Chapter X

Integration theory

Having made acquaintance in the last chapter with the fundamentals of measure
theory, we will now turn to the theory of integration. In the first part of the
chapter we study integrals over general measure spaces, while in the second half
we take advantage of the special properties of the Lebesgue measure.

Integration with respect to arbitrary measures is not only important in many
applications, but it will also be essential in the last chapter, when the underlying
set is not “flat” but rather a manifold. This is why even an introductory text such
as ours must deal with the subject.

In Section 1, we introduce p-measurable functions and investigate their basic
properties. A position of keen interest in analysis is held by natural measures with
respect to which every continuous function is measurable. An example is the class
of Radon measures, which we introduce in this section and which we will encounter
again in Chapter XII.

In analysis, and not only there, it will be increasingly important to be able to
deal with vector-valued functions, that is, maps with values in a Banach space. We
have already worked along these lines in the first two volumes, and you will have
noticed that the resulting exposition gains not only in elegance but, in many cases,
also in simplicity. The same situation obtains regarding integration theory. Hence
we have resolved from the outset to develop the theory in terms of vector-valued
functions, and we therefore treat the Bochner—Lebesgue integral. This is possible
with no significant extra effort. One of the few exceptions is the proof that a
vector-valued function is pg-measurable if and only if it is measurable in the usual
sense and is p-almost separable valued. Of course, you could ignore this result and
consider only scalar-valued functions. But this is not recommended, as it would
cause you to miss out on an important and efficient addition to your toolkit.

Besides vector-valued maps, we will investigate in some detail functions with
values in the extended number line [0, co]. This is primarily for technical reasons;
in later sections it will save us from having to always single out special cases.
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In Section 2, we introduce the general Bochner—Lebesgue integral, and do
so via the Lj-completion of the space of simple functions. This approach not
only extends essentially unchanged to vector-valued functions, but also lays the
foundation for the proof of Lebesgue’s convergence theorem. We treat the latter,
as well as other important convergence theorems, in Section 3.

Section 4 is devoted to the elementary theory of Lebesgue spaces. We prove
their completeness and show that they become Banach spaces if we identify func-
tions that agree almost everywhere. Because this identification is in our experience
a source of difficulties for beginners, we make a meticulous distinction throughout
the chapter between equivalence classes of functions and their respective represen-
tatives.

Although up to this point, we have considered integrals with respect to an
arbitrary measure, we treat in Section 5 the special case of Lebesgue measure in R”.
We show that the one-dimensional Lebesgue integral is an extension of the Cauchy—
Riemann integral for absolutely integrable functions. This puts us in the position
to bring what we learned about integrals in Volume II into the framework of the
general theory. This is of particular significance in the context of Fubini’s theorem,
which gives a reduction procedure for evaluating higher-dimensional integrals.

Section 6 treats Fubini’s theorem. We have decided not to prove it for ar-
bitrary product measure spaces, but rather only for the Lebesgue measure space.
This simplifies the presentation considerably and is in practice sufficient for all the
needs of analysis— once strengthened by a extension to product manifolds, to be
treated in Chapter XII.

The proof of Fubini’s theorem in the vector-valued case requires delicate mea-
surability arguments. For this reason, we study first the scalar case. We prove the
vector-valued version at the end of Section 6 and exhibit some important applica-
tions. On first reading, this part may be skipped, because its results are not used
in any essential way afterward, and also because the reader will probably become
acquainted at some later point with the Hahn—Banach theorem of functional anal-
ysis: with its help Fubini’s theorem for vector-valued functions is easily deduced
from the scalar version.

Section 7 studies the convolution. This operation allows us to prove with
extraordinary efficiency some fundamental approximation theorems, such as the
theorem on smooth partitions of unity, which plays in important role in the final
chapter. In the second half of the section we address the significance of the con-
volution and the approximation theorems in analysis and mathematical physics,
offering a first glimpse of the very important generalization of the classical differ-
ential calculus known as the theory of distributions.

Besides the convergence theorems of Lebesgue and Fubini, the transformation
theorem forms the third pillar of the entire integral calculus. It will be proved in
Section 8, where we also discuss its more basic applications.
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In the last section, we illustrate the power of the theory just developed by
proving several basic facts about the Fourier transform. Like the second half of
Section 7, this part affords a look at a related area of analysis which you may later
encounter in more advanced studies.



1 Measurable functions

Suppose (X, A, 1) is a measure space and A € A. An analogy with elementary
geometrical constructions leads one to define the integral over X of the character-
istic function x4 with respect to the measure y as [ v Xadp = p(A). Obviously
this only makes sense if A belongs to A. The function f = y 4 must therefore be
“compatible” in this sense with the underlying measure space (A, ). For more
complicated functions, a suitable approximation argument makes it possible to
generalize this notion of compatibility between functions and measures, leading to
the concept of the measurability of functions.

In this section denote by

e (X, A, u) a complete, o-finite measure space;
E = (E,|-|) a Banach space.

Simple functions and measurable functions

Suppose E is a property that is either true or false of each point in X. We say
that E holds p-almost everywhere, or for p-almost every x € X, if there exists a
p-null set N such that E(x) is true for every x € N¢. “Almost every” and “almost
everywhere” are both abbreviated “a.e.”

1.1 Examples (a) For f,g € R™, we write “f > g p-a.e.” if there is a p-null set
N such that f(z) > g(x) for every x € N°.

(b) Suppose f;, f € EX for j € N. Then (f;) converges to f p-a.e. if and only if
there is a p-null set N such that f;(z) — f(x) for x € N°.

(c) A function f € EX is bounded p-a.e. if and only if there is a p-null set N and
an M > 0 such that |f(z)| < M for every x € N°.

(d) If E holds p-a.e., the set { z € X ; E(x) is not true } is p-null.
Proof This follows from the completeness of (X,.A, ). m
(e) Suppose (X, B,v) is an incomplete measure space. Then there is a property

E of X that holds v-almost everywhere for which {x € X ; E(x) is not true} is
however not a v-null set.

Proof Because (X, B,v) is not complete, there is a v-null set N and an M C N such
that M ¢ B. If f := xu, then f = 0 v-almost everywhere, but { z € X ; f(z) #0} =M
is not a v-null set. m

We say f € EX is p-simple’ if f(X) is finite, f~!(e) € A for every e € E, and
w(f~HE\{0})) < co. We denote by S(X, y1, E) the set of all y-simple functions

LIf the identity of the measure space is clear, we call functions simple instead of u-simple;
similarly in the case of y-measurable functions, about to be introduced.
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from X to E.2

A function f € EX is said to be p-measurable if there is a sequence (f;) in
S(X,u, E) such that f; — f p-almost everywhere as j — co. We set?

Lo(X,u,E):={fecEX; fis y-measurable} .

1.2 Remarks (a) We have the inclusions of vector subspaces

S(X,u,F) C Lo(X,pu, E) C EX .

(b) For j = 0,...,m, where m € N, consider ¢; € F and A; € A such that
u(A4;) < co. Then f := Z;nzo ejxA; belongs to S(X,u, E). We call this the
normal form of f if

e;#0 forj=0,...,m,

ej #e forj#k,
AiNAy=0 forj#k.

(c) Every simple function has a unique normal form, and*

m

SXuB) = {3 epva, imeN, ¢ € B\{0}, 4; € A,
p(A4;) < oo, AjﬁAk=®f0rj7ék} .
Proof Suppose f € S(X,u, E). Then there is an m € N and pairwise distinct elements

€0, ... em in E such that f(X)\{0} = {eo,...,em}. Setting A; := f~'(e;), we have
Aj € A such that p(A4;) < oo and A; N Ar =0 for j # k. One checks easily that

m
§ €iXA;
j=0

is the unique normal form of f. The second part now follows from (b). m

(d) Suppose f € EX and g € K are p-simple [or p-measurable]. Then |f| € RY
and gf € EX are also p-simple [or u-measurable]. In particular, S(X, u, K) and
Lo(X, 1, K) are subalgebras of K~

(e) For A € Aand f € EX, form the restriction v := | (A] A) (see Exercise
IX.1.7). Then

flA€eS(A v, E) <= xaf €S(X, 1, E),
f|A€‘C0(A7VaE) — XAfE‘CO(Xa/J/7E) .

Proof The simple verification is left to the reader. m

2We called the space of jump continuous functions S(7, E), but this will cause no confusion.

3Clearly the definition of measurability of functions is meaningful even on incomplete measure
spaces.

4Compare the footnote to Exercise VI.6.8.
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(f) Suppose f € Lo(X, 1, K) and A := [f # 0]. Also define g € K¥ through

[ 1/ f(=) ifre A,
g(x)'{ 0 ifodA.

Then g is p-measurable.

Proof The measurability of f implies the existence of a p-null set N and a sequence
(¢;) in S(X, u, K) such that p;(x) — f(x) for z € N°. We set

] Yei(x)  ifgi(x) #0,
wj(x)_{ 0 if ¢;(z) =0,

for z € X and j € N. By (c) and (d), (xav;) is a sequence in S(X, i, K), and one verifies
easily that (xa;)(z) — g(x) for every x € N (see Proposition 11.2.6). m

(g) Let e € E\{0}, and suppose p(X) = oo. Then exx belongs to Lo(X, p, E)
but not to S(X, , E).

Proof Tt is clear that exx is not p-simple. Since X is o-finite, there is a sequence (A;)
in A such that (J; A; = X and p(4;) < oo for j € N. For j € N, set X; := (J;_, Ax and
;= exx;. Then (p;) is a sequence in S(X, i1, ) that converges pointwise to exx. m

A measurability criterion

A function f € EX is said to be .A-measurable if the inverse images of open sets of
E under f are measurable, that is, if f~(7g) C A, where 7 is the norm topology
on E. If there is a p-null set N such that f(IN€) is separable, we say f is p-almost
separable valued.

1.3 Remarks (a) Exercise IX.1.6 shows that the set of A-measurable functions
coincides with the set of A-B(E)-measurable functions.

(b) Every subspace of a separable metric space is separable.

Proof By Proposition IX.1.8, separability amounts to having a countable basis. But by
restriction, a basis of a topological space yields a basis (of no greater cardinality) for any
given subspace; see Proposition 111.2.26. m

(c) Suppose E is separable and f € EX. Then f is u-almost separable valued.
Proof This follows from (b). m

(d) Every finite-dimensional normed vector space is separable.” m
The next result gives a characterization of p-measurable functions, which,

besides being of theoretical significance, is very useful in practice for determining
measurability.

5Compare Example V.4.3(e).



X.1 Measurable functions 65

1.4 Theorem A function in EX is u-measurable if and only if it is A-measurable
and p-almost separable valued.

Proof “=" Suppose f € Lo(X,p, E).
(1) There exist a g-null set N and a sequence (¢;) in S(X, y, E) such that

@j(x) — f(z) (j —o0) forxe N°. (1.1)

By Proposition 1.6.8, F' := U o j(X) is countable and therefore the closure F is
separable. Because of (1.1) we have f(N°¢) C F. Remark 1.3(b) now shows that
f is p-almost separable valued.

(ii) Let O be open in E and define O, := {y € O ; dist(y,0¢) > 1/n} for
n € N*. Then O, is open and O,, C O. Also let x € N°. By (1.1), f(x) belongs
to O if and only if there exist n € N* and m = m(n) € N* such that ¢;(z) € O,
for j > m. Therefore

FroynNe=J e Onnne. (1.2)
m,neNX j=m
But gaj_l(On) € Aforn € N* and j € N, because ¢; is pu-simple. Hence (1.2) says
that f~1(O) N N° € A.
Furthermore, the completeness of u shows that f~1(0) N N is a p-null set,
and altogether we obtain

F7H0) = (F7HO)NN)U (f (O)NN°) € A

“<” Suppose f is p-almost separable valued and A-measurable.

(iil) We consider first the case u(X) < oco. Take n € N. By assumption, there
is a p-null set N such that f(N€) is separable. If {¢; ; j € N} is a countable
dense subset of f(N€), the collection {IB%(ej, 1/(n + 1)) i J € N} covers the set
f(N¢), and thus

X=NulJf'(B(e1/(n+1))) .
JEN
Since f is A-measurable, X, = f‘l(IB%(ej, 1/(n+ 1))) belongs to A for every
(j,n) € N2, The continuity of x from below and the assumption p(X) < oo then
imply that there are m,, € N* and Y,, € A such that

n . 1
Now define ¢,, € EX through

) ifre XO,n ,
on(z) =X ¢ ifx e Xj,n\Ui;é Xpp for 1 <j<m, ,
0 otherwise .
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Obviously ¢, € S(X, u, E) for n € N, and
lon(z) — f(x)] <1/(n+1) forxeYy.

The decreasing sequence Z,, := Jpo o Y4k satisfies
= 1
Z Yotk) 2—n forn e N .
k=0

It therefore follows from the continuity of u from above that Z := [,y Zn is
p-null. We now set

| pn(=) ifeez¢,
¥n(®) '_{ 0 if v € Z,

Then (1) is a sequence in S(X, u, E). Also there is for every x € Z¢ =,, Z;, an
m € N such that € Z¢,. Since Z5, C Z¢ for n > m, it follows that

[n (@) = f(2)] = len(z) — f(@)] <1/(n+1) .
Altogether, lim v, (z) = f(x) for every x € Z°. Therefore f is y-measurable.

(iv) Finally, we consider the case pu(X) = oco. Remark IX.2.4(c) shows there
is a disjoint sequence (X;) in A such that (J; X; = X and p(X;) < co. By part
(iii), there exist for each j € N a sequence (¢ x)ken in S(X, u, F) and a p-null
set N such that limy, ¢; ,(x) = f(2) for every z € X;NN7. With N :=J; N; and

vj.k(T) ifeeX;, je{0,...,k},
or(T) = . !
0 ifedUL X

for k € N, we have ¢, € S(X, 1, E) and limy, ¢ (z) = f(z) for x € N°. The result
follows because N is p-null. m

1.5 Corollary Suppose E is separable and f € EX. The following statements are
equivalent:

(i) f is u-measurable.

(ii) f is A-measurable.
(iii) f~1(S) C A for some S C PB(E) such that A,(S) = B(E).
(iv) f7YS) C A for any S C B(FE) such that A,(S) = B(E).

Proof This follows from Theorem 1.4, Remark 1.3(c), and Exercise IX.1.6. m

1.6 Remark The proof of Theorem 1.4 and Remark 1.3(c) show that Corollary 1.5
remains true for incomplete measure spaces. m

Without much effort, we obtain from Corollary 1.5 the following properties
of p-measurable functions.
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1.7 Theorem
(i) If E and F are separable Banach spaces and if we have maps f € Lo(X, u, F)
and g € C(f(X),F), then go f belongs to Lo(X,p, F). In particular, |f| €
Lo (Xv 1y R)
(i) A map f = (f1,...,fn): X = K" is y-measurable if and only if each of its
components f; is.
(iii) Let g,h € RX. Then f = g+ ih is p-measurable if and only if g and h are.
(iv) If f € Lo(X,p, E) and g € Lo(X, p, F), then (f,g) € Lo(X,u, E X F).

Proof (i) Let O be open in F'. Since g is continuous, g~*(0) is open in f(X). By
Proposition I11.2.26, there is an open subset U of E such that ¢=}(0) = f(X)NU.
Since f is Lebesgue measurable, f~1(U) belongs to A by Corollary 1.5. Because

(9o /)7H0) = g1 (0) = fH(fX)NU) = fH(U),

the claim follows from another application of Corollary 1.5.
(ii) The implication “=" follows from (i), because f; = pr;of for 1 < j < n.
“<=" We consider first the case K = R. Take I € J(n), and write it as
I= H;LZI I;, where I; € J(1) for 1 < j < n. Because each fj_l(Ij) belongs to A,
so does f~1(I) = N}, fj_l(Ij), that is, we have f~!(J(n)) C A. Also, we know
from Theorem IX.1.11 that A, (J(n)) = B™. Therefore Corollary 1.5 implies that
f is p-measurable.

Using the identification C™ = R?", the case K = C follows immediately from
what was just shown.

(iil) is a special case of (ii), and we leave (iv) as an exercise. m

Measurable R-valued functions

In the theory of integration, it is useful to consider not only real-valued functions
but also maps into the extended number line R. Such maps are called R-valued
functions. An R-valued function f: X — R is said to be p-measurable if A
contains f~1(—o0), f71(c0), and f~1(O) for every open subset O of R. We

denote the set of all y-measurable R-valued functions on X by Lo(X, u, R).

1.8 Remarks (a) Any real-valued function f: X — R can be regarded as an
R-valued one. Thus there are in principle two notions of measurability that apply
to f. But since f’l({—oo, oo}) = (), Corollary 1.5 implies that f is p-measurable
as a real-valued function if and only if it is g-measurable as an R-valued function.

(b) Note that Lo(X, u,R) is not a vector space. m

In the next result, we list simple measurability criteria for R-valued functions.
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1.9 Proposition For an R-valued function f: X — R, the following statements
are equivalent:

Proof “(i)=-(ii)” The sets f~*(—o00) and f~!((—o0,a)) with a € Q [or o € R]
belong to A. Because

[f <a]l =7 ([~00,a)) = fH(—o0) U fH((—00,@))

this is also true of [f < a].

The implications “(ii)=>(iii)=-(iv)=-(v)” follow from the identities

f<a=[|lf<a+1/jl, [f>a]=[f<a]*, [fZa]=

1 J

[f>a-1/4].

38
DL:

1

J

“(v)=-(1)” Suppose O is open in R. By Proposition IX.5.6, there exist
(a;), (3;) € QY such that O = U;laj.85). Therefore

Uf ([, 85)) = U([fzaj]ﬁ[f<ﬁj]) ,

JEN jEN

and because [f < a] = [f > a]°, we conclude that f~!(O) belongs to A. In
addition

f7H=o0) = (If <=4l and [~ (c0) = [[f>J]-

jEN jEN

Thus f~!(+o0) also lies in A. m

The lattice of measurable R-valued functions

An ordered set V = (V, <) is called a lattice if for every pair (a,b) € V x V, the
infimum a A b and the supremum a V b exist in V. A subset U C V is a sublattice
of V if U is a lattice when given the ordering induced by V. An ordered vector
space that is also a lattice is called a vector lattice. If a vector subspace of a vector
lattice is a sublattice, we call it a vector sublattice.
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1.10 Examples (a) Suppose V is a lattice [or vector lattice]. Then V¥ is a lattice
[or vector lattice] with respect to the pointwise ordering.

(b) R is a lattice, and R is a vector lattice.

(¢) The vector lattice R satisfies
fvg=(f+g+lf—gh/2, frg=(+g—If—gh/2.

(d) B(X,R) is a vector sublattice of R™.

(e) Suppose X is a topological space. Then C(X,R) is a vector sublattice of R,

Proof This follows from (c) and the fact that |f| is continuous if f is. m

(f) S(X,u,R) and Lo(X, 1, R) are vector sublattices of R¥.

Proof The first statement is clear. The second follows from (c) and Theorem 1.7 or
Remark 1.2(d). m

(g) Suppose V is a vector lattice and z,y,z € V. Then
(@Vy)+z=(z+2)V(y+2),
(=2)V(=y) = == Ay),
r+y=(zVy)+(@Ay).
Proof If u €V satisfies u > x and u > y, then clearly u+ z > (z + 2) V (y + z). Hence
@Vy +zz2@+2)Vy+z).

Suppose v > (x+2) V(y+2). Thenv—2 >z and v — z > y, and hence v > (x Vy) + z.
Because this holds for every upper bound v of {z + z,y + z}, it follows that

(z+2)V(y+z)>(zVy) +=z.
This proves the first equality. The second is none other than the trivial relation
sup{~z, —y} = sup(—{z,y}) = —inf{z,y} .
Using this, we now find

aVy=(~y+@+y)V(-z+@+y) = ((-y) V(-2) + (@ +y)
=—(zAy)+(z+y),

which proves the last claim. m
(h) Suppose V is a vector lattice. For z € V', we set
zti=2Vv0, 27 :=(-2)V0, |z]:=2V(-1).

Then®

r=zt—z7, |z|=2t+2", 2tAzT =0.

6See footnote 8 in Section IL.8.
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Proof The first claim follows easily from (g). With this and (g), we find
T+ =422 =x+ (—22)vO0) =(—z)Va=|z|.
Analogously, we have

(ztAz)—2z =@ -z )A(x —2 )=2zA0=—z

and therefore zTA 2z~ =0. m

If V is a vector lattice and x € V, we call 7 the positive part and 2~ the
negative part of x, and |z| is the modulus” of z. Clearly z* > 0, 2~ > 0, and
|z| > 0.

The figures below illustrate the positive and negative parts of an element f
of the vector lattice RY.

‘ /S SN,

graph(/f) graph(f") graph(f~)
Suppose f € RX. Then f* := f V0 is called the positive part of f, and
f~ :=0V(—f) the negative part of f. These terms are chosen in obvious analogy

to the case of the vector lattice R*.8 Here too we have
ff>0, 720, f=f"=f, fl=r"+1".

The next result shows that Lo(X,u, R) is a sublattice of RX and that it is
closed under countably many lattice operations.

1.11 Proposition Suppose f € Lo(X, i, R), (f;) is a sequence in Lo(X, 1, R), and
k € N. Then each of the R-valued functions

+ - ) i . . ; ) Tim f- 3 )
f~, f, |f| ) Ofgja%(kfg s Orgnjlgkf] , Sl;pf] , H]lffj , h;nfj s hTmfj

belongs to Lo(X, p, R).

Proof (i) Suppose a € R. From Proposition 1.9, we know that [f; > o] belongs
to A for j € N. Therefore this is also true of

[sup, 5 > a] = 115 > al

and Proposition 1.9 implies that sup; f; is y-measurable.

7This is not to be confused with the norm of the vector x if V is a normed vector space. The
modulus of x € V' is always a vector in V', whereas the norm is a nonnegative number.
8Remember that R¥ is a lattice but not a vector lattice.
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(ii) Because f; belongs to Lo(X, 1, R), so does —f;. It then follows from (i)
that the function inf; f; = —sup,;(—f;) is p-measurable.
(iii) For j € N, set
fi  H0<j<k,
gj:_{ fo it >k
Because of (i), sup, g; = maxo<;<k f; belongs to Lo(X, u,R). Analogously, one
shows that ming<;<y f; is p-measurable.
(iv) From (iii), it follows that f*, f~, and |f| belong to Lo(X, i1, R).
(v) We have

Efj =infsup fr and lim f; = supinf fi .
J J k>j J j k=23

Therefore by (i) and (ii), lim; f; and lim; f; also belong to Lo(X,1,R). m

The positive cone S(X, i, RT) of S(X, i1, R) is the set of all f € S(X,u,R)
such that f(X) C RT; see Remarks VI.4.7(b) and (d). Therefore it is natural to
denote it by S(X,u,RT). Similarly, if Rt := [0, 00] is the nonnegative part of
the extended number line R, we denote by Lo(X, i, RT) the set of all nowhere
negative p-measurable R-valued functions on X.

The set Lo(X, i, RT) has an interesting characterization:

1.12 Theorem For f: X — R*, the following statements are equivalent:
(i) fe€ Lo(X,pu,RY).
(ii) There is an increasing sequence (f;) in S(X,u,R") such that f; — f for

J — oo.

Proof “(i)=-(ii)” By the o-finiteness of (A, u), it suffices to consider the case
1(X) < oo (compare part (iv) in the proof of Theorem 1.4). So for j,k € N, set

Ao (k279 < f < (k+1)27] ifk=0,...,572 -1,
P [f > ) it k=52 .

The sets Aj 1 are obviously disjoint for k =0, ... ,j27 and by Proposition 1.9 they
lie in A. Since p(X) < 00, each A; ; has finite measure. By Remark 1.2(b), then,

j2’
fi=> k27xa,, forjeN
k=0
belongs to S(X, i, R). Further one verifies that 0 < f; < f;4; for j € N.
Now suppose € X. If f(z) = oo, we have f;(z) = j, so lim; f;(z) = f(x).
On the other hand, if f(z) < oo, then f;(z) < f(z) < fj(z) +277 for j > f(z), so
lim; f;(xz) = f(x) in this case as well. This shows (f;) converges pointwise to f.
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“(ii)=-(1)” This follows from Proposition 1.11. m

Here is an illustration of the construction of the A;; in the proof of Theo-
rem 1.12:

__\AM/_ :

1.13 Corollary
(i) For every f € Lo(X,u, R), there is a sequence (f;) in S(X, u, R) such that
fi—= I
(ii) Suppose f € Lo(X, u,R") is bounded. Then there is an increasing sequence
(f;) in S(X, u,RT) that converges uniformly to f.

(iii) Suppose (f;) is a sequence in Lo(X, p, RT). Then >5[ € Lo(X, w, RT).

Proof (i) In view of the decomposition f = f* — f~, this follows from Theo-
rem 1.12 and Remark 1.2(a).

(ii) Suppose f € Lo(X, u, RT) is bounded. For the sequence (f;) constructed
in the proof of Theorem 1.12, we have

filw) < fx) < fi(z) +277 forj > | fle -

Thus (f;) converges uniformly to f.

(iii) By Theorem 1.12; there is for every j € N an increasing sequence
(¢ )ken in S(X, u,RT) such that ¢, T f; for K — co. Set sy, := > j=0 Pin
for k,n € N. Then (sgn)nen is an increasing sequence in S(X, i, RT) that con-
verges to sy 1= Z?:o fj as n — oco. By Theorem 1.12, then, (s) is a sequence in
Lo(X, p, RY) such that limy, s, = supy, s = 272 f;. The claim now follows from
Proposition 1.11. m
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Pointwise limits of measurable functions

Let (f;) be a pointwise convergent sequence in Lo(X, y,R). By Proposition 1.11,
f:=lim; f; is also in Lo(X, u, R). We will now derive an analogous statement for
vector-valued sequences of functions.

1.14 Theorem Suppose (f;) is a sequence in Lo(X, u, E) and f € EX. If (f;)
converges p-almost everywhere to f, then f is u-measurable.

Proof (i) We show first that f is u-almost separable valued. By assumption,
there is a p-null set M such that f;(z) — f(x) as j — oo, for any & € M°. For
every j € N, there exists by Theorem 1.4 a p-null set N; such that fj(Njc) is
separable, hence also a countable set B; that is dense in f;(N):

B; C fj(N )CB for jeN.
With B := J; B;, we see from Corollary II1.2.13(i) that (J, B; C B, and we find

Ufj(N]C)C UEjCE'

JEN jEN
Finally let N := M U Uj N;. Then N is a p-null set satisfying, for any k£ € N,
N¢=Men[; N5 C Ni. Because lim; f;(z) = f(z) for z € M¢, we thus have

vy U BN cB=B.
jEN
Because B is countable, Remark 1.3(b) shows that f(N°¢) is separable.

(ii) Now we show that f is A-measurable. Let O be open in E, and define
O, :={x €0 ; dist(z,0° > 1/n} for n € N*. Asin (1.2), it follows that

fFFronme= | () O)nMe.
m,neNx j>m
By Theorem 1.4, fj_l(On) belongs to A for every j,n € N*. Therefore this also

applies to f~1(O)NM¢. Moreover, the completeness of i implies that f~1(O)NM
is a p-null set, and altogether we find

F7H0) = (F7HO) N M) U (FHO)N M) € A.

The claim now follows from Theorem 1.4. m

1.15 Remark Theorem 1.14 generally fails for incomplete measure spaces.

Proof Let C be the Cantor set. In the proof of Corollary IX.5.29, it was shown that C
contains a Borel nonmeasurable subset N C C'. We take f; := x¢ for j € Nand f := xn.
Remark 1.2(b) and the compactness of C' imply xc € S(R,51,R). Also f;(z) = f(z)
for x € C° C N° and j € N. Because C has measure zero, (f;) converges fi-a.e. to f.
However, because [f > 0] = N ¢ B', Proposition 1.9 says that f is not in Lo(R, 31, R). m
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Radon measures

We conclude this section by exploring how measurability and continuity are re-
lated in vector-valued functions. Besides proving a simple measurability criterion,
we prove Luzin’s theorem, which exposes a surprisingly close connection between
continuous and Borel measurable functions.

A metric space X = (X, d) is said to be o-compact if X is locally compact
and there is a sequence (X;);en of compact subsets of X such that X = {J, Xj.

Suppose X is a o-compact metric space. A Radon measure on X is a regular,
locally finite measure on a o-algebra A over X such that A4 D B(X). We say a
Radon measure y is massive if p is complete and every nonempty open subset O
of X satisfies p(O) > 0.

1.16 Remarks (a) Every o-compact metric space is a o-compact set in the sense
of the definition of Section IX.5; however, a countable union of compact subsets
of a metric space is not necessarily a o-compact metric space.

Proof The first statement is clear. For the second, consider Q C R. m

(b) Every Radon measure is o-finite.
Proof This follows from Remark IX.5.3(b). m

(c) Suppose X is a locally compact metric space. Then there is for every compact
subset K of X a relatively compact® open superset of K.

Proof For every x € X, we find a relatively compact open neighborhood O(z) of x.
Because K is compact, there are zo,...,zm € K such that O := U;"ZO Oij) is an open
superset of K. Corollary IT1.2.13(iii) implies O = |J]_, O(z;). Therefore O is compact. m

(d) Every open subset of R™ is a o-compact metric space.

Proof Let X C R™ be open and nonempty. For every x € X, there is r > 0 such that
B(x,r) C X. Because B(z,r) is compact, X is then a locally compact metric space.
For j € NX, define'®

Up:={zeX;dist(z,U°) >1/j } NB(0,5) . (1.3)
By Examples II1.1.3(1) and II1.2.22(c), the set U is open. Also U; C U; C Ujt1, and
U, U; Cyj U; = X. In particular, there exists jo € N* such that U; # 0 for j > jo.
Because Uj is compact by the Heine—Borel theorem, the claim follows. m
(e) For a locally compact metric space X, the following statements are equivalent:
(i) X is o-compact.

(ii) X is the union of a sequence (Uj), en of relatively compact open subsets with

U; CUjyq for j €N,

9A subset A of a topological space is said to be relatively compact if A is compact.
0dist(x, @) := oo.
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(ili) X is a Lindeldf space.
(iv) X satisfies the second countability axiom.
(v) X is separable.
Proof “(i)=-(ii)” Let (X;);en be a sequence of compact sets in X such that X = |J; Xj.
By (c), there is a relatively compact open superset Ug of Xo. Inductively choose relatively
compact open subsets U; such that U; D U;—1 U Xj for j > 1. Clearly X =J; U;.
“(ii)=>(iil)” Suppose O := {Oa ; o € A} is an open cover of X. For every j € N,
inductively choose m(j) € N and ao,...,am;) € A such that U; C UZ;({)) O, . Then
{Oak i k=0,...,m(j), j € N} is a countable subcover of O for X.
“(iii)=>(i)” By assumption, there is a sequence (z;) in X and relatively compact
open neighborhoods O(z;) of z; (j € N) such that X = J; .y O(z;). So X =,y O(z;),
showing that X is o-compact.

jeN
The remaining equivalences follow from Proposition 1X.1.8. m

(f) Every locally finite Borel measure on a o-compact metric space is regular and
is therefore a Radon measure.

Proof This follows from (e) and Corollary VIIL.1.12 in [Els99]. m

(g) Finite Borel measures on (nonmetrizable) compact topological spaces need not
be regular.

Proof See [Flo81, Example A4.5, S. 350]. m

(h) Lebesgue n-measure, Ay, is a massive Radon measure on R".
Proof This follows from Theorems IX.5.1 and IX.5.4. m

(i) The s-dimensional Hausdorff measure H? is a Radon measure on R" only when
s > n. It is massive if and only if s = n.

Proof Every Borel set is H°-measurable, by Example 1X.4.4(c) and Theorem I1X.4.3.
The regularity of H® for s > 0 follows from Corollary IX.5.22 and Theorem IX.5.4.

Suppose O is open in R"™ and nonempty. Because O has Hausdorff dimension n
(Exercise IX.3.6), it follows that

0 ifs>n,

00 ifs<n.

w0 - {

Therefore H® cannot be a Radon measure on R™ if s < n. If s > n, on the other hand,
‘H? is a nonmassive Radon measure.

Lemma IX.5.21 shows that H" is locally finite and therefore a Radon measure on
R™. Finally, Corollary 1X.5.22 implies H"(O) > 0, and we are done. m

(j) Suppose F': R — R is measure generating, and denote by pp the Lebesgue—
Stieltjes measure on R induced by F. Then pp is a Radon measure on R, and is
massive if only if F' is strictly increasing.

Proof This follows from Example 1X.4.4(b), Theorem I1X.4.3, Exercise 1X.5.19, and
Proposition 1X.3.5. m
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1.17 Theorem Suppose u is a complete Radon measure on X. Then C(X, E) is
a vector subspace of Lo(X, u, E).

Proof Take f € C(X,E) and let (X;) be a sequence of compact sets in X such
that X = (J; X;. According to Exercise IX.1.6(b), f is Borel measurable and
therefore A-measurable, where A is the domain of ;. By Remark 1.16(e), f(X}),
being a compact subset of F, is separable. Therefore f(X) = Uj f(X;) is also
separable, and the claim follows from Theorem 1.4. m

1.18 Theorem (Luzin) Suppose X is a o-compact metric space, p is a complete
Radon measure on X, and f € Lo(X, u, E). Then for every p-measurable set A
of finite measure and for every € > 0, there is a compact subset K of X such that
w(A\K) < e and f|K € C(K, E).

Proof (i) Because X is o-compact, we can find a compact set X such that
p(A\ X) <e/2. We set f:= f ‘ X and A:= AN X. Then p(X) < .

(i) By Theorem 1.4, there is a g-null set N of X such that f(N¢) is separable.
Therefore by Proposition IX.1.8, there is a countable basis { V; ; j € N} of f(N¢),
and because of Proposition II1.2.26, there exist open subsets V; in E such that

V V; ﬂf(NC)

(iii) According to Theorem 1.4, f’l(V]) is p-measurable for every j € N.
Hence it follows from the regularity of 4+ and the finiteness of ;(X) that for every
j € N there exist a compact set K; and an open set U; with K; C I Yv;) c U;
and p(U;\Kj) < £270+3), Puttmg U =, (U;\Kj;), we have ,u( ) < 5/4

(iv) We set Y := (U U N)¢ and show that f‘ Y is continuous. To verify this,
let V be open in E. Then there is a subset {V}, ; k € N} of {V} ; j € N} such
that VN f(N°) =, Vj. N F(N€). This implies

FHV)NNe = U FNv;, )N Ne .
Obviously f~1(Vy)NY C U;NY for ¢ € N. Because

YzUCﬁchﬂ(UCUK)ﬂNCCﬂ UsUfNV) cUSUFH (V)
it follows that f~1(V;)NY = U, NY, and we find

(F17)

—1 T
V)=t vynNenve = U, ny .

Because | J, Uj, is open in X and therefore | J, U;, NY is open in Y, the continuity

of f | Y follows.

(v) We apply once again the regularity of p to deduce the existence of a
compact subset K of the y-measurable set Y such that u(Y'\K) < ¢/4. Then
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f‘ K belongs to C(K, E), and
WA\ K) < p(Y\K) + p(YONK) < p(Y\K) + p(U) < /2.

Because u(A\K) < u(g\K) + u(A\)Z') < e, we are done. m

Exercises

1 Suppose H is a separable Hilbert space. We say f € HX is weakly p-measurable if

(f | e) belongs to Lo(X, i, K) for every e € H. Prove:

(a) If f is weakly p-measurable, |f]| is p-measurable.

(b) f is p-measurable if and only if f is weakly p-measurable.

(Hints: (a) Suppose {e; ; j € N} is a dense subset of Bg. Then
[|f| < a] :mj[’(f|€j)’ Sa] foraeR.

(b) “«<=” Using (a), we can construct as in the proof of Theorem 1.4 a sequence of a
p-simple functions that converge p-a.e. to f.)

2 Denote by S(R, E) the vector space of all E-valued admissible functions of R (see
Section VI.8). Prove or disprove:

(a) SR, E) C Lo(R, p1, E);

(b) S(R, E) D Lo(R, 1, E).

3 Prove the statement of Remark 1.2(e).

4 Show that every monotone R-valued function is Borel measurable.

5 Let f,g € Lo(X,u,R). Show that the sets [f < g], [f < g], [f = g], and [f # g]
belong to A.

6 Suppose (f;) is a sequence in Lo(X, 4, R). Show that
K :={x € X ; lim, f;(z) exists in R }
is pu-measurable.

7 Suppose f: X — R. Prove or disprove:
(a) f € Lo(X, 1, R) = [T, f7 € Lo(X, 1, RT).
() fe ﬁo(X,/A,R) = |f| € ﬁo(X,/A,R"’).
8 A nonempty subset B of R¥ is called a Baire function space if these statements hold:
(i) « e R and f € B imply af € B.
(ii) If f + g exists in R* for f,g € B, then f 4+ g € B.
(iii) sup; f; belongs to B for every sequence (f;) in B.
Prove:

(a) RX and Lo(X, y1,R) are Baire function spaces.
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(b) If { B C R* ; a € A} is a family of Baire function spaces, then ()., Ba is also a

Baire function space.

9 For C C R¥, we call

aEA

o(C) = m{B c R ; B> C, B is a Baire function space }

the Baire function space generated by C. By Exercise 8(b), o(C) is a well defined Baire
function space. Show that

o(S(X,1,R)) = Lo(X, 1, R) .

10 Prove that o(C(R™,R)) = Lo(R", Bn, R).

11 Show that the supremum of an uncountable family of measurable real-valued func-
tions is generally not measurable.

12 A sequence (f;) in EX is said to be p-almost uniformly convergent if for every § > 0
there is an A € A with p(A°) < § such that the sequence (f; | A) converges uniformly.
(a) Suppose (f;) is a p-almost uniformly convergent sequence in Lo(X, pt, E). Show there
isan f € Lo(X, u, E) such that f; — f p-a.e.

(b) Define f;(x) := 2’ for j € N and = € [0,1]. Verify that (f;) converges almost
uniformly (with respect to Lebesgue measure), although there is no set N C [0,1] of
measure zero such that (f; | N°) converges uniformly.

13 Suppose (X, A, u) is a finite measure space and f;, f € Lo(X,pu, F) with f; — f
u-a.e. Prove:

(a) For ¢ > 0 and ¢ > 0, there exist k € N and A € A such that p(A°) < ¢ and
|fi(x) — f(z)| <eforz € Aand j> k.

(b) The sequence (f;) converges p-almost uniformly to f (Egorov’s theorem).

(c) Part (b) is generally false if u(X) = co.

(Hints: (a) Consider K := [f; — f] and Ky := [|f; — f| < e ; j > k], and apply the
continuity of measures from above.  (b) To obtain the A;, choose e := 1/j and 6 := § 27
in (a), and let A:={J; A;.  (c) Consider the measure space (X, A, ) = (R, A1, £(1))
and set fj 1= x[jj+1]-)

14 Suppose (X, A, ) is a measure space and f;, f € Lo(X, u, E). We say (f;) converges
in measure to f if lim;_.oo p([|f; — f| > €]) = 0 for every € > 0.

Prove:

(a) f; — f p-almost uniformly = f; — f in measure.

(b) If (f;) converges in measure to f and to g, then f =g p-a.e.

(c) There is a sequence of Lebesgue measurable functions on [0,1] that converges in
measure, but does not converge pointwise anywhere.

(d) There is a sequence of Lebesgue measurable functions on R that converges pointwise
but not in measure.

(Hints: (c) Set f; := x1,, where the intervals I; C [0, 1] are chosen so that A1(I;) — 0 and
so that the sequence (f;(z)) has two cluster points for every € [0,1].  (d) Consider
fi = Xi.5411)



X.1 Measurable functions 79

15 Suppose (f;) is a sequence in Lo(X, u, E) converging in measure to f € Lo(X, pu, E).
Show that (f;) has a subsequence that converges p-a.e. to f.
(Hint: There is an increasing sequence (jx)ken such that

w([[fm = fa] >27F)) <27F form,n>ji .

With the help of By := Uy, [|frpyy — frr| = 2], conclude that (fj, )ren converges
p-almost uniformly. Also note Exercises 12, 14(a) and 14(b).)

16 For z = (z;) € K" and p € [1, oc], define®!

= { (X5olzs?)'” ifp el o0,

1= e, o) if p=oo,
and

by = Lp(K) = ({2 € K" [|zflp < o0}, [|-]ln) -
Prove:
(a) If p € [1,00), then £, is a separable normed vector space.
(b) £oo is not separable.
17 Suppose z € R. If z € R, we say U C R is a neighborhood in R of z if U contains
a neighborhood in R of z. For z € R\R, neighborhoods were defined in Section I1.5 as
those sets that contain a semi-infinite interval of the appropriate kind. Suppose O C R.

We say O is open ig@ if every z € O has a neighborhood U in R such that U C O. Now
define 7 := {O C R ; O is open in R }. Prove:

(a) O is open in R if and only if ONR is open in R and, in the case co € O [or —oco € O],
there is an a € R such that (a,00] C O [or [—00,a) C O].

(b) (R T) is a compact topological space.
() BR)={BUF ; BeB', F C{—o00,00} }.

(d) ( ) IR =8".

(e) An element of R¥ belongs to Lo(X, i, R) if and only if it is .A-B(R)-measurable.

18 Check that, if S is a separable subset of E, the closure of its span is a separable
Banach space.

19 For f € KX, set

f@)/f@)]if f(z) #

(sign f)(z) :== { 0 if f(z)

Demonstrate that f € Lo(X, u, K) implies sign f € Lo(X, u, K).

11See also Proposition IV.2.17.
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In this section, we define the general Bochner—Lebesgue integral and describe its
basic properties. We also prove that the vector space of integrable functions is
complete with respect to the seminorm induced by the integral.

As in the previous section, suppose

e (X, A, ) is a complete o-finite measure space;
E = (E,|-|) is a Banach space.
The integral of a simple function

In Remark 1.2(c), we learned that every simple function has a unique normal form.
This form will prove to be useful in the sequel, and we work with it preferentially.

Convention We will always represent p-simple functions by their normal
forms, unless we say otherwise. Further, we set!

