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Foreword

This third volume concludes our introduction to analysis, wherein we finish laying
the groundwork needed for further study of the subject.

As with the first two, this volume contains more material than can treated
in a single course. It is therefore important in preparing lectures to choose a
suitable subset of its content; the remainder can be treated in seminars or left
to independent study. For a quick overview of this content, consult the table of
contents and the chapter introductions.

This book is also suitable as background for other courses or for self study. We
hope that its numerous glimpses into more advanced analysis will arouse curiosity
and so invite students to further explore the beauty and scope of this branch of
mathematics.

In writing this volume, we counted on the invaluable help of friends, col-
leagues, staff, and students. Special thanks go to Georg Prokert, Pavol Quittner,
Olivier Steiger, and Christoph Walker, who worked through the entire text crit-
ically and so helped us remove errors and make substantial improvements. Our
thanks also goes out to Carlheinz Kneisel and Bea Wollenmann, who likewise read
the majority of the manuscript and pointed out various inconsistencies.

Without the inestimable effort of our “typesetting perfectionist”, this volume
could not have reached its present form: her tirelessness and patience with TEX
and other software brought not only the end product, but also numerous previous
versions, to a high degree of perfection. For this contribution, she has our greatest
thanks.

Finally, it is our pleasure to thank Thomas Hintermann and Birkhäuser for
their usual flexibility and friendly cooperation.

Zürich and Hannover, July 2001 H. Amann and J. Escher



vi Foreword

Foreword to the English translation

We are again much obliged to Silvio Levy and Matt Cargo for their careful and
accurate translation of this last part of the original German treatise. Special
thanks go to Thomas Hempfling from Birkhäuser Verlag for rendering possible
this translation so that our analysis course is now available to a larger audience.

Zürich and Hannover, January 2009 H. Amann and J. Escher
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Chapter IX

Elements of measure theory

In this chapter, we treat the general theory of the measure of lines, areas, volumes,
and sets in even higher dimensional spaces. The theory is guided by elementary
geometrical facts. In particular, we will assign the length measure to intervals, the
area measure (length times width) to rectangles, and the volume measure (length
times width times height) to rectangular boxes.

Naturally, we do not only want to assign measure these elementary domains,
that is Cartesian products of intervals, but we also want to measure much more
general sets. To do this, it is natural to break up a given set into a disjoint
collection of such elementary domains; then the sum of their measures determines
the measure of the set. Here it will be of fundamental significance that this process
admits not only finite but also countably infinite divisions of the original set. In
this way, we will see that we can assign a measure to every open subset of Rn, and
this measure has the natural properties expected of it, for example, independence
on the location of the set in its space. In addition, will be able to measure not
only open sets, but also, for example, closed sets or any set that can be suitably
approximated by open sets. It will turn out, however, that it is not possible “to
measure” every subset of Rn in this way.

To introduce measures in practice, however, we will follow another path,
which is substantially more general and technically simpler. Only at the end of it
will we then encounter a characterization of measurable sets in Rn. Our general
approach takes us into the realm of abstract measure theory, and besides its relative
simplicity, it has the advantage of providing other measures that have nothing to
do with the original geometric ideas. This more general theory will be needed in
the last chapter of this volume. It is also important in probability theory, physics,
and many mathematical applications.

Section 1 is devoted to σ-algebras. A σ-algebra is a collection of sets that
constitutes the domain of definition of a measure. If the underlying set has a topol-
ogy, then the Borel σ-algebra, which is determined by open sets, has a prominent
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significance. We show, among other facts, that the Borel σ-algebra of a topological
product is determined in all cases of practical relevance by the product of open
sets.

Section 2 focuses on the fundamental properties of general measures. Also,
we prove that every measure space has a completion, that is, a certain natural
minimal extension.

In Sections 3 and 4, we construct the most important measures for appli-
cations, namely, those developed by Lebesgue, Stieltjes, and Hausdorff. Here we
apply the approach suggested by Carathéodory, which uses as its superstructure
the idea of outer measure.

The last section of the chapter is devoted to a detailed study of the Lebesgue
measure. First, we characterize the σ-algebra of Lebesgue measurable sets as
the completion of the Borel σ-algebra. After that, we study the behavior of the
Lebesgue measure under maps, which leads to its invariance under rigid motions
and, in particular, translations. Finally, we see how the Lebesgue measure stands
out among all locally finite Borel measures and is of fundamental significance in
the construction of non-Lebesgue measurable sets.



1 Measurable spaces

In Chapter VI we used the Cauchy–Riemann notion of integral to assign an area
to the region between the graph of a sufficiently regular function and its abscissa.
Our goal now is to specify a largest possible class of domains in Rn that can
meaningfully be assigned a “generalized area”, or content. That is, we seek a
subset A of P(Rn) and a map μ : A → [0,∞) such that for A ∈ A, the number
μ(A) can be interpreted as the content of A. This function μ must of course satisfy
certain rules— those that might be expected based on the case of areas of plane
domains. For example, the content of the union of two disjoint domains should
equal the sum of their individual contents. Also, the content of a domain should
be independent of its overall location in space. The concept of content will be
gradually clarified, and we will prove in Section 5 that it is not possible to assign
(nontrivially) a content, or “measure”, to all subsets of Rn: it cannot be the case
that A = P(Rn).

In this section
• X , X1 and X2 are nonempty sets.

σ-algebras

We start with the axiomatic introduction of those collections of sets on which
“measures” will be defined later: A subset A of P(X) is called a σ-algebra over X
if it satisfies the properties

(i) X ∈ A;
(ii) A ∈ A =⇒ Ac ∈ A;
(iii) (Aj) ∈ AN =⇒

⋃
j∈N Aj ∈ A.

If A is a σ-algebra over X , one calls (X,A) a measure space, and every A ∈ A is
said to be A-measurable.

1.1 Remark Suppose A is a σ-algebra, (Aj) ∈ AN, and m ∈ N. Then each of the
sets

∅ , A0\A1 ,
⋃m

j=0
Aj ,

⋂m

j=0
Aj ,

⋂
j∈N

Aj

also belongs to A.
Proof Set

Bk :=

{
Ak , k ≤ m ,

Am , k > m ,

so that (Bk) ∈ AN and therefore ⋃
k∈N

Bk =
m⋃

j=0

Aj ∈ A .

The remaining statements follow from de Morgan’s laws —see Proposition I.2.7(iii). �
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We say a collection of sets S ⊂ P(X) is closed under finite set operations if

A ∈ S =⇒ Ac ∈ S (1.1)

and if, for every finite family A0, . . . , Am, the union
⋃m

j=0 Aj also belongs to S. If
S satisfies (1.1) and

⋃∞
j=0 Aj belongs to S for every sequence (Aj) in S, we say S

is closed under countable set operations. These definitions are justified because,
by de Morgan’s laws, S also contains

⋂m
j=0 Aj (finite case) and

⋂∞
j=0 Aj (countable

case).
We say S is an algebra over X if these properties are satisfied:

(i) X ∈ S;
(ii) A ∈ S =⇒ Ac ∈ S;
(iii) A, B ∈ S =⇒ A ∪B ∈ S.

1.2 Remarks Suppose S ⊂ P(X) contains X .

(a) S is an algebra if and only if S is closed under finite set operations.

(b) S is a σ-algebra if and only if S is closed under countable set operations. In
this case, S is also an algebra.

(c) Suppose S is an algebra and for every disjoint sequence1 (Bj) ∈ SN we have⋃
j∈N Bj ∈ S. Then S is a σ-algebra.

Proof Suppose (Ak) ∈ SN. We recursively set

B0 := A0 and Bj+1 := Aj+1

∖ ⋃j
k=0 Ak for j ∈ N .

Then (Bj) is a disjoint sequence with
⋃

k Ak =
⋃

j Bj . By assumption, the union
⋃

j Bj

lies in S , and the claim follows. �

1.3 Examples (a) {∅, X} and P(X) are σ-algebras.

(b) {A ⊂ X ; A or Ac is countable} is a σ-algebra.

(c) {A ⊂ X ; A or Ac is finite} is an algebra, and it is a σ-algebra if and only if
X is finite.

(d) Suppose A is a nonempty set, and suppose Aα is a σ-algebra over X for every
α ∈ A. Then

⋂
α∈AAα is a σ-algebra over X .

(e) Suppose Y is a nonempty set and let f ∈ Y X . Further let A and B be
σ-algebras over X and Y , respectively. Then

f−1(B) :=
{

f−1(B) ; B ∈ B
}

and f∗(A) :=
{

B ⊂ Y ; f−1(B) ∈ A
}

are respectively σ-algebras over X and Y . One says f−1(B) is the inverse image
of B under f and f∗(A) is the image (or push-forward) of A under f .

1We agree upon simplified language as follows. A sequence (Aj) ∈ SN is disjoint if Aj ∩Ak = ∅
for all j, k ∈ N with j �= k.
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Proof We verify only part (e) and leave the rest to the reader.

Obviously Y belongs to f∗(A). For B ∈ f∗(A), the set f−1(B) belongs to A. Due
to Proposition I.3.8 (ii′) and (iv′), we have

f−1(Bc) =
[
f−1(B)

]c
and f−1

(⋃
j Bj

)
=

⋃
j f−1(Bj) .

Therefore, if B lies in f∗(A), so does Bc, and similarly if Bj ∈ f∗(A) for j ∈ N then⋃
j∈N

Bj ∈ f∗(A). �

The Borel σ-algebra

Let S be a nonempty subset of P(X). Then

Aσ(S) :=
⋂{

A ⊂ P(X) ; A ⊃ S, A is a σ-algebra over X
}

is the σ-algebra generated by S, and S is a generating set for Aσ(S).

1.4 Remarks (a) Aσ(S) is well defined and is the smallest σ-algebra containing S.
Proof This follows from Examples 1.3(a) and (d). �

(b) If S is a σ-algebra, then Aσ(S) = S.

(c) From S ⊂ T follows A(S) ⊂ A(T ).

(d) For S = {A}, we have Aσ(S) = {∅, A, Ac, X}. �

Let X := (X, T ) be a topological space. Since T is nonempty, it generates
a well defined σ-algebra, called the Borel σ-algebra of X and denoted by B(X).
The elements of B(X) are the Borel subsets of X . As a shorthand, we write
Bn := B(Rn).

A subset A of X is called a Gδ (or Gδ-set) if there exist open sets Oj with
A =

⋂
j∈N Oj , that is, if A is an intersection of countably many open sets in X .

The set A is called an Fσ (or Fσ-set) if is a countable union of closed subsets of
X . Therefore A is a Fσ-set if and only if Ac is a Gδ-set.2

1.5 Examples (a) For F := {A ⊂ X ; A is closed }, we have B(X) = Aσ(F).

(b) Every Gδ-set and every Fσ-set is a Borel set.

(c) Every closed interval I is an Fσ and a Gδ.
Proof Suppose I = [a, b] with −∞ < a ≤ b <∞. It is clear that I is a Fσ-set. Because
[a, b] =

⋂
k∈N×(a − 1/k, b + 1/k), we see I is also a Gδ-set. The cases I = [a,∞) and

I = (−∞, a] with a ∈ R are treated analogously. The case I = R is clear. �

2The symbols Fσ and Gδ are explained as follows: F stands for fermé (French for closed) and
σ for somme (a sum of sets being another name for their union); G stands for Gebiet (German
for domain, an old-fashioned term for an open set) and δ for Durchschnitt (intersection).
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(d) Suppose Y ⊂ X with Y 
= ∅ and Y 
= X . Further suppose T := {∅, X} is the
trivial topology on X . Then Y is neither an Fσ-set nor a Gδ-set in (X, T ).

(e) Q is an Fσ but not a Gδ in R.

Proof Since Q is countable, it is clearly an Fσ (see Corollary III.2.18). For the second
statement, assume that Q is a Gδ and choose open sets Qj , for j ∈ N, such that Q =⋂

j Qj . Since Q ⊂ Qj for j ∈ N and in view of Proposition I.10.8, every Qj is open and
dense in R. Now it follows from Exercise V.4.4 that Q is uncountable, which is wrong. �

The second countability axiom

Let (X, T ) be a topological space. We call M⊂ T a basis of T if for every O ∈ T
there is an M′ ⊂M with O =

⋃
{M ⊂ X ; M ∈ M′ }, that is, if every open set

can be expressed as a union of sets from M . A topological space (X, T ) is second
countable (or satisfies the second countability axiom) if T has a countable basis.
Finally (X, T ) is called a Lindelöf space if every open cover of X has a countable
subcover. Obviously every compact space is Lindelöf.

1.6 Remarks (a) M⊂ T is a basis of T if and only if for every point x ∈ X and
every neighborhood U of x there exists M ∈ M such that x ∈M ⊂ U .

Proof (i) “=⇒” Suppose M is a basis of T , and take x ∈ X and U ∈ U(x). By
assumption, there exists O ∈ T such that x ∈ O ⊂ U . Further, there is an M′ ⊂ M
such that O =

⋃{M ⊂ X ; M ∈ M′ }. Thus we have found an M ∈M′ ⊂M such that
x ∈M ⊂ O ⊂ U .

(ii) “⇐=” Suppose O ∈ T . For every x ∈ O, O is a neighborhood of x. Therefore
by assumption, there is an Mx ∈M such that x ∈Mx ⊂ O, and we find that

O =
⋃

x∈O

{x} ⊂
⋃

x∈O

Mx ⊂ O ,

that is, O =
⋃

x∈O Mx. �

(b) Any topological space that satisfies the second countability axiom also satisfies
the first (see Remark III.2.29(c)).

Proof This follows immediately from (a). �

(c) The converse of (b) is false.

Proof Let X be uncountable. Then
(
X, P(X)

)
satisfies the first countability axiom,

because any x ∈ X admits
{
{x}

}
as a neighborhood basis. But

(
X, P(X)

)
cannot be

second countable, because any basis of P(X) must contain the set
{
{x} ; x ∈ X

}
and

is therefore uncountable. �

1.7 Lemma Suppose X is a metric space and A ⊂ X is dense in X . Further let
M :=

{
B(a, r) ; a ∈ A, r ∈ Q+

}
. Then every open set in X can be written as a

union of sets from M.
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Proof Suppose O is open in X and x ∈ O. Then there is an ε > 0 with B(x, εx) ⊂
O. Because A is dense in X and Q is dense in R, there is an ax ∈ A such
that d(x, ax) < εx/4 and an rx ∈ Q+ such that rx ∈ (εx/4, εx/2). The triangle
inequality then yields

x ∈ B(ax, rx) ⊂ B(x, εx) ⊂ O ,

and it follows that O =
⋃

x∈O B(ax, rx). �

1.8 Proposition Let X be a metric space. The following statements are equivalent:
(i) X satisfies the second countability axiom.

(ii) X is a Lindelöf space.

(iii) X is separable.

Proof “(i)=⇒(ii)” Suppose M is a countable basis and {Oα ; α ∈ A } is an open
cover of X . By assumption, for every α ∈ A there is a sequence (Uα,j)j∈N in M
such that Oα =

⋃
j∈N Uα,j. Now, the collection M′ := {Uα,j ; α ∈ A, j ∈ N }

covers X and is countable (since M′ ⊂ M), so we can arrange it in the form
M′ = {Mj ; j ∈ N }. By construction, there exists for every j ∈ N an αj ∈ A
such that Mj ⊂ Oαj . Therefore {Oαj ; j ∈ N } is a countable subcover of
{Oα ; α ∈ A }.

“(ii)=⇒(iii)” For every n ∈ N× we know Un :=
{

B(x, 1/n) ; x ∈ X
}

is an
open cover of X . By assumption, for every n ∈ N×, there are points xn,k ∈ X , for
k ∈ N, such that Vn :=

{
B(xn,k, 1/n) ; k ∈ N

}
is a subcover of Un. According

to Proposition I.6.8, D := { xn,k ; n ∈ N×, k ∈ N } is countable. Now take
x ∈ X , ε > 0, n > 1/ε. Since Vn covers X , there is an xn,k ∈ D such that
x ∈ B(xn,k, 1/n). Therefore D is dense in X .

“(iii)=⇒(i)” A separable set is second countable by Lemma 1.7. �

1.9 Corollary

(i) Suppose X is a separable metric space and A is countable and dense in X .
Then

B(X) = Aσ

({
B(a, r) ; a ∈ A, r ∈ Q+

})
.

(ii) Suppose X ⊂ Rn is not empty. Then the metric space X has a countable
basis.

Proof (i) Define S :=
{

B(a, r) ; a ∈ A, r ∈ Q+
}
, and let T denote the topology

of X . Lemma 1.7 implies T ⊂ Aσ(S), and we find with Remarks 1.4(b) and (c)
that

B(X) = Aσ(T ) ⊂ Aσ

(
Aσ(S)

)
= Aσ(S) .

The inclusion Aσ(S) ⊂ B(X) follows from S ⊂ T and Remark 1.4(a).
(ii) This follows from Exercise V.4.13 and Proposition 1.8. �
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For general topological spaces we have the following result.

1.10 Corollary Suppose X is a topological space with a countable basis. Then X is

separable and Lindelöf.

Proof (i) Suppose {Bj ; j ∈ N } is a basis for X. For every j ∈ N, we select bj ∈ Bj

and set D := { bj ; j ∈ N }. Obviously D is countable. Now suppose x ∈ X and U is
an open neighborhood of x. Then there is an I ⊂ N such that U =

⋃
i∈I Bi. Therefore

U ∩D 	= ∅, that is, D is dense in X.

(ii) The argument showing “(i)=⇒(ii)” in Proposition 1.8 implies X is Lindelöf. �

Generating the Borel σ-algebra with intervals

We give Rn the natural (product) ordering, that is, for a, b ∈ Rn, the relation
a ≤ b holds if and only if ak ≤ bk for 1 ≤ k ≤ n.

A subset J of Rn is called an interval in Rn if there are (ordinary) intervals
Jk ⊂ R with 1 ≤ k ≤ n such that J =

∏n
k=1 Jk. For a, b ∈ Rn with a ≤ b we use

the notation

(a, b) :=
n∏

k=1

(ak, bk) ,

(a, b] :=
n∏

k=1

(ak, bk] ,

[a, b] :=
n∏

k=1

[ak, bk] ,

[a, b) :=
n∏

k=1

[ak, bk) .

If a ≤ b is not satisfied, we set

(a, b) := [a, b] := (a, b] := [a, b) := ∅ .

In analogy with the one dimensional case, we call (a, b) an open interval and [a, b]
a closed interval in Rn. Obviously open and closed intervals in Rn are respectively
open and closed subsets of Rn. We denote the set of open intervals in Rn by J(n).

Suppose Y is a set and E is a property which is either true or false for y ∈ Y .
When the identity of Y is clear from the context, we use the notation

[E] :=
[
E(y)

]
:=

{
y ∈ Y ; E(y) is true

}
.

For example, the set [xk ≥ α], where k ∈ {1, . . . , n} and α ∈ R, is the closed
half-space

Hk(α) := { x ∈ Rn ; xk ≥ α }
in Rn. If f ∈ Y X , we set[

E(f)
]

:=
{

x ∈ X ; E
(
f(x)

)
is true

}
.

Thus, for f ∈ RX , we have for instance [f > 0] =
{

x ∈ X ; f(x) > 0
}
.

The following theorem shows that the Borel σ-algebra over Rn is generated merely
by the set of half-spaces with rational coordinates.
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1.11 Theorem Define

AQ := Aσ

({
(a, b) ; a, b ∈ Qn

})
,

A0 := Aσ

({
Hk(α) ; 1 ≤ k ≤ n, α ∈ Q

})
,

A1 := Aσ

({
Hk(α) ; 1 ≤ k ≤ n, α ∈ R

})
.

Then

Bn = Aσ

(
J(n)

)
= AQ = A0 = A1 .

Proof Because every closed half-space belongs to Bn, it follows that

A0 ⊂ A1 ⊂ Bn . (1.2)

Now take a, b ∈ Rn with a ≤ b. For k ∈ {1, . . . , n}, we have

[xk < bk] = [xk ≥ bk]c = Hk(bk)c ∈ A1

and

[xk > ak] =
∞⋃

j=1

[xk ≥ ak + 1/j] ∈ A1 ,

because A1 is a σ-algebra. This implies

(a, b) =
n∏

k=1

(ak, bk) =
n⋂

k=1

(
[xk < bk] ∩ [xk > ak]

)
∈ A1 .

For a, b ∈ Qn, this shows that (a, b) belongs to A0. In view of (1.2) and the
inclusion

{
(a, b) ; a, b ∈ Qn

}
⊂ J(n), it follows that

AQ ⊂ Aσ

(
J(n)

)
⊂ A1 ⊂ Bn and AQ ⊂ A0 ⊂ Bn . (1.3)

Finally Bn
∞(c, r) =

∏n
k=1(ck−r, ck+r) belongs to AQ for every c ∈ Qn and r ∈ Q+.

Thus Corollary 1.9(i) yields

Bn = Aσ

({
Bn
∞(c, r) ; c ∈ Qn, r ∈ Q+

})
⊂ AQ ,

which, together with (1.3), implies the claim. �

Bases of topological spaces

The topology of a set X is uniquely determined by specifying a basis. It is easy
to see that not every nontrivial collection of sets M ⊂ P(X) can be the basis of
a topology. The next theorem characterizes which ones can.
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1.12 Theorem A collection of sets M = {Mα ⊂ X ; α ∈ A } with
⋃

α∈A Mα = X
is a basis for a topology on X , called the topology generated by M, if and only
if for every (α, β) ∈ A × A and every x ∈ Mα ∩ Mβ , there exists γ ∈ A with
x ∈Mγ ⊂ Mα ∩Mβ.

Proof “=⇒” Suppose T is a topology on X and M = {Mα ⊂ X ; α ∈ A } is
a basis of T . Take α, β ∈ A and x ∈ Mα ∩ Mβ. Then Mα ∩ Mβ is an open
neighborhood of x. Because M is a basis of T , we can express Mα ∩ Mβ as a
union of sets from M; in particular, there is γ ∈ A such that x ∈Mγ ⊂Mα ∩Mβ .

“⇐=” Suppose M is a collection of sets with the given properties, and set
T (M) :=

{⋃
α∈A′ Mα ; A′ ⊂ A

}
. Obviously ∅, X , and any union of sets from

T (M) belong to T (M).
Suppose O1, O2 ∈ T (M) and define O := O1 ∩O2. We check that O belongs

to T (M), and we may as well assume that O is nonempty. From the definition of
T (M), there are Aj ⊂ A such that Oj =

⋃
α∈Aj

Mα for j = 1, 2. To every x ∈ O

we therefore find αj(x) ∈ A for j = 1, 2 with x ∈ Mα1(x) ∩Mα2(x). Further, there
is by assumption an α(x) ∈ A such that

x ∈Mα(x) ⊂Mα1(x) ∩Mα2(x) ⊂ O .

Therefore O =
⋃

x∈O Mα(x), that is, O belongs to T (M).
A simple induction argument now shows that the intersection of any finite

number of sets in T (M) lies in T (M). �

The product topology

Suppose T1 and T2 are topologies of X . If T1 ⊂ T2, we say that T1 is coarser than
T2 (and T2 is finer then T1).

1.13 Remarks (a) {∅, X} is the coarsest and P(X) is the finest topology of X ,
that is, {∅, X} ⊂ T ⊂ P(X) for every topology of X .

(b) Suppose M ⊂ P(X) is a basis for a topology T (M). Then T (M) is the
coarsest topology on X that contains M. In other words, if T a topology of X
with M⊂ T , then T ⊃ T (M).

(c) If T0 is a topology on X , then T0 is a basis for itself: T (T0) = T0.

(d) Suppose Mj ⊂ P(X) is a basis of Tj for j = 1, 2 with M1 ⊂ M2. Then
T1 ⊂ T2. �

Suppose (X1, T1) and (X2, T2) are topological spaces and (Oj , Uj) ∈ T1 × T2

for j = 1, 2. Obviously,

(O1 × U1) ∩ (O2 × U2) = (O1 ∩O2)× (U1 ∩ U2) .
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Hence Theorem 1.12 shows that

T1 � T2 :=
{

O1 ×O2 ⊂ X1 ×X2 ; (O1, O2) ∈ T1 × T2

}
is a basis for a topology T := T (T1 � T2) on X1 ×X2, which we call the product
topology of T 1 and T 2 (on X1 ×X2). The topological space (X1 ×X2, T ) is the
topological product of (X1, T1) and (X2, T2). Unless explicitly stated otherwise,
we always provide X1 ×X2 with the product topology.

1.14 Remarks (a) The product topology is the coarsest topology on X1 × X2

that contains T1 � T2.

(b) The product topology is the coarsest topology on X1 × X2 for which the
projections prj : X1 ×X2 → Xj for j = 1, 2 are continuous.

Proof (i) For O1 ∈ T1 and O2 ∈ T2, we have

pr−1
1 (O1) = O1 ×X2 and pr−1

2 (O2) = X1 ×O2 .

Therefore the projections pr1 and pr2 are continuous with respect to T := T (T1 � T2).

(ii) Denote by T̃ a topology of X1 ×X2 for which pr1 and pr2 are continuous. For
every V ∈ T , there is an index set A and pairs (Oα, Uα) ∈ T1 × T2, for α ∈ A, such that
V =

⋃
α∈A Oα × Uα. By Theorem III.2.20 and Remark III.2.29(e), the sets pr−1

1 (Oα)

and pr−1
2 (Uα) belongs to T̃ . Since Oα × Uα = pr−1

1 (Oα) ∩ pr−1
2 (Uα), this shows that

V ∈ T̃ , that is, T ⊂ T̃ . �

(c) Suppose Mj ⊂ P(Xj) is a basis of Tj for j = 1, 2. Then M1 �M2 is a basis
of the product topology of X1 ×X2.

(d) Suppose (Xj , dj) are metric spaces for j = 1, 2, and let Tj denote the topology
induced on Xj by dj . Further let T (d1 ∨ d2) be the topology induced on X1 ×X2

by the product metric d1 ∨ d2; see Example II.1.2(e). Then

T (T1 � T2) = T (d1 ∨ d2) ,

that is, the product topology induced by d1 and d2 coincides with the topology
induced by the product metric d1 ∨ d2.

Proof T (d1 ∨ d2) is a topology of X1 ×X2 satisfying

T1 � T2 ⊂ T (d1 ∨ d2) ⊂ T (T1 � T2) ,

by Exercise III.2.6 and Theorem 1.12. The claim then follows from (a). �

(e) The definitions and results above have obvious generalizations to products
of finitely many topological spaces. We leave the formulations and proofs to the
reader. �



12 IX Elements of measure theory

Product Borel σ-algebras

Suppose (X1,A1) and (X2,A2) are measurable spaces. A1 � A2 need not be a
σ-algebra over X1 ×X2, as can be seen already in simple cases (see Exercise 15).
We therefore define the product σ-algebra A1 ⊗A2 of A1 and A2 as the smallest
σ-algebra over X1 ×X2 that contains A1 �A2:

A1 ⊗A2 := Aσ(A1 �A2) .

The next proposition shows how to obtain a generating set for A1 ⊗ A2 from
generating sets for A1 and A2.

1.15 Proposition For Sj ⊂ P(Xj) with Xj ∈ Sj for j = 1, 2 we have

Aσ(S1)⊗Aσ(S2) = Aσ(S1 � S2) .

Proof Putting Aj := Aσ(Sj), we clearly have Aσ(S1 � S2) ⊂ A1 ⊗A2. To show
the converse inclusion, define

Ãj := (prj)∗
(
Aσ(S1 � S2)

)
for j = 1, 2 .

Because X2 ∈ S2, we have S1 ⊂ Ã1; likewise S2 is a subset of Ã2. Example 1.3(e)
now shows that Ãj ⊃ Aj for j = 1, 2. Given A1×A2 ∈ A1 �A2 we then conclude
that

A1 ×X2 = (pr1)
−1(A1) ∈ Aσ(S1 � S2) ,

X1 ×A2 = (pr2)
−1(A2) ∈ Aσ(S1 � S2) ,

so A1×A2 = (A1×X2)∩ (X1×A2) ∈ Aσ(S1 �S2). This implies that A1⊗A2 =
Aσ(A1 �A2) is contained in Aσ(S1 � S2). �

This theorem, too, generalizes easily to the case of finitely many measurable
spaces, the product σ-algebra being defined in the obvious way.

Let (X1, T1) and (X2, T2) be topological spaces. Two σ-algebras arise natu-
rally on X1 ×X2: the product σ-algebra B(X1) ⊗ B(X2) of the Borel σ-algebras
B(X1) and B(X2), and the Borel σ-algebra B(X1×X2) of the topological product
X1 ×X2. We now study the question of how the two are related.

1.16 Proposition Suppose X1 and X2 are topological spaces. Then

B(X1)⊗ B(X2) ⊂ B(X1 ×X2) .

Proof Let Tj be the topology of Xj . The product topology T on X1×X2 contains
T1 � T2. Thus

Aσ(T1 � T2) ⊂ Aσ(T ) = B(X1 ×X2) .

Moreover, Proposition 1.15 shows that B(X1)⊗B(X2) = Aσ(T1 �T2), from which
the claim follows. �
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Exercise 19 shows by example that the inclusion opposite that of Proposi-
tion 1.16 need not hold: in general, B(X1×X2) 
= B(X1)⊗B(X2). The next result
is thus of particular importance.

1.17 Theorem For topological spaces X1 and X2 satisfying the second countability
axiom,

B(X1 ×X2) = B(X1)⊗ B(X2) .

Proof LetMj be a countable basis for the topology Tj of Xj . By Remark 1.14(c)
and Proposition I.6.9,M1 �M2 is a countable basis of the product topology T :=
T (T1�T2). Thus every O ∈ T can be represented as a countable union of sets from
M1 �M2. Therefore T ⊂ B(X1)⊗ B(X2), hence B(X1 ×X2) ⊂ B(X1)⊗ B(X2).
The claim follows from Proposition 1.16. �

1.18 Corollary Bm ⊗ Bn = Bm+n and Bm = B1 ⊗ · · · ⊗ B1︸ ︷︷ ︸
m

for m, n ∈ N×.

Proof This follows from Remark 1.14(e), Corollary 1.9(ii), Theorem 1.17, and
the appropriate generalizations to the case of m factors. �

Measurability of sections

For C ⊂ X×Y and (a, b) ∈ X×Y ,
the sets

C[a] :=
{

y ∈ Y ; (a, y) ∈ C
}

,

C [b] :=
{

x ∈ X ; (x, b) ∈ C
}

are called sections of C (at a ∈ X and
b ∈ Y , respectively).

Cross sections of measurable sets are measurable:

1.19 Proposition Let (X,A) and (Y,B) be measurable spaces and suppose C ∈
A⊗ B. Then C[x] ∈ B and C [y] ∈ A, for any x ∈ X and y ∈ Y .

Proof (i) We define

C :=
{

C ∈ A⊗ B ; C[x] ∈ B, C[y] ∈ A, (x, y) ∈ X × Y
}

and show that C is a σ-algebra over X × Y .

Obviously X × Y belongs to C. For C ∈ C and (x, y) ∈ X × Y , we have

(Cc)[x] = (C[x])c ∈ B and (Cc)[y] = (C [y])c ∈ A ,
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so Cc belongs to C. Finally every sequence (Cj) in C satisfies(⋃
j
Cj

)
[x]

=
⋃

j
(Cj)[x] and

(⋃
j
Cj

)[y]

=
⋃

j
(Cj)[y] ,

so
⋃

j Cj also belongs to C.
(ii) For A×B ∈ A� B and (x, y) ∈ X × Y , we have

(A×B)[x] =
{

B , x ∈ A ,

∅ , x ∈ Ac ,
(A×B)[y] =

{
A , y ∈ B ,

∅ , y ∈ Bc .

Thus A � B is contained in C, and therefore so is A ⊗ B. But C ⊂ A ⊗ B by
construction, so everything is proved. �

Exercises

1 Prove the statements in Examples 1.3(a)–(d).

2 Let S ,S ′ ⊂ P(X) be nonempty. Prove or disprove: Aσ(S) = Aσ(S ′) implies S = S ′.

3 Suppose (X1,A1) and (X2,A2) are measurable spaces. A subset F ⊂ X1 × X2 is
called a mosaic in X1 × X2 if there is an m ∈ N and R0, . . . , Rm ∈ A1 � A2 such that
Rj ∩Rk = ∅ for j 	= k and F =

⋃m
j=0 Rj .

Prove:

(a) F := {F ⊂ X1 ×X2 ; F is a mosaic in X1 ×X2 } is an algebra on X1 ×X2.

(b) Aσ(F) = A1 ⊗A2.

4 Suppose (Aj) is a sequence in P(X) and define

lim
j

Aj :=

∞⋂
j=0

∞⋃
k=j

Ak , lim
j

Aj :=

∞⋃
j=0

∞⋂
k=j

Ak .

We call lim
j

Aj the limit superior (or limsup) and lim
j

Aj the limit inferior (liminf) of (Aj).

(a) Describe the sets lim
j

Aj and lim
j

Aj .

(b) Prove or disprove: lim
j

Aj ⊂ lim
j

Aj , lim
j

Aj ⊂ lim
j

Aj .

5 A sequence (Aj) ∈ P(X)N is said to be convergent if lim
j

Aj = lim
j

Aj . This common
value is called the limit of (Aj) and is written lim

j
Aj .

Verify:

(a) Any increasing sequence (Aj) converges, with limit
⋃

j Aj . Any decreasing sequence
(Aj) converges, with limit

⋂
j Aj .

(b) (Aj) converges to A if and only if (χAj ) converges pointwise to χA.
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6 Suppose (X,A) and (Y,B) are measurable spaces. A map f : X → Y is said to be
A-B-measurable3 if f−1(B) ⊂ A. If X and Y are topological spaces, a B(X)-B(Y )-
measurable function is also called Borel measurable.

(a) Suppose S ⊂ P(Y ) satisfies Aσ(S) = B. Prove that f ∈ Y X is A-B-measurable if
and only if f−1(S) ⊂ A.

(b) Suppose X and Y are topological spaces. Prove that every continuous map from X
to Y is Borel measurable.

7 Let (X,A) be a measurable space and let Y ⊂X. Show thatA |Y := {A∩ Y ; A ∈ A}
is a σ-algebra over Y . We call it the σ-algebra induced on Y by A.

8 Suppose (X,A), (Y,B) and (Z, C) are measurable spaces. Check:

(a) If f ∈ Y X and g ∈ ZY are measurable, then g ◦ f ∈ ZX is also measurable.

(b) If f ∈ Y X is measurable and A ⊂ X, then f |A ∈ Y A is (A |A)-B-measurable.

9 Suppose Y is a topological space and X ⊂ Y . Show that B(X) = B(Y ) |X.

10 Suppose d1 and d2 are equivalent metrics on X and let Xj := (X, dj) for j = 1, 2.
Show that B(X1) = B(X2).

11 Show that if a topological space X has a countable basis M, then B(X) = Aσ(M).

12 Suppose (X, T ) is a Hausdorff space and there is a sequence (Kj) ∈ XN of compact
sets such that X =

⋃
j Kj . Verify that B(X) = Aσ(K), where K is the set of all compact

subsets of X.

13 Suppose the topological spaces X and Y satisfy B(X × Y ) = B(X) ⊗ B(Y ). Show
that for every nonempty Z ⊂ Y , we have B(X × Z) = B(X) ⊗ B(Z). (Hint: Check that
A :=

{
M ⊂ X×Y ; (X×Z)∩M ∈ B(X)⊗B(Z)

}
is a σ-algebra over X×Y containing

B(X) ⊗B(Y ). Further note Remark III.2.29(h).)

14 Suppose Xj and Yj are topological spaces and fj : Xj → Yj is Borel measurable for
j = 1, 2. Define

f1 × f2 : X1 ×X2 → Y1 × Y2 by (x1, x2) �→
(
f1(x1), f2(x2)

)
.

Check that (f1 × f2)
−1

(
B(Y1)⊗ B(Y2)

)
⊂ B(X1)⊗ B(X2).

15 Take A ⊂ X and define A := {∅, A, Ac, X}. Under what conditions on A is A � A
a σ-algebra over X ×X?

16 Suppose S ⊂ P(X). Show that

Aσ(S) =
⋃{

Aσ(C) ; C ⊂ S is countable
}

.

(Hint: The collection of sets on the right is a σ-algebra over X and contains S .)

17 For A ⊂ X, let AA := {B ⊂ X ; A ⊂ B or A ⊂ Bc }. Prove:

(i) AA is a σ-algebra over X.

(ii) If S ⊂ AA then Aσ(S) ⊂ AA.

3If A and B are implicit from the context, we say for short that f is measurable.
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18 Let X = (X, T ) be a topological space. Show that if the diagonal

ΔX =
{

(x, y) ∈ X ×X ; x = y
}

belongs to B(X) ⊗ B(X), there is an injection of X in R.
(Hint: (i) By Exercise 16, there exist Sj = {Ak,j ; k ∈ N } ⊂ T for j = 1, 2 with
ΔX ∈ Aσ(S1 �S2). Set Aj := Aσ(Sj) for j = 1, 2. Then A1⊗A2 ⊃ Aσ(S1 �S2), which,
with ΔX ∈ Aσ(S1 � S2) and Proposition 1.19, implies that {x} ∈ A1 for every x ∈ X.
(ii) Define ϕ :=

∑∞
k=0 3−kχAk,1 ∈ B(X, R) and take x, y ∈ X such that ϕ(x) = ϕ(y). By

Theorem II.7.11, either {x, y} ⊂ Ak,1 or {x, y} ⊂ Ac
k,1 for every k ∈ N. Then Exercise 17

shows that either {x, y} ⊂ A or {x, y} ⊂ Ac for every A ∈ A1. By (i), this is only possible
when x = y.)

19 Suppose X := P(R) and let T be a Hausdorff topology on X. Then B(X)⊗B(X) 	=
B(X ×X).

(Hint: Because T satisfies the Hausdorff condition, the diagonal ΔX is closed in X ×X.

If B(X) ⊗ B(X) = B(X ×X), Exercise 18 says there is an injection of P(R) in R. This

contradicts Theorem I.6.5.)



2 Measures

We will now introduce the concept of a measure and study its general properties,
those that follow more or less immediately from the definition. The resulting rules
form the foundation for our deeper exploration of measure and integration theory.

In the following,
• X is a nonempty set and [0,∞] := R+ ∪ {∞}.

Recall also the facts set forth in Sections I.10 and II.5 about the arithmetic and
topology of R.

Set functions

Suppose C is a collection of subsets of X with ∅ ∈ C. Let ϕ be a map (or set
function) from C into [0,∞] with ϕ(∅) = 0. We say that ϕ is σ-subadditive if for
every sequence (Aj) in C such that

⋃
j Aj ∈ C,1

ϕ
(⋃

j
Aj

)
≤

∑
j
ϕ(Aj) . (2.1)

We say a map ϕ of C in [0,∞] or K such that ϕ(∅) = 0 is σ-additive if

ϕ
(⋃

j
Aj

)
=

∑
j
ϕ(Aj) (2.2)

for every disjoint sequence (Aj) in C such that
⋃

j Aj ∈ C. If (2.1) holds for every
finite collection A0, . . . , Am of subsets of C such that

⋃
j Aj ∈ C, we say that ϕ

is subadditive. Likewise, if (2.2) holds for every finite collection A0, . . . , Am of
pairwise disjoint subsets of C such that

⋃
j Aj ∈ C, we say ϕ is additive. Finally

we say ϕ : C → [0,∞] is σ-finite if X belongs to C and there is a sequence (Aj)
in C such that

⋃
j Aj = X and ϕ(Aj) < ∞ for j ∈ N. If ϕ(X) < ∞, we say ϕ is

finite.

2.1 Remarks (a) Every σ-additive set function is additive; every σ-subadditive
set function is subadditive.

(b) Suppose ϕ is a σ-additive map from C into [0,∞] [or into K]. If (Aj) ∈ CN are
disjoint and

⋃
j Aj ∈ C, the series

∑
j ϕ(Aj) converges absolutely in [0,∞] [or in

K], that is, it can be reordered arbitrarily with no effect in its sum.
Proof This follows from (2.2), since ϕ

(⋃
j Aj

)
does not depend on the ordering on Aj . �

(c) The map

P(X)→ [0,∞] , A �→
{

1 , A 
= ∅ ,

0 , A = ∅ ,

is σ-subadditive; it is σ-additive if and only if X has a single element. �

1Here and below,
⋃

j Aj is understood to mean
⋃∞

j=0 Aj , etc.
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Measure spaces

Suppose A is a σ-algebra over X and μ : A → [0,∞] is σ-additive. We say that μ
is a (positive) measure on X (or on A)2, and we call (X,A, μ) a measure space. If
μ(X) = 1, we also call μ a probability measure and (X,A, μ) a probability space.

2.2 Examples (a) For fixed a ∈ X , define

δa(A) :=
{

1 , a ∈ A ,

0 , a /∈ A ,

for A ⊂ X . Then δa : P(X)→ [0,∞] is a probability measure, the Dirac measure
on X at a (or with support a).

(b) For A ⊂ X define H0(A) := Num(A). Then H0 : P(X)→ [0,∞] is a measure,
the counting measure on X . It is finite [or σ-finite] if and only if X is finite [or
countable].

(c) For A ⊂ X , let μ(A) := 0 for A = ∅ and let μ(A) := ∞ otherwise. Then(
X, P(X), μ

)
is a measure space.

(d) Let (X,A, μ) be a measure space and take A ∈ A. Then (A, A |A, μ |A) is
also a measure space. �

Properties of measures

We gather here the most important rules for working with measures.

2.3 Proposition Let (X,A, μ) be a measure space. For A, B ∈ A and (Aj) ∈ AN,
we have:

(i) μ(A ∪B) + μ(A ∩B) = μ(A) + μ(B).

(ii) μ(B\A) = μ(B) − μ(A) if A ⊂ B and μ(A) < ∞.

(iii) A ⊂ B =⇒ μ(A) ≤ μ(B), that is, μ is increasing.3

(iv) μ(Ak) ↑ μ
(⋃

j Aj

)
if A0 ⊂ A1 ⊂ A2 ⊂ · · · .

(v) μ(Ak) ↓ μ
(⋂

j Aj

)
if A0 ⊃ A1 ⊃ A2 ⊃ · · · with μ(A0) < ∞.

(vi) μ
(⋃

j Aj

)
≤

∑
j μ(Aj), that is, μ is σ-subadditive.

Proof (i) From A∪B = A∪(B\A) and A∩(B\A) = ∅ it follows by Remark 2.1(a)
that

μ(A ∪B) = μ(A) + μ(B\A) . (2.3)

2The specification of A is actually superfluous, as A is the domain of definition of μ.
3This refers to the natural ordering of A induced by

(
P(X),⊂)

; see Examples I.44(a) and (b).
Instead of increasing, we may also say monotone.
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Analogously, we get from B = (A ∩B) ∪ (B\A) and (A ∩B) ∩ (B\A) = ∅ that

μ(A ∩B) + μ(B\A) = μ(B) . (2.4)

By adding (2.3) and (2.4) we find

μ(A ∪B) + μ(A ∩B) + μ(B\A) = μ(A) + μ(B) + μ(B\A) .

If μ(B\A) is finite, the claim follows. If μ(B\A) =∞, we get μ(A∪B) = μ(B) = ∞
from (2.3) and (2.4), and the claim is again verified.

(ii) Since A ⊂ B we have B = A ∪ (B\A); but A and B\A are disjoint, so
μ(B) = μ(A) + μ(B\A). By assumption, μ(A) < ∞, and we find μ(B)− μ(A) =
μ(B\A).

(iii) As in (ii) we have μ(B) = μ(A) + μ(B\A) and thus μ(B) ≥ μ(A).

(iv) We set A−1 := ∅ and Bk := Ak\Ak−1 for k ∈ N. By assumption, (Bk)
is a disjoint sequence in A with

⋃∞
k=0 Bk =

⋃∞
j=0 Aj and

⋃m
k=0 Bk = Am. The

σ-additivity of μ therefore implies

μ
(⋃

j
Aj

)
= μ

(⋃
k
Bk

)
= lim

m→∞

m∑
k=0

μ(Bk) = lim
m→∞

μ
( m⋃

k=0

Bk

)
= lim

m→∞
μ(Am) .

(v) If (Ak) is a decreasing sequence in A, then (A0\Ak) is increasing. Further,

A0

∖(⋂
k
Ak

)
= A0 ∩

(⋂
k
Ak

)c

=
⋃

k

(
A0 ∩Ac

k

)
=

⋃
k
(A0\Ak) .

Using (ii) and (iv), we get

μ(A0)− μ
(⋂

k
Ak

)
= μ

(
A0

∖ (⋂
k
Ak

))
= μ

(⋃
k
(A0\Ak)

)
= lim

m→∞
μ(A0\Am) = μ(A0)− lim

m→∞
μ(Am) ,

from which the claim follows.

(vi) Set B0 := A0 and Bk := Ak

∖ (⋃k−1
j=0 Aj

)
for k ∈ N×. The sequence

(Bk) in A satisfies
⋃

k Bk =
⋃

k Ak and Bk ⊂ Ak for k ∈ N. From (iii) and the
σ-additivity of μ, we have

μ
(⋃

k
Ak

)
= μ

(⋃
k
Bk

)
=

∑
k
μ(Bk) ≤

∑
k
μ(Ak) . �
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2.4 Remarks (a) Parts (iv) and (v) of Proposition 2.3 express the continuity of
measures from below and from above, respectively.

(b) Parts (i)–(iii) clearly remain true when A is an algebra and μ : A → [0,∞] is
additive.

(c) If S is an algebra over X and μ : S → [0,∞] is additive, monotone, and σ-
finite, there is a disjoint sequence (Bk) in S such that

⋃
k Bk = X and μ(Bk) < ∞

for k ∈ N.

Proof Because of the σ-finiteness of μ, there is a sequence (Aj) in S with
⋃

j Aj = X
and μ(Aj) < ∞. Setting B0 := A0 and Bk := Ak

∖ ⋃k−1
j=0 Aj for k ∈ N×, we find easily

that (Bk) has the stated properties. �

Null sets

Suppose (X,A, μ) is a measure space. A set N ∈ A with μ(N) = 0 is said to be
μ-null. We denote the set of all μ-null sets by Nμ. A measure μ or measure space
(X,A, μ) is called complete if any subset of a μ-null set lies in A.

2.5 Remarks (a) For M ∈ A and N ∈ Nμ such that M ⊂ N , we have M ∈ Nμ.

Proof This follows from the monotony of μ. �

(b) Countable unions of μ-null sets are μ-null.

Proof This follows from the σ-subadditivity of μ. �

(c) A measure μ is complete if and only if every subset of a μ-null set is μ-null.

Proof This is a consequence of (a). �

(d) If A = P(X), then μ is complete. For example, the Dirac measure and the
counting measure are complete. �

We denote by

Mμ := {M ⊂ X ; ∃ N ∈ Nμ such that M ⊂ N }

the set of all subsets of μ-null sets. Clearly μ is complete if and only if Mμ is
contained in A. Thus, for an incomplete measure space,4

Aμ := {A ∪M ; A ∈ A, M ∈ Mμ }

does augment A. The next proposition shows that Aμ is a σ-algebra admitting a
complete measure that agrees with μ on A.

4Corollary 5.29 will show that there are incomplete measure spaces.
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2.6 Proposition Suppose (X,A, μ) is a measure space.

(a) For A ∈ A and M ∈Mμ, define μ(A∪M) := μ(A). Then μ is a well defined
set function on Aμ and

(
X,Aμ, μ

)
is a complete measure space with μ ⊃ μ

(that is, μ extends μ).

(b) If (X,B, ν) is a complete measure space with ν ⊃ μ, then ν ⊃ μ.

Proof (i) We first show that Aμ is a σ-algebra. Manifestly X belongs to Aμ.
Suppose A0 ∈ Aμ. Then there are A ∈ A, N ∈ Nμ and M ⊂ N such that
A0 = A ∪M . From M ⊂ N , it follows that M c = N c ∪ (N ∩M c), and we find

Ac
0 = Ac ∩M c = (Ac ∩N c) ∪ (Ac ∩N ∩M c) .

Because A and N belong to A, so does Ac ∩ N c. Moreover Ac ∩ N ∩M c lies in
Mμ, because it is contained in the μ-null set N . Therefore Ac

0 ∈ Aμ. Finally, let
(Bj) be a sequence in Aμ. There are sequences (Aj) in A, (Nj) in Nμ, and (Mj)
in P(X) such that Mj ⊂ Nj and Bj = Aj ∪Mj for j ∈ N. Because

⋃
Nj is a

μ-null set that contains
⋃

Mj and because A is a σ-algebra, we have⋃
Bj =

(⋃
Aj

)
∪

(⋃
Mj

)
∈ Aμ .

(ii) We show that the set function μ : Aμ → [0,∞] is well defined. Take
A1, A2 ∈ A and M1, M2 ∈ Mμ with A1 ∪M1 = A2 ∪M2, and suppose N is a
μ-null set with M2 ⊂ N . Then A1 ⊂ A1 ∪M1 ⊂ A2 ∪ N , and Proposition 2.3
yields

μ(A1) ≤ μ(A2 ∪N) = μ(A2) + μ(N)− μ(A2 ∩N) = μ(A2) .

Analogously, we show μ(A2) ≤ μ(A1). Therefore μ is well defined.
(iii) Suppose A0 is a μ-null set and take B ⊂ A0. There exist A, N ∈ Nμ and

M ⊂ N such that A0 = A ∪M . Therefore B ⊂ A0 ⊂ A ∪N , and thus B belongs
to Mμ ⊂ Aμ, that is, μ is complete.

(iv) By construction μ is an extension of μ, and it is easy to see that μ is also
σ-additive. This proves (a).

(v) Suppose (X,B, ν) is a measure space with B ⊃ A and ν | A = μ. Then
Nμ ⊂ Nν , hence also Mμ ⊂ Mν . If ν is complete, so that Mν ⊂ B, we obtain
Mμ ⊂ B, and therefore Aμ ⊂ B. This proves (b). �

Part (b) of Proposition 2.6 says that (X,Aμ, μ) is the minimal complete
extension of (X,A, μ). We call (X,Aμ, μ) and μ the completion of (X,A, μ); we
also say μ is the completion of μ. An important example of this construction will
surface in Theorem 5.8.

Exercises

1 For A ⊂ X, let A := Aσ

(
{A}

)
. Put μ(∅) := 0 and μ(B) := ∞ otherwise. Show that

(X,A, μ) is a complete measure space.
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2 Suppose (X,A, μ) is a measure space and take A1, . . . , An ∈ A for n ∈ N×. Show
that

μ
( n⋃

j=1

Aj

)
=

n∑
k=1

(−1)k+1
∑

1≤j1<···<jk≤n

μ
( k⋂

�=1

Aj�

)
.

3 Find in the measure space
(
N, P(N),H0

)
a decreasing sequence (Aj) ∈ P(N)N for

which limj H0(Aj) exists but H0
(⋂

j Aj

)
	= limjH0(Aj).

4 Suppose (X,A) is a measurable space and μ : A → [0,∞] is additive and continuous
from below. Prove that (X,A, μ) is a measure space.

5 Let (X,A, μ) be a measure space and take B ∈ A. For A ∈ A, set μB(A) := μ(A∩B).
Show that (X,A, μB) is a measure space.

6 Let (X,A, μ) be a measure space and consider a sequence (Aj) ∈ AN. Prove the
following statements:

(a) μ
(
lim

j
Aj

)
≤ lim

j
μ(Aj).

(b) μ
(
lim

j
Aj

)
≥ lim

j
μ(Aj) if there exists k ∈ N such that μ

(⋃∞
j=k Aj

)
<∞.

(c) If there is a k ∈ N such that μ
(⋃∞

j=k Aj

)
<∞ and the sequence (Aj) converges, then

μ(limj Aj) = limj μ(Aj).

7 Show that for every measure space (X,A, μ) we have
(
X,Aμ, μ

)
=

(
X, [Aμ ]μ, [μ]

)
.

8 Suppose (X,A, μ) and (X,A, ν) are finite measure spaces. Prove or disprove that

(X,A, μ) = (X,A, ν)⇐⇒ Nμ = Nν .

9 Suppose (X,A) is a measure space and N ⊂ A satisfies

(i) ∅ ∈ N ;

(ii) (Aj) ∈ N N =⇒ ⋃
j Aj ∈ N ;

(iii) (A ∈ A, B ∈ N , A ⊂ B) =⇒ A ∈ N .

Construct a measure μ on (X,A) such that Nμ = N .

10 Suppose X is uncountable and A := {A ⊂ X ; A or Ac is countable }. For A ∈ A,
set μ(A) := 0 if A is countable and μ(A) := ∞ otherwise. Show that (X,A, μ) is a
complete measure space.

11 Suppose (X,A, μ) is a measure space. We call A ∈ A a μ-atom if μ(A) > 0 and, for
every B ∈ A such that B ⊂ A, either μ(B) = 0 or μ(A\B) = 0.

(a) Prove:

(i) Let A be a μ-atom and take B ∈ A with B ⊂ A. Then either μ(B) = μ(A) or
μ(B) = 0.

(ii) Suppose that A ∈ A satisfies 0 < μ(A) <∞, and that for every B ∈ A with B ⊂ A,
either μ(B) = μ(A) or μ(B) = 0. Then A is a μ-atom.

(iii) Suppose μ is σ-finite and A ∈ A is a μ-atom. Then μ(A) <∞.

(b) Determine all atoms of the counting measureH0. Repeat for the measures of Exercises
1 and 10.
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12 Suppose (X,A, μ) is a complete measure space. Let A ∈ A be a μ-atom and suppose
B ⊂ A. Is B measurable? Justify your answer.

13 Suppose (X,A, μ) is a complete measure space, and take A,N ∈ A with μ(A) > 0

and μ(N) = 0. Show that μ(A ∩Nc) > 0.



3 Outer measures

Until now, all measures we’ve encountered have been of the banal variety. None
of them would do for measuring, say, surface areas, if we want the result to agree
with the familiar geometric one in the simplest case of a rectangle!

In this section, we lay the foundation for the introduction of more interesting
classes of measures. We first construct set functions, called “outer measures”,
that are defined on all subsets of a given set and have some, although not all, the
properties of measures. We will see important examples thereof. In later sections
we then obtain many actual measures as appropriately chosen restrictions of outer
measures.

As always, we suppose

• X is a nonempty set.

The construction of outer measures

A map μ∗ : P(X)→ [0,∞] such that μ∗(∅) = 0 is called an outer measure on X if
it is increasing and σ-subadditive. A subset K of P(X) is said to be a conforming
cover for X if it contains the empty set as well as elements Kj, for j ∈ N, such
that X =

⋃
j Kj.

3.1 Remarks (a) Any outer measure on X is already defined on all of P(X).

(b) Every measure defined on P(X) is an outer measure on X .

Proof This follows from Proposition 2.3(vi). �

(c) For A ⊂ X set

μ∗(A) :=
{

0 , A = ∅ ,

1 , A 
= ∅ .

Then μ∗ is an outer measure on X , and it is a measure if and only if X has a
single point.

(d) {∅, X} is a conforming cover for X .

(e) For each a, b ∈ Rn let A(a, b) be some subset of Rn with (a, b) ⊂ A(a, b) ⊂ [a, b].
Then

{
A(a, b) ; a, b ∈ Rn

}
is a conforming cover for Rn; in particular, so is J(n).

(f) If (X, T ) is a topological space, T is a conforming cover for X .

(g) Suppose X is a separable metric space and T is the corresponding topology.
For any ε > 0, the set

{
O ∈ T ; diam(O) < ε

}
is a conforming cover for X .

Proof By Proposition 1.8, X is Lindelöf, which implies the claim. �
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The next theorem allows the systematic construction of outer measures.

3.2 Theorem Suppose K is a conforming cover for X and ν : K → [0,∞] satisfies
ν(∅) = 0. For A ⊂ X , set

μ∗(A) := inf
{∑∞

j=0
ν(Kj) ; (Kj) ∈ KN, A ⊂

⋃
j
Kj

}
.

Then μ∗ is an outer measure on X , said to be induced by (K, ν).

Proof It is clear that μ∗ : P(X) → [0,∞] is increasing and that μ∗(∅) = 0. To
check σ-subadditivity, suppose (Aj) is a sequence in P(X). For every ε > 0 and
every j ∈ N, there is a sequence (Kj,k)k∈N in K with

Aj ⊂
⋃

k
Kj,k and

∑
k
ν(Kj,k) ≤ μ∗(Aj) + ε/2j+1 .

Then
⋃

j Aj ⊂
⋃

j

⋃
k Kj,k and we get

μ∗
(⋃

j
Aj

)
≤

∑
j

∑
k
ν(Kj,k)

≤
∑

j

(
μ∗(Aj) + ε/2j+1

)
=

(∑
j
μ∗(Aj)

)
+ ε .

Because ε > 0 is arbitrary, σ-subadditivity follows. �

The Lebesgue outer measure

For a, b ∈ Rn, the n-dimensional volume of the interval (a, b) in Rn is defined as

voln(a, b) :=

{ ∏n

j=1
(bj − aj) , a ≤ b ,

0 otherwise .

If (a, b) is nonempty, this coincides with the product of the n edge lengths of
(a, b)— more specifically, with the everyday notion of length of an interval, area
of a rectangle, and volume of a parallelepiped, for n = 1, 2, and 3 respectively.

3.3 Proposition For A ⊂ Rn, let

λ∗
n(A) := inf

{∑∞

j=0
voln(Ij) ; Ij ∈ J(n), j ∈ N,

⋃∞

j=0
Ij ⊃ A

}
.

Then λ∗
n is an outer measure on Rn, called n-dimensional Lebesgue outer measure.

For a, b ∈ Rn and (a, b) ⊂ A ⊂ [a, b], we have λ∗(A) = voln(a, b).

Proof (i) The first claim follows from Remark 3.1(e) and Theorem 3.2.
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(ii) Suppose a, b ∈ Rn, and set I0 := (a, b) and Ij := ∅ for j ∈ N×. Obviously
this defines a sequence of intervals in Rn such that (a, b) ⊂ ⋃

j Ij . Therefore

λ∗
n

(
(a, b)

)
≤

∑
j
voln(Ij) = voln(a, b) . (3.1)

(iii) Let A0 be the set of all subsets1 J of [a, b] such that a, b ∈ Rn with
ak = bk for some k ∈ {1, . . . , n}. Clearly, for every J ∈ A0 and ε > 0, there exists
Iε ∈ J(n) such that J ⊂ Iε and voln(Iε) < ε. Thus λ∗

n(J) = 0 for J ∈ A0. Now,
given a, b ∈ Rn, there are 2n “faces” Jj ∈ A0 such that

[a, b] = (a, b) ∪
2n⋃

j=1

Jj .

From this and Remark 2.1(a), it follows that

λ∗
n

(
[a, b]

)
≤ λ∗

n

(
(a, b)

)
+

2n∑
j=1

λ∗
n(Jj) = λ∗

n

(
(a, b)

)
.

For (a, b) ⊂ A ⊂ [a, b] we conclude from the monotony of λ∗
n that

λ∗
n

(
(a, b)

)
= λ∗

n(A) = λ∗
n

(
[a, b]

)
. (3.2)

(iv) Suppose (Ij) is a sequence in J(n) such that [a, b] ⊂ ⋃
j Ij . Since [a, b] is

compact, there exists N ∈ N such that [a, b] ⊂
⋃N

j=0 Ij . Thus, by Exercise 1 below,

voln(a, b) ≤
N∑

j=0

voln(Ij) ≤
∞∑

j=0

voln(Ij) ,

and we find by taking the infimum that voln(a, b) ≤ λ∗
n

(
[a, b]

)
. Together with (3.1)

and (3.2), this yields the claim. �

For a, b ∈ Rn, suppose J(a, b) is an interval in Rn such that (a, b) ⊂ J(a, b) ⊂
[a, b]. Then Proposition 3.3 shows that

λ∗
n

(
J(a, b)

)
= voln(a, b) . (3.3)

For this reason, we set
voln J(a, b) := λ∗

n

(
J(a, b)

)
and again we call voln J(a, b) the n-dimensional volume of the interval J(a, b).
Formula (3.3) says, informally, that the boundary faces do not contribute to the
volume of an n-dimensional box.

1J itself need not be an interval in Rn.
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Any interval of the form J = [a, b), for a, b ∈ Rn, is said to be left closed, and
one of the form J = (a, b] is called right closed. We denote the set of all left closed
intervals in Rn by J	(n), and that of right closed intervals by Jr(n). By J(n) we
denote the set of intervals in Rn that are bounded and closed (on both sides).

The next result shows that, in the definition of the Lebesgue outer measure,
we can use left, right, or both-sided closed intervals instead of open intervals.

3.4 Proposition Suppose A ⊂ Rn and J ∈
{
J	(n), Jr(n), J(n)

}
. Then

λ∗
n(A) = inf

{∑∞

j=0
voln(Jj) ; Jj ∈ J, j ∈ N,

⋃∞

j=0
Jj ⊃ A

}
.

Proof We consider the case J = J	(n). For J = (a, b) ∈ J(n), let �J := [a, b).
If a sequence (Jj) ∈ J(n)N covers A, so does the sequence (�Jj) ∈ JN. Hence

there are no fewer sequences in J covering A than there are in J(n). So (3.3) and
the definition of λ∗

n(A) imply

inf
{ ∑∞

j=0
voln(Jj) ; Jj ∈ J, j ∈ N,

⋃
j
Jj ⊃ A

}
≤ inf

{ ∑∞

j=0
voln(�Jj) ; Jj ∈ J(n), j ∈ N,

⋃
j
Jj ⊃ A

}
= λ∗

n(A) .
(3.4)

Suppose (Jj) is a sequence in J that covers A, and take ε > 0. For aj , bj ∈ Rn

and Jj = [aj , bj), set

Jε
j :=

(
aj − ε(bj − aj), bj

)
for j ∈ N .

Then (Jε
j ) is a sequence in J(n) that covers A, and

∞∑
j=0

voln(Jε
j ) =

∞∑
j=0

(1 + ε)n voln(Jj) =
( ∞∑

j=0

voln(Jj)
)
(1 + ε)n .

From this, it follows that

λ∗
n(A) = inf

{∑∞

j=0
voln(Ij) ; Ij ∈ J(n), j ∈ N,

⋃
j
Ij ⊃ A

}
≤ inf

{∑∞

j=0
voln(Jε

j ) ; Jj ∈ J, j ∈ N,
⋃

j
Jj ⊃ A

}
= inf

{∑∞

j=0
voln(Jj) ; Jj ∈ J, j ∈ N,

⋃
j
Jj ⊃ A

}
(1 + ε)n .

Since ε > 0 is arbitrary, we see that

λ∗
n(A) ≤ inf

{∑∞

j=0
voln(Jj) ; Jj ∈ J, j ∈ N,

⋃
j
Jj ⊃ A

}
.

Now the claim follows from (3.4). Obvious modifications achieve the proof for the
cases J = Jr(n) and J = J(n). �
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The Lebesgue–Stieltjes outer measure

Let F : R → R be increasing and continuous from the left. We say that F is a
measure-generating function. If limx→−∞ F (x) = 0 and limx→∞ F (x) = 1, we
also say F is a (probability) distribution function. If F is a measure-generating
function, we set

νF

(
[a, b)

)
:=

{
F (b)− F (a) , a < b ,

0 , a ≥ b ,

for a, b ∈ R. Because F is increasing, νF is an increasing map into R from the set
of intervals of the form [a, b) with a, b ∈ R.

3.5 Proposition Suppose F is a measure-generating function, and for A ⊂ R let

μ∗
F (A) := inf

{∑∞

j=0
νF (Ij) ; Ij = [aj , bj), aj , bj ∈ R with A ⊂

⋃∞

j=0
Ij

}
.

Then μ∗
F is an outer measure on R, the Lebesgue–Stieltjes outer measure arising

from F . For −∞ < a < b < ∞, we have μ∗
F

(
[a, b)

)
= F (b)− F (a).

Proof (i) That μ∗
F is an outer measure follows from Remark 3.1(e) and Theo-

rem 3.2.
(ii) Suppose a, b ∈ R with a < b. We set I0 := [a, b) and Ij := ∅ for j ∈ N×.

Then [a, b) ⊂ ⋃
j Ij and

μ∗
F

(
[a, b)

)
≤

∞∑
j=0

νF (Ij) = νF (I0) = F (b)− F (a) . (3.5)

(iii) Now let Ij := [aj, bj) for j ∈ N be such that [a, b) ⊂
⋃

j Ij , and take
ε > 0. Because F is continuous from the left, there are positive numbers c and cj

such that

F (b)− F (b − c) < ε/2 , F (aj)− F (aj − cj) < ε2−(j+2) for j ∈ N , (3.6)

and [a, b−c] ⊂ ⋃
j(aj−cj , bj). Because [a, b−c] is compact, there is an N such that

[a, b−c] ⊂ ⋃N
j=0(aj−cj , bj). Now the monotony of F implies that

F (b − c)− F (a) ≤
N∑

j=0

(
F (bj)− F (aj − cj)

)
≤

∞∑
j=0

(
F (bj)− F (aj − cj)

)
.

Together with (3.6), this yields

F (b)− F (a) = F (b)− F (b − c) + F (b − c)− F (a)

≤
∞∑

j=0

[
F (bj)− F (aj) + ε2−(j+2)

]
+ ε/2 ≤

∞∑
j=0

[
F (bj)− F (aj)

]
+ ε .

