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Editorial Introduction

B. Bojarski, A.S. Mishchenko, E.V. Troitsky and A. Weber

The present volume is basically formed by contributions of participants of the In-
ternational Conference “C∗-algebras and elliptic theory” hold in Stefan Banach
International Mathematical Center in Bȩdlewo (Poland) in February 2004. The
history of this Conference goes back to the idea of Prof. Bogdan Bojarski to
strengthen collaboration between mathematicians from Poland and Russia, es-
pecially from Moscow, on the base of common scientific interests in the field of
noncommutative geometry.

This idea leaded very quickly to the organization of the mentioned Conference
which brought together about 60 mathematicians not only from Russia and Poland,
but from other leading centers and awarded a support from the European program
“Geometric Analysis Research Training Network”. The conference started a series
of annual conferences in Bȩdlewo and Moscow alternately. Up to the present time
three conferences of this series were organized and the forth one is planned to take
place in Moscow in 2007 (http://higeom.math.msu.su/oat2007).

The contributions are mainly concentrated on applications of C∗-algebraic
technic to geometrical and topological problems and appropriately present the
main actual problems in this field of noncommutative geometry and topology and
indicate principal directions of its development.

To present the volume into perspective let us remind that the notion “non-
commutative geometry” was coined out by Alain Connes in 1980’s to indicate a
new trend in mathematics. A naive look on this trend goes back to the prominent
theorem of Gelfand and Naimark, which identifies the category of commutative
unital C∗-algebras and the category of compact Hausdorff topological spaces. The
passage to noncommutative algebras gives rise to the notion of “noncommutative
topological space”, which turned out to be fruitful despite the fact that they are not
spaces in usual sense. The method and problems of this domain brought together
a number of important achievements and open questions from topology, geometry,
algebra and functional analysis. A most fruitful interference here is an enriching
of the index theory of elliptic operators by the theory of C∗-algebras.

The papers from the present collection reflect some important actual prob-
lems and achievements of noncommutative geometry.
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Index of elliptic operators: The paper “Index Theory for Generalized Dirac Oper-
ators on Open Manifolds” by J. Eichhorn is devoted to the index theory on open
manifolds. In the first part of the paper, a short review of index theory on open
manifolds is given. In the second part, a general relative index theorem admitting
compact topological perturbations and Sobolev perturbations of all other ingredi-
ents is established. V. Nazaikinskii and B. Sternin in the paper “Lefschetz Theory
on Manifolds with Singularities” extend the Lefschetz formula to the case of el-
liptic operators on the manifolds with singularities using the semiclassical asymp-
totic method. In the paper “Pseudodifferential Subspaces and Their Applications
in Elliptic Theory” by A. Savin and B. Sternin the method of so called pseudo-
differential projectors in the theory of elliptic operators is studied. It is very useful
for the study of boundary value problems, computation of the fractional part of
the spectral AtiyahPatodiSinger eta invariant and analytic realization of topolog-
ical K-groups with finite coefficients in terms of elliptic operators. In the paper
“Residues and Index for Bisingular Operators” F. Nicola and L. Rodino consider
an algebra of pseudo-differential operators on the product of two manifolds, which
contains, in particular, tensor products of usual pseudo-differential operators. For
this algebra the existence of trace functionals like Wodzickis residue is discussed
and a homological index formula for the elliptic elements is proved. B. Bojarski and
A. Weber in their paper “Correspondences and Index” define a certain class of cor-
respondences of polarized representations of C∗-algebras. These correspondences
are modeled on the spaces of boundary values of elliptic operators on bordisms
between two manifolds. In this situation an index is defined. The additivity of this
index is studied in the paper.

Noncommutative aspects of Morse theory: In the paper “New L2-invariants of
Chain Complexes and Applications” by V.V. Sharko homotopy invariants of free
cochain complexes and Hilbert complex are studied. These invariants are applied
to calculation of exact values of Morse numbers of smooth manifolds. A. Connes
and T. Fack in their paper “Morse Inequalities for Foliations” outline an analytical
proof of Morse inequalities for measured foliations obtained by them previously
and give some applications. The proof is based on the use of a twisted Laplacian.

Riemannian aspects: The paper “A Riemannian Invariant, Euler Structures and
Some Topological Applications” by D. Burghelea and S. Haller discusses a numer-
ical invariant associated with a Riemannian metric, a vector field with isolated
zeros, and a closed one form which is defined by a geometrically regularized inte-
gral. This invariant extends the ChernSimons class from a pair of two Riemannian
metrics to a pair of a Riemannian metric and a smooth triangulation. They discuss
a generalization of Turaevs Euler structures to manifolds with non-vanishing Eu-
ler characteristics and introduce the Poincare dual concept of co-Euler structures.
The duality is provided by a geometrically regularized integral and involves the
invariant mentioned above. Euler structures have been introduced because they
permit to remove the ambiguities in the definition of the Reidemeister torsion.
Similarly, co-Euler structures can be used to eliminate the metric dependence of
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the RaySinger torsion. The BismutZhang theorem can then be reformulated as a
statement comparing two genuine topological invariants. The paper “Semiclassi-
cal Asymptotics and Spectral Gaps for Periodic Magnetic Schrödinger Operators
on Covering Manifolds” by Yu.A. Kordyukov is devoted to an exposition of a
method to prove the existence of gaps in the spectrum of periodic second-order
elliptic partial differential operators, which was suggested by Kordyukov, Mathai
and Shubin, and describes the applications of this method to periodic magnetic
Schrödinger operators on a Riemannian manifold, which is the universal covering
of a compact manifold.

K-theory, C∗-algebras, and groups: In the paper “The Group of Unital C∗-exten-
sions” by V. Manuilov and K. Thomsen it is shown that there is a natural six-
terms exact sequence which relates the group which arises by considering all
semi-split C∗-extensions of an algebra A by B to the group which arises from
unital semi-split extensions of A by B. The paper “The Thom Isomorphism in
Gauge-equivariant K-theory” by V. Nistor and E. Troitsky is devoted to the
study of gauge-equivariant K-theory. In particular, they introduce and study
products, which help to establish the Thom isomorphism in gauge-equivariant K-
theory. They construct push-forward maps and define the topological index of a
gauge-invariant family. The paper “Bundles of C∗-algebras and the KK(X ;−,−)-
bifunctor” by E. Vasselli is an overview of C∗-algebra bundles with a Z-grading,
with particular emphasis on classification questions. In particular, author discusses
the role of the representable KK(X ;−,−)-bifunctor introduced by Kasparov. As
an application, Cuntz-Pimsner algebras associated with vector bundles are con-
sidered, and a classification in terms of K-theoretical invariants is given in the
case of the base space being an n-sphere. J. Brodzki and G.A. Niblo in the paper
“Approximation Properties for Discrete Groups” give a short survey of approxi-
mation properties of operator algebras associated with discrete groups. Then they
demonstrate directly that groups that satisfy the rapid decay property with re-
spect to a conditionally negative length function have the metric approximation
property. The paper “On the Hopf-type Cyclic Cohomology with Coefficients” by
I.M. Nikonov and G.I. Sharygin is devoted to the Hopf-type cyclic cohomology
with coefficients. They calculate it in a couple of examples and propose a gen-
eral construction of a coupling between algebraic and coalgebraic versions of such
cohomology with values in the usual cyclic cohomology of an algebra.
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Correspondences and Index

Bogdan Bojarski and Andrzej Weber

Abstract. We define a certain class of correspondences of polarized represen-
tations of C∗-algebras. Our correspondences are modeled on the spaces of
boundary values of elliptic operators on bordisms joining two manifolds. In
this setup we define the index. The main subject of the paper is the additivity
of the index.
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1. Introduction

Let X be a closed manifold. Suppose it is decomposed into a sum of two manifolds
X+, X− glued along the common boundary

∂X+ = ∂X− = M .

Let
D : C∞(X ; ξ)→ C∞(X ; η)

be an elliptic operator of the first order. We assume that it possesses the unique
extension property: if Df = 0 and f|M = 0 then f = 0. In what follows we will
consider only elliptic operators of the first order such that D and D∗ have the
unique extension property.

One defines the spaces Hε(D) ⊂ L2(M ; ξ) for ε ∈ {+,−}, which are the
closures of the spaces of boundary values of solutions of Df = 0 on the manifolds
Xε with boundary ∂Xε = M . The space Hε(D) is defined to be the closure of :

{f ∈ C∞(M ; ξ) : ∃f̃ ∈ C∞(Xε; ξ), f = f̃|M , D(f̃) = 0 }
in L2(M ; ξ). The pair of spaces H±(D) is a Fredholm pair, [4]. There are associated
Calderón projectors P+(D) and P−(D), see [19].

A.W. is supported by KBN grant 1 P03A 005 26.
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To organize somehow the set of possible Cauchy data we will introduce a
certain algebraic object. We fix a C∗-algebra B, which is the algebra of functions
on M in our case. Suppose it acts on a Hilbert space H . Now we consider Fredholm
pairs in H . In our case H = L2(M ; ξ) and one of the possible Fredholm pairs is
H±(D). Note that this pair is not arbitrary. It has a property which we called
good. A Fredholm pair is good if (roughly speaking) it remains to be Fredholm
after conjugation with functions, see §4. These pairs act naturally on K1(M).
Nevertheless the concept of a good Fredholm pair is not convenient to manipulate,
thus we restrict our attention to the pairs of geometric origin, see §5. We call them
admissible. They are the pairs of subspaces which are images of projectors which
almost commute with the actions of the algebra B. This concept allows to extract
the relevant analytico-functional information out of the Cauchy data. Further a
Morse decomposition of a manifold is translated into this language.

Our paper is devoted to the study of the cut and paste technique on mani-
folds and its effect on indices. The spirit of these constructions comes from the
earlier papers [4]–[6] or [8]. According to the topological and conformal field theory
we investigate the behavior of the index of a differential operator on a manifold
composed from bordisms

X = X0 ∪M1 X1 ∪M2 · · · ∪Mm−1 Xm−1 ∪Mm Xm .

We think of Mi’s as objects and we treat bordisms of manifolds as morphisms.
Starting from this geometric background we introduce a category PR, whose ob-
jects are polarized representations. The algebra B may vary. We keep in mind that
such objects arise when:

• B is an algebra of functions on a manifold M ,
• there is given a vector bundle ξ over M , then H = L2(M ; ξ) is a representa-

tion of B,
• there is given a pseudodifferential projector in H .

The morphisms in PR are certain correspondences, i.e., linear subspaces in the
product of the source and the target. A particular case of principal value for
our theory are the correspondences coming from bordisms of manifolds equipped
with an elliptic operator. Precisely: suppose we are given a manifold W with
a boundary ∂W = M1 � M2. Moreover, suppose that there is given an elliptic
operator of the first order acting on the sections of a vector bundle ξ over W .
Then the space of the boundary values of the Cauchy data of solutions is a linear
subspace in L2(M1; ξ|M1) ⊕ L2(M2; ξ|M2). In other words it is a correspondence
from L2(M1; ξ|M1) to L2(M2; ξ|M2).

Basic example: The following example is instructive and serves as the model
situation (see [7]): Let W = {z ∈ C : r1 ≥ |z| ≥ r2} be a ring domain and let D be
the Cauchy-Riemann operator. The space L2(Mi) for i = 1, 2 is identified with the
space of sequences {an}n∈Z, such that

∑
n∈Z |an|2r2n

i < ∞. The sequence {an}
defines the function on Mi given by the formula f(z) =

∑
n∈Z anzn. The subspace
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of the boundary values of holomorphic functions on W is identified with{
({an}, {bn}) : Σn∈Z|an|2r2n

1 <∞ , Σn∈Z|bn|2r2n
2 <∞ and an = bn

}
.

It can be treated as the graph of an unbounded operator Φ : L2(M1)→ L2(M2).
When we restrict Φ to the space L2(M1)� consisting of the functions with coef-
ficients an = 0 for n < 0 we obtain a compact operator. On the other hand the
inverse operator Φ−1 : L2(M2)→ L2(M1) is compact when restricted to L2(M2)�,
the space consisting of the functions with coefficients an = 0 for n ≥ 0.

The Riemann-Hilbert transmission problem of the Cauchy data across a hy-
persurface is a model for another class of morphisms. These are called twists. Our
approach allows us to treat bordisms and twists in a uniform way. We calculate the
global index of an elliptic operator in terms of local indices depending only on the
pieces of the decomposed manifold (see Theorems 9.6 and 11.1). An interesting
phenomenon occurs. The index is not additive with respect to the composition
of bordisms. Instead each composition creates a contribution to the global index
(Theorem 10.2):

L1, L2 � L2 ◦ L1 + δ(L1, L2) .

In the geometric situation this contribution might be nonzero for example when a
closed manifold is created as an effect of composition of bordisms. One can show
that if the bordisms in PR come from connected geometric bordisms supporting
elliptic operators with the unique extension property then the index is additive.
The contributions coming from twists are equivalent to the effects of pairings in
the odd K-theory, Theorem 9.7.

It is a good moment now to expose a fundamental role of the splitting of
the Hilbert space into a direct sum. The need of introducing a splitting was clear
already in [4]:
• It was used to the study of Fredholm pairs with application to the Riemann-

Hilbert transmission problem in [4].
• Splitting also came into light in the paper of Kasparov [13], who introduced

a homological K-theory built from the Hilbert modules. The program of
noncommutative geometry of A.Connes develops this idea, [10, 11] .

• Splitting plays an important role in the theory of loop groups in [16].
• There is also a number of papers in which surgery of the Dirac operator is

studied. Splitting serves as a boundary condition, see, e.g., [12], [17]. These
papers originate from [2].
In the present paper we omit the technicalities and problems arising for a

general elliptic operator. We concentrate on the purely functional calculus of cor-
respondences. This is mainly the linear algebra.
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2. Fredholm pairs

Let us first summarize some facts about Fredholm pairs. We will follow [4]–[6].
Suppose that H+ and H− are two closed subspaces of a Hilbert space, such that
H+ + H− is also closed and
• H+ ∩H− is of finite dimension,
• H+ + H− is of finite codimension.

We assume that both spaces have infinite dimension. Then we say that the pair
(H+, H−) = H± is Fredholm. We define its index

Ind(H±) = dim(H+ ∩H−)− codim(H+ + H−) .

The following statements follow from easy linear algebra.

Proposition 2.1. A pair H± is Fredholm if, and only if the map

ι : H+ ⊕H− → H

induced by the inclusions is a Fredholm operator. Moreover the indices are equal:

Ind(H±) = ind(ι) .

Here Ind denotes the index of a pair, whereas ind stands for the index of an
operator. Suppose that H is decomposed into a direct sum

H = H� ⊕H� .

We may assume that this decomposition is given by a symmetry S: a “sign” or
“signature” operator. Let P � and P � be the corresponding projectors. We can write
S = P � − P �. We easily have:

Proposition 2.2. If H± is a pair with H+ = H�, then it is Fredholm if and only if
the restriction P �

|H− : H− → H� is a Fredholm operator. Moreover the indices are
equal:

Ind(H±) = ind(P �
|H−) .

Let I ⊂ L(H) be an ideal which lies between the ideal of finite rank operators
and the ideal of compact operators

F ⊂ I ⊂ K .

Define GL(P �, I) ⊂ GL(H) to be the set of the invertible automorphisms of H
commuting with P � up to the ideal I. We will say that φ almost commutes with
P � or we will write φP � ∼ P �φ. Obviously GL(P �, I) = GL(P �, I) = GL(S, I). We
have the following description of Fredholm pairs stated in [4]. (The proof is again
an easy linear algebra.)

Theorem 2.3. Let H± be a Fredholm pair with H+ = H�. Then there exists a
complement H� (that is H� ⊕H� = H) and there exists φ ∈ GL(P �, I), such that
H− = φ(H�). If H± is given by a pair of projectors P± satisfying P−+P−−1 ∈ I,
then we can take H� = ker P+. Moreover, the operator φP � + P � is Fredholm and

ind(φP � + P �) = Ind(H±) .
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The map
ĩnd : GL(P �, I)→ Z

ĩnd(φ) = ind(φP � + P �)
is a group homomorphism.

It follows that ind(φP � + P �) = ind(P �φ : H� → H�) = ind(P �φ−1 : H� → H�) .

3. Index formula for a decomposed manifold

The main example of a Fredholm pair is the following. Let D be an elliptic operator
on X = X+ ∪M X−. Then the pair of boundary value spaces H±(D) (as defined
in the introduction) is a Fredholm pair.

Assumption 3.1 (Unique Extension Property). Let ε = + or − and let f ∈
C∞(Xε; ξ). If Df = 0 and f|M = 0 then f = 0.

If D has the unique extension property, then

ker(D)  H+(D) ∩H−(D) .

This formula is easy to explain: a global solution restricted to M lies in H+(D) ∩
H−(D). On the other hand if a section f of ξ over M can be extended to both X+

and X−, such that the extensions are solutions of Df = 0 then we can glue them
to obtain a global solution. The unique extension property is necessary, because
we need to know that a solution is determined by its restriction to M . Following
the reasoning in [4], with Assumption 3.1 for D and D∗ we have:

Corollary 3.2. Ind(H±(D)) = ind(D) .

For a rigorous proof see [9], §24 for Dirac type operators.

Remark 3.3. It may happen that D does not have the unique extension property.
This is so for example when X is not connected. Then the Cauchy data H±(D)
do not say anything about the index of the operator D on the components of
X disjoined with M . There are also known elliptic operators without the unique
extension property on connected manifolds, [15], [1]. It is difficult to characterize
the class of all operators D with the unique extension property. Nevertheless the
most relevant are Cauchy-Riemann and Dirac type operators. These operators do
have the unique extension property on connected manifolds.

4. Good Fredholm pairs

Suppose there is given an algebra B and its representation ρ in a Hilbert space H .
For a Fredholm pair H± in H and an invertible matrix A ∈ GLn(B) we define a
new pair of subspaces A��H± in H⊕n. We set

(A��H±)− = ρA(H⊕n
− ) (A��H±)+ = H⊕n

+ .

(As usually we treat ρA as an automorphism of H⊕n.)
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Definition 4.1. Let B be a C∗-algebra which acts on a Hilbert space H . A good
Fredholm pair is a pair of subspaces (H+, H−) in H , such that for any invertible
matrix A ∈ GL(n; B) the pair A��H± is a Fredholm pair.

We will see that the pair of boundary values H±(D) ⊂ H = L2(M ; ξ) for the
operator D considered in the introduction is good.

Example 1 (Main example: Riemann-Hilbert problem). Consider the following
problem: there is given a matrix-valued function A : M → GLn(C). We look for
the sequence (s1

±, . . . , sn
±) of solutions of Ds = 0 on X± satisfying the transmission

condition on M
A(s1

−, . . . , sn
−) = (s1

+, . . . , sn
+) .

A Fredholm operator is related to this problem and we study its index, see §11. On
the other hand the matrix A treated as the gluing data defines an n-dimensional
vector bundle ΘA

X over X . Then

Ind(A��H±(D)) = ind(D ⊗ΘA
X) .

This formula was obtained in [8], §1 under the assumption that D has a product
form along M .

Corollary 4.2. For the elliptic operator D the pair H±(D) ⊂ L2(M ; ξ) is a good
Fredholm pair.

Remark 4.3. Consider the differential in the Mayer-Vietoris exact sequence of
X = X+ ∪M X−

δ : K0(X)→ K−1(M) .

The operator D defines a class [D] ∈ K0(X). The element δ[D] can be recovered
from the good Fredholm pair H±(D) ⊂ L2(M ; ξ). Note that the pair H±(D)
encodes more information. One can recover the index of the original operator. We
describe the map δ via duality, therefore we neglect the torsion of K-theory. The
construction is the following: for an element a ∈ K1(M) we define the value of the
pairing

〈δ[D], a〉 = 〈[D], ∂a〉 .
The element a is represented by a matrix A ∈ GLn(C∞(M)). Then

〈[D], ∂a〉 = ind(D ⊗ΘA
X)− n ind(D) ,

where ΘA
X is the bundle defined in Example 1. Now

〈[D], ∂a〉 = Ind(A��H±(D))− n Ind(H±(D)) .

5. Admissible Fredholm pairs

The following can be related to the paper of Birman and Solomyak [3] who in-
troduced the name admissible for the subspaces which are the images of pseudo-
differential projectors. Suppose that ξ is a vector bundle over a manifold M . We
consider Fredholm pairs H± in H = L2(M ; ξ) such that the subspaces H± are
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images of pseudodifferential projectors P± with symbols satisfying

σ(P+) + σ(P−) = 1 .

We would like to free ourselves from the geometric context and state admissibility
condition in an abstract way. We assume that H is an abstract Hilbert space with
a representation of an algebra B, which is the algebra of functions on M in the
geometric case. The condition that P± is pseudodifferential we substitute by the
condition: P± commutes with the algebra action up to compact operators. We are
ready now to give a definition:

Definition 5.1. We say that a pair of subspaces H± is an admissible Fredholm pair
if there exist a pair of projectors Pε for ε ∈ {+,−}, such that Hε = im Pε and Pε

commutes with the action of B up to compact operators. Moreover, we assume
that P+ + P− − 1 is a compact operator.

Proposition 5.2. Each admissible Fredholm pair is a good Fredholm pair.

Proof. Set K = P+ + P− − 1. If v ∈ H+ ∩ H−, then K(v) = v. Since K is a
compact operator, dim(H+ ∩H−) <∞. To prove that H+ + H− is closed and of
finite codimension, note that im(P+ +P−) ⊂ H+ +H−. Since P+ +P− is Fredholm
its image is closed and of finite codimension. This way we have shown that H±
is a Fredholm pair. Now, if we conjugate P⊕n

+ by ρA we obtain again an almost
complementary pair of projectors. Thus A��H± is a Fredholm pair as well. �

We denote by AFP (B) the set of good Fredholm pairs divided by the equiva-
lence relation generated by homotopies and stabilization with respect to the direct
sum. We also consider as trivial the pairs associated to projectors strictly satisfy-
ing P+ + P− = 1 and commuting with the action of B. In other words these are
just direct sums of two representations of B. It is not hard to show that

Proposition 5.3. AFP (B)  K1(B) ⊕ Z .

Proof. We have the following natural transformation:

β : AFP (M) → K1(M)
(H, P±) �→ (H, S+) .

Here S+ = 2P+ − 1 is just the symmetry defined by P+. We remind that the
objects generating K1(M) are odd Fredholm modules, see [11], pp. 287–289. This
procedure is simply forgetting about P−. We can recover P− (up to homotopy)
by fixing the index of the pair, i.e., β ⊕ Ind is the isomorphism we are looking
for. Precisely, the pseudodifferential projector is determined up to homotopy by
its symbol and the index, see [9]. �
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6. Splittings and polarization

We adopt the concepts of splitting and polarization to our situation.

Definition 6.1. Let H be a representation of a C∗-algebra B in a Hilbert space. A
splitting of H is a decomposition

H = H� ⊕H� ,

such that the projectors on the subspaces P �, P � commute with the action of B
up to compact operators.

The basic example of a splitting is the one coming from a pseudodifferential
projector. Another equivalent way of defining a splitting (as in [5]) is to distinguish
a symmetry S, almost commuting with the action of B. Then H� is the eigenspace
of −1 and H� is the eigenspace of 1. Then we may think of H as a superspace,
but we have to remember that the action of B does not preserve the grading.

Definition 6.2. In the set of splittings we introduce an equivalence relation: two
splittings are equivalent if the corresponding projectors coincide up to compact
operators. An equivalence class of the above relation is called a polarization of H .

Informally we can say, that polarization is a generalization of the symbol of
a pseudodifferential projector.

Example 2. Let ξ → M be a complex vector bundle over a manifold. Let ξ̃ be
the pull back of ξ to T ∗M \ {0}. Suppose p : ξ̃ → ξ̃ is a bundle map which is a
projector (hence p is homogeneous of degree 0). Then p defines a polarization of
L2(M ; ξ). Just take a pseudodifferential projector P = P � with σ(P ) = p and set

H� = ker P , H� = im P .

Example 3. Suppose (H+, H−) is an admissible Fredholm pair given by projectors
(P+, P−). Then the polarizations associated with P+ and 1−P− coincide. This way
an admissible Fredholm pair defines a polarization. Furthermore each polarization
defines an element of K1(B).

Intuitively polarizations can be treated as a kind of orientations dividing
H into the upper half and lower half. Such a tool was used in [12] to split the
index of a family of Dirac operators. (In [12] splittings were called generalized
spectral sections.) Polarizations were discussed in the lectures of G. Segal (see
[18], Lecture 2).

7. Correspondences, bordisms, twists

Definition 7.1. We consider the category PR having the following objects and
morphisms
• Ob(PR) = Hilbert spaces (possibly of finite dimension) with a representa-

tion of some C∗-algebra B and with a distinguished polarization,
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• MorPR(H1, H2) = closed linear subspaces L ⊂ H1 ⊕H2, such that the pair
(L, H�

1 ⊕H�
2) is Fredholm.

We write also H1
L−−→ H2.

In particular

MorPR(H, 0) ⊂ Grass(H) ⊃ MorPR(0, H) .

By Proposition 2.2 a subspace L ⊂ H1 ⊕H2 is a morphism if and only if

Π = P �
1 ⊕ P �

2 : L→ H�
1 ⊕H�

2

is a Fredholm operator. The composition in PR is the standard composition of
correspondences:

L1 ⊂ H1 ⊕H2 , L2 ⊂ H2 ⊕H3 ,

L2 ◦ L1 = {(x, z) ∈ H1 ⊕H3 : ∃y ∈ H2 , (x, y) ∈ L1 , (y, z) ∈ L2 } .

In other words the morphisms are certain correspondences or relations, as they
were called in [4]. Our approach also fits to the ideas of the topological field theory
as presented in [18].

Proposition 7.2. The composition of morphism is a morphism.

Proof. Let L1 ∈ MorPR(H1, H2) and L2 ∈ MorPR(H2, H3). A simple linear alge-
bra argument shows that

• the kernel of
Π13 : L2 ◦ L1 → H�

1 ⊕H�
3

is a quotient of ker(Π12)⊕ ker(Π23),
• the cokernel of Π13 is a subspace of coker(Π23)⊕ coker(Π12).

�

The role of polarizations in the definition of morphisms is clear and the
algebra actions are involved implicitly. In fact, the object which plays the crucial
role is the algebra of operators commuting with P � up to compact operators,
i.e., the odd universal algebra. The role of this algebra was emphasized in [5].
However, in the further presentation we prefer to expose the geometric origin of
our construction and keep the name B.

We have two special classes of morphisms in PR:

Definition 7.3. A subspace L ⊂ H ⊕H is a twist if it is the graph of a linear iso-
morphism φ ∈ GL(P �, K) ⊂ GL(H) commuting with the polarization projectors
up to compact operators.

Proposition 7.4. For a twist L = graph(φ) ⊂ H ⊕ H the pair (L, H� ⊕ H�) is
Fredholm, i.e., L ∈ MorPR(H, H).
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Proof. To show that (L, H�⊕H�) is a Fredholm pair let us show that the projection

Π = P � ⊕ P � : L→ H� ⊕H� ⊂ H ⊕H

is a Fredholm operator. Indeed, L is parameterized by

(1, φ) : H → L ⊂ H ⊕H .

The composition of these maps is equal to

F = P � ⊕ P �φ .

Since φ almost commutes with P � the map F has a parametrix F̃ = P � ⊕P �φ−1 .
�

Definition 7.5. A subspace L ⊂ H1 ⊕ H2 is a bordism if L is the image of a
projector PL, such that

PL ∼ P �
1 ⊕ P �

2 .

By 5.2 for any PL ∼ P �
1⊕P �

2 the pair (L, H�
1⊕H�

2) is Fredholm. The motivation
for Definition 7.5 is the following:

Example 4. Let X be a bordism between closed manifolds M1 and M2, i.e.,

∂X = M1 �M2 .

Suppose that D : C∞(X ; ξ)→ C∞(X ; η) is an elliptic operator of the first order.
Then the symbols of Calderón projectors define polarizations of H1 = L2(M1; ξ)
and H2 = L2(M2; ξ), see Example 2. We reverse the polarization on M2, i.e., we
switch the roles of H� and H�. Let L ⊂ L2(M1; ξ) ⊕ L2(M2; ξ) be the closure of
the space of boundary values of solutions of Ds = 0. Then L ∈MorPR(H1, H2) is
a bordism in PR. This procedure indicates the following:

• the space L ⊂ L2(M1 �M2; ξ) = L2(M1; ξ) ⊕ L2(M2; ξ) and the associated
Calderón projector are global objects. One cannot recover them from the
separated data in L2(M1; ξ) and L2(M2; ξ).

• but up to compact operators one can localize the projector PL and obtain
two projectors acting on L2(M1; ξ) and L2(M2; ξ).

We note that the following proposition holds:

Proposition 7.6.

1. The composition of bordisms is a bordism.
2. The composition of a bordism and a twist is a bordism.
3. The composition of twists is a twist.
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Remark 7.7. Let H1
L1−−→ H2

L2−−→ H3 be a pair of bordisms in PR coming from
geometric bordisms

M1 ∼X1 M2 , M2 ∼X2 M3

and an elliptic operator on X1 ∪M2 X2, as in Example 4. Then L2 ◦ L1 coincides
with the space of the Cauchy data along ∂(X1∪M2 X2) = M1�M3 of the solutions
of Ds = 0 on X1 ∪M2 X2.

8. Chains of morphisms

Now we introduce the notion of a chain. This is a special case of a Fredholm fan
considered in [5] and in §12 below.

A chain of morphisms is a sequence correspondences

0 L0−−→ H1
L1−−→ H2

L2−−→ · · · Lm−1−−→ Hm
Lm−−→ 0 .

Example 5. Let (H+, H−) be an admissible Fredholm pair in H . Then we have a
sequence

0
H−−−→ H

H+−−→ 0

which is a chain of bordisms with respect to the polarization defined by P � = P+

(or 1− P−), see Example 3.

Example 6. Each morphism in L ∈MorPR(H1, H2) can be completed to a chain

0 L1−−→ H1
L−−→ H2

L2−−→ 0 .

Just take L1 = (0⊕H�
1) ⊂ (0⊕H1) and L2 = (H�

2 ⊕ 0) ⊂ (H2 ⊕ 0).

Example 7. It is proper to explain why we are interested in chains of morphisms.
Suppose there is given a closed manifold which is composed of usual bordisms

X = X0 ∪M1 X1 ∪M2 · · · ∪Mm−1 Xm−1 ∪Mm Xm .

We treat the manifolds Mi as objects and bordisms

Mi−1 ∼Xi Mi

as morphisms. In particular

∅ ∼X1 M1 and Mm ∼Xm ∅ .

Let D : C∞(X ; ξ) → C∞(X ; η) be an elliptic operator of the first order. This
geometric situation gives rise to a chain of bordisms in the category PR:

• Hi = L2(Mi; ξ) with the action of Bi = C(Mi) and the polarization defined
by the symbol of Calderón projector, as in 4,

• Li ⊂ L2(Mi; ξ)⊕L2(Mi+1; ξ) is the space of boundary values of the solutions
of Ds = 0 on Xi.
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9. Indices in PR

Definition 9.1. Fix the splittings S of the objects of PR. The pair (L, H�
1 ⊕H�

2)
in H1 ⊕ H2 is Fredholm by Definition 7.1. Define the index of a morphism L ∈
MorPR(H1, H2) by the formula:

IndS1,S2(L) def= Ind(L, H�
1 ⊕H�

2) = ind(P �
1 ⊕ P �

2 : L→ H�
1 ⊕H�

2) .

Proposition 9.2. We have the equality of indices for a twist
1. IndS,S(graph φ),

2. index of
(

1 P �

φ P �

)
: H ⊕H → H ⊕H,

3. ĩnd(φ) = ind(φP � + P �) = Ind(φ(H�), H�) (compare Theorem 2.3),

Proof. The graph of φ is parameterized by (1, φ) and H� ⊕ H� is parameter-
ized by (P �, P �). Thus by Theorem 2.1 the first equality follows. Now we mul-

tiply the matrix (2.) from the left by the symmetry
(

P � P �

P � P �

)
and we obtain(

P �φ + P � 0
P �φ + P � 1

)
∼

(
φP � + P � 0
φP � + P � 1

)
. The second equality follows. �

Remark 9.3. The index of a twist depends only on the polarization, not on the
particular splitting. This is clear from 9.2.2. It is worthwhile to point out that if
the twist φ = Ã : H⊕n → H⊕n is given by a matrix A ∈ GLn(B), then

ĩnd(Ã) = 〈[Ã], [SH� ]〉 ,
where SH� is the symmetry with respect to H� and the bracket is the pairing in
K-theory of K1(B) with K1(B).

On the other hand IndS1,S2(L) does depend on the splitting for general mor-
phisms.

Remark 9.4. The index in Example 4 is equal to the index of the operator D with
the boundary conditions given by the splittings, as in [2].

Remark 9.5. There are certain morphisms in PR which are interesting from the
point of view of composition. We will say that L is a special correspondence if:
• L is the graph of an injective function φ defined on a subspace of H1,
• the images of the projections of L onto H1 and H2 are dense.

(The second condition is equivalent to the first one for the adjoint correspondence
defined as the orthogonal complement L⊥.) If L is special, then

IndS1,S2(L) = Ind(L(H�
1), H

�
2) ,

where
L(H�

1) = {y ∈ H2 : ∃x ∈ H�
1 (x, y) ∈ L } .

Indeed in this case we have

L ∩ (H�
1 ⊕H�

2)  L(H�
1) ∩H�

2 and L⊥ ∩ (H�
1
⊥ ⊕H�

2
⊥)  L⊥(H�

1
⊥) ∩H�

2
⊥ .



Correspondences and Index 13

Of course each twist is a special morphism. Another example of a special morphism
is the one which comes from the Cauchy-Riemann operator. In general, we obtain
a special morphism if the operator (and its adjoint) satisfies the following:

• if s = 0 on a hypersurface M and Ds = 0, then s = 0 on the whole component
containing M .

In the set of morphisms we can introduce an equivalence relation: we say
that L ∼ L′ if L and L′ are images of embeddings i, i′ : H ↪→ H1 ⊕ H2 of
a Hilbert space H , such that i − i′ is a compact operator. If L ∼ L′, then
IndS1,S2(L) = IndS1,S2(L′). If L is a bordism, then L is equivalent to a direct
sum of subspaces in coordinates: L ∼ L1 ⊕ L2, Li ⊂ Hi, such that L1 is a finite-
dimensional perturbation of H�

1 and L2 is a finite-dimensional perturbation of H�
2.

Then IndS1,S2(L) = Ind(H�
1, L1) + Ind(L2, H

�
2).

Suppose, as in Example 7, we have an elliptic operator on a closed manifold
X which is composed of geometric bordisms. Fix n ∈ N and a sequence of matrices

Ai ∈ GLn(Bi) .

Define the bundle Θ{Ai}
X obtained from trivial ones on Xi’s and twisted along Mi’s.

Define the bordism Li(D) ∈ MorPR(Hi, Hi+1) as in Example 4.

Theorem 9.6. Suppose that 3.1 holds for D and D∗ on each Xi for i = 0, . . . , n.
Then

ind(D ⊗Θ{Ai}
X ) = n

(
m∑

i=0

IndSi,Si+1(Li(D))

)
+

m∑
i=1

ĩnd(Ãi) .

Here, as it was denoted before, Ã : H⊕n → H⊕n is the operator associated
to the matrix A ∈ GLn(B). This theorem is a special case of Theorem 11.1 proved
below.

Taking into account Remark 9.3, the difference between the indices of the
original and twisted operator can be expressed through the pairing in K-theory.

Theorem 9.7.

ind(D ⊗Θ{Ai}
X )− n ind(D) =

m∑
i=1

ĩnd(Ãi) =
m∑

i=1

〈[Ai], [SH�
i
]〉 .

The braked is the pairing between [Ai] ∈ K1(Mi) and [SH�
i
] ∈ K1(Mi).

10. Indices of compositions

In 9.3 we have made some remarks about the dependence of indices on the par-
ticular splitting. Now let us see how indices behave under compositions of corre-
spondences. From the considerations in §9 it is easy to deduce:
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Proposition 10.1. For the composition

H1
φ−−→ H1

L−−→ H2 ,

where φ is a twist and L is a morphism we have

IndS1,S2(L ◦ φ) = IndS1,S2(L) + ĩnd(φ) .

The same holds for the opposite type composition

H1
L−−→ H2

φ−−→ H2 ,

IndS1,S2(φ ◦ L) = ĩnd(φ) + IndS1,S2(L) .

On the other hand IndS0,S2(L2 ◦L1) differs from IndS0,S1(L1)+ IndS1,S2(L2)
in general. This is clear due to the basic example that comes from a decomposition
X = X− ∪M X+. The space L1 = H−(D) is a correspondence 0 → L2(M ; ξ) and
L2 = H+(D) a correspondence L2(M ; ξ)→ 0. By 9.6 we have

IndId,S1(L1) + IndS1,Id(L2) = ind(D) ,

while L2 ◦ L1 : 0→ 0 and IndId,Id(L2 ◦ L1) = 0.
Instead we have the following interesting property of indices:

Theorem 10.2. The difference

δ(L1, L2) = IndS0,S1(L1) + IndS1,S2(L1)− IndS0,S2(L2 ◦ L1)

does not depend on the particular splittings.

Proof. Since

IndSi−1,Si(Li) = ind(H�
i−1 ⊕ Li ⊕H�

i → Hi−1 ⊕Hi)

we have to compare indices of the operators

α : H�
0 ⊕ L1 ⊕H�

1 ⊕H�
1 ⊕ L2 ⊕H�

2 → H0 ⊕H1 ⊕H1 ⊕H2

and
β : H�

0 ⊕ L2 ◦ L1 ⊕H�
2 → H0 ⊕H2 .

The kernel of α is isomorphic to the kernel of the operator which is induced by
inclusions

H�
0 ⊕ L1 ⊕ L2 ⊕H�

2 → H0 ⊕H1 ⊕H2 .

The former operator factors through

H�
0 ⊕ (L1 + L2)⊕H�

2 → H0 ⊕H1 ⊕H2 .

Here the direct sum is replaced by the algebraic sum inside H0 ⊕H1 ⊕ H2. The
difference of the dimensions of the kernels is equal to the dimension of the inter-
section

(L1 ⊕ 0) ∩ (0 ⊕ L2) ⊂ H0 ⊕H1 ⊕H2

Now we observe that the kernel of the last operator is isomorphic to

H�
0 ⊕ L2 ◦ L1 ⊕H�

2 → H0 ⊕H2 .
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Therefore the difference of the dimensions of the kernels of α and β is equal to
dim((L1 ⊕ 0)∩ (0⊕L2)), hence it does not depend on the splittings. We have the
dual formula for cokernels and L⊥

i , also not depending on the splittings. �

We obtain a procedure of computing the sum of indices
m∑

i=0

IndSi,Si+1(Li)

which would not involve splittings. We choose a pair of consecutive morphisms Li,
Li+1 and replace them by their compositions. The composition produces a number
δ(Li, Li+1) and the sequence of morphisms is shorter:

(L0, L1, . . . , Lm) � (L0, L1, . . . , Li ◦ Li+1, . . . , Lm) + δ(Li, Li+1) .

We pick another composition and add its contribution to the previous one. We
continue until we get 0→ 0. The sum of the contributions does not depend on the
splittings. One can perform compositions in various ways. The sum of contributions
stays the same.

Example 8. If D and D∗ on Xi and Xi+1 have the unique extension property 3.1,
then δ(Li, Li+1) = 0 as long the gluing process along Mi+1 does not create a closed
component of X . If it does then δ(Li, Li+1) equals to the index of D restricted to
this component.

11. Weird decompositions of manifolds

Let {Me}e∈E be a configuration of disjoined hypersurfaces in a manifold X . We
assume that orientations of the normal bundles are fixed. For simplicity assume
that X and Me’s are connected. Let

X \
⊔
e∈E

Me =
⊔

v∈V

Xv

be the decomposition of X into connected components. Our situation is well de-
scribed by an oriented graph
• the vertices (corresponding to open domains in X) are labelled by the set V
• the edges (corresponding to hypersurfaces) are labelled by E. The edge e

starts at the vertex v = s(e) corresponding to Xv which is on the negative
side of Me. It ends at v′ = t(e), such that Xv′ lies on the positive side of Me.
The functions s, t : E → V are the source and target functions.

For example the configuration of the cutting circles on the surface (Fig. 1) is
described by the graph (Fig. 2).

A sequence of bordisms leads to the linear graph

•X0

M1−−→ •X1

M2−−→ · · · Mn−1−−−→ •Xn−1

Mn−−→ •Xn .

Note that this is a dual description with respect to the one presented in Example
7. Suppose there is given an elliptic operator D : C∞(X ; ξ) → C∞(X ; η) and a
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Fig. 1

Fig. 2

set of transmission data {φe}e∈E , that is for each hypersurface Me we are given a
matrix-valued function Me → GLn(C). The Riemann-Hilbert problem gives rise
to the operator

D[φ] :
⊕
v∈V

C∞(Xv; ξ)n →
⊕
v∈V

C∞(Xv; η)n ⊕
⊕
e∈E

C∞(Me; ξ)n

D[φ](fv)
def=

(
Dfv,

∑
e: t(e)=v

fv|Me
−

∑
e: s(e)=v

φe(fv|Me
)

)
, for fv ∈ C∞(Xv; ξ)n .

For e ∈ E let us set H(e) = L2(Me; ξ). The symbol of D together with the
choice of orientations of the normal bundles define polarizations of H(e). Let us
fix particular splittings of the spaces H(e) encoded in the symetries Se. Set

Hbd(v) =
⊕

e: s(e)=v

H(e) ⊕
⊕

e: t(e)=v

H(e) ,

H in(v) =
⊕

e: s(e)=v

H�(e)⊕
⊕

e: t(e)=v

H�(e) ,

Hout(v) =
⊕

e: s(e)=v

H�(e)⊕
⊕

e: t(e)=v

H�(e) .

Let L(v) ⊂ Hbd(v) be the space of boundary values of solutions of Dfv = 0 on
Xv. It is a perturbation of H in(v). For each vertex v (i.e., for each open domain
Xv) the pair of subspaces

L(v), Hout(v) ⊂ Hbd(v) ,

is Fredholm. Let Indv be its index with respect to the polarizations Se. Moreover,
let Inde = IndSe,Se(φe) = ĩnd(φe) denote the index of φe, see Theorem 2.3.
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Theorem 11.1. Assume that D and D∗ have unique extension property (3.1) on
each Xv. Then

ind(D[φ]) =
∑
v∈V

Indv +
∑
e∈E

Inde .

In particular:

Corollary 11.2. If there are no twists, i.e., each φe = 1 ∈ GL1(C∞(Me)), then

ind(D) =
∑
v∈V

Indv .

Proof. (of 11.1.) The general result follows from the case when we have one vertex
and one edge starting and ending in it. We just sum up all Xv’s and all Me’s. Say
that X is obtained from X̂ with ∂X̂ = Ms �Mt by identification Ms with Mt as
presented on Fig. 3.

Fig. 3
Then our operator D[φ] is of the form:

D[φ] : C∞(X̂; ξ)n → C∞(X̂; η)n ⊕ C∞(M ; ξ)n

D[φ](u) =
(
Du, u|Mt

− φ(u|Ms
)
)

.

We replace ξ⊕n by ξ and treat φ as an automorphism of ξ. The index of the
operator is equal to the index of a Fredholm pair:

Theorem 11.3. Let L ⊂ L2(Ms �Mt; ξ) = L2(M ; ξ) ⊕ L2(M ; ξ) be the space of
boundary values of the operator D on X̂. Then

ind(D[φ]) = Ind(L, graph(φ)) .

The proof of Theorem 11.1 relies on this formula. Our proof is based on the
principle that the index can be computed by restricting the argument to the spaces
of smooth sections. The precise argument demands introduction and consecutive
use of the whole scale of Sobolev spaces with all usual technicalities involved. The
reader may also take this formula as the definition of the index of the problem
considered above. We calculate the kernel and cokernel of D[φ]:
• the kernel consist of solutions of Du = 0 on X̂ satisfying φ(u|Ms

) = u|Mt
. By

our assumption u is determined by its boundary value. Thus

ker D[φ]  L ∩ graph φ .
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The cokernel consists of{
(v, w) ∈ C∞(X̂; η∗)⊕ C∞(M ; ξ∗) :

∀u ∈ C∞(X+; ξ) 〈Du, v〉+ 〈u|Mt
− φ(u|Ms

), w〉 = 0
}

.

Let G : ξ|M → η|M be the isomorphism of the bundles defined by the symbol of D
as in [14]. It follows that

• D∗v = 0 (since we can take any u with support in int X̂)
• by Green formula 〈Du, v〉 = 〈Gu|Ms

, v|Ms
〉+ 〈Gu|Mt

, v|Mt
〉

• since u|Ms
and u|Mt

may be arbitrary it follows that
G∗(v|Ms

) = −φ∗w,
G∗(v|Mt

) = w,
• therefore v|Ms

= −G∗−1φ∗G∗(v|Mt
).

Now we use the identification

G∗ ×G∗ : L2(Ms; η∗)× L2(Mt; η∗)→ L2(Ms; ξ∗)× L2(Mt; ξ∗)

under which L⊥ is equal to the space of boundary values H(D∗) and

(graph φ)⊥ = (graph(−G∗−1φ∗G∗))op .

(Here the opposite correspondence Rop is defined by (x, y) ∈ Rop ≡ (y, x) ∈ R.)
In other words φ and G∗−1φ∗G∗ are adjoined. Since the boundary values of v
determine v we can identify

coker D[φ]  H(D∗) ∩ (− graph(G∗−1φ∗G∗))op  L⊥ ∩ (graph φ)⊥ . �

Proof. (Continuation of 11.1.) After fixing a splitting of L2(M ; ξ) = He, we have
in our notation H in

v = H� ⊕ H�, Hout
v = H� ⊕ H�. By 2.3 there exists a linear

isomorphism Ψ : H ⊕ H → H ⊕ H almost commuting with P � ⊕ P �, such that
L = Ψ(H�⊕H�). We parameterize the graph of φ by H�⊕H� using the composition

Φ =
(

1 0
φ 1

)
◦
(

P � P �

P � P �

)
. Thus

Ind(graph φ, L) = ind
(

Φ ◦
(

P � 0
0 P �

)
+ Ψ ◦

(
P � 0
0 P �

))
.

Since Ψ almost commutes with P � ⊕ P �, the considered operator is almost equal
to the composition(

Φ ◦
(

P � 0
0 P �

)
+

(
P � 0
0 P �

))
◦
((

P � 0
0 P �

)
+ Ψ ◦

(
P � 0
0 P �

))
.

Now we use additivity of indices. The index of the second term is equal to Indv. It

remains to compute the first index, that is ind
(

1 P �

φP � φP � + P �

)
. If we conjugate

the above matrix by the symmetry
(

P � P �

P � P �

)
we obtain

(
P � + P �φ 0
P � + P �φ 1

)
. Its

index is equal to ind(P � + P �φ) = Inde. �



Correspondences and Index 19

The additivity of the index is not a surprise due to the well-known integral
formula for the analytic index. What is interesting in Theorem 11.2 is that the
contribution coming from separate pieces of X is also an integer number. This
partition into local indices depends only on the choice of splittings along hyper-
surfaces.

12. Index of a fan

We will give another formula for the index of D[φ] which is expressed in terms of
the twisted fan {L(i)}. The general reference for fans is [5]. Let us first say what
we mean by a fan: it is a collection of spaces

L1, L2, . . . , Ln ⊂ H

which is obtained from a direct sum decomposition

H1 ⊕H2 ⊕ · · · ⊕Hn = H

by a sequence of twists Ψ1, Ψ2, . . . ,Ψn ∈ GL(H), i.e. Li = Ψi(Hi). We assume
that each Ψi almost commutes with each projection Pj of the direct sum. We say
that the fan {L(i)} is a perturbation of the direct sum decomposition H = ⊕Hi.

Theorem 12.1 (Index of a Fredholm fan). Let L1, L2, . . . , Ln ⊂ H be a fan. Then
the following numbers are equal:

1. the index of the map ι : L1 ⊕ L2 ⊕ · · · ⊕ Ln → H, which is the sum of
inclusions,

2. the index of the operator Ψ1P1 + Ψ2P2 + · · ·+ ΨnPn : H → H,
3. the sum

n∑
i=1

ind(PiΨi : Hi → Hi) =
n∑

i=1

ind(Pi : Li → Hi) ,

4. the difference
n−1∑
i=1

dim(L1 + · · ·+ Li) ∩ Li+1 − codim(L1 + · · ·+ Ln) .

Proof. The equality (1.=2.) follows from the fact that Ψi : Hi → Pi is a parame-
terization of Li. The equality (2.=3.) follows since

Ψ1P1 + Ψ2P2 + · · ·+ ΨnPn ∼
n∏

i=1

(P1 + · · ·+ ΨiPi + · · ·+ Pn) .

To prove the equality (1.=4.) one checks that

dim(ker ι) =
n−1∑
i=1

(L1 + · · ·+ Li) ∩ Li+1 .

This is done by induction with respect to n. �
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Let us assume that the graph associated to our configuration does not contain
edges starting and ending in the same vertex (e.g., the situation on Fig. 1 is not
allowed). Then Hbd(v) is a summand in H =

⊕
e∈E H(e) (there are no terms H(e)

appearing twice). Moreover, {L(v)}v∈V is a fan in H which is a perturbation of
the direct sum decomposition

H =
⊕
v∈V

H in(v) .

Consider a fan, which is twisted with respect to {L(v)}v∈V . Set (φ��L)(v) =
φ̃v(L(v)), where φ̃v is an automorphisms of H :

φ̃v(f) def=
{

φe(f) if f ∈ H(e), s(e) = v ,
f if f ∈ H(e), s(e) �= v .

Theorem 12.2. Assume that D and D∗ have unique extension property (3.1) on
each Xv. The index of D[φ] is equal to the index of the Fredholm fan φ��L.

Proof. Combining Theorem 11.1 with 12.1.3 it remains to prove that for each
vertex v

ind(P in
v : (φ��L)(v)→ H in(v)) = Indv +

∑
e : s(e)=v

Inde .

If there are no twists, then the equality follows from Proposition 2.2. In general
the proof follows from additivity of ĩnd, see Theorem 2.3. �
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[10] A. Connes, Non-commutative differential geometry. Publ. Math., Inst. Hautes Etud.
Sci. 62 (1985), 257–360.

[11] A. Connes, Noncommutative geometry. Academic Press, Inc., San Diego, CA, 1994.

[12] X. Dai, W. Zhang, Splitting of the family index. Comm. Math. Phys. 182 (1996), no.
2, 303–317.

[13] G.G. Kasparov, Topological invariants of elliptic operators. I. K-homology. (Russian)
Math. USSR-Izv. 9 (1975), no. 4, 751–792; (English) Izv. Akad. Nauk SSSR Ser. Mat.
39 (1975), no. 4, 796–838.

[14] R.S. Palais, R.T. Seeley, Cobordism invariance of the analytical index. in Seminar
on the Atiyah-Singer index theorem. ed. R.S. Palais, Annals of Mathematics Studies
57, Princeton University Press, Princeton.

[15] A. Plís, Non-uniqueness in Cauchy’s problem for differential equations of elliptic
type. J. Math. Mech. 9 (1960), 557–562.

[16] A. Pressley, G. Segal, Loop groups. Oxford Mathematical Monographs. Oxford Sci-
ence Publications. The Clarendon Press, Oxford University Press, New York, 1986.

[17] S.G. Scott, K.P. Wojciechowski, The ζ-determinant and Quillen determinant for a
Dirac operator on a manifold with boundary. Geom. Func. Anal. Vol. 10 (2000),
1202–1236.

[18] G. Segal, Topological Field Theory (‘Stanford Notes’).
Available at http://www.cgtp.duke.edu/ITP99/segal/

[19] R.T. Seeley, Singular Integrals and Boundary Value Problems. Amer. J. Math 88
(1966), 781–809.

Bogdan Bojarski
Institute of Mathematics PAN
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1. Introduction

The reduced C∗-algebra C∗
r (Γ) of a group Γ (which we shall assume to be discrete)

arises from the study of the left regular representation λ of the group ring CΓ on
the Hilbert space of square-summable functions on the group. Various important
properties of the group can be expressed in terms of analytic properties of this
algebra. We give a survey of the main points below but let us just mention the
result of Lance [16] that the reduced C∗-algebra is nuclear if and only if the group
is amenable.

From the point of view of noncommutative geometry, a C∗-algebra is always
considered as an algebra of continuous functions on some space. In the case of
the reduced C∗-algebra that space is a space of representations of the group.
Unfortunately it is not easy to understand the structure of this algebra in general,
though partial information is obtained by studying topological invariants of this
algebra, for instance its K-theory. This, too, is complicated although the Baum-
Connes conjecture postulates a possible way to compute it.

In some cases one can find an interesting smooth subalgebra of C∗
r (Γ), that

would play a role similar to the algebra of smooth functions on a manifold. This
algebra of Schwartz-type functions is most useful when it has the same K-theory
as C∗

r (Γ), while being more accessible to homological methods. Algebras of this
kind are normally defined by imposing a suitable growth condition on the space
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of functions. A very interesting example of when this can be done is provided by
the class that satisfy the rapid decay property (RD), introduced by Jolissaint [12].
Here the control on growth is derived from a length function which turns the group
Γ into a metric space with interesting geometry.

Definition 1.1. A length function on a discrete group Γ is a function � : Γ → R
taking values in the non-negative reals which satisfies the following conditions:

1. �(1) = 0, where 1 is the identity element of the group;
2. For every g ∈ Γ �(g) = �(g−1).
3. For every g, h ∈ Γ, �(gh) ≤ �(g) + �(h) for all g, h ∈ Γ,

A group equipped with a length function becomes a metric space with the left-
invariant metric d(g, h) = �(h−1g).

For any length function � and a positive real number s we define a Sobolev
norm on the group ring CΓ

‖f‖�,s =
√∑

γ∈Γ

|f(γ)|2(1 + �(γ))2s

Following Jolissaint [12] (see also [3]) we say that Γ has the rapid decay
property (property RD) with respect to the length function � if and only if it satisfies
the following property: There exist a C > 0 and s > 0 such that for all f ∈ CΓ

‖λ(f)‖ ≤ C‖f‖�,s,
where the norm on the left-hand side is the operator norm in L(�2(Γ)). This in-
equality indicates how the operator norm, which is in general difficult to compute,
can be controlled by a more computable Sobolev norm. Examples of RD groups
include hyperbolic groups [10], groups acting on CAT(0)-cube complexes [3] and
co-compact lattices in SL3(R) or SL3(C) [15] as well as co-compact lattices in
SL3(H) [2].

The purpose of this note is to provide an illustration of an interesting and
nontrivial interaction between analytic and geometric properties of a group. We
provide a short survey of approximation properties of operator algebras associated
with discrete groups. We then demonstrate directly that groups that satisfy the
property RD with respect to a conditionally negative length function have the
metric approximation property, which is defined below. We obtain this result by
combining two important ingredients. The RD property provides us with estimates
for operator norms, while the properties of conditionally negative kernels allow us
to define multipliers, i.e., operators Mφ induced by pointwise multiplication by
a function φ that map C∗

r (Γ) into itself. These two properties together combine
to control norm inequalities in the reduced C∗-algebra. Although this result is
implied by a result of Jolissaint and Valette [13] we feel that this direct approach
illustrates the important role played by the RD property rather well. For another
short introduction to the Rapid Decay property and its interaction with multipliers
(which play a key role in this note) we would like to draw the reader’s attention
to a short article by Indira Chatterji which appears as an appendix to [18].
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This note represents an extended version of the talk delivered by the first
author at the meeting on ‘C∗-algebras and elliptic theory’, which took place in
Bȩdlewo in February 2004. J. Brodzki would like to thank the organizers for pro-
viding a very stimulating environment for exchanging ideas.

2. Algebras associated with groups

It is well known that all topological information about a compact Hausdorff space
X can be recovered from the unital abelian C∗-algebra C(X) of continuous func-
tions on X . Moreover, it is known that any commutative C∗-algebra is isomorphic
to an algebra of continuous functions on a locally compact space X . This point
of view has been developed with great success within noncommutative geome-
try, which provides the geometric, analytic and homological tools for the study of
‘quantum spaces’. In this approach, C∗-algebras and their topological invariants
are studied using methods modeled on classical topology and geometry.

When the space X is equipped with some algebraic structure, for instance
when X is a locally compact group, one would hope to have a way of encoding,
in operator-algebraic terms, both the topology and algebra of X . We shall outline
briefly how this might be done.

Let us assume that Γ is a discrete group. The group ring CΓ consists of all
finitely supported complex-valued functions on Γ, that is of all finite combinations
f =

∑
γ∈Γ fγδγ with complex coefficients fγ where δγ is the characteristic function

of the set {γ}.
If we equip the group ring with the pointwise product of functions then the

resulting ∗-algebra contains information, such as there is, about the topology of Γ
but completely ignores its group structure. To encode that information we need
to use the convolution product defined for any γ, η ∈ Γ by

δγ ∗ δη = δγη

The left-regular representation λ of the group ring CΓ assigns to each element
f ∈ CΓ a bounded operator λ(f) which acts on any ξ ∈ �2(Γ) by convolution:

λ(f)(ξ) = f ∗ ξ.

The image λ(CΓ) of the group ring under the left-regular representation is a
∗-subalgebra of the algebra L(�2(Γ)) of bounded operators on �2(Γ).

Definition 2.1. The closure of λ(CΓ) in the C∗-norm topology of L(�2(Γ)) is by
definition the reduced C∗-algebra of Γ denoted C∗

r (Γ).

The reduced C∗-algebra of the group Γ does not arise from the topological
structure of the group Γ but rather contains information about the representation
theory of Γ. The case of abelian groups illustrates this point rather well. For an
abelian group Γ the Pontryagin dual Γ̂ is by definition the group of characters,
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that is group homomorphisms from Γ with values in the circle group T. Then one
has

C∗
r (Γ) = C0(Γ̂).

For example, when Γ = Zk, the dual group Ẑk is the k-dimensional torus (S1)k.
The reduced C∗-algebra of a group collects the information about the irre-

ducible unitary representations that make up the left regular representation of the
group ring. Dually, the data concerning the representation theory of a group is
encoded in its Fourier algebra [5], [9] which we will now describe.

We recall first that a complex-valued function φ on Γ is a coefficient function
of the left regular representation iff

φ(γ) = 〈λ(δγ)ξ, η〉
for all γ ∈ Γ and some vectors ξ, η ∈ �2(Γ).

Definition 2.2. The Fourier algebra A(Γ) is the completion of CΓ in the norm

‖u‖A(Γ) = inf{‖ξ‖‖η‖ | u(γ) = 〈λ(δγ)ξ, η〉}.
With this norm, A(Γ) is a Banach algebra with the pointwise multiplication.

3. A brief survey of approximation properties

The study of approximation properties was initiated by Grothendieck in relation
to the notion of nuclearity that he introduced in [7]. His fundamental ideas have
been applied to the study of groups; in this case one discovers that important
properties of groups, like amenability or exactness, can be expressed in terms of
approximation properties of the associated operator algebras introduced in the pre-
vious section. We give here a brief overview of the main facts. Our main references
are Wassermann’s lecture notes [23] and Paulsen’s text [21].

Let A and B be two C∗-algebras and φ : A→ B be a linear map. Then

φ⊗ idMn : Mn(A)→Mn(B), (aij) �→ (φ(aij))

is a linear map, denoted by φn. If φ is a ∗-homomorphism then φn is also a ∗-
homomorphism.

The map φ is said to be completely bounded iff φn is bounded for all n ≥ 1.
Let

‖φ‖cb = sup{‖φn‖ | n ∈ N}
When this expression is finite, it is called the completely bounded norm of φ.

Similarly, the map φ is completely positive iff φn is positive for all n; it is
completely isometric iff φn is isometric for all n ≥ 1 and φ is completely contractive
iff the maps φn are contractions (‖φn‖ ≤ 1) for all n.

Completely positive maps are completely bounded [23, 1.5]. When A is uni-
tal and φ is a complete contraction, then φ is completely positive if and only if
‖φ(1)‖ = ‖φ‖.
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With these notions at hand we can introduce one of the main approximation
properties.

Definition 3.1. A C∗-algebra A is nuclear iff it has the following completely pos-
itive approximation property (CPAP): The identity map id : A → A can be
approximated in the point-norm topology by finite rank completely positive con-
tractions. This means that that there exist nets of operators Tα : A → Mnα(C)
and Sα : Mnα(C)→ A such that for all a ∈ A

lim
α
‖SαTα(a)− a‖ = 0

Equivalently (and more traditionally) one can say that a C∗-algebra A is
nuclear if and only if the minimal and maximal C∗-norms on the algebraic tensor
product A�B are the same for any C∗-algebra B.

Nuclear algebras satisfy the metric approximation property of Grothendieck
(MAP) which is stated as follows.

Definition 3.2. A C∗-algebra A has the metric approximation property iff the iden-
tity map on A can be approximated in the point-norm topology by a net of finite
rank contractions.

It is clear that CPAP implies MAP.
One of the most important examples of how approximation properties of

algebras relate to properties of groups is provided by the following theorem of
Lance [16].

Theorem 3.3. A discrete group Γ is amenable if and only if its reduced C∗-algebra
C∗

r (Γ) is nuclear.

So we see that our group Γ is amenable if and only if its reduced C∗-algebra
has the CPAP. An alternative way to characterise amenability is via an approxi-
mation property for the Fourier algebra A(Γ). Leptin proved in [17] that a locally
compact group G is amenable if and only if the Fourier algebra A(G) has an
approximate identity which is bounded in the norm ‖ − ‖A(G).

In the case of free groups, Haagerup showed that the Fourier algebra A(Fn)
has an approximate unit that is unbounded in the norm of the Fourier algebra,
but is bounded in the so-called multiplier norm:

Definition 3.4. A complex-valued function u on Γ is a multiplier for A(Γ) if the
linear map mu(v) = uv maps A(Γ) into A(Γ). The set of multipliers of A(Γ) is
denoted MA(Γ). If u ∈ MA(Γ) then u is a bounded continuous function and mu

is a bounded operator on the space A(Γ).
We say that u is a completely bounded multiplier if and only if the operator

mu is completely bounded. The set M0(A(Γ)) of completely bounded multipliers
is equipped with the norm

‖u‖M0A(Γ) = ‖mu‖cb,

which we shall call the multiplier norm.
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By analogy with Leptin’s result we have the following definition of weak
amenability.

Definition 3.5. We say that a group Γ is weakly amenable iff A(Γ) has an approx-
imate identity that is bounded in the multiplier norm.

Hence a group is weakly amenable if there is a net {uα} in A(Γ) and a constant
C such that ‖uαv − v‖ → 0 for all v ∈ A(Γ) and such that ‖uα‖M0A(Γ) ≤ C for
all α.

We have thus defined a weak form of amenability via the Fourier algebra.
Closing the circle it turns out that this property can also be formulated in terms
of the completely bounded approximation property for the reduced C∗-algebra.

Definition 3.6. A C∗-algebra A is said to have the completely bounded approxima-
tion property (CBAP) if there is a positive number C such that the identity map
on A can be approximated in the point-norm topology by a net {Tα} of finite rank
completely bounded maps whose completely bounded norms are bounded by C.

We have the following important result of Haagerup (see [9, p. 669]).

Theorem 3.7. Let Γ be a discrete group. Then the following are equivalent:
1. Γ is weakly amenable.
2. C∗

r (Γ) has the CBAP.

We have seen that a discrete group Γ is amenable if and only if C∗
r (Γ) is

nuclear. It is natural to ask if there is a property of groups that corresponds to
the CBAP, and the answer is provided by the notion of exactness, introduced by
Kirchberg and Wassermann in [14].

Definition 3.8. We say that a discrete group Γ is exact iff C∗
r (Γ) is exact as a

C∗-algebra: this means that the operation of taking the minimal tensor product
with this algebra is an exact functor in the category of C∗-algebras.

Exact groups are known to admit uniform embeddings in a Hilbert space and
therefore to satisfy the Novikov conjecture by an important result of Yu [25]. Here
we have a concrete application of non-commutative geometry to a classical problem
in topology. It is important in our context because of the following theorem, due
to Kirchberg and Wassermann.

Theorem 3.9. If a C∗-algebra A satisfies the CBAP then A is exact.

We provide a proof that was kindly communicated to us by Ozawa.

Proof. Let A be a C∗-algebra with the CBAP; this means that there exists a
uniformly bounded family of completely bounded finite rank operators Tn : A→ A
such that for any a ∈ A, ‖Tn(a)− a‖ → 0.

We need to show that for any exact sequence

0→ I
i−→ B

q−→ Q→ 0
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of C∗-algebras, the sequence

0→ A⊗ I → A⊗B
idA⊗q−−−−→ A⊗Q→ 0

is also exact, where ⊗ stands for the minimal tensor product.
We note first that for any x ∈ A ⊗ B we have ‖(Tn ⊗ idB)(x) − x‖ → 0.

(Since the maps Tn ⊗ idB are uniformly bounded in n it is enough to check this
assertion on simple tensors x = a ⊗ b.). Assume now that x is an element of the
kernel ker(idA ⊗ q) of the quotient map idA ⊗ q : A⊗B → A⊗Q. Then clearly

(Tn ⊗ q)(x) = (Tn ⊗ idQ)(idA ⊗ q)(x) = 0.

Given that
(Tn ⊗ idQ)(idA ⊗ q)(x) = (idA ⊗ q)(Tn ⊗ idB)(x)

we have that (idA⊗ q)(Tn⊗ idB)(x) = 0. Since every operator Tn is of finite rank,
(Tn ⊗ idB)(x) belongs to the algebraic tensor product of A�B of the algebras A
and B. The algebraic tensor product is an exact functor, so the vanishing condition

(idA ⊗ q)(Tn ⊗ idB)(x) = 0

implies that (Tn ⊗ idB)(x) is an element of A⊗ I. Therefore

x = lim(Tn ⊗ idB)(x)

is also in A⊗ I.
This proves that the kernel of the map idA ⊗ q is identical to A ⊗ I for any

algebras B and I, which implies that A is exact. �
Thus if the reduced C∗-algebra of a discrete group has the CBAP then the

group is exact and so it satisfies the Novikov conjecture. In particular, since the
CPAP implies the CBAP, Lance’s theorem implies that amenable groups satisfy
the Novikov conjecture. On the other hand there exist exact groups that are not
amenable, for example the free groups [14] and the word hyperbolic groups [25].

4. The Metric Approximation Property

In this section we will prove the following theorem.

Theorem 4.1. Let Γ be a discrete group satisfying the rapid decay property with
respect to a length function � which is conditionally negative. Then the reduced
C∗-algebra C∗

r (Γ) has the metric approximation property.

The central point of our proof is an observation that the proof of the same
property for free groups due to Haagerup [8] transfers directly to this more general
situation. We also note that under the same hypotheses, the Fourier algebra A(Γ)
has a bounded approximate identity, which implies that it too has the MAP.

Following Haagerup [8, Def. 1.6] we say that a function φ : Γ −→ C is a
multiplier of C∗

r (Γ) if and only if there exists a unique bounded operator Mφ :
C∗

r (Γ)→ C∗
r (Γ) such that

Mφλ(γ) = φ(γ)λ(γ) (1)
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for all γ ∈ Γ. This condition can be written equivalently as:

Mφλ(f) = λ(φ · f). (2)

An important situation in which such operators arise is given by the following
lemma, which is a generalisation of [8, Lemma 1.7]; the proof is essentially identical
to the original.

Lemma 4.2. Let Γ be a discrete group equipped with a length function �. Assume
that (Γ, �) satisfies the rapid decay inequality for given C, s > 0.

Let φ be any function on Γ such that

K = sup
γ∈Γ
|φ(γ)|(1 + �(γ))s <∞.

Then φ is a multiplier of C∗
r (Γ) and ‖Mφ‖ ≤ CK.

In particular this holds for any element f ∈ CΓ and for any such element
Mf has finite rank.

Proof. We start by showing that property RD allows us to construct a family of
multipliers for C∗

r (Γ) with controlled operator norms. For any discrete group Γ
the characteristic function δe of the identity element e of Γ is the identity of the
group ring CΓ. Since δe is a unit vector in �2(Γ) we have that for any f ∈ CΓ,
‖λ(f)‖ ≥ ‖λ(f)(δe)‖2 = ‖f ∗ δe‖2 = ‖f‖2.

Then for any f ∈ CΓ, the pointwise product φ · f is also an element of CΓ,
so we can apply the rapid decay inequality to get:

‖λ(φ · f)‖ ≤ C

√∑
γ∈Γ

|φ(γ)f(γ)|2(1 + �(γ))2s

≤ C sup
γ∈Γ
{|φ(γ)|(1 + �(γ))s}

√∑
γ∈Γ

|f(γ)|2 = CK‖f‖2.

Putting together the two inequalities we have that

‖λ(φ · f)‖ ≤ CK‖f‖2 ≤ CK‖λ(f)‖.
This shows that the map from CΓ to C∗

r (Γ) which sends λ(f) to λ(φ · f) is con-
tinuous and so extends to a unique map Mφ : C∗

r (Γ) → C∗
r (Γ) with the property

that Mφλ(f) = λ(φ · f).
It is also clear that ‖Mφ‖ ≤ CK. Finally it is clear that if φ has finite support

then Mφ has finite rank. �

We recall the definition of a conditionally negative kernel:

Definition 4.3. A conditionally negative kernel on a set V is a function f : V ×
V −→ R such that for any finite subset {v1, . . . , vn} ⊂ V and any real numbers
{λ1, . . . , λn} such that

∑
i

λi = 0 the following inequality holds:∑
i,j

λiλjf(vi, vj) ≤ 0
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A conditionally negative kernel on a group G is a conditionally negative kernel on
the set of elements of G such that for any g, h, k in G, f(gh, gk) = f(h, k).

We can now prove the following.

Theorem 4.4. Let Γ be a discrete group with a conditionally negative length function
�, which satisfies the property (RD) for C, s > 0. Then there exists a net {φα} of
functions on Γ with finite support such that

1. For each α, ‖Mφα‖ ≤ 1;
2. ‖Mφα(x) − x‖ → 0 for all x ∈ C∗

r (Γ).

Proof. Since the length function � is conditionally negative, it follows from Schoen-
berg’s lemma that for any r > 0 the function φr(γ) = e−r�(γ) is of positive type.
Thus by [8, Lemma 1.1] (see also [11, Lemma 3.2 and 3.5]), for every r there
exists a unique completely positive operator Mφr : C∗

r (Γ) → C∗
r (Γ) such that

Mφr(λ(γ)) = φr(γ)λ(γ) for all γ ∈ Γ and ‖Mφr‖ = φr(e) = 1.
Let us now define a family φr,n of finitely supported functions on Γ by trun-

cating the functions φr to balls of radius n with respect to the length function �.
For every γ ∈ Γ we put:

φr,n(γ) =

{
e−r�(γ), if �(γ) ≤ n

0, otherwise.

Since e−x(1 + x)s → 0 for any positive s and x→∞, we have that

sup
γ∈Γ
|φr(γ)|(1 + �(γ))s

is finite. If we denote this finite number by K, then clearly supγ∈Γ |φr,n(γ)|(1 +
�(γ))s ≤ K. Thus, for every r and n, these functions are multipliers of C∗

r (Γ), and
the corresponding operators Mφr and Mφr,n have norms bounded by CK. Since
the functions φr,n have finite support, the corresponding operators Mφr,n are of
finite rank.

On the other hand, since

(φr − φr,n)(γ) =

{
0, �(γ) ≤ n

e−r�(γ), �(γ) > n

we have that
sup
γ∈Γ
|(φr − φr,n)(γ)|(1 + �(γ))s

= sup
�(γ)>n

|(φr − φr,n)(γ)|(1 + �(γ))s

≤ Kn <∞

where Kn → 0 as n → ∞. Thus these functions are multipliers of C∗
r (Γ) and

the corresponding operators Mφr−φr,n are such that ‖Mφr−φr,n‖ ≤ CKn → 0, as
n→∞.
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Since
‖Mφr −Mφr,n‖ = ‖Mφr−φr,n‖

we have ‖Mφr −Mφr,n‖ → 0 as n → ∞. This implies that ‖Mφr,n‖ → ‖Mφr‖ =
φr(e) = 1.

To get the correct bound on the norm of these operators we introduce scaled
functions:

ρr,n =
1

‖Mφr,n‖
φr,n.

The algebraic identity satisfied by the multipliers, as stated in (2), guarantees that
on λ(CΓ) we have the following identity

Mρr,n =
1

‖Mφr,n‖
Mφr,n . (3)

We now want to show that each operator Mρr,n is a finite rank contraction
on C∗

r (Γ) and that the strong operator closure of the family {Mρr,n} contains the
identity map id : C∗

r (Γ)→ C∗
r (Γ). This means that for every positive ε there exists

an operator Mρr,n such that

‖Mρr,nx− x‖ < ε

for all x ∈ C∗
r (Γ).

First, a simple use of the triangle inequality leads to the following argument.
‖Mρr,n −Mφr‖ ≤ ‖Mρr,n −Mφr,n‖+ ‖Mφr,n −Mφr‖

= ‖(1− 1/‖Mφr,n‖)Mφr,n‖+ ‖Mφr,n −Mφr‖
→ 0 as n→∞.

(4)

Let x ∈ C∗
r (Γ). Then x is a limit of a sequence of elements xm ∈ λ(CΓ) so that

‖Mρr,n(x)‖ = limm→∞ ‖Mρr,n(xm)‖, and equation (3) implies that ‖Mρr,n(xm)‖ =
‖ 1
‖Mφr,n‖Mφr,n(xm)‖.

This leads to the following estimate:

‖Mρr,n(x)‖ = lim
m→∞ ‖

1
‖Mφr,n‖

Mφr,n(xm)‖

≤ lim
m→∞ ‖

1
‖Mφr,n‖

Mφr,n‖‖xm‖ = lim
m→∞ ‖xm‖ = ‖x‖.

(5)

It follows that ‖Mρr,n‖ ≤ 1.
Finally, it is clear that for any γ ∈ Γ, e−r�(γ) → 1 as r → 0. Thus for any

x =
∑

γ∈Γ µγλ(γ) ∈ CΓ we have

Mφr(x) =
∑

µγφr(γ)λ(γ)

so that

lim
r→0

Mφr(x) = lim
r→0

∑
µγφr(γ)λ(γ)

=
∑

µγ(lim
r→0

φr(γ))λ(γ) =
∑

µγλ(γ) = x
(6)
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Since any x ∈ C∗
r (Γ) can be approximated by a sequence xm ∈ λ(CΓ) we

have
‖Mφr(x) − x‖ ≤ ‖Mφr(x)−Mφr(xm)‖

+ ‖Mφr(xm)− xm‖+ ‖xm − x‖
Given that ‖Mφr‖ ≤ 1 for all r > 0, ‖Mφr(x)−Mφr(xm)‖ ≤ ‖x−xm‖ < ε/3

for all large enough n and independently of r. Thus the sum of the first and third
term of this sum can be made smaller than (2/3)ε, for all r > 0, and independently
of m. Now equation (6) shows that, as r → 0, Mφr (xm) tends to xm so the middle
term will be smaller than ε/3 for all sufficiently small r. Thus, for all sufficiently
small r > 0, ‖Mφr(x)− x‖ < ε and so

‖Mφr(x)− x‖ → 0

as r → 0 for all x ∈ C∗
r (Γ).

Let ε > 0. Then it follows from (4) that for every r > 0 and all sufficiently
large n, ‖Mρr,n −Mφr‖ < ε/2. Secondly, as we have just shown, for all sufficiently
small r, ‖Mφr(x) − x‖ < ε/2. Given that

‖Mρr,nx− x‖ ≤ ‖Mρr,nx−Mφrx‖+ ‖Mφr(x)− x‖
for every x ∈ C∗

r (Γ), the norm on the left-hand side can be made smaller than ε
by taking a sufficiently large n and a sufficiently small r > 0.

This means that the strong closure of the family M = {Mρr,n} of finite rank
contractions contains the identity map on the algebra C∗

r (Γ). This implies that
there exists a net of finitely supported functions φα with corresponding finite rank
contractions Mφα ∈M such that ‖Mφαx− x‖ → 0. This concludes the proof. �

As a corollary we obtain the main result of this note.

Theorem 4.5. Let Γ be a discrete group satisfying the rapid decay property with
respect to a length function � which is conditionally negative. Then the reduced
C∗-algebra C∗

r (Γ) has the metric approximation property.

The class of CAT(0) cube complexes plays in important role in geometry and
geometric group theory. A CAT(0) cube complex is a cell complex in which each
cell is isometric to a unit Euclidean cube, the glueing maps are isometries and such
that the natural path metric obtained by integrating path length piecewise satisfies
the CAT(0) inequality described in [1]. Intuitively this last condition ensures that
the geodesic triangles in the path metric space are no fatter than they would be
in Euclidean space. This condition ensures (among many other things) that the
space is uniquely geodesic and contractible. Now according to Niblo and Reeves
[19] given a group acting on a CAT(0) cube complex we obtain a conditionally
negative kernel on the group which gives rise to a conditionally negative length
function. By results of Chatterji and Ruane [3] the group will have the rapid
decay property with respect to this this length function provided that the action
is properly discontinuous, stabilisers are uniformly bounded and the cube complex
has finite dimension.
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Hence we obtain:

Corollary 4.6. Groups acting properly discontinuously on a finite-dimensional
CAT(0) cube complex with uniformly bounded stabilisers have the metric approxi-
mation property.

This class of examples includes free groups, finitely generated Coxeter groups
[20], and finitely generated right angled Artin groups for which the Salvetti com-
plex is a CAT(0) cube complex. A rich class of interesting examples is furnished by
Wise, [24], in which it is shown that many small cancellation groups act properly
and co-compactly on CAT(0) cube complexes. The examples include every finitely
presented group satisfying the B(4)-T(4) small cancellation condition and all those
word-hyperbolic groups satisfying the B(6) condition.

Another class of examples where the main theorem applies is furnished by
groups acting co-compactly and properly discontinuously on real or complex hyper-
bolic space. According to a result of Faraut and Harzallah [6] the natural metrics
on these hyperbolic spaces are conditionally negative and they give rise to con-
ditionally negative length functions on the groups. See [22] for a discussion and
generalisation of this fact. The fact that these metrics satisfy rapid decay for the
group was established by Jolissaint in [12].

Finally we remark that the net φα of Theorem 4.4 provides an approximate
identity for the Fourier algebra A(Γ) of the group Γ which is bounded in the
multiplier norm. This implies, as in [8, Corollary 2.2], that if a group Γ satisfies
the (RD) property with respect to a conditionally negative length function then
its Fourier algebra A(Γ) has the metric approximation property.
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A Riemannian Invariant, Euler Structures
and Some Topological Applications

Dan Burghelea and Stefan Haller

Abstract. First we discuss a numerical invariant associated with a Riemann-
ian metric, a vector field with isolated zeros, and a closed one form which
is defined by a geometrically regularized integral. This invariant, extends the
Chern–Simons class from a pair of two Riemannian metrics to a pair of a Rie-
mannian metric and a smooth triangulation. Next we discuss a generalization
of Turaev’s Euler structures to manifolds with non-vanishing Euler charac-
teristics and introduce the Poincaré dual concept of co-Euler structures. The
duality is provided by a geometrically regularized integral and involves the
invariant mentioned above. Euler structures have been introduced because
they permit to remove the ambiguities in the definition of the Reidemeister
torsion. Similarly, co-Euler structures can be used to eliminate the metric de-
pendence of the Ray–Singer torsion. The Bismut–Zhang theorem can then be
reformulated as a statement comparing two genuine topological invariants.

Mathematics Subject Classification (2000). 57R20, 58J52.

Keywords. Euler structure; co-Euler structure; combinatorial torsion; analytic
torsion; theorem of Bismut–Zhang; Chern–Simons theory; geometric regular-
ization .

1. Introduction

This paper follows entirely the lecture the first author gave at Bedlewo’s workshop
in February 2004 and is a survey of some of the results in [5] and [3]. We discuss
in details two concepts, the invariant R which is a number associated with a
Riemannian metric g, a vector field with isolated zeros X , and a closed one form
ω, and the Euler resp. co-Euler structures which are affine versions of H1(M ; Z)
resp. Hn−1(M ;OM ). They play an important role in our recent work about relating

The second author is supported by the Fonds zur Förderung der wissenschaftlichen Forschung
(Austrian Science Fund), project number P14195-MAT.
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the topology of non-simply connected manifolds to the complex geometry/analysis
of the variety of complex representations of their fundamental group.

Both concepts existed in literature prior to our work, cf. [1] and [14]. We
have extended, generalized and Poincaré dualized them because of our needs, cf.
[5], but we also believe that they have independent interest.

Euler and co-Euler structures represent the additional topological data neces-
sary to remove the geometric ambiguity from the Reidemeister torsion, resp. from
the Ray–Singer torsion when extended to arbitrary representations, and provide
genuine topological invariants. The invariant R, among other things, relates Euler
and co-Euler structures.

We use the opportunity of having these two concepts presented in details
to clarify the difference between the related concepts of (combinatorial) torsion,
Milnor metric and (modified) Ray–Singer metric and to reformulate with their
help the results of Bismut–Zhang, see [1].

The Bismut–Zhang theorem as formulated is about flat real vector bundles.
The appendix completes the discussion with the case of flat complex vector bun-
dles.

The invariant R(X, g, ω)
Let M be a closed manifold and ω ∈ Ω1(M) a closed one form with real or complex
coefficients.

(i) A pair of two Riemannian metrics g1, g2 determines the Chern–Simons class
cs(g1, g2) ∈ Ωn−1(M ;OM )/dΩn−2(M ;OM ) and then the numerical invariant

R(g1, g2, ω) :=
∫

M

ω ∧ cs(g1, g2).

(ii) A pair of two vector fields without zeros X1, X2 determines a homology class
cs(X1, X2) ∈ H1(M ; Z), see Section 3 below, and then a numerical invariant

R(X1, X2, ω) = 〈[ω], cs(X1, X2)〉. (1)

(iii) A pair consisting of a vector field without zeros and a Riemannian metric
g determines a degree n − 1 form X∗Ψ(g) ∈ Ωn−1(M ;OM ) and therefore a
numerical invariant

R(X, g, ω) =
∫

M

ω ∧X∗Ψ(g). (2)

Here Ψ(g) ∈ Ωn−1(TM \ 0M ;OM ) is the Mathai–Quillen form introduced in [9,
Section 7] and discussed in details in [1], cf. Section 2 below.

One can extend the invariant (iii) to the case of vector fields with isolated
zeros, not necessarily non-degenerate. Both smooth triangulations and Euler struc-
tures provide examples of such vector fields, cf. Sections 4 and 5. If X has zeros
then the integrand in (2) is defined only on M \ X , X the set of zeros of X , and
the integral might be divergent. Fortunately it can be regularized by a procedure
we will refer to as geometric regularization as described in Section 3 and this leads
to the numerical invariant R(X, g, ω) from the title, cf. Theorem 1 below. This
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invariant for X = − gradf , f a Morse function was considered in [1] in terms of
currents. One can also extend the invariant (ii) to vector fields with isolated zeros,
cf. Section 3.

A pleasant application of the invariant R and of the extension of (ii) is the
extension of the Chern–Simons class from a pair of two Riemannian metrics g1 and
g2 to a pair of two smooth triangulations τ1 and τ2 or to a pair of a Riemannian
metric g and a smooth triangulation τ , cf. Section 5. These classes permit to treat
on “equal foot” a Riemannian metric and a smooth triangulation when comparing
subtle invariants like “torsion” defined using a Riemannian metric, and using a
triangulation, in analogy with the comparison of such invariants for two metrics
or two triangulations.

Euler structures

Euler structures were introduced by Turaev cf. [14] for manifolds M with vanishing
Euler–Poincaré characteristic, χ(M) = 0. We define the Euler structures for an ar-
bitrary base pointed manifold (M, x0) and show that the definition is independent
of the base point provided χ(M) = 0. The set of Euler structures Eulx0(M ; Z)
is an affine version of H1(M ; Z) in the sense that H1(M ; Z) acts freely and tran-
sitively on Eulx0(M ; Z). Similarly there is the set of Euler structures with real
coefficients Eulx0(M ; R) which is an affine space over H1(M ; R), and there is a ho-
momorphism Eulx0(M ; Z)→ Eulx0(M ; R) which is affine over the homomorphism
H1(M ; Z)→ H1(M ; R).

We also introduce the set Eul∗x0
(M ; R) of co-Euler structures on which the

cohomology group Hn−1(M ;OM ) acts freely and transitively.
Eul∗x0

(M ; R) represents a smooth version (deRham version) of a dual aspect
of Eulx0(M ; R). In the case of a closed manifold M we show the existence of an
affine version of Poincaré duality map P : Eul∗x0

(M ; R) → Eulx0(M ; R). This can
equivalently be described with the help of a coupling

T : Eulx0(M ; R)× Eul∗x0
(M ; R)→ H1(M ; R)

based on a regularization very similar to the one for R, see Section 3.1

Primarily, the interest of Euler and co-Euler structures comes from the fol-
lowing. Suppose F is a flat real or complex vector bundle, and let Fx0 denote
the fiber over the base point x0. A co-Euler structure e∗ ∈ Eul∗x0

(M ; R) removes
the metric ambiguity of the Ray–Singer torsion and provides a Hermitian scalar
product, the analytic scalar product, in the complex line:

detH∗(M ; F )⊗ (detFx0)
−χ(M) (3)

1The concept of Euler and co-Euler structures can be extended from the tangent bundle to

arbitrary rank k bundles. This is particularly easy if the Euler class of the bundle vanishes.
The set of Euler structures of a vector bundle will be an affine version of Hn−k+1(M ; Z) resp.

Hn−k+1(M ; R) and the set of co-Euler structures will be an affine version of Hk−1(M ;OE).

There again is an affine version of Poincaré duality, based on a regularized integral. This permits
to consider Euler and co-Euler structures as a functorial concept.
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An Euler structure with real coefficients e ∈ Eulx0(M ; R) removes the triangula-
tion ambiguity2 and provides a Hermitian scalar product, the combinatorial scalar
product, in the line (3), see also [7].

As an application of Euler and co-Euler structures we present a reformulation
of a result of Bismut–Zhang, proved in [1], referred to as the Bismut–Zhang theo-
rem, see Theorem 3 in Section 6. Precisely, the analytic scalar product associated
to e∗ is the same as the combinatorial scalar product associated to e multiplied by
e〈(log |·|)∗ΘF ,T(e,e∗)〉. Here ΘF ∈ H1(M ; C∗) is the cohomology class corresponding
to det ◦ρ : H1(M ; Z)→ C∗, and (log | · |)∗ΘF ∈ H1(M ; R) denotes its image under
the homomorphism (log | · |)∗ : H1(M ; C∗)→ H1(M ; R) which is induced from the
homomorphism of coefficients log | · | : C∗ → R. This cohomology class is known
as Kamber–Tandeur class.

The results

Suppose M is a closed manifold of dimension n. Given a Riemannian metric g
denote by E(g) ∈ Ωn(M ;OM ) the Euler form and by Ψ(g) ∈ Ωn−1(TM \M ;OM)
the Mathai–Quillen form associated to g. If X1 and X2 are two vector fields with
isolated zeros we get an element

cs(X1, X2) ∈ C1(M ; Z)/∂(C2(M ; Z))

whose boundary equals the zeros of X1 and X2, weighted with their indices, see
Section 2.

Theorem 1. Let M be a closed connected manifold.
(i) Suppose ω ∈ Ω1(M) is a real- or complex-valued closed one form, g a Rie-

mannian metric and X a vector field with isolated zeros. Let f be a smooth
real or complex-valued function with ω = df in the neighborhood of the zero
set X of X. Then the number

R(X, g, ω; f) :=
∫

M\X
(ω − df) ∧X∗Ψ(g)−

∫
M

fE(g) +
∑
x∈X

IND(x)f(x)

is independent of f and will therefore be denoted by R(X, g, ω).
(ii) If g1 and g2 are two Riemannian metrics, then

R(X, g2, ω)−R(X, g1, ω) =
∫

M

ω ∧ cs(g1, g2).

(iii) If X1 and X2 are two vector fields with isolated zeros then

R(X2, g, ω)−R(X1, g, ω) =
∫

cs(X1,X2)

ω.

(iv) If ω1 and ω2 are two closed one forms so that ω2 − ω1 = dh then

R(X, g, ω2)−R(X, g, ω1) = −
∫

hE(g) +
∑
x∈X

IND(x)h(x).

2and the additional ambiguity produced by the choice of a lift of each cell of the triangulation
to the universal cover of the manifold
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In Section 3 we will verify statements (i) through (iv). More precisely they
are the contents of Lemma 1, Proposition 1 and Proposition 2.

An Euler structure on a base pointed manifold (M, x0) is an equivalence class
of pairs (X, c), where X is a vector field with isolated singularities and c is a sin-
gular one chain with integral coefficients whose boundary equals

∑
x∈X IND(x)x−

χ(M)x0, where X denotes the zero set of X . Two such pairs (X1, c1) and (X2, c2)
are equivalent if c2 differs from c1 + cs(X1, X2) by a boundary. We will write
Eulx0(M ; Z) for the set of Euler structures based at x0. This is an affine version
of H1(M ; Z) in the sense that H1(M ; Z) acts freely and transitively on it. Consid-
ering chains c with real coefficients we get an affine version of H1(M ; R) which we
denote by Eulx0(M ; R).

The set Eul∗x0
(M ; R) of co-Euler structures is defined as the set of equiva-

lence classes of pairs (g, α) where α ∈ Ωn−1(M \x0;OM ) satisfies dα = E(g). Two
pairs (g1, α1) and (g2, α2) are equivalent iff α2 − α1 = cs(g1, g2). Here cs(g1, g2)
denotes the Chern–Simons class, cf. Section 2 for definition. The cohomology
Hn−1(M ;OM ) acts on Eul∗x0

(M ;R) freely and transitively by [g,α]+[β] :=[g,α−β].

Theorem 2. Let (M, x0) be a closed connected base pointed manifold.

(i) Let π0(X(M, x0)) denote the set of connected components of vector fields
which vanish only at x0 equipped with the C∞ topology, or any Cr topology,
r ≥ 0. If dimM > 2 then the assignment [X ] �→ [X, 0] defines a bijection:

π0(X(M, x0))→ Eulx0(M ; Z).

(ii) Let π0(X0(M)) denote the set of connected components of nowhere vanish-
ing vector fields equipped with the C∞ topology, or any Cr topology, r ≥ 0.
If χ(M) = 0 and dimM > 2 then the assignment [X ] �→ [X, 0] defines a
surjection:

π0(X0(M))→ Eulx0(M ; Z).

(iii) There exists an isomorphism

P : Eul∗x0
(M ; R)→ Eulx0(M ; R),

which is affine over the Poincaré duality PD : Hn−1(M ;OM ) → H1(M ; R).
That is P (e∗ + β) = P (e∗) + PD(β), for all β ∈ Hn−1(M ;OM ).

(iv) The assignment T(e, e∗) := P (e∗)− e

T : Eulx0(M ; R)× Eul∗x0
(M ; R)→ H1(M ; R)

is a corrected version of the invariant R. More precisely, if e = [X, c], e∗ =
[g, α] and [ω] ∈ H1(M ; R) we have

〈[ω], T(e, e∗)〉 =
∫

M

ω ∧ (X∗Ψ(g)− α)−
∫

c

ω

where ω ∈ Ω1(M) is any representative of [ω] which vanishes locally around
x0 and locally around the zeros of X.
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Statements (i) and (ii) are essentially due to Turaev and are the contents of
Propositions 3 and 4 in Section 4. The proof of (iii) and (iv) can be found at the
end of Section 4, cf. Proposition 5.

The theorem of Bismut–Zhang in our reformulation is contained in Section 6
as Theorem 3.

2. Mathai–Quillen form

Let π : E → M be a rank k real vector bundle, and let ∇̃ := (∇, µ) be a pair
consisting of a connection ∇ and a parallel Hermitian structure, i.e. , fiber wise
scalar product, µ. Such pair will be called Euclidean connection. Let OE denote
the orientation bundle of E, a flat real line bundle over M .

For ∇̃ an Euclidean connection denote by E(∇̃) ∈ Ωk(M ;OE) the Euler form
of ∇̃, i.e. the Pfaffian of the curvature of ∇, cf. [8]. Observe that a smooth path
of Euclidean connections ∇̃t, t ∈ I = [1, 2], can be interpreted as an Euclidean
connection ∇̃ in the bundle E = E × I → M = M × I. Indeed, a smooth vector
field X on M can be regarded as a pair X = (X ′

t, ft), t ∈ I, with X ′
t a smooth

family of vector fields on M , ft a smooth family of functions on M and a section
s in E as a smooth family of sections st in E. Define ∇̃Xs := (∇t)Xtst + ftd/dtst.

Then for two Euclidean connections ∇̃1 and ∇̃2 and a smooth path of Eu-
clidean connections ∇̃t, t ∈ I, consider the differential form cs(∇̃1, ∇̃2, ∇̃t) ∈
Ωk−1(M ;OE) obtained from E(∇̃) by “integration along the fiber” in the trivial
smooth bundle M × I →M . Change of the path ∇t changes cs(∇̃1, ∇̃2, ∇̃t) by an
exact form so the class cs(∇̃1, ∇̃2) ∈ Ωk−1(M ;OE)/Ωk−2(M ;OE) referred to as
Chern–Simons class is independent on the path cf. [6].

In [9] (see also [1]) Mathai and Quillen have introduced the differential form

Ψ(∇̃) ∈ Ωk−1(E \M ; π∗OE)

called Mathai–Quillen form with the following properties.
(i) Ψ(∇̃) is the pullback of a form on (E \M)/R+.
(ii) One has

dΨ(∇̃) = π∗E(∇̃). (4)

(iii) Modulo exact forms

Ψ(∇̃2)−Ψ(∇̃1) = π∗ cs(∇̃1, ∇̃2). (5)

(iv) Suppose E = TM is equipped with a Riemannian metric g, ∇̃g is the Levi–
Civita pair and X is a vector field with isolated zero x. Let Bε denote the
ball of radius ε around x, with respect to some chart. Then

lim
ε→0

∫
∂(M\Bε)

X∗Ψ(∇̃g) = IND(x), (6)

where IND(x) denotes the Hopf index of X at x.
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(v) For M = Rn, E := TM equipped with gij = δij , ∇̃g the Levi–Civita pair
and in the coordinates x1, . . . , xn, ξ1, . . . , ξn one has:

Ψ(∇̃g) =
Γ(n/2)
(2π)n/2

n∑
i=1

(−1)i ξi

(
∑

ξ2
i )n/2

dξ1 ∧ · · · ∧ d̂ξi ∧ · · · ∧ dξn.

We will consider the above definitions only for E = TM and ∇̃ = ∇̃g, g a Rie-
mannian metric, and use the notation E(g) for E(∇̃g), cs(g1, g2) for cs(∇̃g1 , ∇̃g2)
and Ψ(g) for Ψ(∇̃g).

Let ξ : E →M be a complex vector bundle equipped with a flat connection.
Given two Hermitian structures µ1 and µ2 denote by V (µ1, µ2) the positive real-
valued function given at y ∈M by the volume with respect to the scalar product
defined by (µ2)y of a parallelepiped provided by an orthonormal frame with respect
to (µ1)y.

Suppose that the bundle ξ is equipped with a flat connection ∇. To any
Hermitian structure in ξ : E → M following Kamber–Tondeur one associates the
real-valued closed (hence locally exact) differential form ω(∇, µ) ∈ Ω1(M) defined
as follows. For any x ∈M choose a contractible open neighborhood U , and denote
by µ̃x the Hermitian structure on E|U → U obtained by parallel transport of
µx. This Hermitian structure is well defined since U is one connected and the
connection is flat.

Define ω(∇, µ) := − 1
2d log Vx as being the logarithmic differential of the non-

zero function Vx : U → R defined by Vx = V (µ̃x, µ). The following property holds:

ω(∇, µ2)− ω(∇, µ1) = −1
2
d log(V (µ1, µ2))

3. The invariant R(X, g, ω). The geometric regularization

Suppose M is a closed manifold of dimension n, g a Riemannian metric and X :
M → TM \M a vector field without zeros. Suppose ω is a closed one form with
real or complex coefficients. Define

R(X, g, ω) :=
∫

M

ω ∧X∗Ψ(g), (7)

which will be a real or complex number. For every function h we have

R(X, g, ω + dh)−R(X, g, ω) = −
∫

M

hE(g),

and for any two Riemannian metrics g1 and g2 we have

R(X, g2, ω)−R(X, g1, ω) =
∫

M

ω ∧ cs(g1, g2).

