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Detection of Spindles in Sleep EEGs
Using a Novel Algorithm Based
on the Hilbert-Huang Transform

Zhihua Yang, Lihua Yang and Dongxu Qi

Abstract. A novel approach for detecting spindles from sleep EEGs (elec-
troencephalograph) automatically is presented in this paper. Empirical mode
decomposition (EMD) is employed to decompose a sleep EEG, which are usu-
ally typical nonlinear and non-stationary data, into a finite number of intrin-
sic mode functions (IMF). Based on these IMFs, the Hilbert spectrum of the
EEG can be calculated easily and provides a high resolution time-frequency
presentation. An algorithm is developed to detect spindles from a sleep EEG
accurately, experiments of which show encouraging detection results.
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1. Introduction

Sleep is a complicated physiological process. Research on sleep is very important to
both clinical diagnosis and curative effect evaluation in nervous psychiatry. Gen-
erally, sleep consists of two phases: no-rapid eye movement (NREM) and rapid eye
movement(REM). The NREM phase can be decomposed into 4 stages according
to sleep depths [6]. A crucial clue for the sleep depth to be at the second or the
third stages is that the sleep-spindles, whose frequencies are between 12 and 20Hz,
take place in the EEG (electroencephalo-graph) [7].

Traditionally, sleep-spindles are detected visually by neurologists or sleep
experts. Research on automated sleep analysis can be traced back to as early as the
1970s [12, 13,9, 11, 2, 8, 10, 5]. In recent years, two novel algorithms for automated
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detection of spindles in sleep EEG were developed by using classical time-frequency
analysis [7, 3]. Since EEGs are typically nonlinear and non-stationary signals and
the duration of a sleep-spindle is usually very short, it is usually difficult to obtain
satisfactory results in automated detection of sleep-spindles by using traditional
time-frequency analysis.

Recently, a novel analysis method for nonlinear and non-stationary data,
which is called Hilbert-Huang Transform (HHT), was developed [4]. Its key part is
the so-called empirical mode decomposition (EMD), with which any complicated
data set can be decomposed into a finite and often small number of intrinsic mode
function(IMF) that admit well-behaved Hilbert transforms. EMD is adaptive, and
therefore, highly efficient. It is based on the local characteristic time scale of the
data and is applicable to nonlinear and non-stationary processes. With the Hilbert
transform, the IMF's yield instantaneous frequencies as functions of time that give
sharp identifications of embeded structures. The final presentation of the results is
a time-frequency-energy distribution, designated as the Hilbert spectrum, which
has high time-frequency localization.

Because of these properties, in this paper, HHT is employed to analyze sleep
EEGs and an algorithm to detect spindles from sleep EEGs automatically is devel-
oped. Experiments show an encouraging detection rate which is higher than those
developed in [7, 3].

This paper is organized as follows: Section 2 is a brief summary on the Hilbert-
Huang Transform; Analysis of EEG data based on HHT is given in Section 3; In
Section 4, a novel algorithm for automated detection of sleep-spindles is proposed.
Experiments to support the algorithm are conducted and the anti-noise ability is
discussed in Section 5; Finally, Section 6 is the conclusion of this paper.

2. Hilbert-Huang Transform

The Hilbert-Huang Transform (HHT) was proposed by Huang et al [4]. It consists
of two parts: (1) Empirical Mode Decomposition (EMD), and (2) Hilbert Spectral
Analysis. With EMD, any complicated data set can be decomposed into a finite
and often small number of intrinsic mode functions (IMF). An IMF is defined as
a function satisfying the following conditions:

(a) The number of extrema and the number of zero-crossings must either be equal
or differ at most by one;

(b) At any point, the mean value of the envelope defined by the local maxima and
the envelope defined by the local minima is zero.