This is true for every ε > 0, so F (b)− F (a) ≤
∞∑

j=0

νF (Ij), which gives the desired
equality in view of (3.5). �
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3.6 Remarks (a) In the case F (x) := x for x ∈ R, we have μ∗
F = λ∗

1.
Proof This follows from Proposition 3.4. �

(b) If one replaces “continuous from the left” in the definition of a measure-
generating function by “continuous from the right”, Proposition 3.5 remains true
if one replaces all left closed intervals by right closed ones. �

Hausdorff outer measures

Suppose X is a separable metric space, and let T be the topology induced by the
metric. For s > 0, ε > 0, and A ⊂ X , we set

Hs
ε(A) := inf

{ ∑∞

j=0
[diamOj ]s ; Oj ∈ T , diam(Oj) < ε, A ⊂

⋃∞

j=0
Oj

}
.

According to Remark 3.1(g) and Theorem 3.2, Hs
ε is an outer measure on X . Also

Hs
ε1
≤ Hs

ε2
for ε1 > ε2, because for ε1 there are more sets available for covering

than for ε2. Therefore (see Proposition II.5.3)

Hs
∗(A) := lim

ε→0+
Hs

ε(A) = sup
ε>0

Hs
ε(A)

exists for all s > 0 and A ⊂ X . We call Hs
∗ the s-dimensional Hausdorff outer

measure on X . For completeness, we define the 0-dimensional Hausdorff (outer)
measure by H0

∗ := H0, where H0 is the counting measure on X .

3.7 Proposition For every s ≥ 0, Hs
∗ is an outer measure on X .

Proof The case s = 0 is covered by Remark 3.1(b) since H0 is a measure—
see Example 2.2(b). So suppose s > 0. Obviously Hs

∗ is an increasing map from
P(X) into [0,∞] with Hs

∗(∅) = 0. To show σ-subadditivity, let (Aj) be a sequence
in P(X). Because Hs

ε(A) is an outer measure on X for every ε > 0, we have

Hs
ε

(⋃
j
Aj

)
≤

∑
j
Hs

ε(Aj) ≤
∑

j
Hs

∗(Aj) .

Taking the limit ε → 0 we obtain the claim. �

Exercises

1 Prove:

(a) I, J ∈ J(n) =⇒ I ∩ J ∈ J(n).

(b) Suppose I0, . . . , Ik ∈ J(n) and I is an interval such that I ⊂ ⋃n
j=0 Ij .

Then voln(I) ≤∑k
j=0 voln(Ij). (Prove this without using Proposition 3.3.)

2 (a) Let μ be a measure on the Borel σ-algebra B1 and suppose μ
(
(−∞, x)

)
is finite

for x ∈ R. Further let
Fμ(x) := μ

(
(−∞, x)

)
for x ∈ R .

Show that Fμ is a measure-generating function with limx→−∞ Fμ(x) = 0.
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(b) Determine Fδ0 , where δ0 denotes the Dirac measure on (R,B1) with support at 0.

3 Suppose f : R→ [0,∞) in improperly integrable and

Ff (x) :=

∫ x

−∞
f(ξ) dξ for x ∈ R .

Verify that Ff is a measure-generating function for which μ∗
Ff

(
[a, b)

)
=

∫ b

a
f(ξ) dξ when

−∞ < a < b <∞.

4 Suppose A ⊂ Rn. Prove:

(a) Hs
∗(A) = lim

ε→0+
inf

{ ∑∞
k=0

[
diam(Ak)

]s
; Ak ⊂Rn, diam(Ak)≤ ε, k ∈N, A⊂⋃

k Ak

}
.

(b) If f : A→ Rm is Lipschitz continuous with Lipschitz constant λ, then

Hs
∗
(
f(A)

)
≤ λsHs

∗(A) .

(c) For every isometry ϕ : Rn → Rn, we have Hs
∗
(
ϕ(A)

)
= Hs

∗(A). Thus the Hausdorff
outer measure on Rn is invariant under isometries, that is, an invariant of motion.2

(d) Suppose n > n and Hs
∗ is the Hausdorff outer measure on Rn. Then Hs

∗(A) = Hs
∗(A).

That is, the Hausdorff outer measure is independent of the dimension of the ambient Rn.

5 Suppose A ⊂ Rn and 0 ≤ s < t <∞. Show these facts:

(a) Hs
∗(A) <∞ =⇒ Ht

∗(A) = 0.

(b) Ht
∗(A) > 0 =⇒Hs

∗(A) =∞.

(c) inf
{

s > 0 ; Hs
∗(A) = 0

}
= sup

{
s ≥ 0 ; Hs

∗(A) =∞
}
. The unique number

dimH(A) := inf
{

s > 0 ; Hs
∗(A) = 0

}
is called the Hausdorff dimension of A.

6 Let A,B, and Aj , for j ∈ N, be subsets of Rn. Prove:

(a) 0 ≤ dimH(A) ≤ n.

(b) If A is open and not empty, then dimH(A) = n.

(c) A ⊂ B =⇒ dimH(A) ≤ dimH(B).

(d) dimH

(⋃
j Aj) = supj

{
dimH(Aj)

}
.

(e) If A is countable, it has Hausdorff dimension 0.

(f) dimH

(
f(A)

)
≤ dimH(A) for any Lipschitz continuous function f : A→ Rn.

(g) The Hausdorff dimension of A is independent of that of the ambient Rn.

7 Suppose A ⊂ Rn and B ⊂ Rm. Show then that dimH(A×B) = dimH(A)+dimH(B).

8 Suppose I ⊂ R is a perfect compact interval and γ ∈ C(I, Rn) is an injective rectifiable
path with image Γ. Then dimH(Γ) = 1.

9 Verify that setting μ∗(A) := λ∗
1

(
pr1(A)

)
for A ⊂ R2 defines an outer measure on R2.

2By Exercises VII.9.1 and VII.9.2, every isometry ϕ of Rn is an affine map —that is, of the
form ϕ(x) = Tx + a with T ∈ O(n) and a ∈ Rn —and can be interpreted as a rigid motion.
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10 Suppose {μ∗
j ; j ∈ N } is a family of outer measures on X. Then

μ∗ : P(X)→ [0,∞] , A �→
∑∞

j=0
μ∗

j (A)

is an outer measure on X.

11 Show that for every A ⊂ Rn there is a Gδ-set G such that A ⊂ G and λ∗
n(A) = λ∗

n(G).



4 Measurable sets

In this section we finish the process of constructing measures on a set. We start
with an outer measure and restrict it to an appropriate collection of subsets.
By choosing this subset skillfully, we end up with a complete measure space.
This technique, which goes back to Carathéodory, is then applied to the examples
of the last sections to obtain the most important measures for applications— in
particular, the Lebesgue measure.

Motivation

The key point in Carathéodory’s construction is the definition of measurable sets.
It’s a convenient definition for the proof of the main theorems, but not one that is
immediately grasped by intuition. Therefore we first give a heuristic motivation.

Suppose A is a bounded subset of Rn. If (Ij) is a sequence of open inter-
vals such that

⋃
Ij ⊃ A, then

∑∞
j=0 voln(Ij) represents an approximate value for

λ∗
n(A), which becomes closer to λ∗

n(A) as
⋃

j Ij better approximates the set A. By
Proposition 3.4, we can replace open in-
tervals by left-open ones; in particular, we
can choose finitely many pairwise disjoint
intervals whose union contains A. The
set A is approximated “from the outside”
by a mosaic, a shape whose boundary is
piecewise parallel to the coordinate hyper-
planes. In this sense, we regard

λ∗
n(A) := inf

{∑∞

j=0
voln(Ij) ; Ij ∈ J(n), j ∈ N, A ⊂

⋃∞

j=0
Ij

}
as an “approximation from the outside” to the volume of A.

Now instead of A consider the set
D\A, where D is a bounded superset of
A in Rn. Approximating D\A from the
outside by a mosaic, as above, we get an
approximation of A “from the inside”.
It is therefore natural to define the inner
measure of A (relative to D) by

λD
n,∗(A) := λ∗

n(D)− λ∗
n(D\A) .

Now it is reasonable to expect a special role for those subsets A of Rn whose
outer measures agree with their inner measures relative to every bounded super-
set D, that is, those satisfying

λ∗
n(A) = λD

n,∗(A) for D ⊂ Rn and D ⊃ A ,
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where again D is bounded. This corresponds to the equality

λ∗
n(D) = λ∗

n(A) + λ∗
n(D\A) for D ⊂ Rn and D ⊃ A , (4.1)

from which we can now drop the requirement that A and D be bounded. Thus (4.1)
singles out precisely those sets A for which the Lebesgue outer measure behaves
additively with respect to the disjoint decomposition A ∪ (D\A) of D, for every
D ⊂ Rn with D ⊃ A.

The σ-algebra of μ∗-measurable sets

Suppose μ∗ is an outer measure on X . If we replace Rn by X and λ∗
n by μ∗,

equation (4.1) is meaningful for every A ⊂ X . Because outer measures are sub-
additive, we can also replace the equality sign in (4.1) by ≥ . We then reach the
key definition: A subset A of X is μ∗-measurable if, for every D ⊂ X ,

μ∗(D) ≥ μ∗(A ∩D) + μ∗(Ac ∩D) .

We denote the set of all μ∗-measurable subsets of X by A(μ∗). If N ⊂ X has
μ∗(N) = 0, we say the set N is μ∗-null (or of μ∗ measure zero).

4.1 Remarks (a) Every μ∗-null set is μ∗-measurable.
Proof Take Suppose D ⊂ X and N ⊂ X with μ∗(N) = 0. The monotony of μ∗ gives
0 ≤ μ∗(N ∩D) ≤ μ∗(N) = 0. Thus N ∩D is μ∗-null, and it follows that

μ∗(N ∩D) + μ∗(Nc ∩D) = μ∗(Nc ∩D) ≤ μ∗(D) .

Therefore N is μ∗-measurable. �

(b) For A ⊂ X , these statements are equivalent:
(i) A ∈ A(μ∗).
(ii) μ∗(D) ≥ μ∗(A ∩D) + μ∗(Ac ∩D) for all D ⊂ X such that μ∗(D) < ∞.
(iii) μ∗(D) = μ∗(A ∩D) + μ∗(Ac ∩D) for all D ⊂ X .
Proof The implications “(i)=⇒(ii)” and “(iii)=⇒(i)” are obvious.

“(ii)=⇒(iii)” Suppose D ⊂ X. The subadditivity of μ∗ gives

μ∗(D) = μ∗((A ∩D) ∪ (Ac ∩D)
)
≤ μ∗(A ∩D) + μ∗(Ac ∩D) . (4.2)

If μ∗(D) <∞ then (iii) follows from (4.2) and (ii). In the case μ∗(D) =∞, the statement
is likewise correct due to (4.2). �

The next theorem shows that the set of all μ∗-measurable sets forms a
σ-algebra and the restriction of the outer measures μ∗ to this σ-algebra is a com-
plete measure. This is the important Carathéodory extension theorem, which
allows the construction of nontrivial measures.
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4.2 Theorem Suppose μ∗ is an outer measure on X . Then A(μ∗) is a σ-algebra
on X , and μ := μ∗ | A(μ∗) is a complete measure on A(μ∗), the measure on X
induced by μ∗.

Proof (i) Obviously ∅ belongs to A(μ∗). Also, Ac lies in A(μ∗) if A does, because
the notion of μ∗-measurability is symmetric in A and Ac.

(ii) Take A, B ∈ A(μ∗) and D ⊂ X . Then

μ∗(D) ≥ μ∗(A ∩D) + μ∗(Ac ∩D) . (4.3)

Because B is μ∗-measurable, we have

μ∗(Ac ∩D) ≥ μ∗(B ∩Ac ∩D) + μ∗(Bc ∩Ac ∩D) .

Thus (4.3) and the subadditivity of μ∗ give

μ∗(D) ≥ μ∗((A ∩D) ∪ (B ∩Ac ∩D)
)

+ μ∗(Bc ∩Ac ∩D) .

Noting that

(A ∩D) ∪ (B ∩Ac ∩D) =
[
A ∪ (B ∩Ac)

]
∩D = (A ∪B) ∩D

and (A ∪B)c = Ac ∩Bc, we see that

μ∗(D) ≥ μ∗((A ∪B) ∩D
)

+ μ∗((A ∪B)c ∩D
)

.

Therefore A ∪B is μ∗-measurable, and A(μ∗) is an algebra over X .

(iii) Let (Aj) be a disjoint sequence in A(μ∗). Because A0 is μ∗-measurable,
Remark 4.1(b) results in

μ∗((A0 ∪A1) ∩D
)

= μ∗(((A0 ∪A1) ∩D
)
∩A0

)
+ μ∗(((A0 ∪A1) ∩D

)
∩Ac

0

)
,

and from A0 ∩A1 = ∅, it follows that

μ∗((A0 ∪A1) ∩D
)

= μ∗(A0 ∩D) + μ∗(A1 ∩D) .

By complete induction, we get

μ∗
(( m⋃

j=0

Aj

)
∩D

)
=

m∑
j=0

μ∗(Aj ∩D) for m ∈ N . (4.4)

After setting for short A :=
⋃

j Aj , the monotony of μ∗ shows that

μ∗(A ∩D) ≥
m∑

j=0

μ∗(Aj ∩D) for m ∈ N .
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For m →∞, we get the inequality μ∗(A ∩D) ≥ ∑∞
j=0 μ∗(Aj ∩D). Together with

the σ-subadditivity of μ∗, this implies

μ∗(A ∩D) =
∞∑

j=0

μ∗(Aj ∩D) . (4.5)

Because, by (ii), A(μ∗) is an algebra over X , we have for every m ∈ N that

μ∗(D) = μ∗
(( m⋃

j=0

Aj

)c

∩D
)

+ μ∗
(( m⋃

j=0

Aj

)
∩D

)
.

The monotony of μ∗ and (4.4) then give

μ∗(D) ≥ μ∗(Ac ∩D) +
m∑

j=0

μ∗(Aj ∩D) ,

so we find using (4.5) that

μ∗(D) ≥ μ∗(Ac ∩D) +
∞∑

j=0

μ∗(Aj ∩D) = μ∗(Ac ∩D) + μ∗(A ∩D)

as m →∞. Therefore A is μ∗-measurable, and Remark 1.2(c) implies that A(μ∗)
is a σ-algebra.

(iv) To see that μ∗ | A(μ∗) is a measure on A(μ∗), it suffices to set D = X in
(4.5). Finally, the monotony of μ∗ and Remark 4.1(a) shows that this measure is
complete. �

If μ is the measure on X induced by μ∗, sets inA(μ∗) are called μ-measurable,
naturally enough, while μ∗-null sets and μ-null sets coincide.

Lebesgue measure and Hausdorff measure

We now apply Theorem 4.2 to the outer measures discussed in Propositions 3.3,
3.5, and 3.7.

• The measure on Rn induced by λ∗
n is called n-dimensional Lebesgue mea-

sure on Rn and is denoted by λn. We call λn-measurable sets Lebesgue measurable.

• If F : R → R is a measure-generating function, we call the measure on R
generated by μ∗

F is the Lebesgue–Stieltjes measure on R induced by F . We denote
it μF .

• Suppose X is a separable metric space and s > 0. The measure on X
induced by Hs

∗ is the s-dimensional Hausdorff measure on X ; it is denoted by Hs.
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Metric measures

Granted that Theorem 4.2 guarantees that the restriction of μ∗ to A(μ∗) is a
measure, it says nothing about how many or how few sets belong to A(μ∗). For
metric spaces, we will now specify a sufficient condition such that at least all Borel
sets are μ-measurable.

Suppose X = (X, d) is a metric space and μ∗ is an outer measure on X . If

μ∗(A ∪B) = μ∗(A) + μ∗(B)

for all A, B ⊂ X separated by a positive distance, that is, for which1 d(A, B) > 0,
we say μ∗ and the measure on A(μ∗) induced by μ∗ are metric.

The next theorem shows that the σ-algebra induced by a metric outer mea-
sure contains the Borel σ-algebra. Conversely, one can show that an outer measure
μ∗ whose σ-algebra of μ∗-measurable sets contains the Borel σ-algebra is a metric
measure; see Exercise 1.

4.3 Theorem Suppose μ∗ is a metric outer
outer measure on X . Then A(μ∗) ⊃ B(X).

Proof (i) Because A(μ∗) is a σ-algebra and
because the Borel σ-algebra is generated by
open sets, if suffices to verify that every open
set is μ∗-measurable.

(ii) Take O open in X and D ⊂ X such that
μ∗(D) < ∞. We will show that

μ∗(D) ≥ μ∗(O ∩D) + μ∗(Oc ∩D) .

From Remark 4.1(b), it follows that O ∈ A(μ∗).

We set
On :=

{
x ∈ X ; d(x, Oc) > 1/n

}
and

An :=
{

x ∈ X ; 1/(n + 1) < d(x, Oc) ≤ 1/n
}

for n ∈ N×. Clearly d(On, Oc) ≥ 1/n > 0. For x ∈ Ak, we have

1/(k + 1) < d(x, Oc) ≤ d(x, z) ≤ d(x, y) + d(y, z) for z ∈ Oc and y ∈ X .

Because this holds for every z ∈ Oc, we have

1/(k + 1) ≤ d(x, y) + d(y, Oc) ≤ d(x, y) + 1/(k + 2) for y ∈ Ak+2 ,

1See Example III.3.9(c).



IX.4 Measurable sets 37

and therefore

d(Ak, Ak+2) ≥
1

k + 1
− 1

k + 2
> 0 for k ∈ N× . (4.6)

(iii) Because μ∗ is a metric outer measure, it follows from (4.6) by complete
induction that

n∑
j=1

μ∗(A2j−i ∩D) = μ∗
(( n⋃

j=1

A2j−i

)
∩D

)
≤ μ∗(D) for n ∈ N× and i = 0, 1 .

From this we get
∞∑

k=1

μ∗(Ak ∩D) ≤ 2μ∗(D) < ∞ .

In particular, we find that the series remainders rn :=
∑∞

k=n μ∗(Ak ∩D) form a
null sequence. It is also clear that O\On =

⋃∞
j=n Aj . The σ-subadditivity of μ∗

hence gives

0 ≤ μ∗((O\On) ∩D
)
≤

∞∑
j=n

μ∗(Aj ∩D) = rn .

Therefore
(
μ∗((O\On) ∩D

))
n∈N× is also a null sequence.

(iv) Clearly

μ∗(O ∩D) ≤ μ∗(On ∩D) + μ∗((O\On) ∩D
)

. (4.7)

Because d(On ∩D, Oc ∩D) ≥ d(On, Oc) ≥ 1/n and since μ∗ is an outer measure,
we have

μ∗(On ∩D) + μ∗(Oc ∩D) = μ∗((On ∪Oc) ∩D
)
≤ μ∗(D) .

From this and (4.7), we conclude that

μ∗(O ∩D) + μ∗(Oc ∩D) ≤ μ∗(D) + μ∗((O\On) ∩D
)

for n ∈ N× .

Taking n →∞, we find the desired inequality. �

4.4 Examples (a) λ∗
n is a metric outer measure on Rn. Therefore every Borel set

is Lebesgue measurable.
Proof Suppose A, B ⊂ Rn with d(A,B) > 0, and let δ := d(A, B)/2. According to
Proposition 3.4, given ε > 0 there is a sequence (Ij) in J�(n) such that

⋃
j Ij ⊃ A ∪ B

and
∑

j voln(Ij) ≤ λ∗
n(A ∪ B) + ε. By cutting along coordinate hyperplanes, we can

write each Ij as a disjoint finite union of left closed intervals all having diameter less
than δ. Thus we lose no generality in assuming that diam(Ij) < δ for every j ∈ N.
Because d(A, B) = 2δ, this means that for each j ∈ N we have either Ij ∩ A = ∅ or
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Ij ∩ B = ∅; in other words, there exist subsequences (I ′
k) and (I ′′

� ) of (Ij), covering A
and B respectively, and such that I ′

k ∩ I ′′
� = ∅ for k, � ∈ N. Thus

λ∗
n(A) ≤

∑
k

voln(I ′
k) and λ∗

n(B) ≤
∑

�

voln(I ′′
� ) ,

and we get

λ∗
n(A) + λ∗

n(B) ≤
∑

k

voln(I ′
k) +

∑
�

voln(I ′′
� ) ≤

∑
j

voln(Ij)

≤ λ∗
n(A ∪B) + ε .

Since ε > 0 was arbitrary, the claim follows using the subadditivity of λ∗
n. �

(b) For a measure-generating function F : R → R, the corresponding Lebesgue-
Stieltjes outer measure μ∗

F on R is metric.

Proof This follows by a simple modification of the proof of (a). �

(c) The Hausdorff outer measure Hs
∗ on Rn is metric for every s > 0. Every

A ∈ Bn is Hn-measurable.

Proof This also follows in analogy to the proof of (a). �

Exercises

1 Suppose X is a metric space and μ∗ is an outer measure on X. Prove that if A(μ∗)
contains all Borel sets, μ∗ is metric.

2 Let (X,A, ν) be a measure space. Denote by μ∗ the outer measure on X induced by
(A, ν) and by μ the measure on X induced by μ∗. Show that μ is an extension of ν. Are
they equal?

3 Prove the statements in Examples 4.4(b) and (c).

4 Let μ∗ be an outer measure on X, and define μ∗ : P(X)→ [0,∞], the inner measure
on X induced by μ∗ , by

μ∗(A) := sup
{
μ∗(D) − μ∗(D\A) ; D ⊂ X, μ∗(D\A) < ∞

}
for A ⊂ X .

Show that μ∗(A) = μ∗(A) for A ∈ A(μ∗).

5 Suppose I ⊂ R is a perfect, compact interval, and γ ∈ C(I,Rn) is an injective
rectifiable path in Rn with image Γ. Show that H1(Γ) = L(γ).

6 Set A0 := [0, 1]2 ⊂ R2. Partition A0 into a 4×4 array of identical squares and remove
twelve of these squares according to the sketch below, so that exactly one closed square
remains in every row and every column. This forms the set A1. Repeat this procedure
for every remaining square to get A2, which consists of sixteen squares. Generally, obtain
Ak+1 from Ak by applying this subdivision and then removing subsquares from Ak. The
intersection of all the Ak, that is, A :=

⋂∞
k=0 Ak, is called Cantor dust.
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Show that 1 ≤ H1(A) ≤
√

2 and dimH(A) = 1.

(Hint: To bound H1(A) from above, use the covers suggested by the construction of A.
For the lower bound, consider pr1 : A→ R and apply Exercises 5 and 3.6(f).)

7 Show that the Cantor set2 C from Exercise III.3.8 satisfies

(i) dimH(C) = log 2 / log 3 =: s and 1/2 ≤ Hs(C) ≤ 1;

(ii) λ1(C) = 0.

(Hints for (i): The upper bound for Hs(C) is obtained much like the one for H1(A) in
Exercise 6. For the lower bound, a compactness argument shows that one need only
consider coverings by finitely many open intervals. If { Ii ; 0 ≤ i ≤ N } is such a cover,
choose for every i the integer k such that 3−(k+1) ≤ diam(Ii) < 3−k. Then Ii can intersect
at most one interval from Ck (Exercise III.3.8). For j ≥ k, the cover Ii intersects at most
2j−k = 2j3−sk ≤ 2j(3 diam(Ii))

s intervals from Cj . Now choose j large enough that
3−(j+1) ≤ diam(Ii) for all i. Then count intervals.)

8 Suppose F : R → R is a measure-generating function and let μF be the Lebesgue–
Stieltjes measure induced by F . For a ∈ R, calculate μF

(
{a}

)
.

9 Suppose (R,B1, μ) is a locally finite3 measure space. Prove:

(i) There is a measure-generating function F such that μ = μF | B1, that is, μ is the
Borel–Stieltjes measure induced by F . This F is unique up to an additive constant.

(ii) Define

F0 :=
{

F : R→ R ; F is measure-generating with F (0) = 0
}

.

Then F �→ μF | B1 is a bijection from F0 to the set of locally finite measures on B1.

(Hint for (i): Consider F (t) := μ
(
[0, t)

)
for t ≥ 0 and F (t) := −μ

(
[t, 0)

)
for t < 0.)

10 Suppose F : R → R is a measure-generating function with the following properties:

F is constant on each interval (ak, ak+1), where the numbers ak, for k ∈ Z, satisfy

limk→±∞ ak = ±∞; moreover F has at each ak a jump discontinuity of height pk ≥ 0.

Show that A(μF ) = P(R) and calculate μF (A) for A ⊂ R.

2The Cantor set and Cantor dust are examples of fractals. (see for example [Fal90]).
3If X is a topological space and μ : A → [0,∞] is a measure with A ⊃ B(X), we say μ is

locally finite if every x ∈ X has an open neighborhood U 
 x such that μ(U) < ∞.



5 The Lebesgue measure

Until now we have considered general measures; we now turn to the most important
special case, the Lebesgue measure. This measure has the fundamental property
that Cartesian products of intervals are assigned their natural content, and it can
therefore be used to calculate the content of more general shapes. In addition, it
forms the foundation for calculating the content of curved surfaces or more general
manifolds, as we shall see in later chapters.

The Lebesgue measure space

The σ-algebra A(λ∗
n) generated by the n-dimensional Lebesgue outer measure is

called the σ-algebra of Lebesgue measurable subsets of Rn and will be denoted by
L(n). Accordingly, Lebesgue null subsets of Rn (that is, λ∗

n-null or equivalently
λn-null sets) are said to have Lebesgue measure zero (the use of this expression
implies membership in L(n)). If necessary, we speak also of Lebesgue n-measure.

In the next theorem, we list some first properties of the Lebesgue measure
space (Rn,L(n), λn).

5.1 Theorem

(i) (Rn,L(n), λn) is a complete, σ-finite measure space.

(ii) Bn ⊂ L(n), that is, every Borel subset of Rn is Lebesgue measurable.

(iii) For a, b ∈ Rn, any set A satisfying (a, b) ⊂ A ⊂ [a, b] belongs to L(n), and

λn(A) = voln(a, b) =
n∏

j=1

(bj − aj) .

(iv) Every compact subset of Rn is Lebesgue measurable and has finite measure.

(v) A set N ⊂ Rn has Lebesgue measure zero if and only if for every ε > 0 there
is a sequence (Ij) in J(n) such that

⋃
j Ij ⊃ N and

∑
j λn(Ij) < ε.

(vi) Every countable subset of Rn has Lebesgue measure zero.

Proof (i) Theorem 4.2 and Proposition 3.3 show that (Rn,L(n), λn) is a complete
measure space. Because Rn =

⋃∞
j=1(jB∞) and λn(jB∞) = (2j)n, it is σ-finite.

(ii) This follows from Theorem 4.3 and Example 4.4(a).
(iii) For M := A\(a, b), we have M ⊂ N := [a, b]\(a, b) ∈ Bn. Therefore part

(ii) and Proposition 2.3 imply that N has Lebesgue measure zero, since λn(N) =
λn

(
[a, b]

)
− λn

(
(a, b)

)
= 0. Now (i) says λn is complete, so M also has Lebesgue

measure zero. Therefore A = (a, b)∪M belongs to L(n), and since (a, b) is disjoint
from M , we get λn(A) = λn

(
(a, b)

)
= voln(a, b).

(iv) follows from (ii) and (iii). Statement (v) is an immediate consequence
of the definition of the Lebesgue outer measure. To see (vi), use the obvious fact
that any one-point has Lebesgue measure zero. �
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5.2 Example Any subset of Rn confined to a single coordinate hyperplane has
Lebesgue measure zero.

Proof Since λn is complete, it suffices to verify that every coordinate hyperplane is
λn-null. We consider the case H := Rn−1 × {0} (an obvious variant of the argument
works for any other coordinate hyperplane).

Take ε > 0, and for k ∈ N× define εk := ε(2k)−n+12−(k+2) and

Jk(ε) := (−k, k)n−1 × (−εk, εk) ∈ J .

Then voln(Jk(ε)) = ε2−(k+1), and thus
∑∞

k=1 voln(Jk(ε)) = ε/2 < ε. Because (Jk(ε))
covers H , the equality λn(H) = 0 follows from Theorem 5.1(v). �

Corollary 5.23 below will show that every subset of Rn contained in a proper
affine subspace has Lebesgue measure zero.

The Lebesgue measure is regular

We now prove several basic approximation results, but first we collect some ter-
minology about measures on topological spaces.

Let X be a topological space and (X,A, μ) a measure space with B(X) ⊂ A.
We say (X,A, μ) and μ are regular if, for every A ∈ A,

μ(A) = inf
{

μ(O) ; O ⊂ X is open with O ⊃ A
}

= sup
{

μ(K) ; K ⊂ X is compact with K ⊂ A
}

.

If every x ∈ X has an open neighborhood U such that μ(U) < ∞, we say (X,A, μ)
and μ are locally finite. Finally, if B(X) = A, we call μ the Borel measure on X .
In particular βn := λn | Bn is called the Borel–Lebesgue measure on Rn.

5.3 Remarks (a) If μ is locally finite, then every compact set K ⊂ X has an open
neighborhood U such that μ(U) < ∞.

Proof Because μ is locally finite, every x ∈ K has an open neighborhood Ux such that
μ(Ux) < ∞. Since K is compact, there are x0, . . . , xm ∈ K with K ⊂ U :=

⋃m
j=0 Uxj ,

and we get μ(U) ≤
∑m

j=0 μ(Uxj ) <∞. �

(b) Suppose X is locally compact.1 Then μ is locally finite if and only if every
compact set K ⊂ X satisfies μ(K) <∞.

Proof This follows immediately from (a). �

5.4 Theorem The Lebesgue measure is regular.

1A topological space is said to be locally compact if it is Hausdorff and every point has a
compact neighborhood.
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Proof Let A ∈ L(n).

(i) For every ε > 0, there is a sequence (Ij) in J(n) such that

A ⊂
⋃

j
Ij and

∑
j
voln(Ij) < λn(A) + ε .

The open set O :=
⋃

j Ij therefore satisfies

λn(A) ≤ λn(O) ≤
∑

j
λn(Ij) =

∑
j
voln(Ij) < λn(A) + ε . (5.1)

Because this is true for every ε > 0,

λn(A) = inf
{

λn(O) ; O ⊂ Rn is open with O ⊃ A
}

.

(ii) To verify that

λn(A) = sup
{

λn(K) ; K ⊂ Rn is compact with K ⊂ A
}

we consider first the case of a Lebesgue measurable set B that is bounded. Then
there is a compact set C ⊂ Rn such that B ⊂ C. Using (i) we find for every
ε > 0 an open set O ⊂ Rn containing C\B and for which λn(O) < λn(C\B) + ε.
Because λn(B) < ∞ if follows from Proposition 2.3(ii) that

λn(O) < λn(C)− λn(B) + ε . (5.2)

The compact set K := C\O satisfies K ⊂ B and C ⊂ K ∪O. Thus (5.2) shows

λn(C) ≤ λn(K ∪O) ≤ λn(K) + λn(O) < λn(K) + λn(C) − λn(B) + ε ,

which implies the inequality λn(B)− ε < λn(K). Therefore

λn(B) = sup
{

λn(K) ; K ⊂ Rn is compact with K ⊂ B
}

for every bounded Lebesgue set B.

(iii) We can assume that λn(A) is positive. There exists α > 0 such that
α < λn(A). With Bj := A ∩ Bn(0, j), the continuity of the Lebesgue measure
from below shows that λn(A) = limj λn(Bj). Thus there is k ∈ N such that
λn(Bk) > α. Because Bk is bounded, we find due to (ii) a compact set K such
that K ⊂ Bk ⊂ A and λn(K) > α. Therefore

sup
{

λn(K) ; K ⊂ Rn is compact with K ⊂ A
}

> α .

The claim now follows because α < λn(A) is arbitrary. �
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5.5 Corollary Suppose A ∈ L(n). Then there is an Fσ-set F and a Gδ-set G such
that F ⊂ A ⊂ G and λn(F ) = λn(A) = λn(G). If A is bounded, G can be chosen
to be bounded.

Proof (i) We prove only the first statement, the second being clear. We start
with the case λn(A) < ∞. By Theorem 5.4 there is for every k ∈ N× a compact
set Kk and an open set Ok such that Kk ⊂ A ⊂ Ok and

λn(A) − 1/k ≤ λn(Kk) ≤ λn(A) ≤ λn(Ok) ≤ λn(A) + 1/k . (5.3)

Setting F :=
⋃

k Kk and G :=
⋂

k Ok, we have the inclusions F ⊂ A ⊂ G, and
Proposition 2.3(ii) applied to (5.3) gives for every k ∈ N×

λn(A\F ) ≤ λn(A\Kk) ≤ 1/k , λn(G\A) ≤ λn(Ok\A) ≤ 1/k .

Hence λn(A\F ) = λn(G\A) = 0, and the claim follows from Proposition 2.3(ii).
(ii) If instead λn(A) = ∞, Theorem 5.3 provides for every k ∈ N a compact

set Kk such that Kk ⊂ A and k ≤ λn(Kk). The Fσ-set F :=
⋃

k Kk and the
Gδ-set G := Rn satisfy the desired equations. �

Theorem 5.4 implies that we can approximate the measure of a Lebesgue
measurable subset of Rn to arbitrary precision by the measure of a suitably chosen
open superset. By the next proposition, the Lebesgue measure of an open set is
itself the limit of the values obtained by adding up the volumes of finitely many
disjoint intervals [a, b), chosen so their union approximates the open set. This is
the method for calculating content described in the introduction to this chapter.

5.6 Proposition Every open subset O in Rn can be represented as the union of a
disjoint sequence (Ij) of intervals of the form [a, b) with a, b ∈ Qn. Then

λn(O) =
∞∑

j=0

voln(Ij) .

Proof For k ∈ N, define

Wk :=
{

a + [0, 2−k1n) ; a ∈ 2−kZn
}

with 1n := (1, . . . , 1) ∈ Rn. In other words,
every W ∈ Wk is a cube (aligned with the
coordinate hyperplanes) whose sides have
length 2−k and whose “lower left corners”
lie on points of the grid 2−kZn. Obviously
Wk is a countable disjoint cover of Rn. If Ok is the union of those cubes inWk that
lie entirely in O, an application of Proposition I.6.8 concludes the proof, because

O = O0 ∪ (O1\O0) ∪
(
O2

∖
(O0 ∪O1)

)
∪ · · · �
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A characterization of Lebesgue measurability

Let X be a topological space. A subset M of X is σ-compact if there is a sequence
(Kj) of compact subsets such that M =

⋃
j Kj .

5.7 Theorem For A ⊂ Rn, these statements are equivalent:

(i) A is Lebesgue measurable.

(ii) There is a σ-compact subset S of Rn and a set N of Lebesgue measure zero
such that A = S ∪N .

Proof “(i)=⇒(ii)” Since the measure space (Rn,L(n), λn) is σ-finite, there is a
sequence (Aj) in L(n) such that A =

⋃
j Aj and λn(Aj) < ∞ for j ∈ N. The

proof of Corollary 5.5 shows that for every j ∈ N there is a σ-compact subset Sj

of Rn such that Sj ⊂ Aj and λn(Sj) = λn(Aj). Therefore Nj := Aj\Sj is a set of
Lebesgue measure zero such that Aj = Sj ∪ Nj. Thus S :=

⋃
j Sj is σ-compact,

N :=
⋃

j Nj has Lebesgue measure zero, and A = S ∪N .

“(ii)=⇒(i)” Every σ-compact subset of Rn is Lebesgue measurable, because
Bn ⊂ L(n). Sets of Lebesgue measure zero are likewise Lebesgue measurable. �

In Corollary 5.29 we will show that the Borel–Lebesgue measure is not com-
plete. With the help of Theorem 5.7 we can right away determine its completion.

5.8 Theorem The Lebesgue measure λn is the completion of the Borel–Lebesgue
measure (Rn,Bn, βn).

Proof (i) Given A ∈ Bn
βn

, take B, N ∈ Bn and M ⊂ Rn such that A = B ∪M ,
M ⊂ N and λn(N) = 0. The completeness of λn shows that M has Lebesgue
measure zero. Then Bn ⊂ L(n) implies A = B ∪M ∈ L(n), that is, Bn

βn
⊂ L(n).

(ii) Suppose A ∈ L(n). By Theorem 5.7, there exist B ∈ Bn and a set M
of Lebesgue measure zero such that A = B ∪M . Also, Corollary 5.5 secures the
existence of a G ∈ Bn such that M ⊂ G and λn(G) = λn(M) = 0. Therefore A
belongs to Bn

βn
. This proves the inclusion L(n) ⊂ Bn

βn
. �

Images of Lebesgue measurable sets

We will see in Theorem 5.28 that not every subset of Rn is Lebesgue measurable.
Therefore it is not to be expected that measurable sets have measurable images
under arbitrary maps.2 For locally Lipschitz continuous functions, however, the
measurability of these images can be guaranteed outright. To show this, we first
consider null sets.

2In the following, we will deal almost exclusively with the Lebesgue measure and will omit
the qualifier “Lebesgue” if no confusion is to be feared.
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5.9 Theorem Suppose N ⊂ Rn has Lebesgue n-measure zero and f is an element
of C1-(N, Rm), where m ≥ n. (That is, f is locally Lipschitz continuous.) Then
f(N) has Lebesgue m-measure zero.

Proof (i) We first assume that f : N → Rm is (globally) Lipschitz continuous.
Then there is an L > 0 such that

|f(x)− f(y)|∞ ≤ L |x− y|∞ for x, y ∈ N . (5.4)

Suppose 0 < ε < Lm. Because N has measure zero, we can find by Proposition 3.4
a sequence (Ik) in J	(n) that covers N and satisfies

∑∞
k=0 λn(Ik) < ε/Lm. We can

take the edge lengths to be e rational. By subdivision, we can also assume without
losing generality that every Ik is a cube, of side length ak, say. By (5.4), then,
f(N ∩ Ik) is contained in a cube Jk ⊂ J(m) of side length Lak. The n-volume of
these cubes is

λm(Jk) = (Lak)m = Lmλn(Ik)m/n for k ∈ N .

Thus we find
f(N) =

⋃
k
f(N ∩ Ik) ⊂

⋃
k
Jk (5.5)

and
∞∑

k=0

λm(Jk) = Lm
∞∑

k=0

λn(Ik)m/n ≤ Lm
∞∑

k=0

λn(Ik) < ε , (5.6)

where the ≤ estimate relies on the assumption m ≥ n: we have

λn(Ik) ≤
∞∑

j=0

λn(Ij) < ε/Lm < 1 ,

hence λn(Ik)m/n ≤ λn(Ik). Since all this holds for every ε ∈ (0, Lm), we see from
(5.5) and (5.6) that f(N) has m-measure zero.

(ii) Now suppose f is only locally Lipschitz continuous. Every x ∈ N has an
open neighborhood Ux such that f | (N ∩Ux) is Lipschitz continuous. From Corol-
lary 1.9(ii) and Proposition 1.8, it follows that N is a Lindelöf space. Thus there
is a countable subcover {Vj ; j ∈ N } of the open cover {Ux ∩N ; x ∈ N } of N .
Because Lebesgue measure is complete, every Vj has n-measure zero. Therefore
part (i) implies that f(Vj) has m-measure zero, and the claim then follows from
the equality f(N) =

⋃
j f(Vj) via Remark 2.5(b). �

5.10 Corollary Suppose U is open in Rn and f ∈ C1(U, Rm) with m ≥ n. If
N ⊂ U has Lebesgue n-measure zero, then f(N) has Lebesgue m-measure zero.

Proof This follows from Theorem 5.9 and Remark VII.8.12(b). �
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5.11 Remarks (a) In the situation of Theorem 5.9, if we just ask that f : N → Rm

be continuous, the conclusion need not be true. Control over expansion is essential.

Proof For N := [0, 1]× {0} ⊂ R2, we have λ2(N) = 0. Denoting by γ the parametriza-
tion of the Peano curve of Exercise VIII.1.8, we have γ ∈ C(N, R2) and γ(N) = B2 but
λ2

(
γ(N)

)
> 2, because B2 contains a square of edge length

√
2 aligned with the axes. �

(b) Again in the situation of Theorem 5.9, the conclusion fails if instead of m ≥ n
we have m < n.

Proof For N := (0, 1) × {0} ⊂ R2 and f := pr1 ∈ C∞(N, R), we have λ2(N) = 0 and
λ1

(
f(N)

)
= λ1

(
(0, 1)

)
= 1. �

Since the continuous image of a σ-compact set is σ-compact, Theorem 5.9 and
the characterization of Lebesgue sets in Theorem 5.7 easily lead to an invariance
result for Lebesgue measurability:

5.12 Theorem Suppose A ∈ L(n) and let f ∈ C1-(A, Rm) be a locally Lipschitz
map from A into Rm, where m ≥ n. Then f(A) belongs to L(m).

Proof By Theorem 5.7, there is a σ-compact subset S of Rn and a set N of
Lebesgue n-measure zero such that A = S ∪N . Then f(S) is a σ-compact subset
of Rm. According to Theorem 5.9, f(N) has m-measure zero. By Theorem 5.7,
f(A) = f(S) ∪ f(N) thus belongs to L(m). �

5.13 Corollary Let U be open in Rn. Suppose that f ∈ C1(U, Rm) with m ≥ n
and A ∈ L(n) with A ⊂ U . Then f(A) belongs to L(m).

Proof This follows from Theorem 5.12 and Remark VII.8.12(b). �

5.14 Remarks (a) In the situation of Theorem 5.12, if we just ask that f : N → Rm

be continuous, the conclusion need not be true.

Proof Let C be the Cantor set of Exercise III.3.8. In Exercise 17 you will show the
existence of a homeomorphism g : [0, 1] → [0, 2] mapping C to a set of measure 1. Any
set of positive measure has a nonmeasurable subset, by Theorem 5.28; hence we can fix
a nonmeasurable B ⊂ C. But the inverse image A := g−1(B) is measurable, because λ1

is complete, A ⊂ C, and C has measure zero (Exercise 4.7). Now take f := g |A. �

(b) Again in the situation of Theorem 5.12, the conclusion fails if instead of m ≥ n
we have m < n.

Proof For V ∈ R\L(1) let A := V × {0}. Then Example 5.2 and the completeness
of the Lebesgue measure imply that A belongs to L(2). Also f := pr1 |A is Lipschitz
continuous, but f(A) = V is not λ1-measurable. �

(c) A subset A of Rn is Lebesgue measurable if and only if every x ∈ A has an
open neighborhood Ux in Rn such that A ∩ Ux is Lebesgue measurable. That is,
measurability is a local property.



IX.5 The Lebesgue measure 47

Proof The implication “=⇒” is clear. For the converse, choose for each x ∈ A an
open neighborhood Ux � x such that A∩Ux ∈ L(n). Then A ⊂ ⋃

x∈A Ux, and since A is
Lindelöf (Corollary 1.9(ii) and Proposition 1.8), there is a countable set {xj ∈ A ; j ∈ N }
such that the Uxj still cover A. Therefore A =

⋃
j(A ∩ Uxj ) belongs to L(n). �

The Lebesgue measure is translation invariant

We now turn to the task of checking that the Lebesgue measure of a set is inde-
pendent of its position in space. As a first step, we show that it is invariant under
translations. Given a vector a ∈ Rn, the translation by a is the map

τa : Rn → Rn , x �→ x + a . (5.7)

5.15 Remark By taking map composition as multiplication, T := { τa ; a ∈ Rn }
becomes a commutative group, the translation group of Rn. The map a �→ τa is
an isomorphism from the additive group (Rn, +) to the translation group T. �

5.16 Lemma The Borel and Lebesgue σ-algebras over Rn are translation invariant,
that is, τa(Bn) = Bn and τa

(
L(n)

)
= L(n) for a ∈ Rn.

Proof (i) For a ∈ Rn, the map τ−a is a continuous map of Rn to itself. Therefore
τ−a is Borel measurable according to Exercise 1.6. Thus

τa(B) = (τ−a)−1(B) ⊂ B . (5.8)

Replacing a by −a, we also get τ−a(B) ⊂ B. Using (5.8) we conclude that

B = τa ◦ τ−a(B) = τa

(
τ−a(B)

)
⊂ τa(B) ⊂ B , (5.9)

which proves that τa(B) = B.

(ii) Because τa is a smooth map of Rn onto itself, τa

(
L(n)

)
= L(n) for a ∈ Rn

by Theorem 5.12 and the group property. �

5.17 Theorem The Lebesgue and Borel–Lebesgue measures are translation in-
variant: For a ∈ Rn, we have λn = λn ◦ τa and βn = βn ◦ τa.

Proof Obviously J(n) and voln : J(n) → R are translation invariant. Therefore
the Lebesgue outer measure is also translation invariant, and the claim follows
from Lemma 5.16 and the definitions of λn and βn. �

Suppose O is open in Rn and nonempty. One easily checks that O − O is
a neighborhood of 0. The next theorem shows that this in fact holds for every
Lebesgue measurable set with positive measure. Intuitively this means that such
sets are never “too thin”. (Compare also Exercise 12.)



48 IX Elements of measure theory

5.18 Theorem (Steinhaus) For every A ∈ L(n) such that λn(A) > 0, the set
A−A is a neighborhood of 0.

Proof Suppose A ∈ L(n) with λn(A) > 0. By replacing A with A ∩ kBn for a
suitable k ∈ N×, we can assume that λn(A) < ∞.

The regularity of λn ensures the existence of a compact set K and an open
set O such that K ⊂ A ⊂ O and

0 < λn(K) < λn(O) < 2λn(K) . (5.10)

Because K ⊂ O is compact, we have δ := d(K, Oc) > 0; see Example III.3.9(c).
We claim that any x ∈ δBn lies in K − K (hence also in A − A, which is

what we need). For suppose to the contrary that K and x + K are disjoint, with
x ∈ δBn. Because λn is additive and translation invariant, this gives

λn

(
K ∪ (x + K)

)
= λn(K) + λn(x + K) = 2λn(K) . (5.11)

At the same time, x + K ⊂ O, by the definition of δ, and hence K ∪ (x + K) ⊂ O.
Thus (5.11) implies λn(O) ≥ 2λn(K), in conflict with (5.10). �

A characterization of Lebesgue measure

The next theorem shows in particular that Lebesgue measure is determined up to
normalization by translation invariance.

5.19 Theorem Let μ be a translation invariant locally finite measure on Bn or
L(n). Then μ = αnβn or μ = αnλn, respectively, where αn := μ

(
[0, 1)n

)
.

Proof (i) As a first step we will show

μ
(
[a, b)

)
= αn voln

(
[a, b)

)
for a, b ∈ Rn .

First assume n = 1 and set g(s) := μ
(
[0, s)

)
for s > 0. Then g : (0,∞) → (0,∞)

is increasing, and the translation invariance of μ implies, for s, t ∈ (0,∞),

g(s + t) = μ
(
[0, s + t)

)
= μ

(
[0, s) ∪ [s, s + t)

)
= μ

(
[0, s)

)
+ μ

(
[s, s + t)

)
= μ

(
[0, s)

)
+ μ

(
[0, t)

)
= g(s) + g(t) .

Exercise 5 then shows that g(s) = sg(1) for s > 0. Since s = vol1
(
[0, s)

)
and

α1 = μ
(
[0, 1)

)
, this implies

μ
(
[0, s)

)
= g(s) = sg(1) = vol1

(
[0, s)

)
α1 for s > 0 ,

and we find

μ
(
[α, β)

)
= μ

(
[0, β − α)

)
= α1 vol1

(
[0, β − α)

)
= α1 vol1

(
[α, β)

)
(5.12)

for α, β ∈ R.
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To treat the case n ≥ 2, we fix a′, b′ ∈ Rn−1 and set

μ1

(
[α, β)

)
:= μ

(
[α, β) × [a′, b′)

)
for α, β ∈ R .

Exercise 7 and (5.12) imply

μ1

(
[α, β)

)
= μ1

(
[0, 1)

)
vol1

(
[α, β)

)
for α, β ∈ R .

Take a = (a1, . . . , an) ∈ Rn, b = (b1, . . . , bn) ∈ Rn, and set a′ = (a2, . . . , an),
b′ = (b2, . . . , bn). Then

μ
(
[a, b)

)
= μ

(
[a1, b1)× [a′, b′)

)
= μ1

(
[a1, b1)

)
= vol1

(
[a1, b1)

)
μ1

(
[0, 1)

)
= vol1

(
[a1, b1)

)
μ
(
[0, 1)× [a′, b′)

)
.

A simple induction argument now gives

μ
(
[a, b)

)
= μ

(
[0, 1)n

) n∏
j=1

vol1
(
[aj , bj)

)
= αn voln

(
[a, b)

)
.

(ii) Suppose A ∈ Bn [or A ∈ L(n)] and let (Ik) be a sequence in J	(n) that
covers A. It follows from (i) that

μ(A) ≤
∑

k
μ(Ik) = αn

∑
k
λn(Ik) .

Therefore we get from Proposition 3.4 that

μ(A) ≤ αnλ∗
n(A) = αnλn(A) .

(iii) Now suppose B ∈ Bn [or B ∈ L(n)] is bounded. There exists I ∈ J	(n)
such that B ⊂ I ⊂ I. Because I is compact and μ is locally finite, Remark 5.3(a)
says that μ(B) < ∞. Moreover λn(B) < ∞ by Theorem 5.1(iv), so Proposition
2.3(ii) yields

μ(I\B) = μ(I)− μ(B) and λn(I\B) = λn(I)− λn(B) ,

and we find with (ii) that

μ(I)− μ(B) = μ(I\B) ≤ αnλn(I\B) = αnλn(I)− αnλn(B) .

From (i) we have μ(I) = αnλn(I), and the inequality μ(B) ≥ αnλn(B) follows.
Together with (ii), we therefore get μ(B) = αnλn(B) for every bounded B ∈ Bn

[or B ∈ L(n)].
(iv) Finally take an arbitrary A ∈ Bn [or A ∈ L(n)] and set Bj := A∩Bn(0, j)

for j ∈ N. The sequence (Bj) is increasing and covers A; moreover each Bj is a
bounded Borel [or Lebesgue] set in Rn. Applying (iii) and Proposition 2.3(iv), we
see that

μ(A) = lim
j

μ(Bj) = αn lim
j

λn(Bj) = αnλn(A) ,

which finishes the proof. �
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5.20 Remark In the theorem just proved we cannot relax the assumption that μ
is locally finite.
Proof Clearly the counting measure H0 on Borel or Lebesgue-measurable sets is trans-
lation invariant. However, it is not a multiple of either measure. �

The Lebesgue measure is invariant under rigid motions

Theorem 5.19 allows a comparison of n-dimensional Lebesgue and Hausdorff mea-
sures. For this we need a lemma:

5.21 Lemma The n-dimensional Hausdorff measure Hn on Rn is locally finite,
and satisfies Hn

(
[0, 1)n

)
> 0.

Proof (i) From Theorem 4.3 and Example 4.4(c), we know that every Borel set is
Hn-measurable. Suppose K ⊂ Rn is compact and take ε > 0. Choose a > 0 such
that K ⊂ [−a, a]n and m ∈ N such that m ≥ 2a

√
n
/
ε. Subdivide [−a, a]n into mn

subcubes Wj of length 2a/m. Then diam(Wj) = 2a
√

n
/
m ≤ ε, and therefore

mn∑
j=1

[
diam(Wj)

]n = (2a)nnn/2 .

Exercise 3.4 shows that Hn
∗ (K) ≤ Hn

∗
(
[−a, a]n

)
≤ (2a)nnn/2. Now we obtain from

Remark 5.3(b) that Hn is locally finite.
(ii) It remains to verify that Hn

(
[0, 1)n

)
> 0. Take ε > 0 and let (Uj) be

a sequence of open sets in Rn covering [0, 1)n and such that diam(Uj) < ε. For
each j ∈ N, there is Ij ∈ J(n) such that every edge length of Ij is bounded by
2 diam(Uj) and such that Uj ⊂ Ij . It follows that

1 = λn

(
[0, 1)n

)
≤

∑
j
voln(Ij) ≤ 2n

∑
j

[
diam(Uj)

]n
,

and hence 2−n ≤ Hn
ε

(
[0, 1)n

)
. This implies Hn

(
[0, 1)n

)
≥ 2−n > 0. �

5.22 Corollary The n-dimensional Hausdorff measure Hn on Rn is an extension
of αnλn with αn := Hn

(
[0, 1)n

)
; that is, every A ∈ L(n) is Hn-measurable, and

Hn(A) = αnλn(A).

Proof (i) Lemma 5.21, Exercise 3.4, and the Hn-measurability of Borel sets show
that Hn is a locally finite translation invariant measure on Bn. By Theorem 5.19,
then, Hn | Bn = αnβn.

(ii) Suppose N is a set of Lebesgue measure zero and ε > 0. Then there is
a sequence (Ij) in J(n) such that

∑
j voln(Ij) < ε and N ⊂ ⋃

j Ij . From (i), it
follows that

Hn
∗ (Ij) = Hn(Ij) = αnλn(Ij) ,
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and we find

Hn
∗ (N) ≤ Hn

∗

(⋃
j
Ij

)
≤

∑
j
Hn

∗ (Ij) = αn

∑
j
voln(Ij) < αnε .

Therefore N is Hn-null.
(iii) Suppose A ∈ L(n). According to Theorem 5.7, we can write A = S ∪N ,

where S ∈ Bn and N has Lebesgue measure zero. Therefore A is Hn-measurable.
And it follows from (i) and (ii) that

Hn(A) ≤ Hn(S) +Hn(N) = Hn(S) = αnλn(S) ≤ αnλn(A) ,

αnλn(A) = αnλn(S) = Hn(S) ≤ Hn(A) ,

which together show that Hn(A) = αnλn(A). �

5.23 Corollary The Lebesgue and Borel–Lebesgue measures are invariants of
motion, that is, they are preserved under isometries. In symbols, any isometry ϕ
of Rn satisfies λn = λn ◦ ϕ and βn = βn ◦ ϕ.

Proof Let ϕ be an isometry of Rn and take A ∈ L(n) [or A ∈ Bn]. Since
ϕ and ϕ−1 are Lipschitz continuous by Conclusion VI.2.4(b), we obtain from
Theorem 5.12 [or Exercise 1.6(b)] that ϕ(A) ∈ L(n) [or ϕ(A) ∈ Bn]. Next, Hn

∗
is invariant under isometries, by Exercise 3.4(c); hence Lemma 5.21 and Corol-
lary 5.22 show that

αnλn

(
ϕ(A)

)
= Hn

(
ϕ(A)

)
= Hn(A) = αnλn(A) . �

5.24 Remarks (a) Though Corollary 5.22 talks of an extension, in fact the domains
of Hn and λn coincide. Moreover the proportionality constant αn = Hn

(
[0, 1)n

)
equals 2n/ωn, where ωn = πn/2

/
Γ
(
(n/2) + 1

)
. For proofs of these statements, see

[Rog70, Theorem 30 and subsequent remark].

(b) There are true extensions of the Lebesgue measure on Rn that are invariant
under isometries; see [Els99]. �

The substitution rule for linear maps

Let ϕ be an isometry of Rn with ϕ(0) = 0. Exercises VII.9.1 and VII.9.2 show that
ϕ is an automorphism and |detϕ| = 1. Therefore it follows from Corollary 5.23
that

λn

(
ϕ(A)

)
= |detϕ| λn(A) for A ∈ L(n) .

Our goal now is to extend this formula from isometries to arbitrary linear maps
T ∈ L(Rn). In the next chapter, we will obtain an even more far-reaching gen-
eralization, in which ϕ is replaced by a C1 diffeomorphism and λn is replaced by
the Lebesgue integral.
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5.25 Theorem Suppose T ∈ L(Rn) is a linear map. Then

λn

(
T (A)

)
= |detT |λn(A) for A ∈ L(n) . (5.13)

Proof We know that T is Lipschitz continuous; see Conclusion VI.2.4(b). Hence,
by Theorem 5.12, T (A) is Lebesgue measurable for every A ∈ L(n).

(i) If T is not an automorphism of Rn, then detT = 0 and T (A) lies in an
(n−1)-dimensional hyperplane of Rn. Since λn is an invariant of motion, we can
assume that T (A) lies in a coordinate hyperplane. Then Example 5.2 shows that
T (A) has Lebesgue n-measure zero, proving (5.13) in this case.

(ii) Suppose instead that T ∈ Laut(Rn), and define μ(A) := λn

(
T (A)

)
for

A ∈ L(n). It is not hard to verify that μ is a locally finite translation invariant
measure on L(n). Theorem 5.19 then says that μ = μ

(
[0, 1)n

)
λn; this will imply

(5.13) if we show that
λn

(
T

(
[0, 1)n

))
= |detT | . (5.14)

(iii) Let the ordered n-tuple [Te1, . . . , T en] be a permutation of the standard
basis [e1, . . . , en] of Rn. Then T

(
[0, 1)n

)
= [0, 1)n and |detT | = 1. Therefore

(5.14) holds and therefore so does (5.13).

(iv) Let α ∈ R× and define T by

Tej =
{

αe1 , j = 1 ,

ej , j ∈ {2, . . . , n} .

Then |detT | = |α| and

T
(
[0, 1)n

)
=

{
[0, α)× [0, 1)n−1 , α > 0 ,

(α, 0]× [0, 1)n−1 , α < 0 .

Again (5.14), and consequently (5.13), are satisfied.

(v) Finally suppose n ≥ 2 and set

Tej =
{

e1 + e2 , j = 1 ,

ej , j ∈ {2, . . . , n} .

Then detT = 1, and

T
(
[0, 1)n

)
=

{
(y1, . . . , yn) ∈ Rn ; 0 ≤ y1 ≤ y2 < y1 + 1, yj ∈ [0, 1) for j 
= 2

}
.

Setting B1 :=
{

y ∈ T
(
[0, 1)n

)
; y2 < 1

}
and B2 := T

(
[0, 1)n

) ∖
B1, we see that

B1 ∪ (B2 − e2) = [0, 1)n and B1 ∩ (B2 − e2) = ∅.
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The translation invariance of λn then yields

λn

(
T

(
[0, 1)n

))
= λn(B1 ∪B2) = λn(B1) + λn(B2)

= λn(B1) + λn(B2 − e2) = λn

(
B1 ∪ (B2 − e2)

)
= λn

(
[0, 1)n

)
.

Once more (5.14) and hence (5.13) hold.
(vi) Now consider an arbitrary automorphism T of Rn. The normal form

theorem of linear algebra (see § 2.6 in [Koe83]) says that T can be written as a
composition T = T1 ◦· · ·◦Tk of maps T1, . . . , Tk ∈ Laut(Rn), each having the form
of one of the linear maps treated in (iii)–(v). Therefore

λn

(
T (A)

)
= λn

(
(T1 ◦ T2 ◦ · · · ◦ Tk)(A)

)
= |detT1|λn

(
(T2 ◦ · · · ◦ Tk)(A)

)
= · · ·

= |detT1| · · · · · |detTk|λn(A) = |detT |λn(A)

for A ∈ L(n). �

5.26 Remarks (a) Suppose [t1, . . . , tn] ∈ Rn×n are the columns of the matrix [T ]
representation T ∈ L(Rn) with respect to the canonical basis. Then

T
(
[0, 1)n

)
= { x1t1 + · · ·+ xntn ; 0 ≤ xj < 1, 1 ≤ j ≤ n } = P (t1, . . . , tn)

is the parallelepiped formed by the vectors t1, . . . , tn. Theorem 5.25 says that
|detT | is the volume, or Lebesgue n-measure, of the parallelepiped P (t1, . . . , tn).

(b) For r ≥ 0, we have
λn(rBn) = rnλn(Bn) .

Proof Letting T := r1n, we have det T = rn and T (Bn) = rBn. The conclusion follows
from Theorem 5.25. �

Sets without Lebesgue measure

We now turn to the question of whether the σ-algebra L(n) coincides with the
power set of Rn or whether there are sets that are not Lebesgue measurable. To
answer this, we must resort to the axiom of choice (see Remarks I.6.10 and 5.31(d)).
In this connection, Steinhaus’s theorem (Theorem 5.18) will prove very useful.
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We consider first the quotient group Rn/Qn of the Abelian group (Rn, +)
modulo the subgroup (Qn, +). By the axiom of choice, we can choose a repre-
sentative from every coset [x], and together these representatives form a subset
R of Rn. More precisely, the axiom of choice ensures the existence of a map
ϕ : Rn/Qn → Rn such that ϕ

(
[x]

)
∈ [x]. We set

R := im(ϕ) =
{

x ∈ Rn ; ∃ [u] ∈ Rn/Qn with x = ϕ
(
[u]

)}
. (5.15)

5.27 Remarks (a) Suppose x, y ∈ R satisfy x− y ∈ Qn. Then x = y.
Proof For x ∈ R and [u] as in (5.15) we have x = ϕ([u]) ∈ [u], so [u] = [x], so x = ϕ([x]).
Similarly, y = ϕ([y]). But x− y ∈ Qn implies [x] = [y], hence x = ϕ([x]) = ϕ([y]) = y. �

(b) For every B ⊂ R, we have (B −B) ∩ Qn = {0}.
Proof This follows from (a). �

5.28 Theorem For every A ∈ L(n) with λn(A) > 0, there is a B ⊂ A such that
B /∈ L(n).

Proof Fix A ∈ L(n) with λn(A) > 0, and define B :=
{

b ∈ R ; [b] ∩ A 
= ∅
}
.

By demanding in the construction of R that b ∈ R lie in A whenever [b] ∩A 
= ∅,
we ensure that B is a subset of A. Suppose B is Lebesgue-measurable; then
it has measure zero, for otherwise Theorem 5.18 would imply that B − B is a
neighborhood of 0 in Rn, contradicting Remark 5.27(b). Because λn is translation
invariant, every set B + r with r ∈ Qn also has measure zero.

Now consider a ∈ A and take b := ϕ
(
[a]

)
∈ R. Then b ∈ [a], hence a ∈ [b].

Therefore a ∈ [b] ∩A, that is, b ∈ B and

A ⊂
⋃
b∈B

[b] =
⋃

r∈Qn

(B + r) .

The completeness of λn implies that A also has measure zero, in contradiction to
our assumption. �

5.29 Corollary The Borel–Lebesgue measure space (Rn,Bn, βn) is not complete.

Proof (i) We consider first the case n = 1. Let C be Cantor set and f : [0, 1]→
[0, 1] the Cantor function of Exercise III.3.8. Being compact, C is a Borel set, and
Exercise 4.7 tells us that it has measure zero. Exercise 17 below shows that the
map g : [0, 1]→ [0, 2] given by g(x) = x+f(x) is a homeomorphism and that g(C)
has measure 1. By Theorem 5.28, g(C) contains a set B that is not even Lebesgue
measurable. We claim that N1 := g−1(B) ⊂ C is not Borel measurable. Indeed,
since g is a homeomorphism, g−1 is a Borel measurable map, and we have

B = g(N1) = (g−1)−1(N1) .

If N1 were Borel measurable, B would be as well, contrary to assumption.
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(ii) In the case n ≥ 2, let A := C × Rn−1 and Nn := N1 × Rn−1. Then
Corollary 1.18 and Exercise 1 show that A has Borel n-measure zero. If we were
to assume that Nn ∈ Bn, it would follow, by Corollary 1.18 and Proposition 1.19,
that N1 belongs to B1, in conflict with (i). This finishes the proof. �

5.30 Corollary The Borel σ-algebra is a proper σ-subalgebra of the Lebesgue
σ-algebra.

Proof Let A and Nn be as in the proof of Corollary 5.29. Then λn(A) = 0 and
the completeness of λn implies Nn belongs to L(n), that is, Nn ∈ L(n)\Bn. �

5.31 Remarks (a) Suppose (X,≤) is an ordered set. A nonempty subset Y of
X is said to be totally ordered if any two elements from Y are comparable to one
another, that is, if (x, y) ∈ Y × Y always implies (x ≤ y) ∨ (y ≤ x). An element
m of X is maximal if x ≥ m implies x ≤ m, that is, if X has no element strictly
larger than3 m. Zorn’s lemma reads: If X is an ordered set and every totally
ordered subset of X has an upper bound, then X has a maximal element. One
can show (see Theorem II.2.1 in [Dug66]) that Zorn’s lemma is equivalent to the
axiom of choice.

(b) Suppose V is a nontrivial vector space over a field. Then V has a basis.

Proof For a proof (using Zorn’s lemma), we refer to Proposition (1.10) in the appendix
of [Art93]. �

(c) Suppose B ⊂ R is a basis of the vector space R over Q. Take b0 ∈ B, and let
M := span

(
B\{b0}

)
. Then M is not Lebesgue measurable.

Proof Assume that M belongs to L(1). Then λ1(M) > 0, because otherwise it would
follow from the translation invariance of λ1 that M + rb0 is a λ1-null set for every r ∈ Q.
However, because ⋃

r∈Q

(M + rb0) = span(B) = R ,

this is not possible. Thus Theorem 5.18 shows that M−M is a neighborhood of 0 in R; in
particular, there exists r0 ∈ Q such that r0 	= 0 and r0b0 ∈M−M . Because M = M−M ,
there are k ∈ N×, rj ∈ Q, and bj ∈ B for j = 1, . . . , k such that r0b0 =

∑k
j=1 rjbj , which

contradicts the linear independence of B over Q. �

(d) In the proof of Theorem 5.28, we have explicitly used the axiom of choice. The
proof of (c), too, rests on the axiom of choice; see (a) and (b). In fact, one can
show (see [BS79], [Sol70]) that it is not possible in principle to specify a set that
is not Lebesgue measurable if one works in an axiomatic set theory not containing
the axiom of choice. �

3Note that a set can generally have multiple maximal elements.
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Exercises

1 Show that

L(m) � L(n) ⊂ L(m + n) and λm(A)λn(B) = λm+n(A×B)

for A×B ∈ L(m) � L(n).
(Hint: Consider first the case of open sets A in Rm and B in Rn and use Proposition 5.6
and Theorem II.8.10. For A×B ∈ L(m) � L(n), note Corollary 5.5.)

