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II.1 Magnetization to Morphogenesis: A Brief
History of the Glazier—Graner—Hogeweg Model

James A. Glazier, Ariel Balter and Nikodem J. Poptawski

Abstract. This chapter discusses the history and development of what we
propose to rename the Glazier—-Graner-Hogeweg model (GGH model), start-
ing with its ancestors, simple models of magnetism, and concluding with its
current state as a powerful, cell-oriented method for simulating biological de-
velopment and tissue physiology. We will discuss some of the choices and
accidents of this development and some of the positive and negative conse-
quences of the model’s pedigree.

1. Introduction

Living cells, despite their great internal molecular complexity, do a few basic
things. They stick to each other, move actively up and down gradients in their
external environment, change shape and surface properties, exert forces on each
other and their environment, secrete and absorb materials, differentiate, grow,
divide, and die. A few may send electrical signals or perform other specialized
functions. Many approaches to building physical models of tissues are possible.
The GGH model uses a framework derived from statistical mechanics to describe
cell behaviors, a choice which is not at all obvious at first glance.

The GGH model is a cell-oriented, as opposed to a continuum or pointillistic
model. Continuum models ignore cells and treat tissues as continuous materials
with specific mechanical properties, completely ignoring the division of tissues into
cells. Pointillistic models treat biological tissues as collections of point-like cells,
ignoring many cell characteristics that are important to biological behaviors, such
as cell geometry and the adhesive interactions between cells at their membranes.
While both approaches are convenient and have had many successes in explaining
tissue development and physiology [33, and references therein], many biological
structures have length scales of a few cell diameters, e.g., capillaries or pancreatic
islets, and thus require explicit spatial descriptions of cells.

The GGH model is actually a framework for defining biological models rather
than a single model. GGH models define a biological structure consisting of the
configuration of a set of generalized cells, each represented on a cell lattice as a
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domain of lattice sites sharing the same cell index (generalized cells may represent
all or part of a real cell or any non-cellular material in the simulation), a set of
internal cell states for each cell (which may be quite complex), and a set of auziliary
fields (which may include diffusing chemicals, extracellular matrix (ECM ), gravity,
etc.). The heart of the GGH model is an effective energy or Hamiltonian, which
encapsulates almost all interactions between model elements, and optionally, a set
of partial differential equations (PDEs) and boundary conditions to describe the
evolution of the fields, and a description of the evolution of the internal cell states.
Terms in the effective energy often take the form of potential energies and elastic
constraints. We call the energy effective because its terms primarily describe cell
responses, which may not result from external forces (e.g., when a cell uses its
internal motile apparatus to move up or down a gradient of a chemical diffusing
in extracellular space (chemotazis), or attached to a substrate (haptotazis)).! The
GGH model also uses a few extra mechanisms, the most important of which is cell
division. The generalized-cell configuration evolves through stochastic changes at
individual lattice sites to minimize the effective energy. The classical GGH model
uses a modified Metropolis algorithm for this evolution. Since the GGH model
uses the cell as its natural level of abstraction and treats subcellular behaviors
phenomenologically, it reduces the interactions among the 10°-10° gene products
within each cell to a set of governing equations for the variation of the roughly
ten phenomenological behaviors we mentioned above. A key benefit of the GGH
formalism is that we can include almost any biological mechanism or cell behavior
we like, simply by adding appropriate terms to the effective energy. The GGH
model then automatically handles the interactions between mechanisms (though
we must be aware that its choices may not be the ones that we expect or want).
Thus, the GGH model provides a compact and efficient way to describe complex
biological phenomena. 2

The global parameters of the effective energy and those describing the prop-
erties of cells may be static, or evolve according to simple or complex descriptions
of biological or non-biological processes. F.g., the adhesion of cells might depend
on a model of cell signalling written in the form of reaction-kinetics (RK) coupled
ordinary differential equation (ODES), or the growth of cells might depend on a
neural-network model of genetic regulatory pathways. The GGH model itself is
agnostic about the models run inside each cell or outside the cell lattice, using
its Hamiltonian to translate the information those models provide into physical
structure and physiological behaviors [18, 19].

Glazier and Frangois Graner derived their model as an extension of the large-
q Potts model of statistical mechanics [17, 16], calling it the Eztended Potts model
and later the Cellular Potts model (CPM). The name Potts associates the CPM

1Cells can also haptotax in response to gradients in substrate texture or rigidity.

2The elements of the GGH model are separable. E.g., we could use a GGH Hamiltonian and
evolve it in a lattice-free way using a Finite-Element (FE) method (see chapter I1.4, section
1.5), or we could use a force-based formalism instead of a Hamiltonian formalism and evolve it
on-lattice using the modified Metropolis algorithm.
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with statistical models of equilibrium domain formation, which was appropriate
to Glazier and Graner’s simple version. Later extensions to the model to describe
cell behaviors mean that it now has little in common with its Potts ancestor. Key
differences between the Potts and GGH models include:

1. A shift from calculating static equilibrium statistics to kinetics. While the
modified Metropolis dynamics (which the GGH model uses to evolve a single
configuration quasi-deterministically) derives from the Metropolis algorithm
traditionally used with the Potts model, it does not obey the detailed-balance
conditions required to generate equilibrium ensembles.

2. Initial conditions emulating a particular biological configuration rather than
random initial conditions.

3. A shift from physically-motivated to biologically-motivated domain proper-
ties. E.g., biological cells remain connected, while Potts cells do not, so GGH
models often include mechanisms to enforce domain connectivity.

Because the GGH model’s behaviors and goals are almost totally different from
those of the Potts model, the analogy which the Potts name suggests is misleading.
Therefore, we propose to name it after its originators, Glazier and Graner and the
person who has done the most to extend it and bring it to its current prominence
in biological modeling, Paulien Hogeweg. From its ancestors, the GGH model has
inherited a number of peculiarities; we will discuss several of these and possible
solutions to some in sections 6 and 7. Because of its flexibility, extensibility and
ease of use, the GGH model has become the single most widely used cell-level
model of tissue development [18, 19, 20, 21, 31, 32, 50].

2. Historical Origins of the Glazier—Graner—-Hogeweg Model

The GGH model began as an extension of the large-q Potts Model, itself an ex-
tension of the Ising Model, a simple early model of ferromagnetism based on the
magnetic moments, or spins (o), of individual atoms and their interaction energies
(J). The interaction between a single pair of neighboring spins is often called a
link, or a bond. Spins interact via an energy function called a Hamiltonian, H. His-
torical usage explains many of the otherwise obscure choices of terms and symbols
in the mathematical formalism of the GGH model. We begin our historical survey
with the progenitor of the GGH model, the Ising model of magnetism.

2.1. Ferromagnetism and the Ising Model

2.1.1. Ferromagnetism. Ferromagnetic materials develop a permanent magnetic
field from a net orientation of the quantum-mechanical spins (o) of their compo-
nent atoms. The main goal of early statistical-mechanical models of magnetism
was to explain the 2nd-order (continuous) phase transition which occurs in iron
at the Curie temperature (T.). Below this temperature, materials such as iron are
ferromagnetic. In ferromagnetic materials, stable domains (connected, spatially-
extended areas with coaligned spins) form without an external field, giving a net
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magnetic polarization. For temperatures above T, thermal energy disrupts domain
formation, the material becomes paramagnetic and its spontaneous magnetization
drops suddenly to zero.

