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Introduction

A consideration of how unusual function of the monoaminergic transmitters can
contribute to the clinical picture of childhood attention-deficit/hyperactivity disorder
(AD/HD) involves an understanding of three concepts: What are the main features
of AD/HD, how does normal brain anatomy and function develop, and how do the
monoaminergic pathways interact? With this context one is equipped to look at the
evidence for unusual monoamine activity and interactions in contributing to the
problems found in children with AD/HD.

This chapter proposes a way to integrate the features that these concepts have in
common. The first part is concerned with a description of how childhood AD/HD
appears in the clinic, at home or at school. This picture then acquires structure
with specific features defined by laboratory testing. To understand what might be
“dis-ordered” supposes knowledge of the organization in normal brain structure
and in particular, how the organization of stimulus and response develops in the
child and the adolescent. Important here is that much of the functional order is
orchestrated by the monoamines. The third part sketches out where and how the long
axon monoaminergic pathways reach out across brain structures and exert (normally)
an adaptive modulation of function under changing circumstances. Further details
are provided in other chapters.

I shall emphasize childhood AD/HD with modest reference to its manifesta-
tion in adults I shall concentrate on the three main monoamines (dopamine, DA;
noradrenaline, NA and serotonin, 5-HT) with only minor reference to adrenaline.
Nonetheless this material has implications for the origin and course of AD/HD out-
side the early developmental period. Further, it will become apparent that the full
consequences of changed monoamine activity can only be fully appraised within the
context of the interactions with other amine- (e.g., acetylcholine) and amino-acid
transmitters (e.g., GABA and Glutamate).
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AD/HD – a clinical picture

The diagnosis of AD/HD usually concerns young people between the ages of 7 and
18 years. The manual of the American Psychiatric Association (APA: DSM-IV [1])
requires the presence of 6/9 features for the inattentive type, a separate 6/9 features
for the type with hyperactivity and impulsivity, or both for the more usual combined
type. The decision is based on longer structured or semi-structured interviews that
ask 60–80 questions (or more) from two informants (usually a parent and a teacher)
in order to show that the reported problems can occur independently of the situation.
These features, impairing the function of the child, must have been present before
the seventh birthday.

The health professional will get an image of motor restlessness (chair rotation,
alternately sit or stand, move from toy to toy/task-to-task, fidgeting). Fine motor
control can appear clumsy. Movement is often led by impulsivity. From observation
alone it is often difficult to distinguish impulsiveness driven by a distracter, changing
desires/motivations or an inability to withhold prepotent tendencies. Concentration is
difficult unless the situation is novel. Social abilities are poorly developed (e.g., few
friends, interruption of discourse), self-esteem is often low and the ability to organize
or plan deficient. The latter can incur poor judgment and risk-taking. Changes in the
quality of motivational features (e.g., the need to drink, assess reinforcement), stress-
and emotional control (e.g. temper tantrums) often complete the clinical picture
(review [2]).

AD/HD – neuropsychological features

It must be emphasized that there is no function typical of normal child develop-
ment that is completely absent in those with AD/HD. Lesions are not implicated.
The patient is sometimes “normal”, but the problems persist in different contexts.
A child appearing for an MR- or electrophysiological investigation can appear re-
markably “cool,” for the time being. There have been innumerable disagreements
over what constitutes a classical or “core” phenotype. Of course, a way out is to
define sub-groups by one or by another feature (e.g., referrals vs. non-referrals [3],
inattentive vs. hyperactive-combined subtypes [4], with/without different comorbid
disorders [5] internalisers (fearful anxious types)/externalisers (fearless impulsive
types [6], more or fewer than seven repeats on the dopamine D4 receptor gene [7]
those with high theta/low beta EEG ratios vs. those with high beta EEG power [8],
medication responders/non-responders [9, 10] and more. It is ironic that the fea-
ture with the most widespread applicability appears to be that of intra-individual
variability [11] – where it is the variance of response time that is usually considered.

Yet it is possible that the difficulties of AD/HD children can be both differ-
entiated and reduced to a few conventional fields of ability. Thus, variance in the
speed of performance relates to motor abilities in general, in the sense of neuromus-
cular development [12], but also to poorly controlled supplemental motor activity
and physiological state control [13]. Similarly the variance in accuracy can be ex-
plained by inattentiveness [12], in the sense that distracters can delay [14], focused
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attention/non-target detection is slow [15], and indeed signal-detection indices of
perceptual sensitivity (e.g., d-prime) are low [16, 17]. The errors that so often result
do not incur the usual slowing of the next response, implying the impaired pro-
cessing of feedback and contingent executive control [18, 19]. There are two major
processes here, the top-down control of information processing, and the short-term
sensitivity to reinforcement. If these are abnormal, one consequence is that children
with AD/HD often express an aversion to delays in event-rates. In other words there
are two separate features (dual pathway, [20], executive dysfunction and delay aver-
sion) that each make significant, independent contributions to predictions of AD/HD
symptoms.

A number, if not all, of these features of AD/HD could be summarised under
the rubric of a “disorder of impulsivity” [7]. There is some truth in this. The term
“impulsivity” has three components – acting on the spur of the moment (motor), not
focusing on the task in hand (attentional), and not planning ahead (executive [21])
that can all lead to ill-considered action. But it would be wise when attributing
unusual neurochemistry to non-adaptive function to separate the control systems for
cognitive and behavioural impulsivity [22]. The alternative to lumping is to split the
disorder into numerous sub-types. This will always have some explanatory value for
specific features, but it is worth considering, for example, the experience of Nigg and
colleagues [23]. They examined executive function, motor abilities and flexibility of
cognitive set, and found that the similarities between diagnostically inattentive and
combined subgroups were much more striking than the differences (cf. also [24]).

Unusual brain functions in children with AD/HD are associated with inatten-
tion (perception and selection), poorly controlled (executive) decision processing
(conflict management), non-adaptive evaluation of reinforcement contingencies and
situationally inappropriate motor activity. These impairments are reflected in each
of the successive stages of information processing that are so clearly and precisely
represented by scalp electrophysiological records (event-related potentials, ERPs) in
the first half second after an event: Stimulus-elicited cortical excitation (N1 reduced
[25]) interference control (P2 larger [26]) stimulus categorization (N2 reduced [27])
effortful updating of short-term memories (P3 reduced [28]) assessment of stimulus
“target-ness” (processing negativity reduced [29]), assessment of mistakes (error-
related negativity/Ne/Pe reduced [30]), and motor organization (LRP reduced [31]).

Normal brain development

With an interest in AD/HD in mind, interest in normal anatomical and cognitive
development centers on the classical peripubertal age for referral (8–14 years) with
curiosity extending to earlier features (potentially relating to causality) or how matters
progress or disappear in young adults.

