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An Algorithm of Real Root Isolation
for Polynomial Systems with Applications
to the Construction of Limit Cycles

Zhengyi Lu, Bi He, Yong Luo and Lu Pan

Abstract. By combining Wu’s method, polynomial real root isolation and the
evaluation of maximal and minimal polynomials, an algorithm for real root
isolation of multivariate polynomials is proposed. Several examples from the
literature are presented to illustrate the proposed algorithm.
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1. Introduction

Solving systems of (symbolic or numerical) polynomial equations in several vari-
ables has been a very important topic of theoretical oriented research. Commonly
used algorithmic methods for solving systems of polynomial equations include the
characteristic set method introduced by Wu [20, 21], Grobner basis method by
Buchberger [1], and cylindrical algebraic decomposition method by Collins [4].
Numerical calculation methods include Newton method [18], homotopy method
[9], and eigenvalue method [7].

A different approach for isolating the real roots of a univariate integral poly-
nomial based on Sturm sequence, the derivative sequence and Descartes’ rule of
sign is widely used [8].

A natural questions is: Can the real root isolation algorithm be extended to
the multivariate polynomial case?

In this paper, based on the characteristic set method, real root isolation and
the evaluation for maximal and minimal polynomials, we propose an algorithm for
isolating real roots of multivariate integral polynomial systems.
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and Zhejiang Province Natural Science Foundation (Granted no. M103043).
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This algorithm is an extension of a real root isolation algorithm for univariate
integral polynomial. It results in a higher-dimensional isolated interval for each
isolated real root [12, 13]. Based on this algorithm for multivariate polynomial
systems, the stability analysis and the construction of small amplitude limit cycles
for some differential polynomial systems are considered [12, 14, 15, 16].

Section 2 contains an introduction to Wu’s method and the algorithm for real
root isolation of multivariate polynomial systems. In Section 3, several examples
from the literature are presented to illustrate the proposed algorithm. In Section
4, the construction of limit cycles for differential systems are given.

2. Wu’s Method and Real Root Isolation

To prove the main result, we use the principle of the characteristic sets method
which was introduced by Ritt [17] in the context of his work on differential algebra
and has been considerably developed by Wu [20, 21]. The great success of theorem
proving has stimulated the renewed interest in the characteristic sets method.
To limit the space, we give here only the basic principle, i.e., the well ordering
principle, and illustrate how this principle works.

Let PS = {fi(z1,...,Zn),. .., fs(x1,...,2,)} be any finite set of polynomials
in n ordered variables 1 < --- < x, with coefficients in certain basic field of
characteristic 0, for instance, the field @} of rational numbers. We designate the
complete set of zeros of the polynomials in PS by Zero(PS). If G is any other
non-zero polynomial, the subset of Zero(PS) for which G # 0 will be denoted by
Zero(PS/@G). The following is the basic principle of the characteristic sets method
[20, 21, 22].

Well Ordering Principle. Given a set PS of polynomials, one can compute by an
algorithmic method another set C'S of polynomials, called the characteristic set
of PS, of the triangular form

Cl(uh <y Uds y1)7
CSs : 02(u17"'7ud;y17y2)7
Cr(uh <oy Ud3 YL, - '»yr)v
such that
Zero(CS/J) C Zero(PS) C Zero(CS), (2.1)
Zero(PS) = Zero(C'S/.J) U|_ Zero(PS), (2.2)
where u1,...,ud; Y1, ..., Yr (d+r =n) is arearrangement of 1, ..., x,, J =[], L1,

I; is the leading coefficient of ¢; as polynomial in y;, called the initial of ¢;, and



An Algorithm of Real Root Isolation 133

The algorithm for triangularizing the polynomial set proceeds basically by
successive pseudo-division of polynomials. From (2.1) and (2.2) the relation be-
tween the zeros of PS and CS is clear: any zero of PS is a zero of C'S and,
conversely, any zero of C'S for which none of the initials vanishes is also a zero of
PS. Therefore, under the condition that all the initials are not equal to 0, both
PS and C'S have the same zero set. For those zeros of PS making the vanishing of
some initial I;, we may consider further the enlarged polynomial set PS; obtained
from PS by adjoining I; to it as required. Furthermore, in proceeding with each
PS; like PSS by the same principle we would finally obtain a zero decomposition
of the form

Zero(PS) = ) Zero(CS;/ J), (2.3)

in which CS; is of triangular form as C'S and J; is the product of initials of the
polynomials in C'S; for each .