0 :=-00-0g:=0g, (2.1)
where O is the zero vector of E.

For ¢ € Z;”:O ejxa,; € S(X, u, E), we define the integral of o over X with respect
to the measure p as the sum

/ pdu ::/cpdu = e;u(4;) .
X =0

If A is a pu-measurable set, we define the integral of ¢ over A with respect to the

measure p as
/@du :=/ Xapdu .
A X

A

N 4‘ >

J

LConvention (2.1) is common in the theory of integration and makes it possible, for example, to
integrate simple functions over their entire domains of definition. It is not to be understood in the
case E = R as another calculation rule in R, but rather in the sense of “external” multiplication
of 0o, —co € R by the zero vector of R.
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2.1 Remarks (a) For ¢ € S(X,u,E) and A € A, the integral [, pdp is well

defined.
Proof This follows from Remarks 1.2(c) and (d). m

(b) Let ¢ = >"7_, fuXBy, where fo,..., fn € E are nonzero and By, ...,

B,ec A

are pairwise disjoint, be a p-simple function not necessarily in normal form. Then

/ pdu = kau By)

Proof Let 37" ejxa; be the normal form of ¢. Set
Am+1 = ﬂ A; 5 Bn+1 = ﬂ Bz 5 Em+1 = 0 5 fn+1 =0.
j k=0
Then X = U7 A5 = UpZg B, so

n+1 m-+1

Aj:U(AjﬁBk) and By = U(AjﬁBk) for j=0,...,m+land k=0,...

k=0 j=0

Because the sets Aj; N By are pairwise disjoint, we have

n4+1 m—+1
p(A;) =Y u(A;NBy) and p(Bx) =Y p(A;NBy) .
k=0 =0

If Aj N By # 0, then e; = fi, and we find

/wdu:
X

m—+1 n+1 m—+1

Ms

<.
Il
o

[
M=

Jep(By) . =

=~
I

0

(c) The integral [y -dp: S(X, pu, E) — E is linear.

nt1
Zegz (4; N By) Zf > (AN By)
§=0 =0 j=0

(2.2)

;n+1.

Proof Suppose ¢ = 377" ejxa; and ¥ = Y\ fuxp, are p-simple functions and
a € K. One checks easily that fx apdy = afxapdp. With the relations (2.2), an

argument like that in (b) implies

n+1 m+1
XA; = ZxAijk and xB, = Z XA;NBy,
k=0 j=
and thus?
m—+1n+1
e+ =D (e + fr)xanp, -
=0 k=0

The claim now follows from (b). m

2In general, (2.3) does not give the normal form of ¢ + .

(2.3)
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(d) For A,B € Aand AN B = (), we have
/ @du=/wdu+/<ﬂdu for o € S(X, 1, E) .
AUB A B

Proof This follows from (c) and the equality xauBy = XA + XBY- B
(e)For ¢ € S(X,p, E) and A € A, we have

[ odu| < [ 1ol au< el onta)
A A

Proof This follows from Remark 1.2(d) and the triangle inequality. m

(F) If , 9 € S(X, i, R) satisfy ¢ <1, then [, pdu < [, ¢ dp.
Proof Clearly fA ndp > 0 for n € S(X, 1, RT). The claim now follows from (c). m

The L£1-seminorm

Suppose V is a vector space over K. A map p: V — R is called a seminorm on V'
if it satisfies these properties:

(i) p(v) >0 forv eV,

(ii) p(Av) = |A|p(v) for v € V and X € K;
(iii) p(v +w) < p(v) + p(w) for v,w € V.
For v € V and r > 0, we denote by

By(v,r):={weV; plv-—w)<r}

the open ball in (V,p) around v with radius ». A subset O of V is said to be
p-open if, for every v € O, there is an r > 0 such that B,(v,r) C O.

2.2 Remarks Suppose V is a vector space and p is a seminorm on V.
(a) The seminorm p is a norm if and only if p~1(0) = {0}.
(b) Suppose K C R" is compact, k € NU {oo}, and

pic(f) = max|f(z)| for f € C*R",E).

Then px is a seminorm on C*(R™, F), but not a norm.

Proof One verifies easily that px is a seminorm on Ck(]R",E). Let U be an open
neighborhood of K. Then Exercise VII.6.7 shows that there is an f € C*°(R",R) such
that f(z) =1 for z € K and f(z) =0 for x € U°. For e € E\{0}, we set g := (xr» — f)e.
Then g belongs to C°°(R"™, E), and we have px(g) = 0, but g # 0. Therefore px is not
a norm on C*(R", F). m
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(c) Let
lolls = /X ldp for p € S(X, 1, E) .

Then |-||1 is a seminorm on S(X, u, E). If there is a nonempty p-null set in A,
then ||-||1 is not a norm on S(X, u, E).

Proof It is clear that ||-||1 is a seminorm on S(X, p, E). Letting N denote a nonempty
p-null set, we have |[xn||1 =0, but x5 #0. =

(d) 7, == {0 C V; Oisp-open} is a topology on V, the topology generated
by p.

Proof One easily checks that the argument used in the proof of Proposition II1.2.4
transfers to this situation. m

(e) The topology 7, is not necessarily Hausdorff. If it isn’t, there is no metric on
V that generates 7.
Proof We use the notation of (b) and set K := {0}. Further let f € C*(R™, E) with

f(0) =0and f # 0. Then By, (f,€) = By, (0,¢) for every € > 0. Therefore T, is not
Hausdorff. The second statement follows from Proposition I11.2.17. m

(f) A linear map A: V — FE is said to be (p)-bounded if there is an M > 0 such
that |Av| < Mp(v) for v € V. For a linear map A: V — E, these statements are
equivalent:

(i) A is continuous.

(ii) A is continuous at 0.

(iii) A is bounded.

Proof This follows from the proof of Theorem VI.2.5, which used only the properties
of a seminorm. m

(g) [ -du:S(X,p, E) — E is continuous.
Proof This follows from (c), (f), and Remark 2.1(c). m

Suppose p is a seminorm on V. We know from Remark 2.2(e) that the
topology of (V, p) may not be generated by a metric on V', in which case the metric
notions of Cauchy sequence and completeness are not available. Accordingly, we
need new definitions: A sequence (v;) € V¥ is called a Cauchy sequence in (V,p)
if for every € > 0 there is an N € N such that p(v; —vg) < e for j, k > N. We call
(V,p) complete if every Cauchy sequence in (V,p) converges.

2.3 Remarks (a) If (V,p) is a normed vector space, these notions agree with those
of Section IL.6.

(b) Suppose (vj) € VN and v € V. Then v; — v if and only if p(v — v;) — 0.
However, the limit of a convergent sequence is generally not uniquely determined:
if p is not a norm, v; — v implies v; — w for every w € V such that p(v —w) = 0.
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(c) The set of all Cauchy sequences in (V,p) forms a vector subspace of V. m

In the following, we always provide the space S(X, y, E) with the topology
induced by ||-][1. Then we may also call a Cauchy sequence in S(X,u, E) an
L1-Cauchy sequence.

A function f € EX is called p-integrable if f is a p-a.e. limit of some £;-
Cauchy sequence (¢;) in S(X, i, E). We denote the set of E-valued, p-integrable
functions of X by £1(X, p, E).

2.4 Proposition In the sense of vector subspaces, we have the inclusions

SX,u, E) C Li(X, 11, E) C Lo(X, 1, E) .

Proof Clearly every p-simple function is p-integrable. That every u-integrable
function is p-measurable follows from Remark 1.2(a) and Theorem 1.14. There
remains to show that £1(X,pu, E) is a vector subspace of Lo(X,u, E). Take
f,9 € Li(X, 1, E) and a € K. There are £,-Cauchy sequences (p;) and (¢;)
in S(X, p, E) such that ¢; — f and ¢; — g p-a.e. as j — oo. From the triangle
inequality, it follows that (a; + ©;)jen is an L£1-Cauchy sequence in S(X, p, E)
that converges p-a.e. to af + g. Therefore af + g is p-integrable, as needed. m

The Bochner—Lebesgue integral

Let f € £1(X,u, E). Then there is an £;-Cauchy sequence (¢;) in S(X, p, E)
such that ¢; — f p-a.e. We will see that the sequence (fX @; du)jen converges
in E. Tt is natural, then, to define the integral of f with respect to u as the limit of
this sequence of integrals. Of course we must check that the limit is independent
of the approximating sequence of simple functions; that is, we must show that
lim; [ ¢; dp = lim; [4; du if (¢;) is another Cauchy sequence in S(X, p1, E) such
that ¢; — f p-a.e.

2.5 Lemma Suppose (p;) is a Cauchy sequence in S(X, u, E). Then there is a
subsequence (¢j, Jken of (p;) and an f € L£1(X, p, E) such that

(i) ¢j. — f pa.e ask — oo;
(ii) for every € > 0, there exists A, € A such that pu(A.) < ¢ and (g}, )ken

converges uniformly to f on A¢.

Proof (o) By assumption, there exists for any k& € N some j, € N such that the
bound ||¢¢ — @m|l1 < 272F holds for £,m > ji.. Without loss of generality, we can
choose the sequence (ji)ren to be increasing. With ¢, := ¢;, , we then get

e — bml1 <272 form>£>0.
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(B) Set By := [|¢z+1 — | > Q’Z} for £ € N. Then By belongs to A, and we
have p(By) < oo for £ € N, because every ), is p-simple. Therefore xp, is also
p-simple, and Remark 2.1(f) implies

2~Lu(By) = 2~ / X5, i < / et — el dit = bess — el < 272 |
X X

This leads to u(By) < 27¢ for £ € N.

Letting A,, := Ug—o Bn+k, we have p(A,) < 27! for n € N, and we see
that A := (2, A, is a p-null set.
(v) If o lies in AS, = (o~ BS, ., then

[Veg1(z) — Ye(z)| < 27¢ for & >n .

By the Weierstrass criterion (Theorem V.1.6), the series

Yo + Z(WH )

on A¢ converges uniformly in . Now we set

f limg () ifx € A° |
f(x)'{ 0 ifreA.

Then ¢;, — f p-a.e. as k — oo. Further, there is for every ¢ > 0 ann € N
such that p(A4,) < 27! < ¢, and (¢j, )ken converges uniformly on A¢ to f as
k—oco. m

2.6 Lemma Suppose (p;) and (v;) are £1-Cauchy sequences in S(X, u, E') that
converge [i-a.e. to the same function. Then lim ||¢; — ;|1 = 0.

Proof (i) Take e > 0 and set n; := ¢; — ¢; for j € N. By Remark 2.3(c), (n,)
is an £;1-Cauchy sequence in S(X, p, E'). Thus there is a natural number N such
that ||n; — nk|| < e/8 for j,k > N.

(ii) Because ny is p-simple, A := [ny # 0] belongs to A and p(4) < oo.
Moreover (1) converges p-a.e. to zero. Then Lemma 2.5 says there exists B € A
such that pu(B) < ¢/8(1 + ||nn]|co), and there is a subsequence (1, )ken of (1;)
that converges uniformly to 0 on B¢. Hence there exists K > N such that

Mjx ()| <e/8(1+ pu(A)) forx € A\B.

This implies [, 5 [nj. | dp < /8.
(iii) The properties of B and K imply

/Imxldué/ Ian—mvldqu/ Inn| dp
B B B
< mjxe — vl + v lloo (B) < e/4 .
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From the definition of A, we have

/ IanIdu=/ i —nnldp < g —nnlli <e/8.
Ac Ac

Altogether we obtain using Remark 2.1(d)
Il < [ il di < /2.
AcU(A\B)UB

and therefore ||n;|[1 < ) |li + 1|15 — mjx |1 < € for j > N. Because ¢ > 0 was
arbitrary, all is proved. m

2.7 Corollary Let (¢;) and (v;) be Cauchy sequences in S(X, i, E) converging
p-a.e. to the same function. The sequences (fX ©j du) and (fX (r du) converge

in F, and
1im/ %du:hm/ Vjdp .
J X J X

Proof Because
‘/ sojdu—/ cpkdu‘ <l =kl forj,keN,
b'e X

([ ¢jdp)jen is a Cauchy sequence in E; hence [ ¢;du — e as j — oo, for some
e € E. Likewise there is ¢/ € E such that [¢;du — ¢’ for j — oo. Applying
Lemma 2.6 and the continuity of the norm of E, we see that

o= e =tim| [ pydn— [ vyau] <tim [ oy~ 5l d=tim s w511 =0
7 NXx X 7 JXx J

and we are done. m

After these preparations, we define the integral of integrable functions in a
natural way, extending the integral of simple functions. Suppose f € £1(X, u, E).
Then there is an £4-Cauchy sequence (p;) in S(X, i, E) such that ¢; — f p-a.e.
According to Corollary 2.7, the quantity

/ fdu::hm/ ©j dp
X J X

exists in E, and is independent of the sequence (¢;). This is called the Bochner—
Lebesgue integral of f over X with respect to the measure p. Other notations
are often used besides [ « [ du, namely,

[raw. [ @i . [ e

Clearly, in the case of simple functions, the Bochner-Lebesgue integral agrees with
the integral defined at the start of this section (page 80).
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The completeness of £4

With the help of the integral, we now define a seminorm on £ (X, i, E) and show
that £1(X, u, E) is complete with respect to this seminorm.

2.8 Lemma If f € Li(X,p, E), then |f| belongs to L£1(X,p,R). If (p;) is
an Lq-Cauchy sequence in S(X, pu, E) such that ¢; — f p-a.e., then [|f|du =

lim; [ ;] dp.
Proof The reverse triangle inequality (which clearly holds for seminorms too) gives
I 151 = lerl I, < lles — enlly and | [e;] — |kl | < lp; — ¢l for jkeN.

Thus (|¢;])jen is an £1-Cauchy sequence in S(X, , R) that converges p-a.e. to
|f|. Therefore |f| belongs to £1(X, u,R), and [ |f|dp =lim; [ |¢;|dp. m

2.9 Corollary For f € L1(X,p, E), let || f|l1 := [y |f|dp. Then ||-||; is a seminorm
on L1(X,u, E), called the L£1-seminorm.

Proof Take f,g € £1(X,p, E) and let (¢;) and (¢0;) be £1-Cauchy sequences in
S(X, u, E) such that ¢; — f and ¢; — g p-a.e. From Lemma 2.8 and Remark
2.2(c) we have

||f||1:/ Iflduzlim/ o5l dp = lim o1 >0,
X J X J
as well as
1 + gl =t g + 51 < T (llpsll + 50) = 171 + gl

and
lafllr = li;nHOéstll = |Oé|1i§n||90j|| = lef | fIly

forany a € K. m
We will always give L1 (X, i, E') the topology induced by the seminorm ||-||;.

2.10 Theorem
(i) S(X,u, E) is dense in L1 (X, u, E).
(ii) The space L1(X, u, E) is complete.
Proof (i) Suppose f € Li(X, 1, E), and let (¢;) denote an £,-Cauchy sequence

of simple functions such that ¢; — f p-a.e. as j — oco. Also suppose & € N. Then
(pj —¢k)jen is an Lq1-Cauchy sequence in S(X, u, E') such that (¢p;—¢x) — (f—¢k)
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p-a.e. for j — oco. Because of Lemma 2.8,

If — wxll = 1i§n||90j — il forkeN.

Suppose € > 0. Then there is an N € N such that ||¢; — ¢gl1 < e for j,k > N;
taking the limit j — oo we get ||f — ¢n|l1 < e. This shows that S(X, p, E) is
dense in £1(X, u, E).

(ii) Let (f;) be a Cauchy sequence in £;(X, p, F) and take ¢ > 0. Choose
M € N such that || f; — fxll1 < €/2 for j,k > M. We know from (i) that for any
j € N we can find ¢; € S(X, u1, E) such that | f; — ¢;|l1 < 277/. Then

lo; —erlls < llej = filll + 115 = felll + 1 fe — eellh <277 + 277 +¢/2

for j,k > M. This shows that (p;) is an £4-Cauchy sequence in S(X, u, E).
By Lemma 2.5, therefore, there is a subsequence (¢;, )ken of (¢;) and an f in
L1(X, i, E) such that ¢;, — f p-a.e. as k — oo. The proof of (i) shows that there
exists an N > M such that || f — ¢, |1 < e/4, and we get

1f = fillh <N f = @inlli + l@in = finlli + 1 fjw = fil1 <& forj>N,

that is, (f;) converges in £1(X,p, E) to f. m

Elementary properties of integrals
We have seen that the integral on the space of simple functions is continuous,
linear, and, for £ = R, also monotone—see Remarks 2.2(g), 2.1(c) and 2.1(f).

We now show that these properties survive the extension of the integral from the
space of simple functions to that of integrable functions.

2.11 Theorem
(i) fX “dp: L1(X, p, E) — FE is linear and continuous, and

[ rauf < [ 1nau= 151

(ii) [y -dp: L1(X,p1,R) — R is a continuous, positive linear functional.

(iii) Suppose F' is a Banach space and T € L(E, F'). Then

Tfe Li(X,u, F) and T/deu:/Xdep

for f € L1(X,pu, E).
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Proof (i) Proposition 2.4 showed that p-integrable functions form a vector space.
Take f,g € £L1(X,u, E) and o € K. Then there are £;-Cauchy sequences (¢;)
and (¢;) in S(X, p, E) such that ¢; — f and ¢; — ¢g p-a.e. By Remark 2.1(c),

/(asﬁj‘f‘%‘)dﬂza/ cpjdp—i—/wjdu forjeN.
X X X

The linearity of the integral on £ (X, i, E) follows by taking the limit j — co. By
Corollary 2.9, ||-|1 is a seminorm on £1(X, i, E), and Remark 2.1(e) yields

[ st < [ Iosldn=loslh forjen.
X X

By Lemma 2.8, we can take the limit j — oo, and we find

[ rau] < [ 1n1an= s

Continuity now follows from Remark 2.2(f).

The approach just used can be adapted without difficulty to the task of
proving (ii) and (iii). This is left to the reader as an exercise. m

2.12 Corollary

(i) A map f = (f1,...,fn): X — K" is p-integrable if and only if its every
coordinate f; is. In that case,

/deuz(/xfldu,...,/xfndu).

(ii) Suppose g,h € R and define f := g+ ih. Then f is in L1(X, u,C) if and
only if g and h are in L£1(X, i, R). In that case,

/fd,u:/gd,u—i-i/hd,u.
X X X

(iii) A function f € RY is u-integrable if and only if f+ and f~ are. In that case,

/deuz/xﬁdu—/xf—du, /X|f|du=/xf+du+/xf‘du.

Proof (i) “=" Take f € £1(X, p, K"). Since pr; € L(K",K) for j =1,...,n, it
follows from Theorem 2.11(iii) that f; = pr; of belongs to £1(X, 1, K). Moreover
[ fidp=vpr; [ fdu,so

/deuz(/xfldu,...,/xfndu).
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“<" For j =1,...,n, we consider the map
b : K—=K", y~(0,...,0,9,0,...,0),

where y is in the j-th position on the right. Then

by € LK,K") and f:=> bjof;.

Jj=1

The claim now follows from Theorem 2.11(i) and (iii).
(ii) This follows from (i) and the identification of C with R?.
(iii) For f € R™, we have

fr=+mez, m=A1-n/2, f=rr=f. fl=f+f.
Hence Theorem 2.11(i) and Lemma 2.8 imply the conclusion. m

2.13 Lemma For f € £1(X,pu, E) and A € A, we have xaf € L1(X, u, E).

Proof Suppose (g;) is an £1-Cauchy sequence in S(X, p1, E)) that converges u-
a.e. to f. Then xay; is p-simple by Remark 1.2(d), and (xa¢;)jen obviously
converges p-a.e. to x4 f. By Remark 2.1(f), we have

/|XA<Pj_XASOk|dM:/XA|SOj_SOk|dM§/ lo; — ¢rldp for j,k e N .
X X X

Therefore (xa¢;)jen is an L£1-Cauchy sequence in S(X, u, ). This shows that
xaf is p-integrable. m

For f € £1(X,u, F) and A € A, we define the p-integral of f over A by

/Afdu::/Xfodu.

This is well defined by Lemma 2.13.

2.14 Remarks Suppose f € £1(X,u, F) and A € A.

(@) [ -du: L1(X, p, E) — E is linear and continuous, and

[ ran] < [ 11 =lxarin

(b) Suppose B:=A|Aand v:=p|B. Then [, fdu= [, f|Adv.

Proof The proof is simple and is left to the reader (Exercise 1). m
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(c) If E=R and f > 0, the map

A=l0.09), An [ fau
A
is a finite measure (see Exercise 11). m

2.15 Lemma Suppose f € L1(X,u, E) and g € EX satisfy f = g p-a.e. Then g
also belongs to L1(X, i, E), and [ fdp = [y gdp.

Proof Suppose (p;) is an £4-Cauchy sequence in S(X, u, E) such that ¢; — f
p-a.e. Alsolet M and N be p-null sets such that ¢; — f on M¢and f = gon N°
Then (¢;) converges p-a.e. to g, because ¢;(x) — g(x) holds for x € (M U N)°.
Therefore g belongs to £1(X, i, E), and [ gdp =lim; [¢;du= [ fdu. m

2.16 Corollary
(i) Suppose f € EX vanishes p-a.e. Then f is u-integrable with fX fdu=0.
(ii) Suppose f,g € L1(X,p,R) satisfy f < g p-a.e. Then [, fdu < [y gdp.
Proof (i) This follows immediately from Lemma 2.15.

(ii) Theorem 2.11(ii) and Lemma 2.15 imply 0 < [ (g — f) du, and therefore
Jx fdu< [y gdp. m

2.17 Proposition For f € £1(X, p, E) and o > 0, we have p([|f| > o]) < co.

Proof Lemma 2.5 shows there is an £;-Cauchy sequence (¢;) in S(X, 1, E) and
a p-measurable set A such that p(A) <1 and (¢;) converges uniformly on A° to
f. Because |f| is p-measurable, B := A°N[|f| > a] belongs to A. Also there is
an N € N such that |pn(2) — f(z)| < a/2 for © € A°. Therefore

lon ()] > |f(z)| = len(2) — f(x)] > /2 forzeB.

In particular, B is contained in [py # 0]. Thus u(B) < p([pn # 0]) < oo, because
pn is p-simple. Since

[Ifl =a]=BU(AN[|f[>a]) cBUA,

it follows that u([|f| > a]) < u(B)+1<oc. m

Convergence in £,

For every integrable function f, there is an £1-Cauchy sequence of simple functions
converging to it almost everywhere. We show next that every Cauchy sequence
in £1(X, pu, E) has in fact a subsequence that converges almost everywhere to the
sequence’s £y limit.
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2.18 Theorem Let (f;) be a sequence in £1(X, p, E') converging to f in L1(X, i, E).
(i) There is a subsequence (f;, )xen of (f;) with the following properties:
(@) fj. — f pae ask — oo.

(B) For every ¢ > 0, there is an A, € A with u(A.) < e such that (f;, )ren
converges uniformly on A¢ to f.

(ii) The integral [ f; du converges to [y fdp as j — oc.
Proof (i) It suffices to treat the case f = 0 because, if f # 0, we may consider
the sequence (f; — f)jen.

As in the proof of Lemma 2.5, there is a subsequence (gi) of (f;) such that
llge — gmll1 < 272 for m > £ > 0. The limit m — oo gives ||ge||; < 272¢ for £ € N.
We set By := [|g¢| > 27%]. By Lemma 2.8, Proposition 2.4, and Proposition 1.9,
By belongs to A, and we find

27 u(By) < /

Igeldué/ gl dpt = lgels <27 for £ N
By X

(compare Theorem 2.11(ii)). Therefore u(B,) < 27¢ for £ € N. With 4,, :=
Uiy Bk, we have p(A,) < 277! and we find that A := (", A, is a g-null
set. We verify easily that (gx) converges to 0 uniformly on A¢ and pointwise on
A° (in this connection see the proof of Lemma 2.5).

(ii) From Theorem 2.11(i) it follows that

[ gdn= [ < [ 15 Adu= 15 Sl forgen,
b'e X X

so the limit of the left-hand side as j — 00 is 0. m

2.19 Corollary For f € L1(X, p, E),

1fli =0 f=0 p-ace.

Proof “=" Because | f|l1 = 0, the sequence (f;) with f; := 0 for j € N converges
in £1(X, p, E) to f. By Theorem 2.18 there is thus a subsequence (fj, )ren of (f;)
such that f;, — f p-a.e. as k — oo. Therefore, f =0 p-a.e.

“«<” By assumption, | f| = 0 p-a.e.; the claim follows from Corollary 2.16(i). m

We conclude this section by illustrating its concepts and results in an espe-
cially simple situation.
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2.20 Example (the space of summable series) Let X denote either N or Z,
and let H° be its 0-dimensional Hausdorff measure, or counting measure. The
topology induced by R clearly transforms X into a o-compact metric space in
which every one-point set is open. Hence the topology of X coincides with B(X):
every subset of X is open. Consequently, every map of X is continuous in F, that
is, C(X,E) = EX.

It follows further that B(X) = P(X), and that H° is a massive Radon mea-
sure on X. Thus, by Theorem 1.17,

Lo(X,H°,E) = C(X,E) = EX
In addition, H° has no nonempty null sets. Hence HC-a.e. convergence is the same

as pointwise convergence.

For ¢ € EX | we define the support of ¢ as the set

supp(p) :={z € X ; p(x) #0},

and denote by C.(X, E) the space of continuous E-valued functions on X with
compact support:

Ce(X,E) :={p € C(X,E) ; supp(p) is compact } .

Clearly ¢ € C'(X, F) belongs to C..(X, E) if and only if supp(¢p) is a finite set. Also,
C.(X, E) is a vector subspace of C'(X, E), and we verify easily that C.(X,E) =
S(X,H° E).

For ¢ € C.(X), it follows from Remark 2.1(b) that

/ pdH’ = E () . (2.4)
b'e

z€supp(p)
‘We now set

OX,B)={feE*; Y xlf(x)|<oo}.
For f € (1(X,E) and n € N, let
| f(=) if |[2] <n
on(T) = { 0 if || >n .

Then ¢, belongs to C.(X, E), and ¢, — f for n — co. For m > n, we get from
(2.4) that

lon —@mlli= > If(@).

n<|z|<m

Therefore (p,,) is an £1-Cauchy sequence in S(X,H°, E), which shows that f
belongs to £1(X,H°, E). Therefore ¢,(X, E) C L1(X,H°, E), and

/deHO =Y flx) for feh(X,E). (2.5)

reX
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Now let f € £1(X,H° E). Then there exists an £1-Cauchy sequence (1;)
in S(X, u, E)—and therefore in C.(X, F)—that converges pointwise to f. By
Lemma 2.8, |f| belongs to £1(X,H", R), and

190 = [ 11 = i [ gl = lim 3 (o))
X )70 Jx J—00
reX
Hence there is a k € N such that
[ 1m0 = 3 @l <1 torg =k
X xeX
This implies
Z [V ()] Sl—l—/ |f|dH® =: K <00 forj>k.
rzeX X

Therefore for every m € N we have

Y W@ <K forj>k,

lz[<m

from which, because ¢; — f as j — oo, we obtain

Z [f(z)] <K formeN.

|z|<m

Now Theorem IL.7.7 implies that f belongs to ¢1(X, E) (and satisfies || f]|1 < K).
Therefore we have shown that

‘Cl(XaHO7E) :El(XaE) 5

whereupon we obtain from (2.5) the relation?

Il =D 1f()] .

zeX
Finally, it follows from Theorem 2.10 and Remark 2.2(a) that
0(X, E) = (6(X, E), || ]1h)
is a Banach space, the space of summable (E-valued) series.

If E =K, it is customary to write £1(Z) and ¢1(N) for ¢;(X,K), and the

abbreviation £; := £1(N) is also common.* m

3Note Theorem II.8.9.
4Compare Exercise 11.8.6.



X.2 Integrable functions 95

Exercises
1 Suppose A € A, B:=A|A, and v := u|B. Verify for f € EX that

xaf € L1(X,u,E) <= fl|Ae Li(A v, E) .

/XXAfdu:/AﬂAdu.

2 Suppose (f;) is a sequence in L1 (X, u, E) that converges uniformly to f € EX. Also
suppose (X)) < co. Show that f belongs to L£1(X,u, E), that f; — f in £1(X,u, E),
and that lim; [, f;dp = [, fdp.

3 Verify that, for f € £1(X,u, RT),

For such an f, show that

/ fdu:sup{/ pdu; e S(X,,R7), o< f u—a-e} :
X X

4 Suppose X is an arbitrary nonempty set, a € X, and §, is the Dirac measure with
support in a. Show that £1(X, 8., R) = R*, and calculate J fdda for R¥.

5 Let ur be the Lebesgue—Stieltjes measure of Exercise IX.4.10. Determine £1 (R, ur,K)
and calculate [ fdur for f € L1(R, pr,K).

6 Prove statements (ii) and (iii) of Theorem 2.11.
7 Suppose that f € Lo(X,p,E) is bounded p-a.e. and that pu(X) < oo. Prove or
disprove that f is p-integrable.

8 Suppose (f;) is an increasing sequence in L£1(X, 4, R) such that f; > 0, and suppose
it converges p-a.e. to f € L1(X,u,R). Then [, fjdu 1 [ fdp. (This is known as the
monotone convergence theorem in L:l).

(Hint: Show that (f;) is a Cauchy sequence in £1(X, 1, R), and identify its limit.)

9 Let (f;) be a sequence in £1(X, u,R) with f; >0 p-a.e. and 3372 f; € L1(X, u, R).
Show that Z;‘;Off]- dp = I(Z;‘;O fi) dp. (Hint: Exercise 8.)

10 Suppose that f € £1(X, u, R) satisfies f > 0 p-a.e. Show that fA fdu > 0 for every
A € A such that u(A) > 0.

11 Given f € £1(X, 4, R) with f > 0, define p(A) := [, fdu for A € A. Prove:

(a) (X, ¢y, A) is a finite measure space.

(b) Ny C N,

(¢) Nu =Ny, if f >0 pace.

In particular, show that (X, A, ¢y) is a complete finite measure space if f > 0 p-a.e.
(Hints: (a) Exercise 9.  (b) Exercise 10.)

12 Suppose f € L£1(X, u, R) satisfies f > 0 p-a.e. and take g € Lo(X, 4, R). Show that
g is ps-integrable if and only if gf is p-integrable. In this case, show that

/gdsOf:/ fgdu .
X X
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13 For f € £1(X, i, RT), prove the Chebyshev inequality:
1
w(lf > o) S—/ fdu fora>0.
a Jx

14 Suppose pu(X) < co and let I be a perfect interval in R. Also suppose ¢ € C*(I,R)
is convex. Prove Jensen’s inequality, which says that if f € £1(X, u, R) satisfies f(X) C I
and p o f € £1(X, 1, R),

w(]{(fd/i)S]éwOfdm where ]éfdu:ﬁ/xfdu.

(Hints: Show that a := f f dp lies in I, so the bound p(y) > ¢(a)+¢'(a)(y—«) applies).

15 Suppose f € L1(X,pu, E). Show that for every € > 0 there is a § > 0 such that
|[, fdu| <eforall A€ A with u(A) < 4. (Hint: Consider Theorem 2.10.)



3 Convergence theorems

Lebesgue integration theory stands out in contrast to the Riemann theory of Chap-
ter VI in that it contains very general and versatile criteria for the commutability
of limit taking and integration. Thus the Bochner-Lebesgue integral is better
suited to the needs of analysis than the (simpler) Riemann integral.

As usual, we suppose in the entire section that

e (X, A, ) is a complete o-finite measure space;
E = (E,|-|) is a Banach space.

Integration of nonnegative R-valued functions

In many applications of integration in mathematics, the natural sciences and other
fields, real-valued functions play a prominent role. As a rule, one is interested in
such cases in integrable functions, which is to say in finite integrals. However,
we have already mentioned that the theory gains substantially in simplicity and
elegance if it is made to encompass integrals over R-valued functions, ruling out in-
finite values neither for functions nor for integrals. As examples of results that gain
from such an inclusive treatment we mention the monotone convergence theorem
(Exercise 2.8 and Theorem 3.4) and the Fubini-Tonelli theorem on interchange-
ability of integrals (Theorem 6.11).

Because of the importance of the real-valued case, and because it offers useful
additional results that rely on the total ordering of R and R, we will now develop, to
complement the Bochner-Lebesgue integral, an integration theory for R-valued —
in particular, real-valued — functions.!

According to Theorem 1.12, there is for every f € Lo(X, s, RT) an increasing
sequence (f;) in S(X, 1, RT) that converges pointwise to f. It is natural to define
the integral of f as the limit in RT of the increasing sequence (fX fjdu)jen. This
makes sense if we can ensure that the limit does not depend on the choice of (f;).

3.1 Lemma Suppose ¢j,v € S(X,u,RT) for j € N. Also suppose (y;) is
increasing and v < lim; ¢;. Then

/wduﬁlim/ wjdp .
X J X

Proof Let Z;”:O a;jxa; be the normal form of ¢ and fix A > 1. For k € N, define
By, := [Apr > ¢]. Because (gy) is increasing and A > 1, we have By, C By for

IThe theory of R-valued functions is the centerpiece of practically all textbooks on integration
theory. It is in some ways simpler than the more general Bochner—Lebesgue theory, and suffices
if one is only interested in real- and complex-valued functions, but it is inadequate for the needs
of modern higher analysis, which is why we opted for a more general approach.
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k € N and {J,cy Bx = X. The continuity of measures from below then implies

/)<de = jz:%ozju(Aj) = h}gnjz:(:) a;iu(A; N By) = h}gn/X xB, dp

By the definition of By, we have Apr > ¥x B, , and we obtain

[ ovdn =t [ v, < Nim [ odn.
X k Jx k Jx

Taking the limit A | 1 now finishes the proof. m

3.2 Corollary  Suppose (p;) and (i;) are increasing sequences in S(X, u, RY)
such that lim; ¢; = lim;+;. Then

lim/ gojduzlim/ Y dp inRY .
J X J X
Proof By assumption, ¥ <lim;¢; = lim; ¢; for £ € N. By Lemma 3.1, we get

/wkdpglim/ pjdp for ke N,
b'e I Jx

and, as k — o0,

lim/ wkdughm/ wjdp .
ko Jx i Jx

Interchanging (¢;) and (¢;), we obtain the opposite inequality, and hence the
desired equality. m

Suppose (¢;) is an increasing sequence in S(X, , R™) that converges point-
wise to f € Lo(X, p, RT). We call

/ fdu:=1im/ ©; dp
X J X

the (Lebesgue) integral of f over X with respect to the measure pu. For A € A,

/Afdu :=/X><Afdu

is the (Lebesgue) integral of f over the measurable set A.

3.3 Remarks (a) [, fdu is well defined for all f € Lo(X, w,RY) and A € A.
Proof This follows from Theorem 1.12 and Corollary 3.2. m

(b) For f,g € Lo(X,p, RT) such that f < g p-a.e., we have [, fdu < [, gdp.
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(c) For f € Lo(X, pu, RT), these statements are equivalent:
(i) [y fdu=0.
(ii) [f > 0] is a p-null set.
(i) f =0 p-ae.
Proof “(i)=-(ii)” We set A:=[f > 0] and A; := [f > 1/j] for j € N*. Then (A;) is an
increasing sequence in A such that A = Uj Aj. Also xa; < jf. It follows that

OS/A(AJ'):/XAJdqu/ fdup=0 forjeN*,
X X

and continuity from below implies p(A) = lim; p(A;) = 0.

“(ii)=>(iii)” is clear.

“(iii)=>(i)” Let N be a p-null set with f(x) =0 for 2 € N°. Then® fxnye =0 and
fxn < coxn. Together with the definition of the integral (see also (d) below), this yields

OS/deu:/XfXNdqu/XfXNuduSoou(N):0- m

(d) Suppose f,g € Lo(X,pu, RT) and a € [0, 00]. Then

/X(af+g)du:a/xfdu+/xgdp.

Proof We consider the case a = oo and g = 0. Letting p; := jx[f>q) for j € N, we have

fi T oof, and hence
(0 if u([f>0])=0,
A(OOf)d/,L—{ 00 if p([f>0])>0.

From (c), it now follows that [, (cof)du = oo [ fdp. The remaining statements follow
easily from the definition of the integral and are left as exercises. m

(e) (i) Suppose f € Lo(X, p,RT) has a finite Lebesgue integral [ fdu. Then f
belongs to £1(X, i, RT) and the Lebesgue integral of f over X coincides with the
Bochner—Lebesgue integral.

(ii) For f € £1(X,u, RT), the Lebesgue integral fX fdu is finite and agrees
with the Bochner—Lebesgue integral.
Proof (i) Theorem 1.12 guarantees the existence of a sequence (p;) in S(X,u, RT)

such that ¢; T f. By assumption, there exists for every ¢ > 0 an N € N such that
Jx fdp— [ @jdp <efor j > N. For k> j > N, the finiteness of [ fdu now gives

/X|<pk—%Idu=/x(<pk—w)dué/X(f—<pj)du=/xfdu—/xwdu<s.

Therefore (¢;) is an £1-Cauchy sequence in S(X,p, RT). This shows that f belongs to
L£1(X, i, RT). The second statement is a consequence of Exercise 2.8.

(ii) This follows from Theorem 1.12 and Exercise 2.8. m

2We recall Convention (2.1).
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(f) For every f € Lo(X, u, RT), we have

/ fdu:sup{/ wdu; ¢ € S(X,u, RT) with o < f ,u—a.e.}. [
X X

The monotone convergence theorem

We now prove a significant strengthening of the monotone convergence theorem
stated in Exercise 2.8 for functions in £ (X, y1,R). We will see that for increasing
sequences in Lo(X, u, RT), Lebesgue integration commutes with taking the limit.

3.4 Theorem (monotone convergence) Suppose (f;) is an increasing sequence
in Lo(X, pu,R+). Then

/limfjd,uzlim/ fiduy inRT .
x J i Jx

Proof (i) Set f :=lim; f;. By Proposition 1.11, f belongs to Lo(X, y, RT), and
f; < f for j € N. By Remark 3.3(b), then, we have [ f;du < [ fdu for j € N,
and hence lim; [ f; du < [ fdp.

(ii) Suppose ¢ € S(X, u, RT) with ¢ < f. Take A > 1 and set A; := [\f; > ¢]
for j € N. Then (4;) is an increasing sequence in A with (J; A; = X and
Afj = ¢xa;. Moreover, pxa; T ¢, so

/@duzﬁm/ sOXA7duSMim/ fidp
X 7 Jx ’ 7 Jx

Taking the limit A | 1 we get [, pdp < lim; [, f; du for every p-simple function ¢
with ¢ < f. By Remark 3.3(f), it follows that [, fdu <lim; [, f; du, and we are
done. m

3.5 Corollary Suppose (f;) is a sequence in Lo(X, u, R*). Then

/fjdp / ij)dp in RT .

Proof This follows from Corollary 1.13(iii) and Theorem 3.4. m

3.6 Remarks (a) The conclusion of Theorem 3.4 can fail if the sequence is not
increasing.

Proof Take f; := (1/§)X[o,5 for j € N*. Then (f;) is a (nonincreasing) sequence in
S(R, A1, R") that converges uniformly to 0. But the sequence [ f;5 dX\1 does not converge
to 0, because [ fjdiA1 =1for j e N*. m
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(b) Suppose a; i, € RT for j,k € N. Then

7=0 k=0 =0 j=0

Proof We set (X,u) := (N,H°) and define f; : X — R* by f;(k) := ajx for j,k € N.
Then (f;) is a sequence in Lo(X,H°, RT) (see Example 2.20), and the claim follows from
Corollary 3.5. m

For nonnegative double series, this result is stronger than Theorem I1.8.10,
because it is no longer assumed that 3_; ajx is summable.

Fatou’s lemma

We now prove a generalization of the monotone convergence theorem for arbitrary

(not necessarily increasing) sequences in Lo(X, u, RT).

3.7 Theorem (Fatou’s lemma) For every sequence (f;) in Lo(X, u, R"), we have

/(h_mfj)dusn_m/ frdu in R

Proof Set g; := infy>; fi. By Proposition 1.11, g; belongs to Lo(X, u, R"), and
the increasing sequence (g;) converges to lim; f;. From Theorem 3.4 we then get
lim; [ g;dp = [(lim; f;) dp. Also g; < fr, and therefore [g;dp < [ fidp for
k > j. It follows that [g;du < infy>; [ frdp, and taking the limit j — oo
finishes the proof. m

3.8 Corollary Suppose (f;) is a sequence in Lo(X,u, RY) and g € Lo(X, u, RT)
satisfies fX gdp < oo with f; < g p-a.e. for j € N. Then?

T [ fraus [ (W) dn mE".
J X X J

Proof Suppose N is a p-null set such that fj(z) < g(z) for £ € N® and j € N.
Then f; < g+ ocoxny on X, and [y (9 + coxn)dp = [y gdu (see Remarks 3.3(c)
and (d)). Therefore we can assume without losing generality that f; < g for j € N.
We set g; := g — f; and obtain from Fatou’s lemma that

/(mgj)du:/ gdu—/ (Efj)duém/ gjdu:/ gdu—ﬁ/ fidp.
X X X7 J X X J X

The claim now follows because fX gdu <oo.m

3The assumption / x 9dp < oo cannot be relaxed (see Exercise 1).
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As a first application, we prove a fundamental characterization of integrable
functions.

3.9 Theorem For f € Lo(X, i, E), the following are equivalent:

(i) feLo(X,p E);

(i) |fl € L1(X, pu, R);

(iil) [y [fldp < oc.
If these conditions are satisfied, then |fX fdu| < |Ifllh < o0.
Proof “(i)=-(ii)” follows from Lemma 2.8, and “(ii)=-(iii)” is clear. “(iii)=-(ii)”
was proved in Remark 3.3(e).

“(ii)=>(i)” Suppose (¢;) is a sequence in S(X, u, E') converging to f p-a.e. Set

Aj = [l <2[f|] and f; := p;xa, for j € N. Theorem 1.7 and Proposition 1.9
show that A; belongs to A. Thus (f;) is a sequence in S(X, i, E).

