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Proposal for the Algorithmic Use of the

BKK-Number in the Algebraic Reduction
of a 0-dimensional Polynomial System

Hans J. Stetter

Abstract. For a regular 0-dimensional system P of polynomials with numer-
ical coefficients, its BKK-number m equals the number of its zeros, counting
multiplicities. In this paper, I analyze how the knowledge of m may be used for
the computation of a Grébner basis or more generally a border basis of P. It
is also shown how numerical stability may be preserved in such an approach,
and how near-singular systems are recognized and handled. There remain a
number of open questions which should stimulate further research.

1. Introduction

When I prepared my invited lecture for SNC 2005, I had no intention of pub-
lishing it. Therefore, for the second part of my talk, I chose to put forward some
preliminary ideas which I felt were worth being investigated further. After the pre-
sentation of the lecture in Xi’an, I was urged by a number of colleagues to publish
its content, which — with a good deal of hesitation — I finally agreed to do. A
later more thorough consideration of such a publication convinced me that there
should actually be two separate papers: one should contain the first part of my talk
which explained facts about the mathematical feasibility of extending significant
parts of polynomial algebra into the realm of approximate data and approximate
computation. The other one should put down the ideas in the second part of my
talk in a more elaborate and formal fashion, as a stimulus for further research.
This is that second paper.

It contains my ideas about a novel algorithmic approach to the numerical
computation of a standard representation of the ideal or of the quotient ring resp.
of a regular 0-dimensional system of polynomials with numerical coefficients. Here
“regular” is used in analogy with its usage in Numerical Linear Algebra: no tiny
change of coefficients can change the dimension of the quotient ring; cf. [11, Sect. 8].
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The approach is based on the fact that the ezact number of zeros of such a system
(counting multiplicities) or — equivalently — the ezxact vector dimension of the
quotient ring can be determined a priori by a symbolic algorithm with only the
supports of the individual polynomials as input. I have wondered for many years
why, by my observation, nobody in the large GB community has attempted to
simplify the GB computation for regular 0-dimensional systems P by using its
BKK-number as a helpful input, particularly after BKK computation has become
a standard tool in the late 1990s; cf. e.g. [16, 10].

In the following, I present the steps of an algorithm which — in a good number
of cases — computes the elements of a border basis of the ideal generated by P or,
equivalently, the set of multiplication matrices of the associated quotient ring, both
w.r.t. a particular normal set or monomial basis. The algorithm uses no term order;
therefore it requires various choices and decisions which may determine its success;
I have only been able to indicate potentially successful strategies. Besides these
choices, the complete computation of the final result (border basis, multiplication
matrices) consists only of substitutions and of the solution of blocks of linear vector
equations. In particular, no reductions to zero are needed, which is an important
feature for the numerical computation.

I have no proof that the algorithm will always succeed, even for the most
clever choices in the preparatory part. This paper is rather an invitation to refine
its ideas into a true algorithm, if only for some particular subclasses of regular
0-dimensional systems, or to establish that it must fail almost always. In any case,
a good deal of insight should result from these investigations (which I am too old
to tackle).

The paper begins with a summary of facts about border bases and multipli-
cation matrices; it also introduces my terminology and notation. In Sect. 3, we
show how the syzygies of a border basis, or the consistency conditions for the as-
sociated multiplication matrices, may be reduced to a minimal set which should
— together with the system P — specify the basis uniquely. All this refers to a
particular normal set whose number of elements must equal the BKK-number of
P; its selection is discussed in Sect. 4. Then the constituent steps of the proposed
algorithm are introduced and discussed in Sect. 5. In the following Sect. 6, the po-
tential appearance of ill-conditioning is considered and algorithmic remedies are
explained. Sect. 7 then deals with the possibility that the specified regular system
P is actually very close to singularity: one type of singularity (BKK deficiency)
may be dealt with algorithmically, and the other type (positive dimension) can
only be diagnosed. The following Sect. 8 discusses various details of a potential
implementation and points out potential sources of failure. Some conclusions com-
plete the paper.

It should be mentioned that many parts of the material in this paper are also
contained somewhere in my book on “Numerical Polynomial Algebra” [14]; but
this paper presents them in a self-contained and systematic fashion which should
help in bringing them to the attention of the community. I am also aware that some
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ideas in this paper are related to ideas in the more recent GB-algorithms of J.-
C. Faugere (cf., e.g. [3]) and to ideas in papers by B. Mourrain and P. Trébuchet
(cf., e.g., [11, 12]); but since their approaches and their notational framework
differ from mine considerably, I have not pointed this out in detail. A more refined
development of the algorithm proposed in this paper is contained in a forthcoming
paper [7] of A. Kehrein and M. Kreuzer. Also I wish to thank SIAM Publ. for
granting the permission to use figures which are adaptations of figures in [14].

2. Border Bases and Multiplication Tables

We denote by IP* the set (ideal) of all polynomials in s variables with coefficients
in C. Monomials in P* are denoted by z* := %' .. .z% &k e INJ. A set N of
monomials in IP® is closed if z* € N implies z* € N for all divisors z#" of z*.
In IP?, we consider a 0-dimensional polynomial ideal T with m zeros (counting
multiplicities), with its quotient ring R[Z] := IP® /T of vector space dimension m.
A closed m-element monomial set N is a feasible normal set for R if it is a basis
of R as a vector space.

A regular polynomial system P C IP°) with s equations, generates a 0-
dimensional ideal whose quotient ring dimension m equals the BKK-number of
P. Note that the BKK-number of P depends only on the supports of the s poly-
nomials in P, and that it may be computed via the mixed volume of the Newton
polytope of P; cf., e.g., [15, 10].

Definition 2.1. For a closed monomial set N' C IP?, the set of all monomials which
are not in N but satisfy ¥ = 2,27 for some 27 € A" and some z,,0 = 1(1)s, is
the border set B[N of N, with elements z*», v = 1(1)N := | B[N]].

