Symbolic-Numeric Computation
D. Wang and L. Zhi, Eds.

Trends in Mathematics, 185-210
(© 2007 Birkhauser Verlag Basel/Switzerland

Root-Finding with Eigen-Solving

Victor Y. Pan, Dmitriy Ivolgin, Brian Murphy, Rhys Eric Rosholt,
Yuqing Tang, Xinmao Wang and Xiaodong Yan

Abstract. We survey and extend the recent progress in polynomial root-
finding via eigen-solving for highly structured generalized companion matri-
ces. We cover the selection of eigen-solvers and matrices and show the benefits
of exploiting matrix structure. No good estimates for the rate of global con-
vergence of the eigen-solvers are known, but according to ample empirical
evidence it is sufficient to use a constant number of iteration steps per eigen-
value. If so, the resulting root-finders are optimal up to a constant factor
because they use linear arithmetic time per step and perform with a constant
(double) precision. Some by-products of our study are of independent interest.
The algorithms can be extended to solving secular equations.

Mathematics Subject Classification (2000). Primary 65H05; Secondary 65H17;
Tertiary 65F15.

Keywords. Polynomial root-finding, eigenvalue, generalized companion ma-
trix, secular equation.

1. Introduction

1.1. Background

Polynomial root-finding is a classical and highly developed area but is still an
area of active research [McN93, McN97, McN99, McN02, NAGS88, P97, P01/02,
PMRTa]. The divide-and-conquer algorithms in [P95, P96, P01/02] (cf. [S82],
[G52/58, CN94, NR94, K98] on some important related works) approximate all
roots of a polynomial by using arithmetic and Boolean time which is optimal
up to polylogarithmic factors (under both sequential and parallel models of com-
puting). The algorithm, however, is quite involved, and the users prefer more
transparent iterative algorithms, such as Newton’s, Jenkins-Traub’s [JT70, JT72],
Miiller’s, Laguerre’s, and Halley’s, which use linear arithmetic time per iteration
and approximate a single root, and Durand-Kerner’s (actually Weierstrass’) and

Supported by PSC CUNY Awards 66437-0035 and 67297-0036.

186 V.Y. Pan et al.

Aberth/Ehrlich’s (actually Borsch-Supan’s), which use quadratic time per itera-
tion and approximate all roots of a polynomial (see Tables 4-6). The iterations
converge superlinearly if the approximations are close to the roots.

Computing close initial approximations is still an unsettled area. A popular
approach is to seek them as approximations to the eigenvalues of the Frobenius
companion matrix, whose spectrum is precisely the set of the roots of the polyno-
mial. This property characterizes the more general class of generalized companion
(hereafter we say GC) matrices of a polynomial, which can be used instead of the
Frobenius matrix and, like it, can be chosen highly structured. Thus one can first
approximate the eigenvalues of a GC matrix numerically, by exploiting its structure
and employing the highly effective software of numerical eigen-solvers, and then
refine the approximations rapidly, by applying the cited polynomial root-finders.
Such a combination of the power of numerical techniques of structured matrix
computations and symbolic/algebraic methods of computations with polynomi-
als naturally continues the extensive study in [P92, BP94, BP94, P98, P98/01,
MP00, P01, EP02, BGP02/04, EMP04, BGP03/05] and the references therein.
We contribute to this area once again, although we only cover eigen-solving, not
the refining stage.

1.2. The QR DPR1 Approach

Matlab approximates polynomial roots by applying the QR eigen-solver to the
Frobenius matrix. This works quite well except that the output approximations to
the eigenvalues are frequently too crude and need refinement.

Malek and Vaillantcourt in [MV95, MV95a] and Fortune in [F01/02] apply
the QR algorithm to the diagonal plus rank-one (hereafter we say DPRI) GC
matrices, defined by the polynomial and the root approximations, which we call
the companion knots. As soon as the QR algorithm stops and outputs the updated
knots, the matrix is updated as well, and the QR algorithm is reapplied to it.
According to the extensive tests reported in the three papers and some theory
in [F01/02], this process indeed improves the approximations rapidly until they
initialize the cited popular root-finders.

In [BGP03/05, BGP04] the rank structure of the DPR1 input matrix has
been exploited to accelerate the QR stage of the algorithms in [MV95, MV95a,
F01/02] by the order of magnitude. The resulting algorithm uses linear (rather than
quadratic) memory space and linear arithmetic time per iteration, but otherwise
performs as the classical QR algorithm, remaining as robust and converging as
rapidly. The acceleration, however, is achieved only where the companion knots
are real or, with the amendment in [BGP04] based on the Mdbius transform of
the complex plane, where they lie on a line or circle. Thus the algorithms in
[BGP03/05, BGP04] use linear space and linear time per step only for the original
DPR1 matrix, but not for its updates.

Root-Finding with Eigen-Solving 187

1.3. Improved DPR1 Eigen-Solving

To fix this deficiency we employ rather simple means. We examine other polynomial
root-finders and matrix eigen-solvers in lieu of or in addition to the algorithms
used in [MV95, MV95a, F01/02], and we propose an alternating application of
various algorithms in a unified recursive process for root-finding. In [BGP02/04]
the inverse power iteration with Rayleigh quotients (hereafter we say the IPI) is
applied to the Frobenius and DPR1 GC matrices. It is immediately verified that
in the case of a DPRI input, linear memory space and linear arithmetic time are
sufficient per an IPI step (as well as for the QR step in [BGP03/05, BGP04]) and
also for deflating a DPR1 matrix. The algorithm in [BGP02/04] is initialized with
the companion knots on a large circle, which is a customary recipe for polynomial
root-finding. The IPI, however, converges faster near an eigenvalue. This motivates
using a hybrid algorithm where the IPI refines the crude approximations computed
by the QR algorithm.

For the IPI, QR, and all other popular eigen-solvers no good upper bounds
are known on the number of steps they need for convergence. According to the
ample empirical evidence, however, a single QR step as well as a single step of the
IPI (initialized near the solution) is typicaly sufficient per an eigenvalue [GL96,
pages 359 and 363]. (See our Sect. 6.1 or [P05] on a nontrivial technique of conver-
gence acceleration for the IP1.) Under the latter semi-empirical model, the hybrid
polynomial root-finders based on eigen-solving perform O(n?) ops with the double
precision of d bits, that is, O((n?dlogd)loglogd) bit-operations, to approximate
all roots sufficiently closely to initialize the Newton’s or Weierstrass’ refinement.

This cost is within the factor of (logd)loglogd from an information lower
bound. (The factor is a constant if so is d.) Indeed, one needs at least n complex
numbers to represent the coefficients of a monic input polynomial ¢(z) = =™ +
Cno12" 1+ .-+ 17 + o, and needs at least the order of (n — i)d bits in each
coefficient ¢; to approximate the roots within the error 279 max; |c;|. This means
the order of n?d bits in all coefficients. Therefore, at least the same order of Boolean
operations is required to process these bits.

Unlike the nearly optimal algorithm in [P01/02], the eigen-solving approach
has the more limited goal of obtaining close initial approximations for polynomial
root-finders and requires no computations with the extended precision.

1.4. Extensions and Further Study

How much can the progress be pushed further? According to the above argument,
at most by a constant factor. This can still be practically important. The natural
avenues are by exploting effective eigen-solvers such as Arnoldi’s, non-Hermitian
Lanczos’, and Jacobi-Davidson’s (besides the QR and IPI), applying them to the
DPRI1, Frobenius and other relevant GC matrices, and combining these eigen-
solvers with some popular polynomial root-finders. We estimate the computational
time for multiplication of these GC matrices and their shifted inverses by vectors,
for deflation, and for updating a GC matrix when its companion knot changes.

188 V.Y. Pan et al.

Besides, we observe that the eigen-solvers also support some new proximity
tests for the roots as well as the computation of the basic root-free annuli for
polynomial factorization (see Sect. 6.5). We also comment on the extension of the
algorithms to approximating the eigenvalues of sparse and structured matrices
and to solving secular equations. On further applications of these equations, see
[GT73, M97, BP98] and the references therein.

For simplicity we narrow our study to monic input polynomials and skip the
important special case of polynomials that have only real roots. See [JV04, BP98|
and the bibliography therein on these omitted subjects.

1.5. Organization of Qur Paper

We organize our paper as follows. In Sect. 2, we recall some basic definitions. In
Sect. 3, we study some relevant classes of GC matrices. In Sect. 4, we estimate the
arithmetic computational complexity of some basic operations with these matri-
ces. In Sect. 5, we study their computation, deflation, and updating. In Sect. 6,
we cover various aspects of the application of eigen-solving for these matrices to
polynomial root-finding. In Sect. 7, we comment on the extension of our methods
to approximating matrix eigenvalues. In Sect. 8, we recall the correlation between
the polynomial and secular equations. In the Appendix, we comment on heuristics
for multiple roots and root clusters and on computing approximate polynomial
geds. All authors share the responsibility for extensive numerical tests that sup-
ported the presented exposition and analysis. Otherwise the paper is due to the
first author.