Take N € A such that u(N) = 0 and ¢,(z) — f(z) for z € N°. If f(x) #0
for some x € N°¢, there exists k := k(z) € N such that |¢;(z) — f(z)| < 3|f(z)]
for j > k. Therefore 2 € N°N[|f| > 0] belongs to A; for j > k(x). This implies
fi(x) = ¢;(x) for j > k(x), and therefore f;(z) — f(x) for x € N°n[|f| > 0].
If f(x) = 0 for some z € N, then likewise f;(z) — f(x) for j — oco. Because
x belongs to Ay for some k € N, we find fi(z) = ¢r(z) = 0 because |p(z)] <
2|f(x)] = 0. For x ¢ Ay, we likewise have fi(z) = x4, ()¢x(x) = 0. This implies
|f — fi]l = 0 p-a.e. Now clearly |f — f;| < 3|f] for j € N, so Corollary 3.8 implies

fi [ 17— fldu< [ Tanls = ldu=o0.
J X X J

Therefore we can find for every e > 0 an m € N such that [ |f — f;|du < /2 for
j > m. It follows that, for j, k € N with j, k > m,

||fj—fk||1Z/X|fj—fk|duﬁ/x|fj—f|du+/X|f—fk|du<s.

Hence (f;) is an £;-Cauchy sequence in S(X, p1, E), and f is p-integrable.

The last statement follows from Theorem 2.11(i). m

3.10 Conclusions (a) Let f € Lo(X, pu, E), and suppose there is a sequence (f;)
in £1(X, p, ) such that f; — f p-a.e. and lim; [|f;|l1 < oo. Then f belongs to
L1(X,p, E), and [|f|l1 < Lm; || f5]]1-

Proof By Lemma 2.15, we can assume that (f;) converges to f on all of X. Using
Fatou’s lemma, we obtain

[ 1s1du= [ timiflde <tim [ 15l du <o
X X J J X

and the claim follows by Theorem 3.9. m
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(b) Let (f;) be a sequence in L1 (X, u, R"). Suppose there is an f € £1(X, 1, R)
such that

f;j = f pae.  and /ijdu—>/deu (j — 00) .

Then? (f;) converges in £1(X, 1, R) to f.

Proof We can assume here too that (f;) converges to f on all of X. Then f > 0 and
|fi — fl < f; + f. From Theorem 3.7, it follows that

Q/deu=/xliTm(fj+f—Ifj—fl)duéliTm/X(fjJrf—lfj—fl)du

2 [ sdu-Tm [ 1f; - fldn.
X 7 Jx
According to Theorem 3.9, [, fdu is finite, and we find lim; [, |f; — f|dp=0.m

Integration of R-valued functions

The decomposition of an R-valued function into its positive and negative parts
allows us also to extend the Lebesgue integral to measurable R-valued functions

admitting negative values. We say that f € Lo(X, u,R) is Lebesgue integrable
with respect to p if [, f*du < oo and [y f~ du < oo. In this case,

/deuzz/xfwu—/xf—du

is called the (Lebesgue) integral over X with respect to the measure p.

3.11 Remarks (a) For f € Lo(X, 1, R), these three statements are equivalent:
(i) f is Lebesgue integrable with respect to .
(i) Jx Ifldp < oo;
(i) There exists g € £1(X, u, R) such that |f| < g p-a.e.
Proof “(i)=-(ii)” This is a consequence of |f| = fT+ f~.
“(ii)=>(iii)” Theorem 3.9 says that | f| € £1(X, u, R). Hence (iii) holds with g = |f|.
“(ili)=>(i)” This follows from f*V f~ < |f| < g and Remark 3.3(b). m

(b) Suppose f € Lo(X,u,R). Then f is Lebesgue integrable with respect to u
if and only if f is p-integrable. In that case, the Lebesgue integral of f over X
equals the Bochner—Lebesgue integral. In other words, if we consider real-valued
maps, the definition of Lebesgue integrability of R-valued functions is consistent
with the definition from Section 2.

Proof This follows from (a), Theorem 3.9, and Remark 3.3(e). m

4Compare the statement of Theorem 2.18.
5See also Corollary 2.12(iii).
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(c¢) If f € Lo(X,u,R) is Lebesgue integrable with respect to p, then [|f]| = oo is
a p-null set.

Proof The assumption implies that A := [|f| = oo] is p-measurable and also that
Jx |fldp < co. Further we have coxa < |f], and we find by Remarks 3.3(b) and (d) that

sop(A) = /X (coxa) dp < /X fldp < oo

Therefore p(A) =0. m

Lebesgue’s dominated convergence theorem

We now prove an extremely versatile and practical theorem about exchanging
limits and integrals, proved by Henri Lebesgue. It is one of the cornerstones of
Lebesgue integration theory and has countless applications.

3.12 Theorem (dominated convergence®) Let (f;) be a sequence in £1(X, p, E)
and suppose that there exists g € £1(X, u,R) such that

(a) |fil < g p-ae for j € N.
Suppose also that, for some f € EX,

(b) fi — f p-a.e. for j — oo.

Then f is p-integrable, f; — f in £1(X,p, E), and / fidp— / fdu in E.
b's p's

Proof Define
g5 = sup [fx — fil
k. 0>j
for j € N. By Proposition 1.11, (g;) is a sequence in Lo(X, u, R*) that converges

p-a.e. to 0. Also |fi — fe| < 2g p-ae. for k,¢ € N, and hence |g;| < 2¢g p-a.e. for
j € N. From Corollary 3.8 it follows that

0<m [ gdu< [ Tomgdu—0.
J X X J

Therefore ( / < 9 dp)j eN is a (decreasing) null sequence. This means that for every
€ > 0 there exists IV € N such that

[ = siddns [ s l-ildn<e orkezjzN.
X X k£>j

Hence (f;) is a Cauchy sequence in £1(X, i, E), and the claim follows from the
completeness of £1(X, u, E) and Theorem 2.18. m

6 Also referred to as ”Lebesgue’s theorem”.
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3.13 Remark The example in Remark 3.6(a) shows that the existence of an
integrable dominating function g is essential for Theorem 3.12. m

As a first application of the dominated convergence theorem, we prove a
simple criterion for the integrability of a measurable function.

3.14 Theorem (integrability criterion) Suppose f € Lo(X,pu, E) and g€ L1(X, 1, R)
satisty |f| < g p-a.e. Then f belongs to L1(X, i, E).

Proof Let (p;) be a sequence in S(X, p1, E) such that ¢; — f p-a.e. as j — oo.
Set A; := [|gj| < 2¢g] and f; := xa,p; for j € N. Then (f;) is a sequence in
S(X, u, E) that converges p-a.e. to f (see the proof of Theorem 3.9). Because
|f;j] <2g for j € N, the claim follows from the dominated convergence theorem. m

3.15 Corollary

(i) Take f € L1(X, 1, E), g € Lo(X, 1, K), and o € [0,00) with |g| < o p-a.e.
Then gf is p-integrable, and

[ aan| <alr, -

(ii) Take f € Lo(X,p, E) and o € [0,00). If |f| < o p-a.e. and u(X) < oo, then
f is p-integrable with

‘/de“‘ <|Nflh < ap(X) .

(ili) Let X be a o-compact metric space and p a complete Radon measure on X.
Suppose that f € C(X,E) and that K C X is compact. Then xk f belongs
to L1(X,pu, E), and

‘/K fdﬂ‘ < xw flloo (K -

Proof (i) By Remark 1.2(d), ¢gf is p-measurable. Also |gf| < a|f| p-a.e., and
a|f| is p-integrable. Hence Theorem 3.14 shows that gf is p-integrable; Theo-
rem 2.11(i) and Corollary 2.16(ii) imply

‘/ngd“‘S/X|9f|d/$§/xa|f|du:a||f||1 .

(ii) Since p(X) is finite, xx belongs to £1(X, i, R). By Theorem 1.7(i), | f|
is p-measurable. Therefore (i) shows (with g := |f] and f := xx) that |f]| is
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p-integrable and that

/X Fldp < o flxxl, = ap(X) < oo .

The claim now follows from Theorem 3.9.

(iil) According to Theorem 1.17, f is y-measurable. Moreover x g is u-simple,
because p(K) is finite by Remark IX.5.3(a). Therefore xx f is u-measurable, and
the claim follows from (ii) with « := max,cx |f(z)].

When dealing with a function not defined on all of X, it is occasionally useful
in the theory of integration to extend its definition by setting it equal to 0 where
it is not already defined. Measurability and integrability questions can then be
explored with respect to the measure space (X, .4, ). To that end, we set forth
the following conventions.

For f: dom(f) C X — E, define the trivial extension feEX of ftoX by

= { f(z) if x € dom(f) ,
' 0 if x ¢ dom(f) .

We say that f is p-measurable or p-integrable if f belongs to Lo(X, u, E) or
L1(X, p, E), respectively. If f is p-integrable, we set [ fdu:= [ fdp.

3.16 Theorem (termwise integration of series) Suppose (f;) is a sequence in
L1(X, p, E) such that 3722 [ |fjldp < oo. Then 3, f; converges absolutely
[-a.e., Zj f; is p-integrable, and

/(ij i = /fjdu

Proof (i) By Theorem 1.7(i) and Corollary 1.13(iii), the R-valued function g :=
Z;‘;o |fj] is p-measurable. Corollary 3.5 implies

gdu = /f-d < 00 .
/X 1 ;}XIJIM

It therefore follows from Remarks 3.11(a) and (c) that [g = oo] is a p-null set,
which proves the absolute convergence of Z . f; for almost every x € X.

(ii) Set gy, := Zj o fjand f(x) := Zj o filx) forz € lg < oo]. The sequence
(gr) converges pi-a.e. to f and we have the bounds |gx| < Z _olfil < g. By the
dominated convergence theorem, f belongs to £1(X, i, E) and

;/ijd/ﬁ:kli_,njo/xgkduz/Xkli_%ogdeZA(jz:(:)fj)du. n
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Parametrized integrals

As another application of the dominated convergence theorem, we investigate the
continuity and differentiability of parametrized integrals.

3.17 Theorem (continuity of parametrized integrals) Suppose M is a metric space
and f: X x M — F satisfies

(a) f(-,m) e Ly(X,p, E) for every m € M;

(b) f(z,-) € C(M,E) for y-almost every x € X;

(c) there exists g € L1(X, u, E) such that |f(x,m)| < g(x) for (z,m) € X x M.
Then

F:M—FE, m»—>/ flxz,m) p(dx)
X
is well defined and continuous.

Proof The first statement follows immediately from (a). Suppose m € M, and
let (m;) be a sequence in M converging to m. We set f; := f(-,m;) for j € N.
From (b), it follows that f; — f p-a.e. Therefore by (a) and (c), we can apply
the dominated convergence theorem to the sequence (f;), and we find

J—00

tim Fmy) = lin [ frau= [ Y fydu= [ fo.m)utdz) = Fm)
J—ooo Jx x J—oo X
The claim now follows from Theorem I11.1.4. m

3.18 Theorem (differentiability of parametrized integrals) Suppose U is open
in R, or U C K is perfect and convex, and suppose f: X x U — E satisfies

(a’) f( : 7y) € 'Cl(Xa,u'vE) for every y € U;
(b) f(z,-) € CYU, E) for u-almost every x € X;
(c) there exists g € L1(X, 1, R) such that

‘aiy]f(x,y)‘ <g(z) for (z,y) e X xU and1<j<n.

Then
FiU—E, g [ foy)nt)
X

is continuously differentiable and

@F(y)z/xaiyjf(a:,y)u(dx) foryeUand1<j<n.
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Proof Takey e U and j € {1,...,n}. Let (hg) be a null sequence in K such that
hi # 0 and y + hpe; € U for k € N. Finally, set

The mean value theorem (Theorem VIIL.3.9) then gives

forre Xand ke N,

0
| f(@)| < 225\@““)\ <g(x) pae.

Because (fx) converges p-a.e. to 9f( - ,y)/&‘yj, it follows from Theorem 3.12 that

ti EW A+ hwey) — Fy)
k—o00 hy

0
= 1. = e .
Jm [ Jedp= | 55 f@y) pde)

Therefore F is partially differentiable, and 9;F (y) = [ (9/0y?) f(x,y) p(dx). The
result now follows from Theorems 3.17 and VII.2.10. =

3.19 Corollary Suppose U is open in C, and f: X x U — C satisfies

(a) f(-,2) € L1(X,u,C) for every z € U;

(b) f(z,-) € C¥(U,C) for p-almost every x € X;

(c) thereis a g € L1(X,pu,R) such that |f(x,z)| < g(z) for (x,2) € X x U.
Then

F:U—-C, z»—>/ f(z, z) u(dx)
X
is holomorphic, and
FOG) = [ o £z () (31)
X 82”
for every n € N.

Proof Take zp € U and r > 0 such that D(z,7) C U. Cauchy’s derivative
formula (Corollary VIIL.5.12) gives

9 1 f(=,0)
— = — d¢  for p-almost X and D
azf(x, 2) 57 /OD(Z’T) c=2)2 ¢ for p-almost every x € X and z € D(z,7r) ,

and we find from (c) and Proposition VIII.4.3(iv) that
g(x)

d
‘af(x, z)‘ < = for p-almost every x € X and z € D(zo, ) .

Theorem 3.18 now shows that F'|D(zg,7) belongs to C* (D(zo,7),C) and satisfies

0z

Holomorphy is a local property, so Theorem VIII.5.11 implies that F' belongs to
C¥(U,C). The validity of (3.1) now follows from a simple induction argument. m

F'(z) = /X 2f(at:,z) p(dz) for z € D(zp,7) .
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Exercises

1 Find a measure space (X, A, 1), a sequence (f;) in Lo(X, u, R"), and a function g in
Lo(X, 11, RT) such that

fi<gfor jeN and E/ fjd,u>/ (mfj)dll.
J b'e b'e J
2 Suppose f € L1(X,pu, F) and € > 0. Show that there exists A € A such that

((A) < 0o and ]/deu—/deu‘@

for every B € A with B D A.

3 Suppose (f;) is a sequence in L1(X, u, E) converging in measure to f € Lo(X, u, E).
Also suppose there is g € L£1(X, u,R) such that |f;| < g p-a.e. for all j € N. Then f
belongs to L£1(X, u, F),

£ fin X B), ad [ g [ fdpme.
X X

(Hint: If (fx fi dp) does not converge to Jx [ du, there is a subsequence (fj, )ren and a
6 > 0 such that
Ifse = flli 26 forkeN. (3.2)

Use Exercise 1.15 and Theorem 3.12 to derive a contradiction from (3.2).

4 Let f,g € Lo(X, u,R) be Lebesgue integrable functions. Prove:
(i) If f < g p-ae., then [, fdu < [, gdp.

G | [ rau| < [ 1n1an.

(iii) f A g and fV g are Lebesgue integrable, and

—/X(Ifl+Ig|)dué/X(f/\g)duS/X(f\/g)dué/X(IfIJrlgl)du.

5 Suppose the sequence (f;) in Lo(X, i1, RT) converges in measure to f € Lo(X, 1, RT).

Prove that
[ pauw<im [ grau.
X Jj JX
6 For z € R"\{0}, define
z " ifn=1,
kn(z) := 1< log|z| ifn=2,

|z~ ifn>3.

Further suppose U C R" is open and nonempty, that A € L(n) satisfies A C U®, and
that f € C.(R™).
(a) The map A - R, z— f(x)kn(Jy — z|) is An-integrable for every y € U.
(b) The map U - R, y+— fA F(@)kn(ly — z|) An(dzx) is smooth and harmonic.
7 Verify that

(i) L1(R™, \n, E)N BC(R™, E) € Co(R™, E);

(ii) £1(R", \n, E) N BUC(R", E) C Co(R", E).



4 Lebesgue spaces

We saw in Corollary VI.7.4 that the space of continuous K-valued functions over a
compact interval I is not complete with respect to the Lo norm. The framework of
Lebesgue integration theory now gives us the means to complete the inner product
space (C(I,K),(-|-)2): we will construct a vector space Ly and an extension of
(+]+)2 onto Ly x Ly —also denoted by (- |- )2 —such that (La, (-|-)2) is a Hilbert
space containing C'(I,K) as a dense subspace.

This construction can be generalized in a natural way, leading to a new family
of Banach spaces, the Lebesgue L,-spaces. These are of great importance in many
areas of mathematics.

In the following, we suppose that

e (X, A, pn) is a complete o-finite measure space;
E = (E,|-|) is a Banach space.

Essentially bounded functions

We say that a function f € Lo(X,u, E) is p-essentially bounded if there exists
o > 0 such that u([|f| > a]) = 0. The p-essential supremum of f is then'

|flloc := esssup|f(x)| :=inf{ @ > 0; u([If| > o) =0} .

4.1 Remarks (a) Let f € Lo(X, p, E). There is equivalence between:

(i) f is p-essentially bounded;

(i) [1flloo < o003

(iii) f is bounded p-a.e.
Proof “(i)=-(ii)=-(iii)” is clear.

“(iii)=-(1)” Suppose N is a p-null set and take a > 0 such that |f(z)| < « for

@ € N° Then [|f| > o] C N, and the completeness of 1 implies that p([|f] > o]) =0. m
(b) Suppose f € Lo(X, p, E). Then |f| < || fllco p-a-e.
Proof The case ||f|lco = 00 is clear. If || f|joc < 00, then [|f] > ||f]loo +277] is a p-null
set for every j € N, and hence so is the set [|f| > [|flloc] = U en[If] > | flloc +277]. m

(c) Suppose f and g are p-essentially bounded and a € K. Then af + g is also
p-essentially bounded, and

lleef + glloo <l | Fllo + [lglloo -

INote that now ||-|jcc has two meanings, namely, the essential supremum of a measurable
function and the supremum norm of a bounded function. The two values need not be the same;
see (d) and (e) in Remark 4.1. When necessary we denote the supremum norm by ||| g(x, g)-
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Proof By (a) and (b), there exist p-null sets M and N such that |f(z)| < ||f]|e for
x € M° and |g(x)| < ||g]|loc for z € N€. Therefore

laf (@) + g(@)| <ol | fll + lgllee for z € (MUN)*=M"NN®.
Hence af + g is p-essentially bounded and |laf + gllco < || [[f]l o + 19]loo- ®

(d) Suppose f € Lo(X, p, E) is bounded. Then ||f|lc < || f|lB(x,r) (supremum
norm). If N is a nonempty p-null set, then [[xn |l =0 and ||xn|lBx,5) = 1.

(e) Suppose X is o-compact metric space and p is a massive Radon measure on
X. Then

Ifllee = lIfllBx.5) for f € BO(X,E) .

Proof By Theorem 1.17, any f € BC(X, E) is p-measurable, and by (d) we just have
to show that || f||zx,m) < ||f|loc. Assume otherwise. Then there exists 2 € X such that

[fllee <|f(@)| < IfllBCX,EB) >
and in view of the continuity of f there is an open neighborhood O of x in X such that
Ifllse < |f(y)] for y € O. From (b) it follows that 1(O) = 0, contradicting the assumption
that p is massive. m
The Holder and Minkowski inequalities

Suppose f € Lo(X, u, E). For p € (0,00), we set

1= ([ 1)

with the convention that co/? := co. We define the Lebesgue space over X with
respect to the measure p as®

Lo( X, E):={feLo(X,u,E); |fllp<oo} forpe (0,00].

For p € [1, 00|, we define the dual exponent to p as

o0 ifp=1,
pli=4q p/lp—1) ifpe(l,o00),
1 ifp=o0c.

With this assignment, we obviously have
1 1
—+—=1 forpell,oo.
p p

We are now in a position to state and prove two important inequalities.

2Theorem 3.9 shows that the notation Lp(X, p, E) is consistent in the case p = 1 with that
of Section 2. In the following, we concentrate on the Lebesgue spaces £, with p € [1,00]. The
case p € (0,1) will be treated in Exercise 13.
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4.2 Theorem Suppose p € [1,0].
(i) For f € Lp(X, 1, K) and g € L, (X, p,K), we have fg € £1(X, 1,K), and

| /X Fodu| < /X Foldu < ISl llgl,  (Holders® inequality).

(ii) Suppose f,g € L,(X,u, E). Then f+g € L,(X, u, E), and
If+gllp < IIfllp + llgllp (Minkowski’s inequality).
Proof (i) We consider first the case p = 1. By Remark 4.1(b), there is a p-null

set N such that |g(x)| < ||g]|ec for z € N It then follows from Remarks 1.2(d)
and 3.3(b) and Lemma 2.15 that

/ Ifgldu§||9||oo/ Fldu = 1fl gl < o -
NC NC

Hence Remark 3.11(a), Theorem 3.9 and Lemma 2.15 result in fg being integrable,
and Theorem 2.11(i) implies

\/X fadn < /X |fgldp= /N faldn < [1fl gl -

Suppose now p € (1,00). If

f=0pae or g=0pae, (4.1)
then fg also vanishes p-a.e., and the claim follows from Corollary 2.16. On the
other hand, if (4.1) does not apply, Corollary 2.19 gives || f|l, > 0 and ||g||,» > 0.

We then set € := |f|/|fllp, 7 := l9]/llgll,r, and obtain from Young’s inequality
(Theorem IV.2.15) that

1P 1 gl
pIfIE P gl

|fg]
I £1lp [lgll,

IN

It follows that

1 17 ]_ 17 ! /7
[ Vtsldu < 1A ol [ AP die 251 ol [ o di
X b X p X
=11y llgll,
and we conclude using Theorem 3.9 that fg belongs to £1(X, u, E). Therefore

[ tadu| < Usal <51l

The case p = oo is treated analogously to the case p = 1.

3For p = 2, this is the Cauchy-Schwarz inequality.
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(ii) Because of Corollary 2.9 and Remark 4.1(c), it suffices to consider the case
p € (1,00). In addition, we can assume without loss of generality that || f+g||, > 0.
We will first prove that f + ¢ belongs to £,(X, i, E). Noting the inequality

la+ b7 < (2(la] v [b]))? < 2°(lal? + |bP) for a,be E (4.2)

we obtain

/|f+9|pduﬁ2p(/ |f|pdu+/|g|pdu)<oo
X X X

because f,g € L,(X, 1, E). Therefore || f + g||, < 0o. Due to the equivalence
[f+ 9P € Ly(X, 1, R) <= |f +g| € L,(X, 1, R) |
it follows from Holder’s inequality that
[T gl < 1+ 9

for h € L,(X, u, E), and we find

o = Bl 1f +gl2”

/|f+9|”dué/ |f||f+9|p’1du+/ gl [f + g[P~ " dp
X X X

< (£l + llglly) I + gl2/” .

The claim follows, because ||f + g/, < oc and p/p’=p—1.m

(4.3)

4.3 Corollary Suppose p € [1,00]. Then L,(X,u, E) is a vector subspace of
Lo(X, 1, E), and |- ||, is a seminorm on L,(X, u, E).

4.4 Remarks (a) Set NV := {f € Lo(X,u, E); f=0 p-ae. } For f € Lo(X, p, E)
the following statements are equivalent:
() 1]l = 0 for all p € [1, oc].
(ii) ||fll, = 0 for some p € [1, o0].
(iii) feN.
Proof “(i)=-(ii)” is trivial. “(ii)=-(iii)” follows from Corollary 2.19 and Remark 4.1(b).
“(iii)=-(i)” For p € [1,00), use Lemma 2.15. The case p = oo is clear. m
(b) N is a vector subspace of £,(X, u, E) for every p € [1,00] U {0}.
Proof The case p = 0 is clear; in particular, N is a vector space. For p € [1, 00], the
claim then follows from (a), “(iii)=-(i)”. m
(c¢) For p € [1,00], we have these inclusions of vector subspaces:

S(X, 1, E) C Lp(X, 1, E) C Lo(X, 1, E) .

Proof It is clear that every p-simple function is p-essentially bounded. Take p € [1, c0)
and let ¢ € S(X, u, E) have normal form " e;xa;. Then |o" < 37T lej|” xa,, so
ll¢llp < co. The claim follows by Remark 1.2(a) and Corollary 4.3. m
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Lebesgue spaces are complete

We now generalize Theorem 2.10(ii), proving that all Lebesgue spaces £, (X, i, E)
with p € [1, oo] are complete. For p € (1, 00), this depends on the following lemma.

4.5 Lemma Suppose V is a vector space and q is a seminorm on V. The following
statements are equivalent:

(i) (V,q) is complete.
(ii) For every sequence (v;) € VN such that Z;io q(vj) < oo, the series }_; v;
converges in V.

Proof “(i)=>(ii)” Suppose (v;) € VN and Z;‘;o q(v;) < oo. For every € > 0 there

exists K € N such that 337, q(v;) < e for £ > K (see Exercise I1.7.4). We set
k

wy =Y ;_ovj for k € N and get

q(wm—wg):q(z vj)g Z q(v;) < Z q(vj) <e form>{¢>K .

j=0+1 j=t+1 j=t+1
Therefore (wy) is a Cauchy sequence in V', and so converges to some v € V' by the
completeness of V. Hence the series ; Uj converges.

“(ii)=-(i)” Let (v,) be a Cauchy sequence in V. For k € N, take ji € N such
that g(vj,,, —vj,) < 2-*+D_ Setting wy, := vj,,, —vj,, we have " p  q(wy) < 1,
and we can find by assumption a v € V such that q(v — Zi:o wk) — 0as/{ — oco.
Let € > 0 and L € N be such that ¢(v — Zi:o wy) < /2 for £ > L. Because (v;)
is a Cauchy sequence in V, there exists K > L such that q(vj,,, —vx) < /2 for
k,¢ > K. Finally setting v := v + v;,, we have for k > K that

q(ij - Uk) = q(v + V5, — Vi1 + Vjgi1 — Uk)
K
< Q(v - Zwk) + q(UjK+1 - vk) <e.
k=0

This shows that (vj) converges to U. m

4.6 Theorem For p € [1,00], L,(X, p, E) is complete.

Proof (i) Consider first the case p € (1,00). Let (f;) be a sequence in £,(X, p, E)
such that Z;io Il fillp < co. Set g := Z?:o |f;] for k € Nand g := >, |f;|- By

Corollary 1.13(iii), g belongs to Lo(X, u, R*), and we have |gi|[P — |g|P. Because

k [eS)
lgrlly < D1 filly < D Mfillp < oo,

Jj=0 Jj=0

Conclusion 3.10(a) tells us that g € £,(X, 4, R). By Remark 3.11(c), then, there
is a g-null set N such that g(x) < oo for € N¢. Therefore f(z) := > 22, f;(z) is
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well defined for every x € N¢ by the Weierstrass criterion (Theorem V.1.6). Also,
since |f|P < ¢gP p-a.e. and g € L,(X, i, R), Theorem 3.14 implies that f belongs
to Ly(X, p, E). Finally Fatou’s lemma shows that

k ¢ ¢
re p . . p
Hf_Zf]H :/ ‘th Z fj dp< lim /‘ Z f] d/l: lim H Z f
=0 P XTI Sy RS

£—o00

)

and we find

|7~ Zsz < lim S = 3 15l forken.

j=k+1 j=k+1

Because ijo Il £illp < 0, ]’She sequence (Zj:kH ”fj”p)keN converges to zero.
Therefore so does (||f — ijo fj”p)ke
L,(X, u, E) is complete.

(ii) Now suppose (f;) is a Cauchy sequence in Loo(X, 1, E). We set

Aj = [Ifil > fillse] s Broe = 1[Ifi = fel > I fi = fellsc] for j,k, £ €N
and N :=J; 4;UU}. ; Br,e. By Remarks 4.1(b) and IX.2.5(b), N is a null set and

i@ < I filleo s fr() = fe(@)| < I fk = fello for j k£ €N, € N°.
Therefore (f; | N°) is a Cauchy sequence in the Banach space B(N¢, E), and we
can find an f € B(N¢, E) such that (f; | N¢) converges uniformly to f. Thus (f;)
converges p-a.e. to f. We know the function f is p-essentially bounded because
[|wtf] > ||f||B(NL' m] =0, and we have

N Now it follows from Lemma 4.5 that

|f )|<||f fj'NHBNCE) foerNCandeN.

Hence (f;) converges in L (X, 1, E) to f.
(iii) The case p = 1 was dealt with in Theorem 2.10(ii). m

4.7 Corollary Let p € [1, 0], and suppose f;, f € L,(X,u, E) satisfy f; — f in
Lo(X,p, E).

(i) If p= oo, then (f;) converges p-a.e. to f.

(ii) If p € [1,00), there is a subsequence (fj, )ren of (f;) converging u-a.e. to f.

Proof Because (f;) converges in £,(X, u, E) to f, we know (f;) is a Cauchy
sequence in £, (X, p, E). Statement (i) now follows immediately from the proof of
Theorem 4.6.

If p € (1,00), choose a subsequence (fj, )xen of (f;) such that || f;, ., — fj. [, <
2= (k1) Then the proof of Theorem 4.6 shows that there is a g € L, (X, 1, F) such
that (fj, — fjo) — g in Lp(X, u, E) and (fj, — fj,) — ¢ p-a.e. as k — co. Because
(f;) converges in L,(X, p1, E) to f, we have ||f — (¢ + fj,)|lp = 0. Remark 4.4(a)
implies f = g + f;, p-a.e., from which the claim follows.

The case p = 1 was treated in Theorem 2.18. m
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4.8 Proposition S(X, p, E) is dense in L,(X,p, E) for p € [1,00).%

Proof Suppose f € L,(X, p1, E). Then f is y-measurable by Remark 4.4(c). Thus
there is a sequence (p;) in S(X, i, E) such that ¢; — f p-a.e. as j — co. We set
Aj = [|e;] < 2|f]] and ¥; := xa,¢;. Then (¢;) is a sequence in S(X, u, E) that
converges fi-a.e. to f. Moreover,

;= fIP < (sl + )" < 37|fI" for jEN.

Because 37 | f|” belongs to £1(X, u, R), we can apply the dominated convergence
theorem, and we find

||¢j—f||’;:/X|¢j—f|pdu—>0 as j — 00

from which the claim follows. m

L ,,-spaces
We proved in Remark 4.4(b) that
N:={feLloX,,,E); =0 pae.}
is a vector subspace of £,(X, u1, E) for p € {0} U[1, 0c]. Hence the quotient spaces
L,( X, E):=L,(X,u, E)JN for pe {0} U1, 0]

are well defined vector spaces over K, by Example 1.12.3(i). By Remark 4.4(c), we
also have
L,(X, 1, E) C Lo(X,u, E) forpe[l,x],

in the sense of vector subspaces. Suppose [f] € Lo(X, u, E), and let g be a repre-
sentative of [f]. Then f —g € NV, that is, f and g agree p-a.e. By Remark 4.4(a),
the map B

Il Lo(Xs s B) = RY o [f] = || fllw

is well defined for every p € [1, 00|, and for [f] € L,(X, p, E), we have
M, = [Ifllp =0 < f=0 p-ae < [f]=0. (4.4)

Since |[||-[||, obviously inherits the properties of the seminorm ||-||,, (4.4) shows
that [||-[||, is a norm on L,(X,u, E). Therefore L,(X,u, E) is a normed vector
space, whereas the space we constructed it from, £,(X, y, E), is only seminormed.
So limits in £,(X, u, E) are generally not unique, but limits in L,(X, u, E) are.”
The price we pay for the better topological structure of L,(X,u, E) is that its
elements are not functions on X but rather cosets of the vector subspace N of
L,(X, 1, E). In other words, we identify functions that coincide p-a.e. Experience
shows that the following simplified notation does not lead to misunderstandings.

4The statement can fail if p = co; see Exercise 8 (but also Exercise 9).
5See Remark 2.3(b).
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Convention Suppose p € {0} U [1,00]. Then we write the coset [f] = f + N
in L,(X, u, E) as f and identify with each other functions that agree p-a.e.
Further, if p € [1, oo], we denote the norm in L, (X, u, E) by |- ||, and set

Lp(X,u,E) = (Lp(X,u,E), || ’ ||p) for p € [1700] .

4.9 Remarks (a) For f € Lo(X,u, F) and € X, f(x) is undefined if p
has nonempty null sets. That is, elements of Ly(X, ,u,E) cannot be “evaluated
pointwise”. (Of course, if one chooses a representative f of f, then f (x) is defined.)

(b) For p € [1, ],

Ly(X, 1, E) = { | € Lo(X, 1, E) ; |[fllp <00} .
Proof “C” Let f € Lp(X, pu, b:) Any representative f of f lies in L, (X, u, E), that is, it
is p-measurable and satisfies || f||, < co. Hence f belongs to Lo(X, u, E), and ||f||p < 0.

“2” Consider f € Lo(X,u, E) with |[f|l, < co. Every representative f of f is
p-measurable, with ||f||, = ||f||p < 0o. Thus f belongs to £,(X, 1, E), and so f belongs
to Lp(X, u, E)

(c) Suppose f,g € Lo(X, u,R), and let f, g be representatives of f,g. If we write
f<g = [<g pae.,

we obtain a well defined ordering < on Lo(X, 1, R), which makes this space into

a vector lattice.

Proof We leave the simple proof as an exercise. m

(d) Suppose (F, <) is a vector lattice and (F, | -]|) is a Banach space. If |z| < |y|

implies ||z]| < |ly||, we call (F,<,||-||) a Banach lattice.

(e) (Lp(X,1,R),<,[|]lp) is a Banach lattice for every p € [1, 00].

Proof It is clear that L, (X, p,R) is a vector sublattice of Lo(X, u,R). Also it follows
immediately from the monotony of integrals and of the map ¢ — ¢? that L,(X, u,R) is a
Banach lattice in the case p € [1,00).

Suppose f19 € Loo(X, 1, R) with |f| < |g|, and let f J be representatives thereof.
Then |f| <|g] p-a.e. In addition, Remark 4.1(b) shows that || < ||g|lc p-a.e. Therefore
11 < liglle p-ac., and hence [|f]oc < [lgloc. m

4.10 Theorem
(i) Lp(X,u, E) is a Banach space for every p € [1, 00].
(ii) If H is a Hilbert space, then so is Lo(X, u, H) with respect to the scalar
product

('|')2: LQ(X7/’L5H) XLQ(X7M5H)_)K’ (f7g)'_)/X(f|g)Hd:u .
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Proof (i) Suppose p € [1,00]. We already know that L,(X,u, E) is a normed
vector space. Let (f;) be a Cauchy sequence in L,(X,u, E), and (f]) a correspond-
ing sequence of representatlves Then ( fj) is a Cauchy sequence in £,(X,p, E).
By Theorem 4.6, there exists f € Lp(X, p, E) such that |[f; — f[[, — 0 as j — oco.
Letting f == f + A, we have f € Ly(X, ., E) and | f; — fll, = I.f; — flp — 0.
Therefore L, (X, i, E) is complete.

(ii) Using statements (i) and (iv) of Theorem 1.7 and Holder’s inequality, we
easily prove that (-|-)2 is a scalar product on Lo(X, u, H) satisfying |(f | f)z2| =
|l fI3 for f € La(X, u, H). The claim then follows from (i). m

4.11 Corollary Lo(X, 1, K) is a Hilbert space with respect to the scalar product

(flg)zz/ngdu for f,g € Lo(X, 1K) .

Continuous functions with compact support

Let Y be a topological space. For f € EY | we call

supp(f —{xGY flx 750}

the support of f. Here, as usual, the bar denotes the closure (in Y'). Continuous
functions with compact support are particularly significant. We therefore define

C.(Y,E) := {f € C(Y,E) ; supp(f) is compact} .

4.12 Examples (a) For the Dirichlet function xg € R* of Example I11.1.3(c), we
have

supp(xq) = supp(xr—¢) = R .
Proof This follows from Propositions 1.10.8 and 1.10.11. m
(b) Suppose X = Z or X = N, and provide X with the metric induced from R.
Let H° be the counting measure on (X ). Then®
Co(X,E)=S(X,H*,E)={p e EX; Numjp#0] < oo} .
(c) Suppose X is a metric space. Then C.(X, E) is a vector subspace of BC(X, E).
If X is compact, then C.(X,FE) = C(X,E) = BC(X, E).

Proof The first statement follows from Corollary I11.3.7. The second is a consequence
of Exercise I11.3.2 and Corollary I11.3.7. m

6Compare Example 2.20.
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4.13 Proposition Suppose X is a metric space and A and B are closed, disjoint
nonempty subsets of X. There exists ¢ € C(X) such that 0 < ¢ <1, ¢|A =1,
and ¢ | B = 0. Such a function is a called a Urysohn function.

Proof If D C X is nonempty, Example III1.1.3(1) shows that the distance func-
tion d( -, D) belongs to C(X). If D is also closed, we have d(x, D) = 0 if and only
if x € D. Using these properties, we easily prove that the function defined by

. d(x, B)
P = e T @, B)

forze X,
has the stated properties. m

With help from Urysohn functions, we can now prove an important approx-
imation theorem.

4.14 Theorem Suppose X is a o-compact metric space and j is a Radon measure
on X. Then C.(X, E) is a dense vector subspace of L,(X, u, E) for p € [1,00) .

Proof Suppose ¢ > 0. According to Proposition 4.8, S(X, u, E) is dense in
L,(X,p, E). Thus, because of Theorem 1.17 and Minkowski’s inequality (that
is, the triangle inequality), it suffices to verify that for every pu-measurable set A
of finite measure and every e € E\{0}, there exists f € C.(X, E) such that
1f = xaellp <.

Suppose then that A € A with p(A4) < oo. Because p is regular, we can find
a compact subset K and an open subset U of X such that K C A C U and

pUNK) = p(U) = p(K) < (/]e])? .

Proposition 4.13 secures the existence of a Urysohn function ¢ on X with ¢ | K =1
and ¢ |U° = 0. Setting f := pe, we get, as needed,

e = S5 < el [ xiucd < e n(U\K) <. w

Embeddings

Suppose X and Y are topological spaces, and X is a subset of Y. Denoting by
j: X =Y, x> x the inclusion” of X in Y, we say X is continuously embedded
in Y if j is continuous.® In this case, we write X < Y. We write X Ly if X
is also a dense subset of Y. If X and Y are vector spaces, the notation X — Y
(and the term “continuously embedded”) will always mean in addition that X is
a vector subspace of Y, not just any odd subset.

7See Example 1.3.2(b).
8These notions become important when X is not provided with the topology induced by Y;
see Remark 4.15(a).
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4.15 Remarks (a) Suppose V and W are normed vector spaces. V' is continuously
embedded in W if and only if V is a vector subspace of W and there is an « > 0
such that ||v||w < a|jv]|;, for v € V, that is, if the norm of V' is stronger than the
norm induced from W on V.

If V carries the norm induced by W, then V — W always.
(b) Suppose X is open in R". Then
BUC*(X,E) — BUCY(X,E) fork>{.
If X is bounded as well, then
BUC*(X,K) <% BUC(X,K) forkeN .

Proof The first statement is clear. The second follows from the Stone—Weierstrass
approximation theorem (Corollary V.4.8) and then Application VI.2.2. m

Simple examples (see Exercise 5.1) show that Lebesgue spaces are generally
not contained in one another. Under suitable extra assumptions on the measure
space (X, A, 1), continuous embeddings exist for Lebesgue spaces. For example,
if H° is the counting measure on P(N), the spaces £, introduced in Exercise 1.16
coincide with £,(N, H% K) for 1 < p < oo, and we have the embeddings

b =, =l =l for1<p<qg<oo,

(see Exercise 11).

Finite measure spaces present an altogether different situation:
4.16 Theorem Let (X, A, 1) be a finite complete measure space. Then
Ly(X, 1, E) <% Ly(X, 1, E) for1<p<q<oo
and

1£llp < p(X)VP=YV|If|l, for f € Ly(X, p, B) . (4.5)

Proof (i) Take f € L,(X,u, E) and set r := ¢g/p. Let g € Ly(X,u, E) be a
representative of f. Then |g|P belongs to L,.(X,u,R), and 1/ = (¢ — p)/q.
Further, xx belongs to L, (X, u, R), because p is a finite measure. Thus in the
case ¢ < oo Holder’s inequality gives

, 1/r’ 1/r (a=p)/ »
lollp = [ o lardn < ([ xsean)” ([ laPmdn) " = o gl

and we find ||g||, < p(X)Y/P-1/a lgll,; this clearly also holds in the case ¢ = oo.
Because g is an arbitrary representative of f, we see that f belongs to L, (X, u, E)
and (4.5) holds. By Remark 4.15(a), it follows that Ly (X, u, E) — L, (X, u, E).
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(i) M := {[¢] € Lo(X, 1, E) ; ¢ € S(X,p, E) } satisfies M C Ly(X, p, E),
and, because p < oo, Proposition 4.8 implies that M is dense in L, (X, p, E).
Therefore Lqy(X, pu, E) is also dense in Ly(X,u, E). m

The next theorem shows that, in the case of a massive Radon measure p,
an element of Lo(X,u, E) has at most one continuous representative. In this
case, then, we can identify each function in C'(X, E) with the equivalence class it
generates in Lo(X, u, E), and regard C(X, E) as a vector subspace of Lo (X, p1, E).

4.17 Proposition Suppose p is a massive Radon measure on a o-compact space X .
Then the map

is linear and injective.

Proof Theorem 1.17 shows that the map (4.6) is well defined and linear.

Take f,g € C(X, E) with [f] = [g]. There exists h € A/ such that f — g = h,
that is, f — g = 0 p-a.e. Assume for a contradiction that f(z) # g(x) for some
x € X. By continuity, (f — g)(y) # 0 for all y in some open neighborhood U of x.
But u(U) > 0, contrary to the assumption that f —g = 0 p-a.e. Therefore f = g,
which proves the asserted injectivity. m

Convention Let i be a massive Radon measure on a o-compact space X. We
identify C(X, F) with its image in Lo(X, p, E') under the injection (4.6) and
so regard C(X, E) as a vector subspace of Lo(X, i, E). Then

| flBx.p) = |fllec for f € BC(X,E) .

The following result is a simple consequence of this convention.

4.18 Theorem Let p be a massive Radon measure on a o-compact metric space X .
(i) C(X, E) is a dense vector subspace of L,(X, i, E) for every p € [1,00).
(ii) BC(X, E) is a closed vector subspace of Loo(X, i, E).

