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On the Extended Iterative Proportional Scaling
Algorithm

Ming-Deh Huang and Qing Luo

Abstract. The iterative proportional scaling algorithm is generalized to find
real positive solutions to polynomial systems of the form: Z;’;l QsjPj = Cs,
s=1,...,n, where p; = m; [[1_; z5* with as; € R and 7, cs € Rso. These
systems arise in the study of reversible self-assembly systems and reversible
chemical reaction networks. Geometric properties of the systems are explored
to extend the iterative proportional scaling algorithm. They are also applied
to improve the convergent rate of the iterative proportional scaling algorithm
when dealing with ill-conditioned systems. Reduction to convex optimization
is discussed. Computational results are also presented.

1. Introduction

A real function of the form
K
— Q14,0024 Qnj
flze, ... xn) = E Ty g et
1=1

where m; > 0 and «;; € R, is called a posynomial. We are interested in finding real
positive solutions to posynomial systems of the form:

m n

Zasjpj:cs, s=1,...,n, where pj:Terl‘gsj (1.1)

j=1 s=1
with as; € R, and 7, ¢cs € Rsg. These systems arise in the study of algorithmic
self-assembly. As will be explained in the next section, a solution to such a system
corresponds to an equilibrium of a reversible self-assembly system [4] or a reversible
chemical reaction network [6]. It will be shown that the real positive solution to
such a system is unique when the underlying linear system:

m
E asjy; =cs, s=1,...,m,
=1

has a real positive point.
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A special case of the system (1.1) is where a,; = 1 for all j; then letting
z = x,, the problem becomes one of finding a probability function of the form:

pj:w;sz?j,j:l,...,m, (1.2)

that satisfies 3, p; = 1 and Z " asjpj = ¢, fors =1,...,n—1, where 7} = 77 for
j=1,...,m, and cg = ¢ for s =1,...,n— 1. In this case the problem is exactly
solvmg mazximum lzkelzhood equatwns in statistics (a good example is on page 114
of [7]). It is known that the positive solution is unique (see [3], also Chapter 4 of [2]).
The solution can be found by a numerical algorithm called iterative proportional
scaling [3]. With this method a simple transformation is applied to the system so
that two additional conditions are satisfied: > as; = 1 and >, ¢s = 1. The

following theorem proven in [3] can then be applied to solve for the solution.

Theorem 1.1. Consider the system

m
Zasjpj =cs, s=1,...,n
j=1
where
n
pj = m; [ =5,
s=1
as; > 0,30 as; =1,cs >0,and > cs = 1. Suppose that Az = ¢ has a real pos-
itive solution, then the sequence (p'®) : k =0,1,2,...) with pt*) = (p} (k) .. (k))

and defined by p( ) = =, p(n+1) pgn) -, ( f;))ari, where ™) = =>" ampf ),

converges to the unique positive solution of thersystem.

In this paper we generalize the iterative proportional scaling algorithm to
solve the posynomial system (1.1). Our approach is to associate the system (1.1)
with a parameterized family of systems S, of the form 1.2 where v € Ryg. We
define a function g on a suitable positive real interval such that for v in the interval,
g(v) is the value of z in the unique real positive solution to S,. We show that the
function 7 (vv) is decreasing in this interval and has a unique fixed point u. Moreover
the solution to our system (1.1) can be easily obtained from that of S,,. The fact
that ¢ has a unique fixed point and ? (f) is decreasing allows us to devise a bisection
strategy to find uw by solving a sequence S,,, each using the iterative proportional
scaling method. We show that if in the solution to our system, ) . p; = v~ and
the required precision is €, then the number of times where we apply the iterative
proportional scaling method can be bounded by O(]logu| + log(1/¢)).

The rest of the paper is organized as follows. In Sect. 2 we discuss the geo-
metric perspective of the system (1.1) and its application to self-assembly systems
and reversible chemical reaction networks. In Sect. 3 we explore a special geometric
property of the system (1.1). This property is applied in this section to improve the
convergent rate of iterative proportional scaling for certain ill-conditioned cases.
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It is also utilized in the next section in generalizing the proportional scaling al-
gorithm. The details of the extended proportional scaling algorithm are presented
in Sect. 4. We implement our algorithm in Mathematica 5.1. We discuss convex
optimization as an alternative method for solving (1.1). Computational results are
presented in Sect. 6, including comparison of the extended iterative proportional
scaling method with convex optimization.

