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Uniform and Smooth Benzaid-Lutz Type
Theorems and Applications to Jacobi Matrices
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Abstract. Uniform and smooth asymptotics for the solutions of a parametric
system of difference equations are obtained. These results are the uniform
and smooth generalizations of the Benzaid-Lutz theorem (a Levinson type
theorem for discrete linear systems) and are used to develop a technique for
proving absence of accumulation points in the pure point spectrum of Jacobi
matrices. The technique is illustrated by proving discreteness of the spectrum
for a class of unbounded Jacobi operators.
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1. Introduction

The asymptotic behavior of solutions of discrete linear systems can be obtained
by means of discrete Levinson type theorems [4, 6]. Here we are mainly concerned
with asymptotically diagonal linear systems to which the Benzaid-Lutz theorem
can be applied.

Consider the system

�xn+1 = (Λn + Rn)�xn , n ≥ n0 , (1)

where �xn is a d-dimensional vector, Λn + Rn is an invertible d × d matrix, and
Λn = diag{ν(k)

n }dk=1. The Benzaid-Lutz theorem [2, 4, 6] asserts that, when the
sequence {Λn}n≥n0 satisfies the Levinson condition for k = 1, . . . , d (see below
Def. 2.1) and

∞∑
n=n0

‖Rn‖
|ν(k)

n |
<∞ , k = 1, . . . , d ,
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then, there is a basis {�x(k)
n }n≥n0 (k = 1, . . . , d) in the space of solutions of (1) such

that ∥∥∥∥∥ �x
(k)
n∏n−1

i=n0
ν

(k)
i

− �ek

∥∥∥∥∥→ 0 , as n→∞ , for k = 1, . . . , d ,

where {�ek}dk=1 is the canonical basis in Cd. This result has its counterpart for linear
systems of ordinary differential equations [3]. Loosely speaking, if the conditions
of the Benzaid-Lutz theorem hold, the solutions {�x(k)

n }n≥n0 of (1) asymptotically
behave as the solutions of the unperturbed system

�xn+1 = Λn�xn , n ≥ n0 .

Let us now consider the second order difference equation for the sequence
{xn}∞n=1,

bn−1xn−1 + qnxn + bnxn+1 = λxn , λ ∈ R , n ≥ 2 , (2)
where {qn}∞n=1 and {bn}∞n=1 are real sequences and bn �= 0 for any n ∈ N. This
equation can be written as follows

�xn+1 = Bn(λ)�xn , λ ∈ R , n ≥ 2 . (3)

where, �xn :=
(

xn−1

xn

)
and Bn(λ) :=

(
0 1

− bn−1
bn

λ−qn
bn

)
. In general, difference equa-

tions of order d can be reduced to similar systems with d× d matrices.
It is well known that the spectral analysis of Jacobi operators having the

matrix representation⎛⎜⎜⎜⎜⎜⎜⎜⎝

q1 b1 0 0 · · ·
b1 q2 b2 0 · · ·
0 b2 q3 b3

0 0 b3 q4
. . .

...
...

. . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

0 �= bn ∈ R , ∀n ∈ N ,

qn ∈ R , ∀n ∈ N ,

with respect to the canonical basis in l2(N), can be carried out on the basis of
the asymptotic behavior of the solutions of (2), for example using Subordinacy
Theory [5, 8]. In its turn, in certain cases (see Sec. 5), the asymptotics of solutions
of (3) (and therefore of (2)) can be obtained by the Benzaid-Lutz theorem applied
point-wise with respect to λ ∈ R.