Proof The first statement follows from Theorem 4.14. The second is obvious. m

Continuous linear functionals on L,

For the rest of this section, we use for p € [1, 00] the abbreviations
Lp(X) == Lp(X, p, K) and L;)(X) = (L;D(X))/ ,

the prime on the right indicating the dual space (Remark VII.2.13(a)). From
Holder’s inequality, it follows that, for every f € L,/ (X), the map

Ty: Ly(X) - K, gH/ngdu



122 X Integration theory
is a continuous linear functional on L,(X), that is, an element of L},(X); it satisfies
1T¢ll Ly x) < I llpr - (4.7)

In fact (4.7) holds with equality:

4.19 Proposition The map
T:Ly(X)—L(X), f—Tf
is a linear isometry for every p € [1, 00].

Proof (i) Clearly T is linear. Also, in view of (4.7), we need only show that for
every f € Ly (X) satisfying f # 0 and every ¢ > 0, there is g € L,(X) such that

lallp =1 and [flly < | [ Fadu|+e.
X

(ii) First assume p € (1,00), so p’ € (1,00). Therefore
g=sign [ | fl77 [F]7
is well defined and p-measurable (see Exercise 1.19 and Theorem 1.7(i)). Also

1—p/ ;. o ’
/X lgl? dp = 728 /X PP dpe = |17 1 = 1

and fg = || FIL77 | £, Therefore ||f], = [y fgdu.

For p = oo, we set g := sign f. Then
loloe =1 and £l = [ fodu.
X

(iii) Now suppose that p = 1. Suppose 0 < € < || f]|co and set & := || f]|oo — €.
Because [|f| > a] has positive measure and p is o-finite, we can find A € A such
that A C [|f] > a] and p(A) € (0,00). Therefore g := sign f (1/p(A))xa is well
defined and p-measurable. Clearly ||g||; = 1 and

1
/ngdufm/quflduzafllflloo—s.

This concludes the proof. m
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4.20 Remarks (a) One can show that the map T of Proposition 4.19 is surjective
for every p € [1,00), that is, every continuous linear functional on L,(X) can
be represented is of the form T for an appropriate f € L, (X); see [Rud83,
Theorem 6.1.6], for example. Consequently 7': L, (X) — L},(X) is an isometric
isomorphism for every p € [1,00). This isomorphism allows us to identify L, (X)
with Ly (X) for p € [1,00). The dual pairing (-,-)r,: L,(X) x Ly(X) — K
satisfies

0. )1, = /X fgdu for (g, f) € Ly (X) x Ly(X) .

(b) In the case p = oo, the map T': L1(X) — L _(X) is generally not surjective;
see [Fol99, S. 191].

(c) Denote by (-, )g: E' x E — K the duality pairing between F and E’. Then
the map

k:E—[E]), e—{(-,e)p
is linear and bounded. Its norm is at most 1.

Proof Clearly & is linear. Suppose e € E with |le]|z < 1. Then
|</<;(e),e'>E,| =, e)r| < ||e'||lgr fore € B,
and we find ||k(e)||(gr) < 1, from which the claim follows. m

(d) With tools from functional analysis, one can show that x is an isometry and
therefore injective. We call k the canonical injection of E into the double dual space
E" .= (E') of E. If k is surjective as well, and hence an isometric isomorphism, we
say FE is reflexive. In this case, the canonical isomorphism x allows us to identify
FE with its double dual E”.

(e) Lp(X) reflexive for p € (1, 00).

Proof This follows from (a). m

(f) The spaces L1(X) and Loo(X) are generally not reflexive; see, for instance,
[AdaT75, Theorem 2.35]. m

Exercises

1 Let S(X,u, E):= { [f] € Lo(X, 1, E) ; [fINS(X,u, E) # @}. Prove that S(X, u, E)
a dense vector subspace of Ly (X, u, E) for 1 < p < co.

2 For a € R", we define 7, : E®") — E®") the right translation by a, by
(tap)(z) :=p(x —a) forzeR", p€ B®"

Set 74[f] := [ra f] for [f] € L. Prove:

(i) (R",+) — (Laut(L,(R™, An,E)),0), a — 74 is a group homomorphism with
||Ta||£(Lp) =1 for every p € [1, 0]
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(ii) For p € [1,00) and f € Lp(R", An, E), we have lim,—o ||7af — fl|p = 0.
(iii) If limy—o ||7a f — flloo = 0, there exists g € BUC(R"™, E) such that f =g p-a.e.

3 Suppose p is a complete Radon measure on a o-compact space X, and let (X;)jen
be a sequence of relatively compact open subsets of X covering X. For p € [1, 00, set

qj,P(f) = ||XXjf||P for JjE N ) f € LO(X7,U’7 E) )
LP»IDC(X7U7E) = {f € LO(Xv,qu) 5 qjﬂ?(f) < 0, je N} .

Finally, define

Z 2 ‘ZJ,p (f —9)

for f,9 € Lpioc(X, 1, E) .
L+¢gjp(f—9) paoc(X, 1. B)

(1) Lpoc(X, u, E) is well defined, that is, independent of the particular sequence (X;).
(i) (Lpoc(X,p, E),dp) is a complete metric space.

) Lp(X, 11, B) < Lytoe(X, 1, B) < Lujoc(X, 1, E).
(iv) The topology generated by d, is independent of the sequence (X;).

(iii

4 Suppose p,q € [1,00] and define
Ly N Ly = (Lp N L) (X, jt, E) 1= Lp(X, 11, E) N Ly(X, 11, E)
Lo+ Lg:=(Lp+ Lo)(X, 1, E) := Lp(X, pt, E) + Lo(X, 1, E) .
Also set [[fllz,nL, := [Ifllp + [|fllg for f € Ly N Lg, and put
[fllzp+rL, =inf{llgllo + IRllq 5 9 € Lp(X, 1, E), h € Lg(X,p, E) with f =g +h}

for fe Lp+ Ly.
(i) Check that the interpolation inequality

- 1 0
Il < UFlR"NFllG » where — = —— +g

holds for f € L, N Ly and 0 € [0, 1].
(ii) (Lp N Lg, |- |lzp,nL,) and (Lp + Ly, || -||2,+L,) are Banach spaces with
(LP N LQ)(XHu‘v E) — LT(Xv/‘LvE) — (LP + LQ)(le‘LvE) — LLIOC(XHU‘? E)
for1<p<r<g< o

(Hints: (i) Holder’s inequality. (i) Take f € L, + Ly with || f||z,+r, = 0. To show it
vanishes, note that L, < L1 1oc for r € [1, 0o] (see Exercise 3). To prove the completeness
of L, + Ly apply Lemma 4.5. The embedding L, N Ly — L, follows from (a).)

5 Suppose p € [1,00) and f € (Lp N Loo)(X, p, E). Prove that limg—oo || fllg = || flloo-
6 Prove that the map
LN(XanK) X LP(Xv/‘LvE) - LP(Xv/‘LvE) I ([90]7 [f]) = [@f]

is bilinear and continuous and has norm at most 1.
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7 Suppose u(X) < 0o, and for f,g € Lo(X, u, E) put

— lf — gl
do(f,9) ~—/deli~

(i) (Lo(X,u, E),do) is a metric space.

(ii) (f;) converges to 0 in (Lo(X,u, E),do) if and only if it converges to 0 in measure.
8 Let u be a Radon measure on a o-compact space X and let E be separable. Prove:

(i) C.(X,K) is separable.

(ii) C.(X, E) is separable.
(iii) Lp(X,u, E) is separable for p € [1, 00).
(iv) Loo(X, u, E) is generally not separable.

(v) S(X,u, E) is generally not dense in Loo(X, 1, E).
(Hints: (i) Corollary V.4.8 and Remark 1.16(e).  (ii) Take A C C.(X,K) and let B be
countable and dense in E. For a € A and b € B, set (a ® b)(z) := a(z)b for z € X and
consider

{Z;rlzoaj@bj ; meN, (aj,b;) € AX B, j:(),...,m} .

(iii) Theorem 4.14.  (iv) Find an uncountable subset A of Lo such that ||f — gljoc > 1
for all distinct f,g € A.)
9 If u finite and F is finite-dimensional, show that S(X, u, E) is dense in Lo (X, u, E).
10 Prove the statement of Remark 4.9(c).

11 Prove:

(i) £, = L,(N,H° K) for 1 < p < oo.

(ii) €p — £ with [|-|l¢ <[]l f 1 <p < g < oo,

(iii) £p 4, Ly L o o b if 1 < p < g < oo (see Section I1.2).
12 Suppose p,q € [1,00] with 1 < p < g < co. Prove:

(i) Loo(X, 11, B) C L1 (X, 11, E) = Ly(X, p1, E) — Lp(X, i, E).

(i) Li(X, 1 B) C Loo (X, B) = Lp(X, 1, E) — Lo(X, 1, E).

(iii) There exists a complete o-finite measure space (X, A, u) [or (Y, B, v)] realizing the

embedding Loo (X, i, R) — L1 (X, 1, R) [or L1(Y,v,R) — Lo (Y, v, R)].
(Hints: (i) Holder’s inequality.  (ii) Show that L, — L. and apply Exercise 4(i).)
13 For p € (0,1), prove:
G) 1F + gllp < I + gl for £,g € Lo(X, , E).
() If +gllo <277 (1 f o + glly) for £,9 € Lo(X, p, E).
(iii) Lp(X,u, F) is a vector subspace of Lo(X, u, E).
N:={feLlo(X,u,E); f=0 p-ae.} is a vector subspace of L,(X,u, E), and

N={feLy(X,mB); |flr=0}.
(v) Putting p(f,g) := ||f — gl induces a metric on
LP(X7U7E) = ﬁP(Xv.qu)/N .

NAPENG NGNS

(iv

(vi) (Lp(X,pu, E), p) is complete.
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(vil) For f,g € L,(X,p,R) with f > 0 and g > 0, we have || f + gllp > [ fllr + llgll»-

(viii) The map
LP(Xv/‘LvR) *)]RJF ’ [f] = ”f”P

is not a norm.
(Hints: (i) For a > 0, the map [t — a” +t” — (a + t)?] is increasing on R*.  (ii) For
a >0, examine [t — (a'/? +t"/7) /(a+1t)"/?].  (vi) Adapt the proof of Lemma 4.5 and
Theorem 4.6.  (vii) Theorem 4.2.)
14 Suppose p; € [1,00] for j =1,...,m; let 1/r:= 37", 1/p;. For f; € Ly, (X, 11, K),
show that [[]", f; belongs to L. (X, u, K) and that

m m
ITL 5| < TL150, -
j=1 o=

(Hint: Holder’s inequality.)

15 Suppose X is a metric space. The function f € E* vanishes at infinity if for every
€ > 0 there is a compact subset K of X such that |f(z)| < € for all z € K°. Verify that

Co(X,E):={feC(X,E); f vanishes at infinity }
is the closure of C.(X, E) in BUC(X, E).
16 For f € Lo(X,pu, E), set
Ar(t) == p([Ifl >t]) and f*(t):=inf{s>0; A\f(s) <t} forte[0,00).
We call f*: [0,00) — [0, 0] the decreasing rearrangement of f. Prove:
(i) Ay and f* are decreasing, continuous from the right, and Lebesgue measurable.
(ii) If | f] < |g| for g € Lo(X, u, E), then Ay < Ay and f* < g*.
(iii) If (f;) is an increasing sequence such that |f;[ 1 [f], then Ay, T Ay and f7 T f*.
(iv) For p € (0, 00),
Jaran=p [ o7 x@nn = [ @i
X R+

R+

(V) 1fllee = £7(0).

(Vl) )\f = )\f*.
(Hint for (iv): Consider first simple functions and then apply (iii) together with Theorems
1.12 and 3.4.)
17 ForjeN,let I;x := [k277, (k+1)277] for k = 0,...,27"'. Furtherlet { J, ; n € N}
be arelabeling of { I; 1 ; j €N, k=0,...,27' } and set f, := x.,, for j € N. Prove that
(fn) is a null sequence in £,([0,1]) for every p € [1,00), even though (fn(z)) diverges
for every z € [0, 1].
18 Suppose (fx) is a sequence in L,(X), where 1 < p < co. We say that (fx) converges
weakly in L,(X) to f € Lp(X) if

/fkcpdx—>/f<pdx for p € Ly (X) .
X X

In this case, f is called a weak limit of (fx) in L,(X).
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Prove:
(i) Weak limits in L,(X) are unique.
(ii) Every convergent sequence in L,(X) converges weakly in L,(X).
(iii) If (fx) converges weakly in L,(X) to f and converges p-a.e. to g € Lp(X), then
f=g
(iv) If (fx) converges weakly in L2(X) to f and || fkl|2 — ||f||2, then (fx) converges in
Ly (X) to f.

(v) Let ex(t) := (2m)"'/2e'™ for 0 < t < 2m and k € N. Then the sequence (ey)
converges weakly to 0 in L2 ((0,27)), even though it diverges in Lz ((0,27)).
(Hints: (i) For f € Ly(X) consider ¢(z) := f(x) |f(x)|p/pl_1. (ii) Holder’s inequality.
(iii) Show that g € L,(X), so [|g| = oo] is a p-null set. If X,, := [supy,, |fx(z)| > n] then
() X» is also a p-null set. Now consider lim fxg, fapdx for ¢ € Ly(X).  (iv) Apply
the parallelogram identity in La(X). (v) The first statement follows from Bessel’s

inequality, the second from (ii).)



5 The n-dimensional Bochner—Lebesgue integral

In this short section, we discuss the relationship between the Bochner—Lebesgue
integral and the Cauchy—Riemann integral defined in Chapter VI. We show that
every jump continuous function is Lebesgue measurable and that the corresponding
integrals are equal. This connection will allow us to bring into Lebesgue integration
theory the methods we developed for the Cauchy—Riemann integral.

We also show that a bounded scalar-valued function on a compact interval
is Riemann integrable if and only if the set of its discontinuities has measure
zero. From this it follows that there are Lebesgue integrable functions that are
not Riemann integrable. Thus the Lebesgue integral is a proper extension of the
Riemann integral — and therefore also of the Cauchy—Riemann integral.

In this entire section, suppose

e X C R" is a \,-measurable set of positive measure;
E =(E,|-|) is a Banach space.

Lebesgue measure spaces

From Exercise IX.1.7, we know that Lx := L£(n)| X is a o-algebra over X. Thus
the restriction A, | X := A, | Lx is a measure on X, called n-dimensional Lebesgue
measure (or Lebesgue n-measure) on X. We denote this restriction by A, as well.
We check easily that (X, Lx,\,) is a complete o-finite measure space. If there is
no danger of misunderstanding, we drop the qualifier “Lebesgue” (or “\,,”) from
the words measurable, measure, integrable and so on.

If f € EX is integrable, we call

/deAn :=/de(An|X>= Frx dh,

R™

the (n-dimensional) (Bochner-Lebesgue) integral of f over X. The notations
/ f@)dAn( and / flz) A
b's

For short, we set

are also common.

Ly(X,E):=L,(X, \,E) and L,(X, E) := L,(X, A\, E) .

We also set £,(X) := L,(X,K) and L,(X) := L,(X,K) for p € [1,00] U{0}.

The next theorem lists important properties of n-dimensional integrals.
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5.1 Theorem Suppose X is open in R"™ or, in the case n = 1, a perfect interval.
Then:

(i) An is a massive Radon measure on X.

) C(X, E) is a vector subspace of Lo(X, E).

(iii) BC(X, E) is a closed vector subspace of Loo(X, E).
)

C.(X,E) is a dense vector subspace of L,(X,FE) for p € [1,00). If K is a
compact subset of X, then

1y < )\n(K)l/p [flloo for f € C.(X,E) such that supp(f) C K .

(v) If X has finite measure and 1 < p < q < oo, then
Ly(X, E) < Ly(X, B)

and
1£llp < A(X)VP7YV9 £y for f € Ly(X, E) .

Proof (i) X is a o-compact metric space— by Remark 1.16(e) if X is open, and
for obvious reasons if X is an interval. Now the claim follows from Remark 1.16(h)
and Exercise IX.5.21.

(ii) and (iii) are covered respectively by Proposition 4.17 and Theorem 4.18(ii).

(iv) The first statement is a consequence of Theorem 4.18(i), and the second
is obvious.

(v) is a special case of Theorem 4.16. m

5.2 Remark Suppose X is measurable and its boundary 0X is a A,-null set.
Then the Borel set X belongs to £(n), and we have A, (X) = An(X). Further,
one checks easily that the map

Ly(X,E) = L,(X,E) , [fl~ [f]X]

is a vector space isomorphism for p € [1,00] U {0}. If p € [1,00], it is an isometry.

Thus we can identify L,(X, E) and L, (X, E) for p € [1,00] U {0}. In particular,
for an interval X in R with endpoints ¢ := inf X and b := sup X, we have
Ly(X,E) = Ly([a,b], E) = Ly([a,b), E) = Ly((a,b], E) = Ly((a,b), E)

for p € [1, 00] U {0}.

The Lebesgue integral of absolutely integrable functions

We now show that every absolutely integrable function is Lebesgue integrable, and
its integral in the sense of Section VI.8 equals the Lebesgue integral.
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5.3 Theorem Suppose f: (a,b) — E is absolutely integrable, where a,b € R and
a < b. Then f belongs to El((a, b), E), and

b
Mh:/f.
(a,b) a

Proof (i) Suppose a < a < < b. If g: [, 5] — E is a staircase function, then

g is obviously A;-simple and
B
/ gd\ z/ g . (5.1)
(avﬁ) o

Now suppose g: [a, 3] — E is jump continuous. Then there is a sequence (g;)
of staircase functions that converges uniformly to g. Therefore g is measurable,
and Remark VI.1.1(d) and Corollary 3.15(ii) show that g belongs to £1((c, 8), E).
Because g is bounded and the sequence (g;) converges uniformly, there is an M > 0
such that |g;| < M for all j € N. Therefore it follows from Lebesgue’s dominated
convergence theorem that

hm g;j d\ = / gd)\l
I (e,B) (e.8)

in E, and we conclude using (5.1) and the definition of the Cauchy-Riemann
integral that

B B
/ g = lim / g; = lim g; d\1 :/ gdA .
« J7° Ja I J(a,8) (v, 3)

(if) We fix ¢ € (a, b) and choose a sequence (5;) in (¢, b) such that 8; T b. We
also set!
9:=Xer) S + 95 =Xep)f forjeN.

By (i), (g;) is a sequence in £4(R, E). Obviously (g;) converges pointwise to g
and (|g;]) is an increasing sequence converging to |g|. Therefore ¢ is measurable.
From (i), it follows that

B
/MMM:/ UMM:/Iﬂ,
R (¢,85) c

and the absolute convergence of fcb f implies

Bj b
tin [ Jgjlan = lim |11 [ 111 (5.2)
J—70 JRrR J7 Je c

IHere and in similar situations, we regard X[e,b)f as a function on R. Writing X[ﬁ,)f would
be more precise but cumbersome.
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On the other hand, the monotone convergence theorem shows that

]/|g|dA1:: Jim j/|gj|dxl,
R J—70 JR

and we see from (5.2) that g belongs to £1(R, E). Therefore we can apply the
dominated convergence theorem to the sequence (g;), to get

lim | gjd\ = / gd\ = fd\
R R [c,b)

J—00

in E. Further, it follows from (i) that

Bj
/WM:/ fMFJ‘L
R [e.B5) c

and hence, by Proposition VI.8.7,

Bj b
lim [ gjd\ = lim / f :/ f
J=0 JR J=oo Je c
in E. Thus the limits f[c ) fdX\ and fcb f are equal. In similar fashion, we show

that x (a4, f belongs to £1(R, E) and that f(ad fdxy = [ f. This shows that f is
Lebesgue integrable with f(a p fdX = f: f.-m

5.4 Corollary For —oco < a < b < oo, we have S([a, b], E) — L ([a, bl E) and

b
fd)q:/f forfeS([a,b],E).
] a

[a,b

Proof This follows from Theorem 5.3 and Proposition VI.8.3. m

5.5 Remarks Fix a,b € R with a < b.

(a) Suppose f: (a,b) — E is admissible and f: f exists as an improper integral.
Then f need not belong to £1((a,b), E).
Proof We define f: R — R by

. 0 if z € (—00,0),
J@ =1 (c1y/j ifceli-1), wherej €N~ .

Obviously f is admissible, and [*°_ f exists in R, since

/wf—j(lﬁﬁ.

— 00 =1
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If f belonged to L1(R), we would have [, |f|dA\1 < oo, contradicting the monotone
convergence theorem, which gives

k
/R|f|dA1 :klillgo/RX[o,k] || dAs :lerlgO; l/j=oco. m

(b) Suppose f: (a,b) — E is admissible and f belongs to El((a,b),E). Then f
is absolutely integrable, and

b
fd/\lz/ ;o OmE.
(a,b) a

Proof Take ¢ € (a,b) and let (o) be a sequence in (a,c) with a; — a. Also let
[ = Xja,,ef- Then (f;) converges pointwise to X(q,c] f, and we have |f;| < |f| for j € N.
Because f is admissible, Proposition V1.4.3 shows that |f| | [«;, ¢] belongs to S([ey, c], R).
Thus it follows from Corollary 5.4 and the dominated convergence theorem that

/C.'f':/a,c'f'f“w Il

Therefore [ |f] exists. Analogously, we show the existence of [ | f| and thus the absolute
convergence of f f. The second statement now follows from Theorem 5.3. m

Suppose f € L1((a,b), E). Remark 5.5(b) shows that 1o misunderstanding
should arise in this case if we denote f 1w [ dAi by f for f f(x)dz. From now
on, we will usually write in the n- dlmensmnal case

/dexzz/xfd/\n

Theorem 5.3 and its corollary allow us to transfer the integration methods
developed in Volume II to the framework of Lebesgue theory. In combination
with the integrability criterion of Theorem 3.14 and the dominated convergence
theorem, these provide very effective tools for proving the existence of integrals.
This will be made clear in the remaining sections of this chapter, when we develop
procedures for the concrete evaluation of “multidimensional” integrals.

A characterization of Riemann integrable functions

Theorem 5.3 showed that the Lebesgue integral is an extension of the Cauchy—
Riemann integral. We now characterize Riemann integrable functions and show
that this extension is proper.

5.6 Theorem Let I be a compact interval, and let f: I — K be bounded. Then
f is Riemann integrable if and only if it is continuous Aj-a.e. In this case, f is
Lebesgue integrable, and the Riemann and Lebesgue integrals are equal.
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Proof (i) We can take without loss of generality the case K = R and I := [0, 1].
For k € N, let 3 := (§o,k, - - -, &2r ;) be the partition of [0, 1] with & 5 := j27F for
j=0,...,2% Also suppose

Tok = [Cor,E1k] 5 Lix:i= Er &) forj=1,...,2" 1.

Finally, set o1 == inf;cefj,k f(x), Bjk:= SUD, e, f(x), and

2k 1 2k 1
gk = Z OG5 kXI5 hy := Z Bj,kXIJ,k for ke N.
§=0 §=0

Then (gi) is an increasing and (hy) a decreasing sequence of \;-simple functions.
Therefore their pointwise limits g := limg g5 and h := limy hyx are defined and
Ar-measurable, and g < f < h. Furthermore, we have

/ grdh = S(f, k) and / b dhs = S/, k) |
[0,1]

(0,1]

where S(f, k) and S(f, k) stand for the lower and upper sums of f on [0, 1] with
respect to the partition 3 (see Exercise VI.3.7). Denoting by [ f and [ f the
lower and upper Riemann integrals of f on [0,1], we find from the monotone
convergence theorem that

/Maz—g) dAs = /f—_/f . (5.3)

(i) Let R := Upen{€o.ks--->&ax 1} be the set of endpoints of the intervals
I . Let C be the set of continuous points of f. Then

[g=hNR°CCClg=h]. (5.4)

To see this, take € > 0. Suppose first that o € R° and g(zo) = h(xo). We can
find a k € N such that hy(z0) — gr(0) < € and a j € {0,...,2% — 1} such that z
lies in the interval (& k,&;41,%). For « € I, we thus have

|f(z) = f(zo)| < sup f(y) — inf f(y) = hw(zo) — gr(zo) <e,
yeljk yeljk
which proves the continuity of f at zg.

Now suppose zg € C. Take 6 > 0 such that |f(z) — f(zo)] < €/2 for
x € [zg — 0,70 + 6] N[0,1]. Choose kg € N with 27% < § and take for every
k>koaje{0,...,28 —1} such that zg € I; x C [v0 — 6, 7o + 6]. Then

0 < hi(zo) — gr(xo) = sup (f(x) - f(ﬂ?o)) - g}f (f(ﬂ?) - f(xo)) <e.

:CEIJ,)C rELj K

It follows that h(zo) — g(zo) = limy (hi(zo) — gr(w0)) = 0. This proves (5.4).
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(iii) If f is a Riemann integrable function, then [ f = f [ = [ (Exercise
VI1.3.10). Therefore (5.3) shows that B

h=g=1f Ai-a.e. (5.5)

which implies the Aj-measurability of f. Since f is bounded, f € £1([0,1]). We
also have |gi| < ||flleo A1-a.e. for k € N. Then Lebesgue’s dominated convergence
theorem results in

/ gd\; = lim grd\ = th (f, k) / f,
[0.1] B Jo]

where, in the last equality, we have once more used Exercise VI.3.10. From (5.5)
and Lemma 2.15, it follows that fo yfdd = fo f. Finally (5.4), (5.5), and the
countability of R imply that the dlscontlnuous points of f form a set of Lebesgue
measure zero.

(iv) Suppose conversely that C¢ has measure zero. By (5.4), so does [g # h],
and the Riemann integrability of f follows from (5.3). This finishes the proof. m

5.7 Corollary Some Lebesgue integrable functions are not Riemann integrable.
Thus the Lebesgue integral is a proper extension of the Riemann integral.

Proof Consider the Dirichlet function
1 ifreQ,
Fba-R, f@={ |

ifx¢Q,

on [0,1]. By Lemma 2.15, f belongs to £1([0,1]), since f vanishes almost every-
where. But we know from Example III.1.3(c) that f is nowhere continuous, hence
not Riemann integrable by Theorem 5.6. m

The equivalence class of maps that agree a.e. with the Dirichlet function
contains Riemann integrable functions —for example, the null function. So this
example is uninteresting from the viewpoint of Li-spaces. However, in Exercise 13,
it will be shown that there exists f € £ ([0, 1], R) such that no g € [f] is Riemann
integrable. This implies that the Riemann integral is inadequate for the theory of
L,-spaces.

Exercises

1 For p,q € [1,00] with p # ¢, show that L,(R, E) ¢ Lq(R, E).

2 Suppose J is an open interval and f € C*(J, E) has compact support. Then fJ f'=o.
3 Suppose f € Lo([0,1],R") is bounded. Show that

[fﬁ [Oyl}fdxls/_f.
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4 Suppose [ is a compact interval, and define the space of functions of bounded variation
on I by

BV(ILE):={f:1—E; Var(f,I) < oo} .

(a) In the sense of vector subspaces, we have the inclusions
C"(I,E)c BV(I,E) C B(I,E) .

(b) Let o := infI and f € Li(I,E). Then F: 1 — E, z — [7 f(t)dt belongs to
BV(I,E), and Var(F,I) <| f|.

(c) For every f € BV(I,R), there are increasing maps s : I — R such that f = s* —s~.
(d) BV(I,R) is a vector subspace of the space S(I,R) of jump continuous functions
I —R.

(e) Every monotone function belongs to BV (I,R).

Hint for (c): For a := infI, consider the functions s* := (z — Var(f",[a,z])) and

sTi=s—f.)

5 Suppose H is a separable Hilbert space. Show? that BV ([a,b], H) is a vector subspace
of Lo ([a,b], H) and that

b—h
/ Il f(t+h) — f(t)||dt < hVar(f,[a,b]) forO<h<b—a.
(Hints: Note Exercises 1.1 and 4(d). For 0 < h < b —a and t € [a,b — h], show that
If(t+h) = fFOI < Var(f, [a,t + h]) — Var(f, [a,1]).)

6 Suppose J C R is a perfect interval. A function f: J — F is absolutely continuous if
for every € > 0 there is 6 > 0 such that

m

D IFB) = flaw)| < e
k=0
for every finite family { (ak,Bk) 5 k=0,... ,m} of pairwise disjoint subintervals of J

with 37" (Be — ax) < 6. We denote by Wi (J, E) the set of all absolutely continuous
functions in E’. Prove:

(a) In the sense of vector subspaces, we have the inclusions
BC'(J,E) Cc W{(J,E) C C(J,E) .

(b) If J compact, then Wi (J, E) C BV (J,E).
(c) The Cantor function (Exercise II1.3.8) is continuous but not absolutely continuous.

(d) Set o := inf J and take f € L1(J,E). Then F: J — E, x — f; f(t) dt is absolutely
continuous.

20ne can show that the statement of Exercise 5 remains true if H is replaced by an arbitrary
Banach space.
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7 For j =1,2, define f;: [0,1] — R by

22 sin(1/2%) if x € (0,1] ,

fi(x) == o

0 ifx=0;
compare Exercise IV.1.2. Prove:
(a) f1 € BV([0,1],R).
(b) f2 ¢ BV ([0, 1], R).
8 Let p and v be measures on a measurable space (X,.A). We say v is u-absolutely
continuous if every p-null set is also a v-null set. In this case, we write v < p.

(a) Let (X, A, 1) be a o-finite complete measure space. For f € Lo(X, u, RY), define
fems A=l A [ faa.
A

Show that f « i is a complete measure on (X, A) with f«pu < p.
(b) Let A:= Lioq), v:= A1, and p:= H°. Check:
(i) v < p.
(ii) there is no f € Lo([0, 1], A, ) such that v = f« p.
9 Suppose (X, A, v) is a finite measure space and p is measure on (X, .4). The following
statements are equivalent:
(i) v < p.
(ii) For every € > 0 there is 6 > 0 such that v(A) < € for all A € A with pu(A) < 4.
10 For f € Lo(R,A\1,RT), let F(z) := JE. f(t)dt for x € R, and denote by ur the
Lebesgue—Stieltjes measure on R generated by F'. Prove:
(a) F € Wi (R,R) implies pr < A;.
(b) pr < B1 implies F € W (R, R) if pp is finite.
11 Let I is an interval and take f € £1(I,R"). For a fixed a € I, suppose [* f(t)dt =0
for x € I. Show that f(z) = 0 for almost every z € I.
12 Let 0<a<b<ooandI:=(—b,—a)U(a,b), and suppose f € L1(I, F). Show that
J; fdz=0if fis odd, and fIfdx:2f:fdxiffiseven.
13 Define
Ko :=1[0,1],
Ky = Ko\ (3/8,5/8) ,
Ky := K1\ ((5/32,7/32) U (25/32,27/32)) , ...
Generally, K, 41 is derived from K, by the removal of open “middle fourths” of length
(1/4)"*! rather than middle thirds as in the construction of the traditional Cantor set

(Exercise I11.3.8). Set K := (K, and f := xx. Show that f belongs to £1([0,1]) and
that no g € [f] is Riemann integrable.



6 Fubini’s theorem

The heart of this section is the proof that the Lebesgue integral of functions of
multiple variables can be calculated iteratively and that this sequence of one-
dimensional integrations can be performed in any order. Therefore multivariable
integration reduces to integrating functions of only one variable. With the results
of the previous section and the procedures developed in Volume II, multidimen-
sional integrals can be calculated explicitly in many cases.

The method of iterative evaluation of integrals has wide-reaching theoretical
applications, a few of which we will present.

Throughout this section, we suppose
e m,n are positive integers and F is a Banach space.

In addition, we will generally identify R™"" with R™ x R".

Maps defined almost everywhere

Suppose (X, A, i) is a measure space. We will often consider nonnegative R-
valued functions that are only defined p-a.e. For these, we shall simply write = +—
f(z), without specifying the precise domain of definition. We say such a function
x — f(z) is measurable if there is a p-null set N such that f|N¢: N¢ — R*
is defined and p-measurable. Therefore [y. fdu is defined. If M is another u-
null set such that f|M¢: M¢ — RY is defined and p-measurable, the equalities
w(N) = p(M) = p(M UN) =0 and Remarks 3.3(a) and (b) imply that

Jo = J 0= ] A

[ tawi= [ i (6.1)
X Ne

Therefore

is well defined and independent of the chosen null set V.

For an E-valued function z — f(z) defined p-a.e., we define measurability
just as above. We say such an f is integrable if f| N¢ belongs to £1(N€¢, u, E).
In this case, fX fdu is also defined through (6.1), and Lemma 2.15 shows this
definition is meaningful.

Consider for example A € L£(m+n), and assume that the cross section Ap,) is
An-measurable for A,,-almost every x € R™. Then  +— A, (A[y) is a nonnegative
R-valued function defined Ap-a.e. If 2 +— A, (A[;)) is measurable, the integral
Jgm An(Ap)) da is well defined.
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Cavalieri’s principle

We denote by C(m,n) the set of all A € L(m + n) for which
(i) Az € L(n) for Ap,-almost every = € R™;
(ii) @ — A\p(Afy]) is Ap-measurable;
(iil) Angn(A) = [pm An(Ap)) do.
We want to show that C(m,n) agrees with £(m + n), but we need some prelimi-
naries.

6.1 Remarks (a) Suppose A € C(1,n) is bounded and pry(A4) is an interval with
endpoints a and b. Then

b
/\n+1(A) :/ /\n(A[x])d:E .

This statement is called Cavalieri’s principle and makes precise the geometric idea
that the measure (volume) of A can be determined by partitioning A into thin
parallel slices and continuously summing (integrating) the volumes of these slices.

prz(4)

(b) L(m)X L(n) C C(m,n).

(c) For every ascending sequence (4;) in C(m,n), the union (J; A; belongs to
C(m,n).

Proof (i) For j € N, let M; be a Ap-null set such that A; 4 = (A4;)) € L(n) for
x € Mj. Letting A :={J; A; and M :=J; M;, we then have Ay, =, Aj 2] € L(n) for
x € M*¢. The continuity of A, from below implies A, (A[;)) = lim; A (4 [5)) for x € M€,
and we conclude with the help of Proposition 1.11 that = +— A, (A}y)) is Am-measurable.

(ii) Because A; € C(m,n), we have
/ )\n(Ajy[z]) dr = )\m+n(Aj) for j N,
and from the monotone convergence theorem, it follows that

lim )\n(Ajy[z]) dx = / )\n(A[I]) dx . (62)

J RM RM
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The continuity of Ay,+n from below thus shows that
)\ern(A) = lir_n )\m+n(Aj) = lir_n )\n(Aj,[z]) dx = / )\n(A[z]) dx .
J J R™ m
Therefore A belongs to C(m,n). m
(d) Suppose (A;) is a descending sequence in C(m,n) and there is a k € N such
that Ajin(Ak) < oo. Then (; A; belongs to C(m,n).

Proof We set A :=[); A;. The measurability of Am-almost all cross sections Aj,) and
of x +— An(Ajy)) follow as in (c). Next, Lebesgue’s dominated convergence theorem shows
that (6.2) is true in this case. The claim now follows as in (c). m

(e) Suppose (A4;) is a disjoint sequence in C(m,n). Then |J; A; also belongs to
C(m,n).

Proof Because of (c), it suffices to prove the statement for finite disjoint sequences. We
leave this to the reader as an exercise. m

(f) Every open set in R™"

Proof This follows from Proposition IX.5.6, (¢) and (b). m

belongs to C(m,n).

(g) Every bounded Gs-set in R™" belongs to C(m,n).
Proof This follows from (f) and (d). m

(h) Suppose A is a Ayqpn-null set. Then A belongs to C(m,n), and there is a
Am-null set M such that A, is a A,-null set for every z € M*€.

Proof It suffices to verify there is a A,,-null set M such that A\n(Ap)) =0 for z € M°.
So let A; :== AN (jB™") for 5 € N. Then (A;) is an ascending sequence of bounded
Am+n-null sets with (J; A; = A. By Corollary IX.5.5, there is a sequence (G;) of bounded
Gs-sets with Gj D A; and Am+n(G;) =0 for 7 € N. From (g), it therefore follows that

Hence, there is for every j € N a Aj,-null set M; such that A\, (Gj|4)) = 0 for z € M
(see Remark 3.3(c)). Because

Uj Gj,[z] D U]- Aj,[z] = (UJ Aj) ] = A[z] for x € R™ s

M = Uj Mj has the desired property. m
After these remarks, we can now show the equality of C(m,n) and L(m +n).

6.2 Proposition C(m,n) = L(m + n).

Proof We need only check the inclusion £(m +n) C C(m,n).

(i) Suppose A € L(m + n) is bounded. By Corollary IX.5.5, there is a
bounded Gs-set G such that G D A and A\p4n(G) = Amyn(A). Because A has
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finite measure, G\ A is a bounded A,,+,-null set by Proposition 1X.2.3(ii), and
we conclude using Remark 6.1(h) that (G\ A)jy) = G[o)\ A}y is a Ap-null set for
Am-almost every x € R™. By Remark 6.1(g), G|, belongs to L£(n) for A,,-almost
every x € R™. Because

Alz) = G N (G \Apr))© for z € R™

this is also true of A,,-almost every intersection Ap). In addition, A,(Ay)) =
An(Glyp) for Ap-almost every € R™. We know by Remark 6.1(g) that G belongs
to C(m,n). Therefore x +— A, (A[;]) is measurable, and

Aman(G) = /m )\n(G[x]) dxr = /m )\n(A[x]) dzx .

Therefore A belongs to C(m,n).

(ii) If A is not bounded, we set A; := AN (jB™*") for j € N. Then (A;) is
an ascending sequence in £(m + n) with (J; 4; = A. The claim now follows from
(i) and Remark 6.1(c). m

6.3 Corollary If A € L(m +n) has finite measure, then A, (Ap)) < oo for Ay,-a.e.
x e R™.

Proof Because Proposition 6.2 implies

/\n(A[x]) dr = )\m_;,_n(A) < oo,
R"m,

the claim follows from Remark 3.11(c). m

For A € L(m +n) and z € R™, we have xa(x,) = xa,,, so Proposition 6.2
can also be formulated in terms of characteristic functions. It is then easy to apply
the statement to linear combinations of characteristic functions and therefore to
simple functions.

6.4 Lemma Suppose f € S(R™" E).
(i) f(z,-) e S(R", E) for A\y,-almost every x € R™.
(ii) the E-valued function x — f]R” x,y) dy Is A, -integrable.

111 f]R"“*’” fd € y fR"n I:I]R” T,y dy} dl‘

Proof (i) With f = Z?:o ejXa,, we have f(z,-) = Z?:o €jXa,,, forz € R™.
Then it follows easily from Proposition 6.2 and Corollary 6.3 that there is a A,,-null
set M such that f(z,-) belongs to S(R", E) for every z € M°.
(i) We set
k

g(x) = flx,y)dy = Z e n(Aj ) forze M©. (6.3)

R™ =0



X.6 Fubini’s theorem 141

Then Proposition 6.2 and Remark 1.2(d) show that x — g(z) is A,,-measurable.
In addition, we have

k

[ 1olam = 3l [ e =3 e hmsa) < o

j=0 j=0

Therefore x — g(z) is A, -integrable.
(iii) Finally, it follows from Proposition 6.2 and (6.3) that

k
/]Rern Zej mtn (A Zej / Aj o)) dr = / gdx
j=
=/ [ f(z,y) dy}dx,
m LJgn

which completes the proof. m

6.5 Remark In the definition of the set C(m,n), we chose to single out the first
m coordinates of R™". We could just as well have chosen the last n coordinates
and made the same argument not with \,,(A,]) but with A (A for A, -almost
every y € R". With this definition of C(m, n), we would obviously have found that
C(m,n) = L(m + n). Thus the roles of z and y in Lemma 6.4 can be exchanged,
and we conclude that, for f € S(R™", E),

(i) f(-,y) € S(R™, E) for Ay-almost every y € R™;
(ii) the E-valued function y — [ f(x,y)dx is A,-integrable;
(i) Sgmen £ @, y) = [on [ Jom f(2,y) da] dy.

In particular, we find

L tewa]a= [ [ fai]a

for f € S(R™", E). In other words, the integral Jgmin [ d(z,y) can be calculated
iteratively in the case of simple functions, and the order in which the integrals are
performed is irrelevant. m

Applications of Cavalieri’s principle

The main result of this section is that the statement of Remark 6.5 about the
iterative calculation of integrals remains true for arbitrary integrable functions f.
Before we prove this theorem, we first give a few applications of Cavalieri’s prin-
ciple, meaning that we are working in the case f = xa.
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6.6 Examples (a) (geometric interpretation of the integral) For M € £(m) and
f € Lo(M,R"), the set

Spi=8rm={(z,y) eR"xR; 0<y< f(z), ze M}

belongs to £(m + 1), and

R
[ iz =rnia(s).
M
that is, the integral fM f dx equals the Sy
(m+1)-dimensional Lebesgue measure
of the set of points under the graph | > R™
of f.1 M

Proof Set fi := pry and fo := foprgm. Then fi and f2 belong to Lo(M x R,R™), and
Sy = [0 < fi < f2]. Therefore Proposition 1.9 implies the Am+1-measurability of Sy.
Because (Sf)z) = [0, f(z)] for x € M, it follows that A1 ((Sf)(4)) = f(x), and hence

Am+1(Sy) = / A ((S7)a)) da = Mfdx ,

by Proposition 6.2. m

(b) (substitution rule for linear maps) Suppose T' € L(R™), a € R™ and M €
L(m). Also let o(z) := a+Tx for x € R™ and f € L1(p(M)). Then f o belongs
to L£1(M), and

/ fdy:|detT|/ (fop)dr . (6.4)
P (M) M

In particular, the Lebesgue integral is affine isometry invariant, that is, for every
affine isometry ¢ of R, we have

/f: fop for feLi(R™).

