
Chapter X

Integration theory

Having made acquaintance in the last chapter with the fundamentals of measure
theory, we will now turn to the theory of integration. In the first part of the
chapter we study integrals over general measure spaces, while in the second half
we take advantage of the special properties of the Lebesgue measure.

Integration with respect to arbitrary measures is not only important in many
applications, but it will also be essential in the last chapter, when the underlying
set is not “flat” but rather a manifold. This is why even an introductory text such
as ours must deal with the subject.

In Section 1, we introduce μ-measurable functions and investigate their basic
properties. A position of keen interest in analysis is held by natural measures with
respect to which every continuous function is measurable. An example is the class
of Radon measures, which we introduce in this section and which we will encounter
again in Chapter XII.

In analysis, and not only there, it will be increasingly important to be able to
deal with vector-valued functions, that is, maps with values in a Banach space. We
have already worked along these lines in the first two volumes, and you will have
noticed that the resulting exposition gains not only in elegance but, in many cases,
also in simplicity. The same situation obtains regarding integration theory. Hence
we have resolved from the outset to develop the theory in terms of vector-valued
functions, and we therefore treat the Bochner–Lebesgue integral. This is possible
with no significant extra effort. One of the few exceptions is the proof that a
vector-valued function is μ-measurable if and only if it is measurable in the usual
sense and is μ-almost separable valued. Of course, you could ignore this result and
consider only scalar-valued functions. But this is not recommended, as it would
cause you to miss out on an important and efficient addition to your toolkit.

Besides vector-valued maps, we will investigate in some detail functions with
values in the extended number line [0,∞]. This is primarily for technical reasons;
in later sections it will save us from having to always single out special cases.
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In Section 2, we introduce the general Bochner–Lebesgue integral, and do
so via the L1-completion of the space of simple functions. This approach not
only extends essentially unchanged to vector-valued functions, but also lays the
foundation for the proof of Lebesgue’s convergence theorem. We treat the latter,
as well as other important convergence theorems, in Section 3.

Section 4 is devoted to the elementary theory of Lebesgue spaces. We prove
their completeness and show that they become Banach spaces if we identify func-
tions that agree almost everywhere. Because this identification is in our experience
a source of difficulties for beginners, we make a meticulous distinction throughout
the chapter between equivalence classes of functions and their respective represen-
tatives.

Although up to this point, we have considered integrals with respect to an
arbitrary measure, we treat in Section 5 the special case of Lebesgue measure in Rn.
We show that the one-dimensional Lebesgue integral is an extension of the Cauchy–
Riemann integral for absolutely integrable functions. This puts us in the position
to bring what we learned about integrals in Volume II into the framework of the
general theory. This is of particular significance in the context of Fubini’s theorem,
which gives a reduction procedure for evaluating higher-dimensional integrals.

Section 6 treats Fubini’s theorem. We have decided not to prove it for ar-
bitrary product measure spaces, but rather only for the Lebesgue measure space.
This simplifies the presentation considerably and is in practice sufficient for all the
needs of analysis— once strengthened by a extension to product manifolds, to be
treated in Chapter XII.

The proof of Fubini’s theorem in the vector-valued case requires delicate mea-
surability arguments. For this reason, we study first the scalar case. We prove the
vector-valued version at the end of Section 6 and exhibit some important applica-
tions. On first reading, this part may be skipped, because its results are not used
in any essential way afterward, and also because the reader will probably become
acquainted at some later point with the Hahn–Banach theorem of functional anal-
ysis: with its help Fubini’s theorem for vector-valued functions is easily deduced
from the scalar version.

Section 7 studies the convolution. This operation allows us to prove with
extraordinary efficiency some fundamental approximation theorems, such as the
theorem on smooth partitions of unity, which plays in important role in the final
chapter. In the second half of the section we address the significance of the con-
volution and the approximation theorems in analysis and mathematical physics,
offering a first glimpse of the very important generalization of the classical differ-
ential calculus known as the theory of distributions.

Besides the convergence theorems of Lebesgue and Fubini, the transformation
theorem forms the third pillar of the entire integral calculus. It will be proved in
Section 8, where we also discuss its more basic applications.
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In the last section, we illustrate the power of the theory just developed by
proving several basic facts about the Fourier transform. Like the second half of
Section 7, this part affords a look at a related area of analysis which you may later
encounter in more advanced studies.



1 Measurable functions

Suppose (X,A, μ) is a measure space and A ∈ A. An analogy with elementary
geometrical constructions leads one to define the integral over X of the character-
istic function χA with respect to the measure μ as

∫
X

χA dμ := μ(A). Obviously
this only makes sense if A belongs to A. The function f = χA must therefore be
“compatible” in this sense with the underlying measure space (A, μ). For more
complicated functions, a suitable approximation argument makes it possible to
generalize this notion of compatibility between functions and measures, leading to
the concept of the measurability of functions.

In this section denote by
• (X,A, μ) a complete, σ-finite measure space;

E = (E, | · |) a Banach space.

Simple functions and measurable functions

Suppose E is a property that is either true or false of each point in X . We say
that E holds μ-almost everywhere, or for μ-almost every x ∈ X , if there exists a
μ-null set N such that E(x) is true for every x ∈ N c. “Almost every” and “almost
everywhere” are both abbreviated “a.e.”

1.1 Examples (a) For f, g ∈ RX , we write “f ≥ g μ-a.e.” if there is a μ-null set
N such that f(x) ≥ g(x) for every x ∈ N c.

(b) Suppose fj, f ∈ EX for j ∈ N. Then (fj) converges to f μ-a.e. if and only if
there is a μ-null set N such that fj(x) → f(x) for x ∈ N c.

(c) A function f ∈ EX is bounded μ-a.e. if and only if there is a μ-null set N and
an M ≥ 0 such that |f(x)| ≤M for every x ∈ N c.

(d) If E holds μ-a.e., the set
{

x ∈ X ; E(x) is not true
}

is μ-null.
Proof This follows from the completeness of (X,A, μ). �

(e) Suppose (X,B, ν) is an incomplete measure space. Then there is a property
E of X that holds ν-almost everywhere for which

{
x ∈ X ; E(x) is not true

}
is

however not a ν-null set.
Proof Because (X,B, ν) is not complete, there is a ν-null set N and an M ⊂ N such
that M /∈ B. If f := χM , then f = 0 ν-almost everywhere, but

{
x ∈ X ; f(x) 	= 0

}
= M

is not a ν-null set. �

We say f ∈ EX is μ-simple1 if f(X) is finite, f−1(e) ∈ A for every e ∈ E, and
μ
(
f−1(E\{0})

)
< ∞. We denote by S(X, μ, E) the set of all μ-simple functions

1If the identity of the measure space is clear, we call functions simple instead of μ-simple;
similarly in the case of μ-measurable functions, about to be introduced.
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from X to E.2

A function f ∈ EX is said to be μ-measurable if there is a sequence (fj) in
S(X, μ, E) such that fj → f μ-almost everywhere as j →∞. We set3

L0(X, μ, E) := { f ∈ EX ; f is μ-measurable} .

1.2 Remarks (a) We have the inclusions of vector subspaces

S(X, μ, E) ⊂ L0(X, μ, E) ⊂ EX .

(b) For j = 0, . . . , m, where m ∈ N, consider ej ∈ E and Aj ∈ A such that
μ(Aj) < ∞. Then f :=

∑m
j=0 ejχAj belongs to S(X, μ, E). We call this the

normal form of f if
ej 
= 0 for j = 0, . . . , m ,

ej 
= ek for j 
= k ,

Aj ∩Ak = ∅ for j 
= k .

(c) Every simple function has a unique normal form, and4

S(X, μ, E) =
{ ∑m

j=1
ejχAj ; m ∈ N, ej ∈ E\{0}, Aj ∈ A,

μ(Aj) < ∞, Aj ∩Ak = ∅ for j 
= k
}

.

Proof Suppose f ∈ S(X,μ, E). Then there is an m ∈ N and pairwise distinct elements
e0, . . . , em in E such that f(X)\{0} = {e0, . . . , em}. Setting Aj := f−1(ej), we have
Aj ∈ A such that μ(Aj) <∞ and Aj ∩Ak = ∅ for j 	= k. One checks easily that

m∑
j=0

ejχAj

is the unique normal form of f . The second part now follows from (b). �

(d) Suppose f ∈ EX and g ∈ KX are μ-simple [or μ-measurable]. Then |f | ∈ RX

and gf ∈ EX are also μ-simple [or μ-measurable]. In particular, S(X, μ, K) and
L0(X, μ, K) are subalgebras of KX .

(e) For A ∈ A and f ∈ EX , form the restriction ν := μ
∣∣ (A |A) (see Exercise

IX.1.7). Then

f |A ∈ S(A, ν, E) ⇐⇒ χAf ∈ S(X, μ, E) ,

f |A ∈ L0(A, ν, E) ⇐⇒ χAf ∈ L0(X, μ, E) .

Proof The simple verification is left to the reader. �

2We called the space of jump continuous functions S(I, E), but this will cause no confusion.
3Clearly the definition of measurability of functions is meaningful even on incomplete measure

spaces.
4Compare the footnote to Exercise VI.6.8.
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(f) Suppose f ∈ L0(X, μ, K) and A := [f 
= 0]. Also define g ∈ KX through

g(x) :=
{

1/f(x) if x ∈ A ,

0 if x /∈ A .

Then g is μ-measurable.
Proof The measurability of f implies the existence of a μ-null set N and a sequence
(ϕj) in S(X,μ, K) such that ϕj(x)→ f(x) for x ∈ Nc. We set

ψj(x) :=

{
1/ϕj(x) if ϕj(x) 	= 0 ,

0 if ϕj(x) = 0 ,

for x ∈ X and j ∈ N. By (c) and (d), (χAψj) is a sequence in S(X,μ, K), and one verifies
easily that (χAψj)(x)→ g(x) for every x ∈ Nc (see Proposition II.2.6). �

(g) Let e ∈ E\{0}, and suppose μ(X) = ∞. Then eχX belongs to L0(X, μ, E)
but not to S(X, μ, E).
Proof It is clear that eχX is not μ-simple. Since X is σ-finite, there is a sequence (Aj)
in A such that

⋃
j Aj = X and μ(Aj) <∞ for j ∈ N. For j ∈ N, set Xj :=

⋃j
k=0 Ak and

ϕj := eχXj . Then (ϕj) is a sequence in S(X,μ, E) that converges pointwise to eχX . �

A measurability criterion

A function f ∈ EX is said to be A-measurable if the inverse images of open sets of
E under f are measurable, that is, if f−1(TE) ⊂ A, where TE is the norm topology
on E. If there is a μ-null set N such that f(N c) is separable, we say f is μ-almost
separable valued.

1.3 Remarks (a) Exercise IX.1.6 shows that the set of A-measurable functions
coincides with the set of A-B(E)-measurable functions.

(b) Every subspace of a separable metric space is separable.
Proof By Proposition IX.1.8, separability amounts to having a countable basis. But by
restriction, a basis of a topological space yields a basis (of no greater cardinality) for any
given subspace; see Proposition III.2.26. �

(c) Suppose E is separable and f ∈ EX . Then f is μ-almost separable valued.
Proof This follows from (b). �

(d) Every finite-dimensional normed vector space is separable.5 �

The next result gives a characterization of μ-measurable functions, which,
besides being of theoretical significance, is very useful in practice for determining
measurability.

5Compare Example V.4.3(e).
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1.4 Theorem A function in EX is μ-measurable if and only if it is A-measurable
and μ-almost separable valued.

Proof “=⇒” Suppose f ∈ L0(X, μ, E).
(i) There exist a μ-null set N and a sequence (ϕj) in S(X, μ, E) such that

ϕj(x) → f(x) (j →∞) for x ∈ N c . (1.1)

By Proposition I.6.8, F :=
⋃∞

j=0 ϕj(X) is countable and therefore the closure F is
separable. Because of (1.1) we have f(N c) ⊂ F . Remark 1.3(b) now shows that
f is μ-almost separable valued.

(ii) Let O be open in E and define On :=
{

y ∈ O ; dist(y, Oc) > 1/n
}

for
n ∈ N×. Then On is open and On ⊂ O. Also let x ∈ N c. By (1.1), f(x) belongs
to O if and only if there exist n ∈ N× and m = m(n) ∈ N× such that ϕj(x) ∈ On

for j ≥ m. Therefore

f−1(O) ∩N c =
⋃

m,n∈N×

⋂
j≥m

ϕ−1
j (On) ∩N c . (1.2)

But ϕ−1
j (On) ∈ A for n ∈ N× and j ∈ N, because ϕj is μ-simple. Hence (1.2) says

that f−1(O) ∩N c ∈ A.
Furthermore, the completeness of μ shows that f−1(O) ∩ N is a μ-null set,

and altogether we obtain

f−1(O) =
(
f−1(O) ∩N

)
∪

(
f−1(O) ∩N c

)
∈ A .

“⇐=” Suppose f is μ-almost separable valued and A-measurable.
(iii) We consider first the case μ(X) < ∞. Take n ∈ N. By assumption, there

is a μ-null set N such that f(N c) is separable. If { ej ; j ∈ N } is a countable
dense subset of f(N c), the collection

{
B
(
ej , 1

/
(n + 1)

)
; j ∈ N

}
covers the set

f(N c), and thus
X = N ∪

⋃
j∈N

f−1
(
B
(
ej , 1

/
(n + 1)

))
.

Since f is A-measurable, Xj,n := f−1
(
B
(
ej , 1/(n + 1)

))
belongs to A for every

(j, n) ∈ N2. The continuity of μ from below and the assumption μ(X) < ∞ then
imply that there are mn ∈ N× and Yn ∈ A such that

mn⋃
j=0

Xj,n = Y c
n and μ(Yn) <

1
2n+1

.

Now define ϕn ∈ EX through

ϕn(x) :=

⎧⎪⎨⎪⎩
e0 if x ∈ X0,n ,

ej if x ∈ Xj,n\
⋃j−1

k=0 Xk,n for 1 ≤ j ≤ mn ,

0 otherwise .
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Obviously ϕn ∈ S(X, μ, E) for n ∈ N, and

|ϕn(x)− f(x)| < 1/(n + 1) for x ∈ Y c
n .

The decreasing sequence Zn :=
⋃∞

k=0 Yn+k satisfies

μ(Zn) ≤
∞∑

k=0

μ(Yn+k) ≤ 1
2n

for n ∈ N .

It therefore follows from the continuity of μ from above that Z :=
⋂

n∈N Zn is
μ-null. We now set

ψn(x) :=
{

ϕn(x) if x ∈ Zc
n ,

0 if x ∈ Zn .

Then (ψn) is a sequence in S(X, μ, E). Also there is for every x ∈ Zc =
⋃

n Zc
n an

m ∈ N such that x ∈ Zc
m. Since Zc

m ⊂ Zc
n for n ≥ m, it follows that

|ψn(x)− f(x)| = |ϕn(x) − f(x)| < 1/(n + 1) .

Altogether, lim ψn(x) = f(x) for every x ∈ Zc. Therefore f is μ-measurable.
(iv) Finally, we consider the case μ(X) = ∞. Remark IX.2.4(c) shows there

is a disjoint sequence (Xj) in A such that
⋃

j Xj = X and μ(Xj) < ∞. By part
(iii), there exist for each j ∈ N a sequence (ϕj,k)k∈N in S(X, μ, E) and a μ-null
set Nj such that limk ϕj,k(x) = f(x) for every x ∈ Xj∩N c

j . With N :=
⋃

j Nj and

ϕk(x) :=

{
ϕj,k(x) if x ∈ Xj , j ∈ {0, . . . , k} ,

0 if x /∈ ⋃k
j=0 Xj

for k ∈ N, we have ϕk ∈ S(X, μ, E) and limk ϕk(x) = f(x) for x ∈ N c. The result
follows because N is μ-null. �

1.5 Corollary Suppose E is separable and f ∈ EX . The following statements are
equivalent:

(i) f is μ-measurable.

(ii) f is A-measurable.

(iii) f−1(S) ⊂ A for some S ⊂ P(E) such that Aσ(S) = B(E).
(iv) f−1(S) ⊂ A for any S ⊂ P(E) such that Aσ(S) = B(E).

Proof This follows from Theorem 1.4, Remark 1.3(c), and Exercise IX.1.6. �

1.6 Remark The proof of Theorem 1.4 and Remark 1.3(c) show that Corollary 1.5
remains true for incomplete measure spaces. �

Without much effort, we obtain from Corollary 1.5 the following properties
of μ-measurable functions.
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1.7 Theorem

(i) If E and F are separable Banach spaces and if we have maps f ∈ L0(X, μ, E)
and g ∈ C

(
f(X), F

)
, then g ◦ f belongs to L0(X, μ, F ). In particular, |f | ∈

L0(X, μ, R).

(ii) A map f = (f1, . . . , fn) : X → Kn is μ-measurable if and only if each of its
components fj is.

(iii) Let g, h ∈ RX . Then f = g + ih is μ-measurable if and only if g and h are.

(iv) If f ∈ L0(X, μ, E) and g ∈ L0(X, μ, F ), then (f, g) ∈ L0(X, μ, E × F ).

Proof (i) Let O be open in F . Since g is continuous, g−1(O) is open in f(X). By
Proposition III.2.26, there is an open subset U of E such that g−1(O) = f(X)∩U .
Since f is Lebesgue measurable, f−1(U) belongs to A by Corollary 1.5. Because

(g ◦ f)−1(O) = f−1
(
g−1(O)

)
= f−1

(
f(X) ∩ U

)
= f−1(U) ,

the claim follows from another application of Corollary 1.5.

(ii) The implication “=⇒” follows from (i), because fj = prj ◦f for 1 ≤ j ≤ n.

“⇐=” We consider first the case K = R. Take I ∈ J(n), and write it as
I =

∏n
j=1 Ij , where Ij ∈ J(1) for 1 ≤ j ≤ n. Because each f−1

j (Ij) belongs to A,
so does f−1(I) =

⋂n
j=1 f−1

j (Ij), that is, we have f−1
(
J(n)

)
⊂ A. Also, we know

from Theorem IX.1.11 that Aσ

(
J(n)

)
= Bn. Therefore Corollary 1.5 implies that

f is μ-measurable.

Using the identification Cn = R2n, the case K = C follows immediately from
what was just shown.

(iii) is a special case of (ii), and we leave (iv) as an exercise. �

Measurable R-valued functions

In the theory of integration, it is useful to consider not only real-valued functions
but also maps into the extended number line R. Such maps are called R-valued
functions. An R-valued function f : X → R is said to be μ-measurable if A
contains f−1(−∞), f−1(∞), and f−1(O) for every open subset O of R. We
denote the set of all μ-measurable R-valued functions on X by L0(X, μ, R).

1.8 Remarks (a) Any real-valued function f : X → R can be regarded as an
R-valued one. Thus there are in principle two notions of measurability that apply
to f . But since f−1

(
{−∞,∞}

)
= ∅, Corollary 1.5 implies that f is μ-measurable

as a real-valued function if and only if it is μ-measurable as an R-valued function.

(b) Note that L0(X, μ, R) is not a vector space. �

In the next result, we list simple measurability criteria for R-valued functions.
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1.9 Proposition For an R-valued function f : X → R, the following statements
are equivalent:

(i) f ∈ L0(X, μ, R).

(ii) [f < α] ∈ A for every α ∈ Q [or α ∈ R].

(iii) [f ≤ α] ∈ A for every α ∈ Q [or α ∈ R].

(iv) [f > α] ∈ A for every α ∈ Q [or α ∈ R].

(v) [f ≥ α] ∈ A for every α ∈ Q [or α ∈ R].

Proof “(i)=⇒(ii)” The sets f−1(−∞) and f−1
(
(−∞, α)

)
with α ∈ Q [or α ∈ R]

belong to A. Because

[f < α] = f−1
(
[−∞, α)

)
= f−1(−∞) ∪ f−1

(
(−∞, α)

)
,

this is also true of [f < α].

The implications “(ii)=⇒(iii)=⇒(iv)=⇒(v)” follow from the identities

[f ≤ α] =
∞⋂

j=1

[f < α + 1/j] , [f > α] = [f ≤ α]c , [f ≥ α] =
∞⋂

j=1

[f > α− 1/j] .

“(v)=⇒(i)” Suppose O is open in R. By Proposition IX.5.6, there exist
(αj), (βj) ∈ QN such that O =

⋃
j [αj , βj). Therefore

f−1(O) =
⋃
j∈N

f−1
(
[αj , βj)

)
=

⋃
j∈N

(
[f ≥ αj ] ∩ [f < βj ]

)
,

and because [f < α] = [f ≥ α]c, we conclude that f−1(O) belongs to A. In
addition

f−1(−∞) =
⋂
j∈N

[f < −j] and f−1(∞) =
⋂
j∈N

[f > j] .

Thus f−1(±∞) also lies in A. �

The lattice of measurable R-valued functions

An ordered set V = (V,≤) is called a lattice if for every pair (a, b) ∈ V × V , the
infimum a ∧ b and the supremum a∨ b exist in V . A subset U ⊂ V is a sublattice
of V if U is a lattice when given the ordering induced by V . An ordered vector
space that is also a lattice is called a vector lattice. If a vector subspace of a vector
lattice is a sublattice, we call it a vector sublattice.
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1.10 Examples (a) Suppose V is a lattice [or vector lattice]. Then V X is a lattice
[or vector lattice] with respect to the pointwise ordering.

(b) R is a lattice, and R is a vector lattice.

(c) The vector lattice RX satisfies

f ∨ g = (f + g + |f − g|)
/
2 , f ∧ g = (f + g − |f − g|)

/
2 .

(d) B(X, R) is a vector sublattice of RX .

(e) Suppose X is a topological space. Then C(X, R) is a vector sublattice of RX .
Proof This follows from (c) and the fact that |f | is continuous if f is. �

(f) S(X, μ, R) and L0(X, μ, R) are vector sublattices of RX .
Proof The first statement is clear. The second follows from (c) and Theorem 1.7 or
Remark 1.2(d). �

(g) Suppose V is a vector lattice and x, y, z ∈ V . Then

(x ∨ y) + z = (x + z) ∨ (y + z) ,

(−x) ∨ (−y) = −(x ∧ y) ,

x + y = (x ∨ y) + (x ∧ y) .

Proof If u ∈ V satisfies u ≥ x and u ≥ y, then clearly u + z ≥ (x + z) ∨ (y + z). Hence

(x ∨ y) + z ≥ (x + z) ∨ (y + z) .

Suppose v ≥ (x + z)∨ (y + z). Then v− z ≥ x and v− z ≥ y, and hence v ≥ (x∨ y) + z.
Because this holds for every upper bound v of {x + z, y + z}, it follows that

(x + z) ∨ (y + z) ≥ (x ∨ y) + z .

This proves the first equality. The second is none other than the trivial relation

sup{−x,−y} = sup
(
−{x, y}

)
= −inf{x, y} .

Using this, we now find

x ∨ y =
(
−y + (x + y)

)
∨

(
−x + (x + y)

)
=

(
(−y) ∨ (−x)

)
+ (x + y)

= −(x ∧ y) + (x + y) ,

which proves the last claim. �

(h) Suppose V is a vector lattice. For x ∈ V , we set

x+ := x ∨ 0 , x− := (−x) ∨ 0 , |x| := x ∨ (−x) .

Then6

x = x+− x− , |x| = x++ x− , x+∧ x− = 0 .

6See footnote 8 in Section II.8.
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Proof The first claim follows easily from (g). With this and (g), we find

x++ x− = x + 2x− = x +
(
(−2x) ∨ 0

)
= (−x) ∨ x = |x| .

Analogously, we have

(x+∧ x−)− x− = (x+− x−) ∧ (x−− x−) = x ∧ 0 = −x− ,

and therefore x+∧ x− = 0. �

If V is a vector lattice and x ∈ V , we call x+ the positive part and x− the
negative part of x, and |x| is the modulus7 of x. Clearly x+ ≥ 0, x− ≥ 0, and
|x| ≥ 0.

The figures below illustrate the positive and negative parts of an element f
of the vector lattice RX .

graph(f) graph(f+) graph(f−)

Suppose f ∈ RX . Then f+ := f ∨ 0 is called the positive part of f , and
f− := 0∨ (−f) the negative part of f . These terms are chosen in obvious analogy
to the case of the vector lattice RX .8 Here too we have

f+ ≥ 0 , f− ≥ 0 , f = f+ − f− , |f | = f+ + f− .

The next result shows that L0(X, μ, R) is a sublattice of RX and that it is
closed under countably many lattice operations.

1.11 Proposition Suppose f ∈ L0(X, μ, R), (fj) is a sequence in L0(X, μ, R), and
k ∈ N. Then each of the R-valued functions

f+ , f− , |f | , max
0≤j≤k

fj , min
0≤j≤k

fj , sup
j

fj , inf
j

fj , lim
j

fj , lim
j

fj

belongs to L0(X, μ, R).

Proof (i) Suppose α ∈ R. From Proposition 1.9, we know that [fj > α] belongs
to A for j ∈ N. Therefore this is also true of[

supj fj > α
]

=
⋃

j
[fj > α] ,

and Proposition 1.9 implies that supj fj is μ-measurable.

7This is not to be confused with the norm of the vector x if V is a normed vector space. The
modulus of x ∈ V is always a vector in V , whereas the norm is a nonnegative number.

8Remember that RX is a lattice but not a vector lattice.
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(ii) Because fj belongs to L0(X, μ, R), so does −fj. It then follows from (i)
that the function infj fj = −supj(−fj) is μ-measurable.

(iii) For j ∈ N, set

gj :=
{

fj if 0 ≤ j ≤ k ,

fk if j > k .

Because of (i), supj gj = max0≤j≤k fj belongs to L0(X, μ, R). Analogously, one
shows that min0≤j≤k fj is μ-measurable.

(iv) From (iii), it follows that f+, f−, and |f | belong to L0(X, μ, R).
(v) We have

lim
j

fj = inf
j

sup
k≥j

fk and lim
j

fj = sup
j

inf
k≥j

fk .

Therefore by (i) and (ii), limj fj and limj fj also belong to L0(X, μ, R). �

The positive cone S(X, μ, R+) of S(X, μ, R) is the set of all f ∈ S(X, μ, R)
such that f(X) ⊂ R+; see Remarks VI.4.7(b) and (d). Therefore it is natural to
denote it by S(X, μ, R+). Similarly, if R+ := [0,∞] is the nonnegative part of
the extended number line R, we denote by L0(X, μ, R+) the set of all nowhere
negative μ-measurable R-valued functions on X .

The set L0(X, μ, R+) has an interesting characterization:

1.12 Theorem For f : X → R+, the following statements are equivalent:
(i) f ∈ L0(X, μ, R+).
(ii) There is an increasing sequence (fj) in S(X, μ, R+) such that fj → f for

j →∞.

Proof “(i)=⇒(ii)” By the σ-finiteness of (A, μ), it suffices to consider the case
μ(X) < ∞ (compare part (iv) in the proof of Theorem 1.4). So for j, k ∈ N, set

Aj,k :=
{ [

k2−j ≤ f < (k + 1)2−j
]

if k = 0, . . . , j 2j − 1 ,

[f ≥ j] if k = j 2j .

The sets Aj,k are obviously disjoint for k = 0, . . . , j 2j and by Proposition 1.9 they
lie in A. Since μ(X) < ∞, each Aj,k has finite measure. By Remark 1.2(b), then,

fj :=
j 2j∑
k=0

k2−jχAj,k
for j ∈ N

belongs to S(X, μ, R). Further one verifies that 0 ≤ fj ≤ fj+1 for j ∈ N.
Now suppose x ∈ X . If f(x) = ∞, we have fj(x) = j, so limj fj(x) = f(x).

On the other hand, if f(x) < ∞, then fj(x) ≤ f(x) < fj(x) + 2−j for j > f(x), so
limj fj(x) = f(x) in this case as well. This shows (fj) converges pointwise to f .
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“(ii)=⇒(i)” This follows from Proposition 1.11. �

Here is an illustration of the construction of the Aj,k in the proof of Theo-
rem 1.12:

1.13 Corollary

(i) For every f ∈ L0(X, μ, R), there is a sequence (fj) in S(X, μ, R) such that
fj → f .

(ii) Suppose f ∈ L0(X, μ, R+) is bounded. Then there is an increasing sequence
(fj) in S(X, μ, R+) that converges uniformly to f .

(iii) Suppose (fj) is a sequence in L0(X, μ, R+). Then
∑

j fj ∈ L0(X, μ, R+).

Proof (i) In view of the decomposition f = f+ − f−, this follows from Theo-
rem 1.12 and Remark 1.2(a).

(ii) Suppose f ∈ L0(X, μ, R+) is bounded. For the sequence (fj) constructed
in the proof of Theorem 1.12, we have

fj(x) ≤ f(x) < fj(x) + 2−j for j > ‖f‖∞ .

Thus (fj) converges uniformly to f .
(iii) By Theorem 1.12, there is for every j ∈ N an increasing sequence

(ϕj,k)k∈N in S(X, μ, R+) such that ϕj,k ↑ fj for k → ∞. Set sk,n :=
∑k

j=0 ϕj,n

for k, n ∈ N. Then (sk,n)n∈N is an increasing sequence in S(X, μ, R+) that con-
verges to sk :=

∑k
j=0 fj as n →∞. By Theorem 1.12, then, (sk) is a sequence in

L0(X, μ, R+) such that limk sk = supk sk =
∑∞

j=0 fj . The claim now follows from
Proposition 1.11. �
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Pointwise limits of measurable functions

Let (fj) be a pointwise convergent sequence in L0(X, μ, R). By Proposition 1.11,
f := limj fj is also in L0(X, μ, R). We will now derive an analogous statement for
vector-valued sequences of functions.

1.14 Theorem Suppose (fj) is a sequence in L0(X, μ, E) and f ∈ EX . If (fj)
converges μ-almost everywhere to f , then f is μ-measurable.

Proof (i) We show first that f is μ-almost separable valued. By assumption,
there is a μ-null set M such that fj(x) → f(x) as j → ∞, for any x ∈ M c. For
every j ∈ N, there exists by Theorem 1.4 a μ-null set Nj such that fj(N c

j ) is
separable, hence also a countable set Bj that is dense in fj(N c

j ):

Bj ⊂ fj(N c
j ) ⊂ Bj for j ∈ N .

With B :=
⋃

j Bj , we see from Corollary III.2.13(i) that
⋃

j Bj ⊂ B, and we find⋃
j∈N

fj(N c
j ) ⊂

⋃
j∈N

Bj ⊂ B .

Finally let N := M ∪ ⋃
j Nj . Then N is a μ-null set satisfying, for any k ∈ N,

N c = M c ∩
⋂

j N c
j ⊂ N c

k . Because limj fj(x) = f(x) for x ∈M c, we thus have

f(N c) ⊂
⋃
j∈N

fj(N c
j ) ⊂B = B .

Because B is countable, Remark 1.3(b) shows that f(N c) is separable.
(ii) Now we show that f is A-measurable. Let O be open in E, and define

On :=
{

x ∈ O ; dist(x, Oc) > 1/n
}

for n ∈ N×. As in (1.2), it follows that

f−1(O) ∩M c =
⋃

m,n∈N×

⋂
j≥m

f−1
j (On) ∩M c .

By Theorem 1.4, f−1
j (On) belongs to A for every j, n ∈ N×. Therefore this also

applies to f−1(O)∩M c. Moreover, the completeness of μ implies that f−1(O)∩M
is a μ-null set, and altogether we find

f−1(O) =
(
f−1(O) ∩M c

)
∪

(
f−1(O) ∩M

)
∈ A .

The claim now follows from Theorem 1.4. �

1.15 Remark Theorem 1.14 generally fails for incomplete measure spaces.
Proof Let C be the Cantor set. In the proof of Corollary IX.5.29, it was shown that C
contains a Borel nonmeasurable subset N ⊂ C. We take fj := χC for j ∈ N and f := χN .
Remark 1.2(b) and the compactness of C imply χC ∈ S(R, β1, R). Also fj(x) = f(x)
for x ∈ Cc ⊂ Nc and j ∈ N. Because C has measure zero, (fj) converges β1-a.e. to f .
However, because [f > 0] = N /∈ B1, Proposition 1.9 says that f is not in L0(R, β1, R). �
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Radon measures

We conclude this section by exploring how measurability and continuity are re-
lated in vector-valued functions. Besides proving a simple measurability criterion,
we prove Luzin’s theorem, which exposes a surprisingly close connection between
continuous and Borel measurable functions.

A metric space X = (X, d) is said to be σ-compact if X is locally compact
and there is a sequence (Xj)j∈N of compact subsets of X such that X =

⋃
j Xj .

Suppose X is a σ-compact metric space. A Radon measure on X is a regular,
locally finite measure on a σ-algebra A over X such that A ⊃ B(X). We say a
Radon measure μ is massive if μ is complete and every nonempty open subset O
of X satisfies μ(O) > 0.

1.16 Remarks (a) Every σ-compact metric space is a σ-compact set in the sense
of the definition of Section IX.5; however, a countable union of compact subsets
of a metric space is not necessarily a σ-compact metric space.
Proof The first statement is clear. For the second, consider Q ⊂ R. �

(b) Every Radon measure is σ-finite.
Proof This follows from Remark IX.5.3(b). �

(c) Suppose X is a locally compact metric space. Then there is for every compact
subset K of X a relatively compact9 open superset of K.
Proof For every x ∈ X, we find a relatively compact open neighborhood O(x) of x.
Because K is compact, there are x0, . . . , xm ∈ K such that O :=

⋃m
j=0 O(xj) is an open

superset of K. Corollary III.2.13(iii) implies O =
⋃m

j=0 O(xj). Therefore O is compact. �

(d) Every open subset of Rn is a σ-compact metric space.
Proof Let X ⊂ Rn be open and nonempty. For every x ∈ X, there is r > 0 such that
B(x, r) ⊂ X. Because B(x, r) is compact, X is then a locally compact metric space.

For j ∈ N×, define10

Uj :=
{

x ∈ X ; dist(x, Uc) > 1/j
}
∩ B(0, j) . (1.3)

By Examples III.1.3(l) and III.2.22(c), the set Uj is open. Also Uj ⊂ Uj ⊂ Uj+1, and⋃
j Uj ⊂

⋃
j Uj = X. In particular, there exists j0 ∈ N× such that Uj 	= ∅ for j ≥ j0.

Because Uj is compact by the Heine–Borel theorem, the claim follows. �

(e) For a locally compact metric space X , the following statements are equivalent:

(i) X is σ-compact.

(ii) X is the union of a sequence (Uj)j∈N of relatively compact open subsets with
Uj ⊂ Uj+1 for j ∈ N.

9A subset A of a topological space is said to be relatively compact if A is compact.
10dist(x, ∅) := ∞.
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(iii) X is a Lindelöf space.

(iv) X satisfies the second countability axiom.

(v) X is separable.
Proof “(i)=⇒(ii)” Let (Xj)j∈N be a sequence of compact sets in X such that X =

⋃
j Xj .

By (c), there is a relatively compact open superset U0 of X0. Inductively choose relatively
compact open subsets Uj such that Uj ⊃ Uj−1 ∪Xj for j ≥ 1. Clearly X =

⋃
j Uj .

“(ii)=⇒(iii)” Suppose O := {Oα ; α ∈ A } is an open cover of X. For every j ∈ N,
inductively choose m(j) ∈ N and α0, . . . , αm(j) ∈ A such that Uj ⊂

⋃m(j)
k=0 Oαk . Then{

Oαk ; k = 0, . . . , m(j), j ∈ N
}

is a countable subcover of O for X.

“(iii)=⇒(i)” By assumption, there is a sequence (xj) in X and relatively compact
open neighborhoods O(xj) of xj (j ∈ N) such that X =

⋃
j∈N

O(xj). So X =
⋃

j∈N
O(xj),

showing that X is σ-compact.

The remaining equivalences follow from Proposition IX.1.8. �

(f) Every locally finite Borel measure on a σ-compact metric space is regular and
is therefore a Radon measure.
Proof This follows from (e) and Corollary VIII.1.12 in [Els99]. �

(g) Finite Borel measures on (nonmetrizable) compact topological spaces need not
be regular.
Proof See [Flo81, Example A4.5, S. 350]. �

(h) Lebesgue n-measure, λn, is a massive Radon measure on Rn.
Proof This follows from Theorems IX.5.1 and IX.5.4. �

(i) The s-dimensional Hausdorff measureHs is a Radon measure on Rn only when
s ≥ n. It is massive if and only if s = n.
Proof Every Borel set is Hs-measurable, by Example IX.4.4(c) and Theorem IX.4.3.
The regularity of Hs for s > 0 follows from Corollary IX.5.22 and Theorem IX.5.4.

Suppose O is open in Rn and nonempty. Because O has Hausdorff dimension n
(Exercise IX.3.6), it follows that

Hs(O) =

{
0 if s > n ,

∞ if s < n .

Therefore Hs cannot be a Radon measure on Rn if s < n. If s > n, on the other hand,
Hs is a nonmassive Radon measure.

Lemma IX.5.21 shows that Hn is locally finite and therefore a Radon measure on
Rn. Finally, Corollary IX.5.22 implies Hn(O) > 0, and we are done. �

(j) Suppose F : R → R is measure generating, and denote by μF the Lebesgue–
Stieltjes measure on R induced by F . Then μF is a Radon measure on R, and is
massive if only if F is strictly increasing.
Proof This follows from Example IX.4.4(b), Theorem IX.4.3, Exercise IX.5.19, and
Proposition IX.3.5. �
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1.17 Theorem Suppose μ is a complete Radon measure on X . Then C(X, E) is
a vector subspace of L0(X, μ, E).

Proof Take f ∈ C(X, E) and let (Xj) be a sequence of compact sets in X such
that X =

⋃
j Xj. According to Exercise IX.1.6(b), f is Borel measurable and

therefore A-measurable, where A is the domain of μ. By Remark 1.16(e), f(Xj),
being a compact subset of E, is separable. Therefore f(X) =

⋃
j f(Xj) is also

separable, and the claim follows from Theorem 1.4. �

1.18 Theorem (Luzin) Suppose X is a σ-compact metric space, μ is a complete
Radon measure on X , and f ∈ L0(X, μ, E). Then for every μ-measurable set A
of finite measure and for every ε > 0, there is a compact subset K of X such that
μ(A\K) < ε and f |K ∈ C(K, E).

Proof (i) Because X is σ-compact, we can find a compact set X̃ such that
μ
(
A

∖
X̃

)
< ε/2. We set f̃ := f

∣∣ X̃ and Ã := A ∩ X̃. Then μ
(
X̃

)
< ∞.

(ii) By Theorem 1.4, there is a μ-null set N of X̃ such that f̃(N c) is separable.
Therefore by Proposition IX.1.8, there is a countable basis { Ṽj ; j ∈ N } of f̃(N c),
and because of Proposition III.2.26, there exist open subsets Vj in E such that
Ṽj = Vj ∩ f̃(N c).

(iii) According to Theorem 1.4, f̃−1(Vj) is μ-measurable for every j ∈ N.
Hence it follows from the regularity of μ and the finiteness of μ(X̃) that for every
j ∈ N there exist a compact set Kj and an open set Uj with Kj ⊂ f̃−1(Vj) ⊂ Uj

and μ(Uj \Kj) < ε2−(j+3). Putting U :=
⋃

j(Uj\Kj), we have μ(U) < ε/4.

(iv) We set Y := (U ∪N)c and show that f̃
∣∣ Y is continuous. To verify this,

let V be open in E. Then there is a subset {Vjk
; k ∈ N } of {Vj ; j ∈ N } such

that V ∩ f̃(N c) =
⋃

k Vjk
∩ f̃(N c). This implies

f̃−1(V ) ∩N c =
⋃

k
f̃−1(Vjk

) ∩N c .

Obviously f̃−1(V	) ∩ Y ⊂ U	 ∩ Y for � ∈ N. Because

Y = U c ∩N c =
⋂

j
(U c

j ∪Kj) ∩N c ⊂
⋂

j

(
U c

j ∪ f̃−1(Vj)
)
⊂ U c

	 ∪ f̃−1(V	) ,

it follows that f̃−1(V	) ∩ Y = U	 ∩ Y , and we find(
f̃

∣∣ Y
)−1(V ) = f̃−1(V ) ∩N c ∩ U c =

⋃
k
Ujk

∩ Y .

Because
⋃

k Ujk
is open in X and therefore

⋃
k Ujk

∩Y is open in Y , the continuity
of f̃

∣∣ Y follows.
(v) We apply once again the regularity of μ to deduce the existence of a

compact subset K of the μ-measurable set Y such that μ(Y \K) < ε/4. Then
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f̃
∣∣ K belongs to C(K, E), and

μ
(
Ã

∖
K

)
≤ μ(Y \K) + μ(Y c\K) ≤ μ(Y \K) + μ(U) < ε/2 .

Because μ(A\K) ≤ μ
(
Ã\K

)
+ μ

(
A\X̃

)
< ε, we are done. �

Exercises

1 Suppose H is a separable Hilbert space. We say f ∈ HX is weakly μ-measurable if
(f | e) belongs to L0(X, μ, K) for every e ∈ H . Prove:

(a) If f is weakly μ-measurable, |f | is μ-measurable.

(b) f is μ-measurable if and only if f is weakly μ-measurable.

(Hints: (a) Suppose {ej ; j ∈ N } is a dense subset of BH . Then[
|f | ≤ α

]
=

⋂
j

[ ∣∣(f | ej)
∣∣ ≤ α

]
for α ∈ R .

(b) “⇐=” Using (a), we can construct as in the proof of Theorem 1.4 a sequence of a
μ-simple functions that converge μ-a.e. to f .)

2 Denote by S(R, E) the vector space of all E-valued admissible functions of R (see
Section VI.8). Prove or disprove:

(a) S(R, E) ⊂ L0(R, β1, E);

(b) S(R, E) ⊃ L0(R, β1, E).

3 Prove the statement of Remark 1.2(e).

4 Show that every monotone R-valued function is Borel measurable.

5 Let f, g ∈ L0(X, μ, R). Show that the sets [f < g], [f ≤ g], [f = g], and [f 	= g]
belong to A.

6 Suppose (fj) is a sequence in L0(X, μ, R). Show that

K :=
{

x ∈ X ; limjfj(x) exists in R
}

is μ-measurable.

7 Suppose f : X → R. Prove or disprove:

(a) f ∈ L0(X, μ, R)⇐⇒ f+, f− ∈ L0(X, μ, R+).

(b) f ∈ L0(X, μ, R)⇐⇒ |f | ∈ L0(X, μ, R+).

8 A nonempty subset B of RX is called a Baire function space if these statements hold:

(i) α ∈ R and f ∈ B imply αf ∈ B.

(ii) If f + g exists in RX for f, g ∈ B, then f + g ∈ B.

(iii) supj fj belongs to B for every sequence (fj) in B.

Prove:

(a) RX and L0(X, μ, R) are Baire function spaces.
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(b) If {Bα ⊂ RX ; α ∈ A } is a family of Baire function spaces, then
⋂

α∈A Bα is also a
Baire function space.

9 For C ⊂ RX , we call

σ(C) :=
⋂
{B ⊂ RX ; B ⊃ C, B is a Baire function space }

the Baire function space generated by C. By Exercise 8(b), σ(C) is a well defined Baire
function space. Show that

σ
(
S(X,μ, R)

)
= L0(X, μ, R) .

10 Prove that σ
(
C(Rn, R)

)
= L0(Rn, βn, R).

11 Show that the supremum of an uncountable family of measurable real-valued func-
tions is generally not measurable.

12 A sequence (fj) in EX is said to be μ-almost uniformly convergent if for every δ > 0
there is an A ∈ A with μ(Ac) < δ such that the sequence (fj |A) converges uniformly.

(a) Suppose (fj) is a μ-almost uniformly convergent sequence in L0(X, μ, E). Show there
is an f ∈ L0(X, μ, E) such that fj → f μ-a.e.

(b) Define fj(x) := xj for j ∈ N and x ∈ [0, 1]. Verify that (fj) converges almost
uniformly (with respect to Lebesgue measure), although there is no set N ⊂ [0, 1] of
measure zero such that (fj |Nc) converges uniformly.

13 Suppose (X,A, μ) is a finite measure space and fj , f ∈ L0(X, μ, E) with fj → f
μ-a.e. Prove:

(a) For ε > 0 and δ > 0, there exist k ∈ N and A ∈ A such that μ(Ac) < δ and
|fj(x)− f(x)| < ε for x ∈ A and j ≥ k.

(b) The sequence (fj) converges μ-almost uniformly to f (Egorov’s theorem).

(c) Part (b) is generally false if μ(X) =∞.

(Hints: (a) Consider K := [fj → f ] and Kk :=
[
|fj − f | < ε ; j ≥ k

]
, and apply the

continuity of measures from above. (b) To obtain the Aj , choose ε := 1/j and δ := δ 2−j

in (a), and let A :=
⋃

j Aj . (c) Consider the measure space (X,A, μ) =
(
R, λ1,L(1)

)
and set fj := χ[j,j+1].)

14 Suppose (X,A, μ) is a measure space and fj , f ∈ L0(X, μ, E). We say (fj) converges
in measure to f if limj→∞ μ

(
[ |fj − f | ≥ ε]

)
= 0 for every ε > 0.

Prove:

(a) fj → f μ-almost uniformly =⇒ fj → f in measure.

(b) If (fj) converges in measure to f and to g, then f = g μ-a.e.

(c) There is a sequence of Lebesgue measurable functions on [0, 1] that converges in
measure, but does not converge pointwise anywhere.

(d) There is a sequence of Lebesgue measurable functions on R that converges pointwise
but not in measure.

(Hints: (c) Set fj := χIj , where the intervals Ij ⊂ [0, 1] are chosen so that λ1(Ij)→ 0 and
so that the sequence

(
fj(x)

)
has two cluster points for every x ∈ [0, 1]. (d) Consider

fj := χ[j,j+1].)
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15 Suppose (fj) is a sequence in L0(X, μ, E) converging in measure to f ∈ L0(X, μ, E).
Show that (fj) has a subsequence that converges μ-a.e. to f .
(Hint: There is an increasing sequence (jk)k∈N such that

μ
(
[ |fm − fn| ≥ 2−k]

)
≤ 2−k for m, n ≥ jk .

With the help of B� :=
⋃∞

k=�[
∣∣fnk+1 − fnk

∣∣ ≥ 2−k], conclude that (fjk )k∈N converges
μ-almost uniformly. Also note Exercises 12, 14(a) and 14(b).)

16 For x = (xj) ∈ KN and p ∈ [1,∞], define11

‖x‖p :=

{ (∑∞
j=0|xj |p

)1/p
if p ∈ [1,∞) ,

supj |xj | if p =∞ ,

and
�p := �p(K) :=

(
{ x ∈ KN ; ‖x‖p <∞}, ‖·‖p

)
.

Prove:

(a) If p ∈ [1,∞), then �p is a separable normed vector space.

(b) �∞ is not separable.

17 Suppose x ∈ R. If x ∈ R, we say U ⊂ R is a neighborhood in R of x if U contains
a neighborhood in R of x. For x ∈ R\R, neighborhoods were defined in Section II.5 as
those sets that contain a semi-infinite interval of the appropriate kind. Suppose O ⊂ R.
We say O is open in R if every x ∈ O has a neighborhood U in R such that U ⊂ O. Now
define T := {O ⊂ R ; O is open in R }. Prove:

(a) O is open in R if and only if O∩R is open in R and, in the case ∞ ∈ O [or −∞ ∈ O],
there is an a ∈ R such that (a,∞] ⊂ O [or [−∞, a) ⊂ O].

(b) (R, T ) is a compact topological space.

(c) B(R) =
{

B ∪ F ; B ∈ B1, F ⊂ {−∞,∞}
}
.

(d) B(R) |R = B1.

(e) An element of RX belongs to L0(X, μ, R) if and only if it is A-B(R)-measurable.

18 Check that, if S is a separable subset of E, the closure of its span is a separable
Banach space.

19 For f ∈ KX , set

(sign f)(x) :=

{
f(x)/|f(x)| if f(x) 	= 0 ,

0 if f(x) = 0 .

Demonstrate that f ∈ L0(X, μ, K) implies sign f ∈ L0(X, μ, K).

11See also Proposition IV.2.17.



2 Integrable functions

In this section, we define the general Bochner–Lebesgue integral and describe its
basic properties. We also prove that the vector space of integrable functions is
complete with respect to the seminorm induced by the integral.

As in the previous section, suppose
• (X,A, μ) is a complete σ-finite measure space;

E = (E, | · |) is a Banach space.

The integral of a simple function

In Remark 1.2(c), we learned that every simple function has a unique normal form.
This form will prove to be useful in the sequel, and we work with it preferentially.

Convention We will always represent μ-simple functions by their normal
forms, unless we say otherwise. Further, we set1

∞ · 0E := −∞ · 0E := 0E , (2.1)

where 0E is the zero vector of E.

For ϕ ∈∑m
j=0 ejχAj ∈ S(X, μ, E), we define the integral of ϕ over X with respect

to the measure μ as the sum∫
X

ϕdμ :=
∫

ϕdμ :=
m∑

j=0

ejμ(Aj) .

If A is a μ-measurable set, we define the integral of ϕ over A with respect to the
measure μ as ∫

A

ϕdμ :=
∫

X

χAϕdμ .

1Convention (2.1) is common in the theory of integration and makes it possible, for example, to
integrate simple functions over their entire domains of definition. It is not to be understood in the
case E = R as another calculation rule in R, but rather in the sense of “external” multiplication
of ∞,−∞ ∈ R by the zero vector of R.
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2.1 Remarks (a) For ϕ ∈ S(X, μ, E) and A ∈ A, the integral
∫

A
ϕdμ is well

defined.
Proof This follows from Remarks 1.2(c) and (d). �

(b) Let ϕ =
∑n

k=0 fkχBk
, where f0, . . . , fn ∈ E are nonzero and B0, . . . , Bn ∈ A

are pairwise disjoint, be a μ-simple function not necessarily in normal form. Then∫
X

ϕdμ =
n∑

k=0

fkμ(Bk) .

Proof Let
∑m

j=0 ejχAj be the normal form of ϕ. Set

Am+1 :=
m⋂

j=0

Ac
j , Bn+1 :=

n⋂
k=0

Bc
k , em+1 := 0 , fn+1 := 0 . (2.2)

Then X =
⋃m+1

j=0 Aj =
⋃n+1

k=0 Bk, so

Aj =

n+1⋃
k=0

(Aj∩Bk) and Bk =

m+1⋃
j=0

(Aj∩Bk) for j = 0, . . . , m+1 and k = 0, . . . , n+1 .

Because the sets Aj ∩ Bk are pairwise disjoint, we have

μ(Aj) =
n+1∑
k=0

μ(Aj ∩Bk) and μ(Bk) =
m+1∑
j=0

μ(Aj ∩Bk) .

If Aj ∩Bk 	= ∅, then ej = fk, and we find∫
X

ϕ dμ =
m∑

j=0

ejμ(Aj) =

m+1∑
j=0

ej

n+1∑
k=0

μ(Aj ∩Bk) =

n+1∑
k=0

fk

m+1∑
j=0

μ(Aj ∩Bk)

=
n∑

k=0

fkμ(Bk) . �

(c) The integral
∫

X
· dμ : S(X, μ, E) → E is linear.