It is well-known that the multiplicative structure of R is specified, w.r.t. the
fixed basis A, by the multiplication matrices A, € C™*™, o = 1(1)s, which
represent the residue classes mod Z of the elements in B[] in terms of the basis
N, with the elements z7+ of N arranged into a vector b in some arbitrary but
fized order:

zob = A;bmodZ, o=1(1)s. (1)

While many of the rows in the A, are simply unit rows because they refer to
a normal set element “inside” N with the z,-shifted monomial also in A, there
must exist a particular nontrivial row a{y in A, for each element 27+ of A with
an z,-neighbor z* in BIN]: z* = z,a2/» = of b . If an element z* in B[N/]
is an z,-neighbor of a normal set monomial for several distinct o, then the same
row a{y will occur in all of the respective matrices A,.

Obviously, the collection of these nontrivial rows specifies the multiplicative
structure of R[Z] and thus also the structure of Z:

Definition 2.2. The set of the N := |B[N]| polynomials
bb,(z) = 2" —al b, v=1(1)N, (2)
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is a border basis B[Z] of 7 ; more specifically, it is the N-border basis Bz of T .
Ct. also [6, 8].

Except for s = 1, the number N of border basis elements bb, is > s, often
N > s. Thus Bprz) would be overdetermined if its elements bb, were considered
as independent. Basz) can define a nontrivial ideal with m zeros only if the bb,

satisfy the system of syzygies which arises in the following way:

In the border set B[N/, two monomials z*~, 2*

one of the following two relations:

v are neighbors if they satisfy

. ’
(i) For some o, zkv = z,2k;

/ 3

(i) For some o, 0/, x, 2% = z, 2k . )

For the coefficients of the border basis elements bb,, bb, associated with
neighboring border monomials, this implies (cf. (1), (2), (3)) in case

(i) 0 = bb, —x5bb, + (aF L= a{y z,)b = (al = a{y As;)b € T;
(ii) 0 = z,bb, — x,bb, + (al Ty — a{y z,)b = (al LA, — a{y As )b € T.

(4)
Note that a” b € T implies a = 0. Therefore we have

Theorem 2.1. For a specified feasible normal set N, the row vectors a{y e v=

1(1)N whose components are the coefficients of the border basis By of the 0-
dimensional polynomial ideal T (cf. (2)) and the elements of the nontrivial rows
of the multiplication matrices A, w.r.t. N of the quotient ring R[Z] (cf. (1)) must
satisfy, for neighboring border set monomials (cf. (3)):

in case (i) ap , = aj Ao

(5)

in case (ii) al A, = al A, .

Theorem 2.1 gives necessary relations for the border basis polynomials of 7
as well as for the multiplication matrices A, of R[Z]. For the latter, commutativity
is known to be a necessary and sufficient condition, cf. [11]. But a closer analysis
shows (cf. [14], Thm. 8.11) that the relations (5) are identical with the relations
arising from the commutativity conditions A, A, = A, A, for all pairs (o, 0”’)

when these are spelt out in terms of the rows a .

Corollary 2.2. The conditions (5) of Theorem 2.1 are necessary and sufficient.

Ezample 2.1. In IP?, we consider a 0-dimensional ideal with m = 6 zeros and
assume that the 6-point normal set N shown in Fig. 1 is feasible. (The figure
depicts a set of monomials 27+ in IP? by the set of its exponents Ju in IN3; this
is a commonly used visualization tool.) The associated border set B[N] is also
indicated; each of its monomials is a “positive neighbor” of a monomial in . The
total number N of border monomials turns out to be 9. The edges in the figure
connect border monomials which are neighbors in the sense defined above. There
are N = 14 pairs of neighbors, four of which are of type (i) while the others are of

type (ii).
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As an example of a relation (4) of type (i), we consider the neighboring
monomials z(®11) = zo25 and (15D = z12025: they require the validity of

(a(TLLl) - a%,1,1) z1)b e T. (6)

To use this relation computationally, we must replace those monomials ¥ of z;b
which are in B[N] by al'b. When we now assume that — within an algorithm for
the computation of the a{y — the row vector aal’l) has already been found, then
the above relation constitutes a linear vector equation for the remaining unknown

vectors a{ .

FIGURE 1

)L,

On the other hand, when we consider the type (ii) neighbors z("11) = 21 zox3

and z(192) = x17% which require the validity of
T T
(a(1,02)%2 —ap 1y %3) b€ I,

and assume the row vector a(Tl 1,1) to be known, then we will obtain a linear vector

T

(1,0,2) 18 known, too.

equation only if a

3. Minimal Syzygy Bases

It is our goal to use the syzygy relations (4) for the computation of the nontrivial
rows of the multiplication matrices for a specified feasible normal set, in the fashion
indicated in Example 2.1. If we wanted to do this for an ideal generated by poly-
nomials with integer or simple rational coefficients and in rational arithmetic, we
might be willing to put up with the overdetermination which prevails in the com-
plete system (4). For the numerical treatment of (4) which we have in mind, such
an overdetermination is fatal: since the use of floating-point arithmetic excludes
algorithmic decisions based on a strict equality of complex numbers, the interde-
pendence of the relations (4) may remain undetected and lead to an inconsistent
system.

At first, we consider the number of syzygy relations which should be oper-
ative in a minimal set. To determine N nontrivial vectors a{y we should have NV
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independent vector equations. s of those will be furnished by the polynomial sys-
tem which defines the ideal at hand. Thus, NV — s further independent equations
should be necessary and sufficient to determine the a{y uniquely. The following
concept yields an overview of the complete set of relations (4):

Definition 3.1. For a specified normal set N, the border web BW,s is the set of
all pairs of monomials in B[N] which are neighbors in the sense of (3). In the
visualization of monomials by their exponents, the border web BWj, is the set
of all edges connecting the exponents of neighboring pairs. In this representation,
BW)yy is a graph in s-space.

This concept of a border web permits us to use graph theoretic considerations
for the reduction of the system (4) to a subset of N — s independent relations. At
first, we realize that the graph BWjs contains closed loops. But a relation (4)
represented by an edge “closing a loop” holds if the relations for the remaining
edges of the loop hold; cf. [14, Propositions 8.14 and 8.15].

By a well-known theorem of graph theory , the “breaking of all loops” in a
connected graph with N nodes results in a graph with exactly N —1 edges. While
this has brought us closer to our goal, we still have to get rid of s — 1 further
relations or edges resp.

We note that our restriction to syzygies arising from neighboring border
monomials is not compulsory. Like with Grébner bases, syzygies between border
basis polynomials whose leading terms are relatively prime are satisfied automati-
cally; cf. [2]. In our visualization, relatively prime border monomials become nodes
in the border web which lie in disjoint subspaces (e.g. (199 and (%:0:3)). There-
fore we are permitted to augment our border web graph by “virtual” edges between
such nodes.