Proof (i) By Theorem IX.5.12, ¢ maps the o-algebra £(m) into itself. Therefore (M)
belongs to £(m), and Theorem 1.4 implies that f o ¢ lies in Lo(M). The decomposition
f=/fi—fot+i(fs — f1) with f; € L1(p(M),RT) shows that we can limit ourselves to
the case of f € L1(¢(M),R"). Then (a) says that

/ = 2Am1(Ssen) / fow=Amt1(Srop,m) - (6.5)
P (M) M

(ii) We set @ := (a,0) € R™ x R and T(z,t) := (Tz,t) for (z,t) € R™ x R. Then
a+T(Sfop) =Sy and det T = det T', because the representation matrix 7" has the block

1Compare the introductory remarks to Section VI.3.
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structure -
=15
Corollary 1X.5.23 and Theorem IX.5.25 therefore imply
Am+1(S7) = Ama1 (T(Spop)) = [det T Amt1(Spop)
which, due to (6.5), proves (6.4). The integrability of foy follows from Remark 3.11(a). m
(c) (the volume of the unit ball in R™) For m € N*, we have
/2
T(+m/2)’
in particular, A\; (B') = 2, A\(B?) =7, and A\3(B®) = 47/3.

Am (B™) =

Proof Setting wm := Am(B™), we obtain from
Cavalieri’s principle and Remarks IX.5.26(b) and (B™)W! 1—9?
6.5 that

om = [ (@) A=
_ / Mt (VIS g2B™ ) dy m
= omes [ (VT . '

To calculate the integral

1 1
B ::/ (1—y2)<m—1)/2dy:2/ (1 =)™ V2 4y for m e N¥ |
—1 0

we let y = —cosz, so that dy = sinxz dz. This gives By, = 2]”/2 sin™ z dx. It follows

0
from the proof of Example VI.5.5(d) that

m—1(2m —3) - - -1 Im(2m —2) . --. .9
BQm:(m )(m 3) ST, Bgm+1: m(m ) .2
Im@m —2)- - 2 Cm+1)Em—1)- -1
Thus we find By Bm—1 = 27/m and
2
Wm = Bnwm-1 = BmBm—1wm—2 = Eﬂ.wm—Q . (66)

Since w1 = 2, we obtain wy = Baw1 = 2B2 = 7 and therefore, with (6.6),

" 2m)™
Wam = — ,  Womtl = (2m) -2
m!

135 -(2m+1)

These two expressions can be unified with the help of the Gamma function, because

3 ™
T'(m+1)=m!, F<m+§>:2\"{; 13- (2m4+1)

(see Theorem VI.9.2 and Exercise V1.9.1). m
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Tonelli’s theorem

We now prove the advertised theorem that justifies the iterative calculation of
integrals of nonnegative R-valued functions. This version, Tonelli’s theorem, will
give us an important integrability criterion in the case of E-valued functions.

6.7 Theorem (Tonelli) For f € Lo(R™" RT),
(i) f(z,-) € EO(R",R;*) for Ap-a.a. z € R™,
f(,y) € Lo(R™,RY) for \y-a.a. y € R”;
(ii) = — [pn f(at:7 y) dy is A\y,-measurable,
Y — fpm f(z,y) dx is X\,-measurable;
(ili) Jomen fAd@y) = fom [Jon f@y) dy] dz = [0 [ [om flzy) dz] dy.

Proof (i) By Theorem 1.12, there is an increasing sequence (f;) in S(R™™, R™)
that converges to f. The monotone convergence theorem then gives

lim fid(z,y) = / fd(z,y) in RT . (6.7)
J R™mt+n Rm+n

Further, by Lemma 6.4, there is for every j € N a A,,-null set M; such that
fi(x,-) € SR™,R") for z € Ms. If we set M := |J; M;, we then see from the
monotone convergence theorem that

/ fj(x,y)dyT/ flz,y)dy for x € M€ . (6.8)
R R™

Lemma 6.4(ii), Proposition 1.11, the fact that M has measure zero, and (6.8)
imply that the R-valued function = — f]R" f(x,y)dy is \p,-measurable. Next, it
follows from (6.7), Lemma 6.4(iii), (6.8), and the monotone convergence theorem
that

/ fd(z,y) =lim fid(z,y) =lim
R™+

J R™ +n J R™ |: R™

_ /[ LX) dy| da

The remaining statements are proved analogously (paying heed to Remark 6.5). m

fi(z,y) dy} dx

6.8 Corollary For f € Lo(R™"™, E), suppose f = 0 Ay in-a.e. Then there is a
Am-null set M such that f(x,-) vanishes \,-a.e. for every x € M, and a \,-null
set N such that f(-,y) =0 Ap-a.e. for every y € N€.

Proof Clearly, it suffices to prove the existence of M (compare Remark 6.5).
Tonelli’s theorem gives

/m [/L |f(x,y)|dy} dm:/RmM | d(z,y) =0 .
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Thus according to Remark 3.3(c) there is a A,,-null set M such that

[l =0 woreene,

from which the claim follows again by Remark 3.3(c). m

Fubini’s theorem for scalar functions

It is now easy to extend Tonelli’s to the case of integrable K-valued functions,
which is of particular interest for applications.

6.9 Theorem (Fubini) For f € £;(R™""),

(i) f(z,-) € L1(R™) for A\p,-almost every © € R™,
f(,y) € L1(R™) for A\,-almost every y € R™;

(i) = — [pn f(at:7 y) dy is An,-integrable,
Y f]R’” x,y) dx is A,-integrable;
() fymeo £ 4(08) = fyn U £(,5) ] do = fo [ £, da] dy.
Proof (a) For f € £;(R"™"" R™), the claim follows from Tonelli’s theorem and
Remark 3.3(e).

(b) Given the representation f = f1— fo+i(fs— f1), with f; € £(R™T™ R™),
the general case now follows by Corollary 2.12 and the linearity of the integral. m

6.10 Corollary Suppose A € L(m) and f € L1(A). Let (j1,...,Jjm) denote a
permutation of (1,...,m). Then

/Afdx:/ / /f dxﬁ)---dxjm_l)dxjm.

Fubini’s theorem guarantees that integrable functions can be integrated in
any order. In combination with Tonelli’s theorem, we obtain a simple, versatile,
and extraordinarily important criterion for the integrability of functions of multiple
variables, as well as a method for explicitly calculating integrals.

6.11 Theorem (Fubini-Tonelli) Suppose A € L(m +n) and f € Lo(A).
(i) If one of the integrals

/ {/ |F(z,y)| dy} dz | / {/ |f(z,y)| dx} dy , /A|f|d(x7y)

is finite, then so is each of the others, and they are all equal. In that case, f
is integrable, and the statement of Theorem 6.9 holds for f.
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(ii) If prgm(A) is measurable? and f is integrable, then

Afd(x’y)_/prwm) {/Amf(x,y)dy} dz .

Proof Because f belongs to Lo (R™*™), the first statement follows immediately
from Tonelli’s theorem. Then by Theorem 3.9, f is integrable, and hence so is f.
The claim is now clear. m

6.12 Remarks (a) We have lost no generality by choosing the first m coordinates,
because by Corollary 6.10, this order can always be achieved by a permutation.

(b) Typically we omit the brackets in [o. [ [om f(2,y) dz] dy and instead write,
say,

/ [l y)dzdy . (6.9)
w Jam

In this notation, it is understood that the integrals are to be evaluated from the
inside to the outside.> The iterated integral (6.9) is to be distinguished from the
(m + n)-dimensional integral

/}R ot d(z,y) = /R o Do

(c) There exists f € Lo(R?) \El(RQ) such that

/R/Rf(x’y)dxdy:/R/Rf(af,y)dydx:o.

Therefore the existence and equality of the iterated integral does not imply that
f is integrable.

Proof Define f: R? — R by

Y if (z
flz,y) = { (z2 +y?)? f@y)# (0.0, (6.10)
0 if (z,y) = (0,0) .

Then f is Ag2-measurable. For every y € R, the improper Riemann integral fR flz,y)dzx
converges absolutely. Also f(-,y) is odd. Hence [, f(x,y)dx = 0 for every! y € R, and
therefore, because f(z,y) = f(y, ), we have

/R/Rf(“"’y)dxdy=/R/Rf(a:,y)dydxzo.

2As Remark IX.5.14(b) shows, this is not generally the case.

3That is, the integral me f(z,y) dz is calculated for fixed y and the result is then integrated
over y in R™.

4The case y = 0 is covered in the given argument, although it follows more simply from the
fact that f(-,0) =0.
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Now suppose f were integrable. Then, by Fubini’s theorem, 2 — [ |f(z,y)| dy would
also be integrable, which, because

|lzy| 1
/R(xQerQ)Q dy = m forx #0 ,

cannot be true. m

(d) There exists g € Lo(R?) \El(RQ) such that

0<‘//g(x,y)dmdy’:‘//g(x,y)dyd;v < 00 .
RJR RJR

Proof Let f be the function from (6.10) and take h € L£1(R?) with [hd(z,y) > 0.
Then g := f 4+ h has the stated properties. m

6.13 Examples (a) (multidimensional Gaussian integrals) For n € N*, we have

_ 2
/ el g = 77/2

Proof Using |z|?> = a1 + --- + 22 and the properties of the exponential function, it
follows from Tonelli’s theorem that

2 2 2 2
/ Pl dm:/~ ./e—%e—xz. cee e Tndpy - o o dan
Rn R R
. —z2 —t2 "
= H e idxj = ( e dt) .
iZ1JR R

Now the claim follows from Application VI.9.7. m
(b) (a representation of the beta function®) For v,w € [Rez > 0],

I'(v)T(w)

B(v,w) = Twtw)

Proof Set A := {(s,t) € R? ; 0 <t < s} and define yyw: A — C by vo,u(s,t) =
t"" (s —t)*"te™* for v,w € [Rez > 0]. Setting v, (t) :=t*"te~* for t > 0, we find from
Tonelli’s theorem that

/ e (s, D] d(s, £) = / / (s, 1)) ds it
A 0 t

- (/OooyRev(t)dQ </Ooo

Therefore 7y, . is integrable, and Fubini’s theorem analogously gives

YRe w($) ds) =T (Rev)T'(Rew) < oo .

/A%,w(s,t)d(s,t):/ooo /too%,w(s,t)dsdt:r(v)r(w). (6.11)

5Compare Remark V1.9.12(a).
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Since pry (4) = R and A, = [0, s] for s > 0, we obtain from (6.11) and Theorem 6.11(ii)

['(0) T (w) = /OOO(/O £ (s — 1) dt)e " ds

The substitution r = ¢/s in the inner integral and the definition of the beta function give

I'v)T(w) = /OOo (/01 TR (I L dr)s”+w_le_3 ds = B(v,w)(v+w), (6.12)

which completes the proof. m

Example (b) shows that complicated integrals can be simplified by a deft
choice of integration order.

Fubini’s theorem for vector-valued functions®

We now want to show that Fubini’s theorem also holds for E-valued functions,
and offer some applications. A few preliminary remarks will prove helpful.

Suppose A € L(m + n) has finite measure. By Proposition 6.2 and Corol-
lary 6.3, there is a Ap,-null set M such that A, € L£(n) and A\, (A},)) < oo for
z € M°. We fix g € [1,00). Because |xa,|? = xa,,, we have

/ IXAp, ()| dy = / XA () dy = A (Apz)) < oo
R’!L R’!L

If, as agreed to in Section 4, we identify X, with the equivalence class of all
functions that coincide A,-a.e. with y — x4, (y), we obtain the map

M — F:=Ly(R"), x+ xa,

Because F' is a Banach space, we can study its measurability and integrability
properties.

6.14 Lemma Suppose A € L(m + n) has finite measure. Then the F-valued map
T XA, which is defined \,,-everywhere, is \,,-measurable.

Proof We denote by 14 : R™ — F the trivial extension of z +— XAp)-

(i) Suppose A is a Ay 4p-null set. By Remark 6.1(h), there is a Ap,-null set M
such that A, is a A,-null set for x € M¢. Therefore 14 (x) = 0 in F for x € M*.
The claim follows.
(ii) Now suppose A is an interval of the form [a,b) with a,b € R™"". Set
Ji =111 [a;,b)) and Jo = H;nzt;l+1[aj,bj). Because A = J; x Jo, we have
XAp = X () xs, forzeR™,

and we see that in this case 14 belongs to S(R™, F).

6This section may be skipped on first reading.
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(iii) Suppose A C R™™ is open and (I;) is a disjoint sequence of intervals of
the form [a,b) with A = (J; I; (see Proposition IX.5.6). We set

k

fr ::waj for k e N .

j=0
By (ii) and Remark 1.2(a), (f) is a sequence in S(R™, F'). Also, there is a set M
of Lebesgue measure zero such that

k

[a@) = el = [ [eas) = (3 s @)
§=0

:An( [j (Ij)[x]) = i A (1) 1)

j=k+1 Jj=k+1

for x € M¢. In addition, A, has finite measure by Corollary 6.3, and A\, (A[;)) =
Z;io An((1j)[z)) for z € M¢. Therefore (fi) converges A\j,-a.e. to ¢4 in F, and
we see that 14 belongs to Lo(R™, F).

(iv) Suppose A is a Gs-set. The proof of Corollary IX.5.5 shows that there
is a sequence (O;) of open sets such that A\, 1,(0;) < 0o and A =(1O;. Set

k
fei=tar o, s  Rii=[)O;\A forkeN.

=0

Then (fx) is a sequence in Lo(R™, F') by (iii), and (Ry) is a descending sequence
with Ny~ Rk = 0 and Ay, (Ro) < 00. Also, we have

I£2e) = 0a@lE = | iy 0,08 = a0 & = A((Ri))

for \jp-almost every © € R™. The continuity of A\, from above therefore implies
that (fx) converges A,-a.e. to 4. From Theorem 1.14, it now follows that 14
belongs to Lo(R™, F).

(v) To conclude, consider A € L(m + n) such that A\p4,(A) is finite. By
Corollary IX.5.5, there is a Gs-set G containing A and having the same measure
as A. By Proposition IX.2.3(ii), N := G\ 4 is a Ay4p-null set with ¢4 = g — YN
Am-a.e. Now the claim follows from (i) and (iv). m

6.15 Corollary Let p,q € [1,00), and suppose ¢ € S(R™", E) has compact

support. Then the L,(R", E)-valued function x — [p(z,-)] is defined A\p,-a.e. and
is Ly-integrable, that is,

L 1o o gy < o0

If p = g, this holds for every ¢ € S(R™" E).
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Proof By Minkowski’s inequality, it suffices to prove this for ¢ := ex 4 withe € F
and A € L(m+n), where A has finite measure if p = ¢, and A is bounded if p # q.

By Lemma 6.14, there is a A,,-null set M such that the function
M — Ly(R") , o+ xa,

is \n-measurable. Because ¢(z,-) = exa,,, (= ¢(z,-)) € Lo(M®, Ly(R", E)).
From

1/q 1
(@, Mz enm = ( /R el xan ) dy) = lel P (A)]* fora e Me

we obtain

/R @, I, @,y dz = lel” | An(Apg )P/ d

In the case p = ¢, Proposition 6.2 implies

/ )\n(A[x]) dxr = )\m+n(A) < 00 .

Suppose therefore p # ¢q. Because ¢ has compact support, there are compact
subsets K C R™ and L C R" such that A C K x L. Thus A, C L, which implies
An(Afz)) < An(L) for App-almost every x € R™. From this we deduce

A (Apg )P/ dx = / An (AP dz < Ap(L)P I A (K) < oo . m
R™ K

These preparations are more general than necessary for our current purpose,
but will prove useful for further applications. We are ready to prove Fubini’s
theorem in the F-valued case.

6.16 Theorem (Fubini) For f € £;(R™"", E),
(i) f(z,-) € Li(R", E) for A\,,-almost every x € R™;
f(-,y) € L1(R™, E) for A,-almost every y € R";
(ii) = — [gu f(x,y)dy is Ap-integrable;
Y — fgm f(z,y) dx is \,-integrable;
(i) Sgmrn £ A@Y) = Jgm [Jon [, y) dy] dz = [ou [ fom f2,y) da] dy.

Proof (a) Let f € £1(R™"", E). Then there is an £;-Cauchy sequence (f;) in
SR™" E) and a A\y,4,-null set L such that fi(z,y) — f(z,y) for (z,y) € L.
By Remark 6.1(h), there is a set My of measure zero such that

f](xv) - f(xa) )\n‘a~e~ 5 (613)

for x € M{. We set F := L;(R", E) and denote by ¢; the trivial extension of
x +— fj(x,-). According to Corollary 6.15, (¢;) is a sequence in £4(R™, F) for
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which
o =il = [ les@) = pu@lrde = [ [ 1) = fitep)ldydo

Further, Lemma 6.4 shows

[ 5 st = [ 1l = 15— sl

and we see that (¢;) is a Cauchy sequence in £4(R™,F). By Theorems 2.10
and 2.18, there is thus a g € £1(R™, F'), a A,,-null set Ms, and a subsequence of
(¢;), which, for simplicity, we also denote by (¢;), such that

lim ¢;(z) =g(x) forx e My (6.14)
j—oo

in Fand ¢; — gin £;(R™, F'). For z € M§, let g(z) € £1(R", E) be a representa-
tive of g(z). Then there is a set N(z) of Lebesgue measure zero and a subsequence
of (¢;(x)), which we also write as (p;(x)), such that, in E,

Jim filz,y) = Jim, pj(@)(y) = g(z)(y) for z € My andy € (N(x))° .

Hence (6.13) implies that for every x € My{ N M5 the maps f(z,-), g(x): R" —
E are equal \,-a.e. Lemma 2.15 now shows that f(z,-) belongs to £1(R", E)
and that
g(@)(y)dy = f(z,y)dy for x € My N M . (6.15)
R" R™
Furthermore, it follows from (6.13), (6.14), and Theorem 2.18(ii) that

/fj@c,y)czy: / e@W)dy — | g@w)dy= [ fly)dy  (6.16)
R™ R"

R™ R™
for x € My N Ms.

(b) For p € F = Li(R",E), let Ap := [, ¢dy. By Theorem 2.11(i), A
belongs to L(F, E). Theorem 2.11(iii) implies that g; := Ap; defines a sequence
in £1(R™, E).

Because

wia) = [ i@y = [ fm)ds. (617)

RTL
we know from Theorem 2.11(i) that

|gj($) - gk($)| = ‘/]R" (f](xvy) - fk($7y)) dy‘ < /]R" |fj(xay) - fk(xay” dy .
Therefore Theorem 2.11(ii) gives

[ =ade< [ [ 15w~ filon) [ dvds =155~ il

where the last equality follows from Tonelli’s theorem. Therefore (g;) is a Cauchy
sequence in £1(R™, F), and by completeness there is some h € £1(R™, E) such
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that g; — hin £1(R™, E). Hence we can find a A,,-null set M3 and a subsequence
of (g;), which we also denote by (g;), such that g;(z) — h(z) for € Mg and
j — oo. In view of (6.17), it follows from (6.16) that

h(z) = flz,y)dy for x € My N MsN My, (6.18)
R"L

which proves the first statement of (ii).

(c) Since g; — h in £1(R™, E) and because of (6.17) and (6.18), Theorem
2.18(ii) implies

/ fj(xay)dydx_)/ flz,y)dyde .
m Jgn m Jgn

Finally, it follows from Lemma 6.4 that

/ fj<x,y>dydx=/ f; d(a,y) |
m JR" R'77L+'7L

and with [5.. fd(z,y) = lim; [pmen fjd(z,y), we have

/ L ) dydr = /R L FdGey).

We have proved the first part of each of the statements (i) and (ii), and the first
equality in (iii). The remaining claims follow by exchanging the roles of z and y. m

6.17 Remark The analogues of the Fubini—Tonelli theorem and Corollary 6.10
clearly also hold in the E-valued case. m

Minkowski’s inequality for integrals

As an application we now prove a continuous version of Minkowski’s inequality.

Fix p,q € [l,00). For f € Lo(R™*" E), Theorem 1.7(i) shows that |f|?
belongs to Lo(R™1" RT). Hence Tonelli’s theorem implies that |f(z,-)|? lies in
Lo(R",RT) for \,,-almost every = € R™ and that the R*-valued function

v |f(z,y)|?dy ,

which is defined A,,-a.e., is A\,,-measurable. Therefore

1l o) = (/Rm {/]R" |f(z,y)|? dy]p/q dm)l/p

is defined in R*. We easily check that
Lipq) R™E) i= { f € LoR™ ™, E) 5 | fll(pg) < 0 }
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is a vector subspace of EO(Rern’E) and that ||.||(p7q) defines a seminorm on
L(pq)(R™", E). Finally, we set

S.(R™" E) = {f € SR™™ E) ; supp(f) is compact} )

6.18 Lemma S.(R™'" E) is a dense vector subspace of Lp.q) (R™™ E).

Proof (i) Take f € L, 4 (R™"", E) and let (g) be a sequence in S(R™", E)
such that gx — f a.e. Set Ay := [|gr] < 2|f]]NAB™*" and fi, := xa,gr. Then
(fx) is a sequence in S.(R™*" F), and there is a Ay 4n,-null set L such that

fe(z,y) — flx,y) for (z,y) € L. (6.19)

Moreover
Ife = fI < |ful +1fI <3[f] forkeN. (6.20)

(ii) By (6.20), it follows from Tonelli’s theorem and Theorem 3.9 that there
is a Ap,-null set My such that

|f(z,-) = fr(z, )|, [flx,)]? € L1(R™) forxz € M§ and k € N . (6.21)

Remark 6.1(h) says there is a \,,-null set M; such that L, is a A,-null set for every
x € Mf. Set M := My U M; and choose x € M¢. From (6.19), we read off that
fe(x,y) — flx,y) for y € (Liy)¢. By (6.20) and (6.21), we can apply Lebesgue’s
dominated convergence theorem to the sequence (|f(z,-) — fi(z, - )|p)k€N, and we
find

lim |f(2,y) — fe(z,y)|"dy =0 forx € M.

k—oo Jrn

Now define
p/ay\ ~
g = (a:»—>(/n |f(a:,y)—fk(a:,y)|qdy) ) forkeN.

Then the sequence () converges Ap,-a.e. to 0.

(iii) Finally, set

P = (x - 3”(/” If(x,y)lqdy)p/q)N :

Because f € L, ,)(R™"™ E), we know ¢ belongs to £1(R™), and (6.20) implies
0 < ¢ < ¢ Ap-ae. for kK € N. Hence we can apply dominated convergence
theorem to (¢x) to see that ([pm ¢k )ken is a null sequence in R*. The claim now
follows because

[ o= [ ] 156 = s an] " o = 15 - il - m



154 X Integration theory

One easily checks that N := {f € Lo(R™™ E); f=0 a.e.} is a vector
subspace of L, (R™"" E) and that f belongs to A if and only if || f||(,q) = 0.
Therefore

Lp.q) (Rmﬂl, E):= Lp,q) (Rmﬂl, E)/N

is a well defined vector space, and the assignment [f] — || f||(,,q) defines a norm on
Lp.o(R™™ E), which we again denote by ||||(,.)- In what follows, we always
provide the space L, ,(R™™, E) with the topology induced by ||-||(

We set

P,q)*

S{(R™ ) = { [f] € LoR™", E) ; [f]n S(E™" E) 0} .

6.19 Remarks (a) S.(R™*", E) is a dense vector subspace of L, ,(R™", E).

Proof This follows from Lemma 6.18. m

(b) Let f € Lo(R™™, E). If f(x,-) belongs to L,(R™, E) for almost every » € R™
and

o ([ Vi) e @

then [f] belongs to L, o (R™*", E).

(©) Ly (Rm+n’ E) = Lp(Rm+na E).
Proof This follows from Remark 4.9(b) and the Fubini-Tonelli theorem. m

(d) S.(R™, E) is a dense vector subspace of L,(R", E).

Proof This is a consequence of (a) and (c). m

Consider g € S.(R™"", E). By Corollary 6.15, Tog := (z — [g(z,-)])”
belongs to L, (R™, Le(R™, E)). Denoting by [Tog] the equivalence class of Tyg with
respect to the vector subspace of all elements of Lo(R™, L,(R", E)) that vanish
Am-a.e., we have [Tog] € L,(R™, L,(R", E)). Further, it follows from Corollary 6.8
that [Tog] = [Toh] if g,h € S.(R™"™, E) coincide A\, 1n-a.e. Thus

T: S.(R™",E) = L(R™, L(R", E)) , [g] — [Togl
is a well defined linear map.
6.20 Lemma There is a unique extension

T € L(L(o(R™™ E), L,(R™, Ly(R", E)))

of T, and T is an isometry with a dense image.
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Proof (i) For f € S.(R™™™ E), let g € f NS.(R™*" E). Then

p/q
/R TSIy = / | / g(@y)ltdy) dz =gl = I£1,, -

Therefore T € E(SC(]R”””, E),L, (]Rm, L,[R", E))) is an isometry. Now it follows
from Theorem VI.2.6 and Remark 6.19(a) that there is a uniquely determined
isometric extension T of T

(ii) We set F := L,(R", E) and choose w € L,(R™, F) and ¢ > 0. It follows
from Remark 6.19(d) that there is a ¢ € S.(R™, F)) such that [[w — ||, < ¢e/2.
Let Z;:o X4, f; be the normal form of . Then U;:o A; is bounded in R™, and
o= Z;ZO Am(A4;) is finite. In the case o = 0, we have

[wllp = [lw="T0[, <e/2.

In the case o > 0, we choose for every j € {0,...,r} a representative f; of fj and
a1; € &(R"™, E) such that

Iy = fillg < a™VP(r+1)" Ve

Also let )
)= ZXAJ (2)9;(y) for (z,y) € R™H" .

With ¢; = Zz:() XB,, ek, for j € {0,...,7}, we then have

T8 TS
h=" "3 XA, XBy €k = D D XA;xBy, €k;

3=0 k;=0 §=0k;=0

and we see that h belongs to S.(R™", E). Finally, let g be the equivalence class
of h in Lo(R™™ E). Then g belongs to S.(R™"" E), and Tg = Z;ZO [xa, 5]
From Hélder’s inequality (for sums) and the equality x% = xa, it follows that

/R 1Tg -l :/ / ‘ZXA — fily ))‘ r’/qu
(r+1p/q / /,LZXA 2) 5 (y '(y)lqdyr/qu
(r+1p/q/ [ZXA )l — fj||%i|p

7“+1”/(’Z>\ D s = £ill -
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Therefore,
ITg = ellp < a7 (r+ 1)V* max |y — flr < /2.

and consequently ||7'g — wl|, < e. Because this holds for every choice of w and ¢,
we see that the image of T', and a fortiori that of T, is dense. m

As usual, we lighten the notation by writing T for T. In addition, as stated
in Section 4, our notation for elements of Lebesgue spaces does not distinguish
between cosets and their representatives. This means that for f € L, o) (R™*™ E)
we may write T f(z) as f(x,-). With these conventions, Lemma 6.20 says that

T: Lpg)(R™", E) — Ly(R™, Ly(R™, E)) , f = (z = f(,-)) (6.22)

is a linear isometry whose image is dense.

Now it is easy to prove our continuous Minkowski’s inequality.

6.21 Proposition (Minkowski’s inequality for integrals) For 1 < ¢ < oo, we have:

o ([ [ 1reotad's)” < [ [ @] e

for f € Lo(R™™ E).
w ([ ][ renala)" < [ ][ repra) <o
for f € L o(R™™, E).
Proof In case (i), we can assume without loss of generality that
/m [/l |f(x,y)|qdy}1/qu <00 .

Then |f| belongs to L1 4 (R™*™ R), and the claim is a special case of (ii), with
f replaced by |f| and E by R. Suppose therefore that f € L 4 R™™ E). Tt
follows from Lemma 6.20 and Theorem 2.11(i) (with E replaced by L,(R"™, E))
that

R™

/ Tfdx = f(z,-)dx € Ly(R", E)
m R™

and

(L.

q 1/q
taoyda ay) " = | [ wrasl| < [T o
m ¢(R™,E) R™

[ ([ sy s

R™

This completes the proof. m
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A characterization of L,(R™"", E)

As another consequence of Lemma 6.20, we obtain an often useful generalization
and sharpening of Fubini’s theorem.

6.22 Theorem For1l <p < oo,

LP(Rm+n7E) _)Lp(RmaLp(Rn7E)) ) f’_> (l"—>f($,))
is an isometric isomorphism.
Proof Suppose v € L,(R™, L,(R", E)). By Lemma 6.20, there is a sequence (f;)
in L,(R™*" E) such that lim; T'f; = v in L,(R™, L,(R", E)). Because T is a
linear isometry, it follows easily that (f;) is a Cauchy sequence in L,(R™*" E).

Denoting by f its limit in L,(R”"", E), we have T'f = v. Therefore T is surjective.
This proves the claim. m

By means of this isometric isomorphism, we can identify the Banach spaces
L,(R™*" E) and L,(R™, L,(R", E)):

L,(R™", E) = L,(R"™, L,(R", E)) .

6.23 Remarks (a) The statement of Theorem 6.22 is false for p = oo, that is
Loo(R™" E) # Lo (R™, Loo(R", E)) .

Proof Take A := { (z,y) € R?:; 0<y<z< 1} and f:= xa. Because A is Lebesgue
measurable, f belongs to Loo(R?). If we set

o N\ _ ) Xz ifo<z<1,
9(z) = f(z,) = { 0 othorsise .

then g(z) belongs to Lo (R), and ||g(z)||cc < 1 for z € R. But g nevertheless does not
belong to Lo (]R, Lo (R)), because the map g: R — Lo (R) is not Ai-measurable. To
see this, it suffices by Theorem 1.4 to show that g is not Ai-almost separable-valued. To
check this, note that

lg(z) —g(r)leew =1 for r € R\{z} (6.23)

for z € (0,1]. Were g Ai-almost separable valued, there would be a A;-null set N C R
and a sequence (7;) in R such that

inf [lg(z) — g(rg)lloe < 1/2 forz € N°. (6.24)
J

Because A1((0,1]\N) = 1, the set (0, 1]\ N is uncountable. Hence it follows from (6.23)
that (6.24) cannot hold, and g is not Ai-measurable. m

(b) Generalizing Theorem 6.22, one can show that for any p,q € [1, 00), the map
L(p,Q)(Rm+naE) - LP(Rvaq(RnaE)) , (e f(l‘, )

is an isometric isomorphism. Therefore L, ,) (R™*" E) is complete. m
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A trace theorem

From Example IX.5.2 and the invariance of the Lebesgue measure under isometries,
it follows that every hyperplane I" in R" is a A,,-null set. Hence for u € L,(R"),
the restriction u | T, or trace of w on T, is not defined, because u can be “arbitrarily
changed” on I'. As another application of Fubini—Tonelli, we now show that one
can nevertheless define such a trace on I for elements of certain vector subspaces
of L,(R™). Of course, this is trivially the case for the vector subspace C}(R™).
The significance of what follows is that this space is given not the supremum norm,
but rather the L, norm, with derivatives thrown into the mix. In the next section,
we will understand better the significance of these subspaces of L,(R™).

Consider the coordinate hyperplane T' := R™ ™! x {0}, which we identify with
R™™!. For u € C(R™), we let yu := u|T be the trace of u on I':

(yu)(z) := u(z,0) for z € R" " .

Then v: CHR™) — C.(R™™'), u > yu is a well defined linear map.
Now take 1 < p < oo, and give C}(R") the norm

1/p

n
el = (Il + > I95ull})
j=1

Further, set N
Hy(R") := (Co(R™), [ ]l1.p) -

Since C.(R"!) is a vector subspace of L,(R™™1),
v ﬁ;(R”) — LR, wsyu

is a well defined linear map, the trace operator with respect to I' = R*~!. The
following trace theorem shows that « is continuous.

6.24 Proposition ~ € E(ﬁ; (R™), L,(R"™ 1)) for 1 < p < .

Proof Define h € C1(R) by h(t) := [t|P~1t. For v € C}(R™), it follows from the
chain rule that 9, h(v) = h'(v)0,v. Since v has compact support, the fundamental
theorem of calculus then implies that

“h(o.0) = [T 0wy = [ W@ ey for s R
Because h/(t) = p [t|P~!, we find
(.00 = [h(w(a. )| < [ W (w0 o) dy

—) / o, 9) [P~ |80z, y)| dy -
0
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—1 1
Also, Young’s inequality gives P71y < p—fp +—nP for &n € [0,00), so
p p

oo

(o0 < (- 1) [ " o, )P dy + | onteray.

With ¢, := max{p—1, 1}, it now follows from Fubini-Tonelli that

/}RW1 |v(x, 0)|P dx
<o [ hewnPiens [ o).

Rr—1xR

(6.25)

Therefore N
el sy < elloll gy for v e AAE),

where ¢ := 011)/ P This proves the theorem. m

6.25 Remark Denote by H" the upper half-space of R™:
H" :=R""" x (0,00) = {(z,y) eR" ' xR; y>0}.
Then T' = R"™! x {0} = OH". If we set
Hy @) = ({ulH"; we CLRD - lh)

then ﬁ; (H") is a vector subspace of L,(H"), and from a statement analogous to
(6.25), it follows that
v € L(Hy(H"), Ly(R"™)) .

In this case, yu for u € ITI]} (R™) is the trace of w on the boundary 0H". m

Exercises
1 Suppose B € L(n) and a € R™"*. Denote by
Za(B) == {(2,0) +ta e R"" ; z € B, t€[0,1] }
the cylinder with base B and edge a, and let
Ko(B) = {(1—t)(z,0)+ta e R""" ; z€ B, t€[0,1] }
be the cone with base B and tip a. Prove:

(8) Ans1 (Za(B)) = [ans1| An(B);
(b) Anst (Ka(B)) = [anta| An(B)/(n + 1),
If one interprets |an+1| as the height of the cylinder Z,(B) or the cone K,(B), then (b)

says the volume of an n-dimensional cone is equal to the total volume of n cylinders with
the same base and height.
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2 For 0 < r < a, let V,, be the region in R® enclosed by the 2-torus Tg,,«. Show that
Var = or2ar?.

3 Suppose J C R is an interval with endpoints a := infJ and b := supJ. Also let
f € Lo(J,RT), and denote by
Ry = {(;c,t) ER" x J; |z| < f(t) }

the solid of revolution arising by rotation of the graph of f around the t-axis. Prove that

b

Anir(Ry) = wn / (F@e)™ dt |

where wy, is the volume of B™. Interpret this formula geometrically in the case n = 2.

4 Suppose K is compact in R” and px := [, p(z)dx > 0 for p € £1(K,R*"). Then

S(K,p) = L/ zp(z)dr € R"
PK JK

is the centroid of K with respect to the density p. We set S(K) := S(K,1). Now suppose
J :=[a,b] is a perfect, compact interval in R, and let f € Lo(J,R"). Also put

A ={(z,9) eR*; 0<y< f(z), z T},

and denote by R the solid of revolution in R® generated by f (by rotating about the
x-axis). Prove:

(a) For f € L1(J,RT),
1 1

S(Af) = (Sl(Af)“SQ(Af)) = ||f||1 (/lbxf(x)dx7§/lb(f(x))2dx> .

(b) For f € Lo(J,RT), \
S(Ry) = (ﬁ/ £(£(1))? dt,0,0) .

(c) For f € £1(J,R"), we have Guldin’s first rule

b
Ns(Ry) =7 / (f(2))?dz = 2153 (Ap)Aa(Ay) .

a

In words, the volume of a solid of revolution is equal to the area of a meridional slice”
times the circumference of the circle drawn by the centroid of that slice during a full
revolution.®

5 (a) For a € [0,7/2), let a := (cos,0,sina). Determine the centroid of the cylinder
Z4(B2) and the cone K, (B2) with respect to the density 1.

(b) Let Ax == {(z,y) €R*; 0<y<e ™, x>0} for A > 0. Show that S(A,) € Ax.
(c) Give an example where S(Ay) ¢ Aj.

"That is, the intersection with a plane containing the rotation axis.
8Guldin’s first rule also holds for solids of revolution not arising from the rotation of a graph;
see Exercise XII.1.11.
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6 Let K C R™ be convex and compact. Check that S(K,p) € K for p € £1(K,R™).

7 Denote by A, := {z € R" ; z; > 0, 3" ,x; < 1} the standard simplex in R".
Prove:

(a) An(An) = 1/n!.
(b) S(An) = (1/(n+1),1/(n+1),...,1/(n+1)).

8 Given f € L1(R™,K), g € L1(R"™, E), define F(z,y) := f(z)g(y) for (x,y) € R™ xR".
Show that F belongs to £1(R™1", E) and that

/ Fay)day) = [ f)de / oy) dy .
RmAn n

RM

9 ForD::{(OU,y)GR2 ; T,y >0, m+y§1},showthat

1
™ d = ——8B 1 2 f N .
/ny (5,9) = —7 B+ Ln+2) form,ne

10 Show that f[O,l]x[O,l] y/va d(z,y) = 1.
11 Show that [, ;0 dz =0 for ¢ € CH(R™,E) and j € {1,...,n}.
12 For each of the following maps f: (0,1) x (0,1) — R, calculate

/OI/OIf(x,y)dxdy, /OI/OIf(x,y)dydx, /01/01|f(m,y)|dxdy, /01/01|f(x,y)|dydx,

y) = (x—y)/(® + )2
(b) f(z,y) :==1/(1 — zy)* for a > 0.

13 Let p,q € [1,00]. Prove:
(a) Lp(R") & Lq(R™) if p # g.
(b) if X C R™ is open and bounded, then L,(X) C Lq(X) if p > q.



7 The convolution

In this section we use the translation invariance of the Lebesgue measure to in-
troduce a new product on L;(R"), the convolution, which rests on the Lebesgue
integral. We show that this operation is defined not only on L;(R") but also on
other function spaces, and that it has important smoothing properties. Among
its applications are certain approximation theorems which we prove here for their
great usefulness in later constructions.

We will consider mainly spaces of K-valued functions defined on all of R"™.
For such spaces we omit the domain and image from the notation. In other words,
if F(R") = F(R", K) is a vector space of K-valued functions on R", we write simply
§ if there is no risk of confusion. Thus L, stands for L,(R") = L,(R",K), and so
on. Also [ fdz will always mean [, f dz.

Defining the convolution

Let I" be a K-vector space. For f € Funct(R", F'), we define another function
f € Funct(R™, F) by f(z) := f(—=z), where x € R". The map f — f is called
inversion (about the origin).

Recall from IX.5.15 the definition of the translation group ¥ :={7,; a € R" }.
Now we define an action! of this group on Funct(R", F) by

T x Funct(R", F) — Funct(R™", F) , (74, f) — Taf , (7.1)
where
Tof(x) == f(x —a) fora,z € R"™. (7.2)

Therefore
Taf = foT_o= (Tfa)*f )
where (7_,)* is the pull back defined in Section VIII.3.

7.1 Remarks (a) For f € Funct := Funct(R", K), we have f= (—idgn)*f.

(b) Inversion is an involutive? vector space isomorphism on Funct and on £, for
p € [1,00]U{0}.
)

(¢) Suppose E € { BC*, BUC*,Cy ; k € N}. Then inversion belongs to Laut(E).
(

d) For f € Funct and x € R", we have

(e /) (y) = T f (y) = fx —y) foryeR".

1See Exercise 1.7.6.
2A map f € XX is said to be involutive if fo f =idx.
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(e) Supposen =1anda > 0. Then7,: R — R, z — x+a is the right translation
on R by a. Definition (7.2) means that 7, also translates the graph of f to the
right by a.

Therefore T acts as a right translation on Funct(R, F), which clarifies defining 7, f
as the pull back of the left translation 7_, of R. m

Take f,g € £1 and z € R", and let O be open in K.

(-2 f)7H(0) = (f o 7)1 (0) = (£ 1(0)) .

Therefore it follows from Corollary 1.5 and Lemma IX.5.16 that (17—, f)~!(O) is
measurable. Hence, again by Corollary 1.5, 7_, f belongs to £y. Now we deduce
from Remark 1.2(d) and parts (b) and (d) of Remark 7.1 that y — f(z — y)g(y)
belongs to Ly for every x € R™. If this function is integrable, we define the
convolution of f with g at « by

f o) = / f(@ — w)g(y) dy -

We say f and g are convolvable if f * g(z) is defined for almost every € R". In
this case the a.e.-defined function

frg=(z— frg(2))

is called the convolution of f with g. If f and g are convolvable and (f * g)? is
integrable (or f * g is essentially bounded for p = c0), we write fxg € £,, in a
slight abuse of notation.?)

We now show that every pair (f,g) € £, x £1 with p € [1, 00] is convolvable.
The following observation will be helpful.

7.2 Lemma For f € Lo and (x,y) € R" x R" = R*", let

Fi(z,y) == f(x) and Fy(z,y):= f(z—vy) .

Then F| and F» belong to Lg (RQ").

3We literally mean that the trivial extension of f * g belongs to L.
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Proof (i) Suppose O is open in K and A := f~}(0). Then A belongs to £(n).
Therefore Remark 6.1(b) and Proposition 6.2 show that F;'(O) = A x R is
Aon-measurable. Now the claim for F; follows from Corollary 1.5.

(i) Set p(z,y) := (x—y,y) for (z,y) € R™ x R™. Then ¢ € Laut(R?") and
F, = Fy o . The claim then follows from (i) and Theorem IX.5.12. m

7.3 Theorem Suppose p € [1,00] and (f,g) € L, x L;.
(i) f and g are convolvable.
(ii) (Young’s inequality) fx*g € L, and ||f *g|lp, < | fllp llgll1-

Proof (a) Suppose first that p € [1,00). By Lemma 7.2 and Remark 1.2(d),
the map (z,) — f(z — 3)g(y) belongs to Lo(R?*"). Using Holder’s inequality, we
deduce that

/Ifx— Idy—/lffc— ) 1)V la(y >|1/p dy

1/1)
/|fx— P latu) | dy) /|g )"

From this and Tonelli’s theorem, we get

[ ([ 116 - watay)” ao <9l [ [ 1t =)l o] dy dz

Il [ [ £~ ) delg(wldy

+
= [lgll; ™" | £I12 <

Y

where in the last step we once more used the translation invariance of the Lebesgue
integral. Thus we find*

(1156 -ngtnas]"a)"" < sl ol < ox (73)

Now from Remark 3.11(c), we conclude that [ |f(z — y)g(y)|dy < oo for almost
every z € R"; by Remark 3.11(a), this suffices to show that f and g are convolvable.
Part (ii) of the theorem now follows from (7.3).

