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The Thom Isomorphism in
Gauge-equivariant K-theory

Victor Nistor and Evgenij Troitsky

Abstract. In a previous paper [14], we have introduced the gauge-equivariant
K-theory group K0

G(X) of a bundle πX : X → B endowed with a continu-
ous action of a bundle of compact Lie groups p : G → B. These groups are
the natural range for the analytic index of a family of gauge-invariant ellip-
tic operators (i.e., a family of elliptic operators invariant with respect to the
action of a bundle of compact groups). In this paper, we continue our study
of gauge-equivariant K-theory. In particular, we introduce and study prod-
ucts, which helps us establish the Thom isomorphism in gauge-equivariant
K-theory. Then we construct push-forward maps and define the topological
index of a gauge-invariant family.
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1. Introduction

In this paper we establish a Thom isomorphism theorem for gauge equivariant
K-theory. Let p : G → B be a bundle of compact groups. Recall that this means
that each fiber Gb := p−1(b) is a compact group and that, locally, G is of the form
U ×G, where U ⊂ B open and G a fixed compact group. Let X and B be locally
compact spaces and πX : X → B be a continuous map. In the present paper, as
in [14], this map will be supposed to be a locally trivial bundle. A part of present
results can be extended to the case of a general map. This, as well as the proof of
a general index theorem, will be the subject of [15].
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Assume that G acts on X . This action will be always fiber-preserving. Then
we can associate to the action of G on X G-equivariant K-theory groups Ki

G(X)
as in [14]. We shall review and slightly generalize this definition in Section 2.

For X compact, the group K0
G(X) is defined as the Grothendieck group of

G-equivariant vector bundles on X . If X is not compact, we define the groups
K0

G(X) using fiberwise one-point compactifications. We shall call these groups
simply gauge-equivariant K-theory groups of X when we do not want to specify G.
The reason for introducing the gauge-equivariant K-theory groups is that they are
the natural range for the index of a gauge-invariant families of elliptic operators.
In turn, the motivation for studying gauge-invariant families and their index is
due to their connection to spectral theory and boundary value problems on non-
compact manifolds. Some possible connections with Ramond-Ramond fields in
String Theory were mentioned in [8, 14]. See also [1, 9, 12, 13].

In this paper, we continue our study of gauge-equivariant K-theory. We begin
by providing two alternative definitions of the relative KG-groups, both based
on complexes of vector bundles. (In this paper, all vector bundles are complex
vector bundles, with the exception of the tangent bundles and where explicitly
stated.) These alternative definitions, modeled on the classical case [2, 10], provide
a convenient framework for the study of products, especially in the relative or
non-compact cases. The products are especially useful for the proof of the Thom
isomorphism in gauge-equivariant theory, which is one of the main results of this
paper. Let E → X be a G-equivariant complex vector bundle. Then the Thom
isomorphism is a natural isomorphism

τE : Ki
G(X)→ Ki

G(E). (1)

(There is also a variant of this result for spinc-vector bundles, but since we will
not need it for the index theorem [15], we will not discuss it in this paper.) The
Thom isomorphism allows us to define Gysin (or push-forward) maps in K-theory.
As it is well known from the classical work of Atiyah and Singer [4], the Thom
isomorphism and the Gysin maps are some of the main ingredients used for the
definition and study of the topological index. In fact, we shall proceed along the
lines of that paper to define the topological index for gauge-invariant families of
elliptic operators. Some other approaches to Thom isomorphism in general settings
of Noncommutative geometry were the subject of [6, 7, 11, 16, 12], and many other
papers.

Gauge-equivariant K-theory behaves in many ways like the usual equivariant
K-theory, but exhibits also some new phenomena. For example, the groups K0

G(B)
may turn out to be reduced to K0(B) when G has “a lot of twisting” [14, Propo-
sition 3.6]. This is never the case in equivariant K-theory when the action of the
group is trivial but the group itself is not trivial. In [14], we addressed this problem
in two ways: first, we found conditions on the bundle of groups p : G → B that
guarantee that K0

G(X) is not too small (this condition is called finite holonomy
and is recalled below), and, second, we studied a substitute of K0

G(X) which is
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never too small (this substitute is K(C∗(G)), the K-theory of the C∗-algebra of
the bundle of compact groups G).

In this paper, we shall again need the finite holonomy condition, so let us
review it now. To define the finite holonomy condition, we introduced the repre-
sentation covering of G, denoted Ĝ → B. As a space, Ĝ is the union of all the
representation spaces Ĝb of the fibers Gb of the bundle of compact groups G. One
measure of the twisting of the bundle G is the holonomy associated to the covering
Ĝ → B. We say that G has representation theoretic finite holonomy if Ĝ is a union
of compact-open subsets. (An equivalent condition can be obtained in terms of the
fundamental groups when B is path-connected, see Proposition 2.3 below.)

Let C∗(G) be the enveloping C∗-algebra of the bundle of compact groups G.
We proved in [14, Theorem 5.2] that

Kj
G(B) ∼= Kj(C∗(G)), (2)

provided that G has representation theoretic finite holonomy. This guarantees that
Kj

G(B) is not too small. It also points out an alternative, algebraic definition of
the groups Ki

G(X).
The structure of the paper is as follows. We start from the definition of gauge-

equivariant K-theory and some basic results from [14], most of them related to
the “finite holonomy condition,” a condition on bundles of compact groups that
we recall in Section 2. In Section 3 we describe an equivalent definition of gauge-
equivariant K-theory in terms of complexes of vector bundles. This will turn out to
be especially useful when studying the topological index. In Section 4 we establish
the Thom isomorphism in gauge-equivariant K-theory, and, in Section 5, we define
and study the Gysin maps. The properties of the Gysin maps allow us to define
in Section 6 the topological index and establish its main properties.

2. Preliminaries

We now recall the definition of gauge-equivariant K-theory and some basic results
from [14]. An important part of our discussion is occupied by the discussion of the
finite holonomy condition for a bundle of compact groups p : G → B.

All vector bundles in this paper are assumed to be complex vector
bundles, unless otherwise mentioned and excluding the tangent bundles
to the various manifolds appearing below.

2.1. Bundles of compact groups and finite holonomy conditions

We begin by introducing bundles of compact and locally compact groups. Then
we study finite holonomy conditions for bundles of compact groups.

Definition 2.1. Let B be a locally compact space and let G be a locally compact
group. We shall denote by Aut(G) the group of automorphisms of G. A bundle
of locally compact groups G with typical fiber G over B is, by definition, a fiber
bundle G → B with typical fiber G and structural group Aut(G).
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We fix the above notation. Namely, from now on and throughout this paper,
unless explicitly otherwise mentioned, B will be a compact space and G → B will
be a bundle of compact groups with typical fiber G.

We need now to introduce the representation theoretic holonomy of a bundle
of Lie group with compact fibers p : G → B. Let Aut(G) be the group of automor-
phisms of G. By definition, there exists then a principal Aut(G)-bundle P → B
such that

G ∼= P ×Aut(G) G := (P ×G)/ Aut(G).
We shall fix P in what follows.

Let Ĝ be the (disjoint) union of the sets Ĝb of equivalence classes of irreducible
representations of the groups Gb. Using the natural action of Aut(G) on Ĝ, we can
naturally identify Ĝ with P ×Aut(G) Ĝ as fiber bundles over B.

Let Aut0(G) be the connected component of the identity in Aut(G). The
group Aut0(G) will act trivially on the set Ĝ, because the later is discrete. Let

HR := Aut(G)/ Aut0(G), P0 := P/ Aut0(G), and Ĝ  P0 ×HR Ĝ.

Above, Ĝ is defined because P0 is an HR-principal bundle. The space Ĝ will be
called the representation space of G and the covering Ĝ → B will be called the
representation covering associated to G.

Assume now that B is a path-connected, locally simply-connected space and
fix a point b0 ∈ B. We shall denote, as usual, by π1(B, b0) the fundamental group
of B. Then the bundle P0 is classified by a morphism

ρ : π1(B, b0)→ HR := Aut(G)/ Aut0(G), (3)

which will be called the holonomy of the representation covering of G.
For our further reasoning, we shall sometimes need the following finite holo-

nomy condition.

Definition 2.2. We say that G has representation theoretic finite holonomy if every
σ ∈ Ĝ is contained in a compact-open subset of Ĝ.

In the cases we are interested in, the above condition can be reformulated as
follows [14].

Proposition 2.3. Assume that B is path-connected and locally simply-connected.
Then G has representation theoretic finite holonomy if, and only if π1(B, b0)σ ⊂ Ĝ
is a finite set for any irreducible representation σ of G.

From now on we shall assume that G has representation theoretic finite ho-
lonomy.

2.2. Gauge-equivariant K-theory

Let us now define the gauge equivariant K-theory groups of a “G-fiber bundle”
πY : Y → B. All our definitions are well known if B is reduced to a point (cf.
[2, 10]). First we need to fix the notation.
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If fi : Yi → B, i = 1, 2, are two maps, we shall denote by

Y1 ×B Y2 := {(y1, y2) ∈ Y1 × Y2, f1(y1) = f2(y2) } (4)

their fibered product. Let p : G → B be a bundle of locally compact groups and
let πY : Y → B be a continuous map. We shall say that G acts on Y if each group
Gb acts continuously on Yb := π−1(b) and the induced map µ

G ×B Y := {(g, y) ∈ G × Y, p(g) = πY (y)} # (g, y) −→ µ(g, y) := gy ∈ Y

is continuous. If G acts on Y , we shall say that Y is a G-space. If, in addition
to that, Y → B is also locally trivial, we shall say that Y is a G-fiber bundle,
or, simply, a G-bundle. This definition is a particular case of the definition of the
action of a groupoid on a space.

Let πY : Y → B be a G-space, with G a bundle of compact groups over
B. Recall that a vector bundle π̃E : E → Y is a G-equivariant vector bundle (or
simply a G-equivariant vector bundle) if

πE := πY ◦ π̃E : E → B

is a G-space, the projection

π̃E : Eb := π−1
E (b)→ Yb := π−1

Y (b)

is Gb := p−1(b) equivariant, and the induced action Ey → Egy of g ∈ G, between
the corresponding fibers of E → Y , is linear for any y ∈ Yb, g ∈ Gb, and b ∈ B.