2. Basic Definitions

M = (m;;)7-
n, M7 and v7 are their transposes.

Og,; is the k x [null matrix, 0y = O k. Iy is the k& x k identity matrix. I is
the identity matrix of an appropriate size. e; is the i-th column of I,,, : =1, ...,
n; e = (1,0,...,0)7, e, = (0,...,0,1)T.

B = (By,..., By) is the 1 xk block matrix with blocks By, ..., By. diag(s;)’,
is the n x n diagonal matrix with the diagonal entries s1, ..., s,. diag(B1, ..., Bg)
is the k x k block diagonal matrix with the diagonal blocks By, ..., Bg.

det M and cps(\) = det(A — M) are the determinant and the characteristic
polynomial of a matrix M, respectively.

0

1
7 = (Zi,j)?:jzl = ' ' is the n x n shift matrix, z; ;1 = 1 for

1 1s an n X n matrix, v = (v;); is a column vector of dimension

1 0
i=2,..,m;2;=0fri#j+1, Zv= (0,01, ..., vy_1)T for v.= (v;)",. Here

Root-Finding with Eigen-Solving 189

and hereafter the blank space in the representation of matrices stands for their
zero entries.
f* = a — by/—1 is the complex conjugate of f = a + by/—1, for real a = Rf
and b = Sf. w, = exp(2my/—1/n) is a primitive n-th root of 1.
I iyt
V= Jn (wy;)i,j:O (2.1)
is the unitary matrix of the discrete Fourier transform on the n-th roots of 1.

“DPR1”, “GC”, “IPI”, “RBDPR1”, and “TPR1” stand for “diagonal plus
rank-one”, “generalized companion”, “Inverse Power Iteration”, “real block diag-
onal plus rank-one”, and “triangular plus rank-one”, respectively. In Sects. 3 and
7, “ops” stands for “arithmetic operations”. In the Appendix, “ged” stands for
“greatest common divisor”.

C = C, is a GC matrix for a monic polynomial

c() = cpx" + cp1z" M ..+ ax o, cp =1, (2.2)

if co(x) = ().

3. Some Classes of GC Matrices

Root-finding for a polynomial ¢(z) in (2.2) is equivalent to eigen-solving for a GC
matrix C = C,. The efliciency of the eigen-solving greatly depends on the choice of
the matrix. Next we examine some most relevant classes of GC matrices (compare

the studies of GC matrices in [E73, G73, B75, F90, C91, MV95]).

3.1. The Frobenius Companion Matrix

We first recall the classical Frobenius companion martix.

Theorem 3.1. The n X n matriz

0 —Cp
1 —C1
C=F, = : (3.1)
0 —Cn—2
1 —Cn—1

is a GC matriz F, for a monic polynomial c(x) in (2.2).

C=F.=27—cel forc=(c;)] .

190 V.Y. Pan et al.

3.2. DPR1 GC Matrices

Theorem 3.2. For a polynomial c(x) in (2.2) and n distinct scalar companion knots
S1y...,8n, Write

i=1 j=1,j#1¢ =%
c(si) .
d; = ,i=1...,n, 3.3
q,(si) ()
u=(u)jy, v=(v)j, B=Bs=diag(s;)j=;, C =B —uv’ (3.4)
where
lwi| + |vi] #0, di = wivsy, 1 =1,...,n. (3.5)

Then C is a DPR1 GC matriz for the polynomial c(x), that is, cc(x) = c(x).

Proof. cc(z) = q(z) + .1, digi(x) because the i-th and j-th rows of the matrix
xI —C —diag(0, x —s;, 0) —diag(0, x —s;, 0) for ij are proportional to one another,
whereas c(z) = q(z)+>_"_, d;q;(z) due to the Lagrange interpolation formula. [

3.3. RBDPR1 GC Matrices

The polynomials ¢(z) in (2.2) with real coefficients may have some pairs of nonreal
complex conjugate roots. In this case the DPR1 matrices would have nonreal
entries. To avoid this deficiency we introduce the Real Block DPR1 (hereafter we
say RBDPR1) GC matrices whose diagonal blocks have size of at most two. We
begin with an auxiliary result on block diagonal plus rank-one matrices.

Theorem 3.3. Let B = diag(DB1, ..., By) where B; are n(i) x n(i) matrices, m(i) =
2;21 n(y),i=1,...,k, m(k) =n. Write

P; = diag(0pm(i—1)» In(i)s On—m(i))> Pi = (On(iy,m(i—1)s In(i)s On(i),n—m(i))s

so that P,w = (wj);n:(:‘i(ifl)%»l

its subvector made up of the n(i) respective coordinates, whereas by padding the
vector P;w with the m(i — 1) leading zero coordinates and the n — m(i) trailing
zero coordinates, we arrive at the vector P;w. Let s; be an eigenvalue of the matriz
B and let C = B —uv”. Then cc(s;) = det(s;] — B+ Pyuv? P;) = det(s;] — B; +
PillVTPi) Hj;éz det(siI — BJ) = CB(SZ‘),i = 1, ceey .

is the projection of a vector w = (w;)}_; into

Proof. Let q; # 0 be a left eigenvector of the matrix B associated with the eigen-
value s; such that Bq! = s;q;. Write a; = qfu and u = (uj)?_;. If a; = 0, then
we have qf (s;I — B) = qX'(s;I] — C) = 07 and therefore cp(s;) = cc(s;) = 0.
Otherwise subtract the vector 7 qf (s;l — B +uv’) = " qfuv” = u;v" from
the j-th row of the matrix s;] —C = s;] — B+uv?’ forj =1,...,m(i—1), and for
j =m(i)+1,...,n. This turns the matrix s,/ — C into the matrix s;I — B+ P;uv’
without changing its determinant cc(s;). Observe that det(s;I — B + Puvl) =

Root-Finding with Eigen-Solving 191

det(s;I — B + P;uv' P;) and that s;,] — B + P;uv’ P; is a block diagonal ma-
trix with the diagonal blocks s;I, ;) — Bj for j = 1,...,i— 1,4+ 1,...,k and

silny — Bi + PiuvTPiT. This proves Theorem 3.3. O
Theorem 3.3 enables the following alternative proof of Theorem 3.2.

Proof. (An alternative proof of Theorem 3.2.) Apply Theorem 3.3 for B; = (s;),
j=1,...,n, B =diag(s;)7_, k =n,n;, =1, =1,...,n. Obtain that cc(s;) =

=1
d;qi(si), substitute g;(s;) = ¢'(s;), diq’(s;) = ¢(s;), and obtain that ¢(s;) = cc(s;),
it =1,...,n. This proves the theorem because c¢(z) and cc(x) are monic polyno-
mials of degree n. (]

Theorem 3.4. For two integers h andn, 0 < h < 7, a polynomial c(x) in (2.2) with

real coefficients, h distinct pairs of real numbers (f1,91), ..., (fn, gn) such that g;#0
for alli, and n—2h distinct real numbers sap41, - .., Sn, write So;—1 = f; +giv -1,
§2; = fz 791\/71; Bz = (,f‘;l ?:)’ 1= 17"'»h; Bj*h = (Sj)’ .7 = 2h + 17"'»”;

B = diag(B;)'=1; q(x) = [T}_y(z — 5;), dj = ;,gj), j=1,...,n, so that dy =
a5y, i=1,... h. Let

u=(u))joy, v =(vj)joy, C=B—uv’ (3.6)

where
Ui—1V2i—1 + UiV2; + (U2i—1V2; — U2iV2i—1)V —1 = 2d2;_1,
fori=1,... h, |uj| + |vj|#0, ujv; =d;, j =2h+1,...,n.
Then the RBDPR1 matriz C is a GC matriz of the polynomial c(x), that is,
c(z) = co(x).
Proof. Apply Theorem 3.3 for k = n— h and deduce that (s2;—1 — s2;)co(s2i-1) =
q2i—1(52i—1) det(s2i—11p — W;) for

Wi _ Bi o PillVTPi — (fi*uzi—lvzi—l gi*uzi—lvzi) ,i —_ 17 . .,h.

—gi—u2iv2i—1 fi—u2iv2;

Substitute sa;—1 — fi = giv/—1 and deduce that

giv/—14uzi_1v2i—1 —gituzi_1v2i)
Soi_1lo — W; =
2i—142 g (gitu2iva2i—1 givV—14uziva;)’

so that det(se;—11o —W;) = g;(u2sV2i—1 — Ui —102; + (Ui 10251 +U2qv2;)v/—1), i =
1, ..., h. Substitute the latter expression and the equations so;_1 — s2; = 2g;v/—1
and ¢;(s;) = ¢'(s;) for j = 2i — 1 into our expression above for cc(s2;—1) and
obtain that
2g;cc (521‘71)\/*1 = 9iq (s2i-1) ((u2i—1v25-1 + uzivzi)\/*l + U2iV2i—1 — U2i—1V2:),
2co (521‘71)
q,(52i71)
Now apply equation (3.3) and deduce that co(s2i—1) = ¢(s2;—1) fori =1, ..., h.
Since the polynomials ¢(z) and cc(z) have real coefficients, obtain that
co(s2:) = ct(s2i-1) = €*(s2:-1) = ¢(s2i), i = 1,..., h. Deduce that cc(s;) = c(s;)

Usi—1V2i—1 + Uiv2; + (Ugi—1V2; — Unvei—1)V —1 = = 2d2;_1.