Proof Suppose ϕ =
∑m

j=0 ejχAj and ψ =
∑n

k=0 fkχBk are μ-simple functions and

α ∈ K. One checks easily that
∫

X
αϕ dμ = α

∫
X

ϕ dμ. With the relations (2.2), an
argument like that in (b) implies

χAj =
n+1∑
k=0

χAj∩Bk and χBk =
m+1∑
j=0

χAj∩Bk ,

and thus2

ϕ + ψ =

m+1∑
j=0

n+1∑
k=0

(ej + fk)χAj∩Bk . (2.3)

The claim now follows from (b). �

2In general, (2.3) does not give the normal form of ϕ + ψ.
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(d) For A, B ∈ A and A ∩B = ∅, we have∫
A∪B

ϕdμ =
∫

A

ϕdμ +
∫

B

ϕdμ for ϕ ∈ S(X, μ, E) .

Proof This follows from (c) and the equality χA∪Bϕ = χAϕ + χBϕ. �

(e)For ϕ ∈ S(X, μ, E) and A ∈ A, we have∣∣∣∫
A

ϕdμ
∣∣∣ ≤ ∫

A

|ϕ| dμ ≤ ‖ϕ‖∞ μ(A) .

Proof This follows from Remark 1.2(d) and the triangle inequality. �

(f) If ϕ, ψ ∈ S(X, μ, R) satisfy ϕ ≤ ψ, then
∫

A ϕdμ ≤
∫

A ψ dμ.

Proof Clearly
∫

A
η dμ ≥ 0 for η ∈ S(X, μ, R+). The claim now follows from (c). �

The L1-seminorm

Suppose V is a vector space over K. A map p : V → R is called a seminorm on V
if it satisfies these properties:

(i) p(v) ≥ 0 for v ∈ V ;
(ii) p(λv) = |λ| p(v) for v ∈ V and λ ∈ K;
(iii) p(v + w) ≤ p(v) + p(w) for v, w ∈ V .
For v ∈ V and r > 0, we denote by

Bp(v, r) :=
{

w ∈ V ; p(v − w) < r
}

the open ball in (V, p) around v with radius r. A subset O of V is said to be
p-open if, for every v ∈ O, there is an r > 0 such that Bp(v, r) ⊂ O.

2.2 Remarks Suppose V is a vector space and p is a seminorm on V .

(a) The seminorm p is a norm if and only if p−1(0) = {0}.
(b) Suppose K ⊂ Rn is compact, k ∈ N ∪ {∞}, and

pK(f) := max
x∈K

|f(x)| for f ∈ Ck(Rn, E) .

Then pK is a seminorm on Ck(Rn, E), but not a norm.
Proof One verifies easily that pK is a seminorm on Ck(Rn, E). Let U be an open
neighborhood of K. Then Exercise VII.6.7 shows that there is an f ∈ C∞(Rn, R) such
that f(x) = 1 for x ∈ K and f(x) = 0 for x ∈ Uc. For e ∈ E\{0}, we set g := (χRn−f)e.
Then g belongs to C∞(Rn, E), and we have pK(g) = 0, but g 	= 0. Therefore pK is not
a norm on Ck(Rn, E). �
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(c) Let

‖ϕ‖1 :=
∫

X

|ϕ| dμ for ϕ ∈ S(X, μ, E) .

Then ‖·‖1 is a seminorm on S(X, μ, E). If there is a nonempty μ-null set in A,
then ‖·‖1 is not a norm on S(X, μ, E).
Proof It is clear that ‖·‖1 is a seminorm on S(X,μ, E). Letting N denote a nonempty
μ-null set, we have ‖χN‖1 = 0, but χN 	= 0. �

(d) Tp := {O ⊂ V ; O is p-open } is a topology on V , the topology generated
by p.
Proof One easily checks that the argument used in the proof of Proposition III.2.4
transfers to this situation. �

(e) The topology Tp is not necessarily Hausdorff. If it isn’t, there is no metric on
V that generates Tp.
Proof We use the notation of (b) and set K := {0}. Further let f ∈ Ck(Rn, E) with
f(0) = 0 and f 	= 0. Then BpK (f, ε) = BpK (0, ε) for every ε > 0. Therefore TpK is not
Hausdorff. The second statement follows from Proposition III.2.17. �

(f) A linear map A : V → E is said to be (p)-bounded if there is an M ≥ 0 such
that |Av| ≤ Mp(v) for v ∈ V . For a linear map A : V → E, these statements are
equivalent:

(i) A is continuous.

(ii) A is continuous at 0.
(iii) A is bounded.
Proof This follows from the proof of Theorem VI.2.5, which used only the properties
of a seminorm. �

(g)
∫
· dμ : S(X, μ, E) → E is continuous.

Proof This follows from (c), (f), and Remark 2.1(c). �

Suppose p is a seminorm on V . We know from Remark 2.2(e) that the
topology of (V, p) may not be generated by a metric on V , in which case the metric
notions of Cauchy sequence and completeness are not available. Accordingly, we
need new definitions: A sequence (vj) ∈ V N is called a Cauchy sequence in (V, p)
if for every ε > 0 there is an N ∈ N such that p(vj − vk) < ε for j, k ≥ N . We call
(V, p) complete if every Cauchy sequence in (V, p) converges.

2.3 Remarks (a) If (V, p) is a normed vector space, these notions agree with those
of Section II.6.

(b) Suppose (vj) ∈ V N and v ∈ V . Then vj → v if and only if p(v − vj) → 0.
However, the limit of a convergent sequence is generally not uniquely determined:
if p is not a norm, vj → v implies vj → w for every w ∈ V such that p(v−w) = 0.
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(c) The set of all Cauchy sequences in (V, p) forms a vector subspace of V N. �

In the following, we always provide the space S(X, μ, E) with the topology
induced by ‖·‖1. Then we may also call a Cauchy sequence in S(X, μ, E) an
L1-Cauchy sequence.

A function f ∈ EX is called μ-integrable if f is a μ-a.e. limit of some L1-
Cauchy sequence (ϕj) in S(X, μ, E). We denote the set of E-valued, μ-integrable
functions of X by L1(X, μ, E).

2.4 Proposition In the sense of vector subspaces, we have the inclusions

S(X, μ, E) ⊂ L1(X, μ, E) ⊂ L0(X, μ, E) .

Proof Clearly every μ-simple function is μ-integrable. That every μ-integrable
function is μ-measurable follows from Remark 1.2(a) and Theorem 1.14. There
remains to show that L1(X, μ, E) is a vector subspace of L0(X, μ, E). Take
f, g ∈ L1(X, μ, E) and α ∈ K. There are L1-Cauchy sequences (ϕj) and (ψj)
in S(X, μ, E) such that ϕj → f and ψj → g μ-a.e. as j → ∞. From the triangle
inequality, it follows that (αϕj + ψj)j∈N is an L1-Cauchy sequence in S(X, μ, E)
that converges μ-a.e. to αf + g. Therefore αf + g is μ-integrable, as needed. �

The Bochner–Lebesgue integral

Let f ∈ L1(X, μ, E). Then there is an L1-Cauchy sequence (ϕj) in S(X, μ, E)
such that ϕj → f μ-a.e. We will see that the sequence (

∫
X ϕj dμ)j∈N converges

in E. It is natural, then, to define the integral of f with respect to μ as the limit of
this sequence of integrals. Of course we must check that the limit is independent
of the approximating sequence of simple functions; that is, we must show that
limj

∫
ϕj dμ = limj

∫
ψj dμ if (ψj) is another Cauchy sequence in S(X, μ, E) such

that ψj → f μ-a.e.

2.5 Lemma Suppose (ϕj) is a Cauchy sequence in S(X, μ, E). Then there is a
subsequence (ϕjk

)k∈N of (ϕj) and an f ∈ L1(X, μ, E) such that

(i) ϕjk
→ f μ-a.e. as k →∞;

(ii) for every ε > 0, there exists Aε ∈ A such that μ(Aε) < ε and (ϕjk
)k∈N

converges uniformly to f on Ac
ε.

Proof (α) By assumption, there exists for any k ∈ N some jk ∈ N such that the
bound ‖ϕ	 − ϕm‖1 < 2−2k holds for �, m ≥ jk. Without loss of generality, we can
choose the sequence (jk)k∈N to be increasing. With ψk := ϕjk

, we then get

‖ψ	 − ψm‖1 < 2−2	 for m ≥ � ≥ 0 .
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(β) Set B	 :=
[
|ψ	+1 − ψ	| ≥ 2−	

]
for � ∈ N. Then B	 belongs to A, and we

have μ(B	) < ∞ for � ∈ N, because every ψm is μ-simple. Therefore χB�
is also

μ-simple, and Remark 2.1(f) implies

2−	μ(B	) = 2−	

∫
X

χB�
dμ ≤

∫
X

|ψ	+1 − ψ	| dμ = ‖ψ	+1 − ψ	‖1 < 2−2	 .

This leads to μ(B	) < 2−	 for � ∈ N.
Letting An :=

⋃∞
k=0 Bn+k, we have μ(An) ≤ 2−n+1 for n ∈ N, and we see

that A :=
⋂∞

n=0 An is a μ-null set.
(γ) If x lies in Ac

n =
⋂∞

k=0 Bc
n+k, then

|ψ	+1(x)− ψ	(x)| < 2−	 for � ≥ n .

By the Weierstrass criterion (Theorem V.1.6), the series

ψ0 +
∑

(ψ	+1 − ψ	)

on Ac
n converges uniformly in E. Now we set

f(x) :=
{

limk ψk(x) if x ∈ Ac ,

0 if x ∈ A .

Then ϕjk
→ f μ-a.e. as k → ∞. Further, there is for every ε > 0 an n ∈ N

such that μ(An) ≤ 2−n+1 < ε, and (ϕjk
)k∈N converges uniformly on Ac

n to f as
k →∞. �

2.6 Lemma Suppose (ϕj) and (ψj) are L1-Cauchy sequences in S(X, μ, E) that
converge μ-a.e. to the same function. Then lim ‖ϕj − ψj‖1 = 0.

Proof (i) Take ε > 0 and set ηj := ϕj − ψj for j ∈ N. By Remark 2.3(c), (ηj)
is an L1-Cauchy sequence in S(X, μ, E). Thus there is a natural number N such
that ‖ηj − ηk‖ < ε/8 for j, k ≥ N .

(ii) Because ηN is μ-simple, A := [ηN 
= 0] belongs to A and μ(A) < ∞.
Moreover (ηj) converges μ-a.e. to zero. Then Lemma 2.5 says there exists B ∈ A
such that μ(B) < ε/8(1 + ‖ηN‖∞), and there is a subsequence (ηjk

)k∈N of (ηj)
that converges uniformly to 0 on Bc. Hence there exists K ≥ N such that

|ηjK (x)| ≤ ε
/
8
(
1 + μ(A)

)
for x ∈ A\B .

This implies
∫

A\B
|ηjK | dμ ≤ ε/8.

(iii) The properties of B and K imply∫
B

|ηjK | dμ ≤
∫

B

|ηjK − ηN | dμ +
∫

B

|ηN | dμ

≤ ‖ηjK − ηN‖1 + ‖ηN‖∞ μ(B) < ε/4 .
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From the definition of A, we have∫
Ac

|ηjK | dμ =
∫

Ac

|ηjK − ηN | dμ ≤ ‖ηjK − ηN‖1 < ε/8 .

Altogether we obtain using Remark 2.1(d)

‖ηjK‖1 ≤
∫

Ac∪(A\B)∪B

|ηjK | dμ < ε/2 ,

and therefore ‖ηj‖1 ≤ ‖ηjK‖1 + ‖ηj − ηjK‖1 < ε for j ≥ N . Because ε > 0 was
arbitrary, all is proved. �

2.7 Corollary Let (ϕj) and (ψj) be Cauchy sequences in S(X, μ, E) converging
μ-a.e. to the same function. The sequences

(∫
X ϕj dμ

)
and

(∫
X ψj dμ

)
converge

in E, and

lim
j

∫
X

ϕj dμ = lim
j

∫
X

ψj dμ .

Proof Because∣∣∣∫
X

ϕj dμ−
∫

X

ϕk dμ
∣∣∣ ≤ ‖ϕj − ϕk‖1 for j, k ∈ N ,

(
∫

ϕj dμ)j∈N is a Cauchy sequence in E; hence
∫

ϕj dμ → e as j → ∞, for some
e ∈ E. Likewise there is e′ ∈ E such that

∫
ψj dμ → e′ for j → ∞. Applying

Lemma 2.6 and the continuity of the norm of E, we see that

|e− e′| = lim
j

∣∣∣∫
X

ϕj dμ−
∫

X

ψj dμ
∣∣∣ ≤ lim

j

∫
X

|ϕj − ψj | dμ = lim
j
‖ϕj − ψj‖1 = 0 ,

and we are done. �

After these preparations, we define the integral of integrable functions in a
natural way, extending the integral of simple functions. Suppose f ∈ L1(X, μ, E).
Then there is an L1-Cauchy sequence (ϕj) in S(X, μ, E) such that ϕj → f μ-a.e.
According to Corollary 2.7, the quantity∫

X

f dμ := lim
j

∫
X

ϕj dμ

exists in E, and is independent of the sequence (ϕj). This is called the Bochner–
Lebesgue integral of f over X with respect to the measure μ. Other notations
are often used besides

∫
X f dμ, namely,∫

f dμ ,

∫
X

f(x) dμ(x) ,

∫
X

f(x)μ(dx) .

Clearly, in the case of simple functions, the Bochner–Lebesgue integral agrees with
the integral defined at the start of this section (page 80).
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The completeness of L1

With the help of the integral, we now define a seminorm on L1(X, μ, E) and show
that L1(X, μ, E) is complete with respect to this seminorm.

2.8 Lemma If f ∈ L1(X, μ, E), then |f | belongs to L1(X, μ, R). If (ϕj) is
an L1-Cauchy sequence in S(X, μ, E) such that ϕj → f μ-a.e., then

∫
|f | dμ =

limj

∫
|ϕj | dμ.

Proof The reverse triangle inequality (which clearly holds for seminorms too) gives∥∥ |ϕj | − |ϕk|
∥∥

1
≤ ‖ϕj − ϕk‖1 and

∣∣ |ϕj | − |ϕk|
∣∣ ≤ |ϕj − ϕk| for j, k ∈ N .

Thus (|ϕj |)j∈N is an L1-Cauchy sequence in S(X, μ, R) that converges μ-a.e. to
|f |. Therefore |f | belongs to L1(X, μ, R), and

∫
|f | dμ = limj

∫
|ϕj | dμ. �

2.9 Corollary For f ∈ L1(X, μ, E), let ‖f‖1 :=
∫

X
|f | dμ. Then ‖·‖1 is a seminorm

on L1(X, μ, E), called the L1-seminorm.

Proof Take f, g ∈ L1(X, μ, E) and let (ϕj) and (ψj) be L1-Cauchy sequences in
S(X, μ, E) such that ϕj → f and ψj → g μ-a.e. From Lemma 2.8 and Remark
2.2(c) we have

‖f‖1 =
∫

X

|f | dμ = lim
j

∫
X

|ϕj | dμ = lim
j
‖ϕj‖1 ≥ 0 ,

as well as

‖f + g‖1 = lim
j
‖ϕj + ψj‖1 ≤ lim

j

(
‖ϕj‖1 + ‖ψj‖1

)
= ‖f‖1 + ‖g‖1 ,

and
‖αf‖1 = lim

j
‖αϕj‖ = |α| lim

j
‖ϕj‖ = |α| ‖f‖1

for any α ∈ K. �

We will always give L1(X, μ, E) the topology induced by the seminorm ‖·‖1.

2.10 Theorem

(i) S(X, μ, E) is dense in L1(X, μ, E).

(ii) The space L1(X, μ, E) is complete.

Proof (i) Suppose f ∈ L1(X, μ, E), and let (ϕj) denote an L1-Cauchy sequence
of simple functions such that ϕj → f μ-a.e. as j →∞. Also suppose k ∈ N. Then
(ϕj−ϕk)j∈N is an L1-Cauchy sequence in S(X, μ, E) such that (ϕj−ϕk)→ (f−ϕk)
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μ-a.e. for j →∞. Because of Lemma 2.8,

‖f − ϕk‖1 = lim
j
‖ϕj − ϕk‖1 for k ∈ N .

Suppose ε > 0. Then there is an N ∈ N such that ‖ϕj − ϕk‖1 < ε for j, k ≥ N ;
taking the limit j → ∞ we get ‖f − ϕN‖1 ≤ ε. This shows that S(X, μ, E) is
dense in L1(X, μ, E).

(ii) Let (fj) be a Cauchy sequence in L1(X, μ, E) and take ε > 0. Choose
M ∈ N such that ‖fj − fk‖1 < ε/2 for j, k ≥ M . We know from (i) that for any
j ∈ N we can find ϕj ∈ S(X, μ, E) such that ‖fj − ϕj‖1 < 2−j. Then

‖ϕj − ϕk‖1 ≤ ‖ϕj − fj‖1 + ‖fj − fk‖1 + ‖fk − ϕk‖1 < 2−j + 2−k + ε/2

for j, k ≥ M . This shows that (ϕj) is an L1-Cauchy sequence in S(X, μ, E).
By Lemma 2.5, therefore, there is a subsequence (ϕjk

)k∈N of (ϕj) and an f in
L1(X, μ, E) such that ϕjk

→ f μ-a.e. as k →∞. The proof of (i) shows that there
exists an N ≥ M such that ‖f − ϕjN ‖1 < ε/4, and we get

‖f − fj‖1 ≤ ‖f − ϕjN ‖1 + ‖ϕjN − fjN ‖1 + ‖fjN − fj‖1 < ε for j ≥ N ,

that is, (fj) converges in L1(X, μ, E) to f . �

Elementary properties of integrals

We have seen that the integral on the space of simple functions is continuous,
linear, and, for E = R, also monotone— see Remarks 2.2(g), 2.1(c) and 2.1(f).
We now show that these properties survive the extension of the integral from the
space of simple functions to that of integrable functions.

2.11 Theorem

(i)
∫

X
· dμ : L1(X, μ, E)→ E is linear and continuous, and∣∣∣∫

X

f dμ
∣∣∣ ≤ ∫

X

|f | dμ = ‖f‖1 .

(ii)
∫

X
· dμ : L1(X, μ, R)→ R is a continuous, positive linear functional.

(iii) Suppose F is a Banach space and T ∈ L(E, F ). Then

Tf ∈ L1(X, μ, F ) and T

∫
X

f dμ =
∫

X

Tf dμ

for f ∈ L1(X, μ, E).
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Proof (i) Proposition 2.4 showed that μ-integrable functions form a vector space.
Take f, g ∈ L1(X, μ, E) and α ∈ K. Then there are L1-Cauchy sequences (ϕj)
and (ψj) in S(X, μ, E) such that ϕj → f and ψj → g μ-a.e. By Remark 2.1(c),∫

X

(αϕj + ψj) dμ = α

∫
X

ϕj dμ +
∫

X

ψj dμ for j ∈ N .

The linearity of the integral on L1(X, μ, E) follows by taking the limit j →∞. By
Corollary 2.9, ‖·‖1 is a seminorm on L1(X, μ, E), and Remark 2.1(e) yields∣∣∣∫

X

ϕj dμ
∣∣∣ ≤ ∫

X

|ϕj | dμ = ‖ϕj‖1 for j ∈ N .

By Lemma 2.8, we can take the limit j →∞, and we find∣∣∣∫
X

f dμ
∣∣∣ ≤ ∫

X

|f | dμ = ‖f‖1 .

Continuity now follows from Remark 2.2(f).
The approach just used can be adapted without difficulty to the task of

proving (ii) and (iii). This is left to the reader as an exercise. �

2.12 Corollary

(i) A map f = (f1, . . . , fn) : X → Kn is μ-integrable if and only if its every
coordinate fj is. In that case,∫

X

f dμ =
(∫

X

f1 dμ, . . . ,

∫
X

fn dμ
)

.

(ii) Suppose g, h ∈ RX and define f := g + ih. Then f is in L1(X, μ, C) if and
only if g and h are in L1(X, μ, R). In that case,∫

X

f dμ =
∫

X

g dμ + i

∫
X

h dμ .

(iii) A function f ∈ RX is μ-integrable if and only if f+ and f− are. In that case,∫
X

f dμ =
∫

X

f+ dμ−
∫

X

f− dμ ,

∫
X

|f | dμ =
∫

X

f+ dμ +
∫

X

f− dμ .

Proof (i) “=⇒” Take f ∈ L1(X, μ, Kn). Since prj ∈ L(Kn, K) for j = 1, . . . , n, it
follows from Theorem 2.11(iii) that fj = prj ◦f belongs to L1(X, μ, K). Moreover∫

fj dμ = prj

∫
f dμ, so∫

X

f dμ =
(∫

X

f1 dμ, . . . ,

∫
X

fn dμ
)

.
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“⇐=” For j = 1, . . . , n, we consider the map

bj : K → Kn , y �→ (0, . . . , 0, y, 0, . . . , 0) ,

where y is in the j-th position on the right. Then

bj ∈ L(K, Kn) and f :=
n∑

j=1

bj ◦ fj .

The claim now follows from Theorem 2.11(i) and (iii).
(ii) This follows from (i) and the identification of C with R2.
(iii) For f ∈ RX , we have

f+ = (f + |f |)/2 , f− = (|f | − f)/2 , f = f+ − f− , |f | = f+ + f− .

Hence Theorem 2.11(i) and Lemma 2.8 imply the conclusion. �

2.13 Lemma For f ∈ L1(X, μ, E) and A ∈ A, we have χAf ∈ L1(X, μ, E).

Proof Suppose (ϕj) is an L1-Cauchy sequence in S(X, μ, E) that converges μ-
a.e. to f . Then χAϕj is μ-simple by Remark 1.2(d), and (χAϕj)j∈N obviously
converges μ-a.e. to χAf . By Remark 2.1(f), we have∫

X

|χAϕj − χAϕk| dμ =
∫

X

χA |ϕj − ϕk| dμ ≤
∫

X

|ϕj − ϕk| dμ for j, k ∈ N .

Therefore (χAϕj)j∈N is an L1-Cauchy sequence in S(X, μ, E). This shows that
χAf is μ-integrable. �

For f ∈ L1(X, μ, E) and A ∈ A, we define the μ-integral of f over A by∫
A

f dμ :=
∫

X

χAf dμ .

This is well defined by Lemma 2.13.

2.14 Remarks Suppose f ∈ L1(X, μ, E) and A ∈ A.

(a)
∫

A · dμ : L1(X, μ, E) → E is linear and continuous, and∣∣∣∫
A

f dμ
∣∣∣ ≤ ∫

A

|f | dμ = ‖χAf‖1 .

(b) Suppose B := A |A and ν := μ | B. Then
∫

A f dμ =
∫

A f |Adν.
Proof The proof is simple and is left to the reader (Exercise 1). �
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(c) If E = R and f ≥ 0, the map

A → [0,∞) , A �→
∫

A

f dμ

is a finite measure (see Exercise 11). �

2.15 Lemma Suppose f ∈ L1(X, μ, E) and g ∈ EX satisfy f = g μ-a.e. Then g
also belongs to L1(X, μ, E), and

∫
X

f dμ =
∫

X
g dμ.

Proof Suppose (ϕj) is an L1-Cauchy sequence in S(X, μ, E) such that ϕj → f
μ-a.e. Also let M and N be μ-null sets such that ϕj → f on M c and f = g on N c.
Then (ϕj) converges μ-a.e. to g, because ϕj(x) → g(x) holds for x ∈ (M ∪ N)c.
Therefore g belongs to L1(X, μ, E), and

∫
g dμ = limj

∫
ϕj dμ =

∫
f dμ. �

2.16 Corollary

(i) Suppose f ∈ EX vanishes μ-a.e. Then f is μ-integrable with
∫

X
f dμ = 0.

(ii) Suppose f, g ∈ L1(X, μ, R) satisfy f ≤ g μ-a.e. Then
∫

X
f dμ ≤

∫
X

g dμ.

Proof (i) This follows immediately from Lemma 2.15.
(ii) Theorem 2.11(ii) and Lemma 2.15 imply 0 ≤

∫
X

(g− f) dμ, and therefore∫
X f dμ ≤

∫
X g dμ. �

2.17 Proposition For f ∈ L1(X, μ, E) and α > 0, we have μ
(
[ |f | ≥ α]

)
<∞.

Proof Lemma 2.5 shows there is an L1-Cauchy sequence (ϕj) in S(X, μ, E) and
a μ-measurable set A such that μ(A) ≤ 1 and (ϕj) converges uniformly on Ac to
f . Because |f | is μ-measurable, B := Ac ∩ [ |f | ≥ α] belongs to A. Also there is
an N ∈ N such that |ϕN (x)− f(x)| ≤ α/2 for x ∈ Ac. Therefore

|ϕN (x)| ≥ |f(x)| − |ϕN (x) − f(x)| ≥ α/2 for x ∈ B .

In particular, B is contained in [ϕN 
= 0]. Thus μ(B) ≤ μ
(
[ϕN 
= 0]

)
< ∞, because

ϕN is μ-simple. Since

[ |f | ≥ α] = B ∪
(
A ∩ [ |f | ≥ α]

)
⊂ B ∪A ,

it follows that μ
(
[ |f | ≥ α]

)
≤ μ(B) + 1 < ∞. �

Convergence in L1

For every integrable function f , there is an L1-Cauchy sequence of simple functions
converging to it almost everywhere. We show next that every Cauchy sequence
in L1(X, μ, E) has in fact a subsequence that converges almost everywhere to the
sequence’s L1 limit.
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2.18 Theorem Let (fj) be a sequence in L1(X,μ,E) converging to f in L1(X,μ,E).

(i) There is a subsequence (fjk
)k∈N of (fj) with the following properties:

(α) fjk
→ f μ-a.e. as k →∞.

(β) For every ε > 0, there is an Aε ∈ A with μ(Aε) < ε such that (fjk
)k∈N

converges uniformly on Ac
ε to f .

(ii) The integral
∫

X fj dμ converges to
∫

X f dμ as j →∞.

Proof (i) It suffices to treat the case f = 0 because, if f 
= 0, we may consider
the sequence (fj − f)j∈N.

As in the proof of Lemma 2.5, there is a subsequence (gk) of (fj) such that
‖g	− gm‖1 < 2−2	 for m ≥ � ≥ 0. The limit m →∞ gives ‖g	‖1 ≤ 2−2	 for � ∈ N.
We set B	 := [ |g	| ≥ 2−	]. By Lemma 2.8, Proposition 2.4, and Proposition 1.9,
B	 belongs to A, and we find

2−	μ(B	) ≤
∫

B�

|g	| dμ ≤
∫

X

|g	| dμ = ‖g	‖1 ≤ 2−2	 for � ∈ N

(compare Theorem 2.11(ii)). Therefore μ(B	) ≤ 2−	 for � ∈ N. With An :=⋃∞
k=0 Bn+k, we have μ(An) ≤ 2−n+1, and we find that A :=

⋂∞
n=0 An is a μ-null

set. We verify easily that (gk) converges to 0 uniformly on Ac
n and pointwise on

Ac (in this connection see the proof of Lemma 2.5).

(ii) From Theorem 2.11(i) it follows that

∣∣∣∫
X

fj dμ−
∫

X

f dμ
∣∣∣ ≤ ∫

X

|fj − f | dμ = ‖fj − f‖1 for j ∈ N ,

so the limit of the left-hand side as j →∞ is 0. �

2.19 Corollary For f ∈ L1(X, μ, E),

‖f‖1 = 0 ⇐⇒ f = 0 μ-a.e.

Proof “=⇒” Because ‖f‖1 = 0, the sequence (fj) with fj := 0 for j ∈ N converges
in L1(X, μ, E) to f . By Theorem 2.18 there is thus a subsequence (fjk

)k∈N of (fj)
such that fjk

→ f μ-a.e. as k →∞. Therefore, f = 0 μ-a.e.

“⇐=” By assumption, |f | = 0 μ-a.e.; the claim follows from Corollary 2.16(i). �

We conclude this section by illustrating its concepts and results in an espe-
cially simple situation.
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2.20 Example (the space of summable series) Let X denote either N or Z,
and let H0 be its 0-dimensional Hausdorff measure, or counting measure. The
topology induced by R clearly transforms X into a σ-compact metric space in
which every one-point set is open. Hence the topology of X coincides with P(X):
every subset of X is open. Consequently, every map of X is continuous in E, that
is, C(X, E) = EX .

It follows further that B(X) = P(X), and that H0 is a massive Radon mea-
sure on X . Thus, by Theorem 1.17,

L0(X,H0, E) = C(X, E) = EX .

In addition, H0 has no nonempty null sets. Hence H0-a.e. convergence is the same
as pointwise convergence.

For ϕ ∈ EX , we define the support of ϕ as the set

supp(ϕ) :=
{

x ∈ X ; ϕ(x) 
= 0
}

,

and denote by Cc(X, E) the space of continuous E-valued functions on X with
compact support:

Cc(X, E) :=
{

ϕ ∈ C(X, E) ; supp(ϕ) is compact
}

.

Clearly ϕ ∈ C(X, E) belongs to Cc(X, E) if and only if supp(ϕ) is a finite set. Also,
Cc(X, E) is a vector subspace of C(X, E), and we verify easily that Cc(X, E) =
S(X,H0, E).

For ϕ ∈ Cc(X), it follows from Remark 2.1(b) that∫
X

ϕdH0 =
∑

x∈supp(ϕ)

ϕ(x) . (2.4)

We now set

�1(X, E) :=
{

f ∈ EX ;
∑

x∈X |f(x)| <∞
}

.

For f ∈ �1(X, E) and n ∈ N, let

ϕn(x) :=
{

f(x) if |x| ≤ n ,

0 if |x| > n .

Then ϕn belongs to Cc(X, E), and ϕn → f for n → ∞. For m > n, we get from
(2.4) that

‖ϕn − ϕm‖1 =
∑

n<|x|≤m

|f(x)| .

Therefore (ϕn) is an L1-Cauchy sequence in S(X,H0, E), which shows that f
belongs to L1(X,H0, E). Therefore �1(X, E) ⊂ L1(X,H0, E), and∫

X

f dH0 =
∑
x∈X

f(x) for f ∈ �1(X, E) . (2.5)
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Now let f ∈ L1(X,H0, E). Then there exists an L1-Cauchy sequence (ψj)
in S(X, μ, E) — and therefore in Cc(X, E)— that converges pointwise to f . By
Lemma 2.8, |f | belongs to L1(X,H0, R), and

‖f‖1 =
∫

X

|f | dH0 = lim
j→∞

∫
X

|ψj | dH0 = lim
j→∞

∑
x∈X

|ψj(x)| .

Hence there is a k ∈ N such that∣∣∣∫
X

|f | dH0 −
∑
x∈X

|ψj(x)|
∣∣∣ ≤ 1 for j ≥ k .

This implies ∑
x∈X

|ψj(x)| ≤ 1 +
∫

X

|f | dH0 =: K <∞ for j ≥ k .

Therefore for every m ∈ N we have∑
|x|≤m

|ψj(x)| ≤ K for j ≥ k ,

from which, because ψj → f as j →∞, we obtain∑
|x|≤m

|f(x)| ≤ K for m ∈ N .

Now Theorem II.7.7 implies that f belongs to �1(X, E) (and satisfies ‖f‖1 ≤ K).
Therefore we have shown that

L1(X,H0, E) = �1(X, E) ,

whereupon we obtain from (2.5) the relation3

‖f‖1 =
∑
x∈X

|f(x)| .

Finally, it follows from Theorem 2.10 and Remark 2.2(a) that

�1(X, E) :=
(
�1(X, E), ‖·‖1

)
is a Banach space, the space of summable (E-valued) series.

If E = K, it is customary to write �1(Z) and �1(N) for �1(X, K), and the
abbreviation �1 := �1(N) is also common.4 �

3Note Theorem II.8.9.
4Compare Exercise II.8.6.
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Exercises

1 Suppose A ∈ A, B := A |A, and ν := μ | B. Verify for f ∈ EX that

χAf ∈ L1(X, μ, E)⇐⇒ f |A ∈ L1(A, ν, E) .

For such an f , show that ∫
X

χAf dμ =

∫
A

f |A dν .

2 Suppose (fj) is a sequence in L1(X, μ, E) that converges uniformly to f ∈ EX . Also
suppose μ(X) < ∞. Show that f belongs to L1(X, μ, E), that fj → f in L1(X, μ, E),
and that limj

∫
X

fj dμ =
∫

X
f dμ.

3 Verify that, for f ∈ L1(X, μ, R+),∫
X

f dμ = sup
{ ∫

X

ϕ dμ ; ϕ ∈ S(X,μ, R+), ϕ ≤ f μ-a.e.
}

.

4 Suppose X is an arbitrary nonempty set, a ∈ X, and δa is the Dirac measure with
support in a. Show that L1(X, δa, R) = RX , and calculate

∫
f dδa for RX .

5 Let μF be the Lebesgue–Stieltjes measure of Exercise IX.4.10. Determine L1(R,μF ,K)
and calculate

∫
f dμF for f ∈ L1(R, μF , K).

6 Prove statements (ii) and (iii) of Theorem 2.11.

7 Suppose that f ∈ L0(X, μ, E) is bounded μ-a.e. and that μ(X) < ∞. Prove or
disprove that f is μ-integrable.

8 Suppose (fj) is an increasing sequence in L1(X, μ, R) such that fj ≥ 0, and suppose
it converges μ-a.e. to f ∈ L1(X, μ, R). Then

∫
X

fj dμ ↑
∫

X
f dμ. (This is known as the

monotone convergence theorem in L1).
(Hint: Show that (fj) is a Cauchy sequence in L1(X, μ, R), and identify its limit.)

9 Let (fj) be a sequence in L1(X, μ, R) with fj ≥ 0 μ-a.e. and
∑∞

j=0 fj ∈ L1(X, μ, R).

Show that
∑∞

j=0

∫
fj dμ =

∫ (∑∞
j=0 fj

)
dμ. (Hint: Exercise 8.)

10 Suppose that f ∈ L1(X, μ, R) satisfies f > 0 μ-a.e. Show that
∫

A
f dμ > 0 for every

A ∈ A such that μ(A) > 0.

11 Given f ∈ L1(X, μ, R) with f ≥ 0, define ϕf (A) :=
∫

A
f dμ for A ∈ A. Prove:

(a) (X, ϕf ,A) is a finite measure space.

(b) Nμ ⊂ Nϕf .

(c) Nμ = Nϕf if f > 0 μ-a.e.

In particular, show that (X,A, ϕf ) is a complete finite measure space if f > 0 μ-a.e.
(Hints: (a) Exercise 9. (b) Exercise 10.)

12 Suppose f ∈ L1(X, μ, R) satisfies f > 0 μ-a.e. and take g ∈ L0(X, μ, R). Show that
g is ϕf -integrable if and only if gf is μ-integrable. In this case, show that∫

X

g dϕf =

∫
X

fg dμ .
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13 For f ∈ L1(X, μ, R+), prove the Chebyshev inequality:

μ
(
[f ≥ α]

)
≤ 1

α

∫
X

f dμ for α > 0 .

14 Suppose μ(X) <∞ and let I be a perfect interval in R. Also suppose ϕ ∈ C1(I,R)
is convex. Prove Jensen’s inequality, which says that if f ∈ L1(X, μ, R) satisfies f(X) ⊂ I
and ϕ ◦ f ∈ L1(X, μ, R),

ϕ
(
−
∫

X

f dμ
)
≤ −

∫
X

ϕ ◦ f dμ , where −
∫

X

f dμ :=
1

μ(X)

∫
X

f dμ .

(Hints: Show that α := −∫ f dμ lies in I , so the bound ϕ(y) ≥ ϕ(α)+ϕ′(α)(y−α) applies).

15 Suppose f ∈ L1(X, μ, E). Show that for every ε > 0 there is a δ > 0 such that∣∣∫
A

f dμ
∣∣ < ε for all A ∈ A with μ(A) < δ. (Hint: Consider Theorem 2.10.)



3 Convergence theorems

Lebesgue integration theory stands out in contrast to the Riemann theory of Chap-
ter VI in that it contains very general and versatile criteria for the commutability
of limit taking and integration. Thus the Bochner–Lebesgue integral is better
suited to the needs of analysis than the (simpler) Riemann integral.

As usual, we suppose in the entire section that
• (X,A, μ) is a complete σ-finite measure space;

E = (E, | · |) is a Banach space.

Integration of nonnegative R-valued functions

In many applications of integration in mathematics, the natural sciences and other
fields, real-valued functions play a prominent role. As a rule, one is interested in
such cases in integrable functions, which is to say in finite integrals. However,
we have already mentioned that the theory gains substantially in simplicity and
elegance if it is made to encompass integrals over R-valued functions, ruling out in-
finite values neither for functions nor for integrals. As examples of results that gain
from such an inclusive treatment we mention the monotone convergence theorem
(Exercise 2.8 and Theorem 3.4) and the Fubini–Tonelli theorem on interchange-
ability of integrals (Theorem 6.11).

Because of the importance of the real-valued case, and because it offers useful
additional results that rely on the total ordering of R and R, we will now develop, to
complement the Bochner–Lebesgue integral, an integration theory for R-valued —
in particular, real-valued—functions.1

According to Theorem 1.12, there is for every f ∈ L0(X, μ, R+) an increasing
sequence (fj) in S(X, μ, R+) that converges pointwise to f . It is natural to define
the integral of f as the limit in R+ of the increasing sequence (

∫
X

fj dμ)j∈N. This
makes sense if we can ensure that the limit does not depend on the choice of (fj).

3.1 Lemma Suppose ϕj , ψ ∈ S(X, μ, R+) for j ∈ N. Also suppose (ϕj) is
increasing and ψ ≤ limj ϕj . Then∫

X

ψ dμ ≤ lim
j

∫
X

ϕj dμ .

Proof Let
∑m

j=0 αjχAj be the normal form of ψ and fix λ > 1. For k ∈ N, define
Bk := [λϕk ≥ ψ]. Because (ϕk) is increasing and λ > 1, we have Bk ⊂ Bk+1 for

1The theory of R-valued functions is the centerpiece of practically all textbooks on integration
theory. It is in some ways simpler than the more general Bochner–Lebesgue theory, and suffices
if one is only interested in real- and complex-valued functions, but it is inadequate for the needs
of modern higher analysis, which is why we opted for a more general approach.
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k ∈ N and
⋃

k∈N Bk = X . The continuity of measures from below then implies∫
X

ψ dμ =
m∑

j=0

αjμ(Aj) = lim
k

m∑
j=0

αjμ(Aj ∩Bk) = lim
k

∫
X

ψχBk
dμ .

By the definition of Bk, we have λϕk ≥ ψχBk
, and we obtain∫

X

ψ dμ = lim
k

∫
X

ψχBk
dμ ≤ λ lim

k

∫
X

ϕk dμ .

Taking the limit λ ↓ 1 now finishes the proof. �

3.2 Corollary Suppose (ϕj) and (ψj) are increasing sequences in S(X, μ, R+)
such that limj ϕj = limj ψj . Then

lim
j

∫
X

ϕj dμ = lim
j

∫
X

ψj dμ in R+ .

Proof By assumption, ψk ≤ limj ψj = limj ϕj for k ∈ N. By Lemma 3.1, we get∫
X

ψk dμ ≤ lim
j

∫
X

ϕj dμ for k ∈ N ,

and, as k →∞,

lim
k

∫
X

ψk dμ ≤ lim
j

∫
X

ϕj dμ .

Interchanging (ϕj) and (ψj), we obtain the opposite inequality, and hence the
desired equality. �

Suppose (ϕj) is an increasing sequence in S(X, μ, R+) that converges point-
wise to f ∈ L0(X, μ, R+). We call∫

X

f dμ := lim
j

∫
X

ϕj dμ

the (Lebesgue) integral of f over X with respect to the measure μ. For A ∈ A,∫
A

f dμ :=
∫

X

χAf dμ

is the (Lebesgue) integral of f over the measurable set A.

3.3 Remarks (a)
∫

A f dμ is well defined for all f ∈ L0(X, μ, R+) and A ∈ A.
Proof This follows from Theorem 1.12 and Corollary 3.2. �

(b) For f, g ∈ L0(X, μ, R+) such that f ≤ g μ-a.e., we have
∫

X
f dμ ≤

∫
X

g dμ.
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(c) For f ∈ L0(X, μ, R+), these statements are equivalent:
(i)

∫
X f dμ = 0.

(ii) [f > 0] is a μ-null set.
(iii) f = 0 μ-a.e.
Proof “(i)=⇒(ii)” We set A := [f > 0] and Aj := [f > 1/j] for j ∈ N×. Then (Aj) is an
increasing sequence in A such that A =

⋃
j Aj . Also χAj ≤ jf . It follows that

0 ≤ μ(Aj) =

∫
X

χAj dμ ≤ j

∫
X

f dμ = 0 for j ∈ N× ,

and continuity from below implies μ(A) = limj μ(Aj) = 0.

“(ii)=⇒(iii)” is clear.

“(iii)=⇒(i)” Let N be a μ-null set with f(x) = 0 for x ∈ Nc. Then2 fχNc = 0 and
fχN ≤ ∞χN . Together with the definition of the integral (see also (d) below), this yields

0 ≤
∫

X

f dμ =

∫
X

fχN dμ +

∫
X

fχNc dμ ≤ ∞μ(N) = 0 . �

(d) Suppose f, g ∈ L0(X, μ, R+) and α ∈ [0,∞]. Then∫
X

(αf + g) dμ = α

∫
X

f dμ +
∫

X

g dμ .

Proof We consider the case α =∞ and g = 0. Letting ϕj := jχ[f>0] for j ∈ N, we have
fj ↑ ∞f , and hence ∫

X

(∞f) dμ =

{
0 if μ

(
[f > 0]

)
= 0 ,

∞ if μ
(
[f > 0]

)
> 0 .

From (c), it now follows that
∫

X
(∞f) dμ =∞

∫
X

f dμ. The remaining statements follow
easily from the definition of the integral and are left as exercises. �

(e) (i) Suppose f ∈ L0(X, μ, R+) has a finite Lebesgue integral
∫

X f dμ. Then f

belongs to L1(X, μ, R+) and the Lebesgue integral of f over X coincides with the
Bochner–Lebesgue integral.

(ii) For f ∈ L1(X, μ, R+), the Lebesgue integral
∫

X
f dμ is finite and agrees

with the Bochner–Lebesgue integral.
Proof (i) Theorem 1.12 guarantees the existence of a sequence (ϕj) in S(X,μ, R+)
such that ϕj ↑ f . By assumption, there exists for every ε > 0 an N ∈ N such that∫

X
f dμ−

∫
X

ϕj dμ < ε for j ≥ N . For k ≥ j ≥ N , the finiteness of
∫

X
f dμ now gives∫

X

|ϕk − ϕj | dμ =

∫
X

(ϕk − ϕj) dμ ≤
∫

X

(f − ϕj) dμ =

∫
X

f dμ−
∫

X

ϕj dμ < ε .

Therefore (ϕj) is an L1-Cauchy sequence in S(X,μ, R+). This shows that f belongs to
L1(X, μ, R+). The second statement is a consequence of Exercise 2.8.

(ii) This follows from Theorem 1.12 and Exercise 2.8. �

2We recall Convention (2.1).
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(f) For every f ∈ L0(X, μ, R+), we have∫
X

f dμ = sup
{∫

X

ϕdμ ; ϕ ∈ S(X, μ, R+) with ϕ ≤ f μ-a.e.
}

. �

The monotone convergence theorem

We now prove a significant strengthening of the monotone convergence theorem
stated in Exercise 2.8 for functions in L1(X, μ, R). We will see that for increasing
sequences in L0(X, μ, R+), Lebesgue integration commutes with taking the limit.

3.4 Theorem (monotone convergence) Suppose (fj) is an increasing sequence
in L0(X, μ, R+). Then∫

X

lim
j

fj dμ = lim
j

∫
X

fj dμ in R+ .

Proof (i) Set f := limj fj. By Proposition 1.11, f belongs to L0(X, μ, R+), and
fj ≤ f for j ∈ N. By Remark 3.3(b), then, we have

∫
fj dμ ≤

∫
f dμ for j ∈ N,

and hence limj

∫
fj dμ ≤

∫
f dμ.

(ii) Suppose ϕ ∈ S(X, μ, R+) with ϕ ≤ f . Take λ > 1 and set Aj := [λfj ≥ ϕ]
for j ∈ N. Then (Aj) is an increasing sequence in A with

⋃
j Aj = X and

λfj ≥ ϕχAj . Moreover, ϕχAj ↑ ϕ, so∫
X

ϕdμ = lim
j

∫
X

ϕχAj dμ ≤ λ lim
j

∫
X

fj dμ .

Taking the limit λ ↓ 1 we get
∫

X
ϕdμ ≤ limj

∫
X

fj dμ for every μ-simple function ϕ
with ϕ ≤ f . By Remark 3.3(f), it follows that

∫
X f dμ ≤ limj

∫
X fj dμ, and we are

done. �

3.5 Corollary Suppose (fj) is a sequence in L0(X, μ, R+). Then

∞∑
j=0

∫
X

fj dμ =
∫

X

( ∞∑
j=0

fj

)
dμ in R+ .

Proof This follows from Corollary 1.13(iii) and Theorem 3.4. �

3.6 Remarks (a) The conclusion of Theorem 3.4 can fail if the sequence is not
increasing.
Proof Take fj := (1/j)χ[0,j] for j ∈ N×. Then (fj) is a (nonincreasing) sequence in
S(R, λ1, R+) that converges uniformly to 0. But the sequence

∫
fj dλ1 does not converge

to 0, because
∫

fj dλ1 = 1 for j ∈ N×. �
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(b) Suppose aj,k ∈ R+ for j, k ∈ N. Then

∞∑
j=0

∞∑
k=0

ajk =
∞∑

k=0

∞∑
j=0

ajk .

Proof We set (X, μ) := (N,H0) and define fj : X → R+ by fj(k) := ajk for j, k ∈ N.
Then (fj) is a sequence in L0(X,H0, R+) (see Example 2.20), and the claim follows from
Corollary 3.5. �

For nonnegative double series, this result is stronger than Theorem II.8.10,
because it is no longer assumed that

∑
jk ajk is summable.

Fatou’s lemma

We now prove a generalization of the monotone convergence theorem for arbitrary
(not necessarily increasing) sequences in L0(X, μ, R+).

3.7 Theorem (Fatou’s lemma) For every sequence (fj) in L0(X, μ, R+), we have∫
X

(
lim

j
fj

)
dμ ≤ lim

j

∫
X

fj dμ in R+ .

Proof Set gj := infk≥j fk. By Proposition 1.11, gj belongs to L0(X, μ, R+), and
the increasing sequence (gj) converges to limj fj . From Theorem 3.4 we then get
limj

∫
gj dμ =

∫ (
limj fj

)
dμ. Also gj ≤ fk, and therefore

∫
gj dμ ≤

∫
fk dμ for

k ≥ j. It follows that
∫

gj dμ ≤ infk≥j

∫
fk dμ, and taking the limit j → ∞

finishes the proof. �

3.8 Corollary Suppose (fj) is a sequence in L0(X, μ, R+) and g ∈ L0(X, μ, R+)
satisfies

∫
X

g dμ <∞ with fj ≤ g μ-a.e. for j ∈ N. Then3

lim
j

∫
X

fj dμ ≤
∫

X

(
lim

j
fj

)
dμ in R+ .

Proof Suppose N is a μ-null set such that fj(x) ≤ g(x) for x ∈ N c and j ∈ N.
Then fj ≤ g +∞χN on X , and

∫
X(g +∞χN ) dμ =

∫
X g dμ (see Remarks 3.3(c)

and (d)). Therefore we can assume without losing generality that fj ≤ g for j ∈ N.
We set gj := g − fj and obtain from Fatou’s lemma that∫

X

(
lim

j
gj

)
dμ =

∫
X

g dμ −
∫

X

(
lim

j
fj

)
dμ ≤ lim

j

∫
X

gj dμ =
∫

X

g dμ− lim
j

∫
X

fj dμ .

The claim now follows because
∫

X
g dμ <∞. �

3The assumption
∫

X
g dμ < ∞ cannot be relaxed (see Exercise 1).
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As a first application, we prove a fundamental characterization of integrable
functions.

3.9 Theorem For f ∈ L0(X, μ, E), the following are equivalent:
(i) f ∈ L1(X, μ, E);
(ii) |f | ∈ L1(X, μ, R);
(iii)

∫
X
|f | dμ < ∞.

If these conditions are satisfied, then
∣∣∫

X f dμ
∣∣ ≤ ‖f‖1 < ∞.

Proof “(i)=⇒(ii)” follows from Lemma 2.8, and “(ii)=⇒(iii)” is clear. “(iii)=⇒(ii)”
was proved in Remark 3.3(e).

“(ii)=⇒(i)” Suppose (ϕj) is a sequence in S(X, μ, E) converging to f μ-a.e. Set
Aj := [ |ϕj | ≤ 2 |f | ] and fj := ϕjχAj for j ∈ N. Theorem 1.7 and Proposition 1.9
show that Aj belongs to A. Thus (fj) is a sequence in S(X, μ, E).

Take N ∈ A such that μ(N) = 0 and ϕj(x) → f(x) for x ∈ N c. If f(x) 
= 0
for some x ∈ N c, there exists k := k(x) ∈ N such that |ϕj(x) − f(x)| ≤ 3 |f(x)|
for j ≥ k. Therefore x ∈ N c ∩ [ |f | > 0] belongs to Aj for j ≥ k(x). This implies
fj(x) = ϕj(x) for j ≥ k(x), and therefore fj(x) → f(x) for x ∈ N c ∩ [ |f | > 0].
If f(x) = 0 for some x ∈ N c, then likewise fj(x) → f(x) for j → ∞. Because
x belongs to Ak for some k ∈ N, we find fk(x) = ϕk(x) = 0 because |ϕk(x)| ≤
2 |f(x)| = 0. For x /∈ Ak, we likewise have fk(x) = χAk

(x)ϕk(x) = 0. This implies
|f − fj | → 0 μ-a.e. Now clearly |f − fj| ≤ 3 |f | for j ∈ N, so Corollary 3.8 implies

lim
j

∫
X

|f − fj| dμ ≤
∫

X

lim
j
|f − fj| dμ = 0 .

Therefore we can find for every ε > 0 an m ∈ N such that
∫
|f − fj | dμ < ε/2 for

j ≥ m. It follows that, for j, k ∈ N with j, k ≥ m,

‖fj − fk‖1 =
∫

X

|fj − fk| dμ ≤
∫

X

|fj − f | dμ +
∫

X

|f − fk| dμ < ε .

Hence (fj) is an L1-Cauchy sequence in S(X, μ, E), and f is μ-integrable.
The last statement follows from Theorem 2.11(i). �

3.10 Conclusions (a) Let f ∈ L0(X, μ, E), and suppose there is a sequence (fj)
in L1(X, μ, E) such that fj → f μ-a.e. and limj ‖fj‖1 < ∞. Then f belongs to
L1(X, μ, E), and ‖f‖1 ≤ limj ‖fj‖1.
Proof By Lemma 2.15, we can assume that (fj) converges to f on all of X. Using
Fatou’s lemma, we obtain∫

X

|f | dμ =

∫
X

lim
j
|fj | dμ ≤ lim

j

∫
X

|fj | dμ <∞ ,

and the claim follows by Theorem 3.9. �
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(b) Let (fj) be a sequence in L1(X, μ, R+). Suppose there is an f ∈ L1(X, μ, R)
such that

fj → f μ-a.e. and
∫

X

fj dμ →
∫

X

f dμ (j →∞) .