2.1.2. The Ising model. Ernst Ising constructed a simple model of magnetization
by making four radical simplifications [24]:

1. His atoms reside at regularly spaced points 7 on a lattice (throughout this
chapter, the symbols i j, k will denote two- or three-dimensional (2D or 8D)
vectors of positive integers indexing lattice sites, e.g., Z:(k, l,m): k,l,m e N).

2. Spins have only two allowed orientations, up (¢ = 1) and down (o = —1).

3. Each atom only interacts with its nearest neighbors on the lattice.

4. The interactions are classical, rather than quantum-mechanical, so the spins
obey Boltzmann statistics.

According to item 4 the relative probability of any configuration of spins {o'(7)} is
its Boltzmann probability, which depends on the configuration energy, or (Hamil-
tonian), H({c()}):

- _H{s@D)

P({o(i)}) = F 7, (1)
where k is Boltzmann’s constant and 7' is the temperature in degrees Kelvin.?
Thus, the higher the energy of a configuration, the less probable it is. In the absence
of any external field, the Ising Hamiltonian is the sum of interactions J(c (i), o(7))
between all pairs of spins (4, ]) that are nearest-neighbors ([i — j|=1):

Hune=3 3. @), ©)

(,7) neighbors

1
The factor of 3 comes because the summation double counts the interactions.

In the Ising model .J (o (), 0(j)) favors co-aligned neighbor spins (energy —.J) and
penalizes anti-aligned neighbors (energy +J), so we can write Eq.(2) as:
Mg =3 > oldo(i) (3)
(,7) neighbors
Lars Onsager analytically solved the Ising model in 2D and showed that the
expected ferromagnetic phase transition did occur [38]. No analytical solution is
known in 3D; however, a ferromagnetic phase transition still occurs for T, > 0.
In the Ising model, the transition between ferromagnetic and paramagnetic
states occurs because each unit of boundary between domains of opposite spin
costs an energy 2.J, so configurations with contorted domain boundaries and many
domains have higher energies than those with fewer, smoother domains. On the
other hand, the number of configurations composed of many contorted domains
is much larger than the number composed of a few smooth domains. If we pick
a configuration at random from such an ensemble of configurations distributed

3From now on, we will set k = 1, which is equivalent to measuring temperature in units of energy,
and omit k£ from our equations.
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according to the Boltzmann probability in Eq.(1), the domain structure we ex-
pect to find depends on the product of the multiplicity of the structure with the
Boltzmann probability. If 7' > 2.J, the greater number of random configurations
wins out over their smaller Boltzmann factors, so random configurations are much
more probable. At low temperatures, the cost of domain boundaries is so high that
the lower Boltzmann probabilities of random configurations overcomes their large
number, and large-domain configurations dominate. In the limit that 7' — 0, the
most probable state has all the spins in the same direction (one infinite domain).

2.1.3. Summary. The Ising model contains two key ideas that carry forward to
the GGH model:

1. The energy of mismatched links between neighboring spins on a lattice rep-
resents the energy per unit length of the boundaries between domains.

2. A temperature or fluctuation amplitude determines the probability of a con-
figuration.

However, the Ising model is far from being a model of biological cells because:

1. It lacks dynamics.
2. Many domains may share the same spin, while for biological modeling we
need a unique label for each cell.

2.2. The Potts Model

Renfrey B. Potts, in his PhD thesis, described a simple extension of the Ising
model which allowed multiple degenerate values of the spin, (i.e. the energy of a
link depends only on whether the neighboring spins are the same or different and
not on their particular values) [40, 41]. We can write the Potts version of Eq.(2) as:

Heows =7y (1=8(a(®),0()), (4)
(7,7) neighbors
where §(z,y) = 0ifz # yandlifz = y. We denote the number of possible spin
values by ¢. The Potts model has ferromagnetic and other phase transitions [6, 71].
In the limit of large ¢, the Potts model can have many coexisting domains at low
temperatures, but multiple domains can still share the same spin and it still lacks
the concept of dynamics.

2.2.1. Summary. The Potts model contains two key idea for biological simulations:

1. Individual domains can have individual spins (which in CPM and GGH sim-
ulations we refer to as cell indices.)
2. Domains have a boundary energy that can be used to model adhesivity.

However, the Potts model still has several shortcomings as a basic biological sim-
ulation:

1. It still lacks dynamics.

2. Many domains can share a single spin. In biological simulations we require
that each separate domain represent a unique object, such as a biological cell
or part of one.
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3. The Potts model specifies only a single contact energy between all spin values.
4. The Potts model does not have a way to control domain size and shape.

2.3. From Statistics to Kinetics

According to statistical mechanics, the distribution of equilibrium configurations
of a set of classical spins depends only on the Hamiltonian and the temperature.
Mathematically, we encapsulate the statistics for all configurations in the partition
function, which sums the Boltzmann probabilities of every configuration:

z Z o H({;(i))) . (5)
{o(}
Then the expectation value for any function f({o(7)}) is:
21y _HUeDD
¥ f(e@pe M
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2.3.1. Monte-Carlo methods. Unless the partition function and the relevant ex-
pectation values are soluble analytically, which is rare, we must evaluate them
numerically, which is effectively impossible because of the enormous number of
configurations to enumerate (in the Potts model, ¢"V, where N is the number of
spins in the lattice). Computationally, Ashkin and Teller showed that we can ne-
glect the vast majority of configurations which have high energies and thus very low
probabilities, making the calculation tractable [5]. In their Monte-Carlo method,
we start with any lattice configuration and ’jump’ randomly from configuration
to configuration with probabilities chosen so that the number of times we visit a
configuration is proportional to its Boltzmann probability. If we then average the
values of f that we calculate for such a sequence of configurations, the average
converges to (f). In effect, we have replaced an integral over configurations with a
time average. However, because the Ashkin—Teller method allows jumps between
any two configurations, it still lacks the intrinsic time order that kinetic models

require. The required probability for a transition between configurations {o (i)}
and {0’ (i)} is:
p{o@} = {o' @} _ D/ )
p({o'(D)} = {o(D)})  en/On/T
This condition is called detailed balance. Monte-Carlo methods do not obey de-
tailed balance at T' = 0.

2.3.2. The Metropolis algorithm. The Metropolis algorithm [35] radically modifies
the Ashkin—Teller method because it is local; i.e., instead of allowing transitions
between any two configurations, it allows transitions only between configurations
differing in their spin value at a single lattice site. We can think of the Metropolis
algorithm as diffusion in configuration space. This local behavior allows a natural
time ordering of configurations, because any configuration retains a memory of past
configurations, and limits allowed future configurations. The Metropolis algorithm
for a Hamiltonian, H is:
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1. Choose a lattice site at random. We call this the target site, which we wil
denote Ztarget and its spin, the target spin, which we will denote ogarget.

