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On the Location of Zeros of an Interval
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Abstract. For an interval polynomial F', we provide a rigorous method for
deciding whether there exists a polynomial in F' that has a zero in a prescribed
domain D. When D is real, we show that it is sufficient to examine a finite
number of polynomials. When D is complex, we assume that the boundary
C of D is a simple closed curve of finite length and C' is represented by a
piecewise rational function. The decision method uses the representation of
C and the property that a polynomial in F' is of degree one with respect to
each coeflicient regarded as a variable. Using the method, we can completely
determine the set of real numbers that are zeros of a polynomial in F. For
complex zeros, we can obtain a set X that contains the set Z(F), which
consists of all the complex numbers that are zeros of a polynomial in F', and
the difference between X and Z(F') can be as small as possible.
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1. Introduction

There are two premises for incorporating numeric or approximate computation
in symbolic computation. One is that we know the exact values but use approxi-
mate computation for efficiency. An example is the theory of stabilizing algebraic
algorithms [11, 12, 13]. The other is that inexact values are given.

In this article, we consider problems on the latter premise. That is, we treat
the problems regarding zeros of real polynomials with perturbations. More pre-
cisely, let [I;, h;] C R be bounded closed intervals for 0 < j < d. We consider the
following types of problems.

e Does there exist a polynomial f = aqz®+- - -+ag such that each a; lies in the
interval [I;, h;] and f has a zero in the prescribed real (or complex) domain?

e What is the union of the sets of (real) zeros of polynomials f = agz?+- - -+aqg
such that each coefficient a; lies in the interval [l;, h;]?
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A similar but a slightly different problem on real zeros is treated in [5]. For a
given real polynomial f that has no real zero, [5] provides an algorithm that finds
the nearest real polynomial to f in the infinity norm among polynomials having a
real zero. For complex domains, similar problems have been studied for complex
polynomials (see, for example, [9, 4, 6, 2]). In such studies, complex perturbations
are considered, and this is quite natural, since coefficients are complex. As de-
scribed in [9, 7, 14], these studies can be viewed and understood in the common
framework of fundamental observation from linear algebra.

Considering applications, we are very interested in the above types of prob-
lems since coefficients of polynomials may contain errors. For real polynomials, it is
natural to consider only real perturbations, since in many practical examples real
coefficients are obtained through measurements or observations and the errors are
also real numbers. The methods in this article do not assume that perturbations
are small except in several cases where small perturbations must be assumed so
that the leading coefficient does not vanish.

It is also natural to consider only real zeros for many applications. Therefore,
we treat real zeros in the first half and complex zeros in the second half. For
real zeros, we provide a rigorous method for determining whether there exists
a polynomial whose coefficients lie in the intervals [I;, h;] and whose zero lies
in the prescribed interval. We show that it is enough to examine only a finite
number of polynomials. For complex zeros, we provide a rigorous method that
first follows [9, 7, 14] but in the end differs from them because the perturbations
are real. This type of research has already been carried out in control theory [3]
and some results, such as Kharitonov’s Theorem [8] and the Edge Theorem [1],
have been obtained. The Edge Theorem is closely related to our main results on
complex zeros; therefore, we will describe the relation between them.

This article is organized as follows. Section 2 introduces the notion of interval
polynomials that can describe a set of polynomials with perturbations. Section 3
describes the decision method for real zeros. Section 4 describes the decision prin-
ciple and computation methods for complex zeros and the relation with the Edge
Theorem. Finally, Section 5 mentions future directions.

2. Definitions and Notations

In this section, we introduce interval polynomials to describe a set of polynomials
with perturbations and pseudozeros to describe zeros of interval polynomials.

Definition 1 (Interval polynomials). For 1 < j < n, let e;(z) be a monic polynomial
in R[z] and A; = [I;, h;] C R be a bounded closed interval. The set of polynomials

Zajej(x) aj € A; (*)

is said to be an interval polynomial. A; is said to be an interval coefficient.
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For simplicity, the set described by () may be denoted as follows:
Ajer(z) + Agzea(x) + - - - + Apen(x).
Note that an interval polynomial F' is a convex set from the definition.

Definition 2 (Pseudozeros). Let F' be an interval polynomial. We define a point
¢ € C as a pseudozero of F if and only if there exists f € F such that f(c) = 0.
We write all pseudozeros of F' as Z(F'). A pseudozero c of F is said to be a real
pseudozero if ¢ is real. We write all real pseudozeros of F' as Zg(F).

When computing, we restrict the real and the imaginary parts of numbers
to rational numbers or real algebraic numbers and use exact computation unless
mentioned otherwise.

3. Deciding the Set of Real Pseudozeros

In this section, for an interval polynomial F', we provide a method for determining
real pseudozeros of F'. The fundamental tool is a method for determining whether
there exists a polynomial f € F' such that f has a zero in a given closed interval
D = [dy,ds] in R. When d; = da, this can be determined by using interval arith-
metic with exact computation for endpoints. When d; < ds, the following lemma
is the fundamental tool.