These properties are straightforward consequences of (4), Stokes’ theorem and (5).
Suppose X1 and X2 are two vector fields without zeros. Let p : I ×M →M

denote the projection, where I = [1, 2]. Consider a section X of p∗TM which is
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transversal to the zero section and which restricts to Xi on {i} × M , i = 1, 2.
The zero set X−1(0) is a closed one-dimensional canonically oriented submanifold
of I × M . Hence it defines a homology class in I × M , which turns out to be
independent of the chosen homotopy X. We thus define cs(X1, X2) := p∗(X−1(0)) ∈
H1(M ; Z). One can show that

R(X2, g, ω)−R(X1, g, ω) =
∫

cs(X1,X2)

ω.

This property will be verified below in a slightly more general situation.
The above properties suggest the definition of the invariant R in the case X

has isolated zeros even when the integral in (7) is divergent. This definition will
be referred to as the geometric regularization of (7). We do not assume that the
zeros of X are non-degenerate. Let X denote the zero set of X . Choose a function
f so that ω′ := ω − df vanishes on a neighborhood of X . Then

R(X, g, ω; f) :=
∫

M\X
ω′ ∧X∗Ψ(g)−

∫
M

fE(g) +
∑
x∈X

IND(x)f(x)

makes perfect sense. The next lemma establishes the proof of Theorem 1(i).

Lemma 1. The quantity R(X, g, ω; f) does not depend on the choice of f .

Proof. Suppose f1 and f2 are two functions such that ω′
i := ω − dfi, i = 1, 2 both

vanish in a neighborhood U of X , i = 1, 2. For every x ∈ X we choose a chart and
let Bε(x) denote the disk of radius ε around x. Put Bε :=

⋃
x∈X Bε(x).

For ε small enough Bε ⊂ U and f2− f1 is constant on each Bε(x). Using (4),
Stokes’ theorem and (6) we get

R(X, g, ω; f2)−R(X, g, ω; f1)

= −
∫

M\X
d
(
(f2 − f1) ∧X∗(Ψ(g)

)
+

∑
x∈X

IND(x)(f2 − f1)(x)

= − lim
ε→0

∫
∂(M\Bε)

(f2 − f1) ∧X∗Ψ(g) +
∑
x∈X

IND(x)(f2 − f1)(x)

= −
∑
x∈X

(f2 − f1)(x) lim
ε→0

∫
∂(M\Bε(x))

X∗Ψ(g) +
∑
x∈X

IND(x)(f2 − f1)(x)

= 0

and thus R(X, g, ω; f1) = R(X, g, ω; f2). �

Definition 1. In view of the previous lemma we define R(X, g, ω) := R(X, g, ω; f),
where f is any function so that ω − df vanishes locally around X .

From the very definition we immediately verify Theorem 1(iv) which we re-
state as
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Proposition 1. For every function h we have:

R(X, g, ω + dh)−R(X, g, ω) = −
∫

M

hE(g) +
∑
x∈X

IND(x)h(x) (8)

For any vector field with isolated zeros X we set

eX :=
∑
x∈X

IND(x)x,

a singular zero chain in M .
Suppose we have two vector fields X1 and X2 with non-degenerate zeros.

Consider the vector bundle p∗TM → I ×M , where I := [1, 2] and p : I ×M →M
denotes the natural projection. Choose a section X of p∗TM which is transversal
to the zero section and which restricts to Xi on {i} ×M , i = 1, 2. The zero set
of X is a canonically oriented one-dimensional submanifold with boundary. Hence
it defines a singular one chain which, when pushed forward via p, is a one chain
c(X) in M , satisfying

∂c(X) = eX2 − eX1 .

Suppose X1 and X2 are two non-degenerate homotopies from X1 to X2. Then
certainly ∂(c(X2)− c(X1)) = 0, but we actually have

c(X2)− c(X1) = ∂σ, (9)

for a two chain σ. Indeed, consider the vector bundle q∗TM → I × I ×M , where
q : I × I ×M → M denotes the natural projection. Choose a section of q∗TM
which is transversal to the zero section, restricts to Xi on {i} × I ×M , i = 1, 2
and which restricts to Xi on {s}× {i}×M for all s ∈ I and i = 1, 2. The zero set
of such a section then gives rise to σ satisfying (9).

So for two vector fields with non-degenerate zeros this construction yields
a one chain cs(X1, X2), well defined up to a boundary, satisfying ∂ cs(X1, X2) =
eX2 − eX1 .

Let us extend this to vector fields with isolated singularities. Suppose X
is a vector field with isolated singularities. For every zero x ∈ X we choose an
embedded ball Bx centered at x, assuming all Bx are disjoint. Set B :=

⋃
x∈X Bx.

Choose a vector field with non-degenerate zeros X ′ that coincides with X on M \B.
Let X ′ denote its zero set. For every x ∈ X we have

INDX(x) =
∑

y∈X ′∩Bx

INDX′(y).

So we can choose a one chain c̃(X, X ′) supported in B which satisfies ∂c̃(X, X ′) =
eX′ − eX . Since H1(B; Z) vanishes the one chain c̃(X, X ′) is well defined up to a
boundary.

Given two vector fields X1 and X2 with isolated zeros we choose perturbed
vector fields X ′

1 and X ′
2 as above and set

cs(X1, X2) := c̃(X1, X
′
1) + cs(X ′

1, X
′
2)− c̃(X2, X

′
2).
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Then obviously ∂ cs(X1, X2) = eX2 − eX1 . Using H1(B; Z) = 0 again, one checks
that different choices for X ′

1 and X ′
2 yield the same cs(X1, X2) up to a boundary.

Summarizing, for every pair of vector fields X1 and X2 with isolated zeros
we have constructed a one chain

cs(X1, X2) ∈ C1(M ; Z)/∂(C2(M ; Z)),

which satisfies ∂ cs(X1, X2) = eX2 − eX1 .

Definition 2. For two Riemannian metrics g1, g2 and a closed one form ω set

R(g1, g2, ω) :=
∫

M

ω ∧ cs(g1, g2). (10)

For two vector fields X1, X2 and a closed one form ω set

R(X1, X2, ω) :=
∫

cs(X1,X2)

ω. (11)

Remark 1. Even though cs(g1, g2) is only defined up to an exact form this ambi-
guity does not affect the integral (10). Similarly, even though cs(X1, X2) is only
defined up to a boundary this ambiguity does not affect the integral (11).

The next proposition is a reformulation of Theorem 1(ii) and Theorem 1(iii).

Proposition 2. Let M be a closed manifold, ω a closed one form, g, g1, g2 Rie-
mannian metrics and let X, X1, X2 be vector fields with isolated zeros. Then

R(X, g2, ω)−R(X, g1, ω) = R(g1, g2, ω) (12)

and
R(X2, g, ω)−R(X1, g, ω) = R(X1, X2, ω). (13)

Proof. Let us prove (12). Choose f so that ω′ := ω−df vanishes on a neighborhood
of X , the zero set of X . Using X∗(Ψ(g2)−Ψ(g1)) = cs(g1, g2) modulo exact forms,
Stokes’ theorem and d cs(g1, g2) = E(g2)− E(g1) we conclude

R(X, g2, ω)−R(X, g1, ω) =

=
∫

M\X
ω′ ∧X∗(Ψ(g2)−Ψ(g1)

)
−

∫
M

f
(
E(g2)− E(g1)

)
=

∫
M

ω ∧ cs(g1, g2)−
∫

M

df ∧ cs(g1, g2)−
∫

M

f
(
E(g2)− E(g1)

)
=

∫
M

ω ∧ cs(g1, g2)

= R(g1, g2, ω).

Now let us turn to (13). Let Xi denote the zero set of Xi, i = 1, 2. Assume first
that the vector fields X1 and X2 are non-degenerate and that there exists a non-
degenerate homotopy X from X1 to X2 whose zero set is contained in a simply



A Riemannian Invariant, Euler Structures . . . 47

connected I × V ⊆ I ×M . Choose a function f such that ω′ := ω − df vanishes
on V . Then

R(X1, X2, ω) =
∫

X−1(0)

p∗df =
∑

x∈X2

INDX2(x)f(x) −
∑

x∈X1

INDX1(x)f(x),

where p : I ×M → M denotes the natural projection. Let p̃ : p∗TM → TM be
the natural vector bundle homomorphism over p. Using the last equation, Stokes’
theorem and d(X∗p̃∗Ψ(g)) = p∗E(g) we get:

R(X2, g, ω)−R(X1, g, ω) =

=
∫

I×(M\V )

d
(
p∗ω′ ∧ X∗p̃∗Ψ(g)

)
+ R(X1, X2, ω)

= −
∫

I×M

p∗(ω′ ∧ E(g)) + R(X1, X2, ω)

= R(X1, X2, ω)

For the last equality note that ω′ ∧ E(g) = 0 for dimensional reasons.
Still assuming that X1 and X2 have non-degenerate zeros we next treat the

case of a general non-degenerate homotopy X, whose zero set is not necessarily
contained in a simply connected subset. Perturbing the homotopy slightly we may
assume that no component of its zero set lies in a single {s}×M . Then we certainly
find 0 = t0, . . . , tk = 1 so that Yti , the restriction of X to {ti} ×M , is transversal
to the zero section, and so that X−1(0) ∩ ([ti−1, ti]×M) is contained in a simply
connected subset for every 1 ≤ i ≤ k. The previous paragraph tells us

R(Yti , g, ω)−R(Yti−1 , g, ω) = R(Yti−1 , Yti , ω)

for every 1 ≤ i ≤ k. Therefore:

R(X2, g, ω)−R(X1, g, ω) =
k∑

i=1

R(Yti−1 , Yti , ω) = R(X1, X2, ω)

It remains to deal with vector fields having degenerate but isolated singularities.
Let X be such a vector field and let X ′ denote a perturbation as used before.
Let X and X ′ denote their zero sets, respectively. Choose a function f such that
ω′ := ω − df vanishes on the set B. Recall that B was the union of small balls
covering X . Since X and X ′ agree on M \B we have

R(X ′, g, ω)−R(X, g, ω) =
∑

x∈X ′
INDX′(x)f(x) −

∑
x∈X

INDX(x)f(x)

=
∫

c̃s(X,X′)
df

= R(X, X ′, ω).

This completes the proof of (13). �
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Remark 2. A similar definition of R(X, g, ω) works for any vector field X with
arbitrary singularity set X := {x ∈ M | X(x) = 0} provided ω is exact when
restricted to a sufficiently small neighborhood of X .

4. Euler and co-Euler structures

Let (M, x0) be a base pointed closed connected manifold of dimension n. Let X
be a vector field and let X denote its zero set. Suppose the zeros of X are isolated
and define

eX :=
∑
x∈X

IND(x)x ∈ C0(M ; Z),

a singular zero chain. An Euler chain for X is a singular one chain c ∈ C1(M ; Z)
so that

∂c = eX − χ(M)x0.

Since
∑

x∈X INDX(x) = χ(M) every vector field with isolated zeros admits Euler
chains.

Consider pairs (X, c) where X is a vector field with isolated zeros and c is an
Euler chain for X . We call two such pairs (X1, c1) and (X2, c2) equivalent if

c2 = c1 + cs(X1, X2) ∈ C1(M ; Z)/∂(C2(M ; Z)).

For the definition of cs(X1, X2) see Section 3. We will write Eulx0(M ; Z) for the
set of equivalence classes as above and [X, c] ∈ Eulx0(M ; Z) for the element rep-
resented by the pair (X, c). Elements of Eulx0(M ; Z) are called (integral) Euler
structures of M based at x0. There is an obvious H1(M ; Z) action on Eulx0(M ; Z)
defined by

[X, c] + [σ] := [X, c + σ],

where [σ] ∈ H1(M ; Z) and [X, c] ∈ Eulx0(M ; Z). Obviously this action is free and
transitive. In this sense Eulx0(M ; Z) is an affine version of H1(M ; Z).

Considering Euler chains with real coefficients one obtains in exactly the
same way an affine version of H1(M ; R) which we will denote by Eulx0(M ; R).
There is an obvious map Eulx0(M ; Z) → Eulx0(M ; R) which is affine over the
homomorphism H1(M ; Z)→ H1(M ; R).

Remark 3. Another way to understand the H1(M ; Z) action on Eulx0(M ; Z) is the
following. Suppose n > 2 and represent [σ] ∈ H1(M ; Z) by a simple closed curve
σ. Choose a tubular neighborhood N of S1 considered as vector bundle N → S1.
Choose a fiber metric and a linear connection on N . Choose a representative of
[X, c] ∈ Eul(M, x0) such that X |N = ∂

∂θ , the horizontal lift of the canonic vector
field on S1. Choose a function λ : [0,∞) → [−1, 1], which satisfies λ(r) = −1 for
r ≤ 1

3 and λ(r) = 1 for r ≥ 2
3 . Finally choose a function µ : [0,∞)→ R satisfying

µ(r) = r for r ≤ 1
3 , µ(r) = 0 for r ≥ 2

3 and µ(r) > 0 for all r ∈ (1
3 , 2

3 ). Now
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construct a new vector field X̃ on M by setting

X̃ :=

{
X on M \N

λ(r) ∂
∂θ + µ(r) ∂

∂r on N,

where r : N → [0,∞) denotes the radius function determined by the fiber metric
on N and −r ∂

∂r is the Euler vector field of N . This construction is known as Reeb
surgery, see, e.g. , [11]. If the zeros of X are all non-degenerate the homotopy
Xt := (1− t)X + tX̃ is a non-degenerate homotopy from X0 = X to X1 = X̃ from
which one easily deduces that

[X̃, c] = [X, c] + [σ].

Particularly all the choices that entered the Reeb surgery do not effect the out-
coming Euler structure [X̃, c].

Let us consider a change of base point. Let x0, x1 ∈M and choose a path σ
from x0 to x1. Define

Eulx0(M ; Z)→ Eulx1(M ; Z), [X, c] �→ [X, c− χ(M)σ]. (14)

This is an H1(M ; Z) equivariant bijection but depends on the homology class of σ.

Remark 4. So the identification Eulx0(M ; Z) with Eulx1(M ; Z) does depend on
the choice of a homology class of paths from x0 to x1. However, different choices
will give identifications which differ by the action of an element in χ(M)H1(M ; Z).
So the quotient Eulx0(M ; Z)/χ(M)H1(M ; Z) does not depend on the base point.
Particularly, if χ(M) = 0 then Eulx0(M ; Z) does not depend on the base point.

Let X(M, x0) denote the space of vector fields which vanish at x0 and are
non-zero elsewhere. We equip this space with the C∞ topology, or any Cr topology,
r ≥ 0. Let π0(X(M, x0)) denote the space of homotopy classes of such vector fields.
If X ∈ X(M, x0) we will write [X ] for the corresponding class in π0(X(M, x0)).
The following proposition (due to Turaev in the case χ(M) = 0) establishes the
proof of Theorem 2(i).

Proposition 3. Suppose n > 2. Then there exists a natural bijection

π0(X(M, x0)) = Eulx0(M ; Z), [X ] �→ [X, 0]. (15)

Proof. Clearly (15) is well defined. Let us prove that it is onto. So let [X, c] rep-
resent an Euler class. Choose an embedded disk D ⊆ M centered at x0 which
contains all zeros of X and the Euler chain c. For this we may have to change c,
but without changing the Euler structure [X, c]. Choose a vector field X ′ which
equals X on M \D and vanishes just at x0. Since H1(D; Z) = 0 we clearly have
[X ′, 0] = [X, c] ∈ Eulx0(M ; Z) and thus (15) is onto.

Let us prove injectivity of (15). Let X1, X2 ∈ X(M, x0) and suppose that
cs(X1, X2) = 0 ∈ H1(M ; Z). Let D ⊆ M denote an embedded open disk centered
at x0. Consider the vector bundle p∗TM → I ×M and consider the two vector
fields as a nowhere vanishing section of p∗TM defined over the set ∂I × Ṁ , where
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Ṁ := M \D. We would like to extend it to a nowhere vanishing section over I×Ṁ .
The first obstruction we meet is an element in

Hn(I × Ṁ, ∂I × Ṁ ; {πn−1}) = H1(I × Ṁ, I × ∂D; Z)
= H1(M, D̄; Z)
= H1(M ; Z)

which corresponds to cs(X1, X2) = 0. Here {πn−1} denotes the system of local
coefficients determined by the sphere bundle of p∗TM with πn−1 = πn−1(Sn−1).
Since this obstruction vanishes by hypothesis the next obstruction is defined and
is an element in:

Hn+1(I × Ṁ, ∂I × Ṁ ; {πn}) = H0(I × Ṁ, I × ∂D; πn(Sn−1))
= H0(M, D̄; πn(Sn−1))
= 0

Since there is no other obstructions, obstruction theory, see, e.g. , [16], tells us that
we find a nowhere vanishing section of p∗TM defined over I × Ṁ , which restricts
to Xi on {i} × Ṁ , i = 1, 2. Such a section can easily be extended to a globally
defined section of p∗TM → I ×M , which restricts to Xi on {i}×M , i = 1, 2 and
whose zero set is precisely I×{x0}. Such a section can be considered as homotopy
from X1 to X2 showing [X1] = [X2]. Hence (15) is injective. �

Remark 5. If n > 2 Reeb surgery defines an H1(M ; Z) action on π0(X(M, x0))
which via (15) corresponds to the H1(M ; Z) action on Eulx0(M ; Z), cf. Remark 3.

Let X0(M) denote the space of nowhere vanishing vector fields on M equipped
with the C∞ topology, or any Cr topology, r ≥ 0. Let π0(X0(M)) denote the set of
its connected components. The next proposition is a restatement of Theorem 2(ii).

Proposition 4. If n > 2 then we have a surjection:

π0(X0(M))→ Eulx0(M ; Z), [X ] �→ [X, 0]. (16)

Proof. The assignment (16) is certainly well defined. Let us prove surjectivity. Let
[X, c] be an Euler structure. Choose an embedded disk D ⊆M which contains all
zeros of X and its Euler chain c, cf. proof of Proposition 3. Since χ(M) = 0 the
degree of X : ∂D → TD \ 0D vanishes. Modifying X only on D we get a nowhere
vanishing X ′ which equals X on M \D. Certainly X ′ has an Euler chain c′ which
is also contained in D and satisfies [X, c] = [X ′, c′]. Since X ′ has no zeros we get
∂c′ = 0 and since H1(D; Z) = 0 we arrive at [X, c] = [X ′, c′] = [X ′, 0] which proves
that (16) is onto. �

We will now describe another approach to Euler structures which is in some
sense Poincaré dual to the other approach. We still consider a closed connected
n-dimensional manifold with base point (M, x0). Consider pairs (g, α) where g is
a Riemannian metric on M and α ∈ Ωn−1(M \ x0;OM ) with dα = E(g). Here
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E(g) ∈ Ωn(M ;OM ) denotes the Euler class of g which is a form with values in the
orientation bundle OM . We call two pairs (g1, α1) and (g2, α2) equivalent if

cs(g1, g2) = α2 − α1 ∈ Ωn−1(M \ x0;OM )/dΩn−2(M \ x0;OM ).

We will write Eul∗x0
(M ; R) for the set of equivalence classes and [g, α] for the

equivalence class represented by the pair (g, α). Elements of Eul∗x0
(M ; R) are

called co-Euler structures based at x0. There is a natural Hn−1(M ;OM ) action
on Eul∗x0

(M ; R) given by

[g, α] + [β] := [g, α− β]

with [β] ∈ Hn−1(M ;OM ). Since Hn−1(M ;OM ) = Hn−1(M \ x0;OM ) this action
is obviously free and transitive.

For a pair (g, α) as above and a closed one form ω we define a regularization
of

∫
M

ω∧α as follows. Choose a function f such that ω′ := ω− df vanishes locally
around the base point x0 and set:

S(g, α, ω; f) :=
∫

M

ω′ ∧ α−
∫

M

fE(g) + χ(M)f(x0)

Lemma 2. The quantity S(g, α, ω; f) does not depend on the choice of f and will
thus be denoted by S(g, α, ω). If [g1, α1] = [g2, α2] ∈ Eul∗x0

(M ; R) then

S(g2, α2, ω)− S(g1, α1, ω) =
∫

M

ω ∧ cs(g1, g2). (17)

Moreover, for a function h we have

S(g, α, ω + dh)− S(g, α, ω) = −
∫

M

hE(g) + χ(M)h(x0). (18)

Proof. Suppose we have two functions f1 and f2 so that both ω′
1 := ω − df1 and

ω′
2 := ω−df2 vanish locally around x0. Let Bε denote a ball of radius ε around x0.

Then f2−f1 will be constant on Bε for ε sufficiently small. Using Stokes’ theorem,
dα = E(g) and

∫
M

E(g) = χ(M) we get:

S(g, α, ω; f2)− S(g, α, ω; f1)

= −
∫

M\X
d((f2 − f1) ∧ α) + χ(M)(f2 − f1)(x0)

= − lim
ε→0

∫
∂(M\Bε)

(f2 − f1)α + χ(M)(f2 − f1)(x0)

= −(f2 − f1)(x0) lim
ε→0

∫
∂(M\Bε)

α + χ(M)(f2 − f1)(x0)

= −(f2 − f1)(x0) lim
ε→0

∫
M\Bε

E(g) + χ(M)(f2 − f1)(x0) = 0

The second statement follows immediately from α2 − α1 = cs(g1, g2), Stokes’ the-
orem and d cs(g1, g2) = E(g2)− E(g1). The last property is obvious. �
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In view of (8), (12), (13), (17) and (18) the quantity

R(X, g, ω)− S(g, α, ω)−
∫

c

ω (19)

does only depend on [X, c] ∈ Eulx0(M ; R), [g, α] ∈ Eul∗x0
(M ; R) and the cohomol-

ogy class [ω] ∈ H1(M ; R). Thus (19) defines a coupling

T : Eulx0(M ; R)× Eul∗x0
(M ; R)→ H1(M ; R).

From the very definition we have

〈[ω], T([X, c], [g, α])〉 =
∫

M

ω ∧ (X∗Ψ(g)− α)−
∫

c

ω, (20)

where ω is any representative of [ω] which vanishes locally around the zeros of X
and vanishes locally around the base point x0. Moreover, we have

T(e + σ, e∗ + β) = T(e, e∗)− σ + PD(β) (21)

for all e ∈ Eulx0(M ; R), e∗ ∈ Eul∗x0
(M ; R), σ ∈ H1(M ; R) and β ∈ Hn−1(M ;OM ).

Here PD is the Poincaré duality isomorphism PD : Hn−1(M ;OM )→ H1(M ; R).
We have the following affine version of Poincaré duality, which establishes

the proof of Theorem 2(iii) and (iv).

Proposition 5. There is a natural isomorphism of affine spaces

P : Eul∗x0
(M ; R)→ Eulx0(M ; R)

which is affine over the Poincaré duality PD : Hn−1(M ;OM ) → H1(M ; R). In
other words, for every β ∈ Hn−1(M ;OM ) and every e∗ ∈ Eul∗x0

(M ; R) we have

P (e∗ + β) = P (e∗) + PD(β). (22)

Moreover, T(e, e∗) = P (e∗)− e.

Proof. Given e∗ = [g, α] ∈ Eul∗x0
(M ; R) we choose a vector field X with isolated

singularities X . Then X∗Ψ(g) − α is closed and thus defines a cohomology class
in Hn−1(M \ (X ∪ {x0});OM ). We would like to define P (e∗) := [X, c] where c be
a representative of its Poincaré dual in H1(M,X ∪ {x0}; R). That is, we ask∫

c

ω =
∫

M\(X∪{x0})
ω ∧ (X∗Ψ(g)− α)

to hold for every closed compactly supported one form ω on M \ (X ∪ {x0}). In
view of (20) this is equivalent to ask for T(P (e∗), e∗) = 0. So we take the latter one
as our definition of P . Because of (21) this has a unique solution. The equivariance
property and the last equation follow at once. �
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5. Smooth triangulations and extension of Chern–Simons theory

Smooth triangulations

Smooth triangulations provide a remarkable source of vector fields with isolated
singularities.

To any smooth triangulation τ of the smooth manifold M one can associate
a Lipschitz vector field Xτ called Euler vector field, with the following properties:
P1: The zeros of Xτ are all non-degenerate and are exactly the barycenters xσ of

the simplexes σ.
P2: For each zero xσ the unstable set with respect to −Xτ coincides in a neigh-

borhood of xσ to the open simplex σ, consequently the zeros are hyperbolic.
The Morse index of −Xτ at xσ equals dim(σ) and the (Hopf) index of Xτ at
xσ equals (−1)dim(σ).

P3: The piecewise differential function fτ : M → R, defined by fτ (xσ) = dim(σ)
and extended by linearity on each simplex of the baricentric subdivision of
τ, is a Lyapunov function for −Xτ , i.e. , strictly decreasing on non-constant
trajectories of −Xτ .
Such a vector field Xτ is unique up to an homotopy of vector fields which

satisfy P1–P3. The convex combination provides the homotopy between any two
such vector fields.

To construct such a vector field we begin with a standard simplex ∆n of
vectors (t0, . . . , tn) ∈ Rn+1 satisfying 0 ≤ ti ≤ 1 and

∑
ti = 1.

(i) Let En denote the Euler vector field of the corresponding affine space (
∑

ti =
1) centered at the barycenter O (of coordinates (1/(n+1), . . . , 1/(n+1)) and
restricted to ∆n.

(ii) Let e : ∆n → [0, 1] denote the function which is 1 on the barycenter O and
zero on all vertices.

(iii) Let r : ∆n \ {O} → ∂∆n denote the radial retraction to the boundary.
Set X ′

n := e ·En, which is a vector field on ∆n.
By induction we will construct a canonical vector field Xn on ∆n which at

any point x ∈ ∆n is tangent to the open face the point belongs to and vanishes
only at the barycenter of each face. We proceed as follows:

Suppose we have constructed such canonical vector fields on all ∆(k), k ≤
n− 1. Using the canonical vector fields Xn−1 we define the vector field Xn on the
boundary ∂∆n and extend it to the vector field X ′′

n by taking at each point x ∈ ∆n

the vector parallel to Xn(r(x)) multiplied by the function (1 − e) and at O the
vector zero. Clearly such vector field vanishes on the radii OP (P the barycenter
of any face). We finally put

Xn := X ′
n + X ′′

n .

The vector field Xn is continuous and piecewise differential (actually Lips-
chitz) and has a well defined continuous flow.

Putting together the vector fields Xn on all simplexes (cells) we provide a
piecewise differential (and Lipschitz) vector field X on any simplicial (cellular)
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complex or polyhedron and in particular on any smoothly triangulated manifold.
The vector field X has a flow and fτ is a Lyapunov function for −X . The vector
field X is not necessary smooth but by a small (Lipschitz) perturbation we can
approximate it by a smooth vector field Xτ which satisfies P1–P3. Any of the re-
sulting vector fields is referred to as the Euler vector field of a smooth triangulation
τ . It was pointed out to us that the vector field Xτ has first appeared in [12].

Extension of Chern–Simons theory

Let M be a closed manifold of dimension n. We equip Ωk(M ; R) with the C∞

topology. The continuous linear functionals on Ωk(M ; R) are called k currents and
denoted by Dk(M). Consider δ : Dk(M)→ Dk−1(M) given by (δϕ)(α) := ϕ(dα).
Clearly δ2 = 0.3

We have a morphism of chain complexes

C∗(M ; R)→ D∗(M), σ �→ σ̂, σ̂(α) :=
∫

σ

α.

Here C∗(M ; R) denotes the space of singular chains with real coefficients. Moreover,
we have a morphism of chain complexes

Ωn−∗(M ;OM )→ D∗(M), β �→ β̂, β̂(α) := (−1)
1
2 |α|(|α|+1)

∫
M

α ∧ β.

Here |α| denotes the degree of α. The sign is necessary so that this mappings
actually intertwines the two differentials d and δ.

Every vector field with isolated singularities X gives rise to a zero chain eX ,
cf. Section 4. Via the first morphism we get a zero current Ê(X). More explicitly
(Ê(X))(h) =

∑
x∈X IND(x)h(x) for a function h ∈ Ω0(M ; R).

A Riemannian metric g has an Euler form E(g) ∈ Ωn(M ;OM ). Via the second
morphism we get a zero current Ê(g). More explicitly (Ê(g))(h) =

∫
M

hE(g) for
a function h ∈ Ω0(M ; R).

Let Zk(M ; R) ⊆ Ωk(M ; R) denote the space of closed k forms on M equipped
with the C∞ topology. The continuous linear functionals on Zk(M ; R) are referred
to as k currents rel. boundary and identify to Dk(M)/δ(Dk+1(M)). The two chain
morphisms provide mappings

Ck(M ; R)/∂(Ck+1(M ; R))→ Dk(M)/δ(Dk+1(M)) (23)

and
Ωn−k(M ;OM )/d(Ωn−k−1(M ;OM ))→ Dk(M)/δ(Dk+1(M)). (24)

For two vector fields with isolated zeros X1 and X2 we have constructed
cs(X1, X2) ∈ C1(M ; Z)/∂(C2(M ; Z)), cf. Section 3. This gives rise to cs(X1, X2) ∈
C1(M ; R)/∂(C2(M ; R)), and via (23) we get a one current rel. boundary which
we will denote by ĉs(X1, X2). More precisely, (ĉs(X1, X2))(ω) =

∫
cs(X1,X2)

ω for a

3The chain complex (D∗(M), δ) computes the homology of M with real coefficients.
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closed one form ω ∈ Z1(M ; R). Recall that we have cs(X2, X1) = − cs(X1, X2),
cs(X1, X3) = cs(X1, X2) + cs(X2, X3), ∂ cs(X1, X2) = eX2 − eX1 and thus

ĉs(X2, X1) = −ĉs(X1, X2)
ĉs(X1, X3) = ĉs(X1, X2) + ĉs(X2, X3)

δĉs(X1, X2) = Ê(X2)− Ê(X1).

For two Riemannian metrics g1 and g2 we have the Chern–Simons form
cs(g1, g2) ∈ Ωn−1(M ;OM )/d(Ωn−2(M ;OM )). Via (24) we get a one current rel.
boundary which we will denote by ĉs(g1, g2). More precisely (ĉs(g1, g2))(ω) =
−

∫
M ω ∧ cs(g1, g2) for a closed one form ω ∈ Z1(M ; R). Recall that cs(g2, g1) =

− cs(g1, g2), cs(g1, g3) = cs(g1, g2) + cs(g2, g3), d cs(g1, g2) = E(g2) − E(g1) and
thus

ĉs(g2, g1) = −ĉs(g1, g2)
ĉs(g1, g3) = ĉs(g1, g2) + ĉs(g2, g3)

δĉs(g1, g2) = Ê(g2)− Ê(g1).

Suppose X is a vector field with isolated zeros and g is a Riemannian met-
ric. We define one currents rel. boundary by (ĉs(g, X))(ω) := R(X, g, ω) and
ĉs(X, g) := −ĉs(g, X). Proposition 1 and Proposition 2 tell that

δĉs(g, X) = Ê(X)− Ê(g)
ĉs(g1, X) = ĉs(g1, g2) + ĉs(g2, X)
ĉs(g, X2) = ĉs(g, X1) + ĉs(X1, X2).

We summarize these observations in

Proposition 6. Let any of the symbols x, y, z denote either a Riemannian metric g
or a vector field with isolated zeros. Then one has:

(i) ĉs(y, x) = −ĉs(x, y)
(ii) ĉs(x, z) = ĉs(x, y) + ĉs(y, z)
(iii) δĉs(x, y) = Ê(y)− Ê(x).

Suppose τ is a smooth triangulation. We define its Euler current by Ê(τ) :=
Ê(Xτ ), where Xτ is the Euler vector field. Similarly for two triangulations τ1 and
τ2 we define a one current rel. boundary by ĉs(τ1, τ2) := ĉs(Xτ1 , Xτ2).

Corollary 1. Let any of the symbols x, y, z denote either a Riemannian metric g
or a smooth triangulation. Then one has:

(i) ĉs(y, x) = −ĉs(x, y)
(ii) ĉs(x, z) = ĉs(x, y) + ĉs(y, z)
(iii) δĉs(x, y) = Ê(y)− Ê(x).
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6. Theorem of Bismut–Zhang

Let (M, x0) be a closed connected manifold with base point. Let K be a field of
characteristic zero, and suppose F is a flat K vector bundle over M , that is F is
equipped with a flat connection ∇. Let Fx0 denote the fiber over the base point
x0. Holonomy at the base point provides a right π1(M, x0) action on Fx0 and
when composed with the inversion in GL(Fx0) a representation ρF : π1(M, x0)→
GL(Fx0). So we get a homomorphism det ◦ρF : π1(M, x0) → K∗ which descends
to a homomorphism H1(M ; Z) → K∗ and thus determines a cohomology class
ΘF ∈ H1(M ; K∗).

Suppose we have a smooth triangulation τ of M . It gives rise to a cellular
complex C∗

τ (M ; F ) which computes the cohomology H∗(M ; F ). Let Xτ denote the
set of barycenters of τ . For a cell σ of τ we let xσ denote the barycenter of σ.
Let Xτ denote the Euler vector field of τ , cf. Section 5. Then Xτ is the zero set
of Xτ . Moreover, for a cell σ we have INDXτ (σx) = (−1)dim σ. As a graded vector
space we have Ck

τ (M ; F ) =
⊕

dim σ=k Fxσ . So we get a canonical isomorphism of
K vector spaces:

det C∗
τ (M ; F ) = detH(C∗

τ (M ; F )) = detH∗(M ; F ) (25)

Recall that the determinant line of a vector space W is by definition detW :=
Λdim W W . For a Z graded vector space V ∗ one sets V even :=

⊕
k even V k, V odd :=⊕

k odd V k and defines its determinant line by detV ∗ := detV even ⊗ (detV odd)∗.
Suppose we have given an Euler structure e ∈ Eulx0(M ; Z). For every x ∈ Xτ

choose a path πx from x0 to x, so that with c :=
∑

x∈Xτ
INDXτ (xσ)πx we have

e = [Xτ , c].4 Let f0 be a non-zero element in det Fx0 . Note that a frame (basis) in
Fx0 determines such an element in detFx0 . Using parallel transport along πx we
get a non-zero element in every det Fxσ . If the barycenters xσ where ordered we
would get a well defined non-zero element in det C∗

τ (M ; F ).
Suppose o is a cohomology orientation of M , i.e. , o is an orientation of

detH∗(M ; R). We say an ordering of the zeros xσ is compatible with o if the non-
zero element in det C∗

τ (M ; R) provided by this ordered base is compatible with the
orientation o via the canonic isomorphism

detC∗
τ (M ; R) = detH(C∗

τ (M ; R)) = detH∗(M ; R).

So an integral Euler structure e, a cohomology orientation o and an element f0 ∈
detFx0 provide a non-zero element in detC∗

τ (M ; F ) which corresponds to a non-
zero element in det H∗(M ; F ) via (25). We thus get a mapping

det Fx0 \ 0→ detH∗(M ; F ) \ 0. (26)

This mapping is obviously homogeneous of degree χ(M). A straight forward cal-
culation shows that it does not depend on the choice of πx. As a matter of fact
this mapping does not depend on τ either, only on the Euler structure e and the
cohomology orientation o. This is a non-trivial fact, and its proof is contained in

4Such a representative for the Euler structure is called spray or Turaev spider.



A Riemannian Invariant, Euler Structures . . . 57

[10] and [13] for acyclic case and implicit in the existing literature cf. [7] and [3].
We define the combinatorial torsion to be the element

τcomb
F,e,o ∈ detH∗(M ; F )⊗ (det Fx0)

−χ(M)

corresponding to the homogeneous mapping (26). Note that we also have

τcomb
F,e+σ,o = τcomb

F,e,o · 〈ΘF , σ〉−1,

for all σ ∈ H1(M ; Z). Here 〈·, ·〉 denotes the natural pairing of homology with
integer coefficients and cohomology with coefficients in the Abelian group K∗.
Moreover

τcomb
F,e,−o = (−1)rankF τcomb

F,e,o .

Clearly, if χ(M) = 0 then τcomb
F,e,o ∈ detH∗(M ; F ).

Now consider the case when K is R or C. Let µ be a Hermitian structure,
i.e. , fiber wise Hermitian scalar product, on F . It induces a scalar product on
detC∗

τ (M ; F ) and via (25) a scalar product ||·||MF,τ,µ on the line detH∗(M ; F ). This
is exactly what is called Milnor metric in [1]. The Hermitian structure µ also defines
a scalar product on (detFx0)−χ(M) which we will denote by || · ||µx0

. Moreover,
µ gives rise to a closed one form ω(∇, µ), where ∇ is the flat connection of F ,
see [1] and Section 2. For its cohomology class we have [ω(∇, µ)] = (log | · |)∗ΘF .
Here (log | · |)∗ : H1(M ; C∗) → H1(M ; R) in the complex case, and (log | · |)∗ :
H1(M ; R∗) → H1(M ; R) in the real case. Given an Euler structure with real
coefficients e ∈ Eulx0(M ; R) we choose an Euler chain c so that [Xτ , c] = e, and
define a metric on detH∗(M ; F )⊗ (det Fx0)−χ(M) by:

|| · ||comb
F,e := || · ||MF,τ,µ ⊗ || · ||µx0

· e
∫

c
ω(∇,µ) (27)

As the notation indicates this does not depend on the cohomology orientation, is
independent of µ and does only depend on the Euler structure e = [X, c]. This
follows from known anomaly formulas for the Milnor torsion, implicit in [1], or can
be seen as a consequence of (28) and (29) below. Note that

|| · ||comb
F,e+σ = || · ||comb

F,e · e〈(log |·|)∗ΘF ,σ〉 (28)

for all σ ∈ H1(M ; R). For an integral Euler structure e ∈ Eulx0(M ; Z) we have

||τcomb
F,e,o ||comb

F,e = 1. (29)

Here, abusing notation, e at the same time denotes its image in Eulx0(M ; R).
Now let g be a Riemannian metric on M . Then we also have the Ray–Singer

metric ||·||RS
F,g,µ on detH∗(M ; F ), cf. [1]. Let e∗ ∈ Eul∗x0

(M ; R) and suppose [g, α] =
e∗, i.e. , dα = E(g). Define a metric on det H∗(M ; F )⊗ (detFx0)−χ(M) by:

|| · ||anF,e∗ := || · ||RS
F,g,µ ⊗ || · ||µx0

· e−S(g,α,ω(∇,µ)) (30)

We call this metric the modified Ray–Singer metric.
The known anomaly formulas for the Ray–Singer torsion, see [1], imply that

this is independent of µ and only depends on the co-Euler structure e∗. Note that

|| · ||anF,e∗+β = || · ||anF,e∗ · e〈(log |·|)∗ΘF ,PD(β)〉 (31)
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for all β ∈ Hn−1(M ;OM ). The main theorem of Bismut–Zhang, see [1], can now
be reformulated as follows:

Theorem 3 (Bismut–Zhang). Suppose (M, x0) is a closed connected manifold with
base point and F a flat real or complex vector bundle over M . Let e ∈ Eulx0(M ; R)
be an Euler structure with real coefficients, and let e∗ ∈ Eul∗x0

(M ; R) be a co-Euler
structure, both based at x0. Then one has:

|| · ||anF,e∗ = || · ||comb
F,e · e〈(log |·|)∗ΘF ,T(e,e∗)〉

Particularly, if e = P (e∗) then || · ||anF,e∗ = || · ||comb
F,e .

For an alternative proof of the (original) Bismut–Zhang theorem see also [4].

Appendix A. Complex versus real torsion

Suppose V is a finite-dimensional complex vector space. Let VR denote the vector
space V considered as real vector space. We have a mapping

θV : detV → det(VR)
v1 ∧ v2 ∧ · · · ∧ vn �→ v1 ∧ iv1 ∧ v2 ∧ iv2 ∧ · · · ∧ vn ∧ ivn.

It has the property
θV (zα) = |z|2θV (α),

for all z ∈ C and α ∈ detV . If f : V → W is a complex linear mapping then the
following diagram commutes:

detV
θV−−−−→ det(VR)

det f

⏐⏐� ⏐⏐�det(fR)

detW
θW−−−−→ det(WR)

After identifying det C = C and det(CR) = Λ2R2 = R we have

θC : C→ R, θC(z) = |z|2.
Suppose L is a complex line, R a real line and θ : L→ R a mapping which satisfies

θ(zλ) = |z|2θ(λ), (32)

for all z ∈ C and all λ ∈ L. If L′ is another complex line, R′ another real line and
θ′ : L′ → R′ another mapping which satisfies (32) we can define

θ ⊗ θ′ : L⊗ L′ → R⊗R′, (θ ⊗ θ′)(λ⊗ λ′) := θ(λ) ⊗ θ′(λ′)

which again satisfies (32) Note that

L⊗ C L

θ⊗θC

⏐⏐� ⏐⏐�θ

R⊗ R R
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commutes. If 0 → V → W → U → 0 is a short exact sequence of complex vector
spaces we have a commutative diagram:

detV ⊗ det U detW

θV ⊗θU

⏐⏐� ⏐⏐�θW

det(VR)⊗ det(UR) det(WR)

Note that for a complex vector space V we have a canonic isomorphism

(V ∗)R = (VR)∗, ϕ �→ � ◦ ϕ.

Using this identification we get a commutative diagram:

detV ⊗ det(V ∗) detV ⊗ (detV )∗ C

θV ⊗θV ∗
⏐⏐� ⏐⏐�θC

det(VR)⊗ det((V ∗)R) det(VR)⊗ (det(VR))∗ R

Putting all this together we obtain

Proposition 7. Let C∗ be a finite-dimensional chain complex over C. Let C∗
R

denote
the same chain complex viewed as chain complex over R. Then H(C∗

R
) = H(C∗)R,

and we have a commutative diagram:

detC∗ detH(C∗)

θC∗
⏐⏐� ⏐⏐�θH(C∗)

det(C∗
R
) detH(C∗

R
)

Now suppose F is a flat complex vector bundle over a closed manifold (M, x0)
with base point. Let FR denote the vector bundle F considered as real bundle.
Recall the mappings (26) from Section 6. Clearly H∗(M ; F )R = H∗(M ; FR). Let
A := θH∗(M ;F ) ⊗ (θFx0

)−χ(M) denote the canonical mapping:

detH∗(M ; F )⊗ (det Fx0)
−χ(M) A−→ detH∗(M ; FR)⊗ (det(FR)x0)

−χ(M)

In this situation we obviously we have

Proposition 8. a) For an integral Euler structure e ∈ Eulx0(M ; Z) and a cohomol-
ogy orientation o we have A(τcomb

F,e,o ) = τcomb
FR,e,o. b) For an Euler structure with real

coefficients e ∈ Eulx0(M ; R) we have || · ||comb
FR,e ◦A = (|| · ||comb

F,e )2. c) For a co-Euler
structure e∗ ∈ Eul∗x0

(M ; R) we have || · ||anFR,e∗ ◦A = (|| · ||anF,e∗)
2.

Note that the previous proposition and the real version of Theorem 3 imply
the complex version of Theorem 3.



60 D. Burghelea and S. Haller

References

[1] J.M. Bismut and W. Zhang, An extension of a theorem by Cheeger and Müller,
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Introduction

Let (M, F ) be a p-dimensional smooth foliation on a compact manifold M and
assume the existence of a holonomy invariant transverse measure Λ. For any Eu-
clidean structure on F , the ith Betti number βi = dimΛ(Ker(∆i)) (i = 0, 1, . . . , p)
of (M, F, Λ) is by definition [1] the Murray-Von Neumann dimension dimΛ of the
square integrable field Hi = Ker(∆i) of Hilbert spaces, where ∆i =

(
∆i

L

)
L

is the
leafwise Laplace operator acting on forms of degree i along the leaves L ∈M/F of
the foliation. These Betti numbers are finite and independent of the choice of the
Euclidean structure on F (cf. [1]). Note that we have dimΛ(Ker(∆i)) = TrΛ(P i),
where the orthogonal projection P i =

(
P i

L

)
on Ker(∆i) belongs to the von Neu-

mann algebra N = W ∗(M, F, End(Λ∗F )) associated with the foliation. This von
Neumann algebra is equipped with a normal semifinite trace TrΛ associated with
the transverse measure Λ, and which is formally defined for any T ∈ N+ by
TrΛ(T ) =

∫
M/F

Trace(TL)dΛ(L). Classical pseudodifferential estimates insure [1]

that the leafwise pseudodifferential operator
(
I + ∆i

)−m of order −2m is Hilbert-
Schmidt with respect to the trace TrΛ for any integer m > p

4 , so that P i =(
I + ∆i

)−m
P i is trace class and hence dimΛ(Ker∆i) = TrΛ(Pi) is finite.

The foliated Morse inequalities obtained in [2] yield, for any suitably generic
smooth function ϕ on M , a relationship between the Betti numbers βi and the
transverse measures ci = Λ

(
Ai

1 (ϕ)
)

of the sets Ai
1 (ϕ) of Morse critical points of

index i for the restriction of ϕ to the leaf manifold:
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Theorem. (Foliated Morse inequalities [2]). Let (M, F, Λ) be a measured p-dim-
ensional smooth foliation on a compact manifold M and assume that the set of
leaves with non-zero holonomy is Λ-negligible. Let ϕ ∈ C∞(M, R) be a generalized
foliated Morse function on (M, F ). For any i = 0, 1, . . . , p, the critical Morse index
ci = Λ

(
Ai

1 (ϕ)
)

is well defined and we have:

βi − βi−1 + · · ·+ (−1)iβo ≤ ci − ci−1 + · · ·+ (−1)ico

with equality for i = p. In particular, we have βi ≤ ci for any i = 0, 1, . . . , p.

This shows in particular that the Euler characteristic χ(F, Λ) =
p∑

i=0

(−1)iβi of

(M, F, Λ), which is equal to
p∑

i=0

(−1)ici, is computable from the leafwise singulari-

ties of ϕ. We present here an outline of the proof of the foliated Morse inequalities.
The text of the present paper circulated as preprint [2]. The main difficulty is to
define a right notion of generalized foliated Morse function. On one hand, we can-
not expect in general that the restriction of ϕ to any leaf will be a Morse function,
since the condition of being leafwise Morse is not generic. On the other hand,
thanks to results by Igusa [7] and Eliashberg-Mishachev [3], we may assume that
the restriction of ϕ to any leaf has only Morse or birth-death (i.e., cubic) type
singularities.

To avoid unnecessary technicalities, we shall assume in the sequel that the
holonomy groupoid of the foliation is Hausdorff, that Λ is absolutely continuous
with respect to the Lebesgue class and that Λ-almost every leaf has no holonomy.
For all technical details, we refer to [2].

1. Generalized foliated Morse functions

1.1. Singularities of smooth maps

Let V be a smooth p-dimensional manifold and ϕ ∈ C∞(V, R). Recall that m ∈ V
is a critical point of ϕ if dϕ(m) = 0. The set of critical points of ϕ is called the
critical manifold and is denoted by C(ϕ). A point m ∈ C(ϕ) is called a non-
degenerate (or Morse type or A1-type) singularity if the Hessian form

Hϕ(m) =
∑

1≤i,j≤p

∂2ϕ

∂xi∂xj
(m)dxi ⊗ dxj

of ϕ at m is non singular. Then, the number of negative signs in the signature of
Hϕ(m) is called the index of the Morse singularity. If m ∈ C(ϕ) is a Morse type
singularity of index i, one can find a neighborhood U of m and a local system of
coordinates (x1, . . . , xp) : U → Rp with x1(m) = · · · = xp(m) = 0 such that we
have:

ϕ = ϕ(m) −
∑

1≤j≤i

x2
j+

∑
i+1≤j≤p

x2
j on U.
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A critical point of ϕ which is not of Morse type is called a degenerate singularity.
A singularity m ∈ C(ϕ) is said to be of multiplicity k (k = 1, 2, . . . ) if the quotient
�/� of the space � of germs at m of smooth functions vanishing at m by the
ideal � generated by the germs at m of the partial derivatives ∂ϕ

∂xi
(i = 1, 2, . . . , p)

has dimension k. Singularities of multiplicity k are isolated in C(ϕ) and have
the property that, after perturbation, they bifurcate into at most k Morse type
critical points. If m ∈ C(ϕ) is a singularity of finite multiplicity, there exists a
neighborhood U of m and a local system of coordinates (x1, . . . , xp) : U → Rp

with x1(m) = · · · = xp(m) = 0 such that we have:

ϕ(u) = P (x1(u), x2(u), . . . , xp(u)) on U,

where P is the Taylor polynomial of ϕ of order the “Milnor number” of the singu-
larity m. Morse type singularities are singularities of multiplicity 1. Recall that a
point m ∈ C(ϕ) is called a birth-death type (or A2-type) singularity if there exists
a neighborhood U of m and a local system of coordinates (x1, . . . , xp) : U → Rp

with x1(m) = · · · = xp(m) = 0 such that the map x→ (Dϕ(x), det
(
D2ϕ(x)

)
has

rank p at m. For such a birth-death type singularity, one can find a local system
of coordinates (x1, . . . , xp) in a neighborhood U of m such that:

x1(m) = · · · = xp(m) = 0 and ϕ = ϕ(m) + x3
1+

∑
2≤i≤p

± x2
i on U.

Birth-death singularities are of multiplicity 2; they are the simplest kind of degen-
erate singularities. A function ϕ ∈ C∞(V, R) with only Morse or birth-death type
of singularities is called a generalized Morse function on V .

Finally, recall that a smooth map π : N → Q between two q-dimensional
manifolds is called folded if there exists, at any point m ∈ N where rank(dπ(m)) <
q, local coordinates centered around m and π(m) respectively such that we have
π(x1, x2, . . . , xq) = (x2

1, x2, . . . , xq) in a neighborhood of m.

1.2. Foliated Morse functions

Let (M, F ) be a p-dimensional smooth foliation on a compact n-dimensional
manifold M . Any function ϕ ∈ C∞(M, R) can be viewed in a foliation chart
U ∼= Rp × Rq (q = n − p = codim(F )) as a smooth q-parameter family ϕt : u ∈
Rp → ϕt(u) = ϕ(u, t) ∈ R of smooth functions, and hence as an element of the
space Co(Rq, Ck(Rp, R)) for any k = 0, 1, . . . This allows to define, by using finite
coverings of M by foliation charts, the Ck topology on C∞(M, R).

For any ϕ ∈ C∞(M, R), denote by dF the de Rham derivative in the leaf
direction. A point m ∈ M will be called a leafwise singularity (resp. a leafwise
Morse type singularity of index i, a leafwise birth-death type singularity) if it is
a critical point (resp. a Morse type singularity of index i, a birth-death type
singularity) for the restriction of ϕ to the leaf through m. We shall denote by
C(ϕ) (resp. Ai

1(ϕ), A2(ϕ)) the set of all leafwise singularities (resp. leafwise Morse
type singularities of index i, leafwise birth-death type singularities) of ϕ.



64 A. Connes and T. Fack

If we assume that ϕ ∈ C∞(M, R) has only leafwise Morse type singularities,
the map m ∈ M → (m, dF ϕ(m)) ∈ T ∗F will be transverse to the zero section of
T ∗F , and hence C(ϕ) will be a closed q-dimensional (q = codim(F )) submanifold
of M transverse to the foliation. Since most interesting foliations do not admit
closed transversals, we see that a good notion of foliated Morse function should
allow degenerate leafwise singularities. Another reason to allow degenerate leafwise
singularities is that the condition of being leafwise Morse is not generic. We can
not, however, allow any kind of degenerate leafwise singularities otherwise the
structure of C(ϕ) will be very complicate.

It was noticed by Thom [9] that, for a generic ϕ, the critical locus C(ϕ) is
a smooth q-dimensional (q = codim(F )) submanifold of M transverse to almost
every leaf. In fact, one may assume generically not only that C(ϕ) is a smooth
q-dimensional submanifold of M but also that the restriction of ϕ to each leaf has
only singularities of finite multiplicity. Indeed, the set of smooth functions satisfy-
ing these conditions is open and dense for the C∞ topology by Tougeron’s multijet
transversality theorem [10]. Such a generic ϕ will be called a generic foliated func-
tion. Since the leafwise singularities of a generic foliated function ϕ are isolated in
the leaf manifold, the set Ai

1(ϕ) is a Borel transversal for any i = 0, 1, . . . , p. Note
however that the critical manifold C(ϕ) of a generic foliated function ϕ may have a
very complicate structure, since generic q-parameter families of smooth functions
on Rp can have a zoo of complicated singularities for q large. Fortunately, it is
possible to eliminate all leafwise singularities of multiplicity strictly larger than 2:

Theorem. [7], [3]. Let (M, F ) be a smooth p-dimensional foliation on a compact
manifold M .

(i) Any function ϕo ∈ C∞(M, R) can be Co approximated by a smooth function
ϕ ∈ C∞(M, R) whose restriction to any leaf has only Morse or birth-death
type singularities;

(ii) If codim(F ) ≤ dim(F ), any function ϕo ∈ C∞(M, R) can be C1 approximated
by a smooth function ϕ ∈ C∞(M, R) whose restriction to each leaf has only
Morse or birth-death type singularities.

Assertion (ii) was proved by Igusa [7]. Note that we can (cf. [6], Lemma
3.5, p. 313) choose an approximation ϕ of ϕo which has a normal form in the
neighborhood of any point m ∈ A2(ϕ). The existence of a normal form (which will
be described in the next subsection) uses the fact that generic q-parameter families
ϕt : u ∈ D

p → ϕt(u) = ϕ(u, t) ∈ R (t ∈ D
q
) of smooth functions (see [6], p. 311

for the definition) form an open dense subset of the space of smooth families of
generalized Morse functions on D

p
, topologized as a subspace of C∞(D

p ×D
q
, R).

Assertion (i) is a consequence of a theorem of Eliashberg and Mishatchev [3].
They noticed that the higher leafwise singularities of ϕ inside any foliation chart
U ∼= Rp × Rq (q = codim(F )) coincide with the singularities of the projection
(u, t) ∈ U ∩ C(ϕ) → t ∈ Rq. When the projection (u, t) ∈ U ∩ C(ϕ) → t ∈ Rq

is folded, the functions ϕt : u → ϕ(u, t) have only Morse or birth-death type



Morse Inequalities for Foliations 65

singularities. In the proof of (i), the approximation ϕ is constructed in such a
way that, for any foliation chart U ∼= Rp × Rq, the projection on the transversal
(u, t) ∈ U∩C(ϕ)→ t ∈ Rq is folded. Finally, note that it was proved by Eliashberg
that the Co approximation ϕ of a generic foliated function ϕo can be chosen in
such a way that Λ(Ai

1(ϕ)) is arbitrarily close to Λ(Ai
1(ϕo)) for i = 0, 1, . . . , p. We

shall note use this remark, which allows to get the foliated Morse inequalities for
generic foliated functions from the case of generalized Morse functions as defined
below:

Definition 1. Let (M, F ) be a smooth p-dimensional foliation on a compact man-
ifold M . A generic foliated function ϕ ∈ C∞(M, R) is called a generalized foliated
Morse function if its restriction to any leaf is a generalized Morse function.

1.3. Critical locus of a generalized foliated Morse function.

Let (M, F, Λ) be a measured p-dimensional smooth foliation on a compact manifold
M and ϕ ∈ C∞(M, R) a generalized foliated Morse function. From [10] and [6],
we get the following properties:

(i) The set of leaves containing leafwise birth-death type singularities of ϕ is
Λ-negligible;

(ii) The critical locus C(ϕ) is a smooth compact q-dimensional manifold which
decomposes into the disjoint union of the Ai

1(ϕ) (i = 0, 1, . . . , p) and A2(ϕ);
(iii) Each Ai

1(ϕ) is a (possibly empty) q-dimensional open submanifold of C(ϕ)
transverse to the foliation. Moreover, by the parametric Morse lemma (see
for instance [5]), there exists for any compact subset K of Ai

1(ϕ) a pair
(Ep−i

+ , Ei−) of Euclidean vector bundles over K(corresponding to the eigen-
space bundles of D2

F ϕ), a foliated neighborhood U of K diffeomorphic to the
zero section of K in Ep−i

+ ⊕ Ei− (foliated by the projection p : U → K) such
that we have for any (t, u+, u−) ∈ U ⊂ Ep−i

+ ⊕ Ei− lying over t ∈ K:

ϕ(t, u+, u−) = ϕ(t) + ‖u+‖2 − ‖u−‖2 ;

(iv) A2(ϕ) is a compact (q − 1)-submanifold of C(ϕ). Moreover, there exist for
any m ∈ A2(ϕ) a compact neighborhood K of m in A2(ϕ), a neighborhood V

of the zero section of K in the total space of the vector bundle Ep−i−1
+ ⊕Ei

−
corresponding to the (+) and (−) eigenspaces of the leafwise Hessian of ϕ,
and an open foliated neighborhood U of m isomorphic to a product Iε×V ×Iδ

(ε, δ > 0; Iε = ]−ε, +ε[) such that:
(a) {0} ×K × Iδ ⊂ Iε × V × Iδ is a transversal for U ;
(b) The plaque through t = (0, k, s) ∈ K × Iδ identifies with:

Pt = {u = (u1, u2, s) ∈ U ∼= Iε × V × Iδ ; u2 lies over k} ;

(c) For any (u1, u2, s) ∈ U ∼= Iε×V × Iδ with u2 lying over k ∈ K, we have:

ϕ(u1, u2, s) = ϕ(0, k, s) +
u3

1

3
+ u1s−

∑
2≤j≤i+1

u2
j

2
+

∑
i+2≤j≤p

u2
j

2
.
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2. Proof of the foliated Morse inequalities

Denote by (M, F, Λ) a measured p-dimensional smooth foliation on a compact
manifold M and let ϕ ∈ C∞(M, R) be a generalized foliated Morse function.
For simplicity, we shall assume that the holonomy groupoid of the foliation is
Hausdorff, that Λ is absolutely continuous with respect to the Lebesgue class and
that Λ-almost every leaf has no holonomy.

2.1. Twisted Laplacian

For i = 0, 1, . . . , p and any leaf L, denote by di
L the de Rham differential on forms

of degree i on L. Let τ > 0 be a scale parameter and consider the twisted de
Rham differential di

τ,L defined on forms of degree i on L by the formula di
τ,L(ω) =

e−τϕdi
L(eτϕω). For any Euclidean structure on F (we shall only consider Euclidean

structures on F that are associated to metrics on M), the twisted Laplacian ∆i
τ,L

is defined on L2(L, ΛiT �F ) by:

∆i
τ,L = di−1

τ,L

(
di−1

τ,L

)�

+
(
di

τ,L

)�
di

τ,L.

Since ∆i
τ =

(
∆i

τ,L

)
L

is a leafwise elliptic operator, we get dimΛ(Ker(∆i
τ )) < +∞

by [1].

Proposition 1. (cf. [2], Lemma 5.2). For any i = 0, 1, . . . , p, we have

βi = dimΛ(Ker(∆i
τ )).

Proof. Consider the operator T i
τ =

(
T i

τ,L

)
L

defined by T i
τ,L(ω) = e−τϕω. This

operator belongs to the von Neumann algebra of the foliation and maps Ker(di) =
Ker(∆i) ⊕ �(di−1) into Ker(di

τ ) = Ker(∆i
τ ) ⊕ �(di−1

τ ) so that it decomposes in

the form T i
τ =

(
U i

τ 0
∗ V i

τ

)
with respect to these direct sums of Hilbert spaces.

Since V i
τ and T i

τ are invertible, the field of operators U i
τ,L : Ker(∆i

L)→ Ker(∆i
τ,L)

is an isomorphism of square integrable fields of Hilbert spaces and hence βi =
dimΛ(Ker(∆i)) = dimΛ(Ker(∆i

τ )). �

2.2. Twisted complex

Let E > 0 be a fixed “energy” and denote by V i
τ,L the image in L2(L, ΛiT �F ) of

the spectral projection of the operator ∆i
τ,L corresponding to the interval ]−∞, E].

The operator di
τ,L maps V i

τ,L into V i+1
τ,L so that its restriction δi

τ,L = di
τ,L | V i

τ,L :
V i

τ,L → V i+1
τ,L to V i

τ,L defines a bounded field δi
τ =

(
δi
τ,L

)
L

of operators from V i
τ to

V i+1
τ . Since δi+1

τ,L ◦ δi
τ,L = 0, we get a complex δi

τ : V i
τ → V i+1

τ called the twisted
complex.

Proposition 2. (cf. [2], Lemma 11.2.4). For i = 0, 1, . . . , p, we have:
j=i∑
j=0

(−1)jβi−j ≤
j=i∑
j=0

(−1)j dimΛ(V i−j
τ ) with equality for i = p.
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Proof. This follows from the relation:

(1)
j=i∑
j=0

(−1)jβi−j + dimΛ(�(δi
τ )) =

j=i∑
j=0

(−1)j dimΛ(V i−j
τ )

for any i = 0, 1, . . . , p, where δp
τ = 0. Relation (1) is proved by induction on i,

from the orthogonal decomposition V i
τ,L = Ker(∆i

τ,L)⊕�(δi−1
τ,L )⊕�

(
δi
τ,L

)�

. This
decomposition is obtained by classical arguments of Hodge’s theory applied to

the twisted complex. For i = 0, it reduces to V o
τ,L = Ker(∆o

τ,L) ⊕ �
(
δo
τ,L

)�

and

gives immediately (1). For i = 1, this decomposition implies that dimΛ(V 1
τ ) =

β1 + dimΛ(�(δo
τ ) + dimΛ(� (δ1

τ )�). Subtracting the equality dimΛ(V o
τ ) = βo +

dimΛ(� (δo
τ )�) from this relation, we get (1) for i = 1 since the initial support of

the operator δo
τ has the same Murray-von Neumann dimension as its final support.

By iterating this argument, we get (1). �

Proposition 2 shows that the proof of the foliated Morse inequalities reduces
to the following result:

Theorem 1. (cf. [2], Theorem 8.2). Let (M, F, Λ) and ϕ as above. For any fixed
E > 0 and any ε > 0, there exists a metric on M such that we have, for any
i = 0, 1, . . . , p and τ large enough:

Λ
(
Ai

1 (ϕ)
)
− ε ≤ dimΛ(V i

τ ) ≤ Λ
(
Ai

1 (ϕ)
)

+ ε.

To prove this theorem, fix η > 0 and choose an open neighborhood V of
A2(ϕ) such that Λ(V ∩ C(ϕ)) ≤ η. This is possible since the restriction of ϕ to
Λ-almost leaf is a Morse function. We can choose V to be a finite union of foliated
charts (called “birth-death charts”) in which ϕ has the normal form quoted in
section 1.3. For any i = 0, 1, . . . , p, set Ci

η = Ai
1 (ϕ) \

(
V ∩Ai

1 (ϕ)
)
. We thus define

a compact subset Ci
η of Ai

1 (ϕ) such that Λ(Ai
1 (ϕ) \Ci

η) ≤ η. By the Morse lemma
with parameters, we can choose a foliated neighborhood N i

η of Ci
η disjoint from

A2(ϕ) and a metric gη on M with the following property: any m ∈ Ci
η is contained

in a foliation chart U ∼= Rp×Rq with local coordinates (u1, . . . , up, t1, . . . , tq) such
that:

(a) Ci
η ∩ U = {(u, t) ∈ U ; u = 0} ;

(b) The restriction of the metric gη to each plaque t = Cst of U is the standard
metric (du1)2 + (du2)2 + · · ·+ (dup)2;

(c) We have ϕ(u, t) = ϕ(0, t)−
∑

1≤j≤i

u2
j

2
+

∑
i+1≤j≤p

u2
j

2
for any (u, t) ∈ U (in local

coordinates).

Let us cover each Ci
η by a finite number of foliation’s charts (called “Morse charts”)

satisfying the above conditions.
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2.3. Proof of Λ
(
Ai

1 (ϕ)
)
− η ≤ dimΛ(Vi

τ ) for τ large enough

For any point m ∈ Ci
η, let U be a foliation chart containing m as above. From

conditions (a), (b), (c), we get the following local expression for the twisted Lapla-
cian:

∆i
τ,L(fduI) =

j=p∑
j=1

{
−∂2f

∂u2
j

+ τ2u2
jf + τεjε

I
jf

}
duI

for each plaque L of U and any smooth compactly supported function f on L.
Here, I is a multi-index such that |I| = i, εj satisfies εj = −1 if j ≤ i and εj = 1
if j > i, and εI

j = 1 if j ∈ I while εI
j = −1 if j /∈ I. Since ∆i

τ,L is a tensor product
of harmonic oscillators, it is easy to show that

Sp(∆i
τ,L) = {τλI,N ; |I| = i and N = (N1, . . . , Np) ∈ Np} ,

where λI,N =
j=p∑
j=1

[
(1 + 2Nj) + εjε

I
j

]
. It follows that the first eigenvalue of ∆i

τ,L

(corresponding to I = (1, 2, . . . , i) and N = (0, 0, . . . , 0)) is equal to 0 while the
other are larger than 2τ . The normalized eigenform ωτ of degree i corresponding to

the first eigenvalue writes in local coordinates ωτ (u) = Cτ
p
4 exp

⎛⎝− τ
2

j=p∑
j=1

u2
j

⎞⎠ du1∧

du2∧· · ·∧du2, where C is some normalizing constant. Let us multiply this form by
a cut-off function of the form u → θ( |u|

2

γ ), where θ : R→ R is a positive smooth
function equal to 1 (resp. to 0) on

[
− 1

2 , 1
2

]
(resp. outside [−1, 1]) and γ > 0 a

small parameter. We get a form ωτ,γ that we can plug on any plaque of the chart
U for γ small enough, and which satisfies by direct computation:

‖ωτ,γ‖22 = 1 + O(e−
γ
8 τ ) and 〈∆i

τ,L(ωτ,γ) | ωτ,γ〉 = O(γ
p−3
2 τ

p+1
2 e−γτ )

for τ large enough. This allows to construct a measurable map m ∈ Ci
η →

ωτ,γ(m) ∈ V i
τ,Lm

where ωτ,γ(m) is a smooth normalized form of degree i sup-
ported by a small neighborhood of m in the leaf Lm through m. We deduce that
(l2(Ci

η ∩ L))L can be viewed as a subfield of the square integrable field (V i
τ,L)L,

and hence:

Λ
(
Ai

1 (ϕ)
)
− η ≤ Λ(Ci

η) = dimΛ((l2(Ci
η ∩ L))L) ≤ dimΛ(V i

τ ).

2.4. Proof of dimΛ(Vi
τ ) ≤ Λ

(
Ai

1 (ϕ)
)

+ Cstη for τ large enough

To prove this inequality, we shall construct a random field (Hτ,L)L of Hilbert
spaces, Hτ,L ⊂ L2(L, ΛiT �F ), such that we have:

(i) dimΛ(Hτ ) ≤ Λ(Ai
1(ϕ)) + qη for τ ≥ τ(η),

(ii) 〈∆i
τ,L(ωL) | ωL〉 ≥ Cτ

2
3 ‖ωL‖22 for any ω = (ωL)L orthogonal to Hτ and

Λ-almost leaf L.
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Here, C is a constant, q a positive integer and τ(η) > 0 a number depending only
on η > 0. These conditions imply immediately that dimΛ(V i

τ ) ≤ Λ(Ai
1(ϕ))+ qη for

τ ≥ τ(η).
To construct this random field of Hilbert spaces, fix a leaf L without birth-

death type leafwise singularities and recall that the critical manifold C(ϕ) is cov-
ered by a finite number of Morse or birth-death foliation charts. Choose a smooth
partition

1 =
∑
α∈A

χ2
α,τ +

∑
β∈B

χ2
β + χ2

∞,τ

of the unit on L, where the smooth functions χ2
α,τ (resp. χ2

β) are compactly sup-
ported by the sections of L with the Morse charts (Uα)α∈A (resp. with the birth-
death charts (Uβ)β∈B). Note that, despite the number of Morse or birth-death
charts is finite, the leaf L may intersect each chart an infinite number of time. By
using a formula of the type χα,τ (u) = χ(τ

2
5 (u−cα)) where cα = {L ∩ Uα ∩A1(ϕ)}

and χ : Rp → R is a positive smooth function equal to 1 on [−1, 1]p and to 0 out-
side [−2, 2]p, we may assume that

∥∥∥ |∇L(χα,τ )|2
∥∥∥
∞
≤ Cτ

4
5 for any α ∈ A, where C

is some fixed constant. In the same way, we may assume that
∥∥∥ |∇L(χβ)|2

∥∥∥
∞
≤ C

for any β ∈ B. This partition of unity allows us, by using the IMS formula:

f2∆i
τ,L + ∆i

τ,Lf2 − 2f∆i
τ,L = −2 | L(f)|2 ,

to decompose ∆i
τ,L in the following form:

∆i
τ,L = AL + BL + RL + SL,

where AL =
∑

α∈A χα,τ∆i
τ,Lχα,τ , BL =

∑
β∈B χβ∆i

τ,Lχβ , CL = χ∞,τ∆i
τ,Lχ∞,τ

and DL is the multiplication operator by the function:

φL = − |∇L(χ∞,τ )|2 −
∑
α∈A

|∇L(χα,τ )|2 −
∑
β∈B

|∇L(χβ)| .2

From the controls imposed on |∇L(χα,τ )|2 and |∇L(χβ)|2, we get:

Claim 1. There exists C > 0 such that we have, for any ω ∈ L2(L, ΛiT �F ):

〈DLω | ω〉 ≥ −Cτ
4
5

∑
α∈A

‖χα,τω‖22 − C
∑
β∈B

‖χβω‖22 − Cτ
4
5 ‖χ∞,τω‖22 .

On the other hand, the analysis of the bottom of the spectrum of ∆i
τ,L shows

that we have χα,τ∆i
τ,Lχα,τ ≥ Cstτχ2

α,τ if the index α corresponds to a point
cα ∈ Aj

1 of Morse index j �= i. The case j = i corresponds to indices α ∈ A such
that cα ∈ Ci

η. In this case, the eigenstate of zero energy of the twisted Laplacian
∆i

τ,L localized in Uα yield a Borel field (ωα,τ,L)L of square integrable forms of
degree i on the plaques of Uα. Since the second eigenvalue of ∆i

τ,L is larger than
2τ , there exists by the minimax principle a constant C > 0 such that we have
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〈(χα,τ∆i
τ,Lχα,τ )ω | ω〉 ≥ Cτ ‖χα,τω‖22 for any ω ∈ L2(L, ΛiT �F ) orthogonal to

ωα,τ,L. Denote by H1
τ = (H1

τ,L)L the Borel field of Hilbert spaces generated by the
(ωα,τ,L)L where α ∈ A is such that cα ∈ Ci

η. We have:

Claim 2. H1
τ = (H1

τ,L)L is a square integrable field of Hilbert spaces whose Murray-
von Neumann dimension satisfies dimΛ(H1

τ ) ≤ Λ(Ai
1(ϕ)) − η and such that

〈ALω | ω〉 ≥ Cstτ
∑
α∈A

‖χα,τω‖22

for any ω ∈ L2(L, ΛiT �F ) orthogonal to H1
τ,L.

On the other hand, consider the decomposition ∆i
τ,L = ∆i

L + τ2 |∇L(ϕ)|2 +
τQi

L of ∆i
τ,L used by Witten’s [11] to prove the classical Morse inequalities (see

also [4]). Here, the operator Qi
L is given by Qi

L =
∑
k,l

∇2
k,l(ϕ) [ext(duk), int(dul)]

in local coordinates. Combining the fact that Qi
L is lower bounded, the positivity

of ∆i
L and the lower bound |∇L(ϕ)(m)|2 ≥ Cst > 0 for m away from the critical

manifold C(ϕ), we get:

Claim 3. There exists C > 0 such that we have 〈CLω | ω〉 ≥ Cτ ‖χ∞,τω‖22 for any
ω ∈ L2(L, ΛiT �F ).

Finally, by using the local expression of ϕ in a “birth-death chart”, we can
show that there exists an integer q > 0 and, for any birth-death chart Uβ, Borel
fields ωβ,k,τ = (ωβ,k,τ,L)L (1 ≤ k ≤ q) of square integrable forms of degree i
indexed by the points of Uβ ∩ V ∩ Ai

1(ϕ) and supported by the plaques of Uβ ,
such that we have 〈(χβ∆i

τ,Lχβ)ω | ω〉 ≥ Cstτ
2
3 ‖χβω‖22 for any ω ∈ L2(L, ΛiT �F )

orthogonal to the ωβ,k,τ ’s. This assertion reduces in fact to the following theorem:

Theorem 2. (cf. [2], Theorem 10.1). Let λ, τ > 0 with 0 < λ < 1
4 and denote by

Q±
τ,λ the quadratic form on H1(]−1, 1[) defined by

Q±
τ,λ(f) =

∫ 1

−1

{
|f ′(u)|2 +

[
τ2(u2 − λ)2 ± 2τu

]
|f(u)|2

}
du.

Then, there exists an integer m > 0, a real τo > 0 and, for any τ ≥ τo, m
continuous functions f1, f2, . . . , fm with compact support in ]−1, 1[ such that

Q±
τ,λ(f) ≥ 10τ

2
3

∫ 1

−1

|f(u)|2 du

for any f ∈ H1(]−1, 1[) orthogonal to the fi’s.

Denote by H2
τ = (H2

τ,L)L the Borel field of Hilbert spaces generated by the
(ωβ,k,τ,L)L where β ∈ B, and recall that Λ(V ∩ Ai

1(ϕ)) ≤ η. Since the ωβ,k,τ

are indexed by k (1 ≤ k ≤ q) and by the points of Uβ ∩ V ∩ Ai
1(ϕ), we have

dimΛ(H2
τ ) ≤ qη.
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This implies:

Claim 4. The square integrable field H2
τ = (H2

τ,L)Lof Hilbert spaces satisfies:

(i) dimΛ(H2
τ ) ≤ qη;

(ii) 〈BLω | ω〉 ≥ Cstτ
2
3

∑
β∈B

‖χβω‖22 for any ω ∈ L2(L, ΛiT �F ) orthogonal to

H2
τ,L.

Set Hτ = H1
τ ⊕H2

τ . We thus define a random field (Hτ,L)L of Hilbert spaces such
that dimΛ(Hτ ) ≤ Λ(Ai

1(ϕ)) + qη for τ large enough. By claims 1 to 4, we have
〈∆i

τ,L(ωL) | ωL〉 ≥ Cτ
2
3 ‖ωL‖22 for any ω = (ωL)L orthogonal to Hτ and the proof

of 2.4 is complete. This achieves the proof of the Morse inequalities.

3. Applications

In analogy with the case of compact manifolds, we can use a “foliated lacunary
Morse principle” (cf. [8], page 31) to compute the Betti numbers of several mea-
sured foliations. We can also use the foliated Morse inequalities to get the existence
of compact leaves in 2-dimensional foliations. For instance, we have:

Corollary 1. Let (M, F, Λ) be a 2-dimensional measured foliation on a compact
manifold M . If there exists a foliated generalized Morse function ϕ on M such that
Λ(A1

1(ϕ)) < Λ(Ao
1(ϕ)) + Λ(A2

1(ϕ)), the Λ-measure of the set of compact leaves is
non zero.

Proof. By the Morse inequalities, we get 2βo−β1 = βo−β1 +β2 = co−c1 +c2 > 0.
If the set of compact leaves is Λ-negligible, we have βo = 0 and hence β1 < 0, a
fact which is absurd. �

Corollary 2. Let (M, F, Λ) be a 2-dimensional measured foliation on a compact
manifold M . For any foliated generalized Morse function ϕ on M such that
Λ(A1

1(ϕ)) = 0, we have Λ(Ao
1(ϕ)) = Λ(A2

1(ϕ)). Moreover, if this number is non
zero, the foliation has a non Λ-negligible set of compact leaves.

Proof. By the Morse inequalities, we get β1 ≤ c1 = 0 and hence β1 = 0. It
follows that βo = co and hence c2 + co = β2 − β1 + βo = 2βo ≤ 2co. We deduce
that c2 ≤ co ≤ βo = β2 ≤ c2 and hence co = c2. The conclusion immediately
follows. �
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1. Introduction

Let (Mn, g) be closed, oriented, (E, hE), (F, hF ) −→ Mn smooth vector bundles,

D : C∞(E) −→ C∞(F ) an elliptic differential operator. Then L2(E) ⊃ DD

D−→
L2(F ) is Fredholm, i.e., there exists P : L2(F ) −→ L2(E) s.t. PD − id = K1,
DP − id = K2, Ki integral operators with C∞ kernel Ki and hence compact.
It follows dimkerD, dim coker D < ∞, indaD = dim kerD − dim coker D is well
defined and there arise the question to calculate indaD. The answer is given by
the seminal Atiyah–Singer index theorem

Theorem 1.1. indaD = indtD,
where

indtD = 〈ch σ(D)T (M), [M ]〉. �

Assume now (Mn, g) open, E, F, D as above. K1, K2 still exist as operators
with a smooth kernel where in good cases one can achieve that the support of Ki

is located near the diagonal.
But there arise several troubles.

1) If Ki bounded is achieved then Ki must not be compact.
2) If Ki would be compact then indaD would be defined.
3) If indaD would be defined then indtD must not be defined.
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4) If indaD, indtD (as above) would be defined then they must not coincide.
There are definite counterexamples.

There are 3 ways out from this difficult situation.
1) One could ask for special conditions in the open case under which an ellip-

tic D is still Fredholm, then try to establish an index formula and finally
present applications. These conditions could be conditions on D, on M and
E or a combination of both. In [1] the author formulates an abstract (and
very natural) condition for the Fredholmness of D and assumes nothing on
the geometry. But in all substantial applications this condition can be assured
by conditions on the geometry. The other extreme case is that discussed in
[7], [10], [9], where the authors consider the L2-index theorem for locally
symmetric spaces. Under relatively restricting conditions concerning the ge-
ometry and topology at infinity the Fredholmness and an index theorem are
proved in [5] and [6].

2) One could generalize the notion of Fredholmness (using other operator alge-
bras) and then establish a meaningful index theory with applications. The
discussion of these both approaches will be the content of the next paragraph.

3) Another approach will be relative index theory which is less restrictive con-
cerning the geometrical situation (compared with the absolute case) but its
outcome are only statements on the relative index, i.e., how much the analyt-
ical properties of D differ from those of D′. This approach will be discussed
in detail in Section 3.

4) For open coverings (M̃, g̃) of closed manifolds (Mn, g) and lifted D there is
an approach which goes back to Atiyah, (cf. [2]). This has been further elab-
orated by Cheeger, Gromov and others. The main point is that all considered
(Hilbert-) modules are modules over a von Neumann algebra and one replaces
the usual trace by a von Neumann trace. We will not dwell on this approach
since there is a well established highly elaborated theory. Moreover special
features of openness come not into. The openness is reflected by the fact that
all modules under consideration are modules over the von Neumann algebra
N (π), π = Deck(M̃ −→M).

Section 2 presents a certain review of important absolute index theorems and
Section 3 gives an outline including all essential proofs of the general relative
index theory of the author.

2. Fredholmness, its generalization and group actions

This section is a brief review of absolute index theorems under additional strong
assumptions. It shows that these approaches are successful only in special situa-
tions. In Section 3 we will establish very general relative index theorems.

We start with the first approach and with the question which elliptic ope-
rators over open manifolds are Fredholm in the classical sense above. Let (Mn, g)
be open, oriented, complete, (E, h) −→ (Mn, g) be a Hermitian vector bundle with
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involution τ ∈ End (E), E = E+ ⊕ E−, D : C∞(E) −→ C∞(E) an essentially
self-adjoint first-order elliptic operator satisfying Dτ + τD = 0. We denote D± =
D|C∞(E±). Then we can write as usual

D =
(

0 D−

D+ 0

)
:

C∞(E+)
⊕

C∞(E−)
−→

C∞(E+)
⊕

C∞(E−)
. (2.1)

The index indaD is defined as

indaD := indaD+ := dim ker D+ − dim coker D+ = dim ker D+ − dim ker D−

(2.2)
if these numbers would be defined. Denote by Ω2,i(E, D) the Sobolev space of
order i of sections of E with D as generating differential operator. We essentially
follow [1].

Proposition 2.1. The following statements are equivalent
a) D is Fredholm.
b) dim ker D <∞ and there is a constant c > 0 such that

|Dϕ|L2 ≥ c · |ϕ|L2 , ϕ ∈ (kerD)⊥ ∩ Ω2,1(E, D), (2.3)

where (kerD)⊥ ≡ H⊥ is the orthogonal complement of H = kerD in L2(E).
c) There exists a bounded non-negative operator P : Ω2,2(E, D) −→ L2(E) and

bundle morphism R ∈ C∞(EndE), R positive at infinity (i.e., there exists a
compact K ⊂ M and a k > 0 s. t. pointwise on E|M\K , R ≥ k), such that
on Ω2,2(E, D)

D2 = P + R. (2.4)
d) There exist a constant c > 0 and compact K ⊂M such that

|Dϕ|L2 ≥ c · |ϕ|, ϕ ∈ Ω2,1(E, D), supp (ϕ) ∩K = ∅. (2.5)

�

The main task now is to establish a meaningful index theorem. This has been
performed in [1].

Theorem 2.2. Let (Mn, g) be open, complete, oriented, (E, h, τ) = (E+ ⊕
E−, h) −→ (Mn, g) a Z2-graded Hermitian vector bundle and D : C∞

c (E) −→
C∞

c (E) first-order elliptic, essentially self-adjoint, compatible with the Z2-grading
(i.e., supersymmetric), Dτ + τD = 0. Let K ⊂ M be a compact subset such that
2.1a) for K is satisfied, and let f ∈ C∞(M, R) be such that f = 0 on U(K)
and f = 1 outside a compact subset. Then there exists a volume density ω and a
contribution Iω such that

indaD
+

=
∫
M

(ω(1− f(x)) dvolx(g) + Iω , (2.6)

where ω has an expression locally depending on D and Iω depends on D and f
restricted to Ω = M \K. �
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Until now the differential form ω dvolx(g) is mystery. One would like to ex-
press it by well-known canonical terms coming, e.g., from the Atiyah–Singer index
form ch σ(D+) ∪ T (M), where T (M) denotes the Todd genus of M . In fact this
can be done.

Index Theorem 2.3 Let (Mn, g) be open, oriented, complete, (E, h, τ) −→ (Mn, g)
a Z2-graded Hermitian vector bundle, D : C∞

c (E) −→ C∞
c (E) a first-order elliptic

essentially self-adjoint supersymmetric differential operator, Dτ + τD = 0, which
shall be assumed to be Fredholm. Let K ⊂M compact such that 2.1d) is satisfied.
Then

indaD+ =
∫
K

ch σ(D+) ∪ T (M) + IΩ, (2.7)

where ch σ(D+) ∪ T (M) is the Atiyah–Singer index form and IΩ is a bounded
contribution depending only on D|Ω, Ω = M \K. �

Remarks 2.4.

a) As we already mentioned, Z2-graded Clifford bundles and associated general-
ized Dirac operators D such that in D2 = ∆E +R, R ≥ c · id, c > 0, outside
some compact K ⊂ M , yield examples for Theorem 2.3. A special case is
the Dirac operator over a Riemannian spin manifold with scalar curvature
≥ c > 0 outside K ⊂M .

b) Much more general perturbations than compact ones will be considered in
Section 3. �

The other case of a very special class of open manifolds are coverings (M̃, g̃)
of a closed manifold (Mn, g). Let E, F −→ (Mn, g) be Hermitian vector bun-
dles over the closed manifold (Mn, g). D : C∞(E) −→ C∞(F ) be an elliptic
operator, (M̃, g̃) −→ (M, g) a Riemannian covering, D̃ : C∞

c (Ẽ) −→ C∞
c (F̃ ) the

corresponding lifting and Γ = Deck (M̃n, g̃) −→ (Mn, g). The actions of Γ and
D̃ commute. If P : L2(M̃, Ẽ) −→ H is the orthogonal projection onto a closed
subspace H ⊂ L2(M̃, Ẽ) then one defines the Γ-dimension dimΓH of H as

dimΓH := trΓP,

where trΓ denotes the von Neumann trace and trΓP can be any real number ≥ 0
or =∞.

If one takes H = H(D̃) = ker D̃ ⊂ L2(Ẽ), H∗ = H(D̃∗) = ker(D̃∗) ⊂ L2(F̃ )
then one defines the Γ-index indΓD̃ as

indΓD̃ := dimΓH(D̃)− dimΓH(D̃∗).

Atiyah proves in [2] the following main

Theorem 2.5. Under the assumptions above there holds

indaD = indΓD̃. �
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It was this theorem which was the origin of the von Neumann analysis as
a fastly growing area in geometry, topology and analysis. Moreover, the proof of
Theorem 2.2 is strongly modeled by that of 2.5. Another very important special
case which is related to the case above of coverings are locally symmetric spaces of
finite volume. There is a vast number of profound contributions, e.g., [4], [7], [9],
[10], [11]. We do not intend here to give a complete overview for reasons of space.
But we will sketch the main features and main achievements of these approaches.

Let G be semisimple, noncompact, with finite center, K ⊂ G maximal com-
pact, X̃ = G/K a symmetric space of noncompact type, Γ ⊂ G discrete, torsion
free and vol (Γ\G) < ∞. Then X = Γ\X̃ = Γ\G/K is a locally symmetric space
of finite volume. If VE , VF are unitary K-modules then we obtain homogeneous
vector bundles Ẽ = G/K×K VE −→ G/K = X̃, F̃ = G/K×K VF −→ G/K = X̃ ,
over X̃ and corresponding bundles E, F −→ X over X . A G-invariant elliptic
differential operator D̃ : C∞(Ẽ) −→ C∞(F̃ ) descends to an elliptic operator
D : C∞(E) −→ C∞(F ). There arise the following natural questions: to describe
the D̃ in question, to establish a formula for the analytical index, to calculate the
index via a topological index and an index theorem. We indicate (partial) answers
given by Barbasch, Connes, Moscovici and Müller.

Denote by R(k) the right regular representation R(k)f(g) = f(gk), τE :
K −→ U(VE). Then k −→ R(k) ⊗ τE(k) acts on C∞(G) ⊗ VE . We identify
C∞(Ẽ) with (C∞(G) ⊗ VE)K , similarly L2(Ẽ) with (L2(G) ⊗ VE)K . If G is
the Lie algebra of G, Gc its complexification, U(G) the universal enveloping al-
gebra of G, τE : K −→ U(VE), τF : K −→ U(VF ) are unitary representa-
tions then (U(G) ⊗ Hom (VE , VF ))K shall denote the subspace of all elements in
U(G)⊗Hom (VE , VF ) which are fixed under k −→ AdG(k)⊗ τE(k−1)t⊗ τF (k). Let
d =

∑
i

Xi ⊗ Ai ∈ (A(G) ⊗ Hom (VE , VF ))K . Then D̃ =
∑
i

R(Xi) ⊗ Ai defines a

differential operator D̃ : C∞(Ẽ) −→ C∞(F̃ ) commuting with the action of G.

We state without proof the simple

Lemma 2.6.

a) Any G-invariant differential operator D̃ : C∞(Ẽ) −→ C∞(F̃ ) is of the form

D̃ =
∑

i

R(Xi)⊗Ai (2.8)

above.
b) The formal adjoint D̃∗ corresponds to

d∗ =
∑

i

X∗
i ⊗A∗

i ∈ (U(G)⊗Hom (E, F ))K ,

where x −→ x∗ denotes the conjugate-linear anti-automorphisms of U(G)
such that x∗ = −x, x ∈ Gc. �
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For a unitary representation π : G −→ U(H(π)) and d =
∑
i

Xi ⊗ Ai ∈

(U(G)⊗Hom (VE , VF ))K define π(d) : H(π)∞ ⊗ VE −→ H(π)∞ ⊗ VF by

π(d) :=
∑

i

π(Xi)⊗Ai.

Here H(π)∞ denotes the space of C∞-vectors of π. π(d) induces an operator dπ :
(H(π) ⊗ VE)K −→ (H(π) ⊗ VF )K .

Proposition 2.7. Suppose that d is elliptic. Then

ker dπ = {u ∈ (Hom (π)∞ ⊗ VE)K | dπu = 0}
coincides with the orthogonal complement of

im d∗π = {d∗πv | v ∈ (H(π)∞ ⊗ VF )K}
in (H(π)⊗ VE)K . �

Corollary 2.8.

a) ker dπ is closed in (H(π)⊗ E)K .
b) The closure of d∗π coincides with the Hilbert space adjoint of dπ. �

Corollary 2.9. Suppose that d is elliptic and

π =

Θ∫
Λ

πλ dλ, H(π) =

Θ∫
Λ

H(πλ) dλ

is an integral decomposition of π. Then

ker dπ =

Θ∫
Λ

ker dπλ
dλ. (2.9)

�

Now we come to the main part of our present discussions, the locally symmet-
ric case. Identifying L2(E) with (L2(Γ\G)⊗ VE)K , and taking into consideration
the decompositions

RΓ = RΓ
d ⊕RΓ

c , L2(Γ\G) = L2,d(Γ\G)⊕ L2,c(Γ\G)

of the right quasi-regular representation RΓ of G on L2(Γ\G), we obtain the de-
composition

L2(E) = L2,d(E)⊕ L2,c(E),

L2,d(E) = (L2,d(Γ\G)⊗ VE)K ,

L2,c(E) = (L2,c(Γ\G)⊗ VE)K ,

similarly for F = Γ\F̃ .
Consider now the operators D = dRΓ and Dd = dRΓ

d
: C∞

c (E) −→ C∞
c (F ).
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Theorem 2.10. Under the assumptions above (on G, K, Γ),

kerD = kerDd (2.10)

and
dim ker D <∞. (2.11)

Denote by G̃Γ
d the set of all equivalence classes of irreducible unitary rep-

resentations π of G whose multiplicity mΓ(π) in RΓ
d is nonzero. In particular

L2,d(Γ\G) =
∑

π∈G̃Γ
d

mΓ(π)H(π).

Theorem 2.11. Let K ⊂ G be maximal compact, Γ ∈ G discrete and torsion free,
τE : K −→ VE , τF : K −→ VF unitary representations, Ẽ = G/K ×K VE,
F̃ = G/K ×K VF , E = Γ\Ẽ, F = Γ\F̃ and D = dRΓ a corresponding locally
invariant elliptic differential operator acting between L2(E) and L2(F ). Then

indaD = dim ker D − dim ker D∗

is well defined and

indaD =
∑

π∈G̃Γ
d

mΓ(π)(dim(H(π)⊗ E)K − dim(H(π) ⊗ F )K). (2.12)

�

Corollary 2.12. Let X = Γ\G/K be a locally symmetric space of negative curva-
ture with finite volume and L2(E) ⊃ DD

D−→ L2(F ) a locally symmetric elliptic
differential operator then ind D is defined and depends only on the K-modules
K −→ U(VE), U(VF ) which define Ẽ, F̃ , E = Γ\Ẽ, F = Γ\F̃ . �

The value of the formula in Theorem 2.11 is very limited since in general the
mΓ(π) are not known. Hence there arises the task to find a meaningful expression
for it. This has been done with great success, e.g., in [7] and [10], [11] where they
essentially restrict to generalized Dirac operators. To be more precise, we must
briefly recall what is a manifold with cusps. Here we densely follow [10]. Let G be
a semisimple Lie group with finite center, K ⊂ G a maximal compact subgroup.
Pa split rank one parabolic subgroup of G with split component A, P = UAM
the corresponding Langlands decomposition, where U is the unipotent radical of
P , A a R-split torus of dimension one and M centralizes A. Set S = UM and
let Γ be a discrete uniform torsion free subgroup of S. Then Y = Γ\Ỹ = Γ\G/K
is called a complete cusp of rank one. Put KM = M ∩ K, KM is a maximal
compact subgroup of M . If XM = M/KM there is a canonical diffeomorphism ξ̃:
R+ × U ×XM −→ Ỹ . Set for t ≥ 0 Ỹt = ξ̃([t,∞[×U ×XM ) and call Yt = Γ\Ỹt

a cusp of rank one. Another, even more explicit description is given as follows.
Let ΓM = M ∩ (∪Γ), Z = S/S ∩ K. Then there is a canonical fibration P :
Γ\Z −→ ΓM\XM with fibre Γ ∩ U\U a compact nilmanifold and a canonical
diffeomorphism ξ : [t,∞[×Γ\Z

∼=−→ Yt. The induced metric on [t,∞[×Γ2\Z looks
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locally as ds2 = dr2 + dx2 + e−brdu2
λ(x) + e−4brdu2

2λ(x), where |b| = λ, dx2 is the
invariant metric on XM induced by restriction of the Killing form.

Now a complete Riemannian manifold is called a manifold with cusps of rank
one if X has a decomposition X = X0 ∪X1 ∪ · · · ∪XS such that X0 is a compact
manifold with boundary, for i, j ≥ 1, i �= j holds Xi ∩Xj = ∅ and each Xj , j ≥ 1,
is a cusp of rank one. The first general statement for generalized Dirac operators
on rank one cusps manifold is

Theorem 2.13. Let X be a rank one cusp manifold, (E, h,∇, ·) −→ (X, gX) a
Clifford bundle and D its corresponding generalized Dirac operator. Then D is
essentially self-adjoint and

dim(kerD) <∞. (2.13)

The spectrum of H = D
2

consists of a point spectrum and an absolutely continuous
spectrum. If L2(E) = L2,d(E) ⊕ L2,c(E) is the corresponding decomposition of
L2(E) and Hd = H |L2,d(E) then for t > 0

e−zHd is of trace class. (2.14)

�

As we mentioned after Corollary 2.12, the main task, main objective consists
in the case of a Z2-grading to get an expression for indaD. For the sake of simplicity
we restrict to spaces X = X0∪Y1 as above with one cusp Y1, Y0∪Y1 = Y = Γ\G/K.
Let (E = E+ ⊕ E−, h,∇, ·) −→ (Y, g) be a Z2-graded Clifford bundle such that
E±|Y1 = Γ\Ẽ±, where Ẽ± are homogeneous vector bundles over G/K and let
D+ : C∞(Y, E+

+) −→ C∞(Y, E−) the corresponding generalized Dirac operator.
We recall KM = M∩K, XM = M/KM . D+ induces an elliptic differential operator
D+

0 : C∞(R+×ΓM\XM , E+
M ) −→ C∞(R+×ΓM\XM , E−

M ), where E±
M are locally

homogenous vector bundles over ΓM\XM . From this come a self-adjoint differential
operator DM : C∞(ΓM\XM , E+

M ) −→ C∞(ΓM\XM , E−
M ) and a bundle isomor-

phism β : E+
M −→ E−

M such that D+
0 = β

(
r ∂

∂r + DM

)
. We set D̃M = DM + m

2 id,
m = dimuλ|λ|+ 2 dimu2λ|λ|, λ the unique simple root of the pair (P, A).

W. Müller then established in [10] the following general index theorem for a
locally symmetric graded Dirac operator.

Theorem 2.14. Assume ker D̃M = {0}, let η(0) be the eta invariant of D̃M and
ωD+ the index form of D+. Then

indaD+ =
∫
X

ωD+ + U +
1
2
η(0), (2.15)

where the term U is essentially given by the value of an L-series at zero and an
expression in the scattering matrix at zero. �

Finally, application of an elaborated version of Theorem 2.14 allows to prove
the famous Hirzebruch conjecture for Hilbert modular varieties. This has been
done by W. Müller in [11].
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There is another approach to Fredholmness by Gilles Carron, which relies on
an inequality quite similar to 2.1 d).

Let (E, h,∇, ·) −→ (Mn, g) be a Clifford bundle over the complete Riemann-
ian manifold (Mn, g) and D : C∞(E) −→ C∞(E) the associated generalized Dirac
operator. D is called nonparabolic at infinity if there exists a compact set K ⊂M
such that for any open and relative compact U ⊂ M \K there exists a constant
C(U) > 0 such that

C(U)|ϕ|L2(E|U ) ≤ |Dϕ|L2(E|M\K) for all ϕ ∈ C∞
c (E|M\K). (2.16)

To exhibit the consequences of this inequality, we establish another characteriza-
tion of it.