Equation (2.3) is called the Zero Decomposition Theorem [22]. Furthermore,
by using any algorithm of polynomial factorization over algebraic extended fields,
an ascending set C'S can be decomposed into irreducible ascending sets. Hence,
Wu obtains a variety decomposition theorem [22].

Variety Decomposition Theorem. For any given set PS of polynomials, there is
an algorithm which computes a finite number of irreducible ascending sets IRR},
in a finite number of steps, such that

Zero(PS) = |_J Zero(IRRy./ J).
k
Moreover, redundant components can be removed by mere computations so that
the union will become a non-contractible one.

Remark. Since the real roots of P.S can be decomposed as the union of real roots
of TRRy, we only need to consider those components for which the irreducible
ascending sets have isolated real roots. That is, the algebraic varieties associated
to the irreducible ascending sets are of dimension zero. In such a case,

Zero(IRRy/Jy) = Zero(IRRy,).

In the following discussions, we only consider the real root isolation algorithm
in the positive cone R}, since a transformation z; — —x; will change the negative
real roots into the positive ones in R}.

Now for any m-variate polynomial f(z) = f(z1,...,2,) in R}, we denote
the summation of the positive terms in f(z) by f*(z1,z2,...,,) and that of the
negative terms in f(z) by f~(z1,22,...,2,). Clearly, f = fT + f~.

The following theorems are direct results of the definition of f* and f~.

Theorem 2.1. If z; € [a,b] (1 <i<mn,0<a<b), then
f+(x17'"7xi717a7xi+17-"»xn)+f7(l‘17'"»xiflvbvxi+17-"»xn)
f(xlv'"»xiflvxiyxi+17"'»xn)

<
< f+(x17'"7Ii717b7xi+17"'»xn)+fi(xlv'"7xi717a7xi+17-"»xn)-
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Note that both f* and f~ are monotone in R”;. More general, we have:
Theorem 2.2. Ifx;; € [a;,,b;,], 1 <i; <n (j=1,...,k),0<a;; <by,, then

f+(l‘1,...,ai1,...,aik,...,xn)+f7($1,...,bil,...,bik,...,xn)
flor, o @iy @iy ey )

<
< f+(x17'"»bim"'vbik?"'vl‘n)+fi(xlv'"»aim"'»aik?"'»xn)'

In Theorem 2.1 (resp. Theorem 2.2) the identities hold if and only if a = b
(resp. a;; = by;).

By Theorem 2.2, when considering all the variables z1, ..., z, in R}, we can
get the following estimation:

Theorem 2.3. For given constants 0 < a; <b; (i=1,...,n),

(1) if fH(ar,a2,...,an) + f~(b1,b2,...,bn) > 0, then for z; € [a;,bi] (i =
1,...,n),

flz1, 22, .. 2n) > 0;

(2) if fT(b1,ba,...,bn) + f(a1,a2,...,a,) < 0, then for z; € |a;,b;] (i =
1,...,n),

f(xlyx%"'»xn) <0.

The command realroot in Maple [2] can be used to isolate the real roots
of a univariate polynomial with integral coefficients. To isolate the real roots of a
given polynomial g(x) with intervals of length less than or equal to ac, we can take
realroot(g(x), ac) which gives [[a1, b1], ..., [ak, b]]. Here, k is the exact number of
distinct real roots of g(x). Namely, in each interval [a;, b;], there is one and only
one real root of g(x) and b; < a;41 for all 4. Furthermore, a; and b; have the same
sign. This sequence of disjoint intervals with rational endpoints is called the real
root isolation intervals of g(x).

Now, we illustrate how to obtain the real root isolation domains of a trian-
gular polynomial system {g1(x), g2(z,y)} by realroot algorithm and the max-min
polynomials.

The following notations and theorems will be used in the algorithm.

Definition 2.4. Suppose that [a1, b1] is one of the real root isolation intervals of
g1(z). The maximal and minimal polynomials of g2(x,y) on [a1, b1] is defined by

g (y) and g2(y), respectively:

92(y) = g5 (b1,9) + g5 (a1,9),  9,(y) = g5 (a1,9) + g5 (b1, y).
Clearly, if = € [a1, b1] is a real root of g1(x), then gQ(y) < g2z, y) < go(y).

Theorem 2.5. For the above g4(y), g2(y), there exists an interval with width acy
such that when by — a1 < acy, we have:



An Algorithm of Real Root Isolation 135

(1) the coefficients of the the leading term of both g4(y) and gz(y) have the
same sign;

(2) the number of the real roots for both g,(y) and g,(y) are the same.