To define gauge-equivariant K-theory, we first recall some preliminary def-
initions from [14]. Let π̃E : E → Y be a G-equivariant vector bundle and let
π̃E′ : E′ → Y ′ be a G′-equivariant vector bundle, for two bundles of compact groups
G → B and G′ → B′. We shall say that (γ, φ, η, ψ) : (G′, E′, Y ′, B′)→ (G, E, Y, B)
is a γ-equivariant morphism of vector bundles if the following five conditions are
satisfied:

(i) γ : G′ → G, φ : E′ → E, η : Y ′ → Y, and ψ : B → B′,
(ii) all the resulting diagrams are commutative,
(iii) φ(ge) = γ(g)φ(e) for all e ∈ E′

b and all g ∈ G′b,
(iv) γ is a group morphism in each fiber, and
(v) φ is a vector bundle morphism.

We shall say that φ : E → E′ is a γ-equivariant morphism of vector bundles if,
by definition, it is part of a morphism (γ, φ, η, ψ) : (G′, E′, Y ′, B′)→ (G, E, Y, B).
Note that η and ψ are determined by γ and φ.

As usual, if ψ : B′ → B is a continuous [respectively, smooth] map, we define
the inverse image (ψ∗(G), ψ∗(E), ψ∗(Y ), B′) of a G-equivariant vector bundle E →
Y by ψ∗(G) = G×B B′, ψ∗(E) = E×B B′, and ψ∗(Y ) = Y ×B B′. If B′ ⊂ B and ψ
is the embedding, this construction gives the restriction of a G-equivariant vector
bundle E → Y to a closed, invariant subset B′ ⊂ B of the base of G, yielding a
GB′ -equivariant vector bundle. Usually G will be fixed, however.

Let p : G → B be a bundle of compact groups and πY : Y → B be a G-space.
The set of isomorphism classes of G-equivariant vector bundles π̃E : E → Y will
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be denoted by EG(Y ). On this set we introduce a monoid operation, denoted “+,”
using the direct sum of vector bundles. This defines a monoid structure on the set
EG(Y ) as in the case when B consists of a point.

Definition 2.4. Let G → B be a bundle of compact groups acting on the G-space
Y → B. Assume Y to be compact. The G-equivariant K-theory group K0

G(Y ) is
defined as the group completion of the monoid EG(Y ).

When working with gauge-equivariant K-theory, we shall use the following
terminology and notation. If E → Y is a G-equivariant vector bundle on Y , we shall
denote by [E] its class in K0

G(Y ). Thus K0
G(Y ) consists of differences [E] − [E1].

The groups K0
G(Y ) will also be called gauge equivariant K-theory groups, when

we do not need to specify G. If B is reduced to a point, then G is group, and the
groups K0

G(Y ) reduce to the usual equivariant K-groups.
We have the following simple observations on gauge-equivariant K-theory.

First, the familiar functoriality properties of the usual equivariant K-theory groups
extend to the gauge equivariant K-theory groups. For example, assume that the
bundle of compact groups G → B acts on a fiber bundle Y → B and that, similarly,
G′ → B′ acts on a fiber bundle Y ′ → B′. Let γ : G → G′ be a morphism of bundles
of compact groups and f : Y → Y ′ be a γ-equivariant map. Then we obtain a
natural group morphism

(γ, f)∗ : K0
G′(Y ′)→ K0

G(Y ). (5)

If γ is the identity morphism, we shall denote (γ, f)∗ = f∗.
A G-equivariant vector bundle E → Y on a G-space Y → B, Y compact, is

called trivial if, by definition, there exists a G-equivariant vector bundle E′ → B
such that E is isomorphic to the pull-back of E′ to Y . Thus E  Y ×B E′.
If G → B has representation theoretic finite holonomy and Y is a compact G-
bundle, then every G-equivariant vector bundle over Y can be embedded into a
trivial G-equivariant vector bundle. This embedding will necessarily be as a direct
summand.

If G → B does not have finite holonomy, it is possible to provide examples if
G-equivariant vector bundles that do not embed into trivial G-equivariant vector
bundles [14]. Also, a related example from [14] shows that the groups K0

G(Y ) can
be fairly small if the holonomy of G is “large.”

A further observation is that it follows from the definition that the tensor
product of vector bundles defines a natural ring structure on K0

G(Y ). We shall
denote the product of two elements a and b in this ring by a ⊗ b or, simply,
ab, when there is no danger of confusion. In particular the groups Ki

G(X) for
πX : X → B are equipped with a natural structure of K0

G(B)-module obtained
using the pull-back of vector bundles on B, namely, ab := π∗

X(a)⊗ b ∈ K0
G(X) for

a ∈ K0
G(B) and b ∈ K0

G(X).
The definition of the gauge-equivariant groups extends to non-compact G-

spaces Y as in the case of equivariant K-theory. Let Y be a G-bundle. We shall
denote then by Y + := Y ∪B the compact space obtained from Y by the one-point
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compactification of each fiber (recall that B is compact). The need to consider the
space Y + is the main reason for considering also non longitudinally smooth fibers
bundles on B. Then

K0
G(Y ) := ker

(
K0

G(Y +)→ K0
G(B)

)
.

Also as in the classical case, we let

Kn
G (Y, Y ′) := K0

G((Y \ Y ′)× Rn)

for a G-subbundle Y ′ ⊂ Y . Then [14] we have the following periodicity result

Theorem 2.5. We have natural isomorphisms

Kn
G (Y, Y ′) ∼= Kn−2

G (Y, Y ′).

Gauge-equivariant K-theory is functorial with respect to open embeddings.
Indeed, let U ⊂ X be an open, G-equivariant subbundle. Then the results of [14,
Section 3] provide us with a natural map morphism

i∗ : Kn
G (U)→ Kn

G (X). (6)

In fact, i∗ is nothing but the composition Kn
G (U) ∼= Kn

G (X, X \ U)→ Kn
G (X).

2.3. Additional results

We now prove some more results on gauge-equivariant K-theory.
Let G → B and H → B be two bundles of compact groups over B. Recall

that an H-bundle πX : X → B is called free if the action of each group Hb on the
fiber Xb is free (i.e., hx = x, x ∈ Xb, implies that h is the identity of Gb.) We
shall need the following result, which is an extension of a result in [10, page 69].
For simplicity, we shall write G ×H instead of G ×B H.

Theorem 2.6. Suppose πX : X → B is a G×H-bundle that is free as an H-bundle.
Let π : X → X/H be the (fiberwise) quotient map. For any G-equivariant vector
bundle π̃E : E → X/H, we define the induced vector bundle

π∗(E) :=
{
(x, ε) ∈ X × E, π(x) = π̃E(ε)

}
→ X,

with the action of G ×H given by (g, h) · (x, ε) := ((g, h)x, gε). Then π∗ gives rise
to a natural isomorphism K0

G(X/H)→ K0
G×H(X).

Proof. Let π∗ : K0
G(X/H)→ K0

G×H(X) be the induction map, as above. We will
construct a map r : K0

G×H(X)→ K0
G(X/H) satisfying π∗ ◦ r = Id and r ◦π∗ = Id.

Let πF : F → X be a G ×H-vector bundle. Since the action of H on X is free, the
induced map πF : F/H → X/H of quotient spaces is a (locally trivial) G-bundle.
Clearly, this construction is invariant under homotopy, and hence we can define
r[F ] := [F/H].

Let us check now that r is indeed an inverse of π∗. Denote by F # f → Hf ∈
F/H the quotient map. Let F → X be a G ×H-vector bundle. To begin with, the
total space of π∗ ◦ r(F ) is{

(x,Hf) ∈ X × (F/H), π∗(x) = πF (Hf)
}
,
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by definition. Then the map F # f → (πF (f),Hf) ∈ π∗ ◦ r(F ) is an isomorphism.
Hence, π∗r = Id.

Next, consider a G-vector bundle πE : E → X/H. The total space of r◦π∗(E)
is then {

(Hy, ε) ∈ (X/H)× E, Hy = πE(ε))
}
,

because H acts only on the first component of π∗(E). Then

E → r ◦ π∗(E), ε �→ (π(ε), ε)

is an isomorphism. Hence, r ◦ π∗ = Id. �

See also [14, Theorem 3.5].

Corollary 2.7. Let P be a G ×H-bundle that is free as an H-bundle. Also, let W
be an H-bundle, then there is a natural isomorphism

KG×H(P ×B W ) ∼= KG(P ×H W ).

Proof. Take X := P ×B W in the previous theorem. Then X is a free H-bundle,
because P is, and X/H =: P ×H W . �

In the following section, we shall also need the following quotient construction
associated to a trivialization of a vector bundle over a subset. Namely, if Y ⊂ X
is a G-invariant, closed subbundle, then we shall denote by X/BY the fiberwise
quotient space over B, that is the quotient of X with respect to the equivalence
relation ∼, x ∼ y if, and only if, x, y ∈ Yb, for some b ∈ B.

If E is a G-equivariant vector bundle over a G-bundle X , together with a
G-equivariant trivialization over a G-subbundle Y ⊂ X , then we can generalize
the quotient (or collapsing) construction of [2, §1.4] to obtain a vector bundle over
X/BY , where by X/BY we denote the fiberwise quotient bundle over B, as above.

Lemma 2.8. Suppose that X is a G-bundle and that Y ⊂ X is a closed, G-invariant
subbundle. Let E → X be a G-vector bundle and α : E|Y ∼= Y ×B V be a G-
equivariant trivialization, where V → B is a G-equivariant vector bundle. Then we
can naturally associate to (E, α) a naturally defined vector bundle E/α→ X/BY
that depends only on homotopy class of α.

Proof. Let p : Y ×B V → V be the natural projection. Introduce the following
equivalence relation on E:

e ∼ e′ ⇔ e, e′ ∈ E|Y and pα(e) = pα(e′).

Let then E/α be equal to E/ ∼. This is locally trivial vector bundle over X/BY .
Indeed, it is necessary to verify this only in a neighborhood of Y/BY ∼= B. Let U
be a G invariant open subset of X such that α can be extended to an isomorphism
α̃ : E|U ∼= U ×B V . We obtain an isomorphism

α′ : (E|U )/α ∼= (U/BY )×B V , α′(e) = α̃(e).