2 Show that Bm⊗Bn ⊂ L(m)⊗L(n) ⊂ L(m+n) and that these inclusions are proper.

3 Suppose M is an m-dimensional C1 submanifold of Rn. Prove that M has Lebesgue
n-measure zero if m < n.

4 Verify that for A ∈ L(n), we have

λn(A) = sup
{

λn(B) ; B ⊂ Rn is closed and B ⊂ A
}

.

5 Suppose g : (0,∞)→ R satisfies g(s + t) = g(s) + g(t) for s, t ∈ (0,∞). Prove that if
g is increasing or bounded on bounded sets, then g(s) = sg(1) for s > 0.

6 Let

S :=
{

g ∈ RR ; g(s + t) = g(s) + g(t), s, t ∈ R, ∃ s0 ∈ R : g(s0) 	= s0g(1)
}

.

Prove:

(a) For every g ∈ S, the graph of g is dense in R2;

(b) S 	= ∅.
(Hint for (b): Define g using a basis of the Q-vector space R.)

7 For n ≥ 2, let μ be a translation invariant locally finite measure on Bn [or L(n)]. If
A ∈ B1 [or A ∈ L(1)] and a′, b′ ∈ Rn−1, let

μ1(A) := μ
(
A× [a′, b′)

)
.

Show that μ1 is a translation invariant locally finite measure on B1 [or L(1)].

8 Let B be a basis of the Q-vector space R. Prove or disprove that B is finite.

9 Define M := { log p ; p ∈ N is prime }. Prove:

(a) M is linearly independent over Q.

(b) M is not a basis of R.

10 If B is a Lebesgue measurable basis of R over Q, then B has Lebesgue measure zero.

11 Verify that the Cantor set C satisfies C + C = [0, 2].

12 Show there is a set A of Lebesgue measure zero such that A− A is a neighborhood
of 0.4

4Compare Theorem 5.18.
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13 Show that there is a Lebesgue measurable basis of the Q-vector space R.
(Hint: Let C be the Cantor set, and define

A := {M ⊂ C ; M is linearly independent over Q } .

Then A has a maximal element B, which spans R in view of Exercise 11.)

14 Suppose R is as in (5.15). Verify that R does not belong to L(n).

15 Set G := Q +
√

2 Z, G1 := Q + 2
√

2 Z and G2 := G\G1. Prove:

(a) G and G1 are subgroups of the Abelian group (R, +).

(b) Take ϕ : R/G → R such that ϕ
(
[x]

)
∈ [x], and let R := im(ϕ). Set A := R + G1.

Then (A− A) ∩G2 = ∅.

16 Prove that there is a subset A of R such that every Lebesgue measurable set contained
in either A or Ac has measure zero.
(Hint: Show with the help of Theorem 5.18 that the set A of Exercise 15 has the desired
properties.)

17 Let f : [0, 1]→ [0, 1] be the Cantor function of Exercise III.3.8. Prove:

(a) There is a set N ⊂ [0, 1] of measure zero such that f is differentiable at every point
of [0, 1]\N , with derivative zero.

(b) The map g : [0, 1]→ [0, 2], x �→ x + f(x) is a homeomorphism.

(c) λ1

(
g(C)

)
= 1.

18 Verify:

(a) Every finite-dimensional normed vector space is locally compact.

(b) Any open subset and any closed subset of a locally compact space is locally compact.

(c) A locally compact space is σ-compact if and only if it is separable.

(d) Any open subset and any closed subset of a σ-compact locally compact metric space
is is σ-compact.

19 Suppose F : R→ R is measure-generating. Then the Lebesgue–Stieltjes measure on
R induced by F is regular.

20 Suppose X is a metric space. Check that

B(X) = Aσ

({
f−1(0) ; f ∈ C(X, R)

})
.

(There exist nonmetrizable topological spaces for which B(X) is strictly bigger than
Aσ

({
f−1(0) ; f ∈ C(X, R)

})
; see [Flo81, 11.1.2].)

21 Suppose X is a topological space, and denote by (X,A, μ) a regular measure space

with A ⊃ B(X). Further let A ∈ A, C := A |A, and ν := μ | C. Verify that (A, C, ν) is

regular.



Chapter X

Integration theory

Having made acquaintance in the last chapter with the fundamentals of measure
theory, we will now turn to the theory of integration. In the first part of the
chapter we study integrals over general measure spaces, while in the second half
we take advantage of the special properties of the Lebesgue measure.

Integration with respect to arbitrary measures is not only important in many
applications, but it will also be essential in the last chapter, when the underlying
set is not “flat” but rather a manifold. This is why even an introductory text such
as ours must deal with the subject.

In Section 1, we introduce μ-measurable functions and investigate their basic
properties. A position of keen interest in analysis is held by natural measures with
respect to which every continuous function is measurable. An example is the class
of Radon measures, which we introduce in this section and which we will encounter
again in Chapter XII.

In analysis, and not only there, it will be increasingly important to be able to
deal with vector-valued functions, that is, maps with values in a Banach space. We
have already worked along these lines in the first two volumes, and you will have
noticed that the resulting exposition gains not only in elegance but, in many cases,
also in simplicity. The same situation obtains regarding integration theory. Hence
we have resolved from the outset to develop the theory in terms of vector-valued
functions, and we therefore treat the Bochner–Lebesgue integral. This is possible
with no significant extra effort. One of the few exceptions is the proof that a
vector-valued function is μ-measurable if and only if it is measurable in the usual
sense and is μ-almost separable valued. Of course, you could ignore this result and
consider only scalar-valued functions. But this is not recommended, as it would
cause you to miss out on an important and efficient addition to your toolkit.

Besides vector-valued maps, we will investigate in some detail functions with
values in the extended number line [0,∞]. This is primarily for technical reasons;
in later sections it will save us from having to always single out special cases.
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In Section 2, we introduce the general Bochner–Lebesgue integral, and do
so via the L1-completion of the space of simple functions. This approach not
only extends essentially unchanged to vector-valued functions, but also lays the
foundation for the proof of Lebesgue’s convergence theorem. We treat the latter,
as well as other important convergence theorems, in Section 3.

Section 4 is devoted to the elementary theory of Lebesgue spaces. We prove
their completeness and show that they become Banach spaces if we identify func-
tions that agree almost everywhere. Because this identification is in our experience
a source of difficulties for beginners, we make a meticulous distinction throughout
the chapter between equivalence classes of functions and their respective represen-
tatives.

Although up to this point, we have considered integrals with respect to an
arbitrary measure, we treat in Section 5 the special case of Lebesgue measure in Rn.
We show that the one-dimensional Lebesgue integral is an extension of the Cauchy–
Riemann integral for absolutely integrable functions. This puts us in the position
to bring what we learned about integrals in Volume II into the framework of the
general theory. This is of particular significance in the context of Fubini’s theorem,
which gives a reduction procedure for evaluating higher-dimensional integrals.

Section 6 treats Fubini’s theorem. We have decided not to prove it for ar-
bitrary product measure spaces, but rather only for the Lebesgue measure space.
This simplifies the presentation considerably and is in practice sufficient for all the
needs of analysis— once strengthened by a extension to product manifolds, to be
treated in Chapter XII.

The proof of Fubini’s theorem in the vector-valued case requires delicate mea-
surability arguments. For this reason, we study first the scalar case. We prove the
vector-valued version at the end of Section 6 and exhibit some important applica-
tions. On first reading, this part may be skipped, because its results are not used
in any essential way afterward, and also because the reader will probably become
acquainted at some later point with the Hahn–Banach theorem of functional anal-
ysis: with its help Fubini’s theorem for vector-valued functions is easily deduced
from the scalar version.

Section 7 studies the convolution. This operation allows us to prove with
extraordinary efficiency some fundamental approximation theorems, such as the
theorem on smooth partitions of unity, which plays in important role in the final
chapter. In the second half of the section we address the significance of the con-
volution and the approximation theorems in analysis and mathematical physics,
offering a first glimpse of the very important generalization of the classical differ-
ential calculus known as the theory of distributions.

Besides the convergence theorems of Lebesgue and Fubini, the transformation
theorem forms the third pillar of the entire integral calculus. It will be proved in
Section 8, where we also discuss its more basic applications.
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In the last section, we illustrate the power of the theory just developed by
proving several basic facts about the Fourier transform. Like the second half of
Section 7, this part affords a look at a related area of analysis which you may later
encounter in more advanced studies.



1 Measurable functions

Suppose (X,A, μ) is a measure space and A ∈ A. An analogy with elementary
geometrical constructions leads one to define the integral over X of the character-
istic function χA with respect to the measure μ as

∫
X

χA dμ := μ(A). Obviously
this only makes sense if A belongs to A. The function f = χA must therefore be
“compatible” in this sense with the underlying measure space (A, μ). For more
complicated functions, a suitable approximation argument makes it possible to
generalize this notion of compatibility between functions and measures, leading to
the concept of the measurability of functions.

In this section denote by
• (X,A, μ) a complete, σ-finite measure space;

E = (E, | · |) a Banach space.

Simple functions and measurable functions

Suppose E is a property that is either true or false of each point in X . We say
that E holds μ-almost everywhere, or for μ-almost every x ∈ X , if there exists a
μ-null set N such that E(x) is true for every x ∈ N c. “Almost every” and “almost
everywhere” are both abbreviated “a.e.”

1.1 Examples (a) For f, g ∈ RX , we write “f ≥ g μ-a.e.” if there is a μ-null set
N such that f(x) ≥ g(x) for every x ∈ N c.

(b) Suppose fj, f ∈ EX for j ∈ N. Then (fj) converges to f μ-a.e. if and only if
there is a μ-null set N such that fj(x) → f(x) for x ∈ N c.

(c) A function f ∈ EX is bounded μ-a.e. if and only if there is a μ-null set N and
an M ≥ 0 such that |f(x)| ≤M for every x ∈ N c.

(d) If E holds μ-a.e., the set
{

x ∈ X ; E(x) is not true
}

is μ-null.
Proof This follows from the completeness of (X,A, μ). �

(e) Suppose (X,B, ν) is an incomplete measure space. Then there is a property
E of X that holds ν-almost everywhere for which

{
x ∈ X ; E(x) is not true

}
is

however not a ν-null set.
Proof Because (X,B, ν) is not complete, there is a ν-null set N and an M ⊂ N such
that M /∈ B. If f := χM , then f = 0 ν-almost everywhere, but

{
x ∈ X ; f(x) 	= 0

}
= M

is not a ν-null set. �

We say f ∈ EX is μ-simple1 if f(X) is finite, f−1(e) ∈ A for every e ∈ E, and
μ
(
f−1(E\{0})

)
< ∞. We denote by S(X, μ, E) the set of all μ-simple functions

1If the identity of the measure space is clear, we call functions simple instead of μ-simple;
similarly in the case of μ-measurable functions, about to be introduced.
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from X to E.2

A function f ∈ EX is said to be μ-measurable if there is a sequence (fj) in
S(X, μ, E) such that fj → f μ-almost everywhere as j →∞. We set3

L0(X, μ, E) := { f ∈ EX ; f is μ-measurable} .

1.2 Remarks (a) We have the inclusions of vector subspaces

S(X, μ, E) ⊂ L0(X, μ, E) ⊂ EX .

(b) For j = 0, . . . , m, where m ∈ N, consider ej ∈ E and Aj ∈ A such that
μ(Aj) < ∞. Then f :=

∑m
j=0 ejχAj belongs to S(X, μ, E). We call this the

normal form of f if
ej 
= 0 for j = 0, . . . , m ,

ej 
= ek for j 
= k ,

Aj ∩Ak = ∅ for j 
= k .

(c) Every simple function has a unique normal form, and4

S(X, μ, E) =
{ ∑m

j=1
ejχAj ; m ∈ N, ej ∈ E\{0}, Aj ∈ A,

μ(Aj) < ∞, Aj ∩Ak = ∅ for j 
= k
}

.

Proof Suppose f ∈ S(X,μ, E). Then there is an m ∈ N and pairwise distinct elements
e0, . . . , em in E such that f(X)\{0} = {e0, . . . , em}. Setting Aj := f−1(ej), we have
Aj ∈ A such that μ(Aj) <∞ and Aj ∩Ak = ∅ for j 	= k. One checks easily that

m∑
j=0

ejχAj

is the unique normal form of f . The second part now follows from (b). �

(d) Suppose f ∈ EX and g ∈ KX are μ-simple [or μ-measurable]. Then |f | ∈ RX

and gf ∈ EX are also μ-simple [or μ-measurable]. In particular, S(X, μ, K) and
L0(X, μ, K) are subalgebras of KX .

(e) For A ∈ A and f ∈ EX , form the restriction ν := μ
∣∣ (A |A) (see Exercise

IX.1.7). Then

f |A ∈ S(A, ν, E) ⇐⇒ χAf ∈ S(X, μ, E) ,

f |A ∈ L0(A, ν, E) ⇐⇒ χAf ∈ L0(X, μ, E) .

Proof The simple verification is left to the reader. �

2We called the space of jump continuous functions S(I, E), but this will cause no confusion.
3Clearly the definition of measurability of functions is meaningful even on incomplete measure

spaces.
4Compare the footnote to Exercise VI.6.8.
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(f) Suppose f ∈ L0(X, μ, K) and A := [f 
= 0]. Also define g ∈ KX through

g(x) :=
{

1/f(x) if x ∈ A ,

0 if x /∈ A .

Then g is μ-measurable.
Proof The measurability of f implies the existence of a μ-null set N and a sequence
(ϕj) in S(X,μ, K) such that ϕj(x)→ f(x) for x ∈ Nc. We set

ψj(x) :=

{
1/ϕj(x) if ϕj(x) 	= 0 ,

0 if ϕj(x) = 0 ,

for x ∈ X and j ∈ N. By (c) and (d), (χAψj) is a sequence in S(X,μ, K), and one verifies
easily that (χAψj)(x)→ g(x) for every x ∈ Nc (see Proposition II.2.6). �

(g) Let e ∈ E\{0}, and suppose μ(X) = ∞. Then eχX belongs to L0(X, μ, E)
but not to S(X, μ, E).
Proof It is clear that eχX is not μ-simple. Since X is σ-finite, there is a sequence (Aj)
in A such that

⋃
j Aj = X and μ(Aj) <∞ for j ∈ N. For j ∈ N, set Xj :=

⋃j
k=0 Ak and

ϕj := eχXj . Then (ϕj) is a sequence in S(X,μ, E) that converges pointwise to eχX . �

A measurability criterion

A function f ∈ EX is said to be A-measurable if the inverse images of open sets of
E under f are measurable, that is, if f−1(TE) ⊂ A, where TE is the norm topology
on E. If there is a μ-null set N such that f(N c) is separable, we say f is μ-almost
separable valued.

1.3 Remarks (a) Exercise IX.1.6 shows that the set of A-measurable functions
coincides with the set of A-B(E)-measurable functions.

(b) Every subspace of a separable metric space is separable.
Proof By Proposition IX.1.8, separability amounts to having a countable basis. But by
restriction, a basis of a topological space yields a basis (of no greater cardinality) for any
given subspace; see Proposition III.2.26. �

(c) Suppose E is separable and f ∈ EX . Then f is μ-almost separable valued.
Proof This follows from (b). �

(d) Every finite-dimensional normed vector space is separable.5 �

The next result gives a characterization of μ-measurable functions, which,
besides being of theoretical significance, is very useful in practice for determining
measurability.

5Compare Example V.4.3(e).
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1.4 Theorem A function in EX is μ-measurable if and only if it is A-measurable
and μ-almost separable valued.

Proof “=⇒” Suppose f ∈ L0(X, μ, E).
(i) There exist a μ-null set N and a sequence (ϕj) in S(X, μ, E) such that

ϕj(x) → f(x) (j →∞) for x ∈ N c . (1.1)

By Proposition I.6.8, F :=
⋃∞

j=0 ϕj(X) is countable and therefore the closure F is
separable. Because of (1.1) we have f(N c) ⊂ F . Remark 1.3(b) now shows that
f is μ-almost separable valued.

(ii) Let O be open in E and define On :=
{

y ∈ O ; dist(y, Oc) > 1/n
}

for
n ∈ N×. Then On is open and On ⊂ O. Also let x ∈ N c. By (1.1), f(x) belongs
to O if and only if there exist n ∈ N× and m = m(n) ∈ N× such that ϕj(x) ∈ On

for j ≥ m. Therefore

f−1(O) ∩N c =
⋃

m,n∈N×

⋂
j≥m

ϕ−1
j (On) ∩N c . (1.2)

But ϕ−1
j (On) ∈ A for n ∈ N× and j ∈ N, because ϕj is μ-simple. Hence (1.2) says

that f−1(O) ∩N c ∈ A.
Furthermore, the completeness of μ shows that f−1(O) ∩ N is a μ-null set,

and altogether we obtain

f−1(O) =
(
f−1(O) ∩N

)
∪

(
f−1(O) ∩N c

)
∈ A .

“⇐=” Suppose f is μ-almost separable valued and A-measurable.
(iii) We consider first the case μ(X) < ∞. Take n ∈ N. By assumption, there

is a μ-null set N such that f(N c) is separable. If { ej ; j ∈ N } is a countable
dense subset of f(N c), the collection

{
B
(
ej , 1

/
(n + 1)

)
; j ∈ N

}
covers the set

f(N c), and thus
X = N ∪

⋃
j∈N

f−1
(
B
(
ej , 1

/
(n + 1)

))
.

Since f is A-measurable, Xj,n := f−1
(
B
(
ej , 1/(n + 1)

))
belongs to A for every

(j, n) ∈ N2. The continuity of μ from below and the assumption μ(X) < ∞ then
imply that there are mn ∈ N× and Yn ∈ A such that

mn⋃
j=0

Xj,n = Y c
n and μ(Yn) <

1
2n+1

.

Now define ϕn ∈ EX through

ϕn(x) :=

⎧⎪⎨⎪⎩
e0 if x ∈ X0,n ,

ej if x ∈ Xj,n\
⋃j−1

k=0 Xk,n for 1 ≤ j ≤ mn ,

0 otherwise .



66 X Integration theory

Obviously ϕn ∈ S(X, μ, E) for n ∈ N, and

|ϕn(x)− f(x)| < 1/(n + 1) for x ∈ Y c
n .

The decreasing sequence Zn :=
⋃∞

k=0 Yn+k satisfies

μ(Zn) ≤
∞∑

k=0

μ(Yn+k) ≤ 1
2n

for n ∈ N .

It therefore follows from the continuity of μ from above that Z :=
⋂

n∈N Zn is
μ-null. We now set

ψn(x) :=
{

ϕn(x) if x ∈ Zc
n ,

0 if x ∈ Zn .

Then (ψn) is a sequence in S(X, μ, E). Also there is for every x ∈ Zc =
⋃

n Zc
n an

m ∈ N such that x ∈ Zc
m. Since Zc

m ⊂ Zc
n for n ≥ m, it follows that

|ψn(x)− f(x)| = |ϕn(x) − f(x)| < 1/(n + 1) .

Altogether, lim ψn(x) = f(x) for every x ∈ Zc. Therefore f is μ-measurable.
(iv) Finally, we consider the case μ(X) = ∞. Remark IX.2.4(c) shows there

is a disjoint sequence (Xj) in A such that
⋃

j Xj = X and μ(Xj) < ∞. By part
(iii), there exist for each j ∈ N a sequence (ϕj,k)k∈N in S(X, μ, E) and a μ-null
set Nj such that limk ϕj,k(x) = f(x) for every x ∈ Xj∩N c

j . With N :=
⋃

j Nj and

ϕk(x) :=

{
ϕj,k(x) if x ∈ Xj , j ∈ {0, . . . , k} ,

0 if x /∈ ⋃k
j=0 Xj

for k ∈ N, we have ϕk ∈ S(X, μ, E) and limk ϕk(x) = f(x) for x ∈ N c. The result
follows because N is μ-null. �

1.5 Corollary Suppose E is separable and f ∈ EX . The following statements are
equivalent:

(i) f is μ-measurable.

(ii) f is A-measurable.

(iii) f−1(S) ⊂ A for some S ⊂ P(E) such that Aσ(S) = B(E).
(iv) f−1(S) ⊂ A for any S ⊂ P(E) such that Aσ(S) = B(E).

Proof This follows from Theorem 1.4, Remark 1.3(c), and Exercise IX.1.6. �

1.6 Remark The proof of Theorem 1.4 and Remark 1.3(c) show that Corollary 1.5
remains true for incomplete measure spaces. �

Without much effort, we obtain from Corollary 1.5 the following properties
of μ-measurable functions.
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1.7 Theorem

(i) If E and F are separable Banach spaces and if we have maps f ∈ L0(X, μ, E)
and g ∈ C

(
f(X), F

)
, then g ◦ f belongs to L0(X, μ, F ). In particular, |f | ∈

L0(X, μ, R).

(ii) A map f = (f1, . . . , fn) : X → Kn is μ-measurable if and only if each of its
components fj is.

(iii) Let g, h ∈ RX . Then f = g + ih is μ-measurable if and only if g and h are.

(iv) If f ∈ L0(X, μ, E) and g ∈ L0(X, μ, F ), then (f, g) ∈ L0(X, μ, E × F ).

Proof (i) Let O be open in F . Since g is continuous, g−1(O) is open in f(X). By
Proposition III.2.26, there is an open subset U of E such that g−1(O) = f(X)∩U .
Since f is Lebesgue measurable, f−1(U) belongs to A by Corollary 1.5. Because

(g ◦ f)−1(O) = f−1
(
g−1(O)

)
= f−1

(
f(X) ∩ U

)
= f−1(U) ,

the claim follows from another application of Corollary 1.5.

(ii) The implication “=⇒” follows from (i), because fj = prj ◦f for 1 ≤ j ≤ n.

“⇐=” We consider first the case K = R. Take I ∈ J(n), and write it as
I =

∏n
j=1 Ij , where Ij ∈ J(1) for 1 ≤ j ≤ n. Because each f−1

j (Ij) belongs to A,
so does f−1(I) =

⋂n
j=1 f−1

j (Ij), that is, we have f−1
(
J(n)

)
⊂ A. Also, we know

from Theorem IX.1.11 that Aσ

(
J(n)

)
= Bn. Therefore Corollary 1.5 implies that

f is μ-measurable.

Using the identification Cn = R2n, the case K = C follows immediately from
what was just shown.

(iii) is a special case of (ii), and we leave (iv) as an exercise. �

Measurable R-valued functions

In the theory of integration, it is useful to consider not only real-valued functions
but also maps into the extended number line R. Such maps are called R-valued
functions. An R-valued function f : X → R is said to be μ-measurable if A
contains f−1(−∞), f−1(∞), and f−1(O) for every open subset O of R. We
denote the set of all μ-measurable R-valued functions on X by L0(X, μ, R).

1.8 Remarks (a) Any real-valued function f : X → R can be regarded as an
R-valued one. Thus there are in principle two notions of measurability that apply
to f . But since f−1

(
{−∞,∞}

)
= ∅, Corollary 1.5 implies that f is μ-measurable

as a real-valued function if and only if it is μ-measurable as an R-valued function.

(b) Note that L0(X, μ, R) is not a vector space. �

In the next result, we list simple measurability criteria for R-valued functions.



68 X Integration theory

1.9 Proposition For an R-valued function f : X → R, the following statements
are equivalent:

(i) f ∈ L0(X, μ, R).

(ii) [f < α] ∈ A for every α ∈ Q [or α ∈ R].

(iii) [f ≤ α] ∈ A for every α ∈ Q [or α ∈ R].

(iv) [f > α] ∈ A for every α ∈ Q [or α ∈ R].

(v) [f ≥ α] ∈ A for every α ∈ Q [or α ∈ R].

Proof “(i)=⇒(ii)” The sets f−1(−∞) and f−1
(
(−∞, α)

)
with α ∈ Q [or α ∈ R]

belong to A. Because

[f < α] = f−1
(
[−∞, α)

)
= f−1(−∞) ∪ f−1

(
(−∞, α)

)
,

this is also true of [f < α].

The implications “(ii)=⇒(iii)=⇒(iv)=⇒(v)” follow from the identities

[f ≤ α] =
∞⋂

j=1

[f < α + 1/j] , [f > α] = [f ≤ α]c , [f ≥ α] =
∞⋂

j=1

[f > α− 1/j] .

“(v)=⇒(i)” Suppose O is open in R. By Proposition IX.5.6, there exist
(αj), (βj) ∈ QN such that O =

⋃
j [αj , βj). Therefore

f−1(O) =
⋃
j∈N

f−1
(
[αj , βj)

)
=

⋃
j∈N

(
[f ≥ αj ] ∩ [f < βj ]

)
,

and because [f < α] = [f ≥ α]c, we conclude that f−1(O) belongs to A. In
addition

f−1(−∞) =
⋂
j∈N

[f < −j] and f−1(∞) =
⋂
j∈N

[f > j] .

Thus f−1(±∞) also lies in A. �

The lattice of measurable R-valued functions

An ordered set V = (V,≤) is called a lattice if for every pair (a, b) ∈ V × V , the
infimum a ∧ b and the supremum a∨ b exist in V . A subset U ⊂ V is a sublattice
of V if U is a lattice when given the ordering induced by V . An ordered vector
space that is also a lattice is called a vector lattice. If a vector subspace of a vector
lattice is a sublattice, we call it a vector sublattice.
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1.10 Examples (a) Suppose V is a lattice [or vector lattice]. Then V X is a lattice
[or vector lattice] with respect to the pointwise ordering.

(b) R is a lattice, and R is a vector lattice.

(c) The vector lattice RX satisfies

f ∨ g = (f + g + |f − g|)
/
2 , f ∧ g = (f + g − |f − g|)

/
2 .

(d) B(X, R) is a vector sublattice of RX .

(e) Suppose X is a topological space. Then C(X, R) is a vector sublattice of RX .
Proof This follows from (c) and the fact that |f | is continuous if f is. �

(f) S(X, μ, R) and L0(X, μ, R) are vector sublattices of RX .
Proof The first statement is clear. The second follows from (c) and Theorem 1.7 or
Remark 1.2(d). �

(g) Suppose V is a vector lattice and x, y, z ∈ V . Then

(x ∨ y) + z = (x + z) ∨ (y + z) ,

(−x) ∨ (−y) = −(x ∧ y) ,

x + y = (x ∨ y) + (x ∧ y) .

Proof If u ∈ V satisfies u ≥ x and u ≥ y, then clearly u + z ≥ (x + z) ∨ (y + z). Hence

(x ∨ y) + z ≥ (x + z) ∨ (y + z) .

Suppose v ≥ (x + z)∨ (y + z). Then v− z ≥ x and v− z ≥ y, and hence v ≥ (x∨ y) + z.
Because this holds for every upper bound v of {x + z, y + z}, it follows that

(x + z) ∨ (y + z) ≥ (x ∨ y) + z .

This proves the first equality. The second is none other than the trivial relation

sup{−x,−y} = sup
(
−{x, y}

)
= −inf{x, y} .

Using this, we now find

x ∨ y =
(
−y + (x + y)

)
∨

(
−x + (x + y)

)
=

(
(−y) ∨ (−x)

)
+ (x + y)

= −(x ∧ y) + (x + y) ,

which proves the last claim. �

(h) Suppose V is a vector lattice. For x ∈ V , we set

x+ := x ∨ 0 , x− := (−x) ∨ 0 , |x| := x ∨ (−x) .

Then6

x = x+− x− , |x| = x++ x− , x+∧ x− = 0 .

6See footnote 8 in Section II.8.
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Proof The first claim follows easily from (g). With this and (g), we find

x++ x− = x + 2x− = x +
(
(−2x) ∨ 0

)
= (−x) ∨ x = |x| .

Analogously, we have

(x+∧ x−)− x− = (x+− x−) ∧ (x−− x−) = x ∧ 0 = −x− ,

and therefore x+∧ x− = 0. �

If V is a vector lattice and x ∈ V , we call x+ the positive part and x− the
negative part of x, and |x| is the modulus7 of x. Clearly x+ ≥ 0, x− ≥ 0, and
|x| ≥ 0.

The figures below illustrate the positive and negative parts of an element f
of the vector lattice RX .

graph(f) graph(f+) graph(f−)

Suppose f ∈ RX . Then f+ := f ∨ 0 is called the positive part of f , and
f− := 0∨ (−f) the negative part of f . These terms are chosen in obvious analogy
to the case of the vector lattice RX .8 Here too we have

f+ ≥ 0 , f− ≥ 0 , f = f+ − f− , |f | = f+ + f− .

The next result shows that L0(X, μ, R) is a sublattice of RX and that it is
closed under countably many lattice operations.

1.11 Proposition Suppose f ∈ L0(X, μ, R), (fj) is a sequence in L0(X, μ, R), and
k ∈ N. Then each of the R-valued functions

f+ , f− , |f | , max
0≤j≤k

fj , min
0≤j≤k

fj , sup
j

fj , inf
j

fj , lim
j

fj , lim
j

fj

belongs to L0(X, μ, R).

Proof (i) Suppose α ∈ R. From Proposition 1.9, we know that [fj > α] belongs
to A for j ∈ N. Therefore this is also true of[

supj fj > α
]

=
⋃

j
[fj > α] ,

and Proposition 1.9 implies that supj fj is μ-measurable.

7This is not to be confused with the norm of the vector x if V is a normed vector space. The
modulus of x ∈ V is always a vector in V , whereas the norm is a nonnegative number.

8Remember that RX is a lattice but not a vector lattice.
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(ii) Because fj belongs to L0(X, μ, R), so does −fj. It then follows from (i)
that the function infj fj = −supj(−fj) is μ-measurable.

(iii) For j ∈ N, set

gj :=
{

fj if 0 ≤ j ≤ k ,

fk if j > k .

Because of (i), supj gj = max0≤j≤k fj belongs to L0(X, μ, R). Analogously, one
shows that min0≤j≤k fj is μ-measurable.

(iv) From (iii), it follows that f+, f−, and |f | belong to L0(X, μ, R).
(v) We have

lim
j

fj = inf
j

sup
k≥j

fk and lim
j

fj = sup
j

inf
k≥j

fk .

Therefore by (i) and (ii), limj fj and limj fj also belong to L0(X, μ, R). �

The positive cone S(X, μ, R+) of S(X, μ, R) is the set of all f ∈ S(X, μ, R)
such that f(X) ⊂ R+; see Remarks VI.4.7(b) and (d). Therefore it is natural to
denote it by S(X, μ, R+). Similarly, if R+ := [0,∞] is the nonnegative part of
the extended number line R, we denote by L0(X, μ, R+) the set of all nowhere
negative μ-measurable R-valued functions on X .

The set L0(X, μ, R+) has an interesting characterization:

1.12 Theorem For f : X → R+, the following statements are equivalent:
(i) f ∈ L0(X, μ, R+).
(ii) There is an increasing sequence (fj) in S(X, μ, R+) such that fj → f for

j →∞.

Proof “(i)=⇒(ii)” By the σ-finiteness of (A, μ), it suffices to consider the case
μ(X) < ∞ (compare part (iv) in the proof of Theorem 1.4). So for j, k ∈ N, set

Aj,k :=
{ [

k2−j ≤ f < (k + 1)2−j
]

if k = 0, . . . , j 2j − 1 ,

[f ≥ j] if k = j 2j .

The sets Aj,k are obviously disjoint for k = 0, . . . , j 2j and by Proposition 1.9 they
lie in A. Since μ(X) < ∞, each Aj,k has finite measure. By Remark 1.2(b), then,

fj :=
j 2j∑
k=0

k2−jχAj,k
for j ∈ N

belongs to S(X, μ, R). Further one verifies that 0 ≤ fj ≤ fj+1 for j ∈ N.
Now suppose x ∈ X . If f(x) = ∞, we have fj(x) = j, so limj fj(x) = f(x).

On the other hand, if f(x) < ∞, then fj(x) ≤ f(x) < fj(x) + 2−j for j > f(x), so
limj fj(x) = f(x) in this case as well. This shows (fj) converges pointwise to f .
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“(ii)=⇒(i)” This follows from Proposition 1.11. �

Here is an illustration of the construction of the Aj,k in the proof of Theo-
rem 1.12:

1.13 Corollary

(i) For every f ∈ L0(X, μ, R), there is a sequence (fj) in S(X, μ, R) such that
fj → f .

(ii) Suppose f ∈ L0(X, μ, R+) is bounded. Then there is an increasing sequence
(fj) in S(X, μ, R+) that converges uniformly to f .

(iii) Suppose (fj) is a sequence in L0(X, μ, R+). Then
∑

j fj ∈ L0(X, μ, R+).

Proof (i) In view of the decomposition f = f+ − f−, this follows from Theo-
rem 1.12 and Remark 1.2(a).

(ii) Suppose f ∈ L0(X, μ, R+) is bounded. For the sequence (fj) constructed
in the proof of Theorem 1.12, we have

fj(x) ≤ f(x) < fj(x) + 2−j for j > ‖f‖∞ .

Thus (fj) converges uniformly to f .
(iii) By Theorem 1.12, there is for every j ∈ N an increasing sequence

(ϕj,k)k∈N in S(X, μ, R+) such that ϕj,k ↑ fj for k → ∞. Set sk,n :=
∑k

j=0 ϕj,n

for k, n ∈ N. Then (sk,n)n∈N is an increasing sequence in S(X, μ, R+) that con-
verges to sk :=

∑k
j=0 fj as n →∞. By Theorem 1.12, then, (sk) is a sequence in

L0(X, μ, R+) such that limk sk = supk sk =
∑∞

j=0 fj . The claim now follows from
Proposition 1.11. �
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Pointwise limits of measurable functions

Let (fj) be a pointwise convergent sequence in L0(X, μ, R). By Proposition 1.11,
f := limj fj is also in L0(X, μ, R). We will now derive an analogous statement for
vector-valued sequences of functions.

1.14 Theorem Suppose (fj) is a sequence in L0(X, μ, E) and f ∈ EX . If (fj)
converges μ-almost everywhere to f , then f is μ-measurable.

Proof (i) We show first that f is μ-almost separable valued. By assumption,
there is a μ-null set M such that fj(x) → f(x) as j → ∞, for any x ∈ M c. For
every j ∈ N, there exists by Theorem 1.4 a μ-null set Nj such that fj(N c

j ) is
separable, hence also a countable set Bj that is dense in fj(N c

j ):

Bj ⊂ fj(N c
j ) ⊂ Bj for j ∈ N .

With B :=
⋃

j Bj , we see from Corollary III.2.13(i) that
⋃

j Bj ⊂ B, and we find⋃
j∈N

fj(N c
j ) ⊂

⋃
j∈N

Bj ⊂ B .

Finally let N := M ∪ ⋃
j Nj . Then N is a μ-null set satisfying, for any k ∈ N,

N c = M c ∩
⋂

j N c
j ⊂ N c

k . Because limj fj(x) = f(x) for x ∈M c, we thus have

f(N c) ⊂
⋃
j∈N

fj(N c
j ) ⊂B = B .

Because B is countable, Remark 1.3(b) shows that f(N c) is separable.
(ii) Now we show that f is A-measurable. Let O be open in E, and define

On :=
{

x ∈ O ; dist(x, Oc) > 1/n
}

for n ∈ N×. As in (1.2), it follows that

f−1(O) ∩M c =
⋃

m,n∈N×

⋂
j≥m

f−1
j (On) ∩M c .

By Theorem 1.4, f−1
j (On) belongs to A for every j, n ∈ N×. Therefore this also

applies to f−1(O)∩M c. Moreover, the completeness of μ implies that f−1(O)∩M
is a μ-null set, and altogether we find

f−1(O) =
(
f−1(O) ∩M c

)
∪

(
f−1(O) ∩M

)
∈ A .

The claim now follows from Theorem 1.4. �

1.15 Remark Theorem 1.14 generally fails for incomplete measure spaces.
Proof Let C be the Cantor set. In the proof of Corollary IX.5.29, it was shown that C
contains a Borel nonmeasurable subset N ⊂ C. We take fj := χC for j ∈ N and f := χN .
Remark 1.2(b) and the compactness of C imply χC ∈ S(R, β1, R). Also fj(x) = f(x)
for x ∈ Cc ⊂ Nc and j ∈ N. Because C has measure zero, (fj) converges β1-a.e. to f .
However, because [f > 0] = N /∈ B1, Proposition 1.9 says that f is not in L0(R, β1, R). �
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Radon measures

We conclude this section by exploring how measurability and continuity are re-
lated in vector-valued functions. Besides proving a simple measurability criterion,
we prove Luzin’s theorem, which exposes a surprisingly close connection between
continuous and Borel measurable functions.

A metric space X = (X, d) is said to be σ-compact if X is locally compact
and there is a sequence (Xj)j∈N of compact subsets of X such that X =

⋃
j Xj .

Suppose X is a σ-compact metric space. A Radon measure on X is a regular,
locally finite measure on a σ-algebra A over X such that A ⊃ B(X). We say a
Radon measure μ is massive if μ is complete and every nonempty open subset O
of X satisfies μ(O) > 0.

1.16 Remarks (a) Every σ-compact metric space is a σ-compact set in the sense
of the definition of Section IX.5; however, a countable union of compact subsets
of a metric space is not necessarily a σ-compact metric space.
Proof The first statement is clear. For the second, consider Q ⊂ R. �

(b) Every Radon measure is σ-finite.
Proof This follows from Remark IX.5.3(b). �

(c) Suppose X is a locally compact metric space. Then there is for every compact
subset K of X a relatively compact9 open superset of K.
Proof For every x ∈ X, we find a relatively compact open neighborhood O(x) of x.
Because K is compact, there are x0, . . . , xm ∈ K such that O :=

⋃m
j=0 O(xj) is an open

superset of K. Corollary III.2.13(iii) implies O =
⋃m

j=0 O(xj). Therefore O is compact. �

(d) Every open subset of Rn is a σ-compact metric space.
Proof Let X ⊂ Rn be open and nonempty. For every x ∈ X, there is r > 0 such that
B(x, r) ⊂ X. Because B(x, r) is compact, X is then a locally compact metric space.

For j ∈ N×, define10

Uj :=
{

x ∈ X ; dist(x, Uc) > 1/j
}
∩ B(0, j) . (1.3)

By Examples III.1.3(l) and III.2.22(c), the set Uj is open. Also Uj ⊂ Uj ⊂ Uj+1, and⋃
j Uj ⊂

⋃
j Uj = X. In particular, there exists j0 ∈ N× such that Uj 	= ∅ for j ≥ j0.

Because Uj is compact by the Heine–Borel theorem, the claim follows. �

(e) For a locally compact metric space X , the following statements are equivalent:

(i) X is σ-compact.

(ii) X is the union of a sequence (Uj)j∈N of relatively compact open subsets with
Uj ⊂ Uj+1 for j ∈ N.

9A subset A of a topological space is said to be relatively compact if A is compact.
10dist(x, ∅) := ∞.
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(iii) X is a Lindelöf space.

(iv) X satisfies the second countability axiom.

(v) X is separable.
Proof “(i)=⇒(ii)” Let (Xj)j∈N be a sequence of compact sets in X such that X =

⋃
j Xj .

By (c), there is a relatively compact open superset U0 of X0. Inductively choose relatively
compact open subsets Uj such that Uj ⊃ Uj−1 ∪Xj for j ≥ 1. Clearly X =

⋃
j Uj .

“(ii)=⇒(iii)” Suppose O := {Oα ; α ∈ A } is an open cover of X. For every j ∈ N,
inductively choose m(j) ∈ N and α0, . . . , αm(j) ∈ A such that Uj ⊂

⋃m(j)
k=0 Oαk . Then{

Oαk ; k = 0, . . . , m(j), j ∈ N
}

is a countable subcover of O for X.

“(iii)=⇒(i)” By assumption, there is a sequence (xj) in X and relatively compact
open neighborhoods O(xj) of xj (j ∈ N) such that X =

⋃
j∈N

O(xj). So X =
⋃

j∈N
O(xj),

showing that X is σ-compact.

The remaining equivalences follow from Proposition IX.1.8. �

(f) Every locally finite Borel measure on a σ-compact metric space is regular and
is therefore a Radon measure.
Proof This follows from (e) and Corollary VIII.1.12 in [Els99]. �

(g) Finite Borel measures on (nonmetrizable) compact topological spaces need not
be regular.
Proof See [Flo81, Example A4.5, S. 350]. �

(h) Lebesgue n-measure, λn, is a massive Radon measure on Rn.
Proof This follows from Theorems IX.5.1 and IX.5.4. �

(i) The s-dimensional Hausdorff measureHs is a Radon measure on Rn only when
s ≥ n. It is massive if and only if s = n.
Proof Every Borel set is Hs-measurable, by Example IX.4.4(c) and Theorem IX.4.3.
The regularity of Hs for s > 0 follows from Corollary IX.5.22 and Theorem IX.5.4.

Suppose O is open in Rn and nonempty. Because O has Hausdorff dimension n
(Exercise IX.3.6), it follows that

Hs(O) =

{
0 if s > n ,

∞ if s < n .

Therefore Hs cannot be a Radon measure on Rn if s < n. If s > n, on the other hand,
Hs is a nonmassive Radon measure.

Lemma IX.5.21 shows that Hn is locally finite and therefore a Radon measure on
Rn. Finally, Corollary IX.5.22 implies Hn(O) > 0, and we are done. �

(j) Suppose F : R → R is measure generating, and denote by μF the Lebesgue–
Stieltjes measure on R induced by F . Then μF is a Radon measure on R, and is
massive if only if F is strictly increasing.
Proof This follows from Example IX.4.4(b), Theorem IX.4.3, Exercise IX.5.19, and
Proposition IX.3.5. �
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1.17 Theorem Suppose μ is a complete Radon measure on X . Then C(X, E) is
a vector subspace of L0(X, μ, E).

Proof Take f ∈ C(X, E) and let (Xj) be a sequence of compact sets in X such
that X =

⋃
j Xj. According to Exercise IX.1.6(b), f is Borel measurable and

therefore A-measurable, where A is the domain of μ. By Remark 1.16(e), f(Xj),
being a compact subset of E, is separable. Therefore f(X) =

⋃
j f(Xj) is also

separable, and the claim follows from Theorem 1.4. �

1.18 Theorem (Luzin) Suppose X is a σ-compact metric space, μ is a complete
Radon measure on X , and f ∈ L0(X, μ, E). Then for every μ-measurable set A
of finite measure and for every ε > 0, there is a compact subset K of X such that
μ(A\K) < ε and f |K ∈ C(K, E).

Proof (i) Because X is σ-compact, we can find a compact set X̃ such that
μ
(
A

∖
X̃

)
< ε/2. We set f̃ := f

∣∣ X̃ and Ã := A ∩ X̃. Then μ
(
X̃

)
< ∞.

(ii) By Theorem 1.4, there is a μ-null set N of X̃ such that f̃(N c) is separable.
Therefore by Proposition IX.1.8, there is a countable basis { Ṽj ; j ∈ N } of f̃(N c),
and because of Proposition III.2.26, there exist open subsets Vj in E such that
Ṽj = Vj ∩ f̃(N c).

(iii) According to Theorem 1.4, f̃−1(Vj) is μ-measurable for every j ∈ N.
Hence it follows from the regularity of μ and the finiteness of μ(X̃) that for every
j ∈ N there exist a compact set Kj and an open set Uj with Kj ⊂ f̃−1(Vj) ⊂ Uj

and μ(Uj \Kj) < ε2−(j+3). Putting U :=
⋃

j(Uj\Kj), we have μ(U) < ε/4.

(iv) We set Y := (U ∪N)c and show that f̃
∣∣ Y is continuous. To verify this,

let V be open in E. Then there is a subset {Vjk
; k ∈ N } of {Vj ; j ∈ N } such

that V ∩ f̃(N c) =
⋃

k Vjk
∩ f̃(N c). This implies

f̃−1(V ) ∩N c =
⋃

k
f̃−1(Vjk

) ∩N c .

Obviously f̃−1(V	) ∩ Y ⊂ U	 ∩ Y for � ∈ N. Because

Y = U c ∩N c =
⋂

j
(U c

j ∪Kj) ∩N c ⊂
⋂

j

(
U c

j ∪ f̃−1(Vj)
)
⊂ U c

	 ∪ f̃−1(V	) ,

it follows that f̃−1(V	) ∩ Y = U	 ∩ Y , and we find(
f̃

∣∣ Y
)−1(V ) = f̃−1(V ) ∩N c ∩ U c =

⋃
k
Ujk

∩ Y .

Because
⋃

k Ujk
is open in X and therefore

⋃
k Ujk

∩Y is open in Y , the continuity
of f̃

∣∣ Y follows.
(v) We apply once again the regularity of μ to deduce the existence of a

compact subset K of the μ-measurable set Y such that μ(Y \K) < ε/4. Then
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f̃
∣∣ K belongs to C(K, E), and

μ
(
Ã

∖
K

)
≤ μ(Y \K) + μ(Y c\K) ≤ μ(Y \K) + μ(U) < ε/2 .

Because μ(A\K) ≤ μ
(
Ã\K

)
+ μ

(
A\X̃

)
< ε, we are done. �

Exercises

1 Suppose H is a separable Hilbert space. We say f ∈ HX is weakly μ-measurable if
(f | e) belongs to L0(X, μ, K) for every e ∈ H . Prove:

(a) If f is weakly μ-measurable, |f | is μ-measurable.

(b) f is μ-measurable if and only if f is weakly μ-measurable.

(Hints: (a) Suppose {ej ; j ∈ N } is a dense subset of BH . Then[
|f | ≤ α

]
=

⋂
j

[ ∣∣(f | ej)
∣∣ ≤ α

]
for α ∈ R .

(b) “⇐=” Using (a), we can construct as in the proof of Theorem 1.4 a sequence of a
μ-simple functions that converge μ-a.e. to f .)

2 Denote by S(R, E) the vector space of all E-valued admissible functions of R (see
Section VI.8). Prove or disprove:

(a) S(R, E) ⊂ L0(R, β1, E);

(b) S(R, E) ⊃ L0(R, β1, E).

3 Prove the statement of Remark 1.2(e).

4 Show that every monotone R-valued function is Borel measurable.

5 Let f, g ∈ L0(X, μ, R). Show that the sets [f < g], [f ≤ g], [f = g], and [f 	= g]
belong to A.

6 Suppose (fj) is a sequence in L0(X, μ, R). Show that

K :=
{

x ∈ X ; limjfj(x) exists in R
}

is μ-measurable.

7 Suppose f : X → R. Prove or disprove:

(a) f ∈ L0(X, μ, R)⇐⇒ f+, f− ∈ L0(X, μ, R+).

(b) f ∈ L0(X, μ, R)⇐⇒ |f | ∈ L0(X, μ, R+).

8 A nonempty subset B of RX is called a Baire function space if these statements hold:

(i) α ∈ R and f ∈ B imply αf ∈ B.

(ii) If f + g exists in RX for f, g ∈ B, then f + g ∈ B.

(iii) supj fj belongs to B for every sequence (fj) in B.

Prove:

(a) RX and L0(X, μ, R) are Baire function spaces.
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(b) If {Bα ⊂ RX ; α ∈ A } is a family of Baire function spaces, then
⋂

α∈A Bα is also a
Baire function space.

9 For C ⊂ RX , we call

σ(C) :=
⋂
{B ⊂ RX ; B ⊃ C, B is a Baire function space }

the Baire function space generated by C. By Exercise 8(b), σ(C) is a well defined Baire
function space. Show that

σ
(
S(X,μ, R)

)
= L0(X, μ, R) .

10 Prove that σ
(
C(Rn, R)

)
= L0(Rn, βn, R).

11 Show that the supremum of an uncountable family of measurable real-valued func-
tions is generally not measurable.

12 A sequence (fj) in EX is said to be μ-almost uniformly convergent if for every δ > 0
there is an A ∈ A with μ(Ac) < δ such that the sequence (fj |A) converges uniformly.

(a) Suppose (fj) is a μ-almost uniformly convergent sequence in L0(X, μ, E). Show there
is an f ∈ L0(X, μ, E) such that fj → f μ-a.e.

(b) Define fj(x) := xj for j ∈ N and x ∈ [0, 1]. Verify that (fj) converges almost
uniformly (with respect to Lebesgue measure), although there is no set N ⊂ [0, 1] of
measure zero such that (fj |Nc) converges uniformly.

13 Suppose (X,A, μ) is a finite measure space and fj , f ∈ L0(X, μ, E) with fj → f
μ-a.e. Prove:

(a) For ε > 0 and δ > 0, there exist k ∈ N and A ∈ A such that μ(Ac) < δ and
|fj(x)− f(x)| < ε for x ∈ A and j ≥ k.

(b) The sequence (fj) converges μ-almost uniformly to f (Egorov’s theorem).

(c) Part (b) is generally false if μ(X) =∞.

(Hints: (a) Consider K := [fj → f ] and Kk :=
[
|fj − f | < ε ; j ≥ k

]
, and apply the

continuity of measures from above. (b) To obtain the Aj , choose ε := 1/j and δ := δ 2−j

in (a), and let A :=
⋃

j Aj . (c) Consider the measure space (X,A, μ) =
(
R, λ1,L(1)

)
and set fj := χ[j,j+1].)

14 Suppose (X,A, μ) is a measure space and fj , f ∈ L0(X, μ, E). We say (fj) converges
in measure to f if limj→∞ μ

(
[ |fj − f | ≥ ε]

)
= 0 for every ε > 0.

Prove:

(a) fj → f μ-almost uniformly =⇒ fj → f in measure.

(b) If (fj) converges in measure to f and to g, then f = g μ-a.e.

(c) There is a sequence of Lebesgue measurable functions on [0, 1] that converges in
measure, but does not converge pointwise anywhere.

(d) There is a sequence of Lebesgue measurable functions on R that converges pointwise
but not in measure.

(Hints: (c) Set fj := χIj , where the intervals Ij ⊂ [0, 1] are chosen so that λ1(Ij)→ 0 and
so that the sequence

(
fj(x)

)
has two cluster points for every x ∈ [0, 1]. (d) Consider

fj := χ[j,j+1].)
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15 Suppose (fj) is a sequence in L0(X, μ, E) converging in measure to f ∈ L0(X, μ, E).
Show that (fj) has a subsequence that converges μ-a.e. to f .
(Hint: There is an increasing sequence (jk)k∈N such that

μ
(
[ |fm − fn| ≥ 2−k]

)
≤ 2−k for m, n ≥ jk .

With the help of B� :=
⋃∞

k=�[
∣∣fnk+1 − fnk

∣∣ ≥ 2−k], conclude that (fjk )k∈N converges
μ-almost uniformly. Also note Exercises 12, 14(a) and 14(b).)

16 For x = (xj) ∈ KN and p ∈ [1,∞], define11

‖x‖p :=

{ (∑∞
j=0|xj |p

)1/p
if p ∈ [1,∞) ,

supj |xj | if p =∞ ,

and
�p := �p(K) :=

(
{ x ∈ KN ; ‖x‖p <∞}, ‖·‖p

)
.

Prove:

(a) If p ∈ [1,∞), then �p is a separable normed vector space.

(b) �∞ is not separable.

17 Suppose x ∈ R. If x ∈ R, we say U ⊂ R is a neighborhood in R of x if U contains
a neighborhood in R of x. For x ∈ R\R, neighborhoods were defined in Section II.5 as
those sets that contain a semi-infinite interval of the appropriate kind. Suppose O ⊂ R.
We say O is open in R if every x ∈ O has a neighborhood U in R such that U ⊂ O. Now
define T := {O ⊂ R ; O is open in R }. Prove:

(a) O is open in R if and only if O∩R is open in R and, in the case ∞ ∈ O [or −∞ ∈ O],
there is an a ∈ R such that (a,∞] ⊂ O [or [−∞, a) ⊂ O].

(b) (R, T ) is a compact topological space.

(c) B(R) =
{

B ∪ F ; B ∈ B1, F ⊂ {−∞,∞}
}
.

(d) B(R) |R = B1.

(e) An element of RX belongs to L0(X, μ, R) if and only if it is A-B(R)-measurable.

18 Check that, if S is a separable subset of E, the closure of its span is a separable
Banach space.

19 For f ∈ KX , set

(sign f)(x) :=

{
f(x)/|f(x)| if f(x) 	= 0 ,

0 if f(x) = 0 .

Demonstrate that f ∈ L0(X, μ, K) implies sign f ∈ L0(X, μ, K).

11See also Proposition IV.2.17.



2 Integrable functions

In this section, we define the general Bochner–Lebesgue integral and describe its
basic properties. We also prove that the vector space of integrable functions is
complete with respect to the seminorm induced by the integral.

As in the previous section, suppose
• (X,A, μ) is a complete σ-finite measure space;

E = (E, | · |) is a Banach space.

The integral of a simple function

In Remark 1.2(c), we learned that every simple function has a unique normal form.
This form will prove to be useful in the sequel, and we work with it preferentially.

Convention We will always represent μ-simple functions by their normal
forms, unless we say otherwise. Further, we set1

∞ · 0E := −∞ · 0E := 0E , (2.1)

where 0E is the zero vector of E.

For ϕ ∈∑m
j=0 ejχAj ∈ S(X, μ, E), we define the integral of ϕ over X with respect

to the measure μ as the sum∫
X

ϕdμ :=
∫

ϕdμ :=
m∑

j=0

ejμ(Aj) .

If A is a μ-measurable set, we define the integral of ϕ over A with respect to the
measure μ as ∫

A

ϕdμ :=
∫

X

χAϕdμ .

1Convention (2.1) is common in the theory of integration and makes it possible, for example, to
integrate simple functions over their entire domains of definition. It is not to be understood in the
case E = R as another calculation rule in R, but rather in the sense of “external” multiplication
of ∞,−∞ ∈ R by the zero vector of R.
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2.1 Remarks (a) For ϕ ∈ S(X, μ, E) and A ∈ A, the integral
∫

A
ϕdμ is well

defined.
Proof This follows from Remarks 1.2(c) and (d). �

(b) Let ϕ =
∑n

k=0 fkχBk
, where f0, . . . , fn ∈ E are nonzero and B0, . . . , Bn ∈ A

are pairwise disjoint, be a μ-simple function not necessarily in normal form. Then∫
X

ϕdμ =
n∑

k=0

fkμ(Bk) .

Proof Let
∑m

j=0 ejχAj be the normal form of ϕ. Set

Am+1 :=
m⋂

j=0

Ac
j , Bn+1 :=

n⋂
k=0

Bc
k , em+1 := 0 , fn+1 := 0 . (2.2)

Then X =
⋃m+1

j=0 Aj =
⋃n+1

k=0 Bk, so

Aj =

n+1⋃
k=0

(Aj∩Bk) and Bk =

m+1⋃
j=0

(Aj∩Bk) for j = 0, . . . , m+1 and k = 0, . . . , n+1 .

Because the sets Aj ∩ Bk are pairwise disjoint, we have

μ(Aj) =
n+1∑
k=0

μ(Aj ∩Bk) and μ(Bk) =
m+1∑
j=0

μ(Aj ∩Bk) .

If Aj ∩Bk 	= ∅, then ej = fk, and we find∫
X

ϕ dμ =
m∑

j=0

ejμ(Aj) =

m+1∑
j=0

ej

n+1∑
k=0

μ(Aj ∩Bk) =

n+1∑
k=0

fk

m+1∑
j=0

μ(Aj ∩Bk)

=
n∑

k=0

fkμ(Bk) . �

(c) The integral
∫

X
· dμ : S(X, μ, E) → E is linear.

Proof Suppose ϕ =
∑m

j=0 ejχAj and ψ =
∑n

k=0 fkχBk are μ-simple functions and

α ∈ K. One checks easily that
∫

X
αϕ dμ = α

∫
X

ϕ dμ. With the relations (2.2), an
argument like that in (b) implies

χAj =
n+1∑
k=0

χAj∩Bk and χBk =
m+1∑
j=0

χAj∩Bk ,

and thus2

ϕ + ψ =

m+1∑
j=0

n+1∑
k=0

(ej + fk)χAj∩Bk . (2.3)

The claim now follows from (b). �

2In general, (2.3) does not give the normal form of ϕ + ψ.



82 X Integration theory

(d) For A, B ∈ A and A ∩B = ∅, we have∫
A∪B

ϕdμ =
∫

A

ϕdμ +
∫

B

ϕdμ for ϕ ∈ S(X, μ, E) .

Proof This follows from (c) and the equality χA∪Bϕ = χAϕ + χBϕ. �

(e)For ϕ ∈ S(X, μ, E) and A ∈ A, we have∣∣∣∫
A

ϕdμ
∣∣∣ ≤ ∫

A

|ϕ| dμ ≤ ‖ϕ‖∞ μ(A) .

Proof This follows from Remark 1.2(d) and the triangle inequality. �

(f) If ϕ, ψ ∈ S(X, μ, R) satisfy ϕ ≤ ψ, then
∫

A ϕdμ ≤
∫

A ψ dμ.

Proof Clearly
∫

A
η dμ ≥ 0 for η ∈ S(X, μ, R+). The claim now follows from (c). �

The L1-seminorm

Suppose V is a vector space over K. A map p : V → R is called a seminorm on V
if it satisfies these properties:

(i) p(v) ≥ 0 for v ∈ V ;
(ii) p(λv) = |λ| p(v) for v ∈ V and λ ∈ K;
(iii) p(v + w) ≤ p(v) + p(w) for v, w ∈ V .
For v ∈ V and r > 0, we denote by

Bp(v, r) :=
{

w ∈ V ; p(v − w) < r
}

the open ball in (V, p) around v with radius r. A subset O of V is said to be
p-open if, for every v ∈ O, there is an r > 0 such that Bp(v, r) ⊂ O.

2.2 Remarks Suppose V is a vector space and p is a seminorm on V .

(a) The seminorm p is a norm if and only if p−1(0) = {0}.
(b) Suppose K ⊂ Rn is compact, k ∈ N ∪ {∞}, and

pK(f) := max
x∈K

|f(x)| for f ∈ Ck(Rn, E) .

Then pK is a seminorm on Ck(Rn, E), but not a norm.
Proof One verifies easily that pK is a seminorm on Ck(Rn, E). Let U be an open
neighborhood of K. Then Exercise VII.6.7 shows that there is an f ∈ C∞(Rn, R) such
that f(x) = 1 for x ∈ K and f(x) = 0 for x ∈ Uc. For e ∈ E\{0}, we set g := (χRn−f)e.
Then g belongs to C∞(Rn, E), and we have pK(g) = 0, but g 	= 0. Therefore pK is not
a norm on Ck(Rn, E). �
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(c) Let

‖ϕ‖1 :=
∫

X

|ϕ| dμ for ϕ ∈ S(X, μ, E) .

Then ‖·‖1 is a seminorm on S(X, μ, E). If there is a nonempty μ-null set in A,
then ‖·‖1 is not a norm on S(X, μ, E).
Proof It is clear that ‖·‖1 is a seminorm on S(X,μ, E). Letting N denote a nonempty
μ-null set, we have ‖χN‖1 = 0, but χN 	= 0. �

(d) Tp := {O ⊂ V ; O is p-open } is a topology on V , the topology generated
by p.
Proof One easily checks that the argument used in the proof of Proposition III.2.4
transfers to this situation. �

(e) The topology Tp is not necessarily Hausdorff. If it isn’t, there is no metric on
V that generates Tp.
Proof We use the notation of (b) and set K := {0}. Further let f ∈ Ck(Rn, E) with
f(0) = 0 and f 	= 0. Then BpK (f, ε) = BpK (0, ε) for every ε > 0. Therefore TpK is not
Hausdorff. The second statement follows from Proposition III.2.17. �

(f) A linear map A : V → E is said to be (p)-bounded if there is an M ≥ 0 such
that |Av| ≤ Mp(v) for v ∈ V . For a linear map A : V → E, these statements are
equivalent:

(i) A is continuous.

(ii) A is continuous at 0.
(iii) A is bounded.
Proof This follows from the proof of Theorem VI.2.5, which used only the properties
of a seminorm. �

(g)
∫
· dμ : S(X, μ, E) → E is continuous.

Proof This follows from (c), (f), and Remark 2.1(c). �

Suppose p is a seminorm on V . We know from Remark 2.2(e) that the
topology of (V, p) may not be generated by a metric on V , in which case the metric
notions of Cauchy sequence and completeness are not available. Accordingly, we
need new definitions: A sequence (vj) ∈ V N is called a Cauchy sequence in (V, p)
if for every ε > 0 there is an N ∈ N such that p(vj − vk) < ε for j, k ≥ N . We call
(V, p) complete if every Cauchy sequence in (V, p) converges.

2.3 Remarks (a) If (V, p) is a normed vector space, these notions agree with those
of Section II.6.

(b) Suppose (vj) ∈ V N and v ∈ V . Then vj → v if and only if p(v − vj) → 0.
However, the limit of a convergent sequence is generally not uniquely determined:
if p is not a norm, vj → v implies vj → w for every w ∈ V such that p(v−w) = 0.
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(c) The set of all Cauchy sequences in (V, p) forms a vector subspace of V N. �

In the following, we always provide the space S(X, μ, E) with the topology
induced by ‖·‖1. Then we may also call a Cauchy sequence in S(X, μ, E) an
L1-Cauchy sequence.

A function f ∈ EX is called μ-integrable if f is a μ-a.e. limit of some L1-
Cauchy sequence (ϕj) in S(X, μ, E). We denote the set of E-valued, μ-integrable
functions of X by L1(X, μ, E).

2.4 Proposition In the sense of vector subspaces, we have the inclusions

S(X, μ, E) ⊂ L1(X, μ, E) ⊂ L0(X, μ, E) .

Proof Clearly every μ-simple function is μ-integrable. That every μ-integrable
function is μ-measurable follows from Remark 1.2(a) and Theorem 1.14. There
remains to show that L1(X, μ, E) is a vector subspace of L0(X, μ, E). Take
f, g ∈ L1(X, μ, E) and α ∈ K. There are L1-Cauchy sequences (ϕj) and (ψj)
in S(X, μ, E) such that ϕj → f and ψj → g μ-a.e. as j → ∞. From the triangle
inequality, it follows that (αϕj + ψj)j∈N is an L1-Cauchy sequence in S(X, μ, E)
that converges μ-a.e. to αf + g. Therefore αf + g is μ-integrable, as needed. �

The Bochner–Lebesgue integral

Let f ∈ L1(X, μ, E). Then there is an L1-Cauchy sequence (ϕj) in S(X, μ, E)
such that ϕj → f μ-a.e. We will see that the sequence (

∫
X ϕj dμ)j∈N converges

in E. It is natural, then, to define the integral of f with respect to μ as the limit of
this sequence of integrals. Of course we must check that the limit is independent
of the approximating sequence of simple functions; that is, we must show that
limj

∫
ϕj dμ = limj

∫
ψj dμ if (ψj) is another Cauchy sequence in S(X, μ, E) such

that ψj → f μ-a.e.

2.5 Lemma Suppose (ϕj) is a Cauchy sequence in S(X, μ, E). Then there is a
subsequence (ϕjk

)k∈N of (ϕj) and an f ∈ L1(X, μ, E) such that

(i) ϕjk
→ f μ-a.e. as k →∞;

(ii) for every ε > 0, there exists Aε ∈ A such that μ(Aε) < ε and (ϕjk
)k∈N

converges uniformly to f on Ac
ε.

Proof (α) By assumption, there exists for any k ∈ N some jk ∈ N such that the
bound ‖ϕ	 − ϕm‖1 < 2−2k holds for �, m ≥ jk. Without loss of generality, we can
choose the sequence (jk)k∈N to be increasing. With ψk := ϕjk

, we then get

‖ψ	 − ψm‖1 < 2−2	 for m ≥ � ≥ 0 .
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(β) Set B	 :=
[
|ψ	+1 − ψ	| ≥ 2−	

]
for � ∈ N. Then B	 belongs to A, and we

have μ(B	) < ∞ for � ∈ N, because every ψm is μ-simple. Therefore χB�
is also

μ-simple, and Remark 2.1(f) implies

2−	μ(B	) = 2−	

∫
X

χB�
dμ ≤

∫
X

|ψ	+1 − ψ	| dμ = ‖ψ	+1 − ψ	‖1 < 2−2	 .

This leads to μ(B	) < 2−	 for � ∈ N.
Letting An :=

⋃∞
k=0 Bn+k, we have μ(An) ≤ 2−n+1 for n ∈ N, and we see

that A :=
⋂∞

n=0 An is a μ-null set.
(γ) If x lies in Ac

n =
⋂∞

k=0 Bc
n+k, then

|ψ	+1(x)− ψ	(x)| < 2−	 for � ≥ n .

By the Weierstrass criterion (Theorem V.1.6), the series

ψ0 +
∑

(ψ	+1 − ψ	)

on Ac
n converges uniformly in E. Now we set

f(x) :=
{

limk ψk(x) if x ∈ Ac ,

0 if x ∈ A .

Then ϕjk
→ f μ-a.e. as k → ∞. Further, there is for every ε > 0 an n ∈ N

such that μ(An) ≤ 2−n+1 < ε, and (ϕjk
)k∈N converges uniformly on Ac

n to f as
k →∞. �

2.6 Lemma Suppose (ϕj) and (ψj) are L1-Cauchy sequences in S(X, μ, E) that
converge μ-a.e. to the same function. Then lim ‖ϕj − ψj‖1 = 0.

Proof (i) Take ε > 0 and set ηj := ϕj − ψj for j ∈ N. By Remark 2.3(c), (ηj)
is an L1-Cauchy sequence in S(X, μ, E). Thus there is a natural number N such
that ‖ηj − ηk‖ < ε/8 for j, k ≥ N .

(ii) Because ηN is μ-simple, A := [ηN 
= 0] belongs to A and μ(A) < ∞.
Moreover (ηj) converges μ-a.e. to zero. Then Lemma 2.5 says there exists B ∈ A
such that μ(B) < ε/8(1 + ‖ηN‖∞), and there is a subsequence (ηjk

)k∈N of (ηj)
that converges uniformly to 0 on Bc. Hence there exists K ≥ N such that

|ηjK (x)| ≤ ε
/
8
(
1 + μ(A)

)
for x ∈ A\B .