Proposition 2.15. Let (E, h,∇, ·) −→ (Mn, g) and D as above and let W (E) be a
Hilbert space of sections such that

a) C∞
c (E) is dense in W (E) and

b) the injection C∞
c (E) ↪→ Ω2,1

loc(E, D) extends continuously to W (E) −→
Ω2,1

loc(E, D).
Then D : W (E) −→ L2(E) is Fredholm if and only if there exist a compact

K ⊂M and a constant C(K) > 0 such that

C(K) · |ϕ|W ≤ |Dϕ|L2(E|M\K) for all ϕ ∈ C∞
c (E|M\K). (2.17)

�

Remark 2.16. The norm H(·) above is equivalent to the norm

NU(K)(·),NU(K)(ϕ)2 = |ϕ|2L2(E|U(K))
+ |Dϕ|2L2(E). (2.18)

Corollary 2.17. D : C∞(E) −→ C∞(E) is non-parabolic at infinity if and only if
there exists a compact K ⊂M such that the completion of C∞

c (E) w. r. t. NK(·),
NK(ϕ)2 = |ϕ|2L2(E|K) + |Dϕ|2L2

(2.19)

yields a space W (E) such that the injection C∞
c (E) −→ Ω2,1

loc(E, D) continuously
extends to W (E). �

The point now is that we know if D is non-parabolic at infinity then D :
W (E) −→ L2(E) is Fredholm. We emphasize, this does not mean L2(E) ⊃ DD −→
L2(E) is Fredholm. We get a weaker Fredholmness, not the desired one. But in
certain cases this can be helpful too.

Suppose again a Z2-grading of E and D, D =
(

0 D−

D+ 0

)
, L2(E) =

L2(E+) ⊕ L2(E−), W (E) = W (E+) ⊕W (E−). Following Gilles Carron, we now
define the extended index indeD

+ as

indeD
+ := dim ker W D+ − dim ker L2D

−

= dim{ϕ ∈ W (E+) |D+ϕ = 0} −
− dim{ϕ ∈ L2(E−) |D−ϕ = 0}. (2.20)
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If we denote h∞(D+) := dim(kerW D+/ kerL2 D+) then we can (2.20) rewrite as

indeD
+ = h∞(D+) + indL2D

+ = h∞(D+) + dim ker L2D
+ − dim ker L2D

−.
(2.21)

The most interesting question now are applications and examples. For D =
Gauß–Bonnet operator, there are in fact good examples (cf. [6]). For the general
case it is not definitely clear, is non-parabolicity really a practical sufficient crite-
rion for Fredholmness since in concrete cases it will be very difficult it to establish.
In some well known standard cases which have been presented by Carron and
which we will discuss now it is of great use.

Proposition 2.18. Let D : C∞(E) −→ C∞(E) be a generalized Dirac operator and
assume that outside a compact K ⊂ M the smallest eigenvalue λmin(x) of Rx in
D2 = ∇∗∇+R is ≥ 0. Then D is non-parabolic at infinity. �

We obtain from Proposition 2.18

Corollary 2.19. Assume the hypothesis of 2.18. Then D : W0(E) −→ L2(E) is
Fredholm. �

Under certain additional assumptions the pointwise condition on λmin(x)
of Rx can be replaced by a (weaker) integral condition. Denote R−(x) =
max{0,−λmin(x)}, where λmin(x) is the smallest eigenvalue of Rx.

Theorem 2.20. Suppose that for a p > 2 (Mn, g) satisfies the Sobolev inequality

cP (M)

⎛⎝∫
M

|u|
2p

p−2 (x) dvolx(g)

⎞⎠
p−2
2

≤
∫
M

|du|2(x) dvolx(g) for all u ∈ C∞
c (M)

(2.22)
and ∫

M

|R−|
p
2 (x) dvolx(g) <∞.

Then D : W0(E) −→ L2(E) is Fredholm. �
Another important example are manifolds with a cylindrical end which we

already mentioned. In this case, there is a compact submanifold with boundary
K ⊂M such that (M \K, g) is isometric to (]0,∞[×∂K, dr2 + g∂K). One assumes
that (E, h)|]0,∞[×∂K also has product structure and D|M\K = ν ·

(
∂
∂r + A

)
, where

ν· is the Clifford multiplication with the exterior normal at {γ} × ∂K and A is
first-order elliptic and self-adjoint on E|∂K .

Proposition 2.21. D is non-parabolic at infinity.

Proof. There are two proofs. The first one refers to [3]. According to proposition
2.5 of [3], there exists on M \K a parametrix Q : L2(E|M\K) −→ Ω2,1

locE|M\K , D)
such that QDϕ = ϕ for all ϕ ∈ C∞

c (E|M\K). Hence for C∞
c (E|M\K), U ⊃M \K

bounded,
|ϕ|L2(E|U ) = |QDϕ|L2(E|U ) ≤ |Q|L2→Ω2,1 · |Dϕ|L2 .
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The other proof is really elementary calculus. For ϕ ∈ C∞
c (E|M\K),

|ϕ(r, y)| =

∣∣∣∣∣∣
r∫

0

∂ϕ

∂r
dr

∣∣∣∣∣∣ ≤ √r ·
∣∣∣∣∂ϕ

∂r

∣∣∣∣
L2

.

Hence

|ϕ|2L2(E|]0,T [×∂K) ≤
T 2

2

∣∣∣∣∂ϕ

∂r

∣∣∣∣2
L2

≤ T 2

2

(∣∣∣∣∂ϕ

∂r

∣∣∣∣2
L2

+ |Aϕ|2L2

)
=

T 2

2
|Dϕ|2L2

. �

The authors of [3] define extended L2-sections of E|]0,∞[×∂K as sections ϕ ∈
L2,loc, ϕ(r, y) = ϕ0(r, y) + ϕ∞(y), ϕ0 ∈ L2, ϕ∞ ∈ kerA.

Proposition 2.22. The extended solutions of Dϕ = 0 are exactly the solutions of
Dϕ = 0 in W .

Proof. Let {ϕλ}λ∈σ(A) be a complete orthonormal system in L2(E|∂K) consisting
of the eigensections of A. Then we can a solution ϕ of Dϕ = 0 on ]0,∞[×∂K
decompose as

ϕ(r, y) =
∑

λ∈σ(A)

cλe−λrϕλ(y) (2.23)

and ϕ ∈W if and only if cλ = 0 for λ < 0. In this case

ϕ0(r, y) =
∑

λ∈σ(A)
λ>0

cλe−λrϕλ(y), ϕ∞(y) =
∑

λ∈σ(A)

c0,iϕ0,i(y). �

This proposition can also be reformulated as

Proposition 2.23. Denote by P≤0 or P<0 the spectral projection of A onto the sum
of eigenspaces belonging to eigenvalues ≤ 0 or < 0, respectively. Then

a) ϕ is a solution in W of Dϕ = 0 if and only if

Dϕ = 0 on K and P<0ϕ = 0 on ∂K.

b) ϕ is an L2-solution of Dϕ = 0 if and only if

Dϕ = 0 on K and P≤0ϕ = 0 on ∂K. �

There is a very general approach to index theory as established by Connes,
Roe and others. The initial data are as follows: D an elliptic differential operator
as above, B an operator algebra, the K-theory Ki(B) of B, the cyclic cohomology
HC∗(B) of B. Then one constructs the diagram

D −→ IndD ∈ Ki(B)

↓ ↓

ID −→ 〈ID, m〉 = indtD
?= indaD = 〈IndD, ζ〉
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Here ID is of cohomological nature, m a fundamental class, 〈ID, m〉 a pair-
ing, IndD comes from ellipticity and the 6 term exact sequence of K-theory,
ζ ∈ HC∗(B) and 〈IndD, ζ〉 is the Connes’ pairing.

Choice of B, i, ζ, m, IndD yields a concrete index theory. We refer to [12], [13],
[14], [15] for details. The classical index theory on closed manifolds is given by the
choice i = 0, B = ideal K of compact operators, IndD ∈ K0(K) = projectors
– projectors, HC0 # ζ = trace, trIndD = indaD, ID = classical index from,
m = [M ]. The lack of all these (absolute) index theories for open manifolds is that
they either refer to very special cases or there are not enough serious applications.

The next section is devoted to a general relative index theory.

3. Relative index theorems for generalized Dirac operators

Let (Mn, g) be closed, oriented (E, h,∇, ·, τ) −→ (Mn, g) a supersymmetric Clif-

ford bundle with involution τ and D =
(

0 D−

D+ 0

)
the associated generalized

Dirac operator. Then
indaD+ = tr(τe−tD2

).
Starting with this simple fact, one could attempt to define in the open case a
relative index for a pair of generalized Dirac operators D, D′ by

ind(D, D′) := tr(τ(e−tD2 − e−tD′2
)).

With this intention in mind there arise immediately several problems.
1) One has to assure that D, D′ are self-adjoint in the same Hilbert-space.
2) One has to assure that e−tD2 − e−tD′2

is of trace class.
3) One has to assure that tr(τ(e−tD2 − e−tD′2

)) is independent of t.
4) Finally one has to present substantial applications.

The initial data for a fixed vector bundle E −→ M and different Clifford struc-
tures are (E, h,∇ = ∇h, ·) −→ (Mn, g) and (E, h′,∇′ = ∇h′

, ·′) −→ (Mn, g′),
respectively. These yield generalized Dirac operators D = D(h,∇, ·, g) and D′ =
D(h′,∇′, ·′, g′). D and D′ act in different Hilbert spaces, i.e., e−tD2−e−tD′2

is not
defined. But this can be repaired by two unitary transformations. Denote by D′

already the result after performing this transformations.
To describe the possibly maximal perturbations (h′,∇′, ·′, g′) of (h,∇, ·, g), we

introduced in [8] uniform structures of Clifford structures and defined generalized
components. We indicate here briefly the main definitions. First of all, we restrict
to manifolds and bundles (E, h,∇) −→ (Mn, g) of bounded geometry of order k,
i.e., we assume

rinj(Mn, g) > 0, (I)

|(∇g)iRg| ≤ Ci, 0 ≤ i ≤ k, (Bk(M, g))

|∇iRE | ≤ Di, 0 ≤ i ≤ k. (Bk(E,∇))



Index Theory 85

For bounded geometry of order k, k ≥ r > n
p + 1, we defined completed

manifolds of diffeomorphisms Dp,r(M1, M2), Dp,r(E1, E2). This construction is
very long and complicated. The smooth elements in Dp,r(·, ·) shall be denoted by
D̃p,r(·, ·). Here a diffeomorphism f = (fE , fM ) ∈ D̃p,r(E1, E2) if and only if fE =
expf̃E

X ◦ f̃E , f̃E ∈ C∞,r(E1, E2) a diffeomorphism, f̃−1
E ∈ C∞,r(E2, E1) and X

a smooth section of f∗
ETE2, such that |X |p,r =

(∫
M

r∑
i=0

|∇iX |px dvolx(g1)
) 1

p

< ∞.

Here ∇ = f̃∗
E∇TE2 , ∇TE2 = Kaluza–Klein connection. C∞,r(M, N) is the set of

all smooth maps f : (Mn, gM ) −→ (Nn′
, gN ) such that sup

x∈M
|∇idf |x <∞, 0 ≤ i ≤

r−1. Here ∇ is the induced connection in T ∗M⊗f∗TN , df ∈ C∞(T ∗M⊗f∗TN).
fM in (fE , fM ) must satisfy analogous conditions.

Denote by CLBN,n(I, Bk) the set of (Clifford isometry classes) of all Clifford
bundles (E, h,∇h, ·) −→ (Mn, g) of (module) rank N over n-manifolds, all with
(I) and (Bk).

Lemma 3.1. Let Ei = ((Ei, hi,∇hi , ·i) −→ (Mn
i , gi)) ∈ CLBN,n(I, Bk), i = 1, 2

and f = (fE , fM ) ∈ D̃p,r+1(E1, E2) ∩ C∞,k+1(E1, E2) be a vector bundle isomor-
phism between bundles of Clifford modules, fE(X ·1 Φ) = (fM )∗X ·2 fEΦ. Then
f∗E2 := ((E1, f

∗
Eh2, f

∗
E∇h2 , f∗

E ·2) −→ (M1, f
∗
Mg2)) ∈ CLBN,n(I, Bk).

Proof. The definitions of f∗
Eh2, f∗

E∇h2 , f∗
Mg2 are clear. f∗

E·2 is defined by
X(f∗

E·2)Φ = f−1
E (f∗X ·2 fEΦ). It is now an easy calculation that f∗E2 ∈

CLBN,n(I, Bk). �
In the sequel | ·− · |... denotes the Sobolev norm in the corresponding bundle.

Let k ≥ r > n
p + 2 and define for E1, E2 ∈ CLBN,n(I, Bk)

dp,r
L,diff (E1, E2) = inf{max{0, log b|dfE |}+ max{0, log b|df−1

E |}+

max{0, log b|dfM |} + max{0, log b|df−1
M |}+

|g1 − f∗
Mg2|g1,p,r + |h1 − f∗

Eh2|g1,h1,∇h1 ,p,r +

|∇h1 − f∗
E∇h2 |g1,h1,∇h1 ,p,r + | ·1 −f∗

E ·2 |g1,h1,∇h1 ,p,r

| f = (fE , fM ) ∈ D̃p,r(E1, E2) is a (k + 1)− bounded
isomorphism of Clifford bundles}

if {. . . } �= ∅ and inf{. . . } < ∞. In the other case set dp,r
L,diff (E1, E2) =∞. dp,r

L,diff

is numerically not symmetric but nevertheless it defines a uniform structure which
is by definition symmetric. Set for δ > 0

Vδ = {(E1, E2) ∈ CLBN,n(I, Bk))2} | dp,r
L,diff (E1, E2) < δ}.

Proposition 3.2. L = {Vδ}δ>0 is a basis for a metrizable uniform structure
Up,r

L,diff (CLBN,n(I, Bk)). �
Denote

CLBN,n,p
L,diff ,r(I, Bk)
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for the pair (CLBN,n(I, Bk),Up,r) and

CLBN,n,p,r
L,diff (I, Bk)

for the completion. We introduce the generalized component gen comp(E) =
gen compp,r

L,diff ((E, h,∇h) −→ (M, g)) ⊂ CLBN,n,p,r
L,diff (I, Bk) by

gen compp,r
L,diff (E) = {E′ ∈ CLBN,n,p,r

L,diff (I, Bk) | dp,r
L,diff (E, E′) <∞}.

gen comp(E) contains arccomp(E) and is endowed with a Sobolev topology in-
duced from Up,r

L,diff .
The last step in our uniform structures approach is the additional ad-

mission of compact topological perturbations. We assume f = (fE , fM )|M1\K1 ,
h = (hE , hM )|M2\K2=fM (M1\K1) vector bundle isomorphisms (not necessary Clif-
ford isometric). Then we get dp,r

L,diff ,rel (E1, E2), define Vδ, L = {vδ}δ>0, obtain
the metrizable uniform structure Up,r

L,diff ,rel (CLBN,n(I, Bk)) and finally the com-
pletion CLBN,n,p,r

L,diff ,rel . We set again

gen comp(E) = gen compp,r
L,diff ,rel (E)

= {E′ ∈ CLBN,n,p,r
L,diff ,rel (I, Bk)) | dp,r

L,diff ,rel (E, E′) <∞}

which contains the arc component and inherits a Sobolev topology from Up,r
L,diff ,rel .

The main goal is to prove that

e−tD2
− e−tD̃′2

is for t > 0 of trace class for where D̃′ is an appropriate transform of D′. We
decompose the perturbation into several steps, 1) ∇ −→ ∇′, all other fixed,
2) h,∇ −→ h′,∇′, ·, g fixed, 3) h,∇, · −→ h′,∇′, ·′, g fixed and finally 4)
h,∇, ·, g −→ h′,∇′, ·′, g′. The last step consists in even admitting compact topo-
logical perturbations. The first (and simplest) step is settled by

Theorem 3.3. Assume (E,∇) −→ (Mn, g) with (I), (Bk), (E,∇) with (Bk), k ≥
r > n+2, n ≥ 2, ∇′ ∈ comp(∇)∩CE(Bk) ⊂ C1,r

E (Bk), D = D(g,∇), D′ = D(g,∇′)
generalized Dirac operators. Then

e−tD2 − e−tD′2
and De−tD2 −D′e−tD′2

are trace class operators for t > 0 and their trace norm is uniformly bounded on
compact t-intervals [a0, a1], a0 > 0. �

Here ∇′ ∈ comp1,r(∇) means |∇−∇′|∇,1,r <∞ and both connections satisfy
(Bk(E)).

The first step in the proof is Duhamel’s principle. We remark that

DD = DD′ , DD2 = DD′2 .



Index Theory 87

Lemma 3.4. Assume t > 0. Then

e−tD2 − e−tD′2
=

t∫
0

e−sD2
(D′2 −D2)e−(t−s)D′2

ds. �

Proof. The assertion means at heat kernel level

W (t, m, p)−W ′(t, m, p) = −
t∫

0

∫
M

(W (s, m, q), (D2 −D′2)W ′(t− s, q, p))q dq ds,

where (, )q means the fibrewise scalar product at q and dq = dvolq(g). Hence
we have to prove this equation, which is an immediate consequence of Duhamel’s
principle. We present the proof, which is the last of the following 7 facts and
implications.

1) For t > 0 is W (t, m, p) ∈ L2(M, E, dp) ∩ D2
D

2) If Φ, Ψ ∈ D2
D then

∫
(D2Φ, Ψ)− (Φ, D2Ψ) dvol = 0 (Greens formula).

3) ((D2 + ∂
∂τ )Φ(τ, g)Ψ(t− τ, q))q − (Φ(τ, g), (D2 + ∂

∂t )Ψ(t− τ, q))q

= (D2(Φ(τ, q), Ψ(t−τ, q))q−(Φ(τ, q), D2Ψ(t−τ, q))q+ ∂
∂τ (Φ(τ, g), Ψ(t−τ, q))q

.

4)
β∫
α

∫
M

((D2 + ∂
∂τ )Φ(τ, q), Ψ(t− τ, q))q − (Φ(τ, q), (D2 + ∂

∂t )Ψ(t− τ, q))q dq dτ

=
∫
M

[(Φ(β, q), Ψ(t − β, q)q − (Φ(α, q), Ψ(t − α, q))q] dq.

5) Φ(t, q) = W (t, m, q), Ψ(t, q) = W ′(t, q, p) yields

−
β∫
α

∫
M

(W (τ, m, q), (D2 + ∂
∂t )W

′(t− τ, q, p) dq dτ

=
∫
M

[(W (β, m, q), W ′(t− β, q, p))q − (W (α, m, q), W ′(t− α, q, p))q ] dq .

6) Performing α→ 0+, β → t− in 5) yields

−
t∫
0

∫
M

(W (s, m, q), (D2 + ∂
∂t )W

′(t−s, q, p))q dq ds = W (t, m, p)−W ′(t, m, p).

7) Finally, using D2 + ∂
∂t = D2 − D′2 + D′2 + ∂

∂t and (D′2 + ∂
∂t )W

′ = 0 we
obtain

W (t, m, p)−W ′(t, m, p) = −
t∫
0

∫
M

(W (s, m, q), (D2−D′2)W ′(t−s, q, p))q dq ds

which is the assertion. �

If we write D2 −D′2 = D(D −D′) + (D −D′)D′ then

e−tD2 − e−tD′2
= −

t∫
0

e−sD2
(D2 −D′2)e−(t−s)D′2

ds
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= −
t∫

0

e−sD2
D(D −D′)e−(t−s)D′2

ds

−
t∫

0

e−sD2
(D −D′)D′e−(t−s)D′2

ds

=

t∫
0

e−sD2
Dηe−(t−s)D′2

ds

+

t∫
0

e−sD2
ηD′e−(t−s)D′2

ds,

where η = ηop in the sense of Section 3, ηop (Ψ)|x =
n∑

i=1

eiηei(Ψ) and |ηop |op,x ≤

C · |η|x, C independent of x. We split
t∫
0

=
t
2∫
0

+
t∫

t
2

,

e−tD2 − e−tD′2
=

t
2∫

0

e−sD2
Dηe−(t−s)D′2

ds (I1)

+

t
2∫

0

e−sD2
ηD′e−(t−s)D′2

ds (I2)

+

t∫
t
2

e−sD2
Dηe−(t−s)D′2

ds (I3)

+

t∫
t
2

e−sD2
ηD′e−(t−s)D′2

ds. (I4)

We want to show that each integral (I1)− (I4) is a product of Hilbert–Schmidt
operators and to estimate their Hilbert–Schmidt norm. Consider the integrand
of (I4),

(e−sD2
η)(D′e−(t−s)D′2

).

There holds

|e−(t−s)D′2 |L2→H1 ≤ C · (t− s)−
1
2

|D′e−(t−s)D′2 |L2→L2 ≤ |D′|H1→L2 · |e−(t−s)D′2 |L2→H1

≤ C · (t− s)−
1
2 .
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Write

(e−sD2
η)(D′e−(t−s)D′2

) = (e−
s
2 D2

f)(f−1e−
s
2 D2

η)(D′e−(t−s)D′2
).

Here f shall be a scalar function which acts by multiplication. The main
point is the right choice of f . e−

s
2 D2

f has the integral kernel

W (
s

2
, m, p)f(p) (3.1)

and f−1e−
s
2 D2

η has the kernel

f−1(m)W (
s

2
, m, p)η(p). (3.2)

We have to make a choice such that (3.1), (3.2) are square integrable over
M ×M and that their L2-norm is on compact t-intervals uniformly bounded.

We decompose the L2-norm of (3.1) as∫
M

∫
M

|W (
s

2
, m, p)|2|f(m)|2 dm dp = (3.3)

∫
M

∫
dist(m,p)≥c

|W (
s

2
, m, p)|2|f(m)|2 dp dm = (3.4)

∫
M

∫
dist(m,p)<c

|W (
s

2
, m, p)|2|f(m)|2 dp dm (3.5)

We use the fact that for any T > 0 and sufficiently small ε > 0 there exists C > 0
such that

|W (t, m, p)| ≤ e−(t−ε) inf σ(D2) · C · C(m) · C(p)

for all t ∈]T,∞[ and obtain for s ∈] t
2 , t[

(3.5) ≤
∫
M

C1|f(m)|2vol Bc(m) dm ≤ C2

∫
M

|f(m)|2 dm

Moreover, for any ε > 0, T > 0, δ > 0 there exists C > 0 such that for r > 0,
m ∈M , T > t > 0 holds∫

M\Br(m)

|W (t, m, p)|2dp ≤ C · C(m) · e−
(r−ε)2

(4+δ)t ,

which yields∫
M

∫
dist(m,p)≥c

|W (
s

2
, m, p)|2|f(m)|2 dp dm ≤

∫
M

C3e
−−(c−ε)2

4+δ
s
2 |f(m)|2 dm ≤

≤ C3 · e−
−(c−ε)2

4+δ
s
2

∫
M

|f(m)|2 dm, c > ε. (3.6)
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Hence the estimate of
∫
M

∫
M

|W ( s
2 , m, p)|2|f(m)|2dpdm for s ∈ [ t

2 , t] is done if∫
M

|f(m)|2 dm <∞

and then |e− s
2 D2

f |2 ≤ C4 · |f |L2 , where C4 = C4(t) contains a factor e−at, a > 0,
if inf σ(D2) > 0.

For (3.2) we have to estimate∫
M

∫
M

|f(m)|−2|(W (
s

2
, m, p), ηop (p)·)p|2 dp dm (3.7)

We recall a simple fact about Hilbert spaces. Let X be a Hilbert space, x ∈ X, x �=
0. Then |x| = sup

|y|=1

|〈x, y〉|,

|x|2 =
(

sup
|y|=1

|〈x, y〉|
)2

. (3.8)

This follows from |〈x, y〉| ≤ |x| · |y| and equality for y = x
|x| . We apply this to E →

M , X = L2(M, E, dp), x = x(m) = W (t, m, p), ηop (p)·)p = W (t, m, p) ◦ ηop (p)
and have to estimate

sup
Φ∈C∞

c (E)
|Φ|L2=1

N(Φ) = sup
Φ∈C∞

c (E)
|Φ|L2=1

|〈δ(m), e−tD2
ηop Φ〉|L2 (3.9)

The heat kernel is of Sobolev class,

W (t, m, ·) ∈ H
r
2 (E), |W (t, m, ·)|

H
r
2
≤ C5(t). (3.10)

Hence we have can restrict in (3.9) to

sup
Φ∈C∞

c (E)
|Φ|L2=1

|Φ|
H

r
2
≤C5

N(Φ) (3.11)

In the sequel we estimate (3.11). For doing this, we recall some simple facts con-
cerning the wave equation

∂Φs

∂s
= iDΦs, Φ0 = Φ, Φ C1 with compact support. (3.12)

It is well known that (3.12) has a unique solution Φs which is given by

Φs = eisDΦ (3.13)

and
supp Φs ⊂ U|s| (supp Φ) (3.14)

U|s| = |s|-neighborhood. Moreover,

|Φs|L2 = |Φ|L2 , |Φs|H r
2

= |Φ|
H

r
2
. (3.15)
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We fix a uniformly locally finite cover U = {Uν}ν = {Bd(xν)}ν by normal charts
of radius d < rinj(M, g) and associated decomposition of unity {ϕν}ν satisfying

|∇iϕν | ≤ C for all ν, 0 ≤ i ≤ k + 2 (3.16)

Write

N(Φ) = |〈δ(m), e−tD2
ηop Φ〉| = 1√

4πt

∣∣∣〈δ(m),

+∞∫
−∞

e
−s2
4t eisD(ηop Φ) ds〉

∣∣∣
L2(dp)

=
1√
4πt

∣∣∣ +∞∫
−∞

e
−s2
4t (eisDηop Φ)(m) ds

∣∣∣
L2(dp)

. (3.17)

We decompose
ηop (Φ) =

∑
ν

ϕνηop Φ. (3.18)

(3.18) is a locally finite sum, (3.12) linear. Hence

(ηop (Φ))s =
∑

ν

(ϕνηop Φ)s. (3.19)

Denote as above
| |p,i ≡ | |W p,i ,

in particular
| |2,i ≡ | |W 2,i ∼ | |Hi , i ≤ k. (3.20)

Then we obtain from (3.15), (3.16) and an Sobolev embedding theorem

|(ϕνηop Φ)s|H r
2

= |ϕνηop Φ|
H

r
2
≤ C6|ϕνηop Φ|2, r

2
≤ C7|ηop Φ|2, r

2 ,Uν

≤ C8|η|2, r
2 ,Uν ≤ C9|η|1,r−1,Uν (3.21)

since r−1− n
i ≥

r
2 −

n
2 , r−1 ≥ r

2 , 2 ≥ i for r > n+2 and |Φ|
H

r
2
≤ C5. This yields

together with the Sobolev embedding the estimate

|(ηop Φ)s(m)| ≤ C10 ·
∑

ν
m∈Us(Uν)

|(ϕνηop Φ)s|2, r
2

≤ C11 ·
∑

ν
m∈Us(Uν)

|η|1,r−1,Uν ≤ C12 · |η|1,r−1,B2d+|s|(m)

= C12 · vol (B2d+|s|(m)) ·
(

1
vol B2d+|s|(m)

· |η|1,r−1,B2d+|s|(m)

)
. (3.22)

There exist constants A and B, independent of m s. t.

vol (B2d+|s|(m)) ≤ A · eB|s| .

Write
e−

s2
4t · vol (B2d+|s|(m)) ≤ C13 · e−

9
10

s2
4t , C13 = A · e10B2t, (3.23)
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thus obtaining

N(Φ) ≤ C14

∞∫
0

e−
9
10

s2
4t

(
1

vol B2d+|s|(m)
· |η|1,r−1,B2d+|s|(m)

)
ds,

C14 = C12 · C13 = C12 · A · e10B2t.

Now we apply Buser/Hebey’s inequality∫
M

|u− uc| dvolx(g) ≤ C · c
∫
M

|∇u| dvolx(g)

for u ∈W 1,1(M) ∼ C∞(M), c ∈]0, R[, Ric (g) ≥ k, C = C(n, k, R) and

uc(x) :=
1

vol Bc(x)

∫
Bc(x)

u(y) dvoly

with R = 3d + s and infer∫
M

1
vol B2d+|s|(m)

· |η|1,r−1,B2d+|s|(m) dm

≤ |η|1,r−1 + C(3d + s) · (2d + s)|∇η|1,r−1

≤ |η|1,r−1 + C(3d + s) · (2d + s)|η|1,r−1. (3.24)

C(3d + s) depends on 3d + s at most linearly exponentially, i.e.,

C(3d + s) · (2d + s) ≤ A1e
B1s.

This implies
∞∫
0

e−
9
10

s2
4t

∫
M

1
vol B2d+|s|(m)

· |η|1,r−1,B2d+|s|(m) dm ds (3.25)

≤ =

∞∫
0

e−
9
10

s2
4t (|η|1,r−1 + C(3d + s) · (2d + s)|η|1,r−1) ds

≤
∞∫
0

e−
8
10

s2
4t ds(|η|1,r−1 + A1e

10B2
1t|η|1,r

=
√

t · 1
2

√
5π(|η|1,r−1 + A1e

10B2
1t|η|1,r) < ∞.

The function R+ ×M → R,

(s, m)→ e−
9
10

s2
4t

(
1

vol B2d+|s|(m)
· |η|1,r−1,B2d+|s|(m)

)
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is measurable, nonnegative, the integrals (3.24), (3.25) exist, hence according to the
principle of Tonelli, this function is 1-summable, the Fubini theorem is applicable
and

η̃ := C10 ·
∞∫
0

e−
9
10

s2
4t

(
1

vol B2d+|s|(m)
· |η|1,r−1,B2d+|s|(m)

)
ds

is (for η �≡ 0) everywhere �= 0 and i-summable. We proved∫
|(W (t, m, p), ηop ·)p|2 ≤ η̃(m)2. (3.26)

Now we set

f(m) = (η̃(m))
1
2 (3.27)

and infer f(m) �= 0 everywhere, f ∈ L2 and

|f−1e−
s
2 D2

◦ η|2L2
=

∫
M

∫
M

f(m)−2|((W (
s

2
, m, p), ηop )p|2 dp dm

≤
∫
M

1
η̃(m)

η̃(m)2 dm =
∫
M

η̃(m) dm

≤ C12 · A · e10B2s√s · 1
2

√
5π(|η|1,r−1 + A1e

10B2
1s|η|1,r)

≤ C15

√
se10B2s|η|1,r, (3.28)

i.e.,

|f−1e−
s
2 D2

◦ η|2 ≤ C
1
2
15 · s

1
4 · e5B2s · |η|

1
2
1,r. (3.29)

Here according to the term A1e
10B2

1s, C15 still depends on s.
We obtain

|e− s
2 D2

◦ f |L2 · |f−1 ◦ e−
s
2 D2

◦ η| ≤ C4|f |L2 · C
1
2
15 · s

1
4 · e5B2s · |η|

1
2
1,r

≤ C4 · C15

√
se10B2s|η|1,r = C16 ·

√
s · e10B2s|η|1,r. (3.30)

This yields e−sD2 ◦ η is of trace class,

|e−sD2
η|1 ≤ |e−

s
2 D2 ◦ f |2 · |f−1e−

s
2 D2

η|2 ≤ C16

√
se10B2s|η|1,r, (3.31)

e−sD2 ◦ η ◦D′ ◦ e−(t−s)D′2
is of trace class,

|e−sD2 ◦ η ◦D′ ◦ e−(t−s)D′2 |1 ≤ |e−sD2
η|1 · |D′e−(t−s)D′2 |op

≤ C16

√
se10B2s|η|1,r · C′ · 1√

t− s
, (3.32)
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t∫

t
2

(e−sD2
◦ η ◦D′ ◦ e−(t−s)D′2

ds

∣∣∣∣∣∣∣
1

≤
t∫

t
2

|e−sD2
η ◦D′e−(t−s)D′2

|1 ds

≤ C16 · C′ · e10B2t|η|1,r ·
t∫

t
2

(
s

t− s

) 1
2

ds, (3.33)

t∫
t
2

(
s

t− s

) 1
2

ds = [
√

s(t− s) +
t

2
arcsin

2s− t

t
]tt
2

= − t

2
+

t

2
π

2
=

t

2
(
π

2
− 1),

∣∣∣∣∣∣∣
t∫

t
2

(e−sD2
◦ η ◦D′ ◦ e−(t−s)D′2

ds

∣∣∣∣∣∣∣
1

≤ C16 · C′ · e10B2t · (π

2
− 1) · t

2
|η|1,r

= C17e
10B2t · t · |η|1,r. (3.34)

Here C17 = C17(t) and C17(t) can grow exponentially in t if the volume grows
exponentially. (3.34) expresses the fact that (I4) is of trace class and its trace
norm is uniformly bounded on any t-interval [a0, a1], a0 > 0. The treatment of
(I1)–(I3) is quite parallel to that of (I4). Write the integrand of (I3), (I2) or (I1) as

(De−
s
2 D2

)[(e−
s
4 D2

f)(f−1e−
s
4 D2

η)]e−(t−s)D′2
(3.35)

or
(e−sD2

)[(ηe−
(t−s)

4 D′2
f−1)(fe−

(t−s)
4 D′2

)]D′e−
t−s
2 D′2

(3.36)
or

(e−sD2
D)[(ηe−

(t−s)
2 D′2

f−1)(fe−
(t−s)

2 D′2
)], (3.37)

respectively. Then in the considered intervals the expression [. . . ] are of trace class
which can literally be proved as for (I4). The main point in (I4) was the estimate of
f−1e−τD2

η. In (3.36), (3.37) we have to estimate expressions ηe−τD′2
f−1. Here we

use the fact that η = ηop is symmetric with respect to the fibre metric h: the en-
domorphism ηei(·) is skew symmetric as the Clifford multiplication ei· which yields
together that ηop is symmetric. Then the L2-estimate of (ηop ·W ′(τ, m, p), ·) is
the same as that of W ′(τ, m, p), ηop (p)·) and we can perform the same procedure
as that starting with (3.6). The only distinction are other constants. Here essen-
tially enters the equivalence of the D- and D′-Sobolev spaces, i.e., the symmetry
of our uniform structure. The factors outside [. . . ] produce 1√

s
on [ t

2 , t], 1√
t−s

and
1√
s

on [0, t
2 ] (up to constants). Hence (I1)− (I3) are of trace class with uniformly

bounded trace norm on any t-interval [a0, a1], a0 > 0. This finishes the proof of
the first part of Theorem 3.3.

We must still prove the trace class property of

e−tD2
D − e−tD′2

D′. (3.38)
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Consider the decomposition

e−tD2
D − e−tD′2

D′ = e−
t
2 D2

D(e−
t
2 D2

− e−
t
2 D′2

) (3.39)

+ (e−
t
2 D2

D − e−
t
2 D′2

D′)e−
t
2 D′2

. (3.40)

According to the first part, e−
t
2 D2 − e−

t
2 D′2

is for t > 0 of trace class. Moreover,
e−

t
2 D2

D = De−
t
2 D2

is for t > 0 bounded, its operator norm is ≤ C√
t
. Hence their

product is for t > 0 of trace class and has bounded trace norm for t ∈ [a0, a1],
a0 > 0. (3.39) is done. We can write (3.40) as

(e−
t
2 D2

D − e−
t
2 D′2

D′)e−
t
2 D′2

= [e−
t
2 D2

(D −D′) + (e−
t
2 D2

− e−
t
2 D′2

)D′] · e− t
2 D′2

= [−e
t
2 D2

η]e−
t
2 D′2

+ [

t
2∫

0

e−sD2
Dηe−( t

2−s)D′s

ds

+

t
2∫

0

e−sD2
ηD′e−( t

2−s)D′2
ds](D′e−

t
2 D′2

). (3.41)

Now
[e−

t
2 D2

η] · e− t
2 D′2

= [(e−
t
4 D2

f)(f−1e−
t
4 D2

η)]e−
t
2 D′2

. (3.42)

(3.42) is of trace class and its trace norm is uniformly bounded on any [a0, a1],

a0 > 0, according the proof of the first part. If we decompose
t
2∫
0

=
t
4∫
0

+
t
2∫

t
4

then we

obtain back from the integrals in (3.41) the integrals (I1)− (I4), replacing t→ t
2 .

These are done. D′e−
t
2 D′2

generates C/
√

t in the estimate of the trace norm. Hence
we are done. �

Our procedure is to admit much more general perturbations than those of
∇ = ∇h only. Nevertheless, the discussion of more general perturbations is mod-
elled by the case of ∇-perturbation. In this next step, we admit perturbations of
g,∇h, ·, fixing h, the topology and vector bundle structure of E −→M . The next
main result shall be formulated as follows.

Theorem 3.5. Let E = (E, h,∇ = ∇h, ·) −→ (Mn, g) be a Clifford bundle with
(I), (Bk(M, g)), (Bk(E,∇)), k ≥ r + 1 > n + 3, E′ = (E, h,∇′ = ∇′h, ·′) −→
(Mn, g′) ∈ gen comp1,r+1

L,diff ,F (E) ∩ CLBN,n(I, Bk), D = D(g, h,∇ = ∇h, ·), D′ =

D(g′, h,∇′ = ∇′h, ·′) the associated generalized Dirac operators. Then for t > 0

e−tD2 − e−tD′2
L2 (3.43)

is of trace class and the trace norm is uniformly bounded on compact t-intervals
[a0, a1], a0 > 0.
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Here D′2
L2

is the unitary transformation of D′2 to L2 = L2((M, E), g, h).
3.5 needs some explanations. D acts in L2 = L2((M, E), g, h), D′ in L′

2 =
L2((M, E), g′, h). L2 and L′

2 are quasi isometric Hilbert spaces. As vector spaces
they coincide, their scalar products can be quite different but must be mutually
bounded at the diagonal after multiplication by constants. D is self-adjoint on DD

in L2, D′ is self-adjoint on DD′ in L′
2 but not necessarily in L2. Hence e−tD′2

and e−tD2 − e−tD′2
are not defined in L2. One has to graft D2 or D′2. Write

dvolq(g) ≡ dq(g) = α(q) · dq(g′) ≡ dvolq(g′). Then

0 < c1 ≤ α(q) ≤ c2, α, α−1 are (g,∇g)- and (g′,∇g′
)-bounded

up to order 3, |α− 1|g,1,r+1, |α− 1|g′,1,r+1 <∞, (3.44)

since g′ ∈ comp1,r+1(g). Define U : L2 −→ L′
2, UΦ = α

1
2 Φ. Then U is a uni-

tary equivalence between L2 and L′
2, U∗ = U−1. D′

L2
:= U∗D′U acts in L2,

is self-adjoint on U−1(DD′), since U is a unitary equivalence. The same holds
for D′2

L2
= U∗D′2U = (U∗D′U)2. It follows from the definition of the spectral

measure, the spectral integral and the spectral representations D′2 =
∫

λ2 dE′
λ,

e−tD′2
=

∫
e−tλ2

dE′
λ that D′2

L2
= U∗D′2U = U∗ ∫

λ2 dE′
λU =

∫
λ2 d(U∗E′

λU)
and

e−tD′2
L2 =

∫
e−tλ2

d(U∗E′
λU) = U∗(

∫
e−tλ2

dE′
λ)U = U∗e−tD′2

U. (3.45)

In (3.43) e−tD′2
L2 means e−tD′2

L2 = e−t(U∗D′U)2 = U∗e−tD′2
U . We obtain from

g′ ∈ comp1,r+1(g), ∇′h ∈ comp1,r+1(∇hg), ·′ ∈ comp1,r+1(·), D − α− 1
2 D′α

1
2 =

D − D′ − grad′α·′
2α and (3.44) the following lemma concerning the equivalence of

Sobolev spaces.

Lemma 3.6. W 1,i(E, g, h,∇h) = W 1,i(E, g′, h,∇′h) as equivalent Banach spaces,
0 ≤ i ≤ r + 1. �

Corollary 3.7. W 2,i(E, g, h,∇h) = W 2,i(E, g′, h,∇′h) as equivalent Hilbert spaces,
0 ≤ j ≤ r+1

2 . �

Corollary 3.8. Hj(E, D) ∼= HjK(E, D′), 0 ≤ j ≤ r+1
2 . �

3.6 has a parallel version for the endomorphism bundle EndE.

Lemma 3.9. Ω1,1,i(EndE, g, h,∇h) ∼= Ω1,1,i(EndE, g′, h,∇′h) 0 ≤ i ≤ r + 1. �

Lemma 3.10. Ω1,2,j(EndE, g, h,∇h) ∼= Ω1,2,j(EndE, g′, h,∇′h) 0 ≤ j ≤ r+1
2 . �

e−tD′2
L2 : L2 −→ L2 has evidently the heat kernel

W ′
L2

(t, m, p) = α− 1
2 (m)W ′(t, m, p)α

1
2 (p)

W ′ ≡WL′
2
. Our next task is to obtain an explicit expression for e−tD2 − e−tD′2

L2 .
For this we apply again Duhamel’s principle. The steps 1)–4) in the proof of 3.4
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remain. Then we set Φ(t, q) = W (t, m, q), Ψ(t, q) = W ′
L2

(t, m, q) and obtain

−
β∫

α

∫
M

hq(W (τ, m, q), (D2 +
∂

∂t
)W ′

L2
(t− τ, q, p)) dq(g) dτ

=
∫
M

[hq(W (β, m, q), W ′
L2

(t− β, q, p)− hq(W (α, m, q), W ′
L2

(t− α, q, p)] dq(g).

Performing α −→ 0+, β −→ t and using dq(g) = α(q)dq(g′) yields

−
t∫

0

∫
M

hq(W (s, m, q), (D2 +
∂

∂t
)W ′(t− s, q, p)) dq(g) ds =

= −
t∫

0

∫
M

[hq(W (s, m, q), (D2 −D′2
L2

)W ′
L2

(t− s, q, p) dq(g) ds

= W (t, m, p)α(p)−W ′
L2

(t, m, p). (3.46)

(3.46) expresses the operator equation

e−tD2
α− e−tD′2

L2 = −
t∫

0

e−sD2
(D2 −D′2

L2
)e−(t−s)D′2

L2 ds.

e−tD2
α− e−tD′2

L2 = e−tD2
(α− 1) + e−tD2

− e−tD′2
L2 ,

hence

e−tD2
− e−tD′2

L2 = −e−tD2
(α − 1)−

t∫
0

e−sD2
(D2 −D′2

L2
)e−(t−s)D′2

L2 ds.

(3.47)

As we mentioned in (3.44), (α − 1) = dq(g)
dq(g′) − 1 =

√
det g√
det g′ − 1 ∈ Ω0,1,r+1 since

g ∈ comp1,r+1(g). We write e−tD2
(α−1) = (e−

t
2 D2

f)(f−1e−
t
2 D2

(α−1)), determine
f as in the proof of Theorem 3.3 from ηα = α − 1 and obtain e−tD2

(α − 1) is of
trace class with trace norm uniformly bounded on any t-interval [a0, a1], a0 > 0.
Decompose D2−D′2

L2
= D(D−D′

L2
)+ (D−D′

L2
)D′

L2
. We need explicit analytic

expressions for this. D(D−D′
L2

) = D(D−α− 1
2 D′α

1
2 ) = D(D−D′)−D grad ′α·′

2α ,
(D−D′

L2
)D′

L2
= ((D−D′)− grad ′α·′

2α )α− 1
2 D′α

1
2 . If we set again D−D′ = −η then
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we have to consider as before with grad ′α
2α = grad ′α·′

2α where grad ′ ≡ grad g′

t
2∫

0

e−sD2
D(η − grad ′α

2α
)e−(t−s)D′2

L2 ds

+

t
2∫

0

e−sD2
(η − grad ′α

2α
)D′

L2
e−(t−s)D′2

L2 ds

+

t∫
t
2

e−sD2
D(η − grad ′α

2α
)e−(t−s)D′2

L2 ds

+

t∫
t
2

e−sD2
(η − grad ′α

2α
)D′

L2
e−(t−s)D′2

L2 ds.

It follows immediately from g′ ∈ comp1,r+1(g) that the vector field grad ′α
α ∈

Ω0,1,r(TM). If we write ηop
0 = − grad ′α·′

α then ηop
0 is a zero-order operator, |η0|r <

∞ and we literally repeat the procedure for (I1) − (I4) as before, inserting η0 =
− grad ′α·′

α for η there. Hence there remains to discuss the integrals

t∫
0

e−sD2
Dηe−(t−s)D′2

L2 ds +

t∫
0

e−sD2
ηD′

L2
e−(t−s)D′2

L2 ds. (3.48)

The next main step is to insert explicit expressions for D −D′.
Let m0 ∈ M , U = U(m0) a manifold and bundle coordinate neighborhood

with coordinates x1, . . . , xn and local bundle basis Φ1, . . . ,Φn : U −→ E|U . Setting
∇ ∂

∂xi

Φα ≡ ∇iΦα = Γβ
iαΦβ , ∇Φα = dxi ⊗ Γβ

iαΦβ, we can write DΦα = Γβ
iαgik ∂

∂xk ·
Φβ , D′Φα = Γ′β

iαg′ik ∂
∂xk ·′ Φβ , or for a local section Φ

DΦ = gik ∂

∂xk
· ∇iΦ, D′Φ = g′ik

∂

∂xk
·′ ∇′

iΦ. (3.49)

This yields

−(D −D′)Φ = gik ∂

∂xk
· ∇iΦ− g′ik

∂

∂xk
·′ ∇′

iΦ

= [(gik − g′ik)
∂

∂xk
· ∇i + g′ik

∂

∂xk
· (∇i −∇′

i)

+g′ik
∂

∂xk
(· − ·′)∇′

i]Φ, (3.50)

i.e., we can write
−(D −D′)Φ = (ηop

1 + ηop
2 + ηop

3 )Φ, (3.51)
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where locally

ηop
1 Φ = (gik − g′ik)

∂

∂xk
· ∇iΦ, (3.52)

ηop
2 Φ = g′ik

∂

∂xk
· (∇i −∇′

i)Φ, (3.53)

ηop
3 Φ = g′ik

∂

∂xk
(· − ·′)∇′

iΦ. (3.54)

Here (g′ik) = (g′jl)
−1. We simply write ην instead ηop

ν , hence

(3.48) =

t∫
0

e−sD2
D(η1 + η2 + η3)e−(t−s)D′2

L2 ds (3.55)

+

t∫
0

e−sD2
(η1 + η2 + η3)D′

L2
e−(t−s)D′2

L2 ds. (3.56)

We have to estimate
t∫

0

e−sD2
Dηνe−(t−s)D′2

L2 ds (3.57)

and
t∫

0

e−sD2
ηνD′

L2
e−(t−s)D′2

L2 ds. (3.58)

Decompose
t∫
0

=
t
2∫
0

+
t∫

t
2

which yields

t
2∫

0

e−sD2
Dηνe−(t−s)D′2

L2 ds, (Iν,1)

t
2∫

0

e−sD2
ηνD′

L2
e−(t−s)D′2

L2 ds, (Iν,2)

t∫
t
2

e−sD2
Dηνe−(t−s)D′2

L2 ds, (Iν,3)

t∫
t
2

e−sD2
ηνD′

L2
e−(t−s)D′2

L2 ds. (Iν,4)

(Iν,1)–(Iν,4) look as (I1)–(I4) as before. But in distinction to that, not all ην = ηop
ν

are operators of order zero. Only η2 is a zero-order operator, generated by an
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EndE-valued 1-form η2. η1 and η3 are first-order operators. We start with ν = 2,
η2 · |η2|1,r < ∞ is a consequence of E′ ∈ comp1,r+1

L,diff (E) and we are from an
analytical point of view exactly in the situation as before. (I2,1)–(I2,4) can be
estimated quite parallel to (I1)–(I4) and we are done. There remains to estimate
(Iν,j), ν �= 2, j = 1, . . . , 4. We start with ν = 1, j = 3 and write

e−sD2
Dη1e

−(t−s)D′2
= (De−

s
2 D2

)(e−
s
4 D2 · f)(f−1e−

s
4 D2

η1)(e−(t−s)D′2
). (3.59)

De−
s
2 D2

and e−(t−s)D′2
are bounded in [ t

2 , t] and we perform their estimate as
before. e−

s
4 D2 · f is Hilbert–Schmidt if f ∈ L2. There remains to show that for

appropriate f

f−1e−
s
4 D2

η1

is Hilbert–Schmidt. Recall r + 1 > n + 3, n ≥ 2, which implies r
2 > n

2 + 1,
r− 1− n ≥ r

2 −
n
2 , r− 1 ≥ r

2 , 2 ≥ i. If we write in the sequel pointwise or Sobolev
norms we should always write |Ψ|g′,h,m′ , |Ψ|Hν(E,D′), |Ψ|g′,h,∇′,2, r

2
, |g − g′|g′,m,

|g−g′|g′,1,r etc. or the same with respect to g, h,∇, D, depending on the situation.
But we often omit the reference to g′, h,∇′, D, m, g, h . . . in the notation. The
justification for doing this in the Sobolev case is the symmetry of our uniform
structure.

Now

(η1Φ)(m) = ((gik − g′ik)
∂

∂xk
· ∇iΦ)|m, (3.60)

|η1Φ|m = |η1Φ|g,h,m

≤ C1 · |g − g′|g,m ·
(

n∑
k=1

∣∣∣∣ ∂

∂xk

∣∣∣∣2
g,m

) 1
2

·
(

n∑
i=1

|∇iΦ|2h,m

) 1
2

.

To estimate
n∑

k=1

∣∣ ∂
∂xk

∣∣2
g,m

more concretely we assume that x1, . . . , xn are normal

coordinates with respect to g, i.e., we assume a (uniformly locally finite) cover of
M by normal charts of fixed radius ≤ rinj(M, g). Then

∣∣ ∂
∂xk

∣∣2
g,m

= g
(

∂
∂xk , ∂

∂xk

)
=

gkk(m), and there is a constant C2 = C2(R, rinj(M, g)) s. t.
(

n∑
i=1

|∇iΦ|2h,m

) 1
2

≤

C2. Using finally |∇XΦ| ≤ |X | · |∇Φ|, we obtain

|η1Φ|m ≤ C · |g − g′|g · |∇Φ|h,m. (3.61)

(3.61) extends by the Leibniz rule to higher derivatives |∇kη1Φ|m, where the poly-
nomials on the right hand side are integrable by the module structure theorem
(this is just the content of this theorem). (3.60), (3.61) also hold (with other con-
stants) if we perform some of the replacements g −→ g′, ∇ −→ ∇′: We remark
that the expressions D(g, h,∇h, ·, D(g′, h,∇h, ·) are invariantly defined, hence

[D(g, h,∇h, ·)−D(g, h,∇h, ·)](Φ|U ) = ((gik − g′ik)∂k) · ∇i(Φ|U ). (3.62)
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We have to estimate the kernel of

hp(W (t, m, p), ηop
1 ·) (3.63)

in L2((M, E), g, h) and to show that this represents the product of two Hilbert–
Schmidt operators in L2 = L2((M, E), g, h). We cannot immediately apply the
procedure as before since ηop

1 is not of zero order but we would be done if we
could write (3.63) as

(ηop
1,1 (p)W (t, m, p), ηop

1,0 ·), (3.64)

ηop
1,1 of first order, ηop

1,0 of zeroth order.
Then we would replace W by ηop

1,1 (p)W (t, m, p), apply k ≥ r+1 > n+3, and
obtain

ηop
1,1 W (t, m, ·) ∈ H

r
2 (E), |W (t, m, ·)|

H
r
2
≤ C(t) (3.65)

and would then literally proceed as before.
Let Φ ∈ C∞

c (U). Then∫
(W (t, m, p), ηop

1 (p)Φ(p))p dvolp(g)

=
∫

(((gik − g′ik)∂k) · ∇iW, Φ)p dvolp(g)

−
∫

(W, (∇i(gik − g′ik)∂k) · Φ) dvolp(g)

= −
∫

(∇iW, (gik − g′ik)∂k · Φ)p dvolp(g)

−
∫

(W, (∇i((gik − g′ik)∂k)) ·Φ)p dvolp(g).

This can easily be globalized by introducing a u. l. f. cover by normal charts {Uα}α
of fixed radius, an associated decomposition of unity {ϕα}α as follows:∫

(W, ηop
1 (

∑
ϕαΦ)) =

∑
α

∫
(W, ηop

1 (ϕαΦ))

=
∑

α

∫
(∇α,iW, ((gik

α − g′ikα )∂α,k · ϕαΦ)

−
∑
α

∫
(W, (∇α,i((gik

α − g′ikα )∂k)) · ϕαΦ)

= −
∫

(
∑
α

∇α,iW, ϕα((gik
α − g′ikα )∂α,k) · Φ) (3.66)

−
∫

(W,
∑

α

ϕα(∇α,i((gik
α − g′ikα )∂k)) · Φ). (3.67)
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Using (3.66), (3.67), we write

N(Φ) = |〈δ(m), etD2
ηop
1 Φ〉|L2(M,E,dp)

= |(W (t, m, p), ηop
1 Φ)p|L2(M,E,dp)

= |(ηop
1,1 (p)W (t, m, p), ηop

1,0 Φ)p

+(W (t, m, p, ηop
1,0,0Φ))p|L2(M,E,dp). (3.68)

Now we use |∇Xχ| ≤ |X | · |∇χ|, that the cover is u.l.f. and |∇W | ≤ C1 ·
(|DW |+ W ) (since we have bounded geometry) and obtain

N(Φ) ≤ C · (|(DW (t, m, p), ηop
1,0 Φ|L2(M,E,dp) + |W (t, m, p, ηop

1,0,0Φ|L2(dp)

≡ C · (N1(Φ) + N2(Φ)). (3.69)

Hence we have to estimate

sup
Φ∈C∞

c (E)
|Φ|L2=1

N1(Φ) = sup
Φ∈C∞

c (E)
|Φ|L2=1

|〈δ(m), (De−tD2
)ηop

1,0 Φ〉|L2dp (3.70)

and
sup

Φ∈C∞
c (E)

|Φ|L2=1

N2(Φ) = sup
Φ∈C∞

c (E)
|Φ|L2=1

|〈δ(m), (e−tD2
)ηop

1,0,0Φ〉|L2dp. (3.71)

According to k > r + 1 > n + 3,

D(W (t, m, ·), W (t, m, ·) ∈ H
r
2 (E),

|(D(W (t, m, ·)|
H

r
2
, |W (t, m, ·)|

H
r
2
≤ C1(t) (3.72)

and we can restrict in (3.70), (3.71) to

sup
Φ∈C∞

c (E)
|Φ|L2=1

|Φ|
H

r
2
≤C1(t)

Ni(Φ). (3.73)

ηop
1,0 , ηop

1,0,0 are of order zero and we estimate them by

C · |g − g′|g,2, r
2
≤ C′|g − g′|g,1,r−1 (3.74)

and D · |∇(g − g′)|g,2, r
2
≤ D′|∇(g − g′)|g,1,r−1

≤ D′′|g − g′|g,1,r (3.75)

respectively. As we have seen already, into the estimate (3.75) enters |∇η|1,r−1,
i.e., in our case |∇2(g − g′)|r−1 ∼ |g − g′|r+1. For this reason we assumed E′ ∈
comp1,r+1

L,diff ,F (E). In the expression for N1(Φ) there is now a slight deviation,

N1(Φ) =
1√
4πt

1
2t

∣∣∣∣∣∣
+∞∫

−∞
s · e− s2

4t eisDηop
1,0 Φ(m) ds

∣∣∣∣∣∣ . (3.76)

We estimate in (3.76) s · e− 1
18

s2
4t by a constant and write

e−
17
18

s2
4t · vol (B2d+s(m)) ≤ C · e− 9

10
s2
4t
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and proceed now for N1(Φ), N2(Φ) literally as before. Hence (3.59) is of trace
class, its trace norm is uniformly bounded on any t-interval [a0, a1], a0 > 0. (I1,3)
is done. (I1,4) is absolutely parallel to (I1,3), even better, since the left hand factor

D is missing. |D′
L2

e−(t−s)D
′2
L2 |op now produces the factor 1√

t−s
which is integrable

over [ t
2 , t]. Write the integrand of (I1,1) as

(De−sD2
)(η1e

− (t−s)
2 D

′2
L2 f−1)(fe−

(t−s)
2 D

′2
L2 ). (3.77)

We proceed with (3.77) as before. Here η1 already stands at the right place, we must
not perform partial integration. Into the estimate enters again the first derivative
of W ′. De−sD2

generates the factor 1√
s

which is integrable on [0, t
2 ]. We write

(I1,2) as
t
2∫

0

e−sD2
[(η1e

− (t−s)
4 D

′2
L2f−1)(fe−

(t−s)
4 D

′2
L2 )]e−

(t−s)
2 D

′2
L2 D

′2
L2

ds (3.78)

and proceed as before.
Consider finally the case ν = 3, locally

ηop
3 Φ = g′ik

∂

∂xk
(· − ·′)∇′

iΦ.

The first step in this procedure is quite similar as in the case ν = 1 to shift the
derivation to the left of W and to shift all zero-order terms to the right.

Let X be a tangent vector field and Φ a section.

Lemma 3.11. X(· − ·′)∇′
iΦ = ∇′

i(X(· − ·′)Φ)+ zero-order terms.

Proof. X(·−·′)∇′
iΦ = [X(·−·′)∇′

iΦ−∇′
i(X(·−·′)Φ)]+∇′

i(X(·−·′)Φ). We are done
if [. . . ] on the right-hand side contains no derivatives of Φ. But an easy calculation
yields

[X(· − ·′)∇′
iΦ−∇′

i(X(· − ·′)Φ)]
= X · (∇′

i −∇i)Φ− (∇′
i −∇i)(X ·Φ)

+(∇′
i −∇i)X ·′ Φ + (∇iX)(·′ − ·)Φ. (3.79)

�
Hence for Φ, Ψ ∈ C∞

c (U)∫
h(Ψ, g′ik

∂

∂xk
(· − ·′)∇′

iΦ)pdp(g)

=
∫

h(Ψ,∇′
i(g

′ik ∂

∂xk
(· − ·′)Φ)p dp(g) (3.80)

+
∫

h(Ψ, g′ik
∂

∂xk
(∇′

i −∇i)Φ− (∇′
i −∇i)g′

ik ∂

∂xk
· Φ)p

+(∇′
i −∇i)X ·′ Φ +

(
∇ig

′ik ∂

∂xk

)
(·′ − ·)Φ)p dp(g). (3.81)
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(3.79) equals to ∫
h(∇′

i
∗Ψ, g′ik

∂

∂xk
(· − ·′)Φ)p dp(g). (3.82)

If Φ is Sobolev and Ψ = W then we obtain again by a u.l.f. cover by normal charts
{Uα}α and an associated decomposition of unity {ϕα}α∫

h(W, ηop
3 Φ)p dp(g)

=
∫

h(W,
∑
α

g′ikα
∂

∂xk
(· − ·′)∇′

α,i(ϕαΦ))p dp(g)

=
∫

h(∇′
α,i

∗
W,

∑
α

ϕαg′ikα
∂

∂xk
α

(· − ·′)Φ)p dp(g) (3.83)

+
∫

h(W, ηop
3,0 Φ)p dp(g), (3.84)

where ηop
3,0 Φ is the right component in h(·, ·) under the integral (7.41), multiplied

with ϕα and summed up over α.
Now we proceed literally as before. Start with

(I3,3) =

t∫
t
2

e−sD2
Dηop

3 e−(t−s)D
′2
L2 ds

=

t∫
t
2

(De−
s
2 D2

)[(e−
s
4 D2

f)(f−1e−
s
4 D2

ηop
3 )]e−(t−s)D

′2
L2 ds. (3.85)

We want that for suitable f ∈ L2, f−1e
s
4 D2

ηop
3 is Hilbert–Schmidt. For this we

have to estimate h(W (t, m, p), ηop
3 ·)p and to show it defines an integral operator

with finite L2((M, E), dp)-norm. We estimate

N(Φ) = |〈δ(m), e−tD2
ηop
3 Φ〉|L2((M,E),dp) (3.86)

= |h(W (t, m, p), ηop
3 Φ)p|L2((M,E),dp). (3.87)

Using (3.83) and (3.84), we write

N(Φ) = |h(W (t, m, p), ηop
3 Φ)p|L2(dp)

= |h(ηop
3,1 W (t, m, p), ηop

3,0 Φ)p

+h(W (t, m, p), ηop
3,0,0Φ)p|L2(dp). (3.88)

Now we use |∇′
X

∗χ| ≤ C1|∇′
X

χ| ≤ C2|X | · |∇′χ| ≤ C3|X |(|∇χ| + |χ|), that the
cover is u.l.f. and |∇W | ≤ C4(|DW |+ |W |) and obtain

N(Φ) ≤ C(|hDW (t, m, p), ηop
3,0 Φ)p|L2(dp) + |h(W (t, m, p), ηop

3,0,0Φ)p|L2(dp) =

= C(N1(Φ) + N2(Φ)).

Here we again essentially use the bounded geometry.
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Hence we have to estimate

sup
Φ∈C∞

c (E)
|Φ|L2=1

N1(Φ) = sup
Φ∈C∞

c (E)
|Φ|L2=1

|〈δ(m), (De−tD2
)ηop

3,0 Φ〉|L2(dp) (3.89)

and
sup

Φ∈C∞
c (E)

|Φ|L2=1

N2(Φ) = sup
Φ∈C∞

c (E)
|Φ|L2=1

|〈δ(m), e−tD2
ηop
3,0,0Φ〉|L2(dp). (3.90)

According to k > r + 1 > n + 3,

DW (t, m, ·), W (t, m, ·) ∈ H
r
2 (E)

|DW (t, m, ·)|
H

r
2
, |W (t, m, ·)|

H
r
2
≤ C1(t) (3.91)

and we can restrict in (3.90), (3.91) to

sup
Φ∈C∞

c (E)
|Φ|L2=1

|Φ|
H

r
2
≤C1(t)

(3.92)

ηop
3,0 , ηop

3,0,0 are of order zero and can be estimated by

C0| · − ·′ |2, r
2
≤ C1| · − ·′ |1,r−1 (3.93)

and

D0 · (|∇ −∇′|2, r
2

+ | · − ·′ |2, r
2
≤ D1 · (|∇ −∇′|2,r−1 + | · − ·′ |1,r−1 (3.94)

respectively.
Now we proceed literally as for (I1,3), replacing (3.76) by

N1(Φ) =
1√
4πt

1
2t

∣∣∣∣∣∣
+∞∫

−∞
se−

s2
4t eisDηop

3,0 Φ(m) ds

∣∣∣∣∣∣ . (3.95)

(I3,3) is done, (I3,4), (I3,1), (I3,2) are absolutely parallel to the case ν = 1.
This finishes the proof of 3.5. �

Theorem 3.12. Suppose the hypotheses of 3.5. Then

De−tD2 −D′
L2

e−tD
′2
L2

is of trace class and the trace norm is uniformly bounded on compact t-intervals
[a0, a1], a0 > 0.

Proof. The proof is a simple combination of the proofs of 3.3 and 3.5. �

Now we additionally admit perturbation of the fibre metric h. Before the for-
mulation of the theorem we must give some explanations. Consider the Hilbert
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spaces L2(g, h) = L2((M, E), g, h), L2(g′, h) = L2((M, E), g′, h), L2(g′, h′) =
L2((M, E), g′, h′) ≡ L′

2 and the maps

i(g′,h),(g′,h′) : L2(g′, h) −→ L2(g′, h′), i(g′,h),(g′,h′)Φ = Φ

U(g,h),(g′,h) : L2(g, h) −→ L2(g′, h), U(g,h),(g′,h)Φ = α
1
2 Φ

where dp(g) = α(p)dp(g′). Then we set

D′
L2(g,h) = D′

L2
:= U∗

(g,h),(g′,h)i
∗
(g′,h),(g′,h′)D

′i(g′,h),(g′,h′)U(g,h),(g′,h)

≡ U∗i∗D′iU. (3.96)

Here i∗ is even locally defined (since g′ is fixed) and i∗p = dual −1
h ◦i′◦dualh′, where

dual h(Φ(p)) = hp(·, Φ(p)). In a local basis field Φ1, . . . ,ΦN , Φ(p) = ξi(p)Φi(p),

i∗pΦ(p) = hklh′
ikξiΦl(p). (3.97)

It follows from (3.97) that for h′ ∈ comp1,r+1(h) i∗, i∗−1 are bounded up to
order k,

i∗ − 1, i∗−1 − 1 ∈ Ω0,1,r+1(Hom ((E, h′,∇h′
)

−→ (M, g′), (E, h,∇h) −→ (M, g′))) (3.98)

and

i∗ − 1, i∗−1 − 1 ∈ Ω0,2, r+1
2 (Hom ((E, h′,∇h′

)

−→ (M, g′), (E, h,∇h) −→ (M, g′))). (3.99)

D′ ≡ D′ is self-adjoint on DD′ = C∞
c (E)

| |D′
, where |Φ|2D′ = |Φ|2L′

2
+

|D′Φ|2L′
2
. i : L2(g′, h) −→ L2(g′, h′) ≡ L′

2 and i∗ : L2(g′, h′) −→ L2(g′, h)
are for h′ ∈ comp1,r+1(h) quasi isometries with bounded derivatives, they

map C∞
c (E) 1–1 onto C∞

c (E) and i∗D′i is self-adjoint on C∞
c (E)

| |i∗D′i =
Di∗D′i ⊂ L2((M, E), g′, h) ≡ L2(g′, h). We obtain as a consequence that
e−t(i∗D′i)2 is defined and self-adjoint in L2((M, E), g′, h) = L2(g′, h), maps
for t > 0 and i, j ∈ Z Hi(E, i∗D′i) continuously into Hj(E, i∗D′i) and
has the heat kernel W ′

g′,h(t, m, p) = 〈δ(m), e−t(i∗D′i)2δ(p)〉, W ′(t, m, p) satis-
fies the same general estimates as W (t, m, p). By exactly the same arguments
we obtain that e−tU∗(i∗D′i)2U = e−t(U∗i∗D′iU)2 = U∗e−t(i∗D′i)2U is defined
in L2 = L2((M, E), g, h), self-adjoint and has the heat kernel W ′

L2
(t, m, p) =

W ′
g,h(t, m, p) = α− 1

2 (m)W ′
g′,h(t, m, p)α(p)

1
2 . Here we assume g′ ∈ comp1,r+1(g).

Now we are able to formulate our main theorem.

Theorem 3.13. Let E = ((E, h,∇ = ∇h, ·) −→ (Mn, g)) be a Clifford bun-
dle with (I), (Bk(M, g)), (Bk(E,∇)), k ≥ r + 1 > n + 3, E′ = ((E, h,∇′ =
∇h′

, ·′) −→ (Mn, g)) ∈ gen comp1,r+1
L,diff (E) ∩ CLBN,n(I, Bk), D = D(g, h,∇ =

∇h, ·), D′ = D(g′, h,∇′ = ∇h′
, ·′) the associated generalized Dirac operators,
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dp(g) = α(p)dp(g′), U = α
1
2 . Then for t > 0

e−tD2 − U∗e−t(i∗D′i)2U (3.100)

is of trace class and the trace norm is uniformly bounded on compact t-intervals
[a0, a1], a0 > 0.

Proof. We are done if we could prove the assertions for

e−t(UD′U∗)2 − e−t(i∗D′i)2 = Ue−tD2
U∗ − e−t(i∗D′i)2 (3.101)

since U∗(3.101)U = (3.100). To get a better explicit expression for (3.101), we
apply again Duhamel’s principle. This holds since Greens formula for UD2U∗

holds, ∫
hq(UD2U∗Φ, Ψ)− h(Φ, UD2U∗Ψ) dq(g′) = 0.

We obtain

−
t∫

0

∫
M

hq(α
1
2 (m)W (s, m, q)α− 1

2 (q),

(
UD2U∗ +

∂

∂t

)
W ′

g′,h(t− s, q, p) dq(g′) ds

= −
t∫

0

∫
M

hq(α
1
2 (m)W (s, m, q)α− 1

2 (q),

(UD2U∗ − (i∗D′i)2)W ′
g′,h(t− s, q, p) dq(g′) ds

= α
1
2 (m)W (s, m, q)α− 1

2 (q)−W ′
g′,h′(t, m, p)

= Wg′,h(t, m, p)−W ′
g′,h(t, m, p). (3.102)

(3.102) expresses the operator equation

e−t(UDU∗)2 − e−t(i∗D′i)2

= −
t∫

0

e−s(U∗DU)2((UDU∗)2 − (i∗D′i)2)e−(t−s)(i∗D′i)2 ds

= −
t∫

0

e−s(UDU∗)2UDU∗(UDU∗ − i∗D′i)e−(t−s)(i∗D′i)2 ds

−
t∫

0

e−s(UDU∗)2(UDU∗ − i∗D′i)(i∗D′i)e−(t−s)(i∗D′i)2 ds.
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We write (3.104) as

−
t∫

0

α
1
2 e−sD2

Dα− 1
2 (α

1
2 Dα− 1

2 − i∗D′i)e−(t−s)(i∗D′i)2 ds

= −
t∫

0

α
1
2 e−sD2

Dα− 1
2 (D − i∗D′i− grad α·

2α
)e−(t−s)(i∗D′i)2 ds

= −
t∫

0

α
1
2 e−sD2

Dα− 1
2 i∗((i∗−1 − 1)D + (D −D′)− i∗−1 grad α·

2α
)

·e−(t−s)(i∗D′i)2 ds

=

t∫
0

α
1
2 e−sD2

D(η0 + η1 + η2 + η3 + η4)e−(t−s)(i∗D′i)2 ds,

η0 =
grad α·
2α

3
2

, ηi = −α− 1
2 i∗ηi(7), i = 1, 2, 3,

η1(7) = (3.52), η2(7) = (3.53), η3(7) = (3.54), η4 = α− 1
2 i∗−1(i∗ − 1)D.

Here η0 and η2 are of zeroth order. η1 and η3 can be discussed as in (3.60)–(3.95).
η4 can be discussed analogous to η1, η3 as before, i.e., η4 will be shifted via partial
integration to the left (up to zero-order terms) and α− 1

2 i∗(i∗− 1) thereafter again
to the right. In the estimates one has to replace W by DW and nothing essentially
changes as we exhibited in (3.77). We perform in (3.104) the same decomposition
and have to estimate 20 integrals,

t
2∫

0

α
1
2 e−sD2

Dηνe−(t−s)(i∗D′i)2 ds, (Iν,1)

t
2∫

0

α
1
2 e−sD2

ην(i∗D′i)e−(t−s)(i∗D′i)2 ds, (Iν,2)

t∫
t
2

α
1
2 e−sD2

Dηνe−(t−s)(i∗D′i)2 ds, (Iν,3)

t∫
t
2

α
1
2 e−sD2

ην(i∗D′i)e−(t−s)(i∗D′i)2 ds, (Iν,4)

ν = 0, . . . , 4 and to show that these are products of Hilbert–Schmidt operators
and have uniformly bounded trace norm on compact t-intervals. This has been
completely modelled in the proof of 3.5. �
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Finally we obtain

Theorem 3.14. Assume the hypotheses of 3.13. Then for t > 0

etD2
D − U∗e−t(i∗D′i)2(i∗D′i)U

is of trace class and its trace norm is uniformly bounded on compact t-intervals
[a0, a1], a0 > 0.

�

The operators i∗D′2i and (i∗D′i)2 are different in general. We should still
compare e−ti∗D′2i and e−t(i∗D′i)2 .

Theorem 3.15. Assume the hypotheses of 3.13. Then for t > 0

e−t(i∗D′2i) − e−t(i∗D′i)2

is of trace class and the trace norm is uniformly bounded on compact t-intervals
[a0, a1], a0 > 0.

Proof. We obtain again immediately from Duhamel’s principle

e−ti∗D′2i − e−t(i∗D′i)2 = −
t∫

0

e−s(i∗D′2i)(i∗D′2i− (i∗D′i)2)e−(t−s)(i∗D′i)2 ds

= −
t∫

0

e−s(i∗D′2i)i∗D′(1− ii∗)D′ie−(t−s)(i∗D′i)2 ds

= −
t∫

0

e−s(i∗D′2i)(i∗D′i)i−1(1− ii∗)i∗−1(i∗D′i)e−(t−s)(i∗D′i)2 ds. (3.105)

In [ t
2 , t] we shift i∗D′i again to the left of the kernel W ′

e−s(i∗D2i) via partial inte-
gration and estimate

(i∗D′ie−
s
2 (i∗D′2i))[(e−

s
4 (i∗D′2i))f)(f−1e−

s
4 (i∗D′2i)i−1(1− ii∗)i∗−1)]

((i∗D′i)e−(t−s)(i∗D′i)2)

as before. In [0, t
2 ] we write the integrand of (3.105) as

(e−s(i∗D′2i)i∗D′i)[((i∗i)−1e−
t−s
4 (i∗D′i)2f−1)(fe−

t−s
4 (i∗D′i)2)]

(e−
t−s
2 (i∗D′i)2(i∗D′i))

and proceed as in the corresponding cases. �

Theorem 3.16. Assume the hypotheses of 3.13. Then for t > 0

e−tD2
− e−t(U∗i∗D2iU) ≡ e−tD2

− U∗e−t(i∗D2i)U

is of trace class and the trace norm is uniformly bounded on any t-interval [a0, a1],
a0 > 0.
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Proof. This immediately follows from 3.13 and 3.15. �

Finally the last class of admitted perturbations are compact topological per-
turbations which will be studied now.

Let E = ((E, h,∇h) −→ (Mn, g)) ∈ CLBN,n(I, Bk) be a Clifford bundle,
k ≥ r + 1 > n + 3, E′ = ((E, h′,∇h′

) −→ (M ′n, g′)) ∈ comp1,r+1
L,diff ,rel (E) ∩

CLBN,n(I, Bk). Then there exist K ⊂ M , K ′ ⊂ M ′ and a vector bundle isomor-
phism (not necessarily an isometry) f = (fE , fM ) ∈ D̃1,r+2(E|M\K , E′|M ′\K′) s.t.

g|M\K and f∗
Mg′|M\K are quasi isometric, (3.106)

h|E|M\K
and f∗

Eh′|E|M\K
are quasi isometric, (3.107)

|g|M\K − f∗
Mg′|M\K |g,1,r+1 <∞, (3.108)

|h|EM\K
− f∗

Eh′|
E |M\K |g,h,∇h,1,r+1 <∞, (3.109)

|∇h|E|M\K
− f∗

E∇h′
|E|M\K

|g,h,∇h,1,r+1 <∞, (3.110)

| · |M\K − f∗
E ·′ |M\K |g,h,∇h,1,r+1 <∞. (3.111)

(3.106)–(3.111) also hold if we replace f by f−1, M \K by M ′\K ′ and g, h,∇h, · by
g′, h′,∇h′

, ·′. If we consider the complete pull back f∗
E(E′|M ′\K′), i.e., the pull back

together with all Clifford data, then we have on M\K two Clifford bundles, E|M\K ,
f∗

E(E′|M ′\K′ which are as vector bundles isomorphic and we denote f∗
E(E′|M ′\K′

again by E′ on M \ K, i.e., g′new = (fM |M\K)∗g′old etc. (3.106)–(3.111) and the
symmetry of our uniform structure U1,r+1

L,diff ,rel imply

W 1,i(E|M\K) ∼= W 1,i(E′|M\K), 0 ≤ i ≤ r + 1,

W 2,j(E|M\K) ∼= W 2,j(E′|M\K), 0 ≤ j ≤ r + 1
2

,

Hj(E|M\K , D) ∼= Hj(E′|M\K , D′), 0 ≤ j ≤ r + 1
2

, (3.112)

Ω1,1,i(End(E|M\K )) ∼= Ω1,1,i(End(E′|M\K)), 0 ≤ i ≤ r + 1,

Ω1,2,j(End(E|M\K)) ∼= Ω1,2,j(End(E′|M\K)), 0 ≤ j ≤ r + 1
2

.

Here the Sobolev spaces are defined by restriction of corresponding Sobolev sec-
tions.

We now fix our set up for compact topological perturbations. Set H =
L2((K, E|K), g, h)⊕L2((K ′, E′|K′), g′, h′)⊕L2((M \K, E), g, h) and consider the
following maps

iL2,K′ : L2((K ′, E′|K′), g′, h′) −→ H,

iL2,K′(Φ) = Φ,

i−1 : L2((M ′ \K ′, E′|M ′\K′), g′, h′) −→ L2((M ′ \K ′, E′|M ′\K′), g′, h),

i−1Φ = Φ,
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U∗ : L2((M ′ \K ′, E′|M ′\K′), g′, h) −→ L2((M ′ \K ′, E′|M ′\K′), g, h),

U∗Φ = α− 1
2 ,

where dq(g) = α(q)dq(g′). We identify M \ K and M ′ \ K ′ as manifolds and
E′|M ′\K′ and E|M\K as vector bundles. Then we have natural embeddings

iL2,M : L2((M, E), g, h) −→ H,

iL2,K′ ⊕ U∗i−1 : L2((M ′, E′), g′, h′) −→ H,

(iL2,K′ ⊕ U∗i−1)Φ = iL2,K′χK′Φ + U∗i−1χM ′\K′Φ.

The images of these two embeddings are closed subspaces of H. Denote by P
and P ′ the projection onto these closed subspaces. D is defined on DD ⊂ im P .
We extend it onto (im P )⊥ as zero operator. The definition of (the shifted) D′

is a little more complicated. For the sake of simplicity of notation we write
U∗i−1 ≡ iL2,K′ ⊕ U∗i−1 = id ⊕ U∗i−1, keeping in mind that iL2,K′ fixes χK , Φ
and the scalar product. Moreover we set also iUχK′Φ = U∗i∗χK′Φ = χK′Φ.
Let Φ ∈ DD′ , χK′Φ + U∗i−1χM ′\K′Φ its image in H. Then (U∗i∗D′iU)(χK′Φ +
U∗i−1χM ′\K′ , Φ) = U∗i∗D′Φ = χK′D′Φ + U∗i∗χM ′\K′D′Φ. Now we set as
DU∗i∗D′iU ⊂ H

DU∗i∗D′iU = {χK′Φ + U∗i−1χM ′\K′Φ|Φ ∈ DD′} ⊕ (im P ′)⊥. (3.113)

It follows very easy from the selfadjointness of D′ on DD′ and (8.7) that U∗i∗D′iU
is self-adjoint on DU∗i∗D′iU , if we additionally set U∗i∗D′iU = 0 on (im P ′)⊥.

Remark 3.17. If g and h do not vary then we can spare the whole i−U -procedure,
i = U = id. Nevertheless this case still includes interesting perturbations. Namely
perturbations of ∇, · and compact topological perturbations. �

We set for the sake of simplicity D̃′ = U∗i∗D′iU . The first main result of this
section is the following

Theorem 3.18. Let E = ((E, h,∇h) −→ (Mn, g)) ∈ CLBN,n(I, Bk), k ≥ r + 1 >

n + 3, E′ ∈ gen comp1,r+1
L,diff ,rel (E) ∩ CLBN,n(I, Bk). Then for t > 0

e−tD2
P − e−tD̃′2

P ′ (3.114)

and
e−tD2

D − e−tD̃′2
D̃′ (3.115)

are of trace class and their trace norms are uniformly bounded on any t-interval
[a0, a1], a0 > 0.

For the proof we make the following construction. Let V ⊂ M \K be open,
M \K \ V compact, dist(V, M \K \ (M \K)) ≥ 1 and denote by B ∈ L(H) the
multiplication operator B = χν . The proof of 3.18 consists of two steps. First we
prove 3.18 for the restriction of (3.114), (3.115) to V , i.e., for B(3.114)B, thereafter
for (1−B)(3.114)B, B(3.114)(1−B) and the same for (3.115).
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Theorem 3.19. Assume the hypotheses of 3.18. Then

B(e−tD2
P − e−tD̃′2

P ′)B, (3.116)

B(e−tD2
D − e−tD̃′2

D̃′)B, (3.117)

B(e−tD2
P − e−tD̃′2

P ′)(1 −B), (3.118)

(1 −B)(e−tD2
P − e−tD̃′2

P ′)B, (3.119)

B(e−tD2
D − e−tD̃′2

D̃′)(1−B), (3.120)

(1 −B)(e−tD2
D − e−tD̃′2

D̃′)B, (3.121)

(1 −B)(e−tD2
P − e−tD̃′2

P ′)(1−B), (3.122)

(1 −B)(e−tD2
D − e−tD̃′2

D̃′)(1 −B) (3.123)

are of trace class and their trace norms are uniformly bounded on any t-interval
[a0, a1], a0 > 0.

3.18 immediately follows from 3.19. We start with the assertion for (3.116).
Introduce functions ϕ, ψ, γ ∈ C∞(M, [0, 1]) with the following properties.

1) supp ϕ ⊂M \K, (1− ϕ) ∈ C∞
c (M \K), ϕ|V = 1.

2) ψ with the same properties as ϕ and additionally ψ = 1 on supp ϕ, i.e.,
supp (1− ψ) ∩ supp ϕ = 0.

3) γ ∈ C∞
c (M), γ = 1 on supp (1− ϕ), γ|V = 0.

Define now an approximate heat kernel E(t, m, p) on M by

E(t, m, p) := γ(m)W (t, m, p)(1− ϕ(p)) + ψ(m)W̃ ′(t, m, p)ϕ(p).

Applying Duhamel’s principle yields

−
β∫

α

∫
M

hq(W (s, m, q),
(

∂

∂t
+ D2

)
E(t− s, q, p))χν(p) dq(g) ds

=
∫
M

[hq(W (β, m, q), E(t − β, q, p))− hq(W (α, m, q),

E(t− α, q, p))]χν(p) dq(g). (3.124)

Performing α −→ 0+, β −→ t− in (3.124), we obtain

−
β∫

α

∫
M

hq(W (s, m, q),
(

D2 +
∂

∂t

)
E(t− s, q, p))χν(p) dq(g) ds

= lim
β→t−

∫
M

[hq(W (β, m, q), E(t − β, q, p))χν(p) dq(g)

−E(t, m, p)χν(p). (3.125)
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Now we use
χV (p)(1− ϕ(p)) = 0 (3.126)

and obtain

lim
β→t−

∫
M

[hq(W (β, m, q), E(t − β, q, p))χν(p) dq(g)

= lim
β→t−

∫
M

[hq(W (β, m, q), ψ(q)W̃ ′(t− β, q, p))ϕ(p)χν(p) dq(g)

= W (t, m, p)

since W̃ ′(τ, q, p) is the heat kernel of e−τD̃′2 . This yields

−
t∫

0

∫
M

hq(W (s, m, q),
(

D2 +
∂

∂t

)
E(t− s, q, p))χV (p) dq(g) ds

= −
t∫

0

∫
M

hq(W (s, m, q), (D2ψ(q)− ψ(q)D̃′2)W̃ ′(t− s, q, p))χV (p) dq(g) ds

= [W (t, m, p)− W̃ ′(t, m, p)] · χV (p). (3.127)

(3.127) expresses the operator equation

(e−tD2
P − e−tD̃′2

P ′)B = −
t∫

0

e−sD2
(D2ψ − ψD̃′2)e−(t−s)D̃′2

B ds (3.128)

in H at kernel level.
We rewrite (3.128) as in the foregoing cases.

(3.128)

= −
t∫

0

e−sD2
(D(D − D̃′)ψ + (D − D̃′)D̃′ψ + D̃′2ψ − ψD̃′2)e−(t−s)D̃′2

ds

= −

⎡⎢⎣
t
2∫

0

e−sD2
(D(D − D̃′)ψe−(t−s)D̃′2

ds (3.129)

+

t
2∫

0

e−sD2
(D − D̃′)D̃′ψe−(t−s)D̃′2

ds (3.130)

+

t
2∫

0

e−sD2
(D̃′2ψ − ψD̃′2) ds (3.131)
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+

t∫
t
2

e−sD2
D(D − D̃′)ψe−(t−s)D̃′2

ds (3.132)

+

t∫
t
2

e−sD2
(D − D̃′)D̃′ψe−(t−s)D̃′2

ds (3.133)

+

t∫
t
2

e−sD2
(D̃′2ψ − ψD̃′2)e−(t−s)D̃′2

ds

⎤⎥⎦ . (3.134)

Write the integrand of (3.132) as

(e−
s
2 D2

D)[(e−
s
4 D2

f)(f−1e−
s
4 D2

(D − D̃′)ψ)]e−(t−s)D̃′2,

|e− s
2 D2

D|op ≤ C√
s
, |e−(t−s)D̃′2 |op ≤ C′ and [. . . ] is the product of two Hilbert–

Schmidt operators if f can be chosen ∈ L2 and such that f−1e−
s
4 D2

(D − D̃′)ψ is
Hilbert–Schmidt. We know from the preceding considerations, sufficient for this is
that (D − D̃′)ψ has Sobolev coefficients of order r + 1 (and p = 1).

(D − D̃′)ψ = (D − α− 1
2 i∗D′iα

1
2 )ψ

=
(

D − i∗
grad ′α

2α
·′ −i∗D′

)
ψ

= i∗
(

(i∗−1 − 1)D + (D −D′)− grad ′α·′
2α

)
ψ

= i∗
[
i∗−1( grad ψ ·+ψD) + grad Ψ(· − ·′)

+( grad ψ − grad ′ψ) ·′ +ψ(D −D′)− grad ′α·′
2α

ψ
]
.

i∗ is bounded up to order k, i∗−1 − 1 is (r + 1)-Sobolev, grad ψ, grad ′ψ have
compact support, 0 ≤ ψ ≤ 1, grad α·′

2α is (r+1)-Sobolev and ψ(D−D′) is completely
discussed in (3.51)–(3.95). Hence (3.132) is completely done.

Write the integrand of (3.133) as

[(e
s
2 D2

f)(f−1e
s
2 D2

(D −D′))](D′e−(t−s)D̃′2
).

[. . . ] is the product of two Hilbert–Schmidt operators with bounded trace norm
on t-intervals [a0, a1], a0 > 0. An easy calculation yields

D̃′ψ = α− 1
2 i∗D′iα

1
2 ψ = i∗ grad ψ ·′ +ψD̃′,

hence

|D̃′ψe−(t−s)D̃′2 |op = |(i∗ grad ′ψ ·′ +ψD̃′)e−(t−s)D̃′2 |op ≤ C +
C′

√
t− s

,

(3.133) is done.
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Rewrite finally the integrands of (3.129), (3.130) as

(e−sD2
D)[((D − D̃′)ψe−

t−s
2 D̃′2

f−1)(fe−
t−s
2 D̃′2

)]

= e−sD2
Di∗[(((i∗−1 − 1)( grad ψ ·+ψD)

+ grad ψ(· − ·′) + ( grad ψ − grad ′ψ) ·′

+ψ(D −D′)− grad α

2α
·′ ψ)e−

t−s
2 D̃′2

f−1)(fe−
t−s
2 D̃′2)]

and

e−sD2
i∗[((D − D̃′)ψe−

t−s
4 D̃′2

f−1)(fe−
t−s
4 D̃′2)](D̃′e−

t−s
2 D̃′2)

= e−sD2
i∗[(((i∗−1 − 1)( grad ψ ·+ψD) + grad ψ(· − ·′)

+( grad ψ − grad ′ψ) ·′ +ψ(D −D′)− grad α

2α
·′ ψ)

e−
t−s
4 D̃′2

f−1)(fe−
t−s
4 D̃′2

)](D̃′e−
t−s
2 D̃′2

),

respectively, and (3.129), (3.130) are done. The remaining integrals are (3.131)
and (3.134). We have to find an appropriate expression for D̃′2ψ − ψD̃′2.

D̃′2 = (α− 1
2 i∗D′iα

1
2 )(α− 1

2 i∗D′iα
1
2 ) (3.135)

= α− 1
2 i∗D′i∗

(
grad ′α
2α

1
2
·′ +α

1
2 D′

)
= i∗

(
D′α− 1

2 +
grad ′α
2α

3
2
·′
)

i∗
(

grad ′α
2α

1
2
·′ +α

1
2 D′

)
= i∗D′i∗D′ + i∗D′i∗

grad ′α
2α

·′ +i∗
grad ′α

2α
·′ i∗

grad ′α
2α

·′

+i∗
grad ′α

2α
·′ i∗D′. (3.136)

Hence

D̃′2ψ − ψD̃′2 = i∗D′i∗D′ψ − ψi∗D′i∗D′

+ i∗D′i∗
grad ′α

2α
·′ ψ − ψi∗D′i∗

grad ′α
2α

·′ (3.137)

+ i∗
grad ′α

2α
·′ i∗

grad ′α
2α

·′ ψ − ψi∗
grad ′α

2α
·′ i∗

grad ′α
2α

·′

+ i∗
grad ′α

2α
·′ i∗D′ψ − ψi∗

grad ′α
2α

·′ i∗D′

= i∗D′i∗ grad ′ψ ·′ +i∗ grad ′ψ ·′ i∗D′ + ψi∗D′i∗D′ − ψi∗D′i∗D′

+ i∗( grad ′ψ ·′ +ψD′)i∗
grad ′α

2α
·′ −ψi∗D′i∗

grad ′α
2α

·′ (3.138)

+ i∗
grad ′α

2α
·′ i∗( grad ′ψ ·′ +ψD′)− ψi∗

grad ′α
2α

·′ i∗D′
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= i∗D′i∗ grad ′ψ ·′ +i∗ grad ′ψ ·′ i∗D′ (3.139)

+ i∗ grad ′ψ ·′ i∗ grad ′α
2α

·′ (3.140)

+ i∗
grad ′α

2α
·′ i∗ grad ′ψ ·′ . (3.141)

The terms in (3.139) are first-order operators but grad ′ψ has compact support
and we are done. The terms in (3.140), (3.141) are zero-order operators and we
are also done since grad ′ψ has compact support.

Hence (e−tD2
P − e−tD̃′2

P ′)B, B(e−tD2
P − e−tD̃′2

P ′)B are of trace class and
the trace norm in uniformly bounded on any compact t-interval [a0, a1], a0 > 0.
The assertions for (3.116) are done.

Next we study the operator

(e
t
2 D2

P − e−
t
2 D̃′2

P ′)(1 −B). (3.142)

Denote by Mε the multiplication operator with exp(−εdist(m, K)2). We state that
for ε small enough

Mεe
−tD2

B, Mεe
−tD′2

B (3.143)

and
M−1

ε e−tD2
χG, M−1

ε e−tD′2
χG (3.144)

are Hilbert–Schmidt for every compact G ⊂M or G′ ⊂M ′. Write

(e
t
2 D2

P − e−
t
2 D̃′2

P ′)(1 −B)

= [e−
t
2 D2

PMε] · [M−1
ε (e−

t
2 D2

P − e−
t
2 D̃′2

P ′)(1−B)] (3.145)

+[e−
t
2 D2

P − e−
t
2 D̃′2

P ′)Mε] · [M−1
ε e−

t
2 D̃′2

P ′(1−B)]. (3.146)

According to (3.1)–(3.5) and (3.143), each of the factors [· · · ] in (3.145), (3.146)
is Hilbert–Schmidt and we obtain that (3.139) is of trace class and has uniformly
bounded trace norm in any t-interval [a0, a1], a0 > 0. The same holds for

B(e
t
2 D2

P − e−
t
2 D̃′2

P ′)(1−B) (3.147)

(1−B)(e
t
2 D2

P − e−
t
2 D̃′2

P ′)B (3.148)

(1−B)(e
t
2 D2

P − e−
t
2 D̃′2

P ′)(1 −B) (3.149)

by multiplication of (3.142) from the left by B etc., i.e., the assertions for (3.118),
(3.119), (3.122) are done. Write now

(e−
t
2 D2

D − e−
t
2 D̃′2

D′)B

= (e−
t
2 D2

D)(e
t
2 D2

P − e−
t
2 D̃′2

P ′)B (3.150)

+(e−
t
2 D2

D − e−
t
2 D̃′2

D′)(e−
t
2 D′2

P )B. (3.151)
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(3.150) is done already by (3.128) and |e− t
2 D2

D|op ≤ C√
t
. Decompose (3.151) as

the sum of

e−
t
2 D2

P (D − D̃′) · (e− t
2 D̃′2

D̃′) = [e−
t
2 D2

P (−η)] · (e− t
2 D̃′2

D̃′)B (3.152)

and
(e−

t
2 D2

P − e−
t
2 D̃′2

P ′)(e−
t
2 D̃′2

D̃′)B (3.153)

[. . . ] in (3.152) is done. Rewrite e−
t
2 D2

P − e−
t
2 D̃′2

P ′ as

(e−
t
2 D2

P − e−
t
2 D̃′2

P )B (3.154)

+(e
t
2 D2

P − e−
t
2 D̃′2

P ′)(1 −B). (3.155)

(3.154), (3.155) are done already, hence (3.153) and hence (e
t
2 D2

P − e−
t
2 D̃′2

P ′)B,
(3.117), (3.120), (3.121), (3.123). This finishes the proof of 3.19. �

The proof of Theorem 3.18 now follows from 3.19 by adding up the four terms
containing e

t
2 D2

P − e−
t
2 D̃′2

P ′ or e
t
2 D2

D − e−
t
2 D̃′2

D̃′, respectively. �

Remark 3.20. We could perform the proof of 3.18, 3.19 also along the lines of
(3.101)–(3.104), performing first a unitary transformation, proving the trace class
property and performing the back transformation, as we indicate in (3.101). This
procedure is completely equivalent to the proof of 3.18, 3.19 presented above. �

The operators U∗i∗D′2iU and (U∗i∗D′2iU)2 are distinct in general and we
have still to compare e−t(U∗i∗D′2iU)P ′ and e−t(U∗i∗D′2iU)2P ′. According to our
remark above, it is sufficient to prove the trace class property of

e−t(i∗D′2i)P − e−t(i∗D′i)2P ′ (3.156)

in
H′ = L2((K, E), g, h)⊕ L2((K ′, E′), g′, h′)⊕ L2((M \K, E), g′, h).

Here we have an embedding

iL2,K′ ⊕ i−1 : L2((M ′, E′), g′, h′) −→ H′

(iL2,K′ ⊕ i−1)Φ = iL2,K′χK′Φ + i−1χM ′\K′Φ, (3.157)

where

i−1 : L2((M ′ \K ′, E′|M ′\K′), g′, h′) −→ L2((M ′ \K ′, E′|M ′\K′), g′h),

i−1Φ = Φ,

and

i∗D′i(χK , Φ + i−1χM ′\K′Φ) := i∗D′Φ = χK′D′Φ + i∗χM ′\K′D′Φ,

i∗D′2i similar, all with the canonical domains of definition analogous to (3.113).
P ′ is here the projection onto im (iL2,K′ ⊕ i−1). We define i∗D′2i, (i∗D′i)2 to be
zero on im P ′⊥.



118 J. Eichhorn

Remark 3.21. Quite similar we could embed L2((M, E), g, h) into H′, define P ,
UDU∗ and the assertion 3.18 would be equivalent to the assertion for

e−t(UDU∗)2P − e−t(i∗D′i)2P ′. (3.158)

Applying the (extended) U∗ from the right, U from the left, yields just the expres-
sion (3.114). �

Theorem 3.22. Assume the hypotheses of 3.18. Then

e−t(i∗D′2i)P ′ − e−t(i∗D′i)2P ′ (3.159)

is of trace class and its trace norm is uniformly bounded on compact t-intervals
[a0, a1], a0 > 0.

Proof. We prove this by establishing the assertion for the four cases arising from
multiplication by B, 1−B. Start with (3.159). B. Duhamel’s principle again yields

(e−t(i∗D′2i)P ′ − e−t(i∗D′i)2P ′)B

= −
t∫

0

e−s(i∗D′2i)((i∗D′2i)− (i∗D′i)2)e−(t−s)(i∗D′i)2 ds. (3.160)

An easy calculation yields

(i∗D′2i)ψ − ψ(i∗D′i)2 = i∗D′2ψ − ψi∗D′i∗D′

= i∗D′ grad ′ψ ·′ +i∗ grad ′ψ ·′ D + ψi∗D′2

−(ψi∗D′2 + ψi∗D′(i∗ − 1)D′)
= i∗D′ grad ′ψ ·′ +i∗ grad ′ψ ·′ D′ (3.161)
−ψi∗D′(i∗ − 1)D′. (3.162)

The first-order operators in (3.161) contain the compact support factor grad ′ψ
and we are done. Here i∗D′ (coming from the first term or from grad ′ψ ·′ D′ =
grad ′ψ ·′ i∗−1i∗D) will be connected with e−s(i∗D′2i) or e−(t−s)(i∗D′i)2 , de-

pending on the interval [ t
2 , t] or [0, t

2 ]. The (D′)’s of the second-order opera-
tor (3.162) can be distributed analogous to the proof of 3.15. The remaining
main point is 0 ≤ ψ ≤ 1 and i∗ − 1 Sobolev of order r + 1, i.e., i∗ − 1 ∈
Ω0,1,r+1(Hom ((E′|M ′\K′ , g′, h′), (E|M\K , g′, h))).

