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Implementation of Fast Low Rank
Approximation of a Sylvester Matrix

Bingyu Li, Zhuojun Liu and Lihong Zhi

Abstract. We describe and implement a fast algorithm for constructing struc-
tured low rank approximation of a Sylvester matrix. The fast algorithm is
obtained by exploiting low displacement ranks of the involved structured ma-
trices. We present detailed error analysis and experiments to show that the
fast algorithm is stable.
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1. Introduction

The authors in [11] described a fast algorithm based on structured total least norm
(STLN) [16, 14] for constructing structured low rank approximation of a Sylvester
matrix and obtaining the nearest perturbed polynomials with exact GCD of degree
not less than a given positive integer. This algorithm is of complexity O((2m +
2n — k + 3)?), where m, n, k are degrees of input polynomials and a given positive
integer. The increased efficiency is obtained by exploiting low displacement ranks
of the involved structured matrices in [10, 11]. However, since coefficient matrices
appeared in the STLN method have large condition numbers, it is necessary to
reduce error by choosing a suitable generator matrix for the fast algorithm. In this
paper, we present a new generator pair of the augmented matrix (3.6) in Sect. 3.
In Sect. 4, we analyze the backward error and forward error of the fast algorithm.
Experiments are given in Sect. 5 to show the stability of the fast algorithm.

The work is partially supported by the National Key Basic Research Project 2004CB318000 of
China and the Chinese National Science Foundation under Grants 10371127 and 10401035.
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2. Preliminaries

We are given two polynomials a,b € R[z] with a = a,,2™ + -+ + a12 + ap and
b=bpx"+---+bix+by, am # 0,b, # 0. S is the Sylvester matrix of a and b. The
perturbations of a and b are denoted by Aa = Aapx™ + -+ -+ Aarx + Aag and
Ab = Ab,x"+- - -+ Abyx+ Abg respectively. We consider the minimal perturbation
problem: For a positive integer k < min(m,n), minimize ||Aa||§+||Ab||§ preserving
that a + Aa and b+ Ab have an exact GCD of degree not less than k.

Denote Sy = [a Ay] € Rimtn—kt1)x(m+n=2k+2) a5 the k-th Sylvester matrix,

Um 0 -0 0 by, o --- 0 O
-1 Qm -+ 0 0 bp—1 b, --- 0 0
Sk= 10 0 @ a; 0 0 - by by | (2.1)
0 0 0 ag O 0 0 by
~ ~ PR ~ -
n—k+1 m—k-+1

where a is the first column of Sy, and Ay consists of the last m+n—2k-+1 columns
of Sk.

The perturbations Aa and Ab are expressed by an (m + n + 2)-dimensional
vector d,

d=1[di,do, ... ,dmins1,dminsal” - (2.2)

The k-th Sylvester structured perturbation of Sy is represented as [Aa Dy].
Theorem 1. [10, 11] Given univariate polynomials a(zx), b(x) € R[z] with deg(a) =
m and deg(b) = n. Let S(a,b) be the Sylvester matriz of a(x) and b(z), Sk be the
k-th Sylvester matriz, 1 < k < min(m,n). Then deg(ged(a, b)) > k if and only if
Sk has rank deficiency at least 1.

The minimal perturbation problem can be formulated as the following equal-
ity constrained least squares problem:

Hliél Id]|2, subject to r =0, (2.3)

where the structured residual r is given by
r =a+ Aa— (A + Dp)x. (2.4)
The STLN algorithm [1] initializes x as the unstructured least square solution

Apx ~ a and sets Aa = d = 0, and then refines both x and d by the first order
iterative update

L Rl e

where w is a large penal value and I, 42 is an identity matrix of order m+n+2.
The matrices Py, and X}, are introduced in [11, 10] such that

Aa = Pk d, Dkx = Xkd. (26)

min
Ax,Ad
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Let us denote the coefficient matrix of the system in (2.5) by M,

w(Xk — Pk) w(Ak + Dk)

, 2.7
Im+n+2 0 ( )

|

and denote y = [ ﬁi ] ,Z = [ f:l ]; the least squares problem (2.5) can be

rewritten as

min My — . (2.8)

It has been shown in [11] that M is a Toeplitz-like structured matrix of displace-
ment rank at most 4.