2. Geometric Perspective and Motivation from Self Assembly and
Chemical Reaction Network

Given a set B = {v1,...,v4} in R™ and a positive vector u = (u1,. .., 1q), let
Vis,u denote the set of of x € R™ such that v = pix¥i , for i = 1, ..., d,
j and v, are the nonnegative vectors with disjoint support such that
v; = vj —v; . Suppose vy, ..., vg € Z™. Then Vi, , is the zero set of the ideal Iz, =

where v

<p“i+ — wip% :v; = v —wv; € B) in the polynomial ring R[p] = R[pi, ..., pm].
It is called the deformed toric variety of B under . When p = (1,...,1), Vi, , is
simply called the toric variety Vi,.

For a = (a;) € Rsg and b = (b;) € R™, we define a® = [], al’.

Let A = (asj) be an n by m real matrix and suppose B = {v1,...,v4} spans
the kernel of A. Let 7 = (my,...,7mm) € RYy, and p; = 7% for ¢ = 1,...,d. Then
it can be shown that for ¢ = (c1,...,¢,) with ¢; > 0 for all 4, p € Vi, , N{y |y >
0, Ay = ¢} if and only if p yields a solution to (1.1). That is:

m
Zasjpj =c5, s=1,...,n,
j=1
where
n
pj=m; [ [ uts
s=1

with some u € RZ.

Note that Vi, ., N{y | y > 0, Ay = c} is determined by the kernel of A, p
and c. Therefore we may assume without loss of generality that the matrix A is of
rank n.

Let A; be the i-th column of A for i = 1, ..., m. For € RZ, let P
(x4, ... z4m) and mz? = (ma?t, ..., 7pxd™). Then (1.1) can be rewritten as:
Ap = c where p = mu with u € RZ. Let U = ker A. Then U+ = im(A?). Suppose
¢ = App for some py € R7. For u € R%, let = A'logu, then u € im(At) = U™,
and p = mu? = et is a solution to (1.1) if and only if Ap = ¢ = Apy if and only
if p— po € U = kerA. Hence our problem becomes one of finding u € U+ with
met — py € U, given positive vectors m and pg. It follows from Proposition B.1 of
[6] that such a u is unique. Therefore, there is a unique positive solution to (1.1).

In a self-assembly system or a reversible chemical reaction network, we have
a collection of species whose concentrations are represented by variables zq, ...,
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Zm respectively. Each complex is represented by a monomial z* where z = (z;)
and a = (a;) with a; € N. Each reaction (or event in the terminology of [4])
is associated with a binomial oc2® — 72® where o is the forward rate and 7 the
backward rate. The rate of change of concentration of the j-th species with time is
modeled by 2; = Fj(z) where Fj(z) = — Y, (0;2% — 7;2%)v;(§) with v; = a; — b;
and v;(j) is the j-th coordinate of the vector v;. Let F' = (F;), then the system
# = F(z) models the dynamics of the mass-action system [4, 6].

Let B = {v1,...,vq} in R™ and p = (u1,. .., 4a), with p; = 0;/7. Then for
real positive vectors p € R™, F(p) = 0 iff p € Vi, , [6]. Moreover if the initial
condition is zg then the flow determined by the system of differential equations
& = F(z) satisfies the condition that x(t) —z is in the linear span of B. Thus if we
choose a matrix A such that ker(A) =< vy, ...,v4 >, then the positive intersection
of the deformed toric variety Vi, , and the set {z | > 0, Az = Az} is precisely
the set of positive real equilibria of the flow defined by # = F(z) with initial
condition xg.