Then4 (fj) converges in L1(X, μ, R) to f .
Proof We can assume here too that (fj) converges to f on all of X. Then f ≥ 0 and
|fj − f | ≤ fj + f . From Theorem 3.7, it follows that

2

∫
X

f dμ =

∫
X

lim
j

(
fj + f − |fj − f |

)
dμ ≤ lim

j

∫
X

(
fj + f − |fj − f |

)
dμ

= 2

∫
X

f dμ− lim
j

∫
X

|fj − f | dμ .

According to Theorem 3.9,
∫

X
f dμ is finite, and we find limj

∫
X
|fj − f | dμ = 0. �

Integration of R-valued functions

The decomposition of an R-valued function into its positive and negative parts
allows us also to extend the Lebesgue integral to measurable R-valued functions
admitting negative values. We say that f ∈ L0(X, μ, R) is Lebesgue integrable
with respect to μ if

∫
X f+ dμ < ∞ and

∫
X f− dμ < ∞. In this case,∫

X

f dμ :=
∫

X

f+ dμ−
∫

X

f− dμ

is called the (Lebesgue) integral over X with respect to the measure μ.

3.11 Remarks (a) For f ∈ L0(X, μ, R), these three statements are equivalent:
(i) f is Lebesgue integrable with respect to μ.
(ii)

∫
X
|f | dμ < ∞;

(iii) There exists g ∈ L1(X, μ, R) such that |f | ≤ g μ-a.e.
Proof “(i)=⇒(ii)” This is a consequence of |f | = f++ f−.

“(ii)=⇒(iii)” Theorem 3.9 says that |f | ∈ L1(X, μ, R). Hence (iii) holds with g = |f |.
“(iii)=⇒(i)” This follows from f+ ∨ f− ≤ |f | ≤ g and Remark 3.3(b). �

(b) Suppose f ∈ L0(X, μ, R). Then f is Lebesgue integrable with respect to μ
if and only if f is μ-integrable. In that case, the Lebesgue integral of f over X
equals the Bochner–Lebesgue integral. In other words, if we consider real-valued
maps, the definition of Lebesgue integrability of R-valued functions is consistent
with the definition from Section 2.5

Proof This follows from (a), Theorem 3.9, and Remark 3.3(e). �

4Compare the statement of Theorem 2.18.
5See also Corollary 2.12(iii).
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(c) If f ∈ L0(X, μ, R) is Lebesgue integrable with respect to μ, then [ |f | = ∞] is
a μ-null set.
Proof The assumption implies that A := [ |f | = ∞] is μ-measurable and also that∫

X
|f | dμ <∞. Further we have∞χA ≤ |f |, and we find by Remarks 3.3(b) and (d) that

∞μ(A) =

∫
X

(∞χA) dμ ≤
∫

X

|f | dμ <∞ .

Therefore μ(A) = 0. �

Lebesgue’s dominated convergence theorem

We now prove an extremely versatile and practical theorem about exchanging
limits and integrals, proved by Henri Lebesgue. It is one of the cornerstones of
Lebesgue integration theory and has countless applications.

3.12 Theorem (dominated convergence6) Let (fj) be a sequence in L1(X, μ, E)
and suppose that there exists g ∈ L1(X, μ, R) such that

(a) |fj | ≤ g μ-a.e. for j ∈ N.

Suppose also that, for some f ∈ EX ,

(b) fj → f μ-a.e. for j →∞.

Then f is μ-integrable, fj → f in L1(X, μ, E) , and

∫
X

fj dμ→
∫

X

f dμ in E .

Proof Define
gj := sup

k,	≥j
|fk − f	|

for j ∈ N. By Proposition 1.11, (gj) is a sequence in L0(X, μ, R+) that converges
μ-a.e. to 0. Also |fk − f	| ≤ 2g μ-a.e. for k, � ∈ N, and hence |gj | ≤ 2g μ-a.e. for
j ∈ N. From Corollary 3.8 it follows that

0 ≤ lim
j

∫
X

gj dμ ≤
∫

X

lim
j

gj dμ = 0 .

Therefore
(∫

X
gj dμ

)
j∈N

is a (decreasing) null sequence. This means that for every
ε > 0 there exists N ∈ N such that∫

X

|fk − f	| dμ ≤
∫

X

sup
k,	≥j

|fk − f	| dμ < ε for k, � ≥ j ≥ N .

Hence (fj) is a Cauchy sequence in L1(X, μ, E), and the claim follows from the
completeness of L1(X, μ, E) and Theorem 2.18. �

6Also referred to as ”Lebesgue’s theorem”.
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3.13 Remark The example in Remark 3.6(a) shows that the existence of an
integrable dominating function g is essential for Theorem 3.12. �

As a first application of the dominated convergence theorem, we prove a
simple criterion for the integrability of a measurable function.

3.14 Theorem (integrability criterion) Suppose f ∈L0(X,μ,E) and g∈L1(X,μ,R)
satisfy |f | ≤ g μ-a.e. Then f belongs to L1(X, μ, E).

Proof Let (ϕj) be a sequence in S(X, μ, E) such that ϕj → f μ-a.e. as j →∞.
Set Aj := [ |ϕj | ≤ 2g] and fj := χAj ϕj for j ∈ N. Then (fj) is a sequence in
S(X, μ, E) that converges μ-a.e. to f (see the proof of Theorem 3.9). Because
|fj | ≤ 2g for j ∈ N, the claim follows from the dominated convergence theorem. �

3.15 Corollary

(i) Take f ∈ L1(X, μ, E), g ∈ L0(X, μ, K), and α ∈ [0,∞) with |g| ≤ α μ-a.e.
Then gf is μ-integrable, and∣∣∣∫

X

gf dμ
∣∣∣ ≤ α ‖f‖1 .

(ii) Take f ∈ L0(X, μ, E) and α ∈ [0,∞). If |f | ≤ α μ-a.e. and μ(X) < ∞, then
f is μ-integrable with ∣∣∣∫

X

f dμ
∣∣∣ ≤ ‖f‖1 ≤ αμ(X) .

(iii) Let X be a σ-compact metric space and μ a complete Radon measure on X .
Suppose that f ∈ C(X, E) and that K ⊂ X is compact. Then χKf belongs
to L1(X, μ, E), and ∣∣∣∫

K

f dμ
∣∣∣ ≤ ‖χKf‖∞ μ(K) .

Proof (i) By Remark 1.2(d), gf is μ-measurable. Also |gf | ≤ α |f | μ-a.e., and
α |f | is μ-integrable. Hence Theorem 3.14 shows that gf is μ-integrable; Theo-
rem 2.11(i) and Corollary 2.16(ii) imply∣∣∣∫

X

gf dμ
∣∣∣ ≤ ∫

X

|gf | dμ ≤
∫

X

α |f | dμ = α ‖f‖1 .

(ii) Since μ(X) is finite, χX belongs to L1(X, μ, R). By Theorem 1.7(i), |f |
is μ-measurable. Therefore (i) shows (with g := |f | and f := χX) that |f | is
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μ-integrable and that ∫
X

|f | dμ ≤ α ‖χX‖1 = αμ(X) <∞ .

The claim now follows from Theorem 3.9.
(iii) According to Theorem 1.17, f is μ-measurable. Moreover χK is μ-simple,

because μ(K) is finite by Remark IX.5.3(a). Therefore χKf is μ-measurable, and
the claim follows from (ii) with α := maxx∈K |f(x)|. �

When dealing with a function not defined on all of X , it is occasionally useful
in the theory of integration to extend its definition by setting it equal to 0 where
it is not already defined. Measurability and integrability questions can then be
explored with respect to the measure space (X,A, μ). To that end, we set forth
the following conventions.

For f : dom(f) ⊂ X → E, define the trivial extension f̃ ∈ EX of f to X by

f̃(x) :=
{

f(x) if x ∈ dom(f) ,

0 if x /∈ dom(f) .

We say that f is μ-measurable or μ-integrable if f̃ belongs to L0(X, μ, E) or
L1(X, μ, E), respectively. If f is μ-integrable, we set

∫
X f dμ :=

∫
X f̃ dμ.

3.16 Theorem (termwise integration of series) Suppose (fj) is a sequence in
L1(X, μ, E) such that

∑∞
j=0

∫
X
|fj| dμ < ∞. Then

∑
j fj converges absolutely

μ-a.e.,
∑

j fj is μ-integrable, and∫
X

( ∞∑
j=0

fj

)
dμ =

∞∑
j=0

∫
X

fj dμ .

Proof (i) By Theorem 1.7(i) and Corollary 1.13(iii), the R-valued function g :=∑∞
j=0 |fj| is μ-measurable. Corollary 3.5 implies∫

X

g dμ =
∞∑

j=0

∫
X

|fj | dμ <∞ .

It therefore follows from Remarks 3.11(a) and (c) that [g = ∞] is a μ-null set,
which proves the absolute convergence of

∑
j fj for almost every x ∈ X .

(ii) Set gk :=
∑k

j=0 fj and f(x) :=
∑∞

j=0 fj(x) for x ∈ [g <∞]. The sequence
(gk) converges μ-a.e. to f̃ and we have the bounds |gk| ≤

∑k
j=0 |fj | ≤ g. By the

dominated convergence theorem, f̃ belongs to L1(X, μ, E) and
∞∑

j=0

∫
X

fj dμ = lim
k→∞

∫
X

gk dμ =
∫

X

lim
k→∞

gk dμ =
∫

X

( ∞∑
j=0

fj

)
dμ . �
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Parametrized integrals

As another application of the dominated convergence theorem, we investigate the
continuity and differentiability of parametrized integrals.

3.17 Theorem (continuity of parametrized integrals) Suppose M is a metric space
and f : X ×M → E satisfies

(a) f( · , m) ∈ L1(X, μ, E) for every m ∈M ;

(b) f(x, · ) ∈ C(M, E) for μ-almost every x ∈ X ;

(c) there exists g ∈ L1(X, μ, E) such that |f(x, m)| ≤ g(x) for (x, m) ∈ X ×M .

Then

F : M → E , m �→
∫

X

f(x, m)μ(dx)

is well defined and continuous.

Proof The first statement follows immediately from (a). Suppose m ∈ M , and
let (mj) be a sequence in M converging to m. We set fj := f( · , mj) for j ∈ N.
From (b), it follows that fj → f μ-a.e. Therefore by (a) and (c), we can apply
the dominated convergence theorem to the sequence (fj), and we find

lim
j→∞

F (mj) = lim
j→∞

∫
X

fj dμ =
∫

X

lim
j→∞

fj dμ =
∫

X

f(x, m)μ(dx) = F (m) .

The claim now follows from Theorem III.1.4. �

3.18 Theorem (differentiability of parametrized integrals) Suppose U is open
in Rn, or U ⊂ K is perfect and convex, and suppose f : X × U → E satisfies

(a) f( · , y) ∈ L1(X, μ, E) for every y ∈ U ;

(b) f(x, · ) ∈ C1(U, E) for μ-almost every x ∈ X ;

(c) there exists g ∈ L1(X, μ, R) such that∣∣∣ ∂

∂yj
f(x, y)

∣∣∣ ≤ g(x) for (x, y) ∈ X × U and 1 ≤ j ≤ n .

Then

F : U → E , y �→
∫

X

f(x, y)μ(dx)

is continuously differentiable and

∂jF (y) =
∫

X

∂

∂yj
f(x, y)μ(dx) for y ∈ U and 1 ≤ j ≤ n .
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Proof Take y ∈ U and j ∈ {1, . . . , n}. Let (hk) be a null sequence in K such that
hk 
= 0 and y + hkej ∈ U for k ∈ N. Finally, set

fk(x) :=
f(x, y + hkej)− f(x, y)

hk
for x ∈ X and k ∈ N ,

The mean value theorem (Theorem VII.3.9) then gives

|fk(x)| ≤ sup
z∈U

∣∣∣ ∂

∂yj
f(x, z)

∣∣∣ ≤ g(x) μ-a.e.

Because (fk) converges μ-a.e. to ∂f( · , y)
/
∂yj, it follows from Theorem 3.12 that

lim
k→∞

F (y + hkej)− F (y)
hk

= lim
k→∞

∫
X

fk dμ =
∫

X

∂

∂yj
f(x, y)μ(dx) .

Therefore F is partially differentiable, and ∂jF (y) =
∫

X

(
∂
/
∂yj

)
f(x, y)μ(dx). The

result now follows from Theorems 3.17 and VII.2.10. �

3.19 Corollary Suppose U is open in C, and f : X × U → C satisfies

(a) f( · , z) ∈ L1(X, μ, C) for every z ∈ U ;

(b) f(x, · ) ∈ Cω(U, C) for μ-almost every x ∈ X ;

(c) there is a g ∈ L1(X, μ, R) such that |f(x, z)| ≤ g(x) for (x, z) ∈ X × U .

Then

F : U → C , z �→
∫

X

f(x, z)μ(dx)

is holomorphic, and

F (n)(z) =
∫

X

∂n

∂zn
f(x, z)μ(dx) (3.1)

for every n ∈ N.

Proof Take z0 ∈ U and r > 0 such that D(z0, r) ⊂ U . Cauchy’s derivative
formula (Corollary VIII.5.12) gives

∂

∂z
f(x, z) =

1
2πi

∫
∂D(z,r)

f(x, ζ)
(ζ−z)2

dζ for μ-almost every x ∈ X and z ∈ D(z0, r) ,

and we find from (c) and Proposition VIII.4.3(iv) that∣∣∣ ∂

∂z
f(x, z)

∣∣∣ ≤ g(x)
r

for μ-almost every x ∈ X and z ∈ D(z0, r) .

Theorem 3.18 now shows that F |D(z0, r) belongs to C1
(
D(z0, r), C

)
and satisfies

F ′(z) =
∫

X

∂

∂z
f(x, z)μ(dx) for z ∈ D(z0, r) .

Holomorphy is a local property, so Theorem VIII.5.11 implies that F belongs to
Cω(U, C). The validity of (3.1) now follows from a simple induction argument. �
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Exercises

1 Find a measure space (X,A, μ), a sequence (fj) in L0(X, μ, R+), and a function g in
L0(X, μ, R+) such that

fj ≤ g for j ∈ N and lim
j

∫
X

fj dμ >

∫
X

(
lim

j
fj

)
dμ .

2 Suppose f ∈ L1(X, μ, E) and ε > 0. Show that there exists A ∈ A such that

μ(A) <∞ and
∣∣∣∫

X

f dμ−
∫

B

f dμ
∣∣∣ < ε

for every B ∈ A with B ⊃ A.

3 Suppose (fj) is a sequence in L1(X, μ, E) converging in measure to f ∈ L0(X, μ, E).
Also suppose there is g ∈ L1(X, μ, R) such that |fj | ≤ g μ-a.e. for all j ∈ N. Then f
belongs to L1(X, μ, E),

fj → f in L1(X, μ, E) , and

∫
X

fj dμ→
∫

X

f dμ in E .

(Hint: If
(∫

X
fj dμ

)
does not converge to

∫
X

f dμ, there is a subsequence (fjk )k∈N and a
δ > 0 such that

‖fjk − f‖1 ≥ δ for k ∈ N . (3.2)

Use Exercise 1.15 and Theorem 3.12 to derive a contradiction from (3.2).

4 Let f, g ∈ L0(X, μ, R) be Lebesgue integrable functions. Prove:

(i) If f ≤ g μ-a.e., then
∫

X
f dμ ≤

∫
X

g dμ.

(ii)
∣∣∣∫

X

f dμ
∣∣∣ ≤ ∫

X

|f | dμ .

(iii) f ∧ g and f ∨ g are Lebesgue integrable, and

−
∫

X

(
|f |+ |g|

)
dμ ≤

∫
X

(f ∧ g) dμ ≤
∫

X

(f ∨ g) dμ ≤
∫

X

(
|f |+ |g|

)
dμ .

5 Suppose the sequence (fj) in L0(X, μ, R+) converges in measure to f ∈ L0(X, μ, R+).
Prove that ∫

X

f dμ ≤ lim
j

∫
X

fj dμ .

6 For x ∈ Rn\{0}, define

kn(x) :=

⎧⎨⎩
x+ if n = 1 ,

log |x| if n = 2 ,

|x|2−n if n ≥ 3 .

Further suppose U ⊂ Rn is open and nonempty, that A ∈ L(n) satisfies A ⊂ Uc, and
that f ∈ Cc(Rn).

(a) The map A→ R, x �→ f(x)kn(|y − x|) is λn-integrable for every y ∈ U .

(b) The map U → R, y �→
∫

A
f(x)kn(|y − x|)λn(dx) is smooth and harmonic.

7 Verify that

(i) L1(Rn, λn, E) ∩BC(Rn, E) � C0(Rn, E);

(ii) L1(Rn, λn, E) ∩BUC(Rn, E) ⊆ C0(Rn, E).



4 Lebesgue spaces

We saw in Corollary VI.7.4 that the space of continuous K-valued functions over a
compact interval I is not complete with respect to the L2 norm. The framework of
Lebesgue integration theory now gives us the means to complete the inner product
space

(
C(I, K), ( · | · )2

)
: we will construct a vector space L2 and an extension of

( · | · )2 onto L2×L2 — also denoted by ( · | · )2 — such that
(
L2, ( · | · )2

)
is a Hilbert

space containing C(I, K) as a dense subspace.

This construction can be generalized in a natural way, leading to a new family
of Banach spaces, the Lebesgue Lp-spaces. These are of great importance in many
areas of mathematics.

In the following, we suppose that

• (X,A, μ) is a complete σ-finite measure space;
E = (E, | · |) is a Banach space.

Essentially bounded functions

We say that a function f ∈ L0(X, μ, E) is μ-essentially bounded if there exists
α ≥ 0 such that μ

(
[ |f | > α]

)
= 0. The μ-essential supremum of f is then1

‖f‖∞ := ess-sup
x∈X

|f(x)| := inf
{

α ≥ 0 ; μ
(
[ |f | > α]

)
= 0

}
.

4.1 Remarks (a) Let f ∈ L0(X, μ, E). There is equivalence between:

(i) f is μ-essentially bounded;

(ii) ‖f‖∞ < ∞;

(iii) f is bounded μ-a.e.
Proof “(i)=⇒(ii)=⇒(iii)” is clear.

“(iii)=⇒(i)” Suppose N is a μ-null set and take α ≥ 0 such that |f(x)| ≤ α for
x ∈ Nc. Then [ |f | > α] ⊂ N , and the completeness of μ implies that μ

(
[ |f | > α]

)
= 0. �

(b) Suppose f ∈ L0(X, μ, E). Then |f | ≤ ‖f‖∞ μ-a.e.
Proof The case ‖f‖∞ =∞ is clear. If ‖f‖∞ <∞, then [ |f | > ‖f‖∞ + 2−j ] is a μ-null
set for every j ∈ N, and hence so is the set [ |f | > ‖f‖∞] =

⋃
j∈N

[ |f | > ‖f‖∞ + 2−j ]. �

(c) Suppose f and g are μ-essentially bounded and α ∈ K. Then αf + g is also
μ-essentially bounded, and

‖αf + g‖∞ ≤ |α| ‖f‖∞ + ‖g‖∞ .

1Note that now ‖·‖∞ has two meanings, namely, the essential supremum of a measurable
function and the supremum norm of a bounded function. The two values need not be the same;
see (d) and (e) in Remark 4.1. When necessary we denote the supremum norm by ‖·‖B(X,E).
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Proof By (a) and (b), there exist μ-null sets M and N such that |f(x)| ≤ ‖f‖∞ for
x ∈Mc and |g(x)| ≤ ‖g‖∞ for x ∈ Nc. Therefore

|αf(x) + g(x)| ≤ |α| ‖f‖∞ + ‖g‖∞ for x ∈ (M ∪N)c = Mc ∩Nc .

Hence αf + g is μ-essentially bounded and ‖αf + g‖∞ ≤ |α| ‖f‖∞ + ‖g‖∞. �

(d) Suppose f ∈ L0(X, μ, E) is bounded. Then ‖f‖∞ ≤ ‖f‖B(X,E) (supremum
norm). If N is a nonempty μ-null set, then ‖χN‖∞ = 0 and ‖χN‖B(X,E) = 1.

(e) Suppose X is σ-compact metric space and μ is a massive Radon measure on
X . Then

‖f‖∞ = ‖f‖B(X,E) for f ∈ BC(X, E) .

Proof By Theorem 1.17, any f ∈ BC(X, E) is μ-measurable, and by (d) we just have
to show that ‖f‖B(X,E) ≤ ‖f‖∞. Assume otherwise. Then there exists x ∈ X such that

‖f‖∞ < |f(x)| ≤ ‖f‖B(X,E) ,

and in view of the continuity of f there is an open neighborhood O of x in X such that
‖f‖∞ < |f(y)| for y ∈ O. From (b) it follows that μ(O) = 0, contradicting the assumption
that μ is massive. �

The Hölder and Minkowski inequalities

Suppose f ∈ L0(X, μ, E). For p ∈ (0,∞), we set

‖f‖p :=
(∫

X

|f |p dμ
)1/p

with the convention that ∞1/p := ∞. We define the Lebesgue space over X with
respect to the measure μ as2

Lp(X, μ, E) :=
{

f ∈ L0(X, μ, E) ; ‖f‖p < ∞
}

for p ∈ (0,∞] .

For p ∈ [1,∞], we define the dual exponent to p as

p′ :=

⎧⎨⎩
∞ if p = 1 ,

p/(p− 1) if p ∈ (1,∞) ,

1 if p = ∞ .

With this assignment, we obviously have

1
p

+
1
p′

= 1 for p ∈ [1,∞] .

We are now in a position to state and prove two important inequalities.
2Theorem 3.9 shows that the notation Lp(X, μ, E) is consistent in the case p = 1 with that

of Section 2. In the following, we concentrate on the Lebesgue spaces Lp with p ∈ [1,∞]. The
case p ∈ (0, 1) will be treated in Exercise 13.
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4.2 Theorem Suppose p ∈ [1,∞].
(i) For f ∈ Lp(X, μ, K) and g ∈ Lp′ (X, μ, K), we have fg ∈ L1(X, μ, K), and∣∣∣∫

X

fg dμ
∣∣∣ ≤ ∫

X

|fg| dμ ≤ ‖f‖p ‖g‖p′ (Hölder’s3 inequality).

(ii) Suppose f, g ∈ Lp(X, μ, E). Then f + g ∈ Lp(X, μ, E), and

‖f + g‖p ≤ ‖f‖p + ‖g‖p (Minkowski’s inequality).

Proof (i) We consider first the case p = 1. By Remark 4.1(b), there is a μ-null
set N such that |g(x)| ≤ ‖g‖∞ for x ∈ N c. It then follows from Remarks 1.2(d)
and 3.3(b) and Lemma 2.15 that∫

Nc

|fg| dμ ≤ ‖g‖∞
∫

Nc

|f | dμ = ‖f‖1 ‖g‖∞ <∞ .

Hence Remark 3.11(a), Theorem 3.9 and Lemma 2.15 result in fg being integrable,
and Theorem 2.11(i) implies∣∣∣∫

X

fg dμ
∣∣∣ ≤ ∫

X

|fg| dμ =
∫

Nc

|fg| dμ ≤ ‖f‖1 ‖g‖∞ .

Suppose now p ∈ (1,∞). If

f = 0 μ-a.e. or g = 0 μ-a.e. , (4.1)

then fg also vanishes μ-a.e., and the claim follows from Corollary 2.16. On the
other hand, if (4.1) does not apply, Corollary 2.19 gives ‖f‖p > 0 and ‖g‖p′ > 0.
We then set ξ := |f |/‖f‖p, η := |g|/‖g‖p′, and obtain from Young’s inequality
(Theorem IV.2.15) that

|fg|
‖f‖p ‖g‖p′

≤ 1
p

|f |p
‖f‖p

p
+

1
p′
|g|p′

‖g‖p′
p′

.

It follows that∫
X

|fg| dμ ≤ 1
p
‖f‖1−p

p ‖g‖p′

∫
X

|f |p dμ +
1
p′
‖f‖p ‖g‖

1−p′
p′

∫
X

|g|p′
dμ

= ‖f‖p ‖g‖p′ ,

and we conclude using Theorem 3.9 that fg belongs to L1(X, μ, E). Therefore∣∣∣∫
X

fg dμ
∣∣∣ ≤ ‖fg‖1 ≤ ‖f‖p ‖g‖p′ .

The case p = ∞ is treated analogously to the case p = 1.
3For p = 2, this is the Cauchy–Schwarz inequality.
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(ii) Because of Corollary 2.9 and Remark 4.1(c), it suffices to consider the case
p ∈ (1,∞). In addition, we can assume without loss of generality that ‖f+g‖p > 0.
We will first prove that f + g belongs to Lp(X, μ, E). Noting the inequality

|a + b|p ≤
(
2(|a| ∨ |b|)

)p ≤ 2p(|a|p + |b|p) for a, b ∈ E , (4.2)

we obtain ∫
X

|f + g|p dμ ≤ 2p
(∫

X

|f |p dμ +
∫

X

|g|p dμ
)

< ∞

because f, g ∈ Lp(X, μ, E). Therefore ‖f + g‖p < ∞. Due to the equivalence

|f + g|p−1 ∈ Lp′(X, μ, R)⇐⇒ |f + g| ∈ Lp(X, μ, R) ,

it follows from Hölder’s inequality that∫
X

|h| |f + g|p−1 dμ ≤ ‖h‖p

∥∥|f + g|p−1∥∥
p′ = ‖h‖p ‖f + g‖p/p′

p

for h ∈ Lp(X, μ, E), and we find∫
X

|f + g|p dμ ≤
∫

X

|f | |f + g|p−1 dμ +
∫

X

|g| |f + g|p−1 dμ

≤
(
‖f‖p + ‖g‖p

)
‖f + g‖p/p′

p .

(4.3)

The claim follows, because ‖f + g‖p < ∞ and p/p′ = p− 1. �

4.3 Corollary Suppose p ∈ [1,∞]. Then Lp(X, μ, E) is a vector subspace of
L0(X, μ, E), and ‖·‖p is a seminorm on Lp(X, μ, E).

4.4 Remarks (a) Set N :=
{

f ∈ L0(X, μ, E) ; f = 0 μ-a.e.
}
. For f ∈ L0(X, μ, E)

the following statements are equivalent:
(i) ‖f‖p = 0 for all p ∈ [1,∞].
(ii) ‖f‖p = 0 for some p ∈ [1,∞].
(iii) f ∈ N .
Proof “(i)=⇒(ii)” is trivial. “(ii)=⇒(iii)” follows from Corollary 2.19 and Remark 4.1(b).

“(iii)=⇒(i)” For p ∈ [1,∞), use Lemma 2.15. The case p =∞ is clear. �

(b) N is a vector subspace of Lp(X, μ, E) for every p ∈ [1,∞] ∪ {0}.
Proof The case p = 0 is clear; in particular, N is a vector space. For p ∈ [1,∞], the
claim then follows from (a), “(iii)=⇒(i)”. �

(c) For p ∈ [1,∞], we have these inclusions of vector subspaces:

S(X, μ, E) ⊂ Lp(X, μ, E) ⊂ L0(X, μ, E) .

Proof It is clear that every μ-simple function is μ-essentially bounded. Take p ∈ [1,∞)
and let ϕ ∈ S(X,μ, E) have normal form

∑m
j=0 ejχAj . Then |ϕ|p ≤ ∑m

j=0 |ej |p χAj , so
‖ϕ‖p <∞. The claim follows by Remark 1.2(a) and Corollary 4.3. �
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Lebesgue spaces are complete

We now generalize Theorem 2.10(ii), proving that all Lebesgue spaces Lp(X, μ, E)
with p ∈ [1,∞] are complete. For p ∈ (1,∞), this depends on the following lemma.

4.5 Lemma Suppose V is a vector space and q is a seminorm on V . The following
statements are equivalent:

(i) (V, q) is complete.

(ii) For every sequence (vj) ∈ V N such that
∑∞

j=0 q(vj) < ∞, the series
∑

j vj

converges in V .

Proof “(i)=⇒(ii)” Suppose (vj) ∈ V N and
∑∞

j=0 q(vj) < ∞. For every ε > 0 there
exists K ∈ N such that

∑∞
j=	+1 q(vj) < ε for � ≥ K (see Exercise II.7.4). We set

wk :=
∑k

j=0 vj for k ∈ N and get

q(wm − w	) = q
( m∑

j=	+1

vj

)
≤

m∑
j=	+1

q(vj) ≤
∞∑

j=	+1

q(vj) < ε for m > � ≥ K .

Therefore (wk) is a Cauchy sequence in V , and so converges to some v ∈ V by the
completeness of V . Hence the series

∑
j vj converges.

“(ii)=⇒(i)” Let (vj) be a Cauchy sequence in V . For k ∈ N, take jk ∈ N such
that q(vjk+1 − vjk

) < 2−(k+1). Setting wk := vjk+1 − vjk
, we have

∑∞
k=0 q(wk) ≤ 1,

and we can find by assumption a v ∈ V such that q
(
v−∑	

k=0 wk

)
→ 0 as � →∞.

Let ε > 0 and L ∈ N be such that q
(
v −∑	

k=0 wk

)
< ε/2 for � ≥ L. Because (vj)

is a Cauchy sequence in V , there exists K ≥ L such that q(vj�+1 − vk) < ε/2 for
k, � ≥ K. Finally setting ṽ := v + vj0 , we have for k ≥ K that

q(ṽ − vk) = q(v + vj0 − vjK+1 + vjK+1 − vk)

≤ q
(
v −

K∑
k=0

wk

)
+ q(vjK+1 − vk) < ε .

This shows that (vk) converges to ṽ. �

4.6 Theorem For p ∈ [1,∞], Lp(X, μ, E) is complete.

Proof (i) Consider first the case p ∈ (1,∞). Let (fj) be a sequence in Lp(X, μ, E)
such that

∑∞
j=0 ‖fj‖p <∞. Set gk :=

∑k
j=0 |fj | for k ∈ N and g :=

∑∞
k=0 |fj |. By

Corollary 1.13(iii), g belongs to L0(X, μ, R+), and we have |gk|p → |g|p. Because

‖gk‖p ≤
k∑

j=0

‖fj‖p ≤
∞∑

j=0

‖fj‖p <∞ ,

Conclusion 3.10(a) tells us that g ∈ Lp(X, μ, R). By Remark 3.11(c), then, there
is a μ-null set N such that g(x) <∞ for x ∈ N c. Therefore f(x) :=

∑∞
j=0 fj(x) is
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well defined for every x ∈ N c by the Weierstrass criterion (Theorem V.1.6). Also,
since |f |p ≤ gp μ-a.e. and g ∈ Lp(X, μ, R), Theorem 3.14 implies that f̃ belongs
to Lp(X, μ, E). Finally Fatou’s lemma shows that∥∥∥f̃ −

k∑
j=0

fj

∥∥∥p

p
=

∫
X

∣∣∣ lim
	→∞

	∑
j=k+1

fj

∣∣∣p dμ ≤ lim
	→∞

∫
X

∣∣∣ 	∑
j=k+1

fj

∣∣∣p dμ = lim
	→∞

∥∥∥ 	∑
j=k+1

fj

∥∥∥p

p
,

and we find∥∥∥f̃ −
k∑

j=0

fj

∥∥∥
p
≤ lim

	→∞

	∑
j=k+1

‖fj‖p =
∞∑

j=k+1

‖fj‖p for k ∈ N .

Because
∑∞

j=0 ‖fj‖p < ∞, the sequence
(∑∞

j=k+1 ‖fj‖p

)
k∈N

converges to zero.
Therefore so does

(∥∥f̃ − ∑k
j=0 fj

∥∥
p

)
k∈N

. Now it follows from Lemma 4.5 that
Lp(X, μ, E) is complete.

(ii) Now suppose (fj) is a Cauchy sequence in L∞(X, μ, E). We set

Aj := [ |fj | > ‖fj‖∞] , Bk,	 := [ |fk − f	| > ‖fk − f	‖∞] for j, k, � ∈ N

and N :=
⋃

j Aj ∪
⋃

k,	 Bk,	. By Remarks 4.1(b) and IX.2.5(b), N is a null set and

|fj(x)| ≤ ‖fj‖∞ , |fk(x)− f	(x)| ≤ ‖fk − f	‖∞ for j, k, � ∈ N , x ∈ N c .

Therefore (fj |N c) is a Cauchy sequence in the Banach space B(N c, E), and we
can find an f ∈ B(N c, E) such that (fj |N c) converges uniformly to f . Thus (fj)
converges μ-a.e. to f̃ . We know the function f̃ is μ-essentially bounded because[∣∣wtf

∣∣ > ‖f‖B(Nc,E)

]
= ∅, and we have∣∣f̃(x)− fj(x)
∣∣ ≤ ‖f − fj |N c‖B(Nc,E) for x ∈ N c and j ∈ N .

Hence (fj) converges in L∞(X, μ, E) to f̃ .
(iii) The case p = 1 was dealt with in Theorem 2.10(ii). �

4.7 Corollary Let p ∈ [1,∞], and suppose fj, f ∈ Lp(X, μ, E) satisfy fj → f in
Lp(X, μ, E).

(i) If p =∞, then (fj) converges μ-a.e. to f .

(ii) If p ∈ [1,∞), there is a subsequence (fjk
)k∈N of (fj) converging μ-a.e. to f .

Proof Because (fj) converges in Lp(X, μ, E) to f , we know (fj) is a Cauchy
sequence in Lp(X, μ, E). Statement (i) now follows immediately from the proof of
Theorem 4.6.

If p ∈ (1,∞), choose a subsequence (fjk
)k∈N of (fj) such that ‖fjk+1−fjk

‖p <

2−(k+1). Then the proof of Theorem 4.6 shows that there is a g ∈ Lp(X, μ, E) such
that (fjk

− fj0) → g in Lp(X, μ, E) and (fjk
− fj0)→ g μ-a.e. as k →∞. Because

(fj) converges in Lp(X, μ, E) to f , we have ‖f − (g + fj0)‖p = 0. Remark 4.4(a)
implies f = g + fj0 μ-a.e., from which the claim follows.

The case p = 1 was treated in Theorem 2.18. �
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4.8 Proposition S(X, μ, E) is dense in Lp(X, μ, E) for p ∈ [1,∞).4

Proof Suppose f ∈ Lp(X, μ, E). Then f is μ-measurable by Remark 4.4(c). Thus
there is a sequence (ϕj) in S(X, μ, E) such that ϕj → f μ-a.e. as j →∞. We set
Aj := [ |ϕj | ≤ 2 |f | ] and ψj := χAj ϕj . Then (ψj) is a sequence in S(X, μ, E) that
converges μ-a.e. to f . Moreover,

|ψj − f |p ≤ (|ψj |+ |f |)p ≤ 3p |f |p for j ∈ N .

Because 3p |f |p belongs to L1(X, μ, R), we can apply the dominated convergence
theorem, and we find

‖ψj − f‖p
p =

∫
X

|ψj − f |p dμ→ 0 as j →∞ ,

from which the claim follows. �

Lp-spaces

We proved in Remark 4.4(b) that

N :=
{

f ∈ L0(X, μ, E) ; f = 0 μ-a.e.
}

is a vector subspace of Lp(X, μ, E) for p ∈ {0}∪ [1,∞]. Hence the quotient spaces

Lp(X, μ, E) := Lp(X, μ, E)/N for p ∈ {0} ∪ [1,∞]

are well defined vector spaces over K, by Example I.12.3(i). By Remark 4.4(c), we
also have

Lp(X, μ, E) ⊂ L0(X, μ, E) for p ∈ [1,∞] ,

in the sense of vector subspaces. Suppose [f ] ∈ L0(X, μ, E), and let g be a repre-
sentative of [f ]. Then f − g ∈ N , that is, f and g agree μ-a.e. By Remark 4.4(a),
the map

||| · ||| : L0(X, μ, E)→ R+ , [f ] �→ ‖f‖p

is well defined for every p ∈ [1,∞], and for [f ] ∈ Lp(X, μ, E), we have

||| [f ] |||p = ‖f‖p = 0 ⇐⇒ f = 0 μ-a.e. ⇐⇒ [f ] = 0 . (4.4)

Since ||| · |||p obviously inherits the properties of the seminorm ‖·‖p, (4.4) shows
that ||| · |||p is a norm on Lp(X, μ, E). Therefore Lp(X, μ, E) is a normed vector
space, whereas the space we constructed it from, Lp(X, μ, E), is only seminormed.
So limits in Lp(X, μ, E) are generally not unique, but limits in Lp(X, μ, E) are.5

The price we pay for the better topological structure of Lp(X, μ, E) is that its
elements are not functions on X but rather cosets of the vector subspace N of
Lp(X, μ, E). In other words, we identify functions that coincide μ-a.e. Experience
shows that the following simplified notation does not lead to misunderstandings.

4The statement can fail if p = ∞; see Exercise 8 (but also Exercise 9).
5See Remark 2.3(b).
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Convention Suppose p ∈ {0} ∪ [1,∞]. Then we write the coset [f ] = f +N
in Lp(X, μ, E) as f and identify with each other functions that agree μ-a.e.
Further, if p ∈ [1,∞], we denote the norm in Lp(X, μ, E) by ‖·‖p and set

Lp(X, μ, E) :=
(
Lp(X, μ, E), ‖·‖p

)
for p ∈ [1,∞] .

4.9 Remarks (a) For f ∈ L0(X, μ, E) and x ∈ X , f(x) is undefined if μ
has nonempty null sets. That is, elements of L0(X, μ, E) cannot be “evaluated
pointwise”. (Of course, if one chooses a representative

∗
f of f , then

∗
f(x) is defined.)

(b) For p ∈ [1,∞],

Lp(X, μ, E) =
{

f ∈ L0(X, μ, E) ; ‖f‖p < ∞
}

.

Proof “⊆” Let f ∈ Lp(X, μ, E). Any representative
∗
f of f lies in Lp(X, μ, E), that is, it

is μ-measurable and satisfies ‖ ∗
f‖p <∞. Hence f belongs to L0(X, μ, E), and ‖f‖p <∞.

“⊇” Consider f ∈ L0(X, μ, E) with ‖f‖p < ∞. Every representative
∗
f of f is

μ-measurable, with ‖f‖p = ‖ ∗
f‖p <∞. Thus

∗
f belongs to Lp(X, μ, E), and so f belongs

to Lp(X, μ, E). �

(c) Suppose f, g ∈ L0(X, μ, R), and let
∗
f, ∗g be representatives of f, g. If we write

f ≤ g :⇐⇒ ∗
f ≤ ∗g μ-a.e. ,

we obtain a well defined ordering ≤ on L0(X, μ, R), which makes this space into
a vector lattice.
Proof We leave the simple proof as an exercise. �

(d) Suppose (F,≤) is a vector lattice and (F, ‖·‖) is a Banach space. If |x| ≤ |y|
implies ‖x‖ ≤ ‖y‖, we call (F,≤, ‖·‖) a Banach lattice.

(e)
(
Lp(X, μ, R),≤, ‖·‖p

)
is a Banach lattice for every p ∈ [1,∞].

Proof It is clear that Lp(X, μ, R) is a vector sublattice of L0(X, μ, R). Also it follows
immediately from the monotony of integrals and of the map t �→ tp that Lp(X, μ, R) is a
Banach lattice in the case p ∈ [1,∞).

Suppose f, g ∈ L∞(X, μ, R) with |f | ≤ |g|, and let
∗
f, ∗g be representatives thereof.

Then | ∗f | ≤ | ∗g| μ-a.e. In addition, Remark 4.1(b) shows that | ∗g| ≤ ‖g‖∞ μ-a.e. Therefore
| ∗f | ≤ ‖g‖∞ μ-a.e., and hence ‖f‖∞ ≤ ‖g‖∞. �

4.10 Theorem

(i) Lp(X, μ, E) is a Banach space for every p ∈ [1,∞].
(ii) If H is a Hilbert space, then so is L2(X, μ, H) with respect to the scalar

product

( · | · )2 : L2(X, μ, H)× L2(X, μ, H)→ K , (f, g) �→
∫

X

(f | g)H dμ .
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Proof (i) Suppose p ∈ [1,∞]. We already know that Lp(X, μ, E) is a normed
vector space. Let (fj) be a Cauchy sequence in Lp(X, μ, E), and (

∗
fj) a correspond-

ing sequence of representatives. Then
( ∗
fj

)
is a Cauchy sequence in Lp(X, μ, E).

By Theorem 4.6, there exists
∗
f ∈ Lp(X, μ, E) such that ‖ ∗

fj −
∗
f‖p → 0 as j →∞.

Letting f :=
∗
f + N , we have f ∈ Lp(X, μ, E) and ‖fj − f‖p = ‖ ∗

fj −
∗
f‖p → 0.

Therefore Lp(X, μ, E) is complete.

(ii) Using statements (i) and (iv) of Theorem 1.7 and Hölder’s inequality, we
easily prove that ( · | · )2 is a scalar product on L2(X, μ, H) satisfying |(f | f)2| =
‖f‖22 for f ∈ L2(X, μ, H). The claim then follows from (i). �

4.11 Corollary L2(X, μ, K) is a Hilbert space with respect to the scalar product

(f | g)2 =
∫

X

fg dμ for f, g ∈ L2(X, μ, K) .

Continuous functions with compact support

Let Y be a topological space. For f ∈ EY , we call

supp(f) :=
{

x ∈ Y ; f(x) 
= 0
}

the support of f . Here, as usual, the bar denotes the closure (in Y ). Continuous
functions with compact support are particularly significant. We therefore define

Cc(Y, E) :=
{

f ∈ C(Y, E) ; supp(f) is compact
}

.

4.12 Examples (a) For the Dirichlet function χQ ∈ RR of Example III.1.3(c), we
have

supp(χQ) = supp(χR−Q) = R .

Proof This follows from Propositions I.10.8 and I.10.11. �

(b) Suppose X = Z or X = N, and provide X with the metric induced from R.
Let H0 be the counting measure on P(X). Then6

Cc(X, E) = S(X,H0, E) =
{

ϕ ∈ EX ; Num[ϕ 
= 0] < ∞
}

.

(c) Suppose X is a metric space. Then Cc(X, E) is a vector subspace of BC(X, E).
If X is compact, then Cc(X, E) = C(X, E) = BC(X, E).

Proof The first statement follows from Corollary III.3.7. The second is a consequence
of Exercise III.3.2 and Corollary III.3.7. �

6Compare Example 2.20.
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4.13 Proposition Suppose X is a metric space and A and B are closed, disjoint
nonempty subsets of X . There exists ϕ ∈ C(X) such that 0 ≤ ϕ ≤ 1, ϕ |A = 1,
and ϕ |B = 0. Such a function is a called a Urysohn function.

Proof If D ⊂ X is nonempty, Example III.1.3(l) shows that the distance func-
tion d( · , D) belongs to C(X). If D is also closed, we have d(x, D) = 0 if and only
if x ∈ D. Using these properties, we easily prove that the function defined by

ϕ(x) :=
d(x, B)

d(x, A) + d(x, B)
for x ∈ X ,

has the stated properties. �

With help from Urysohn functions, we can now prove an important approx-
imation theorem.

4.14 Theorem Suppose X is a σ-compact metric space and μ is a Radon measure
on X . Then Cc(X, E) is a dense vector subspace of Lp(X, μ, E) for p ∈ [1,∞) .

Proof Suppose ε > 0. According to Proposition 4.8, S(X, μ, E) is dense in
Lp(X, μ, E). Thus, because of Theorem 1.17 and Minkowski’s inequality (that
is, the triangle inequality), it suffices to verify that for every μ-measurable set A
of finite measure and every e ∈ E \{0}, there exists f ∈ Cc(X, E) such that
‖f − χAe‖p < ε.

Suppose then that A ∈ A with μ(A) < ∞. Because μ is regular, we can find
a compact subset K and an open subset U of X such that K ⊂ A ⊂ U and

μ(U \K) = μ(U)− μ(K) < (ε/|e|)p .

Proposition 4.13 secures the existence of a Urysohn function ϕ on X with ϕ |K = 1
and ϕ |U c = 0. Setting f := ϕe, we get, as needed,

‖χAe− f‖p
p ≤ |e|

p
∫

X

χU\K dμ ≤ |e|p μ(U \K) < εp . �

Embeddings

Suppose X and Y are topological spaces, and X is a subset of Y . Denoting by
j : X → Y , x �→ x the inclusion7 of X in Y , we say X is continuously embedded

in Y if j is continuous.8 In this case, we write X ↪→ Y . We write X
d

↪→ Y if X
is also a dense subset of Y . If X and Y are vector spaces, the notation X ↪→ Y
(and the term “continuously embedded”) will always mean in addition that X is
a vector subspace of Y , not just any odd subset.

7See Example I.3.2(b).
8These notions become important when X is not provided with the topology induced by Y ;

see Remark 4.15(a).
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4.15 Remarks (a) Suppose V and W are normed vector spaces. V is continuously
embedded in W if and only if V is a vector subspace of W and there is an α > 0
such that ‖v‖W ≤ α ‖v‖V for v ∈ V , that is, if the norm of V is stronger than the
norm induced from W on V .

If V carries the norm induced by W , then V ↪→ W always.

(b) Suppose X is open in Rn. Then

BUCk(X, E) ↪→ BUC	(X, E) for k ≥ � .

If X is bounded as well, then

BUCk(X, K) d
↪→ BUC(X, K) for k ∈ N .

Proof The first statement is clear. The second follows from the Stone–Weierstrass
approximation theorem (Corollary V.4.8) and then Application VI.2.2. �

Simple examples (see Exercise 5.1) show that Lebesgue spaces are generally
not contained in one another. Under suitable extra assumptions on the measure
space (X,A, μ), continuous embeddings exist for Lebesgue spaces. For example,
if H0 is the counting measure on P(N), the spaces �p introduced in Exercise 1.16
coincide with Lp(N,H0, K) for 1 ≤ p ≤ ∞, and we have the embeddings

�1 ↪→ �p ↪→ �q ↪→ �∞ for 1 ≤ p ≤ q ≤ ∞ ,

(see Exercise 11).
Finite measure spaces present an altogether different situation:

4.16 Theorem Let (X,A, μ) be a finite complete measure space. Then

Lq(X, μ, E) d
↪→ Lp(X, μ, E) for 1 ≤ p < q ≤ ∞

and
‖f‖p ≤ μ(X)1/p−1/q ‖f‖q for f ∈ Lq(X, μ, E) . (4.5)

Proof (i) Take f ∈ Lq(X, μ, E) and set r := q/p. Let g ∈ Lq(X, μ, E) be a
representative of f . Then |g|p belongs to Lr(X, μ, R), and 1/r′ = (q − p)/q.
Further, χX belongs to Lr′(X, μ, R), because μ is a finite measure. Thus in the
case q <∞ Hölder’s inequality gives

‖g‖p
p =

∫
X

χX |g|p dμ ≤
(∫

X

χr′
X dμ

)1/r′(∫
X

|g|pr dμ
)1/r

= μ(X)(q−p)/q ‖g‖p
q ,

and we find ‖g‖p ≤ μ(X)1/p−1/q ‖g‖q; this clearly also holds in the case q = ∞.
Because g is an arbitrary representative of f , we see that f belongs to Lp(X, μ, E)
and (4.5) holds. By Remark 4.15(a), it follows that Lq(X, μ, E) ↪→ Lp(X, μ, E).
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(ii) M :=
{

[ϕ] ∈ L0(X, μ, E) ; ϕ ∈ S(X, μ, E)
}

satisfies M ⊂ Lq(X, μ, E),
and, because p < ∞, Proposition 4.8 implies that M is dense in Lp(X, μ, E).
Therefore Lq(X, μ, E) is also dense in Lp(X, μ, E). �

The next theorem shows that, in the case of a massive Radon measure μ,
an element of L0(X, μ, E) has at most one continuous representative. In this
case, then, we can identify each function in C(X, E) with the equivalence class it
generates in L0(X, μ, E), and regard C(X, E) as a vector subspace of L0(X, μ, E).

4.17 Proposition Suppose μ is a massive Radon measure on a σ-compact space X .
Then the map

C(X, E)→ L0(X, μ, E) , f �→ [f ] (4.6)

is linear and injective.

Proof Theorem 1.17 shows that the map (4.6) is well defined and linear.
Take f, g ∈ C(X, E) with [f ] = [g]. There exists h ∈ N such that f − g = h,

that is, f − g = 0 μ-a.e. Assume for a contradiction that f(x) 
= g(x) for some
x ∈ X . By continuity, (f − g)(y) 
= 0 for all y in some open neighborhood U of x.
But μ(U) > 0, contrary to the assumption that f − g = 0 μ-a.e. Therefore f = g,
which proves the asserted injectivity. �

Convention Let μ be a massive Radon measure on a σ-compact space X . We
identify C(X, E) with its image in L0(X, μ, E) under the injection (4.6) and
so regard C(X, E) as a vector subspace of L0(X, μ, E). Then

‖f‖B(X,E) = ‖f‖∞ for f ∈ BC(X, E) .

The following result is a simple consequence of this convention.

4.18 Theorem Let μ be a massive Radon measure on a σ-compact metric space X .

(i) Cc(X, E) is a dense vector subspace of Lp(X, μ, E) for every p ∈ [1,∞).
(ii) BC(X, E) is a closed vector subspace of L∞(X, μ, E).

Proof The first statement follows from Theorem 4.14. The second is obvious. �

Continuous linear functionals on Lp

For the rest of this section, we use for p ∈ [1,∞] the abbreviations

Lp(X) := Lp(X, μ, K) and L′
p(X) :=

(
Lp(X)

)′
,

the prime on the right indicating the dual space (Remark VII.2.13(a)). From
Hölder’s inequality, it follows that, for every f ∈ Lp′(X), the map

Tf : Lp(X)→ K , g �→
∫

X

fg dμ
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is a continuous linear functional on Lp(X), that is, an element of L′
p(X); it satisfies

‖Tf‖L′
p(X) ≤ ‖f‖p′ . (4.7)

In fact (4.7) holds with equality:

4.19 Proposition The map

T : Lp′(X)→ L′
p(X) , f �→ Tf

is a linear isometry for every p ∈ [1,∞].

Proof (i) Clearly T is linear. Also, in view of (4.7), we need only show that for
every f ∈ Lp′(X) satisfying f 
= 0 and every ε > 0, there is g ∈ Lp(X) such that

‖g‖p = 1 and ‖f‖p′ <
∣∣∣∫

X

fg dμ
∣∣∣ + ε .

(ii) First assume p ∈ (1,∞), so p′ ∈ (1,∞). Therefore

g := sign f ‖f‖1−p′

p′ |f |p′−1

is well defined and μ-measurable (see Exercise 1.19 and Theorem 1.7(i)). Also∫
X

|g|p dμ = ‖f‖p(1−p′)
p′

∫
X

|f |p(p′−1) dμ = ‖f‖−p′
p′ ‖f‖p′

p′ = 1

and fg = ‖f‖1−p′
p′ |f |p

′
. Therefore ‖f‖p′ =

∫
X

fg dμ.

For p =∞, we set g := sign f . Then

‖g‖∞ = 1 and ‖f‖1 =
∫

X

fg dμ .

(iii) Now suppose that p = 1. Suppose 0 < ε < ‖f‖∞ and set α := ‖f‖∞− ε.
Because [ |f | > α] has positive measure and μ is σ-finite, we can find A ∈ A such
that A ⊂ [ |f | > α] and μ(A) ∈ (0,∞). Therefore g := sign f

(
1
/
μ(A)

)
χA is well

defined and μ-measurable. Clearly ‖g‖1 = 1 and∫
X

fg dμ =
1

μ(A)

∫
A

|f | dμ ≥ α = ‖f‖∞ − ε .