Moreover, (U/BY )×B V is a locally trivial G-equivariant vector bundle.
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Suppose that α0 and α1 are homotopic trivializations of E|Y , that is, triv-
ializations such that there exists a trivialization β : E × I|Y ×I

∼= Y × I ×B V ,
β|E×{0} = α0 and β|E×{1} = α1. Let

f : X/BY × I → (X × I)/(B×I)(Y × I).

Then the bundle f∗((E × I)/β) over X/BY × I satisfies

f∗((E × I)/β)|(X/BY )×{i} = E/αi, i = 0, 1.

Hence, E/α0
∼= E/α1. �

3. K-theory and complexes

For the purpose of defining the Thom isomorphism, it is convenient to work with an
equivalent definition of gauge-equivariant K-theory in terms of complexes of vector
bundles. This will turn out to be especially useful when studying the topological
index.

The statements and proofs of this section, except maybe Lemma 3.4, follow
the classical ones [2, 10], so our presentation will be brief.

3.1. The Ln
G-groups

We begin by adapting some well-known concepts and constructions to our settings.
Let X → B be a locally compact, paracompact G-bundle. A finite complex

of G-equivariant vector bundles over X is a complex

(E∗; d) =
(
. . .

di−1−→ Ei di−→ Ei+1 di+1−→ . . .
)
, i ∈ Z,

of G-equivariant vector bundles over X with only finitely many Ei’s different from
zero. Explicitly, Ei are G-equivariant vector bundles, di’s are G-equivariant mor-
phisms, di+1di = 0 for every i, and Ei = 0 for |i| large enough. We shall also use
the notation (E∗; d) =

(
E0, . . . , En, di : Ei|Y → Ei+1|Y

)
, if Ei = 0 for i < 0 and

for i > n.
As usual, a morphism of complexes f : (E∗; d) → (F ∗; δ) is a sequence of

morphisms fi : Ei → F i such that fi+1di = δi+1fi, for all i. These constructions
yield the category of finite complexes of G-equivariant vector bundles. Isomorphism
in this category will be denoted by (E∗; d) ∼= (F ∗; δ).

In what follows, we shall consider a pair (X, Y ) of G-bundles with X is a
compact G-bundle, unless explicitly otherwise mentioned.

Definition 3.1. Let X be a compact G-bundle and Y be a closed G-invariant
subbundle. Denote by Cn

G (X, Y ) the set of (isomorphism classes of) sequences

(E∗; d) =
(
E0, E1, . . . , En; dk : Ek|Y → Ek+1|Y

)
of G-equivariant vector bundles over X such that (Ek|Y ; d) is exact if we let Ej = 0
for j < 0 or j > n.
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We endow Cn
G (X, Y ) with the semigroup structure given by the direct sums

of complexes. An element in Cn
G (X, Y ) is called elementary if it is isomorphic to a

complex of the form
. . .→ 0→ E

Id−→ E → 0→ . . . ,

Two complexes (E∗; d), (F ∗, δ) ∈ Cn
G (X, Y ) are called equivalent if, and only if,

there exist elementary complexes Q1, . . . , Qk, P 1, . . . , Pm ∈ Cn
G (X, Y ) such that

E ⊕Q1 ⊕ · · · ⊕Qk
∼= F ⊕ P1 ⊕ · · · ⊕ Pm.

We write E  F in this case. The semigroup of equivalence classes of sequences
in Cn

G (X, Y ) will be denoted by Ln
G(X, Y ).

We obtain, from definition, natural injective semigroup homomorphisms

Cn
G (X, Y )→ Cn+1

G (X, Y ) and CG(X, Y ) :=
⋃
n

Cn
G (X, Y ).

The equivalence relation ∼ commutes with embeddings, so the above morphisms
induce morphisms Ln

G(X, Y )→ Ln+1
G (X, Y ). Let L∞

G (X, Y ) := lim→ Ln
G(X, Y ).

Lemma 3.2. Let E → X and F → X be G-vector bundles. Let α : E|Y → F |Y
and β : E → F be surjective morphisms of G-equivariant vector bundles. Also,
assume that α and β|Y are homotopic in the set of surjective G-equivariant vector
bundle morphisms. Then there exists a surjective morphism of G-equivariant vector
bundles α̃ : E → F such that α̃|Y = α. The same result remains true if we replace
“surjective” with “injective” or with “isomorphism” everywhere.

Proof. Let Z := (Y × [0, 1]) ∪ (X × {0}) and π : Z → X be the projection. Let
π∗(E) → Z and π∗(F ) → Z be the pull-backs of E and F . The homotopy in the
statement of the Lemma defines a surjective morphism a : π∗(E) → π∗(F ) such
that a|Y ×{1} = α and a|X×{0} = β. By [14, Lemma 3.12], the morphism a can
be extended to a surjective morphism over (U × [0, 1]) ∪ (X × {0}), where U is
an open G-neighborhood of Y . (In fact, in that Lemma we considered only the
case of an isomorphism, but the case of a surjective morphism is proved in the
same way.) Let φ : X → [0, 1] be a continuous function such that φ(Y ) = 1 and
φ(X \ U) = 0. By averaging, we can assume φ to be G-equivariant. Then define
α̃(x) = a(x, φ(x)), for all x ∈ X . �
Remark 3.3. Suppose that X is a compact G-space and Y = ∅. Then we have a
natural isomorphism χ1 : L1

G(X, ∅)→ K0
G(X) taking the class of (E0, E1; 0) to the

element [E0]− [E1].

We shall need the following lemma.

Lemma 3.4. Let p : G → B be a bundle of compact groups and πX : X → B be
a compact G-bundle. Assume that πX has a cross-section, which we shall use to
identify B with a subset of X. Then the sequence

0→ L1
G(X, B)→ L1

G(X)→ L1
G(B)

is exact.
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Proof. Suppose that E = (E1, E0; φ) defines an element of L1
G(X) such that its

image in L1
G(B) is zero. Then the definition of E ∼ 0 in L1

G(B) shows that the
restrictions of E1 and E0 to B are isomorphic over B. Hence, the above sequence
is exact at L1

G(X).
Suppose now that (E1, E0; φ) represents a class in L1

G(X, B) such that its
image in L1

G(X) is zero. This means (keeping in mind Remark 3.3) that there
exists a G-equivariant vector bundle P̃ and an isomorphism ψ̃ : E1⊕ P̃ ∼= E0⊕ P̃ .
Let us define P := P̃ ⊕ π∗

X(E0|B)⊕ π∗
X(P̃ |B), where πX : X → B is the canonical

projection, as in the statement of the Lemma. Also, define ψ = ψ̃⊕ Id : E1⊕P →
E0 ⊕ P , which is also an isomorphism.

We thus obtain that T := ψ(φ ⊕ Id)−1 is an automorphism of (E0 ⊕ P )|B ,

which has the form
(

β 0
0 Id

)
with respect to the decomposition

(E0 ⊕ P )|B = (E0 ⊕ P̃ )|B ⊕ (E0 ⊕ P̃ )|B .

The automorphism T := ψ(φ⊕Id)−1 is homotopic to the automorphism T1 defined
by the matrix (

Id 0
0 β

)
.

Since T1 extends to an automorphism of E0⊕P over X , namely
(

Id 0
0 π∗

X(β)

)
,

Lemma 3.2 gives that the automorphism ψ(φ⊕ Id)−1 also can be extended to X ,
such that over B we have the following commutative diagram:

(E1 ⊕ P )|B
φ⊕Id ��

ψ|B
��

(E0 ⊕ P )|B
α|B=

⎛⎝ β 0
0 Id

⎞⎠
��

(E0 ⊕ P )|B
Id �� (E0 ⊕ P )|B.

Hence, (E1, E0, φ)⊕(P, P, Id) ∼= (E0⊕P, E0⊕P, Id) and so is zero in L1
G(X, B). �

3.2. Euler characteristics

We now generalize the above construction to other groups Ln
G , thus proving the

existence and uniqueness of Euler characteristics.

Definition 3.5. Let X be a compact G-space and Y ⊂ X be a G-invariant
subset. An Euler characteristic χn is a natural transformation of functors χn :
Ln
G(X, Y )→ K0

G(X, Y ), such that for Y = ∅ it takes the form

χn(E) =
n∑

i=0

(−1)i[Ei],

for any sequence E = (E∗; d) ∈ Ln
G(X, Y ).
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Lemma 3.6. There exists a unique natural transformation of functors (i.e., an
Euler characteristic)

χ1 : L1
G(X, Y )→ K0

G(X, Y ),

which, for Y = ∅, has the form indicated in 3.3.

Proof. To prove the uniqueness, suppose that χ1 and χ′
1 are two Euler character-

istics on L1
G. Then χ′

1χ
−1
1 is a natural transformation of K0

G that is equal to the
identity on each K0

G(X). Let us consider the long exact sequence

· · · → Kn−1
G (Y, Y ′)→ Kn−1

G (Y )→ Kn−1
G1

(Y ′)

→ Kn
G (Y, Y ′)→ Kn

G (Y )→ Kn
G (Y ′)→ . . . (7)

associated to a pair (Y, Y ) of G-bundles (see [14], Equation (10) for a proof of
the exactness of this sequence). The map K0

G(X, B) → K0
G(X) from this exact

sequence is induced by (X, ∅) → (X, B), and hence, in particular, it is natural.
Assume that πX : X → B has a cross-section. Then the exact sequence (7) for
(Y, Y ′) = (X, B) yields a natural exact sequence 0 → K0

G(X, B) → K0
G(X). This

in conjunction with Lemma 3.4 shows that χ′
1χ

−1
1 is the identity on K0

G(X, B).
(Recall that we agreed to denote by X/BY the fiberwise quotient space over B,
that is the quotient of X with respect to the equivalence relation ∼, x ∼ y if, and
only if, x, y ∈ Yb, for some b ∈ B.) Finally, since the map (X, Y ) → (X/BY, B)
induces an isomorphism of K0

G-groups [14, Theorem 3.19], χ′
1χ

−1
1 is the identity

on K0
G(X, Y ) for all pairs (X, Y ).
To prove the existence of the Euler characteristic χ1, let (E1, E0, α) := (α :

E1 → E0) represent an element of L1
G(X, Y ). Suppose that X0 and X1 are two

copies of X and Z := X0 ∪Y X1 → B is the G-bundle obtained by identifying the
two copies of Y ⊂ Xi, i = 0, 1. The identification of E1|Y and E0|Y with the help
of α gives rise to an element [F 0] − [F 1] ∈ K0

G(Z) defined as follows. By adding
some bundle to both Ei’s, we can assume that E1 is trivial (that is, it is isomorphic
to the pull-back of a vector bundle on B). Then E1 extends to a trivial G-vector
bundle Ẽ1 → Z. We define F 0 := E0 ∪α E1 and F 1 := Ẽ1 .