Lemma 1. Let F be an interval polynomial as described by (x). Suppose that every
ej has no zero in the interior of the interval D. Then, each e; is always positive
or negative in the interior of D. We denote by P the set of all indices j such that
ej > 0 and by N the set of all indices j such that e; < 0. We put

film) =Y Les(@) + > hjei(@),  fal@) =D hjei(z)+ > Liej(a).
jeP JEN jeP JEN
Then, two polynomials f; and f1, belong to F.

1. If at least one of fi(d1), fi(d2), frn(d1) and fr(d2) is 0, or there exists a pair
with opposite signs, then there exists f € F' such that f has a zero in D.

2. When fi(d1), fi(d2), fr(d1), fn(d2) > 0, there exists f € F such that f has
a zero in D if and only if f; has a zero in D.

3. When fi(d1), fi(d2), frn(d1), fn(d2) < 0, there exists f € F such that f has

a zero in D if and only if fn has a zero in D.

Proof. Note that fi(c) < f(¢) < frn(c) hold for any f € F and any ¢ € D.

First we prove Case 1. When one of fi(d;) and fx(d;) is 0, the statement
is clear. If fi(dy1)fi(d2) < 0 (resp. fn(d1)frn(d2) < 0), then the intermediate value
theorem implies the statement. Suppose that f;(d1)fi(d2) > 0 and fr(dy)fr(d2) >
0 (see Fig. 1). Then, the sign of fi(di) and that of f5(dy) should be opposite;
otherwise all of the signs of f;(d;) and fi(d;) are the same. Put

fn(dy)

P fu(dy) — fidy)
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FIGURE 1. An example of the case f;(d1)fi(dz), fn(d1)fr(d2) > 0.

Then, the polynomial g = (1 —¢)f, + tf; is in F and has a zero at d;.

Since the proofs for Cases 2 and 3 are similar, we only show that of the
former. Suppose that a polynomial f € F has a zero at ¢ in the interval [dy, d2).
Then, d; < ¢ because fi(c) < f(¢) =0 and f;(d1) > 0. Therefore, the intermediate
value theorem implies that f; has a zero in the interval [dy, ]. O

Remark 1. Arguments similar to the proof of Lemma 1 are valid for intervals
(—00,d2], [d1,00), and (—o0, 00) if no zero of e; exists in the interior.

Remark 2. Under the same assumption of Lemma 1, every f € F has a zero in D
if and only if both f; and f; have a zero in D.

Using Lemma 1, we can determine the real pseudozeros as follows.

Theorem 1. Let F' be an interval polynomial as described by (x). Let all of the
distinct real zeros of H?Zl ej be oy < ax < -+ < . We make intervals Dy =
(=00, 1], D = [ak, akt1] (1 <k <m—1) and D,, = [am, 00).
For the interval Dy, we denote the polynomials corresponding to fi(x) and
fn(z) described in Lemma 1 by fi1(x) and fi n(x). Then, we have
Zr(F) = U {ceDy| frilc) <0< frn(o) }.
k=0
Proof. The inequalities fx ;(c) < f(c)
(1—8)fea+tfn € Ffloranyt (0<t¢

< fr.n(c) hold for any ¢ € Dy, f € F and
< ) These facts imply the statement. [

Corollary 1. Zg(F') is the union of a finite number (possibly zero) of closed inter-
vals whose types are as follows:
o A closed interval o, 8], where a and B are zeros of fi1 or fi h.
o A closed interval (—oo, a] or [a, 00), where o is a zero of either fii or fip.
o The whole real numbers R.

When the degrees of all polynomials in F are equal, only the first type appears.

Proof. Let m be the number of the distinct real zeros of H?Zl ej. We take all of
the distinct zeros of fi ;(z) and fi n(x) in Dy described in Theorem 1 and denote
them by Br1 < Br2 < -+ < Br,n). Then, the signs of fi () and fi x(z) do not
change in the interval (8kp, Bk,p+1). The signs also do not change in the interval
(=00, Bo,1) for k = 0 nor in the interval (3, n(m),00) for k =m
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Take every interval on which fi ;(x) is negative and fi ,(z) is positive and
make it closed by adding the endpoints that are zeros of fi ;(z) or fi n(x). Zr(F)
is the union of all such closed intervals. g

Ezample 1 (Lagrange interpolation). In the Lagrange interpolation for m points
a1 < az < -+ < am, each monic polynomial e;(z) is represented as follows:

ej(@) = [ (= - an).
k£
We can easily compute real pseudozeros since {x € R | ej(z) =0}={ar |k #j}.
Remark 3. The converse of the last part of Corollary 1 is not true. When the
degrees are not constant, all types of intervals in Corollary 1 may appear. Consider

the two monic polynomials e; (z) and ex(x):

ei(z) = 2* — 5, ea(z) = 2* — 22

We define three interval polynomials F'(z) C G(x) C H(z) as follows:

F(z) = [1, 1.5]ei(z) + [—1, —0.5]es(x),

G(z) = [1, 1.5]e1(x) + [-1.5, —0.5]ez(x),

H(z) = [0, 1.5]es(x) + [—1.5, O]ez(z).
Note that both ej(z) — ez(x) and ey (z) — ea(x)/2 belong to F' (C G C H), and
deg(e1(z) —ea(z)) = 2 and deg(eq () —ea(x)/2) = 4. As described below, we have

