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Amortized Bound for Root Isolation via Sturm
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Abstract. This paper presents two results on the complexity of root isolation
via Sturm sequences. Both results exploit amortization arguments.

For a square-free polynomial A(X) of degree d with L-bit integer co-
efficients, we use an amortization argument to show that all the roots, real
or complex, can be isolated using at most O(dL + dlgd) Sturm probes. This
extends Davenport’s result for the case of isolating all real roots.

We also show that a relatively straightforward algorithm, based on the
classical subresultant PQS, allows us to evaluate the Sturm sequence of A(X)
at rational O(dL)-bit values in time O(d°L); here the O-notation means we
ignore logarithmic factors. Again, an amortization argument is used. We pro-
vide a family of examples to show that such amortization is necessary.
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1. Introduction

Sturm sequences are a classical tool for real root isolation [CL83]. We recall the
main steps of the standard real root isolation algorithm based upon Sturm se-
quences [CL83]: Let A(X) be a square-free integer polynomial of degree d with
L-bit coeflicients.

(1) Compute the Sturm sequence of A(X).
(2) Compute an interval (—B, B) containing all real zeros of A(X). Initialize a
queue @ with the interval (—B, B).
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(3) While @ is non-empty, do: extract an interval I from @ and compute the
number of zeros in I using the Sturm sequence. If I has one zero, output I.
If I has no zeros, discard I. Otherwise, split I into two open intervals Iy, Iy,
at the midpoint m(I) of I. Check if m(I) is a zero. If so, output m(I). Push
IL and IR into Q

The original bound for this algorithm is O(d”L3) from Collins-Loos [CL83].
Davenport [Dav85, Prop. 3'] stated a complexity bound of O(d*L?). In this paper,
the O-notation means that we are ignoring logarithmic factors. These complexity
bounds are estimated from the following three bounds:

(I) The complexity of computing the Sturm sequence.
(IT) The complexity of evaluating a Sturm sequence at a given point.
ound on the number of bisections needed to isolate all the roots .
III) Bound on th ber of bisecti ded to isolate all th t

The complexity of (I) is O(d*L?) in [CL83], but this has been improved to
O(d?L) in [LRO1, Rei97]. The best complexity bound for (II) is O(d3L) assuming
(as we may in root isolation) that the evaluation point is a rational number with
bit size O(dL). Although Davenport [Dav85] stated this bound, the first published
proofs was given by Reischert [Rei97], and independently, by Lickteig-Roy [LRO1].
The bound for (IIT) is O(d2L) in Collins-Loos [CL83]. Davenport improved the
bound in (III) by a factor of d to O(dL + dlgd). The overall complexity of real
root isolation using Sturm sequences is the product of the bounds in (II) and
(III). Thus the best current bound for real root isolation via Sturm sequences is
O(d*L?).

Our Contribution. In this paper we give amortization arguments which achieve the
above bounds for (II) and (IIT). Both results use amortization analysis, a technique
that is common in discrete algorithms [CLRS01, Chap. 17].

For (II), we give an approach that is much simpler than Reischert or Lickteig-
Roy. We rely only on the standard theory of Subresultant polynomial remainder
sequences (PRS). But instead of the PRS, we use another idea that goes back to
Strassen [Str83], which represents the PRS by its polynomial quotient sequence
(PQS). We then give an amortized argument for the straightforward evaluation of
this PQS. We also give a family of examples to show that a non-amortized worst
case bound will not do.

For (III), we give a charging scheme argument that leads to a slightly sharper
bound than that of Davenport. But the main benefit of our argument is its ex-
tendibility to the case of isolating complex roots of a polynomial; it is not obvious
how to extend Davenport’s argument to this case. In particular, we show that
the number of Sturm sequence evaluations are O(dL + dlgd) even for the case of
isolating complex roots of A(X). We think our argument gives some insights into
how the distances between various roots actually affect the complexity of Step
(III). There is a key difference between Sturm’s method applied to isolating com-
plex roots, for instance in [Pin76, Wil78], as opposed to the case of real roots: in
the complex case, one has to re-compute a Sturm sequence at each probe. This
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drawback can be overcome by applying the two-dimensional Sturm sequences of
Hermite (cf. Pedersen [Ped90], or an alternative by Milne [Mil92]).

The Complexity of Root Isolation. The complexity results for root isolation via
Sturm sequences is inferior to the O(d3L) bound obtained by Schénhage [Sch82).
Nevertheless, there are some advantages in the Sturm approach: Schonhage’s algo-
rithm simultaneously approximates all the roots of a polynomial, but these approx-
imations may not represent isolations until the root separation bound is achieved.
In contrast, the Sturm approach can isolate any subset of roots in a suitable re-
gion, or the ¢’th largest real root for any chosen 7 or range of ¢’s. The Sturm
method is ideally suited for root isolation, a problem that is distinct from root
approximation.