This implies
∫

A\B
|ηjK | dμ ≤ ε/8.

(iii) The properties of B and K imply∫
B

|ηjK | dμ ≤
∫

B

|ηjK − ηN | dμ +
∫

B

|ηN | dμ

≤ ‖ηjK − ηN‖1 + ‖ηN‖∞ μ(B) < ε/4 .
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From the definition of A, we have∫
Ac

|ηjK | dμ =
∫

Ac

|ηjK − ηN | dμ ≤ ‖ηjK − ηN‖1 < ε/8 .

Altogether we obtain using Remark 2.1(d)

‖ηjK‖1 ≤
∫

Ac∪(A\B)∪B

|ηjK | dμ < ε/2 ,

and therefore ‖ηj‖1 ≤ ‖ηjK‖1 + ‖ηj − ηjK‖1 < ε for j ≥ N . Because ε > 0 was
arbitrary, all is proved. �

2.7 Corollary Let (ϕj) and (ψj) be Cauchy sequences in S(X, μ, E) converging
μ-a.e. to the same function. The sequences

(∫
X ϕj dμ

)
and

(∫
X ψj dμ

)
converge

in E, and

lim
j

∫
X

ϕj dμ = lim
j

∫
X

ψj dμ .

Proof Because∣∣∣∫
X

ϕj dμ−
∫

X

ϕk dμ
∣∣∣ ≤ ‖ϕj − ϕk‖1 for j, k ∈ N ,

(
∫

ϕj dμ)j∈N is a Cauchy sequence in E; hence
∫

ϕj dμ → e as j → ∞, for some
e ∈ E. Likewise there is e′ ∈ E such that

∫
ψj dμ → e′ for j → ∞. Applying

Lemma 2.6 and the continuity of the norm of E, we see that

|e− e′| = lim
j

∣∣∣∫
X

ϕj dμ−
∫

X

ψj dμ
∣∣∣ ≤ lim

j

∫
X

|ϕj − ψj | dμ = lim
j
‖ϕj − ψj‖1 = 0 ,

and we are done. �

After these preparations, we define the integral of integrable functions in a
natural way, extending the integral of simple functions. Suppose f ∈ L1(X, μ, E).
Then there is an L1-Cauchy sequence (ϕj) in S(X, μ, E) such that ϕj → f μ-a.e.
According to Corollary 2.7, the quantity∫

X

f dμ := lim
j

∫
X

ϕj dμ

exists in E, and is independent of the sequence (ϕj). This is called the Bochner–
Lebesgue integral of f over X with respect to the measure μ. Other notations
are often used besides

∫
X f dμ, namely,∫

f dμ ,

∫
X

f(x) dμ(x) ,

∫
X

f(x)μ(dx) .

Clearly, in the case of simple functions, the Bochner–Lebesgue integral agrees with
the integral defined at the start of this section (page 80).
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The completeness of L1

With the help of the integral, we now define a seminorm on L1(X, μ, E) and show
that L1(X, μ, E) is complete with respect to this seminorm.

2.8 Lemma If f ∈ L1(X, μ, E), then |f | belongs to L1(X, μ, R). If (ϕj) is
an L1-Cauchy sequence in S(X, μ, E) such that ϕj → f μ-a.e., then

∫
|f | dμ =

limj

∫
|ϕj | dμ.

Proof The reverse triangle inequality (which clearly holds for seminorms too) gives∥∥ |ϕj | − |ϕk|
∥∥

1
≤ ‖ϕj − ϕk‖1 and

∣∣ |ϕj | − |ϕk|
∣∣ ≤ |ϕj − ϕk| for j, k ∈ N .

Thus (|ϕj |)j∈N is an L1-Cauchy sequence in S(X, μ, R) that converges μ-a.e. to
|f |. Therefore |f | belongs to L1(X, μ, R), and

∫
|f | dμ = limj

∫
|ϕj | dμ. �

2.9 Corollary For f ∈ L1(X, μ, E), let ‖f‖1 :=
∫

X
|f | dμ. Then ‖·‖1 is a seminorm

on L1(X, μ, E), called the L1-seminorm.

Proof Take f, g ∈ L1(X, μ, E) and let (ϕj) and (ψj) be L1-Cauchy sequences in
S(X, μ, E) such that ϕj → f and ψj → g μ-a.e. From Lemma 2.8 and Remark
2.2(c) we have

‖f‖1 =
∫

X

|f | dμ = lim
j

∫
X

|ϕj | dμ = lim
j
‖ϕj‖1 ≥ 0 ,

as well as

‖f + g‖1 = lim
j
‖ϕj + ψj‖1 ≤ lim

j

(
‖ϕj‖1 + ‖ψj‖1

)
= ‖f‖1 + ‖g‖1 ,

and
‖αf‖1 = lim

j
‖αϕj‖ = |α| lim

j
‖ϕj‖ = |α| ‖f‖1

for any α ∈ K. �

We will always give L1(X, μ, E) the topology induced by the seminorm ‖·‖1.

2.10 Theorem

(i) S(X, μ, E) is dense in L1(X, μ, E).

(ii) The space L1(X, μ, E) is complete.

Proof (i) Suppose f ∈ L1(X, μ, E), and let (ϕj) denote an L1-Cauchy sequence
of simple functions such that ϕj → f μ-a.e. as j →∞. Also suppose k ∈ N. Then
(ϕj−ϕk)j∈N is an L1-Cauchy sequence in S(X, μ, E) such that (ϕj−ϕk)→ (f−ϕk)
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μ-a.e. for j →∞. Because of Lemma 2.8,

‖f − ϕk‖1 = lim
j
‖ϕj − ϕk‖1 for k ∈ N .

Suppose ε > 0. Then there is an N ∈ N such that ‖ϕj − ϕk‖1 < ε for j, k ≥ N ;
taking the limit j → ∞ we get ‖f − ϕN‖1 ≤ ε. This shows that S(X, μ, E) is
dense in L1(X, μ, E).

(ii) Let (fj) be a Cauchy sequence in L1(X, μ, E) and take ε > 0. Choose
M ∈ N such that ‖fj − fk‖1 < ε/2 for j, k ≥ M . We know from (i) that for any
j ∈ N we can find ϕj ∈ S(X, μ, E) such that ‖fj − ϕj‖1 < 2−j. Then

‖ϕj − ϕk‖1 ≤ ‖ϕj − fj‖1 + ‖fj − fk‖1 + ‖fk − ϕk‖1 < 2−j + 2−k + ε/2

for j, k ≥ M . This shows that (ϕj) is an L1-Cauchy sequence in S(X, μ, E).
By Lemma 2.5, therefore, there is a subsequence (ϕjk

)k∈N of (ϕj) and an f in
L1(X, μ, E) such that ϕjk

→ f μ-a.e. as k →∞. The proof of (i) shows that there
exists an N ≥ M such that ‖f − ϕjN ‖1 < ε/4, and we get

‖f − fj‖1 ≤ ‖f − ϕjN ‖1 + ‖ϕjN − fjN ‖1 + ‖fjN − fj‖1 < ε for j ≥ N ,

that is, (fj) converges in L1(X, μ, E) to f . �

Elementary properties of integrals

We have seen that the integral on the space of simple functions is continuous,
linear, and, for E = R, also monotone— see Remarks 2.2(g), 2.1(c) and 2.1(f).
We now show that these properties survive the extension of the integral from the
space of simple functions to that of integrable functions.

2.11 Theorem

(i)
∫

X
· dμ : L1(X, μ, E)→ E is linear and continuous, and∣∣∣∫

X

f dμ
∣∣∣ ≤ ∫

X

|f | dμ = ‖f‖1 .

(ii)
∫

X
· dμ : L1(X, μ, R)→ R is a continuous, positive linear functional.

(iii) Suppose F is a Banach space and T ∈ L(E, F ). Then

Tf ∈ L1(X, μ, F ) and T

∫
X

f dμ =
∫

X

Tf dμ

for f ∈ L1(X, μ, E).
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Proof (i) Proposition 2.4 showed that μ-integrable functions form a vector space.
Take f, g ∈ L1(X, μ, E) and α ∈ K. Then there are L1-Cauchy sequences (ϕj)
and (ψj) in S(X, μ, E) such that ϕj → f and ψj → g μ-a.e. By Remark 2.1(c),∫

X

(αϕj + ψj) dμ = α

∫
X

ϕj dμ +
∫

X

ψj dμ for j ∈ N .

The linearity of the integral on L1(X, μ, E) follows by taking the limit j →∞. By
Corollary 2.9, ‖·‖1 is a seminorm on L1(X, μ, E), and Remark 2.1(e) yields∣∣∣∫

X

ϕj dμ
∣∣∣ ≤ ∫

X

|ϕj | dμ = ‖ϕj‖1 for j ∈ N .

By Lemma 2.8, we can take the limit j →∞, and we find∣∣∣∫
X

f dμ
∣∣∣ ≤ ∫

X

|f | dμ = ‖f‖1 .

Continuity now follows from Remark 2.2(f).
The approach just used can be adapted without difficulty to the task of

proving (ii) and (iii). This is left to the reader as an exercise. �

2.12 Corollary

(i) A map f = (f1, . . . , fn) : X → Kn is μ-integrable if and only if its every
coordinate fj is. In that case,∫

X

f dμ =
(∫

X

f1 dμ, . . . ,

∫
X

fn dμ
)

.

(ii) Suppose g, h ∈ RX and define f := g + ih. Then f is in L1(X, μ, C) if and
only if g and h are in L1(X, μ, R). In that case,∫

X

f dμ =
∫

X

g dμ + i

∫
X

h dμ .

(iii) A function f ∈ RX is μ-integrable if and only if f+ and f− are. In that case,∫
X

f dμ =
∫

X

f+ dμ−
∫

X

f− dμ ,

∫
X

|f | dμ =
∫

X

f+ dμ +
∫

X

f− dμ .

Proof (i) “=⇒” Take f ∈ L1(X, μ, Kn). Since prj ∈ L(Kn, K) for j = 1, . . . , n, it
follows from Theorem 2.11(iii) that fj = prj ◦f belongs to L1(X, μ, K). Moreover∫

fj dμ = prj

∫
f dμ, so∫

X

f dμ =
(∫

X

f1 dμ, . . . ,

∫
X

fn dμ
)

.
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“⇐=” For j = 1, . . . , n, we consider the map

bj : K → Kn , y �→ (0, . . . , 0, y, 0, . . . , 0) ,

where y is in the j-th position on the right. Then

bj ∈ L(K, Kn) and f :=
n∑

j=1

bj ◦ fj .

The claim now follows from Theorem 2.11(i) and (iii).
(ii) This follows from (i) and the identification of C with R2.
(iii) For f ∈ RX , we have

f+ = (f + |f |)/2 , f− = (|f | − f)/2 , f = f+ − f− , |f | = f+ + f− .

Hence Theorem 2.11(i) and Lemma 2.8 imply the conclusion. �

2.13 Lemma For f ∈ L1(X, μ, E) and A ∈ A, we have χAf ∈ L1(X, μ, E).

Proof Suppose (ϕj) is an L1-Cauchy sequence in S(X, μ, E) that converges μ-
a.e. to f . Then χAϕj is μ-simple by Remark 1.2(d), and (χAϕj)j∈N obviously
converges μ-a.e. to χAf . By Remark 2.1(f), we have∫

X

|χAϕj − χAϕk| dμ =
∫

X

χA |ϕj − ϕk| dμ ≤
∫

X

|ϕj − ϕk| dμ for j, k ∈ N .

Therefore (χAϕj)j∈N is an L1-Cauchy sequence in S(X, μ, E). This shows that
χAf is μ-integrable. �

For f ∈ L1(X, μ, E) and A ∈ A, we define the μ-integral of f over A by∫
A

f dμ :=
∫

X

χAf dμ .

This is well defined by Lemma 2.13.

2.14 Remarks Suppose f ∈ L1(X, μ, E) and A ∈ A.

(a)
∫

A · dμ : L1(X, μ, E) → E is linear and continuous, and∣∣∣∫
A

f dμ
∣∣∣ ≤ ∫

A

|f | dμ = ‖χAf‖1 .

(b) Suppose B := A |A and ν := μ | B. Then
∫

A f dμ =
∫

A f |Adν.
Proof The proof is simple and is left to the reader (Exercise 1). �
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(c) If E = R and f ≥ 0, the map

A → [0,∞) , A �→
∫

A

f dμ

is a finite measure (see Exercise 11). �

2.15 Lemma Suppose f ∈ L1(X, μ, E) and g ∈ EX satisfy f = g μ-a.e. Then g
also belongs to L1(X, μ, E), and

∫
X

f dμ =
∫

X
g dμ.

Proof Suppose (ϕj) is an L1-Cauchy sequence in S(X, μ, E) such that ϕj → f
μ-a.e. Also let M and N be μ-null sets such that ϕj → f on M c and f = g on N c.
Then (ϕj) converges μ-a.e. to g, because ϕj(x) → g(x) holds for x ∈ (M ∪ N)c.
Therefore g belongs to L1(X, μ, E), and

∫
g dμ = limj

∫
ϕj dμ =

∫
f dμ. �

2.16 Corollary

(i) Suppose f ∈ EX vanishes μ-a.e. Then f is μ-integrable with
∫

X
f dμ = 0.

(ii) Suppose f, g ∈ L1(X, μ, R) satisfy f ≤ g μ-a.e. Then
∫

X
f dμ ≤

∫
X

g dμ.

Proof (i) This follows immediately from Lemma 2.15.
(ii) Theorem 2.11(ii) and Lemma 2.15 imply 0 ≤

∫
X

(g− f) dμ, and therefore∫
X f dμ ≤

∫
X g dμ. �

2.17 Proposition For f ∈ L1(X, μ, E) and α > 0, we have μ
(
[ |f | ≥ α]

)
<∞.

Proof Lemma 2.5 shows there is an L1-Cauchy sequence (ϕj) in S(X, μ, E) and
a μ-measurable set A such that μ(A) ≤ 1 and (ϕj) converges uniformly on Ac to
f . Because |f | is μ-measurable, B := Ac ∩ [ |f | ≥ α] belongs to A. Also there is
an N ∈ N such that |ϕN (x)− f(x)| ≤ α/2 for x ∈ Ac. Therefore

|ϕN (x)| ≥ |f(x)| − |ϕN (x) − f(x)| ≥ α/2 for x ∈ B .

In particular, B is contained in [ϕN 
= 0]. Thus μ(B) ≤ μ
(
[ϕN 
= 0]

)
< ∞, because

ϕN is μ-simple. Since

[ |f | ≥ α] = B ∪
(
A ∩ [ |f | ≥ α]

)
⊂ B ∪A ,

it follows that μ
(
[ |f | ≥ α]

)
≤ μ(B) + 1 < ∞. �

Convergence in L1

For every integrable function f , there is an L1-Cauchy sequence of simple functions
converging to it almost everywhere. We show next that every Cauchy sequence
in L1(X, μ, E) has in fact a subsequence that converges almost everywhere to the
sequence’s L1 limit.
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2.18 Theorem Let (fj) be a sequence in L1(X,μ,E) converging to f in L1(X,μ,E).

(i) There is a subsequence (fjk
)k∈N of (fj) with the following properties:

(α) fjk
→ f μ-a.e. as k →∞.

(β) For every ε > 0, there is an Aε ∈ A with μ(Aε) < ε such that (fjk
)k∈N

converges uniformly on Ac
ε to f .

(ii) The integral
∫

X fj dμ converges to
∫

X f dμ as j →∞.

Proof (i) It suffices to treat the case f = 0 because, if f 
= 0, we may consider
the sequence (fj − f)j∈N.

As in the proof of Lemma 2.5, there is a subsequence (gk) of (fj) such that
‖g	− gm‖1 < 2−2	 for m ≥ � ≥ 0. The limit m →∞ gives ‖g	‖1 ≤ 2−2	 for � ∈ N.
We set B	 := [ |g	| ≥ 2−	]. By Lemma 2.8, Proposition 2.4, and Proposition 1.9,
B	 belongs to A, and we find

2−	μ(B	) ≤
∫

B�

|g	| dμ ≤
∫

X

|g	| dμ = ‖g	‖1 ≤ 2−2	 for � ∈ N

(compare Theorem 2.11(ii)). Therefore μ(B	) ≤ 2−	 for � ∈ N. With An :=⋃∞
k=0 Bn+k, we have μ(An) ≤ 2−n+1, and we find that A :=

⋂∞
n=0 An is a μ-null

set. We verify easily that (gk) converges to 0 uniformly on Ac
n and pointwise on

Ac (in this connection see the proof of Lemma 2.5).

(ii) From Theorem 2.11(i) it follows that

∣∣∣∫
X

fj dμ−
∫

X

f dμ
∣∣∣ ≤ ∫

X

|fj − f | dμ = ‖fj − f‖1 for j ∈ N ,

so the limit of the left-hand side as j →∞ is 0. �

2.19 Corollary For f ∈ L1(X, μ, E),

‖f‖1 = 0 ⇐⇒ f = 0 μ-a.e.

Proof “=⇒” Because ‖f‖1 = 0, the sequence (fj) with fj := 0 for j ∈ N converges
in L1(X, μ, E) to f . By Theorem 2.18 there is thus a subsequence (fjk

)k∈N of (fj)
such that fjk

→ f μ-a.e. as k →∞. Therefore, f = 0 μ-a.e.

“⇐=” By assumption, |f | = 0 μ-a.e.; the claim follows from Corollary 2.16(i). �

We conclude this section by illustrating its concepts and results in an espe-
cially simple situation.
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2.20 Example (the space of summable series) Let X denote either N or Z,
and let H0 be its 0-dimensional Hausdorff measure, or counting measure. The
topology induced by R clearly transforms X into a σ-compact metric space in
which every one-point set is open. Hence the topology of X coincides with P(X):
every subset of X is open. Consequently, every map of X is continuous in E, that
is, C(X, E) = EX .

It follows further that B(X) = P(X), and that H0 is a massive Radon mea-
sure on X . Thus, by Theorem 1.17,

L0(X,H0, E) = C(X, E) = EX .

In addition, H0 has no nonempty null sets. Hence H0-a.e. convergence is the same
as pointwise convergence.

For ϕ ∈ EX , we define the support of ϕ as the set

supp(ϕ) :=
{

x ∈ X ; ϕ(x) 
= 0
}

,

and denote by Cc(X, E) the space of continuous E-valued functions on X with
compact support:

Cc(X, E) :=
{

ϕ ∈ C(X, E) ; supp(ϕ) is compact
}

.

Clearly ϕ ∈ C(X, E) belongs to Cc(X, E) if and only if supp(ϕ) is a finite set. Also,
Cc(X, E) is a vector subspace of C(X, E), and we verify easily that Cc(X, E) =
S(X,H0, E).

For ϕ ∈ Cc(X), it follows from Remark 2.1(b) that∫
X

ϕdH0 =
∑

x∈supp(ϕ)

ϕ(x) . (2.4)

We now set

�1(X, E) :=
{

f ∈ EX ;
∑

x∈X |f(x)| <∞
}

.

For f ∈ �1(X, E) and n ∈ N, let

ϕn(x) :=
{

f(x) if |x| ≤ n ,

0 if |x| > n .

Then ϕn belongs to Cc(X, E), and ϕn → f for n → ∞. For m > n, we get from
(2.4) that

‖ϕn − ϕm‖1 =
∑

n<|x|≤m

|f(x)| .

Therefore (ϕn) is an L1-Cauchy sequence in S(X,H0, E), which shows that f
belongs to L1(X,H0, E). Therefore �1(X, E) ⊂ L1(X,H0, E), and∫

X

f dH0 =
∑
x∈X

f(x) for f ∈ �1(X, E) . (2.5)
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Now let f ∈ L1(X,H0, E). Then there exists an L1-Cauchy sequence (ψj)
in S(X, μ, E) — and therefore in Cc(X, E)— that converges pointwise to f . By
Lemma 2.8, |f | belongs to L1(X,H0, R), and

‖f‖1 =
∫

X

|f | dH0 = lim
j→∞

∫
X

|ψj | dH0 = lim
j→∞

∑
x∈X

|ψj(x)| .

Hence there is a k ∈ N such that∣∣∣∫
X

|f | dH0 −
∑
x∈X

|ψj(x)|
∣∣∣ ≤ 1 for j ≥ k .

This implies ∑
x∈X

|ψj(x)| ≤ 1 +
∫

X

|f | dH0 =: K <∞ for j ≥ k .

Therefore for every m ∈ N we have∑
|x|≤m

|ψj(x)| ≤ K for j ≥ k ,

from which, because ψj → f as j →∞, we obtain∑
|x|≤m

|f(x)| ≤ K for m ∈ N .

Now Theorem II.7.7 implies that f belongs to �1(X, E) (and satisfies ‖f‖1 ≤ K).
Therefore we have shown that

L1(X,H0, E) = �1(X, E) ,

whereupon we obtain from (2.5) the relation3

‖f‖1 =
∑
x∈X

|f(x)| .

Finally, it follows from Theorem 2.10 and Remark 2.2(a) that

�1(X, E) :=
(
�1(X, E), ‖·‖1

)
is a Banach space, the space of summable (E-valued) series.

If E = K, it is customary to write �1(Z) and �1(N) for �1(X, K), and the
abbreviation �1 := �1(N) is also common.4 �

3Note Theorem II.8.9.
4Compare Exercise II.8.6.
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Exercises

1 Suppose A ∈ A, B := A |A, and ν := μ | B. Verify for f ∈ EX that

χAf ∈ L1(X, μ, E)⇐⇒ f |A ∈ L1(A, ν, E) .

For such an f , show that ∫
X

χAf dμ =

∫
A

f |A dν .

2 Suppose (fj) is a sequence in L1(X, μ, E) that converges uniformly to f ∈ EX . Also
suppose μ(X) < ∞. Show that f belongs to L1(X, μ, E), that fj → f in L1(X, μ, E),
and that limj

∫
X

fj dμ =
∫

X
f dμ.

3 Verify that, for f ∈ L1(X, μ, R+),∫
X

f dμ = sup
{ ∫

X

ϕ dμ ; ϕ ∈ S(X,μ, R+), ϕ ≤ f μ-a.e.
}

.

4 Suppose X is an arbitrary nonempty set, a ∈ X, and δa is the Dirac measure with
support in a. Show that L1(X, δa, R) = RX , and calculate

∫
f dδa for RX .

5 Let μF be the Lebesgue–Stieltjes measure of Exercise IX.4.10. Determine L1(R,μF ,K)
and calculate

∫
f dμF for f ∈ L1(R, μF , K).

6 Prove statements (ii) and (iii) of Theorem 2.11.

7 Suppose that f ∈ L0(X, μ, E) is bounded μ-a.e. and that μ(X) < ∞. Prove or
disprove that f is μ-integrable.

8 Suppose (fj) is an increasing sequence in L1(X, μ, R) such that fj ≥ 0, and suppose
it converges μ-a.e. to f ∈ L1(X, μ, R). Then

∫
X

fj dμ ↑
∫

X
f dμ. (This is known as the

monotone convergence theorem in L1).
(Hint: Show that (fj) is a Cauchy sequence in L1(X, μ, R), and identify its limit.)

9 Let (fj) be a sequence in L1(X, μ, R) with fj ≥ 0 μ-a.e. and
∑∞

j=0 fj ∈ L1(X, μ, R).

Show that
∑∞

j=0

∫
fj dμ =

∫ (∑∞
j=0 fj

)
dμ. (Hint: Exercise 8.)

10 Suppose that f ∈ L1(X, μ, R) satisfies f > 0 μ-a.e. Show that
∫

A
f dμ > 0 for every

A ∈ A such that μ(A) > 0.

11 Given f ∈ L1(X, μ, R) with f ≥ 0, define ϕf (A) :=
∫

A
f dμ for A ∈ A. Prove:

(a) (X, ϕf ,A) is a finite measure space.

(b) Nμ ⊂ Nϕf .

(c) Nμ = Nϕf if f > 0 μ-a.e.

In particular, show that (X,A, ϕf ) is a complete finite measure space if f > 0 μ-a.e.
(Hints: (a) Exercise 9. (b) Exercise 10.)

12 Suppose f ∈ L1(X, μ, R) satisfies f > 0 μ-a.e. and take g ∈ L0(X, μ, R). Show that
g is ϕf -integrable if and only if gf is μ-integrable. In this case, show that∫

X

g dϕf =

∫
X

fg dμ .
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13 For f ∈ L1(X, μ, R+), prove the Chebyshev inequality:

μ
(
[f ≥ α]

)
≤ 1

α

∫
X

f dμ for α > 0 .

14 Suppose μ(X) <∞ and let I be a perfect interval in R. Also suppose ϕ ∈ C1(I,R)
is convex. Prove Jensen’s inequality, which says that if f ∈ L1(X, μ, R) satisfies f(X) ⊂ I
and ϕ ◦ f ∈ L1(X, μ, R),

ϕ
(
−
∫

X

f dμ
)
≤ −

∫
X

ϕ ◦ f dμ , where −
∫

X

f dμ :=
1

μ(X)

∫
X

f dμ .

(Hints: Show that α := −∫ f dμ lies in I , so the bound ϕ(y) ≥ ϕ(α)+ϕ′(α)(y−α) applies).

15 Suppose f ∈ L1(X, μ, E). Show that for every ε > 0 there is a δ > 0 such that∣∣∫
A

f dμ
∣∣ < ε for all A ∈ A with μ(A) < δ. (Hint: Consider Theorem 2.10.)



3 Convergence theorems

Lebesgue integration theory stands out in contrast to the Riemann theory of Chap-
ter VI in that it contains very general and versatile criteria for the commutability
of limit taking and integration. Thus the Bochner–Lebesgue integral is better
suited to the needs of analysis than the (simpler) Riemann integral.

As usual, we suppose in the entire section that
• (X,A, μ) is a complete σ-finite measure space;

E = (E, | · |) is a Banach space.

Integration of nonnegative R-valued functions

In many applications of integration in mathematics, the natural sciences and other
fields, real-valued functions play a prominent role. As a rule, one is interested in
such cases in integrable functions, which is to say in finite integrals. However,
we have already mentioned that the theory gains substantially in simplicity and
elegance if it is made to encompass integrals over R-valued functions, ruling out in-
finite values neither for functions nor for integrals. As examples of results that gain
from such an inclusive treatment we mention the monotone convergence theorem
(Exercise 2.8 and Theorem 3.4) and the Fubini–Tonelli theorem on interchange-
ability of integrals (Theorem 6.11).

Because of the importance of the real-valued case, and because it offers useful
additional results that rely on the total ordering of R and R, we will now develop, to
complement the Bochner–Lebesgue integral, an integration theory for R-valued —
in particular, real-valued—functions.1

According to Theorem 1.12, there is for every f ∈ L0(X, μ, R+) an increasing
sequence (fj) in S(X, μ, R+) that converges pointwise to f . It is natural to define
the integral of f as the limit in R+ of the increasing sequence (

∫
X

fj dμ)j∈N. This
makes sense if we can ensure that the limit does not depend on the choice of (fj).

3.1 Lemma Suppose ϕj , ψ ∈ S(X, μ, R+) for j ∈ N. Also suppose (ϕj) is
increasing and ψ ≤ limj ϕj . Then∫

X

ψ dμ ≤ lim
j

∫
X

ϕj dμ .

Proof Let
∑m

j=0 αjχAj be the normal form of ψ and fix λ > 1. For k ∈ N, define
Bk := [λϕk ≥ ψ]. Because (ϕk) is increasing and λ > 1, we have Bk ⊂ Bk+1 for

1The theory of R-valued functions is the centerpiece of practically all textbooks on integration
theory. It is in some ways simpler than the more general Bochner–Lebesgue theory, and suffices
if one is only interested in real- and complex-valued functions, but it is inadequate for the needs
of modern higher analysis, which is why we opted for a more general approach.
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k ∈ N and
⋃

k∈N Bk = X . The continuity of measures from below then implies∫
X

ψ dμ =
m∑

j=0

αjμ(Aj) = lim
k

m∑
j=0

αjμ(Aj ∩Bk) = lim
k

∫
X

ψχBk
dμ .

By the definition of Bk, we have λϕk ≥ ψχBk
, and we obtain∫

X

ψ dμ = lim
k

∫
X

ψχBk
dμ ≤ λ lim

k

∫
X

ϕk dμ .

Taking the limit λ ↓ 1 now finishes the proof. �

3.2 Corollary Suppose (ϕj) and (ψj) are increasing sequences in S(X, μ, R+)
such that limj ϕj = limj ψj . Then

lim
j

∫
X

ϕj dμ = lim
j

∫
X

ψj dμ in R+ .

Proof By assumption, ψk ≤ limj ψj = limj ϕj for k ∈ N. By Lemma 3.1, we get∫
X

ψk dμ ≤ lim
j

∫
X

ϕj dμ for k ∈ N ,

and, as k →∞,

lim
k

∫
X

ψk dμ ≤ lim
j

∫
X

ϕj dμ .

Interchanging (ϕj) and (ψj), we obtain the opposite inequality, and hence the
desired equality. �

Suppose (ϕj) is an increasing sequence in S(X, μ, R+) that converges point-
wise to f ∈ L0(X, μ, R+). We call∫

X

f dμ := lim
j

∫
X

ϕj dμ

the (Lebesgue) integral of f over X with respect to the measure μ. For A ∈ A,∫
A

f dμ :=
∫

X

χAf dμ

is the (Lebesgue) integral of f over the measurable set A.

3.3 Remarks (a)
∫

A f dμ is well defined for all f ∈ L0(X, μ, R+) and A ∈ A.
Proof This follows from Theorem 1.12 and Corollary 3.2. �

(b) For f, g ∈ L0(X, μ, R+) such that f ≤ g μ-a.e., we have
∫

X
f dμ ≤

∫
X

g dμ.
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(c) For f ∈ L0(X, μ, R+), these statements are equivalent:
(i)

∫
X f dμ = 0.

(ii) [f > 0] is a μ-null set.
(iii) f = 0 μ-a.e.
Proof “(i)=⇒(ii)” We set A := [f > 0] and Aj := [f > 1/j] for j ∈ N×. Then (Aj) is an
increasing sequence in A such that A =

⋃
j Aj . Also χAj ≤ jf . It follows that

0 ≤ μ(Aj) =

∫
X

χAj dμ ≤ j

∫
X

f dμ = 0 for j ∈ N× ,

and continuity from below implies μ(A) = limj μ(Aj) = 0.

“(ii)=⇒(iii)” is clear.

“(iii)=⇒(i)” Let N be a μ-null set with f(x) = 0 for x ∈ Nc. Then2 fχNc = 0 and
fχN ≤ ∞χN . Together with the definition of the integral (see also (d) below), this yields

0 ≤
∫

X

f dμ =

∫
X

fχN dμ +

∫
X

fχNc dμ ≤ ∞μ(N) = 0 . �

(d) Suppose f, g ∈ L0(X, μ, R+) and α ∈ [0,∞]. Then∫
X

(αf + g) dμ = α

∫
X

f dμ +
∫

X

g dμ .

Proof We consider the case α =∞ and g = 0. Letting ϕj := jχ[f>0] for j ∈ N, we have
fj ↑ ∞f , and hence ∫

X

(∞f) dμ =

{
0 if μ

(
[f > 0]

)
= 0 ,

∞ if μ
(
[f > 0]

)
> 0 .

From (c), it now follows that
∫

X
(∞f) dμ =∞

∫
X

f dμ. The remaining statements follow
easily from the definition of the integral and are left as exercises. �

(e) (i) Suppose f ∈ L0(X, μ, R+) has a finite Lebesgue integral
∫

X f dμ. Then f

belongs to L1(X, μ, R+) and the Lebesgue integral of f over X coincides with the
Bochner–Lebesgue integral.

(ii) For f ∈ L1(X, μ, R+), the Lebesgue integral
∫

X
f dμ is finite and agrees

with the Bochner–Lebesgue integral.
Proof (i) Theorem 1.12 guarantees the existence of a sequence (ϕj) in S(X,μ, R+)
such that ϕj ↑ f . By assumption, there exists for every ε > 0 an N ∈ N such that∫

X
f dμ−

∫
X

ϕj dμ < ε for j ≥ N . For k ≥ j ≥ N , the finiteness of
∫

X
f dμ now gives∫

X

|ϕk − ϕj | dμ =

∫
X

(ϕk − ϕj) dμ ≤
∫

X

(f − ϕj) dμ =

∫
X

f dμ−
∫

X

ϕj dμ < ε .

Therefore (ϕj) is an L1-Cauchy sequence in S(X,μ, R+). This shows that f belongs to
L1(X, μ, R+). The second statement is a consequence of Exercise 2.8.

(ii) This follows from Theorem 1.12 and Exercise 2.8. �

2We recall Convention (2.1).
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(f) For every f ∈ L0(X, μ, R+), we have∫
X

f dμ = sup
{∫

X

ϕdμ ; ϕ ∈ S(X, μ, R+) with ϕ ≤ f μ-a.e.
}

. �

The monotone convergence theorem

We now prove a significant strengthening of the monotone convergence theorem
stated in Exercise 2.8 for functions in L1(X, μ, R). We will see that for increasing
sequences in L0(X, μ, R+), Lebesgue integration commutes with taking the limit.

3.4 Theorem (monotone convergence) Suppose (fj) is an increasing sequence
in L0(X, μ, R+). Then∫

X

lim
j

fj dμ = lim
j

∫
X

fj dμ in R+ .

Proof (i) Set f := limj fj. By Proposition 1.11, f belongs to L0(X, μ, R+), and
fj ≤ f for j ∈ N. By Remark 3.3(b), then, we have

∫
fj dμ ≤

∫
f dμ for j ∈ N,

and hence limj

∫
fj dμ ≤

∫
f dμ.

(ii) Suppose ϕ ∈ S(X, μ, R+) with ϕ ≤ f . Take λ > 1 and set Aj := [λfj ≥ ϕ]
for j ∈ N. Then (Aj) is an increasing sequence in A with

⋃
j Aj = X and

λfj ≥ ϕχAj . Moreover, ϕχAj ↑ ϕ, so∫
X

ϕdμ = lim
j

∫
X

ϕχAj dμ ≤ λ lim
j

∫
X

fj dμ .

Taking the limit λ ↓ 1 we get
∫

X
ϕdμ ≤ limj

∫
X

fj dμ for every μ-simple function ϕ
with ϕ ≤ f . By Remark 3.3(f), it follows that

∫
X f dμ ≤ limj

∫
X fj dμ, and we are

done. �

3.5 Corollary Suppose (fj) is a sequence in L0(X, μ, R+). Then

∞∑
j=0

∫
X

fj dμ =
∫

X

( ∞∑
j=0

fj

)
dμ in R+ .

Proof This follows from Corollary 1.13(iii) and Theorem 3.4. �

3.6 Remarks (a) The conclusion of Theorem 3.4 can fail if the sequence is not
increasing.
Proof Take fj := (1/j)χ[0,j] for j ∈ N×. Then (fj) is a (nonincreasing) sequence in
S(R, λ1, R+) that converges uniformly to 0. But the sequence

∫
fj dλ1 does not converge

to 0, because
∫

fj dλ1 = 1 for j ∈ N×. �
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(b) Suppose aj,k ∈ R+ for j, k ∈ N. Then

∞∑
j=0

∞∑
k=0

ajk =
∞∑

k=0

∞∑
j=0

ajk .

Proof We set (X, μ) := (N,H0) and define fj : X → R+ by fj(k) := ajk for j, k ∈ N.
Then (fj) is a sequence in L0(X,H0, R+) (see Example 2.20), and the claim follows from
Corollary 3.5. �

For nonnegative double series, this result is stronger than Theorem II.8.10,
because it is no longer assumed that

∑
jk ajk is summable.

Fatou’s lemma

We now prove a generalization of the monotone convergence theorem for arbitrary
(not necessarily increasing) sequences in L0(X, μ, R+).

3.7 Theorem (Fatou’s lemma) For every sequence (fj) in L0(X, μ, R+), we have∫
X

(
lim

j
fj

)
dμ ≤ lim

j

∫
X

fj dμ in R+ .

Proof Set gj := infk≥j fk. By Proposition 1.11, gj belongs to L0(X, μ, R+), and
the increasing sequence (gj) converges to limj fj . From Theorem 3.4 we then get
limj

∫
gj dμ =

∫ (
limj fj

)
dμ. Also gj ≤ fk, and therefore

∫
gj dμ ≤

∫
fk dμ for

k ≥ j. It follows that
∫

gj dμ ≤ infk≥j

∫
fk dμ, and taking the limit j → ∞

finishes the proof. �

3.8 Corollary Suppose (fj) is a sequence in L0(X, μ, R+) and g ∈ L0(X, μ, R+)
satisfies

∫
X

g dμ <∞ with fj ≤ g μ-a.e. for j ∈ N. Then3

lim
j

∫
X

fj dμ ≤
∫

X

(
lim

j
fj

)
dμ in R+ .

Proof Suppose N is a μ-null set such that fj(x) ≤ g(x) for x ∈ N c and j ∈ N.
Then fj ≤ g +∞χN on X , and

∫
X(g +∞χN ) dμ =

∫
X g dμ (see Remarks 3.3(c)

and (d)). Therefore we can assume without losing generality that fj ≤ g for j ∈ N.
We set gj := g − fj and obtain from Fatou’s lemma that∫

X

(
lim

j
gj

)
dμ =

∫
X

g dμ −
∫

X

(
lim

j
fj

)
dμ ≤ lim

j

∫
X

gj dμ =
∫

X

g dμ− lim
j

∫
X

fj dμ .

The claim now follows because
∫

X
g dμ <∞. �

3The assumption
∫

X
g dμ < ∞ cannot be relaxed (see Exercise 1).
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As a first application, we prove a fundamental characterization of integrable
functions.

3.9 Theorem For f ∈ L0(X, μ, E), the following are equivalent:
(i) f ∈ L1(X, μ, E);
(ii) |f | ∈ L1(X, μ, R);
(iii)

∫
X
|f | dμ < ∞.

If these conditions are satisfied, then
∣∣∫

X f dμ
∣∣ ≤ ‖f‖1 < ∞.

Proof “(i)=⇒(ii)” follows from Lemma 2.8, and “(ii)=⇒(iii)” is clear. “(iii)=⇒(ii)”
was proved in Remark 3.3(e).

“(ii)=⇒(i)” Suppose (ϕj) is a sequence in S(X, μ, E) converging to f μ-a.e. Set
Aj := [ |ϕj | ≤ 2 |f | ] and fj := ϕjχAj for j ∈ N. Theorem 1.7 and Proposition 1.9
show that Aj belongs to A. Thus (fj) is a sequence in S(X, μ, E).

Take N ∈ A such that μ(N) = 0 and ϕj(x) → f(x) for x ∈ N c. If f(x) 
= 0
for some x ∈ N c, there exists k := k(x) ∈ N such that |ϕj(x) − f(x)| ≤ 3 |f(x)|
for j ≥ k. Therefore x ∈ N c ∩ [ |f | > 0] belongs to Aj for j ≥ k(x). This implies
fj(x) = ϕj(x) for j ≥ k(x), and therefore fj(x) → f(x) for x ∈ N c ∩ [ |f | > 0].
If f(x) = 0 for some x ∈ N c, then likewise fj(x) → f(x) for j → ∞. Because
x belongs to Ak for some k ∈ N, we find fk(x) = ϕk(x) = 0 because |ϕk(x)| ≤
2 |f(x)| = 0. For x /∈ Ak, we likewise have fk(x) = χAk

(x)ϕk(x) = 0. This implies
|f − fj | → 0 μ-a.e. Now clearly |f − fj| ≤ 3 |f | for j ∈ N, so Corollary 3.8 implies

lim
j

∫
X

|f − fj| dμ ≤
∫

X

lim
j
|f − fj| dμ = 0 .

Therefore we can find for every ε > 0 an m ∈ N such that
∫
|f − fj | dμ < ε/2 for

j ≥ m. It follows that, for j, k ∈ N with j, k ≥ m,

‖fj − fk‖1 =
∫

X

|fj − fk| dμ ≤
∫

X

|fj − f | dμ +
∫

X

|f − fk| dμ < ε .

Hence (fj) is an L1-Cauchy sequence in S(X, μ, E), and f is μ-integrable.
The last statement follows from Theorem 2.11(i). �

3.10 Conclusions (a) Let f ∈ L0(X, μ, E), and suppose there is a sequence (fj)
in L1(X, μ, E) such that fj → f μ-a.e. and limj ‖fj‖1 < ∞. Then f belongs to
L1(X, μ, E), and ‖f‖1 ≤ limj ‖fj‖1.
Proof By Lemma 2.15, we can assume that (fj) converges to f on all of X. Using
Fatou’s lemma, we obtain∫

X

|f | dμ =

∫
X

lim
j
|fj | dμ ≤ lim

j

∫
X

|fj | dμ <∞ ,

and the claim follows by Theorem 3.9. �
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(b) Let (fj) be a sequence in L1(X, μ, R+). Suppose there is an f ∈ L1(X, μ, R)
such that

fj → f μ-a.e. and
∫

X

fj dμ →
∫

X

f dμ (j →∞) .

Then4 (fj) converges in L1(X, μ, R) to f .
Proof We can assume here too that (fj) converges to f on all of X. Then f ≥ 0 and
|fj − f | ≤ fj + f . From Theorem 3.7, it follows that

2

∫
X

f dμ =

∫
X

lim
j

(
fj + f − |fj − f |

)
dμ ≤ lim

j

∫
X

(
fj + f − |fj − f |

)
dμ

= 2

∫
X

f dμ− lim
j

∫
X

|fj − f | dμ .

According to Theorem 3.9,
∫

X
f dμ is finite, and we find limj

∫
X
|fj − f | dμ = 0. �

Integration of R-valued functions

The decomposition of an R-valued function into its positive and negative parts
allows us also to extend the Lebesgue integral to measurable R-valued functions
admitting negative values. We say that f ∈ L0(X, μ, R) is Lebesgue integrable
with respect to μ if

∫
X f+ dμ < ∞ and

∫
X f− dμ < ∞. In this case,∫

X

f dμ :=
∫

X

f+ dμ−
∫

X

f− dμ

is called the (Lebesgue) integral over X with respect to the measure μ.

3.11 Remarks (a) For f ∈ L0(X, μ, R), these three statements are equivalent:
(i) f is Lebesgue integrable with respect to μ.
(ii)

∫
X
|f | dμ < ∞;

(iii) There exists g ∈ L1(X, μ, R) such that |f | ≤ g μ-a.e.
Proof “(i)=⇒(ii)” This is a consequence of |f | = f++ f−.

“(ii)=⇒(iii)” Theorem 3.9 says that |f | ∈ L1(X, μ, R). Hence (iii) holds with g = |f |.
“(iii)=⇒(i)” This follows from f+ ∨ f− ≤ |f | ≤ g and Remark 3.3(b). �

(b) Suppose f ∈ L0(X, μ, R). Then f is Lebesgue integrable with respect to μ
if and only if f is μ-integrable. In that case, the Lebesgue integral of f over X
equals the Bochner–Lebesgue integral. In other words, if we consider real-valued
maps, the definition of Lebesgue integrability of R-valued functions is consistent
with the definition from Section 2.5

Proof This follows from (a), Theorem 3.9, and Remark 3.3(e). �

4Compare the statement of Theorem 2.18.
5See also Corollary 2.12(iii).
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(c) If f ∈ L0(X, μ, R) is Lebesgue integrable with respect to μ, then [ |f | = ∞] is
a μ-null set.
Proof The assumption implies that A := [ |f | = ∞] is μ-measurable and also that∫

X
|f | dμ <∞. Further we have∞χA ≤ |f |, and we find by Remarks 3.3(b) and (d) that

∞μ(A) =

∫
X

(∞χA) dμ ≤
∫

X

|f | dμ <∞ .

Therefore μ(A) = 0. �

Lebesgue’s dominated convergence theorem

We now prove an extremely versatile and practical theorem about exchanging
limits and integrals, proved by Henri Lebesgue. It is one of the cornerstones of
Lebesgue integration theory and has countless applications.

3.12 Theorem (dominated convergence6) Let (fj) be a sequence in L1(X, μ, E)
and suppose that there exists g ∈ L1(X, μ, R) such that

(a) |fj | ≤ g μ-a.e. for j ∈ N.

Suppose also that, for some f ∈ EX ,

(b) fj → f μ-a.e. for j →∞.

Then f is μ-integrable, fj → f in L1(X, μ, E) , and

∫
X

fj dμ→
∫

X

f dμ in E .

Proof Define
gj := sup

k,	≥j
|fk − f	|

for j ∈ N. By Proposition 1.11, (gj) is a sequence in L0(X, μ, R+) that converges
μ-a.e. to 0. Also |fk − f	| ≤ 2g μ-a.e. for k, � ∈ N, and hence |gj | ≤ 2g μ-a.e. for
j ∈ N. From Corollary 3.8 it follows that

0 ≤ lim
j

∫
X

gj dμ ≤
∫

X

lim
j

gj dμ = 0 .

Therefore
(∫

X
gj dμ

)
j∈N

is a (decreasing) null sequence. This means that for every
ε > 0 there exists N ∈ N such that∫

X

|fk − f	| dμ ≤
∫

X

sup
k,	≥j

|fk − f	| dμ < ε for k, � ≥ j ≥ N .

Hence (fj) is a Cauchy sequence in L1(X, μ, E), and the claim follows from the
completeness of L1(X, μ, E) and Theorem 2.18. �

6Also referred to as ”Lebesgue’s theorem”.
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3.13 Remark The example in Remark 3.6(a) shows that the existence of an
integrable dominating function g is essential for Theorem 3.12. �

As a first application of the dominated convergence theorem, we prove a
simple criterion for the integrability of a measurable function.

3.14 Theorem (integrability criterion) Suppose f ∈L0(X,μ,E) and g∈L1(X,μ,R)
satisfy |f | ≤ g μ-a.e. Then f belongs to L1(X, μ, E).

Proof Let (ϕj) be a sequence in S(X, μ, E) such that ϕj → f μ-a.e. as j →∞.
Set Aj := [ |ϕj | ≤ 2g] and fj := χAj ϕj for j ∈ N. Then (fj) is a sequence in
S(X, μ, E) that converges μ-a.e. to f (see the proof of Theorem 3.9). Because
|fj | ≤ 2g for j ∈ N, the claim follows from the dominated convergence theorem. �

3.15 Corollary

(i) Take f ∈ L1(X, μ, E), g ∈ L0(X, μ, K), and α ∈ [0,∞) with |g| ≤ α μ-a.e.
Then gf is μ-integrable, and∣∣∣∫

X

gf dμ
∣∣∣ ≤ α ‖f‖1 .

(ii) Take f ∈ L0(X, μ, E) and α ∈ [0,∞). If |f | ≤ α μ-a.e. and μ(X) < ∞, then
f is μ-integrable with ∣∣∣∫

X

f dμ
∣∣∣ ≤ ‖f‖1 ≤ αμ(X) .

(iii) Let X be a σ-compact metric space and μ a complete Radon measure on X .
Suppose that f ∈ C(X, E) and that K ⊂ X is compact. Then χKf belongs
to L1(X, μ, E), and ∣∣∣∫

K

f dμ
∣∣∣ ≤ ‖χKf‖∞ μ(K) .

Proof (i) By Remark 1.2(d), gf is μ-measurable. Also |gf | ≤ α |f | μ-a.e., and
α |f | is μ-integrable. Hence Theorem 3.14 shows that gf is μ-integrable; Theo-
rem 2.11(i) and Corollary 2.16(ii) imply∣∣∣∫

X

gf dμ
∣∣∣ ≤ ∫

X

|gf | dμ ≤
∫

X

α |f | dμ = α ‖f‖1 .

(ii) Since μ(X) is finite, χX belongs to L1(X, μ, R). By Theorem 1.7(i), |f |
is μ-measurable. Therefore (i) shows (with g := |f | and f := χX) that |f | is
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μ-integrable and that ∫
X

|f | dμ ≤ α ‖χX‖1 = αμ(X) <∞ .

The claim now follows from Theorem 3.9.
(iii) According to Theorem 1.17, f is μ-measurable. Moreover χK is μ-simple,

because μ(K) is finite by Remark IX.5.3(a). Therefore χKf is μ-measurable, and
the claim follows from (ii) with α := maxx∈K |f(x)|. �

When dealing with a function not defined on all of X , it is occasionally useful
in the theory of integration to extend its definition by setting it equal to 0 where
it is not already defined. Measurability and integrability questions can then be
explored with respect to the measure space (X,A, μ). To that end, we set forth
the following conventions.

For f : dom(f) ⊂ X → E, define the trivial extension f̃ ∈ EX of f to X by

f̃(x) :=
{

f(x) if x ∈ dom(f) ,

0 if x /∈ dom(f) .

We say that f is μ-measurable or μ-integrable if f̃ belongs to L0(X, μ, E) or
L1(X, μ, E), respectively. If f is μ-integrable, we set

∫
X f dμ :=

∫
X f̃ dμ.

3.16 Theorem (termwise integration of series) Suppose (fj) is a sequence in
L1(X, μ, E) such that

∑∞
j=0

∫
X
|fj| dμ < ∞. Then

∑
j fj converges absolutely

μ-a.e.,
∑

j fj is μ-integrable, and∫
X

( ∞∑
j=0

fj

)
dμ =

∞∑
j=0

∫
X

fj dμ .

Proof (i) By Theorem 1.7(i) and Corollary 1.13(iii), the R-valued function g :=∑∞
j=0 |fj| is μ-measurable. Corollary 3.5 implies∫

X

g dμ =
∞∑

j=0

∫
X

|fj | dμ <∞ .

It therefore follows from Remarks 3.11(a) and (c) that [g = ∞] is a μ-null set,
which proves the absolute convergence of

∑
j fj for almost every x ∈ X .

(ii) Set gk :=
∑k

j=0 fj and f(x) :=
∑∞

j=0 fj(x) for x ∈ [g <∞]. The sequence
(gk) converges μ-a.e. to f̃ and we have the bounds |gk| ≤

∑k
j=0 |fj | ≤ g. By the

dominated convergence theorem, f̃ belongs to L1(X, μ, E) and
∞∑

j=0

∫
X

fj dμ = lim
k→∞

∫
X

gk dμ =
∫

X

lim
k→∞

gk dμ =
∫

X

( ∞∑
j=0

fj

)
dμ . �
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Parametrized integrals

As another application of the dominated convergence theorem, we investigate the
continuity and differentiability of parametrized integrals.

3.17 Theorem (continuity of parametrized integrals) Suppose M is a metric space
and f : X ×M → E satisfies

(a) f( · , m) ∈ L1(X, μ, E) for every m ∈M ;

(b) f(x, · ) ∈ C(M, E) for μ-almost every x ∈ X ;

(c) there exists g ∈ L1(X, μ, E) such that |f(x, m)| ≤ g(x) for (x, m) ∈ X ×M .

Then

F : M → E , m �→
∫

X

f(x, m)μ(dx)

is well defined and continuous.

Proof The first statement follows immediately from (a). Suppose m ∈ M , and
let (mj) be a sequence in M converging to m. We set fj := f( · , mj) for j ∈ N.
From (b), it follows that fj → f μ-a.e. Therefore by (a) and (c), we can apply
the dominated convergence theorem to the sequence (fj), and we find

lim
j→∞

F (mj) = lim
j→∞

∫
X

fj dμ =
∫

X

lim
j→∞

fj dμ =
∫

X

f(x, m)μ(dx) = F (m) .

The claim now follows from Theorem III.1.4. �

3.18 Theorem (differentiability of parametrized integrals) Suppose U is open
in Rn, or U ⊂ K is perfect and convex, and suppose f : X × U → E satisfies

(a) f( · , y) ∈ L1(X, μ, E) for every y ∈ U ;

(b) f(x, · ) ∈ C1(U, E) for μ-almost every x ∈ X ;

(c) there exists g ∈ L1(X, μ, R) such that∣∣∣ ∂

∂yj
f(x, y)

∣∣∣ ≤ g(x) for (x, y) ∈ X × U and 1 ≤ j ≤ n .

Then

F : U → E , y �→
∫

X

f(x, y)μ(dx)

is continuously differentiable and

∂jF (y) =
∫

X

∂

∂yj
f(x, y)μ(dx) for y ∈ U and 1 ≤ j ≤ n .
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Proof Take y ∈ U and j ∈ {1, . . . , n}. Let (hk) be a null sequence in K such that
hk 
= 0 and y + hkej ∈ U for k ∈ N. Finally, set

fk(x) :=
f(x, y + hkej)− f(x, y)

hk
for x ∈ X and k ∈ N ,

The mean value theorem (Theorem VII.3.9) then gives

|fk(x)| ≤ sup
z∈U

∣∣∣ ∂

∂yj
f(x, z)

∣∣∣ ≤ g(x) μ-a.e.

Because (fk) converges μ-a.e. to ∂f( · , y)
/
∂yj, it follows from Theorem 3.12 that

lim
k→∞

F (y + hkej)− F (y)
hk

= lim
k→∞

∫
X

fk dμ =
∫

X

∂

∂yj
f(x, y)μ(dx) .

Therefore F is partially differentiable, and ∂jF (y) =
∫

X

(
∂
/
∂yj

)
f(x, y)μ(dx). The

result now follows from Theorems 3.17 and VII.2.10. �

3.19 Corollary Suppose U is open in C, and f : X × U → C satisfies

(a) f( · , z) ∈ L1(X, μ, C) for every z ∈ U ;

(b) f(x, · ) ∈ Cω(U, C) for μ-almost every x ∈ X ;

(c) there is a g ∈ L1(X, μ, R) such that |f(x, z)| ≤ g(x) for (x, z) ∈ X × U .

Then

F : U → C , z �→
∫

X

f(x, z)μ(dx)

is holomorphic, and

F (n)(z) =
∫

X

∂n

∂zn
f(x, z)μ(dx) (3.1)

for every n ∈ N.

Proof Take z0 ∈ U and r > 0 such that D(z0, r) ⊂ U . Cauchy’s derivative
formula (Corollary VIII.5.12) gives

∂

∂z
f(x, z) =

1
2πi

∫
∂D(z,r)

f(x, ζ)
(ζ−z)2

dζ for μ-almost every x ∈ X and z ∈ D(z0, r) ,

and we find from (c) and Proposition VIII.4.3(iv) that∣∣∣ ∂

∂z
f(x, z)

∣∣∣ ≤ g(x)
r

for μ-almost every x ∈ X and z ∈ D(z0, r) .

Theorem 3.18 now shows that F |D(z0, r) belongs to C1
(
D(z0, r), C

)
and satisfies

F ′(z) =
∫

X

∂

∂z
f(x, z)μ(dx) for z ∈ D(z0, r) .

Holomorphy is a local property, so Theorem VIII.5.11 implies that F belongs to
Cω(U, C). The validity of (3.1) now follows from a simple induction argument. �
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Exercises

1 Find a measure space (X,A, μ), a sequence (fj) in L0(X, μ, R+), and a function g in
L0(X, μ, R+) such that

fj ≤ g for j ∈ N and lim
j

∫
X

fj dμ >

∫
X

(
lim

j
fj

)
dμ .

2 Suppose f ∈ L1(X, μ, E) and ε > 0. Show that there exists A ∈ A such that

μ(A) <∞ and
∣∣∣∫

X

f dμ−
∫

B

f dμ
∣∣∣ < ε

for every B ∈ A with B ⊃ A.

3 Suppose (fj) is a sequence in L1(X, μ, E) converging in measure to f ∈ L0(X, μ, E).
Also suppose there is g ∈ L1(X, μ, R) such that |fj | ≤ g μ-a.e. for all j ∈ N. Then f
belongs to L1(X, μ, E),

fj → f in L1(X, μ, E) , and

∫
X

fj dμ→
∫

X

f dμ in E .

(Hint: If
(∫

X
fj dμ

)
does not converge to

∫
X

f dμ, there is a subsequence (fjk )k∈N and a
δ > 0 such that

‖fjk − f‖1 ≥ δ for k ∈ N . (3.2)

Use Exercise 1.15 and Theorem 3.12 to derive a contradiction from (3.2).

4 Let f, g ∈ L0(X, μ, R) be Lebesgue integrable functions. Prove:

(i) If f ≤ g μ-a.e., then
∫

X
f dμ ≤

∫
X

g dμ.

(ii)
∣∣∣∫

X

f dμ
∣∣∣ ≤ ∫

X

|f | dμ .

(iii) f ∧ g and f ∨ g are Lebesgue integrable, and

−
∫

X

(
|f |+ |g|

)
dμ ≤

∫
X

(f ∧ g) dμ ≤
∫

X

(f ∨ g) dμ ≤
∫

X

(
|f |+ |g|

)
dμ .

5 Suppose the sequence (fj) in L0(X, μ, R+) converges in measure to f ∈ L0(X, μ, R+).
Prove that ∫

X

f dμ ≤ lim
j

∫
X

fj dμ .

6 For x ∈ Rn\{0}, define

kn(x) :=

⎧⎨⎩
x+ if n = 1 ,

log |x| if n = 2 ,

|x|2−n if n ≥ 3 .

Further suppose U ⊂ Rn is open and nonempty, that A ∈ L(n) satisfies A ⊂ Uc, and
that f ∈ Cc(Rn).

(a) The map A→ R, x �→ f(x)kn(|y − x|) is λn-integrable for every y ∈ U .

(b) The map U → R, y �→
∫

A
f(x)kn(|y − x|)λn(dx) is smooth and harmonic.

7 Verify that

(i) L1(Rn, λn, E) ∩BC(Rn, E) � C0(Rn, E);

(ii) L1(Rn, λn, E) ∩BUC(Rn, E) ⊆ C0(Rn, E).



4 Lebesgue spaces

We saw in Corollary VI.7.4 that the space of continuous K-valued functions over a
compact interval I is not complete with respect to the L2 norm. The framework of
Lebesgue integration theory now gives us the means to complete the inner product
space

(
C(I, K), ( · | · )2

)
: we will construct a vector space L2 and an extension of

( · | · )2 onto L2×L2 — also denoted by ( · | · )2 — such that
(
L2, ( · | · )2

)
is a Hilbert

space containing C(I, K) as a dense subspace.

This construction can be generalized in a natural way, leading to a new family
of Banach spaces, the Lebesgue Lp-spaces. These are of great importance in many
areas of mathematics.

In the following, we suppose that

• (X,A, μ) is a complete σ-finite measure space;
E = (E, | · |) is a Banach space.

Essentially bounded functions

We say that a function f ∈ L0(X, μ, E) is μ-essentially bounded if there exists
α ≥ 0 such that μ

(
[ |f | > α]

)
= 0. The μ-essential supremum of f is then1

‖f‖∞ := ess-sup
x∈X

|f(x)| := inf
{

α ≥ 0 ; μ
(
[ |f | > α]

)
= 0

}
.

4.1 Remarks (a) Let f ∈ L0(X, μ, E). There is equivalence between:

(i) f is μ-essentially bounded;

(ii) ‖f‖∞ < ∞;

(iii) f is bounded μ-a.e.
Proof “(i)=⇒(ii)=⇒(iii)” is clear.

“(iii)=⇒(i)” Suppose N is a μ-null set and take α ≥ 0 such that |f(x)| ≤ α for
x ∈ Nc. Then [ |f | > α] ⊂ N , and the completeness of μ implies that μ

(
[ |f | > α]

)
= 0. �

(b) Suppose f ∈ L0(X, μ, E). Then |f | ≤ ‖f‖∞ μ-a.e.
Proof The case ‖f‖∞ =∞ is clear. If ‖f‖∞ <∞, then [ |f | > ‖f‖∞ + 2−j ] is a μ-null
set for every j ∈ N, and hence so is the set [ |f | > ‖f‖∞] =

⋃
j∈N

[ |f | > ‖f‖∞ + 2−j ]. �

(c) Suppose f and g are μ-essentially bounded and α ∈ K. Then αf + g is also
μ-essentially bounded, and

‖αf + g‖∞ ≤ |α| ‖f‖∞ + ‖g‖∞ .

1Note that now ‖·‖∞ has two meanings, namely, the essential supremum of a measurable
function and the supremum norm of a bounded function. The two values need not be the same;
see (d) and (e) in Remark 4.1. When necessary we denote the supremum norm by ‖·‖B(X,E).
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Proof By (a) and (b), there exist μ-null sets M and N such that |f(x)| ≤ ‖f‖∞ for
x ∈Mc and |g(x)| ≤ ‖g‖∞ for x ∈ Nc. Therefore

|αf(x) + g(x)| ≤ |α| ‖f‖∞ + ‖g‖∞ for x ∈ (M ∪N)c = Mc ∩Nc .

Hence αf + g is μ-essentially bounded and ‖αf + g‖∞ ≤ |α| ‖f‖∞ + ‖g‖∞. �

(d) Suppose f ∈ L0(X, μ, E) is bounded. Then ‖f‖∞ ≤ ‖f‖B(X,E) (supremum
norm). If N is a nonempty μ-null set, then ‖χN‖∞ = 0 and ‖χN‖B(X,E) = 1.

(e) Suppose X is σ-compact metric space and μ is a massive Radon measure on
X . Then

‖f‖∞ = ‖f‖B(X,E) for f ∈ BC(X, E) .

Proof By Theorem 1.17, any f ∈ BC(X, E) is μ-measurable, and by (d) we just have
to show that ‖f‖B(X,E) ≤ ‖f‖∞. Assume otherwise. Then there exists x ∈ X such that

‖f‖∞ < |f(x)| ≤ ‖f‖B(X,E) ,

and in view of the continuity of f there is an open neighborhood O of x in X such that
‖f‖∞ < |f(y)| for y ∈ O. From (b) it follows that μ(O) = 0, contradicting the assumption
that μ is massive. �

The Hölder and Minkowski inequalities

Suppose f ∈ L0(X, μ, E). For p ∈ (0,∞), we set

‖f‖p :=
(∫

X

|f |p dμ
)1/p

with the convention that ∞1/p := ∞. We define the Lebesgue space over X with
respect to the measure μ as2

Lp(X, μ, E) :=
{

f ∈ L0(X, μ, E) ; ‖f‖p < ∞
}

for p ∈ (0,∞] .

For p ∈ [1,∞], we define the dual exponent to p as

p′ :=

⎧⎨⎩
∞ if p = 1 ,

p/(p− 1) if p ∈ (1,∞) ,

1 if p = ∞ .

With this assignment, we obviously have

1
p

+
1
p′

= 1 for p ∈ [1,∞] .

We are now in a position to state and prove two important inequalities.
2Theorem 3.9 shows that the notation Lp(X, μ, E) is consistent in the case p = 1 with that

of Section 2. In the following, we concentrate on the Lebesgue spaces Lp with p ∈ [1,∞]. The
case p ∈ (0, 1) will be treated in Exercise 13.
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4.2 Theorem Suppose p ∈ [1,∞].
(i) For f ∈ Lp(X, μ, K) and g ∈ Lp′ (X, μ, K), we have fg ∈ L1(X, μ, K), and∣∣∣∫

X

fg dμ
∣∣∣ ≤ ∫

X

|fg| dμ ≤ ‖f‖p ‖g‖p′ (Hölder’s3 inequality).

(ii) Suppose f, g ∈ Lp(X, μ, E). Then f + g ∈ Lp(X, μ, E), and

‖f + g‖p ≤ ‖f‖p + ‖g‖p (Minkowski’s inequality).

Proof (i) We consider first the case p = 1. By Remark 4.1(b), there is a μ-null
set N such that |g(x)| ≤ ‖g‖∞ for x ∈ N c. It then follows from Remarks 1.2(d)
and 3.3(b) and Lemma 2.15 that∫

Nc

|fg| dμ ≤ ‖g‖∞
∫

Nc

|f | dμ = ‖f‖1 ‖g‖∞ <∞ .

Hence Remark 3.11(a), Theorem 3.9 and Lemma 2.15 result in fg being integrable,
and Theorem 2.11(i) implies∣∣∣∫

X

fg dμ
∣∣∣ ≤ ∫

X

|fg| dμ =
∫

Nc

|fg| dμ ≤ ‖f‖1 ‖g‖∞ .

Suppose now p ∈ (1,∞). If

f = 0 μ-a.e. or g = 0 μ-a.e. , (4.1)

then fg also vanishes μ-a.e., and the claim follows from Corollary 2.16. On the
other hand, if (4.1) does not apply, Corollary 2.19 gives ‖f‖p > 0 and ‖g‖p′ > 0.
We then set ξ := |f |/‖f‖p, η := |g|/‖g‖p′, and obtain from Young’s inequality
(Theorem IV.2.15) that

|fg|
‖f‖p ‖g‖p′

≤ 1
p

|f |p
‖f‖p

p
+

1
p′
|g|p′

‖g‖p′
p′

.

It follows that∫
X

|fg| dμ ≤ 1
p
‖f‖1−p

p ‖g‖p′

∫
X

|f |p dμ +
1
p′
‖f‖p ‖g‖

1−p′
p′

∫
X

|g|p′
dμ

= ‖f‖p ‖g‖p′ ,

and we conclude using Theorem 3.9 that fg belongs to L1(X, μ, E). Therefore∣∣∣∫
X

fg dμ
∣∣∣ ≤ ‖fg‖1 ≤ ‖f‖p ‖g‖p′ .