The assertion for (3.159)·B is done. Quite analogously (and parallel to the
proofs of (3.116), (3.118), (3.119), (3.122)) one discusses the other 3 cases. �

We obtain as a corollary from 3.18 and 3.22

Theorem 3.23. Assume the hypothesis of 3.18. Then for t > 0

e−tD2
P − e−t(U∗i∗D′2iU)P ′

is of trace class in H′ and the trace norm is uniformly bounded on compact t-
intervals [a0, a1], a0 > 0. �
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We proved that after fixing E ∈ CLBN,n(I, Bk), k ≥ r + 1 > n + 3, we can
attach to any E′ ∈ gen comp1,r+1

L,diff ,rel (E) two number-valued invariants, namely

E′ −→ tr(e−tD2
P − e−t(U∗i∗D′iU)2P ′) (3.163)

and
E′ −→ tr(e−tD2

P − e−tU∗i∗D′2iUP ′). (3.164)

This is a contribution to the classification inside a component but still unsatisfac-
tory insofar as it

1) could depend on t,
2) will depend on the K ⊂M , K ′ ⊂M ′ in question,
3) is not yet clear the meaning of this invariant.

We are in a much more comfortable situation if we additionally assume that the
Clifford bundles under consideration are endowed with an involution τ : E −→ E,
s.t.

τ2 = 1, τ∗ = τ (3.165)
[τ, X ]+ = 0 for X ∈ TM (3.166)
[∇, τ ] = 0 (3.167)

Then L2((M, E), g, h) = L2(M, E+)⊕ L2(M, E−)

D =
(

0 D−

D+ 0

)
and D− = (D+)∗. If Mn is compact then as usual

indD := indD+ := dim ker D+ − dim ker D− ≡ tr(τe−tD2
), (3.168)

where we understand τ as

τ =
(

I 0
0 −I

)
.

For open Mn indD in general is not defined since τe−tD2
is not of trace class.

The appropriate approach on open manifolds is relative index theory for pairs of
operators D, D′. If D, D′ are self-adjoint in the same Hilbert space and etD2 −
e−tD′2

would be of trace class then

ind(D, D′) := tr(τ(e−tD2 − e−tD′2
)) (3.169)

makes sense, but at the first glance (3.169) should depend on t.
If we restrict to Clifford bundles E ∈ CLBN,n(I, Bk) with involution τ

then we assume that the maps entering in the definition of comp1,r+1
L,diff ,F (E) or

gen comp1,r+1
L,diff ,rel (E) are τ -compatible, i.e., after identification of E|M\K and

f∗
EE′|M ′\K holds

[f∗
E∇h′

, τ ] = 0, [f∗·′, τ ]+ = 0. (3.170)
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We call E|M\K and E′|M ′\K′ τ -compatible. Then, according to the preceding
theorems,

tr(τ(e−tD2
P − e−t(U∗i∗D′iU)2P ′)) (3.171)

makes sense.

Theorem 3.24. Let ((E, h,∇h) −→ (Mn, g), τ) ∈ CLBN,n(I, Bk) be a graded Clif-
ford bundle, k ≥ r > n + 2.

a) If ∇′h ∈ comp1,r(∇) ⊂ C1,r
E (Bk), ∇′ τ-compatible, i.e., [∇′, τ ] = 0 then

tr(τ(e−tD2 − e−tD′2
))

is independent of t.
b) If E′ ∈ gen comp1,r+1

L,diff ,rel (E) is τ-compatible with E, i.e., [τ, X ·′]+ = 0 for
X ∈ TM and [∇′, τ ] = 0, then

tr(τ(e−tD2
P − e−t(U∗i∗D′iU)2P ′))

is independent of t.

Proof. a) follows from our 3.3. b) follows from our 3.25. �

Proposition 3.25. If E′ ∈ gen comp1,r+1
L,diff ,rel (E) and

τ(e−tD2
P − e−t(U∗i∗D′iU)2P ′)

τ(e−tD2
D − e−t(U∗i∗D′iU)2 (U∗i∗D′iU))

are for t > 0 of trace class and the trace norm of

τ(e−tD2
D − e−t(U∗i∗D′iU)2 (U∗i∗D′iU))

is uniformly bounded on compact t-intervals [a0, a1], a0 > 0, then

tr(τ(e−tD2
p− e−t(U∗i∗D′iU)2(U∗i∗D′iU)))

is independent of t.

Proof. Let (ϕi)i be a sequence of smooth functions ∈ C∞
c (M \K), satisfying

sup |dϕi| −→
i→∞

0, 0 ≤ ϕi ≤ ϕi+1 and ϕi −→
i→∞

1. Denote by Mi the multiplica-

tion operator with ϕi on L2((M \ K, E|M\K), g, h). We extend Mi by 1 to the
complement of L2((M \K, E), g, h) in H . We have to show

d

dt
trτ(e−tD2

P − e−t(U∗i∗D′iU)2P ′) = 0.

e−tD2
P − e−t(U∗i∗D′iU)2P ′ is of trace class, hence

trτ(e−tD2
P − e−t(U∗i∗D′iU)2P ′) = lim

j→∞
trτMj(e−tD2

P − e−t(U∗i∗D′iU)2P ′)Mj .
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Mj restricts to compact sets and we can differentiate under the trace and we obtain

d

dt
trτMj(e−tD2

P − e−t(U∗i∗D′iU)2P ′)Mj

=
d

dt
trτ(MjU

∗(e−t(UDU∗)2P − e−t(i∗D′i)2P ′)UMj

= −trτ(U∗Mj(e−t(UDU∗)2(UDU∗)2 − e−t(i∗D′i)2(i∗D′i)2)MjU).

Consider trτ(U∗Mj(e−t(UDU∗)2(UDU∗)2MjU) = trτMje
−tD2

D2Mj . There holds
trτ(Mje

−tD2
D2Mj) = trMj grad ϕi · τDe−tD2

. Quite similar

trτ(Mj(e−t(i∗D′i)2(i∗D′i)2)Mj)

= trτϕje
− t

2 (i∗D′i)2(i∗Di)(i∗D′i)e−
t
2 (i∗D′i)2ϕj

= tr(i∗Di)e−
t
2 (i∗D′i)2ϕjτϕje

− t
2 (i∗D′i)2(i∗D′i)

= tre−
t
2 (i∗D′i)2(i∗D′i)ϕ2

jτe−
t
2 (i∗D′i)2(i∗D′i)

= tre−
t
2 (i∗D′i)2 i∗(2ϕj grad ′ϕj ·′ +ϕ2

jD
′)iτe−

t
2 (i∗D′i)2(i∗D′i) =

= tr2i∗Mj grad ′ϕj ·′ iτ(i∗D′i)e−t(i∗D′i)2 − trτMje
−t(i∗D′i)2(i∗D′i)2Mj,

hence

trτ(Mje
−t(i∗D′i)2(i∗D′i)2Mj) = trMji

∗ grad ′ϕj ·′ iτ(i∗D′i)e−t(i∗D′i)2

and finally
d

dt
trτMj(e−tD2

P − e−t(U∗i∗D′iU)2P ′)Mj

= trτMj [ grad ϕj · e−tD2
D − grad ′ϕj ·′ e−t(U∗i∗D′iU)2(U∗i∗D′iU)]

= trτMj [( grad ϕj − grad ′ϕj) · e−tD2
+ grad ′ϕj(· − ·′)e−tD2

+ grad ′ϕj ·′ (e−tD2 − e−t(U∗i∗D′iU)2(U∗i∗D′iU))].

But this tends to zero uniformly for t in compact intervals since grad ϕj , grad ′ϕj

do so. �

We denote Q± = D±

Q =
(

0 Q+

Q− 0

)
, H =

(
H+ 0
0 H−

)
=

(
Q−Q+ 0

0 Q+Q−

)
= Q2,

(3.172)
Q′± = U∗i∗D′±iU = (U∗i∗D′iU)±, Q′, H ′ analogous, assuming (3.165)–(3.167)
as before and ·′,∇′ τ -compatible. H, H ′ form by definition a supersymmetric scat-
tering system if the wave operators

W∓(H, H ′) := lim
t→∓∞ eitHe−tH′

· Pac(H ′) exist and are complete (3.173)

and
QW∓(H, H ′) = W∓(H, H ′)H ′ on DH′ ∩H′

ac(H
′). (3.174)
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Here Pac(H ′) denotes the projection on the absolutely continuous subspace
H′

ac(H
′) ⊂ H of H ′.

A well-known sufficient criterion for forming a supersymmetric scattering
system is given by

Proposition 3.26. Assume for the graded operators Q, Q′ (= supercharges)

e−tH − e−tH′
and e−tHQ− e−tH′

Q

are for t > 0 of trace class. Then they form a supersymmetric scattering system.
�

Corollary 3.27. Assume the hypotheses of 3.24. Then D, D′ or D, U∗i∗D′iU form
a supersymmetric scattering system, respectively. In particular, the restriction of
D, D′ or D, U∗i∗D′iU to their absolutely continuous spectral subspaces are unitar-
ily equivalent, respectively. �

Until now we have seen that under the hypotheses of 3.24

ind(D, D̃′) = trτ(e−tD2
P − e−tD̃′2

P ′), (3.175)

D̃′ = D′ or D̃′ = U∗i∗D′iU , is a well defined number, independent of t > 0 and
hence yields an invariant of the pair (E, E′), still depending on K, K ′. Hence we
should sometimes better write

ind(D, D̃′, K, K ′). (3.176)

We want to express in some good cases ind(D, D̃′, K, K ′) by other relevant num-
bers. Consider the abstract setting (9.127). If inf σe(H) > 0 then indD := indD+

is well defined.

Lemma 3.28. If e−tHP − e−tH′
P ′ is of trace class for all t > 0 and inf σe(H),

inf σe(H ′) > 0 then

lim
t→∞ trτ(e−tHP − e−tH′

P ′) = indQ+ − indQ−. (3.177)

�

We infer from this

Theorem 3.29. Assume the hypotheses of 3.24 and inf σe(D2) > 0. Then
inf σe(D′2), inf σe(U∗i∗D′iU)2 > 0 and for each t > 0

trτ(e−tD2 − e−tD̃′2
) = indD+ − indD′+. (3.178)

Proof. In the case 3.24.a, inf σe(D′2) > 0 follows from a standard fact and (3.178)
then follows from 3.28. Consider the case 3.24.b. We can replace the comparison of
σe(D2) and σe((U∗i∗D′iU)2) by that of σe(UD2U∗) and σe((i∗D′i)2). Moreover,
for self-adjoint A, 0 /∈ σe(A) if and only if inf σe(A2) > 0. Assume 0 /∈ σe(UDU∗)
and 0 ∈ σe(i∗D′i). We must derive a contradiction. Let (Φν)ν be a Weyl sequence
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for 0 ∈ σe(i∗D′i) satisfying additionally |Φν |L2 = 1, supp Φν ⊆M \K = M ′ \K ′

and for any compact L ⊂M \K = M ′ \K ′

|Φν |L2(M\L −→
ν→∞ 0. (3.179)

We have lim
ν→∞ i∗D′iΦν = 0. Then also lim

ν→∞D′Φν = 0. We use in the sequel the
following simple fact. If β is an L2-function, in particular if β is even Sobolev, then

|β ·Φν |L2 −→ 0. (3.180)

Now (UDU∗)Φν = (UDU∗−D′)Φν +D′Φν . Here D′Φν −→
ν→∞ 0. Consider (UDU∗−

D′)Φν = (α
1
2 Dα− 1

2 − D′)Φν =
(
− grad α

2α ·+D −D′
)

Φν . Assume α �≡ 1. Then

β =
∣∣∣ grad α

2α

∣∣∣ ∈ Ω0,2, r
2 (T (M \K)) satisfies the assumptions above and

lim
ν→∞

∣∣∣∣− grad α

2α
·Φν

∣∣∣∣
L2

= 0. (3.181)

If α ≡ 1 this term does not appear. Write, according to (3.51)–(3.54),

(D −D′)Φν = ηop
1 Φν + ηop

2 Φν + ηop
3 Φν . (3.182)∣∣∣g′ik ∂

∂xk ·
∣∣∣ is bounded (we use a uniformly locally finite cover by normal charts, an

associated bounded decomposition of unity etc.). β = |∇ − ∇′| is Sobolev hence
L2 and by (3.180)

|ηop
2 Φν |L2 −→

ν→∞ 0. (3.183)

Now |∇Φν |L2 ≤ C1(|Φν |L2 + |DΦν |L2) ≤ C2(|Φν |L2 + |D′Φν |L2). g− g′ is Sobolev,
hence, according to (3.180) with β = |g − g′|, ||g − g′| · Φν |L2 −→

ν→∞ 0 and finally

||g − g′| ·D′Φν |L2 −→
ν→∞ 0. This yields

|ηop
1 Φν |L2 −→ν→∞ 0. (3.184)

We conclude in the same manner from · − ·′ Sobolev and |∇′Φν |L2 ≤ C3(|Φν |L2 +
|D′Φν |L2) that

|ηop
3 Φν |L2 −→ν→∞ 0. (3.185)

(3.181)–(3.185) yield (UDU∗)Φν −→ 0, 0 ∈ σe(UDU∗), inf σe(D2) = 0, a con-
tradiction, hence inf σe((U∗i∗D′iU)2) > 0, inf σe((i∗D′i)2) > 0, 0 /∈ σe(i∗D′i),
0 /∈ σe(D′), inf σe(D′2) > 0. We infer from 3.25 and 3.28 that for t > 0

trτe−tD2 − e−t(U∗i∗D′iU)2 = indD+ − ind(U∗i∗D′iU)+. (3.186)

We are done if we can show

ind(U∗i∗D′iU)+ = indD′+. (3.187)
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Φ ∈ ker(U∗i∗D′iU)+ means

(U∗i∗D′iU)+Φ = (U∗i∗D′iU)(χK′Φ + U∗i−1χM ′\K′Φ)

= χK′D′+Φ + U∗i∗χM ′\K′D′+Φ
= 0.

But this is equivalent to D′+Φ = 0. Similar for D′−. (3.187) holds and hence
(3.178). �

It would be desirable to express ind(D, D̃′, K, K ′) by geometric topolog-
ical terms. In particular, this would be nice in the case inf σe(D2) > 0. In
the compact case, one sets indaD := indaD+ = dim kerD+ − dimker(D+)∗ =
dimkerD+ − dimkerD− = lim

t→∞ trτe−tD2
. On the other hand, for t → 0+ there

exists the well-known asymptotic expansion for the kernel of τe−tD2
. Its inte-

gral at the diagonal yields the trace. If trτe−tD2
is independent of t (as in the

compact case), we get the index theorem where the integrand appearing in the
L2-trace consists only of the t-free term of the asymptotic expansion. Here one
would like to express things in the asymptotic expansion of the heat kernel of
e−tD′2

instead of e−t(U∗i∗D′iU)2 . For this reason we restrict in the definition of the
topological index to the case E′ ∈ comp1,r+1

L,diff ,F (E) or E′ ∈ comp1,r+1
L,diff ,F,rel (E),

i.e., we admit Sobolev perturbation of g,∇h, · but the fibre metric h should re-
main fixed. Then for D′ = D(g′, h,∇′h, ·′) in L2((M, E), g, h) the heat kernel of
e−t(U∗D′U)2 = U∗e−tD′2

U equals to α(q)−
1
2 W ′(t, q, p)α(p)

1
2 . At the diagonal this

equals to W ′(t, m, m), i.e., the asymptotic expansion at the diagonal of the original
e−tD′2

and the transformed to L2((M, E), g, h) coincide.
Consider

trτW (t, m, m) ∼
t→0+

t−
n
2 b−n

2
(D, m) + · · ·+ b0(D, m) + · · · (3.188)

and

trτW ′(t, m, m) ∼
t→0+

t−
n
2 b−n

2
(D′, m) + · · ·+ b0(D′, m) + · · · . (3.189)

We state without proof

Lemma 3.30.

bi(D, m)− bi(D′, m) ∈ L1, −n

2
≤ i ≤ 1. (3.190)

�

Define for E′ ∈ gen comp1,r+1
L,diff ,F (E)

indtop (D, D′) :=
∫
M

b0(D, m)− b0(D′, m). (3.191)

According to (3.190), indtop (D, D′) is well defined.
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Theorem 3.31. Assume E′ ∈ gen comp1,r+1
L,diff ,F,rel (E)

a) Then

ind(D, D′, K, K ′) =
∫
K

b0(D, m)−
∫
K′

b0(D′, m) (3.192)

+
∫

M\K=M ′\K′

b0(D, m)− b0(D′, m). (3.193)

b) If E′ ∈ gen comp1,r+1
L,diff ,F (E) then

ind(D, D′) = indtop (D, D′). (3.194)

c) If E′ ∈ gen comp1,r+1
L,diff ,F (E) and inf σe(D2) > 0 then

indtop (D, D′) = indaD − indaD′. (3.195)

Proof. All this follows from 3.24, the asymptotic expansion, (3.190) and the fact
that the L2-trace of a trace class integral operator equals to the integral over the
trace of the kernel. �

Remarks 3.32.

1) If E′ ∈ gen comp1,r+1
L,diff ,rel (E), g and g′, ∇h and ∇′h, · and ·′ coincide in

V = M \ L = M ′ \ L′, L ⊇ K, L′ ⊇ K ′, then in (3.47)–(3.95) α − 1 and
the η’s have compact support and we conclude from (3.143), (3.144) and the
standard heat kernel estimates that∫

V

|W (t, m, m)−W ′(t, m, m)| dm ≤ C · e−d
t (3.196)

and obtain

ind(D, D′, L, L′) =
∫
L

bo(D, m)−
∫
L′

b0(D′, m). (3.197)

This follows immediately from 3.31. a).
2) The point here is that we admit much more general perturbations than in

preceding approaches to prove relative index theorems.
3) inf σe(D2) > 0 is an invariant of gen comp1,r+1

L,diff ,F (E). If we fix E, D as
reference point in gen comp1,r+1

L,diff ,F (E) then 3.31 c) enables us to calculate
the analytical index for all other D’s in the component from indD and a pure
integration.

4) inf σe(D2) > 0 is satisfied, e.g., if in D2 = ∇∗∇+R the operator R satisfies
outside a compact K the condition

R ≥ κ0 · id, κ0 > 0. (3.198)

(3.198) is an invariant of gen comp1,r+1
L,diff ,F (E) (with possibly different K,

κ0). �



126 J. Eichhorn

It is possible that indD, indD′ are defined even if 0 ∈ σe. For the correspond-
ing relative index theorem we need the scattering index.

To define the scattering index and in the next section relative ζ-functions,
we must introduce the spectral shift function of Birman/Krein/Yafaev. Let A, A′

be bounded self-adjoint operators, V = A−A′ of trace class, R′(z) = (A′ − z)−1.
Then the spectral shift function

ξ(λ) = ξ(λ, A, A′) := π−1 lim
ε→0

arg det(1 + V R′(λ + iε)) (3.199)

exists for a.e. λ ∈ R. ξ(λ) is real valued, ∈ L1(R) and

tr(A− A′) =
∫
R

ξ(λ) dλ, |ξ|L1 ≤ |A−A′|1. (3.200)

If I(A, A′) is the smallest interval containing σ(A) ∪ σ(A′) then ξ(λ) = 0 for
λ /∈ I(A, A′).

Let

G = {f : R −→ R | f ∈ L1 and
∫
R

|f̂(p)|(1 + |p|) dp <∞}.

Then for ϕ ∈ G, ϕ(A)− ϕ(A′) is of trace class and

tr(ϕ(A) − ϕ(A′)) =
∫
R

ϕ′(λ)ξ(λ) dλ. (3.201)

We state without proof

Lemma 3.33. Let H, H ′ ≥ 0, self-adjoint in H, e−tH − e−tH′
for t > 0 of trace

class. Then there exist a unique function ξ = ξ(λ) = ξ(λ, H, H ′) ∈ L1,loc(R) such
that for > 0, e−tλξ(λ) ∈ L1(R) and the following holds.

a) tr(e−tH − e−tH′
) = −t

∞∫
0

e−tλξ(λ) dλ.

b) For every ϕ ∈ G, ϕ(H)− ϕ(H ′) is of trace class and

tr(ϕ(H)− ϕ(H ′)) =
∫
R

ϕ′(λ)ξ(λ) dλ.

c) ξ(λ) = 0 for λ < 0. �

We apply this to our case E′ ∈ gen comp1,r+1
L,diff ,rel (E). According to 9.4, D and

U∗i∗D′iU form a supersymmetric scattering system, H = D2, H ′ = (U∗i∗D′iU)2.
In this case

e2πiξ(λ,H,H′) = detS(λ),

where S = (W+)∗W− =
∫

S(λ) dE′(λ) and H ′
ac =

∫
λ dE′(λ).

Let Pd(D), Pd(U∗i∗D′iU) be the projector on the discrete subspace in H,
respectively and Pc = 1− Pd the projector onto the continuous subspace.
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Moreover we write

D2 =
(

H+ 0
0 H−

)
, (U∗i∗D′iU)2 =

(
H ′+ 0

0 H ′−

)
. (3.202)

We make the following additional assumption.

e−tD2
Pd(D), e−t(U∗i∗D′iU)2Pd(U∗i∗D′iU) are for t > 0 of trace class. (3.203)

Then for t > 0
e−tD2

Pc(D)− e−t(U∗i∗D′iU)2Pc(U∗i∗D′iU)
is of trace class and we can in complete analogy to (3.199) define

ξc(λ, H±, H ′±) := −π lim
ε→0+

arg det[1 + (e−tH±
Pc(H±)− e−tH′±

Pc(H ′±))

(e−tH′±
Pc(H ′±)− e−λt − iε)−1] (3.204)

According to (3.200),

tr(e−tH±
Pc(H±)− e−tH′±

Pc(H ′±)) = −t

∞∫
0

ξc(λ, H±, H ′±)e−tλ dλ. (3.205)

We denote as after (3.175) D̃′ = D′ in the case ∇′ ∈ comp1,r(∇) and D̃′ =
U∗i∗D′iU in the case E′ ∈ gen comp1,r+1

L,diff ,rel (E). The assumption (3.203) in par-
ticular implies that for the restriction of D and D̃′ to their discrete subspace the
analytical index is well defined and we write inda,d(D, D̃′) = inda,d(D)−inda,d(D̃′)
for it. Set

nc(λ, D, D̃′) := −ξc(λ, H+, H ′+) + ξc(λ, H−, H ′−). (3.206)

Theorem 3.34. Assume the hypotheses of 3.24 and (3.203). Then

nc(λ, D, D̃′) = nc(D, D̃′)

is constant and
ind(D, D̃′)− inda,d(D, D̃′) = nc(D, D̃′). (3.207)

Proof. ind(D, D̃′) = trτ(e−tD2
P − e−tD̃′2

P ′)

= trτe−tD2
Pd(D)P − trτe−tD̃′2

Pd(D̃′)P ′

+ trτ(e−tD2
Pc(D)− e−tD̃′2

Pc(D̃′))

= inda,d(D, D̃′) + t

∞∫
0

e−tλnc(λ, D, D̃′) dλ.

According to 3.24, ind(D, D̃′) is independent of t. The same holds for inda,d(D, D̃′).

Hence t
∞∫
0

e−tλnc(λ, D, D̃′) dλ is independent of t.
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This is possible only if
∞∫
0

e−tλnc(λ, D, D′) dλ =
1
t

or nc(λ, D, D̃′) is independent of λ. �

Corollary 3.35. Assume the hypotheses of 3.34 and additionally
inf σe(D2|(kerD2)⊥) > 0. Then nc(D, D̃′) = 0.

Proof. In this case inda,d(D, D̃′) = indD− indD̃′ = ind(D, D̃′), hence nc = 0. �
This finishes the outline of our relative index theory.
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Semiclassical Asymptotics and Spectral Gaps
for Periodic Magnetic Schrödinger Operators
on Covering Manifolds

Yuri A. Kordyukov

Abstract. We survey a method to prove the existence of gaps in the spec-
trum of periodic second-order elliptic partial differential operators, which was
suggested by Kordyukov, Mathai and Shubin, and describe applications of
this method to periodic magnetic Schrödinger operators on a Riemannian
manifold, which is the universal covering of a compact manifold. We prove
the existence of arbitrarily large number of gaps in the spectrum of these
operators in the asymptotic limits of the strong electric field or the strong
magnetic field under Morse type assumptions on the electromagnetic poten-
tial. We work on the level of spectral projections (and not just their traces)
and obtain an asymptotic information about classes of these projections in
K-theory. An important corollary is a vanishing theorem for the higher traces
in cyclic cohomology for the spectral projections. This result is then applied
to the quantum Hall effect.

1. Introduction

The problem of finding examples of periodic second-order elliptic partial differ-
ential operators, which have gaps in their spectrum, is of great importance, for
instance, in heat conduction, acoustics, and propagation of electro-magnetic waves
in photonic crystals and was studied recently (see, for instance, [5, 6, 7, 22, 23,
24, 26, 27, 28, 30, 33] and a recent survey [25] and references therein). In this pa-
per, we will focus on this problem for periodic magnetic Schrödinger operators on
covering spaces of compact manifolds. Strictly speaking, these operators are not
periodic, even if the electric and magnetic fields are, but they are invariant under
a projective action of the fundamental group, as will be explained in Section 3.

Supported by Russian Foundation of Basic Research (grant no. 04-01-00190).
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So let (M, g) be a closed Riemannian oriented manifold of dimension n ≥ 2,
M̃ be its universal cover and g̃ be the lift of g to M̃ so that g̃ is a Γ-invariant
Riemannian metric on M̃ where Γ denotes the fundamental group of M acting
on M̃ by the deck transformations. (Actually, the results, which we will describe
below, apply to any covering M̃ of M such that its first Betti number b1(M̃)
vanishes.) Let B be a real-valued Γ-invariant closed 2-form on M̃ . We assume
that B is exact. Choose a real-valued 1-form A on M̃ such that dA = B. A
defines a Hermitian connection ∇A = d + iA on the trivial line bundle L over
M̃ , whose curvature is iB. Physically we can think of A as the electromagnetic
vector potential for a magnetic field B. Suppose that E is a Hermitian vector
bundle on M and Ẽ the lift of E to the universal cover M̃ . Let ∇̃E denote a
Γ-invariant Hermitian connection on Ẽ. Then consider the Hermitian connection
∇ = ∇̃E ⊗ id + id ⊗ ∇A on Ẽ ⊗ L = Ẽ. Let V be a Γ-invariant self-adjoint
endomorphism of the bundle Ẽ. A periodic magnetic Schrödinger operator is a
second-order elliptic differential operator

HA,V = ∇∗∇+ V,

acting on the Hilbert space L2(M̃, Ẽ).
A well-known method to produce operators with spectral gaps is to study

differential operators with high contrast in (some of) the coefficients. We consider
two cases of high contrast in the coefficients of periodic magnetic Schrödinger
operators.
1. Strong electric field limit. This means the study of the asymptotic behavior of
the spectrum of the operator

HA,µ−2V = ∇∗∇+ µ−2V,

where V ≥ 0 and the coupling constant µ tends to zero. In this case, there is a
periodic array of electric wells which are separated from one another by electric
barriers. The wells get deeper as µ approaches zero, which makes tunnelling from
one well into any other well more and more difficult, and wells gets (asymptoti-
cally) isolated. Therefore, the spectrum of HA,µ−2V as µ→ 0 concentrates on the
spectrum of the Hamiltonian for the crystal with perfectly isolated atoms (called
a model operator below). The spectrum of the model operator is a discrete set,
consisting of eigenvalues of infinite multiplicity. Hence, this spectral concentration
produces arbitrarily large numbers of gaps in the spectrum of HA,µ−2V if µ is
sufficiently small.
2. Strong magnetic field limit. This means the study of the asymptotic behavior
of the spectrum of the operator

HλA,0 = (d + iλA)∗(d + iλA),

when the coupling constant λ tends to +∞ or, equivalently, the asymptotic be-
havior of the spectrum of the operator

Hh = h2H−h−1A,0 = (ih d + A)∗(ih d + A),
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when the semiclassical parameter h > 0 tends to zero. In this case, the spectral
gaps are produced by a periodic array of wells created by the magnetic field.

There are several methods to prove the existence of spectral gaps. Some
of them are essentially based on one-dimensional calculations and separation of
variables. Another, simple, but powerful method to produce examples of periodic
elliptic operators with spectral gaps was suggested by Hempel and Herbst [22].
It is based on a well-known fact that norm resolvent convergence of self-adjoint
operators implies their spectral convergence on any compact interval of the real
line. As a consequence, we get that if a sequence Tn of self-adjoint operators
converges to T in norm resolvent sense and (a, b)∩ σ(T ) = ∅ (where σ(T ) denotes
the spectrum of T ), then for any ε > 0, (a+ ε, b− ε)∩σ(Tn) = ∅ if n is sufficiently
large. In particular, if σ(T ) is a discrete set with each point in the spectrum
an eigenvalue of infinite multiplicity, then the spectrum of Tn concentrates at
a discrete set of points and has an arbitrarily large number of spectral gaps as
n→∞.

This method was applied in [22] to the study of the strong electric field limit
for the periodic Schrödinger operator in the case when M̃ = Rn, Ẽ is the trivial
line bundle and Γ = Zn. Consider a closed subset S of Rn such that the interior
of S is non-empty and S can be represented as S = ∪j∈ZnSj (up to a set of
measure zero) where the Sj are pairwise disjoint compact sets with Sj = S0 + j.
Put Ω = Rn \ S. It is shown that the operator −∆ + µ−2χΩ converges in norm
resolvent sense to the Dirichlet Laplacian −∆S on the closed set S. Note that −∆S

is a countable direct sum of copies of −∆S0 . Therefore, the spectrum of −∆S is a
discrete set with each point in the spectrum an eigenvalue of infinite multiplicity.
It follows that the spectrum of −∆ + µ−2χΩ concentrates at a discrete set of
points and has an arbitrarily large number of spectral gaps as µ → 0. The same
arguments work for any operator H0,µ−2V = −∆ + µ−2V with a Zn-periodic real-
valued (continuous or measurable and bounded) potential V ≥ 0 in Rn such that
the set S = {x ∈ Rn : V (x) = 0} satisfies the above conditions.

Hempel and Herbst also studied in [22] the strong magnetic field limit for
the periodic Schrödinger operator in the case when M̃ = Rn, Ẽ is the trivial line
bundle and Γ = Zn. Let S = {x ∈ Rn : B(x) = 0} and SA = {x ∈ Rn : A(x) = 0}.
Assume that the set S \ SA has measure zero, the interior of S is non-empty and
S can be represented as S = ∪j∈ZnSj (up to a set of measure zero) where the Sj

are pairwise disjoint compact sets with Sj = S0 + j. It is shown that, as λ → ∞,
HλA,0 converges in norm resolvent sense to the Dirichlet Laplacian −∆S on the
closed set S. Therefore, as λ → ∞, the spectrum of HλA,0 concentrates around
the eigenvalues of −∆S and gaps opens up in the spectrum of HλA,0.

On the other hand, Hempel and Herbst also proved in [22] that, if SA has
measure zero, then, as λ → ∞, HλA,0 converges in strong resolvent sense to the
zero operator in L2(Rn). So, in this case, the method does not work.

In this paper, we describe a new method to prove the existence of gaps for
magnetic Schrödinger operators, which works in the case when the bottom S of
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electric or magnetic wells has measure zero and the electromagnetic potential has
regular behavior near the bottom. This method was suggested in [27] for the study
of the strong electric field limit and applied in [28] for the study of the strong
magnetic field limit. Let us formulate the main results obtained by this method.

1. Strong electric field limit. In this case, we consider a more general self-adjoint
elliptic second-order differential operator given by

H(µ) = µ∇∗∇+ B + µ−1V = µHA,µ−2V + B,

where B is a Γ-invariant self-adjoint endomorphism of the bundle Ẽ. Assume that
V satisfies in addition the following Morse type condition:

(E1) For all x ∈ M̃ , V (x) ≥ 0, and V has at least one zero point.
(E2) If the matrix V (x0) is degenerate for some x0 in M̃ , then V (x0) = 0 and

there is a positive constant c such that

V (x) ≥ c|x− x0|2I

for all x in a neighborhood of x0, where I denotes the identity endomorphism
of Ẽ.

We remark that all functions V = |df |2, where |df | denotes the pointwise
norm of the differential of a Γ-invariant Morse function f on M̃ , are examples of
Morse type potentials.

Theorem 1 ([27]). Under the assumptions (E1)–(E2), there exists an increasing
sequence {λm, m ∈ N}, satisfying λm → ∞ as m → ∞, such that for any a
and b, satisfying λm < a < b < λm+1 with some m, there exists µ0 > 0 such
that [a, b] ∩ σ(H(µ)) = ∅ for all µ ∈ (0, µ0). In particular, there exists arbitrarily
large number of gaps in the spectrum of H(µ) provided the coupling constant µ is
sufficiently small.

The special case of Theorem 1 in the absence of a magnetic field was estab-
lished in [33], using variational method, and the special case of this result in the
presence of a magnetic field but in the scalar case was established in [30] using the
same method as in [33].

2. Strong magnetic field limit. Assume that Ẽ is the trivial line bundle. For any
x ∈ M̃ , denote by B(x) the anti-symmetric linear operator on the tangent space
TxM̃ associated with the 2-form B:

g̃x(B(x)u, v) = Bx(u, v), u, v ∈ TxM̃.

The trace-norm |B(x)| of B(x) is given by the formula

|B(x)| = [Tr(B∗(x) · B(x))]1/2.
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We will assume that:

(M1) There exists at least one zero of B.
(M2) There exists an integer k > 0 such that, if B(x0) = 0, then there exists a

positive constant C such that

C−1|x− x0|k ≤ |B(x)| ≤ C|x − x0|k

for all x in some neighborhood of x0.

Theorem 2 ([28]). Under the assumptions (M1) and (M2), there exists an increas-
ing sequence {λm, m ∈ N}, satisfying λm → ∞ as m → ∞, such that for any a

and b, satisfying λm < a < b < λm+1 with some m, [ah
2k+2
k+2 , bh

2k+2
k+2 ] ∩ σ(Hh) = ∅

for any h > 0 small enough. In particular, there exists arbitrarily large number of
gaps in the spectrum of Hh provided the parameter h is sufficiently small.

The method of the proof of Theorems 1 and 2 developed in [27, 28] completely
replaces a variational method mentioned above which was used in [33] and [30] to
prove Theorem 1. First of all, this method also uses the idea of model operator
suggested in [33]. The construction of the model operator in the strong electric
field limit was given in [33] and in the strong magnetic field limit was given in [28],
following the ideas of [17]. It is supplemented by a direct construction of an inter-
twining operator between two spectral projections: of the original operator and the
model operator. This construction uses cut-off functions, the polar decomposition
and closed image technique and can be formulated in a pure functional analytic
setting. In particular, it allows to treat these two operators in a symmetric way
unlike the treatment in [33, 30] where the proofs of the upper and lower estimates
for the spectrum distribution functions required separate and very different proofs.

Note that similar ideas were used earlier. First of all, one should mention
[33], which uses variational methods and cut-off functions and where the idea of
the model operator was crystallized for the first time (see also [30]). Variational
methods and cut-off functions were also used in [3, Proposition 5.2] to establish
existence of a gap near zero in the spectrum of the Witten deformation for the
periodic Laplacians on forms, and in [2] (see Section 4, in particular, Lemmas
4.3 and 4.10) to prove vanishing of the relative index term in the gluing formula
for the η-invariant in the adiabatic limit. In [9], Helffer and Sjöstrand used cut-
off functions and perturbation arguments based on the Riesz projection formula
(see [9, Theorem 2.4 and Proposition 2.5]) together with Agmon type weighted
estimates to study the tunneling effect for Schrödinger operators with electric
wells. These methods were extended to magnetic Schrödinger operators on compact
manifolds in [10, 11, 13, 14, 15, 16]. It is quite possible that the technique developed
in these papers can also be applied to the problems discussed here.

We believe, however, that our use of the polar decomposition and closed
image technique to establish C∗-algebra equivalence of spectral projections and
the symmetric use of the original and the model operators are new and may lead
to further important results.
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As mentioned above, the essential part of our method can be formulated
in a pure functional analytic setting. These results are described in Section 2.
Section 3 contains a necessary information on the magnetic Schrödinger operators
and related operator algebras. Section 4 and Section 5 describe applications of
the general technique to the study of the strong electric field limit and the strong
magnetic field limit accordingly and outline the proofs of Theorems 1 and 2 (we
refer the reader to [27, 28] for more details). In Section 4, we also describe (without
proofs) extensions of Theorem 1 and its applications to the quantum Hall effect.

2. An abstract setting

In this section we describe a general functional-analytic setting suggested in [27],
where we can state general results on spectral concentration and the existence of
spectral gaps.

Consider Hilbert spaces H1 and H2 equipped with inner products (·, ·)1 and
(·, ·)2 and semi-bounded from below self-adjoint operators A1 in H1 and A2 in
H2 with the domains Dom(A1) and Dom(A2) respectively. So we have with some
λ01, λ02 ≤ 0:

(Alu, u)l ≥ λ0l‖u‖2l , u ∈ Dom(Al), l = 1, 2. (1)

It is convenient to fix unitary isomorphisms V1 : H1 → H and V2 : H2 → H,
where H is a fixed Hilbert space.

We will assume that the operators A1 and A2 have symmetries. This is ex-
pressed by an assumption that there exists a C∗-algebra A equipped with a faithful
∗-representation π : A→ B(H) in H such that, if we denote by π1 and π2 the cor-
responding representations of A in H1 and H2 accordingly:

πl(a) = V−1
l ◦ π(a) ◦ Vl, l = 1, 2, a ∈ A,

then:

Assumption 1. For any t > 0 and for any l = 1, 2, the operator e−tAl belongs
to πl(A). Moreover, there exists a faithful, normal, semi-finite trace τ on the
von Neumann algebra π(A)′′ such that, for any t > 0 and for any l = 1, 2,
τ(Vle

−tAlV−1
l ) <∞.

Denote by El(λ) (l = 1, 2) the spectral projection of the operator Al, cor-
responding to the semi-axis (−∞, λ]. By standard arguments, it follows that, for
any λ, VlEl(λ)V−1

l ∈ π(A)′′, and τ(VlEl(λ)V−1
l ) <∞ (l = 1, 2).

We will assume that the quadratic forms of A1 and A2 are close on some
common part inH1 andH2 and sufficiently large on the complements. To formulate
these assumptions more precisely, first, let us fix a Hilbert space H0 equipped with
injective bounded linear maps i1 : H0 → H1 and i2 : H0 → H2. We suppose that
there are given bounded linear maps p1 : H1 → H0 and p2 : H2 → H0 such that
p1 ◦ i1 = idH0 and p2 ◦ i2 = idH0 . The whole picture can be represented by the
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following diagram (note that this diagram is not commutative).
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To have a possibility to restrict the quadratic forms of the operators Al to
il(H0), we introduce a self-adjoint bounded operator J in H0 (a cut-off operator)
such that:

Assumption 2. The operator V2i2Jp1V−1
1 belongs to π(A)′′, (i2Jp1)∗ = i1Jp2, and

the operator π(a)V2(i2Jp1)V−1
1 belongs to π(A) for any a ∈ A.

Since the operators il : H0 → Hl, l = 1, 2, are bounded and have bounded left-
inverse operators pl, they are topological monomorphisms, i.e., they have closed
image and the maps il : H0 → Im il are topological isomorphisms. Therefore, we
can assume that the estimate

ρ−1‖i2Ju‖2 ≤ ‖i1Ju‖1 ≤ ρ‖i2Ju‖2, u ∈ H0, (2)

holds with some ρ > 1 (depending on J).

Assumption 3. For u ∈ H0, we have

i1Ju ∈ Dom(A1)⇐⇒ i2Ju ∈ Dom(A2)
(

def⇐⇒ u ∈ D
)

.

Introduce the corresponding cut-off operators Jl inHl, l = 1, 2, by the formula
Jl = ilJpl.

Assumption 4. For l = 1, 2, Jl is a self-adjoint bounded operator in Hl such that
Jl maps the domain of Al to itself and 0 ≤ Jl ≤ idHl

.

Introduce a self-adjoint positive bounded linear operator J ′
l in Hl by the

formula J2
l + J ′

l
2 = idHl

.

Assumption 5. For l = 1, 2, the operator J ′
l maps the domain of Al to itself.

Assumption 6. For l = 1, 2, the operators [Jl, [Jl, Al]] and [J ′
l , [J

′
l , Al]] extend to

bounded operators in Hl.
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The operator partition of unity {Jl, J
′
l} allows to decompose the quadratic

forms of the operator Al, using a so-called IMS-localization formula:

(Alu, u)l =(AlJlu, Jlu)l + (AlJ
′
lu, J ′

lu)l +
1
2
([Jl, [Jl, Al]]u, u)l

+
1
2
([J ′

l , [J
′
l , Al]]u, u)l, u ∈ Dom(Al), l = 1, 2.

We need an estimate for the error of this localization formula:

max(‖[Jl, [Jl, Al]]‖l, ‖[J ′
l , [J

′
l , Al]]‖l) ≤ γl, l = 1, 2. (3)

Finally, we assume that the quadratic forms of the operators A1 and A2 are
close on D: for some β1, β2 ≥ 1 and ε1, ε2 > 0, we have

(A2i2Ju, i2Ju)2 ≤ β1(A1i1Ju, i1Ju)1 + ε1‖i1Ju‖21, u ∈ D, (4)

(A1i1Ju, i1Ju)1 ≤ β2(A2i2Ju, i2Ju)2 + ε2‖i2Ju‖22, u ∈ D, (5)

and are large enough on the complement of D: for some αl > 0, we have

(AlJ
′
lu, J ′

lu)l ≥ αl‖J ′
lu‖2l , u ∈ Dom(Al), l = 1, 2. (6)

Recall that two orthogonal projections P and Q in a unital ∗-algebra A are
said to be Murray-von Neumann equivalent in A if there is an element V ∈ A such
that P = V ∗V and Q = V V ∗.

Theorem 3. Under current assumptions, let b1 > a1 and

a2 = ρ

[
β1

(
a1 + γ1 +

(a1 + γ1 − λ01)2

α1 − a1 − γ1

)
+ ε1

]
, (7)

b2 =
β−1

2 (b1ρ
−1 − ε2)(α2 − γ2)− α2γ2 + 2λ02γ2 − λ2

02

α2 − 2λ02 + β−1
2 (b1ρ−1 − ε2)

. (8)

Suppose that α1 > a1 + γ1, α2 > b2 + γ2 and b2 > a2. If (a1, b1)∩σ(A1) = ∅, then:
(1) (a2, b2) ∩ σ(A2) = ∅;
(2) for any λ1 ∈ (a1, b1) and λ2 ∈ (a2, b2), the projections V1E1(λ1)V−1

1 and
V2E2(λ2)V−1

2 belong to A and are Murray-von Neumann equivalent in A.

Remark. Since ρ > 1, β1 ≥ 1, γ1 > 0 and ε1 > 0, we, clearly, have a2 > a1. The
formula (8) is equivalent to the formula

b1 = ρ

[
β2

(
b2 + γ2 +

(b2 + γ2 − λ02)2

α2 − b2 − γ2

)
+ ε2

]
,

which is obtained from (7), if we replace α1, β1, γ1, ε1, λ01 by α2, β2, γ2, ε2, λ02

accordingly and a1 and a2 by b2 and b1 accordingly. In particular, this implies that
b1 > b2.

Remark. In applications of Theorem 3, all the data depend on a positive parameter,
and one can check the assumptions of the theorem provided the parameter is
sufficiently small.
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Proof of Theorem 3 (outline). Take arbitrary λ1 ∈ (a1, b1) and λ2 ∈ (a2, b2). Con-
sider the bounded operator T = V2E2(λ2)i2Jp1E1(λ1)V−1

1 in H. By assumption,
T belongs to the von Neumann algebra π(A)′′.

The key step in the proof is to show the estimates

‖Tu‖ ≥ ε‖u‖, u ∈ V1(Im E1(λ1)),

‖T ∗u‖ ≥ ε‖u‖, u ∈ V2(Im E2(λ2)),

that can be done, using the assumptions and some elementary facts from the oper-
ator theory. By these estimates, it follows that the operators T : V1(Im E1(λ1))→
V2(Im E2(λ2)) and T ∗ : V2(Im E2(λ2)) → V1(Im E1(λ1)) are injective and have
closed image, and, therefore, are bijective.

Let T = US, U, S ∈ π(A)′′, be the polar decomposition of T . Since KerT =
V1(Im E1(λ1)) = ImV1E1(λ1)V−1

1 and ImT = V2(Im E2(λ2)) = ImV2E2(λ2)V−1
2 ,

U is a partial isometry that performs the Murray-von Neumann equivalence of the
projections V1E1(λ1)V−1

1 and V2E2(λ2)V−1
2 in the von Neumann algebra π(A)′′.

Since (a1, b1) ∩ σ(A1) = ∅, the spectral density function τ(V1E1(λ1)V−1
1 ) is

constant for any λ1 ∈ (a1, b1). Using the Murray-von Neumann equivalence of
V1E1(λ1)V−1

1 and V2E2(λ2)V−1
2 and the tracial property, we conclude that the

spectral density function τ(V2E2(λ2)V−1
2 ) is constant for any λ2 ∈ (a2, b2). Since

the trace τ is faithful, we get (a2, b2)∩ σ(A2) = ∅, that completes the proof of the
first part of Theorem 3.

Note that E1(λ1) = χ[e−tλ1 ,∞)

(
e−tA1

)
. Using the fact that λ1 belongs to a

gap in the spectrum A1 and e−tA1 ∈ π1(A), one can replace χ[e−tλ1 ,∞) by a con-
tinuous function and obtain that E1(λ1) ∈ π1(A) for any λ1 ∈ (a1, b1). Similarly,
E2(λ2) ∈ π2(A) for any λ2 ∈ (a2, b2). By assumption, it follows that T belongs to
the C∗-algebra π(A). It remains to apply the following lemma to show that the
partial isometry U belongs to the C∗-algebra π(A).

Lemma 4. Let A be a C∗-algebra, H a Hilbert space equipped with a faithful ∗-
representation of A, π : A→ B(H). If P ∈ π(A) has closed image and P = US is
its polar decomposition, then U, S ∈ π(A).

�

3. Magnetic translations and related operator algebras

The proofs of Theorems 1 and 2 are given by application of Theorem 3 in some
concrete situations. In both cases, the operator A2 will be essentially the peri-
odic magnetic operator HA,V and the operator A1 will be the model operator,
which is obtained as an approximation of A2 near the bottoms of wells (electric
or magnetic). In particular, in both cases the spectrum of A1 is a discrete set of
eigenvalues of infinite multiplicities, which is precisely the sequence {λm}, entering
in the formulations of the theorems. This Section contains necessary information
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on properties of the periodic magnetic Schrödinger operator HA,V and related
notions.

As above, let M be a compact connected Riemannian manifold, Γ be its
fundamental group and p : M̃ → M be its universal cover. Let B be a closed
Γ-invariant real-valued 2-form on M , which is exact. So B = dA where A is a
real-valued 1-form on M̃ . Let V be a Γ-invariant electric potential. The corre-
sponding Hermitian connection ∇A is no longer Γ-invariant, but ∇A turns out
to be invariant under a projective representation T of the group Γ on L2(M̃, Ẽ)
(see, for instance, [30, 27] and references therein for more details). The opera-
tors Tγ , γ ∈ Γ, of this representation, called magnetic translations, are unitary
operators in L2(M̃, Ẽ), satisfying

Te = id, Tγ1Tγ2 = σ(γ1, γ2)Tγ1γ2 , γ1, γ2 ∈ Γ.

Here σ is a 2-cocycle on Γ i.e. σ : Γ× Γ→ U(1) satisfies

σ(γ, e) =σ(e, γ) = 1, γ ∈ Γ;

σ(γ1, γ2)σ(γ1γ2, γ3) =σ(γ1, γ2γ3)σ(γ2, γ3), γ1, γ2, γ3 ∈ Γ.

In other words, T is a projective (Γ, σ)-unitary representation (or a (Γ, σ)-action)
on L2(M̃, Ẽ), It is easy to see that the periodic magnetic operator HA,V also
commutes with the (Γ, σ)-action T on L2(M̃, Ẽ).

Denote by �2(Γ) the standard Hilbert space of complex-valued L2-functions
on the discrete group Γ. An orthonormal basis of �2(Γ) is formed by δ-functions
{δγ}γ∈Γ, δγ(γ′) = 1 if γ = γ′ and 0 otherwise.

For any γ ∈ Γ, define a unitary operator T L
γ in �2(Γ) by

T L
γ f(γ′) = f(γ−1γ′)σ̄(γ, γ−1γ′), γ′ ∈ Γ, f ∈ �2(Γ).

The operators T L
γ define a (Γ, σ̄)-unitary representation in �2(Γ).

Define a twisted group algebra C(Γ, σ̄) which consists of complex-valued func-
tions with finite support on Γ, with the twisted convolution operation

(f ∗ g)(γ) =
∑

γ1,γ2:γ1γ2=γ

f(γ1)g(γ2)σ̄(γ1, γ2),

and with the involution

f∗(γ) = σ(γ, γ−1)f(γ−1).

Associativity of the multiplication is equivalent to the cocycle condition.
The correspondence f ∈ C(Γ, σ̄) �→ T L(f) ∈ B(�2(Γ)), where T L(f)u =

f ∗ u, u ∈ �2(Γ), defines a ∗-representation of the twisted group algebra C(Γ, σ̄) in
�2(Γ). The weak closure of the image of C(Γ, σ̄) in this representation coincides
with the (left) twisted group von Neumann algebra AL(Γ, σ̄). The corresponding
norm closure is the reduced twisted group C∗-algebra which is denoted C∗

r (Γ, σ̄).
The von Neumann algebra AL(Γ, σ̄) can be described in terms of the ma-

trix elements. For any A ∈ B(�2(Γ)), its matrix elements are defined as Ax,y =
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(Aδy, δx), x, y ∈ Γ. Then, for any A ∈ B(�2(Γ)), the inclusion A ∈ AL(Γ, σ̄) is
equivalent to the relations

Axγ,yγ = σ̄(x, γ)σ(y, γ)Ax,y , x, y, γ ∈ Γ.

A finite von Neumann trace trΓ,σ̄ : AL(Γ, σ̄)→ C is defined by the formula

trΓ,σ̄A = (Aδe, δe).

We can also write trΓ,σ̄A = Aγ,γ = (Aδγ , δγ) for any γ ∈ Γ because the right-hand
side does not depend on γ.

Let F ⊂ M̃ be a connected fundamental domain for the action of Γ. This al-
lows us to define a (Γ, σ)-equivariant isometry U : L2(M̃, Ẽ) ∼= �2(Γ)⊗L2(F , Ẽ|F)
by the formula

U(φ) =
∑
γ∈Γ

δγ ⊗ i∗(Tγφ), φ ∈ L2(M̃, Ẽ), (9)

where i : F → M̃ denotes the inclusion map.
IfH is a Hilbert space, then let K(H) denote the algebra of compact operators

in H, and K = K(�2(N)), where N = {1, 2, 3, . . .}. Consider the C∗ algebra A =
C∗

r (Γ, σ̄) ⊗ K. Let H be the Hilbert space �2(Γ) ⊗ �2(N) and H2 be the Hilbert
space L2(M̃, Ẽ). There is a natural representation π of the algebra A in H given by
the tensor product of the representation T L of C∗

r (Γ, σ̄) in �2(Γ) and the natural
representation of K in �2(N). We have π(C∗

r (Γ, σ̄) ⊗ K)′′ = AL(Γ, σ̄) ⊗ B(�2(N)).
Choose an arbitrary unitary isomorphism V2 : L2(F , Ẽ|F) → �2(N) and define a
unitary operator V2 : H2 → H as V2 = (id⊗ V2) ◦U. Let π2 be the corresponding
representation of A in H2.

As shown in [27], for any t > 0, the operator e−tHA,V belongs to π2(A).
Moreover, if we define a trace τ on AL(Γ, σ̄) ⊗ B(�2(N)) as the tensor product
of the finite von Neumann trace trΓ,σ̄ on AL(Γ, σ̄) and the standard trace on
B(�2(N)), then, for any t > 0, τ(V2e

−tHA,V V−1
2 ) <∞.

4. Strong electric fields

4.1. The model operator

The construction of the model operator in the case of strong electric field was
given in [33]. Let us use the notation of Theorem 1. Choose a fundamental domain
F ⊂ M̃ so that there are no zeros of V on the boundary of F . This is equivalent
to saying that the translations {γF , γ ∈ Γ} cover the set V −1(0) (the set of all
zeros of V ). Let V −1(0)∩F = {x̄j | j = 1, . . . , N} be the set of all zeros of V in F ;
x̄i �= x̄j if i �= j.

The model operator K is an operator in L2(Rn, Ck)N defined as a direct sum

K =
⊕

1≤j≤N

Kj,
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where Kj is a self-adjoint second-order differential operator in L2(Rn, Ck) (a har-
monic oscillator) which corresponds to the zero x̄j and is obtained as the quadratic
part of H(1) near x̄j . Fix local coordinates on M̃ and trivialization of the bundle
Ẽ in a small neighborhood B(x̄j , r) of x̄j for every j = 1, . . . , N . We assume that
x̄j becomes zero in these local coordinates. Then Kj has the form

Kj = H
(2)
j + B̄j + V

(2)
j ,

where all the components are obtained from H as follows. The second-order term
H

(2)
j is a homogeneous second-order differential operator with constant coefficients

(without lower-order terms) given by

H
(2)
j = −

n∑
i,k=1

gik(x̄j)
∂2

∂xi∂xk
,

where (gik) is the inverse matrix to the matrix of the Riemannian metric (gik).
(Note that H

(2)
j does not depend on A.) The zeroth-order term V

(2)
j is obtained

by taking the quadratic part of V in the chosen coordinates near x̄j :

V
(2)
j =

1
2

n∑
i,k=1

∂2V

∂xi∂xk
(x̄j)xixk.

Finally, B̄j is an endomorphism of the fiber of the bundle Ẽ over the point x̄j

given by
B̄j = B(x̄j), j = 1, . . . , N.

We will also need the operator K(µ) = ⊕1≤j≤NKj(µ), where

Kj(µ) = µH
(2)
j + B̄j + µ−1V

(2)
j , µ > 0.

Note that K(µ) is obtained by a simple scaling from the operator K = K(1)
and has a discrete spectrum independent of µ. If we take a direct sum of all
harmonic oscillators Kj(µ) over all zeros of V in M̃ (and not only in a fundamental
domain) then we will get another version of the model operator, the operator
id⊗K(µ), which acts in �2(Γ)⊗ L2(Rn, Ck)N and has the same spectrum, which
is a discrete set, consisting of eigenvalues of infinite multiplicity.

4.2. Proof of Theorem 1
For the proof, we apply Theorem 3 in the following setting. As in Section 3, let A be
the C∗ algebra C∗

r (Γ, σ̄)⊗K, letH be the Hilbert space �2(Γ)⊗�2(N) equipped with
the representation π of the algebra A and let H2 = L2(M̃, Ẽ). Let V2 : H2 → H be
a unitary operator defined as V2 = (id ⊗ V2) ◦U, where V2 : L2(F , Ẽ|F)→ �2(N)
is an arbitrary unitary isomorphism. Let π2 be the corresponding representation
of A in H2.

We will use the notation of Section 4.1. Put H1 = �2(Γ) ⊗ L2(Rn, Ck)N .
Choose an arbitrary unitary isomorphism V1 : L2(Rn, Ck)N → �2(N). Define a
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unitary operator V1 : H1 → H as V1 = id ⊗ V1. Let π1 the corresponding repre-
sentation A in H1.

Consider self-adjoint, semi-bounded from below operators A1 in H1 and A2

in H2:
A1 = id⊗K(µ), A2 = H(µ).

Assumption 1 is clear for the operator A1. It holds for the operator A2 by
the results mentioned at the end of Section 3.

Let H0 = �2(Γ)⊗
(
⊕N

j=1L
2(B(x̄j , r), Ẽ|B(x̄j ,r))

)
. An inclusion i1 : H0 → H1

is defined as i1 = id⊗ j1, where j1 is the inclusion
N⊕

j=1

L2(B(x̄j , r), Ẽ|B(x̄j,r))→ L2(Rn, Ck)N

given by the chosen local coordinates and trivializations of the vector bundle Ẽ.
An inclusion i2 : H0 → H2 is defined as i2 = U∗ ◦ (id⊗ j2), where j2 is the natural
inclusion

N⊕
j=1

L2(B(x̄j , r), Ẽ|B(x̄j ,r))→ L2(F , Ẽ|F).

The operator p1 : H1 → H0 is defined as p1 = id ⊗ r1, where r1 is the
restriction operator

L2(Rn, Ck)N →
N⊕

j=1

L2(B(x̄j , r), Ẽ|B(x̄j ,r)).

The operator p2 : H1 → H0 is defined as p2 = (id ⊗ r2) ◦ U, where r2 is the
restriction operator

L2(F , Ẽ|F )→
N⊕

j=1

L2(B(x̄j , r), Ẽ|B(x̄j ,r)).

Fix a function φ ∈ C∞
0 (Rn) such that 0 ≤ φ ≤ 1, φ(x) = 1 if |x| ≤ 1,

φ(x) = 0 if |x| ≥ 2. Fix a number κ, 0 < κ < 1/2, which we shall choose later.
For any µ > 0 define φ(µ)(x) = φ(µ−κx). For any µ > 0 small enough, let φj =
φ(µ) ∈ C∞

c (B(x̄j , r)) in the fixed coordinates near x̄j . Denote also φj,γ = (γ−1)∗φj .
(This function is supported near γx̄j .) We will always take µ ∈ (0, µ0) where µ0

is sufficiently small, so in particular the supports of all functions φj,γ are disjoint.
Let Φ = ⊕N

j=1φj ∈ ⊕N
j=1C

∞
c (B(x̄j , r)) ⊂ C∞(F). Consider a (Γ, σ)-equivari-

ant, self-adjoint, bounded operator J in H0 defined as J = id⊗Φ, where Φ denotes
the multiplication operator by the function Φ in ⊕N

j=1L
2(B(x̄j , r), Ẽ|B(x̄j,r)). As-

sumptions 2, 3, 4 and 5 can be easily checked.
We will use local coordinates near x̄j such that the Riemannian volume el-

ement at the point x̄j coincides with the Euclidean volume element given by the
chosen local coordinates. Similarly we will fix a trivialization of the bundle Ẽ near
x̄j such that the Hermitian metric becomes trivial in this trivialization. Then the
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estimate (2) holds with
ρ = 1 + O(µκ). (10)

If A is a second-order differential operator in C∞(Rn, Ck) with the principal
symbol a2(x, ξ), which is a matrix-valued function on T ∗Rn, and J is the mul-
tiplication operator by a function φ ∈ C∞

c (Rn), then the operator [J, [J, A]] is
the multiplication operator by the function −a2(x, dφ(x)). The principal symbols
a
(2)
1,j ∈ C∞(T ∗Rn) of Kj(µ), j = 1, 2, . . . , N, and a

(2)
2 ∈ C∞(T ∗M̃) of H(µ) are

given respectively by

a
(2)
1,j(x, ξ) = µ

n∑
i,k=1

gik(x̄j)ξiξk, (x, ξ) ∈ T ∗Rn;

a
(2)
2 (x, ξ) = µ

n∑
i,k=1

gik(x)ξiξk, (x, ξ) ∈ T ∗M̃.

Using these facts and that dφ = O(µ−κ), one can easily check Assumption 6 and
the estimate (3) with

γl = O(µ1−2κ), l = 1, 2. (11)

Since V
(2)
j ≥ cjµ

2κ, j = 1, 2, . . . , N, outside any neighborhood of 0 with some
cj > 0 and V ≥ c0µ

2κ outside any neighborhood of the set {x̄j |j = 1, . . . , N}, with
some c0 > 0, the estimates (6) hold with

αl = cµ−1+2κ, l = 1, 2. (12)

It is easy to see that the constants λ0l can be chosen independently of µ:

λ0l = const, l = 1, 2. (13)

Finally, using the fact that the corresponding coefficients of A1 and A2 are
close near the points x̄j , one can easily show that the estimates (4) and (5) hold
with

βl = 1 + O(µκ), εl = O(µ3κ−1). (14)
To complete the proof of Theorem 1, let {λm : m ∈ N}, λ1 < λ2 < λ3 < . . . ,

be the spectrum (without taking into account multiplicities) of the operator K(µ),
which is independent of µ. Take any a and b such that λm < a < b < λm+1 with
some m. Clearly, the spectrum of the operator A1 coincides with the spectrum of
the operator K(µ). Therefore, [a, b] ∩ σ(A1) = ∅. There exists an open interval
(a1, b1) that contains [a, b] and does not intersect with the spectrum of A1. Using
the formulas (10), (11), (12), (13) and (14), one can see that, for a2 and b2 given
by (7) and (8), we have

a2 = a1 + O(µs), b2 = b1 + O(µs), µ→ 0, (15)

where s = min{3κ− 1, 1− 2κ}. The best possible value of s which is

s = max
κ

min{3κ− 1, 1− 2κ} =
1
5

is attained when κ = 2/5.
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Hence, if µ > 0 is small enough, we have α1 > a1 + γ1, α2 > b2 + γ2,
b2 > a2 and the interval (a2, b2) contains [a, b]. By Theorem 3, we conclude that
(a2, b2) ∩ σ(A2) = ∅, that completes the proof of Theorem 1.

4.3. Semiclassical approximation of spectral projections

Theorem 3 also provides some information about the K-theory classes of the spec-
tral projections of the magnetic Schrödinger operator in the strong electric field
limit.

For a unital ∗-algebra A, denote by K0(A) the K-group of A and by K̃0(A)
the reduced K-group of A. By definition, K̃0(A) = cokerπ∗ ∼= K0(A)/Z, where
π∗ : K0(C) ∼= Z→ K0(A) is induced by the homomorphism π : C→ A : λ �→ λ·1A,
and the K-group K0(A) of a non-unital ∗-algebraA is the reduced K-group K̃0(Ã)
of the algebra Ã obtained from A by adjoining a unit.

Recall that for a C∗-algebra A, the Morita invariance of K-theory asserts
that there is a natural isomorphism K0(A) ∼= K0(A⊗K).

Theorem 5. Under assumptions of Theorem 1, assume that λ ∈ R does not coincide
with λk for any k. Let E(λ) = χ(−∞,λ](H(µ)) and E0(λ) = χ(−∞,λ](K(µ)) denote
the spectral projections. There exists a (Γ, σ)-equivariant isometry U : L2(M̃, Ẽ)→
�2(Γ) ⊗ L2(Rn, Ck)N and a constant µ0 > 0 such that for all µ ∈ (0, µ0), the
projections UE(λ)U∗ and id ⊗ E0(λ) are in C∗

r (Γ, σ̄) ⊗ K(L2(Rn, Ck)N ) and are
Murray-von Neumann equivalent in C∗

r (Γ, σ̄)⊗K(L2(Rn, Ck)N ). In particular,

[UE(λ)U∗] =[id⊗ E0(λ)]

∈ K0(C∗
r (Γ, σ̄)⊗K(L2(Rn, Ck)N )) ∼= K0(C∗

r (Γ, σ̄));

[E(λ)] =0 ∈ K̃0(C∗
r (Γ, σ̄)).

Denote by TrΓ the trace on the algebra C∗
r (Γ, σ̄) ⊗ K(L2(Rn, Ck)N ), which

is the tensor product of the trace trΓ,σ̄ on C∗
r (Γ, σ̄) and the standard trace Tr on

K(L2(Rn, Ck)N ). As an immediate consequence of Theorem 5, we get the following

Corollary 6. In the notation of Theorem 5 one has,

TrΓ(UE(λ)U∗) = rank (E0(λ)) for all µ ∈ (0, µ0).

4.4. Higher cocycles and equivalence of spectral projections in smooth subalgebras

As a consequence of Theorem 5, one can also show a vanishing theorem for the
pairing of the spectral projections E(λ) of the operator H(µ) with higher cyclic
cocycles as µ → 0. One of the main motivation for these results is an application
to the quantum Hall effect described in the next section.

It should be noted that higher cyclic cocycles are usually defined not on
the whole C∗-algebra C∗

r (Γ, σ̄) ⊗K(L2(Rn, Ck)N ), but on some dense subalgebra
(better, on a smooth one). Recall that a ∗-subalgebra A0 of a C∗-algebra A is said
to be a smooth subalgebra if A0 is a dense ∗-subalgebra of A, stable under the
holomorphic functional calculus. A useful property of smooth subalgebras is the
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following. If A0 is a smooth subalgebra of a C∗-algebra A, then the inclusion map
A0 → A induces an isomorphism in K-theory.

Theorem 7. In the notation of Theorem 5, assume that λ ∈ R does not co-
incide with λk for any k. There is a smooth subalgebra B(Γ, σ) of C∗

r (Γ, σ̄) ⊗
K(L2(Rn, Ck)N ) such that the spectral projections UE(λ)U∗ and id ⊗ E0(λ) are
in B(Γ, σ) and are also Murray-von Neumann equivalent in B(Γ, σ). That is, for
all µ ∈ (0, µ0), one has

[UE(λ)U∗] = [id⊗ E0(λ)] ∈ K0(B(Γ, σ)).

The following corollary uses in addition the Rapid Decay property (RD)
for discrete groups. This property is related with the Haagerup inequality, which
estimates the convolution norm in terms of the word lengths. Groups that are either
virtually nilpotent or word hyperbolic have property (RD). For these groups, it
is also known that every group cohomology class can be represented by a group
cocycle c ∈ Zj(Γ, R) that is of polynomial growth, cf. [8].

Corollary 8. Let Γ be a discrete group that has property (RD). Let c ∈ Zj(Γ, R) (j
even > 0) be a normalised group cocycle that is of polynomial growth, and τc the
induced cyclic cocycle on the twisted group algebra C(Γ, σ̄). Then the tensor product
cocycle τc#Tr extends continuously to B(Γ, σ), and in the notation of Theorem 5
one has, for all µ ∈ (0, µ0)

τc#Tr(UE(λ)U∗, . . . , UE(λ)U∗) = τc#Tr(id⊗ E0(λ), . . . , id⊗ E0(λ)) = 0.

4.5. Applications to the quantum Hall effect

The Kubo formula for the Hall conductance both in the usual model of the integer
quantum Hall effect on the Euclidean plane and in the model of the fractional
quantum Hall effect on the hyperbolic plane can be naturally interpreted as a
(densely defined) cyclic 2-cocycle trK on the algebra B(Γ, σ), [1, 4, 29]. The Hall
conductance cocycle trK can also be shown to be given by a quadratically bounded
group cocycle. Moreover, it is well-known that Z2 and cocompact Fuchsian groups
have property (RD). Therefore we have the following consequence of Corollary 8.

Corollary 9. Let M̃ be either the Euclidean plane R2 or the hyperbolic plane
H, Ẽ the trivial line bundle, V a Morse type potential. In the notation of The-
orem 1, assume that λ ∈ R does not coincide with λk for any k. Let Pλ =
χ(−∞,µ−1λ](HA,µ−2V ) denote the spectral projection. Then for all sufficiently small
values of the coupling constant µ, the Hall conductance vanishes,

σλ = trK(Pλ, Pλ, Pλ) = 0.

That is, the low energy bands do not contribute to the Hall conductance.

In the case of the Euclidean plane and when the magnetic field is uniform,
this result was established by a different method in [31].
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5. Strong magnetic fields

5.1. The model operator

The construction of the model operator in the case of the strong magnetic field
was given in [28], using the ideas of [17]. We will use the notation of Theorem 2.
Choose a fundamental domain F ⊂ M̃ so that there are no zeros of B on the
boundary of F . This is equivalent to saying that the translations {γF , γ ∈ Γ}
cover the set of all zeros of B. Let {x̄j | j = 1, . . . , N} denote all the zeros of B in
F ; x̄i �= x̄j if i �= j.

The model operator Kh associated with Hh is an operator in L2(Rn)N given by

Kh =
⊕

1≤j≤N

Kh
j ,

where Kh
j is a self-adjoint second-order differential operator in L2(Rn) which cor-

responds to the zero x̄j . Let us fix local coordinates fj : U(x̄j) → Rn on M̃
defined in a small neighborhood U(x̄j) of x̄j for every j = 1, . . . , N . We assume
that fj(x̄j) = 0 and the image fj(U(x̄j)) is a fixed ball B = B(0, r) ⊂ Rn centered
at the origin.

Write B in the local coordinates fj as a 2-form Bj(X) on B(0, r) and A as a
1-form Aj on B(0, r). By [12], there exists a real-valued function θj ∈ C∞(B(0, r))
such that

|Aj(X)− dθj(X)| ≤ C|X |k+1, X ∈ B(0, r).

Write the 1-form Aj − dθj as

Aj(X)− dθj(X) =
n∑

l=1

al(X) dXl, X ∈ B(0, r).

Let A1,j be a 1-form on Rn with polynomial coefficients given by

A1,j(X) =
n∑

l=1

∑
|α|=k+1

Xα

α!
∂αal

∂Xα
(0) dXl, X ∈ Rn.

Take any extension of the function θj to a smooth, compactly supported function
in Rn denoted also by θj and put

A0
j(X) = A1,j(X) + dθj(X), X ∈ Rn.

Then we have
dA0

j (X) = dA1,j(X) = B0
j(X), X ∈ Rn,

where B0
j is a closed 2-form on Rn with polynomial coefficients. Moreover, we have

|Bj(X)−B0
j(X)| ≤ C|X |k+1, X ∈ B(0, r),

|Aj(X)−A0
j(X)| ≤ C|X |k+2, X ∈ B(0, r). (16)
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By definition, Kh
j is the self-adjoint differential operator with asymptotically

polynomial coefficients in L2(Rn) given by

Kh
j = (ih d + A0

j )
∗(ih d + A0

j ),

where the adjoint is taken with respect to the Hilbert structure in L2(Rn) given by
the flat Riemannian metric (glm(0)) in Rn. The operator Kh

j has discrete spectrum
(cf., for instance, [21, 12]). By gauge invariance, the operator Kh

j is unitarily
equivalent to the Schrödinger operator

Hh
j = (ih d + A1,j)∗(ih d + A1,j),

associated with the homogeneous 1-form A1,j . Using a simple scaling X �→ h
1

k+2 X ,
it can be shown that the operator Hh

j is unitarily equivalent to the operator

h
2k+2
k+2 H1

j . So we conclude that the operator h− 2k+2
k+2 Kh has discrete spectrum inde-

pendent of h, which is denoted by {λm : m ∈ N}, λ1 < λ2 < λ3 < . . . (not taking
into account multiplicities). This fact explains the appearance of a scaling factor
h

2k+2
k+2 in Theorem 2. The sequence {λm : m ∈ N} is precisely the sequence, which

we need for the proof of Theorem 2.

5.2. Proof of Theorem 2

For the proof, we apply Theorem 3 in the following setting. As in Section 3, let A
be the C∗ algebra C∗

r (Γ, σ̄)⊗K, let H be the Hilbert space �2(Γ)⊗ �2(N) equipped
with the representation π of the algebra A and H2 = L2(M̃). Let V2 : H2 → H
be a unitary operator defined as V2 = (id⊗ V2) ◦U, where V2 : L2(F)→ �2(N) is
an arbitrary unitary isomorphism. Let π2 be the corresponding representation of
A in H2.

We will use the notation of Section 5.1. Put H1 = �2(Γ)⊗ L2(Rn)N . Choose
an arbitrary unitary isomorphism V1 : L2(Rn)N → �2(N) and define an unitary
operator V1 : H1 → H as V1 = id⊗V1. Let π1 be the corresponding representation
of A in H1.

Consider self-adjoint, semi-bounded from below operators A1 in H1 and A2

in H2:

A1 = id⊗ h− 2k+2
k+2 Kh, A2 = h− 2k+2

k+2 Hh.

Assumption 1 is clear for the operator A1. It holds for the operator A2 by the
results mentioned at the end of Section 3.

Let H0 = �2(Γ)
⊗(⊕N

j=1 L2(U(x̄j))
)
. An inclusion i1 : H0 → H1 is defined

as i1 = id⊗ j1, where j1 is the inclusion

N⊕
j=1

L2(U(x̄j)) ∼= L2(B(0, r))N ↪→ L2(Rn)N
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given by the chosen local coordinates. An inclusion i2 : H0 → H2 is defined as
i2 = U∗ ◦ (id⊗ j2), where j2 is the natural inclusion

N⊕
j=1

L2(U(x̄j)) ↪→ L2(F).

The operator p1 : H1 → H0 is defined as p1 = id ⊗ r1, where r1 is the
restriction operator

L2(Rn)N → L2(B(0, r))N ∼=
N⊕

j=1

L2(U(x̄j)).

The operator p2 : H1 → H0 is defined as p2 = (id ⊗ r2) ◦ U, where r2 is the
restriction operator

L2(F)→
N⊕

j=1

L2(U(x̄j)).

Fix a function φ ∈ C∞
c (Rn) such that 0 ≤ φ ≤ 1, φ(x) = 1 if |x| ≤ 1, φ(x) = 0

if |x| ≥ 2. Fix a number κ > 0, which we shall choose later. For any h > 0 define
φ(h)(x) = φ(h−κx). For any h > 0 small enough, let φj = φ(h) ∈ C∞

c (U(x̄j)) in the
fixed coordinates near x̄j . Denote also φj,γ = (γ−1)∗φj . (This function is supported
in the neighborhood U(γx̄j) = γ(U(x̄j)) of γx̄j .) We will always take h ∈ (0, h0)
where h0 is sufficiently small, so in particular the supports of all functions φj,γ are
disjoint.

Let Φ ∈ C∞(
⋃N

j=1 U(x̄j)) be equal to φj on U(x̄j), j = 1, 2, . . . , N . Consider
a (Γ, σ)-equivariant, self-adjoint, bounded operator J in H0 defined as J = id ⊗
Φ, where Φ denotes the multiplication operator by the function Φ in the space
⊕N

j=1L
2(U(x̄j)). Assumptions 2, 3, 4 and 5 can be easily checked.

We will use local coordinates near x̄j such that the Riemannian volume el-
ement at the point x̄j coincides with the Euclidean volume element given by the
chosen local coordinates. Then the estimate (2) holds with

ρ = 1 + O(hκ). (17)

The principal symbols a
(2)
1,j ∈ C∞(T ∗Rn) of Kh

j , j = 1, 2, . . . , N, and a
(2)
2 ∈

C∞(T ∗M̃) of Hh are given respectively by

a
(2)
1,j(x, ξ) = h2

n∑
i,k=1

gik(x̄j)ξiξk, (x, ξ) ∈ T ∗Rn;

a
(2)
2 (x, ξ) = h2

n∑
i,k=1

gik(x)ξiξk, (x, ξ) ∈ T ∗M̃.

As in Section 4.2, one can check Assumption 6 and the estimates (3) with

γl = O(h− 2k+2
k+2 +2−2κ), l = 1, 2. (18)
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Using the asymptotic lower bounds for the quadratic forms associated to the
operators Kh

j and Hh given by [17, Theorems 4.4 and 4.5], it can be proved that
the estimates (6) hold with

αl = O(h− 2k+2
k+2 +kκ+1), l = 1, 2. (19)

The constants λ0l, l = 1, 2, can be chosen to be independent of h:

λ01 = λ02 = 0. (20)

Finally, using (16), it can be easily verified that the estimates (4) and (5)
hold with

βl = 1 + O(hκ), εl = O(h2κ(k+2)−κ− 2k+2
k+2 ), l = 1, 2. (21)

Now we complete the proof of Theorem 2. As above, let {λm : m ∈ N},
λ1 < λ2 < λ2 < . . . , be the spectrum (without taking into account multiplicities)
of the operator h− 2k+2

k+2 Kh, which is independent of h. Take any a and b such that
λm < a < b < λm+1 with some m. Clearly, the spectrum of the operator A1

coincides with the spectrum of the operator h− 2k+2
k+2 Kh. Therefore, [a, b]∩σ(A1) =

∅. Take any open interval (a1, b1) that contains [a, b] and does not intersect with
the spectrum of A1. Using the estimates (17), (18), (19), (20) and (21), one can
see that, for a2 and b2 given by (7) and (8), we have

a2 = a1 + O(hs), b2 = b1 + O(hs), h→ 0, (22)

where s = min{(2k + 3)κ − 2k+2
k+2 ,− 2k+2

k+2 + 2 − 2κ}. The best possible value of s
which is

s = max
κ

min{(2k + 3)κ− 2k + 2
k + 2

,−2k + 2
k + 2

+ 2− 2κ} =
2

(2k + 5)(k + 2)

is attained when κ = 2
2k+5 .

Hence, if h > 0 is small enough, we have α1 > a1 + γ1, α2 > b2 + γ2,
b2 > a2 and the interval (a2, b2) contains [a, b]. By Theorem 3, we conclude that
(a2, b2) ∩ σ(A2) = ∅, that completes the proof of Theorem 2.

5.3. Semiclassical approximation of spectral projections

Like in the case of strong electric field, Theorem 3 also provides some information
about the K-theory class of the spectral projection of the magnetic Schrödinger
operator in the limit of strong magnetic field.

Theorem 10. In the notation of Theorem 2, assume that λ ∈ R does not coincide
with λk for any k. Let Eh(λ) = χ(−∞,λ](Hh) and E0(λ) = χ(−∞,λ](Kh) denote
the spectral projections. There exists a (Γ, σ)-equivariant isometry U : L2(M̃) →
�2(Γ) ⊗ L2(Rn)N and a constant h0 > 0 such that for all h ∈ (0, h0), the spectral
projections UE(h

2k+2
k+2 λ)U∗ and id ⊗ E0(h

2k+2
k+2 λ) are in C∗

r (Γ, σ̄) ⊗ K(L2(Rn)N )
and Murray-von Neumann equivalent in C∗

r (Γ, σ̄)⊗K(L2(Rn)N ).
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c© 2006 Birkhäuser Verlag Basel/Switzerland

The Group of Unital C∗-extensions

Vladimir Manuilov and Klaus Thomsen

Abstract. Let A and B be separable C∗-algebras, A unital and B stable. It is
shown that there is a natural six-terms exact sequence which relates the group
which arises by considering all semi-split extensions of A by B to the group
which arises by restricting the attention to unital semi-split extensions of A
by B. The six-terms exact sequence is an unpublished result of G. Skandalis.
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Let A, B be separable C∗-algebras, B stable. As is well known the C∗-algebra
extensions of A by B can be identified with Hom(A.Q(B)), the set of ∗-homo-
morphisms A→ Q(B) where Q(B) = M(B)/B is the generalized Calkin algebra.
Two extensions ϕ, ψ : A→ Q(B) are unitarily equivalent when there is a unitary
u ∈M(B) such that Ad q(u)◦ψ = ϕ, where q : M(B)→ Q(B) is the quotient map.
The unitary equivalence classes of extensions of A by B have an abelian semi-group
structure thanks to the stability of B: Choose isometries V1, V2 ∈M(B) such that
V1V

∗
1 + V2V

∗
2 = 1, and define the sum ϕ⊕ψ :A→Q(B) of ϕ,ψ∈Hom(A,Q(B)) by

(ψ ⊕ ϕ)(a) = Ad q(V1) ◦ ψ(a) + Ad q(V2) ◦ ϕ(a). (1)

The isometries, V1 and V2, are fixed in the following. An extension ϕ : A→ Q(B)
is split when there is a ∗-homomorphisms π : A → M(B) such that ϕ = q ◦ π.
To trivialize the split extensions we declare two extensions ϕ, ψ : A → Q(B) to
be stably equivalent when there there is a split extension π such that ψ ⊕ π and
ϕ ⊕ π are unitarily equivalent. This is an equivalence relation because the sum
(1) of two split extensions is itself split. We denote by Ext(A, B) the semigroup
of stable equivalence classes of extensions of A by B. It was proved in [5], as a
generalization of results of Kasparov, that there exists an absorbing split extension
π0 : A → Q(B), i.e., a split extension with the property that π0 ⊕ π is unitarily
equivalent to π0 for every split extension π. Thus two extensions ϕ, ψ are stably
equivalent if and only if ϕ⊕ π0 and ψ⊕ π0 are unitarily equivalent. The classes of
stably equivalent extensions of A by B is an abelian semigroup Ext(A, B) in which

The first named author was partially supported by RFFI grant 05-01-00923.
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any split extension (like 0) represents the neutral element. As is well documented
the semi-group is generally not a group, and we denote by

Ext−1(A, B)

the abelian group of invertible elements in Ext(A, B). It is also well known that
this group is one way of describing the KK-groups of Kasparov. Specifically,
Ext−1(A, B) = KK(SA, B) = KK(A, SB).

Assume now that A is unital. It is then possible, and sometimes even advan-
tageous, to restrict attention to unital extensions of A by B, i.e., to short exact
sequences

0 �� B �� E �� A �� 0
of C∗-algebras with E is unital, or equivalently to ∗-homomorphisms A → Q(B)
that are unital. The preceding definitions are all amenable to such a restriction,
if done consistently. Specifically, we say that a unital extension ϕ : A → Q(B) is
unitally split when there is a unital ∗-homomorphism π : A → M(B) such that
ϕ = q ◦ π. The sum (1) of two unital extensions is again unital, and we say that
two unital extensions ϕ, ψ : A → Q(B) are unitally stably equivalent when there
is a unital split extension π such that ψ ⊕ π and ϕ ⊕ π are unitarily equivalent.
It was proved in [5] that there always exists a unitally absorbing split extension
π0 : A → Q(B), i.e., a unitally split extension with the property that π0 ⊕ π is
unitarily equivalent to π0 for every unitally split extension π. Thus two unital
extensions ϕ, ψ are unitally stably equivalent if and only if ϕ ⊕ π0 and ψ ⊕ π0

are unitarily equivalent. The classes of unitally stably equivalent extensions of A
by B is an abelian semi-group which we denote by Extunital(A, B). The unitally
absorbing split extension π0, or any other unitally split extension, represents the
neutral element of Extunital(A, B), and we denote by

Ext−1
unital(A, B)

the abelian group of invertible elements in Extunital(A, B). As we shall see there
is a difference between Ext−1

unital(A, B) and Ext−1(A, B) arising from the fact that
while the class in Ext−1(A, B) of a unital extension A→ Q(B) can not be changed
by conjugating it with a unitary from Q(B), its class in Ext−1

unital(A, B) can. In a
sense the main result of this note is that this is the only way in which the two
groups differ.

Note that there is a group homomorphism

Ext−1
unital(A, B)→ Ext−1(A, B),

obtained by forgetting the word ‘unital’. It will be shown that this forgetful map
fits into a six-terms exact sequence

K0(B)
u0 �� Ext−1

unital(A, B) �� Ext−1(A, B)

i∗1
��

Ext−1(A, SB)

i∗0

��

Ext−1
unital(A, SB)�� K1(B)

u1
��
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where SB is the suspension of B, i.e., SB = C0(0, 1)⊗ B, and the maps uk and
i∗k, k = 0, 1, will be defined shortly. This six-terms exact sequence is mentioned in
10.11 of [4], but the proof was never published.

Fix a unitally absorbing ∗-homomorphism α0 : A → M(B), which exists by
Theorem 2.4 of [5]. It follows then from Theorem 2.1 of [5] that α = q ◦ α0 is a
unitally absorbing split extension as defined above.

Lemma 1. The ∗-homomorphisms Ad V1 ◦ α0 : A → M(B) and ( α0
0 ) : A →

M (M2(B)) are both absorbing.

Proof. There is a ∗-isomorphism M (M2(B)) = M2 (M(B))→M(B) given by

( m11 m12
m21 m22 ) �→ V1m11V

∗
1 + V1m12V

∗
2 + V2m21V

∗
1 + V2m22V

∗
2 ,

which sends M2(B) to B and ( α0
0 ) to AdV1 ◦ α0, so it suffices to show that the

latter is an absorbing ∗-homomorphism. By definition, cf. Definition 2.6 of [5], we
must show that the unital ∗-homomorphism A⊕C # (a, λ) �→ V1α0(a)V ∗

1 +λV2V
∗
2

is unitally absorbing. For this we check that it has property 1) of Theorem 2.1
of [5]. So let ϕ : A ⊕ C → B be a completely positive contraction. Since α0 has
property 1), there is a sequence {Wn} in M(B) such that limn→∞ W ∗

nb = 0 for all
b ∈ B and limn→∞ W ∗

nα0(a)Wn = ϕ(a) for all a ∈ A. Since B is stable there is a
sequence {Sn} of isometries in M(B) such that limn→∞ S∗

nb = 0 for all b ∈ B. Set

Tn = V1Wn + V2Snϕ(0, 1)
1
2 .

Then limn→∞ Tnb = 0 for all b ∈ B, and

T ∗
n (V1α0(a)V ∗

1 + λV2V
∗
2 )Tn = W ∗

nα0(a)Wn + ϕ(0, λ)

for all n. Since the last expression converges to ϕ(a, λ) as n tends to infinity, the
proof is complete. �

Set

Cα =
{

m ∈M2(M(B)) : m
(

α0(a)
0

)
−

(
α0(a)

0

)
m ∈M2(B) ∀a ∈ A

}
and

Aα =
{

m ∈ Cα : m
(

α0(a)
0

)
∈M2(B) ∀a ∈ A

}
.

We can define a ∗-homomorphism Cα → α(A)′ ∩Q(B) such that

( m11 m12
m21 m22 ) �→ q (m11) .

Then kernel is then Aα, so we have a ∗-isomorphism Cα/Aα  α(A)′ ∩Q(B). By
Lemma 1, ( α0

0 ) is an absorbing ∗-homomorphism, so we conclude from Theorem
3.2 of [5] that there is an isomorphism

K1 (α(A)′ ∩Q(B))  KK(A, B). (2)

Since the unital ∗-homorphism C→M(B) is unitally absorbing, this gives us also
the well-known isomorphism

K1 (Q(B))  KK(C, B). (3)
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Let i : C → A be the unital ∗-homorphism. For convenience we denote the map
K1 (α(A)′ ∩Q(B)) → K1(Q(B)) induced by the inclusion α(A)′ ∩Q(B) ⊆ Q(B)
by i∗. It is then easy to check that the isomorphisms (2) and (3) match up to make
the diagram

K1 (α(A)′ ∩Q(B))

��

i∗ �� K1(Q(B))

��
KK(A, B) i∗ �� KK(C, B)

(4)

commute.
Let v be a unitary in Mn(Q(B)). By composing the ∗-homomorphism Ad v ◦

(1n ⊗ α) : A → Mn(Q(B)) with an isomorphism Mn(Q(B))  Q(B) which is
canonical in the sense that it arises from an isomorphism Mn(B)  B, we obtain
a unital extension e(v) : A → Q(B) of A by B. By use of a unitary lift of ( v

v∗ )
one sees that e(v) ⊕ e(v∗) is split, proving that e(v) represents an element in
Ext−1

unital(A, B). If vt, t ∈ [0, 1], is a norm-continuous path of unitaries in Mn(Q(B))
there is a partition 0 = t0 < t1 < t2 < · · · < tN = 1 of [0, 1] such that vtiv

∗
ti+1

is in
the connected component of 1 in the unitary group of Mn(Q(B)) and hence has a
unitary lift to Mn(M(B)). It follows that e (v0) = e (v1), and it is then clear that
the construction gives us a group homomorphism

u : K1 (Q(B))→ Ext−1
unital(A, B).

Lemma 2. The sequence

K1(Q(B)) u �� Ext−1
unital(A, B) �� Ext−1(A, B)

i∗

��
K1 (α(A)′ ∩Q(B))

i∗

��

Ext−1(C, B)

is exact.

Proof. Exactness at K1(Q(B)): If v is a unitary in Mn (α(A)′ ∩Q(B)), the exten-
sion Ad v ◦ (1n ⊗ α) = 1n ⊗ α (of A by Mn(B)) is split, proving that u ◦ i∗ = 0.
To show that keru ⊆ im i∗, let v ∈ Q(B) be a unitary such that u[v] = 0. Then
Ad v ◦ α⊕ α is unitarily equivalent to α⊕ α, which means that there is a unitary
S ∈M(M2(B)) such that

Ad
((

idM2(C)⊗q
)
(S) ( v

1 )
) (

α(a)
α(a)

)
=

(
α(a)

α(a)

)
(5)

for all a ∈ A. Since the unitary group of M(M2(B)) is normconnected by [3] or [2],
the unitary ( v

1 ) is homotopic to
(
idM2(C)⊗q

)
(S) ( v

1 ) which is in M2(α(A)′ ∩
Q(B)) by (5). This implies that [v] ∈ im i∗. The same argument works when v is
a unitary in Mn(Q(B)) for some n ≥ 2.
Exactness at Ext−1

unital(A, B): For any unitary v ∈ Q(B),

(Ad v ◦ α) ⊕ 0 = Ad
(
idM2(C)⊗q

)
(T ) ◦ (α ⊕ 0),
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where T ∈M2(M(B)) is a unitary lift of ( v
v∗ ). Hence [Adv◦α]=0 in Ext−1(A, B).

The same argument works when v is a unitary Mn(Q(B)) for some n ≥ 2, and we
conclude that the composition

K1(Q(B)) �� Ext−1
unital(A, B) �� Ext−1(A, B)

is zero. Let ϕ : A→ Q(B) be a unital extension such that [ϕ] = 0 in Ext−1(A, B).
By Lemma 1, this means that there is a unitary T ∈M(M3(B)) such that

Ad
(
idM3(C)⊗q

)
(T ) ◦

(
ϕ

α
0

)
=

(
α

α
0

)
.

It follows that
(
idM3(C)⊗q

)
(T ) = ( V

r ) for some unitaries V ∈ M2(Q(B)) and
r ∈ Q(B). Hence

( ϕ
α ) = AdV ∗ ◦ ( α

α ) .

Thus [ϕ] = u[V ∗].

Exactness at Ext−1(A, B): It is obvious that i∗ kills the image of Ext−1
unital(A,

B), so consider an invertible extension ϕ : A → Q(B) such that [ϕ ◦ i] = 0 in
Ext−1(C, B). By Lemma 1, applied with A = C, this means that there is a unitary
T ∈M3(M(B)) such that(

idM3(C)⊗q
)
(T )

(
ϕ(1)

1
0

) (
idM3(C)⊗q

)
(T ∗) =

(
0

1
0

)
. (6)

Set ψ = ϕ⊕α⊕0. It follows from (6) that there are isometries W1, W2, W3 ∈M(B)
and a unitary u ∈M(B) such that W ∗

i Wj = 0, i �= j, W1W
∗
1 +W2W

∗
2 +W3W

∗
3 = 1

and Ad q(u) ◦ ψ(1) = q(W2W
∗
2 ). Then Ad q(u) ◦ ψ + Ad q(W1) ◦ α + Ad q(W3) ◦ α

is a unital extension which is invertible because it admits a completely positive
contractive lifting to M(B) since ψ does, cf. [1]. As it represents the same class in
Ext−1(A, B) as ϕ, the proof is complete. �

In order to complete the sequence of Lemma 2, let i∗1 : Ext−1(A, B)→ K1(B)
be the composition

Ext−1(A, B) �� K1 (α(A)′ ∩Q(B)) i∗ �� K1 (Q(SB))) �� K1(B), (7)

where the first map is the isomorphism (2) and the last is the well-known isomor-
phism. Let u1 : K1(B)→ Ext−1

unital(A, SB) be the composition

K1(B) �� K1 (Q(SB)) u �� Ext−1
unital(A, SB),

where the first map is the well-known isomorphism (the inverse of the one used
in (7)) and second is the u-map as defined above, but with SB in place of B. Let
i∗0 : Ext−1(A, SB)→ K0(B) be the composition

Ext−1(A, SB)
i∗ �� Ext−1(C, SB) �� K0 (B) ,
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where the second map is the well-known isomorphism. Finally, let u0 : K0(B) →
Ext−1

unital(A, B) be the composition

K0(B) �� K1 (Q(B)) u �� Ext−1
unital(A, B),

where the first map is the well-known isomorphism. We have now all the ingredients
to prove

Theorem 3. The sequence

K0(B)
u0 �� Ext−1

unital(A, B) �� Ext−1(A, B)

i∗1
��

Ext−1(A, SB)

i∗0

��

Ext−1
unital(A, SB)�� K1(B)u1

��

is exact.

Proof. If we apply Lemma 2 with B replaced by SB we find that the sequence

Ext−1(C, SB) K1 (α(A)′ ∩Q(SB))

i∗

��
Ext−1(A, SB)

i∗

��

Ext−1
unital(A, SB)�� K1 (Q(SB))u

��

is exact. Thanks to the commuting diagram (4) we can patch this sequence together
with the sequence from Lemma 2 with the stated result. �
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Lefschetz Theory on Manifolds
with Singularities

Vladimir Nazaikinskii and Boris Sternin

Abstract. The semiclassical method in Lefschetz theory is presented and ap-
plied to the computation of Lefschetz numbers of endomorphisms of elliptic
complexes on manifolds with singularities. Two distinct cases are considered,
one in which the endomorphism is geometric and the other in which the endo-
morphism is specified by Fourier integral operators associated with a canonical
transformation. In the latter case, the problem includes a small parameter and
the formulas are (semiclassically) asymptotic. In the first case, the parameter
is introduced artificially and the semiclassical method gives exact answers. In
both cases, the Lefschetz number is the sum of contributions of interior fixed
points given (in the case of geometric endomorphisms) by standard formulas
plus the contribution of fixed singular points. The latter is expressed as a
sum of residues in the lower or upper half-plane of a meromorphic operator
expression constructed from the conormal symbols of the operators involved
in the problem.
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Keywords. Lefschetz number, singular manifold, elliptic operator, Fourier in-
tegral operator, semiclassical method.

Introduction

Lefschetz theory has been intensively developing starting from the fundamental
paper [1] by Atiyah and Bott, who substantially generalized Lefschetz’s original
result [2], and is now an important branch of elliptic theory. Numerous papers
dealing with the computation of the Lefschetz number in various cases have been
published in more than thirty years since the appearance of [1]. In particular,
recently a number of results have been proved concerning the Lefschetz numbers of

A preliminary version of the paper was published as a preprint at Chalmers University of Technol-

ogy and supported by a grant from the Swedish Royal Academy of Sciences. We also acknowledge
support from the RFBR under grants Nos.05-01-00466 and 05-01-00982.



158 V. Nazaikinskii and B. Sternin

endomorphisms of elliptic complexes on manifolds with singularities. (In particular,
we note the papers [3–5].) These results are largely due to a new powerful method
for the direct computation of the Lefschetz number on the basis of semiclassical
asymptotics [6–8]. Being combined with the localization principle, the method not
only permits one to give a short straightforward proof of Atiyah–Bott–Lefschetz
theorems in known and new cases but also extends the theory from geometric
endomorphisms to endomorphisms associated with arbitrary quantized canonical
transformations (Fourier–Maslov integral operators; see [9–13]).

This paper is essentially a review of results pertaining to Lefschetz theory on
manifolds with singularities. We start by recalling the definition of the Lefschetz
number and the main results due to Atiyah and Bott [1] (see Subsection 1.1).
Next, in Subsection 1.2 we very briefly describe the above-mentioned semiclassical
method, which occurs intrinsically in the proofs. The main new results obtained
by this method on smooth manifolds are presented in Subsection 1.3. (Formally,
these results are special cases of the corresponding theorems for manifolds with
singularities under the assumption that the set of singular points is empty.) Then
we proceed to results concerning manifolds with singularities. Section 2 deals with
the Atiyah–Bott–Lefschetz theorem for geometric endomorphisms, and in Section 3
we consider the same theorem for endomorphisms given by quantized canonical
transformations. Although geometric endomorphisms are a special case of endo-
morphisms given by general quantized canonical transformations, the separation
of the material into two sections is quite natural: the answers in the general case
are asymptotic rather than exact, and different, more cumbersome conditions are
imposed on the operators forming the complex.

