
Chapter XI

Manifolds and differential forms

In Chapter VIII, we learned about Pfaff forms and saw that differential forms
of first degree are closely connected with the theory of line integrals. In this
chapter, we will treat the higher-dimensional analogue of line integrals, in which
differential forms of higher degree are integrated over certain submanifolds of Rn.
So this chapter will deal with the theory of differential forms.

In Section 1, we generalize what we know about manifolds. In particular,
we explore the concept of a submanifold of a given manifold, and we introduce
manifolds with boundary.

In Section 2, we compile the needed results from multilinear algebra. They
form the algebraic foundation for the theory of differential forms: In Section 3, we
treat differential forms on open subsets of Rn. In Section 4, we make this theory
global and then discuss the orientability of manifolds.

Because we always consider submanifolds of Euclidean spaces, we can natu-
rally endow them with a Riemannian metric. In Section 5, we look more closely at
this additional structure and explain several basic facts of Riemannian geometry.
To accommodate the needs of physics, we also treat semi-Riemannian metrics; in
the examples, we will always confine ourselves to Minkowski space.

Section 6, which concludes this chapter, makes the connection between the
theory of differential forms and classical vector analysis. In particular, we study
the operators gradient, divergence, and curl, and we derive their basic properties.
We give their local coordinate representations and calculate these explicitly in
several important examples.

In Section 2, which otherwise concerns linear algebra, we also introduce the
Hodge star operator, which we will need in later sections to define the codifferential.
Then we will be able unify the various operators of vector analysis into the language
of the Hodge calculus. This material can be skipped on first reading: For this
reason, we wait for the end of each section to discuss any material that uses
Hodge theory.
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In the entire book, we restrict to submanifolds of Rn. However, apart from
the definition of the tangent space, we structure all proofs so that they remain
true or can be easily modified for abstract manifolds. Thus Chapters XI and XII
give a first introduction to differential topology and differential geometry; though
they sometimes lack the full elegance of the general theory, the many examples we
consider do form a solid foundation for further study of the subject.



1 Submanifolds

In this section,
• M is an m-dimensional manifold and N is an n-dimensional manifold.

More precisely, this means M is an m-dimensional C∞ submanifold of Rm for
some m ≥ m; a like statement holds for N .

For simplicity and to emphasize the essential, we restrict to the study of
smooth maps. In particular, we always understand a diffeomorphism to be a C∞

diffeomorphism, and we set

Diff(M, N) := Diff∞(M, N) .

However, whenever anything is proved in the following, it will also hold for Ck man-
ifolds and Ck maps, where, if necessary, k ∈ N× must be restricted appropriately.
We will usually put these adjustments in remarks1 and leave their verification to
you.

Definitions and elementary properties

Let 0 ≤ � ≤ m. A subset L of M is called an (�-dimensional) submanifold of M
if for every p ∈ L there is a chart (ϕ, U) of M around p such that2

ϕ(U ∩ L) = ϕ(U) ∩
(
R	 × {0}

)
.

Every such chart is a submanifold chart of M for L. The number m− � is called
the codimension of L in M .

Clearly this definition directly generalizes of the idea of a submanifold of Rm.
In the context of submanifolds, immersions play an important role. They

will be introduced in analogy to the definition given Section VII.9.
Let k ∈ N× ∪ {∞}. Then f ∈ Ck(M, N) is a Ck immersion if Tpf : TpM →

Tf(p)N is injective for every p ∈ M . We call a Ck immersion f a Ck embedding

1In small print sections entitled “regularity”.
2To avoid bothersome special cases, we interpret the empty set as a submanifold of dimension �

for every � ∈ {0, . . . , m} (see Section VII.9).



236 XI Manifolds and differential forms

of M in N if f is a homeomorphism from M to f(M) (where f(M) is natu-
rally provide with the relative topology of N). Instead of C∞ immersion [or C∞

embedding], we say for short immersion [or embedding].

1.1 Remarks (a) If L is an �-dimensional submanifold of M and M is submanifold
of N , then L is an �-dimensional submanifold of N .
Proof Let p ∈ L, and let (ϕ, U) be a submanifold chart of M for L around p. Also let
(ψ, V ) be a submanifold chart of N for M around p. We can also assume U = V ∩M .
Letting X := ϕ(U) ⊂ Rm and Y := pr ◦ψ(V ) ⊂ Rm, where pr : Rm × Rn−m → Rm

denotes the canonical projection, we have

χ := pr ◦ψ ◦ ϕ−1 ∈ Diff(X, Y ) .

Now we define Φ ∈ Diff(Y × Rn−m, X × Rn−m) by

Φ(y, z) :=
(
χ−1(y), z

)
for (y, z) ∈ Y × Rn−m ,

and set Ψ := Φ ◦ ψ. Then Ψ(V ) is open in Rn, and Ψ ∈ Diff(V, Ψ(V )) with

Ψ(V ∩ L) =
(
ϕ(U ∩ L)× {0}

)
∩

(
R� × {0}

)
= Ψ(V ) ∩

(
R� × {0}

)
⊂ Rn ,

as one can easily check. Therefore (Ψ, V ) is a submanifold chart of N for L around p. �

(b) Because the Rm = Rm × {0} ⊂ Rn is a submanifold of Rn for n ≥ m, it
follows from (a) that M is an m-dimensional submanifold of Rn for every n ≥ m.
This shows that the “surrounding space” Rm of M does not play an important
role so long as we are only interested in the “inside properties” of M , that is, in
properties that are described only with the help of charts and tangent spaces of
M and which do not depend on how M is “situated” in the surrounding space.3

However, how M is situated in Rm does matter, for example, when defining the
normal bundle T⊥M .

(c) Let L be a submanifold of M . For the submanifold chart (ϕ, U) of M for L,
we set

(ϕL, UL) := (ϕ |U ∩ L, U ∩ L) .

Then (ϕL, UL) is a chart for L, where ϕ(UL) is interpreted as an open subset of
R	, that is, R	 × {0} ⊂ Rm is identified with R	.

If A :=
{

(ϕλ, Uλ) ; λ ∈ Λ
}

is a set of submanifold charts of M for L such
that L is covered by the coordinate patches (charted territories) {Uλ ; λ ∈ Λ },
then

{
(ϕλ,L, Uλ,L) ; λ ∈ Λ

}
is an atlas for L, the atlas induced by A.

Proof We leave the simple verifications to you. �

(d) Suppose L and K are respectively �- and k-dimensional submanifolds of M
and N . Then L×K is an (�+k)-dimensional submanifold of the manifold M ×N ,
which is (m+n)-dimensional.

3In Section 4, it will be clear that tangent spaces also have an “inside” characterization.
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Proof This follows simply from the definitions. We again leave the proof to you.4 �

(e) Let L be a submanifold of M . Then

i : L →M , p �→ p

is an embedding, the natural embedding of L in M ; we write it as i : L ↪→M . We
identify TpL for p ∈ L with its image in TpM under the injection Tpi, that is, we
regard TpL as a vector subspace of TpM : TpL ⊂ TpM .

Proof Let (ϕ, U) be a submanifold chart of M for L. Then i has the local representation

ϕ ◦ i ◦ ϕ−1
L : ϕL(UL)→ ϕ(U) , x �→ (x, 0) .

Now the claim is clear. �

(f) If f : M → N is an immersion, then m ≤ n.

(g) Let L be a submanifold of M of dimension �, and suppose f belongs to
Diff(M, N). Then f(L) is an �-dimensional submanifold of N .

Proof We leave the simple check to you. �

(h) Every open subset of M is an m-dimensional submanifold of M .

(i) If (ϕ, U) is a chart of M , then ϕ : U → Rm is an embedding, and ϕ is a
diffeomorphism from U to ϕ(U).

(j) Suppose L and K are respectively submanifolds of M and N , and iL : L ↪→M
and iK : K ↪→ N are their respective natural embeddings. Let k ∈ N ∪ {∞} and
f ∈ Ck(M, N) with f(L) ⊂ K. Then the restriction of f to L satisfies

f |L := f ◦ iL ∈ Ck(L, K) ,

and the diagrams

L M

K N

f |L f

iL

iK

��
�

��
�

� �

TpL TpM

Tf(p)K Tf(p)N

Tp(f |L) Tpf

TpiL

Tf(p)iK

�

�
� �

commute. Identifying TpL with its image in TpM under TpiL, that is, regarding
TpL in the canonical way as a vector subspace of TpM , we have in particular
Tp(f |L) = (Tpf) |TpL.

Proof This follows from obvious changes to the proof of Example VII.10.10(b), which
is generalized by this statement. �

4See Exercise VII.9.4.
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(k) (regularity) Analogous definitions and statements hold when M is a Ck manifold
for k ∈ N×. In this case L is also a Ck manifold, and the natural inclusion i : L ↪→ M
belongs to the class Ck. �

The next theorem, a generalization of Proposition VII.9.10, shows that we
can generate submanifolds using embeddings.

1.2 Theorem

(i) Suppose f : M → N is an immersion. Then f is locally an embedding,
that is, for every p in M , there is a neighborhood U such that f |U is an
embedding.

(ii) If f : M → N is an embedding, then f(M) is an m-dimensional submanifold
of N , and f is a diffeomorphism from M to f(M).

Proof (i) Let p ∈ M , and suppose (ϕ, U0) and (ψ, V ) are respectively charts of
M around p and of N around f(p) such that f(U0) ⊂ V . Then

fϕ,ψ := ψ ◦ f ◦ ϕ−1 : ϕ(U0) → ψ(V )

is an immersion by Remark 1.1(i). By the immersion theorem (Theorem VII.9.7),
there is an open neighborhood X of ϕ(p) in ϕ(U0) such that fϕ,ψ(X) is an
m-dimensional submanifold of Rn. Then ψ ∈ Diff(V, ψ(V )) and Remark 1.1(g)
imply that f(U), with U := ϕ−1(X), is an m-dimensional submanifold of N .

By appropriately shrinking X , Remark VII.9.9(d) shows that fϕ,ψ is a diffeo-
morphism from X = ϕ(U) to fϕ,ψ(X) = ψ◦f(U). Therefore f is a diffeomorphism
from U to f(U), where f(U) is provided with the topology induced by N . There-
fore f |U is an embedding.

(ii) Suppose f is an embedding. For q ∈ f(M), suppose (ψ, V ) is a chart of N
around q and (ϕ, U) is a chart of M around p := f−1(q) with f(U) ⊂ V . Because
f is topological from M to f(M), we know f(U) is open in f(M). Therefore we
can assume that f(U) = f(M) ∩ V . Now it follows from the proof of (i) that
f(M) ∩ V is an m-dimensional submanifold of N . Because this is true for every
q ∈ f(M), we conclude f(M) is an m-dimensional submanifold of N .

By (i), f is a local diffeomorphism from M to f(M). Because f is topological,
it follows that f ∈ Diff(M, f(M)). �

From Remark VII.9.9(c), we know that the image of an injective immersion
is generally not a submanifold. The following theorem gives a simple sufficient
condition which tells whether an injective immersion is an embedding.

1.3 Theorem Suppose M is compact and f : M → N is an injective immer-
sion. Then f is an embedding, f(M) is an m-dimensional submanifold of N , and
f ∈ Diff(M, f(M)).
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Proof Because M compact and f(M) is a metric space, the bijective continuous
map f : M → f(M) is topological (see Exercise III.3.3). Now the claim follows
from Theorem 1.2. �

1.4 Remark (regularity) Let k ∈ N×. Then corresponding versions of Theorems 1.2
and 1.3 remain true when M and N are Ck manifolds and f belongs to the class Ck. �

1.5 Examples (a) Suppose 1 ≤ � < m,
and let (x, y) denote a general point of
R	+1 × Rm−	 = Rm+1. Then

Ly :=
√

1− |y|2 S	 × {y}

is an �-dimensional submanifold of the
m-sphere Sm for every y ∈ Bm−	. It is
diffeomorphic to S	. The tangent space at the point p ∈ Ly satisfies

TpLy = TpS
m ∩

(
p, R	+1 × {0}

)
⊂ TpRm+1 . (1.1)

Proof For y ∈ Bm−�, the map

Fy : R�+1 → Rm+1 , x �→
(√

1− |y|2 x, y
)

(1.2)

is a smooth immersion. Because S� and Sm are respectively submanifolds of R�+1 and
Rm+1 and because Fy(S�) ⊂ Sm, Remark 1.1(j) with i� : S� ↪→ R�+1 gives

fy := Fy |S� = Fy ◦ i� ∈ C∞(S�, Sm) . (1.3)

Clearly fy is injective, and the chain rule of Remark VII.10.9(b) implies

Tpfy = TpFy ◦ Tpi� for p ∈ S� .

Therefore Tpfy is injective (see Exercise I.3.3), that is, fy is an immersion. Because S�

is compact, Theorem 1.3 shows that Ly = fy(S�) is an �-dimensional submanifold of Sm

and is diffeomorphic to S�. Then (1.1) is a simple consequence of (1.2) and (1.3). �

(b) (torus-like hypersurfaces of rotation) Let

γ : S1 → (0,∞)× R , t �→
(
ρ(t), σ(t)

)
be an injective immersion and therefore by Theorem 1.3 an embedding. Also let
i : Sm ↪→ Rm+1, and define

f : Sm × S1 → Rm+1 × R , (q, t) �→
(
ρ(t)i(q), σ(t)

)
.

Then f is an embedding, and

T m+1 := f(Sm × S1)

is a hypersurface in Rm+2, which is diffeomorphic to Sm × S1.
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In the case m = 0, the set T 1 con-
sists of two copies of the closed, smooth
curve γ(S1), which has no points of self-
intersection5 and reflects symmetrically
about the y-axis.

For m = 1, T 2 is the surface of rotation in R3 generated by rotating the
meridional curve

Γ :=
{ (

ρ(t), 0, σ(t)
)

; t ∈ S1
}

around the z-axis (see Example VII.9.11(e)).
T 2 “is a 2-torus”, that is, it is diffeomorphic
to T2 := S1 × S1. In particular, T2

a,r, the
2-torus from Example VII.9.11(f), is diffeo-
morphic to T2.

In the general case, we call T m+1 a torus-
like hypersurface of rotation.
Proof By Example VII.9.5(b), Sm and S1 are m- and 1-dimensional manifolds, respec-
tively. Therefore Sm × S1 is an (m+1)-dimensional manifold.

Suppose (ϕ×ψ, U ×V ) is a product chart6 of Sm×S1. Because γ is an immersion,
its local representation with respect to ψ (and the trivial chart idR2 of R2), that is,
γψ = (r, s) with r := ρ ◦ ψ−1 and s := σ ◦ ψ−1, satisfies(

ṙ(y), ṡ(y)
)
	= (0, 0) for y ∈ ψ(V ) . (1.4)

Further, the local representation of f with respect to ϕ× ψ has the form

fϕ×ψ(x, y) =
(
r(y)g(x), s(y)

)
for (x, y) ∈ ϕ(U)× ψ(V ) ,

where g := i◦ϕ−1 is the parametrization of Sm belonging to ϕ. From this is follows that

[
∂fϕ×ψ(x, y)

]
= · · · · · · · · · · · · · · · · · · · · · · ·

·······

⎡⎣ r(y)∂g(x) ṙ(y)g(x)

0 ṡ(y)

⎤⎦∈ R(m+2)×(m+1) .

Because r(y) > 0 and because ∂g(x) is injective, the first m columns of this matrix are
linearly independent. If ṡ(y) 	= 0, then the matrix has rank m + 1. If ṡ(y) = 0, then we
have ṙ(y) 	= 0 by (1.4). From |g(x)|2 = (g(x) | g(x)) = 1 for x ∈ ϕ(U), it follows that
(g(x) | ∂jg(x)) = 0 for 1 ≤ j ≤ m and x ∈ ϕ(U). This shows that the matrix has rank
m + 1 in this case as well. Therefore f is an immersion.

We now consider the equation f(q, t) = (y, s) for some (y, s) ∈ T m+1. From the
relations ρ(t)i(q) = y and |i(q)| = 1, it follows that ρ(t) = |y|. Because γ is injective,
there is exactly one t ∈ S1 such that (ρ(t), σ(t)) = (|y|, s). Likewise, there is exactly one
q ∈ Sm with i(q) = y/|y|. Therefore the equation (ρ(t)i(q), σ(t)) = (y, s), with (y, s) as
above, has a unique solution (since y = |y| (y/|y|)). Hence f is an injective immersion

5Here and in the following, “curve” means a one-dimensional manifold (see Remark 1.19(a)).
6That is, (ϕ, U) and (ψ, V ) are respectively charts of Sm and S1, and ϕ × ψ(q, t) :=(

ϕ(q), ψ(t)
)
.
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of Sm × S1 in Rm+2. Now all the claims follow from Theorem 1.3 because Sm × S1 is
compact. �

(c) Suppose L and M are submanifolds of N with L ⊂ M . Then L is a submanifold
of M .
Proof Because idN ∈ Diff(N, N), we know i := idN |L is an immersion of L in N with
i(L) ⊂ M . Therefore it follows from Remark 1.1(j) that i is a bijective immersion of
L in M . Because L and M carry the topology induced by N and because M induces
the same topology on L, we know i, as a restriction of a diffeomorphism, is topological.
Therefore i is an embedding, and the claim follows from Theorem 1.2. �

(d) Suppose the assumptions of (b) are satisfied with
m = 1. Then for every (q0, t0) ∈ S1 × S1, the images
of

f( · , t0) : S1 → R3

and
f(q0, · ) : S1 → R3

are one-dimensional submanifolds of T 2 and are dif-
feomorphic to S1 (and therefore “circles”).

Proof Because f( · , t0) and f(q0, · ) as restrictions of embeddings are themselves em-
beddings, f(S1, t0) and f(q0, S

1) are submanifolds of R3 diffeomorphic to S1, and they
lie in T 2. The claim now follows from (c). �

Submersions

Suppose f ∈ C1(M, N). Then we say p ∈ M is a regular point of f if Tpf is
surjective. Otherwise p is a singular point. A point q ∈ N is said to be a regular
value of f if every p ∈ f−1(q) is a regular point. If every point of M is regular, we
say f is a regular map or a submersion.

These definitions generalize concepts introduced in Section VII.8.

1.6 Remarks (a) If p is a regular point of f , then m ≥ n. Every q ∈ N \f(M) is
a regular value of f .

(b) The point p ∈ M is a regular point of f = (f1, . . . , fn) ∈ C1(M, Rn) if and
only if the cotangent vectors7

df j(p) := dpf
j = pr2 ◦Tpf

j ∈ T ∗
p M for 1 ≤ j ≤ n

are linearly independent.

(c) A singular point of f ∈ C1(M, R) is also called a critical point. Therefore
p ∈M is a critical point of f if and only if df(p) = 0.8 �

7See Section VIII.3.
8See Remark VII.3.14(a).
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The following theorem generalizes the regular value theorem to the case of
maps between manifolds.

1.7 Theorem (regular value) Suppose q ∈ N is a regular value of the map
f ∈ C∞(M, N). Then L := f−1(q) is a submanifold of M of codimension n. For
p ∈ L, the kernel of Tpf is TpL.

Proof Let p0 ∈ f−1(q). Let (ϕ, U) be a chart of M around p0, and let (ψ, V ) be
a chart of N around q with f(U) ⊂ V . Then it follows from the chain rule that for
every p ∈ U ∩ f−1(q), the point ϕ(p) is a regular point of the local representation

fϕ,ψ := ψ ◦ f ◦ ϕ−1 ∈ C∞(ϕ(U), Rn) .

In other words, y := ψ(q) is a regular value of fϕ,ψ. Therefore Theorem VII.9.3
guarantees that (fϕ,ψ)−1(y) is an (m−n)-dimensional submanifold of Rm. Hence
there are open sets X and Y of Rm and a Φ ∈ Diff(X, Y ) such that

Φ(X ∩ (fϕ,ψ)−1(y)) = Y ∩ (Rm−n × {0}) .

By replacing ϕ(U) and X with their intersection, we can assume that ϕ(U) = X .
But then ϕ1 := Φ ◦ ϕ is a chart of M around p with

ϕ1

(
f−1(q) ∩ U

)
= Φ ◦ ϕ

(
f−1 ◦ ψ−1(y) ∩ U

)
= Φ

(
(fϕ,ψ)−1(y) ∩X

)
= Y ∩

(
Rm−n × {0}

)
and is therefore a submanifold chart of M for f−1(q). The second claim now
follows from an obvious modification of the proof of Theorem VII.10.7. �

1.8 Remarks (a) Theorem 1.7 has a converse that says that every submanifold
of M can be represented locally as the fiber of a regular map. More precisely, it
says that if L is an �-dimensional submanifold of M , then for every p ∈ L there
are a neighborhood U in M and an f ∈ C∞(U, Rm−	) such that f−1(0) = U ∩ L,
and 0 is a regular value of f .
Proof Suppose (ϕ, U) is a submanifold chart of M around p for L. Then the function
defined by f(q) := (ϕ�+1(q), . . . , ϕm(q)) for q ∈ U belongs to C∞(U,Rm−�) and satisfies
f−1(0) = U ∩ L. Because ϕ is a diffeomorphism, 0 is a regular value f . �

(b) (regularity) If q is a regular value of f ∈ Ck(M, N) for some k ∈ N×, then f−1(q) is
a Ck submanifold of M . In this case it suffices to assume that M is itself a Ck manifold. �

1.9 Examples (a) Suppose X is open in Rm×Rn and q ∈ Rn is a regular value of
f ∈ C∞(X, Rn) with M := f−1(q) 
= ∅. Then M is an m-dimensional submanifold
of X . For

π := pr |M : M → Rm

with
pr : Rm × Rn → Rm , (x, y) �→ x ,
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we have π ∈ C∞(M, Rm). Finally let p ∈M , and suppose D1f(p) ∈ L(Rm, Rn) is
surjective.9 Then p is regular point of π if and only if D2f(p) is bijective.
Proof The regular value theorem guarantees that M is an m-dimensional submanifold
of X with TpM = ker(Tpf) for p ∈ M . Because π is the restriction of a linear and
therefore smooth map, it follows from Remark 1.1(j) that π ∈ C∞(M, Rm) and Tpπ =
Tp pr |TpM .

It follows from Tp pr =
(
p, ∂ pr(p)

)
and ∂ pr(p)(h, k) = h for (h, k) ∈ Rm ×Rn that

Tpπ is surjective if and only if for every y ∈ Rm there is an (h, k) ∈ Rm × Rn such that

∂f(p)(h, k) = D1f(p)h + D2f(p)k = 0

and h = y. This is because D1f(p) is surjective if and only if for every z ∈ Rn there is a
k ∈ Rn such that D2f(p)k = z or, equivalently, if and only if D2f(p) itself is surjective.
Because D2f(p) ∈ L(Rn), this finishes the proof. �

(b) (“cusp catastrophe”) For

f : R2 × R → R ,
(
(u, v), x

)
�→ u + vx + x3 ,

we have [
D1f(w, x)

]
= [1, x] ∈ R1×2 , where w := (u, v) .

Therefore 0 is a regular value of f , and M := f−1(0) is a surface in R3. Because
D2f(w, x) = v + 3x2, we know by (a) that

K :=
{ (

(u, v), x
)
∈ M ; v + 3x2 = 0

}
is the set of singular points of the projection
π : M → R2. It satisfies

K = γ(R) with

γ : R → R3 , t �→ (2t3,−3t2, t) .
(1.5)

In particular, K is a 1-dimensional submanifold
of M , a smoothly embedded curve. Its projec-
tion B := π(K) is the image of

σ : R → R2 , t �→ (2t3,−3t2) ,

a Neil parabola.10 It is the union of the 0-dimensional manifold P := {(0, 0)} ∈ R2,
the “cusp”, and the two one-dimensional manifolds B1 := σ((−∞, 0)) and B2 :=
σ((0,∞)).
Proof The point (u, v, x) ∈ R3 belongs to K if and only if it satisfies the equations

u + vx + x3 = 0 and v + 3x2 = 0 . (1.6)

9We apply the notations of Section VII.8.
10See Remark VII.9.9(a).
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By eliminating v from the first equation, we see that (1.6) is equivalent to

2x3 = u and 3x2 = −v .

This proves (1.5). For the derivative of the map

g : R3 → R2 , (u, v, x) �→ (u− 2x3, v + 3x2) ,

we find [
∂g(u, v, x)

]
=

[
1 0 −6x2

0 1 6x

]
∈ R2×3 .

This matrix has rank 2, which shows that 0 is a regular value of g. Therefore by the
regular value theorem, K = g−1(0) is a 1-dimensional submanifold of R3. Because
K ⊂ M it follows from Remark 1.5(c) that K is a submanifold of M . The rest is
obvious. �

1.10 Remark (catastrophe theory) We consider now a point particle of mass 1 moving
along the real axis with potential energy U and total energy

E(ẋ, x) =
ẋ2

2
+ U(x) for x ∈ R .

According to Example VII.6.14(a), Newton’s equation of motion is

ẍ = −U ′(x) .

From Examples VII.8.17(b) and (c), we know that the critical points of the energy E
are exactly the points (0, x0) with U ′(x0) = 0. Because the Hessian matrix of E has the
form [

1 0
0 U ′′(x0)

]
at (0, x0), it is positive definite if and only if U ′′(x0) > 0. Hence it follows from The-
orem VII.5.14 that (0, x0) is an isolated minimum of the total energy if and only if x0

is an isolated minimum of the potential energy.11 It is graphically clear that an iso-
lated minimum of the total energy is “stable” in the sense that

(
ẋ(t), x(t)

)
stays in “the

neighborhood” of (0, x0) for all t ∈ R+ if this is true as its motion begins, that is, at
t = 0.

Intuitively, one can understand how x will
move along the axis R by imagining a small ball
rolling without friction along the graph of U while
experiencing the force of gravity. If it lies on the
“bottom of a potential well”, that is, at a local
minimum, then it will not move because ẋ(t) =
U ′(x0) = 0. If the ball is released near a local
minimum then ball will roll downhill past the min-
imum and up the other “slope of the valley” until

11We consider only the “generic” case in which U ′′(x0) �= 0 is satisfied if U ′(x0) = 0.
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it “runs out” of kinetic energy at its original height. Then it will reverse course and roll
until it again comes to instantaneous rest where it was initially released. Thus the ball
will execute a periodic oscillation about x0.

12

Now we assume that U depends continuously on additional “control parameters”
u, v, . . . . By varying these parameters, we can vary the graph of U continuously. In this
way, it can happen that a local minimum merges first into a saddle point and then ceases
to be a critical point. A ball that had previously been confined to the neighborhood
of the local minimum would then leave this neighborhood and oscillate about another
resting point.

Now consider an observer who can see the ball move but is unaware of the mechanism
underlying the process. She would see that the ball, which had before rested peacefully
at a certain place, would suddenly, “for no apparent reason”, begin to roll and oscillate
periodically about another (fictitious) center. It would seem to be a sudden and drastic
change of the situation, a “catastrophe”.

In order to understand such catastrophes (and avoid them if necessary), one must
understand the mechanism by which they occur. In the situation described above, this
boils down to understanding how the critical points of the potential (and in particular
the relative minima) depend on the control parameters.

To illustrate, we consider the potential

U(u,v) : R → R , x �→ ux + vx2/2 + x4/4

for (u, v) ∈ R2. The critical points of U(u,v) are just the zeros of the function f from
Example 1.9(b). Therefore the manifold M , the catastrophe manifold, describes all
critical points of the two parameter set

{
U(u,v) ; (u, v) ∈ R2

}
of potentials. Of particular

interest is that subset of M , the catastrophe set K, consisting of all singular points of
the projection π from M to the parameter space. In our example, K is a curve smoothly
embedded in M , the fold curve, because the catastrophe manifold is “folded” along K.
The image of K under π, that is, the projection of the fold curve onto the parameter
plane, is the bifurcation set B. Every point of R2 \B is a regular point of π. The
fiber π−1(u, v) consists of exactly one point for (u, v) ∈ A ∪ P , exactly two points for
(u, v) ∈ B1 ∪ B2, and exactly three points for (u, v) ∈ I , where A and I are depicted in
the illustration to Example 1.9(b). The following pictures show the qualitative form of
the potential U(u,v) when (u, v) belongs to these sets.

12This plausible scenario can be proved using the theory of ordinary differential equations; see
for example [Ama95].
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left of B1 on B1 in I on B2 right of B2

in P v positive

Now consider a continuous curve C in the parameter space that begins in A and
ends in I (or the reverse), while staying in B1 ∪ B2. While moving continuously along
this curve, the number of points in the inverse image of π will change suddenly from 1
to 3 (or from 3 to 1). As illustrated at right, one such curve C is obtained by projecting
a curve Γ on the catastrophe manifold M that “jumps” when crossing the fold curve. In
short, the value of x experiences a “catastrophe”.

These facts have led to many inter-
pretations of “catastrophe theory” which
— not least because of its name — have
been leveraged to great popularity and,
especially in the popularized science lit-
erature, have kindled exaggerated hopes
that the subject will somehow explain or
help prevent real-world catastrophes. We
refer to [Arn84] for a critical, nontechnical
introduction to catastrophe theory, and
we recommend [PS78] for a detailed pre-
sentation and several applications of the
mathematical theory of singularities, of
which catastrophe theory is a part. �

Submanifolds with boundary

We know that the open unit ball Bm and its boundary, the (m−1)-sphere Sm−1,
are respectively m- and (m−1)-dimensional submanifolds of Rm. However, the
closed ball Bm = Bm ∪ Sm−1 is not a manifold, because a point p ∈ ∂Bm = Sm−1

has no neighborhood U in Bm that is mapped topologically onto an open set V of
Rm; such a neighborhood U , as the homeomorphic image of an open set V , would
likewise need to be open in Rm, which is not true. In the neighborhood of p, that
is, “by viewing it with a very strong microscope”, Bm does not look like Rm, but
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rather like a half-space. To capture such situations also, we must generalize the
idea of a manifold by allowing subsets of half-spaces to be parameter sets.

In the following, m ∈ N×, and

Hm := Rm−1 × (0,∞)

is the open upper half-space of Rm. We
identify its boundary ∂Hm = Rm−1×{0}
with Rm−1 if there is no fear of misun-
derstanding. If U is an open subset of
Hm := Hm = Rm−1×R+, we call int(U) := U∩Hm the interior and ∂U := U∩∂Hm

the boundary of U . Note that the boundary ∂U is not the topological boundary13

of U either in Hm or in Rm (unless U = Hm in the latter case).
Suppose X is open in Hm and E is a Banach space. Then f : X → E is said

to be differentiable at the boundary point x0 ∈ ∂X if there is a neighborhood U
of x0 in Rm and a differentiable function fU : U → E that agrees with f in U ∩X .
Then it follows from Proposition VII.2.5 that

∂jfU (x0) = lim
t→0+

(
fU (x0 + tej)− fU (x0)

)/
t

= lim
t→0+

(
f(x0 + tej)− f(x0)

)/
t

for 1 ≤ j ≤ m, where (e1, . . . , em) is the standard basis of Rm. This and Proposi-
tion VII.2.8 show that ∂fU (x0) is already determined by f . Therefore the deriva-
tive

∂f(x0) := ∂fU (x0) ∈ L(Rm, E)

of f is well defined at x0, that is, independent of the choice of the local continuation
fU of f .

A map f : X → E is said to be continuously differentiable if f is differentiable
at every point of X and if the map

∂f : X → L(Rm, E) , x �→ ∂f(x)

is continuous.14

The higher derivatives of f are defined analogously, and these are also in-
dependent of the particular local continuation. For k ∈ N× ∪ {∞}, the Ck maps
of X to E form a vector space, which, as in the case of open subsets of Rm, we
denote by Ck(X, E).

Suppose Y is open in Hm. Then f : X → Y is also called a Ck diffeomor-
phism, and we write f ∈ Diffk(X, Y ), if f is bijective and if f and f−1 belong to
the class Ck. In particular, Diff(X, Y ) := Diff∞(X, Y ) is the set of all smooth,
that is, C∞, diffeomorphisms from X to Y .

13From this point on, we use the symbol ∂M exclusively for boundaries, and, for clarity, we
write Rd(M) for the topological boundary of a subset M of a topological space, that is, we put

Rd(M) := M \M̊ .
14Naturally, we say f is differentiable at x0 ∈ int(X) if f | int(X) is differentiable at x0.
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1.11 Remarks Suppose X and Y are open in Hm and f : X → Y is a Ck

diffeomorphism for some k ∈ N× ∪ {∞}.
(a) If ∂X is not empty, then ∂Y 
= ∅, and f | ∂X is a Ck diffeomorphism from ∂X

to ∂Y . Also, f | int(X) belongs to Diffk
(
int(X), int(Y )

)
.

Proof Suppose p ∈ ∂X and q := f(p) belongs to int(Y ). Then it follows from the inverse
function theorem, Theorem VII.7.3, (applied to a local extension of f) that ∂f−1(q) is
an automorphism of Rm. It therefore follows, again from Theorem VII.7.3, that f−1

maps a suitable neighborhood V of q in int(Y ) to an open neighborhood U of p in Rm.
But because f−1(V ) ⊂ X ⊂ Hm and p = f−1(q) ∈ ∂X, this is not possible. Therefore
f(∂X) ⊂ ∂Y . Analogously we find f−1(∂Y ) ⊂ ∂X. This shows f(∂X) = ∂Y .

Because X and Y in Hm are open, both ∂X and ∂Y are open in ∂Hm = Rm−1, and
f | ∂X is a bijection from ∂X to ∂Y . Because f | ∂X and f−1 | ∂Y obviously belongs to
the class Ck, we know f | ∂X is a Ck diffeomorphism from ∂X to ∂Y . The last statement
is now clear. �

(b) For p ∈ ∂X , we have ∂f(p)(∂Hm) ⊂ ∂Hm and ∂f(p)(±Hm) ⊂ ±Hm.

Proof From f(∂X) = ∂Y , it follows that fm | ∂X = 0 for the m-th coordinate function
fm of f . From this we get ∂jf

m(p) = 0 for 1 ≤ j ≤ m− 1. Therefore the Jacobi matrix
of f has at p the form

[
∂f(p)

]
=

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

··············

⎡⎢⎢⎢⎢⎢⎣
∂mf1(p)

∂(f | ∂Hm)(p)
...

∂mfm−1(p)

0 · · · 0 ∂mfm(p)

⎤⎥⎥⎥⎥⎥⎦ . (1.7)

Because f(X) ⊂ Y ⊂ Hm, the inequality fm(q) ≥ 0 holds for q ∈ X. Hence we find

∂mfm(p) = lim
t→0+

t−1
(
fm(p + tem)− fm(p)

)
= lim

t→0+
t−1fm(p + tem) ≥ 0 .

Since ∂f(p) ∈ Laut(Rm) (see Remark VII.7.4(d)) and since ∂mfm(p) ≥ 0, we have
∂mfm(p) > 0. From (1.7), we read off(

∂f(p)x
)m

= ∂mfm(p)t for x := (y, t) ∈ Rm−1 × R .

Therefore the sign of the m-th coordinate of ∂f(p)x agrees with sign(t), and we are
done. �

We can now define the concept of submanifold with boundary. A subset B of
the n-dimensional manifold N is said to be a b-dimensional submanifold of N with
boundary if for every p ∈ B there is a chart (ψ, V ) of N around p, a submanifold
chart of N around p for B, such that

ψ(V ∩B) = ψ(V ) ∩
(
Hb × {0}

)
⊂ Rn . (1.8)
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Here we say p is a boundary point of B if ψ(p) lies in ∂Hb := ∂Hb × {0}.

The set of all boundary points forms the boundary15 ∂B of B. The set int(B) :=
B\∂B is called the interior of the submanifold B with boundary. Finally B is a
hypersurface in N with boundary if b = n− 1.

1.12 Remarks

(a) Every submanifold M of N , in the sense given in the beginning of this section,
is a submanifold with boundary, but with an empty boundary. We call such objects
(sub)manifolds without boundary.

(b) The boundary ∂B and the interior int(B) are well defined, that is, independent
of charts.
Proof Suppose (χ, W ) is another submanifold chart of N around p for B. Also let f be
the restriction of the transition function χ ◦ ψ−1 to ψ(V ∩W ) ∩ (Hb × {0}), understood
as an open subset of Hb. Then it follows from Remark 1.11(a) that χ(p) belongs to ∂Hb

if and only if ψ(p) does. �

(c) Suppose p ∈ int(B). Then (1.8) implies

ψ
(
V ∩ int(B)

)
= ψ(V ) ∩

(
Hb × {0}

)
.

Because Hb is diffeomorphic to Rb, this shows that int(B) is a b-dimensional sub-
manifold of N without boundary.

(d) In the case p ∈ ∂B, it follows from (1.8) that

ψ(V ∩ ∂B) = ψ(V ) ∩
(
Rb−1 × {0}

)
.

Therefore ∂B is a (b−1)-dimensional submanifold of N without boundary.

(e) Every b-dimensional submanifold of N with boundary is a b-dimensional sub-
manifold of Rn with boundary.
Proof This follows in analogy to the proof of Remark 1.1(a). �

(f) (regularity) It is clear how Ck submanifolds with boundary are defined for k ∈ N×,
and that the analogues of (a)–(c) remain true. �

15Note that the boundary ∂B and the interior int(B) are generally different from the topolog-

ical boundary Rd(B) and the topological interior B̊ of B. In the context of statements about
manifolds, we will understand “boundary” and “interior” in the sense of the definitions above.
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Local charts

Suppose B is a b-dimensional submanifold of N with boundary. We call the map
ϕ a (b-dimensional local) chart of (or for) B around p if
• U := dom(ϕ) is open in B, where B carries the topology induced by N (and

therefore by Rn).
• ϕ is a homeomorphism from U to an open subset X of Hb.
• iB ◦ ϕ−1 : X → N is an immersion, where iB : B → N , p �→ p denotes the

injection.
Note that except for the fact that ϕ(U) is open in Hb and Rn is replaced by N ,
this definition agrees literally with the definition of a C∞ chart of a submanifold
of Rn (see Section VII.9).

1.13 Remarks (a) If (ψ, V ) is a submanifold chart of N for B, the intersected
chart (ϕ, U) := (ψ |V ∩B, V ∩B) is a b-dimensional chart for B.

(b) If (ϕ1, U1) and (ϕ2, U2) are charts of B around p ∈ B, then ϕj(U1 ∩ U2) is
open in Hb for j = 1, 2, and transition function ϕ2 ◦ ϕ−1

1 satisfies

ϕ2 ◦ ϕ−1
1 ∈ Diff

(
ϕ1(U1 ∩ U2), ϕ2(U1 ∩ U2)

)
.

(c) Suppose (ϕ, U) is a chart for B around p ∈ ∂B. Then

(ϕ∂B , U∂B) := (ϕ |U ∩ ∂B, U ∩ ∂B)

is a chart for ∂B, a (b−1)-dimensional submanifold of N without boundary.

(d) All concepts and definitions, for example, differentiability of maps and lo-
cal representations, that can be described using charts of manifolds, carry over
straightforwardly to submanifolds with boundary. In particular, iB : B ↪→ N ,
that is, the natural embedding p �→ p of B in N , is a smooth map.

(e) If C is a submanifold of M with boundary and f ∈ Diff(B, C), then f(∂B) =
∂C, and f | ∂B is a diffeomorphism from ∂B to ∂C.
Proof This follows from Remark 1.11(a). �

(f) Suppose B is a b-dimensional submanifold of N with boundary, and f ∈
C∞(B, M) is an embedding, that is, f is a bijective immersion and a homeo-
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morphism from B to f(B). Then f(B) is a b-dimensional submanifold M with
boundary satisfying ∂f(B) = f(∂B), and f is a diffeomorphism from B to f(B).

Proof The proof of Theorem 1.2(ii) also applies here. �

(g) (regularity) All previous statements transfer literally to Ck submanifolds with
boundary. �

Naturally, we again say a family
{

(ϕα, Uα) ; α ∈ A
}

of charts of B with
B =

⋃
α Uα is an atlas of B.

Tangents and normals

Suppose B is a submanifold of N with boundary, and let p ∈ ∂B. Also suppose
(ϕ, U) is a chart of B around p. Then we define the tangent space TpB of B at
the point p by

TpB := Tϕ(p)(iB ◦ ϕ−1)(Tϕ(p)R
b) ,

where b := dim(B). Therefore TpB is a
(“full”) b-dimensional vector subspace of
the tangent space TpN of N at p (and not,
say, a half-space). An obvious modification
of the proof of Remark VII.10.3(a) shows
that TpB is well defined, that is, independent of which chart is used. In this case,
we define the tangent bundle TB of B by TB :=

⋃
p∈B TpB.

1.14 Remarks (a) For p ∈ ∂B, Tp∂B is a (b−1)-dimensional vector subspace of
TpB.

Proof This is a simple consequence of Remarks 1.12(d) and 1.13(c). �

(b) Suppose p ∈ ∂B and (ϕ, U) is chart of B around p. Letting

T±
p B := Tϕ(p)(iB ◦ ϕ−1)

(
ϕ(p),±Hb

)
,

we have TpB = T +
p B ∪ T−

p B and T +
p B ∩ T−

p B = Tp(∂B). The vector v is an
inward pointing [or an outward pointing] tangent vector if and only if v belongs
to the set T +

p B\Tp(∂B) [or T−
p B\Tp(∂B)]. This is the case if and only if the b-th

component of (Tpϕ)v is positive [or negative].

Proof From Remarks 1.11(b) and 1.13(b), it follows easily that T±
p B is defined in a

coordinate-independent way. �

(c) Let C be a submanifold of M with or without boundary. For f ∈ C1(C, N),
the tangential Tpf of f at p ∈ C is defined as in the case of manifolds without
boundary. Then the analogues of Remarks VII.10.9 remain true. �
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Suppose p ∈ ∂B. Then Tp(∂B) is a
(b−1)-dimensional vector subspace of the b-
dimensional vector space TpB. As a vector
subspace of TpN (and therefore of TpRn),
TpB is an inner product space with the in-
ner product ( · | · )p induced by the Euclidean
scalar product on Rn. Hence there is exactly
one unit vector ν(p) in T−

p B that is orthog-
onal to Tp(∂B), and we call it the outward
(unit) normal vector of ∂B at p. Clearly
−ν(p) ∈ T +

p B is the unique inward pointing
vector of TpB that is orthogonal to Tp(∂B),
and we call it the inward (unit) normal vec-
tor ∂B at p.

The regular value theorem

We have already seen that submanifolds without boundary can be represented in
many cases (actually always, locally) as fibers of regular maps. We will now extend
this important and simple criterion to the case of submanifolds with boundary.

1.15 Theorem (regular value) Suppose c is a regular value of f ∈ C∞(N, R).
Then

B := f−1
(
(−∞, c]

)
=

{
p ∈ N ; f(p) ≤ c

}
is an n-dimensional submanifold of N with boundary with ∂B = f−1(c) and
int(B) = f−1

(
(−∞, c)

)
. For p ∈ ∂B, we have Tp(∂B) = ker(dpf), and the

outward unit normal ν(p) on ∂B is given by ∇pf(p)/|∇pf |p.

Proof Because f−1((−∞, c)) is open in N and is therefore an n-dimensional
submanifold of N , it suffices to consider p ∈ f−1(c).

Therefore let p ∈ f−1(c), and let (ψ, V ) be a chart of N around p such that
ψ(p) = 0. Then g := c − f ◦ ψ−1 belongs to C∞(ψ(V ), R) and satisfies g(0) = 0
and g(x) ≥ 0 if and only if x lies in ψ(V ∩B). Also 0 is a regular point of g. By
renaming the coordinates (that is, by composing ψ with a permutation), we can
assume that ∂ng(0) 
= 0 and therefore ∂ng(0) > 0.