The exact sequence (7) and the natural G-retractions πi : Z → Xi, give
natural direct sum decompositions

K0
G(Z) = K0

G(Z, Xi)⊕K0
G(Xi), i = 0, 1. (8)

The natural map (X0, Y )→ (Z, X1) induces an isomorphism

k : K0
G(Z, X1)→ K0

G(X0, Y ).

Let us define then χ1(E0, E1, α) to be equal to the image under k of the K0
G(Z, X1)-

component of (E0, E1; α) (with respect to (8)). It follows from its definition that
this map is natural, respects direct sums, and is independent with respect to
the addition of elementary elements. Our proof is completed by observing that
χ1(E1, E0; α) = [E0]− [E1] when Y = ∅. �
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We shall also need the following continuity property of the functor L1
G . Recall

that we have agreed to denote by X/BY the fiberwise quotient bundle over B.

Lemma 3.7. The natural homomorphism

Π∗ : L1
G(X/BY, Y/BY ) = L1

G(X/BY, B)→ L1
G(X, Y )

is an isomorphism for all pairs (X, Y ) of compact G-bundles.

Proof. Lemmata 3.6 and 3.4 give the following commutative diagram

L1
G(X/BY, B) Π∗

��

∼= χ1

��

L1
G(X, Y )

χ1

��
K0

G(X/BY, B) Π∗

∼=
�� K0

G(X, Y ).

From this we obtain injectivity.
To prove surjectivity, suppose that E1 and E0 are G-equivariant vector bun-

dles over X and α : E1|Y → E0|Y is an isomorphism of the restrictions. Let P → X
be a G-bundle such that there is an isomorphism β : E1⊕P ∼= F , where F is a triv-
ial bundle (i.e., isomorphic to a pull back from B). Then (E1, E0, α) ∼ (F, E0 ⊕
P, γ), where γ = (α⊕ Id)β−1. The last object is the image of (F, (E0⊕P )/γ, γ/γ)
(see Lemma 2.8). �

We obtain the following corollaries.

Corollary 3.8. The Euler characteristic χ1 : L1
G(X, Y )→ K0

G(X, Y ) is an isomor-
phism and hence it defines an equivalence of functors.

Proof. This follows from Lemmas 3.7 and 3.6. �

Lemma 3.9. The class of (E1, E0, α) in L1
G(X, Y ) depends only on the homotopy

class of the isomorphism α.

Proof. Let Z = X × [0, 1], W = Y × [0, 1]. Denote by p : Z → X the natural pro-
jection and assume that αt is a homotopy, where α0 = α. Then αt gives rise an iso-
morphism β : p∗(E1)|W ∼= p∗(E0)|W , and hence to an element (p∗(E1), p∗(E0), β)
of L1

G(Z, W ). If

it : (X, Y )→ (X × {t}, Y × {t}) ⊂ (Z, W ), t ∈ [0, 1],

are the standard inclusions, then (E1, E0, αt) = i∗t (p∗(E1), p∗(E0), β). Consider
the commutative diagram

L1
G(X, Y )

χ1

��

L1
G(Z, W )

χ1

��

i∗0�� i∗1 �� L1
G(X, Y )

χ1

��
K0

G(X, Y ) K0
G(Z, W )

i∗0�� i∗1 �� K0
G(X, Y ).
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The vertical morphisms and and the morphisms of the bottom line of the above
diagram are isomorphisms. Hence, the arrows of the top line are isomorphisms too.
The composition i∗0(i∗1)−1 is identity for the bottom line, hence it is the identity
for the top line too. �

The following theorem reduces the study of the functors Ln
G , n > 1, to the

study of L1
G .

Theorem 3.10. The natural map jn : Ln
G(X, Y )→ Ln+1

G (X, Y ) is an isomorphism.

Proof. Let E = (E0, E1, . . . , En+1; dk), dk : Ek|Y → Ek+1|Y represent an element
of the semigroup Ln+1

G (X, Y ). To prove the surjectivity of jn, let us first notice
that E is equivalent to the complex

(E0, . . . , En−2, En−1 ⊕ En+1, En ⊕ En+1, En+1;

d0, . . . , dn−2 ⊕ 0, dn−1 ⊕ Id, dn ⊕ 0).

The maps dn ⊕ 0 : (En ⊕ En+1)|Y → En+1|Y and 0 ⊕ Id : (En ⊕ En+1)|Y →
En+1|Y are homotopic within the set of surjective, G-equivariant vector bundle
morphisms (En ⊕ En+1)|Y → En+1|Y . Hence, by Lemma 3.2, dn ⊕ 0 can be
extended to a surjective morphism b : En⊕En+1 → En+1 of G-equivariant vector
bundles (over the whole of X). So, the bundle En⊕En+1 is isomorphic to ker(b)⊕
En+1. Hence, the E is equivalent to

(E0, . . . , En−2, En−1 ⊕ En+1, ker(b), 0; d0, . . . , dn−2 ⊕ 0, dn−1, 0).

This proves the surjectivity of jn.
To prove the injectivity of jn, it is enough to define, for any n, a left inverse

qn : Ln
G(X, Y )→ L1

G(X, Y ) to sn := jn−1 ◦ · · · ◦ j1. Suppose that (E∗; d) represents
an element of semigroup Ln

G(X, Y ). Choose G-invariant Hermitian metrics on Ei

and let d∗i : Ei+1|Y → Ei|Y be the adjoint of di. Let

F 0 :=
⊕

i

E2i, F 1 :=
⊕

i

E2i+1, b : F 0|Y → F 1|Y , b =
∑

i

(d2i + d∗2i+1).

A standard verification shows that b is an isomorphism. Since all invariant metrics
are homotopic to each other, Lemma 3.9 shows that (E; d) → (F, b) defines a
morphism qn : Ln

G(X, Y )→ L1
G(X, Y ). This is the desired left inverse for sn. �

Let us observe that the proof of the above theorem and Lemma 3.9 give the
following corollary.

Corollary 3.11. The class of E = (Ei, di) in Ln
G(X, Y ) does not change if we

deform the differentials di continuously.

We are now ready to prove the following basic result.

Theorem 3.12. For each n there exists a unique Euler characteristic

χn : Ln
G(X, Y ) ∼= K0

G(X, Y ).
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In particular, L∞
G (X, Y ) ∼= K0

G(X, Y ) and Ln
G(X, Y ) has a natural group structure

for any closed, G-invariant subbundle Y ⊂ X.

Proof. The statement is obtained from the lemmas we have proved above as
follows. First of all, Theorem 3.10 allows us to define

χn := χ1 ◦ j−1
1 ◦ . . . j−1

n−1 : Ln
G(X, Y )→ K0

G(X, Y ).

Lemma 3.7 shows that χn is an isomorphism. The uniqueness of χn is proved in
the same way as the uniqueness of χ1 (Lemma 3.6). �
3.3. Globally defined complexes

Theorem 3.12 provides us with an alternative definition of the groups K0
G(X, Y ).

We now derive yet another definition of these groups that is closer to what is
needed in applications and is based on differentials defined on X , not just on Y .

Let (E; d) be a complex of G-equivariant vector bundles over a G-space X . A
point x ∈ X will be called a point of acyclicity of (E; d) if the restriction of (E; d)
to x, i.e., the sequence of linear spaces

(E; d)x =
(
. . .

(di)x−→ Ei
x

(di+1)x−→ Ei+1
x

(di+2)x−→ . . .
)
,

is exact. The support supp(E; d) of the finite complex (E; d) is the complement
in X of the set of its points of acyclicity. This definition and the following lemma
hold also for X non-compact.

Lemma 3.13. The support supp(E; d) is a closed G-invariant subspace of X.

Proof. The fact that supp(E; d) is closed is classical (see [2, 10] for example). The
invariance should be checked up over one fiber of X at b ∈ B. But this is once
again a well-known fact of equivariant K-theory (see e.g. [10]). �
Lemma 3.14. Let En, . . . , E0 be G-equivariant vector bundles over X and let
Y be a closed, G-invariant subbundle of X. Suppose there are given morphisms
di : Ei|Y → Ei−1|Y such that (Ei|Y , di) is an exact complex. Then the morphisms
di can be extended to morphisms defined over X such that we still have a complex
of G-equivariant vector bundles.

Proof. We will show that we can extend each di to a morphism ri : Ei → Ei−1

such that ri−1 ◦ ri = 0. Let us find a G-invariant open neighborhood U of Y in X
such that for any i there exists an extension si of di to U with (E, s) still an exact
sequence. The desired ri will be defined then as ri = ρsi, where ρ : X → [0, 1] is a
continuous function such that ρ = 1 on Y and supp ρ ⊂ U .

Let us construct U by induction over i. Assume that for the closure U i of
some open G-neighborhood of Y in X we can extend dj to sj , j = 1, . . . , i, such
that, on U i, the sequence

Ei si−→ Ei−1 si−1−→ · · · → E0 → 0

is exact. Suppose Ki := ker(si|U i). Then di+1 determines a cross section of the
bundle HomG(Ei, Ki)|Y . This section can be extended to an open G-neighborhood
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V of Y in U i. We hence obtain an extension si+1 : Ei+1 → Ki of di+1 : Ei+1 → Ki

over V . Since di+1|Y is surjective (with range Ki), the morphism si+1 will be
surjective U i+1 for some open Ui+1 ⊂ Ui. �

The above lemma suggests the following definition.

Definition 3.15. Let X be a compact G-bundle and Y ⊂ X be a G-invariant sub-
bundle. We define En

G (X, Y ) to be the semigroup of homotopy classes of complexes
of G-equivariant vector bundles of length n over X such that their restrictions to
Y are acyclic (i.e., exact).