(b) In the case p = oo, we have

/|f z—y)g(y)|dy < ||flls llglls < oo for almost every = € R™ |

which immediately implies (i) and (ii). =

4Those readers who worked through the last part of the previous section will recognize that
this bound can also be easily derived from Minkowski’s inequality for integrals.
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7.4 Corollary Let ([f],[g]) € Ly x Ly with p € [1,00]. Then
f>s<g:f>s<gk a.e. in R"

for (f,4) € (If], l9])-

Proof By Theorem 7.3, f x g, f* d, and f x § are defined a.e. and belong to L,,.
Because

frg—Frdg=fx(g-9) +(-F)*d,

we obtain from Young’s inequality that

£ 9= Fxdll, <11, Mo =gl + 11 = 71l 13

=0,
from which the claim follows. m

We can now define the convolution for elements of L, x Ly with p € [1, 00]:
indeed, Corollary 7.4 guarantees that the map

*3LpXL1_)Lpa ([f]a[g])’_}[f*g]

is well defined. We call this the % the convolution product on L, x L;, and
[f] * [g] :== [f * g] convolution of [f] with [g]. It is clear that the convolution can
also be defined on L; x L, and we use the symbol = for this as well.

The translation group

To be able to better explore further properties of the convolution, we first gather
some important definitions and facts about the representation of the translation
group (R™,4) on function spaces.

Let F be a K-vector space and let V' be a vector subspace of Funct(R", F')
that is invariant under the action (7.1) of the translation group ¥ of R, meaning
that 7,(V) C V for all a € R". By restriction, (7.1) induces an action

ITXV oV, (T4,0) = T

of the translation group ¥ on V. For every a € R", the map T, := (v — 7,v) is a
linear map from V into itself. Because

TaThV = Tapv and Tov =0 ,
T, is a vector space automorphism of V and (7, a)*l =T_,. Hence®

R™,4+) = Auwt(V), ar—1T,

5See Remarks 1.12.2(d) and 1.7.6(e).
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is a group homomorphism, a linear representation of the group (R™,+) on V. In

particular,
Ty ={T, € Awt(V); a €R" }

is a subgroup of Aut(V), called the group of translations on V. Instead of Ty,
we tend to use the same symbol 7, if there is no fear of misunderstanding. The
invariance of V' under (7.1) is also expressed by saying that (R",+) is linearly
representable on V.

If V is a (semi)normed vector space, the group ¥y is said to be strongly
continuous if lim,_.g 7,v = v for every v € V.

7.5 Remarks (a) (R",+) is linearly representable on Funct and on B := B(R").
(b) (R™,+) is linearly representable on Lo, and ||74.f||cc = || flloo for f € Loo.

Proof Take f € L. Forevery a > || f]|oo there is a set IV of Lebesgue measure zero such
that |f(z)| < « for z € N°. By translation invariance (Theorem IX.5.17), N, := 74 (V)
also has measure zero and

[Taf(x)| = |f(x —a)]| <a forxze N;.
Therefore 74 f is essentially bounded, and ||7a f||cc < || f]loo- The claim follows since

[flloe = I7=a(Taf)lloo < lI7aflloc - ™
(c) The translation groups Tp and T,_ are not strongly continuous.
Proof |Taxsr — XB7||leo =1 for a € R™\{0}. m
(d) If Ty is strongly continuous, then

(a—T1of) €CR™, V) for feV.

Proof This follows from 7of — 7o f = Ta—b(7of) — 7o f for f € V and a,b € R". m

7.6 Theorem Suppose V = L, withp € [1,00) or V = BUCF with k € N. Then
(R™,+) is linearly representable on V', and the translation group Ty is strongly
continuous. Also || 1. f|lv = ||f|lv fora €e R" and f € V.

Proof (i) We consider first the case V = BUCF. Take f € BUC*, a € R”, and
e > 0. Then there is 6 > 0 such that |f(z) — f(y)| < € for all z,y € R" satisfying
|z —y| < 4. It follows that

[7af (@) = Taf W) = |f(x —a) = fly—a)| <e (7.4)
for x,y € R™ such that |z — y| < §. Therefore 7, f belongs to BUC, and because
0o f =7,0%f fora e N" and |o| <k, (7.5)

we obtain 7, f € BUC*. Consequently (R",+) is linearly representable on BUC*.
From Remark 7.5(b) and (7.5), we find ||7af|lgcr = | fllBc*-
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Now take z € R". If |a| < 0, we can set y = x + a in (7.4), and we get
|7of(z) — f(x)] <e forxzeR"™,

that is, ||7af — flleo < € for a € dB". Analogously, we can show with (7.5) that
there is a 01 > 0 such that ||7,f — f|lgcr < € for a € 6;B". Therefore Tgycr is
strongly continuous.

(ii) Let p € [1,00) and f € L,. The equality |74 f||, = || f||, follow from the
translation invariance of the Lebesgue integral.

Now take € > 0. By Theorem 4.14, thereisa g € C. such that || f — g||, < ¢&/3.
Because ¢ has compact support, there is a compact subset K of R™ such that
supp(7ag9) C K for |a] < 1. Also, since g is uniformly continuous, there exists
0 € (0,1] such that

(709 = glloo < &/3An(K)'/? for a € 6B™ .
Suppose a € 6B". Because supp(7,g9 — g) C K, Theorem 5.1(iv) implies that
|7ag — gllp < &/3 for a € 6B" .

Since
Iraf = fllp < 17 f — Tagllp + [|7ag — gllp + g — fllp

and || 7af — 7agllp = 17a(f — 9lp = I.f — gllp, we get ||7af — fl|, < & for a € 6B,
and we are done. m

We now define an action of ¥ on L, for p € [1,00]. By Remark 7.5(b) and
Theorem 7.6, 7, is an isometry of £, for every a € R". Therefore the map

Ly— Ly, [f]’_’[Taf]
is well defined for every a € R". We denote it by 7, also, that is, we set
To[f] :=[raf] for f €L, and a € R™.

Then
I7alf1llp = N7 flllp = lI7afllp = 1fllo = I L1l - (7.6)

Clearly
TX Ly — Ly, (Tas ) = Taf

is an action of the translation group ¥ of R™ on L,. By Remark 7.5(b) and
Theorem 7.6, T, := (f — 7of) is a linear isometry on L, for every a € R". Again
writing T, as 7., we conclude that

(R",+) — Laut(L,) , a1,

is a representation of the additive group of R™ by linear isometries on L,. In
particular, the translation group on L, namely

T, = {Ta € Laut(Ly,) ; a € R"} ,

is a subgroup of Laut(L,) consisting of isometries.
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7.7 Corollary The translation group on L, is strongly continuous for 1 < p < oo.

Proof This is an immediate consequence of Theorem 7.6 and (7.6). m

Elementary properties of the convolution

After this digression about the translation group, we return to the convolution
and derive its chief properties.

7.8 Theorem Consider (f,g) € L, x Ly with p € [1, c0].

i) The convolution f x g belongs to L,, and satisfies Young’s inequality
P

1 gllp < 1£1l5 g1l -
(ii) frg=gx/f.

(iii) If p = oo, the convolution f x g belongs to® BUC.
(iv) For ¢ € BC*, we have p x g € BUC*,

0%(p*xg)=0%=*g foraeN" o<k,

and || * gl gor < el ser gl

Proof (i) follows from Theorem 7.3(ii) and Corollary 7.4.

(ii) Take x € R and let f and ¢ be representatives of f and g. Also set
Y(y) == x —y for y € R”. Then ¢ is an involutive isometry of R™. It follows from
Theorem 7.3(i) and Example 6.6(b) that

f*g(x) /fx— dy—/(

Therefore f x g = g x f by Corollary 7.4.

(iii) The motion invariance of the Lebesgue integral yields ||g|l1 = ||g||1. From
part (ii), and because the elements of Ty, are isometries, we then get

S~y
)
<
~—
—~
—~
Qi
)
<
SN~—
)
<
~—
IS

<

frg(x)—fxg /\f 9@ —2) = gy = 2)) [ dz < || flloc I72d = 791k
= [[flloo 17y (T2 —yg = Dllx = [[flloo 1729 — gl

for z,y € R". Because g € L4, the strong continuity of Ty, together with part (i)
implies that f * § € BUC. The claim follows.

6See Theorem 4.18.
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(iv) In view of (iii), it suffices to consider the case k > 1. To this end we define
h(z,y) == p(x — y)g(y) for (z,y) € R" x R". Then h satisfies the assumptions of
Theorem 3.18, and it follows that 0;(p * g) = 0;p % g for j € {1,...,n}. By (iii)
and Theorem VII.2.10, we have ¢ x g € BUC'. We now see inductively that ¢ * g
belongs to BUC* and satisfies 0%(p * g) = 0% * g for every a € N with |a| < k.
Finally, by (i), we have

= (84 — (6% < (84
llo*gllor lr(gfg;lla (o *g)lloo g@ll(é‘ @) * glloe < (f}yl@lla ollse) llgllt

= llelles llglly - m

7.9 Corollary
(i) Let p € (1,00) and k € N. The convolution satisfies

’ngm(leLl) ’
ﬁ(LpaLﬁLp) )
L(Lo, Ly; BUC) ,

L(BC*, Li; BUCF) |

* €

and all these maps have norm at most 1.

(ii) (L1,+,*) is a commutative Banach algebra without a multiplicative identity.

Proof (i) and the first statement of (ii) follow immediately from Theorem 7.8.
We now assume there is e € Ly such that e x f = f for every f € L;. We choose
a representative é of e and then find by Exercise 2.15 a § > 0 such that

‘/ ék(x—y)dy‘:’/ é(z)dz‘<1 for z € R" .
5B " (2,5)

Furthermore, there is a set N of Lebesgue measure zero such that xspr(x) =
¢ * xopn () for z € N°. However, for x € 6B" N N¢, we have

1 = xsBn () = €% xomn (z) = / é(x —y)xsn (y) dy = / é(x—y)dy <1,

SB™

n

which is not possible. m

7.10 Theorem (additivity of supports) Suppose f,g € Ly are convolvable and f
has compact support. Then

supp(f * g) C supp(f) + supp(g) -

Proof (i) We can assume f * g # 0. For x € [f * g # 0], there is a y € R" such
that f(z —y)g(y) # 0. It follows that y € supp(g) and x € y + supp(f), and thus

x belongs to supp(f) + supp(g). Hence [f * g # 0] C supp(f) + supp(g).
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(ii) We show that supp(f) + supp(g) is closed. Let (xj) be a sequence in
supp(f) + supp(g) such that xy — z for some z € R". Then there are sequences
(ax) in supp(f) and (bx) in supp(g) such that x, = ai + by for k& € N. Because
supp(f) is compact, there is a subsequence (ag,)sen of (ax) and an a € supp(f)
such that ay, — a as £ — oco. Thus by, = x5, — ax, — * — a as k — oco. Because
supp(g) is closed, we know x—a belongs to supp(g). Hence there exists b € supp(g)
such that © = a+b. This shows that supp(f)-+supp(g) is closed. The claim follows
from Corollary I11.2.13. m

Approximations to the identity

We saw in Corollary 7.9 that the convolution algebra L; has no multiplicative
identity. However, the next theorem secures the existence of “approximations to
the identity”, elements ¢ € Ly that satisfy || ¢ * f — f|l1 < € for every f € Ly (for
a given € > 0).

7.11 Theorem (approximation theorem) Given £ € {L,; 1 <p < oo} or
E € {BUC* ; k € N}, set ¢ € L1 and

a:= /godx , we(r) = "p(x/e) forx eR™, €>0.
Then lim._gp:* f =af in FE for f € E.

Proof (i) Fix € > 0. By the substitution rule— Example 6.6(b) — we know that
¢e € Ly and [ ¢. dz = a. Thus Theorem 7.8 shows that p.* f € E for f € E.

(ii) To prove the limit as € — 0, consider first the case E = L,. Take f € £,
and € > 0. By Theorem 7.3(i) and the proof of Theorem 7.8(ii), and using the
transformation y — y/e in Example 6.6(b), we obtain

pex F(z) — af (2) = [ * pe(z) — af(z) = / [F(z—y) — f(2)]oe(y) dy

(7.7)
— [l = 22) - f@]ee) s = [ [retfla) = F@)] () do
for almost every z € R". Corollary 7.7 and Remark 7.5(d) imply that
(z (1ef = f)) e CR",E) fore>0, (7.8)
and
E11_1}1((1)||7'Ezf—f||E:0 for z € R™ . (7.9)
Now set

9°(2) = (Teof — f)p(z) for z€ R" and e > 0.

Then it follows from (7.8), Theorem 1.17, and Remark 1.2(d) that ¢° belongs to
Lo(R", E) for every ¢ > 0. Because |7, f||e = || fllg, we also derive from the
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triangle inequality that
lg°(2)le <21 fllele(z)] for z € R" and e >0 .

Because ¢ € £1(R"), we therefore conclude that g* € £1(R", E). Then (7.7) and
Theorem 2.11(i) imply the bound”

loexf = afle =] [ #@az] | < [le@leds.

Now the dominated convergence theorem shows that . * f converges in E to af
as € — 0, because, by (7.9), we have lim._¢ ||¢°(2)||z = 0 for almost every z € R".

(iii) Now suppose f € BUCF. If ¢ = 0 \,-a.e., the claim is obviously true.
So suppose m := [ |p|dx > 0. From Theorem 7.8(ii) and (iv), it follows that

O (pex [ —af)=pex0%f —a0d*f fora € N" and |o| <k .

Therefore it suffices to consider the case k = 0.

Let » > 0. Then there is a § > 0 such that
[f(@—y) = f(@)] <n/2m forz,yeR", |y[<d,

and we obtain

lpe* £(z) — af (z)] < / F@ —y) — F(@)] )| dy

IN

77/ |
1 ()] dy + 2| flloe / ee@ldy (7.10
2m Jjy<e) [ly>6) (7.10)

A

<Pa2lfle [ lewldy
[lyl=9]

for x € R™. The substitution rule then gives

/ ooy dy = = / o(y/e)| dy = / o(2)|dz
[ly|>4] [ly]>46] [|z]>6/€]

By the dominated convergence theorem, then, there exists €9 > 0 such that

n
lee(y) dy < for £ € (0, 0] .
/[yzé] 41 flloo

Now the claim follows from (7.10). m

"This also follows from Minkowski’s inequality for integrals.
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Suppose ¢ € L satisfies [ @pdr =1 and set
ve(x) == "p(x/e) forx e R"ande >0. (7.11)

The family { ¢. ; € > 0} is called an approximating kernel or an approximation
to the identity. If

peC*R"R), ¢=¢, ¢>0, supp(p) CB", /cpdw:l,

we call {¢. ; € > 0} a mollifier or smoothing kernel. Every smoothing kernel
obviously satisfies

supp(pe) C eB™  for [[pcll1 =1 and e >0 .
7.12 Examples® (a) The Gaussian kernel is the
family { k. ; € > 0} defined by
k(z) := (4m) /2 e TP/ for x e R .

It is an approximating kernel.

Proof From Example 6.13(a), we know that

/g<x>dm:1 |

for g(z) = 7 /2 e~171*. Since k(z) = 27"g(z/2) for x € R", it follows from the
substitution rule that [k(z)dz=1.m

(b) Let

(2) = cel/(I=1=1) if || <1,
o= 0 if |z > 1,

v

A

where ¢ := (5. el/(el’=1) dat:)_1 is chosen
so that ¢ integrates to 1. Then the family
{®e; € >0} is a smoothing kernel.

»
»

Proof Because x — |3£|2 — 1 is smooth on R", Example IV.1.17 shows that ¢ belongs
to C*°(R™,R) (see Exercise VII.5.16). The claim follows easily. m

Test functions

Let X be a metric space, and let A and B be subsets of X. We say A is compactly
contained in B (in symbols: A CC B) if A is compact and is contained in the
interior of B.

8In both examples, the area under the graphs is always 1, so smaller values of & give corre-
spondingly higher maxima.
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If X is open in R™ and F is a normed vector space, we call
D(X,E) := {ga € C*(X,E) ; supp(p) CC X}

the space of (E-valued) test functions on X. When E = K, we write D(X) :=
D(X,K), as usual. Clearly D(X, E) is a vector subspace of C*°(X, F) and of
Co(X,E), and D(X,E) = C*(X,E) N C.(X, E). Because the map

j:Cc(X7E)_’Cc(RnaE)a g—g,

is linear and injective, we can identify C.(X, F) with a vector subspace of C.(R", F)
and regard (as needed) each element of the former as an element of the latter.
Likewise, we identify D(X, E) with a vector subspace of D(R", E). With these
notations, we have the following inclusions of vector subspaces for every p € [1, oo]:

D(X,E) c D(R",E) C Co(R", E) C L,(R", E) .

7.13 Theorem Suppose X is open in R" and p € [1,00). Then D(X) is a dense
vector subspace of L,(X) and of Cy(X).

Proof (i) Take g € C.(X) and n > 0. Also let {¢. ; € > 0} be a smooth-
ing kernel. By Theorem 7.8, ¢. * g belongs to BUC* and therefore to BUC™
for every k € N. Because g has compact support, there is g > 0 such that®
dist (supp(g), XC) > g9. From Theorem 7.10, it follows that

supp(pe * g) C supp(p:) + supp(g) C supp(g) + eB” fore >0 .

Then ¢ * g belongs to D(X) for € € (0,&0). Finally by Theorem 7.11 we can find
for every ¢ € [1, 00] some €1 € (0, &) such that ||¢., * g — gllq < n/2.

(ii) Now suppose f € L,(X). By Theorem 5.1, we can find g € C.(X) such
that || f — gl|l, < n/2. By (i), there is h € D(X) such that ||f — hl|, < n.

(iil) For f € Cy(X), let K be a compact subset of X such that |f(z)| < n/2 for
x € X\ K. By Proposition 4.13, we can choose a ¢ € C.(X) such that 0 < ¢ <1
and | K = 1. We set g := ¢f. Because f(x) = g(x) for x € K, it follows that

[f (@) —g(@)| = [f(@)| 1 = p(z)] <n/2 forzeX.

Therefore ||f — gllco < 1/2. The claim then follows from (i). m

Smooth partitions of unity

In Section 4, we proved the existence of continuous Urysohn functions in general
metric spaces. This result can be distinctly improved in the special case of R™,
where we can use mollifiers to actually construct smooth cutoff functions.

9dist (supp(g), 0) := oo.
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7.14 Proposition (smooth cutoff functions) Suppose K C R™ is compact, and set
K,:={zeR"; dist(z,K)<p} forp>0.

Then for every o € N and every p > 0 there exist a positive constant c(«) and a
map ¢ € D(K,) such that 0 < ¢ <1, ¢|K =1, and |0%¢||ec < c(a)p~l.

Proof Set {¢. ; € > 0} be a smoothing
kernel. Let § := p/3 and ¢ = 95 * Xk,-
Then ¢ belongs to BUC®, and it follows
from Theorem 7.10 that

K, = K35

supp(p) C supp(vs) + Ks C 6B" + K
CKy CKys=K,.

Therefore ¢ belongs to D(K,). Moreover

p(z) = /wa(x—y)XKs(y) dy < /wm—y) dy =1

for x € R™, and hence 0 < ¢ < 1. If x lies in K, then
plr) = /%(y)xm(x —y)dy = /wa(y) dy =1,

and therefore ¢ | K = 1. Finally, since 0%s = 6~1%1(0%1);5 for a € N, we have
from Theorem 7.8(iv) that

0% = 0% (5 * XK;) = 0%bs % XKy = 611 (0% )5 * Xk, -

Now c(a) := 31! ||0%¢y||; is independent of § > 0, and so it follows from Young’s
inequality that [|0%¢|/e < c(a)p~?l. m

Let K C R" be compact and denote by { X; ; 0 < j < m} a finite open
cover of K. If for every j € {0,...,m}, there is a p; € C°°(R") such that
() 0<p; <1,
(i) supp(¢;) C Xj, and
(i) Y7ty wj(x) =1 for z € K,
then {¢; ; 0 < j <m} is called a smooth partition of unity on K subordinate to
the cover { X ; 0<j<m}.
If Xo is open in R™ and K C Xj, then dist(K, X§) > 0, and Proposition 7.14
(with p := dist(K, X§)) secures the existence of a smooth partition of unity on K

subordinate to the one-element cover {Xo} of K. To treat the general case of a
finite cover, we need a technical result:
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7.15 Lemma (shrinking lemma) Let {X;; 0 <j <m} be a finite open cover of
a compact subset K of R". Then there is an open cover {U; ; 0 < j<m} of K
such that U; CC X for j € {0,...,m}.

Proof Givenz € K, choose j € {0, ..., m} such that € X; and r, > 0 such that
Ve := B"(x,rs) is compact and contained in X;. Then {V, ; € K } is an open
cover of K, and there exist k € N and {zo,..., 2z} C K with K C Uf:o Vz,. With
Uj = Va,; Vo, C X, }for j €{0,...,m}, we have a family {U; ; 0 <j<m}
having the desired properties. m

7.16 Theorem (smooth partitions of unity) If K is a compact subset of R", every
finite open cover of K has a smooth partition of unity subordinate to it.

Proof Suppose { X;; 0 <j <m} is a finite open cover of K. By Lemma 7.15,
there is an open cover {U; ; 0 < j < m} such that U; CC X for j € {0,...,m}.
We define K := Uj. Then Kj; is compact, and dist(Kj,Xj‘?) is positive for every
j € {0,...,m}. Proposition 7.14 now shows there is a ¢; € D(X;) such that
0 <1; <1and1,|K; =1. Defining

k—1

po =10 and @ =t [JA-v;) for1<k<m,

j=0
it is easy to check by induction that Z?:o pj=1-— H;”ZO(l — ;). The claim now
follows because K C -, K.

We next present some simple applications of Theorem 7.16. Additional, more
complicated situations will be described in succeeding chapters.

7.17 Applications (a) Suppose X is open in R". Then for f € Ly(X) the following
statements are equivalent:

(1) f ELl,loc()();
(ii) ¢f € L1(X) for every ¢ € D(X);
(iii) f[K € L1(X) for every K = K cC X.

Proof Let (Uj);en be an ascending sequence of relatively compact open subsets of X
with X = (J; U; (see Remarks 1.16(d) and (e)). Then (see Exercise 4.3)

Lijoe(X) ={f€Lo(X); xv;f € L1(X),jeN} .
“(i)=-(ii)” Let ¢ € D(X). Since K := supp(¢) is compact and (U;),en is ascending,

there is a k € N such that K C Ug. By virtue of Proposition 7.14, we find a ¢ € D(Uy)
such that 0 < <1 and ¢| K = 1. Then

[ teside= [ lovside < el [ 10f1dn < ol ol < o0
X X X

Therefore ¢ f belongs to L1 (X).
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“(ii)=(iii)” Take K = K cC X and ¢ € D(X) with ¢ | K = 1. Then

/K|f|:/K|90f|§||90f||1<oo,

and therefore j?|\l/(' € Li(X).
“(iii)=>(i)” This implication is clear because every U; is compact. m
(b) Suppose X is open in R". Then C(X) C L1 10c(X).

Proof Take f € C(X) and ¢ € D(X). Then ¢f belongs to C.(X). By Theorem 5.1,
we have pf € Li1(X), and the claim follows from (a). m

(c) The linear representation of the group (R",+) in BUC* is injective, hence a
group isomorphism onto its image € gycr -

Proof For a € R", suppose 7, = idgycr. We choose r > |a| and a cutoff function
© € D(R") for rB™. Then f; := ¢ pr; belongs to BUC*, and we find

—a; = Tafj(O) = fJ(O) =0 forje {1, . ,’I‘L} .
Therefore a = 0. This implies the injectivity of the representation a — 7,. m

(d) Suppose X is open in R™ and bounded. Also let {X; ; 0 < j < m} be a
finite open cover of X, and let {¢; ; 0 < j < m} be a smooth partition of unity
subordinate to it. Finally let k¥ € N and

m
lullper =) lpsullpor  for u € BCH(X) .
§=0

Then || || gor is an equivalent norm on BC*(X).
Proof Take u € BC*(X). Obviously

m
luller = || esu
3=0

m

o < 2 llgsullpor = llullpen -
j=0

From Leibniz’s rule (see Exercise VII.5.21), we obtain

|||u|||Bck=Zlgg||aa<¢ju>||w— max\\z() %, 0"l _
§=0 "=

\a|<k

m

<> ellillsen lullser < C lullpex

where we have set ¢ 1= max|a|<k Y4, (5) and C = X7 l@illpcn- ®
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Convolutions of E-valued functions

A look back at preceding proofs shows that the convolution f * g can also be
defined when one of the two functions takes values in a Banach space F' and
the other is scalar-valued. All proofs carry through without change!® so long
as the substitution rule for isometries still holds for F-valued functions. This
is indeed the case, as we shall show in the next section. In particular, the key
approximation result in Theorem 7.11 remains true for the spaces L,(R", F) and
BUC*(R™, F) with 1 < p < 0o and k € N. One consequence of this is an analogue
of Theorem 7.13 to the effect that D(X, F) is a dense vector subspace of Cy(X, F')
and of L,(X, F) for 1 < p < cc.

Distributions'!

Suppose X is a nonempty open subset of R™. A scalar function on X, as is well
known, is a rule for assigning a real or complex number to every point in X. But
this definition is just an abstraction, since the individual points of X cannot in
practice be discerned. If, for example, we want to determine the temperature
distribution of some medium that occupies the set X — we must rely on an exper-
imental probe. However, such a probe, being of nonzero size, can only determine
values of f in an extended region; whatever value it assigns to f(x() represents not
the actual value at zp (if indeed such a thing is physically meaningful) but rather
some kind of average around xo: mathematically, an integral [ ¢f dx, where ¢ is
a “test function” that depends on the probe. Of course, the measurement will bet-
ter approximate the exact value f(xg) the more the test function ¢ is concentrated
about xg, that is, the less the probe smears the data.

To claim complete knowledge of f(x(), one might imagine bringing to bear all
conceivable probes, or in other words, determining the averages [ « ¢f dx over all
possible test functions . In mathematical terms, we’d be replacing the pointwise
function f: X — K by a functional defined on the space of all test functions,
namely, the map

Ty: D(X)—-K, gp»—>/chfdx. (7.12)

Our choice of D(X) as the space of test functions is to a large extent arbitrary.
For conceptual simplicity, we might want to consider C.(X) instead of D(X). At
the same time, we would like to avoid performing more “measurements” than
necessary; this warrants choosing a test space that is small in some sense. But the
space must be large enough that the averages |  ¢f dx do determine f. That is,
we want the equality of [ < ¢f dr and /  pgdz for all test functions ¢ to imply
=y

10Naturally, the commutativity formula f * g = g * f must be interpreted correctly.
1 The rest of this section is meant to provide glimpses of applications and more advanced
theories; it can be skipped over on first reading.
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The next theorem shows that this is indeed the case if we choose D(X) as
the test space and work with “functions” in Lj 1oc(X). (By Application 7.17(a),
Li 10c(X) is the largest vector subspace E of Lo(X) such that fX of dx is well
defined for all f € E and all ¢ € D(X).)

7.18 Theorem Suppose f € Ly 10c(X). If

/ pfdex =0 forpeDX), (7.13)
b's
then f = 0.

Proof Suppose f # 0, and let f € L110c(X) be a representative of*f. By
regularity, there is a compact subset K of X of positive measure such that fl@)#0
for x € K. Taken € D(X) withn| K = 1, and let g := nf. By Application 7.17(a),
g belongs to £;. Also g(z) # 0 for x € K. Let {¢. ; € > 0} be a smoothing
kernel. Then lim._.g@.* g = g in £1. By Corollary 4.7, there is a null sequence
(¢j) and a set N of Lebesgue measure zero such that

lim ¢, * g(x) = g(x) for x € N°. (7.14)
j—oo "

Given 29 € K N N, set ¢ := 01y, € D(X) for j € N. Since ¢. = ¢. by
Remark 7.1(d), equality (7.13) gives

P, * g(x0) = /g(y) P, (w0 —y) dy = /X(nf) (y) e, (x0 —y) dy
— [ vy =o.
X

However, because of (7.14) this contradicts g(zo) # 0. The claim follows because
the representative f of f was chosen arbitrarily. m

Clearly the map T is a linear functional on D(X). For the interpretation
of Tro = [y ¢f dx as a measurement value to be meaningful, Ty¢ must “depend
continuously” on the measuring device; that is, small perturbations in the probe,
hence in the test function ¢, should cause only small changes in the measured
value. Mathematically speaking, this means that Ty must be a continuous linear
functional on D(X). So we must introduce a topology on D(X).

Since our treatment here is introductory, we will limit ourselves to stating
what it means for a sequence to converge in D(X). This convergence should be
compatible with the vector structure on D(X), so it suffices to consider the case
where the limit is 0.

We say that a sequence (¢;) converges to 0 (or is a null sequence) in D(X)
if the following conditions are satisfied:

(D1) There exists K CC X such that supp(¢;) C K for j € N.
(D) ¢j — 0 in BC¥(X) for every k € N.
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Obviously (D3) is equivalent to:
The sequence (0%¢;) en converges uniformly to 0 for every @ € N".  (7.15)

So for ¢; to converge in D(X) to 0, not only must (7.15) hold, but the supports
of the functions ¢; must all be contained in a fixed compact subset of X.

A linear functional T': D(X) — K is continuous if T'¢; — 0 for every null
sequence (¢;) in D(X). A continuous linear functional on D(X) is also called a
Schwartz distribution, or simply distribution, on X. The set of distributions on
X is denoted by D’'(X); it is clearly a vector subspace of Hom(D(X),K).

(In functional analysis— more precisely, in the theory of topological vector
spaces — one shows that there is exactly one Hausdorfl topology on D(X) that is
locally convex,'? compatible with the vector structure, and such that sequences
converge to 0 in the sense above if and only if they converge to 0 in the topology.
With respect to this topology, D’(X) is the dual of D(X), that is, the space of all
continuous linear functionals on D(X). See, for example, [Sch66] or [Yos65].)

7.19 Examples (a) For every f € Li1oc(X), the linear functional Ty defined by
(7.12) is a distribution on X.

Proof Let (¢;) be a sequence in D(X) such that ¢; — 0 in D(X). Then there is a
compact subset K of X such that supp(y;) C X for 5 € N. It follows that

e =| [ st da] < [ esl1lde < Ul s o

for j € N. Because ||f||1, (k) < 0o, we find that Typ; — 0 in K, because (D2) implies
that [|@jllec — 0. m

(b) Let p be a Radon measure on X. Then

D(X)—K, gp»—>/cpd,u
X

defines a distribution on X.

Proof Suppose (¢;) is a sequence in D(X) such that ¢; — 0 in D(X). Also suppose
K = K CC X contains supp(;) for all j € N. Then

[ esdu] < [ losldn < u) sl tor N
X K

As in the proof of (a), this implies that ¢ is a distribution on X. m

(c) Let § be the Dirac measure on R™ with support at 0. Then

o (6.0) ::/chd5:w(0) for ¢ € DR™) |

12This means the origin has an open neighborhood basis of convex sets.
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is a distribution on R", the Dirac distribution
§: DR") =K, ¢—¢0).
There is no 4 € L1 1oc(R™) such that T, = 6.

Proof The first statement is a special case of (b).
Suppose now that u € L1 10c(R™) with T, = 0, that is,

/ pudxr = p(0) for ¢ € D(R™) . (7.16)

Choosing only such ¢ € D(R™) that supp(¢) CC X := R™"\{0}, we have ¢(0) = 0, and
from Theorem 7.18, it follows that | X = 0 in Li,10c(X). But X and R™ differ only on
a set of measure zero (a single point!), so u = 0 in Ly 1oc(R"™), contradicting (7.16). m

(d) Let o € N™. Then
Se: DR") =K, ¢ 0%(0)

defines a distribution. There is no u € Ly 1oc(R™) such that T, = S,.

Proof Let (¢;) be a sequence in D(R™) such that ¢; — 0 in D(R™), and suppose
K = K CC R" with supp(p;) C K for j € N. We can assume that 0 lies in K. Then we
have the estimate

0%¢;(0)] < max|0%p; ()] < ll@illperar for j €N .
Thus (D2) implies that 9%¢;(0) — 0 in K, which shows that S, is a distribution. The
second statement is proved as in (c). m

The following key result is now a simple consequence of Theorem 7.18.

7.20 Theorem The map
Ll,loc(X) - DI(X) ’ f = Tf
is linear and injective.

Proof Example 7.19(a) shows the map is well defined. It is linear because inte-
gration is. It is injective by Theorem 7.18. m

By Theorem 7.20, we can identify Lj joc(X) with its image in D’(X). In other
words, we can regard Lj j0c(X) as a vector subspace of the space of all Schwartz
distributions, by identifying a function f € L1 1o¢(X) with the distribution

Ty = (cp|—>/Xg0fdx) eD(X).

In this sense, every f € L1 10c(X) is a distribution. The elements of Ly 1oc(X) are
called regular distributions. All other distributions are singular. Examples 7.19(c)
and (d) illustrate singular distributions.
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The theory of distributions plays an important role in higher analysis, espe-
cially in the study of partial differential equations, and in theoretical physics. We
cannot elaborate here, but see for example [Sch65], [RS72].

Linear differential operators

Let X be open in R". Given functions a, € C*°(X), for each o € N" such that
la] <m e N, we set

A(Q)u := Z ao0%u  for u € D(X) .

laf<m

Obviously, A(9) is a linear map of D(X) onto itself; we say it is a linear differential
operator on X of order < m (with smooth coefficients). It has order m if

Z aalloc # 0,
|la]=m

that is, if at least one coefficient aq of the leading part >, _,, aa0* of A(0) does
not vanish identically. We denote by Diffop(X) the set of all linear differential
operators on X; those of order < m are denoted by Diffop,, (X).

A linear map T: D(X) — D(X) is said to be continuous'® if Tp; — 0
in D(X) for every sequence (¢;) in D(X) such that ¢; — 0 in D(X). The set of
all continuous endomorphisms of D(X) is a vector subspace of End(D(X)), which
we denote by £(D(X)).!3

7.21 Proposition Diffop(X) is a vector subspace of L(D(X)), and Diffop,), (X) is
a vector subspace of Diffop(X).

Proof Let m € N, and take A(9) := Zla\ém aq0% € Diffop,,(X). Let (p;) be

a null sequence in D(X), and let K = K CC X contain supp(p;) for all j € N.
Then supp (A(@)(pj) C K for j € N. For 8 € N", the Leibniz rule gives

0% en)lewo = [, (1) aa |

< Y B—v+a, . .
< c(a, B) max [07aallc(x) 110 @jlloo

From this we derive for k € N the inequality

LA(9) il Bor(x) < c(k) Z laallBor k) ll0jll Berimxy for j € N,

la|<m

131t is shown in functional analysis that these definitions are consistent with our previous
definitions for continuity and L£(E).
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where the constant c(k) is independent of j. Now A(9)p; — 0 in BC*(X) follows
from (Ds). Because this is true for every k € N, we see that A(9)p; — 0 in D(X).
This proves that Diffop,,(X) C £(DP(X)). The other statements are clear. m

Let (-]-) denote the inner product in Lo(X), and suppose .A(9) belongs to
Diffop(X). If there is a differential operator A*(9) € Diffop(X) such that

(A(O)u ‘ v) = (u ‘ Aﬁ(a)v) for u,v € D(X)

we say Af(0) is the formal adjoint of A(J). Because

(u| AF(@)0) = /X WA (D)0 da

and A#(9)v € D(X) C Ly 10¢(X) for v € D(X), it follows easily from Theorem 7.18
that A(9) has at most one formal adjoint. If A(9) has a formal adjoint A*(9) that
coincides with A(9), then A(9) is formally self-adjoint.

We will now show that every .A(9) € Diffop(X) has a differential operator
formally adjoint to it, and we derive an explicit form for .A%(9). First we need this:

7.22 Proposition (integration by parts) For f € C*(X) and g € C}(X),

/(8jf)gdx:—/f8jgdx for j e {1,...,n} .
X X

Proof We need only consider the case j = 1; the general case will follow by
permutation of coordinates, in view of Corollary 6.10. So write © = (x1,2') €
R xR"™!. Since fg has compact support, it follows from integrating by parts that

/OO [01f(z1,2")]g(a1,2") oy = / f(x1,2")01g(21, 2") day

—00

for every 2/ € R"™!. From Fubini’s theorem, we now get

| @ngar= [ @ g

/ / o f(z1,2")g(z1, )dxl) dx’
T
= _/RW1 (/700 f(x1,2")01g(x1,2) dxl) dx’

:_/ f&lgdx:—/ forgdr . m
n X
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7.23 Corollary Suppose f € C*(X) and g € C¥(X). Then

[ @ nigde= 1) [ gorgas
b'e b'e
for o € N such that |a| < k.
Integration by parts is also the core of the proof of the next result.

7.24 Proposition FEvery differential operator
A(0) = > aa0” € Diffop(X)
o] <m
has a unique formal adjoint, which is explicitly given by
A0 = > (=1)*0%(@,v) forveD(X) . (7.17)
lo]<m
If A(9) has order m, then A¥(9) is also an m-th order differential operator.

Proof We already know that there is at most one formal adjoint, so we need only
prove existence and the validity of (7.17).

Take u,v € D(X). Integrating by parts, we find

(A(a)u‘v):/x( ﬁx—Z/aaauvdx

la|<m

= Z (— )‘04/ ud*(aav dx—/ Z Do (@) da

lo|<m loe|<m

Therefore
(A@)u|v) = (u A (9)v)  for u,v € D(X)

if A*(0)v is as in (7.17). By Leibniz’s rule, there exist b, € C°°(X) for a € N"
with |a| < m — 1, such that

ANO) = ()™ D @0+ D bad” .

Jaj=m lal<m—1

Therefore A*(9) belongs to Diffop(X). The claim is now clear. m

For differential operators that describe the time evolution of systems, it is
usual to treat time as a distinguished variable. We recall, for instance, the wave
operator 97 — A, and the heat operator 9; — A, in the variables (t,r) € RxR" (see
Exercise VIL.5.10). Another example is the Schrédinger operator (1/:7)0; — A,.
All three operators are second order differential operators.
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7.25 Examples (a) The wave operator and the Schrédinger operator are formally
self-adjoint.'?

(b) The heat operator has (9; — A,)* = -9, — A, as its adjoint. It is therefore
not formally self-adjoint.

(c) For A(9) := 9, — > 7, 9, we have Ab(9) = —A(9).

(d) Suppose ajx,aj,ap € C°(X,R) with

n
Z ||ajk.||oo7é0, ajk = Qk; fOI“j,kE{l,...,’rL}.
J,k=1

Also define A(0) € Diffop,(X) by

AQ)u = Z 0;(a;r0ku) + Z a;0ju~+ apu for uw e D(X) .

jk=1 j=1

Then we say A(9) is a divergence form operator.' In this case, we have

n

Af (D) = Z 0;(a;p0kv) — Zaj8jv + (ao — Zﬁjaj)v for v € D(X) .
j=1 j=1

J k=1
Therefore the formal adjoint is also of divergence form, and .A(9) is formally self-
adjoint if and only if a; =0 for j =1,...,n.
Proof This follows easily from Proposition 7.22. m
(e) The Laplace operator A is a formally self-adjoint second-order differential
operator of divergence form.

Proof This follows from (d) by taking a,r = d;, (the Kronecker delta). m

Weak derivatives

We now explain briefly how the concept of derivative can be generalized so func-
tions that are not differentiable in the classical sense can be assigned a generalized
derivative.

Suppose X is open in R". We say u € Lj 10c(X) is weakly differentiable if
there exists u; € L1 10c(X) such that

/ (Ojp)ude = —/ pujder forpeD(X)and1<j<n. (7.18)
X e

15 These facts are of particular importance in mathematical physics.
16The reason for this language will be clarified in Section XI.6.
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More generally, if m > 2 is an integer, we say u € L1 10c(X) is m-times weakly
differentiable on X if there exists uq € L1 10c(X) such that

/ (0%p)udx = (—1)l / puq dr  for ¢ € D(X) , (7.19)
p's p's

for all @ € N with |o| < m. If this is the case, then it immediately follows from
Theorem 7.18 that ua € L1,10c(X) is uniquely determined by v (and «). We call
U the a-th weak partial derivative and set 0%u := u,. In the case m = 1, we set
0ju := u;. These notations are justified by the first of the following remarks.

7.26 Remarks (a) Suppose m € N*. Then every u € C™(X) is m-times weakly
differentiable, and the weak derivatives agree with the classical, or usual, partial
derivative.

Proof This follows from Corollary 7.23. m

(b) Let Wi _(X) be the set of all m-times weakly differentiable functions on X.

1,loc

Then W, .(X) is a vector subspace of Li1oc(X), and for every v € N" with

loc
|a] < m, the map

W (X) = Wi ll(x) | ue 0%

1,loc

is well defined and linear.

Proof We leave the simple proof to the reader as an exercise. m

(c) Foru € W7, .(X) and o, 8 € N" with |a|+[8] < m, we have 0%0%u = 9P 0.
Proof This follows immediately from the defining equations (7.19) and the properties
of smooth functions. m

(d) Suppose w € L1 10c(R) is defined by u(z) := |z| for € R. Then u is weakly
differentiable, and Ju = sign.