The case p = ∞ is treated analogously to the case p = 1.
3For p = 2, this is the Cauchy–Schwarz inequality.
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(ii) Because of Corollary 2.9 and Remark 4.1(c), it suffices to consider the case
p ∈ (1,∞). In addition, we can assume without loss of generality that ‖f+g‖p > 0.
We will first prove that f + g belongs to Lp(X, μ, E). Noting the inequality

|a + b|p ≤
(
2(|a| ∨ |b|)

)p ≤ 2p(|a|p + |b|p) for a, b ∈ E , (4.2)

we obtain ∫
X

|f + g|p dμ ≤ 2p
(∫

X

|f |p dμ +
∫

X

|g|p dμ
)

< ∞

because f, g ∈ Lp(X, μ, E). Therefore ‖f + g‖p < ∞. Due to the equivalence

|f + g|p−1 ∈ Lp′(X, μ, R)⇐⇒ |f + g| ∈ Lp(X, μ, R) ,

it follows from Hölder’s inequality that∫
X

|h| |f + g|p−1 dμ ≤ ‖h‖p

∥∥|f + g|p−1∥∥
p′ = ‖h‖p ‖f + g‖p/p′

p

for h ∈ Lp(X, μ, E), and we find∫
X

|f + g|p dμ ≤
∫

X

|f | |f + g|p−1 dμ +
∫

X

|g| |f + g|p−1 dμ

≤
(
‖f‖p + ‖g‖p

)
‖f + g‖p/p′

p .

(4.3)

The claim follows, because ‖f + g‖p < ∞ and p/p′ = p− 1. �

4.3 Corollary Suppose p ∈ [1,∞]. Then Lp(X, μ, E) is a vector subspace of
L0(X, μ, E), and ‖·‖p is a seminorm on Lp(X, μ, E).

4.4 Remarks (a) Set N :=
{

f ∈ L0(X, μ, E) ; f = 0 μ-a.e.
}
. For f ∈ L0(X, μ, E)

the following statements are equivalent:
(i) ‖f‖p = 0 for all p ∈ [1,∞].
(ii) ‖f‖p = 0 for some p ∈ [1,∞].
(iii) f ∈ N .
Proof “(i)=⇒(ii)” is trivial. “(ii)=⇒(iii)” follows from Corollary 2.19 and Remark 4.1(b).

“(iii)=⇒(i)” For p ∈ [1,∞), use Lemma 2.15. The case p =∞ is clear. �

(b) N is a vector subspace of Lp(X, μ, E) for every p ∈ [1,∞] ∪ {0}.
Proof The case p = 0 is clear; in particular, N is a vector space. For p ∈ [1,∞], the
claim then follows from (a), “(iii)=⇒(i)”. �

(c) For p ∈ [1,∞], we have these inclusions of vector subspaces:

S(X, μ, E) ⊂ Lp(X, μ, E) ⊂ L0(X, μ, E) .

Proof It is clear that every μ-simple function is μ-essentially bounded. Take p ∈ [1,∞)
and let ϕ ∈ S(X,μ, E) have normal form

∑m
j=0 ejχAj . Then |ϕ|p ≤ ∑m

j=0 |ej |p χAj , so
‖ϕ‖p <∞. The claim follows by Remark 1.2(a) and Corollary 4.3. �
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Lebesgue spaces are complete

We now generalize Theorem 2.10(ii), proving that all Lebesgue spaces Lp(X, μ, E)
with p ∈ [1,∞] are complete. For p ∈ (1,∞), this depends on the following lemma.

4.5 Lemma Suppose V is a vector space and q is a seminorm on V . The following
statements are equivalent:

(i) (V, q) is complete.

(ii) For every sequence (vj) ∈ V N such that
∑∞

j=0 q(vj) < ∞, the series
∑

j vj

converges in V .

Proof “(i)=⇒(ii)” Suppose (vj) ∈ V N and
∑∞

j=0 q(vj) < ∞. For every ε > 0 there
exists K ∈ N such that

∑∞
j=	+1 q(vj) < ε for � ≥ K (see Exercise II.7.4). We set

wk :=
∑k

j=0 vj for k ∈ N and get

q(wm − w	) = q
( m∑

j=	+1

vj

)
≤

m∑
j=	+1

q(vj) ≤
∞∑

j=	+1

q(vj) < ε for m > � ≥ K .

Therefore (wk) is a Cauchy sequence in V , and so converges to some v ∈ V by the
completeness of V . Hence the series

∑
j vj converges.

“(ii)=⇒(i)” Let (vj) be a Cauchy sequence in V . For k ∈ N, take jk ∈ N such
that q(vjk+1 − vjk

) < 2−(k+1). Setting wk := vjk+1 − vjk
, we have

∑∞
k=0 q(wk) ≤ 1,

and we can find by assumption a v ∈ V such that q
(
v−∑	

k=0 wk

)
→ 0 as � →∞.

Let ε > 0 and L ∈ N be such that q
(
v −∑	

k=0 wk

)
< ε/2 for � ≥ L. Because (vj)

is a Cauchy sequence in V , there exists K ≥ L such that q(vj�+1 − vk) < ε/2 for
k, � ≥ K. Finally setting ṽ := v + vj0 , we have for k ≥ K that

q(ṽ − vk) = q(v + vj0 − vjK+1 + vjK+1 − vk)

≤ q
(
v −

K∑
k=0

wk

)
+ q(vjK+1 − vk) < ε .

This shows that (vk) converges to ṽ. �

4.6 Theorem For p ∈ [1,∞], Lp(X, μ, E) is complete.

Proof (i) Consider first the case p ∈ (1,∞). Let (fj) be a sequence in Lp(X, μ, E)
such that

∑∞
j=0 ‖fj‖p <∞. Set gk :=

∑k
j=0 |fj | for k ∈ N and g :=

∑∞
k=0 |fj |. By

Corollary 1.13(iii), g belongs to L0(X, μ, R+), and we have |gk|p → |g|p. Because

‖gk‖p ≤
k∑

j=0

‖fj‖p ≤
∞∑

j=0

‖fj‖p <∞ ,

Conclusion 3.10(a) tells us that g ∈ Lp(X, μ, R). By Remark 3.11(c), then, there
is a μ-null set N such that g(x) <∞ for x ∈ N c. Therefore f(x) :=

∑∞
j=0 fj(x) is
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well defined for every x ∈ N c by the Weierstrass criterion (Theorem V.1.6). Also,
since |f |p ≤ gp μ-a.e. and g ∈ Lp(X, μ, R), Theorem 3.14 implies that f̃ belongs
to Lp(X, μ, E). Finally Fatou’s lemma shows that∥∥∥f̃ −

k∑
j=0

fj

∥∥∥p

p
=

∫
X

∣∣∣ lim
	→∞

	∑
j=k+1

fj

∣∣∣p dμ ≤ lim
	→∞

∫
X

∣∣∣ 	∑
j=k+1

fj

∣∣∣p dμ = lim
	→∞

∥∥∥ 	∑
j=k+1

fj

∥∥∥p

p
,

and we find∥∥∥f̃ −
k∑

j=0

fj

∥∥∥
p
≤ lim

	→∞

	∑
j=k+1

‖fj‖p =
∞∑

j=k+1

‖fj‖p for k ∈ N .

Because
∑∞

j=0 ‖fj‖p < ∞, the sequence
(∑∞

j=k+1 ‖fj‖p

)
k∈N

converges to zero.
Therefore so does

(∥∥f̃ − ∑k
j=0 fj

∥∥
p

)
k∈N

. Now it follows from Lemma 4.5 that
Lp(X, μ, E) is complete.

(ii) Now suppose (fj) is a Cauchy sequence in L∞(X, μ, E). We set

Aj := [ |fj | > ‖fj‖∞] , Bk,	 := [ |fk − f	| > ‖fk − f	‖∞] for j, k, � ∈ N

and N :=
⋃

j Aj ∪
⋃

k,	 Bk,	. By Remarks 4.1(b) and IX.2.5(b), N is a null set and

|fj(x)| ≤ ‖fj‖∞ , |fk(x)− f	(x)| ≤ ‖fk − f	‖∞ for j, k, � ∈ N , x ∈ N c .

Therefore (fj |N c) is a Cauchy sequence in the Banach space B(N c, E), and we
can find an f ∈ B(N c, E) such that (fj |N c) converges uniformly to f . Thus (fj)
converges μ-a.e. to f̃ . We know the function f̃ is μ-essentially bounded because[∣∣wtf

∣∣ > ‖f‖B(Nc,E)

]
= ∅, and we have∣∣f̃(x)− fj(x)
∣∣ ≤ ‖f − fj |N c‖B(Nc,E) for x ∈ N c and j ∈ N .

Hence (fj) converges in L∞(X, μ, E) to f̃ .
(iii) The case p = 1 was dealt with in Theorem 2.10(ii). �

4.7 Corollary Let p ∈ [1,∞], and suppose fj, f ∈ Lp(X, μ, E) satisfy fj → f in
Lp(X, μ, E).

(i) If p =∞, then (fj) converges μ-a.e. to f .

(ii) If p ∈ [1,∞), there is a subsequence (fjk
)k∈N of (fj) converging μ-a.e. to f .

Proof Because (fj) converges in Lp(X, μ, E) to f , we know (fj) is a Cauchy
sequence in Lp(X, μ, E). Statement (i) now follows immediately from the proof of
Theorem 4.6.

If p ∈ (1,∞), choose a subsequence (fjk
)k∈N of (fj) such that ‖fjk+1−fjk

‖p <

2−(k+1). Then the proof of Theorem 4.6 shows that there is a g ∈ Lp(X, μ, E) such
that (fjk

− fj0) → g in Lp(X, μ, E) and (fjk
− fj0)→ g μ-a.e. as k →∞. Because

(fj) converges in Lp(X, μ, E) to f , we have ‖f − (g + fj0)‖p = 0. Remark 4.4(a)
implies f = g + fj0 μ-a.e., from which the claim follows.

The case p = 1 was treated in Theorem 2.18. �
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4.8 Proposition S(X, μ, E) is dense in Lp(X, μ, E) for p ∈ [1,∞).4

Proof Suppose f ∈ Lp(X, μ, E). Then f is μ-measurable by Remark 4.4(c). Thus
there is a sequence (ϕj) in S(X, μ, E) such that ϕj → f μ-a.e. as j →∞. We set
Aj := [ |ϕj | ≤ 2 |f | ] and ψj := χAj ϕj . Then (ψj) is a sequence in S(X, μ, E) that
converges μ-a.e. to f . Moreover,

|ψj − f |p ≤ (|ψj |+ |f |)p ≤ 3p |f |p for j ∈ N .

Because 3p |f |p belongs to L1(X, μ, R), we can apply the dominated convergence
theorem, and we find

‖ψj − f‖p
p =

∫
X

|ψj − f |p dμ→ 0 as j →∞ ,

from which the claim follows. �

Lp-spaces

We proved in Remark 4.4(b) that

N :=
{

f ∈ L0(X, μ, E) ; f = 0 μ-a.e.
}

is a vector subspace of Lp(X, μ, E) for p ∈ {0}∪ [1,∞]. Hence the quotient spaces

Lp(X, μ, E) := Lp(X, μ, E)/N for p ∈ {0} ∪ [1,∞]

are well defined vector spaces over K, by Example I.12.3(i). By Remark 4.4(c), we
also have

Lp(X, μ, E) ⊂ L0(X, μ, E) for p ∈ [1,∞] ,

in the sense of vector subspaces. Suppose [f ] ∈ L0(X, μ, E), and let g be a repre-
sentative of [f ]. Then f − g ∈ N , that is, f and g agree μ-a.e. By Remark 4.4(a),
the map

||| · ||| : L0(X, μ, E)→ R+ , [f ] �→ ‖f‖p

is well defined for every p ∈ [1,∞], and for [f ] ∈ Lp(X, μ, E), we have

||| [f ] |||p = ‖f‖p = 0 ⇐⇒ f = 0 μ-a.e. ⇐⇒ [f ] = 0 . (4.4)

Since ||| · |||p obviously inherits the properties of the seminorm ‖·‖p, (4.4) shows
that ||| · |||p is a norm on Lp(X, μ, E). Therefore Lp(X, μ, E) is a normed vector
space, whereas the space we constructed it from, Lp(X, μ, E), is only seminormed.
So limits in Lp(X, μ, E) are generally not unique, but limits in Lp(X, μ, E) are.5

The price we pay for the better topological structure of Lp(X, μ, E) is that its
elements are not functions on X but rather cosets of the vector subspace N of
Lp(X, μ, E). In other words, we identify functions that coincide μ-a.e. Experience
shows that the following simplified notation does not lead to misunderstandings.

4The statement can fail if p = ∞; see Exercise 8 (but also Exercise 9).
5See Remark 2.3(b).
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Convention Suppose p ∈ {0} ∪ [1,∞]. Then we write the coset [f ] = f +N
in Lp(X, μ, E) as f and identify with each other functions that agree μ-a.e.
Further, if p ∈ [1,∞], we denote the norm in Lp(X, μ, E) by ‖·‖p and set

Lp(X, μ, E) :=
(
Lp(X, μ, E), ‖·‖p

)
for p ∈ [1,∞] .

4.9 Remarks (a) For f ∈ L0(X, μ, E) and x ∈ X , f(x) is undefined if μ
has nonempty null sets. That is, elements of L0(X, μ, E) cannot be “evaluated
pointwise”. (Of course, if one chooses a representative

∗
f of f , then

∗
f(x) is defined.)

(b) For p ∈ [1,∞],

Lp(X, μ, E) =
{

f ∈ L0(X, μ, E) ; ‖f‖p < ∞
}

.

Proof “⊆” Let f ∈ Lp(X, μ, E). Any representative
∗
f of f lies in Lp(X, μ, E), that is, it

is μ-measurable and satisfies ‖ ∗
f‖p <∞. Hence f belongs to L0(X, μ, E), and ‖f‖p <∞.

“⊇” Consider f ∈ L0(X, μ, E) with ‖f‖p < ∞. Every representative
∗
f of f is

μ-measurable, with ‖f‖p = ‖ ∗
f‖p <∞. Thus

∗
f belongs to Lp(X, μ, E), and so f belongs

to Lp(X, μ, E). �

(c) Suppose f, g ∈ L0(X, μ, R), and let
∗
f, ∗g be representatives of f, g. If we write

f ≤ g :⇐⇒ ∗
f ≤ ∗g μ-a.e. ,

we obtain a well defined ordering ≤ on L0(X, μ, R), which makes this space into
a vector lattice.
Proof We leave the simple proof as an exercise. �

(d) Suppose (F,≤) is a vector lattice and (F, ‖·‖) is a Banach space. If |x| ≤ |y|
implies ‖x‖ ≤ ‖y‖, we call (F,≤, ‖·‖) a Banach lattice.

(e)
(
Lp(X, μ, R),≤, ‖·‖p

)
is a Banach lattice for every p ∈ [1,∞].

Proof It is clear that Lp(X, μ, R) is a vector sublattice of L0(X, μ, R). Also it follows
immediately from the monotony of integrals and of the map t �→ tp that Lp(X, μ, R) is a
Banach lattice in the case p ∈ [1,∞).

Suppose f, g ∈ L∞(X, μ, R) with |f | ≤ |g|, and let
∗
f, ∗g be representatives thereof.

Then | ∗f | ≤ | ∗g| μ-a.e. In addition, Remark 4.1(b) shows that | ∗g| ≤ ‖g‖∞ μ-a.e. Therefore
| ∗f | ≤ ‖g‖∞ μ-a.e., and hence ‖f‖∞ ≤ ‖g‖∞. �

4.10 Theorem

(i) Lp(X, μ, E) is a Banach space for every p ∈ [1,∞].
(ii) If H is a Hilbert space, then so is L2(X, μ, H) with respect to the scalar

product

( · | · )2 : L2(X, μ, H)× L2(X, μ, H)→ K , (f, g) �→
∫

X

(f | g)H dμ .
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Proof (i) Suppose p ∈ [1,∞]. We already know that Lp(X, μ, E) is a normed
vector space. Let (fj) be a Cauchy sequence in Lp(X, μ, E), and (

∗
fj) a correspond-

ing sequence of representatives. Then
( ∗
fj

)
is a Cauchy sequence in Lp(X, μ, E).

By Theorem 4.6, there exists
∗
f ∈ Lp(X, μ, E) such that ‖ ∗

fj −
∗
f‖p → 0 as j →∞.

Letting f :=
∗
f + N , we have f ∈ Lp(X, μ, E) and ‖fj − f‖p = ‖ ∗

fj −
∗
f‖p → 0.

Therefore Lp(X, μ, E) is complete.

(ii) Using statements (i) and (iv) of Theorem 1.7 and Hölder’s inequality, we
easily prove that ( · | · )2 is a scalar product on L2(X, μ, H) satisfying |(f | f)2| =
‖f‖22 for f ∈ L2(X, μ, H). The claim then follows from (i). �

4.11 Corollary L2(X, μ, K) is a Hilbert space with respect to the scalar product

(f | g)2 =
∫

X

fg dμ for f, g ∈ L2(X, μ, K) .

Continuous functions with compact support

Let Y be a topological space. For f ∈ EY , we call

supp(f) :=
{

x ∈ Y ; f(x) 
= 0
}

the support of f . Here, as usual, the bar denotes the closure (in Y ). Continuous
functions with compact support are particularly significant. We therefore define

Cc(Y, E) :=
{

f ∈ C(Y, E) ; supp(f) is compact
}

.

4.12 Examples (a) For the Dirichlet function χQ ∈ RR of Example III.1.3(c), we
have

supp(χQ) = supp(χR−Q) = R .

Proof This follows from Propositions I.10.8 and I.10.11. �

(b) Suppose X = Z or X = N, and provide X with the metric induced from R.
Let H0 be the counting measure on P(X). Then6

Cc(X, E) = S(X,H0, E) =
{

ϕ ∈ EX ; Num[ϕ 
= 0] < ∞
}

.

(c) Suppose X is a metric space. Then Cc(X, E) is a vector subspace of BC(X, E).
If X is compact, then Cc(X, E) = C(X, E) = BC(X, E).

Proof The first statement follows from Corollary III.3.7. The second is a consequence
of Exercise III.3.2 and Corollary III.3.7. �

6Compare Example 2.20.
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4.13 Proposition Suppose X is a metric space and A and B are closed, disjoint
nonempty subsets of X . There exists ϕ ∈ C(X) such that 0 ≤ ϕ ≤ 1, ϕ |A = 1,
and ϕ |B = 0. Such a function is a called a Urysohn function.

Proof If D ⊂ X is nonempty, Example III.1.3(l) shows that the distance func-
tion d( · , D) belongs to C(X). If D is also closed, we have d(x, D) = 0 if and only
if x ∈ D. Using these properties, we easily prove that the function defined by

ϕ(x) :=
d(x, B)

d(x, A) + d(x, B)
for x ∈ X ,

has the stated properties. �

With help from Urysohn functions, we can now prove an important approx-
imation theorem.

4.14 Theorem Suppose X is a σ-compact metric space and μ is a Radon measure
on X . Then Cc(X, E) is a dense vector subspace of Lp(X, μ, E) for p ∈ [1,∞) .

Proof Suppose ε > 0. According to Proposition 4.8, S(X, μ, E) is dense in
Lp(X, μ, E). Thus, because of Theorem 1.17 and Minkowski’s inequality (that
is, the triangle inequality), it suffices to verify that for every μ-measurable set A
of finite measure and every e ∈ E \{0}, there exists f ∈ Cc(X, E) such that
‖f − χAe‖p < ε.

Suppose then that A ∈ A with μ(A) < ∞. Because μ is regular, we can find
a compact subset K and an open subset U of X such that K ⊂ A ⊂ U and

μ(U \K) = μ(U)− μ(K) < (ε/|e|)p .

Proposition 4.13 secures the existence of a Urysohn function ϕ on X with ϕ |K = 1
and ϕ |U c = 0. Setting f := ϕe, we get, as needed,

‖χAe− f‖p
p ≤ |e|

p
∫

X

χU\K dμ ≤ |e|p μ(U \K) < εp . �

Embeddings

Suppose X and Y are topological spaces, and X is a subset of Y . Denoting by
j : X → Y , x �→ x the inclusion7 of X in Y , we say X is continuously embedded

in Y if j is continuous.8 In this case, we write X ↪→ Y . We write X
d

↪→ Y if X
is also a dense subset of Y . If X and Y are vector spaces, the notation X ↪→ Y
(and the term “continuously embedded”) will always mean in addition that X is
a vector subspace of Y , not just any odd subset.

7See Example I.3.2(b).
8These notions become important when X is not provided with the topology induced by Y ;

see Remark 4.15(a).
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4.15 Remarks (a) Suppose V and W are normed vector spaces. V is continuously
embedded in W if and only if V is a vector subspace of W and there is an α > 0
such that ‖v‖W ≤ α ‖v‖V for v ∈ V , that is, if the norm of V is stronger than the
norm induced from W on V .

If V carries the norm induced by W , then V ↪→ W always.

(b) Suppose X is open in Rn. Then

BUCk(X, E) ↪→ BUC	(X, E) for k ≥ � .

If X is bounded as well, then

BUCk(X, K) d
↪→ BUC(X, K) for k ∈ N .

Proof The first statement is clear. The second follows from the Stone–Weierstrass
approximation theorem (Corollary V.4.8) and then Application VI.2.2. �

Simple examples (see Exercise 5.1) show that Lebesgue spaces are generally
not contained in one another. Under suitable extra assumptions on the measure
space (X,A, μ), continuous embeddings exist for Lebesgue spaces. For example,
if H0 is the counting measure on P(N), the spaces �p introduced in Exercise 1.16
coincide with Lp(N,H0, K) for 1 ≤ p ≤ ∞, and we have the embeddings

�1 ↪→ �p ↪→ �q ↪→ �∞ for 1 ≤ p ≤ q ≤ ∞ ,

(see Exercise 11).
Finite measure spaces present an altogether different situation:

4.16 Theorem Let (X,A, μ) be a finite complete measure space. Then

Lq(X, μ, E) d
↪→ Lp(X, μ, E) for 1 ≤ p < q ≤ ∞

and
‖f‖p ≤ μ(X)1/p−1/q ‖f‖q for f ∈ Lq(X, μ, E) . (4.5)

Proof (i) Take f ∈ Lq(X, μ, E) and set r := q/p. Let g ∈ Lq(X, μ, E) be a
representative of f . Then |g|p belongs to Lr(X, μ, R), and 1/r′ = (q − p)/q.
Further, χX belongs to Lr′(X, μ, R), because μ is a finite measure. Thus in the
case q <∞ Hölder’s inequality gives

‖g‖p
p =

∫
X

χX |g|p dμ ≤
(∫

X

χr′
X dμ

)1/r′(∫
X

|g|pr dμ
)1/r

= μ(X)(q−p)/q ‖g‖p
q ,

and we find ‖g‖p ≤ μ(X)1/p−1/q ‖g‖q; this clearly also holds in the case q = ∞.
Because g is an arbitrary representative of f , we see that f belongs to Lp(X, μ, E)
and (4.5) holds. By Remark 4.15(a), it follows that Lq(X, μ, E) ↪→ Lp(X, μ, E).
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(ii) M :=
{

[ϕ] ∈ L0(X, μ, E) ; ϕ ∈ S(X, μ, E)
}

satisfies M ⊂ Lq(X, μ, E),
and, because p < ∞, Proposition 4.8 implies that M is dense in Lp(X, μ, E).
Therefore Lq(X, μ, E) is also dense in Lp(X, μ, E). �

The next theorem shows that, in the case of a massive Radon measure μ,
an element of L0(X, μ, E) has at most one continuous representative. In this
case, then, we can identify each function in C(X, E) with the equivalence class it
generates in L0(X, μ, E), and regard C(X, E) as a vector subspace of L0(X, μ, E).

4.17 Proposition Suppose μ is a massive Radon measure on a σ-compact space X .
Then the map

C(X, E)→ L0(X, μ, E) , f �→ [f ] (4.6)

is linear and injective.

Proof Theorem 1.17 shows that the map (4.6) is well defined and linear.
Take f, g ∈ C(X, E) with [f ] = [g]. There exists h ∈ N such that f − g = h,

that is, f − g = 0 μ-a.e. Assume for a contradiction that f(x) 
= g(x) for some
x ∈ X . By continuity, (f − g)(y) 
= 0 for all y in some open neighborhood U of x.
But μ(U) > 0, contrary to the assumption that f − g = 0 μ-a.e. Therefore f = g,
which proves the asserted injectivity. �

Convention Let μ be a massive Radon measure on a σ-compact space X . We
identify C(X, E) with its image in L0(X, μ, E) under the injection (4.6) and
so regard C(X, E) as a vector subspace of L0(X, μ, E). Then

‖f‖B(X,E) = ‖f‖∞ for f ∈ BC(X, E) .

The following result is a simple consequence of this convention.

4.18 Theorem Let μ be a massive Radon measure on a σ-compact metric space X .

(i) Cc(X, E) is a dense vector subspace of Lp(X, μ, E) for every p ∈ [1,∞).
(ii) BC(X, E) is a closed vector subspace of L∞(X, μ, E).

Proof The first statement follows from Theorem 4.14. The second is obvious. �

Continuous linear functionals on Lp

For the rest of this section, we use for p ∈ [1,∞] the abbreviations

Lp(X) := Lp(X, μ, K) and L′
p(X) :=

(
Lp(X)

)′
,

the prime on the right indicating the dual space (Remark VII.2.13(a)). From
Hölder’s inequality, it follows that, for every f ∈ Lp′(X), the map

Tf : Lp(X)→ K , g �→
∫

X

fg dμ
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is a continuous linear functional on Lp(X), that is, an element of L′
p(X); it satisfies

‖Tf‖L′
p(X) ≤ ‖f‖p′ . (4.7)

In fact (4.7) holds with equality:

4.19 Proposition The map

T : Lp′(X)→ L′
p(X) , f �→ Tf

is a linear isometry for every p ∈ [1,∞].

Proof (i) Clearly T is linear. Also, in view of (4.7), we need only show that for
every f ∈ Lp′(X) satisfying f 
= 0 and every ε > 0, there is g ∈ Lp(X) such that

‖g‖p = 1 and ‖f‖p′ <
∣∣∣∫

X

fg dμ
∣∣∣ + ε .

(ii) First assume p ∈ (1,∞), so p′ ∈ (1,∞). Therefore

g := sign f ‖f‖1−p′

p′ |f |p′−1

is well defined and μ-measurable (see Exercise 1.19 and Theorem 1.7(i)). Also∫
X

|g|p dμ = ‖f‖p(1−p′)
p′

∫
X

|f |p(p′−1) dμ = ‖f‖−p′
p′ ‖f‖p′

p′ = 1

and fg = ‖f‖1−p′
p′ |f |p

′
. Therefore ‖f‖p′ =

∫
X

fg dμ.

For p =∞, we set g := sign f . Then

‖g‖∞ = 1 and ‖f‖1 =
∫

X

fg dμ .

(iii) Now suppose that p = 1. Suppose 0 < ε < ‖f‖∞ and set α := ‖f‖∞− ε.
Because [ |f | > α] has positive measure and μ is σ-finite, we can find A ∈ A such
that A ⊂ [ |f | > α] and μ(A) ∈ (0,∞). Therefore g := sign f

(
1
/
μ(A)

)
χA is well

defined and μ-measurable. Clearly ‖g‖1 = 1 and∫
X

fg dμ =
1

μ(A)

∫
A

|f | dμ ≥ α = ‖f‖∞ − ε .

This concludes the proof. �
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4.20 Remarks (a) One can show that the map T of Proposition 4.19 is surjective
for every p ∈ [1,∞), that is, every continuous linear functional on Lp(X) can
be represented is of the form Tf for an appropriate f ∈ Lp′(X); see [Rud83,
Theorem 6.1.6], for example. Consequently T : Lp′(X) → L′

p(X) is an isometric
isomorphism for every p ∈ [1,∞). This isomorphism allows us to identify Lp′(X)
with L′

p(X) for p ∈ [1,∞). The dual pairing 〈 · , · 〉Lp : L′
p(X) × Lp(X) → K

satisfies
〈g, f〉Lp =

∫
X

fg dμ for (g, f) ∈ Lp′(X)× Lp(X) .

(b) In the case p = ∞, the map T : L1(X) → L′
∞(X) is generally not surjective;

see [Fol99, S. 191].

(c) Denote by 〈 · , · 〉E : E′ ×E → K the duality pairing between E and E′. Then
the map

κ : E → [E′]′ , e �→ 〈 · , e〉E
is linear and bounded. Its norm is at most 1.
Proof Clearly κ is linear. Suppose e ∈ E with ‖e‖E ≤ 1. Then∣∣〈κ(e), e′

〉
E′

∣∣ = |〈e′, e〉E| ≤ ‖e′‖E′ for e′ ∈ E′ ,

and we find ‖κ(e)‖(E′)′ ≤ 1, from which the claim follows. �

(d) With tools from functional analysis, one can show that κ is an isometry and
therefore injective. We call κ the canonical injection of E into the double dual space
E′′ := (E′)′ of E. If κ is surjective as well, and hence an isometric isomorphism, we
say E is reflexive. In this case, the canonical isomorphism κ allows us to identify
E with its double dual E′′.

(e) Lp(X) reflexive for p ∈ (1,∞).
Proof This follows from (a). �

(f) The spaces L1(X) and L∞(X) are generally not reflexive; see, for instance,
[Ada75, Theorem 2.35]. �

Exercises

1 Let S(X, μ, E) :=
{

[f ] ∈ L0(X, μ, E) ; [f ] ∩ S(X,μ, E) 	= ∅
}
. Prove that S(X, μ, E)

a dense vector subspace of Lp(X, μ, E) for 1 ≤ p <∞.

2 For a ∈ Rn, we define τa : E(Rn) → E(Rn), the right translation by a, by

(τaϕ)(x) := ϕ(x− a) for x ∈ Rn , ϕ ∈ E(Rn) .

Set τa[f ] := [τaf ] for [f ] ∈ Lp. Prove:

(i) (Rn, +) →
(
Laut

(
Lp(Rn, λn, E)

)
, ◦

)
, a �→ τa is a group homomorphism with

‖τa‖L(Lp) = 1 for every p ∈ [1,∞].
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(ii) For p ∈ [1,∞) and f ∈ Lp(Rn, λn, E), we have lima→0 ‖τaf − f‖p = 0.

(iii) If lima→0 ‖τaf − f‖∞ = 0, there exists g ∈ BUC(Rn, E) such that f = g μ-a.e.

3 Suppose μ is a complete Radon measure on a σ-compact space X, and let (Xj)j∈N

be a sequence of relatively compact open subsets of X covering X. For p ∈ [1,∞], set

qj,p(f) := ‖χXj f‖p for j ∈ N , f ∈ L0(X, μ, E) ,

Lp,loc(X, μ, E) :=
{

f ∈ L0(X, μ, E) ; qj,p(f) <∞, j ∈ N
}

.

Finally, define

dp(f, g) :=

∞∑
j=0

2−jqj,p(f − g)

1 + qj,p(f − g)
for f, g ∈ Lp,loc(X, μ, E) .

(i) Lp,loc(X, μ, E) is well defined, that is, independent of the particular sequence (Xj).

(ii)
(
Lp,loc(X, μ, E), dp

)
is a complete metric space.

(iii) Lp(X, μ, E)
d

↪→ Lp,loc(X, μ, E)
d

↪→ L1,loc(X, μ, E).

(iv) The topology generated by dp is independent of the sequence (Xj).

4 Suppose p, q ∈ [1,∞] and define

Lp ∩ Lq := (Lp ∩ Lq)(X, μ, E) := Lp(X, μ, E) ∩ Lq(X, μ, E) ,

Lp + Lq := (Lp + Lq)(X, μ, E) := Lp(X, μ, E) + Lq(X, μ, E) .

Also set ‖f‖Lp∩Lq := ‖f‖p + ‖f‖q for f ∈ Lp ∩ Lq, and put

‖f‖Lp+Lq := inf
{
‖g‖p + ‖h‖q ; g ∈ Lp(X, μ, E), h ∈ Lq(X, μ, E) with f = g + h

}
for f ∈ Lp + Lq .

(i) Check that the interpolation inequality

‖f‖r ≤ ‖f‖1−θ
p ‖f‖θ

q , where
1

r
:=

1− θ

p
+

θ

q
,

holds for f ∈ Lp ∩ Lq and θ ∈ [0, 1].

(ii) (Lp ∩ Lq, ‖·‖Lp∩Lq) and (Lp + Lq , ‖·‖Lp+Lq ) are Banach spaces with

(Lp ∩ Lq)(X, μ, E) ↪→ Lr(X, μ, E) ↪→ (Lp + Lq)(X,μ, E) ↪→ L1,loc(X, μ, E)

for 1 ≤ p ≤ r ≤ q ≤ ∞.

(Hints: (i) Hölder’s inequality. (ii) Take f ∈ Lp + Lq with ‖f‖Lp+Lq = 0. To show it
vanishes, note that Lr ↪→ L1,loc for r ∈ [1,∞] (see Exercise 3). To prove the completeness
of Lp + Lq apply Lemma 4.5. The embedding Lp ∩ Lq ↪→ Lr follows from (a).)

5 Suppose p ∈ [1,∞) and f ∈ (Lp ∩ L∞)(X, μ, E). Prove that limq→∞ ‖f‖q = ‖f‖∞.

6 Prove that the map

L∞(X, μ, K)× Lp(X, μ, E)→ Lp(X, μ, E) ,
(
[ϕ], [f ]

)
�→ [ϕf ]

is bilinear and continuous and has norm at most 1.
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7 Suppose μ(X) <∞, and for f, g ∈ L0(X, μ, E) put

d0(f, g) :=

∫
X

|f − g|
1 + |f − g| dμ .

(i)
(
L0(X, μ, E), d0

)
is a metric space.

(ii) (fj) converges to 0 in
(
L0(X, μ, E), d0

)
if and only if it converges to 0 in measure.

8 Let μ be a Radon measure on a σ-compact space X and let E be separable. Prove:

(i) Cc(X, K) is separable.

(ii) Cc(X, E) is separable.

(iii) Lp(X, μ, E) is separable for p ∈ [1,∞).

(iv) L∞(X, μ, E) is generally not separable.

(v) S(X,μ, E) is generally not dense in L∞(X, μ, E).

(Hints: (i) Corollary V.4.8 and Remark 1.16(e). (ii) Take A ⊂ Cc(X, K) and let B be
countable and dense in E. For a ∈ A and b ∈ B, set (a ⊗ b)(x) := a(x)b for x ∈ X and
consider { ∑m

j=0 aj ⊗ bj ; m ∈ N, (aj , bj) ∈ A×B, j = 0, . . . , m
}

.

(iii) Theorem 4.14. (iv) Find an uncountable subset A of L∞ such that ‖f − g‖∞ ≥ 1
for all distinct f, g ∈ A.)

9 If μ finite and E is finite-dimensional, show that S(X, μ, E) is dense in L∞(X, μ, E).

10 Prove the statement of Remark 4.9(c).

11 Prove:

(i) �p = Lp(N,H0, K) for 1 ≤ p ≤ ∞.

(ii) �p ↪→ �q with ‖·‖q ≤ ‖·‖p if 1 ≤ p ≤ q ≤ ∞.

(iii) �p
d

↪→ �q
d

↪→ c0 ↪→ �∞ if 1 ≤ p ≤ q <∞ (see Section II.2).

12 Suppose p, q ∈ [1,∞] with 1 ≤ p ≤ q ≤ ∞. Prove:

(i) L∞(X, μ, E) ⊂ L1(X, μ, E) =⇒ Lq(X, μ, E) ↪→ Lp(X, μ, E).

(ii) L1(X, μ, E) ⊂ L∞(X, μ, E) =⇒ Lp(X, μ, E) ↪→ Lq(X, μ, E).

(iii) There exists a complete σ-finite measure space (X,A, μ) [or (Y,B, ν)] realizing the
embedding L∞(X, μ, R) ↪→ L1(X, μ, R) [or L1(Y, ν,R) ↪→ L∞(Y, ν, R)].

(Hints: (i) Hölder’s inequality. (ii) Show that Lp ↪→ L∞ and apply Exercise 4(i).)

13 For p ∈ (0, 1), prove:

(i) ‖f + g‖p
p ≤ ‖f‖p

p + ‖g‖p
p for f, g ∈ L0(X, μ, E).

(ii) ‖f + g‖p ≤ 21/p−1(‖f‖p + ‖g‖p) for f, g ∈ L0(X, μ, E).

(iii) Lp(X, μ, E) is a vector subspace of L0(X, μ, E).

(iv) N :=
{

f ∈ L0(X, μ, E) ; f = 0 μ-a.e.
}

is a vector subspace of Lp(X, μ, E), and

N =
{

f ∈ Lp(X, μ, E) ; ‖f‖p = 0
}

.

(v) Putting ρ(f, g) := ‖f − g‖p
p induces a metric on

Lp(X, μ, E) := Lp(X, μ, E)/N .

(vi)
(
Lp(X, μ, E), ρ

)
is complete.
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(vii) For f, g ∈ Lp(X, μ, R) with f ≥ 0 and g ≥ 0, we have ‖f + g‖p ≥ ‖f‖p + ‖g‖p.

(viii) The map
Lp(X, μ, R)→ R+ , [f ] �→ ‖f‖p

is not a norm.

(Hints: (i) For a > 0, the map
[
t �→ ap + tp − (a + t)p

]
is increasing on R+. (ii) For

a > 0, examine
[
t �→ (a1/p + t1/p)

/
(a + t)1/p

]
. (vi) Adapt the proof of Lemma 4.5 and

Theorem 4.6. (vii) Theorem 4.2.)

14 Suppose pj ∈ [1,∞] for j = 1, . . . , m; let 1/r :=
∑m

j=1 1/pj . For fj ∈ Lpj (X, μ, K),
show that

∏m
j=1 fj belongs to Lr(X, μ, K) and that∥∥∥ m∏

j=1

fj

∥∥∥
r
≤

m∏
j=1

‖fj‖pj .

(Hint: Hölder’s inequality.)

15 Suppose X is a metric space. The function f ∈ EX vanishes at infinity if for every
ε > 0 there is a compact subset K of X such that |f(x)| < ε for all x ∈ Kc. Verify that

C0(X, E) :=
{

f ∈ C(X, E) ; f vanishes at infinity
}

is the closure of Cc(X, E) in BUC(X, E).

16 For f ∈ L0(X, μ, E), set

λf (t) := μ
(
[ |f | > t]

)
and f∗(t) := inf

{
s ≥ 0 ; λf (s) ≤ t

}
for t ∈ [0,∞) .

We call f∗ : [0,∞)→ [0,∞] the decreasing rearrangement of f . Prove:

(i) λf and f∗ are decreasing, continuous from the right, and Lebesgue measurable.

(ii) If |f | ≤ |g| for g ∈ L0(X, μ, E), then λf ≤ λg and f∗ ≤ g∗.

(iii) If (fj) is an increasing sequence such that |fj | ↑ |f |, then λfj ↑ λf and f∗
j ↑ f∗.

(iv) For p ∈ (0,∞),∫
X

|f |p dμ = p

∫
R+

tp−1λf (t)λ1(dt) =

∫
R+

(f∗)p dλ1 .

(v) ‖f‖∞ = f∗(0).

(vi) λf = λf∗ .

(Hint for (iv): Consider first simple functions and then apply (iii) together with Theorems
1.12 and 3.4.)

17 For j ∈ N, let Ij,k :=
[
k2−j , (k+1)2−j

]
for k = 0, . . . , 2j−1. Further let { Jn ; n ∈ N }

be a relabeling of { Ij,k ; j ∈ N, k = 0, . . . , 2j−1 } and set fn := χJn for j ∈ N. Prove that
(fn) is a null sequence in Lp

(
[0, 1]

)
for every p ∈ [1,∞), even though

(
fn(x)

)
diverges

for every x ∈ [0, 1].

18 Suppose (fk) is a sequence in Lp(X), where 1 ≤ p <∞. We say that (fk) converges
weakly in Lp(X) to f ∈ Lp(X) if∫

X

fkϕ dx→
∫

X

fϕ dx for ϕ ∈ Lp′(X) .

In this case, f is called a weak limit of (fk) in Lp(X).
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Prove:

(i) Weak limits in Lp(X) are unique.

(ii) Every convergent sequence in Lp(X) converges weakly in Lp(X).

(iii) If (fk) converges weakly in Lp(X) to f and converges μ-a.e. to g ∈ Lp(X), then
f = g.

(iv) If (fk) converges weakly in L2(X) to f and ‖fk‖2 → ‖f‖2, then (fk) converges in
L2(X) to f .

(v) Let ek(t) := (2π)−1/2eikt for 0 < t < 2π and k ∈ N. Then the sequence (ek)
converges weakly to 0 in L2

(
(0, 2π)

)
, even though it diverges in L2

(
(0, 2π)

)
.

(Hints: (i) For f ∈ Lp(X) consider ϕ(x) := f(x) |f(x)|p/p′−1. (ii) Hölder’s inequality.
(iii) Show that g ∈ Lp(X), so [ |g| =∞] is a μ-null set. If Xn :=

[
supk≥n |fk(x)| ≥ n

]
then⋂

Xn is also a μ-null set. Now consider lim
∫

Xc
n

fnϕ dx for ϕ ∈ Lp′(X). (iv) Apply

the parallelogram identity in L2(X). (v) The first statement follows from Bessel’s
inequality, the second from (ii).)



5 The n-dimensional Bochner–Lebesgue integral

In this short section, we discuss the relationship between the Bochner–Lebesgue
integral and the Cauchy–Riemann integral defined in Chapter VI. We show that
every jump continuous function is Lebesgue measurable and that the corresponding
integrals are equal. This connection will allow us to bring into Lebesgue integration
theory the methods we developed for the Cauchy–Riemann integral.

We also show that a bounded scalar-valued function on a compact interval
is Riemann integrable if and only if the set of its discontinuities has measure
zero. From this it follows that there are Lebesgue integrable functions that are
not Riemann integrable. Thus the Lebesgue integral is a proper extension of the
Riemann integral— and therefore also of the Cauchy–Riemann integral.

In this entire section, suppose

• X ⊂ Rn is a λn-measurable set of positive measure;
E = (E, | · |) is a Banach space.

Lebesgue measure spaces

From Exercise IX.1.7, we know that LX := L(n) |X is a σ-algebra over X . Thus
the restriction λn |X := λn | LX is a measure on X , called n-dimensional Lebesgue
measure (or Lebesgue n-measure) on X . We denote this restriction by λn as well.
We check easily that (X,LX , λn) is a complete σ-finite measure space. If there is
no danger of misunderstanding, we drop the qualifier “Lebesgue” (or “λn”) from
the words measurable, measure, integrable and so on.

If f ∈ EX is integrable, we call∫
X

f dλn :=
∫

X

f d(λn |X) =
∫

Rn

f̃χX dλn

the (n-dimensional) (Bochner–Lebesgue) integral of f over X . The notations∫
X

f(x) dλn(x) and
∫

X

f(x)λn(dx)

are also common.

For short, we set

Lp(X, E) := Lp(X, λn, E) and Lp(X, E) := Lp(X, λn, E) .

We also set Lp(X) := Lp(X, K) and Lp(X) := Lp(X, K) for p ∈ [1,∞] ∪ {0}.
The next theorem lists important properties of n-dimensional integrals.
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5.1 Theorem Suppose X is open in Rn or, in the case n = 1, a perfect interval.
Then:

(i) λn is a massive Radon measure on X .

(ii) C(X, E) is a vector subspace of L0(X, E).
(iii) BC(X, E) is a closed vector subspace of L∞(X, E).
(iv) Cc(X, E) is a dense vector subspace of Lp(X, E) for p ∈ [1,∞). If K is a

compact subset of X , then

‖f‖p ≤ λn(K)1/p ‖f‖∞ for f ∈ Cc(X, E) such that supp(f) ⊂ K .

(v) If X has finite measure and 1 ≤ p < q ≤ ∞, then

Lq(X, E) d
↪→ Lp(X, E)

and
‖f‖p ≤ λn(X)1/p−1/q ‖f‖q for f ∈ Lq(X, E) .

Proof (i) X is a σ-compact metric space— by Remark 1.16(e) if X is open, and
for obvious reasons if X is an interval. Now the claim follows from Remark 1.16(h)
and Exercise IX.5.21.

(ii) and (iii) are covered respectively by Proposition 4.17 and Theorem 4.18(ii).
(iv) The first statement is a consequence of Theorem 4.18(i), and the second

is obvious.
(v) is a special case of Theorem 4.16. �

5.2 Remark Suppose X is measurable and its boundary ∂X is a λn-null set.
Then the Borel set X̊ belongs to L(n), and we have λn

(
X̊

)
= λn(X). Further,

one checks easily that the map

Lp(X, E)→ Lp

(
X̊, E

)
, [f ] �→

[
f | X̊

]
is a vector space isomorphism for p ∈ [1,∞] ∪ {0}. If p ∈ [1,∞], it is an isometry.
Thus we can identify Lp(X, E) and Lp

(
X̊, E

)
for p ∈ [1,∞] ∪ {0}. In particular,

for an interval X in R with endpoints a := inf X and b := sup X , we have

Lp(X, E) = Lp

(
[a, b], E

)
= Lp

(
[a, b), E

)
= Lp

(
(a, b], E

)
= Lp

(
(a, b), E

)
for p ∈ [1,∞] ∪ {0}.

The Lebesgue integral of absolutely integrable functions

We now show that every absolutely integrable function is Lebesgue integrable, and
its integral in the sense of Section VI.8 equals the Lebesgue integral.
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5.3 Theorem Suppose f : (a, b)→ E is absolutely integrable, where a, b ∈ R and
a < b. Then f belongs to L1

(
(a, b), E

)
, and∫

(a,b)

f dλ1 =
∫ b

a

f .

Proof (i) Suppose a < α < β < b. If g : [α, β] → E is a staircase function, then
g is obviously λ1-simple and ∫

(α,β)

g dλ1 =
∫ β

α

g . (5.1)

Now suppose g : [α, β] → E is jump continuous. Then there is a sequence (gj)
of staircase functions that converges uniformly to g. Therefore g is measurable,
and Remark VI.1.1(d) and Corollary 3.15(ii) show that g belongs to L1

(
(α, β), E

)
.

Because g is bounded and the sequence (gj) converges uniformly, there is an M ≥ 0
such that |gj | ≤ M for all j ∈ N. Therefore it follows from Lebesgue’s dominated
convergence theorem that

lim
j→∞

∫
(α,β)

gj dλ1 =
∫

(α,β)

g dλ1

in E, and we conclude using (5.1) and the definition of the Cauchy–Riemann
integral that ∫ β

α

g = lim
j→∞

∫ β

α

gj = lim
j→∞

∫
(α,β)

gj dλ1 =
∫

(α,β)

g dλ1 .

(ii) We fix c ∈ (a, b) and choose a sequence (βj) in (c, b) such that βj ↑ b. We
also set1

g := χ[c,b)f , gj := χ[c,βj]f for j ∈ N .

By (i), (gj) is a sequence in L1(R, E). Obviously (gj) converges pointwise to g
and (|gj |) is an increasing sequence converging to |g|. Therefore g is measurable.
From (i), it follows that∫

R

|gj| dλ1 =
∫

(c,βj)

|f | dλ1 =
∫ βj

c

|f | ,

and the absolute convergence of
∫ b

c f implies

lim
j→∞

∫
R

|gj | dλ1 = lim
j→∞

∫ βj

c

|f | =
∫ b

c

|f | . (5.2)

1Here and in similar situations, we regard χ[c,b)f as a function on R. Writing χ[c,b)f̃ would
be more precise but cumbersome.
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On the other hand, the monotone convergence theorem shows that∫
R

|g| dλ1 = lim
j→∞

∫
R

|gj | dλ1 ,

and we see from (5.2) that g belongs to L1(R, E). Therefore we can apply the
dominated convergence theorem to the sequence (gj), to get

lim
j→∞

∫
R

gj dλ1 =
∫

R

g dλ1 =
∫

[c,b)

f dλ1

in E. Further, it follows from (i) that∫
R

gj dλ1 =
∫

[c,βj)

f dλ1 =
∫ βj

c

f ,

and hence, by Proposition VI.8.7,

lim
j→∞

∫
R

gj dλ1 = lim
j→∞

∫ βj

c

f =
∫ b

c

f

in E. Thus the limits
∫
[c,b) f dλ1 and

∫ b

c f are equal. In similar fashion, we show
that χ(a,c]f belongs to L1(R, E) and that

∫
(a,c] f dλ1 =

∫ c

a f . This shows that f is
Lebesgue integrable with

∫
(a,b) f dλ1 =

∫ b

a f . �

5.4 Corollary For −∞ < a < b <∞, we have S
(
[a, b], E

)
↪→ L1

(
[a, b], E

)
and∫

[a,b]

f dλ1 =
∫ b

a

f for f ∈ S
(
[a, b], E

)
.

Proof This follows from Theorem 5.3 and Proposition VI.8.3. �

5.5 Remarks Fix a, b ∈ R with a < b.

(a) Suppose f : (a, b) → E is admissible and
∫ b

a f exists as an improper integral.
Then f need not belong to L1

(
(a, b), E

)
.

Proof We define f : R→ R by

f(x) :=

{
0 if x ∈ (−∞, 0) ,

(−1)j/j if x ∈ [j − 1, j), where j ∈ N× .

Obviously f is admissible, and
∫ ∞
−∞ f exists in R, since∫ ∞

−∞
f =

∞∑
j=1

(−1)j/j .
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If f belonged to L1(R), we would have
∫

R
|f | dλ1 < ∞, contradicting the monotone

convergence theorem, which gives∫
R

|f | dλ1 = lim
k→∞

∫
R

χ[0,k] |f | dλ1 = lim
k→∞

k∑
j=1

1/j =∞ . �

(b) Suppose f : (a, b) → E is admissible and f belongs to L1

(
(a, b), E

)
. Then f

is absolutely integrable, and∫
(a,b)

f dλ1 =
∫ b

a

f in E .

Proof Take c ∈ (a, b) and let (αj) be a sequence in (a, c) with αj → a. Also let
fj := χ[αj,c]f . Then (fj) converges pointwise to χ(a,c]f , and we have |fj | ≤ |f | for j ∈ N.

Because f is admissible, Proposition VI.4.3 shows that |f |
∣∣ [αj , c] belongs to S

(
[αj , c], R

)
.

Thus it follows from Corollary 5.4 and the dominated convergence theorem that∫ c

αj

|f | =
∫

[αj ,c]

|f | dλ1 →
∫

(a,c]

|f | dλ1 .

Therefore
∫ c

a
|f | exists. Analogously, we show the existence of

∫ b

c
|f | and thus the absolute

convergence of
∫ b

a
f . The second statement now follows from Theorem 5.3. �

Suppose f ∈ L1((a, b), E). Remark 5.5(b) shows that no misunderstanding
should arise in this case if we denote

∫
(a,b) f dλ1 by

∫ b

a f or
∫ b

a f(x) dx. From now
on, we will usually write in the n-dimensional case∫

X

f dx :=
∫

X

f dλn .

Theorem 5.3 and its corollary allow us to transfer the integration methods
developed in Volume II to the framework of Lebesgue theory. In combination
with the integrability criterion of Theorem 3.14 and the dominated convergence
theorem, these provide very effective tools for proving the existence of integrals.
This will be made clear in the remaining sections of this chapter, when we develop
procedures for the concrete evaluation of “multidimensional” integrals.

A characterization of Riemann integrable functions

Theorem 5.3 showed that the Lebesgue integral is an extension of the Cauchy–
Riemann integral. We now characterize Riemann integrable functions and show
that this extension is proper.

5.6 Theorem Let I be a compact interval, and let f : I → K be bounded. Then
f is Riemann integrable if and only if it is continuous λ1-a.e. In this case, f is
Lebesgue integrable, and the Riemann and Lebesgue integrals are equal.
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Proof (i) We can take without loss of generality the case K = R and I := [0, 1].
For k ∈ N, let Zk := (ξ0,k, . . . , ξ2k,k) be the partition of [0, 1] with ξj,k := j 2−k for
j = 0, . . . , 2k. Also suppose

I0,k := [ξ0,k, ξ1,k] , Ij,k := (ξj,k, ξj+1,k] for j = 1, . . . , 2k − 1 .

Finally, set αj,k := infx∈Ij,k
f(x), βj,k := supx∈Ij,k

f(x), and

gk :=
2k−1∑
j=0

αj,kχIj,k
, hk :=

2k−1∑
j=0

βj,kχIj,k
for k ∈ N .

Then (gk) is an increasing and (hk) a decreasing sequence of λ1-simple functions.
Therefore their pointwise limits g := limk gk and h := limk hk are defined and
λ1-measurable, and g ≤ f ≤ h. Furthermore, we have∫

[0,1]

gk dλ1 = S(f, k) and
∫

[0,1]

hk dλ1 = S(f, k) ,

where S(f, k) and S(f, k) stand for the lower and upper sums of f on [0, 1] with
respect to the partition Zk (see Exercise VI.3.7). Denoting by

−

∫
f and

−∫
f the

lower and upper Riemann integrals of f on [0, 1], we find from the monotone
convergence theorem that∫

[0,1]

(h− g) dλ1 =
−∫

f −
−

∫
f . (5.3)

(ii) Let R :=
⋃

k∈N{ξ0,k, . . . , ξ2k,k} be the set of endpoints of the intervals
Ij,k. Let C be the set of continuous points of f . Then

[g = h] ∩Rc ⊂ C ⊂ [g = h] . (5.4)

To see this, take ε > 0. Suppose first that x0 ∈ Rc and g(x0) = h(x0). We can
find a k ∈ N such that hk(x0)− gk(x0) < ε and a j ∈ {0, . . . , 2k − 1} such that x0

lies in the interval (ξj,k, ξj+1,k). For x ∈ Ij,k, we thus have

|f(x)− f(x0)| ≤ sup
y∈Ij,k

f(y)− inf
y∈Ij,k

f(y) = hk(x0)− gk(x0) < ε ,

which proves the continuity of f at x0.
Now suppose x0 ∈ C. Take δ > 0 such that |f(x) − f(x0)| < ε/2 for

x ∈ [x0 − δ, x0 + δ] ∩ [0, 1]. Choose k0 ∈ N with 2−k0 ≤ δ and take for every
k ≥ k0 a j ∈ {0, . . . , 2k − 1} such that x0 ∈ Ij,k ⊂ [x0 − δ, x0 + δ]. Then

0 ≤ hk(x0)− gk(x0) = sup
x∈Ij,k

(
f(x)− f(x0)

)
− inf

x∈Ij,k

(
f(x)− f(x0)

)
< ε .

It follows that h(x0)− g(x0) = limk

(
hk(x0)− gk(x0)

)
= 0. This proves (5.4).
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(iii) If f is a Riemann integrable function, then
−

∫
f =

−∫
f =

∫
f (Exercise

VI.3.10). Therefore (5.3) shows that

h = g = f λ1-a.e. , (5.5)

which implies the λ1-measurability of f . Since f is bounded, f ∈ L1

(
[0, 1]

)
. We

also have |gk| ≤ ‖f‖∞ λ1-a.e. for k ∈ N. Then Lebesgue’s dominated convergence
theorem results in∫

[0,1]

g dλ1 = lim
k

∫
[0,1]

gk dλ1 = lim
k

S(f, k) =
∫ 1

0

f ,

where, in the last equality, we have once more used Exercise VI.3.10. From (5.5)
and Lemma 2.15, it follows that

∫
[0,1]

f dλ1 =
∫ 1

0
f . Finally (5.4), (5.5), and the

countability of R imply that the discontinuous points of f form a set of Lebesgue
measure zero.

(iv) Suppose conversely that Cc has measure zero. By (5.4), so does [g 
= h],
and the Riemann integrability of f follows from (5.3). This finishes the proof. �

5.7 Corollary Some Lebesgue integrable functions are not Riemann integrable.
Thus the Lebesgue integral is a proper extension of the Riemann integral.

Proof Consider the Dirichlet function

f : [0, 1]→ R , f(x) :=
{

1 if x ∈ Q ,

0 if x /∈ Q ,

on [0, 1]. By Lemma 2.15, f belongs to L1

(
[0, 1]

)
, since f vanishes almost every-

where. But we know from Example III.1.3(c) that f is nowhere continuous, hence
not Riemann integrable by Theorem 5.6. �

The equivalence class of maps that agree a.e. with the Dirichlet function
contains Riemann integrable functions — for example, the null function. So this
example is uninteresting from the viewpoint of L1-spaces. However, in Exercise 13,
it will be shown that there exists f ∈ L1

(
[0, 1], R

)
such that no g ∈ [f ] is Riemann

integrable. This implies that the Riemann integral is inadequate for the theory of
Lp-spaces.

Exercises

1 For p, q ∈ [1,∞] with p 	= q, show that Lp(R, E) /⊂ Lq(R, E).

2 Suppose J is an open interval and f ∈ C1(J, E) has compact support. Then
∫

J
f ′ = 0.

3 Suppose f ∈ L0

(
[0, 1], R+

)
is bounded. Show that

−

∫
f ≤

∫
[0,1]

f dλ1 ≤
−∫

f .
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4 Suppose I is a compact interval, and define the space of functions of bounded variation
on I by

BV (I,E) :=
{

f : I → E ; Var(f, I) <∞
}

.

(a) In the sense of vector subspaces, we have the inclusions

C1-(I,E) ⊂ BV (I,E) ⊂ B(I, E) .

(b) Let α := inf I and f ∈ L1(I,E). Then F : I → E, x �→
∫ x

α
f(t) dt belongs to

BV (I,E), and Var(F, I) ≤ ‖f‖1.
(c) For every f ∈ BV (I,R), there are increasing maps s± : I → R such that f = s+−s−.

(d) BV (I,R) is a vector subspace of the space S(I,R) of jump continuous functions
I → R.

(e) Every monotone function belongs to BV (I,R).

(Hint for (c): For α := inf I , consider the functions s+ :=
(
x �→ Var

(
f+, [α, x]

))
and

s− := s− f .)

5 Suppose H is a separable Hilbert space. Show2 that BV
(
[a, b], H

)
is a vector subspace

of L∞
(
[a, b], H

)
and that∫ b−h

a

‖f(t + h)− f(t)‖ dt ≤ h Var
(
f, [a, b]

)
for 0 < h < b− a .

(Hints: Note Exercises 1.1 and 4(d). For 0 < h < b − a and t ∈ [a, b − h], show that
‖f(t + h)− f(t)‖ ≤ Var

(
f, [a, t + h]

)
−Var

(
f, [a, t]

)
.)

6 Suppose J ⊂ R is a perfect interval. A function f : J → E is absolutely continuous if
for every ε > 0 there is δ > 0 such that

m∑
k=0

|f(βk)− f(αk)| < ε

for every finite family
{

(αk, βk) ; k = 0, . . . , m
}

of pairwise disjoint subintervals of J
with

∑m
k=0(βk − αk) < δ. We denote by W 1

1 (J, E) the set of all absolutely continuous
functions in EJ . Prove:

(a) In the sense of vector subspaces, we have the inclusions

BC1(J,E) ⊂W 1
1 (J, E) ⊂ C(J, E) .

(b) If J compact, then W 1
1 (J, E) ⊂ BV (J, E).

(c) The Cantor function (Exercise III.3.8) is continuous but not absolutely continuous.

(d) Set α := inf J and take f ∈ L1(J, E). Then F : J → E, x �→
∫ x

α
f(t) dt is absolutely

continuous.

2One can show that the statement of Exercise 5 remains true if H is replaced by an arbitrary
Banach space.
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7 For j = 1, 2, define fj : [0, 1]→ R by

fj(x) :=

{
x2 sin(1/xj) if x ∈ (0, 1] ,

0 if x = 0 ;

compare Exercise IV.1.2. Prove:

(a) f1 ∈ BV
(
[0, 1], R

)
.

(b) f2 /∈ BV
(
[0, 1], R

)
.

8 Let μ and ν be measures on a measurable space (X,A). We say ν is μ-absolutely
continuous if every μ-null set is also a ν-null set. In this case, we write ν � μ.

(a) Let (X,A, μ) be a σ-finite complete measure space. For f ∈ L0(X, μ, R+), define

f �μ : A → [0,∞] , A �→
∫

A

f dμ .

Show that f � μ is a complete measure on (X,A) with f �μ� μ.

(b) Let A := L[0,1], ν := λ1, and μ := H0. Check:

(i) ν � μ.

(ii) there is no f ∈ L0

(
[0, 1],A, μ

)
such that ν = f � μ.

9 Suppose (X,A, ν) is a finite measure space and μ is measure on (X,A). The following
statements are equivalent:

(i) ν � μ.

(ii) For every ε > 0 there is δ > 0 such that ν(A) < ε for all A ∈ A with μ(A) < δ.

10 For f ∈ L0(R, λ1, R+), let F (x) :=
∫ x

−∞ f(t) dt for x ∈ R, and denote by μF the
Lebesgue–Stieltjes measure on R generated by F . Prove:

(a) F ∈W 1
1 (R, R) implies μF � λ1.

(b) μF � β1 implies F ∈W 1
1 (R, R) if μF is finite.

11 Let I is an interval and take f ∈ L1(I, Rn). For a fixed a ∈ I , suppose
∫ x

a
f(t) dt = 0

for x ∈ I . Show that f(x) = 0 for almost every x ∈ I .

12 Let 0 ≤ a < b <∞ and I := (−b,−a)∪ (a, b), and suppose f ∈ L1(I,E). Show that∫
I
f dx = 0 if f is odd, and

∫
I
f dx = 2

∫ b

a
f dx if f is even.

13 Define
K0 := [0, 1] ,

K1 := K0\(3/8, 5/8) ,

K2 := K1

∖ (
(5/32, 7/32) ∪ (25/32, 27/32)

)
, . . .

Generally, Kn+1 is derived from Kn by the removal of open “middle fourths” of length
(1/4)n+1, rather than middle thirds as in the construction of the traditional Cantor set
(Exercise III.3.8). Set K :=

⋂
Kn and f := χK . Show that f belongs to L1

(
[0, 1]

)
and

that no g ∈ [f ] is Riemann integrable.



6 Fubini’s theorem

The heart of this section is the proof that the Lebesgue integral of functions of
multiple variables can be calculated iteratively and that this sequence of one-
dimensional integrations can be performed in any order. Therefore multivariable
integration reduces to integrating functions of only one variable. With the results
of the previous section and the procedures developed in Volume II, multidimen-
sional integrals can be calculated explicitly in many cases.

The method of iterative evaluation of integrals has wide-reaching theoretical
applications, a few of which we will present.

Throughout this section, we suppose

• m, n are positive integers and E is a Banach space.

In addition, we will generally identify Rm+n with Rm × Rn.

Maps defined almost everywhere

Suppose (X,A, μ) is a measure space. We will often consider nonnegative R-
valued functions that are only defined μ-a.e. For these, we shall simply write x �→
f(x), without specifying the precise domain of definition. We say such a function
x �→ f(x) is measurable if there is a μ-null set N such that f |N c : N c → R+

is defined and μ-measurable. Therefore
∫

Nc f dμ is defined. If M is another μ-
null set such that f |M c : M c → R+ is defined and μ-measurable, the equalities
μ(N) = μ(M) = μ(M ∪N) = 0 and Remarks 3.3(a) and (b) imply that∫

Nc

f dμ =
∫

Mc∩Nc

f dμ =
∫

Mc

f dμ .

Therefore ∫
X

f dμ :=
∫

Nc

f dμ (6.1)

is well defined and independent of the chosen null set N .

For an E-valued function x �→ f(x) defined μ-a.e., we define measurability
just as above. We say such an f is integrable if f |N c belongs to L1(N c, μ, E).
In this case,

∫
X

f dμ is also defined through (6.1), and Lemma 2.15 shows this
definition is meaningful.

Consider for example A ∈ L(m+n), and assume that the cross section A[x] is
λn-measurable for λm-almost every x ∈ Rm. Then x �→ λn(A[x]) is a nonnegative
R-valued function defined λm-a.e. If x �→ λn(A[x]) is measurable, the integral∫

Rm λn(A[x]) dx is well defined.
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Cavalieri’s principle

We denote by C(m, n) the set of all A ∈ L(m + n) for which
(i) A[x] ∈ L(n) for λm-almost every x ∈ Rm;
(ii) x �→ λn(A[x]) is λm-measurable;
(iii) λm+n(A) =

∫
Rm λn(A[x]) dx.

We want to show that C(m, n) agrees with L(m + n), but we need some prelimi-
naries.

6.1 Remarks (a) Suppose A ∈ C(1, n) is bounded and pr1(A) is an interval with
endpoints a and b. Then

λn+1(A) =
∫ b

a

λn(A[x]) dx .

This statement is called Cavalieri’s principle and makes precise the geometric idea
that the measure (volume) of A can be determined by partitioning A into thin
parallel slices and continuously summing (integrating) the volumes of these slices.

(b) L(m) � L(n) ⊂ C(m, n).

(c) For every ascending sequence (Aj) in C(m, n), the union
⋃

j Aj belongs to
C(m, n).
Proof (i) For j ∈ N, let Mj be a λm-null set such that Aj,[x] := (Aj)[x] ∈ L(n) for
x ∈Mc

j . Letting A :=
⋃

j Aj and M :=
⋃

j Mj , we then have A[x] =
⋃

j Aj,[x] ∈ L(n) for
x ∈Mc. The continuity of λn from below implies λn(A[x]) = limj λn(Aj,[x]) for x ∈Mc,
and we conclude with the help of Proposition 1.11 that x �→ λn(A[x]) is λm-measurable.

(ii) Because Aj ∈ C(m,n), we have∫
Rm

λn(Aj,[x]) dx = λm+n(Aj) for j ∈ N ,

and from the monotone convergence theorem, it follows that

lim
j

∫
Rm

λn(Aj,[x]) dx =

∫
Rm

λn(A[x]) dx . (6.2)
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The continuity of λm+n from below thus shows that

λm+n(A) = lim
j

λm+n(Aj) = lim
j

∫
Rm

λn(Aj,[x]) dx =

∫
Rm

λn(A[x]) dx .