Proof. Note that gz(y) — g2(Z,y) and g,(y) — ¢2(Z,y), if a1 — T and by — Z.
Furthermore, g2(Z,y) is a squarefree polynomial in y; therefore, a perturbation of
Z will not change the properties of g2(Z, y): the changed polynomial will keep the
sign of the leading coefficient as well as the number of real roots. O

Theorem 2.6. Suppose that a # b; then there is an acy such that the realroot com-
mand with accuracy (the length of isolating interval) aco will lead to the sequence
of real root isolation intervals of g,(y) and gz(y), respectively, as follows:

Ly = [[011, d11]7 ceey [Clm7 dlm]]7

Ly := [[ca1,d21], - - -, [cam, d2m]]-
Here, [c14,d1:) [c2j,d2s] = 0 (4,5 = 1,...,m). Namely, we can get a total list of
all the intervals in L1 and L.

Proof. In fact, the minimum root separation of an integral polynomial f(z) =
anx™ + ap_12" "L + -+« + a1 + ag is determined completely by its coefficients
a; (i =1,...,n); see [5]. Suppose that y1,y2,...,yx (k > 2) are all the distinct
real roots of f(x); then
n -yl > .
min i — Y .
ietim g Y n* 1+ 30 i)
Now we consider the polynomial g12(y) = g5(y)g 2(y) which is the product of g,(y)

and gQ(y). Take acy as the minimum root separation of gio; then Theorem 2.5
leads to this theorem. O

Remark 1. In a concrete manipulation, the accuracy acs is much larger than the
minimum root separation length.

Remark 2. When a = b, T is the rational solution of g(x). Hence, g,(y) = gQ(y) =
g2(Z,y). That is, L1 = Lo in Theorem 2.6.

Definition 2.7. The sequences of the real root isolation intervals of g, (y) and g, (y)
are called matchable with respect to ac, if

(1) the sequences of the real root isolation intervals L; and Lo take one of
the following forms:

(i) 1,2,2,1,1,2,2,1,...,1,2,2, 1;
(i) 1,2,2,1,1,2,2,1,...,1,2,2, 1,1, 2;
(iii) 2’ 17 17 b b 1? ) 27 M ) 17 b ;

(here “1” denotes an interval belonging to L1, and “2” to Ls),



136 Z. Lu et al.

(2) in each interval of Ly and Lo, the considered integral polynomial g2(Z, y)
is monotone.

Now we consider the triangular system{g; (z), g2(x,y)}.

Theorem 2.8. Suppose that the real root T of gi(z) in [a1,b1] makes the initial
J(Z) #0. If g2(Z, y) is squarefree with respect to y, then there must be a constant
ac such that g,(y) and gz(y) are matchable with respect to ac.

Proof. Since ¢2(Z,y) is squarefree with respect to y, it must pass through y-axes
at each of its real roots. That is, gQ(y),QQ(y) — g2(Z,y), as a1,b1 = T (ac — 0).
Therefore, g,(y) and gQ(y) also pass through the y-axes in the neighborhood of
92(Z, y).

Now consider the partial derivative h(Z, y) of g2(Z, y) with respect to y. From
Definition 2.4, we have

h(y) < h(Z,y) < h(y).

Clearly, for sufficiently small |a; —b;| (the length of the interval [a1, b1]), h(y) and
h(y) have the same sign.

Hence, by Theorems 2.5 and 2.6, we can choose ac; as small as enough (i.e.,
b1 — a1 small enough) and take ac = min{aci, acz} such that g,(y) and g, (y) are
matchable with respect to ac.

The mrealroot algorithm for isolating the real roots of a set P.S of polynomials
can be described as follows (here, a three polynomial system will be considered).
To guarantee the matchable condition in Theorem 2.8, we use Wu’s method to de-
compose the real roots of PS to the union of those of a set of irreducible ascending
sets.

Step 0. Consider system PS = { fi(x,y, 2), f2(z,y, 2), f3(z,y, 2)}. Using Wu’s
method (Variety Decomposition Theorem), we can get its irreducible components
IRR;, i = 1,...,k. Take the components whose corresponding varieties are of
dimension zero. Denote one IRR as {g1(x), g2(z,y), g3(x,y, 2) }.

Step 1. Using realroot command to get the sequence of isolation intervals of
g1(z) (here, we just consider the positive interval), where the accuracy ac; is given
by Theorem 2.5. Now we choose one interval, say [a1, b1], to illustrate our method.