This concludes the proof. �
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4.20 Remarks (a) One can show that the map T of Proposition 4.19 is surjective
for every p ∈ [1,∞), that is, every continuous linear functional on Lp(X) can
be represented is of the form Tf for an appropriate f ∈ Lp′(X); see [Rud83,
Theorem 6.1.6], for example. Consequently T : Lp′(X) → L′

p(X) is an isometric
isomorphism for every p ∈ [1,∞). This isomorphism allows us to identify Lp′(X)
with L′

p(X) for p ∈ [1,∞). The dual pairing 〈 · , · 〉Lp : L′
p(X) × Lp(X) → K

satisfies
〈g, f〉Lp =

∫
X

fg dμ for (g, f) ∈ Lp′(X)× Lp(X) .

(b) In the case p = ∞, the map T : L1(X) → L′
∞(X) is generally not surjective;

see [Fol99, S. 191].

(c) Denote by 〈 · , · 〉E : E′ ×E → K the duality pairing between E and E′. Then
the map

κ : E → [E′]′ , e �→ 〈 · , e〉E
is linear and bounded. Its norm is at most 1.
Proof Clearly κ is linear. Suppose e ∈ E with ‖e‖E ≤ 1. Then∣∣〈κ(e), e′

〉
E′

∣∣ = |〈e′, e〉E| ≤ ‖e′‖E′ for e′ ∈ E′ ,

and we find ‖κ(e)‖(E′)′ ≤ 1, from which the claim follows. �

(d) With tools from functional analysis, one can show that κ is an isometry and
therefore injective. We call κ the canonical injection of E into the double dual space
E′′ := (E′)′ of E. If κ is surjective as well, and hence an isometric isomorphism, we
say E is reflexive. In this case, the canonical isomorphism κ allows us to identify
E with its double dual E′′.

(e) Lp(X) reflexive for p ∈ (1,∞).
Proof This follows from (a). �

(f) The spaces L1(X) and L∞(X) are generally not reflexive; see, for instance,
[Ada75, Theorem 2.35]. �

Exercises

1 Let S(X, μ, E) :=
{

[f ] ∈ L0(X, μ, E) ; [f ] ∩ S(X,μ, E) 	= ∅
}
. Prove that S(X, μ, E)

a dense vector subspace of Lp(X, μ, E) for 1 ≤ p <∞.

2 For a ∈ Rn, we define τa : E(Rn) → E(Rn), the right translation by a, by

(τaϕ)(x) := ϕ(x− a) for x ∈ Rn , ϕ ∈ E(Rn) .

Set τa[f ] := [τaf ] for [f ] ∈ Lp. Prove:

(i) (Rn, +) →
(
Laut

(
Lp(Rn, λn, E)

)
, ◦

)
, a �→ τa is a group homomorphism with

‖τa‖L(Lp) = 1 for every p ∈ [1,∞].
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(ii) For p ∈ [1,∞) and f ∈ Lp(Rn, λn, E), we have lima→0 ‖τaf − f‖p = 0.

(iii) If lima→0 ‖τaf − f‖∞ = 0, there exists g ∈ BUC(Rn, E) such that f = g μ-a.e.

3 Suppose μ is a complete Radon measure on a σ-compact space X, and let (Xj)j∈N

be a sequence of relatively compact open subsets of X covering X. For p ∈ [1,∞], set

qj,p(f) := ‖χXj f‖p for j ∈ N , f ∈ L0(X, μ, E) ,

Lp,loc(X, μ, E) :=
{

f ∈ L0(X, μ, E) ; qj,p(f) <∞, j ∈ N
}

.

Finally, define

dp(f, g) :=

∞∑
j=0

2−jqj,p(f − g)

1 + qj,p(f − g)
for f, g ∈ Lp,loc(X, μ, E) .

(i) Lp,loc(X, μ, E) is well defined, that is, independent of the particular sequence (Xj).

(ii)
(
Lp,loc(X, μ, E), dp

)
is a complete metric space.

(iii) Lp(X, μ, E)
d

↪→ Lp,loc(X, μ, E)
d

↪→ L1,loc(X, μ, E).

(iv) The topology generated by dp is independent of the sequence (Xj).

4 Suppose p, q ∈ [1,∞] and define

Lp ∩ Lq := (Lp ∩ Lq)(X, μ, E) := Lp(X, μ, E) ∩ Lq(X, μ, E) ,

Lp + Lq := (Lp + Lq)(X, μ, E) := Lp(X, μ, E) + Lq(X, μ, E) .

Also set ‖f‖Lp∩Lq := ‖f‖p + ‖f‖q for f ∈ Lp ∩ Lq, and put

‖f‖Lp+Lq := inf
{
‖g‖p + ‖h‖q ; g ∈ Lp(X, μ, E), h ∈ Lq(X, μ, E) with f = g + h

}
for f ∈ Lp + Lq .

(i) Check that the interpolation inequality

‖f‖r ≤ ‖f‖1−θ
p ‖f‖θ

q , where
1

r
:=

1− θ

p
+

θ

q
,

holds for f ∈ Lp ∩ Lq and θ ∈ [0, 1].

(ii) (Lp ∩ Lq, ‖·‖Lp∩Lq) and (Lp + Lq , ‖·‖Lp+Lq ) are Banach spaces with

(Lp ∩ Lq)(X, μ, E) ↪→ Lr(X, μ, E) ↪→ (Lp + Lq)(X,μ, E) ↪→ L1,loc(X, μ, E)

for 1 ≤ p ≤ r ≤ q ≤ ∞.

(Hints: (i) Hölder’s inequality. (ii) Take f ∈ Lp + Lq with ‖f‖Lp+Lq = 0. To show it
vanishes, note that Lr ↪→ L1,loc for r ∈ [1,∞] (see Exercise 3). To prove the completeness
of Lp + Lq apply Lemma 4.5. The embedding Lp ∩ Lq ↪→ Lr follows from (a).)

5 Suppose p ∈ [1,∞) and f ∈ (Lp ∩ L∞)(X, μ, E). Prove that limq→∞ ‖f‖q = ‖f‖∞.

6 Prove that the map

L∞(X, μ, K)× Lp(X, μ, E)→ Lp(X, μ, E) ,
(
[ϕ], [f ]

)
�→ [ϕf ]

is bilinear and continuous and has norm at most 1.
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7 Suppose μ(X) <∞, and for f, g ∈ L0(X, μ, E) put

d0(f, g) :=

∫
X

|f − g|
1 + |f − g| dμ .

(i)
(
L0(X, μ, E), d0

)
is a metric space.

(ii) (fj) converges to 0 in
(
L0(X, μ, E), d0

)
if and only if it converges to 0 in measure.

8 Let μ be a Radon measure on a σ-compact space X and let E be separable. Prove:

(i) Cc(X, K) is separable.

(ii) Cc(X, E) is separable.

(iii) Lp(X, μ, E) is separable for p ∈ [1,∞).

(iv) L∞(X, μ, E) is generally not separable.

(v) S(X,μ, E) is generally not dense in L∞(X, μ, E).

(Hints: (i) Corollary V.4.8 and Remark 1.16(e). (ii) Take A ⊂ Cc(X, K) and let B be
countable and dense in E. For a ∈ A and b ∈ B, set (a ⊗ b)(x) := a(x)b for x ∈ X and
consider { ∑m

j=0 aj ⊗ bj ; m ∈ N, (aj , bj) ∈ A×B, j = 0, . . . , m
}

.

(iii) Theorem 4.14. (iv) Find an uncountable subset A of L∞ such that ‖f − g‖∞ ≥ 1
for all distinct f, g ∈ A.)

9 If μ finite and E is finite-dimensional, show that S(X, μ, E) is dense in L∞(X, μ, E).

10 Prove the statement of Remark 4.9(c).

11 Prove:

(i) �p = Lp(N,H0, K) for 1 ≤ p ≤ ∞.

(ii) �p ↪→ �q with ‖·‖q ≤ ‖·‖p if 1 ≤ p ≤ q ≤ ∞.

(iii) �p
d

↪→ �q
d

↪→ c0 ↪→ �∞ if 1 ≤ p ≤ q <∞ (see Section II.2).

12 Suppose p, q ∈ [1,∞] with 1 ≤ p ≤ q ≤ ∞. Prove:

(i) L∞(X, μ, E) ⊂ L1(X, μ, E) =⇒ Lq(X, μ, E) ↪→ Lp(X, μ, E).

(ii) L1(X, μ, E) ⊂ L∞(X, μ, E) =⇒ Lp(X, μ, E) ↪→ Lq(X, μ, E).

(iii) There exists a complete σ-finite measure space (X,A, μ) [or (Y,B, ν)] realizing the
embedding L∞(X, μ, R) ↪→ L1(X, μ, R) [or L1(Y, ν,R) ↪→ L∞(Y, ν, R)].

(Hints: (i) Hölder’s inequality. (ii) Show that Lp ↪→ L∞ and apply Exercise 4(i).)

13 For p ∈ (0, 1), prove:

(i) ‖f + g‖p
p ≤ ‖f‖p

p + ‖g‖p
p for f, g ∈ L0(X, μ, E).

(ii) ‖f + g‖p ≤ 21/p−1(‖f‖p + ‖g‖p) for f, g ∈ L0(X, μ, E).

(iii) Lp(X, μ, E) is a vector subspace of L0(X, μ, E).

(iv) N :=
{

f ∈ L0(X, μ, E) ; f = 0 μ-a.e.
}

is a vector subspace of Lp(X, μ, E), and

N =
{

f ∈ Lp(X, μ, E) ; ‖f‖p = 0
}

.

(v) Putting ρ(f, g) := ‖f − g‖p
p induces a metric on

Lp(X, μ, E) := Lp(X, μ, E)/N .

(vi)
(
Lp(X, μ, E), ρ

)
is complete.
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(vii) For f, g ∈ Lp(X, μ, R) with f ≥ 0 and g ≥ 0, we have ‖f + g‖p ≥ ‖f‖p + ‖g‖p.

(viii) The map
Lp(X, μ, R)→ R+ , [f ] �→ ‖f‖p

is not a norm.

(Hints: (i) For a > 0, the map
[
t �→ ap + tp − (a + t)p

]
is increasing on R+. (ii) For

a > 0, examine
[
t �→ (a1/p + t1/p)

/
(a + t)1/p

]
. (vi) Adapt the proof of Lemma 4.5 and

Theorem 4.6. (vii) Theorem 4.2.)

14 Suppose pj ∈ [1,∞] for j = 1, . . . , m; let 1/r :=
∑m

j=1 1/pj . For fj ∈ Lpj (X, μ, K),
show that

∏m
j=1 fj belongs to Lr(X, μ, K) and that∥∥∥ m∏

j=1

fj

∥∥∥
r
≤

m∏
j=1

‖fj‖pj .

(Hint: Hölder’s inequality.)

15 Suppose X is a metric space. The function f ∈ EX vanishes at infinity if for every
ε > 0 there is a compact subset K of X such that |f(x)| < ε for all x ∈ Kc. Verify that

C0(X, E) :=
{

f ∈ C(X, E) ; f vanishes at infinity
}

is the closure of Cc(X, E) in BUC(X, E).

16 For f ∈ L0(X, μ, E), set

λf (t) := μ
(
[ |f | > t]

)
and f∗(t) := inf

{
s ≥ 0 ; λf (s) ≤ t

}
for t ∈ [0,∞) .

We call f∗ : [0,∞)→ [0,∞] the decreasing rearrangement of f . Prove:

(i) λf and f∗ are decreasing, continuous from the right, and Lebesgue measurable.

(ii) If |f | ≤ |g| for g ∈ L0(X, μ, E), then λf ≤ λg and f∗ ≤ g∗.

(iii) If (fj) is an increasing sequence such that |fj | ↑ |f |, then λfj ↑ λf and f∗
j ↑ f∗.

(iv) For p ∈ (0,∞),∫
X

|f |p dμ = p

∫
R+

tp−1λf (t)λ1(dt) =

∫
R+

(f∗)p dλ1 .

(v) ‖f‖∞ = f∗(0).

(vi) λf = λf∗ .

(Hint for (iv): Consider first simple functions and then apply (iii) together with Theorems
1.12 and 3.4.)

17 For j ∈ N, let Ij,k :=
[
k2−j , (k+1)2−j

]
for k = 0, . . . , 2j−1. Further let { Jn ; n ∈ N }

be a relabeling of { Ij,k ; j ∈ N, k = 0, . . . , 2j−1 } and set fn := χJn for j ∈ N. Prove that
(fn) is a null sequence in Lp

(
[0, 1]

)
for every p ∈ [1,∞), even though

(
fn(x)

)
diverges

for every x ∈ [0, 1].

18 Suppose (fk) is a sequence in Lp(X), where 1 ≤ p <∞. We say that (fk) converges
weakly in Lp(X) to f ∈ Lp(X) if∫

X

fkϕ dx→
∫

X

fϕ dx for ϕ ∈ Lp′(X) .

In this case, f is called a weak limit of (fk) in Lp(X).
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Prove:

(i) Weak limits in Lp(X) are unique.

(ii) Every convergent sequence in Lp(X) converges weakly in Lp(X).

(iii) If (fk) converges weakly in Lp(X) to f and converges μ-a.e. to g ∈ Lp(X), then
f = g.

(iv) If (fk) converges weakly in L2(X) to f and ‖fk‖2 → ‖f‖2, then (fk) converges in
L2(X) to f .

(v) Let ek(t) := (2π)−1/2eikt for 0 < t < 2π and k ∈ N. Then the sequence (ek)
converges weakly to 0 in L2

(
(0, 2π)

)
, even though it diverges in L2

(
(0, 2π)

)
.

(Hints: (i) For f ∈ Lp(X) consider ϕ(x) := f(x) |f(x)|p/p′−1. (ii) Hölder’s inequality.
(iii) Show that g ∈ Lp(X), so [ |g| =∞] is a μ-null set. If Xn :=

[
supk≥n |fk(x)| ≥ n

]
then⋂

Xn is also a μ-null set. Now consider lim
∫

Xc
n

fnϕ dx for ϕ ∈ Lp′(X). (iv) Apply

the parallelogram identity in L2(X). (v) The first statement follows from Bessel’s
inequality, the second from (ii).)



5 The n-dimensional Bochner–Lebesgue integral

In this short section, we discuss the relationship between the Bochner–Lebesgue
integral and the Cauchy–Riemann integral defined in Chapter VI. We show that
every jump continuous function is Lebesgue measurable and that the corresponding
integrals are equal. This connection will allow us to bring into Lebesgue integration
theory the methods we developed for the Cauchy–Riemann integral.

We also show that a bounded scalar-valued function on a compact interval
is Riemann integrable if and only if the set of its discontinuities has measure
zero. From this it follows that there are Lebesgue integrable functions that are
not Riemann integrable. Thus the Lebesgue integral is a proper extension of the
Riemann integral— and therefore also of the Cauchy–Riemann integral.

In this entire section, suppose

• X ⊂ Rn is a λn-measurable set of positive measure;
E = (E, | · |) is a Banach space.

Lebesgue measure spaces

From Exercise IX.1.7, we know that LX := L(n) |X is a σ-algebra over X . Thus
the restriction λn |X := λn | LX is a measure on X , called n-dimensional Lebesgue
measure (or Lebesgue n-measure) on X . We denote this restriction by λn as well.
We check easily that (X,LX , λn) is a complete σ-finite measure space. If there is
no danger of misunderstanding, we drop the qualifier “Lebesgue” (or “λn”) from
the words measurable, measure, integrable and so on.

If f ∈ EX is integrable, we call∫
X

f dλn :=
∫

X

f d(λn |X) =
∫

Rn

f̃χX dλn

the (n-dimensional) (Bochner–Lebesgue) integral of f over X . The notations∫
X

f(x) dλn(x) and
∫

X

f(x)λn(dx)

are also common.

For short, we set

Lp(X, E) := Lp(X, λn, E) and Lp(X, E) := Lp(X, λn, E) .

We also set Lp(X) := Lp(X, K) and Lp(X) := Lp(X, K) for p ∈ [1,∞] ∪ {0}.
The next theorem lists important properties of n-dimensional integrals.
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5.1 Theorem Suppose X is open in Rn or, in the case n = 1, a perfect interval.
Then:

(i) λn is a massive Radon measure on X .

(ii) C(X, E) is a vector subspace of L0(X, E).
(iii) BC(X, E) is a closed vector subspace of L∞(X, E).
(iv) Cc(X, E) is a dense vector subspace of Lp(X, E) for p ∈ [1,∞). If K is a

compact subset of X , then

‖f‖p ≤ λn(K)1/p ‖f‖∞ for f ∈ Cc(X, E) such that supp(f) ⊂ K .

(v) If X has finite measure and 1 ≤ p < q ≤ ∞, then

Lq(X, E) d
↪→ Lp(X, E)

and
‖f‖p ≤ λn(X)1/p−1/q ‖f‖q for f ∈ Lq(X, E) .

Proof (i) X is a σ-compact metric space— by Remark 1.16(e) if X is open, and
for obvious reasons if X is an interval. Now the claim follows from Remark 1.16(h)
and Exercise IX.5.21.

(ii) and (iii) are covered respectively by Proposition 4.17 and Theorem 4.18(ii).
(iv) The first statement is a consequence of Theorem 4.18(i), and the second

is obvious.
(v) is a special case of Theorem 4.16. �

5.2 Remark Suppose X is measurable and its boundary ∂X is a λn-null set.
Then the Borel set X̊ belongs to L(n), and we have λn

(
X̊

)
= λn(X). Further,

one checks easily that the map

Lp(X, E)→ Lp

(
X̊, E

)
, [f ] �→

[
f | X̊

]
is a vector space isomorphism for p ∈ [1,∞] ∪ {0}. If p ∈ [1,∞], it is an isometry.
Thus we can identify Lp(X, E) and Lp

(
X̊, E

)
for p ∈ [1,∞] ∪ {0}. In particular,

for an interval X in R with endpoints a := inf X and b := sup X , we have

Lp(X, E) = Lp

(
[a, b], E

)
= Lp

(
[a, b), E

)
= Lp

(
(a, b], E

)
= Lp

(
(a, b), E

)
for p ∈ [1,∞] ∪ {0}.

The Lebesgue integral of absolutely integrable functions

We now show that every absolutely integrable function is Lebesgue integrable, and
its integral in the sense of Section VI.8 equals the Lebesgue integral.
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5.3 Theorem Suppose f : (a, b)→ E is absolutely integrable, where a, b ∈ R and
a < b. Then f belongs to L1

(
(a, b), E

)
, and∫

(a,b)

f dλ1 =
∫ b

a

f .

Proof (i) Suppose a < α < β < b. If g : [α, β] → E is a staircase function, then
g is obviously λ1-simple and ∫

(α,β)

g dλ1 =
∫ β

α

g . (5.1)

Now suppose g : [α, β] → E is jump continuous. Then there is a sequence (gj)
of staircase functions that converges uniformly to g. Therefore g is measurable,
and Remark VI.1.1(d) and Corollary 3.15(ii) show that g belongs to L1

(
(α, β), E

)
.

Because g is bounded and the sequence (gj) converges uniformly, there is an M ≥ 0
such that |gj | ≤ M for all j ∈ N. Therefore it follows from Lebesgue’s dominated
convergence theorem that

lim
j→∞

∫
(α,β)

gj dλ1 =
∫

(α,β)

g dλ1

in E, and we conclude using (5.1) and the definition of the Cauchy–Riemann
integral that ∫ β

α

g = lim
j→∞

∫ β

α

gj = lim
j→∞

∫
(α,β)

gj dλ1 =
∫

(α,β)

g dλ1 .

(ii) We fix c ∈ (a, b) and choose a sequence (βj) in (c, b) such that βj ↑ b. We
also set1

g := χ[c,b)f , gj := χ[c,βj]f for j ∈ N .

By (i), (gj) is a sequence in L1(R, E). Obviously (gj) converges pointwise to g
and (|gj |) is an increasing sequence converging to |g|. Therefore g is measurable.
From (i), it follows that∫

R

|gj| dλ1 =
∫

(c,βj)

|f | dλ1 =
∫ βj

c

|f | ,

and the absolute convergence of
∫ b

c f implies

lim
j→∞

∫
R

|gj | dλ1 = lim
j→∞

∫ βj

c

|f | =
∫ b

c

|f | . (5.2)

1Here and in similar situations, we regard χ[c,b)f as a function on R. Writing χ[c,b)f̃ would
be more precise but cumbersome.
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On the other hand, the monotone convergence theorem shows that∫
R

|g| dλ1 = lim
j→∞

∫
R

|gj | dλ1 ,

and we see from (5.2) that g belongs to L1(R, E). Therefore we can apply the
dominated convergence theorem to the sequence (gj), to get

lim
j→∞

∫
R

gj dλ1 =
∫

R

g dλ1 =
∫

[c,b)

f dλ1

in E. Further, it follows from (i) that∫
R

gj dλ1 =
∫

[c,βj)

f dλ1 =
∫ βj

c

f ,

and hence, by Proposition VI.8.7,

lim
j→∞

∫
R

gj dλ1 = lim
j→∞

∫ βj

c

f =
∫ b

c

f

in E. Thus the limits
∫
[c,b) f dλ1 and

∫ b

c f are equal. In similar fashion, we show
that χ(a,c]f belongs to L1(R, E) and that

∫
(a,c] f dλ1 =

∫ c

a f . This shows that f is
Lebesgue integrable with

∫
(a,b) f dλ1 =

∫ b

a f . �

5.4 Corollary For −∞ < a < b <∞, we have S
(
[a, b], E

)
↪→ L1

(
[a, b], E

)
and∫

[a,b]

f dλ1 =
∫ b

a

f for f ∈ S
(
[a, b], E

)
.

Proof This follows from Theorem 5.3 and Proposition VI.8.3. �

5.5 Remarks Fix a, b ∈ R with a < b.

(a) Suppose f : (a, b) → E is admissible and
∫ b

a f exists as an improper integral.
Then f need not belong to L1

(
(a, b), E

)
.

Proof We define f : R→ R by

f(x) :=

{
0 if x ∈ (−∞, 0) ,

(−1)j/j if x ∈ [j − 1, j), where j ∈ N× .

Obviously f is admissible, and
∫ ∞
−∞ f exists in R, since∫ ∞

−∞
f =

∞∑
j=1

(−1)j/j .
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If f belonged to L1(R), we would have
∫

R
|f | dλ1 < ∞, contradicting the monotone

convergence theorem, which gives∫
R

|f | dλ1 = lim
k→∞

∫
R

χ[0,k] |f | dλ1 = lim
k→∞

k∑
j=1

1/j =∞ . �

(b) Suppose f : (a, b) → E is admissible and f belongs to L1

(
(a, b), E

)
. Then f

is absolutely integrable, and∫
(a,b)

f dλ1 =
∫ b

a

f in E .

Proof Take c ∈ (a, b) and let (αj) be a sequence in (a, c) with αj → a. Also let
fj := χ[αj,c]f . Then (fj) converges pointwise to χ(a,c]f , and we have |fj | ≤ |f | for j ∈ N.

Because f is admissible, Proposition VI.4.3 shows that |f |
∣∣ [αj , c] belongs to S

(
[αj , c], R

)
.

Thus it follows from Corollary 5.4 and the dominated convergence theorem that∫ c

αj

|f | =
∫

[αj ,c]

|f | dλ1 →
∫

(a,c]

|f | dλ1 .

Therefore
∫ c

a
|f | exists. Analogously, we show the existence of

∫ b

c
|f | and thus the absolute

convergence of
∫ b

a
f . The second statement now follows from Theorem 5.3. �

Suppose f ∈ L1((a, b), E). Remark 5.5(b) shows that no misunderstanding
should arise in this case if we denote

∫
(a,b) f dλ1 by

∫ b

a f or
∫ b

a f(x) dx. From now
on, we will usually write in the n-dimensional case∫

X

f dx :=
∫

X

f dλn .

Theorem 5.3 and its corollary allow us to transfer the integration methods
developed in Volume II to the framework of Lebesgue theory. In combination
with the integrability criterion of Theorem 3.14 and the dominated convergence
theorem, these provide very effective tools for proving the existence of integrals.
This will be made clear in the remaining sections of this chapter, when we develop
procedures for the concrete evaluation of “multidimensional” integrals.

A characterization of Riemann integrable functions

Theorem 5.3 showed that the Lebesgue integral is an extension of the Cauchy–
Riemann integral. We now characterize Riemann integrable functions and show
that this extension is proper.

5.6 Theorem Let I be a compact interval, and let f : I → K be bounded. Then
f is Riemann integrable if and only if it is continuous λ1-a.e. In this case, f is
Lebesgue integrable, and the Riemann and Lebesgue integrals are equal.
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Proof (i) We can take without loss of generality the case K = R and I := [0, 1].
For k ∈ N, let Zk := (ξ0,k, . . . , ξ2k,k) be the partition of [0, 1] with ξj,k := j 2−k for
j = 0, . . . , 2k. Also suppose

I0,k := [ξ0,k, ξ1,k] , Ij,k := (ξj,k, ξj+1,k] for j = 1, . . . , 2k − 1 .

Finally, set αj,k := infx∈Ij,k
f(x), βj,k := supx∈Ij,k

f(x), and

gk :=
2k−1∑
j=0

αj,kχIj,k
, hk :=

2k−1∑
j=0

βj,kχIj,k
for k ∈ N .

Then (gk) is an increasing and (hk) a decreasing sequence of λ1-simple functions.
Therefore their pointwise limits g := limk gk and h := limk hk are defined and
λ1-measurable, and g ≤ f ≤ h. Furthermore, we have∫

[0,1]

gk dλ1 = S(f, k) and
∫

[0,1]

hk dλ1 = S(f, k) ,

where S(f, k) and S(f, k) stand for the lower and upper sums of f on [0, 1] with
respect to the partition Zk (see Exercise VI.3.7). Denoting by

−

∫
f and

−∫
f the

lower and upper Riemann integrals of f on [0, 1], we find from the monotone
convergence theorem that∫

[0,1]

(h− g) dλ1 =
−∫

f −
−

∫
f . (5.3)

(ii) Let R :=
⋃

k∈N{ξ0,k, . . . , ξ2k,k} be the set of endpoints of the intervals
Ij,k. Let C be the set of continuous points of f . Then

[g = h] ∩Rc ⊂ C ⊂ [g = h] . (5.4)

To see this, take ε > 0. Suppose first that x0 ∈ Rc and g(x0) = h(x0). We can
find a k ∈ N such that hk(x0)− gk(x0) < ε and a j ∈ {0, . . . , 2k − 1} such that x0

lies in the interval (ξj,k, ξj+1,k). For x ∈ Ij,k, we thus have

|f(x)− f(x0)| ≤ sup
y∈Ij,k

f(y)− inf
y∈Ij,k

f(y) = hk(x0)− gk(x0) < ε ,

which proves the continuity of f at x0.
Now suppose x0 ∈ C. Take δ > 0 such that |f(x) − f(x0)| < ε/2 for

x ∈ [x0 − δ, x0 + δ] ∩ [0, 1]. Choose k0 ∈ N with 2−k0 ≤ δ and take for every
k ≥ k0 a j ∈ {0, . . . , 2k − 1} such that x0 ∈ Ij,k ⊂ [x0 − δ, x0 + δ]. Then

0 ≤ hk(x0)− gk(x0) = sup
x∈Ij,k

(
f(x)− f(x0)

)
− inf

x∈Ij,k

(
f(x)− f(x0)

)
< ε .

It follows that h(x0)− g(x0) = limk

(
hk(x0)− gk(x0)

)
= 0. This proves (5.4).
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(iii) If f is a Riemann integrable function, then
−

∫
f =

−∫
f =

∫
f (Exercise

VI.3.10). Therefore (5.3) shows that

h = g = f λ1-a.e. , (5.5)

which implies the λ1-measurability of f . Since f is bounded, f ∈ L1

(
[0, 1]

)
. We

also have |gk| ≤ ‖f‖∞ λ1-a.e. for k ∈ N. Then Lebesgue’s dominated convergence
theorem results in∫

[0,1]

g dλ1 = lim
k

∫
[0,1]

gk dλ1 = lim
k

S(f, k) =
∫ 1

0

f ,

where, in the last equality, we have once more used Exercise VI.3.10. From (5.5)
and Lemma 2.15, it follows that

∫
[0,1]

f dλ1 =
∫ 1

0
f . Finally (5.4), (5.5), and the

countability of R imply that the discontinuous points of f form a set of Lebesgue
measure zero.

(iv) Suppose conversely that Cc has measure zero. By (5.4), so does [g 
= h],
and the Riemann integrability of f follows from (5.3). This finishes the proof. �

5.7 Corollary Some Lebesgue integrable functions are not Riemann integrable.
Thus the Lebesgue integral is a proper extension of the Riemann integral.

Proof Consider the Dirichlet function

f : [0, 1]→ R , f(x) :=
{

1 if x ∈ Q ,

0 if x /∈ Q ,

on [0, 1]. By Lemma 2.15, f belongs to L1

(
[0, 1]

)
, since f vanishes almost every-

where. But we know from Example III.1.3(c) that f is nowhere continuous, hence
not Riemann integrable by Theorem 5.6. �

The equivalence class of maps that agree a.e. with the Dirichlet function
contains Riemann integrable functions — for example, the null function. So this
example is uninteresting from the viewpoint of L1-spaces. However, in Exercise 13,
it will be shown that there exists f ∈ L1

(
[0, 1], R

)
such that no g ∈ [f ] is Riemann

integrable. This implies that the Riemann integral is inadequate for the theory of
Lp-spaces.

Exercises

1 For p, q ∈ [1,∞] with p 	= q, show that Lp(R, E) /⊂ Lq(R, E).

2 Suppose J is an open interval and f ∈ C1(J, E) has compact support. Then
∫

J
f ′ = 0.

3 Suppose f ∈ L0

(
[0, 1], R+

)
is bounded. Show that

−

∫
f ≤

∫
[0,1]

f dλ1 ≤
−∫

f .
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4 Suppose I is a compact interval, and define the space of functions of bounded variation
on I by

BV (I,E) :=
{

f : I → E ; Var(f, I) <∞
}

.

(a) In the sense of vector subspaces, we have the inclusions

C1-(I,E) ⊂ BV (I,E) ⊂ B(I, E) .

(b) Let α := inf I and f ∈ L1(I,E). Then F : I → E, x �→
∫ x

α
f(t) dt belongs to

BV (I,E), and Var(F, I) ≤ ‖f‖1.
(c) For every f ∈ BV (I,R), there are increasing maps s± : I → R such that f = s+−s−.

(d) BV (I,R) is a vector subspace of the space S(I,R) of jump continuous functions
I → R.

(e) Every monotone function belongs to BV (I,R).

(Hint for (c): For α := inf I , consider the functions s+ :=
(
x �→ Var

(
f+, [α, x]

))
and

s− := s− f .)

5 Suppose H is a separable Hilbert space. Show2 that BV
(
[a, b], H

)
is a vector subspace

of L∞
(
[a, b], H

)
and that∫ b−h

a

‖f(t + h)− f(t)‖ dt ≤ h Var
(
f, [a, b]

)
for 0 < h < b− a .

(Hints: Note Exercises 1.1 and 4(d). For 0 < h < b − a and t ∈ [a, b − h], show that
‖f(t + h)− f(t)‖ ≤ Var

(
f, [a, t + h]

)
−Var

(
f, [a, t]

)
.)

6 Suppose J ⊂ R is a perfect interval. A function f : J → E is absolutely continuous if
for every ε > 0 there is δ > 0 such that

m∑
k=0

|f(βk)− f(αk)| < ε

for every finite family
{

(αk, βk) ; k = 0, . . . , m
}

of pairwise disjoint subintervals of J
with

∑m
k=0(βk − αk) < δ. We denote by W 1

1 (J, E) the set of all absolutely continuous
functions in EJ . Prove:

(a) In the sense of vector subspaces, we have the inclusions

BC1(J,E) ⊂W 1
1 (J, E) ⊂ C(J, E) .

(b) If J compact, then W 1
1 (J, E) ⊂ BV (J, E).

(c) The Cantor function (Exercise III.3.8) is continuous but not absolutely continuous.

(d) Set α := inf J and take f ∈ L1(J, E). Then F : J → E, x �→
∫ x

α
f(t) dt is absolutely

continuous.

2One can show that the statement of Exercise 5 remains true if H is replaced by an arbitrary
Banach space.
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7 For j = 1, 2, define fj : [0, 1]→ R by

fj(x) :=

{
x2 sin(1/xj) if x ∈ (0, 1] ,

0 if x = 0 ;

compare Exercise IV.1.2. Prove:

(a) f1 ∈ BV
(
[0, 1], R

)
.

(b) f2 /∈ BV
(
[0, 1], R

)
.

8 Let μ and ν be measures on a measurable space (X,A). We say ν is μ-absolutely
continuous if every μ-null set is also a ν-null set. In this case, we write ν � μ.

(a) Let (X,A, μ) be a σ-finite complete measure space. For f ∈ L0(X, μ, R+), define

f �μ : A → [0,∞] , A �→
∫

A

f dμ .

Show that f � μ is a complete measure on (X,A) with f �μ� μ.

(b) Let A := L[0,1], ν := λ1, and μ := H0. Check:

(i) ν � μ.

(ii) there is no f ∈ L0

(
[0, 1],A, μ

)
such that ν = f � μ.

9 Suppose (X,A, ν) is a finite measure space and μ is measure on (X,A). The following
statements are equivalent:

(i) ν � μ.

(ii) For every ε > 0 there is δ > 0 such that ν(A) < ε for all A ∈ A with μ(A) < δ.

10 For f ∈ L0(R, λ1, R+), let F (x) :=
∫ x

−∞ f(t) dt for x ∈ R, and denote by μF the
Lebesgue–Stieltjes measure on R generated by F . Prove:

(a) F ∈W 1
1 (R, R) implies μF � λ1.

(b) μF � β1 implies F ∈W 1
1 (R, R) if μF is finite.

11 Let I is an interval and take f ∈ L1(I, Rn). For a fixed a ∈ I , suppose
∫ x

a
f(t) dt = 0

for x ∈ I . Show that f(x) = 0 for almost every x ∈ I .

12 Let 0 ≤ a < b <∞ and I := (−b,−a)∪ (a, b), and suppose f ∈ L1(I,E). Show that∫
I
f dx = 0 if f is odd, and

∫
I
f dx = 2

∫ b

a
f dx if f is even.

13 Define
K0 := [0, 1] ,

K1 := K0\(3/8, 5/8) ,

K2 := K1

∖ (
(5/32, 7/32) ∪ (25/32, 27/32)

)
, . . .

Generally, Kn+1 is derived from Kn by the removal of open “middle fourths” of length
(1/4)n+1, rather than middle thirds as in the construction of the traditional Cantor set
(Exercise III.3.8). Set K :=

⋂
Kn and f := χK . Show that f belongs to L1

(
[0, 1]

)
and

that no g ∈ [f ] is Riemann integrable.
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The heart of this section is the proof that the Lebesgue integral of functions of
multiple variables can be calculated iteratively and that this sequence of one-
dimensional integrations can be performed in any order. Therefore multivariable
integration reduces to integrating functions of only one variable. With the results
of the previous section and the procedures developed in Volume II, multidimen-
sional integrals can be calculated explicitly in many cases.

The method of iterative evaluation of integrals has wide-reaching theoretical
applications, a few of which we will present.

Throughout this section, we suppose

• m, n are positive integers and E is a Banach space.

In addition, we will generally identify Rm+n with Rm × Rn.

Maps defined almost everywhere

Suppose (X,A, μ) is a measure space. We will often consider nonnegative R-
valued functions that are only defined μ-a.e. For these, we shall simply write x �→
f(x), without specifying the precise domain of definition. We say such a function
x �→ f(x) is measurable if there is a μ-null set N such that f |N c : N c → R+

is defined and μ-measurable. Therefore
∫

Nc f dμ is defined. If M is another μ-
null set such that f |M c : M c → R+ is defined and μ-measurable, the equalities
μ(N) = μ(M) = μ(M ∪N) = 0 and Remarks 3.3(a) and (b) imply that∫

Nc

f dμ =
∫

Mc∩Nc

f dμ =
∫

Mc

f dμ .

Therefore ∫
X

f dμ :=
∫

Nc

f dμ (6.1)

is well defined and independent of the chosen null set N .

For an E-valued function x �→ f(x) defined μ-a.e., we define measurability
just as above. We say such an f is integrable if f |N c belongs to L1(N c, μ, E).
In this case,

∫
X

f dμ is also defined through (6.1), and Lemma 2.15 shows this
definition is meaningful.

Consider for example A ∈ L(m+n), and assume that the cross section A[x] is
λn-measurable for λm-almost every x ∈ Rm. Then x �→ λn(A[x]) is a nonnegative
R-valued function defined λm-a.e. If x �→ λn(A[x]) is measurable, the integral∫

Rm λn(A[x]) dx is well defined.
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Cavalieri’s principle

We denote by C(m, n) the set of all A ∈ L(m + n) for which
(i) A[x] ∈ L(n) for λm-almost every x ∈ Rm;
(ii) x �→ λn(A[x]) is λm-measurable;
(iii) λm+n(A) =

∫
Rm λn(A[x]) dx.

We want to show that C(m, n) agrees with L(m + n), but we need some prelimi-
naries.

6.1 Remarks (a) Suppose A ∈ C(1, n) is bounded and pr1(A) is an interval with
endpoints a and b. Then

λn+1(A) =
∫ b

a

λn(A[x]) dx .

This statement is called Cavalieri’s principle and makes precise the geometric idea
that the measure (volume) of A can be determined by partitioning A into thin
parallel slices and continuously summing (integrating) the volumes of these slices.

(b) L(m) � L(n) ⊂ C(m, n).

(c) For every ascending sequence (Aj) in C(m, n), the union
⋃

j Aj belongs to
C(m, n).
Proof (i) For j ∈ N, let Mj be a λm-null set such that Aj,[x] := (Aj)[x] ∈ L(n) for
x ∈Mc

j . Letting A :=
⋃

j Aj and M :=
⋃

j Mj , we then have A[x] =
⋃

j Aj,[x] ∈ L(n) for
x ∈Mc. The continuity of λn from below implies λn(A[x]) = limj λn(Aj,[x]) for x ∈Mc,
and we conclude with the help of Proposition 1.11 that x �→ λn(A[x]) is λm-measurable.

(ii) Because Aj ∈ C(m,n), we have∫
Rm

λn(Aj,[x]) dx = λm+n(Aj) for j ∈ N ,

and from the monotone convergence theorem, it follows that

lim
j

∫
Rm

λn(Aj,[x]) dx =

∫
Rm

λn(A[x]) dx . (6.2)
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The continuity of λm+n from below thus shows that

λm+n(A) = lim
j

λm+n(Aj) = lim
j

∫
Rm

λn(Aj,[x]) dx =

∫
Rm

λn(A[x]) dx .

Therefore A belongs to C(m,n). �

(d) Suppose (Aj) is a descending sequence in C(m, n) and there is a k ∈ N such
that λm+n(Ak) < ∞. Then

⋂
j Aj belongs to C(m, n).

Proof We set A :=
⋂

j Aj . The measurability of λm-almost all cross sections A[x] and
of x �→ λn(A[x]) follow as in (c). Next, Lebesgue’s dominated convergence theorem shows
that (6.2) is true in this case. The claim now follows as in (c). �

(e) Suppose (Aj) is a disjoint sequence in C(m, n). Then
⋃

j Aj also belongs to
C(m, n).
Proof Because of (c), it suffices to prove the statement for finite disjoint sequences. We
leave this to the reader as an exercise. �

(f) Every open set in Rm+n belongs to C(m, n).
Proof This follows from Proposition IX.5.6, (e) and (b). �

(g) Every bounded Gδ-set in Rm+n belongs to C(m, n).
Proof This follows from (f) and (d). �

(h) Suppose A is a λm+n-null set. Then A belongs to C(m, n), and there is a
λm-null set M such that A[x] is a λn-null set for every x ∈ M c.
Proof It suffices to verify there is a λm-null set M such that λn(A[x]) = 0 for x ∈Mc.
So let Aj := A ∩ (j Bm+n) for j ∈ N. Then (Aj) is an ascending sequence of bounded
λm+n-null sets with

⋃
j Aj = A. By Corollary IX.5.5, there is a sequence (Gj) of bounded

Gδ-sets with Gj ⊃ Aj and λm+n(Gj) = 0 for j ∈ N. From (g), it therefore follows that

0 = λm+n(Gj) =

∫
Rm

λn(Gj,[x]) dx .

Hence, there is for every j ∈ N a λm-null set Mj such that λn(Gj,[x]) = 0 for x ∈ Mc
j

(see Remark 3.3(c)). Because⋃
j
Gj,[x] ⊃

⋃
j
Aj,[x] =

(⋃
j
Aj

)
[x]

= A[x] for x ∈ Rm ,

M :=
⋃

j Mj has the desired property. �

After these remarks, we can now show the equality of C(m, n) and L(m+n).

6.2 Proposition C(m, n) = L(m + n).

Proof We need only check the inclusion L(m + n) ⊂ C(m, n).
(i) Suppose A ∈ L(m + n) is bounded. By Corollary IX.5.5, there is a

bounded Gδ-set G such that G ⊃ A and λm+n(G) = λm+n(A). Because A has
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finite measure, G\A is a bounded λm+n-null set by Proposition IX.2.3(ii), and
we conclude using Remark 6.1(h) that (G\A)[x] = G[x]\A[x] is a λn-null set for
λm-almost every x ∈ Rm. By Remark 6.1(g), G[x] belongs to L(n) for λm-almost
every x ∈ Rm. Because

A[x] = G[x] ∩ (G[x]\A[x])c for x ∈ Rm ,

this is also true of λm-almost every intersection A[x]. In addition, λn(A[x]) =
λn(G[x]) for λm-almost every x ∈ Rm. We know by Remark 6.1(g) that G belongs
to C(m, n). Therefore x �→ λn(A[x]) is measurable, and

λm+n(G) =
∫

Rm

λn(G[x]) dx =
∫

Rm

λn(A[x]) dx .

Therefore A belongs to C(m, n).
(ii) If A is not bounded, we set Aj := A ∩ (jBm+n) for j ∈ N. Then (Aj) is

an ascending sequence in L(m + n) with
⋃

j Aj = A. The claim now follows from
(i) and Remark 6.1(c). �

6.3 Corollary If A ∈ L(m + n) has finite measure, then λn(A[x]) < ∞ for λm-a.e.
x ∈ Rm.

Proof Because Proposition 6.2 implies∫
Rm

λn(A[x]) dx = λm+n(A) <∞ ,

the claim follows from Remark 3.11(c). �

For A ∈ L(m + n) and x ∈ Rm, we have χA(x, · ) = χA[x] , so Proposition 6.2
can also be formulated in terms of characteristic functions. It is then easy to apply
the statement to linear combinations of characteristic functions and therefore to
simple functions.

6.4 Lemma Suppose f ∈ S(Rm+n, E).
(i) f(x, · ) ∈ S(Rn, E) for λm-almost every x ∈ Rm.

(ii) the E-valued function x �→
∫

Rn f(x, y) dy is λm-integrable.

(iii)
∫

Rm+n f d(x, y) =
∫

Rm

[∫
Rn f(x, y) dy

]
dx.

Proof (i) With f =
∑k

j=0 ejχAj , we have f(x, · ) =
∑k

j=0 ejχAj,[x] for x ∈ Rm.
Then it follows easily from Proposition 6.2 and Corollary 6.3 that there is a λm-null
set M such that f(x, · ) belongs to S(Rn, E) for every x ∈ M c.

(ii) We set

g(x) :=
∫

Rn

f(x, y) dy =
k∑

j=0

ejλn(Aj,[x]) for x ∈M c . (6.3)



X.6 Fubini’s theorem 141

Then Proposition 6.2 and Remark 1.2(d) show that x �→ g(x) is λm-measurable.
In addition, we have

∫
Rm

|g| dx ≤
k∑

j=0

|ej |
∫

Rm

λn(Aj,[x]) dx =
k∑

j=0

|ej |λm+n(Aj) < ∞ .

Therefore x �→ g(x) is λm-integrable.

(iii) Finally, it follows from Proposition 6.2 and (6.3) that

∫
Rm+n

f d(x, y) =
k∑

j=0

ejλm+n(Aj) =
k∑

j=0

ej

∫
Rm

λn(Aj,[x]) dx =
∫

Rm

g dx

=
∫

Rm

[∫
Rn

f(x, y) dy
]
dx ,

which completes the proof. �

6.5 Remark In the definition of the set C(m, n), we chose to single out the first
m coordinates of Rm+n. We could just as well have chosen the last n coordinates
and made the same argument not with λn(A[x]) but with λm(A[y]) for λn-almost
every y ∈ Rn. With this definition of C(m, n), we would obviously have found that
C(m, n) = L(m + n). Thus the roles of x and y in Lemma 6.4 can be exchanged,
and we conclude that, for f ∈ S(Rm+n, E),

(i) f( · , y) ∈ S(Rm, E) for λn-almost every y ∈ Rn;

(ii) the E-valued function y �→
∫

Rm f(x, y) dx is λn-integrable;

(iii)
∫

Rm+n f d(x, y) =
∫

Rn

[∫
Rm f(x, y) dx

]
dy.

In particular, we find∫
Rm

[∫
Rn

f(x, y) dy
]
dx =

∫
Rn

[∫
Rm

f(x, y) dx
]
dy

for f ∈ S(Rm+n, E). In other words, the integral
∫

Rm+n f d(x, y) can be calculated
iteratively in the case of simple functions, and the order in which the integrals are
performed is irrelevant. �

Applications of Cavalieri’s principle

The main result of this section is that the statement of Remark 6.5 about the
iterative calculation of integrals remains true for arbitrary integrable functions f .
Before we prove this theorem, we first give a few applications of Cavalieri’s prin-
ciple, meaning that we are working in the case f = χA.
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6.6 Examples (a) (geometric interpretation of the integral) For M ∈ L(m) and
f ∈ L0(M, R+), the set

Sf := Sf,M :=
{

(x, y) ∈ Rm × R ; 0 ≤ y ≤ f(x), x ∈M
}

belongs to L(m + 1), and∫
M

f dx = λm+1(Sf ) ,

that is, the integral
∫

M f dx equals the
(m+1)-dimensional Lebesgue measure
of the set of points under the graph
of f .1

Proof Set f1 := prR and f2 := f ◦prRm . Then f1 and f2 belong to L0(M ×R, R+), and
Sf = [0 ≤ f1 ≤ f2]. Therefore Proposition 1.9 implies the λm+1-measurability of Sf .
Because (Sf )[x] =

[
0, f(x)

]
for x ∈M , it follows that λ1

(
(Sf )[x]

)
= f(x), and hence

λm+1(Sf ) =

∫
Rm

λ1

(
(Sf )[x]

)
dx =

∫
M

f dx ,

by Proposition 6.2. �

(b) (substitution rule for linear maps) Suppose T ∈ L(Rm), a ∈ Rm and M ∈
L(m). Also let ϕ(x) := a+Tx for x ∈ Rm and f ∈ L1(ϕ(M)). Then f ◦ϕ belongs
to L1(M), and ∫

ϕ(M)

f dy = |detT |
∫

M

(f ◦ ϕ) dx . (6.4)

In particular, the Lebesgue integral is affine isometry invariant, that is, for every
affine isometry ϕ of Rm, we have∫

Rm

f =
∫

Rm

f ◦ ϕ for f ∈ L1(Rm) .

Proof (i) By Theorem IX.5.12, ϕ maps the σ-algebra L(m) into itself. Therefore ϕ(M)
belongs to L(m), and Theorem 1.4 implies that f ◦ ϕ lies in L0(M). The decomposition
f = f1 − f2 + i(f3 − f4) with fj ∈ L1(ϕ(M), R+) shows that we can limit ourselves to
the case of f ∈ L1(ϕ(M), R+). Then (a) says that∫

ϕ(M)

f = λm+1(Sf,ϕ(M)) ,

∫
M

f ◦ ϕ = λm+1(Sf◦ϕ,M ) . (6.5)

(ii) We set â := (a, 0) ∈ Rm × R and T̂ (x, t) := (Tx, t) for (x, t) ∈ Rm × R. Then

â + T̂ (Sf◦ϕ) = Sf and det T = det T̂ , because the representation matrix T̂ has the block

1Compare the introductory remarks to Section VI.3.
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structure [
T̂

]
=

[
[T ] 0
0 1

]
.

Corollary IX.5.23 and Theorem IX.5.25 therefore imply

λm+1(Sf ) = λm+1

(
T̂ (Sf◦ϕ)

)
= |det T |λm+1(Sf◦ϕ) ,

which, due to (6.5), proves (6.4). The integrability of f ◦ϕ follows from Remark 3.11(a). �

(c) (the volume of the unit ball in Rm) For m ∈ N×, we have

λm(Bm) =
πm/2

Γ(1 + m/2)
;

in particular, λ1(B1) = 2, λ2(B2) = π, and λ3(B3) = 4π/3.

Proof Setting ωm := λm(Bm), we obtain from
Cavalieri’s principle and Remarks IX.5.26(b) and
6.5 that

ωm =

∫ 1

−1

λm−1

(
(Bm)[y]

)
dy

=

∫ 1

−1

λm−1

(√
1− y2 Bm−1) dy

= ωm−1

∫ 1

−1

(√
1− y2

)m−1
dy .

To calculate the integral

Bm :=

∫ 1

−1

(1− y2)(m−1)/2 dy = 2

∫ 1

0

(1− y2)(m−1)/2 dy for m ∈ N× ,

we let y = − cos x, so that dy = sin x dx. This gives Bm = 2
∫ π/2

0
sinm x dx. It follows

from the proof of Example VI.5.5(d) that

B2m =
(2m− 1)(2m − 3) · · · · · 1

2m(2m− 2) · · · · · 2 · π , B2m+1 =
2m(2m− 2) · · · · · 2

(2m + 1)(2m− 1) · · · · · 1 · 2 .

Thus we find BmBm−1 = 2π/m and

ωm = Bmωm−1 = BmBm−1ωm−2 =
2π

m
ωm−2 . (6.6)

Since ω1 = 2, we obtain ω2 = B2ω1 = 2B2 = π and therefore, with (6.6),

ω2m =
πm

m!
, ω2m+1 =

(2π)m

1 · 3 · 5 · · · · · (2m + 1)
· 2 .

These two expressions can be unified with the help of the Gamma function, because

Γ(m + 1) = m! , Γ
(
m +

3

2

)
=

√
π

2m+1
· 1 · 3 · · · · · (2m + 1)

(see Theorem VI.9.2 and Exercise VI.9.1). �
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Tonelli’s theorem

We now prove the advertised theorem that justifies the iterative calculation of
integrals of nonnegative R-valued functions. This version, Tonelli’s theorem, will
give us an important integrability criterion in the case of E-valued functions.

6.7 Theorem (Tonelli) For f ∈ L0(Rm+n, R+),
(i) f(x, · ) ∈ L0(Rn, R+) for λm-a.a. x ∈ Rm,

f( · , y) ∈ L0(Rm, R+) for λn-a.a. y ∈ Rn;

(ii) x �→
∫

Rn f(x, y) dy is λm-measurable,

y �→
∫

Rm f(x, y) dx is λn-measurable;

(iii)
∫

Rm+n f d(x, y) =
∫

Rm

[∫
Rn f(x, y) dy

]
dx =

∫
Rn

[∫
Rm f(x, y) dx

]
dy.