2. Pick any value of spin at random. We call this spin the t¢rial spin and denote
it Otrial-

3. Calculate the current configuration energy, Hinitial, and the energy of the
configuration if the target spin were changed to the trial spin value, Hepal-

4. Calculate the change this substitution would cause in the total energy, i.e.

AH = Hﬁnal - Hinitiah (8)
5. Accept this change (i.e. really change the spin value at the lattice site) with
probability:
- - 1 ifAH <O,
p(U(ztarget) = Otarget — U('Ltarget) = Utrial) = { e*AH/T fAH > 0. (9)

Steps 1 through 5 together are called a spin-copy attempt.
6. Go to 1.

On a lattice with N sites, we define one Monte-Carlo step (MCS) as N spin-copy
attempts. We also define the acceptance rate to be the average ratio of the number
of spin copies accepted to the number of spin-copy attempts. If the acceptance
rate is small (as a rule of thumb, the acceptance rate should be greater than 0.01),
the Monte-Carlo method is inefficient and we say that the computation is stiff for
that Hamiltonian. Clearly, the acceptance rate increases as T increases. For T' > 0
(because the transition probability, Eq.(9) obeys Eq.(7), the long-term distribution
of configurations obeys Boltzmann statistics, Eq.(1).

2.3.3. The use of the Metropolis algorithm for quasi-deterministic kinetics. Two
behaviors suggest the possibility of using the Metropolis algorithm for kinetic
simulations:

1. While the long-time behavior of the Metropolis algorithm is purely statistical,
at low temperatures, over short times, the transition probability tends to
lower the configuration energy.

2. For T' = 0, the Metropolis algorithm does not produce a statistical equilib-
rium. Instead it drives the configurations down energy gradients to a local
energy minimum, where evolution stops.

Consider a sequence of configurations, each differing by one spin value, {§1, S,, b
with associated energies, {H; > Ha > ...}. Then the net rate of transition (the
difference between the forward and backward transition probablilities):
— - - — - — —HitHi41
7(Si = Siy1) = p(Si — Siy1) = p(Siy1 — Si) =1—e T . (10)
If we choose T such that % is small, but not too small, for all i, * then,

_Hi‘*'THHl N Hi — Hiv1 —Hi + Hit1

1—e 7 +0O(( T )?), (11)

4The existence of such a T' depends on energies being similar for nearby configurations, which is
true for Ising, Potts, CPM and GGH Hamiltonians.
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so the net rate:
7’(51 — §¢+1) ~Hi—Hiy1- (12)
In this case, if we take one spin-copy attempt as our time unit, the average speed
from 5‘; — .S_';-H is:
vel(g; — §i+l) = %67’( . (§i+1 - S’;) (13)
Thus, the average time evolution of the configuration obeys the Aristotelian or
overdamped force—velocity relation:

VH = F = pvel, (14)
where p is an effective mobility. The movements of individual boundary elements
of a domain may be quite random, but the average velocities of large domains will
be deterministic when the argument of the exponential in Eq.(10) is not too large.’
When the argument is small enough, which is the case in most biological simula-
tions, the deterministic velocity relationship is indeed linear and obeys Eq.(14),
[70] (see also chapter I1.2 by Marée et al.). This result is the fundamental justifica-
tion for using Metropolis-like dynamics in kinetic simulations. Changing the dyna-
mics, e.g., from Metropolis to Glauber, may change the results in complex and some-
times unpredictable ways [70].

Using Metropolis dynamics for kinetic simulations causes a number of prob-
lems. That Eq.(13) requires that the argument of the exponential in Eq.(10) be
small, makes our original use of the Boltzmann factor in Eq.(9) questionable. How-
ever, no one has studied the effects on GGH modeling of switching to a different
weighting factor in Eq.(9).

The exact relation between Monte-Carlo spin-copy attempts and continuous
time are still the subject of debate and are a persistent source of criticism of
kinetic applications of Metropolis-like algorithms in GGH simulations. In addition,
because only the time-averaged movement obeys the deterministic kinetics, the
time order of events occurring at different lattice sites is ambiguous over short
times. Several more sophisticated approaches to dynamics are possible (see chapter
I1.4, section 3.1).

3. Kinetic Potts Simulations — From Metal Grains to Foams
3.1. From the Potts Model to Coarsening

The use of Metropolis methods to reveal the quasi-deterministic kinetics of con-
figurations evolving under a Hamiltonian, led to a great expansion of the range of
questions that Monte-Carlo methods could address. One new area of interest in
the early 1980s was the kinetics of metallic grain growth. Most simple metals are
composed of microcrystals, or grains, each of which has a particular crystalline
lattice orientation. The atoms at the surfaces of these grains have a higher energy
than those in the bulk because of their missing neighbors. We can characterize this

5Like a ferromagnet, the CPM has a critical temperature analogous to the Curie temperature
(see section 6.1). Quasi-deterministic motion occurs only for temperatures well below this critical
temperature.
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excess energy as a boundary energy. Atoms in convex regions of a grain’s surface
have a higher energy than those in concave regions, in particular than those in
the concave face of an adjoining grain, because they have more missing neighbors.
Thus, an atom at a convex curved boundary can reduce its energy by “hopping”
across the grain boundary to the concave side. The movement of atoms, which we
can equivalently view as the movement of grain boundaries, lowers the net con-
figuration energy, but requires thermal activation because an atom has a higher
energy when it is in the space between grains than when it is part of one. Thus,
while grains are stable at low temperatures, at high temperatures metallic mi-
crostructure changes through annealing or coarsening, with the net size of grains
growing because of grain disappearance.

3.1.1. The Exxon model of grain growth. In the early 1980s, a group of researchers
at Exxon Research, Michael P. Anderson, Gary S. Grest, Paradeep S. Sahni, and
David J. Srolovitz, noticed that the Potts Hamiltonian is simply J times the total
boundary length of the configuration [45, 44, 46]. They drew an analogy between
grain growth and the Potts model, where they took the lattice sites to correspond
to atoms, the specific spin values to different crystalline orientations, and links
between different spin domains to grain boundaries. They usually assumed that
domains were initially connected and compact, with a different spin assigned to
each grain to avoid grain coalescence.b

In grain growth heterogeneous nucleation does not occur, i.e. a spin of type o
will not suddenly appear in the middle of a domain of spin ¢’. Since the Metropolis
algorithm allows heterogeneous nucleation, the Exxon group modified the Metrop-
olis algorithm to prevent it by selecting the trial spin from the neighborhood of the
target spin. We will call the lattice site of the trial spin Zsource and its value ogource
Though they did not recognize it at the time, the concept of a copy of lattice value
with a source and target implied a copy direction, which proved crucial for later
development of the GGH model. Forbidding heterogeneous nucleation means that
evolution occurs only at domain boundaries. It also violates detailed balance, a
further move away from statistical mechanics and towards purely kinetic modeling.

For low T', using the Potts Hamiltonian and the modified Metropolis dynam-
ics, individual domains evolve in a manner that resembles the growth of metallic
grains during annealing at high temperatures. The simulated evolution of the dis-
tributions of domain shapes, sizes and correlations agreed very well with experi-
ments in metals [66].