An IMF defined as above admits well-behaved Hilbert transforms. EMD decom-
poses signals adaptively and is applicable to nonlinear and non-stationary data
(Fundamental theory on nonlinear time series can be found in [1]). In this section,
a brief introduction is given to make this paper somewhat self-contained. The
readers are referred to [4] for details.
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For an arbitrary function X (¢) in Ly-class [14], its Hilbert transform Y'(¢) is
defined as

1 < X(t

[ X()

Y =
®) T Jo o t—1

dt’, (2.1)
where P indicates the Cauchy principal value. Consequently an analytic signal
Z(t) can be produced by

Z(t) = X(t) +iY (t) = a(t)e? D, (2.2)

where
a(t) = [X2(t) + Y2(1)]2, 6(t) = arctan(iz_((?)) (2.3)

are the instantaneous amplitude and the phase of X (¢). Since the Hilbert transform
Y (¢) is defined as the convolution of X (¢) and 1/t by Eq. (2.1), it emphasizes the
local properties of X (t) even though the transform is global. In Eq. (2.2), the polar
coordinate expression further clarifies the local nature of this representation. With
Eq. (2.2), the instantaneous frequency of X (t) is defined as

do(t)
w(t) = g
However, there is still considerable controversy on this definition. A detailed dis-
cussion and justification can be found in [4].

EMD is a necessary pre-processing of the data before the Hilbert transform is
applied. It reduces the data into a collection of IMFs and each of them represents
a simple oscillatory mode that is a counterpart of a simple harmonic function,
but is much more general. With this definition, one can decompose any function
according to the following algorithm.

(2.4)

Algorithm 2.1. Let X(t) be a signal.

Step 1 Initialize: 7o(t) = X (t), i = 1;
Step 2 Extract the i-th IMF as follows:

(a) Initialize: ho(t) = ri—1(¢), 5 = 1;

(b) Extract the local minima and maxima of h;_1(¢);

(c) Interpolate the local maxima and the local minima by cubic splines to
form w;_1(¢t) and l;_1(¢t) as the upper and lower envelops of h;_1(¢)
respectively;

(d) Calculate m;_1(t) = “j’l(t);lj’l(t) as an approximation of the local
mean of h;_1(t) at t;

(e) Let hj(t) = hj—1(t) — m;—1(t);

(f) If the stopping criterion is satisfied, i.e., h;(t) is an IMF, set imf;(¢) =
hj(t); Else go to (b) with j = j + 1.

Step 3 Let r;(t) = r;—1(t) — imf;(¢);
Step 4 If r;(¢) still has at least 2 extrema, go to Step 2 with ¢ = ¢ + 1; otherwise
the decomposition is finished and 7;(t) is the residue.
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By Algorithm 2.1, any signal X(¢) can be decomposed into finite IMFs,
imf;(¢t) (j = 1,---,n), and a residue r(t), where n is nonnegative integer de-
pending on X (¢), i.e.,

X(t) = Zimfj(t) +7(t). (2.5)

For each imf;(¢), let X,;(¢) = imf;(¢). Its corresponding instantaneous amplitude
a;(t) and instantaneous frequency w;(t) can be computed with Egs. (2.3) and
(2.4). By Egs. (2.2) and (2.4), imf;(¢) can be expressed as the real part, Re, in the
following form:

imf () = Re [aj(t) exp (z / w; (t)dt)] . (2.6)

Therefore, by Egs. (2.5) and (2.6), X (t) can be expressed as the IMF:
X(t)=Re)_a;(t)exp <Z / wj(t)dt> + 7). (2.7)
j=1

It is interesting to compare the representation above with the following clas-
sical Fourier expansion:

X(t) =) ae™", (2.8)
j=1

where both a; and w; are constants. Contrasting Eq. (2.7) with Eq. (2.8), it is ap-
parent that the IMF expansion provides a generalized Fourier expansion. It relieves
the restriction of the constant amplitude and fixed frequency of Fourier expansion,
and arrives at a variable amplitude and frequency representation. With the IMF
expansion, the amplitude and frequency modulations are clearly separated. Its
main advantage over Fourier expansion is that it accommodates nonlinear and
non-stationary data perfectly.

Equation (2.7) enables us to represent the amplitude and the instantaneous
frequency as functions of time in a three-dimensional plot, in which the ampli-
tude is contoured on the time-frequency plane. The time-frequency distribution
of amplitude is designated as the Hilbert amplitude spectrum or simply Hilbert
spectrum, denoted by H(w,t). It can also be defined equivalently in mathematics
as follows: Let X (¢) be decomposed into finite IMFs imf;(¢) (j =1,---,n) and a
residue r(¢) by Algorithm 2.1, then,

0 if J,+ is an empty set,

2.9
Zjejwytaj(t)y otherwise, (2.9)

H(w,t) = {
where J,,; = {j|0 < j < n satisfying w;(t) = w}.