We shall say that two complexes are homotopic if they are isomorphic to the
restrictions to X × {0} and X × {1} of a complex defined over X × I and acyclic
over Y × I.

Remark 3.16. By Corollary 3.11, the restriction of morphisms induces a morphism
Φn : En

G (X, Y )→ Ln
G(X, Y ).

Theorem 3.17. Let X be a compact G-bundle and Y ⊂ X be a G-invariant sub-
bundle. Then the natural transformation Φn, defined in the above remark, is an
isomorphism.

Proof. The surjectivity of Φn follows from 3.14. The injectivity of Φn can be proved
in the same way as [2, Lemma 2.6.13], keeping in mind Lemma 3.14.

More precisely, we need to demonstrate that differentials of any complex over
G-subbundle (X×{0})∪ (X×{1})∪ (Y × I) of X× I, which is acyclic over Y × I,
can be extended to a complex over the entire X × I. The desired construction has
the following three stages. First, let V be a G-invariant neighborhood of Y such
that the restriction of our complex is still acyclic on (V ×{0})∪(V ×{1})∪(Y ×I)
as well as on its closure (V̄ ×{0})∪ (V̄ ×{1})∪ (Y × I). By Lemma 3.14, one can
extend the differentials di to G-equivariant morphisms ri over V̄ ×I that still define
a complex. Second, let ρ1, ρ2 be a G-invariant partition of unity subordinated to
the covering {V × I, (X \ Y )× I} of X ×Y . Let us extend original differentials to

(X × [0, 1/4]) ∪ (X × [3/4, 1]) ∪ (V × I)

by taking di(x, t) := di(x, 0) for t ≤ 1
4 · ρ2(x), x ∈ X \ Y . We proceed similarly

near t = 1. Also,

di(x, t) := ri

(
x,

(
t− 1

4 · ρ2(x)
)(

1− 1
2 · ρ2(x)

)) , x ∈ V.

Finally, by multiplying the differential di with a function τ : X × I → I that is
equal to 1 on the original subset of definition of the differential and is equal to 0
outside

(X × [0, 1/4]) ∪ (X × [3/4, 1]) ∪ (V × I),

we obtain the desired extension. �
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3.4. The non-compact case

In the case of a locally compact, paracompact G-bundle X , we change the defi-
nitions of Ln

G and En
G as follows. In the definition of Ln

G , the morphisms di have
to be defined and to form an exact sequence off the interior of some compact G-
invariant subset C of X � Y (the complement of Y in X). In the definition of En

G ,
the complexes have to be exact outside some compact G-invariant subset of X �Y .
In other words, Ln

G(X, Y ) = Ln
G(X+, Y +).

Since the proof of Lemma 3.14 is still valid, we have the analogue of Theo-
rem 3.17: there is a natural isomorphism

Ln
G(X, Y ) ∼= En

G (X, Y ).

The proof of the other statement can be extended also to the non-compact
case. The only difference is that we have to replace Y with X \ U , where U is an
open, G-invariant subset with compact closure. Then, when we study two element
sequences E = (Ei, di), we have to take the unions of the corresponding open
sets. Of course, these sets are not bundles, unlike Y , but for our argument using
extensions this is not a problem. This ultimately gives

K0
G(X, Y ) ∼= Ln

G(X, Y ) ∼= En
G (X, Y ), n ≥ 1. (9)

As we shall see below, the liberty of using these equivalent definitions of K0
G(X, Y )

is quite convenient in applications, especially when studying products.

4. The Thom isomorphism

In this section, we establish the Thom isomorphism in gauge-equivariant K-theory.
We begin with a discussion of products and of the Thom morphism.

4.1. Products

Let πX : X → B be a G-space, π̃F : F → X be a complex G-vector bundle over X ,
and s : X → F be a G-invariant section. We shall denote by ΛiF the ith exterior
power of F , which is again a complex G-equivariant vector bundle over X . As in
the proof of the Thom homomorphism for ordinary vector bundles, we define the
complex Λ(F, s) of G-equivariant vector bundles over X by

Λ(F, s) := (0→ Λ0F
α0

−→ Λ1F
α1

−→ . . .
αn−1

−→ ΛnF → 0), (10)

where αk(vx) = s(x) ∧ vx for vx ∈ ΛkF x and n = dimF . It is immediate to check
that αj+1(x)αj(x) = 0, and hence that (Λ(F, s), α) is indeed a complex.

The Künneth formula shows that the complex Λ(F, s) is acyclic for s(x) �= 0,
and hence supp(Λ(F, s)) := {x ∈ X |s(x) = 0}. If this set is compact, then the
results of Section 3 will associate to the complex Λ(F, s) of Equation (10) an
element

[Λ(F, s)] ∈ K0
G(X). (11)

Let X be a G-bundle and πF : F → X be a G-equivariant vector bundle over
X . The point of the above construction is that π∗

F (F ), the lift of F back to itself,
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has a canonical section whose support is X . Let us recall how this is defined. Let
πFF : π∗

F (F )→ F be the G-vector bundle over F with total space

π∗
F (F ) := {(f1, f2) ∈ F × F, πF (f1) = πF (f2)}

and πFF (f1, f2) = f1. The vector bundle πFF : π∗
F (F ) → F has the canonical

section

sF : F → π∗
F F, sF (f) = (f, f).

The support of sF is equal to X . Hence, if X is a compact space, using again the
results of Section 3, especially 3.17, we obtain an element

λF := [Λ(π∗
F (F ), sF )] ∈ K0

G(F ). (12)

Recall that the tensor product of vector bundles defines a natural product
ab = a⊗ b ∈ K0

G(X) for any a ∈ K0
G(B) and any b ∈ K0

G(X), where πX : X → B
is a compact G-space, as above.

Recall that all our vector bundles are assumed to be complex vector bundles,
except for the ones coming from geometry (tangent bundles, their exterior powers)
and where explicitly mentioned. Due to the importance that F be complex in the
following definition, we shall occasionally repeat this assumption.

Definition 4.1. Let πF : F → X be a (complex) G-equivariant vector bundle.
Assume the G-bundle X → B is compact and let λF ∈ K0

G(F ) be the class defined
in Equation (12), then the mapping

φF : K0
G(X)→ K0

G(F ), φF (a) = π∗
F (a)⊗ λF ,

is called the Thom morphism.

As we shall see below, the definition of the Thom homomorphism extends to
the case when X is not compact, although the Thom element itself is not defined
if X is not compact.

The definition of the Thom homomorphism immediately gives the following
proposition. We shall use the notation of Proposition 4.1.

Proposition 4.2. The Thom morphism φF : K0
G(X) → K0

G(F ) is a morphism of
K0

G(B)-modules.

Let ι : X ↪→ F be the zero section embedding of X into F . Then ι induces
homomorphisms

ι∗ : K0
G(F )→ K0

G(X) and ι∗ ◦ φF : K0
G(X)→ K0

G(X).

It follows from the definition that ι∗φF (a) = a ·
∑n

i=0(−1)iΛiF.
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4.2. The non-compact case

We now consider the case when X is locally compact, but not necessarily compact.
The complex Λ(π∗

F (F ), sF ) has a non-compact support, and hence it does not
define an element of K0

G(F ). However, if a = [(E, α)] ∈ K0
G(X) is represented by

the complex (E, α) of vector bundles with compact support (Section 3), then we
can still consider the tensor product complex(

π∗
F (E), π∗

F (α)
)
⊗ Λ(π∗

F F, sF ).

From the Künneth formula for the homology of a tensor product we obtain that
the support of a tensor product complex is the intersection of the supports of the
two complexes. In particular, we obtain

supp{(π∗
F E, π∗

F α)⊗ Λ(π∗
F F, sF )} ⊂ supp(π∗

F E, π∗
F α) ∩ supp Λ(π∗

F F, sF ) ⊂
⊂ supp(π∗

F E, π∗
F α) ∩X = supp(E, α). (13)

Thus, the complex (π∗
F E , π∗

Eα) ⊗ Λ(π∗
F F, sF ) has compact support and hence de-

fines an element in K0
G(F ).

Proposition 4.3. The homomorphism of K0
G(B)-modules

φF : K0
G(X)→ K0

G(F ), φF (a) = [(π∗
F E , π∗

F α)⊗ Λ(π∗
F F, sF )], (14)

defined in Equation (13) extends the Thom morphism to the case of not necessarily
compact X. The Thom morphism φF satisfies

i∗φF (a) = a ·
n∑

i=0

(−1)iΛiF (15)

in the non-compact case as well.

Let F → X be a G-equivariant vector bundle and F 1 = F × R, regarded as
a vector bundle over X × R. The periodicity isomorphisms in gauge-equivariant
K-theory groups [14, Theorem 3.18]

Ki±1
G (X × R, Y × R)  Ki

G(X, Y )

can be composed with φF 1
, the Thom morphism for F 1, giving a morphism

φF : Ki
G(X)→ Ki

G(F ) , i = 0, 1. (16)

This morphism is the Thom morphism for K1.
Let pX : X → B and pY : Y → B be two compact G-fiber bundles. Let

πE : E → X and πF : F → Y be two complex G-equivariant vector bundles.
Denote by p1 : X ×B Y → X and by p2 : X ×B Y → Y the projections onto
the two factors and define E � F := p∗1E ⊗ p∗2F . The G-equivariant vector bundle
E � F will be called the external tensor product of E and F over B. It is a vector
bundle over X ×B Y . Then the formula

K0
G(X)⊗K0

G(Y ) # [E]⊗ [F ]→ [E] � [F ] := [E � F ] ∈ K0
G(X ×B Y )

defines a product K0
G(X)⊗K0

G(Y )→ K0
G(X ×B Y ).
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In particular, consider two complex G-equivariant vector bundles πE : E → X
and πF : F → X . Then E ⊕ F = E ×X F and we obtain a product

Ki
G(E)⊗Kj

G(F ) # [E]⊗ [F ]→ [E] � [F ] := [E � F ]→ Ki+j
G (E ⊕ F ).

Using also periodicity, we obtain the product

� : Ki
G(E)⊗Kj

G(F )→ Ki+j
G (E ⊕ F ). (17)

This product is again seen to be given by the tensor product of the (lifted) com-
plexes (when representing K-theory classes by complexes) as in the classical case.