Example 1. Consider the following reversible chemical reactions:

1. 2H5 + Oy = 2H50 with forward rate k; and backwards rate ks,

2. Cly + Hy = 2H(C'l with forward rate k3 and backwards rate k4.

If we represent the concentrations of Os, Cly, Hy, HoO and HC by x1, x2, x3,
x4 and w5, then the binomial associated with the first reaction is kijz3z1 — kox3;
the binomial associated with the second reaction is kszoxs — ksw2. Let © =
(21,22, 23, 24, x5) then the dynamical system associated with these two reactions
is governed by the following differential equations:

5(,:1 kgl‘ixg — klxgl‘ll‘g
5(,:2 k4l‘§ — kgl‘gﬁ()g
T = 1:3 = F(l‘) = 72(1611‘%6611‘2 - kzﬁcil‘g) - (kgl‘gﬁ()g — k4l‘§)
5(,:4 2(]6168%1‘1662 — kzl‘il‘g)
5(,:5 2(1631‘21‘3 - k4l‘§) .

Let B = {’01 = (1, 0, 2, 72, 0), Vg = (0, 1, 1, 0, 72)} and n = (kg/kl, k4/k3)
Then I, =< z123 — ],:f T2, Tow3 — ’Z‘; z2 > and all positive points in V(Ig,,) are
equilibria.

Assume that the initial condition of the system & = F(z) is Zg = (Z1, ..., T5)
and we choose

10 0 1/2 0
A=10 1 0 0 1/2
001 1 1/2
so that the kernel of A is spanned by B. Then the real positive equilibrium is

V(Is,) Nz |z >0, Az = Aio}.

To get the corresponding posynomial system, we need to find one positive
_ — ;. : 2 —2 _ k 2 _ K
vector 7 = (m1,...,m5) such that p; = 7" that is, mymgm, = = |2 momsmy ™ = 1.

Let my=my=m3=1,m4 = \/’Z; Ty = \/:z, then p; = 7%, and the corresponding
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posynomial system is

4!
100 1/2 0 P2
01 0 0 1/2 pP3 :AIZ‘(),
001 1 1/2 D4

ps

3. Geometric Property

In this section, we show that the first n — 1 equations in the algebraic system
(1.1) can be considered as a curve parameterized by z,. In other words, let z; =
g1(xn), -+ s Tn-1 = gn-1(xy,) be the function derived from the first n — 1 equation
n (1.1). Then the function f,(g1(zn),- .., gn-1(2n), ) is increasing in (0, +00).
We denote the real positive domain as P in the following proposition.

Proposition 3.1. Let ¢ = (c1,...,¢,) € P" and A = (a;;) be an n by m real
matrixz of rank n, and suppose that Az = ¢ has a real positive solution. Let m =
(71, -y Tm) € P, and let

m
_ aij Qnj S
filzr,...,zn) = E Ty - T — e, t=1,...,n.
Jj=1

Then the set of real positive points determined by

fl(xly"'»xn) :07
f2(.’£1,---,l‘n) :07

fnfl(xlv .. '»xn) =0

forms a curve {(X (xy), zyn) | Tn, € Ruo} in P™ parametrized by x,,, where X (x,) =
(x1(xn)s .-y Tn_1(zn)) is such that f;(X(xyn),zn) =0 fori=1,...,n— 1. More-
over fn(X(a),a) > fn(X(),b) for any a >b> 0.

The proof of the proposition is in Appendix A.

One application of the proposition is in dealing with an ill-conditioned system
where the exponent in one of the variables is unusually large or unusually small. In
this case, the convergent rate of the iterative proportional scaling method tends to
be slow. We can improve the convergent rate by finding the value of one variable
using bisection while finding the values of the others using iterative proportional
scaling method as follows.
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Consider the system

c
an aia - Gim b1 1
b2 C2
= 5
anl DY DECEEY anm :
1 1 1
Dm 1

where
n
R asj
bj = TiH H Ts™
s=1

Such a system can be translated into the system in Theorem 1.1 as discussed
before, and thus can be solved by iterative proportional scaling method.