3. Fast Algorithm for Solving the Least Squares Problem

Fast algorithms based on QR decomposition for solving least squares problems
with coefficient matrices being Toeplitz matrices have been considered in [5, 12, 4,
2, 6, 15, 17]. The stability properties of these algorithms are still not well under-
stood and most of the algorithms may suffer from loss of accuracy when they are
applied to ill-conditioned problems. Based on the method of corrected semi-normal
equations, the algorithm derived in [13] can produce a more accurate R factor in
the QR decomposition of a Toeplitz matrix, even for certain ill-conditioned matri-
ces. Another fast and stable algorithm for solving the Toeplitz-like least squares
problem was developed by Gu in [8]. The algorithm is based on the fast algorithm
for solving Cauchy-like least squares problems. Although these algorithms [13, 8]
can be used to solve least squares problems of significantly extended range from
well-conditioned to certain ill-conditioned. It is still under investigation whether
those algorithms can be used to solve the least squares problems (2.8) with co-
efficient matrices having many very small singular values. In [11], we propose to
solve the least squares problem (2.8) fast by extending the fast algorithm described
by Chandrasekaran et al. in [3] for solving systems of linear equations. Here, we
show that their fast algorithm [3] can be generalized to solve (2.8). The numerical
stability of the fast algorithm will be explained in next two sessions.

For the least squares problem (2.8), we denote its solution by yis, and the
minimum residual vector by rps = Myrs—z. Then y s solves the following linear

system:
R | A (3.1)

Denote by @ the orthogonal matrix from the QR decomposition of M. We partition
Q as: Q = [Q1, Qs], where Qy € RCGm+2n—k+3)xk, thep

Irasl, = 1052l = o | "5 | (32)

2
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Due to the heavy weight of the upper block M (1..m +n — k + 1,:) of M, the
entries of the block Q2(m +n — k + 2.2m + 2n — k + 3,:) are O(1), the block
Q2(l.m +n — k + 1,:) consists of near zero elements. Therefore, derived from
(3.2), Irrs||y is of much smaller size compared to ||z||2, i.e.

[rrslly < [lzfl; - (3.3)

The inequality (3.3) tells us that we can compute an approximate solution
¥ to (2.8) by omitting the term rys and solving the following augmented system

proposed in [11]:
)22

We normalize the matrix M and the vector z as:
M :=M/|M|p, z:=2z/[|M|F, (3.5)

where ||M||F is the Frobenius norm of M. Due to the large penal value w, after
normalization, the lower left corner of M has very small diagonal elements. This
causes the numerical rank deficiency of MT M. Moreover, since M is not a square
matrix, the coefficient matrix of the linear system (3.4) is rank deficient. In order
to complete the generalized Schur algorithm successfully, we construct T' [3, 11] as:

[ MTM 4+ aI® MT

T = " g | (3.6)

where oI, BI(?) are small multiples of identity matrices. Here the perturbed ma-
trix MTM + oI is positive definite, which ensures the positive steps complete
successfully; The perturbation I is added to guarantee that the Schur comple-
ment of T with respect to MTM + o) is negative definite, which ensures the
negative steps complete successfully.

It has been shown in [11] that T is a structured matrix with displacement
rank at most 10. We can construct a generator pair (G, J) for T such that

T - FTFT =GJGT,
where

F= dlag (Zm+17 Zn+17 ankv mek+17 Zm+nfk+17 Zm+n+2) 5

J = diag (4, —Is), and G is a matrix with 10 columns. However, in [11], we
expressed G by columns of 7', for which some of entries are of order 1/w?, where
w is the large penal value. It is undesirable for numerical stability.

In the following, we introduce a new generator matrix with columns which
are only of order 1/w, the same order as that of M. Define ¢, ..., t4 as:

tr = [|M(:1)3+ ty = [|[M(:,m+2)[3+«q,
ts = IMG,m+n+3)|3+a, ta = ||[M(:2n+m—k+3)|32+a.
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Let