Myelination, white matter development, begins in the second trimester, develops
linearly from 4 years and continues through (and beyond) the third decade. In the
meanwhile frontal lobe gray-matter develops slowly and gradually to 8 years of age
when prefrontal development (rostral to the precentral sulcus) takes off and develops
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rapidly until about 14 years. Having peaked prior to adolescence, the grey matter vol-
ume then declines [32]. This process is attributed to the pruning of connections [33],
and may start as early as 7 to 10 years of age in sensory and in frontal association
cortices, respectively. The thickness of the cortex decreases across the whole period
from 8–20 years [34]. The peripubertal age also sees the rise of hemispheric differ-
ences (e.g., around the inferior frontal sulcus: cf. language development on the left).
Some of these differences are gender specific [35].

Brain, especially white-matter-volumes, increase continually over three decades:
overall increases of volume are found in many parts of the frontal, parietal and mid
temporal (limbic) lobes, while more definite decreases occur in the lateral cortices,
basal ganglia and thalamic nuclei [36–38]. These studies have shown that matura-
tion progresses in waves, rostrally in the frontal and laterally in the temporal lobes.
Interestingly these separate developmental axes are reflected in a functional study
showing the “migration” along these axes of the sources of activity underlying the
detection, registration and response to changes of auditory stimulation [39]. Such
maturational processes continue into the frontal and temporal poles throughout the
third decade. Indeed, frontal grey/white matter ratios continue to decrease (linearly)
even beyond that age [40].

Normal neuropsychological development

Linear increases in the rate of development of postural and sensorimotor coordi-
nation peak around 6 and 10 years of age, respectively. Continued development,
particularly of the latter, depends increasingly on experience and its consequences,
described as “enhanced programming resources” and online feedback processing
[41, 42]. Tapping into such problems may reflect the core problems of AD/HD chil-
dren in cognition, on which this chapter concentrates. Thus, it should be borne in
mind that motor coordination does not become mature until relatively late (in the sec-
ond decade), alongside attentional and executive functions [38]. In contrast, sensory
functions, orientation and speech-related abilities develop earlier in the first decade.

In late childhood (around 7 years ± 1 year) children make a qualitative leap in
their cognitive abilities, allowing measures to be made of tests that have a qualitative
if not a quantitative similarity to those used in the neuropsychological testing of
adolescents and adults. In particular they are able to orient between cues and master
conflicting stimuli about as well as older children [43]. However, the speed and
accuracy of switching attention continues to improve with age.

As would be expected from anatomical developments briefly described above,
the transition of puberty (around 12 years ± 1 year) coincides with the maturation of
many abilities associated with the function of the frontal, or especially the prefrontal
lobes. These include abstract reasoning, use of goals in making plans, inhibitory
control, verbal fluency, verbal delayed recall, novelty-seeking, even finding a degree
of independence from the family [35, 44].

But fine grain analyses of development have been rare. A series of studies by
Luna and colleagues [45] on speeds of processing, the ability to inhibit voluntary
responses and working memory use were all based on variations of an oculomotor
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task, thereby controlling for the comparison of qualitatively different task require-
ments. They reported that adult levels of response inhibition were not achieved before
the age of 14 years1, independent of speeds of processing that matured a year later.
Working memory performance, which depended modestly on the other two variables
considered, did not attain adult levels until 19 years of age.

The development of the stages of information processing is illustrated in an ex-
emplary way with ERP measures. The arrival of sensory information in the thalamus
and sensory cortices is marked by the P1/P50. Maturation to adult levels involves a
decrease of amplitude and latency by about a third between 5 and 15 years [48]. The
gating of the ERP response to a second stimulus (as marked by P50 in a paired click
paradigm) is extremely variable at puberty [49], and may not achieve adult expres-
sion until the end of the teens [50]. The development of excitation elicited by a salient
stimulus (N1), along with the suppression of processing of other stimuli (P2), as a
preliminary to its being further processed, has been described for subjects aged from
5 to 30 years [51, 52] .The N1/P2 adult waveform only becomes evident at 13-14
years of age. The decreases of the latency and amplitude characteristics of the peak
and the dipoles do not mature until after 16 years. Around puberty the topographic
distribution of the P50 peaks across the scalp move posterior and N1 peaks lose
their rightward asymmetry However, P2 peaks do not move rostrally to their central
adult locations until the end of adolescence. The categorization of stimuli (marked
by N2) and context-updating (marked by P3) attain their bilateral frontal and parietal
topography by around 17 years of age. The amplitudes of these components show
a linear and curvilinear development with age, respectively, and mature around 15
years of age with latency attaining adult levels some 3 years later [53, 54]. Indicators
of automatic selective processes (mismatch negativity, MMN) develop about 3 years
earlier than controlled attention-related processes (negative-difference, Nd). While
MMN topography becomes bilaterally distributed after puberty, the latency reaches
adult levels around 17 years, but the dipoles continue to migrate along with normal
frontal and temporal lobe expansion through the third decade [39, 51].

The monoamine pathways

As their names suggest there are three major dopaminergic (DA) innervation sys-
tems in the forebrain, with their mesencephalic origins in the ventral tegmental area
(VTA) and substantia nigra (SN) in the brainstem – the mesocortical, mesolimbic and
nigro-striatal projections [55]. The density of mesocortical DA pathways in primates
increases rostrally across the cortices. For example, the increase in the rostral audi-
tory association cortices is already markedly higher than in the more caudal temporal
lobe. A moderate then higher innervation is found moving from somatosensory over
motor to prefrontal association areas. The axons are especially dense in layers I and

1 The emphasis is on adult levels of performance. In the preceding peripubertal phase children
can execute such tasks (e.g. Go/no-go), but they recruit much larger areas in the frontal lobes
[46] and the amplitudes of the ERPs show that their categorization of stimuli and evaluation
of errors made on these and conflict tasks are in general remarkably small [47].
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Figure 1. Nodes for the convergence of afferent fiber input on two mesocortical and two
mesolimbic DA projection regions (prefrontal and entorhinal cortices, the nucleus accumbens
and septum). Reproduced from [55] with permission from Elsevier.
Amygdala (Amyg), Cerebellum (Cb), Cingulate cortex (Cing), Claustrum, Entorhinal cor-
tex, Frontal cortex, Hippocampus (Hippo), Hypothalamus (Hypothal), Infero-temporal cortex
(Temp), Olfactory bulbs (OB), Parietal cortex (Par), Prefrontal Perirhinal, Piriform and Ret-
rosplenial cortex, Septum (Sept), Thalamic nuclei (Thal), Tuberculum-olfactorium (Tub-Olf),
Ventral noradrenergic bundle (VB): Monoaminergic nuclei (A/B 6-10).

II and again in V and VI [56]. DA D1 receptors (dense in I-IIIa, moderate in V and VI)
are present at one to two orders of magnitude more than those of the D2-family, but
in this D2-family the D4 type of receptors are more evident in the neocortices (e.g.
layer V), and the D2 types in the limbic and temporal regions. Important recipients
of mesolimbic innervation include the entorhinal and cingulate cortices (transitional
and archicortices), parts of the hippocampus and amygdala, and the ventral striatum
(nucleus accumbens and septum). Oades and Halliday [55] pointed out that these
regions are “nodes of convergence” of input from very many brain regions and rep-
resent excellent opportunities for DA activity to influence the shifting of the control
of their efferent output between different afferent sources (Fig. 1).