3.1.2. Coarsening in foams. Glazier, working with the Exxon group, later showed
that the simulated evolution also closely matched the experimental evolution of
bubbles in 2D liquid soap froths, where gas diffuses across soap films depending on
their curvatures [13, 15]. In this case, a link between two different spins represents

6 Allowing multiple grains to have the same spin allows coalescence, which occurs in some metals.
Since grain boundaries are simply links between lattice sites with different spins, when two grains
with the same spin come into contact, they immediately fuse into one large grain.
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FIGURE 1. An evolving soap froth (left) and a large-q Potts model simu-
lation of grain growth (right) using the state of the soap froth at 2044 min
as the initial condition. Adapted from [15].

a physical object, a unit of soap film, and the spins represent the gas inside the
individual bubbles. The use of a mismatched link to represent a physical object
— a soap film — was an important conceptual advance towards the GGH model.
Glazier later extended these results to 3D [14]. Fig.1 shows the evolution of a soap
froth and a Potts simulation using the configuration of the soap froth at 2044 min
as its initial condition [15]. The use of Potts-derived models to study coarsening
remains an active field of research [22, 30, 61, 60, 58]. For a review of the earlier
history of this work, see [66].

3.1.3. Lattice anisotropy. The Exxon group’s grain-growth simulations revealed
a problem with the Potts approach. The energy of a unit of grain boundary is
anisotropic; i.e., it depends on the boundary’s orientation with respect to the



I1.1 Magnetization to Morphogenesis: A History of GGH Model 89

lattice. Such lattice anisotropy can lead to alignment of grain boundaries along
preferred axes, and even to boundary pinning at low temperatures. Holm et al.’s
studies of these effects [23] led to the general adoption of longer interaction ranges
for Potts simulations, 4.e. when calculating the boundary energy, we consider
nth-nearest neighbors, where n is an integer. Larger values of n reduce lattice
anisotropy effects, but increase computation time, compared to simulations with
smaller values of n. Hexagonal lattices greatly reduce anisotropy compared to
square lattices with the same neighbor range and are not difficult to implement
computationally, but have not been much used in simulations. The optimum choice
of lattice and the use of a distance-dependent J factor to further reduce lattice
anisotropy remain to be examined in a systematic fashion.

3.1.4. Summary. The Exxon simulations introduced many key ideas — the use of
uniquely-labeled compact domains to identify different grains, the study of do-
main kinetics under the influence of boundary energy and fluctuations, the use of
mismatched links to represent membranes, and the modification of the Metropolis
algorithm to prevent heterogeneous nucleation. They also revealed the problem of
lattice anisotropy, which still afflicts GGH simulations.

3.2. From Grains to Relaxed Foams — Constraints in an Extended Potts Model

One significant difference between foams and metallic grains is that the growth
rate and relaxation rate of boundary shape of a metallic grain are the same, while
in foams boundary relaxation is much faster than growth. The result is that grains
can have irregular shapes, while foam boundary walls (soap films) are near-perfect
minimal surfaces (circular arcs in 2D). In a brilliantly-presented and careful study,
Weaire and Kermode extended the Potts model using constraints to simulate coars-
ening in 2D liquid foams [67, 68].

3.2.1. Constraints. The use of constraints to describe interactions comes from clas-
sical mechanics. F.g., we can describe circular motion by imposing the constraint
that a particle remains a constant distance from a specified point. We use the cal-
culus of variations to derive equations of motion under a constraint, by minimizing
an integral of a Hamiltonian (or Lagrangian) with an added physical constraint
condition, which is the product of a Lagrange multiplier, A (the generalized force
needed to maintain the constraint), with a function which is minimal when the
constraint is satisfied.

In the context of Monte-Carlo dynamics, we can write a constraint energy
in a general elastic form: A(value — target value)?. This constraint is zero if
value = target value and grows as wvalue diverges from target value. We call
the constraint elastic, because the exponent of 2 occurs in ideal springs and elastic
solids (we could, in principle, use any positive even integer). Because the con-
straint energy decreases smoothly to a minimum when the constraint is satisfied,
the modified Metropolis algorithm automatically drives any configuration towards
one that satisfies the constraint. In the presence of multiple terms in a Hamilton-
ian, no constraint is usually satisfied exactly, because no configuration will satisfy
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all constraints and minimize all energies simultaneously (see chapter I1.2, section
5). While increasing the appropriate A can force the configuration to satisfy any
constraint to any desired accuracy, increasing A/T reduces the acceptance rate,
which slows the simulation timescale and makes it computationally inefficient. If
A/T becomes too large, the simulation will freeze and only limited configuration
evolution will occur. In the context of numerically solving differential equations,
such constraints are appropriately called stiff. Since we can make value depend
on the configuration in any way we want, and also make target value vary in any
way we like in space or time, we can impose almost any behavior using constraints
(although its expression may be cumbersome).

3.2.2. The Weaire-Kermode model for soap froths. Because Weaire and Kermode
wanted domain growth to be slow compared to boundary relaxation and because
they did not know that the domains in the large-g Potts model already obeyed von
Neumann’s law [65], they added an elastic constraint on the volume of each domain
and evolved the target volumes very slowly according to this law. They then used
a Potts boundary-energy term in their Hamiltonian to impose an effective surface
tension on their domains, causing boundaries to relax towards foam-like minimal-
surface shapes [69]:

H=J > (1=60(0),0()+AY (v(o) = Vi(0)), (15)

(7,5) neighbors

where A is an inverse gas compressibility, v(o) is the number of lattice sites in
the domain with spin o, and V;(o) is the target number of sites for that domain.
One useful result from the constraint formalism is that P = —2A(v(o) — Vi(0))
is the pressure inside the domain. A domain with v < V; has a positive internal
pressure, while a domain with v > V; has a negative pressure.

The shapes of the simulated domains in the Weaire-Kermode model were
much more foam-like than those in Glazier’s simulations. Unfortunately, this pio-
neering work was not followed up.

3.2.3. Summary. With Weaire and Kermode’s extension of the Potts model to
include a volume constraint [69], all that a model of biological cells still needed
was a boundary energy that depended on domain type, an idea that goes back to
the Heisenberg model of magnetism [72].

4. The Origin of the Cellular Potts Model

In this section we discuss the origin of the type-dependent boundary energies be-
tween cells used in the CPM and GGH model and write the full Hamiltonian for
the CPM. The inspiration for the CPM came from experimental and theoretical
work by the biologist Malcolm S. Steinberg at Princeton University on biological
cell-sorting experiments and from later experiments on regeneration in aggregates
of hydra cells (Hydra vulgaris) by the biophysicist Yasuji Sawada at Tohoku Uni-
versity, Sendai, Japan [48, 25, 42].
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4.1. Cell Adhesion and Cell Sorting

Cell adhesion is fundamental to multicellular organisms, and to many unicellular
organisms as well [10]. If cells could not stick to each other and to extracellular
materials, building complex life would be impossible. Adhesion also provides a
mechanism for controlling structures, as well as holding them together once they
have formed.