There are many other results [Ren87, KS94, NR96, Pan96] on the complexity
of root approximation that do not directly depend on root isolation. These meth-
ods, like Schonhage’s, simultaneously approximate all the complex roots of a poly-
nomial. For instance, the bit complexity for the Neff-Pan algorithm is 6(d3L+du)
where 4 is the desired relative precision in each complex zero. If we choose u =
6(dL) which is the root separation bound, we are assured of isolating all the roots.
In any case, these bounds do not improve Schénhage’s bound. In comparing com-
plexity bounds, we must take in account normalization assumptions. E.g., Pan
[Pan96] normalized the polynomials so that all its zeros lie in the unit circle. This
transforms a polynomial A(X) with L-bit coefficients into a normalized polynomial
with dL-bit coefficients.

2. Efficient Evaluation of Sturm Sequences: Simplified Approach

In this section, we address the complexity of Step (II) in the introduction. In
particular, we must evaluate Sturm sequences at rational values of X with bit sizes
proportional to the logarithm of the root separation bound; the latter we know is
bounded by O(d(L + 1gd)). Also, a rational number has L-bits if its numerator
and denominators are at most L-bit integers.

Recall that Reischert [Rei97] and Lickteig-Roy [LRO1] have showed the com-
plexity of Step (II) as 6(d3L). However, their approaches are fairly complicated
and require specialized algorithms (Reischert uses a generalized form of the half-
GCD algorithm and Lickteig-Roy use computation over the rational field Q). We
now show how a fairly straightforward algorithm that achieves the same bounds.

Let A(X), B(X) € Z[X] where d = deg(A) > deg(B) and the bit lengths of
the coefficients of A, B are at most L. Recall the notion [Yap00, p. 83] of a poly-
nomial remainder sequence (PRS) of (A, B) based on a sequence (51, ..., 08k-1)
where [3; € Z: this is a sequence

(Ao, A1, ..., Ag) (2.1)



116 Z. Du, V. Sharma and C.K. Yap

of polynomials such that Ag = A and A; = B, and for i = 1,...,k, there exists
Q; € Z|X] such that
BiAit1 = a?i+1Ai71 — QiA; (2.2)
where a; is the leading coefficient of A; and 0; = deg(A;_1) —deg(4;) = deg(Q;) >
0, with the termination condition that Ay y; = B = 0. The key problem in PRS is
to devise effective methods for computing the (3;’s so that the bit size of coefficients
of the A; remain polynomial in d and L. In particular, the subresultant PRS from
Collins [Yap00, p. 89] achieves this with bit sizes of coefficients bounded by O(dL).
Let the “bit size” of A(X) be lg H(A(X)) where H(A(X)) is the height of
A(X), i.e., the maximum of the absolute value of the coefficients of A(X) [Yap0O0,
p- 23]. An alternative representation for the PRS uses the following concept. Let
us define the polynomial quotient sequence (PQS) of (A, B) based on a sequence
(B1,-..,08k—1) to be a sequence

(Ao, A1,Q1,Q2, - .., Qr—1) (2.3)

where the Q);’s are defined as in (2.2). Note that the number of coefficients in the
PRS (2.1) may be Q(d?). Thus if it is used as a Sturm sequence for Ay, A, evalu-
ating this sequence at any value of X may require (d?) arithmetic operations. In
contrast, if we only store the PQS in (2.3) and also (f1,...,Bk-1), we can easily
evaluate the Sturm sequence at any X using only O(d) arithmetic operations; the
reason is that Zf;ll deg(Q;) is only d. This advantage in the number of arithmetic
operations has been noted by many authors including [LRO1, Rei97]. However,
when we consider bit complexity, it is no longer clear whether we still have an
advantage by a factor of d.

It is not hard to see from the definition of a PQS that the bit sizes of the

Qi’s are O(d2L). More precisely:
Lemma 1. The bit sizes of the coefficients Q;(X) is bounded by O(d;dL).