1. Preliminaries

1.1. The Atiyah–Bott–Lefschetz Theorem

Let

0 −→ E0
D0−−−−→ E1

D1−−−−→ · · · Dm−1−−−−→ Em −→ 0 (1)

be a complex of vector spaces over C with finite-dimensional cohomology, and let

T = {Tj : Ej → Ej}
∣∣
j=0,...,m

(2)

be an endomorphism of the complex (1), i.e., a set of linear mappings such that
the diagram

0 −−−−→ E0
D0−−−−→ E1

D1−−−−→ · · · Dm−1−−−−→ Em −−−−→ 0⏐⏐�T0

⏐⏐�T1

⏐⏐�Tm

0 −−−−→ E0
D0−−−−→ E1

D1−−−−→ · · · Dm−1−−−−→ Em −−−−→ 0

(3)
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commutes. Then

Tj(KerDj) ⊂ KerDj , Tj(Im Dj−1) ⊂ Im Dj−1, j = 0, . . . , m,

where KerA and ImA are the kernel and the range, respectively, of an operator
A and the mappings D−1 and Dm are zero by convention. It follows that the
endomorphism (2) induces mappings

T̃j : Hj(E) → Hj(E), j = 0, . . . , m, (4)

of the cohomology spaces Hj(E) = KerDj/ Im Dj−1 of the complex (1). The
Lefschetz number of the endomorphism (2) is defined as the alternating sum

L =
m∑

j=0

(−1)j Trace T̃j (5)

of traces of the finite-dimensional operators (4).
The classical Atiyah–Bott–Lefschetz theorem [1] deals with the case in which

(1) is an elliptic complex of differential operators on a smooth compact manifold M
without boundary and (2) is a geometric endomorphism associated with a smooth
mapping f : M → M :

Ej = C∞(M, Fj), where Fj is a vector bundle over M,

Tjϕ(x) = Aj(x)ϕ(f(x)), where Aj(x) : Fjf(x) → Fjx is a homomorphism.
(6)

Here Fjx is the fiber of Fj over a point x.
Suppose that the fixed points of f are nondegenerate in the sense that

det
(

1− ∂f

∂x
(x)

)
�= 0, x ∈ fix(f). (7)

(Here fix(f) is the set of fixed points of f .) Then they are isolated, and the Atiyah–
Bott–Lefschetz theorem states that the Lefschetz number can be expressed by the
formula

L =
∑

x∈fix(f)

m∑
j=0

(−1)j TraceAj(x)
| det

(
1− ∂f(x)/∂x

)
|
. (8)

Thus the Lefschetz number of the endomorphism (2) is expressed in classical
terms. We also note that the operators Dj themselves do not occur in (8); one
only requires the diagram (3) to commute.

The Lefschetz fixed point theorem is the special case of formula (8) in which (1)
is the de Rham complex on a smooth compact oriented m-dimensional manifold
M and T is the endomorphism induced on differential forms by a smooth mapping
f : M →M . In other words,

Ek = Λk(M)

is the space of differential k-forms on M ,

Dk = d : Λk(M)→ Λk+1(M)
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is the exterior differential, and

Tk = f∗ : Λk(M)→ Λk(M)

is the induced mapping of differential forms.
The Lefschetz fixed point theorem states that in this case one has

L ≡ L(f) =
∑

x∈fix(f)

sgndet
(

∂f

∂x
(x)− 1

)
under the assumption that all fixed points are nondegenerate.

1.2. The semiclassical method

The class of geometric endomorphisms is not a natural framework for the problem
on the Lefschetz number if one does not restrict oneself to complexes of differential
operators but has in mind also pseudodifferential operators. As differential oper-
ators form a subclass of the more general class of pseudodifferential operators, so
geometric endomorphisms form a subclass of the class of Fourier integral operators,
and hence one can naturally try to obtain a Lefschetz type formula for the case
in which (1) is an elliptic complex of pseudodifferential operators and the endo-
morphism (2) is given by a set of Fourier integral operators. In a special case, this
formula was obtained by Fedosov [14], who considered endomorphisms given by
evolution operators for the Schrödinger equation. The general theory (in the case
of smooth compact manifolds) was developed by Sternin and Shatalov [6–8,15]. It
turns out that once we pass to endomorphisms associated with mappings of the
phase space, the theory necessarily becomes asymptotic. To obtain meaningful for-
mulas, one must introduce a small parameter h ∈ (0, 1] and consider semiclassical
pseudodifferential operators (or 1/h-pseudodifferential operators; e.g., see [9–11])
and Fourier–Maslov integral operators associated with a canonical transformation

g : T ∗M → T ∗M.

(Thus it is symplectic rather than contact geometry that underlies the Lefschetz
formula.) Then the Lefschetz number depends on h, and under appropriate as-
sumptions about the fixed points of g one obtains an expression for the asymp-
totics of the Lefschetz number as h→ 0 by applying the stationary phase method
to the trace integrals representing this number.

Namely, the Lefschetz number of the endomorphism (2) (with m = 1 for
simplicity) is given by the formula (e.g., see, [14])

L(D, T ) = Trace[T0(1−RD0)]− Trace[T1(1−D0R)], (9)

where R is an arbitrary almost inverse of D0 modulo trace class operators. (By def-
inition, this means that the operators 1 − D0R and 1 − RD0 are trace class, so
that the traces in (9) are well defined.) Now if D0 and R are pseudodifferential
operators and T0 and T1 are Fourier–Maslov integral operators, then T0(1−RD0)
and T1(1 − D0R) are also Fourier–Maslov integral operators associated with the
same canonical transformation as T0 and T1. Hence the problem is reduced to the
evaluation of traces of Fourier–Maslov integral operators. This is carried out with
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the help of the stationary phase method; only fixed points of g give a nonzero
contribution to the asymptotics of these traces as h → 0. As usual in the sta-
tionary phase method, the contribution of each isolated component of the set of
fixed points can be treated separately (localization, or, more precisely, microlocal-
ization), which permits one to separate the contributions of interior and singular
fixed points in applications to manifolds with singularities.

1.3. Semiclassical Lefschetz formulas for smooth manifolds

We see that the semiclassical method provides a straightforward computation of
the Lefschetz number. Now let us give the corresponding results in more detail.
First, we state the theorem about the trace of a Fourier integral operator in the
simplest form.

Let M be a smooth closed manifold of dimension n. Suppose that M is ori-
ented and equipped with a positive volume form dx. For a canonical transformation

g : T ∗M → T ∗M (10)

and a smooth function ϕ on the cotangent space T ∗M satisfying appropriate con-
ditions at infinity in the fibers, by T (g, ϕ) we denote the Fourier–Maslov integral
operator (i.e., the Fourier integral operator with a small parameter h ∈ (0, 1]) with
amplitude ϕ associated with the graph of the transformation (10). We assume that
the graph is a quantized Lagrangian submanifold of T ∗M × T ∗M . (A detailed
definition of Fourier–Maslov integral operators can be found in [11], and precise
conditions guaranteeing that the operator T (g, ϕ) is well defined are given in [7].)

Now assume that the conditions in [7] guaranteeing that T (g, ϕ) is trace class
are satisfied. Then the following theorem holds [7].

Theorem 1.1. Suppose that the transformation g has finitely many fixed points
α1, . . . , αk ∈ T ∗M and these fixed points are nondegenerate in the sense that
det(1 − g∗) �= 0 at any of them, where

g∗ : TαiT
∗M → TαiT

∗M

is the induced mapping of tangent spaces. Then the trace TraceT (g, ϕ) has the
following asymptotic expansion as h→ 0:

TraceT (g, ϕ) ≡
k∑

j=1

exp
{ i

h
Sj

} ϕ(αj)√
det(1 − g∗(αj))

+ O(h).

Here Sj is the value of the generating function of g at the point αj (the choice
of this function occurs in the definition of the Fourier–Maslov integral operator
T (g, ϕ)), and the branch of the square root is chosen in a special way (see [7]).

Remark 1.2. A similar theorem is proved in [7] for the case in which the canonical
transformation can have manifolds of fixed points.
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Now we are in a position to present the Lefschetz formulas obtained in [6–8, 15]
by the semiclassical method for endomorphisms of elliptic complexes on smooth
manifolds. Consider the commutative diagram

0 −−−−→ C∞(M, F1)
D̂−−−−→ C∞(M, F2) −−−−→ 0

T̂1

⏐⏐� ⏐⏐�T̂2

0 −−−−→ C∞(M, F1)
D̂−−−−→ C∞(M, F2) −−−−→ 0,

(11)

where F1 and F2 are vector bundles on M , the T̂j = T (g, ϕj), j = 1, 2, are Fourier–
Maslov integral operators associated with the canonical transformation (10), and D̂
is an elliptic 1/h-pseudodifferential operator on M . For 1/h-pseudodifferential op-
erators, ellipticity means the existence of a 1/h-pseudodifferential operator R̂ on M

such that the operators 1− D̂R̂ and 1− R̂D̂ belong to Hörmander’s class L−∞(M)
uniformly with respect to the parameter h ∈ (0, 1]. The following theorem was
proved in [6–8,15].

Theorem 1.3. Suppose that g has only nondegenerate fixed points α1, . . . , αN . Then
the Lefschetz number of the diagram (11) has the asymptotics

L =
N∑

k=1

exp
(

i

h
Sk

)
Traceϕ1(αk)− Traceϕ2(αk)√

det
(
1− g∗(αk)

) + O(h), (12)

where ϕ1 and ϕ2 are the amplitudes of the endomorphisms T̂1 and T̂2, respectively,
Sk is the value of the generating function of g at the point αk, and the branch
of the square root is chosen in a special way (see [7]).

We point out that the classical result due to Atiyah and Bott (for the case in which
the mapping f is a diffeomorphism) can be derived from this asymptotic Lefschetz
formula by a scaling procedure. Namely, by multiplying the differential operator Dj

by hkj , where kj = ordDj, we make it a semiclassical pseudodifferential operator;
the geometric endomorphisms are Fourier–Maslov integral operators with linear
phase function, and it remains to apply the asymptotic formula and note that the
Lefschetz number in this special case does not actually depend on h.

For the case in which the canonical transformation (9) may have manifolds
of fixed points, the following theorem was proved in [7].

Theorem 1.4. Suppose that the set fix(g) of fixed points of the canonical trans-
formation g is a finite disjoint union of smooth compact connected manifolds Gk

without boundary and that for all k the kernel of the operator 1− g∗ at each point
of Gk coincides with the tangent space to Gk (the nondegeneracy condition). Then
the Lefschetz number of the diagram (11) has the asymptotics

L =
1

(2πh)l

[∑
k

exp
{

i

h
Sk

}∫
Gk

(
Traceϕ1(α)−Traceϕ2(α)

)
dmk(α)+O(h)

]
,
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where the sum is over the manifolds Gk of maximal dimension, l = maxdimGk/2,
Sk is the value of the generating function on Gk (it is necessarily constant), and
the dmk are some nondegenerate volume forms on the respective Gk.

The symplectic geometry of the sets Gk can be rather complicated, and so it is
difficult to find a closed-form expression for the measures dmk in the general case.
This was done in the following two extreme cases in [5]:

1. dimGk is even and rankω2|Gk
= dimGk; that is, Gk is a symplectic subman-

ifold of T ∗M (here ω2 is the standard symplectic form on T ∗M).
2. dimGk = dimM and Gk is a Lagrangian submanifold of T ∗M .

Let α ∈ Gk. First, consider case 1. The symplectic plane L = TαGk ⊂ TαT ∗M
of dimension l = dimGk in TαT ∗M and the skew-orthogonal plane L◦ give the
decomposition TαT ∗M = L ⊕ L◦, and both L and L◦ are g∗-invariant. (Indeed,
1 − g∗ vanishes on L, and so g∗L = L; the invariance of L◦ follows from the fact
that g∗ preserves the form ω2.) Moreover, it is easily seen that

ker
(
(1 − g∗)

∣∣
L◦

)
= {0}

by virtue of the nondegeneracy condition.

Theorem 1.5. Under the above conditions,

dmk(α) =

(
ω2

∣∣
L

)∧ l
2

l!
√

det(1 − g∗)
∣∣
L◦

where the sign of the square root depends on the choices in the construction of the
canonical operator.

Now consider case 2, where L = TαGk is Lagrangian.

Lemma 1.6. There is a natural isomorphism

TαT ∗M/L  L∗,

where L∗ is the dual space. Furthermore,

Im(1− g∗) = L;

the mapping 1− g∗ factors through L and induces an isomorphism

1− g∗ : L∗ −→ L.

Thus on L we have the well-defined nondegenerate symmetric bilinear form

B(x, y) = 〈(1− g∗)
−1

x, y〉,
where the angle brackets stand for the pairing between L and L∗. Let us reduce
it to principal axes in some basis in a given fiber of L:

B(x, x) =
n∑

j=1

εjx
2
j ,

where εj = ±1 and the xj are the coordinates with respect to this basis.
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Theorem 1.7. In case 2, the form dmk is given by

dmk(α) =
√∏

εjdx1 ∧ · · · ∧ dxn,

where the choice of the branch of the square root is determined by the corresponding
choices in the construction of the canonical operator.

2. The Atiyah–Bott–Lefschetz theorem for geometric
endomorphisms on manifolds with conical singularities

2.1. Statement of the problem

In this section, we study the Lefschetz number for geometric endomorphisms on
manifolds with conical singularities. We consider only endomorphisms of short
(two-term) complexes, having in mind that the case of general finite complexes
can be analyzed according to the scheme suggested in [16]. General information
concerning manifolds with singularities and pseudodifferential operators on such
manifolds can be found in [17–19] (see also references therein), and we assume that
the reader is acquainted with the definitions.

Let M be a compact manifold with N conical singular points, which will be
denoted by α1, . . . , αN . The bases of the corresponding cones will be denoted by
Ω1, . . . ,ΩN , respectively. Next, let

D̂ = Hs,γ(E1)→ Hs−m,γ(E2), s ∈ R,

be an elliptic differential operator of order m in weighted Sobolev spaces of sections
of finite-dimensional vector bundles E1 and E2 over M . (Here γ = (γ1, . . . , γN ) is a
given vector of weight exponents.) Recall that this means that the principal symbol
of D̂ is invertible everywhere outside the zero section of the compressed cotangent
bundle T ∗M (e.g., see [25]) and the conormal symbols D̂0(αj , p) of D̂ at the conical
points αj are invertible on the weight lines Lj = {Im p = γj}, j = 1, . . . , N .

Consider a commutative diagram of the form

0 −−−−→ Hs,γ(E1)
D̂−−−−→ Hs−m,γ(E2) −−−−→ 0

T̂1

⏐⏐� ⏐⏐�T̂2

0 −−−−→ Hs,γ(E1)
D̂−−−−→ Hs−m,γ(E2) −−−−→ 0,

(13)

i.e., an endomorphism of the complex specified by D̂. (In contrast with the smooth
case, here we are forced to use weighted Sobolev spaces rather than C∞, since the
kernel and cokernel of D̂ in general depend on the weight exponents.)

Here T̂j is a geometric endomorphism of the form(
T̂ju

)
(x) = Aj (x)u (g (x)) , x ∈M, j = 1, 2, (14)

where
g : M → M
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is a smooth self-mapping of M and the Aj : g∗Ej −→ Ej are bundle homomor-
phisms over M . Furthermore, we assume that g is a diffeomorphism in the category
of manifolds with singularities; that is, the inverse mapping g−1 exists and is also
a smooth self-mapping of M . Apparently, just as in usual Lefschetz theory, this
restriction can be discarded, but this leads to some technical complications, which
we wish to avoid here.

By definition, g has the properties g({α1, . . . , αN}) ⊂ {α1, . . . , αN} and
g(IntM) ⊂ IntM (i.e., preserves the sets of conical points and interior points)
and has a special structure near the conical points. Essentially, this structure fol-
lows from the fact that g is a smooth mapping of the manifold M∧ with boundary
obtained by the blow-up of M at the conical points. Namely, let g(α) = α′, where
α, α′ ∈ {α1, . . . , αN} are conical points. Then in conical coordinate neighborhoods
of the points α and α′ the mapping g is given by the formulas

r′ = rB (r, ω) , ω′ = C (r, ω) , (15)

where ω ∈ Ω and ω′ ∈ Ω′ are points on the bases of the corresponding model
cones, r and r′ are radial variables, and the functions B(r, ω) ≥ 0 and C(r, ω) are
smooth up to r = 0; moreover, B(r, ω) > 0 for r > 0. Since g is a diffeomorphism,
it follows that B(r, ω) is positive also for r = 0. Furthermore, the mapping

gα ≡ C(0, ·) : Ω −→ Ω′,

which will be referred to as the boundary mapping of g at α, is also a diffeomor-
phism.

The main task of this section is the computation of the Lefschetz number L
of the endomorphism (13) under some additional assumptions.

First (in Subsection 2.2) we show that the Lefschetz number of the dia-
gram (13) is completely determined by what happens in a neighborhood of fixed
points of g. Then (in Subsec. 2.3) we compute the contributions of the fixed points
under the additional assumption that they are nondegenerate. The contribution
of interior fixed points has the standard form (the same as in the smooth theory),
and the contribution of fixed singular points is expressed via the conormal symbols
of the operators occurring in the diagram (13). Finally (in Subsection 2.4), under
an additional tempered growth condition imposed on some characteristics of the
conormal symbol, we simplify the expression for the contribution of a fixed singu-
lar point by reducing it to the trace of the sum of residues of some meromorphic
operator family in a half-plane.

2.2. Localization and the contributions of fixed points

Here we show that the Lefschetz number L can be represented as the sum of
contributions corresponding to connected components of the set fix(g) of fixed
points of g. Although these contributions are defined here as integrals over some
neighborhoods of these components with integrands ambiguous to a certain extent,
the values of the integrals are independent of the freedom in the choice of the
integrand as well as of the structure of the operators D̂, T̂1, and T̂2 outside an
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arbitrarily small neighborhood of the set fix(g). Formulas explicitly depending on
the values at fixed points alone will be given later.

Our starting point is the trace formula (e.g., see [14])

L = Trace T̂1(1− R̂D̂)− Trace T̂2(1− D̂R̂). (16)

Here R̂ is an arbitrary almost inverse of D̂ modulo trace class operators. (In other
words, the operators 1− R̂D̂ and 1− D̂R̂ are trace class.)

In turns out that for a special choice of R̂ the right-hand side of (16) splits
into a sum of integrals over arbitrarily small neighborhoods of the components
of fix(g). Let us equip M with a Riemannian metric dρ2 that has the product
structure

dρ2 = dr2 + r2dω2

near the conical points in some conical coordinates. (Here dω2 is some Riemannian
metric on the base Ω of the cone.) Next, we introduce a measure dµ(x) that is
smooth outside the conical points and has the form

dµ(x) =
dr

r
∧ dω

in the same coordinates near the conical points, where dω is a smooth measure
on Ω. Using this measure, one can treat kernels of pseudodifferential operators as
(generalized) functions (or sections of appropriate bundles) on M ×M . Let

fix(g) = K1 ∪ . . . ∪Kk,

where the Kj , j = 1, . . . , k, are disjoint compact sets.
Next, let V1, . . . , Vk be sufficiently small neighborhoods of these sets. The

function ρ(x, g(x)) is positive and continuous on the compact set M \
(
V1∪. . .∪Vk

)
and hence has a nonzero minimum 2ε. Since D̂ is an elliptic differential operator
on M , it follows that there exists an almost inverse R̂ of D̂ modulo trace class
operators such that the kernel R(x, y) of R̂ has the property

R(x, y) = 0 for ρ(x, y) > ε. (17)

(An operator R̂ with this property is said to be ε-narrow.) Then the kernels
K1(x, y) and K2(x, y) of the operators 1−R̂D̂ and 1−D̂R̂ have the same property,
since D̂ is a differential operator and does not enlarge supports. In terms of these
kernels, formula (16) becomes

L =
∫

M

(
TraceA1(x)K1(g(x), x) − TraceA2(x)K2(g(x), x)

)
dµ(x), (18)

where Trace in the integrand is the matrix trace. With regard to (17), we can
rewrite this expression in the form

L =
k∑

j=1

∫
Vj

(TraceA1(x)K1(g(x), x) − TraceA2(x)K2(g(x), x)) dµ(x), (19)

since the integrand is identically zero outside the union of Vj .
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It turns out that not only the sum as a whole but also each separate term is
independent of the choice of an ε-narrow almost inverse operator (at least if the
neighborhoods Vj are sufficiently small). This readily follows from the locality of
the construction of an almost inverse operator: if there are two ε-narrow almost
inverse operators, then one can construct a new ε-narrow almost inverse operator
coinciding with the first operator in some Vj0 and with the second operator in
all Vj with j �= j0. It follows that one can separately analyze each of the integrals
specifying the contributions of the components of the set of fixed points and choose
an ε-narrow almost inverse operator as is convenient near the component whose
contribution is to be analyzed.

The expression (19) is not very convenient for the subsequent analysis, and
we shall obtain a different, more convenient expression. One can assume that the
operator R̂ is sufficiently narrow and the neighborhoods Vj are sufficiently small,
so that not only Vj but also the sets

Wj = Vj ∪ g(Vj)

are disjoint. Under these conditions, consider the jth term

Lj =
∫

Vj

(
TraceA1(x)K1

(
g(x), x

)
− TraceA2(x)K2

(
g(x), x

))
dµ(x) (20)

in (19). It will be referred to as the contribution of the component Kj of the set of
fixed points to the Lefschetz number. To compute (20), we can modify the opera-
tor R̂ arbitrarily, provided that the integrand in (20) remains unchanged. Let fj

be a continuous function on M that is smooth in IntM and constant near each sin-
gular point and satisfies fj

∣∣
Vj
≡ 1. Next, let ψj have similar properties and satisfy

ψj

∣∣
g(Vj)

≡ 1. We replace the operator R̂ by ψjR̂fj and the identity operator by fj

(that is, assume that K1 and K2 are the kernels of the operators fj−ψjR̂fjD̂ and
fj − D̂ψjR̂fj, respectively.) Then the integral (20) remains unchanged. Moreover,
if supp fj and suppψj do not meet Vk and g(Vk) for k �= j, then one can extend the
integration in (20) to the entire manifold M . (The integrand vanishes identically
on M \ Vj .)

Formally Lj can be rewritten in the form

Lj = Trace T̂1(fj − ψjR̂fjD̂)− Trace T̂2(fj − D̂ψjR̂fj). (21)

Although the operators T̂1(fj −ψjR̂fjD̂) and T̂2(fj − D̂ψjR̂fj) are not trace class
in general and do not have traces, the integrals of their kernels over the diagonal
are well defined, and we use notation (21) for the corresponding integral.

2.3. Contributions of nondegenerate fixed points

Let g : M −→ M be a diffeomorphism of a manifold with conical singularities,
and let x ∈ fix(g) be a fixed point of g.

Definition 2.1. We say that x is a nondegenerate fixed point if one of the following
conditions is satisfied:
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1. x is an interior point, and det(1− g∗(x)) �= 0.
2. x is a conical point, and in formulas (15), describing g in a neighborhood

of x, either B(0, ω) > 1 for all ω ∈ Ω (a repulsive conical fixed point), or
B(0, ω) < 1 for all ω ∈ Ω (an attractive conical fixed point).

Consider the geometric endomorphism (13), where the operators T̂1,2 have the
form (14) and D̂ is an elliptic differential operator on a manifold M with conical
singularities.

Theorem 2.2. Suppose that all fixed points of g are nondegenerate. Then the Lef-
schetz number of the diagram (13) has the form

L =
∑
x∗
Lint(x∗) +

∑
α∗
Lsing(α∗)

≡
∑
x∗

TraceA1(x∗)− TraceA2(x∗)
|det(1 − g∗(x∗)|

+
1

2πi

∑
α∗

Trace
∫

Im p=γ(α∗)

T̂10(α∗, p)D̂−1
0 (α∗, p)

∂D̂0

∂p
(α∗, p) dp.

(22)

Here the first term is the sum of contributions Lint(x∗) of interior fixed points x∗,
and the second term is the sum of contributions Lsing(α∗) of conical fixed points α∗.
The integration in each term of the second sum is over the weight line determined
by the weight exponent γ(α∗) of the corresponding conical point and the integral is
understood as an oscillatory integral (see below) and gives a trace class operator
in L2(Ω), where Ω is the base of the cone at α∗, so that the trace is well defined.

Proof. To simplify the notation, we write, say, D̂0(p) instead of D̂0(α∗, p) etc. and
g0 instead of gα∗ . Furthermore, without loss of generality we assume that all weight
exponents are zero, and so the weight line is the real axis.

Prior to the proof, let us explain the meaning of the integral representing the
contribution of a fixed conical point. To this end, we rewrite the integrand in (22)
by using the following expression for the conormal symbol of T̂1:

T̂10(p) = A10(ω)eib(0,ω)pg∗0 ,

where A10(ω) = A1(x)|r=0 is the restriction of the bundle homomorphism A1 to
the singular point α∗ and b(r, ω) = − lnB(r, ω) (see (15)). Now we have

T̂10(p)D̂−1
0 (p)

∂D̂0

∂p
(p) = Aj0(ω)eib(0,ω)pg∗0Ĥ(p),

where

Ĥ(p) = D̂−1
0 (p)

∂D̂0

∂p
(p).

Note the following two facts: (a) The family Ĥ(p) is defined everywhere on the
real line (by the ellipticity condition, there are no poles of D̂−1

0 (p) there) and is
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a pseudodifferential operator of order −1 with parameter p on the real line; (b)
since the conical fixed point is nonsingular, it follows that the function b(0, ω) is
nonzero for all ω ∈ Ω. Using property (b), we write

T̂10(p) =
(

1
ib(0, ω)

)l
∂lT̂10

∂pl
(p)

and perform the standard regularization of an oscillatory integral by l-fold inte-
gration by parts:

1
2πi

∫ ∞

−∞
T̂10(p)Ĥ(p) dp =

1
2πi

∫ ∞

−∞

(
i

b(0, ω)

)l

T̂10(p)
∂lĤ(p)

∂pl
dp. (23)

For sufficiently large l, the pseudodifferential operator ∂lĤ(p)/∂pl with parameter
p of order −1 − l is trace class, and the integral on the right-hand side in (23)
converges in the usual operator norm as well as in the trace norm (in every Hs(Ω)),
the result being independent of l (and consistent for various s). This provides the
desired regularization. Simultaneously, we have shown that this integral specifies
a trace class operator.

Let us compute the contributions of fixed points. As was mentioned in Sub-
sec. 2.2, they can be computed separately as the corresponding trace integrals.
In particular, for the interior fixed points the computation is the same as in the
smooth case (see Subsec. 1.3), and it remains to compute the contribution of con-
ical fixed points.

Let α∗ be a conical fixed point. We use the conical coordinates (r, ω) in a
neighborhood of α∗. Let us introduce a function f(r) supported in a neighborhood
of zero and equal to 1 for small r and a function ψ(r) such that ψ(r)f(r) = f(r),
ψ(r)f

(
g(r)

)
= f

(
g(r)

)
, and ψ(r) is also concentrated in a neighborhood of zero.

One can choose these functions in a way such that

ψ(λ−1r)f
(
g(λ−1r)

)
= f

(
g(λ−1r)

)
for all λ < 1. Then it follows from the results of Subsec. 2.2 that for all sufficiently
small λ the contribution of α∗ is given by the expression

Lsing = Trace T̂1

[
Uλf(r)U−1

λ − Uλψ(r)U−1
λ R̂Uλf(r)U−1

λ D̂
]

− Trace T̂2

[
Uλf(r)U−1

λ − D̂Uλψ(r)U−1
λ R̂Uλf(r)U−1

λ

]
, (24)

where, as before, Trace is the trace integral of the kernel of an operator and Uλ is
the dilation operator

Uλϕ(ω, r) = ϕ(ω, r/λ).
In particular, the right-hand side of (24) is independent of λ. Hence we can pass
to the limit as λ→ 0 in this expression, thus obtaining

Lsing = Trace T̂10

[
f(r)−ψ(r)R̂0f(r)D̂0

]
−Trace T̂20

[
f(r)− D̂0ψ(r)R̂0f(r)

]
. (25)

Remark 2.3. We have used the identity

TraceU−1
λ WUλ = TraceW.
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Here the operators T̂j0, D̂0, and R̂0 are related to the corresponding conormal
symbols by the Mellin transform:

D̂0 =M−1D̂0(p)M≡ D̂0

(
ir

∂

∂r

)
etc. Note that D̂0R̂0 = 1 and R̂0D̂0 = 1, and so we can simplify the last expres-
sion by commuting the operator D̂0 with the functions f(r) and ψ(r) in the first
and second term, respectively. Since fψ = f , we see that only terms containing
commutators remain in the expression:

Lsing = Trace T̂10ψ(r)R̂0[D̂0, f(r)]− Trace T̂20[D̂0, ψ(r)]R̂0f(r).

Since D̂0 is a differential operator and does not enlarge supports, it follows from
the construction of f and ψ that the integrand in the second integral vanishes
identically, while in the first integral the factor ψ is equal to unity on the support
of the integrand and hence can be omitted. Consequently, we obtain

Lsing = Trace T̂10R̂0[D̂0, f(r)] (26)

A straightforward computation shows that the commutator [D̂0, f(r)] can be rep-
resented in the form

[D̂0, f(r)] = i
∂D̂0

∂p

(
ir

∂

∂r

)
r
∂f

∂r
(r) +

m∑
l=2

B̂l

(
ir

∂

∂r

)[(
r

∂

∂r

)l

f(r)

]
,

where the B̂l(p) are some conormal symbols. By substituting this into (26), we
obtain

Lsing = i Trace T̂10R̂0
∂D̂0

∂p

(
ir

∂

∂r

)
r
∂f

∂r
(r)

+
m∑

l=2

Trace T̂10R̂0B̂l

(
ir

∂

∂r

)[(
ir

∂

∂r

)l

f(r)

]
. (27)

Let us compute the first term. We pass to the cylindrical coordinates (r = e−t).
Let Z(ω, ω′, t− t′) be the kernel of the operator

D̂−1
0

(
−i

∂

∂t

)
∂D̂0

∂p

(
−i

∂

∂t

)
.

Then

Trace T̂10R̂0
∂D̂0

∂p

(
−i

∂

∂t

)
∂

∂t
f(e−t)

=
∫

Ω×R

A0(ω)Z(ω, g0(ω), b(0, ω))
∂

∂t
f(e−t) dω dt. (28)
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The integral with respect to t is equal to −1 by the definition of f(r), and we
obtain

Trace T̂10R̂0
∂D̂0

∂p

(
−i

∂

∂t

)
∂

∂t
f(e−t) =

∫
Ω

A0(ω)Z(ω, g0(ω), b(0, ω)) dω. (29)

Since b(0, ω) �= 0, it follows that Z(ω, g0(ω), b(0, ω)) is infinitely differentiable with
respect to ω. (This is the kernel of a pseudodifferential operator away from the
diagonal.) We multiply and divide the integrand by b(0, ω)l, where l is sufficiently
large, and use the properties of the Fourier transform to obtain

i Trace T̂10R̂0
∂D̂0

∂p

(
−i

∂

∂t

)
∂

∂t
f(e−t)

=
1

2πi
Trace

∫ ∞

−∞

(
i

b(0, ω)

)l

T̂10(p)
(

∂

∂p

)l
(

D̂−1
0 (p)

∂D̂0(p)
∂p

)
dp, (30)

that is, exactly the trace of the desired regularization (23). It remains to note that
all other terms in (27) are zero, since, computing them in a similar way, we can
use the fact that ∫ ∞

0

(
∂

∂t

)l

f(e−t) dt = 0

for l ≥ 2 by our assumptions.
The proof of the theorem is complete. �

2.4. The contribution of conical fixed points: Further computation

Under certain conditions on the conormal symbol of D̂, the expression for the
contribution of conical fixed points can be simplified dramatically.

Since D̂ is a differential operator, we see that its conormal symbol at each
singular point is just a polynomial in p (a polynomial operator pencil on the cor-
responding manifold Ωj). By the formal ellipticity, it is Agranovich–Vishik elliptic
with parameter p [20] in some double sector of nonzero opening angle containing
the real axis and is finite-meromorphically invertible in the entire complex plane.
All but finitely many poles of the inverse family lie in the complement of the
above-mentioned sector.

It follows that each strip {| Im p| < R} contains only finitely many poles of
the family D̂−1

0 (αj , p) and the principal part of the Laurent series at each pole is
of finite rank. We impose some technical condition on the behavior of the number
of these poles and some of their characteristics as R→∞.

Definition 2.4. We say that a conormal symbol B̂(p) of order m is of power type
if the following conditions are satisfied:

1. The orders of the poles of B̂−1(p) are bounded by some constant.
2. The number of the poles of B̂−1(p) in the strip {| Im p| < R} grows as R→∞

no faster than some power of R.
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3. The ranks and the operator norms in L2(Ωj) of the coefficients of prin-
cipal parts of the Laurent series of B̂−1(p) around the poles in the strip
{| Im p| < R} are bounded above by some power of R as R→∞.

4. There exists a sequence of circles centered at the origin with radius tending to
infinity such that B̂−1(p) has no poles on these circles and can be estimated
for every s in the operator norm Hs(Ωj)→ Hs+m(Ωj) by some power of the
radius (which may depend on s).

Remark 2.5. The above conditions are rather natural. In some cases (e.g., for the
Beltrami–Laplace operator associated with a conical metric on M) the power type
property of the conormal symbol can be established with the use of results concern-
ing the spectral asymptotics for self-adjoint elliptic pseudodifferential operators on
closed manifolds (e.g, see [21–24]).

Theorem 2.6. Suppose that the assumptions of Theorem 2.2 are satisfied and the
conormal symbol D̂0(α∗, p) of the operator D̂ at some fixed conical point α∗ is of
power type. Then the contribution of this conical point can be represented as the
sum of traces of finite rank operators given by the residues of the integrand :

Lsing(α∗) =
∑

Im pj>γ(α∗)

Trace Res
p=pj

{
T̂10(α∗, p)D̂−1

0 (α∗, p)
∂D̂0

∂p
(α∗, p)

}
(31)

if α∗ is an attractive point, and

Lsing(α∗) = −
∑

Im pj<γ(α∗)

Trace Res
p=pj

{
T̂10(α∗, p)D̂−1

0 (α∗, p)
∂D̂0

∂p
(α∗, p)

}
(32)

if α∗ is a repulsive point. Here the pj are the poles of the family D̂−1
0 (α∗, p) and

γ(α∗) is the weight exponent at the point α∗.

Proof. Without loss of generality, we can assume that γ(α∗) = 0. Let D̂0(p) be
the conormal symbol of D̂ at α∗. Suppose that D̂0(p) is of power type. Let Sk be a
family of circles of radii Rk →∞ on which D̂−1

0 (p) satisfies a power-law estimate
of the norm according to item 4 of Definition 2.4. Since D̂0(p) is a polynomial of p,
one can readily prove by induction that all derivatives ∂lĤ(p)/∂pl satisfy power-
law estimates of the norm on these circles in appropriate pairs of spaces. Since the
norm of the operator ∂lĤ(p)/∂pl decays polynomially as p → ∞ in the above-
mentioned double sector of nonzero angle containing the real axis, we see that the
integration contour in the integral on the right-hand side of (23) can be closed in
the half-plane where the exponential eib(0,ω)p decays. More precisely, consider the
sequence of contours consisting of the segments [−Rk, Rk] of the real axis and the
corresponding half-circles Sk in the upper or lower half-plane. The integral over the
half-circle tends to zero as k →∞ by virtue of the above considerations, and in the
limit we find that the integral over the real axis is equal to the limit of the sums of
residues in the half-disks bounded by these half-circles and the real axis. It follows
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from items 1–3 of Definition 2.4 that this limit is just equal to the sum of residues
in the corresponding half-plane. (This sum converges absolutely.) These residues
coincide with the residues of the integrand on the left-hand side, since formal
integration by parts does not affect the residues at the poles. (This is a trivial
consequence of the Cauchy integral formula applied to the integral over a small
circle centered at a pole.) It remains to prove that one can transpose summation
and trace computation. (Recall that so far we have established the convergence of
the series in the operator rather than the trace norm.) This is however trivial. The
terms of the series are finite rank operators, and for such operators the trace norm
does not exceed the operator norm times the rank. It follows from items 1–3 that
the total rank and the total operator norm of the coefficients of the principal parts
of the Laurent series at the poles of the family Ĥ(p) in the strip | Im p| < R grow
at most polynomially in R, and the presence of the exponential factor eib(0,ω)p

provides the absolute convergence of the series in the trace norm as well. �

2.5. Example

Now let us give a simple example illustrating the contribution of conical fixed
points to the Lefschetz number. Suppose that M is a two-dimensional manifold
with a conical singular point α, so that the base of the cone is diffeomorphic to
a circle and in a neighborhood U of α one can introduce coordinates (r, ω), where
r ∈ [0, 1) is the distance from the conical point and ω ∈ S1 is a coordinate on
the base of the cone. Consider a second-order elliptic differential operator D̂ on
M and a geometric endomorphism T̂ of the form

T̂ u(x) = u(g(x)), x ∈M,

where g : M → M is a given mapping such that D̂T̂ = T̂ D̂. Let us compute
the contribution of the conical fixed point to the Lefschetz number of this geo-
metric endomorphism assuming that the following conditions are satisfied in the
neighborhood U :

1. The operator D̂ has the form

D̂ =
(
r

∂

∂r

)2

+
∂2

∂ω2
.

2. The mapping g is given by the formula

g(r, ω) = (λr, ω),

where λ �= 1 is a positive number.

Clearly, the conical fixed point α is attractive for λ < 1 and repulsive for
λ > 1. The case λ = 1 is degenerate and thereby excluded. The conormal symbols
of D̂ and T̂ are equal to

D̂0(p) = −p2 +
∂2

∂ω2
, T̂0(p) = λ−ip.
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The poles of D̂−1
0 (p) are p = ik, k ∈ Z, and the ranges of the corresponding residues

are two-dimensional for k �= 0 and one-dimensional for k = 0 (they coincide with
the eigenspaces of the operator d2/dω2 on the circle). One can readily see that
D̂0(p) is a family of power type and hence Theorem 2.6 applies. For example,
for λ < 1 the contribution of the conical fixed point has the form

Lsing =
∑
k>γ

Trace Res
p=ik

2λ−ipp

p2 − ∂2

∂ω2

=
∑
k>γ

akλk,

where ak = 2 for k �= 0 and ak = 1 for k = 0. The formula for λ > 1 is similar
except that the sum is over k < γ and is taken with the opposite sign.

3. The Atiyah–Bott–Lefschetz theorem for endomorphisms
given by quantized canonical transformations

As was mentioned in the introduction, the Lefschetz formula necessarily becomes
asymptotic for endomorphisms given by quantized canonical transformations. In
other words, both the complex and the endomorphism depend on a real parameter
h ∈ (0, 1], and the Atiyah–Bott–Lefschetz theorem gives the asymptotic expansion
of the Lefschetz number as h→ 0. Hence, prior to stating and proving the theorem
mentioned in the section title, we briefly describe semiclassical pseudodifferential
operators and quantized canonical transformations.

3.1. Semiclassical pseudodifferential operators

First, we introduce symbol classes.
Let x = (x1, . . . , xn) ∈ Rn

x and ξ = (ξ1, . . . , ξn) ∈ Rn
ξ . By

Sm = Sm(Rn
x × Rn

ξ × [0, 1]h)

we denote the space of smooth functions H(x, ξ, h) satisfying the estimates∣∣∣∣∣∂|α|+|β|+lH

∂xα∂ξβ∂h1

∣∣∣∣∣ ≤ Cαβl(1 + |ξ|)m−|β|, |α|+ β + l = 0, 1, 2, . . . . (33)

If these estimates hold, then the operator1

Ĥ = H

(
2
x,−

1

ih
∂

∂x
, h

)
(34)

is well defined and bounded in the spaces

Ĥ : Hs
h(Rn) → Hs−m

h (Rn)

1We use the Feynman ordering of noncommuting operators; see [10, 13].
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for every s ∈ R. Here the norm in the Sobolev space Hs
h(Rn) with parameter h is

defined by the formula

||u||2s,h =
∫ ∣∣∣(1− h2 ∂2

∂x2

)s/2

u
∣∣∣2 dx. (35)

Now let

x = (r, ω1, . . . , ωn−1) ∈ Rn
+ = {(r, ω)|r ≥ 0}, ξ = (p, q1, . . . , qn−1) ∈ Cp × Rn−1

q .

By
Sm

ε = Sm
ε (Rn

x × Cp × Rn−1
q × [0, 1)h)

we denote the space of functions H(x, ξ, h) satisfying the following conditions:
1. H(x, ξ, h) is defined in the strip {| Im p| < ε} in Rn

x ×Cp×Rn−1
q × [0, 1]h and

is smooth with respect to all variables and analytic in p in this strip.
2. H(x, ξ, h) = 0 for r > R, where R is sufficiently large.
3. The estimates (33) hold in the strip.

Under these assumptions, the operator

Ĥ = H

(
2
r,

2
ω,

1

ihr
∂

∂r
,

1

−ih
∂

∂ω

)
≡ H

(
2

e−t,
2
ω,

1

−ih
∂

∂t
,

1

−ih
∂

∂ω

)
(36)

is well defined and bounded in the spaces

Ĥ : Hs,γ
h (R+ × Rn−1) → Hs−m,γ

h (R+ × Rn−1)

for any s ∈ R and γ ∈ R and for sufficiently small h. (It suffices to take h < ε/|γ|,
so that the weight line Lhγ will lie in the strip {| Im p| < ε}.)

Here the norm in the weighted Sobolev spaces Hs,γ
h (R+ × Rn−1) is given by

the expression

||u||2s,γ,h =
∫ ∞

0

∫ ∣∣∣∣∣
(

1− h
∂2

∂ω2
−

(
hr

∂

∂r

)2)s/2(
rγu

)∣∣∣∣∣
2

dω
dr

r
. (37)

Now we define a semiclassical pseudodifferential operator of order m on a
manifold M with conical singularities as an operator of the form (34) (respec-
tively, (36)) in local coordinates on the smooth part of M (respectively, near
conical singular operators) modulo integral operators Q̂ with smooth kernel such
that

Q̂ : Hs,γ
h (M) → Hs−N,γ

h (M)

is compact for any s, γ, and N and has the norm O(hN1) for every N1.
(The semiclassical Sobolev spaces Hs,γ

h (M) are defined in a standard way:
the norm is obtained with the help of a partition of unity from local expressions
of the form (37) near conical points and (35) in the smooth part of M .)

In a usual way, one introduces the notion of the conormal symbol of a semi-
classical pseudodifferential operator Ĥ on M at a conical point α ∈ {α1, . . . , αN}.
The conormal symbol is an analytic family Ĥ0(p) of operators depending on the
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parameter p, | Im p| < ε, and acting in function spaces on the base Ω of the corre-
sponding cone.

3.2. Quantization of canonical transformations

We shall consider canonical transformations of the compressed cotangent space
T ∗M . An invariant definition of this space can be found in many papers (e.g.,
see [25]). It is a manifold with boundary

∂T ∗M = �
j
(T ∗Ωj × R),

equipped with a natural symplectic form ω2 having a singularity on the boundary.
Let us write out the expression of this form in special coordinates near the bound-
ary (over a neighborhood Uj of a singular point αj). We have the isomorphism

T ∗Uj  T ∗Ωj × [0, 1)× R. (38)

If in this expansion we denote the canonical coordinates on T ∗Ωj by (ω, q), the
coordinate on [0, 1) by r, and the coordinate on R by p, then the equation of the
boundary is r = 0 and the form ω2 is given by the formula

ω2 = −dp ∧ dr

r
+ dq ∧ dω. (39)

Canonical transformations are smooth mappings

g : T ∗M → T ∗M

of manifolds with boundary such that

g∗ω2 = ω2

Under the assumption that the bases of all cones at singular points are connected,
it is obvious that g is a diffeomorphism of the component of ∂T ∗M over a conical
point α onto the component of ∂T ∗M over some (possibly, the same) conical point
α1. We write α1 = g(α).

Outside the singular points, the structure of canonical transformations is
standard. Their structure near the conical points (i.e., near ∂T ∗M) was described
in [26]. It is convenient to describe this structure in the cylindrical coordinates
(where the variable r is replaced by a new variable t according to the formula
r = e−t). Let (t, ω, p, q) and (τ, ψ, ξ, η) be cylindrical coordinates near α and g(α)
on the first and second copies of T ∗M , respectively. Then g can be represented as
a mapping

g : (t, ω, p, q) → (τ, ψ, ξ, η),
whose properties are described in the following theorem.

Theorem 3.1 (see [26]). The following assertions hold.
1. The mapping g near a conical point α can be represented in the form

τ = t + χ(e−t, ω, p, q), ψ = ψ(e−t, ω, p, q),

ξ = p + c + ξ̃(e−t, ω, p, q), η = η(e−t, ω, p, q),
(40)
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where χ, ψ, ξ̃, and η are smooth functions, ξ̃(0, ω, p, q) = 0, and c is a
constant, which will be referred to as the conormal shift of the mapping g at
the point α.

2. The formulas

ψ = ψ(0, ω, p, q), η = η(0, ω, p, q)

specify a family of canonical transformations

g(p) : T ∗ Ωα → T ∗ Ωg(α),

where Ωα and Ωg(α) are the bases of the cones at the corresponding conical
points. This family will be referred to as the conormal family of g at α.

The following theorem describes some special coordinates that always exist on the
graph of a canonical transformation.

Theorem 3.2. Let
g(∞, ω0, p0, q0) = (∞, ψ0, ξ0, η0).

Then there exists a subset I ⊂ {1, . . . , n−1} such that the functions (τ, ψI , ηĪ , p, q),
where Ī = {1, . . . , n− 1}\I, for a system of local coordinates on the graph of g in
a neighborhood of the point

(∞, ω0, p0, q0;∞, ψ0, ξ0, η0).

Moreover, in the corresponding neighborhood of the point (∞, ω0, p0, q0) the trans-
formation is defined by a generating function of the form

SI(τ, ψI , ηĪ , p, q) = (p + c)τ + S1I(e−τ , ψI , ηĪ , p, q)

via the usual formulas

t =
∂SI

∂p
, ξ =

∂SI

∂τ
, ω =

∂SI

∂q
, ηI =

∂SI

∂ψI
, ψĪ = −∂SI

∂ηĪ

.

Now let
g : T ∗M → T ∗M

be a canonical transformation and a a smooth function on T ∗M . Under some ad-
ditional assumptions, we define an operator T (g, a) (a quantized canonical trans-
formation acting in the Sobolev spaces Hs,γ

h (M)).

Assumption 3.3. The transformation g is asymptotically first-order homogeneous
with respect to the multiplicative action of the group R+ of positive numbers in
the fibers of T ∗

0 M . The conormal shift of g is zero.

Assumption 3.4. The generating functions of g near the conical points are analytic
in p in the strip | Im p| < ε for some ε > 0.

The graph
Lg ⊂ T ∗M × T ∗M (41)

of a canonical transformation g is a Lagrangian manifold with respect to the differ-
ence of symplectic forms on the first and second copies of T ∗M . This Lagrangian



178 V. Nazaikinskii and B. Sternin

manifold is equipped with the standard measure (volume form), namely, the nth
exterior power of the symplectic form lifted from one of the copies of T ∗M to Lg

with the help of the standard projection.

Assumption 3.5. The manifold Lg satisfies the quantization conditions [9, 11].

Under these conditions, one can define the operator T (g, a) (the quantized canon-
ical transformation in Sobolev spaces Hs,γ

h (M)) for amplitudes a satisfying the
following conditions.

Assumption 3.6. The function a belongs to the class Sm
ε (T ∗M) defined as the

space of smooth functions on T ∗M whose coordinate representatives belong to Sm

for charts outside conical points and Sm
ε for conical charts.

Let Kg be the Maslov canonical operator on Lg [9, 11]. We define T̂ (g, a) as the
integral operator with Schwartz kernel [Kg(π∗

1a)](x, y) on the product M ×M ,
where π1 : Lg → T ∗M is the natural projection onto the first factor on the right-
hand side in (41). (We assume that M is equipped with a smooth measure dx such
that in the cylindrical coordinates near conical points one has dx = dt∧dω, where
dω is a smooth measure on the base Ω of the corresponding cone. Then Schwartz
kernels can be treated as functions.)

If the support of a entirely lies in a cylindrical canonical chart with coordi-
nates (τ, ψI , ηĪ , p, q), then the operator T̂ (g, a) can be represented modulo compact
operators and modulo O(h) in the form

[T̂ (g, a)u](τ, ψ) =
(

i

2πh

)n+|Ī|/2 ∫∫∫
exp

{
i

h
[SI(τ, ψI , ηĪ , p, q) + ψĪηĪ ]

}
× (π∗

1a)
(

D(ξ, ηI , ψĪ)
D(p, q)

)1/2

(e−τ , ψI , ηĪ , p, q)ũ(p, q) dp dq dηĪ , (42)

where ũ(p, q) is the semiclassical Fourier–Laplace transform of u(t, ω), π∗
1(a) is

expressed in the local coordinates of the canonical chart, the integral with respect
to p is taken over the weight line Lhγ , and the argument of the Jacobian is taken
in accordance with the construction of the canonical operator.

The following theorem was proved in [27].

Theorem 3.7. Under the above assumptions, the operator T̂ (g, a) is continuous in
the spaces

T̂ (g, a) : Hs,γ
h (M) → Hs−m,γ

h (M)
for any s ∈ R and γ ∈ R provided that h < ε/|γ|.

For the operator T̂ = T̂ (g, a), we defined the conormal symbol T̂0(p). To this end,
we represent T̂ in a neighborhood of the conical point in the form

T̂ = T̂

(
2
r,

1

ir
∂

∂r

)
,
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where the operator-valued symbol T̂ (r, p) of the operator T̂ is a family of operators
acting in function spaces on the base Ω of the corresponding cone. Then

T̂0(p) = T̂ (0, p).

Let us write out the conormal symbol of the operator (42). Since the conormal
shift is zero (c = 0), we have

SI(τ, ψI , ηĪ , p, q) = pτ + S1I(e−τ , ψI , ηĪ , p, q),

and the operator (42) can be rewritten in cylindrical coordinates in the form

[T (g, a)u](r, ψ) =
(

i

2πh

)n−1+|Ī|/2∫∫
exp

{
i

h

[
S1I

(
2
r, ψI , ηĪ ,

1

ir
∂

∂r
, q

)
+ψIηĪ

]}

× (π∗
1a)

D(ξ, ηI , ψĪ)
D(p, q)

(
2
r, ψI , ηĪ ,

1

ir
∂

∂r
, q

)
ǔ(r, q) dq dηI , (43)

where ǔ(r, q) is the semiclassical Fourier transform of u with respect to ω. It follows
that the conormal symbol T̂0(p) is given by the formula

[T̂0(p)v](ψ) =
(

i

2πh

)n−1+|Ī|/2 ∫∫
exp

{
i

h

[
S1I

(
0, ψ1, ηĪ , p, q

)
+ ψĪηĪ

]}
× (π∗

1a)
(

D(ξ, ηI , ψĪ)
D(p, q)

)1/2

(0, ψI , ηĪ , p, q)v̌(q) dq dηI , (44)

or
T̂0(p) = T̂ (g(p), a(p)), (45)

where g(p) is the conormal family of g and a(p) is the restriction of a to the
boundary r = 0.

3.3. Main result

Let M be a compact manifold with conical singularities {α1, . . . , αN}, and let

D̂ : C∞(M, E1) → C∞(M, E2)

be a formally elliptic semiclassical pseudodifferential operator of order m on M .
(Recall that the formal ellipticity means that the principal symbol σ(D̂) is invert-
ible outside the zero section of T ∗M .) Then the conormal symbol D̂0(p) is elliptic
with parameter in the sense of Agranovich–Vishik [20] in some two-sided sector
containing the real axis and is invertible sufficiently far from the origin in this
sector. Outside the sector, for each h ∈ (0, 1] the operator D̂−1

0 (p) has countably
many poles with finite-dimensional principal parts of Laurent series.

Thus for each h ∈ (0, 1] in any interval {|γ| < ε} there is at most finitely
many γ such that the operator D̂ is not elliptic in the scale {Hs,γ

h (M)}.
Let Z(γ) be the set of values of the parameter h ∈ (0, 1] for which D̂−1

0 (p)
has no poles on the weight line Lhγ (or, equivalently, the operator D̂ is elliptic
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in the scale Hs,γ
h (M)). We say that γ is admissible if 0 is a limit point of Z(γ).

The following assertion is obvious.

Proposition 3.8. The set of inadmissible γ is at most countable.

In what follows, we deal only with admissible γ.
Now let g be a canonical transformation satisfying Assumptions 3.3–3.5, and

let ai ∈ S0(T ∗M), i = 1, 2, be amplitudes satisfying Assumption 3.6. We set
T̂i = T̂ (g, ai). Suppose that the diagram

0 −−−−→ C∞(E) D̂−−−−→ C∞(F ) −−−−→ 0

T̂1

⏐⏐� ⏐⏐�T̂2

0 −−−−→ C∞(E) D̂−−−−→ C∞(F ) −−−−→ 0

commutes. Then the diagram

0 −−−−→ Hs,γ
h (E) D̂−−−−→ Hs−m,γ

h (F ) −−−−→ 0

T̂1

⏐⏐� ⏐⏐�T̂2

0 −−−−→ Hs,γ
h (E) D̂−−−−→ Hs−m,γ

h (F ) −−−−→ 0

(46)

also commutes for all s, h, and γ < ε/h. For h ∈ Z(γ), we have the well-defined
Lefschetz number

L(h) = Trace T̂1|Ker D̂ − Trace T̂2|Coker D̂.

We shall obtain the asymptotics of L(h) as h → 0, h ∈ Z(γ), under some
additional assumptions about g and D̂0(p).

Assumption 3.9. The transformation g is nondegenerate in the following sense.

1. For each interior fixed point z = g(z) ∈ T ∗M , one has

det (1− g∗(z)) �= 0.

2. The following condition is satisfied for each conical fixed point α: either

χ(0, ω, p, q) > 0

for all p, ω, q ∈ R× T ∗ Ω (an attractive point), or

χ(0, ω, p, q) < 0

for all p, ω, q ∈ R×T ∗ Ω (a repulsive point). Here χ(e−t, ω, p, q) is the function
determining the t-component of g according to (40).

Assumption 3.10. At each conical point α, the conormal symbol D̂0(p) satisfies
the following conditions:
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(a) For every ε > 0, the number N(h) of the poles (counting multiplicities) of
the family D̂−1

0 (p) in the strip {| Im p| < ε} satisfies the estimate

N(h) ≤ C(ε)h−N0

for some N0 ∈ R.
(b) For every compact subset K ⊂ C, the family D̂−1

0 (p) satisfies the estimate

‖D̂−1
0 (p)‖Hs(Ω)→Hs(Ω) ≤ C dist(p, spec(D̂0))−N1 , p ∈ K,

where dist(p, spec(D̂0)) is the distance from the point p to the spectrum
spec(D̂0) of the family D̂−1

0 (p).
(c) The coefficients of principal parts of the Laurent series of the operator D̂−1

0 (p)
at the poles pj are uniformly bounded in the operator norm in L2 by Ch−N

for some N , where C is a constant independent of h and j.

Under these assumptions, the following theorem holds.

Theorem 3.11. The Lefschetz number L(h) of the diagram (46) has the following
asymptotics for a given admissible γ as h→ 0, h ∈ Z(γ):

L(h) = Lint +
∑
αk

L(αk) + O(h),

where Lint is the contribution of interior fixed points, given by the same formulas
as in Theorem 1.3,

∑
αk

extends over all conical fixed points αk of g, and L(αk)
is the contribution of αk, which is given by the formula

L(αk) = ±
∑

±hγk<± Im pj<ε

Trace Res
pj

{
T̂10(p)D̂−1

0 (p)
∂ D̂0(p)

∂p

}
. (47)

(The upper sign corresponds to attractive points, and the lower sign to repulsive
points.) Here T̂10(p) and D̂0(p) are the conormal symbols of the operators T̂1(p)
and D̂, respectively, at the points αk. The sum is taken over the poles of D̂−1

0 (p)
in the strip indicated in the subscript on the sum. The number ε > 0 is sufficiently
small (and otherwise arbitrary).

Proof. To simplify the notation, we assume that M has a single conical point α
(which is then necessarily a fixed point of g) and γ = 0. The proof consists of two
parts.

1. For each given h ∈ Z(γ), we construct a regularizer of D̂ depending on
a parameter λ → ∞ and obtain a preliminary formula for the Lefschetz
number by letting λ→∞.

2. We study the asymptotics of the resulting expression as h→ 0, h ∈ Z(γ).

1. We again use the trace formula

L(h) = Trace(T̂1(1 − R̂D̂))− Trace(T̂2(1− D̂R̂)) (48)
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for the Lefschetz number. This time, we set

R̂ = ψ1R̂1f1 + ψ2R̂2f2, (49)

where R̂1 is an arbitrary almost inverse of D̂ modulo trace class operators (it
is a pseudodifferential operator on M for each h ∈ Z(γ) but not a semiclassi-
cal pseudodifferential operator, since the dependence on h as h → 0 need not be
regular) and R̂2 is a semiclassical pseudodifferential operator that is an almost
inverse of D̂ modulo operators of large negative order (not necessarily compact).
The second operator will be constructed in the form of a semiclassical pseudo-
differential operator (see Lemma 3.14 below). For brevity, we refer to R̂2 as an
interior regularizer. In particular, it follows that the operators Q̂′ = 1− R̂2D̂ and
Q̂ = 1− D̂R̂2 are semiclassical pseudodifferential operators. The functions f1 and
f2 in (49) form a partition of unity such that f1 ≡ 1 in a neighborhood of the
conical point and f1 ≡ 0 in a larger neighborhood; ψ1 and ψ2 are cutoff functions
such that ψifi = fi, i = 1, 2. Moreover, f1, ψ1, and ψ2 depend only on the cylin-
drical variable t in a neighborhood of the conical point, and they also depend on
the above-mentioned large parameter λ as follows:

f1 = f1(t− λ), ψ1 = ψ1(t− λ), ψ2 = ψ2(t− λ).

Lemma 3.12. The functions f1, f2, ψ1, and ψ2 can be chosen to satisfy

[supp fj ∪ πg(π−1 supp fj)] ∩ supp (1− ψj) = ∅, j = 1, 2,

for all sufficiently large λ, where π : T ∗M →M is the natural projection.

The proof follows from the structure of the canonical transformation in a neigh-
borhood of the conical point (see Theorem 3.1).

Now we substitute the regularizer (49) into (48). After some computations,
we obtain

L(h) = L1 + L2 + L3,

where

L1 = Trace(T̂1(R̂1 − R̂2)[D̂, f1]),

L2 = Trace(T̂1ψ2Q̂
′f2)− Trace(T̂2ψ2Q̂f2),

L3 = Trace(T̂1{(1− ψ1)R̂1[f1, D̂] + (1− ψ2)R̂2[D̂, f2]})
+ Trace(T̂2{[D̂, ψ1]R̂1f1 + [D̂, ψ2]R̂2f2})

(the argument of fi and ψi in these formulas is t− λ).
Now let λ→∞. Computations similar to those in Section 2 show that

lim
λ→∞

L1 =
1

2πi

∫ ∞

−∞
Trace T̂10(p)(R̂10(p)− R̂20(p))

∂ D̂0(p)
∂p

dp. (50)

(The subscript “0” indicates the conormal symbol; in particular, R̂10(p) = D̂−1
0 (p).)
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To find the limit lim
λ→∞

L2, consider the compactly supported function

f(t) = f1(t)f2(t− λ).

Lemma 3.13. One has

Trace(T̂10Q̂
′
0f) = Trace(T̂20Q̂0f).

Using this lemma, we obtain

lim
λ→∞

L2 = Trace(T̂1Q̂
′ − T̂10Q̂

′
0f1(t)) − Trace(T̂2Q̂− T̂20Q̂0f1(t)).

Finally, the passage to the limit as λ→ 0 in the term L3 simply results in freezing
the coefficients of T̂i, D̂, and R̂i at the point t =∞ (r = 0). Thus we obtain

lim
λ→∞

L3 = Trace(T̂10{(1− ψ1)R̂10[f1, D̂0] + (1− ψ2)R̂20[D̂0, f2]})

+ Trace(T̂20{[D̂0, ψ1]R̂10f1 + [D̂0, ψ2]R̂20f2}),

where D̂0 = D̂0(−i ∂
∂t ) etc. (Here the argument of ψi and fi is t rather than t−λ.)

2. Now let us find the asymptotics of the Lefschetz number as h → 0, h ∈ Z(γ).
We need to compute the asymptotics of the contributions

Lint = lim
λ→∞

L2 and Lcone = lim
λ→∞

L1.

Since R̂2 is a semiclassical pseudodifferential operator, it follows that the asymp-
totics of Lint can be computed by the stationary phase method, which gives the
standard expression for the contributions of interior stationary points (see Sub-
sec. 1.3). To find the asymptotics of Lcone, we take R̂2 in a special form.

Lemma 3.14. There exists a semiclassical pseudodifferential interior regularizer R̂2

such that in a neighborhood of the conical point one has

R̂2 = R̂2

(
t,−ih

∂

∂t

)
,

where the symbol R̂2(t, p) is holomorphic in the variable p in a sufficiently narrow
strip | Im p| < ε.

Now let us compute the integral (50) using the residue formula. Suppose that the
conical point is attractive. It follows from Assumption 3.10 that for each h ∈ Z(γ)
there exists a ρ(h) ∈ [ε/2, ε] such that the line Im p = ρ(h) does not contain
poles of the family D̂−1

0 (p) and the inequality D̂−1
0 (p) ≤ C · h−N0N1 holds on this

line for |p| < R. (For |p| > R, where R is sufficiently large, the decay of D̂−1
0 (p)

at infinity is guaranteed.)
Now let us consider the integral over the contour given by the union of two

lines, Im p = 0 and Im p = ρ(h), passed in opposite directions and use the Cauchy
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residue theorem. Then we obtain

Lcone =
∑

0<Impj<ρ(h)

TraceRes
pj

{
T̂10(p)D̂−1

0 (p)
∂ D̂0

∂p

}

+
1

2πi

∫
Im p=ρ(h)

Trace T̂10(p)(R̂10(p)− R̂20(p))
∂D̂0(p)

∂p
dp.

(We have used the fact that R̂20(p) is holomorphic in the strip 0 ≤ Im p ≤ ρ(h).)
It remains to estimate the integral over the line Im p = ρ(h). We have

‖T̂10(p)‖L2→L2 ≤ Ce−c1/h

for sufficiently small ε by virtue of the conditions imposed on the conical fixed
point and the canonical transformation. (For small ε, the imaginary part of the
generating function on the line Im p = ρ(h) is bounded below by const ·ε with a
positive constant.) Now

R̂10(p)− R̂20(p) = D̂−1
0 Q̂20,

and consequently,

|‖ R̂10(p)− R̂20(p)|‖ ≤ ‖D̂−1
0 (p)‖L2→L2 |‖ Q̂20(p)|‖,

where |‖ · |‖ is the trace norm of operators in L2. Since

‖D̂−1
0 (p)‖L2→L2 ≤ ch−N1N

and
|‖ Q̂20(p)|‖ ≤ C(1 + |p|)−N3 ,

where N3 is arbitrarily large, we find that

|‖T̂10(p)(R̂10(p)− R̂20(p))
∂D̂0(p)

∂p
|‖ ≤ C(1 + |p|)−N3e−c1/hhN1N

(with some other constant C), and so the second integral is O(h∞).
Finally, one can show that the contribution of the term

Lrem = lim
λ→∞

L3

is O(h∞) by virtue of our assumptions on the conormal singularity, the canoni-
cal transformation, and the supports of fi and ψi. The proof of the theorem is
complete. �
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Residues and Index for Bisingular Operators

Fabio Nicola and Luigi Rodino

Abstract. We consider an algebra of pseudo-differential operators on the prod-
uct of two manifolds which contains, in particular, the tensor products of
usual pseudo-differential operators. For that algebra we discuss the existence
of trace functionals like Wodzicki’s residue and we prove a homological index
formula for the elliptic elements.
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1. Introduction

In [14] (1975) the second author of the present paper considered a class of pseudo-
differential operators, called bisingular operators, defined on the product of two
compact manifolds X1 ×X2, with symbols satisfying in local product-type coor-
dinates

|∂α1
ξ1

∂α2
ξ2

∂β1
x1

∂β2
x2

a(x1, x2, ξ1, ξ2)| ≤ Cα1,α2,β1,β2〈ξ1〉m1−|α1|〈ξ2〉m2−|α2|.

The standard rules of the symbolic calculus can be recaptured for

A = a(x1, x2, D1, D2),

by considering the couple of vector-valued symbols

σm1
1 (A) : (x1, ξ1) �→ a(x1, x2, ξ1, D2),

σm2
2 (A) : (x2, ξ2) �→ a(x1, x2, D1, ξ2).

Let us limit attention to symbols a(x1, x2, ξ1, ξ2) with asymptotic expansion in bi-
homogeneous terms and write HLm1,m2(X1×X2) for the corresponding class of op-
erators. In this case σm1

1 , σm2
2 can be re-defined more precisely as functions of x1, ξ1,

homogeneous of order m1 with respect to ξ1 (functions of x2, ξ2 homogeneous of
order m2 with respect to ξ2) with values in the space of the classical pseudo-
differential operators HLm2(X2) (respectively HLm1(X1)). Fredholm property, in
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suitable Sobolev spaces, is then proved for A under the assumption that the cor-
responding vector-valued symbols are elliptic, i.e., (σm1

1 (A)(v1))−1 ∈ HL−m2(X2)
for every v1 ∈ T ∗X1 \ 0, (σm2

2 (A)(v2))−1 ∈ HL−m1(X1) for every v2 ∈ T ∗X2 \ 0,
see the next Section 2 for details. A natural question in [14] was the computa-
tion of the index of A ∈ HLm1,m2(X1 × X2), cf. also Pilidi [12], Rodino [15].
Because of the vector-valued setting, this turned out to be outside the range of
the applications of the result of Atiyah and Singer [1], and a general formula was
not attained. During the last 30 years, the index for vector-valued symbols and
operators was the subject of deep investigation, in connection with hypoelliptic
operators, operators on manifolds with singularities, etc., let us address for exam-
ple to Fedosov, Schulze and Tarkhanov [5] and the references there. When aiming
to the computation of the index of the bisingular operators, a very useful tool is
given by the formula of Melrose and Nistor [9] in terms of residues. In fact, from
a formal point of view there is a strong similarity with the proceeding in Lauter
and Moroianu [7, 8], Nicola [11]; namely, one can define a couple of residue func-
tionals for vector-valued symbols and deduce a general index formula, see next
Section 3.4.

Before giving details, we would like to present some examples of bisingular
operators; they were motivations for the analysis in [14], and still deserve some
interest. First, bisingular partial differential operators on the product of two man-
ifolds are locally of the form (all the coefficients are C∞ in our setting):

A =
∑

|β1|≤m1
|β2|≤m2

cβ1,β2(x1, x2)D
β1
1 Dβ2

2 .

In this case

σm1
1 (A) =

∑
|β1|=m1
|β2|≤m2

cβ1,β2(x1, x2)ξ
β1
1 Dβ2

2 (1.1)

σm2
2 (A) =

∑
|β1|≤m1
|β2|=m2

cβ1,β2(x1, x2)D
β1
1 ξβ2

2 , (1.2)

and a full bi-homogeneous expansion is given by the terms

σj,k(A) =
∑

|β1|=j
|β2|=k

cβ1,β2(x1, x2)ξ
β1
1 ξβ2

2 .

The Fredholm property of A ∈ HLm1,m2(X1 × X2) is given by the condition
σm1,m2(A)(v1, v2) �= 0 for every v1 ∈ T ∗X1 \ 0, v2 ∈ T ∗X2 \ 0 and the invertibility
of the operator-valued maps defined by (1.1),(1.2); we have ind(A)=0.
A simple example of the non-trivial index is given by the so-called double Cauchy
integral operators, namely taking X1 = X2 = S1 we consider A ∈ HL0,0(S1 × S1)
of the form (in the following we regard S1 as unit circle in the complex plane and
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we understand counter-clockwise integration in the Cauchy sense):

Af(z1, z2) = a0(z1, z2)f(z1, z2) +
1
πi

∫
S1

a1(z1, z2, ζ1)
ζ1 − z1

f(ζ1, z2) dζ1

+
1
πi

∫
S1

a2(z1, z2, ζ2)
ζ2 − z2

f(z1, ζ2) dζ2

− 1
π2

∫∫
S1×S1

a12(z1, z2, ζ1, ζ2)
(z1 − ζ1)(z2 − ζ2)

f(ζ1, ζ2)dζ1 dζ2. (1.3)

In this case σ0
1(A), σ0

2(A) take values in HL0(S1). In view of the 0-homogeneity,
we may limit to define them on S∗S1, and identifying S∗S1 with two copies of S1

we have

σ0
1(A)(z1,±1)g(z2) = (a0(z1, z2)± a1(z1, z2, z1))g(z2)

+
1
πi

∫
S1

a2(z1, z2, ζ2)± a12(z1, z2, z1, ζ2)
ζ2 − z2

g(ζ2) dζ2, (1.4)

σ0
2(A)(z2,±1)g(z1) = (a0(z1, z2)± a2(z1, z2, z2))g(z1)

+
1
πi

∫
S1

a1(z1, ζ1, z2)± a12(z1, z2, ζ1, z2)
ζ1 − z1

g(ζ1) dζ1. (1.5)

The Fredholm property of A in (1.3) depends on the invertibility of these Cauchy
integral operators on S1, see [12],[15]. As for the index, in Section 5 we shall survey
the results of [12],[15] and give an application of our formula.

Finally, concerning the generic pseudo-differential case, a simple example of
operator A ∈ HLm1,m2(X1 × X2) is given by the tensor product A = A1 ⊗ A1,
where A1 ∈ HLm1(X1), A2 ∈ HLm2(X2). Note that A1 ⊗ A2 is not any more
classical, if one at least of the factors is not a differential operator. Operators
acting on sections of bundles will remain outside the present paper, however we
should like also to recall the definition of the vector-tensor product

A1 � A2 =
(

A1 ⊗ I −I ⊗A∗
2

I ⊗A2 A∗
1 ⊗ I

)
.

In Atiyah, Singer [1], I, pp. 512–515 (see also Hörmander [6], Theorem 19.2.7) it was
observed that, for elliptic factors A1, A2 of order m1 > 0, m2 > 0, the standard
symbol of A1 � A2 is a matrix 2 × 2 of continuous functions. Then A1 � A2 is
Fredholm, being approximated uniformly by classical elliptic pseudo-differential
operators; moreover we have ind(A1 � A2) = ind(A1) ind(A2), generalizing the
property of the Euler constant χ(X1×X2) = χ(X1)χ(X2). When m1 ≤ 0, m2 ≤ 0,
the standard symbol of A1 �A2 is not continuous, and the arguments in [1],[6] fail.
However, the vector-valued symbols σm1

1 (A1 � A2), σm2
2 (A1 � A2) are invertible,

therefore A1 �A2 is still Fredholm as 2× 2 system of operators in HLm1,m2(X1×
X2), and the product formula for the index keeps valid, see [14] for details.

We end this introduction by recalling, for a pseudo-differential operator A ∈
HLm(X), some basic facts concerning residues and traces, which we shall apply in
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Section 3,4 to A ∈ HLm1,m2(X1×X2). We refer to Wodzicki [18, 19] and Fedosov,
Golse, Leichtnam and Schrohe [4] for details.

Let therefore X be a compact manifold, dimX = n. We denote by HLZ(X) :=
∪m∈ZHLm(X) the algebra of all operators of integer order.
Fix Q ∈ HL1(X), positive, elliptic and invertible. Then, for A ∈ HLZ(X) the
zeta-function

z �→ Tr(AQ−z)

is well defined and holomorphic for large real part of z and admits a meromorphic
extension to the whole plane, with at most simple poles at real, integer points.
Then, the so-called Wodzicki residue is defined by

Res A := Resz=0Tr(AQ−z).

The most important feature of this functional is that it verifies the trace property
on HLZ(X)

Res(A1A2) = Res(A2A1), ∀A1, A2 ∈ HLZ(X);

namely, it vanishes on commutators.
Actually, it turns out that it can be written down explicitly in terms of the

symbol of the operator. More precisely we have

Res A = (2π)−n

∫
S∗X

a−n(x, ξ)ιRωn, (1.6)

where a−n(x, ξ) is the term homogeneous of degree −n in the asymptotic expan-
sion of the symbol of A and ιRωn indicates the contraction of the nth power of
the symplectic 2-form ω in T ∗X with the radial vector field R in the fibers. In
particular, we see that it vanishes on operators of order less than −n and there-
fore on the ideal I of the smoothing operators (sometimes one expresses this fact
by saying the it is local). As a consequence, it induces a trace on the quotient
algebra HLZ(X)/I. Moreover, when X is connected and dimX > 1 this is the
unique trace on the quotient algebra. It is remarkable the fact that, although the
term a−n does not have an invariant meaning, the integral (1.6) is however well
defined. Also, from (1.6) it follows that the residue functional does not depend on
the choice of Q.

It the following we shall also make use of the functional

TrQ(A) := lim
z→0

(
Tr(AQ−z)− Res A/z

)
, (1.7)

which expresses the regularized value of the trace Tr(AQ−z) at z = 0. Unlike
Wodzicki’s residue this functional is not a trace and depends on Q.

We should recall the remarkable relation between the Wodzicki residue and
the Dixmier trace Trω, which is established by Connes’ trace theorem (see Connes
[3], Proposition 5, page 307); namely, they coincide (up to a multiplicative con-
stant) on operators of order −n (where the latter is defined). Hence Wodzicki’s
residue can be regarded as an extension of the Dixmier trace to all operators of
integer order.
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Finally, as an application of the Wodzicki residue, we report on the index
formula of Melrose and Nistor [9], which has been the main inspiration for our
index formula in Section 4 (cf. also Lauter and Moroianu [7, 8]):

Let A be an elliptic classical pseudo-differential operator on X and let B be
a parametrix. Then

ind(A) = Res([log Q, B]A)
where Q is as above and [log Q, B] := d

dτ (QτBQ−τ )|τ=0.

2. The class of bisingular operators

In this section we fix the notation used in this paper and we recall from Rodino [14]
the definitions and the basic properties of the class of pseudo-differential operators
that we are interested in here.

Let Ω1, Ω2 be open subsets of Rn1 , Rn2 respectively.

Definition 2.1. For m1, m2 ∈ R, we denote by Sm1,m2(Ω1 × Ω2) the space of all
functions a ∈ C∞(Ω1 × Ω2 × Rn1 × Rn2) such that

|∂α1
ξ1

∂α2
ξ2

∂β1
x1

∂β2
x2

a(x1, x2, ξ1, ξ2)| ≤ Cα1,α2,β1,β2,K1,K2〈ξ1〉m1−|α1|〈ξ2〉m2−|α2| (2.1)

for all α1, α2, β1, β2 ∈ Zn
+, , xi ∈ Ki, ξi ∈ Rni , i = 1, 2, for arbitrary Ki ⊂⊂ Ωi,

and with constants Cα1,α2,β1,β2,K1,K2 > 0. (As usual, 〈ξ〉 := (1 + |ξ|2)1/2).

The calculus corresponding to the estimates (2.1) is not temperate and,
in fact, quite different from the usual one for pseudo-differential operators in
Hörmander’s classes Sm

1,0 (see Hörmander [6], Chapter XVIII). Moreover, an oper-
ator with symbol in Sm1,m2(Ω1×Ω2) is not pseudolocal in general. However, it has
the expected continuity property on suitably defined Sobolev spaces, see below.
We refer directly to the paper [14] for the full symbolic calculus and the invariance
properties with respect to changes of variables. Instead, we here fix the attention
on the so-called classical symbols, namely symbols with a double asymptotic ex-
pansion in homogeneous terms. Since they were not introduced in [14] (in view
of the application given there, the notion of principal symbol was sufficient), we
will detail their definition now. Let us note a formal similarity with the classical
operators with exit symbols in Schulze [16], Section 1.4.3.

Consider, for i = 1, 2, the so-called radial compactification maps

RCi : Rni −→ Sni
+ := {ξ = (ξ′, ξni+1) ∈ Rni+1 : |ξ| = 1, ξni+1 ≥ 0},

RCi(ξ) = (ξ/〈ξ〉, 1/〈ξ〉) ,

which define a diffeomorphism of Rni into the interior of the closed upper half-
sphere Sni

+ ⊂ Rni+1. The maps

R̃Ci : T ∗Ωi = Ωi × Rni −→ S∗
+Ωi := Ωi × Sni

+

R̃Ci := Id×RCi

are then induced.
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We now look at the manifold with corners Sn1
+ × Sn2

+ . Let ρ1, ρ2 be respective
boundary defining functions for the two boundary hypersurfaces Sn1−1 × Sn2

+

and Sn1
+ × Sn2−1, defined in the following way: we take ρ1 satisfying (RC1 ×

Id)∗ρ1)(ξ1, ω2) = |ξ1|−1, for |ξ1| ≥ 1, ω2 ∈ Sn2
+ , and similarly for ρ2. By means

of the projection π : S∗
+Ω1 × S∗

+Ω2 → Sn1
+ × Sn2

+ we then define the functions
ρ̃i = π∗ρi, i = 1, 2, which are boundary defining functions for the two boundary
hypersurfaces of the manifold with corners S∗

+Ω1 × S∗
+Ω2.

Definition 2.2. A symbol a ∈ Sm1,m2(Ω1 × Ω2) is called a classical symbol if

a ∈
(
R̃C1 × R̃C2

)∗ (
ρ̃−m1
1 ρ̃−m2

2 C∞(S∗
+Ω1 × S∗

+Ω2)
)
.

We denote by HSm1,m2(Ω1×Ω2) the space of these symbols and by HLm1,m2(Ω1×
Ω2) the one of the corresponding pseudo-differential operators.

(We make clear that the space C∞(S∗
+Ω1 × S∗

+Ω2) of smooth functions on
the manifold with corners S∗

+Ω1 × S∗
+Ω2 is defined as the set of functions which

admit smooth extensions to (Ω1 × Sn1)× (Ω2 × Sn2).)
We observe, in particular, that symbols in HS−∞,−∞(Ω1 ×Ω2) = C∞(Ω1 ×

Ω2;S(Rn1+n2)) correspond, via the map R̃C1×R̃C2, to functions on S∗
+Ω1×S∗

+Ω2

which are smooth up to the boundary and vanish to infinite order there. Similar
remarks apply to symbols in HS−∞,m2(Ω1 × Ω2) and HSm1,−∞(Ω1 × Ω2).

Consider now m1, m2 ∈ Z. Given an operator A = Op(a) ∈ HLm1,m2(Ω1 ×
Ω2) there are well defined symbol maps (the first two are operator-valued)

σj
1(A) : T ∗Ω1 \ 0→ HLm2(Ω2),

σk
2 (A) : T ∗Ω2 \ 0→ HLm1(Ω1),

σj,k(A) : (T ∗Ω1 \ 0)× (T ∗Ω2 \ 0)→ C,

homogeneous respectively of degree j in ξ1, k in ξ2, (j, k) in ξ1, ξ2 separately,
j, k ∈ Z. Here we denoted by HLm(Ω) the space of classical (or polyhomogeneous)
pseudo-differential operators on an open subset Ω ⊂ Rn.

The construction of such maps goes as follows. As regards σj
1(A), there exists

ã ∈ ρ̃−m1
1 ρ̃−m2

2 C∞ (
S∗

+Ω1 × S∗
+Ω2)

)
such that a =

(
R̃C1 × R̃C2

)∗
ã. We now

perform a formal Taylor expansion at ρ̃1 = 0 and write ã =
∑

j≤m1
ãj ρ̃

−j
1 , where

ãj are defined on ∂(S∗
+Ω1) × S∗

+Ω2 = (Ω1 × Sn1−1) × S∗
+Ω2. We then consider

the function
(
Id× R̃C2

)∗
ãj : (Ω1 × Sn1−1) × T ∗Ω2 → C, and we extend it to a

homogeneous function of degree j with respect to ξ1 ∈ Rn1 \{0}. Finally we define

σj
1(A)(x1, ξ1) :=

((
Id× R̃C2

)∗
ãj

)
(x1, ξ1; x2, Dx2) ∈ HLm2(Ω2),

(x1, ξ1) ∈ T ∗Ω1 \ 0. By reversing the role of the couples of variables (x1, ξ1) and
(x2, ξ2) we obtain the maps σk

2 (A)(x2, ξ2), (x2, ξ2) ∈ T ∗Ω2 \ 0. Finally the con-
struction of σj,k(A) is obtained similarly by taking a double Taylor expansion of
ã at ρ̃1 = ρ̃2 = 0.



Bisingular Operators 193

Remark 2.3. The following “compatibility relations” are satisfied:

σk
(
σj

1(A)(x,1 , ξ1)
)

(x2, ξ2) = σj
(
σk

2 (A)(x2, ξ2)
)
(x1, ξ1),

for every (x1, ξ1) ∈ T ∗Ω1 \ 0, (x2, ξ2) ∈ T ∗Ω1 \ 0. Here σj(A), for a classical
operator A ∈ HLm(Ω), m ∈ Z, denotes the homogeneous term of degree j in the
asymptotic expansion of its symbol.

In the usual way, these classes of pseudo-differential operators can be trans-
ferred on the product X1×X2 of two manifolds X1, X2 by means of local coordi-
nate charts. We denote by HLm1,m2(X1 ×X2) the space of the classical pseudo-
differential operators of order (m1, m2) on X1×X2. From now on X1 and X2 will
be compact manifolds, with dimX1 = n1, dim X2 = n2.
One also introduces the scale of Sobolev spaces

Hs1,s2(X1 ×X2) := Hs1(X1)⊗̂Hs2(X2).

We have Hs1,s2(X1×X2) ⊂ Hs′
1,s′

2(X1×X2) if s1 ≥ s′1, s2 ≥ s′2, and the inclusion
is compact if s1 > s′1, s2 > s′2. Moreover, any operator A ∈ HLm1,m2(X1 ×X2)
acts Hs1,s2(X1 ×X2)→ Hs1−m1,s2−m2(X1 ×X2) continuously.
As one expects, for A ∈ HLm1,m2(X2 ×X2) the principal symbols

σm1
1 (A) : T ∗X1 \ 0 −→ HLm2(X2),

σm2
2 (A) : T ∗X2 \ 0 −→ HLm1(X1),

σm1,m2(A) : (T ∗X1 \ 0)× (T ∗X2 \ 0) −→ C,

are invariantly defined as smooth functions, homogeneous respectively of degree
m1 in ξ1, m2 in ξ2, (j, k) in ξ1, ξ2 separately. Moreover they are multiplicative,
in the sense that σ

m1+m′
1

1 (AB) = σm1
1 (A)σm′

1
1 (B) if A ∈ HLm1,m2(X1 × X2),

B ∈ HLm′
1,m′

2(X1 ×X2), and so on.
So far, we considered operators acting on scalar-valued functions, but what

we said holds without any change for operators acting on sections of trivial bundles.
Instead, in dealing with general bundles, the definition of the principal symbols
would be more sophisticated (see [14]). Hence, for simplicity, we will limit ourselves
in the following to considering operators acting on scalar-valued functions.

Here is the notion of ellipticity for operators in HLm1,m2(X1 ×X2).

Definition 2.4. We say that an operator A ∈ HLm1,m2(X1 × X2) is elliptic if
σm1,m2(A)(v1, v2) �= 0 for every v1 ∈ T ∗X1 \ 0, v2 ∈ T ∗X2 \ 0, and if the opera-
tors σm1

1 (A)(v1) ∈ HLm2(X2) and σm2
2 (A)(v2) ∈ HLm1(X1) (which are therefore

elliptic) are invertible for every v1 ∈ T ∗X1 \ 0, v2 ∈ T ∗X2 \ 0, with inverses in
HL−m2(X2), HL−m1(X1) respectively.

As a consequence of the symbolic calculus developed in [14], we have a
parametrix and Fredholm properties for elliptic elements in HLm1,m2(X1 ×X2).

Theorem 2.5. Let A ∈ HLm1,m2(X1 ×X2) be elliptic. There exists

B ∈ HL−m1,−m2(X1 ×X2)
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such that {
AB = Id + K1

BA = Id + K2,

where Id is the identity on C∞(X1 ×X2), and K1 and K2 are compact operators
on Hs1,s2(X1×X2) for every s1, s2 ∈ R (more precisely, K1, K2 ∈ HL−1,−1(X1×
X2)). Then A as a map from Hs1,s2(X1 × X2) to Hs1−m1,s2−m2(X1 × X2) is a
Fredholm operator.

As usual, by means of a formal Neumann series one can construct a paramet-
rix B for which the operators K1, K2 in Theorem 2.5 are in HL−p,−p(X1 ×X2),
with p arbitrarily large.

It follows from Theorem 2.5 that for an elliptic operator in HLm1,m2(X1×X2)
we can therefore consider its index, namely the integer number

ind(A) := dim KerA− dimCokerA ∈ Z.

It turns out that it only depends on the homotopy class of the joint symbol
(σm1

1 , σm2
2 ) in the space of elliptic symbols. In the sequel we will give a formula for

the index of an elliptic operator in terms of residue type functionals we are going
to construct in the next section.

3. Residue traces

We begin with a sufficient condition for an operator in HLm1,m2(X1 ×X2) to be
a trace class operator on L2(X1 ×X2).

Proposition 3.1. Lat A ∈ HLm1,m2(X1 ×X2), with m1 < −n1, m2 < −n2. Then
A is trace class on L2(X1 ×X2) and

TrA =
∫

X1×X2

K|∆, (3.1)

where the density K|∆ is the restriction to the diagonal ∆ ⊂ (X1×X2)×(X1×X2)
of the kernel K of A.

Proof. The proof goes exactly as the classical one, see for example Shubin [17],
Proposition 27.2.

As an alternative one sees at once that, if m1 < −n1, m2 < −n2, any symbol
in Sm1,m2(Ω1 × Ω2) with compact support with respect to (x1, x2) is integrable,
together with all its derivatives. Hence, by means of a partition of unity, the first
part of the statement follows, e.g., from Robert [13], Thm. (II-53).
As regards formula (3.1), certainly it holds for operators in HL−∞,−∞(X1 ×X2)
and then extends by continuity to operators in HLm1,m2(X1×X2) for every m1 <
−n1, m2 < −n2 (whose kernels are continuous densities). �

We would like to extend the functional (3.1) further. Following an idea of
Melrose and Nistor [9] (applied there to the b-calculus) we will construct the desired
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extension by means of a suitably defined “double zeta-function” associated with
any operator A ∈ HLm1,m2(X1 ×X2) of integer order.

Precisely, let Q1 ∈ HL1(X1), Q2 ∈ HL1(X2) be classical, positive, elliptic
and invertible operators.

Theorem 3.2. Let A = A(z, τ), (z, τ) ∈ C2, be a holomorphic family of operators
in HLm1,m2(X1 ×X2). The double zeta-function

(z, τ) �→ Tr(A(z, τ)Q−z
1 ⊗Q−τ

2 )

is holomorphic for �z > m1 + n1, �τ > m2 + n2, and extends to a meromorphic
function with at most simple poles at z = n1 +m1− j, τ = m2 +n2−k, j, k ∈ Z+.

Proof. The theorem follows from the calculus in [14] and Seeley’s results on the
kernels of complex powers of pseudo-differential operators, see, e.g., Shubin [17],
Chapter II. �

Hence, for any given

A ∈ HLZ,Z(X1 ×X2) := ∪m1∈Z ∪m2∈Z HLm1,m2(X1 ×X2),

in a neighborhood of 0 ∈ C2 we can write

zτTr(AQ−z
1 ⊗Q−τ

2 ) = Tr1,2(A)+ τT̂r1(A)+ zT̂r2(A)+ τ2V + τzV ′ + z2V ′′, (3.2)

with V, V ′, V ′′ holomorphic, defining in this way the functionals Tr1,2(A), T̂r1(A),
and T̂r2(A).

For i = 1, 2, let ιRiω
ni

i be the contraction of the nith power of the symplectic
form ωi on T ∗Xi with the radial vector field Ri in the fibers.

Theorem 3.3. The functionals in (3.2) have the following explicit expressions:

Tr1,2(A) = (2π)−n1−n2

∫
S∗X1×S∗X2

σ−n1,−n2(A) ιR1ω
n1
1 ιR2ω

n2
2 , (3.3)

T̂r1(A) = (2π)−n1

∫
S∗X1

TrQ2 σ−n1
1 (A) ιR1ω

n1
1 , (3.4)

T̂r2(A) = (2π)−n2

∫
S∗X2

TrQ1 σ−n2
2 (A) ιR2ω

n2
2 , (3.5)

where the functional TrQ is defined in (1.7).

Proof. We denote by Q1,z(x1, y1), Q2,τ (x2, y2), A(x1, y1, x2, y2) the kernels of the
operators Q−z

1 , Q−τ
2 , A respectively. They are here regarded as distributions, after

trivializing the density bundles on X1 and X2 by Riemannian volume densities
dV1 and dV2.

We notify the reader that, to avoid weighting down this proof, the arguments
carried out below will be, in most cases, quite formal.
We have

Tr1,2(A) = lim
τ→0

(
τ lim

z→0
zTr(AQ−z

1 ⊗Q−τ
2 )

)
. (3.6)
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On the other hand,

Tr(AQ−z
1 ⊗Q−τ

2 ) =
∫

Kz(x2, y2)Q2,τ (y2, x2)dV2(x2)dV2(y2), (3.7)

with

Kz(x2, y2) :=
∫

A(x1, y1, x2, y2)Q1,z(y1, x1)dV1(x1)dV1(y1)

=
(2π)−n1

z

∫
S∗X1

σ−n1
1 (x1, ξ1; x2, y2)ιR1ω

n1
1 + F (z, x2, y2), (3.8)

where σ−n1
1 (x1, ξ1; x2, y2) denotes the kernel of the operator σ−n1

1 (x1, ξ1) and F is
holomorphic in a neighborhood of 0 ∈ C. The last equality follows from the classical
Wodzicki’s results [18, 19] (see also Fedosov, Golse, Leichtnam and Schrohe [4]).
Hence,

lim
z→0

zTr(AQ−z
1 ⊗Q−τ

2 ) =

= (2π)−n1

∫
S∗X1

σ−n1
1 (x1, ξ1; x2, y2)Q2,τ (y2, x2)ιR1ω

n1
1 dV2(x2)dV2(y2)

= (2π)−n1

∫
S∗X1

(Res σ−n1
1 (x1, ξ1)/τ + TrQ2σ

−n1
1 (x1, ξ1))ιR1ω

n1
1 + G(τ)

(3.9)

where G(τ) is holomorphic in a neighborhood of 0 ∈ C. By using (3.6) and (3.9)
we deduce

Tr1,2(A) = (2π)−n1

∫
S∗X1

Resσ−n1
1 (x1, ξ1)ιR1ω

n1
1 , (3.10)

namely (3.3).
The functional T̂r1(A) can be obtained as

T̂r1(A) = lim
τ→0

(
lim
z→0

zTr(AQ−z
1 ⊗Q−τ

2 )− Tr1,2(A)/τ
)
.

Therefore, applying (3.9) and (3.3) gives at once (3.4). Similarly one deduces
(3.5). �

In particular, we see that the functional Tr1,2 does not depend on the choice
of the operators Q1 and Q2.

Remark 3.4. The restrictions Tr1, Tr2 of T̂r1 and T̂r2 to the subalgebras

HLZ,−n2−1(X1 ×X2) := ∪m1∈ZHLm1,−n2−1(X1 ×X2)

and

HL−n1−1,Z(X1 ×X2) := ∪m2∈ZHL−n1−1,m2(X1 ×X2)
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respectively are given by

Tr1(A) = (2π)−n1

∫
S∗X1

Tr σ−n1
1 (A) ιR1ω

n1
1 , A ∈ HLZ,−n2−1(X1 ×X2), (3.11)

Tr2(A) = (2π)−n2

∫
S∗X2

Tr σ−n2
2 (A) ιR2ω

n2
2 , A ∈ HL−n1−1,Z(X1 ×X2). (3.12)

In particular, they do not depend on the choice of Q1 and Q2.

Theorem 3.5. The functionals Tr1,2, Tr1 and Tr2 define traces on the algebras
HLZ,Z(X1 ×X2),

HLZ,−∞(X1 ×X2) := ∪m1∈Z ∩m2∈Z HLm1,m2(X1 ×X2)

and
HL−∞,Z(X1 ×X2) := ∪m2∈Z ∩m1∈Z HLm1,m2(X1 ×X2)

respectively. Since they vanish on the ideal of smoothing operators, they also de-
scend to the quotient algebras.

Proof. The trace property for these functionals follows from their definition (3.2)
in terms of the usual trace of trace class operators together with Theorem 3.2 and
the analytic continuation principle (in fact the arguments in Lemma 6 of [9] can
be easily adapted to our situation). �

4. Index formula

We can now apply the residue functionals constructed in the previous section to
prove a homological index formula in the spirit of Melrose and Nistor [9], Lauter
and Moroianu [7, 8].

Let Q1 and Q2 be as in the previous section. We observe that there exist
well-defined exterior derivatives on the algebra HLZ,Z(X1 × X2) of operators of
integer order, given by

HLZ,Z(X1×X2)#A �→ [log(Q1⊗ Id),A] :=
d

dτ

(
(Qτ

1⊗ Id)A(Q−τ
1 ⊗ Id)−A

)∣∣∣
τ=0

(4.1)
and

HLZ,Z(X1×X2)#A �→ [log(Id⊗Q2),A] :=
d

dτ

(
(Id⊗Qτ

2)A(Id⊗Q−τ
2 )−A

)∣∣∣
τ=0

.

(4.2)

The derivatives with respect to τ in (4.1) and (4.2) are well defined as derivatives of
holomorphic families of fixed order. Indeed, we see that for A ∈ HLm1,m2(X1×X2),
m1, m2 ∈ Z, and every τ ∈ C it turns out

σm1
1

(
(Qτ

1 ⊗ Id)A(Q−τ
1 ⊗ Id)−A

)
(v1) = 0, ∀v1 ∈ T ∗X1 \ 0

and
σm2

2

(
(Id⊗Qτ

2)A(Id⊗Q−τ
2 )−A

)
(v2) = 0, ∀v2 ∈ T ∗X2 \ 0.
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Hence, for every τ the operators (Id⊗Qτ
2)A(Id⊗Q−τ

2 )−A and (Id⊗Qτ
2)A(Id⊗

Q−τ
2 )−A have order (m1 − 1, m2) and (m1, m2 − 1) respectively.

It also follows that

[log(Id⊗Q2), A] ∈ HLm1−1,m2(X1 ×X2)

and
[log(Id⊗Q2), A] ∈ HLm1,m2−1(X1 ×X2).

The starting point is then the following result.

Lemma 4.1. Let A ∈ HLm1,m2(X1 ×X2) be elliptic and let B ∈ HL−m1,−m2 be a
parametrix which inverts A up to trace class remainders. We have

ind(A) = Tr[A, B].

