Symbolic-Numeric Computation
D. Wang and L. Zhi, Eds.

Trends in Mathematics, 17-45
(© 2007 Birkhauser Verlag Basel/Switzerland

Ill-conditioned Properties and Hybrid
Computations

Matu-Tarow Noda

Abstract. Approximate algebraic computation (AAC) has been one of the
most important research areas in algebraic computation. The basis of AAC is
an algorithm of computing approximate greatest common divisors (AppGCD)
proposed by T. Sasaki and the author. AppGCD and its applications work
well, especially, for obtaining accurate results of ill-conditioned problems. Al-
gorithms and implementation methods of AppGCD are briefly surveyed and
its applications such as hybrid integral, hybrid rational function approxima-
tion (HRFA), data smoothing by using HRFA and new hybrid method for
computing Cauchy principal value integral are described. Further, a patho-
logical feature of HRFA and relations of HRFA and ill-conditioned problems,
and their applications are discussed.

Mathematics Subject Classification (2000). Primary 68W30; Secondary 33F10.

Keywords. Hybrid computation, ill-conditioned property, algebraic equation,
rational interpolation, quadrature.

1. Introduction

Traditionally, the word scientific computation means computation done numeri-
cally, i.e., numerical computation. The successes of numerical computation have
brought about today’s development of the Computer World. Numerical computa-
tions have a very wide application area, and a number of research works on applied
mathematics have also been proposed. Further, this research has supported cur-
rent developments of the so-called engineering society. However, as is well known,
these developments have some defects. They include:

1. the results are always in danger of numeric error,

2. since a number of algorithms are proposed, problems related to algorithm
selection occur, and

3. algebraic or symbolic computations are impossible.

18 M.-T. Noda

On the other hand, rapid progress of computer hardware and software has led
to the use of symbolic computation. Symbolic computation wastes a significant
amount of computer memory and computing time as well. Computations done
symbolically give exact results. Thus, if numerical computation is effectively com-
bined with symbolic computation, some problems in numerical computation may
be solved more quickly and accurately.

Many approaches have been used for combining numerical computation with
symbolic computation. Some of them are shown by Kaltofen et al. [13, 4]. One
of the candidates for such type of computation that may be used effectively is
the problem of solving ill-conditioned polynomial equations. A polynomial is said
to be ill-conditioned if small changes in its coefficients result in large changes in
its zeros. An ill-conditioned polynomial equation has at least one of the following
properties:

1. the existence of several roots having ratios close to unity,
2. the existence of multiple roots.

The first property means the existence of close zeros in a polynomial equation. For
multiple roots, let the polynomial equation be

P.(z) = ap + a1z + azx® + -+ apz" =0, a, #0,

and let m; be the multiplicity of a solution x; of P,(x) = 0. If a coefficient as, is
perturbed slightly to ai + Aay, then the perturbation in z; is

mj!x;kkAak L/m
YO @y Py f
where Aayx < ai [2]. Many numerical algorithms have been proposed to obtain
zeros effectively. However, most of them are not effective for ill-conditioned prob-
lems.

If the polynomial P,(z) has integer coefficients and its roots are integer,
then multiple roots are easily separated by symbolic computation. For s-fold mul-
tiple roots, P,(z) is divided by d®) P,(x)/dz®, with residual equal to zero. It
follows that the greatest common divisor (GCD) of P,(z) and its (s — 1)-times
differentiation by x are not primitive. The GCD of two univariate polynomials P;
and P, with exact coefficients, GCD(Py, P»), is obtained by algebraic Euclidean
algorithm. Sasaki and the author applied the Euclidean algorithm to polynomi-
als whose coefficients are inexact, i.e., with limited accuracy or perturbed within
small tolerance. In this case, GCD is replaced by approximate GCD (AppGCD)
with accuracy €, AppGCD(Py, Py;€) [26, 21]. There are two simple approaches to
computing AppGCD for polynomials with inexact coefficients. One is the method
known as AppGCD (with accuracy ¢) and the other is the method using interval
arithmetic [20]. These two methods will be briefly described in Sect. 2. AppGCD
has been applied to several kinds of scientific computations. The first is an integral
of a given ill-behaved function which is obtained in the symbolic-numeric combined
environment. AppGCD plays an important role in the integration procedure. The

Ill-conditioned Properties and Hybrid Computations 19

method is called hybrid integral and will be described in Sect. 3. Section 4 is de-
voted to hybrid rational function approximation, which is abbreviated simply as
HRFA. In HRFA, AppGCD is effectively used. If a given function or set of data
is approximated by a rational function, there often occur approximate common
factors in numerator and denominator polynomials of the rational function. These
approximate common factors are eliminated by the AppGCD of the numerator
and denominator polynomials. Hybrid algorithms are applied to some practical
problems such as data smoothing and Cauchy principal value integral. These ap-
plications will be shown in Sect. 5.

2. Approximate GCD Computations

Two implementation methods for AppGCD are discussed. One is known as App-
GCD with accuracy e, which is the basis of every kind of AppGCD proposal.
The other is AppGCD using interval arithmetic. After the successful application
of AppGCD for solving an ill-conditioned algebraic equation, other AppGCDs
have been proposed by several researchers from different viewpoints. They are
also summarized briefly.

2.1. Approximate GCD with Accuracy ¢

The AppGCD of two polynomials P; and P, with accuracy e, AppGCD(Py, Ps;),
is a natural extension of the usual GCD computation by Euclidean algorithm.
Here, coefficients of both polynomials P; and P, are inexact and are represented
by floating point numbers. The polynomial remainder sequence (PRS) is obtained
by the Euclidean algorithm as follows:

P;_1 = PQ; + Py, 1=2,...,

where @); is a quotient polynomial. Because coefficients are inexact, all coefficients
of the polynomials in the PRS contain error by division operations. A cutoff op-
eration which regards the coefficients of polynomials in the PRS smaller than a
tolerance € as zero is introduced. Thus the PRS is written as

Pl,PQ,Pg,...,Pk #O,P]H,l =0 (cutoffs).
The approximate GCD with accuracy ¢ is defined as
AppGCD(Py, Py;¢) = P.

The above procedures are shown in an algorithm below:

Algorithm 1: Approximate GCD Algorithm

Input: Univariate regular polynomials P;(z) and P (z) with deg(Py) > deg(Ps)
and a small positive number ¢.
Output: Approximate GCD of P;(z) and P.(x) with accuracy less than e,
AppGCD(Pl, PQ, 6).

20 M.-T. Noda

Algorithm:
1. Calculate a PRS

Py, Py, ..., P, # 0 (cutoff €), Pry1 = 0 (cutoff ¢)
by the iteration formula
Q; = quotient(P;_1, P;) ;
P,_1 = Q;P; + max{l,mmc(Q;)} x Py1, i=2,...,k,

where mmc denotes the maximum magnitude coefficient of the polyno-
mial.
2. Return the primitive part (pp) of Py as

AppGCD(P; (), Pa(x);e) = pp(Pr).

The univariate AppGCD has been used to solve ill-conditioned polynomial
equations (as shown in detail in [26]) and extended to obtain the AppGCD of
multivariate polynomials [22, 21].

2.2. Approximate GCD by Interval Arithmetic

The PRS is computed by using the circular interval arithmetic. An inexact floating-
point number is considered to be a pair of its center, M, and an error radius,
r(M), which corresponds to a perturbation with small tolerance in a circular in-
terval number. Thus the circular interval number is represented as < M, r(M) >.
The circular interval arithmetic is defined as arithmetic between circular interval
numbers. The PRS computation is similar to that of AppGCD with accuracy e.
The difference is on a stopping criterion of the PRS. In AppGCD with ¢, the
cutoff operation is introduced to regard small coefficients as zero. However, in the
interval arithmetic, the condition that the circle contains zero is used as the cri-
terion. There arises a difficulty on division by an interval number. The fact that
the denominator must not include zero in the interval arithmetic. In the circular
interval arithmetic case, if the condition

| M [<|r(M) |

shows the circular interval contains zero. Thus the PRS is stopped at a polynomial
whose coefficient satisfies the above condition. Later, Shirayanagi and Sweedler
discussed the condition in detail with rigorous mathematical proofs by using the
rectangular interval arithmetic and established a theory to stabilize algebraic al-
gorithms [30].