The introduction of these further edges makes it possible to delete some
further “real” edges of BW s which close a loop with a virtual edge. Altogether, s—
1 real edges may be deleted because s —1 virtual edges may be introduced without
creating loops between virtual edges; cf. [14, Proposition 8.14 (b)]. This reduces the
total number of remaining edges and thus of operative equations (4) to the desired
N —s. Such a minimal border web will be denoted by BW »r. Naturally, throughout
the deletion process, we must take care that the graph remains connected and that
each one of the final support leading monomials of the autoreduced system retains
some real edge(s) issuing from it.

Ezample 3.1. We continue with the situation of Example 2.1; cf. the visualized
border web of Fig. 1. When we consider the node (2,0, 0) as the root of a tree, it
becomes obvious that the 3 edges in the 2, 3-plane close loops. After their deletion,
we may still delete the two upward edges issuing form (1, 1, 0) and the edge between
(1,1,1) and (1,0,2). This leaves N — 1 = 8 edges.

Now we introduce the two virtual edges from (2,0, 0) to (0,2,0) and (0,0, 3)
resp. which are obviously in the disjoint subspaces 1-axis, 2-axis, 3-axis; cf. Fig. 2.
This enables us to delete the real edges ending in (0,2,0) and (0,0,3) without
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disconnecting these nodes from the graph. Thus, we have arrived at N —s = 6
conditions (4) which, together with the 3 generating polynomials of Z, should
suffice to specify the complete border basis.

The minimal border web BWj, is not at all uniquely determined. E.g., we
could have retained the type (i) edges [(1,1,0),(1,1,1)] and [(0, 1,1), (0,1,2)] and
deleted the type (ii) edges [(2,0,1), (1,1,1)] and [(1,0, 2), (0, 1, 2)] instead.

Actually, in the algorithmic computation of a border basis, the minimal bor-
der web is not selected a priori but formed recursively during the computation;
cf. Sects. 5 and 8.

4. Selection of a Tentative Normal Set

As explained in the Introduction, we assume that we know the number m of
zeros (counting multiplicities) of the 0-dimensional ideal Z defined by the regular
polynomial system P = {p,, v = 1(1)s}. This number is also the expected vector
space dimension of the quotient ring R[Z] and hence the number of elements in a
monomial basis A of R. Remember that the number m computed from the mixed
volume of the Newton polytope of P (cf. e.g. [4]) depends only on the supports
of the polynomials p,, and not on their specified coefficients. Thus, a closed set
N with the correct number m of monomials and a structure compatible with the
supports of the p,, may still not be feasible for the actual coefficients of P. This can
only be discovered during the border basis computation; the appropriate measures
will be discussed in later sections.

As a first step towards the selection of a normal set for R we attempt to
simplify the system P by autoreduction:

In Grobner basis computation, autoreduction is controlled by term order: we
check whether the leading monomial of some p, divides terms in another polyno-
mial p,.. If yes, we eliminate these terms, in the sequence of term order, by the
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subtraction of suitable multiples of p,. The possibly new leading monomial of
the reduced p,» may now divide terms in another polynomial etc. Clearly, this
simplification procedure does not change the ideal Z[P]. It must stop because
term orders can only decrease in this well-known procedure.

Border bases do not refer to a term order but to a normal set N, with
a partial ordering given a-posteriori by the “distance” to N cf. [14, Definition
8.3]. But autoreduction must take place before the specification of the normal set.
Therefore, we proceed as follows:

We consider the monomial sets S, of the supports of the p, and their internal
borders consisting of those monomials in the S, with no multiples in S,,. For each
Py, we select a monomial in the internal border of its support S, as support-
leading monomial which we use like the (term order)-leading monomial above.
In the absence of term order, we must avoid eliminations in a p,, which would
introduce new border terms into .S,/; this requires the simultaneous elimination
in sets of polynomials where the support-leading terms of each polynomial also
occur in the other polynomials. This is easily achieved by the solution of a linear
system for the support-leading terms. Naturally, each elimination in a p, redefines
S, and may require the selection of a new support-leading monomial which —
possibly — permits further elimination. Because the supports can only shrink,
the procedure must come to a stop. However, depending on the choice of the
support-leading monomials, the results may differ considerably; cf. Example 4.1
below. The support sets of the final autoreduced system, without the respective
support-leading monomials, will be denoted by S, .

Now we are ready to select a normal set A/ of proper magnitude m. For
this purpose we take the union of the s truncated final support sets S,. Then we
complement this union into a closed convex monomial set, i.e. a set which contains
all divisors of one of its elements. If the resulting set has exactly m elements, it is
a (tentative) normal set for R[Z].

Otherwise, we have to adjoin further monomials such that the set remains
convex and that no multiples of the final support-leading monomials are appended.
For an arbitrary choice of support-leading monomials, it may not be possible to
reach a set of m elements. But we know that m member normal sets for R[Z] must
exist, with one monomial of each autoreduced support not in N; therefore it must
be possible to reach such a normal set, perhaps with some additional sophistication
in the approach.

Ezample 4.1. To avoid confusing complications, we take a very simple situation:
s = 2, and dense polynomials p;, po with degrees 2 and 3 resp.; this makes m = 6.
A less trivial situation will appear in Sect. 7; cf. Example 7.2 and Fig. 5 (i).

(i) At first, we follow the Grébner basis pattern. Use of the term order tdeg|xa,
x1] makes 23 and 3 the leading monomials in p;, pe resp. With suitable mul-
tiples of p;, we may eliminate the x3, 2122 and x3 terms in ps; the leading
monomial of the reduced ps is 233, and the union of the truncated supports is
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{1, 21, w2, 2%, 2179, 23} (cf. Fig. 3); it has exactly 6 elements. This normal
set also arises in the course of a Grobner basis algorithm; but its a priori
knowledge cuts the basis computation short; cf. Example 5.1 (i).