Function and dysfunction of monoamine interactions in children and adolescents 213

The main noradrenergic (NA) projections to the limbic and cortical brain regions
of concern here arise in the locus coeruleus (LC) of the pontine brainstem. NA
fibers project throughout the forebrain, to the phylogenetically older archicortices
(hippocampus and amygdala), the neocortical mantle, but also the cerebellum. This
more dorsal pathway along with a more ventral one from the nucleus tractus solitarius
also innervate several subcortical regions including the thalamus and hypothalamus
[57]. Innervation in the neocortices increases from layers I–V with highest densities in
II and IV with greater densities of the alpha and beta receptors in the more superficial
layers [56].Alpha-2a sites, prominent in frontal regions, may be pre- or post-synaptic
in location, while alpha-1 sites more often exert effects presynaptically, the former
inhibiting, and the latter enhancing monoamine release [58].

Relevant to forebrain function, serotonergic (5-HT) projections originate in the
median and dorsal raphe on the border of the pons (containing the LC) and midbrain
(containing the VTA). There is some overlap between the areas innervated, but the
dorsal raphe projects more anteriorly, to the frontal cortices and basal ganglia, and
the median raphe somewhat more to limbic structures and the diencephalon. The
sensory and motor cortices display a decidedly patchy distribution of low and high
levels of innervation [59]. Much of the input arrives in layers III and IV [60]. Two of
the most studied 5-HT binding sites in the CNS are the 5-HT1a and 5-HT2a recep-
tors. The former is often characterised as an autoreceptor, and the latter postsynaptic,
but this is not an exclusive compartmentalization (e.g. 5-HT1a sites are active posty-
naptically on cholinergic neurons). Stimulation of either site can lead to increased
catecholamine outflow2 [61–64].

Monoamines – development

DA neurons enter the cortical plate early in the second trimester. DA has a trophic role
at this early stage, whereby impairments can have consequences on the later thickness
and connectivity of the cortex [65]. From birth to puberty the number of axons can
increase six-fold before pruning processes set in. Numbers of DA receptors peak in
mid-childhood, already decreasing well before puberty (D1 earlier than D2: [66].
Across adolescence to adulthood the number of D1 sites falls by nearly 50% and D2
sites by nearly 60% [67]: thereafter numbers of D1 sites decrease by a few percent
per year. The implication that the D1/D2 ratio falls with age is noteable. In studies of
rodents the peak for D2 receptors seems to be larger in males, and despite the ensuing
reductions, levels are still higher than in females through adolescence [68]. (The same
study also described more D1 sites in right than left sided subcortical regions that
lasted from the post-pubertal period into adulthood: this is reflected by measures of
DA and its metabolite DOPAC that showed a lower turnover in the left hemisphere
until inter-hemispheric coupling matured in young adulthood [69]. Such findings
are yet to be confirmed for humans.) The DA transporter system follows a different

2 This generalization glosses over the variation with brain region, receptor sub-type (e.g.,
5-HT2c, 5-HT1b), the mechanism (through an effect on release or synthesis) and whether
the catecholamine neuron is in a tonic- or burst-firing state.
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course, peaking at puberty and gradually decreasing right on through to 50 or 60 years
of age (postmortem study [66]. This matches the inverse changes for the synthesis
of DA (by tyrosine hydroxylase) that in non-human primates continues to develop
right through into adulthood [70]Ṫhe gradual decrease of transport mechanisms may
accurately reflect functional activity and are directly reflected by the gradual decrease
of DA turnover seen in urinary measures taken between 10 and 20 years of age [71].

NA development in the human fetus follows, but at first lags a little behind that
for DA in the perinatal period [72, 73]; but if data from animal studies pertain then
it soon speeds up and overtakes that for DA [74]. In studies of primates and other
animals alpha-2 and alpha-1 types of receptor also follow each other in developmental
waves, with the alpha-2 ahead at birth. But levels fall off after birth as numbers of
alpha 1 sites increase. Yet by puberty alpha-1 sites are decreasing more rapidly than
the alpha-2 sites. Transport mechanisms are gradually reduced following puberty but
increase again by the end of adolescence (review [59]). This post-pubertal decrease
followed by an increase across the teenage period is reflected in urinary indicators
of NA turnover [71].

5-HT development reflects first a prenatal neurotrophic role, and second a postna-
tal expansion of neural innervation and function. A study of Rhesus monkeys from 2
weeks to 10 years of age [70] showed that while the development of catecholamine-
containing appositions on cortical pyramidal cells reached half adult levels by 6
months of age, 5-HT appositions had already attained adult levels by 2 weeks. Pre-
pubertal development, though considerable, appears paradoxically to be functionally
slower than that for DA, such that CSF measures suggest a near doubling of the ratio
of DA to 5-HT metabolites over the prepubertal period (review [59]). Post-mortem
tissue [75] and urinary measures [71] suggest that rather like the situation with NA,
5-HT turnover decreases initially post-pubertally, but then rises again at the end
of the second decade. If studies of rodent development are any guide considerable
lateralized differences are to be expected. Neddens and colleagues [76] reported a
rightward emphasis of fiber density in the neocortices and a leftward emphasis in the
limbic cortices.

Clearly there remains a lot of detail on the development of the various features of
monoamine systems to be described: the near absence of knowledge of the relative
abundance of the different receptor subtypes is striking and only partly explained by
the fairly recent availability of suitable ligands. The results reported in this section
show that there is no simple way to say that the functional activity of one or the other
monoamine (let alone their interactions) is more or less than adult levels at a given age.
First the baseline of adult levels is continually changing with age. Secondly it remains
unfortunately equivocal whether any specific function considered is more accurately
represented by turnover, synthesis rates, transport mechanisms, or the development
of synaptic appositions on innervated pyramidal or non-pyramidal cells. Each of
these features develops at different non-linear rates.
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Monoamines interactions pertaining to normal cognition

Brain-damage or insults to the monoamine systems alone do not allow unequivocal
conclusions to be drawn about hypo- or hyper-function in the affected system. But
they do provide some insight into the normal situation by seeing in what domains
there are dysfunctions. Preclinical studies (e.g. reviews [77–79]) suggest that damage
impairing NA function increases distractibility. NA tunes the influences of the inputs
competing to control the output of an NA innervated region. Low to high tonic
firing rates are associated with inattention, and low arousal to agitation and stressed
states. In contrast phasic firing occurs when stimulation is relevant, other activity
should be tuned down [80]. Impaired 5-HT function is associated with impulsivity,
whereby decreased function may relate to outbursts of aggression, while increases are
associated with cognitive impulsiveness [81–83, 22]. By analogy with the role of NA
in tuning, studies of stimulus control suggest that 5-HT very often appears to influence
transmission by exerting a volume-control or gain function [59, 84]. By contrast, the
role of (increasing) DA activity has been described as one of facilitating the likelihood
of a switch occurring between one of two inputs controlling the output of a given brain
region [79]. Reducing DA function thus leads to the slowed switching of a particular
cued response [85]. This can be advantageous in initial learning. In contrast, high
activity enhances switching as in divided attention, or between attentional and task
sets (e.g. trail making, or discrimination reversal [86, 87]). While low and high
levels of DA and NA activity respectively demonstrate the different roles of tuning
and switching in initial learning, there are other situations in the control of ongoing
behaviour when their function can appear rather similar as a result of the presence
of different receptor subtypes3.