Proof. From (2.2) we know that @; is the pseudo-quotient of A;_; divided by A4;.
By [Yap00, Lemma 3.8], the coefficients of @Q; is obtained as principal minors of a
matrix M of size §; +1 x deg(A;_1)+1. The first row of M contains the coeflicients
of A;_; and the remaining rows contains shifted coefficients of A;. Since each entry
has O(dL) bits, the minors have the stated bound. O

The following example shows that the bit sizes of coefficients of the @;’s can
be Q(d?L). Consider the subresultant PRS for the polynomials

Ao(X) =aX?, A (X)=bX* e
Then we have Ay(X) = (—1)%%acX?, B = (-1)4, Q1(X) = blaX?, A3(X) =
()4 Yac)™, By = (~1)TT 1. Qy = b (ac)i X1,
It follows that a naive worst case bound of O(dL) on the coefficients of the
PQS is wrong.
Now we show the desired bound on the complexity of evaluating Sturm se-
quences using PQS.
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Theorem 2. Let A, B € Q[X] have degree d, and let its coefficients be L-bit ratio-
nals. Let (Ao, A1, ..., Ap) be the subresultant PRS of A, B, based on (81, ..., Bn-1).
Also, let a; be the leading coefficient of Aj;.

(i) We can compute (Ao,...,An), (B1,...,0n-1) and also (ag,...,an) in time
O(d3L).
(i) We can evaluate the Subresultant PRS of A, B at any O(dL)-bit rational value
in time O(d®L).
Proof.
(i) This is done by a straightforward evaluation of the subresultant PRS [Yap00,
Sect. 3.5, p. 89].
(ii) Let  be an O(dL)-bit rational. To compute A;(x) for i =0, ..., h, we use the
following steps:
Step (a): Evaluate Ag(z), A1(z).
Step (b): Evaluate Q1(x),...,Qn—1(x).
Step (c): Fori=1to h—1, compute A;;1(z) as (al ' A;_1(z)—Qi(x)Ai(x))/Bi-
All the polynomial evaluations must be done using Horner’s rule in order
for our bounds to be valid. Step (a) is O(d2L). For Step (b), the complexity of
evaluating Q; at z is O(62dL) (by Lemma 1). Summing over all i’s, we obtain an
overall complexity of 3"~ ' O(62dL) = O(d3L), since Y.'"'6; < d. Finally, for
step (c), we note that each of the quantities afiﬂ, Qi(x), A;(x), and hence 3;, is
O(d*L)-bit rationals. Thus, the cost of computing each A;(z) is O(d2L) and so
the overall cost of step (c) is O(d3L). O
The above proof amounts to a simple algorithm for achieving O(d3L) bit

complexity for Step (II). The amortization argument amounts to exploiting the
inequality ), d; < d.

3. The Davenport-Mahler Bound

The basic inequality that our amortized analysis will exploit is the Davenport-
Mabhler theorem (Theorem 3). This theorem gives a lower bound on the product
of differences of certain pairs of roots of a polynomial A(X) = ag4 H?Zl(X — ) in
terms of its discriminant disc(A4) = 2972 [, <icj<n(@i —a;)? and Mahler measure
M(A) = |aq] H?Zl max{1, |a;|}, see [YapO00, 6.6, 4.5] [Mc99, 1.5, 2.1]. The literature
has several variants of this theorem that use the same proof but formulate different
conditions on how roots may be paired so that the proof works. We give the most
general condition supported by the proof. It is equivalent to Johnson’s formulation
[Joh98] and generalizes Davenport’s original formulation [Dav85, Prop. 1.5.8].

Theorem 3. Let A(X) = aq H?Zl(X — «;) be a square-free complex polynomial of
degree d. Let G = (V, E) be a directed graph whose nodes {v1,...,v;} are a subset
of the roots of A(X) such that:
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L. If (0, ) € E then |a] < |];
2. G 1is acyclic;
3. The in-degree of any node is at most 1.

If exactly m of the nodes have in-degree 1, then

IT v — vl = V/Idisc(A)] - M(A) =@V - (d/v3) ™™ - d~¥/2. (3.1)
(vi,v;)€EE
Proof. See [ESY06, Theorem 3.1]. O

Remark 3.1. Suppose the edge set of a graph G = (V, E), V C {a1,...,aq}, can
be partitioned into %k disjoint edge sets £ = Fy U --- U Ejy such that the each of
the graphs G1 = (V, E1),...,Gr = (V, Ey) satisfies the properties in the theorem
above, then [], ,cp [t — v| is bounded from below by the product of the bounds
corresponding to each Gi.

The following lemma gives us an upper and lower bound on the product of
k intervals defined by the real roots of a polynomial A(X). For any polynomial
A(X), let lead(A) be its leading coefficient.

Lemma 4. Let A(X) € R[X] be a square-free polynomial of degree d. If a; < 81 <
ag < By < az < -+ < P are real zeros of A(X) then

k A)/lead(A),
];Il: |Oli - 6z| { ; ﬁEA§{d+ld(fd)/2(\/3/d)k (32)

Proof. Let 71, ...,74 be all the (not necessarily distinct) zeros of A(X). First we
prove that M(A) is an upper bound on the product Hle |a; — B;]. We consider
two possibilities.