Consider the map ϕ ∈ C∞(ψ(V ), Rn) defined by ϕ(x) := (x1, . . . , xn−1, g(x)).
It satisfies ϕ(0) = 0 and

∂ϕ =

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

··············

⎡⎢⎢⎢⎢⎢⎣
0

1n−1

...
0

∂1g · · · ∂n−1g ∂ng

⎤⎥⎥⎥⎥⎥⎦ .
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Therefore ∂ϕ(0) is an automorphism of Rn, and Theorem VII.7.3 (the inverse
function theorem) guarantees the existence of open neighborhoods U and W of 0
in ψ(V ) such that ϕ |U is a diffeomorphism from U to W .

Letting V0 := ψ−1(U) and χ := ϕ ◦ ψ |V0, we see that (χ, V0) is a chart of
N around p with χ(p) = 0 and χ(B ∩ V0) = χ(V0) ∩ Hn. This shows that B is a
submanifold of N with boundary with ∂B = f−1(c) and int(B) = f−1((−∞, c)).
Thus we get from Theorem 1.7 that

Tp(∂B) = ker(Tpf) = ker(dpf) for p ∈ ∂B . (1.9)

Because 〈dpf, v〉p = (∇pf | v)p for v ∈ TpN , it follows from (1.9) that ∇pf is
orthogonal to Tp(∂B).

Finally, let λ : (−ε, ε)→ N be a C1 path in N with λ(0) = p and λ̇(0) = ∇pf
(see Theorem VII.10.6). Then

(f ◦ λ)·(0) = 〈dpf,∇pf〉 = |∇pf |2p > 0 .

Therefore we derive from the Taylor formula of Corollary IV.3.3 that

f(λ(t)) = c + t |∇pf |2p + o(t) (t → 0) .

Therefore f(λ(t)) > c, that is, f(λ(t)) /∈ B for sufficiently small positive t. This
implies that ∇pf is an outward pointing tangent vector of B at p. Now the last
claim is also clear. �

1.16 Remarks (a) Because we can locally represent submanifolds as fibers of
regular maps (see Remark 1.8(a)), we can also locally represent submanifolds with
boundary as inverse images of half open intervals. More precisely, suppose B
is an n-dimensional submanifold of N with boundary. Then there is for every
point p ∈ B a neighborhood U in N and a function f ∈ C∞(U, R) such that
B ∩ U = f−1((−∞, 1)) if p ∈ int(B) but f(p) = 0 and B ∩ U = f−1((−∞, 0]) if
p ∈ ∂B, and for which 0 is a regular value.
Proof Suppose (ϕ, U) is a submanifold chart of N around p for B with ϕ(p) = 0. We can
assume that ϕ(U) is contained in Bn

∞. If p is an interior point of B, we set f(q) := ϕn(q)
for q ∈ U . Then f belongs to C∞(U, R), and f−1((−∞, 1)) = U . If p belongs to ∂B,
we set f(q) := −ϕn(q) for q ∈ U . Then f(p) = 0, and f−1((−∞, 0]) = U ∩ B. Because
ϕ ∈ Diff(U,ϕ(U)), we know f is a submersion. Therefore 0 is a regular value of f . �

(b) (regularity) Suppose c is a regular value of f ∈ Ck(N, R) for some k ∈ N×. Then
f−1((−∞, c]) is an n-dimensional submanifold in N with boundary. In this case, one
need only assume that N is a Ck manifold. �

1.17 Examples (a) For every r > 0, Bn
r := rBn = { x ∈ Rn ; |x| ≤ r } is

an n-dimensional submanifold of Rn with boundary. Its boundary coincides with
the topological boundary and therefore with the (n−1)-sphere of radius r, that is,
∂Bn

r = rSn−1. The outward normal ν(p) at p ∈ ∂Bn
r is given by (p, p/|p|).
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In the case n = 1, the ball B1
r is the closed interval [−r, r] in R, and the

0-sphere with radius r is given by S0
r = {−r} ∪ {r}. The outward normal has

ν(−r) = (−r,−1) and ν(r) = (r, 1).

Proof This follows from Theorem 1.15 with N := Rn and f(x) := |x|2 for x ∈ Rn. �

(b) Suppose A ∈ R(n+1)×(n+1)
sym and c ∈ R×. Also suppose

Vc :=
{

x ∈ Rn+1 ; (Ax |x) ≤ c
}

is not empty. If A is positive definite and c > 0, then Vc is an (n+1)-dimensional
solid whose boundary is the n-dimensional ellipsoid

Kc :=
{

x ∈ Rn+1 ; (Ax |x) = c
}

.

If A is negative definite and c < 0, then Vc is the complement of the interior of V−c,
and the boundary of V−c is the n-dimensional ellipsoid K−c. If A is indefinite but
invertible, then Vc is the “interior” or “exterior” of an appropriate n-dimensional
hyperboloid Kc that bounds Vc. In every case, Ax/|Ax| is the outward normal of
Vc at Kc. (Compare this with Remark VII.10.18, and interpret the pictures there
accordingly.)

(c) Suppose A ∈ R(n+1)×(n+1) is symmetric and c ∈ R× with Kc 
= ∅. Also
suppose v ∈ Rn+1\{0} and α, β ∈ R with α < β. Then

B :=
{

x ∈ Kc ; α ≤ (v |x) ≤ β
}

is the part of Kc that lies between the two parallel hyperplanes

Hγ :=
{

x ∈ Rn+1 ; (v |x) = γ
}

for γ ∈ {α, β} .

If Hα and Hβ are not tangent hyperplanes of Kc, then B is an n-dimensional
submanifold of Kc with boundary with

∂B =
{

x ∈ Kc ; (v |x) ∈ {α, β}
}

.

Proof Because the map g := (v | · ) |Kc : Kc → R is smooth by Remark 1.1(j), we know
g−1((α, β)) is open in Kc. Therefore g−1((α, β)) is an n-dimensional submanifold of Kc.
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Hence it suffices to show that every p ∈ g−1({α, β}) is a boundary point of B. So let V
be an open neighborhood in Kc of p ∈ g−1(β) such that g−1(α)∩V = ∅. The assumption
at Hβ is not a tangent hyperplane implies that β is a regular value of f := g |V (prove
this!). The claim now follows from Theorem 1.15 applied to the manifold V and the
function f . A similar argument shows that every p ∈ g−1(α) is a boundary point of B. �

(d) (cylinder-like rotational hypersurfaces) Suppose

γ : [0, 1]→ (0,∞)× R , t �→
(
ρ(t), σ(t)

)
is a smooth embedding. Also let i : Sm ↪→ Rm+1 and

f : Sm × [0, 1]→ Rm+1 × R , (q, t) �→
(
ρ(t)i(q), σ(t)

)
.

Then f is a smooth embedding, and

Zm+1 := f
(
Sm × [0, 1])

is a hypersurface in Rm+2 with boundary which is diffeomorphic to the “spherical
cylinder” Sm × [0, 1].

In the case m = 0, Z1 consists of two copies of smooth, non-self-intersecting,
compact curves16 γ([0, 1]) that are symmetric about the y-axis.

For m = 1, Z2 is the surface of rotation in R3 obtained by rotating the meridian
curve

Γ := { (ρ(t), 0, σ(t)) ; t ∈ [0, 1] }
around the z-axis.

In the general case, we call Zm+1 a cylinder-like surface of rotation with
boundary. Its boundary satisfies

∂Zm+1 = f
(
Sm × {0}

)
∪ f

(
Sm × {1}

)
,

while its interior has
int(Zm+1) = f

(
Sm × (0, 1)

)
.

16That is, one-dimensional manifolds with boundary.
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In particular, int(Zm+1) is a cylinder-type hypersurface of rotation without bound-
ary. In the case m = 1, it is generated by rotating the meridian curve

int(Γ) :=
{ (

ρ(t), 0, σ(t)
)

; 0 < t < 1
}

around the z-axis.

Proof It is easy to see17 that Sm × [0, 1] is a submanifold of Rm+2 with boundary
and that its boundary is (Sm × {0}) ∪ (Sm × {1}). An obvious modification of the
proof of Example 1.5(b) shows that f is an embedding. Now the claims follow from
Remark 1.13(f). �

One-dimensional manifolds

Obviously every perfect interval J in R is a one-dimensional submanifold of Rn

with or without boundary, depending on whether J is open or not. Also, we already
know that the 1-sphere S1 is a one-dimensional submanifold of Rn, provided n ≥ 2.
It is easy to see18 that a nonempty perfect interval is diffeomorphic to (0, 1) if it
is open, to [0, 1) if it is closed on one side, and to [0, 1] if it is compact. The
following important classification theorem shows that these intervals and S1 are,
up to diffeomorphism, the only one-dimensional connected manifolds.

1.18 Theorem Suppose C is a connected one-dimensional submanifold N with [or
without] boundary. Then C is diffeomorphic to [0, 1] or [0, 1) [or to (0, 1)] or S1.

Proof For a proof, we refer to Section 3.4 of [BG88], which treats manifolds
without boundary. An obvious modifications of the arguments there also covers
the case of manifolds with boundary (see the appendix in [Mil65]). �

1.19 Remarks (a) We understand a (smooth) curve C embedded in N to be
the image of a perfect interval of S1 under a (smooth) embedding. In the last
case, we also call C the 1-sphere embedded in N . Then Theorem 1.18 says that
every connected one-dimensional submanifold of N with or without boundary is
an embedded curve, and conversely.

(b) (regularity) Theorem 1.18 remains true for C1 manifolds. �

Partitions of unity

We conclude this section by proving a technical result which will be particularly
helpful in the transition from local to global (and conversely).

17See Exercise 4.
18See Exercise 7.
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Suppose X is an n-dimensional submanifold of Rn with or without boundary
for some n ∈ N×. Also let {Uα ; α ∈ A } be an open cover of X . Then we say
that the family { πα ; α ∈ A } is a smooth partition of unity of unity subordinate
to this cover if it satisfies the properties

(i) πα ∈ C∞(
X, [0, 1]

)
with supp(πα) ⊂⊂ Uα for α ∈ A;

(ii) the family { πα ; α ∈ A } is locally finite, that is, for every p ∈ X there is an
open neighborhood V such that supp(πα) ∩ V = ∅ for all but finitely many
α ∈ A;

(iii)
∑

α∈A πα(p) = 1 for every p ∈ X .

1.20 Proposition Every open cover X has a smooth partition of unity subordinate
to it.

Proof (i) Let (ϕ, U) be a chart around p ∈ X . Then ϕ(U) is open in Hn. Hence
there is a compact neighborhood K ′ of ϕ(p) in Hn such that K ′ ⊂ ϕ(U). Because
ϕ is topological, K := ϕ−1(K ′) is a compact neighborhood of p in X with K ⊂ U ,
and (ϕ | K̊, K̊) is a chart around p. In particular, X is locally compact.

Proposition X.7.14 implies the existence of a χ′ ∈ C∞(
ϕ(U), [0, 1]

)
with

χ′ |K ′ = 1 and supp(χ′) ⊂⊂ ϕ(U). We set χ(q) := ϕ∗χ′(q) if q ∈ U and χ(q) := 0
if q belongs to X\U . Then χ lies in C∞(

X, [0, 1]
)

and has compact support, which
is contained in U .

(ii) By Corollary IX.1.9(ii) and Remark X.1.16(e), there exists a countable
cover {Vj ; j ∈ N } of X consisting of relatively compact open sets. We set
K0 := V 0. Then there are i0, . . . , im ∈ N such that K0 is covered by {Vi0 , . . . , Vim}.
In addition, we set j1 := max{i0, . . . , im} + 1 and K1 :=

⋃j1
i=0 V i. The set K1 is

compact, and K0 ⊂⊂ K1. We then inductively obtain a sequence (Kj) of compact
sets with Kj ⊂⊂ Kj+1, and

⋃∞
j=0 Kj =

⋃∞
j=0 Vj = X .

(iii) We first assume that Kj 
= Kj+1 for j ∈ N, and we set Wj := Kj\K̊j−1

for j ∈ N with K−1 := ∅. Then Wj is compact, and Wj ∩Wk = ∅ for |j − k| ≥ 2.
We also have

⋃∞
j=0 Wj = X .

Let U := {Uα ; α ∈ A } be an open
cover of X . From (i) and the compactness
of Wj , it follows that for every j ∈ N, there
is a finite cover

{
Ũj,i ∈ U ; 0 ≤ i ≤ m(j)

}
of Wj . We set

Uj,i := Ũj,i ∩ (W̊j−1 ∪Wj ∪ W̊j+1)

and choose functions χj,i ∈ C∞(
Uj,i, [0, 1]

)
so that

supp(χj,i) ⊂⊂ Uj,i ⊂ W̊j−1 ∪Wj ∪ W̊j+1 for 0 ≤ i ≤ m(j) ,
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with W−1 := ∅ and
m(j)⋃
i=0

[χj,i > 0] ⊃Wj

for j ∈ N. Then
{

χj,i ; 0 ≤ i ≤ m(j), j ∈ N
}

is a locally finite family. Therefore

χ :=
∞∑

j=0

m(j)∑
i=0

χj,i

is defined, belongs to C∞(
X, [0, 1]

)
, and satisfies χ(p) > 0 for p ∈ X . Now we set

πα :=
∑

α
χj,i/χ for α ∈ A ,

where
∑

α means the sum over all index pairs (j, i) for which Uj,i is contained in
Uα. Then { πα ; α ∈ A} is a smooth partition of unity subordinate to the cover
{Uα ; α ∈ A }.

(iv) If there is a j ∈ N such that Kj = Kj+1, then X = Kj . Therefore X is
compact. In this case, the claim follows by a simple modification of (iii) (as only
a single compact set, namely X , must be considered). �

Remark (a), below, shows that Proposition 1.20 is a wide-reaching general-
ization of Theorem X.7.16.

1.21 Remarks (a) Suppose K is a compact subset of the manifold X , and
suppose {Uj ; 1 ≤ j ≤ m} is an open cover of K. Then there are functions
πj ∈ C∞(X, [0, 1]) such that supp(πj) ⊂⊂ Uj for 1 ≤ j ≤ m, and

∑m
j=1 πj(p) = 1

for p ∈ K.
Proof Let U0 := X\K. Then {Uj ; 0 ≤ j ≤ m } is an open cover of X. Now the claim
follows easily from Proposition 1.20. �

(b) The proof of Proposition 1.20 shows that every submanifold of Rm with or
without boundary is locally compact, has a countable basis, and is σ-compact.

(c) (regularity) Suppose k ∈ N×. Replacing πα ∈ C∞(X, [0, 1]) by πα ∈ Ck(X, [0, 1]) in
part (i) of the definition above, we obtain a Ck partition of unity subordinate to the cover
{Uα ; α ∈ A }. Then Proposition 1.20 remains true if one replaces “smooth partition”
by “Ck partition”. In this case, it suffices to assume that X belongs to the class Ck. �

Convention In the rest of this book, we understand every manifold to be a
smooth submanifold with boundary in a suitable “surrounding space” Rm.

Exercises

1 Suppose f : M → N is a submersion. Show that f “locally looks like a projection”,
that is, for every p ∈M , there are charts (ϕ, U) of M around p and (ψ, V ) of N around
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f(p) with f(U) ⊂ V that satisfy

fϕ,ψ : Rn × Rm−n → Rn , (x, y) �→ x .

2 Suppose f : M → N is an immersion. Prove that f locally looks like the canonical
injection Rm → Rm × Rn−m, x �→ (x, 0).

3 Show that every diffeomorphism from M to N locally looks like the identity in Rm.

4 Suppose B is a submanifold of N with boundary. Show that M ×B is a submanifold
of M ×N with boundary with ∂(M ×B) = M × ∂B.

5 Show that both the cylinder [0, 1]×M with “cross section’ M and the “filled” torus
S1 × B2 are manifolds with boundary. Determine the dimension and boundary of each.

6 Show that the closed r-ball rBn in Rn is diffeomorphic to the closed unit ball Bn.

7 Show that a perfect interval in R is diffeomorphic to (0, 1), [0, 1), or [0, 1].

8 Suppose B is a nonempty k-dimensional submanifold of M (with or without bound-
ary). Show that the Hausdorff dimension of B equals k.
(Hints: Exercises 4–6 of IX.3 and Remark 1.21(b).)

9 Suppose B is a submanifold of M with boundary and f ∈ C∞(B,N). Show that
graph(f) is a submanifold of M ×N with boundary and determine its boundary.

10 Suppose X is an n-dimensional submanifold of Rn with or without boundary, and

let U := {Uα ; α ∈ A } and V := { Vβ ; β ∈ B } denote open covers of X. We call V
a refinement of U if there is a j : B → A such that Vβ ⊂ Uj(β) for β ∈ B. Show that

every smooth partition of unity subordinate to V induces a smooth partition of unity

subordinate to U .



2 Multilinear algebra

To construct and understand the calculus of differential forms of higher degree,
we need several results from linear (more precisely, multilinear) algebra, which we
provide in this section.

2.1 Remarks Suppose V is a finite-dimensional vector space.

(a) V can be provided with an inner product ( · | · )V , so that (V, ( · | · )V ) is a
Hilbert space. All norms on V are equivalent.

Proof By Remark I.12.5, there is a vector space isomorphism T : Km → V such that
m := dim(V ). Then

(v |w)V := (T−1v |T−1w) for v, w ∈ V

defines a scalar product on V , where ( · | · ) denotes the Euclidean inner product in Km.
Thus (V, ( · | · )V ) is a finite-dimensional inner product space and therefore a Hilbert space,
as we know from Remark VII.1.7(b). The second claim follows from Corollary VII.1.5. �

(b) As usual (in functional analysis), we denote by V ∗ the space of all (continuous)
conjugate linear maps from V to C, while V ′ is the space dual to V , the space
of all (continuous) linear forms on V . Then it follows from (a) and the Riesz
representation theorem (Theorem VII.2.14) that the map

V → V ∗ , v �→ (v | · )V (2.1)

is an isometric isomorphism, whereas

V → V ′ , v �→ ( · | v)V (2.2)

is conjugate linear. If K = R, then V ∗ = V ′, and the maps (2.1) and (2.2) are
identical because every real scalar product is symmetric. In the following, we will
exclusively treat the real case, and so, for this and some historical reasons, we will
write V ∗ instead of V ′. �

In this section, let

• V and W be finite-dimensional real vector spaces.

Exterior products

For r ∈ N, we denote by Lr(V, R) the vector space of all r-linear maps V r → R.
By Remark 2.1(b) and Theorem VII.4.2(iii), this notation is consistent with that
introduced in Section VII.4. In particular, we have

L0(V, R) = R and L1(V, R) = V ∗ .
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An r-linear map α : V r →W is said to be alternating if r ≥ 2 and

α(vσ(1), . . . , vσ(r)) = sign(σ)α(v1, . . . , vr) for v1, . . . , vr ∈ V

and for every permutation σ ∈ Sr (see Exercise I.9.6). We set∧0
V ∗ := L0(V, R) = R and

∧1
V ∗ := L1(V, R) = V ∗

and ∧r
V ∗ :=

{
α ∈ Lr(V, R) ; α is alternating

}
for r ≥ 2 .

Here
∧r

V ∗ is called the r-fold exterior product of V ∗ for r ∈ N, and α ∈
∧r

V ∗

is an alternating r-form on V (or, for short, simply an r-form).

2.2 Remarks (a)
∧r

V ∗ is a vector subspace of Lr(V, R), the vector space of
alternating r-forms on V .

(b) Let r ≥ 2 and α ∈ Lr(V, R). These four statements are equivalent:

(i) α ∈ ∧rV ∗.

(ii) α(v1, . . . , vr) = 0 if vj = vk for any a pair (j, k) with j 
= k.

(iii) α(. . . , vj , . . . , vk, . . .) = −α(. . . , vk, . . . , vj , . . .) for j 
= k, that is, if two entries
in α(v1, . . . , vr) are exchanged, its sign reverses.

(iv) If v1, . . . , vr ∈ V are linearly independent, then α(v1, . . . , vr) = 0.
Proof The implication “(i)=⇒(iii)=⇒(ii)” is obvious.

“(ii)=⇒(iv)” Suppose v1, . . . , vr ∈ V are linearly independent. This means there are
k ∈ {1, . . . , r} and λ1, . . . , λr ∈ R such that λk = 0 and vk =

∑r
j=1 λjvj . Now it follows

from the linearity of α in its k-th variable and from (ii) that

α(v1, . . . , vr) =
r∑

j=1

λjα(v1, . . . ,vj , . . . , vr) = 0 .
(k)

“(iv)=⇒(iii)” From (iv) and the multilinearity, we get

0 = α(. . . , vj + vk, . . . , vj + vk, . . .)

= α(. . . , vj , . . . , vj , . . .) + α(. . . , vj , . . . , vk, . . .)

+ α(. . . , vk, . . . , vj , . . .) + α(. . . , vk, . . . , vk, . . .)

= α(. . . , vj , . . . , vk, . . .) + α(. . . , vk, . . . , vj , . . .) ,

and which proves the claim.

“(iii)=⇒(i)” This follows from the fact that every permutation can be written as a
product of transpositions (see Exercise I.9.6). �

(c)
∧r

V ∗ = {0} for r > dim(V ).
Proof This follows from (iv) of (b). �
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For r ∈ N× and ϕ1, . . . , ϕr ∈ V ∗, the exterior product1

ϕ1 ∧ · · · ∧ ϕr

is defined by

ϕ1 ∧ · · · ∧ ϕr(v1, . . . , vr) := det
[
〈ϕj , vk〉

]
= det

⎡⎢⎣ 〈ϕ1, v1〉 · · · 〈ϕ1, vr〉
...

...
〈ϕr , v1〉 · · · 〈ϕr, vr〉

⎤⎥⎦ (2.3)

for v1, . . . , vr ∈ V . It is known from linear algebra that the determinant of an
(r × r)-matrix is an alternating r-form in its column vectors. From this and the
linearity of ϕ1, . . . , ϕr, it follows immediately that ϕ1 ∧ · · · ∧ϕr belongs to

∧rV ∗:
The exterior product ϕ1 ∧ · · · ∧ ϕr is an alternating r-form on V .

2.3 Proposition

(i) Let m := dim(V ) > 0. If (e1, . . . , em) is a basis2 of V and (ε1, . . . , εm) is the
associated dual basis of V ∗, then

{ εj1 ∧ · · · ∧ εjr ; 1 ≤ j1 < j2 < · · · < jr ≤ m }

is a basis of
∧rV ∗ for 1 ≤ r ≤ m.

(ii) dim(
∧r

V ∗) =
(

m
r

)
for r ∈ N.

Proof For short, we set

Jr := Jm
r := { (j) := (j1, . . . , jr) ∈ Nr ; 1 ≤ j1 < j2 < · · · < jr ≤ m } .

Also, for an ordered multiindex (j) ∈ Jr, let

ε(j) := εj1 ∧ · · · ∧ εjr .

(i) Let α be an alternating r-form. Because every vector v ∈ V has the basis
representation v =

∑m
k=1〈εk, v〉ek, it follows from Remark 2.2(b) that

α(v1, . . . , vr) =
m∑

k1=1

· · · · ·
m∑

kr=1

〈εk1 , v1〉 · · · · · 〈εkr , vr〉α(ek1 , . . . , ekr)

=
∑

(j)∈Jr

a(j)

∑
σ∈Sr

sign(σ)〈εσ(j1), v1〉 · · · · · 〈εσ(jr), vr〉 ,

where
a(j) := α(ej1 , . . . , ejr) . (2.4)

1The exterior product is also called the wedge product.
2If {e1, . . . , em} is an ordered basis, that is, the order of its elements is fixed, we write

(e1, . . . , em).
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By Remark VII.1.19(a) and because the determinant of a square matrix does not
change when it is transposed, we can rewrite the inner sum of the last expression
as

det
([
〈εjμ , vν〉

]
1≤μ,ν≤r

)
= ε(j)(v1, . . . , vr) .

Therefore

α(v1, . . . , vr) =
∑

(j)∈Jr

a(j)ε
(j)(v1, . . . , vr) for v1, . . . , vr ∈ V ,

and hence
α =

∑
(j)∈Jr

a(j)ε
(j) . (2.5)

This shows that the set { ε(j) ; (j) ∈ Jr } spans the vector space
∧r

V ∗.

Now suppose

α =
∑

(j)∈Jr

b(j)ε
(j)

with b(j) ∈ R is another representation of α. Then we have in particular that

α(ek1 , . . . , ekr) =
∑

(j)∈Jr

b(j)ε
(j)(ek1 , . . . , ekr ) for (k) ∈ Jr .

Because

ε(j)(ek1 , . . . , ekr ) = det
(
[δjμ

kν
]1≤μ,ν≤r

)
=

{
1 if (j) = (k) ,

0 otherwise ,

it follows that b(j) = a(j) for (j) ∈ Jr. Therefore the representation (2.5) is unique.

(ii) This statement is now clear because an m element set contains exactly(
m
r

)
subsets with r elements (see Exercise I.6.3). �

In the following, let

α1 ∧ · · · ∧ α̂j ∧ · · · ∧ αr

for 1 ≤ j ≤ r denote the (r−1)-form one gets by omitting the linear form αj from
α1 ∧ · · · ∧ αr. We use like notation, for example

α1 ∧ · · · ∧ α̂j ∧ · · · ∧ α̂k ∧ · · · ∧ αr ,

when more linear forms are omitted.
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2.4 Examples (a) The one-dimensional vector spaces
∧0V ∗ = R and

∧mV ∗ have
bases 1 and ε1 ∧ · · · ∧ εm, respectively.

(b) {ε1, . . . , εm} is a basis of
∧1

V ∗ = V ∗.

(c)
{

ε1 ∧ · · · ∧ ε̂j ∧ · · · ∧ εm ; 1 ≤ j ≤ m
}

is a basis of
∧m−1

V ∗.

(d) For the basis representation

αj =
m∑

k=1

aj
kεk ∈ V ∗ for 1 ≤ j ≤ r ,

and
α1 ∧ · · · ∧ αr =

∑
(j)∈Jr

a(j)ε
(j) ∈ ∧r

V ∗ ,

we have ai
k = 〈αi, ek〉 for 1 ≤ i ≤ r and 1 ≤ k ≤ m. Also

a(j) = det
(
[ai

jk
]1≤i,k≤r

)
for (j) = (j1, . . . , jr) ∈ Jr .

Proof This follows from (2.3) and (2.4). �

(e) For r ≥ 1, we have∧r
V ∗ = span{ϕ1 ∧ · · · ∧ ϕr ; ϕj ∈ V ∗, 1 ≤ j ≤ r } .

(f) For r ≥ 2, ϕ1 ∧ · · · ∧ϕr = 0 if and only if ϕ1, . . . , ϕr are linearly independent.

Proof This follows from (2.3). �

As the next proposition shows, we can define a bilinear map from
∧r

V ∗ ×∧sV ∗ to
∧r+sV ∗ using the basis representation.

2.5 Proposition Let r, s ∈ N×.

(i) There is exactly one map

∧ :
∧r

V ∗ ×∧s
V ∗ → ∧r+s

V ∗ , (α, β) �→ α ∧ β , (2.6)

the exterior product, with the properties that

(α) ∧ is bilinear;

(β) for ϕ1, . . . , ϕr, ψ1, . . . , ψs ∈ V ∗,

(ϕ1 ∧ · · · ∧ ϕr) ∧ (ψ1 ∧ · · · ∧ ψs) = ϕ1 ∧ · · · ∧ ϕr ∧ ψ1 ∧ · · · ∧ ψs . (2.7)

(ii) Given the basis representations

α =
∑

(j)∈Jr

a(j)ε
(j) and β =

∑
(k)∈Js

b(k)ε
(k) , (2.8)



XI.2 Multilinear algebra 265

we have

α ∧ β =
∑

(j)∈Jr

(k)∈Js

a(j)b(k)ε
(j) ∧ ε(k) . (2.9)

(iii) The exterior product is associative and graded anticommutative, that is,

α ∧ β = (−1)rsβ ∧ α for α ∈
∧r

V ∗ and β ∈
∧s

V ∗ .

Proof If ∧ is some linear map from
∧r

V ∗ ×
∧s

V ∗ to
∧r+s

V ∗ satisfying (2.7),
it follows immediately from (2.8) that (2.9) is true. Hence we can use (2.9) and
a given basis to uniquely define (that is, by the bilinear continuation of the basis
elements to the entire space) the bilinear map (2.6) with the properties (α) and (β).
By (2.3), (2.7), and Example 2.4(e), ∧ is independent of chosen basis. (iii) is now
an immediate consequence of the properties of the determinant. �

2.6 Remarks Suppose Ek for k ∈ N are vector spaces on the same field K.

(a) The direct sum

E :=
∞⊕

k=0

Ek =:
⊕
k≥0

Ek

is defined as follows:

E is the set of all sequences (xk) in
⋃∞

k=0 Ek with xk ∈ Ek for k ∈ N that
satisfy xk = 0 for almost all k ∈ N. On E, addition + and multiplication by
scalars are defined by

(xk) + λ(yk) := (xk + λyk) for (xk), (yk) ∈ E and λ ∈ K .

Then E is a K-vector space.3 In addition, Ek will be identified with a vector
subspace by means of the linear map

Ek → E , xk �→ (0, . . . , 0, xk, 0, . . .) ,

where xk occupies the k-th entry in the sequence at right. Obviously

E = span{Ek ; k ∈ N } and Ek ∩Ej = {0} for k 
= j ,

which justifies the name “direct sum” (see Example I.12.3(l)).

(b) Letting E :=
⊕

k≥0 Ek, we define a multiplication

E × E → E , (v, w) �→ v � w

3E is the vector space of all maps f : N → ⋃∞
k=0 Ek with compact support, with f(k) ∈ Ek

and k ∈ N, endowed with the pointwise product of Example I.12.3(e).
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so that (E, +,�) is an algebra (see Section I.12). We call E the graded algebra
(over K), and we say the multiplication is graded if

Ek � E	 ⊂ Ek+	 for k, � ∈ N .

If the relations
vk � v	 = (−1)k	v	 � vk for k, � ∈ N

are also satisfied, then both the multiplication and the algebra are said to be
graded anticommutative. �

We set ∧
V ∗ :=

⊕
r≥0

∧r
V ∗

and extend the definition of the exterior product by defining

α ∧ β := β ∧ α := αβ for α ∈
∧0

V ∗ = R , β ∈
∧

V ∗ . (2.10)

We also let J0 := {0}.

2.7 Theorem

(i) There is exactly one bilinear, associative, and graded anticommutative map∧
V ∗ ×∧

V ∗ → ∧
V ∗

that extends the exterior product (2.6) and/or (2.10) to all of
∧

V ∗ ×∧
V ∗.

It also will be denoted by ∧ and called the exterior product on
∧

V ∗.

(ii) dim(
∧

V ∗) = 2dim(V ).

Proof (i) This follows immediately from Proposition 2.5 and definition (2.10) by
the natural bilinear extension.

(ii) Because
∧r

V ∗ = {0} for r > dim(V ) and because
∧

V ∗ is a direct sum
of vector subspaces

∧rV ∗, it follows from Proposition 2.3(ii) and the binomial
theorem that

dim(
∧

V ∗) =
m∑

r=0

(m

r

)
= 2m

with m := dim(V ). �

This theorem shows that
∧

V ∗, when provided with the natural vector space
structure and the exterior product, is an associative, graded anticommutative, real
algebra of dimension 2dim(V ). It is called the Grassmann algebra (or the exterior
algebra) of V ∗.
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2.8 Remark Because V is finite-dimensional, V can be identified with V ∗∗ by
means of the canonical isomorphism

κ : V → V ∗∗ := (V ∗)∗

defined by 〈
κ(v), v∗

〉
V ∗ := 〈v∗, v〉 for v ∈ V , v∗ ∈ V ∗ .

Therefore the Grassmann algebra∧
V :=

⊕
r≥0

∧rV

is also well defined on V .

Proof Clearly κ : V → V ∗∗ is linear. Suppose {e1, . . . , em} is a basis of V , and
suppose {ε1, . . . , εm} is the associated dual basis of V ∗. For v ∈ ker(κ), we have

〈εj , v〉 =
〈
κ(v), εj

〉
V ∗ = 0 for j = 1, . . . , m .

Then v =
∑m

j=1〈εj , v〉ej implies v = 0, so κ is injective. Now dim(V ∗∗) = m (see
Theorem VII.2.14) implies κ is an isomorphism. �

Pull backs

For A ∈ L(V, W ) and α ∈
∧r

W ∗, we define A∗α by

A∗α(v1, . . . , vr) := α(Av1, . . . , Avr) for v1, . . . , vr ∈ V

if r ≥ 1 and by
A∗α := α for α ∈ ∧0

W ∗ = R

if r = 0. Then we call A∗α the pull back of α by A on V .

2.9 Remarks (a) For α ∈ ∧r
W ∗, the pull back A∗α belongs to

∧r
V ∗, and the

map A∗ is linear:

A∗ ∈ L(
∧

W ∗,
∧

V ∗) with A(
∧rW ∗) ⊂ ∧rV ∗ and r ∈ N .

We call A∗ the pull back transformation (or usually the pull back) by A.
In the case r = 1, A∗ is the map dual to A (denoted in Section VIII.3 by

A�). Note also that A maps the vector space V to W , while A∗ maps
∧

W ∗ to∧
V ∗ and therefore “in the reverse direction”:

V
A−−→W∧

V ∗ A∗
←−− ∧

W ∗
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(b) If X is another finite-dimensional real vector space and B ∈ L(W, X), then

(BA)∗ = A∗B∗ and (idV )∗ = id∧
V ∗ .

In other words, the map A �→ A∗ is contravariant.

(c) We have
A∗(α ∧ β) = A∗α ∧A∗β for α, β ∈

∧
W ∗ .

Therefore A∗ is an algebra homomorphism from
∧

W ∗ to
∧

V ∗.
Proof These statements follow obviously from the definitions of the pull back and the
exterior product. �

Let m := dim(V ) and W := V , and let α ∈ ∧m
V ∗. According to Proposi-

tion 2.3(ii),
∧m

V ∗ is one-dimensional, and hence A∗α must be proportional to α;
we determine the multiple next.

2.10 Proposition For m := dim(V ) and A ∈ L(V ),

A∗α = det(A)α for α ∈ ∧mV ∗ .

Proof Let {e1, . . . , em} be a basis of V , and let [aj
k] ∈ Rm×m be the matrix of A

in this basis (see Section VII.1). Then

Aek =
m∑

j=1

aj
kej for 1 ≤ k ≤ m .

From this and the properties of α ∈ ∧m
V ∗, it follows that

A∗α(e1, . . . , em) = α(Ae1, . . . , Aem)

=
m∑

j1=1

· · · · ·
m∑

jm=1

aj1
1 · · · · · ajm

m α(ej1 , . . . , ejm)

=
∑

σ∈Sm

sign(σ) a
σ(1)
1 · · · · · aσ(m)

m α(e1, . . . , em)

= det(A)α(e1, . . . , em) ,

where in the last step we have used the signature formula of Remark VII.1.19 and
the fact that det(A�) = det(A). Now the claim follows from the multilinearity of
α. �

The volume element

Suppose Or now is an orientation of V , that is, V := (V,Or) is an oriented vector
space. For short, we a call positively oriented ordered basis of V (which is therefore
an element of Or) a positive basis (see Remark VIII.2.4). Also let m := dim(V ).
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We call every α ∈ ∧mV ∗\{0} a volume form on V . Two volume forms α
and β are equivalent if there is a λ > 0 such that α = λβ. We check easily that
this definition induces an equivalence relation ∼ on the set of all volume forms
on V . Because dim(

∧m
V ∗) = 1, there are exactly two equivalence classes.

2.11 Remarks (a) Suppose (e1, . . . , em) is a positive basis of V and (ε1, . . . , εm)
is the associated dual basis. If (ẽ1, . . . , ẽm) is a basis of V and α ∈

∧m
V ∗\{0}

with α ∼ ε1∧· · ·∧εm, then (ẽ1, . . . , ẽm) is positive if and only if α(ẽ1, . . . , ẽm) > 0.
This means that the two equivalence classes of

∧m
V ∗\{0} can be identified with

the two orientations of V . In other words, the volume form α determines the
orientation Or of V through the requirement

α(e1, . . . , em) > 0 ⇐⇒ (e1, . . . , em) ∈ Or .

Proof Suppose B ∈ L(V ) is the change of basis from (e1, . . . , em) to (ẽ1, . . . , ẽm), that
is, ẽj = Bej for 1 ≤ j ≤ m. Then it follows from Proposition 2.10 that

α(ẽ1, . . . , ẽm) = det(B)α(e1, . . . , em) = det(B)λ

where α = λε1 ∧ · · · ∧ εm and λ > 0. �

(b) We say an automorphism A of V is orientation preserving [or reversing] if
det(A) > 0 [or det(A) < 0]. We set

Laut+(V ) := GL+(V ) :=
{

A ∈ Laut(V ) ; det(A) > 0
}

.

(i) The following statements are equivalent for A ∈ Laut(V ):
(α) A ∈ Laut+(V ).
(β) For every basis (b1, . . . , bm), the bases (b1, . . . , bm) and (Ab1, . . . , Abm)

have the same orientation.
(γ) For every α ∈

∧m
V ∗\{0}, the volume forms α and A∗α determine the

same orientation of V .
(ii) Laut+(V ) is a subgroup of Laut(V ) =: GL(V ).

Proof (i) This follows from A∗α = det(A)α and the definition of orientation.

(ii) The map
Laut(V )→ (R×, · ) , A �→ det(A)

is a homomorphism. According to Exercise I.7.5, Laut+(V ), as the inverse image of the
subgroup ((0,∞), · ) of (R×, · ), is a subgroup of Laut(V ). �

Suppose now (V, ( · | · ),Or) is an oriented inner product space. Also let
(e1, . . . , em) be a positive orthonormal basis (ONB), and let (ε1, . . . , εm) be the
associated dual basis of V ∗. Then

ω := ωV := ε1 ∧ · · · ∧ εm

is called the volume element of V .
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2.12 Remarks (a) For every positive ONB (ẽ1, . . . , ẽm) of V , we have

ω(ẽ1, . . . , ẽm) = 1 .

Proof Let B by the basis change specified by ẽj = Bej for 1 ≤ j ≤ m. Then B belongs
to Laut+(V ) ∩ O(m), and thus det(B) = 1 (see Exercise VII.9.2). Therefore it follows
from Proposition 2.10 that

ω(ẽ1, . . . , ẽm) = B∗ω(e1, . . . , em) = det(B)ε1 ∧ · · · ∧ εm(e1, . . . , em) = 1 ,

which proves the claim. �

(b) The volume element of V is the unique volume form that assigns the value 1
to any, and thus every, positive ONB.
Proof This follows from (a). �

(c) For v1, . . . , vm ∈ Rm, let

P (v1, . . . , vm) :=
{∑m

j=1t
jvj ; 0 ≤ tj ≤ 1

}
,

that is, P (v1, . . . , vm) is the parallelepiped spanned by v1, . . . , vm. Then

|ωRm(v1, . . . , vm)| = volm(P (v1, . . . , vm)) := λm(P (v1, . . . , vm)) .

In other words, the volume element assigns every m-tuple of vectors the oriented
volume4 of the parallelogram they span.
Proof We define B ∈ L(Rm) by vj = Bej for 1 ≤ j ≤ m. Then

P (v1, . . . , vm) = B([0, 1]m) .

Then it follows from Proposition 2.10 and (a) that

ωRm(v1, . . . , vm) = B∗ωRm(e1, . . . , em) = det(B) .

From Theorem IX.5.25, we know that λm(B([0, 1]m)) = |det(B)|, as desired. �

In the following proposition, we represent the volume element ω in terms of
an arbitrary positive basis of V .

2.13 Proposition Suppose (b1, . . . , bm) is a positive basis of V and (β1, . . . , βm)
is its dual basis. Then

ω =
√

Gβ1 ∧ · · · ∧ βm ,

where G := det
[
(bj | bk)

]
is the Gram determinant. In particular,

ω(b1, . . . , bm) =
√

G .

4An oriented volume is positive if and only if (v1, . . . , vm) is positive; it is negative if and only
if (v1, . . . , vm) belongs to −Or.
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Proof Let (e1, . . . , em) be a positive ONB of V , and define B ∈ L(V ) by bj = Bej

for 1 ≤ j ≤ m. According to (i) of Remark 2.11(b), we have det(B) > 0. From
Remark 2.12(a) and (2.3), we get

ω(e1, . . . , em) = 1 = β1 ∧ · · · ∧ βm(b1, . . . , bm)

= B∗(β1 ∧ · · · ∧ βm)(e1, . . . , em) .

Therefore
ω = det(B)β1 ∧ · · · ∧ βm ,

because an m-form is determined by its value on a basis of V , and because of
Proposition 2.10. Also

(bj | bk) = (Bej |Bek) = (B∗Bej | ek) for 1 ≤ j, k ≤ m (2.11)

(see Exercise VII.1.5). Because (e1, . . . , em) is an ONB, any v ∈ V has the repre-
sentation v =

∑m
k=1(v | ek)ek. From this it follows that

Tej =
m∑

k=1

(Tej | ek)ek for 1 ≤ j ≤ m and T ∈ L(V ) .

Hence (2.11) shows that
[
(bj | bk)

]
∈ Rm×m is the matrix of B∗B in the basis

(e1, . . . , em). Therefore

G = det
[
(bj | bk)

]
= det(B∗B) = (det(B))2

because det(B∗) = det(B). The claim follows. �

The Riesz isomorphism

Suppose (V, ( · | · )) is an inner product space and m := dim(V ). We denote the
Riesz isomorphism (2.2) by

Θ := ΘV : V → V ∗ , v �→ (· | v) ,

that is,
〈Θv, w〉 = (w | v) for v, w ∈ V . (2.12)

Then
(α |β)∗ := (Θ−1α |Θ−1β) for α, β ∈ V ∗ (2.13)

defines an inner product on V ∗, the scalar product dual to ( · | · ). In the following,
we always provide V ∗ with this inner product, so that V ∗ := (V ∗, ( · | · )∗) is an
inner product space.
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2.14 Remarks Suppose {e1, . . . , em} is a basis in V and {ε1, . . . , εm} is its dual
basis in V ∗.

(a) We set

gjk := (ej | ek) for 1 ≤ j, k ≤ m , where [gjk] := [gjk]−1 ∈ Rm×m .

Then

Θej =
m∑

k=1

gjkεk and Θ−1εj =
m∑

k=1

gjkek for 1 ≤ j ≤ m .

Proof From the basis expansion Θej =
∑m

k=1 ajkεk for 1 ≤ j ≤ m and from (2.12), we
get

(ej | v) = 〈Θej , v〉 =
m∑

k=1

ajk〈εk, v〉 for v ∈ V and 1 ≤ j ≤ m .

Replacing v by each of e1, . . . , em, we find ajk = (ej | ek), which proves the first statement.
The representation of Θ−1εj is obvious. �

(b) For v =
∑m

j=1 ξjej ∈ V and w =
∑m

j=1 ηjej ∈ V , we have

(v |w) =
m∑

j,k=1

gjkξjηk .

For α =
∑m

j=1 ajε
j ∈ V ∗ and β =

∑m
j=1 bjε

j ∈ V ∗, we have the relation

(α |β)∗ =
m∑

j,k=1

gjkajbk .