In this paper we obtain sufficient conditions for a parametric Benzaid-Lutz
system of the form

�xn+1(λ) = (Λn(λ) + Rn(λ))�xn(λ) , n ≥ n0 ,

to have solutions with certain smooth behavior with respect to λ (see Sec. 4). This
result, together with a uniform (also with respect to λ) estimate of the asymptotic
remainder of solutions of (2) obtained in [12], is used to develop a technique for
excluding accumulation points in the pure point spectrum of difference operators.
The technique is illustrated in a simple example.
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2. Preliminaries

Throughout this work, unless otherwise stated, I denotes some real interval. Be-
sides, we shall refer in multiple occasions to the sequence of matrices Λ defined as
follows

Λ := {Λn(λ)}∞n=n0
, where Λn := diag{ν(k)

n (λ)}dk=1 , λ ∈ I . (4)

Definition 2.1. The sequence Λ, given by (4), is said to satisfy the Levinson con-
dition for k (denoted Λ ∈ L(k)) if there exist an N ≥ n0 such that ν

(k)
n (λ) �= 0,

for any n ≥ N and λ ∈ I, and if for some constant number M > 1, with k being
fixed, each j (1 ≤ j ≤ d) falls into one and only one of the two classes I1 or I2,
where
(a) j ∈ I1 if ∀λ ∈ I∣∣∣∏n

i=N ν
(k)
i (λ)

∣∣∣∣∣∣∏n
i=N ν

(j)
i (λ)

∣∣∣ →∞ as n→∞ , and

∣∣∣∏n′

i=n ν
(k)
i (λ)

∣∣∣∣∣∣∏n′
i=n ν

(j)
i (λ)

∣∣∣ >
1
M

, ∀n′ , n such that n′ ≥ n ≥ N .

(b) j ∈ I2 if ∀λ ∈ I∣∣∣∏n′

i=n ν
(k)
i (λ)

∣∣∣∣∣∣∏n′
i=n ν

(j)
i (λ)

∣∣∣ < M , ∀n′ , n such that n′ ≥ n ≥ N .

Definition 2.2. Fix the natural numbers k (k ≤ d) and n1, and assume that
ν

(k)
n (λ) �= 0, ∀n ≥ n1 and ∀λ ∈ I. Let Xk(n1) denote the normed space con-

taining all sequences �ϕ = {�ϕn(λ)}∞n=n1+1 of functions defined on I and with range
in Cd, such that

sup
n>n1

sup
λ∈I

{
‖�ϕn(λ)‖Cd

1

|
∏n−1

i=n1
ν

(k)
i (λ)|

}
<∞

and where the norm is defined by

‖�ϕ‖Xk(n1) = sup
n>n1

sup
λ∈I

{
‖�ϕn(λ)‖Cd

1

|
∏n−1

i=n1
ν

(k)
i (λ)|

}
. (5)

Clearly, Xk(n1) is complete. It will be also considered the subspace X0
k(n1)

which contains all functions of Xk(n1) such that

sup
λ∈I

{
‖�ϕn(λ)‖Cd

1

|
∏n−1

i=n1
ν

(k)
i (λ)|

}
→ 0 as n→∞ . (6)
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In Cd consider the canonical orthonormal basis {�ek}dk=1. The d × d diago-
nal matrix diag{δkl}dl=1, where δkl (k, l = 1, . . . , d) is the Kronecker symbol, is a
projector to the one dimensional space generated by �ek.

Definition 2.3. Assuming Λ ∈ L(k) (for some k = 1, . . . , d), let Pi(Λ, k) = Pi be
defined by

Pi =
∑
j∈Ii

diag{δjl}dl=1 i = 1, 2 , (7)

where I1 and I2 are the classes of Definition 2.1.

3. Uniform asymptotics of solutions

The following result has been proven in [12].

Lemma 3.1. Let the sequence Λ be defined as in (4). For any n ∈ N, λ ∈ I, let
Rn(λ) be a d × d complex matrix. Fix the natural number k ≤ d and assume that
the following conditions hold:

(i) Λ ∈ L(k).

(ii) supλ∈I

∞∑
n=N

‖Rn(λ)‖
|ν(k)

n (λ)|
<∞ (N is given by the previous condition, see Def. 2.1).

(iii) for any ε > 0 there exists an Nε (which depends only on ε) such that ∀λ ∈ I
we have

∞∑
n=Nε

‖Rn(λ)‖
|ν(k)

n (λ)|
< ε .