H(w,t) gives a time-frequency-amplitude distribution of a signal X(t). If
amplitude squared is more desirable commonly to represent energy density, then
the squared values of amplitude can be substituted to produce the Hilbert energy
spectrum.
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3. HHT for EEG Data

To observe the performance of the HHT for EEG data, a 6 second segment, denoted
by X(t), is selected from a sleep EEG which is sampled when the sleep is at the
2nd stage of a NREM phase. It contains two sleep-spindles, marked by ‘A’ and
‘B’ respectively, as shown in Fig.1. With Algorithm 2.1, it is decomposed into
seven IMFs and a residue, which are shown in Fig. 2(c1) ~ (c8) respectively from
top to bottom. From Fig.2(c2), it is easy to see that there are two sub-segments
of high amplitude in the periods from about 20 to 160 and from about 750 to
1050 respectively, whose frequencies are around 13Hz (the first consists of about 9
waves within 0.7s(140 points) and the second consists of 18 waves within 1.5s(300
points)). Such a sub-segment whose amplitude is high and frequency is between
12 ~ 20Hz is a possible spindle wave we want to detect, which is called a PSW
for simplicity. Based on the analysis of this example, it seems possible to detect
sleep-spindles based on features in some of the IMFs, such as the second one
shown in Fig.2(c2). To examine the observation, let us consider another example
as shown in Fig.3. It is also a sleep EEG segment of 6 seconds, in which only
one sleep-spindle, marked by ‘A’; is included. Similarly, with Algorithm 2.1, it
is decomposed into seven IMFs and a residue, which are shown in Fig. 4(cl) ~
(c8) respectively from top to bottom. It is observed that the second IMF does
not contain PSWs. However, in the third IMF as shown in Fig.4(c3), there is a
PSW starting at about the 800 and ending at the 1000 (corresponding the part
marked by 'A’ in Fig.3). By conducting more experiments like Fig.2 and Fig.4, we
conclude that, for a sleep EEG segment which contains spindles, in general, one
cannot determine in which IMF the interesting sub-segments may appear. In fact,
a spindle consists of a number of oscillatory modes which are the same or similar
in local characteristic time scale (an oscillatory mode is a wave between a pair of
successive maxima or a pair of successive minima [4]), when a EEG segment is
decomposed by EMD, these oscillatory modes may be dispersed to different IMF's.
Therefore, the PSWs cannot be detected based on some IMFs and consequently

EEG Ampltude
o
o

) 200 00 800 1000 1200

600
Time Sample (fs=200Hz)

FIGURE 1. A sleep EEG segment of 6 seconds at the second sleep
stage, in which two sleep-spindles are included as marked by ‘A’
and ‘B’ respectively.
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FI1GURE 2. The resulting EMD components from the EEG data
of Fig. 1. The last component, ¢8, is not an IMF, it is the residue.
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FIGURE 3. A sleep EEG segment of 6 seconds long at the second
sleep stage, in which a sleep-spindle is included as marked by ‘A’.

the Hilbert spectrum, which is the global time-frequency-energy distribution, is
considered as a natural substitution for the detection of sleep-spindles from EEGs.

Since IMFs have good time-frequency resolution as described in Section 2
(see [4]), one can predict that, in the Hilbert spectrum of a sleep EEG segment,
high energies will take place within its PSWs. This prediction is verified by the
graphs of the Hilbert spectrum of the sleep EEG segments: Fig. 5 and Fig. 6 are
respectively the contour maps of the Hilbert spectrums of the sleep EEG segments
shown in Fig. 1 and Fig. 3. In Fig. 5, one can find two high energy bands whose
frequencies are 8 ~ 20Hz or so: one starts at about 0 and ends at 200, the other
starts at about 750 and ends at 1050, as highlighted by the two rectangles in the
figure. Similarly, in Fig. 6, there is a high energy band whose frequencies are 8
~ 20Hz or so, starting at about 730 and ending at 1000, as highlighted by the
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FI1GURE 4. The resulting EMD components from the EEG data
of Fig. 3. The last component, ¢8, is not an IMF, it is the residue.
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FIGURE 5. The contour map of Hilbert spectrum for the EEG
data of Fig. 1.

rectangle in Fig. 6. Therefore, the locations and durations of the sleep-spindles
can be detected from the Hilbert spectrum of sleep EEGs successfully.