Proof The first statement is obvious. From (a) and (2.13), we derive

(εi | ε�)∗ = (Θ−1εi |Θ−1ε�) =
m∑

j,k=1

gijg�k(ej | ek) =
m∑

j,k=1

gijg�kgjk = gi�

for 1 ≤ i, � ≤ m. Now the second claim follows from the bilinearity of ( · | · )∗. �

(c) If {e1, . . . , em} is an ONB, then Θej = εj for 1 ≤ j ≤ m, and {ε1, . . . , εm} is
likewise an ONB.

(d) You may have noticed that we have used upper indices to label the coeffi-
cients of a vector in a basis representation, whereas we used lower indices for the
expansion coefficients of a 1-form. That is,

v =
m∑

j=1

ξjej ∈ V and α =
m∑

j=1

ajε
j ∈ V ∗ .
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From (a) and the symmetry of [gjk], it follows that

Θv =
m∑

j=1

bjε
j ∈ V ∗ and Θ−1α =

m∑
j=1

ηjej ∈ V

with

bj :=
m∑

k=1

gjkξk and ηj :=
m∑

k=1

gjkak for 1 ≤ j ≤ m .

The application of Θ [or Θ−1] formally effects a lowering [or raising] of indices.
On these grounds, we may borrow the musical notations

g� := Θ and g� := Θ−1 ,

or simply v� := Θv for v ∈ V and α� := Θ−1α for α ∈ V ∗. �

The Hodge star operator5

Suppose (V, ( · | · ),Or) is an oriented inner product space, m := dim(V ), and
ω is the volume element of V . Also let {e1, . . . , em} be an ONB of V , and let
{ε1, . . . , εm} be its dual basis.

We now define a scalar product ( · | · )r on
∧r

V ∗ as follows:
For r = 0, let

(α |β)0 := αβ for α, β ∈ ∧0V ∗ = R . (2.14)

For 1 ≤ r ≤ m, let

α =
∑

(j)∈Jr

a(j)ε
(j) and β =

∑
(j)∈Jr

b(j)ε
(j) ,

which, according to Proposition 2.3, are valid basis representations of α, β ∈ ∧r
V ∗.

Then we set
(α |β)r :=

∑
(j)∈Jr

a(j)b(j) . (2.15)

It is clear that ( · | · )r is a scalar product on
∧r

V ∗ for 0 ≤ r ≤ m. By Remarks
2.14(b) and (c), we have ( · | · )1 = ( · | · )∗.

2.15 Remarks (a) The basis { ε(j) ; (j) ∈ Jr } is an ONB of (
∧r

V ∗, ( · | · )r) for
1 ≤ r ≤ m.

(b) For α1, . . . , αr , β1, . . . , βr ∈ V ∗, we have(
α1 ∧ · · · ∧ αr

∣∣ β1 ∧ · · · ∧ βr
)
r

= det
[
(αj |βk)∗

]
.

5This section and the next may be skipped on first reading.
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Proof Suppose

αj =
m∑

i=1

aj
i ε

i and βk =
m∑

i=1

bk
i εi for 1 ≤ j, k ≤ r .

Also let

α1 ∧ · · · ∧ αr =
∑

(j)∈Jr

a(j)ε
(j) and β1 ∧ · · · ∧ βr =

∑
(k)∈Jr

b(k)ε
(k)

be basis representations. Then according to Example 2.4(d), we have

a(j) = det
(
[ai

jk
]1≤i,k≤r

)
and b(k) = det

(
[bi

k�
]1≤i,�≤r

)
for (j) = (j1, . . . , jr) ∈ Jr and (k) = (k1, . . . , kr) ∈ Jr.

By the bilinearity and symmetry of ( · | · )∗ and the fact that the determinant is an
alternating r-form in its row vectors, we find (see the proof of Proposition 2.3(i))

det
[
(αj |βk)∗

]
=

∑
(j)∈Jr

∑
σ∈Sr

sign(σ)a1
jσ(1)

· · · · · ar
jσ(r)

det
([

(εjk |β�)∗
]
1≤k,�≤r

)
=

∑
(j)∈Jr

det
(
[ai

jk
]1≤i,k≤r

)
det

([
(εjk |β�)∗

]
1≤k,�≤r

)
=

∑
(j)∈Jr

a(j) det
([

(εjk |β�)∗
]
1≤k,�≤r

)
=

∑
(j)∈Jr

∑
(k)∈Jr

a(j)b(k) det
([

(εji | εk�)∗
]
1≤i,�≤r

)
.

By (a), we have

det
[
(εji | εk�)∗

]
= det

(
[δji,k� ]1≤i,�≤r

)
=

{
1 if (j) = (k) ,

0 otherwise .

Thus we get

det
[
(αj |βk)∗

]
=

∑
(j)∈Jr

a(j)b(j) .

By (2.15), this finishes the proof. �

(c) The scalar product ( · | · )r on
∧r

V ∗ does not depend on the special choice of
ONB or its orientation, but rather only on the inner product ( · | · ) on V .
Proof This follows from (b), Example 2.4(e), and the scalar product’s bilinearity. �

Because

dim(
∧r

V ∗) =
(m

r

)
=

( m

m− r

)
= dim(

∧m−r
V ∗) , (2.16)

∧r
V ∗ and

∧m−r
V ∗ are isomorphic vector spaces for 0 ≤ r ≤ m. We now introduce

a special (natural) isomorphism from
∧rV ∗ to

∧m−rV ∗, the Hodge star operator.
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We first note that for every α ∈ ∧rV ∗, Proposition 2.5 implies

(β �→ α ∧ β) ∈ L(
∧m−rV ∗,

∧mV ∗) . (2.17)

Because
∧mV ∗ is one-dimensional, there exists exactly one fα(β) ∈ R such that

α ∧ β = fα(β)ωV for β ∈ ∧m−rV ∗ .

By (2.17), fα belongs to L(
∧m−rV ∗, R). Then according to the Riesz represen-

tation theorem, there is exactly one ∗α ∈ ∧m−r
V ∗ with fα(β) = (∗α |β)m−r

for β ∈
∧m−r

V ∗. In other words, every α ∈
∧r

V ∗ has a unique element
∗α ∈ ∧m−r

V ∗ such that

α ∧ β = (∗α |β)m−rωV for β ∈ ∧m−r
V ∗ . (2.18)

Therefore ∗α = Θ−1fα, where Θ denotes the Riesz isomorphism Θ of the space∧m−r
V ∗. Hence

(α �→ ∗α) ∈ L(
∧rV ∗,

∧m−rV ∗) . (2.19)

This map is called the Hodge star operator (or simply the Hodge star).

2.16 Remarks (a) The Hodge star is an isomorphism.
Proof From ∗α = 0 and (2.18), it follows that α ∧ β = 0 for every β ∈ ∧m−rV ∗. For
the special choice β := εr+1 ∧ · · · ∧ εm, it follows from

α =
∑

(j)∈Jr

a(j)ε
(j) with (j0) := (1, . . . , r)

that 0 = α ∧ β = a(j0)ωV , and therefore a(j0) = 0. Analogously we find that a(j) = 0 for
(j) ∈ Jr. Therefore (2.19) is injective. Now the claim is implied by (2.16). �

(b) The Hodge star depends on the scalar product and the orientation of V . �

2.17 Examples (a) For 1 ≤ j ≤ m, we have ∗εj = (−1)j−1ε1 ∧ · · · ∧ ε̂j ∧ · · · ∧ εm.
Proof From the alternating property, the associativity of the exterior product, and
Example 2.4(f) it follows that

εj ∧ (ε1 ∧ · · · ∧ ε̂k ∧ · · · ∧ εm) = (−1)j−1δjkε1 ∧ · · · ∧ εm = (−1)j−1δjkω

for 1 ≤ k ≤ m. Now the claim is implied by (2.18) and the fact that, according to
Remark 2.15(a),

{ ε1 ∧ · · · ∧ ε̂k ∧ · · · ∧ εm ; 1 ≤ k ≤ m }
is an ONB of

∧m−1V ∗. �

(b) For 1 ≤ j ≤ m, we have

∗(ε1 ∧ · · · ∧ ε̂j ∧ · · · ∧ εr) = (−1)m−jεj .

Proof Because
(ε1 ∧ · · · ∧ ε̂j ∧ · · · ∧ εm) ∧ εk = (−1)m−jδjkω ,

the statement follows as in the previous proof. �
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(c) ∗1 = ω and ∗ω = 1.

(d) We now consider the general case covering both (a) and (b). Suppose therefore
1 ≤ r ≤ m − 1 and (j) ∈ Jr. Then there is exactly one (jc) ∈ Jm−r such that
(j) ∨ (jc) := (j1, . . . , jr, j

c
1, . . . , j

c
m−r) is a permutation of {1, . . . , m}. Putting

s(j) := sign((j) ∨ (jc)), we then have

∗ε(j) = s(j)ε(jc) . (2.20)

It follows for α =
∑

(j)∈Jr
a(j)ε

(j) ∈ ∧rV ∗ that

∗α =
∑

(j)∈Jr

s(j)a(j)ε
(jc) .

Proof For (k) ∈ Jm−r with (k) 	= (jc), we have ε(j) ∧ ε(k) = 0, because at least one εji

occurs twice in this product. For (k) = (jc), we derive from (2.3) that

ε(j) ∧ ε(jc) = s(j)ω . (2.21)

Now (2.20) follows from (2.18) and Remark 2.15(a). �

(e) For α ∈ ∧r
V ∗ with 0 ≤ r ≤ m, we have ∗∗α := ∗(∗α) = (−1)r(m−r)α.

Proof For (j), (k) ∈ Jr, it follows from (2.18), (d), and Proposition 2.5(iii) that

(∗∗ε(j) | ε(k))rω = (∗ε(j)) ∧ ε(k) = s(j)ε(jc) ∧ ε(k) = (−1)r(m−r)s(j)ε(k) ∧ ε(jc) .

Then because ε(k) ∧ ε(jc) = 0 for (k) 	= (j) and using (2.21), we find

(∗∗ε(j) |β)r = (−1)r(m−r)(ε(j) |β)r for β ∈ ∧rV ∗ .

Hence ∗∗ε(j) = (−1)r(m−r)ε(j) for (j) ∈ Jr, which, because of Proposition 2.3(i), proves
the claim. �

(f) For α, β ∈
∧r

V ∗, we have the relationship

α ∧ ∗β = β ∧ ∗α = (α |β)rω . (2.22)

Proof Suppose α := β := ε(j). Then by (d) and (2.21), we have

α ∧ ∗β = α ∧ ∗α = β ∧ ∗α = s(j)ε(j) ∧ ε(jc) = ω = (ε(j) | ε(j))rω = (α | β)rω .

Letting α := ε(j) and β := ε(k) with (j) 	= (k), we obtain from (d) that

α ∧ ∗β = s(k)ε(j) ∧ ε(kc) = 0 = s(j)ε(k) ∧ ε(jc) = β ∧ ∗α .

In addition, from Remark 2.15(a) we have (α |β)r = 0. Therefore (2.22) also holds in
this case. Now this claim also follows from Proposition 2.3(i). �



XI.2 Multilinear algebra 277

Indefinite inner products

For several applications, particularly in physics, one must drop the assumption
that the scalar product is positive definite. So we will now shortly go over the
modifications needed to handle this case.

A bilinear form b : V × V → R is said to be nondegenerate if for every
y ∈ V \{0} there is an x ∈ V such that b(x, y) 
= 0. It is symmetric if

b(x, y) = b(y, x) for x, y ∈ V .

Suppose b : V ×V → R is a nondegenerate symmetric bilinear form on V :=
(V, ( · | · )). In the following remarks, we list some basic properties of b.

2.18 Remarks (a) There is a b-orthonormal basis (b-ONB) of V , that is, there
is a basis {b1, . . . , bm} of V such that b(bj , bk) = ±δjk for 1 ≤ j, k ≤ m. If r is
the number of plus sign and s is the number of minuses, then r + s = m. The
number t := r − s is called the signature of b. The signature, as well as r and s,
is independent of the choice of b-ONB. In particular,6

(−1)s = sign(b) := sign
(
det

[
b(bj , bk)

])
.

Proof Theorem VII.4.2(iii) clearly implies that b is continuous. Then b(x, · ) : V → R
is a continuous linear form on V . Therefore, the Riesz representation theorem (Theo-
rem VII.2.14) guarantees the existence of a unique Bx ∈ V such that

b(x, y) =
(
Bx

∣∣ y
)

for y ∈ V .

From the linearity of b( · , y), it follows that x �→ Bx is linear. Then by Theorem VII.1.6,
B belongs to L(V ), and

b(x, y) = (Bx | y) for x, y ∈ V .

The map B is called the representation operator of b with respect to ( · | · ). Because b is
nondegenerate, B is an automorphism of V (and conversely), and because b is symmetric,
so is B.

Remark 2.1(a) allows us to identify V with Rm. Therefore the principal axis trans-
formation theorem7 guarantees the existence of an ONB {v1, . . . , vm} of V and eigenval-
ues λ1 ≥ · · · ≥ λm of B such that

Bvj = λjvj for 1 ≤ j ≤ m . (2.23)

Because b is nondegenerate, we have λj 	= 0 for 1 ≤ j ≤ m. We set bj := vj

/√
|λj |.

Then {b1, . . . , bm} is a basis of V , and it follows from (2.23) that

b(bj , bk) = (Bbj | bk) = (Bvj | vk)
/√
|λjλk| = λj(vj | vk)

/√
|λjλk| = sign(λj)δjk

for 1 ≤ j, k ≤ m.

6sign(b) should not be confused with the signature t. Obviously 2 sign(b) = m − t.
7See Example VII.10.17(b).
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To show that t = r − s is independent of the choice of b-ONB, it suffices, because
r + s = m, to prove this is true of r. Suppose therefore {c1, . . . , cm} is a b-ONB of V
such that b(cj , cj) = 1 for 1 ≤ j ≤ ρ and b(cj , cj) = −1 for ρ + 1 ≤ j ≤ m. We want to
show that the vectors b1, . . . , br, cρ+1, . . . , cm are linearly independent, since this would
imply r + (m − ρ) ≤ m and therefore r ≤ ρ; also, by exchanging the two b-ONB, we
would analogously obtain ρ ≤ r, which then determines r.

Suppose therefore

β1b1 + · · ·+ βrbr = γρ+1cρ+1 + · · ·+ γmcm

with real numbers β1, . . . , βr, γρ+1, . . . , γm. Every linear dependence relation of the set
{b1, . . . , br, cρ+1, . . . , cm} can be so written. Then for v := β1b1 + · · ·+ βrbr, we have

b(v, v) =
r∑

j=1

β2
r = −

m∑
j=ρ+1

γ2
j ,

which implies β1 = · · · = βr = γρ+1 = · · · = γm = 0. The last claim is now clear. �

(b) (Riesz representation theorem) To every v∗ ∈ V ∗, there is exactly one v ∈ V
with b(v, w) = 〈v∗, w〉 for w ∈W . The map

Θb : V → V ∗ , v �→ b(v, · )

is a vector space isomorphism, the Riesz isomorphism with respect to b. The
statements of Remark 2.14(a) also hold in this case.
Proof With the representation operator B of b and the Riesz isomorphism Θ of V ,
Theorem VII.2.14 implies

b(v, w) = (Bv |w) = 〈ΘBv, w〉 for v, w ∈ V .

The claim then follows after putting Θb := ΘB. �

(c) For every basis {v1, . . . , vm} of V , the Gram determinant with respect to b,
that is,

Gb := det
([

b(vj , vk)
])

,

is nonzero.
Proof The determinant Gb is zero if and only if the system of linear equations

m∑
k=1

b(vj , vk)ξk = 0 for 1 ≤ j ≤ m , (2.24)

has a nontrivial solution. If v :=
∑m

k=1 ξkvk, then (2.24) is equivalent to b(vj , v) = 0 for
1 ≤ j ≤ m. Because {v1, . . . , vm} is a basis of V and b is nondegenerate, it follows that
v = 0, and we are done. �

(d) Suppose (b1, . . . , bm) is a positive basis of V and (β1, . . . , βm) is its dual basis.
Also assume B is unitary. Then

ε1 ∧ · · · ∧ εm =
√
|Gb|β1 ∧ · · · ∧ βm .
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Proof The first part of the proof of Proposition 2.13 shows that

ε1 ∧ · · · ∧ εm = det(B)β1 ∧ · · · ∧ βm ,

where B ∈ L(V ) is the change of basis from (e1, . . . , em) to (b1, . . . , bm). With the
representation B of b, we find

b(bj , bk) = (Bbj | bk) = (BBej |Bek) = (B∗BBej | ek) for 1 ≤ j, k ≤ m .

As in the proof of Proposition 2.13, this implies

Gb = det
[
b(bj , bk)

]
= det(B∗BB) = det(B)(det(B))2 .

Because |det(B)| = 1, it follows that (det(B))2 = |Gb |, which implies the claim. �

Suppose now Or is an orientation of V and b is a nondegenerate symmetric
bilinear form on V . Also let (e1, . . . , em) be a positive b-ONB of V whose dual
basis is (ε1, . . . , εm).

On V ∗, we define by

b∗(v∗, w∗) := b(Θ−1
b v∗, Θ−1

b w∗) for v∗, w∗ ∈ V ∗ .

the nondegenerate symmetric bilinear form b∗. For α1, . . . , αr, β1, . . . , βr ∈ V ∗,
we set

br(α1 ∧ · · · ∧ αr, β1 ∧ · · · ∧ βr) := det
[
b∗(αj , βk)

]
,

and therefore b1 = b∗; we also define

br :
∧r

V ∗ ×∧r
V ∗ → R for r ≥ 1

by bilinear extension using the basis representation of Proposition 2.3(i). As in
(2.16)–(2.19), it follows (with b0 := ( · | · )0) that there is a linear map∧r

V ∗ → ∧m−r
V ∗ , α �→ ∗α

for 0 ≤ r ≤ m, called the Hodge star operator, that is characterized by

α ∧ β = bm−r(∗α, β)ε1 ∧ · · · ∧ εm for β ∈
∧m−r

V ∗ . (2.25)

2.19 Remarks (a) The Hodge star is an isomorphism that depends only on the
bilinear form b and the orientation, not on the b-ONB.

(b) For 1 ≤ r ≤ m, { ε(j) ; (j) ∈ Jr } is a br-ONB, and for ω := ε1 ∧ · · · ∧ εm, we
have bm(ω, ω) = sign(b).
Proof The first statement follows easily from the definition of br. Because

bm(ω, ω) = det
(
diag

[
b∗(ε1, ε1), . . . , b∗(εm, εm)

])
= det

(
diag

[
b(e1, e1), . . . , b(em, em)

])
,

the second statement is also true. �
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(c) We have ∗1 = sign(b)ω and ∗ω = 1. Also

∗ε(j) = s(j)bm−r(ε(jc), ε(jc))ε(jc) for (j) ∈ Jr ,

for 1 ≤ r ≤ m− 1.
Proof First ω = 1∧ω = bm(∗1, ω)ω implies bm(∗1, ω) = 1. Next dim(

∧mV ∗) = 1 gives
∗1 = aω with a ∈ R. From this we obtain with (b) that

1 = bm(∗1, ω) = abm(ω, ω) = a sign(b) ,

and therefore a = sign(b). This proves the first claim. Analogously, we find ∗ω = 1.

Suppose 1 ≤ r ≤ m− 1 and (j) ∈ Jr. Then

ω = s(j)ε(j) ∧ ε(jc) = s(j)bm−r(∗ε(j), ε(jc))ω ,

and therefore bm−r(∗ε(j), ε(jc)) = s(j). Note { ε(k) ; (k) ∈ Jm−r } is a bm−r-ONB of∧m−rV ∗. Also ∗ε(j) ∈ ∧m−rV ∗, and bm−r(∗ε(j), ε(k)) = 0 for (k) 	= (jc). It follows that
∗ε(j) = aε(jc) with a ∈ R, and therefore

abm−r(ε
(jc), ε(jc)) = bm−r(∗ε(j), ε(jc)) = s(j) .

This implies a = s(j)bm−r(ε
(jc), ε(jc)). Now the last claim is clear. �

(d) For α ∈ ∧r
V ∗ with 0 ≤ r ≤ m, we have ∗∗α = sign(b) (−1)r(m−r)α.

Proof As in the proof of (c), we obtain from

br(∗ε(jc), ε(j))ω = ε(jc) ∧ ε(j) = (−1)r(m−r)ε(j) ∧ ε(jc) = s(j)(−1)r(m−r)ω ,

that ∗ε(jc) = s(j)(−1)r(m−r)br(ε
(j), ε(j))ε(j). Therefore we find by (c) that

∗(∗ε(j)) = ∗
(
s(j)bm−r(ε

(jc), ε(jc))ε(jc))
= s(j)2(−1)r(m−r)br(ε

(j), ε(j))bm−r(ε
(jc), ε(jc))ε(j) ,

from which the claim follows. �

(e) For α, β ∈ ∧r
V ∗, we have

α ∧ ∗β = β ∧ ∗α = sign(b) br(α, β)ω .

Proof This is true by an obvious modification of the proof of Example 2.17(f). �

An important use of these ideas is the Minkowski space R4
1,3 :=

(
R4, ( · | · )1,3

)
,

that is, the “spacetime” of special relativity with the Minkowski metric

(x | y)1,3 := x0y0 − x1y1 − x2y2 − x3y3 .

(In relativity theory, the “0-th coordinate” is the time.) We will elaborate on this
later.

An indefinite nondegenerate symmetric bilinear form b is also called an in-
definite inner product; accordingly, (V, b) is an indefinite inner product space.
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Tensors

For the sake of completeness, we now briefly introduce the concept of general
tensors, which we will encounter in several later sections. Suppose r, s ∈ N. An
(r + s)-linear map

γ : V ∗ × · · · × V ∗︸ ︷︷ ︸
r

×V × · · · × V︸ ︷︷ ︸
s

→ R

is called a tensor on V of type (r, s) or an (r, s)-tensor. In particular, γ is con-
travariant of order r and covariant of order s (or r-contravariant and s-covariant).
We denote by T r

s (V ) the normed8 vector space of all (r, s)-tensors on V .
For γ1 ∈ T r1

s1
(V ) and γ2 ∈ T r2

s2
(V ), the tensor product γ1 ⊗ γ2 is defined by

γ1 ⊗ γ2(α1, . . . , αr1 , β1, . . . , βr2 , v1, . . . , vs1 , w1, . . . , ws2)

:= γ1(α1, . . . , αr1 , v1, . . . , vs1)γ2(β1, . . . , βr2 , w1, . . . , ws2)

with α1, . . . , αr1 , β1, . . . , βr2 ∈ V ∗ and v1, . . . , vs1 , w1, . . . , ws2 ∈ V .
In the following and as usual, we identify V ∗∗ with V using the canonical

isomorphism κ of Remark 2.8.

2.20 Remarks (a) T 1
0 (V ) = V , T 0

1 (V ) = V ∗, and T 0
2 (V ) = L2(V, R).

(b) For γ ∈ T 1
1 (V ), there exists exactly one C ∈ L(V ) with

γ(v∗, v) = 〈v∗, Cv〉 for v ∈ V , v∗ ∈ V ∗ . (2.26)

The map
T 1

1 (V )→ L(V ) , γ �→ C

is an isometric isomorphism.
Proof For v ∈ V , the map γ( · , v) belongs to V ∗∗ = V . Because γ is bilinear, we have

C :=
(
v �→ γ( · , v)

)
∈ L(V )

with 〈v∗, Cv〉 = γ(v∗, v) for (v, v∗) ∈ V × V ∗. Conversely, every C ∈ L(V ) defines by
virtue of (2.26) a γ ∈ T 1

1 (V ). The last claim is now clear. �

(c) The tensor product is bilinear and associative.

(d) Letting m := dim(V ), we have dim
(
T r

s (V )
)

= mr+s. If (e1, . . . , em) is a basis
of V and (ε1, . . . , εm) is its dual basis, then{

ej1 ⊗ · · · ⊗ ejr ⊗ εk1 ⊗ · · · ⊗ εks ; ji, ki ∈ {1, . . . , m}
}

is a basis of T r
s (V ).

8See Theorem VII.4.2.



282 XI Manifolds and differential forms

Proof We leave the simple proof to you. �

(e)
∧r

V ∗ is a vector subspace of T 0
r (V ).

(f) The dual pairing 〈 · , · 〉 : V ∗ × V → R is a (1, 1)-tensor on V . �

Exercises

1 For T ∈ Lr(V, R), the alternator, Alt(T ), is defined by

Alt(T )(v1, . . . , vr) :=
1

r!

∑
σ∈Sr

sign(σ)T (vσ(1), . . . , vσ(r))

for v1, . . . , vr ∈ V . Show that

(a) Alt ∈ L(Lr(V, R),
∧rV ∗);

(b) Alt2 = Alt.

2 For S ∈ Ls(V, R) and T ∈ Lt(V, R), define S ⊗ T ∈ Ls+t(V, R) by

S ⊗ T (v1, . . . , vs, vs+1, . . . , vs+t) := S(v1, . . . , vs)T (vs+1, . . . , vs+t) ,

where v1, . . . , vs+t ∈ V . Show that for α ∈ ∧rV ∗ and β ∈ ∧sV ∗,

α ∧ β =
(r + s)!

r! s!
Alt(α⊗ β) .

In Exercises 3–8, let (V, ( · , | ·),Or) be an oriented inner product space, let ω be its
volume element, and let Θ be the Riesz isomorphism.

3 Let dim(V ) = 3. Then the vector or cross product × on V is defined by9

× : V × V → V , (v, w) �→ v × w := Θ−1ω(v,w, · ) .

Show the following:

(a) (v ×w |u) = ω(v,w, u) for u, v, w ∈ V .

(b) The vector product is bilinear and alternating.

(c) The vector v×w is different from zero if and only if v and w are linearly independent.

(d) If v and w are linear independent, then (v, w, v × w) is a positive basis of V .

(e) The vector v × w is orthogonal to v and w.

(f) For v, w ∈ V \{0}, we have

|v × w| =
√
|v|2 |w|2 − (v |w)2 = |v| |w| sin ϕ ,

where ϕ ∈ [0, π] is the (unoriented) angle between the vectors v and w.

9See Remarks VIII.2.14.
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(g) Let (e1, e2, e3) be a positive ONB of V . Then for v =
∑

j ξjej and w =
∑

j ηjej , we
have

v × w = (ξ2η3 − ξ3η2)e1 + (ξ3η1 − ξ1η3)e2 + (ξ1η2 − ξ2η1)e3 .

(h) (Grassmann identity) v1 × (v2 × v3) = (v1 | v3)v2 − (v1 | v2)v3.

(i) The vector product is not associative.

(j) (v1 × v2)× (v3 × v4) = ω(v1, v2, v4)v3 − ω(v1, v2, v3)v4.

(k) (Jacobi identity) v1 × (v2 × v3) + v2 × (v3 × v1) + v3 × (v1 × v2) = 0.

(Hints: (f) Recall Proposition 2.13 and (a). (h) The vector product is determined by
its values in the basis (e1, e2, e3).)

4 For 0 ≤ r ≤ m, verify the following formulas:

(a) (∗α |β)m−r = (−1)r(m−r)(α | ∗β)r for α ∈ ∧rV ∗ and β ∈ ∧m−rV ∗.

(b) (∗α) ∧ β = (∗β) ∧ α for α, β ∈ ∧rV ∗.

(c) ∗(Θv ∧ ∗Θw) = (v |w) for v, w ∈ V .

5 Let (b1, . . . , bm) be a positive basis of V with (β1, . . . , βm) its dual basis. Prove these:

(a) βj ∧ ∗βk = gjk
√

G β1 ∧ · · · ∧ βm for 1 ≤ j, k ≤ m.

(b) ∗βj =
∑m

k=1(−1)k−1gjk
√

G β1 ∧ · · · ∧ β̂k ∧ · · · ∧ βm for 1 ≤ j ≤ m. If V is three-
dimensional, show that

∗(βj ∧ βk) =
1√
G

sign(j, k, �)
3∑

i=1

g�iβ
i =

1

G
sign(j, k, �)Θb�

for (j, k, �) ∈ S3.

6 In the case dim(V ) = 3, show v ×w = Θ−1
(
∗(Θv ∧Θw)

)
for v, w ∈ V .

7 Let (b1, b2, b3) be a positive basis of V with dual basis (β1, β2, β3). Show that

bj × bk =
√

G sign(j, k, �)

3∑
i=1

g�ibi =
√

G sign(j, k, �)Θ−1β�

for (j, k, �) ∈ S3.

8 Let
(
W, ( · | · )W ,Or(W )

)
be an oriented inner product, and let A ∈ L(V, W ) be an

orientation-preserving isometry (that is, A∗ωW = ωV ). Then show that the diagram

∧rV ∗ ∧m−rV ∗

∧rW ∗ ∧m−rW ∗

A∗ A∗

∗

∗

�

�

� �

commutes for 0 ≤ r ≤ m.

9 Formulate and prove the claims of Exercises 4 and 5 for indefinite inner product
spaces.
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10 For k ∈ N, let Kk[X] be the vector space of all polynomials of degree ≤ k over
K. Show that K[X] =

⊕
k≥0 Kk[X] is a graded commutative algebra with respect to the

usual multiplication of polynomials, that is, with respect to the convolution of Section I.8.

11 Let (ε0, ε1, ε2, ε3) be the basis dual to the standard basis of R4. For c, Ej , Hj ∈ R,
set

α := (E1ε
1 + E2ε

2 + E3ε
3) ∧ cε0 + (H1ε

2 ∧ ε3 + H2ε
3 ∧ ε1 + H3ε

1 ∧ ε2) ,

β := −(H1ε
1 + H2ε

2 + H3ε
3) ∧ cε0 + (E1ε

2 ∧ ε3 + E2ε
3 ∧ ε1 + E3ε

1 ∧ ε2)

and calculate ∗α and ∗β with respect to ( · | · )1,3.



3 The local theory of differential forms

In Section VIII.3, we learned much about differential forms of degree 1, the Pfaff
forms, and we developed a calculus that forms the foundation for the theory of line
integral. Now we extend these ideas to more dimensions. In a first step, to which
this section is given, we introduce differential forms of arbitrary degree on open
subsets of Euclidean space, and we provide the calculus of differential forms in
this “local” situation. In the sections thereafter, we consider the general situation,
namely, differential forms on manifolds.

A differential form of degree r on an open subset X of Rm is nothing other
than a set consisting of an alternating r-form on the tangent space TxX for each
x ∈ X . For this reason, the first part of this section is really only a reformulation
of the results of linear algebra provided in Section 2. Rather than formulating new
theorems, we will explain the definitions with remarks and examples. Analysis will
come into play when we introduce an operation on differential forms, the exterior
derivative. The exterior derivative makes use of concepts from analysis and goes
beyond linear algebra.

In this entire section
• X is open in Rm and K = R.

Definitions and basis representations

For x ∈ X , the cotangent space T ∗
xX = {x} × (Rm)∗ is the space dual to the

tangent space TxX = {x} × Rm. Therefore the exterior product∧r
T ∗

xX = {x} ×∧r(Rm)∗ for r ∈ N (3.1)

and the Grassmann algebra ∧
T ∗

x X = {x} ×∧
(Rm)∗

are well defined on T ∗
xX . We can generalize the tangent and cotangent bundle by

defining the bundle of alternating r-forms on X by∧rT ∗X :=
⋃

x∈X

∧rT ∗
xX = X ×∧r(Rm)∗

and by defining the Grassmann bundle of X by∧
T ∗X :=

⋃
x∈X

∧
T ∗

x X = X ×∧
(Rm)∗ .

A map
α : X → ∧rT ∗X with α(x) ∈ ∧rT ∗

xX and x ∈ X ,
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that is, a section1 of the Grassmann bundle, is called a differential form of de-
gree r (for short, an r-form) on X. By (3.1), every r-form on X has a unique
representation

α(x) = (x, α(x)) for x ∈ X

whose r-covector part (for short, covector part) is

α : X → ∧r(Rm)∗ .

Let k ∈ N ∪ {∞}. The r-form α belongs to the class Ck (or is k-times
continuously differentiable,2 or smooth in case k =∞) if this is true for its covector
part, that is, if

α ∈ Ck
(
X,

∧r(Rm)∗
)

. (3.2)

This definition is meaningful because, according to Remark 2.2(a),
∧r(Rm)∗ is a

(closed) vector subspace of Lr(Rm, R).

For simplicity and in order to concentrate on the essential aspects of the
theory, we consider almost exclusively smooth r-forms and smooth vector fields.
We treat the Ck case only briefly in remarks, whose verification we leave to you.

We denote the set of all smooth r-forms on X by Ωr(X). For short we set

E(X) := C∞(X) and V(X) := V∞(X) .

If v1, . . . ,vr are vector fields on X with corresponding vector parts v1, . . . , vr,
that is, if vj(x) = (x, vj(x)) for x ∈ X and 1 ≤ j ≤ r, then we set

α(v1, . . . , vr)(x) := α(x)
(
v1(x), . . . ,vr(x)

)
for x ∈ X . (3.3)

Then it follows from (VIII.3.1) that

α(x)(v1(x), . . . ,vr(x)) = α(x)(v1(x), . . . , vr(x)) for x ∈ X ,

that is,
α(v1, . . . ,vr) = α(v1, . . . , vr) . (3.4)

This shows that, without causing misunderstanding, we can identify an r-form α
with its covector part α and a vector field v with its vector part v. For this reason,
we will from now on write differential forms and vector fields in a normal font (not
boldface). In each instance, you will be able to decide without trouble whether a
symbol describes a form or its covector part (or whether it means a vector field or
its vector part).

1We apply the language of the theory of “vector bundles”. We will not elaborate on these
here (but see for example [Con93], [Dar94], or [HR72]), although it would lead to a unification
of various ideas.

2Naturally, we say an r-form of class C0 is continuous.
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Addition

Ωr(X)× Ωr(X)→ Ωr(X) , (α, β) �→ α + β

and the exterior product

∧ : Ωr(X)× Ωs(X)→ Ωr+s(X) , (α, β) �→ α ∧ β

are performed pointwise:

(α + β)(x) := α(x) + β(x) and (α ∧ β)(x) := α(x) ∧ β(x) for x ∈ X .

These maps are obviously well defined.

3.1 Remarks (a) Ω0(X) = E(X).

(b) Ω1(X) = Ω(∞)(X), that is, the smooth 1-forms of X are C∞ Pfaff forms on X .

(c) Ωr(X) = {0} for r > m.

(d) Ωr(X) for 0 ≤ r ≤ m is an infinite-dimensional real vector space and a free
E(X)-module of dimension

(
m
r

)
(with respect to pointwise multiplication). A

module basis for Ωr(X) is given by{
dx(j) := dxj1 ∧ · · · ∧ dxjm ; (j) ∈ Jr

}
. (3.5)

Proof Because of (a) and the canonical identification of R with the subring3 R1 of
E(X), we have the relation α ∧ β = αβ for α ∈ R and β ∈ Ω(X). The first statement
then follows immediately from Remark 2.2(a) and Example I.12.3(e).

According to Remark VIII.3.3, (dx1(x), . . . , dxm(x)) is the basis dual to the canon-
ical basis ((e1)x, . . . , (em)x) of TxX. Then the remaining claim follows from Proposi-
tion 2.3. �

(e) An r-form α on X belongs to the class Ck if and only if every r-tuple v1, . . . , vr

in Vk(X) satisfies
α(v1, . . . , vr) ∈ Ck(X) . (3.6)

This is the case if and only if the coefficients a(j) of the canonical basis represen-
tation4

α =
∑

(j)∈Jr

a(j)dx(j) (3.7)

satisfy the relation
a(j) ∈ Ck(X) for (j) ∈ Jr . (3.8)

31(x) = 1 for x ∈ X.
4It follows from Proposition 2.3, as in the proof of (d), that (3.5) is a basis of the RX -module

of all r-forms on X.
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Proof When α belongs to the class Ck, it follows easily from (3.2) and Corollary VII.4.7
that (3.6) is true. Then because (2.4) implies

a(j) = α(ej1 , . . . , ejr ) , (3.9)

(3.8) follows from (3.6). If (3.8) is satisfied, we conclude from (3.7) and the constancy of
the basis forms dx(j) that α belongs to the class Ck. �

(f) The exterior product5 is bilinear, associative, and graded anticommutative.
Therefore

Ω(X) :=
⊕
r≥0

Ωr(X)

is an (infinite-dimensional) associative, graded anticommutative algebra (with re-
spect to the product ∧ ). Also Ω(X) is a free E(X)-module of dimension 2m (with
respect to pointwise multiplication); we call it the module of differential forms
on X .
Proof These are simple consequences of Theorem 2.7 and (d). �

(g) Every α ∈ Ωr(X) is an alternating r-form on V(X).
Proof This follows immediately from the definition (3.3). �

(h) (regularity) For k ∈ N, let Ωr
(k)(X) be the set of r-forms of class Ck on X. Then

the previous statements hold analogously for Ωr
(k)(X) when E(X) is replaced everywhere

by Ck(X). �

In the following, we will generally not state that the coefficients a(j) of the
canonical basis representation (3.7) of α ∈ Ωr(X) belong to E(X). This will be
deemed self-evident.

3.2 Examples (a) As we already know, every Pfaff Form α ∈ Ω1(X) has the
canonical basis representation

α =
m∑

j=1

aj dxj .

(b) For α ∈ Ωm−1(X), the basis representation has the form

α =
m∑

j=1

(−1)j−1aj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm .

(c) In the case m = 3, any α ∈ Ω2(X) has the basis representation6

α = a1 dx2 ∧ dx3 + a2 dx3 ∧ dx1 + a3 dx1 ∧ dx2 .

Proof Because dx3 ∧ dx2 = −dx2 ∧ dx3, this follows from (b). �

5Sometimes we say wedge product instead of exterior product.
6Note the cyclic permutation of the indices.
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(d) Every α ∈ Ωm(X) has the form a dx1 ∧ · · · ∧ dxm with a ∈ E(X).

(e) For m = 3, the wedge product of

α = a1 dx1 + a2 dx2 + a3 dx3 and β = b1 dx1 + b2 dx2 + b3 dx3

is
α ∧ β = (a2b3 − a3b2) dx2 ∧ dx3 + (a3b1 − a1b3) dx3 ∧ dx1

+ (a1b2 − a2b1) dx1 ∧ dx2 .

Proof This follows from Remark 3.1(f). �

Pull backs

Let Y be open in Rn and ϕ ∈ C∞(X, Y ). In a generalization of the pull back of
Pfaff forms, we introduce the pull back of differential forms by ϕ. It is a map

ϕ∗ : Ω(Y ) → Ω(X) (3.10)

defined by

(ϕ∗β)(x) := (Txϕ)∗β
(
ϕ(x)

)
for x ∈ X and β ∈ Ω(Y ) . (3.11)

If β ∈ Ωr(Y ), then, because Txϕ ∈ L(TxX, Tϕ(x)Y ) and by Remark 2.9(a),
both (Txϕ)∗β

(
ϕ(x)

)
and β

(
ϕ(x)

)
∈ ∧r

T ∗
ϕ(x)Y lie in

∧r
T ∗

x X . From Txϕ =(
ϕ(x), ∂ϕ(x)

)
and

∂ϕ ∈ C∞(
X,L(Rm, Rn)

)
and also because (3.4) implies

ϕ∗β(v1, . . . , vr) = (β ◦ ϕ)
(
(∂ϕ)v1, . . . , (∂ϕ)vr

)
for v1, . . . , vr ∈ V(X) ,

we see by Remark 3.1(e) that ϕ∗β belongs to Ωr(X). Therefore (3.10) is well
defined through (3.11).

3.3 Remarks (a) The map (3.10) is R-linear and satisfies

(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗ and (idX)∗ = idΩ(X) ,

that is, the pull back operates contravariantly. It is also compatible with the
exterior product, that is,

ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β for α, β ∈ Ω(Y ) .

Therefore ϕ∗ is an algebra homomorphism from Ω(Y ) to Ω(X).
Proof This follows from Remarks 2.9 and the chain rule given in Remark VII.10.2(b). �

(b) (regularity) The pull back can also be naturally defined for ϕ ∈ Ck+1(X, Y ). If
1 ≤ r ≤ m, then an r-form of class Ck+1 generally becomes an r-form only of class Ck,
while an r-form of class Ck remains in the same class. In the case r = 0, the pull back
preserves the regularity. �
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3.4 Examples Let (x1, . . . , xm) and (y1, . . . , yn) be the Euclidean coordinates of
X and Y , respectively.

(a) ϕ∗ dyj = dϕj =
m∑

k=1

∂kϕj dxk and 1 ≤ j ≤ n .

Proof See Example VIII.3.14(a). �

(b) For
β =

∑
(j)∈Jr

b(j) dy(j) ∈ Ωr(Y ) ,

we have
ϕ∗β =

∑
(j)∈Jr

(ϕ∗b(j)) dϕ(j) .

Proof This is a consequence of (a) and Remark 3.3(a). �

(c) In the case m = n, we have

ϕ∗(dy1 ∧ · · · ∧ dym) = dϕ1 ∧ · · · ∧ dϕm = (det ∂ϕ) dx1 ∧ · · · ∧ dxm .

Proof The first equality follows from (b). Because det Txϕ = det ∂ϕ(x) for x ∈ X, the
claim follows from Proposition 2.10 and the constancy of the basis form dx1 ∧ · · · ∧ dxm

on X. �

(d) Let m = 2 and n = 3, and let (u, v) and (x, y, z) be respective Euclidean
coordinates of X and Y . Then7

ϕ∗(a dy ∧ dz + b dz ∧ dx + c dx ∧ dy)

=
[
a ◦ ϕ

∂(ϕ2, ϕ3)
∂(u, v)

+ b ◦ ϕ
∂(ϕ3, ϕ1)
∂(u, v)

+ c ◦ ϕ
∂(ϕ1, ϕ2)
∂(u, v)

]
du ∧ dv .

Proof Because dϕj = ϕj
u du + ϕj

v dv for 1 ≤ j ≤ 3 and because

∂(ϕ2, ϕ3)

∂(u, v)
= det

[
ϕ2

u ϕ2
v

ϕ3
u ϕ3

v

]
= ϕ2

uϕ3
v − ϕ3

uϕ2
v

etc., the claim follows from (b) and Example 3.2(e). �

(e) (plane polar coordinates) Let

f2 : R2 → R2 , (r, ϕ) �→ (x, y) := (r cosϕ, r sin ϕ)

be the polar coordinate map. Then

f∗
2 (dx ∧ dy) = r dr ∧ dϕ .

Proof This follows from (c) and Example X.8.7. �

7See Remark VII.7.9.
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(f) (spherical coordinates) For the spherical coordinate map

f3 : R3 → R3 , (r, ϕ, ϑ) �→ (x, y, z) := (r cosϕ sin ϑ, r sin ϕ sinϑ, r cosϑ) ,

we have
f∗
3 (dx ∧ dy ∧ dz) = −r2 sin ϑ dr ∧ dϕ ∧ dϑ .

Proof Lemma X.8.8 and (c). �

(g) (m-dimensional polar coordinates) Let

fm : Rm → Rm , (r, ϕ, ϑ1, . . . , ϑm−2) �→ (x1, . . . , xm)

be the m-dimensional polar coordinate map (X.8.17). Then

f∗
m dx1 ∧ · · · ∧ dxm = (−1)mrm−1wm(ϑ) dr ∧ dϕ ∧ dϑ1 ∧ · · · ∧ dϑm−2 ,

where wm(ϑ) := sinϑ1 sin2 ϑ2 · · · sinm−2 ϑm−2.
Proof This follows from Lemma X.8.8. �

(h) (cylindrical coordinates) Let

f : R3 → R3 , (r, ϕ, z) �→ (x, y, z) := (r cosϕ, r sin ϕ, z)

be the cylindrical coordinate map. Then

f∗(dx ∧ dy ∧ dz) = r dr ∧ dϕ ∧ dz .