In the late 1950s, Steinberg, while trying to understand how differences in
gene expression between cells could translate into complex structures in embryos,
noticed that during embryonic development, the behavior of aggregates of cells
resembled the behavior of viscous fluids. For example, a random mixture of em-
bryonic cells of two types, when formed into a 3D aggregate, reorganized into a
compact ball with the more cohesive cell type surrounded by the less cohesive cell
type in a phenomenon known as cell sorting [4, 3]. Differences in cohesion result-
ing from differences in the numbers and types of cell adhesion molecules on cell
surfaces [11, 12, 9] could also explain the layered structure of the embryonic retina
and the engulfment of a more cohesive tissue by a less cohesive tissue. Steinberg’s
Differential Adhesion Hypothesis (DAH) proposed that the final configuration of
an initially arbitrary configuration of embryonic cells minimized their total free
energy, so tissues really did behave like viscous fluids [54, 55, 56, 57].7

The many families of adhesion molecules (CAMs, cadherins, etc.) provided
a mechanism for embryos to control the relative adhesivities of their various cell
types to each other and to the noncellular ECM surrounding them, and thus to
build complex structures. However, like the Ising model, the DAH was concerned
only with equilibrium configurations, not kinetics.

4.2. The Cellular Potts Model

In 1991, Glazier joined the Sawada laboratory at Tohoku University in Sendai,
Japan, which was famous for its studies on the regeneration of adult hydra from
randomly mixed aggregates of their dissociated cells [48, 47, 49, 2, 53, 25, 42].
There, Glazier met Graner, who was studying the first phase of hydra regeneration,
when endodermal cells sorted to the center of the aggregate and ectodermal cells
to the surface [59]. Graner wanted to see if the DAH explained his results. Glazier
realized that he could extend his foam simulations with the Exxon group to ex-
plore the kinetics and thermodynamics of biological cell sorting, e.g., to determine
whether the cell sorting that Steinberg and Armstrong had observed experimen-
tally required active cell motility, which would imply that the energy landscape of
the configuration space was rough, with many local minima, or could occur in the
absence of fluctuations, which would imply that the energy landscape was smooth,
with a single global minimum for the sorted state.

Glazier also realized that the domains could represent more than biological
cells — in particular he introduced the concept of a domain as a generalized cell,

"In adult animal tissues and in plants, cells usually bind to each other tightly via specialized
junctional structures and do not move relative to each other. Exceptions include wound healing,
immune response and cancer.
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FIGURE 2. A typical configuration of the CPM or GGH model in 2D. The
numerals indicate cell index values. The levels of gray indicate cell types. A
cell is a collection of lattice sites with the same index value.

which could be a biological cell, a sub-element of a cell, allowing compartmental
cell models, or part of the extracellular medium, a fluid or a solid, depending on
the domains’ characteristics. This redefinition of everything in the simulation to
be composed of generalized cells allows the same model to treat many different
types of object, greatly simplifying model building.

Glazier and Graner’s model discretized the continuous cell configuration onto
a square lattice. A collection of lattice sites with the same index represented a gen-
eralized cell, as shown in Fig.2, with a unique index for each cell o(i) € [1,..., N]
defined at each lattice site 7, and a cell type 7(0) for each cell. Links between
different indices represented regions of contact between two cell membranes. From
now on, we will drop the confusing term spin and refer to cell indices, since spin
has no meaning in our biological context.

Since the cell volumes were constant and uniform in cell-sorting experiments,
Glazier and Graner used an elastic volume constraint based on Weaire and Ker-
mode’s work on foams [69] to maintain the size of the biological cells. To represent
variations in adhesion between cells of different types, they defined a Potts-like
boundary energy which depended on the cell types at a link, J(7(c),7(c”)) (see
Fig.2), so the boundary energy term in the Potts model (equation 4) became:
Hooundary = », J(r(0(D),7(0()))(1 = 6(a(@), 0 (1)), (16)

(f,f) neighbors
where the boundary energy coefficients are symmetric,
J(r, ") = J(r', 7). (17)

Glazier and Graner assumed that the boundary energies were positive (J > 0),
which proved to have unfortunate consequences (see section 6.2 below). The full
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Hamiltonian for Glazier and Graner’s CPM is:

Hepm= Y J(r(o(@),7(0(1)(1 ~6(0(D),0())))

(Z,;) neighbors

+ Mval (1) (v(o) = Vi(r(a)))?, (18)

where, v(0) is the volume in lattice sites of cell o, V; its target volume, and Ayo1(7)
the strength of the volume constraint. In Glazier and Graner’s original papers, the
value of V; was constant for all biological cells and the volume of the generalized
cell representing the surrounding medium was unconstrained (Ayo1(medium) = 0)
[17, 16].

If we add a constant to all Js, and also add the same constant to the interac-
tion energy between like indices (which is 0 in Heontact in Eq.(18) and requires us
to change the form of the equation), the evolution is unchanged. Since the kinetics
in the modified Metropolis algorithm depends only on two things, the sign of AH
and the value of AH/T (see Eq.(9)), if we multiply all the terms in the Hamil-
tonian by a positive constant and multiply the temperature as well, the evolution
of configurations remains unchanged. Therefore, we have two degrees of freedom,
one additive and one multiplicative, in setting the scale for the CPM parameters
(see chapter I1.2, section 4.1).

Since biological cells move actively (in the case of vertebrate cells usually by
extending and retracting their membrane using their cytoskeletons), since these
membrane fluctuations are very roughly analogous to thermal fluctuations (though
they have a non-thermal origin) and since cells do not suddenly appear inside other
cells, Glazier and Graner used the modified Metropolis algorithm of the Exxon
Group for the dynamics of their model.

4.2.1. Smoothing (“annealing”). The CPM runs with 7" > 0 and the usual val-
ues of of AH/T are fairly small. Thus fluctuations are large, especially for more
cohesive cells (those with lower J values) and cell boundaries can become highly
contorted. In this case, cells can become disconnected by spinning off small (usu-
ally single lattice-site) blebs (we take the name from the small membrane-encased
blobs of cytoplasm which migrating cells sometimes leave behind). Neither blebs
nor contorted boundaries are biologically realistic. Both can affect calculations
of surface areas, neighbors and volumes. In Glazier and Graner’s original papers,
before they calculated statistics for a configuration, they eliminated disconnected
blebs and smoothed cell boundaries by running their simulation with 7" = 0 for
five, or more, MCS, using the normal Hamiltonian and modified Metropolis dy-
namics. Rather confusingly, they called this smoothing annealing, even though it
is not the same as normal annealing in metals. Later studies have generally not
needed smoothing to reproduce biologically-observed behaviors.
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5. Classical CPM Results

Because of Glazier and Graner’s backgrounds in physics, their initial studies of
cell sorting simulations resembled in many ways the Exxon group’s statistical-
mechanics studies of grain growth. They first validated the use of the CPM in a
biological context by studying its phase transitions and the behaviors of simulated
cells of a single type as a function of individual model parameters (e.g., to establish
the optimum range for J/T and to check for excessive lattice-anisotropy effects).
They then tried to simulate Steinberg and Armstrong’s experiments on cell sorting,
studying the behavior of mixtures of two types of cells, high-boundary-energy, low-
adhesivity cells, and low-boundary-energy, high-adhesivity cells, surrounded by a
single generalized cell representing fluid medium.