4. A Novel Algorithm for Automated Detection of Sleep-Spindles

In this section, an auto-detection algorithm for sleep-spindle detection is developed
and, consequently, experiments are conducted to support the algorithm.

Based on the discussion above and the fact that the duration of a sleep-spindle
is usually longer than 0.5s in practice, a novel method for automated detection of
spindles from a EEG is developed in this section.
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FIGURE 6. The contour map of Hilbert spectrum for the EEG
data of Fig. 3.

In practice, a sleep EEG contains a large amount of data. It is terribly time-
consuming to calculate the Hilbert spectrum of a global sleep EEG signal. Exper-
iments show that the time needed for calculating the Hilbert spectrum, which is
called the CPU time hereafter for simplicity, does not depend linearly on the data
length of the signal. When the length of data is longer than 1500 or so, the CPU
time needed increases rapidly. The five dotted curves in Fig. 7 illustrates how the
CPU times depend on the datum lengths for five signals of 2000 random data rang-
ing from 0 to 1, when a PC of Pentium IV-1.7GHz is used. It should be pointed
out that the graph changes somewhat if the signals is replaced by another signal.

20

80
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60

50

a0

CPU Time(S)

30

FiGurE 7. CPU time as a function of the length of the data set

The solid curve in Fig. 7 is the average of the five dotted curves, which illustrates
how the CPU time depends on the datum length in the rough. Thus, to save CPU
time, a global EEG signal should be divided into many short segments. The length
of the short segments should be as long as possible to keep enough integrality of
data if the CPU time is acceptable. According to Fig. 7, it is a reasonable tradeoff
to divide the global EEG signal into segments of 1200 ~ 1600 data (about 6 ~ 8
seconds for frequency of sampling = 200Hz). In our experiments, the global sleep
EEG is divided into segments of 1200 data points. The corresponding time for
each segment is about 6 seconds.
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After a sleep EEG is divided as before, we decompose each segement with
EMD into IMFs. Since the first IMF usually consists of the highest frequency
components of the segment, such as noise (see Fig. 2(cl) and Fig. 4(cl)), it is
discarded in our algorithm. For each segment, the sleep-spindles are detected by
the following algorithm.

Algorithm 4.1. Let x(t) be a segment of data of length 1200. The sleep-spindles
are detected as follows:

Step 1 Decompose z(t) with EMD into IMFs, then remove the first IMF. For
each other IMF, calculate its instantaneous frequency and instantaneous
amplitude by Egs. (2.4) and (2.3). Quantify the instantaneous frequency
into integers between 1 and 100Hz.

Step 2 Compute the Hilbert spectrum H (w,t); here it is a matrix of 100 rows and
1200 columns. Then normalize the amplitude of H(w,t) linearly such that
the values of H(w,t) range from 0 to 255.

Step 3 Extract the 8th to 20th rows of H(w,t) to form a sub-matrix, denoted by
M, of 13 rows and 1200 columns.

Step 4 Calculate the maximum of each column of M to generate an array, C' =

(C[1], ---,C[1200]). It is an energy measure of the data on frequencies
ranging from 8 ~ 20Hz at each local time. Then, define a smoothed version
of C as:
| kL2
ak=1 Y il
i=k—L/2

where L, an even integer, is the width of the smoothing window (L = 50
in the experiments of this paper) and the boundary extension is conducted
as: C[i] = C[1] for i <0 and C[i] = C[1200] for i > 1200.

Step 5 Let T be a threshold. Then, we search 1 < k£ < 1100 and I > 100 such that

Cilk+i—1]>Tfori=1,2,---,1,

and
Cilk+ 1)< T or k+I=1200.

Then a sleep-spindle that starts at k and has duration I is detected. We
set T'= 50 in the experiments of this paper.

5. Experiments

In this section, experiments are conducted to support our algorithm on sleep-
spindle detection.