192 V.Y. Pan et al.

by applying Theorem 3.3 for B; = diag(s;),j = 2h+1,...,n. Now Theorem 3.4
follows because ¢(z) and cc(z) are monic polynomials of degree n. O

3.4. Arrow-Head GC Matrices

Theorem 3.5. For a polynomial c(x) in (2.2) and n distinct nonzero scalars si, . . .,
Sn, write

- - q(z)
a@)=T[-s) a@ = J[@-sn= " iz2n @)

i=2 J=2,j#i !

c(s;) c(si) . c(s1) ~— d;
d; = = ,1=2,...,n, d = + 3.8
7(5) = ails) Vo) s O
and choose n pairs of scalars u;, v;, i =1, ..., n such that

ulzdl—sl, ’()1:0, uivi:di, ’L:2,,TL (39)

Write B = By = diag(s;)",, u = (u;)?1,v = (v;)?_,. Then the north-western
arrow-head matriz

C =B — (uel +e;v7") (3.10)
is a GC matriz of the polynomial c(x), that is, cc(x) = c(x).
Proof. Expand the determinant cc(x) = det(xI — C) along the first row or the
first column of the matrix I — C' and deduce that

CC(I) (‘T =+ ul Zuzvlqz

Therefore,
co(si) = wivig;(s;), 1 = 2,...,n;

co(s1) = (s1+ ui1)g Zuz viq;(51).

Substitute equations (3.8) and (3.9) and deduce that co(si) =c(si),i=1,...,n
The theorem follows because the monic polynomials co(z) and c¢(z) of degree n
share their values at n distinct points s1, ..., S,. (I

3.5. Further Variations of GC Matrices

The Frobenius, DPR1, and arrow-head matrices are the most popular classes of
GC matrices. The RBDPR1 GC matrices extend the DPR1 GC matrices in the
case of a real input and a nonreal output. Similarly we can extend the class of the
arrow-head matrices. Let us point out some further variations and extensions.

1. Variations of the parameters.
For fixed companion knots, each GC matrix in Sects. 3.2-3.4 is defined
with n or n — 1 parameters, which we can vary at will.

Example 3.1. Some sample choices of the parameters.
e u; =1, v, =d;, i=1,...,n, in Theorem 3.2

Root-Finding with Eigen-Solving 193

® Uy = Vi = 1, ugi_y = Nd; + d;, ugy = Nd; —Sd;, i = 1,...,h,
u; =1, v; =d;, j=2h+1,...,n, in Theorem 3.4
e u; =1, v;=d;, i=2,...,n, in Theorem 3.5

Example 3.2. Scaling for numerical stabilization.
In Theorem 3.2 require that |u;| = |vs| (resp. |u;| = |vi|) for all i.

2. Variation of the input polynomial.
We can fix a scalar b and then apply Theorem 3.5 to the polynomial
(z —b)c(x) with a root b to approximate the remaining n roots. Applying the
theorem, we replace ¢(z) with (x — b)e(x), replace n with n 4+ 1, and choose

s1 =b,sothat dy = > ., Sl‘ﬁsi.

3. Modification of the matrices.
e We can extend Theorem 3.4 by choosing any set of 2h real 2 x 2 matrices

B, = (; z) , i =1,...,h and any set of n — 2h real 1 x 1 matrices
B; = (sj), j = 2i+1,...,n, with n distinct eigenvalues overall. Suppose

s2i—1 and sg; denote the eigenvalues of the matrix B;, i = 1,..., h. Then
for any choice of the values ug;_1, ug;, v2;—1, v2; satisfying
(521‘71 - fi)u2iv2i + (521‘71 - jz‘)u2iflv2i71 + giugiv2i—1 + hiuzi—1v2;
= 2(s2i—1 — S2i)d2i—1, 1 =1,...,h,
the matrix C in (3.6) is a GC matrix of the polynomial ¢(z).

e We can interchange the roles of the subscripts 1 and n throughout The-
orem 3.5 to arrive at the dual south-eastern arrow-head matrix C' such
that co(x) = c(z). Alternatively, we can turn a north-western arrow-
head matrix into a south-eastern one by applying the similarity trans-
form C — JCJ where J = J~! is the reflection matrix whose entries
equal one on the antidiagonal and equal zero elsewhere.

e More generally, any similarity transform C — S~1CS of a GC matrix
C = (., for a polynomial ¢(z) maps C into a GC matrix for ¢(x). If alln
roots of ¢(x) are distinct, then the converse is also true, that is, two GC
matrices associated with such a polynomial ¢(x) are always similar to
one another. In the next subsection we specify such transforms among
our sample GC matrices. The similarity transforms can be of some help
in actual computations, e.g., with appropriate diagonal matrices S we
can scale the GC matrices to improve their conditioning. This diagonal
scaling of GC matrices is equivalent to choosing n parameters among
u;, vy, ¢ = 1,...,n in Sects. 3.2 and 3.3 or n — 1 parameters among
u;, v, ¢ =1,...,nin Sect. 3.4.

3.6. Similarity Transforms Among GC Matrices of Four Classes

Simple similarity transforms of a 2 x 2 matrix B = (fg ?) into the diagonal

matrix diag(dgi,l, dgi), dgifl = fz +gz \/71, dgi = fz —3gi \/71 can be immediately
extended to transforming a block diagonal matrix B in Theorem 3.3 into a diagonal

194 V.Y. Pan et al.

matrix. This relates the matrix classes DPR1 and RBDPRI1 in Sects. 3.2 and 3.3
and similarly for the arrow-head matrices in Sect. 3.4 and their counter-parts where
the diagonal entries can be replaced by real blocks.

Furthermore, both arrow-head matrix C' in (3.10) and the transpose F! of
a Frobenius matrix F, in (3.1) are TPR1 matrices, and the paper [PMRTYCal]
shows non-unitary similarity transforms of TPR1 into DPR1 matrices as well as
into arrow-head matrices. For the matrices /7 and C in (3.10), these transforms
into DPR1 matrices use O(n?) ops. There are also similarity transforms of our
matrices in (3.4), (3.6) and (3.10) into a Frobenius matrix via their reduction
to a Hessenberg matrix in [W65, pages 405-408] as well as a unitary similarity
transform of a matrix F, into a DPR1 matrix due to the following result.

Theorem 3.6. The similarity transform with the matriz V' in (2.1) maps the Frobe-
nius matrix Fo in (3.1) into @ DPR1 matriz:

VEVH = diag(w?)=) +uv?’, u=Ve, vI' =el V¥,

4. The Complexity of Some Basic Computations

Multiplication of the input matrices and their shifted inverses with vectors are
basic operations in some popular eigen-solvers. Tables 1 and 2 and Theorem 4.1
show arithmetic complexity of these operations for the matrices C' in (3.1)—(3.10).

In the columns of Tables 1 and 2 marked by a/s, m, and r we show how
many times we add/subtract, multiply, and compute reciprocals, respectively, to
arrive at the vectors Cw, (zI — C)~'w, and (zI — C — gh”)~'w for a fixed pair
of vectors g and h, any scalar z such that the matrices 2I — C and zI — C — gh”
are nonsingular, and any vector w. Some entries of Table 2 have two levels. In
the upper level the number of ops depending on the vector w is displayed; in the
low level the number of the other ops is displayed. All estimates hold where the
parameters u;, v;, u;, and v; satisfy the equations in Example 3.1. For other choices
of the parameters the arithmetic cost can slightly change.

TABLE 1. The complexity of multiplication of GC matrices by a vector

Matrix C Vectors Cw

g h m a/s
Frobenius in (3.1) c e, n n—1
DPRI in (3.4) u v 2n-1 2m-2

RBDPRI in (3.6) u v 2n+2h 2n
Arrow-head in (3.10) e; —v 2n—1 2n—2

Theorem 4.1. Let a polynomial c¢(z) and scalars s;, d;, u;, vi, S;, di, u;, and v;
for i =1,...,n, satisfy equations (3.1)—(3.10). Let four matrices, all denoted by
C, satisfy equations (3.1), (3.4), (3.6), and (3.10), respectively, and let C = Z for

Root-Finding with Eigen-Solving 195

TABLE 2. The complexity of multiplication of the shifted inverse
matrices by a vector

Matrix C Vectors (zI — C) 'w (x] — C)'w
g h m a/s r r m a/s

Frobenius c e, O 2n—1 2n-—2 0 n n-—1
in (3.1) 1 n-1 n 1 0 1
DPR1 u v 1 2n 2n—1 0 n O

in (3.4) n+1l n+1 2n n 0 n
RBDPRI1 u v n+l n+h 2n—-142h n h 2h
in (3.6) 2n 2h n+3h h h h
Arrow-head e; —v 0 2n—1 2n—2 0 n n-—1
in (3.10) n n—1 2n-1 n 0 n

C in (3.1), C = B for C in (3.4) and (3.6), and C = B +uel for C in (3.10), so
that C — C denotes the rank-one matrices —cel , —uv?, and e1v?, respectively.
Let = be a scalar such that the matrices xI — C and I — C' are nonsingular. Let
w be a vector. Then Tables 1 and 2 display the upper bounds on the numbers of
the operations a/s, m, and r involved in computing the vectors Cw, (xI —C)~tw,
and (xI — C)~tw. For the two latter vectors, an upper bound on the number of
the ops not depending on the vector w is showed in the lower level of each entry
of Table 2. The other ops are counted in its upper level.

