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Abstract. A new algorithm for computing the approximate GCD of multivari-
ate polynomials is proposed by modifying the PC-PRS algorithm for exact
GCD. We have implemented the new algorithm and compared it by typical
examples with (approximate) PRS, (approximate) EZ-GCD algorithms and
two new algorithms based on SVD. The experiment shows a good performance
of our algorithm.
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1. Introduction

Let Clz,us,...,us] be the ring of polynomials over the complex number field C
in the main variable z and sub-variables u1, .. ., u,. We abbreviate C[x, u, .. ., u
to Clz,u]. Let a given polynomial F'(z,u) € C[x,u] be expressed as F(z,u) =
Fn (2™ + fon 1 (@)™ 4 -+ fo(w), frn £ 0. By deg(F), 1c(F) and tdeg, (f:)
we denote the degree and the leading coefficient of F' w.r.t. the main variable x,
and the total-degree of f; w.r.t. u1,...,uys, respectively; if T’ = cuf* - - -u;*, c € C,
then tdeg, (T) = e1 + --- + e¢. By tdeg,(F) and tdeg(F'), we denote the total-
degree of F' w.r.t. uy,...,up and w.r.t. x, us, ..., uy, respectively, i.e., tdeg, (F) =
max{tdeg, (fm),- .., tdeg,(fo)}. By ||F||, we denote the norm of polynomial F'; we
use the infinity norm in this paper: ||F|| = max{||fml|, - - -, || fo||}- By Normalize(F),
we denote the normalization of the polynomial F', i.e. the scale transformation F' —
F'=nF,n e C, so that we have ||F'|| = 1. By appGCD(A, B) and ged(A4, B;¢),
we denote the approximate greatest common divisor (appGCD) of A and B and
of tolerance ¢, respectively. By cont(F;¢) and pp(F;¢), we denote the content of
F of tolerance € and the primitive part of F' of tolerance e, respectively, w.r.t. z,
i.e., cont(Fse) = gcd(fm,gcd(fm,l, coos fore); s) and pp(F';e) = F/cont(F;e).
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Zhi and Noda [ZN00] compared three algorithms for the appGCD of multi-
variate polynomials A(x,u) and B(x,u) experimentally, the polynomial remain-
der sequence (PRS) algorithm by Ochi et al. [ONS91], the EZ-GCD algorithm
by Moses and Yun [MY73] with enhancement by Wang [Wan80], and a modular
algorithm by Corless et al. [CGTW95]. They concluded from several experiments
as follows. (a) The PRS algorithm is useful for the appGCD of polynomials of
small degrees w.r.t. each variable. It is, however, quite inefficient when A and B
are of large degrees. Furthermore, the coefficient size grows exponentially w.r.t.
the number of variables. (b) EZ-GCD algorithm is fast, but it often causes large
cancellation errors. Furthermore, if initial factors A(®)(z) and B(®)(z) of the Hensel
construction have a close root, then multivariate Hensel construction becomes un-
stable [SY98]. (c) The Modular algorithm is often unstable.

At ISSAC 2004, two new methods for computing appGCD of multivariate
polynomials were proposed. Gao et al. [GKMYZ04] proposed their appGCD algo-
rithm as one part of an approximate bivariate factorization algorithm using Gao’s
factorization algorithm. Zeng and Dayton [ZD04] gave a nearly identical GCD al-
gorithm that has an additional Gauss-Newton refinement step. In both papers,
the authors proposed generalized Sylvester matrices and determined appGCDs by
computing nearest singular matrices of the Sylvester matrices.

As for exact GCD, Sasaki and Suzuki [SS92] presented the so-called Power-
series Coefficient PRS (PC-PRS) algorithm. The PC-PRS algorithm is a modifi-
cation of the PRS algorithm, using truncated power series for the coefficients, and
it is as fast as the EZ-GCD algorithm. In this paper, we modify the PC-PRS algo-
rithm for calculating the appGCD and test it by several examples; the results are
very good. We also compare the PC-PRS algorithm with the PRS, EZ-GCD and
SVD-based algorithms for computing appGCD in Maple, MATLAB and GAL (see
Section 4). The comparison shows a good performance of the PC-PRS algorithm.
However, the PC-PRS algorithm becomes unstable in some case, and we discuss
the case.