There are numerous complications that make for difficulties in the interpretation
of the results of the manipulation of any one of the monoamines. I shall mention a
few. NA neurons have sites that will transport NA and DA, and others that can release
NA or DA [89]. This makes it very difficult to determine precisely the mechanism by
which, say, psychostimulants achieve a specific cognitive effect. Questions are not
limited to the role of DA. NA is known not only for its high affinity for the alpha-2
and low affinity for the alpha-1 binding site, but is a relatively good ligand at the DA
D4 site [90]. Interactions between the two catecholamines are also documented. For
example, NA receptors have even been hypothesised to “gate” DA release [91].

It has long been realised that 5-HT input frequently inhibits DA activity Now a
better understanding of the HT2a binding site has shown that this effect must also ex-
tend to the NA system [64]. However, opposite effects on catecholamine release are
attributed to 5-HT1b, 5-HT1d and 5-HT3 binding sites. The fact that both alpha-NA

3 Arnsten [77] provides an example of NA involvement in switching between channels of
activity. Information may be faithfully transmitted from the thalamus to the cortex under
conditions of sufficient NA release to engage α1 and β NA receptors. But when low levels
of NA are released α2 receptors are engaged. Then, thalamic neurons enter a burst mode
which prevents information transfer [88]. In this way, the varying affinities of NA for α2 vs.
α1 or β NA receptors acts rather like a “switch to alter neuronal, and the ensuing behavioral
state.”
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and 5-HT1 sites may be found in pre- and post-synaptic locations warns against gen-
eralizing about a transmitter’s activity being associated with unidimensional changes
of any one cognitive ability [59].

AD/HD: (1) Indicators of monoamine metabolism – theory

Let us take a “top-down” approach from the viewpoint of theories currently ad-
vanced to explain AD/HD problems. There are two to three broad explanations, that
nonetheless do not acount for all features, and two to three that account for a domain
of dysfunction, but extension beyond these domains remains controversial.

First, there is the dual pathway theory [93] and the cognitive energetic model [93].
The former directly invokes monoaminergic involvement and provides the back-
ground to the rest of this chapter. The latter is pitched at the psychological level
of state regulation with physiological underpinnings, but elaborates little on the
monoaminergic contribution. A related account [13] explicitly accounts for a range
of AD/HD problems (variability and maturation) at the level of energy availability
in CNS function, but only indirectly invokes modulation by the monoamines.

Other theories aim at generalizing from specific domains of performance such as
response inhibition [94, 95] to executive function and affect control, and the “dynamic
developmental theory” [96] that concentrates on the registration of reinforcement and
related motivational consequences (see also reviews in [5, 97]). All these theories
depend on functions modulated by DA (prima unter pares). They tend to overlook the
role of NA and 5-HT, but do admit dependence on the interactions with excitatory
and inhibitory transmitters (Glutamate, GABA and acetylcholine), without much
elaboration.

Most of these theories also do not pay adequate attention to explanations that
could account for rates of comorbidity, maturation lag, impulsivity, stress-responsivity
and sleep-wake patterns, to name a few other abnormal features associated with the
phenomenon of AD/HD.

AD/HD: (2) Indicators of monoamine metabolism – a dual pathway

This theory invokes a role for the mesocortical DA system in modulating (defi-
cient) dorsal fronto-striatal glutamatergic mediation of some executive functions. It
also envisions a role for the mesolimbic DA system in the anomalously functioning
reward and motivation-influencing circuits of the more ventral frontal-accumbens
glutamatergic system[92].

Mesocortical pathway

Direct evidence for the involvement of the mesocortical pathway is rather recent.
Neuroimaging evidence from subjects with AD/HD suggests less activity in the right
prefrontal regions and parts of the basal ganglia (the caudate nucleus and pallidum)
during a continuous performance test of sustained attention (in children [98]), but
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also in these areas (inferior frontal) and in the cingulate region during stop-signal and
Go/no-go tests of impaired response inhibition and impulsivity (in adolescents [99,
101]. Indeed, no significant increase was found in AD/HD children on interference
suppression (as exhibited during performance of a flanker task [102]) where the
activity recorded in normal children in the mid- and inferior frontal regions correlates
with success [103]. The emphasis on right inferior frontal regions is warranted by
a detailed study relating the location of brain damage to stop-task performance in
brain-damaged adult subjects [104]. But we should also note with regard to the fMRI
studies that blood oxygenation (BOLD) signals are low across many brain regions,
even in the cingulate gyrus during Stroop tasks when performance in the interference
condition was actually unimpaired [105].

In general, MR-anatomical studies of AD/HD subjects give little clue as to
whether any particular region, such as those just mentioned, is altered in size or
development. A small reduction is recorded as widespread through the cerebral and
cerebellar lobes [106]. However, grey matter reduction in the right prefrontal [107],
as well as in the caudate regions [108] in these studies is noteworthy.

The prefrontal and cingulate regions discussed receive a mesocortical DA inner-
vation. But is DA involved? Relevant to this point are further studies on the ability to
switch attentional set. The ability as tested by the trail-making test has been identified
as potentially belonging to the core cognitive endophenotype of AD/HD [23]. In a
task where the subject had to map words/symbols to response hand under changing
conditions, switching proved especially inefficient for those with brain damage to
mid- and the already described right inferior frontal region [109]. Such switches have
been related to DA activity [79], and in accord with expectations methylphenidate
enhances performance of AD/HD children in the stop-task [110] and reduces the cost
of switching between letter/number sets [111, 112].