Their single most important result was to show that cell sorting is an
activated process requir-ing membrane fluctuations [16]. In their CPM simula-
tions at low temperatures, cells clustered but clusters could not coalesce. This
observation was a good example of the way that simulations can clarify a
complex experimental situation. Experiments had previously shown (and later
verified) that introducing drugs which blocked membrane fluctuations into the
fluid medium containing the cell aggregates inhibited cell sorting [4, 36].
However, the drugs used interfered with the cells’ cytoskeletons. Since the
adhesion molecules, which determine cell-cell adhesivities, bind to the cyto-
skeleton and change their adhesivity when the cytoskeleton is disrupted, the
experiments could not determine definitively whether the failure to observe
sorting was due to lack of cell motility or to changes in cell-cell adhesivity. As in
this case, biological experiments often lack clean control parameters. In their si-
mulations, Glazier and Graner were able first to change cell motility while
keeping adhesion constant and then to change cell adhesion while keeping cell
motility constant. By comparing the results in these two cases, they were able to
show that loss of cell motility indeed prevented sorting.

They then examined the various possible hierarchies of boundary energies
(Js) to characterize the classes of typical patterns which they could obtain. The
variety of outcomes, even in this very simple situation, showed the power of varia-
tions in the expression of cell adhesion molecules to control embryonic morphology
(see a simulation MovII.1.1 form the accompanying DVD).

6. Peculiarities of the CPM

Glazier and Graner were trying to build a model so simple that they could under-
stand the physics of all of its components. Thus the CPM has certain peculiarities,
which, while not generally critical to biological simulations, may cause confusion
and artifacts. If we are aware of these potential problems, we can usually take
steps to make sure that they do not invalidate our results.
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6.1. Temperature

We mentioned in section 5 that cell sorting (and indeed any interesting biological
phenomenon we might want to investigate) requires cell motility both experimen-
tally and in simulations. Thus we must pick a dynamics to go with our Hamiltonian.
From a physical point of view, the modified Metropolis algorithm is the simplest
choice.

Temperature can cause problems in a number of contexts in the CPM (see
chapter I1.2, section 6). The CPM has several phase transitions in temperature,
three of which, in particular, are wholly non-biological and limit the range of
temperatures which simulations can use. As a rough guide for picking appropriate
values of J to avoid ill effects, we want to accept a significant fraction of index-
copy attempts but not so many that the lattice pattern melts. Thus we need
0.2 < AH/T < 2. If the number of neighbors per lattice site is n, the typical
fluctuation energy per index-copy is Jn/2, so we need to pick all of our J values
such that 0.2 < Jn/2T < 2, which may not always be possible. If J is too large
relative to T' the boundaries of the cell will become rough and the cell will shed
blebs. If J is too small relative to T' the cell boundaries will become stiff and align
with the lattice’s preferred directions.

Only for small bacteria are actual thermal fluctuations important to motil-
ity. In all other cases, motility depends on molecular motors of varying kinds. The
motivation for the use of the modified Metropolis dynamics was amoeboid motion
of the mesenchymal cells in Steinberg and Armstrong’s experiments, where fluc-
tuations in a cell’s cytoskeleton cause its membrane to ruffle, moving gently back
and forth in a random manner. However, in most cases, cell motility results from
different mechanisms [1], the geometries of which differ greatly from that of the
typical membrane fluctuations in CPM cells.

Because active molecular motors drive all of these movements, the typical
energy spectrum of membrane or cell movements need not follow the Boltzmann
distribution of modified Metropolis dynamics. If the fluctuation spectrum of the
movements matches the depth of local minima in a configuration-energy land-
scape, rearrangements may happen much faster than they would for thermal
fluctuations, speeding the rate of configuration evolution. Worse, in almost every
biological case, movements in a given direction tend to persist for fairly long
times (up to a minute), because assembling and disassembling the molecular ma-
chinery responsible for cell movement takes time. Thus the assumption that mo-
tion is temporally uncorrelated, fails. We will discuss in chapter II1.4, section 1.1
some ways to put these correlations back into GGH models. Sometimes these
correlations have no significant effect. Unfortunately, when an energy landscape
is rough, as it is for most biologically interesting problems, correlations and
non-thermal fluctuation spectra can change not only time scales but time or-
dering [64]. Thus, in some cases, our assessment of the feasibility of a biological
mechanism based on simulations may be incorrect.
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Ironically, given these issues, the use of T' in GGH simulations has almost
never been a significant limitation. Where it has, simple fixes like including an
inertial constraint (see chapter I1.4, section 1.1) seem to have solved the problem.
Nevertheless, improving the realism of GGH kinetics is worthy of attention, exper-
imentally (to characterize actual kinetics), computationally and theoretically (to
understand the significance of different kinetic behaviors to configuration evolution
and scaling).

6.2. Diffusion, Energy and Parameter Choices

Glazier and Graner’s original model, following the physical reality in foams and
metallic grains, assumed that boundary energies were positive, so the boundary
energy term served both to minimize boundary areas and to determine the optimal
arrangement of cells. A negative J results in the cell boundaries breaking up to
maximize their boundaries. When Glazier and collaborators began studying cell
diffusion rates, they found that more cohesive cells (smaller J > 0) had more
crumpled surfaces, larger membrane fluctuations, and diffused further than less
cohesive cells, exactly the opposite of the expected result [42].8 Since biological
cells usually have adhesive interactions with each other and the ECM, the correct
way to solve this problem is to use negative J and constrain the surface area
separately (see section 7.1.1). Equivalently, Hogeweg further modified the modified
Metropolis dynamics by shifting the Boltzmann probability in Eq.(9) to negative
AEjy, which gives the same effect:

. . 1 if AH < AE,
p(g(ztargct) = Otarget — U(ltargct) = e*(AH*AEOVT lfAH > AE()

We can equivalently view this modified dynamics as introducing an extra dissipa-
tion energy per index copy [31, 32]. Negative Js give correct diffusion hierarchies
[42]. Since the configurations observed are independent of the sign of J (only the
diffusion constants are wrong), many researchers continue to use simpler J > 0
models, when they do not care about relative rates.

While relating GGH parameters to experimentally-meaningful material prop-
erties has proved difficult, the recent derivation of the continuous limit of the CPM
may help to connect simulation and physical parameters [63].

(19)

6.3. Intrinsic Dissipation and Viscosity

To make CPM simulations mechanically realistic, we would like to be able to
specify the resistance to motion that cells experience when moving through a fluid
due to dissipation and viscosity. Dissipation is the loss of energy due to motion,
i.e. resistance to all motion. Viscosity is dissipation which results from velocity
gradients. The CPM is intrinsically dissipative, but not viscous. Consider a channel
filled with CPM cells, which strongly adhere to the walls of the channel (small J).
If we push the cells through the channel by applying a gradient, the cells will
experience plug flow, i.e. all cells move with the same average velocity. The cells
touching the walls do not move slower than those in the center of the channel, as

81n certain situations, strong binding between cells can lead to cytoskeletal changes which increase
cell motility, in which case using positive energies may be more appropriate biologically.
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we would expect in a viscous fluid. We can implement viscosity in the CPM (see
chapter I1.4, section 1.2.1) to produce the correct velocity profile. However, an
object moving through a fluid with CPM viscosity experiences both viscous and
intrinsic dissipation, while a real fluid has no intrinsic dissipation.