Proof. The straightforward algorithms support the estimates for the complexity
of computing the vectors Cw and (zI — C)~'w. (Apply the forward substitution
algorithm under (3.10) for (zI — C)~'w.)

Compute the vectors (zI — C)~'w for the matrices C in (3.1) and (3.10) by
applying Gaussian elimination. For a Frobenius matrix C' in (3.1), first eliminate
the subdiagonal entries by using no pivoting and then apply the back substitution.
For an arrow-head matrix C in (3.10), first eliminate the first row of the matrix
and then apply the forward substitution. Verify the respective estimates in Table
2 by inspection.

The Sherman-Morrison-Woodbury formula ([GL96, page 50] and [BGP02/04,
Sect. 5]) implies that (zI — C)™' = (I + ' (B—=zl)"'de’)(zI — B)™!, 7 =
el(xI — B)~!d, for e = (1,...,1)T and the DPR1 matrix C in (3.4). Therefore,
(2l —C)*w = (2l — B)"'w+ 7 (B—xI)"'d, 0 = e’ (B — zI)"'w, and the
estimates in Table 2 follow. Similarly cover the RBDPR1 matrices. (]

5. The Computation, Deflation, and Updating of a GC Matrix

This section covers the computation of a GC matrix, its deflation, and its updating
when the companion knots and the input polynomial are modified.

196 V.Y. Pan et al.

5.1. The Computation of a GC Matrix

The matrix C' = F, in (3.1) is given with the coefficients of the polynomial ¢(x).
The computation of the GC matrices C' of the other three classes can be exemplified

with the case of the DPR1 matrices in (3.4) and can be reduced essentially to
C((SJ))
q S

The computation is simplified for the customary initial choice of the knots

equally spaced on a large circle such that s; = aw?™', j =1, ..., n, where a
exceeds by a sufficiently large factor the root radius r = max;|z;| of the polynomial
c(z) = [[j=, (z — z;). In this case g(z) = 2" —a", ¢'(x) = nz"~". Then application
of the generalized discrete Fourier transform [P01, Sect. 2.4] yields all ratios d; in
(3.3) by using O(nlogn) ops. (Surely if n is a power of two, then one should just
apply FFT.)

If, however, some crude initial approximations to the roots are available, they
are a natural choice for the companion knots. Then the above complexity bound of
O(nlogn) ops generally increases to O(nlogn) based on a numerically unstable
algorithm in [P01, Sect. 3.1] and to 2n? —n based on a stable version of the Horner’s
algorithm [BF00]. Even the latter cost bound is still dominated at the subsequent
stages of the root approximation.

When the root approximations and the companion knots or the input poly-
nomial are updated, one can recompute the matrix C' by applying the algorithms
above, but let us next examine some alternative updating means.

computing the ratios d; = at the n distinct companion knots s, j =1,...,n.

5.2. Reversion of a Polynomial, Shift of the Variable, and Their Affect on the GC
Matrices

We reverse the input polynomial c¢(x) in (2.2) and shift the variable z by a
scalar s when we preprocessing the input polynomial and apply some popular
root-finders, e.g., Jenkins-Traub’s. To update the associated GC matrices for the
shifted polynomial c¢s(x) = c(z — s), we can re-use the same values di,...,d,
at the knots x = s; + s because cs(s; +s) = c(s;) and q¢,(s + s;) = ¢(s;) for
gs(xz) = q(x—s) and j = 1,...,n. For the reverse polynomial ¢,¢, () = 2™c(1/x) we
have ¢pey(1) = 770(s:): Ghen(1) = Tl & — 1) = (—1)" 162/ () TTy 55

i=1,...,n, and so we can update d1, ..., d, by computing 52 ”,...,5,21 "

addition performing O(n) ops.

Alternatively, we can replace the GC matrix C with C~! or C' — sI, respec-
tively. We can compute the first column of the matrix (F. — sI)~! in O(n) ops,
due to Theorem 4.1, and we can represent the matrix with this column [C96].

Due to the Sherman-Morrison-Woodbury formula and Theorem 4.1, we ob-
tain the DPR1 representation of the matrix (C' — sI)~! by using O(n) ops for
any matrix C' in (3.4), (3.6), and (3.10). In particular it takes 2n divisions, 2n
multiplications and n additions/subtractions for a DPR1 matrix C in (3.4).

and in

Root-Finding with Eigen-Solving 197

5.3. Deflation of Polynomials and GC Matrices

Suppose we have approximated a root z of a polynomial ¢(z) in (2.2). Then we
can deflate the associated matrices C' in (3.1), (3.4), (3.6) and (3.10) preserving
their structure.

For the Frobenius matrix in (3.1), we just compute the quotient polynomial
e (x) = ;(2 by using n — 1 subtractions and n — 1 divisions. For the three other
matrix classes we also use O(n) ops but involve no coefficients of ¢(z) unlike the
Frobenius case.

For the DPR1 matrix in (3.4), we replace the vector s = (s;)_; with s™*" =
(5;)"=' and compute the associated vector d™*¥ = (d7**)"! according to equa-
tions (6.2) in [BGP02/04], that is,

Si — Sn

L i OF ST (5.1)

S; — 2
This takes 2n — 2 additions/subtractions, n — 1 multiplications, and n—1 divisions.

If z = s, then d7°" ~ d; for i <n, and we yield cost-free deflation.
Similarly we deflate the matrices C in (3.6) and (3.10). Under (3.10) we write

s = (s;)7!, rely on (3.8), and compute the associated vector 4" = (d?ew)?;f
according to the following equations, which extend equations (5.1),
s $i— s
d?ew:dlj,d?ew:di ;7;,1':2,...,11—1. (5.2)
K2

The computations involve 2n — 3 additions/subtractions, n — 1 multiplications,
and n — 1 divisions. We can keep the deflation processes (5.1), (5.2) in the field
of real numbers for polynomials with real coefficients. We just need to deflate the
pair of the complex conjugate roots as soon as one of them is approximated.

And again if z = s,, then d?ew ~ d; for all i < n, and we yield cost-free
deflation.

5.4. Updating the Companion Knots and Matrices

If we have updated a single companion knot s;, we can update the DPR1 matrix in
(3.4) by using O(n) ops. Indeed the values c(s;) remain invariant for j#¢, whereas
we can compute the values c(s;) and ¢;(s;) by using 4n — 3 ops with Horner’s

4% (s;) ijsj:: for every j#i by

Sj—

algorithm, and we can compute ¢7*(s;)

using four ops per value.
Similar observations apply to the RBDPR1 and the arrow-head matrices.

6. Root-Finding via Eigen-Solving

6.1. Approximating the Extremal Eigenvalues

In Table 3 we display the numbers of basic operations required at the kth iteration
step in four popular eigen-solvers. They approximate the extremal eigenvalues, that
is, the eigenvalues which are the farthest from and the closest to the selected shift
value s and which for s = 0 are the absolutely largest and the absolutely smallest

198 V.Y. Pan et al.

eigenvalues, respectively. Tables 1-3 together furnish us with the respective ops
estimates for these eigen-solvers.

TABLE 3. The numbers of multiplications of the matrix C, CH
and (C' — pl)~! by vectors and additional ops at the kth iteration

step
Eigen-solver Cxv CHxv (C—pl)~'xv Additional Ops
Arnoldi 1 (4k+4)+0(1)
non-Hermitian Lanczos 1 1 15n+ O(1)
Jacobi-Davidson 1 1 9+ k*)n+0(1)
IPI 1 1 on — 1

The inverse power iteration (IPI) approximates the single eigenvalue closest
to the shift value s. We refer the reader to [GL96, Sects. 8.2.2 and 8.2.3], [S98,
Sect. 2.1.2]), and [BDDRvV00], and the bibliography therein on this iteration and
its Rayleigh-Ritz block version for approximating some blocks of the extremal
eigenvalues. A new modification of the IPI is proposed in [PIMal], whereas the
papers [BGP02/04] and [P05] specialize the IPI to the DPR1 and Frobenius input
matrices. By applying the IPI to such matrices for the reverse polynomial ¢,¢, (),
we approximate the absolutely largest roots of the polynomial ¢(z).