Proof First, the absolute value function |-| is smooth on R*, and its derivative is
sign | R* there. Now suppose ¢ € D(R). Integration by parts gives

oo 0
/go/udm:/ ap'uder/ Y'udz
R 0 —o0

= otwely — [ o@dn— gl + [ o)

__ /R () sign(z) d . h

The claim follows since sign belongs to L1 10c(R). m

(e) The function sign belongs to L 10c(R) and is smooth on R*. Nevertheless it
is not weakly differentiable. Thus the absolute value function of item (d) is not
twice weakly differentiable.
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Proof For ¢ € D(R), we have

/Rnp' sign dx = /000 o' () dx — /0 ¢ (z)dxr = —2¢(0) . (7.20)

— 00

Were sign weakly differentiable, then there would be a v € L1 10c(R) such that
/ pvdz = 2p(0) for ¢ € D(R) ,
R
which is false: see Example 7.19(c). m

In terms of the Dirac distribution 4, (7.20) assumes the form

/ ¢’ sign dz = —26(p) for p € D(X) .
R
Denoting the duality pairing as usual by

(,): D'(X)xDX) - K,

so (T, ) is the value of the continuous linear functional 7" on the element ¢, we
have

(sign, ¢') = —2(d,p) for ¢ € D(R) (7.21)

where we have identified sign € L 1oc(R) with the regular distribution Tyign €
D'(X), as discussed right after the proof of Theorem 7.20. A comparison of (7.19)
and (7.21) suggests the following definition: Let S,T € D'(X) and o € N". Then
S is called the a-th distributional derivative of T if

(T,0%¢) = (=1)1*l(S, ) for p € D(X) .
In this case, S is clearly defined by T (and «), so we can set 0°T := S. We see
easily that every distribution has distributional derivatives of every order and that
for every a € N" the distributional derivative
0*:D'(X)—->D(X), Tw—oT
is a linear map.'” In particular, (7.21) shows that, in the sense of distributions,

O(sign) = 24 .

We cannot go any further here into the theory of distributions, but we want
to briefly introduce Sobolev spaces. Suppose m € N and 1 < p < oo. Because

17See Exercise 13.
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L,(X) C Li10c(X), every u € L,(X) has distributional derivatives of all orders.
We set!8
WH(X) :={ue Ly(X); 0%ue Ly(X), la|] <m},

where 0% denotes the a-th distributional derivative. Also let

1/p
(Y 1oulp) ™ 1=p<oo,
le|lm,p == lo]<m (7.22)

max || 0% , p=00.
la]<m

We verify easily that

Wy (X) = (W (X), || m.p)
is a normed vector space, called the Sobolev space of order m. In particular,
WI?(X) = Ly(X).

7.27 Theorem

(i) Wj(X) is continuously embedded in L,(X), and u € L,(X) belongs to
W (X) if and only if u is m-times weakly differentiable and all weak deriva-
tives of order < m belong to L,(X).

(ii) Wy*(X) is a Banach space.

Proof (i) This is obvious.

(ii) Let (uj) be a Cauchy sequence in W*(X). It follows immediately from
(7.22) that (0%u; ) en is a Cauchy sequence in L,(X) for every o € N such that
|a| < m. Because L,(X) is complete, there exists a unique uo € Ly(X) such that
0%uj — uq in Ly(X) for j — oo and |a| < m. We set u := up. Then it follows
from (7.19) that, for all j € N,

/X(EJ‘O‘QD)UJ de = (—1)lel /X p0%ujdx for ¢ € D(X) and |a| <m .  (7.23)
From Hoélder’s inequality, we deduce
‘/ (0%p)u, dm—/ (0%9) udm / 0%p(u; —w)dz| < 0%y luj —ullp ,
which shows that
/X(aw)uj dx — /X(aacp)u dx for ¢ € D(X) .

Analogously, we find that

/cpaaujdxﬁ/ puqgdx  for p € D(X) .
X b's

18If X is an interval in R, then one can show that Wi (X) coincides with the space introduced
in Exercise 5.6.
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Thus it follows from (7.23) that

/ (0%p)udr = (—1)"1‘/ puq dx  for ¢ € D(X) .
X X

This shows that u, is the a-th weak derivative of u, and we see that u is m-times
weakly differentiable. Because u, € L,(X) for |a] < m, we also have u € W (X),
and it is clear that u; — u in W*(X). Therefore W"(X) is complete. m

7.28 Corollary WJ"(X) is a Hilbert space with the inner product

(W] v)m = Z (0% | 0%)  for u,v € W3*(X) .

laf<m

We will conclude this section by proving the so-called trace theorem for
Sobolev spaces. For m € N and 1 < p < oo, set

A (X) = ({ul X s we CPR™) Y, - lny) -

p

Clearly ﬁm(X) is a vector subspace of W"(X). If the boundary 90X of X is

sufﬁmently nice (for example, if X C R" is an n-dimensional submanifold with
boundary,'?) one can show that Hm(X) is dense in W*(X). In particular, this is
the case for X := R" or X := H".

7.29 Theorem (trace theorem) Let1 < p < oo and X =R" or X = H". Then
there is a unique trace operator y € L(W, ( ), L,,(R"il)) such that yu = u|R"™*
for u € D(R™) (more precisely, for u € H;(X ). Here R" ' is identified with
R™™ x {0} C R™.

Proof Since ﬁ;(X) is dense in W} (X), the claim follows from Proposition 6.24,
Remark 6.25, and Theorem VI.2.6. m

This theorem says in particular that every element u € W} (H") has boundary
values yu € L,(OH"™). Because u is generally not continuous on H", yu cannot be
simply determined by restriction.

The existence of a trace is the foundation for the treatment of boundary value
problems in partial differential equations by the methods of functional analysis.

Exercises
1 For a > 0, calculate X[—q,a)* X[—a,a] @30d X[—a,a]* X[—a,a] * X[—a,a]-
2 Let p,p’ € (1,00) satisfy 1/p+ 1/p’ = 1. Prove:

198ee Section XI.1.
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(a) f g belongs to Co for (f,g) € Lp X Ly, and [[f * glloo < [[f]l5 llgllp-

(b) The convolution is a well defined, bilinear, continuous map from L, X L, into Cp.
3 Letp,q,r € [l,00] with 1/p+1/qg =1+ 1/r. Verify that

#: Ly X Lg— L, (fr9)— frg
is well defined, bilinear, and continuous. Also verify the generalized Young inequality

I gll- < fllollglla for (f,9) € Lp x Lq .

(Hint: The cases 7 = 1 and r = oo are covered by Theorem 7.3 and Exercise 2, respec-
tively. For r € (1, 00), consider

F@=)g@)| = 1f@ =" (F@ =) g lgwI™"
and apply Holder’s inequality.)
4 Show that f * g belongs to C* for (f,g) € C*¥ x L1 1oc.
5 Suppose f € L1,10c satisfies 0% f € L4 10c for a given a € N™. Verify that

O (fxp)=(0"f)xp=fx0% for p € BC™ .

6 Exhibit a vector subspace of Funct in which (R, +) is not linearly representable.

7 Given p € [1,00), suppose K C L, is compact. Prove that for every £ > 0 there is a
0 > 0 such that ||7af — f|lp < € for all f € K and all a« € R" with |a| < §. (Hint: Recall
Theorem II1.3.10 and Theorem 5.1(iv).)

8 Show that every nontrivial ideal of (L1, *) is dense in L.

9 Let p € [1,00], and denote by k the Gaussian kernel of Example 7.12(a). Prove:
(a) 0% € L, for o € N™.
(b) kxu € BUC™ for u € Ly.

10 Let f € L1, and suppose 0% f € L; for some « € N". Show that
/(ao‘f)godm = (=1)l°l / fo%pdx for p € BC™ .

11 LetV € {Funct,B,L,; 1 <p < oo }. Show that the linear representation of (R", +)
on V by translations is a group isomorphism.

12 For f,g,h € Lo, suppose f is convolvable with g and g with h. If f *g is convolvable
with h and f with g« h, show that (f*g)+*h = f=*(g+h). Thus convolution is associative
on L1.

13 Show that the distributional derivative
0%: D' (X)—-D(X), T 0T

is a well defined linear map for every a € N".
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14 Show that (f — fu) € L(BC™(X), W, (X)) for u € W,"(X) with 1 < p < oo and
m € N.
15 Suppose (Tj;) is a sequence in D'(X) and that T € D'(X). We say (T}) converges in
D'(X) to T if
Hm(Ty, ) = (T, ) for ¢ € D(X) .
J

Let {¢e ; € > 0} be an approximation to the identity, and let (¢;) be a null sequence.
Show that (¢e;) converges in D'(R™) to 4.



8 The substitution rule

In our treatment of the Cauchy—Riemann integral, we encountered the substitution
rule of Theorem VI.5.1 as an essential tool for calculating integrals. Introducing
new variables, that is, choosing appropriate coordinates, is a prominent technique
also in higher dimensional integration. Unsurprisingly, the proof of the substitution
rule in this case is more difficult. However, we have already laid a foundation in the
form of the substitution rule for linear maps, which we derived in Theorem 1X.5.25.

Besides proving the general substitution rule for n-dimensional Lebesgue in-
tegrals, this section will illustrate its significance by means of some important
examples. The same theorem is also the cornerstone of the theory of integration
on manifolds, the subject of our last chapter.

In the following, suppose

e X and Y are open subsets of R™;
FE is a Banach space.

Pulling back the Lebesgue measure

Let (X,.A) be a measurable space and (Y, B,v) a measure space. If f: X — Y
is a bijective map that satisfies f(A) C B, that is, one whose inverse map is
B-A-measurable, one easily verifies that

ffvi:A—=1[0,00, A l/(f(A))

defines a measure on 4, the pull back (or the inverse image) of the measure v
by f. In the special case (X, A) = (R",E(n)) and (Y, B,v) = (R”,E(n),)\n), the
particular case of the substitution rule covered in Theorem IX.5.25 describes the
pull back of A\, by automorphisms of R":

O\, = |det ®| A, for @ € Laut(R") .

Using this result, we will now determine the pull back of the Lebesgue measure by
arbitrary C!-diffeomorphisms. A technical result is essential to that end:

8.1 Lemma Suppose ® € Diﬁl(X, Y). Then
A () §/|det8<1>|dx
J

for every interval J CC X of the form [a,b), where a,b € Q".

Proof (i) First consider a cube J = [zg— (r/2)1, 20+ (r/2)1) with center zg € X
and edge length 7 > 0. Next set RY, := (R",|-|) and

K :=max [|0®(z)|| rr,) -
xeJ
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It follows from the mean value theorem that
|P(x) — P(z0)]oo < K |& —xp|os forz e J.
Therefore ®(.J) is contained in BT (®(z¢), Kr/2), and we find

M(®(J)) < (K7)" = K" Au(])

(8.1)

(ii) Suppose J CC X is of the form [a,b), with a,b € Q". Take ¢ > 0 and
let M := max, 7 [[[0®(z)] || z(&n ). Since 9 is uniformly continuous on .J, there

exists > 0 such that

[00(z) — 02(y) |l c(rn) < /M

(8.2)

for all z,y € J such that |z — y| < 6. Because a,b € Q", we can decompose J (by
edge subdivision) into N disjoint cubes Jj, of the form [a, 5)"” with 0 < 8 —a < 4.

Now choose xj, € Jj such that

|det 0P ()| = min |det 0D (y)|
yeJg

and set T}, := 0®(zx) and @y := T}, ' o ®. Because
0Pi(y) = T, 0@ (y) = 1 + [00(a4)] " [0 (y) — 0P ()]
it follows from (8.2) and the definition of M that

max |09k (y) |l crn ) <1+e forke{l,...,N}.
yEJk

(8.3)

By the special case of the substitution rule treated in Theorem 1X.5.25, we have

M (@(Jk)) = M (T T @( 1)) = |det Ti| A (s (Jr)) -
Thus (8.1) and (8.3) imply
M (@(Jg)) < (L +¢)" |det Ty| An(Jx) for ke {1,...,N}.

Taking into account the bijectivity of ® and the choice of xy, we find

N N
(@) = A (U @01)) = 3o Aa(@(i)
k=1 k=1

N N
<(A+e)" > [det Tu| An(Jk) < (1 +2)" > ’ |det OB da:
k=1 k=1 k

_ +e)”/ Idet 90| dz .
J

The claim follows upon taking the limit € — 0. m
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8.2 Proposition Suppose ® € Diff' (X, Y). Then

B*An(A) = Ao (2(4)) =/A|det 0B dz for A € L(n)| X

Proof (i) From the monotone convergence theorem, it follows easily that
e L(n)] X — [0,00], A»—>/ |det 0P| dx
A

is a complete measure (see Exercise 2.11).

(ii) Suppose U is open and compactly contained in X. By Proposition IX.5.6,
there is a sequence (Ji) of disjoint intervals of the form [a,b), with a,b € Q", such
that U = J,, Jx. From (i) and Lemma 8.1, it follows that

A (@(U)) = A (Uk <I>(Jk)) =3 (@) < Zk/J \det 9P| d
=3 na) = pa({J, ) = na(0) = /U \det 9D| dz .

(iii) Let U be open in X. By Remarks 1.16(d) and (e), there is a sequence
(Uk) of open subsets of X such that Uy, CC Uy41 and U = |J, Ug. From (ii) and
the continuity from below of the measures A, and ug, it follows that

A(@(U)) = lim Ay (B(U)) < lim 1o (Ug) = u@(U):/U|det8<I>|da:.

(iv) Let A € L(n)| X be bounded. Using Corollary IX.5.5, we find a sequence
(Uk) of bounded open subsets of X such that G := (), Up O A and A\, (G) = A\, (A).
From (iii) and the continuity from above of the measures \,, and pe, we have

An(®(G)) =T A (@ (mU)) <tyna (1 05)

= ue(G) = / |det 0P| dx .
G
Noting that A C G and A, (A) = A, (G), we obtain

An(<I>(A))<)\n(<I>(G))§/G|det8®|dx:[4|det8@|dx.

(v) Take any A € L(n)| X, and set Ay, := ANEB" for k € N. From (iv) and
the continuity of the measures from below, we obtain

An(®(4)) = lim An(@(41)) gliinp(p(Ak):uq)(A):/A|det8<I>|dx.
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(vi) Let f € S(Y,R") have normal form f = Z?:o ajxa,- By (v),
k
[ 1= oty -
% =

k
S;}%L)

(vii) Suppose X is bounded. Given f € Lo(Y,R"), let (fx) be a sequence in
S(Y,R") such that fi T f (see Theorem 1.12). Then f; o ® belongs to S(X,R™).
Because the sequence (fr o ®); converges increasingly to f o ®, we know that
(f o ®)|det 9| belongs to Lo(X,RT). Now (vi) and the monotone convergence
theorem imply

/fdy:lim/ fkdyglim/(fkoq))|det8‘1>|dx=/(fo<1>)|det8<1>|dx.
Y k- Jy ko Jx b'e

M=

> aiha (@07 (4))))

j=0

|det 0®| dx = / (f o ®@)|det 0P| dx .
H(4) X

(viii) Let X be arbitrary and take f € Lo(Y,RT). In view of Remarks 1.16(d)
and (e), we can find an ascending sequence of relatively compact open subsets X},
of X such that X = |J;—, Xx. According to (vii), gi := xx, f |det ®| belongs to
Lo(X,RT), and we have gy | g := f|det ®|. Therefore g € Lo(X,R"). Setting
Y) := ®(X%), we obtain from (vii) that

fdy < / (f o @) |det 9P| dx .
Yy Xk
Now Y = U;O:o Y. and the monotone convergence theorem yield

/fdyg/ f o ®)|det 9P| da . (8.4)
Y

(
b's
(ix) Suppose A € L(n) | X. We swap the roles of X and Y in (viii) and apply
(8.4) to the C'-diffeomorphism ®~! : ¥ — X and the function (Xo(a)0P) |[det 0P|,

which belongs to Lo(X,R"). Then
/ (X®(a) © ®) |det 0P| dx < / {((X@(A) o @) |det HP|) o @—1} |det 09| dy
X %

:/ X |det[(0® o ~1)9d1]| dy |
Y
Further noting that
1, =0(idy) =0(®o® ') = (0@ o & 1)od~" (8.5)
and xq(4) © P = xa, we obtain

[ 1aeconlde < [ oy du=a(o4)

Because of (v), the claim follows. m



X.8 The substitution rule 195

8.3 Example Define X := { (r,¢) € R x (0,27) ; 0 <1 < /27 } and
d: X -R?, (r,¢)— (rcosg,rsing) .
Then Y := ®(X) is open in R?, and ® € Diff**(X,Y’) satisfies

| cosp —rsingp
[8@(7",90)] | singp rcosgo] ‘

27 1

D

v

Xl
p/2m 1

Therefore det 9®(r, ) = r. Also pry(X) = (0,27), and X¥I = (0,¢/27) for
¢ € (0,27). By Proposition 8.2 and Tonelli’s theorem, then,

21 pp/27
A(Y) = /er(r, ©) :/0 /0 rdrdp=m/3.

The substitution rule: general case

» T

After these preliminaries, it is no longer difficult to prove the substitution rule
for diffeomorphisms. First we consider the scalar case, whose proof is accessible
even to readers who skipped over the proof of Fubini’s theorem for vector-valued
functions. We treat the general case at the end of the section.

8.4 Theorem (substitution rule) Suppose ® € Diff'(X,Y).
(i) For f € Lo(Y,RT),

/fdy:/(fod))|det8<1>|dx. (8.6)

Y X

(ii) A function f:Y — K is integrable if and only if (f o @) |det 9®| belongs to
L1(X). In this case, (8.6) holds.

Proof (i) Theorem IX.5.12 implies that ®(Lx) C Ly . Hence fo® is measurable,
by Corollary 1.5. Since |det 9P| is continuous, hence measurable, Remark 1.2(d)
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implies that g := (f o @) |det 0P| is measurable also. From (8.5) we obtain f =
(go ®~1)|det 99~ 1|. Now (8.4), with (Y,®~1, g) in the role of (X, ®, f), gives

/(fofl))|det8<1)|dx§/fdy.
X Y

Because of (8.4), this implies (8.6). Now (ii) follows from (i), parts (i) and (iii) of
Corollary 2.12, and Theorem 3.14. m

In terms of the pull back of functions defined in Section VIII.3, the substitu-
tion rule (8.6) takes on the easily remembered form

/de/\nszl(y)(@*f)d(@*/\n).

This follows from Proposition 8.2 and Exercise 2.12.

For many applications, the assumption that ® is a diffeomorphism is too
restrictive. We weaken it somewhat in this simple yet important generalization of
Theorem 8.4:!

8.5 Corollary Let M be a measurable subset of X such that M\M has Lebesgue
measure zero. Suppose ® € CY(X,R") is such that ® | M is a diffeomorphism from
M onto ®(M).

(i) For every f € Lo(M,R"),
/ fdy:/ (f o @) |det 0P| dx . (8.7)
(M) M

(ii) A function f: ®(M) — K belongs to L1(®(M)) if and only if (fo®) |det 0P|
belongs to L£1(M). In this case, (8.7) holds.

Proof Because \,(M\M) = 0, the set ®(M)\®(M) c ®(M\M) also has mea-
sure zero, by Corollary 1X.5.10. The claims then follow from Lemma 2.15 and
Theorem 8.4. m

It is clear that this corollary gives a (partial) generalization of the substitution
rule of Theorem VI.5.1, though limited to diffeomorphisms. There is one obvious
difference from the one-dimensional case considered before: now the derivative
term (that is, the functional determinant) appears as an absolute value. The
reason is that the prior result used the oriented integral.

1See Exercise 7 for a further generalization.
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Plane polar coordinates

A special case of special importance in applications consists of diffeomorphisms
induced by polar coordinates, which we now introduce. We begin with the two-
dimensional case.
Let
f2: R2=R?, (r,¢) = (2,y) := (rcos g, rsing)

be the (plane) polar coordinate map?, and let V5 := (0,00) x (0, 27).

A RO BN
o I f2 I// '\\\ (7‘7 ‘P)
& () - \ >
...................... ?' \\\\ R2\/’(R+X{O})

Then f> is smooth, and det d f2 (r,p) = r, as was shown in Example 8.3. Clearly
V2 \ V2 has measure zero; moreover

L(Va)=R?,  fo(Va) =R*\ (RT x {0}) (8-8)

and
f2 | Va € Dift>(Va, f2(V2)) (8.9)

Therefore Corollary 8.5 applies with M := V:

8.6 Proposition (integration in polar coordinates)
(i) For g € Lo(R?,RT), we have

21w poo
/2 g(x,y)d(z,y) = / / g(r cos @, 7sin p)r dr dp
® 0 0 (8.10)

o] 2
:/ 7“/ g(rcos,rsiny)dpdr .
0 0

(ii) The function g: R? — K is integrable if and only if the map
(0,00) x (0,2m) = K, (r,) — g(rcos @, rsinp)r
is integrable. Then (8.10) holds.

Proof This follows from Corollary 8.5 together with (8.8), (8.9), and the Fubini-
Tonelli theorem. m

2See Conclusion I11.6.21(d).
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These integrals simplify when f depends only on |z|, that is, on r. To illus-
trate, we present an elegant calculation of the Gaussian error integral, for which

knowledge of the I'-function is not required (compare Application VI.9.7).

8.7 Example [™ e~ do = /.

Proof Tonelli’s theorem implies

([ = [ [ eanm [([ernan)a

:/ ef(z2+y2)d(m,y).
R2

Therefore Proposition 8.6(i) shows that

</_ e dx / / —r? drdp = 27T/OOO d%' [76—#/2] dr —

and the claim follows. m

Polar coordinates in higher dimensions
For n > 1, we define h,, : R™ — R""! recursively through

hi(z) := (cosz,sinz) for z € R

and

hnt1(2) i= (hn(2') sin 241, cO8 2p41)  for 2 = (2, 2p41) ER" xR .

Obviously h,, is smooth, and by induction, we verify that
|hn(z)]=1 for ze R™.
Now we define f,, : R" — R" for n > 2 by
fn(y) == y1hn_1(2) fory=(y1,2) ERx R"" .
Then f, is also smooth, and we have
hn-1(2) = fu(1,2) , [fa(y)| = |yl -
We will usually follow convention by renaming the y-coordinates as
(ry 0,01, o oy On—2) = (Y1, Y2, Y35 -« - Yn,) -
By induction, one checks easily that

fn : R" — R" ) (T7<)05191)"'719n—2) — (x17x2;x35"'7xn)

(8.11)

(8.12)

(8.13)

(8.14)

(8.15)

(8.16)
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is given by
1 =rcospsind;sindy---sintd,_o ,
To = rsinpsind;sinds - sind,_o ,
T3 = rcosd sindg - - -sint, _o ,
(8.17)
Tpo1 = rcos¥,_3sind,_o ,
T, = rcost,_o .

Thus f> coincides with the plane polar coordinate map, and f3 is the spherical co-
ordinate map of Example VI1.9.11(a). In the general case, f, is the n-dimensional
polar coordinate map. From (8.12) and (8.14), the recursive relation

fa@) = (fa—1(y') siny,, y1cosy,)  fory = (y',yn) € R xR (8.18)
follows for n > 3. For n > 2, we set
Wy_1:= (0,27) x (0,7)"" 2, V; :=(0,00) x Wy,_1 , (8.19)

and
Vo(r) :=(0,7) x Wy_qy forr>0. (8.20)

If we denote the closed (n—1)-dimensional half-space by

H, 1 :=R" x {0} xR" 2 CR", (8.21)
we find
Boi(Wo1) = S N\Hyy, fu(Va(r) = rB"\ H,_, (8.22)
and
het(Wio1) = S™70 0 fu(Va(r)) = 7B™ . (8.23)
Also
fa(Va) =R"\Hooy,  fo(V,) =R™. (8.24)

In addition, the maps h,,—1 | W,,—1 and f, | V,, are bijective onto their images.

‘A/ T']Bn

Rn72
A Va(r)

Wn—l Z

These statements follow easily by induction.
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8.8 Lemma Forn > 3 andr > 0, the map f,, is a C* diffeomorphism from V,,(r)
onto rB"\ H,_1 and from V,, onto R"\ H,,_1. Moreover

det Ofp(r, o, 01, ..., Opn_2) = (—1)"7“"_1 sindy sin? Yy - - - sin" "2 9,,_o

for (r,p,91,...,0,_2) € V.

Proof In view of the foregoing, we need only calculate the value of the functional
determinant det Jf,(y). We do this recursively. From (8.12) and (8.14), we have

hn—1(2")sin 2z, [rf)z (hn,1 (') sin zn)]
OfeesWl =1
COS Zn, 0 0 —rsinz,
r *
_ [0fn(y) sin zn]
* )
L * * —rsin zp

where y = (r,2) = (v, z,) and z = (2/, z,) € R". Expanding in the last row, we
find

det Ofni1(y) = (—1)" cos z, det S — rsin™*! 2, det D fn (v') , (8.25)
where S := [raz (hn,l(z') sin zn)} We can assume that sin z,, # 0; otherwise the
claim is trivial. In the last column of S we have rh,_1(z’) cosz,. This vector
differs only by the factor r cot 2, from the first column vector, h,,_1(2’) sin z,, of
the matrix T := [0fn(y’) sin z,,]. The first n — 1 columns of S also agree with the
last n — 1 columns of T, in the same order. Therefore

det S = (—1)""rcot z, det T = (—1)" "7 cos 2, sin" ' 2, det O, f () .
Thus it follows from (8.25) that
det Ofny1(y) = —rsin™ !z, det dfn(y) .
The claim now follows because det dfa(r, ) =r. m

For short, let’s set

wp(9) 1= sindy sin? g - -sin" 2,y , O:= (P1,...,9n—2) €0, 77]"_2 .
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8.9 Proposition (integration in polar coordinates) Suppose n > 3.
(i) For g € Lo(R™,RT), we have

/n gdx = /v (g o fn)(r, 0, 9)r" L, (9) d(r, ¢, 9) . (8.26)

(ii) The map g: R" — K is integrable if and only if
Vi =K, (r,9,9) = (g0 fo)(r,0,0)r" tw, (9)
is integrable. Then (8.26) holds.

Proof Because )\, (‘_/n\Vn) = 0, the claim follows from (8.24), Corollary 8.5, and
Lemma 8.8. m

8.10 Examples (a) For g € £o(R*,R"), we have

[ a2 dey.2)

oo 2T pT (827)

:/ / / g(r cos psin ¥, rsin @ sind, r cos ¥)r? sin ¥ did dp dr .
o Jo Jo

The integrals on the right side can be performed in any order.

Proof This follows from Proposition 8.9(i) and Tonelli’s theorem. m
(b) A map g: R® — K is integrable if and only if
Vs =K, (r,¢,9) — g(rcospsind, rsin psind, r cos ) r? sin ¢

is integrable. Such a map satisfies (8.27), and the integrals there can be performed
in any order.

Proof This is a consequence of Proposition 8.9(ii) and the Fubini-Tonelli theorem. m

(c) For n > 3, we have
27r/ wy, (V) d¥ = nw, ,
[0,7] -2

where w, = /2 /T'(1 + n/2) is the volume of B".
Proof From (8.22), (8.23), Proposition 8.9, and Tonelli’s theorem, it follows that

wn:/ dx:/ ldx:/ (Lo f)(r, 0,0 Lw, (9) d(r, @, 9)
Bn n Vn (1)

1 27
:/ r"*dr/ dgo/ wn(9) 9 = 21/ wn(8) 9 |
0 0 [0,7]7—2 n [0,7]n—2

and we are done. m



202 X Integration theory

Integration of rotationally symmetric functions

Suppose 0 < 19 < r; < oo and set R(rg,r1) == {x € R" ; 1o < |z] < 71 }. We
say that a function g: R(rg,r1) — F is rotationally symmetric if there is a map

g: (ro,m1) — E such that
g(z) = g(Jz]) for z € R(rg,71) -

This is the case if and only if g is constant on every sphere 7S"~! with ro < r < ry.
For such a function, ¢ is uniquely determined by g (and vice versa).

As we saw in Example 8.7, integration problems simplify considerably for
rotationally symmetric functions.

8.11 Theorem Suppose 0 <1rg < ry; < oo.
(i) Ifg € ,Co(R(?“o, 1), R+) is rotationally symmetric, then

™
/ gdr = nwn/ gryr"tdr, (8.28)
R(’I”o,’l”l) T0
where w, = A, (B") = 7"/2/T(1 +n/2).
(ii) A rotationally symmetric function g : R(rg,r1) — K is integrable if and only if
(ro,m) = K, rg(r)rm!
is integrable. In this case (8.28) holds.

Proof The case n = 1 is clear (see Exercise 5.12). For n > 2, it follows from
(8.15) and the rotational symmetry of g that

go falr,p,9) =g(r) forrg<r < and (p,9) € W,_1 .

Now the claim arises from Propositions 8.6 and 8.9 (applied to the trivial extension
of g) and Example 8.10(c). m

8.12 Examples (a) Suppose f: R" — K is measurable and there are ¢ > 0, p > 0,
and € > 0 such that

cle|™mte  ifo<|z|<p,
|f(2)] < e
clz if x| > p .
Then f is integrable.
Proof Set
g(x) = c(|z|7"** Xin (%) 4 127" X (ppnye(x))  for z € R"\{0} = R(0, 00) .

Then ¢ is rotationally symmetric, and |f(z)| < g(z) for z € R(0,00). By Examples
VI.8.4(a) and (b), r — g(r)r" ™' belongs to £1(RT). Hence Theorem 8.11 implies that g
also belongs to £1(R(0,00)) = £L1(R"). Now the claim follows from Theorem 3.14. m
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(b) Let p € Loo(R™) have compact support. Also define

1 1
Z:R™\ {0 Rt .
AR UE S

Then (1/7r)® * p exists for a < n, and

(l)a*ﬂ(x)—/w&dy for x € R™ .

r x —yl*

Proof Take z € R™ and define K := supp(p) and g2(y) := ||plloo |y| ™ Xa—x (y) for
y # 0. Then g, belongs to Lo(R™), and

(@ —y)||ly]™" < g=(y) fory#0.

Because « < m, part (a) shows that g, is integrable. The claim now follows from Theo-
rem 7.8(ii). m

For n > 3, the function u,, := (1/7)"~?#py, in the notation of (b), is called the
Newtonian or Coulomb potential associated with the density p. From Exercise 3.6

we know that w,, is smooth and harmonic in K¢, and (b) shows that u, is defined
on all of R"™.

The substitution rule for vector-valued functions

We now prove the substitution formula of Theorem 8.4 for vector-valued functions.

8.13 Lemma Let f € S.(Y, E) and ® € Diff'(X,Y). Then (fo®)|det 9®| belongs
to £1(X, E), and
/ fdy:/ fo®)|det0®|dzx .
Y

(
X

Proof Because supp(f o ®) = q)_l(supp(f)), the support of f o ® is compact.
In particular, f o ® belongs to S.(X, E). It easily follows that (f o ®)|det 0P| is
integrable. Also Theorem 2.11(iii) shows that, for e € E and g € £1(X,K), the
function eg belongs to £1(X, F) and e [y gdz = [y egdz. Letting 37" ejxa, be
the normal form of f, we see from Proposition 8.2 that

/ fdy= ZejAn(Aj) = Z@j/ |det 0P| dx
Y j=0 j=o0 /2

(A5

:Z/ ej|det8<1>|dx=/(fo<1>)|det8(1>|dx. .
j=07®71(4)) X
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8.14 Theorem (substitution rule) Let ® € Diff'(X,Y) and f € EY. Then f
belongs to £1(Y, E) if and only if (f o ®)|det 0P| belongs to L£1(X, E). In this

case, we have

/deyz/ f o ®)|det 0| da .

(
X

Proof (i) Let f € L1(Y,FE), and take a sequence (f;) in S.(Y,E) converging
a.e. in L1(Y,E) to f and satisfying lim [, f; = [, f (see Lemma 6.18, Remarks
6.19(a) and (c), and Theorem 2.18). Set g; := (f; o ®) |det 9P| for j € N. Thanks
to Lemma 8.13, we know that (g;) is a Cauchy sequence in £4(X,E) and that
Jy fidy = [y gjdx. Because L£1(X, E) is complete, there exists g € £1(X, E)
such that g; — g in £1(X, E). Also, it follows from Theorem 2.18 that [ g; dx
converges to fngx and that some subsequence (g;, )ren of (g;) converges a.e.
in X to g. Hence g and (f o ®) |det 9P| coincide a.e. in X. By Lemma 2.15,
(fo®)|det 0P| belongs to L1(X, E), and [, g = [ (fo®)|det 9®|. It follows that

/fdy:lim/ fjdy:lim/ gjdx:/gdm:/(fo(l))|det8‘1>|dx.
Y J Y J X X X

(ii) For the converse, suppose (f o ®)|det d®| belongs to £1(X, E). From
(8.5) we have
f=((fo®)|detd®|) o ® " |detd(@ )|,

so part (i) shows that f belongs to £1(Y,E). m
It is clear that Corollary 8.5 is also true for E-valued maps. From this it

follows that Propositions 8.6(ii) and 8.9(ii) and Theorem 8.11(ii) also hold for
E-valued functions.

Exercises

1 Let G € R™™™ be symmetric and positive definite. Prove that
/ e (G2 g = W"/2/\/detG .

(Hint: principal axis transformation.)

2 Show that for p € C with Rep > n/2, we have
[ @1y do =720 = n/2) /D)

(Hint: Look at Example 6.13(b).)

3 Suppose D := { (z,y) ER?; 2,y >0, v +y < 1} and p,q € (0,00). Show that for
f:(0,1) = R, the function

D—R, (z,y)—2" 'y f(z+y)
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is integrable if and only if s — s?T97! f(s) belongs to £1((0,1)). In this case, we have

1
/"ﬂ—wwﬂﬂx+wd@w>=8@ﬂ)/ 1 (s) ds
D 0

(Hint: Consider (s,t) — (s(1—t), st).)

4 Let 0 < a< < 2m and suppose f: [a, 8] — (0,00) is measurable. Show that

S(e, B, f) = {2z € C; argy(2) € [, 8], |2] < f(argy(2)) }
is Lebesgue measurable and that

1

A 2
X (S(.8.0) = 5 [ [F0)] de

5 Suppose g € L2,,(R™) is positive definite. Calculate the volume of the solid ellipsoid
g~ "([0,1]) enclosed by the surface g~*(1) (see Remark VII.10.18).

6 (Sard’s lemma) Suppose ® € C'(X,R"), and let C := {z € X ; 0®(z) ¢ Laut(R") }
be the set of critical points of ®. Show that ®(C) has measure zero. (Hint: Because C
is o-compact, it suffices to check that ®(C' N J) is has measure zero for every compact
n-dimensional cube J. Take zo € C' and 7 > 0 such that Jo := [zo — (r/2)1,z0 + (r/2)1]
is compactly contained in X, and set

p(r) == max/o |0® (z0 + t(z — z0))|| dt .

xzeJg

Show that there is a ¢, > 0 such that A\, (®(Jo)) < enr™p(r). Because lim,—q p(r) = 0,
the claim follows by subdividing the edges of Jy.)

7 Suppose ® € C'(X,R") and C = {2 € X ; 0®(z) ¢ Laut(R")}. Also suppose
@ | (X\C) is injective. Prove:
(i) For f € Lo(X,RY),
Fdy = / (f o ®) |det D] dz . (8.29)
) p's

(X
(ii) The function f: ®(X) — E belongs to £1(®(X), E) if and only if (f o ®) |det 9|
lies in £1(X, E). In this case, (8.29) holds.
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To conclude this chapter, we introduce the most important integral transformation,
called the Fourier transform.! The study of its fundamental properties is as it
were a recapitulation of Lebesgue integration theory: we will encounter at every
turn such cornerstones as the completeness of Lebesgue spaces, the dominated
convergence theorem, and the Fubini—Tonelli theorem.

Particularly appealing is the interaction of the Fourier transform with the
convolution and with the Hilbert space structure of Ly. We illustrate the former
through Fourier multiplication operators and the second via Plancherel’s theorem
and applications of the position and momentum operators of quantum mechanics.

In this section, we exclusively consider spaces of complex-valued functions
defined on all of R™. For this reason, as in Section 7, we omit (R",C) from our
notation and write, for example, £1 for £1(R",C). In addition, [ fdx always
means f]R” f dz, and we canonically identify R™ with its dual space, so that (-, -)
coincides formally with the Euclidean inner product.

Definition and elementary properties

Let f € £1. The map R” — C, z+ e~ *{® f(x) belongs to L; for every ¢ € R™.
The map f: R™ — C defined by

Fle) = (27r)—"/2/ e @8 f(x)dr for £ e R" (9.1)

n

is called the Fourier transform of f. The map F := ( f— f) is also called the
Fourier transform (or, if necessary to avoid confusion, the Fourier transformation).

Different conventions intervene in the definition just given; instead of (9.1),
one often sees the Fourier transform being defined as?

f»—>/e—"<x’5>f(a:) dr or E'_)/e—QTri(;c,Qf(x) de .

Obviously, these differences in normalization are immaterial to the underlying
theory; however, they do cause powers of 2w to appear in some of the following
expressions. One should be mindful of this when reading the literature. The
normalization chosen here has the advantage that such factors appear only in a
few places and that Plancherel’s theorem takes on a particularly simple form.

9.1 Remarks (a) For f € Ly, set Ff := fo= ff, where f is an arbitrary
representative of f. Then Ff is well defined, and F € L(L1, BC).

IThe contents of this section will not be used in the rest of this book.
2See Section VIIL6.
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Proof The first statement is obvious. Because

IF©)] < @m) " |Ifll, for € € R™,

the second follows easily from Theorem 3.17 (on the continuity of parameterized integrals)
and Theorem VI.2.5. m

(b) For f € L1, we have f: f The function defined by

~
~

R - C, &— f(6)= (2#)_"/2/ei(”’§>f(a:) dz

is called the inverse Fourier transform of f, for reasons soon to become clear; and
the map

F=(7=])
is the inverse Fourier transform(ation). Because inversion (f — }/) is a continuous

automorphism on £y, Li, and BC, the inverse Fourier transform has the same
continuity properties as the Fourier transform.

Proof This follows immediately from the substitution rule. m
(c) For A > 0, we denote by oy : R" — R", z — Az the dilation by the factor A.
We define an action of the group ((O, 00), ) on Funct := Funct(R", C),

((0,00),-) x Funct — Funct , (A, f) — oaf , (9.2)
by setting

oxfi=fooiyx="(o1)"f.

If V is a vector subspace of Funct that is invariant under this action (meaning
that o5 (V) C V for A > 0), the map

ox: V=V, veo\w

is linear and satisfies ox0, = oy, and o1 = idy for A, p > 0. Therefore o is a
vector space automorphism of V', with (o))~ = o1/ for A > 0. This shows that

((0,00),+) = Aut(V) , Aoy

is a linear representation of the multiplicative group ((O, 00), - ) on V. In particular,
{ox; A >0} is a subgroup of Aut(V'), the group of dilations on V. Accordingly
o)\v is the dilation of v by the factor A. As with the translation group, we say that
((0,00),-) is linearly representable in V if V is invariant under (9.2).

Suppose 1 < p < oo. Then ((0, 00), ) is linearly representable on L, and

lloxflls = AP (1 £l -

Proof This follows from the substitution rule. m
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(d) Fox = Aoy /3 F for A > 0.
Proof Suppose f € £1 and A > 0. Then

Forf(&) = (Qw)*"”/e*“zv@f(m/x) dr = A"(Qw)*"”/e*@“»A@f(x/A)x" dz

~

for £ € R™. But the substitution rule shows that the last expression is equal to A" f(\). m

(e) Suppose a € R". Then (ei<a">f)A = Taffor felyn

The space of rapidly decreasing functions

We now introduce a vector subspace of £; where the Fourier transform is especially
manageable. Using density arguments, we will then be able to broaden the results
to larger function spaces.

We say f € C is rapidly decreasing if for every (k,m) € N?, there is a
Ck,m > 0 such that

(1+zP)* 0% f(z)| < chm forz € R™, a€N", and |of<m .

In other words, f € C* is rapidly decreasing if, as |x| — oo, every derivative 0° f
goes to zero faster than any power of 1/|z]|.

We now set

Grm (f) = max sup (1+ |z[>)¥/210%f(z)| for f e C® and k,m e N .
la|<m zern

The space
S:={feC™; qum(f) <oofork,meN}

is called Schwartz space or the space of rapidly decreasing functions.

9.2 Remarks (a) S is a vector subspace of BUC™. Every gj , is a norm on S.

Proof Let m € N. Then S is a vector subspace of BC™, since ¢o,m» is the norm on
BC™. Let o € N" with |a] < m. Then it follows easily from the mean values theorem
that 0% f is uniformly continuous. The proves the first statement. The second is clear. m

(b) For (f,g9) € S xS, let

— N" g (ktm) _Gem(f—9)
d(f,g) = %2:02 ! L+ qem(f—g)

Then (S, d) is a metric space.

Proof (i) Clearly the double series 2_(k+m)qk,m(f)/ (14 gr,m(f)) converges for every
f€S. Thusd: SxS — RT is well defined. Also d is symmetric and vanishes identically
on the diagonal of S x S.
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(ii) Because t +— t/(1+4t) is increasing on R", we have, for r,s,t € RY with r < s+t,

r<s+t7 S t S t

< = + < + .
1+r = 14s+t 14+s+t 14+s+t = 1+s 1+t
Now it follows easily that d satisfies the triangle inequality. m

(c) For f € S and a sequence (f;) in S, there is equivalence between:
(i) lim f; = f in (S, d);
(i) Tin(f — f;) = 0 in (S, d);
(ili) lm;j grm(f — f;) =0 for k,m € N.
Thus a sequence (f;) converges in S to f if and only if (f; — f) converges to zero
with respect to every seminorm gy, .
Proof “(i)=-(ii)” This implication is clear.

“(ii)=-(iil)” Take ¢ € (0,1] and k,m € N. There exists an N € N such that the
inequality d(f, f;) < &/28+™*+1 is satisfied for j > N. Thus

2 (k+m) m(f = f4) < €

1+qk,m(f i) 2k4mtt 7

80 q,m (f — f;j) < e for j > N.
“(iii)=-(i)” Take € > 0. There is an N € N such that

ktm=N+1 1+ka(f ff o 2

By assumption, there is M € N such that qg,m (f — f;) <e/d for j > M and k+m < N.
Therefore

| N o (k+m) g wm(f = fi)
d(ﬁ f]) < k,mZ:O 1 Jqu,m(f f]) "

<e forj>M. m

N ™

(d) D is a dense vector subspace of S. The function R" — R, z — e~lel® belongs
to S but not to D.

Proof It is clear that D is a vector subspace of S. Suppose f € S. We choose ¢ € D
such that ¢ |B" =1 and set

fi(@) = f(x)p(x/j) forzeR™, jeN*.
Then f; belongs to D, and
f(@) = fi(x) = f(z)(1 = @(z/j)) forzeR™.