As one of the striking features of prefrontal blood flow activation during cognitive
challenge is that these are absent or reduced in adolescent and adult subjects with
AD/HD [fMRI above, also PET studies [113, 114], it is important to note that be-
havioral responses and brain activity in these regions are altered by methylphenidate
treatment. However, while thalamic or cerebellar activity may increase, that in the
relevant frontal regions decreases [115]. This must in part be a reflection of the
marked increase of synaptic DA (and blockade of DA reuptake, 50% at therapeutic
doses) known to follow treatment with methylphenidate in healthy subjects [116].
In turn such changes have been directly and quantitatively linked to the interest, mo-
tivation and success in subjects who completed simple maths tests [117]. However,
two further findings provide a clue of how, with care, these results should be in-
terpreted. Firstly, in cocaine-addicts methylphenidate actually increases metabolism
in BA11 and BA25 (orbitofrontal cortex) regions registering salience, motivational
and emotional reactivity [118]. Secondly increases of PET metabolic measures were
recorded after double dosing [119]. In both situations increases of DA D2 binding
are expected, and it is binding in the DA D2 family of receptors that correlates with
metabolism across a whole range of frontal cortical regions [120]. Indeed, the vari-
ability of biochemical or behavioral response depends on the individual baseline for
DA D2-like binding.
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So one may entertain the hypothesis that the AD/HD deficit may be related to
an unexpected low or a relatively low level of DA binding in the individual, and his
or her baseline binding status. However, if an increased chance of binding is to be
therapeutic, it should probably reflect the rapid on/off (high koff ) type (i.e. impulse
related). The reasoning is first that synthetic activity marked by PET studies of DOPA
decarboxylase are lower in frontal regions of adult AD/HD patients [121]. (Higher
levels seen in the midbrain of younger patients [122] may reflect the mesolimbic
pathway (see below). This would lead to a low availability of DA, especially when
there is impulse activity. Secondly, a faster clearance of DA (by catecholomethyl-
transferase, COMT) is associated with improved performance in tests of sustained
attention and time estimation – [123, 124] especially in the inattentive type ofAD/HD
patient. Faster clearance is achieved by those with the valine variant of a functional
polymorphism (Val158Met) of the COMT gene than by those with the methionine
variant.

Now, we should add the complication that in the frontal cortices the binding site
referred to may be the DA D4 site that is the more abundant member of the D2-
family present. The type of rapid binding referred to above may well be influenced
by the number of transmembrane repeated elements to be found in the molecular
structure of the receptor. The D4 gene with seven (or two) repeats may be the form
showing biased transmission in Occidental and Asian samples of AD/HD [125, 126].
Currently, the contrast of groups with or without the seven repeats shows relevant
but rather minor cognitive problems. Those without the seven repeats showed more
variable responses, longer response times and were mildly inattentive [7, 127]. Those
with seven repeats were without problems on a color-word, cued detection or rapid
choice reaction time task [127], yet more impulsive on a Go/no-go task [7]. A third
laboratory has reported that homozygotes for the four repeat form tended to be those
with a reduced brain volume [128, 129]. Our understanding of the mechanisms at
work here is clearly in a process of evolution, but the evidence points to important
variability in DA D4 function in AD/HD.

Cortical NA

With the, as yet, modest effects noted to be associated with several (but not all) forms
of the D4 binding site, one should consider the interaction of the mesocortical DA
system with other monoamines. The intimate interactions of NA with DA processes
cannot be overlooked. The NA transporter (NET) can take up both NA and DA [130].
Such neurons can also release both NA and DA [89, 131]. Further NA is a high affinity
ligand for the DA D4 binding site [78, 90]. NA receptors may even control the cortical
release of DA, for with the alpha-1b site knocked out animals showed no extracellular
release of DA in response to amphetamine treatment [91]. The role of NA must be
considered in view of the well documented therapeutic effects of the newer (atomox-
etine), as well as the older uptake inhibitors (desipramine, imipramine), the alpha-2
agonists (clonidine, guanfacine), as well as the psychostimulants methylphenidate
and amphetamine that affect both catecholamines similarly [132].
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The role of NET in the function of the “mesocortical pathway” is prominent
in the response to methylphenidate, as it is far more abundant than the DA trans-
porter [133]. Indeed, some changes in the NET genotype (G1287A, NET1) have
already been reported to be associated with AD/HD [134] and in particular the
symptoms of hyperactivity and impulsivity [135] (pace negative results for other
polymorphisms in three studies [136, 138]). These symptoms are improved by atom-
oxetine treatment [139]. Tantalizing but as yet equivocal evidence has been reported
for associations of polymorphisms of the synthetic enzyme and alpha-2 receptor sites
with inattentive symptoms [140, 142].

Effects of NA associated with cognition probably occur through one of the three
forms of the alpha-2 receptor located largely postsynaptically and with a high affinity
for NA. (Alpha-1 and beta sites have a lower affinity for NA and may come into action
in stress situations associated with high levels of NA [77]. In the monkey model
infusion of guanfacine into the ventralateral PRF strengthened associative learning
and impulse control [143, 144]. In dorso-lateral regions an alpha-2 antagonist induced
some behavioral hyperactivity, more errors of commission on sustained attention
tasks and no-go errors on Go/no-go tasks [77, 145, 146], reminiscent of the features
ofAD/HD children. These effects are consistent with what we know about the normal
role of NA. The locus coeruleus, the pontine nucleus of origin of the cortical NA
fibers, shows tonic slow firing rates in the waking state: the appearance of stimuli
relevant to the ongoing situation elicits clear phasic increases of neuronal firing,
thereby also suppressing responses to irrelevant stimuli [80]. This role is consistent
with a “tuning” function for NA activity [79].

While published descriptions of neuroimaging studies relevant to the role of NA
in AD/HD are still awaited, there are some data from electrophysiological studies.
The sort of AD/HD subject that profits from imipramine treatment (that may affect
NA and 5-HT systems) is one who shows EEG characteristics of a maturational lag
[147]; these subjects show a widespread increase of theta power, expected to decrease
with development, but reduced power in the beta and alpha bands posteriorly). The
theta power also tends to normalise following methylphenidate treatment, especially
over right frontal regions [148]. Robust clinical responders to psychostimulant med-
ication show an anterior/posterior ratio of the P300 ERP amplitude exceding 0.5;
just over half of the subjects tested on atomoxetine also showed this characteristic
[149]. In a visual or auditory oddball paradigm methylphenidate treatment is asso-
ciated with increasing the small P3a and P3b characteristic of unmedicated patients
[148, 150, 151]. Indeed, sometimes both latency and the amplitude variability across
subjects is reduced by methylphenidate treatment [152]. The enhancing effect on P3
(and processing negativity) is largely seen with target processing, consistent with an
NA facilitated tuning effect [153, 154]. Probably reflecting both the NA and DA ef-
fects of methylphenidate, psychostimulant treatment also normalises early stages of
information processing (a reduction of the large N1 and P2 amplitude, and increases
of the size of the N2 in Go/no-go tasks [155, 156]).
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Cortical 5-HT

It is not widely appreciated that changes in the 5-HT system may contribute to the
clinical picture in AD/HD. This view arises out of the lack of an effect of the major
pharmacotherapeutic agents on 5-HT activity4. Hence there have been few studies
of direct relevance to this chapter. Genetic, biochemical and neuropsychological
evidence has recently been reviewed [59].

One must first bear in mind that in brain regions where there is a common inner-
vation from DA and 5-HT fibers, 5-HT activity modulates that of DA. Receptors are
found on mesocortical DA fibers where 5-HT2c sites modulate tonic DA outflow,
while HT2a sites affect active DA transmission [68, 158]5. Thus it is not surprising
that CSF measures of the metabolites of both monoamines are often inter-correlated,
and were reported to decrease in AD/HD subjects responding to methylphenidate
treatment [162].