The external product � behaves well with respect to the “Thom construc-
tion” in the following sense. Let F 1 and F 2 be two complex bundles over X, and
s1, s2 two corresponding sections of these bundles. Then

Λ(F 1 ⊕ F 2, s1 ⊗ 1 + 1⊗ s2) = Λ(F 1, s1) � Λ(F 2, s2). (18)

In particular, if X is compact, we obtain

λE � λF = λE⊕F . (19)

We shall write s1 + s2 = s1 ⊗ 1 + 1⊗ s2, for simplicity.
The following theorem states that the Thom class is multiplicative with re-

spect to direct sums of vector bundles (see also [5]).

Theorem 4.4. Let E, F → X be two G-equivariant vector bundles, and regard
E⊕F → E as the G-equivariant vector bundle π∗

E(F ) over E. Then φπ∗
E(F ) ◦φE =

φE⊕F .

The above theorem amounts to the commutativity of the diagram

K∗
G(X)

φE

��

φE⊕F
		����������

K∗
G(E)

φπ∗
E(F )

����������

K∗
G(E ⊕ F )

(20)

Proof. Let F 1 := π∗
E(F ) = E ⊕ F , regarded as a vector bundle over E. Consider

the projections

πE : E → X, πF : F → X, πE⊕F : E ⊕ F → X, t = πF 1 : E ⊕ F → E.

Let x ∈ K0
G(X). Then φE(x) = π∗

E(x)⊗Λ(π∗
E(E), sE). Now we use that t∗π∗

E(x) =
π∗

E⊕F (x) and t∗Λ(π∗
E(E), sE) = Λ(π∗

E⊕F (E), sE ◦ t). Since sE ◦ t + sF 1 = sE⊕F ,
Equations (18) and (19) then give

Λ(π∗
E⊕F (E ⊕ F ), sE⊕F ) = Λ(π∗

E⊕F (E), sE ◦ t)⊗ Λ(π∗
E⊕F (F ), sF 1).
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Putting together the above calculations we obtain

φF 1
φE(x) = t∗(φE(x)) ⊗ Λ(t∗(F 1), sF 1)

= t∗π∗
E(x) ⊗ t∗(Λ(π∗

E(E), sE))⊗ Λ(t∗(F 1), sF 1)

= π∗
E⊕F (x) ⊗ Λ(π∗

E⊕F E, sE ◦ t)⊗ Λ(π∗
E⊕F F, sF 1)

= π∗
E⊕F (x) ⊗ Λ(π∗

E⊕F (E ⊕ F ), sE⊕F ) = φE⊕F
1 (x).

The proof is now complete. �

We are now ready to formulate and prove the Thom isomorphism in the
setting of gauge-equivariant vector bundles. Recall that the Thom morphism was
introduced in Definition 4.1.

Theorem 4.5. Let X → B be a G-bundle and F → X a complex G-equivariant
vector bundle, then φF : Ki

G(X)→ Ki
G(F ) is an isomorphism.

Proof. Assume first that F is a trivial bundle, that is, that F = X ×B V , where
V → B is a complex, finite-dimensional G-equivariant vector bundle. We continue
to assume that B is compact.

Let us denote by C := B × C the 1-dimensional G-bundle with the trivial
action of G on C. Also, let us denote by P (V ⊕C) the projective space associated
to V ⊕C. As a topological space, P (V ⊕C) identifies with the fiberwise one-point
compactification of V . The embeddings V ⊂ P (V⊕C) and V×BX ⊂ P (V⊕C)×BX
then gives rise to the following natural morphism (Equation (6))

j : K0
G(V)→ K0

G(P (V ⊕ C)), j : K0
G(V ×B X)→ K0

G(P (V ⊕ C)×B X).

Let X be compact and let x ∈ K0
G(P (V ⊕C)×B X) be arbitrary. The fibers

of the projectivization P (V ⊕ C) are complex manifolds, so we can consider the
analytical index of the correspondent family of Dolbeault operators over P (V ⊕1)
with coefficients in x (cf. [3, page 123]). This index is an element of K0

G(X) by
the results of [14]. Taking the composition with j (cf. [3, page 122-123]), we get a
family of mappings αX : K0

G(V ×B X)→ K0
G(X), having the following properties:

(i) αX is functorial with respect to G-equivariant morphisms;
(ii) αX is a morphism of K0

G(X)-modules;
(iii) αB(λV ) = 1 ∈ K0

G(B).
Let X+ := X ∪ B be the fiberwise one-point compactification of X . The

commutative diagram

0→ K0
G(V ×B X) �� K0

G(V ×B X+) ��

αX+

��

K0
G(V)

αB

��
0→ K0

G(X) �� K0
G(X+) �� K0

G(B)

with exact lines allows us to define αX for X non-compact as the restriction and
corestriction of αX+ .
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Let x ∈ K0
G(X), then by (ii)

αX(λV x) = αX(λV)x = x, αφ = Id . (21)

Let q := πF : F = V ×B X → X , p : X ×B V → X , q1 : V ×B X ×B V → V
(the projection onto the first entry), and q2 : X ×B V → B. Let us denote by ỹ ∈
K0

G(X×B V) the element obtained from y under the mapping X×B V → V ×B X ,
(x, v) �→ (−v, x) (such that V ×B X ×B V → V ×B X ×B V , (u, x, v) �→ (−v, x, u)
is homotopic to the identity).

Let y ∈ K0
G(V ×B X), then once again by (i), (ii) and then by (iii)

φ(αX(y)) = π∗
EαX(y)⊗ q∗λV = αX×BV(p∗1y)⊗ q∗λV = αX×BV(p∗1y ⊗ q∗λV )

= αX×BV(y � λV ) = αX×BV(λV � ỹ) = αX×BV(q∗1λV ⊗ ỹ)

= αX×BV(q∗1λV )⊗ ỹ = q∗2αB(λV )⊗ ỹ = q∗2(1)⊗ ỹ = ỹ ∈ K0
G(X ×B V), (22)

We obtain that φ ◦ αX is an isomorphism. Since αX ◦ φ = Id, αX is the two-sides
inverse of φ, and hence the automorphism φ ◦ αX is the identity.

The proof for a general (complex) G-equivariant vector bundle F → X can
be done as in [3, p. 124]. However, we found it more convenient to use the following
argument. Embed first F into a trivial bundle E = V ×B X . Let φ1 and φ2 be the
Thom maps associated to the bundles E → F and E → X . Then by Theorem 4.4
the diagram

K0
G(F )

φ1
�� K0

G(E)

K0
G(X)

φF

����������� φ2

�����������

is commutative, while φ2 is an isomorphism by the first part of the proof. Therefore
φF is injective. The same argument show that φ1 is injective. But φ1 must also be
surjective, because φ2 is an isomorphism. Thus, φ1 is an isomorphism, and hence
φF is an isomorphism too. �

5. Gysin maps

We now discuss a few constructions related to the Thom isomorphism, which will
be necessary for the definition of the topological index. The most important one
is the Gysin map. For several of the constructions below, the setting of G-spaces
and even G-bundles is too general, and we shall have to consider longitudinally
smooth G-fiber bundles πX : X → B. The main reason why we need longitudinally
smooth bundles to define the Gysin map is the same as in the definition of the
Gysin map for embeddings of smooth manifolds. We shall denote by TvertX the
vertical tangent bundle to the fibers of X → B. All tangent bundles below will be
vertical tangent bundles.

Let X and Y be longitudinally smooth G-fiber bundles, i : X → Y be an
equivariant fiberwise embedding, and pT : TvertX → X be the vertical tangent
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bundle to X. Assume Y is equipped with a G-invariant Riemannian metric and let
pN : Nvert → X be the fiberwise normal bundle to the image of i

Let us choose a function ε : X → (0,∞) such that the map of Nvert to itself

n �→ ε
n

1 + |n|
is G-equivariant and defines a G-diffeomorphism Φ : Nvert → W onto an open
tubular neighborhood W ⊃ X in Y.

Let (N⊕N)vert := Nvert⊕Nvert. The embedding i : X → Y can be written as
a composition of two fiberwise embeddings i1 : X → W and i2 : W → Y . Passing
to differentials we obtain

TvertX
di1−→ TvertW

di2−→ TvertY and dΦ : TvertN → TvertW,

where we use the simplified notation TvertN = TvertNvert.

Lemma 5.1. (cf. [10, page 112]) The manifold TvertN can be identified with p∗T (N⊕
N)vert with the help of a G-equivariant diffeomorphism ψ that makes the following
diagram commutative

p∗T (N ⊕N)vert

��

TvertN
ψ

��

��
TvertX

pT

		����������� Nvert

pN

���
���

��
�

X.

Proof. The vertical tangent bundle TvertN → Nvert and the vector bundle

p∗N (TvertX)⊕ p∗N (Nvert)→ Nvert

are isomorphic as G-equivariant vector bundles over Nvert.
Indeed, a point of the total space TvertN is a pair of the form (n1, t + n2),

where both vectors are from the fiber over the point x ∈ X. Similarly, we represent
elements p∗T (N ⊕ N)vert as pairs of the form (t, n1 + n2). Let us define ψ by the
equality ψ(n1, t + n2) = (t, n1 + n2). �

With the help of the relation i · (n1, n2) = (−n2, n1), we can equip

p∗T (N ⊕N)vert = p∗T (Nvert)⊕ p∗T (Nvert) (23)

with a structure of a complex manifold. Then we can consider the Thom homo-
morphism

φ : K0
G(TvertX)→ K0

G(p∗T (N ⊕N)vert).

Since TvertW is an open G-stable subset of TvertY and di2 : TvertW → TvertY is
a fiberwise embedding, by Equation (6), we obtain the homomorphism (di2)∗ :
K0

G(TvertW )→ K0
G(TvertY ).
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Definition 5.2. Let i : X → Y be an equivariant embedding of G-bundles. The
Gysin homomorphism is the mapping

i! : K0
G(TvertX)→ K0

G(TvertY ), i! = (di2)∗ ◦ (dΦ−1)∗ ◦ ψ∗ ◦ φ.