2. Approximate PC-PRS Algorithm

Let P; and P, be primitive polynomials in C[z,u] and (Py, Py, Ps,..., P, # 0,
P11 =0) be a PRS. Let P, = C(u)G(z,u) where C(u) is the content of Py; then
G(z,u) is the GCD of P; and P,. Usually, tdeg,(G) is not large, but tdeg,(C)
is very large. If P, and C' are given, we can compute G by dividing Py by C. In
this division, we need not treat all the terms of P, and C. For example, suppose
tdeg,(Pr) = 100 and tdeg,(C) = 90; then tdeg,(G) = 10. In this case, the
computation of G requires only terms of highest 10 exponents or terms of lowest 10
exponents of P and C'. In the PC-PRS algorithm, we use only terms of lowest some
exponents, and cut-off all the other higher terms, which makes the computation
quite fast.
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Let e be an upper bound of tdeg, (G); we discard all the terms of total-
degrees greater than e. In order to cut-off terms simply, we introduce the total-
degree variable t for the sub-variables uq, ..., us by transformation u; — tu; (i =
1,...,0). Let P, = Py(x,tu), Py = Py(x, tu) € C{tu}[x], where C{tu} is the power-
series ring over C. We compute a PRS with power-series coefficients, or PC-PRS,
(]51, Py, ..., Py £ 0, Pii1= 0) by truncating terms of total-degree greater than e;
hence P; = P; (mod t¢t1) (i = 1,2,...). Actually, P; is generated as follows:

BiPi1 = (aiPioy — QiPy)/ max{||a|, [|Qi|]}  (mod t°+),
o; = IC(PZ‘)di+1, dl = deg(Pi,l) — deg(PZ),

where [; is determined by the reduced-PRS or the subresultant PRS algorithm. By
modifying the PC-PRS algorithm, we obtain the following approximate PC-PRS
algorithm. (The algorithm does not consider the case of small leading coeflicients.
The treatment of PRS with small leading coefficients is now an open problem.)

Algorithm 1 (approximate PC-PRS algorithm).
Input: Polynomials P, P, € C[z,u] and a small number ¢.
Output: G = ged(Py, Py;e).
STEP 1: g := ged(le(Pr),le(Pe);e).
E := min;—; o{tdeg, (P;) + tdeg,(g) — tdeg, (Ic(P;))}.
STEP 2: Calculate PRS (Ps, ..., Py, Pry1, || Pryall /|| Pel| < €).
/* cut-off higher degree E terms x/
if deg(Py,) = 0 then return 1 else P;, := Normalize(Py).
P :=gP,/Ic(Py). ] power-series division %/
G :=pp(P;e).
if ||rem (P, G)|| < € and ||rem(Ps, G)|| <€
then return G else return 1.
end.

3. Other Algorithms

3.1. EZ-GCD Algorithm
The EZ-GCD algorithm may be described as follows.
1. Choose a lucky expansion point s € C* and put I = (u; — s1,...,us — 5¢).
2. Put A® = A, B(®) = B (mod I), and compute G©) = gcd(A(®), B(O),
3. Find @ and b € C such that ged(G(®), H®) = 1 where P(®) = qA(®) 4 B
and H® = P /GO and put P = aA + bB.
4. Compute polynomials U;(z) and V;(z) (i = 0,1,...,deg(P®)) such that
Ui (2)GO + Vi (z)HO = z°,
5. Perform the Hensel construction to obtain polynomials G*) and H®):

P(z,u) = G®(z,u)H® (z,u) (mod I**1),
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where (n = deg(P(?)) below)

GW =G0 NS v B = g6 S g R
1=0 1=0
with
FR =p_ ge-Dgh-1 = glgn 4 k) (mod 1FH1).

We compute U;(z) and V;(x) by the extended Euclidean algorithm.
6. If G®)|A and G*®)|B then return G*), else choose another expansion point
s' € C* and go to step 1.