(i) Without a term order, we may choose the monomials 3 and x$ as support-
leading monomials of py, ps resp.; note that the internal border of the two
supports consists of the monomials of degree 2 and 3 resp. The reduction
proceeds as before; but now the support-leading monomial of p; remains un-
changed throughout; the union {1, z1, T2, x%, 129, 322} of the final trun-
cated supports has m = 6 elements and is a nice normal set for a border basis
of our {p1, p2}; cf. Example 5.1 (ii).

(iii) Another normal set arises when we take x1 x5 as the support-leading monomial
of p1, which we are free to do. Now we can eliminate the 123 and z3x5 terms
in py and choose either x3 or 23 as support leading monomial in the reduced
pa. For the former choice, we obtain {1, x1, z2, *3, 3, 3} as normal set for
a border basis. It looks a little strange but functions alright as we shall see
in Example 5.1 (iii).

J2 . N
O  support-leading monomial

o] further border monomial

i) —— used in computation
— not used in computation
)
A%
ir J2 i
[ L
L L] L]
. J g1
(i) (i)
FIGURE 3

5. Algorithmic Determination of Border Bases

We assume that we have selected a tentative normal set A/, with its border web
BW)y, for a specified 0-dimensional polynomial system P C IP®. Now we want to
compute the coefficients of the associated border basis By = {bb,, v = 1(1)n} for
the ideal generated by P.
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By the selection procedure of Sect. 4, s of the bb, are specified by the polyno-
mials of the autoreduced system P (we keep the notation p,, for these polynomials):
the support-leading monomials z of these p, are in the border set B[N]. Thus it
is natural to start the computation with syzygy relations (4) along edges of BW,,
issuing from these monomials =%, v = 1(1)s.

Assume at first that there is an edge of type (i) issuing from a particular
one of these support-leading * in the o’ —direction and that the ¢’-shifted trun-
cated support set z,5, of p, = bb, = zt — ae b remains completely within
N U{z", v =1(1)s}. (This is most likely to happen for a p, of lowest degree.)
Then, after the substitution of the occurring A aeT Zo'b is a polynomial in N

and must equal the polynomial aj, ,b for 2% = z 2% ; cf. (4 )() Thus, the border
basis polynomial bby , is obtalned directly as bbg , := xho — ae z4,b. Obviously,
as a first step in our computatlon we should attempt to utilize all possibilities of

this kind.

After this initial phase, which may not be present at all, we must utilize the
relations (4) along the other edges issuing from the %, v = 1(1)s. Each edge to
a type (i) neighbor (cf. (3)) will generate a linear vector equation. If some pair of
support-leading monomials is connected by a type (ii) edge, the associated relation
(4)(ii) also leads to a linear vector equation. Generally, these equations will involve
further vectors a{y associated with border monomials z* introduced by the shifts
of the z,, . Hopefully, there will be as many vector equations as unknown vectors.
Note that edges issuing from border web nodes whose vectors have been found in

the initial phase may be employed in the same fashion.

After more vectors a{ have been found from this block of linear vector

equations, the procedure may be further continued. But in choosing further edges
we must watch that the emerging web of used edges becomes a minimal border
web. This requests mainly that we do not use edges which close a loop; otherwise,
we would introduce an equation which is dependent on equations which have been
used already. With floating-point computation, this may not be realized and spoil
the computation.

Hopefully, we may thus recursively generate blocks of linear vector equations,
with as many equations as unknown vectors each, until all N — s unknown vectors

Ty have been determined. In principle, this should always be possible, at least for
a cleverly chosen normal set \:

From the theory of Grobner bases [2] we know that, for a regular 0-dimen-
sional system P, the Grobner basis w.r.t. any term order may be computed by
a finite number of rational operations. It is clear that this holds also for the
border basis associated with the normal set of a Grébner basis. For a fixed system
P, the change from the border basis polynomials for one normal set to those for
another one also requires the solution of linear systems only; cf. [14, Sect. 8.1.1].
Therefore, the coefficients of any border basis for a regular 0-dimensional system
P are rational functions of the coefficients of P. This raises some hope that border
bases may generally be computed along the lines indicated, possibly with a more
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refined strategy. Note that — like in the F5 algorithm of [3] — no reductions to zero
will ever arise in our algorithm. These have been exposed as the main obstacles
for a stable floating-point implementation of GB-algorithms; cf. [9].

Before we turn to the discussion of numerical difficulties which may arise

even when we have recursive blocks of the correct number of linear equations, we
continue our simple-minded example of Sect. 4 to explain the described algorithmic
procedure in more detail. For a less trivial example, we refer to Example 7.2 and
Fig. 5 (i).

Ezample 5.1. The original polynomials p;, p» are dense in 2 variables, of degrees
2 and 3 resp., and m = 6; cf. Example 4.1.

(i)

With the term order tdeg[zs, x1]. we have obtained the normal set and border
web of Fig. 3 (i), with 23 and z?z2 as final support-leading border monomials
with specified coefficient vectors, and the further 3 border monomials z;x2,
x3wo, and x] whose associated coefficient vectors have to be determined.
For a clear notation, we set b := (1,21, 2o, 2%, 7172, 23)7; then, with al :=
(Olk,l, AL 2, Ak,3,

Otk 4y Otk 5y Ol 65 ) a{ b denotes the polynomial oy 1 + ok, 2 1+ k3 To+ k4 x%
+Qp 5 T1T2 + Qg6 x‘i’

In the initial phase of the algorithm, we see that the x-shift of the truncated
support set S; generates only normal set monomials and the border monomial
x2w5 whose coefficient vector aal) is known from the autoreduced p-. Hence,

the substitution of ag 1) into ag;) 2) z1b yields a(Tl 2) explicitly:

aly2y = (0, 2(0,2),1, 0, (0,2),2: @(0,2),3) ¥(0,2),4) + X(0,2),5 (1) -

For the simultaneous computation of a@ 1 and aa 0)> We may use the type (i)

relation from an x;-shift of 2?25 together with the type (ii) relation between
x123 and 2225, both of which introduce the vectors a@ ;) and aa o) linearly,
with known scalar coefficients:

321;3,1) = (0, 2,1),1, 0, @(2,1),25 Q(2,1),3, X(2,1),4) T(2,1),55 a@,1)+a(2,1),67 a(4,0)T7
(0, @(1,2),1,0, (1,2),2, C(1,2),3, Q(1,2),4) + C(1,2),5 a@,l) + a1,2)6 a(4,0)T =
(0, 0, Q(2,1),15 0, a(gyl)yg,o) + a(gyl),3a%‘2) + a(gyl)Aa@‘l) + a(gyl),t—,aa‘?)
Jr(36(2,1),6a(3,1)T~
Thus, the complete computation of the Grébuer basis for tdeg[za, x1] consists
of substitutions and the solution of a 2 x 2 linear system with the matrix
( 1 THD)6 ) It is hard to believe that the GB could be computed
Q(2,1),6 —(1,2),6
otherwise with fewer operations. (The reduced border web underlying this
computation is shown in Fig. 3 (i). The case when the matrix is (near-)
singular will be treated in the next section.)
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(ii) With the rectangular normal set of Fig. 3 (ii), we have 3 type (i) edges and
one type (ii) edge; thus, it is possible to use only type (i) relations for the com-
putation of the 3 unknown vectors a(TLQ), aaz) and aal). The computation
is very similar to the one for the preceeding normal set:

Again, the x-shift of the truncated support of p; introduces only normal set
monomials and z$ with its known vector aao) into the expression for a(T1,2)'

A simultaneous z1-shift of z122 and z2-shift of 23 yields the two linear vector

equations for a{22) and aal). The manipulations are slightly simpler than in
the previous case. The associated reduced border web (cf. Fig. 3 (ii)) remains
connected by the virtual edge from z% to z3.

(iii) With the unusual normal set of Fig. 3 (iii), the initial phase of the algorithm is
empty. With simultaneous x1- and xs-shifts of the support-leading monomial

T1T2, we obtain the system of linear equations for aal) and a(T1,2)' Then we

may use the type (ii) relation for 2122 and z3 together with the z;-shift of

225 to obtain the two vector equations for aa 0) and a@ 1 The lonely node

x$ is connected to the web by the virtual edge from x{ to z3; cf. Fig. 3 (iii).

6. Ill-Conditioned Situations

As explained in the Introduction, we assume throughout that the coefficients in
the regular 0-dimensional polynomial system P = {p,, v = 1(1)s} are of limited
accuracy and that the computation of a border basis for Z[P] proceeds in floating-
point arithmetic. Therefore, we must take special care to avoid ill-conditioned
situations where small perturbations may be amplified excessively.

At first, the specified system P itself may be ill-conditioned, i.e. it may specify
the ideal Z[P] very poorly, with a high sensitivity to tiny changes in P. In a linear
system, this happens when the (linear) polynomials are nearly linearly dependent
or — equivalently — the system is close to singularity. The corresponding situation
with polynomial systems will be discussed in the next section.

Now assume that P, with m joint zeros, is mot an ill-conditioned system
so that well-conditioned representations of R[Z[P]] must exist. Yet there may be
closed convex sets of m monomials which represent R in an extremely sensitive
fashion and thus are ill-suited as a basis for R. How this may happen is easily
seen:

For a specified normal set N and normal set vector b(z), we have (cf. (2))
bb, = z* —af b(z) € I[P], v=1(1)N,
which implies, for each v,

Z/]jy = agl, b(zu) y M= 1(1)m7 (7)

where the z, are the m zeros of P. The extension to multiple zeros is straight-
forward but quite technical; we refer the reader to [14, Sect. 8.5]. By (7), the
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coefficient vectors a{y can only be well-defined if the matrix

b(z) := b(rl) b(Tm) c cmxm (8)

is well-conditioned. Clearly, the condition of b(z) depends strongly on the relation
between the zero set {z,, p = 1(1)m} and the chosen normal set N; it may differ
considerably for different m-element normal sets.

Since the zeros z,, are unknown at the time of the computation of the a{y, we
cannot form b(z) explicitly. But we must take an ill-conditioning which appears
in the computation of some aj, as indication of an ill-conditioned b(z) and hence
of an ill-suited normal set N.

An ill-conditioning can already appear during the autoreduction phase through
the choice of the support-leading monomials which strongly determine the nor-
mal sets which are admissible; cf. Sect. 4. Due to the dominant role which they
play in the subsequent computation of the remaining a{y, the coefficient of the
final support-leading monomial 2% of each autoreduced polynomial p,,, v = 1(1)s,
must not be very small relative to the coefficients in that p,,.

If one or several of these coefficients should be tiny, we should change the
(possibly recursive) selection of the support-leading monomials. Often it will be
discernible which choice has introduced the ill-conditioning. In any case, the num-
ber of possible selections is generally quite limited.

Ezample 6.1. Assume the situation of Examples 4.1/5.1. We now specify the highest
order terms of p; and ps:

pi(z1,20) = = 7527+ 212120 + 25+ ...,
pa(z1,20) = 23 — 3atars +41lxm0 +2.625 +.. . ;

we aim for the final support-leading monomials of version (ii) of these examples
which lead to the normal set of Fig. 3 (ii). However, reduction of ps by p; as in
Example 4.1 (ii) leads to a py with the 3rd order terms —.02 23 —1.206 z3x5 , where
the coefficient of the proposed support-leading monomial z3 is quite small. Here,
the relief is straightforward: for the same final ps, we use z2x2 as support-leading
monomial which leads to the normal set of Fig. 3 (i).

During the computation proper, ill-conditioning may appear in the numerical
solution of the blocks of linear equations for groups of a{y; cf. Example 5.1. This
means that the relations (4) entering into that linear system are near-dependent.
If they have arisen from edges of a minimal border web, this indicates that the
selected normal set A/ furnishes an ill-conditioned basis of the quotient ring R[Z[P]]
and that we should switch to another normal set. Naturally, we want to preserve as
much as possible of the previous computation in that switch. This may generally
be achieved in the following way:
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We append one of the current border monomials to the normal set in exchange
for one of the current normal set monomials. As candidates for this “degradation”
we consider, at first, those border monomials which have figured in a relation (4) of
the ill-conditioned block of equations. But the switch requires that the inclusion
of that border monomial does not violate the closedness of N; this means that
it must not be a multiple of another border element. Usually, this decreases the
number of candidates considerably; in some cases, the candidate set must even be
extended to border monomials involved in an earlier step of the algorithm.

Similarly, the normal set monomial to be “upgraded to border” must not
possess a multiple in the new normal set N’. Of course, the switch may also
generate further new border elements whose coefficient vectors, in the new basis
N, have to be computed. But before we proceed to do this, we must rewrite the
previously computed coefficient vectors into the new basis N’, with normal set
vector b’.