Proof (i) By Theorem 1.12, there is an increasing sequence (fj) in S(Rm+n, R+)
that converges to f . The monotone convergence theorem then gives

lim
j

∫
Rm+n

fj d(x, y) =
∫

Rm+n

f d(x, y) in R+ . (6.7)

Further, by Lemma 6.4, there is for every j ∈ N a λm-null set Mj such that
fj(x, · ) ∈ S(Rn, R+) for x ∈ M c

j . If we set M :=
⋃

j Mj , we then see from the
monotone convergence theorem that∫

Rn

fj(x, y) dy
.⏐∫

Rn

f(x, y) dy for x ∈M c . (6.8)

Lemma 6.4(ii), Proposition 1.11, the fact that M has measure zero, and (6.8)
imply that the R-valued function x �→

∫
Rn f(x, y) dy is λm-measurable. Next, it

follows from (6.7), Lemma 6.4(iii), (6.8), and the monotone convergence theorem
that ∫

Rm+n

f d(x, y) = lim
j

∫
Rm+n

fj d(x, y) = lim
j

∫
Rm

[∫
Rn

fj(x, y) dy
]
dx

=
∫

Rm

[∫
Rn

f(x, y) dy
]
dx .

The remaining statements are proved analogously (paying heed to Remark 6.5). �

6.8 Corollary For f ∈ L0(Rm+n, E), suppose f = 0 λm+n-a.e. Then there is a
λm-null set M such that f(x, · ) vanishes λn-a.e. for every x ∈ M c, and a λn-null
set N such that f( · , y) = 0 λm-a.e. for every y ∈ N c.

Proof Clearly, it suffices to prove the existence of M (compare Remark 6.5).
Tonelli’s theorem gives∫

Rm

[∫
Rn

|f(x, y)| dy
]
dx =

∫
Rm+n

|f | d(x, y) = 0 .
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Thus according to Remark 3.3(c) there is a λm-null set M such that∫
Rn

|f(x, y)| dy = 0 for x ∈ M c ,

from which the claim follows again by Remark 3.3(c). �

Fubini’s theorem for scalar functions

It is now easy to extend Tonelli’s to the case of integrable K-valued functions,
which is of particular interest for applications.

6.9 Theorem (Fubini) For f ∈ L1(Rm+n),
(i) f(x, · ) ∈ L1(Rn) for λm-almost every x ∈ Rm,

f( · , y) ∈ L1(Rm) for λn-almost every y ∈ Rn;

(ii) x �→
∫

Rn f(x, y) dy is λm-integrable,

y �→
∫

Rm f(x, y) dx is λn-integrable;

(iii)
∫

Rm+n f d(x, y) =
∫

Rm

[∫
Rn f(x, y) dy

]
dx =

∫
Rn

[∫
Rm f(x, y) dx

]
dy.

Proof (a) For f ∈ L1(Rm+n, R+), the claim follows from Tonelli’s theorem and
Remark 3.3(e).

(b) Given the representation f = f1−f2+i(f3−f4), with fj ∈ L1(Rm+n, R+),
the general case now follows by Corollary 2.12 and the linearity of the integral. �

6.10 Corollary Suppose A ∈ L(m) and f ∈ L1(A). Let (j1, . . . , jm) denote a
permutation of (1, . . . , m). Then∫

A

f dx =
∫

R

(∫
R

· · ·
(∫

R

f̃(x1 . . . , xm) dxj1

)
· · · dxjm−1

)
dxjm .

Fubini’s theorem guarantees that integrable functions can be integrated in
any order. In combination with Tonelli’s theorem, we obtain a simple, versatile,
and extraordinarily important criterion for the integrability of functions of multiple
variables, as well as a method for explicitly calculating integrals.

6.11 Theorem (Fubini–Tonelli) Suppose A ∈ L(m + n) and f ∈ L0(A).
(i) If one of the integrals∫

Rm

[∫
Rn

∣∣f̃(x, y)
∣∣ dy

]
dx ,

∫
Rn

[∫
Rm

∣∣f̃(x, y)
∣∣ dx

]
dy ,

∫
A

|f | d(x, y)

is finite, then so is each of the others, and they are all equal. In that case, f
is integrable, and the statement of Theorem 6.9 holds for f̃ .
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(ii) If prRm(A) is measurable2 and f is integrable, then∫
A

f d(x, y) =
∫

pr
Rm (A)

[∫
A[x]

f(x, y) dy
]
dx .

Proof Because f̃ belongs to L0(Rm+n), the first statement follows immediately
from Tonelli’s theorem. Then by Theorem 3.9, f̃ is integrable, and hence so is f .
The claim is now clear. �

6.12 Remarks (a) We have lost no generality by choosing the first m coordinates,
because by Corollary 6.10, this order can always be achieved by a permutation.

(b) Typically we omit the brackets in
∫

Rn

[∫
Rm f(x, y) dx

]
dy and instead write,

say, ∫
Rn

∫
Rm

f(x, y) dx dy . (6.9)

In this notation, it is understood that the integrals are to be evaluated from the
inside to the outside.3 The iterated integral (6.9) is to be distinguished from the
(m + n)-dimensional integral∫

Rm+n

f d(x, y) =
∫

Rm+n

f dλm+n .

(c) There exists f ∈ L0(R2)
∖
L1(R2) such that∫

R

∫
R

f(x, y) dx dy =
∫

R

∫
R

f(x, y) dy dx = 0 .

Therefore the existence and equality of the iterated integral does not imply that
f is integrable.
Proof Define f : R2 → R by

f(x, y) :=

⎧⎨⎩
xy

(x2 + y2)2
if (x, y) 	= (0, 0) ,

0 if (x, y) = (0, 0) .
(6.10)

Then f is λ2-measurable. For every y ∈ R, the improper Riemann integral
∫

R
f(x, y) dx

converges absolutely. Also f( · , y) is odd. Hence
∫

R
f(x, y) dx = 0 for every4 y ∈ R, and

therefore, because f(x, y) = f(y, x), we have∫
R

∫
R

f(x, y) dx dy =

∫
R

∫
R

f(x, y) dy dx = 0 .

2As Remark IX.5.14(b) shows, this is not generally the case.
3That is, the integral

∫
Rm f(x, y) dx is calculated for fixed y and the result is then integrated

over y in Rn.
4The case y = 0 is covered in the given argument, although it follows more simply from the

fact that f( · , 0) = 0.
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Now suppose f were integrable. Then, by Fubini’s theorem, x �→
∫

R
|f(x, y)| dy would

also be integrable, which, because∫
R

|xy|
(x2 + y2)2

dy =
1

|x| for x 	= 0 ,

cannot be true. �

(d) There exists g ∈ L0(R2)
∖
L1(R2) such that

0 <
∣∣∣∫

R

∫
R

g(x, y) dx dy
∣∣∣ =

∣∣∣∫
R

∫
R

g(x, y) dy dx
∣∣∣ <∞ .

Proof Let f be the function from (6.10) and take h ∈ L1(R2) with
∫

h d(x, y) > 0.
Then g := f + h has the stated properties. �

6.13 Examples (a) (multidimensional Gaussian integrals) For n ∈ N×, we have∫
Rn

e−|x|2 dx = πn/2 .

Proof Using |x|2 = x2
1 + · · · + x2

n and the properties of the exponential function, it
follows from Tonelli’s theorem that∫

Rn

e−|x|2 dx =

∫
R

· · · · ·
∫

R

e−x2
1 e−x2

2 · · · · · e−x2
n dx1 · · · · · dxn

=

n∏
j=1

∫
R

e−x2
j dxj =

(∫
R

e−t2 dt
)n

.

Now the claim follows from Application VI.9.7. �

(b) (a representation of the beta function5) For v, w ∈ [Re z > 0],

B(v, w) =
Γ(v)Γ(w)
Γ(v + w)

.

Proof Set A :=
{

(s, t) ∈ R2 ; 0 < t < s
}

and define γv,w : A → C by γv,w(s, t) :=
tv−1(s− t)w−1e−s for v, w ∈ [Re z > 0]. Setting γv(t) := tv−1e−t for t > 0, we find from
Tonelli’s theorem that∫

A

|γv,w(s, t)| d(s, t) =

∫ ∞

0

∫ ∞

t

|γv,w(s, t)| ds dt

=
(∫ ∞

0

γRe v(t) dt
)(∫ ∞

0

γRe w(s) ds
)

= Γ(Re v)Γ(Rew) <∞ .

Therefore γv,w is integrable, and Fubini’s theorem analogously gives∫
A

γv,w(s, t) d(s, t) =

∫ ∞

0

∫ ∞

t

γv,w(s, t) ds dt = Γ(v)Γ(w) . (6.11)

5Compare Remark VI.9.12(a).
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Since pr1(A) = R+ and A[s] = [0, s] for s > 0, we obtain from (6.11) and Theorem 6.11(ii)

Γ(v)Γ(w) =

∫ ∞

0

(∫ s

0

tv−1(s− t)w−1 dt
)
e−s ds .

The substitution r = t/s in the inner integral and the definition of the beta function give

Γ(v)Γ(w) =

∫ ∞

0

(∫ 1

0

rv−1(1− r)w−1 dr
)
sv+w−1e−s ds = B(v, w)Γ(v + w) , (6.12)

which completes the proof. �

Example (b) shows that complicated integrals can be simplified by a deft
choice of integration order.

Fubini’s theorem for vector-valued functions6

We now want to show that Fubini’s theorem also holds for E-valued functions,
and offer some applications. A few preliminary remarks will prove helpful.

Suppose A ∈ L(m + n) has finite measure. By Proposition 6.2 and Corol-
lary 6.3, there is a λm-null set M such that A[x] ∈ L(n) and λn(A[x]) < ∞ for
x ∈M c. We fix q ∈ [1,∞). Because |χA[x] |q = χA[x] , we have∫

Rn

|χA[x](y)|q dy =
∫

Rn

χA[x](y) dy = λn(A[x]) < ∞ .

If, as agreed to in Section 4, we identify χA[x] with the equivalence class of all
functions that coincide λn-a.e. with y �→ χA[x](y), we obtain the map

M c → F := Lq(Rn) , x �→ χA[x] .

Because F is a Banach space, we can study its measurability and integrability
properties.

6.14 Lemma Suppose A ∈ L(m + n) has finite measure. Then the F -valued map
x �→ χA[x] , which is defined λm-everywhere, is λm-measurable.

Proof We denote by ψA : Rm → F the trivial extension of x �→ χA[x] .
(i) Suppose A is a λm+n-null set. By Remark 6.1(h), there is a λm-null set M

such that A[x] is a λn-null set for x ∈M c. Therefore ψA(x) = 0 in F for x ∈M c.
The claim follows.

(ii) Now suppose A is an interval of the form [a, b) with a, b ∈ Rm+n. Set
J1 :=

∏m
j=1[aj , bj) and J2 :=

∏m+n
j=m+1[aj , bj). Because A = J1 × J2, we have

χA[x] = χJ1(x)χJ2 for x ∈ Rm ,

and we see that in this case ψA belongs to S(Rm, F ).
6This section may be skipped on first reading.
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(iii) Suppose A ⊂ Rm+n is open and (Ij) is a disjoint sequence of intervals of
the form [a, b) with A =

⋃
j Ij (see Proposition IX.5.6). We set

fk :=
k∑

j=0

ψIj for k ∈ N .

By (ii) and Remark 1.2(a), (fk) is a sequence in S(Rm, F ). Also, there is a set M
of Lebesgue measure zero such that

‖ψA(x) − fk(x)‖q
F =

∫
Rn

∣∣∣χA[x](y)−
( k∑

j=0

χ(Ij)[x]
(y)

)∣∣∣q dy

= λn

( ∞⋃
j=k+1

(Ij)[x]

)
=

∞∑
j=k+1

λn

(
(Ij)[x]

)
for x ∈ M c. In addition, A[x] has finite measure by Corollary 6.3, and λn(A[x]) =∑∞

j=0 λn((Ij)[x]) for x ∈ M c. Therefore (fk) converges λm-a.e. to ψA in F , and
we see that ψA belongs to L0(Rm, F ).

(iv) Suppose A is a Gδ-set. The proof of Corollary IX.5.5 shows that there
is a sequence (Oj) of open sets such that λm+n(Oj) < ∞ and A =

⋂
Oj . Set

fk := ψ⋂k
j=0 Oj

, Rk :=
k⋂

j=0

Oj \A for k ∈ N .

Then (fk) is a sequence in L0(Rm, F ) by (iii), and (Rk) is a descending sequence
with

⋂∞
k=0 Rk = ∅ and λm+n(R0) <∞. Also, we have

‖fk(x)− ψA(x)‖q
F =

∫
Rn

∣∣χ(
⋂

k
j=0 Oj)[x]

(y)− χA[x](y)
∣∣q dy = λn

(
(Rk)[x]

)
for λm-almost every x ∈ Rm. The continuity of λn from above therefore implies
that (fk) converges λm-a.e. to ψA. From Theorem 1.14, it now follows that ψA

belongs to L0(Rm, F ).
(v) To conclude, consider A ∈ L(m + n) such that λm+n(A) is finite. By

Corollary IX.5.5, there is a Gδ-set G containing A and having the same measure
as A. By Proposition IX.2.3(ii), N := G\A is a λm+n-null set with ψA = ψG−ψN

λm-a.e. Now the claim follows from (i) and (iv). �

6.15 Corollary Let p, q ∈ [1,∞), and suppose ϕ ∈ S(Rm+n, E) has compact
support. Then the Lq(Rn, E)-valued function x �→ [ϕ(x, · )] is defined λm-a.e. and
is Lp-integrable, that is, ∫

Rm

‖ϕ(x, · )‖p
Lq(Rn,E) dx < ∞ .

If p = q, this holds for every ϕ ∈ S(Rm+n, E).
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Proof By Minkowski’s inequality, it suffices to prove this for ϕ := eχA with e ∈ E
and A ∈ L(m+n), where A has finite measure if p = q, and A is bounded if p 
= q.

By Lemma 6.14, there is a λm-null set M such that the function

M c → Lq(Rn) , x �→ χA[x]

is λm-measurable. Because ϕ(x, · ) = eχA[x] , (x �→ ϕ(x, · )) ∈ L0(M c, Lq(Rn, E)).
From

‖ϕ(x, · )‖Lq(Rn,E) =
(∫

Rn

|e|q χA[x](y) dy
)1/q

= |e|
[
λn(A[x])

]1/q for x ∈M c ,

we obtain ∫
Rm

‖ϕ(x, · )‖p
Lq(Rn,E) dx = |e|p

∫
Rm

λn(A[x])p/q dx .

In the case p = q, Proposition 6.2 implies∫
Rn

λn(A[x]) dx = λm+n(A) < ∞ .

Suppose therefore p 
= q. Because ϕ has compact support, there are compact
subsets K ⊂ Rm and L ⊂ Rn such that A ⊂ K ×L. Thus A[x] ⊂ L, which implies
λn(A[x]) ≤ λn(L) for λm-almost every x ∈ Rm. From this we deduce∫

Rm

λn(A[x])p/q dx =
∫

K

λn(A[x])p/q dx ≤ λn(L)p/q λm(K) < ∞ . �

These preparations are more general than necessary for our current purpose,
but will prove useful for further applications. We are ready to prove Fubini’s
theorem in the E-valued case.

6.16 Theorem (Fubini) For f ∈ L1(Rm+n, E),
(i) f(x, · ) ∈ L1(Rn, E) for λm-almost every x ∈ Rm;

f( · , y) ∈ L1(Rm, E) for λn-almost every y ∈ Rn;

(ii) x �→
∫

Rn f(x, y) dy is λm-integrable;

y �→
∫

Rm f(x, y) dx is λn-integrable;

(iii)
∫

Rm+n f d(x, y) =
∫

Rm

[∫
Rn f(x, y) dy

]
dx =

∫
Rn

[∫
Rm f(x, y) dx

]
dy.

Proof (a) Let f ∈ L1(Rm+n, E). Then there is an L1-Cauchy sequence (fj) in
S(Rm+n, E) and a λm+n-null set L such that fj(x, y) → f(x, y) for (x, y) ∈ Lc.
By Remark 6.1(h), there is a set M1 of measure zero such that

fj(x, · ) → f(x, · ) λn-a.e. , (6.13)

for x ∈ M c
1 . We set F := L1(Rn, E) and denote by ϕj the trivial extension of

x �→ fj(x, · ). According to Corollary 6.15, (ϕj) is a sequence in L1(Rm, F ) for
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which

‖ϕj − ϕk‖1 =
∫

Rm

‖ϕj(x)− ϕk(x)‖F dx =
∫

Rm

∫
Rn

|fj(x, y)− fk(x, y)| dy dx .

Further, Lemma 6.4 shows∫
Rm

∫
Rn

|fj(x, y)− fk(x, y)| dy dx =
∫

Rm+n

|fj − fk| d(x, y) = ‖fj − fk‖1 ,

and we see that (ϕj) is a Cauchy sequence in L1(Rm, F ). By Theorems 2.10
and 2.18, there is thus a ĝ ∈ L1(Rm, F ), a λm-null set M2, and a subsequence of
(ϕj), which, for simplicity, we also denote by (ϕj), such that

lim
j→∞

ϕj(x) = ĝ(x) for x ∈M c
2 (6.14)

in F and ϕj → ĝ in L1(Rm, F ). For x ∈M c
2 , let g(x) ∈ L1(Rn, E) be a representa-

tive of ĝ(x). Then there is a set N(x) of Lebesgue measure zero and a subsequence
of (ϕj(x)), which we also write as (ϕj(x)), such that, in E,

lim
j→∞

fj(x, y) = lim
j→∞

ϕj(x)(y) = g(x)(y) for x ∈ M c
2 and y ∈ (N(x))c .

Hence (6.13) implies that for every x ∈ M c
1 ∩M c

2 the maps f(x, · ), g(x) : Rn →
E are equal λn-a.e. Lemma 2.15 now shows that f(x, · ) belongs to L1(Rn, E)
and that ∫

Rn

g(x)(y) dy =
∫

Rn

f(x, y) dy for x ∈M c
1 ∩M c

2 . (6.15)

Furthermore, it follows from (6.13), (6.14), and Theorem 2.18(ii) that∫
Rn

fj(x, y) dy =
∫

Rn

ϕj(x)(y) dy →
∫

Rn

g(x)(y) dy =
∫

Rn

f(x, y) dy (6.16)

for x ∈M c
1 ∩M c

2 .
(b) For ϕ ∈ F = L1(Rn, E), let Aϕ :=

∫
Rn ϕdy. By Theorem 2.11(i), A

belongs to L(F, E). Theorem 2.11(iii) implies that gj := Aϕj defines a sequence
in L1(Rm, E).

Because
gj(x) =

∫
Rn

ϕj(x)(y) dy =
∫

Rn

fj(x, y) dy , (6.17)

we know from Theorem 2.11(i) that

|gj(x) − gk(x)| =
∣∣∣∫

Rn

(
fj(x, y) − fk(x, y)

)
dy

∣∣∣ ≤ ∫
Rn

|fj(x, y)− fk(x, y)| dy .

Therefore Theorem 2.11(ii) gives∫
Rm

|gj − gk| dx ≤
∫

Rm

∫
Rn

∣∣(fj(x, y)− fk(x, y)
)∣∣ dy dx = ‖fj − fk‖1 ,

where the last equality follows from Tonelli’s theorem. Therefore (gj) is a Cauchy
sequence in L1(Rm, E), and by completeness there is some h ∈ L1(Rm, E) such
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that gj → h in L1(Rm, E). Hence we can find a λm-null set M3 and a subsequence
of (gj), which we also denote by (gj), such that gj(x) → h(x) for x ∈ M c

3 and
j →∞. In view of (6.17), it follows from (6.16) that

h(x) =
∫

Rn

f(x, y) dy for x ∈M c
1 ∩M c

2 ∩M c
3 , (6.18)

which proves the first statement of (ii).
(c) Since gj → h in L1(Rm, E) and because of (6.17) and (6.18), Theorem

2.18(ii) implies ∫
Rm

∫
Rn

fj(x, y) dy dx→
∫

Rm

∫
Rn

f(x, y) dy dx .

Finally, it follows from Lemma 6.4 that∫
Rm

∫
Rn

fj(x, y) dy dx =
∫

Rm+n

fj d(x, y) ,

and with
∫

Rm+n f d(x, y) = limj

∫
Rm+n fj d(x, y), we have∫

Rm

∫
Rn

f(x, y) dy dx =
∫

Rm+n

f d(x, y) .

We have proved the first part of each of the statements (i) and (ii), and the first
equality in (iii). The remaining claims follow by exchanging the roles of x and y. �

6.17 Remark The analogues of the Fubini–Tonelli theorem and Corollary 6.10
clearly also hold in the E-valued case. �

Minkowski’s inequality for integrals

As an application we now prove a continuous version of Minkowski’s inequality.
Fix p, q ∈ [1,∞). For f ∈ L0(Rm+n, E), Theorem 1.7(i) shows that |f |q

belongs to L0(Rm+n, R+). Hence Tonelli’s theorem implies that |f(x, · )|q lies in
L0(Rn, R+) for λm-almost every x ∈ Rm and that the R+-valued function

x �→
∫

Rn

|f(x, y)|q dy ,

which is defined λm-a.e., is λm-measurable. Therefore

‖f‖(p,q) :=
(∫

Rm

[∫
Rn

|f(x, y)|q dy
]p/q

dx
)1/p

is defined in R+. We easily check that

L(p,q)(R
m+n, E) :=

{
f ∈ L0(Rm+n, E) ; ‖f‖(p,q) < ∞

}
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is a vector subspace of L0(Rm+n, E) and that ‖·‖(p,q) defines a seminorm on
L(p,q)(R

m+n, E). Finally, we set

Sc(Rm+n, E) :=
{

f ∈ S(Rm+n, E) ; supp(f) is compact
}

.

6.18 Lemma Sc(Rm+n, E) is a dense vector subspace of L(p,q)(R
m+n, E).

Proof (i) Take f ∈ L(p,q)(R
m+n, E) and let (gk) be a sequence in S(Rm+n, E)

such that gk → f a.e. Set Ak := [ |gk| ≤ 2 |f | ] ∩ kBm+n and fk := χAk
gk. Then

(fk) is a sequence in Sc(Rm+n, E), and there is a λm+n-null set L such that

fk(x, y)→ f(x, y) for (x, y) ∈ Lc . (6.19)

Moreover
|fk − f | ≤ |fk|+ |f | ≤ 3 |f | for k ∈ N . (6.20)

(ii) By (6.20), it follows from Tonelli’s theorem and Theorem 3.9 that there
is a λm-null set M0 such that

|f(x, · )− fk(x, · )|q , |f(x, · )|q ∈ L1(Rn) for x ∈M c
0 and k ∈ N . (6.21)

Remark 6.1(h) says there is a λm-null set M1 such that L[x] is a λn-null set for every
x ∈ M c

1 . Set M := M0 ∪M1 and choose x ∈ M c. From (6.19), we read off that
fk(x, y) → f(x, y) for y ∈ (L[x])c. By (6.20) and (6.21), we can apply Lebesgue’s
dominated convergence theorem to the sequence

(
|f(x, · )− fk(x, · )|p

)
k∈N

, and we
find

lim
k→∞

∫
Rn

|f(x, y)− fk(x, y)|q dy = 0 for x ∈M c .

Now define

ϕk :=
(
x �→

(∫
Rn

|f(x, y)− fk(x, y)|q dy
)p/q)∼

for k ∈ N .

Then the sequence (ϕk) converges λm-a.e. to 0.
(iii) Finally, set

ϕ :=
(
x �→ 3p

(∫
Rn

|f(x, y)|q dy
)p/q)∼

.

Because f ∈ L(p,q)(R
m+n, E), we know ϕ belongs to L1(Rm), and (6.20) implies

0 ≤ ϕk ≤ ϕ λm-a.e. for k ∈ N. Hence we can apply dominated convergence
theorem to (ϕk) to see that (

∫
Rm ϕk)k∈N is a null sequence in R+. The claim now

follows because∫
Rm

ϕk =
∫

Rm

[∫
Rn

|f(x, y)− fk(x, y)|q dy
]p/q

dx = ‖f − fk‖p
(p,q) . �
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One easily checks that N :=
{

f ∈ L0(Rm+n, E) ; f = 0 a.e.
}

is a vector
subspace of L(p,q)(R

m+n, E) and that f belongs to N if and only if ‖f‖(p,q) = 0.
Therefore

L(p,q)(R
m+n, E) := L(p,q)(R

m+n, E)/N

is a well defined vector space, and the assignment [f ] �→ ‖f‖(p,q) defines a norm on
L(p,q)(R

m+n, E), which we again denote by ‖·‖(p,q). In what follows, we always
provide the space L(p,q)(R

m+n, E) with the topology induced by ‖·‖(p,q).

We set

Sc(Rm+n, E) :=
{

[f ] ∈ L0(Rm+n, E) ; [f ] ∩ Sc(Rm+n, E) 
= ∅
}

.

6.19 Remarks (a) Sc(Rm+n, E) is a dense vector subspace of L(p,q)(R
m+n, E).

Proof This follows from Lemma 6.18. �

(b) Let f ∈ L0(Rm+n, E). If f(x, · ) belongs to Lq(Rn, E) for almost every x ∈ Rm

and [
x �→

(∫
Rn

|f(x, y)|q dx
)1/q]∼

∈ Lp(Rn) ,

then [f ] belongs to L(p,q)(R
m+n, E).

(c) L(p,p)(R
m+n, E) = Lp(Rm+n, E).

Proof This follows from Remark 4.9(b) and the Fubini–Tonelli theorem. �

(d) Sc(Rn, E) is a dense vector subspace of Lp(Rn, E).

Proof This is a consequence of (a) and (c). �

Consider g ∈ Sc(Rm+n, E). By Corollary 6.15, T0g :=
(
x �→

[
g(x, · )

])∼
belongs to Lp

(
Rm, Lq(Rn, E)

)
. Denoting by [T0g] the equivalence class of T0g with

respect to the vector subspace of all elements of L0(Rm, Lq(Rn, E)) that vanish
λm-a.e., we have [T0g] ∈ Lp(Rm, Lq(Rn, E)). Further, it follows from Corollary 6.8
that [T0g] = [T0h] if g, h ∈ Sc(Rm+n, E) coincide λm+n-a.e. Thus

T : Sc(Rm+n, E)→ Lp

(
Rm, Lq(Rn, E)

)
, [g] �→ [T0g]

is a well defined linear map.

6.20 Lemma There is a unique extension

T ∈ L
(
L(p,q)(R

m+n, E), Lp

(
Rm, Lq(Rn, E)

))
of T , and T is an isometry with a dense image.
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Proof (i) For f ∈ Sc(Rm+n, E), let g ∈ f ∩ Sc(Rm+n, E). Then∫
Rm

‖Tf‖p
Lq(Rn,E) dx =

∫
Rm

(∫
Rn

|g(x, y)|q dy
)p/q

dx = ‖g‖p
(p,q) = ‖f‖p

(p,q) .

Therefore T ∈ L
(
Sc(Rm+n, E), Lp

(
Rm, Lq(Rn, E)

))
is an isometry. Now it follows

from Theorem VI.2.6 and Remark 6.19(a) that there is a uniquely determined
isometric extension T of T .

(ii) We set F := Lq(Rn, E) and choose w ∈ Lp(Rm, F ) and ε > 0. It follows
from Remark 6.19(d) that there is a ϕ ∈ Sc(Rm, F ) such that ‖w − ϕ‖p < ε/2.
Let

∑r
j=0 χAj f̂j be the normal form of ϕ. Then

⋃r
j=0 Aj is bounded in Rm, and

α :=
∑r

j=0 λm(Aj) is finite. In the case α = 0, we have

‖w‖p = ‖w − T 0‖p < ε/2 .

In the case α > 0, we choose for every j ∈ {0, . . . , r} a representative fj of f̂j and
a ψj ∈ Sc(Rn, E) such that

‖ψj − fj‖q < α−1/p(r + 1)−1/q′
ε .

Also let

h(x, y) :=
r∑

j=0

χAj (x)ψj(y) for (x, y) ∈ Rm+n .

With ψj =
∑sj

kj=0 χBkj
ekj for j ∈ {0, . . . , r}, we then have

h =
r∑

j=0

sj∑
kj=0

χAj χBkj
ekj =

r∑
j=0

sj∑
kj=0

χAj×Bkj
ekj ,

and we see that h belongs to Sc(Rm+n, E). Finally, let g be the equivalence class
of h in L0(Rm+n, E). Then g belongs to Sc(Rm+n, E), and Tg =

∑r
j=0[χAj ψj ].

From Hölder’s inequality (for sums) and the equality χ2
A = χA, it follows that∫

Rm

‖Tg − ϕ‖p
F =

∫
Rm

[∫
Rn

∣∣∣ r∑
j=0

χAj (x)
(
ψj(y)− fj(y)

)∣∣∣q dy
]p/q

dx

≤ (r + 1)p/q′
∫

Rm

[∫
Rn

r∑
j=0

χAj (x) |ψj(y)− fj(y)|q dy
]p/q

dx

= (r + 1)p/q′
∫

Rm

[ r∑
j=0

χAj (x) ‖ψj − fj‖q
F

]p/q

dx

≤ (r + 1)p/q′
r∑

j=0

λm(Aj) ‖ψj − fj‖p
F .
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Therefore,

‖Tg − ϕ‖p ≤ α1/p (r + 1)1/q′
max

j
‖ψj − fj‖F < ε/2 ,

and consequently ‖Tg − w‖p < ε. Because this holds for every choice of w and ε,
we see that the image of T , and a fortiori that of T , is dense. �

As usual, we lighten the notation by writing T for T . In addition, as stated
in Section 4, our notation for elements of Lebesgue spaces does not distinguish
between cosets and their representatives. This means that for f ∈ L(p,q)(R

m+n, E)
we may write Tf(x) as f(x, · ). With these conventions, Lemma 6.20 says that

T : L(p,q)(R
m+n, E) → Lp(Rm, Lq(Rn, E)) , f �→ (x �→ f(x, · )) (6.22)

is a linear isometry whose image is dense.
Now it is easy to prove our continuous Minkowski’s inequality.

6.21 Proposition (Minkowski’s inequality for integrals) For 1 ≤ q < ∞, we have:

(i)
(∫

Rn

[∫
Rm

|f(x, y)| dx
]q

dy
)1/q

≤
∫

Rm

[∫
Rn

|f(x, y)|qdy
]1/q

dx

for f ∈ L0(Rm+n, E).

(ii)
(∫

Rn

∣∣∣∫
Rm

f(x, y) dx
∣∣∣q dy

)1/q

≤
∫

Rm

[∫
Rn

|f(x, y)|q dy
]1/q

dx <∞
for f ∈ L(1,q)(R

m+n, E).

Proof In case (i), we can assume without loss of generality that∫
Rm

[∫
Rn

|f(x, y)|q dy
]1/q

dx < ∞ .

Then |f | belongs to L(1,q)(R
m+n, R), and the claim is a special case of (ii), with

f replaced by |f | and E by R. Suppose therefore that f ∈ L(1,q)(R
m+n, E). It

follows from Lemma 6.20 and Theorem 2.11(i) (with E replaced by Lq(Rn, E))
that ∫

Rm

Tf dx =
∫

Rm

f(x, · ) dx ∈ Lq(Rn, E)

and(∫
Rn

∣∣∣∫
Rm

f(x, y) dx
∣∣∣q dy

)1/q

=
∥∥∥ ∫

Rm

Tf dx
∥∥∥

Lq(Rn,E)
≤

∫
Rm

‖Tf‖Lq(Rn,E) dx

=
∫

Rm

(∫
Rn

|f(x, y)|q dy
)1/q

dx .

This completes the proof. �
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A characterization of Lp(Rm+n, E)

As another consequence of Lemma 6.20, we obtain an often useful generalization
and sharpening of Fubini’s theorem.

6.22 Theorem For 1 ≤ p <∞,

Lp(Rm+n, E) → Lp(Rm, Lp(Rn, E)) , f �→ (x �→ f(x, · ))
is an isometric isomorphism.

Proof Suppose v ∈ Lp(Rm, Lp(Rn, E)). By Lemma 6.20, there is a sequence (fj)
in Lp(Rm+n, E) such that limj Tfj = v in Lp(Rm, Lp(Rn, E)). Because T is a
linear isometry, it follows easily that (fj) is a Cauchy sequence in Lp(Rm+n, E).
Denoting by f its limit in Lp(Rm+n, E), we have Tf = v. Therefore T is surjective.
This proves the claim. �

By means of this isometric isomorphism, we can identify the Banach spaces
Lp(Rm+n, E) and Lp(Rm, Lp(Rn, E)):

Lp(Rm+n, E) = Lp(Rm, Lp(Rn, E)) .

6.23 Remarks (a) The statement of Theorem 6.22 is false for p =∞, that is

L∞(Rm+n, E) 
= L∞
(
Rm, L∞(Rn, E)

)
.

Proof Take A :=
{

(x, y) ∈ R2 ; 0 ≤ y ≤ x ≤ 1
}

and f := χA. Because A is Lebesgue
measurable, f belongs to L∞(R2). If we set

g(x) := f(x, · ) =

{
χ[0,x] if 0 ≤ x ≤ 1 ,

0 otherwise ,

then g(x) belongs to L∞(R), and ‖g(x)‖∞ ≤ 1 for x ∈ R. But g nevertheless does not
belong to L∞

(
R, L∞(R)

)
, because the map g : R → L∞(R) is not λ1-measurable. To

see this, it suffices by Theorem 1.4 to show that g is not λ1-almost separable-valued. To
check this, note that

‖g(x)− g(r)‖L∞(R) = 1 for r ∈ R\{x} (6.23)

for x ∈ (0, 1]. Were g λ1-almost separable valued, there would be a λ1-null set N ⊂ R
and a sequence (rj) in R such that

inf
j∈N
‖g(x)− g(rj)‖∞ < 1/2 for x ∈ Nc . (6.24)

Because λ1

(
(0, 1]\N

)
= 1, the set (0, 1]\N is uncountable. Hence it follows from (6.23)

that (6.24) cannot hold, and g is not λ1-measurable. �

(b) Generalizing Theorem 6.22, one can show that for any p, q ∈ [1,∞), the map

L(p,q)(R
m+n, E) → Lp(Rm, Lq(Rn, E)) , f �→ (x �→ f(x, · ))

is an isometric isomorphism. Therefore L(p,q)(R
m+n, E) is complete. �
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A trace theorem

From Example IX.5.2 and the invariance of the Lebesgue measure under isometries,
it follows that every hyperplane Γ in Rn is a λn-null set. Hence for u ∈ Lp(Rn),
the restriction u |Γ, or trace of u on Γ, is not defined, because u can be “arbitrarily
changed” on Γ. As another application of Fubini–Tonelli, we now show that one
can nevertheless define such a trace on Γ for elements of certain vector subspaces
of Lp(Rn). Of course, this is trivially the case for the vector subspace C1

c (Rn).
The significance of what follows is that this space is given not the supremum norm,
but rather the Lp norm, with derivatives thrown into the mix. In the next section,
we will understand better the significance of these subspaces of Lp(Rn).

Consider the coordinate hyperplane Γ := Rn−1×{0}, which we identify with
Rn−1. For u ∈ C(Rn), we let γu := u |Γ be the trace of u on Γ:

(γu)(x) := u(x, 0) for x ∈ Rn−1 .

Then γ : C1
c (Rn) → Cc(Rn−1), u �→ γu is a well defined linear map.

Now take 1 ≤ p < ∞, and give C1
c (Rn) the norm

‖u‖1,p :=
(
‖u‖p

p +
n∑

j=1

‖∂ju‖p
p

)1/p

.

Further, set
Ĥ1

p (Rn) :=
(
C1

c (Rn), ‖·‖1,p

)
.

Since Cc(Rn−1) is a vector subspace of Lp(Rn−1),

γ : Ĥ1
p (Rn) → Lp(Rn−1) , u �→ γu

is a well defined linear map, the trace operator with respect to Γ = Rn−1. The
following trace theorem shows that γ is continuous.

6.24 Proposition γ ∈ L(Ĥ1
p (Rn), Lp(Rn−1)) for 1 ≤ p <∞.

Proof Define h ∈ C1(R) by h(t) := |t|p−1 t. For v ∈ C1
c (Rn), it follows from the

chain rule that ∂nh(v) = h′(v)∂nv. Since v has compact support, the fundamental
theorem of calculus then implies that

−h(v(x, 0)) =
∫ ∞

0

∂nh(v)(x, y) dy =
∫ ∞

0

h′(v(x, y))∂nv(x, y) dy for x ∈ Rn−1 .

Because h′(t) = p |t|p−1, we find

|v(x, 0)|p =
∣∣h(v(x, 0))

∣∣ ≤ ∫ ∞

0

∣∣h′(v(x, y))
∣∣ |∂nv(x, y)| dy

= p

∫ ∞

0

|v(x, y)|p−1 |∂nv(x, y)| dy .
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Also, Young’s inequality gives ξp−1η ≤ p− 1
p

ξp +
1
p

ηp for ξ, η ∈ [0,∞), so

|v(x, 0)|p ≤ (p− 1)
∫ ∞

0

|v(x, y)|p dy +
∫ ∞

0

|∂nv(x, y)|p dy .

With cp := max{p−1, 1}, it now follows from Fubini–Tonelli that∫
Rn−1

|v(x, 0)|p dx

≤ cp

(∫
Rn−1×R

|v(x, y)|p d(x, y) +
∫

Rn−1×R

|∂nv(x, y)|p d(x, y)
)

.

(6.25)

Therefore
‖γv‖Lp(Rn−1) ≤ c ‖v‖Ĥ1

p(Rn) for v ∈ Ĥ1
p (Rn) ,

where c := c
1/p
p . This proves the theorem. �

6.25 Remark Denote by Hn the upper half-space of Rn:

Hn := Rn−1 × (0,∞) =
{

(x, y) ∈ Rn−1 × R ; y > 0
}

.

Then Γ = Rn−1 × {0} = ∂Hn. If we set

Ĥ1
p (Hn) :=

({
u |Hn ; u ∈ C1

c (Rn)
}
, ‖·‖1,p

)
,

then Ĥ1
p (Hn) is a vector subspace of Lp(Hn), and from a statement analogous to

(6.25), it follows that
γ ∈ L(Ĥ1

p (Hn), Lp(Rn−1)) .

In this case, γu for u ∈ Ĥ1
p (Rn) is the trace of u on the boundary ∂Hn. �

Exercises

1 Suppose B ∈ L(n) and a ∈ Rn+1. Denote by

Za(B) :=
{

(x, 0) + ta ∈ Rn+1 ; x ∈ B, t ∈ [0, 1]
}

the cylinder with base B and edge a, and let

Ka(B) :=
{

(1− t)(x, 0) + ta ∈ Rn+1 ; x ∈ B, t ∈ [0, 1]
}

be the cone with base B and tip a. Prove:

(a) λn+1

(
Za(B)

)
= |an+1|λn(B);

(b) λn+1

(
Ka(B)

)
= |an+1|λn(B)/(n + 1).

If one interprets |an+1| as the height of the cylinder Za(B) or the cone Ka(B), then (b)
says the volume of an n-dimensional cone is equal to the total volume of n cylinders with
the same base and height.
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2 For 0 < r < a, let Va,r be the region in R3 enclosed by the 2-torus T2
a,r. Show that

Va,r = 2π2ar2.

3 Suppose J ⊂ R is an interval with endpoints a := inf J and b := sup J . Also let
f ∈ L0(J, R+), and denote by

Rf :=
{

(x, t) ∈ Rn × J ; |x| ≤ f(t)
}

the solid of revolution arising by rotation of the graph of f around the t-axis. Prove that

λn+1(Rf ) = ωn

∫ b

a

(f(t))n dt ,

where ωn is the volume of Bn. Interpret this formula geometrically in the case n = 2.

4 Suppose K is compact in Rn and ρK :=
∫

K
ρ(x) dx > 0 for ρ ∈ L1(K, R+). Then

S(K, ρ) :=
1

ρK

∫
K

xρ(x)dx ∈ Rn

is the centroid of K with respect to the density ρ. We set S(K) := S(K,1). Now suppose
J := [a, b] is a perfect, compact interval in R, and let f ∈ L0(J, R+). Also put

Af :=
{

(x, y) ∈ R2 ; 0 ≤ y ≤ f(x), x ∈ J
}

,

and denote by Rf the solid of revolution in R3 generated by f (by rotating about the
x-axis). Prove:

(a) For f ∈ L1(J, R+),

S(Af ) =
(
S1(Af ), S2(Af )

)
=

1

‖f‖1

(∫ b

a

xf(x) dx,
1

2

∫ b

a

(
f(x)

)2
dx

)
.

(b) For f ∈ L2(J,R+),

S(Rf ) =
( 1

‖f‖22

∫ b

a

t
(
f(t)

)2
dt, 0, 0

)
.

(c) For f ∈ L1(J, R+), we have Guldin’s first rule

λ3(Rf ) = π

∫ b

a

(f(x))2 dx = 2πS2(Af )λ2(Af ) .

In words, the volume of a solid of revolution is equal to the area of a meridional slice7

times the circumference of the circle drawn by the centroid of that slice during a full
revolution.8

5 (a) For α ∈ [0, π/2), let a := (cos α, 0, sin α). Determine the centroid of the cylinder
Za(B2) and the cone Ka(B2) with respect to the density 1.

(b) Let Aλ :=
{

(x, y) ∈ R2 ; 0 ≤ y ≤ e−λx, x ≥ 0
}

for λ > 0. Show that S(Aλ) ∈ Aλ.

(c) Give an example where S(Af ) /∈ Af .

7That is, the intersection with a plane containing the rotation axis.
8Guldin’s first rule also holds for solids of revolution not arising from the rotation of a graph;

see Exercise XII.1.11.
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6 Let K ⊂ Rn be convex and compact. Check that S(K, ρ) ∈ K for ρ ∈ L1(K, R+).

7 Denote by Δn :=
{

x ∈ Rn ; xj ≥ 0,
∑n

j=1xj ≤ 1
}

the standard simplex in Rn.
Prove:

(a) λn(Δn) = 1/n! .

(b) S(Δn) =
(
1/(n + 1), 1/(n + 1), . . . , 1/(n + 1)

)
.

8 Given f ∈ L1(Rm, K), g ∈ L1(Rn, E), define F (x, y) := f(x)g(y) for (x, y) ∈ Rm×Rn.
Show that F belongs to L1(Rm+n, E) and that∫

Rm+n

F (x, y) d(x, y) =

∫
Rm

f(x) dx

∫
Rn

g(y) dy .

9 For D :=
{

(x, y) ∈ R2 ; x, y ≥ 0, x + y ≤ 1
}
, show that∫

D

xmyn d(x, y) =
1

n + 1
B(m + 1, n + 2) for m, n ∈ N .

10 Show that
∫
[0,1]×[0,1]

y
/√

x d(x, y) = 1.

11 Show that
∫

Rn ∂jϕ dx = 0 for ϕ ∈ C1
c (Rn, E) and j ∈ {1, . . . , n}.

12 For each of the following maps f : (0, 1)× (0, 1)→ R, calculate∫ 1

0

∫ 1

0

f(x, y) dx dy ,

∫ 1

0

∫ 1

0

f(x, y) dy dx ,

∫ 1

0

∫ 1

0

|f(x, y)| dx dy ,

∫ 1

0

∫ 1

0

|f(x, y)| dy dx .

(a) f(x, y) := (x− y)
/
(x2 + y2)3/2.

(b) f(x, y) := 1
/
(1− xy)α for α > 0.

13 Let p, q ∈ [1,∞]. Prove:

(a) Lp(Rn) /⊂ Lq(Rn) if p 	= q.

(b) if X ⊂ Rn is open and bounded, then Lp(X) � Lq(X) if p > q.



7 The convolution

In this section we use the translation invariance of the Lebesgue measure to in-
troduce a new product on L1(Rn), the convolution, which rests on the Lebesgue
integral. We show that this operation is defined not only on L1(Rn) but also on
other function spaces, and that it has important smoothing properties. Among
its applications are certain approximation theorems which we prove here for their
great usefulness in later constructions.

We will consider mainly spaces of K-valued functions defined on all of Rn.
For such spaces we omit the domain and image from the notation. In other words,
if F(Rn) = F(Rn, K) is a vector space of K-valued functions on Rn, we write simply
F if there is no risk of confusion. Thus Lp stands for Lp(Rn) = Lp(Rn, K), and so
on. Also

∫
f dx will always mean

∫
Rn f dx.

Defining the convolution

Let F be a K-vector space. For f ∈ Funct(Rn, F ), we define another function
f

̂

∈ Funct(Rn, F ) by f

̂

(x) := f(−x), where x ∈ Rn. The map f �→ f

̂

is called
inversion (about the origin).

Recall from IX.5.15 the definition of the translation group T := {τa ; a ∈Rn }.
Now we define an action1 of this group on Funct(Rn, F ) by

T× Funct(Rn, F )→ Funct(Rn, F ) , (τa, f) �→ τaf , (7.1)

where
τaf(x) := f(x− a) for a, x ∈ Rn . (7.2)

Therefore
τaf = f ◦ τ−a = (τ−a)∗f ,

where (τ−a)∗ is the pull back defined in Section VIII.3.

7.1 Remarks (a) For f ∈ Funct := Funct(Rn, K), we have f

̂

= (−idRn)∗f .

(b) Inversion is an involutive2 vector space isomorphism on Funct and on Lp for
p ∈ [1,∞] ∪ {0}.

(c) Suppose E ∈ {BCk, BUCk, C0 ; k ∈ N }. Then inversion belongs to Laut(E).

(d) For f ∈ Funct and x ∈ Rn, we have

(τ−xf)

̂

(y) = τxf

̂

(y) = f(x− y) for y ∈ Rn .

1See Exercise I.7.6.
2A map f ∈ XX is said to be involutive if f ◦ f = idX .
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(e) Suppose n = 1 and a > 0. Then τa : R → R, x �→ x+a is the right translation
on R by a. Definition (7.2) means that τa also translates the graph of f to the
right by a.

Therefore T acts as a right translation on Funct(R, F ), which clarifies defining τaf
as the pull back of the left translation τ−a of R. �

Take f, g ∈ L1 and x ∈ Rn, and let O be open in K.

(τ−xf)−1(O) = (f ◦ τx)−1(O) = τ−x(f−1(O)) .

Therefore it follows from Corollary 1.5 and Lemma IX.5.16 that (τ−xf)−1(O) is
measurable. Hence, again by Corollary 1.5, τ−xf belongs to L0. Now we deduce
from Remark 1.2(d) and parts (b) and (d) of Remark 7.1 that y �→ f(x − y)g(y)
belongs to L0 for every x ∈ Rn. If this function is integrable, we define the
convolution of f with g at x by

f ∗ g(x) :=
∫

f(x− y)g(y) dy .

We say f and g are convolvable if f ∗ g(x) is defined for almost every x ∈ Rn. In
this case the a.e.-defined function

f ∗ g :=
(
x �→ f ∗ g(x)

)
is called the convolution of f with g. If f and g are convolvable and (f ∗ g)p is
integrable (or f ∗ g is essentially bounded for p = ∞), we write f ∗ g ∈ Lp, in a
slight abuse of notation.3)

We now show that every pair (f, g) ∈ Lp×L1 with p ∈ [1,∞] is convolvable.
The following observation will be helpful.

7.2 Lemma For f ∈ L0 and (x, y) ∈ Rn × Rn = R2n, let

F1(x, y) := f(x) and F2(x, y) := f(x− y) .

Then F1 and F2 belong to L0(R2n).

3We literally mean that the trivial extension of f ∗ g belongs to Lp.
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Proof (i) Suppose O is open in K and A := f−1(O). Then A belongs to L(n).
Therefore Remark 6.1(b) and Proposition 6.2 show that F−1

1 (O) = A × Rn is
λ2n-measurable. Now the claim for F1 follows from Corollary 1.5.

(ii) Set ϕ(x, y) := (x−y, y) for (x, y) ∈ Rn × Rn. Then ϕ ∈ Laut(R2n) and
F2 = F1 ◦ ϕ. The claim then follows from (i) and Theorem IX.5.12. �

7.3 Theorem Suppose p ∈ [1,∞] and (f, g) ∈ Lp × L1.

(i) f and g are convolvable.

(ii) (Young’s inequality) f ∗ g ∈ Lp and ‖f ∗ g‖p ≤ ‖f‖p ‖g‖1.

Proof (a) Suppose first that p ∈ [1,∞). By Lemma 7.2 and Remark 1.2(d),
the map (x, y) �→ f(x− y)g(y) belongs to L0(R2n). Using Hölder’s inequality, we
deduce that∫

|f(x− y)g(y)| dy =
∫
|f(x− y)| |g(y)|1/p |g(y)|1/p′

dy

≤
(∫

|f(x− y)|p |g(y)| dy
)1/p(∫

|g(y)| dy
)1/p′

.

From this and Tonelli’s theorem, we get∫ (∫
|f(x− y)g(y)| dy

)p

dx ≤ ‖g‖p/p′
1

∫ ∫
|f(x− y)|p |g(y)| dy dx

= ‖g‖p/p′
1

∫ ∫
|f(x− y)|p dx |g(y)| dy

= ‖g‖1+p/p′
1 ‖f‖p

p <∞ ,

where in the last step we once more used the translation invariance of the Lebesgue
integral. Thus we find4

(∫ [∫
|f(x− y)g(y)| dy

]p

dx
)1/p

≤ ‖f‖p ‖g‖1 <∞ . (7.3)

Now from Remark 3.11(c), we conclude that
∫
|f(x − y)g(y)| dy < ∞ for almost

every x ∈ Rn; by Remark 3.11(a), this suffices to show that f and g are convolvable.
Part (ii) of the theorem now follows from (7.3).

(b) In the case p =∞, we have∫
|f(x− y)g(y)| dy ≤ ‖f‖∞ ‖g‖1 < ∞ for almost every x ∈ Rn ,

which immediately implies (i) and (ii). �

4Those readers who worked through the last part of the previous section will recognize that
this bound can also be easily derived from Minkowski’s inequality for integrals.
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7.4 Corollary Let
(
[f ], [g]

)
∈ Lp × L1 with p ∈ [1,∞]. Then

f ∗ g =
∗
f ∗ ∗g a.e. in Rn

for (
∗
f, ∗g) ∈

(
[f ], [g]

)
.

Proof By Theorem 7.3, f ∗ g,
∗
f ∗ ∗g, and f ∗ ∗g are defined a.e. and belong to Lp.

Because
f ∗ g − ∗

f ∗ ∗g = f ∗
(
g − ∗g

)
+

(
f − ∗

f
)
∗ ∗g ,

we obtain from Young’s inequality that∥∥f ∗ g − ∗
f ∗ ∗g

∥∥
p
≤

∥∥f
∥∥

p

∥∥g − ∗g
∥∥

1
+

∥∥f − ∗
f
∥∥

p

∥∥ ∗g
∥∥

1
= 0 ,

from which the claim follows. �

We can now define the convolution for elements of Lp × L1 with p ∈ [1,∞]:
indeed, Corollary 7.4 guarantees that the map

∗ : Lp × L1 → Lp ,
(
[f ], [g]

)
�→ [f ∗ g]

is well defined. We call this the ∗ the convolution product on Lp × L1, and
[f ] ∗ [g] := [f ∗ g] convolution of [f ] with [g]. It is clear that the convolution can
also be defined on L1 × Lp, and we use the symbol ∗ for this as well.