Step 2. Construct the maximal and minimal polynomials g,(y) and 9, (y) of
g2(z,y) with indeterminate y. By using the realroot algorithm, we can obtain the
sequences of isolating real roots, Ly, L.

Step 3. Take ac and check if g,(y) and gQ(y) are matchable with respect ac,
i.e., if Ly and Lo take one of the forms (i), (ii), (iii) and (iv) in Definition 2.7. If
the answer is positive, then go to step 4. Otherwise, divide ac by 2 and go back to
step 1. By Theorem 2.8, after finitely many steps, L; and Lo will be matchable.

Step 4. g,(y) and 9, (y) are matchable with respect to ac. Now we match the
interval as follows:



An Algorithm of Real Root Isolation 137

Take ag; = min{cli, 021‘} and bgi = maX{dh‘,in}, ’L = 1, cee, My then {gl(l‘),
ga2(z,y)} has just one real root in each [a1,b1] X [ag;, by;] for i =1,...,m.
Step 5. Suppose that G = [aq, b1] X [az, b2] is a real root isolation interval of

{91(2), g2(z,y)}. We may construct the maximal and minimal polynomials g5(2)
and gg(z) of gs(x,y, z) as follows:

gS(Z) = g;(bhb%z) +g.‘;(a17a27'z)7
94(2) = g3 (a1, a2, 2) + g3 (b1, by, 2).

Step 6. Similar to steps 2 and 4, we obtain the real root isolation interval
G = a1, b1] x [az, ba] X [as, bs] of {g1(2), g2(z, ), g3(2, ¥, 2)}.

Step 7. Since the initials of TRR are not zero at its real roots, we can have
all the real root isolation intervals of

{fl(x»yv Z)v f2(x»y7 Z)7 f3(x»y7 Z)}

For a general n-variate polynomial system, we may describe the above seven-
step algorithm (except step 0) as follows:

INPUT {91(1'1),92(1'1,1'2),...,gn(.’El,l‘Q,...,fEn)}; J(l‘l,...,l‘n)
OuUTPUT the real root isolation intervals of
{91(951)792(951,962)7 .- -,gn(xl,ﬂ% .- -»xn)};
the signs of J(z1,...,z,) at every isolating interval
BEGIN
LABEL

G1 := {realroot(gi(x1), ac) intervals for positive real roots}
IF G1 = ) THEN return §) END IF

k:=2 /* remark 3 */
WHILE £ <n DO
G =0

gk (@1, x) = g (21, ... xk) + g5 (21, Th)

FOR p in Gx_; DO
9, (zk),  gr(zr) /* remark 4 */
G), = {realroot(g, (zx), ac) intervals with positive endpoints}
Gy, = {realroot(g;(zr), ac) intervals with positive endpoints}
flag = Qr (G4, G) /* remark 5 */
IF (flag == false) GOTO LABEL
Gk = Gk union Qk(Gk, Gk)

END FOR
k:=k+1
END WHILE /* remark 6%/

END

Remark 3. k denotes the k-th unknown z for the k-th polynomial.
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Remark 4. g, (zx) and g, (xx) are minimal and maximal polynomials of g (z1,. . .,
x), respectively.

Remark 5. Check if g;(zy) and g, (z)) are matchable with respect to ac. If the
answer is positive, then finish the match to get the isolation intervals. Otherwise,
choose ac/2 as new ac and return “false”.

Remark 6. The result GG, is just the set of real root isolation intervals of

{g1(z1), g2(z1, 72), - - s gn(T1, T2, .. . TR}
Based on the above algorithm, we construct a command mrealroot in Maple:

> mreaerOt([gl(xl)ng(xlvx2)7 .. '»gn(xlyx% .. '7xn)]7 [I17x27 . .,In],
¢, [hi(x1, 2oy Zn)y .o b1, T2, - oy T0)]);

where n, m are positive integers and the positive number c is the upper bound of the
width of the intervals of the real roots. Here c is used to control the accuracy of the
interval solutions to its exact ones. If ¢ is too wide to fulfil the matchable condition
in Theorem 2.8, it will be substituted by a smaller one automated according to
the algorithm. Even if ¢ is omitted, the most convenient width is used for each
interval returned.