The Jacobi-Davidson algorithms also approximate the single extremal eigen-
value or a block of such eigenvalues [S98, Sect. 6.2], [BDDRvV00], whereas
the Arnoldi and the non-Hermitian Lanczos algorithms [GL96, Sect. 9.4], [S98,
Chap. 5], [BDDRvVO00] approximate simultaneously a small number of eigenval-
ues consisting of both eigenvalues closest to and farthest from a fixed shift value.
Actually all these algorithms approximate the Ritz eigenpairs, that is, the pairs of
the eigenvalues and the associated eigenvectors (or more generally, blocks of the
eigenvectors and the associated eigenspaces).

Table 3 does not cover the ops required for approximating a Ritz pair for an
k x k auxiliary Hessenberg (resp. tridiagonal) matrix in the Arnoldi (resp. non-
Hermitian Lanczos) algorithm and for computing the Euclidean vector norms (at
most two norms are required per step). Actually, to make the Arnoldi and the
Jacobi-Davidson algorithms competitive, one must keep k smaller, although such
a policy is in conflict with the task of approximating the eigenvalues closely. This
seems to give upper hand to the Lanczos algorithm and the IPI.

Another crucial factor is the number of iteration steps required for conver-
gence, but all the cited eigen-solvers have good local and global convergence ac-
cording to the extensive empirical evidence and partly to the theory [GL96, S98,
BDDRvV00]. Local convergence of the Arnoldi and Lanczos algorithms can be sub-
stantially speeded up with the shift-and-invert techniques [S98, pages 334-336].

Convergence of the IPI can be additionally accelerated in the case of the
Frobenius input matrix C' = F.. [P05]. Formally, let § = max, . |5~ 7| where s is

Root-Finding with Eigen-Solving 199

the selected shift value approximating an eigenvalue A\, and the maximum is over
all other eigenvalues p. Then the eigenvalue A is approximated within the error
in O(6%) in k IPI steps, whereas the much smaller error bound in O(62") can be
reached in k steps of the algorithm in [P05]. The latter algorithm uses almost as
many ops per step as six FFT’s at 2" points for h = [log,(2n — 1)], that is, the
order of nlogn ops per step, versus O(n) ops per an IPI step.

Finally, since all of the above algorithms approximate the eigenvalues which
are the closest to the shift value s, a by-product of their application is a proximity
test at the complex point s for the roots of the polynomial ¢(x). We exploit this
observation at the very end of the section.

6.2. Approximating All Eigenvalues

To extend the algorithms in the previous subsection to computing all eigenvalues,
we can recursively combine them with deflating the polynomial ¢(z) and/or up-
dating its GC matrix (see Sect. 5.3) as long as we can approximate the eigenvalues
closely enough to counter the error propagation. We discuss how to improve the
initial approximations to the eigenvalues in the next subsections.

We can dispense with deflation and apply the selected eigen-solvers to the
same matrix but vary the shift values s trying to direct the eigen-solver to a new
eigenvalue. The iteration can occasionally converge to the same eigenvalue already
approximated, but according to the empirical evidence and some theory available
for Newton’s iteration, running it for the order of n to nlogn initial shift values
equally spaced on a large circle is usually sufficient to approximate all eigenvalues.

Furthermore, the algorithm in [P05] always enforces convergence to a new
eigenvalue of the Frobenius matrix F,, so that in n applications it outputs approx-
imations to all n eigenvalues.

Finally we recall that the QR algorithm approximates all eigenvalues of a
matrix in roughly 10n® ops according to extensive empirical evidence [GL96,
Sect. 7.5.6]. The bound relies on using 10n? ops per QR iteration step for an
n X n Hessenberg input matrix. For a DPR1 input and the initial companion knots
equally spaced on a circle, as well as for any set of companion knots on a circle or
a line, the QR algorithms in [BGP03/05, BGP04] use at most 120n ops per step,
so that we can extrapolate the cited empirical cost bound to at most 120n2 for all
eigenvalues.

6.3. Eigen-Solvers and Root-Finders as Root-Refiners

Based on our study in the previous sections, we should approximate the roots
of a polynomial ¢(z) in (2.2) by applying selected eigen-solvers to appropriate
GC matrices, performing the computations numerically, with double precision,
updating the matrices when the approximations to the eigenvalues improve, and
possibly changing the eigen-solvers during the iteration process. As we mentioned
in the introduction, one can expect that a variant of this approach with the QR
algorithm and the DPR1 GC matrices in [MV95, MV95a, F01/02] should rapidly
improve approximations to the eigenvalues to the desired level.

200 V.Y. Pan et al.

Based on our study in Sect. 3, we should expect the same effect if we use the
RBDPRI (in the real case) or arrow-head matrices instead of the DPR1 matrices.
Furthermore, all other eigen-solvers in the previous subsections can be applied
instead of the QR algorithm, and next we briefly compare them with each other and
with popular polynomial root-finders applied as root-refiners. We must, however,
exclude the algorithm in [P05], which is applied to the Frobenius matrix F,. and
is not updated when we update the computed approximations to the roots.

The QR algorithm in [BGP03/05] and [BGP04] requires quadratic time per
step and quadratic memory space for DPR1 matrices with general complex com-
panion knots and thus becomes inferior as an eigen-refiner.

The IPI and the non-Hermitian Lanczos algorithms seem to be better candi-
dates to be the GC eigen-refiner of choice because they require fewer ops per an
iteration step than the Jacobi-Davidson and the Arnoldi algorithms (see Sect. 6.1).
There is a potential competition from the popular root-finders applied as root-
refiners. They have superlinear local convergence, like the IPI, but require ex-
tended precision of computing. Note another practical advantage of the IPI over
the popular polynomial root-finders. For a real input matrix C' the IPI can be
easily extended to confine the computations to the real field. Namely, we should
just apply the power iteration step to the real matrix (sI —C)~1(s*I—C)~! where
s and s* denote two complex conjugate approximations to two complex conjugate
eigenvalues of the matrix C.

Tables 4 and 5 display some relevant data on some most popular root-finders
that approximate one root at a time and simultaneously all roots, respectively.
Note the respective increase of the arithmetic cost per step in Table 5.

TABLE 4. Four root-finders for a polynomial of a degree n approx-
imating one root at a time (In Miiller’s and Laguerre’s algorithms
computing a square root is counted as an op.)

Root-finder References ops/step Order of
convergence

Miiller’s [T64, pages 210-213], [W68] 2n+20 1.84

Newton’s [M73, MR75, NAGSS| 4n 2

Halley’s [OR00, ST95] 6n 3

Laguerre’s [HPR77, P64] 6n + 6 3

Table 4 does not cover the Jenkins-Traub algorithm in [JT70, JT72]. The
statistics of its application show that its performance is similar to the other root-
finders in Table 4 (in fact they tend to be inferior in accuracy to the QR based
root-finders), but the formal data on its ops count are hard to specify because this
algorithm combines various other methods.

Among modifications of the listed root-finders, we note application of Miiller’s

algorithm to the ratio CC/((Z)) rather than to the polynimial c(x). This increases the

Root-Finding with Eigen-Solving 201

TABLE 5. Two root-finders approximating simultaneously all
roots of a polynomial of a degree n

Root-finder References ops/step Order of
convergence

Durand-Kerner’s [W03, D60, K66] (dn—1)n 2

Aberth’s [B-S63, E67, A73, BF00] ("Tn—3)n 3

ops count per step to 4n + O(1) but substantially improves convergence according
to our extensive tests.

6.4. Flowcharts for Root-Finding with Eigen-Solving
To summarize, here is a flowchart of our root-finding for a polynomial ¢(x) in (2.2).

e [nitial approrimation.
Select and compute a GC matrix for ¢(z) (cf. Sect. 5.1).
Select and apply an eigen-solver for this matrix to compute n distinct
approximations to the roots of ¢(x) (see Sects. 6.1 and 6.2).
e Updating the GC matriz and the approzimations to the roots.
Choose the companion knots equal to the computed approximations to
the roots and update the GC matrix (cf. Sect. 5.4).
Apply the IPI n times with the shifts into the n current companion
knots to improve the approximations to all eigenvalues.
Repeat recursively until convergence.

In a modified version of this flowchart, we select a root-finder in Tables 4 or
5 and substitute it for the IPI at the initial and/or updating stage.

Computations in both original and modified versions can include deflation
(see Sect. 5.3).

Implementing the flowchart, we should numerically stabilize both eigensolvers
(by means of diagonal scaling (see the end of Sect. 3.5)) and root-finders (by means
of shifting the variable z to turn the coefficient ¢,,_; into zero). Then we should
scale both the variable x and the polynomial ¢(z), that is, shift to the polynomial
d™c(z/d) for a scalar d chosen to decrease the disparity in the magnitudes of the
coefficients of the latter polynomial.