From a functional point of view shifts of attention facilitated by methylphenidate
are impaired by reducing 5-HT synthesis in healthy young adult subjects [163]. Let us
take the example of the cognitive challenge of conditioned blocking. Healthy children
switch out the influence of superfluously related stimuli while learning a conditioned
association [164]. This is associated positively with levels of DA metabolites (HVA)
excreted, but negatively in AD/HD children experiencing difficulties with condi-
tioned blocking. Additionally the AD/HD children showed a positive association
with the removal of 5-HT metabolites (5-HIAA). This is consistent with the AD/HD
children removing high levels of 5-HIAA and showing low HVA/5-HIAA ratios of
relative metabolic activity. This result contributed to the author’ suggestion that with
respect to 5-HT activity AD/HD children show hypodopaminergic activity [165].
This is also consistent with the authors’ report of correlations between cognitive im-
pulsivity measured on the stop-task and decreasing affinity of the 5-HT transporter
that would lead to higher levels of 5-HT in the synapse and correspondingly more
metabolism [22]. Rubia and colleagues [166] also report fMRI evidence from young
adults of cognitive control by the 5-HT system. Decreased 5-HT synthesis induced
by an amino acid drink related to more left/righthand choice errors on a go/no-go
task using arrow-cues. The change in 5-HT levels was associated with decreased
BOLD signal from the inferior and orbital frontal cortices, but an increased signal in
the temporal lobe. (The former regions were noted above to be of special interest in
explaining function in AD/HD.)

In continuous performance tests, perceptual sensitivity (d-prime) falls with an
increased excretion of 5-HT metabolites [16]. The relationship of DA to 5-HT activity
(HVA/5-HIAA) is depressed in some samples of AD/HD children [165], although
increases of this ratio may reflect motor activity [167]. Let us consider some direct

4 It is also not widely appreciated that atomoxetine binds to the 5-HT transporter with an
affinity, very approximately, only an order of magnitude less than for the NET. For compar-
ison it binds to DAT with an affinity three orders of magnitude less, and methylphenidate
has an affinity for the 5-HT transporter well over four orders of magnitude less [157].

5 The HT2a effects are better documented from the mesocortical projection and the HT2c
effect on tonic DA outflow from mesolimbic projections [159, 161]
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measures of the role of 5-HT in the processing of salient stimuli in the sensory and
association cortices.

The amplitude of the N1 to P2 ERP elicited by auditory stimuli can depend on
their loudness. These two components reflect the excitatory response to salient stimuli
and the allocation of resources for further processing. The augmenting response
reflects 5-HT neurotransmission and has been used to predict clinical responses
to 5-HT agonists in affect disorders [168]. The slope is decreased following 5-HT
uptake inhibition [169]. Although the activity of other transmitters (e.g. DA and
acetylcholine) can also influence responsiveness [169, 170] the P2 component can
be viewed as a marker of the role of 5-HT in the interplay with the catecholamines
in the auditory cortices [171]. Long ago it was noticed that the response of autistic
children to fenfluramine and AD/HD children to methylphenidate could be predicted
by the augmenting response [172, 173]. More recently, numerous studies describe the
frequent occurrence of unusually large P2 amplitudes in AD/HD children – three are
illustrated in Fig. 2. The 5-HT influence may be more widespread. 5-HT suppression
through amino acid drinks increases mismatch negativity (that marks the detection
of deviant stimulation) – so increased activity may impair. The impairment of right
frontal MMN in AD/HD children may reflect this [26]. The MMN sources known to
include the right inferior frontal region are also those noted in fMRI studies (discussed
above) to be sensitive to AD/HD impulsivity and 5-HT activity [99, 166]. One of
the other sources of mismatch negativity is located in the cingulate cortex [174],
alongside dipoles for the event-related responses recorded after error commission.
One of these components (the Pe) may be reduced inAD/HD children [19]. Responses
to error commission are sensitive to the activity of the 5-HT transporter. Variations
in the transcriptional control region of the gene (5HTTLPR) come in short and long
versions. The low activity short variant is associated with larger error responses in
healthy subjects [175] – so that one would predict that the long variant may be
associated with reduced Pe. Indeed biased transmission of the long allele has been
reported recently for AD/HD [176]. Associations of the one or the other form with
the 7-repeat DA D4 allele have been related to opposite extremes of temperament and
anxiety in infants [177], and together with those for 5-HT may represent significant
markers for AD/HD [178]. Lastly, supporting the thesis of over-activity in the 5-HT
system, reductions of the 5-HT metabolite have been noted for hyperactive children
responding to medication [179].

Against this background, it may be borne in mind that there are several mecha-
nisms that could mediate the 5-HT/DA interactions in AD/HD. Thus, the nature of
the 5-HT transporter (5-HTTLPR) will affect the expression of 5-HT binding sites,
for example, the short allele is associated with a lower binding potential of the HT1a
site [180]. Agonism here is associated with reducing 5-HT activity that inhibits DA
release in terminal regions [181]. This could be one mechanism to combat hyper-
serotonemia. In contrast, agonism at DA D2 sites has been shown in microdialysis
investigations directed at the dorsal raphe origin of 5-HT projections to increase
5-HT release [182, 183]. This would suggest caution in the exploration of useful
DA agonists. With regard to ongoing treatment with methylphenidate, 5-HT ago-
nism (quipazine) in animals can interact to enhance the down regulation of the DA
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Figure 3. A scheme illustrating the synapse of a dopaminergic neuron, with the presynaptic
bouton on the left at the end of an axon leading from the cell body, and the post-synaptic
element on the right. The five types of DA receptor that may occur post-synaptically are
illustrated although they would not all be found in the same synapse. The contribution from an
astrocyte is symbolised by the glial cell below. The synthetic pathway for DA is illustrated pre-
synaptically. The points for the potential action of medication (methylphenidate) are illustrated
as a) the DA transporter on the cell body and on the bouton, and b) the vesicle monoamine
transporter (VMAT-2) where newly synthesised DA is taken up prior to exocytosis in the cleft
(Modified after [96] and reproduced with the permission of Cambridge University Press.)

transporter [184]. On the presynaptic bouton stimulation of both the D2 autoreceptor
and the DA uptake site can change the sequestering by the vesicular monoamine
transporter (VMAT-2) of transmitter be it DA or 5-HT [185, 186] (Fig. 3).

Mesolimbic pathway (DA)

Leading animal models have shown that the DA transporter (DAT) appears both to
work inefficiently and be over-expressed in the mesocortical pathway. By contrast,
these models disagree on the nature of the different situation in the mesolimbic
system [187]. Mesocortical function is dominated by the NET control of both DA
and NA clearance and release, exacerbated by disorder in the relatively sparsely
distributed DAT control. NET is barely present in most of the regions modulated by
the mesolimbic projections, but DAT is prominently represented.