The output is:

[[z11, T12], [221, T22], - - -, [Zn1, Tn2], +, -0,..., -1
~ ~ -
m
Here, “+” (resp. “—") denotes that a polynomial at the real root is positive (resp.

negative), 0 means that the positiveness and negativeness are not determined
(undecided). The above output means that there is a real root

(T1,72,...,2n) € [[3311,3312] X [1'2171'22] X X [[xnlvxn2]]
such that hy(x1,x9,...,2,) > 0, ho(z1, z2, ..., 2,) <0, hs(z1,21,...,2Z,) is unde-
cided, ..., hy(z1,22,...,2,) < 0.

3. Application to Polynomial Systems
The first example is from [6].

Example P1.
fl :l‘5+y2+22*4,
fo=a"+2y° -5, (3.1)
fs=zz—1.

By using step 0 in the algorithm, (3.1) is transformed to the triangular form:

g1 =227 +2 — 322 — x4,
g2 =% +2y° = 5,
g3 =zz — 1.
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Take the mrealroot command

> mrealroot([g1, g2, 93], [z, y, 2]

we get
r 11 23 (T13 7] [23 3
__171:|7|:8716:|7|:171:|:|7 __1678:|7|:1672:|7
T 23 11 3 11| [23
I e R IR A R A
[T13 7} [73 723} [9 5” 3 711} [7
[[167 8] 20 16| |8 4| 4> 16|

1
10

|

9 5
87 4

I}

25 3 21
16 |2 277 16
25 23 3
16° 16| 2

This means that the polynomial system (3.1) has six real roots.

The second example is also from [6].

Example P2.

fi=x%—2xz+5,
fo=ay® +yz +1,
fa = 3y% — 8zz.

The step 0 gives us from (3.2) the triangular form

g1 = y(320 + 1600y* — 240y° — 471y5 + 36y" — 48y> + 36y°),

g2 = —40y? + 333 + 6y* + Sz,
g3 = —8yz — 8 — 40y* + 3y° + 64/5.

Applying mrealroot:

> mrealroot([g1, g2, 93], [%, Y, 2]

we obtain two real root isolation intervals:

__ 188613 _ 377225 _ 72181 __ 36063 _
65536 > 131072 |° 65536° 32768 |’

__ 45 __ 368639 126525 63315 50295 100711
16> 131072 |’ | 131072’ 65536 |’ | 16384’

Example P3 [5].

=22 +2y —y -2z,
fo=a?—8y? +10z -1
fz = 2% — Tyz.

The triangular form of (3.3) is
g1 = 24502% — 12412* + 19622 — 49,

g2 = 8622 + 35yx? — TTy — 14,

32768

1

185017 __ 369513
65536 > 131072

I

)

g3 = 1752* + 70222 — 7622 — 154z + 21,

with initial J = 522 — 11.

, —

I}

21
16

I

139

(3.2)
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Now the command
1

e

> mrealroot([g1, 92, 93], [x, v, 2],

gives out two real root isolation intervals:
85823 1341| | 48355 24179| |[10879 10881| _
1310727 2048 |7 | 1310727 65536 | | 655367 65536 |1 |’

_ 1341 _ 85823 48355 24179 10879 10881 | _
20487 131072 |’ | 131072’ 65536 |’ | 65536’ 65536 |’

Example P4 [5].

f1:x4+y471,

fo = 20y? — 42393 + 225 — 1. (3.4)

The triangular form of (3.4) is as follows:

g1 = 16y° — 363° + 3090 — o8 + 144y'5 — 64yt + 758y'6 — 251y'2 + 28y13
— 1269 + 49?1 — 12917 — 128y%2 + 1928 4 48y>3 — 112y'° — 7570
+32y26 — 16y%7 + 249y 4 28 + 1,

g2 = dx+y—2y° + 282 -2yt o +y? +16y° —24y" —xy® +4y Oz —3y 243y  x4+4°
. 32:cy9 + 16y13x . 4y14x + ylsx . 8y15 + 16y11 + y16 . y12 + 16y5x

The initial is
J=4 + 2y8 o 2y4 o y3 + 4y10 o 3y11 + 3y7 o 32y9 + 16y13 o 4y14 + y15 + 16y5

Taking the command

1
> mrealroot([g1, g2], [y, |, 105" [J]);

we get four real roots:
_ 121139 _ 60569 47213 47299 + 94517 47259 __ 60575 _ 60563 +
131072 65536 |7 | 655367 65536 |’ 4 1310727 65536 |’ 655367 65536 |’ 4

_ 78307 _ 39153 126675 31673 + 126681 63341 _ 19599 _ 39111 +
1310727 65536 |’ | 1310727 32768 |’ 4 1310727 65536 |’ 327687 65536 |’ :

In [4], Collins considered the following system of polynomials and found four
solution points. By using the mrealroot algorithm, a PIII 550 computer gives out
the four isolating real roots in less than 1.2 seconds.