Proof Example VII.9.11(c) and (c). �

(i) If ϕ is a constant map, then ϕ∗α = 0 for α ∈ Ωr(Y ) with r ≥ 1.
Proof Because dϕj = 0 for 1 ≤ j ≤ n, the claim is a consequence of (b). �

(j) Let m ≤ n, and let i : Rm ↪→ Rn

be the natural embedding that identi-
fies Rm with Rm × {0} ⊂ Rn. Also let
Y be open in Rn with

Y ∩
(
Rm × {0}

)
⊃ i(X) .

Note that X is an m-dimensional sub-
manifold of Y .

For α ∈ Ωr(Y ), define α |X , the restriction of α to X , by

(α |X)(x) := α(x, 0) | (TxX)r for x ∈ X .

In other words, when α has the basis representation

α =
∑

(j)∈Jn
r

a(j) dx(j) ,
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it follows that

(α |X)(x) =
∑

(j)∈Jn
r

jr≤m

a(j)(x, 0) dx(j) for x ∈ X .

Then i∗α = α |X .
Proof Because of the linearity of i∗ and that of the restriction map

Ωr(Y )→ Ωr(X) , α �→ α |X ,

it suffices to consider the case α = a dx(j) for (j) ∈ Jn
r . Then it follows from (b) that

i∗α = (i∗a) di(j) .

By (i∗a)(x) = a(x, 0) and ik = prk i = 0 for m + 1 ≤ k ≤ n (where prk : Rn → R is the
canonical projection), we have di(j) = 0 for jr > m. For jr ≤ m, we find di(j) = dx(j).
Now the claim is obvious. �

(k) Let (q, p) ∈ Rm × Rm = R2m be any point of R2m. We define the (standard)
symplectic form on R2m by

σ :=
m∑

j=1

dpj ∧ dqj .

We denote by Sp(2m) the set of all S ∈ L(R2m) with S∗σ = σ. Then Sp(2m)
is a subgroup of Laut(R2m), the symplectic group. Any S ∈ Sp(2m) satisfies
det(S) = 1.
Proof We define α ∈ Ω2m(R2m) by α := σ ∧ · · · ∧ σ (with m factors). Then there is an
a ∈ R× such that α = aω, where ω denotes the volume element of R2m. Suppose now
S ∈ Sp(2m). Then it follows from S∗σ = σ and Remark 3.3(a) that

S∗α = S∗σ ∧ · · · ∧ S∗σ = σ ∧ · · · ∧ σ = α .

Because S∗α = S∗(aω) = aS∗ω and from (c), we find

α = S∗α = adet(S)ω = det(S)α ,

and therefore det(S) = 1. We leave the proof that Sp(2m) is a subgroup of Laut(R2m)
to you as an exercise. �

The exterior derivative

In Section VIII.3, we saw that the differential df of a function f ∈ E(X) = Ω0(X)
is a smooth Pfaff form and therefore an element of Ω1(X). Obviously d : Ω0(X)→
Ω1(X) is linear. In addition, we know from Proposition VIII.3.12 that d commutes
with pull backs. The following theorem shows that d can be extended to an R-
linear map from the module Ω(X) of differential forms to itself; this map likewise
commutes with pull backs.
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3.5 Theorem There is exactly one map

d : Ω(X)→ Ω(X) ,

the exterior derivative,8 with the properties (i)–(iv):

(i) d is R-linear and maps Ωr(X) to Ωr+1(X).

(ii) d satisfies the product rule

d(α ∧ β) = dα ∧ β + (−1)rα ∧ dβ for α ∈ Ωr(X) and β ∈ Ω(X) .

(iii) d2 := d ◦ d = 0.

(iv) The exterior derivative df for f ∈ E(X) equals the differential of f .

If Y is open in Rn and ϕ ∈ C∞(X, Y ), then

d ◦ ϕ∗ = ϕ∗ ◦ d , (3.12)

that is, the exterior derivative commutes with the pull back.

Proof (a) (uniqueness) For

α =
∑

(j)∈Jr

a(j) dx(j) ∈ Ωr(X) , (3.13)

it follows easily from (i)–(iv) that

dα =
∑

(j)∈Jr

da(j) ∧ dx(j) ∈ Ωr+1(X) . (3.14)

This implies that at most one map can satisfy the properties (i)–(iv).

(b) (existence) For α ∈ Ωr(X) expanded as in (3.13), we defined dα by (3.14).
Then d obviously satisfies the demands (i) and (iv).

To show (ii), realize that (i) means we need only consider the case α = a dx(j)

and β = b dx(k) with (j) ∈ Jr and (k) ∈ Js. Then it follows from (3.14), the prop-
erties of the exterior product, and the ordinary product rule of Corollary VII.3.8
that

d(α ∧ β) = d(ab dx(j) ∧ dx(k)) = d(ab) ∧ dx(j) ∧ dx(k)

= da ∧ dx(j) ∧ b dx(k) + (−1)ra dx(j) ∧ db ∧ dx(k)

= d(a dx(j)) ∧ b dx(k) + (−1)ra dx(j) ∧ d(b dx(k))
= dα ∧ β + (−1)rα ∧ dβ ,

as desired.
8Sometimes the exterior derivative is called the Cartan derivative.
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For the proof of (iii), we can use the linearity of d to again restrict to the
case α = a dx(j) with (j) ∈ Jr. Then it follows from (3.14) and (ii) that

d(dα) = d(da ∧ dx(j)) = d2a ∧ dx(j) − da ∧ d(dx(j)) .

By successive application of the product rule (ii) to d(dx(j)), we see that the claim
will follow if we can show d2a = 0 for a ∈ Ω0(X) = E(X).

Suppose therefore a ∈ E(X). Then we may use (i), (ii), and (iv) to derive
the relation

d(da) = d
( m∑

k=1

∂ka dxk
)

=
m∑

k=1

d(∂ka) ∧ dxk

=
m∑

j,k=1

∂j∂ka dxj ∧ dxk =
∑

1≤j<k≤m

(∂j∂ka− ∂k∂ja) dxj ∧ dxk = 0 ,

where the last equality follows from Schwarz’s theorem (Corollary VII.5.5). There-
fore (iii) is satisfied.

(c) Suppose ϕ ∈ C∞(X, Y ) and (j) ∈ Jn
r . Let β = b dy(j) ∈ Ωr(Y ). Then

according to Example 3.4(b), we have

ϕ∗β = ϕ∗b dϕ(j) ∈ Ωr(X) . (3.15)

From (3.14) and the property of the pull back explained in Remark 3.3(a), we get

ϕ∗ dβ = ϕ∗(db ∧ dy(j)) = ϕ∗ db ∧ ϕ∗ dy(j) = ϕ∗ db ∧ dϕ(j) .

Proposition VIII.3.12 implies ϕ∗ db = d(ϕ∗b). Therefore we find using (i), (iii),
and (3.15) that

ϕ∗ dβ = d(ϕ∗b) ∧ dϕ(j) = d(ϕ∗b) ∧ dϕ(j) + (−1)1ϕ∗b ∧ d(dϕ(j))

= d(ϕ∗b ∧ dϕ(j)) = d(ϕ∗β) .

Now (3.12) follows from the linearity of ϕ∗ and d and from Remark 3.1(e). �

3.6 Remarks (a) For α =
∑

(j)∈Jr
a(j) dx(j) ∈ Ωr(X), we have

dα =
∑

(j)∈Jr

da(j) ∧ dx(j) .

Proof This is the statement (3.13), (3.14). �
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(b) For ϕ ∈ C∞(X, Y ) and r ∈ N, the diagram

Ωr(Y ) Ωr+1(Y )

Ωr(X) Ωr+1(X)

ϕ∗ ϕ∗

d

d

�

�
� �

commutes.

Proof This is (3.12). �

(c) (regularity) If α is an r-form of class Ck+1, then dα is obviously an (r + 1)-form of
class Ck. However, for α = a dx(j) with (j) ∈ Jm

r , we have

dα = da ∧ dx(j) =
∑

i

∂ia dxi ∧ dx(j) ,

where we only sum over the indices i ∈ {1, . . . , m} with i 	= jk for 1 ≤ k ≤ r, because
dxi ∧ dx(j) = 0 is true of the remaining indices. Hence there is an r-form α of class Ck

for which dα also belongs to the class Ck. �

3.7 Examples (a) For α =
∑m

j=1 aj dxj ∈ Ω1(X), we have

dα =
∑

1≤j<k≤m

(∂jak − ∂kaj) dxj ∧ dxk .

(b) For α =
∑m

j=1(−1)j−1aj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm ∈ Ωm−1(X), we get

dα =
( m∑

j=1

∂jaj

)
dx1 ∧ · · · ∧ dxm .

(c) dα = 0 for α ∈ Ωm(X). �

The Poincaré lemma

A differential form α ∈ Ω(X) is said to be closed if dα = 0. We say it is exact if
there an antiderivative β ∈ Ω(X) such that9 dβ = α.

3.8 Remarks and examples (a) Example 3.7(a) says α =
∑m

j=1 aj dxj is closed
if and only if ∂jak = ∂kaj for 1 ≤ j, k ≤ m. Therefore this extended notion of
closedness reduces to the definition of Section VIII.3 in the case of Pfaff forms.

9Saying that a form is exact implies that it has degree at least 1.
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(b) Every exact form is closed.
Proof This follows from d2 = 0. �

(c) Every m-form on X is closed.
Proof Example 3.7(c). �

(d) (regularity) The definition of closed is clearly meaningful for forms of class C1; the
notion of exact makes sense for continuous differential forms. �

In Theorem VIII.3.8, we have seen that every closed Pfaff form is exact if X
is star shaped. In the following, we will show that this “lemma” of Poincaré is
also true in the general case.

Let I := [0, 1], and let t be a generic point in I. For � ∈ {0, 1}, the injection

i	 : X → I ×X , x �→ (�, x)

is smooth. Obviously i0 and i1 identify the X with the “bottom” {0}×X and the
“top” {1} ×X , respectively, of the cylinder I ×X over X . Therefore10

i∗	 : Ωr(I ×X)→ Ωr(X)

is defined. For α ∈ Ω(I × X) the form i∗0α [or i∗1α] is a restriction of α to X .
It is obtained by replacing (t, x) by (0, x) [or (1, x)] in the coefficients of the
canonical basis representation of α, and by removing all terms in which dt occurs
(see Example 3.4(j)).

We define a linear map

K : Ωr+1(I ×X)→ Ωr(X)

by

Kα :=
∑

(j)∈Jr

∫ 1

0

a(j)(t, · ) dt dx(j) (3.16)

for
α =

∑
(j)∈Jr

a(j) dt ∧ dx(j) +
∑

(k)∈Jr+1

b(k) dx(k) . (3.17)

3.9 Lemma K is well defined and satisfies

K ◦ d + d ◦K = i∗1 − i∗0 . (3.18)

Proof The theorem about the differentiability of parameter-dependent integrals
(Theorem X.3.18) implies easily that Kα, defined for the α of (3.17) by (3.16),
belongs to Ωr(X). Clearly the map K is also linear.

10Because the partial derivative ∂t is defined on I, it is clear how differential forms are defined
on I × X. Note that I × X is a manifold with boundary, and see Section 4.
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To show (3.18), it suffices to consider the cases α = a dt∧dx(j) and α = b dx(k)

with (j) ∈ Jr and (k) ∈ Jr+1.
(i) Let α = a dt ∧ dx(j). Then i∗0α = i∗1α = 0. We also get

K dα = K(da ∧ dt ∧ dx(j)) = K
( m∑

	=1

∂x�a dx	 ∧ dt ∧ dx(j)
)

= −
m∑

	=1

∫ 1

0

∂x�a(t, · ) dt dx	 ∧ dx(j) ,

where we have used dt∧ dt∧ dx(j) = 0. On the other hand, Theorem X.3.18 gives

d(Kα) = d
(∫ 1

0

a(t, · ) dt dx(j)
)

=
m∑

	=1

∫ 1

0

∂x�a(t, · ) dt dx	 ∧ dx(j) .

This proves the claim in this case.
(ii) Let α = b dx(k) with (k) ∈ Jr+1. Then Kα = 0, and therefore dKα = 0.

Also, we find

dα = ∂tb dt ∧ dx(k) +
m∑

	=1

∂x�b dx	 ∧ dx(k)

and

Kdα =
∫ 1

0

∂tb(τ, · ) dτ dx(k) =
(
b(1, · )− b(0, · )

)
dx(k) = i∗1α− i∗0α ,

so the claim holds in this case also. �

Let M and N be manifolds. Two maps f0, f1 ∈ C∞(M, N) are said to be
homotopic in N if there is a map11 h ∈ C∞(I ×M, N), a homotopy, such that
h(j, · ) = fj for j = 0, 1. A map f ∈ C∞(M, N) is null-homotopic in N if it
is homotopic in N to a constant map. Finally, we say M is contractible if the
identity map from M to M is null-homotopic.

3.10 Remarks (a) The statement “f1 is homotopic in N to f2” defines an equiv-
alence relation in C∞(M, N) (or, more generally, in Ck(M, N)).

(b) The concept of a (continuous) homotopy obviously generalizes the idea of a
loop homotopy (see Section VIII.4).

(c) Every star shaped open set is contractible.
Proof Let X be star shaped with respect to x0 ∈ X. Then

h : I ×X → X , (t, x) �→ x0 + t(x− x0)

is obvious a homotopy with h(0, · ) = x0 and h(1, · ) = idX . �

11Note that I × M is a manifold with boundary.
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(d) (regularity) For k ∈ N×, the definitions above are meaningful for Ck manifolds M
and N if all the functions that appear belong to the class Ck. They are then also mean-
ingful if M and N are topological spaces and all functions considered are continuous. �

We can now easily prove the generalized Poincaré lemma.

3.11 Theorem (Poincaré lemma) If X is contractible, then every closed differential
form on X is exact.

Proof Suppose α ∈ Ωr+1(X) is closed. Because X is contractible, there exists
an h ∈ C∞(I ×X, X) such that h(1, · ) = idX and h(0, · ) = p for some p ∈ X .
Because α is closed, h∗α ∈ Ωr+1(I × X) is also closed because d ◦ h∗ = h∗ ◦ d.
Therefore it follows from Lemma 3.9 that

d(Kh∗α) = i∗1h
∗α− i∗0h

∗α = (h ◦ i1)∗α = α .

This is because h◦i1 = idX and because i∗0h
∗α = (h◦i0)∗α is a null form according

to Example 3.4(i). �

We should point out that the proof of the Poincaré lemma gives an explicit
procedure for constructing an antiderivative of a given closed differential form.
The situation is particularly simple when X is star shaped, where we can assume
without loss of generality (by applying a suitable translation) that X is star shaped
with respect to 0.

3.12 Corollary Suppose X is star shaped with respect to 0. Suppose with r ∈ N×

that

α =
∑

(j)∈Jr

a(j) dx(j) ∈ Ωr(X)

is closed. Also let

β :=
∑

(j)∈Jr

r∑
k=1

(−1)k−1

∫ 1

0

tr−1a(j)(tx) dt xjk dxj1 ∧ · · · ∧ d̂xjk ∧ · · · ∧ dxjr . (3.19)

Then β belongs to Ωr−1(X), and dβ = α.

Proof In this case, h(t, x) := tx for (t, x) ∈ I × X defines a “contraction of X
to 0”. From dhj = xj dt + t dxj and Example 3.4(b), it follows that

h∗α(t, x) =
∑

(j)∈Jr

a(j)(tx)tr dx(j)

+
∑

(j)∈Jr

r∑
k=1

(−1)k−1a(j)(tx)tr−1xjk dt ∧ dxj1 ∧ · · · ∧ d̂xjk ∧ · · · ∧ dxjr ,



XI.3 The local theory of differential forms 299

because those terms in which dt occurs at least twice vanish. From (3.16) and
(3.17), it follows that β = Kh∗α, and the claim now follows from the proof of the
Poincaré lemma. �

3.13 Remarks (a) In the case r = 1, that is, when α is a Pfaff form, the formula
for β is the case as the one in (VIII.3.4).

(b) Let m = 3 and

α = a1 dx2 ∧ dx3 + a2 dx3 ∧ dx1 + a3 dx1 ∧ dx2 ∈ Ω2(X) .

Then the problem of finding a β =
∑3

j=1 bj dxj with dβ = α is equivalent to the
problem of finding three functions b1, b2, b3 ∈ E(X) that satisfy the system

∂1b2 − ∂2b1 = a3 ,

∂2b3 − ∂3b2 = a1 ,

∂3b1 − ∂1b3 = a2

(3.20)

of partial differential equations in X . Then, for given aj ∈ E(X),

∂1a1 + ∂2a2 + ∂3a3 = 0 (3.21)

is required for (3.20) to have a solution. If X is contractible (for example X = R3),
then (3.21) is also sufficient.

Proof By Example 3.7(a), (3.20) is equivalent to dβ = α. Example 3.7(b) shows that
(3.21) is equivalent to dα = 0. Now the claim follows from d2 = 0 and the Poincaré
lemma. �

From Corollary 3.12, it follows in particular that in the case of star shaped
domains, (3.20) can be solved by quadrature using the formula (3.19). In the
general case, the equation dβ = α can clearly also be reformulated as an equivalent
system of partial differential equations.

Of course, (3.20) does not have a unique solution, because a closed form can
be added to β, that is, one can add any solution (b1, b2, b3) of the homogeneous
system obtained by zeroing the right side of (3.20).

Tensors

Let r, s ∈ N. For x ∈ X , we set

T r
s (TxX) := {x} × T r

s (Rm) (3.22)
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and call γ ∈ T r
s (TxX) an r-contravariant and s-covariant tensor, or tensor of

type (r, s) on TxX . The bundle of (r, s)-tensors on X is defined by

T r
s (X) :=

⋃
x∈X

T r
s (TxX) = X × T r

s (Rm) .

A map
γ : X → T r

s (X) with γ(x) ∈ T r
s (TxX) ,

that is, a section of the tensor bundle T r
s (X), is called an (r, s)-tensor (field) or

tensor of type (r, s) on X . By (3.22), every (r, s)-tensor γ on X has the unique
representation

γ(x) =
(
x, γ(x)

)
for x ∈ X ,

with the principal part12

γ : X → T r
s (Rm) .

Let k ∈ N ∪ {∞}. An (r, s)-tensor γ belongs to the class Ck (or is k-times
continuously differentiable or smooth if k = ∞) if this is true of its principal part,
that is, if13

γ ∈ Ck
(
X,Lr+s(Rm, R)

)
.

We denote the set of all smooth (r, s)-tensors on X by

T r
s (X) .

If α1, . . . ,αr are Pfaff forms and v1, . . . ,vs are vector fields on X with correspond-
ing principal parts α1, . . . , αr and v1, . . . , vs, then we will set

γ(α1, . . . ,αr, v1, . . . ,vs)(x) := γ(x)
(
α1(x), . . . , αr(x), v1(x), . . . , vs(x)

)
for x ∈ X . (This is clearly consistent with (3.4).) For these reasons, we can use
the same notational conventions as before with vector fields and differential forms,
that is, we identify tensors with their principal parts, and from now on use the
ordinary font instead of boldface.

Addition

T r
s (X)× T r

s (X)→ T r
s (X) , (γ, δ) �→ γ + δ ,

multiplication by functions

E(X)× T r
s (X)→ T r

s (X), , (f, γ) �→ fγ

and the tensor product

T r1
s1

(X)× T r2
s2

(X)→ T r1+r2
s1+s2

(X) , (γ, δ) �→ γ ⊗ δ (3.23)

12In the case s = 0, we called this the vector part, and for r = 0, we called it the covector
part. A tensor combines vectors and covectors, so such terminology is no longer possible.

13As usual, we identify TxRm and T ∗
x Rm with Rm.
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will also be defined pointwise:

(γ + δ)(x) := γ(x) + δ(x) , (fγ)(x) := f(x)γ(x) , (γ ⊗ δ)(x) := γ(x) ⊗ δ(x) .

The following remarks are simple consequences of Remarks 2.20 and the chain
rule. We leave the detailed proofs to you as exercises.

3.14 Remarks (a) T 1
0 (X) = V(X) and T 0

1 (X) = Ω1(X). Also

T 0
2 (X) = C∞(

X,L2(Rm)
)

,

where we have used the canonical identification of a tensor with its principal part.

(b) The tensor product is E(X)-bilinear and associative.

(c) T r
s (X) is an infinite-dimensional R-vector space and an mr+s-dimensional

E(X)-module. With the canonical basis (∂/∂x1, . . . , ∂/∂xm) of Rm,{ ∂

∂xj1
⊗ · · · ⊗ ∂

∂xjr
⊗ dxk1 ⊗ · · · ⊗ dxks ; ji, ki ∈ {1, . . . , m}

}
(3.24)

is a module basis of T r
s (X).

(d) An (r, s)-tensor γ on X belongs to T r
s (X) if and only if every r-tuple α1, . . . , αr

in Ω1(X) and every s-tuple v1, . . . , vs in V(X) satisfy

γ(α1, . . . , αr, v1, . . . , vs) ∈ E(X) .

This is the case if and only if the coefficients of γ in basis (3.24) belong to E(X).

(e) (regularity) The definitions and claims above have obvious analogues which remain
true for tensors of class Ck. �

Exercises

1 Let α, β ∈ Ω(R4) be given by

α := dx1 + x2 dx2 and β := sin(x2) dx1 ∧ dx3 + cos(x3) dx2 ∧ dx4 ,

and define h ∈ C∞(R4, R4) by h(x) := (x1, x2, x3x4, x4).

Calculate:

(i) γ := α ∧ β;

(ii) h∗γ;

(iii) h∗γ(0)(e1, e2, e3 + e4), where (e1, e2, e3, e4) is the standard basis in R4;

(iv) dα, dβ, dγ, d(h∗γ).

2 Let f3 : R3 → R3, (r, ϕ, ϑ) �→ (x, y, z) be the spherical coordinate map.
Calculate

(a) f∗
3 dx, f∗

3 dy, f∗
3 dz;



302 XI Manifolds and differential forms

(b) f∗
3 (dy ∧ dz);

(c) f∗
3 dx ∧ f∗

3 (dy ∧ dz).

3 A simple thermodynamic system (for example, an ideal gas) is characterized by its
volume V and its temperature T (here V, T ∈ R). The state of such a system is then
described by the pressure p := p(V,T ) and the internal energy E := E(V, T ). By the
second law of thermodynamics, the system has another state function S := S(V, T ), the
entropy, whose differential is given by

dS :=
dE + p dV

T
for T > 0 .

Show the following facts:

(a) E and p satisfy the relation

∂E

∂V
= T

∂p

∂T
− p .

(b) The internal energy of an ideal gas, which satisfies the equation of state pV = RT
with R ∈ R the (universal gas) constant, is independent of the volume, that is, E = E(T ).

(c) For van der Waals gas, which has the equation of state(
p +

a

V 2

)
(V − b) = c T for a, b, c ∈ R× , (3.25)

the internal energy does depend on volume.

(Hints: (a) d2 = 0. (c) (3.25) =⇒ T ∂p/∂T = p + a/V 2.)

Remark In the physics literature, dα is often written δα when the 1-form α is not exact.

4 An r-form α ∈ Ωr(X) is said to be decomposable if there are α1, . . . , αr ∈ Ω1(X) such
that

α = α1 ∧ α2 ∧ · · · ∧ αr .

Let α, β ∈ Ωr(X) be decomposable. Calculate (α + β) ∧ (α + β).

5 Suppose α =
∑

j≤k ajk dxj ∧ dxk ∈ Ω2(X). Show that α is decomposable if and only
if

aijak� + ajkai� + akiaj� = 0 for 1 ≤ i, j, k, � ≤ n ,

where ajk := −akj for j ≥ k.

6 Let α =
∑

i≤j aij dxi ∧ dxj ∈ Ω2(X). Show

dα =
∑

i<j<k

(∂aij

∂xk
+

∂ajk

∂xi
+

∂aki

∂xj

)
dxi ∧ dxj ∧ dxk .

7 Calculate the exterior derivatives of

(a) dα ∧ β − α ∧ dβ and

(b) dα ∧ β ∧ γ + α ∧ dβ ∧ γ + α ∧ β ∧ dγ, where in (b) α and β are of even degree.

8 Find dα if α :=
∑m

j=1(−1)j−1 xj/|x|m dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm ∈ Ωm−1
(
Rm

∖
{0}

)
.
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9 Let α := 2xz dy ∧ dz + dz ∧ dx − (z2 + ex) dx ∧ dy ∈ Ω2(R3). Show that α is exact
and determine an antiderivative.

10 Suppose ω ∈ Ω2(X) is nondegenerate. Show that

Θω : V(X)→ Ω1(X) , v �→ ω(v, · )

is an E(X)-module isomorphism.

11 Prove these three statements:

(a) The symplectic form σ ∈ Ω2(R2m) is nondegenerate and closed.

(b) The m-fold product σm := σ ∧ · · · ∧ σ ∈ Ω2m(R2m) satisfies σm 	= 0.

(c) According to Exercise 10 and (b) the symplectic gradient sgrad f := Θ−1
σ df ∈ V(R2m)

is defined for every f ∈ E(R2m). Calculate sgrad f in the coordinates (q, p) ∈ Rm × Rm.

12 If σ is the symplectic form on R2m, then

{ · , · } : E(R2m)× E(R2m)→ E(R2m) , (f, g) �→ σ(sgrad f, sgrad g)

is called the Poisson bracket.

For f, g, h ∈ E(R2m) and c ∈ R prove

(i) in local coordinates (q1, . . . , qm, p1, . . . , pm), the Poisson bracket reads

{f, g} =

m∑
j=1

( ∂f

∂pj

∂g

∂qj
− ∂f

∂qj

∂g

∂pj

)
;

(ii) {f, c g + h} = c{f, g}+ {f, h};
(iii) {f, g} = −{g, f};
(iv)

{
f, {g, h}

}
+

{
g, {h, f}

}
+

{
h, {f, g}

}
= 0 (Jacobi identity);

(v) {f, gh} = g{f, h}+ h{f, g};
(vi) sgrad{f, g} = (sgrad f | sgrad g)R2m .

13 Show that the Poisson bracket is related to the symplectic form σ on R2m by the
relation

df ∧ dg ∧ σm−1 =
1

m
{f, g}σm .



4 Vector fields and differential forms

This section is devoted to the global theory of differential forms, that is, to dif-
ferential forms on manifolds. The first part, which is essentially a simple transfer
of the local theory, requires us to focus on the problem of regularity. With help
from a theorem about partitions of unity, we can then extend the important con-
cept of the exterior derivative to the case of manifolds and show that the rules we
developed for the local theory still apply.

The global theory brings up an important new idea, the orientability of a
manifold. We present various ways to characterize this central concept and con-
sider numerous examples. To prepare for the theory of integration on manifolds, we
give explicit representations of the volume elements of many important manifolds.

In this entire section,

• M is an m-dimensional, and N is an n-dimensional manifold;

• r ∈ N.

Vector fields

By a vector field v on M , we mean a map

v : M → TM with v(p) ∈ TpM for p ∈M ,

that is, a section of the tangent bundle. If v is a vector field on M , then we
can “transplant” it using a diffeomorphism from M to N . So we define for ϕ ∈
Diff1(M, N) the push forward ϕ∗v of v by ϕ by letting

Therefore ϕ∗v is a vector field on N . For functions on M , the push forward by a
bijection ψ : M → N is the assignment

ψ∗ : RM → RN , a �→ ψ∗a := a ◦ ψ−1 .

4.1 Remarks (a) For functions, the push forward ψ∗ is obviously the same as
the pull back ψ−1: ψ∗ = (ψ−1)∗. Note however that, in contrast to the pull back,
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the push forward is only defined for bijections. In particular, it must be true that
dim(M) = dim(N).1

(b) Let ϕ ∈ Diff1(M, N). Then

ϕ∗(a + b) = ϕ∗a + ϕ∗b , ϕ∗(v + w) = ϕ∗v + ϕ∗w ,

and
ϕ∗(av) = ϕ∗a ϕ∗v

for a, b ∈ RM and vector fields v and w on M .

(c) Let ϕ ∈ Diff(M, N) and ψ ∈ Diff(N, L), where L is another manifold. Then

(ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗ and (idM )∗ = idF(M) (4.1)

for F(M) := E(M) or F(M) := V(M). The rule (4.1) means that the push forward
operates covariantly.
Proof The statement is obvious for push forwards of functions. For vector fields, (4.1)
follows from the chain rule of Remark VII.10.9(b) and from Remark 1.14(c). �

Let k ∈ N ∪ {∞}. The vector field v on M belongs to the class Ck (that is,
it is k-times continuously differentiable, or smooth in case k = ∞) if every point p
of M has a chart (ϕ, U) around p such that2 ϕ∗v ∈ Vk

(
ϕ(U)

)
. We denote the set

of all vector fields on M of class Ck by Vk(M). For simplicity of notation, we set

V(M) := V∞(M) and E(M) := C∞(M) .

4.2 Remarks (a) The definition of Ck vector fields is coordinate-independent. If
v is a Ck vector field and (ψ, V ) is an arbitrary chart of M , then ψ∗v belongs to
the class Ck.
Proof Suppose therefore (ψ, V ) is a chart of M . Then we need to show that ψ∗v belongs
to the class Ck. Every q ∈ V has a chart (ϕ, U) of M around it such that ϕ∗v ∈ Vk

(
ϕ(U)

)
.

Then ψ∗v = (ψ ◦ ϕ−1)∗ϕ∗v follows from (4.1). Because

ψ ◦ ϕ−1 ∈ Diff
(
ϕ(U ∩ V ), ψ(U ∩ V )

)
and ϕ∗v ∈ Vk

(
ϕ(U)

)
, we find ψ∗v ∈ Vk

(
ψ(U ∩ V )

)
. Because this holds for every q ∈ V

and because differentiability is a local property, we get ψ∗v ∈ Vk
(
ψ(V )

)
. �

(b) The pointwise-defined operations

V(M)× V(M)→ V(M) , (v, w) �→ v + w

1See Exercise VII.10.9.
2See Section VIII.3. What was said there holds without change for open subsets of Hm as

well.
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and
E(M)× V(M)→ V(M) , (a, v) �→ av

make V(M) into an E(M)-module. In particular, E(M) and V(M) are (infinite-
dimensional) R-vector spaces.

If ϕ ∈ Diff(M, N), then ϕ∗ is a module isomorphism from E(M) to E(N) and
from V(M) to V(N).

Proof It follows from (4.1) that

idM = (ϕ−1 ◦ ϕ)∗ = (ϕ−1)∗ϕ∗ and idN = (ϕ ◦ ϕ−1)∗ = ϕ∗(ϕ
−1)∗ .

Therefore ϕ∗ is bijective, and ϕ−1
∗ = (ϕ−1)∗. The remaining claims are simple conse-

quences of Remark 4.1(b) and the properties of vector fields on open subsets of Hm (see
Section VIII.3). �

(c) Let X0 and X1 be open in Rm, and suppose ϕ ∈ Diff(X0, X1). Also denote
by Θj : V(Xj) → Ω1(Xj) for j = 0, 1 the canonical module isomorphism that was
defined in Remark VIII.3.3(g). Then

(ϕ−1)∗ ◦Θ0 = Θ1 ◦ ϕ∗ ,

that is, the diagram

V(X0) V(X1)

Ω1(X0) Ω1(X1)

Θ0 Θ1

ϕ∗

(ϕ−1)∗

�

�
� �

commutes.

(d) (regularity) Let k ∈ N. For ϕ ∈ Diffk+1(M, N) and 0 ≤ � ≤ k, the push forward ϕ∗
maps C�(M) to C�(N) and V�(M) to V�(N), but this statement (without the inequality)
does not hold for � = k + 1.

If M is a Ck+1 manifold, then the C�(M)-modules C�(M) and V�(M) are defined
for 0 ≤ � ≤ k; however3 the modules Ck+1(M) and Vk+1(M) are not.

Proof This is because the tangential “loses” one derivative. �

Local basis representation

Let (ϕ, U) be a chart of M around p. Then we denote by

∂j |p =
∂

∂xj

∣∣∣
p
∈ TpM for 1 ≤ j ≤ m

3except for trivial cases
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the basis vectors of TpM corresponding to the local coordinates ϕ = (x1, . . . , xm).
In other words, ∂j |p is the tangent vector on the coordinate path t �→ ϕ−1

(
ϕ(p) +

tej

)
at the point4 p, that is,

∂j |p := (Tpϕ)−1
(
ϕ(p), ej

)
for 1 ≤ j ≤ m , (4.2)

where (e1, . . . , em) is the canonical basis of Rm.

4.3 Remarks (a) Let iM : M ↪→ Rm, and let gϕ := iM ◦ ϕ−1 : ϕ(U) → Rm be
the parametrization belonging to ϕ. Then

(TpiM )∂j |p =
(
p, ∂jgϕ

(
ϕ(p)

))
∈ TpRm for 1 ≤ j ≤ m .

This means that, if we identify ∂j |p ∈ TpM with its image in TpRm under the
canonical injection

TpiM : TpM → TpRm ,

then we find ∂j |p =
(
p, ∂jgϕ

(
ϕ(p)

))
.

Proof From Example VII.10.9(b) and Remark 1.14(c), we get

Tϕ(p)gϕ = Tϕ(p)(iM ◦ ϕ−1) = TpiM ◦ Tϕ(p)(ϕ
−1) = TpiM ◦ (Tpϕ)−1 .

Then it follows from (4.2) that

(TpiM )∂j |p = (Tϕ(p)gϕ)
(
ϕ(p), ej

)
=

(
p, ∂gϕ

(
ϕ(p)

)
ej

)
=

(
p, ∂jgϕ

(
ϕ(p)

))
. �

(b) The maps

∂j =
∂

∂xj
: U → TU , p �→ ∂j |p for 1 ≤ j ≤ m

are smooth vector fields on U .
Proof This is clear because

(ϕ∗∂j)
(
ϕ(p)

)
= (Tpϕ)(Tpϕ)−1(ϕ(p), ej

)
=

(
ϕ(p), ej

)
for 1 ≤ j ≤ m

for p ∈ U . �

4If p is in the interior of M . If p is a boundary point, we must make ϕ a submanifold chart
of Rm around p for M .
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(c) For p ∈ U , we have a basis (∂1|p, . . . , ∂m|p) of TpM and a module basis
(∂1, . . . , ∂m) of V(U). A vector field v on U belongs to V(U) if and only if the
coefficients vj of the basis representation

v =
m∑

j=1

vj∂j

all belong to E(U).
Proof The first statement follows from Remark VII.10.5 and the definition of the tan-
gent space at a boundary point. The second claim is a consequence of

ϕ∗v = ϕ∗
( m∑

j=1

vj∂j

)
=

m∑
j=1

(ϕ∗v
j)ϕ∗∂j ,

of (b), and of Remark VIII.3.3(c). �

(d) (regularity) Let k ∈ N, and let M be a Ck+1 manifold. In this case, (∂1, . . . , ∂m) is
a Ck(U)-module basis of Vk(U). A vector field v on U belongs to Vk(U) if and only if
its coefficients with respect to this basis representation lie in Ck(U). �

Differential forms

To generalize the cotangent space T ∗
p X and the cotangent bundle T ∗X of an open

subset X of Rm, we now define the cotangent space of M at the point p by

T ∗
p M := (TpM)∗ = L(TpM, R) .

We define the cotangent bundle of M by

T ∗M :=
⋃

p∈M

T ∗
p M .

We denote by

〈 · , · 〉p : T ∗
p M × TpM → R for p ∈M

the dual pairing5 and call

〈 · , · 〉 : T ∗M × TM → E(M) , (α, v) �→
[
p �→

〈
α(p), v(p)

〉
p

]
the dual pairing as well.

Because TpM is an m-dimensional vector space, so is T ∗
p M . Hence for r ∈ N

and p ∈ M , the r-fold exterior product
∧r

T ∗
p M of T ∗

p M and the Grassmann

5See Section VIII.3.
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algebra ∧
T ∗

p M =
⊕
r≥0

∧r
T ∗

p M

of T ∗
p M are defined. To extend the concepts introduced in the previous section,

we define the bundle of alternating r-forms on M by∧rT ∗M :=
⋃

p∈M

∧rT ∗
p M .

We define the Grassmann bundle of M by∧
T ∗M :=

⋃
p∈M

∧
T ∗

p M .

A differential form on M is then a map

α : M → ∧
T ∗M with α(p) ∈ ∧

T ∗
p M for p ∈M ,

that is, a section of the Grassmann bundle. It has degree r (or is called an r-form)
if α(M) ⊂

∧r
T ∗M . Sometimes we call a 1-form a Pfaff form.

If α and β are differential forms on M , then the sum α + β and the exterior
product6 α ∧ β are defined pointwise:

(α + β)(p) := α(p) + β(p) and α ∧ β(p) := α(p) ∧ β(p) for p ∈ M .

If α is an r-form on M , then its effect on vector fields is also defined pointwise:

α(v1, . . . , vr)(p) := α(p)
(
v1(p), . . . , vr(p)

)
for p ∈M and v1, . . . , vr ∈ V(M) .

Finally let ϕ ∈ C1(M, N), and let β be a differential form on N . Then the
pull back of β by ϕ is again defined pointwise:

ϕ∗β(p) := (Tpϕ)∗β
(
ϕ(p)

)
for p ∈ M .

Obviously ϕ∗β is a differential form on M , the pull back of β by ϕ. If ϕ is a C1

diffeomorphism from M to N , then

ϕ∗α := (ϕ−1)∗α

is the push forward of the differential form α on M .

Let k ∈ N ∪ {∞}. The differential form α on M belongs to the class Ck (or
is k-times continuously differentiable,7 or smooth in the case k = ∞) if there is a

6 ∧ is also called the wedge product.
7Of course, we say a differential form of class C0 is continuous.
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chart (ϕ, U) around every point of M such that ϕ∗α is a differential form of class
Ck on ϕ(U). We denote the set of all r-forms of class Ck on M by

Ωr
(k)(M) ,

and
Ωr(M) := Ωr

(∞)(M)

is the set of all smooth r-forms on M . Finally

Ω(M) := Ω(∞)(M)

is the set of all smooth differential forms on M .

Following our treatment of vector fields, we will generally restrict our atten-
tion to the study of smooth differential forms. We leave it to you to prove that
all the statements we prove about smooth forms also hold analogously for forms
of class Ck provided k has been restricted as the case may require.

4.4 Remarks (a) The above notion of differentiability of differential forms is
coordinate-independent.

If α is an r-form of class Ck on M and (ψ, V ) is a chart on M , then ψ∗α is
an r-form of class Ck on ψ(V ).
Proof Every p ∈ M has a chart (ϕ, U) around it with ϕ∗α ∈ Ωr

(k)

(
ϕ(U)

)
. From

Remark 3.3(a) and the pointwise definition of the push forward, it follows that

ψ∗α = (ψ ◦ ϕ−1)∗ϕ∗α .

After this, the claim follows in analogy to the proof of Remark 4.2(a). �

(b) Ω(M) and Ωr(M) are E(M)-modules and therefore in particular R-vector
spaces. Also

Ω(M) =
⊕
r≥0

Ωr(M) .

The exterior product is R-bilinear, associative, and graded anticommutative, that
is, it satisfies these rules:

(i) The map
Ωr(M)× Ωs(M)→ Ωr+s(M) , (α, β) �→ α ∧ β

is well defined and R-bilinear.
(ii) α ∧ (β ∧ γ) = (α ∧ β) ∧ γ for α, β, γ ∈ Ω(M).
(iii) α ∧ β = (−1)rsβ ∧ α for α ∈ Ωr(M) and β ∈ Ωs(M).
Proof This follows from the definition of smoothness, from the pointwise definition of ∧,
and from Theorem 2.7. �

(c) Every α ∈ Ωr(M) is an alternating r-form on V(M).
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(d) Ω0(M) = E(M), and Ωr(M) = {0} for r > m.

(e) For h ∈ C∞(M, N), the pull back h∗ : Ω(N)→ Ω(M) is an algebra homomor-
phism, that is,

h∗(α + β) = h∗α + h∗β , h∗(α ∧ β) = h∗α ∧ h∗β

for α, β ∈ Ω(N). If α ∈ Ωr(N), then h∗α belongs to Ωr(M). Also

(k ◦ h)∗ = h∗ ◦ k∗ and (idM )∗ = idΩ(M) .

If h is a diffeomorphism, then h∗ is bijective, and (h∗)−1 = (h−1)∗ = h∗.
Proof We leave the simple checks to you. �

(f) Suppose M is a submanifold of N and i : M ↪→ N is the natural embedding.8

Then for α ∈ Ωr(N),
α |M := i∗α ∈ Ωr(M)

is the restriction9 of α to M . Let p ∈M . Because the tangent space TpM can be
regarded as a vector subspace of TpN , we have (α |M)(p) = α(p) | (TpM)r. �

Local representations

Suppose f ∈ C1(M) := C1(M, R). As in Section VII.10, we define the differen-
tial df of f by

df(p) := pr ◦Tpf for p ∈ M ,

where
pr := pr2 : Tf(p)R =

{
f(p)

}
× R → R

is the canonical projection.
Let (ϕ, U) be a chart around p ∈ M . Then it follows from the definitions of

df(p) and ∂j |p as well as the chain rule of Remarks VII.10.9(b) and 1.14(c) that〈
df(p), ∂j |p

〉
p

=
〈
df(p), (Tϕ(p)ϕ

−1)
(
ϕ(p), ej

)〉
p

= pr ◦Tpf ◦ Tϕ(p)ϕ
−1

(
ϕ(p), ej

)
= pr ◦Tϕ(p)(f ◦ ϕ−1)

(
ϕ(p), ej

)
= ∂(f ◦ ϕ−1)

(
ϕ(p)

)
ej

= ∂j(f ◦ ϕ−1)
(
ϕ(p)

)
= ∂j(ϕ∗f)

(
ϕ(p)

)
for 1 ≤ j ≤ m. With the abbreviation

∂jf(p) :=
∂f

∂xj
(p) := ∂j(f ◦ ϕ−1)

(
ϕ(p)

)
= ∂j(ϕ∗f)

(
ϕ(p)

)
(4.3)

8In this situation, we always assume that N is without boundary.
9See Example 3.4(j).
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for 1 ≤ j ≤ m and p ∈ U , we thus have〈
df(p), ∂j |p

〉
p

= ∂jf(p) for 1 ≤ j ≤ m , p ∈ U . (4.4)

Therefore
〈df, ∂j〉 = ∂jf for 1 ≤ j ≤ m . (4.5)

Note that the usual partial derivative ∂jf on M (in the sense of Remark VII.2.7(a))
is not defined when M is not “flat”, that is, not an open subset of Rm. Because
derivatives of functions on manifolds can only be defined in terms of local represen-
tations, ∂jf in (4.5) is meaningless unless it is interpreted as the partial derivative
of the function “pushed down” by ϕ to the parameter domain ϕ(U), that is, the
partial derivative of the ϕ∗f appearing in (4.3). This rules out any misinterpreta-
tion in practice. The notation ∂f/∂xj has the advantage that it gives the “name
of the coordinates” (x1, . . . , xm) = ϕ in which f is locally written.

In Section VII.2, for the case of open subsets of Rm, we defined the partial
derivative ∂jf(p) as the image of the j-th coordinate unit vector ej under the
(total) derivative ∂f(p) (that is, the linearization of f at p). Since df(p) is just
the tangent part of the tangential Tpf and therefore the “linearization of f at the
point p”, and since ∂j |p is the j-th coordinate basis vector of TpM , (4.4) shows
that ∂jf(p) is the tangent part of the image of these coordinate vectors under the
tangential of f . Therefore (4.3) is indeed the correct generalization of the concept
of partial derivative to functions defined on manifolds.