M, MT(1,3)]" +al(;, 1),
M7 (m+2,)M, M"(m +2,)]" +al(;,m+2),

C1 = [ (

Cy = [ (

c3 = [MT(m+n+3 M, MT(m+n+3,:)]T+a[(:,m+n+3),
[M7(

MT@2n+m—k+3,)M, MT2n+m—k+3,)]"
+al(:,2n+m — k + 3),

where I denotes the identity matrix of order 4m + 4n — 3k + 6. Then

g1 = c1/Vt,

g2 = Cy/\/ta, except that go[1] =0,

g3 = c3/V/t3, except that gs[1] =0, gs[m +2] =0,

g4 = c4//ts4, except that g4[1] =0, g4[m +2] =0, g4[m +n+ 3] =0,

gs = [0,g7(2: 4m+4n73k+6)]

g = [gl(1:m+1),0,gl(m+3:4m+4n—3k+6)]",

[
[
g = [gl(1:m+n+2),0,g5(m+n+4:4m+4n—3k+6)]",
[
[

gl(1:2n+m—k+2),0,gl(2n+m —k+4: 4m+4n73k+6)]
0,...,0,0,/6,0,....0],

~
2m+2n 2k+3

go=100,...,00,80,...,0]T.
- ~ -
3m—+3n—3k+4

g8 =
g9 =

Expanding the proof in [3] by combining with singular value decomposition
(SVD) of M, we prove that after applying 2m + 2n — 2k + 3 positive steps and
2m+ 2n — k + 3 negative steps of the generalized Schur algorithm, which operates
on the generator pair (G, J), we can obtain a backward stable factorization of T":

% s]0 6

where R is upper triangular and D is lower triangular. Furthermore, using the
triangular factorization (3.7) we can solve the following augmented system

o[2)- (8]
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and get

venf2]-[2]

s

where ||H||2 = O(e) and € is the machine precision. The solution [ ] is obtained

through the following substitutions:

[ ST 1% 3] 12)

and ¥ is computed by the expression
RQTDTD g (3.10)

¥ is regarded as an approximate solution to the least squares problem (2.8).
As mentioned in [11], the computation of ¥ is of quadratic complexity O((2m
+2n — k + 3)?).

4. Error Analysis for the Fast Algorithm

In [3], the authors derived a backward error bound to show that the approximate
solution ¥ is a backward stable solution to the original linear system. For our case,
however, it is still not clear how to prove that § is a backward stable solution to
the least squares problem (2.8).

In the following, by means of the formula derived in [7], we compute an al-
ternative F-norm backward error bound £(y) that y satisfies. As shown by the
numerical tests in Sect. 5, the obtained solutions are backward stable. Besides,
based on (3.9) we derive a relative forward error bound for the approximate solu-
tion ¥ in Sect. 4.2.

4.1. Computation of Backward Error

Let £(y) be an alternative F-norm bound on M such that ¥ is an exact solution
to the least squares problem below

m;n||(M+5M)y—Z||2- (4.1)

é(y) differs from the smallest possible backward perturbation e(y) derived in [18, 9]
X

0 VT is the singular value

by at most a factor less than 2. Suppose M = U
decomposition of M and § # 0. Let

szyU[g] (4.2)
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for t; € Rm+2n—2k+3)x1 514 $, € R**1, Then

é(y) = min(ﬁ? &)7 (43)
where n = ||“;:"||“22’ and
$T%2(52 + n21) 1%
+’72) L (4.4)
||r2||2/77 + 0?2 (82 4+ 021)72h

The detailed analysis of computations can be found in [7].

4.2. Forward Error Analysis

We derived a relative forward error bound for the approximate solution y to the
least squares problem (2.8). Hereafter, we use x(-) to denote the 2-norm condition
number of its argument. We define u = m+n—k+ 1,1 = m+n — k+ 2. For any
integer i,1 < i < u+1, 0; is the i-th largest singular value of M.

Lemma 2. Denote by f a vector which satisfies the following linear system:
MTM +aI®  MT yl_J[o
M —BI®) 1 | =z

which is roughly of the form:

] +f; (4.5)

”5’*)’LSH2
lyzsllz

B+ afk*(M) k(M) + B2 (M) |If]2
M]3 — apr?(M) — [|M]5 — aBrs?(M) [lyLsll2

Proof. Partition f as [T, £7]7, fi € R@m+2n-2k4+3)x1 £, ¢ RE@m+2n—k+3)x1,
from (4.5), we have

we derive an upper bound for

(4.6)

{ (MTM +aIM) g+ MTE =1,
My — 3§ =z + f,.
Eliminating £, we get

3 (MTM + aI(l)) g+ MTMy = MTz + M7, + Gf,.