Proof. It is a consequence of a classical result of Functional Analysis, see, e.g.,
Hörmander [6], Proposition 19.1.14. �

Theorem 4.2. Let A ∈ HLm1,m2(X1 ×X2) be elliptic and let B ∈ HL−m1,−m2 be
a parametrix which inverts A up to trace class remainders. Then we have

ind(A) = T̂r1
(
A[log(Q1 ⊗ Id), B]

)
+ T̂r2

(
[log(Id⊗Q2), B]A

)
. (4.3)

Proof. We have

ind(A) = Tr[A, B] = Tr((AB −BA)Q−z
1 ⊗Q−τ

2 )|z=0,τ=0

= Tr(A(B − (Q−z
1 ⊗ Id)B(Qz

1 ⊗ Id))Q−z
1 ⊗Q−τ

2

+ ((Id⊗Qτ
2)B(Id⊗Q−τ

2 )−B)AQ−z
1 ⊗Q−τ

2 )|z=0,τ=0

= Tr(A(z[log(Q1 ⊗ Id), B] + z2F (z))Q−z
1 ⊗Q−τ

2

+ (τ [log(Id⊗Q2), B] + τ2G(τ))AQ−z
1 ⊗Q−τ

2 )|z=0,τ=0 (4.4)

where F and G are holomorphic families, of fixed order. We should make clear
that we are computing the value at z = 0, τ = 0 of the meromorphic extension
of the above trace (the equalities above are valid in the domain of holomorphy).
The index formula (4.3) then follows from the definition of the functionals T̂r1
and T̂r2. �

5. An example

Lat us return to the double Cauchy integral operator A in (1.3). First, we re-write
A in a new form, suited for the computation of the index. Define, for r = 1, 2 the
Plemelj’s projections:

P r
z1

f(z1, z2) = 1
2f(z1, z2) + (−1)r+1

2πi

∫
S1

f(ζ1,z2)
ζ1−z1

dζ1,

P r
z2

f(z1, z2) = 1
2f(z1, z2) + (−1)r+1

2πi

∫
S1

f(z1,ζ2)
ζ2−z2

dζ2.
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Under the invertibility assumption for σ0
1 , σ0

2 in (1.4), (1.5), we have

A = A0(Id + K11P
1
z1

)(Id + K12P
2
z1

)(Id + K21P
1
z2

)(Id + K22P
2
z2

) + K, (5.1)

where

A0 =
2∑

s,t=1

ust(z1, z2)P s
z1

P t
z2

(5.2)

and for j = 1, 2

K1jf(z1, z2) =
∫

S1 k1j(z1, z2, ζ2)f(z1, ζ2) dζ2, (5.3)

K2jf(z1, z2) =
∫

S1 k2j(z1, z2, ζ1)f(ζ1, z2) dζ1. (5.4)

The operator K is regularizing on S1 × S1. All the functions ust, k1j , k2j are
C∞, and can be computed in terms of a0, a1, a2, a12 in (1.3), see [12] and [15],
Remark 9.2. We have also from [12],[15] that all the factors in the right-hand side
of (5.1) are elliptic in HL0,0(S1×S1), hence Fredholm. Therefore the computation
of ind(A) is reduced to the computation of the index of each factor.
Concerning ind(A0) we address the reader to Proposition 8.4 in [15]; in short, the
ellipticity of A0 implies ust(z1, z2) �= 0 and we may define the homotopy numbers

o
(h)
st = (2π)−1[arg ust(z1, z2)]S1

zh
, s, t, h = 1, 2.

We have o
(1)
21 = o

(1)
11 , o

(1)
22 = o

(1)
12 , o

(2)
12 = o

(2)
11 , o

(2)
22 = o

(2)
21 , as it follows again from

the ellipticity assumption, and

ind(A0) =
(
o
(1)
11 − o

(1)
22

)(
o
(2)
12 − o

(2)
21

)
.

Concerning the index of the other factors, a sketch of the computation was given
in [12]. We shall use our formula (4.3) for obtain a more explicit result. We limit
attention to

A = Id + K11P
1
z1
∈ HL0,−∞(S1 × S1),

the arguments for the other 3 factors being similar. To connect with the preceding
sections, we use the local coordinate θ1, z1 = eiθ1 , and write ξ1 for the correspond-
ing dual variable. We have

σ0
1(A)(θ1, ξ1) =

{
Id + a(θ1), ξ1 > 0
0, ξ1 < 0,

where

a(θ1)g(z2) =
∫

S1
k11(eiθ1 , z2, ζ2)g(ζ2) dζ2

with k11(z1, z2, ζ2) as in (5.3).
We therefore have a(θ1) ∈ HL−∞(S1), with Id+a(θ1) invertible for every θ1 ∈ S1,
in view of the ellipticity of A. Moreover σ0

2(A) = Id. If B ∈ HL0,0(S1 × S1) is a
parametrix, we have σ0

1(B) = σ0
1(A)−1 and σ0

2(B) = Id, see Section 2.
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Let Q1 ∈ HL1(S1) be a classical, positive and invertible operator, with principal
symbol given by |ξ1|, and similarly for Q2. Then

σ−1
1 ([log(Q1 ⊗ Id), B])(θ1, ξ1)

=

{
1

iξ1

d(Id+a(θ1))
−1

dθ1
, ξ1 > 0

0, ξ1 < 0

=

{
− 1

iξ1
(Id + a(θ1))−1 da(θ1)

dθ1
(Id + a(θ1))−1, ξ1 > 0

0, ξ1 < 0
. (5.5)

Moreover, we have

σ−1
1 (A[log(Q1 ⊗ Id), B]) = σ0

1(A)σ−1
1 ([log(Q1 ⊗ Id), B]). (5.6)

On the other hand it turns out

σ−1
2 ([log(Id⊗Q2), B]A) = σ−1

2 ([log(Id⊗Q2), B])︸ ︷︷ ︸
=0

σ0
2(A)︸ ︷︷ ︸
=Id

= 0. (5.7)

It follows from (5.7) and (3.11) that

ind(A) = T̂r1
(
A[log(Q1 ⊗ Id), B]

)
= (2π)−1

∫
S∗S1

Tr σ−1
1

(
A[log(Q1 ⊗ Id), B]

)
(θ1, ξ1) ιξ1

∂
∂ξ1

dξ1 ∧ dθ1.

By virtue of (5.6) and (5.5) we obtain

ind(A) = − 1
2πi

∫ 2π

0

Tr
da(θ1)
dθ1

(Id + a(θ1))−1dθ1 = − 1
2πi

∫
S1

Tr
da

dz1
(Id + a)−1dz1.

(5.8)
To give an example of non-trivial index, fix J > 0 and consider

Af(z1, z2) = f(z1, z2) +
1

2πi

∫
S1

(
z−J
1 − 1

)
ζ−1
2 P 1

z1
f(z1, ζ2) dζ2,

so that

a g(z2) =
1

2πi

∫
S1

(
z−J
1 − 1

)
ζ−1
2 g(ζ2) dζ2.

The preceding formula gives then ind(A) = J . The reader will check directly that
KerA is spanned by the linearly independent functions f(z1, z2) = zj

1 − zj−J
1 ,

j = 1, . . . , J , and dim CokerA = 0.

Remark 5.1. After completing the present paper, R. Melrose called our attention
on R. Melrose, F. Rochon [10], where an index theorem in K-theory is given in
the context of the algebras of pseudo-differential operators of fibred-cusp type,
generalizing the K-theory of Atiyah and Singer in the boundaryless case. The
results there intersect our results, with some difference of language. In particular, in
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Appendix A of [10] the authors consider operators which locally, for x = (x1, x2) ∈
Ω = Ω1 × Ω2, ξ = (ξ1, ξ2) ∈ Rn1+n2 , satisfy the estimates

|∂α1
ξ1

∂α2
ξ2

∂β1
x1

∂β2
x2

a(x1, x2, ξ1, ξ2)| ≤ Cα1,α2,β1,β2,K1,K2〈ξ1〉m1−|α1|〈ξ〉m2−|α2|. (5.9)

This differs from our (2.1) because of the last term in the right-hand side, in
correspondence to the ξ2 variables, involving all the dual variables. By some work,
it seems possible to connect our operator A from (2.1) with operators from (5.9),
key point being to split A into terms with classical symbols, symbols of type (5.9)
and similar, by interchanging the role of ξ1 and ξ2. We shall not develop further
this in the present paper.

We can be more precise, however, in the case when m1 = −∞, i.e., estimates
are satisfied for any m1; then (2.1) and (5.9) coincide. For such operators we may
therefore appeal directly to the results of [10] in terms of K-theory, and this gives
as a particular case our winding-number formula (5.8).
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[14] L. Rodino, A class of pseudo-differential operators on the product of two manifolds
and applications, Ann. Scuola Norm. Sup. Pisa, ser. IV, 2 (1975), 287–302.



202 F. Nicola and L. Rodino

[15] L. Rodino, Polysingular integral operators, Ann. Mat. Pura Appl., 124 (1980), 59–
106.

[16] B.-W. Schulze, Boundary value problems and singular pseudo-differential operators,
J. Wiley, Chichester, 1998.

[17] M.A. Shubin, Pseudo-differential operators and spectral theory, Springer-Verlag,
Berlin, 1987.

[18] M. Wodzicki, Spectral Asymmetry and Noncommutative Residue, Thesis, Stekhlov
Institute of Mathematics, Moscow, 1984.

[19] M. Wodzicki, Local invariants and spectral asymmetry, Invent. Math., 75 (1984),
143–178.

Fabio Nicola
Dipartimento di Matematica
Politecnico di Torino,
Corso Duca degli Abruzzi, 24
I-10129 Torino, Italy
e-mail: fabio.nicola@polito.it

Luigi Rodino
Dipartimento di Matematica
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c© 2006 Birkhäuser Verlag Basel/Switzerland

On the Hopf-type Cyclic Cohomology
with Coefficients

I.M. Nikonov and G.I. Sharygin

Abstract. In this note we discuss the Hopf-type cyclic cohomology with coef-
ficients, introduced in the paper [1]: we calculate it in a couple of interesting
examples and propose a general construction of coupling between algebraic
and coalgebraic version of such cohomology, taking values in the usual cyclic
cohomology of an algebra.
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1. Motivations and definitions

The notion of the Hopf-type cyclic cohomology was first introduced in the papers
[4, 5] where it was motivated by the purposes of the index theory. It turned out
that the constructed cohomology is related in an intrinsic way to much of the struc-
ture of a Hopf algebra H, multiplication, comultiplication and antipode. Another
peculiarity of this construction is that it deals with some additional data, modular
pair in involution (δ, σ) (see below), and therefore this cohomology was denoted
as HC∗

(δ, σ)(H). It turned out that for any algebra A over H and an “equivariant
trace” t on A there exists a homomorphism t∗ from HC∗

(δ, σ)(H) to the usual cyclic
cohomology of A.

This construction was many times generalized later. So in [6] there was given
a construction of a kind of dual theory, i.e., of Hopf-type cyclic homology of a Hopf
algebra. In [3] a construction extending the homomorphisms t∗ to higher traces
was proposed and in the series of papers [7, 8, 9] a number of generalizations of
the original constructions to a wider class of objects was given.
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1988.2003.1
The second author was partly supported by the grant RFFI 04-01-00702.



204 I.M. Nikonov and G.I. Sharygin

The most general of the existing constructions of the Hopf-type (co)homology
(we assume that the Hopf algebra H has invertible antipode S) was given in the
paper [1]. This construction uses as the coefficients the stable anti-Yetter-Drinfeld
modules/comodules overH. Recall that a right-leftH-module and comodule (right
module and left comodule) M is called anti-Yetter-Drinfeld if

(mh)(−1) ⊗ (mh)(0) = S(h(3))m(−1)h(1) ⊗m(0)h(2), (1)

for all h ∈ H, m ∈ M, and it is stable if (for all m ∈M)

m(0)m(−1) = m. (2)

There are similar definitions for the modules with left action and left coaction, left
action and right coaction and right action and coaction. We shall often abbreviate
the title “stable anti-Yetter-Drinfeld” to SAYD. For instance, let σ be a group-like
element in H and δ : H → C a character. With these data one can in an evident
way define a (right-left) module comodule C(δ, σ). It turns out that C(δ, σ) is SAYD
iff (δ, σ) is a modular pair in involution (one can take this for the definition of the
latter).

Given a SAYD M over H, one can define for arbitrary H-module algebra A
or a H-module coalgebra C their Hopf-type cohomology with coefficients in M,
HC∗

H(A, M) and HC∗
H(C, M).

Let us first give the definition for the case of coalgebras. Suppose we are given
a SAYD moduleM and a coalgebra C, with a left H-action H⊗C → C, correlating
with the coalgebraic structure on C, i.e., (hc)(1) ⊗ (hc)(2) = h(1)c(1) ⊗ h(2)c(2) for
all h ∈ H, c ∈ C. We assume that M is a right H-module and left comodule, but
similar constructions exist for all other sorts of SAYD modules.

Now, HC∗
H(C, M) is defined by the following construction. First one consid-

ers paracocyclic module C∗(C, M):

Cn(C, M) =M⊗ C⊗n+1, (3)

and the cyclic operations are defined by the formulas

δi(m⊗ c0 ⊗ · · · ⊗ cn) =

{
m⊗ c0 ⊗ · · · ⊗ c

(1)
i ⊗ c

(2)
i ⊗ · · · ⊗ cn, 0 ≤ i ≤ n,

m(0) ⊗ c
(1)
0 ⊗ c1 ⊗ · · · ⊗ cn ⊗m(−1)c

(2)
0 , i = n + 1,

(4)

σi(m⊗c0 ⊗ · · · ⊗ cn) = m⊗ c0 ⊗ · · · ⊗ ε(ci)⊗ · · · ⊗ cn, (5)

τn(m⊗c0 ⊗ · · · ⊗ cn) = m(0) ⊗ c1 ⊗ · · · ⊗ cn ⊗m(−1)c0. (6)

Recall that “para(co)cyclic” means that all the usual (co)cyclic relations are sat-
isfied, probably except for τn+1

n = 1. C being a H-module, one can extend the
action of the Hopf algebra to the tensor power of C diagonally and consider the
factor-module C∗

H(C, M), Cn
H(C,M) = M⊗H (C⊗n+1). Now it is easy to show,

that C∗
H(C, M) is preserved by the action of the (para)cyclic operations introduced
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above iff M is anti-Yetter-Drinfeld. And if M is also stable then C∗
H(C, M) with

the operations restricted on it from C∗(C, M) is cyclic.
By definition Hopf-type cyclic (respectively, periodic) (co)homology of C with

coefficients in M, denoted HC∗
H(C, M) (resp. HP ∗

H(C, M)) is the cyclic (resp.
periodic) (co)homology of the cocyclic module C∗

H(C, M). This means that one
introduces the mixed complex with differentials b and B associated in a usual way
with the (co)cyclic module C∗

H(C, M) (see, e.g., [10]) and takes the cohomology
of the corresponding total complex (resp., periodic super-complex).

Somewhat dually one can define for arbitrary H-module algebra A (i.e an
algebra on which H acts in such a way that h(ab) = h(1)(a)h(2)(b)), first, a para-
cocyclic module C∗(A, M), Cn(A, M) = Hom(M⊗A⊗n+1, C). The cyclic op-
erations on C∗(A, M) are defined by the formulas

(δif)(m⊗ a0 ⊗ · · · ⊗ an) = f(m⊗ a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an), 0 ≤ i < n, (7)

(δnf)(m⊗ a0 ⊗ · · · ⊗ an) = f(m(0) ⊗ (S−1(m(−1))an)a0 ⊗ · · · ⊗ an−1), (8)

(σif)(m⊗ a0 ⊗ · · · ⊗ an) = f(m⊗ a0 ⊗ · · · ⊗ ai ⊗ 1⊗ · · · ⊗ an), 0 ≤ i ≤ n, (9)

(τnf)(m⊗ a0 ⊗ · · · ⊗ an) = f(m⊗ S−1(m(−1))an ⊗ a0 ⊗ · · · ⊗ an−1). (10)

Now one can assume that H acts on C via the counit. It also acts on the tensor
product of A and M diagonally. This allows one to define the module C∗

H(A, M)
by the formula Cn

H(A, M) = HomH(M ⊗A⊗n+1, C). Once again, it is possible to
show that the operations (7)–(10) can be restricted to Cn

H(A, M) iff the module
M is anti-Yetter-Drinfeld and that Cn

H(A, M) equipped with these operations is
cyclic if M is stable. As before, one defines the cyclic (resp. periodic) cohomol-
ogy of A, HC∗

H(A, M) (HP ∗
H(A, M)) as the cyclic (periodic) cohomology of the

corresponding mixed complex.

2. Examples

Let us take in the construction above C = H. In this case one can write down
the cocyclic module C∗

H(C, M) = C∗
H(H, M) in an explicit way. To this end one

considers the following isomorphism:

Cn
H(H, M) =M⊗HH⊗n+1

Φ∼=M⊗H⊗n, (11)

m⊗H (h0 ⊗ · · · ⊗ hn) Φ�→ mh
(1)
0 ⊗ S(h(2)

0 )(h1 ⊗ · · · ⊗ hn). (12)

In this formula we assume that H acts “diagonally” on its own tensor powers. The
inverse of Φ is given by the equation

m⊗ g1 ⊗ · · · ⊗ gn
Φ−1

�→ m⊗H (1⊗ g1 ⊗ · · · ⊗ gn). (13)
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One checks that under this identification the cocyclic maps on M⊗H (H⊗n+1)
take the following form on M⊗H⊗n:

δi(m⊗ h1 ⊗ · · · ⊗ hn) =

⎧⎪⎨⎪⎩
m⊗ 1⊗ h1 ⊗ · · · ⊗ hn, i = 0,

m⊗ h1 ⊗ · · · ⊗ h
(1)
i ⊗ h

(2)
i ⊗ · · · ⊗ hn, 1 ≤ i ≤ n,

m(0) ⊗ h1 ⊗ · · · ⊗ hn ⊗m(−1), i = n + 1,

(14)

σi(m⊗ h1 ⊗ . . .⊗ hn) = m⊗ h1 ⊗ · · · ⊗ ε(hi+1)⊗ · · · ⊗ hn, 0 ≤ i ≤ n− 1,
(15)

τn(m⊗ h1 ⊗ . . .⊗ hn) = m(0)h
(1)
1 ⊗ S(h(2)

1 )(h2 ⊗ · · · ⊗ hn ⊗m(−1)). (16)

The following statement is a complete analogue of the Lemma 5.1 from [3]:

Lemma 1. Take C = H in the definition of HC∗
H(C,M). Then for an arbi-

trary SAYD M the Hopf-type Hochschild cohomology HH∗
H(H, M) (defined as

the cohomology of the underlying cocyclic module with respect to the differen-
tial b =

∑
(−1)iδi) is equal to the cotorsion groups of the left H-comodule M,

Cotor∗H(C, M).

Proof. As in the cited paper, the proof is obtained by mere inspection of defi-
nitions. Actually, from the formulas (14) it follows that the Hochschild complex
in the considered case is isomorphic to the cobar-resolution F (M, H, C) of H-
comodule M. �

Let now the Hopf algebraH be commutative. In this case every left comodule
M over H can be given the structure of (right-left) SAYD module over the same
Hopf algebra simply by putting m · h = ε(h)m (where ε is the counit of H).
Indeed the stability is evident, and we check the anti-Yetter-Drinfeld property:
(m · h)(−1)⊗ (m · h)(0) = ε(h)(m(−1) ⊗m(0)), and S(h(3))m(−1)h(1) ⊗m(0) · h(2) =
m(−1)h(1)S(h(3))⊗ ε(h(2))m(0) = m(−1)h(1)S(h(2))⊗m(0) = ε(h)m(−1) ⊗m(0).

Similarly, if H is cocommutative then every (right) H-module M can in
a natural way be regarded as a SAYD module with the left coaction, given by
m �→ 1 ⊗ m: S(h(1)) 1 h(3) ⊗ mh(2) = S(h(1))h(2) ⊗ mh(3) = 1 ⊗ mε(h(1))h(2) =
1 ⊗ mh. Observe that in this case the Hopf-type Hochschild cohomology of H
with coefficients in M is related with the H-cotorsion of C (where C is given the
structure of H-comodule in a trivial way):

HH∗
H(H, M) = Cotor∗H(C, M) = Cotor∗H(C, C⊗M) = Cotor∗H(C, C)⊗M.

(17)
Let us give few examples.

Example. Let H be equal to C[Γ] the group algebra of a discrete group Γ. Then
H is cocommutative and we can apply the observation from the paragraph above.
The C[Γ]-modules are the same as representations of the group Γ and we have for
a representation V : HH0

C[Γ](C[Γ], V ) = Cotor0
C[Γ](C, C)⊗ V = V , and is equal to
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0 if n �= 0. Now from the Connes’ exact sequence it follows that

HC2n
C[Γ](C[Γ], V ) = V and HC2n+1

C[Γ] (C[Γ], V ) = 0

and similarly, for the periodic cohomology

HP 0
C[Γ](C[Γ], V ) = V and HP 1

C[Γ](C[Γ], V ) = 0.

Example. Let now C = H be equal to the universal enveloping algebra U(g) of a
Lie algebra g. As in the previous example, this Hopf algebra is cocommutative and
we can use the the observation, preceding the Example 1. As one knows, the U(g)-
modules are in 1-1 correspondence with the representations of the Lie algebra g.

Proposition 2. For any representation V of the Lie algebra g:

HP ∗
U(g)(U(g), V ) =

⊕
i≡∗mod2

Hi(g, V )

where on the right stands the Lie algebra homology of g with coefficients in V .

Proof. The proof is obtained by a slight modification of the reasoning in [3]. First,
we observe that HH∗

U(g)(U(g), V ) = V ⊗ Λ∗(g) and the isomorphism is given by
the formula θ : V ⊗ Λ∗g→ V ⊗ U(g)⊗n:

θ(v ⊗X1 ∧X2 ∧ · · · ∧Xn) =
∑

σ∈Σn

(−1)ε(σ)v ⊗Xσ(1) ⊗Xσ(2) ⊗ · · · ⊗Xσ(n). (18)

In this formula we regard g as a subspace in U(g). Due to the equation (17), the
general case follows from the case of trivial module C over g. And this is proven
in [3].

Now the proof of the proposition follows from the fact that θ intertwines the
B differential in the mixed complex, constructed from C∗

U(g)(U(g), V ) with the
Chevalley differential in the Lie algebra complex V ⊗ Λ∗(g). �
Example. Hopf-cyclic cohomology for Hopf fibration. Let H = O(SU(2)) and
M = O(S2) be algebras of polynomial functions on algebraical varieties SU(2)
and S2. The group product in SU(2) defines a Hopf algebra structure on H and
the action of SU(2) on the sphere S2 = SU(2)/U(1) induces a left coaction of
Hopf algebra H on M. On the other hand, there is an embedding of S2 into
SU(2) whose image is the subspace of traceless unitary matrices. It defines a
homomorphism π : H → M and turns M into a right H-module. One can check
easily that the module M with the action and coaction of H given above is an
SAYD-module. Since H itself is a H-module coalgebra, one can consider the cyclic
cohomology of this coalgebra with coefficients in the module M. The calculation
of the cohomology groups HC∗

H(H, M) will be our main goal now.
Firstly, take the Hopf algebra H as the coefficient module with (coleft-right)

SAYD-module structure given by the following formulas:

m · h = mh for each m ∈ H, h ∈ H
∆H(m) = S(m(3))m(1) ⊗m(2) for each m ∈ H.
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In this case for any H-module coalgebra C the cyclic module Cn(C, H) coincides
with the usual cyclic module for coalgebra C due to the natural isomorphism
H⊗H C⊗n = C⊗n, which is easily seen to commute with the cyclic structures. So
we have the following proposition.

Proposition 3. For any H-module coalgebra C one has HC∗
H(C,H) = HC∗(C).

Hence, in the case C = H = O(SU(2)) the equality HC∗
H(H,H) =

HC∗(O(SU(2))) is true. In order to calculate the latter cohomology group we
note that by Peter-Weil Theorem the coalgebra O(SU(2)) splits into a direct sum
of matrix coalgebras and each of them is linearly generated by matrix elements of
some irreducible representation of the group SU(2). Since the cyclic cohomology
is Morita-invariant and commutes with direct sums, one has

HCn(H) = R(SU(2))⊗Z C, n even,

HCn(H) = 0, n odd,

where R(SU(2)) is the representation ring of the group SU(2). As it is widely
known, R(SU(2)) is a free commutative group and has basis τn, n ≥ 0, that consists
of the irreducible representations. The representation τn has dimension n + 1.

Consider now the coefficient module M = O(S2). Due to homomorphism
theorem one has the equality M = H/kerπ where kerπ = x0H and x0 ∈ H is the
trace function on SU(2). Then

C∗
H(H, M) = C∗

H(H,H)/C∗
H(H, x0H) = C∗(H)/x0C

∗(H),

where the multiplication of x0 in Cn(H) = H⊗n is constructed by means of the di-
agonal. Note that this multiplication is compatible with the cyclic module structure
on C∗(H) and that the element x0 is not zero divisor inH. Hence, HC∗

H(H, x0H) =
HC∗

H(H,H) and we have the following cohomology exact sequence:

· · · → HCn(H)
x∗
0−→ HCn(H)→ HCn

H(H, M)→ . . . .

The isomorphism HC2k(H) = R(SU(2)) ⊗ C turns the element x0 into τ1 and
the tensor product of representations is given by the formula:

τ1 · τn = τn+1 + τn−1.

Thus, the map x∗
0 is injective and

HCn
H(H, M) = C, n even,

HCn
H(H, M) = 0, n odd.

3. The construction of higher pairing

In this section we give a very brief outline of the construction, giving the analog
of pairing between the higher equivariant traces on H and the Hopf-type coho-
mology proposed in [3] and generalizing the pairing of the zero-order (Hopf-type)
cohomology of a H-module algebra with the cohomology of a H-module coalgebra
of the paper [1]. We don’t give proofs here and don’t address the natural ques-
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tion, whether the pairing that we introduce coincides with that, constructed in the
paper [11]. These questions we postpone for a paper to follow ([14]).

We begin with recalling the construction of the non-commutative Weil algebra
associated with a coalgebra C. This algebra was first introduced (for C being a
Hopf algebra) in [3] (and independently by the second author in [13]). It is the free
(non-commutative) graded unital algebra W (C) generated by degree-1 elements
ih, h ∈ C, and degree-2 elements wh, h ∈ C (both symbols are linear in h). The
differential ∂ = ∂0 + d in W (C) is given by formulae

dih = wh, ∂0ih = −ih(1)ih(2) , (19)

dwh = 0, ∂0wh = wh(1) ih(2) − ih(1)wh(2) . (20)

One easily proves that W (C) is acyclic. Moreover, even the “commuted” complex
associated to this algebra W (C)� = W (C)/[W (C), W (C)] is acyclic. In addition, this
algebra has the following universal property: for any differential graded algebra Ω
and any linear map ρ : C → Ω1, there exists a unique homomorphism of differential
graded algebras ρ̃ : W (C) → Ω, such that the restriction of ρ̃ to the degree 1 part
of W (C) is given by ρ̃(ih) = ρ(h).

There is a natural ideal I(C) inside W (C), namely the ideal, generated by
the elements wh. One denotes by Wn(C) the factor-algebra W (C)/In+1(C) and
by Wn(C)� the “commuted” complex, associated to it. The cohomology of Wn(C)�

were first computed by Quillen in [12]. In [3] there were calculated the cohomology
of the coinvariant space of Wn(H)� (for a Hopf algebra H) with respect to the
diagonal action of H and a character δ of H. It turned out that (see [3], Theorem
7.3) this cohomology coincides (up to a change of dimensions) with the Connes-
Moscovici cohomology HC∗

(δ, 1)(H) (if (δ, 1) is a modular pair in involution). The
following construction is a direct generalization of this result.

Let M be a (right-left) SAYD over a Hopf algebra H and C – a H-module
coalgebra. Consider the complex Wn(C, M) =M⊗HWn(C). Now one can consider
the following operators on Wn(C, M), analogous to those defined by Crainic in [3,
Section 8]:

∂M
0 = 1⊗ ∂0, dM = 1⊗ d, ∂M = ∂M

0 + dM,

tM(m⊗ ax) = (−1)|a||x|(m(0) ⊗ x(m(−1) · a),

bMt (m⊗ ax) = tM(m⊗ ∂0(a)x),

ϕM
1 (m⊗ icx) = 0, ϕM

1 (m⊗ wcx) =
1

n(x) + 1
tM(m⊗ wcx),

ϕM
0 (m⊗ x) =

1
n(x)

|x|∑
i=1

λi(x)(tM)i(m⊗ x),

where m ∈M, a = ic or wc, c ∈ C, x ∈ Wn(C) and for x = a1 . . . ap

λi(x) = #{j ≤ i | aj is of type wc}, n(x) = λp(x).

These operators satisfy the relation of [3, Lemma 8.2].
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One makes Wn(C, M) a W (C)-bimodule by the following rule: the right mul-
tiplication by elements of W (C) is given by the action of W (C) on the second
tensor, and the left action is defined by the formula

α · (m⊗ β) = m(0) ⊗m(−1)(α)β, (21)

where α ∈ W (C), β ∈ Wn(C) and H acts on W (C) and Wn(C) diagonally. This
formula is well-defined because M is a SAYD-module. Denote by Wn(C, M)�

the factor complex Wn(C, M)/[W (C), Wn(C, M)] and by HC∗
H(C, M; n) its co-

homology. One can prove the following theorem, analogous to the Theorem 7.3
in [3]:

Theorem 4.

HC∗
H(C, M; n) = HC∗−2n

H (C, M). (22)

The proof literally coincides with the reasoning in [3, Section 8] after sub-
stituting Wn(C,M) instead of Wn(C) and operators ∂M

0 , dM, . . . defined above
instead of Crainic’s operators ∂0, d, . . . .

Let now A be a C-module algebra (i.e., C acts on A so that for all a, b ∈
A, c ∈ C, c(ab) = c(1)(a)c(2)(b)). Let H act on A so that this action respects the
action of C (i.e., for all h ∈ H, c ∈ C, a ∈ A, h(c(a)) = (h(c))(a)). In this case it is
possible to consider both HC∗

H(C, M) and HC∗
H(A, M). We are going to define

the pairing
HC∗

H(C, M)⊗HC∗
H(A, M)→ HC∗(A),

where on the right-hand side stands the usual cyclic cohomology of the algebra A.
To this end we shall need a suitable description of cycles in C∗

H(A, M). So
we introduce the notion of higher H-equivariantM-twisted traces on A (M-traces
for short). Let

0→ I → R→ A → 0 (23)

be an exact sequence of H-algebras over the coalgebra C, splitting as C- and H-
module sequence. To define the even M-traces one shall consider the R-module
M⊗H (R/In+1) where the right action of R is defined in an evident way and
the left action – by a formula similar to (21) (this is well defined because M is
a SAYD-module). By definition degree 2n M-traces on A are the functionals on
M⊗H (R/In+1) for some choice of the extension (23) vanishing on the subspace
generated by the commutators [M ⊗H (R/In), R]. We shall denote the space
M⊗H (R/In+1)/[M⊗H (R/In+1), R] by Rn,M,�.

Similarly, the degree 2n− 1 M-traces on A are the linear functionals on the
M⊗H In vanishing on the subspace [M⊗H In, I ].

The following proposition is similar to the description of cyclic cocycles given
in [2].

Proposition 5. There is an epimorphism from the space of higher M-traces of
degree k on the space of cocycles in C∗

H(A, M). The cohomology classes deter-
mined by two cocycles are cohomologous iff the corresponding traces are homotopic
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(here the notion of homotopy is defined by mimicking the corresponding definition
in [15]).

Now we can define the pairing. We shall do it only for the evenM-traces (odd
traces are treated similarly). Let τ : M⊗H (R/In+1) → C be such a trace and
[τ ] the cohomology class that it defines. First, we choose a C-linear H-equivariant
splitting ρ : A → R in the exact sequence (23). This splitting can be regarded as
a map ρ̄ : C → Hom(B(A), R) where B(A) is the bar-resolution of A. The space
Hom(B(A), R) can be given a structure of the differential graded algebra (differ-
ential and grading are induced from B(A) and the algebra structure is determined
by the fact that bar-resolution of any algebra always bears the structure of graded
colagebra). By the universal property of W (C) this map can be extended to the
map ˜̄ρ : W (C)→ Hom(B(A), R). Tensoring this map with M, one obtains a map

˜̄ρM :M⊗H W (C)→ Hom(B(A), M⊗H R).

One easily checks that the n+1 power of I(C) is mapped by ˜̄ρM to Hom(B(A),
M ⊗H In+1). Let B(A)� denote the cocenter of coalgebra B(A) (i.e., the
space of elements in coalgebra, on which the comultiplication is commutative).
Then it is easy to see that the commutators [W (C), Wn(C, M)] are mapped to
Hom(B(A)�, [M⊗H (R/In+1), R]). Thus, we obtain a well-defined map of chain
complexes from Wn(C, M)� to Hom(B(A)�, Rn,M,�) which we denote by ρ�,M.
Let ω be a degree m cycle in Wn(C, M)�, [ω] – the cohomology class that it de-
fines. We should associate to ω and τ a degree m cyclic cocycle ω · τ of the algebra
A. By definition we put

(ω · ρ)(a0, . . . , am−1) =
m−1∑
i=0

(−1)iτ(ρ�,M(ω)(ai, . . . , am−1, a0, . . . , ai−1)). (24)

Proposition 6. The formula (24) determines a well-defined map HC∗
H(C, M) ⊗

HC∗
H(A, M)→ HC∗(A) (i.e., it does not depend on the choice of the splitting ρ,

on the choice of τ in the homotopy equivalence class and on the choice of ω in the
class [ω]).

The proof has no difference with the proof of [3, Theorem 7.5].
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The Thom Isomorphism in
Gauge-equivariant K-theory

Victor Nistor and Evgenij Troitsky

Abstract. In a previous paper [14], we have introduced the gauge-equivariant
K-theory group K0

G(X) of a bundle πX : X → B endowed with a continu-
ous action of a bundle of compact Lie groups p : G → B. These groups are
the natural range for the analytic index of a family of gauge-invariant ellip-
tic operators (i.e., a family of elliptic operators invariant with respect to the
action of a bundle of compact groups). In this paper, we continue our study
of gauge-equivariant K-theory. In particular, we introduce and study prod-
ucts, which helps us establish the Thom isomorphism in gauge-equivariant
K-theory. Then we construct push-forward maps and define the topological
index of a gauge-invariant family.
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1. Introduction

In this paper we establish a Thom isomorphism theorem for gauge equivariant
K-theory. Let p : G → B be a bundle of compact groups. Recall that this means
that each fiber Gb := p−1(b) is a compact group and that, locally, G is of the form
U ×G, where U ⊂ B open and G a fixed compact group. Let X and B be locally
compact spaces and πX : X → B be a continuous map. In the present paper, as
in [14], this map will be supposed to be a locally trivial bundle. A part of present
results can be extended to the case of a general map. This, as well as the proof of
a general index theorem, will be the subject of [15].
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Assume that G acts on X . This action will be always fiber-preserving. Then
we can associate to the action of G on X G-equivariant K-theory groups Ki

G(X)
as in [14]. We shall review and slightly generalize this definition in Section 2.

For X compact, the group K0
G(X) is defined as the Grothendieck group of

G-equivariant vector bundles on X . If X is not compact, we define the groups
K0

G(X) using fiberwise one-point compactifications. We shall call these groups
simply gauge-equivariant K-theory groups of X when we do not want to specify G.
The reason for introducing the gauge-equivariant K-theory groups is that they are
the natural range for the index of a gauge-invariant families of elliptic operators.
In turn, the motivation for studying gauge-invariant families and their index is
due to their connection to spectral theory and boundary value problems on non-
compact manifolds. Some possible connections with Ramond-Ramond fields in
String Theory were mentioned in [8, 14]. See also [1, 9, 12, 13].

In this paper, we continue our study of gauge-equivariant K-theory. We begin
by providing two alternative definitions of the relative KG-groups, both based
on complexes of vector bundles. (In this paper, all vector bundles are complex
vector bundles, with the exception of the tangent bundles and where explicitly
stated.) These alternative definitions, modeled on the classical case [2, 10], provide
a convenient framework for the study of products, especially in the relative or
non-compact cases. The products are especially useful for the proof of the Thom
isomorphism in gauge-equivariant theory, which is one of the main results of this
paper. Let E → X be a G-equivariant complex vector bundle. Then the Thom
isomorphism is a natural isomorphism

τE : Ki
G(X)→ Ki

G(E). (1)

(There is also a variant of this result for spinc-vector bundles, but since we will
not need it for the index theorem [15], we will not discuss it in this paper.) The
Thom isomorphism allows us to define Gysin (or push-forward) maps in K-theory.
As it is well known from the classical work of Atiyah and Singer [4], the Thom
isomorphism and the Gysin maps are some of the main ingredients used for the
definition and study of the topological index. In fact, we shall proceed along the
lines of that paper to define the topological index for gauge-invariant families of
elliptic operators. Some other approaches to Thom isomorphism in general settings
of Noncommutative geometry were the subject of [6, 7, 11, 16, 12], and many other
papers.

Gauge-equivariant K-theory behaves in many ways like the usual equivariant
K-theory, but exhibits also some new phenomena. For example, the groups K0

G(B)
may turn out to be reduced to K0(B) when G has “a lot of twisting” [14, Propo-
sition 3.6]. This is never the case in equivariant K-theory when the action of the
group is trivial but the group itself is not trivial. In [14], we addressed this problem
in two ways: first, we found conditions on the bundle of groups p : G → B that
guarantee that K0

G(X) is not too small (this condition is called finite holonomy
and is recalled below), and, second, we studied a substitute of K0

G(X) which is
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never too small (this substitute is K(C∗(G)), the K-theory of the C∗-algebra of
the bundle of compact groups G).

In this paper, we shall again need the finite holonomy condition, so let us
review it now. To define the finite holonomy condition, we introduced the repre-
sentation covering of G, denoted Ĝ → B. As a space, Ĝ is the union of all the
representation spaces Ĝb of the fibers Gb of the bundle of compact groups G. One
measure of the twisting of the bundle G is the holonomy associated to the covering
Ĝ → B. We say that G has representation theoretic finite holonomy if Ĝ is a union
of compact-open subsets. (An equivalent condition can be obtained in terms of the
fundamental groups when B is path-connected, see Proposition 2.3 below.)

Let C∗(G) be the enveloping C∗-algebra of the bundle of compact groups G.
We proved in [14, Theorem 5.2] that

Kj
G(B) ∼= Kj(C∗(G)), (2)

provided that G has representation theoretic finite holonomy. This guarantees that
Kj

G(B) is not too small. It also points out an alternative, algebraic definition of
the groups Ki

G(X).
The structure of the paper is as follows. We start from the definition of gauge-

equivariant K-theory and some basic results from [14], most of them related to
the “finite holonomy condition,” a condition on bundles of compact groups that
we recall in Section 2. In Section 3 we describe an equivalent definition of gauge-
equivariant K-theory in terms of complexes of vector bundles. This will turn out to
be especially useful when studying the topological index. In Section 4 we establish
the Thom isomorphism in gauge-equivariant K-theory, and, in Section 5, we define
and study the Gysin maps. The properties of the Gysin maps allow us to define
in Section 6 the topological index and establish its main properties.

2. Preliminaries

We now recall the definition of gauge-equivariant K-theory and some basic results
from [14]. An important part of our discussion is occupied by the discussion of the
finite holonomy condition for a bundle of compact groups p : G → B.

All vector bundles in this paper are assumed to be complex vector
bundles, unless otherwise mentioned and excluding the tangent bundles
to the various manifolds appearing below.

2.1. Bundles of compact groups and finite holonomy conditions

We begin by introducing bundles of compact and locally compact groups. Then
we study finite holonomy conditions for bundles of compact groups.

Definition 2.1. Let B be a locally compact space and let G be a locally compact
group. We shall denote by Aut(G) the group of automorphisms of G. A bundle
of locally compact groups G with typical fiber G over B is, by definition, a fiber
bundle G → B with typical fiber G and structural group Aut(G).
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We fix the above notation. Namely, from now on and throughout this paper,
unless explicitly otherwise mentioned, B will be a compact space and G → B will
be a bundle of compact groups with typical fiber G.

We need now to introduce the representation theoretic holonomy of a bundle
of Lie group with compact fibers p : G → B. Let Aut(G) be the group of automor-
phisms of G. By definition, there exists then a principal Aut(G)-bundle P → B
such that

G ∼= P ×Aut(G) G := (P ×G)/ Aut(G).
We shall fix P in what follows.

Let Ĝ be the (disjoint) union of the sets Ĝb of equivalence classes of irreducible
representations of the groups Gb. Using the natural action of Aut(G) on Ĝ, we can
naturally identify Ĝ with P ×Aut(G) Ĝ as fiber bundles over B.

Let Aut0(G) be the connected component of the identity in Aut(G). The
group Aut0(G) will act trivially on the set Ĝ, because the later is discrete. Let

HR := Aut(G)/ Aut0(G), P0 := P/ Aut0(G), and Ĝ  P0 ×HR Ĝ.

Above, Ĝ is defined because P0 is an HR-principal bundle. The space Ĝ will be
called the representation space of G and the covering Ĝ → B will be called the
representation covering associated to G.

Assume now that B is a path-connected, locally simply-connected space and
fix a point b0 ∈ B. We shall denote, as usual, by π1(B, b0) the fundamental group
of B. Then the bundle P0 is classified by a morphism

ρ : π1(B, b0)→ HR := Aut(G)/ Aut0(G), (3)

which will be called the holonomy of the representation covering of G.
For our further reasoning, we shall sometimes need the following finite holo-

nomy condition.

Definition 2.2. We say that G has representation theoretic finite holonomy if every
σ ∈ Ĝ is contained in a compact-open subset of Ĝ.

In the cases we are interested in, the above condition can be reformulated as
follows [14].

Proposition 2.3. Assume that B is path-connected and locally simply-connected.
Then G has representation theoretic finite holonomy if, and only if π1(B, b0)σ ⊂ Ĝ
is a finite set for any irreducible representation σ of G.

From now on we shall assume that G has representation theoretic finite ho-
lonomy.

2.2. Gauge-equivariant K-theory

Let us now define the gauge equivariant K-theory groups of a “G-fiber bundle”
πY : Y → B. All our definitions are well known if B is reduced to a point (cf.
[2, 10]). First we need to fix the notation.
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If fi : Yi → B, i = 1, 2, are two maps, we shall denote by

Y1 ×B Y2 := {(y1, y2) ∈ Y1 × Y2, f1(y1) = f2(y2) } (4)

their fibered product. Let p : G → B be a bundle of locally compact groups and
let πY : Y → B be a continuous map. We shall say that G acts on Y if each group
Gb acts continuously on Yb := π−1(b) and the induced map µ

G ×B Y := {(g, y) ∈ G × Y, p(g) = πY (y)} # (g, y) −→ µ(g, y) := gy ∈ Y

is continuous. If G acts on Y , we shall say that Y is a G-space. If, in addition
to that, Y → B is also locally trivial, we shall say that Y is a G-fiber bundle,
or, simply, a G-bundle. This definition is a particular case of the definition of the
action of a groupoid on a space.

Let πY : Y → B be a G-space, with G a bundle of compact groups over
B. Recall that a vector bundle π̃E : E → Y is a G-equivariant vector bundle (or
simply a G-equivariant vector bundle) if

πE := πY ◦ π̃E : E → B

is a G-space, the projection

π̃E : Eb := π−1
E (b)→ Yb := π−1

Y (b)

is Gb := p−1(b) equivariant, and the induced action Ey → Egy of g ∈ G, between
the corresponding fibers of E → Y , is linear for any y ∈ Yb, g ∈ Gb, and b ∈ B.

To define gauge-equivariant K-theory, we first recall some preliminary def-
initions from [14]. Let π̃E : E → Y be a G-equivariant vector bundle and let
π̃E′ : E′ → Y ′ be a G′-equivariant vector bundle, for two bundles of compact groups
G → B and G′ → B′. We shall say that (γ, φ, η, ψ) : (G′, E′, Y ′, B′)→ (G, E, Y, B)
is a γ-equivariant morphism of vector bundles if the following five conditions are
satisfied:

(i) γ : G′ → G, φ : E′ → E, η : Y ′ → Y, and ψ : B → B′,
(ii) all the resulting diagrams are commutative,
(iii) φ(ge) = γ(g)φ(e) for all e ∈ E′

b and all g ∈ G′b,
(iv) γ is a group morphism in each fiber, and
(v) φ is a vector bundle morphism.

We shall say that φ : E → E′ is a γ-equivariant morphism of vector bundles if,
by definition, it is part of a morphism (γ, φ, η, ψ) : (G′, E′, Y ′, B′)→ (G, E, Y, B).
Note that η and ψ are determined by γ and φ.

As usual, if ψ : B′ → B is a continuous [respectively, smooth] map, we define
the inverse image (ψ∗(G), ψ∗(E), ψ∗(Y ), B′) of a G-equivariant vector bundle E →
Y by ψ∗(G) = G×B B′, ψ∗(E) = E×B B′, and ψ∗(Y ) = Y ×B B′. If B′ ⊂ B and ψ
is the embedding, this construction gives the restriction of a G-equivariant vector
bundle E → Y to a closed, invariant subset B′ ⊂ B of the base of G, yielding a
GB′ -equivariant vector bundle. Usually G will be fixed, however.

Let p : G → B be a bundle of compact groups and πY : Y → B be a G-space.
The set of isomorphism classes of G-equivariant vector bundles π̃E : E → Y will
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be denoted by EG(Y ). On this set we introduce a monoid operation, denoted “+,”
using the direct sum of vector bundles. This defines a monoid structure on the set
EG(Y ) as in the case when B consists of a point.

Definition 2.4. Let G → B be a bundle of compact groups acting on the G-space
Y → B. Assume Y to be compact. The G-equivariant K-theory group K0

G(Y ) is
defined as the group completion of the monoid EG(Y ).

When working with gauge-equivariant K-theory, we shall use the following
terminology and notation. If E → Y is a G-equivariant vector bundle on Y , we shall
denote by [E] its class in K0

G(Y ). Thus K0
G(Y ) consists of differences [E] − [E1].

The groups K0
G(Y ) will also be called gauge equivariant K-theory groups, when

we do not need to specify G. If B is reduced to a point, then G is group, and the
groups K0

G(Y ) reduce to the usual equivariant K-groups.
We have the following simple observations on gauge-equivariant K-theory.

First, the familiar functoriality properties of the usual equivariant K-theory groups
extend to the gauge equivariant K-theory groups. For example, assume that the
bundle of compact groups G → B acts on a fiber bundle Y → B and that, similarly,
G′ → B′ acts on a fiber bundle Y ′ → B′. Let γ : G → G′ be a morphism of bundles
of compact groups and f : Y → Y ′ be a γ-equivariant map. Then we obtain a
natural group morphism

(γ, f)∗ : K0
G′(Y ′)→ K0

G(Y ). (5)

If γ is the identity morphism, we shall denote (γ, f)∗ = f∗.
A G-equivariant vector bundle E → Y on a G-space Y → B, Y compact, is

called trivial if, by definition, there exists a G-equivariant vector bundle E′ → B
such that E is isomorphic to the pull-back of E′ to Y . Thus E  Y ×B E′.
If G → B has representation theoretic finite holonomy and Y is a compact G-
bundle, then every G-equivariant vector bundle over Y can be embedded into a
trivial G-equivariant vector bundle. This embedding will necessarily be as a direct
summand.

If G → B does not have finite holonomy, it is possible to provide examples if
G-equivariant vector bundles that do not embed into trivial G-equivariant vector
bundles [14]. Also, a related example from [14] shows that the groups K0

G(Y ) can
be fairly small if the holonomy of G is “large.”

A further observation is that it follows from the definition that the tensor
product of vector bundles defines a natural ring structure on K0

G(Y ). We shall
denote the product of two elements a and b in this ring by a ⊗ b or, simply,
ab, when there is no danger of confusion. In particular the groups Ki

G(X) for
πX : X → B are equipped with a natural structure of K0

G(B)-module obtained
using the pull-back of vector bundles on B, namely, ab := π∗

X(a)⊗ b ∈ K0
G(X) for

a ∈ K0
G(B) and b ∈ K0

G(X).
The definition of the gauge-equivariant groups extends to non-compact G-

spaces Y as in the case of equivariant K-theory. Let Y be a G-bundle. We shall
denote then by Y + := Y ∪B the compact space obtained from Y by the one-point
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compactification of each fiber (recall that B is compact). The need to consider the
space Y + is the main reason for considering also non longitudinally smooth fibers
bundles on B. Then

K0
G(Y ) := ker

(
K0

G(Y +)→ K0
G(B)

)
.

Also as in the classical case, we let

Kn
G (Y, Y ′) := K0

G((Y \ Y ′)× Rn)

for a G-subbundle Y ′ ⊂ Y . Then [14] we have the following periodicity result

Theorem 2.5. We have natural isomorphisms

Kn
G (Y, Y ′) ∼= Kn−2

G (Y, Y ′).

Gauge-equivariant K-theory is functorial with respect to open embeddings.
Indeed, let U ⊂ X be an open, G-equivariant subbundle. Then the results of [14,
Section 3] provide us with a natural map morphism

i∗ : Kn
G (U)→ Kn

G (X). (6)

In fact, i∗ is nothing but the composition Kn
G (U) ∼= Kn

G (X, X \ U)→ Kn
G (X).

2.3. Additional results

We now prove some more results on gauge-equivariant K-theory.
Let G → B and H → B be two bundles of compact groups over B. Recall

that an H-bundle πX : X → B is called free if the action of each group Hb on the
fiber Xb is free (i.e., hx = x, x ∈ Xb, implies that h is the identity of Gb.) We
shall need the following result, which is an extension of a result in [10, page 69].
For simplicity, we shall write G ×H instead of G ×B H.

Theorem 2.6. Suppose πX : X → B is a G×H-bundle that is free as an H-bundle.
Let π : X → X/H be the (fiberwise) quotient map. For any G-equivariant vector
bundle π̃E : E → X/H, we define the induced vector bundle

π∗(E) :=
{
(x, ε) ∈ X × E, π(x) = π̃E(ε)

}
→ X,

with the action of G ×H given by (g, h) · (x, ε) := ((g, h)x, gε). Then π∗ gives rise
to a natural isomorphism K0

G(X/H)→ K0
G×H(X).

Proof. Let π∗ : K0
G(X/H)→ K0

G×H(X) be the induction map, as above. We will
construct a map r : K0

G×H(X)→ K0
G(X/H) satisfying π∗ ◦ r = Id and r ◦π∗ = Id.

Let πF : F → X be a G ×H-vector bundle. Since the action of H on X is free, the
induced map πF : F/H → X/H of quotient spaces is a (locally trivial) G-bundle.
Clearly, this construction is invariant under homotopy, and hence we can define
r[F ] := [F/H].

Let us check now that r is indeed an inverse of π∗. Denote by F # f → Hf ∈
F/H the quotient map. Let F → X be a G ×H-vector bundle. To begin with, the
total space of π∗ ◦ r(F ) is{

(x,Hf) ∈ X × (F/H), π∗(x) = πF (Hf)
}
,
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by definition. Then the map F # f → (πF (f),Hf) ∈ π∗ ◦ r(F ) is an isomorphism.
Hence, π∗r = Id.

Next, consider a G-vector bundle πE : E → X/H. The total space of r◦π∗(E)
is then {

(Hy, ε) ∈ (X/H)× E, Hy = πE(ε))
}
,

because H acts only on the first component of π∗(E). Then

E → r ◦ π∗(E), ε �→ (π(ε), ε)

is an isomorphism. Hence, r ◦ π∗ = Id. �

See also [14, Theorem 3.5].

Corollary 2.7. Let P be a G ×H-bundle that is free as an H-bundle. Also, let W
be an H-bundle, then there is a natural isomorphism

KG×H(P ×B W ) ∼= KG(P ×H W ).

Proof. Take X := P ×B W in the previous theorem. Then X is a free H-bundle,
because P is, and X/H =: P ×H W . �

In the following section, we shall also need the following quotient construction
associated to a trivialization of a vector bundle over a subset. Namely, if Y ⊂ X
is a G-invariant, closed subbundle, then we shall denote by X/BY the fiberwise
quotient space over B, that is the quotient of X with respect to the equivalence
relation ∼, x ∼ y if, and only if, x, y ∈ Yb, for some b ∈ B.

If E is a G-equivariant vector bundle over a G-bundle X , together with a
G-equivariant trivialization over a G-subbundle Y ⊂ X , then we can generalize
the quotient (or collapsing) construction of [2, §1.4] to obtain a vector bundle over
X/BY , where by X/BY we denote the fiberwise quotient bundle over B, as above.

Lemma 2.8. Suppose that X is a G-bundle and that Y ⊂ X is a closed, G-invariant
subbundle. Let E → X be a G-vector bundle and α : E|Y ∼= Y ×B V be a G-
equivariant trivialization, where V → B is a G-equivariant vector bundle. Then we
can naturally associate to (E, α) a naturally defined vector bundle E/α→ X/BY
that depends only on homotopy class of α.

Proof. Let p : Y ×B V → V be the natural projection. Introduce the following
equivalence relation on E:

e ∼ e′ ⇔ e, e′ ∈ E|Y and pα(e) = pα(e′).

Let then E/α be equal to E/ ∼. This is locally trivial vector bundle over X/BY .
Indeed, it is necessary to verify this only in a neighborhood of Y/BY ∼= B. Let U
be a G invariant open subset of X such that α can be extended to an isomorphism
α̃ : E|U ∼= U ×B V . We obtain an isomorphism

α′ : (E|U )/α ∼= (U/BY )×B V , α′(e) = α̃(e).

Moreover, (U/BY )×B V is a locally trivial G-equivariant vector bundle.
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Suppose that α0 and α1 are homotopic trivializations of E|Y , that is, triv-
ializations such that there exists a trivialization β : E × I|Y ×I

∼= Y × I ×B V ,
β|E×{0} = α0 and β|E×{1} = α1. Let

f : X/BY × I → (X × I)/(B×I)(Y × I).

Then the bundle f∗((E × I)/β) over X/BY × I satisfies

f∗((E × I)/β)|(X/BY )×{i} = E/αi, i = 0, 1.

Hence, E/α0
∼= E/α1. �

3. K-theory and complexes

For the purpose of defining the Thom isomorphism, it is convenient to work with an
equivalent definition of gauge-equivariant K-theory in terms of complexes of vector
bundles. This will turn out to be especially useful when studying the topological
index.

The statements and proofs of this section, except maybe Lemma 3.4, follow
the classical ones [2, 10], so our presentation will be brief.

3.1. The Ln
G-groups

We begin by adapting some well-known concepts and constructions to our settings.
Let X → B be a locally compact, paracompact G-bundle. A finite complex

of G-equivariant vector bundles over X is a complex

(E∗; d) =
(
. . .

di−1−→ Ei di−→ Ei+1 di+1−→ . . .
)
, i ∈ Z,

of G-equivariant vector bundles over X with only finitely many Ei’s different from
zero. Explicitly, Ei are G-equivariant vector bundles, di’s are G-equivariant mor-
phisms, di+1di = 0 for every i, and Ei = 0 for |i| large enough. We shall also use
the notation (E∗; d) =

(
E0, . . . , En, di : Ei|Y → Ei+1|Y

)
, if Ei = 0 for i < 0 and

for i > n.
As usual, a morphism of complexes f : (E∗; d) → (F ∗; δ) is a sequence of

morphisms fi : Ei → F i such that fi+1di = δi+1fi, for all i. These constructions
yield the category of finite complexes of G-equivariant vector bundles. Isomorphism
in this category will be denoted by (E∗; d) ∼= (F ∗; δ).

In what follows, we shall consider a pair (X, Y ) of G-bundles with X is a
compact G-bundle, unless explicitly otherwise mentioned.

Definition 3.1. Let X be a compact G-bundle and Y be a closed G-invariant
subbundle. Denote by Cn

G (X, Y ) the set of (isomorphism classes of) sequences

(E∗; d) =
(
E0, E1, . . . , En; dk : Ek|Y → Ek+1|Y

)
of G-equivariant vector bundles over X such that (Ek|Y ; d) is exact if we let Ej = 0
for j < 0 or j > n.
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We endow Cn
G (X, Y ) with the semigroup structure given by the direct sums

of complexes. An element in Cn
G (X, Y ) is called elementary if it is isomorphic to a

complex of the form
. . .→ 0→ E

Id−→ E → 0→ . . . ,

Two complexes (E∗; d), (F ∗, δ) ∈ Cn
G (X, Y ) are called equivalent if, and only if,

there exist elementary complexes Q1, . . . , Qk, P 1, . . . , Pm ∈ Cn
G (X, Y ) such that

E ⊕Q1 ⊕ · · · ⊕Qk
∼= F ⊕ P1 ⊕ · · · ⊕ Pm.

We write E  F in this case. The semigroup of equivalence classes of sequences
in Cn

G (X, Y ) will be denoted by Ln
G(X, Y ).

We obtain, from definition, natural injective semigroup homomorphisms

Cn
G (X, Y )→ Cn+1

G (X, Y ) and CG(X, Y ) :=
⋃
n

Cn
G (X, Y ).

The equivalence relation ∼ commutes with embeddings, so the above morphisms
induce morphisms Ln

G(X, Y )→ Ln+1
G (X, Y ). Let L∞

G (X, Y ) := lim→ Ln
G(X, Y ).

Lemma 3.2. Let E → X and F → X be G-vector bundles. Let α : E|Y → F |Y
and β : E → F be surjective morphisms of G-equivariant vector bundles. Also,
assume that α and β|Y are homotopic in the set of surjective G-equivariant vector
bundle morphisms. Then there exists a surjective morphism of G-equivariant vector
bundles α̃ : E → F such that α̃|Y = α. The same result remains true if we replace
“surjective” with “injective” or with “isomorphism” everywhere.

Proof. Let Z := (Y × [0, 1]) ∪ (X × {0}) and π : Z → X be the projection. Let
π∗(E) → Z and π∗(F ) → Z be the pull-backs of E and F . The homotopy in the
statement of the Lemma defines a surjective morphism a : π∗(E) → π∗(F ) such
that a|Y ×{1} = α and a|X×{0} = β. By [14, Lemma 3.12], the morphism a can
be extended to a surjective morphism over (U × [0, 1]) ∪ (X × {0}), where U is
an open G-neighborhood of Y . (In fact, in that Lemma we considered only the
case of an isomorphism, but the case of a surjective morphism is proved in the
same way.) Let φ : X → [0, 1] be a continuous function such that φ(Y ) = 1 and
φ(X \ U) = 0. By averaging, we can assume φ to be G-equivariant. Then define
α̃(x) = a(x, φ(x)), for all x ∈ X . �
Remark 3.3. Suppose that X is a compact G-space and Y = ∅. Then we have a
natural isomorphism χ1 : L1

G(X, ∅)→ K0
G(X) taking the class of (E0, E1; 0) to the

element [E0]− [E1].

We shall need the following lemma.

Lemma 3.4. Let p : G → B be a bundle of compact groups and πX : X → B be
a compact G-bundle. Assume that πX has a cross-section, which we shall use to
identify B with a subset of X. Then the sequence

0→ L1
G(X, B)→ L1

G(X)→ L1
G(B)

is exact.
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Proof. Suppose that E = (E1, E0; φ) defines an element of L1
G(X) such that its

image in L1
G(B) is zero. Then the definition of E ∼ 0 in L1

G(B) shows that the
restrictions of E1 and E0 to B are isomorphic over B. Hence, the above sequence
is exact at L1

G(X).
Suppose now that (E1, E0; φ) represents a class in L1

G(X, B) such that its
image in L1

G(X) is zero. This means (keeping in mind Remark 3.3) that there
exists a G-equivariant vector bundle P̃ and an isomorphism ψ̃ : E1⊕ P̃ ∼= E0⊕ P̃ .
Let us define P := P̃ ⊕ π∗

X(E0|B)⊕ π∗
X(P̃ |B), where πX : X → B is the canonical

projection, as in the statement of the Lemma. Also, define ψ = ψ̃⊕ Id : E1⊕P →
E0 ⊕ P , which is also an isomorphism.

We thus obtain that T := ψ(φ ⊕ Id)−1 is an automorphism of (E0 ⊕ P )|B ,

which has the form
(

β 0
0 Id

)
with respect to the decomposition

(E0 ⊕ P )|B = (E0 ⊕ P̃ )|B ⊕ (E0 ⊕ P̃ )|B .

The automorphism T := ψ(φ⊕Id)−1 is homotopic to the automorphism T1 defined
by the matrix (

Id 0
0 β

)
.

Since T1 extends to an automorphism of E0⊕P over X , namely
(

Id 0
0 π∗

X(β)

)
,

Lemma 3.2 gives that the automorphism ψ(φ⊕ Id)−1 also can be extended to X ,
such that over B we have the following commutative diagram:

(E1 ⊕ P )|B
φ⊕Id ��

ψ|B
��

(E0 ⊕ P )|B
α|B=

⎛⎝ β 0
0 Id

⎞⎠
��

(E0 ⊕ P )|B
Id �� (E0 ⊕ P )|B.

Hence, (E1, E0, φ)⊕(P, P, Id) ∼= (E0⊕P, E0⊕P, Id) and so is zero in L1
G(X, B). �

3.2. Euler characteristics

We now generalize the above construction to other groups Ln
G , thus proving the

existence and uniqueness of Euler characteristics.

Definition 3.5. Let X be a compact G-space and Y ⊂ X be a G-invariant
subset. An Euler characteristic χn is a natural transformation of functors χn :
Ln
G(X, Y )→ K0

G(X, Y ), such that for Y = ∅ it takes the form

χn(E) =
n∑

i=0

(−1)i[Ei],

for any sequence E = (E∗; d) ∈ Ln
G(X, Y ).
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Lemma 3.6. There exists a unique natural transformation of functors (i.e., an
Euler characteristic)

χ1 : L1
G(X, Y )→ K0

G(X, Y ),

which, for Y = ∅, has the form indicated in 3.3.

Proof. To prove the uniqueness, suppose that χ1 and χ′
1 are two Euler character-

istics on L1
G. Then χ′

1χ
−1
1 is a natural transformation of K0

G that is equal to the
identity on each K0

G(X). Let us consider the long exact sequence

· · · → Kn−1
G (Y, Y ′)→ Kn−1

G (Y )→ Kn−1
G1

(Y ′)

→ Kn
G (Y, Y ′)→ Kn

G (Y )→ Kn
G (Y ′)→ . . . (7)

associated to a pair (Y, Y ) of G-bundles (see [14], Equation (10) for a proof of
the exactness of this sequence). The map K0

G(X, B) → K0
G(X) from this exact

sequence is induced by (X, ∅) → (X, B), and hence, in particular, it is natural.
Assume that πX : X → B has a cross-section. Then the exact sequence (7) for
(Y, Y ′) = (X, B) yields a natural exact sequence 0 → K0

G(X, B) → K0
G(X). This

in conjunction with Lemma 3.4 shows that χ′
1χ

−1
1 is the identity on K0

G(X, B).
(Recall that we agreed to denote by X/BY the fiberwise quotient space over B,
that is the quotient of X with respect to the equivalence relation ∼, x ∼ y if, and
only if, x, y ∈ Yb, for some b ∈ B.) Finally, since the map (X, Y ) → (X/BY, B)
induces an isomorphism of K0

G-groups [14, Theorem 3.19], χ′
1χ

−1
1 is the identity

on K0
G(X, Y ) for all pairs (X, Y ).
To prove the existence of the Euler characteristic χ1, let (E1, E0, α) := (α :

E1 → E0) represent an element of L1
G(X, Y ). Suppose that X0 and X1 are two

copies of X and Z := X0 ∪Y X1 → B is the G-bundle obtained by identifying the
two copies of Y ⊂ Xi, i = 0, 1. The identification of E1|Y and E0|Y with the help
of α gives rise to an element [F 0] − [F 1] ∈ K0

G(Z) defined as follows. By adding
some bundle to both Ei’s, we can assume that E1 is trivial (that is, it is isomorphic
to the pull-back of a vector bundle on B). Then E1 extends to a trivial G-vector
bundle Ẽ1 → Z. We define F 0 := E0 ∪α E1 and F 1 := Ẽ1 .

The exact sequence (7) and the natural G-retractions πi : Z → Xi, give
natural direct sum decompositions

K0
G(Z) = K0

G(Z, Xi)⊕K0
G(Xi), i = 0, 1. (8)

The natural map (X0, Y )→ (Z, X1) induces an isomorphism

k : K0
G(Z, X1)→ K0

G(X0, Y ).

Let us define then χ1(E0, E1, α) to be equal to the image under k of the K0
G(Z, X1)-

component of (E0, E1; α) (with respect to (8)). It follows from its definition that
this map is natural, respects direct sums, and is independent with respect to
the addition of elementary elements. Our proof is completed by observing that
χ1(E1, E0; α) = [E0]− [E1] when Y = ∅. �
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We shall also need the following continuity property of the functor L1
G . Recall

that we have agreed to denote by X/BY the fiberwise quotient bundle over B.

Lemma 3.7. The natural homomorphism

Π∗ : L1
G(X/BY, Y/BY ) = L1

G(X/BY, B)→ L1
G(X, Y )

is an isomorphism for all pairs (X, Y ) of compact G-bundles.

Proof. Lemmata 3.6 and 3.4 give the following commutative diagram

L1
G(X/BY, B) Π∗

��

∼= χ1

��

L1
G(X, Y )

χ1

��
K0

G(X/BY, B) Π∗

∼=
�� K0

G(X, Y ).

From this we obtain injectivity.
To prove surjectivity, suppose that E1 and E0 are G-equivariant vector bun-

dles over X and α : E1|Y → E0|Y is an isomorphism of the restrictions. Let P → X
be a G-bundle such that there is an isomorphism β : E1⊕P ∼= F , where F is a triv-
ial bundle (i.e., isomorphic to a pull back from B). Then (E1, E0, α) ∼ (F, E0 ⊕
P, γ), where γ = (α⊕ Id)β−1. The last object is the image of (F, (E0⊕P )/γ, γ/γ)
(see Lemma 2.8). �

We obtain the following corollaries.

Corollary 3.8. The Euler characteristic χ1 : L1
G(X, Y )→ K0

G(X, Y ) is an isomor-
phism and hence it defines an equivalence of functors.

Proof. This follows from Lemmas 3.7 and 3.6. �

Lemma 3.9. The class of (E1, E0, α) in L1
G(X, Y ) depends only on the homotopy

class of the isomorphism α.

Proof. Let Z = X × [0, 1], W = Y × [0, 1]. Denote by p : Z → X the natural pro-
jection and assume that αt is a homotopy, where α0 = α. Then αt gives rise an iso-
morphism β : p∗(E1)|W ∼= p∗(E0)|W , and hence to an element (p∗(E1), p∗(E0), β)
of L1

G(Z, W ). If

it : (X, Y )→ (X × {t}, Y × {t}) ⊂ (Z, W ), t ∈ [0, 1],

are the standard inclusions, then (E1, E0, αt) = i∗t (p∗(E1), p∗(E0), β). Consider
the commutative diagram

L1
G(X, Y )

χ1

��

L1
G(Z, W )

χ1

��

i∗0�� i∗1 �� L1
G(X, Y )

χ1

��
K0

G(X, Y ) K0
G(Z, W )

i∗0�� i∗1 �� K0
G(X, Y ).
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The vertical morphisms and and the morphisms of the bottom line of the above
diagram are isomorphisms. Hence, the arrows of the top line are isomorphisms too.
The composition i∗0(i∗1)−1 is identity for the bottom line, hence it is the identity
for the top line too. �

The following theorem reduces the study of the functors Ln
G , n > 1, to the

study of L1
G .

Theorem 3.10. The natural map jn : Ln
G(X, Y )→ Ln+1

G (X, Y ) is an isomorphism.

Proof. Let E = (E0, E1, . . . , En+1; dk), dk : Ek|Y → Ek+1|Y represent an element
of the semigroup Ln+1

G (X, Y ). To prove the surjectivity of jn, let us first notice
that E is equivalent to the complex

(E0, . . . , En−2, En−1 ⊕ En+1, En ⊕ En+1, En+1;

d0, . . . , dn−2 ⊕ 0, dn−1 ⊕ Id, dn ⊕ 0).

The maps dn ⊕ 0 : (En ⊕ En+1)|Y → En+1|Y and 0 ⊕ Id : (En ⊕ En+1)|Y →
En+1|Y are homotopic within the set of surjective, G-equivariant vector bundle
morphisms (En ⊕ En+1)|Y → En+1|Y . Hence, by Lemma 3.2, dn ⊕ 0 can be
extended to a surjective morphism b : En⊕En+1 → En+1 of G-equivariant vector
bundles (over the whole of X). So, the bundle En⊕En+1 is isomorphic to ker(b)⊕
En+1. Hence, the E is equivalent to

(E0, . . . , En−2, En−1 ⊕ En+1, ker(b), 0; d0, . . . , dn−2 ⊕ 0, dn−1, 0).

This proves the surjectivity of jn.
To prove the injectivity of jn, it is enough to define, for any n, a left inverse

qn : Ln
G(X, Y )→ L1

G(X, Y ) to sn := jn−1 ◦ · · · ◦ j1. Suppose that (E∗; d) represents
an element of semigroup Ln

G(X, Y ). Choose G-invariant Hermitian metrics on Ei

and let d∗i : Ei+1|Y → Ei|Y be the adjoint of di. Let

F 0 :=
⊕

i

E2i, F 1 :=
⊕

i

E2i+1, b : F 0|Y → F 1|Y , b =
∑

i

(d2i + d∗2i+1).

A standard verification shows that b is an isomorphism. Since all invariant metrics
are homotopic to each other, Lemma 3.9 shows that (E; d) → (F, b) defines a
morphism qn : Ln

G(X, Y )→ L1
G(X, Y ). This is the desired left inverse for sn. �

Let us observe that the proof of the above theorem and Lemma 3.9 give the
following corollary.

Corollary 3.11. The class of E = (Ei, di) in Ln
G(X, Y ) does not change if we

deform the differentials di continuously.

We are now ready to prove the following basic result.

Theorem 3.12. For each n there exists a unique Euler characteristic

χn : Ln
G(X, Y ) ∼= K0

G(X, Y ).
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In particular, L∞
G (X, Y ) ∼= K0

G(X, Y ) and Ln
G(X, Y ) has a natural group structure

for any closed, G-invariant subbundle Y ⊂ X.

Proof. The statement is obtained from the lemmas we have proved above as
follows. First of all, Theorem 3.10 allows us to define

χn := χ1 ◦ j−1
1 ◦ . . . j−1

n−1 : Ln
G(X, Y )→ K0

G(X, Y ).

Lemma 3.7 shows that χn is an isomorphism. The uniqueness of χn is proved in
the same way as the uniqueness of χ1 (Lemma 3.6). �
3.3. Globally defined complexes

Theorem 3.12 provides us with an alternative definition of the groups K0
G(X, Y ).

We now derive yet another definition of these groups that is closer to what is
needed in applications and is based on differentials defined on X , not just on Y .

Let (E; d) be a complex of G-equivariant vector bundles over a G-space X . A
point x ∈ X will be called a point of acyclicity of (E; d) if the restriction of (E; d)
to x, i.e., the sequence of linear spaces

(E; d)x =
(
. . .

(di)x−→ Ei
x

(di+1)x−→ Ei+1
x

(di+2)x−→ . . .
)
,

is exact. The support supp(E; d) of the finite complex (E; d) is the complement
in X of the set of its points of acyclicity. This definition and the following lemma
hold also for X non-compact.

Lemma 3.13. The support supp(E; d) is a closed G-invariant subspace of X.

Proof. The fact that supp(E; d) is closed is classical (see [2, 10] for example). The
invariance should be checked up over one fiber of X at b ∈ B. But this is once
again a well-known fact of equivariant K-theory (see e.g. [10]). �
Lemma 3.14. Let En, . . . , E0 be G-equivariant vector bundles over X and let
Y be a closed, G-invariant subbundle of X. Suppose there are given morphisms
di : Ei|Y → Ei−1|Y such that (Ei|Y , di) is an exact complex. Then the morphisms
di can be extended to morphisms defined over X such that we still have a complex
of G-equivariant vector bundles.

Proof. We will show that we can extend each di to a morphism ri : Ei → Ei−1

such that ri−1 ◦ ri = 0. Let us find a G-invariant open neighborhood U of Y in X
such that for any i there exists an extension si of di to U with (E, s) still an exact
sequence. The desired ri will be defined then as ri = ρsi, where ρ : X → [0, 1] is a
continuous function such that ρ = 1 on Y and supp ρ ⊂ U .

Let us construct U by induction over i. Assume that for the closure U i of
some open G-neighborhood of Y in X we can extend dj to sj , j = 1, . . . , i, such
that, on U i, the sequence

Ei si−→ Ei−1 si−1−→ · · · → E0 → 0

is exact. Suppose Ki := ker(si|U i). Then di+1 determines a cross section of the
bundle HomG(Ei, Ki)|Y . This section can be extended to an open G-neighborhood
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V of Y in U i. We hence obtain an extension si+1 : Ei+1 → Ki of di+1 : Ei+1 → Ki

over V . Since di+1|Y is surjective (with range Ki), the morphism si+1 will be
surjective U i+1 for some open Ui+1 ⊂ Ui. �

The above lemma suggests the following definition.

Definition 3.15. Let X be a compact G-bundle and Y ⊂ X be a G-invariant sub-
bundle. We define En

G (X, Y ) to be the semigroup of homotopy classes of complexes
of G-equivariant vector bundles of length n over X such that their restrictions to
Y are acyclic (i.e., exact).

We shall say that two complexes are homotopic if they are isomorphic to the
restrictions to X × {0} and X × {1} of a complex defined over X × I and acyclic
over Y × I.

Remark 3.16. By Corollary 3.11, the restriction of morphisms induces a morphism
Φn : En

G (X, Y )→ Ln
G(X, Y ).

Theorem 3.17. Let X be a compact G-bundle and Y ⊂ X be a G-invariant sub-
bundle. Then the natural transformation Φn, defined in the above remark, is an
isomorphism.

Proof. The surjectivity of Φn follows from 3.14. The injectivity of Φn can be proved
in the same way as [2, Lemma 2.6.13], keeping in mind Lemma 3.14.

More precisely, we need to demonstrate that differentials of any complex over
G-subbundle (X×{0})∪ (X×{1})∪ (Y × I) of X× I, which is acyclic over Y × I,
can be extended to a complex over the entire X × I. The desired construction has
the following three stages. First, let V be a G-invariant neighborhood of Y such
that the restriction of our complex is still acyclic on (V ×{0})∪(V ×{1})∪(Y ×I)
as well as on its closure (V̄ ×{0})∪ (V̄ ×{1})∪ (Y × I). By Lemma 3.14, one can
extend the differentials di to G-equivariant morphisms ri over V̄ ×I that still define
a complex. Second, let ρ1, ρ2 be a G-invariant partition of unity subordinated to
the covering {V × I, (X \ Y )× I} of X ×Y . Let us extend original differentials to

(X × [0, 1/4]) ∪ (X × [3/4, 1]) ∪ (V × I)

by taking di(x, t) := di(x, 0) for t ≤ 1
4 · ρ2(x), x ∈ X \ Y . We proceed similarly

near t = 1. Also,

di(x, t) := ri

(
x,

(
t− 1

4 · ρ2(x)
)(

1− 1
2 · ρ2(x)

)) , x ∈ V.

Finally, by multiplying the differential di with a function τ : X × I → I that is
equal to 1 on the original subset of definition of the differential and is equal to 0
outside

(X × [0, 1/4]) ∪ (X × [3/4, 1]) ∪ (V × I),

we obtain the desired extension. �
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3.4. The non-compact case

In the case of a locally compact, paracompact G-bundle X , we change the defi-
nitions of Ln

G and En
G as follows. In the definition of Ln

G , the morphisms di have
to be defined and to form an exact sequence off the interior of some compact G-
invariant subset C of X � Y (the complement of Y in X). In the definition of En

G ,
the complexes have to be exact outside some compact G-invariant subset of X �Y .
In other words, Ln

G(X, Y ) = Ln
G(X+, Y +).

Since the proof of Lemma 3.14 is still valid, we have the analogue of Theo-
rem 3.17: there is a natural isomorphism

Ln
G(X, Y ) ∼= En

G (X, Y ).

The proof of the other statement can be extended also to the non-compact
case. The only difference is that we have to replace Y with X \ U , where U is an
open, G-invariant subset with compact closure. Then, when we study two element
sequences E = (Ei, di), we have to take the unions of the corresponding open
sets. Of course, these sets are not bundles, unlike Y , but for our argument using
extensions this is not a problem. This ultimately gives

K0
G(X, Y ) ∼= Ln

G(X, Y ) ∼= En
G (X, Y ), n ≥ 1. (9)

As we shall see below, the liberty of using these equivalent definitions of K0
G(X, Y )

is quite convenient in applications, especially when studying products.

4. The Thom isomorphism

In this section, we establish the Thom isomorphism in gauge-equivariant K-theory.
We begin with a discussion of products and of the Thom morphism.

4.1. Products

Let πX : X → B be a G-space, π̃F : F → X be a complex G-vector bundle over X ,
and s : X → F be a G-invariant section. We shall denote by ΛiF the ith exterior
power of F , which is again a complex G-equivariant vector bundle over X . As in
the proof of the Thom homomorphism for ordinary vector bundles, we define the
complex Λ(F, s) of G-equivariant vector bundles over X by

Λ(F, s) := (0→ Λ0F
α0

−→ Λ1F
α1

−→ . . .
αn−1

−→ ΛnF → 0), (10)

where αk(vx) = s(x) ∧ vx for vx ∈ ΛkF x and n = dimF . It is immediate to check
that αj+1(x)αj(x) = 0, and hence that (Λ(F, s), α) is indeed a complex.

The Künneth formula shows that the complex Λ(F, s) is acyclic for s(x) �= 0,
and hence supp(Λ(F, s)) := {x ∈ X |s(x) = 0}. If this set is compact, then the
results of Section 3 will associate to the complex Λ(F, s) of Equation (10) an
element

[Λ(F, s)] ∈ K0
G(X). (11)

Let X be a G-bundle and πF : F → X be a G-equivariant vector bundle over
X . The point of the above construction is that π∗

F (F ), the lift of F back to itself,
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has a canonical section whose support is X . Let us recall how this is defined. Let
πFF : π∗

F (F )→ F be the G-vector bundle over F with total space

π∗
F (F ) := {(f1, f2) ∈ F × F, πF (f1) = πF (f2)}

and πFF (f1, f2) = f1. The vector bundle πFF : π∗
F (F ) → F has the canonical

section

sF : F → π∗
F F, sF (f) = (f, f).

The support of sF is equal to X . Hence, if X is a compact space, using again the
results of Section 3, especially 3.17, we obtain an element

λF := [Λ(π∗
F (F ), sF )] ∈ K0

G(F ). (12)

Recall that the tensor product of vector bundles defines a natural product
ab = a⊗ b ∈ K0

G(X) for any a ∈ K0
G(B) and any b ∈ K0

G(X), where πX : X → B
is a compact G-space, as above.

Recall that all our vector bundles are assumed to be complex vector bundles,
except for the ones coming from geometry (tangent bundles, their exterior powers)
and where explicitly mentioned. Due to the importance that F be complex in the
following definition, we shall occasionally repeat this assumption.

Definition 4.1. Let πF : F → X be a (complex) G-equivariant vector bundle.
Assume the G-bundle X → B is compact and let λF ∈ K0

G(F ) be the class defined
in Equation (12), then the mapping

φF : K0
G(X)→ K0

G(F ), φF (a) = π∗
F (a)⊗ λF ,

is called the Thom morphism.

As we shall see below, the definition of the Thom homomorphism extends to
the case when X is not compact, although the Thom element itself is not defined
if X is not compact.

The definition of the Thom homomorphism immediately gives the following
proposition. We shall use the notation of Proposition 4.1.

Proposition 4.2. The Thom morphism φF : K0
G(X) → K0

G(F ) is a morphism of
K0

G(B)-modules.

Let ι : X ↪→ F be the zero section embedding of X into F . Then ι induces
homomorphisms

ι∗ : K0
G(F )→ K0

G(X) and ι∗ ◦ φF : K0
G(X)→ K0

G(X).

It follows from the definition that ι∗φF (a) = a ·
∑n

i=0(−1)iΛiF.
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4.2. The non-compact case

We now consider the case when X is locally compact, but not necessarily compact.
The complex Λ(π∗

F (F ), sF ) has a non-compact support, and hence it does not
define an element of K0

G(F ). However, if a = [(E, α)] ∈ K0
G(X) is represented by

the complex (E, α) of vector bundles with compact support (Section 3), then we
can still consider the tensor product complex(

π∗
F (E), π∗

F (α)
)
⊗ Λ(π∗

F F, sF ).

From the Künneth formula for the homology of a tensor product we obtain that
the support of a tensor product complex is the intersection of the supports of the
two complexes. In particular, we obtain

supp{(π∗
F E, π∗

F α)⊗ Λ(π∗
F F, sF )} ⊂ supp(π∗

F E, π∗
F α) ∩ supp Λ(π∗

F F, sF ) ⊂
⊂ supp(π∗

F E, π∗
F α) ∩X = supp(E, α). (13)

Thus, the complex (π∗
F E , π∗

Eα) ⊗ Λ(π∗
F F, sF ) has compact support and hence de-

fines an element in K0
G(F ).

Proposition 4.3. The homomorphism of K0
G(B)-modules

φF : K0
G(X)→ K0

G(F ), φF (a) = [(π∗
F E , π∗

F α)⊗ Λ(π∗
F F, sF )], (14)

defined in Equation (13) extends the Thom morphism to the case of not necessarily
compact X. The Thom morphism φF satisfies

i∗φF (a) = a ·
n∑

i=0

(−1)iΛiF (15)

in the non-compact case as well.

Let F → X be a G-equivariant vector bundle and F 1 = F × R, regarded as
a vector bundle over X × R. The periodicity isomorphisms in gauge-equivariant
K-theory groups [14, Theorem 3.18]

Ki±1
G (X × R, Y × R)  Ki

G(X, Y )

can be composed with φF 1
, the Thom morphism for F 1, giving a morphism

φF : Ki
G(X)→ Ki

G(F ) , i = 0, 1. (16)

This morphism is the Thom morphism for K1.
Let pX : X → B and pY : Y → B be two compact G-fiber bundles. Let

πE : E → X and πF : F → Y be two complex G-equivariant vector bundles.
Denote by p1 : X ×B Y → X and by p2 : X ×B Y → Y the projections onto
the two factors and define E � F := p∗1E ⊗ p∗2F . The G-equivariant vector bundle
E � F will be called the external tensor product of E and F over B. It is a vector
bundle over X ×B Y . Then the formula

K0
G(X)⊗K0

G(Y ) # [E]⊗ [F ]→ [E] � [F ] := [E � F ] ∈ K0
G(X ×B Y )

defines a product K0
G(X)⊗K0

G(Y )→ K0
G(X ×B Y ).
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In particular, consider two complex G-equivariant vector bundles πE : E → X
and πF : F → X . Then E ⊕ F = E ×X F and we obtain a product

Ki
G(E)⊗Kj

G(F ) # [E]⊗ [F ]→ [E] � [F ] := [E � F ]→ Ki+j
G (E ⊕ F ).

Using also periodicity, we obtain the product

� : Ki
G(E)⊗Kj

G(F )→ Ki+j
G (E ⊕ F ). (17)

This product is again seen to be given by the tensor product of the (lifted) com-
plexes (when representing K-theory classes by complexes) as in the classical case.

The external product � behaves well with respect to the “Thom construc-
tion” in the following sense. Let F 1 and F 2 be two complex bundles over X, and
s1, s2 two corresponding sections of these bundles. Then

Λ(F 1 ⊕ F 2, s1 ⊗ 1 + 1⊗ s2) = Λ(F 1, s1) � Λ(F 2, s2). (18)

In particular, if X is compact, we obtain

λE � λF = λE⊕F . (19)

We shall write s1 + s2 = s1 ⊗ 1 + 1⊗ s2, for simplicity.
The following theorem states that the Thom class is multiplicative with re-

spect to direct sums of vector bundles (see also [5]).

Theorem 4.4. Let E, F → X be two G-equivariant vector bundles, and regard
E⊕F → E as the G-equivariant vector bundle π∗

E(F ) over E. Then φπ∗
E(F ) ◦φE =

φE⊕F .

The above theorem amounts to the commutativity of the diagram

K∗
G(X)

φE

��

φE⊕F
		����������

K∗
G(E)

φπ∗
E(F )

����������

K∗
G(E ⊕ F )

(20)

Proof. Let F 1 := π∗
E(F ) = E ⊕ F , regarded as a vector bundle over E. Consider

the projections

πE : E → X, πF : F → X, πE⊕F : E ⊕ F → X, t = πF 1 : E ⊕ F → E.

Let x ∈ K0
G(X). Then φE(x) = π∗

E(x)⊗Λ(π∗
E(E), sE). Now we use that t∗π∗

E(x) =
π∗

E⊕F (x) and t∗Λ(π∗
E(E), sE) = Λ(π∗

E⊕F (E), sE ◦ t). Since sE ◦ t + sF 1 = sE⊕F ,
Equations (18) and (19) then give

Λ(π∗
E⊕F (E ⊕ F ), sE⊕F ) = Λ(π∗

E⊕F (E), sE ◦ t)⊗ Λ(π∗
E⊕F (F ), sF 1).
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Putting together the above calculations we obtain

φF 1
φE(x) = t∗(φE(x)) ⊗ Λ(t∗(F 1), sF 1)

= t∗π∗
E(x) ⊗ t∗(Λ(π∗

E(E), sE))⊗ Λ(t∗(F 1), sF 1)

= π∗
E⊕F (x) ⊗ Λ(π∗

E⊕F E, sE ◦ t)⊗ Λ(π∗
E⊕F F, sF 1)

= π∗
E⊕F (x) ⊗ Λ(π∗

E⊕F (E ⊕ F ), sE⊕F ) = φE⊕F
1 (x).

The proof is now complete. �

We are now ready to formulate and prove the Thom isomorphism in the
setting of gauge-equivariant vector bundles. Recall that the Thom morphism was
introduced in Definition 4.1.

Theorem 4.5. Let X → B be a G-bundle and F → X a complex G-equivariant
vector bundle, then φF : Ki

G(X)→ Ki
G(F ) is an isomorphism.

Proof. Assume first that F is a trivial bundle, that is, that F = X ×B V , where
V → B is a complex, finite-dimensional G-equivariant vector bundle. We continue
to assume that B is compact.

Let us denote by C := B × C the 1-dimensional G-bundle with the trivial
action of G on C. Also, let us denote by P (V ⊕C) the projective space associated
to V ⊕C. As a topological space, P (V ⊕C) identifies with the fiberwise one-point
compactification of V . The embeddings V ⊂ P (V⊕C) and V×BX ⊂ P (V⊕C)×BX
then gives rise to the following natural morphism (Equation (6))

j : K0
G(V)→ K0

G(P (V ⊕ C)), j : K0
G(V ×B X)→ K0

G(P (V ⊕ C)×B X).

Let X be compact and let x ∈ K0
G(P (V ⊕C)×B X) be arbitrary. The fibers

of the projectivization P (V ⊕ C) are complex manifolds, so we can consider the
analytical index of the correspondent family of Dolbeault operators over P (V ⊕1)
with coefficients in x (cf. [3, page 123]). This index is an element of K0

G(X) by
the results of [14]. Taking the composition with j (cf. [3, page 122-123]), we get a
family of mappings αX : K0

G(V ×B X)→ K0
G(X), having the following properties:

(i) αX is functorial with respect to G-equivariant morphisms;
(ii) αX is a morphism of K0

G(X)-modules;
(iii) αB(λV ) = 1 ∈ K0

G(B).
Let X+ := X ∪ B be the fiberwise one-point compactification of X . The

commutative diagram

0→ K0
G(V ×B X) �� K0

G(V ×B X+) ��

αX+

��

K0
G(V)

αB

��
0→ K0

G(X) �� K0
G(X+) �� K0

G(B)

with exact lines allows us to define αX for X non-compact as the restriction and
corestriction of αX+ .
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Let x ∈ K0
G(X), then by (ii)

αX(λV x) = αX(λV)x = x, αφ = Id . (21)

Let q := πF : F = V ×B X → X , p : X ×B V → X , q1 : V ×B X ×B V → V
(the projection onto the first entry), and q2 : X ×B V → B. Let us denote by ỹ ∈
K0

G(X×B V) the element obtained from y under the mapping X×B V → V ×B X ,
(x, v) �→ (−v, x) (such that V ×B X ×B V → V ×B X ×B V , (u, x, v) �→ (−v, x, u)
is homotopic to the identity).

Let y ∈ K0
G(V ×B X), then once again by (i), (ii) and then by (iii)

φ(αX(y)) = π∗
EαX(y)⊗ q∗λV = αX×BV(p∗1y)⊗ q∗λV = αX×BV(p∗1y ⊗ q∗λV )

= αX×BV(y � λV ) = αX×BV(λV � ỹ) = αX×BV(q∗1λV ⊗ ỹ)

= αX×BV(q∗1λV )⊗ ỹ = q∗2αB(λV )⊗ ỹ = q∗2(1)⊗ ỹ = ỹ ∈ K0
G(X ×B V), (22)

We obtain that φ ◦ αX is an isomorphism. Since αX ◦ φ = Id, αX is the two-sides
inverse of φ, and hence the automorphism φ ◦ αX is the identity.

The proof for a general (complex) G-equivariant vector bundle F → X can
be done as in [3, p. 124]. However, we found it more convenient to use the following
argument. Embed first F into a trivial bundle E = V ×B X . Let φ1 and φ2 be the
Thom maps associated to the bundles E → F and E → X . Then by Theorem 4.4
the diagram

K0
G(F )

φ1
�� K0

G(E)

K0
G(X)

φF

����������� φ2

�����������

is commutative, while φ2 is an isomorphism by the first part of the proof. Therefore
φF is injective. The same argument show that φ1 is injective. But φ1 must also be
surjective, because φ2 is an isomorphism. Thus, φ1 is an isomorphism, and hence
φF is an isomorphism too. �

5. Gysin maps

We now discuss a few constructions related to the Thom isomorphism, which will
be necessary for the definition of the topological index. The most important one
is the Gysin map. For several of the constructions below, the setting of G-spaces
and even G-bundles is too general, and we shall have to consider longitudinally
smooth G-fiber bundles πX : X → B. The main reason why we need longitudinally
smooth bundles to define the Gysin map is the same as in the definition of the
Gysin map for embeddings of smooth manifolds. We shall denote by TvertX the
vertical tangent bundle to the fibers of X → B. All tangent bundles below will be
vertical tangent bundles.

Let X and Y be longitudinally smooth G-fiber bundles, i : X → Y be an
equivariant fiberwise embedding, and pT : TvertX → X be the vertical tangent
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bundle to X. Assume Y is equipped with a G-invariant Riemannian metric and let
pN : Nvert → X be the fiberwise normal bundle to the image of i

Let us choose a function ε : X → (0,∞) such that the map of Nvert to itself

n �→ ε
n

1 + |n|
is G-equivariant and defines a G-diffeomorphism Φ : Nvert → W onto an open
tubular neighborhood W ⊃ X in Y.

Let (N⊕N)vert := Nvert⊕Nvert. The embedding i : X → Y can be written as
a composition of two fiberwise embeddings i1 : X → W and i2 : W → Y . Passing
to differentials we obtain

TvertX
di1−→ TvertW

di2−→ TvertY and dΦ : TvertN → TvertW,

where we use the simplified notation TvertN = TvertNvert.

Lemma 5.1. (cf. [10, page 112]) The manifold TvertN can be identified with p∗T (N⊕
N)vert with the help of a G-equivariant diffeomorphism ψ that makes the following
diagram commutative

p∗T (N ⊕N)vert

��

TvertN
ψ

��

��
TvertX

pT

		����������� Nvert

pN

���
���

��
�

X.

Proof. The vertical tangent bundle TvertN → Nvert and the vector bundle

p∗N (TvertX)⊕ p∗N (Nvert)→ Nvert

are isomorphic as G-equivariant vector bundles over Nvert.
Indeed, a point of the total space TvertN is a pair of the form (n1, t + n2),

where both vectors are from the fiber over the point x ∈ X. Similarly, we represent
elements p∗T (N ⊕ N)vert as pairs of the form (t, n1 + n2). Let us define ψ by the
equality ψ(n1, t + n2) = (t, n1 + n2). �

With the help of the relation i · (n1, n2) = (−n2, n1), we can equip

p∗T (N ⊕N)vert = p∗T (Nvert)⊕ p∗T (Nvert) (23)

with a structure of a complex manifold. Then we can consider the Thom homo-
morphism

φ : K0
G(TvertX)→ K0

G(p∗T (N ⊕N)vert).

Since TvertW is an open G-stable subset of TvertY and di2 : TvertW → TvertY is
a fiberwise embedding, by Equation (6), we obtain the homomorphism (di2)∗ :
K0

G(TvertW )→ K0
G(TvertY ).
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Definition 5.2. Let i : X → Y be an equivariant embedding of G-bundles. The
Gysin homomorphism is the mapping

i! : K0
G(TvertX)→ K0

G(TvertY ), i! = (di2)∗ ◦ (dΦ−1)∗ ◦ ψ∗ ◦ φ.

In other words, the Gysin map is obtained by passage to K-groups in the upper
line of the diagram

p∗T (N ⊕N)vert

qT

��

TvertN
ψ�� dΦ ��

��

TvertW
di2 ��

��

TvertY

��

TvertX
pT

		����������� Nvert

pN

���
��

��
�� Φ

��										

X
i1 �� W

i2 �� Y.

Another choice of metric and neighborhood W induces the homotopic map
and (by the item 3 of Theorem 5.3 below) the same homomorphism.

Theorem 5.3 (Properties of Gysin homomorphism). Let i : X → Y be a G-embed-
ding. Then

(i) i! is a homomorphism of K0
G(B)-modules.

(ii) Let i : X → Y and j : Y → Z be two fiberwise G-embeddings, then (j ◦ i)! =
j! ◦ i!.

(iii) Let fiberwise embeddings i1 : X → Y and i2 : X → Y be G-homotopic in the
class of embeddings. Then (i1)! = (i2)!.

(iv) Let i! : X → Y be a fiberwise G-diffeomorphism, then i! = (di−1)∗.
(v) A fiberwise embedding i : X → Y can be represented as a composition of

embeddings X in Nvert (as the zero section s0 : x → N) and Nvert → Y by
i2 ◦ Φ : Nvert → Y. Then i! = (i2 ◦ Φ)!(s0)!.

(vi) Consider the complex bundle p∗T (Nvert ⊗ C) over TvertX. Let us form the
complex Λ(p∗T (Nvert ⊗ C); 0) :

0→ Λ0(p∗T (Nvert ⊗ C)) 0−→ . . .
0−→ Λk(p∗T (Nvert ⊗ C))→ 0

with noncompact support. If a ∈ K0
G(TvertX), then the complex

a⊗ Λ(p∗T (Nvert ⊗ C), 0)

has compact support and defines an element of K0
G(TvertX). Then

(di)∗i!(a) = a · Λ(p∗T (Nvert ⊗ C); 0),

where di is the differential of the embedding i.
(vii) i!(x(di)∗y) = i!(x) · y, where x ∈ K0

G(TvertX) and y ∈ K0
G(TvertY ).
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Proof. (i) This follows from the definition of i!.

(ii) To simplify the argument, let us identify the tubular neighborhood with
the normal bundle. Then (j ◦ i)! is the composition

K0
G(TvertX)

φ−→ K0
G(TvertN ⊕ TvertN

′′
vert)→ K0

G(TvertZ),

where N ′
vert is the fiberwise normal bundle of Y in Z, N ′′

vert = N ′
vert|X , and for

the sum of tangent bundles to the vertical normal bundles TvertN ⊕ TvertN
′′
vert is

considered in the same way as a complex bundle over TvertX , as in Equation (23).
On the other hand, j! ◦ i! represents the composition

K0
G(TvertX)

φ−→ K0
G(TvertN)→ K0

G(TvertY )
φ−→ K0

G(TvertN
′
vert)→ K0

G(TvertZ).

By the properties of φ, the following diagram is commutative

K0
G(TvertX)

φ ��

φ

��














K0

G(TvertN) ��

φ

��

K0
G(TvertY )

φ

��
K0

G(TvertN ⊕ TvertN
′
vert)

φ ��

��

K0
G(TvertN

′
vert)

��
K0

G(TvertZ) K0
G(TvertZ).

This completes the proof of (ii).
(iii) The morphism qT depends only on the homotopy class of the embeddings

used to define it. The assertion thus follows from the homotopy invariance of K-
theory.

(iv) In this case N = X, W = Y, Φ = i, i2 = IdY , and the formula is obvious.
(v) This follows from (ii).
(vi) By definition,

(di)∗ ◦ i! = (di1)∗ ◦ (di2)∗ ◦ (di2)∗ ◦ (dφ−1)∗ ◦ ψ∗ ◦ φ∗ = (ψ ◦ dΦ−1 ◦ di1)∗ ◦ φ,

where i1 : X → W, i2 : W → Y. Let (n1, t + n2) ∈ TvertN = p∗N (TvertX) ⊕
p∗N (Nvert), where n1 is the shift under the exponential mapping and t + n2 is a
vertical tangent vector to W. If dΦ(n1, t + n2) is in TvertX , then n1 = n2 = 0.
Hence,

dΦ−1di1(t) = (0, t + 0), ψ ◦ dΦ−1 ◦ di1(t) = (t, 0 + 0).