The translation group

To be able to better explore further properties of the convolution, we first gather
some important definitions and facts about the representation of the translation
group (Rn, +) on function spaces.

Let F be a K-vector space and let V be a vector subspace of Funct(Rn, F )
that is invariant under the action (7.1) of the translation group T of Rn, meaning
that τa(V ) ⊂ V for all a ∈ Rn. By restriction, (7.1) induces an action

T× V → V , (τa, v) �→ τav

of the translation group T on V . For every a ∈ Rn, the map Ta := (v �→ τav) is a
linear map from V into itself. Because

τaτbv = τa+bv and τ0v = v ,

Ta is a vector space automorphism of V and (Ta)−1 = T−a. Hence5

(Rn, +)→ Aut(V ) , a �→ Ta

5See Remarks I.12.2(d) and I.7.6(e).
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is a group homomorphism, a linear representation of the group (Rn, +) on V . In
particular,

TV :=
{
Ta ∈ Aut(V ) ; a ∈ Rn

}
is a subgroup of Aut(V ), called the group of translations on V . Instead of Ta,
we tend to use the same symbol τa if there is no fear of misunderstanding. The
invariance of V under (7.1) is also expressed by saying that (Rn, +) is linearly
representable on V .

If V is a (semi)normed vector space, the group TV is said to be strongly
continuous if lima→0 τav = v for every v ∈ V .

7.5 Remarks (a) (Rn, +) is linearly representable on Funct and on B := B(Rn).

(b) (Rn, +) is linearly representable on L∞, and ‖τaf‖∞ = ‖f‖∞ for f ∈ L∞.
Proof Take f ∈ L∞. For every α > ‖f‖∞ there is a set N of Lebesgue measure zero such
that |f(x)| ≤ α for x ∈ Nc. By translation invariance (Theorem IX.5.17), Na := τa(N)
also has measure zero and

|τaf(x)| = |f(x− a)| ≤ α for x ∈ Nc
a .

Therefore τaf is essentially bounded, and ‖τaf‖∞ ≤ ‖f‖∞. The claim follows since

‖f‖∞ = ‖τ−a(τaf)‖∞ ≤ ‖τaf‖∞ . �

(c) The translation groups TB and TL∞ are not strongly continuous.
Proof ‖τaχBn − χBn‖∞ = 1 for a ∈ Rn\{0}. �

(d) If TV is strongly continuous, then

(a �→ τaf) ∈ C(Rn, V ) for f ∈ V .

Proof This follows from τaf − τbf = τa−b(τbf)− τbf for f ∈ V and a, b ∈ Rn. �

7.6 Theorem Suppose V = Lp with p ∈ [1,∞) or V = BUCk with k ∈ N. Then
(Rn, +) is linearly representable on V , and the translation group TV is strongly
continuous. Also ‖τaf‖V = ‖f‖V for a ∈ Rn and f ∈ V .

Proof (i) We consider first the case V = BUCk. Take f ∈ BUCk, a ∈ Rn, and
ε > 0. Then there is δ > 0 such that |f(x)− f(y)| < ε for all x, y ∈ Rn satisfying
|x− y| < δ. It follows that

|τaf(x)− τaf(y)| = |f(x− a)− f(y − a)| < ε (7.4)

for x, y ∈ Rn such that |x− y| < δ. Therefore τaf belongs to BUC, and because

∂ατaf = τa∂αf for α ∈ Nn and |α| ≤ k , (7.5)

we obtain τaf ∈ BUCk. Consequently (Rn, +) is linearly representable on BUCk.
From Remark 7.5(b) and (7.5), we find ‖τaf‖BCk = ‖f‖BCk .
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Now take x ∈ Rn. If |a| < δ, we can set y = x + a in (7.4), and we get

|τaf(x)− f(x)| < ε for x ∈ Rn ,

that is, ‖τaf − f‖∞ < ε for a ∈ δBn. Analogously, we can show with (7.5) that
there is a δ1 > 0 such that ‖τaf − f‖BCk < ε for a ∈ δ1Bn. Therefore TBUCk is
strongly continuous.

(ii) Let p ∈ [1,∞) and f ∈ Lp. The equality ‖τaf‖p = ‖f‖p follow from the
translation invariance of the Lebesgue integral.

Now take ε > 0. By Theorem 4.14, there is a g ∈ Cc such that ‖f − g‖p < ε/3.
Because g has compact support, there is a compact subset K of Rn such that
supp(τag) ⊂ K for |a| ≤ 1. Also, since g is uniformly continuous, there exists
δ ∈ (0, 1] such that

‖τag − g‖∞ < ε
/
3λn(K)1/p for a ∈ δBn .

Suppose a ∈ δBn. Because supp(τag − g) ⊂ K, Theorem 5.1(iv) implies that

‖τag − g‖p < ε/3 for a ∈ δBn .

Since
‖τaf − f‖p ≤ ‖τaf − τag‖p + ‖τag − g‖p + ‖g − f‖p

and ‖τaf − τag‖p = ‖τa(f − g)‖p = ‖f − g‖p, we get ‖τaf − f‖p < ε for a ∈ δBn,
and we are done. �

We now define an action of T on Lp for p ∈ [1,∞]. By Remark 7.5(b) and
Theorem 7.6, τa is an isometry of Lp for every a ∈ Rn. Therefore the map

Lp → Lp , [f ] �→ [τaf ]

is well defined for every a ∈ Rn. We denote it by τa also, that is, we set

τa[f ] := [τaf ] for f ∈ Lp and a ∈ Rn .

Then
‖τa[f ]‖p = ‖ [τaf ]‖p = ‖τaf‖p = ‖f‖p = ‖ [f ]‖p . (7.6)

Clearly
T× Lp → Lp , (τa, f) �→ τaf

is an action of the translation group T of Rn on Lp. By Remark 7.5(b) and
Theorem 7.6, Ta := (f �→ τaf) is a linear isometry on Lp for every a ∈ Rn. Again
writing Ta as τa, we conclude that

(Rn, +)→ Laut(Lp) , a �→ τa

is a representation of the additive group of Rn by linear isometries on Lp. In
particular, the translation group on Lp, namely

TLp :=
{

τa ∈ Laut(Lp) ; a ∈ Rn
}

,

is a subgroup of Laut(Lp) consisting of isometries.
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7.7 Corollary The translation group on Lp is strongly continuous for 1 ≤ p < ∞.

Proof This is an immediate consequence of Theorem 7.6 and (7.6). �

Elementary properties of the convolution

After this digression about the translation group, we return to the convolution
and derive its chief properties.

7.8 Theorem Consider (f, g) ∈ Lp × L1 with p ∈ [1,∞].
(i) The convolution f ∗ g belongs to Lp, and satisfies Young’s inequality

‖f ∗ g‖p ≤ ‖f‖p ‖g‖1 .

(ii) f ∗ g = g ∗ f .

(iii) If p =∞, the convolution f ∗ g belongs to6 BUC.

(iv) For ϕ ∈ BCk, we have ϕ ∗ g ∈ BUCk,

∂α(ϕ ∗ g) = ∂αϕ ∗ g for α ∈ Nn , |α| ≤ k ,

and ‖ϕ ∗ g‖BCk ≤ ‖ϕ‖BCk ‖g‖1.

Proof (i) follows from Theorem 7.3(ii) and Corollary 7.4.
(ii) Take x ∈ R and let

∗
f and ∗g be representatives of f and g. Also set

ψ(y) := x− y for y ∈ Rn. Then ψ is an involutive isometry of Rn. It follows from
Theorem 7.3(i) and Example 6.6(b) that

∗
f ∗ ∗g(x) =

∫
∗
f(x − y) ∗g(y) dy =

∫ ( ∗
f ◦ ψ

)(
( ∗g ◦ ψ) ◦ ψ

)
dy

=
∫

( ∗g ◦ ψ)
∗
f dy =

∫
∗g(x− y)

∗
f(y) dy = ∗g ∗ ∗

f(x) .

Therefore f ∗ g = g ∗ f by Corollary 7.4.
(iii) The motion invariance of the Lebesgue integral yields ‖g

̂

‖1 = ‖g‖1. From
part (ii), and because the elements of TL1 are isometries, we then get

∣∣ ∗
f ∗ ∗g(x)− ∗

f ∗ ∗g(y)
∣∣ ≤ ∫ ∣∣ ∗

f(z)
( ∗g(x − z)− ∗g(y − z)

)∣∣ dz ≤ ‖ ∗
f‖∞ ‖τxg

̂

− τyg

̂

‖1

= ‖f‖∞ ‖τy(τx−yg

̂

− g

̂

)‖1 = ‖f‖∞ ‖τx−yg

̂

− g

̂

‖1

for x, y ∈ Rn. Because g

̂

∈ L1, the strong continuity of TL1 together with part (i)
implies that

∗
f ∗ ∗g ∈ BUC. The claim follows.

6See Theorem 4.18.
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(iv) In view of (iii), it suffices to consider the case k ≥ 1. To this end we define
h(x, y) := ϕ(x − y)g(y) for (x, y) ∈ Rn × Rn. Then h satisfies the assumptions of
Theorem 3.18, and it follows that ∂j(ϕ ∗ g) = ∂jϕ ∗ g for j ∈ {1, . . . , n}. By (iii)
and Theorem VII.2.10, we have ϕ ∗ g ∈ BUC1. We now see inductively that ϕ ∗ g
belongs to BUCk and satisfies ∂α(ϕ ∗ g) = ∂αϕ ∗ g for every α ∈ Nn with |α| ≤ k.
Finally, by (i), we have

‖ϕ ∗ g‖BCk = max
|α|≤k

‖∂α(ϕ ∗ g)‖∞ = max
|α|≤k

‖(∂αϕ) ∗ g‖∞ ≤
(
max
|α|≤k

‖∂αϕ‖∞
)
‖g‖1

= ‖ϕ‖BCk ‖g‖1 . �

7.9 Corollary

(i) Let p ∈ (1,∞) and k ∈ N. The convolution satisfies

∗ ∈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L2

sym(L1, L1) ,

L(Lp, L1; Lp) ,

L(L∞, L1; BUC) ,

L(BCk, L1; BUCk) ,

and all these maps have norm at most 1.

(ii) (L1, +, ∗) is a commutative Banach algebra without a multiplicative identity.

Proof (i) and the first statement of (ii) follow immediately from Theorem 7.8.
We now assume there is e ∈ L1 such that e ∗ f = f for every f ∈ L1. We choose
a representative ∗e of e and then find by Exercise 2.15 a δ > 0 such that∣∣∣∫

δBn

∗e(x− y) dy
∣∣∣ =

∣∣∣∫
Bn(x,δ)

∗e(z) dz
∣∣∣ < 1 for x ∈ Rn .

Furthermore, there is a set N of Lebesgue measure zero such that χδBn(x) =
∗e ∗ χδBn(x) for x ∈ N c. However, for x ∈ δBn ∩N c, we have

1 = χδBn(x) = ∗e ∗ χδBn(x) =
∫

Rn

∗e(x− y)χδBn(y) dy =
∫

δBn

∗e(x − y) dy < 1 ,

which is not possible. �

7.10 Theorem (additivity of supports) Suppose f, g ∈ L0 are convolvable and f
has compact support. Then

supp(f ∗ g) ⊂ supp(f) + supp(g) .

Proof (i) We can assume f ∗ g 
= 0. For x ∈ [f ∗ g 
= 0], there is a y ∈ Rn such
that f(x− y)g(y) 
= 0. It follows that y ∈ supp(g) and x ∈ y + supp(f), and thus
x belongs to supp(f) + supp(g). Hence [f ∗ g 
= 0] ⊂ supp(f) + supp(g).
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(ii) We show that supp(f) + supp(g) is closed. Let (xk) be a sequence in
supp(f) + supp(g) such that xk → x for some x ∈ Rn. Then there are sequences
(ak) in supp(f) and (bk) in supp(g) such that xk = ak + bk for k ∈ N. Because
supp(f) is compact, there is a subsequence (ak�

)	∈N of (ak) and an a ∈ supp(f)
such that ak�

→ a as � → ∞. Thus bk�
= xk�

− ak�
→ x− a as k → ∞. Because

supp(g) is closed, we know x−a belongs to supp(g). Hence there exists b ∈ supp(g)
such that x = a+b. This shows that supp(f)+supp(g) is closed. The claim follows
from Corollary III.2.13. �

Approximations to the identity

We saw in Corollary 7.9 that the convolution algebra L1 has no multiplicative
identity. However, the next theorem secures the existence of “approximations to
the identity”, elements ϕ ∈ L1 that satisfy ‖ϕ ∗ f − f‖1 < ε for every f ∈ L1 (for
a given ε > 0).

7.11 Theorem (approximation theorem) Given E ∈ {Lp ; 1 ≤ p < ∞} or
E ∈ {BUCk ; k ∈ N }, set ϕ ∈ L1 and

a :=
∫

ϕdx , ϕε(x) := ε−nϕ(x/ε) for x ∈ Rn , ε > 0 .

Then limε→0 ϕε ∗ f = af in E for f ∈ E.

Proof (i) Fix ε > 0. By the substitution rule— Example 6.6(b)— we know that
ϕε ∈ L1 and

∫
ϕε dx = a. Thus Theorem 7.8 shows that ϕε ∗ f ∈ E for f ∈ E.

(ii) To prove the limit as ε→ 0, consider first the case E = Lp. Take f ∈ Lp

and ε > 0. By Theorem 7.3(i) and the proof of Theorem 7.8(ii), and using the
transformation y �→ y/ε in Example 6.6(b), we obtain

ϕε ∗ f(x)− af(x) = f ∗ ϕε(x)− af(x) =
∫ [

f(x− y)− f(x)
]
ϕε(y) dy

=
∫ [

f(x− εz)− f(x)
]
ϕ(z) dz =

∫ [
τεzf(x)− f(x)

]
ϕ(z) dz

(7.7)

for almost every x ∈ Rn. Corollary 7.7 and Remark 7.5(d) imply that(
z �→ (τεzf − f)

)
∈ C(Rn, E) for ε > 0 , (7.8)

and
lim
ε→0

‖τεzf − f‖E = 0 for z ∈ Rn . (7.9)

Now set
gε(z) := (τεzf − f)ϕ(z) for z ∈ Rn and ε > 0 .

Then it follows from (7.8), Theorem 1.17, and Remark 1.2(d) that gε belongs to
L0(Rn, E) for every ε > 0. Because ‖τεzf‖E = ‖f‖E, we also derive from the
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triangle inequality that

‖gε(z)‖E ≤ 2 ‖f‖E |ϕ(z)| for z ∈ Rn and ε > 0 .

Because ϕ ∈ L1(Rn), we therefore conclude that gε ∈ L1(Rn, E). Then (7.7) and
Theorem 2.11(i) imply the bound7

‖ϕε ∗ f − af‖E =
∥∥∥∫

gε(z) dz
∥∥∥

E
≤

∫
‖gε(z)‖E dz .

Now the dominated convergence theorem shows that ϕε ∗ f converges in E to af
as ε→ 0, because, by (7.9), we have limε→0 ‖gε(z)‖E = 0 for almost every z ∈ Rn.

(iii) Now suppose f ∈ BUCk. If ϕ = 0 λn-a.e., the claim is obviously true.
So suppose m :=

∫
|ϕ| dx > 0. From Theorem 7.8(ii) and (iv), it follows that

∂α(ϕε ∗ f − af) = ϕε ∗ ∂αf − a∂αf for α ∈ Nn and |α| ≤ k .

Therefore it suffices to consider the case k = 0.

Let η > 0. Then there is a δ > 0 such that

|f(x− y)− f(x)| ≤ η/2m for x, y ∈ Rn , |y| < δ ,

and we obtain

|ϕε ∗ f(x)− af(x)| ≤
∫
|f(x− y)− f(x)| |ϕε(y)| dy

≤ η

2m

∫
[ |y|<δ]

|ϕε(y)| dy + 2 ‖f‖∞
∫

[ |y|≥δ]

|ϕε(y)| dy

≤ η

2
+ 2 ‖f‖∞

∫
[ |y|≥δ]

|ϕε(y)| dy

(7.10)

for x ∈ Rn. The substitution rule then gives∫
[ |y|≥δ]

|ϕε(y)| dy = ε−n

∫
[ |y|≥δ]

|ϕ(y/ε)| dy =
∫

[ |z|≥δ/ε]

|ϕ(z)| dz .

By the dominated convergence theorem, then, there exists ε0 > 0 such that∫
[ |y|≥δ]

|ϕε(y)| dy ≤ η

4 ‖f‖∞
for ε ∈ (0, ε0] .

Now the claim follows from (7.10). �

7This also follows from Minkowski’s inequality for integrals.
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Suppose ϕ ∈ L1 satisfies
∫

ϕdx = 1 and set

ϕε(x) := ε−nϕ(x/ε) for x ∈ Rn and ε > 0 . (7.11)

The family {ϕε ; ε > 0 } is called an approximating kernel or an approximation
to the identity. If

ϕ ∈ C∞(Rn, R) , ϕ

̂

= ϕ , ϕ ≥ 0 , supp(ϕ) ⊂ Bn ,

∫
ϕdx = 1 ,

we call {ϕε ; ε > 0 } a mollifier or smoothing kernel. Every smoothing kernel
obviously satisfies

supp(ϕε) ⊂ εBn for ‖ϕε‖1 = 1 and ε > 0 .

7.12 Examples8 (a) The Gaussian kernel is the
family { kε ; ε > 0 } defined by

k(x) := (4π)−n/2 e−|x|2/4 for x ∈ Rn .

It is an approximating kernel.
Proof From Example 6.13(a), we know that∫

g(x) dx = 1

for g(x) := π−n/2 e−|x|2 . Since k(x) = 2−ng(x/2) for x ∈ Rn, it follows from the
substitution rule that

∫
k(x) dx = 1. �

(b) Let

ϕ(x) :=

{
c e1/(|x|2−1) if |x| < 1 ,

0 if |x| ≥ 1 ,

where c :=
(∫

Bn e1/(|x|2−1) dx
)−1 is chosen

so that φ integrates to 1. Then the family
{ϕε ; ε > 0 } is a smoothing kernel.

Proof Because x �→ |x|2 − 1 is smooth on Rn, Example IV.1.17 shows that ϕ belongs
to C∞(Rn, R) (see Exercise VII.5.16). The claim follows easily. �

Test functions

Let X be a metric space, and let A and B be subsets of X . We say A is compactly
contained in B (in symbols: A ⊂⊂ B) if A is compact and is contained in the
interior of B.

8In both examples, the area under the graphs is always 1, so smaller values of ε give corre-
spondingly higher maxima.
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If X is open in Rn and E is a normed vector space, we call

D(X, E) :=
{

ϕ ∈ C∞(X, E) ; supp(ϕ) ⊂⊂ X
}

the space of (E-valued) test functions on X . When E = K, we write D(X) :=
D(X, K), as usual. Clearly D(X, E) is a vector subspace of C∞(X, E) and of
Cc(X, E), and D(X, E) = C∞(X, E) ∩ Cc(X, E). Because the map

j : Cc(X, E)→ Cc(Rn, E) , g �→ g̃ ,

is linear and injective, we can identify Cc(X,E) with a vector subspace of Cc(Rn,E)
and regard (as needed) each element of the former as an element of the latter.
Likewise, we identify D(X, E) with a vector subspace of D(Rn, E). With these
notations, we have the following inclusions of vector subspaces for every p ∈ [1,∞]:

D(X, E) ⊂ D(Rn, E) ⊂ Cc(Rn, E) ⊂ Lp(Rn, E) .

7.13 Theorem Suppose X is open in Rn and p ∈ [1,∞). Then D(X) is a dense
vector subspace of Lp(X) and of C0(X).

Proof (i) Take g ∈ Cc(X) and η > 0. Also let {ϕε ; ε > 0 } be a smooth-
ing kernel. By Theorem 7.8, ϕε ∗ g belongs to BUCk and therefore to BUC∞

for every k ∈ N. Because g has compact support, there is ε0 > 0 such that9

dist
(
supp(g), Xc

)
≥ ε0. From Theorem 7.10, it follows that

supp(ϕε ∗ g) ⊂ supp(ϕε) + supp(g) ⊂ supp(g) + εBn for ε > 0 .

Then ϕε ∗ g belongs to D(X) for ε ∈ (0, ε0). Finally by Theorem 7.11 we can find
for every q ∈ [1,∞] some ε1 ∈ (0, ε0) such that ‖ϕε1 ∗ g − g‖q < η/2.

(ii) Now suppose f ∈ Lp(X). By Theorem 5.1, we can find g ∈ Cc(X) such
that ‖f − g‖p < η/2. By (i), there is h ∈ D(X) such that ‖f − h‖p < η.

(iii) For f ∈ C0(X), let K be a compact subset of X such that |f(x)| < η/2 for
x ∈ X\K. By Proposition 4.13, we can choose a ϕ ∈ Cc(X) such that 0 ≤ ϕ ≤ 1
and ϕ |K = 1. We set g := ϕf . Because f(x) = g(x) for x ∈ K, it follows that

|f(x)− g(x)| = |f(x)| |1− ϕ(x)| < η/2 for x ∈ X .

Therefore ‖f − g‖∞ ≤ η/2. The claim then follows from (i). �

Smooth partitions of unity

In Section 4, we proved the existence of continuous Urysohn functions in general
metric spaces. This result can be distinctly improved in the special case of Rn,
where we can use mollifiers to actually construct smooth cutoff functions.

9dist
(
supp(g), ∅) := ∞.
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7.14 Proposition (smooth cutoff functions) Suppose K ⊂ Rn is compact, and set

Kρ :=
{

x ∈ Rn ; dist(x, K) < ρ
}

for ρ > 0 .

Then for every α ∈ Nn and every ρ > 0 there exist a positive constant c(α) and a
map ϕ ∈ D(Kρ) such that 0 ≤ ϕ ≤ 1, ϕ |K = 1, and ‖∂αϕ‖∞ ≤ c(α)ρ−|α|.

Proof Set {ψε ; ε > 0 } be a smoothing
kernel. Let δ := ρ/3 and ϕ := ψδ ∗ χKδ

.
Then ϕ belongs to BUC∞, and it follows
from Theorem 7.10 that

supp(ϕ) ⊂ supp(ψδ) + Kδ ⊂ δBn + Kδ

⊂ K2δ ⊂ K3δ = Kρ .

Therefore ϕ belongs to D(Kρ). Moreover

ϕ(x) =
∫

ψδ(x− y)χKδ
(y) dy ≤

∫
ψδ(x− y) dy = 1

for x ∈ Rn, and hence 0 ≤ ϕ ≤ 1. If x lies in K, then

ϕ(x) =
∫

ψδ(y)χKδ
(x− y) dy =

∫
ψδ(y) dy = 1 ,

and therefore ϕ |K = 1. Finally, since ∂αψδ = δ−|α|(∂αψ1)δ for α ∈ Nn, we have
from Theorem 7.8(iv) that

∂αϕ = ∂α(ψδ ∗ χKδ
) = ∂αψδ ∗ χKδ

= δ−|α|(∂αψ1)δ ∗ χKδ
.

Now c(α) := 3|α| ‖∂αψ1‖1 is independent of δ > 0, and so it follows from Young’s
inequality that ‖∂αϕ‖∞ ≤ c(α)ρ−|α|. �

Let K ⊂ Rn be compact and denote by {Xj ; 0 ≤ j ≤ m } a finite open
cover of K. If for every j ∈ {0, . . . , m}, there is a ϕj ∈ C∞(Rn) such that

(i) 0 ≤ ϕj ≤ 1,

(ii) supp(ϕj) ⊂ Xj, and

(iii)
∑m

j=0 ϕj(x) = 1 for x ∈ K,

then {ϕj ; 0 ≤ j ≤ m } is called a smooth partition of unity on K subordinate to
the cover {Xj ; 0 ≤ j ≤ m }.

If X0 is open in Rn and K ⊂ X0, then dist(K, Xc
0) > 0, and Proposition 7.14

(with ρ := dist(K, Xc
0)) secures the existence of a smooth partition of unity on K

subordinate to the one-element cover {X0} of K. To treat the general case of a
finite cover, we need a technical result:
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7.15 Lemma (shrinking lemma) Let {Xj ; 0 ≤ j ≤ m } be a finite open cover of
a compact subset K of Rn. Then there is an open cover {Uj ; 0 ≤ j ≤ m } of K
such that Uj ⊂⊂ Xj for j ∈ {0, . . . , m}.

Proof Given x ∈ K, choose j ∈ {0, . . . , m} such that x ∈ Xj and rx > 0 such that
Vx := Bn(x, rx) is compact and contained in Xj. Then {Vx ; x ∈ K } is an open
cover of K, and there exist k ∈ N and {x0, . . . , xk} ⊂ K with K ⊂ ⋃k

i=0 Vxi . With
Uj :=

⋃
{Vxi ; Vxi ⊂ Xj } for j ∈ {0, . . . , m}, we have a family {Uj ; 0 ≤ j ≤ m }

having the desired properties. �

7.16 Theorem (smooth partitions of unity) If K is a compact subset of Rn, every
finite open cover of K has a smooth partition of unity subordinate to it.

Proof Suppose {Xj ; 0 ≤ j ≤ m } is a finite open cover of K. By Lemma 7.15,
there is an open cover {Uj ; 0 ≤ j ≤ m } such that Uj ⊂⊂ Xj for j ∈ {0, . . . , m}.
We define Kj := Uj . Then Kj is compact, and dist(Kj , X

c
j ) is positive for every

j ∈ {0, . . . , m}. Proposition 7.14 now shows there is a ψj ∈ D(Xj) such that
0 ≤ ψj ≤ 1 and ψj |Kj = 1. Defining

ϕ0 := ψ0 and ϕk := ψk

k−1∏
j=0

(1− ψj) for 1 ≤ k ≤ m ,

it is easy to check by induction that
∑m

j=0 ϕj = 1−
∏m

j=0(1 − ψj). The claim now
follows because K ⊂ ⋃m

j=0 Kj. �

We next present some simple applications of Theorem 7.16. Additional, more
complicated situations will be described in succeeding chapters.

7.17 Applications (a) Suppose X is open in Rn. Then for f ∈ L0(X) the following
statements are equivalent:

(i) f ∈ L1,loc(X);
(ii) ϕf ∈ L1(X) for every ϕ ∈ D(X);
(iii) f̃ |K ∈ L1(X) for every K = K ⊂⊂ X .
Proof Let (Uj)j∈N be an ascending sequence of relatively compact open subsets of X
with X =

⋃
j Uj (see Remarks 1.16(d) and (e)). Then (see Exercise 4.3)

L1,loc(X) =
{

f ∈ L0(X) ; χUj f ∈ L1(X), j ∈ N
}

.

“(i)=⇒(ii)” Let ϕ ∈ D(X). Since K := supp(ϕ) is compact and (Uj)j∈N is ascending,
there is a k ∈ N such that K ⊂ Uk. By virtue of Proposition 7.14, we find a ψ ∈ D(Uk)
such that 0 ≤ ψ ≤ 1 and ψ |K = 1. Then∫

X

|ϕf | dx =

∫
X

|ϕψf | dx ≤ ‖ϕ‖∞
∫

X

|ψf | dx ≤ ‖ϕ‖∞ ‖χUkf‖1 <∞ .

Therefore ϕf belongs to L1(X).
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“(ii)=⇒(iii)” Take K = K ⊂⊂ X and ϕ ∈ D(X) with ϕ |K = 1. Then∫
K

|f | =
∫

K

|ϕf | ≤ ‖ϕf‖1 <∞ ,

and therefore f̃ |K ∈ L1(X).

“(iii)=⇒(i)” This implication is clear because every Uj is compact. �

(b) Suppose X is open in Rn. Then C(X) ⊂ L1,loc(X).

Proof Take f ∈ C(X) and ϕ ∈ D(X). Then ϕf belongs to Cc(X). By Theorem 5.1,
we have ϕf ∈ L1(X), and the claim follows from (a). �

(c) The linear representation of the group (Rn, +) in BUCk is injective, hence a
group isomorphism onto its image TBUCk .

Proof For a ∈ Rn, suppose τa = idBUCk . We choose r > |a| and a cutoff function
ϕ ∈ D(Rn) for rBn. Then fj := ϕ prj belongs to BUCk, and we find

−aj = τafj(0) = fj(0) = 0 for j ∈ {1, . . . , n} .

Therefore a = 0. This implies the injectivity of the representation a �→ τa. �

(d) Suppose X is open in Rn and bounded. Also let {Xj ; 0 ≤ j ≤ m } be a
finite open cover of X , and let {ϕj ; 0 ≤ j ≤ m } be a smooth partition of unity
subordinate to it. Finally let k ∈ N and

|||u|||BCk :=
m∑

j=0

‖ϕju‖BCk for u ∈ BCk(X) .

Then ||| · |||BCk is an equivalent norm on BCk(X).

Proof Take u ∈ BCk(X). Obviously

‖u‖BCk =
∥∥∥ m∑

j=0

ϕju
∥∥∥

BCk
≤

m∑
j=0

‖ϕju‖BCk = |||u|||BCk .

From Leibniz’s rule (see Exercise VII.5.21), we obtain

|||u|||BCk =
m∑

j=0

max
|α|≤k

‖∂α(ϕju)‖∞ =
m∑

j=0

max
|α|≤k

∥∥∥∑
β≤α

(α

β

)
∂βϕj ∂α−βu

∥∥∥
∞

≤
m∑

j=0

ck ‖ϕj‖BCk ‖u‖BCk ≤ C ‖u‖BCk ,

where we have set ck := max|α|≤k

∑
β≤α

(
α
β

)
and C := ck

∑m
j=0 ‖ϕj‖BCk . �
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Convolutions of E-valued functions

A look back at preceding proofs shows that the convolution f ∗ g can also be
defined when one of the two functions takes values in a Banach space F and
the other is scalar-valued. All proofs carry through without change10 so long
as the substitution rule for isometries still holds for F -valued functions. This
is indeed the case, as we shall show in the next section. In particular, the key
approximation result in Theorem 7.11 remains true for the spaces Lp(Rn, F ) and
BUCk(Rn, F ) with 1 ≤ p <∞ and k ∈ N. One consequence of this is an analogue
of Theorem 7.13 to the effect that D(X, F ) is a dense vector subspace of C0(X, F )
and of Lp(X, F ) for 1 ≤ p <∞.

Distributions11

Suppose X is a nonempty open subset of Rn. A scalar function on X , as is well
known, is a rule for assigning a real or complex number to every point in X . But
this definition is just an abstraction, since the individual points of X cannot in
practice be discerned. If, for example, we want to determine the temperature
distribution of some medium that occupies the set X — we must rely on an exper-
imental probe. However, such a probe, being of nonzero size, can only determine
values of f in an extended region; whatever value it assigns to f(x0) represents not
the actual value at x0 (if indeed such a thing is physically meaningful) but rather
some kind of average around x0: mathematically, an integral

∫
X

ϕf dx, where ϕ is
a “test function” that depends on the probe. Of course, the measurement will bet-
ter approximate the exact value f(x0) the more the test function ϕ is concentrated
about x0, that is, the less the probe smears the data.

To claim complete knowledge of f(x0), one might imagine bringing to bear all
conceivable probes, or in other words, determining the averages

∫
X ϕf dx over all

possible test functions ϕ. In mathematical terms, we’d be replacing the pointwise
function f : X → K by a functional defined on the space of all test functions,
namely, the map

Tf : D(X)→ K , ϕ �→
∫

X

ϕf dx . (7.12)

Our choice of D(X) as the space of test functions is to a large extent arbitrary.
For conceptual simplicity, we might want to consider Cc(X) instead of D(X). At
the same time, we would like to avoid performing more “measurements” than
necessary; this warrants choosing a test space that is small in some sense. But the
space must be large enough that the averages

∫
X

ϕf dx do determine f . That is,
we want the equality of

∫
X ϕf dx and

∫
X ϕg dx for all test functions ϕ to imply

f = g.

10Naturally, the commutativity formula f ∗ g = g ∗ f must be interpreted correctly.
11The rest of this section is meant to provide glimpses of applications and more advanced

theories; it can be skipped over on first reading.
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The next theorem shows that this is indeed the case if we choose D(X) as
the test space and work with “functions” in L1,loc(X). (By Application 7.17(a),
L1,loc(X) is the largest vector subspace E of L0(X) such that

∫
X ϕf dx is well

defined for all f ∈ E and all ϕ ∈ D(X).)

7.18 Theorem Suppose f ∈ L1,loc(X). If∫
X

ϕf dx = 0 for ϕ ∈ D(X) , (7.13)

then f = 0.

Proof Suppose f 
= 0, and let
∗
f ∈ L1,loc(X) be a representative of f . By

regularity, there is a compact subset K of X of positive measure such that
∗
f(x) 
= 0

for x ∈ K. Take η ∈ D(X) with η |K = 1, and let g := η
∗
f . By Application 7.17(a),

g belongs to L1. Also g(x) 
= 0 for x ∈ K. Let {ϕε ; ε > 0 } be a smoothing
kernel. Then limε→0 ϕε ∗ g = g in L1. By Corollary 4.7, there is a null sequence
(εj) and a set N of Lebesgue measure zero such that

lim
j→∞

ϕεj ∗ g(x) = g(x) for x ∈ N c . (7.14)

Given x0 ∈ K ∩ N c, set ψj := ητx0ϕεj ∈ D(X) for j ∈ N. Since

̂

ϕε = ϕε by
Remark 7.1(d), equality (7.13) gives

ϕεj ∗ g(x0) =
∫

g(y)ϕεj (x0 − y) dy =
∫

X

(
η

∗
f
)
(y)ϕεj (x0 − y) dy

=
∫

X

∗
f(y)ψj(y) dy = 0 .

However, because of (7.14) this contradicts g(x0) 
= 0. The claim follows because
the representative

∗
f of f was chosen arbitrarily. �

Clearly the map Tf is a linear functional on D(X). For the interpretation
of Tfϕ =

∫
X

ϕf dx as a measurement value to be meaningful, Tfϕ must “depend
continuously” on the measuring device; that is, small perturbations in the probe,
hence in the test function ϕ, should cause only small changes in the measured
value. Mathematically speaking, this means that Tf must be a continuous linear
functional on D(X). So we must introduce a topology on D(X).

Since our treatment here is introductory, we will limit ourselves to stating
what it means for a sequence to converge in D(X). This convergence should be
compatible with the vector structure on D(X), so it suffices to consider the case
where the limit is 0.

We say that a sequence (ϕj) converges to 0 (or is a null sequence) in D(X)
if the following conditions are satisfied:
(D1) There exists K ⊂⊂ X such that supp(ϕj) ⊂ K for j ∈ N.
(D2) ϕj → 0 in BCk(X) for every k ∈ N.
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Obviously (D2) is equivalent to:

The sequence (∂αϕj)j∈N converges uniformly to 0 for every α ∈ Nn. (7.15)

So for ϕj to converge in D(X) to 0, not only must (7.15) hold, but the supports
of the functions ϕj must all be contained in a fixed compact subset of X .

A linear functional T : D(X) → K is continuous if Tϕj → 0 for every null
sequence (ϕj) in D(X). A continuous linear functional on D(X) is also called a
Schwartz distribution, or simply distribution, on X . The set of distributions on
X is denoted by D′(X); it is clearly a vector subspace of Hom

(
D(X), K

)
.

(In functional analysis— more precisely, in the theory of topological vector
spaces— one shows that there is exactly one Hausdorff topology on D(X) that is
locally convex,12 compatible with the vector structure, and such that sequences
converge to 0 in the sense above if and only if they converge to 0 in the topology.
With respect to this topology, D′(X) is the dual of D(X), that is, the space of all
continuous linear functionals on D(X). See, for example, [Sch66] or [Yos65].)

7.19 Examples (a) For every f ∈ L1,loc(X), the linear functional Tf defined by
(7.12) is a distribution on X .
Proof Let (ϕj) be a sequence in D(X) such that ϕj → 0 in D(X). Then there is a
compact subset K of X such that supp(ϕj) ⊂ X for j ∈ N. It follows that

|Tfϕj | =
∣∣∣∫

X

ϕjf dx
∣∣∣ ≤ ∫

K

|ϕj | |f | dx ≤ ‖f‖L1(K) ‖ϕj‖∞

for j ∈ N. Because ‖f‖L1(K) < ∞, we find that Tfϕj → 0 in K, because (D2) implies
that ‖ϕj‖∞ → 0. �

(b) Let μ be a Radon measure on X . Then

D(X)→ K , ϕ �→
∫

X

ϕdμ

defines a distribution on X .
Proof Suppose (ϕj) is a sequence in D(X) such that ϕj → 0 in D(X). Also suppose
K = K ⊂⊂ X contains supp(ϕj) for all j ∈ N. Then∣∣∣∫

X

ϕj dμ
∣∣∣ ≤ ∫

K

|ϕj | dμ ≤ μ(K) ‖ϕj‖∞ for j ∈ N .

As in the proof of (a), this implies that ϕ is a distribution on X. �

(c) Let δ be the Dirac measure on Rn with support at 0. Then

ϕ �→ 〈δ, ϕ〉 :=
∫

X

ϕdδ = ϕ(0) for ϕ ∈ D(Rn) ,

12This means the origin has an open neighborhood basis of convex sets.
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is a distribution on Rn, the Dirac distribution

δ : D(Rn) → K , ϕ �→ ϕ(0) .

There is no u ∈ L1,loc(Rn) such that Tu = δ.
Proof The first statement is a special case of (b).

Suppose now that u ∈ L1,loc(R
n) with Tu = δ, that is,∫

Rn

ϕu dx = ϕ(0) for ϕ ∈ D(Rn) . (7.16)

Choosing only such ϕ ∈ D(Rn) that supp(ϕ) ⊂⊂ X := Rn\{0}, we have ϕ(0) = 0, and
from Theorem 7.18, it follows that u |X = 0 in L1,loc(X). But X and Rn differ only on
a set of measure zero (a single point!), so u = 0 in L1,loc(R

n), contradicting (7.16). �

(d) Let α ∈ Nn. Then

Sα : D(Rn)→ K , ϕ �→ ∂αϕ(0)

defines a distribution. There is no u ∈ L1,loc(Rn) such that Tu = Sα.
Proof Let (ϕj) be a sequence in D(Rn) such that ϕj → 0 in D(Rn), and suppose
K = K ⊂⊂ Rn with supp(ϕj) ⊂ K for j ∈ N. We can assume that 0 lies in K. Then we
have the estimate

|∂αϕj(0)| ≤ max
x∈K

|∂αϕj(x)| ≤ ‖ϕj‖BC|α| for j ∈ N .

Thus (D2) implies that ∂αϕj(0) → 0 in K, which shows that Sα is a distribution. The
second statement is proved as in (c). �

The following key result is now a simple consequence of Theorem 7.18.

7.20 Theorem The map

L1,loc(X)→ D′(X) , f �→ Tf

is linear and injective.

Proof Example 7.19(a) shows the map is well defined. It is linear because inte-
gration is. It is injective by Theorem 7.18. �

By Theorem 7.20, we can identify L1,loc(X) with its image in D′(X). In other
words, we can regard L1,loc(X) as a vector subspace of the space of all Schwartz
distributions, by identifying a function f ∈ L1,loc(X) with the distribution

Tf =
(
ϕ �→

∫
X

ϕf dx
)
∈ D′(X) .

In this sense, every f ∈ L1,loc(X) is a distribution. The elements of L1,loc(X) are
called regular distributions. All other distributions are singular. Examples 7.19(c)
and (d) illustrate singular distributions.
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The theory of distributions plays an important role in higher analysis, espe-
cially in the study of partial differential equations, and in theoretical physics. We
cannot elaborate here, but see for example [Sch65], [RS72].

Linear differential operators

Let X be open in Rn. Given functions aα ∈ C∞(X), for each α ∈ Nn such that
|α| ≤ m ∈ N, we set

A(∂)u :=
∑

|α|≤m

aα∂αu for u ∈ D(X) .

Obviously, A(∂) is a linear map of D(X) onto itself; we say it is a linear differential
operator on X of order ≤ m (with smooth coefficients). It has order m if∑

|α|=m

‖aα‖∞ 
= 0 ,

that is, if at least one coefficient aα of the leading part
∑

|α|=m aα∂α of A(∂) does
not vanish identically. We denote by Diffop(X) the set of all linear differential
operators on X ; those of order ≤ m are denoted by Diffopm(X).

A linear map T : D(X) → D(X) is said to be continuous13 if Tϕj → 0
in D(X) for every sequence (ϕj) in D(X) such that ϕj → 0 in D(X). The set of
all continuous endomorphisms of D(X) is a vector subspace of End

(
D(X)

)
, which

we denote by L
(
D(X)

)
.13

7.21 Proposition Diffop(X) is a vector subspace of L
(
D(X)

)
, and Diffopm(X) is

a vector subspace of Diffop(X).

Proof Let m ∈ N, and take A(∂) :=
∑

|α|≤m aα∂α ∈ Diffopm(X). Let (ϕj) be
a null sequence in D(X), and let K = K ⊂⊂ X contain supp(ϕj) for all j ∈ N.
Then supp

(
A(∂)ϕj

)
⊂ K for j ∈ N. For β ∈ Nn, the Leibniz rule gives

‖∂β(aα∂αϕj)‖C(K) =
∥∥∥∑

γ≤β

(β

γ

)
∂γaα∂β−γ+αϕj

∥∥∥
C(K)

≤ c(α, β)max
γ≤β

‖∂γaα‖C(K) ‖∂β−γ+αϕj‖∞ .

From this we derive for k ∈ N the inequality

‖A(∂)ϕj‖BCk(X) ≤ c(k)
∑

|α|≤m

‖aα‖BCk(K) ‖ϕj‖BCk+m(X) for j ∈ N ,

13It is shown in functional analysis that these definitions are consistent with our previous
definitions for continuity and L(E).
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where the constant c(k) is independent of j. Now A(∂)ϕj → 0 in BCk(X) follows
from (D2). Because this is true for every k ∈ N, we see that A(∂)ϕj → 0 in D(X).
This proves that Diffopm(X) ⊂ L

(
D(X)

)
. The other statements are clear. �

Let ( · | · ) denote the inner product in L2(X), and suppose A(∂) belongs to
Diffop(X). If there is a differential operator A�(∂) ∈ Diffop(X) such that(

A(∂)u
∣∣ v

)
=

(
u

∣∣A�(∂)v
)

for u, v ∈ D(X) ,

we say A�(∂) is the formal adjoint of A(∂). Because

(
u

∣∣A�(∂)v
)

=
∫

X

uA�(∂)v dx

and A�(∂)v ∈ D(X) ⊂ L1,loc(X) for v ∈ D(X), it follows easily from Theorem 7.18
that A(∂) has at most one formal adjoint. If A(∂) has a formal adjoint A�(∂) that
coincides with A(∂), then A(∂) is formally self-adjoint.

We will now show that every A(∂) ∈ Diffop(X) has a differential operator
formally adjoint to it, and we derive an explicit form for A�(∂). First we need this:

7.22 Proposition (integration by parts) For f ∈ C1(X) and g ∈ C1
c (X),∫

X

(∂jf)g dx = −
∫

X

f∂jg dx for j ∈ {1, . . . , n} .

Proof We need only consider the case j = 1; the general case will follow by
permutation of coordinates, in view of Corollary 6.10. So write x = (x1, x

′) ∈
R×Rn−1. Since fg has compact support, it follows from integrating by parts that∫ ∞

−∞

[
∂1f(x1, x

′)
]
g(x1, x

′) dx1 = −
∫ ∞

−∞
f(x1, x

′)∂1g(x1, x
′) dx1

for every x′ ∈ Rn−1. From Fubini’s theorem, we now get∫
X

(∂1f)g dx =
∫

Rn

(∂1f)g dx

=
∫

Rn−1

(∫ ∞

−∞
∂1f(x1, x

′)g(x1, x
′) dx1

)
dx′

= −
∫

Rn−1

(∫ ∞

−∞
f(x1, x

′)∂1g(x1, x
′) dx1

)
dx′

= −
∫

Rn

f∂1g dx = −
∫

X

f∂1g dx . �
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7.23 Corollary Suppose f ∈ Ck(X) and g ∈ Ck
c (X). Then∫

X

(∂αf)g dx = (−1)|α|
∫

X

f∂αg dx

for α ∈ Nn such that |α| ≤ k.

Integration by parts is also the core of the proof of the next result.

7.24 Proposition Every differential operator

A(∂) =
∑

|α|≤m

aα∂α ∈ Diffop(X)

has a unique formal adjoint, which is explicitly given by

A�(∂)v =
∑

|α|≤m

(−1)|α|∂α(aαv) for v ∈ D(X) . (7.17)

If A(∂) has order m, then A�(∂) is also an m-th order differential operator.

Proof We already know that there is at most one formal adjoint, so we need only
prove existence and the validity of (7.17).

Take u, v ∈ D(X). Integrating by parts, we find(
A(∂)u

∣∣ v
)

=
∫

X

(
A(∂)u

)
v dx =

∑
|α|≤m

∫
X

(aα∂αu)v dx

=
∑

|α|≤m

(−1)|α|
∫

X

u∂α(aαv) dx =
∫

X

u
∑

|α|≤m

(−1)|α|∂α(aαv) dx .

Therefore (
A(∂)u

∣∣ v
)

=
(
u

∣∣A�(∂)v
)

for u, v ∈ D(X)

if A�(∂)v is as in (7.17). By Leibniz’s rule, there exist bα ∈ C∞(X) for α ∈ Nn

with |α| ≤ m− 1, such that

A�(∂) = (−1)m
∑

|α|=m

aα∂α +
∑

|α|≤m−1

bα∂α .

Therefore A�(∂) belongs to Diffop(X). The claim is now clear. �

For differential operators that describe the time evolution of systems, it is
usual to treat time as a distinguished variable. We recall, for instance, the wave
operator ∂2

t −Δx and the heat operator ∂t−Δx in the variables (t, x) ∈ R×Rn (see
Exercise VII.5.10). Another example is the Schrödinger operator (1/i)∂t − Δx.
All three operators are second order differential operators.
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7.25 Examples (a) The wave operator and the Schrödinger operator are formally
self-adjoint.15

(b) The heat operator has (∂t − Δx)� = −∂t −Δx as its adjoint. It is therefore
not formally self-adjoint.

(c) For A(∂) := ∂t −
∑n

j=1 ∂j , we have A�(∂) = −A(∂).

(d) Suppose ajk, aj , a0 ∈ C∞(X, R) with

n∑
j,k=1

‖ajk‖∞ 
= 0 , ajk = akj for j, k ∈ {1, . . . , n} .

Also define A(∂) ∈ Diffop2(X) by

A(∂)u :=
n∑

j,k=1

∂j(ajk∂ku) +
n∑

j=1

aj∂ju + a0u for u ∈ D(X) .

Then we say A(∂) is a divergence form operator.16 In this case, we have

A�(∂)v =
n∑

j,k=1

∂j(ajk∂kv)−
n∑

j=1

aj∂jv +
(
a0 −

n∑
j=1

∂jaj

)
v for v ∈ D(X) .

Therefore the formal adjoint is also of divergence form, and A(∂) is formally self-
adjoint if and only if aj = 0 for j = 1, . . . , n.
Proof This follows easily from Proposition 7.22. �

(e) The Laplace operator Δ is a formally self-adjoint second-order differential
operator of divergence form.

Proof This follows from (d) by taking ajk = δjk (the Kronecker delta). �

Weak derivatives

We now explain briefly how the concept of derivative can be generalized so func-
tions that are not differentiable in the classical sense can be assigned a generalized
derivative.

Suppose X is open in Rn. We say u ∈ L1,loc(X) is weakly differentiable if
there exists uj ∈ L1,loc(X) such that∫

X

(∂jϕ)u dx = −
∫

X

ϕuj dx for ϕ ∈ D(X) and 1 ≤ j ≤ n . (7.18)

15These facts are of particular importance in mathematical physics.
16The reason for this language will be clarified in Section XI.6.
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More generally, if m ≥ 2 is an integer, we say u ∈ L1,loc(X) is m-times weakly
differentiable on X if there exists uα ∈ L1,loc(X) such that∫

X

(∂αϕ)u dx = (−1)|α|
∫

X

ϕuα dx for ϕ ∈ D(X) , (7.19)

for all α ∈ Nn with |α| ≤ m. If this is the case, then it immediately follows from
Theorem 7.18 that uα ∈ L1,loc(X) is uniquely determined by u (and α). We call
uα the α-th weak partial derivative and set ∂αu := uα. In the case m = 1, we set
∂ju := uj . These notations are justified by the first of the following remarks.

7.26 Remarks (a) Suppose m ∈ N×. Then every u ∈ Cm(X) is m-times weakly
differentiable, and the weak derivatives agree with the classical, or usual, partial
derivative.
Proof This follows from Corollary 7.23. �

(b) Let Wm
1,loc(X) be the set of all m-times weakly differentiable functions on X .

Then Wm
1,loc(X) is a vector subspace of L1,loc(X), and for every α ∈ Nn with

|α| ≤ m, the map

Wm
1,loc(X)→W

m−|α|
1,loc (X) , u �→ ∂αu

is well defined and linear.
Proof We leave the simple proof to the reader as an exercise. �

(c) For u ∈Wm
1,loc(X) and α, β ∈ Nn with |α|+ |β| ≤ m, we have ∂α∂βu = ∂β∂αu.

Proof This follows immediately from the defining equations (7.19) and the properties
of smooth functions. �

(d) Suppose u ∈ L1,loc(R) is defined by u(x) := |x| for x ∈ R. Then u is weakly
differentiable, and ∂u = sign.
Proof First, the absolute value function | · | is smooth on R×, and its derivative is
sign |R× there. Now suppose ϕ ∈ D(R). Integration by parts gives∫

R

ϕ′u dx =

∫ ∞

0

ϕ′u dx +

∫ 0

−∞
ϕ′u dx

= ϕ(x)x
∣∣∞
0
−

∫ ∞

0

ϕ(x) dx− ϕ(x)x
∣∣0
−∞ +

∫ 0

−∞
ϕ(x) dx

= −
∫

R

ϕ(x) sign(x) dx .

The claim follows since sign belongs to L1,loc(R). �

(e) The function sign belongs to L1,loc(R) and is smooth on R×. Nevertheless it
is not weakly differentiable. Thus the absolute value function of item (d) is not
twice weakly differentiable.
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Proof For ϕ ∈ D(R), we have∫
R

ϕ′ sign dx =

∫ ∞

0

ϕ′(x) dx−
∫ 0

−∞
ϕ′(x) dx = −2ϕ(0) . (7.20)

Were sign weakly differentiable, then there would be a v ∈ L1,loc(R) such that∫
R

ϕv dx = 2ϕ(0) for ϕ ∈ D(R) ,

which is false: see Example 7.19(c). �

In terms of the Dirac distribution δ, (7.20) assumes the form∫
R

ϕ′ sign dx = −2δ(ϕ) for ϕ ∈ D(X) .

Denoting the duality pairing as usual by

〈 · , · 〉 : D′(X)×D(X)→ K ,

so 〈T, ϕ〉 is the value of the continuous linear functional T on the element ϕ, we
have

〈sign, ϕ′〉 = −2〈δ, ϕ〉 for ϕ ∈ D(R) , (7.21)

where we have identified sign ∈ L1,loc(R) with the regular distribution Tsign ∈
D′(X), as discussed right after the proof of Theorem 7.20. A comparison of (7.19)
and (7.21) suggests the following definition: Let S, T ∈ D′(X) and α ∈ Nn. Then
S is called the α-th distributional derivative of T if

〈T, ∂αϕ〉 = (−1)|α|〈S, ϕ〉 for ϕ ∈ D(X) .