Then, for some N0 ≥ N and any bounded continuous function, denoted by ϕN0(λ)
(λ ∈ I), the operator Tk defined on any �ϕ = {�ϕn(λ)}∞n=N0+1 in Xk(N0) by

(Tk�ϕ)n(λ) = P1

n−1∏
i=N0

Λi(λ)
n−1∑

m=N0

(
m∏

i=N0

Λi(λ)

)−1

Rm(λ)�ϕm(λ)

− P2

n−1∏
i=N0

Λi(λ)
∞∑

m=n

(
m∏

i=N0

Λi(λ)

)−1

Rm(λ)�ϕm(λ) , n > N0 ,

(8)

has the following properties

1. ‖Tk‖ < 1
2. TkXk(N0) ⊂ X0

k(N0)

Assuming that Λ, defined by (4), and {Rn(λ)}∞n=n0
satisfy the conditions of

Lemma 3.1, let the sequence �ϕ = {�ϕ(k)
n (λ)}∞n=N0

in Xk(N0) be a solution of

�ϕ = �ψ(k) + Tk �ϕ , (9)
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where �ψ(k) = {�ψ
(k)
n (λ)}∞n=N0+1 is defined by

�ψ(k)
n =

n−1∏
i=N0

Λi(λ)�ek =
n−1∏
i=N0

ν
(k)
i (λ)�ek , n > N0 .

It is straightforwardly verifiable that one obtains an identity if substitutes (9) into

�ϕn+1(λ) = (Λn(λ) + Rn(λ))�ϕn(λ) , n > N0 , (10)

and take into account (8). Thus, �ϕ ∈ Xk(N0), defined as a solution of (9), is a
solution of (10) for each k ≤ d. Notice that Tk’s property 2, stated in Lemma 3.1,
implies

�ϕ− �ψ(k) ∈ X0
k(N0) . (11)

The following assertion is the uniform version of the Benzaid-Lutz theorem [2, 4].

Theorem 3.2. Let the sequences Λ, given by (4), and {Rn(λ)}∞n=n0
satisfy the

conditions of Lemma 3.1 for all k = 1, . . . , d. Then one can find an N0 ∈ N such
that there exists a basis {�ϕ(k)(λ)}dk=1, �ϕ(k) = {�ϕ(k)

n (λ)}∞n=N0+1, in the space of
solutions of (10) satisfying

sup
λ∈I

∥∥∥∥∥ �ϕ
(k)
n (λ)∏n−1

i=N0
ν

(k)
i (λ)

− �ek

∥∥∥∥∥→ 0, as n→∞ , for k = 1, . . . , d . (12)

Proof. We have d solutions of (10) given by (9) for k = 1, . . . , d. Equation (12)
follows directly from (11). That {�ϕ(k)(λ)}dk=1 is a basis is a consequence of (12).
Indeed, let Φ(n, λ) be the d× d matrix whose columns are given by the d vectors
�ϕ

(k)
n (λ) (k = 1, . . . , d); then (12) implies that, for sufficiently big n,

∀λ ∈ I , detΦ(n, λ) �= 0 . �

It is worth remarking that the uniform Levinson theorem (in the continuous
case, i.e., for a system of ordinary differential equations) has already been proven in
[10], where this result is used in the spectral analysis of a self-adjoint fourth-order
differential operator.

4. Smoothness of solutions

Here we show that if the matrices Rn(λ) and Λn(λ) enjoy certain smooth properties
with respect to λ, then the solutions of (10) obtained through Theorem 3.2 are
also smooth.