Za(F) = [—\/5,—\/5/2} U [\/5/2, ¢5},

2:(G) = (o0, —v/5/2| U[V/5/2,00) |

Zr(H) = R.
Real zeros of e; are =+v/5 and real zeros of ey are 0 and +1. Since f(—z) = f()
for any f € H, it is sufficient that we examine only in the interval [0, 00). We
divide [0, 00) into three intervals: [0, 1], [1, v/5] and [+v/5,00). The polynomial e;
is negative in [0, v/5) and positive in (v/5,00). The polynomial ey is negative in
(0,1) and positive in (1, 00).

First we examine G since it is clear that Zr(H) = R. In the interval [0, 1],
3

1
) z* — 32% +10) < 0.

gn(z) = er(z) — je2(z) = —

In the interval [1, v/5],
1 1
gn(z) = e1(x) — 262(:1:) = 2(564 + 2% —10) < 0.

In the interval [v/5, 00),

3 1
0(e) = erla) - beala) = s (@t 32 +10) <0,
3 1 a5 15 9
gn(z) = 261(56) 262(1‘)—1‘ + T 5 = 2(256 5)(z* + 3).
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Therefore, the set of all real pseudozeros Zr(G) is (—o00, —1/5/2]U[/5/2, o), that
is, the union of two unbounded closed intervals.

To determine Zg(F'), it is sufficient to examine only the interval [v/5,00)
since F' is a subset of G. Now

filz) = e1(x) — ea(x) = 2% — 5,

fil@) = on(a) = (207~ 5)(a? +3).

Therefore, the set of all real pseudozeros Zg(F) is [—v/5, —/5/2] U [\/5/2, V5],
that is, the union of two bounded closed intervals. Note that V5 < \/ 5/2.

Next, we apply Theorem 1 to Wilkinson’s famous example.

Ezample 2 (Wilkinson). Put e;(z) = ]_[30:1(50 —j) and es(z) = x'%. We consider

the following two interval polynomials F(z) C G(z):
F(z) = ei(z) +[-27%,0e2(2),  Glz) = ea(2) + [-27%, 0ea().

The “endpoint” polynomial e; — 2723e;5 of F' is Wilkinson’s original example.
First, we consider F'(z). Since the signs of e; and ez do not change in the
region x < 0, the polynomials f; and f; for z < 0 are as follows:

f@)=e(x),  fulz) = eilz) - 27%ex(x).

Since 0 < fi(x) for z < 0, there is no pseudozero in the region.
The interval coefficient of e; consists of one point and 0 < es(z) for 0 < z.
Therefore, for 0 < z,

filz) =ei(z) —27Pex(x),  fulz) =ei(a).

The number of real zeros of f; is 10 and there is no multiple root. We denote by
ay < ag < -+ < ayg the real zeros. They lie in the intervals as described below:

a1 € (110724, 1-10"%),  ay e (2410718, 24 10717),

as€ (310712, 3-10713),  ase (4410710, 44 1079),
as e (5107, 5 10°%), ag € (6 + 1075, 6 +107),
ar € (6.999, 6.9999), as € (8.001, 8.01),

Qg € (89, 899), 10 € (201, 21)

From the above inequalities,
{ceR|0<¢ 0< fr(e)} = [0,1]U[2,3]U[4,5]U[6,7]U[8,9] U [10,11]
U[12, 13] U [14, 15] U [16,17] U [18,19] U [20, c0),
{ceR|0<g¢ filc) <0} = [a1,a2) U [as, as] U [as, ag) U [ar, as] U [ag, a1g].
Therefore, the set of all real pseudozeros for F' is as follows:
Zr(F) = [a1,1JU[2, a2] U las, 3] U [4, au] U [as, 5] U [6, ae] U |7, T] U [8, ag]
U[ag, 9] U [10,11] U [12,13] U [14, 15] U [16,17] U [18, 19] U [20, ar1]-
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Similar arguments hold for G. It is clear that Zr(G) N (—o0, 0] is empty. For 0 < z,

g1(z) = e1(z) — 27 es(), gn(z) = e1().

The number of real zeros of g;(x) is 14 and there is no multiple root. We denote
by 81 < B2 < --- < P14 the real zeros. They lie in the intervals as described below:

€(1-107%6,1-10727), B € (2+1072°, 2410719,
53 €(3-10" 14 310719, Bs€(4+10712 4+ 1071,
55 €(5—-1077, 5 10719), Bs € (6+1078, 6+1077),
€ (7 (
(

— 10~ 5 7—1079), Bs € (8+107%, 84+ 107%),
59 € (8.999, 8. 9999) Bio € (10.001, 10.01),
Bi1 € (10.9, 10.99), B2 € (12.3, 12.4),

Bis € (12.4, 12.5), Bia € (20.01, 20.1).
From the above inequalities,
{ceR|0<¢ 0<gn(c)} = [0,1]U[2,3]U[4,5]U[6,7]U[8,9]U[10,11]
U[12,13] U [14,15] U [16,17] U [18,19] U [20, c0),
{ceR[0<c, gilc) <0} = [B1,B2] U[Bs, Ba] U [Bs, B6] U [B7, Bs] U [Bo, Bro]
U[B11, Bi2] U [B13, B14]-

Therefore, the set of all real pseudozeros for G is as follows:

ZR(G) - [617 1] U [27 62] U [637 3] U [47 64] U [657 5] U [67 66] U [677 7]
U[87 68] U [697 9] U [107 610] U [6117 11] U [127 612] U [6137 13]
U[14, 15] U [16, 17] U [18, 19] U [20, B1a).