3.2. SVD-Based Algorithms

The algorithms of Gao et al. [GKMYZ04] and Zeng-Dayton [ZD04] for computing
appGCD of multivariate polynomials are based on singular value decomposition
(SVD) and are very similar to each other. Let f,g € Clz1,...,z, f1 = f/gcd(f, 9)
and g1 = g/ged(f, g). Then all the solutions u,v € C[zy,.. .,z of the equation

uf+vg=0 (3.1)
are of the form

u=g14q, V= 7f1q7 (32)

where ¢ € Clzy,...,z¢ (Lemma 2.1 in [GKMYZ04]). From the equation (3.1),
we can derive a linear system for the coefficients of © and v, and we can obtain
solutions u = g7 and v = — f; by solving the linear system.

Let Sk and Sk be Gao et al.’s k-th generalized Sylvester matrix and Zeng-
Dayton’s k-th generalized Sylvester matrix, respectively. Then tdeg(ged(f,g)) =k
(or 1deg(ged(f, g)) = k (for 1deg, see Sect. 3.2.2)) if and only if Sy (or Sk) is rank-
deficient by one with its nullspace being spanned by [v, —u]?, where u and v are
coefficient vectors corresponding to u and v, respectively. Then, the condition of
degree of GCD tells us that u = g; and v = —f;. Gao et al.’s and Zeng-Dayton’s
algorithms are summarized as follows.

1. Determine k (or k), the total-degree (or the ¢-degree) w.r.t. z1, ...,z of the
appGCD(f, g) in one of the following two ways:

a) Computing the degrees of the GCDs of several random univariate pro-
jections of f and g, and look for the numerical rank of the corresponding
univariate Sylvester matrices.

b) (Gao et al.’s algorithm only) From S=S5;(f,g) where f,g€Clz1,..., /]
with tdeg(u) < tdeg(g) and tdeg(v) <tdeg(f), find the largest gap in
the singular values of S and infer the degree from the numerical rank
of S.

2. For the k-th (or k-th) generalized Sylvester matrix Sy (or Sk), compute a
basis of the nullspace by computing the singular vector corresponding to the
smallest singular value of Si (or Sk).
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3. Find a G = gcd(f, g), the approximate quotient of f and v (or g and u);
alternatively minimize [|g — Gul[3+ ||f + Gvl|3, by using a least-square algo-
rithm.

We note that the generalized Sylvester matrices are different in Gao et al.’s and
Zeng-Dayton’s papers. The size of S is smaller than the size of Sk (see Example
5). Also, we note that Gao et al.’s algorithm does not require tolerance e, but
Zeng-Dayton’s algorithm requires tolerance € because of determining degree of
univariate polynomial GCDs.

3.2.1. Gao et al.’s k-th Generalized Sylvester Matrix. Let tdeg(f) = m, tdeg(g) =
n, and B(k,£) = (ky); number of all the different terms z%' - - ole with 43 +-- -+
i¢g < k. Then, Gao et al.’s k-th Sylvester matrix

Sy, € CAmAn—kO)x(B(m—kL)+B(n—k.0)) (3.3)

3.2.2. Zeng-Dayton’s k-th Generalized Sylvester Matrix. For f € Clzy,...,z/],
let m; = deg, (f) (1 = 1,...,£). By ldeg(f), or ¢~degree of f, we denote the (-
tuple m = [my, ..., my]. By v(m), we denote the number of all the different terms
ait -l with i; <my (1<j <€) ie,v(m)=(my+1)(mg+1)---(my+1). In
Zeng-Dayton’s algorithm, every polynomial is transformed to a coefficient vector;
S = St oo, iy, ottt @l with s = 14 X0, [z‘k 15 (m; + 1)),
then

Ut f = f = [flvf%"'»fu(m)]T € (CU(M)

Let n = [n4,...,ng. By Cu(f) € CY(m+m)xv(m) "we denote a convolution matrix
of f; the s-th column of Cy(f) is generated by ¥mn(fgs), where g5 = z7' -+ -/

with s = 1+ 30, [z‘k 1l (ny + 1)] (1 < s < v(m)). Let ldeg(g) = n; then
Zeng-Dayton’s k-th Sylvester matrix
Sk(£,9) = [Cn—x(9)|Ca-x(f)] € CYImin—iOx(vim=igFvim=t)), (3.4)