In other words, the Gysin map is obtained by passage to K-groups in the upper
line of the diagram

p∗T (N ⊕N)vert

qT

��

TvertN
ψ�� dΦ ��

��

TvertW
di2 ��

��

TvertY

��

TvertX
pT

		����������� Nvert

pN

���
��

��
�� Φ

��										

X
i1 �� W

i2 �� Y.

Another choice of metric and neighborhood W induces the homotopic map
and (by the item 3 of Theorem 5.3 below) the same homomorphism.

Theorem 5.3 (Properties of Gysin homomorphism). Let i : X → Y be a G-embed-
ding. Then

(i) i! is a homomorphism of K0
G(B)-modules.

(ii) Let i : X → Y and j : Y → Z be two fiberwise G-embeddings, then (j ◦ i)! =
j! ◦ i!.

(iii) Let fiberwise embeddings i1 : X → Y and i2 : X → Y be G-homotopic in the
class of embeddings. Then (i1)! = (i2)!.

(iv) Let i! : X → Y be a fiberwise G-diffeomorphism, then i! = (di−1)∗.
(v) A fiberwise embedding i : X → Y can be represented as a composition of

embeddings X in Nvert (as the zero section s0 : x → N) and Nvert → Y by
i2 ◦ Φ : Nvert → Y. Then i! = (i2 ◦ Φ)!(s0)!.

(vi) Consider the complex bundle p∗T (Nvert ⊗ C) over TvertX. Let us form the
complex Λ(p∗T (Nvert ⊗ C); 0) :

0→ Λ0(p∗T (Nvert ⊗ C)) 0−→ . . .
0−→ Λk(p∗T (Nvert ⊗ C))→ 0

with noncompact support. If a ∈ K0
G(TvertX), then the complex

a⊗ Λ(p∗T (Nvert ⊗ C), 0)

has compact support and defines an element of K0
G(TvertX). Then

(di)∗i!(a) = a · Λ(p∗T (Nvert ⊗ C); 0),

where di is the differential of the embedding i.
(vii) i!(x(di)∗y) = i!(x) · y, where x ∈ K0

G(TvertX) and y ∈ K0
G(TvertY ).
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Proof. (i) This follows from the definition of i!.

(ii) To simplify the argument, let us identify the tubular neighborhood with
the normal bundle. Then (j ◦ i)! is the composition

K0
G(TvertX)

φ−→ K0
G(TvertN ⊕ TvertN

′′
vert)→ K0

G(TvertZ),

where N ′
vert is the fiberwise normal bundle of Y in Z, N ′′

vert = N ′
vert|X , and for

the sum of tangent bundles to the vertical normal bundles TvertN ⊕ TvertN
′′
vert is

considered in the same way as a complex bundle over TvertX , as in Equation (23).
On the other hand, j! ◦ i! represents the composition

K0
G(TvertX)

φ−→ K0
G(TvertN)→ K0

G(TvertY )
φ−→ K0

G(TvertN
′
vert)→ K0

G(TvertZ).

By the properties of φ, the following diagram is commutative

K0
G(TvertX)

φ ��

φ

��














K0

G(TvertN) ��

φ

��

K0
G(TvertY )

φ

��
K0

G(TvertN ⊕ TvertN
′
vert)

φ ��

��

K0
G(TvertN

′
vert)

��
K0

G(TvertZ) K0
G(TvertZ).

This completes the proof of (ii).
(iii) The morphism qT depends only on the homotopy class of the embeddings

used to define it. The assertion thus follows from the homotopy invariance of K-
theory.

(iv) In this case N = X, W = Y, Φ = i, i2 = IdY , and the formula is obvious.
(v) This follows from (ii).
(vi) By definition,

(di)∗ ◦ i! = (di1)∗ ◦ (di2)∗ ◦ (di2)∗ ◦ (dφ−1)∗ ◦ ψ∗ ◦ φ∗ = (ψ ◦ dΦ−1 ◦ di1)∗ ◦ φ,

where i1 : X → W, i2 : W → Y. Let (n1, t + n2) ∈ TvertN = p∗N (TvertX) ⊕
p∗N (Nvert), where n1 is the shift under the exponential mapping and t + n2 is a
vertical tangent vector to W. If dΦ(n1, t + n2) is in TvertX , then n1 = n2 = 0.
Hence,

dΦ−1di1(t) = (0, t + 0), ψ ◦ dΦ−1 ◦ di1(t) = (t, 0 + 0).

Therefore, ψ ◦ dΦ−1 ◦ di1 : TvertX → p∗T (Nvert ⊕ Nvert) is the embedding of the
zero section. Since φ(a) = a · Λ(q∗T p∗T (Nvert ⊗ C), sp∗

T (Nvert⊗C)), it follows that
(di)∗ ◦ i!(a) = a · Λ(p∗T (Nvert ⊗ C), 0).
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(vii) The mapping di1 ◦ qT ◦ψ ◦dΦ−1 : TvertW → TvertW is homotopic to the
identical mapping. Hence,

i!(x · (di)∗y) = (di2)∗(dΦ−1)∗ψ∗φ(x · (di)∗y)
= (di2)∗(dΦ−1)∗ψ∗[(q∗T (x)λp∗

T (Nvert⊗C))(q∗T (di)∗y)]
= (di2)∗[(dΦ−1)∗ψ∗(q∗T (x)λp∗

T (Nvert⊗C)) (dΦ−1)∗ψ∗q∗T (di1)∗︸ ︷︷ ︸
Id

(di2)∗y]

= [(di2)∗(dΦ−1)∗ψ∗(q∗T (x)λp∗
T (Nvert⊗C))] [(di2)∗(di2)∗y] = i!(x) · y.

The proof is now complete. �

We shall need also the following properties of the Gysin map. If X = B,
the trivial longitudinally smooth G-bundle, we shall identify TvertX = B and
TvertV = V ⊗ C for a real bundle V → B.

Theorem 5.4. Suppose that V → B is a G-equivariant real vector bundle and that
X = B. Then the mapping

i! : K0
G(B) = K0

G(TXvert)→ K0
G(TvertV) = K0

G(V ⊗ C)

coincides with the Thom homomorphism φV⊗C.

Proof. The assertion follows from the definition of i!. More precisely, let X =
B ↪→ V , N = V be the zero section embedding. In the definition of the Thom
homomorphism, W can be chosen to be equal to the bundle D1 of interiors of the
balls of radius 1 in V with respect to an invariant metric. In this case, the diagram
from the definition of the Gysin homomorphism 5.2 takes the following form

V ⊗ C

��

Ψ �� V ⊗ C
dΦ ��

��

D1 ⊗ C
di2 ��

��

V ⊗ C

��

TvertX = B

		����������� V

�������������
Φ

��

X = B
i1 �� D1

i2 �� V .

In our case Ψ = Id and di2 ◦ dΦ is homotopic to Id, since this map has the form
v ⊗ z �→ (v ⊗ z)/(1 + |v ⊗ z|). Hence, i! = φ. �

Theorem 5.5. Suppose that V ′ and V ′′ are G-equivariant R-vector bundles over B
and that i : X → V ′ is an embedding. Let k : X → V ′ ⊕V ′′, k(x) = i(x) + 0. Let φ
be the Thom homomorphism of the complex bundle

Tvert(V ′ ⊕ V ′′) = V ′ ⊗ C⊕ V ′′ ⊗ C −→ TvertV ′ = V ′ ⊗ C.
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Then the following diagram is commutative

K0
G(TvertV ′)

φ

��

K0
G(TvertX)

i!

���������������

k! ���������������

K0
G(Tvert(V ′ ⊕ V ′′)).

Proof. To prove the statement, let us consider the embedding i : X → V ′ and de-
note, as before, by Nvert the fiberwise normal bundle and by W the tubular neigh-
borhood appearing in the definition of the Thom homomorphism associated to i.
Then Nvert⊕V ′′ is a fiberwise normal bundle for the embedding k with the tubular
neighborhood W ⊕D(V ′′), where D(V ′′) is a ball bundle. If a ∈ K0

G(TvertX), then

k!(a) = (di2 ⊕ 1)∗ ◦ (dΦ−1 ⊕ 1)∗ ◦ (ψ ⊕ 1)∗ ◦ φN⊕N⊕V′′⊕V′′
(a).

We have φN⊕N⊕V′′⊕V′′
= φN⊕N ◦φV′′⊕V′′

, by Theorem 4.4. Since a = a ·C, where
C is the trivial line bundle, we obtain

k!(a) = (di2)∗ ◦ (dΦ−1)∗ ◦Ψ∗ ◦ φNvert⊕Nvert(a) ◦ φV′′⊕V′′
(C)

= i!(a) · λT (V′⊕V′′)vert = φ(i!(a)). (24)

The proof is now complete. �

6. The topological index

We begin with a “fibered Mostow-Palais theorem” that will be useful in defining
the index.

Theorem 6.1. Let πX : X → B be a compact G-fiber bundle. Then there exists
a real G-equivariant vector bundle V → B and a fiberwise smooth G-embedding
X → V. After averaging one can assume that the action of G on V is orthogonal.

Proof. Fix b ∈ B and let U be an equivariant trivialization neighborhood of b for
both X and G. By the Mostow-Palais theorem, there exists a representation of Gb

on a finite dimensional vector space Vb and a smooth Gb-equivariant embedding
ib : Xb → Vb. This defines an embedding

ψ : π−1
X (Ub)  Ub ×Xb → Ub × Vb, (25)

which is G-equivariant in an obvious sense.
We can cover B with finitely many open sets Ubj , as above, corresponding to

the points bj , j = 1, . . . , N . Denote by Vj the corresponding representations and
by ψj the corresponding embeddings, as in Equation (25). Let W := ⊕Vj . Also,
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Let φj be a partition of unity subordinated to the covering by Uj = Ubj . We define
then

Ψ := ⊕(φj ◦ πX)ψj : X → B ×W,

which is a G-equivariant embedding of X into the trivial G-equivariant vector
bundle V := B ×W , as desired. �

Let us now turn to the definition of the topological index. Let X → B be
a compact, longitudinally smooth G-bundle. From Theorem 6.1 it follows that
there exists an G-equivariant real vector bundle V → B and a fiberwise smooth
G-equivariant embedding i : X → V . We can assume that V is endowed with an
orthogonal metric and that G preserves this metric. Thus, the Gysin homomor-
phism

i! : K0
G(TvertX)→ K0

G(TvertV) = K0
G(V ⊗ C)

is defined (see Section 4). Since TvertV = V ⊗ C is a complex vector bundle, we
have the following Thom isomorphism (see Section 4):

φ : K0
G(B) ∼−→ K0

G(TvertV).