Without loss of generality, assume that aj,, is the exponent which is unusually
large. From Proposition 3.1, we know that in the positive real domain the first n—1
equations in (1.1) determine a curve £ parametrized by x,. Thus for each real
positive x,, there is a unique point (g(x, ), x,) on L. Moreover f,, is an increasing
function along £, that is, f,,(g(zy), z,) is increasing. If we can evaluate the function
g(zy), then we can evaluate f,(g(zn), ). Hence we can approximate the -
coordinate of the solution using the bisection method. To evaluate the function g
at point x,, = h, we observe that after setting x,, = h, g1(h),...,gn—1(h) is the
solution of the first n — 1 equations form an algebraic system in n — 1 variables of
the same form as (1.1), with m;(1 < i < m) replaced by m;h%". Thus the reduced
system has a unique real positive solution and can be solved by the iterative
proportional scaling method. Moreover, the solution is none other than g(h). If
fn(g(h),h) > ¢, and (x7,...,2%) is the solution of (1.1), then by Proposition 3.1,
we know that z) < h, otherwise x; > h. We can repeat the above procedure
to approximate x as close as we want. A precise description of the improved
algorithm is given below:

1. Initially set startpoint = 0, endpoint = c,.
2. Set z,, = ¢, /2.
3. Let w;- =T * xn™ . Solve the following system

c
an aiy - A1im b1 1
b2 C2
= 5
an71’1 o e anil’m .
1 1 1
Dm 1

where
n—1
o as;
b = ﬂ-ju H T,
s=1

by the iterative proportional scaling algorithm.
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4. Compute 21, ...,T,—1 by solving the linear equation
n—1
logp; = logﬂ; + logp + Z asjlogxs.
s=1

Asj

5. Compute p; = mju [l =5

6. If > anip; > cn, then let endpoint = x,, and repeat from step 2. If > a,p; <
Cn, then let startpoint = x, and repeat from step 2. If Y an;p; = cp, then
return (z1,...,2,) as the solution.

4. The Algorithm

Consider a polynomial system of the form:

m n
Zasjpj =c¢s §=1,...,n, where p; :ﬂ'ij?j (4.1)
j=1 s=1

with as; € R, and 7, cs € Rug. Let p=! = > Pi, and g; = pp;. Then the system

(4.1) is equivalent to

m
§ asjqj:,ucm*s:lv"'vn; E q =1,
j=1 i
where
n
— Asj
9 = WjHHIs .
s=1

For v € Ry, let S, be the system
Zasjqj:vcs, s=1,...,n; Z%‘:l, (4.2)
j=1

where
n
g =mjz [ [ a2,
s=1

Note that S, can be regarded as a posynomial system of the form (4.1) with
Q, - --,qm and z playing the role of py,...,py. Therefore as discussed in Sect. 2,
Sy has a unique positive solution if and only if (4.2) has a real positive solution.
It is easy to verify that (4.2) has a positive solution if and only if v € [«, 5] where
a=min(>_ p;) and 8 = max(d_ p;) under the linear constraints Z;nzl QsjDj = Cs,
s=1,...,n;p; >0,i=1,...,m. Suppose v € [a, 3] and 1 = p1 , ..., Tp = P,
z = p is the unique real positive solution to S, ; we define p = g(v). We observe that
if v = g(v), then the system S, is equivalent to (4.1). Moreover, the uniqueness of
solution of (4.1) implies that the function g has a unique fixed point.

Proposition 4.1. g(x)/x is decreasing on [, ().
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Proof. Suppose v1,v2 € [, 8] and v; < vy. Assume that (2),...,2,,9(v1)) and
(xf, ...,z g(vg)) are the solution of S,, and S,, respectively. Then (zi,...,z],
21 = 9(:1)) is the solution of

m

Zasjqucmszlv"'»n; Zqizl/vlv

j=1 i
where

n
. Qs
qj = Tz I I xS,
s=1
"

and (z7,..., 2 20 = g(v”;)) is the solution of

m
Zasjqucmszlv"'»n; Z%‘Zl/vm
j=1 i

where
n
q; = mjz [ [ 2.
s=1
Now consider z1, ..., Z, as the function of z determined by Z;nzl Gsjqj = Cs,
s=1,...,n; where q; = m;z[[o_, x$*7. From Proposition 3.1 in Sect. 3 we know

that >, ¢; is an increasing function in z. Let o(z) = >, ¢i(z1(2),...,zn(2), 2).
Then o(z;) = 1/v; for i« = 1,2. Since 1/v; > 1/vo, we have 21 > 29. Hence
g(v1)/v1 > g(v2)/ve when vy < vs. O

We have proved that g(z)/x is decreasing on [a, §]. We can use bisection
search to find the fixed point of g(x) on [a, 8] (that is, the solution of g(z)/z = 1)
since g(x)/x is decreasing on [a, (].