6.5. Divide-and-Conquer Root-Refining and Bounding the Output Errors

We can accelerate root-finding and eigen-solving if we can split a polynomial ¢(x)
into the product Hle ¢i(z) of k > 1 nonscalar polynomials ¢;(x) and repeat
this step recursively (see [P01/02, BP98] and the bibliography therein). Effective
splitting algorithms in [S82, K98, P01/02, BGMO02] compute the factors ¢;(z) in
nearly optimal arithmetic and Boolean time provided we know some sufficiently
wide root-free annuli on the complex plane that isolate the root sets of the factors
¢i(z) from each other (see also [C96, BP96] on some alternative splitting algorithms
and [W69, BJ76, B83, DM89, DM90, VD94| on various applications to signal and

202 V.Y. Pan et al.

image processing). The algorithms in [P01/02] compute the desired annuli also in
nearly optimal time but are quite involved, which diminishes their practical value.
For a large input class, however, the annuli are readily available as by-product of
approximating the roots even with a low precision.

With the GC representations in Sects. 3.2 and 3.4 we can bound the ap-
proximation errors and detect the basic root-free annuli for splitting based on the
following result for the DPR1 and arrow-head matrices.

Theorem 6.1. The union Y., , D; (resp. >.i, D;) contains all eigenvalues of
the matriz C in equation (3.4) (resp. the matriz C in (3.10)) provided D; (resp.
D;) denote the discs {z : [v —s; +di| < >, ujuil} or{z: [z —s +dif <
Do luivil}h, i=1,...,n (resp. the discs {x : |z —s1+ui| < Yoo uilt, {z: |z—
sil <|vjl}, J=2,...,n, or the discs {z: |z —s1+u1| < 2?22 v}, {z: |z —
si| < |wil}, i =2,...,n). Moreover, if the union of any set of k discs D; (resp.
D;) is isolated from all remaining n — k discs, then this union contains exactly k
eigenvalues of the matriz C (resp. C).

Proof. The theorem (due to [E73] for DPR1 matrices) immediately follows from
the Gerschgorin theorem [GL96, Theorem 7.2.1] applied to the matrices C
and C. O

We need 3n — 1 ops to compute the radii of the discs Dy,..., D, (or just
2n — 1 ops under the choice of parameters in Example 3.1), and we only need n—1
ops to compute the radii of the discs Dy, ..., D,.

Similarity transforms into a DPR1 matrix (see Sect. 3.6) enable us to extend
the estimates in Theorem 6.1 to the RBDPR1 matrices C' in (3.6), and we can
yield a similar extension from the arrow-head matrices.

All discs D; (resp. D;) are isolated from each other for all ¢ if the matrix C
(resp. C) has n distinct eigenvalues and if the values |u;| and |v;| (resp. |u;| and
|vi|) are small enough. In this case the disc radii serve as upper bounds on the
errors of the computed approximations s; (resp. s;) to the eigenvalues.

Finally recall that a proximity test at a point s for the roots of a polynomial
c(z) = H?:1(5U — z;) defines a root-free disc {z : |z — s| < min; |z; — 2|} and
that such a proximity test is a by-product of the application of either of the IPI,
Arnoldi, non-Hermitian Lanczos and Jacobi-Davidson algorithms to the matrix
sI — C.. Now if the latter disc covers the intersection of two discs D; and D;
(resp. Dy, and D;), then they are isolated from one another. This observation
combined with Theorem 6.1 suggests a promising heuristic method for isolating
the eigenvalues.

7. Extension to Eigen-Solving

We can extend our eigen-solvers for GC matrices to the matrices A for which we
can readily compute the following scalars and vectors.

Root-Finding with Eigen-Solving 203

the scalar ca(z) = det(xI — A) for a scalar z

the scalars /y(z) = — trace(x] — A)"'ca(z) and ¢4 (z) for a scalar =
the vector (xI — A)~!v for a vector v

the vector Av for a vector v.

Furthermore, as soon as we have n values c4 () at n distinct points s1, .. ., sp
computed, we can compute GC matrices C' = C, in Sects. 3.2-3.4 for ¢(z) = ca(x).
Then we can apply our algorithms to compute approximations zy, ..., Z, to the
roots, which are generally crude due to the rounding errors in computing the GC
matrix. We can, however, refine the approximations by applymg the IPI or the
algorithm in [P05] to the matrix A and the shift values Z1, ..., Z,.

Moreover, we can compute some crude initial approximations to the roots
without computing a GC matrix. Indeed, apply the eigen-solvers in Table 3 as
long as you compute the vectors v and apply the root-finders in Tables 4 and 5
as long as you compute the scalars z. In fact the Durand-Kerner’s and Miiller’s
algorithms only require the computation of the scalars c4(z).

For many important classes of matrices all or most of the listed scalars and
vectors can be readily computed at a low cost. This is the case, e.g., for various
structured (e.g., Toeplitz) matrices [PO1, Chap. 5], for banded matrices B having a
small bandwidth (e.g., tridiagonal matrices) or more generally, for matrices associ-
ated with graphs that have small separator famillies [LRT79, GH90, GS92, PR93].

8. Polynomial and Secular Equations

The polynomial equations ¢(z) = 0 are closely related to the secular equations,
encountered in updating the singular value decomposition of a matrix, the solution
of the least-squares constrained eigenproblem, invariant subspace computation,
divide-and-conquer algorithms for the tridiagonal Hermitian eigenproblem, and the
“escalator method” for matrix eigenvalues (see [G73, M97] and the bibliography
therein).

For a matrix C' in (3.10), recall the characteristic equation c¢o(x) = 0, rewrite
it as co(x) = (z + a)q(x) — Y, dig;(x) = 0, for the scalar a = uy — s; and then
divide it by ¢(z) to arrive at the secular equation

whose roots are given by the eigenvalues of the matrix C' in (3.10). Likewise, recall
the Lagrange interpolation formula co(z) = q(z) + Y., diq;(z) and divide its
both sides by ¢(z) to arrive at the secular equation

1+ini =0,
=1

204 V.Y. Pan et al.

TABLE 6. Five root-finders for a function r(\)

Method References Max order Convergence
i of () order

Miiller’s [T64, pages 210-213], [W68] 0 1.84

Newton’s modified [M73, MR75, NAGS8] 1 2

Halley’s [OR00, ST95] 2 3

Laguerre’s [HPR77, P64] 2 3

Laguerre’s discrete [DJLZ96, DJLZ97, Z99] 0 3

whose roots are equal to the eigenvalues of the matrix C' in (3.4). By allowing to
scale the equation, we reduce the root-finding for any secular equation of the form

k d
=0
aerﬂJr;x—si

to solving the eigenproblem for the arrow-head or DPR1 matrices. This also enables
simple reduction of the polynomial and secular equations to one another.

Appendix. Simplification of Root-Finding

The efficiency of the known polynomial root-finders applied as root-refiners typi-

cally decreases where the roots are multiple. Since i((f)) = Zle ors for c(z) =
Hle(x — z;)™ where 21, ..., 2z are distinct, this suggests the application of

c(z)

root-finders to the rational function [7} or to the polynomial o(z)

g9(z)
ged(d, ¢) is the ged of ¢/(z) and ¢(x). With approximate division by approximate

geds, we can also replace root clusters by their single simple representatives.

The problem of computing approximate gcds of univariate polynomials is of
high independent interest (see [CGTW95, P98/01, GKMYZ04, Za, LYZ05] and
the bibliography therein). The approach in [P98/01] remains a good candidate for
being the method of choice. It relies on the reduction to polynomial root-finding.
Can any further progress be obtained based on matrix methods, e.g., on Theorem
6.17

where g(z) =

To avoid vicious circle of the back-and-forth transition between root-finding
and approximate gcds, we can apply the root-finders to the rational function
flx) = 5/((9;)). The Borsch-Supan’s root-finder [B-S63] (widely known as Aberth’s

or Ehrlich’s [B96]) proceeds by recursively computing the values of this function.
The iterative processes in Tables 4 and 5 can be reduced essentially to the recur-
sive evaluation of ¢(¥)(z) at the approximation points z for i = 0, 1, ..., k and
a small fixed integer k. The poles of the function 5((2)) can cause divergence, but

overall convergence tends to be faster and more reliable when we apply Miiller’s

Root-Finding with Eigen-Solving 205

method to the function f(z) according to our tests with Miiller’'s and Newton’s
root-finders, each applied to both ¢(z) and f(z).

References

[A73]
[B75]
(B3]
[B96]

[BBCDY3]

O. Aberth, Iteration Methods For Finding All Zeros of a Polynomial Si-
multaneously, Math. Comp., 27, 122, 339-344, 1973.

S. Barnett, A Companion Matrix Analogue for Orthogonal Polynomials,
Linear Algebra and Its Applications, 12, 3, 97-208, 1975.

S. Barnett, Polynomials and Linear Control Systems, Marcel Dekker, New
York, 1983.

D. A. Bini, Numerical Computation of Polynomial Zeros by Means of
Aberth’s Method, Numerical Algorithms, 13, 3—4, 179-200, 1996.

R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the
Solution of Linear Systems: Building Blocks for Iterative Methods, STAM,
Philadelphia, 1993.

[BDDRvVO00] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst, editors, Tem-

[BFOO]

[BGM02]

[BGP02/04]

[BGP04]

[BGP03/05]

[BJ76]

[BP94]

plates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide,
SIAM, Philadelphia, 2000.