7. From the CPM to the GGH Model

The basic CPM models only the effects of differential adhesion, cell volume and
fluctuations. The GGH model adds many of the other biological mechanisms we
discussed in section 1 and also addresses some of the issues in section 6.

7.1. Simple Extensions to the Hamiltonian

7.1.1. Surface area constraints and negative boundary energies. Biological cells
have a defined amount of cell membrane, which we can represent with a surface
area constraint:

Hsurtace = Z As(T)(s(0) — SE(T(U)))27 (20)

where s(o) is the surface area of cell o and S; is its target surface area in lattice
sites. Changing the ratio:

_ 3V4xsY?
= T
changes the rigidity of the cell. Like a slowly inflated balloon (which corresponds
to decreasing R), for R > 1 the cell is floppy, while for R = 1 the cell is spherical
and for R < 1 increasingly rigid. While Eq.(20) is the simplest form of surface area
constraint, other forms are possible and may be preferable, e.g.:

Héurface = Z >\S (7-) (8(0)1}(0—)_2/3 - St‘/;:_2/3)27 (22)

R (21)

keeps the R of a cell constant as it grows.

Constraining the cell surface area leaves us free to define cells’” boundary
energies J to be either positive or negative, depending on their real biological
values, eliminating the diffusion-hierarchy problem we noted in section 6.2.

7.2. Non-Hamiltonian Extensions

7.2.1. Cell growth and proliferation. The simplest way to simulate the growth
of cells is to allow Vi and S; to increase gradually with time from a given initial
value, V;g, to double that value, 2V4 [7], at a rate proportional to the concentration
of a nutrient or growth factor C' ([39], see also a simulation MovII.1.2 from the
accompanying DVD):
Y o (23)
dt growth factor-
For large C, a real cell’s growth rate saturates, which we can include by replacing C'
by a Michaelis—Menten or Hill form ﬁf%, where a and 3 are constants depending

on cell type. Cells can also grow when they are stretched [43, 18].
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7.2.2. Cell division. To model cell division (mitosis) when a cell o reaches a given
doubling volume, we assign a new index ¢’ to half of the existing cell’s lattice sites,
dividing the cell either along the cell’s shortest axis [18, 19], or randomly [37, 39].
In both cases, the new cells have target volumes V;/2 [7]. The new target volumes
ensure that the pressure inside the cells (chapter I1.2, section 5) does not change
during mitosis.

7.3. Fields, Forces and Diffusion

A key early GGH extension of the CPM was the inclusion of multiple, additional
lattices to track the concentrations of molecules (or external driving potentials)
that affect the cell behaviors. We refer to the lattice of cell indices as the cell field
and the additional lattices as external or auxiliary fields. The CPM automatically
handles contact forces between cells. However, we would like to describe other
influences on cell movement as well, for instance, external physical forces, or indi-
rect effects like chemotaxis. In the context of the GGH model, we implement any
influence on cell movement either through a generalized potential energy added to
the Hamiltonian or by directional biasing of index-copy acceptance probabilities.
The latter has the form of a generalized force (chapter I1.2, section 3).

The primary use of fields is to record the concentration of signaling chemicals
or other biomolecules, which we will usually denote C (Z), that may diffuse and react
(section 7.3.2) and influence cell behavior via chemotaxis (section 7.3.1) or in other
ways. Usually simple fields are thought of as occupying the same space as the cell
lattice (i.e. cells do not exclude fields), although we can use repulsive haptotaxis
to keep cells and fields spatially distinct. Fields may also be attached to cells or
subcells rather than to the lattice (see chapter I1.4, section 1.2.2) in which case we
denote the field C(o) and its value at a lattice site is:

C(@) = Clo(D)v ™" (o()), (24)

i.e. the amount of chemical at a particular lattice site equals the amount in the
cell divided by the cell volume.

In some simple cases, we can represent the field as an analytic function of
position. E.g., a graviational field in direction n produces a gravitational potential
energy:

Hegravity = — Z Peraviey (T(0(2))) (T 1), (25)

7

where figravity (T(07(7))) is the density of cell o [28].
Yi Jiang in her PhD thesis [27] applied shear forces directly to cells by in-
cluding a term in the Hamiltonian of form:

H=Yf(io,t). (26)

The force can depend on position, cell type and time.
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7.3.1. Chemotaxis and haptotaxis. If cell adhesion is the most important biologi-
cal mechanism permitting multicellularity (allowing cells to stick together to form
larger groups), chemotaxis is the second most important (see chapter II.2, sec-
tion 7.3). Adhesion by itself can only produce layers and blobs, while adhesion in
conjunction with chemotaxis can produce a plausible facsimile of a multicellular
organism like a slime mold [32]. Cells can respond to diffusible chemicals which
may be present in the ECM (chemotazis) as well as to chemicals bound to sub-
strates (haptotazis, which also includes cell movement in response to changes in
substrate rigidity, texture or strain). Chemotaxis is crucial for long-range signaling
during morphogenesis, allowing cells at one end of a tissue to control the motion
of cells at the other end. Haptotaxis is crucial for shape stabilization. For exam-
ple, pre-cartilage mesenchymal cells will travel to regions where the substrate has
more non-diffusing fibronectin, where they will differentiate into cartilage and then
bone.

The ability to simulate chemotaxis in the GGH model depends on cells re-
sponding in a simple fashion to external chemical gradients. The simplest prototype
for such a response is if,

T o ucenﬁC, (27)
where C'(Z) is a chemical field and e is the cell’s chemotactic response param-
eter. Then C has the form of a chemical potential and pcenC has the form of a
potential energy, so adding the term,

Hchemotaxis - Ncellc(f); (28)

to the main Hamiltonian causes the cell to move up (1 < 0) or down (u > 0) the
chemical gradient.? Clearly this functional form is an oversimplification. Cells can-
not respond to infinitely small gradients and cells do not go infinitely fast in large
gradients. A sigmoidal response is more appropriate. Additionally, the value of i
is not static for a single cell. Cells adapt to external concentrations of chemicals,
becoming less sensitive when chemical concentrations are high and more sensitive
when they are low [52]. The timescale for adaptation varies greatly. In extreme
cases cells respond only to abrupt temporal changes in chemical concentration
rather than to spatial gradients.

Exactly how we translate the simple idea in Eq.(28) into an effective energy
is somewhat complicated and depends on the idea of an index copy direction (see
section 3.1.1), which corresponds physically to the direction of motion of a unit
of cell membrane. The different implementations of chemotaxis/haptotaxis in the
GGH model depend on whether we we consider the chemical field at the target
lattice site only, at both the target and source lattice sites, or at the source lattice
site only, and whether we use the chemotactic response of the source cell, target

9Most bacteria respond to chemical gradients in a totally different way, through chemokinesis.
In this case, the bacterium moves (runs) in a roughly straight line for a period of time, then
turns and randomizes its direction and moves off again in a straight line. If the external chemical
concentration at the bacterium is increasing, the duration of the runs increases. If the concen-
tration is decreasing, the duration of the runs decreases. The net result favors movement up the
gradient and the net movement of the bacterium follows Eq.(28).
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cell, or a combination. Depending on the particular biological situation, different
choices may be appropriate. E.g., when a cell forms a leading edge, it typically
responds to chemical concentration changes at the leading edge only and not at
the trailing edge, in which case we will want to consider the chemotactic response
of the source cell only.