Lemma 4.1. Let the sequences {Rn(λ)}∞n=n0
and Λ, defined in (4), satisfy the

conditions of Lemma 3.1, and suppose that the entries of Rn(λ) and Λn(λ), seen
as functions of λ, are continuous on I for every n ≥ N0, where N0 is given by
Lemma 3.1. Then the solution �ϕ = {�ϕn(λ)}∞n=N0+1 of (9) is such that �ϕn(λ), as a
function of λ, is continuous on I for each n > N0.
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Proof. From the definition of Tk it follows that if the sequence �ϕ = {�ϕn(λ)}∞n=N0+1

is such that �ϕn(λ) is a continuous function on I, ∀n > N0, then (Tk �ϕ)n(λ) is
continuous on I, ∀n > N0. Indeed, from (8) one has that (Tk�ϕ)n(λ) is a uniform
convergent series of continuous functions. The assertion of the lemma then follows
from the fact that the unique solution of (9) can be found by the method of
successive approximations. �

Lemma 4.2. Suppose that the sequences {Rn(λ)}∞n=n0
and {Λn(λ)}∞n=n0

satisfy the
conditions of Theorem 3.2 and I is a closed interval. Let Rn(λ) and Λn(λ) be
matrices whose entries are continuous functions of λ on I for every n ≥ n0 and
such that

det(Λn(λ) + Rn(λ)) �= 0 , λ ∈ I , n0 ≤ n ≤ N0 . (13)

Then, the solutions {�ϕ(k)(λ)}dk=1, �ϕ(k) = {�ϕ(k)
n (λ)}∞n=N0+1, of (10) given by The-

orem 3.2 can be extended to solutions �ϕ(k) = {�ϕ(k)
n (λ)}∞n=n0

of the system

�ϕn+1(λ) = (Λn(λ) + Rn(λ))�ϕn(λ) n ≥ n0 ,

having the property that, given n ≥ n0 fixed, for any ε > 0 there exists δ such that

∀λ1, λ2 ∈ I , |λ1 − λ2| < δ ⇒
∥∥∥�ϕ(k)

n (λ1)− �ϕ(k)
n (λ2)

∥∥∥ < ε , k = 1, . . . , d . (14)

Proof. The proof is again straightforward. By Theorem 3.2 there exists an N0 ∈ N
such that the basis {�ϕ(k)(λ)}dk=1 in the space of solutions of (10) satisfies (12).
�ϕ

(k)
n (λ) is continuous on I for all n > N0 as a consequence of Lemma 4.1. Since I

is closed, each �ϕ
(k)
n (λ) is actually uniform continuous. Therefore, we have (14) for

n > N0. Now, for n0 ≤ p ≤ N0, one has

�ϕ(k)
p (λ) = Q(λ, p, N0)�ϕ

(k)
N0+1(λ) ,

where

Q(λ, p, N0) := (Λp(λ) + Rp(λ))−1 . . . (ΛN0(λ) + RN0(λ))−1.

Condition (13) implies that Q(λ, p, N0) is always well defined, and the smooth
properties of Rn(λ) and Λn(λ) imply that the entries of Q(λ, p, N0) are uniform
continuous on I for all p. Thus, from∥∥∥�ϕ(k)

p (λ1)− �ϕ(k)
p (λ2)

∥∥∥ ≤ ∥∥∥(Q(λ1, p, N0)−Q(λ2, p, N0))�ϕ
(k)
N0

(λ2)
∥∥∥

+
∥∥∥Q(λ1, p, N0)(�ϕ

(k)
N0

(λ1)− �ϕ
(k)
N0

(λ2))
∥∥∥ .

it follows that ∥∥∥�ϕ(k)
p (λ1)− �ϕ(k)

p (λ2)
∥∥∥→ 0 as λ1 → λ2 �
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5. An application to a class of Jacobi matrices

In the Hilbert space l2(N), let J be the operator whose matrix representation with
respect to the canonical basis in l2(N) is a semi-infinite Jacobi matrix of the form⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 b1 0 0 · · ·
b1 0 b2 0 · · ·
0 b2 0 b3

0 0 b3 0
. . .

...
...

. . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (15)

The elements of the sequence {bn}∞n=1 are defined as follows

bn := nα
(
1 +

cn

n

)
, ∀n ∈ N , (16)

where α > 1 and cn = cn+2L (L ∈ N). We assume that 1+ cn

n �= 0 for all n. Clearly,
the Jacobi operator J is symmetric and unbounded. J is closed by definition since
the unbounded symmetric operator J is said to have the matrix representation (15)
with respect to the canonical basis in l2(N) if it is the minimal closed operator
satisfying

(Jek, ek+1) = (Jek+1, ek) = bk , ∀k ∈ N ,

where {ek}∞k=1 is the canonical basis in l2(N) (see [1]). The class of Jacobi matrices
given by (15) and (16) is said to have rapidly growing weights. This class is based
on an example suggested by A.G. Kostyuchenko and K.A. Mirzoev in [9].

On the basis of subordinacy theory [5, 8], the spectral properties of J have
been studied in [6, 11, 12]. The theory of subordinacy reduces the spectral analysis
of operators to the asymptotic analysis of the corresponding generalized eigenvec-
tors. This approach has proved to be very useful in the spectral analysis of Jacobi
operators. In [6] it is proven that if∣∣∣∣∣

2L∑
k=1

(−1)kck

∣∣∣∣∣ ≥ L(α− 1) , (17)

then J = J∗ and it has pure point spectrum. However, within the framework of
subordinacy theory, one cannot determine if the pure point spectrum has accumu-
lation points in some finite interval.

Equation (2) for J takes the form

bn−1un−1 + bnun+1 = λun , n > 1 , λ ∈ R , (18)

with {bn}∞n=1 given by (16). As was mentioned before, the asymptotic behavior of
the solutions of (18) gives information on the spectral properties of J . If a solution
u(λ) = {un(λ)}∞n=1 of (18) satisfies the “boundary condition”

b1u2 = λu1 (19)

and turns out to be in l2(N), then u(λ) is an eigenvector of J∗ corresponding to
the eigenvalue λ.
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Using the results of Sections 3 and 4, we shall develop a technique to prove
that J with weights given by (16) and (17) has discrete spectrum.

It is worth remarking that there are simpler methods for proving that the
spectrum of J is purely discrete. Indeed, one can use for instance the asymptotic
behavior of the solutions of (18) to show that the resolvent of J is compact. This
has been done for a class of Jacobi operators in [7] and the technique developed
there can in fact be used to obtain estimates for the eigenvalues.

The method we develop below may, nevertheless, be advantageous in some
cases since it uses and preserves more information inherent in system (18). For
simplicity, operator J has been chosen to illustrate the technique, but one can
easily adapt the reasoning for other Jacobi operators. Our technique seems to be
especially useful for operators having simultaneously intervals of pure point and
absolutely continuous spectrum [6, Th. 2.2].

We begin by deriving from (18) a system suitable for applying our previous
results, but first we introduce the following notation. Given a sequence of matrices
{Ms(λ)}∞s=1 (λ ∈ I) and a sequence {fs}∞s=1 of real numbers, we shall say that

Ms(λ) = ÔI(fs) as s→∞ .

if there exists a constant C > 0 and S ∈ N such that

sup
λ∈I
‖Ms(λ)‖ < C |fs| , ∀s > S .

Now suppose that I is a finite interval and rewrite (18), with λ ∈ I, in the form
of (3). We have

Bn(λ) =
(

0 1

− bn−1
bn

λ
bn

)
, n ≥ 2 , λ ∈ I .

Define the sequence of matrices {Am(λ)}∞m=1 as follows

Am(λ) :=
Lm∏

s=1+L(m−1)

B2s+1(λ)B2s(λ) , m ∈ N . (20)

Whenever we have products of non-diagonal matrices, as in (20), we take them in
“chronological” order, that is,

Am(λ) := B2Lm+1(λ)B2Lm . . . B2L(m−1)+3(λ)B2L(m−1)+2 .

A straightforward computation shows that

B2s+1(λ)B2s(λ) = −I +
( c2s−c2s−1+α

2s 0
0 c2s+1−c2s+α

2s

)
+ ÔI(s−1−ε), ε > 0 .

