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Rational Interpolation and Its Ill-conditioned
Property

Hiroshi Kai

Abstract. A rational interpolation is obtained by solving a system of linear
equations. However, when the system is solved by floating point arithmetic,
there appears a pathological feature such as undesired zeros and poles. In this
paper, a method is described with the help from computer assisted proof to
eliminate the feature.
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1. Introduction

A rational interpolation approximates a given function to a rational function,
which is defined as a ratio of numerator and denominator polynomials as
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This interpolates a function f(x) or a set of discrete data on a range [« §]. For

any given points a < xg < 1 < -+ < Tyytn < F we have
Tman(Tk) = f(zr) == fr, for k=0,...,m+n.

Then we obtain the linearized equations

Zaix}; — fr ijxi = fk. (1.2)
i=0 j=1

The unknown coefficients a;, b; can be determined by solving the Equ. (1.2) by
Gaussian elimination.

However, when the linearized equations are solved by floating point arith-
metic, there appears a pathological feature such as undesired zeros and poles [6].
A reason of the appearance of undesired zeros and poles is highly ill-conditioned
property of the Equ. (1.2) [4, 5].
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For the well-conditioned case, there are modern fast algorithms for rational
interpolation (see, e.g., [8]). When we consider only the ill-conditioned case, the
naive method such as Gaussian elimination may be investigated.

In this paper, the reason of the appearance of undesired zeros and poles is
stated more precisely. A method to eliminate the pathological feature is presented
using computer assisted proof.

2. Undesired Zeros and Poles

Suppose that the system Equ. (1.2) is Ay = B. Here, the coefficients a;, b; are
represented by a vector y € R™™ ! as y = (ag,...,am,b1,...,b,)T. Then the
matrix A € R(mtnt)x(m+n+1) and the vector B € R™T+! are represented as
follows:

1 o g —fozo <o —foxg
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B = (fo, fro-- s fman) " - (2.2)

The matrix A containing two column blocks of Krylov matrix is known as ill-
conditioned matrix [1]. The ill-conditioned property of the system gives the patho-
logical feature such as the appearance of approximate common factors. The approx-
imate common factors cause undesired zeros and poles in the rational interpolants.
We analyze the system in the following two cases:

1. the matrix A is a singular matrix,
2. the matrix A is an ill-conditioned matrix.

2.1. Case 1: A Is a Singular Matrix

Suppose that the given function f(z) is a rational function 7,y () =par () /an (),
where M < m and N < n; then the matrix A will be singular. In order to show
this, we need the following property of the rational interpolation.

Lemma 2.1. Suppose that 7, n(x) is a rational interpolant of the rational function
ryn(x). Then

T (T) ~ 1o N (T). (2.3)

Proof. If we assume ry, () # ra,n(z), then the number of intersection of these
functions is up to max{M + n, N + m}. However we have m + n 4+ 1 points to
interpolate s n(x). This leads to contradiction of the assumption ry, ,(z) #

’I"M’N(l‘). O
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Lemma 2.1 implies that 7., ,(z) is represented by the following equation:

oy @)

’ 9(z)qn (x)
where g(z) is a polynomial and the degree is v := min{m — M, n — N}. From this
observation, the number of the unknown coefficients for this problem is reduced
to m+n + 1 — . Thus, the following property holds immediately.

(2.4)

Corollary 2.2. The matriz A is singular and its rank is m +n+1 —

Suppose that Ay =Bisa trlangularlzed system by Gaussian elimination of
Ay = B. The last v rows of A and B will be all zero. We may substitute symbols
t1,...,t, in the solution to have a unique solution, such as b, =1t,,...,bp_y_1 =
t1. Then, we have the following form:

po() + tip1 () + -+ + typy (2)
qo(x) +t1qa(z) + - - - + 1145 (2)
Since ra,n(z) is free from the symbols ¢1,...,ty, pu(z) = po(z) and gn(z) =

qo(z). From Lemma 2.1, p;(z) = v;(2)po(z) and ¢;(x) = v;(x)go(x) must be allowed
as well, where v;(z) are polynomials. Hence, the following property holds.