Instead of an explanation of this rewriting procedure in general terms, we
explain it in the context of our previous simple example. This will make it clear
how to proceed in more realistic cases.

Ezample 6.2. Take the situation of Example 4.1/5.1 version (i) and consider the
second step which yields the 2 equations for the coefficient vectors of z3zs and
x1. Assume that this 2 x 2 system is ill-conditioned, i.e. that a1 )6 ~ 0‘?2,1),6'
A scrutiny of the normal set of Fig. 3 (i) shows that only one of the 3 natural
candidates 7172, T3z and z$rs is not a multiple of another border monomial,
viz. x2x5. Also, the only normal set element without a multiple in the new normal
set N is 3 which therefore becomes a border element. N is now the normal set
of Fig. 3 (ii) with the normal set vector b’ = (1, z1, 2, 2%, 2172, ¥?22)T which
differs from b = (1, x1, 22, 2%, 122, 23)7 only in the last (6th) component.

Therefore we introduce the truncated vector b := (1, 21, T2, 22, 2129, 0)T
and write the polynomials a]Tb as aj’ b+ ajeri. Thus, all we need is a repre-

sentation of the new border monomial 3 in terms of b and the new normal set
monomial x3xs. It is obtained by the inversion of
xf:f:g = aal)b = a,(112’1)b+a(2’1)’6l‘§)
1 N
: 3 T 2
into x) = s [—ap b +aizs].
Thus the original representation of the border element x123

xlxg = aa’2)6+a(1’2)’6x§ becomes
1 ~ «a
2 _ T T (1,2),6 o o T ./
T1Ty = (a(1’2)7 a(2’1)’6 a(2’1))b + a(2’1)’6 T1T2 = (a(1’2)) b’.

Of course, in a more realistic situation, further adaptations of the normal set
may be necessary to reach a well-conditioned basis for R[Z[P]] which must exist
if P is well-conditioned. Also, if no ill-conditioned blocks arise during a border
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basis computation, we may conclude that the computed border basis By is a
well-conditioned basis for Z[P].

7. Near-Singular Situations

A polynomial system with as many polynomials as variables is called singular if it
- either has (only isolated) but fewer zeros than its BKK-number m indicates,
- or it possesses a zero manifold.

This agrees with the usage for linear systems where the BKK-number is
always 1; there it is also obvious that both cases are only the two sides of the same
coin (singular matrix). With exact polynomials, either situation can only arise for
very special precise values of the coefficients. Numerically, like in numerical linear
algebra, one will generally meet only near-singular systems which are very close
to an exact singular system.

Treated as exact systems, such near-singular systems are extremely ill-condi-
tioned. The rapid movements of some of the m disjoint zeros during an assumed
transition into an exactly singular system have been analyzed in [14, Sects. 9.4
and 9.5]. With empirical systems whose coefficients have a limited accuracy, it is
generally more meaningful to assume that a very-nearly-singular systems stands
for a nearby strictly singular one. With this taken into account, the ill-conditioning
disappears and an algorithmic treatment becomes feasible. This is in analogy with
the situation for dense clusters and multiple zeros: if a dense cluster of m zeros is
treated as an m-fold zero of a nearby system, the determination of this zero and
of its structure becomes well-conditioned, cf. [5] and [14, Sect. 9.3].

Let us first consider the case of fewer than m zeros where some zeros have
“diverged” to infinity, as was already remarked by D. Bernstein [1]. Here, for any
m~element normal set, the attempt to compute a border basis must meet with a
singular, inconsistent block of linear vector equations. If this fact is computation-
ally well established, we may assume that we have a BKK-deficient system and
treat it as such:

We consider a particular m-element normal set and the associated singular
block which has arisen; we assume at first that its numerical rank deficiency is
1. Then there exists one linear combination of the linear vector equations which
annihilates the terms with the unknown vectors and thus furnishes a linear relation
between the monomials of N'. We select an element 27+ of N' whose upgrading into
border is feasible and detach it from N to generate an (m — 1)-member normal
set N/; then we obtain the coefficient vector (a’)?; of 7+ w.r.t. N’ by solving the
linear relation in A for z7+. Previously specified or computed coefficient vectors
of border elements w.r.t. A are converted by the substitution of (a’ )3; b’ for zix
in their normal forms.

The computation may then be continued and — hopefully — completed,
resulting in a border basis By w.r.t. N’, whose (m — 1) x (m — 1) multiplication
matrices furnish the m — 1 zeros of a strictly BKK-deficient system P’ very close
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to our specified system P. These zeros will generally be excellent approximations
of the m — 1 exact zeros of P with moderate modulus while the remaining exact
zero lies extremely far from the origin and may therefore be considered as diverged
to oo for practical purposes; cf. [14, Sect. 9.5].

A higher BKK-deficiency will become apparent either through a higher rank
deficiency of some singular block or through a sequence of rank deficiencies 1 as
above.

As previously, we explain details of the algorithmic procedure by demonstra-
tion with a simple example:

Ezxample 7.1. Again we take s = 2 and polynomials of degrees 2 and 3 resp., but
here we have to specify the coefficients: P = {p1, p2}, with

p1(x1,22) = 10056?—15561562—76x§+25x1—15x2+1,
pa(r1,20) 1= x50y — 951125 — 227 + 1100 — .52+ 42 —5xo + 3.

The BKK-number of P is 6. The following computations have been performed
with Maple 9.5, with Digits:=10.

We autoreduce ps and choose N as in Example 4.1 (ii); then we proceed
as in Example 5.1 (ii). But in the joint computation of aal) and aaz) we meet
a numerically singular matrix, with a determinant of O(1071%). The attempt to
overcome the extreme ill-conditioning by a switch of monomials between N and
BJ|N] as described in Sect. 6 brings no relief; the singularity perseveres. Thus we
(correctly) assume that P is BKK-deficient, with deficiency 1.

The only detachable monomial of A is x?z, for which we obtain a repre-
sentation w.r.t N7 := N\ {22z} from the linear relation between the right-hand
sides of the singular system. Thus, instead of determining the vectors aal) and

aaz), the singular 2-block has determined the one vector (a’ ){2’1) only. It remains

to substitute (a’ ){2’1) b’ into the representation of the other N”’-border monomials.
This completes the task.