Noting that
M"z=M"Myps,

using elementary calculus we get
(ﬁMTM‘F Olﬂf(l) +MTM) (yLS — ) (ﬁMTM+ Olﬂl(l)) VLS *M £, 7ﬂf1’
and
-1
YrLs — 5’ = (61(1) + aﬂ(MTM)il —+ I(l)) (61(1) + aﬂ(MTM)—l) VLS
-1
= (100 + B a0) 4 10) (018 54T M) ),

where MT is the Moore-Penrose pseudoinverse of M. Since

(M) = || M|, 1M]ly,  <*(M) = [[(MT20) |, M]3,



92 B. Li, Z. Liu and L. Zhi

we derive an upper bound for H)lf‘;sL;ﬁ’sz which is of the form:
Brap|[(MTM)TH|, (M, + BT M), £l
1=B—af[((MTM)" |, 1=8-=aB[[(MTM)~'], [lyrsll,
B M|l3 + aBr? (M) LK) M|l + Br?(M) £l

(L= B) | Mll; — aBr?(M)  (1—B) M| — apr?(M) |yrslly
The final form of the inequality follows from [ M|, < 1 and 8 < 1. O

]T, z, € R gz, € RUFRIXL. then for T

Lemma 3. Partition z as [zf,zak
defined as (3.6) we have

0 4 2 1 2 3
T*l < w . 4
H [] 2—(%%5%%“)”2 ||2+(5+0u+l)||m||2 7)

Proof. Denote

- Bi1 Bio
T = ,
[ BL, By ]

where By; € R TDx(utl) We derive expressions for Bi1, Bis and Bas in terms of
the SVD of M.

Let M = U[ >
Ok x (utl)
nal matrices and ¥ is a diagonal matrix consisting of singular values of M. The

diagonal matrix ¥ can be written as

Zu
="

] VT be the SVD of M, where U,V are orthogo-

where
¥, =diag(o1,...,04), X = diag (Gut1, .-y Outl) -

We define diagonal matrices

Ay = ([Iu +ax;? mu)*l ,

A, = (Bu+aZ;h) A,
—1\—1 _97—1 -1
A= (Si+az ) ([IlJraEl ] +5Il) ;

([n+a%;2) " +61) B
)

Ay =
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where I, I;, I, denote identity matrices of dimensions u, [, k respectively. Then

S-TA!
Bi = v[ AR Ay oY ]VT, (4.8)
_ A; 0u><k T
Bis = V[ A Opr ]U , (4.9)
Au T
Byy = U Avik Uu-. (4.10)

Note that the following inequalities hold:
IAully < 14 1/0u, 1ALl < Lou Al < L/ouss, [Amill, < 1+1/8;  (4.11)
for the last inequality the following assumption is used:
aB <ol (4.12)

Meantime, for the partition of U:

_ U11 U12 uXu
U= [ Uy Usps :| , where Uy € R s

due to the heavy weight (O(w)) of the submatrix M (1..u, :), the following inequal-
ities hold:

[Uh2llz, U21ly < 1/w. (4.13)

Finally, we derive that

2]

IN

| B12z|, + || B222z|[,

L NPT (L R TP
Zy, A .
Ou wf WOy 4] 2 I] Outl i+kll2

2

IN

O

Lemma 4. Assume that H is a backward error matriz which satisfies (3.9), and
that y||H|l2 < 1, where

v=B/oi 1 +2/oun+1/8+1; (4.14)

then for the vector f defined in Lemma 2, we have

e, < A [(4+2+ ! )nmm+(2+ 3)”%%%}
L—[[H|2 on WP woyug B Outi
(4.15)
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Proof. By the definitions of f and H, we get

- a[2]

]
T

= -H({I+T" 1H) 1[ ]
So
[ H|l2 .[o0
[
[ ll2 z ll,
H1[,

0
. (2]
L— [Tz || H], z
We use (4.8), (4.9), (4.10) and (4.11) to derive that
1T, < [1Buslly + 1Brzlly + || Bazl
< Bony +2/oun+1/8+ 1.