The major targets of the mesolimbic DA pathway ascending from the mesen-
cephalic VTA are the nucleus accumbens, amygdala and the hippocampal com-
plex [55]. These regions receive topographically distributed glutamatergic input from
dorsal and orbital frontal cortices, and provide feedback via GABAergic and gluta-
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matergic pathways over several thalamic nuclei. Unusual activity in these constituent
circuits modulated by the mesolimbic afferents are postulated to account for the aver-
sion of many AD/HD children to delays. They can wait, but usually prefer a small
reinforcement over waiting for a larger one (reward discounting [92]). Support for
this being a prominent determinant of AD/HD behavior comes from many studies
[188–191]. This characteristic is interpreted as an inefficient coupling between cur-
rent responses and future rewards. The result is a reduced control by future salient
events on current events The gradient between the two is short and steep [96]. The
difficulty lies not in arguing whether there are problems in processing delays and
discounting rewards in children with AD/HD, but in refining our understanding of
what are the components of this phenomenon. For example, animals with lesions of
the amygdala also prefer immediate over later, larger rewards. However damage to
the input from the orbital frontal cortex has the reverse effect [191]. This could be
described as a system that controls “impulsivity” [193]. Do meso-accumbens DA
pathways mediate incentive motivation and reward [194], or do they (more parsi-
moniously) enhance a switch between circuits influencing the processing of more
or less salient information [196]. It should not be overlooked that communication
about reward (via some DA pathways) has much to do with its mediation by the
orexin/hypocretin output from the lateral hypothalamus and amygdala [196].

At the behavioural level there is an apparent choice ofAD/HD children to respond
to immediate events over other possibilities. How does DA availability affect this?
The answer here requires an understanding of what may be happening at the synapse
of an AD/HD patient with/without medication (Fig. 3). Normally in the basal ganglia
(in contrast to mesocortical regions) the ratios of DA, DAT and receptor densities
are similar and the function of DAT is likely to be a major contributor to DA sig-
naling [133]. Efficient DAT limits the duration of DA induced synaptic activity –
at low DA levels it stimulates DA release, at higher levels the DA D2 autoreceptor
attenuates release [133]. One would presume that psychostimulants are efficacious,
as the first of these two processes is impaired. But this need not mean that the DA
system is hypoactive. The increase could activate the D2 autoreceptors to reduce
the (over-)release of DA, especially that associated with the neural impulse. Indeed
methylphenidate also reduces the rate of spontaneous firing in mesolimbic neurons
[197]. Thus the overall effect of treatment could be to increase tonic, but to decrease
phasic DA release [198]. This would seem to fit the data from Schultz’s monkeys
[194]. He related a fast phasic component of the neural response to reward predic-
tion. This may be too strong in AD/HD and should be attenuated to allow delayed
behavioural response. Grace [198] suggested that through delayed development the
reduced cortical glutamatergic input to the accumbens would lead to a hypoactive DA
system. This proposal has been incorporated in the dynamic developmental model
of Sagvolden [96].

In adult subjects with AD/HD striatal DAT binding was reported to be un-
usually high (a SPECT study) and was reduced by nearly 30% after a month of
methylphenidate treatment [199]. This supports the notion (above) that tonic lev-
els of DA would increase, as confirmed for normal adults [200]. Interestingly, in
animals, co-administration of methylphenidate with nicotine (there are presynaptic
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acetylcholine receptors on mesolimbic neurons) increased DA levels in an additive
manner [201]. This may provide a basis for apparent attempts at self-medication
through cigarette smoking. Important for the distinction between the function of
tonic and phasic activity, and its behavioral effect, Volkow’s PET studies in humans
show that methylphenidate-induced increases in DA are associated with an enhanced
perception of a stimulus as salient [202]. While such perception is clearly relevant
for the interest in and motivation generated by such stimuli, it relativises the empha-
sis placed on mesolimbic reinforcement processes in the direction of the attentional
mechanisms I have emphasized.

There is evidence for genetic variation in the production of more and less efficient
DAT. The 10-repeat allele for DAT (3′ variable number tandem repeat polymorphic
site in 3′ region of the gene SLC6A3) is reportedly over-active. To obtain this ben-
eficial behavioural, attentional and biochemical response to methylphenidate it is
advantageous not to be homozygous for the 10/10 repeat allele of DAT [203–208] –
even though the EEG of homozygotes is somewhat normalized after treatment6 [206].
Although there is modest reason for suggesting a biased transmission of the 10/10
variant in AD/HD [210, 211], many studies do not find this – implying that we should
be looking for other types of DAT variant.

As suggested above there is evidence for the involvement of the ventral striatum,
thalamus and orbital-frontal cortex in discriminating reinforcement contingencies (or
their saliency) in normal subjects [212] and that the 10/10 allele is associated with
size reduction of the nearby caudate nucleus [128]. However, there is sparse evidence
that methylphenidate is associated with changes of the aversion to delays. Yet, we
have long known that the steep reinforcement gradient shown by the spontaneously
hypertensive rat model ofAD/HD is improved after methylphenidate treatment [213].
Immediate reinforcement was less effective and responses for delayed reinforcement
were strengthened. The same effect of treatment was reported from a study of adults
with a history of criminal behavior [214]. One presumes that the weak signal provided
by a cued delay of reinforcement is amplified by the drug’s effect on DA release.
This seems to be supported by another PET study of normal adults from the Volkow
team [215] showing that while the sight of food elicited no change in the dynamics
of DA activity, there was a major response if the subjects had received a prior dose of
methylphenidate. However, the apparent support from animal work is a bit difficult
to reconcile with other rodent studies showing that chronic treatment in the pre-
and peri-adolescent period resulted in less interest in natural rewards (e.g. sucrose,
novelty and sex: [216]. This qualification and the interpretation of Volkow’s data
would seem to put emphasis on the processing of the “signal” rather than on incentive
and motivation.

6 The opposite effect (increased theta power) on the magnetic form of the EEG after
methylphenidate treatment was reported for a group of ADHD patients who had not been
genotyped [209].
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Mesolimbic pathway (5-HT)

The previous section introduced the interactions of 5-HT with DA in regions inner-
vated by the mesocortical projections. Such interactions are relevant in areas inner-
vated by the mesolimbic system, and do concern the questions about impulsivity, of
reinforcement mechanisms and motivation just addressed.

In AD/HD children cognitive impulsivity measured by a reduced probability of
inhibition in the stop-task, is associated with decreased affinity (increased Kd in
platelets) of the 5-HT transporter [22] (Fig. 4)7. With regard to the reinforcement
mechanisms, stimulants like amphetamine (therapeutic in AD/HD) and cocaine act
presynaptically on DA transport. Both alter 5-HT dynamics. Indeed, if the DA trans-
porter is knocked out in rodents reinforcement measured by cocaine administra-
tion [217] or conditioned place preference to amphetamine [218] remains until a
5-HT1a antagonist is administered. Further, the sensitivity to reinforcement adminis-
tered by intracranial self-stimulation to the hypothalamus is increased by treating the
median raphe nucleus with a 5-HT1a agonist [219]. Interactions between 5-HT and
DA systems are central to considerations of cognitive impulsivity and the associated
evaluation of reinforcement.