4. Numerical Examples

We have implemented the Approximate PC-PRS algorithm in Maple and GAL,
and Zeng-Dayton’s algorithm in MATLAB. GAL is an algebra system constructed
by Sasaki and Kako, being equipped with effective floating-point number system
which allows us to detect the cancellation errors fairly well but not exactly; see
[KS97] for details (since the relative errors are set to 107! initially, the pre-
dicted values are about 10 times larger than the actual values). We use GAL to
estimate cancellation errors of PRS, EZ-GCD and PC-PRS, and we use Maple
and MATLAB to compare average CPU times for the PC-PRS and SVD-based
algorithms. We have used Gao’s code “multiged” is Maple for Gao et al.’s algo-
rithm [Kal04, Zhi04]. We compare our algorithm with Gao et al.’s algorithm in
Maple and Zeng-Dayton’s algorithm in MATLAB. Since the size of generalized
Sylvester matrices is very large in most cases, we have implemented sparse in
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MATLAB [Matlab]. Computations reported in this paper were performed on an
Xeon (and Ultra SPARC-IIi) running at 3.05GHz (and 440MHz) under Windows
XP (and Solaris 8), using Maple 9.5, MATLAB 7.1 (and GAL).

An Execution of Approximate PC-PRS Algorithm
Example 1. Let multivariate polynomials A(z,y, z) and B(z,y, z) be

Az, y,2) = (22 +y? +0.323 — 1)2(zy — 0.25) — 10 Pzyz,
B(z,y,2z) = (22 + 3y +0.323 = 1)(z —y)? =107 °(z + 1 — 2).
The approximate PC-PRS algorithm, with ¢ = 0.001, works as follows.
g = ged(le(Pr), le(P);€) = ged(y, L) = 1.
E =6.
e Calculate PC-PRS:
deg(Pl), e Ldeg(Pe,) are 5,5,4,3,2,1, respectively.
1Pi]],..,|[P5l| axe O(1) and [|Ps]| < O(e).
e Normalization of Ps:
Ps = Normalize(P5) = 0.8799---z2y* + 0.0959 - - - 22?23 — 0.1199 - - - 223>
—0.0060---2%22% + 0.0066---22 — y* — 0.1380---y%2%> + 0.1266---y>
+0.0080 - - - 23 — 0.0066 - - -.

e Power-series division:

P = gPs/lc(Ps) = 2% +0.9999 - - -3 + 0.2999 - - - 2% — 1.0000 - - -.
e G =pp(P;e) =P.
e Check |[rem(P1, G)|| < e and ||rem(Ps, G)|| < e.

||rem(Py, G)|| = 0.0001 < 0.001, ||rem (P>, G)|| = 0.00019 < 0.001.
e Return G.

Example 2 (Comparison of PRS algorithm with PC-PRS algorithm). We compare
the PRS and PC-PRS algorithms on the following A(z,y, z) and B(z,y, 2):

Az, y,2) = (22 + 4™ + 0.323™ — 1) (zy — 0.25) — 10 Szy2",
B(z,y,2) = (a? +y*™ +0.32°" = 1)(z —y")* =107 °(z + 1 — 2).

Cancellation Errors by PRS and PC-PRS

In Tables 1 and 2, “#term” and “ErrMax” show numbers of terms and maxi-
mum relative errors in the coefficients P;(: = 1,...,6), respectively. “~Error—”
means that the computation stopped by failure (in this case, error happened in
the approximate division P/cont(P;¢) with tolerance ¢).