(2.5)

Tmon(T) =

Theorem 2.3 (Murakami et al. [5]). If A is singular (has the rank m+n+1—+),
then rm n(z) may be represented as follows:

9(z)qn (x)
1+ tvi(z)  for >0,
g(x) = { 1 for v=0. (2.7)
The converse may also hold.
Ezample. For v = 1, if rpr n(x) is represented as
ag+ - +ayzM
’I"M’N(l‘) = 0 M (28)

1+bix+---+ by’

then Theorem 2.3 shows that g(z) = 1 + tyv1(z), where vi(x) = /by by easy
derivation.

The rational interpolant r,, ,(z) may be computed in floating point arith-
metic, but the symbols ¢; will be substituted by rounding errors. This computation
will raise an approximate GCD in 7, ,(x).

2.2. Case 2: A Is an Ill-conditioned Matrix

If the given function f(z) is not a rational function, the matrix A is not singular
in general. But, there are undesired zeros and poles in the rational interpolant, as
we have observed experimentally in [3] and [6]. As is well-known in numerical com-
putation, if the condition number of A is large, then the matrix A is numerically
singular.
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Ezample. We compute a rational interpolant ry4(z) for the function f(z) =
log(x + 2) in x € [0, 1]. By using the similar procedures discussed in the previous

section, A and B are obtained after Gaussian elimination as

1 0 0 0 0 0
0 1 -1 ~1.1 ~1.1 ~1.1
0 —0.4  0.09 0.3 0.4 0.5
0 0.08 0.004  —0.02 ~0.06 —0.1
0 —0.03 0.0005  —0.002 0.008 0.04
0 0  0.0002 —0.00007  0.0002  —0.001
0 0 0 —0.0000007 0.000006 —0.00007
0 0 0 0 0.2-1077 —0.7-107
Lo - 0 0 0 0 0.5-1077

and

(0.7, 0.4, 0.02, 0.001, 0.0002, 0.000009, —0.00000006, 0.5-107?, —0.3 - 10*9)T

by 9 digits floating point arithmetic. More precisely, the elements 1219’9 ~ (.52292-
10~7 and Bg ~ —0.27990-10~Y in the last row are very small. By a straightforward
computation, we can obtain the following rational interpolant:

(z 4 11.392)(z + 2.9853)(x + 1.0001) (z — 0.8305033948)

(x4 21.676)(x + 4.4851)(z + 2.3139)(z — 0.8305033945)
We can observe an undesired zero and pole appearing around 0.83053 in r4 4(x).

Here, we eliminate the undesired zero and pole from 74 4(z). Then the re-
maining part is as follows:

T4,4 (fL‘) ~ 4.5843

(z 4 11.392)(z + 2.9853)(x + 1.0001)
(x4 21.676)(x + 4.4851)(x + 2.3139)
0.69315 + 0.98608x + 0.31337z2 + 0.020379z3

1+ 0.70126x + 0.12658z2 + 0.0044453923
In order to show that A is numerically singular, let us assume that the given func-
tion f(z) is this rational function r3 5(z). From Theorem 2.3, since t; = By/Ag ¢ =
—0.27990 - 1079/0.52292 - 10~7 = —0.00535265 and bz = 0.00444539, the GCD is
constructed as follows:
t —0.00535265
b 0.00444539 "
This result agrees with the position of undesired zero and pole. This shows that
the matrix A is numerically singular.

4.5843

7"3’3(66)

gl@) =14 ‘z~1+ = —1.20409(z — 0.830503).
3

3. To Eliminate the Feature

There exists a well-known property to state how much a regular matrix is close to
a singular matrix. Let P be the set of singular matrices. Let dist(A, P) denote the
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minimum distance from the matrix A to the set P. Then

. All

dist(4,P) =|| A~! || != |

(A, P) = 47 7= (AL

where || - || denotes an arbitrary norm and cond(A) is the condition number of the

matrix A (see, e.g., [2]).
This property indicates that we need higher digits of floating point arithmetic
than the following positive integer d to eliminate the feature:

_ |- Al
d= [ logo cond(A) |-

In the example for log(z + 2), the condition number of A is estimated as
1Al
condA
This result shows that we need d = 12 digits at least to have an accurate result
for this problem. Thus, the matrix A is numerically singular in 9 digits floating
point arithmetic and, in fact, we have an approximate GCD g(x) = x — 0.830503.
We can consider two methods to eliminate the pathological feature:

=6.974- 10712,

1. use approximate GCD and eliminate the undesired zeros and poles, or
2. compute in higher precision.