Therefore, ψ ◦ dΦ−1 ◦ di1 : TvertX → p∗T (Nvert ⊕ Nvert) is the embedding of the
zero section. Since φ(a) = a · Λ(q∗T p∗T (Nvert ⊗ C), sp∗

T (Nvert⊗C)), it follows that
(di)∗ ◦ i!(a) = a · Λ(p∗T (Nvert ⊗ C), 0).



238 V. Nistor and E. Troitsky

(vii) The mapping di1 ◦ qT ◦ψ ◦dΦ−1 : TvertW → TvertW is homotopic to the
identical mapping. Hence,

i!(x · (di)∗y) = (di2)∗(dΦ−1)∗ψ∗φ(x · (di)∗y)
= (di2)∗(dΦ−1)∗ψ∗[(q∗T (x)λp∗

T (Nvert⊗C))(q∗T (di)∗y)]
= (di2)∗[(dΦ−1)∗ψ∗(q∗T (x)λp∗

T (Nvert⊗C)) (dΦ−1)∗ψ∗q∗T (di1)∗︸ ︷︷ ︸
Id

(di2)∗y]

= [(di2)∗(dΦ−1)∗ψ∗(q∗T (x)λp∗
T (Nvert⊗C))] [(di2)∗(di2)∗y] = i!(x) · y.

The proof is now complete. �

We shall need also the following properties of the Gysin map. If X = B,
the trivial longitudinally smooth G-bundle, we shall identify TvertX = B and
TvertV = V ⊗ C for a real bundle V → B.

Theorem 5.4. Suppose that V → B is a G-equivariant real vector bundle and that
X = B. Then the mapping

i! : K0
G(B) = K0

G(TXvert)→ K0
G(TvertV) = K0

G(V ⊗ C)

coincides with the Thom homomorphism φV⊗C.

Proof. The assertion follows from the definition of i!. More precisely, let X =
B ↪→ V , N = V be the zero section embedding. In the definition of the Thom
homomorphism, W can be chosen to be equal to the bundle D1 of interiors of the
balls of radius 1 in V with respect to an invariant metric. In this case, the diagram
from the definition of the Gysin homomorphism 5.2 takes the following form

V ⊗ C

��

Ψ �� V ⊗ C
dΦ ��

��

D1 ⊗ C
di2 ��

��

V ⊗ C

��

TvertX = B

		����������� V

�������������
Φ

��

X = B
i1 �� D1

i2 �� V .

In our case Ψ = Id and di2 ◦ dΦ is homotopic to Id, since this map has the form
v ⊗ z �→ (v ⊗ z)/(1 + |v ⊗ z|). Hence, i! = φ. �

Theorem 5.5. Suppose that V ′ and V ′′ are G-equivariant R-vector bundles over B
and that i : X → V ′ is an embedding. Let k : X → V ′ ⊕V ′′, k(x) = i(x) + 0. Let φ
be the Thom homomorphism of the complex bundle

Tvert(V ′ ⊕ V ′′) = V ′ ⊗ C⊕ V ′′ ⊗ C −→ TvertV ′ = V ′ ⊗ C.
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Then the following diagram is commutative

K0
G(TvertV ′)

φ

��

K0
G(TvertX)

i!

���������������

k! ���������������

K0
G(Tvert(V ′ ⊕ V ′′)).

Proof. To prove the statement, let us consider the embedding i : X → V ′ and de-
note, as before, by Nvert the fiberwise normal bundle and by W the tubular neigh-
borhood appearing in the definition of the Thom homomorphism associated to i.
Then Nvert⊕V ′′ is a fiberwise normal bundle for the embedding k with the tubular
neighborhood W ⊕D(V ′′), where D(V ′′) is a ball bundle. If a ∈ K0

G(TvertX), then

k!(a) = (di2 ⊕ 1)∗ ◦ (dΦ−1 ⊕ 1)∗ ◦ (ψ ⊕ 1)∗ ◦ φN⊕N⊕V′′⊕V′′
(a).

We have φN⊕N⊕V′′⊕V′′
= φN⊕N ◦φV′′⊕V′′

, by Theorem 4.4. Since a = a ·C, where
C is the trivial line bundle, we obtain

k!(a) = (di2)∗ ◦ (dΦ−1)∗ ◦Ψ∗ ◦ φNvert⊕Nvert(a) ◦ φV′′⊕V′′
(C)

= i!(a) · λT (V′⊕V′′)vert = φ(i!(a)). (24)

The proof is now complete. �

6. The topological index

We begin with a “fibered Mostow-Palais theorem” that will be useful in defining
the index.

Theorem 6.1. Let πX : X → B be a compact G-fiber bundle. Then there exists
a real G-equivariant vector bundle V → B and a fiberwise smooth G-embedding
X → V. After averaging one can assume that the action of G on V is orthogonal.

Proof. Fix b ∈ B and let U be an equivariant trivialization neighborhood of b for
both X and G. By the Mostow-Palais theorem, there exists a representation of Gb

on a finite dimensional vector space Vb and a smooth Gb-equivariant embedding
ib : Xb → Vb. This defines an embedding

ψ : π−1
X (Ub)  Ub ×Xb → Ub × Vb, (25)

which is G-equivariant in an obvious sense.
We can cover B with finitely many open sets Ubj , as above, corresponding to

the points bj , j = 1, . . . , N . Denote by Vj the corresponding representations and
by ψj the corresponding embeddings, as in Equation (25). Let W := ⊕Vj . Also,



240 V. Nistor and E. Troitsky

Let φj be a partition of unity subordinated to the covering by Uj = Ubj . We define
then

Ψ := ⊕(φj ◦ πX)ψj : X → B ×W,

which is a G-equivariant embedding of X into the trivial G-equivariant vector
bundle V := B ×W , as desired. �

Let us now turn to the definition of the topological index. Let X → B be
a compact, longitudinally smooth G-bundle. From Theorem 6.1 it follows that
there exists an G-equivariant real vector bundle V → B and a fiberwise smooth
G-equivariant embedding i : X → V . We can assume that V is endowed with an
orthogonal metric and that G preserves this metric. Thus, the Gysin homomor-
phism

i! : K0
G(TvertX)→ K0

G(TvertV) = K0
G(V ⊗ C)

is defined (see Section 4). Since TvertV = V ⊗ C is a complex vector bundle, we
have the following Thom isomorphism (see Section 4):

φ : K0
G(B) ∼−→ K0

G(TvertV).

Definition 6.2. The topological index is by definition the morphism:

t-indX
G : K0

G(TvertX)→ K0
G(B), t-indX

G := φ−1 ◦ i!.

The topological index satisfies the following properties.

Theorem 6.3. Let X → B be a longitudinally smooth bundle and

t-indX
G : K0

G(TvertX)→ K0
G(B)

be its associated topological index. Then

(i) t-indX
G does not depend on the choice of the G-equivariant vector bundle V

and on the embedding i : X → V.
(ii) t-indX

G is a K0
G(B)-homomorphism.

(iii) If X = B, then the map

t-indX
G : K0

G(B) = K0
G(TvertX)→ K0

G(B)

coincides with IdK0
G(B).

(iv) Suppose X and Y are compact longitudinally smooth G-bundles, i : X → Y
is a fiberwise G-embedding. Then the diagram

K0
G(TvertX)

i! ��

t-indX
G 		����������

K0
G(TvertY )

t-indY
G

����������

K0
G(B).

commutes.
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Proof. To prove (i), let us consider two embeddings

i1 : X → V ′,

i2 : X → V ′′

into G-equivariant vector bundles. Denote by j = i1 + i2 the induced embedding
j : X → V ′ ⊕ V ′′. It is sufficient to show that i1 and j define the same topological
index. Let us define a homotopy of G-embeddings by the formula

js(x) = i1(x) + s · i2(x) : X → V ′ ⊕ V ′′, 0 ≤ s ≤ 1.

Then, by Theorems 5.3(iii) and 5.5, the indices for j and j0 coincide. Let us show
now that j0 = i1 + 0 and i1 define the same topological indexes. For this purpose
consider the diagram

K0
G(TvertX)

(i1)!

�������������
(j0)!

���������������

K0
G(TvertV ′)

φ2 �� K0
G(Tvert(V ′ ⊕ V ′′)),

K0
G(B)

φ1

������������� φ3

���������������

where φi are the corresponding Thom homomorphisms. The upper triangle is
commutative by Theorem 5.4.2, and the lower is commutative by Theorem 4.4.
Hence φ−1

1 ◦ (i1)! = φ−1
3 ◦ (j0)1 as desired.

(ii) follows from 4.2 and 5.3(i). Property (iii) follows from the definition of
the index and from 5.4.

To prove (iv), let us consider the diagram

X
i ��

j◦i ���
��

��
��

� Y

j����
��

��
�

V .

We now use 5.3(ii). This gives the commutative diagram

K0
G(TvertX)

i! ��

(j◦i)! �������������
K0

G(TvertY )

j!�������������

K0
G(TvertV)
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or

K0
G(TvertX)

i! ��

(j◦i)!

�������������

t-indX
G

���
��

��
��

��
��

��
��

��
��

K0
G(TvertY )

j!

�������������

t-indY
G

����
��

��
��

��
��

��
��

��
�

K0
G(TvertV)

K0
G(B).

φ

��

This completes the proof. �

We now investigate the behavior of the topological index with respect to fiber
products of bundles of compact groups.

Theorem 6.4. Let π : P → X be a principal right H-bundle with a left action of G
commuting with H. Suppose F is a longitudinally smooth (G × H)-bundle. Let us
denote by Y the space P ×H F . Let j : X ′ → X and k : F ′ → F be fiberwise G-
and (G ×H)-embeddings, respectively. Let π′ : P ′ → X ′ be the principal H-bundle
induced by j on X ′. Assume that Y ′ := P ′×H F ′. The embeddings j and k induce
G-embedding j ∗ k : Y ′ → Y . Then the diagram

K0
G(TvertX)⊗K0

G(B) K0
G×H(TvertF ) γ �� K0

G(TvertY )

K0
G(TvertX

′)⊗K0
G(B) K0

G×H(TvertF
′) γ ��

j!⊗k!

��

K0
G(TvertY

′)

(j∗k)!

��

is commutative.

Let us remark that in the statement of this theorem there is no compactness
assumption on X, X ′, F, and F ′, since there is no compactness assumption in
the definition of the Gysin homomorphism. This is unlike in the definition of the
topological index where we start with a compact G-bundle X → B.

Proof. Let us use the definition of γ:

K0
G(TvertX)⊗K0

G×H(TvertF ) ��

1

K0
G(TvertX)⊗K0

G×H(P × TvertF )
∼= ��

2

K0
G(TvertX

′)⊗K0
G×H(TvertF

′) ��

j!⊗k!

��

K0
G(TvertX

′)⊗K0
G×H(P ′ × TvertF

′)

ε

��

∼= ��

∼= K0
G(TvertX)⊗K0

G(P ×H TvertF )→

3

K0
G(π∗

1TvertX)⊗K0
G(P ×H TvertF )→

∼= K0
G(TX ′)⊗K0

G(P ′ ×H TvertF
′)→

β

��

K0
G((π′

1)
∗TvertX

′)⊗K0
G(P ′ ×H TvertF

′)→

α

��
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→ K0
G((π∗

1TvertX)× (P ×H TvertF ))→
4

→ K0
G((π′

1)
∗TvertX

′ × (P ′ ×H TvertF
′))→

(26)

→ K0
G(π∗

1TvertX ⊕ (P ×H TvertF )) = K0
G(TvertY )

4 ↑ (j ∗ k)!
→ K0

G((π′
1)

∗TvertX
′ ⊕ (P ′ ×H TvertF

′)) = K0
G(TY ′

vert),

where projections π1 : Y = P ×H F → X and π′
1 : Y ′ = P ×HF ′ → X ′ are defined

as above. Here we use the isomorphism K0
G×H(P ×W ) ∼= K0

G(P ×H W ) for a free
H-bundle P (see Theorem 2.6). Let us remind the diagram, which was used for
the definition of the Gysin homomorphism of an embedding j : X ′ → X :

p∗T (NX′ ⊕NX′)vert

qX′
T

��

TvertNX′
ψ�� dΦX′ ��

��

TvertWX′
dj2 ��

��

TvertX

��

TvertX
′

pT

��������������
NX′,vert

pN
X′,vert

�����������
ΦX′

		����������

X ′ j1 �� WX′
j2 �� X.

From the similar diagrams for k! and (j ∗ k)! and the explicit form of these maps,
it follows that the square 4 in (26) is commutative if, and only if, α has the
following form:

α(σ ⊗ ρ) = (π∗
1)

{
(dj2)∗ (dΦ−1

X′ )∗ ψ∗
X′

}
◦ φS(σ)⊗

⊗(π∗j2 ×H dk2)∗
(
(π∗ΦX′ ×H dΦF ′)−1

)∗
(1×H ψF ′)∗ φR(ρ),

where S and T are bundles of the form

π∗
1

(
(pX′

T )∗{NX′ ⊕NX′}
)

π∗NX′ ×H (pF ′
T )∗ (NF ′ ⊕NF ′)

S : ↓ (π′
1)

∗qX′
T R : ↓ (π′)∗(pNX′ )×H qF ′

T

(π′
1)

∗ (TvertX
′), π∗ X ′ ×H TvertF

′ = P ′ ×H TvertF
′.

Hence the square 3 in (26) is commutative if, and only if, the homomorphism β
has the form

β(τ ⊗ ρ) = j!(τ)⊗ ⊗ (π∗j2 ×H dk2)∗
(
(π∗ΦX′ ×H dΦF ′)−1

)∗
(1×H ψF ′)∗ φR(ρ),

where τ ∈ K0
G(TX ′), ρ ∈ K0

G(P ′ ×H TF ′). In turn, the square 2 in (26) is com-
mutative if, and only if, the homomorphism ε has the form

ε(τ ⊗ δ) = j!(τ)⊗ ⊗(π∗j2 ×H dk2)∗
(
(π∗ΦX′ ×H dΦF ′)−1

)∗
(1 ×H ψF ′)∗ φR̃

C (δ),
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where τ ∈ K0
G(TX ′), δ ∈ K0

G×H(P ′ × TF ′), and R̃ is the bundle

π∗NX′ × (pF ′
T )∗ (NF ′ ⊕NF ′)

R̃ : ↓ (π′)∗(pN )× qF ′
T

P ′ × TF ′.

Suppose δ = [C]⊗̂ω, where [C] ∈ K0
G×H(P ′), C is the one-dimensional trivial

bundle and ω ∈ K0
G×H(TF ′). Then

ε(τ ⊗ δ) = j!(τ)⊗
{

π∗(j2)∗(Φ−1
X′ )∗[C]⊗̂k!(ω)

}
=

= j!(τ)⊗
{

[C]⊗̂k!(ω)
}
.

Since the map K0
G×H(TF ) → K0

G×H(P × TF ) (as well as the lower line in (26))
has the form ω �→ [C]⊗̂ω, we have proved the commutativity of 1 in (26). �

From this theorem we obtain the following corollary.

Corollary 6.5. Let M be a compact smooth H-manifold, let H = B×H, and let P
be a principal longitudinally smooth H-bundle over X carrying also an action of
G commuting with the action of H. Also, let X → B be a compact longitudinally
smooth G-bundle. Let Y := P ×H M → X be associated longitudinally smooth
G-bundle. Taking F = B × M , we define TMY := TF Y . Then TMY is a G-
invariant real subbundle of TvertY and TMY = P ×H TM . Let j : X ′ → X be
a fiberwise G-equivariant embedding and let k : M ′ → M be an H-embedding.
Denote by π′ : P ′ → X ′ the principal H-bundle induced by j on X ′ and assume
that Y ′ := P ′×H M ′. The embeddings j and k induce G-embedding j ∗k : Y ′ → Y .
Then the diagram

K0
G(TvertX)⊗K0

H(TM)
γ �� K0

G(TvertY )

K0
G(TvertX

′)⊗K0
H(TM ′)

γ ��

j!⊗k!

��

K0
G(TvertY

′)

(j∗k)!

��

is commutative.
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Pseudodifferential Subspaces and
Their Applications in Elliptic Theory

Anton Savin and Boris Sternin

Abstract. The aim of this paper is to explain the notion of subspace defined
by means of pseudodifferential projection and give its applications in elliptic
theory. Such subspaces are indispensable in the theory of well-posed boundary
value problems for an arbitrary elliptic operator, including the Dirac operator,
which has no classical boundary value problems. Pseudodifferential subspaces
can be used to compute the fractional part of the spectral Atiyah–Patodi–
Singer eta invariant, when it defines a homotopy invariant (Gilkey’s problem).
Finally, we explain how pseudodifferential subspaces can be used to give an
analytic realization of the topological K-group with finite coefficients in terms
of elliptic operators. It turns out that all three applications are based on a
theory of elliptic operators on closed manifolds acting in subspaces.

Mathematics Subject Classification (2000). Primary 58J20; Secondary 58J28,
58J32, 19K56.

Keywords. elliptic operator, boundary value problem, pseudodifferential sub-
space, dimension functional, η-invariant, index, modn-index, parity condition.

Introduction

Pseudodifferential subspaces and boundary value problems. A subspace (of some
space of functions) is said to be pseudodifferential if it is determined by a projection
that is a pseudodifferential operator.

The notion of pseudodifferential projections (and subspaces) goes back to
the work of Hardy, who defined the celebrated Hardy space as the range of a
pseudodifferential projection in the space of square integrable functions on the
circle; since then, pseudodifferential subspaces were used in the theory of Toeplitz
operators (Gohberg–Krein [37]), in the proof of the finiteness theorem for classical
boundary value problems (Calderón, Seeley [26, 67, 69]), in the construction of
asymptotics of eigenvalues (Birman–Solomyak [14]) and in other places.

The work was partially supported by RFBR grants NN 05-01-00982, 03-02-16336, 06-01-00098
and presidential grant MK-1713.2005.1.
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Subspaces also have significant applications in studies related to topology. Let
us give some examples. In the paper of Wojciechowski [73] (an extended account
of the results can be found in [18]) it was shown that the space of projections that
differ from a fixed (say, pseudodifferential) projection by a compact operator is a
classifying space for K-theory. This result is similar to the Atiyah–Jänich theorem
[6], which gives a realization of the classifying space for K-theory in terms of
Fredholm operators. Subspaces defined by pseudodifferential projections served as
a prototype for the definition by Kasparov [42] and Brown–Douglas–Fillmore [25]
of the odd analytic K-homology.

Pseudodifferential subspaces are also important in modern elliptic theory.
Indeed, it is well known that by no means all elliptic operators on a manifold
with boundary have well-defined (Fredholm) boundary value problems. In other
words, for a general elliptic operator one cannot impose boundary conditions such
that the so-called Shapiro–Lopatinskii condition is satisfied (e.g., see [41]). Un-
fortunately, the class of operators for which such conditions do not exist includes
many important operators such as Cauchy–Riemann, Dirac, signature operators
and others. The following question emerges naturally: is there a natural extension
of elliptic theory which enables one to define Fredholm boundary value problems
for geometric operators?

The answer to this question is contained in this paper. Let us explain it here
in a few words. The simplest examples like the Cauchy–Riemann operator show
that although these operators do not have Fredholm problems in Sobolev spaces,
Fredholm problems do exist if the boundary values belong to some subspaces of
the Sobolev spaces, e.g., the Hardy space (for the Cauchy–Riemann operator).

Important examples of well-defined boundary value problems were defined for
Dirac operators in the series of papers by Atiyah, Patodi, and Singer [2, 3, 4] on
spectral asymmetry. In particular, it was shown that for a suitable choice of the
subspace the boundary value problem has the Fredholm property and its index
was calculated. Actually, a closer look shows that pseudodifferential subspaces
appear already in classical boundary value problems as the so-called Calderón–
Seeley subspaces. In this case, the Shapiro–Lopatinskii (Atiyah–Bott) condition
requires this subspace to be isomorphic to a Sobolev space. Of course, this is a
very restrictive condition. Calderón–Seeley subspaces rarely satisfy it. On the other
hand, in the framework of pseudodifferential subspaces this restrictive condition
is absent and the existence of well-defined boundary value problems for arbitrary
operators is a trivial statement: it suffices to take the Calderón–Seeley subspace
as the space of boundary values of the problem.

Homotopy invariants of pseudodifferential subspaces and the Atiyah–Patodi–Sin-
ger η-invariant. The question of finding homotopy invariants of pseudodifferential
subspaces is very important and interesting. It turns out that such invariants can
be obtained from suitable index formulas for elliptic operators acting in subspaces.
For sufficiently large classes of operators, the index is the sum of contributions of
the principal symbol and of the subspaces. More precisely, there are index formulas
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[64, 65]
ind(D, L̂1, L̂2) = f(σ) + d(L̂1)− d(L̂2), (0.1)

where the triple D, L̂1, L̂2 defines an elliptic operator in subspaces L̂1 and L̂2, σ
is the principal symbol of D, d is the dimension functional defined on the class of
pseudodifferential subspaces, and f is a functional on the set of principal symbols
of elliptic operators. If the subspaces L̂1,2 satisfy the so-called parity condition
(see below), d(L̂) is equal to the η-invariant of a self-adjoint operator having L̂ as
its positive spectral subspace.

Let us note that the functional d is not a homotopy invariant of the principal
symbol of the projection defining the subspace. However, one can show that the
fractional part of this functional is homotopy invariant. Thus we have the problem
of computing this fractional part in topological terms.

The interest in this problem originates from the fact that, as we mentioned
earlier, if the parity condition is satisfied, then the functional d coincides with the
η-invariant of Atiyah, Patodi, and Singer. The computation of the fractional part
of the η-invariant has important applications (see below).

It is well known that the η-invariant of an elliptic self-adjoint operator is only
a spectral invariant. However, in some classes of operators its fractional part defines
a homotopy invariant. If the η-invariant is a homotopy invariant, one obtains the
problem of computing it in topological terms. The first computation of the η-
invariant was made in [3, 4], where operators with coefficients in flat bundles were
considered.

Another interesting class of operators with homotopy invariant η-invariants
was found by P. Gilkey [35]. This class consists of differential operators with
the parity of their order opposite to the parity of the dimension of the mani-
fold (Gilkey’s parity condition). The homotopy invariant fractional part of the
η-invariant is computed in this case in terms of subspaces (see [60], [62]). Such
computations have important applications in geometry. Here we confine ourselves
to a brief survey of results directly related to the present paper. For other aspects
of the η-invariant, we refer the reader to remarkable surveys [70], [15], [52], [58].

For example, in the theory of pinc bordisms (the distinctive feature of this
theory is that the bordism group has elements of all arbitrary large orders 2n)
there is a natural question: what numerical invariants can be used to detect torsion
elements of high order? It turns out that the answer can be given in terms of the
η-invariant. The point is that odd-dimensional pinc-manifolds bear the natural
Dirac operator [33]. The fractional part of the η-invariant of this operator gives a
(fractional) genus of pinc-manifolds. It is proved in [12] that the Stiefel–Whitney
numbers and this fractional genus classify pinc-manifolds up to bordism.

We would like to note that formulas like (0.1) hold for many more operators
than those specified by the parity condition. However, the invariants appearing in
such formulas may not coincide with the η-invariant. Their determination is a very
interesting question. For instance, an analog of the index formula (0.1) for the Dirac
operator (its positive spectral subspace does not satisfy Gilkey’s condition) involves
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the Kreck–Stolz invariant [45] and the Eells–Kuiper invariant [29] (see section 3 of
the present paper). Let us recall that the former distinguishes homotopy classes of
positive scalar curvature metrics, while the latter deals with the 28 exotic 7-spheres
of Milnor.

Pseudodifferential subspaces and mod n index theory. The K-group of the cotan-
gent bundle T ∗X of a closed manifold classifies elliptic operators on X up to stable
homotopy. It follows, in particular, that any element of the K-group Kc(T ∗X) can
be realized as an elliptic operator on X . Does the same statement hold for the
K-groups with finite coefficients Zn? We show (see also [60]) that the answer is
“yes”: on a smooth manifold, the elements of the K-group with coefficients are
realized by pseudodifferential operators in subspaces.

We would like to mention that a similar problem appeared earlier. For in-
stance, in the theory of spectral boundary value problems or b-pseudodifferential
operators, Freed and Melrose studied so-called “modulo n” index theory in [30, 31],
where manifolds with Zn-singularities appear as a geometric model [55, 71, 50].
Topological aspects of such manifolds were also studied. Mironov [49] defined the
product of Zn-manifolds, which is again a Zn-manifold (the classification prob-
lem for products in the smooth situation is studied, for example, in [22]). From
this point of view, the following problem suggested by Buchstaber is of interest:
when is the index (modulo n) of elliptic operators multiplicative under Mironov’s
product? We note that for the signature operator the answer is “yes” [50].
Outline of the paper. In the first section, we explain the theory of elliptic operators
in subspaces of Sobolev space on a closed manifold without boundary. Here we give
two important results. The first concerns the necessary and sufficient conditions
for the decomposition of the index of an elliptic operator into the sum of homotopy
invariant contributions of the principal symbol and the subspaces in which it acts.
The second result is the index formula for elliptic operators in pseudodifferential
subspaces. Let us note one important fact: the index of an elliptic operator in
subspaces is not determined by the principal symbol of the operator, but also de-
pends on the subspaces.1 In the second section, we discuss the theory of boundary
value problems for elliptic operators in subspaces. We show how pseudodifferential
subspaces appear in classical boundary value problems (i.e., boundary value por-
blems satisfying the Shapiro–Lopatinskii condition), Atiyah–Patodi–Singer spec-
tral boundary value problems [2], and boundary value problems for general elliptic
operators [66]. We give index formulas for general operators and for specific oper-
ators. The third section explains the application of pseudodifferential subspaces to
the problem of computation of the fractional part of the η-invariant for the case
in which the latter has the homotopy invariance property. We give formulas for
the η-invariant in terms of Poincaré duality in K-theory. Finally, in Section 4 we
explain index theory “modulo n” of Freed and Melrose on Zn-manifolds and index
theory “modulo n” on manifolds without boundary.

1In fact, even the complete symbols of the operator and the projections defining the subspaces
are insufficient to determine the index.
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1. Elliptic theory in subspaces on a closed manifold

In this section, we introduce elliptic operators acting in subspaces on a closed
manifolds. We use this theory (which is very simple from the analytic point of
view) to illustrate the main topological aspects of index theory in subspaces.

1.1. Statement of problems in subspaces

Subspaces and symbols. Let E be a complex vector bundle over a closed mani-
fold M .

Definition 1. [13] A linear subspace L̂ ⊂ C∞ (M, E) is said to be pseudodifferential
if it can be represented as the range

L̂ = Im P

of a projection P : C∞ (M, E) → C∞ (M, E) , P 2 = P , that is a classical (see
[43]) pseudodifferential operator of order zero.

Just as pseudodifferential operators are distinguished in the set of all linear
operators by the property that they have symbols (which is a function on the
cotangent bundle of the manifold), pseudodifferential subspaces also have symbols.

Definition 2. The symbol L of a pseudodifferential subspace L̂ is the vector bundle

L = Im σ (P ) ⊂ π∗E, L ∈ Vect (S∗M)

over the cosphere bundle S∗M, defined as the range of the principal symbol of P .
Here π : S∗M →M is the natural projection.

The symbol of a subspace does not depend on the choice of a projection.

Example 1. The Hardy space Ĥ ⊂ C∞ (
S1

)
of boundary values of holomorphic

functions in the unit disc D2 ⊂ C is pseudodifferential. Indeed, the orthogonal
projection P onto the Hardy space is a pseudodifferential operator of order zero
with principal symbol equal to (e.g., see [56])

σ (P ) (ϕ, ξ) =
{

1, ξ = 1,
0, ξ = −1,

(ϕ, ξ) ∈ S∗S1 = S1
+ � S1

−. (1.1)

This gives us

H (ϕ, ξ) = Im σ(P )(ϕ, ξ) =
{

C, if ξ = 1,
0, if ξ = −1.

To put this another way, the symbol is one-dimensional on the first component
of the cosphere bundle and zero-dimensional on the second component. However,
in higher dimensions the space of boundary values of holomorphic functions is no
longer pseudodifferential. The projections defining such subspaces are called Szegö
projections. The notion of symbol of such operators and subspaces requires more
subtle techniques (see [23]) and goes beyond the scope of the present paper.

Example 2. The space of sections of a vector bundle E is defined by the identity
projection, and the symbol coincides with the pullback of E to S∗M .
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Subspaces and self-adjoint operators. There is a convenient way to construct sub-
spaces starting from self-adjoint elliptic operators. If A is an elliptic self-adjoint
operator of order ≥ 0 on M , then the nonnegative spectral subspace denoted by
L̂+(A) is the subspace generated by eigenvectors of A with nonnegative eigenval-
ues.

For example, the nonnegative spectral subspace of −id/dϕ on the circle is
the Hardy space. It turns out that in the general case the spectral subspace is
pseudodifferential and its symbol can be identified easily.

Proposition 1. The symbol of the spectral subspace is equal to

L+ (A) = L+ (σ (A)) , (1.2)

where L+(σ(A)) ∈ Vect(S∗M) is the subbundle in π∗E generated by eigenvectors
of σ(A) with positive eigenvalues.

Formula (1.2) can be obtained if we rewrite the projection Π+ (A) defining
L̂+(A) as

Π+ (A) =
|A|+ A

2 |A| , |A| =
√

A2

(we assume that A is invertible). By a theorem of Seeley [68], the symbol of the
absolute value of an operator is equal to the absolute value of the symbol. Hence
Π+ (A) is a pseudodifferential operator with symbol

σ (Π+ (A)) =
|σ (A)|+ σ (A)

2 |σ (A)| = Π+ (σ (A)) .

This implies (1.2). �

Example 3. The space of closed forms of degree k on a compact manifold M
without boundary is pseudodifferential, since it is the spectral subspace of the
elliptic self-adjoint operator dδ − δd of order two (δ is the adjoint of the exterior
derivative d).

It follows from Proposition 1 that an arbitrary smooth subbundle L ⊂ π∗E is
the symbol of a pseudodifferential subspace [13]. To prove this, it suffices to define
an elliptic self-adjoint operator A with L+(σ(A)) = L. This is obviously possible.

The infinite Grassmannian and the relative index of subspaces. We point out that
there are many subspaces with the same symbol. For example, we do not change
the symbol if we add any finite-dimensional subspace to a given subspace.

It is useful to make a comparison with the usual operators. Here the space
of operators with a given symbol is contractible. In the case of subspaces, the
corresponding space has a nontrivial topology. In more detail, let us fix the symbol
L of a subspace. Let GrL be the (infinite) Grassmannian of subspaces with symbol
equal to L.
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Theorem 1. (Wojciechowski [73]) Suppose that 0 < dimL < dimE. Then the
Grassmannian GrL is a classifying space for K-theory; i.e., the set of homo-
topy classes of maps [X, GrL] is isomorphic to the group K (X) for any compact
space X.

The classifying map can be given explicitly in terms of one very important
invariant of subspaces [24]. The relative index of a pair of subspaces L̂1,2 with the
same principal symbol is the index of the following Fredholm operator:

ind(L̂1, L̂2)
def
= ind(PL̂2

: L̂1 → L̂2) ∈ Z,

where PL̂2
is the orthogonal projection onto L̂2. The relative index is sometimes

referred to as the relative dimension of subspaces, since if one of the subspaces is
inside another, then it coincides with the corresponding codimension.

Now we use the relative index to give an explicit formula for the isomorphism
in the theorem of Wojciechowski: the map takes a family {L̂x}x∈X of subspaces to
the relative index ind(L̂x, L̂) ∈ K (X) with some given subspace L̂. It follows from
this theorem that the Grassmannian has countably many connected components
and two subspaces are homotopic if and only if their relative index is zero.

Operators in subspaces.

Definition 3. [64] A pseudodifferential operator of order m in subspaces is a triple
(D, L̂1, L̂2), where

D : L̂1 −→ L̂2

is a linear operator acting between pseudodifferential subspaces. We assume that
D is a restriction of a pseudodifferential operator of order m acting in the ambient
spaces of sections.

For operators in subspaces, it is easy to prove most of the analytic facts of
elliptic theory, such as the symbolic calculus, ellipticity, smoothness of solutions
and so on.

Definition 4. The symbol of an operator in subspaces is the vector bundle homo-
morphism

σ (D) : L1 −→ L2. (1.3)

The symbol is well defined, since the condition DL̂1 ⊂ L̂2 can be restated
in terms of the projections defining L̂1,2 as P2DP1 = DP1. If we consider the
symbols of operators, the latter equality gives (1.3). Note finally that an arbitrary
homomorphism (1.3) is the symbol of some operator in subspaces.

Elliptic operators.

Definition 5. An operator in subspaces is elliptic if its principal symbol (1.3) is an
isomorphism.
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Theorem 2. An elliptic operator D of order m has the Fredholm property as an
operator

D : Hs (M, E1) ⊃ L̂1 −→ L̂2 ⊂ Hs−m (M, E2) ,

in the closures of the subspaces L̂1,2 ⊂ C∞(M, E1,2) in the Sobolev norm.

To prove the theorem, it suffices to take as a regularizer an arbitrary operator
from L̂2 to L̂1 with symbol σ (D)−1 : L2 −→ L1. The desired properties of the
regularizer follow from the standard composition formulas. �

The index does not depend on the Sobolev smoothness exponent s and is
denoted by ind(D, L̂1, L̂2).

As opposed to analytical aspects, the topological aspects of index theory
in subspaces have new effects compared with the Atiyah–Singer theory. We will
describe these effects in the next section.

1.2. Index decompositions and dimensions of infinite-dimensional subspaces

The most important property of the index of pseudodifferential operators is its
homotopy invariance, i.e., constancy for continuous deformations of operators. For
operators in subspaces, the index remains constant also for deformations of the
subspaces.

Proposition 2. For a continuous family of Fredholm operators

Dt : Im Pt −→ Im Qt, t ∈ [0, 1] , Im Pt ∈ H1, Im Qt ∈ H2

in subspaces Im Pt, Im Qt of some fixed Hilbert spaces, the index remains constant.
By continuity we mean the continuity of the family Dt : H1 → H2 and continuity
of the families Pt, Qt.

The proof of this proposition can be obtained if we reduce our family to a family
in fixed spaces. A reduction can be done by virtue of the following well-known
fact: for a continuous family of projections, there exists a continuous family of
invertible operators Ut realizing the equivalence of projections Pt = UtP0U

−1
t

(e.g., see [17]). �

As soon as the index is homotopy invariant, we arrive at the index problem:
the index has to be computed in topological terms. However, unlike the index of
the usual elliptic operators in sections of vector bundles, the index of operators in
subspaces is not determined by the principal symbol of the operator. For example,
all finite-dimensional operators have zero principal symbol, but their index can be
any number. A closer look at the problem shows that the index is determined if
we fix the the principal symbol and the subspaces

ind
(
D, L̂1, L̂2

)
= f

(
σ (D) , L̂1, L̂2

)
.
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Index decomposition problem. Thus there are two sorts of contributions to the
index: of the finite-dimensional data of the problem (the principal symbol) and
infinite-dimensional (the subspaces). A natural question arises: is the index equal
to the sum

ind
(
D, L̂1, L̂2

)
= f1 (σ (D)) + f2

(
L̂1, L̂2

)
, (1.4)

of these two contributions? If such a decomposition of the index is possible, then
how to obtain the corresponding index formula? Since the index is a homotopy
invariant, we will also require that both contributions are homotopy invariant.

Let us analyze the index decomposition (1.4). We first make an obvious re-
mark. If the subspaces were of finite dimension, then the index would be equal to
zero plus the difference of dimensions of the spaces. This observation enables us to
give the following important reformulation of the index decomposition problem.

Dimension functionals.

Definition 6. A homotopy invariant functional d on the set of subspaces is a di-
mension functional if it has the following property: for two subspaces with equal
symbols,

d(L̂1)− d(L̂2) = ind(L̂1, L̂2).

Remark 1. Usually dimension functionals are defined in terms of trace function-
als. Namely, if T : A −→ C is a trace functional (this means that T is linear and
T (ab) = T (ba)) on an operator algebra A that extends the usual operator trace on
finite-rank operators. Then a dimension functional of a subspace L̂ = Im P defined
as the range of projection P ∈ A is defined as d(L̂) := T (P ). Such extensions of
the operator trace were studied by Kontsevich-Vishik [44] for algebras of pseudo-
differential operators on smooth manifolds. We would also like to refer the reader
to [38, 39, 46, 48, 51, 54] for some of the studies of traces on more general operator
algebras and applications.

Lemma 1. There exists an index decomposition (1.4) for operators in subspaces
D : L̂ → C∞(M, F ) if and only if there exists a dimension functional on the set
of subspaces.

For the proof, it suffices to show that the difference ind(D, L̂)−d(L̂) does not
depend on the choice of the subspaces and is a homotopy invariant of the symbol.
This is proved using the logarithmic property of the index in subspaces: if we take
an elliptic operator and replace a subspace by a different subspace with the same
principal symbol, then the index is changed by the relative index of subspaces. �

The assumption in the lemma that one of the subspaces is the space of vector
bundle sections does not restrict generality, since an arbitrary operator D : L̂1 →
L̂2 can be reduced to such a form by adding the identity operator in the orthogonal
complement L̂⊥

2 .
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Obstruction to index decomposition. As a rule, pseudodifferential subspaces are
infinite-dimensional (in the usual sense). Hence it is no wonder that there is an
obstruction to the existence of dimension functionals. It is most convenient to
describe this obstruction using self-adjoint operators.

Suppose that the desired dimension functional exists. Consider a family of
elliptic self-adjoint operators At, t ∈ [0, 1]. Let us examine what happens with the
corresponding family of spectral subspaces L̂+(At). This family may have discon-
tinuities for smooth variations of the parameter: if some eigenvalue changes its
sign, then the spectral subspace changes by a jump (a finite-dimensional subspace
is either added to it if the sign changes from minus to plus, or subtracted in the
opposite case.Thus the value of the dimension functional of spectral subspaces has
to change by the algebraic number of eigenvalues of the family that cross zero
during the homotopy:

d(L̂+(A1))− d(L̂+(A0)) =
{

algebraic number of eigenvalues
crossing zero during the homotopy

}
. (1.5)

It turns out that there exist periodic homotopies of operators (A0 = A1) for which
the number on the right-hand side in (1.5) is nonzero (simple examples can be
found in [59]). Thus we arrive at a contradiction. This shows that a universal
dimension functional does not exist.

In other words, to define a dimension functional, one cannot consider the
entire Grassmannian; rather one has to search for a dimension functional on some
smaller classes of subspaces. It is not hard to give a criterion for the existence of
such decompositions. Before we formulate the corresponding result exactly, let us
introduce one notion appearing in this criterion.

Spectral flow [4]. Let At, t ∈ [0, 1] be a continuous family of elliptic self-adjoint
operators. Then the number on the right-hand side of (1.5) is called the spectral
flow of the family and denoted by sf {Aτ}τ∈[0,1].

Note that this definition makes sense only in the case of general position,
when the graph of the spectrum of the family is transversal to the line λ = 0. A
well-defined formula for the spectral flow can be obtained if we put the objects in
general position (see [47], [57]). In our situation, this can be done explicitly: we
take a small perturbation of the straight line λ = 0 that makes it a broken line,
see Fig. 1, with alternating horizontal and vertical segments. We only assume that
the horizontal segments do not meet the spectrum of the family.

Denote the coordinates of vertices of our broken line as {(τi, λi)}i=0,N . Let us
use this broken line to compute2 the spectral flow as the net number of eigenvalues
passing the broken line from below. In terms of relative indices, the corresponding
formula is the sum over vertices

sf {Aτ}τ∈[0,1] =
N−1∑
i=1

ind(Im Πλi(Aτi), ImΠλi−1(Aτi)), (1.6)

2Or, speaking rigorously, define.
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Figure 1. Spectral flow

where Πλ(·) is the spectral projection of a self-adjoint operator corresponding to
eigenvalues greater than or equal to λ. One can show that the spectral flow is well
defined; i.e., this number does not depend on the choice of a broken line.

Using this formula as the definition of the spectral flow, it is not hard to
obtain Eq. (1.5). Let us now state the necessary and sufficient conditions of the
existence of index decompositions.

Criterion of index decompositions [59]. Let us fix a subspace Σ in the space of
symbols of all pseudodifferential subspaces on M , and let GrΣ be the Grassmannian
of all pseudodifferential subspaces with symbols in Σ.

Theorem 3. There exists a dimension functional on the Grassmannian GrΣ if and
only if for every periodic family {Aτ}τ∈S1 of elliptic self-adjoint operators one has

sf{Aτ}τ∈S1 = 0

whenever the symbols of the spectral projections of the operators At belong to Σ
for all t.

Sketch of proof. Thenecessity of the vanishing of the spectral flow follows from
Eq. (1.5).

Sufficiency. For each connected component Σα ⊂ Σ, let us choose one elliptic
operator Aα with the symbol of the spectral subspace L+(Aα) in Σα. We shall
consider these operators as reference points; in particular, we define the dimension
functional to be zero on them.
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Let now A be an elliptic operator on M . Then its principal symbol is an
element of some Σα. Hence there is a homotopy {At}t∈[0,1] between A and Aα.
Now we can define the dimension functional to be equal to the spectral flow of the
homotopy:

d
(
L̂+(A)

)
def= sf{At}t∈[0,1]. �

The assumptions of this theorem can be verified effectively. Indeed, the spec-
tral flow of a periodic family A = {At}t∈S1 of elliptic self-adjoint operators on a
closed manifold M is computed by the Atiyah–Patodi–Singer formula [4]

sf {At}t∈S1 =
〈
chL+(A)Td (T ∗M ⊗ C) ,

[
S∗M × S1

]〉
. (1.7)

Here chL+(A) ∈ Hev
(
S∗M × S1

)
is the Chern character of the bundle

L+(A) ∈ Vect
(
S∗M × S1

)
defined by the principal symbol of the family, Td is the Todd class, while the
pairing with the fundamental class is denoted by 〈,

[
S∗M × S1

]
〉.

Thus as a corollary we obtain the following criterion for the existence of index
decompositions.

Theorem 4. (on index decompositions) There exists an index decomposition for
elliptic operators in subspaces of the Grassmannian GrΣ if and only if for an
arbitrary periodic family of elliptic self-adjoint operators whose spectral subspaces
have symbols in Σ the spectral flow is zero.

Let us consider examples in which this condition is satisfied.

Example 4. (Gilkey’s parity condition) Let Σ be the set of symbols of spectral
subspaces of elliptic self-adjoint differential operators. The spectral flow of periodic
families of elliptic operators from this class will be zero if the so-called parity
condition is satisfied [35]:

ordA + dimM ≡ 1(mod 2).

For example, for first-order operators the spectral flow of a periodic family At is
equal to the index of the differential operator ∂/∂t + At on the odd-dimensional
manifold M × S1. It is well known that such indices are trivial (e.g., see [56]).

Actually, the “differentiality” of operators in the parity condition has a geo-
metric origin. Namely, the principal symbol of a differential operator of even order
is invariant under the involution α : (x, ξ) �→ (x,−ξ). Therefore, the symbol of the
spectral subspace is also invariant

α∗L = L, L ∈ Vect (S∗M) . (1.8)

Such symbols are called even. Similarly, the symbols of spectral subspaces of odd-
order differential operators are called odd. Odd symbols satisfy the condition

α∗L⊕ L = π∗E,

where E stands for the ambient bundle (L ⊂ π∗E). In other words, the fibers of an
odd symbol L are complementary subspaces at antipodal points of the cosphere
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bundle. This explains why the natural analog of Gilkey’s parity condition for pseu-
dodifferential operators requires that the symbol is even in odd dimensions and
odd otherwise.

Let us restrict ourselves to these classes Σ (further examples and explicit
index formulas will appear later in the paper, see also [59]).

1.3. Example. Index under Gilkey’s parity condition

In this section, we obtain index decompositions for operators in even and odd
subspaces. We first consider the even case.

Dimension of even subspaces. Let Êven (M) be the set of even pseudodifferential
subspaces on a manifold M . The Grothendieck group of the semigroup of homotopy
classes of even subspaces is denoted by K

(
Êven (M)

)
.

Proposition 3. [64] On an odd-dimensional manifold, one has

(Z⊕K(M))⊗ Z [1/2]  K
(
Êven (M)

)
⊗ Z [1/2] . (1.9)

Here Z [1/2] is the ring of dyadic numbers k/2n, k, n ∈ Z. The map takes each
natural number k to a projection of rank k and each vector bundle E ∈ Vect(M)
to a projection that defines E as a subbundle in a trivial bundle.

Corollary 1. In odd dimensions, there exists a unique dimension functional (see
Definition 6)

d : Êven (M) −→ Z [1/2]
that is additive and satisfies the normalization condition

d (C∞(M, E)) = 0. (1.10)

The starting point of the proof is the exact sequence

0 −→ Z −→ K(Êven(M)) −→ K(P ∗M) −→ 0, (1.11)

where P ∗X = S∗X/Z2 is the projectivization of the cosphere bundle. The first
map corresponds to the embedding of finite-dimensional subspaces in the even
subspaces. The second is induced by the symbol map.

This sequence admits further simplification. Namely, the projection P ∗M →
M induces an isomorphism on K-groups modulo 2-torsion if dimM is odd [35].
Thus taking the tensor product of (1.11) by Z[1/2] (the product preserves the
exactness!) we obtain the exact sequence

0 −→ Z [1/2] −→ K(Êven(M))⊗ Z [1/2] −→ K(M)⊗ Z [1/2] −→ 0.

The latter sequence is easy to split. The splitting map

K0 (M)⊗ Z [1/2] −→ K
(
Êven (M)

)
⊗ Z [1/2] .

takes each vector bundle to the projection onto the space of its sections. The
splitting gives the desired isomorphism (1.9). �
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Index formula. To obtain an index formula for operators in even subspaces, it
is also necessary to define a homotopy invariant of the principal symbol of the
operator.

It turns out that the principal symbol of an elliptic operator in even subspaces
defines the usual elliptic symbol, i.e., the symbol of elliptic operator in vector
bundle sections. Indeed, for a symbol (L1 and L2 are even)

σ (D) : L1 → L2,

the composition α∗ (
σ−1 (D)

)
σ (D) takes L1 to itself. Thus one defines the elliptic

symbol
α∗ (

σ−1 (D)
)
σ (D)⊕ 1 : π∗E −→ π∗E, (1.12)

where we make use of the decomposition π∗E = L1 ⊕ L⊥
1 into complementary

bundles.

Theorem 5. [64] The following index formula holds:

ind(D, L̂1, L̂2) =
1
2
indt[α∗ (

σ−1 (D)
)
σ (D)⊕ 1] + d(L̂1)− d(L̂2) (1.13)

provided that the subspaces are even and the dimension of the manifold is an odd
number. Here indt is the topological index of Atiyah and Singer.

Proof (sketch). 1) Let us take the contributions of the subspaces to the left-hand
side of (1.13). Then we interpret the formula as an equality of two homotopy
invariants of the principal symbol. Thus it is sufficient to verify the formula for
one representative in each homotopy class of principal symbols. 2) The simplest
representative can be obtained by Proposition 3. Namely, in geometric terms this
proposition claims that the direct sum of 2N copies of the symbol of the subspace
is homotopic to the symbol lifted from the base. Such a homotopy can be lifted
to a homotopy of operators in subspaces. 3) For an operator acting in spaces of
vector bundle sections, both sides of (1.13) are computed by the Atiyah–Singer
formula. They turn out to be equal. �

Remark 2. The contribution of the principal symbol to the index is of course
computed by the Atiyah–Singer formula. However, there is a direct geometric
realization of this contribution. Namely, consider the so-called blow-up pT ∗M
(e.g., see [19]) of the cotangent bundle T ∗M along the zero section M ⊂ T ∗M

pT ∗M = { (x, γ, ξ) ∈ P ∗M × T ∗M | ξ ∈ γ} .

In other words pT ∗M is obtained from the cotangent bundle by two operations: we
first delete a tubular neighborhood of the zero section and then identify antipodal
points on the boundary (see Fig. 2).

The principal symbol of an operator in even subspaces defines a virtual vector
bundle over the blow-up, and the contribution of the principal symbol to the index
is expressed by the cohomological formula [64]

indt

[
α∗ (

σ−1 (D)
)
σ (D)⊕ 1

]
= 〈ch [σ (D)]Td (T ∗M ⊗ C) , [pT ∗M ]〉 .
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Figure 2. The blow-up pT ∗M of the cotangent bundle

Thus at the cohomology level the only difference of this topological expression
from the Atiyah–Singer formula is a different domain of integration.

Odd theory [65]. The main results of elliptic theory in even subspaces, like the
dimension functional and the index formula, have analogs in elliptic theory in odd
subspaces modulo some modifications: on an even-dimensional manifold, there
exists a unique additive dimension functional of odd subspaces subject to the
normalization

d(L̂) + d(L̂⊥) = 0,

where L̂⊥ is the complementary bundle. The index formula in odd subspaces is
(cf. (1.13))

ind(D, L̂1, L̂2) =
1
2
indt[α∗σ (D)⊕ σ (D)] + d(L̂1)− d(L̂2).

Note that the proofs in the odd case are technically more complicated, since the
symbols of odd subspaces cannot be interpreted as vector bundles over the pro-
jective space. For example, one has the following interesting fact.

Proposition 4. The dimension of an odd bundle L ⊂ π∗E over a manifold M of
dimension n satisfies

n = 2k
n = 2k + 1

}
⇒ dimL is divisible by 2k−1. (1.14)

The proof is based on the well-known property of odd functions [34]: an odd
function on Sn defines a section of the Hopf bundle

γ = Sn × C/ {(x, t) ∼ (−x,−t)} ,



262 A. Savin and B. Sternin

while an invertible vector-valued function defines a trivialization lγ  Cl. On the
other hand, the Hopf bundle gives the generator of

K
(
RP2k

)
 K

(
RP2k+1

)
 Z2k

(the Adams theorem). Therefore, 2�n/2� divides dimE, and we obtain the desired
relation (1.14), since an odd vector bundle defined by the projection p(ξ) gives us
an invertible odd function

iτ + (2p (ξ)− 1) |ξ| . �

2. Boundary value problems and subspaces

2.1. Classical boundary value problems

Let D

D : C∞ (M, E) −→ C∞ (M, F )

be an elliptic differential operator of order m ≥ 1 on a manifold M with boundary
X = ∂M. Such operators are never Fredholm: the kernel is infinite-dimensional.
To define a Fredholm operator, D should be equipped with boundary conditions.
Boundary conditions. It is convenient to define the boundary conditions using the
boundary operator

jm−1
X : C∞ (M, E) −→ C∞ (X, Em|X) ,

which is defined in terms of the trivialization X × [0, 1) ⊂ M of a neighborhood
of the boundary with normal coordinate t. The operator

jm−1
X u =

(
u|X , −i

∂

∂t
u

∣∣∣∣
X

, ...,

(
−i

∂

∂t

)m−1

u

∣∣∣∣∣
X

)
takes each function u to the value at the boundary of its jet in the normal direction.

Definition 7. A classical boundary value problem (see [41]) for a differential oper-
ator D is a system of equations of the form{

Du = f, u ∈ Hs (M, E) , f ∈ Hs−m (M, F ) ,

Bjm−1
X u = g, g ∈ Hσ (X, G) ,

(2.1)

where

B :
m−1⊕
k=0

Hs−1/2−k (X, E|X) −→ Hσ (X, G) (2.2)

is a pseudodifferential operator at the boundary; here we assume that the orders
of the components Bk : Hs−1/2−k (X, E|X)→ Hσ (X, G) are s− 1/2− k − σ.

If the smoothness exponent of the Sobolev space is sufficiently large, s >
m− 1/2, then the operator (D, B) is well defined.
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Ellipticity of boundary value problems and the Calderón subspace. The ellipticity
condition for classical boundary value problems, known as the Shapiro–Lopatinskii
condition, can easily be obtained with the use of the following result (see [67], [41]).

Theorem 6. (on the Calderón–Seeley subspace) Let D be an elliptic differential
operator on a manifold with boundary. Then the following assertions hold.

1. The cokernel of D is finite-dimensional.
2. The Caldeŕon–Seeley space jm−1

X (kerD) of jets at the boundary of the ele-
ments of the kernel is a pseudodifferential subspace. The boundary operator
is Fredholm

jm−1
X : kerD −→ jm−1

X kerD.

Denote the Calderón–Seeley subspace by L̂+(D). Its symbol L+(D) is a vector
bundle over S∗X .

Definition 8. (Shapiro–Lopatinskii condition) A boundary value problem is ellip-
tic if the restriction of the principal symbol of the boundary condition B to the
Calderón subspace is an isomorphism

σ (B) : L+ (D) −→ π∗G. (2.3)

In other words, the ellipticity of the boundary value problem is equivalent to
the ellipticity of the boundary operator as an operator in subspaces. �

Theorem 7. A boundary value problem (D, B) for an elliptic operator D has the
Fredholm property if and only if it is elliptic.

This finiteness theorem follows directly from the properties of the Calderón
subspace and the finiteness theorem for operators in subspaces.

The symbol of the Calderón–Seeley subspace can be computed easily. Let
(x, ξ′) ∈ S∗X be a point on the cosphere bundle of the boundary. Let

L+ (D)x,ξ′ ⊂ Em
x ,

be the subspace of Cauchy data of solutions u (t) of the ordinary differential equa-
tion

σ (D)
(

x, 0, ξ′,−i
d

dt

)
u (t) = 0, (x, ξ′) ∈ S∗X

with constant coefficients on the half-line {t ≥ 0} , that are bounded as t → +∞.
Globally, this family of subspaces defines the smooth vector bundle

L+ (D) ⊂ π∗ Em|X , π : S∗X → X.

It can be proved [67] that this bundle is the symbol of the Calderón–Seeley sub-
space.
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Example 5. For the Laplace operator, the bundle L+(∆) coincides with the image
of the diagonal embedding C ⊂ C ⊕ C. For the Cauchy–Riemann operator ∂/∂z
in the unit disk, L+ is not constant:

L+

(
∂

∂z

)∣∣∣∣
S1
+

 C, L+

(
∂

∂z

)∣∣∣∣
S1
−

= 0, where S∗S1 = S1
+ � S1

−.

The Atiyah–Bott obstruction and index theorem for boundary value problems.
The Shapiro–Lopatinskii condition (2.3) is a restrictive condition on the class of
operators D, for which one can define elliptic boundary conditions. Indeed, if an
elliptic boundary condition for D exists, then the bundle L+ (D) ∈ Vect (S∗X) is
a pullback of some bundle on the base X. Such a pullback exists by no means for
all operators (the simplest example for which the pullback does not exist is given
by the Cauchy–Riemann operator).

The essence of this restriction was uncovered by Atiyah and Bott [7]. They
showed that, up to a certain stabilization, the operators possessing elliptic bound-
ary conditions are precisely those with symbols at the boundary homotopic to the
symbols independent of the covariables. The situation can be represented by the
following K-theory exact sequence:

→ Kc(T ∗(M \ ∂M)) −→ Kc(T ∗M) ∂−→ Kc(∂T ∗M)→ · · ·

Namely, elliptic symbols σ(D) on M define elements of the group in the center (via
the difference construction). On the other hand, the elements of the leftmost group
correspond to symbols that are independent of the covariables in a neighborhood
of the boundary. Thus the Atiyah–Bott result says that the existence of an elliptic
boundary value problem is equivalent to the property that our element comes
from Kc(T ∗(M \ ∂M)), while the element obtained by the boundary map ∂ is
the obstruction to the existence of elliptic boundary conditions (the Atiyah–Bott
obstruction). Moreover, Atiyah and Bott showed that the choice of an elliptic
boundary condition B explicitly determines some specific element in Kc(T ∗(M \
∂M)).

Let us note that there is a well-defined topological index map on Kc(T ∗(M \
∂M)), which, together with the Atiyah–Bott construction, gives an index formula
for classical boundary value problems. The reader can find the proof of the index
theorem for boundary value problems in [41].

Example 6. Consider the Euler operator

d + δ : Λev (M) −→ Λodd (M) (2.4)

on a compact manifold with boundary. Here Λev / odd (M) are the spaces of even
(odd) differential forms. As elliptic boundary conditions, we can take the absolute
boundary conditions

j∗ (∗ω) = g, j∗ : Λodd (M)→ Λodd (X) (2.5)
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(where ∗ is the Hodge star operator). By Hodge theory on manifolds with bound-
ary (e.g., see [36], [28]), the index of (2.4), (2.5) is equal to the Euler characteris-
tic of M :

ind (d + δ, j∗∗) = χ (M) .

However, the classical theory has one very significant drawback. Among the
classical operators considered in index theory, only the Euler operator admits clas-
sical elliptic boundary value problems. The Dirac, Hirzebruch and Todd operators
do not admit elliptic boundary conditions: even at a point x ∈ M the principal
symbol of these operators is a rational generator of Kc (T ∗

xM)  Z (e.g., see [56])
and hence is by no means homotopic to a constant symbol.

2.2. Spectral problems of Atiyah, Patodi, and Singer and general boundary value
problems in subspaces

We saw in the previous section that many elliptic operators (e.g., Dirac and sig-
nature operator) do not have elliptic boundary conditions, since the Atiyah–Bott
obstruction for these operators does not vanish. Since these operators are very
important in applications, there naturally emerges a question of defining a class
of elliptic boundary value problems for general elliptic operators, in particular
those with a nontrivial Atiyah–Bott obstruction. Such a class of boundary value
problems is naturally constructed using the following reasoning.

Recall that the ellipticity condition for a boundary value problem (D, B)
requires the isomorphism

L+ (D)
σ(B)−→ π∗G (2.6)

defined by the principal symbol of the boundary condition B. Meanwhile, the ob-
struction explained by the asymmetry of (2.6): the a priori general bundle L+ (D)
over S∗X must be isomorphic to a bundle of a very special form, i.e., a bundle
lifted from X . Hence it is clear that the obstruction will disappear if we manage
to make a generalization of the notion of boundary conditions such that we could
insert an arbitrary vector bundle on S∗X into the right-hand side of (2.6). The
simplest realization of this idea is given by the so-called spectral boundary value
problems.
Atiyah–Patodi–Singer spectral boundary value problems [2]. Let D be an elliptic
differential operator of order one. We shall assume that near the boundary it has
a decomposition

D|∂M×[0,1) = γ

(
∂

∂t
+ A

)
,

where A is an elliptic self-adjoint operator on X = ∂M . The spectral boundary
value problem for D is the system of equations{

Du = f, u ∈ Hs (M, E) , f ∈ Hs−1 (M, F ) ,

Π+(A) u|X = g, g ∈ ImΠ+(A).
(2.7)

This boundary value problem has the Fredholm property. The reader can prove the
coincidence of the bundles L+ (D) and Imσ (Π+(A)). Hence (2.6) is the identity
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map in this case. The statement of spectral problems for differential operators of
any order can be found in [53].
General boundary value problems [18, 66]. For an elliptic operator D, consider
the boundary value problems{

Du = f, u ∈ Hs (M, E) , f ∈ Hs−m (M, F ) ,

Bjm−1
X u = g, g ∈ Im P ⊂ Hσ (X, G) ,

(2.8)

which differ from classical boundary value problems (2.1) in the space of boundary
data Im P , which is a subspace of the Sobolev space at the boundary and is
determined by a pseudodifferential projection P of order zero.

Definition 9. Boundary value problem (2.8) is said to be elliptic if the principal
symbol of the operator of boundary conditions defines a vector bundle isomorphism

σ (B) : L+ (D)→ Im σ (P ) ,

i.e., the restriction of B to the Calderón subspace is an elliptic operator in sub-
spaces.

The following finiteness theorem holds.

Theorem 8. Boundary value problem (2.8) defines a Fredholm operator if and only
if it is elliptic.

The proof can be obtained from the theorem on the Calderón–Seeley sub-
space. �
Order reduction of boundary value problems. It is possible to reduce orders of
boundary value problems. For classical boundary value problems, one can reduce
the boundary value problem using order reduction to a pseudodifferential operator
which is a multiplication operator near the boundary and does not require bound-
ary conditions (see [41] or [61] for the description of the reduction procedure; note
that the index of such zero-order operators is computed by the Atiyah–Singer for-
mula [9], cf. [27]). For boundary value problems in subspaces, the same method
enables one to reduce an arbitrary boundary value problem to a spectral problem
for a first-order operator [61]. In addition, the pseudodifferential subspace of the
spectral problem can be chosen to coincide with subspace of boundary data of the
original problem. For this reason, we consider only spectral problems in the rest
of this section.

2.3. Index of boundary value problems in subspaces

We have seen that subspaces are useful if we study analytical properties of spectral
problems. In this section, we show that subspaces are also important in the study
of topological aspects of these problems: many index formulas for operators in
subspaces on closed manifolds (see Section 1) have natural analogs for boundary
value problems. To save space, we will give only the formulations of the results.

The index of spectral boundary value problems is not determined by the
principal symbol of the operator D. To have a definite index, we have to fix the
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principal symbol and the spectral subspace. It is impossible to decompose the index
as a sum of homotopy invariant contributions of the symbol and the subspace.
A decomposition exists if and only if for the class of spectral subspaces at the
boundary there exists a dimension functional. Let us give two examples when
explicit index formulas can be obtained.

2.4. Examples. The index of operators with parity condition. The index of the
signature operator

The index of spectral problems in even subspaces. Consider spectral boundary
value problems (D, Π+(A)) on an even-dimensional manifold M and suppose ad-
ditionally that the spectral subspace ImΠ+(A) is even. Finally, we assume that
the principal symbol of A is an even function of the covariables.

It turns out that in this case σ(D) has a natural continuation to the double
of M . Recall that the double

2M = M
⋃

∂M
M

is obtained by gluing two copies of M along the boundary.
To construct the desired continuation, we consider two copies of the manifold.

We take the symbol σ(D) on the first copy and α∗σ (D) on the second copy. Here
α : S∗M −→ S∗M is the antipodal involution of M . Near the boundary, the
symbols σ(D) and α∗σ(D) are

iτ + a(x, ξ) and − iτ + a(x, ξ).

It is clear that they are mapped one into another as we glue neighborhoods of the
boundary:

x→ x, t→ −t.

Thus the two symbols define an elliptic symbol σ(D) ∪ α∗σ(D) on the double of
M . This symbol defines the difference element

[σ(D) ∪ α∗σ(D)] ∈ Kc(T ∗2M).

in the K-group with compact supports of the cotangent bundle of the double.
We define the topological index of D to be half the usual topological index of the
element on the double

indtD
def
=

1
2
indt[σ(D) ∪ α∗σ(D)].

Theorem 9. [64] For spectral boundary value problems in even subspaces, one has

ind(D, Π+(A)) = indtD − d(Im Π+(A)).

The proof is by analogy with the proof in the case of closed manifolds: one uses
homotopies to reduce the spectral problem to the simplest form. In this case, the
simplest spectral problem is a classical boundary value problem; i.e., its spectral
subspace is the space of sections of a vector bundle. �
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Remark 3. A similar index formula is valid for operators in odd subspaces. In this
case, one defines the operator D ∪ α∗D−1 on the double with symbol equal to
α∗σ (D)−1 on the second copy of the manifold.

The index of the signature operator [2]. On a 4k-dimensional oriented manifold
M , consider the signature operator

d + d∗ : Λ+ (M) −→ Λ− (M) ,

where the Λ± (M) are subspaces of forms invariant under the involution

α : Λ∗ (M) −→ Λ∗ (M) , α|Λp(M) = (−1)
p(p−1)

2 +k ∗ .

On the boundary of M , we have Λ± (M)|∂M  Λ∗ (∂M). If we take a product
metric in a neighborhood of the boundary, then the signature operator is equal to

∂

∂t
+ A

modulo vector bundle isomorphisms (see [2]). The tangential signature operator A
acts on the boundary

A : Λ∗ (∂M) −→ Λ∗ (∂M) , Aω = (−1)k+p (d ∗ −ε ∗ d)ω,

where for a form ω ∈ Λ2p (∂M) of even degree we have ε = 1, while for ω ∈
Λ2p−1 (∂M) – ε = −1. This operator is elliptic and self-adjoint.

The index of the spectral boundary value problem can be computed by
de Rham–Hodge theory:

ind (d + d∗, Π+) = signM − dimH∗ (∂M)/2,

where signM is the signature of a manifold with boundary.
We will obtain the index decomposition for the Dirac operator later in Sec-

tion 3.8, since it involves a new invariant – the η-invariant of Atiyah, Patodi, and
Singer.

3. The spectral η-invariant of Atiyah, Patodi, and Singer

3.1. Definition of the η-invariant

Let A be an elliptic self-adjoint operator of a positive order on a closed manifold
M. Let us define the spectral η-function

η (A, s) =
∑

λj∈SpecA,λj �=0

sgnλi |λi|−s ≡ Tr
(
A

(
A2

)−s/2−1/2
)

.

It is analytic in the half-plane Re s > dimM/ordD (for these parameter values,
the series is absolutely convergent).

Definition 10. [2] The η-invariant of the operator A is

η (A) =
1
2

(η (A, 0) + dim kerA) ∈ R. (3.1)
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Remark 4. The spectral η-invariant can be understood as a kind of infinite-
dimensional analog of the notion of signature of a quadratic form, since in finite
dimensions a self-adjoint operator defines a quadratic form and the η-invariant of
an invertible operator is equal to the signature modulo the factor 1/2.

Of course, for (3.1) to make sense, it is necessary to have the analytic con-
tinuation of the η-function to s = 0.

Theorem 10. [4],[32] The η-function extends to a meromorphic function on the
complex plane with possible poles at sj = ordD−j

dim M , j ∈ Z+. At s = 0, the function
is analytic.

Let us note that the meromorphic continuation is a consequence of the ex-
pression of the η-function in terms of the ζ-function

ζ (A, s) =
∑

λj∈SpecA

λ−s
i

of positive operators:

η (A, s) =
ζ (A+, s)− ζ (A−, s)

2s − 1
, where A± =

(3 |A| ±A)
2

.

The meromorphic continuation for the ζ-function is well known (e.g., see [68]).
However, the analyticity of the η-function at the origin is more intricate.

More precisely, the residue is equal to

Res
s=0

η (A, s) =
ζ (A+, 0)− ζ (A−, 0)

ln 2
. (3.2)

The ζ-invariants in this formula can be expressed as integrals over M of some
complicated expressions in the complete symbol of A. The integrand is in gen-
eral nonzero! Nevertheless, Atiyah, Patodi, and Singer proved for odd-dimensional
manifolds [4] and Gilkey [32] proved for even-dimensional manifolds that the
residue is zero. Hence the η-function is holomorphic at the origin and the η-
invariant is well defined.

Rather surprisingly, up to now there is no purely analytic proof of the ana-
lyticity of the η-function at the origin. The results cited earlier all rely on global
topological methods. However, the triviality of the residue is proved by an explicit
analytic computation for Dirac type operators in [16].

Example 7. On a circle of length 2π with coordinate ϕ, consider

At = −i
d

dϕ
+ t.

Here t is a real constant. Let us compute the η-invariant. The spectrum of A is
the lattice t + Z. Thus the η-invariant is a periodic function of t (with period 1).
Assume that 0 < t < 1. Gathering the eigenvalues in pairs, we obtain

η (At, s) =
∑
n≥1

[
(n + t)−s − (n− t)−s

]
+ t−s.
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This series is absolutely convergent on the semiaxis s > 0, and the limit as s→ +0
is −2t+1 (we use the Taylor expansion for the expression in the brackets); hence

η (At) =
η (At, 0) + dimkerAt

2
=

1
2
− {t} ,

where {} ∈ [0, 1) is the fractional part. Thus we see that for our smooth elliptic
family At the family of η-invariants is only piecewise smooth. Moreover, the jumps
(they are integral) happen as some eigenvalue of the operator changes its sign.

The behavior of the η-invariant under deformations of the operator. In the last
example, we observed the piecewise smooth variation of the η-invariant for smooth
variation of operators. It turns out that the η-invariant has similar properties in
the general case. More precisely, the following result holds.

Proposition 5. [4] Let At, t ∈ [0, 1] , be a smooth family of elliptic self-adjoint
operators. Then the function η (At) is piecewise smooth. It decomposes as the sum

η (At′)− η (A0) = sf (At)t∈[0,t′] +

t′∫
0

ω (t0) dt0, (3.3)

of a locally constant function, the spectral flow of Section 1.2, and the smooth
function

ω (t0) =
d

dt
ζ (Bt,t0)

∣∣∣∣
t=t0

∈ C∞ [0, 1] ,

where we use the ζ-invariant of the auxiliary family Bt,t0 = |At0 |+ Pker At0
+ (t−

t0)Ȧt0 . Here Pker A is the projection onto the kernel of A.

Proof (sketch). If the family is invertible, then one can easily write out the deriva-
tives of the η- and ζ-functions:

d

dt
ζ (Bt, s) = −sTr

( .

Bt B−s−1
t

)
,

d

dt
η (At, s) = −sTr

( .

At

(
A2

t

)− 1
2 (s+1)

)
.

It is clear now that (3.3) holds for s = t = 0.
If the family is not invertible, then the decomposition (3.3) can be obtained

making use of broken lines from the definition of spectral flow (see Fig. 1). This
technique reduces us to the case of invertible families. �

Remark 5. (Singer) These properties motivate an interesting interpretation of the
η-invariant, which is similar to the interpretation of index as the invariant la-
belling the connected components of the space of Fredholm operators. Consider
the space of self-adjoint Fredholm operators. Atiyah and Singer [10] proved that
this space consists of three connected components. Two components correspond to
semibounded operators and are contractible. However, the third component (con-
taining operators with spectrum unbounded in both directions) has a nontrivial
topology. Let us denote it by Fs. This space is a classifying space for odd K-theory:

[X,Fs]  K1 (X) .
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In particular, its first cohomology is H1 (Fs)  Z. The generator of this group
is given by the spectral flow of periodic families

[sf] ∈ H1 (Fs) ,

more precisely, the value of the cocycle sf on a loop (At)t∈S1 is equal to the spectral
flow along the loop. It turns out that the η-invariant provides a de Rham repre-
sentative of this cohomology class (at least on the subspace of pseudodifferential
operators). More precisely, let us define the 1-form: for the loop (At)t∈[0,ε] ⊂ Fs

in the space of pseudodifferential operators, we set

ω (At) =
d

dt
{η (At)}

∣∣∣∣
t=0

.

Proposition 5 gives the equality of cohomology classes − [ω] and [sf] , in other
words, one has

−
∫

(At)t∈S1

ω = sf (At)t∈S1 .

3.2. How to make η homotopy invariant?

The η-invariant for general operators is not homotopy invariant and takes arbi-
trary real values. However, for special classes of operators it is possible to define
homotopy invariants using the η-invariant. To this end, it is necessary to require
that both components in (3.3) are equal to zero. The triviality of the spectral flow
sf can be achieved in two ways: either we consider only the fractional part of the
η-invariant {η (A)} ∈ R/Z (this is used in [4] when considering invariants of flat
bundles, see also Section 3.3) or by requiring that the spectral flow is trivial for
the operators considered (such situation appears for the signature operator or for
the Dirac operator under the positive scalar curvature assumption, e.g., see [21]).
To prove the vanishing of the smooth component of the variation, it is necessary
to have a formula for the derivative of the ζ-function. R. Seeley [68] proved (see
also [1] and [40]) that the value of the ζ-function at zero can be computed in terms
of the principal symbol of the operator. Let us proceed to the formula. Let A be
an elliptic self-adjoint nonnegative operator with complete symbol

σ (A) ∼ am + am−1 + am−2 + · · · .

Let us introduce the following recurrent family of symbols b−m−j , j ≥ 0:

b−m−j (x, ξ, λ) (am (x, ξ)− λ)

+
∑

k + l + |α| = j,
l > 0

1
α!

(−i∂ξ)
α

b−m−k (x, ξ, λ) (−i∂x)α
am−l (x, ξ) = 0. (3.4)
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The symbols depend on auxiliary parameter λ. Then the ζ-invariant is

2ζ (A) def= ζ (A, 0) + dimkerA

=
1

(2π)dim M ordA

∫
S∗M

dxdξ

∞∫
0

b− dim M−ordA (x, ξ,−λ) dλ. (3.5)

Analyzing the symmetries of this formula, one can find a number of operator classes
for which the derivative of the η-invariant is zero. Two such classes are considered
in the next sections.

3.3. η-invariants and flat bundles

Recall that a vector bundle γ ∈ Vect (M) is flat if it is defined by locally constant
transition functions. Consider an operator

A : C∞ (M, E) −→ C∞ (M, F ) .

Then we can define the operator A with coefficients in the flat bundle:

A⊗ 1γ : C∞ (M, E ⊗ γ) −→ C∞ (M, F ⊗ γ) .

It can be defined by patching together local expressions in coordinate charts for
the direct sum of dim γ copies of A using the transition functions. To preserve the
self-adjointness, one requires additionally that the transition functions for the flat
bundle are unitary. Finally, if A is a pseudodifferential operator, then the operator
with coefficients is well defined modulo infinitely smoothing operators.

Example 8. On the circle, the operator −id/dϕ + t is isomorphic to the operator
−id/dϕ ⊗ 1γ with coefficients in γ, where the line bundle γ is defined by the
transition function e2πit. The isomorphism

e−tiϕ

(
−i

d

dϕ

)
eitϕ = −i

d

dϕ
+ t

uses the trivialization eitϕ of γ.

Proposition 6. [4] The fractional part of the η-invariant is homotopy invariant in
the class of direct sums

A⊗ 1γ ⊕ (− dimγA)

with a given flat vector bundle γ.

To prove the proposition, one notes that A ⊗ 1γ and dim γA are locally
isomorphic. Therefore, we obtain

d

dt
{η (At ⊗ 1γ)} =

d

dt
{nη (At)}

by means of the locality of these derivatives, see (3.5). �
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ρ-invariant [3]. Consider an oriented Riemannian manifold M of dimension 4k−1.
There is a self-adjoint Hirzebruch operator

A|Λ2p(M) = (−1)k+p (d ∗ − ∗ d) , A : Λev (M) −→ Λev (M) .

In this case, the difference

η (A⊗ 1γ)− dim γη (A) ∈ R

defines a homotopy invariant. Indeed, by Hodge theory the kernels of A and A⊗1γ

coincide with the corresponding cohomology of M (with a local coefficient system
γ in the second case); hence their dimensions do not depend on the choice of metric
on M . This difference is called the ρ-invariant of manifold M and flat bundle γ.

Operators with coefficients in flat bundles have been thoroughly studied al-
ready in the classical paper of Atiyah, Patodi, and Singer. Thus, in this paper, we
recall only the index formula pertaining to this case.

The index formula in trivialized flat bundles [4]. Suppose that the flat bundle γ

is trivial γ
α Cn and A is an elliptic self-adjoint operator as above.

Then the triple (γ, α, A) defines an elliptic operator in subspaces:

Π+(nA)(1 ⊗ α∗) : ImΠ+(A⊗ 1γ) −→ ImΠ+(nA). (3.6)

Let us fix the flat bundle with its trivialization and consider the index decompo-
sition problem for operators (3.6) into the sum of contributions of the principal
symbol of the operator and the contribution of subspaces. It is not difficult to
see that the necessary condition for such decompositions (Theorem 4) is satisfied.
Then we can take the difference of the η-invariants

η(A⊗ 1γ)− nη(A)

as the contribution of the subspaces. This difference will be referred to as the
relative η-invariant. The corresponding index theorem in trivialized flat bundles
was obtained by Atiyah, Patodi, and Singer.

Theorem 11. One has

ind(Π+(nA)(1 ⊗ α∗) : Im Π+(A⊗ 1γ) −→ ImΠ+(nA))

〈chL+(A)ch(γ, α)Td(T ∗M ⊗ C), [S∗M ]〉+ η(A⊗ 1γ)− nη(A), (3.7)

where ch(γ, α) ∈ Hodd(M, Q) is the Chern character of the trivialized flat bundle.

The proof uses the heat equation method.
As a corollary, let us take the fractional part of the index formula. Then we

obtain an expression of the fractional part of the relative η-invariant in topological
terms. For nontrivial flat bundles, the relative η-invariant was also computed in
[4], but the formula in this case is written in K-theoretic terms and is less explicit.
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3.4. η-invariant and parity conditions

One more class of examples of η-invariants without continuous component of the
variation is related to parity conditions.

Theorem 12. [35] The fractional part of the η-invariant of an elliptic self-adjoint
differential operator A on a manifold M is invariant under homotopies if the
following parity condition is satisfied:

ordA + dimM ≡ 1(mod2).

Idea of the proof. The homogeneous components of the complete symbol of
a differential operator are polynomials. Hence they are even or odd with respect
to the involution ξ �→ −ξ acting on the covariables. An accurate account of this
symmetry in (3.5) shows that the local expression for the derivative of the η-
invariant is zero. �

The η-invariant as a dimension functional. It is clear that if the continuous com-
ponent of the variation of the η-invariant is missing, then the η-invariant can be
considered as a dimension functional (compare (1.5) with (3.3)).

Theorem 13. [64] Let A be an elliptic self-adjoint differential operator of a positive
order. Then the η-invariant is equal to the value of the dimension functional of
Section 1.3 on the spectral subspace L̂+(A)

η (A) = d
(
L̂+(A)

)
provided that ordA + dim M ≡ 1(mod2).

To prove the theorem, it suffices to check the normalization condition.

This result shows that we can substitute the η-invariant for the functional d
in the index formulas of Section 1.3 provided that the pseudodifferential subspace
is defined as the spectral subspace of a differential operator.

Remark 6. To prove Theorem 13, one has to work with η-invariants in the broader
context of pseudodifferential operators, for which the statement of Theorem 12 is
true. We refer the reader to [64] for the precise statement of the parity condition
for this case.

Computation of the fractional part of the η-invariant. If the parity condition is
satisfied, then the fractional part {η (A)} is topologically invariant and can be
computed in topological terms. It turns out that this invariant strongly depends
on the orientation bundle Λn(M).

Theorem 14. [63] The fractional part of twice the η-invariant is equal to the pairing

{2η (A)} =
〈
[σ (A)] , 1− [Λn (M)]

〉
∈ Z

[
1
2

]
/Z
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of the difference element of the operator with the orientation bundle Λn (M) , n =
dimM , where the brackets denote the (nondegenerate) Poincaré duality

〈, 〉 : TorK1
c (T ∗M)× TorK0 (M) −→ Q/Z

in K-theory for the torsion subgroups.

Let us make a couple of remarks concerning this formula.
1. The computation is based on the following property of symbols of subspaces

with parity conditions. For N sufficiently large, the sum 2NL can be lifted from
the base M . If we choose an isomorphism σ : 2NL −→ π∗F , where F ∈ Vect(M),
then the index formula in subspaces expresses the fractional part of the η-invariant
in terms of the index of the corresponding operator

σ̂ : L̂ −→ C∞(M, F ),

as a residue modulo 2N . Such an index-residue can be computed in K-theory with
coefficients in the group Z2N (the corresponding index theory modulo n is discussed
in Section 4.2). Finally, the expression in terms of Poincaré duality is none other
than a short way of expressing the corresponding K-theoretical formula.

2. The orientation bundle appears naturally in the problem, since the invo-
lution (x, ξ) ↔ (x,−ξ) acts on K∗

c (T ∗M) as a product with the virtual bundle
(−1)dim M [Λn(M)] (see [62]).

Corollary 2. If the parity condition is satisfied, then the η-invariant on an ori-
entable manifold is half-integer. On a nonorientable manifold M of dimension 2k
or 2k + 1, the following estimate of the denominator of the η-invariant holds:{

2k+1η (A)
}

= 0. (3.8)

Indeed, the orientation bundle Λn (Mn) has the structure group Z2. Hence
it is induced by the canonical bundle over RPn. The reduced K-groups of the
projective spaces are the torsion groups K̃

(
RP2k

)
 K̃

(
RP2k+1

)
 Z2k . Hence

2k (1− [Λn (Mn)]) = 0.

Substituting this equality into the formula for the η-invariant, we obtain the desired
assertion. �

Remark 7. The formula for the fractional part of the η-invariant can be rewritten,
by analogy with the Atiyah–Singer formula, in terms of the direct image map

{2η(A)} = f![σ(A)],

where f : M → RP2N is the map classifying the orientation bundle. Here we
assume the identification K1(T ∗RP2n) = Z2n ⊂ Q/Z.
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Examples of first-order operators. We have seen that the properties of the η-
invariant for operators with Gilkey’s parity condition substantially depend on the
properties of the manifold. In the orientable case, one can obtain a half-integral
η-invariant at most. This possibility is easy to realize, e.g., by the operators d + δ
on all forms:

{η(d + δ)} =
{

χ(M)
2

}
.

The computation is based on the fact that this operator is isomorphic to the matrix(
0 D

D∗ 0

)
with the Euler operator D = d + δ acting from even to odd forms.

The eigenvalues of this matrix are symmetric with respect to the origin. Therefore,
the η-function is zero identically.

It turns out that on nonorientable manifolds there exist operators with ar-
bitrary dyadic η-invariants. Examples of such operators were first constructed by
P. Gilkey [33].
An operator on RP2n with a very fractional η-invariant. Let us define a Dirac
type operator on an even-dimensional real projective space RP2n. To this end, we
consider a set of Hermitian Clifford 2n × 2n matrices e0, e1, . . . , e2n:

ekej + ejek = 2δkj .

For a vector v = (v0, . . . , v2n) ∈ R2n+1, we define a linear operator

e (v) =
2n∑
i=0

viei : C2n

−→ C2n

.

It is invertible if v �= 0. Consider the Hermitian symbol

σ (D) (x, ξ) = ie (x) e (ξ) : C2n

−→ C2n

on the unit sphere S2n ⊂ R2n+1, where ξ is a tangent vector at x ∈ S2n. The symbol
is invariant under the involution (x, ξ) → (−x,−ξ) . Thus it defines a symbol on
RP 2n.

Theorem 15. [33]

{η (D)} =
1

2n+1
. (3.9)

For simplicity, we will only compute the denominator of the η-invariant.
The reduced K-group of RP2n is a cyclic group K̃

(
RP2n

)
 Z2n , and the

generator is given by the orientation bundle

1−
[
Λ2n

(
RP2n

)]
∈ K̃

(
RP2n

)
.

On the other hand, the symbol defines the generator of the isomorphic group

[σ (D)] ∈ K1
c

(
T ∗RP2n

)
= TorK1

c

(
T ∗RP2n

)
 Z2n .
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Hence, by Poincaré duality for torsion groups (see above) the pairing of the gen-
erators is nonzero and has the largest possible denominator〈

2n−1 [σ (D)] , 1−
[
Λ2n

(
RP2n

)]〉
=

1
2
∈ Q/Z.

It remains now to express the pairing in terms of the η-invariant. We have

{2nη (D)} =
1
2
. �

3.5. Examples of second-order operators with nontrivial η-invariants

The problem of nontriviality of the η-invariant for second-order operators was
stated by P. Gilkey [35]. For a long time, the main difficulty of the problem was
the absence of nontrivial elliptic operators of order two. There was essentially one
nontrivial operator dδ − δd acting on differential forms. However, its η-invariant
turned out to be integer-valued [64]. From a different point of view, this operator
is generated by the operators of de Rham–Hodge theory and is in some sense an
analog of the Euler operator. To obtain more interesting operators, one has to
define the analog of the Dirac operator.

Such an operator was constructed in [63].

Example 9. We define a second-order differential operator D on RP2n × S1. To
this end, we denote the coordinates by x, ϕ, the dual coordinates by ξ, τ. On the
cylinder RP2n × [0, π] we define

D′ =

⎛⎜⎝ 2 sinϕ
(
−i ∂

∂ϕ

)
D − i cosϕD *xe−iϕ +

(
−i ∂

∂ϕ

)
eiϕ

(
−i ∂

∂ϕ

)
*xeiϕ +

(
−i ∂

∂ϕ

)
e−iϕ

(
−i ∂

∂ϕ

)
2 sin ϕ

(
i ∂

∂ϕ

)
D + i cosϕD

⎞⎟⎠ ,

(3.10)
where D is the pinc Dirac operator on the projective space (see previous section),
and *x = D2 is its Laplacian. The operator D′ is symmetric and elliptic. The
ellipticity follows from the following formula for the principal symbol

σ (D′)2 (ξ, τ) =
(
ξ2 + τ2

)2
.

(In other words, the operator D′ is the square root of the square of the Laplacian.)
Let F be the vector bundle over the product RP2n×S1, obtained by twisting the
trivial bundle C 2n

⊕ C 2n

with the matrix-valued function(
0 1
−1 0

)
defined on the base RP2n × {0} . Then σ(D)′ can be considered as acting in F :

σ(D′) : π∗F −→ π∗F, π : S∗(RP2n × S1)→ RP 2n × S1.

Denote by
D : C∞ (

RP2n × S1, F
)
−→ C∞ (

RP2n × S1, F
)

the elliptic self-adjoint differential operator obtained by smoothing the coefficients
of D′.
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The topological formulas for the η-invariant obtained earlier enables us to
prove the following result, solving the problem of nontriviality of η-invariants for
even-order operators.

Theorem 16. [63] One has

{2η (D)} =
1

2n−1
.

The idea of the proof is to interpret the operator D as an exterior tensor
product of an operator on the projective space by an elliptic operator on the circle.
Then the η-invariant is also a product of the η-invariant on RPn and the index on
S1. Unfortunately, the operator itself does not have this product structure. But
K-theoretically such a representation holds:

[σ (D)] = [σ (D)] · [σ (D1)] ∈ K1
c

(
T ∗ (

RP2n × S1
))

(3.11)

with an elliptic pseudodifferential operator of index two

D1 =
1
2
[
e−iϕ (Q + |Q|) + eiϕ (|Q| −Q)

]
, Q = −i

d

dϕ

on S1. To obtain the theorem, it now suffices to substitute (3.11) in the formula for
the η-invariant in terms of Poincaré duality and use the multiplicative property of
the pairing. �
3.6. Applications to bordisms and embeddings of manifolds

η-invariants on pinc-manifolds and bordisms. The operator on the projective space
constructed in Section 3.4 is a specialization of the Dirac operator on a (nonori-
entable) pinc-manifold. The definition of this operator can be found in [33]. We
note only that the group pinc(n) is defined in terms of the extension

0 −→ Z2 −→ pinc (n)−→O (n)× U (1) −→ 0.

This sequence defines a natural projection pinc(n)→ O(n). Finally, a manifold M
of dimension n is a pinc-manifold if its structure group is reduced to pinc(n).

On even-dimensional pinc-manifolds, the Dirac operator, denoted by D, is
self-adjoint. Therefore, on such manifolds the fractional topological invariant

{η (D)} ∈ Z

[
1
2

]
/Z

is well defined. Moreover, one can also show that this fractional part is invariant
under bordisms of pinc-manifolds.

Theorem 17. [12] pinc-manifolds M1 and M2 are bordant if and only if they have
equal Stiefel–Whitney numbers and the fractional parts of the η-invariants

{η (DM1)} = {η (DM2)} .

Note that the characteristic property of the theory of pinc-bordisms is that
the bordism group Ωpinc

has nontrivial elements (represented by the projective
spaces RP2k) of arbitrarily large order 2k. To distinguish these elements, the frac-
tional analytic invariant is indispensable.
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Application to embeddings. A natural geometric setting when one can consider
second-order operators of Section 3.5 was found by P. Gilkey [32]. Let us describe
the situation in more detail.

Suppose N is a submanifold with trivial normal bundle in a closed mani-
fold M . Then one can define an elliptic self-adjoint second-order operator that is
concentrated in a neighborhood of the submanifold in the following sense. This
operator is a sum of Laplacians outside a neighborhood of N . We shall consider
for simplicity the codimension one case.

Let us introduce coordinates in a tubular neighborhood U of the boundary, x
tangent to the submanifold, and ϕ ∈ [0, 2π] normal to the submanifold. The dual
coordinates are ξ, τ.

Consider the quadratic transformation

h (τ, ξ) =
(
τ2 − ξ2, τξ

)
: S∗M |U −→ S∗M |U

over U . At a point (x, ϕ) ∈ U , this map is a two-sheeted covering of the sphere.
It takes big circles passing through the North pole to big circles passing through
the North pole being run through with double speed. Let us define the family of
vector bundle homomorphisms

Φϕ : T ∗M |N −→ R⊕ T ∗M |N
parametrized by ϕ ∈ [0, 2π]:

Φϕ (τ, ξ) =

{ (
cosϕ

(
ξ2 + τ2

)
, sinϕh (τ, ξ)

)
, ϕ ∈ [0, π] ,(

cosϕ
(
ξ2 + τ2

)
, sinϕ

(
ξ2 + τ2

)
, 0, . . .

)
, ϕ ∈ [π, 2π] .

Suppose that N × [0, 2π] is equipped with a pinc-structure. Consider the corre-
sponding Clifford module

c : Cl (R⊕ T ∗M |N ) −→ End (E) ,

where Cl(V ) is the bundle of Clifford algebras of a real vector bundle and E is
the spinor bundle of N × [0, 2π]. The symbol σ (D) of order two is defined in a
neighborhood of N as the composition

σ (D) (ϕ, τ, ξ) def= c (Φϕ (τ, ξ)) .

On the boundary of the neighborhood, the symbol is

σ (D) (ϕ, τ, ξ)|ϕ=0,2π = c (1, 0, . . . , 0)
(
ξ2 + τ2

)
.

It coincides with the direct sum of the symbols of Laplacians. Thus, σ (D) extends
outside U as the direct sum of symbols of Laplacians.

Second-order operators associated with submanifolds with trivial normal bun-
dles enable one to construct some topological invariants.

Proposition 7. Let M be a closed smooth manifold, dimM = 2k + 1. A necessary
condition for an embedding

RP2k ⊂M
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of the projective space RP2k with trivial normal bundle is the surjectivity of the
direct image map

f! : TorK1
c (T ∗M) −→ Z2k ⊂ Z [1/2]/ Z,

induced by the map f : M −→ BZ2 = RP∞ classifying the orientation bundle
Λ2k+1 (M) . In particular, K1

c (T ∗M) has to have nontrivial torsion elements of
order 2k.

The proposition can be proved if one notes that on M we have a second-order
operator with the η-invariant having denominator 2k+1. On the other hand, the
η-invariant is computed by the direct image map corresponding to the classifying
space. �

3.7. The Atiyah–Patodi–Singer formula

An expression for the index of spectral boundary value problems was found in [2].
Namely, using the heat equation method [8], the relation

ind(D, Π+(A)) =
∫

X

a(D)− η(A) (3.12)

was obtained for the index of a spectral boundary value problem on a manifold X
for an elliptic operator of order one that has the decomposition ∂/∂t+A near the
boundary. Here a(D) is by definition the constant term in the local asymptotic
expansion

tr(e−tD∗D(x, x)) − tr(e−tDD∗
(x, x))

as t → 0. It is defined (as in the case of operators on closed manifolds) as some
algebraic expression in the coefficients of the operator and their derivatives. The
second term is the η-invariant of the tangential operator A.

In the general case, the formula for a(D) is extremely cumbersome. However,
for the classical operators (Euler operator, signature operator, etc.) it is described
by explicitly computable formulas. For example, if D is the signature operator
with coefficients in a bundle E equipped with a connection, we have

a(D) = L(X)chE,

where L(X) ∈ Λev(X) stands for the Hirzebruch polynomial [56] in the Pontryagin
forms of the Riemannian manifold and chE ∈ Λev(X) is the Chern character of
the bundle computed in terms of the connection via Chern–Weil theory.

A similar expression for the form is valid for the remaining classical operators;
one has only to substitute polynomials corresponding to the operators in place of
the L-polynomial.

The Atiyah–Patodi–Singer formula has numerous applications ranging from
algebraic geometry [5] to quantum field theory [72]. As an explanation of this phe-
nomenon, M. Atiyah points out that for the signature operator the formula (3.12)
relates three objects of entirely different nature: a topological invariant (the signa-
ture) on the left-hand side and a metric invariant (the integral of the Pontryagin
forms) as well as the spectral η-invariant on the right-hand side.
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3.8. The index decomposition of the Dirac operator (Kreck-Stolz invariant)

Consider the Dirac operator on a 4k-dimensional manifold M . In this section, we
obtain, following [45], a decomposition of the index of this operator. Strikingly
enough, it turns out that the index defect can be defined using the signature
operator! The decomposition is made under the assumption that the boundary
has trivial Pontryagin classes.

Denote the Dirac operator by D and its tangential operator by A. By Atiyah–
Patodi–Singer theorem, the sum indD + η(A) is equal to the integral over the
manifold with boundary of the Â polynomial in the Pontryagin forms∫

M

Â(p).

Hence to construct an index decomposition we have to decompose this integral into
a geometric invariant determined by the boundary and the remainder homotopy
invariant term. Such a decomposition is obtained for all decomposable components
of the Â-polynomial (except the top component pk!) by the following lemma.

Lemma 2. Let α, β be positive degree forms on M whose restrictions to the bound-
ary are exact. Then∫

M

α ∧ β =
∫

∂M

α̂ ∧ β +
〈
j−1[α] ∪ j−1[β], [M, ∂M ]

〉
,

where dα̂ = α|∂M , j−1[α] is an arbitrary preimage of the cohomology class [α] ∈
H∗(M) under the restriction map j : H∗(M, ∂M)→ H∗(M), and 〈·, [M, ∂M ]〉 is
the pairing with the fundamental class. Moreover, the terms on the right-hand side
of the relation do not depend on the choices.

The proof uses integration by parts. �
Denote the first term in the formula of the lemma by∫

∂M

d−1(α ∧ β) def=
∫

∂M

α̂ ∧ β.

It only remains now to decompose the integral of the top Pontryagin class.
Here we make use of the signature operator: for this operator, the Atiyah–Patodi–
Singer formula contains the integral of the L-class. In turn, the L-class also includes
the top Pontryagin class. A standard computation shows that the sum Â(p) +
akL(p), where ak = (22k+1(22k−1 − 1))−1 in degrees ≤ 4k, contains only products
of Pontryagin classes of positive degrees, i.e., does not contain the top class pk.
For example, for an 8-manifold one has

Â(M) =
1

5760
(7p2

1 − 4p2), L(M) =
1
45

(7p2 − (p1)2).

Further, by rewriting the sum indD+ak indD by Atiyah–Patodi–Singer theorem,
we obtain

indD + η(A)− akη(A)−
∫

∂M

d−1(Â + akL)(p) = t(M),
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where t(M) denotes the following topological invariant of manifolds with bound-
ary:

t(M) = 〈(Â + akL)(j−1p(M)), [M, ∂M ]〉 − ak indD.

The contribution of the boundary is called the Kreck–Stolz invariant s(∂M, g) of
the manifold ∂M with metric g.

Theorem 18. [45] The index of the Dirac operator on a manifold with boundary
having trivial Pontryagin classes has the decomposition

indD = t(M) + s(∂M, g),

where the Kreck–Stolz invariant s(∂M, g) is a homotopy invariant of the metric in
the class of metrics of positive scalar curvature.

4. Elliptic theory “modulo n”

Another field of applications of elliptic theory in subspaces concerns so-called theo-
ries with coefficients in finite groups Zn. The characteristic feature of such theories
is that, for some reason, the index in such theories makes sense only as a residue.

In this section, we briefly discuss two versions of this theory: on Zn-manifolds
and on closed manifolds.

4.1. The Freed–Melrose theory on Zk-manifolds

Definition 11. A Zk-manifold is a compact smooth manifold M with boundary
∂M, which is a disjoint union of k copies of some manifold X

∂M = M1 � · · · �Mk, Mi

gi≈ X

with fixed diffeomorphisms gi.

Zk-manifolds naturally define the singular spaces

M = M/ {Mi

g−1
j gi∼ Mj}, (4.1)

identifying points on the components of the boundary (see Fig. 3).
Zk-manifolds were introduced by Sullivan [71]. One of the motivations indi-

cating the interest in this class of singular spaces is the fact that (in the orientable
case) a singular manifold M carries a fundamental cycle in homology with coeffi-
cients Zk [

M
]
∈ Hm

(
M, Zk

)
, m = dimM.

These singular manifolds were also used as a geometric realization of bordisms
with coefficients in Zk. For further research in this direction, we refer the reader
to [20]. On a Zk-manifold, we fix a collar neighborhood of the boundary

U∂M ≈ [0, 1)×X × {1, . . . , k} . (4.2)

Definition 12. An operator on a Zk-manifold is an operator D on M, which is
invariant under the group of permutations of the components of the collar neigh-
borhood (4.2) of the boundary.
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Figure 3. Manifold with singularities

We equip elliptic operators D on Zk-manifolds with spectral boundary con-
ditions.