Below we outline an algorithm for computing the fixed point u.

1. Compute the bound [, f] for 1/p = >, p; under the linear constraints
m
Zasjpjzcsvszlw"»n; PjZO,j:L---»m»
j=1

by linear programming.

2. We start our bisection search for 1/u at vg = a;ﬁ (if B = 400, we can choose
vg as arbitrary positive number bigger than «). Apply iterative proportional
scaling algorithm to solve for:

m
§ asjqj:vOCmS:lv"'»n; § qi:17
[

j=1

where

n
g =mjz [ [ a2,
s=1
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3. Compute z through log z by solving the linear equation

n
logg;/mj =logz+ ZaSj logzs, j=1,...,m.
s=1
4. If z/vg = 1, then obviously g;/vo,j = 1,...,m, is the solution of (4.1). If
z/vg < 1, then let B = vy and repeat step 2. If z/vg > 1, then let o = vy
and repeat step 2 (in this case, if § = +o0, we set v9 = 2v9 when we repeat
step 2). By doing this we can proceed to come close to u = Y ;" | p; within a
precision of € using bisection search and compute p; = u * g; is the solution
of (4.1).
The convergence of iterative proportional scaling method has been proven in
[3] and the convergence of bisection search has been proven in Proposition 4.1.
Finally the real positive solution in (4.1) can be found by simple linear algebra
once p;,i =1,...,m, are known.
The running time of our algorithm is closely related with the convergent rate
of iterative scaling method. In our algorithm, we apply O(|logu|+log(1/€)) times
iterative proportional scaling method.

5. Reduction to Convex Optimization

As discussed earlier, our system can be interpreted as finding the intersection
‘/IB’IIm {y | Yy > OvAy: C}?

where the kernel of A is the linear span of B. A well-studied case is where we
consider the intersection

Vig N {y |y >0,Ay =c}

with the additional assumption that (1,...,1) is in the row space of A. In this case
the unique solution is where the entropy function — ), p; logp; is maximized in
the convex set {y | y > 0, Ay = ¢} (see p. 115 of [7]). In the more general situation,
we do not assume that (1,...,1) is in the row space of A. We can show that the
unique solution to our system is where the function — 3, (2;log 7' — z; + m;) is
maximized over the convex set {y | y > 0, Ay = c¢}. The function is the relative
entropy function adjusted by the difference in weights between z and 7. It is
precisely the negative of the Kullback-Leibler divergence function D(x, ), which is
known to be convex (see p. 90 of [1]). Hence the problem can be reduced to a convex
optimization problem [1] of minimizing the convex function D(z, ) over the convex
set {z | > 0, Az = b}. The objective function D(x, ) is not self-concordant (see
p-498 of [1]) and it is difficult to analyze the convergence rate when applying the
general convex optimization method. Mathematica 5.1 has implemented the convex
optimization as one of the built-in functions, but the error is much bigger than
that of the extended iterative method when the entries in matrix A are relatively
big. The comparison of computational results of these two algorithms is given in
Sect. 6.3.
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6. Computation
In this section we discuss some of our computational results.

6.1. Computation of Extended Iterative Proportional Scaling Algorithm

We implement our algorithm with Mathematica 5.1. The experiments show that
when the the iterative proportional scaling algorithm runs well in the inner loop,
the extended iterative proportional scaling algorithm works well in terms of accu-
racy and running time. The following is an instance of Example 1 in Sect. 2.

In this example,

2 00 1 0
A=|0 200 1
002 2 1
Let 7 = (1,1,1,1,1) and
3.56081
c=| 10.0889
25.0121

Then the solution of the above system is
(0.445231,1.67631,2.66594).

With 16625 iterations, the computation result from the extend iterative pro-
portional scaling is
(0.445231,1.67631,2.66594),

which is exactly the actual solution of the system.

6.2. Improvement in the Iterative Proportional Scaling Method

We implement both the improved iterative proportional scaling method for deal-
ing with ill-conditioned systems and the standard iterative proportional scaling
method.