Comparison of Computing Times
e Table 3: Average CPU times for m=1and n=1,...,6.
The total-degree of appGCD is the same for different n.
e Table 4: Average CPU times forn=1and m=1,...,4.
The total-degree of appGCD increases as m increases.
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TABLE 1. Approximate TABLE 2. Approximate
PRS Algorithm PC-PRS Algorithm
#term ErrMax(F;) #term ErrMax(F;)
Py 21 1.00e-15 Py 21 1.00e-15
Py 17 1.00e-15 Py 17 1.00e-15
Py 27 3.00e-15 Py 15 2.00e-15
Py 58 2.70e-14 Py 19 8.00e-15
Ps 166 1.20e-7 Ps 22 1.62e-9
Ps 0(0.0001) Ps 0(0.0001)
approx. GCD — Error — approx. GCD 2.53e-13

TABLE 3. The average CPU times for m =1 and n =1,...,6 (sec)

m=1 n=1 n=2 n=3 n=4 n=5 n==6
Approx. PRS 0.202 0.828 0.424 1.408 1.380 1.714
Approx. PC-PRS 0.016 0.016 0.012 0.016 0.014 0.012

TABLE 4. The average CPU times for n =1 and m = 1,...,4 (sec)

n=1 m=1 m=2 m=3 m=4
Approx. PRS 0.202 0.370 0.694 0.744
Approx. PC-PRS 0.016 0.026 0.036 0.058

We see that the approximate PC-PRS algorithm shows a very nice efficiency.
The average CPU time for approximate PRS algorithm depends on total-degrees
of A and B largely. On the other hand, the average CPU time for the approximate
PC-PRS algorithm depends only on the total-degree of appGCD, and they do not
depend much on other quantities.

Comparison of PC-PRS Algorithm with EZ-GCD Algorithm
Example 3. We compare the PC-PRS and EZ-GCD algorithms on the following
A(z,u) and B(z,u):
A(r,u) = (3 +ut +ud —u? +u+ 1+ 0.001) (22 + zu +u? + 1),
B(z,u) = (23 +u? +u —u? +u+1+0.001)(z? + zu + 1).

1. Approximate PC-PRS Algorithm
We obtain an appGCD(A, B) as follows:

0.99900099900123 + 0.999000999001u* + 0.999000999001 >
—0.999000999001u2 + 0.999000999001w + 1.

The maximum relative error of this appGCD is 2.00 x 10715,



62 M. Sanuki

2. EZ-GCD Algorithm
We choose the expansion point at s = 4/2005 and put a = 1 and b = 1; then

G =0.99701787928153z3 + 1,
H©) = 2.0059820807004z% + 0.0040019592632428 + 2.0059860726797.

G and H© have mutually close roots, and the maximum relative errors
of G and H© are 2.51 x 1071 and 2.51 x 10719, respectively. We obtain
the following appGCD(A, B):

G = 0.9970 - -23 + 0.0181 - - - 22u* — 0.0026 - - - 22u?
—0.0015- - - 22u2 4+ 0.0019 - - - 220 + 0.0177 - - - zu* — 0.0105 - - - zu3
+0.0044 - - -zu? — 0.0019 - - -zu — 0.0306 - - -u* +0.9942 - - -3
—0.9935- - -u% 4 0.9950 - - -u + 1.

The maximum relative error of this appGCD by the EZ-GCD algorithm is
6.33 x 1075, We find that remainders of A and B by G are O(1).

Since we have chosen the expansion point s to be near a singular point
(in this case, the origin is a singular point), the EZ-GCD algorithm causes
large cancellation errors. We see that the approximate PC-PRS algorithm
does not cause such a large cancellation error; it is independent of the singular
point.

Example 4. We compare the PC-PRS and EZ-GCD algorithms on the following
A(z,u), B(z,u) and B(z,u):
Az, u) = (22 + u? + 1)(2? —u — 0.5)(2? + u + 0.1),
B(z,u) = (2% + u? + 1) (2 + u® + u — 0.4)(0.0012% + u + 1),
B(z,u) = (2% + u® + 1)(z + u® + u — 0.4)(0.000122 4 u + 1).
1. Approximate PC-PRS Algorithm
We obtain an appGCD(A, B) as follows
2 +u? + 1.

The maximum relative error of this appGCD is 1.13 x 10!, However, we

cannot obtain any appGCD(A,B): we can calculate the PRS of A and B
S (Pl = A,PQ = B,...,Ps,Pﬁ, ||P6|| = 0(0001)), but the PRS of A and

Bis (P, = A,P, = B,..., Ps, ||Ps|| = 0(0.001)). Since |[lc(B)]| is smaller

than the norms of other coefficients of B, the approximate PC-PRS algorithm

causes large cancellation errors.