Case A: Suppose there exists an h = 1, ...,k such that aj, < 0 < Gp,. Let y1,...,74
denote all the distinct roots in the set {a;,8; : i =1,...,k}. Thus, k+1 < d < 2k.
We have

k h—1 k
H|5z‘*0li| = (H(ﬂi ai)) “|an = Bnl - ( IT @ ai))

=1 i=h+1
h—1 k

< (H|ai|> - (Jn] + 1Bul) - ( I1 |@-|>
=1 i=h+1

<

d
([T ma{1, 11}

which, in turn, is bounded by M(A)/|lead(A)].
Case B: Suppose ; <0 < @;41 forsomei =0,1,...,k+1 (with Gy = —00, g1 =
00). The above argument can easily be adapted to this case as well.

The lower bound follows from [Dav85, Prop. §]. O
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4. Amortized Bound on Number of Probes to Isolate Real Roots

Suppose (a, b) is an open interval containing k roots,
a<ar<ag<---<ag<b. (4.1)

The values of these roots are unknown, and our goal is to “locate” them by iso-
lating intervals. We will bound the size of the binary search tree of the algorithm
described in introduction in terms of the amortized bound given in (3.2). The
bounds expressed in (3.1) and (3.2) are amortized because they are better than
the worst case bound obtained by taking the product of the worst case for each
gap, i.e., the root separation bound. We next formalize our problem and give a
general framework of an algorithm that encompasses the one based upon Sturm
sequences.

All our intervals are either open intervals I = (¢, d) or exact intervals I = [c, ¢
for some a < ¢ < d < b. The width of I is w(I) = d — ¢ for open intervals and
w(l) = 0 for exact intervals. Also, let #(I) denote the number of roots in I. If
I = [c, ], we write #(c) instead of #([c, c]). Clearly #(c) = 0 or 1. We call I an
isolating interval if #(I) = 1.

The Real Root Isolation Problem for an interval I = (a,b) is that of finding
a set of #(I) pairwise disjoint isolating intervals containing the real roots in I.
To solve this problem, we consider algorithm that make “probes”. Each probe
is defined by an input open interval I and the result of the probe is the pair
(#(IL),#(Ir)) where m = m(I) = (c+d)/2, I, = (¢, m) and I = (m,d). Note
that #(m) = #(I) — #(I) - #(Ir).

In the following, let 7 > 0 be an arbitrary threshold parameter. For instance,
we may choose 7 = 1. Relative to 7, we define an interval I as small or big
depending on whether w(I) < 7 or w(I) > 7.

Let I have roots as in (4.1). A segment of I is an interval of the form o; =
(i, ai41) fori =0,1,...,k, witha = ap and b = agy1. Let o(I) = {00, 01,...,0k}
denote the set of segments of I. Call op and oy, the outer segments; all others are
inner segments. Define A(I) = AT + A~ where

AT =AT(D):= ) 21g(w(oi)/7),
o; is big

Am=A"(I):= > (1-lg(w(o)/7).
inor seqment

(4.2)

Thus, AT, A~ are the summations over big and small segments (respectively).
By definition, A™ (resp., A7) is equal to 0 if there are no big (resp., small) seg-
ments.

Theorem 5. Given an interval I = (a,b) and also k = #(I), we can solve the real
root isolation problem for I using at most k — 1 + A(I) probes.

Proof. We first present the algorithm. This is a standard binary search: if #(I) < 1,
the problem is trivial. Otherwise, we initialize a queue to contain just the interval
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I = (a,b). In the general step, we extract an interval J = (¢,d) from the queue
and probe J. The probe returns the pair (#(J1), #(Jr)) as above. Inductively,
we may assume that #(J) is known. If #(J1) + #(Jr) < #(J), we can output
m(J) as a root. For each i = L, R, we have three possibilities: if #(J;) = 0, we
discard J;; if #(J;) = 1, we output J;; if #(J;) > 1, we put J; into the queue. The
algorithm halts when the queue is empty. It is clear that the output is a complete
list of isolating intervals.

We now prove that this algorithm halts after at most k¥ — 1 + A(I) probes
using an amortization argument. Let J be an interval that was probed by the
algorithm. Probe J produces the subintervals Jr, Jg. We call J a splitting probe
if m(J) is a root, or if both J;, and Ji are placed in the queue; otherwise J is
non-splitting. Clearly, there are at most k£ — 1 splitting probes. It remains to prove
that at most A(I) probes are non-splitting. This is done by introducing a charging
scheme for such probes.