4. Deciding the Location of Pseudozeros

In this section, first we describe a principle for deciding the location of pseudozeros.
Let F be an interval polynomial as described by (%) and D be a domain in C. We
consider the following problem.

Problem 1. Does there exist a pseudozero of F' in D?

Below, we assume that D is a closed domain in C whose boundary C is a
simple curve. When D is not bounded, we further assume that the degree of f € F
is constant. Since the domain D is not bounded when C' is not a closed curve, from
the above assumption on the degree we can construct a new closed domain D’ C D
such that the following conditions are satisfied.

e The boundary of D’ is a simple and closed curve.
e Z(F)ND=Z(F)nD'.

Therefore, we can assume that C is a simple and closed curve. Furthermore, we
assume the following conditions.
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Condition 1. C is of finite length and C = UX_ O} (K < 00), where each Cj, is
expressed by an injective function as

or(s) + ik (s), s € Sk.
Here ¢ (s), ¥x(s) € Q(s) and Sy, is either of type [a, ], [a, ), (—o0, b] or R.

First, we reduce the problem to examine zeros on C'. Second, we reduce it to
examine polynomials whose coefficients are the endpoints of the interval coefficients
with at most one exception.

4.1. Preliminaries

Take a polynomial fo € F. We can determine whether fy has a zero on C using
Sturm’s algorithm, the sign variation method, or some other improved algorithm,
and whether it has a zero in the interior of D using the argument principle when
it has no zero on C. If f has no zero in D, then Problem 1 is equivalent to asking
whether there exists a pseudozero of F' on C.

Proposition 1. Suppose that a polynomial fy € F has no zero in D. When D is
unbounded we assume that degrees of all polynomials in F are equal. Then, the
following two conditions are equivalent.

1. There exists a polynomial f € F that has a zero in D.
2. There exists a polynomial f € F that has a zero on C.

Proof. 1t is sufficient to prove that the first condition implies the second condition.
Assume that f has a zero in D but no zero on C. Let g¢ be (1 —t)fo + tf. Then,
go = fo, 91 = f and g € F for any t (0 < ¢ < 1). We prove the statement by
contradiction. Suppose that every g, (0 < ¢ < 1) has no zero on C.

When D is bounded, Rouché’s theorem (see below) implies that the number
of zeros of gg in D is equal to that of g;. This contradicts the assumption.

When D is unbounded, the assumption that C' is of finite length implies that
the compliment D¢ of D is bounded. Therefore, the number of zeros of gg in D¢ is
equal to that of g;. Since deg g9 = deg g1, the number of zeros of gy in D is equal
to that of g;. This contradicts the assumption. [

The following is a version of Rouché’s theorem.

Theorem 2 (Rouché’s Theorem). Let C be a simple closed curve of finite length in
a domain Q@ C C and let the inside of C' be in ). Suppose that f(z) and ¢(z) are
holomorphic on Q and that f(z) + te(z) has no zero on C for any t (0 <t < 1).
Then, the number of zeros of f(z) inside C is equal to that of f(z) + ¢(z).

We provide a proof since this version is not described in standard textbooks.
Proof. The following inequality holds for 0 <¢; <ty <1:
£ (2) +t20(2)| < |F(2) + tap(2)| + [t2 — ta]|(2)].
Let m(t) be min.ec{|f(z) + te(z)|} and M be max,cc{|p(2)|}. Then,
m(t2) < |f(2) +tip(2)| + [t2 — t1| M.
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Therefore, the following inequality holds:
m(te) < m(t1) + |ta — t1| M.

When we interchange ¢; and t5, the resulting inequality also holds. Therefore,
Im(t2) —m(t1)| < [t2 — t1|M.

This inequality implies that m(t) is continuous in the interval 0 < ¢ < 1. From the
hypothesis, m(t) > 0 holds for any ¢ in [0, 1]. Therefore, m = ming<;<1{|m(t)|}
should be positive. Now, we denote the length of C by L and the maximum of
[f(2)¢'(z) = f(2)¢(2))| on C by G. Let N(t) be

/f’ +t¢'( )Z
)+ tp(z

Then, we have

1 t1 —t / —f t1 — t2|GL

™ Je (F(2) + tip(2))(f(2) +t200(2)) 2mm
which implies that N(t) is continuous on the interval 0 < ¢ < 1. Therefore, the
equality N(0) = N(1) holds since N(t) is a nonnegative integer for any ¢. O

4.2. Main Theorem
In this subsection, we prove the main theorem.
Theorem 3. Let F' be an interval polynomial as described by (x) and D be a closed

domain whose boundary C' satisfies Condition 1. When D is unbounded we assume
that degrees of all polynomials in F are equal. Suppose the following conditions.

o There exists a polynomial fo € F that does not have a zero in D.
o There exists a point ay € C that is not a pseudozero of F'.