Finally, it is clear that (4.3) agrees with the classical partial derivative when
M is open in Rm and ϕ denotes the trivial chart idM .

4.5 Remarks Let (ϕ, U) be a chart of M .

(a) For f ∈ E(M) = Ω0(M), the differential df belongs to Ω1(M). The map

d : Ω0(M)→ Ω1(M) , f �→ df

is R-linear.

(b) Let (x1, . . . , xm) = ϕ be the local coordinates on U induced by ϕ, so that

xj := prj ◦ϕ ∈ E(U) for 1 ≤ j ≤ m ,

where prj : Rm → R are the canonical projections. Then Ω1(U) is a free E(U)-
module of dimension m, and (dx1, . . . , dxm) is a module basis with〈

dxj ,
∂

∂xk

〉
= δj

k for 1 ≤ j, k ≤ m (4.6)

and is the dual basis to the basis (∂/∂x1, . . . , ∂/∂xm) of V(U). The basis repre-
sentations

v =
m∑

j=1

vj ∂

∂xj
∈ V(U) and α =

m∑
j=1

aj dxj ∈ Ω1(U) (4.7)



XI.4 Vector fields and differential forms 313

require the relations

vj = 〈dxj , v〉 ∈ E(U) and aj =
〈
α,

∂

∂xj

〉
∈ E(U) (4.8)

for 1 ≤ j ≤ m. In particular, for f ∈ E(U), we have

df =
m∑

j=1

∂f

∂xj
dxj ∈ Ω1(U) .

Proof (4.3) and (4.5) imply

〈dxj, ∂k〉 = ∂kxj = ϕ∗∂k(ϕ∗x
j) = ϕ∗∂k

[
(prj ◦ϕ) ◦ ϕ−1

]
= ϕ∗∂k prj = δj

k

and hence (4.6). For v with the representation given in (4.7), we obtain

〈
dxj(p), v(p)

〉
p

=
m∑

k=1

vk(p)
〈
dxj(p),

∂

∂xk

∣∣∣
p

〉
p

=
m∑

k=1

vk(p)δj
k = vj(p) (4.9)

for p ∈ U and 1 ≤ j ≤ m, because dxj(p) is a linear form on TpM = TpU . Therefore the
first part of (4.7) and Remark 4.3(c) imply the first claim of (4.8).

For the push forward dxj by ϕ, we find by applying Remarks VII.10.9(b) and 1.14(c)
as well as (4.2) and (4.6) that〈

(ϕ∗dxj)
(
ϕ(p)

)
,
(
ϕ(p), ek

)〉
ϕ(p)

=
〈
dxj(p), (Tϕ(p)ϕ

−1)
(
ϕ(p), ek

)〉
p

=
〈
dxj(p), (Tpϕ)−1

(
ϕ(p), ek

)〉
p

=
〈
dxj(p),

∂

∂xk

∣∣∣
p

〉
p

= δj
k .

(4.10)

This shows that (ϕ∗ dx1, . . . , ϕ∗ dxm) is, at every point ϕ(p) ∈ ϕ(U), the basis dual to
the canonical basis of Tϕ(p)ϕ(U). In particular, the covector part of ϕ∗ dxj is constant
on ϕ(U).

Remark 4.4(e) guarantees that ϕ∗ is a vector space isomorphism from Ω1(U) to
Ω1(ϕ(U)). From this, (4.10), and Proposition 2.3, we conclude that every α ∈ Ω1(U) has
a representation of the form given in (4.7) by real-valued functions aj on U . Because of

ϕ∗α =
m∑

j=1

(ϕ∗aj) ϕ∗dxj (4.11)

and due to the constancy of the covector part of 1-forms ϕ∗dxj on ϕ(U), we learn from
Remark 3.1(e) that α belongs to Ω1(U) if and only if aj ∈ E(U) for 1 ≤ j ≤ m. Finally
aj = 〈α, ∂j〉 follows by a calculation analogous to (4.9). �

(c) For r ∈ N, Ωr(U) is a free E(U)-module of dimension
(

m
r

)
, and{

dx(j) = dxj1 ∧ · · · ∧ dxjr ; (j) = (j1, . . . , jr) ∈ Jr

}
(4.12)
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is a basis. An r-form α on U has a uniquely determined basis representation in
local coordinates

α =
∑

(j)∈Jr

a(j) dx(j) (4.13)

whose coefficients are

a(j) = α
( ∂

∂xj1
, . . . ,

∂

∂xjr

)
for (j) ∈ Jr . (4.14)

If k ∈ N ∪ {∞}, then α belongs to the class Ck on U if and only if a(j) ∈ Ck(U)
for (j) ∈ Jr.
Proof From (4.10) and the properties of the pull back (ϕ−1)∗ = ϕ∗ given in Re-
mark 4.4(e), it follows that

ϕ∗ dx(j) = ε(j) for (j) ∈ Jr , (4.15)

where (ε1, . . . , εm) denotes the basis dual to the canonical basis of Tϕ(p)ϕ(U) for p ∈ U .
Because ϕ∗ is a vector space isomorphism from Ωr(U) to Ωr

(
ϕ(U)

)
, we derive from

Proposition 2.3 and (4.2) that every r-form α on U has a unique representation of the
form (4.13), whose coefficients are given by (4.14). Because

ϕ∗α =
∑

(j)∈Jr

(ϕ∗a(j))ϕ∗ dx(j)

and by (4.15), the definition of the differentiability of an r-form of class Ck implies that
α belongs to the class Ck if and only if the a(j) lie in Ck(U). �

(d) Note that we have only shown that V(U) and Ω(U) are free modules, while
we have made no such statements about V(M) and Ω(M). Indeed, corresponding
statements are not generally true in the global case, that is, for manifolds that
cannot be described by a single chart. For example, it is known10 that the n-
sphere does not support n (nontrivial) linearly independent vector fields (that is,
V(Sn) is not a free module of dimension n) unless n = 0, 1, 3, or 7.

(e) (regularity) If k ∈ N, then the statements of (c) remain true if M is a Ck+1

manifold. �

The local coordinates x1, . . . , xm on U belonging to a chart ϕ are smooth
functions on U ; namely, they are the maps prj ◦ϕ ∈ E(U) for 1 ≤ j ≤ m. On
the other hand, we also use (x1, . . . , xm) as the notation for a general point of
ϕ(U), that is, the coordinates of Rm are also called x1, . . . , xm. This use of the
same notation for two different things is deliberate. It simplifies calculations with
(local) coordinates considerably, if it is clear from context which interpretation is
correct. For example, the expression

α =
∑

(j)∈Jr

a(j) dx(j) (4.16)

10By work of Bott, Kervaire, and Milnor.
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has two meanings if no other specification is made (which is usual in practice).
First, we can regard (4.16) as the basis representation of an r-form on the open
subset X = ϕ(U) of Hm, as we have done in the previous sections. Or, we can
interpret (4.16) as the basis representation of an r-form on U with respect to the
local coordinates in the corresponding chart. This is the standpoint we have taken
here. In the first case, the a(j) are functions on X , and the dx(j) are the constant
basis forms of Rm. In the second, the a(j) are functions on U ⊂ M , and the dx(j)

are the position-dependent r-forms that “live” on U . Because of (4.15), we must,
in order to pass from second interpretation to the first, “pass down” the coefficient
functions a(j) = a(j)(p) to the parameter domain using ϕ. That is, a(j) must be
interpreted as ϕ∗a(j) = a(j) ◦ ϕ−1, and we must think a(j) = a(j)(x) for x ∈ X .

4.6 Examples (a) Denote the upper and lower hemispheres of the m-sphere Sm

in Rm+1 by Sm
+ and S−, respectively. That is, let

Sm
± :=

{
x ∈ Rm+1 ; |x| = 1, ±xm+1 > 0

}
.

Also let
ϕ± : Sm

± → Bm , x �→ x′ := (x1, . . . , xm)

be the projection of Bm = Bm×{0} onto the hyperplane orthogonal to the xm+1-
axis. Then (ϕ+, Sm

+ ) and (ϕ−, Sm
− ) are charts of Sm. For

α :=
m+1∑
j=1

(−1)j−1xj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm+1 ∈ Ωm(Rm+1) ,

the restriction to Sm reads, in the local coordinates induced by ϕ±, as

α |Sm
± = ± (−1)m√

1− |x′|2
dx1 ∧ · · · ∧ dxm .

Proof Let g±(x′) :=
(
x′,±

√
1− |x′|2

)
for x′ ∈ Bm. Then g± is smooth and is the

parametrization belonging to ϕ± of the hemisphere Sm
± as a graph over Bm. Also g± =

i ◦ ϕ−1
± with i : Sm ↪→ Rm+1. Therefore (ϕ±, Sm

± ) are charts of Sm. For these we find

(ϕ±)∗(α |Sm
± ) = (ϕ−1

± )∗ ◦ i∗α = g∗
±α

=

m+1∑
j=1

(−1)j−1gj
± dg1

± ∧ · · · ∧ d̂gj
± ∧ · · · ∧ dgm+1

±

=

m∑
j=1

(−1)j−1xj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm ∧
m∑

k=1

∓xk dxk√
1− |x′|2

± (−1)m
√

1− |x′|2 dx1 ∧ · · · ∧ dxm

= ± (−1)m√
1− |x′|2

[
−

m∑
j=1

(−1)m+j−1+m−j(xj)2 + 1− |x′|2
]
dx1 ∧ · · · ∧ dxm .

The claim follows because the expression in the square brackets reduces to 1. �
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(b) Let ωS1 := (xdy − y dx) |S1, and make

g1 : (0, 2π)→ S1
∖ {

(1, 0)
}

, t �→ (cos t, sin t)

a parametrization of S1 \
{
(1, 0)

}
. Then with respect to the local coordinates

induced by the chart (ϕ, U) with ϕ := g−1
1 and U := S1\

{
(1, 0)

}
, we have

ωS1 |U = dt .

Proof This follows from ϕ∗ωS1 = (g1
1 ġ2

1 − g2
1 ġ1

1) dt. �

(c) Let U := S2\H3 be the 2-sphere S2 minus the half circle where it intersects
the half plane H3 := R+ × {0} × R.11 Also let

(0, 2π)× (0, π)→ U , (ϕ, ϑ) �→ (cosϕ sin ϑ, sin ϕ sin ϑ, cosϑ)

be the parametrization of U by spherical coordinates. Finally, let

α := xdy ∧ dz + y dz ∧ dx + z dx ∧ dy ∈ Ω2(R3) .

Then the form ωS2 := α |S2 ∈ Ω2(S2) has the representation

ωS2 |U = − sin ϑ dϕ ∧ dϑ

with respect to the local coordinates (ϕ, ϑ).
Proof After a simple calculation,12 we obtain this from Example 3.4(d). �

Coordinate transformations

To carry out concrete calculations efficiently, it is important to choose the coordi-
nates best suited to the problem. So, for example, we use polar coordinates when
we want to describe rotationally symmetric problems, as we have already done in
our treatment of integration theory in Section X.8.

Because a given problem is usually already described in a coordinate system,
we must be able to change to another coordinate system without undue trouble.
This background frames the following transformation theorem for vector fields and
Pfaff forms.

Let (ϕ, U) and (ψ, V ) be charts of M with U ∩ V 
= ∅. Let ϕ = (x1, . . . , xm)
and ψ = (y1, . . . , ym). On U ∩ V , we can regard the yj as functions of lo-
cal coordinates x = (x1, . . . , xm); we could also regard the xj as functions of
y = (y1, . . . , ym). Here is it usual and expedient not to introduce new symbols
but rather to write simply y = y(x) and x = x(y). Clearly the map y( ·) is a

11See Example VII.9.11(b).
12Note that (for example) ∂(x, y)/∂(ϕ, ϑ) is the determinant of the matrix obtained from

(VII.9.3) by removing the last row.
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diffeomorphism from U ∩ V to itself, a coordinate transformation, which we also
denote by x �→ y. The inverse map is x( · ), that is, the coordinate transformation
y �→ x. However, we can also regard x [or y] as a generic point in X := ϕ(U ∩ V )
[or Y := ψ(U ∩ V )] in Hm. Then the coordinate transformation x �→ y is nothing
but the transition function ψ ◦ ϕ−1 ∈ Diff(X, Y ). It will always be clear from
context which of these two interpretations is to be chosen.

In the following formulas, we leave it to you to determine from context
whether xj means an independent variable or the function xj( · ). The double
meaning, which is scarcely a problem in practice, is used on purpose since it helps
to cast formulas into a form that is more intuitively understandable and easier to
remember.

4.7 Proposition For the coordinate transformation x �→ y, we have

∂

∂yj
=

m∑
k=1

∂xk

∂yj

∂

∂xk
and dyj =

m∑
k=1

∂yj

∂xk
dxk

for 1 ≤ j ≤ m.

Proof From Remark 4.5(c), it follows that

∂

∂yj
=

m∑
k=1

vk
j

∂

∂xk
and vk

j =
〈
dxk,

∂

∂yj

〉
for 1 ≤ j, k ≤ m .

With x = f(y) and (4.5), we find〈
dxk,

∂

∂yj

〉
=

∂xk

∂yj
for 1 ≤ j, k ≤ m , (4.17)

which proves the first claim.
Analogously, we have

dyj =
m∑

k=1

ak dxk and ak =
〈
dyj ,

∂

∂xk

〉
=

∂yj

∂xk

for 1 ≤ j, k ≤ m, which proves the second. �

4.8 Corollary (a) The Jacobi matrix of the coordinate transformation x �→ y
satisfies [ ∂yj

∂xk

]
=

[∂xj

∂yk

]−1

.

(b) dy1 ∧ · · · ∧ dym =
∂(y1, . . . , ym)
∂(x1, . . . , xm)

dx1 ∧ · · · ∧ dxm.
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Proof (a) Because

y( · ) = ψ ◦ ϕ−1 ∈ Diff(X, Y ) and y( ·)−1 = x( · ) = ϕ ◦ ψ−1 ∈ Diff(Y, X) ,

the claim is immediate.
(b) This is a consequence of Example 3.4(c), the considerations after Re-

mark 4.5(e), and the fact that

∂(y1, . . . , ym)
∂(x1, . . . , xm)

is the Jacobian of the coordinate transformation x �→ y (see Remark VII.7.9(a)). �

4.9 Examples (a) (plane polar coordinates) Using the polar coordinate trans-
formation

V2 → R2 , (r, ϕ) �→ (x, y) := (r cosϕ, r sin ϕ)

with V2 := (0,∞)× (0, 2π), we have

∂

∂r
=

∂x

∂r

∂

∂x
+

∂y

∂r

∂

∂y
= cosϕ

∂

∂x
+ sin ϕ

∂

∂y

and
∂

∂ϕ
=

∂x

∂ϕ

∂

∂x
+

∂y

∂ϕ

∂

∂y
= −r sinϕ

∂

∂x
+ r cosϕ

∂

∂y
.

(b) (spherical coordinates) Let V3 := (0,∞)×(0, 2π)×(0, π). Using the spherical
coordinate transformation

V3 → R3 , (r, ϕ, ϑ) �→ (x, y, z) = (r cosϕ sin ϑ, r sin ϕ sin ϑ, r cosϑ) ,

we find
∂

∂r
= cosϕ sin ϑ

∂

∂x
+ sin ϕ sin ϑ

∂

∂y
+ cosϑ

∂

∂z

∂

∂ϕ
= −r sin ϕ sin ϑ

∂

∂x
+ r cosϕ sin ϑ

∂

∂y

∂

∂ϑ
= r cosϕ cosϑ

∂

∂x
+ r sin ϕ cosϑ

∂

∂y
− r sinϑ

∂

∂z
.

(c) (cylindrical coordinates) Let X := (0,∞) × (0, 2π) × R. For the cylindrical
coordinate transformation

X → R3 , (r, ϕ, ζ) �→ (x, y, z) := (r cosϕ, r sin ϕ, ζ) ,

we find

∂

∂r
= cosϕ

∂

∂x
+ sin ϕ

∂

∂y
,

∂

∂ϕ
= −r sinϕ

∂

∂x
+ r cosϕ

∂

∂y
,

∂

∂ζ
=

∂

∂z
. �
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The exterior derivative

The next theorem shows that the exterior derivative can be generalized so that it
is defined globally on manifolds.

4.10 Theorem There is exactly one map

d : Ω(M)→ Ω(M) ,

the exterior (or Cartan) derivative, with these four properties:

(i) d is R-linear and maps Ωr(M) to Ωr+1(M).

(ii) d satisfies the product rule

d(α ∧ β) = dα ∧ β + (−1)rα ∧ dβ for α ∈ Ωr(M) and β ∈ Ω(M) .

(iii) d2 = d ◦ d = 0.

(iv) The differential df of f ∈ E(M) = Ω0(M) is the same as the differential of f .

Also

d ◦ h∗ = h∗ ◦ d (4.18)

for h ∈ C∞(M, N).

Proof (a) (existence) Let (ϕ, U) be a chart of M . According to Theorem 3.5,
there is exactly one map d : Ω

(
ϕ(U)

)
→ Ω

(
ϕ(U)

)
with the properties (i)–(iv). We

define dU : Ω(U)→ Ω(U) by requiring the commutativity of the diagram

Ω(U) Ω(U)

Ω
(
ϕ(U)

)
Ω

(
ϕ(U)

)
.

ϕ∗ ϕ∗

dU

d

�

�
�

� (4.19)

Equivalently, we set dU := ϕ∗ ◦ d ◦ϕ∗. We learn from Remark 4.4(e) that ϕ∗ is an
algebra isomorphism with (ϕ∗)−1 = (ϕ−1)∗. With this and (4.19), we verify easily
that dU has the properties (i)–(iv) and is uniquely defined.

Let (ψ, V ) be another chart of M such that U ∩ V 
= ∅. Then it follows from
ϕ = (ϕ ◦ ψ−1) ◦ ψ, the properties of pull backs, and (3.12) that

dU = ϕ∗ ◦ d ◦ ϕ∗ = ψ∗ ◦ (ϕ ◦ ψ−1)∗ ◦ d ◦ (ϕ ◦ ψ−1)∗ ◦ ψ∗

= ψ∗ ◦ d ◦ ψ∗ = dV

(4.20)

(of course, on U ∩ V ). Therefore dU is independent of the special coordinates
chosen.
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Let
{

(ϕκ, Uκ) ; κ ∈ K
}

be an atlas for M , and let iκ : Uκ ↪→ M be the
natural embedding. Then we define d : Ω(M)→ Ω(M) by

dα(p) := dUκ

[
(iκ)∗α

]
(p) for α ∈ Ω(M) ,

where κ ∈ K is chosen so that p lies in Uκ. By (4.20) this definition is meaningful,
and it is clear that d has the properties (i)–(iv).

(b) (uniqueness) Let α ∈ Ωr(M) and p ∈ M . Also let (ϕ, U) be a chart
around p. According to Remark 4.5(c), α |U can be written in local coordinates
as

α |U =
∑

(j)∈Jr

a(j) dx(j)

with a(j) ∈ E(U). Now it follows from (4.19) and Remarks 3.6(a) and 4.4(e) that

dU (α |U) = ϕ∗ dϕ∗(α |U) = ϕ∗
∑

(j)∈Jr

d(ϕ∗a(j)) ∧ ϕ∗ dx(j)

=
∑

(j)∈Jr

dUa(j) ∧ dx(j) =
∑

(j)∈Jr

da(j) ∧ dx(j) ,
(4.21)

because dUa(j) is the differential of a(j) ∈ E(U).

Let V be an open neighborhood of p with V ⊂⊂ U . Then ϕ(V ) ⊂⊂ ϕ(U).
Hence Remark 1.21(a) implies the existence of χ̃ ∈ D

(
ϕ(U)

)
such that χ̃ |ϕ(V ) =

1. For

χ :=
{

ϕ∗χ̃ on U ,

0 on M \U ,

we have χ ∈ E(M) and χ |V = 1. This implies that both

b(j) := χa(j) for (j) ∈ Jr and ξj := χxj for 1 ≤ j ≤ m

belong to E(M). Therefore the differentials dξj ∈ Ω1(M) are defined, which
implies that

β :=
∑

(j)∈Jr

b(j) dξ(j)

is also defined and belongs to Ω(M).

Now suppose d̃ is a map from Ω(M) to itself satisfying (i)–(iv). Then we find
easily that

d̃β =
∑

(j)∈Jr

db(j) ∧ dξ(j) .

For a ∈ E(U), the product rule gives

d(χa) = a dχ + χ da
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(see Corollary VII.3.8 and the definition of the tangential). Because χ |V = 1, we
may use the natural embedding i : V ↪→ M to conclude〈

i∗ d(χa)(q), v(q)
〉

q
=

〈
d(χa)(q), v(q)

〉
q

=
〈
da(q), v(q)

〉
q

for q ∈ V ,

for v ∈ V(M). That is, d(χa) |V = da |V . This and (4.21) imply β |V = α |V and

d̃β |V = dV (α |V ) . (4.22)

Because dV is unique and every p ∈ M has an open coordinate neighborhood V
for which (4.22) holds, we see that d̃ = d.

(c) To prove (4.18), we can use our previous work to restrict to the local
situation, that is, we can assume that M = U . Then the claim follows from
(4.19), (3.12), and Theorem 3.5. �

4.11 Remarks (a) Let
α |U =

∑
(j)∈Jr

a(j) dx(j)

be the representation of α ∈ Ωr(M) in the local coordinates of the chart (ϕ, U).
Then

d(α |U) =
∑

(j)∈Jr

da(j) ∧ dx(j) .

Proof This follows from (4.21). �

(b) (regularity) For k ∈ N, the map

d : Ωr
(k+1)(M)→ Ωr+1

(k) (M) for r ∈ N

is defined and R-linear. This remains true when M is a Ck+2 manifold. �

Closed and exact forms

As in the local theory, we say α ∈ Ω(M) is closed if dα = 0. We say it is exact if
there is a β ∈ Ω(M), an antiderivative, such that dβ = α.

4.12 Remarks and examples (a) Because d2 = 0, every exact form is closed.

(b) Every m-form on M is closed.
Proof This is because Ωm+1(M) = {0}. �

(c) (Poincaré lemma) Let r ∈ N×, and let α ∈ Ωr(M) be closed. Then α is locally
exact, that is, every p ∈ M has an open neighborhood U and a β ∈ Ωr−1(U) such
that dβ = α |U .
Proof Let (ϕ, U) be a chart around p, in which ϕ(U) is star shaped. Because dα = 0
and dϕ∗α = ϕ∗ dα, the form ϕ∗α ∈ Ωr

(
ϕ(U)

)
. Since ϕ(U) is contractible, it follows

from the Poincaré lemma (Theorem 3.11) that there exists a β0 ∈ Ωr−1
(
ϕ(U)

)
such that

dβ0 = ϕ∗α. For β := ϕ∗β0 ∈ Ωr−1(U), we then have dβ = ϕ∗ dβ0 = ϕ∗ϕ∗α = α |U . �
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Contractions

Let α ∈ Ωr+1(M) and v ∈ V(M). Then the contraction v −� α of α by v is
defined by

v −� α(v1, . . . , vr) := α(v, v1, . . . , vr) for vj ∈ V(M) and 1 ≤ j ≤ r .

We sometimes write v −� · as iv and call ivα the interior product of v by α.
We verify easily that v −� α belongs to Ωr(M). For completeness and to avoid a
bothersome special case, we simply set

v −� α := 0 for α ∈ Ω0(M) .

4.13 Remarks and examples (a) If ϕ : M → N is a diffeomorphism, then

v −� (ϕ∗α) = ϕ∗(ϕ∗v −� α)

for α ∈ Ω(N) and v ∈ V(M). In particular, for every r the diagram

Ωr+1(M) Ωr+1(N)

Ωr(M) Ωr(N)

v −� ϕ∗v −�

ϕ∗

ϕ∗

�

�
� �

commutes.
Proof If α is a null form, then the claim is trivially true. Therefore we can assume
α ∈ Ωr+1(N). Then we find for p ∈M and v1, . . . , vr ∈ TpM that

v −� (ϕ∗α)(p)(v1, . . . , vr) = (ϕ∗α)(p)
(
v(p), v1, . . . , vr

)
= α

(
ϕ(p)

)(
(Tpϕ)v(p), (Tpϕ)v1, . . . , (Tpϕ)vr

)
= α

(
ϕ(p)

)(
ϕ∗v

(
ϕ(p)

)
, (Tpϕ)v1, . . . , (Tpϕ)vr

)
= (ϕ∗v −� α)

(
ϕ(p)

)(
(Tpϕ)v1, . . . , (Tpϕ)vr

)
= ϕ∗(ϕ∗v −� α)(p)(v1, . . . , vr) ,

which proves the claim. �

(b) Suppose X is open in Hm and ω := dx1 ∧ · · · ∧ dxm. For v =
∑m

j=1 vj∂j , we
have

v −� ω =
m∑

j=1

(−1)j−1vj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm .

Proof We set v1 := v. Then for v2, . . . , vm ∈ V(X), we have

(v1 −� ω)(v2, . . . , vm) = ω(v1, . . . , vm) = det
[
〈dxj , vk〉

]
.
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By expanding this determinant in the first column, we find it has the value

m∑
j=1

(−1)j+1〈dxj, v1〉 det(Aj) ,

where Aj is the matrix obtained by striking the first column and the j-th row from[
〈dxj , vk〉

]
. From this it follows that

det(Aj) = dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm(v2, . . . , vm) .

The claim now follows because

〈dxj, v1〉 =
m∑

k=1

vk〈dxj, ∂k〉 = vj . �

(c) Let
ρ : Rm+1\{0} → Sm , x �→ x/|x|

be the radial retraction13 on the m-sphere in Rm+1.
Also let

α :=
m+1∑
j=1

(−1)j−1xj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm+1

and
ωSm := α |Sm .

Then letting r(x) := |x| for x ∈ Rm+1, we have

ρ∗ωSm =
1

rm+1
α =

m+1∑
j=1

(−1)j−1 xj

|x|m+1
dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm+1 ,

and ρ∗ωSm is closed.

Proof Because ρ ∈ C∞(
Rm+1\{0}, Rm+1

)
with im(ρ) = Sm, we know ρ is a smooth

map from Rm+1\{0} to Sm. Therefore ρ∗ωSm ∈ Ωm
(
Rm+1\{0}

)
is defined. It is closed

by Remark 4.12(b) and because d(ρ∗ωSm) = ρ∗ dωSm = 0.

To show that ρ∗ωSm = r−(m+1)α, we must verify that for every p ∈ Rm+1\{0}, both
sides agree on every m-tuple from a system of basis vectors of TpRm+1. Suppose therefore
p ∈ Rm+1\{0}. A basis of TpRm+1 is given by the vectors

{
(p)p, (v1)p, . . . , (vm)p

}
, where

13If X is topological space and A is a subset of X, then a continuous map ρ : X → A is called
a retraction of X on A if ρ(a) = a for a ∈ A. If there is a retraction of X on A, then A is a
retract of X.
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{
(v1)p, . . . , (vm)p

}
is a basis of Tp

(
r(p)Sm

)
. If the m-tuple (w1)p, . . . , (wm)p contains

the vector (p)p, then by letting ω := dx1 ∧ · · · ∧ dxm+1, we can use (b) to find

α(p)
(
(w1)p, . . . , (wm)p

)
=

(
(p)p −� ω

)(
(w1)p, . . . , (wm)p

)
= ω

(
(p)p, (w1)p, . . . , (wm)p

)
= 0 ,

because two entries are equal. Therefore r−(m+1)(p)α(p) also vanishes on this m-tuple.
We also find

ρ∗ωSm(p)
(
(w1)p, . . . , (wm)p

)
= ωSm

(
ρ(p)

)(
(Tpρ)(w1)p, . . . , (Tpρ)(wm)p

)
with

(Tpρ)(wj)p =
(
ρ(p), ∂ρ(p)wj

)
,

where, according to Proposition VII.2.5, we have

∂ρ(p)wj = ∂tρ(p + twj)
∣∣
t=0

for 1 ≤ j ≤ m .

Because ρ(p+tp) = ρ(p) for t ∈ (−1, 1), it follows in particular that (Tpρ)(p)p = 0. There-
fore ρ∗ωSm(p)

(
(w1)p, . . . , (wm)p

)
also vanishes if the m-tuple (w1)p, . . . , (wm)p contains

the vector (p)p.

It remains to show

ρ∗ωSm(p)
(
(v1)p, . . . , (vm)p

)
=

1

r(p)m+1
α(p)

(
(v1)p, . . . , (vm)p

)
. (4.23)

For (v)p ∈ Tp

(
r(p)Sm

)
, Theorem VII.10.6 gives an ε > 0 and a γ ∈ C1

(
(−ε, ε), r(p)Sm

)
such that γ(0) = p and γ̇(0) = v. Now we use ρ ◦ γ(t) = γ(t)/r(p) to get

∂ρ(p)v = (ρ ◦ γ)· (0) = v/r(p) .

From this we derive

ρ∗ωSm(p)
(
(v1)p, . . . , (vm)p

)
= r(p)−mα

(
ρ(p)

)(
(v1)p, . . . , (vm)p

)
,

which implies (4.23), thus finishing the proof. �

(d) (regularity) Let k ∈ N, and suppose M is a Ck+1 manifold. For α ∈ Ωr+1
(k) (M) and

v ∈ Vk(M), the contraction v −� α belongs to Ωr
(k)(M). �

Orientability

As we learned in Section 2, TpM can be oriented by choosing a volume form
α(p) ∈

∧m
T ∗

p M . Thereby one gets an m-form α on M with α(p) 
= 0 for p ∈ M .
Conversely, every map p �→ α(p) ∈ ΛmT ∗

p M such that α(p) 
= 0 for p ∈ M induces
an orientation on every TpM . However, such α will generally not be continuous.
Intuitively, this means that the orientation of the tangent spaces is not “coherent”,
that is, the tangent spaces can “flip over” in moving from one point to the next.
To avoid this, we also require that α be smooth (more precisely, as regular as
permitted by the regularity of the manifold).
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A manifold M is said to be orientable if there is an α ∈ Ωm(M) such that
α(p) 
= 0 for every p ∈M ; such an m-form α is called a volume form on M .

4.14 Remarks (a) If M is orientable, then Ωm(M) is a one-dimensional E(M)-
module.
Proof Let α be a volume form on M , and let β ∈ Ωm(M). Because dim

∧mT ∗
p M = 1

for p ∈ M , there is an f : M → R such that β = fα. We must show that f is smooth.
In local coordinates, we have

α |U = a dx1 ∧ · · · ∧ dxm and β |U = b dx1 ∧ · · · ∧ dxm

with a, b ∈ E(U) and a(p) 	= 0 for p ∈ U . From this we deduce that β |U = fα |U , where
f := b/a belongs to E(U). �

(b) (regularity) Suppose k ∈ N and M is a Ck+1 manifold. Then M is orientable if and
only if there is an α ∈ Ωm

(k)(M) such that α(p) 	= 0 for p ∈ M . This is the case if and

only if the Ck(M)-module Ωm
(k)(M) is one-dimensional. �

The next proposition shows that one can also characterize the orientability
of a manifold by its charts.

If X and Y are open in Hm, then we say ϕ ∈ Diff(X, Y ) is orientation-
preserving [or orientation-reversing] if det ∂ϕ(x) > 0 [or det ∂ϕ(x) < 0] for every
x ∈ X , that is, if ∂ϕ(x) ∈ L(Rm) is an orientation-preserving [or orientation-
reversing] automorphism for every x ∈ X . An atlas of M is said to be oriented if
all of its transition functions are orientation-preserving.

4.15 Proposition A manifold of dimension ≥ 2 is orientable if and only if it has
an oriented atlas.

Proof (a) Suppose M is orientable and α ∈ Ωm(M) is a volume form. In addi-
tion, let

{
(ϕκ, Uκ) ; κ ∈ K

}
be an atlas of M . Then (ϕκ)∗α = aκ dx1∧· · ·∧dxm on

Xκ := ϕκ(Uκ) ⊂ Hm, with aκ(x) 
= 0 for x ∈ Xκ. Because we can change coordi-
nates (if necessary) as x �→ (−x1, x2, . . . , xm), we can assume that aκ(xκ) is strictly
positive for some xκ ∈ Xκ. Because we can assume that Uκ and therefore also Xκ

are connected, it follows from the intermediate value theorem (Theorem III.4.7)
that aκ(x) > 0 for all x ∈ Xκ and every κ ∈ K.

Suppose now (ϕκ, Uκ) and (ϕλ, Uλ) are local charts with Uκ ∩ Uλ 
= ∅. Also
let ϕκ = (x1, . . . , xm) and ϕλ = (y1, . . . , ym). Then we find

(ϕλ ◦ ϕ−1
κ )∗

(
aλ dy1 ∧ · · · ∧ dym

∣∣ ϕλ(Uκ ∩ Uλ)
)

= (ϕκ)∗ϕ∗
λ

(
aλ dy1 ∧ · · · ∧ dym

∣∣ ϕλ(Uκ ∩ Uλ)
)

= (ϕκ)∗α
∣∣ (Uκ ∩ Uλ) = aκ dx1 ∧ · · · ∧ dxm .

(4.24)

By Example 3.4(c), we have

(ϕλ ◦ ϕ−1
κ )∗ dy1 ∧ · · · ∧ dym = det ∂(ϕλ ◦ ϕ−1

κ ) dx1 ∧ · · · ∧ dxm .



326 XI Manifolds and differential forms

By comparing with (4.24), we see

(ϕλ ◦ ϕ−1
κ )∗aλ(x) det ∂(ϕλ ◦ ϕ−1

κ )(x) = aκ(x) > 0 for x ∈ ϕκ(Uκ ∩ Uλ) .

Because aλ is positive, it follows that M has an oriented atlas.

(b) Let
{

(ϕκ, Uκ) ; κ ∈ K
}

be an oriented atlas. Proposition 1.20 guarantees
the existence of a smooth partition of unity { πκ ; κ ∈ K } that is subordinate to
the cover {Uκ ; κ ∈ K } of M . For κ ∈ K, define ακ ∈ Ωm(Uκ) by

ακ :=
{

πκϕ∗
κ dx1 ∧ · · · ∧ dxm in Uκ ,

0 otherwise .

We can verify easily that the definition

α :=
∑
κ∈K

ακ ∈ Ωm(M)

is meaningful. We must show that α(p) 
= 0 for p ∈ M .

Let p ∈ M , and choose κ ∈ K so that πκ(p) > 0. For λ ∈ K with λ 
= κ and
Uκ ∩ Uλ 
= ∅, it follows, as in (a), that

αλ = πλϕ∗
λ dy1 ∧ · · · ∧ dym = πλϕ∗

κ(ϕλ ◦ ϕ−1
κ )∗ dy1 ∧ · · · ∧ dym

= πλ

(
ϕ∗

κ det
(
∂(ϕλ ◦ ϕ−1

κ )
))

ϕ∗
κ dx1 ∧ · · · ∧ dxm .

From this we obtain

α(p) =
(
πκ(p) +

∑
λ∈K
λ�=κ

πλ(p) det
(
∂(ϕλ ◦ ϕ−1

κ )
)(

ϕκ(p)
))

ϕ∗
κ dx1 ∧ · · · ∧ dxm(p) ,

where only finitely many summands differ from zero. Because πλ(p) ≥ 0 and
because the transition functions are orientation-preserving, we see that α(p) 
= 0.
Therefore α is a volume form, and M is orientable. �

Suppose M is orientable. Then we say two volume forms α, β ∈ Ωm(M) are
equivalent if there is an f ∈ E(M) such that f(p) > 0 for p ∈ M , and α = fβ. This
is obviously an equivalence relation on the set of all volume forms on M . Every
equivalence class with respect to this relation is called an orientation on M . Given
Or := Or(M) an orientation of M , then we call (M,Or) an oriented manifold. If
the orientation of M is clear from context, we may write M for (M,Or).

If α ∈ Or, then −α is a volume form that does not belong to Or. We denote
the associated equivalence class by −Or and call it the orientation opposite to Or.
It is clear that −Or is independent of its particular representative.
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4.16 Remarks (a) An orientable manifold is connected if and only if it has exactly
two orientations.

Proof Suppose M is connected, and α and β are two volume forms. By Remark 4.14(a),
there is an f ∈ E(M) such that α = fβ. Because α vanishes nowhere, we have f(p) 	= 0
for p ∈M . Because M is connected, the intermediate value theorem (see Theorem III.4.7)
implies that either f(p) > 0 or f(p) < 0 for every p ∈ M . Hence α is equivalent either
to β or to −β. Therefore M has precisely two orientations.

Now suppose M is connected. Proposition III.4.2 guarantees the existence of a
nonempty, open, and closed proper subset X of M . For α a volume form on M , we set

β(p) :=

{
α(p) if p ∈ X ,

−α(p) if p ∈M \X .

Then β is obviously a volume form with β /∈ Or ∪ (−Or), where Or is the equivalence
class of α. Therefore M has more than two orientations. �

(b) Let M = (M,Or) be an oriented manifold. A chart (ϕ, U) of M is said
to be positive(ly oriented) if ϕ∗(α |U) for α ∈ Or is equivalent to the m-form
dx1 ∧ · · · ∧ dxm |ϕ(U). Otherwise it is negative(ly oriented). M has an atlas
consisting only of positive charts, an oriented atlas.

Proof For β ∈ Or, we have α = fβ with f ∈ E(M) and f(p) > 0 for p ∈ M . With
i : U ↪→ M , it follows from this that

ϕ∗α |U = ϕ∗i
∗α = ϕ∗i

∗(fβ) = (ϕ∗i
∗f)(ϕ∗i

∗β) = gϕ∗(β |U) ,

where g := f ◦ϕ−1 ∈ E
(
ϕ(U)

)
and g(x) > 0 for x ∈ ϕ(U). This shows that the definition

does not depend on the chosen representative. That there is indeed an atlas with positive
charts was shown in part (a) of the proof of Proposition 4.15. �

(c) Let M be oriented. Then (ϕ, U) is a positive chart if and only if (∂1|p, . . . , ∂m|p)
is a positive basis of TpM for p ∈ U .

Proof For α ∈ Ωm(M), Remark 4.5(c) says that the basis representation in local coor-
dinates is

α |U = a dx1 ∧ · · · ∧ dxm

with a(p) = α(p)(∂1|p, . . . , ∂m|p) for p ∈ U . The claim is now clear. �

4.17 Examples (a) Every open subset U of an orientable manifold M is itself
orientable.14

Proof For α ∈ Or(M), the restriction α |U is a volume form on U . �

(b) If M and N are orientable and one of these manifolds is without boundary,
then the product manifold15 M ×N is orientable.

14We stipulate that the empty set is orientable.
15See Exercise VII.9.4 and Exercise 3. Why do we assume that one of these two manifolds is

without boundary?
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Proof If
{

(ϕκ, Uκ) ; κ ∈ K
}

and
{

(ψλ, Vλ) ; λ ∈ L
}

are oriented atlases of M and N ,
respectively, then it is easy to see that

{
ϕκ × ψλ ; (κ, λ) ∈ K× L

}
with

ϕκ × ψλ(p, q) :=
(
ϕκ(p), ψλ(q)

)
∈ Rm × Rn for (p, q) ∈ Uκ × Vλ ,

is an oriented atlas of M ×N . Because we can assume without loss of generality that M
and N are at least one-dimensional, the claim follows from Proposition 4.15. �

(c) Any manifold that can be described by a single chart (that is, one that has an
atlas with only one chart) is orientable.
Proof This is trivial (see the first part of the proof of Proposition 4.15). �

(d) (graphs) Suppose X is open in Rm and f ∈ C∞(X, Rn). Then graph(f) is
an m-dimensional orientable submanifold of Rm+n.
Proof For Proposition VII.9.2, we know that graph(f) is an m-dimensional submanifold
of Rm+n. The proof of that result shows that

ϕ : graph(f)→ X ,
(
x, f(x)

)
�→ x

is a chart that describes graph(f). Therefore the claim follows from (c). �

(e) (fibers of regular maps) Suppose X is open in Rm and � ∈ {0, . . . , m−1}. Also
let q be regular value of f ∈ C∞(X, Rm−	). Then the �-dimensional submanifold
f−1(q) of X is orientable.
Proof Let ω := dx1 ∧ · · · ∧ dxm

∣∣ X and

∇fk :=
m∑

j=1

∂jf
k ∂

∂xj
∈ V(X) for 1 ≤ k ≤ m− � .

With the notations of Remark VII.10.11(a), we have ∇fk(p) = ∇pfk for p ∈ X. We can
assume that L := f−1(q) is not empty. Then

α := ∇f1 −�
(
∇f2 −�

(
· · · −� (∇fm−� −� ω) · · ·

)) ∣∣∣ L ∈ Ω�(L) .

Proposition VII.10.13 guarantees that ∇f1(p), . . . ,∇fm−�(p) are linearly independent.
Therefore

α(p) = ω
(
∇fm−�(p), . . . ,∇f1(p), . . .

)
	= 0 for p ∈ L ,

that is, α is a volume form on L. �

(f) If M and N are diffeomorphic, then M is orientable if and only if N is ori-
entable.
Proof Let f ∈ Diff(M, N), and let (ϕ, U) be a chart of M . Then ψ := ϕ◦f−1 is a chart
of N with V := f(U) = dom(ψ). Because M and N are diffeomorphic, m = n. Suppose
now β ∈ Ωm(N) is a volume form on N . The local coordinates (y1, . . . , ym) = ψ give β
the representation β | V = b dy1 ∧ · · · ∧ dym with b(q) 	= 0 for q ∈ V . From this it follows
that

f∗(β |V ) = (f∗b)f∗(dy1 ∧ · · · ∧ dym) = b ◦ f dx1 ∧ · · · ∧ dxm ,

because f∗yj = prj ◦ψ ◦ f = prj ◦ϕ = xj with (x1, . . . , xm) = ϕ. Because b ◦ f(p) 	= 0 for
p ∈ U , we see that f∗β is a volume form on M . Now the claim is immediate. �
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(g) Every one-dimensional manifold is orientable.
Proof We can assume that the manifold M is connected since it suffices to show that
every connected component in orientable. Then by Theorem 1.18, M is diffeomorphic to
an interval J or to S1. Because J and S1 are orientable (where the orientability of S1

follows from (e), for example), the claim is implied by (f). �

(h) (hypersurfaces) A hypersurface M in Rm+1 is orientable if and only if there is
a smooth unit normal field on M , that is, a ν ∈ C∞(M, Rm+1) such that |ν(p)| = 1
and ν(p) =

(
p, ν(p)

)
∈ T⊥

p M for p ∈ M .

Proof If ν is a unit normal field on M , then (ν −� dx1 ∧ · · · ∧ dxm+1)
∣∣ M is a volume

form on M . Therefore M is orientable.

Let M be orientable. If (ϕ, U) is a positive chart with ϕ = (x1, . . . , xm), then,
because dim(T⊥

p M) = 1, there is for every p ∈ U exactly one ν(p) =
(
p, ν(p)

)
∈ T⊥

p M
with |ν(p)| = 1 such that (

ν(p), ∂
∂x1

∣∣
p
, . . . , ∂

∂xm

∣∣
p

)
is a positive basis of TpRm+1. By shrinking U , we can assume that there are open sets
Ũ and Ṽ of Rm+1, with U = Ũ ∩M , and a Φ ∈ Diff(Ũ , Ṽ ) such that U = f−1(0) for

f := Φm+1 ∈ E(Ũ). It follows because ∇f(p) 	= 0 for p ∈ Ũ that f is regular. Hence it
follows from Proposition VII.10.13, that

ν(p) = ε∇f(p)
/
|∇f(p)| for p ∈ U

with ε ∈ {±1}. This shows that ν is smooth.