Therefore A belongs to C(m,n). �

(d) Suppose (Aj) is a descending sequence in C(m, n) and there is a k ∈ N such
that λm+n(Ak) < ∞. Then

⋂
j Aj belongs to C(m, n).

Proof We set A :=
⋂

j Aj . The measurability of λm-almost all cross sections A[x] and
of x �→ λn(A[x]) follow as in (c). Next, Lebesgue’s dominated convergence theorem shows
that (6.2) is true in this case. The claim now follows as in (c). �

(e) Suppose (Aj) is a disjoint sequence in C(m, n). Then
⋃

j Aj also belongs to
C(m, n).
Proof Because of (c), it suffices to prove the statement for finite disjoint sequences. We
leave this to the reader as an exercise. �

(f) Every open set in Rm+n belongs to C(m, n).
Proof This follows from Proposition IX.5.6, (e) and (b). �

(g) Every bounded Gδ-set in Rm+n belongs to C(m, n).
Proof This follows from (f) and (d). �

(h) Suppose A is a λm+n-null set. Then A belongs to C(m, n), and there is a
λm-null set M such that A[x] is a λn-null set for every x ∈ M c.
Proof It suffices to verify there is a λm-null set M such that λn(A[x]) = 0 for x ∈Mc.
So let Aj := A ∩ (j Bm+n) for j ∈ N. Then (Aj) is an ascending sequence of bounded
λm+n-null sets with

⋃
j Aj = A. By Corollary IX.5.5, there is a sequence (Gj) of bounded

Gδ-sets with Gj ⊃ Aj and λm+n(Gj) = 0 for j ∈ N. From (g), it therefore follows that

0 = λm+n(Gj) =

∫
Rm

λn(Gj,[x]) dx .

Hence, there is for every j ∈ N a λm-null set Mj such that λn(Gj,[x]) = 0 for x ∈ Mc
j

(see Remark 3.3(c)). Because⋃
j
Gj,[x] ⊃

⋃
j
Aj,[x] =

(⋃
j
Aj

)
[x]

= A[x] for x ∈ Rm ,

M :=
⋃

j Mj has the desired property. �

After these remarks, we can now show the equality of C(m, n) and L(m+n).

6.2 Proposition C(m, n) = L(m + n).

Proof We need only check the inclusion L(m + n) ⊂ C(m, n).
(i) Suppose A ∈ L(m + n) is bounded. By Corollary IX.5.5, there is a

bounded Gδ-set G such that G ⊃ A and λm+n(G) = λm+n(A). Because A has
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finite measure, G\A is a bounded λm+n-null set by Proposition IX.2.3(ii), and
we conclude using Remark 6.1(h) that (G\A)[x] = G[x]\A[x] is a λn-null set for
λm-almost every x ∈ Rm. By Remark 6.1(g), G[x] belongs to L(n) for λm-almost
every x ∈ Rm. Because

A[x] = G[x] ∩ (G[x]\A[x])c for x ∈ Rm ,

this is also true of λm-almost every intersection A[x]. In addition, λn(A[x]) =
λn(G[x]) for λm-almost every x ∈ Rm. We know by Remark 6.1(g) that G belongs
to C(m, n). Therefore x �→ λn(A[x]) is measurable, and

λm+n(G) =
∫

Rm

λn(G[x]) dx =
∫

Rm

λn(A[x]) dx .

Therefore A belongs to C(m, n).
(ii) If A is not bounded, we set Aj := A ∩ (jBm+n) for j ∈ N. Then (Aj) is

an ascending sequence in L(m + n) with
⋃

j Aj = A. The claim now follows from
(i) and Remark 6.1(c). �

6.3 Corollary If A ∈ L(m + n) has finite measure, then λn(A[x]) < ∞ for λm-a.e.
x ∈ Rm.

Proof Because Proposition 6.2 implies∫
Rm

λn(A[x]) dx = λm+n(A) <∞ ,

the claim follows from Remark 3.11(c). �

For A ∈ L(m + n) and x ∈ Rm, we have χA(x, · ) = χA[x] , so Proposition 6.2
can also be formulated in terms of characteristic functions. It is then easy to apply
the statement to linear combinations of characteristic functions and therefore to
simple functions.

6.4 Lemma Suppose f ∈ S(Rm+n, E).
(i) f(x, · ) ∈ S(Rn, E) for λm-almost every x ∈ Rm.

(ii) the E-valued function x �→
∫

Rn f(x, y) dy is λm-integrable.

(iii)
∫

Rm+n f d(x, y) =
∫

Rm

[∫
Rn f(x, y) dy

]
dx.

Proof (i) With f =
∑k

j=0 ejχAj , we have f(x, · ) =
∑k

j=0 ejχAj,[x] for x ∈ Rm.
Then it follows easily from Proposition 6.2 and Corollary 6.3 that there is a λm-null
set M such that f(x, · ) belongs to S(Rn, E) for every x ∈ M c.

(ii) We set

g(x) :=
∫

Rn

f(x, y) dy =
k∑

j=0

ejλn(Aj,[x]) for x ∈M c . (6.3)
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Then Proposition 6.2 and Remark 1.2(d) show that x �→ g(x) is λm-measurable.
In addition, we have

∫
Rm

|g| dx ≤
k∑

j=0

|ej |
∫

Rm

λn(Aj,[x]) dx =
k∑

j=0

|ej |λm+n(Aj) < ∞ .

Therefore x �→ g(x) is λm-integrable.

(iii) Finally, it follows from Proposition 6.2 and (6.3) that

∫
Rm+n

f d(x, y) =
k∑

j=0

ejλm+n(Aj) =
k∑

j=0

ej

∫
Rm

λn(Aj,[x]) dx =
∫

Rm

g dx

=
∫

Rm

[∫
Rn

f(x, y) dy
]
dx ,

which completes the proof. �

6.5 Remark In the definition of the set C(m, n), we chose to single out the first
m coordinates of Rm+n. We could just as well have chosen the last n coordinates
and made the same argument not with λn(A[x]) but with λm(A[y]) for λn-almost
every y ∈ Rn. With this definition of C(m, n), we would obviously have found that
C(m, n) = L(m + n). Thus the roles of x and y in Lemma 6.4 can be exchanged,
and we conclude that, for f ∈ S(Rm+n, E),

(i) f( · , y) ∈ S(Rm, E) for λn-almost every y ∈ Rn;

(ii) the E-valued function y �→
∫

Rm f(x, y) dx is λn-integrable;

(iii)
∫

Rm+n f d(x, y) =
∫

Rn

[∫
Rm f(x, y) dx

]
dy.

In particular, we find∫
Rm

[∫
Rn

f(x, y) dy
]
dx =

∫
Rn

[∫
Rm

f(x, y) dx
]
dy

for f ∈ S(Rm+n, E). In other words, the integral
∫

Rm+n f d(x, y) can be calculated
iteratively in the case of simple functions, and the order in which the integrals are
performed is irrelevant. �

Applications of Cavalieri’s principle

The main result of this section is that the statement of Remark 6.5 about the
iterative calculation of integrals remains true for arbitrary integrable functions f .
Before we prove this theorem, we first give a few applications of Cavalieri’s prin-
ciple, meaning that we are working in the case f = χA.
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6.6 Examples (a) (geometric interpretation of the integral) For M ∈ L(m) and
f ∈ L0(M, R+), the set

Sf := Sf,M :=
{

(x, y) ∈ Rm × R ; 0 ≤ y ≤ f(x), x ∈M
}

belongs to L(m + 1), and∫
M

f dx = λm+1(Sf ) ,

that is, the integral
∫

M f dx equals the
(m+1)-dimensional Lebesgue measure
of the set of points under the graph
of f .1

Proof Set f1 := prR and f2 := f ◦prRm . Then f1 and f2 belong to L0(M ×R, R+), and
Sf = [0 ≤ f1 ≤ f2]. Therefore Proposition 1.9 implies the λm+1-measurability of Sf .
Because (Sf )[x] =

[
0, f(x)

]
for x ∈M , it follows that λ1

(
(Sf )[x]

)
= f(x), and hence

λm+1(Sf ) =

∫
Rm

λ1

(
(Sf )[x]

)
dx =

∫
M

f dx ,

by Proposition 6.2. �

(b) (substitution rule for linear maps) Suppose T ∈ L(Rm), a ∈ Rm and M ∈
L(m). Also let ϕ(x) := a+Tx for x ∈ Rm and f ∈ L1(ϕ(M)). Then f ◦ϕ belongs
to L1(M), and ∫

ϕ(M)

f dy = |detT |
∫

M

(f ◦ ϕ) dx . (6.4)

In particular, the Lebesgue integral is affine isometry invariant, that is, for every
affine isometry ϕ of Rm, we have∫

Rm

f =
∫

Rm

f ◦ ϕ for f ∈ L1(Rm) .

Proof (i) By Theorem IX.5.12, ϕ maps the σ-algebra L(m) into itself. Therefore ϕ(M)
belongs to L(m), and Theorem 1.4 implies that f ◦ ϕ lies in L0(M). The decomposition
f = f1 − f2 + i(f3 − f4) with fj ∈ L1(ϕ(M), R+) shows that we can limit ourselves to
the case of f ∈ L1(ϕ(M), R+). Then (a) says that∫

ϕ(M)

f = λm+1(Sf,ϕ(M)) ,

∫
M

f ◦ ϕ = λm+1(Sf◦ϕ,M ) . (6.5)

(ii) We set â := (a, 0) ∈ Rm × R and T̂ (x, t) := (Tx, t) for (x, t) ∈ Rm × R. Then

â + T̂ (Sf◦ϕ) = Sf and det T = det T̂ , because the representation matrix T̂ has the block

1Compare the introductory remarks to Section VI.3.
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structure [
T̂

]
=

[
[T ] 0
0 1

]
.

Corollary IX.5.23 and Theorem IX.5.25 therefore imply

λm+1(Sf ) = λm+1

(
T̂ (Sf◦ϕ)

)
= |det T |λm+1(Sf◦ϕ) ,

which, due to (6.5), proves (6.4). The integrability of f ◦ϕ follows from Remark 3.11(a). �

(c) (the volume of the unit ball in Rm) For m ∈ N×, we have

λm(Bm) =
πm/2

Γ(1 + m/2)
;

in particular, λ1(B1) = 2, λ2(B2) = π, and λ3(B3) = 4π/3.

Proof Setting ωm := λm(Bm), we obtain from
Cavalieri’s principle and Remarks IX.5.26(b) and
6.5 that

ωm =

∫ 1

−1

λm−1

(
(Bm)[y]

)
dy

=

∫ 1

−1

λm−1

(√
1− y2 Bm−1) dy

= ωm−1

∫ 1

−1

(√
1− y2

)m−1
dy .

To calculate the integral

Bm :=

∫ 1

−1

(1− y2)(m−1)/2 dy = 2

∫ 1

0

(1− y2)(m−1)/2 dy for m ∈ N× ,

we let y = − cos x, so that dy = sin x dx. This gives Bm = 2
∫ π/2

0
sinm x dx. It follows

from the proof of Example VI.5.5(d) that

B2m =
(2m− 1)(2m − 3) · · · · · 1

2m(2m− 2) · · · · · 2 · π , B2m+1 =
2m(2m− 2) · · · · · 2

(2m + 1)(2m− 1) · · · · · 1 · 2 .

Thus we find BmBm−1 = 2π/m and

ωm = Bmωm−1 = BmBm−1ωm−2 =
2π

m
ωm−2 . (6.6)

Since ω1 = 2, we obtain ω2 = B2ω1 = 2B2 = π and therefore, with (6.6),

ω2m =
πm

m!
, ω2m+1 =

(2π)m

1 · 3 · 5 · · · · · (2m + 1)
· 2 .

These two expressions can be unified with the help of the Gamma function, because

Γ(m + 1) = m! , Γ
(
m +

3

2

)
=

√
π

2m+1
· 1 · 3 · · · · · (2m + 1)

(see Theorem VI.9.2 and Exercise VI.9.1). �
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Tonelli’s theorem

We now prove the advertised theorem that justifies the iterative calculation of
integrals of nonnegative R-valued functions. This version, Tonelli’s theorem, will
give us an important integrability criterion in the case of E-valued functions.

6.7 Theorem (Tonelli) For f ∈ L0(Rm+n, R+),
(i) f(x, · ) ∈ L0(Rn, R+) for λm-a.a. x ∈ Rm,

f( · , y) ∈ L0(Rm, R+) for λn-a.a. y ∈ Rn;

(ii) x �→
∫

Rn f(x, y) dy is λm-measurable,

y �→
∫

Rm f(x, y) dx is λn-measurable;

(iii)
∫

Rm+n f d(x, y) =
∫

Rm

[∫
Rn f(x, y) dy

]
dx =

∫
Rn

[∫
Rm f(x, y) dx

]
dy.

Proof (i) By Theorem 1.12, there is an increasing sequence (fj) in S(Rm+n, R+)
that converges to f . The monotone convergence theorem then gives

lim
j

∫
Rm+n

fj d(x, y) =
∫

Rm+n

f d(x, y) in R+ . (6.7)

Further, by Lemma 6.4, there is for every j ∈ N a λm-null set Mj such that
fj(x, · ) ∈ S(Rn, R+) for x ∈ M c

j . If we set M :=
⋃

j Mj , we then see from the
monotone convergence theorem that∫

Rn

fj(x, y) dy
.⏐∫

Rn

f(x, y) dy for x ∈M c . (6.8)

Lemma 6.4(ii), Proposition 1.11, the fact that M has measure zero, and (6.8)
imply that the R-valued function x �→

∫
Rn f(x, y) dy is λm-measurable. Next, it

follows from (6.7), Lemma 6.4(iii), (6.8), and the monotone convergence theorem
that ∫

Rm+n

f d(x, y) = lim
j

∫
Rm+n

fj d(x, y) = lim
j

∫
Rm

[∫
Rn

fj(x, y) dy
]
dx

=
∫

Rm

[∫
Rn

f(x, y) dy
]
dx .

The remaining statements are proved analogously (paying heed to Remark 6.5). �

6.8 Corollary For f ∈ L0(Rm+n, E), suppose f = 0 λm+n-a.e. Then there is a
λm-null set M such that f(x, · ) vanishes λn-a.e. for every x ∈ M c, and a λn-null
set N such that f( · , y) = 0 λm-a.e. for every y ∈ N c.

Proof Clearly, it suffices to prove the existence of M (compare Remark 6.5).
Tonelli’s theorem gives∫

Rm

[∫
Rn

|f(x, y)| dy
]
dx =

∫
Rm+n

|f | d(x, y) = 0 .
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Thus according to Remark 3.3(c) there is a λm-null set M such that∫
Rn

|f(x, y)| dy = 0 for x ∈ M c ,

from which the claim follows again by Remark 3.3(c). �

Fubini’s theorem for scalar functions

It is now easy to extend Tonelli’s to the case of integrable K-valued functions,
which is of particular interest for applications.

6.9 Theorem (Fubini) For f ∈ L1(Rm+n),
(i) f(x, · ) ∈ L1(Rn) for λm-almost every x ∈ Rm,

f( · , y) ∈ L1(Rm) for λn-almost every y ∈ Rn;

(ii) x �→
∫

Rn f(x, y) dy is λm-integrable,

y �→
∫

Rm f(x, y) dx is λn-integrable;

(iii)
∫

Rm+n f d(x, y) =
∫

Rm

[∫
Rn f(x, y) dy

]
dx =

∫
Rn

[∫
Rm f(x, y) dx

]
dy.

Proof (a) For f ∈ L1(Rm+n, R+), the claim follows from Tonelli’s theorem and
Remark 3.3(e).

(b) Given the representation f = f1−f2+i(f3−f4), with fj ∈ L1(Rm+n, R+),
the general case now follows by Corollary 2.12 and the linearity of the integral. �

6.10 Corollary Suppose A ∈ L(m) and f ∈ L1(A). Let (j1, . . . , jm) denote a
permutation of (1, . . . , m). Then∫

A

f dx =
∫

R

(∫
R

· · ·
(∫

R

f̃(x1 . . . , xm) dxj1

)
· · · dxjm−1

)
dxjm .

Fubini’s theorem guarantees that integrable functions can be integrated in
any order. In combination with Tonelli’s theorem, we obtain a simple, versatile,
and extraordinarily important criterion for the integrability of functions of multiple
variables, as well as a method for explicitly calculating integrals.

6.11 Theorem (Fubini–Tonelli) Suppose A ∈ L(m + n) and f ∈ L0(A).
(i) If one of the integrals∫

Rm

[∫
Rn

∣∣f̃(x, y)
∣∣ dy

]
dx ,

∫
Rn

[∫
Rm

∣∣f̃(x, y)
∣∣ dx

]
dy ,

∫
A

|f | d(x, y)

is finite, then so is each of the others, and they are all equal. In that case, f
is integrable, and the statement of Theorem 6.9 holds for f̃ .
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(ii) If prRm(A) is measurable2 and f is integrable, then∫
A

f d(x, y) =
∫

pr
Rm (A)

[∫
A[x]

f(x, y) dy
]
dx .

Proof Because f̃ belongs to L0(Rm+n), the first statement follows immediately
from Tonelli’s theorem. Then by Theorem 3.9, f̃ is integrable, and hence so is f .
The claim is now clear. �

6.12 Remarks (a) We have lost no generality by choosing the first m coordinates,
because by Corollary 6.10, this order can always be achieved by a permutation.

(b) Typically we omit the brackets in
∫

Rn

[∫
Rm f(x, y) dx

]
dy and instead write,

say, ∫
Rn

∫
Rm

f(x, y) dx dy . (6.9)

In this notation, it is understood that the integrals are to be evaluated from the
inside to the outside.3 The iterated integral (6.9) is to be distinguished from the
(m + n)-dimensional integral∫

Rm+n

f d(x, y) =
∫

Rm+n

f dλm+n .

(c) There exists f ∈ L0(R2)
∖
L1(R2) such that∫

R

∫
R

f(x, y) dx dy =
∫

R

∫
R

f(x, y) dy dx = 0 .

Therefore the existence and equality of the iterated integral does not imply that
f is integrable.
Proof Define f : R2 → R by

f(x, y) :=

⎧⎨⎩
xy

(x2 + y2)2
if (x, y) 	= (0, 0) ,

0 if (x, y) = (0, 0) .
(6.10)

Then f is λ2-measurable. For every y ∈ R, the improper Riemann integral
∫

R
f(x, y) dx

converges absolutely. Also f( · , y) is odd. Hence
∫

R
f(x, y) dx = 0 for every4 y ∈ R, and

therefore, because f(x, y) = f(y, x), we have∫
R

∫
R

f(x, y) dx dy =

∫
R

∫
R

f(x, y) dy dx = 0 .

2As Remark IX.5.14(b) shows, this is not generally the case.
3That is, the integral

∫
Rm f(x, y) dx is calculated for fixed y and the result is then integrated

over y in Rn.
4The case y = 0 is covered in the given argument, although it follows more simply from the

fact that f( · , 0) = 0.
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Now suppose f were integrable. Then, by Fubini’s theorem, x �→
∫

R
|f(x, y)| dy would

also be integrable, which, because∫
R

|xy|
(x2 + y2)2

dy =
1

|x| for x 	= 0 ,

cannot be true. �

(d) There exists g ∈ L0(R2)
∖
L1(R2) such that

0 <
∣∣∣∫

R

∫
R

g(x, y) dx dy
∣∣∣ =

∣∣∣∫
R

∫
R

g(x, y) dy dx
∣∣∣ <∞ .

Proof Let f be the function from (6.10) and take h ∈ L1(R2) with
∫

h d(x, y) > 0.
Then g := f + h has the stated properties. �

6.13 Examples (a) (multidimensional Gaussian integrals) For n ∈ N×, we have∫
Rn

e−|x|2 dx = πn/2 .

Proof Using |x|2 = x2
1 + · · · + x2

n and the properties of the exponential function, it
follows from Tonelli’s theorem that∫

Rn

e−|x|2 dx =

∫
R

· · · · ·
∫

R

e−x2
1 e−x2

2 · · · · · e−x2
n dx1 · · · · · dxn

=

n∏
j=1

∫
R

e−x2
j dxj =

(∫
R

e−t2 dt
)n

.

Now the claim follows from Application VI.9.7. �

(b) (a representation of the beta function5) For v, w ∈ [Re z > 0],

B(v, w) =
Γ(v)Γ(w)
Γ(v + w)

.

Proof Set A :=
{

(s, t) ∈ R2 ; 0 < t < s
}

and define γv,w : A → C by γv,w(s, t) :=
tv−1(s− t)w−1e−s for v, w ∈ [Re z > 0]. Setting γv(t) := tv−1e−t for t > 0, we find from
Tonelli’s theorem that∫

A

|γv,w(s, t)| d(s, t) =

∫ ∞

0

∫ ∞

t

|γv,w(s, t)| ds dt

=
(∫ ∞

0

γRe v(t) dt
)(∫ ∞

0

γRe w(s) ds
)

= Γ(Re v)Γ(Rew) <∞ .

Therefore γv,w is integrable, and Fubini’s theorem analogously gives∫
A

γv,w(s, t) d(s, t) =

∫ ∞

0

∫ ∞

t

γv,w(s, t) ds dt = Γ(v)Γ(w) . (6.11)

5Compare Remark VI.9.12(a).
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Since pr1(A) = R+ and A[s] = [0, s] for s > 0, we obtain from (6.11) and Theorem 6.11(ii)

Γ(v)Γ(w) =

∫ ∞

0

(∫ s

0

tv−1(s− t)w−1 dt
)
e−s ds .

The substitution r = t/s in the inner integral and the definition of the beta function give

Γ(v)Γ(w) =

∫ ∞

0

(∫ 1

0

rv−1(1− r)w−1 dr
)
sv+w−1e−s ds = B(v, w)Γ(v + w) , (6.12)

which completes the proof. �

Example (b) shows that complicated integrals can be simplified by a deft
choice of integration order.

Fubini’s theorem for vector-valued functions6

We now want to show that Fubini’s theorem also holds for E-valued functions,
and offer some applications. A few preliminary remarks will prove helpful.

Suppose A ∈ L(m + n) has finite measure. By Proposition 6.2 and Corol-
lary 6.3, there is a λm-null set M such that A[x] ∈ L(n) and λn(A[x]) < ∞ for
x ∈M c. We fix q ∈ [1,∞). Because |χA[x] |q = χA[x] , we have∫

Rn

|χA[x](y)|q dy =
∫

Rn

χA[x](y) dy = λn(A[x]) < ∞ .

If, as agreed to in Section 4, we identify χA[x] with the equivalence class of all
functions that coincide λn-a.e. with y �→ χA[x](y), we obtain the map

M c → F := Lq(Rn) , x �→ χA[x] .

Because F is a Banach space, we can study its measurability and integrability
properties.

6.14 Lemma Suppose A ∈ L(m + n) has finite measure. Then the F -valued map
x �→ χA[x] , which is defined λm-everywhere, is λm-measurable.

Proof We denote by ψA : Rm → F the trivial extension of x �→ χA[x] .
(i) Suppose A is a λm+n-null set. By Remark 6.1(h), there is a λm-null set M

such that A[x] is a λn-null set for x ∈M c. Therefore ψA(x) = 0 in F for x ∈M c.
The claim follows.

(ii) Now suppose A is an interval of the form [a, b) with a, b ∈ Rm+n. Set
J1 :=

∏m
j=1[aj , bj) and J2 :=

∏m+n
j=m+1[aj , bj). Because A = J1 × J2, we have

χA[x] = χJ1(x)χJ2 for x ∈ Rm ,

and we see that in this case ψA belongs to S(Rm, F ).
6This section may be skipped on first reading.
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(iii) Suppose A ⊂ Rm+n is open and (Ij) is a disjoint sequence of intervals of
the form [a, b) with A =

⋃
j Ij (see Proposition IX.5.6). We set

fk :=
k∑

j=0

ψIj for k ∈ N .

By (ii) and Remark 1.2(a), (fk) is a sequence in S(Rm, F ). Also, there is a set M
of Lebesgue measure zero such that

‖ψA(x) − fk(x)‖q
F =

∫
Rn

∣∣∣χA[x](y)−
( k∑

j=0

χ(Ij)[x]
(y)

)∣∣∣q dy

= λn

( ∞⋃
j=k+1

(Ij)[x]

)
=

∞∑
j=k+1

λn

(
(Ij)[x]

)
for x ∈ M c. In addition, A[x] has finite measure by Corollary 6.3, and λn(A[x]) =∑∞

j=0 λn((Ij)[x]) for x ∈ M c. Therefore (fk) converges λm-a.e. to ψA in F , and
we see that ψA belongs to L0(Rm, F ).

(iv) Suppose A is a Gδ-set. The proof of Corollary IX.5.5 shows that there
is a sequence (Oj) of open sets such that λm+n(Oj) < ∞ and A =

⋂
Oj . Set

fk := ψ⋂k
j=0 Oj

, Rk :=
k⋂

j=0

Oj \A for k ∈ N .

Then (fk) is a sequence in L0(Rm, F ) by (iii), and (Rk) is a descending sequence
with

⋂∞
k=0 Rk = ∅ and λm+n(R0) <∞. Also, we have

‖fk(x)− ψA(x)‖q
F =

∫
Rn

∣∣χ(
⋂

k
j=0 Oj)[x]

(y)− χA[x](y)
∣∣q dy = λn

(
(Rk)[x]

)
for λm-almost every x ∈ Rm. The continuity of λn from above therefore implies
that (fk) converges λm-a.e. to ψA. From Theorem 1.14, it now follows that ψA

belongs to L0(Rm, F ).
(v) To conclude, consider A ∈ L(m + n) such that λm+n(A) is finite. By

Corollary IX.5.5, there is a Gδ-set G containing A and having the same measure
as A. By Proposition IX.2.3(ii), N := G\A is a λm+n-null set with ψA = ψG−ψN

λm-a.e. Now the claim follows from (i) and (iv). �

6.15 Corollary Let p, q ∈ [1,∞), and suppose ϕ ∈ S(Rm+n, E) has compact
support. Then the Lq(Rn, E)-valued function x �→ [ϕ(x, · )] is defined λm-a.e. and
is Lp-integrable, that is, ∫

Rm

‖ϕ(x, · )‖p
Lq(Rn,E) dx < ∞ .

If p = q, this holds for every ϕ ∈ S(Rm+n, E).
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Proof By Minkowski’s inequality, it suffices to prove this for ϕ := eχA with e ∈ E
and A ∈ L(m+n), where A has finite measure if p = q, and A is bounded if p 
= q.

By Lemma 6.14, there is a λm-null set M such that the function

M c → Lq(Rn) , x �→ χA[x]

is λm-measurable. Because ϕ(x, · ) = eχA[x] , (x �→ ϕ(x, · )) ∈ L0(M c, Lq(Rn, E)).
From

‖ϕ(x, · )‖Lq(Rn,E) =
(∫

Rn

|e|q χA[x](y) dy
)1/q

= |e|
[
λn(A[x])

]1/q for x ∈M c ,

we obtain ∫
Rm

‖ϕ(x, · )‖p
Lq(Rn,E) dx = |e|p

∫
Rm

λn(A[x])p/q dx .

In the case p = q, Proposition 6.2 implies∫
Rn

λn(A[x]) dx = λm+n(A) < ∞ .

Suppose therefore p 
= q. Because ϕ has compact support, there are compact
subsets K ⊂ Rm and L ⊂ Rn such that A ⊂ K ×L. Thus A[x] ⊂ L, which implies
λn(A[x]) ≤ λn(L) for λm-almost every x ∈ Rm. From this we deduce∫

Rm

λn(A[x])p/q dx =
∫

K

λn(A[x])p/q dx ≤ λn(L)p/q λm(K) < ∞ . �

These preparations are more general than necessary for our current purpose,
but will prove useful for further applications. We are ready to prove Fubini’s
theorem in the E-valued case.

6.16 Theorem (Fubini) For f ∈ L1(Rm+n, E),
(i) f(x, · ) ∈ L1(Rn, E) for λm-almost every x ∈ Rm;

f( · , y) ∈ L1(Rm, E) for λn-almost every y ∈ Rn;

(ii) x �→
∫

Rn f(x, y) dy is λm-integrable;

y �→
∫

Rm f(x, y) dx is λn-integrable;

(iii)
∫

Rm+n f d(x, y) =
∫

Rm

[∫
Rn f(x, y) dy

]
dx =

∫
Rn

[∫
Rm f(x, y) dx

]
dy.

Proof (a) Let f ∈ L1(Rm+n, E). Then there is an L1-Cauchy sequence (fj) in
S(Rm+n, E) and a λm+n-null set L such that fj(x, y) → f(x, y) for (x, y) ∈ Lc.
By Remark 6.1(h), there is a set M1 of measure zero such that

fj(x, · ) → f(x, · ) λn-a.e. , (6.13)

for x ∈ M c
1 . We set F := L1(Rn, E) and denote by ϕj the trivial extension of

x �→ fj(x, · ). According to Corollary 6.15, (ϕj) is a sequence in L1(Rm, F ) for
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which

‖ϕj − ϕk‖1 =
∫

Rm

‖ϕj(x)− ϕk(x)‖F dx =
∫

Rm

∫
Rn

|fj(x, y)− fk(x, y)| dy dx .

Further, Lemma 6.4 shows∫
Rm

∫
Rn

|fj(x, y)− fk(x, y)| dy dx =
∫

Rm+n

|fj − fk| d(x, y) = ‖fj − fk‖1 ,

and we see that (ϕj) is a Cauchy sequence in L1(Rm, F ). By Theorems 2.10
and 2.18, there is thus a ĝ ∈ L1(Rm, F ), a λm-null set M2, and a subsequence of
(ϕj), which, for simplicity, we also denote by (ϕj), such that

lim
j→∞

ϕj(x) = ĝ(x) for x ∈M c
2 (6.14)

in F and ϕj → ĝ in L1(Rm, F ). For x ∈M c
2 , let g(x) ∈ L1(Rn, E) be a representa-

tive of ĝ(x). Then there is a set N(x) of Lebesgue measure zero and a subsequence
of (ϕj(x)), which we also write as (ϕj(x)), such that, in E,

lim
j→∞

fj(x, y) = lim
j→∞

ϕj(x)(y) = g(x)(y) for x ∈ M c
2 and y ∈ (N(x))c .

Hence (6.13) implies that for every x ∈ M c
1 ∩M c

2 the maps f(x, · ), g(x) : Rn →
E are equal λn-a.e. Lemma 2.15 now shows that f(x, · ) belongs to L1(Rn, E)
and that ∫

Rn

g(x)(y) dy =
∫

Rn

f(x, y) dy for x ∈M c
1 ∩M c

2 . (6.15)

Furthermore, it follows from (6.13), (6.14), and Theorem 2.18(ii) that∫
Rn

fj(x, y) dy =
∫

Rn

ϕj(x)(y) dy →
∫

Rn

g(x)(y) dy =
∫

Rn

f(x, y) dy (6.16)

for x ∈M c
1 ∩M c

2 .
(b) For ϕ ∈ F = L1(Rn, E), let Aϕ :=

∫
Rn ϕdy. By Theorem 2.11(i), A

belongs to L(F, E). Theorem 2.11(iii) implies that gj := Aϕj defines a sequence
in L1(Rm, E).

Because
gj(x) =

∫
Rn

ϕj(x)(y) dy =
∫

Rn

fj(x, y) dy , (6.17)

we know from Theorem 2.11(i) that

|gj(x) − gk(x)| =
∣∣∣∫

Rn

(
fj(x, y) − fk(x, y)

)
dy

∣∣∣ ≤ ∫
Rn

|fj(x, y)− fk(x, y)| dy .

Therefore Theorem 2.11(ii) gives∫
Rm

|gj − gk| dx ≤
∫

Rm

∫
Rn

∣∣(fj(x, y)− fk(x, y)
)∣∣ dy dx = ‖fj − fk‖1 ,

where the last equality follows from Tonelli’s theorem. Therefore (gj) is a Cauchy
sequence in L1(Rm, E), and by completeness there is some h ∈ L1(Rm, E) such
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that gj → h in L1(Rm, E). Hence we can find a λm-null set M3 and a subsequence
of (gj), which we also denote by (gj), such that gj(x) → h(x) for x ∈ M c

3 and
j →∞. In view of (6.17), it follows from (6.16) that

h(x) =
∫

Rn

f(x, y) dy for x ∈M c
1 ∩M c

2 ∩M c
3 , (6.18)

which proves the first statement of (ii).
(c) Since gj → h in L1(Rm, E) and because of (6.17) and (6.18), Theorem

2.18(ii) implies ∫
Rm

∫
Rn

fj(x, y) dy dx→
∫

Rm

∫
Rn

f(x, y) dy dx .

Finally, it follows from Lemma 6.4 that∫
Rm

∫
Rn

fj(x, y) dy dx =
∫

Rm+n

fj d(x, y) ,

and with
∫

Rm+n f d(x, y) = limj

∫
Rm+n fj d(x, y), we have∫

Rm

∫
Rn

f(x, y) dy dx =
∫

Rm+n

f d(x, y) .

We have proved the first part of each of the statements (i) and (ii), and the first
equality in (iii). The remaining claims follow by exchanging the roles of x and y. �

6.17 Remark The analogues of the Fubini–Tonelli theorem and Corollary 6.10
clearly also hold in the E-valued case. �

Minkowski’s inequality for integrals

As an application we now prove a continuous version of Minkowski’s inequality.
Fix p, q ∈ [1,∞). For f ∈ L0(Rm+n, E), Theorem 1.7(i) shows that |f |q

belongs to L0(Rm+n, R+). Hence Tonelli’s theorem implies that |f(x, · )|q lies in
L0(Rn, R+) for λm-almost every x ∈ Rm and that the R+-valued function

x �→
∫

Rn

|f(x, y)|q dy ,

which is defined λm-a.e., is λm-measurable. Therefore

‖f‖(p,q) :=
(∫

Rm

[∫
Rn

|f(x, y)|q dy
]p/q

dx
)1/p

is defined in R+. We easily check that

L(p,q)(R
m+n, E) :=

{
f ∈ L0(Rm+n, E) ; ‖f‖(p,q) < ∞

}
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is a vector subspace of L0(Rm+n, E) and that ‖·‖(p,q) defines a seminorm on
L(p,q)(R

m+n, E). Finally, we set

Sc(Rm+n, E) :=
{

f ∈ S(Rm+n, E) ; supp(f) is compact
}

.

6.18 Lemma Sc(Rm+n, E) is a dense vector subspace of L(p,q)(R
m+n, E).

Proof (i) Take f ∈ L(p,q)(R
m+n, E) and let (gk) be a sequence in S(Rm+n, E)

such that gk → f a.e. Set Ak := [ |gk| ≤ 2 |f | ] ∩ kBm+n and fk := χAk
gk. Then

(fk) is a sequence in Sc(Rm+n, E), and there is a λm+n-null set L such that

fk(x, y)→ f(x, y) for (x, y) ∈ Lc . (6.19)

Moreover
|fk − f | ≤ |fk|+ |f | ≤ 3 |f | for k ∈ N . (6.20)

(ii) By (6.20), it follows from Tonelli’s theorem and Theorem 3.9 that there
is a λm-null set M0 such that

|f(x, · )− fk(x, · )|q , |f(x, · )|q ∈ L1(Rn) for x ∈M c
0 and k ∈ N . (6.21)

Remark 6.1(h) says there is a λm-null set M1 such that L[x] is a λn-null set for every
x ∈ M c

1 . Set M := M0 ∪M1 and choose x ∈ M c. From (6.19), we read off that
fk(x, y) → f(x, y) for y ∈ (L[x])c. By (6.20) and (6.21), we can apply Lebesgue’s
dominated convergence theorem to the sequence

(
|f(x, · )− fk(x, · )|p

)
k∈N

, and we
find

lim
k→∞

∫
Rn

|f(x, y)− fk(x, y)|q dy = 0 for x ∈M c .

Now define

ϕk :=
(
x �→

(∫
Rn

|f(x, y)− fk(x, y)|q dy
)p/q)∼

for k ∈ N .

Then the sequence (ϕk) converges λm-a.e. to 0.
(iii) Finally, set

ϕ :=
(
x �→ 3p

(∫
Rn

|f(x, y)|q dy
)p/q)∼

.

Because f ∈ L(p,q)(R
m+n, E), we know ϕ belongs to L1(Rm), and (6.20) implies

0 ≤ ϕk ≤ ϕ λm-a.e. for k ∈ N. Hence we can apply dominated convergence
theorem to (ϕk) to see that (

∫
Rm ϕk)k∈N is a null sequence in R+. The claim now

follows because∫
Rm

ϕk =
∫

Rm

[∫
Rn

|f(x, y)− fk(x, y)|q dy
]p/q

dx = ‖f − fk‖p
(p,q) . �
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One easily checks that N :=
{

f ∈ L0(Rm+n, E) ; f = 0 a.e.
}

is a vector
subspace of L(p,q)(R

m+n, E) and that f belongs to N if and only if ‖f‖(p,q) = 0.
Therefore

L(p,q)(R
m+n, E) := L(p,q)(R

m+n, E)/N

is a well defined vector space, and the assignment [f ] �→ ‖f‖(p,q) defines a norm on
L(p,q)(R

m+n, E), which we again denote by ‖·‖(p,q). In what follows, we always
provide the space L(p,q)(R

m+n, E) with the topology induced by ‖·‖(p,q).

We set

Sc(Rm+n, E) :=
{

[f ] ∈ L0(Rm+n, E) ; [f ] ∩ Sc(Rm+n, E) 
= ∅
}

.

6.19 Remarks (a) Sc(Rm+n, E) is a dense vector subspace of L(p,q)(R
m+n, E).

Proof This follows from Lemma 6.18. �

(b) Let f ∈ L0(Rm+n, E). If f(x, · ) belongs to Lq(Rn, E) for almost every x ∈ Rm

and [
x �→

(∫
Rn

|f(x, y)|q dx
)1/q]∼

∈ Lp(Rn) ,

then [f ] belongs to L(p,q)(R
m+n, E).

(c) L(p,p)(R
m+n, E) = Lp(Rm+n, E).

Proof This follows from Remark 4.9(b) and the Fubini–Tonelli theorem. �

(d) Sc(Rn, E) is a dense vector subspace of Lp(Rn, E).

Proof This is a consequence of (a) and (c). �

Consider g ∈ Sc(Rm+n, E). By Corollary 6.15, T0g :=
(
x �→

[
g(x, · )

])∼
belongs to Lp

(
Rm, Lq(Rn, E)

)
. Denoting by [T0g] the equivalence class of T0g with

respect to the vector subspace of all elements of L0(Rm, Lq(Rn, E)) that vanish
λm-a.e., we have [T0g] ∈ Lp(Rm, Lq(Rn, E)). Further, it follows from Corollary 6.8
that [T0g] = [T0h] if g, h ∈ Sc(Rm+n, E) coincide λm+n-a.e. Thus

T : Sc(Rm+n, E)→ Lp

(
Rm, Lq(Rn, E)

)
, [g] �→ [T0g]

is a well defined linear map.

6.20 Lemma There is a unique extension

T ∈ L
(
L(p,q)(R

m+n, E), Lp

(
Rm, Lq(Rn, E)

))
of T , and T is an isometry with a dense image.
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Proof (i) For f ∈ Sc(Rm+n, E), let g ∈ f ∩ Sc(Rm+n, E). Then∫
Rm

‖Tf‖p
Lq(Rn,E) dx =

∫
Rm

(∫
Rn

|g(x, y)|q dy
)p/q

dx = ‖g‖p
(p,q) = ‖f‖p

(p,q) .

Therefore T ∈ L
(
Sc(Rm+n, E), Lp

(
Rm, Lq(Rn, E)

))
is an isometry. Now it follows

from Theorem VI.2.6 and Remark 6.19(a) that there is a uniquely determined
isometric extension T of T .

(ii) We set F := Lq(Rn, E) and choose w ∈ Lp(Rm, F ) and ε > 0. It follows
from Remark 6.19(d) that there is a ϕ ∈ Sc(Rm, F ) such that ‖w − ϕ‖p < ε/2.
Let

∑r
j=0 χAj f̂j be the normal form of ϕ. Then

⋃r
j=0 Aj is bounded in Rm, and

α :=
∑r

j=0 λm(Aj) is finite. In the case α = 0, we have

‖w‖p = ‖w − T 0‖p < ε/2 .

In the case α > 0, we choose for every j ∈ {0, . . . , r} a representative fj of f̂j and
a ψj ∈ Sc(Rn, E) such that

‖ψj − fj‖q < α−1/p(r + 1)−1/q′
ε .

Also let

h(x, y) :=
r∑

j=0

χAj (x)ψj(y) for (x, y) ∈ Rm+n .

With ψj =
∑sj

kj=0 χBkj
ekj for j ∈ {0, . . . , r}, we then have

h =
r∑

j=0

sj∑
kj=0

χAj χBkj
ekj =

r∑
j=0

sj∑
kj=0

χAj×Bkj
ekj ,

and we see that h belongs to Sc(Rm+n, E). Finally, let g be the equivalence class
of h in L0(Rm+n, E). Then g belongs to Sc(Rm+n, E), and Tg =

∑r
j=0[χAj ψj ].

From Hölder’s inequality (for sums) and the equality χ2
A = χA, it follows that∫

Rm

‖Tg − ϕ‖p
F =

∫
Rm

[∫
Rn

∣∣∣ r∑
j=0

χAj (x)
(
ψj(y)− fj(y)

)∣∣∣q dy
]p/q

dx

≤ (r + 1)p/q′
∫

Rm

[∫
Rn

r∑
j=0

χAj (x) |ψj(y)− fj(y)|q dy
]p/q

dx

= (r + 1)p/q′
∫

Rm

[ r∑
j=0

χAj (x) ‖ψj − fj‖q
F

]p/q

dx

≤ (r + 1)p/q′
r∑

j=0

λm(Aj) ‖ψj − fj‖p
F .
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Therefore,

‖Tg − ϕ‖p ≤ α1/p (r + 1)1/q′
max

j
‖ψj − fj‖F < ε/2 ,

and consequently ‖Tg − w‖p < ε. Because this holds for every choice of w and ε,
we see that the image of T , and a fortiori that of T , is dense. �

As usual, we lighten the notation by writing T for T . In addition, as stated
in Section 4, our notation for elements of Lebesgue spaces does not distinguish
between cosets and their representatives. This means that for f ∈ L(p,q)(R

m+n, E)
we may write Tf(x) as f(x, · ). With these conventions, Lemma 6.20 says that

T : L(p,q)(R
m+n, E) → Lp(Rm, Lq(Rn, E)) , f �→ (x �→ f(x, · )) (6.22)

is a linear isometry whose image is dense.
Now it is easy to prove our continuous Minkowski’s inequality.

6.21 Proposition (Minkowski’s inequality for integrals) For 1 ≤ q < ∞, we have:

(i)
(∫

Rn

[∫
Rm

|f(x, y)| dx
]q

dy
)1/q

≤
∫

Rm

[∫
Rn

|f(x, y)|qdy
]1/q

dx

for f ∈ L0(Rm+n, E).

(ii)
(∫

Rn

∣∣∣∫
Rm

f(x, y) dx
∣∣∣q dy

)1/q

≤
∫

Rm

[∫
Rn

|f(x, y)|q dy
]1/q

dx <∞
for f ∈ L(1,q)(R

m+n, E).

Proof In case (i), we can assume without loss of generality that∫
Rm

[∫
Rn

|f(x, y)|q dy
]1/q

dx < ∞ .

Then |f | belongs to L(1,q)(R
m+n, R), and the claim is a special case of (ii), with

f replaced by |f | and E by R. Suppose therefore that f ∈ L(1,q)(R
m+n, E). It

follows from Lemma 6.20 and Theorem 2.11(i) (with E replaced by Lq(Rn, E))
that ∫

Rm

Tf dx =
∫

Rm

f(x, · ) dx ∈ Lq(Rn, E)

and(∫
Rn

∣∣∣∫
Rm

f(x, y) dx
∣∣∣q dy

)1/q

=
∥∥∥ ∫

Rm

Tf dx
∥∥∥

Lq(Rn,E)
≤

∫
Rm

‖Tf‖Lq(Rn,E) dx

=
∫

Rm

(∫
Rn

|f(x, y)|q dy
)1/q

dx .

This completes the proof. �
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A characterization of Lp(Rm+n, E)

As another consequence of Lemma 6.20, we obtain an often useful generalization
and sharpening of Fubini’s theorem.

6.22 Theorem For 1 ≤ p <∞,

Lp(Rm+n, E) → Lp(Rm, Lp(Rn, E)) , f �→ (x �→ f(x, · ))
is an isometric isomorphism.

Proof Suppose v ∈ Lp(Rm, Lp(Rn, E)). By Lemma 6.20, there is a sequence (fj)
in Lp(Rm+n, E) such that limj Tfj = v in Lp(Rm, Lp(Rn, E)). Because T is a
linear isometry, it follows easily that (fj) is a Cauchy sequence in Lp(Rm+n, E).
Denoting by f its limit in Lp(Rm+n, E), we have Tf = v. Therefore T is surjective.
This proves the claim. �

By means of this isometric isomorphism, we can identify the Banach spaces
Lp(Rm+n, E) and Lp(Rm, Lp(Rn, E)):

Lp(Rm+n, E) = Lp(Rm, Lp(Rn, E)) .

6.23 Remarks (a) The statement of Theorem 6.22 is false for p =∞, that is

L∞(Rm+n, E) 
= L∞
(
Rm, L∞(Rn, E)

)
.

Proof Take A :=
{

(x, y) ∈ R2 ; 0 ≤ y ≤ x ≤ 1
}

and f := χA. Because A is Lebesgue
measurable, f belongs to L∞(R2). If we set

g(x) := f(x, · ) =

{
χ[0,x] if 0 ≤ x ≤ 1 ,

0 otherwise ,

then g(x) belongs to L∞(R), and ‖g(x)‖∞ ≤ 1 for x ∈ R. But g nevertheless does not
belong to L∞

(
R, L∞(R)

)
, because the map g : R → L∞(R) is not λ1-measurable. To

see this, it suffices by Theorem 1.4 to show that g is not λ1-almost separable-valued. To
check this, note that

‖g(x)− g(r)‖L∞(R) = 1 for r ∈ R\{x} (6.23)

for x ∈ (0, 1]. Were g λ1-almost separable valued, there would be a λ1-null set N ⊂ R
and a sequence (rj) in R such that

inf
j∈N
‖g(x)− g(rj)‖∞ < 1/2 for x ∈ Nc . (6.24)

Because λ1

(
(0, 1]\N

)
= 1, the set (0, 1]\N is uncountable. Hence it follows from (6.23)

that (6.24) cannot hold, and g is not λ1-measurable. �

(b) Generalizing Theorem 6.22, one can show that for any p, q ∈ [1,∞), the map

L(p,q)(R
m+n, E) → Lp(Rm, Lq(Rn, E)) , f �→ (x �→ f(x, · ))

is an isometric isomorphism. Therefore L(p,q)(R
m+n, E) is complete. �
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A trace theorem

From Example IX.5.2 and the invariance of the Lebesgue measure under isometries,
it follows that every hyperplane Γ in Rn is a λn-null set. Hence for u ∈ Lp(Rn),
the restriction u |Γ, or trace of u on Γ, is not defined, because u can be “arbitrarily
changed” on Γ. As another application of Fubini–Tonelli, we now show that one
can nevertheless define such a trace on Γ for elements of certain vector subspaces
of Lp(Rn). Of course, this is trivially the case for the vector subspace C1

c (Rn).
The significance of what follows is that this space is given not the supremum norm,
but rather the Lp norm, with derivatives thrown into the mix. In the next section,
we will understand better the significance of these subspaces of Lp(Rn).

Consider the coordinate hyperplane Γ := Rn−1×{0}, which we identify with
Rn−1. For u ∈ C(Rn), we let γu := u |Γ be the trace of u on Γ:

(γu)(x) := u(x, 0) for x ∈ Rn−1 .

Then γ : C1
c (Rn) → Cc(Rn−1), u �→ γu is a well defined linear map.

Now take 1 ≤ p < ∞, and give C1
c (Rn) the norm

‖u‖1,p :=
(
‖u‖p

p +
n∑

j=1

‖∂ju‖p
p

)1/p

.

Further, set
Ĥ1

p (Rn) :=
(
C1

c (Rn), ‖·‖1,p

)
.

Since Cc(Rn−1) is a vector subspace of Lp(Rn−1),

γ : Ĥ1
p (Rn) → Lp(Rn−1) , u �→ γu

is a well defined linear map, the trace operator with respect to Γ = Rn−1. The
following trace theorem shows that γ is continuous.

6.24 Proposition γ ∈ L(Ĥ1
p (Rn), Lp(Rn−1)) for 1 ≤ p <∞.

Proof Define h ∈ C1(R) by h(t) := |t|p−1 t. For v ∈ C1
c (Rn), it follows from the

chain rule that ∂nh(v) = h′(v)∂nv. Since v has compact support, the fundamental
theorem of calculus then implies that

−h(v(x, 0)) =
∫ ∞

0

∂nh(v)(x, y) dy =
∫ ∞

0

h′(v(x, y))∂nv(x, y) dy for x ∈ Rn−1 .

Because h′(t) = p |t|p−1, we find

|v(x, 0)|p =
∣∣h(v(x, 0))

∣∣ ≤ ∫ ∞

0

∣∣h′(v(x, y))
∣∣ |∂nv(x, y)| dy

= p

∫ ∞

0

|v(x, y)|p−1 |∂nv(x, y)| dy .
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Also, Young’s inequality gives ξp−1η ≤ p− 1
p

ξp +
1
p

ηp for ξ, η ∈ [0,∞), so

|v(x, 0)|p ≤ (p− 1)
∫ ∞

0

|v(x, y)|p dy +
∫ ∞

0

|∂nv(x, y)|p dy .

With cp := max{p−1, 1}, it now follows from Fubini–Tonelli that∫
Rn−1

|v(x, 0)|p dx

≤ cp

(∫
Rn−1×R

|v(x, y)|p d(x, y) +
∫

Rn−1×R

|∂nv(x, y)|p d(x, y)
)

.

(6.25)

Therefore
‖γv‖Lp(Rn−1) ≤ c ‖v‖Ĥ1

p(Rn) for v ∈ Ĥ1
p (Rn) ,

where c := c
1/p
p . This proves the theorem. �

6.25 Remark Denote by Hn the upper half-space of Rn:

Hn := Rn−1 × (0,∞) =
{

(x, y) ∈ Rn−1 × R ; y > 0
}

.

Then Γ = Rn−1 × {0} = ∂Hn. If we set

Ĥ1
p (Hn) :=

({
u |Hn ; u ∈ C1

c (Rn)
}
, ‖·‖1,p

)
,

then Ĥ1
p (Hn) is a vector subspace of Lp(Hn), and from a statement analogous to

(6.25), it follows that
γ ∈ L(Ĥ1

p (Hn), Lp(Rn−1)) .

In this case, γu for u ∈ Ĥ1
p (Rn) is the trace of u on the boundary ∂Hn. �

Exercises

1 Suppose B ∈ L(n) and a ∈ Rn+1. Denote by

Za(B) :=
{

(x, 0) + ta ∈ Rn+1 ; x ∈ B, t ∈ [0, 1]
}

the cylinder with base B and edge a, and let

Ka(B) :=
{

(1− t)(x, 0) + ta ∈ Rn+1 ; x ∈ B, t ∈ [0, 1]
}

be the cone with base B and tip a. Prove:

(a) λn+1

(
Za(B)

)
= |an+1|λn(B);

(b) λn+1

(
Ka(B)

)
= |an+1|λn(B)/(n + 1).

If one interprets |an+1| as the height of the cylinder Za(B) or the cone Ka(B), then (b)
says the volume of an n-dimensional cone is equal to the total volume of n cylinders with
the same base and height.
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2 For 0 < r < a, let Va,r be the region in R3 enclosed by the 2-torus T2
a,r. Show that

Va,r = 2π2ar2.

3 Suppose J ⊂ R is an interval with endpoints a := inf J and b := sup J . Also let
f ∈ L0(J, R+), and denote by

Rf :=
{

(x, t) ∈ Rn × J ; |x| ≤ f(t)
}

the solid of revolution arising by rotation of the graph of f around the t-axis. Prove that

λn+1(Rf ) = ωn

∫ b

a

(f(t))n dt ,

where ωn is the volume of Bn. Interpret this formula geometrically in the case n = 2.

4 Suppose K is compact in Rn and ρK :=
∫

K
ρ(x) dx > 0 for ρ ∈ L1(K, R+). Then

S(K, ρ) :=
1

ρK

∫
K

xρ(x)dx ∈ Rn

is the centroid of K with respect to the density ρ. We set S(K) := S(K,1). Now suppose
J := [a, b] is a perfect, compact interval in R, and let f ∈ L0(J, R+). Also put

Af :=
{

(x, y) ∈ R2 ; 0 ≤ y ≤ f(x), x ∈ J
}

,

and denote by Rf the solid of revolution in R3 generated by f (by rotating about the
x-axis). Prove:

(a) For f ∈ L1(J, R+),

S(Af ) =
(
S1(Af ), S2(Af )

)
=

1

‖f‖1

(∫ b

a

xf(x) dx,
1

2

∫ b

a

(
f(x)

)2
dx

)
.

(b) For f ∈ L2(J,R+),

S(Rf ) =
( 1

‖f‖22

∫ b

a

t
(
f(t)

)2
dt, 0, 0

)
.

(c) For f ∈ L1(J, R+), we have Guldin’s first rule

λ3(Rf ) = π

∫ b

a

(f(x))2 dx = 2πS2(Af )λ2(Af ) .

In words, the volume of a solid of revolution is equal to the area of a meridional slice7

times the circumference of the circle drawn by the centroid of that slice during a full
revolution.8

5 (a) For α ∈ [0, π/2), let a := (cos α, 0, sin α). Determine the centroid of the cylinder
Za(B2) and the cone Ka(B2) with respect to the density 1.

(b) Let Aλ :=
{

(x, y) ∈ R2 ; 0 ≤ y ≤ e−λx, x ≥ 0
}

for λ > 0. Show that S(Aλ) ∈ Aλ.

(c) Give an example where S(Af ) /∈ Af .

7That is, the intersection with a plane containing the rotation axis.
8Guldin’s first rule also holds for solids of revolution not arising from the rotation of a graph;

see Exercise XII.1.11.
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6 Let K ⊂ Rn be convex and compact. Check that S(K, ρ) ∈ K for ρ ∈ L1(K, R+).

7 Denote by Δn :=
{

x ∈ Rn ; xj ≥ 0,
∑n

j=1xj ≤ 1
}

the standard simplex in Rn.
Prove:

(a) λn(Δn) = 1/n! .

(b) S(Δn) =
(
1/(n + 1), 1/(n + 1), . . . , 1/(n + 1)

)
.

8 Given f ∈ L1(Rm, K), g ∈ L1(Rn, E), define F (x, y) := f(x)g(y) for (x, y) ∈ Rm×Rn.
Show that F belongs to L1(Rm+n, E) and that∫

Rm+n

F (x, y) d(x, y) =

∫
Rm

f(x) dx

∫
Rn

g(y) dy .

9 For D :=
{

(x, y) ∈ R2 ; x, y ≥ 0, x + y ≤ 1
}
, show that∫

D

xmyn d(x, y) =
1

n + 1
B(m + 1, n + 2) for m, n ∈ N .

10 Show that
∫
[0,1]×[0,1]

y
/√

x d(x, y) = 1.

11 Show that
∫

Rn ∂jϕ dx = 0 for ϕ ∈ C1
c (Rn, E) and j ∈ {1, . . . , n}.

12 For each of the following maps f : (0, 1)× (0, 1)→ R, calculate∫ 1

0

∫ 1

0

f(x, y) dx dy ,

∫ 1

0

∫ 1

0

f(x, y) dy dx ,

∫ 1

0

∫ 1

0

|f(x, y)| dx dy ,

∫ 1

0

∫ 1

0

|f(x, y)| dy dx .

(a) f(x, y) := (x− y)
/
(x2 + y2)3/2.

(b) f(x, y) := 1
/
(1− xy)α for α > 0.

13 Let p, q ∈ [1,∞]. Prove:

(a) Lp(Rn) /⊂ Lq(Rn) if p 	= q.

(b) if X ⊂ Rn is open and bounded, then Lp(X) � Lq(X) if p > q.



7 The convolution

In this section we use the translation invariance of the Lebesgue measure to in-
troduce a new product on L1(Rn), the convolution, which rests on the Lebesgue
integral. We show that this operation is defined not only on L1(Rn) but also on
other function spaces, and that it has important smoothing properties. Among
its applications are certain approximation theorems which we prove here for their
great usefulness in later constructions.

We will consider mainly spaces of K-valued functions defined on all of Rn.
For such spaces we omit the domain and image from the notation. In other words,
if F(Rn) = F(Rn, K) is a vector space of K-valued functions on Rn, we write simply
F if there is no risk of confusion. Thus Lp stands for Lp(Rn) = Lp(Rn, K), and so
on. Also

∫
f dx will always mean

∫
Rn f dx.

Defining the convolution

Let F be a K-vector space. For f ∈ Funct(Rn, F ), we define another function
f

̂

∈ Funct(Rn, F ) by f

̂

(x) := f(−x), where x ∈ Rn. The map f �→ f

̂

is called
inversion (about the origin).

Recall from IX.5.15 the definition of the translation group T := {τa ; a ∈Rn }.
Now we define an action1 of this group on Funct(Rn, F ) by

T× Funct(Rn, F )→ Funct(Rn, F ) , (τa, f) �→ τaf , (7.1)

where
τaf(x) := f(x− a) for a, x ∈ Rn . (7.2)

Therefore
τaf = f ◦ τ−a = (τ−a)∗f ,

where (τ−a)∗ is the pull back defined in Section VIII.3.

7.1 Remarks (a) For f ∈ Funct := Funct(Rn, K), we have f

̂

= (−idRn)∗f .

(b) Inversion is an involutive2 vector space isomorphism on Funct and on Lp for
p ∈ [1,∞] ∪ {0}.

(c) Suppose E ∈ {BCk, BUCk, C0 ; k ∈ N }. Then inversion belongs to Laut(E).

(d) For f ∈ Funct and x ∈ Rn, we have

(τ−xf)

̂

(y) = τxf

̂

(y) = f(x− y) for y ∈ Rn .

1See Exercise I.7.6.
2A map f ∈ XX is said to be involutive if f ◦ f = idX .
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(e) Suppose n = 1 and a > 0. Then τa : R → R, x �→ x+a is the right translation
on R by a. Definition (7.2) means that τa also translates the graph of f to the
right by a.

Therefore T acts as a right translation on Funct(R, F ), which clarifies defining τaf
as the pull back of the left translation τ−a of R. �

Take f, g ∈ L1 and x ∈ Rn, and let O be open in K.

(τ−xf)−1(O) = (f ◦ τx)−1(O) = τ−x(f−1(O)) .

Therefore it follows from Corollary 1.5 and Lemma IX.5.16 that (τ−xf)−1(O) is
measurable. Hence, again by Corollary 1.5, τ−xf belongs to L0. Now we deduce
from Remark 1.2(d) and parts (b) and (d) of Remark 7.1 that y �→ f(x − y)g(y)
belongs to L0 for every x ∈ Rn. If this function is integrable, we define the
convolution of f with g at x by

f ∗ g(x) :=
∫

f(x− y)g(y) dy .

We say f and g are convolvable if f ∗ g(x) is defined for almost every x ∈ Rn. In
this case the a.e.-defined function

f ∗ g :=
(
x �→ f ∗ g(x)

)
is called the convolution of f with g. If f and g are convolvable and (f ∗ g)p is
integrable (or f ∗ g is essentially bounded for p = ∞), we write f ∗ g ∈ Lp, in a
slight abuse of notation.3)

We now show that every pair (f, g) ∈ Lp×L1 with p ∈ [1,∞] is convolvable.
The following observation will be helpful.

7.2 Lemma For f ∈ L0 and (x, y) ∈ Rn × Rn = R2n, let

F1(x, y) := f(x) and F2(x, y) := f(x− y) .

Then F1 and F2 belong to L0(R2n).

3We literally mean that the trivial extension of f ∗ g belongs to Lp.
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Proof (i) Suppose O is open in K and A := f−1(O). Then A belongs to L(n).
Therefore Remark 6.1(b) and Proposition 6.2 show that F−1

1 (O) = A × Rn is
λ2n-measurable. Now the claim for F1 follows from Corollary 1.5.

(ii) Set ϕ(x, y) := (x−y, y) for (x, y) ∈ Rn × Rn. Then ϕ ∈ Laut(R2n) and
F2 = F1 ◦ ϕ. The claim then follows from (i) and Theorem IX.5.12. �

7.3 Theorem Suppose p ∈ [1,∞] and (f, g) ∈ Lp × L1.

(i) f and g are convolvable.

(ii) (Young’s inequality) f ∗ g ∈ Lp and ‖f ∗ g‖p ≤ ‖f‖p ‖g‖1.

Proof (a) Suppose first that p ∈ [1,∞). By Lemma 7.2 and Remark 1.2(d),
the map (x, y) �→ f(x− y)g(y) belongs to L0(R2n). Using Hölder’s inequality, we
deduce that∫

|f(x− y)g(y)| dy =
∫
|f(x− y)| |g(y)|1/p |g(y)|1/p′

dy

≤
(∫

|f(x− y)|p |g(y)| dy
)1/p(∫

|g(y)| dy
)1/p′

.

From this and Tonelli’s theorem, we get∫ (∫
|f(x− y)g(y)| dy

)p

dx ≤ ‖g‖p/p′
1

∫ ∫
|f(x− y)|p |g(y)| dy dx

= ‖g‖p/p′
1

∫ ∫
|f(x− y)|p dx |g(y)| dy

= ‖g‖1+p/p′
1 ‖f‖p

p <∞ ,

where in the last step we once more used the translation invariance of the Lebesgue
integral. Thus we find4

(∫ [∫
|f(x− y)g(y)| dy

]p

dx
)1/p

≤ ‖f‖p ‖g‖1 <∞ . (7.3)

Now from Remark 3.11(c), we conclude that
∫
|f(x − y)g(y)| dy < ∞ for almost

every x ∈ Rn; by Remark 3.11(a), this suffices to show that f and g are convolvable.
Part (ii) of the theorem now follows from (7.3).

(b) In the case p =∞, we have∫
|f(x− y)g(y)| dy ≤ ‖f‖∞ ‖g‖1 < ∞ for almost every x ∈ Rn ,

which immediately implies (i) and (ii). �

4Those readers who worked through the last part of the previous section will recognize that
this bound can also be easily derived from Minkowski’s inequality for integrals.
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7.4 Corollary Let
(
[f ], [g]

)
∈ Lp × L1 with p ∈ [1,∞]. Then

f ∗ g =
∗
f ∗ ∗g a.e. in Rn

for (
∗
f, ∗g) ∈

(
[f ], [g]

)
.

Proof By Theorem 7.3, f ∗ g,
∗
f ∗ ∗g, and f ∗ ∗g are defined a.e. and belong to Lp.

Because
f ∗ g − ∗

f ∗ ∗g = f ∗
(
g − ∗g

)
+

(
f − ∗

f
)
∗ ∗g ,

we obtain from Young’s inequality that∥∥f ∗ g − ∗
f ∗ ∗g

∥∥
p
≤

∥∥f
∥∥

p

∥∥g − ∗g
∥∥

1
+

∥∥f − ∗
f
∥∥

p

∥∥ ∗g
∥∥

1
= 0 ,

from which the claim follows. �

We can now define the convolution for elements of Lp × L1 with p ∈ [1,∞]:
indeed, Corollary 7.4 guarantees that the map

∗ : Lp × L1 → Lp ,
(
[f ], [g]

)
�→ [f ∗ g]

is well defined. We call this the ∗ the convolution product on Lp × L1, and
[f ] ∗ [g] := [f ∗ g] convolution of [f ] with [g]. It is clear that the convolution can
also be defined on L1 × Lp, and we use the symbol ∗ for this as well.

The translation group

To be able to better explore further properties of the convolution, we first gather
some important definitions and facts about the representation of the translation
group (Rn, +) on function spaces.

Let F be a K-vector space and let V be a vector subspace of Funct(Rn, F )
that is invariant under the action (7.1) of the translation group T of Rn, meaning
that τa(V ) ⊂ V for all a ∈ Rn. By restriction, (7.1) induces an action

T× V → V , (τa, v) �→ τav

of the translation group T on V . For every a ∈ Rn, the map Ta := (v �→ τav) is a
linear map from V into itself. Because

τaτbv = τa+bv and τ0v = v ,

Ta is a vector space automorphism of V and (Ta)−1 = T−a. Hence5

(Rn, +)→ Aut(V ) , a �→ Ta

5See Remarks I.12.2(d) and I.7.6(e).
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is a group homomorphism, a linear representation of the group (Rn, +) on V . In
particular,

TV :=
{
Ta ∈ Aut(V ) ; a ∈ Rn

}
is a subgroup of Aut(V ), called the group of translations on V . Instead of Ta,
we tend to use the same symbol τa if there is no fear of misunderstanding. The
invariance of V under (7.1) is also expressed by saying that (Rn, +) is linearly
representable on V .

If V is a (semi)normed vector space, the group TV is said to be strongly
continuous if lima→0 τav = v for every v ∈ V .

7.5 Remarks (a) (Rn, +) is linearly representable on Funct and on B := B(Rn).

(b) (Rn, +) is linearly representable on L∞, and ‖τaf‖∞ = ‖f‖∞ for f ∈ L∞.
Proof Take f ∈ L∞. For every α > ‖f‖∞ there is a set N of Lebesgue measure zero such
that |f(x)| ≤ α for x ∈ Nc. By translation invariance (Theorem IX.5.17), Na := τa(N)
also has measure zero and

|τaf(x)| = |f(x− a)| ≤ α for x ∈ Nc
a .