D. A. Bini, G. Fiorentino, Design, Analysis, and Implementation of a Multi-
precision Polynomial Rootfinder, Numerical Algorithms, 23, 127-173, 2000.

D. A. Bini, L. Gemignani, B. Meini, Computations with Infinite Toeplitz
Matrices and Polynomials, Linear Algebra and Its Applications, 343-344,
21-61, 2002.

D. A. Bini, L. Gemignani, V. Y. Pan, Inverse Power and Durand/Kerner
Iteration for Univariate Polynomial Root-finding, Computers and Mathe-
matics (with Applications), 47, 2/3, 447-459, 2004. (Also Technical Report
TR 2002 020, CUNY Ph.D. Program in Computer Science, Graduate Cen-
ter, City University of New York, 2002.)

D. A. Bini, L. Gemignani, V. Y. Pan, Improved Initialization of the Accel-
erated and Robust QR-like Polynomial Root-finding, Electronic Transac-
tions on Numerical Analysis, 17, 195-205, 2004. Proc. version in Proceed-
ings of the Seventh International Workshop on Computer Algebra in Sci-
entific Computing (CASC ?4), St. Petersburg, Russia (July 2004), (edited
by E. W. Mayr, V. G. Ganzha, E. V. Vorozhtzov), 39-50, Technische Univ.
Miinchen, Germany, 2004.

D. A. Bini, L. Gemignani, V. Y. Pan, Fast and Stable QR Eigenvalue Al-
gorithms for Generalized Companion Matrices and Secular Equation, Nu-
merische Math., 3, 373-408, 2005. (Also Technical Report 1470, Department
of Math., University of Pisa, Pisa, Italy, July 2003.)

G. E. P. Box, G. M. Jenkins, Time Series Analysis: Forecasting and Control,
Holden-Day, San Francisco, California, 1976.

D. Bini, V. Y. Pan, Polynomial and Matrix Computations, Volume 1: Fun-
damental Algorithms, Birkhduser, Boston, 1994.

206

[BP96]

[BP9S]

[B-S63]
[C91]

[C96]

[CGTW95]

[CN94]

[D60]

[DILZ96]

[DILZ97]

[DMS9)]

[DM90]

[E67]

[E73]

V.Y. Pan et al.

D. Bini, V. Y. Pan, Graeffe’s, Chebyshev, and Cardinal’s Processes for
Splitting a Polynomial into Factors, J. Complexity, 12, 492-511, 1996.

D. Bini, V. Y. Pan, Computing Matrix Eigenvalues and Polynomial Zeros
Where the Output Is Real, SIAM Journal on Computing, 27, 4, 1099—
1115, 1998. Proc. Version: Parallel Complexity of Tridiagonal Symmetric
Eigenvalue Problem, in Proc. 2nd Ann. ACM-SIAM Symp. on Discrete
Algorithms (SODA?1), 384-393, ACM Press, New York, and STAM Publi-
cations, Philadelphia, January 1991.

W. Borsch-Supan, A-posteriori Error Bounds for the Zeros of Polynomials,
Numerische Math., 5, 380-398, 1963.

C. Carstensen, Linear Construction of Companion Matrices, Linear Algebra
and Its Applications, 149, 191-214, 1991.

J. P. Cardinal, On Two Iterative Methods for Approximating the Roots of
a Polynomial, Lectures in Applied Mathematics, 32 (Proceedings of AMS-
SIAM Summer Seminar: Mathematics of Numerical Analysis: Real Number
Algorithms (J. Renegar, M. Shub, and S. Smale, editors), Park City, Utah,
1995), 165-188, American Mathematical Society, Providence, Rhode Island,
1996.

R. M. Corless, P. M. Gianni, B. M. Trager, S. M. Watt, The Singular
Value Decomposition for Polynomail Systems, Proc. Intern. Symposium on
Symbolic and Algebriac Computation (ISSAC’95), 195-207, ACM Press,
New York, 1995.

D. Coppersmith, C. A. Neff, Roots of a Polynomial and Its Derivatives.
Proc. of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’94), 271-279, ACM Press, New York, and SIAM Publications,
Philadelphia, 1994.

E. Durand, Solutions numériques des équations algébriques, Tome 1: Equa-
tions du type F(X)=0; Racines d’un polyndme, Masson, Paris, 1960.
Q. Du, M. Jin, T. Y. Li, Z. Zeng, Quasi-Laguerre Iteration in Solving

Symmetric Tridiagonal Eigenvalue Problems. SIAM J. Sci. Comput., 17, 6,
1347-1368, 1996.

Q. Du, M. Jin, T. Y. Li, Z. Zeng, The Quasi-Laguerre Iteration. Math. of
Computation. 66, 217, 345-361, 1997.

C. J. Demeure, C. T. Mullis, The Euclid Algorithm and Fast Computation
of Cross-Covariance and Autocovariance Sequences, IEEE Trans. Acoust.,
Speech and Signal Processing, 37, 545-552, 1989.

C. J. Demeure, C. T. Mullis, A Newton-Raphson Method for Moving-
Average Spectral Factorization Using the Euclid Algorithm, IEEE Trans.
Acoust., Speech and Signal Processing, 38, 1697-1709, 1990.

L. W. Ehrlich, A Modified Newton Method for Polynomials, Comm. of
ACM, 10,107-108, 1967.

L. Elsner, A Remark on Simultaneous Inclusions of the Zeros of a Polyno-
mial by Gershgorin’s Theorem, Numerische Math., 21, 425-427, 1973.

[EMP04]

[EP02]

[F90]

[F01/02]

[G52/58]
(G73]
[GHY0]

[GKMYZ04]

[GLO6]
(GS92]
[HPR77]

[IT70]

[IT72)

[TV04]
[K66]
[K98]

[LF94]

Root-Finding with Eigen-Solving 207

E. Z. Emiris, B. Mourrain, V. Y. Pan, Guest Editors, Algebraic and Numer-
ical Algorithms, Special Issue of Theoretical Computer Science, 315, 2-3,
307-672, 2004.

1. Z. Emiris, V. Y. Pan, Symbolic and Numerical Methods for Exploiting
Structure in Constructing Resultant Matrices, J. of Symbolic Computation,
33, 393-413, 2002.

M. Fiedler, Expressing a Polynomial As the Characteristic Polynomial of
a Symmetric Matrix, Linear Algebra and Its Applications, 141, 265-270,
1990.

S. Fortune, An Iterated Eigenvalue Algorithm for Approximating Roots of
Univariate Polynomials, J. of Symbolic Computation, 33, 5, 627-646, 2002.
Proc. version in Proc. Intern. Symp. on Symbolic and Algebraic Computa-
tion (ISSAC’01),121-128, ACM Press, New York, 2001.

A. Gel’'fond, Differenzenrechnung, Deutsher Verlag Der Wissenschaften,
Berlin, 1958. (Russian edition: Moscow, 1952.)

G. H. Golub, Some Modified Matrix Eigenvalue Problems, SIAM Review,
15, 318-334, 1973.

J. R. Gilbert, H. Hafsteinsson, Parallel Symbolic Factorization of Sparse
Linear Systems, Parallel Computing, 14, 151-162, 1990.

S. Gao, E. Kaltofen, J. May, Z. Yang, S. Zhi, Approximate Factorization
of Multivariate Polynomial via Differential Equations, Proc. International
Symposium on Symbolic and Algebraic Computaion (ISSAC’04), 167-174,
ACM Press, New York, 2004.

G. H. Golub, C. F. Van Loan, Matriz Computations, 3rd edition, The Johns
Hopkins University Press, Baltimore, Maryland, 1996.

J. R. Gilbert, R. Schreiber, Highly Parallel Sparse Cholesky Factorization,
SIAM J. on Scientific Computing, 13, 1151-1172, 1992.

E. Hansen, M. Patrick, J. Rusnack, Some Modification of Laguerre’s
Method, BIT, 17, 409-417, 1977.

M. A. Jenkins, J. F. Traub, A Three-Stage Variable-Shift Iteration for
Polynomial Zeros and Its Relation to Generalized Rayleigh Iteration, Nu-
merische Math., 14, 252-263, 1969/1970.

M. A. Jenkins, J. F. Traub, A Three-Stage Algorithm for Real Polynomials
Using Quadratic Iteration, SIAM J. on Numerical Analysis, 7, 545-566,
1970.

J. F. Jénsson, S. Vavasis, Solving Polynomials with Small Leading Coeffi-
cients, SIAM J. on Matriz Analysis and Applications, 26, 2, 400-412, 2004.

I. O. Kerner, Ein Gesamtschrittverfahren zur Berechung der Nullstellen von
Polynomen, Numerische Math., 8, 290-294, 1966.

P. Kirrinnis, Polynomial Factorization and Partial Fraction Decomposition
by Simultaneous Newton’s Iteration, J. of Complexity, 14, 378-444, 1998.