The 5 zeros computed from the eigenvectors of the associated multiplica-
tion matrices are very good approximations of the exact zeros of the autoreduced
system P. With the use of high accuracy, the missing 6th zero of this very-near-
singular system is discovered at approx. (1.1-10%%, 1.1-10%) which may be regarded
as 0o.

Let us now consider the case where an apparently regular system, with BKK-
number m, possesses a zero manifold of dimension d > 0 while systems arbitrarily
close to it have only the m isolated zeros (counting multiplicities). The analysis of
what happens when the coefficients of such a system move from regular to singular
values is very interesting (cf. [14, Sect. 9.4]); but we will not discuss it here. In the
context of this paper, we want to understand how this type of singularity manifests
itself in the computation of a border basis so that we may recognize a very-near
singular system of this kind. In applications, such systems which are extremely
ill-conditioned should be identified with a nearby strictly singular system. Often,
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the fact that a situation admits a manifold of solutions may be the most important
result of the analysis of the model.

For a positive-dimensional polynomial system P, the associated quotient ring
has vector dimension infinity so that a monomial basis must have infinitely many
elements. In our visualization of normal sets by the exponents of the monomials,
it means that these exponents most cover a complete subspace of dimension d.
Fig. 4 shows a typical normal set for a 1-dimensional system with 2 variables; the
4 monomials above the infinite sequences reveal the existence of 4 isolated zeros
besides the manifold.

| jz
O leading monomial (GB)

@ further border monomial

o “niche” monomial of N

« infinite sequence monomial

FIGURE 4

The Grobner basis for this normal set consists of 3 polynomials, with lead-
ing monomials x3, 2173, r31o; the absence of a leading monomial on the z-axis
indicates the 1-dimensionality. Multiplication matrices for this basis formed in the
usual manner would have infinitely many rows and columns; but it can be shown
that a finite rectangular section of the matrices contains the complete information
about the zeros; cf. [14, Chapter 11]. It is not yet clear how border bases could be
defined in a meaningful way in this situation; cf. conclusions in [6].

In such a system, we should hit upon a block of linear vector equations which
is singular but consistent. This means that the coefficient vectors a{y of one of the
border monomials z*» figuring in that block may be moved into the normal set
without simultaneous conversion of a normal set monomial into a border monomial.
For a 0-dimensional system, there cannot exist more than m normal set monomials;
hence the system must actually be positive-dimensional!

With the availability of further elements in the normal set, it should now
be possible to extend N further and further in a coordinate direction. Very soon,
this computation will become recursive and need not be continued. The coefficient
vectors for other remaining border monomials should be computable in the normal
fashion. A complete analysis of this situation is still in the future. We will again
restrict ourselves to the discussion of an example.

Ezample 7.2. We consider the system
2
p1(x1, T2, T3) = ]+ 1Ty — T1X3 — T1 — T2 + T3,
L 2
p2(x1, T2, T3) = T1Xz + CT; — Taly — T1 — CTo + T3,

. 2 .
p3(T1, 2, T3) = T1T3 + oy — L5 — T1 — T2+ T3
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support-leading monomial
regular border monomial

new border monomial

border monomial moved into A
e original N
— used in computation

— not used in computation

FIGURE 5

the parameter ¢ remains indeterminate at first. We select the support-leading
monomials according to the tdeg(xs, z2,z1) order as z1z3, z2x3, 3 resp. With
m =38, we obtain the (apparent) normal set N := {1, x1, x2, 3, T3, 122, T3, T3},
with a border set of 12 monomials. The complete border web has 21 edges, only
12 — 3 = 9 of which should figure in a minimal web; cf. Fig. 5 (i). Until now, there
is now immediate sign of the singularity.

Starting with the support-leading nodes, we obtain the following 4 by 4-
block for aal’o), a(T1,2,0)7 aao’l), a(TLLl) from the type (ii) relation (4) for the edge
(23, z123) and the type (i) relations along the edges [z123, 23x3], [z123, T12273]
and [Toxs3, x12023] :

2 ¢ 1 1 a;é,l,o)
-1 0 1 0 ag}’g’o) b

1 -1 0 1 ah0.4)
1 ¢ 0 1 ah )

1

2 2 20 1l-¢c 0 1 2

-1 =110 o0 0 1 3

-1 ¢ 10 0 c¢-1 0 1

-1 -1 10 1—-¢ 0 0 e

Lo

?

It is easily seen that both sides of the equation are annihilated by pre-multiplication
with (=1, 1, 0, 1), for any value of the parameter c; therefore, we actually have a
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1-dimensional singular system. (In this simple example, it is also not difficult to
see that there are two lines of zeros: z1 = x3, o = 0 and z;1 = 1 — x3, x5 = 1 for

all values of ¢, with special situations for ¢ = 0 and ¢ = 1.)

Of the border monomials in the above equation, only z3z5 and xiz3 are

eligible for transfer into the normal set. We choose z?z2 and can now determine
the coefficient vectors a(T1,2,0)7 a@,o,l) and a(TLLl) uniquely (except for ¢ = 1) in
terms of the enlarged normal set. Also, we have two new border monomials: 2?23

and x2woz3. It turns out that ag 1,1) can only be computed if the potential border

monomial x5z, is also included into the normal set, cf. Fig. 5 (ii). Thus, the
situation becomes recursive and will continue to infinity.

Note that a border basis for the same system, with generically perturbed
coefficients, can readily be computed for the normal set chosen above; cf. Fig. 5 (i).

Numerically, the very-near-singular case will be more important. It is now
clear that it may be recognized by a block which is a tiny perturbation of a singular
consistent set of vector equations. An exact solution would be extremely sensitive
and therefore ill-determined in this case; actually, except in the case of confluence,
some of the exact isolated zeros of a very-near-singular system of this kind may
approach any point on the singular manifold in the transition to strict singularity
(cf. [14, Sect. 4])! Therefore, the determination of that manifold is generally far
more relevant than the computation of “exact” zeros.

8. Implementation

It is a main purpose of this publication to stimulate attempts towards an imple-
mentation of the algorithmic procedure described in the previous sections. This
will permit large-scale experimentation on non-trivial problems which, in turn, will
lead to a preliminary assessment of the potential efficiency of our approach and of
its numerical stability.