2.3. Computation Examples of Both AppGCDs
Consider the polynomial equation
P(z) = x* — 10.42° — 70.962* + 29.6x — 3 = 0.

It has roots x = —5,15 and a double root at = 0.2. The polynomial equation is
ill-conditioned because of its double root. The two methods mentioned above may

Ill-conditioned Properties and Hybrid Computations 21

be applied to solve the equation. The Eucledian algorithm with inexact coefficients
gives the following PRS:

P, = z* —10.42% — 70.962% + 29.62 — 3,

Py = 42% — 31.22% — 141.922 +29.6 (= dP,/dx),
Py = —85.782% — 107.76614385x + 24.98461538,
Py = —0.46563934z + 0.09312787,

Ps = 2.77555756 x 1017,

The maximal value of P is less than 10716 times than that of P;. Thus, the
cutoff operation regards Ps as zero. After a normalization of the head term of Py,
the AppGCD with accuracy ¢ = 1076 is obtained and shown as

AppGCD(Py, P2; 1071 = 2 — 0.2.
On the other hand, the PRS generated by the interval arithmetic shows

P =<1.0,22x107"% > 2"+ < —10.4,1.8 x 107 *° > &*
+<—=70.96,1.4x107 %> 224+ <29.6,3.6 x1071°> 24 <—3.0,4.4x 10710,

Py, =<4.0,1.8x 1071 > 2+ < —31.2,8.9x 107 *° > z?
+ < —141.92,5.7x 107 > 24+ < 29.6,7.1 x 10715 >,

P3 =< —-89x%x10%38x10712 > 22+ < -1.1x10%,93x 1072 > ¢
+<2.6x10%1.8x 10712 >,

Py =< —4.7x10%1.1x1077 > 24+ < 9.5 x 10°,2.2 x 1078 >,

P; =<1.3x107578x107* >3 0.

PRS computations terminate because P5 contains zero in its interval. By the algo-
rithm stabilization technique [30], Ps should be rewritten to zero (zero rewriting).
Then, we obtain

GCD(Pi, P) = GCD(P(x),dP(x)/dz) = z— < 0.2,4.7x 10710 > .

Both GCDs give approximate double root of P(z) that exists very close
to x = 0.2. Many kinds of algorithms to obtain approximate GCDs have been
proposed. It follows that approximate GCD and its applications become one of
the most interesting research subjects of computer algebra.

2.4. Solving Ill-conditioned Algebraic Equation

The first success of applications of AppGCD is to solve a univariate ill-conditioned
algebraic equation. A polynomial equation, P(x) = 0, is called ill-conditioned when
the equation has multiple and/or close roots as mentioned in Sect. 1. If the coeffi-
cients of P(x) are integers or rational numbers, say ezact, multiple roots are easily
found and separated by the traditional GCD operation based on the Euclidean

22 M.-T. Noda

algorithm. However, if coefficients are inezact and represented as floating-point
numbers, it becomes impossible to use traditional GCD and then, the equation
should be solved numerically. But, in numerical computation, close roots reduce
the accuracy of all roots of the equation. Then, we should make an algorithm
which separates not only multiple but also close roots effectively for the algebraic
equation with inezxact coefficients. This was the first motivation to propose the
AppGCD algorithm [26].

The given polynomial P(x) is, first, decomposed to a square-free form by us-
ing AppGCD with accuracy e. The square-free decomposition of P(z) is written as

P(z) = Q1(2)Q3(z) - Qi (@), (2.1)
where Q" (z) contains all the m-multiple factors of P(z); hence each @; has no
multiple factor. To obtain (2.1), the following method is used:

appacD (P, T) — Qi) @@, e

Dividing (2.1) by (2.2), the product of square-free factors are obtained as

Q1(2)Q2(2) - - - Qum()-

With repeated use of the above procedure, P(z) can be separated to Q1, Q2, . . ., Q.
The procedure by using AppGCD may be called approximate square-free decom-
position.

After the square-free decomposition, for each Q;(z), I=1,...,m, Q;(x) =0
is solved by rough, numerical computation. Let the roots of the computation be
Uy, Uiy, - - .. For each w in wu;,, uy,, ..., expand P(u + v) up to v' terms by Taylor
expansion as

l

P(u) + P" f, +~'+Pl(u)1l)' + O =0, (2.3)

where
d'P(x)

 da! la=u
The expansion (2.3) gives an equation on v, p(v) = 0. Since the degree of the
equation is [, [solutions, vy, ..., v;, may be obtained. By adding these [solutions to
the solution of Q;(x) = 0, all roots of P(x) = 0 are obtained with high accuracy. We
show an example of how to solve the univariate ill-conditioned algebraic equation
by the method mentioned above [21]. Let an algebraic equation be

j210] (u)

P(x) = 27 — 3.50425 + 0.7620032° + 6.87799x" — 4.026013
— 2.62198z% 4 2.51201z — 0.504006 (2.4)
= (z+1)*(z — 2)*(z — 0.5)(z — 0.501)(z — 0.503) = 0.

The equation (2.4) has two double roots at x = —1 and z = 2, and also three close
roots around z ~ 0.5. Our method is divided into three steps.

Ill-conditioned Properties and Hybrid Computations 23

1. Obtain the AppGCD with accuracy ¢
PRS is obtained as

P1 = P(l‘),
dP(z) 6 5 4 3 2
Py, = d =T7x"—21.0242°+3.810012"+27.5122°—12.0782°—5.243972+2.51201,
T

P3 = —1.285722° + 3.22017z* — 0.33318823 — 2.7365522 + 1.77815z — 0.324372,

Py = 1.23979z* — 2.48289x3 — 0.924883z2 + 2.17459x — 0.623204,

P; = —3.37499 x 10~ %23 4+ 5.06537 x 107522 + 5.505959 x 10~ — 3.38077 x 10°
~ 0 cutoff 107%.

Thus the AppGCD with € = 10~* is obtained as

AppGCD(P, P',10™*) = pp(Pxy)
— 2% — 2.00266672° — 0.7459989922 + 1.7539990z — 0.50266867,

where P’ denotes dP(x)/dx.

2. Approximate square-free decomposition
By using the AppGCD obtained above, the following square-free factors are com-
puted:
Qs3(z) = x —0.50133334, Q(x) =z* —z — 2.0.
Then P(z) is decomposed as
P(z) = Q3(2)Q3(x) = (2 — x — 2.0)*(z — 0.50133334)>. (2.5)

Roots of Q)2 are easily obtained as ¢ = ug, = —1 and z = ug, = 2. On the
other hand, a common factor Q3 gives x = uz = 0.50133334. These solutions may
correspond to two double roots and close roots of P(z) = 0.

3. Expand procedure of close roots

The remaining problem is to obtain the detailed behavior of P(z) at © ~ —1,2
and 0.50133334. The first, a root = —1, is considered. P(z + v) is expanded up
to v? at £ = —1 and one obtains the result

v? — 1.16651 x 10 "% + small term (< 107'%) = 0.

Thus, v = 0 is obtained with a sufficient accuracy. Thus, the root z = —1 is a
double root of P(x) = 0. Similar procedure may be applied to the root z = 2.
Then, the root z = 2 is also a double root of P(z) = 0. The next, the approximate
triple factor Qs(x), is considered. Taylor expansion of P(x + v) at £ = us up to

v3 gives

5.06250v° + 1.32583 x 10~ "v? — 1.18125 x 107° — 3.75007 x 1072 = 0.
Roots of this equation are

vy = —0.00133334, v2 = —0.00033334 and w3 = 0.001666666.

24 M.-T. Noda

By adding these values to ug, the following results are obtained:
x=0.5, z=0.501 and =z =0.503.