Let J = (¢, d) be a non-splitting probe. Then m(J) = (c¢+d)/2 belongs to an
outer segment o € o(J). We shall charge probe J to a segment ¢’ € o(I), defined
as follows:

o — the segment in o(I) that contains o if w(o)>T,
~ | the inner segment in o(J) adjacent to o if w(o) < 7.

o’ has the following properties:

It is uniquely defined.

It is a segment in o([), even when w(o) < 7.

It is big if ¢ is big, which is clear.

It is small if o is small: to see this, note that w(¢’) C w(J) and also w(J) =
2w(o) < 27. Note that ¢’ is an inner segment.

We now consider two cases:

Case (A): ¢’ is small. We show that ¢’ is charged at most 1 — lg(w(o’)/T)
times. Let Jp,..., J; be the probe (intervals) that are charged to ¢’, and we may
assume ¢’ C J; C Jo C -+ C Jy. Thus

w(o') < w(Jy) <27 w(ly) < - < 27 () < 271

Hence ¢ < 1 —lg(w(o’)/7).

Case (B): o’ is big. We show that o’ is charged at most 21g(w(c’)/7) times.
At the first probe J whereby m(J) € o/, the segment ¢’ is split into two halves ¢/,
and 0. By symmetry, consider o7 . Subsequently, suppose Ji,...,J; are all the
probe (intervals) that are charged to ¢’ via o7 . More precisely, assume o} C Jy
and Jy C Jy_1 C --- C Jy. Then we have

w(oh) =w(JyNa') > 2w(JaNo’) > > 27 w(J,Nno’) > 201

This proves that ¢ < lg(2w(c},)/7). By also taking into account the charges via
o'y, the total charges on o’ is at most lg(4w(o )w(o’)/7%) < 21g(w(o’)/7), using
the fact that w(o}) +w(o%) = w(o’).
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Implementing the probe model. We discuss how our probe model can be imple-
mented. If J = (¢,d) and #(J) is known, then the probe amounts to performing a
“Sturm query” for the interval [c, m(J)] and returns (#(Jr), #(Jr)). This means
that we compute the Sturm sequence for the polynomial A(X) and evaluate the
number of sign variations at ¢ and at m(J), and take their difference. Let V'(c)
denote the number of sign variations of the Sturm sequence evaluated at c. Indeed,
if we assume that inductively, we already know V(c) and V(d), then this probe
can be done by just computing V' (m(J)).

Normally, the sign variation V' (z) is assumed to be well-defined only when x
is not a root of A(X). However, in case A(X) is square-free, V(x) is well-defined
even when z is a root. To see this, let (A¢(X), A1(X),..., An(X)) be the Sturm
sequence with Ag(X) = A(X), A1(X) = dA/dX. Then V(z) is the number of sign
variations in the sequence of numbers (Ag(x), A1(z),..., An(z)). But even when
Ao(xz) = 0, the sequence cannot vanish identically because A(X) is square-free.
Moreover, since sign(Ag(z™")) = sign(A;(z)), we have

sign(Ao(z™), Ay (z 1), ..., Ap(z™)) = sign(4; (2), A1 (2), ..., An(z))
and hence V(zT) = V(). Similarly, V(z~) =1+ V(a™). Hence #(J) = V(c") —
V(d~) where J = (¢, d). Thus our probe model can be implemented with a single
sign-variation computation.

5. Complexity of Real Root Isolation

Using the bounds from the previous section we derive an a priori bound on the
number of Sturm probes as given in Theorem 5.

Theorem 6. Let A(X) € R[X] be a square-free polynomial of degree d. Then we
can isolate all the real roots of A(X) using at most

1 M(A)
L5dlgd + (d +1)1gM(A4) +2d +  1g | disc(A)] te |lead(A)]

probes.

Proof. Without loss of generality, we can assume that w(I), where I = (—B, B)
is the initial interval, is bounded by 2M(A)/|lead(A)|. In this proof, we further
assume 7 = 1. Let a3 < --- < ay, be the k real zeros of A(X). The segments o (1)
are defined by these a’s and also the two outer segments (—B, a1) and (ag, B). If
any of these outer segments has width < 7, then they are never charged. It is also
not hard to see that the total combined charges to these 2 outer segments is at
most lg(M(A)/|lead(A)|) + 1, and they are counted as part of AT.

We first invoke the upper bound in Lemma 4: choose the intervals («;, 5;)
(for ¢ = 1,...,m) in this Lemma to correspond to the big segments in o(I), not
counting any big outer segments; the upper bound in Lemma 4 then implies

[T lei — 8:l < M(A)/ lead(A).