For the segment of a sleep EEG shown in Fig. 1, according to Steps 1 and 2
of Algorithm 4.1, its IMFs and Hilbert spectrum H (w, t) are calculated as shown
in Figs. 2 and 5 respectively. By Step 3 of Algorithm 4.1, the sub-matrix M of the
8th to 20th rows of H(w,t) is generated as shown in Fig. 8. Then the energy array
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C of M and the smoothed version, C4, are calculated in accordance with Step 4
of Algorithm 4.1, which are shown in Fig. 9: the top is C' and the bottom is Cj.
Finally, by Step 5, two spindles of a sleep EEG are detected in this segment as
shown in Fig. 10, in which the starting points, the durations, and the end points
are marked by the dotted lines. The first starts at about the 20th datum (namely:
the 0.1th second) with a duration of about 0.8s and the second starts at about the
750th datum (namely: the 3.75th second) with a duration of about 1.5s.

B 8

T '- BTSN
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L " " L "
100 200 300 400 500 600 700 BOO 800 1000 1100
Time Sample{fs=200Hz)
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FIGURE 8. The sub-matrix M generated by the 8th — 20th rows
of the Hilbert spectrum H(w,t) shown in Fig. 5
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F1GURE 9. The top: The energy array of M shown in Fig. 8, C,
each of whose component is the maximum of the elements in the
corresponding column of M. The bottom: The smoothed version
C; of C calculated according to Step 4 of Algorithm 4.1.

Similarly, Figs. 4 and 6 are the IMFs and the contour map of the Hilbert
spectrum H (w, t) of the segment shown in Fig. 3 in accordance with Steps 1 and 2
of Algorithm 4.1. The corresponding sub-matrix M calculated by Step 3 are shown
in Fig. 11. Then, the energy array C' of M and the smoothed version, C1, calculated
by Step 4, are displayed graphically in Fig. 12: the top is C' and the bottom is C;.
Fig. 13 is the detection result by Step 5, in which a sleep-spindle is detected and
marked with dotted lines. It starts at about the 750th datum (namely: the 3.75th
second) with a duration of about 1.25s.
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FI1GURE 10. The detection result for the segment in Fig. 1. Two
sleep-spindles are detected and marked with dotted lines. The first
starts at about the 20th datum (namely: the 0.1th second) with
a duration of about 0.8s and the second starts at about the 750th
datum (namely: the 3.75th second) with a duration of about 1.5s.
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FIGURE 11. The sub-matrix M generated by the 8th — 20th rows
of the Hilbert spectrum H(w,t) shown in Fig. 6

To test our detection algorithm, 100 segments, each of which consists of
1200 data (about 6 seconds with frequency of sampling 200Hz) and all of which
contain 183 spindles, are selected from a sleep EEG database. The locations and
durations of these sleep-spindles have been determined visually by experts. For
an automated detection algorithm, its detection accuracy depends on two aspects:
(1) the accuracy of the location detected and (2) the accuracy of the duration
detected. To estimate them quantitatively, a mis-detection degree is introduced as
follows.

Definition 5.1. Let X(t) be a sleep EEG segment which contains a sleep-spindle
starting at ¢, and ending at t.. For an automated detection method for sleep-
spindles, the mis-detection degree, simply denoted by MD, is defined as follows:

1. if one sleep spindle is detected from X(t), with starting point ¢; and end point
t., then
Ly—L
MD="" . " (5.1)

where, L, = max(t,t,) — min(ty, t,), L, = min(t.,t,) — max(ty,t,) and
L =t. — t, as shown in Fig. 14.
2. if no spindle or more than one spindle is/are detected, then M D = cc.
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FIGURE 12. The top: The energy array of M, shown at the bot-
tom of Fig. 11, denoted by C', each of whose component is the
maximum of the elements in the corresponding column of M.
The bottom: The smoothed version C; of C calculated according
to Step 4 of Algorithm 4.1.
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F1GURE 13. The detection result for the segment in Fig. 3. A
sleep-spindle is detected and marked with dotted lines, which
starts at about the 750th datum (namely: the 3.75th second) with
a duration of about 1.25s.

It is easy to see that MD is a nonnegative number and MD=0 if and only if the
sleep-spindle is detected accurately, and the smaller MD is, the more accurately the
detection does. Table 1 lists the distribution of the MDs produced by Algorithm
4.1 for all the 183 samples and the corresponding histogram is displayed in Fig.
15, in which all the MDs greater than 1 is included into that of MD=1.1. It is
encouraging to see that most of the MDs are between 0 and 0.2, which shows
that our algorithm arrives at satisfying detection results in both locations and
durations.