They are the three close roots of P(z) = 0 with high accuracy.

The method above can be straightly applied to solve a system of multivariate
algebraic equations. In this case, coefficients of equations are also inexact and the
system is ill-conditioned. Detailed discussions are described in the papers [22, 21].

2.5. Other Approximate GCDs

Before the proposal of the paper by Sasaki and the author [26], similar approaches
have been discussed by Schonhage [28], Auzinger and Stetter[1]. However, the ap-
proach in the former study is considerably different from ours, and the discussions
in the paper are devoted mostly to the computation time complexity of the al-
gorithm. Further, coefficients of input polynomials are assumed to be arbitrarily
precise, i.e., belonging to ezact. The authors of the latter paper describe a method
of solving a system of algebraic equations by using a numerical resultant algorithm.

Thus, in this paper, six different approaches for the approximate GCD are
briefly reviewed.

Approximate GCD proposed by Sederberg and Chang [29]: The algorithm is
considered and applied as a numeric-symbolic algorithm to a problem of
computer-aided design. Let Py (z), Po(z),. .., P,(x) be polynomials. The set
of polynomials is perturbed so as to induce a linear common factor. That is,
for a set of the perturbation polynomials e(x) = 1 (), . .., en(z), ged (P1(x)+
e1(x), Po(z) + e2(z), ..., Po(x) + €n(z)) induce a linear polynomial, common
factor. A norm of perturbation polynomial is written as

n

lella,p) = maxa<o<s, | > e?(x)

=1

over a prescribed parameter interval [a, b]. If we represent ¢;(z) by the Cheby-
shev polynomials, we can determine £ which gives the minimum norm, uni-
quely. The result is applied to the problem of approximating high degree
curves by small degree ones.

Approximate GCD proposed by Corless, Gianni, Trager and Watt [3]: For two
given univariate polynomials P (z) and Ps(x), write the Sylvester matrix of
the coefficients of P;(x) and P(z). The Singular Value Decomposition (SVD)
technique is applied to the matrix to compute an upper bound on the degree
of the approximate GCD. By SVD, if the matrix becomes rank deficient by
one, then there exists a common factor of both polynomials. Further, the
number of rank deficient rows shows the degree of the GCD. The method is
applied to a multivariate polynomial case. In the paper [3], an optimization
problem is first used on the problem of obtaining approximate GCD. The
Euclidean norm (2-norm) is used and this selection of the norm is in the

paper.

Ill-conditioned Properties and Hybrid Computations 25

Approximate GCD proposed by Karmarkar and Lakshman [14]: The
approach to find the approximate GCD is similar to the above-mentioned
method proposed by Corless et al. [3]. Two monic polynomials P (x), Pa(z) €
C[z] with deg(Py) = m, deg(P2) = n, where C[z] denotes a polynomial with
complex coefficients, are considered. The problem is stated as to find poly-
nomials P;, P, € C[z] with deg(P;) < m, deg(P,) < n such that P, + P; and
P3 + P; have a non-trivial GCD, and ||Py|| + || Ps|| is minimized. The norm
used here is also the Euclidean norm. The running time of the algorithm is
a polynomial of the degrees m, n. Further, a concept of the nearest singular
polynomial to P;, that is a polynomial h € C[z] with deg(h) = m such that
h has a double root and || P | is minimized, where P, = h — Py, is proposed.
Many works on the nearest singular polynomial have been considered.
Approximate GCD proposed by Hribernig and Stetter [7]: The approximate
GCD is here called the near-GCD. For two given polynomials Py, P, € C[x],
at the accuracy level «, the polynomials possesss a near-GCD g if there exist
polynomials Pf, Py € Clz] satisfying

GCD(P{,Pf)=§, and ||P,—P![|<a, i=1,2.

Equivalently, a near-GCD g of Py and P, at accuracy level « is denoted as a-
GCD(P, P;) and computed via the Euclidean algorithm. Here, as the norm
of the polynomial, the 1-norm is used. The algorithm gives a lower bound on
the degree of the approximate GCD.

Approximate GCD proposed by Emiris, Galligo and Lombardi [5]: Several
Approximate GCDs of two univariate polynomials obtained by the above
algorithms depend on the rounding mode or the accuracy e selected for
floating-point computations. Further, as mentioned above, algorithms based
on Euclidean algorithm give the lower bound of the degree of the approxi-
mate GCD. The purpose of the algorithm, developed here, is to obtain the
maximum-degree approximate GCD depending on the given tolerance e. For
two given polynomials Pj, P, € C[z], whose degree is n and m (n > m)
respectively, and torelance ¢ € (0, 1], upper bound on the degree of the ap-
proximate GCD, e-GCD of P, P», are obtained. The degree of the e-GCD is
defined to be the maximum integer such that there exist P, P, € C [x] of
degree bounded by n and m, respectively, with | P, — Py |, | P, — (P,) |[< ¢
and deg(GCD(Py, Py))= r. To guarantee the maximum-degree approximate
GCD, SVD computations on subresultant matrices and a gap theorem are
effectively used. The norm used here is the Euclidean norm (2-norm).
Approximate GCD proposed by Pan [23]: Several methods for computing the
approximate GCD have been proposed by Pan. Here, for P;(z) and Ps(x),
polynomials P; and P; are considered. The approximate GCD of P;" and
Py, GCD(Pf, Py), satisfies the following relations for a real value b:

deg(Py) < deg(P1(x)), deg(P3) < deg(Pa(w)), (2.6)
I1Pf — Pi(z)]| <27°|| Pu(x) I 115 = Pa(x)]| < 27°|| Py(a)]]-

26 M.-T. Noda

The maximum §-GCD satisfies the relations in (2.6). Let the two given poly-
nomials be

Pi(z) =ux H(x —y;), and Ps(z)=wvX H(x - z),
i=1 j=1
where u and v are the leading coefficients of P;(z) and Pa(x), respectively.
Thus, y; and z; are zeros of Pi(x) and P(x). Further, a small constant 9§ is
given. The maximum §-GCD gs(z) of Pi(x) and Py(x) is defined as

i
g}g(x):kl;[l(x—xk), xk:ylk;%k, k=1,...,m,

where the set of pairs (y;,,2;,), .- ., (¥i,, 2;,) 1S @ maximum matching which

maximizes r and satisfies | y;, — 2;, [< 20. If § is bounded by 6 < (1 +

270)1/7 — 1, then the polynomials P; = Py(z)js(x) and Py = Py(x)js(x)

satisfy (2.6). The maximal norm is used to define the maximum ¢-GCD.

After successful introduction of approximate GCDs as described above, many
algorithms for computing approximate GCDs have been proposed. There are also
new developments on approximate algebraic computation such as computing near-
est singular polynomials and approximate factorization. Most of the algorithms are
based on AppGCD. They have been published in recent proceedings of interna-
tional conferences on computer algebra and are summarized in [13, 4].

3. Approximate GCD and Hybrid Integral

Obtaining an indefinite integral of a given function is one of the most important
operations in scientific computation. If the function is given by a rational function
with exact coefficients, it can be integrated symbolically. There remains, however,
several cases such as (1) even if the function is given, a closed form solution is not
obtainable, (2) the function is defined by a table or a set of discrete data, and (3)
the function has inexact floating-point coefficients with limited accuracy. Numer-
ical algorithms give only numerical results for definite integrals. Here we show an
algorithm of hybrid integral in which numerical methods are effectively combined
with an algorithm of symbolic (algebraic) integral. The hybrid integral algorithm
gives symbolic results, a kind of indefinite integral, for given functions. Accurate
numerical results of definite integrals are easily obtained by simple substitutions of
upper and lower bounds of integrals into symbolic results. The algorithm proposed
here is an extension of an algebraic algorithm of integration for rational function
by Horowitz [6] to the inezact coefficients case. A rough sketch of the algorithm
of the hybrid integral is given below.