Indeed, one can easily verify that

B2s+1(λ)B2s(λ) + I −
( c2s−c2s−1+α

2s 0
0 c2s+1−c2s+α

2s

)
=

(
r1(s) r2(s)
r3(s)λ r4(s) + r5(s)λ2

)
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where rl(s) = O(s−1−ε) for l = 1, . . . , 5. Clearly, up to the same asymptotic
estimate, we may also write (ε > 0)

B2s+1(λ)B2s(λ) =

(
−e

c2s−1−c2s−α

2s 0

0 −e
c2s−c2s+1−α

2s

)[
I + ÔI(s−1−ε)

]
.

Therefore,

Am(λ) =
Lm∏

s=1+L(m−1)

(
−e

c2s−1−c2s−α

2s 0
0 −e

c2s−c2s+1−α

2s

)
Lm∏

s=1+L(m−1)

[
I + ÔI(s−1−ε)

]

= (−1)L

⎛⎜⎜⎜⎝
exp

Lm∑
s=1+L(m−1)

c2s−1−c2s−α
2s 0

0 exp
Lm∑

s=1+L(m−1)

c2s−c2s+1−α
2s

⎞⎟⎟⎟⎠[
I + ÔI(m−1−ε)

]

Let us define, for m ∈ N, λ ∈ I, the matrices

Λm := diag{ν(1)
m , ν(2)

m } ,

where

ν(1)
m := (−1)L exp

Lm∑
s=1+L(m−1)

c2s−1 − c2s − α

2s

ν(2)
m := (−1)L exp

Lm∑
s=1+L(m−1)

c2s − c2s+1 − α

2s
,

(21)

and
Rm(λ) := Am(λ)− Λm

Observe that Λm does not depend on λ, and Rm(λ) = ÔI(m−1−ε) as m→∞.

Lemma 5.1. Let I be a finite closed interval. There is a basis �x(k)(λ)={�x(k)
n (λ)}∞n=1

(k = 1, 2) in the space of solutions of the system

�xn+1(λ) = An(λ)�xn(λ) , n ∈ N , λ ∈ I , (22)

with An(λ) given by (20), such that

sup
λ∈I

∥∥∥∥∥ �x
(k)
n (λ)∏n−1

i=1 ν
(k)
i

− �ek

∥∥∥∥∥→ 0 , as n→∞ , for k = 1, 2 ,

where ν
(k)
i is defined in (21). Moreover, for any fixed n ∈ N

sup
|λ′−λ|<δ

λ′,λ∈I

∥∥∥�x(k)
n (λ′)− �x(k)

n (λ)
∥∥∥→ 0 , as δ → 0 , k = 1, 2.
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Proof. Write An(λ) = Λn + Rn(λ) as was done before. We first show that the
sequences {Λn}∞n=1 and {Rn(λ)}∞n=1 satisfy the conditions of Theorem 3.2. Let us
prove that {Λn}∞n=1 ∈ L(k) for k = 1, 2. Define

γ :=
1

2L

L∑
s=1

c2s−1 − 2c2s + c2s+1 .

It is not difficult to verify that for every n ≥ 2 there is a constant K such that

n∏
i=1

|ν(1)
i |
|ν(2)

i |
= exp

n∑
i=1

Li∑
s=1+L(i−1)

c2s−1 − 2c2s + c2s+1

2s

< K exp

{
γ

n∑
s=1

1
s

}
.

Analogously for some constant K̃

n∏
i=1

|ν(1)
i |
|ν(2)

i |
= exp

n∑
i=1

Li∑
s=1+L(i−1)

c2s−1 − 2c2s + c2s+1

2s

> K̃ exp

{
γ

n∑
s=1

1
s

}
.

Clearly, one obtains similar estimates interchanging k = 1, 2. Thus i holds. Condi-
tions ii and iii follow from the fact that ν

(k)
n → 1 as n→∞ and Rn = ÔI(n−1−ε).