Example P5.

fi=—Tzryz + 6yz — ldexz+ 92z — 3zy — 12y —x + 1,
fo = 2xyz — yz + 142 + 152y + 14y — 15z, (3.5)
f3s = —8zyz + 11lyz — 12z2z — 5z + 1bzxy + 2y + 10z — 14.
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The triangular form of (3.5) is as follows:

g1 = —311308988x — 769468317622 + 45415298102° + 895135604524
— 45872450145 — 491945611525 4 3307892784 + 19899303027
+ 17404020025,

g2 = 3440522 + 7530ty — 4617223y — 652742y + 2281523 — 1368024
— 17640z + 446247y — 16296 + 54084y,

g3 = 922502° + 46110212 + 5418752 — 692403232 + 1436252 — 844151222
— 88643022 + 63968872 — 319860x + 7408802 + 27360252 + 228144,

and the initial is

J = —186017052192109889164x + 34987502366182201379222
— 186848402623007386128 + 337522017343330106770>
—170675129780428490075x* — 1555406421413829526022°
+9943930004123137485x5 + 5996862121751821890x".

Call the mrealroot command:

1
> mrealroot([gl, 92, 93]7 [l‘» Y, Z]v 1010 ) [‘]])a

the computer shows four isolating real roots:

33573910397 16786955199} [82505394681 330021582735 } [ _ 96628390617 _ 386513559595 } 71}

34359738368 > 17179869184 1’ L 8589934592 > 34359738368 1’ 8589934592 34359738368 1 ’

_ 8880815695 __ 35523262779} [7 16638954157 33277908053} [7 1073569409 __ 34354220805} 71}
3 3 3 3

8589934592’ 34359738368 17179869184 ° 34359738368 1073741824 34359738368

7659282837 730637131347} [614939185923 614939235161} [11783002047 11783002915} 1}
8589934592’ 34359738368 1’ | 34359738368 * 34359738368 1’ 117179869184 ° 17179869184 1> 71>

173688058101 86844029051} [ _ 36761640685 __ 36761640679} [ _ 1676409165625 __ 1676409164939} 1}
34359738368 > 17179869184 1’ 17179869184 ° ~ 17179869184 17 34359738368 ’ 34359738368 1’ -

In all the above examples, the systems are considered in R™. In fact, we may
consider systems in C™. In this case a transformation z — x; + iz2 shall be made,
where z; is the real part and zo the imaginary part of z.

Example P6.
fl = 21‘271‘?/4’47
fo=zy —2y° + 4.

After the transformation x — x1 + ix2, ¥y — y1 + iy2, we have

f1 = p11 + ip12,
f2 = pa1 + ipaa,

where
p11 = 227 + 4 — 223 — z1y1 + T2y,
P12 = 42172 — T1Y2 — T2Y1, (3.7)
po1 = T1y1 + 4 — Tayo — 205 + 2u3, ’
P22 = T1Y2 + Tay1 — 4y1y2.



142 Z. Lu et al.

By using Wu’s method, (3.7) can be transformed to

g1 =3y — 6y — 1,
g2
g3 = —ui +2+ 3,

g1 = Yizo — 2yiys — To.

2y3 — x1yf — dy1 + @1,

(3.8)

The initial is J = (y1 — 1)(y1 + 1). Taking the mrealroot command for (3.8):

1

> mrealroot([91, 92, 93, 9al, [y1, 21, y2, 22, | 1y [J]);

we obtain four pairs of real roots

Therefore, the corresponding four complex roots of (
(y1,y2)) are

4. Application to Differential Systems

[[187 a7 39 7 23 51 169 97]

|| 128732 | 1287 167 [647 128 |7 | 128> 64> T |

[[187 a7 39 7 _os1 28] [ o7 _199]

| [ 1282327 [ 1287 16| 128° 64 |’ 64> 128 |0 T |»

M a7 _187] [ 7 _ 39 23 51 169 97]

||~ 32> 128> 160 128 |7 | 647 128 |7 [ 1287 64| T|>

[ a7 _1s7] [ 7 39 _os1 28] [ o7 _169]
327 1281 160 128" 128° 64|’ 64> 128 |0 T |*

3.6) (with x = (21, 22), y =

[39 7], [169 97] [187 47|, [23 51

|| 1287 16 1287 64 |7 | 1287 32 647 128 |»