Let us compare our technique with those in [3, 7]. The same dataset is em-
ployed to conduct the experiments. The distributions of the corresponding MDs
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TABLE 1. The distribution of the MDs produced by Algorithm
4.1, NS is the number of spindles whose MDs are within the given
interval.

MD  © 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 09

01 ~02  ~0B  ~OA ~O05 ~O6 ~OT ~O8 ~0.9 1l L
NS 1101 443 86 51 43 25 17 7 3 3 51

F1GURE 15. The histogram of the MDs corresponding to Table 1

calculated according to the algorithms in [7] and [3] are listed in the 3th and 4th
rows of Table 2 respectively. To compare more conveniently, the distribution of the
MDs by our algorithm is also listed in the 2nd row of Table 2. The corresponding
histogram is shown in Fig. 16, in which all the MDs greater than 1 is included
into that of MD=1.1. It is noticed that the MDs produced by our algorithm
concentrate much closer to 0 than those by [3] and [7], which implies that our
detection does better than theirs. To describe the detection result quantitatively,
we define the detection rate as the ratio of the number of MDs which are less than
some given threshold, T, to the total number of spindles. With this definition and
T = 0.2,0.5 and 1 respectively, the detection rates according to Algorithm 4.1, the
algorithms in [7] and [3] are listed in Table 3.

Before the end of this section, let us discuss the detection of spindles from
noisy sleep EEGs by Algorithm 4.1. It is easy to understand that Algorithm 4.1
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TABLE 2. The distributions of the MDs calculated according to
Algorithm 4.1, the algorithms in [7] and [3]. NS; are the numbers
of spindles whose MDs are within the given intervals, with j=1, 2,
and 3 corresponding to Algorithm 4.1, the algorithms in [7] and
in [3] respectively.
MD O 0.1 02 03 04 05 06 07 08 09 g

~0.1  ~0.2 ~0.3 ~0.4 ~05 ~0.6 ~0.7 ~0.8 ~09 ~1
NS; 1101 443 86 51 43 25 17 7 3 3 51

NS, 893 466 164 88 42 23 12 9 11 9 113
NS; 752 367 231 97 44 48 26 12 10 13 230

01 02 03 04 05 06 07 08 09 10 1.1

FI1GURE 16. The histogram of the MDs corresponding to Table 2

TABLE 3. The detection rates corresponding to Algorithm 4.1,
the algorithms in [7] and [3] for T'=0.2,0.5 and 1

Detection rate T =02 T=05 T=1
Algorithm 4.1 84.4% 94.2%  97.2%
Algorithm in [7]  74.3%  90.3%  93.8%
Algorithm in [3]  61.1%  81.5% 87.4%

can do well for noisy sleep EEG signals since the frequencies of sleep spindles,
about 13Hz, are usually much lower than those of noise. Another reason for this
anti-noise ability is that the first IMF has no contribution to the Hilbert spectrum.
To demonstrate our view, a great number of experiments have been conducted and
excellent results are obtained. Fig. 17 are three noisy versions of Fig. 3 by adding
Gaussian white noises with SNR (Signal Noise Ratio, which is defined as the ratio
of signal variance to noise variance in dB.) 20dB, 25dB and 30dB respectively from
top to bottom. The detection results are shown in Fig. 18, corresponding to those
in Fig. 17 from top to bottom. It is easy to see that, spindles can be detected
successfully with a minor change in the locations and durations even though the
SNRs are very low.
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FI1GURE 17. Three noisy versions of Fig. 3 by adding Gaussian
white noises with SNR 20, 25 and 30 respectively from top to
bottom.

6. Conclusion

In this paper, a novel approach for detecting spindles automatically from a sleep
EEG based on the Hilbert-Huang transform is developed. Empirical mode de-
composition is employed to decompose sleep EEGs into a finite and often small
number of intrinsic mode functions. Then the Hilbert spectrum H (w,t) is used to
give a high resolution time-frequency presentation and extract features of EEGs.
Consequently, an algorithm is proposed to detect spindles automatically from a
sleep EEG. Experiments show more accurate detection results than those in [7, 3].
Finally, the anti-noise ability of the algorithm is demonstrated theoretically and
experimentally.
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FIGURE 18. The detection results of Fig. 17 correspondingly from
top to bottom by Algorithm 4.1
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