Now observe that (13) holds for the system (22), and for n ∈ N the entries
of Rn(λ) and Λn are continuous functions of λ ∈ I. Therefore, the conditions of
Lemma 4.2 are satisfied. �

Lemma 5.2. Let I be any closed finite interval of R. Then, there exists a solution
u(λ) = {un(λ)}∞n=1 of (18), with {bn}∞n=1 given by (16) and satisfying (17), such
that

∞∑
n=1

sup
λ∈I
|un(λ)|2 <∞ .

Moreover, for any fixed n ∈ N,

sup
|λ′−λ|<δ

λ′, λ∈I

|un(λ′)− un(λ)| → 0 , as δ → 0 .

Proof. By (20) and (22), it is clear that

�x
(k)
n+1(λ) =

⎛⎝u
(k)
2Ln+1(λ)

u
(k)
2Ln+2(λ)

⎞⎠ . (23)
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Thus, Lemma 5.1 yields that for n ∈ N and some constants C, C′ > 0

sup
λ∈I

∣∣∣u(1)
2Ln+2(λ)

∣∣∣ ≤ sup
λ∈I

∥∥∥�x
(1)
n+1(λ)

∥∥∥
≤ C

∣∣∣∣∣
n∏

i=1

ν
(1)
i

∣∣∣∣∣
= C exp

n∑
i=1

Li∑
s=1+L(i−1)

c2s−1 − c2s − α

2s

≤ C′ exp

{
L∑

s=1

c2s−1 − c2s − α

2L

n∑
s=1

1
s

}
,

where we have use the periodicity of the sequence {ck}∞k=1. Thus for some constant
C′′ we have

sup
λ∈I

∣∣∣u(1)
2Ln+2(λ)

∣∣∣ ≤ C′′nβ , β :=
1

2L

2L∑
s=1

(−1)s+1cs −
α

2
.

Analogously, there is a C̃ > 0 such that

sup
λ∈I

∣∣∣u(2)
2Ln+2(λ)

∣∣∣ ≤ C̃nβ̃ , β̃ :=
1

2L

2L∑
s=1

(−1)scs −
α

2
.

Since α > 1, (17) implies that either for k = 1 or k = 2

∞∑
n=1

sup
λ∈I

∣∣∣u(k)
2Ln+2(λ)

∣∣∣2 <∞ (24)

The first assertion of the lemma follows from (24) and the fact that there is a
constant C such that

sup
λ∈I

∥∥ s∏
j=2

B2Ln+j(λ)
∥∥ < C s = 2, 3, . . . , 2L , n ∈ N .

Now, Lemma 5.1 and (23) yield, for n ∈ N and k = 1, 2,

sup
|λ′−λ|<δ

λ′, λ∈I

∣∣∣u(k)
2Ln+2(λ

′)− u
(k)
2Ln+2(λ)

∣∣∣→ 0 , as δ → 0 . (25)

Since for any s = 2, 3, . . . , 2L⎛⎝ u
(k)
2Ln+s(λ)

u
(k)
2Ln+s+1(λ)

⎞⎠ =
s∏

j=2

B2Ln+j(λ)

⎛⎝u
(k)
2Ln+1(λ)

u
(k)
2Ln+2(λ)

⎞⎠ ,
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the following inequality holds for n ∈ N and s = 2, 3, . . . , 2L

∣∣∣u(k)
2Ln+s+1(λ

′)− u
(k)
2Ln+s+1(λ)

∣∣∣ ≤
∥∥∥∥∥∥
⎛⎝ s∏

j=2

B2Ln+j(λ′)−
s∏

j=2

B2Ln+j(λ)

⎞⎠ �x
(k)
n+1(λ)

∥∥∥∥∥∥
+

∥∥∥∥∥∥
s∏

j=2

B2Ln+j(λ′)
(
�x

(k)
n+1(λ

′)− �x
(k)
n+1(λ)

)∥∥∥∥∥∥ .

Taking into account the smooth properties of the finite product
∏s

j=2 B2Ln+j(λ)
and Lemma 5.1, one obtains from the last inequality and (25) the second assertion
of the lemma for any n ≥ 2L + 2. To complete the proof use the invertibility and
smoothness of the matrices Bn(λ) for n < 2L + 2. �

Remark 1. Let u(λ) (λ ∈ I) be the solution mentioned in the previous lemma. If
J = J∗ and λ0 ∈ I is such that (19) is satisfied, then λ0 is in the point spectrum
of J and u(λ0) is the corresponding eigenvector.