The most direct way to implement the phenomenological idea expressed in
Eq. (28) is to use a Hamiltonian term of the form [27],

Hchcmotaxis == ,Uf(o—sourcc)c(;targct)a (29)

This reflects the potential energy form of Eq. (28), which makes it an equation
of state. However, this form of chemotaxis also acts only at boundaries between
differently chemotacting cells. Thus, a big block of identically chemotacting cells
will respond very weakly because they only sense the chemical field at their edges.
In practice, Eq. (29) leads to

AH chemotaxis = (,U(O'target) - U(Usource ) ) C(Z_.:carget ) . (30)

Savill and Hogeweg [50], in their models of Dictyostelium discoideum chemo-
taxis, used an energy change proportional to the difference between the local chem-
ical concentrations at the destination and source sites:

AHchemotaxis = M(Usource)(c(;source) - C(aarget))- (31)

An advantage of this form is that a cell responds to a chemical field in the same
way, regardless of what types of neighbors it has. Merks also used this form in his
model of endothelial vasculogenesis. However, he enforced contact inhibition, i.e.
chemotaxis only at cell-medium interfaces, not at cell-cell interfaces [34] by only
applying this energy at cell-medium interfaces when cells of type medium are not
the source. To express this mathematically, one can multiply Eq. (31) by

5(Usource> Jendothelial)a(atargeta Umedium) . (32)

All of the above methods are currently implemented in CompuCell3D° (see chap-
ter I1.4, section 5.1.1 and also a simulation MovII.1.3 from the accompanying
DVD).
We know that for large C' or V| the cell’s response saturates. We can include
this effect using a Michaelis—Menten or Hill form:
COC
Hchemotaxis - Mm (33)
Since all of these options may be appropriate in different biological circumstances,
we propose to encapsulate all of them in a general term:

(CC(;source) - dc(;target))a
ﬂ + (Cc(isource) - dc(itarget))a
where a, b, ¢, d, a and (8 are constants. In particular, « is the Hill coefficient,
which determines how steeply the chemotactic response rises at its threshold value
C = 3. To model haptotaxis [62, 73], we can use a chemotaxis form with a non-

-,

diffusing C' or make the surface energies J'(7(0(7)),7(c(j))) depend on the con-

AH chemotaxis = (a,u(o'source) + bﬂ(atarget)) , (34)
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centration C. The simplest form is
- . . - C(i)+Cy

I (o), 7o) = J(r(o@), 7o) - s, (35)
where 3 is a positive constant. The linear decrease of the values of J’, as the
concentration of the chemical corresponding to cell adhesion molecules grows,
leads to observed density-dependent patterns in mesenchymal condensation in
vitro where the average size of clusters is smaller at higher concentrations of these
molecules, [73].

7.3.2. Diffusion on external-field lattices. Cells respond to diffusible signals from
other cells or external sources. Typically, we implement diffusion using a separate
solver which acts on the external fields, which we call a certain number of times
per MCS. The simplest method, the forward-FEuler method, evolves the diffusion
equation by redistributing concentration between neighbor lattice sites from those
with higher concentrations to those with lower concentrations. The proportion of
concentration redistributed at each step relates to the diffusion constant for that
substance. The Euler method is unstable when the ratio DAt/Ax? is bigger than
about 1/29, where d is the dimension of the space, but we can maintain stability
by calling the diffusion solver multiple times per MCS and using a smaller At each
time.

An advantage of forward-Euler and other finite-difference schemes (for ex-
ample, Crank—Nicholson) is that regions of the external field lattice corresponding
to different cell types can have different secretion rates, decay rates and diffusion
constants, including no diffusion and anisotropic diffusion. Since these properties
correspond to individual cells (see section 7.4), which can move, we gain some
of the benefits of advection—diffusion, at very little computational expense. For
example, one iteration of a 2D diffusion equation with local decay rate d(i, )
would be:

C(i, j,t + At) = C(i, j, t)

+D(i+1,5)C(i 4+ 1,4,t) + D(i,5 + 1)C (4,5 + 1,1)
where f(i,7) describes secretion, absorption and reaction of the chemical. This
formula multiplies the concentration by the diffusion, secretion and decay rates
site-by-site over the whole lattice prior to the iteration, which we sometimes call

applying a mask. As the cell lattice evolves, the diffusion, secretion and decay rates
update automatically.

7.4. Internal Cell States

As researchers have attempted more realistic biological simulations, they have
devised methods to impart specific biological behaviors to individual cells. As a
result, GGH simulations have focused more on the properties and interactions
of generalized cells and less on the properties of individual lattice sites, though,
of course, the actual movement of cells still occurs at the lattice-site level. This
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change in focus has inspired methods to describe and generate increasingly complex
internal cell states and to describe generalized-cell interactions. We call this general
class of approaches, off-lattice extensions of the GGH.

In Hogeweg’s model of genetic evolution [18, 19, 21, 29], cells have simple
models of a genome and intergenomic pathways that determine cell—cell adhesion,
cell division and death. Between cell generations, the genetic code of each cell
evolves via gene mutations. The evolving regulatory pathways create cell colonies
with unique morphogenetic tendencies, including many experimentally observed
morphogenetic mechanisms and morphologies. Alternative methods for cell differ-
entiation use preprogrammed type changes of the cells [51].

8. Outlook

The great advantages of the GGH model are its simplicity and extensibility, which
have made it the most widely-used approach to cell-level modeling biology. GGH
cells move according to effective-energy gradients v o ﬁH, which means that
F x ¥, as in biological experiments. As in experiments, the position and movement
of membranes determine cell dynamics. Adding new biological mechanisms is as
simple as adding new potential energies or constraints to the Hamiltonian. While
the lattice discretization and modified Metropolis dynamics of the GGH model can
cause certain artifacts, these rarely cause serious difficulties. Recent extensions of
the GGH using subcells to model the behavior of fluids [8] and elastic media have
addressed many of these issues (see chapter 11.4, section 1). We discuss additional
extensions to the GGH, which use generalized cells to provide many off-lattice
enhancements to the GGH without abandoning the convenience of the GGH’s
underlying fixed lattice, in chapter I1.4. As our understanding of the GGH model
improves, we expect to be able to further improve both its accuracy and the range
of biological problems it can address (see chapters I1.2 and II.3) and to see it even
more widely adopted.

This chapter has focused on the origin and development of the GGH model
without discussing the computer-engineering aspects of its implementation. One
of the most important developments in GGH modeling in the past few years has
been the creation and release of open-source modeling packages like the Tissue
Simulation Toolkit (TST) [33],1° or CompuCell3D [26],*! which provide standard
platforms for model development (see the accompanying DVD for simulations:
MovII.1.1, MovIl,1,2 and MovIl,1,3). The use of one of these standard packages
allows users to reproduce published results and share new algorithms relatively
painlessly, and opens the field of GGH modeling to a much broader audience.

10http:/ /sourceforge.net /projects/tst.
Hhttp://dustbunny.physics.indiana.edu/~mswat/wwwCompuCell /index.html,
https://simtk.org/home/compucelldd,

http://www.nd.edu/ lcls/compucell/linux.htm.
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