Algorithm 2: Hybrid Integral Algorithm

Input: Univariate rational function f(z) = P(z)/Q(x) whose coefficients
are known with limited accuracy and represented by floating-point

Ill-conditioned Properties and Hybrid Computations 27

numbers. Here, the approximate GCD of the two input polynomials
P(z) and Q(z) is reduced to 1 and deg(P) < deg(Q).
Output: Approximate indefinite integral of f(z).
Algorithm:

1. Decompose f(z) into rational and transcendental parts:

/f Vdz = 52+/58dx.

In this step, AppGCD is used. If AppGCD(Q(x),dQ(z)/dx;e) = 1, then
s(z)/H(z) =
2. Integrate the transcendental part p(x)/q(x).

a) Determine all zeros of ¢(x) by numerical Durand-Kerner method.
Since the coefficients of ¢(x) are real, zeros are limited as real or
complex conjugate pairs and written for m + 2n = deg(q) as real
ZEeros aj, Gz, . . ., am,, Or complex conjugate zeros by +icy,...,b, +
iCp.

b) Decompose into a partial fraction

P ixik Jrzn: 2(fxr — b fr — crgr)

qi ak x? — 2bgx + b2 + 2’

k=1 k=1

where ey, fr and g are determined by the residue theory as follows:
e Let r(z) = p/q, where ¢’ = dq(z)/dx,
e for real zeros, e = r(ag);
e for complex conjugate zeros,

fe = R{r(bx +ick)} and gr = {r(br +ick)},

where 8 and < represent real part and imaginary part, re-
spectively.
¢) Substitute two well-known formulas of logarithmic integrals

m

/pda::Zekloghcfak |
g k=1
- b
+ka10g|x2Qbkx+bi+ci|29ktan1(x — k).
k=1 €k Ck

Some properties of the algorithm are:

e An indefinite integral for a given function with floating-point coefficients is
obtained.

e Accurate value of a definite integral is obtained only by substitutions of upper
and lower bounds of integral.

e Errors caused by the algorithm are reduced to errors contained in numerical
root finding process (Durand-Kerner method) and can be estimated by the
Smith theorem.

28 M.-T. Noda

Results obtained by the hybrid integral algorithm are compared with well-
known and widely used numerical integration methods, such as Gaussian quad-
rature of 32 points (Gauss32), Double-Exponential formula (DE), the Romberg
method (Romb) and adaptable Newton-Cotes method (NC). Comparisons are done
for three ill-conditioned rational functions:

1. A singularity outside the integral region but close to both ends,

! d
x
I = .
/0 1000z (z — 1) — 0.001
2. The integrand has a sharp peak in the integral region,

/1 dx

I = .
o 1000(z — 0.5)%2 4+ 0.001
3. The integrand has both properties I; and I,

I ! dx

- /O 25 — 24 — 0.752% + 22 — 0.252 — 10-6°

Results are shown in Table 1. To obtain accurate value of each integral, I, I»
and I3, Noda et al. [17, 18, 19] used a quadrature by parts. Each integrand which
changes rapidly is carefully divided into small but smoothly changing parts and
integrated numerically. These values of small integrals are added and accurate
result for the integrand is obtained.! Results are the same as the results obtained
by the hybrid integral algorithm. Thus, it can be said that the hybrid integral
algorithm gives better results than well-known numerical methods. Especially it
works well for ill-conditioned integrals.

TABLE 1. Comparisons of results of the hybrid integral algorithm
and numerical methods

Hybrid Numerical Integration
G32 DE Romb NC
I; -0.02763097 -0.01622972 -0.02763097 -0.68482819 5.40966656
I, 3.13759266 0.19994034 24.6736125 2.98225113 3.13759258
I3 -5195.24497 -580.39410 -24965.007 -5759.10716 230.75544

The key strategy of the hybrid integral algorithm is to decompose into a
partial fraction by computing all zeros of a denominator polynomial of a rational
part of the given integrand numerically. For an integral with a parameter or a
double integral, the algorithm described above may be easily applied. Here, a
denominator of a rational part of an integrand with the bivariate case may be
decomposed into a partial fraction by using an approximate factorization algorithm
such as [27, 12]. Thus, a kind of indefinite integral of the bivariate integral may
be obtained.

LCurrent powerful CAS such as Maple 9 or its successor gives the same results and assures the
correctness of the hybrid integral algorithm.

Ill-conditioned Properties and Hybrid Computations 29

4. Hybrid Rational Function Approximation

For rational approximation of a given function or a set of discrete data, the rational
interpolation, especially the so-called naive rational interpolation, may be one of
the simplest methods. The function is first evaluated at several data points in
an interval and changed to the set of discrete data. The set of discrete data is
interpolated to a rational function. If the interpolation is done with floating-point
computation, pathological features have been observed by Noda et al. [18]. To
avoid the feature, the AppGCD algorithm is effectively used. Then the rational
interpolation approximates a given function or a set of discrete data accurately. We
refer to the algorithm as the Hybrid Rational Function Approximation (HRFA).
Hereafter, it is simply called HRFA. We introduce HRFA briefly and discuss its
theoretical considerations of pathological features.

4.1. Rational Interpolation and Pathological Feature

A rational interpolation is defined as a ratio of numerator and denominator poly-
nomials as
Pm () ZZO a;xt ao+ a1z +asz?+ -+ apx™
Tmn(T) = = > = . (4.1
an(x) 14>, bixt 1+ box +bra?+ -+ bya™

It interpolates a function f(x) or a set of discrete data on a segment [zg, Tpmtn)-
The rational interpolant (4.1) is called (m, n) rational interpolant. Here, the naive
rational interpolation is considered. For m + n + 1 (= N) discrete points, zg <
21 <+ < Typgn, values f(zg) = fr (K = 0,...,m + n) are evaluated. Then
m+n+ 1 (= N) simultaneous linear equations

Zazx;c*szbzk;c:fk7 k:07177m+n7 (42)
1=0 1=1

are obtained. The inexact, floating-point coefficients a;, b; of the rational inter-
polant are then determined by solving the system by Gaussian elimination. Noda
et al. [18] discussed the problem and found that

1. even if a continuous function is interpolated, the denominator of the rational
interpolant may have a zero, and the zero causes an undesired pole,

2. except for the above zero and pole, the rational interpolant gives accurate
approximation of f(z).

Further, the fact that the zero of the numerator polynomial may arise which is very
close to the undesired pole has been shown by Kai et al. [11] through numerical
experiments. The zero and pole, mentioned above, are referred to as undesired zero
and pole. They also describe the appearance of approximate common factors in the
numerator and denominator polynomials. These factors are caused by undesired
zero and pole and eliminated from the rational interpolant by using HRFA.

The approximately common factor which causes a pathological feature of
the rational interpolant is eliminated by using AppGCD. The procedure HRFA

30 M.-T. Noda

ensures high-quality approximation without undesired zero and pole for any pre-
cision computations. The algorithm of HRFA is shown below. The details of the
method and its accuracy are discussed by Noda and Kai [18, 8, 11].

Algorithm 3: HRFA Algorithm
Input: Rational interpolant (naive rational interpolation)
_ Pm (z)
qn(z)

Output: Reduced rational interpolant without singularities

Tmon (T)

7(x) = pi(x)

q(x)
Algorithm:

o pm(@)/e@)
2 @)= (@) gla)

We show the pathological feature of the rational interpolant and how Algo-
rithm 3 works well using an example. Suppose that r4 4(z) is a rational interpolant
of the function f(x) = log(x + 2); we obtained the following rational interpolant
with a single precision floating-point computation:

0.6931 + 214.8599z + 318.6295x2 + 113.589723 + 9.1269z*

1+ 309.2559z + 236.784422 + 48.781923 + 2.1131z*
(z + 8.77124) (z + 2.6710)(z + 1)(x + 0.0032415)
(z + 16.999)(z + 3.8532)(x + 2.2286)(z + 0.0032416)

The last terms of the numerator and denominator polynomials, = 4+ 0.0032415
and z + 0.0032416 respectively, show an approximate common factor. The ratio-
nal interpolant 74 4(x) causes undesired zero and pole by these terms and shown
in Fig. 1(a). However, except for a small interval containing undesired zero and
pole, the rational interpolant constructs an accurate approximation of the function
f(z). The HRFA successfully removes the undesired zero and pole by taking the
AppGCD of p,,(z) and ¢, (z). The AppGCD g(z) of the numerator and denomi-
nator polynomials of r4 4(z) is computed as

g(x) ~ z+ 0.0032423543 .