Theorem 5.3. Let J be the Jacobi operator defined by (15), (16) and (17). Then
the spectrum of J is discrete.

Proof. It is already known that the spectrum of J , denoted σ(J), is pure point [6].
Suppose that σ(J) has a point of accumulation μ in some finite closed interval I.
Let λ and λ′ (λ �= λ′) be arbitrarily chosen from σ(J)∩ I∩ V δ

2
(μ), where V δ

2
(μ) is

a δ
2 -neighborhood of μ. Consider

∣∣(u(λ), u(λ′))l2(N)

∣∣ =

∣∣∣∣∣
∞∑

n=1

un(λ)un(λ′)

∣∣∣∣∣
≥

∣∣∣∣∣
N1∑

n=1

un(λ)un(λ′)

∣∣∣∣∣−
∣∣∣∣∣ ∑
n>N1

un(λ)un(λ′)

∣∣∣∣∣ .

(26)

As a consequence of Lemmas 5.1 and 5.2, one can choose N1, δ and n0 ≤ N1 so
that ∣∣∣∣∣ ∑

n>N1

un(λ)un(λ′)

∣∣∣∣∣ <
1
4
|un0(μ)|2 <

1
2
|un0(λ)|2 . (27)

Now, consider the first term in the right-hand side of (26)∣∣∣∣∣
N1∑

n=1

un(λ)un(λ′)

∣∣∣∣∣ ≥
N1∑

n=1

|un(λ)|2 −
∣∣∣∣∣

N1∑
n=1

un(λ)(un(λ′)− un(λ))

∣∣∣∣∣
≥ |u1(λ)|2 −

∣∣∣∣∣
N1∑

n=1

un(λ)(un(λ′)− un(λ))

∣∣∣∣∣ .
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Since |λ′ − λ| < δ, we have∣∣∣∣∣
N1∑

n=1

un(λ)(un(λ′)− un(λ))

∣∣∣∣∣ ≤ max
1≤n≤N1

ωn(δ)
N1∑

n=1

|un(λ)| ,

where
ωn(δ) = sup

|λ′−λ|<δ

λ′, λ∈I

|un(λ′)− un(λ)|

is the modulus of continuity of un(λ) on I. By the second assertion of Lemma 5.2,
taking δ sufficiently small, one obtains∣∣∣∣∣

N1∑
n=1

un(λ)(un(λ′)− un(λ))

∣∣∣∣∣ <
1
2
|un0(λ)|2 . (28)

From (26), (27), and (28)

(u(λ), u(λ′))l2(N) > |un0(λ)|2 − 1
2
|un0(λ)|2 − 1

2
|un0(λ)|2 = 0 .

But this cannot be true since J = J∗ and it must be that u(λ) ⊥ u(λ′).
�

Acknowledgment

I express my deep gratitude to the referee for very useful remarks and a hint on
the literature.

References

[1] N.I. Akhiezer and I.M. Glazman. Theory of linear operators in Hilbert space. Dover,
New York, 1993. Two volumes bound as one.

[2] Z. Benzaid and D.A. Lutz. Asymptotic representation of solutions of perturbed sys-
tems of linear difference equations. Stud. Appl. Math., 77 (1987) 195–221.

[3] E.A. Coddington and N. Levinson. Theory of ordinary differential equations.
McGraw-Hill, New York-Toronto-London, 1955.

[4] S.N. Elaydi. An introduction to difference equations. Undergraduate Texts in Math-
ematics. Springer-Verlag, New York, second edition, 1999.

[5] D.J. Gilbert and D.B. Pearson. On subordinacy and analysis of the spectrum of
one-dimensional Schrödinger operators. J. Math. Anal. Appl., 128 (1987) 30–56.
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Apdo. Postal 20-726
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