Therefore τaf is essentially bounded, and ‖τaf‖∞ ≤ ‖f‖∞. The claim follows since

‖f‖∞ = ‖τ−a(τaf)‖∞ ≤ ‖τaf‖∞ . �

(c) The translation groups TB and TL∞ are not strongly continuous.
Proof ‖τaχBn − χBn‖∞ = 1 for a ∈ Rn\{0}. �

(d) If TV is strongly continuous, then

(a �→ τaf) ∈ C(Rn, V ) for f ∈ V .

Proof This follows from τaf − τbf = τa−b(τbf)− τbf for f ∈ V and a, b ∈ Rn. �

7.6 Theorem Suppose V = Lp with p ∈ [1,∞) or V = BUCk with k ∈ N. Then
(Rn, +) is linearly representable on V , and the translation group TV is strongly
continuous. Also ‖τaf‖V = ‖f‖V for a ∈ Rn and f ∈ V .

Proof (i) We consider first the case V = BUCk. Take f ∈ BUCk, a ∈ Rn, and
ε > 0. Then there is δ > 0 such that |f(x)− f(y)| < ε for all x, y ∈ Rn satisfying
|x− y| < δ. It follows that

|τaf(x)− τaf(y)| = |f(x− a)− f(y − a)| < ε (7.4)

for x, y ∈ Rn such that |x− y| < δ. Therefore τaf belongs to BUC, and because

∂ατaf = τa∂αf for α ∈ Nn and |α| ≤ k , (7.5)

we obtain τaf ∈ BUCk. Consequently (Rn, +) is linearly representable on BUCk.
From Remark 7.5(b) and (7.5), we find ‖τaf‖BCk = ‖f‖BCk .
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Now take x ∈ Rn. If |a| < δ, we can set y = x + a in (7.4), and we get

|τaf(x)− f(x)| < ε for x ∈ Rn ,

that is, ‖τaf − f‖∞ < ε for a ∈ δBn. Analogously, we can show with (7.5) that
there is a δ1 > 0 such that ‖τaf − f‖BCk < ε for a ∈ δ1Bn. Therefore TBUCk is
strongly continuous.

(ii) Let p ∈ [1,∞) and f ∈ Lp. The equality ‖τaf‖p = ‖f‖p follow from the
translation invariance of the Lebesgue integral.

Now take ε > 0. By Theorem 4.14, there is a g ∈ Cc such that ‖f − g‖p < ε/3.
Because g has compact support, there is a compact subset K of Rn such that
supp(τag) ⊂ K for |a| ≤ 1. Also, since g is uniformly continuous, there exists
δ ∈ (0, 1] such that

‖τag − g‖∞ < ε
/
3λn(K)1/p for a ∈ δBn .

Suppose a ∈ δBn. Because supp(τag − g) ⊂ K, Theorem 5.1(iv) implies that

‖τag − g‖p < ε/3 for a ∈ δBn .

Since
‖τaf − f‖p ≤ ‖τaf − τag‖p + ‖τag − g‖p + ‖g − f‖p

and ‖τaf − τag‖p = ‖τa(f − g)‖p = ‖f − g‖p, we get ‖τaf − f‖p < ε for a ∈ δBn,
and we are done. �

We now define an action of T on Lp for p ∈ [1,∞]. By Remark 7.5(b) and
Theorem 7.6, τa is an isometry of Lp for every a ∈ Rn. Therefore the map

Lp → Lp , [f ] �→ [τaf ]

is well defined for every a ∈ Rn. We denote it by τa also, that is, we set

τa[f ] := [τaf ] for f ∈ Lp and a ∈ Rn .

Then
‖τa[f ]‖p = ‖ [τaf ]‖p = ‖τaf‖p = ‖f‖p = ‖ [f ]‖p . (7.6)

Clearly
T× Lp → Lp , (τa, f) �→ τaf

is an action of the translation group T of Rn on Lp. By Remark 7.5(b) and
Theorem 7.6, Ta := (f �→ τaf) is a linear isometry on Lp for every a ∈ Rn. Again
writing Ta as τa, we conclude that

(Rn, +)→ Laut(Lp) , a �→ τa

is a representation of the additive group of Rn by linear isometries on Lp. In
particular, the translation group on Lp, namely

TLp :=
{

τa ∈ Laut(Lp) ; a ∈ Rn
}

,

is a subgroup of Laut(Lp) consisting of isometries.
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7.7 Corollary The translation group on Lp is strongly continuous for 1 ≤ p < ∞.

Proof This is an immediate consequence of Theorem 7.6 and (7.6). �

Elementary properties of the convolution

After this digression about the translation group, we return to the convolution
and derive its chief properties.

7.8 Theorem Consider (f, g) ∈ Lp × L1 with p ∈ [1,∞].
(i) The convolution f ∗ g belongs to Lp, and satisfies Young’s inequality

‖f ∗ g‖p ≤ ‖f‖p ‖g‖1 .

(ii) f ∗ g = g ∗ f .

(iii) If p =∞, the convolution f ∗ g belongs to6 BUC.

(iv) For ϕ ∈ BCk, we have ϕ ∗ g ∈ BUCk,

∂α(ϕ ∗ g) = ∂αϕ ∗ g for α ∈ Nn , |α| ≤ k ,

and ‖ϕ ∗ g‖BCk ≤ ‖ϕ‖BCk ‖g‖1.

Proof (i) follows from Theorem 7.3(ii) and Corollary 7.4.
(ii) Take x ∈ R and let

∗
f and ∗g be representatives of f and g. Also set

ψ(y) := x− y for y ∈ Rn. Then ψ is an involutive isometry of Rn. It follows from
Theorem 7.3(i) and Example 6.6(b) that

∗
f ∗ ∗g(x) =

∫
∗
f(x − y) ∗g(y) dy =

∫ ( ∗
f ◦ ψ

)(
( ∗g ◦ ψ) ◦ ψ

)
dy

=
∫

( ∗g ◦ ψ)
∗
f dy =

∫
∗g(x− y)

∗
f(y) dy = ∗g ∗ ∗

f(x) .

Therefore f ∗ g = g ∗ f by Corollary 7.4.
(iii) The motion invariance of the Lebesgue integral yields ‖g

̂

‖1 = ‖g‖1. From
part (ii), and because the elements of TL1 are isometries, we then get

∣∣ ∗
f ∗ ∗g(x)− ∗

f ∗ ∗g(y)
∣∣ ≤ ∫ ∣∣ ∗

f(z)
( ∗g(x − z)− ∗g(y − z)

)∣∣ dz ≤ ‖ ∗
f‖∞ ‖τxg

̂

− τyg

̂

‖1

= ‖f‖∞ ‖τy(τx−yg

̂

− g

̂

)‖1 = ‖f‖∞ ‖τx−yg

̂

− g

̂

‖1

for x, y ∈ Rn. Because g

̂

∈ L1, the strong continuity of TL1 together with part (i)
implies that

∗
f ∗ ∗g ∈ BUC. The claim follows.

6See Theorem 4.18.
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(iv) In view of (iii), it suffices to consider the case k ≥ 1. To this end we define
h(x, y) := ϕ(x − y)g(y) for (x, y) ∈ Rn × Rn. Then h satisfies the assumptions of
Theorem 3.18, and it follows that ∂j(ϕ ∗ g) = ∂jϕ ∗ g for j ∈ {1, . . . , n}. By (iii)
and Theorem VII.2.10, we have ϕ ∗ g ∈ BUC1. We now see inductively that ϕ ∗ g
belongs to BUCk and satisfies ∂α(ϕ ∗ g) = ∂αϕ ∗ g for every α ∈ Nn with |α| ≤ k.
Finally, by (i), we have

‖ϕ ∗ g‖BCk = max
|α|≤k

‖∂α(ϕ ∗ g)‖∞ = max
|α|≤k

‖(∂αϕ) ∗ g‖∞ ≤
(
max
|α|≤k

‖∂αϕ‖∞
)
‖g‖1

= ‖ϕ‖BCk ‖g‖1 . �

7.9 Corollary

(i) Let p ∈ (1,∞) and k ∈ N. The convolution satisfies

∗ ∈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L2

sym(L1, L1) ,

L(Lp, L1; Lp) ,

L(L∞, L1; BUC) ,

L(BCk, L1; BUCk) ,

and all these maps have norm at most 1.

(ii) (L1, +, ∗) is a commutative Banach algebra without a multiplicative identity.

Proof (i) and the first statement of (ii) follow immediately from Theorem 7.8.
We now assume there is e ∈ L1 such that e ∗ f = f for every f ∈ L1. We choose
a representative ∗e of e and then find by Exercise 2.15 a δ > 0 such that∣∣∣∫

δBn

∗e(x− y) dy
∣∣∣ =

∣∣∣∫
Bn(x,δ)

∗e(z) dz
∣∣∣ < 1 for x ∈ Rn .

Furthermore, there is a set N of Lebesgue measure zero such that χδBn(x) =
∗e ∗ χδBn(x) for x ∈ N c. However, for x ∈ δBn ∩N c, we have

1 = χδBn(x) = ∗e ∗ χδBn(x) =
∫

Rn

∗e(x− y)χδBn(y) dy =
∫

δBn

∗e(x − y) dy < 1 ,

which is not possible. �

7.10 Theorem (additivity of supports) Suppose f, g ∈ L0 are convolvable and f
has compact support. Then

supp(f ∗ g) ⊂ supp(f) + supp(g) .

Proof (i) We can assume f ∗ g 
= 0. For x ∈ [f ∗ g 
= 0], there is a y ∈ Rn such
that f(x− y)g(y) 
= 0. It follows that y ∈ supp(g) and x ∈ y + supp(f), and thus
x belongs to supp(f) + supp(g). Hence [f ∗ g 
= 0] ⊂ supp(f) + supp(g).
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(ii) We show that supp(f) + supp(g) is closed. Let (xk) be a sequence in
supp(f) + supp(g) such that xk → x for some x ∈ Rn. Then there are sequences
(ak) in supp(f) and (bk) in supp(g) such that xk = ak + bk for k ∈ N. Because
supp(f) is compact, there is a subsequence (ak�

)	∈N of (ak) and an a ∈ supp(f)
such that ak�

→ a as � → ∞. Thus bk�
= xk�

− ak�
→ x− a as k → ∞. Because

supp(g) is closed, we know x−a belongs to supp(g). Hence there exists b ∈ supp(g)
such that x = a+b. This shows that supp(f)+supp(g) is closed. The claim follows
from Corollary III.2.13. �

Approximations to the identity

We saw in Corollary 7.9 that the convolution algebra L1 has no multiplicative
identity. However, the next theorem secures the existence of “approximations to
the identity”, elements ϕ ∈ L1 that satisfy ‖ϕ ∗ f − f‖1 < ε for every f ∈ L1 (for
a given ε > 0).

7.11 Theorem (approximation theorem) Given E ∈ {Lp ; 1 ≤ p < ∞} or
E ∈ {BUCk ; k ∈ N }, set ϕ ∈ L1 and

a :=
∫

ϕdx , ϕε(x) := ε−nϕ(x/ε) for x ∈ Rn , ε > 0 .

Then limε→0 ϕε ∗ f = af in E for f ∈ E.

Proof (i) Fix ε > 0. By the substitution rule— Example 6.6(b)— we know that
ϕε ∈ L1 and

∫
ϕε dx = a. Thus Theorem 7.8 shows that ϕε ∗ f ∈ E for f ∈ E.

(ii) To prove the limit as ε→ 0, consider first the case E = Lp. Take f ∈ Lp

and ε > 0. By Theorem 7.3(i) and the proof of Theorem 7.8(ii), and using the
transformation y �→ y/ε in Example 6.6(b), we obtain

ϕε ∗ f(x)− af(x) = f ∗ ϕε(x)− af(x) =
∫ [

f(x− y)− f(x)
]
ϕε(y) dy

=
∫ [

f(x− εz)− f(x)
]
ϕ(z) dz =

∫ [
τεzf(x)− f(x)

]
ϕ(z) dz

(7.7)

for almost every x ∈ Rn. Corollary 7.7 and Remark 7.5(d) imply that(
z �→ (τεzf − f)

)
∈ C(Rn, E) for ε > 0 , (7.8)

and
lim
ε→0

‖τεzf − f‖E = 0 for z ∈ Rn . (7.9)

Now set
gε(z) := (τεzf − f)ϕ(z) for z ∈ Rn and ε > 0 .

Then it follows from (7.8), Theorem 1.17, and Remark 1.2(d) that gε belongs to
L0(Rn, E) for every ε > 0. Because ‖τεzf‖E = ‖f‖E, we also derive from the
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triangle inequality that

‖gε(z)‖E ≤ 2 ‖f‖E |ϕ(z)| for z ∈ Rn and ε > 0 .

Because ϕ ∈ L1(Rn), we therefore conclude that gε ∈ L1(Rn, E). Then (7.7) and
Theorem 2.11(i) imply the bound7

‖ϕε ∗ f − af‖E =
∥∥∥∫

gε(z) dz
∥∥∥

E
≤

∫
‖gε(z)‖E dz .

Now the dominated convergence theorem shows that ϕε ∗ f converges in E to af
as ε→ 0, because, by (7.9), we have limε→0 ‖gε(z)‖E = 0 for almost every z ∈ Rn.

(iii) Now suppose f ∈ BUCk. If ϕ = 0 λn-a.e., the claim is obviously true.
So suppose m :=

∫
|ϕ| dx > 0. From Theorem 7.8(ii) and (iv), it follows that

∂α(ϕε ∗ f − af) = ϕε ∗ ∂αf − a∂αf for α ∈ Nn and |α| ≤ k .

Therefore it suffices to consider the case k = 0.

Let η > 0. Then there is a δ > 0 such that

|f(x− y)− f(x)| ≤ η/2m for x, y ∈ Rn , |y| < δ ,

and we obtain

|ϕε ∗ f(x)− af(x)| ≤
∫
|f(x− y)− f(x)| |ϕε(y)| dy

≤ η

2m

∫
[ |y|<δ]

|ϕε(y)| dy + 2 ‖f‖∞
∫

[ |y|≥δ]

|ϕε(y)| dy

≤ η

2
+ 2 ‖f‖∞

∫
[ |y|≥δ]

|ϕε(y)| dy

(7.10)

for x ∈ Rn. The substitution rule then gives∫
[ |y|≥δ]

|ϕε(y)| dy = ε−n

∫
[ |y|≥δ]

|ϕ(y/ε)| dy =
∫

[ |z|≥δ/ε]

|ϕ(z)| dz .

By the dominated convergence theorem, then, there exists ε0 > 0 such that∫
[ |y|≥δ]

|ϕε(y)| dy ≤ η

4 ‖f‖∞
for ε ∈ (0, ε0] .

Now the claim follows from (7.10). �

7This also follows from Minkowski’s inequality for integrals.
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Suppose ϕ ∈ L1 satisfies
∫

ϕdx = 1 and set

ϕε(x) := ε−nϕ(x/ε) for x ∈ Rn and ε > 0 . (7.11)

The family {ϕε ; ε > 0 } is called an approximating kernel or an approximation
to the identity. If

ϕ ∈ C∞(Rn, R) , ϕ

̂

= ϕ , ϕ ≥ 0 , supp(ϕ) ⊂ Bn ,

∫
ϕdx = 1 ,

we call {ϕε ; ε > 0 } a mollifier or smoothing kernel. Every smoothing kernel
obviously satisfies

supp(ϕε) ⊂ εBn for ‖ϕε‖1 = 1 and ε > 0 .

7.12 Examples8 (a) The Gaussian kernel is the
family { kε ; ε > 0 } defined by

k(x) := (4π)−n/2 e−|x|2/4 for x ∈ Rn .

It is an approximating kernel.
Proof From Example 6.13(a), we know that∫

g(x) dx = 1

for g(x) := π−n/2 e−|x|2 . Since k(x) = 2−ng(x/2) for x ∈ Rn, it follows from the
substitution rule that

∫
k(x) dx = 1. �

(b) Let

ϕ(x) :=

{
c e1/(|x|2−1) if |x| < 1 ,

0 if |x| ≥ 1 ,

where c :=
(∫

Bn e1/(|x|2−1) dx
)−1 is chosen

so that φ integrates to 1. Then the family
{ϕε ; ε > 0 } is a smoothing kernel.

Proof Because x �→ |x|2 − 1 is smooth on Rn, Example IV.1.17 shows that ϕ belongs
to C∞(Rn, R) (see Exercise VII.5.16). The claim follows easily. �

Test functions

Let X be a metric space, and let A and B be subsets of X . We say A is compactly
contained in B (in symbols: A ⊂⊂ B) if A is compact and is contained in the
interior of B.

8In both examples, the area under the graphs is always 1, so smaller values of ε give corre-
spondingly higher maxima.
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If X is open in Rn and E is a normed vector space, we call

D(X, E) :=
{

ϕ ∈ C∞(X, E) ; supp(ϕ) ⊂⊂ X
}

the space of (E-valued) test functions on X . When E = K, we write D(X) :=
D(X, K), as usual. Clearly D(X, E) is a vector subspace of C∞(X, E) and of
Cc(X, E), and D(X, E) = C∞(X, E) ∩ Cc(X, E). Because the map

j : Cc(X, E)→ Cc(Rn, E) , g �→ g̃ ,

is linear and injective, we can identify Cc(X,E) with a vector subspace of Cc(Rn,E)
and regard (as needed) each element of the former as an element of the latter.
Likewise, we identify D(X, E) with a vector subspace of D(Rn, E). With these
notations, we have the following inclusions of vector subspaces for every p ∈ [1,∞]:

D(X, E) ⊂ D(Rn, E) ⊂ Cc(Rn, E) ⊂ Lp(Rn, E) .

7.13 Theorem Suppose X is open in Rn and p ∈ [1,∞). Then D(X) is a dense
vector subspace of Lp(X) and of C0(X).

Proof (i) Take g ∈ Cc(X) and η > 0. Also let {ϕε ; ε > 0 } be a smooth-
ing kernel. By Theorem 7.8, ϕε ∗ g belongs to BUCk and therefore to BUC∞

for every k ∈ N. Because g has compact support, there is ε0 > 0 such that9

dist
(
supp(g), Xc

)
≥ ε0. From Theorem 7.10, it follows that

supp(ϕε ∗ g) ⊂ supp(ϕε) + supp(g) ⊂ supp(g) + εBn for ε > 0 .

Then ϕε ∗ g belongs to D(X) for ε ∈ (0, ε0). Finally by Theorem 7.11 we can find
for every q ∈ [1,∞] some ε1 ∈ (0, ε0) such that ‖ϕε1 ∗ g − g‖q < η/2.

(ii) Now suppose f ∈ Lp(X). By Theorem 5.1, we can find g ∈ Cc(X) such
that ‖f − g‖p < η/2. By (i), there is h ∈ D(X) such that ‖f − h‖p < η.

(iii) For f ∈ C0(X), let K be a compact subset of X such that |f(x)| < η/2 for
x ∈ X\K. By Proposition 4.13, we can choose a ϕ ∈ Cc(X) such that 0 ≤ ϕ ≤ 1
and ϕ |K = 1. We set g := ϕf . Because f(x) = g(x) for x ∈ K, it follows that

|f(x)− g(x)| = |f(x)| |1− ϕ(x)| < η/2 for x ∈ X .

Therefore ‖f − g‖∞ ≤ η/2. The claim then follows from (i). �

Smooth partitions of unity

In Section 4, we proved the existence of continuous Urysohn functions in general
metric spaces. This result can be distinctly improved in the special case of Rn,
where we can use mollifiers to actually construct smooth cutoff functions.

9dist
(
supp(g), ∅) := ∞.
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7.14 Proposition (smooth cutoff functions) Suppose K ⊂ Rn is compact, and set

Kρ :=
{

x ∈ Rn ; dist(x, K) < ρ
}

for ρ > 0 .

Then for every α ∈ Nn and every ρ > 0 there exist a positive constant c(α) and a
map ϕ ∈ D(Kρ) such that 0 ≤ ϕ ≤ 1, ϕ |K = 1, and ‖∂αϕ‖∞ ≤ c(α)ρ−|α|.

Proof Set {ψε ; ε > 0 } be a smoothing
kernel. Let δ := ρ/3 and ϕ := ψδ ∗ χKδ

.
Then ϕ belongs to BUC∞, and it follows
from Theorem 7.10 that

supp(ϕ) ⊂ supp(ψδ) + Kδ ⊂ δBn + Kδ

⊂ K2δ ⊂ K3δ = Kρ .

Therefore ϕ belongs to D(Kρ). Moreover

ϕ(x) =
∫

ψδ(x− y)χKδ
(y) dy ≤

∫
ψδ(x− y) dy = 1

for x ∈ Rn, and hence 0 ≤ ϕ ≤ 1. If x lies in K, then

ϕ(x) =
∫

ψδ(y)χKδ
(x− y) dy =

∫
ψδ(y) dy = 1 ,

and therefore ϕ |K = 1. Finally, since ∂αψδ = δ−|α|(∂αψ1)δ for α ∈ Nn, we have
from Theorem 7.8(iv) that

∂αϕ = ∂α(ψδ ∗ χKδ
) = ∂αψδ ∗ χKδ

= δ−|α|(∂αψ1)δ ∗ χKδ
.

Now c(α) := 3|α| ‖∂αψ1‖1 is independent of δ > 0, and so it follows from Young’s
inequality that ‖∂αϕ‖∞ ≤ c(α)ρ−|α|. �

Let K ⊂ Rn be compact and denote by {Xj ; 0 ≤ j ≤ m } a finite open
cover of K. If for every j ∈ {0, . . . , m}, there is a ϕj ∈ C∞(Rn) such that

(i) 0 ≤ ϕj ≤ 1,

(ii) supp(ϕj) ⊂ Xj, and

(iii)
∑m

j=0 ϕj(x) = 1 for x ∈ K,

then {ϕj ; 0 ≤ j ≤ m } is called a smooth partition of unity on K subordinate to
the cover {Xj ; 0 ≤ j ≤ m }.

If X0 is open in Rn and K ⊂ X0, then dist(K, Xc
0) > 0, and Proposition 7.14

(with ρ := dist(K, Xc
0)) secures the existence of a smooth partition of unity on K

subordinate to the one-element cover {X0} of K. To treat the general case of a
finite cover, we need a technical result:
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7.15 Lemma (shrinking lemma) Let {Xj ; 0 ≤ j ≤ m } be a finite open cover of
a compact subset K of Rn. Then there is an open cover {Uj ; 0 ≤ j ≤ m } of K
such that Uj ⊂⊂ Xj for j ∈ {0, . . . , m}.

Proof Given x ∈ K, choose j ∈ {0, . . . , m} such that x ∈ Xj and rx > 0 such that
Vx := Bn(x, rx) is compact and contained in Xj. Then {Vx ; x ∈ K } is an open
cover of K, and there exist k ∈ N and {x0, . . . , xk} ⊂ K with K ⊂ ⋃k

i=0 Vxi . With
Uj :=

⋃
{Vxi ; Vxi ⊂ Xj } for j ∈ {0, . . . , m}, we have a family {Uj ; 0 ≤ j ≤ m }

having the desired properties. �

7.16 Theorem (smooth partitions of unity) If K is a compact subset of Rn, every
finite open cover of K has a smooth partition of unity subordinate to it.

Proof Suppose {Xj ; 0 ≤ j ≤ m } is a finite open cover of K. By Lemma 7.15,
there is an open cover {Uj ; 0 ≤ j ≤ m } such that Uj ⊂⊂ Xj for j ∈ {0, . . . , m}.
We define Kj := Uj . Then Kj is compact, and dist(Kj , X

c
j ) is positive for every

j ∈ {0, . . . , m}. Proposition 7.14 now shows there is a ψj ∈ D(Xj) such that
0 ≤ ψj ≤ 1 and ψj |Kj = 1. Defining

ϕ0 := ψ0 and ϕk := ψk

k−1∏
j=0

(1− ψj) for 1 ≤ k ≤ m ,

it is easy to check by induction that
∑m

j=0 ϕj = 1−
∏m

j=0(1 − ψj). The claim now
follows because K ⊂ ⋃m

j=0 Kj. �

We next present some simple applications of Theorem 7.16. Additional, more
complicated situations will be described in succeeding chapters.

7.17 Applications (a) Suppose X is open in Rn. Then for f ∈ L0(X) the following
statements are equivalent:

(i) f ∈ L1,loc(X);
(ii) ϕf ∈ L1(X) for every ϕ ∈ D(X);
(iii) f̃ |K ∈ L1(X) for every K = K ⊂⊂ X .
Proof Let (Uj)j∈N be an ascending sequence of relatively compact open subsets of X
with X =

⋃
j Uj (see Remarks 1.16(d) and (e)). Then (see Exercise 4.3)

L1,loc(X) =
{

f ∈ L0(X) ; χUj f ∈ L1(X), j ∈ N
}

.

“(i)=⇒(ii)” Let ϕ ∈ D(X). Since K := supp(ϕ) is compact and (Uj)j∈N is ascending,
there is a k ∈ N such that K ⊂ Uk. By virtue of Proposition 7.14, we find a ψ ∈ D(Uk)
such that 0 ≤ ψ ≤ 1 and ψ |K = 1. Then∫

X

|ϕf | dx =

∫
X

|ϕψf | dx ≤ ‖ϕ‖∞
∫

X

|ψf | dx ≤ ‖ϕ‖∞ ‖χUkf‖1 <∞ .

Therefore ϕf belongs to L1(X).
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“(ii)=⇒(iii)” Take K = K ⊂⊂ X and ϕ ∈ D(X) with ϕ |K = 1. Then∫
K

|f | =
∫

K

|ϕf | ≤ ‖ϕf‖1 <∞ ,

and therefore f̃ |K ∈ L1(X).

“(iii)=⇒(i)” This implication is clear because every Uj is compact. �

(b) Suppose X is open in Rn. Then C(X) ⊂ L1,loc(X).

Proof Take f ∈ C(X) and ϕ ∈ D(X). Then ϕf belongs to Cc(X). By Theorem 5.1,
we have ϕf ∈ L1(X), and the claim follows from (a). �

(c) The linear representation of the group (Rn, +) in BUCk is injective, hence a
group isomorphism onto its image TBUCk .

Proof For a ∈ Rn, suppose τa = idBUCk . We choose r > |a| and a cutoff function
ϕ ∈ D(Rn) for rBn. Then fj := ϕ prj belongs to BUCk, and we find

−aj = τafj(0) = fj(0) = 0 for j ∈ {1, . . . , n} .

Therefore a = 0. This implies the injectivity of the representation a �→ τa. �

(d) Suppose X is open in Rn and bounded. Also let {Xj ; 0 ≤ j ≤ m } be a
finite open cover of X , and let {ϕj ; 0 ≤ j ≤ m } be a smooth partition of unity
subordinate to it. Finally let k ∈ N and

|||u|||BCk :=
m∑

j=0

‖ϕju‖BCk for u ∈ BCk(X) .

Then ||| · |||BCk is an equivalent norm on BCk(X).

Proof Take u ∈ BCk(X). Obviously

‖u‖BCk =
∥∥∥ m∑

j=0

ϕju
∥∥∥

BCk
≤

m∑
j=0

‖ϕju‖BCk = |||u|||BCk .

From Leibniz’s rule (see Exercise VII.5.21), we obtain

|||u|||BCk =
m∑

j=0

max
|α|≤k

‖∂α(ϕju)‖∞ =
m∑

j=0

max
|α|≤k

∥∥∥∑
β≤α

(α

β

)
∂βϕj ∂α−βu

∥∥∥
∞

≤
m∑

j=0

ck ‖ϕj‖BCk ‖u‖BCk ≤ C ‖u‖BCk ,

where we have set ck := max|α|≤k

∑
β≤α

(
α
β

)
and C := ck

∑m
j=0 ‖ϕj‖BCk . �
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Convolutions of E-valued functions

A look back at preceding proofs shows that the convolution f ∗ g can also be
defined when one of the two functions takes values in a Banach space F and
the other is scalar-valued. All proofs carry through without change10 so long
as the substitution rule for isometries still holds for F -valued functions. This
is indeed the case, as we shall show in the next section. In particular, the key
approximation result in Theorem 7.11 remains true for the spaces Lp(Rn, F ) and
BUCk(Rn, F ) with 1 ≤ p <∞ and k ∈ N. One consequence of this is an analogue
of Theorem 7.13 to the effect that D(X, F ) is a dense vector subspace of C0(X, F )
and of Lp(X, F ) for 1 ≤ p <∞.

Distributions11

Suppose X is a nonempty open subset of Rn. A scalar function on X , as is well
known, is a rule for assigning a real or complex number to every point in X . But
this definition is just an abstraction, since the individual points of X cannot in
practice be discerned. If, for example, we want to determine the temperature
distribution of some medium that occupies the set X — we must rely on an exper-
imental probe. However, such a probe, being of nonzero size, can only determine
values of f in an extended region; whatever value it assigns to f(x0) represents not
the actual value at x0 (if indeed such a thing is physically meaningful) but rather
some kind of average around x0: mathematically, an integral

∫
X

ϕf dx, where ϕ is
a “test function” that depends on the probe. Of course, the measurement will bet-
ter approximate the exact value f(x0) the more the test function ϕ is concentrated
about x0, that is, the less the probe smears the data.

To claim complete knowledge of f(x0), one might imagine bringing to bear all
conceivable probes, or in other words, determining the averages

∫
X ϕf dx over all

possible test functions ϕ. In mathematical terms, we’d be replacing the pointwise
function f : X → K by a functional defined on the space of all test functions,
namely, the map

Tf : D(X)→ K , ϕ �→
∫

X

ϕf dx . (7.12)

Our choice of D(X) as the space of test functions is to a large extent arbitrary.
For conceptual simplicity, we might want to consider Cc(X) instead of D(X). At
the same time, we would like to avoid performing more “measurements” than
necessary; this warrants choosing a test space that is small in some sense. But the
space must be large enough that the averages

∫
X

ϕf dx do determine f . That is,
we want the equality of

∫
X ϕf dx and

∫
X ϕg dx for all test functions ϕ to imply

f = g.

10Naturally, the commutativity formula f ∗ g = g ∗ f must be interpreted correctly.
11The rest of this section is meant to provide glimpses of applications and more advanced

theories; it can be skipped over on first reading.
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The next theorem shows that this is indeed the case if we choose D(X) as
the test space and work with “functions” in L1,loc(X). (By Application 7.17(a),
L1,loc(X) is the largest vector subspace E of L0(X) such that

∫
X ϕf dx is well

defined for all f ∈ E and all ϕ ∈ D(X).)

7.18 Theorem Suppose f ∈ L1,loc(X). If∫
X

ϕf dx = 0 for ϕ ∈ D(X) , (7.13)

then f = 0.

Proof Suppose f 
= 0, and let
∗
f ∈ L1,loc(X) be a representative of f . By

regularity, there is a compact subset K of X of positive measure such that
∗
f(x) 
= 0

for x ∈ K. Take η ∈ D(X) with η |K = 1, and let g := η
∗
f . By Application 7.17(a),

g belongs to L1. Also g(x) 
= 0 for x ∈ K. Let {ϕε ; ε > 0 } be a smoothing
kernel. Then limε→0 ϕε ∗ g = g in L1. By Corollary 4.7, there is a null sequence
(εj) and a set N of Lebesgue measure zero such that

lim
j→∞

ϕεj ∗ g(x) = g(x) for x ∈ N c . (7.14)

Given x0 ∈ K ∩ N c, set ψj := ητx0ϕεj ∈ D(X) for j ∈ N. Since

̂

ϕε = ϕε by
Remark 7.1(d), equality (7.13) gives

ϕεj ∗ g(x0) =
∫

g(y)ϕεj (x0 − y) dy =
∫

X

(
η

∗
f
)
(y)ϕεj (x0 − y) dy

=
∫

X

∗
f(y)ψj(y) dy = 0 .

However, because of (7.14) this contradicts g(x0) 
= 0. The claim follows because
the representative

∗
f of f was chosen arbitrarily. �

Clearly the map Tf is a linear functional on D(X). For the interpretation
of Tfϕ =

∫
X

ϕf dx as a measurement value to be meaningful, Tfϕ must “depend
continuously” on the measuring device; that is, small perturbations in the probe,
hence in the test function ϕ, should cause only small changes in the measured
value. Mathematically speaking, this means that Tf must be a continuous linear
functional on D(X). So we must introduce a topology on D(X).

Since our treatment here is introductory, we will limit ourselves to stating
what it means for a sequence to converge in D(X). This convergence should be
compatible with the vector structure on D(X), so it suffices to consider the case
where the limit is 0.

We say that a sequence (ϕj) converges to 0 (or is a null sequence) in D(X)
if the following conditions are satisfied:
(D1) There exists K ⊂⊂ X such that supp(ϕj) ⊂ K for j ∈ N.
(D2) ϕj → 0 in BCk(X) for every k ∈ N.
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Obviously (D2) is equivalent to:

The sequence (∂αϕj)j∈N converges uniformly to 0 for every α ∈ Nn. (7.15)

So for ϕj to converge in D(X) to 0, not only must (7.15) hold, but the supports
of the functions ϕj must all be contained in a fixed compact subset of X .

A linear functional T : D(X) → K is continuous if Tϕj → 0 for every null
sequence (ϕj) in D(X). A continuous linear functional on D(X) is also called a
Schwartz distribution, or simply distribution, on X . The set of distributions on
X is denoted by D′(X); it is clearly a vector subspace of Hom

(
D(X), K

)
.

(In functional analysis— more precisely, in the theory of topological vector
spaces— one shows that there is exactly one Hausdorff topology on D(X) that is
locally convex,12 compatible with the vector structure, and such that sequences
converge to 0 in the sense above if and only if they converge to 0 in the topology.
With respect to this topology, D′(X) is the dual of D(X), that is, the space of all
continuous linear functionals on D(X). See, for example, [Sch66] or [Yos65].)

7.19 Examples (a) For every f ∈ L1,loc(X), the linear functional Tf defined by
(7.12) is a distribution on X .
Proof Let (ϕj) be a sequence in D(X) such that ϕj → 0 in D(X). Then there is a
compact subset K of X such that supp(ϕj) ⊂ X for j ∈ N. It follows that

|Tfϕj | =
∣∣∣∫

X

ϕjf dx
∣∣∣ ≤ ∫

K

|ϕj | |f | dx ≤ ‖f‖L1(K) ‖ϕj‖∞

for j ∈ N. Because ‖f‖L1(K) < ∞, we find that Tfϕj → 0 in K, because (D2) implies
that ‖ϕj‖∞ → 0. �

(b) Let μ be a Radon measure on X . Then

D(X)→ K , ϕ �→
∫

X

ϕdμ

defines a distribution on X .
Proof Suppose (ϕj) is a sequence in D(X) such that ϕj → 0 in D(X). Also suppose
K = K ⊂⊂ X contains supp(ϕj) for all j ∈ N. Then∣∣∣∫

X

ϕj dμ
∣∣∣ ≤ ∫

K

|ϕj | dμ ≤ μ(K) ‖ϕj‖∞ for j ∈ N .

As in the proof of (a), this implies that ϕ is a distribution on X. �

(c) Let δ be the Dirac measure on Rn with support at 0. Then

ϕ �→ 〈δ, ϕ〉 :=
∫

X

ϕdδ = ϕ(0) for ϕ ∈ D(Rn) ,

12This means the origin has an open neighborhood basis of convex sets.



180 X Integration theory

is a distribution on Rn, the Dirac distribution

δ : D(Rn) → K , ϕ �→ ϕ(0) .

There is no u ∈ L1,loc(Rn) such that Tu = δ.
Proof The first statement is a special case of (b).

Suppose now that u ∈ L1,loc(R
n) with Tu = δ, that is,∫

Rn

ϕu dx = ϕ(0) for ϕ ∈ D(Rn) . (7.16)

Choosing only such ϕ ∈ D(Rn) that supp(ϕ) ⊂⊂ X := Rn\{0}, we have ϕ(0) = 0, and
from Theorem 7.18, it follows that u |X = 0 in L1,loc(X). But X and Rn differ only on
a set of measure zero (a single point!), so u = 0 in L1,loc(R

n), contradicting (7.16). �

(d) Let α ∈ Nn. Then

Sα : D(Rn)→ K , ϕ �→ ∂αϕ(0)

defines a distribution. There is no u ∈ L1,loc(Rn) such that Tu = Sα.
Proof Let (ϕj) be a sequence in D(Rn) such that ϕj → 0 in D(Rn), and suppose
K = K ⊂⊂ Rn with supp(ϕj) ⊂ K for j ∈ N. We can assume that 0 lies in K. Then we
have the estimate

|∂αϕj(0)| ≤ max
x∈K

|∂αϕj(x)| ≤ ‖ϕj‖BC|α| for j ∈ N .

Thus (D2) implies that ∂αϕj(0) → 0 in K, which shows that Sα is a distribution. The
second statement is proved as in (c). �

The following key result is now a simple consequence of Theorem 7.18.

7.20 Theorem The map

L1,loc(X)→ D′(X) , f �→ Tf

is linear and injective.

Proof Example 7.19(a) shows the map is well defined. It is linear because inte-
gration is. It is injective by Theorem 7.18. �

By Theorem 7.20, we can identify L1,loc(X) with its image in D′(X). In other
words, we can regard L1,loc(X) as a vector subspace of the space of all Schwartz
distributions, by identifying a function f ∈ L1,loc(X) with the distribution

Tf =
(
ϕ �→

∫
X

ϕf dx
)
∈ D′(X) .

In this sense, every f ∈ L1,loc(X) is a distribution. The elements of L1,loc(X) are
called regular distributions. All other distributions are singular. Examples 7.19(c)
and (d) illustrate singular distributions.



X.7 The convolution 181

The theory of distributions plays an important role in higher analysis, espe-
cially in the study of partial differential equations, and in theoretical physics. We
cannot elaborate here, but see for example [Sch65], [RS72].

Linear differential operators

Let X be open in Rn. Given functions aα ∈ C∞(X), for each α ∈ Nn such that
|α| ≤ m ∈ N, we set

A(∂)u :=
∑

|α|≤m

aα∂αu for u ∈ D(X) .

Obviously, A(∂) is a linear map of D(X) onto itself; we say it is a linear differential
operator on X of order ≤ m (with smooth coefficients). It has order m if∑

|α|=m

‖aα‖∞ 
= 0 ,

that is, if at least one coefficient aα of the leading part
∑

|α|=m aα∂α of A(∂) does
not vanish identically. We denote by Diffop(X) the set of all linear differential
operators on X ; those of order ≤ m are denoted by Diffopm(X).

A linear map T : D(X) → D(X) is said to be continuous13 if Tϕj → 0
in D(X) for every sequence (ϕj) in D(X) such that ϕj → 0 in D(X). The set of
all continuous endomorphisms of D(X) is a vector subspace of End

(
D(X)

)
, which

we denote by L
(
D(X)

)
.13

7.21 Proposition Diffop(X) is a vector subspace of L
(
D(X)

)
, and Diffopm(X) is

a vector subspace of Diffop(X).

Proof Let m ∈ N, and take A(∂) :=
∑

|α|≤m aα∂α ∈ Diffopm(X). Let (ϕj) be
a null sequence in D(X), and let K = K ⊂⊂ X contain supp(ϕj) for all j ∈ N.
Then supp

(
A(∂)ϕj

)
⊂ K for j ∈ N. For β ∈ Nn, the Leibniz rule gives

‖∂β(aα∂αϕj)‖C(K) =
∥∥∥∑

γ≤β

(β

γ

)
∂γaα∂β−γ+αϕj

∥∥∥
C(K)

≤ c(α, β)max
γ≤β

‖∂γaα‖C(K) ‖∂β−γ+αϕj‖∞ .

From this we derive for k ∈ N the inequality

‖A(∂)ϕj‖BCk(X) ≤ c(k)
∑

|α|≤m

‖aα‖BCk(K) ‖ϕj‖BCk+m(X) for j ∈ N ,

13It is shown in functional analysis that these definitions are consistent with our previous
definitions for continuity and L(E).
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where the constant c(k) is independent of j. Now A(∂)ϕj → 0 in BCk(X) follows
from (D2). Because this is true for every k ∈ N, we see that A(∂)ϕj → 0 in D(X).
This proves that Diffopm(X) ⊂ L

(
D(X)

)
. The other statements are clear. �

Let ( · | · ) denote the inner product in L2(X), and suppose A(∂) belongs to
Diffop(X). If there is a differential operator A�(∂) ∈ Diffop(X) such that(

A(∂)u
∣∣ v

)
=

(
u

∣∣A�(∂)v
)

for u, v ∈ D(X) ,

we say A�(∂) is the formal adjoint of A(∂). Because

(
u

∣∣A�(∂)v
)

=
∫

X

uA�(∂)v dx

and A�(∂)v ∈ D(X) ⊂ L1,loc(X) for v ∈ D(X), it follows easily from Theorem 7.18
that A(∂) has at most one formal adjoint. If A(∂) has a formal adjoint A�(∂) that
coincides with A(∂), then A(∂) is formally self-adjoint.

We will now show that every A(∂) ∈ Diffop(X) has a differential operator
formally adjoint to it, and we derive an explicit form for A�(∂). First we need this:

7.22 Proposition (integration by parts) For f ∈ C1(X) and g ∈ C1
c (X),∫

X

(∂jf)g dx = −
∫

X

f∂jg dx for j ∈ {1, . . . , n} .

Proof We need only consider the case j = 1; the general case will follow by
permutation of coordinates, in view of Corollary 6.10. So write x = (x1, x

′) ∈
R×Rn−1. Since fg has compact support, it follows from integrating by parts that∫ ∞

−∞

[
∂1f(x1, x

′)
]
g(x1, x

′) dx1 = −
∫ ∞

−∞
f(x1, x

′)∂1g(x1, x
′) dx1

for every x′ ∈ Rn−1. From Fubini’s theorem, we now get∫
X

(∂1f)g dx =
∫

Rn

(∂1f)g dx

=
∫

Rn−1

(∫ ∞

−∞
∂1f(x1, x

′)g(x1, x
′) dx1

)
dx′

= −
∫

Rn−1

(∫ ∞

−∞
f(x1, x

′)∂1g(x1, x
′) dx1

)
dx′

= −
∫

Rn

f∂1g dx = −
∫

X

f∂1g dx . �
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7.23 Corollary Suppose f ∈ Ck(X) and g ∈ Ck
c (X). Then∫

X

(∂αf)g dx = (−1)|α|
∫

X

f∂αg dx

for α ∈ Nn such that |α| ≤ k.

Integration by parts is also the core of the proof of the next result.

7.24 Proposition Every differential operator

A(∂) =
∑

|α|≤m

aα∂α ∈ Diffop(X)

has a unique formal adjoint, which is explicitly given by

A�(∂)v =
∑

|α|≤m

(−1)|α|∂α(aαv) for v ∈ D(X) . (7.17)

If A(∂) has order m, then A�(∂) is also an m-th order differential operator.

Proof We already know that there is at most one formal adjoint, so we need only
prove existence and the validity of (7.17).

Take u, v ∈ D(X). Integrating by parts, we find(
A(∂)u

∣∣ v
)

=
∫

X

(
A(∂)u

)
v dx =

∑
|α|≤m

∫
X

(aα∂αu)v dx

=
∑

|α|≤m

(−1)|α|
∫

X

u∂α(aαv) dx =
∫

X

u
∑

|α|≤m

(−1)|α|∂α(aαv) dx .

Therefore (
A(∂)u

∣∣ v
)

=
(
u

∣∣A�(∂)v
)

for u, v ∈ D(X)

if A�(∂)v is as in (7.17). By Leibniz’s rule, there exist bα ∈ C∞(X) for α ∈ Nn

with |α| ≤ m− 1, such that

A�(∂) = (−1)m
∑

|α|=m

aα∂α +
∑

|α|≤m−1

bα∂α .

Therefore A�(∂) belongs to Diffop(X). The claim is now clear. �

For differential operators that describe the time evolution of systems, it is
usual to treat time as a distinguished variable. We recall, for instance, the wave
operator ∂2

t −Δx and the heat operator ∂t−Δx in the variables (t, x) ∈ R×Rn (see
Exercise VII.5.10). Another example is the Schrödinger operator (1/i)∂t − Δx.
All three operators are second order differential operators.
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7.25 Examples (a) The wave operator and the Schrödinger operator are formally
self-adjoint.15

(b) The heat operator has (∂t − Δx)� = −∂t −Δx as its adjoint. It is therefore
not formally self-adjoint.

(c) For A(∂) := ∂t −
∑n

j=1 ∂j , we have A�(∂) = −A(∂).

(d) Suppose ajk, aj , a0 ∈ C∞(X, R) with

n∑
j,k=1

‖ajk‖∞ 
= 0 , ajk = akj for j, k ∈ {1, . . . , n} .

Also define A(∂) ∈ Diffop2(X) by

A(∂)u :=
n∑

j,k=1

∂j(ajk∂ku) +
n∑

j=1

aj∂ju + a0u for u ∈ D(X) .

Then we say A(∂) is a divergence form operator.16 In this case, we have

A�(∂)v =
n∑

j,k=1

∂j(ajk∂kv)−
n∑

j=1

aj∂jv +
(
a0 −

n∑
j=1

∂jaj

)
v for v ∈ D(X) .

Therefore the formal adjoint is also of divergence form, and A(∂) is formally self-
adjoint if and only if aj = 0 for j = 1, . . . , n.
Proof This follows easily from Proposition 7.22. �

(e) The Laplace operator Δ is a formally self-adjoint second-order differential
operator of divergence form.

Proof This follows from (d) by taking ajk = δjk (the Kronecker delta). �

Weak derivatives

We now explain briefly how the concept of derivative can be generalized so func-
tions that are not differentiable in the classical sense can be assigned a generalized
derivative.

Suppose X is open in Rn. We say u ∈ L1,loc(X) is weakly differentiable if
there exists uj ∈ L1,loc(X) such that∫

X

(∂jϕ)u dx = −
∫

X

ϕuj dx for ϕ ∈ D(X) and 1 ≤ j ≤ n . (7.18)

15These facts are of particular importance in mathematical physics.
16The reason for this language will be clarified in Section XI.6.
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More generally, if m ≥ 2 is an integer, we say u ∈ L1,loc(X) is m-times weakly
differentiable on X if there exists uα ∈ L1,loc(X) such that∫

X

(∂αϕ)u dx = (−1)|α|
∫

X

ϕuα dx for ϕ ∈ D(X) , (7.19)

for all α ∈ Nn with |α| ≤ m. If this is the case, then it immediately follows from
Theorem 7.18 that uα ∈ L1,loc(X) is uniquely determined by u (and α). We call
uα the α-th weak partial derivative and set ∂αu := uα. In the case m = 1, we set
∂ju := uj . These notations are justified by the first of the following remarks.

7.26 Remarks (a) Suppose m ∈ N×. Then every u ∈ Cm(X) is m-times weakly
differentiable, and the weak derivatives agree with the classical, or usual, partial
derivative.
Proof This follows from Corollary 7.23. �

(b) Let Wm
1,loc(X) be the set of all m-times weakly differentiable functions on X .

Then Wm
1,loc(X) is a vector subspace of L1,loc(X), and for every α ∈ Nn with

|α| ≤ m, the map

Wm
1,loc(X)→W

m−|α|
1,loc (X) , u �→ ∂αu

is well defined and linear.
Proof We leave the simple proof to the reader as an exercise. �

(c) For u ∈Wm
1,loc(X) and α, β ∈ Nn with |α|+ |β| ≤ m, we have ∂α∂βu = ∂β∂αu.

Proof This follows immediately from the defining equations (7.19) and the properties
of smooth functions. �

(d) Suppose u ∈ L1,loc(R) is defined by u(x) := |x| for x ∈ R. Then u is weakly
differentiable, and ∂u = sign.
Proof First, the absolute value function | · | is smooth on R×, and its derivative is
sign |R× there. Now suppose ϕ ∈ D(R). Integration by parts gives∫

R

ϕ′u dx =

∫ ∞

0

ϕ′u dx +

∫ 0

−∞
ϕ′u dx

= ϕ(x)x
∣∣∞
0
−

∫ ∞

0

ϕ(x) dx− ϕ(x)x
∣∣0
−∞ +

∫ 0

−∞
ϕ(x) dx

= −
∫

R

ϕ(x) sign(x) dx .

The claim follows since sign belongs to L1,loc(R). �

(e) The function sign belongs to L1,loc(R) and is smooth on R×. Nevertheless it
is not weakly differentiable. Thus the absolute value function of item (d) is not
twice weakly differentiable.
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Proof For ϕ ∈ D(R), we have∫
R

ϕ′ sign dx =

∫ ∞

0

ϕ′(x) dx−
∫ 0

−∞
ϕ′(x) dx = −2ϕ(0) . (7.20)

Were sign weakly differentiable, then there would be a v ∈ L1,loc(R) such that∫
R

ϕv dx = 2ϕ(0) for ϕ ∈ D(R) ,

which is false: see Example 7.19(c). �

In terms of the Dirac distribution δ, (7.20) assumes the form∫
R

ϕ′ sign dx = −2δ(ϕ) for ϕ ∈ D(X) .

Denoting the duality pairing as usual by

〈 · , · 〉 : D′(X)×D(X)→ K ,

so 〈T, ϕ〉 is the value of the continuous linear functional T on the element ϕ, we
have

〈sign, ϕ′〉 = −2〈δ, ϕ〉 for ϕ ∈ D(R) , (7.21)

where we have identified sign ∈ L1,loc(R) with the regular distribution Tsign ∈
D′(X), as discussed right after the proof of Theorem 7.20. A comparison of (7.19)
and (7.21) suggests the following definition: Let S, T ∈ D′(X) and α ∈ Nn. Then
S is called the α-th distributional derivative of T if

〈T, ∂αϕ〉 = (−1)|α|〈S, ϕ〉 for ϕ ∈ D(X) .

In this case, S is clearly defined by T (and α), so we can set ∂αT := S. We see
easily that every distribution has distributional derivatives of every order and that
for every α ∈ Nn the distributional derivative

∂α : D′(X)→ D′(X) , T �→ ∂αT

is a linear map.17 In particular, (7.21) shows that, in the sense of distributions,

∂(sign) = 2δ .

We cannot go any further here into the theory of distributions, but we want
to briefly introduce Sobolev spaces. Suppose m ∈ N and 1 ≤ p ≤ ∞. Because

17See Exercise 13.



X.7 The convolution 187

Lp(X) ⊂ L1,loc(X), every u ∈ Lp(X) has distributional derivatives of all orders.
We set18

Wm
p (X) :=

{
u ∈ Lp(X) ; ∂αu ∈ Lp(X), |α| ≤ m

}
,

where ∂α denotes the α-th distributional derivative. Also let

‖u‖m,p :=

⎧⎪⎪⎨⎪⎪⎩
( ∑
|α|≤m

‖∂αu‖p
p

)1/p

, 1 ≤ p < ∞ ,

max
|α|≤m

‖∂αu‖∞ , p = ∞ .

(7.22)

We verify easily that
Wm

p (X) :=
(
Wm

p (X), ‖·‖m,p

)
is a normed vector space, called the Sobolev space of order m. In particular,
W 0

p (X) = Lp(X).

7.27 Theorem

(i) Wm
p (X) is continuously embedded in Lp(X), and u ∈ Lp(X) belongs to

Wm
p (X) if and only if u is m-times weakly differentiable and all weak deriva-

tives of order ≤ m belong to Lp(X).
(ii) Wm

p (X) is a Banach space.

Proof (i) This is obvious.
(ii) Let (uj) be a Cauchy sequence in Wm

p (X). It follows immediately from
(7.22) that (∂αuj)j∈N is a Cauchy sequence in Lp(X) for every α ∈ Nn such that
|α| ≤ m. Because Lp(X) is complete, there exists a unique uα ∈ Lp(X) such that
∂αuj → uα in Lp(X) for j → ∞ and |α| ≤ m. We set u := u0. Then it follows
from (7.19) that, for all j ∈ N,∫

X

(∂αϕ)uj dx = (−1)|α|
∫

X

ϕ∂αuj dx for ϕ ∈ D(X) and |α| ≤ m . (7.23)

From Hölder’s inequality, we deduce∣∣∣∫
X

(∂αϕ)uj dx−
∫

X

(∂αϕ)u dx
∣∣∣ =

∣∣∣∫
X

∂αϕ(uj − u) dx
∣∣∣ ≤ ‖∂αϕ‖p′ ‖uj − u‖p ,

which shows that∫
X

(∂αϕ)uj dx →
∫

X

(∂αϕ)u dx for ϕ ∈ D(X) .

Analogously, we find that∫
X

ϕ∂αuj dx→
∫

X

ϕuα dx for ϕ ∈ D(X) .

18If X is an interval in R, then one can show that W 1
1 (X) coincides with the space introduced

in Exercise 5.6.
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Thus it follows from (7.23) that∫
X

(∂αϕ)u dx = (−1)|α|
∫

X

ϕuα dx for ϕ ∈ D(X) .

This shows that uα is the α-th weak derivative of u, and we see that u is m-times
weakly differentiable. Because uα ∈ Lp(X) for |α| ≤ m, we also have u ∈ Wm

p (X),
and it is clear that uj → u in Wm

p (X). Therefore Wm
p (X) is complete. �

7.28 Corollary Wm
2 (X) is a Hilbert space with the inner product

(u | v)m :=
∑

|α|≤m

(∂αu | ∂αv) for u, v ∈Wm
2 (X) .

We will conclude this section by proving the so-called trace theorem for
Sobolev spaces. For m ∈ N and 1 ≤ p < ∞, set

Ĥm
p (X) :=

({
u |X ; u ∈ Cm

c (Rn)
}
, ‖·‖m,p

)
.

Clearly Ĥm
p (X) is a vector subspace of Wm

p (X). If the boundary ∂X of X is
sufficiently nice (for example, if X ⊂ Rn is an n-dimensional submanifold with
boundary,19) one can show that Ĥm

p (X) is dense in Wm
p (X). In particular, this is

the case for X := Rn or X := Hn.

7.29 Theorem (trace theorem) Let 1 ≤ p < ∞ and X = Rn or X = Hn. Then
there is a unique trace operator γ ∈ L

(
W 1

p (X), Lp(Rn−1)
)

such that γu = u |Rn−1

for u ∈ D(Rn) (more precisely , for u ∈ Ĥ1
p (X)). Here Rn−1 is identified with

Rn−1 × {0} ⊂ Rn.

Proof Since Ĥ1
p (X) is dense in W 1

p (X), the claim follows from Proposition 6.24,
Remark 6.25, and Theorem VI.2.6. �

This theorem says in particular that every element u ∈W 1
p (Hn) has boundary

values γu ∈ Lp(∂Hn). Because u is generally not continuous on Hn, γu cannot be
simply determined by restriction.

The existence of a trace is the foundation for the treatment of boundary value
problems in partial differential equations by the methods of functional analysis.

Exercises

1 For a > 0, calculate χ[−a,a]∗ χ[−a,a] and χ[−a,a]∗ χ[−a,a]∗ χ[−a,a].

2 Let p, p′ ∈ (1,∞) satisfy 1/p + 1/p′ = 1. Prove:

19See Section XI.1.
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(a) f ∗ g belongs to C0 for (f, g) ∈ Lp × Lp′ , and ‖f ∗ g‖∞ ≤ ‖f‖p ‖g‖p′ .

(b) The convolution is a well defined, bilinear, continuous map from Lp × Lp′ into C0.

3 Let p, q, r ∈ [1,∞] with 1/p + 1/q = 1 + 1/r. Verify that

∗ : Lp × Lq → Lr , (f, g) �→ f ∗ g

is well defined, bilinear, and continuous. Also verify the generalized Young inequality

‖f ∗ g‖r ≤ ‖f‖p ‖g‖q for (f, g) ∈ Lp ×Lq .

(Hint: The cases r = 1 and r = ∞ are covered by Theorem 7.3 and Exercise 2, respec-
tively. For r ∈ (1,∞), consider

|f(x− y)g(y)| = |f(x− y)|1−p/r
(
|f(x− y)|p |g(y)|q

)1/r |g(y)|1−q/r

and apply Hölder’s inequality.)

4 Show that f ∗ g belongs to Ck for (f, g) ∈ Ck
c × L1,loc.

5 Suppose f ∈ L1,loc satisfies ∂αf ∈ L1,loc for a given α ∈ Nn. Verify that

∂α(f ∗ ϕ) = (∂αf) ∗ ϕ = f ∗ ∂αϕ for ϕ ∈ BC∞ .

6 Exhibit a vector subspace of Funct in which (R, +) is not linearly representable.

7 Given p ∈ [1,∞), suppose K ⊂ Lp is compact. Prove that for every ε > 0 there is a
δ > 0 such that ‖τaf − f‖p < ε for all f ∈ K and all a ∈ Rn with |a| < δ. (Hint: Recall
Theorem III.3.10 and Theorem 5.1(iv).)

8 Show that every nontrivial ideal of (L1, ∗) is dense in L1.

9 Let p ∈ [1,∞], and denote by k the Gaussian kernel of Example 7.12(a). Prove:

(a) ∂αk ∈ Lp for α ∈ Nn.

(b) k ∗ u ∈ BUC∞ for u ∈ Lp.

10 Let f ∈ L1, and suppose ∂αf ∈ L1 for some α ∈ Nn. Show that∫
(∂αf)ϕ dx = (−1)|α|

∫
f∂αϕ dx for ϕ ∈ BC∞ .

11 Let V ∈ {Funct, B, Lp ; 1 ≤ p ≤ ∞}. Show that the linear representation of (Rn, +)
on V by translations is a group isomorphism.

12 For f, g, h ∈ L0, suppose f is convolvable with g and g with h. If f ∗g is convolvable
with h and f with g ∗h, show that (f ∗g)∗h = f ∗ (g ∗h). Thus convolution is associative
on L1.

13 Show that the distributional derivative

∂α : D′(X)→ D′(X) , T �→ ∂αT

is a well defined linear map for every α ∈ Nn.
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14 Show that (f �→ fu) ∈ L(BCm(X), W m
p (X)) for u ∈ W m

p (X) with 1 ≤ p ≤ ∞ and
m ∈ N.

15 Suppose (Tj) is a sequence in D′(X) and that T ∈ D′(X). We say (Tj) converges in
D′(X) to T if

lim
j
〈Tj , ϕ〉 = 〈T, ϕ〉 for ϕ ∈ D(X) .

Let {ϕε ; ε > 0 } be an approximation to the identity, and let (εj) be a null sequence.

Show that (ϕεj ) converges in D′(Rn) to δ.



8 The substitution rule

In our treatment of the Cauchy–Riemann integral, we encountered the substitution
rule of Theorem VI.5.1 as an essential tool for calculating integrals. Introducing
new variables, that is, choosing appropriate coordinates, is a prominent technique
also in higher dimensional integration. Unsurprisingly, the proof of the substitution
rule in this case is more difficult. However, we have already laid a foundation in the
form of the substitution rule for linear maps, which we derived in Theorem IX.5.25.

Besides proving the general substitution rule for n-dimensional Lebesgue in-
tegrals, this section will illustrate its significance by means of some important
examples. The same theorem is also the cornerstone of the theory of integration
on manifolds, the subject of our last chapter.

In the following, suppose
• X and Y are open subsets of Rn;

E is a Banach space.

Pulling back the Lebesgue measure

Let (X,A) be a measurable space and (Y,B, ν) a measure space. If f : X → Y
is a bijective map that satisfies f(A) ⊂ B, that is, one whose inverse map is
B-A-measurable, one easily verifies that

f∗ν : A → [0,∞] , A �→ ν
(
f(A)

)
defines a measure on A, the pull back (or the inverse image) of the measure ν
by f . In the special case (X,A) =

(
Rn,L(n)

)
and (Y,B, ν) =

(
Rn,L(n), λn

)
, the

particular case of the substitution rule covered in Theorem IX.5.25 describes the
pull back of λn by automorphisms of Rn:

Φ∗λn = |detΦ|λn for Φ ∈ Laut(Rn) .

Using this result, we will now determine the pull back of the Lebesgue measure by
arbitrary C1-diffeomorphisms. A technical result is essential to that end:

8.1 Lemma Suppose Φ ∈ Diff1(X, Y ). Then

λn

(
Φ(J)

)
≤

∫
J

|det ∂Φ| dx

for every interval J ⊂⊂ X of the form [a, b), where a, b ∈ Qn.

Proof (i) First consider a cube J =
[
x0−(r/2)1, x0+(r/2)1

)
with center x0 ∈ X

and edge length r > 0. Next set Rn
∞ := (Rn, | · |∞) and

K := max
x∈J

‖∂Φ(x)‖L(Rn∞) .
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It follows from the mean value theorem that

|Φ(x) − Φ(x0)|∞ ≤ K |x− x0|∞ for x ∈ J .

Therefore Φ(J) is contained in Bn
∞

(
Φ(x0), Kr/2

)
, and we find

λn(Φ(J)) ≤ (Kr)n = Knλn(J) . (8.1)

(ii) Suppose J ⊂⊂ X is of the form [a, b), with a, b ∈ Qn. Take ε > 0 and
let M := maxx∈J ‖[∂Φ(x)]−1‖L(Rn∞). Since ∂Φ is uniformly continuous on J , there
exists δ > 0 such that

‖∂Φ(x)− ∂Φ(y)‖L(Rn∞) ≤ ε/M (8.2)

for all x, y ∈ J such that |x− y| < δ. Because a, b ∈ Qn, we can decompose J (by
edge subdivision) into N disjoint cubes Jk of the form [α, β)n with 0 < β−α < δ.
Now choose xk ∈ Jk such that

|det ∂Φ(xk)| = min
y∈Jk

|det ∂Φ(y)|

and set Tk := ∂Φ(xk) and Φk := T−1
k ◦ Φ. Because

∂Φk(y) = T−1
k ∂Φ(y) = 1n + [∂Φ(xk)]−1 [∂Φ(y)− ∂Φ(xk)]

it follows from (8.2) and the definition of M that

max
y∈Jk

‖∂Φk(y)‖L(Rn∞) ≤ 1 + ε for k ∈ {1, . . . , N} . (8.3)

By the special case of the substitution rule treated in Theorem IX.5.25, we have

λn(Φ(Jk)) = λn(TkT−1
k Φ(Jk)) = |detTk|λn(Φk(Jk)) .

Thus (8.1) and (8.3) imply

λn(Φ(Jk)) ≤ (1 + ε)n |detTk|λn(Jk) for k ∈ {1, . . . , N} .

Taking into account the bijectivity of Φ and the choice of xk, we find

λn(Φ(J)) = λn

( N⋃
k=1

Φ(Jk)
)

=
N∑

k=1

λn(Φ(Jk))

≤ (1 + ε)n
N∑

k=1

|detTk|λn(Jk) ≤ (1 + ε)n
N∑

k=1

∫
Jk

|det ∂Φ|dx

= (1 + ε)n

∫
J

|det ∂Φ| dx .

The claim follows upon taking the limit ε → 0. �
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8.2 Proposition Suppose Φ ∈ Diff1(X, Y ). Then

Φ∗λn(A) = λn

(
Φ(A)

)
=

∫
A

|det ∂Φ|dx for A ∈ L(n) |X .

Proof (i) From the monotone convergence theorem, it follows easily that

μΦ : L(n) |X → [0,∞] , A �→
∫

A

|det ∂Φ|dx

is a complete measure (see Exercise 2.11).
(ii) Suppose U is open and compactly contained in X . By Proposition IX.5.6,

there is a sequence (Jk) of disjoint intervals of the form [a, b), with a, b ∈ Qn, such
that U =

⋃
k Jk. From (i) and Lemma 8.1, it follows that

λn(Φ(U)) = λn

(⋃
k
Φ(Jk)

)
=

∑
k
λn(Φ(Jk)) ≤

∑
k

∫
Jk

|det ∂Φ| dx

=
∑

k
μΦ(Jk) = μΦ

(⋃
k
Jk

)
= μΦ(U) =

∫
U

|det ∂Φ| dx .

(iii) Let U be open in X . By Remarks 1.16(d) and (e), there is a sequence
(Uk) of open subsets of X such that Uk ⊂⊂ Uk+1 and U =

⋃
k Uk. From (ii) and

the continuity from below of the measures λn and μΦ, it follows that

λn(Φ(U)) = lim
k

λn(Φ(Uk)) ≤ lim
k

μΦ(Uk) = μΦ(U) =
∫

U

|det ∂Φ| dx .

(iv) Let A ∈ L(n) |X be bounded. Using Corollary IX.5.5, we find a sequence
(Uk) of bounded open subsets of X such that G :=

⋂
k Uk ⊃ A and λn(G) = λn(A).

From (iii) and the continuity from above of the measures λn and μΦ, we have

λn(Φ(G)) = lim
k

λn

(
Φ

( k⋂
j=0

Uj

))
≤ lim

k
μΦ

( k⋂
j=0

Uj

)
= μΦ(G) =

∫
G

|det ∂Φ|dx .

Noting that A ⊂ G and λn(A) = λn(G), we obtain

λn(Φ(A)) ≤ λn(Φ(G)) ≤
∫

G

|det ∂Φ|dx =
∫

A

|det ∂Φ|dx .

(v) Take any A ∈ L(n) |X , and set Ak := A ∩ kBn for k ∈ N. From (iv) and
the continuity of the measures from below, we obtain

λn(Φ(A)) = lim
k

λn(Φ(Ak)) ≤ lim
k

μΦ(Ak) = μΦ(A) =
∫

A

|det ∂Φ|dx .
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(vi) Let f ∈ S(Y, R+) have normal form f =
∑k

j=0 αjχAj . By (v),∫
Y

f dy =
k∑

j=0

αjλn(Aj) =
k∑

j=0

αjλn

(
Φ(Φ−1(Aj))

)
≤

k∑
j=0

αj

∫
Φ−1(Aj)

|det ∂Φ| dx =
∫

X

(f ◦ Φ) |det ∂Φ| dx .