=1
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But the definition of AT includes any big outer segments and from the preceding

remarks we know that the outer segments are charged at most 1 + lg |1é\:<(1?23)|'

Hence we conclude that AT < (Ig llM(A) +1) +21gM(A).

ead(A)|
We next invoke the lower bound in Lemma 4 by choosing the intervals («;, 5;)
(fori =1,...,m), m <k, in this Lemma to correspond to the small segments in

o(I), not counting any small outer segments. Then the lower bound in Lemma 4
implies A~ < (k—1) + (d — 1)1lgM(A) + (3d/2) lgd + } 1g |diSC1(A)|. Therefore,
E-—1D4+A < (d-1)+AT+A"
M(A)
|lead(A)|
1 1
(d—1)+ (d—1)1gM(A) + 1.5d1gd + 9 Ig | disc(A),
A 1 1
M(4) + _lg, .. .
[lead(A)| 2 7 |disc(A)]
O

< (d-1)+1g

+21gM(A) +1+

A

(d+1)1gM(A) + 1.5d1gd + 2d + 1g

Corollary 7. We can isolate all the real roots of a square-free integer polynomial
of degree d and coefficients of bit length L using at most dL + 2dlgd + O(d + L)
Sturm probes.

Proof. We have the following observations for A(X):
1. From Landau’s inequality (cf. [Yap00, Lem. 4.14(i)]) M(A) < ||A]|2; further-
more ||Al|z < (d+1)22E.
2. Since A(X) is an integer polynomial |lead(A)| > 1 and as it is square-free
| disc(A)| > 1.
Applying these observations to the result of the above theorem gives the
following upper bound on the number of Sturm probes:

1 1
1.5d1gd + (d + 1)[2lg(d+ 1)+ L] +2d+ 2(d+1) + L.
But this is clearly bounded by dL + 2d1gd + O(d + L). O

Remark 5.1. This result saves a term of dL as compared to [Dav85, Prop. 2].

From Theorem 2 we have the complexity of evaluating the Sturm sequence
of A(X) at an input of bit size dL as O(d>L).

Hence we have following bit complexity for real root isolation:
Corollary 8. If A(X) is a degree d square-free integer polynomial with L-bit coef-
ficients, then we can isolate all the real roots of A(X) in time O(d*L?).

Remark 5.2. Is our choice of 7 = 1 optimal? Consider the two extreme choices. If
we choose 7 to be 2FF1 then all segments are small. Thus,

A=A"<(d—1)(2+2L+05lgd) + (3d/2)lgd.
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This is asymptotically the same as the bound in our theorem, but slightly worse
with an additive term of dL. If we choose 7 to be the root separation bound, i.e.,
7 =2714d=4 then all segments are big. Hence we have

A =A"<2L+1gd+2Ld* +2d*1gd.

This has an additive d?(L + lgd) term, which is asymptotically worse than our
theorem. At any rate, this suggests that 7 should be chosen to have a balance
between the number of big and small segments.

6. Amortized Bound on Number of Probes to Isolate Complex
Roots

We can extend the result of Sect. 4 to the case of isolating any set of roots in a
rectangular region S in the complex plane. More precisely, S is a half-open set
including its northern and western edges but omitting its southern and eastern
edges, i.e., the set {(z,y):a <z <bc<y<d}.

Let w(S) represent the edge length of S and #(S) the number of roots in
S. We call S an isolating square if #(S) = 1. We allow S to be a single point, in
which case w(S) = 0 and #(S) =1 or 0.

The Root Isolation Problem for a square S is to find a set of #(S) pairwise
disjoint squares containing all the roots in S.

A probe in this setting is defined by a half-open square S and the result of
the probe is the number of roots in the four smaller squares, S; (: = 1,2,3,4),
obtained by the segments joining the mid-points of the edges of S. Note that each
of these smaller squares are half-open and they partition S. In this paper we do not
discuss the implementation of this probe model, though similar implementations
can be found in [Pin76, Wil78, Yap00, Pan97].

A probe S is called a splitting probe if either the centre of the square C' is
a root or #(S) # #(S;) for any i = 1,...,4; otherwise, we call it a non-splitting
probe.

Suppose S contains k roots ay,...,ax in C. For every root «; inside S we
define the following four pairs:

e 0iNnE = (i, aNE®i)), Where ayp() is the nearest root or corner of S lying
north-east of «;.

e i nw = (a4, anw(s)), where ayyy(;) is the nearest root or corner of S lying
north-west of «;.

e 0isg = (ai,asp@)), where agp() is the nearest root or corner of S lying
south-east of «;.

e 0isw = (i, asw()), where agw;) is the nearest root or corner of S lying
south-west of «;.