Then, the following two conditions are equivalent.

1. There exists a polynomial f € F having a zero in D.
2. There exists a polynomial f € F such that f has a zero on C' and the number
of coefficients a; of f that are not l; or h; is at most one.

We prove the following lemma for the proof of Theorem 3.

Lemma 2. Consider the following simultaneous equations with a parameter z € C,

ai(z)z +b1(2)y = ci(2),
{ az(z)r + ba(2)y = ca(2), (1)

where a;(z), bj(z), ¢j(2) are continuous with respect to z. Let I' be a simple curve
of finite length whose two endpoints are zg and z1 (20 # z1). Let d(z) be the
determinant

a1(z) bi(z) ’
az(z) ba(z) |°
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Suppose the following conditions:
e d(z) =0 and d(z) #0 for z € '\ {z0}.
o The solutions of (1) are bounded for z € T' \ {zo}.

Then, the simultaneous equations (1) are indeterminate at z = 2.
Proof. For z € T' \ {20} we put

_ | az) bi(2) _
nm(z) - 02(2) bg(z) I ny(z) -

Then, the solution = and y of (1) can be represented as functions of z as follows:

_ _ ny(2)
The functions n,(z) and n,(z) converge to 0 since d(z) converges to 0 as z tends
to zo on I' and the solution of (1) is bounded in I" \ {zo}. Therefore,

1z (20) = 1y(20) = 0, (2)

since nz(z) and ny(z) are continuous. Furthermore, if a;(z9) = b;(20) = 0 hold,
then c¢;j(z9) = 0. The reason is as follows. Since there exists a positive number M
such that |z(z)| < M and |y(z)| < M hold for z € ' \ {20}, the inequality

|¢j(2)| = laj (2)z(2) + b;(2)y(2)| < (la;(2)] + [bj(2)[) M
holds for z € '\ {20} Since (Ja;(2)|+|b;(2)|)M converges to 0 when z tends to zo,
¢;(z) converges to 0 and c¢;(z9) = 0 follows from the fact that c¢;(z) is continuous.

We prove the lemma by dividing it into three cases.

First, we prove the case aj(z0) = a2(z9) = 0. If by(z9) # 0, then the second
equation of (1) is equal to the first equation multiplied by ba(z0)/b1(20). Again,
b1(z0) # 0 implies the conclusion. If by (zy) = 0, then ¢4 (z9) = 0 and the equations
of (1) become the second equation only. Furthermore, if b2(z9) = 0, the second
equation also vanishes.

Second, we prove the case a1(z0) = 0 and az(z9) # 0. (The case a1(z) # 0
and az(z9) = 0 is similar.) The assumption d(zp) = 0 implies that bi(zp) = 0.
Therefore, ¢1(2z0) = 0 and the second equation of (1) vanishes. Then, the assump-
tion az2(zp) # 0 implies the conclusion.

The last case is that when both a;(zo) and az(z) are not 0. The assumption
d(z0) = 0 and (2) imply that the second equation of (1) is equal to the first
equation multiplied by as(z0)/a1(20) and az(zo) # 0 implies the conclusion. [

ai(z) c(z) ’ '

a2(z) ca(2)

The proof of the main theorem is as follows.

Proof. Tt is sufficient to prove that condition (1) implies condition (2) under the
assumptions of the theorem.
From Proposition 1, there exists a polynomial g € F' having a zero a on C.
If the number of coefficients of g that are not the endpoints of the interval
coefficients is less than two, the proof is done.
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Otherwise, we take two of them and write them as ¢; and t5. Then, we can
write the real part of g(z) and the imaginary part of g(z) as follows:

Reg(z) = a1(2)t1 + b1(2)t2 + c1(2), Img(2) = az(2)t1 + b2(2)t2 + c2(2),

where a;(z), b;(2), ¢j(2) are continuous functions with respect to z. The equation
g(a) = 0 is equivalent to the simultaneous equations

al(z)tl =+ b1 (Z)tg =+ C1 (Z) = 0, 3)
as(2)tr + ba(2)ts + ca(z) = 0. (

We consider these to be the simultaneous equations of ¢; and t, with parameter
z. If the determinant
ai(z) bi(z) (4)
az(z)  b2(2)
is 0 at z = «, then we can move t; and ¢, as « is a zero, until either t; or to reaches
one of the end points of the interval coefficients.

If the determinant is not 0 at z = «, the solutions t; and t, are continuous
with respect to z whenever the determinant is not 0. Therefore, when we move z
from a to ap on C, one of the following occurs.

(a) The determinant (4) is not 0, and either ¢; or ¢3 reaches one of the endpoints
of the interval coeflicients.
(b) The determinant (4) is 0 at a point (.