2. EZ-GCD Algorithm
We choose the expansion point at s = 0 and put a = 1 and b = 1; then

GO = £2 4 0.99999999999811,
H© = 2% 4+ 0.001z> — 0.40039999999811z> + 1.0z — 0.45000000000264.

We obtain appGCD(A, B) and appGCD(A4, B) as follows
2 +u? +1.
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The maximum relative errors of appGCD(4, B) and appGCD(A, B) by EZ-
GCD algorithm are 1.13 x 107! and 1.13 x 10!, respectively.

We see that the approximate PC-PRS algorithm shows a very good efficiency.
We also see that, in some cases, the EZ-GCD algorithm gives better results than
the approximate PC-PRS algorithm.

Example 5 (Comparison of PC-PRS with SVD-based algorithms). In Tables 5, 6
and 7, “back err” denotes the backward error in Zeng-Dayton’s algorithm [ZD04]
defined as follows:

S f|12 5 ol12
o \/Hcfl S8+ lleg —gllt W)
113+ llgl13

where fi,§ and ¢ are co-factors of f, g and an appGCD(f, g), see below.
We compare the PC-PRS and SVD-based algorithms on the following f and g.

Sample 1.
f(l' U):fl(l‘ u)c(gg u) C(I,u):(x+u1+...+ur+l)2’
{ 5 5 5 ) with fl(x’u):(I2*u1*“‘*ur70.5)2,
9(z, u) = g1(z, u)c(z, u), gi(z,u) = (22 +ug + -+ ur + 0.5)2.

We set 7 as r = 1,2,...,5. We show the comparison in Table 5, where “Ave.
CPU”, “ErrMax” and “back err” are the average CPU time (sec), the maximum
relative error and the backward error, respectively.

TABLE 5. Comparison of PC-PRS with SVD-based GCDs on Sample 1

Approx. PC-PRS Gao et al.’s GCD Zeng-Dayton’s GCD

(Maple) (Maple) (MATLAB)
Ave. CPU ErrMax Ave. CPU back err Ave. CPU back err
r=1 0.015 5.12e-13 2.647 5.62e-15 0.072 5.80e-15
r=2 0.025 5.12e-13 10.286 1.16e-14 0.119 8.41e-14
r=3 0.052 5.12e-13 96.206 1.36e-10 0.756 1.84e-13
r=4 0.151 5.12e-13 about 1300 1.72e-10 1.519 1.16e-13
r=>5 0.220 5.12e-13 over 3000 - --- 446.755 3.94e-13
Sample 2.
f(x,u) = fa(z,u)e(z,u), . c(z,u) = (z+ur+ - +up+1)?%
{ with 2(z,u) = (22 —ug — - —ur — 0.5)%
g(z,u) = ga(x, u)c(x, u), go(z,u) = (I2 +u - Fu+ ().5)2,

Weset rasr=1,2,...,5.
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TABLE 6. Comparison of PC-PRS with SVD-based GCDs on Sample 2

Approx. PC-PRS Gao et al.’s GCD  Zeng-Dayton’s GCD
Ave. CPU ErrMax Ave. CPU back err Ave. CPU back err

r=1 0.015 5.12e-13 2.647 5.62e-15 0.072 5.80e-15

r=2 0.062 4.60e-12 11.114 1.30e-14 0.137 6.06e-14

r=23 0.130 8.19e-12 247.329 1.91e-10 1.988 7.94e-13

r=4 0.399 8.19e-12  over 3000 - - - - 338.754 7.88e-13
r=2>5 3.736 8.19e-12  over 3000 - - - - over 3000 ----

Sample 3.
_ 2

feu) = fo(wwe(a,w), o f ) =@ fu e

with ¢ fs(z,u) = (2% —ug — - —ul. — 0.5)%,

9(x,u) = gs(z, u)c(z, u), g3(z,u) = (% +us + - +u, + 0.5)%

Weset rasr=1,2,...,5.