Therefore 9%(f — f;)(z) = 0 for x € jB™ and o € N”. Now Leibniz’s rule shows that
there is a ¢ = ¢(p, m) > 0 such that

0°(f — fi)(e |—]Z( )97 £(@)a* (1 = @)/ )i | < emax|0” ()

< cquarm(f)(L+ [zf?)" D72
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forzx e R", j € N* k€N, and |a|] < m. Setting C := cqi+1,m(f), we find

@i (f = f3) = max sup (142 |0°(] — f5) (@)

< cqrtr,m(f) sup L+l <C/j,
a|>j

and, as j — oo, the first claim follows from (c). The second one is clear. m

(e) For m € N, we have § — BUC™.
Proof This follows from (a) and (c). m

(f) S is a dense vector subspace of Cj.

Proof Suppose f € S. Then it follows from (a) and because |f(z)| < qi,0(f)(1 +
|z|?)~Y/2 for & € R™ that f belongs to Co. Therefore S is a vector subspace of Cp.
Theorem 7.13 shows D is a dense vector subspace of Cp, and therefore the claim follows
from the inclusions D C S C Cp. m

(g) For k,m € N, there are positive constants ¢ and C such that

¢ max sup‘aa 2P f(x) ‘<qkm(f)<C max sup [¢P9%f(x)] for f€S .
le|<m gern al<m peRrn
18I<k Iﬁ\Sk

Proof This follows easily from the Leibniz rule. m

(h) Let f € S and a, 8 € N". Then z — 2°9” () belongs to S.

Proof This is a consequence of (g). m

(i) The inversion f — f is a continuous automorphism of S.

Proof This is obvious. m

9.3 Theorem Let p € [1,00). Then S is a dense vector subspace of L, and there
is a ¢ = c¢(n,p) > 0 such that

Ifllp < cqnyr0(f) for feS. (9.3)
Proof For f € S, we have
Jlswds = [ 1@ (1 ) 0mr2 (1 o) rr2 g
< (gunnl))” [+ P2 o

Further, by Theorem 8.11(i) and because (n + 1)p > n, we have

/ ||~ (" VP 4z = nw, /oo pm (A DP=nHD) g < oo
[lz]>1] 1

(9.4)

Therefore [(1 + |z|?)~("*VP/2 4z is also finite, and (9.3) follows from (9.4). In
particular, f belongs to L,, and we see that S is a vector subspace of L,. By
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Theorem 7.13, D is a dense vector subspace of L,, and by Remark 9.2(d), it is
contained in §. The claim follows. m

The convolution algebra S

By Remark 9.2(a) and Theorem 9.3, S x S is contained in BUC™ x L;. Therefore
the convolution is defined on § x &, and by Corollary 7.9, we have

x: S xS — BUC™ . (9.5)

The next result shows that f * g is actually rapidly decreasing for (f,g) € S x S.

9.4 Proposition The convolution S X S is a continuous and bilinear map into S.

Proof (i) We verify next that the convolution & x & maps into §. So suppose
(f,9) € SxS and k,m € N. By (9.5), it suffices to check that g m (f * ¢) is finite.
Because

k
k S
ol < Gz =9l + D =3 (5 )le =l 7 for g € R
j=0
there is a ¢ > 0 such that
LIy , ,
ol If s a@l < [ S (5) o=t 1@ =) 7 o)l dy
j=0

< auanolf) [+ WP o)l dy
Noting that ¢, := [(1 + |y[?)~("+1)/2dy is finite, we find

2" [ f * g(2)] < crn qro(f)htnt1,0(9) -
Thus by Remark 9.2(g), there is a ¢ = ¢(k,n) > 1 such that

Qk,0(f *9) < cqro(f)ar+n+1,0(9) - (9.6)

Finally by Theorem 7.8(iv), we have

Qem (f *g) = ‘ gﬁ%,o(aa(f xg)) =

al

‘algﬁQk,O((aaf) *9) ,

and (9.6) implies

Qe (frg) <c max Qk,0(0% f)@r4n+1,0(9) = €@, (f)@rrnr1,0(9) - (9.7)

(ii) It is clear that the convolution is bilinear. Suppose (f,g) € S x S and
((f5,95))jen is a sequence in S x S such that (f;,9;) — (f,9) in S xS as j — .
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Also let
o= c(qk,m(f) + Qrtnt1,0(9) + 1)

where ¢ is the constant from (9.7). Let ¢ € (0,1]. By Remark 9.2(c), there is an
N € N such that

Qk,m(f_fj)<€/a ) Qk+n+1,0(g_gj)<€/a fOI‘jZN
Because
frg=tixgi=(—fi)xg+(fi = f)x(g—9i)+ f*(g—9;)
it follows from (9.7) that
Qe (F 9 — fi %95) < c(@om(f = [1)@otn+1,0(9) + Qe (f = fi)@rtn+1,0(9 — 95)
+ @i (F)@rant10(9 — g5)) < e
for j > N. Thus we are done. m
9.5 Corollary (S, +,*) is a subalgebra of the commutative algebra (Lq,+, *).

Proof This follows from Proposition 9.4 and Theorem 9.3. m

Calculations with the Fourier transform

We now derive some rules for the Fourier transformation of derivatives and the
derivatives of Fourier transforms. It will simplify the presentation of these formulas
to set A(z) := (1 + |z[*)'/2 for € R™ and

Dj:=—-i0;, je{1,...,n} for D*:=Dy.---Di», «aeN",

where ¢ is the imaginary unit. As usual, the polynomial function induced by the
polynomial p € C[X7, ..., X,] will also be denoted by p.

9.6 Proposition Suppose f € L.
(i) For a € N", suppose D*f exists and belongs to £1. Then Xaf: Eo‘\f
(ii) For m € N, suppose A™ f belongs to £1. Then f belongs to BC™, and

Daf: (—1)|a‘)@ fora e N" | |af <m.

Proof (i) Suppose { ¢. ; € > 0} is a smoothing kernel. By integration by parts
(see Exercise 7.10), it follows that

/f“ ) (f 4 0, (@) dar = ( '“‘/D“ ) (f x ) () i

(9.8)
_ /e—m& (D f) * 0.) (x) d .
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Theorem 7.11 and Theorem 2.18(ii) imply that

lim (2) /2 / 210 (f % p.)(2) da = € F(€)

e—0

and
iy (2m) /2 [0 (D 1) ) &) dn = D)

e—0

for £ € R". Using (9.8), this proves the claim.

(ii) We set h(zx, &) := e *(®8 f(x) for (x,&) € R" x R™. Then h(-,£) belongs
to £y for every £ € R", and h(z,-) belongs to C* for every x € R". Further, we
have

Dgh(z,€) = (—1)*z%h(z,€) for (,6) eR™, aeN",

and thus
IDgh(x, &) < (14 |22 |h(z, ) = A (2) | f(2)] - (9.9)

It then follows from the theorem on the differentiation of parametrized integrals
that f belongs to C™ and that

D f(¢) = (277)‘”/2/Dgh(x,g) dx = (2m)""/2(— |a\/
= (-1lIXeF ()
for £ € R" and a € N" with |a| < m. Finally (9.9) shows

D F(6)| < (2m) 2 / D2, &)] dz < (2m) /2 AP f||, < 00 for € € R™ .

Thus ]?belongs to BC™. m

9.7 Proposition The Fourier transformation maps S continuously and linearly
into itself.

Proof (i) Suppose f € S and m € N. Then
/Am(x) |f(z)| do = /(1 + |22 f ()| (14 |2 "D da
< @m+n+1,0(f) /(1 +[a?) "2 de < oo
We find using Proposition 9.6(ii) that fbelongs to BC™ and thus to BC*°.

(ii) Suppose k,m € N and «,3 € N" with |a] < m and |8 < k. Also
suppose f € S. Then it follows from Remark 9.2(h) and Theorem 9.3 that A™ f
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and D?(X*f) belong to £1. Therefore Proposition 9.6 implies

PDf(€) = (~1)IEPXaf(€) = (1)l (DP(Xf))7(€) for E€R™ . (9.10)

Remark 9.2(g) shows there is a ¢ > 0 such that

€D F(9)] < (2ﬂ)_n/2/|D5(X“f)(x)l (14 |22 (1 4 J2f?) = D2 de
S C(Im+n+1,k(f)

for |a| <m and |3| < k. Hence there is a C' > 0 such that

Qk,m(f) < CQm+n+1,k(f) . (9.11)

Therefore fbelongs to S. The continuity of the Fourier transformation now follows
easily from (9.11) and Remark 9.2(c). Thus we are done. m

9.8 Corollary For f € S and o € N", we have

@ = X“f and @ = (—1)‘O‘|D(’f.

Proof These are special cases of (9.10). m

Proposition 9.6 and Corollary 9.8 show that the Fourier transformation maps
differentiation into multiplication by functions, and conversely. This fact underlies
much of its great utility.

It is now easy to improve the statement of Remark 9.1(a) to one saying that
the image of Ly under F already lies in Cj.

3

9.9 Proposition® (Riemann-Lebesgue) F € L£(L1,Cy).

Proof Proposition 9.7 and § C Cy imply F(S) C Cy. From Theorem 9.3, we
know that S is a dense vector subspace of L1, and Remark 9.1(a) guarantees that
F maps the space L continuously into BC. The claim now follows because Cj is
a closed vector subspace of BC. m

9.10 Examples (a) For g :=¢g,: R" - R, =z — e"””‘2/2, we have g = g.
Proof (i) A property of the exponential implies

gn(z) = g1(z1) - -+ - g1(xn) forx = (z1,...,2,) €R" .

3 Also known as the Riemann-Lebesgue lemma.



X.9 The Fourier transform 215

For clarity, we denote by F,, the Fourier transformation on R™. Then it follows from the
Fubini—Tonelli theorem that

n
e~ @O g=le?/2 g (27r)_"/2 / e i% e/ gy

R™ -1

s — —ixifs —ax2 =
= ||(27r) 1/2/6 ibe J/Qdifj: ||~7:1(91)(§j)~
i=1 "

j=1

Falgn)(€) = (2m) "/ /

R”

This shows that it suffices to treat the one-dimensional case.

(ii) Suppose therefore n = 1. For f :=g, we have from Example 8.7 that
50 =30) = —= [~ e dn =1
g Vorm J '

Because ze~*"/2 = 78(6_12/2), that is, because Xg = —9g = —i Dg, Corollary 9.8 gives
Of =0§=iDj=—iXg=-Dg=—-Xg=—Xf.

Therefore f solves the linear initial value problem y’(t) = —ty(t) with y(0) = 1 on R; its
unique solution is g. m

(b) With the notation of (a) and (7.11), we have

—

g )(€) =g.(&) forEeR™, £>0.

Proof Because g(¢-) = 01,9, this follows from (a) and Remark 9.1(d). m

(c¢) Suppose
o(z) == (2m) /2l

and let € > 0. Then ¢(e - ) = ke, where k; = k, is the Gaussian kernel.

for x € R™ |

Proof From ¢ = (277)*"/201/\/§g and Remark 9.1(c), it follows that

p(e-) = 0100 = (2m) %0, 5. 9= (2m) " ?g(V2e-) .

Thus we get from (b) that

—

oe (@) = (2r) " 2g 5. (x) = e " (4m) 2T Z k()

forr e R". m

The Fourier integral theorem

To prepare for more in-depth study of the Fourier transformation on L1, we provide
the following results.
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9.11 Proposition Suppose f,g € Li. Then fg and fg belong to Ly, and

/ﬁm:/mm.

Proof From Proposition 9.9, it follows easily that fg and fg belong to L;. Let
f and ¢ be representatives of f and g, respectively. Then Lemma 7.2 shows that

heR™ —C,  (z,y) = e 9 f(2)d(y) (9.12)

is measurable. Because

[ [ )l dzdy =171 gl (0.13)

we can apply the Fubini—Tonelli theorem to h, and we find

[ Fwitdy = [emy 2 [eiten fa) de gy dy
= [ [t gy dy faydo = [ G oo

Then claim now follows after noting f: f and g = a? [

We now prove theorems about the inverse of the Fourier transformation for
various assumptions on the function and its transform.

9.12 Theorem For f € L, these statements are true:
(i) lim (27) /2 / COf©e " de =  inLy.

(ii) (Fourier integral theorem for Ly) If fA belongs to Ly, then f = F (]?), where
F is the Fourier cotransformation.

Proof (i) We use the notation of Example 9.10 and set
(€ ) = e W p(eg) = (2m) /et W8l =< €

for £,y € R" and € > 0. We let g/og( -,y) be the Fourier transform of £ — ¢©°(€,y)
for y € R". From Example 9.10(c) and Remark 9.1(e), it follows that

Fla,y) =k(y—2) fora,yeR".

Therefore Proposition 9.11 implies

(2m) /2 / F(&)et e 1eF ge = / F(&)¢e (€, y) de
- [1@F @ do = hex 1)

for y € R". The claim now follows from Theorem 7.11 and Example 7.12(a).
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(ii) If ]?belongs to L1, the dominated convergence theorem shows that

-~ A~ ~

lim [ &' @9f(e)e " dg = / ¢ WO J(&) de = (2m)"F (F) " (y)

e—0

for y € R"™. Thus (i), Remark 9.1(b), and Theorem 2.18(i) finish the proof. m

9.13 Corollary
(i) (Fourier integral theorem for &) The Fourier transformation is a continuous

automorphism of §. Its inverse is the Fourier cotransformation.

(ii) The Fourier transformation maps L continuously and injectively into Cy and
has a dense image.

(iii) For f € Ly N BUC, the equality®

o~

@) = lim(2m) 2 [ &9 Fye= 1 dg

e—0
holds uniformly with respect to x € R".
(iv) For f € Ly N BUC, suppose f belongs to Li. Then

o~

flx) = (27r)*"/2/ei<w’f>f(5) d¢ forz e R".

Proof (i) As in the case of normed vector spaces, we denote by £(S) the vector
space of all continuous endomorphisms of S; similarly, we let Laut(S) be the
automorphisms of S. Then it follows from Remark 9.2(i) and Proposition 9.7
that F and F belong to £(S). Because S C Lj, Theorem 9.12(ii) therefore
shows that F is a left inverse of F in £(S). It then follows from % = u that
FFf =F(Ff) = FFf = FFf = f for f € S. Therefore F is also a right
inverse of F in L(S), which proves F € Laut(S).

(ii) If f: 0 for f € Ly, then f = 0 follows from Theorem 9.12(ii). Therefore
F is injective on L1, and from the Riemann-Lebesgue lemma, we know that F
belongs to L£(L1,Cy). Because (i) and S C Ly, we have § = F(S) C F(L1). It
then follows from Remark 9.2(f) that F(L;) is dense in Cj.

(iii) follows from the proof of Theorem 9.12(i) and Theorem 7.11.

(iv) is now clear. m

9.14 Remarks (a) For f € S, we have f: f

(b) One can show that Ly does not have a closed image in Cy under the Fourier
transformation (see [Rud83]). Hence F € L(L1, Cy) is not surjective. m

40ne can show that (iii) and (iv) remain true for f € L1 N C.
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Convolutions and the Fourier transform

We now study what happens to convolutions under the Fourier transformations.
So we first introduce another space of smooth functions; these will turn out to be
particularly significant in the next subsection.

Suppose @ € C*. If to every a € N”, there are constants ¢, > 0 and k, € N
such that

|0%p(x)] < ca(1+ |z*)ke  for z € R™,

then we say ¢ is slowly increasing. We denote by Oy, the set of all functions with
this property, the space of slowly increasing functions.

9.15 Remarks (a) In the sense of vector subspaces, we have the inclusions S C
Op C C*® and C[Xq,...,X,] C O

(b) (Onr,+,+) is a commutative algebra with unity.

(c) Suppose (¢, f) € Op x S. Then f belongs to S, and to every m € N, there
are ¢ = c(p,m) > 0 and k' = k'(p,m) € N such that ¢xm(pf) < c@rir m(f)
for k € N.
Proof Suppose m € N. Then there are ¢ = c(p,m) > 0 and ¥ = k'(p, m) € N such
that

10%p(x)] < c(1+|z)¥/? forzeR™, aeN", |af<m.

Now it follows from the Leibniz rule that

— . 2\k/2 AN 56 o—p
Gem(pf) = max sup (1+ faf?) B}@j( §) 8 e@)0" 1)
< e max sup (14 [2) /2 10° f(2)] = ¢ i ()
al<m gzecrn

for feSand ke N. m

(d) Suppose ¢ € Opr. Then f — @f is a linear and continuous map of S into
itself.

Proof This follows from (c) and Remark 9.2(c). m

(e) For every s € R, A® belongs to Op;. m
We can now prove another important property of the Fourier transformation.

9.16 Theorem (convolution theorem)

() (f*g)" = (2m)"/2fG for (f,9) € L1 x L1.

(ii) o* f = (277)”/2&} for (o, f) € S x L;.
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Proof (i) By (9.12) and (9.13), we see that the Fubini-Tonelli theorem can be
applied. It then follows from Corollary 7.9 that

(f *9)(€) = (2m) /> / e () / f(@ —y)gy) dy do
— (2m) "2 / o(u) / ) f(a — y) dady .

Because
/67i<z,£>f(x _y)dp = =i /67i<z,£>f(z) dz = =10 (212 f(g) |

we then get
(f*g) (&) = (2m) ™"/ / @2m)"2f(€)e™ W g(y) dy = (21)"2F(€)G(€) -

(ii) Suppose (¢, f) € S x L1. By Theorem 9.3, we find a sequence (f;) in S

such that f; — fin £;. Propositions 9.4 and 9.7 imply that @*fj belongs to S. By
Remark 9.15(c), ¢f; also belongs to S, so it follows from (i) and Remark 9.14(a)
that

(8 J3)" = (m)"25]; = (2m)"2(pf;)” for jEN.
By Theorem 9.12(ii), we then get

P * f] = (277)”/2@ forjeN. (9.14)

Because f; — fin L, it follows from Remark 9.1(a) that fj — fin BC'. Therefore
Corollary 7.9 implies because € S C L, that the sequence (@ * f;) converges
in BC to ¢ * f Because cpfj — @f clearly holds in L1, we deduce from Proposi-

tion 9.9 that the sequence (cp fj ) converges in BC' to ¢ f Then the claim follows
from Remark 9.1(a). m

As an application of the convolution theorem, we prove a lemma, which forms
the basis for the Lo-theory of the Fourier transformation.

9.17 Lemma For f € £, N L, f belongs to Co N Ly, and £z = 117 Il2-

Proof Suppose f € £1NLy. Because fbelongs to Cp by the Riemann-Lebesgue

lemma, it suffices to verify || f||2 = ||f||2 So we set g := fx f. By Theorem 7.3(ii)
and Exercise 7.2, we know g belongs to £, N Cy, and

0= [ T -wdy= [ 171115 .
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From Corollary 9.13(iii), it follows that

1715 = 5(0) = tim(2m) /2 [ o) 9" dg (9.15)

Now we note

~
=

f= (2ﬂ)7n/2/67i<x’§>f(—$) dr = (277)7”/2/e—i<—x75>f(—x) dr =

)|

)

which follows from the Euclidean invariance of integrals. Then Theorem 9.16(i)
shows

. = < A= ~2

g=(f=f)" =@m2ff=@n)"?|F|".
In particular g, is not negative. Therefore (9.15) and monotone convergence the-
orem imply ||fllz2 = |f||2- =

Fourier multiplication operators

To illustrate the significance of the mapping properties of the Fourier transfor-
mation, we now consider linear differential operators with constant coefficients
and show that they are represented “in the Fourier domain” by multiplication
operators.

For m € N, we denote by C,,,[X7, ..., X,] the vector subspace C[X1,..., X,]
consisting of all polynomials of degree < m. For

p= Y aaX®€CulX1,....X,],
laj<m

we let

p(D) = Z aaD,

lo|<m
which is a linear differential operator of order < m with constant coefficients. Here
p is called the symbol of p(D). In the following, we set

Diffop? := {p(D); peClXy,.... X},

and Diﬂ?opgl is the subset of all constant-coefficient, linear differential operators
of order not higher than m.

9.18 Remarks (a) p(D) € Diffop” is a linear and continuous map of S into itself,
that is, p(D) € L(S).
Proof This follows from Remarks 9.2(c) and (h). m
(b) The map
ClXy, .., Xn] = L(S), p—p(D) (9.16)

is linear and injective.
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Proof The linearity is obvious. Suppose p = Z\cqgm aa X € C[X1,...,Xn] and that
p(D)f =0 for all f €S. We choose a ¢ € D such that ¢ |B" = 1. For 8 € N"| it follows
from the Leibniz rule that

D(pX”) = oD X" + 3" (O‘>DQ—W¢D”X5 .

<o

Because ¢(z) =1 for |z| < 1, we then derive

el ifa=0,

DQ(SOXB)(O) = DaXB(O) = { 0 otherwise

for a € N". Because pX” € D C S, we thus find 0 = p(D)(pX”?) = Blag for 3 € N"
with |8| < m; therefore p = 0. This proves the claimed injectivity. m

(c) p(D) is formally self-adjoint if and only if p has real coefficients.
Proof Letting
A(0) :=p(D) = Y aa(—i)*10"

[a|<m

it follows from Proposition 7.24 that

A@) = Y (—)aa(=)llo* = 3 (=)@, 0%,

la]<m |a|<m

which finishes the proof. m

By Remark 9.18(b), we can identify Diffop” [or Diffop?,] with the image of
C[X1,...,X,)] [or Cy[X1,...,X,]] under the map (9.16). In other words, in the
sense of vector subspaces, we have

Diffop?, C Diffop? € £(S) form e N .

For a € Opr and f € S, it follows from Corollary 9.13(i) and Remark 9.15(d)
that (f — af) € £(S). Then it follows again from Corollary 9.13(i) that

a(D):=F 'aF:8—S, f~ f_l(af)

is a well defined element of £(S), a Fourier multiplication operator with symbol a.
We set

Op:={a(D) € L(S); acOn} .
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9.19 Proposition Op is a commutative algebra of £(S) with unity, and the map
ev: (Om,+,-) = Op, ara(D)
is an algebra isomorphism.

Proof It is clear that Oy := (Opr, +, - ) is a commutative subalgebra with unity

of the algebra C®)| It is also easy to verify that ev maps the vector space Oy
linearly in £L(S).
For a,b € Oy and f € S, we have

(ab)(D)f = F~Y(abf) = F~ (aFF 1 (bf)) = F~'(ab(D)f) = a(D) o b(D)f .

Therefore ev is a surjective algebra homomorphism.

Finally let a,b € O with a(D) = b(D). Let £ € R", and denote by ¢ € D a
cutoff function for B"(¢,1). Then f := F~ ¢ belongs to S with f(¢) = 1, and it
follows from Corollary 9.13(i) that

a(€) = (af ) (&) = F(a(D)f)(€) = F(b(D)f)(€) = (bf ) (€) = b(e) .

Because this is true for every £ € R™, we have a = b. Therefore ev is injective. m

9.20 Corollary
(i) For a,b € Op, we have ab(D) = a(D)b(D) = b(D)a(D).
(i) 1(D) = 1.s).
(iii) Diffop® is the image of C[X1,...,X,] under ev. In particular, Diffop® is a
commutative subalgebra of Op with unity.
Proof (i) and (ii) are special cases of Proposition 9.19.
(iii) For p € C[X1,...,X,] € Oy with p = Z\a|§maaXav we get from
Proposition 9.6(i) that

cwp)f = F pFf=F (pf) = Y aaF (X°F)

lal<m
Y W TN Y wb
la|]<m lal<m

for f € S. Therefore ev(p) = Z\a|§m ao,D®, from which the claim follows. m

This corollary implies that the Fourier transformation can be used to solve
linear differential equations with constant coefficients by reducing them to simple
algebraic equations. This fact is part of the fundamental significance of the Fourier
transformation. The following examples give a first glimpse into these methods.
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9.21 Examples (a) Suppose the polynomial p € C[ X1, ..., X,] has no real zeros.
Then p(D) € £(8S) is an automorphism of S, and [p(D)]~! = (1/p)(D).
Proof We see easily that 1/p belongs to On. Now we deduce from Corollary 9.20 that

les)y =1(D) = (p-1/p)(D) = p(D)(1/p)(D) = (1/p)(D)p(D) .
Because a(D) € L(S) for a € O, this proves the claim. m

(b) 1 — A € Laut(S), and (1 — A)~t = A=2(D).
Proof Because 1 — A = A%(D), this follows from (a). m

Example 9.21(b) says that the partial differential equation
—Au+tu=f (9.17)

has a unique solution u € S for every f € S and that v depends continuously on
f in the topology of S. Also we can obtain the solution u € S of (9.17) by first
“Fourier transforming” this equation. This, according to Proposition 9.6, gives
the equation (|€]2 +1)u(¢) = A2(&)u(€) = f(€) for € € R™. This equation can then

N

be solved for u, giving u = A~2f, and then “reverse Fourier transformed”, giving
u=F"1A2f) =A"%D)f. This “method of Fourier transformation” plays a
prominent role in the theory of partial differential equations. Note that A=2(D)
or, more generally, (1/p)(D), is not a differential operator.

Plancherel’s theorem

To conclude this chapter, we show that the Fourier transformation can also be
defined on Ly, and we explain a few consequences of this fact.

Suppose H is a Hilbert space. We say T: H — H is unitary if T is an
isometric isomorphism.

9.22 Remarks Suppose H is a (real or complex) Hilbert space and T : H — H is
linear.

(a) If T is unitary, then T belongs to Laut(H), and

(Tx|Ty) = (z|y) forz,yec H.

Proof The first statement is clear. Because T is an isometry, we have
4Re(Tz|Ty) = |T(z +y)I” = IT(z = y)II” = & + yl|* = Iz — y|* = 4Re(z | y) ,

and therefore Re(T'z|Ty) = Re(z|y) for z,y € H. Replacing y in this identity by iy,
we get
Im(Tz | Ty) = Re(Tz | Tiy) = Re(z | iy) = Im(z|y) ,

and thus (Tz |Ty) = (z|y) for z,y € H. m
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(b) If H is finite-dimensional, then the following statements are equivalent:
(i) T is unitary.

(ii) (Tz|Ty) = (x|y) for z,y € H.

(i) T*T =idy.

Proof “(i)=-(ii)” is a consequence of (a).

“(ii)=(iii)” Let {b1,...,bm} be an orthonormal basis of H. Then every y € H can
be expanded as y = > 7", (y|b;)b; (see Exercise I1.3.12 and Theorem VI.7.14). From
Exercise VIL.1.5 and (ii), it follows that

m m

T*Tx =Y (T*Tx|b;)b; iTﬂTb = (z|b)b; ==
Jj=1

j=1 j=1

for every x € H.

“(iii)=>(i)” Because T*T = idm, we know T is injective and is therefore also sur-
jective by the rank formula of linear algebra. For x € H, we also have

|Tz|* = (T2 | Te) = (T"Tz|z) = (z]2) = |«
Therefore T' is an isometry. m

9.23 Theorem (Plancherel) The Fourier transformation has a unique extension
from Ly N Lo to a unitary operator on Ls.

Proof Denote by X5 the vector subspace L1 N Lo of the Hilbert space Lo. Then it
follows from Lemma 9.17 that F belongs to £(X3, L2) and is an isometry. Because
X5 contains the space S, Theorem 9.3 and VI.2.6 imply the existence of a unique
isometric extension § € L£(L2). As an isometry, § has a closed image, which by
Corollary 9.13(i) contains the space §. Therefore Proposition V.4.4 implies that
§ is surjective and therefore unitary. m

As usual, we reuse the symbol F for the unique continuous extension of §
and likewise call it the Fourier transformation.®

The next proposition describes the Fourier transform Ff for an arbitrary
f € La.

9.24 Proposition For f € Lo, we have

Ff = lim F(xpp.f) = lim (277)—”/2/ e @) f()de  in Ly .
R=oo R [lz|<R]

— 00

50n Lo, the Fourier transformation will sometimes also be called the Fourier-Plancherel, or
Plancherel, transformation.
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Proof For R > 0, the element fgr := X . f belongs to L1NL3, and the dominated
convergence theorem implies

/|f ~ fal?de :/|f|2 (1= Xpme)?dz — 0 (R — o) .

Therefore limg_,o, fr = f in Ly. Then by Plancherel’s theorem, F fr converges
in Ly to Ff. Because

F(fr)(€) = (2m) /2 / 0O {2y dr for £ € R"

[lz|<R]

the claim follows. m

9.25 Example Suppose n =1 and a > 0. Also let f := X[_q,q) € £1(R). Then

iy _L “ —ixz€ _ -1 —ia __ ia _\/g Sil’l(ag)
()= 27r/_ae dx—\/%ig(e e )7 —a pr:

for £ € R. Because [ |f|? dx = 2a, Plancherel’s theorem gives

oo : 2
/ [sm(iam)} dx:g fora > 0.

axr

Note that  — sin(z)/z does not belong to £1(R). m

Symmetric operators

Suppose E is a Banach space over K. By a linear operator A in E, we mean a
map A: dom(A) C E — E such that dom(A) is a vector subspace of E and such
that A is linear. For linear operators A;: dom(4;) C E — E and A € K*, we
define Ayp + AA; by

dom(Agp + AA;1) := dom(Ag) Ndom(Ay) , (Ag+ A1)z := Agz + ANz .
The product AyA; is defined by
dom(ApA;) := {z € dom(4) ; A1z € dom(Ap) } , (AoA1)x := Ag(Aiz) .
Finally, the operator defined by
dom([AO,Al]) :=dom(ApA; — A1Ap) , [Ao,Ar]x:= (Apd1 — A1Ap)x

is called the commutator of Ay and A;. Obviously Ag+ AA1, AgA;, and [Ag, A4]
are linear operators in F, for which

Ao+ XA = XA+ Ao, Mo =Ao(\idg) , [Ao, A1] = —[41, Ao] -
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Suppose now H is a Hilbert space, and A: dom(4) C H — H is a linear
operator on H. If
(Au|v) = (u| Av) for u,v € dom(A) ,

we say A is symmetric.

9.26 Remarks (a) Suppose H is a complex Hilbert space and A is a linear operator
on H. Then these statements are equivalent:

(i) A is symmetric.

(ii) (Au|u) € R for u € dom(A).
Proof “(i)=-(ii)” Because A is symmetric, it follows that

(Au|u) = (u| Au) = (Au|u) for u € dom(A) ,
and therefore Im(Au |u) = 0.
“(ii)=-(i)” For u,v € dom(A), we have
(A(u+v) | u+v) = (Au|u) + (Av|u) + (Au|v) + (Av|v) . (9.18)
Because of (ii), it follows that Im(Au|v) = — Im(Av|u), and therefore
Im(Au|v) = —Im(Av|u) = —Im (u]| Av) = Im(u| Av) .
Replacing u in (9.18) by iu, we get
Re(Au|v) = Im(A(iu) | v) = Im(iu| Av) = Re(u| Av) .

Therefore (Au|v) = (v|Au). m
(b) Suppose p € C[Xq,...,X,] and P is the linear operator on Ls such that
dom(P) = S and Pu := p(D)u for u € S. Then these statements are equivalent:

(i) P is symmetric.

(ii) p(D) is formally self-adjoint.
(iii) p has real coeflicients.
Proof “(i)=-(ii)” That P is symmetric implies

(p(D)u|v) = (Pulv) = (u| Pv) = (u|p(D)v) foru,veD,
which in turn implies (ii) by the uniqueness of formally adjoint operators.
“(ii)=>(iii)” Remark 9.18(c).

“(ili)=-(1)" Suppose p = 3_, <, @aX*. Then Corollary 9.20(iii) and Plancherel’s
theorem imply -

(Pu|u):(p(D)u|u (pu|u) = Z aa/f &)Pde forueS.
la]<m
Therefore (Pu|u) is real, and the claim follows from (a). m
(¢) With § as their domain, the Laplace, wave, and Schrédinger operators are
symmetric in Lo.
Proof This follows from (b) and Examples 7.25(a) and (e). m
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The Heisenberg uncertainty relation

As another application of Plancherel’s theorem, we close this section by discussing
several important properties of the position and momentum operators of quantum
mechanics. So we fix j € {1,...,n} and set

dom(Aj) = {u c Loy ) Xjﬂe LQ} , dom(Bj) = {UE Lo ; Xju S Lg} .

Then we define linear operators in Ly, the momentum operator A; and the position
operator B; (for the j-th coordinate), by

Aju:=F YX;u) and Bjv:=X;v foru € dom(4;), v&dom(B;).

9.27 Remarks (a) We have S C dom(4,), and
Aju=X;(D)u=Dju=—idju forues.
Proof This follows from Proposition 9.7 and Corollary 9.8. m

b) We have F(dom(A;)) = dom(B,;) and a commutative diagram:
(b) j b g

Aj
dom(A;) Lo
F F
B
dom(B;) Lo

In particular,
Aju=F'BjFu, wuécdom(A;) and Bju=FA;F 'u, wuecdom(B;).
Proof These are consequences of Plancherel’s theorem. m

(c) The position and momentum operators of quantum mechanics are symmetric.
Proof Let u € dom(A;). Then (b) and Plancherel’s theorem imply

(Ajulu) = (F'BjFulu) = (Bju|u) = /ﬁj [a©)[* de
Now the claim follows from Remark 9.26(a). m
(d) For u € dom([4;, B;]), we have ([4;, B;jlu | u) = 2i Im(A; Bju | u).
Proof By (b), (c), and Plancherel’s theorem, we get for u € dom([4;, B;]) that
([A5, Bjlu | u) = (A;Bju — Bj Aju|u)

= (F 'B;FBju— B;F 'B;Fu|u)

= (fB]u | B]]:u) — (iju | ]:Bju)

= 2i Im(FBju| BjFu) = 2i Im(F ' B; FBju | u)

=2iIm(A;Bju|u) . m
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(e) The operator i¢[A;, B;] is symmetric in L.
Proof This follows from (d). m
(f) We have S C dom([A}, B;]), and [A;, BjJu= —iuon u € S.

Proof The first statement follows easily from Proposition 9.7 and Remark 9.2(h). Also
(a) shows that

[4j, Bjlu = Dj(X;u) — X;Dju = (D; X;)u = —iu
forueS. m

(g) (Heisenberg uncertainty relation for §) For j € {1,...,n}, we have

lull3 < 2[|0jull2 | Xjul2 forues.

Proof Let u € S. By (d) and (f), we have
— ||u||§ =—i(u|u) = ([Aj,Bj]u | u) =2i Im(A;Bju|u) .
The Cauchy—Schwarz inequality therefore gives
[ull3 = 2 [Tm(A; Bju|w)| < 2[(A;Bju|u)| = 2|(Bju| Aju)| < 2[|Ajullz || Bjul: ,

and thus the claim follows because of (a). m

We conclude this section by extending the validity of the Heisenberg uncer-
tainty relation on S to dom(A;) N dom(B;). We first need a lemma.

9.28 Lemma For every u € dom(A;)Ndom(By), there is a sequence (u,) in S such
that
Im (wpm, Ajtm, Bjum) = (u, Aju, Bju) in L3 .

m— 00

Proof (i) Suppose u € dom(A;)Ndom(B;), and let { k. ; € > 0 } be the Gaussian
approximation kernel. We set u® := k. * u. By Exercise 8(iv), u° belongs to S,
and Theorem 7.11 shows lim._,qu® = u in L.

(ii) Because k = k, it follows from Example 9.10(c) that

Be(6) = hal€) = F k() = le€) = (2m) "2~ 1€ for ¢ € R” .

According to Theorem 9.3, we can find a sequence (v,,) in S such that lim,, v, = u
in Ly. The convolution theorem therefore shows

(ke % 0) " (€) = 2m)2 e ()T (€) = e 16T, (6) for € € R™ .

The limit m — oo then gives u° = ¢~ |"I*% (see Corollary 7.9 and Theorem 9.23).
Because

~ — —~ _ 2 2,2
141 — Ajuf]3 = IIXju—XjWII%:/Iij(€)|2(1—€ =) ae

it follows from the dominated convergence theorem that lim._.g A;u® = Aju in Lo.
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(iii) Let @ be a representative of u. We set

de(w,2) == x; (l(x) — d(x —e2)) , ge(x,2) := de(x, 2)k(2)

for e > 0 and (z,z) € R" x R". Then it follows, as in (7.7) (or from the Minkowski
inequality for integrals), that

1w = xp0ls < ([[[lowte2laz] ) 7 < [l 2lereas . ©19)

where for the last inequality we used g. = (ds\/E)\/E and [kdr = 1 together
with the Cauchy—Schwarz inequality. Further noting

de(,2) = X0 — 7. (X)) — e2j7e. 10

it follows from the strong continuity of the translation group on Lo and the trans-
lation invariance of integrals that

1ir% lde(-,2)|l2k(2) =0 for z € R™,
and
lde(-, 2)]l2 k(2) < 2max{||Xju||2, ||u||2}(1 +|z;|)k(z) foree (0,2], zeR™.

Because z — (1 + |z;])k(z) belongs to £y, the claim is implied by (9.19) and the
dominated convergence theorem. m

9.29 Corollary (Heisenberg uncertainty relation) For 1 < j < n, we have

||u||§ < 2||Ajull2 ||Bjullz  for u € dom(A;) Ndom(B;) .

Proof This follows from Remarks 9.27(a) and (g) and Lemma 9.28. m

From Remark 9.27(a) and Lemma 9.28 it easily follows, as in the proof of
Theorem 7.27, that the distributional derivative 9;u belongs to Lo for u € dom(A;)
and is therefore a weak Lo-derivative. Also Aju = —i0ju. Consequently, we can
also write the Heisenberg uncertainty relation for © € dom(A4;) N dom(B;) in the

form ) )
§/|u|2daﬁ) §/|8ju|2dx/|Xju|2dx

if we interpret O;u in the weak sense. The significance of this broadened in-
terpretation of the operators A; and Bj is clarified in the theory of unbounded
self-adjoint operators on Hilbert spaces, as developed in functional analysis. Self-
adjoint operators built from the position and momentum operators, in particular
the Schrédinger operators, are used in the mathematical construction of quantum
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mechanics (for example [RS72]). For an interpretation of the Heisenberg uncer-
tainty relation, we refer you to the physics literature.

Exercises

1 Let a > 0. Determine the Fourier transform of
() sin(az)/z , (i) 1/(a® +2%), (i) e /",
(iv) (1= |zl /a)x(-a (@) . (v) (sin(az)/2)* .
(Hint: See Section VIII.6.)
2 Let f(z) := (sin(z)/z)? and g(z) := e***f(z) for x € R*. Then show f*g = 0.
(Hint: Apply Exercise 1 and Theorem 9.16.)
3 Show that if f € £, satisfies either f* f = f or f* f =0, then f =0.
4 Let {p:; € >0} be an approximation to the identity, and let (¢;) be a null sequence.
Show that (F(p.,)) converges in D'(R™) to (2m)~"/?1.
5 Fora,f €S, showa(D)f =ax*f.

6 For s > 0, define H® := {u € Ly ; At € Lo} and (u|v)ms = (AU |D)r, for
u,v € H®.
Show

(i) H*:= (H*; (-|-)u-) is a Hilbert space with H® = Ly, and
SLm L LD, fors>t>0;

(i) H™ = W3" for m € N.

7 For s > n/2, show
(i) F(H®) C L1 and
(i) H? < (Sobolev embedding theorem).

(Hints: (i) Apply the Cauchy—Schwarz inequality to A® |u| A™°.

(ii) The Riemann-Lebesgue theorem.)

8 Suppose o > 0, and let { ke ; € > 0} be the Gaussian approximating kernel. Prove:
(i) T(t) := [f — Kz * f] belongs to L(H?) for every t > 0.
(i) T(t+s)=T(@t)T(s), s,t>0.

(iii) lim—oT(t)f = f for f € H®.

) T(t)(L2) C S, t>0.

)

(v) For f e LanNC,let u(t,x) :=T(t)f(x) for (t,z) € [0,00) x R™. Show that u solves
the initial value problem of the heat equation in R", that is,

(iv

Oru—Au=0in (0,00) x R" and u(0,-)= fonR", (9.20)

in the sense that u € C*°((0,00) x R™) N C(R* x R") and that u satisfies (9.20)
pointwise.
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Remark Let T(0) := idgo. Then {T(t) ; t > 0} is called the Gauss—Weierstrass
semigroup (of H?).

(Hint: (v) To get an initial value problem for an ordinary differential equation, apply to
(9.20) the Fourier transformation with respect to € R™.)

9 Let n=1and py(z) = \/2/7y/(a? ) for (z,y) € H?. Also let ¢ > 0. Prove these
statements:
(i) P(y) :=[f > py * f] belongs to L(H?) for every t > 0.
(ii) P(y+ z) = P(y)P(z) for y,z > 0.
(iii) limy—o P(y)f = f for f € H°.
(iv) P(y)(L2) C S.
(v) For fe LaNC, let

u(z,y) == (P(y)f) (z) for (z,y) € H? .

Then u belongs to C?(H?)NC(H?) and solves the Dirichlet boundary value problem
for the half plane given by

Au=0inH> and u(-,0)=fonR.

Remark With P(0) := iduo, we call { P(y) ;

; y >0} the Poisson semigroup (of H).
(Hints: (ii) Exercise 1. (v) Example 9.21(b).)

10 Suppose X is open in R"™ and (X%) is an ascending sequence of relatively compact
open subsets of X with X =|J, X (see Remarks 1.16(d) and (e)). Also let

ar(f) = max 10°fllo x, for f€C™(X)and k€N,

and
oo

ZQ_I“ 1—(&1-kq;{ff) ) for f,g € C™(X) .

Show that (C*°(X),d) is a complete metric space. (Hint: To prove the completeness,
apply the diagonal sequence principle (Remark II1.3.11(a)).)

11 Show that D <% C* and S <% . ~
(Hint: Consider ¢(e-) with a cutoff function ¢ for B™).

12 For f € D, let
F(2):= /eii(zlm‘c"f(m) dx for ze C.

Show then that F' belongs to C*(C, C).
(Hint: With Remark V.3.4(c) in mind, apply Corollary 3.19.)

13 Show that f does not belong to D for f € D\{0}. (Hint: Recall Exercise 12 and the
identity theorem for analytic functions (Theorem V.3.13).)