There is a large body of animal research that clearly shows the involvement
of 5-HT interactions with DA in the mediation of the mechanisms underlying the
preferred choice of AD/HD children for receiving immediate rather than delayed
rewards. Measures taken with a dozen agents blocking NA and 5-HT uptake (but
not DA uptake) show that there is an increased efficiency for obtaining water pre-
sented on a schedule of differential reinforcement at low rates of response (DRL
[220, 221]). A similar effect was seen in young adult criminals given paroxetine
while performing a task where a short delay resulted in a small reward, but a longer
delay gave more reinforcement [222]. It may be noted that sub-chronic paroxetine
down regulates pre- and post-synaptic 5-HT1a sites in normal young adults [223]. In
confirmation, enhancing activity at the HT1a sites in animals leads to problems with
delaying response for reinforcement [224, 225]. Enhancing activity at HT1b sites
attenuates the effects of psychostimulants like amphetamine in decreasing impulsiv-
ity and promoting responses to targets [226] while HT2 antagonism may also lead
to impulsive responding [227]. Comparison between animals bred for high or low
sensitivity to 5-HT1a stimulation showed the latter with high response rates, and low
reward rates on a DRL schedule [228]: these effects were improved with reuptake
inhibitors. Reduced 5-HT activity promoted the selection of the delayed but larger
reward [229, 230]. Recent thinking (and experiment) about these mechanisms led to
the suggestion that while DA systems should be active during behavioral decisions
requiring effort and concerning delay, 5-HT systems were needed for the latter [231].

7 Cognitive impulsivity should not be confused with poor control of aggressive responses,
often seen in ADHD children, especially those with comorbid conduct disorder. For disrup-
tive behavior the association with the affinity of the transporter was the opposite (Fig. 4),
consistent with a significant literature on the role of 5-HT in aggression [22].
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Thus, overall, there is reason to believe that 5-HT plays a marked role in the
sensory, reinforcement, inhibitory and motor processes that are disturbed in AD/HD.
At least in relation to 5-HT activity, the DA system seems to be hypoactive.

The status of peripheral and central nervous monoamine systems

Measures of the elimination of monoamine metabolites are indirect indicators of
transmitter activity. It is difficult to identify the sources of these metabolites. But
it is of both basic and clinical interest that there is some broad support for the
relative activities between the monoamines, and some associations for these ratios
with measures of symptoms or cognitive activity in young subjects with or without
AD/HD.

NA metabolism

Levels of the metabolite MHPG (3-methoxy-4-hydroxyphenyl glycol), possibly an
indicator of resting NA metabolism, are reported to be unusually low in AD/HD in
8/13 studies [59]. Raised levels of other metabolites such as NMN (normetanephrine)
have been reported, possibly reflecting increased sympathetic actvity [17, 179], as
associated with the stress of a cognitive task [17, 232]. Sub-chronic treatment with
methylphenidate often results in further decreases of MHPG in peripheral catch-
ments [233, 238] that correlate with improvements in symptom ratings [237, 239].
Speculatively, this may reflect a reduction of NA overflow resulting in the better
control of DA/5-HT interactions via the high affinity alpha-2 rather than the alpha-1
site that is more closely related to activity in stressful situations.

DA metabolism

Pharmacological blocking of peripheral catecholamine breakdown shows that 15-
20% of HVA may have a central origin. As a group levels are reported as normal,
sometimes a bit low in CSF [240], plasma [241] and urine [235, 242]. Psychostimu-
lant treatment tends to lower HVA excretion (in urine, plasma and CSF), if not quite
to the same extent as the effect on MHPG [179, 233, 242, 243]. Shekim et al. [235,
236] reported a rate-dependent effect with high levels being lowered and low levels
raised. Down-regulation has been reported to relate to decreases of symptoms, more
especially for measures of hyperactivity than of attention [162, 240, 241, 244]. To-
gether these data suggest that in comparison with NA metabolism the DA system is
relatively hyperactive [165], even if some indicators suggest that DA metabolic ac-
tivity is lower than normal. For example, Konrad [17] reported that impulsive errors
of commission on a CPT-ax task related to rates of eye-blinking, and hence indi-
rectly DA activity. Further, signal detection measures on a test of sustained attention
(CPTax) were inversely related to HVA in normal children; no such relationship was
found in age-matched children with AD/HD [16].
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5-HT metabolism

A markedly lower ratio of DA to 5-HT metabolites (HVA/5-HIAA) reported in
AD/HD subjects would be consistent with slightly lower DA and higher 5-HT
metabolism [165]. But this result has not been supported in all samples [167, 245].
However, the increased 5-HIAA levels reported were shown to correlate closely and
inversely with two quite separate measures of attentional ability, namely conditioned
blocking and sensitivity (d-prime) on the CPT-ax task [16, 164]. These results along
with those for the stop-task (see Fig. 3 are consistent with an over-availability of
5-HT in the synapses of children with AD/HD.

Could there be a simple explanation for the proposed relatively hyper-serotonergic
(vs. DA) situation? Uzbekov [179] proposed one possibility. His laboratory found
that while stimulant treatment (sydnocarb) reduced the high levels of 5-HIAA, N-
methyl-nicotinamide (N-mna) levels rose. N-mna is the end product of the alternative
metabolic pathway for the 5-HT precursor L-tryptophan. One may entertain the pos-
sibility that over activity of the indoleamine was pharmacologically diverted to an
alternative metabolic route. This would be consistent with a psychostimulant induced
reduction of 5-HT levels [246]. The hypothesis is open to test.

Conclusions

The diagnosic manuals maintain that AD/HD incurs differentially a broad range
of cognitive (inattention), motor (hyperactive) and impulsive (response inhibition)
problems. The core of this was described some 50 years ago [247]. The bases for
these and related problems lie along a cerebellar – pontine/mesencephalic – cerebro-
cortical axis (cf. patho-physiological findings, [248]). Recent experimental and phar-
macological work points to a large contribution from the monoaminergic pathways
originating in the mid/hind brain to the dysfunctions in the target areas innervated
by dopamine (DA), noradrenaline (NA) and serotonin (5-HT). A significant propor-
tion of these (dys)functions can be attributed to executive proceses, the evaluation of
stimuli and the reinforcement potentially associated with these events. Monoamine
activity is discussed within the context of a dual-pathway theory of AD/HD func-
tion [92]. In this context mesocortical contributions to neuropsychological perfor-
mance are described here for NA (with respect to DA) and mesolimbic contributions
to reinforcement-related processes are described for 5-HT (with respect to DA). To
divide the roles of the pathways in this way is useful but does tend to over simplify.
Thus, different forms of impulsivity depend on mesolimbic and on mescortical in-
teractions. To summarise in terms of DA activity being proportionately higher than
that for NA or lower than that for 5-HT has a degree of validity but is a general-
ization masking some of the details of the mechanisms involved. The realization of
cognitive process in the form of adaptive behavior necessarily incurs additional local
GABAergic feedback, glutamatergic cortico-striatal integration and moderation by
cholinergic input.
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