7"4’4(56) ~

~ 4.3195

Then, after dividing r44(z) by g(z), a reduced rational function approximation,
Rurra (), is obtained as follows:

9.126960523 + 113.560102 + 318.26127x + 213.82796
2.113186723 + 48.77505122 + 236.626202 -+ 308.48869
(z + 8.7712482)(z + 2.6710225)(+ 0.99999856)

(+16.999383) (x + 3.8532500)(z + 2.2286457)

Rurra(z) ~

4.3190507

Ill-conditioned Properties and Hybrid Computations 31

The reduced rational function Rpgrpa(z) does not have undesired zero and pole,
and is shown in Fig. 1(b).

0.6925 1
0.7
0.692

0.6915 1

0.691

~0.005 ~ -0.004 ~0.003 ~0.002 ~0.001 —-0.005 -0.004 ~0.003 ~0.002 ~0.001

x x

(a) ra,4(x) (b) Rurea(z)

FIGURE 1. Rational function approximation of log(x + 2) by r4.4(x)

4.2. Rational Interpolation and Ill-conditioned Property

Rational functions discussed in the literature [24, 25] are restricted to be irre-
ducible, i.e., the numerator and denominator polynomials have no common factors
other than a constant. Litvinov [15] discussed an interpolation of given functions
by a rational function and mentioned that the system of linear equations for the
rational interpolant turns out to be ill-conditioned in many cases. Although the
system itself is ill-conditioned, the fact that the rational interpolant ensures accu-
rate approximation by means of the best approximation is also described. However,
Litvinov does not refer to the importance of the appearance of undesired zero and
pole. On the pathological feature of the rational interpolation, the following facts
are shown through numerical experiments by Kai et al. [8, 11].

1. An undesired zero and pole always appear very close and as a pair.

2. The position of the undesired zero and pole changes by degree of the rational
function ry, »(z) and by digits of computations.

3. Except for a small interval where the undesired zero and pole exist, the ra-
tional interpolant gives accurate approximation of a given function or set of
data.

Among the above facts, the second refers to the ill-conditioned property of the
system of linear equations constructed by the rational interpolation method as
mentioned in [15]. The system turns out to be highly ill-conditioned by error prop-
agation during computation and the result in losses in accuracy, i.e., the system
(4.2) is sensitive to the precision of computation. Thus, the position of undesired
zero and pole changes by digits of computation without definite rules. A reason
for facts 1 and 3 is discussed below.

32 M.-T. Noda

From (4.1), we write a system of simultaneous linear equations which deter-

mines the coefficients of the rational interpolant, a;,b; (1 =0,...,m;j=1,...,n)
as
T
Ay = B, y = (ao,al,...,am,bl,bg,...,bn) 5 (43)

where A is a matrix whose size is N x N for N = m+n+ 1. A triangular system,
Ay = B, is obtained from (4.3) by Gaussian elimination. Solutions of the system,
y = (Y1,¥2,...,Yn), are obtained by back substitutions as

1 L . o .
Yo = . (Bk — Ak 1Yr+1 — Ak kt2Yky2 - — Ak,NyN) , k=N-1,...,1,

k,k

where }LJ and Bj denotes the (i, j)-element of A and the jth-element of B, re-
spectively. Since the rational interpolant is ill-conditioned, the resulting A may
have bad rows and become a rank deficient matrix, in many cases. Here, the bad
row is defined as a row whose elements all take zeros or negligible small values.

Thus, in usual computations, it is impossible to obtain Yy, Yn_1,...,Yny_y41 for
A whose v rows are deficient. Then we substitute undetermined symbols t1,. .., ¢,
as

Yn=ty,YN1 =ty 1,..., YN_H41 = t1.

All elements of y, i.e., the coefficients of the rational interpolant, are represented

with undermined symbols. The rational interpolant for the rank deficient case is

written as [16]

po(x) + t1p1 (@) + tapa () + - - - + typy(2)
q0(z) + tiqa () + - - + tyqy(x)

which approximates the given function or a set of discrete data, f(z), accurately.

, (4.4)

Tman(T) =

For the case when system (4.1) is not ill-conditioned, A becomes a full rank
matrix. In this case, we should take v = 0. Then (4.4) is written as

_ po()

qo(z)
It is evident that there are no undesired zero and pole for the v = 0 case. Thus, the
appearance of undesired zero and pole may be strongly related to v > 1 cases. That
is, the terms depend on the t’s in both the numerator and denominator polynomials
and may be considered to be a cause of the undesired zero and pole. On the other
hand, Litvinov discussed a similar problem from a somewhat different viewpoint.
In Litvinov’s work [15], perturbations of coefficients a; and b; are considered.
Suppose that a; and b; are perturbed and become a; + Aa; and b; + Ab;. The
rational interpolant 7., () = pm(z)/gn(z) is perturbed to 7 n(x) = pm(x) +
Apm(2)/qn(x) + Agp(z). Although the rational interpolant has some redundant
coefficients, the following relation exists:

Tm,n(Z ~ f(z) with high accuracy.
. g

qn(xl) = Aqn(xi) = f(xz) (4-5)

Ill-conditioned Properties and Hybrid Computations 33

holds for arbitrary i. The function Ap,,(z)/Ag,(z) is called error approximants
[15]. The function, error approzimants, can also approximate f(z) accurately. The
fact suggests that the errors in the numerator and denominator polynomials of the
rational interpolant compensate each other. Our v = 0 case seems to agree with
the Aa; = Ab; = 0 case of Litovinov’s results.

For understanding the facts more clearly, we show practical examples of a
rational approximation of a rational function, i.e., f(x) is taken as a rational
function.

4.3. Practical Example for Approximating a Rational Function

Suppose that the rational function f(z) = 1/(z — 3) is interpolated by a rational
interpolant 7, ,(z) in the interval —1 < x < 1. Here, the results of two types of
computations, symbolic computation and numerical computation, are compared.

The case of exact computation

Case m = 1,n =1 Since r1 1 = (ap + a12)/(1 + b1z), the coeflicients ag, a; and by
should be obtained by solving a system of linear equations (4.2) for a set of

discrete data, xg = —1,21 = 0,22 = 1. We obtain
1 1
== ,a1=0b=—_.
ao 3 a 1 3

Then, 71,1 gives an exact interpolation for f(x) as

_1
ri,1 = o= !
’ 1711,)50 z—3

Case m = 2,n = 2 A set of discrete data

1 1
=(-1,—_,0, ,1
(Io,xl,$2,$3,x4) () 27 727)
is used. After Gaussian elimination, Ay = B shows
1 1 1
1 -1 1 - 1 aop —1
2 3 5 1
0 1 =3 4 —u a1 14
1 3 _ 1
0 0 1 14 14 a2 | = | T4
0 0 0 1 3 by 7:1,)
0 0 0 0 0 bo 0

Because the fifth row of A and the element Bs are zero (bad row), we should
substitute by = Bs/fls’s = 0/0 = ¢; by an undetermined symbol ¢;. The
rational interpolant corresponds to the case of v = 1. The coefficients of 73 o
are then obtained as

1 1
a0:737a1:t17a2:07 b1:*3*3t17 b2:t1-

34

Case

M.-T. Noda

Thus rg 5 also interpolates f(x) exactly. A common factor which depends on
t; which appears in its numerator and denominator. 73 o is written as

*éthlSC 1 -3tz 1

227 éx—Btlx(l — éx) C(z—-3)(1-3tx) -3

Further, the following facts are shown in rj o:
e terms independent of ¢; give exact expression to f(z),
e terms dependent on ¢ also give exact expression to f(x).
m = 3,n = 3 The coeflicients of r3 3 are obtained from a set of data for

(zo,x1, T2, T3, T4, T5, Te) = (fl,fg,fé,o,é,g,l). The resulting system
Ay = B gives two bad rows. Thus the rational interpolant corresponds

to the case of v = 2 and two undetermined symbols, ¢; and t2, should be
introduced. The coefficients are written as

1 1
aO:—3,a1:3t1 +ta,a2 = t1,a3 = 0,by = 9t; — 5 — 3ta, by =t3,b3 = t;.

