmed by separate
biochemical measurements. Other proteins whose expression varied signifi-
cantly were those responsible for cell-cycle arrest and antimetastasis.

Cheng and colleagues in China studied the TCM material medica
ShuangDan Decoction, which is a mixture of two herbs frequently used for
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myocardial infarction, angia and coronary heart disease [142]. Proteomic inves-
tigation of rat myocardium along with histological and biochemical studies
revealed modulation of 23 proteins in ischemic hearts. These proteins general-
ly fell into the categories of energy metabolism, oxidative stress response, and
cytoskeleton maintenance. Wink and colleagues [143] investigated the influ-
ence of red clover (Trifolium pratense, Fabaceae), which contains large
amounts of isoflavones, on both gene and protein expression in the liver of
ovariectomized rats. They found that plasma lipid levels were differentially
affected by the isoflavone treatments, and that genes affecting lipid metabolism
and oxidative response were the main protein changes. Interestingly, compared
to a limited number of changes in protein expression, there were quite a few
changes in gene expression, involving not only lipid metabolism and oxidative
responses, but also androgen/estrogen regulation and the metabolism of xeno-
biotics. Ginseng is another herb used extensively throughout Asia. Lee and col-
leagues in Korea have examined changes in the proteome of colon cancer cells
as a result of treatment with ginsenoside Rd [144]. Significant changes were
observed in proteins responsible for apoptosis, DNA replication and repair, pro-
tein synthesis and degradation, and mutagenesis. Although not an investigation
of an animal model affected by a toxic/medicinal plant, as part of their overall
investigation of Vinca alkaloids, Verpoorte and colleagues [145] have reported
on the proteomics of cell suspension cultures of Catharanthus roseus. This
study revealed some interesting insights into the biosynthesis of these alkaloids.
Among other discoveries, the authors were able to identify two isoforms of
strictosidine synthase, one of the key early enzymes in the biosynthetic path-
way. This sort of study illustrates how the systems approach can also inform the
taxonomic, biosynthetic and applied studies discussed earlier in this chapter.

Metabolomic studies of toxic and medicinal plants are just now beginning
to appear in the literature. (There are a fairly large numbers of metabolomic-
type studies on medicinal plants aimed at quality control and authentification.
These are not discussed here as they do not directly deal with toxicology in
organisms treated with the plants.) Chen et al. [146] studied the effect of aris-
tolochic acid on rats. Aristolochic acid is a well-known nephrotoxin found in
members of the family Aristolochiaceae. The acid and its derivatives have also
been implicated as contaminants in various herbal mixtures, and cause serious
problems such as acute renal failure and end-stage renal disease. These authors
combined traditional histological examination with liquid chromatogra-
phy–mass spectrometry (LC-MS) of urine using pattern recognition methods.
Comparison of untreated rats with rats receiving pure aristolochic acid as well
as a TCM preparation from the plant Aristolochia manshuriensis led to the
discovery that metabolic pathways involving homocysteine and folate
appeared to be activated, while those involving arachidonic acid were down-
regulated. The authors concluded that these methods could be used as a rapid
screening process for the detection of aristolochic acid ingestion. Chen and a
different group of collaborators have also reported a metabolomic study of
Trypterygium wilfordii (Celastraceae) using a similar approach [147]. This
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TCM preparation is used to treat rheumatoid arthritis and other inflammatory
conditions, but is known to have a number of undesirable side effects such as
infertility and renal failure. Investigation of rat urine using GC- and LC-MS
along with histological studies of the kidney, liver and testis revealed a time-
dependent toxic effect at higher doses. Perturbations in metabolites related to
energy status, amino acid processing and choline processing were observed.
Other urinary metabolites observed suggested that the gut microflora popula-
tions were also affected by the extract.

There are several reports in the literature of metabolomic studies involving
plants not considered to be toxic, but which are still of medicinal interest.
Nicholson’s lab has studied the widely consumed chamomile tea (Matricaria
recutita, Asteraceae) in humans [148]. Using 1H NMR spectroscopy to study
metabolites in urine, these researchers identified non-trivial variations by gen-
der and individual. In spite of these variations, however, they were able to
identify increases in hippurate and glycine and decreases in creatinine as
markers of chamomile tea ingestion; these changes in urinary metabolites were
likely the result of changes in the gut microflora. Interestingly, these alter-
ations persisted for 2 weeks after tea consumption was halted. Nicholson’s lab
has also reported two studies using 1H NMR spectroscopic investigation of
human plasma in subjects who had consumed soy isoflavones [149, 150].
These researchers identified clear differences in lipoprotein, amino acid and
carbohydrate profiles resulting from the isoflavone consumption. As a final
example, Ong’s group mentioned earlier in connection with a proteomic study
has also reported a metabolomic study on green tea consumption [151]. This
comprehensive study combined GC-MS, LC-MS and 1H NMR spectroscopic
studies on human urine, and demonstrated significant changes in metabolites
originating in energy and amino acid pathways immediately after ingestion of
green tea.

Although really just beginning, systems toxicological studies such as the
ones summarized here have tremendous potential. The reader has no doubt
noticed that many different genes, proteins and metabolites are affected in a
typical study. This is both the advantage and the weakness: holistic approach-
es are powerful but great effort must be expended to interpret the resulting data
sets. It is likely that many researchers will gravitate to metabolomic studies, as
these reflect the end result of changes in the transcriptome and proteome, and
hence no speculation about what changes in a given mRNA level might ulti-
mately mean is necessary. Metabolomics is also conceptually closest to tradi-
tional clinical chemical measurements, such as lipid panels, and as such may
be more palatable to practicing clinicians.

Concluding remarks

The study of medicinal and toxic plants from any angle is fascinating, and
motivates several disciplines. Although chemistry and toxicology began to-
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gether, chemists have developed a uniquely molecular, historical and practical
perspective on toxic plants. The Chemist’s Perspective contributes both a sup-
porting role, namely the practical synthesis of useful molecules, and an inte-
grative role, one which connects phylogenetics to the biosynthesis of toxic
molecules, and one which enables and bridges the different facets of systems
toxicology.
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