If the determinant (4) is not 0, and ¢; and t3 are in the interval coefficients as z
tends to g, then from Lemma 2, the simultaneous equations (3) are indeterminate
at z = . This contradicts the assumption that aq is not a pseudozero of F'.

When case (a) occurs, we find that there exists h € F' such that h has a zero
on C and the number of coefficients of h that are not equal to the endpoints of the
interval coefficients is less than that of g. If case (b) occurs, we can move t; and
to as (3) holds at z = (3, until either ¢; or ¢5 reaches the endpoints of the interval
coefficients. That is, also in this case, we can find a polynomial A € F such that
h has a zero on C and the number of coefficients of h that are not equal to the
endpoints of the interval coefficients is less than that of g.

We apply this procedure repeatedly until condition (2) is satisfied. |

4.3. Edge Theorem

Here, we describe the relation between Theorem 3 and the Edge Theorem [1].

In the Edge Theorem, the notion of a polynomial polytope appears, which
is an extension of an interval polynomial. The set of polynomials represented as
a convex combination of a given finite number of polynomials is said to be a
polynomial polytope. For more details see textbooks on control theory.

Theorem 4 (Edge Theorem). Suppose that a domain D C C satisfies the condition
“any point in the compliment of D is on a path to infinity.” Let F' be a polynomial
polytope. All zeros of any polynomial in F are contained in D if and only if all
zeros of any exposed edge of F' are contained in D.
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Remark 4. For an interval polynomial, an exposed edge is a subset of the set of
polynomials whose coefficients are the endpoints of the interval coefficients except
at most one coefficient. However, we should examine all such polynomials since
there is no efficient way to find all exposed edges.

Suppose that Theorem 3 can be applied to a domain D and the Edge Theorem
can be applied to the compliment D¢ of D. Then, as described above, we can solve
Problem 1 using Theorem 3. We can also solve Problem 1 by applying the Edge
Theorem to D¢ because the negation of the statement “there exists a polynomial
f € F such that at least one zero of f belongs to D” is “all zeros of any polynomial
in F' belong to D¢.” The computational cost when we use Theorem 3 is slightly
high; determining whether there exists a zero in D for a given polynomial in F
and whether there exists a polynomial f in F' such that f has a zero at a given
point on C' are added.

However, the strong point of Theorem 3 over the Edge Theorem is that there
exists a domain D such that Theorem 3 can be applied to D but the Edge Theorem
cannot be applied to D¢. Closed disks and closed rectangles are such examples.

4.4. Computation Method

In this section, we describe the computation method using Theorem 3.
First, we show the method for deciding whether a given point on C is a
pseudozero of an interval polynomial.

4.4.1. Polynomials Having a Zero at a Given Point of the Boundary. Let F' be an
interval polynomial as described by (x). Then, we can write

F(z) = Z{ It +1Yej(z) | 0<t; <1

Therefore, there exists a polynomlal f € F such that f has a zero at a complex
number « if and only if the equation

Z{ L)t + 1} ej(@) =0

has a solution 0 < ¢; < 1 for all 5. If (1) Re(h; — l;)e;(a) < 0 or (2) Re(h; —
l;)ej(a) = 0 and Im(h; — l;)e; (o) < 0, we replace t; by 1 —¢; and we write the
resulting equation as follows:
Z ajtj =b. (5)
j=1

Here, we take arg z for z € C in the range —7 < arg z < 7. Therefore, the above
substitution implies the inequalities —7/2 < arga; < /2 for a; # 0. We consider
the problem that (5) has a solution 0 < ¢; <1 for all j.

Lemma 3. The set {Z?Zl ajt; | 0 <t; <1} is equal to the convex hull of the set
{>j_1ejajlej=0,1}
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Proof. It is clear that the set {Z?Zl a;t; | 0 <t; <1} contains the convex hull
of the set { >0, eja; |5 =0, 1}.

To show the latter contains the former, take any element § = 2?21 a;t; in
{>°j_1ajt; | 0<t; <1} and sort t; in increasing order 0 < t;1) <ty2) < -+ <
tim) < 1. Then,

B= ajt;=(1—tsm) 0+ts0) > asg + 24 (trw) — tre—1) D_ i)
j=1 j=1 k=2

j=k
and the equalities show that ( is represented as a convex combinations of 0 and
Z?:k ) (1 <k< n) O

Hence, we construct the convex hull of the set V = {Z?Zl gja; | e;j =0or 1}
and determine whether b is in the convex hull. There are 2™ points in V in general,
but the convex hull can be constructed efficiently: We can construct it by examining
at most n points a1, asz, ..., a,.

Theorem 5. Let the set V' be as above. First, sort a; # 0 as the arguments in
increasing order. Note that —mw/2 < arga; < m/2 hold. If two or more points, say
aj, a, ai, have the same argument, then we add them up together and replace a;,
ay, a; with the sum, and write the results as p1, p2, ..., pm. Then, the vertices of
the convex hull are, in counterclockwise order, 0, vy, ..., Voym—1, where

J
dopr (1<i<m),
k=1

Z pr (m+1<j<2m-1).
k=j—m+1
We need a lemma for the proof. For z;, zo € C, we define

Re z1 Re z2

Imz; Imzs

d(zl, 22) = ’

Then, the following lemma is clear.