After substitutions of these coefficients to 73 3, we obtain

—3 + 31T + tox + ty 2 1

AT o) (1914)~ 3tha) 73

The rational interpolant r3 3 gives a satisfactory result. A second degree
common factor appears in its numerator and denominator. Further, similar
to the case of 73 5, the following facts are shown:

e terms independent of ¢; and t» give exact expression to f(x),

e terms dependent on ¢ also give exact expression to f(x),

e terms dependent on ¢ also give exact expression to f(x).

The case of numerical computation

The same computations as in the exact cases are done by floating-point operations.
Given a set of discrete data which is the same as above, a function value f(x;) is
evaluated as a floating-point number.

Case m = 1,n = 1 Gaussian elimination gives a triangular matrix A without bad

row and we obtain
ag = —0.33333, a1 = 1.0 x 1078, b, = —0.33334

as coefficients. Then, the rational interpolant becomes

033333 _ 1
T 1-033334c -3

T1,1

The result approximates a given function f(x) accurately. The small coeffi-
cient a; should be ignored.

Ill-conditioned Properties and Hybrid Computations 35

Case m = 2,n = 2 The results A and B are obtained after Gaussian elimination

as
1.0 —1.0 1.0 —0.25 0.25 —0.25
0 1.0 —0.66666 0.21428 —0.35714 —0.071428
A=10 o0 1.0 0.071428 0.21428 |, B =| —0.023809
0 0 0 1.0 3.0 —0.33333
0 0 0 0 —0.7%x 1079 ~0.3x107°

Different from the exact computation case, the last row of A and B contain
very small values. They may be caused by errors of floating-point compu-
tations. Straightforward numerical computations give the coefficients of 73 o
as

ap=—0.33333, a1 =0.43611, as=—2.0 x 10~2, b; =—0.975, by = —0.43611.

Although all coefficients are not reliable, the above coefficients give the ra-

tional interpolant

_ —0.33333+0.43611x —0.43611(x + 0.76433) 1

© 1-0.9752 — 0.4361122 ~ 0.43611(z — 3)(z +0.76433) ~ 2 —3°
The result is satisfactory. Approximate common factors appear in the nu-
merator and denominator of ry 9. If we apply HRFA to the above rj o, then
approximate common factors are reduced.

Case m = 3,n = 3 Similar computations with the above elements in two rows of
A and B become very small and depend on the environments of computers.
However, the results are always meaningful and similar to the case of m =
n = 2. A set of coefficients obtained with one computation is

ap = —0.33333, a; = —0.72881, ay = 0.17352, a3 = 0.29 x 1077,
b1 = 1.8530, be = —1.2493, b3 = 0.17352.
The resulting rational interpolant is obtained as
0.17352(z2 — 4.2x — 1.9207) 1
387 0.17352(z — 3) (22 — 4.20 — 1.9209) -3

Approximate common factors which are the second order polynomial appear in
the numerator and denominator of r3 3. They may cause an undesired zero and
pole of the rational interpolant but this is reduced by HRFA.

T2.2

4.4. Facts Obtained from Practical Examples

If we wish to approximate a given function or a set of data accurately, we should
increase the number of evaluation points in an interval. If the function can be
written as a lower degree rational function, then there are many redundant points
which could occur. They may cause bad rows in the triangular matrix. If undeter-
mined symbols are substituted, then we can obtain all coefficients of the rational
interpolant as shown in (4.4). However, in the approximate floating-point compu-
tation, the above computations for f(z) = 1/(z — 3) show some interesting results

36 M.-T. Noda

in terms of the appearance of pathological features of the rational interpolant.
They are summarized as follows.

Exact computation

e In the case v =0, po/qo represents f(z) exactly.

e In the case 7 = 1, there is a bad row in the triangular system. An
undetermined symbol t; should be introduced. The rational interpolant
shows » »

0 1
% o f(x). (4.6)

e In the case v = 2, two undetermined symbols ¢; and ¢y should be intro-

duced. The rational interpolant shows

Po b1 b2
= = = f(x). 4.7
q0 q1 q2 f() ()

Approximate floating-point computation

e Instead of the introduction of undetermined symbols, negligible small
values appear in the triangular system. Coeflicients of the rational inter-
polant are obtained by straightforward numerical computations. Results
of the interpolant contain approximate common factors in its numerator
and denominator.

e The undesired zero and pole are caused by the above approximate com-
mon factors and are removed by the HRFA algorithm.

The above facts, especially (4.6) and (4.7), suggest an interesting relation
Po _P1 _ P2 Dy

B = f(x)
q0 q1 q2 [°8%

for the case of exact computation. It also agrees with Litvinov’s result (4.5) for
floating-point computation.

Next we consider the case of applications of HRFA to functions or a set of
data which is not a rational function but a general continuous function such as a
logarithmic function. As already discussed in this section, when we approximate
f(z) = log(xz + 2) by a rational function, we know the appearance of an ap-
proximate common factor in the numerator and denominator polynomials in the
rational interpolant. By the approximate common factor, the pathological feature,
undesired zero and pole, of the rational function appears. As future theoretical
work, it is important to discuss much more the undesired zero and pole of the
HRFA algorithm. In any event, in almost all cases, HRFA gives accurate rational
approximation for a given function or a set of data.

5. Practical Applications of Hybrid Algorithms

Practical applications and developments of the HRFA and AppGCD hybrid algo-
rithms are considered here. They are (1) smoothing data containing small and/or

Ill-conditioned Properties and Hybrid Computations 37

large errors and (2) obtaining the Cauchy principal value integral. In the former,
we can show the robustness of our method by comparisons with traditional meth-
ods such as the least square method. In the latter, we use the hybrid integral
algorithm in which the AppGCD is effectively used [18].

5.1. Data Smoothing by HRFA

We show how HRFA works well for data including small errors and also large
errors such as input errors. A set of data which includes some types of error is
approximated by a naive rational interpolation. Here, a set of data with large
errors is considered as an unattainable point and causes an approximate GCD of
the numerator and denominator polynomials of the rational function. Thus the
error is removed from the reduced rational function. An early work of our method
is given in [8].

5.1.1. Method for Data Smoothing. Two cases, (1) small error (noise) and (2)
large error (experimental error), are considered. Let the input be a set of discrete
data
D={(zi, fi)|i=1,...,m+n-+1}.
Small error case: Almost all the (z;, f;)’s are approximated by a rational
function but with a small error. If we compute the approximate GCD of nu-
merator and denominator polynomials with relatively large ¢, we obtain a
lower degree rational function by the approximate GCD. The resulting ratio-
nal function gives a smooth function which approximates the given data D.
Large error case: We show how HRFA is effective for smoothing a set of data
including a large error. The rational interpolation is shown as ry, ,(z) =
Pm () /qn(z) for D. The rational function is written as
n(xi) fi = pm(xs), i=1,....m+n+1.
Thus, if g, (x;) # 0fori = 1,..., m+n+1, then p,,(z) is uniquely determined.
On the other hand, if g, (xx) = 0 is satisfied for a k € [1,m + n + 1], then
Pm (k) vanishes also. Further, in this case, the following expression may be
satisfied:
i P (®) s
The rational function 7., , is not through a point (zy, fi) in D. We call
this point an wunattainable point. Further, it is easy to say that if (xg, fi) is
the unattainable point, then p,,(z) and g,(x) have a common factor at = =
x. With detailed considerations, we write the above facts as the following
theorem.