In this case, S is clearly defined by T (and α), so we can set ∂αT := S. We see
easily that every distribution has distributional derivatives of every order and that
for every α ∈ Nn the distributional derivative

∂α : D′(X)→ D′(X) , T �→ ∂αT

is a linear map.17 In particular, (7.21) shows that, in the sense of distributions,

∂(sign) = 2δ .

We cannot go any further here into the theory of distributions, but we want
to briefly introduce Sobolev spaces. Suppose m ∈ N and 1 ≤ p ≤ ∞. Because

17See Exercise 13.
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Lp(X) ⊂ L1,loc(X), every u ∈ Lp(X) has distributional derivatives of all orders.
We set18

Wm
p (X) :=

{
u ∈ Lp(X) ; ∂αu ∈ Lp(X), |α| ≤ m

}
,

where ∂α denotes the α-th distributional derivative. Also let

‖u‖m,p :=

⎧⎪⎪⎨⎪⎪⎩
( ∑
|α|≤m

‖∂αu‖p
p

)1/p

, 1 ≤ p < ∞ ,

max
|α|≤m

‖∂αu‖∞ , p = ∞ .

(7.22)

We verify easily that
Wm

p (X) :=
(
Wm

p (X), ‖·‖m,p

)
is a normed vector space, called the Sobolev space of order m. In particular,
W 0

p (X) = Lp(X).

7.27 Theorem

(i) Wm
p (X) is continuously embedded in Lp(X), and u ∈ Lp(X) belongs to

Wm
p (X) if and only if u is m-times weakly differentiable and all weak deriva-

tives of order ≤ m belong to Lp(X).
(ii) Wm

p (X) is a Banach space.

Proof (i) This is obvious.
(ii) Let (uj) be a Cauchy sequence in Wm

p (X). It follows immediately from
(7.22) that (∂αuj)j∈N is a Cauchy sequence in Lp(X) for every α ∈ Nn such that
|α| ≤ m. Because Lp(X) is complete, there exists a unique uα ∈ Lp(X) such that
∂αuj → uα in Lp(X) for j → ∞ and |α| ≤ m. We set u := u0. Then it follows
from (7.19) that, for all j ∈ N,∫

X

(∂αϕ)uj dx = (−1)|α|
∫

X

ϕ∂αuj dx for ϕ ∈ D(X) and |α| ≤ m . (7.23)

From Hölder’s inequality, we deduce∣∣∣∫
X

(∂αϕ)uj dx−
∫

X

(∂αϕ)u dx
∣∣∣ =

∣∣∣∫
X

∂αϕ(uj − u) dx
∣∣∣ ≤ ‖∂αϕ‖p′ ‖uj − u‖p ,

which shows that∫
X

(∂αϕ)uj dx →
∫

X

(∂αϕ)u dx for ϕ ∈ D(X) .

Analogously, we find that∫
X

ϕ∂αuj dx→
∫

X

ϕuα dx for ϕ ∈ D(X) .

18If X is an interval in R, then one can show that W 1
1 (X) coincides with the space introduced

in Exercise 5.6.
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Thus it follows from (7.23) that∫
X

(∂αϕ)u dx = (−1)|α|
∫

X

ϕuα dx for ϕ ∈ D(X) .

This shows that uα is the α-th weak derivative of u, and we see that u is m-times
weakly differentiable. Because uα ∈ Lp(X) for |α| ≤ m, we also have u ∈ Wm

p (X),
and it is clear that uj → u in Wm

p (X). Therefore Wm
p (X) is complete. �

7.28 Corollary Wm
2 (X) is a Hilbert space with the inner product

(u | v)m :=
∑

|α|≤m

(∂αu | ∂αv) for u, v ∈Wm
2 (X) .

We will conclude this section by proving the so-called trace theorem for
Sobolev spaces. For m ∈ N and 1 ≤ p < ∞, set

Ĥm
p (X) :=

({
u |X ; u ∈ Cm

c (Rn)
}
, ‖·‖m,p

)
.

Clearly Ĥm
p (X) is a vector subspace of Wm

p (X). If the boundary ∂X of X is
sufficiently nice (for example, if X ⊂ Rn is an n-dimensional submanifold with
boundary,19) one can show that Ĥm

p (X) is dense in Wm
p (X). In particular, this is

the case for X := Rn or X := Hn.

7.29 Theorem (trace theorem) Let 1 ≤ p < ∞ and X = Rn or X = Hn. Then
there is a unique trace operator γ ∈ L

(
W 1

p (X), Lp(Rn−1)
)

such that γu = u |Rn−1

for u ∈ D(Rn) (more precisely , for u ∈ Ĥ1
p (X)). Here Rn−1 is identified with

Rn−1 × {0} ⊂ Rn.

Proof Since Ĥ1
p (X) is dense in W 1

p (X), the claim follows from Proposition 6.24,
Remark 6.25, and Theorem VI.2.6. �

This theorem says in particular that every element u ∈W 1
p (Hn) has boundary

values γu ∈ Lp(∂Hn). Because u is generally not continuous on Hn, γu cannot be
simply determined by restriction.

The existence of a trace is the foundation for the treatment of boundary value
problems in partial differential equations by the methods of functional analysis.

Exercises

1 For a > 0, calculate χ[−a,a]∗ χ[−a,a] and χ[−a,a]∗ χ[−a,a]∗ χ[−a,a].

2 Let p, p′ ∈ (1,∞) satisfy 1/p + 1/p′ = 1. Prove:

19See Section XI.1.
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(a) f ∗ g belongs to C0 for (f, g) ∈ Lp × Lp′ , and ‖f ∗ g‖∞ ≤ ‖f‖p ‖g‖p′ .

(b) The convolution is a well defined, bilinear, continuous map from Lp × Lp′ into C0.

3 Let p, q, r ∈ [1,∞] with 1/p + 1/q = 1 + 1/r. Verify that

∗ : Lp × Lq → Lr , (f, g) �→ f ∗ g

is well defined, bilinear, and continuous. Also verify the generalized Young inequality

‖f ∗ g‖r ≤ ‖f‖p ‖g‖q for (f, g) ∈ Lp ×Lq .

(Hint: The cases r = 1 and r = ∞ are covered by Theorem 7.3 and Exercise 2, respec-
tively. For r ∈ (1,∞), consider

|f(x− y)g(y)| = |f(x− y)|1−p/r
(
|f(x− y)|p |g(y)|q

)1/r |g(y)|1−q/r

and apply Hölder’s inequality.)

4 Show that f ∗ g belongs to Ck for (f, g) ∈ Ck
c × L1,loc.

5 Suppose f ∈ L1,loc satisfies ∂αf ∈ L1,loc for a given α ∈ Nn. Verify that

∂α(f ∗ ϕ) = (∂αf) ∗ ϕ = f ∗ ∂αϕ for ϕ ∈ BC∞ .

6 Exhibit a vector subspace of Funct in which (R, +) is not linearly representable.

7 Given p ∈ [1,∞), suppose K ⊂ Lp is compact. Prove that for every ε > 0 there is a
δ > 0 such that ‖τaf − f‖p < ε for all f ∈ K and all a ∈ Rn with |a| < δ. (Hint: Recall
Theorem III.3.10 and Theorem 5.1(iv).)

8 Show that every nontrivial ideal of (L1, ∗) is dense in L1.

9 Let p ∈ [1,∞], and denote by k the Gaussian kernel of Example 7.12(a). Prove:

(a) ∂αk ∈ Lp for α ∈ Nn.

(b) k ∗ u ∈ BUC∞ for u ∈ Lp.

10 Let f ∈ L1, and suppose ∂αf ∈ L1 for some α ∈ Nn. Show that∫
(∂αf)ϕ dx = (−1)|α|

∫
f∂αϕ dx for ϕ ∈ BC∞ .

11 Let V ∈ {Funct, B, Lp ; 1 ≤ p ≤ ∞}. Show that the linear representation of (Rn, +)
on V by translations is a group isomorphism.

12 For f, g, h ∈ L0, suppose f is convolvable with g and g with h. If f ∗g is convolvable
with h and f with g ∗h, show that (f ∗g)∗h = f ∗ (g ∗h). Thus convolution is associative
on L1.

13 Show that the distributional derivative

∂α : D′(X)→ D′(X) , T �→ ∂αT

is a well defined linear map for every α ∈ Nn.



190 X Integration theory

14 Show that (f �→ fu) ∈ L(BCm(X), W m
p (X)) for u ∈ W m

p (X) with 1 ≤ p ≤ ∞ and
m ∈ N.

15 Suppose (Tj) is a sequence in D′(X) and that T ∈ D′(X). We say (Tj) converges in
D′(X) to T if

lim
j
〈Tj , ϕ〉 = 〈T, ϕ〉 for ϕ ∈ D(X) .

Let {ϕε ; ε > 0 } be an approximation to the identity, and let (εj) be a null sequence.

Show that (ϕεj ) converges in D′(Rn) to δ.



8 The substitution rule

In our treatment of the Cauchy–Riemann integral, we encountered the substitution
rule of Theorem VI.5.1 as an essential tool for calculating integrals. Introducing
new variables, that is, choosing appropriate coordinates, is a prominent technique
also in higher dimensional integration. Unsurprisingly, the proof of the substitution
rule in this case is more difficult. However, we have already laid a foundation in the
form of the substitution rule for linear maps, which we derived in Theorem IX.5.25.

Besides proving the general substitution rule for n-dimensional Lebesgue in-
tegrals, this section will illustrate its significance by means of some important
examples. The same theorem is also the cornerstone of the theory of integration
on manifolds, the subject of our last chapter.

In the following, suppose
• X and Y are open subsets of Rn;

E is a Banach space.

Pulling back the Lebesgue measure

Let (X,A) be a measurable space and (Y,B, ν) a measure space. If f : X → Y
is a bijective map that satisfies f(A) ⊂ B, that is, one whose inverse map is
B-A-measurable, one easily verifies that

f∗ν : A → [0,∞] , A �→ ν
(
f(A)

)
defines a measure on A, the pull back (or the inverse image) of the measure ν
by f . In the special case (X,A) =

(
Rn,L(n)

)
and (Y,B, ν) =

(
Rn,L(n), λn

)
, the

particular case of the substitution rule covered in Theorem IX.5.25 describes the
pull back of λn by automorphisms of Rn:

Φ∗λn = |detΦ|λn for Φ ∈ Laut(Rn) .

Using this result, we will now determine the pull back of the Lebesgue measure by
arbitrary C1-diffeomorphisms. A technical result is essential to that end:

8.1 Lemma Suppose Φ ∈ Diff1(X, Y ). Then

λn

(
Φ(J)

)
≤

∫
J

|det ∂Φ| dx

for every interval J ⊂⊂ X of the form [a, b), where a, b ∈ Qn.

Proof (i) First consider a cube J =
[
x0−(r/2)1, x0+(r/2)1

)
with center x0 ∈ X

and edge length r > 0. Next set Rn
∞ := (Rn, | · |∞) and

K := max
x∈J

‖∂Φ(x)‖L(Rn∞) .
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It follows from the mean value theorem that

|Φ(x) − Φ(x0)|∞ ≤ K |x− x0|∞ for x ∈ J .

Therefore Φ(J) is contained in Bn
∞

(
Φ(x0), Kr/2

)
, and we find

λn(Φ(J)) ≤ (Kr)n = Knλn(J) . (8.1)

(ii) Suppose J ⊂⊂ X is of the form [a, b), with a, b ∈ Qn. Take ε > 0 and
let M := maxx∈J ‖[∂Φ(x)]−1‖L(Rn∞). Since ∂Φ is uniformly continuous on J , there
exists δ > 0 such that

‖∂Φ(x)− ∂Φ(y)‖L(Rn∞) ≤ ε/M (8.2)

for all x, y ∈ J such that |x− y| < δ. Because a, b ∈ Qn, we can decompose J (by
edge subdivision) into N disjoint cubes Jk of the form [α, β)n with 0 < β−α < δ.
Now choose xk ∈ Jk such that

|det ∂Φ(xk)| = min
y∈Jk

|det ∂Φ(y)|

and set Tk := ∂Φ(xk) and Φk := T−1
k ◦ Φ. Because

∂Φk(y) = T−1
k ∂Φ(y) = 1n + [∂Φ(xk)]−1 [∂Φ(y)− ∂Φ(xk)]

it follows from (8.2) and the definition of M that

max
y∈Jk

‖∂Φk(y)‖L(Rn∞) ≤ 1 + ε for k ∈ {1, . . . , N} . (8.3)

By the special case of the substitution rule treated in Theorem IX.5.25, we have

λn(Φ(Jk)) = λn(TkT−1
k Φ(Jk)) = |detTk|λn(Φk(Jk)) .

Thus (8.1) and (8.3) imply

λn(Φ(Jk)) ≤ (1 + ε)n |detTk|λn(Jk) for k ∈ {1, . . . , N} .

Taking into account the bijectivity of Φ and the choice of xk, we find

λn(Φ(J)) = λn

( N⋃
k=1

Φ(Jk)
)

=
N∑

k=1

λn(Φ(Jk))

≤ (1 + ε)n
N∑

k=1

|detTk|λn(Jk) ≤ (1 + ε)n
N∑

k=1

∫
Jk

|det ∂Φ|dx

= (1 + ε)n

∫
J

|det ∂Φ| dx .

The claim follows upon taking the limit ε → 0. �
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8.2 Proposition Suppose Φ ∈ Diff1(X, Y ). Then

Φ∗λn(A) = λn

(
Φ(A)

)
=

∫
A

|det ∂Φ|dx for A ∈ L(n) |X .

Proof (i) From the monotone convergence theorem, it follows easily that

μΦ : L(n) |X → [0,∞] , A �→
∫

A

|det ∂Φ|dx

is a complete measure (see Exercise 2.11).
(ii) Suppose U is open and compactly contained in X . By Proposition IX.5.6,

there is a sequence (Jk) of disjoint intervals of the form [a, b), with a, b ∈ Qn, such
that U =

⋃
k Jk. From (i) and Lemma 8.1, it follows that

λn(Φ(U)) = λn

(⋃
k
Φ(Jk)

)
=

∑
k
λn(Φ(Jk)) ≤

∑
k

∫
Jk

|det ∂Φ| dx

=
∑

k
μΦ(Jk) = μΦ

(⋃
k
Jk

)
= μΦ(U) =

∫
U

|det ∂Φ| dx .

(iii) Let U be open in X . By Remarks 1.16(d) and (e), there is a sequence
(Uk) of open subsets of X such that Uk ⊂⊂ Uk+1 and U =

⋃
k Uk. From (ii) and

the continuity from below of the measures λn and μΦ, it follows that

λn(Φ(U)) = lim
k

λn(Φ(Uk)) ≤ lim
k

μΦ(Uk) = μΦ(U) =
∫

U

|det ∂Φ| dx .

(iv) Let A ∈ L(n) |X be bounded. Using Corollary IX.5.5, we find a sequence
(Uk) of bounded open subsets of X such that G :=

⋂
k Uk ⊃ A and λn(G) = λn(A).

From (iii) and the continuity from above of the measures λn and μΦ, we have

λn(Φ(G)) = lim
k

λn

(
Φ

( k⋂
j=0

Uj

))
≤ lim

k
μΦ

( k⋂
j=0

Uj

)
= μΦ(G) =

∫
G

|det ∂Φ|dx .

Noting that A ⊂ G and λn(A) = λn(G), we obtain

λn(Φ(A)) ≤ λn(Φ(G)) ≤
∫

G

|det ∂Φ|dx =
∫

A

|det ∂Φ|dx .

(v) Take any A ∈ L(n) |X , and set Ak := A ∩ kBn for k ∈ N. From (iv) and
the continuity of the measures from below, we obtain

λn(Φ(A)) = lim
k

λn(Φ(Ak)) ≤ lim
k

μΦ(Ak) = μΦ(A) =
∫

A

|det ∂Φ|dx .
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(vi) Let f ∈ S(Y, R+) have normal form f =
∑k

j=0 αjχAj . By (v),∫
Y

f dy =
k∑

j=0

αjλn(Aj) =
k∑

j=0

αjλn

(
Φ(Φ−1(Aj))

)
≤

k∑
j=0

αj

∫
Φ−1(Aj)

|det ∂Φ| dx =
∫

X

(f ◦ Φ) |det ∂Φ| dx .

(vii) Suppose X is bounded. Given f ∈ L0(Y, R+), let (fk) be a sequence in
S(Y, R+) such that fk ↑ f (see Theorem 1.12). Then fk ◦Φ belongs to S(X, R+).
Because the sequence (fk ◦ Φ)k converges increasingly to f ◦ Φ, we know that
(f ◦ Φ) |det ∂Φ| belongs to L0(X, R+). Now (vi) and the monotone convergence
theorem imply∫

Y

f dy = lim
k

∫
Y

fk dy ≤ lim
k

∫
X

(fk ◦ Φ) |det ∂Φ|dx =
∫

X

(f ◦ Φ) |det ∂Φ|dx .

(viii) Let X be arbitrary and take f ∈ L0(Y, R+). In view of Remarks 1.16(d)
and (e), we can find an ascending sequence of relatively compact open subsets Xk

of X such that X =
⋃∞

k=0 Xk. According to (vii), gk := χXk
f |det Φ| belongs to

L0(X, R+), and we have gk ↑ g := f |detΦ|. Therefore g ∈ L0(X, R+). Setting
Yk := Φ(Xk), we obtain from (vii) that∫

Yk

f dy ≤
∫

Xk

(f ◦ Φ) |det ∂Φ|dx .

Now Y =
⋃∞

k=0 Yk and the monotone convergence theorem yield∫
Y

f dy ≤
∫

X

(f ◦ Φ) |det ∂Φ| dx . (8.4)

(ix) Suppose A ∈ L(n) |X . We swap the roles of X and Y in (viii) and apply
(8.4) to the C1-diffeomorphism Φ−1 : Y → X and the function (χΦ(A)◦Φ) |det ∂Φ|,
which belongs to L0(X, R+). Then∫

X

(χΦ(A) ◦ Φ) |det ∂Φ| dx ≤
∫

Y

[(
(χΦ(A) ◦ Φ) |det ∂Φ|

)
◦ Φ−1

]
|det ∂Φ−1| dy

=
∫

Y

χΦ(A)

∣∣det
[
(∂Φ ◦ Φ−1)∂Φ−1

]∣∣ dy .

Further noting that

1n = ∂(idY ) = ∂(Φ ◦ Φ−1) = (∂Φ ◦ Φ−1)∂Φ−1 (8.5)

and χΦ(A) ◦ Φ = χA, we obtain∫
A

|det ∂Φ| dx ≤
∫

Y

χΦ(A) dy = λn(Φ(A)) .

Because of (v), the claim follows. �
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8.3 Example Define X :=
{

(r, ϕ) ∈ R× (0, 2π) ; 0 < r < ϕ/2π
}

and

Φ : X → R2 , (r, ϕ) �→ (r cosϕ, r sin ϕ) .

Then Y := Φ(X) is open in R2, and Φ ∈ Diff∞(X, Y ) satisfies[
∂Φ(r, ϕ)

]
=

[
cosϕ −r sin ϕ
sin ϕ r cosϕ

]
.

Therefore det ∂Φ(r, ϕ) = r. Also pr2(X) = (0, 2π), and X [ϕ] = (0, ϕ/2π) for
ϕ ∈ (0, 2π). By Proposition 8.2 and Tonelli’s theorem, then,

λ2(Y ) =
∫

X

r d(r, ϕ) =
∫ 2π

0

∫ ϕ/2π

0

r dr dϕ = π/3 .

The substitution rule: general case

After these preliminaries, it is no longer difficult to prove the substitution rule
for diffeomorphisms. First we consider the scalar case, whose proof is accessible
even to readers who skipped over the proof of Fubini’s theorem for vector-valued
functions. We treat the general case at the end of the section.

8.4 Theorem (substitution rule) Suppose Φ ∈ Diff1(X, Y ).
(i) For f ∈ L0(Y, R+), ∫

Y

f dy =
∫

X

(f ◦ Φ) |det ∂Φ|dx . (8.6)

(ii) A function f : Y → K is integrable if and only if (f ◦ Φ) |det ∂Φ| belongs to
L1(X). In this case, (8.6) holds.

Proof (i) Theorem IX.5.12 implies that Φ(LX) ⊂ LY . Hence f ◦Φ is measurable,
by Corollary 1.5. Since |det ∂Φ| is continuous, hence measurable, Remark 1.2(d)
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implies that g := (f ◦ Φ) |det ∂Φ| is measurable also. From (8.5) we obtain f =
(g ◦ Φ−1)| det ∂Φ−1|. Now (8.4), with (Y, Φ−1, g) in the role of (X, Φ, f), gives∫

X

(f ◦ Φ) |det ∂Φ|dx ≤
∫

Y

f dy .

Because of (8.4), this implies (8.6). Now (ii) follows from (i), parts (ii) and (iii) of
Corollary 2.12, and Theorem 3.14. �

In terms of the pull back of functions defined in Section VIII.3, the substitu-
tion rule (8.6) takes on the easily remembered form∫

Y

f dλn =
∫

Φ−1(Y )

(Φ∗f) d(Φ∗λn) .

This follows from Proposition 8.2 and Exercise 2.12.

For many applications, the assumption that Φ is a diffeomorphism is too
restrictive. We weaken it somewhat in this simple yet important generalization of
Theorem 8.4:1

8.5 Corollary Let M be a measurable subset of X such that M \M̊ has Lebesgue
measure zero. Suppose Φ ∈ C1(X, Rn) is such that Φ | M̊ is a diffeomorphism from
M̊ onto Φ(M̊).

(i) For every f ∈ L0(M, R+),∫
Φ(M)

f dy =
∫

M

(f ◦ Φ) |det ∂Φ|dx . (8.7)

(ii) A function f : Φ(M)→ K belongs to L1(Φ(M)) if and only if (f ◦Φ) |det ∂Φ|
belongs to L1(M). In this case, (8.7) holds.

Proof Because λn(M \M̊) = 0, the set Φ(M)\Φ(M̊) ⊂ Φ(M \M̊) also has mea-
sure zero, by Corollary IX.5.10. The claims then follow from Lemma 2.15 and
Theorem 8.4. �

It is clear that this corollary gives a (partial) generalization of the substitution
rule of Theorem VI.5.1, though limited to diffeomorphisms. There is one obvious
difference from the one-dimensional case considered before: now the derivative
term (that is, the functional determinant) appears as an absolute value. The
reason is that the prior result used the oriented integral.

1See Exercise 7 for a further generalization.
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Plane polar coordinates

A special case of special importance in applications consists of diffeomorphisms
induced by polar coordinates, which we now introduce. We begin with the two-
dimensional case.

Let
f2 : R2 → R2 , (r, ϕ) �→ (x, y) := (r cosϕ, r sin ϕ)

be the (plane) polar coordinate map2, and let V2 := (0,∞)× (0, 2π).

Then f2 is smooth, and det ∂f2(r, ϕ) = r, as was shown in Example 8.3. Clearly
V 2\V2 has measure zero; moreover

f2(V 2) = R2 , f2(V2) = R2
∖

(R+ × {0}) (8.8)

and
f2 |V2 ∈ Diff∞(V2, f2(V2)) . (8.9)

Therefore Corollary 8.5 applies with M := V 2:

8.6 Proposition (integration in polar coordinates)
(i) For g ∈ L0(R2, R+), we have∫

R2
g(x, y) d(x, y) =

∫ 2π

0

∫ ∞

0

g(r cosϕ, r sin ϕ)r dr dϕ

=
∫ ∞

0

r

∫ 2π

0

g(r cosϕ, r sin ϕ) dϕdr .

(8.10)

(ii) The function g : R2 → K is integrable if and only if the map

(0,∞)× (0, 2π)→ K , (r, ϕ) �→ g(r cosϕ, r sin ϕ)r

is integrable. Then (8.10) holds.

Proof This follows from Corollary 8.5 together with (8.8), (8.9), and the Fubini–
Tonelli theorem. �

2See Conclusion III.6.21(d).
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These integrals simplify when f depends only on |x|, that is, on r. To illus-
trate, we present an elegant calculation of the Gaussian error integral, for which
knowledge of the Γ-function is not required (compare Application VI.9.7).

8.7 Example
∫ ∞
−∞ e−x2

dx =
√

π.
Proof Tonelli’s theorem implies(∫ ∞

−∞
e−x2

dx
)2

=

∫ ∞

−∞
e−x2

dx

∫ ∞

−∞
e−y2

dy =

∫
R

(∫
R

e−(x2+y2) dx
)

dy

=

∫
R2

e−(x2+y2) d(x, y) .

Therefore Proposition 8.6(i) shows that(∫ ∞

−∞
e−x2

dx
)2

=

∫ 2π

0

∫ ∞

0

re−r2
dr dϕ = 2π

∫ ∞

0

d

dr

[
−e−r2

/2
]
dr = π ,

and the claim follows. �

Polar coordinates in higher dimensions

For n ≥ 1, we define hn : Rn → Rn+1 recursively through

h1(z) := (cos z, sin z) for z ∈ R (8.11)

and

hn+1(z) :=
(
hn(z′) sin zn+1, cos zn+1

)
for z = (z′, zn+1) ∈ Rn × R . (8.12)

Obviously hn is smooth, and by induction, we verify that

|hn(z)| = 1 for z ∈ Rn . (8.13)

Now we define fn : Rn → Rn for n ≥ 2 by

fn(y) := y1hn−1(z) for y = (y1, z) ∈ R× Rn−1 . (8.14)

Then fn is also smooth, and we have

hn−1(z) = fn(1, z) , |fn(y)| = |y1| . (8.15)

We will usually follow convention by renaming the y-coordinates as

(r, ϕ, ϑ1, . . . , ϑn−2) := (y1, y2, y3, . . . , yn) .

By induction, one checks easily that

fn : Rn → Rn , (r, ϕ, ϑ1, . . . , ϑn−2) �→ (x1, x2, x3, . . . , xn) (8.16)
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is given by
x1

x2

x3

xn−1

xn

=
=
=
...
=
=

r cosϕ sin ϑ1 sin ϑ2 · · · sin ϑn−2 ,

r sinϕ sin ϑ1 sin ϑ2 · · · sin ϑn−2 ,

r cosϑ1 sin ϑ2 · · · sin ϑn−2 ,

r cosϑn−3 sin ϑn−2 ,

r cosϑn−2 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8.17)

Thus f2 coincides with the plane polar coordinate map, and f3 is the spherical co-
ordinate map of Example VII.9.11(a). In the general case, fn is the n-dimensional
polar coordinate map. From (8.12) and (8.14), the recursive relation

fn(y) =
(
fn−1(y′) sin yn, y1 cos yn

)
for y = (y′, yn) ∈ Rn−1 × R (8.18)

follows for n ≥ 3. For n ≥ 2, we set

Wn−1 := (0, 2π)× (0, π)n−2 , Vn := (0,∞)×Wn−1 , (8.19)

and
Vn(r) := (0, r) ×Wn−1 for r > 0 . (8.20)

If we denote the closed (n−1)-dimensional half-space by

Hn−1 := R+ × {0} × Rn−2 ⊂ Rn , (8.21)

we find
hn−1(Wn−1) = Sn−1\Hn−1 , fn(Vn(r)) = rBn\Hn−1 (8.22)

and
hn−1

(
Wn−1

)
= Sn−1 , fn

(
Vn(r)

)
= rBn . (8.23)

Also
fn(Vn) = Rn\Hn−1 , fn

(
V n

)
= Rn . (8.24)

In addition, the maps hn−1 |Wn−1 and fn |Vn are bijective onto their images.

These statements follow easily by induction.
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8.8 Lemma For n ≥ 3 and r > 0, the map fn is a C∞ diffeomorphism from Vn(r)
onto rBn\Hn−1 and from Vn onto Rn\Hn−1. Moreover

det ∂fn(r, ϕ, ϑ1, . . . , ϑn−2) = (−1)nrn−1 sin ϑ1 sin2 ϑ2 · · · sinn−2 ϑn−2

for (r, ϕ, ϑ1, . . . , ϑn−2) ∈ V n.

Proof In view of the foregoing, we need only calculate the value of the functional
determinant det ∂fn(y). We do this recursively. From (8.12) and (8.14), we have

[
∂fn+1(y)

]
=

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

·············

⎡⎢⎢⎢⎢⎣
hn−1(z

′) sin zn

[
r∂z

(
hn−1(z

′) sin zn

)]
cos zn 0 · · · 0 −r sin zn

⎤⎥⎥⎥⎥⎦

=

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

··············

⎡⎢⎢⎢⎢⎢⎣
∗[

∂fn(y′) sin zn

] ...
∗

∗ · · · ∗ −r sin zn

⎤⎥⎥⎥⎥⎥⎦ ,

where y = (r, z) = (y′, zn) and z = (z′, zn) ∈ Rn. Expanding in the last row, we
find

det ∂fn+1(y) = (−1)n cos zn detS − r sinn+1 zn det ∂fn(y′) , (8.25)

where S :=
[
r∂z

(
hn−1(z′) sin zn

)]
. We can assume that sin zn 
= 0; otherwise the

claim is trivial. In the last column of S we have rhn−1(z′) cos zn. This vector
differs only by the factor r cot zn from the first column vector, hn−1(z′) sin zn, of
the matrix T :=

[
∂fn(y′) sin zn

]
. The first n− 1 columns of S also agree with the

last n− 1 columns of T , in the same order. Therefore

detS = (−1)n−1r cot zn detT = (−1)n−1r cos zn sinn−1 zn det ∂nf(y′) .

Thus it follows from (8.25) that

det ∂fn+1(y) = −r sinn−1 zn det ∂fn(y′) .

The claim now follows because det ∂f2(r, ϕ) = r. �

For short, let’s set

wn(ϑ) := sinϑ1 sin2 ϑ2 · · · sinn−2 ϑn−2 , ϑ := (ϑ1, . . . , ϑn−2) ∈ [0, π]n−2 .
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8.9 Proposition (integration in polar coordinates) Suppose n ≥ 3.

(i) For g ∈ L0(Rn, R+), we have∫
Rn

g dx =
∫

Vn

(g ◦ fn)(r, ϕ, ϑ)rn−1wn(ϑ) d(r, ϕ, ϑ) . (8.26)

(ii) The map g : Rn → K is integrable if and only if

Vn → K , (r, ϕ, ϑ) �→ (g ◦ fn)(r, ϕ, ϑ)rn−1wn(ϑ)

is integrable. Then (8.26) holds.

Proof Because λn

(
V n\Vn

)
= 0, the claim follows from (8.24), Corollary 8.5, and

Lemma 8.8. �

8.10 Examples (a) For g ∈ L0(R3, R+), we have∫
R3

g(x, y, z) d(x, y, z)

=
∫ ∞

0

∫ 2π

0

∫ π

0

g(r cosϕ sin ϑ, r sin ϕ sin ϑ, r cosϑ)r2 sin ϑdϑ dϕdr .

(8.27)

The integrals on the right side can be performed in any order.
Proof This follows from Proposition 8.9(i) and Tonelli’s theorem. �

(b) A map g : R3 → K is integrable if and only if

V3 → K , (r, ϕ, ϑ) �→ g(r cosϕ sin ϑ, r sin ϕ sinϑ, r cosϑ) r2 sin ϑ

is integrable. Such a map satisfies (8.27), and the integrals there can be performed
in any order.
Proof This is a consequence of Proposition 8.9(ii) and the Fubini–Tonelli theorem. �

(c) For n ≥ 3, we have

2π

∫
[0,π]n−2

wn(ϑ) dϑ = nωn ,

where ωn = πn/2
/
Γ(1 + n/2) is the volume of Bn.

Proof From (8.22), (8.23), Proposition 8.9, and Tonelli’s theorem, it follows that

ωn =

∫
Bn

dx =

∫
Bn

1 dx =

∫
Vn(1)

(1 ◦ fn)(r, ϕ, ϑ)rn−1wn(ϑ) d(r,ϕ, ϑ)

=

∫ 1

0

rn−1 dr

∫ 2π

0

dϕ

∫
[0,π]n−2

wn(ϑ) dϑ =
2π

n

∫
[0,π]n−2

wn(ϑ) dϑ ,

and we are done. �
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Integration of rotationally symmetric functions

Suppose 0 ≤ r0 < r1 ≤ ∞ and set R(r0, r1) := { x ∈ Rn ; r0 < |x| < r1 }. We
say that a function g : R(r0, r1) → E is rotationally symmetric if there is a map
�

g : (r0, r1) → E such that

g(x) =
�

g(|x|) for x ∈ R(r0, r1) .

This is the case if and only if g is constant on every sphere rSn−1 with r0 < r < r1.
For such a function,

�

g is uniquely determined by g (and vice versa).
As we saw in Example 8.7, integration problems simplify considerably for

rotationally symmetric functions.

8.11 Theorem Suppose 0 ≤ r0 < r1 ≤ ∞.

(i) If g ∈ L0

(
R(r0, r1), R+

)
is rotationally symmetric, then∫

R(r0,r1)

g dx = nωn

∫ r1

r0

�

g(r) rn−1 dr , (8.28)

where ωn := λn(Bn) = πn/2
/
Γ(1 + n/2).

(ii) A rotationally symmetric function g : R(r0, r1)→ K is integrable if and only if

(r0, r1)→ K , r �→ �

g(r) rn−1

is integrable. In this case (8.28) holds.

Proof The case n = 1 is clear (see Exercise 5.12). For n ≥ 2, it follows from
(8.15) and the rotational symmetry of g that

g ◦ fn(r, ϕ, ϑ) =
�

g(r) for r0 < r < r1 and (ϕ, ϑ) ∈Wn−1 .

Now the claim arises from Propositions 8.6 and 8.9 (applied to the trivial extension
of g) and Example 8.10(c). �

8.12 Examples (a) Suppose f : Rn → K is measurable and there are c ≥ 0, ρ > 0,
and ε > 0 such that

|f(x)| ≤
{

c |x|−n+ε if 0 < |x| ≤ ρ ,

c |x|−n−ε if |x| ≥ ρ .

Then f is integrable.
Proof Set

g(x) := c
(
|x|−n+ε χρBn(x) + |x|−n−ε χ(ρBn)c(x)

)
for x ∈ Rn\{0} = R(0,∞) .

Then g is rotationally symmetric, and |f(x)| ≤ g(x) for x ∈ R(0,∞). By Examples
VI.8.4(a) and (b), r �→

�

g(r)rn−1 belongs to L1(R+). Hence Theorem 8.11 implies that g
also belongs to L1

(
R(0,∞)

)
= L1(Rn). Now the claim follows from Theorem 3.14. �
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(b) Let μ ∈ L∞(Rn) have compact support. Also define

1
r

: Rn\{0} → R+ , x �→ 1
|x| .

Then (1/r)α ∗ μ exists for α < n, and(1
r

)α

∗ μ(x) =
∫

Rn

μ(y)
|x− y|α dy for x ∈ Rn .

Proof Take x ∈ Rn and define K := supp(μ) and gx(y) := ‖μ‖∞ |y|−α χx−K(y) for
y 	= 0. Then g̃x belongs to L0(Rn), and

|μ(x− y)| |y|−α ≤ gx(y) for y 	= 0 .

Because α < n, part (a) shows that g̃x is integrable. The claim now follows from Theo-
rem 7.8(ii). �

For n ≥ 3, the function un := (1/r)n−2∗μ, in the notation of (b), is called the
Newtonian or Coulomb potential associated with the density μ. From Exercise 3.6
we know that un is smooth and harmonic in Kc, and (b) shows that un is defined
on all of Rn.

The substitution rule for vector-valued functions

We now prove the substitution formula of Theorem 8.4 for vector-valued functions.

8.13 Lemma Let f ∈ Sc(Y, E) and Φ ∈ Diff1(X, Y ). Then (f ◦Φ) |det ∂Φ| belongs
to L1(X, E), and ∫

Y

f dy =
∫

X

(f ◦ Φ) |det ∂Φ| dx .

Proof Because supp(f ◦ Φ) = Φ−1
(
supp(f)

)
, the support of f ◦ Φ is compact.

In particular, f ◦ Φ belongs to Sc(X, E). It easily follows that (f ◦ Φ) |det ∂Φ| is
integrable. Also Theorem 2.11(iii) shows that, for e ∈ E and g ∈ L1(X, K), the
function eg belongs to L1(X, E) and e

∫
X g dx =

∫
X eg dx. Letting

∑m
j=0 ejχAj be

the normal form of f , we see from Proposition 8.2 that∫
Y

f dy =
m∑

j=0

ejλn(Aj) =
m∑

j=0

ej

∫
Φ−1(Aj)

|det ∂Φ| dx

=
m∑

j=0

∫
Φ−1(Aj)

ej |det ∂Φ|dx =
∫

X

(f ◦ Φ) |det ∂Φ| dx . �
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8.14 Theorem (substitution rule) Let Φ ∈ Diff1(X, Y ) and f ∈ EY . Then f
belongs to L1(Y, E) if and only if (f ◦ Φ) |det ∂Φ| belongs to L1(X, E). In this
case, we have ∫

Y

f dy =
∫

X

(f ◦ Φ) |det ∂Φ| dx .

Proof (i) Let f ∈ L1(Y, E), and take a sequence (fj) in Sc(Y, E) converging
a.e. in L1(Y, E) to f and satisfying lim

∫
Y

fj =
∫

Y
f (see Lemma 6.18, Remarks

6.19(a) and (c), and Theorem 2.18). Set gj := (fj ◦Φ) |det ∂Φ| for j ∈ N. Thanks
to Lemma 8.13, we know that (gj) is a Cauchy sequence in L1(X, E) and that∫

Y fj dy =
∫

X gj dx. Because L1(X, E) is complete, there exists g ∈ L1(X, E)
such that gj → g in L1(X, E). Also, it follows from Theorem 2.18 that

∫
X gj dx

converges to
∫

X
g dx and that some subsequence (gjk

)k∈N of (gj) converges a.e.
in X to g. Hence g and (f ◦ Φ) |det ∂Φ| coincide a.e. in X . By Lemma 2.15,
(f ◦Φ) |det ∂Φ| belongs to L1(X, E), and

∫
X

g =
∫

X
(f ◦Φ) |det ∂Φ|. It follows that∫

Y

f dy = lim
j

∫
Y

fj dy = lim
j

∫
X

gj dx =
∫

X

g dx =
∫

X

(f ◦ Φ) |det ∂Φ| dx .

(ii) For the converse, suppose (f ◦ Φ) |det ∂Φ| belongs to L1(X, E). From
(8.5) we have

f =
(
(f ◦ Φ) |det ∂Φ|

)
◦ Φ−1 |det ∂(Φ−1)| ,

so part (i) shows that f belongs to L1(Y, E). �

It is clear that Corollary 8.5 is also true for E-valued maps. From this it
follows that Propositions 8.6(ii) and 8.9(ii) and Theorem 8.11(ii) also hold for
E-valued functions.

Exercises

1 Let G ∈ Rn×n be symmetric and positive definite. Prove that∫
Rn

e−(Gx |x) dx = πn/2/√det G .

(Hint: principal axis transformation.)

2 Show that for p ∈ C with Re p > n/2, we have∫
Rn

(1 + |x|2)−p dx = πn/2Γ(p− n/2)
/
Γ(p) .

(Hint: Look at Example 6.13(b).)

3 Suppose D :=
{

(x, y) ∈ R2 ; x, y ≥ 0, x + y ≤ 1
}

and p, q ∈ (0,∞). Show that for
f : (0, 1)→ R, the function

D → R , (x, y) �→ xp−1yq−1f(x + y)
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is integrable if and only if s �→ sp+q−1f(s) belongs to L1((0, 1)). In this case, we have∫
D

xp−1yq−1f(x + y) d(x, y) = B(p, q)

∫ 1

0

sp+q−1f(s) ds .

(Hint: Consider (s, t) �→
(
s(1− t), st

)
.)

4 Let 0 ≤ α < β ≤ 2π, and suppose f : [α, β]→ (0,∞) is measurable. Show that

S(α, β, f) :=
{

z ∈ C ; argN (z) ∈ [α, β], |z| ≤ f
(
argN (z)

) }
is Lebesgue measurable and that

λ2

(
S(α, β, f)

)
=

1

2

∫ β

α

[
f(ϕ)

]2
dϕ .

5 Suppose g ∈ L2
sym(Rn) is positive definite. Calculate the volume of the solid ellipsoid

g−1([0, 1]) enclosed by the surface g−1(1) (see Remark VII.10.18).

6 (Sard’s lemma) Suppose Φ ∈ C1(X, Rn), and let C :=
{

x ∈ X ; ∂Φ(x) /∈ Laut(Rn)
}

be the set of critical points of Φ. Show that Φ(C) has measure zero. (Hint: Because C
is σ-compact, it suffices to check that Φ(C ∩ J) is has measure zero for every compact
n-dimensional cube J . Take x0 ∈ C and r > 0 such that J0 :=

[
x0− (r/2)1, x0 +(r/2)1

]
is compactly contained in X, and set

ρ(r) := max
x∈J0

∫ 1

0

∥∥∂Φ
(
x0 + t(x− x0)

)∥∥ dt .

Show that there is a cn > 0 such that λn(Φ(J0)) ≤ cnrnρ(r). Because limr→0 ρ(r) = 0,
the claim follows by subdividing the edges of J0.)

7 Suppose Φ ∈ C1(X, Rn) and C :=
{

x ∈ X ; ∂Φ(x) /∈ Laut(Rn)
}
. Also suppose

Φ | (X\C) is injective. Prove:

(i) For f ∈ L0(X, R+), ∫
Φ(X)

f dy =

∫
X

(f ◦Φ) |det ∂Φ| dx . (8.29)

(ii) The function f : Φ(X)→ E belongs to L1

(
Φ(X), E

)
if and only if (f ◦Φ) |det∂Φ|

lies in L1(X, E). In this case, (8.29) holds.



9 The Fourier transform

To conclude this chapter, we introduce the most important integral transformation,
called the Fourier transform.1 The study of its fundamental properties is as it
were a recapitulation of Lebesgue integration theory: we will encounter at every
turn such cornerstones as the completeness of Lebesgue spaces, the dominated
convergence theorem, and the Fubini–Tonelli theorem.

Particularly appealing is the interaction of the Fourier transform with the
convolution and with the Hilbert space structure of L2. We illustrate the former
through Fourier multiplication operators and the second via Plancherel’s theorem
and applications of the position and momentum operators of quantum mechanics.

In this section, we exclusively consider spaces of complex-valued functions
defined on all of Rn. For this reason, as in Section 7, we omit (Rn, C) from our
notation and write, for example, L1 for L1(Rn, C). In addition,

∫
f dx always

means
∫

Rn f dx, and we canonically identify Rn with its dual space, so that 〈 · , · 〉
coincides formally with the Euclidean inner product.

Definition and elementary properties

Let f ∈ L1. The map Rn → C, x �→ e−i 〈x,ξ〉f(x) belongs to L1 for every ξ ∈ Rn.
The map f̂ : Rn → C defined by

f̂(ξ) := (2π)−n/2

∫
Rn

e−i〈x,ξ〉f(x) dx for ξ ∈ Rn (9.1)

is called the Fourier transform of f . The map F :=
(
f �→ f̂

)
is also called the

Fourier transform (or, if necessary to avoid confusion, the Fourier transformation).

Different conventions intervene in the definition just given; instead of (9.1),
one often sees the Fourier transform being defined as2

ξ �→
∫

e−i〈x,ξ〉f(x) dx or ξ �→
∫

e−2πi 〈x,ξ〉f(x) dx .

Obviously, these differences in normalization are immaterial to the underlying
theory; however, they do cause powers of 2π to appear in some of the following
expressions. One should be mindful of this when reading the literature. The
normalization chosen here has the advantage that such factors appear only in a
few places and that Plancherel’s theorem takes on a particularly simple form.

9.1 Remarks (a) For f ∈ L1, set Ff := f̂ := F ∗
f , where

∗
f is an arbitrary

representative of f . Then Ff is well defined, and F ∈ L(L1, BC).

1The contents of this section will not be used in the rest of this book.
2See Section VIII.6.
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Proof The first statement is obvious. Because∣∣f̂(ξ)
∣∣ ≤ (2π)−n/2 ‖f‖1 for ξ ∈ Rn ,

the second follows easily from Theorem 3.17 (on the continuity of parameterized integrals)
and Theorem VI.2.5. �

(b) For f ∈ L1, we have

̂

f̂ = f̂

̂

. The function defined by

Rn → C , ξ �→

̂

f̂(ξ) = (2π)−n/2

∫
ei 〈x,ξ〉f(x) dx

is called the inverse Fourier transform of f , for reasons soon to become clear; and
the map

F := (f �→

̂

f̂ )

is the inverse Fourier transform(ation). Because inversion (f �→ f

̂

) is a continuous
automorphism on L1, L1, and BC, the inverse Fourier transform has the same
continuity properties as the Fourier transform.
Proof This follows immediately from the substitution rule. �

(c) For λ > 0, we denote by σλ : Rn → Rn, x �→ λx the dilation by the factor λ.
We define an action of the group

(
(0,∞), ·

)
on Funct := Funct(Rn, C),(

(0,∞), ·
)
× Funct → Funct , (λ, f) �→ σλf , (9.2)

by setting
σλf := f ◦ σ1/λ = (σ1/λ)∗f .

If V is a vector subspace of Funct that is invariant under this action (meaning
that σλ(V ) ⊂ V for λ > 0), the map

σλ : V → V , v �→ σλv

is linear and satisfies σλσμ = σλμ and σ1 = idV for λ, μ > 0. Therefore σλ is a
vector space automorphism of V , with (σλ)−1 = σ1/λ for λ > 0. This shows that(

(0,∞), ·
)
→ Aut(V ) , λ �→ σλ

is a linear representation of the multiplicative group
(
(0,∞), ·

)
on V . In particular,

{ σλ ; λ > 0 } is a subgroup of Aut(V ), the group of dilations on V . Accordingly
σλv is the dilation of v by the factor λ. As with the translation group, we say that(
(0,∞), ·

)
is linearly representable in V if V is invariant under (9.2).

Suppose 1 ≤ p ≤ ∞. Then
(
(0,∞), ·

)
is linearly representable on Lp, and

‖σλf‖p = λn/p ‖f‖p .

Proof This follows from the substitution rule. �
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(d) Fσλ = λnσ1/λF for λ > 0.
Proof Suppose f ∈ L1 and λ > 0. Then

Fσλf(ξ) = (2π)−n/2

∫
e−i 〈x,ξ〉f(x/λ) dx = λn(2π)−n/2

∫
e−〈x/λ,λξ〉f(x/λ)λ−n dx

for ξ ∈ Rn. But the substitution rule shows that the last expression is equal to λnf̂(λξ). �

(e) Suppose a ∈ Rn. Then
(
ei〈a,· 〉f

)̂ = τaf̂ for f ∈ L1. �

The space of rapidly decreasing functions

We now introduce a vector subspace of L1 where the Fourier transform is especially
manageable. Using density arguments, we will then be able to broaden the results
to larger function spaces.

We say f ∈ C∞ is rapidly decreasing if for every (k, m) ∈ N2, there is a
ck,m > 0 such that

(1 + |x|2)k |∂αf(x)| ≤ ck,m for x ∈ Rn , α ∈ Nn , and |α| ≤ m .

In other words, f ∈ C∞ is rapidly decreasing if, as |x| → ∞, every derivative ∂αf
goes to zero faster than any power of 1/|x|.

We now set

qk,m(f) := max
|α|≤m

sup
x∈Rn

(1 + |x|2)k/2 |∂αf(x)| for f ∈ C∞ and k, m ∈ N .

The space
S :=

{
f ∈ C∞ ; qk,m(f) <∞ for k, m ∈ N

}
is called Schwartz space or the space of rapidly decreasing functions.

9.2 Remarks (a) S is a vector subspace of BUC∞. Every qk,m is a norm on S.
Proof Let m ∈ N. Then S is a vector subspace of BCm, since q0,m is the norm on
BCm. Let α ∈ Nn with |α| ≤ m. Then it follows easily from the mean values theorem
that ∂αf is uniformly continuous. The proves the first statement. The second is clear. �

(b) For (f, g) ∈ S × S, let

d(f, g) :=
∞∑

k,m=0

2−(k+m) qk,m(f − g)
1 + qk,m(f − g)

.

Then (S, d) is a metric space.
Proof (i) Clearly the double series

∑
2−(k+m)qk,m(f)

/(
1+qk,m(f)

)
converges for every

f ∈ S . Thus d : S×S → R+ is well defined. Also d is symmetric and vanishes identically
on the diagonal of S × S .
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(ii) Because t �→ t/(1+t) is increasing on R+, we have, for r, s, t ∈ R+ with r ≤ s+t,

r

1+r
≤ s+ t

1+s+ t
=

s

1+s+ t
+

t

1+s+ t
≤ s

1+s
+

t

1+ t
.

Now it follows easily that d satisfies the triangle inequality. �

(c) For f ∈ S and a sequence (fj) in S, there is equivalence between:
(i) lim fj = f in (S, d);
(ii) lim(f − fj) = 0 in (S, d);
(iii) limj qk,m(f − fj) = 0 for k, m ∈ N.
Thus a sequence (fj) converges in S to f if and only if (fj − f) converges to zero
with respect to every seminorm qk,m.
Proof “(i)=⇒(ii)” This implication is clear.

“(ii)=⇒(iii)” Take ε ∈ (0, 1] and k, m ∈ N. There exists an N ∈ N such that the
inequality d(f, fj) < ε/2k+m+1 is satisfied for j ≥ N . Thus

2−(k+m)qk,m(f − fj)

1 + qk,m(f − fj)
<

ε

2k+m+1
,

so qk,m(f − fj) < ε for j ≥ N .

“(iii)=⇒(i)” Take ε > 0. There is an N ∈ N such that

∞∑
k+m=N+1

2−(k+m)qk,m(f − fj)

1 + qk,m(f − fj)
≤

∞∑
�=N+1

2−� <
ε

2
.

By assumption, there is M ∈ N such that qk,m(f − fj) ≤ ε/4 for j ≥M and k + m ≤ N .
Therefore

d(f, fj) ≤
N∑

k,m=0

2−(k+m)qk,m(f − fj)

1 + qk,m(f − fj)
+

ε

2
≤ ε for j ≥M . �

(d) D is a dense vector subspace of S. The function Rn → R, x �→ e−|x|2 belongs
to S but not to D.
Proof It is clear that D is a vector subspace of S . Suppose f ∈ S . We choose ϕ ∈ D
such that ϕ |Bn = 1 and set

fj(x) := f(x)ϕ(x/j) for x ∈ Rn , j ∈ N× .

Then fj belongs to D, and

f(x)− fj(x) = f(x)
(
1− ϕ(x/j)

)
for x ∈ Rn .