([0 7] [_o9or _199] [187 ar]| [ _ 51 _ 23

|| 128 16 64> 128 |7 | 1287 32 128° 64| |

[[_ 7 _39] [169 o7] [ _ a7 _187] , [23 51

||~ 160 128 128 64 | 320 7 128 647 128 |°

M7 39 | o [ _97 _1e9| [_ a7 _187|  [_ 51 _23
|| ~ 167 128 64> 128 |» 320 7 128 1287 64| |

The problem of distinguishing between centers and foci and the construction of

small amplitude limit cycles for polynomial different
nection with Hilbert’s 16th problem. Based on the r

ial systems has a tight con-
eal root isolation algorithm,

the construction of small amplitude limit cycles for differential polynomial systems
was proposed in [11]. After the Liapunov constants are obtained for a system, the
question for the estimation of the number of small amplitude limit cycles bifur-

cated from a fine focus becomes the following: can we
polynomial system of the first k Liapunov constants?

isolate the real roots for the
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In this section, based on the method in [14] and the mrealroot algorithm, we
give three examples for cubic systems.

In what follows, L;(i) denotes the j-th Liapunov constant (focal value) for
the i-th example.

Example D1. In 1980, Coleman [3] proposed the conjecture that a Kolmogorov
prey-predator system may have more than two stable limit cycles. In [13], this
conjecture is confirmed. In that paper, the idea of mrealroot algorithm is proposed.

The constructed system is as follows:

*=x(-2—ag + a1 + aoxr — 201 +y + a17? + xY),
¥ =y2+a2 -z —y— 202y + azy?).

Here, a1 > 0,a2 > 0. Clearly, (1,1) is a positive equilibrium of the system. By
using the transformation

r=x—1, y=9y—1,
the original system (we use z,y instead of x,y) is changed to

&= (x+1)(z + aox + 2y + a1 2% + zy),

§=(y+ 1)(—z — y + az?). (4.1)

When a¢ = 0, (0,0) is a focus. The first three focal values of (4.1) are

Li(1) = 3as — a3 + 2a; — 1 + 2a2,

Ly(1) = 451a3 + 546aza; + 427a% — 392a3a; — 328a3 — 472a3 + 46a3a;
—92asa3 + 176a3a3 — 876aza? + T4a3 — 648a — 238ay — 182a; + 44,

L3(1) = —889784ai — 28184 + 3433278a0a2 + 944669a3 — 1652639asa,
119181424 — 5270694a5a3 — 5028128a2a? — 3163812a%
— 57951942 + 221080a; + 196690as — 1112353a2a; + 2063089aa;
+ 499258103 + 13538448 + 763936a2a5 — 338976a3a3 + 308.

We can obtain simpler and equivalent Ly, Ly, Lz with L1 = L1(1), L3 = L3(1) and
Ly = 638a3 — 709a5 — 30az — 139a3 + 120a5 + 8a$ + 3,

provided that the initial I = 8a§ — 51a§ — 12a§a1 +32aza1 + 55a2 — 19 — 14ay # 0.
Now, taking the commend

mrealroot([Ly, Ls), [az, a1],1/10%°, [Ls, I]),
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we obtain eight solutions:

[[ 688939015 1377878031 5077638577 5077638579 |
| | 85899345927 17179869184 | 17179869184 17179860184 > > |

[T 688939015 1377878031 _ 22257507763 _ 22257507761]  _
| | 85899345927 17179869184 | 1 17179869184 171798691842 77|

2085801391 1492945695 8810195803 8810195805 | L
171798691847 — 8589934592 |’ 17179869184 17179860184 > 1> |

[[ 84633102747 _ 338532410087 265975581777 _ 265975581775] 0
4204967296 0 17179869184 |’ 17179869184 > 17179869184 > 2"

[[ 62789278049 31394639025 7689817571 15379635145 | T
| | 17179869184 8589934592 | 85899345927 17179869184 > 17 |

[ 84633102747 _ 338532410087 248795712591 248795712593 ] L
4204967296 ° 17179869184 |’ 17179869184 > 17179869184 |» 10 |»

[ 62789278049 31394639025 _ 32559504329 _ 16279752163 _
| | 17179869184 8589934592 | 17179869184> — 8589934592 |7 70"

2985891391 __ 1492945695 __ 25990064989 725990064987_ _ 6
17179869184° 8589934592 |’ 171798691847 17179869184 |’ P

The first solution (with a; > 0, a2 > 0) is what we need. In this case, the system
can have three small amplitude limit cycles among which two are stable.