Based on Lemma 3 and the assumption of v||H||2 < 1, we get the final form of the
inequality. [

2

Theorem 5. Assume that y is a vector which solves the linear system (3.9); with
assumptions of aff < 03+l and v||H||2 < 1, we can derive an upper bound for the

relative forward error ”yfyL”SHZ which is of the form:
2

llyrs
Baps(M) R+ BR20M)  |H] )
M]3 = afr?(M) - [|M]]3 - aBs?(M) (1 =y H|2)llyLs|l2’
where v is defined in (4.14) and
4 2 1 2 3
= u . 4.1

o= (o 2t Vot (542 Yl (117)

Proof. 1t follows immediately from Lemmas 2, 3 and 4. O

Remark 4.1. In order to complete the generalized Schur algorithm stably we take
a, B that satisfy the lower bound derived in [3]. In essential, it means that «,
can be taken somewhat larger than the machine precision. Besides this, based on
the error analysis in this section, «, 3 should be taken such that the upper bound
(4.16) is as small as it could be. Hence the assumption o3 < o2, used in Theorem
5 is natural, noting that it is approximately equivalent to a8x?(M) < 1, which is
a necessary condition that the upper bound (4.16) is smaller than 1.

Remark 4.2. In practice, after normalization (3.5), the following inequalities hold:

Izl <1, lzigell, <1/w. (4.18)
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Furthermore, when the given integer k (2.5) is taken as an upper bound of the
degree of approximate GCD, we generally have < 1.

5. Experiments

In Table 1, we show the performance of the fast version of the algorithm AppSylv-k
[10]. The efficiency is gained by applying the fast algorithm described in Sect. 3
to solve the least squares problem (2.8) in each iteration. In the numerical tests,
we compute minimal perturbations needed for two univariate polynomials having
an exact GCD of degree not less than a given integer. All computations are done
in Maple 10 under Windows for Digits = 15, o = 3 = 10714,

TABLE 1. Algorithm performance on benchmarks

Ex mn  k error error for.err. é(y
’ (classic) (new fast) (LS Prob.) (LS Prob.)
1 2,2 1 559933¢e-3 5.59933¢-3  0.461e-3  0.238¢-12
2 3,3 2 1.07129¢e-2  1.07129e-2 0.434e-3 0.176e-13
3 5,4 3 1.56146e6 1.56146e6 0.143e-2 0.143e-13
4 5,5 3 1.34138e-8  1.34318e-8 0.664e-3 0.452e-13
5 6,6 4 1.96333e-10 1.96333e-10 0.182e-3  0.448e-13
6 8,7 4 1.98415e-16 1.98416e-16 0.322¢-3 0.896e-14
7 10,10 5 1.51551le-12 1.51552e-12 0.272¢-2 0.598e-13
8 14,13 7 2.61818¢4 2.61819e¢4 0.163e-1 0.112e-12
9 28,28 10 2.54575e4  3.54600e—4 0.992e-1 0.512e-14
10 50,50 30 9.35252e6  9.40237e-6 0.134 0.168¢-13

The sample polynomials are the same as those generated in [10]: For each
example, we use 50 random cases for each (m,n), and report the average over
all results. For each example, the prime parts and GCD of two polynomials are
constructed by choosing polynomials with random integer coefficients in the range
—10 < ¢ < 10, and then adding a perturbation. For noise we choose a relative
tolerance 107, then randomly choose a polynomial that has the same degree as
the product, with coefficients in [—10¢, 10¢]. Finally, we scale the perturbation so
that the relative error is 107°.

In Table 1, m,n denote the degrees of polynomials a and b; k is a given
integer; “error (classic)” and “error (new fast)” denote the minimal perturbations
computed by the algorithms given in [10] and this report respectively; “for.err.
(LS Prob.)” denotes the relative forward error of § with respect to the solution
given in [10]. In the last column we show backward perturbations &(y) to the least
squares problem (2.8) computed according to method given in Sect. 4.1.

The small backward perturbation £(y) shown in Table 1 imply that y is a
stable solution to (2.8). The computed minimal polynomial perturbations have
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the same magnitudes as those computed by the algorithm in [10]; Especially, the
new results in the first eight examples even have several significant digits identical
to that of the classic results [10]. However, from the last two examples, we can
see that the accuracy of the new results could be affected by the large condition
number of M.
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