TABLE 7. Comparison of PC-PRS with SVD-based GCDs on Sample 3

Approx. PC-PRS Gao et al.’s GCD  Zeng-Dayton’s GCD
Ave. CPU ErrMax Ave. CPU back err Ave. CPU back err

r=1 0.015 5.12e-13 2.647 5.62e-15 0.072 5.80e-15
r=2 0.082 5.12e-13 7.899 1.47e-14 0.163 4.87e-15
r=23 0.151 5.12e-13 426.549 1.32e-10 83.323 2.62e-13
r=4 0.438 5.12e-13 3000 over - - - - over 3000 - - - -
r=>5 2.167 5.12e-13 3000 over - - - - over 3000 - ---

We see that the approximate PC-PRS algorithm shows a very nice efficiency.
The CPU time for Gao et al.’s algorithm depends on the total-degrees of f and
g. Furthermore, Gao et al.’s algorithm is extremely slowed down if the number of
variables is large. On the other hand, Zeng-Dayton’s algorithm is not so slowed
down even if the number of variables is increased (Example 1 in [ZD04]). This
difference between Gao et al.’s algorithm and Zeng-Dayton’s algorithm is due to
computing environments: efficiency of Zeng-Dayton’s algorithm is strongly due to
very fast sparse matrix SVD procedures in MATLAB. If we implement Gao et
al.’s algorithm in MATLAB, the algorithm will show a much better performance.
Observing the maximum relative error and the backward error, the approximate
PC-PRS algorithm is stable if the total-degree and the number of sub-variables
are increased. On the other hand, SVD-based algorithms lose stability gradually.

Comparison of S;, with Sy.

The size of the generalized Sylvester matrix increases very rapidly as the degree
or the number of variables increases. The generalized Sylvester matrices S and
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Sk are different. Table 8 shows the sizes of generalized Sylvester matrices S; and
Sk for Samples 1 and 3 above.

TABLE 8. Sizes of generalized Sylvester matrices

Sample 1 (Table 5) Sample 3 (Table 7)
Sk Sk Sk Sk
r=1 66x30 77x30 66x30 77x30
r=2  286x70 539x90 286x70 819x120

r=3 1001x140 3773x270  1829x280 9009 %660

r=4 3003x252 26411x810 20349x3129 99099x5130

r=>5 8008x420 184877 74613 1756755
%2430 x 8218 *x53190

We see that size(Sy) < size(Sk). By row(M) and col(M), we denote the
numbers of rows and columns, respectively, of a matrix M. For Gao et al’s
Sylvester matrix Sy, row(S;) = B(m+n—k,{) = (m+”;k+£) and col(Sy) = B(m—
k,0)+ B(n— k) = (mfekﬁ) + (”jﬁe). For Zeng-Dayton’s Sylvester matrix Sk,
row(Si) = [Ti_y (mi+n;—k;+1) and col(Sk) = [Tr_, (mi—ki+1)+T 15 (ni—ki+1).
We have

L
—k 1
(m Z”) = y[m—k+e—itn)

=1

< l}'{(mkar DE4+ 02 (m—k+1)1t
+63(m — k +1)F72 +m+££}
l+1 ¢
< — .
<y (max{m k+1,£}) , (4.2)
¢ ¢ y y
[[mi —ki+1) > [J0h—k+1) = (h— k+1)", (4.3)
i=1 i=1
where (1, Ivc) is a pair which minimizes m; —k; (i = 1,...,¢). Since m—k > m—k,
we can bound row(Sy) and col(Sy) as follows:
{41 ¢ ..y ¢
row(Sg) < / (max{m +n—k+ 1,8}) <(m+n—k+1)" <row(Sk),
¢
col(Sk) < ¢ Z ! (max{m —k+ 1,0} + max{n — k + 1,8})
< (h—k+1)+ (#H—k+1) < col(Sk).