These pairs certainly exist; however, they may not be unique. We view these

pairs as directed edges coming out from «;. We also insist that these edges are

never horizontal or vertical. This ensures that the four edges issuing out of each
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root are distinct (so our graph is simple). The set of edges in the directed graph so
obtained for S will be represented as o(S). By an outer edge of o(S) we mean an
edge connecting a root with a vertex of S; the remaining edges will be called inner
edges and their set will be denoted by I(S). For each ¢’ € o(S5), let w(o’) denote
the Euclidean length of the edge ¢’. We will write “o; . for any of the four edges
coming out of «;. Figure 1(a) illustrates the graph o(S), where the dots represent

the roots in S.
\// [
/\..z e
)

I —

(a) (b)

FIGURE 1. (a) The directed graph o(S). (b) Charging scheme
probe S’

Similar to Sect. 4 we define a threshold parameter 7 > 0 and define an edge
0;« to be big or small depending on whether w(o;.) > 7 or w(o;.) < 7. We
extend the definitions of (4.2) to this context,

AT = AT(S):= > (+1gw(e’)/7),

o'€ o(S): o’ is big

(6.1)
AT =A7(5):= > (1 —lg(w(a’)/7).
o' € o(S)NI(S): o’ is small
Let A(S):=A" +A~.
Analogous to Theorem 5 we show the following:
Theorem 9. Given a square S and k = #(S), we can solve the root isolation

problem in at most 1.5k — 1 + A(S) probes.

Proof. The algorithm based upon our probe model performs a four-way search.
If #(S) < 1 then we are done. Otherwise, initialize a queue containing S. In the
general step, we extract a square S’ from the queue and probe it. The consequence
of the probe is the quadruple (#(S1), #(S2), #(S3), #(S4)) where S;’s are as shown
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in Figure 1(b). We enqueue S; if #(S;) > 1, output it if #(S;) = 1, and discard it
otherwise. The algorithm terminates when the queue is empty.

It is clear that there can be at most k — 1 splitting probes. We now devise
a charging scheme, analogous to what was done earlier, to account for the non-
splitting probes. The analogy between the two charging schemes is the following;:
In Sect. 4 the charging of big segments was counting the number of intervals
whose midpoint is contained within that segment; now the charging counts the
number of squares that are sufficiently large and whose edges intersect the segment.
The charging of small segments, in the same section, was counting the number of
intervals that are sufficiently small and which contain the segment; now we count
the number of squares in place of intervals.

Consider a non-splitting probe S’ with center C. Since this probe is non-
splitting all the roots inside S’ must lie in one of S;, i = 1,2, 3,4; suppose they
lie in the square Sy south-east of C'. Let a; be a root nearest to C. Thus the edge
o; nw must intersect either the top or the left edge of S’ and hence

w(oiyw NS") > w(Sy) = ;w(S'). (6.2)

Furthermore, since S; is not an isolating square there is another root 3 inside Sy
such that one of the edges from «;, apart from the north-west one, points to 3;
denote this edge by e. Then

w(e) < vV2w(Sy) = w(S")/V2. (6.3)

These notations are illustrated in Figure 1(b).
Now we describe our charging scheme:

1. If w(S") > 27 then we charge the probe S’ to the corresponding o; yw. This
means o’ :=o; yw is big.

2. If w(S') < v/27 then we charge S’ to the edge e. This means o’ :=e is small
and cannot be an outer edge.

3. If V27 < w(S’) < 27 then we count an additional charge. However, there are
at most k/2 such charges, since S’ is not an isolating square and the next
probe S is such that w(Sy) < v/27.

Thus we have the following cases:
Case (A): ¢’ is small. Suppose Si, . . ., S¢ are the probes charged to ¢’. Assume
Sy C Sp—1 C---C S1 and that ¢’ is in Sy. Thus from (6.3) we have

Vaw(o') < w(Se) < 27 w(Sp—1) < - < 27w (Sy) < 2712,

and hence ¢ < 1 —lg(w(o’)/T).
Case (B): o’ is big. Let S1,Ss,...,Se be all the probes charge to o', such
that Sy C S¢y—1 C -+ C S2 C S7. Then from (6.2) we have

w(o’) > w(e' NSy) > ;w(Sl) > w(S) > - > 27 2w(Sy) > 271y,

and hence ¢ < 1+1g(w(o’)/7). O
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7. Complexity of Complex Root Isolation

To bound the complexity of isolating all the roots of a degree d square-free poly-
nomial A(X) we need to bound the number of probes to achieve this. Let S be
a half-open square containing all the roots of A; from Cauchy’s bound we know
that w(S) < 2(1+ ||Alloc). According to Theorem 9 we need to bound AT (S) and
A~ (S) for 7 = 1.