Definition 6.2. The topological index is by definition the morphism:

t-indX
G : K0

G(TvertX)→ K0
G(B), t-indX

G := φ−1 ◦ i!.

The topological index satisfies the following properties.

Theorem 6.3. Let X → B be a longitudinally smooth bundle and

t-indX
G : K0

G(TvertX)→ K0
G(B)

be its associated topological index. Then

(i) t-indX
G does not depend on the choice of the G-equivariant vector bundle V

and on the embedding i : X → V.
(ii) t-indX

G is a K0
G(B)-homomorphism.

(iii) If X = B, then the map

t-indX
G : K0

G(B) = K0
G(TvertX)→ K0

G(B)

coincides with IdK0
G(B).

(iv) Suppose X and Y are compact longitudinally smooth G-bundles, i : X → Y
is a fiberwise G-embedding. Then the diagram

K0
G(TvertX)

i! ��

t-indX
G 		����������

K0
G(TvertY )

t-indY
G

����������

K0
G(B).

commutes.
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Proof. To prove (i), let us consider two embeddings

i1 : X → V ′,

i2 : X → V ′′

into G-equivariant vector bundles. Denote by j = i1 + i2 the induced embedding
j : X → V ′ ⊕ V ′′. It is sufficient to show that i1 and j define the same topological
index. Let us define a homotopy of G-embeddings by the formula

js(x) = i1(x) + s · i2(x) : X → V ′ ⊕ V ′′, 0 ≤ s ≤ 1.

Then, by Theorems 5.3(iii) and 5.5, the indices for j and j0 coincide. Let us show
now that j0 = i1 + 0 and i1 define the same topological indexes. For this purpose
consider the diagram

K0
G(TvertX)

(i1)!

�������������
(j0)!

���������������

K0
G(TvertV ′)

φ2 �� K0
G(Tvert(V ′ ⊕ V ′′)),

K0
G(B)

φ1

������������� φ3

���������������

where φi are the corresponding Thom homomorphisms. The upper triangle is
commutative by Theorem 5.4.2, and the lower is commutative by Theorem 4.4.
Hence φ−1

1 ◦ (i1)! = φ−1
3 ◦ (j0)1 as desired.

(ii) follows from 4.2 and 5.3(i). Property (iii) follows from the definition of
the index and from 5.4.

To prove (iv), let us consider the diagram

X
i ��

j◦i ���
��

��
��

� Y

j����
��

��
�

V .

We now use 5.3(ii). This gives the commutative diagram

K0
G(TvertX)

i! ��

(j◦i)! �������������
K0

G(TvertY )

j!�������������

K0
G(TvertV)
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or

K0
G(TvertX)

i! ��

(j◦i)!

�������������

t-indX
G

���
��

��
��

��
��

��
��

��
��

K0
G(TvertY )

j!

�������������

t-indY
G

����
��

��
��

��
��

��
��

��
�

K0
G(TvertV)

K0
G(B).

φ

��

This completes the proof. �

We now investigate the behavior of the topological index with respect to fiber
products of bundles of compact groups.

Theorem 6.4. Let π : P → X be a principal right H-bundle with a left action of G
commuting with H. Suppose F is a longitudinally smooth (G × H)-bundle. Let us
denote by Y the space P ×H F . Let j : X ′ → X and k : F ′ → F be fiberwise G-
and (G ×H)-embeddings, respectively. Let π′ : P ′ → X ′ be the principal H-bundle
induced by j on X ′. Assume that Y ′ := P ′×H F ′. The embeddings j and k induce
G-embedding j ∗ k : Y ′ → Y . Then the diagram

K0
G(TvertX)⊗K0

G(B) K0
G×H(TvertF ) γ �� K0

G(TvertY )

K0
G(TvertX

′)⊗K0
G(B) K0

G×H(TvertF
′) γ ��

j!⊗k!

��

K0
G(TvertY

′)

(j∗k)!

��

is commutative.

Let us remark that in the statement of this theorem there is no compactness
assumption on X, X ′, F, and F ′, since there is no compactness assumption in
the definition of the Gysin homomorphism. This is unlike in the definition of the
topological index where we start with a compact G-bundle X → B.

Proof. Let us use the definition of γ:

K0
G(TvertX)⊗K0

G×H(TvertF ) ��

1

K0
G(TvertX)⊗K0

G×H(P × TvertF )
∼= ��

2

K0
G(TvertX

′)⊗K0
G×H(TvertF

′) ��

j!⊗k!

��

K0
G(TvertX

′)⊗K0
G×H(P ′ × TvertF

′)

ε

��

∼= ��

∼= K0
G(TvertX)⊗K0

G(P ×H TvertF )→

3

K0
G(π∗

1TvertX)⊗K0
G(P ×H TvertF )→

∼= K0
G(TX ′)⊗K0

G(P ′ ×H TvertF
′)→

β

��

K0
G((π′

1)
∗TvertX

′)⊗K0
G(P ′ ×H TvertF

′)→

α

��
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→ K0
G((π∗

1TvertX)× (P ×H TvertF ))→
4

→ K0
G((π′

1)
∗TvertX

′ × (P ′ ×H TvertF
′))→

(26)

→ K0
G(π∗

1TvertX ⊕ (P ×H TvertF )) = K0
G(TvertY )

4 ↑ (j ∗ k)!
→ K0

G((π′
1)

∗TvertX
′ ⊕ (P ′ ×H TvertF

′)) = K0
G(TY ′

vert),

where projections π1 : Y = P ×H F → X and π′
1 : Y ′ = P ×HF ′ → X ′ are defined

as above. Here we use the isomorphism K0
G×H(P ×W ) ∼= K0

G(P ×H W ) for a free
H-bundle P (see Theorem 2.6). Let us remind the diagram, which was used for
the definition of the Gysin homomorphism of an embedding j : X ′ → X :

p∗T (NX′ ⊕NX′)vert

qX′
T

��

TvertNX′
ψ�� dΦX′ ��

��

TvertWX′
dj2 ��

��

TvertX

��

TvertX
′

pT

��������������
NX′,vert

pN
X′,vert

�����������
ΦX′

		����������

X ′ j1 �� WX′
j2 �� X.

From the similar diagrams for k! and (j ∗ k)! and the explicit form of these maps,
it follows that the square 4 in (26) is commutative if, and only if, α has the
following form:

α(σ ⊗ ρ) = (π∗
1)

{
(dj2)∗ (dΦ−1

X′ )∗ ψ∗
X′

}
◦ φS(σ)⊗

⊗(π∗j2 ×H dk2)∗
(
(π∗ΦX′ ×H dΦF ′)−1

)∗
(1×H ψF ′)∗ φR(ρ),

where S and T are bundles of the form

π∗
1

(
(pX′

T )∗{NX′ ⊕NX′}
)

π∗NX′ ×H (pF ′
T )∗ (NF ′ ⊕NF ′)

S : ↓ (π′
1)

∗qX′
T R : ↓ (π′)∗(pNX′ )×H qF ′

T

(π′
1)

∗ (TvertX
′), π∗ X ′ ×H TvertF

′ = P ′ ×H TvertF
′.

Hence the square 3 in (26) is commutative if, and only if, the homomorphism β
has the form

β(τ ⊗ ρ) = j!(τ)⊗ ⊗ (π∗j2 ×H dk2)∗
(
(π∗ΦX′ ×H dΦF ′)−1

)∗
(1×H ψF ′)∗ φR(ρ),

where τ ∈ K0
G(TX ′), ρ ∈ K0

G(P ′ ×H TF ′). In turn, the square 2 in (26) is com-
mutative if, and only if, the homomorphism ε has the form

ε(τ ⊗ δ) = j!(τ)⊗ ⊗(π∗j2 ×H dk2)∗
(
(π∗ΦX′ ×H dΦF ′)−1

)∗
(1 ×H ψF ′)∗ φR̃

C (δ),
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where τ ∈ K0
G(TX ′), δ ∈ K0

G×H(P ′ × TF ′), and R̃ is the bundle

π∗NX′ × (pF ′
T )∗ (NF ′ ⊕NF ′)

R̃ : ↓ (π′)∗(pN )× qF ′
T

P ′ × TF ′.

Suppose δ = [C]⊗̂ω, where [C] ∈ K0
G×H(P ′), C is the one-dimensional trivial

bundle and ω ∈ K0
G×H(TF ′). Then

ε(τ ⊗ δ) = j!(τ)⊗
{

π∗(j2)∗(Φ−1
X′ )∗[C]⊗̂k!(ω)

}
=

= j!(τ)⊗
{

[C]⊗̂k!(ω)
}
.

Since the map K0
G×H(TF ) → K0

G×H(P × TF ) (as well as the lower line in (26))
has the form ω �→ [C]⊗̂ω, we have proved the commutativity of 1 in (26). �

From this theorem we obtain the following corollary.

Corollary 6.5. Let M be a compact smooth H-manifold, let H = B×H, and let P
be a principal longitudinally smooth H-bundle over X carrying also an action of
G commuting with the action of H. Also, let X → B be a compact longitudinally
smooth G-bundle. Let Y := P ×H M → X be associated longitudinally smooth
G-bundle. Taking F = B × M , we define TMY := TF Y . Then TMY is a G-
invariant real subbundle of TvertY and TMY = P ×H TM . Let j : X ′ → X be
a fiberwise G-equivariant embedding and let k : M ′ → M be an H-embedding.
Denote by π′ : P ′ → X ′ the principal H-bundle induced by j on X ′ and assume
that Y ′ := P ′×H M ′. The embeddings j and k induce G-embedding j ∗k : Y ′ → Y .
Then the diagram

K0
G(TvertX)⊗K0

H(TM)
γ �� K0

G(TvertY )

K0
G(TvertX

′)⊗K0
H(TM ′)

γ ��

j!⊗k!

��

K0
G(TvertY

′)

(j∗k)!

��

is commutative.
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