FEzxzample 2.
40 1 3 3 2
A= 1 4 3 2 5 |,
0 1 4 3 1
m=(1,2,3,4,5) and
1.41519
c= | 4.38626
1.01694

The value of p; of the above system is
(0.30736 * 10~2%,0.592453, 0.00165342, 0.00599196, 0.399902).

The standard iterative proportional scaling method takes 155868 iterations and
get the value of p; as

(0.30462 * 10~2*,0.592453, 0.00165358, 0.00599177, 0.399902).
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The improved iterative proportional scaling method takes 24444 iterations and get
the value of p; as

(0.3052 % 10~2%,0.592453, 0.00165354, 0.005918, 0.399902).

In these computation results, we see that the output from both methods
is close to the correct answer, but the iteration time of the improved iterative
proportional method is much shorter.

6.3. Comparison

We compare the computation results of convex optimization method built in Math-
ematica 5.1 and that of the extended iterative proportional method. Since the
optimization is already built in Mathematica 5.1, it will make sense to only com-
pare the computation performance here. When the entries in the matrix A are
small, both algorithms work well. When the entries in the matrix A get bigger,
the performance of Convex Optimization tends to be unstable while the extended
iterative proportional scaling method continues to perform well.

Ezample 3. Given

6 1 0 6 0 1.4173575
A=12 6 3 4 2 and ¢ = 6.876265 |,
5 3 1 2 1 3.2714125

Asj

solve the posynomial system Ap = ¢, where p; = H§:1 Ts

The convex optimization method in Mathematica 5.1 reports error for this
question while the extended iterative proportional scaling method returns exactly
the solution 1 = 0.75, x5 = 1,3 = 0.8, taking 11861 iterations.

Ezample 4. Given

5 1 2 5 0 1.9043664000
A= 7 4 6 5 1 and ¢ = | 4.9184137600 |,
6 7 0 6 8 3.189678080

Asj

solve the posynomial system Ap = ¢, where p; = H§:1 Ts

The convex optimization method in Mathematica 5.1 returns p; as p; =
—5.46438 x 107°, py =0.356956, p3 = 0.485795, ps =4.35763 * 10~%, p5 =0.115164,
which is obviously a wrong solution because p; is negative in the solution re-
turned, while the extended iterative proportional scaling method returns exactly
the solution 1 = 0.75, x5 = 1, z3 = 0.8 with 60652 iterations.
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Appendix A.

Theorem A.1 ([5]). Let A be an open set in R"** and let f : A — R™ be a C"
function. Write f in the form f(z,y) where x and y are elements of R* and R".
Suppose that (a,b) is a point in A such that f(a,b) = 0 and the determinant of
the n x n matriz whose elements are the derivatives of the n component functions
of f with respect to the n variables, written as y, evaluated at (a,b), is not equal

to zero; then there exists a neighborhood B of a in R and a unique C" function
g: B — R* such that g(a) = b and f(z,g(z)) =0 for all x € B.

Proposition A.2. For any n X m matriz E with rank n, if A is m X m positive

definite matriz, then A~' — ET(EAET)"'E is nonnegative definite.

I, 0,
Proof. Let P = ( —(EAET)'E I, ), then

pr( At ET O\, _ (AT -ET(BAET)'E 0
E EAET - 0 EAET )°

so A= — ET(EAET)"'E is nonnegative definite if and only if
At ET
( E EAET )
is nonnegative definite.
Notice that

AT 0N/ A o0 Al ET\ (At ET
E 0 0 A o o )=\ E EAET )

For any vector v, since both A and A~! are positive definite,

AU BT N g AT 0N A 0 AU BT 4
”( E EAET)” ”( E o)(o Al)( 0 0)” 20

thus A~! — ET(EAET)~'E is nonnegative definite. O
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Proposition A.3. Let ¢ = (c1,...,¢,) € P" and A = (a;5) be an n by m real
matrixz of rank n, and suppose that Az = ¢ has a real positive solution. Let m =
(71, -+, Tm) € P™, and let f = (f1,..., fa_1) be a function mapping R™ — R*~1
defined by

m
fi= Zﬂ’jaijx(f” ceeglhi — ¢ i=1,...,n—1.
j=1
Then there exists a unique continuously differentiable function g = (g1,...,gn-1) :

P — P"~! such that f(g(t),t) =0 for all t > 0.