M. Lang, B. C. Frenzel, Polynomial Root-Finding, IEEE Signal Processing
Letters, 1, 10, 141-143, 1994.

208

[LRT79]
[LYZ05]
[M73]
[M97]
[McN93]
[McN97]

[McN99]

[McNO02]

[MP00]

[MR75]

[MV95]
[MV95al

[NAGSS]
[NR94]

[ORO0]
[P64]
[P92]

[P95]

V.Y. Pan et al.

R. J. Lipton, D. Rose, R. E. Tarjan, Generalized Nested Dissection, STAM
J. on Numerical Analysis, 16, 2, 346-358, 1979.

B. Li, Z. Yang, L. Zhi, Fast Low Rank Approximation of a Sylvester Matrix
by Structured Total Least Norm, Journal JSSAC, 11, 165-174, 2005.

K. Madsen, A Root-Finding Algorithm Based on Newton’s Method,BIT,
13, 71-75, 1973.

A. Melman, A Unifying Convergence Analysis of Second-Order Methods
for Secular Equations, Math. Comp., 66, 333—-344, 1997.

J. M. McNamee, Bibliography on Roots of Polynomials, J. Computational
and Applied Mathematics, 47, 391-394, 1993.

J. M. McNamee, A Supplementary Bibliography on Roots of Polynomials,
J. Computational and Applied Mathematics, 78, 1, 1997.

J. M. McNamee, An Updated Supplementary Bibliography on Roots of
Polynomials, J. Computational and Applied Mathematics, 110, 305-306,
1999.

J. M. McNamee, A 2002 Updated Supplementary Bibliography on Roots
of Polynomials, J. Computational and Applied Mathematics, 142, 433-434,
2002.

B. Mourrain, V. Y. Pan, Multivariate Polynomials, Duality and Structured
Matrices, J. of Complezity, 16, 1, 110-180, 2000.

K. Madsen, J. Reid, Fortran Subroutines for Finding Polynomial Zeros,
Report HL75/1172 (C.13), Computer Science and Systems Division, A. E.
R. E. Harwell, Oxford, 1975.

F. Malek, R. Vaillancourt, Polynomial Zerofinding Iterative Matrix Algo-
rithms, Computers and Math. with Applications, 29, 1, 1-13, 1995.

F. Malek, R. Vaillancourt, A Composite Polynomial Zerofinding Matrix
Algorithm, Computers and Math. with Applications, 30, 2, 37-47, 1995.

NAG Fortran Library Manual, Mark 13, Vol. 1, 1988.

C. A. Neff, J. H. Reif, An O(n'™) Algorithm for the Complex Root Prob-
lem, Proceedings of the 34th Annual IEEE Symposium on Foundations of
Computer Scinece (FOCS’9/), 540-547, IEEE Computer Society Press, Los
Alamitos, California, 1994.

J. M. Ortega, W. C. Rheinboldt, Iterative Solution of Nonlinear Equations
in Several Variables, SIAM, Philadelphia, 2000.

B. Parlett, Laguerre’s Method Applied to the Matrix Eigenvalue Problem,
Math. of Computation, 18, 464-485, 1964.

V. Y. Pan, Complexity of Computations with Matrices and Polynomials,
SIAM Review, 34, 2, 225-262, 1992.

V. Y. Pan, Optimal (up to Polylog Factors) Sequential and Parallel Al-
gorithms for Approximating Complex Polynomial Zeros, Proc. 27th Ann.
ACM Symp. on Theory of Computing (STOC’95), 741-750, ACM Press,
New York, May 1995.

[P96]

[P97]

[P9g]

[P98/01]

[P00]

[PO1]

[P01,/02]

[P05]

[PIMa]

[PMRTa]

[PMRTYCa]

[PRO3]

[$82]

[S98]
[ST95]

[T64]

Root-Finding with Eigen-Solving 209

V. Y. Pan, Optimal and Nearly Optimal Algorithms for Approximating
Polynomial Zeros, Computers and Math. (with Applications), 31, 12, 97—
138, 1996.

V. Y. Pan, Solving a Polynomial Equation: Some History and Recent
Progress, SIAM Review, 39, 2, 187-220, 1997.

V.Y. Pan, Some Recent Algebraic/Numerical Algorithms, Electronic Pro-
ceedings of IMACS/ACA’98, 1998.
http:www-troja.fjfi.cvut.cz/aca98/sessions/approximate/pan/

V.Y. Pan, Numerical Computation of a Polynomial GCD and Extensions,
Information and Computation, 167, 2, 71-85, 2001. Proc. version in Proc.
of 9th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA’98), 6877,
ACM Press, New York, and SIAM Publications, Philadelphia, 1998.

V. Y. Pan, Approximating Complex Polynomial Zeros: Modified Quadtree
(Weyl’s) Construction and Improved Newton’s Iteration, J. of Complexity,
16, 1, 213-264, 2000.

V. Y. Pan, Structured Matrices and Polynomials: Unified Superfast Algo-
rithms, Birkhduser/Springer, Boston/New York, 2001.

V. Y. Pan, Univariate Polynomials: Nearly Optimal Algorithms for Factor-
ization and Rootfinding, Journal of Symbolic Computations, 33, 5, 701-733,
2002. Proc. version in Proc. International Symp. on Symbolic and Algebraic
Computation (ISSAC ?1), 253-267, ACM Press, New York, 2001.

V. Y. Pan, Amended DSeSC Power Method for Polynomial Root-finding,
Computers and Math. with Applications, 49, 9-10, 1515-1524, 2005.

V. Y. Pan, D. Ivolgin, B. Murphy, R. E. Rosholt, I. Taj-Eddin, Y. Tang,
X. Yan, Additive Preconditioning and Aggregation in Matrix Computa-
tions, Computers and Math. with Applications, in press.

V. Y. Pan, B. Murphy, R. E. Rosholt, Y. Tang, Real Root-Finding, sub-
mitted to Computers and Math. (with Applications).

V. Y. Pan, B. Murphy, R. E. Rosholt, Y. Tang, X. Yan, W. Cao, Linking
Arrow-head, DPR1, and TPR1 Matrix Structures, preprint, 2005. Proc. ver-
sion (by V. Y. Pan) in Proc. of Annual Symposium on Discrete Algorithms
(SODA’05), 1069-1078, ACM Press, New York, and SIAM Publications,
Philadelphia, 2005.

V. Y. Pan, J. Reif, Fast and Efficient Parallel Solution of Sparse Linear
Systems, SIAM J. on Computing, 22, 6, 1227-1250, 1993.

A. Schonhage, The Fundamental Theorem of Algebra in Terms of Com-
putational Complexity, Mathematics Department, University of Tibingen,
Germany, 1982.

G. W. Stewart, Matriz Algorithms, Volume II: FEigensystems, STAM,
Philadelphia, 1998.

T. R. Scavo, J. B. Thoo, On the Geometry of Halley’s Method., Amer.
Math. Monthly, 102, 417-426, 1995.

J. F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall,
Englewood Cliffs, New Jersey, 1964.

210

[VDY4]

[W03]
[W65]
[W68]
[W69]
[Z99]

(Za]

V.Y. Pan et al.

P. M. Van Dooren, Some Numerical Challenges in Control Theory. In Linear
Algebra for Control Theory, Volume 62 of IMA Vol. Math. Appl., Springer,
1994.

K. Weierstrass, Neuer Beweis des Fundamentalsatzes der Algebra, Mathe-
matische Werker, Tome III, Mayer und Miiller, Berlin, 251-269, 1903.

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Ox-
ford, 1965.

V. Whitley, Certification of Algorithm 196: Miiller’s Method for Finding
Roots of Arbitrary Function, Comm. ACM, 11, 12-14, 1968.

G. T. Wilson, Factorization of the Covariance Generating Function of a
Pure Moving-average Process, SIAM J. Num. Anal., 6, 1-7, 1969.

X. Zou, Analysis of the Quasi-Laguerre Method, Numerische Math., 82,
491-519, 1999.

Z. Zeng, The Approximate GCD of Inexact Polynomials, Part I: a Univari-
ate Algorithm, preprint, 2004.

Victor Y. Pan, Brian Murphy and Rhys Eric Rosholt
Department of Mathematics and Computer Science
Lehman College of the City University of New York
Bronx, NY 10468, USA
http://comet.lehman.cuny.edu/vpan/

e-mail: victor.pan@lehman. cuny.edu

brian.murphy@lehman. cuny.edu
rhys.rosholt@lehman. cuny.edu

Dmitriy Ivolgin, Yuqing Tang and Xiaodong Yan
Ph.D. Program in Computer Science

Graduate Center of the City University of New York
New York, NY 10036 USA

e-mail: divolgin@gc.cuny.edu

ytang@gc.cuny.edu
xyan@gc.cuny.edu

Xinmao Wang

Ph.D. Program in Mathematics

Graduate Center of the City University of New York
New York, NY 10036 USA

Present address:

Department of Mathematics,

University of Science and Technology of China,
Hefei, Anhui 230026, China

e-mail: xinmao@ustc.edu.cn