Now let (ψ, V ) be a second positive chart with U∩V 	= ∅ and ψ = (y1, . . . , ym), and
suppose μ(q) =

(
q, μ(q)

)
∈ T⊥

q M satisfies μ ∈ C∞(V, Rm+1) and |μ(q)| = 1 for q ∈ V .

Also suppose
(
μ(q), ∂

∂y1

∣∣
q
, . . . , ∂

∂ym

∣∣
q

)
is a positive basis of TqRm+1 for q ∈ V . Because

the two bases (
∂

∂x1

∣∣
p
, . . . , ∂

∂xm

∣∣
p

)
and

(
∂

∂y1

∣∣
p
, . . . , ∂

∂ym

∣∣
p

)
have the same orientation for p ∈ U ∩ V , it follows that μ(p) = ν(p) for p ∈ U ∩ V . Now
the existence of a unit normal field follows from the existence of an oriented atlas of M . �

(i) (Möbius strip) Suppose R > 0, and define

f : [−π, π)× (−1, 1)→ R3

by
f(θ, t) :=

((
R + t cos θ

2

)
cos θ,

(
R + t cos θ

2

)
sin θ, t sin θ

2

)
.

Then the image M of f is a nonorientable
surface, the Möbius strip. Visually, the
map f works as follows: Because

f(±π, t) = (−R, 0,±t) ,

it twists the end {π}× (−1, 1) of the rect-
angle [−π, π]× (−1, 1) by 180 degrees rel-
ative to the start {−π} × (−1, 1). These
two ends are then glued together.
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Representing f in the form

f(θ, t) = R(cos θ, sin θ, 0) + tg(θ)

with g(θ) :=
(
cos(θ/2) cos θ, sin(θ/2) sin θ, sin(θ/2)

)
, we obtain an interpretation

of the parametrization of f : A point with angular velocity 1 traces a circle in the
(x, y)-plane with center 0 and radius R; this describes the first summand. The
midpoint of a rod of length 2 is affixed to this point (along its length) and is allowed
to simultaneously rotate about its own midpoint with an angular velocity of 1/2,
so that its direction is reversed after one rotation; this is the second summand.
Proof The proof that M is a smooth surface is left to you.

For −π ≤ θ ≤ π, we have

v1(θ) := ∂1f(θ, 0) = R(− sin θ, cos θ, 0) ,

v2(θ) := ∂2f(θ, 0) =
(
cos(θ/2) cos θ, cos(θ/2) sin θ, sin(θ/2)

)
.

It follows that for every θ ∈ [−π, π) the vectors v1(θ), v2(θ) attached to p(θ) := f(θ, 0)
form a basis of Tp(θ)M . Therefore the vector

n(θ) :=
(
−v1(θ)× v2(θ)

)/
R =

(
− cos θ sin(θ/2),− sin θ sin(θ/2), cos(θ/2)

)
attached to p(θ) is a unit normal vector for −π ≤ θ < π. In particular, n(0) = e3.

We assume that ν : M → R3 is a unit normal field with ν
(
p(0)

)
= e3. Then because

T⊥
p(θ)M is continuous and one-dimensional, it follows that the vectors ν

(
p(θ)

)
and n(θ)

coincide in −π ≤ θ < π. From this and the relation p(−π) = p(π), we find as θ → π that

−e1 = n(−π) = ν
(
p(−π)

)
= ν

(
p(π)

)
= n(π) = e1 ,

which is not possible. Thus there is no smooth (or even continuous) unit normal field
on M ; this, by (h), shows that M is not orientable. �

(j) (regularity) With obvious modifications, the statements above remain true for C1

manifolds. �

Tensor fields

Let r, s ∈ N. Then, according to Section 2, the vector space T r
s (TpM), which con-

sists of r-contravariant and s-covariant tensors, is well defined on TpM . Therefore
the bundle of (r, s)-tensors on M ,

T r
s (M) :=

⋃
p∈M

T r
s (TpM) ,

is also well defined. An (r, s)-tensor (more precisely, an r-contravariant and
s-covariant tensor) on M is a section of this bundle, that is, it is a map

γ : M → T r
s (M) with γ(p) ∈ T r

s (TpM) for p ∈M .
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If γ and δ are (r, s)-tensors on M and f ∈ RM , then the sum, γ + δ, the product
with functions, fγ, and the tensor product, γ ⊗ δ, are again defined pointwise as

(γ + δ)(p) := γ(p) + δ(p) , (fγ)(p) := f(p)γ(p) , γ ⊗ δ(p) := γ(p)⊗ δ(p)

for p ∈ M . Likewise, the effect of γ ∈ T r
s (M) on an r-tuple α1, . . . , αr of Pfaff

forms and an s-tuple v1, . . . , vs of vector fields is defined pointwise by

γ(α1, . . . , αr, v1, . . . , vs)(p) := γ(p)
(
α1(p), . . . , αr(p), v1(p), . . . , vs(p)

)
for p ∈M .

Finally let ϕ ∈ Diff1(M, N). Then we define the push forward by ϕ of γ ∈ T r
s (M)

through

(ϕ∗γ)(α1, . . . , αr, v1, . . . , vs) := (γ ◦ ϕ−1)(ϕ∗α1, . . . , ϕ
∗αr, ϕ

∗v1, . . . , ϕ
∗vs) ,

where α1, . . . , αr are Pfaff forms and v1, . . . , vs are vector fields on N , and we have
set

ϕ∗v := (ϕ−1)∗v (4.25)

with v a vector field on N . Naturally, ϕ∗γ := (ϕ−1)∗γ is then the pull back of
γ ∈ T r

s (N).
Let k ∈ N ∪ {∞}. Then an (r, s)-tensor γ belongs to the class Ck (or, is

k-times continuously differentiable or smooth in the case k = ∞) if every point
of M has a chart (ϕ, U) such that ϕ∗γ is a (r, s)-tensor on ϕ(U) of class Ck. We
denote the set of all smooth (r, s)-tensors on M by

T r
s (M) .

The proofs of the following remarks are straightforwardly transferred from
the corresponding proofs for differential forms in Sections 2 and 3.16 Therefore we
leave these proofs to you.

4.18 Remarks (a) The definition of differentiability is coordinate independent.

(b) T r
s (M) is an E(M)-module. The tensor product map

⊗ : T r1
s1

(M)× T r2
s2

(M)→ T r1+r2
s1+s2

(M) , (γ, δ) �→ γ ⊗ δ

is E(M)-bilinear and associative.

(c) An (r, s)-tensor γ on M is smooth if and only if

γ(α1, . . . , αr, v1, . . . , vs) ∈ E(M)

for all v1, . . . , vs ∈ V(M) and α1, . . . , αr ∈ Ω1(M).

16This repetition can be avoided if one first develops the (elementary) theory of vector bundles.
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(d) Let (ϕ, U) be a chart of M . Then{ ∂

∂xj1
⊗ · · · ⊗ ∂

∂xjr
⊗ dxk1 ⊗ · · · ⊗ dxks ; ji, ki ∈ {1, . . . , m}

}
(4.26)

is a module basis of T r
s (M). Then γ ∈ T r

s (U) if and only if the coefficients of γ in
the basis representation (4.26) are smooth.

(e) Let ϕ ∈ Diff(M, N). Then ϕ∗ maps the module T r
s (M) to T r

s (N) and operates
covariantly as

(ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗ and (idM )∗ = idT r
s (M) .

Analogously, ϕ∗(T r
s (N)

)
= T r

s (M), and ϕ∗ operates contravariantly. Finally ϕ∗
and therefore also ϕ∗ is compatible with the tensor product map, that is,

ϕ∗(γ ⊗ δ) = ϕ∗γ ⊗ ϕ∗δ .

(f) For f ∈ C∞(M, N) and γ ∈ T 0
s (N), the pull back f∗γ of γ by f is determined

by

f∗γ(v1, . . . , vs) := (γ ◦ f)
(
(Tf)v1, . . . , (Tf)vs

)
for v1, . . . , vs ∈ V(M)

with ((Tf)v)(p) := (Tpf)v(p) for p ∈ M . Then the map

f∗ : T 0
s (N)→ T 0

s (M) , γ �→ f∗γ

is well defined and R-linear, operates contravariantly, and is compatible with the
tensor product map. For f ∈ Diff(M, N), it is the same as the previously defined
pull back.

(g) T 1
0 (M) = V(M), T 0

1 (M) = Ω1(M), and dual pairing 〈 · , · 〉 is a (1, 1)-tensor
on M .

(h) (regularity) Let k ∈ N. Then the statements above hold analogously if M is a
Ck+1manifold and C∞ is replaced by Ck. �

Exercises

1 Let N be a submanifold of a manifold without boundary. Show that (with the canon-
ical identification) Vk(N) ⊂ Vk(M) for k ∈ N ∪ {∞}.
2 Suppose α ∈ Ωr(M) and β ∈ Ω(M), and let v ∈ V(M). Show that

v −� (α ∧ β) = (v −� α) ∧ β + (−1)rα ∧ (v −� β) .

3 Verify the statements made in the proof of Example 4.17(b).

4 For α ∈ Ω1(M) and v ∈ V(M), calculate d〈α, v〉 in local coordinates.



5 Riemannian metrics

We already know from Section VII.10 that the Euclidean inner product ( · | · ) on
Rm can be used to define another inner product by restricting it to the tangent
space TpM of a submanifold M . This gives a way to measure lengths and angles
on TpM . So, for example, we can determine if two curves Γ1 and Γ2 on M intersect
orthogonally at a point p by verifying that the tangent spaces TpΓ1 and TpΓ2 are
themselves orthogonal in TpM .

That the Euclidean structure of Rm induces one on M , or precisely on the
tangent bundle of M , is the foundation for the theory of integration on manifolds,
which we will treat in the next chapter. In this section, we explore a few con-
sequences of the existence of a Euclidean structure on M , and we study several
examples. We also introduce the Hodge star operator and the codifferential, which
are of significance for a deeper incursion into the theory of differential forms— in
particular, these concepts are important in (theoretical) physics.

To ease the introduction to the material, we consider first the case of the
Euclidean structure on M induced by ( · | · ). It will be apparent, however, that all
abstract theorems remain true in an essentially more general framework, namely,
that of Riemannian geometry. Because these facts are of great theoretical and
practical importance, we will introduce the concept of a (pseudo) Riemannian
metric, which forms the general framework for our subsequent considerations.

For the entire section, suppose the following:
• M is an m-dimensional submanifold of Rm; N is an n-dimensional submani-

fold of Rn.
• The indices i, j, k, l always range from 1 to m unless otherwise stated, and∑

j means that j is summed from 1 to m.

The volume element

Suppose M is oriented. Then Or induces an orientation on every tangent space
TpM . Also TpM is an inner product space with inner product ( · | · )p induced
by the Euclidean scalar product of the surrounding space Rm. Thus, by Re-
mark 2.12(b), there is a unique volume element ωp on TpM . Therefore

ωM (p) := ωp for p ∈M

defines an m-form on M , the volume element on M .

5.1 Proposition Suppose M is oriented. Then ωM belongs to Or(M). If (ϕ, U)
is a positive chart with ϕ = (x1, . . . , xm), then

ωM |U =
√

Gdx1 ∧ · · · ∧ dxm , (5.1)
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where G := det[gjk] ∈ E(U) is the Gram determinant and

gjk(p) :=
(
∂j |p

∣∣ ∂k|p
)
p

for 1 ≤ j, k ≤ m and p ∈ U .

Letting gϕ := i◦ϕ−1 ∈ C∞(ϕ(U), Rm), with i : M ↪→ Rm, be the parametrization
belonging to ϕ, we have

ϕ∗gjk(x) =
(
∂jgϕ(x)

∣∣ ∂kgϕ(x)
)

for 1 ≤ j, k ≤ m and x ∈ ϕ(U) . (5.2)

Proof Because (∂1|p, . . . , ∂m|p) is a positive basis of TpM , it follows from Propo-
sition 2.13 that

ωp =
√

G(p) dx1 ∧ · · · ∧ dxm(p) for p ∈ U .

Therefore (5.1) holds. Because

ϕ∗(ωM |U) = ϕ∗
√

Gdx1 ∧ · · · ∧ dxm
∣∣ ϕ(U)

with ϕ∗
√

G =
√

G ◦ ϕ−1, it follows from Remark 4.3(a) that (5.2) is satisfied.
Because the scalar product and the determinant function are smooth (see Propo-
sition VII.4.6 and Exercise VII.4.2) and because G(p) > 0 for p ∈ U , the chain rule
gives ϕ∗

√
G ∈ E

(
ϕ(U)

)
. Therefore ωM |U is smooth, which proves ωM ∈ Or. �

5.2 Remark (regularity) By modifying the statement of this proposition in the obvious
way, we find it remains true when M is a C1 manifold. �

5.3 Examples (a) (open sets in Hm) Let X be a nonempty open subset of Hm.
Then X is endowed with a natural orientation with respect to which every tangent
space TpX = TpRm with p ∈ X is naturally oriented, that is, this orientation makes
the canonical basis

(
(e1)p, . . . , (em)p

)
positive. Then the volume element of X is

given by
ωX = dx1 ∧ · · · ∧ dxm

∣∣ X .

The trivial chart (idX , X) is positive.

(b) (fibers of regular maps) Suppose X is open in Rm and q is a regular value
of f ∈ E(X) with M := f−1(q) 
= ∅. We provide the hypersurface M with the
orientation Or(M,∇f) induced by ∇f , as follows: For every p ∈ M , the basis
(v1, . . . , vm−1) of TpM is positive if and
only if the basis(

∇f(p), v1, . . . , vm−1

)
of TpX = TpRm is positive with ∇f =∑

k ∂kf ∂
/
∂xk. With

ν := ∇f
/
|∇f |

the unit normal field of M , the volume element of
(
M,Or(M,∇f)

)
is given by

ωM := (ν −� ωX) |M .
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If m = 3, a basis
(
v1(p), v2(p)

)
of TpM is positive if and only if the three

vectors
(
v1, v2, ν(p)

)
form a “right handed basis” of TpR3. Here (w1, w2, w3) is

a right handed basis if one can stretch out the thumb, first, and second fingers
of one’s right hand (with the middle finger bent palmward) so that these three
fingers point in the direction (and the same order) of these three vectors. This is
called the right hand rule.

Proof Because q is a regular point, ∇f(q) 	= 0 for q ∈M . By the regular value theorem,
M is a smooth hypersurface in X. The proof of Example 4.17(e) shows that ωM is a
smooth volume form. Now all is clear. �

(c) (spheres) The m-sphere Sm in Rm+1 for m ∈ N
is canonically oriented by the outward unit normal
field

ν(x) := (x, x) ∈ TxRm+1 .

If m = 0, S0 consists of the two points {±1} ⊂ R,
and the outward unit normal field at 1 [or −1] is
given by (1, 1) ∈ T1R [or (−1,−1) ∈ T−1R].1

When m = 1, the canonical orientation of S1 is the same as the one given
in Remark VIII.5.8. Therefore “one traverses S1 is the positive direction” exactly
when the traversal is counterclockwise. In this case, ν coincides with the negative
unit normal vector −n in the sense of the Frenet two-frame.

The volume element of the canonically oriented m-sphere is the m-form2

ωSm = (ν −� ωRm+1)
∣∣ Sm

=
m+1∑
j=1

(−1)j−1xj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm+1
∣∣∣ Sm .

The chart (ϕ±, Sm
± ) describes the upper [or lower] hemisphere Sm

± that is projected
along the xm+1-axis onto Bm × {0}; this chart is positively oriented when m is
even [or odd] and is negatively oriented for odd [or even] m.

The spherical coordinate chart of S1 is positive, whereas that of S2 is nega-
tive.

Proof The formula for ωSm is a special case of (b). The statements about the various
charts of Sm follow from Examples 4.6(a)–(b). �

(d) (graphs) Let X be open in Hm and f ∈ C∞(X, Rn). Then the natural
orientation of the graph M := graph(f) is the one for which the natural chart
(ϕ, M) with

ϕ : M → Rm ,
(
x, f(x)

)
�→ x

1See Example 1.17(a).
2This justifies the notations used in Examples 4.6 and 4.13(c).
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is positive. In the case n = 1, the volume element ωM has the local representation

ωM |M =
√

1 + |∇f |2 dx1 ∧ · · · ∧ dxm

with ∇f =
∑m

j=1 ∂jf ∂j .

Proof Because gϕ(x) =
(
x, f(x)

)
for x ∈ X = ϕ(M), it follows from Remark 4.3(a)

that

∂j |p =
(
p, (ej , ∂jf(x)

)
∈ TpRm+1 for p =

(
x, f(x)

)
∈M and 1 ≤ j ≤ m ,

where TpM is identified canonically with the vector subspace (TpiM )(TpM) of TpRm+1.
Putting dj := ∂jf , we then get gjk = δjk + djdk.

Let Dm := [ϕ∗gjk]. Then it follows that

G = det Dm = det
· · ·

⎡⎢⎢⎢⎢⎣
1 + d2

1 d1d2 · · · d1dm

d2d1 1 + d2
2 · · · d2dm

...
...

...

dmd1 dmd2 · · · 1 + d2
m

⎤⎥⎥⎥⎥⎦

= det

· · · · · · · · · · · · · · · · · · · · · · · · · · · ·

··············

⎡⎢⎢⎢⎢⎢⎣
0

Dm−1

...
0

dmd1 · · · dmdm−1 1

⎤⎥⎥⎥⎥⎥⎦ + d2
m det

· · · · · · · · · · · · · · · · · · · · · · · · · ·

··············

⎡⎢⎢⎢⎢⎢⎣
d1

Dm−1

...
dm−1

d1 · · · dm−1 1

⎤⎥⎥⎥⎥⎥⎦ .

To compute the last determinant, we subtract dj times the last column from the j-th
column for 1 ≤ j ≤ m − 1, and so find that its value is 1. This then gives the recursion
formula

detDm = detDm−1 + d2
m .

Because detD1 = 1 + d2
1, the recursion yields

G = detDm = 1 + d2
1 + · · ·+ d2

m = 1 + |∇f |2

and hence the claim. �

(e) (curves) Suppose J is a perfect interval in R, and γ : J → Rm is a smooth
embedding. Then M := γ(J) is an embedded curve in Rm. Also let M be oriented
by γ, that is, let

(
γ(t), γ̇(t)

)
be a positive basis of Tγ(t)M for t ∈ J . Finally, suppose

ϕ : M → R, with γ = iM ◦ ϕ−1 the chart of M belonging to γ. Then ωM = |γ̇| dt.
Proof This is an immediate consequence of Proposition 5.1. �

(f) (parametrized surfaces) Let X be open in H2, and h : X → Rn let be a
smooth embedding. Then M := h(X) is a two-dimensional submanifold in Rn, a
surface in Rn, which is described by a single chart. Therefore M is orientable. By
the orientation induced by the parametrization h, we mean that orientation for
which

(
∂1h(x), ∂2h(x)

)
is a positive basis of Th(x)M for every x ∈ X .
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Let ϕ : M → R2 with ϕ = (u, v) charge belonging to h, that is, h = iM ◦ϕ−1.
With the classical notations

E := |∂1h|2 , F := (∂1h | ∂2h) , G := |∂2h|2 ,

we have
ωM =

√
EG− F2 du ∧ dv .

Proof This follows from ϕ∗G = EG− F2. �

(g) (boundaries) Suppose M is an oriented manifold with boundary and ν(p)
is the outward (unit) normal vector ∂M at p ∈ ∂M . Then we say a basis
(v1, . . . , vm−1) of Tp∂M is positive if

(
ν(p), v1, . . . , vm−1

)
is a positive basis of

TpM . This is turn determines an orientation on ∂M , the orientation induced by
the outward normal. The volume element ω∂M of ∂M satisfies

ω∂M = (ν −� ωM ) | ∂M = i∗∂M (ν −� ωM ) ,

where i∂M : ∂M ↪→M is the natural embedding.
Obviously (c) is a special case of this situation. Note also that the orientation

induced by the outward normal must not agree with that induced by ∇f if ∂M
can be represented as in (b) as the fiber of a regular map.
Proof From Theorem 1.15 and Remark 1.16(a), we know that ν can be locally described
in the form ν(p) = ∇f(p)/|∇f(p)|, where f is a smooth function satisfying ∇f(p) 	= 0.
This shows the unit normal vector field is smooth. From this it follows easily that
(ν −� ωM ) | ∂M belongs to Ωm−1(∂M). If (v1, . . . , vm−1) is an ONB of Tp∂M , then(
ν(p), v1, . . . , vm−1

)
is an ONB of TpM . When

(
ν(p), v1, . . . , vm−1

)
is a positive ONB of

TpM ,
1 = ωM

(
ν(p), v1, . . . , vm−1

)
= (ν −� ωM )(p)(v1, . . . , vm−1) . �

(h) Let m ≥ 2. Then the orientation of ∂Hm = Rm−1 induced by the outward
normal ν = −em coincides with the natural orientation of Rm−1 if and only if m
is even.
Proof This we may read off from

det[ν, e1, . . . , em−1] = (−1)m−1 det[e1, . . . , em−1,−em] = (−1)m . �

Riemannian manifolds

The proof of Proposition 5.1 depends on the fact that every tangent space TpM
is endowed naturally with an inner product that varies differentiably with p ∈M .
Such situations appear quite frequently, although the scalar product on TM is
often generated in another way. Therefore it is useful to explore these issues
somewhat more precisely.
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A Riemannian metric on M is a tensor g ∈ T 0
2 (M) such that g(p) is an inner

product on TpM for every p ∈ M . Then (M, g) is a Riemannian manifold.
Let (M, g) be a Riemannian manifold. We will often write

(
(x1, . . . , xm), U

)
for the chart (ϕ, U) of M with ϕ = (x1, . . . , xm). Then we set

gjk := g
( ∂

∂xj
,

∂

∂xk

)
∈ E(U) (5.3)

and put

[gjk] := [gjk]−1 ∈ C∞(U, Rm×m
sym ) and G := det[gjk] ∈ E(U) . (5.4)

We also call g the (first) fundamental tensor. Here [gjk] is the representation
matrix (or simply, the matrix) of g in the local coordinates (x1, . . . , xm); it is
also called the (first) fundamental matrix.3 As before, G is called the Gram
determinant.

5.4 Remarks (a) If g is a Riemannian metric on M , the map

V(M)× V(M)→ E(M) , (v, w) �→ g(v, w) (5.5)

is well defined, bilinear, symmetric, and positive in the sense that

g(v, v) ≥ 0 and g(v, v) = 0 ⇐⇒ v = 0 . (5.6)

Proof That the map (5.5) is well defined follows immediately from Remark 4.18(c).
The remaining claims are direct consequences of the properties of scalar products. �

(b) Let
(
(x1, . . . , xm), U

)
be a chart of a Riemannian manifold (M, g). Then

g |U =
∑

j,k
gjk dxj ⊗ dxk .

In this context, we usually write dxjdxk for dxj ⊗ dxk.
Proof According to (4.8), any v ∈ V(U) has a basis representation

v =
∑

j
〈dxj , v〉 ∂

dxj
.

The claim follows from this, the bilinearity of the map (5.5), and the definitions of
dxj ⊗ dxk and gjk. �

(c) Let
(
(x1, . . . , xm), U

)
be a positive chart of an oriented Riemannian mani-

fold (M, g). Then the volume element ωM of M satisfies

ωM |U =
√

Gdx1 ∧ · · · ∧ dxm .

Proof This follows from Proposition 2.13. �

3See Remark VII.10.3(b).
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(d) Let g be a Riemannian metric on M , and let (x1, . . . , xm) and (y1, . . . , ym) be
local coordinates on an open set U of M . Then

g |U =
∑

j,k
gjk dxj ⊗ dxk =

∑
r,s

grs dyr ⊗ dys

with

grs =
∑

j,k

∂xj

∂yr

∂xk

∂ys
gjk for 1 ≤ r, s ≤ m .

Proof Because

dxj =
∑

r

∂xj

∂yr
dyr for 1 ≤ r ≤ m ,

this is a consequence of (b). �

(e) If we only require of g ∈ T 0
2 (M) that the bilinear form g(p) on TpM is symmet-

ric and nondegenerate for every p ∈ M , then we call g an indefinite Riemannian
metric, and (M, g) is a pseudo-Riemannian manifold. In this case, we again use
the notations (5.3) and (5.4). Then (a), (b) and (d), with the exception of (5.6),
remain true. Every Riemannian manifold is also pseudo-Riemannian.

(f) Let (M, g) be a (pseudo-)Riemannian manifold, and suppose W is open in M .
If v1, . . . , vm ∈ V(W ) satisfy

g(vj , vk) = ±δjk for 1 ≤ j, k ≤ m ,

we say (v1, . . . , vm) is an orthonormal frame on W . Of course, Riemannian mani-
folds have g(vj , vj) = 1 for 1 ≤ j ≤ m. An orthonormal frame (v1, . . . , vm) on W is
therefore an m-tuple of (smooth) vector fields W that form an ONB (with respect
to the (indefinite) inner product g(p) of TpM) at every point p ∈W . Such an or-
thonormal frame does not exist in general, because, according to Remark 4.5(d),
one cannot generally find m vector fields that are everywhere linearly independent.

If (ϕ, U) is a chart of M , then there is an orthonormal frame on U .
Proof The basis vector fields ∂1, . . . , ∂m ∈ V(U) are linearly independent at every point.
Because g is nondegenerate, the Gram–Schmidt orthonormalization procedure (see for
example [Art93, §§ 7.1 and 7.2]) then generates an orthonormal frame. The details are
left to you. �

(g) Let (M, g) be an oriented pseudo-Riemannian manifold. If (ϕ, U) is a positive
chart of M with ϕ = (x1, . . . , xm), we set

ωM |U :=
√
|G| dx1 ∧ · · · ∧ dxm .

This then defines a volume form ωM ∈ Ωm(M) on M , which we call the volume
element of M . Every positive orthonormal frame (v1, . . . , vm) on U satisfies

ωM (v1, . . . , vm) = 1 .
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Proof We show first that ωM ∈ Ωm(M) is well defined. So let (e1, . . . , em) be any
orthonormal frame on U , with (ε1, . . . , εm) its dual frame; that is, εj ∈ Ω1(U) and
〈εj , ek〉 = δj

k for 1 ≤ j, k ≤ m. Then it follows from Remark 2.18(d) that

ε1 ∧ · · · ∧ εm =
√
|G| dx1 ∧ · · · ∧ dxm .

Because this is true for every positive coordinate system (x1, . . . , xm) on U , it follows that
ωM |U ∈ Ωm(U) is well defined and independent of the special choice of local coordinates.
Suppose now

{
(ϕα, Uα) ; α ∈ A

}
is a positive atlas of M and (vα,1, . . . , vα,m) is a positive

orthonormal frame on Uα with dual frame (ε1
α, . . . , εm

α ). Then we define ωM on M by
ωM |Uα := ε1

α ∧ · · · ∧ εm
α . From the previous considerations, it follows that ωM is well

defined and belongs to Ωm(M). The last claim is now obvious. �

(h) (regularity) Let k ∈ N, and let M be a Ck+1 manifold. Then the definitions and
statements above remain true if V(M) and E(M) are replaced everywhere by Vk(M) and
Ck(M), respectively. �

Suppose (N, g) is a Riemannian manifold and f : M → N is an immersion.
Then f∗g (the pull back of g by f) is a Riemannian metric on M . If M is a
submanifold of N and i : M ↪→ N is the natural embedding, then i∗g is the
Riemannian metric induced by N (more precisely, by (N, g)).

Let (M, g) and (N, g) be Riemannian manifolds. An immersion f : M → N is
said to be an isometry if g = f∗g. If f is an isometric diffeomorphism, that is, both
an isometry and a diffeomorphism, then M and N are isometrically isomorphic.

5.5 Examples (a) Suppose (M, g) is a Riemannian manifold and (ϕ, U) is a chart
with ϕ = (x1, . . . , xm). Then (U, g) and

(
ϕ(U), ϕ∗g

)
are isometrically isomorphic,

and
ϕ∗g =

∑
j,k

gjk dxjdxk .

Proof This follows immediately from the definition of the fundamental matrix. �

(b) Rm is a Riemannian manifold with the Euclidean metric gm := ( · | · ), the
standard metric. Therefore Rm induces a Riemannian metric g on M , which we
also call the standard metric. It is obviously independent of Rm in the sense that
Rn induces the same metric on M when M lies in Rn. In particular, g(p) = ( · | · )p

for p ∈ M (with the notation we have been using) for the scalar product induced
by ( · | · ) in TpM .

If (ϕ, U) is a chart of M with ϕ = (x1, . . . , xm) and h := i ◦ ϕ−1 with
i : M ↪→ Rm is the associated parametrization, then

ϕ∗g =
∑

j,k
(∂jh | ∂kh) dxjdxk .

In other words, the first fundamental matrix [gjk] is given in local coordinates
(x1, . . . , xm) by [

(∂jh | ∂kh)
]
∈ C∞(

ϕ(U), Rm×m
)

.
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This is consistent with Remark 5.4(b) and also shows that Proposition 5.1 is a
special case of Remark 5.4(c).
Proof From g = i∗gm, it follows that ϕ∗g = (ϕ−1)∗i∗gm = h∗gm. Let (y1, . . . , ym) be
Euclidean coordinates of Rm. Then

gm =
m∑

j=1

(dyj)2 and h∗gm =
m∑

j=1

h∗(dyj ⊗ dyj) =
m∑

j=1

dhj ⊗ dhj ,

which follow easily from the definition of the pull back of (0, 2)-tensors dyj ⊗ dyj and
from Example 3.4(a). Now the claim follows easily from the bilinearity of (α, β) �→ α⊗β
for α, β ∈ Ω1

(
ϕ(U)

)
and from dhj =

∑
k ∂khj dxk. �

(c) (graphs) Suppose X is open in Hm and f ∈ C∞(X, Rn). Let M be the graph
of f , and let

ϕ : M → Rm ,
(
x, f(x)

)
�→ x

be the natural chart (ϕ, M). Then the standard metric g of M satisfies

g =
∑

j
(dxj)2 +

∑
j,k

(∂jf | ∂kf) dxjdxk .

In particular, in the case of a surface (m = 2),

g = (1 + |∂1f |2)(dx)2 + 2(∂1f | ∂2f) dxdy + (1 + |∂2f |2)(dy)2 .

Proof Because gjk = δjk + (∂jf | ∂kf) for 1 ≤ j, k ≤ m, this follows from (b). �

(d) (parametrized surfaces) Suppose X is open in H
2

and h : X → Rn is an
embedding. Then the standard metric of the surface M := h(X) is given by

g = E(du)2 + 2F dudv + G(dv)2 ,

where we have used the notations of Example 5.3(f).

(e) (plane polar coordinates) Let V2 := (0,∞)×(0, 2π). Then the polar coordinate
map

f2 : V2 → R2 , (r, ϕ) �→ (x, y) := (r cosϕ, r sin ϕ)

is an embedding with M := f2(V2) = R2\
(
R+ × {0}

)
, and

g2 |M = (dx)2 + (dy)2 = (dr)2 + r2(dϕ)2 .

Proof This follows easily from (d). �

(f) (circular coordinates) With respect to the parametrization

h : (0, 2π)→ R2 , t �→ (cos t, sin t)

of S1\
{
(1, 0)

}
, the standard metric on the circle satisfies gS1 = (dt)2.
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Proof Because |∂h| = 1, this follows from (b). �

(g) (m-dimensional polar coordinates) With m ≥ 3, let4

fm : Vm → Rm , (r, ϕ, ϑ1, . . . , ϑm−2) �→ (x1, x2, x3, . . . , xm)

be the (restriction to Vm of the) polar coordinate map (X.8.17). Then fm is a
parametrization of Rm\Hm−1, and

m∑
j=1

(dxj)2 = (dr)2 + r2
[
am,0(dϕ)2 +

m−2∑
k=1

am,k(dϑk)2
]

with

am,k :=
m−2∏

i=k+1

sin2 ϑi for 0 ≤ k ≤ m− 3 and am,m−2 := 1 .

In particular, spherical coordinates satisfy (m = 3)

(dx)2 + (dy)2 + (dz)2 = (dr)2 + r2
[
sin2 ϑ(dϕ)2 + (dϑ)2

]
.

Proof With y = (r, z) ∈ R× Rm−1, we read off from (X.8.14) that

∂1fm(y) = hm−1(z) and ∂jfm(y) = r∂j−1hm−1(z) for 2 ≤ j ≤ m . (5.7)

Therefore (X.8.13) implies
|∂1fm|2 = 1 . (5.8)

Differentiation of |hm−1|2 = 1 gives (hm−1 | ∂khm−1) = 0 for 1 ≤ k ≤ m − 1. Then it
follows from (5.7) that(

∂1fm(y)
∣∣ ∂kfm(y)

)
= r

(
hm−1(z)

∣∣ ∂k−1hm−1(z)
)

= 0 for 2 ≤ k ≤ m . (5.9)

From (5.7) we also get(
∂jfm(y)

∣∣ ∂kfm(y)
)

= r2
(
∂j−1hm−1(z)

∣∣ ∂k−1hm−1(z)
)

for 2 ≤ j, k ≤ m . (5.10)

The recursion formula (X.8.12) with z = (z′, zm−1) ∈ Rm−2 × R leads to

∂jhm−1(z) =
(
∂jhm−2(z

′) sin zm−1, 0
)

for 1 ≤ j ≤ m− 2 , (5.11)

and
∂m−1hm−1(z) =

(
hm−2(z

′) cos zm−1,− sin zm−1

)
.

From this and (X.8.13), it follows that

|∂m−1hm−1(z)|2 = |hm−2(z
′)|2 cos2 zm−1 + sin2 zm−1 = 1 ,

and, in analogy to the above, we have(
∂jhm−1(z)

∣∣ ∂m−1hm−1(z)
)

= sin zm−1 cos zm−1

(
hm−2(z

′)
∣∣ ∂jhm−2(z

′)
)

= 0

4We use the notations of (X.8.11)–(X.8.24).
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for 1 ≤ j ≤ m− 2. With (5.7), this proves

|∂mfm(z)|2 = r2 and (∂jfm | ∂mfm) = 0 for 2 ≤ j ≤ m− 1 . (5.12)

Finally (5.11) implies(
∂jhm−1(z)

∣∣ ∂khm−1(z)
)

= sin2 zm−1

(
∂jhm−2(z

′)
∣∣ ∂khm−2(z

′)
)

for 1 ≤ j ≤ m− 2 .

Thus (5.7) and (5.10) give the recursion formula(
∂jfm(y)

∣∣ ∂kfm(y)
)

= sin2 zm−1

(
∂jfm−1(y

′)
∣∣ ∂kfm−1(y

′)
)

(5.13)

for 2 ≤ j, k ≤ m − 1, with y = (y′, ym) ∈ Rm−1 × R. Because (5.8) and (5.12) are true
for all m ≥ 3, induction on (5.13) gives

|∂jfm|2 = r2am,j−2 for 2 ≤ j ≤ m− 1 , (5.14)

and
(∂jfm | ∂kfm) = 0 for 2 ≤ j, k ≤ m− 1 and j 	= k . (5.15)

Now the claim follows from (5.8), (5.9), (5.12), (5.14), (5.15), and (b). �

(h) (m-dimensional spherical coordinates) For m ≥ 2, let

hm : Wm → Rm+1 , (ϕ, ϑ1, . . . , ϑm−1) �→ (y1, y2, . . . , ym+1) ,

where Wm := (0, 2π)× (0, π)m−1 and

y1

y2

y3

ym

ym+1

=
=
=
...
=
=

cosϕ sin ϑ1 sin ϑ2 · · · sin ϑm−1 ,

sin ϕ sin ϑ1 sin ϑ2 · · · sin ϑm−1 ,

cosϑ1 sin ϑ2 · · · sin ϑm−1 ,

cosϑm−2 sin ϑm−1 ,

cosϑm−1

are (m-dimensional) spherical coordinates.5 Then hm is a parametrization of the
open subset Um := Sm\Hm of the m-sphere. The standard metric gSm of Sm

satisfies

gSm = am+1,0(dϕ)2 +
m−1∑
k=1

am+1,k(dϑk)2 .

In the case of the 2-sphere (with ϑ := ϑ1), this becomes

gS2 = sin2 ϑ(dϕ)2 + (dϑ)2 .

Proof Because hm = fm+1(1, · ), the claim is a simple consequence of (g). �

5See Example VII.9.11(b).



344 XI Manifolds and differential forms

(i) (Minkowski metric) We denote the Euclidean coordinates of R4 by (t, x, y, z)
or (x0, x1, x2, x3) and set R4

1,3 :=
(
R4, ( · | · )1,3

)
with the Minkowski metric

( · | · )1,3 = (dt)2 − (dx)2 − (dy)2 − (dz)2 = (dx0)2 −
3∑

j=1

(dxj)2 .

Then R4
1,3 is a pseudo-Riemannian manifold, the spacetime or Minkowski space of

(special) relativity theory.
For v = (v0, . . . , v3) ⊂ R4

1,3, we call

|v|21,3 := (v | v)1,3 = (v0)2 −
∑3

j=1
(vj)2

the Minkowski norm of the vector v. Vectors with posi-
tive Minkowski norm are said to be timelike; those with
negative norm are spacelike. Those whose Minkowski
norm is zero are lightlike; in R4

1,3, the lightlike vectors
form a (double) cone, the light cone L1,3.

(j) (pseudospherical coordinates) Let V1,3 := R× V3 and

f1,3 : V1,3 → R4 , (ρ, χ, ϕ, ϑ) �→ (x0, x1, x2, x3)

with
x0 = ρ coshχ ,

x1 = ρ sinh χ cosϕ sin ϑ ,

x2 = ρ sinh χ sin ϕ sin ϑ ,

x3 = ρ sinh χ cosϑ ;

this is the pseudospherical coordinate map. Then f1,3 is a smooth diffeomorphism
from V1,3\{0} to the interior

L̊1,3 :=
{

x ∈ R4 ; |x|21,3 > 0
}

of the light cone, and

( · | · )1,3 = (dρ)2 − ρ2
[
(dχ)2 + sinh2 χ sin2 ϑ(dϕ)2 + sinh2 χ(dϑ)2

]
.

Proof This follows easily from the properties of sinh and cosh (see Exercises III.6.5 and
IV.2.5), and from Remark 5.4(d). �

(k) (hyperbolic spaces) To generalize the Minkowski space, we set

( · | · )1,m := (dx0)2 −
m∑

j=1

(dxj)2

for n ∈ N×. Then Rm+1
1,m :=

(
Rm+1, ( · | · )1,m

)
is an m-dimensional pseudo-

Riemannian manifold.
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Let

Mm :=
{

(x0, x) ∈ R× Rm ; (x0)2 − |x|2 = 1, x0 > 0
}

,

that is, Mm is the upper connected component of the m-dimensional two-shelled
hyperboloid

K1 :=
{

x ∈ Rm+1 ; (Ax |x) = 1
}

, where A := diag(1,−1, . . . ,−1)

(see Example 1.17(b)). Also let i : Mm ↪→ Rm+1 be the canonical embedding, and
let

gHm := −i∗( · | · )1,m .

Then
Hm := (Mm, gHm)

is an m-dimensional Riemannian manifold, the m-dimensional hyperbolic space.
If N := (N, g) is isometrically isomorphic to Hm, we say N is a model of Hm. In
particular, if we provide Rm with the metric

(dr)2

1 + r2
+ r2gSm−1 ,

written in the “polar coordinates” (r, σ) ∈ R+×Sm−1, then Rm is a model of Hm.
Proof For u : Rm → Rm+1, x �→

√
1 + |x|2, we have Mm = graph(u). Therefore

ϕ : Mm → Rm ,
(
h(x), x

)
�→ x

is a diffeomorphism from the hypersurface Mm in Rm+1 to Rm. Hence we have only to
show that the bilinear form gHm(0) induced on M by −( · | · )1,m is positive definite and
that ϕ∗gHm has the form indicated, because one could read off from this that gHm(p) is
positive definite for every p ∈M \

{
ϕ−1(0)

}
.

With h(x) :=
(
u(x), x

)
for x ∈ Rm, we have h = i ◦ ϕ−1 and

∂jh = (∂ju, ej) for 1 ≤ j ≤ m ,

where ej is the j-th standard basis vector of Rm. Because ∂ju(x) = xj/u(x), it follows
that

(ϕ∗gHm)jk(x) = (∂jh | ∂kh)1,m(x) = (δjk − xjxk)
/
u2(x) for x ∈ Rm ;

in particular (ϕ∗gHm)(0) =
∑

j(dxj)2.

As in (g), let

fm : (0,∞)×Wm−1 → Rm , (r, ϑ) �→ rhm−1(ϑ)

be the m-dimensional polar coordinate map. Then ψ := f−1
m ◦ ϕ is a local chart of M ,

and a := i ◦ ψ−1 = h ◦ fm = f∗
mh is the associated parametrization. This has

a(r, ϑ) =
(√

1 + r2, rhm−1(ϑ)
)

,
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and therefore

∂ra(r, ϑ) =
( r√

1 + r2
, hm−1(ϑ)

)
, ∂ϑj a(r, ϑ) =

(
0, r∂jhm−1(r, ϑ)

)
for (r, ϑ) ∈ (0,∞)×Wm−1. Because |hm−1| = 1, we derive

ψ∗gHm = −a∗( · | · )1,m

= r2
∑

j,k
(∂jhm−1 | ∂khm−1) dxj dxk +

(
1− r2

√
1 + r2

)
(dr)2 .

The claim now follows from this because of (h) and because the part still missing from
Mm\

{
ϕ−1(0)

}
can be analogously parametrized by rotating Mm around the x0-axis. �

(l) (the Poincaré model) In analogy to
the stereographic projection of the sphere onto
the plane, consider the stereographic projec-
tion of the pseudosphere

S2
1,3 :=

{
(t, x, y) ∈ R3 ; t2 − x2 − y2 = 1

}
.

We set N := (1, 0, 0), the north pole of S2
1,3,

and define the south pole as S := (−1, 0, 0).
Then the value s(p) of the point p ∈ M2 of
the stereographic projection s : M2 → R2 is
defined as the point where the line from S to p intersects the plane R2×{0} in R3.
If the (Euclidean) coordinates of p ∈ M2 are (t, x, y), and those of s(p) are (u, v),
we learn from the figure above that

x

u
=

t + 1
1

and
y

v
=

t + 1
1

.

Because t2 − x2 − y2 = 1, it follows that t2 − (u2 + v2)(t + 1)2 = 1. From this we
calculate

t =
1 + u2 + v2

1− u2 − v2
, x =

2u

1− u2 − v2
, y =

2v

1− u2 − v2
.

This shows that

π : B2 →M2 , (u, v) �→
(1 + u2 + v2

1− u2 − v2
,

2u

1− u2 − v2
,

2v

1− u2 − v2

)
is a parametrization of M2 over B2. It satisfies

π∗gH2 = 4
(du)2 + (dv)2

(1− u2 − v2)2
.

Therefore (
B2, 4

(dx)2 + (dy)2

(1− x2 − y2)2
)

is a model of the hyperbolic plane, the Poincaré model.
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Proof The proof that π∗gH2 has the form given is left to you as an exercise. �

(m) (the Lobachevsky model) Following what we did in (h) and (j), we can
parametrize M2 by the pseudospherical coordinates

h1,2 : R+ × [0, 2π)→ R3 , (χ, ϕ) �→ (t, x, y)

with
t = coshχ , x = sinhχ cosϕ , y = sinhχ sin ϕ .