Lemma 4. 1. For any z, z1 and zo € C and a € R,
d(z,z) =0, d(z1,22) = —d(22,21), d(az1, z2) = d(z1,az2) = a - d(z1, 22),
d(z1 + 22,2) = d(z1, 2) + d(z2, 2), d(z,z1 + 22) = d(z,21) + d(z, 22).
2. When z1 and zo are not 0 and —m/2 < arg z1, arg zo < w/2 hold, d(z1,22) > 0

holds if and only if arg zy < argze holds, and d(z1, z2) = 0 holds if and only
if arg z1 = arg zo holds.

Now, we prove Theorem 5.

Proof. For any j (1 < j < 2m), it is sufficient to prove that an arbitrary point
> h_y €kay is sitting at the left of or on the straight line from v;_; to v; (we put
vg = vam = 0). To prove this, we introduce the following two statements.
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e For any j and a = ), _, €iax, the inequality d(p;j,a — vj_1) > 0 holds.
e Any a =Y, _, eray satisfying d(p;,a — vj_1) = 0 lies between v;_1 and v,.
First, we prove the first statement when 1 < j < m. We divide ZZ:1 ELaL
into three parts: S1 consisting of a;’s whose arguments are less than argp;, S»
consisting of a;’s whose arguments are equal to argp;, and S3 consisting of ax’s
whose arguments are greater than argp;. Then, we have

j—1
d(pj,a—vj-1) = d(pj,a Zpk =d(p;, S1 — Y px) + d(p;, S2) + d(p;, Ss)-
k=1
From the definitions of S; and S5, we have d(p;, S2) = 0 and d(p;,S3) > 0
Furthermore, the definition of S; implies

d(pj, S1) = d(pj, Y ewar) >d(p;, Y. ax) = d(P;wipk)-
k k=1

arg ap<argp;

Hence, the first statement is proved.

Next, we prove the second statement. Lemma 4 implies that the equality
d(pj, ar) = 0 holds if and only if ar = 0 or arga, = argp; (The construction of p;
implies that p; # 0). For the sum a = >"}'_, exax, we only add ay, # 0. The proof
of the first statement implies that the equality d(v; — vj_1,a) = 0 holds if and
only if the equality €, = 1 holds for k£ such that arga, < argp; and the equality
ex = 0 holds for k such that argas > argp;. Therefore, the equality

a="v-1+ E EkQ

arg ax=arg p;

holds, and the equalities v; = v;_1 4+ p; and

p; = Z ak

arg ap=arg p;

imply the statement.

Similar arguments hold for m + 1 < j < 2m, considering that v; —v;_1 =
—Pj—m, by dividing ZZ:1 €ray into Sy consisting of ax’s whose arguments are less
than argp;_,, into S> consisting of ax’s whose arguments are equal to argp;_m,
and into S3 consisting of aj’s whose arguments are greater than argp;_n,. O

4.4.2. Polynomials Having Zeros on the Boundary. Let F' be an interval polyno-
mial as described by (x). For a polynomial f = 2?21 aje; € F, suppose that a; is
either I; or h; for j # . Here, we describe a method for determining whether we
can make f have a zero on the segment Cj C C' by moving a.

We write the representation of C) as ¢k (s) + ik (s), s € Sk. For simplicity,
writing ay as t and [lx, hy] as [I, h], we have

fz) =tex(z JrZaJeJ te[l,h].
J#A
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Substituting ¢ (s) + i1 (s) for x, we have
F(on(s) + iy (s)) = u(s, t) + iv(s, 1),

where u, v € Q(s,t). Therefore, f has a zero on Cy for some ay € [ly, hy] if and
only if the following simultaneous equations have a solution s € Sx and [ <t < h.

u(s,t) = 0,
{ v(s,t) = 0. (6)

These equations are of degree one with respect to t. Therefore, solving v = 0 and
v = 0, we write t = T1(s) and t = T(s), where T}, To € Q(s) (see Remark 5
below). Moreover, we put
Ti(s) — Tr(s) = (7)

where P, Q € Ql[s] and ged(P, Q) = 1.

Therefore, the problem is whether there exists a zero a € Sy of P that satisfies
I <T(a) < h by putting T =T or T» (we can take either).

When [ = h, we set
e, 0
Qu(s)
where P;, Q; € Ql[s]. Put G; = ged(P, P;), we can solve Problem 1 by examining
whether there exists a zero o € Sy, of Gy since the equations T'(a) =l and P(a) =0
hold for any zero «a of Gy, and T'(8) # [ for any zero 8 of P/G.

When [ < h, we compute (8) and

T(s)—1=

T(s) —h= (9)

where Pp, Qn € Q[s], ged(Pr, Qr) = 1. Put G; = ged (P, P) and Gy, = ged(P, Py).
Then, G; and G}, are relatively prime because T'(a)) = I for any zero « of G; and
T(8) = h for any zero 8 of Gj. Therefore, we can divide zeros of P into three
groups: the zeros of Gy, the zeros of G}, and the zeros of P/(G|G}).