Therefore, size(Sk) is larger than size(S). In most cases, max{m+n—k+1,{} ~
m +n — k + 1; hence we have

(+1

row(Si) S ( +

p )row(Sk). (4.4)
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Example 6. We compare the performance of approximate PC-PRS and Gao et al.’s
GCD by multivariate polynomials generated randomly in Maple. We generate ten
polynomial pairs (4;, B;) (i =1,...,10) as follows:
A; = a;c; + 1072d1‘
B; = bjc; + 107261‘
Ai+5 = a;c; + 1075d1‘
Bi+5 = b;c; + 107561‘

where ai,bi,ci,di,ei c (C[l‘,y] (’L = 1,2,3) and ai,bi,ci,di,ei S (C[:c,y, Z] (’L = 4, 5),

with ||as|| = [|bil| = ||cill = ||dil| = |leil| =1 (i = 1,...,5), and we generate them
randomly in Maple. Table 9 shows the comparison.

TABLE 9. Comparison of PC-PRS with SVD-Based GCDs (sec)

Approx. PC-PRS Gao et al’s GCD  Zeng-Dayton’s GCD

(Maple) (Maple) (MATLAB)
Ex. Ave. CPU ErrMax Ave. CPU back err Ave. CPU back err
1 0.025 7.27e-12 0.871 9.65e-3 0.094 3.52e-1
2 0.044 3.00e-14 1.825 1.66e-2 0.094 4.83e-1
3 0.029 1.37e-13 3.670 1.25e-2 0.090 5.13e-1
4 0.110 3.47e-7 4.892 1.66e-2 0.253 3.32e-0
5 — Error — 4.119 1.18e-2 0.294 2.44e-0
6 0.037 4.68e-11 2.170  9.65e-6 0.098 2.08e-5
7 0.040 1.39e-13 1.121 1.66e-5 0.087 1.80e-5
8 0.039 1.66e-9 0.341 1.25e-5 0.082 1.95e-5
9 0.049 3.22e-6 2.503 1.66e-5 0.102 2.24e-5
10 0.471 1.90e-8 2.563 1.18e-5 0.100 1.76e-5

We see from Table 9 that Gao et al.’s algorithm is unstable if the pertur-
bation is not small; it is difficult to determine the total-degree of appGCD by
only the SVDs of univariate polynomials. For example, in Ex. 3, we obtain an
appGCD of the total-degree 1, but tdeg(ged(A4s, B3)) = 3. In Gao et al.’s algo-
rithm, we determine the total-degree by rank deficiency by observing the largest
gap of singular values, and hence the determination is unstable if perturbation is
not small. The situation is the same in Zeng-Dayton’s algorithm. Furthermore,
since Zeng-Dayton’s algorithm requires degrees of ¢ univariate polynomial GCDs
for ¢ variables, it is more unstable if the number of variables is large. In fact,
Zeng-Dayton’s algorithm does not give correct appGCD for Ex. 1-5. In Ex. 4 and
8, ||lc(B4)|| and ||lc(By)|| are small compared with the norms of other coefficients.
Therefore, the approximate PC-PRS algorithm causes large cancellation errors.
On the other hand, Gao et al.’s algorithm and Zeng-Dayton’s algorithm are not
affected by norms of coefficients. In Ex. 5, “Error” means that the computation
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stopped by failure (in this case, an error happened in computing an appGCD of
lc(As) and le(Bs); ged(le(As),le(Bs);0.01) = ged(0,1c(Bs);0.01) = 0. The rea-
son is the small leading coefficient: ||lc(As)|| < 0.01). The approximate PC-PRS
algorithm is not complete yet. Improvement of the algorithm is our future work.

5. Conclusion

In this paper, we proposed an Approximate PC-PRS algorithm and briefly discuss
five algorithms for computing appGCD of multivariate polynomials. Our algorithm
cut-offs unnecessary higher degree terms in the computation of PRS, making the
computation quite efficient. We showed a good performance of the approximate
PC-PRS algorithm. This algorithm is very nice except in the case of a small lead-
ing coefficient (Example 4 and Ex. 5 in Example 6). SVD-based algorithms can
compute appGCD fast, only when the degree and number of variable are small.
The size of the generalized Sylvester matrix increases very rapidly as the degree
and the number of variables are increased; hence SVD-based algorithms require
very fast SVD routines such as those in MATLAB. SVD-based algorithms are
unstable when the perturbation is not small; we cannot determine the degree of
appGCD. On the other hand, SVD-based algorithms are not affected by norms of
coefficients.
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