These satisfy h∗
1,2gH3 = (dχ)2 + sinh2 χ (dϕ)2. Therefore(

R+ × [0, 2π), (dχ)2 + sinh2 χ (dϕ)2
)

is a model of the hyperbolic plane H2, the Lobachevsky model.
Proof The verification of the given formulas is again left to you as an exercise. �

(n) (general pseudo-Riemannian metrics) Let X be open in Hm, and suppose
gjk = gkj ∈ E(X) for 1 ≤ j, k ≤ m and det

[
gjk(x)

]

= 0 for x ∈ X . Then

g :=
∑

j,k
gjk dxjdxk

defines a pseudo-Riemannian metric on X . If the matrix
[
gjk(x)

]
is positive defi-

nite for every x ∈ X , then g is a Riemannian metric on X .

Now suppose
{

(ϕα, Uα) ; α ∈ A
}

is an atlas for M ,

gα,jk = gα,kj ∈ E
(
ϕα(Uα)

)
for 1 ≤ j, k ≤ m ,

and det
[
gα,jk(x)

]

= 0 for x ∈ ϕα(Uα) and α ∈ A. Then there is exactly one

pseudo-Riemannian metric g on M such that

g |Uα = gα :=
∑

j,k
gα,jk dxjdxk

if the transition function h := ϕ−1
β ◦ ϕα satisfies

gβ,rs =
∑

j,k

∂hj

∂xr

∂hk

∂xs
gα,jk

for α, β ∈ A with Uα ∩ Uβ 
= ∅.
Proof This is a consequence of Remark 5.4(d). �

A Riemannian manifold has a Euclidean structure on every tangent space,
which allows lengths and angles to be measured. This allows many concepts from
Euclidean geometry to be extended. For example, we presented in Section VIII.1
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a formula for the length of a curve. It can now be naturally generalized: a curve
γ : I →M on a Riemannian manifold M has length∫

I

√
g
(
γ̇(t), γ̇(t)

)
dt ,

where γ̇(t) ∈ Tγ(t)M is the “velocity vector”

γ̇(t) = (Ttγ)(t, 1) for t ∈ I

at the point γ(t). We will not expand here on this subject, as the questions
raised are best treated in the framework of Riemannian geometry (see however
Exercise 5).

The Hodge star6

Suppose (M, g) is an Riemannian manifold and ωM is the volume element of M .
For 0 ≤ r ≤ m, we define bilinear maps

( · | · )g,r : Ωr(M)× Ωr(M)→ E(M) (5.16)

by

(α |β)g,r(p) :=
(
α(p)

∣∣ β(p)
)

g(p),r
for p ∈M and α, β ∈ Ωr(M) , (5.17)

where ( · | · )g(p),r denotes the scalar product on
∧r

T ∗
p M introduced in (2.14) and

(2.15). The Hodge star operator (or simply Hodge star)

∗ : Ωr(M)→ Ωm−r(M) , α �→ ∗α (5.18)

is also defined pointwise:

(∗α)(p) := ∗α(p) for p ∈M and α ∈ Ω(M) .

5.6 Remarks (a) The map (5.16) is well defined, bilinear, symmetric, and positive.
Proof We need only show that (α |β)g,r belongs to E(M) for α, β ∈ Ωr(M), because the
other statements follow from the properties of ( · | · )g(p),r. Suppose therefore (ϕ, U) is a
positive chart of M . According to Remark 5.4(f), we can choose an oriented orthonormal
frame (v1, . . . , vm) on U . Let (η1, . . . , ηm) be its dual frame. Then Remark 3.1(e) implies

α |U =
∑

(j)∈Jr

α(j)η
j1 ∧ · · · ∧ ηjr (5.19)

with
α(j) = α(vj1 , . . . , vjr ) ∈ E(U) for (j) ∈ Jr . (5.20)

Now the claim follows from (2.14), (2.15), and Remark 2.15(c). �

6The rest of this chapter can be skipped on first reading.
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(b) The star operator is a well-defined E(M)-module isomorphism with

∗∗α = (−1)r(m−r)α for α ∈ Ωr(M) . (5.21)

Proof Because (5.21) follows from Example 2.17(e) and the pointwise definition (5.18),
and because (5.21) also shows that the star operator is bijective, it only remains to show
that ∗α is smooth. So let (ϕ, U) be a positive chart of M . As in the proof of (a),
let (v1, . . . , vm) be an orthonormal frame on U , and let (η1, . . . , ηm) be its dual frame.
Then ∗α |U ∈ E(U) follows from (5.19), (5.20), and the explicit representation of ∗α in
Example 2.17(d). �

(c) For α, β ∈ Ωr(M), we have

α ∧ ∗β = β ∧ ∗α = (α |β)g,rωM . (5.22)

Proof This follows immediately from Example 2.17(f) and the pointwise definition of
all operations involved. �

(d) ∗1 = ωM and ∗ωM = 1.

(e) (regularity) It is clear that the statements above are still true when M is a Ck+1

manifold and Ω(M) is replaced by Ω(k)(M). �

Using the pointwise definition of the star operator, we can transfer the other
formulas of Example 2.17 to the present case. The following examples gather
several rules so obtained.

Let
(
(x1, . . . , xm), U

)
be a chart of M . When (∂1, . . . , ∂m) is an orthonormal

frame on U , we say (x1, . . . , xm) are orthonormal coordinates on U . If the ∂j are
not necessarily normalized, that is, we only know g(∂j , ∂k) = 0 for j 
= k, then the
coordinates are orthogonal.

5.7 Examples In these examples, (x1, . . . , xm) are orthonormal coordinates on
U ⊂M , and α ∈ Ω(U).

(a) Euclidean coordinates are orthonormal coordinates. Polar, spherical, and pseu-
dospherical coordinates are orthogonal.

Proof This follows from Examples 5.5. �

(b) ∗∑
j aj dxj =

∑m
j=1(−1)j−1aj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm.

(c) ∗∑
j(−1)j−1aj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm = (−1)m−1

∑
j aj dxj .

(d) For m = 3, we have

∗d
(∑

j
aj dxj

)
= (∂2a3 − ∂3a2) dx1 + (∂3a1 − ∂1a3) dx2 + (∂1a2 − ∂2a1) dx3 .
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Proof This follows from Example 3.7(a) (and the remarks following (4.16)), because
(2.20) implies the relations

∗(dx2 ∧ dx3) = dx1 , ∗(dx3 ∧ dx1) = dx2 , ∗(dx1 ∧ dx2) = dx3 . �

Of course, we can also explicitly calculate ∗∑
(j)∈Jr

a(j) dx(j) even if we are
not using orthonormal coordinates. For simplicity, we only consider the case of
1-forms.

5.8 Proposition Let
(
(x1, . . . , xm), U

)
be a positive chart of M . Then

∗dxj =
∑

k
(−1)k−1gjk

√
Gdx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxm .

Proof Because ∗dxj ∈ Ωm−1(U), Example 3.2(b) guarantees that there are aj	

in E(U) such that

∗dxj =
∑

	
(−1)	−1aj	 dx1 ∧ · · · ∧ d̂x	 ∧ · · · ∧ dxm .

This gives

dxk ∧ ∗dxj =
∑

	
(−1)	−1aj	 dxk ∧ dx1 ∧ · · · ∧ d̂x	 ∧ · · · ∧ dxm

= ajk dx1 ∧ · · · ∧ dxm .
(5.23)

From Remark 2.14(b) we get (dxj | dxk)g,1 = gjk. Thus Remark 5.6(c) gives

dxk ∧ ∗dxj = gkjωM = gjk
√

Gdx1 ∧ · · · ∧ dxm , (5.24)

where the last equality follows from Remark 5.4(c). Now the claim follows from
(5.23) and (5.24). �

The codifferential

Let (M, g) be an oriented Riemannian manifold. To avoid an exceptional case, we
set Ω−1(M) := {0} so that, because Ωm+1(M) = {0}, we can also define the star
operation ∗ : Ωm+1(M)→ Ω−1(M). With help of the (so extended) star operator
and the exterior derivative, we define for 0 ≤ r ≤ m the codifferential

δ : Ωr(M)→ Ωr−1(M)

by7

δα := (−1)m(r+1)∗d∗α for α ∈ Ωr(M) .

7The normalization factor (−1)m(r+1)+1 is often used instead of (−1)m(r+1), particularly in
differential geometry. The reason for our choice will be made clear in Remark 6.23(c).
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In other words, we require that the diagram

Ωr(M) Ωm−r(M)

Ωr−1(M) Ωm−r+1(M)

(−1)m(r+1)δ d

∗

∗

�

�
� �

commutes.
The following remarks list several properties of the codifferential.

5.9 Remarks (a) δ2 = 0.
Proof Because ∗∗α = (−1)r(m−r)α, we have δδα = ±∗d∗∗d∗α = ±∗d2∗α = 0 because
d2 = 0. �

(b) ∗δd = dδ∗ and ∗dδ = δd∗.
Proof If α ∈ Ωr(M), then dα belongs to Ωr+1(M). Therefore

∗δdα = (−1)m(r+2)∗∗d∗dα = (−1)mr∗∗d∗dα .

Because d∗dα ∈ Ωm−r(M), we thus find ∗δdα = (−1)−r2
d∗dα. Analogously,

dδ∗α = (−1)m(m−r+1)d∗d∗∗α = (−1)m(m+1)−r2
d∗dα .

Because m(m + 1) is even, this proves the first claim. The second follows analogously. �

(c) d∗δ = δ∗d = 0.
Proof We leave the simple proof to you. �

(d) ∗δα = (−1)r+1d∗α and δ(∗α) = (−1)r∗dα for α ∈ Ωr(M).
Proof The first statement follows from

∗δα = (−1)m(r+1)∗∗d∗α = (−1)mr+m(−1)(m−r+1)(r−1)d∗α = (−1)r+1d∗α .

The second follows from an analogous calculation. �

(e) (regularity) From the definition of δ and Remarks 4.11(b) and 5.6(e), it follows
immediately that δ is an R-linear map from Ωr

(k) to Ωr−1
(k−1) for 1 ≤ r ≤ m and k ∈ N×.

This remains true for Ck+1 manifolds. �

5.10 Examples Let
(
(x1, . . . , xm), U

)
be a positive chart on M .

(a) For α =
∑

j aj dxj ∈ Ω1(U), we have

δα =
1√
G

∑
j,k

∂

∂xj

(
gjkak

√
G

)
∈ E(U) .

Proof It follows from Proposition 5.8 that

∗α =
∑

j
aj

∑
k
(−1)k−1gjk

√
G dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxm .
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From this we derive (because r = 1) that

δα = ∗d∗α = ∗
∑

j

∑
k

∑
�
(−1)k−1 ∂

∂x�

(
ajg

jk
√

G
)
dx� ∧ dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxm

= ∗
∑

j,k

∂

∂xj

(
gjkak

√
G

)
dx1 ∧ · · · ∧ dxm .

The claim now follows from

dx1 ∧ · · · ∧ dxm =
1√
G

ωM (5.25)

and from Remark 5.6(d). �

(b) For orthonormal coordinates (x1, . . . , xm), it follows from (a) that

δ
(∑

j
aj dxj

)
=

∑
j
∂jaj .

(c) δa = 0 for a ∈ E(M).

(d) δ(a dx1 ∧ · · · ∧ dxm)

=
∑

j,k
(−1)k−1 ∂

∂xj

( a√
G

)
gjk
√

Gdx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxm .

Proof Using (5.25) and Remark 5.6(d), we get

∗(a dx1 ∧ · · · ∧ dxm) = a
/√

G .

Therefore

∗d∗(a dx1 ∧ · · · ∧ dxm) = ∗
∑

j

∂

∂xj

( a√
G

)
dxj .

Now the claim follows from Proposition 5.8. �

(e) With orthonormal coordinates, we have

δ
∑

(j)∈Jr

a(j) dx(j) =
∑

(j)∈Jr

r∑
k=1

(−1)k−1∂jk
a(j) dx1 ∧ · · · ∧ d̂xjk ∧ · · · ∧ dxjr .

Proof Because of the linearity, it suffices to consider α = a dx(j) with (j) ∈ Jr. From
(2.20) and Theorem 4.10(ii), we obtain

d∗α = s(j) da ∧ dx(jc) = s(j)

r∑
k=1

∂jka dxjk ∧ dx(jc) .

Therefore Example 2.17(d) implies

∗d∗α = s(j)
r∑

k=1

s
(
jk, (jc)

)
∂jka dxj1 ∧ · · · ∧ d̂xjk ∧ · · · ∧ dxjr
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with s
(
jk, (jc)

)
:= sign

(
jk, (jc), j1, . . . , ĵk, . . . , jr

)
. Because (jc) consists of m − r ele-

ments, it follows that

s
(
jk, (jc)

)
= (−1)(m−r)(r−1) sign

(
jk, j1, . . . , ĵk, . . . , jr, (j

c)
)

= (−1)(m−r)(r−1)+k−1s(j) .

Due to the (mod 2) congruences

(m− r)(r − 1) + k − 1 + m(r + 1) ≡ k − r(r + 1)− 1 ≡ k − 1 ,

the claim then follows from the definition of δ. �

5.11 Remarks (a) By making appropriate modifications, the above properties
of the star operator and the codifferential can be extended to the case of pseudo-
Riemannian manifolds.

More precisely, suppose (M, g) is an oriented pseudo-Riemannian manifold.
We can provide TpM with the inner product induced by that of Rm. By Re-
mark 2.18(a), it follows that the representation matrix g of g(p) at every p ∈ M
is diagonal in an appropriately chosen basis, and its diagonal entries are ±1. Now
(−1)s = sign g(p) is uniquely determined by g(p), where s denotes the number of
negative elements. We now assume that sign(g) = sign g(p) is constant on M , that
is, it is independent of p. From (the proof of) Remark 5.4(f), it follows that this
assumption is satisfied if M can be described by a single chart.

Under this assumption the star operator, as defined through (2.25), can also
be defined pointwise. Then (5.21) and (5.22) must be replaced by

∗∗α = sign(g)(−1)r(m−r)α for α ∈ Ωr(M) ,

and
α ∧ ∗β = β ∧ ∗α = sign(g)(α |β)g,rωM for α, β ∈ Ωr(M) ,

as we learn from Remarks 2.19(d) and (e), respectively. Here ωM is the volume
element of M defined in Remark 5.4(g). Remark 2.19(c) also implies

∗1 = sign(g)ωM for ∗ωM = 1 .

The codifferential is defined in this case by

δα := sign(g)(−1)m(r+1)∗d∗α for α ∈ Ωr(M) . (5.26)

We verify easily that with these modifications, the statements of Remark 5.6 hold
as written.
Proof The claims follows from Remarks 2.19. �

(b) Let
(
(x1, . . . , xm), U

)
be a positive chart of M . Then

δ
∑

j
aj dxj =

1√
|G|

∑
j,k

∂

∂xj

(
gjkak

√
|G|

)
∈ E(U) .

Proof This follows, in analogy to the proof of Example 5.10(a), from Remark 5.4(g). �
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5.12 Examples We consider now the Minkowski space R4
1,3 with the metric ( · | · )1,3

and therefore with g := (dt)2 − (dx)2 − (dy)2 − (dz)2.

(a) If (i, j, k) is a cyclic permutation of (1, 2, 3), then with (x1, x2, x3) := (x, y, z),
we have

∗(dxi ∧ dt) = dxj ∧ dxk and ∗(dxi ∧ dxj) = −dxk ∧ dt .

Proof Let (e0, e1, e2, e3) be the canonical basis of R4
1,3. Then

g(e0, e0) = 1 and g(ej, ej) = −1 for 1 ≤ j ≤ 3 .

This implies
(dt | dt)g,1 = 1 and (dxj | dxj)g,1 = −1 .

Therefore

(dt ∧ dxj | dt ∧ dxj)g,2 = −1 and (dxj ∧ dxk | dxj ∧ dxk)g,2 = 1 for 1 ≤ j < k ≤ 3 .

Now the claim follows from Remark 2.19(c). �

(b) Let Ej , Hj ∈ E(R4
1,3) and

α := (E1dx1 + E2dx2 + E3dx3) ∧ dt

+ H1dx2 ∧ dx3 + H2dx3 ∧ dx1 + H3dx1 ∧ dx2 .

Then
∗α = −(H1dx1 + H2dx2 + H3dx3) ∧ dt

+ E1dx2 ∧ dx3 + E2dx3 ∧ dx1 + E3dx1 ∧ dx2 .

Proof This is an immediate consequence of (a) and the E(R4
1,3)-linearity of the star

operator. �

(c) The α from (b) satisfies

δα =
3∑

j=1

∂Ej

∂t
dxj −

3∑
k=1

∂Ek

∂xk
dt +

∑
(i,j,k)

(∂Hi

∂xj
− ∂Hj

∂xi

)
dxk ,

where the last term is summed over all cyclic permutations of (1, 2, 3).
Proof From (b), we know that

∗α = −
3∑

i=1

Hi dxi ∧ dt +
∑

(i,j,k)

Ei dxj ∧ dxk .

This implies

d∗α = −
3∑

i=1

3∑
j=1
j �=i

∂Hi

∂xj
dxj ∧ dxi ∧ dt

+
∑

(i,j,k)

(∂Ei

∂t
dt ∧ dxj ∧ dxk +

∂Ei

∂xi
dxi ∧ dxj ∧ dxk

)
.
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From Remark 2.19(c), we derive

∗(dt ∧ dxi ∧ dxj) = −dxk and ∗(dxi ∧ dxj ∧ dxk) = dt .

With this we get

∗d∗α = −
∑

(i,j,k)

(∂Hi

∂xj
− ∂Hj

∂xi

)
dxk −

3∑
i=1

∂Ei

∂t
dxi +

3∑
k=1

∂Ek

∂xk
dt .

Now the claim follows because m = 4 and sign(g) = −1. �

Exercises

1 Let (Mj , gj) for j = 1, 2 be pseudo-Riemannian manifolds with ∂M1 = ∅, and denote
by πj : M1 ×M2 →Mj the canonical projection onto Mj . Prove these statements:

(i) (M1 ×M2, π
∗
1g1 + π∗

2g2) is a Riemannian manifold, the product of M1 and M2.

(ii) Two points (p1, p2) yield submanifolds M1 × {p2} and {p1} ×M2 of M1 ×M2.

(iii) T(p1,p2)(M1 ×M2) = T(p1,p2)

(
M1 × {p2}

)
⊕ T(p1,p2)

(
{p1} ×M2

)
.

(iv) ωM1×M2 = π∗
1ωM1 ∧ π∗

2ωM2 .

2 Let M be an oriented hypersurface in Rm+1. We call ν : M → TRm+1 a positive
unit normal field when ν is a unit normal of M such that, for every p ∈ M and every
positive basis (v1, . . . , vm) of TpM , the (m+1)-tuple

(
ν(p), v1, . . . , vm

)
is a positive basis

of TpRm+1.

(a) Show that ν is well defined and unique.

(b) Determine the unit normal on these surfaces in R3:

(i) graph f, with X open in R2 and f ∈ E(X) , (ii) R × S1 , (iii) S2 , (iv) T2
a,r .

(Hint: (iv) Exercise VII.10.10 and Example VII.9.11(f).)

3 Let M be an oriented hypersurface in Rm+1, provided with the standard metric.
Denote by ν the positive unit normal of M . Show these facts:

(i) ν defines a smooth map from M to Sm, the Gauss map (which is also denoted by ν).

(ii) For p ∈ M and v ∈ TpM , we have
(
(Tpν)v | ν(p)

)
Rm+1 = 0. Therefore (Tpν)v

belongs to TpM .

(iii) The map

L : M →
⋃

p∈M

L(TpM) ∈ L(TpM) , p �→ Tpν

is well defined. This is called the Weingarten map of M .

(iv) For p ∈M and v, w ∈ TpM , we have

g(p)
(
L(p)v, w

)
= g(p)

(
v, L(p)w

)
,

that is, L(p) is symmetric on the inner product space
(
TpM, g(p)

)
. The tensor

h ∈ T 0
2 (M) defined by

h(p)(v, w) := g(p)
(
L(p)v, w

)
for p ∈M and v, w ∈ TpM

is called the second fundamental tensor of M .
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(v) In local coordinates (U, ϕ), with the natural embedding i : M ↪→ Rm+1, and with
f := i ◦ ϕ−1, we have

hjk = (∂jν | ∂kf) = −(ν | ∂j∂kf) ,

where hjk := h
(
∂/∂xj , ∂/∂xk

)
.

4 Calculate the second fundamental forms of R2, S2, R× S1, and T2
a,r as submanifolds

of R3.

5 Suppose I is a compact interval in R and M is a Riemannian manifold. Also let
γ ∈ C1(I,M). Let i : M ↪→ Rm be the natural embedding, and put γ̃ := i ◦ γ. Then the
length L(γ̃) of γ̃ is defined as in Section VIII.1. Show that if γ̇(t) := (Ttγ)(t, 1) for t ∈ I ,
then

L(γ̃) =

∫
I

√
g
(
γ̇(t), γ̇(t)

)
dt .

When L(γ̃) = L(I), we say γ is parametrized by arc length.

6 Suppose M is an oriented surface in R3 and γ ∈ C2(I, M) is parametrized by arc
length. Also denote by ν the positive unit normal bundle of M . Then we call

κg(γ) := det[γ̇, γ̈, ν]

the curvature of γ in M or the geodesic curvature of γ.

(a) Verify in the Euclidean case M = R2 that the geodesic curvature is the same as the
(usual) curvature from Section VIII.2.

(b) Suppose M = S2 and (x, y, z) are the Euclidean coordinates in R3. Also let γz

for z ∈ (−1, 1) be a parametrization by arc length of Lz :=
√

1− |z|2 S1 × {z} (see
Example 1.5(a)). Show then that

κg(γz) =
z√

1− |z|2
.

Therefore the geodesic curvature is constant on the circle Lz and vanishes at the equator.

7 Prove the equality ρ∗ωSm = r−(m+1)α from Example 4.13(c) by direct calculation for
m = 2 and 3.

8 Prove the statements made in the proof of Example 5.5(b).

9 Show that

{ z ∈ C ; Im z > 0 } → D , z �→ (1 + iz)/(1− iz)

gives a diffeomorphism from the “upper half of complex half plane” to the unit disc.
Then use this map to show that (

H2,
(dx)2 + (dy)2

y2

)
is a model of the hyperbolic plane, the Klein model.

10 Show that the Lobachevsky plane from Example 5.5(m) is a model of H2.
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11 For α ∈ Ωr−1(M) and β ∈ Ωr(M), show

d(α ∧ ∗β) = dα ∧ ∗β + α ∧ ∗δβ .

12 Show that the codifferential does not depend on the orientation of the underlying
Riemannian manifold.

13 Suppose M is oriented, (N, g) is another oriented m-dimensional Riemannian man-
ifold, and f : M → N is an isometric diffeomorphism. Show that f∗ωN = ±ωM . Also
show that f∗ωN = ωM if and only if f is orientation-preserving.

14 Suppose M and N are as in Exercise 13 and f : M → N is an orientation-preserving
isometric diffeomorphism. Show that the diagram

Ωr(M) Ωm−r(M)

Ωr(N) Ωm−r(N)

f∗ f∗

∗

∗

�

�

� �

is commutative for 0 ≤ r ≤ m.

15 Suppose M and N are as in Exercise 13, and f : M → N is an isometric diffeomor-
phism.8 Show that the diagram

Ωr(M) Ωr−1(M)

Ωr(N) Ωr−1(N)

f∗ f∗

δ

δ

�

�

� �

commutes for 0 ≤ r ≤ m.

8Note Exercise 12.



6 Vector analysis

Vector fields and Pfaff forms can be interchanged using the Riesz isomorphism.
While vector fields have an immediate geometrical interpretation, the calculus
of differential forms is of great value in calculations. The exterior product and
derivative obey relatively simple rules, which themselves stand for a more compli-
cated set of prescriptions for how to change from one system of local coordinates
to another. In this section, we will use the Riesz isomorphism to translate some
of the concepts and theorems of differential forms into the language of classical
vector analysis. In so doing, we will learn about the divergence and curl of vector
fields, which are of fundamental significance in physics and the theory of partial
differential equations.

For the entire section suppose the following:

• M is an m-dimensional manifold; N is an n-dimensional manifold.

• The indices i, j, k, � always range from 1 to m unless stated otherwise, and∑
j means that j is summed from 1 to m.

The Riesz isomorphism

Let g be a pseudo-Riemannian metric on M . Then we define the Riesz isomor-
phism, Θg, by

Θg : V(M)→ Ω1(M) , v �→ Θgv (6.1)

and
(Θgv)(p) := Θg(p)v(p) for p ∈ M ,

where Θg(p) : TpM → T ∗
p M is the Riesz isomorphism of (2.12) (or Remark 2.18(b))

and is defined by

〈Θg(p)u, w〉 = g(p)(u, w) for u, w ∈ TpM .

When no confusion is expected, we may write Θ instead of Θg.

6.1 Remarks (a) The map (6.1) is well defined.
Proof We must show that Θv belongs to Ω1(M) for v ∈ V(M). In local coordinates,
we have

v |U =
∑

j
vj ∂

∂xj

with vj ∈ E(U). From this and from Remarks 2.14(a) and 2.18(b), it follows that

Θv(p) = Θg(p)

∑
j
vj(p)

∂

∂xj

∣∣∣
p

=
∑

j
vj(p)Θg(p)

∂

∂xj

∣∣∣
p

=
∑

j
vj(p)

∑
k

gjk(p) dxk(p) =
∑

j
aj(p) dxj(p) ,
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where
ak :=

∑
j
gkjv

j ∈ E(U) .

Now the claim follows from Remarks 4.5(c) and 5.4(e). �

(b) In local coordinates,

Θ
(∑

j
vj ∂

∂xj

)
=

∑
j
aj dxj with aj :=

∑
k
gjkvk . (6.2)

Instead of Θv, we often write v� or g�v, because, as seen in (6.2), Θ effects a
“lowering of indices” (see Remark 2.14(d)).
Proof This was shown in the proof of (a). �

(c) The map Θ : V(M)→ Ω1(M) is an E(M)-module isomorphism.
Proof Let α ∈ Ω1(M). Then α(p) ∈ T ∗

p M for p ∈ M . From Section 2, we know that
Θg(p) is a vector space isomorphism. Therefore Θ−1

g(p)
α(p) ∈ TpM is well defined. We set

(Θgα)(p) := Θ−1
g(p)α(p) for p ∈M and α ∈ Ω1(M) .

In local coordinates, we know from Remarks 2.14(a) and 2.18(b) that

Θgα(p) = Θ−1
g(p)

∑
j
aj(p) dxj(p) =

∑
j
aj(p)Θ−1

g(p) dxj(p)

=
∑

j
aj(p)

∑
k

gjk(p)
∂

∂xk

∣∣∣
p

=
∑

j
vj(p)

∂

∂xj

∣∣∣
p

,

where
vj :=

∑
k

gjkak ∈ E(U) .

Thus it follows from Remark 4.3(c) that Θgα belongs to V(M). From the definitions of
Θg and Θg, it follows immediately that ΘgΘg = idΩ1(M) and ΘgΘg = idV(M). Therefore

Θg is bijective, and Θ−1
g = Θg.

Finally we see that for a ∈ E(M) and v ∈ V(M), we have

Θg(av)(p) = Θg(p)a(p)v(p) = a(p)Θg(p)v(p) = (aΘgv)(p) for p ∈M .

Therefore Θ is an E(M)-Module isomorphism. �

(d) In local coordinates,

Θ−1
(∑

j
aj dxj

)
=

∑
j
vj ∂

∂xj
with vj :=

∑
k
gjkak . (6.3)

Instead of Θ−1α, we often write α� or g�α, because Θ−1 “raises indices”.
Proof This was shown in the proof of (c). �

(e) (orthogonal coordinates) If (x1, . . . , xm) are orthogonal coordinates, that is,
if

g
( ∂

∂xj
,

∂

∂xk

)
= 0 for j 
= k ,
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then (6.2) and (6.3) simplify respectively to

Θv =
∑

j
gjjv

j dxj and Θ−1α =
∑

j
gjjaj

∂

∂xj

for v =
∑

j vj ∂/∂xj and α =
∑

j aj dxj .

(f) Let (N, g) be a pseudo-Riemannian manifold, and let ϕ ∈ Diff(M, N) with
ϕ∗g = λg for some λ 
= 0. Then the diagram

V(M) V(N)

Ω1(M) Ω1(N)

ΘM
∼= ∼= λΘN

ϕ∗

∼=

ϕ∗

∼=

�

�
� �

commutes. Therefore ΘMϕ∗ = λϕ∗ΘN .
Proof Using the definition and properties of the push forward and the pull back of
vector fields and forms (see in particular (4.25)), we find for v, w ∈ V(N) that

λg(v, w) = ϕ∗g(v,w) = g(ϕ∗v, ϕ∗w) = 〈ΘMϕ∗v, ϕ∗w〉M = 〈ϕ∗ΘMϕ∗v, w〉N
= g(Θ−1

N ϕ∗ΘMϕ∗v, w) .

Because g is nondegenerate and R-linear, it follows that

λv = Θ−1
N ϕ∗ΘMϕ∗v for v ∈ V(M) ,

which proves the claim. �

(g) (regularity) Suppose k ∈ N and M is a Ck+1 manifold. Then the definitions and
statements above remain true when smooth vector fields, differential forms, and functions
are replaced by Ck vector fields, Ck differential forms, and Ck functions. �

6.2 Examples (a) (Euclidean coordinates) Let M be open in Rm. We denote
Euclidean coordinates by (x1, . . . , xm), that is, ( · | · ) =

∑
j(dxj)2. Then

Θ
(∑

j
vj ∂

∂xj

)
=

∑
j
aj dxj for aj := vj .

The last assignment means that in the Euclidean case we do not need to introduce
new notation; instead we normally write

∑
j vj dxj for the image of

∑
j vj ∂/∂xj

under Θ. That is, Θ allows us to regard the components vj of the vector field∑
j vj ∂/∂xj as those of the Pfaff form

∑
j vj dxj .

Proof Because gjk = δjk, this follows from Remark 6.1(b). �

(b) (spherical coordinates) Let V3 := (0,∞)× (0, 2π)× (0, π), and let

f : V3 → R3 , (r, ϕ, ϑ) �→ (x, y, z)
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be the spherical coordinate transformation of Example VII.9.11(a). Then with
respect to the standard metric, we have

Θ
(
v1 ∂

∂r
+ v2 ∂

∂ϕ
+ v3 ∂

∂ϑ

)
= v1 dr + r2 sin2(ϑ)v2 dϕ + r2v3 dϑ .

Proof This follows immediately from Remark 6.1(b). �

(c) (Minkowski metric) On R4
1,3, we have

Θg

(∑3

μ=0
vμ ∂

∂xμ

)
= v0 dx0 −

∑3

j=1
vj dxj

for g := ( · | · )1,3. �

The gradient

If f ∈ E(M), then df belongs to Ω1(M). Therefore

gradg f := Θ−1
g df ∈ V(M)

is a well-defined vector field on M , the gradient of f on the (pseudo-)Riemannian
manifold (M, g) (or with respect to g). We may also write it as gradM f or gradf if
no misunderstanding is expected. Therefore grad f is defined by the commutativity
of the diagram

�

�
��

�
�	

E(M) = Ω0(M)

V(M) Ω1(M) .
Θ

∼=

grad d (6.4)

6.3 Remarks (a) The map grad : E(M)→ V(M), f �→ grad f is R-linear.

(b) For f ∈ E(M), the vector field gradf is characterized by the relation

g(grad f, w) = 〈df, w〉 for w ∈ V(M) .

(c) In local coordinates, we have

gradf =
∑

j

(∑
k
gjk ∂f

∂xk

) ∂

∂xj
. (6.5)

Proof Because we know from (4.5) and (4.8) that df =
∑

j ∂f/∂xj dxj , the claim follows
from Remark 6.1(d). �
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(d) (orthogonal coordinates) In orthogonal coordinates, (6.5) simplifies to

gradf =
∑

j
gjj ∂f

∂xj

∂

∂xj
.

Because in this case g has the form

g =
∑

j
gjj (dxj)2 , (6.6)

that is, because the fundamental matrix is diagonal, we have gjj = 1/gjj . Thus
the coefficients gjj can be read directly from the representation (6.6).

(e) Suppose (N, g) is a pseudo-Riemannian manifold and ϕ ∈ Diff(M, N) with
ϕ∗g = λg for some λ 
= 0. Then the diagram

E(M) V(M)

E(N) V(N)

ϕ∗ ϕ∗

λ gradM

gradN

�

�

� �

commutes. Therefore gradM ◦ ϕ∗ = λ−1ϕ∗ ◦ gradN .
Proof Because the relation λΘ−1

M ϕ∗ = ϕ∗Θ−1
N follows from Remark 6.1(f), we find for

f ∈ E(N) that

λ gradM (ϕ∗f) = λΘ−1
M d(ϕ∗f) = λΘ−1

M ϕ∗df = ϕ∗Θ−1
N df = ϕ∗gradN f ,

where we have used (4.19). �

(f) (regularity) Let k ∈ N. For f ∈ Ck+1(M), we have grad f ∈ Vk(M). Here it suffices
to assume that M is a Ck+1 manifold. �

6.4 Examples (a) (Euclidean coordinates) Let M be open in Rm. Denoting
Euclidean coordinates by (x1, . . . , xm), we have gjk = δjk and therefore

gradf =
∑

j

∂f

∂xj

∂

∂xj
.

This representation obviously coincides with that of Proposition VII.2.16. For
an arbitrary locally Riemannian metric, we have already confirmed (6.4) in Re-
mark VII.2.17(c).

(b) (spherical coordinates) Let V3 → R3, (r, ϕ, ϑ) �→ (x, y, z) be the spherical
coordinate map. In these coordinates, the gradient with respect to the standard
metric reads

gradf =
∂f

∂r

∂

∂r
+

1
r2 sin2 ϑ

∂f

∂ϕ

∂

∂ϕ
+

1
r2

∂f

∂ϑ

∂

∂ϑ
.

Proof Because spherical coordinates are orthogonal, this follows from Example 5.5(g). �
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(c) (spherical coordinates) Suppose h2 : W2 → R3, (ϕ, ϑ) �→ (x, y, z) is the
parametrization of the open subset U2 := S2 \H2 of the 2-sphere. Then for
f ∈ C1(U2, R), we have

gradS2 f =
1

sin2 ϑ

∂f

∂ϕ

∂

∂ϕ
+

∂f

∂ϑ

∂

∂ϑ
.

Proof This can be read from the representation of gS2 in Example 5.5(h). �

(d) (Minkowski metric) Suppose X is open in R4
1,3 and f ∈ C1(X, R). Then,

with respect to the Minkowski metric, we have

gradf =
∂f

∂t

∂

∂t
− ∂f

∂x

∂

∂x
− ∂f

∂y

∂

∂y
− ∂f

∂z

∂

∂z
,

as we see immediately from the definition of ( · | · )1,3. �

The divergence

Now suppose M is oriented and that ωM denotes the volume element of (M, g).
Then the maps

� ωM : E(M)→ Ωm(M) , a �→ aωM (6.7)

and
−� ωM : V(M)→ Ωm−1(M) , v �→ v −� ωM (6.8)

are defined pointwise.

6.5 Lemma The maps (6.7) and (6.8) are well-defined E(M)-module isomor-
phisms. If

(
(x1, . . . , xm), U

)
is a chart of M , then

aωM |U = ±a
√
|G| dx1 ∧ · · · ∧ dxm (6.9)

and (∑
j
vj ∂

∂xj

)
−� ωM

=
∑

j
(−1)j−1vj

√
|G| dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm ,

(6.10)

where the positive sign is used in (6.9) when the chart is positively oriented, and
the negative is used otherwise.

Proof (i) From the pointwise definition of � ωM and from Remarks 5.4(c) and (g),
the truth of (6.9) follows immediately. From this and Remark 4.5(c), we conclude
that aωM belongs to Ωm(M) for a ∈ E(M). Therefore the map (6.7) is well defined.
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It is clearly E(M)-linear. By Remark 4.14(a), every α ∈ Ωm(M) has exactly one
a ∈ E(M) such that α = aωM . Thus (6.7) is also bijective.

(ii) The validity of (6.10) follows from Remark 4.13(b) if the chart is positive.
Otherwise we replace1 x1 by −x1. Then v1 is substituted by −v1. This shows that
(6.10) is independent of the chart’s orientation.

Because
√
|G| ∈ E(U), (6.10) and Remark 4.5(c) show that v −� ωM belongs

to Ωm−1(M) for v ∈ V(M). Thus the map (6.8) is well defined and clearly E(M)-
linear.

Let α ∈ Ωm−1(M). Then it follows from Example 3.2(b) and Remark 4.5(c)
that there is a unique aj ∈ E(U) such that

α |U =
∑

j
(−1)j−1aj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm .

Then vj := aj

/√
|G| belongs to E(U). Therefore

v :=
∑

j
vj ∂

∂xj
∈ V(U) ,

and (6.10) shows (v −� ωM ) |U = α |U . This implies that the map −� ωM is
surjective. Because its injectivity is clear, we see that it is an isomorphism from
V(M) to Ωm−1(M). �

6.6 Remarks (a) Let (N, g) be an oriented pseudo-Riemannian manifold, and
suppose ϕ ∈ C∞(M, N) with ϕ∗ωN = μωM for some μ 
= 0. Then the diagram

E(M) Ωm(M)

E(N) Ωn(N)

ϕ∗ ϕ∗

μ( � ωM )

�ωN

�

�

� �

commutes, that is,

μ(ϕ∗a) � ωM = ϕ∗(a � ωN) for a ∈ E(N) .

Proof This follows immediately from the behavior of (exterior) products under pull
backs. �

1Consider how this proof should be modified for the case of a one-dimensional manifold with
boundary.
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(b) Let (N, g) be an oriented pseudo-Riemannian manifold, and suppose ϕ belongs
to Diff(M, N) and satisfies ϕ∗ωN = μωM for some μ 
= 0. Then

V(M) Ωm−1(M)

V(N) Ωm−1(N)

ϕ∗ ϕ∗

μ(−� ωM )

∼=

−� ωN

∼=

�

�

� �

is a commutative diagram, that is, μ
(
(ϕ∗v) −� ωM

)
= ϕ∗(v −� ωN ) for v ∈ V(N).

Proof We derive from Remark 4.13(a) that

μ
(
(ϕ∗v) −� ωM

)
= ϕ∗v −� (μωM ) = ϕ∗v −� ϕ∗ωN = ϕ∗(ϕ∗ϕ

∗v −� ωN) = ϕ∗(v −� ωN )

for v ∈ V(N). �

(c) (regularity) Let k ∈ N. Clearly then

� ωM : Ck(M)→ Ωm
(k)(M)

and

−� ωM : Vk(M)→ Ωm−1
(k) (M) ,

and these maps are Ck(M)-module isomorphisms. Thus it suffices to assume that M is
a Ck+1 manifold. �

With help of the isomorphisms (6.7) and (6.8), we define a map

divg : V(M)→ E(M) , v �→ divg v (6.11)

by demanding that the diagram

V(M) E(M)

Ωm−1(M) Ωm(M)

−� ωM ∼= ∼= �ωM

divg

d

�

�
� �

(6.12)

commutes. In other words, for v ∈ V(M), the divergence divg v of a vector field v
on an oriented pseudo-Riemannian manifold (M, g) (or, with respect to g) is de-
fined by the relation

(divg v)ωM = d(v −� ωM ) . (6.13)

Instead of divg, we may also write divM or, if no confusion is anticipated, simply
div.
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6.7 Remarks (a) The map (6.11) is R-linear.

(b) Let
(
(x1, . . . , xm), U

)
be a chart of M . For v :=

∑
j vj ∂/∂xj ∈ V(U), we have

div v =
1√
|G|

∑
j

∂

∂xj

(√
|G| vj

)
. (6.14)

In orthogonal coordinates, we also have
√
|G| =

√
|g11 · g22 · · · · · gmm|.

Proof Let ε := 1 if the chart is positive; use ε := −1 if it is negative. From (6.9), (6.10),
and (6.13), we obtain (on U) that

div(v)ωM = d(v −� ωM ) = εd
(∑

j
(−1)j−1vj

√
|G| dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm

)
= ε

∑
j,k

(−1)j−1 ∂
(
vj

√
|G|

)
∂xk

dxk ∧ dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm

= ε
(∑

j

∂
(
vj

√
|G|

)
∂xj

)
dx1 ∧ · · · ∧ dxm

=
( 1√

|G|
∑

j

∂
(
vj

√
|G|

)
∂xj

)
ωM

for v ∈ V(M). �

(c) Suppose (N, g) is an oriented pseudo-Riemannian manifold and a map ϕ ∈
Diff(M, N) satisfies ϕ∗ωN = μωM for some μ 
= 0. Then

V(M) E(M)

V(N) E(N)

ϕ∗ ϕ∗

divM

divN

�

�

� �

is a commutative diagram, that is, divM ◦ ϕ∗ = ϕ∗ ◦ divN .
Proof From Remark 6.6(b) and from (6.13) we obtain, by using d ◦ ϕ∗ = ϕ∗ ◦ d, that

μ divM (ϕ∗v)ωM = μ d(ϕ∗v −� ωM ) = dϕ∗(v −� ωN) = ϕ∗d(v −� ωN )

= ϕ∗[(divN v)ωN

]
= ϕ∗(divN v)ϕ∗ωN = μϕ∗(divN v)ωM

for v ∈ V(N). Now the claim follows from Lemma 6.5. �

(d) (regularity) Let k ∈ N. Then div v belongs to Ck(M) for v ∈ Vk+1(M), and the
map

div : Vk+1(M)→ Ck(M) , v �→ div v

is R-linear. So it suffices to assume that M is a Ck+2 manifold.

Proof This is a consequence of Remarks 4.11(b) and 6.6(c). �

As we shall see in the next chapter, the divergence of a vector field has
interesting geometric and physical interpretations.
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6.8 Examples (a) (Euclidean coordinates) Suppose U is open in Rm. Denoting
Euclidean coordinates by (x1, . . . , xm), we have

div v =
∑

j

∂vj

∂xj

for v =
∑

j vj ∂/∂xj . This formula also holds when
(
(x1, . . . , xm), U

)
are any

other orthonormal coordinates on (M, g).

(b) (plane polar coordinates) Let V2 := (0,∞)× (0, 2π), and let

f2 : V2 → R2 , (r, ϕ) �→ (x, y) := (r cosϕ, r sin ϕ)

be the plane polar coordinate map. Then with respect to the standard metric, we
have

div
(
v1 ∂

∂r
+ v2 ∂

∂ϕ

)
=

1
r

∂(rv1)
∂r

+
∂v2

∂ϕ
=

v1

r
+

∂v1

∂r
+

∂v2

∂ϕ
.

Proof This follows from
√

G = r, as can be read off the representation of g2 given in
Example 5.5(e). �

(c) (spherical coordinates) Let V3 := (0,∞)× (0, 2π)× (0, π), and let

f3 : V3 → R3 , (r, ϕ, ϑ) �→ (x, y, z)

be the spherical coordinate map of Example 5.5(g). With respect to the standard
metric g3 := (dx)2 + (dy)2 + (dz)2, we have

div
(
v1 ∂

∂r
+ v2 ∂

∂ϕ
+ v3 ∂

∂ϑ

)
=

1
r2

∂(r2v1)
∂r

+
∂v2

∂ϕ
+

1
sin ϑ

∂(v3 sin ϑ)
∂ϑ

=
2
r

v1 +
∂v1

∂r
+

∂v2

∂ϕ
+ cot(ϑ)v3 +

∂v3

∂ϑ
.