Proposition 8. The index residue modk- ind(D, Π+(A)) is constant for homotopies
of the operator D.

Indeed, for a continuous homotopy {Dt}t∈[0,1] the change of the index is equal
to the spectral flow of the family of tangential operators on the boundary

ind(D1, Π+(A1))− ind(D0, Π+(A0)) = −sf{At}t∈[0,1].

On the other hand, the family At at the boundary is by assumption the direct sum
of k copies of some family on X . Therefore, the spectral flow is divisible by k. �

This homotopy invariant index residue was computed in terms of the principal
symbol by Freed and Melrose. Let us briefly recall their result.
Theorem of Freed and Melrose. The cotangent bundle T ∗M is a noncompact
Zk-manifold, and the principal symbol of operator D defines an element in the
K-group

[σ (D)] ∈ Kc

(
T ∗M

)
.

(Here we use identification (4.1).) It turns out that the direct image mapping in
K-theory extends to the category of Zk-manifolds (the morphisms are by definition
those embeddings which map boundary to boundary preserving the Zk-structure).
More precisely, for an embedding f : M → N one has

f! : Kc

(
T ∗M

)
−→ Kc

(
T ∗N

)
.

On the other hand, one can construct a universal space for such embeddings (i.e.,
the space into which any Zk manifold can be embedded). The universal space can
be obtained from RL by deleting k disjoint disks of a sufficiently small radius. We
obtain the Zk-manifold Mk whose boundary is the union of k spheres (diffeomor-
phisms of spheres are given by parallel translations). It is easy to compute the
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K-group of the cotangent bundle of this space

Kc

(
T ∗Mk

)
 Zk.

Freed and Melrose proved the following index theorem.

Theorem 19. [31] One has

mod k-indD = f! [σ (D)] ,

where the direct image map f! : Kc

(
T ∗M

)
−→ Kc

(
T ∗Mk

)
 Zk is induced by an

embedding f : M −→Mk.

The proof models the K-theoretic proof of the Atiyah–Singer theorem based
on embeddings. The main part of the proof is the statement that the analytical
index is preserved for embeddings, i.e., for an embedding of M in N the following
diagram commutes

Kc(T ∗M)
f!−→ Kc(T ∗N)

↘ ↙
Zn.

4.2. Index modulo n on closed manifolds

Index-residues also arise on a closed manifold. Consider the following question:
what objects of elliptic theory correspond to the elements of K-group Kc(T ∗M, Zn)
with coefficients Zn?

The answer is given in terms of operators in subspaces

D : nL̂ −→ C∞ (M, F ) . (4.3)

Leu us show how symbols of such operators define elements of the K-group
with coefficients. To this end, we recall the definition of the latter.

K-theory with coefficients. It is defined as

Kc (T ∗M, Zn) = Kc (T ∗M ×Mn, T ∗M × pt) ; (4.4)

where Mn is the so-called Moore space of the group Zn. An explicit construction of
this space can be found in [3]. We will only use the fact that the reduced K-groups
of the Moore space is Zn and generated by the difference 1− [γ], where γ is a line
bundle. We will also fix a trivialization

nγ
β Cn.

Geometric construction of elements of K-groups with coefficients. It follows from
definition (4.4) that elements of Kc (T ∗M, Zn) can be realized in terms of families
of elliptic symbols3 on M. The family is parametrized by the Moore space. It is

3Here we use the difference construction for families (see [11]). It associates element [σ] ∈
K (T ∗M × X) with a family σ (x) , x ∈ X of elliptic symbols on M parametrized by space X:

σ (x) : π∗E −→ π∗F, E, F ∈ Vect (M × X) , π : S∗M × X → M × X.
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easy to define such a family as a composition:

C∞ (M, F ) D−1

−→ nL̂,

nL̂
β−1⊗1L̂−→ γ ⊗ nL̂,

γ ⊗ nL̂
1γ⊗D−→ γ ⊗ C∞ (M, F ) ,

(4.5)

where D−1 is an almost inverse and the last family is obtained by twisting with
γ. The family of symbols corresponding to this composition defines the desired
element in the K-group with coefficients. Denote it by

[σ (D)] ∈ Kc (T ∗M, Zn) .

In [60], it is shown that the K-group with coefficients is actually isomorphic to the
group of stable homotopy classes of operators (4.3). Let us conclude this section
with an index theorem.

Index theorem. Note that the index of operator (4.3) as a residue modulo n

mod n-ind D ∈ Zn

is a homotopy invariant of the principal symbol of the operator. The following
theorem gives an expression for this index in topological terms.

Theorem 20. One has
mod n-indD = p! [σ (D)] , (4.6)

where the direct image map p! : K (T ∗M, Zn) −→ K̃ (pt, Zn) = Zn in K-theory
with coefficients is induced by p : M −→ pt.

Let us apply the Atiyah–Singer index formula for families to compute the
index of the composition (4.5). This formula expresses the index as the right-hand
side of (4.6). On the other hand, the index of the composition can be computed
directly as

indD([γ]− 1) ∈ K (Mn) ,

i.e., it coincides with the modulo n index of the operator in subspaces in the group
K̃ (pt, Zn) = Zn. �
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1. Introduction

Let Wn be a closed smooth manifold, p : Ŵn →Wn be the universal covering for
Wn. Denote by Wn

i the ith skeleton of some arbitrary triangulation of Wn and
let Ŵn = p−1(Wn

i ). Set

Si(Wn) = µs(Hi(Ŵn
i , Z)) − µ(Hi(Wn

i , Z)) ,

where Hi(Ŵn
i , Z) is considered as a Z[π1(Wn)]-module. Here the number µs(H)

is the stable minimal number of generators of the Z[π1(Wn)]-module H (see def-
inition 2.1 below or [19]) and µ(H) is the minimal number of generators of the
group H . It is known that the numbers Si(Wn) do not depend on triangulation
of Wn and are invariants of homotopy type of Wn [19].

By definition the ith Morse numberMi(Wn) of a manifold Wn is the minimal
number of critical points of index i taken over all Morse functions on Wn. It is
known [19] that there is the following estimate for Morse number of index i of Wn:

Mi(Wn) ≥ Si(Wn) + Si+1(Wn) + µ(Hi(Wn, Z)) + µ(TorsHi+1(Wn, Z)) .

There are examples of manifolds Wn such that an arbitrary Morse function f on
them has the number of critical points of index i

Mi(f) > Si(Wn) + Si+1(Wn) + µ(Hi(Wn, Z)) + µ(TorsHi+1(Wn, Z)) .

I am grateful to E. Troitsky for his very helpful suggestions.
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This causes that in the definition of the numbers Si(Wn) we can use the stable
minimal number of generators of a Z[π1(Wn)]-module.

It is known [2, 10, 19] that for closed smooth manifolds of the dimension
greater than 6 the ith Morse numbers are invariant of the homotopy type. There
is a very complicated unsolved problem: to find exact values of Morse numbers for
every i (see [19] for more details).

In this paper we at first study the homotopy invariants of free cochain com-
plexes and Hilbert complex. Next we introduce new numerical invariants of mani-
folds Di(Wn) which allows us to find the exact values of Morse numbersMi(Wn)
of a smooth closed manifold Wn (n ≥ 8) for 4 ≤ i ≤ n− 4. Denote π = π1(Wn).
We prove following theorem:

Theorem 7.3. Let Wn (n ≥ 8) be a smooth closed manifold. The following equality
holds for the ith Morse number 4 ≤ i ≤ n− 4:

Mi(Wn) = Di(Wn) + Ŝi
(2)(W

n) + Ŝi+1
(2) (Wn) + dimN(π)(Hi

(2)(W
n, Z)) .

2. Stable invariants of finite generated modules
and Hilbert N [G]-modules

We give several definitions and results for finitely generated modules over group
rings. Most facts are also valid for modules over a broader class of rings.

Denote the ring of integers by Z and the field of complex numbers by C. Let G
be a discrete group. Denote its integer group ring by Z[G] and the group ring over
the field C by C[G]. In the group ring there exists an augmentation epimorphism
ε : Z[G] −→ Z (ε : C[G] −→ C) acting by the rule ε(

∑
i αigi) = Σiαi. Denote the

kernel of the epimorphism ε by I[G]. In the ring C[G] there exists an involution
∗ : C[G] −→ C[G], (

∑
i αigi)∗ =

∑
i αig

−1
i , where α denotes conjugation in C. This

involution satisfies the following conditions for all elements r of the ring C[G]:
a) (r∗)∗ = r ;
b) (αr1 + βr2)∗ = αr∗1 + βr∗2 , (α, β ∈ C);
c) (r1r2)∗ = r�

2r�
1 .

We can define the trace tr : C[G] −→ C by the rule tr(
∑k

i αigi) = α1, where α1

is the coefficient of g1 = e, which is the identity of the group G. It is obvious that
the trace satisfies the following conditions:

a) tr(e) = 1 ;
b) tr is C-linear mapping ;
c) tr(r1r2) = tr(r2r1);
d) tr(rr∗) � 0, and if tr(rr∗) = 0, then r = 0.

In what follows, a module M over a certain associative ring Λ with identity is
understood, unless otherwise stated, as a left finitely generated Λ-module. Rings
for which the rank of the free module is uniquely defined are called IBN -rings [19].
It is known that the group rings Z[G] and C[G] are IBN -rings [19]. In the present
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paper, we consider only IBN -rings. Note that a submodule of a free module of
finite rank over a group ring Z[G] can be infinitely generated [21] even if the group
G is finitely generated. Denoting the minimum number of the generators of the
module M by µ(M), we get µ(M

⊕
Fn) < µ(M) + n, where Fn is a free module

of rank n. There exist examples (stably-free modules) where the strict inequality
holds [19]. Recall that a Λ-module M is called stably-free if the direct sum of M
and a free Λ-module Fk is free. We assume that if the module M is zero, then
µ(M) = 0.

Definition 2.1. For a finite generated module M over IBN -ring Λ let us define the
following function (stable minimal generators of the module M)

µs(M) = lim
n−→∞(µ(M ⊕ Fn)− n)) .

From equality

µs(M
⊕

Fk) = lim
n−→∞(µ(M

⊕
Fk ⊕ Fn)− n))

= lim
n−→∞(µ(M

⊕
Fk+n)− (n + k)) + k = µs(M) + k

it follows that

µs(M
⊕

Fk) = µs(M) + k .

If ring Λ is Hopfian then for any Λ-module M

µs(M) = 0 ,

if and only if M = 0. Recall that a ring Λ is called Hopfian, if every epimorphism of
a free Λ-module Fn on itself is an isomorphism. In fact, suppose that for a certain
non-zero module M the equality µs(M) = 0 occurs. Then there exists a natural
number n, such that for the module N = M

⊕
Fn we have µ(N) = n. Therefore,

there is an epimorphism f : Fn → N of a free module Fn of rank n onto the module
N . In addition, there exists a canonical epimorphism p : N = M

⊕
Fn → Fn with

the kernel equal M . Consider the kernel K of the epimorphism p · f : Fn → Fn.
By the construction K �= 0 and K ⊕ Fn = Fn. Since Λ is Hopfian, it follows that
K = 0.

From theorems of Kaplansky and Cockroft [19] it follows that the group rings
Z[G] and C[G] are Hopfian. It is clear, that for any non-zero module M we have
0 < µs(M) � µ(M). The difference

µ(M)− µs(M)

shows how many times one can add a free module of rank one to the modules
M

⊕
kΛ (k = 0, 1, . . . ) without increasing by one of the number µ(M

⊕
kΛ). For

every finite generated module M over IBN -ring Λ there is a natural number n such
that for the module N = M

⊕
nΛ and all m ≥ 0 we have µ(N

⊕
mΛ) = µ(N)+m.
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Definition 2.2. For a finitely generated module M over Z[G] (respectively C[G])
set

SZ(M) = µs(M)− µ(Z
⊗
Z[G]

M) (respectively SC(M) = µs(M)− µ(C
⊗
C[G]

M)).

Here Z (respectively C) are considered as a trivial Z[G]-module (respectively
C[G]-module) [19]. It is not difficult to show that SZ(I[G]) ≥ 0. It is known,
that for Z[G]-module I[G], SZ(I[G]) > 0, if G is perfect group [19]. If Z[G]- or
C[G]-modules M and N are such that M

⊕
Fn and N

⊕
Fm are isomorphic, then

SZ(M) = SZ(N) = SZ(M
⊕

Fn) = SZ(N
⊕

Fm) and SC(M) = SC(N)
= SC(M

⊕
Fn) = SC(N

⊕
Fm).

In the ring C[G] there is an inner product 〈
∑

i αigi,
∑

i βigi〉 =
∑

i αiβi.
The norm for an element from C[G] may define by |r| = tr(rr∗)1/2. Consider a
completion of the ring C[G] with respect to this norm and denote it by L2(G).
Then L2(G) is a Hilbert space (the inner product assigns the same formula as for
the group ring C[G]). The Hilbert space L2(G) has an orthonormal basis consisting
of all elements of the group G. Now C[G] acts faithfully and continuously by left
multiplication on L2(G)

C[G]× L2(G) −→ L2(G),

so we may regard C[G] ⊆ B(L2(G)), where B(L2(G)) denotes the set of bounded
linear operators on L2(G). Let N [G] denote the (reduced) group von Neumann
algebra of G: thus by definition N [G] is a week closure of C[G] in B(L2(G)).
Therefore the map w→ w(e) allows us to identify N [G] with a subspace of L2(G),
where w ∈ N [G] and e is unit element of the group G. Thus algebraically we
have C[G] ⊂ N [G] ⊂ L2(G). The involution and the trace map on N [G] may be
defined exactly as for the ring C[G]. For the set Mn(N [G]) of n× n matrices over
von Neumann algebra N [G], the trace map can be extended by setting tr(W ) =
Σn

i=1wii, where W = (wij) is a matrix with entries in N [G].
Following Cohen [4] we define following Hilbert N [G]-module. Let E =

N
⋃
∞, where ∞ denotes first infinite cardinal. If n ∈ E then L2(G)n denote

the Hilbert direct sum n copies of L2(G), so L2(G)n is a Hilbert space. The von
Neumann algebra N [G] acts on L2(G)n from the left, so L2(G)n is a left N [G]-
module called a free Hilbert N [G]-module of rank n. The left Hilbert N [G]-module
M is a closed left C[G]-submodule of L2(G)n for some n ∈ E. If n ∈ N , then
Hilbert N [G]-module M is called finite generated. Following [4, 12] an Hilbert
N [G]-submodule of M is a closed left C[G]-submodule of M , an L2(G)-ideal is
an Hilbert N [G]-submodule of L2(G), and homomorphism f : M −→ N between
Hilbert N [G]-modules is a continuous left C[G]-map.

Let M be a Hilbert N [G]-module and let p : L2(G)n → L2(G)n be an or-
thogonal projection onto M ⊂ L2(G)n. Von Neumann dimension of Hilbert N [G]-
module M is called the number dimN [G](M) = tr(p) = Σn

i=1〈p(ei), ei〉L2(G)n . Here
ei = (0, . . . , g, . . . , 0) is standard basis in L2(G)n. It is known that dimN [G](V ) is
non-negative real number [12].
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3. Stable invariants of homomorphisms

Consider a Λ-homomorphism f : Fk → Ft, where Fk, Ft are free modules of ranks
k and t respectively over ring Λ. We say that homomorphism f is a splitting along
a submodule F p ⊆ Fk, if there is a presentation of f of the form

f = fp

⊕
ft : F p

⊕
F k−p → F̃p

⊕
F̃t−p,

such that

f |Fp

⊕
0 = fp : F p → F̃p, f |0⊕

F k−p
= ft : F k−p → F̃t−p,

where fp is an isomorphism. From now in this situation we will suppose that
submodules F p, F k−p, F̃p, F̃t−p are free.

Definition 3.1. The number p above is called the rank of a splitting f = fp

⊕
ft.

The rank R(f) of a homomorphism f is the maximal value of possible ranks of
splittings of f .

Definition 3.2. Stabilization of a homomorphism f : Fk → Ft by a free module Fp

is a homomorphism
fst(p) : Fk

⊕
Fp → Ft

⊕
Fp,

such that
fst(p)|Fk

⊕
0 = f, fst(p)|0⊕

Fp
= Id.

A thickening of a homomorphism f : Fk → Ft by free modules Fm and Fn is the
homomorphism

fth(m, n) : Fk

⊕
Fm → Ft

⊕
Fn,

such that
fth(m, n)|Fk

⊕
0 = f, fth(m, n)|0 ⊕

Fm
= 0.

A thickening of a homomorphism f : Fk → Ft from the left (respectively from the
right) by free module Fm ( Fn ) is the homomorphism

fth,l(m) : Fk

⊕
Fm → Ft (respectively fth,r(n) : Fk → Ft

⊕
Fn),

such that

fth,l(m)|Fk

⊕
0 = f, fth,l(m)|0 ⊕

Fm
= 0, (respectively fth,r(n) = f).

Definition 3.3. The stable rank Sr(f) of a homomorphism f : Fk → Ft is the limit
of values of

Sr(f) = lim
m,n,p→∞(R(fth(m, n)st(p))− p).

Since Sr(f) ≤ min(k, t), this limit always exists. There are examples of
stably free modules with Sr(f) > R(f).

Lemma 3.4. For any homomorphism f : Fk → Ft the following equality holds:

Sr(fst(v)) = Sr(f) + v .
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Proof. Indeed

Sr(fst(v)) = lim
m,n,p→∞(R(fst(v)th(m, n)st(p))− p)

= lim
m,n,p→∞(R(fst(v + p)th(m, n))− (p + v)) + v = Sr(f) + v. �

Remark 3.5. For an arbitrary homomorphism f : Fk → Ft there exists a number
n0 such that the stable rank Sr(f) of the homomorphism f can be calculated by
the formula

Sr(f) = R(fth(m, n)st(p))− p

for any m ≥ n0, n ≥ n0, p ≥ n0.

Definition 3.6. The stable rank from the left (respectively from the right) Srl(f)
(respectively Srr(f)) of a homomorphism f is the following limit of values of ranks:

Srl(f) = lim
m,p→∞(R(fth,l(m)st(p))− p)

(respectively Srr(f) = lim
n,p→∞(R(fth,r(n)st(p))− p).

Remark 3.7. For the stable rank from the left (from the right) the analogues of
Lemma 3.4 and Remark 3.5. hold.

Remark 3.8. For a homomorphism f define the following numbers:

Dr(f) = Sr(f)− Srr(f), Dl(f) = Sr(f)− Srl(f).

It is clear that Dr(f) = Dr(fst(p)) (respectivelyDl(f) = Dl(fst(p)) ) for any inte-
ger p.

Definition 3.9. An epimorphism of Λ-modules f : Fm −→M is said to be minimal
if m = µ(M).

Lemma 3.10. Let Fn
g−→ Fm

f−→M −→ 0 be an exact sequence where Fm and Fn

are free modules. Then f is a minimal epimorphism if and only if Srl(g) = 0.

Proof. Necessity. Let Fn
g−→ Fm

f−→ M −→ 0 be an exact sequence, where f is
a minimal epimorphism. If Srl(g) > 0, then by Remark 3.7 there exist numbers
p and x such that for thickening and the stabilization of the homomorphism g by
free modules of ranks p and x respectively we have

Srl(g) = R(gth(p)st(x)) − x > 0 .

Therefore Srl(g) = R(gth(p)st(x)) = u > x. Hence the homomorphism gth(p)st(x)
is a splitting along a free submodule Fu of rank u. We can delete submodules
of rank u which direct summands of the modules Fn

⊕
Fp

⊕
Fx and Fm

⊕
Fx

respectively. This allows us to decrease the rank of a free module mapped onto the
module M . But this contradicts to the assumption that the map f is minimal.
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Sufficiency. First, if for an exact sequence

Fn
g−→ Fm

f−→M −→ 0

we have Srl(g) = 0, then R(gth(p)st(x)) = x for any integers p and x.

Let Fn
g−→ Fm

f−→ M −→ 0 be an exact sequence such that Srl(g) = 0
and epimorphism f is not minimal. Then µ(M) < m. Consider an arbitrary exact
sequence Fv

k−→ Fw
h−→ M −→ 0 such that h is a minimal epimorphism and

µ(M) = w. Then via the stabilization of the homomorphism g via module Fw

and the stabilization of the homomorphism k via module Fm the epimorphisms
fth,l(w) and hth,l(m) will proved to be equivalent. As noted above, Srl(k) = 0
(since h is minimal epimorphism), whence Srl(hsth(m)) = R(h) + m = m. By
similar arguments Srl(gst(w)) = Srl(gst(w)th(q)) = R(g) + w = w for any integer
q. Therefore the homomorphism gst(w)th(q) is a splitting along a free module of
the rank m and hence Srl(gst(w)th(q)) ≥ m > w. This contradiction proves the
lemma. �

4. Stable invariants of a composition of homomorphisms

Consider a composition of homomorphisms of free modules

Fm
f−−−−→ Fn

g−−−−→ Ft,

such that
g · f = 0. (∂)

We say, that the homomorphisms f and g are splitting along submodules F p ⊆ Fm

and F q ⊆ Fn if there are presentations of f and g of the form

0 −−−−→ F p
f1−−−−→ F̃p −−−−→ 0⊕ ⊕

Fm−p
f2−−−−→ Fn−p−q

g2−−−−→ Ft−q⊕ ⊕
0 −−−−→ Fq

g1−−−−→ F̃q −−−−→ 0

such that
f |F p

⊕
0 = f1, g|0⊕

0
⊕

F q
= g1.

We admit that the module F p or F q to be zero module. In sequel we will suppose,
that submodules F p , F q , Fm−p , Ft−q , Fn−p−q are free.

Definition 4.1. The number p + q will be called the common rank of a splitting of
homomorphisms f and g along submodules F p ⊆ Fm and F q ⊆ Fn. The common
rank Cr(f, g) of the homomorphisms f and g is a maximal value of common ranks
of a splitting of f and g.
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Definition 4.2. The stabilization of a composition of homomorphisms of free mod-
ules

Fm
f−−−−→ Fn

g−−−−→ Ft,

satisfying the condition (∂) by free modules Fp and Fq is the following composition
of homomorphisms

0 −−−−→ Fp
id−−−−→ Fp −−−−→ 0⊕ ⊕

Fm
f−−−−→ Fn

g−−−−→ Ft⊕ ⊕
0 −−−−→ Fq

id−−−−→ Fq −−−−→ 0.

We will denote it by (fst(p), gst(q)).

Definition 4.3. Consider a composition of homomorphisms f and g

Fm
f−−−−→ Fn

g−−−−→ Ft,

satisfying the condition (∂). The thickening this composition by free modules Fp

and Fq is the following composition of homomorphisms

Fm

⊕
Fp

fth(p)−−−−→ Fn
gth(q)−−−−→ Ft

⊕
Fq,

such that
fth(p)|Fm

⊕
0 = f , fth(p)|0 ⊕

Fp
= 0 , gth(q) = g .

It will be denoted by (fth(p), gth(q)).
The thickening from the left (respectively right) of this composition of ho-

momorphisms f and g by free modules Fp (respectively Fq) is the following com-
position of homomorphisms

Fm

⊕
Fp

fth,l(p)−−−−−→ Fn
g−−−−→ Ft

(respectively Fm
f−−−−→ Fn

gth,r(q)−−−−−→ Fr

⊕
Fq),

such that

fth,l(p)|Fm

⊕
0 = f, fth,l(p)|0 ⊕

Fp
= 0, (respectively gth,r(q) = g).

It will be denoted by (fth,l(p), g) (respectively f, gth,r(q)).

Definition 4.4. The stable common rank Scr(f, g) of the composition of homo-
morphisms of free modules

Fm
f−−−−→ Fn

g−−−−→ Ft,

satisfying the condition (∂) is the limit of values of common ranks

Scr(f, g) = lim
p,q,v,w→∞(Cr(fth(p)st(v), gth(q)st(w)) − v − w).
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Since Scr(f, g) ≤ n, this limit always exists. There are examples of stably
free modules showing that Scr(f, g) ≥ Cr(f, g).

Lemma 4.5. For arbitrary composition of homomorphisms f and g

Fm
f−−−−→ Fn

g−−−−→ Ft,

satisfying the condition (∂) the following equality holds true:

Scr(fst(x), gst(y)) = Scr(f, g) + x + y.

Proof. Indeed,

Scr(fst(x), gst(y)) = lim
p,q,v,w→∞(Cr(fst(x)th(p)st(v), gst(y)th(q)st(w)) − v − w)

= lim
p,q,v,w→∞(Cr(fst(x + v)th(p), gst(y + w)th(q))

− (x + v)− (y + w)) + x + y

= Scr(f, g) + x + y . �

Remark 4.6. For every composition of homomorphisms f and g satisfying the
condition (∂) there exists a number n0 such that the stable common rank Sr(f)
can be calculated by the following formula:

Scr(f, g) = Cr(fth(p)st(v), gth(q)st(w)) − v − w

for any p ≥ n0, q ≥ n0, v ≥ n0, w ≥ n0.

Definition 4.7. The stable common rank from the left (respectively from the right)
Scrl(f, g) (respectively Scrr(f, g)) of the composition of homomorphisms of free
modules

Fm
f−−−−→ Fn

g−−−−→ Ft,

satisfying condition (∂) is the following limit of values of common ranks:

Scrl(f, g) = lim
p,v,w→∞(Cr(fth,l(p)st(v), gst(w)) − v − w)

(respectively Scrr(f, g) = lim
q,v,w→∞(Cr(fst(v), gth,r(q)st(w)) − v − w)).

Remark 4.8. For stable common rank from the left (respectively from the right)
Scrl(f, g) (respectively Scrr(f, g)) of a composition of the homomorphisms satis-
fying the condition (∂) the analogues of Lemma 4.5 and Remark 4.6 hold.

Definition 4.9. The defect D(f, g) of a composition of homomorphisms of free
modules

Fm
f−−−−→ Fn

g−−−−→ Ft,

satisfying condition (∂) is the following number:

D(f, g) = Sr(f) + Sr(g)− Scr(f, g).
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Remark 4.10. a) For arbitrary composition of homomorphisms f and g satisfy-
ing the condition (∂) there exists a number n0 such that defect D(f, g) can be
calculated by the formula

D(f, g) = R(fth(p, w)st(v)) + R(gth(v, q)st(w)) + Cr(fth(p)st(v), gth(q)st(w))

for any p ≥ n0, q ≥ n0, v ≥ n0, w ≥ n0;
b) For any such composition with Fn/f(Fm) being stable free, but non free, one
has D(f, g) > 0.

Lemma 4.11. Consider two compositions of homomorphisms of free modules

Fm
f−−−−→ Fn

g−−−−→ Ft

and
0 −−−−→ Fv

id−−−−→ Fv −−−−→ 0⊕ ⊕ ⊕
Fm

⊕
Fp

fth,l(p)−−−−−→ Fn
gth,r(q)−−−−−→ Ft

⊕
Fq⊕ ⊕ ⊕

0 −−−−→ Fw
id−−−−→ Fw −−−−→ 0

satisfying the condition (∂). Then the following equality holds:

D(f, g) = D(fth,l(p)st(v), gth,r(q)st(w)).

Proof. This lemma can be proved using Lemma 3.4 and Lemma 4.5. �

Definition 4.12. The defect from the left (respectively from the right) Dl(f, g)
(respectively Dr(f, g)) of a composition of homomorphisms of free modules

Fm
f−−−−→ Fn

g−−−−→ Ft,

satisfying condition (∂) is the following number

Dl(f, g) = Srl(f) + Sr(g)− Scrl(f, g)

(respectively Dr(f, g) = Sr(f) + Srr(g)− Scrr(f, g)).

Remark 4.13. For the defect from the left (respectively from the right) Dl(f, g)
(respectively Dr(f, g)) of a composition of homomorphisms f and g satisfying
condition (∂) the analogues of Lemma 4.11 and Remark 4.10 hold true.

5. Homotopy invariants of cochain complexes

The following statement can be found in [3]:

Proposition 5.1 (Cockroft-Swan). Let f = fn : (C, d) −→ (C, d), n ≥ 0 be a
cochain mapping between the free cochain complexes (C, d) and (C, d) that in-
duces an isomorphism in cohomology. Then there exist contractible free cochain



New L2-invariants of Chain Complexes 301

complexes (D, ∂) and (D, ∂) such that the cochain complexes (C
⊕

D, d
⊕

∂) and
(C

⊕
D, d

⊕
∂), are cochain-isomorphic.

If (C, d) : C0 d0

−→ C1 d1

−→ · · · dn−1

−→ Cn is a free cochain complex over a ring
Λ, then the numbers Dr(d0), Dl(dn−1), Dr(d0, d1), Dl(dn−2, dn−1), D(di, di+1) are
defined for 1 ≤ i ≤ n − 3. The next lemma shows that they are invariants of the
homotopy type of a cochain complex (C, d).

Lemma 5.2. Let (C, d)Λ be the class of free cochain complexes over ring Λ homotopy

equivalent to cochain complex (C, d) : C0 d0

−→ C1 d1

−→ · · · dn−1

−→ Cn. Then for any

cochain complex (D, ∂) : D0 ∂0

−→ D1 ∂1

−→ · · · ∂n−1

−→ Dn belonging to the class (C, d)Λ
(n ≥ 4) the following equalities hold:

Dr(d0) = Dr(∂0),

Dr(dn−1) = Dr(∂n−1),

Dr(d0, d1) = Dr(∂0, ∂1),
Dl(dn−2, dn−1) = Dl(∂n−2, ∂n−1),

D(di, di+1) = D(∂i, ∂i+1)
for 1 ≤ i ≤ n− 3.

Proof. This is a consequence of Proposition 5.1, Lemma 4.11 and Remark 3.7. �

Definition 5.3. A free cochain complex (C, d) : C0 d0

−→ C1 d1

−→ · · · dn−1

−→ Cn is

called minimal in dimension i if for arbitrary free cochain complex (D, ∂) : D0 ∂0

−→
D1 ∂1

−→ · · · ∂n−1

−→ Dn that is homotopically equivalent to (C, d), one has µ(Ci) ≤
µ(Di), where µ(Ci) is the rank of the free module Ci. A free cochain complex
(C, d) is called minimal if it is minimal in all dimensions.

It is obvious that, for every i in homotopy class of arbitrary free cochain
complex (C, d) always exists a minimal free cochain complex in dimension i. The
following lemma gives a necessary and sufficient condition for a free cochain com-
plex over the ring Λ to be minimal in dimension i.

Lemma 5.4. Let (C, d) : C0 d0

−→ C1 d1

−→ · · · dn−1

−→ Cn be a free cochain complex over
a ring Λ (n ≥ 4). For the cochain complex (C, d) to be minimal in dimension i it
is necessary and sufficient that

Srr(d0) = 0, for i = 0,

Scrr(d0, d1) = 0, for i = 1,

Scr(di−1, di) = 0, for 2 ≤ i ≤ n− 2,

Scrl(dn−2, dn−1) = 0, for i = n− 1,

Srl(dn−1) = 0, for i = n.
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Proof. We will consider only the case, when 1 ≤ i ≤ n − 3. Other cases can be
proved by similar arguments.

Necessity. Let (D, ∂) : D0 ∂0

−→ D1 ∂1

−→ · · · ∂n−1

−→ Dn be a minimal cochain complex
in dimension i. If Scr(∂i, ∂i+1) > 0, then by Remark 4.6 there exist numbers
p, q, v, w such that the stabilization of the homomorphisms ∂i−1, ∂i, ∂i+1, ∂i+2

by free modules of ranks p, q, v, w respectively the number Scr(∂i, ∂i+1) can be
calculated by the following formula

Scr(∂i, ∂i+1) = Cr(∂i
th(p)st(v), ∂i+1

th (q)st(w)) − v − w .

The obtained cochain complex will be denoted by (D, ∂). Then

Scr(∂i, ∂i+1) = Cr(∂i
th(p)st(v), ∂i+1

th (q)st(w)) > v + w .

Using operations of reduction of cochain complex (D, ∂) we can decrease the rank
of the cochain module in dimension i by the number equal to Scr(∂i, ∂i+1) =
Cr(∂i

th(p)st(v), ∂i+1
th (q)st(w)) > v+w. But this contradicts to the assumption that

the cochain complex (D, ∂) is minimal in dimension i.

Sufficiency. First, notice that if for the composition of homomorphisms of free
modules

Fm
f−−−−→ Fn

g−−−−→ Ft

the equalities g · f = 0 and Scr(f, g) = 0 hold, then for any numbers p, q, v, w we
have

Cr(fth(p)st(v), gth(q)st(w)) = v + w.

Let (C, d) : C0 d0

−→ C1 d1

−→ · · · dn−1

−→ Cn be a free cochain complex such that

Scr(di, di+1) = 0 and (D, ∂) : D0 ∂0

−→ D1 ∂1

−→ · · · ∂n−1

−→ Dn be a minimal cochain
complex in dimension i (by previous Scr(∂i, ∂i+1) = 0). Suppose that µ(Ci) >
µ(Di). By Proposition 5.1 using stabilization of these chain complexes we can
make them isomorphic. In other words, there are numbers k, l, r, s, k, l, r, s such
that the sequences

0 −−−−→ Fr
id−−−−→ Fr −−−−→ 0⊕ ⊕ ⊕

Ci−1
⊕

Fk
di−1

th
(k)

−−−−−→ Ci di
th(l)−−−−→ Ci+1

⊕
Fl⊕ ⊕ ⊕

0 −−−−→ Fs
id−−−−→ Fs −−−−→ 0
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and
0 −−−−→ Fr

id−−−−→ Fr −−−−→ 0⊕ ⊕ ⊕
Di−1

⊕
Fk

∂i−1
th (k)−−−−−→ Di ∂i

th(l)−−−−→ Di+1
⊕

Fl⊕ ⊕ ⊕
0 −−−−→ Fs

id−−−−→ Fs −−−−→ 0
are isomorphic. Therefore these sequences have the same common ranks, i.e., r +
s = r + s, whence µ(Ci) = µ(Di). �

However in the homotopy class of an arbitrary free cochain complex (C, d)
may be no minimal free cochain complex, because of the existence of stably free
modules.

Definition 5.5. Let (C, d): C0 d0

−→ C1 → · · · dn−1

−→ Cn be a free cochain complex.

Then cochain complex (C(i), d(i)) : C0 d0

−→ C1 → · · · di−1

−→ Ci is called ith skeleton
of cochain complex (C, d).

Let (C, d) : C0 d0

−→ C1 → · · · dn−1

−→ Cn be a free cochain complex over a group
ring Z[G] ( C[G]). Consider a cochain complex of finite generated free abelian
groups (vector space over field C)

(Z
⊗
Z[G]

C, id
⊗

d) : Z
⊗
Z[G]

C0 id
⊗

d0

−→ Z
⊗
Z[G]

C1 → · · · id
⊗

dn−1

−→ Z
⊗
Z[G]

Cn

(C
⊗
C[G]

C, id
⊗

d) : C
⊗
C[G]

C0 id
⊗

d0

−→ C
⊗
C[G]

C1 → · · · id
⊗

dn−1

−→ C
⊗
C[G]

Cn).

Here Z (respectively C) is considered as a trivial Z[G]-module (respectively C[G]-
module). Let us consider the ith skeletons of these cochain complexes

(C(i), d(i)) : C0 d0

−→ C1 → · · · di−1

−→ Ci and

(Z
⊗
Z[G]

C(i), id
⊗

d(i)) : Z
⊗
Z[G]

C0 id
⊗

d0

−→ Z
⊗
Z[G]

C1 → · · · id
⊗

di−1

−→ Z
⊗
Z[G]

Ci,

(C
⊗
C[G]

C(i), id
⊗

d(i)) : C
⊗
C[G]

C0 id
⊗

d0

−→ Z
⊗
C[G]

C1 → · · · id
⊗

di−1

−→ C
⊗
C[G]

Ci).

Denote Γi = Ci/di−1(Ci−1). Clearly, the module Γi coincides with ith cohomol-
ogy module of i-skeleton (C(i), d(i)). Moreover, the abelian group (respectively
vector space) C

⊗
Z[G] Γ

i (respectively C
⊗

C[G] Γ
i) may be interpreted as the ith

cohomology of the ith skeleton

(Z
⊗
Z[G]

C(i), id
⊗

d(i)) (resp.(C
⊗
C[G]

C(i), id
⊗

d(i))).
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Definition 5.6. For a free cochain complex (C, d): C0 d0

−→ C1 → · · · dn−1

−→ Cn over
group ring Z[G] (respectively C[G]), we set

Si
Z(C, d) = SZ(Γi) (respectively Si

C(C, d) = SC(Γi)),

where the numbers SZ(Γ) (respectively SC(Γ)) for finite generated Z[G] (respec-
tively C[G])-module Γ is defined in Section 2).

If (C, d) and (D, ∂) are two homotopy equivalent free cochain complexes
over group ring Z[G] (respectively C[G]) then Si

Z
(C, d) = Si

Z
(D, ∂) (respectively

Si
C
(C, d) = Si

C
(D, ∂)). This is a consequence of Proposition 5.1.

Remark 5.7. If (C, d) is a free cochain complex then the number Si
Z
(C, d) (respec-

tively Si
C
(C, d)) estimates from below the rank of the homomorphism id

⊗
di−1 of

the cochain complex (Z
⊗

Z[G] C, id
⊗

d) (respectively (C
⊗

C[G] C, id
⊗

d)).

Let (C∗, d∗)): C0
d1−→ C1 → · · ·

dn−→ Cn, be a sequence of free Hilbert N [G]-
modules and bounded C[G]-map such that di+1 ◦ di = 0. It is called a Hilbert
complex. The reduced cohomology of Hilbert complex (C∗, d∗), it is a collection of
are L2(G)-modules Hi

(2)(C∗, d∗) = Ker di/�di−1.

Definition 5.8. Consider a free cochain complex over Z[G] (respectively C[G])

(C∗, d∗) : C0 d0

−→ C1 → · · · dn−1

−→ Cn.

Hilbert complex
(L2(G)

⊗
Z[G]

C∗, Id
⊗
Z[G]

d∗) :

L2(G)
⊗
Z[G]

C0
Id

⊗
Z[G] d0

−→ L2(G)
⊗
Z[G]

C1 → · · ·
Id

⊗
Z[G] dn−1

−→ L2(G)
⊗
Z[G]

Cn

(respectively (L2(G)
⊗

C[G] C
∗, Id

⊗
C[G] d

∗) :

L2(G)
⊗
C[G]

C0
Id

⊗
C[G] d0

−→ L2(G)
⊗
C[G]

C1 → · · ·
Id

⊗
C[G] dn−1

−→ L2(G)
⊗
C[G]

Cn)

of free Hilbert N [G]-modules is the Hilbert complex generated by Z[G]- (respectively
C[G])-cochain comlex (C∗, d∗).

Consider the ith skeletons of these complexes

(C∗(i), d∗(i)) : C0 d0

−→ C1 → · · · di−1

−→ Ci,

L2(G)
⊗
Z[G]

C0
Id

⊗
Z[G] d0

−→ L2(G)
⊗
Z[G]

C1 → · · ·
Id

⊗
Z[G] di−1

−→ L2(G)
⊗
Z[G]

Ci,

(respectively

L2(G)
⊗
C[G]

C0
Id

⊗
C[G] d0

−→ L2(G)
⊗
C[G]

C1 → · · ·
Id

⊗
C[G] di−1

−→ L2(G)
⊗
C[G]

Ci).
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Set Γi = Ci/di−1(Ci−1). It is clear that

Γ̂i = L2(G)
⊗
Z[G]

Ci/Id
⊗
Z[G]

di−1(L2(G)
⊗
Z[G]

Ci−1)

(respectively Γ̃i = L2(G)
⊗
C[G]

Ci/Id
⊗
C[G]

di−1(L2(G)
⊗
C[G]

Ci−1)).

is the ith Hilbert N [G]-module of reduced cohomology of the ith skeleton of the
Hilbert complex

(L2(G)
⊗
Z[G]

C∗(i), Id
⊗
Z[G]

d∗(i)
⊗

id)

(respectively (L2(G)
⊗
C[G]

C∗(i), Id
⊗
C[G]

d∗(i)
⊗

id)).

Definition 5.9. For the cochain complex (C∗, d∗) over Z[G] (respectively C[G]) set

Ŝi
(2)(C

∗, d∗) = µs(Γi)− dimN [G] Γ̂i

(respectively S̃i
(2)(C

∗, d∗) = µs(Γi)− dimN[G]Γ̃i).

If (C∗, d∗) and (D∗, ∂∗) are two homotopy equivalent free cochain complexes
over the group ring Z[G] (respectively C[G]) then

Ŝi
(2)(C

∗, d∗) = Ŝi
(2)(D

∗, ∂∗) (respectively S̃i
(2)(C

∗, d∗) = S̃i
(2)(D

∗, ∂∗)).

This is a consequence of Proposition 5.1 and the additivity of µs(Γ) and von
Neumann dimension.

Lemma 5.10. The numbers Ŝi
(2)(C

∗, d∗) and S̃i
(2)(C

∗, d∗) are non-negative for ev-
ery i.

Proof. We give the proof only for the case Ŝi
(2)(C

∗, d∗). The case S̃i
(2)(C

∗, d∗) is
similar. We can assume without loss of generality that cochain complex (C∗, d∗) is
such that Sr(di−1) = 0. Therefore according to Lemma 3.10 the epimorphism p :
Ci −→ Γi is minimal. We can also assume without loss of generality that cochain
complex (C∗, d∗) is such that µ(Γ

(i)
) = µs(Γ

(i)
) and therefore µ(Ci) = µ(Γi). Thus

for the calculation of the number Ŝi
(2)(C

∗, d∗) we can use the following formula:

Ŝi
(2)(C

∗, d∗) = µ(Γi)− dimN [G] Γ̂i.

By the construction µ(Ci) ≥ dimN [G] Γ̂i. Therefore Ŝi
(2)(C

∗, d∗) is non-negative.
�
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6. Morse numbers

Definition 6.1. The ith homotopy Morse number of a cochain complex (C, d) over a

ring Λ is the numberMi(C, d) = µ(Di), where (D, ∂) : D0 ∂0

−→ D1 ∂1

−→ · · · ∂n−1

−→ Dn

is the minimal cochain complex in dimension i, which is homotopy equivalent to
(C, d).

Theorem 6.2. Let (C, d): C0 d0

−→ C1 → · · · dn−1

−→ Cn be a free cochain complex over
a group ring C[G] (n ≥ 4). Its ith homotopy Morse numbers satisfy the following
equalities:

M0(C, d) = Dr(d0) + S1
C(C, d) + dimC(H0(C

⊗
C[G]

C, id
⊗

d)),

M1(C, d) = Dl(d0, d1) + S1
C(C, d) + S2

C(C, d) + dimC(H1(C
⊗
C[G]

C, id
⊗

d)),

Mi(C, d) = D(di−1, di) + Si
C(C, d) + Si+1

C
(C, d) + dimC(Hi(C

⊗
C[G]

C, id
⊗

d))

for 2 ≤ i ≤ n− 2,

Mn−1(C, d) = Dl(dn−2, dn−1) + Sn−1
C

(C, d) + µ(Hn(C, d))

+ dimC(Hn−1(C
⊗
C[G]

C, id
⊗

d))− dimC(Hn(C
⊗
C[G]

C, id
⊗

d)),

Mn(C, d) = µ(Hn(C, D)),

where Hi(C
⊗

C[G] C, id
⊗

d) is the cohomology of the cochain complex
(C

⊗
C[G] C, id

⊗
d).

Remark 6.3. a) The number D(di−1, di) arises in this theorem because in definition
of the number Si(C, d) we take the number µs(Γi) but not the number µ(Γi). For
example, in view of Remark 4.10 if the module Ci/di−1(Ci−1) is stable free but
non free, then D(di−1, di) > 0.

b) The similar formulas hold for cochain complex (C, d) over the ring Z[G] but we
need to use the cohomology groups of the cochain complex (Z

⊗
Z[G] C, id

⊗
d)

Proof of Theorem 6.2. We consider only the case when 2 ≤ i ≤ n − 2. For the

other cases the arguments are similar. Let (D, ∂) : D0 ∂0

−→ D1 ∂1

−→ · · · ∂n−1

−→ Dn be
a minimal cochain complex in dimension i, which is homotopy equivalent to (C, d).
To prove the theorem it suffices to calculate the rank of the group C

⊗
C[G] D

i.
By Lemma 5.4 we have Scr(∂i−1, ∂i) = 0. Without loss of generality, we can
assume that Cr(∂i−1, ∂i) = 0 and Sr(∂i) = R(∂i) = 0. It is clear, that the rank
of the homomorphism id

⊗
∂i−1 is D(di−1, di) + Si

C
(C, d). Moreover, the rank of
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the homomorphism id
⊗

∂i is equal to Si+1
C

(C, d). Hence, for the calculation of
Si+1(C, d) we can use the formula

Si+1
C

(C, d) = µ(Γi+1)− µ(C
⊗
C[G]

Γi).

By Lemma 3.10 the epimorphism p : Di+1 −→ Γi+1 is minimal. Then using
stabilization of the homomorphism ∂i+1 we can made the module Γi+1 arbitrarily
large. We can now easily show that the dimension of the vector space C

⊗
C[G] D

i

is equal to

Mi(C, d) = D(di−1, di) + Si
C(C, d) + Si+1

C
(C, d) + dimC(Hi(C

⊗
C[G]

C, id
⊗

d).

�

Remark 6.4. Let (C, d) be the free cochain complex over C[G]. The ith homotopy
Morse numbers of the Hilbert complex (L2(G)

⊗
C[G] C, Id

⊗
C[G] d) satisfy the

following equalities:

M0(C, d) = Dr(d0) + S̃1
(2)(C, d) + dimN [G](H0

(2)(L
2(G)

⊗
C[G]

C, Id
⊗
C[G]

d))

M1(C, d) = Dl(d0, d1) + S̃1
(2)(C, d) + S̃2

(2)(C, d)

+ dimN [G](H1
(2)(L

2(G)
⊗
C[G]

C, Id
⊗
C[G]

d)

Mi(C, d) = D(di−1, di) + S̃i
(2)(C, d) + S̃i+1

(2) (C, d)

+ dimN [G](Hi
(2)(L

2(G)
⊗
C[G]

C, Id
⊗
C[G]

d))

for 2 ≤ i ≤ n− 2,

Mn−1(C, d) = Dl(dn−2, dn−1) + S̃n−1
(2) (C, d) + µ(Hn(C, d))

+ dimN [G](Hn−1
(2) (L2(G)

⊗
C[G]

C, Id
⊗
C[G]

d))− dimN [G](Hn
(2)(L

2(G)
⊗
C[G]

C, Id
⊗
C[G]

d))

Mn(C, d) = µ(Hn(C, D)),

where Hi
(2)(L

2(G)
⊗

C[G] C, Id
⊗

C[G] d) is Hilbert N [G]-module of the reduced co-
homology of the Hilbert complex (L2(G)

⊗
C[G] C, Id

⊗
C[G] d).

The similar formulas hold for cochain complex (C, d) over the ring Z[G], but
we need to use the numbers Ŝi

(2)(C, d).
A free cochain complex (C, d) over a group ring C[G] generates two sequences

of numbers: S̃i(C, d), S̃i
(2)(C, d) which are invariants of homotopy type of cochain

complex (C, d). Moreover, they related to each other by the following lemma:
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Lemma 6.5. For a cochain complex (C, d) the following equalities hold:

S̃i
(2)(C, d) +

i−1∑
j=0

(−1)i−j−1 dimN [G](H
j

(2)(L
2(G)

⊗
C[G]

C, Id
⊗
C[G]

d)

= Si
C(C, d) +

i−1∑
j=0

(−1)i−j−1 dimC Hj(C
⊗
C[G]

C, Id
⊗
C[G]

d).

Proof. Without loss of generality suppose that (C, d) is a minimal cochain complex
in dimension i. We have the equality (i):

Mi(C, d)

= D(di−1, di) + S̃i
(2)(C, d) + S̃i+1

(2) (C, d) + dimN [G](Hi
(2)(L

2(G)
⊗
C[G]

C, id
⊗
C[G]

d))

= D(di−1, di) + Si
C(C, d) + Si+1

C
(C, d) + dimC(Hi(C

⊗
C[G]

C, id
⊗

d)).

Hence by successive finding of the value of Si+1
C

(C, d) from equality (i) and substi-
tuting of it in the equality (i + 1) for i = 0, 1, . . . , n− 1 we shall obtain necessary
equalities. �

The similar formulas hold for a cochain complex (C, d) over ring Z[G], but
we need to use the numbers Ŝi

(2)(C, d) and ranges of cohomology groups of cochain
complex (Z

⊗
Z[G] C, id

⊗
d).

7. Applications

Let K be a topological space with a structure of finite CW -complex and with non-
zero fundamental group π = π1(K). Consider the universal covering p : K̃ → K

of K. Using the map π, lift the structure of CW -complex from K to K̃. On
the universal covering space K̃ there is a free action of the fundamental group
π = π1(K) preserving the cell structure. This action equips each chain group
Ci(K̃, Z) with the structure of a left module over the group ring Z[π]. It is evident
that the resulting chain module Ci(K̃, Z) is free and finite by generated with the
i-cells K as a generators. As a result we obtain a free chain complex over the ring
Z[π]

C∗(K̃) : C0(K̃, Z) d1←− C1(K̃, Z)← · · · dn←− Cn(K̃, Z).

Denote by w : π1(K) → Z2 the homomorphism of orientation (the first
Stifel-Whitney class). Define an involution on the group ring Z[π] by the formula
g → w(g)g−1. This involution allows us to regard every right Z[π]-module as a left
Z[π]-module. In particular,

Ci(K̃, Z) = HomZ[π](Ci(K̃, Z), Z[π])
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is a left module as well. Consider the free cochain complex

C∗(K̃) : C0(K̃, Z) d0

−→ C1(K̃, Z)→ · · · dn−1

−→ Cn(K̃, Z).

Cohomology modules of this cochain complex coincide with the cohomology with
compact support of CW -complex K̃. Taking the tensor product of C∗(K̃) and
L2(π) as Z[π]-module we obtain the Hilbert complex

C∗
(2)(K̃) : L2(π)

⊗
Z[π]

C0(K̃, Z)
id

⊗
d0

−→ L2(π)
⊗
Z[π]

C1(K̃, Z)→ · · ·

· · · id
⊗

dn−1

−→ L2(G)
⊗
Z[π]

Cn(K̃, Z).

The Hilbert N [π]-module of cohomology of this Hilbert complex are Hilbert N [π]-
module of cohomology of the space K. Since the cochain complex C∗(K̃) is con-
structed from cellular structure of the space K̃, we see that the segments of cochain
complexes

C∗(K̃)(i) : C0(K̃, Z) d0

−→ C1(K̃, Z)→ · · · di−1

−→ Ci(K̃, Z);

C∗
(2)(K̃)(i) : L2(π)

⊗
Z[π]

C0(K̃, Z)
id

⊗
d0

−→ L2(π)
⊗
Z[π]

C1(K̃, Z)→ · · ·

· · · id
⊗

di−1

−→ L2(π)
⊗
Z[π]

Ci(K̃, Z)

are evidently the cochain complexes of the ith skeleton of the cellular decomposi-
tion of K̃ and K respectively. Therefore a Z[π]-module

Γ̂i(K̃) = Ci(K̃, Z)/di−1(Ci−1(K̃, Z)),

(similarly Hilbert N [π]-module)

Γi(K) = L2(π)
⊗
Z[π]

Ci(K̃, Z)/id
⊗

di−1(L2(π)
⊗
Z[π]

Ci−1(K̃, Z))

can be interpreted as the ith cohomology module with compact support (the ith
L2(π)-module of cohomology) of the ith skeleton of K̃ (the ith skeleton of K).

Definition 7.1. For a cell complex K, set

Ŝi
(2)(K) = µs(Γ̂i(K̃))− dimN [π](Γi(K)),

Di(K) = D(di−1, di).

It is well known that all chain complexes constructed from cellular decompo-
sitions of a topological space K have the same homotopy type. Therefore it follows
directly from the previous consideration or from [11,19] that the numbers Ŝi

(2)(W )
and Di(K) are invariants of the homotopy type of the topological space K. For a
smooth manifold W there is an approach to construction of cochain complex via
Morse functions. The details can be found in [17]. Let (Wn, V n−1

0 , V n−1
1 ) be a
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compact smooth manifold with the boundary ∂Wn = V n−1
0 ∪ V n−1

1 (one of V n−1
i

or both may be empty). Let π = π1(Wn) be the fundamental group of the manifold
Wn. Denote by

p : (W̃n, Ṽ n−1
0 , Ṽ n−1

1 )→ (Wn, V n−1
0 , V n−1

1 )

the universal covering. Here Ṽ n−1
i = p−1(V n−1

i ). Let us choose on Wn an ordered
Morse function

f : Wn → [0, 1], f−1(0) = V n−1
0 , f−1(1) = V n−1

1

and a gradient-like vector field ξ [19]. Using the mapping p, lift f and ξ to W̃n,
and denote the lifted function and the vector field by f̃and ξ̃ respectively. Using
f, ξ and f̃ , ξ̃ construct chain complexes of abelian groups:

C∗(Wn, f, ξ) : C0
d1←− C1 ← · · ·

dn←− Cn;

C∗(W̃n, f̃ , ξ̃) : C̃0
d̃1←− C̃1 ← · · ·

d̃n←− C̃n,

where
Ci = Hi(Wi, Wi−1, C), C̃i = Hi(W̃i, W̃i−1, C);

and
W̃i = f̃−1[0, ai] Wi = f−1[0, ai]

are submanifolds containing all critical points of indices less or equal i. For the
generators of the chain groups Ci (respectively Ĉi) constructed with the help of
the vector field ξ (respectively(ξ̂) one can take middle disks of critical points of
index i. The fundamental group π = π1(Wn) acts on manifolds W̃n. This action
equips the chain groups C̃i with the structure of finitely generated modules over
the ring Z[π]. Making use of the involution, we turn the right Z[π]-module

C(i) = HomZ[π](Ci, Z[π])

into a left one and construct the following free cochain complex

C∗(W̃n, f̃ , ξ̃) : C̃(0) d̃(0)

−→ C̃(1) → · · · d̃(n−1)

−→ C̃(n).

Taking the tensor product of C∗(W̃n, f̃ , ξ̃) and L2(π) as Z[π]-module, we obtain the
cochain complex of abelian groups which can be used for the definition the numbers
Ŝi

(2)(W
n) and Di(Wn). It is proved in [11] that the chain complexes constructed

from Morse functions on the manifold Wn via different cellular decomposition of
Wn have the same homotopy type. This means that the values of the numbers
Ŝi

(2)(W
n) and Di(Wn) do not depend on the method of constructing of a chain

complex.

Definition 7.2. The ith Morse number Mi(Wn) of a manifold Wn is the minimal
number of critical points of index i taken over all Morse functions on Wn.

It is known [2, 10, 19] that for closed smooth manifolds of dimension greater
than 6 the ith Morse numbers are invariants of the homotopy type.
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Theorem 7.3. Let Wn (n ≥ 8) be a smooth closed manifold. The following equality
holds for the ith Morse number 4 ≤ i ≤ n− 4:

Mi(Wn) = Di(Wn) + Ŝi
(2)(W

n) + Ŝi+1
(2) (Wn) + dimN(π)(Hi

(2)(W
n, Z)).

Proof. Let f be an arbitrary ordered Morse function, ξ a gradient-like vector field
on Wn, and

C∗(W̃n, f̃ , ξ̃) : C̃0
d̃1←− C̃1 ← · · ·

d̃n←− C̃n,

the chain complex associated with them. Denote by

C∗(W̃n, f̃ , ξ̃) : C̃(0) d̃(0)

−→ C̃(1) → · · · d̃(n−1)

−→ C̃(n)

the cochain complex constructed starting from a chain complex C∗(W̃n, f̃ , ξ̃). It is
clear that if the chain complex C∗(W̃n, f̃ , ξ̃) is minimal in dimension i then cochain
complex C∗(W̃n, f̃ , ξ̃) is minimal in dimension i as well. It is known that the oper-
ation of stabilization of the homomorphisms di can be realized by changing Morse
function and gradient-like vector field on Wn. But the inverse operation, the elim-
ination of contractible free chain complex of the form 0 −→ Ci −→ Ci+1 −→ 0
from the chain complex C∗(W̃n, f̃ , ξ̃) can not always be realized by a change of
Morse function and gradient-like vector field on Wn. It is possible if 4 ≤ i ≤ n− 4
and n ≥ 8 [19]. Let (C, d) be a minimal chain complex in dimension i homotopy
equivalent to the chain complex C∗(W̃n, f̃ , ξ̃). By Proposition 5.1 there exist con-
tractible free chain complexes (D, ∂) and (D, ∂) such that the chain complexes
(C∗(W̃n, f̃ , ξ̃

⊕
D, d

⊕
∂)) and (C

⊕
D, d

⊕
∂), are chain-isomorphic. The pre-

vious notice ensures the existence of a Morse function g and gradient-like vec-
tor field that realize the complex (C∗(W̃n, f̃ , ξ̃

⊕
D, d

⊕
∂)). Using elimination

of contractible free chain complexes of the form 0 −→ Ci −→ Ci+1 −→ 0 and
0 −→ Ci−1 −→ Ci −→ 0 from the chain complex (C∗(W̃n, f̃ , ξ̃

⊕
D, d

⊕
∂)) we

can obtain a chain complex (Ĉ, d̃) that is minimal in dimension i. The conditions
that 4 ≤ i ≤ n − 4 and n ≥ 8 ensure the existence of a Morse function g and
gradient-like vector field η that realize the complex (Ĉ, d̂). The number of critical
points of Morse function g can be computed using previous formulas. �

The estimate for Morse numbers was studied in papers [1, 5–9, 12–20, 22],
where some other approaches were used as well. In next papers we shall calculate
the values of Morse numbers for some other values of i.
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Abstract. An overview about C*-algebra bundles with a Z-grading is pre-
sented, with particular emphasis on classification questions. In particular, we
discuss the role of the representable KK(X;−,−)-bifunctor introduced by
Kasparov. As an application, we consider Cuntz-Pimsner algebras associated
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ants in the case in which the base space is an n-sphere.
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1. Introduction

The classification of C*-algebras by K-theoretical invariants is a rich and inter-
esting topic; the relative program particularly succeeded in the case of simple,
nuclear, purely infinite C*-algebras ([12, 19]).

In order to extend such results to the case of non-simple C*-algebras, it is
natural to consider a particular class, namely C*-algebra bundles over a locally
compact Hausdorff space X . In order to find good invariants, in this case the better-
behaved tool is the representable KK(X ;−,−)-theory introduced by Kasparov in
[11], which takes into account the bundle structure of the underlying C*-algebra.
KK(X ;−,−)-theory has been recently extended to the case in which X is a T0

space, in order to consider primitive ideal spectra of C*-algebras ([13]).
Aim of the present paper is to present an overview about C*-algebra bundles

with a Z-grading, and their associated KK(X ;−,−)-theoretical invariants. Our
main motivation arises from the case of the universal C*-algebra of a vector bundle
E → X , which is constructed as the Cuntz-Pimsner algebra associated with the
bimodule of continuous sections of E . Such a C*-algebra has a natural structure
of a Z-graded bundle over X , with fibre the well-known Cuntz algebra. We are
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interested to classify such C*-algebras in terms of properties of the underlying
vector bundles.

All the material presented in the present paper appeared elsewhere (in some
different form), with the exception of our main result Thm. 5.10, where we classify
C*-algebras of vector bundles in the case in which the base space is an n-sphere.

It is aim of the present work to be self-contained: the reader is assumed to
be familiar at an elementary level with C*-algebra theory ([18]), and K-theory
([2, 4]). In the case of results proved elsewhere, the proofs will be sketched or
omitted. Some of the results exposed in the present paper appear in [24].

2. Bundles and C0(X)-algebras

Let X be a locally compact Hausdorff space, C0(X) the C*-algebra of complex-
valued, continuous, vanishing at infinity functions on X . A continuous bundle of
C*-algebras over X is a C*-algebra F , equipped with a faithful family of epi-
morphisms {πx : F → Fx}x∈X such that, for every a ∈ F , the norm function
{x �→ ‖πx(a)‖} belongs to C0(X); furthermore,F is required to be a nondegenerate
C0(X)-module w.r.t. pointwise multiplication f, a �→ {f(x) · πx(a)}, f ∈ C0(X).
If X is compact, we consider the analogous notion by using the C*-algebra C(X)
of continuous functions on X .

Example 1. LetA be a C*-algebra. Then, the C*-algebra tensor product C0(X)⊗A
is a continuous bundle, called the trivial bundle. To be more concise, we define

XA := C0(X)⊗A . (2.1)

The above notion of continuous bundle has been given in [14]: it is a simplified
version of the classical notion of continuous field (see [7, §10]). We refer to the
last-cited reference for the notions of restriction ([7, 10.1.7] and local triviality ([7,
10.1.8]), which are the analogues to well-known notions in the setting of topological
bundles.

Let A be a C*-algebra. To be more concise, we will call A-bundle a locally
trivial continuous bundle F with fibre Fx ≡ A, x ∈ X .

A C0(X)-algebra is a C*-algebraA, equipped with a nondegenerate morphism
from C0(X) into the centre of the multiplier algebra M(A) ([11, §2]); in the sequel,
we will identify C0(X) with the image in M(A). C*-algebra morphisms commuting
with the C0(X)-actions are called C0(X)-morphisms. We denote by autXA the
group of C0(X)-automorphisms of A. It is proved in [16] that the category of
C0(X)-algebras is equivalent to the one of ‘upper semicontinuous bundles’; the
fibre of A over x ∈ X is defined as follows: we consider the closed ideal Ix :=
C0(X − {x}) · A ⊂ A, and define Ax := A/ Ix. In particular, every continuous
bundle is a C0(X)-algebra. We will denote by ⊗X the minimal tensor product with
coefficients in C0(X) ([5]).
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3. Hilbert bimodules and Cuntz-Pimsner algebras

For basic notions and terminology about Hilbert bimodules, we refer to [4, §13].
Let B be a C*-algebra, M a right Hilbert B-module. We denote by L(M)

the C*-algebra of (bounded) adjointable right B-module operators on M, and by
K(M) the ideal of compact right B-module operators of the type

θψ,ψ′ϕ := ψ · 〈ψ′, ϕ〉 , (3.1)

where ψ, ψ′, ϕ ∈M and 〈·, ·〉 denotes the B-valued scalar product.
Let M be a Hilbert A-B-bimodule. In the sequel, if not specified, we will

identify elements of A with the corresponding operators in L(M), by assuming
that the morphism A → L(M) is injective.

Definition 3.1. LetA, B be a C*-algebras,M a HilbertA-bimodule,N a Hilbert B-
bimodule. A covariant morphism fromM intoN is a pair (β, η), where β :M→N
is a Banach space map, η : A → B is a C*-algebra morphism, and the following
properties are satisfied for a ∈ A, ψ, ψ′ ∈ M:

β(aψ) = η(a)β(ψ) , β(ψa) = β(ψ)η(a) , 〈β(ψ), β(ψ′)〉 = η 〈ψ, ψ′〉 ,

where 〈·, ·〉 denotes the A-valued (resp. B-valued) scalar product of M (resp. N ).

Example 2. Let α : A → B be a C*-algebra isomorphism,M a HilbertA-bimodule.
We introduce a Hilbert B-bimodule Mα, defined as the set Mα :=

{
ψ, ψ ∈ M

}
endowed with the vector space structure induced by M. The Hilbert B-bimodule
structure is defined as follows:

bψ := α−1(b)ψ , ψb := ψα−1(b) ,
〈
ψ, ψ′〉 := α 〈ψ, ψ′〉 .

We call Mα the pullback bimodule of M. Let now β(ψ) := ψ, ψ ∈ M; it is clear
that the pair (β, α) is a covariant isomorphism from M onto Mα. Viceversa, if
(β, α) is a covariant isomorphism from a Hilbert A-bimodule M into a Hilbert
B-bimodule N , then Mα is isomorphic to N as a Hilbert B-bimodule.

Let A be a C*-algebra, M a Hilbert A-bimodule. The Cuntz-Pimsner C*-
algebra (CP-algebra, in the sequel) associated withM has been introduced in [20];
it is obtained by a universal construction, and supplies a generalization of crossed
products by Z (see Ex. 6 below) and the well-known Cuntz algebras Od, d ∈ N
([6]). We will denote by OM the CP-algebra associated with M.

In order to simplify the exposition, we give a description of OM in the case
in which A has identity 1 andM is finitely generated as a right Hilbert A-module.
Let {ψl}nl=1 ⊂ M be a finite set of generators, 〈·, ·〉 the A-valued scalar product;
then, for every index l, a ∈ A, we find aψl =

∑
m ψmaml, aml := 〈ψm, aψl〉 ∈ A.

We consider the universal ∗-algebra 0OM generated by {ψl}, A, with relations

ψ∗
l ψm = 〈ψl, ψm〉 , aψl =

∑
m

ψmaml ,
∑

l

ψlψ
∗
l = 1 . (3.2)
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Note that every ψ ∈ M appears as an element of 0OM, in fact ψ =
∑

l ψl(ψ∗
l ψ).

It can be proved that there exists a unique (faithful) C*-norm on 0OM such that
the circle action

αz(ψ) := zψ , z ∈ T, ψ ∈ M (3.3)
extends to an (isometric) automorphic action. The resulting C*-algebra is the CP-
algebra OM, naturally endowed with the action α : T → autOM. We introduce
the notation

Ok
M :=

{
t ∈ OM : αz(t) = zkt

}
, k ∈ Z . (3.4)

Example 3. The Cuntz algebraOd, d ∈ N, is obtained in the caseA = C,M := Cd.
Note that (3.2) take the form ψ∗

hψk = δhk1,
∑

h ψhψ∗
h = 1, where δhk is the

Kronecker symbol.

Definition 3.2. ([8, §1]) Let A ⊂ B be a C*-algebra inclusion. A closed vector space
M⊂ B is called Hilbert A-bimodule in B if

1. M is stable w.r.t. left and right multiplication by elements of A;
2. t∗t′ ∈ A, for every t, t′ ∈ M.

We say that M has support 1 if MM∗ := closed span {t′t∗ : t, t′ ∈ M} contains
an approximate unit for B.

Note that ifM is a Hilbert A-bimodule in B, then the map t, t′ �→ t∗t′ can be
regarded as an A-valued scalar product; moreover, there is a natural identification
MM∗  K(M), t′t∗ �→ θt,t′ . The following proposition is a consequence of the
universality of the CP-algebra (see [20, Thm. 3.12]).

Proposition 3.3. Covariant morphisms between Hilbert bimodules give rise to C*-
algebra morphisms between the associated CP-algebras. In particular, OM is iso-
morphic to OMα for every pullback bimodule Mα (Ex. 2). If B is a unital C*-
algebra, and M is a Hilbert A-bimodule in B with support 1, then there is a
canonical morphism OM → B.

Let X be a locally compact Hausdorff space, E → X a rank d vector bundle,
d ∈ N. Moreover, let Ê be the Hilbert C0(X)-bimodule of continuous, vanishing
at infinity sections of E , endowed with coinciding left and right C0(X)-module
actions. We denote by OE the CP-algebra associated with Ê . For X compact (so
that C(X) is unital and Ê is finitely generated), (3.2) take the form

ψ∗
l ψm = 〈ψl, ψm〉 , fψl = ψlf ,

∑
l

ψlψ
∗
l = 1 ,

f ∈ C(X). It is proved in [24, Prop. 4.2] that OE is a locally trivial continuous
bundle over X , with fibre the Cuntz algebra Od. Moreover, it is clear that the
circle action (3.3) is by C0(X)-automorphisms: α : T→ autXOE . In particular, if
L → X is a line bundle, then the fibre of OL is the C*-algebra C(S1) of continu-
ous functions over the circle; CP-algebras associated with line bundles have been
classified in [23, Prop.4.3]. In the rest of the present paper, we will consider only
vector bundles with rank > 1.
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The main motivation of the present paper is the classification of the C*-
algebras OE in terms of topological properties of the underlying vector bundles.

4. Representable KK-theory

Let C∗alg denote the category of C*-algebras, Ab the category of abelian groups.
Kasparov constructed a bifunctor KK0 : C∗alg × C∗alg → Ab, assigning to
the pair (A,B) an abelian group KK0(A,B). KK0 depends contravariantly on
the first variable, and covariantly on the second one. Let K0(A) denote the K-
theory of A, K0(A) the K-homology; it turns out that there are isomorphisms
KK(C,A)  K0(A), KK(A, C)  K0(A).

Let X be a locally compact Hausdorff space, A, B C0(X)-algebras. A C0(X)-
Hilbert A-B-bimodule is a Hilbert A-B-bimodule M such that (af)ψb = aψ(fb)
for every f ∈ C0(X), ψ ∈M, a ∈ A, b ∈ B.

Roughly speaking, a C0(X)-Hilbert A-B-bimodule can be regarded as the
space of sections of a bundle, having as fibres Hilbert Ax-Bx-bimodules, x ∈ X .

Example 4. Let A be a C*-algebra, X a locally compact Hausdorff space, E →
X a vector A-bundle in the sense of Mishchenko ([15]). Then, the module of
continuous, vanishing at infinity sections of E has an obvious structure of C0(X)-
Hilbert C0(X)-(XA)-bimodule.

Remark 4.1. In the sequel, we will make use of the following two notions of tensor
product of C0(X)-Hilbert bimodules.

1. LetM be a C0(X)-Hilbert A-B-bimodule, N a C0(X)-Hilbert B-C-bimodule.
We consider the algebraic tensor product M�B N with coefficients in B,
and denote by M ⊗B N the completion w.r.t. the C-valued scalar prod-
uct 〈ψ ⊗ ϕ, ψ′ ⊗ ϕ′〉 := 〈ϕ, 〈ψ, ψ′〉M ϕ′〉N , ψ, ψ′ ∈ M, ϕ, ϕ′ ∈ N ; here
〈·, ·〉N (resp. 〈·, ·〉M) denotes the scalar product on N (resp, M); note that
〈ψ, ψ′〉M ∈ B, so that it makes sense to consider 〈ψ, ψ′〉M ϕ′. M⊗B N is
a C0(X)-Hilbert A-C-bimodule in a natural way, and is called the internal
tensor product of M and N .

2. Let M′ be a C0(X)-Hilbert A′-B′-bimodule. The algebraic tensor product
M�C0(X)M′ with coefficients in C0(X) is endowed with a natural left (A⊗X

A′)-module action, and with natural (B ⊗X B′)-valued scalar product and
right action. The corresponding completion M⊗X M′ is a C0(X)-Hilbert
(A⊗X A′)-(B ⊗X B′)-bimodule, and is called the external tensor product of
M and M′.

Let X be a σ-compact metrisable space. Motivated by the Novikov con-
jecture, Kasparov generalized the construction of KK0(−,−) to the category of
C0(X)-algebras ([11, 2.19]); the corresponding bifunctor is called representable
KK-theory. We will denote it by the notation KK(X ;−,−) (note that in [11] the
notation RKK(X ;−,−) is used). The rest of the present section is devoted to a
brief exposition of the construction of KK(X ;−,−).
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Definition 4.2. Let A, B be separable C0(X)-algebras. A Kasparov A-B-module is
a pair (M, F ), where M is a countably generated C0(X)-Hilbert A-B-bimodule,
and F = F ∗ ∈ L(M) is an operator such that [F, a], a(F 2 − 1) ∈ K(M) for every
a ∈ A. We denote by E(X ;A,B) the set of Kasparov A-B-modules.

It is customary to consider a Z2-grading on Kasparov modules ([4, §14]). Since
we do not need such a structure, we will assume that every C*-algebra (Hilbert
bimodule) is endowed with the trivial Z2-grading.

Example 5. Let M be a countably generated C0(X)-Hilbert A-B-bimodule. Let
us suppose that a ∈ K(M) for every a ∈ A; then (M, 0) ∈ E(X ;A,B), where 0
is the zero operator. In particular, if every element of K(M) is the image of some
element of A w.r.t. the left A-module action (so that, there is an isomorphism
A  K(M)), then M is called imprimitivity A-B-bimodule (see [3]).

Example 6. Let φ : A → B be a nondegenerate C0(X)-algebra morphism. We
endow B with the C0(X)-Hilbert A-B-bimodule structure

a, ψ �→ φ(a)ψ , ψ, b �→ ψb , 〈ψ, ψ′〉 := ψ∗ψ′ ,

a ∈ A, b, ψ, ψ′ ∈ B, and denote by Bφ the associated C0(X)-Hilbert A-B-bimodule.
Now, it is clear that K(Bφ)  B; thus, φ(a) ∈ K(Bφ) for every a ∈ A. If B is σ-
unital ([4, 12.3]), then (Bφ, 0) ∈ E(A,B) (in fact, Bφ is countably generated by an
approximate unit {un}n∈N

⊂ B). If A = B and φ ∈ autXA, then the CP-algebra
OAφ

is isomorphic to the crossed product A �φ Z ([20, §2]). If ι : A → A is the
identity automorphism, we define [1]A := (Aι, 0) ∈ E(X ;A,A).

There are natural notions of homotopy and direct sum over E(X ;A,B). The
representable KK-theory group KK(X ;A,B) is constructed in the same way as
the usual KK0-group, by endowing the set of homotopy classes of Kasparov A-B-
modules with the operation of direct sum. The bifunctor KK(X ;−,−) is stable,
i.e., KK(X ;A,B) is invariant by tensoring A or B by the C*-algebra K of compact
operators over a separable Hilbert space.

With an abuse of the notation, we will identify the elements of E(X ;A,B)
with the corresponding classes in KK(X ;A,B). We use the notation + to denote
the operation of direct sum in KK(X ;A,B). When X = • reduces to a single
point, then KK(•,A,B) is the usual KK-group KK0(A,B).

Let A, B, A′, B′, C be separable C0(X)-algebras. We recall that the Kasparov
product ([11, §2.21]) induces bilinear maps{

×B : KK(X ;A,B)⊗KK(X ;B, C)→ KK(X ;A, C) ,
× : KK(X ;A,B)⊗KK(X ;A′,B′)→ KK(X ;A⊗X A′,B ⊗X B′) .

Remark 4.3. In some particular cases, the Kasparov product takes a simple form;
in fact, with the notation of Ex. 5, Ex. 6, we find that

1. (M, 0) ×B (N , 0) = (M⊗B N , 0), where (M, 0) ∈ KK(X ;A,B), (N , 0) ∈
KK(X ;B, C), and ⊗B denotes the internal tensor product (Rem. 4.1);
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2. (M, 0)× (M′, 0) = (M⊗X M′, 0), where (M, 0) ∈ KK(X ;A,B), (M′, 0) ∈
KK(X ;A′,B′), and ⊗X denotes the external tensor product (Rem. 4.1);

3. Let φ : A → B, η : B → C be C0(X)-algebra morphisms. Then (Bφ, 0) ×B
(Cη, 0) = (Cη◦φ, 0).

Thus, (KK(X ;A,A) , + , ×A) is a ring with identity the class [1]A defined in
Ex. 6. Let us now consider the ring

RK0(X) := KK(X ; C0(X), C0(X)) ;

it is proven in [11, 2.19] that (RK0(X), +) is isomorphic to the representable
K-theory group introduced by Segal in [21]. If X is compact, it is verified that
(RK0(X), +) coincides with the topological K-theory K0(X). In order for a more
concise notation, we denote by [1]X ∈ RK0(X) the class ([C0(X)]ι, 0) defined
in Ex. 6.

Lemma 4.4. Let X be a σ-compact Hausdorff space, d ∈ N, E → X a rank d vector
bundle. Then, C0(X) acts on the left on Ê by elements of K(Ê), and the pair (Ê , 0)
is a Kasparov module with class [E ] := (Ê , 0) ∈ RK0(X).

Proof. Let 1 be the identity over Ê , θψ,ψ′ ∈ K(Ê), ψ, ψ′ ∈ Ê , the operator defined in
(3.1). X being σ-compact, there is a sequence {Kn}n of compact subsets covering
X . Let {λn} be a partition of unity with suppλn = Kn, n ∈ N. By the Serre-Swan
theorem, the bimodule of continuous sections of the restriction E|Kn

is finitely
generated by a set { ϕn,k }k; we define ψn,k := λnϕn,k ∈ Ê . Let now un :=∑

k θψn,k,ψn,k
∈ K(Ê). Note that un = λ2

n

∑
k θϕn,k,ϕn,k

= λ2
n. Thus, the sequence

Um :=
∑m

n un =
∑m

n λ2
n converges to 1 in the strict topology. We conclude that

Ê is countably generated as a right Hilbert C0(X)-module by the set {ψn,k}. Let
now f ∈ C0(X). We regard at f as an element of L(Ê). Now, ‖f − f

∑m
n un‖ =∥∥f −

∑m
n λ2

nf
∥∥ m→ 0; thus f is norm limit of elements of K(Ê), and C0(X) acts

on the left over Ê by elements of K(Ê). We conclude that the pair (Ê , 0) defines a
class in RK0(X). �

Let A be a C0(X)-algebra, E → X a vector bundle. We define Ê ⊗X A as the
external tensor product Ê ⊗X Aι (where Aι is defined in Ex. 6). The Kasparov
product induces a natural structure of RK0(X)-bimodule on KK(X ;A,B) ([11,
2.19]). In particular, there is a morphism of unital rings

iA : RK0(X)→ KK(X ;A,A) , iA(M, F ) := (M, F )× [1]A . (4.1)

If E → X is a vector bundle, then it turns out that iA[E ] = (Ê ⊗X A, 0).

Let A be a C0(X)-algebra, Pic(X ;A) the set of isomorphism classes of im-
primitivity C0(X)-Hilbert A-bimodules (Ex. 5). We endow Pic(X ;A) with the
operation of internal tensor product ⊗A; note that the bimodule Aι defined in
Ex. 6 is a unit for Pic(X ;A). By applying the argument of [3, §3], it is verified
that ifM is an imprimitivity C0(X)-Hilbert A-bimodule, andM is the conjugate
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bimodule, then M is an imprimitivity bimodule, and the map

M⊗AM→ K(M)  Aι , ψ′ ⊗ ψ �→ θψ′,ψ

defines an isomorphism of C0(X)-Hilbert A-bimodules (θψ′,ψ ∈ K(M) is defined
by (3.1)). Thus, Pic(X ;A) is a group, called the Picard group of A.

Let outXA denote the group of C0(X)-automorphisms of A modulo inner
automorphisms induced by unitaries in M(A). If A is σ-unital, then by [3, Cor.
3.5] we obtain a group anti-isomorphism

θ : Pic(X ;A⊗K) �−→ outX(A⊗K) , M �→ θM . (4.2)

The previous isomorphism has to be intended in the sense that every imprimitivity
(A⊗K)-bimodule is isomorphic to a bimodule of the type described in Ex. 6.

Example 7. Let X be a paracompact Hausdorff space. Then Pic(X ; C0(X)) is
isomorphic to the Cech cohomology group H2(X, Z). In fact, imprimitivity C0(X)-
Hilbert C0(X)-bimodules correspond to modules of continuous sections of line
bundles over X ; on the other hand, it is well known that the set of line bundles,
endowed with the operation of tensor product, is isomorphic as a group to H2(X, Z)
(see [3, §3]).

We denote by KK(X ;A,A)−1 the multiplicative group of invertible elements
of KK(X ;A,A). The argument of Rem. 4.3 implies that there is a group morphism

πA : Pic(X ;A)→ KK(X ;A,A)−1 , M �→ (M, 0) . (4.3)

Example 8. We refer to Ex. 7. Let X be a locally compact, paracompact Hausdorff
space. Then, we have a group morphism

πX : H2(X, Z)→ RK0(X)−1 ,

assigning to the isomorphism class of a line bundle the corresponding class in
K-theory.

5. Graded A-bundles

Aim of the present section is to assign KK-theoretical invariants to A-bundles
carrying a suitable circle action.

5.1. Circle actions

Let A be a C*-algebra carrying an automorphic action α : T → autA. The C*-
dynamical system (A, T) is said full if A is generated as a C*-algebra by the
disjoint union of the spectral subspaces

Ak :=
{
a ∈ A : αz(a) = zka , z ∈ T

}
, k ∈ Z .

Note that Ah · Ak ⊆ Ah+k, (Ak)∗ = A−k, h, k ∈ Z. In particular, every Ak is a
Hilbert A0-bimodule in A (Def. 3.2). Note that Ak is full as a right Hilbert A0-
module if and only if A−k ·Ak = A0. Moreover, there is a natural map Ak ·A−k →
K(Ak), t′t∗ �→ θt′,t.
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A C*-dynamical system (A, T) is said semi-saturated if A is generated as a
C*-algebra by A0, A1 (see [9, 1]). It is clear that if A is semi-saturated, then A is
full. From the above considerations, we obtain the following lemma.

Lemma 5.1. Suppose A0 = A1 ·A−1 = A−1 ·A1. Then, A1 is an imprimitivity A0-
bimodule; if A1 is countably generated, the class δ1(A) := (A1, 0) ∈ KK0(A0,A0)
is defined.

Example 9. Let M be a full Hilbert A-bimodule, OM the associated CP-algebra.
Then, OM is semi-saturated w.r.t. the circle action (3.3), so that everyOk

M, k ∈ Z,
is an imprimitivity bimodule over the zero-grade algebra O0

M.

The previous example is universal, as we will show in the next lemma.
Let us introduce the following terminology: if (A, T, α), (B, T, β) are C*-

dynamical systems, a graded morphism is a C*-algebra morphism φ : A → B such
that φ(Ak) ⊆ Bk, k ∈ Z. Graded morphisms will be denoted by the notation
φ : (A, Z)→ (B, Z).

Lemma 5.2. ([1, Thm. 3.1]) Let (A, T) be semi-saturated, and A1 full as a Hilbert
A0-bimodule. Then, there is a graded isomorphism (A, Z)  (OA1 , Z), where OA1

is the CP-algebra associated with A1.

Proof. It is a direct consequence of Prop. 3.3: in fact, A1 is a Hilbert A0-bimodule
in A with support 1, and generates A as a C*-algebra. �
5.2. Graded Bundles

As usual, we denote by X a locally compact Hausdorff space.

Definition 5.3. Let (A, G, α) be a C*-dynamical system. An A-bundle (F , (πx :
F → A)x∈X) has a global G-action if there exists an action αX : G → autXF ,
such that πx ◦ αX = α ◦ πx for every x ∈ X .

Let F be a A-bundle carrying a global T-action. Then, every spectral sub-
space Fk, k ∈ Z has an additional structure of C0(X)-Hilbert F0-bimodule, in fact
ft = tf , t ∈ Fk, f ∈ C0(X). We say in such a case that F is a graded A-bundle.

Proposition 5.4. Let (A, T, α) be a semi-saturated C*-dynamical system, with A1

full as a Hilbert A0-bimodule. Moreover, let X be paracompact. Then, for every
graded A-bundle F over X there is an isomorphism (F , Z)  (OF1 , Z). If B is a
graded A-bundle, there is an isomorphism (F , Z)  (B, Z) if and only if the Hilbert
bimodules F1, B1 are covariantly isomorphic.

Proof. We prove that (F , T, αX) is semi-saturated, and that F1 is full as a Hilbert
F0-bimodule. Let U := {U ⊆ X} be an open (locally finite) trivializing cover (i.e.,
every restriction FU := C0(U)F is isomorphic to C0(U)⊗A, U ∈ U). Since αX(t) ∈
FU , t ∈ FU , for every U ∈ U we obtain a global action αU : T → autUFU . Since
FU is a trivial bundle, it is clear that (FU , T, αU ) is semi-saturated, and that F1

U is
full as a Hilbert F0

U -bimodule. We now consider a partition of unit {λU ∈ C0(X)}
subordinate to U ; since every t ∈ F admits a decomposition t =

∑
U λU t, with



322 E. Vasselli

λU t ∈ FU , we conclude that (F , T, αX) is semi-saturated, and that F1 is full. By
applying Lemma 5.2, we obtain the isomorphism (F , Z)  (OF1 , Z). The second
assertion is an immediate consequence of the Z-grading defined on F , B. �
Corollary 5.5. With the above notation, every Fr is an imprimitivity F0-bimodule,
r ∈ N.

Proof. It suffices to consider the identifications K(Fr)  Fr · (Fr)∗  F0. �
From Prop. 5.4, we have an interpretation of the set of isomorphism classes

of graded A-bundles in terms of covariant isomorphism classes of C0(X)-Hilbert
bimodules. Thus, a description in terms of KK(X ;−,−)-groups becomes natural.
As a first step, we consider the zero grade algebra; for every C*-algebra A, we
denote by H1(X, autA) the set of isomorphism classes of A-bundles over X (see
for example [23, Thm. 2.1] for a justification of such a notation). H1(X, autA)
has a distinguished element, called 0, corresponding to the trivial A-bundle.

Let F be a graded A-bundle over X . We define

δ0(F) := [F0 ⊗K] ∈ H1(X, aut(A0 ⊗K)) . (5.1)

Thus, the equality δ0(F) = δ0(B) is intended in the sense that F0, B0 are stably
isomorphic as A0-bundles.

Remark 5.6. Let X be a pointed, compact, connected CW -complex such that the
pair (X, x0), x0 ∈ X , is a homotopy-cogroup. We denote by SX the (reduced)
suspension. In order for more compact notations, we define X• := X − {x0}. It
follows from a result by Nistor ([17, §5]) that

H1(SX, autO0
d)  [X, autO0

d]x0  KK1(CO0
d , X•O0

d) ,

where CO0
d :=

{
(z, a) ∈ C⊕ C0([0, 1),O0

d) : a(0) = z1
}

is the mapping cone. We
also find

H1(SX, aut(O0
d ⊗K)) = [X, aut(O0

d ⊗K)]x0  KK0(O0
d , X•O0

d) .

In particular, when X is the (n − 1)-sphere, we obtain H1(Sn, autO0
d) = {0}, as

proved also in [22, Thm. 1.15].

Let X be a σ-compact metrisable space,A separable and σ-unital; then, every
graded A-bundle F over X is separable and σ-unital, and F1 is countably gen-
erated as a Hilbert F0-bimodule (in fact, F is countably generated over compact
subsets). Moreover, Cor. 5.5 implies that F0 acts on the left on F1 by elements of
K(F1). Thus, we define

δ1(F) := (F1, 0) ∈ KK(X ;F0,F0) . (5.2)

With an abuse of notation, in the sequel we will denote by δ1(F) also the class
of (F1, 0) in KK0(F0,F0) obtained by forgetting the C0(X)-structure. Note that
since F1 is an imprimitivity bimodule, we find that δ1(F) is invertible; thus, the
Kasparov product by δ1(F) defines an automorphism on KK0(B,F0) for every
C*-algebra B. In particular, δ1(F) ∈ autK0(F0).
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From [20, Thm. 4.9] and Prop. 5.4, we get an exact sequence for the KK-
theory of F . It is clear that in the case in which F is the CP-algebra of a vector
bundle, we may directly apply [20, Thm. 4.9] by replacing F0 with C0(X).

Corollary 5.7. For every separable C*-algebra B, and graded A-bundle F , the fol-
lowing exact sequence holds:

KK0(B,F0)
1−δ1(F)�� KK0(B,F0)

i0 �� KK0(B,F)

δ0

��
KK1(B,F)

δ1

��

KK1(B,F0)
i1�� KK1(B,F0)

1−δ1(F)��

(5.3)

where i∗ are the morphisms induced by the inclusion F0 ↪→ F , and δ∗ are the
connecting maps induced by the KK-equivalence between F0, TF1 .

We introduce a notation. Let F , B be graded A-bundles with δ0(F) = δ0(B);
then, there is a C0(X)-algebra isomorphism α : F0 ⊗ K → B0 ⊗ K, and a ring
isomorphism α∗ : KK(X ;F0,F0)→ KK(X ;B0,B0) is defined. We write

δ(F) = δ(B) ⇔ δ0(F) = δ0(B) and α∗δ1(F) = δ1(B) ; (5.4)

note that we used the stability of KK(X ;−,−), so that we identified (F1, 0) ∈
KK(X ;F0,F0) with (F1 ⊗K, 0) ∈ KK(X ;F0⊗K,F0 ⊗K). The tensor product
of F1 by K is understood as the external tensor product of Hilbert bimodules.
Note that α∗δ1(F) = ((F1 ⊗ K)α, 0), where (F1 ⊗ K)α is the pullback bimodule
defined as in Ex. 2. Let us now consider the natural Z-gradings on F ⊗ K, B ⊗K
induced by F , B; if there is an isomorphism α : (F ⊗ K, Z) → (B ⊗ K, Z), then
δ(F) = δ(B).

Example 10. Let F := XA; then, δ1(F) = δ1(A) × [1]X (we used the notation
(2.1)).

Let F be a gradedA-bundle. In general, it is clear that elements of KK(X ;F0,F0)
do not arise from grade-one components of graded A-bundles. Anyway, they can
be recognized by considering any open trivializing cover U := {U ⊆ X} for F ,
and by noting that the conditions δ0(F0

U ) = 0, δ1(F1
U ) = δ1(A) × [1]U hold (see

previous example).

Remark 5.8. Let F , B be graded A-bundles over a σ-compact Hausdorff space X ,
with a fixed C0(X)-isomorphism α : (F0 ⊗ K, Z) → (B0 ⊗ K, Z). The pullback
bimodule (F1 ⊗ K)α has the same class as B1 ⊗ K in Pic(X ;B0 ⊗ K) if and only
if there is a C0(X)-isomorphism (F ⊗ K, Z) → (B ⊗ K, Z) (see Prop. 5.4). Let
θ(F) := θF1⊗K ∈ autX(F0 ⊗ K) be defined according to (4.2), up to inner auto-
morphisms. The CP-algebra associated with (F0⊗K)θ(F) is graded isomorphic to
(F0 ⊗K) �θ(F) Z (see Ex. 6); by universality, we obtain the isomorphism

(F ⊗K, Z)  ((F0 ⊗K) �θ(F) Z, Z) .
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Thus, Pic(X ;F0⊗K) describes the set of graded isomorphism classes of stabilized
A-bundles. The map

Pic(X ;F0)→ KK(X ;F0,F0) , θ(F) �→ δ1(F)

gives a measure of the accuracy of the class δ1 in describing the set of graded
isomorphism classes of stabilized A-bundles.

Example 11. Let E → X be a rank d vector bundle. We denote by αX : T →
autXOE the circle action (3.3). Let now πx : OE → Od, x ∈ X , be the fibre
epimorphisms of OE as an Od-bundle; we denote by αx : T → autOd the circle
action (3.3) on the Cuntz algebra. By definition, it turns out that πx◦αX = αx◦πx,
thus αX is a global T-action. Moreover, αX is full and semi-saturated, according
to Ex. 9. Thus, the previous considerations apply with F = OE , A = Od; in
particular, O1

E is an imprimitivity C0(X)-Hilbert O0
E -bimodule.

5.3. The KK-class for the CP-algebra of a vector bundle

Let E → X be a rank d vector bundle over a σ-compact Hausdorff space X . We
denote by i : RK0(X)→ KK(X ;O0

E ,O0
E) the structure morphism (4.1). In order

to simplify the notation, we write 1d := [1]O0
d
∈ KK0(O0

d,O0
d). The following

result has been proved in [24, Thm. 5.6].

Theorem 5.9. With the above notation,

δ1(OE ) = i[E ] = [E ]× [1]O0
E

. (5.5)

In particular, δ1(XOd) = d[1]X × 1d.

We now discuss the properties of the class δ1(OE) in the case in which the
base space is an even sphere S2n; for this purpose, recall that K0(S2n) = Z2,
K1(S2n) = 0. We will also make use of the ring structure of K0(S2n), induced
by the operation of tensor product: it turns out that there is a ring isomorphism
K0(S2n)  Z2[λ]/(λ2), i.e., the elements of K0(S2n) are polynomials of the type
z + λz′, z, z′ ∈ Z, with the relation λ2 = 0 ([10, Chp. 11]). Tensoring by a vector
bundle E → S2n with class d + λc ∈ K0(S2n) defines an endomorphism λE ∈
endK0(S2n), λE(z + λz′) := dz + λ(dz′ + cz). We also denote by ι: ι(z + λz′) :=
z + λz′ the identity automorphism on K0(S2n). Note that ι− λE is injective (for
d > 1).

We can now compute the K-theory of OE over even spheres: the exact se-
quence [20, Thm. 4.9], and the above considerations, imply

Z2
ι−λE �� Z2

i0 �� K0(OE )

0

��
K1(OE )

0

��

0
i1�� 0

0��
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so that, we have the K-groups

K0(OE) =
Z2

(ι− λE)Z2
, K1(OE) = 0 .

In the case in which d−1 and c are relatively prime, some elementary computations
show that K0(OE) = Z(d−1)2 . This shows that OE is non-trivial as an Od-bundle:
in fact, the Kunneth theorem ([4, §23]) implies K0(S2nOd) = Zd−1 ⊕ Zd−1.

We now pass to describe the class δ1(OE). For every rank d vector bundle
E → S2n we find δ0(OE ) = 0, in fact O0

E  S2nO0
d (see Rem. 5.6); we denote by

αE : KK(S2n;O0
E ,O0

E)→ KK(S2n ; S2nO0
d, S

2nO0
d)

the induced ring isomorphism. The Kunneth theorem implies{
K0(S2nO0

d) = K0(S2n)⊗K0(O0
d) = Z2 ⊗ Z

[
1
d

]
KK0(S2nO0

d, S2nO0
d) = end

(
Z2 ⊗ Z

[
1
d

])
where Z

[
1
d

]
is the group of d-adic integers ([4, 10.11.8]). We denote by

(z + λz′)⊗ q , z, z′ ∈ Z , q ∈ Z

[
1
d

]
,

the generic “elementary tensor” in K0(S2nO0
d). Let now

δ′1(OE) := αE ◦ δ1(OE ) = αE ◦ i[E ] ∈ KK(S2n ; S2nO0
d , S2nO0

d) ;

it is clear that δ′1(OE ) = [E ] × [1]S2nO0
d

is the KK-class associated with the bi-

module Ê ⊗X (S2nO0
d). We denote by βE ∈ autK0(S2nO0

d) the automorphism
induced by δ′1(OE ); it follows from the above considerations that βE = λE × 1d ∈
end

(
Z2 ⊗ Z

[
1
d

])
. Thus, we find

βE((z + λz′)⊗ q) = λE(z + λz′)⊗ q = [dz + λ(dz′ + cz)]⊗ q . (5.6)

Theorem 5.10. Let E , E ′ → S2n be rank d vector bundles. Then, the following are
equivalent:

1. δ′1(OE) = δ′1(OE′) ∈ KK(S2n ; S2nO0
d , S2nO0

d);
2. there is a C(S2n)-isomorphism (OE ⊗K, Z)→ (OE′ ⊗K, Z);
3. [E ] = [E ′] ∈ K0(S2n).

Proof. 1) ⇒ 3): we have δ′1(OE) = δ′1(OE′) if and only if βE = βE′ ; thus, (5.6)
implies βE(1⊗ 1) = (d + λc)⊗ 1 = (d + λc′)⊗ 1 = βE′(1⊗ 1), where [E ] := d + λc,
[E ′] := d+λc′. From the equality (d+λc)⊗1 = (d+λc′)⊗1, we conclude [E ] = [E ′]
(note that we know a priori that E , E ′ have the same rank d).

3) ⇒ 2) follows from [24, Prop.5.10].
2) ⇒ 1) is trivial by definition of δ1. �
Let E , E ′ → S2n be rank d vector bundles with classes [E ] = d + λc, [E ′] =

d + λc′, such that d − 1, c and d − 1,c′ are relatively prime; then, K0(OE ) =
K0(OE′) = Z(d−1)2 . If c �= c′, then the previous theorem implies that OE is not
graded stably isomorphic to OE′ , and δ1(OE) �= δ1(OE′). This shows that δ1 is a
more detailed invariant w.r.t. the K-theory of OE .
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We conclude with a remark about odd spheres: in this case K0(S2n+1) = Z,
so that for every rank d vector bundle E → S2n+1 we find [E ] = d. Thus, [24, Prop.
5.10] implies (OE ⊗K, Z)  (S2n+1Od ⊗K, Z).
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