38

M.-T. Noda

Theorem. Let s and t be positive integers satisfying s +t < m + n. Further
let st = ps(z)/qi(x) where ps and q; are polynomials with degrees s and t,
respectively. A data set D is divided into two groups

D:: {(zj, f;,) 1 i=1,...,maz(m+t,n+s) + 1},
Dy {(zk,, fx,)|i=1,...,min(m —s,n —t)},
where {1, ..., Tmint1 } = {&j1, Tjos -+, Thys Thy, - - -1 If the relations
fis = rep(zs), i=1,...,max(m+t,n+s)+1,

fki 7é Ts’t(l‘ki)7

hold, then the points in Do are unattainable points.

t=1,...,min(m — s,n —t),

The theorem may be easily proved by contradiction. Suppose that rp, ,(x) =

Pm(2)/gn(x) is a rational function that interpolates the given set of discrete data
and is not the same as the rational function rs; = ps(x)/q(z),s < m,t < n
described in the theorem above. If a relation 7, n(z) = rs(x) holds, then the
numbers of solutions of the relation are at most max(m+mn,n+s). However, there
are max(m + t,n + s) + 1 points which should be on 7 ;. Thus, the assumption
that 7, n(2) # rs,(z) leads to a contradiction. This shows that ., , () = rs ().

5.1.2. Examples of Data Smoothing. Next, we show with some examples how our
method works well for a given set of data with small and large errors. We consider
here two given types of input experimental data with small error as shown in
Fig. 2(a) and large error as shown in Fig. 2(b).

data ¢ data ¢

(a) Including small error (b) Including large error

FIGURE 2. Given an experimental set of 19 discrete data

Small error case: Since the given set of discrete data consists of 19 points
(m+n+1 = 1), it is interpolated by a rational function rg ¢(z) = pg(x)/qo(z).

Ill-conditioned Properties and Hybrid Computations 39

Following the above method, the AppGCD of both polynomials is computed
as
gs(z) = AppGCD(py(z), go(),0.1)
= —1.991 x 107 + 6.532 x 10732 — 0.154922 + 1.4002> — 6.367z*
+15.992° — 22.432°% + 16.412"7 — 4.86225.

The result of our method is obtained in dividing 79 9(x) by the AppGCD as

~35.66 — 7.560x
~ 1.000 + 6.871z"

The result 71,1(z) is shown in Fig. 3(a) and compared with the result of the
least square method for the same set of discrete data shown in Fig. 3(b).

7"1’1(66)

40 T T T T 40

T T T
least square approxima&ionf
ata o

35 35¢

30 30 -
25 25+
20 20+
15

10

0 02 04 06 08 1 0 02 04 0.6 0.8 1
(a) 711(x) (b) Least square approximation

FIGURE 3. Results of our method and the least square method

Large error case: The main parts of the given set of discrete data are the
same as in the small error case. The data smoothing method is the same as
above as well. We also obtain the AppGCD whose degree is 8 from a rational
function rg 9 = pg()/ge(x) as

gs(z) = AppGCD(py(z), go(z),0.1)
= —1.558 x 107° + 6.067 x 1032 — 0.1460z% + 1.3392> — 6.167z*
+15.652° — 22.132°% 4+ 16.2927 — 4.85025.

The result of our method is obtained in dividing rg ¢(z) by the AppGCD as
~35.43 - 7.532z
~ 1.000 + 6.815z"

The result 71 1(x) is shown in Fig. 4(a) and compared with the result of the
least square method for the same set of discrete data shown in Fig. 4(b).

771,1(.113)

40

T T T
least square approxima&ion—
ata o

0 02 04 06 08 1 0 02 04 06 0.8 1
(a) 71,1() (b) Least square approximation

FIGURE 4. The results of our method and the least square method

The above results of data smoothing for experimental data with small/large error
show the possibility of our method based on HRFA as one of the powerful methods
for data smoothing.

5.2. Cauchy Principal Value Integral by Hybrid Methods

We apply HRFA to the Cauchy Principal Value integral (CPV) and a kind of the
Cauchy-type singular integral equation. Through examples, we show how com-
putations by HRFA give more accurate and stable results than usual numerical
computation. Detailed discussions are in [9, 10].

The CPV is defined as

b A—e b
p/ /(@) dxr = lim / /(@) dx + /(@) dx | .
. T—A e—=0+ \ J, T —A Abe T— A
The difficulty on the numerical evaluation of such integral is that the integrand

£ (_w; is unbounded in the neighborhood of x = A. The Hilbert transform of f(z) is
a well-known method of subtracting the singularity as

b b _ b
of @) gy - / & 10 4y 1 / I o (5.1)

A lot of methods have been proposed for numerical evaluation of the CPV, when
the singular point A is known before the evaluation. Most of the methods are based
on function approximations such as polynomial approximation and spline approx-
imation. However, it becomes difficult to evaluate the CPV by traditional numer-
ical methods for the case when the integrand is complex or given by experimental
data. We propose an efficient approach to evaluate the CPV by a straightforward
application of HRFA as follows:

Ill-conditioned Properties and Hybrid Computations 41

data ¢

FIGURE 5. Given data from the analysis of optical waveguides

1. Obtain a set of data D = (a;, f(z;)/(x; — A)), i =0,...,m+n, where z;
and f(z;)/(z; —) show the control variable and the associated value of the
integrand, respectively.

2. Approximate given points and values to a rational function r(x) with HRFA.

3. Obtain approximate indefinite integral of r(x) by the hybrid integral algo-
rithm.

We consider an example of using this approach. The experimental data from a
problem on the analysis of optical wavewguides are shown in Fig. 5. In this case,
the location of the pole is not known a priori. Thus numerical methods are difficult
to apply. Naive rational interpolation 712 12(x) which has undesired zero and pole
in the interval [0, 10] is first obtained. Then the HRFA algorithm reduces it to
79.9(z) whithout these zero and pole for the accuracy ¢ = 10~* [8]. We can obtain
the approximate indefinite integral, I, of g 9(z) in [0, 10] by the hybrid integral
algorithm. The value of the CPV is obtained by estimations of I at x = 10 and
z =0 as

I(z = 10) — I(z = 0) ~ 16.8932.

The result is consistent with the experimental results concerning optical waveg-
uides. Many physical/engineering problems are described by equations involving
the CPV and given by discrete experimental data. Traditional numerical methods
and methods using Hilbert transform cannot be applied to thse problems. Our
method, the hybrid integral algorithm using HRFA, can give approximate but
stable results for such problems.

The method is naturally extended to solve a Cauchy-type singular integral
equation. The equation is written as

ag(a)+ /1 g(t)dt +>\/1 ko, Og(t)dt = f(@), —l<z<l. (52)

™ 1?5*:1,‘ 1

42 M.-T. Noda

The so-called dominant equation, a special case of (5.2),

ag(z) + b / 9(t)dt =flz), -l<z<l,

T)J 1 t—x

is considered in [10]. The result is compared with that obtained by other numer-
ical methods, such as the Lobatto-Chebyshev scheme. The resulting value of our
method agrees but requires smaller interpolation points than other methods.