Example D2. In [10], the following cubic Kolmogorov system is considered:

t=a(x—2y+2)(Az +y+ B),

J=y2z—y—2)(Dz+y+C). (42)

Here (2,2) is a positive fixed point. With the transformation © = z — 2,y = y — 2,
system (4.2) takes the form (here we use z,y instead of z,y)

t=(x+2)(r—2y)(A(x+2)+y+2+ B),
yv=w+2)(2z—y)(Dx+2)+y+2+0C).
To ensure (0, 0) to be a center-focus form, we need D = A+B/2—C'/2. Substituting
it into (4.3), we have
t=(x+2)(z—-2y)(A(z+2)+y+2+ B),
v=w+2)(2z-y)((A+B/2-C/2)(z+2)+y+2+C).
At (0,0), the first four focal values of (4.4) are L1(2), L2(2), L3(2), L4(2). When
C=-4,In=2+B+ 2_A #0, Is5 # 0 and b+ 4 # 0, we can have reduced focal
values: L1 = L1 (2) = 0, L4 = L4(2) and
Ly = —3B% + 4AB — 22B + 28 A% + 56 A,

Lz = 5639949 B% — 15889097787 — 9906667659 B® — 118203801471 B°
— 407483203554 B* + 118362692448 B3 + 417384231264 B2,

(4.3)

(4.4)
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with

I, = 18252402A B3 + 30908073082 A + 1053193848 AB — 3997665 B*
— 132974583 B3 — 75984447082 + 403771368 B.

Taking the commend
mrealroot([La, L], [B, A], 1/10%°, L4, I, B + 4]),

we have four solutions
_ 2573675109802661915841 __ 40213673590666592435
147573952589676412928 * ~ 2305843009213693952 |7

_1183730637891661183 _ 303035043300265262847 44— =
288230376151711744 73786976294838206464 |’ [ ’

__290628590797434259035 71162514363189737036139_
36893488147419103232 147573952589676412928 |

145450142956256898121 72725071478128449063 | T
73786976294838206464 ’ 36893488147419103232 |’ [ )

_1278947606251465505551 7639473803125732752775_
147573952589676412928 73786976294838206464 |’

80151834260523818841 20037958565130954711] I
36893488147419103232° 9223372036854775808 |’ [ ’

__1278947606251465505551 7639473803125732752775_
147573952589676412928 73786976294838206464 |’

117330199710287679315 58665099855143839661 | I
147573952589676412928 73786976294838206464 |’ [ .

Clearly at all the four zeros, L1, Ly, and L3 are independent with respect to Ly;
therefore there are four classes of values for A, B, C, D such that system (4.2) has
four small amplitude limit cycles at (0, 0).

Example D3. Consider the following system [19]
& =y+ Bx®+ (C — G)z*y + (3D — H)zy? + Ey3,
y=-—x—Az3 — (3B + F)z%y — (C + G)zy?® — Dy>.
Clearly, (0,0) is an equilibrium. The first five focal values are L1(3),..., L5(3).
Well ordering the focal values in the order of H < F' < A < G, we obtain

(4.5)

L,——F—H,

L, =4DG +2FG — FE + FA+ 4BG,

Ls = Gpssgsi I3y,

Ly = —G?psagsi Iy,

Ls = (32EC+48E? 9D+ 30DB—9B2)(—9B% —9B?D +32BC? + 144BCE
+ 144BE? + 9BD? — 48DCE — 144DE? + 9D%),
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where

P53 = 5A —5FE + QG,

psa = 3G — 15FE — 5C,

gs1 = (A2D — ADC + BEA — BGA — BCA +3DAG — DAE +2B3
— DGE + DCE —2DCG + 2DG? — 2D% — 2BD? — BE? — 2BG?
+BCE +2B%D — 2BCG + 3BGE),

Is; = (2G — E + A)2.

Let B=1,C=1,D =1 and G = —1, and take the function
mrealroot([psa, ps3, L2, L], [E, A, F, H],1/10'%, [Ls, g51151));

then we obtain

__ 9162596899 _ 4581298449 _ 1145324613 __ 286331153
171798691847 8589934592 |’ 85899345927 2147483648 |’

— 85899345025 _ 85899345015) | | 85899345015 85899345925 _
17179869184° ~ 17179869184] |7 | 17179869184 17179869184 | -

This real root makes the first six focal values to be independent. Therefore, system

(4.5) has six small amplitude limit cycles.
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