Lemma 10. Let A(X) be a degree d square-free integer polynomial with L—bit
coefficients. Then we have A~ (S) = O(dL + dlgd) and A*(S) = O(dL).

Proof. Suppose ai,...,aq are the distinct roots of A(X) in S. We counsider the
upper bounds for A~(S) and A*(S) in turn:

Bound on A™(S). For a root a; let ay(; denote the nearest root to it. Consider
the directed graph G = (V, E) obtained from the pairs (a;, an(;)). It is not hard
to see that the cycles in G have the property that all the edges have the same
length. Thus we can break any cycle of length greater than two to a set of cycles
of length less than or equal to two. Now construct two graphs G; = (V, E1) and
Go = (V, Es) from G where G2 contains one of the edges from each cycle in G and
(G contains all the remaining edges of G; thus E = E; U E5. Both G; and G5 are
DAG’s. Moreover, the vertices in G5 have in-degree at-most one. We re-orient the
edge (a, B) € Ey such that |a] < |f]; it is clear that this re-orientation does not
affect the in-degree of the vertices. Now we apply Theorem 3 to G2 to obtain:

II la—8= Vdisc(A)| - M(A)~ @ - (d/v/3)"¢- d=>. (7.1)
(a,B)EES

The in-degree of the vertices of G can be at most six since any root of A(X)
can have at most six neighboring roots that are all closest to it and to each other.
Now we re-orient the edge (o, 3) € Ej such that |a| < |5]. As a result of this
re-orientation the in-degree of any vertex in Gy is bounded by three. The reason is
that any circle that passes through the centre of the hexagon can contain at most
three vertices since the vertices are diametrically opposite each other. Thus from

Remark 3.1 we have:

II o= 81> [disc(A)*® - M(A) "B - (d/v3) 5. a5 (7.2)
(a’ﬁ)eEl
Combining this with (7.1) we have:
II 1= 8l > |disc(A)* - M(A) @44 - (d/v3) = . d 2. (7.3)
(a,B)EE

We can partition the set of roots in V into four different types: R;, ¢ =
1,2,3,4, be the set of roots which have exactly ¢ inner edges where the edge
(o, ) € E is oriented such that || < |B]. Then an upper bound on A~(S)
translates into a lower bound on [Jw(o’), where ¢’ are small inner edges, but this
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product is equal to the product of the small inner edges corresponding to each
root in R;, i = 1,2, 3,4. This latter product is clearly greater than

II lei —en@l- I lai—an@lP- [ loi—ene- ] lei —onel

a;€ERy a; €ER2 a;€ER3 a;€ERy

since each inner edge is at least the distance to the nearest root. From (7.3) and
(6.1), we thus have

A=(S) = O(dL + dlgd),

since lgM(A) < L +0.51g(d + 1).

Bound on AT (S). Since S contains all the roots, we know w(c; «), i = 1,...,d, is
less than the diagonal of S, which instead is less than 2573, Thus for any root o
we have

w(o; nw)w(os np)w(o; sw)w(o; sg) < 2412

and from (6.1) we have

A+(S) d+ ZU'/EU'(S):U'/ is big lgw(a')

4dL + 13d,

which clearly is O(dL).
O

The bounds from the above lemma combined with Theorem 9 give the fol-
lowing;:

Theorem 11. Let A(X) be a square-free integer polynomial of degree d and L—bit
coefficients. Then the number of probes to isolate all the roots of A(X) are at most

O(dL + dlgd).

Recall the distinction between the Sturm based approach for the case of real
roots and complex roots. Since in the latter one has to compute a new Sturm se-
quence at each probe, this can increase the bit size of the coefficients of these poly-
nomials by one, so that the final probe can possibly involve polynomials having bit
size of the coeflicients 6(dL). The evaluation of the Sturm sequence corresponding
to these polynomials can take 6(d4L2), and hence the total complexity to isolate
all roots of a degree d square-free integer polynomial with L-bit coefficients can
potentially be 6(d5L3). Hence Theorem 11 seems to be of theoretical interest only.

8. Conclusion

The two contributions of this paper are (1) a simplified approach for achieving
the best known complexity bound in evaluating Sturm sequences, and (2) a new
probe complexity bound for isolating complex roots. The common theme in these
two results is the use of amortization arguments.
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