Proof. Let C(n_1)x(n—1) = (cij) = (a;‘;) for 0 < i,j < n, and let

n—1
b = mjxp™ H:cgjs, 0<j<m+1.

s=1

Then ¢;; = x{l Sorey aikajrby (i # §) for 0 < i,j < n.

Let
aii a1 ce am1
ai2 a2 ce am?2
Ain—1 a2n-1 *°° (Amn-—1

then C = Bdiag(bs,...,bn)BT.
The rank of B is n — 1 since the rank of A is n and it is easy to prove that
C' is a positive definite matrix when (z1,...,z,) € P*, and thus det(C) # 0.
Suppose v = (v1,...,v,) € P™ and f(v) = 0; then by Theorem A.l in
Appendix and the proof above, there exists a unique different function g = g(x,,)
defined in the neighborhood of v such that

f(gl (xn)7 .. "gnfl(l‘n), l'n) =0.

Since for any given ¢ > 0, there always exists a unique u = (ug,...,Un—1)
such that f(u,t) = 0, and from the uniqueness we must have g(t) = (u1, ..., up—1).
By Theorem A.l in Appendix g(t) is a continuously differentiable function in
(0, +00). O

Proposition A.4. Let F : R"™™ — R™ be a C" function. Write F in the form
F(z,y) = (Fi(z,y),..., Fn(z,y)) for x € R",y € R™. Suppose F(a,b) = 0 and
det(%((i’:::’j:)))(a, b) # 0. Let y(z) = (y1(x),...,ym(x)) be the implicit function
defined ina neighborhood B of a so that F(x,y(z)) = 0 for all x € B. Then for

all x € B,
Dy(z) = —[DyF(z,y)] "D, F(x,y),
where
(yl)%l (yl)imz (yl)%n
Dy(w)= | Wl W ),

Wm ey Wm)ey - (Um)i,
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(F1)e,  (Fi)g, (F1)g,,
DRy — | (P (P o (L]
(Fn)e,  (Fin)g, (Fn)g,
(B, (R, - (R,
DyF(z,y) = (FQ)yl (FQ)yz T (FQ)ym
(Fm)y,  (Fm)y, (Fm)y,,
Proof of Proposition 3.1. Let
n—1
by = mwgri [[ 28, 0<j<m+1,
s=1
aii ai2 ce A1m
C = a21 a22 ce a2m
ap—-1,1 Qan—-1,2 An—1,m
nl
bl Z1 an?2
U= , X = y U= .
bm Tn—1
Then
(f1)h, >isy anjajb;
(f2)5 D1 Anjaz;b;
DxF(xvy) = . " = -’Enil = . e = l‘nilcUU,
(fnfl),xn Z;nzl anjanfl,nbj
(f1)%, (f)ee o (fi)en s
I I . I
DyF(ay) = | e Pl R cperxe,
(fnfl)gcl (fnfl)gcz e (fnfl)gcn,l
Note that
dfn(X(l‘n)? Xn) o d(Z;nzl ﬂ-janjxtlllj o 'xznj - Cn)
dz,, - dz,,
m b m n—1 (fL‘)’ (xl)lxn
= Z aij T+ Z Z bjan;aj; Ven — gl Ty +TUTCT XY
Jj=1 j=11=1

(xnfl);n
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By Proposition A.4
(#1)%,,
| = Dy (Pl ) D F (@) = (-X(QUCT) ) (ar CUW)
G
Thus

d fn(X(@n), Xn) =z WUy — 2, WTUTCT (CUCT)1CUw

dn =z (T Uv —0TUTCT(CUCT)1CUW)
=z Y ((Uv)T (Ut - CcT(cucT)~-1C)Uw).

By proposition A.2 in Appendix A, U~! —CT(CUCT)~1C is nonnegative definite,
(Uu)T (U~ = CT(CUCT)"1C)Uv > 0, when @, > 0, “/"XEX0 > 0 Hence
fn(X(a),a) > frn(X(b),b) for any a > b > 0. O
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