We only need to examine real zeros since S C R. For a real zero « of Gj,
we examine whether a € S, and we can solve this using, for example, Sturm’s
algorithm (or some other efficient algorithm). We carry out a similar procedure
for a real zero of Gy,.

For areal zero a of P/(G,G},), we examine whether o € Sy, and I < T'(a) < h.
The former can be carried out using, for example, Sturm’s algorithm. The latter
can be carried out using approximate computation with error analysis, for example,
by interval computation, under the assumption that we can raise the precision as
high as desired since T'(«) is not equal to [ or h.

To summarize, for the rational function g (s) + ik (s) (s € Sk) that repre-
sents the segment Cy, of C, the simultaneous equations in (6) determined by f and
the range [I, h] of t, we carry out the following computations.
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e Noting that the equations in (6) are of degree one with respect to ¢, solving
u=0and v =0, we write t = T} (s) and t = T5(s), where T}, T5 € Q(s) (see
Remark 5 below).

e Compute (7).

e Put T'(s) as either T1(s) or T»(s) (we can use either).

e When I = h, compute (8). If gcd(P, P;) has a zero in Sy, the answer to the
question posed in Problem 1 is “Yes.”

e When ! < h, compute (8) and (9), and put G; = gcd(P, P,), Gy, = gcd(P, Py).

If G; or G, has a zero in Si, the answer is “Yes.”
If both G; and G}, have no zero in Si, when P/(G;G}) has a zero «
that is in Sy and I < T'(a) < h, the answer is “Yes.”

The number of polynomials f to be examined is at most n2”~!. For each polyno-
mial f, we examine each segment C}, of C'. If we obtain “Yes” for Problem 1 during
the examination, the rest of the procedure is not needed. If we do not obtain “Yes”
after the whole examination is done, then the answer is “No.”

Remark 5. When ey () is constant, v(s,t) in (6) is a rational function only in s.
In this case, when computing P and @, we put ¢ = T'(s) by solving ¢ from u = 0
and set the left-hand side of (7) to v.

The order of the computational steps in the determination of whether f has
a zero in D for a given polynomial f € F' and whether « is a pseudozero of F' for
a given point a € C is a polynomial in n. On the other hand, the order of the
computational steps in the determination of whether there exists a pseudozero of
F on C'is 2" times a polynomial in n and K, since the number of polynomials to be
examined is of order 2" as described above and the number of C}, is K. Therefore,
the order of the total computational steps in the determination of whether there
exists a pseudozero of F' in D is 2" times a polynomial in n and K.

4.4.3. Experiments. We carried out experimental computations for the following
examples. We used the experimental computer algebra system Risa/Asir [10] on a
computer with an Intel (R) Xeon™™ processor (3.2 GHz) and 4 GB of memory.

Ezample 3. Solve Problem 1 for the interval polynomial
F =[0.9995, 1.0005]2% + [—0.6185, —0.6175]x + [0.9995, 1.0005]
and the domain D = {z € C ||z — (0.3096 + 0.9526 - 7)| < 0.0004 }.

Ezample 4. Solve Problem 1 for the interval polynomial F' in Example 3 and the
domain D that is the rectangle whose vertexes are 0.3092+¢-0.95, 0.31+ ¢ -0.95,
0.31 44 -0.953 and 0.3092 + ¢ - 0.953.

We obtained “No” for Example 3 and “Yes” for Example 4 within 0.1 s in
both cases.
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4.5. Rough Shape of Pseudozeros

Since, unlike real pseudozeros, the shape of pseudozeros is complicated, we should
be content with a rough shape that is almost equal to the exact shape in general.
For example, for an interval polynomial F', we should be content with a set X D
Z(F) that is a union of congruent closed rectangles intersecting Z(F'). We say
that a set X is a rough shape for Z(F') with precision €, which is a positive real
number, if the longest edge of the congruent rectangles is less than or equal to €.

If the set Z(F') is bounded and an initial rectangle containing Z(F') is given,
we can obtain a rough shape with arbitrary precision using the above computa-
tion methods for Theorem 3. If all polynomials in F' have the same degree, we
can compute an initial rectangle using, for example, the Cauchy bound for an
algebraic equation. Once the initial rectangle is obtained, we divide it into four
congruent rectangles and examine whether each of them intersects Z(F). Similar
computations are performed recursively for the rectangles that intersect Z(F).

Note that we cannot use the Edge Theorem for determining a rough shape
of pseudozeros of an interval polynomial since the outside of a rectangle does not
satisfy the precondition for the Edge Theorem.

For efficient computation, several techniques are needed in order to avoid
redundant computations. These remain for future study.

5. Conclusion

We have proposed a method for determining whether there exist a polynomial in
a given interval polynomial that has a zero in a prescribed domain. The method
is rigorous but is not efficient for a complex domain. Avoiding redundant compu-
tations, especially when computing a rough shape of pseudozeros, is one of our
future directions. Another direction is to consider the following type of problem:
For a given interval polynomial F' and a given domain D, does every polynomial
in F have a zero in D?
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