An implementation will have to proceed in two stages:

In the first stage, exact data and exact (rational) computation will be as-
sumed and used. Thus, the emphasis will lie on the automatization of the deci-
sions which have to be made to determine the algorithmic flow; numerical stabil-
ity will not be a topic in this stage. In the second stage, floating-point data and
floating-point computation will be assumed so that the numerical condition of the
individual steps has to be checked; this will introduce further restrictions on the
choices and also potential changes in the algorithmic flow.

It is the overall strategic goal of the organizational phase of our algorithm
to generate a normal set whose border web permits the recursive selection of sets
of syzygies which lead to blocks of linear vector equations for as many coefficient
vectors a]T as there are equations, until the representations of all border monomials

have been found. From Sect. 2, we remember that linear equations are generated
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- either by type (i) edges [z7*, z7vT¢], with a] known',

} s Eptes, o kutes k 0 T T
or by type (ii) edges [zFrTeo1 gFuteas] xhu € N with Ukpten, and O,teo,
known.

Thus, our computation can only get started, if there are type (i) edges issuing
from the support-leading nodes and/or type (ii) edges connecting two support-
leading nodes. Also, the overall occurrence of many type (i) edges in the web should
help in the continuation of the computation. It will require some ingenuity to build
a strategy for an optimal satisfaction of these requirements into the initial phase of
the algorithm which chooses the support-leading monomials for the autoreduction,
and then selects an m-element closed normal set consistent with the supports and
the final support-leading monomials.

Besides, it is an open question whether there do exist normal sets for arbitrary
regular polynomial systems which support the computation of the complete border
basis by our approach; efforts towards an implementation may help to answer that
question. Since we know from GB theory that there exist normal sets with border
bases whose coefficients are rational functions of the data, a positive answer does
not, appear impossible.

Naturally, the unfamiliar choices which have to be made stem from the fact
that we work without a term order. Actually, this is one of the major attractions of
our approach, particularly when numerical stability is also an issue. As remarked
in Sect. 4, when we choose the support-leading monomials as leading monomials
w.r.t. a term order, we will generally obtain the reduced GB for that term order
as the “corner subset” of the border basis, perhaps after enforced changes in the
initial normal set. With this restricted set of normal sets, an answer to the ques-
tion whether our approach will always succeed, or for which classes of systems,
would be of particular interest. In Example 7.2, we have employed the term order
tdeg(xs, 2, x1); our algorithm has worked in the singular as well as in the regular
case (with perturbed coefficients) and generated the GB.

While the selection of syzygies for the beginning of the computation is de-
termined by the support-leading monomials with their specified normal forms, the
further continuation of the computation is not always clear. Probably, for an algo-
rithm, one should simply form all linear syzygies whose edges do not close loops,
and then look for blocks with as many equations as unknown vectors. If there is
no such block, the algorithm cannot be continued. In this case, a feasible exchange
between a normal set and a border monomial may often open the deadlock so
that a full restart with a different normal set is not necessary. How to check that
algorithmically, with a meaningful strategy, is not clear.

In the second stage of the design of an implementation of our approach, an
algorithm which complies with all the considerations so far must now be adapted
to the use of floating-point arithmetic. To my knowledge, none of the presently
available GB-packages can handle that situation (or only with a ridiculous digit

1Here, es is the o-th unit vector.
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swell, when floating-point data are converted to rational data and exact computa-
tion is then employed). But models of real-life situations have floating-point data,
with a limited accuracy, in almost all cases!

Now, the considerations in Sects. 6 and 7 must also be implemented. As
usual, the threshold for what is called ill-conditioned is arbitrary to some extent:
with a 10 digit computation, e.g., relative condition numbers should supposedly
not exceed 10° or so. If a computation shows signs of numerical instability, the
floating-point accuracy should be raised with care (the algorithm must provide
for that). When the results do not agree for higher accuracies, the system itself
probably defines its ideal in such an ill-conditioned fashion that a determination
is not meaningful.

The algorithmic checking of the relative sizes of data must begin with the
selection of the support-leading terms; their coefficients must not be much smaller
in modulus than those of the remaining terms. If there is only one highest de-
gree term with a very small coefficient, one must attempt to get rid of it during
autoreduction; if this is not possible the specified system itself is ill-conditioned.

During the further computation, the condition of the linear equation blocks
must be checked, and the exchange mechanism of Sect. 6 must be used if a condition
number is too high relative to the floating-point accuracy. Now there is generally a
very small set of candidates for both parts in the exchange; if there is still a choice,
the generation of fewer or more computable edges may be used as a criterion.

This holds also for the cases where the ill-conditioning is not due to an ill-
chosen normal set but to a near-singularity in the specified system. Now, the
ill-conditioning will not disappear with an exchange, or the situation does not
permit an exchange. One should then proceed as discussed in Sect. 7.

Once more it is an open question whether there may exist situations where
the stabilized algorithm runs into a dead end while the instable computation would
have succeeded. Note also that the exchange mechanism in Sect. 6 generally pro-
ceeds just like the “extension” mechanism which had been proposed by myself
many years ago (cf. [13]); but now we are not violating the term order as with the
“extended GB” approach because there is no term order which restricts us. This
shows once more that numerical stability in the computation of an ideal basis can
only be realized without a pre-specified term order.

9. Conclusions

I have tried to show how the use of the BKK-number opens the way for a new
algorithmic approach to the numerical computation of a border basis for a regular
polynomial system. This approach employs no term order and no reductions to
zero. The first feature permits more flexibility in the representation of the quotient
ring while the second feature permits a stable implementation in floating-point
arithmetic. Both features should make the approach attractive.
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It should be interesting to compare this approach with the one of [12] and to
analyze the similarities and differences. In the approach of [12], one begins with a
tentative normal set which is generally too large and has to be successively reduced
during the computation of normal forms for border elements.

No serious implementation of my approach exists so far; it is hoped that this
publication may lead to implementations in the near future. Only then, the poten-
tial of the approach may seriously be assessed. In particular, it should then become
clear whether the approach can be made to work for arbitrary regular systems or
only for certain subclasses of such systems and how its efficiency compares with
other recent approaches.

In any case, on the way to an implementation new insights about border
bases should come to light, with potential applications in other parts of numerical
polynomial algebra.
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