6. Conclusion and Future Work

In this paper, hybrid symbolic-numeric computation and its applications are de-
scribed. We show how hybrid computation which first began with the introduction
of the notion of approximate GCD (AppGCD) works well for obtaining accurate
results for many kinds of ill-conditioned problems. It can be applied to most prob-
lems which appear in scientific/engineering computations. The variables treated
in them are inexact and are represented by floating-point numbers. The hybrid ra-
tional function approximation (HRFA) algorithm in which AppGCD is effectively
used has theoretical implications and many applications. Regarding its theoretical
implications, a pathological feature, the appearance of undesired zero and pola, is
considered through practical examples. The fact that this may be caused by the
ill-conditioned property of a system of simultaneous linear equations which deter-
mines all coefficients of the rational interpolant is mentioned. On the other hand,
as applications of HRFA, several problems such as smoothing a set of data which
contains small and/or large errors, integrating ill-conditioned functions or a set of
data (hybrid integral) and also applying the Cauchy principal value integral are
discussed.
The discussions herein are summarized as follows.

e AppGCD forms the basis of today’s developments of hybrid symbolic-numeric
computations.

e A hybrid integral algorithm, which is an extension of Horowitz’ algorithm
to an integrand with limited accuracy or perturbed within small tolerance,
i.e., in the inexact case, works well for obtaining definite/indefinite integral
of ill-conditioned rational functions.

e HRFA gives accurate rational approximations for a given function or a set
of discrete data. An ill-conditioned property of the system of simultaneous
linear equations which determines the coefficients of the rational interpolant
causes the pathological feature, undesired zero and pole. However, the feature
is eliminated by the AppGCD of numerator and denominator polynomials.

e A set of discrete data including small and/or large error is well smoothed by
HRFA. Here, errors containing input data correspond to unattainable points
and are removed by HRFA. The results of data smoothing show the robustness
of our method.

Ill-conditioned Properties and Hybrid Computations 43

e HRFA is used for computing the Cauchy principal value integral (CPV).
Different from many proposed numeric methods for CPV, it is not necessary
to have a priori knowledge of the position of singularity.

The following problems are important for further developing research related
to hybrid computations.

1. Apply hybrid computation to practical engineering problems in a wider area,
such as control theory.

2. Make clear the relation between hybrid computation and ill-conditioned prob-
lems mathematically such as the appearance of the pathological feature of
the HRFA algorithm.

3. Apply the hybrid integral algorithm to obtain a kind of “indefinite” integral
of a rational function with a parameter or a double integral.

Finally, the author wishes to acknowledge his collaborator Prof. Tateaki Sasaki
of the University of Tsukuba and many graduate students who worked hard to es-
tablish the basis of hybrid computation during their studies at Ehime University.
Especially, among them, Mr. Masaaki Ochi, Mr. Ei-ichi Miyahiro and Ms. Yumi
Takashima, formerly Murakami, developed studies and obtained important results
of Sects. 2, 3 and 4 of this paper, respectively. Further, Dr. Hiroshi Kai who is also
one of them has been involved with almost all parts of the research.

References

[1] W. Auzinger and H. J. Stetter: An elimination algorithm for the computation of all
zeros of a system of multivariate polynomial equations, Numerical Mathematics, 86,
ISNM, edited by R.P. Agarwal et al., Birkhduser, pp. 11-30, 1988.

[2] E.H. Bareiss: The numerical solution of polynomial equations and the resultant
procedure, Mathematical Method for Digital Computers, vol. 2, John Wiley, pp. 185—
214, 1967.

[3] R.M. Corless, P. M. Gianni, B. M. Trager and S. M. Watt: The singular value de-
composition for polynomial systems, Proc. ISSAC ’95, ACM Press, pp. 195-207,
1995.

[4] J. Grabmeier, E. Kaltofen and V. Weispfenning: Computer Algebra Handbook,
Springer, pp. 112-125, 2003.

[5] 1. Z. Emiris, A. Galligo and H. Lombardi: Certified approximate univariate GCDs,
J. Pure Appl. Algebra, 117, pp. 229-251, 1997.

[6] E. Horowitz: Algorithms for partial fraction decomposition and rational function
integration, Proc. 2nd ACM Symp. Symbolic and Algebraic Manipulation, pp. 441—
457, 1971.

[7] V. Hribernig and H.J. Stetter: Detection and validation of clusters of polynomial
zeros, J. Symb. Comp., 24, pp. 667681, 1997.

[8] H. Kai and M.-T. Noda: Hybrid rational function approximation and data smmooth-
ing, J. Jap. Appl. Math., 3, pp. 323-336, 1993 (in Japanese).

44 M.-T. Noda

[9] H. Kai and M.-T. Noda: Cauchy principal value integral using hybrid integral,
SIGSAM BULLETIN, 31, pp. 37-38, 1997.

[10] H. Kai and M.-T. Noda: Hybrid computation of Cauchy-type singular integral,
SIGSAM BULLETIN, 32, pp. 59-60, 1998.

[11] H. Kai and M.-T. Noda: Hybrid rational function approximation and its accuracy
analysis, Reliable Computing, 6, pp. 429-438, 2000.

[12] E. Kaltofen: Fast parallel absolute irreducibility testing, J. Symb. Comp., 1, pp.
57-67, 1985.

[13] E. Kaltofen: http://www.math.ncsu.edu/ kaltofen/bibliography /kaltofen.html#GK
W02, pp. 112-129, 2005.

[14] N. Karmarkar and Y.N. Lakshman: Approximate polynomial greatest common di-
visors and nearest singular polynomials, Proc. ISSAC ’96, ACM Press, pp. 35-39,
1996.

[15] G. Litvinov: Approximate construction of rational approximations and the effect of
error autocorrection: Applications, Russian Journal of Mathematical Physics, vol. 1,
no. 3, pp. 1-45, 1994.

[16] Y. Nakajima, H. Kai and M.-T. Noda: Hybrid rational function approximation and
ill-conditioned problem, J. JSSAC, 11, pp. 141-152, 2005.

[17] M.-T. Noda and E. Miyahiro: On the symbolic/numeric hybrid integration, Proc.
ISSAC ’90, ACM Press, p. 304, 1990.

[18] M.-T. Noda, E. Miyahiro and H. Kai: Hybrid rational function approximation and its
use in the hybrid integration, Advancesin Computer Methods for Partial Differential
Equations VII, edited by R. Vichnevetsky, D. Knight and G. Richter, IMACS, pp.
565-571, 1992.

[19] M.-T. Noda and E. Miyahiro: Extension of the hybrid integral by using the hy-
brid rational function approximation, J. Jap. Appl. Math., 2, pp. 193-206, 1992 (in
Japanese).

[20] M.-T. Noda and T. Sasaki: The interval arithmetic for the ill-conditioned polynomial
equation, RIMS (Research Institute of Mathematical Sciences, Kyoto University)
Lecture Note, 673, pp. 47-61, 1988.

[21] M.-T. Noda and T. Sasaki: Approximate GCD and its application to ill-conditioned
algebraic equations, JCAM, 38, pp. 335-351, 1991.

[22] M. Ochi, M.-T. Noda and T. Sasaki: Approximate GCD of multivariate polynomials
and application to ill-conditioned system of algebraic equations, J. Inf. Proces., 14,
pp- 292-300, 1991.

[23] V.Y. Pan: Computation of approximate polynomial GCDs and an extension, Proc.
9th Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 68-77, 1998.

[24] J.R. Rice: The Approzimation of Functions II, Addison-Wesley, pp. 76-122, 1969.

[25] T.J. Rivlin: An Introduction to Approzimation of Functions, Blaisdell, pp. 120-141,
1969.

[26] T. Sasaki and M.-T. Noda: Approximate square-free decomposition and root-finding
of ill-conditioned algebraic equations, J. Inf. Proces., 12, pp. 159-168, 1989.

[27] T. Sasaki and M. Sasaki: A unified method for multivariate polynomial factorization,
J. Inf. Proces., 10, pp. 21-39, 1993.

Ill-conditioned Properties and Hybrid Computations 45

[28] A. Schonhage: Quasi-GCD computations, J. Complezity, 1, pp. 118-137, 1985.

[29] T.W. Sederberg and G.Z. Chang: Best linear common divisors for approximate
degree reduction, Computer-Aided Design, 25, pp. 163-168, 1993.

[30] K. Shirayanagi and M. Sweedler: A theory of stabilizing algebraic algorithms, Tech.
Rep. 95-28, Cornell Univ., pp. 1-92, 1995.

Matu-Tarow Noda

Center for Information Technology
Ehime University

Ehime Campus Information Service
Co. Ltd., Bunkyo-cho 3
Matsuyama, 790-8577, Japan
e-mail: noda@ecis.co.jp