The first method is called Hybrid Rational Function Approximation (HRFA) and
works well for computing a rational approximation in limited precision [3, 6]. If
higher precision is available, the second method may give us an accurate rational
interpolant for a function.

To verify the solutions of the linear equations Ay = B, we refer to Algorithm
3.1 in [7]. It can verify nonsingularity of A, after an approximate inverse matrix
of A is computed. If the verification is successful, then the result is guaranteed to
be accurate.

However, if the condition number of A is large, the verification may fail. We
use, therefore, iterative increment of the precision of floating point arithmetic. The
following method is derived:

Algorithm 1 (Rational interpolation using computer assisted proof)

1. Set initial digits to the number d.

2. Solve the linear equations Ay = B by Gaussian elimination and obtain an

approximate solution § and an approximate inverse matrix R of A.

Verify the solution using Algorithm 3.1 in [7].

4. If nonsingularity of A is verified, then output the result. Otherwise, increase
the digits (for example, twice) and go to step 2.

w

This method should work well. In the example for log(z + 2), starting from d = 8,
the verification succeeds at precision d = 16. This gives us an accurate rational
interpolant successfully as follows:

(z 4 19.851)(z + 4.8602) (z + 2.4752)(z + 1)

raal@) = 50787 as 346) (s + 7.0401)(x + 3.2192)(x + 2.1843)
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TABLE 1. The error of rational approximations by HRFA

Interpolation HRFA Error

Tmon (T) Trmon (T) Eve
(7,7) (6,6) 2.13-1076
(8,8) (4,4) 1.05-107°
(9,9) (6,6) 1.51-1074

TABLE 2. The error of rational interpolants by Algorithm 1

Interpolation Precision Error

Trmon(T) d Eve
(7,7) 32 1.12-10724
(8,8) 32 1.12-1028
(9,9) 64 9.20-10733

Tables 1 and 2 show numerical comparisons between the error of the approx-
imation by HRFA and Algorithm 1.

The function f(z) = e*™2, x € [0, 1] is approximated with the equidistant
points from 0 to 1. The error of a rational approximation is estimated by the
following expression

B DS @) = rn@))/ ()
100 ’
where z; = (i — 1)/99.

The results by HRFA are shown in Table 1. Here, naive rational interpolants
are computed at precision d = 8, and we denote the degree of the rational function
Tm.n(z) by (m,n). For example, r7 7(z) has an undesired pole in the range x €
[0,1]. HRFA gives a reduced rational approximation 7¢ ¢(z) after eliminating the
undesired pole, where the approximate GCD is computed by QRGCD in Maple 10
with parameter € = 10~%. The results in Table 1 show that HRFA gives accurate
approximations at the fixed precision.

The results by Algorithm 1 are shown in Table 2. For the computation of the
rational interpolants r7 7(x), s s(x) and rg 9(x), starting at precision d = 8, the
verification succeeds at precision d = 32, d = 32 and d = 64, respectively. Table 2
shows that, if multiple precision arithmetic is available, then we have accurate
rational interpolants by Algorithm 1.

4. Conclusion

As already shown by M.-T. Noda and the author, hybrid rational function approxi-
mation (HRFA) works well for naive rational function approximations. HRFA gives
accurate approximation for given functions. One of the remaining problems is to
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consider a reason for the appearance of undesired zeros and poles. In this paper,
we discuss the problem and show that it depends on the ill-conditioned property
of the system of linear equations, which determines the coefficients of the rational
interpolants. A straihgtforward method to eliminate the feature may be useful to
give an accurate rational interpolant for a given data set.
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