Therefore ∂α(f − fj)(x) = 0 for x ∈ jBn and α ∈ Nn. Now Leibniz’s rule shows that
there is a c = c(ϕ, m) > 0 such that

|∂α(f − fj)(x)| =
∣∣∣∑
β≤α

(α

β

)
∂βf(x)∂α−β(1− ϕ)(x/j)j−|α−β|

∣∣∣ ≤ c max
β≤α

|∂βf(x)|

≤ c qk+1,m(f)(1 + |x|2)−(k+1)/2
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for x ∈ Rn, j ∈ N×, k ∈ N, and |α| ≤ m. Setting C := c qk+1,m(f), we find

qk,m(f − fj) = max
|α|≤m

sup
|x|≥j

(1 + |x|2)k/2 |∂α(f − fj)(x)|

≤ c qk+1,m(f) sup
|x|≥j

(1 + |x|2)−1/2 ≤ C/j ,

and, as j →∞, the first claim follows from (c). The second one is clear. �

(e) For m ∈ N, we have S ↪→ BUCm.
Proof This follows from (a) and (c). �

(f) S is a dense vector subspace of C0.
Proof Suppose f ∈ S . Then it follows from (a) and because |f(x)| ≤ q1,0(f)(1 +
|x|2)−1/2 for x ∈ Rn that f belongs to C0. Therefore S is a vector subspace of C0.
Theorem 7.13 shows D is a dense vector subspace of C0, and therefore the claim follows
from the inclusions D ⊂ S ⊂ C0. �

(g) For k, m ∈ N, there are positive constants c and C such that

c max
|α|≤m
|β|≤k

sup
x∈Rn

∣∣∂α
(
xβf(x)

)∣∣ ≤ qk,m(f) ≤ C max
|α|≤m
|β|≤k

sup
x∈Rn

|xβ∂αf(x)| for f ∈ S .

Proof This follows easily from the Leibniz rule. �

(h) Let f ∈ S and α, β ∈ Nn. Then x �→ xα∂βf(x) belongs to S.
Proof This is a consequence of (g). �

(i) The inversion f �→ f

̂

is a continuous automorphism of S.
Proof This is obvious. �

9.3 Theorem Let p ∈ [1,∞). Then S is a dense vector subspace of Lp, and there
is a c = c(n, p) > 0 such that

‖f‖p ≤ c qn+1,0(f) for f ∈ S . (9.3)

Proof For f ∈ S, we have∫
|f |p dx =

∫
|f(x)|p (1 + |x|2)(n+1)p/2(1 + |x|2)−(n+1)p/2 dx

≤
(
qn+1,0(f)

)p
∫

(1 + |x|2)−(n+1)p/2 dx .

(9.4)

Further, by Theorem 8.11(i) and because (n + 1)p > n, we have∫
[|x|≥1]

|x|−(n+1)p dx = nωn

∫ ∞

1

r−((n+1)p−n+1) dr < ∞ .

Therefore
∫

(1 + |x|2)−(n+1)p/2 dx is also finite, and (9.3) follows from (9.4). In
particular, f belongs to Lp, and we see that S is a vector subspace of Lp. By
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Theorem 7.13, D is a dense vector subspace of Lp, and by Remark 9.2(d), it is
contained in S. The claim follows. �

The convolution algebra S

By Remark 9.2(a) and Theorem 9.3, S ×S is contained in BUC∞×L1. Therefore
the convolution is defined on S × S, and by Corollary 7.9, we have

∗ : S × S → BUC∞ . (9.5)

The next result shows that f ∗ g is actually rapidly decreasing for (f, g) ∈ S × S.

9.4 Proposition The convolution S × S is a continuous and bilinear map into S.

Proof (i) We verify next that the convolution S × S maps into S. So suppose
(f, g) ∈ S ×S and k, m ∈ N. By (9.5), it suffices to check that qk,m(f ∗ g) is finite.
Because

|x|k ≤ (|x− y|+ |y|)k =
k∑

j=0

(k

j

)
|x− y|j |y|k−j for x, y ∈ Rn ,

there is a ck > 0 such that

|x|k |f ∗ g(x)| ≤
∫ k∑

j=0

(k

j

)
|x− y|j |f(x− y)| |y|k−j |g(y)| dy

≤ ckqk,0(f)
∫

(1 + |y|2)k/2 |g(y)| dy .

Noting that c̃n :=
∫

(1 + |y|2)−(n+1)/2 dy is finite, we find

|x|k |f ∗ g(x)| ≤ ckc̃n qk,0(f)qk+n+1,0(g) .

Thus by Remark 9.2(g), there is a c = c(k, n) ≥ 1 such that

qk,0(f ∗ g) ≤ c qk,0(f)qk+n+1,0(g) . (9.6)

Finally by Theorem 7.8(iv), we have

qk,m(f ∗ g) = max
|α|≤m

qk,0

(
∂α(f ∗ g)

)
= max

|α|≤m
qk,0

(
(∂αf) ∗ g

)
,

and (9.6) implies

qk,m(f ∗ g) ≤ c max
|α|≤m

qk,0(∂αf)qk+n+1,0(g) = c qk,m(f)qk+n+1,0(g) . (9.7)

(ii) It is clear that the convolution is bilinear. Suppose (f, g) ∈ S × S and
((fj , gj))j∈N is a sequence in S ×S such that (fj , gj)→ (f, g) in S ×S as j →∞.
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Also let
α := c

(
qk,m(f) + qk+n+1,0(g) + 1

)
where c is the constant from (9.7). Let ε ∈ (0, 1]. By Remark 9.2(c), there is an
N ∈ N such that

qk,m(f − fj) < ε/α , qk+n+1,0(g − gj) < ε/α for j ≥ N .

Because

f ∗ g − fj ∗ gj = (f − fj) ∗ g + (fj − f) ∗ (g − gj) + f ∗ (g − gj)

it follows from (9.7) that

qk,m(f ∗ g − fj ∗ gj) ≤ c
(
qk,m(f − fj)qk+n+1,0(g) + qk,m(f − fj)qk+n+1,0(g − gj)

+ qk,m(f)qk+n+1,0(g − gj)
)

< ε

for j ≥ N . Thus we are done. �

9.5 Corollary (S, +, ∗) is a subalgebra of the commutative algebra (L1, +, ∗).

Proof This follows from Proposition 9.4 and Theorem 9.3. �

Calculations with the Fourier transform

We now derive some rules for the Fourier transformation of derivatives and the
derivatives of Fourier transforms. It will simplify the presentation of these formulas
to set Λ(x) := (1 + |x|2)1/2 for x ∈ Rn and

Dj := −i∂j , j ∈ {1, . . . , n} for Dα := Dα1
1 · · ·Dαn

n , α ∈ Nn ,

where i is the imaginary unit. As usual, the polynomial function induced by the
polynomial p ∈ C[X1, . . . , Xn] will also be denoted by p.

9.6 Proposition Suppose f ∈ L1.

(i) For α ∈ Nn, suppose Dαf exists and belongs to L1. Then Xαf̂ = D̂αf .

(ii) For m ∈ N, suppose Λmf belongs to L1. Then f̂ belongs to BCm, and

Dαf̂ = (−1)|α|X̂αf for α ∈ Nn , |α| ≤ m .

Proof (i) Suppose {ϕε ; ε > 0 } is a smoothing kernel. By integration by parts
(see Exercise 7.10), it follows that∫

ξαe−i〈x,ξ〉(f ∗ ϕε)(x) dx = (−1)|α|
∫

Dα
x (e−i 〈x,ξ〉)(f ∗ ϕε)(x) dx

=
∫

e−i〈x,ξ〉((Dαf) ∗ ϕε

)
(x) dx .

(9.8)
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Theorem 7.11 and Theorem 2.18(ii) imply that

lim
ε→0

(2π)−n/2

∫
ξαe−i 〈x,ξ〉(f ∗ ϕε)(x) dx = ξαf̂(ξ)

and

lim
ε→0

(2π)−n/2

∫
e−i〈x,ξ〉((Dαf) ∗ ϕε

)
(x) dx = D̂αf(ξ)

for ξ ∈ Rn. Using (9.8), this proves the claim.

(ii) We set h(x, ξ) := e−i〈x,ξ〉f(x) for (x, ξ) ∈ Rn×Rn. Then h( · , ξ) belongs
to L1 for every ξ ∈ Rn, and h(x, · ) belongs to C∞ for every x ∈ Rn. Further, we
have

Dα
ξ h(x, ξ) = (−1)|α|xαh(x, ξ) for (x, ξ) ∈ R2n , α ∈ Nn ,

and thus
|Dα

ξ h(x, ξ)| ≤ (1 + |x|2)|α|/2 |h(x, ξ)| = Λ|α|(x) |f(x)| . (9.9)

It then follows from the theorem on the differentiation of parametrized integrals
that f̂ belongs to Cm and that

Dαf̂(ξ) = (2π)−n/2

∫
Dα

ξ h(x, ξ) dx = (2π)−n/2(−1)|α|
∫

xαh(x, ξ) dx

= (−1)|α|X̂αf(ξ)

for ξ ∈ Rn and α ∈ Nn with |α| ≤ m. Finally (9.9) shows

∣∣Dαf̂(ξ)
∣∣ ≤ (2π)−n/2

∫
|Dα

ξ h(x, ξ)| dx ≤ (2π)−n/2 ‖Λ|m|f‖1 < ∞ for ξ ∈ Rn .

Thus f̂ belongs to BCm. �

9.7 Proposition The Fourier transformation maps S continuously and linearly
into itself.

Proof (i) Suppose f ∈ S and m ∈ N. Then∫
Λm(x) |f(x)| dx =

∫
(1 + |x|2)(m+n+1)/2 |f(x)| (1 + |x|2)−(n+1)/2 dx

≤ qm+n+1,0(f)
∫

(1 + |x|2)−(n+1)/2 dx <∞ .

We find using Proposition 9.6(ii) that f̂ belongs to BCm and thus to BC∞.

(ii) Suppose k, m ∈ N and α, β ∈ Nn with |α| ≤ m and |β| ≤ k. Also
suppose f ∈ S. Then it follows from Remark 9.2(h) and Theorem 9.3 that Λmf
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and Dβ(Xαf) belong to L1. Therefore Proposition 9.6 implies

ξβDαf̂(ξ) = (−1)|α|ξβX̂αf(ξ) = (−1)|α|(Dβ(Xαf)
)̂(ξ) for ξ ∈ Rn . (9.10)

Remark 9.2(g) shows there is a c > 0 such that

∣∣ξβDαf̂(ξ)
∣∣ ≤ (2π)−n/2

∫
|Dβ(Xαf)(x)| (1 + |x|2)(n+1)/2(1 + |x|2)−(n+1)/2 dx

≤ c qm+n+1,k(f)

for |α| ≤ m and |β| ≤ k. Hence there is a C > 0 such that

qk,m

(
f̂

)
≤ Cqm+n+1,k(f) . (9.11)

Therefore f̂ belongs to S. The continuity of the Fourier transformation now follows
easily from (9.11) and Remark 9.2(c). Thus we are done. �

9.8 Corollary For f ∈ S and α ∈ Nn, we have

D̂αf = Xαf̂ and X̂αf = (−1)|α|Dαf̂ .

Proof These are special cases of (9.10). �

Proposition 9.6 and Corollary 9.8 show that the Fourier transformation maps
differentiation into multiplication by functions, and conversely. This fact underlies
much of its great utility.

It is now easy to improve the statement of Remark 9.1(a) to one saying that
the image of L1 under F already lies in C0.

9.9 Proposition3 (Riemann–Lebesgue) F ∈ L(L1, C0).

Proof Proposition 9.7 and S ⊂ C0 imply F(S) ⊂ C0. From Theorem 9.3, we
know that S is a dense vector subspace of L1, and Remark 9.1(a) guarantees that
F maps the space L1 continuously into BC. The claim now follows because C0 is
a closed vector subspace of BC. �

9.10 Examples (a) For g := gn : Rn → R, x �→ e−|x|2/2, we have ĝ = g.

Proof (i) A property of the exponential implies

gn(x) = g1(x1) · · · · · g1(xn) for x = (x1, . . . , xn) ∈ Rn .

3Also known as the Riemann–Lebesgue lemma.
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For clarity, we denote by Fn the Fourier transformation on Rn. Then it follows from the
Fubini–Tonelli theorem that

Fn(gn)(ξ) = (2π)−n/2

∫
Rn

e−i 〈x,ξ〉e−|x|2/2 dx = (2π)−n/2

∫
Rn

n∏
j=1

e−ixjξj e−x2
j/2 dx

=
n∏

j=1

(2π)−1/2

∫
R

e−ixjξj e−x2
j/2 dxj =

n∏
j=1

F1

(
g1)(ξj) .

This shows that it suffices to treat the one-dimensional case.

(ii) Suppose therefore n = 1. For f := ĝ, we have from Example 8.7 that

f(0) = ĝ(0) =
1√
2π

∫ ∞

−∞
e−x2/2 dx = 1 .

Because xe−x2/2 = −∂(e−x2/2), that is, because Xg = −∂g = −iDg, Corollary 9.8 gives

∂f = ∂ĝ = iDĝ = −iX̂g = −D̂g = −Xĝ = −Xf .

Therefore f solves the linear initial value problem y′(t) = −t y(t) with y(0) = 1 on R; its
unique solution is g. �

(b) With the notation of (a) and (7.11), we have

ĝ(ε · )(ξ) = gε(ξ) for ξ ∈ Rn , ε > 0 .

Proof Because g(ε · ) = σ1/εg, this follows from (a) and Remark 9.1(d). �

(c) Suppose
ϕ(x) := (2π)−n/2e−|x|2 for x ∈ Rn ,

and let ε > 0. Then ϕ̂(ε · ) = kε, where k1 = k, is the Gaussian kernel.

Proof From ϕ = (2π)−n/2σ1/
√

2 g and Remark 9.1(c), it follows that

ϕ(ε · ) = σ1/εϕ = (2π)−n/2σ1/
√

2 ε g = (2π)−n/2g
(√

2 ε ·
)

.

Thus we get from (b) that

ϕ̂(ε · )(x) = (2π)−n/2g√2 ε(x) = ε−n(4π)−n/2e−|x|2/4ε2
= kε(x)

for x ∈ Rn. �

The Fourier integral theorem

To prepare for more in-depth study of the Fourier transformation on L1, we provide
the following results.
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9.11 Proposition Suppose f, g ∈ L1. Then f̂ g and f ĝ belong to L1, and∫
f̂ g dx =

∫
f ĝ dx .

Proof From Proposition 9.9, it follows easily that f̂g and f ĝ belong to L1. Let∗
f and ∗g be representatives of f and g, respectively. Then Lemma 7.2 shows that

h : R2n → C , (x, y) �→ e−i〈x,y〉 ∗
f(x) ∗g(y) (9.12)

is measurable. Because ∫ ∫
|h(x, y)| dx dy = ‖f‖1 ‖g‖1 , (9.13)

we can apply the Fubini–Tonelli theorem to h, and we find∫
∗̂
f(y) ∗g(y) dy =

∫
(2π)−n/2

∫
e−i〈x,y〉 ∗

f(x) dx ∗g(y) dy

=
∫

(2π)−n/2

∫
e−i〈x,y〉 ∗g(y) dy

∗
f(x) dx =

∫
∗̂g(x)

∗
f (x) dx .

Then claim now follows after noting f̂ =
∗̂
f and ĝ = ∗̂g. �

We now prove theorems about the inverse of the Fourier transformation for
various assumptions on the function and its transform.

9.12 Theorem For f ∈ L1, these statements are true:

(i) lim
ε→0

(2π)−n/2

∫
ei 〈 · ,ξ〉f̂(ξ)e−ε2 |ξ|2 dξ = f in L1 .

(ii) (Fourier integral theorem for L1) If f̂ belongs to L1, then f = F
(
f̂

)
, where

F is the Fourier cotransformation.

Proof (i) We use the notation of Example 9.10 and set

ϕε(ξ, y) := ei 〈ξ,y〉ϕ(εξ) = (2π)−n/2ei 〈y,ξ〉e−ε2 |ξ|2

for ξ, y ∈ Rn and ε > 0. We let ϕ̂ε( · , y) be the Fourier transform of ξ �→ ϕε(ξ, y)
for y ∈ Rn. From Example 9.10(c) and Remark 9.1(e), it follows that

ϕ̂ε(x, y) = kε(y − x) for x, y ∈ Rn .

Therefore Proposition 9.11 implies

(2π)−n/2

∫
f̂(ξ)ei 〈y,ξ〉e−ε2 |ξ|2 dξ =

∫
f̂(ξ)ϕε(ξ, y) dξ

=
∫

f(x)ϕ̂ε(x, y) dx = kε ∗ f(y)

for y ∈ Rn. The claim now follows from Theorem 7.11 and Example 7.12(a).
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(ii) If f̂ belongs to L1, the dominated convergence theorem shows that

lim
ε→0

∫
ei 〈y,ξ〉f̂(ξ)e−ε2 |ξ|2 dξ =

∫
ei 〈y,ξ〉f̂(ξ) dξ = (2π)n/2F

(
f̂

) ̂

(y)

for y ∈ Rn. Thus (i), Remark 9.1(b), and Theorem 2.18(i) finish the proof. �

9.13 Corollary

(i) (Fourier integral theorem for S) The Fourier transformation is a continuous
automorphism of S. Its inverse is the Fourier cotransformation.

(ii) The Fourier transformation maps L1 continuously and injectively into C0 and
has a dense image.

(iii) For f ∈ L1 ∩BUC, the equality4

f(x) = lim
ε→0

(2π)−n/2

∫
ei 〈x,ξ〉f̂(ξ)e−ε2 |ξ|2 dξ

holds uniformly with respect to x ∈ Rn.

(iv) For f ∈ L1 ∩BUC, suppose f̂ belongs to L1. Then

f(x) = (2π)−n/2

∫
ei〈x,ξ〉f̂(ξ) dξ for x ∈ Rn .

Proof (i) As in the case of normed vector spaces, we denote by L(S) the vector
space of all continuous endomorphisms of S; similarly, we let Laut(S) be the
automorphisms of S. Then it follows from Remark 9.2(i) and Proposition 9.7
that F and F belong to L(S). Because S ⊂ L1, Theorem 9.12(ii) therefore
shows that F is a left inverse of F in L(S). It then follows from

̂

û = û

̂

that
FFf = F(Ff)

̂

= F

̂

Ff = FFf = f for f ∈ S. Therefore F is also a right
inverse of F in L(S), which proves F ∈ Laut(S).

(ii) If f̂ = 0 for f ∈ L1, then f = 0 follows from Theorem 9.12(ii). Therefore
F is injective on L1, and from the Riemann–Lebesgue lemma, we know that F
belongs to L(L1, C0). Because (i) and S ⊂ L1, we have S = F(S) ⊂ F(L1). It
then follows from Remark 9.2(f) that F(L1) is dense in C0.

(iii) follows from the proof of Theorem 9.12(i) and Theorem 7.11.
(iv) is now clear. �

9.14 Remarks (a) For f ∈ S, we have ̂̂f = f

̂

.

(b) One can show that L1 does not have a closed image in C0 under the Fourier
transformation (see [Rud83]). Hence F ∈ L(L1, C0) is not surjective. �

4One can show that (iii) and (iv) remain true for f ∈ L1 ∩ C.
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Convolutions and the Fourier transform

We now study what happens to convolutions under the Fourier transformations.
So we first introduce another space of smooth functions; these will turn out to be
particularly significant in the next subsection.

Suppose ϕ ∈ C∞. If to every α ∈ Nn, there are constants cα > 0 and kα ∈ N
such that

|∂αϕ(x)| ≤ cα(1 + |x|2)kα for x ∈ Rn ,

then we say ϕ is slowly increasing. We denote by OM the set of all functions with
this property, the space of slowly increasing functions.

9.15 Remarks (a) In the sense of vector subspaces, we have the inclusions S ⊂
OM ⊂ C∞ and C[X1, . . . , Xn] ⊂ OM .

(b) (OM , +, · ) is a commutative algebra with unity.

(c) Suppose (ϕ, f) ∈ OM × S. Then ϕf belongs to S, and to every m ∈ N, there
are c = c(ϕ, m) > 0 and k′ = k′(ϕ, m) ∈ N such that qk,m(ϕf) ≤ c qk+k′,m(f)
for k ∈ N.

Proof Suppose m ∈ N. Then there are c = c(ϕ, m) > 0 and k′ = k′(ϕ, m) ∈ N such
that

|∂αϕ(x)| ≤ c(1 + |x|2)k′/2 for x ∈ Rn , α ∈ Nn , |α| ≤ m .

Now it follows from the Leibniz rule that

qk,m(ϕf) = max
|α|≤m

sup
x∈Rn

(1 + |x|2)k/2
∣∣∣∑
β≤α

(α

β

)
∂βϕ(x)∂α−βf(x)

∣∣∣
≤ c max

|α|≤m
sup

x∈Rn
(1 + |x|2)(k+k′)/2 |∂αf(x)| = c qk+k′,m(f)

for f ∈ S and k ∈ N. �

(d) Suppose ϕ ∈ OM . Then f �→ ϕf is a linear and continuous map of S into
itself.

Proof This follows from (c) and Remark 9.2(c). �

(e) For every s ∈ R, Λs belongs to OM . �

We can now prove another important property of the Fourier transformation.

9.16 Theorem (convolution theorem)

(i) (f ∗ g)̂ = (2π)n/2f̂ ĝ for (f, g) ∈ L1 × L1.

(ii) ϕ̂ ∗ f̂ = (2π)n/2ϕ̂f for (ϕ, f) ∈ S × L1.
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Proof (i) By (9.12) and (9.13), we see that the Fubini–Tonelli theorem can be
applied. It then follows from Corollary 7.9 that

(f ∗ g)̂(ξ) = (2π)−n/2

∫
e−i 〈x,ξ〉

∫
f(x− y)g(y) dy dx

= (2π)−n/2

∫
g(y)

∫
e−i〈x,ξ〉f(x− y) dx dy .

Because∫
e−i〈x,ξ〉f(x− y) dx = e−i 〈y,ξ〉

∫
e−i〈z,ξ〉f(z) dz = e−i 〈y,ξ〉(2π)n/2f̂(ξ) ,

we then get

(f ∗ g)̂(ξ) = (2π)−n/2

∫
(2π)n/2f̂(ξ)e−i 〈y,ξ〉g(y) dy = (2π)n/2f̂(ξ)ĝ(ξ) .

(ii) Suppose (ϕ, f) ∈ S × L1. By Theorem 9.3, we find a sequence (fj) in S
such that fj → f in L1. Propositions 9.4 and 9.7 imply that ϕ̂∗f̂j belongs to S. By
Remark 9.15(c), ϕfj also belongs to S, so it follows from (i) and Remark 9.14(a)
that (

ϕ̂ ∗ f̂j

)̂ = (2π)n/2 ̂̂ϕ ̂̂fj = (2π)n/2(ϕfj)
̂

for j ∈ N .

By Theorem 9.12(ii), we then get

ϕ̂ ∗ f̂j = (2π)n/2ϕ̂fj for j ∈ N . (9.14)

Because fj → f in L1, it follows from Remark 9.1(a) that f̂j → f̂ in BC. Therefore
Corollary 7.9 implies, because ϕ̂ ∈ S ⊂ L1, that the sequence (ϕ̂ ∗ f̂j) converges
in BC to ϕ̂ ∗ f̂ . Because ϕfj → ϕf clearly holds in L1, we deduce from Proposi-
tion 9.9 that the sequence (ϕ̂fj ) converges in BC to ϕ̂f . Then the claim follows
from Remark 9.1(a). �

As an application of the convolution theorem, we prove a lemma, which forms
the basis for the L2-theory of the Fourier transformation.

9.17 Lemma For f ∈ L1 ∩ L2, f̂ belongs to C0 ∩ L2, and ‖f‖2 = ‖f̂ ‖2.

Proof Suppose f ∈ L1 ∩L2. Because f̂ belongs to C0 by the Riemann–Lebesgue
lemma, it suffices to verify ‖f‖2 = ‖f̂ ‖2. So we set g := f ∗ f

̂

. By Theorem 7.3(ii)
and Exercise 7.2, we know g belongs to L1 ∩ C0, and

g(0) =
∫

f(y)f

̂

(0 − y) dy =
∫

ff = ‖f‖22 .
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From Corollary 9.13(iii), it follows that

‖f‖22 = g(0) = lim
ε→0

(2π)−n/2

∫
ĝ(ξ)e−ε2 |ξ|2 dξ . (9.15)

Now we note

f̂

̂

= (2π)−n/2

∫
e−i 〈x,ξ〉f(−x) dx = (2π)−n/2

∫
e−i〈−x,ξ〉f(−x) dx = f̂ ,

which follows from the Euclidean invariance of integrals. Then Theorem 9.16(i)
shows

ĝ =
(
f ∗ f

̂)̂ = (2π)n/2f̂ f̂ = (2π)n/2
∣∣f̂ ∣∣2 .

In particular ĝ, is not negative. Therefore (9.15) and monotone convergence the-
orem imply ‖f‖2 = ‖f̂ ‖2. �

Fourier multiplication operators

To illustrate the significance of the mapping properties of the Fourier transfor-
mation, we now consider linear differential operators with constant coefficients
and show that they are represented “in the Fourier domain” by multiplication
operators.

For m ∈ N, we denote by Cm[X1, . . . , Xn] the vector subspace C[X1, . . . , Xn]
consisting of all polynomials of degree ≤ m. For

p =
∑

|α|≤m

aαXα ∈ Cm[X1, . . . , Xn] ,

we let
p(D) :=

∑
|α|≤m

aαDα ,

which is a linear differential operator of order ≤ m with constant coefficients. Here
p is called the symbol of p(D). In the following, we set

Diffop0 :=
{

p(D) ; p ∈ C[X1, . . . , Xn]
}

,

and Diffop0
m is the subset of all constant-coefficient, linear differential operators

of order not higher than m.

9.18 Remarks (a) p(D) ∈ Diffop0 is a linear and continuous map of S into itself,
that is, p(D) ∈ L(S).
Proof This follows from Remarks 9.2(c) and (h). �

(b) The map
C[X1, . . . , Xn]→ L(S) , p �→ p(D) (9.16)

is linear and injective.
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Proof The linearity is obvious. Suppose p =
∑

|α|≤m aαXα ∈ C[X1, . . . , Xn] and that

p(D)f = 0 for all f ∈ S . We choose a ϕ ∈ D such that ϕ |Bn = 1. For β ∈ Nn, it follows
from the Leibniz rule that

Dα(ϕXβ) = ϕDαXβ +
∑
γ<α

(α

γ

)
Dα−γϕDγXβ .

Because ϕ(x) = 1 for |x| < 1, we then derive

Dα(ϕXβ)(0) = DαXβ(0) =

{
β! if α = β ,

0 otherwise

for α ∈ Nn. Because ϕXβ ∈ D ⊂ S , we thus find 0 = p(D)(ϕXβ) = β! aβ for β ∈ Nn

with |β| ≤ m; therefore p = 0. This proves the claimed injectivity. �

(c) p(D) is formally self-adjoint if and only if p has real coefficients.

Proof Letting

A(∂) := p(D) =
∑

|α|≤m

aα(−i)|α| ∂α

it follows from Proposition 7.24 that

A�(∂) =
∑

|α|≤m

(−1)|α|aα(−i)|α| ∂α =
∑

|α|≤m

(−i)|α|aα ∂α ,

which finishes the proof. �

By Remark 9.18(b), we can identify Diffop0 [or Diffop0
m] with the image of

C[X1, . . . , Xn] [or Cm[X1, . . . , Xn]] under the map (9.16). In other words, in the
sense of vector subspaces, we have

Diffop0
m ⊂ Diffop0 ⊂ L(S) for m ∈ N .

For a ∈ OM and f ∈ S, it follows from Corollary 9.13(i) and Remark 9.15(d)
that

(
f �→ af̂

)
∈ L(S). Then it follows again from Corollary 9.13(i) that

a(D) := F−1aF : S → S , f �→ F−1
(
af̂

)
is a well defined element of L(S), a Fourier multiplication operator with symbol a.
We set

Op :=
{
a(D) ∈ L(S) ; a ∈ OM

}
.
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9.19 Proposition Op is a commutative algebra of L(S) with unity, and the map

ev : (OM , +, · )→ Op , a �→ a(D)

is an algebra isomorphism.

Proof It is clear that OM := (OM , +, · ) is a commutative subalgebra with unity
of the algebra C(Rn). It is also easy to verify that ev maps the vector space OM

linearly in L(S).
For a, b ∈ OM and f ∈ S, we have

(ab)(D)f = F−1
(
abf̂

)
= F−1

(
aFF−1

(
bf̂

))
= F−1

(
ab̂(D)f

)
= a(D) ◦ b(D)f .

Therefore ev is a surjective algebra homomorphism.
Finally let a, b ∈ OM with a(D) = b(D). Let ξ ∈ Rn, and denote by ϕ ∈ D a

cutoff function for Bn(ξ, 1). Then f := F−1ϕ belongs to S with f̂(ξ) = 1, and it
follows from Corollary 9.13(i) that

a(ξ) =
(
af̂

)
(ξ) = F

(
a(D)f

)
(ξ) = F

(
b(D)f

)
(ξ) =

(
bf̂

)
(ξ) = b(ξ) .

Because this is true for every ξ ∈ Rn, we have a = b. Therefore ev is injective. �

9.20 Corollary

(i) For a, b ∈ OM , we have ab(D) = a(D)b(D) = b(D)a(D).
(ii) 1(D) = 1L(S).

(iii) Diffop0 is the image of C[X1, . . . , Xn] under ev. In particular, Diffop0 is a
commutative subalgebra of Op with unity.

Proof (i) and (ii) are special cases of Proposition 9.19.
(iii) For p ∈ C[X1, . . . , Xn] ⊂ OM with p =

∑
|α|≤m aαXα, we get from

Proposition 9.6(i) that

ev(p)f = F−1pFf = F−1
(
pf̂

)
=

∑
|α|≤m

aαF−1
(
Xαf̂

)
=

∑
|α|≤m

aαF−1(̂Dαf) =
∑

|α|≤m

aαDαf

for f ∈ S. Therefore ev(p) =
∑

|α|≤m aαDα, from which the claim follows. �

This corollary implies that the Fourier transformation can be used to solve
linear differential equations with constant coefficients by reducing them to simple
algebraic equations. This fact is part of the fundamental significance of the Fourier
transformation. The following examples give a first glimpse into these methods.
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9.21 Examples (a) Suppose the polynomial p ∈ C[X1, . . . , Xn] has no real zeros.
Then p(D) ∈ L(S) is an automorphism of S, and [p(D)]−1 = (1/p)(D).
Proof We see easily that 1/p belongs to OM . Now we deduce from Corollary 9.20 that

1L(S) = 1(D) = (p · 1/p)(D) = p(D)(1/p)(D) = (1/p)(D)p(D) .

Because a(D) ∈ L(S) for a ∈ OM , this proves the claim. �

(b) 1−Δ ∈ Laut(S), and (1−Δ)−1 = Λ−2(D).
Proof Because 1−Δ = Λ2(D), this follows from (a). �

Example 9.21(b) says that the partial differential equation

−Δu + u = f (9.17)

has a unique solution u ∈ S for every f ∈ S and that u depends continuously on
f in the topology of S. Also we can obtain the solution u ∈ S of (9.17) by first
“Fourier transforming” this equation. This, according to Proposition 9.6, gives
the equation (|ξ|2 +1)û(ξ) = Λ2(ξ)û(ξ) = f̂(ξ) for ξ ∈ Rn. This equation can then
be solved for û, giving û = Λ−2f̂ , and then “reverse Fourier transformed”, giving
u = F−1

(
Λ−2f̂

)
= Λ−2(D)f . This “method of Fourier transformation” plays a

prominent role in the theory of partial differential equations. Note that Λ−2(D)
or, more generally, (1/p)(D), is not a differential operator.

Plancherel’s theorem

To conclude this chapter, we show that the Fourier transformation can also be
defined on L2, and we explain a few consequences of this fact.

Suppose H is a Hilbert space. We say T : H → H is unitary if T is an
isometric isomorphism.

9.22 Remarks Suppose H is a (real or complex) Hilbert space and T : H → H is
linear.

(a) If T is unitary, then T belongs to Laut(H), and

(Tx |Ty) = (x | y) for x, y ∈ H .

Proof The first statement is clear. Because T is an isometry, we have

4Re(Tx |Ty) = ‖T (x + y)‖2 − ‖T (x− y)‖2 = ‖x + y‖2 − ‖x− y‖2 = 4Re(x | y) ,

and therefore Re(Tx |Ty) = Re(x | y) for x, y ∈ H . Replacing y in this identity by iy,
we get

Im(Tx | Ty) = Re(Tx |T iy) = Re(x | iy) = Im(x | y) ,

and thus (Tx |Ty) = (x | y) for x, y ∈ H . �
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(b) If H is finite-dimensional, then the following statements are equivalent:

(i) T is unitary.

(ii) (Tx |Ty) = (x | y) for x, y ∈ H .

(iii) T ∗T = idH .

Proof “(i)=⇒(ii)” is a consequence of (a).

“(ii)=⇒(iii)” Let {b1, . . . , bm} be an orthonormal basis of H . Then every y ∈ H can
be expanded as y =

∑m
j=1(y | bj)bj (see Exercise II.3.12 and Theorem VI.7.14). From

Exercise VII.1.5 and (ii), it follows that

T ∗Tx =

m∑
j=1

(T ∗Tx | bj)bj =

m∑
j=1

(Tx | Tbj)bj =

m∑
j=1

(x | bj)bj = x

for every x ∈ H .

“(iii)=⇒(i)” Because T ∗T = idH , we know T is injective and is therefore also sur-
jective by the rank formula of linear algebra. For x ∈ H , we also have

‖Tx‖2 = (Tx | Tx) = (T ∗Tx |x) = (x |x) = ‖x‖2 .

Therefore T is an isometry. �

9.23 Theorem (Plancherel) The Fourier transformation has a unique extension
from L1 ∩ L2 to a unitary operator on L2.

Proof Denote by X2 the vector subspace L1∩L2 of the Hilbert space L2. Then it
follows from Lemma 9.17 that F belongs to L(X2, L2) and is an isometry. Because
X2 contains the space S, Theorem 9.3 and VI.2.6 imply the existence of a unique
isometric extension F ∈ L(L2). As an isometry, F has a closed image, which by
Corollary 9.13(i) contains the space S. Therefore Proposition V.4.4 implies that
F is surjective and therefore unitary. �

As usual, we reuse the symbol F for the unique continuous extension of F
and likewise call it the Fourier transformation.5

The next proposition describes the Fourier transform Ff for an arbitrary
f ∈ L2.

9.24 Proposition For f ∈ L2, we have

Ff = lim
R→∞

F(χRBnf) = lim
R→∞

(2π)−n/2

∫
[ |x|≤R]

e−i 〈x,· 〉f(x) dx in L2 .

5On L2, the Fourier transformation will sometimes also be called the Fourier–Plancherel, or
Plancherel, transformation.
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Proof For R > 0, the element fR := χRBnf belongs to L1∩L2, and the dominated
convergence theorem implies∫

|f − fR|2 dx =
∫
|f |2 (1− χRBn)2 dx → 0 (R →∞) .

Therefore limR→∞ fR = f in L2. Then by Plancherel’s theorem, FfR converges
in L2 to Ff . Because

F(fR)(ξ) = (2π)−n/2

∫
[ |x|≤R ]

e−i〈x,ξ〉f(x) dx for ξ ∈ Rn ,

the claim follows. �

9.25 Example Suppose n = 1 and a > 0. Also let f := χ[−a,a] ∈ L1(R). Then

f̂(ξ) =
1√
2π

∫ a

−a

e−ixξ dx =
−1√
2π iξ

(
e−i ξa − eiξa

)
=

√
2
π

a
sin(aξ)

aξ

for ξ ∈ R. Because
∫
|f |2 dx = 2a, Plancherel’s theorem gives∫ ∞

−∞

[sin(ax)
ax

]2

dx =
π

a
for a > 0 .

Note that x �→ sin(x)/x does not belong to L1(R). �

Symmetric operators

Suppose E is a Banach space over K. By a linear operator A in E, we mean a
map A : dom(A) ⊂ E → E such that dom(A) is a vector subspace of E and such
that A is linear. For linear operators Aj : dom(Aj) ⊂ E → E and λ ∈ K×, we
define A0 + λA1 by

dom(A0 + λA1) := dom(A0) ∩ dom(A1) , (A0 + λA1)x := A0x + λA1x .

The product A0A1 is defined by

dom(A0A1) :=
{
x ∈ dom(A1) ; A1x ∈ dom(A0)

}
, (A0A1)x := A0(A1x) .

Finally, the operator defined by

dom
(
[A0, A1]

)
:= dom(A0A1 −A1A0) , [A0, A1]x := (A0A1 −A1A0)x

is called the commutator of A0 and A1. Obviously A0 + λA1, A0A1, and [A0, A1]
are linear operators in E, for which

A0 + λA1 = λA1 + A0 , λA0 = A0(λidE) , [A0, A1] = −[A1, A0] .
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Suppose now H is a Hilbert space, and A : dom(A) ⊂ H → H is a linear
operator on H . If

(Au | v) = (u |Av) for u, v ∈ dom(A) ,

we say A is symmetric.

9.26 Remarks (a) Suppose H is a complex Hilbert space and A is a linear operator
on H . Then these statements are equivalent:

(i) A is symmetric.
(ii) (Au |u) ∈ R for u ∈ dom(A).

Proof “(i)=⇒(ii)” Because A is symmetric, it follows that

(Au |u) = (u |Au) = (Au |u) for u ∈ dom(A) ,

and therefore Im(Au |u) = 0.

“(ii)=⇒(i)” For u, v ∈ dom(A), we have(
A(u + v)

∣∣ u + v
)

= (Au |u) + (Av |u) + (Au | v) + (Av | v) . (9.18)

Because of (ii), it follows that Im(Au | v) = − Im(Av |u), and therefore

Im(Au | v) = − Im(Av |u) = − Im (u |Av) = Im(u |Av) .

Replacing u in (9.18) by iu, we get

Re(Au | v) = Im
(
A(iu)

∣∣ v
)

= Im(iu |Av) = Re(u |Av) .

Therefore (Au | v) = (v |Au). �

(b) Suppose p ∈ C[X1, . . . , Xn] and P is the linear operator on L2 such that
dom(P ) = S and Pu := p(D)u for u ∈ S. Then these statements are equivalent:

(i) P is symmetric.
(ii) p(D) is formally self-adjoint.
(iii) p has real coefficients.
Proof “(i)=⇒(ii)” That P is symmetric implies(

p(D)u
∣∣ v

)
= (Pu | v) = (u |Pv) =

(
u

∣∣ p(D)v
)

for u, v ∈ D ,

which in turn implies (ii) by the uniqueness of formally adjoint operators.

“(ii)=⇒(iii)” Remark 9.18(c).

“(iii)=⇒(i)” Suppose p =
∑

|α|≤m aαXα. Then Corollary 9.20(iii) and Plancherel’s
theorem imply

(Pu | u) =
(
p(D)u

∣∣ u
)

= (pû | û) =
∑

|α|≤m

aα

∫
ξα |û(ξ)|2 dξ for u ∈ S .

Therefore (Pu |u) is real, and the claim follows from (a). �

(c) With S as their domain, the Laplace, wave, and Schrödinger operators are
symmetric in L2.
Proof This follows from (b) and Examples 7.25(a) and (e). �
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The Heisenberg uncertainty relation

As another application of Plancherel’s theorem, we close this section by discussing
several important properties of the position and momentum operators of quantum
mechanics. So we fix j ∈ {1, . . . , n} and set

dom(Aj) := { u ∈ L2 ; Xj û ∈ L2 } , dom(Bj) := { u ∈ L2 ; Xju ∈ L2 } .

Then we define linear operators in L2, the momentum operator Aj and the position
operator Bj (for the j-th coordinate), by

Aju := F−1(Xj û) and Bjv := Xjv for u ∈ dom(Aj) , v ∈ dom(Bj) .

9.27 Remarks (a) We have S ⊂ dom(Aj), and

Aju = Xj(D)u = Dju = −i∂ju for u ∈ S .

Proof This follows from Proposition 9.7 and Corollary 9.8. �

(b) We have F
(
dom(Aj)

)
= dom(Bj) and a commutative diagram:

dom(Aj) L2

dom(Bj) L2

F F

Aj

Bj

�

�
� �

In particular,

Aju = F−1BjFu , u ∈ dom(Aj) and Bju = FAjF−1u , u ∈ dom(Bj) .

Proof These are consequences of Plancherel’s theorem. �

(c) The position and momentum operators of quantum mechanics are symmetric.
Proof Let u ∈ dom(Aj). Then (b) and Plancherel’s theorem imply

(Aju |u) = (F−1BjFu |u) = (Bj û | û) =

∫
ξj |û(ξ)|2 dξ ,

Now the claim follows from Remark 9.26(a). �

(d) For u ∈ dom
(
[Aj , Bj ]

)
, we have

(
[Aj , Bj ]u

∣∣ u
)

= 2i Im(AjBju |u).

Proof By (b), (c), and Plancherel’s theorem, we get for u ∈ dom
(
[Aj , Bj ]

)
that(

[Aj , Bj ]u
∣∣ u

)
= (AjBju−BjAju |u)

= (F−1BjFBju−BjF−1BjFu |u)

= (FBju |BjFu)− (BjFu | FBju)

= 2i Im(FBju |BjFu) = 2i Im(F−1BjFBju |u)

= 2i Im(AjBju |u) . �
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(e) The operator i [Aj , Bj] is symmetric in L2.
Proof This follows from (d). �

(f) We have S ⊂ dom
(
[Aj , Bj ]

)
, and [Aj , Bj ]u = −iu on u ∈ S.

Proof The first statement follows easily from Proposition 9.7 and Remark 9.2(h). Also
(a) shows that

[Aj , Bj ]u = Dj(Xju)−XjDju = (DjXj)u = −iu

for u ∈ S . �

(g) (Heisenberg uncertainty relation for S) For j ∈ {1, . . . , n}, we have

‖u‖22 ≤ 2 ‖∂ju‖2 ‖Xju‖2 for u ∈ S .

Proof Let u ∈ S . By (d) and (f), we have

−i ‖u‖22 = −i(u |u) =
(
[Aj , Bj ]u

∣∣ u
)

= 2i Im(AjBju |u) .

The Cauchy–Schwarz inequality therefore gives

‖u‖22 = 2
∣∣Im(AjBju |u)

∣∣ ≤ 2
∣∣(AjBju |u)

∣∣ = 2
∣∣(Bju |Aju)

∣∣ ≤ 2 ‖Aju‖2 ‖Bju‖2 ,

and thus the claim follows because of (a). �

We conclude this section by extending the validity of the Heisenberg uncer-
tainty relation on S to dom(Aj) ∩ dom(Bj). We first need a lemma.

9.28 Lemma For every u ∈ dom(Aj)∩dom(Bj), there is a sequence (um) in S such
that

lim
m→∞

(um, Ajum, Bjum) = (u, Aju, Bju) in L3
2 .

Proof (i) Suppose u ∈ dom(Aj)∩dom(Bj), and let { kε ; ε > 0 } be the Gaussian
approximation kernel. We set uε := kε ∗ u. By Exercise 8(iv), uε belongs to S,
and Theorem 7.11 shows limε→0 uε = u in L2.

(ii) Because k

̂

= k, it follows from Example 9.10(c) that

k̂ε(ξ) :=

̂

k̂ε(ξ) = F−1kε(ξ) = ϕ(εξ) = (2π)−n/2e−ε2 |ξ|2 for ξ ∈ Rn .

According to Theorem 9.3, we can find a sequence (vm) in S such that limm vm = u
in L2. The convolution theorem therefore shows

(kε ∗ vm)̂(ξ) = (2π)n/2 k̂ε(ξ)v̂m(ξ) = e−ε2 |ξ|2 v̂m(ξ) for ξ ∈ Rn .

The limit m →∞ then gives ûε = e−ε2 | · |2 û (see Corollary 7.9 and Theorem 9.23).
Because

‖Aju−Aju
ε‖22 = ‖Xjû−Xj ûε‖22 =

∫
|ξj û(ξ)|2

(
1− e−ε2 |ξ|2)2

dξ ,

it follows from the dominated convergence theorem that limε→0 Aju
ε = Aju in L2.
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(iii) Let ∗u be a representative of u. We set

dε(x, z) := xj

( ∗u(x) − ∗u(x − εz)
)

, gε(x, z) := dε(x, z)k(z)

for ε > 0 and (x, z) ∈ Rn×Rn. Then it follows, as in (7.7) (or from the Minkowski
inequality for integrals), that

‖Xju−Xju
ε‖2 ≤

(∫ [∫
|gε(x, z)| dz

]2

dx
)1/2

≤
∫
‖dε( · , z)‖2 k(z) dz , (9.19)

where for the last inequality we used gε =
(
dε

√
k

)√
k and

∫
k dx = 1 together

with the Cauchy–Schwarz inequality. Further noting

dε( · , z) = Xj
∗u− τεz(Xj

∗u)− εzjτεz
∗u ,

it follows from the strong continuity of the translation group on L2 and the trans-
lation invariance of integrals that

lim
ε→0

‖dε( · , z)‖2 k(z) = 0 for z ∈ Rn ,

and

‖dε( · , z)‖2 k(z) ≤ 2 max
{
‖Xju‖2, ‖u‖2

}
(1 + |zj |)k(z) for ε ∈ (0, 2] , z ∈ Rn .

Because z �→ (1 + |zj |)k(z) belongs to L1, the claim is implied by (9.19) and the
dominated convergence theorem. �

9.29 Corollary (Heisenberg uncertainty relation) For 1 ≤ j ≤ n, we have

‖u‖22 ≤ 2 ‖Aju‖2 ‖Bju‖2 for u ∈ dom(Aj) ∩ dom(Bj) .

Proof This follows from Remarks 9.27(a) and (g) and Lemma 9.28. �

From Remark 9.27(a) and Lemma 9.28 it easily follows, as in the proof of
Theorem 7.27, that the distributional derivative ∂ju belongs to L2 for u ∈ dom(Aj)
and is therefore a weak L2-derivative. Also Aju = −i∂ju. Consequently, we can
also write the Heisenberg uncertainty relation for u ∈ dom(Aj) ∩ dom(Bj) in the
form (1

2

∫
|u|2 dx

)2

≤
∫
|∂ju|2 dx

∫
|Xju|2 dx

if we interpret ∂ju in the weak sense. The significance of this broadened in-
terpretation of the operators Aj and Bj is clarified in the theory of unbounded
self-adjoint operators on Hilbert spaces, as developed in functional analysis. Self-
adjoint operators built from the position and momentum operators, in particular
the Schrödinger operators, are used in the mathematical construction of quantum



230 X Integration theory

mechanics (for example [RS72]). For an interpretation of the Heisenberg uncer-
tainty relation, we refer you to the physics literature.

Exercises

1 Let a > 0. Determine the Fourier transform of

(i) sin(ax)/x , (ii) 1/(a2 + x2) , (iii) e−a |x| ,

(iv) (1− |x|/a)χ[−a,a](x) , (v)
(
sin(ax)

/
x
)2

.

(Hint: See Section VIII.6.)

2 Let f(x) := (sin(x)/x)2 and g(x) := e2ixf(x) for x ∈ R×. Then show f ∗ g = 0.
(Hint: Apply Exercise 1 and Theorem 9.16.)

3 Show that if f ∈ L1 satisfies either f ∗ f = f or f ∗ f = 0, then f = 0.

4 Let {ϕε ; ε > 0 } be an approximation to the identity, and let (εj) be a null sequence.
Show that (F(ϕεj )) converges in D′(Rn) to (2π)−n/21.

5 For a, f ∈ S , show a(D)f = â ∗ f .

6 For s ≥ 0, define Hs := {u ∈ L2 ; Λsû ∈ L2 } and (u | v)Hs := (Λsû | v̂)L2 for
u, v ∈ Hs.
Show

(i) Hs :=
(
Hs ; ( · | · )Hs

)
is a Hilbert space with H0 = L2, and

S d
↪→ Hs d

↪→ Ht d
↪→ L2 for s > t > 0 ;

(ii) Hm = W m
2 for m ∈ N.

7 For s > n/2, show

(i) F(Hs) ⊂ L1 and

(ii) H2 d
↪→ C0 (Sobolev embedding theorem).

(Hints: (i) Apply the Cauchy–Schwarz inequality to Λs |û|Λ−s.
(ii) The Riemann–Lebesgue theorem.)

8 Suppose σ ≥ 0, and let { kε ; ε > 0 } be the Gaussian approximating kernel. Prove:

(i) T (t) := [f �→ k√
t ∗ f ] belongs to L(Hσ) for every t > 0.

(ii) T (t + s) = T (t)T (s), s, t > 0.

(iii) limt→0 T (t)f = f for f ∈ Hσ.

(iv) T (t)(L2) ⊂ S , t > 0.

(v) For f ∈ L2 ∩ C, let u(t, x) := T (t)f(x) for (t, x) ∈ [0,∞)× Rn. Show that u solves
the initial value problem of the heat equation in Rn, that is,

∂tu−Δu = 0 in (0,∞)× Rn and u(0, · ) = f on Rn , (9.20)

in the sense that u ∈ C∞(
(0,∞) × Rn

)
∩ C(R+ × Rn) and that u satisfies (9.20)

pointwise.
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Remark Let T (0) := idHσ . Then
{

T (t) ; t ≥ 0
}

is called the Gauss–Weierstrass
semigroup (of Hσ).
(Hint: (v) To get an initial value problem for an ordinary differential equation, apply to
(9.20) the Fourier transformation with respect to x ∈ Rn.)

9 Let n = 1 and py(x) :=
√

2/π y/(x2 +y2) for (x, y) ∈ H2. Also let σ ≥ 0. Prove these
statements:

(i) P (y) := [f �→ py ∗ f ] belongs to L(Hσ) for every t > 0.

(ii) P (y + z) = P (y)P (z) for y, z > 0.

(iii) limy→0 P (y)f = f for f ∈ Hσ.

(iv) P (y)(L2) ⊂ S .

(v) For f ∈ L2 ∩ C, let

u(x, y) :=
(
P (y)f

)
(x) for (x, y) ∈ H2 .

Then u belongs to C2(H2)∩C(H2) and solves the Dirichlet boundary value problem
for the half plane given by

Δu = 0 in H2 and u( · , 0) = f on R .

Remark With P (0) := idHσ , we call
{

P (y) ; y ≥ 0
}

the Poisson semigroup (of Hσ).
(Hints: (ii) Exercise 1. (v) Example 9.21(b).)

10 Suppose X is open in Rn and (Xk) is an ascending sequence of relatively compact
open subsets of X with X =

⋃
k Xk (see Remarks 1.16(d) and (e)). Also let

qk(f) := max
|α|≤k

‖∂αf‖∞,Xk
for f ∈ C∞(X) and k ∈ N ,

and

d(f, g) :=

∞∑
k=0

2−k qk(f − g)

1 + qk(f − g)
for f, g ∈ C∞(X) .

Show that (C∞(X), d) is a complete metric space. (Hint: To prove the completeness,
apply the diagonal sequence principle (Remark III.3.11(a)).)

11 Show that D d
↪→ C∞ and S d

↪→ C∞.
(Hint: Consider ϕ(ε · ) with a cutoff function ϕ for Bn).

12 For f ∈ D, let

F (z) :=

∫
e−i (z | x)Cn f(x) dx for z ∈ C .

Show then that F belongs to Cω(C, C).
(Hint: With Remark V.3.4(c) in mind, apply Corollary 3.19.)

13 Show that f̂ does not belong to D for f ∈ D\{0}. (Hint: Recall Exercise 12 and the

identity theorem for analytic functions (Theorem V.3.13).)