Proof Example 5.5(g) gives
√
|G| = r2 sin ϑ, as the claim requires. �

(d) (Minkowski metric) Let M := R4
1,3 and g := (dt)2 − (dx)2 − (dy)2 − (dz)2.

Then

div
(
v0 ∂

∂t
+ v1 ∂

∂x
+ v2 ∂

∂y
+ v3 ∂

∂z

)
=

∂v0

∂t
− ∂v1

∂x
− ∂v2

∂y
− ∂v3

∂z

for vj ∈ E(R4
1,3) with 0 ≤ j ≤ 3. �

The Laplace–Beltrami operator

By combining the two first order differential operators grad and div, we obtain
the most important second order differential operator, the Laplace–Beltrami op-
erator Δg.
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Let (M, g) be an oriented pseudo-Riemannian manifold. Then we define Δg

by
Δg := divg gradg

or, equivalently, by requiring that the diagram

�

�
�	 �

�


V(M)

E(M) E(M)
Δg

gradg divg

commutes. Instead of Δg, we may also write ΔM or simply Δ if g is clear from
context.

6.9 Remarks (a) The map ΔM : E(M)→ E(M) is R-linear.

(b) If
(
(x1, . . . , xm), U

)
is a chart of M , then

ΔMf =
1√
|G|

∑
j,k

∂

∂xj

(√
|G| gjk ∂f

∂xk

)
for f ∈ E(U) . (6.15)

In orthogonal coordinates, (6.15) simplifies to

ΔMf =
1√
|G|

∑
j

∂

∂xj

(√
|G| gjj ∂f

∂xj

)
for f ∈ E(U) , (6.16)

where
√
|G| =

√
|g11 · g22 · · · · · gmm|.

Proof This follows from Remarks 6.3(c) and (d) and Remark 6.7(b). �

(c) Suppose (N, g) is an oriented pseudo-Riemannian manifold. Also let ϕ ∈
Diff(M, N), and suppose there are λ 
= 0 and μ 
= 0 such that ϕ∗g = λg and
ϕ∗ωN = μωM . Then the diagram

E(M) E(M)

E(N) E(N)

ϕ∗ ∼= ∼= ϕ∗

λΔM

ΔN

�

�

� �

commutes: λΔM ◦ ϕ∗ = ϕ∗ ◦ΔN .
Proof This is a consequence of Remarks 6.3(e) and 6.7(c). �

(d) (regularity) Let k ∈ N. Then obviously

ΔM : Ck+2(M)→ Ck(M) ,

and this map is R-linear. Here it suffices to assume that M is a Ck+2 manifold. �
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6.10 Examples (a) (Euclidean coordinates) Suppose M is open in Rm, with
Euclidean coordinates

(
(x1, . . . , xm), M

)
. Then ΔM is the same as the (usual)

m-dimensional Laplace operator

Δm :=
∑

j
∂2

j .

See Exercise VII.5.3.

(b) (circular coordinates) With respect to the parametrization

h : (0, 2π)→ R2 , ϕ �→ (cosϕ, sin ϕ)

of S1\
{
(1, 0)

}
(and the standard metric), we have ΔS1 = ∂2

ϕ.
Proof Remark 6.9(b) and Example 5.5(f). �

(c) (plane polar coordinates) In plane polar coordinates

(0,∞)× (0, 2π)→ R2 , (r, ϕ) �→ (r cosϕ, r sin ϕ) ,

the Laplace–Beltrami operator (with respect to the standard metric R2) is

Δ2 =
1
r

∂r(r∂r · ) +
1
r2

∂2
ϕ = ∂2

r +
1
r

∂r +
1
r2

∂2
ϕ =

1
r2

[
(r∂r)2 + ΔS1

]
.

Proof This follows from Remark 6.9(b), Example 5.5(e), and (b). �

(d) (m-dimensional spherical coordinates) For m ≥ 2, the Laplace–Beltrami
operator of Sm (with respect to the standard metric) in the spherical coordinates
of Example 5.5(h) assumes the form

ΔSm =
1

sin2 ϑ1 · · · · · sin2 ϑm−1

∂2

∂ϕ2

+
m−1∑
k=1

1
sink ϑk sin2 ϑk+1 · · · · · sin2 ϑm−1

∂

∂ϑk

(
sink ϑk

∂

∂ϑk

)
.

In particular,

ΔS2 =
1

sin2 ϑ
∂2

ϕ +
1

sin ϑ
∂ϑ(sin ϑ ∂ϑ · ) =

1
sin2 ϑ

∂2
ϕ + ∂2

ϑ + cotϑ ∂ϑ .

Proof From Examples 5.5(g) and (h), it follows

G =

m−1∏
k=0

am+1,k =

m−2∏
k=0

m−1∏
i=k+1

sin2 ϑi .

Exchanging the order of the two products gives

G =
m−1∏
i=1

sin2i ϑi =
[
wm+1(ϑ)

]2
, (6.17)

where we use the abbreviated notation intro-
duced in Proposition X.8.9.
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From the orthogonality of the spherical coordinates, it also follows from the given
examples that

gjj =
1

am+1,j−1
=

1∏m−1
i=j sin2 ϑi

for 1 ≤ j ≤ m .

From this we read off

√
G gjj =

( m−1∏
i=1

i�=j−1

sini ϑi

m−1∏
k=j

1

sin2 ϑk

)
sinj−1 ϑj−1

for 2 ≤ j ≤ m. Thus we find

1√
G

∂

∂ϑj−1

(√
G gjj ∂

∂ϑj−1

)
=

1

sinj−1 ϑj−1

∏m−1
i=j sin2 ϑi

∂

∂ϑj−1

(
sinj−1 ϑj−1

∂

∂ϑj−1

)
for 2 ≤ j ≤ m. Now the claim is clear. �

(e) (m-dimensional polar coordinates) In m-dimensional polar coordinates with
m ≥ 2, the m-dimensional Laplace operator reads

Δm =
1

rm−1
∂r(rm−1∂r·) +

1
r2

ΔSm−1 = ∂2
r +

m− 1
r

∂r +
1
r2

ΔSm−1

=
1
r2

[
(r∂r)2 + (m− 2)r∂r + ΔSm−1

]
.

Proof From Examples 5.5(g) and (h), we read off gm = (dr)2 + r2gSm−1 . This then
implies G = r2(m−1)GSm−1 . It also implies g11 = 1 and

gjj =
1

r2
g
(j−1)(j−1)

Sm−1 for 2 ≤ j ≤ m .

Now the claim follows from (6.16) because of the orthogonality of the coordinates. �

(f) (Minkowski metric) In orthonormal coordinates, the Laplace–Beltrami oper-
ator of the Minkowski space R4

1,3 has the form ∂2
t − Δ3, where Δ3 is the three-

dimensional (Euclidian) Laplace operator. That is, the Laplace–Beltrami operator
in the Minkowski space is just the wave operator.2

Proof This is an immediate consequence of (6.16). �

In the next proposition, we list some basic properties of differential opera-
tors used in vector analysis. Here and in the following, we denote the pseudo-
Riemannian metric of M by ( · | · )M .

2See Exercise VII.5.10.
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6.11 Proposition Suppose
(
M, ( · | · )M

)
is an oriented pseudo-Riemannian mani-

fold, f, g ∈ E(M), and v, w ∈ V(M). Then

(i) grad(fg) = f grad g + g grad f ;
(ii) div(fv) = f div v + (grad f | v)M ;
(iii) Δ(fg) = fΔg + 2(grad f | gradg)M + gΔf ;
(iv) fΔg − gΔf = div(f gradg)− div(g grad f).

Proof (i) Because Θ is a module isomorphism, it follows from (6.4) that (i) is
equivalent to

d(fg) = f dg + g df . (6.18)

Because (6.18) is a local statement, it suffices to prove this formula in local coor-
dinates. In this case, it is an immediate consequence of the product rule.

(ii) From (fv) −� ωM = f(v −� ωM ) = f ∧ (v −� ωM ) and the product rule of
Theorem 4.10, it follows that

d
(
(fv) −� ωM

)
= d

(
f ∧ (v −� ωM )

)
= df ∧ (v −� ωM ) + f d(v −� ωM ) . (6.19)

Because this is also a local statement, we can use local representations. Then,
with v =

∑
j vj ∂/∂xj and a positive chart, we obtain from (6.9) and (6.10) that

df ∧ (v −� ωM )

=
(∑

j

∂f

∂xj
dxj

)
∧

∑
k
(−1)k−1vk

√
|G| dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxm

=
(∑

j

∂f

∂xj
vj

)√
|G| dx1 ∧ · · · ∧ dxm =

∑
j

∂f

∂xj
vjωM .

(6.20)

We then read from Remark 6.3(b) and (4.4) that

(grad f | v)M = 〈df, v〉 =
∑

j

〈
df,

∂

∂xj

〉
vj =

∑
j

∂f

∂xj
vj . (6.21)

Therefore it follows from (6.19)–(6.21) and the definition (6.13) that

div(fv)ωM = d
(
(fv) −� ωM

)
= (grad f | v)MωM + f div v ωM ,

which implies the claim.
(iii) This we get immediately from Δ = div grad and (i), (ii).
(iv) From (ii), it follows that

div(f grad g) = fΔg + (grad f | gradg)M . (6.22)

Exchanging f and g and subtracting the result from (6.22) then yields (iv). �
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The curl

Suppose now (M, g) is a 3-dimensional oriented pseudo-Riemannian manifold.
Then we define the curl3 curl v of the vector field v ∈ V(M) by requiring that
the diagram

V(M) Ω1(M)

V(M) Ω2(M)

curl d

Θ

∼=

−� ωM

∼=

�

�
� �

(6.23)

commutes, that is, by requiring

(curl v) −� ωM = d(Θv) for v ∈ V(M) . (6.24)

The definition is clearly only possible in the case m = 3.

6.12 Remarks (a) The map curl : V(M)→ V(M), v �→ curl v is R-linear.

(b) Let
(
(x1, x2, x3), U

)
be a chart of M . Then

curl v =
1√
|G|

3∑
i=1

∑
(j,k,	)∈S3

sign(j, k, �)
∂

∂xj
(gkiv

i)
∂

∂x	

for v =
∑3

j=1 vj ∂/∂xj. If the coordinates are orthogonal, this expression simplifies
to

curl v =
1√
|G|

∑
(j,k,	)∈S3

sign(j, k, �)
∂

∂xj
(gkkvk)

∂

∂x	

=
1√
|G|

[(
∂2(g33v

3)− ∂3(g22v
2)

) ∂

∂x1
+

(
∂3(g11v

1)− ∂1(g33v
3)

) ∂

∂x2

+
(
∂1(g22v

2)− ∂2(g11v
1)

) ∂

∂x3

]
with

√
|G| =

√
|g11g22g33|. If the coordinates are orthonormal, this becomes

curl v = (∂2v
3 − ∂3v

2)
∂

∂x1
+ (∂3v

1 − ∂1v
3)

∂

∂x2
+ (∂1v

2 − ∂2v
1)

∂

∂x3
.

Proof Remark 6.1(b) and the properties of the exterior derivative give

d(Θv) = d
∑

k

(∑
i
gkiv

i
)

dxk =
∑

k

∑
j �=k

∂

∂xj

(∑
i
gkiv

i
)

dxj ∧ dxk .

3Sometimes written rot, short for “rotation”.
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From (6.10), we read off

curl v −� ωM =
√
|G|

(
(curl v)1 dx2∧dx3+(curl v)2 dx3∧dx1+(curl v)3 dx1∧dx2) . (6.25)

Therefore the claim follows from (6.24). �

(c) (regularity) Let k ∈ N. Then curl v ∈ Vk(M) for v ∈ Vk+1(M). So it suffices here
to assume that M is a Ck+2 manifold. �

In the case m = 3, there are important relations between the operators grad,
div, and curl. These are summarized diagrammatically in the following theorem.

6.13 Theorem Let (M, g) be a three-dimensional oriented (pseudo-)Riemannian
manifold.

(i) The diagram

E(M) V(M) V(M) E(M)

Ω0(M) Ω1(M) Ω2(M) Ω3(M)

∼= ΘM
∼= −� ωM ∼= �ωM

grad curl div

d d d

� � �

� � �
� � �

(6.26)

commutes.

(ii) curl ◦ grad = 0.

(iii) div ◦ curl = 0.

Proof (i) follows immediately from the commutativity of the diagrams (6.4),
(6.12), and (6.23).

(ii) and (iii) are now direct consequence of d2 = 0. �

6.14 Corollary Let X be open and contractible in R3. Also let v be a smooth
vector field on X .

(i) If curl v = 0, then there is an f ∈ E(X) such that v = gradf , a potential
for v.

(ii) If div v = 0, then there is a w ∈ V(X) with v = curlw, a vector potential
for v.

Proof (i) From (6.26) we learn that curl v = 0 is equivalent to d(ΘXv) = 0.
Therefore the 1-form ΘMv is closed, and the Poincaré lemma (Theorem 3.11)
guarantees the existence of an f ∈ Ω0(X) = E(X) such that ΘXv = df . From this
it follows that v = Θ−1

X df = gradf .
(ii) Analogously to (i), it follows from div v = 0 that the 2-form v −� ωX

is closed and therefore exact, again by the Poincaré lemma. Thus there is an
α ∈ Ω1(X) with dα = v −� ωX . Then w := Θ−1

X α ∈ V(X), by the commutativity
of the middle “loop” of (6.26), satisfies curlw = v. �
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6.15 Remarks Suppose X is open in R3.

(a) In Euclidean coordinates, the equality curl v = 0 is equivalent to the integra-
bility conditions

∂jv
k = ∂kvj for 1 ≤ j, k ≤ 3 ,

which can be seen from Remark 6.12(b). Therefore Corollary 6.14(i) is a special
case of Remark VIII.4.10(a).

(b) (classical notation) In Euclidean coordinates, we know from Example 6.4(a)
that gradf agrees with the ∇f from Proposition VII.2.16. The physics and engi-
neering literatures, and many mathematical texts, use the formal nabla vector

∇ :=
( ∂

∂x
,

∂

∂y
,

∂

∂z

)
.

With the notation x · y for the Euclidean scalar product in R3 and x × y for the
vector product, the nabla vector notation leads to the (formal) relations

div v = ∇ · v , curl v = ∇× v , Δv = (∇ · ∇)v =: ∇2v .

These follow easily from the corresponding local representations of these operators
and from Remark VIII.2.14(d). In particular, the components of the vector curl v
can be found by expanding the (formal) determinant∣∣∣∣∣∣∣

�e1 �e2 �e3

∂/∂x ∂/∂y ∂/∂z

v1 v2 v3

∣∣∣∣∣∣∣
in its first row. Here �e1, �e2, �e3 are the standard basis vectors of R3, and ∂/∂x,
∂/∂y, ∂/∂z are not interpreted as tangent vectors, but as differential operators.

Because the symbol ∇ has another meaning in the context of Riemannian
geometry, we will rarely use the nabla vector in the rest of this book.

(c) (the physical meaning of the curl4)

0

�r �v

�w
We

consider a rigid body rotating at constant
(angular) velocity about a fixed axis. We
then choose an orthonormal basis (�e1, �e2, �e3)
and the coordinate origin so that �e3 points
along the rotation axis. Also let ω be the
angular velocity, that is, ω is the speed of
any point P fixed in the rotating body at
unit distance from the axis of rotation. If
�r is the radius vector of the point P , that

4A deeper interpretation of the curl of a vector field is given in Section XII.3.
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is, the position vector of the point P in the coordinate system (O;�e1, �e2, �e3) (see
the statements after Remarks I.12.6) and if θ is the angle between �e3 and �r (in
the plane spanned by �e3 and �r), then the distance a from P to the rotation axis
satisfies a = |�r | sin θ. Therefore the modulus of the velocity vector �v of the point P
is given by

|�v | = ωa = ω |�r | sin θ .

Denote by �w := ω�e3 the “angular velocity vector” and orient it so that the body
rotates clockwise about it. Then it follows from the properties of the vector product
that

�v = �w × �r , (6.27)

since the point P moves with constant speed ω in a circle centered at and in a
plane orthogonal to the �e3-axis.5

Let (x, y, z) be the coordinates of P with respect to (O;�e1, �e2, �e3). Then

�r = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
and �w = ω

∂

∂z
.

Therefore
�v = �w × �r = −ωy

∂

∂x
+ ωx

∂

∂y
.

For the curl of the vector field �v, we find curl�v = 2ω ∂/∂z = 2�w. In words, for a
rigid body rotating about a fixed axis, the curl of the velocity vector is a vector
field whose elements are parallel to the rotation axis and have absolute value twice
the angular velocity.

(d) (regularity) The statements of Theorem 6.13 and Corollary 6.14 can be proved with
weaker differentiability assumptions that are easily derived from earlier remarks about
regularity. �

The Lie derivative

Now suppose M is again an arbitrary manifold. For f ∈ E(M) and v ∈ V(M), we
set

Lvf := 〈df, v〉 ∈ E(M)

and call Lvf the Lie derivative of f with respect to v.

6.16 Proposition

(i) The map Lv : E(M) → E(M), the Lie derivative with respect to v, has the
properties that

(α) Lv is R-linear;

(β) Lv(fg) = Lv(f)g + fLvg for f, g ∈ E(M).
5We leave the formal proof of (6.27) to you.
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(ii) In local coordinates,

Lvf =
∑

j
vj ∂f

∂xj
and v =

∑
j
vj ∂

∂xj
.

Proof (i) follows immediately from the properties of d (see (6.18)).
(ii) is a consequence of (4.4). �

6.17 Remarks (a) Proposition 6.16(ii) makes it clear that the Lie derivative
generalizes the directional derivative of Section VII.2.

(b) Let A be an R-algebra. A map D : A→ A is said to be a derivation (of A) if
D is R-linear and satisfies the product rule

D(ab) = (Da)b + a(Db) for a, b ∈ A .

Therefore the Lie derivative with respect to v ∈ V(M) is a derivation of the
algebra E(M).

(c) If A is an algebra with unity e and D is a derivation of A, then De = 0.
Proof The product rule gives

De = D(ee) = (De)e + e(De) = De + De = 2De

and hence the claim. �

The next theorem shows that every derivation of E(M) is given by a Lie
derivative.

6.18 Theorem Let D be a derivation of E(M). Then there is exactly one v ∈ V(M)
such that D = Lv.

Proof (i) We show first that D is a “local operator”. Let U be an open and K
a compact neighborhood of p ∈M with K ⊂⊂ U . Remark 1.21(a) guarantees the
existence of a χ ∈ E(M) with χ |K = 1 and supp(χ) ⊂⊂ U .

Let f ∈ E(M) with f |U = 0. Then f = fχ + f(1− χ) = f(1− χ), and thus

Df(p) = Df(p)
(
1− χ(p)

)
+ f(p)D(1− χ)(p) = 0 .

Because this is true for every p ∈ U , it follows that D(f) |U = 0. If χ1 ∈ E(M)
is another function with supp(χ1) ⊂⊂ U and which is identically equal to 1 in a
neighborhood of p, then fχ−fχ1 ∈ E(M) for f ∈ E(U) vanishes in a neighborhood
of p. Then it follows from the above that D(fχ) = D(fχ1) for f ∈ E(U). Hence
the “restriction of D to U” is well defined by

DUf := D(fχ) for f ∈ E(U)

and is independent of the special choice of χ.
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(ii) Suppose now (ϕ, U) is a chart with ϕ = (x1, . . . , xm). We can assume
that X := ϕ(U) is convex. For every fixed p ∈ U , it follows from the mean value
theorem in integral form (Theorem VII.3.10) with a := ϕ(p) that

(ϕ∗f)(x) = (ϕ∗f)(a) +
∑

j
(xj − aj)f̃j(x) for x ∈ X ,

where we have set

f̃j(x) :=
∫ 1

0

∂jf
(
a + t(x − a)

)
dt for x ∈ X .

Therefore
fj := ϕ∗f̃j ∈ E(U) , fj(p) =

∂f

∂xj
(p) ,

and
f(q) = f(p) +

∑
j

(
ϕj(q)− ϕj(p)

)
fj(q) for q ∈ U .

From this, the properties of D, and Remark 6.17(c), it follows that

Df(p) =
∑

j
Dϕj(p)

∂f

∂xj
(p) for p ∈ U , (6.28)

where we have written D instead of DU .
(iii) Let (ψ, V ) be a second chart around p with ψ = (y1, . . . , ym). Now define

the transition function k := ψ ◦ ϕ−1. Then, in analogy to (ii) and because we can
assume U = V , we have

kj(x) = kj(a) +
∑

	
(x	 − a	)kj

	 (x) for x ∈ X , (6.29)

with kj
	 ∈ E(X) and kj

	 (a) = ∂	k
j(a). Because ϕ∗k = ψ, applying ϕ∗ to (6.29)

gives
ψj(q) = ψj(p) +

∑
	

(
ϕ	(q)− ϕ	(p)

)
hj

	(q) for q ∈ U , (6.30)

with hj
	 := ϕ∗kj

	 ∈ E(U) and

hj
	(p) = (ϕ∗∂	k

j)(p) =
∂yj

∂x	
(p) .

This and (6.30) imply

Dψj(p) =
∑

k
Dϕk(p)

∂yj

∂xk
(p) for p ∈ U and 1 ≤ j, k ≤ m . (6.31)

Now we set
vϕ :=

∑
j
Dϕj ∂

∂xj
and vψ :=

∑
j
Dψj ∂

∂yj
. (6.32)
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Then it follows from (6.31) and Proposition 4.7 that

vψ =
∑

j

∑
k
Dϕk ∂yj

∂xk

∂

∂yj
=

∑
k
Dϕk ∂

∂xk
= vϕ .

This shows that (6.32) defines a vector field vU ∈ V(U) on U that is independent
of the coordinates chosen. From (6.28), (6.31), and Proposition 6.16(ii), we read
off DUf = LvU f for f ∈ E(U).

(iv) Suppose now
{

(ϕα, Uα) ; α ∈ A
}

is an atlas for M . Then it follows
from (iii) that for every α ∈ A there is an vα ∈ V(Uα) such that DUαf = Lvαf
for f ∈ E(Uα). Moreover, the observations in (iii) show that there is exactly one
v ∈ V(M) such that v |Uα = vα for α ∈ A. Now (i) and Proposition 6.16(ii) give
D = Lv.

(v) Suppose v, w ∈ V(M) with D = Lv and D = Lw. Then Lvf = Lwf for
every f ∈ E(M). In an arbitrary local chart

(
(x1, . . . , xm), U

)
, we then have

∑
j
(vj − wj)

∂f

∂xj
= 0 for f ∈ E(U) .

Choosing f := xk, we find ∂f/∂xj = δk
j and therefore vk − wk = 0. That this is

true for 1 ≤ k ≤ m implies v |U = w |U and hence v = w. Thus we are done. �

6.19 Lemma For LvLw − LwLv is a derivation of E(M) for v, w ∈ V(M).

Proof Clearly LvLw − LwLv is an R-linear map of E(M) to itself. For f, g ∈
E(M), we know because E(M) is commutative that

LvLw(fg) = Lv

(
Lw(f)g + fLwg

)
= gLvLwf + LvfLwg + LvgLwf + fLvLwg .

The claim is now obvious. �

Let v, w ∈ V(M). Then it follows from Theorem 6.18 and Lemma 6.19 that
there is exactly one smooth vector field [v, w] on M such that

L[v,w] = LvLw − LwLv . (6.33)

We call [v, w] the Lie bracket or the commutator of v and w.

6.20 Proposition

(i) The map V(M)× V(M)→ V(M), (v, w) �→ [v, w] has the properties that

(α) (bilinearity) [ · , · ] is R-bilinear.

(β) (skew-symmetry) [v, w] = −[w, v] for v, w ∈ V(M).
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(γ) (Jacobi identity) u, v, w ∈ V(M) satisfy the relation[
u, [v, w]

]
+

[
v, [w, u]

]
+

[
w, [u, v]

]
= 0 .

(ii) In local coordinates,

[v, w] =
∑

j,k

(
vk ∂wj

∂xk
− wk ∂vj

∂xk

) ∂

∂xj
(6.34)

for v =
∑

j vj ∂/∂xj and w =
∑

j wj ∂/∂xj .

Proof The simple proofs are left to you. �

6.21 Remarks (a) Suppose M is open in Rm and (x1, . . . , xm) are Euclidean
coordinates on M . Using the nabla vector ∇, (6.34) can be written symbolically
in the intuitive form

[v, w] = (v · ∇)w − (w · ∇)v .

(b) Suppose V is a vector space and [ · , · ] : V ×V → V is a map with the properties
(α)–(γ) of Proposition 6.20(i). Then

(
V, [ · , · ]

)
is called a Lie algebra. Because

of (β), the “multiplication” [ · , · ] is generally not commutative. It follows from
(β) and (γ) that[

a, [b, c]
]
−

[
[a, b], c

]
=

[
[c, a], b

]
for a, b, c ∈ V .

So the multiplication is generally not associative either. Thus a Lie algebra is gen-
erally a noncommutative, nonassociative algebra.6 Therefore

(
V(M), [ · , · ]

)
is a

Lie algebra.

(c) (regularity) Let k ∈ N and v, w ∈ Vk(M). Let M be a manifold of class Ck+1. Then
Lv is not a derivation on Ek+1(M), because Lvf for f ∈ Ek+1(M) generally only belongs
to Ek(M). Therefore the Lie bracket cannot be defined through (6.33) either. We are
left to choose local coordinates and to define [v, w] for v, w ∈ Vk(M) through (6.34).7

Then [v, w] ∈ Vk−1(M). �

The Hodge–Laplace operator

In the rest of this section, we use the codifferential and the star operator to derive
some more important relations from vector analysis.

Let
(
M, ( · | · )M

)
be an oriented pseudo-Riemannian manifold. First we write

the divergence in terms of the codifferential.

6In the trivial commutative case in which [a, b] = 0 for a, b ∈ V , it is of course commutative
and associative.

7You may want to consider why [v, w] so defined is well defined on all of M .
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6.22 Proposition The diagram

�

�
�	

�
��

E(M) = Ω0(M)

V(M) Ω1(M)
Θ

div δ

is commutative, that is, div = δ ◦Θ.

Proof If suffices to prove this equation locally. So let
(
(x1, . . . , xm), U

)
be local

coordinates. Then for v =
∑

j vj ∂/∂xj ∈ V(U), Remarks 6.1(b) and 5.11(b) imply

δΘv = δ
∑

j

(∑
k
gjkvk

)
dxj =

1√
|G|

∑
j

∂

∂xj

(√
|G| vj

)
.

Therefore the claim follows from (6.14). �

Using the exterior derivative and the codifferential, we define for 0 ≤ r ≤ m
an R-linear map on Ωr(M) by

ΔM := dδ + δd : Ωr(M)→ Ωr(M) . (6.35)

This is the Hodge–Laplace operator. For a ∈ E(M), it follows from (6.4) and
Proposition 6.22 that

(dδ + δd)a = δda = δΘ(Θ−1da) = div grada .

Therefore the Hodge–Laplace operator on Ω0(M) = E(M) is the same as the
Laplace–Beltrami operator, which justifies the notation. When M is clear from
context, we write Δ for ΔM . �

6.23 Remarks (a) ∗Δ = Δ∗.
Proof Remarks 5.9(b) and 5.11(a) give

∗Δ = ∗dδ + ∗δd = δd∗+ dδ∗ = Δ∗

and therefore the claim. �

(b) dΔ = Δd = dδd and δΔ = Δδ = δdδ.

Proof From d2 = 0 we get

dΔ = ddδ + dδd = dδd = dδd + δdd = Δd .

The second claim follows analogously. �
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(c) Suppose M is open in Rm and (x1, . . . , xm) are Euclidean coordinates. Then

Δ
(∑

(j)∈Jr

a(j) dx(j)
)

=
∑

(j)∈Jr

Δa(j) dx(j)

for 1 ≤ r ≤ m.
Proof Because of the linearity, it suffices to show the statement for α := a dx(j) with
(j) ∈ Jr. Using Example 5.10(e), we find

dδα = d
( r∑

k=1

(−1)k−1∂jka dxj1 ∧ · · · ∧ d̂xjk ∧ · · · ∧ dxjr

)
=

r∑
k=1

(−1)k−1
m∑

�=1

∂�∂jka dx� ∧ dxj1 ∧ · · · ∧ d̂xjk ∧ · · · ∧ dxjr

=
r∑

k=1

∂2
jk

a dx(j) +
r∑

k=1

(−1)k−1
m∑

�=1
�/∈{j1,...,jr}

∂�∂jka dx� ∧ dxj1 ∧ · · · ∧ d̂xjk ∧ · · · ∧ dxjr .

Analogously, we get

δdα = δ
m∑

�=1
�/∈{j1,...,jr}

∂�a dx� ∧ dx(j) =
m∑

�=1
�/∈{j1,...,jr}

∂2
� a dx(j)

−
m∑

�=1
�/∈{j1,...,jr}

r∑
k=1

(−1)k−1∂jk∂�a dx� ∧ dxj1 ∧ · · · ∧ d̂xjk ∧ · · · ∧ dxjr .

This implies8

ΔMα = (dδ + δd)α =
(∑

k
∂2

ka
)

dx(j) = (Δa) dx(j)

and therefore the claim. �

(d) (regularity) Clearly ΔM is an R-linear map from Ωr
(k)(M) to Ωr

(k−2)(M) when
0 ≤ r ≤ m and k ∈ N with k ≥ 2. In this case, it suffices to assume that M is a Ck+2

manifold. �

Finally, we define the Laplace operator for vector fields, namely, �Δ, by

�Δ := �ΔM := Θ−1
M ◦ΔM ◦ΘM : V(M)→ V(M)

and therefore by the commutativity of the diagram

V(M) V(M)

Ω1(M) Ω1(M) .

Θ Θ

�Δ

Δ

�

�
� �

8We chose the sign in the definition of δ to be (−1)m(r+1) so that this formula would take this
form. For the sign convention typically used in geometry, the formula is (dδ+δd)α = −(Δa) dx(j).
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6.24 Remarks (a) Proposition 6.22 and (6.4) give �Δ = graddiv + Θ−1δdΘ.

(b) Suppose M is open in Rm, and (x1, . . . , xm) are Euclidean coordinates on M .
Then

�Δ
(∑

j
vj ∂

∂xj

)
=

∑
j
Δvj ∂

∂xj
.

If we identify as usual the vector field v =
∑

j vj ∂/∂xj with (v1, . . . , vm), then
�Δv means that the Laplace operator can be applied componentwise

�Δv = (Δv1, . . . ,Δvm) .

In this case, we usually write Δ, not �Δ.
Proof This follows from Example 6.2(a) and Remark 6.23(c). �

(c) (regularity) Let k ∈ N. Then �Δ maps the R-vector space Vk+2(M) linearly into
Vk(M). So here it suffices to assume that M is a Ck+2 manifold. �

The vector product and the curl

In this last section, we derive the most important properties of the curl operator.
Let

(
M, ( · | · )M

)
be a three-dimensional oriented Riemannian9 manifold with

volume element ωM .
On V(M), we define the vector product or cross product,

× : V(M)× V(M)→ V(M) , (v, w) �→ v × w , (6.36)

by
v × w := Θ−1

M ωM (v, w, · ) . (6.37)

Clearly this map is well defined.

6.25 Remarks (a) Suppose
(
M, ( · | · )M

)
=

(
R3, ( · | · )

)
. Then in the case of a

constant vector field, (6.37) agrees with the definition of Section VIII.2.

(b) The vector product is bilinear, alternating (skew symmetric), and satisfies

(u | v × w)M = ωM (u, v, w) for u, v, w ∈ V(M) . (6.38)

For p ∈ M , the vector product (v × w)(p) is orthogonal to v(p) and w(p) with
respect to the inner product ( · | · )M (p) of TpM . Letting |v|M :=

√
(v | v)M , we

have
|v × w|M =

√
|v|2M |w|2M − (v |w)2M = |v|M |w|M sin ϕ ,

where ϕ(p) ∈ [0, π] is the angle between the vectors v(p) and w(p) for p ∈ M and
v, w ∈ V(M).

9For simplicity, we will restrict here to Riemannian metrics, as they are the most important
in applications.
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The vector product satisfies the Grassmann identity

v1 × (v2 × v3) = (v1 | v3)Mv2 − (v1 | v2)Mv3 ,

the Jacobi identity

v1 × (v2 × v3) + v2 × (v3 × v1) + v3 × (v1 × v2) = 0

and the relation

(v1 × v2)× (v3 × v4) = ωM (v1, v2, v4)v3 − ωM (v1, v2, v3)v4

for v1, v2, v3, v4 ∈ V(M). In particular,
(
V(M),×

)
is a Lie algebra.

Proof All of these reduce easily to pointwise statements already proved in Exercise 2.3. �

(c) Suppose
(
(x1, x2, x3), U

)
are positive orthonormal coordinates10 on M . Then

the cross product of vector fields v =
∑

j vj ∂/∂xj and w =
∑

j wj ∂/∂xj takes
the form

v × w = (v2w3 − v3w2)
∂

∂x1
+ (v3w1 − v1w3)

∂

∂x2
+ (v1w2 − v2w1)

∂

∂x3
.

Proof Exercise 2.3. �

(d) (regularity) For k ∈ N, the statements above remain true for Ck vector fields, and
it suffices to assume that M is a Ck+1 manifold. �

The next theorem shows how the vector product is related to the exterior
product of 1-forms.

6.26 Proposition For v, w ∈ V(M), we have v×w = Θ−1∗(Θv∧Θw), that is, the
diagram

V(M) × V(M) Ω1(M)× Ω1(M)

V(M) Ω1(M) Ω2(M)

× ∧

Θ×Θ

Θ−1 ∗

�

� �

�
���


�

commutes.

Proof It suffices to prove the equality locally, where we can choose positive or-
thonormal coordinates

(
(x1, x2, x3), U

)
. If (v1, v2, v3) and (w1, w2, w3) are the

components of vector fields v, w ∈ V(M), then it follows from Remark 6.1(e) that

Θv ∧Θw =
∑

j
vj dxj ∧

∑
k
wk dxk

= (v2w3 − v3w2) dx2 ∧ dx3 + (v3w1 − v1w3) dx3 ∧ dx1

+ (v1w2 − v2w1) dx1 ∧ dx2 .

10That is, (∂/∂x1, ∂/∂x2, ∂/∂x3) is a positive orthonormal frame.
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From the proof of Example 5.7(d), we know that

∗(dx2 ∧ dx3) = dx1 , ∗(dx3 ∧ dx1) = dx2 , ∗(dx1 ∧ dx2) = dx3 . (6.39)

Now the claim follows from Remarks 6.1(e) and 6.25(c). �

We next derive a representation of the curl operator.

6.27 Proposition The diagram

� �

�

�
�	

�
��

V(M) Ω1(M) Ω2(M)

V(M) Ω1(M)

Θ d

Θ−1
curl ∗

commutes, that is, curl = Θ−1∗dΘ.

Proof It again suffices to prove the equality locally in positive orthonormal
coordinates

(
(x1, x2, x3), U

)
. Then for v =

∑3
j=1 vj ∂/∂xj, we find using Re-

mark 6.1(e) that

d(Θv) = d
(∑

j
vj dxj

)
=

∑
j,k

∂vj

∂xk
dxk ∧ dxj

=
(∂v3

∂x2
− ∂v2

∂x3

)
dx2 ∧ dx3 +

(∂v1

∂x3
− ∂v3

∂x1

)
dx3 ∧ dx1

+
(∂v2

∂x1
− ∂v1

∂x2

)
dx1 ∧ dx2 .

Then the claim follows from (6.39) and Remarks 6.1(e) and 6.12(b). �

We are now ready to deduce several important differential identities involving
three-dimensional vector fields.

6.28 Proposition For f ∈ E(M) and v, w ∈ V(M),

(i) div(v × w) = (curl v |w)M − (v | curlw)M ;

(ii) curl(fv) = f curl v + grad f × v;

(iii) curl(v × w) = (div w)v − (div v)w − [v, w];

(iv) curl(curl v) = graddiv v − �Δv.

Proof (i) Putting m = 3 in Remark 5.9(d), we obtain

∗δα = (−1)m(r+1)∗∗d∗α = d∗α for α ∈ Ω2(M) .
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Now we use Propositions 6.22 and 6.26 to deduce

div(v × w) = δΘ
(
Θ−1∗(Θv ∧Θw)

)
= δ∗(Θv ∧Θw)

= ∗d(Θv ∧Θw) = ∗(dΘv ∧Θw −Θv ∧ dΘw) .

From Proposition 6.27, it follows that Θ curl = ∗dΘ. Now Remark 2.19(d) implies
that dΘ = ∗Θ curl, because m = 3 and r = 2. Hence we get

div(v × w) = ∗
(
(∗Θ curlv) ∧Θw −Θv ∧ ∗Θ curlw

)
= ∗(Θw ∧ ∗Θ curl v −Θv ∧ ∗Θ curlw) ,

where we have used ∗Θ curl v ∈ Ω2(M). Now (2.22), with r = 1, and (2.13) give

div(v × w) = ∗
[
(w | curl v)M − (v | curlw)

]
ωM .

The claim now follows from ∗ωM = 1.
(ii) Proposition 6.27 gives

curl(fv) = Θ−1∗dΘ(fv) = Θ−1∗d(fΘv)

= Θ−1∗(df ∧Θv + fdΘv)

= Θ−1∗(Θ gradf ∧Θv) + fΘ−1∗dΘv

= grad f × v + f curl v .

Here we have also made use of Proposition 6.26 and properties of d.
(iii) It suffices to prove the statement locally. We can use positive orthonor-

mal coordinates. Then the claim follows from the local representations of Remarks
6.12(b) and 6.25(c) and from Proposition 6.20 after a simple calculation, which we
leave to you.

(iv) It follows from Proposition 6.27 and the definition of δ that

curl curl v = Θ−1∗dΘΘ−1∗dΘv = Θ−1∗d∗dΘv

= (−1)3(2+1)Θ−1δdΘv = −Θ−1δdΘv .

Now the claim follows from Remark 6.24(a). �

To demonstrate the power of the new calculus, we proved part (i) using the
properties of the codifferential and the star operator. Of course, we could also
have worked in the orthonormal coordinates of a positive chart. In other words,
we can assume that M is open in R3 and ( · | · )M is the standard metric ( · | · ).
Using the (formal) nabla operator in (6.38), we obtain

∇ · (v × w) = det[∇, v, w]

= ∂1(v2w3 − v3w2) + ∂2(v3w1 − v1w3) + ∂3(v1w2 − v2w1)

by expanding the (formal) determinant in its first row. By using the product rule,
we see easily that the last row agrees with the expression w · curl v − v · curlw, as
claimed in (i).
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However, the formal calculus with the nabla operator must be used with
caution. For example, if we formally calculate curl(v × w) = ∇ × (v × w) using
the Grassmann identity, we find the false statement

∇× (v × w) = (∇ · w)v − (∇ · v)w .

Where was the mistake?

Exercises

1 Find the representation of the Laplace–Beltrami operator with respect to

(i) the cylindrical coordinates (0, 2π)× R→ R3, (ϕ, z) �→ (cos ϕ, sin ϕ, z);

(ii) the parametrization

(0, 2π)2 → R3 , (α, β) �→
(
(2 + cos α) cos β, (2 + cos α) sin β, sin α

)
of the 2-torus T2

2.1 of Example VII.9.11(f);

(iii) the parametrization X → R3, x �→
(
x, f(x)

)
of the graph of f ∈ E(X), when X is

open in R2.

2 Let (Mj , gj) for j = 1, 2 be Riemannian manifolds with ∂M1 = ∅, and let πj denote
the canonical projection M1 ×M2 →Mj . Show that

ΔM1×M2 = π∗
1ΔM1 + π∗

2ΔM2 .

3 Suppose M and N are Riemannian manifolds and f : M → N is an isometric diffeo-
morphism. Then for 0 ≤ r ≤ m, show that the diagram

Ωr(M) Ωr(M)

Ωr(N) Ωr(N)

f∗ f∗

ΔM

ΔN

�

�

� �

commutes.

4 Let (M, g) be a pseudo-Riemannian manifold. Show the commutativity of the diagram

V(M)

Ω1(M) Ωm−1(M)
∗

Θ −�

�

�
��

�
�


and derive the relations

(i) div = ∗d∗Θ;

(ii) curl = Θ−1∗dΘ (m = 3);
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(iii) ΔM = ∗d∗d,

where ΔM is the Laplace–Beltrami operator of M .

5 Let Ω be open in R3. For E, B, j ∈ C∞(R × Ω, R3), ρ ∈ C∞(R × Ω, R), and c > 0,
set

F := ΘeE ∧ (c dt) + ∗
(
ΘeB ∧ (c dt)

)
, J := Θej − ρ dt ∈ Ω(R4

1,3) ,

where E, B, and j are seen as time-dependent vector fields, ρ is seen as a time-dependent
function on Ω, and Θe : V(R3) → Ω1(R3) denotes the (Euclidean) Riesz isomorphism.
Also let dt be the first standard basis vector in Ω1(R4

1,3). Now show these facts:

(a) The statements

(i) dF = 0;

(ii) ∂B
/
∂t + c curl E = 0 and div B = 0

are equivalent. (These are the homogeneous Maxwell’s equations.) That is, the 2-form F
is closed if and only if the vector fields E and B satisfy these two of Maxwell’s equations.

(b) The statements

(i) dF = 4πJ ;

(ii) ∂E/∂t− c curl B = 4πj and div E = 4πρ

are equivalent. (These are the Maxwell’s equations with sources.)

(c) The statments

(i) ΔR4
1,3

F = 0;

(ii) ∂B/∂t + c curl E = 0, ∂E/∂t− c curl B = 0, div E = 0, div B = 0

are equivalent. Therefore the 2-form F is harmonic if and only if the vector fields E
and B satisfy the homogeneous Maxwell’s equations.

(d) If dF = 0, then j and ρ satisfy the continuity equation

∂ρ/∂t + div j = 0 ,

which can also be written gradR4
1,3

J = 0.

(e) These two statements are equivalent:

(i) F is exact;

(ii) There are an A ∈ C∞(R×Ω, R), a vector potential, and Φ ∈ C∞(R×Ω, R), a scalar
potential, with

curl A = B and − ∂A/∂t− grad Φ = E .

6 Suppose X is open in R3 and contractible. Also suppose f, g ∈ E(X). Show:

(i) There is a v ∈ V(X) such that grad f × grad g = curl v.

(ii) If f(x) 	= 0 for x ∈ X, then there is an h ∈ E(X) with (grad f)/f = grad h.

7 Verify that

�ΔM (f grad f) = grad div(f grad f) = ΔMf grad f + grad |grad f |2M + f grad ΔMf

for f ∈ E(M), where |v|2M := (v | v)M for v ∈ V(M).
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8 Show that α ∈ Ω1(M) and v, w ∈ V(M) satisfy

dα(v, w) = Lv〈α, w〉 − Lw〈α, v〉 −
〈
α, [v, w]

〉
.

9 Let M and N be m-dimensional manifolds, and let ϕ ∈ Diff(M, N). Show that

ϕ∗[v, w] = [ϕ∗v, ϕ∗w] for v, w ∈ V(M) .

10 Let T 2 := S1 × S2 ⊂ R4, and let α, β ∈ Ω1(T 2) with

α := −x2 dx1 + x1 dx2 , β := −x4 dx3 + x3 dx4 .

Show that Δα = Δβ = 0.

11 Show that for H ∈ E(R2m) the vector field sgrad H ∈ V(R2m) is divergence free.