(vii) Suppose X is bounded. Given f ∈ L0(Y, R+), let (fk) be a sequence in
S(Y, R+) such that fk ↑ f (see Theorem 1.12). Then fk ◦Φ belongs to S(X, R+).
Because the sequence (fk ◦ Φ)k converges increasingly to f ◦ Φ, we know that
(f ◦ Φ) |det ∂Φ| belongs to L0(X, R+). Now (vi) and the monotone convergence
theorem imply∫

Y

f dy = lim
k

∫
Y

fk dy ≤ lim
k

∫
X

(fk ◦ Φ) |det ∂Φ|dx =
∫

X

(f ◦ Φ) |det ∂Φ|dx .

(viii) Let X be arbitrary and take f ∈ L0(Y, R+). In view of Remarks 1.16(d)
and (e), we can find an ascending sequence of relatively compact open subsets Xk

of X such that X =
⋃∞

k=0 Xk. According to (vii), gk := χXk
f |det Φ| belongs to

L0(X, R+), and we have gk ↑ g := f |detΦ|. Therefore g ∈ L0(X, R+). Setting
Yk := Φ(Xk), we obtain from (vii) that∫

Yk

f dy ≤
∫

Xk

(f ◦ Φ) |det ∂Φ|dx .

Now Y =
⋃∞

k=0 Yk and the monotone convergence theorem yield∫
Y

f dy ≤
∫

X

(f ◦ Φ) |det ∂Φ| dx . (8.4)

(ix) Suppose A ∈ L(n) |X . We swap the roles of X and Y in (viii) and apply
(8.4) to the C1-diffeomorphism Φ−1 : Y → X and the function (χΦ(A)◦Φ) |det ∂Φ|,
which belongs to L0(X, R+). Then∫

X

(χΦ(A) ◦ Φ) |det ∂Φ| dx ≤
∫

Y

[(
(χΦ(A) ◦ Φ) |det ∂Φ|

)
◦ Φ−1

]
|det ∂Φ−1| dy

=
∫

Y

χΦ(A)

∣∣det
[
(∂Φ ◦ Φ−1)∂Φ−1

]∣∣ dy .

Further noting that

1n = ∂(idY ) = ∂(Φ ◦ Φ−1) = (∂Φ ◦ Φ−1)∂Φ−1 (8.5)

and χΦ(A) ◦ Φ = χA, we obtain∫
A

|det ∂Φ| dx ≤
∫

Y

χΦ(A) dy = λn(Φ(A)) .

Because of (v), the claim follows. �
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8.3 Example Define X :=
{

(r, ϕ) ∈ R× (0, 2π) ; 0 < r < ϕ/2π
}

and

Φ : X → R2 , (r, ϕ) �→ (r cosϕ, r sin ϕ) .

Then Y := Φ(X) is open in R2, and Φ ∈ Diff∞(X, Y ) satisfies[
∂Φ(r, ϕ)

]
=

[
cosϕ −r sin ϕ
sin ϕ r cosϕ

]
.

Therefore det ∂Φ(r, ϕ) = r. Also pr2(X) = (0, 2π), and X [ϕ] = (0, ϕ/2π) for
ϕ ∈ (0, 2π). By Proposition 8.2 and Tonelli’s theorem, then,

λ2(Y ) =
∫

X

r d(r, ϕ) =
∫ 2π

0

∫ ϕ/2π

0

r dr dϕ = π/3 .

The substitution rule: general case

After these preliminaries, it is no longer difficult to prove the substitution rule
for diffeomorphisms. First we consider the scalar case, whose proof is accessible
even to readers who skipped over the proof of Fubini’s theorem for vector-valued
functions. We treat the general case at the end of the section.

8.4 Theorem (substitution rule) Suppose Φ ∈ Diff1(X, Y ).
(i) For f ∈ L0(Y, R+), ∫

Y

f dy =
∫

X

(f ◦ Φ) |det ∂Φ|dx . (8.6)

(ii) A function f : Y → K is integrable if and only if (f ◦ Φ) |det ∂Φ| belongs to
L1(X). In this case, (8.6) holds.

Proof (i) Theorem IX.5.12 implies that Φ(LX) ⊂ LY . Hence f ◦Φ is measurable,
by Corollary 1.5. Since |det ∂Φ| is continuous, hence measurable, Remark 1.2(d)
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implies that g := (f ◦ Φ) |det ∂Φ| is measurable also. From (8.5) we obtain f =
(g ◦ Φ−1)| det ∂Φ−1|. Now (8.4), with (Y, Φ−1, g) in the role of (X, Φ, f), gives∫

X

(f ◦ Φ) |det ∂Φ|dx ≤
∫

Y

f dy .

Because of (8.4), this implies (8.6). Now (ii) follows from (i), parts (ii) and (iii) of
Corollary 2.12, and Theorem 3.14. �

In terms of the pull back of functions defined in Section VIII.3, the substitu-
tion rule (8.6) takes on the easily remembered form∫

Y

f dλn =
∫

Φ−1(Y )

(Φ∗f) d(Φ∗λn) .

This follows from Proposition 8.2 and Exercise 2.12.

For many applications, the assumption that Φ is a diffeomorphism is too
restrictive. We weaken it somewhat in this simple yet important generalization of
Theorem 8.4:1

8.5 Corollary Let M be a measurable subset of X such that M \M̊ has Lebesgue
measure zero. Suppose Φ ∈ C1(X, Rn) is such that Φ | M̊ is a diffeomorphism from
M̊ onto Φ(M̊).

(i) For every f ∈ L0(M, R+),∫
Φ(M)

f dy =
∫

M

(f ◦ Φ) |det ∂Φ|dx . (8.7)

(ii) A function f : Φ(M)→ K belongs to L1(Φ(M)) if and only if (f ◦Φ) |det ∂Φ|
belongs to L1(M). In this case, (8.7) holds.

Proof Because λn(M \M̊) = 0, the set Φ(M)\Φ(M̊) ⊂ Φ(M \M̊) also has mea-
sure zero, by Corollary IX.5.10. The claims then follow from Lemma 2.15 and
Theorem 8.4. �

It is clear that this corollary gives a (partial) generalization of the substitution
rule of Theorem VI.5.1, though limited to diffeomorphisms. There is one obvious
difference from the one-dimensional case considered before: now the derivative
term (that is, the functional determinant) appears as an absolute value. The
reason is that the prior result used the oriented integral.

1See Exercise 7 for a further generalization.
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Plane polar coordinates

A special case of special importance in applications consists of diffeomorphisms
induced by polar coordinates, which we now introduce. We begin with the two-
dimensional case.

Let
f2 : R2 → R2 , (r, ϕ) �→ (x, y) := (r cosϕ, r sin ϕ)

be the (plane) polar coordinate map2, and let V2 := (0,∞)× (0, 2π).

Then f2 is smooth, and det ∂f2(r, ϕ) = r, as was shown in Example 8.3. Clearly
V 2\V2 has measure zero; moreover

f2(V 2) = R2 , f2(V2) = R2
∖

(R+ × {0}) (8.8)

and
f2 |V2 ∈ Diff∞(V2, f2(V2)) . (8.9)

Therefore Corollary 8.5 applies with M := V 2:

8.6 Proposition (integration in polar coordinates)
(i) For g ∈ L0(R2, R+), we have∫

R2
g(x, y) d(x, y) =

∫ 2π

0

∫ ∞

0

g(r cosϕ, r sin ϕ)r dr dϕ

=
∫ ∞

0

r

∫ 2π

0

g(r cosϕ, r sin ϕ) dϕdr .

(8.10)

(ii) The function g : R2 → K is integrable if and only if the map

(0,∞)× (0, 2π)→ K , (r, ϕ) �→ g(r cosϕ, r sin ϕ)r

is integrable. Then (8.10) holds.

Proof This follows from Corollary 8.5 together with (8.8), (8.9), and the Fubini–
Tonelli theorem. �

2See Conclusion III.6.21(d).



198 X Integration theory

These integrals simplify when f depends only on |x|, that is, on r. To illus-
trate, we present an elegant calculation of the Gaussian error integral, for which
knowledge of the Γ-function is not required (compare Application VI.9.7).

8.7 Example
∫ ∞
−∞ e−x2

dx =
√

π.
Proof Tonelli’s theorem implies(∫ ∞

−∞
e−x2

dx
)2

=

∫ ∞

−∞
e−x2

dx

∫ ∞

−∞
e−y2

dy =

∫
R

(∫
R

e−(x2+y2) dx
)

dy

=

∫
R2

e−(x2+y2) d(x, y) .

Therefore Proposition 8.6(i) shows that(∫ ∞

−∞
e−x2

dx
)2

=

∫ 2π

0

∫ ∞

0

re−r2
dr dϕ = 2π

∫ ∞

0

d

dr

[
−e−r2

/2
]
dr = π ,

and the claim follows. �

Polar coordinates in higher dimensions

For n ≥ 1, we define hn : Rn → Rn+1 recursively through

h1(z) := (cos z, sin z) for z ∈ R (8.11)

and

hn+1(z) :=
(
hn(z′) sin zn+1, cos zn+1

)
for z = (z′, zn+1) ∈ Rn × R . (8.12)

Obviously hn is smooth, and by induction, we verify that

|hn(z)| = 1 for z ∈ Rn . (8.13)

Now we define fn : Rn → Rn for n ≥ 2 by

fn(y) := y1hn−1(z) for y = (y1, z) ∈ R× Rn−1 . (8.14)

Then fn is also smooth, and we have

hn−1(z) = fn(1, z) , |fn(y)| = |y1| . (8.15)

We will usually follow convention by renaming the y-coordinates as

(r, ϕ, ϑ1, . . . , ϑn−2) := (y1, y2, y3, . . . , yn) .

By induction, one checks easily that

fn : Rn → Rn , (r, ϕ, ϑ1, . . . , ϑn−2) �→ (x1, x2, x3, . . . , xn) (8.16)
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is given by
x1

x2

x3

xn−1

xn

=
=
=
...
=
=

r cosϕ sin ϑ1 sin ϑ2 · · · sin ϑn−2 ,

r sinϕ sin ϑ1 sin ϑ2 · · · sin ϑn−2 ,

r cosϑ1 sin ϑ2 · · · sin ϑn−2 ,

r cosϑn−3 sin ϑn−2 ,

r cosϑn−2 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8.17)

Thus f2 coincides with the plane polar coordinate map, and f3 is the spherical co-
ordinate map of Example VII.9.11(a). In the general case, fn is the n-dimensional
polar coordinate map. From (8.12) and (8.14), the recursive relation

fn(y) =
(
fn−1(y′) sin yn, y1 cos yn

)
for y = (y′, yn) ∈ Rn−1 × R (8.18)

follows for n ≥ 3. For n ≥ 2, we set

Wn−1 := (0, 2π)× (0, π)n−2 , Vn := (0,∞)×Wn−1 , (8.19)

and
Vn(r) := (0, r) ×Wn−1 for r > 0 . (8.20)

If we denote the closed (n−1)-dimensional half-space by

Hn−1 := R+ × {0} × Rn−2 ⊂ Rn , (8.21)

we find
hn−1(Wn−1) = Sn−1\Hn−1 , fn(Vn(r)) = rBn\Hn−1 (8.22)

and
hn−1

(
Wn−1

)
= Sn−1 , fn

(
Vn(r)

)
= rBn . (8.23)

Also
fn(Vn) = Rn\Hn−1 , fn

(
V n

)
= Rn . (8.24)

In addition, the maps hn−1 |Wn−1 and fn |Vn are bijective onto their images.

These statements follow easily by induction.
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8.8 Lemma For n ≥ 3 and r > 0, the map fn is a C∞ diffeomorphism from Vn(r)
onto rBn\Hn−1 and from Vn onto Rn\Hn−1. Moreover

det ∂fn(r, ϕ, ϑ1, . . . , ϑn−2) = (−1)nrn−1 sin ϑ1 sin2 ϑ2 · · · sinn−2 ϑn−2

for (r, ϕ, ϑ1, . . . , ϑn−2) ∈ V n.

Proof In view of the foregoing, we need only calculate the value of the functional
determinant det ∂fn(y). We do this recursively. From (8.12) and (8.14), we have

[
∂fn+1(y)

]
=

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

·············

⎡⎢⎢⎢⎢⎣
hn−1(z

′) sin zn

[
r∂z

(
hn−1(z

′) sin zn

)]
cos zn 0 · · · 0 −r sin zn

⎤⎥⎥⎥⎥⎦

=

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

··············

⎡⎢⎢⎢⎢⎢⎣
∗[

∂fn(y′) sin zn

] ...
∗

∗ · · · ∗ −r sin zn

⎤⎥⎥⎥⎥⎥⎦ ,

where y = (r, z) = (y′, zn) and z = (z′, zn) ∈ Rn. Expanding in the last row, we
find

det ∂fn+1(y) = (−1)n cos zn detS − r sinn+1 zn det ∂fn(y′) , (8.25)

where S :=
[
r∂z

(
hn−1(z′) sin zn

)]
. We can assume that sin zn 
= 0; otherwise the

claim is trivial. In the last column of S we have rhn−1(z′) cos zn. This vector
differs only by the factor r cot zn from the first column vector, hn−1(z′) sin zn, of
the matrix T :=

[
∂fn(y′) sin zn

]
. The first n− 1 columns of S also agree with the

last n− 1 columns of T , in the same order. Therefore

detS = (−1)n−1r cot zn detT = (−1)n−1r cos zn sinn−1 zn det ∂nf(y′) .

Thus it follows from (8.25) that

det ∂fn+1(y) = −r sinn−1 zn det ∂fn(y′) .

The claim now follows because det ∂f2(r, ϕ) = r. �

For short, let’s set

wn(ϑ) := sinϑ1 sin2 ϑ2 · · · sinn−2 ϑn−2 , ϑ := (ϑ1, . . . , ϑn−2) ∈ [0, π]n−2 .
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8.9 Proposition (integration in polar coordinates) Suppose n ≥ 3.

(i) For g ∈ L0(Rn, R+), we have∫
Rn

g dx =
∫

Vn

(g ◦ fn)(r, ϕ, ϑ)rn−1wn(ϑ) d(r, ϕ, ϑ) . (8.26)

(ii) The map g : Rn → K is integrable if and only if

Vn → K , (r, ϕ, ϑ) �→ (g ◦ fn)(r, ϕ, ϑ)rn−1wn(ϑ)

is integrable. Then (8.26) holds.

Proof Because λn

(
V n\Vn

)
= 0, the claim follows from (8.24), Corollary 8.5, and

Lemma 8.8. �

8.10 Examples (a) For g ∈ L0(R3, R+), we have∫
R3

g(x, y, z) d(x, y, z)

=
∫ ∞

0

∫ 2π

0

∫ π

0

g(r cosϕ sin ϑ, r sin ϕ sin ϑ, r cosϑ)r2 sin ϑdϑ dϕdr .

(8.27)

The integrals on the right side can be performed in any order.
Proof This follows from Proposition 8.9(i) and Tonelli’s theorem. �

(b) A map g : R3 → K is integrable if and only if

V3 → K , (r, ϕ, ϑ) �→ g(r cosϕ sin ϑ, r sin ϕ sinϑ, r cosϑ) r2 sin ϑ

is integrable. Such a map satisfies (8.27), and the integrals there can be performed
in any order.
Proof This is a consequence of Proposition 8.9(ii) and the Fubini–Tonelli theorem. �

(c) For n ≥ 3, we have

2π

∫
[0,π]n−2

wn(ϑ) dϑ = nωn ,

where ωn = πn/2
/
Γ(1 + n/2) is the volume of Bn.

Proof From (8.22), (8.23), Proposition 8.9, and Tonelli’s theorem, it follows that

ωn =

∫
Bn

dx =

∫
Bn

1 dx =

∫
Vn(1)

(1 ◦ fn)(r, ϕ, ϑ)rn−1wn(ϑ) d(r,ϕ, ϑ)

=

∫ 1

0

rn−1 dr

∫ 2π

0

dϕ

∫
[0,π]n−2

wn(ϑ) dϑ =
2π

n

∫
[0,π]n−2

wn(ϑ) dϑ ,

and we are done. �
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Integration of rotationally symmetric functions

Suppose 0 ≤ r0 < r1 ≤ ∞ and set R(r0, r1) := { x ∈ Rn ; r0 < |x| < r1 }. We
say that a function g : R(r0, r1) → E is rotationally symmetric if there is a map
�

g : (r0, r1) → E such that

g(x) =
�

g(|x|) for x ∈ R(r0, r1) .

This is the case if and only if g is constant on every sphere rSn−1 with r0 < r < r1.
For such a function,

�

g is uniquely determined by g (and vice versa).
As we saw in Example 8.7, integration problems simplify considerably for

rotationally symmetric functions.

8.11 Theorem Suppose 0 ≤ r0 < r1 ≤ ∞.

(i) If g ∈ L0

(
R(r0, r1), R+

)
is rotationally symmetric, then∫

R(r0,r1)

g dx = nωn

∫ r1

r0

�

g(r) rn−1 dr , (8.28)

where ωn := λn(Bn) = πn/2
/
Γ(1 + n/2).

(ii) A rotationally symmetric function g : R(r0, r1)→ K is integrable if and only if

(r0, r1)→ K , r �→ �

g(r) rn−1

is integrable. In this case (8.28) holds.

Proof The case n = 1 is clear (see Exercise 5.12). For n ≥ 2, it follows from
(8.15) and the rotational symmetry of g that

g ◦ fn(r, ϕ, ϑ) =
�

g(r) for r0 < r < r1 and (ϕ, ϑ) ∈Wn−1 .

Now the claim arises from Propositions 8.6 and 8.9 (applied to the trivial extension
of g) and Example 8.10(c). �

8.12 Examples (a) Suppose f : Rn → K is measurable and there are c ≥ 0, ρ > 0,
and ε > 0 such that

|f(x)| ≤
{

c |x|−n+ε if 0 < |x| ≤ ρ ,

c |x|−n−ε if |x| ≥ ρ .

Then f is integrable.
Proof Set

g(x) := c
(
|x|−n+ε χρBn(x) + |x|−n−ε χ(ρBn)c(x)

)
for x ∈ Rn\{0} = R(0,∞) .

Then g is rotationally symmetric, and |f(x)| ≤ g(x) for x ∈ R(0,∞). By Examples
VI.8.4(a) and (b), r �→

�

g(r)rn−1 belongs to L1(R+). Hence Theorem 8.11 implies that g
also belongs to L1

(
R(0,∞)

)
= L1(Rn). Now the claim follows from Theorem 3.14. �
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(b) Let μ ∈ L∞(Rn) have compact support. Also define

1
r

: Rn\{0} → R+ , x �→ 1
|x| .

Then (1/r)α ∗ μ exists for α < n, and(1
r

)α

∗ μ(x) =
∫

Rn

μ(y)
|x− y|α dy for x ∈ Rn .

Proof Take x ∈ Rn and define K := supp(μ) and gx(y) := ‖μ‖∞ |y|−α χx−K(y) for
y 	= 0. Then g̃x belongs to L0(Rn), and

|μ(x− y)| |y|−α ≤ gx(y) for y 	= 0 .

Because α < n, part (a) shows that g̃x is integrable. The claim now follows from Theo-
rem 7.8(ii). �

For n ≥ 3, the function un := (1/r)n−2∗μ, in the notation of (b), is called the
Newtonian or Coulomb potential associated with the density μ. From Exercise 3.6
we know that un is smooth and harmonic in Kc, and (b) shows that un is defined
on all of Rn.

The substitution rule for vector-valued functions

We now prove the substitution formula of Theorem 8.4 for vector-valued functions.

8.13 Lemma Let f ∈ Sc(Y, E) and Φ ∈ Diff1(X, Y ). Then (f ◦Φ) |det ∂Φ| belongs
to L1(X, E), and ∫

Y

f dy =
∫

X

(f ◦ Φ) |det ∂Φ| dx .

Proof Because supp(f ◦ Φ) = Φ−1
(
supp(f)

)
, the support of f ◦ Φ is compact.

In particular, f ◦ Φ belongs to Sc(X, E). It easily follows that (f ◦ Φ) |det ∂Φ| is
integrable. Also Theorem 2.11(iii) shows that, for e ∈ E and g ∈ L1(X, K), the
function eg belongs to L1(X, E) and e

∫
X g dx =

∫
X eg dx. Letting

∑m
j=0 ejχAj be

the normal form of f , we see from Proposition 8.2 that∫
Y

f dy =
m∑

j=0

ejλn(Aj) =
m∑

j=0

ej

∫
Φ−1(Aj)

|det ∂Φ| dx

=
m∑

j=0

∫
Φ−1(Aj)

ej |det ∂Φ|dx =
∫

X

(f ◦ Φ) |det ∂Φ| dx . �
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8.14 Theorem (substitution rule) Let Φ ∈ Diff1(X, Y ) and f ∈ EY . Then f
belongs to L1(Y, E) if and only if (f ◦ Φ) |det ∂Φ| belongs to L1(X, E). In this
case, we have ∫

Y

f dy =
∫

X

(f ◦ Φ) |det ∂Φ| dx .

Proof (i) Let f ∈ L1(Y, E), and take a sequence (fj) in Sc(Y, E) converging
a.e. in L1(Y, E) to f and satisfying lim

∫
Y

fj =
∫

Y
f (see Lemma 6.18, Remarks

6.19(a) and (c), and Theorem 2.18). Set gj := (fj ◦Φ) |det ∂Φ| for j ∈ N. Thanks
to Lemma 8.13, we know that (gj) is a Cauchy sequence in L1(X, E) and that∫

Y fj dy =
∫

X gj dx. Because L1(X, E) is complete, there exists g ∈ L1(X, E)
such that gj → g in L1(X, E). Also, it follows from Theorem 2.18 that

∫
X gj dx

converges to
∫

X
g dx and that some subsequence (gjk

)k∈N of (gj) converges a.e.
in X to g. Hence g and (f ◦ Φ) |det ∂Φ| coincide a.e. in X . By Lemma 2.15,
(f ◦Φ) |det ∂Φ| belongs to L1(X, E), and

∫
X

g =
∫

X
(f ◦Φ) |det ∂Φ|. It follows that∫

Y

f dy = lim
j

∫
Y

fj dy = lim
j

∫
X

gj dx =
∫

X

g dx =
∫

X

(f ◦ Φ) |det ∂Φ| dx .

(ii) For the converse, suppose (f ◦ Φ) |det ∂Φ| belongs to L1(X, E). From
(8.5) we have

f =
(
(f ◦ Φ) |det ∂Φ|

)
◦ Φ−1 |det ∂(Φ−1)| ,

so part (i) shows that f belongs to L1(Y, E). �

It is clear that Corollary 8.5 is also true for E-valued maps. From this it
follows that Propositions 8.6(ii) and 8.9(ii) and Theorem 8.11(ii) also hold for
E-valued functions.

Exercises

1 Let G ∈ Rn×n be symmetric and positive definite. Prove that∫
Rn

e−(Gx |x) dx = πn/2/√det G .

(Hint: principal axis transformation.)

2 Show that for p ∈ C with Re p > n/2, we have∫
Rn

(1 + |x|2)−p dx = πn/2Γ(p− n/2)
/
Γ(p) .

(Hint: Look at Example 6.13(b).)

3 Suppose D :=
{

(x, y) ∈ R2 ; x, y ≥ 0, x + y ≤ 1
}

and p, q ∈ (0,∞). Show that for
f : (0, 1)→ R, the function

D → R , (x, y) �→ xp−1yq−1f(x + y)
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is integrable if and only if s �→ sp+q−1f(s) belongs to L1((0, 1)). In this case, we have∫
D

xp−1yq−1f(x + y) d(x, y) = B(p, q)

∫ 1

0

sp+q−1f(s) ds .

(Hint: Consider (s, t) �→
(
s(1− t), st

)
.)

4 Let 0 ≤ α < β ≤ 2π, and suppose f : [α, β]→ (0,∞) is measurable. Show that

S(α, β, f) :=
{

z ∈ C ; argN (z) ∈ [α, β], |z| ≤ f
(
argN (z)

) }
is Lebesgue measurable and that

λ2

(
S(α, β, f)

)
=

1

2

∫ β

α

[
f(ϕ)

]2
dϕ .

5 Suppose g ∈ L2
sym(Rn) is positive definite. Calculate the volume of the solid ellipsoid

g−1([0, 1]) enclosed by the surface g−1(1) (see Remark VII.10.18).

6 (Sard’s lemma) Suppose Φ ∈ C1(X, Rn), and let C :=
{

x ∈ X ; ∂Φ(x) /∈ Laut(Rn)
}

be the set of critical points of Φ. Show that Φ(C) has measure zero. (Hint: Because C
is σ-compact, it suffices to check that Φ(C ∩ J) is has measure zero for every compact
n-dimensional cube J . Take x0 ∈ C and r > 0 such that J0 :=

[
x0− (r/2)1, x0 +(r/2)1

]
is compactly contained in X, and set

ρ(r) := max
x∈J0

∫ 1

0

∥∥∂Φ
(
x0 + t(x− x0)

)∥∥ dt .

Show that there is a cn > 0 such that λn(Φ(J0)) ≤ cnrnρ(r). Because limr→0 ρ(r) = 0,
the claim follows by subdividing the edges of J0.)

7 Suppose Φ ∈ C1(X, Rn) and C :=
{

x ∈ X ; ∂Φ(x) /∈ Laut(Rn)
}
. Also suppose

Φ | (X\C) is injective. Prove:

(i) For f ∈ L0(X, R+), ∫
Φ(X)

f dy =

∫
X

(f ◦Φ) |det ∂Φ| dx . (8.29)

(ii) The function f : Φ(X)→ E belongs to L1

(
Φ(X), E

)
if and only if (f ◦Φ) |det∂Φ|

lies in L1(X, E). In this case, (8.29) holds.



9 The Fourier transform

To conclude this chapter, we introduce the most important integral transformation,
called the Fourier transform.1 The study of its fundamental properties is as it
were a recapitulation of Lebesgue integration theory: we will encounter at every
turn such cornerstones as the completeness of Lebesgue spaces, the dominated
convergence theorem, and the Fubini–Tonelli theorem.

Particularly appealing is the interaction of the Fourier transform with the
convolution and with the Hilbert space structure of L2. We illustrate the former
through Fourier multiplication operators and the second via Plancherel’s theorem
and applications of the position and momentum operators of quantum mechanics.

In this section, we exclusively consider spaces of complex-valued functions
defined on all of Rn. For this reason, as in Section 7, we omit (Rn, C) from our
notation and write, for example, L1 for L1(Rn, C). In addition,

∫
f dx always

means
∫

Rn f dx, and we canonically identify Rn with its dual space, so that 〈 · , · 〉
coincides formally with the Euclidean inner product.

Definition and elementary properties

Let f ∈ L1. The map Rn → C, x �→ e−i 〈x,ξ〉f(x) belongs to L1 for every ξ ∈ Rn.
The map f̂ : Rn → C defined by

f̂(ξ) := (2π)−n/2

∫
Rn

e−i〈x,ξ〉f(x) dx for ξ ∈ Rn (9.1)

is called the Fourier transform of f . The map F :=
(
f �→ f̂

)
is also called the

Fourier transform (or, if necessary to avoid confusion, the Fourier transformation).

Different conventions intervene in the definition just given; instead of (9.1),
one often sees the Fourier transform being defined as2

ξ �→
∫

e−i〈x,ξ〉f(x) dx or ξ �→
∫

e−2πi 〈x,ξ〉f(x) dx .

Obviously, these differences in normalization are immaterial to the underlying
theory; however, they do cause powers of 2π to appear in some of the following
expressions. One should be mindful of this when reading the literature. The
normalization chosen here has the advantage that such factors appear only in a
few places and that Plancherel’s theorem takes on a particularly simple form.

9.1 Remarks (a) For f ∈ L1, set Ff := f̂ := F ∗
f , where

∗
f is an arbitrary

representative of f . Then Ff is well defined, and F ∈ L(L1, BC).

1The contents of this section will not be used in the rest of this book.
2See Section VIII.6.
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Proof The first statement is obvious. Because∣∣f̂(ξ)
∣∣ ≤ (2π)−n/2 ‖f‖1 for ξ ∈ Rn ,

the second follows easily from Theorem 3.17 (on the continuity of parameterized integrals)
and Theorem VI.2.5. �

(b) For f ∈ L1, we have

̂

f̂ = f̂

̂

. The function defined by

Rn → C , ξ �→

̂

f̂(ξ) = (2π)−n/2

∫
ei 〈x,ξ〉f(x) dx

is called the inverse Fourier transform of f , for reasons soon to become clear; and
the map

F := (f �→

̂

f̂ )

is the inverse Fourier transform(ation). Because inversion (f �→ f

̂

) is a continuous
automorphism on L1, L1, and BC, the inverse Fourier transform has the same
continuity properties as the Fourier transform.
Proof This follows immediately from the substitution rule. �

(c) For λ > 0, we denote by σλ : Rn → Rn, x �→ λx the dilation by the factor λ.
We define an action of the group

(
(0,∞), ·

)
on Funct := Funct(Rn, C),(

(0,∞), ·
)
× Funct → Funct , (λ, f) �→ σλf , (9.2)

by setting
σλf := f ◦ σ1/λ = (σ1/λ)∗f .

If V is a vector subspace of Funct that is invariant under this action (meaning
that σλ(V ) ⊂ V for λ > 0), the map

σλ : V → V , v �→ σλv

is linear and satisfies σλσμ = σλμ and σ1 = idV for λ, μ > 0. Therefore σλ is a
vector space automorphism of V , with (σλ)−1 = σ1/λ for λ > 0. This shows that(

(0,∞), ·
)
→ Aut(V ) , λ �→ σλ

is a linear representation of the multiplicative group
(
(0,∞), ·

)
on V . In particular,

{ σλ ; λ > 0 } is a subgroup of Aut(V ), the group of dilations on V . Accordingly
σλv is the dilation of v by the factor λ. As with the translation group, we say that(
(0,∞), ·

)
is linearly representable in V if V is invariant under (9.2).

Suppose 1 ≤ p ≤ ∞. Then
(
(0,∞), ·

)
is linearly representable on Lp, and

‖σλf‖p = λn/p ‖f‖p .

Proof This follows from the substitution rule. �
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(d) Fσλ = λnσ1/λF for λ > 0.
Proof Suppose f ∈ L1 and λ > 0. Then

Fσλf(ξ) = (2π)−n/2

∫
e−i 〈x,ξ〉f(x/λ) dx = λn(2π)−n/2

∫
e−〈x/λ,λξ〉f(x/λ)λ−n dx

for ξ ∈ Rn. But the substitution rule shows that the last expression is equal to λnf̂(λξ). �

(e) Suppose a ∈ Rn. Then
(
ei〈a,· 〉f

)̂ = τaf̂ for f ∈ L1. �

The space of rapidly decreasing functions

We now introduce a vector subspace of L1 where the Fourier transform is especially
manageable. Using density arguments, we will then be able to broaden the results
to larger function spaces.

We say f ∈ C∞ is rapidly decreasing if for every (k, m) ∈ N2, there is a
ck,m > 0 such that

(1 + |x|2)k |∂αf(x)| ≤ ck,m for x ∈ Rn , α ∈ Nn , and |α| ≤ m .

In other words, f ∈ C∞ is rapidly decreasing if, as |x| → ∞, every derivative ∂αf
goes to zero faster than any power of 1/|x|.

We now set

qk,m(f) := max
|α|≤m

sup
x∈Rn

(1 + |x|2)k/2 |∂αf(x)| for f ∈ C∞ and k, m ∈ N .

The space
S :=

{
f ∈ C∞ ; qk,m(f) <∞ for k, m ∈ N

}
is called Schwartz space or the space of rapidly decreasing functions.

9.2 Remarks (a) S is a vector subspace of BUC∞. Every qk,m is a norm on S.
Proof Let m ∈ N. Then S is a vector subspace of BCm, since q0,m is the norm on
BCm. Let α ∈ Nn with |α| ≤ m. Then it follows easily from the mean values theorem
that ∂αf is uniformly continuous. The proves the first statement. The second is clear. �

(b) For (f, g) ∈ S × S, let

d(f, g) :=
∞∑

k,m=0

2−(k+m) qk,m(f − g)
1 + qk,m(f − g)

.

Then (S, d) is a metric space.
Proof (i) Clearly the double series

∑
2−(k+m)qk,m(f)

/(
1+qk,m(f)

)
converges for every

f ∈ S . Thus d : S×S → R+ is well defined. Also d is symmetric and vanishes identically
on the diagonal of S × S .
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(ii) Because t �→ t/(1+t) is increasing on R+, we have, for r, s, t ∈ R+ with r ≤ s+t,

r

1+r
≤ s+ t

1+s+ t
=

s

1+s+ t
+

t

1+s+ t
≤ s

1+s
+

t

1+ t
.

Now it follows easily that d satisfies the triangle inequality. �

(c) For f ∈ S and a sequence (fj) in S, there is equivalence between:
(i) lim fj = f in (S, d);
(ii) lim(f − fj) = 0 in (S, d);
(iii) limj qk,m(f − fj) = 0 for k, m ∈ N.
Thus a sequence (fj) converges in S to f if and only if (fj − f) converges to zero
with respect to every seminorm qk,m.
Proof “(i)=⇒(ii)” This implication is clear.

“(ii)=⇒(iii)” Take ε ∈ (0, 1] and k, m ∈ N. There exists an N ∈ N such that the
inequality d(f, fj) < ε/2k+m+1 is satisfied for j ≥ N . Thus

2−(k+m)qk,m(f − fj)

1 + qk,m(f − fj)
<

ε

2k+m+1
,

so qk,m(f − fj) < ε for j ≥ N .

“(iii)=⇒(i)” Take ε > 0. There is an N ∈ N such that

∞∑
k+m=N+1

2−(k+m)qk,m(f − fj)

1 + qk,m(f − fj)
≤

∞∑
�=N+1

2−� <
ε

2
.

By assumption, there is M ∈ N such that qk,m(f − fj) ≤ ε/4 for j ≥M and k + m ≤ N .
Therefore

d(f, fj) ≤
N∑

k,m=0

2−(k+m)qk,m(f − fj)

1 + qk,m(f − fj)
+

ε

2
≤ ε for j ≥M . �

(d) D is a dense vector subspace of S. The function Rn → R, x �→ e−|x|2 belongs
to S but not to D.
Proof It is clear that D is a vector subspace of S . Suppose f ∈ S . We choose ϕ ∈ D
such that ϕ |Bn = 1 and set

fj(x) := f(x)ϕ(x/j) for x ∈ Rn , j ∈ N× .

Then fj belongs to D, and

f(x)− fj(x) = f(x)
(
1− ϕ(x/j)

)
for x ∈ Rn .

Therefore ∂α(f − fj)(x) = 0 for x ∈ jBn and α ∈ Nn. Now Leibniz’s rule shows that
there is a c = c(ϕ, m) > 0 such that

|∂α(f − fj)(x)| =
∣∣∣∑
β≤α

(α

β

)
∂βf(x)∂α−β(1− ϕ)(x/j)j−|α−β|

∣∣∣ ≤ c max
β≤α

|∂βf(x)|

≤ c qk+1,m(f)(1 + |x|2)−(k+1)/2
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for x ∈ Rn, j ∈ N×, k ∈ N, and |α| ≤ m. Setting C := c qk+1,m(f), we find

qk,m(f − fj) = max
|α|≤m

sup
|x|≥j

(1 + |x|2)k/2 |∂α(f − fj)(x)|

≤ c qk+1,m(f) sup
|x|≥j

(1 + |x|2)−1/2 ≤ C/j ,

and, as j →∞, the first claim follows from (c). The second one is clear. �

(e) For m ∈ N, we have S ↪→ BUCm.
Proof This follows from (a) and (c). �

(f) S is a dense vector subspace of C0.
Proof Suppose f ∈ S . Then it follows from (a) and because |f(x)| ≤ q1,0(f)(1 +
|x|2)−1/2 for x ∈ Rn that f belongs to C0. Therefore S is a vector subspace of C0.
Theorem 7.13 shows D is a dense vector subspace of C0, and therefore the claim follows
from the inclusions D ⊂ S ⊂ C0. �

(g) For k, m ∈ N, there are positive constants c and C such that

c max
|α|≤m
|β|≤k

sup
x∈Rn

∣∣∂α
(
xβf(x)

)∣∣ ≤ qk,m(f) ≤ C max
|α|≤m
|β|≤k

sup
x∈Rn

|xβ∂αf(x)| for f ∈ S .

Proof This follows easily from the Leibniz rule. �

(h) Let f ∈ S and α, β ∈ Nn. Then x �→ xα∂βf(x) belongs to S.
Proof This is a consequence of (g). �

(i) The inversion f �→ f

̂

is a continuous automorphism of S.
Proof This is obvious. �

9.3 Theorem Let p ∈ [1,∞). Then S is a dense vector subspace of Lp, and there
is a c = c(n, p) > 0 such that

‖f‖p ≤ c qn+1,0(f) for f ∈ S . (9.3)

Proof For f ∈ S, we have∫
|f |p dx =

∫
|f(x)|p (1 + |x|2)(n+1)p/2(1 + |x|2)−(n+1)p/2 dx

≤
(
qn+1,0(f)

)p
∫

(1 + |x|2)−(n+1)p/2 dx .

(9.4)

Further, by Theorem 8.11(i) and because (n + 1)p > n, we have∫
[|x|≥1]

|x|−(n+1)p dx = nωn

∫ ∞

1

r−((n+1)p−n+1) dr < ∞ .

Therefore
∫

(1 + |x|2)−(n+1)p/2 dx is also finite, and (9.3) follows from (9.4). In
particular, f belongs to Lp, and we see that S is a vector subspace of Lp. By
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Theorem 7.13, D is a dense vector subspace of Lp, and by Remark 9.2(d), it is
contained in S. The claim follows. �

The convolution algebra S

By Remark 9.2(a) and Theorem 9.3, S ×S is contained in BUC∞×L1. Therefore
the convolution is defined on S × S, and by Corollary 7.9, we have

∗ : S × S → BUC∞ . (9.5)

The next result shows that f ∗ g is actually rapidly decreasing for (f, g) ∈ S × S.

9.4 Proposition The convolution S × S is a continuous and bilinear map into S.

Proof (i) We verify next that the convolution S × S maps into S. So suppose
(f, g) ∈ S ×S and k, m ∈ N. By (9.5), it suffices to check that qk,m(f ∗ g) is finite.
Because

|x|k ≤ (|x− y|+ |y|)k =
k∑

j=0

(k

j

)
|x− y|j |y|k−j for x, y ∈ Rn ,

there is a ck > 0 such that

|x|k |f ∗ g(x)| ≤
∫ k∑

j=0

(k

j

)
|x− y|j |f(x− y)| |y|k−j |g(y)| dy

≤ ckqk,0(f)
∫

(1 + |y|2)k/2 |g(y)| dy .

Noting that c̃n :=
∫

(1 + |y|2)−(n+1)/2 dy is finite, we find

|x|k |f ∗ g(x)| ≤ ckc̃n qk,0(f)qk+n+1,0(g) .

Thus by Remark 9.2(g), there is a c = c(k, n) ≥ 1 such that

qk,0(f ∗ g) ≤ c qk,0(f)qk+n+1,0(g) . (9.6)

Finally by Theorem 7.8(iv), we have

qk,m(f ∗ g) = max
|α|≤m

qk,0

(
∂α(f ∗ g)

)
= max

|α|≤m
qk,0

(
(∂αf) ∗ g

)
,

and (9.6) implies

qk,m(f ∗ g) ≤ c max
|α|≤m

qk,0(∂αf)qk+n+1,0(g) = c qk,m(f)qk+n+1,0(g) . (9.7)

(ii) It is clear that the convolution is bilinear. Suppose (f, g) ∈ S × S and
((fj , gj))j∈N is a sequence in S ×S such that (fj , gj)→ (f, g) in S ×S as j →∞.
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Also let
α := c

(
qk,m(f) + qk+n+1,0(g) + 1

)
where c is the constant from (9.7). Let ε ∈ (0, 1]. By Remark 9.2(c), there is an
N ∈ N such that

qk,m(f − fj) < ε/α , qk+n+1,0(g − gj) < ε/α for j ≥ N .

Because

f ∗ g − fj ∗ gj = (f − fj) ∗ g + (fj − f) ∗ (g − gj) + f ∗ (g − gj)

it follows from (9.7) that

qk,m(f ∗ g − fj ∗ gj) ≤ c
(
qk,m(f − fj)qk+n+1,0(g) + qk,m(f − fj)qk+n+1,0(g − gj)

+ qk,m(f)qk+n+1,0(g − gj)
)

< ε

for j ≥ N . Thus we are done. �

9.5 Corollary (S, +, ∗) is a subalgebra of the commutative algebra (L1, +, ∗).

Proof This follows from Proposition 9.4 and Theorem 9.3. �

Calculations with the Fourier transform

We now derive some rules for the Fourier transformation of derivatives and the
derivatives of Fourier transforms. It will simplify the presentation of these formulas
to set Λ(x) := (1 + |x|2)1/2 for x ∈ Rn and

Dj := −i∂j , j ∈ {1, . . . , n} for Dα := Dα1
1 · · ·Dαn

n , α ∈ Nn ,

where i is the imaginary unit. As usual, the polynomial function induced by the
polynomial p ∈ C[X1, . . . , Xn] will also be denoted by p.

9.6 Proposition Suppose f ∈ L1.

(i) For α ∈ Nn, suppose Dαf exists and belongs to L1. Then Xαf̂ = D̂αf .

(ii) For m ∈ N, suppose Λmf belongs to L1. Then f̂ belongs to BCm, and

Dαf̂ = (−1)|α|X̂αf for α ∈ Nn , |α| ≤ m .

Proof (i) Suppose {ϕε ; ε > 0 } is a smoothing kernel. By integration by parts
(see Exercise 7.10), it follows that∫

ξαe−i〈x,ξ〉(f ∗ ϕε)(x) dx = (−1)|α|
∫

Dα
x (e−i 〈x,ξ〉)(f ∗ ϕε)(x) dx

=
∫

e−i〈x,ξ〉((Dαf) ∗ ϕε

)
(x) dx .

(9.8)
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Theorem 7.11 and Theorem 2.18(ii) imply that

lim
ε→0

(2π)−n/2

∫
ξαe−i 〈x,ξ〉(f ∗ ϕε)(x) dx = ξαf̂(ξ)

and

lim
ε→0

(2π)−n/2

∫
e−i〈x,ξ〉((Dαf) ∗ ϕε

)
(x) dx = D̂αf(ξ)

for ξ ∈ Rn. Using (9.8), this proves the claim.

(ii) We set h(x, ξ) := e−i〈x,ξ〉f(x) for (x, ξ) ∈ Rn×Rn. Then h( · , ξ) belongs
to L1 for every ξ ∈ Rn, and h(x, · ) belongs to C∞ for every x ∈ Rn. Further, we
have

Dα
ξ h(x, ξ) = (−1)|α|xαh(x, ξ) for (x, ξ) ∈ R2n , α ∈ Nn ,

and thus
|Dα

ξ h(x, ξ)| ≤ (1 + |x|2)|α|/2 |h(x, ξ)| = Λ|α|(x) |f(x)| . (9.9)

It then follows from the theorem on the differentiation of parametrized integrals
that f̂ belongs to Cm and that

Dαf̂(ξ) = (2π)−n/2

∫
Dα

ξ h(x, ξ) dx = (2π)−n/2(−1)|α|
∫

xαh(x, ξ) dx

= (−1)|α|X̂αf(ξ)

for ξ ∈ Rn and α ∈ Nn with |α| ≤ m. Finally (9.9) shows

∣∣Dαf̂(ξ)
∣∣ ≤ (2π)−n/2

∫
|Dα

ξ h(x, ξ)| dx ≤ (2π)−n/2 ‖Λ|m|f‖1 < ∞ for ξ ∈ Rn .

Thus f̂ belongs to BCm. �

9.7 Proposition The Fourier transformation maps S continuously and linearly
into itself.

Proof (i) Suppose f ∈ S and m ∈ N. Then∫
Λm(x) |f(x)| dx =

∫
(1 + |x|2)(m+n+1)/2 |f(x)| (1 + |x|2)−(n+1)/2 dx

≤ qm+n+1,0(f)
∫

(1 + |x|2)−(n+1)/2 dx <∞ .

We find using Proposition 9.6(ii) that f̂ belongs to BCm and thus to BC∞.

(ii) Suppose k, m ∈ N and α, β ∈ Nn with |α| ≤ m and |β| ≤ k. Also
suppose f ∈ S. Then it follows from Remark 9.2(h) and Theorem 9.3 that Λmf
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and Dβ(Xαf) belong to L1. Therefore Proposition 9.6 implies

ξβDαf̂(ξ) = (−1)|α|ξβX̂αf(ξ) = (−1)|α|(Dβ(Xαf)
)̂(ξ) for ξ ∈ Rn . (9.10)

Remark 9.2(g) shows there is a c > 0 such that

∣∣ξβDαf̂(ξ)
∣∣ ≤ (2π)−n/2

∫
|Dβ(Xαf)(x)| (1 + |x|2)(n+1)/2(1 + |x|2)−(n+1)/2 dx

≤ c qm+n+1,k(f)

for |α| ≤ m and |β| ≤ k. Hence there is a C > 0 such that

qk,m

(
f̂

)
≤ Cqm+n+1,k(f) . (9.11)

Therefore f̂ belongs to S. The continuity of the Fourier transformation now follows
easily from (9.11) and Remark 9.2(c). Thus we are done. �

9.8 Corollary For f ∈ S and α ∈ Nn, we have

D̂αf = Xαf̂ and X̂αf = (−1)|α|Dαf̂ .

Proof These are special cases of (9.10). �

Proposition 9.6 and Corollary 9.8 show that the Fourier transformation maps
differentiation into multiplication by functions, and conversely. This fact underlies
much of its great utility.

It is now easy to improve the statement of Remark 9.1(a) to one saying that
the image of L1 under F already lies in C0.

9.9 Proposition3 (Riemann–Lebesgue) F ∈ L(L1, C0).

Proof Proposition 9.7 and S ⊂ C0 imply F(S) ⊂ C0. From Theorem 9.3, we
know that S is a dense vector subspace of L1, and Remark 9.1(a) guarantees that
F maps the space L1 continuously into BC. The claim now follows because C0 is
a closed vector subspace of BC. �

9.10 Examples (a) For g := gn : Rn → R, x �→ e−|x|2/2, we have ĝ = g.

Proof (i) A property of the exponential implies

gn(x) = g1(x1) · · · · · g1(xn) for x = (x1, . . . , xn) ∈ Rn .

3Also known as the Riemann–Lebesgue lemma.
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For clarity, we denote by Fn the Fourier transformation on Rn. Then it follows from the
Fubini–Tonelli theorem that

Fn(gn)(ξ) = (2π)−n/2

∫
Rn

e−i 〈x,ξ〉e−|x|2/2 dx = (2π)−n/2

∫
Rn

n∏
j=1

e−ixjξj e−x2
j/2 dx

=
n∏

j=1

(2π)−1/2

∫
R

e−ixjξj e−x2
j/2 dxj =

n∏
j=1

F1

(
g1)(ξj) .

This shows that it suffices to treat the one-dimensional case.

(ii) Suppose therefore n = 1. For f := ĝ, we have from Example 8.7 that

f(0) = ĝ(0) =
1√
2π

∫ ∞

−∞
e−x2/2 dx = 1 .

Because xe−x2/2 = −∂(e−x2/2), that is, because Xg = −∂g = −iDg, Corollary 9.8 gives

∂f = ∂ĝ = iDĝ = −iX̂g = −D̂g = −Xĝ = −Xf .

Therefore f solves the linear initial value problem y′(t) = −t y(t) with y(0) = 1 on R; its
unique solution is g. �

(b) With the notation of (a) and (7.11), we have

ĝ(ε · )(ξ) = gε(ξ) for ξ ∈ Rn , ε > 0 .

Proof Because g(ε · ) = σ1/εg, this follows from (a) and Remark 9.1(d). �

(c) Suppose
ϕ(x) := (2π)−n/2e−|x|2 for x ∈ Rn ,

and let ε > 0. Then ϕ̂(ε · ) = kε, where k1 = k, is the Gaussian kernel.

Proof From ϕ = (2π)−n/2σ1/
√

2 g and Remark 9.1(c), it follows that

ϕ(ε · ) = σ1/εϕ = (2π)−n/2σ1/
√

2 ε g = (2π)−n/2g
(√

2 ε ·
)

.

Thus we get from (b) that

ϕ̂(ε · )(x) = (2π)−n/2g√2 ε(x) = ε−n(4π)−n/2e−|x|2/4ε2
= kε(x)

for x ∈ Rn. �

The Fourier integral theorem

To prepare for more in-depth study of the Fourier transformation on L1, we provide
the following results.
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9.11 Proposition Suppose f, g ∈ L1. Then f̂ g and f ĝ belong to L1, and∫
f̂ g dx =

∫
f ĝ dx .

Proof From Proposition 9.9, it follows easily that f̂g and f ĝ belong to L1. Let∗
f and ∗g be representatives of f and g, respectively. Then Lemma 7.2 shows that

h : R2n → C , (x, y) �→ e−i〈x,y〉 ∗
f(x) ∗g(y) (9.12)

is measurable. Because ∫ ∫
|h(x, y)| dx dy = ‖f‖1 ‖g‖1 , (9.13)

we can apply the Fubini–Tonelli theorem to h, and we find∫
∗̂
f(y) ∗g(y) dy =

∫
(2π)−n/2

∫
e−i〈x,y〉 ∗

f(x) dx ∗g(y) dy

=
∫

(2π)−n/2

∫
e−i〈x,y〉 ∗g(y) dy

∗
f(x) dx =

∫
∗̂g(x)

∗
f (x) dx .

Then claim now follows after noting f̂ =
∗̂
f and ĝ = ∗̂g. �

We now prove theorems about the inverse of the Fourier transformation for
various assumptions on the function and its transform.

9.12 Theorem For f ∈ L1, these statements are true:

(i) lim
ε→0

(2π)−n/2

∫
ei 〈 · ,ξ〉f̂(ξ)e−ε2 |ξ|2 dξ = f in L1 .

(ii) (Fourier integral theorem for L1) If f̂ belongs to L1, then f = F
(
f̂

)
, where

F is the Fourier cotransformation.

Proof (i) We use the notation of Example 9.10 and set

ϕε(ξ, y) := ei 〈ξ,y〉ϕ(εξ) = (2π)−n/2ei 〈y,ξ〉e−ε2 |ξ|2

for ξ, y ∈ Rn and ε > 0. We let ϕ̂ε( · , y) be the Fourier transform of ξ �→ ϕε(ξ, y)
for y ∈ Rn. From Example 9.10(c) and Remark 9.1(e), it follows that

ϕ̂ε(x, y) = kε(y − x) for x, y ∈ Rn .

Therefore Proposition 9.11 implies

(2π)−n/2

∫
f̂(ξ)ei 〈y,ξ〉e−ε2 |ξ|2 dξ =

∫
f̂(ξ)ϕε(ξ, y) dξ

=
∫

f(x)ϕ̂ε(x, y) dx = kε ∗ f(y)

for y ∈ Rn. The claim now follows from Theorem 7.11 and Example 7.12(a).
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(ii) If f̂ belongs to L1, the dominated convergence theorem shows that

lim
ε→0

∫
ei 〈y,ξ〉f̂(ξ)e−ε2 |ξ|2 dξ =

∫
ei 〈y,ξ〉f̂(ξ) dξ = (2π)n/2F

(
f̂

) ̂

(y)

for y ∈ Rn. Thus (i), Remark 9.1(b), and Theorem 2.18(i) finish the proof. �

9.13 Corollary

(i) (Fourier integral theorem for S) The Fourier transformation is a continuous
automorphism of S. Its inverse is the Fourier cotransformation.

(ii) The Fourier transformation maps L1 continuously and injectively into C0 and
has a dense image.

(iii) For f ∈ L1 ∩BUC, the equality4

f(x) = lim
ε→0

(2π)−n/2

∫
ei 〈x,ξ〉f̂(ξ)e−ε2 |ξ|2 dξ

holds uniformly with respect to x ∈ Rn.

(iv) For f ∈ L1 ∩BUC, suppose f̂ belongs to L1. Then

f(x) = (2π)−n/2

∫
ei〈x,ξ〉f̂(ξ) dξ for x ∈ Rn .

Proof (i) As in the case of normed vector spaces, we denote by L(S) the vector
space of all continuous endomorphisms of S; similarly, we let Laut(S) be the
automorphisms of S. Then it follows from Remark 9.2(i) and Proposition 9.7
that F and F belong to L(S). Because S ⊂ L1, Theorem 9.12(ii) therefore
shows that F is a left inverse of F in L(S). It then follows from

̂

û = û

̂

that
FFf = F(Ff)

̂

= F

̂

Ff = FFf = f for f ∈ S. Therefore F is also a right
inverse of F in L(S), which proves F ∈ Laut(S).

(ii) If f̂ = 0 for f ∈ L1, then f = 0 follows from Theorem 9.12(ii). Therefore
F is injective on L1, and from the Riemann–Lebesgue lemma, we know that F
belongs to L(L1, C0). Because (i) and S ⊂ L1, we have S = F(S) ⊂ F(L1). It
then follows from Remark 9.2(f) that F(L1) is dense in C0.

(iii) follows from the proof of Theorem 9.12(i) and Theorem 7.11.
(iv) is now clear. �

9.14 Remarks (a) For f ∈ S, we have ̂̂f = f

̂

.

(b) One can show that L1 does not have a closed image in C0 under the Fourier
transformation (see [Rud83]). Hence F ∈ L(L1, C0) is not surjective. �

4One can show that (iii) and (iv) remain true for f ∈ L1 ∩ C.
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Convolutions and the Fourier transform

We now study what happens to convolutions under the Fourier transformations.
So we first introduce another space of smooth functions; these will turn out to be
particularly significant in the next subsection.

Suppose ϕ ∈ C∞. If to every α ∈ Nn, there are constants cα > 0 and kα ∈ N
such that

|∂αϕ(x)| ≤ cα(1 + |x|2)kα for x ∈ Rn ,

then we say ϕ is slowly increasing. We denote by OM the set of all functions with
this property, the space of slowly increasing functions.

9.15 Remarks (a) In the sense of vector subspaces, we have the inclusions S ⊂
OM ⊂ C∞ and C[X1, . . . , Xn] ⊂ OM .

(b) (OM , +, · ) is a commutative algebra with unity.

(c) Suppose (ϕ, f) ∈ OM × S. Then ϕf belongs to S, and to every m ∈ N, there
are c = c(ϕ, m) > 0 and k′ = k′(ϕ, m) ∈ N such that qk,m(ϕf) ≤ c qk+k′,m(f)
for k ∈ N.

Proof Suppose m ∈ N. Then there are c = c(ϕ, m) > 0 and k′ = k′(ϕ, m) ∈ N such
that

|∂αϕ(x)| ≤ c(1 + |x|2)k′/2 for x ∈ Rn , α ∈ Nn , |α| ≤ m .

Now it follows from the Leibniz rule that

qk,m(ϕf) = max
|α|≤m

sup
x∈Rn

(1 + |x|2)k/2
∣∣∣∑
β≤α

(α

β

)
∂βϕ(x)∂α−βf(x)

∣∣∣
≤ c max

|α|≤m
sup

x∈Rn
(1 + |x|2)(k+k′)/2 |∂αf(x)| = c qk+k′,m(f)

for f ∈ S and k ∈ N. �

(d) Suppose ϕ ∈ OM . Then f �→ ϕf is a linear and continuous map of S into
itself.

Proof This follows from (c) and Remark 9.2(c). �

(e) For every s ∈ R, Λs belongs to OM . �

We can now prove another important property of the Fourier transformation.

9.16 Theorem (convolution theorem)

(i) (f ∗ g)̂ = (2π)n/2f̂ ĝ for (f, g) ∈ L1 × L1.

(ii) ϕ̂ ∗ f̂ = (2π)n/2ϕ̂f for (ϕ, f) ∈ S × L1.
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Proof (i) By (9.12) and (9.13), we see that the Fubini–Tonelli theorem can be
applied. It then follows from Corollary 7.9 that

(f ∗ g)̂(ξ) = (2π)−n/2

∫
e−i 〈x,ξ〉

∫
f(x− y)g(y) dy dx

= (2π)−n/2

∫
g(y)

∫
e−i〈x,ξ〉f(x− y) dx dy .

Because∫
e−i〈x,ξ〉f(x− y) dx = e−i 〈y,ξ〉

∫
e−i〈z,ξ〉f(z) dz = e−i 〈y,ξ〉(2π)n/2f̂(ξ) ,

we then get

(f ∗ g)̂(ξ) = (2π)−n/2

∫
(2π)n/2f̂(ξ)e−i 〈y,ξ〉g(y) dy = (2π)n/2f̂(ξ)ĝ(ξ) .

(ii) Suppose (ϕ, f) ∈ S × L1. By Theorem 9.3, we find a sequence (fj) in S
such that fj → f in L1. Propositions 9.4 and 9.7 imply that ϕ̂∗f̂j belongs to S. By
Remark 9.15(c), ϕfj also belongs to S, so it follows from (i) and Remark 9.14(a)
that (

ϕ̂ ∗ f̂j

)̂ = (2π)n/2 ̂̂ϕ ̂̂fj = (2π)n/2(ϕfj)
̂

for j ∈ N .

By Theorem 9.12(ii), we then get

ϕ̂ ∗ f̂j = (2π)n/2ϕ̂fj for j ∈ N . (9.14)

Because fj → f in L1, it follows from Remark 9.1(a) that f̂j → f̂ in BC. Therefore
Corollary 7.9 implies, because ϕ̂ ∈ S ⊂ L1, that the sequence (ϕ̂ ∗ f̂j) converges
in BC to ϕ̂ ∗ f̂ . Because ϕfj → ϕf clearly holds in L1, we deduce from Proposi-
tion 9.9 that the sequence (ϕ̂fj ) converges in BC to ϕ̂f . Then the claim follows
from Remark 9.1(a). �

As an application of the convolution theorem, we prove a lemma, which forms
the basis for the L2-theory of the Fourier transformation.

9.17 Lemma For f ∈ L1 ∩ L2, f̂ belongs to C0 ∩ L2, and ‖f‖2 = ‖f̂ ‖2.

Proof Suppose f ∈ L1 ∩L2. Because f̂ belongs to C0 by the Riemann–Lebesgue
lemma, it suffices to verify ‖f‖2 = ‖f̂ ‖2. So we set g := f ∗ f

̂

. By Theorem 7.3(ii)
and Exercise 7.2, we know g belongs to L1 ∩ C0, and

g(0) =
∫

f(y)f

̂

(0 − y) dy =
∫

ff = ‖f‖22 .
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From Corollary 9.13(iii), it follows that

‖f‖22 = g(0) = lim
ε→0

(2π)−n/2

∫
ĝ(ξ)e−ε2 |ξ|2 dξ . (9.15)

Now we note

f̂

̂

= (2π)−n/2

∫
e−i 〈x,ξ〉f(−x) dx = (2π)−n/2

∫
e−i〈−x,ξ〉f(−x) dx = f̂ ,

which follows from the Euclidean invariance of integrals. Then Theorem 9.16(i)
shows

ĝ =
(
f ∗ f

̂)̂ = (2π)n/2f̂ f̂ = (2π)n/2
∣∣f̂ ∣∣2 .

In particular ĝ, is not negative. Therefore (9.15) and monotone convergence the-
orem imply ‖f‖2 = ‖f̂ ‖2. �

Fourier multiplication operators

To illustrate the significance of the mapping properties of the Fourier transfor-
mation, we now consider linear differential operators with constant coefficients
and show that they are represented “in the Fourier domain” by multiplication
operators.

For m ∈ N, we denote by Cm[X1, . . . , Xn] the vector subspace C[X1, . . . , Xn]
consisting of all polynomials of degree ≤ m. For

p =
∑

|α|≤m

aαXα ∈ Cm[X1, . . . , Xn] ,

we let
p(D) :=

∑
|α|≤m

aαDα ,

which is a linear differential operator of order ≤ m with constant coefficients. Here
p is called the symbol of p(D). In the following, we set

Diffop0 :=
{

p(D) ; p ∈ C[X1, . . . , Xn]
}

,

and Diffop0
m is the subset of all constant-coefficient, linear differential operators

of order not higher than m.

9.18 Remarks (a) p(D) ∈ Diffop0 is a linear and continuous map of S into itself,
that is, p(D) ∈ L(S).
Proof This follows from Remarks 9.2(c) and (h). �

(b) The map
C[X1, . . . , Xn]→ L(S) , p �→ p(D) (9.16)

is linear and injective.
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Proof The linearity is obvious. Suppose p =
∑

|α|≤m aαXα ∈ C[X1, . . . , Xn] and that

p(D)f = 0 for all f ∈ S . We choose a ϕ ∈ D such that ϕ |Bn = 1. For β ∈ Nn, it follows
from the Leibniz rule that

Dα(ϕXβ) = ϕDαXβ +
∑
γ<α

(α

γ

)
Dα−γϕDγXβ .

Because ϕ(x) = 1 for |x| < 1, we then derive

Dα(ϕXβ)(0) = DαXβ(0) =

{
β! if α = β ,

0 otherwise

for α ∈ Nn. Because ϕXβ ∈ D ⊂ S , we thus find 0 = p(D)(ϕXβ) = β! aβ for β ∈ Nn

with |β| ≤ m; therefore p = 0. This proves the claimed injectivity. �

(c) p(D) is formally self-adjoint if and only if p has real coefficients.

Proof Letting

A(∂) := p(D) =
∑

|α|≤m

aα(−i)|α| ∂α

it follows from Proposition 7.24 that

A�(∂) =
∑

|α|≤m

(−1)|α|aα(−i)|α| ∂α =
∑

|α|≤m

(−i)|α|aα ∂α ,

which finishes the proof. �

By Remark 9.18(b), we can identify Diffop0 [or Diffop0
m] with the image of

C[X1, . . . , Xn] [or Cm[X1, . . . , Xn]] under the map (9.16). In other words, in the
sense of vector subspaces, we have

Diffop0
m ⊂ Diffop0 ⊂ L(S) for m ∈ N .

For a ∈ OM and f ∈ S, it follows from Corollary 9.13(i) and Remark 9.15(d)
that

(
f �→ af̂

)
∈ L(S). Then it follows again from Corollary 9.13(i) that

a(D) := F−1aF : S → S , f �→ F−1
(
af̂

)
is a well defined element of L(S), a Fourier multiplication operator with symbol a.
We set

Op :=
{
a(D) ∈ L(S) ; a ∈ OM

}
.
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9.19 Proposition Op is a commutative algebra of L(S) with unity, and the map

ev : (OM , +, · )→ Op , a �→ a(D)

is an algebra isomorphism.

Proof It is clear that OM := (OM , +, · ) is a commutative subalgebra with unity
of the algebra C(Rn). It is also easy to verify that ev maps the vector space OM

linearly in L(S).
For a, b ∈ OM and f ∈ S, we have

(ab)(D)f = F−1
(
abf̂

)
= F−1

(
aFF−1

(
bf̂

))
= F−1

(
ab̂(D)f

)
= a(D) ◦ b(D)f .

Therefore ev is a surjective algebra homomorphism.
Finally let a, b ∈ OM with a(D) = b(D). Let ξ ∈ Rn, and denote by ϕ ∈ D a

cutoff function for Bn(ξ, 1). Then f := F−1ϕ belongs to S with f̂(ξ) = 1, and it
follows from Corollary 9.13(i) that

a(ξ) =
(
af̂

)
(ξ) = F

(
a(D)f

)
(ξ) = F

(
b(D)f

)
(ξ) =

(
bf̂

)
(ξ) = b(ξ) .

Because this is true for every ξ ∈ Rn, we have a = b. Therefore ev is injective. �

9.20 Corollary

(i) For a, b ∈ OM , we have ab(D) = a(D)b(D) = b(D)a(D).
(ii) 1(D) = 1L(S).

(iii) Diffop0 is the image of C[X1, . . . , Xn] under ev. In particular, Diffop0 is a
commutative subalgebra of Op with unity.

Proof (i) and (ii) are special cases of Proposition 9.19.
(iii) For p ∈ C[X1, . . . , Xn] ⊂ OM with p =

∑
|α|≤m aαXα, we get from

Proposition 9.6(i) that

ev(p)f = F−1pFf = F−1
(
pf̂

)
=

∑
|α|≤m

aαF−1
(
Xαf̂

)
=

∑
|α|≤m

aαF−1(̂Dαf) =
∑

|α|≤m

aαDαf

for f ∈ S. Therefore ev(p) =
∑

|α|≤m aαDα, from which the claim follows. �

This corollary implies that the Fourier transformation can be used to solve
linear differential equations with constant coefficients by reducing them to simple
algebraic equations. This fact is part of the fundamental significance of the Fourier
transformation. The following examples give a first glimpse into these methods.
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9.21 Examples (a) Suppose the polynomial p ∈ C[X1, . . . , Xn] has no real zeros.
Then p(D) ∈ L(S) is an automorphism of S, and [p(D)]−1 = (1/p)(D).
Proof We see easily that 1/p belongs to OM . Now we deduce from Corollary 9.20 that

1L(S) = 1(D) = (p · 1/p)(D) = p(D)(1/p)(D) = (1/p)(D)p(D) .

Because a(D) ∈ L(S) for a ∈ OM , this proves the claim. �

(b) 1−Δ ∈ Laut(S), and (1−Δ)−1 = Λ−2(D).
Proof Because 1−Δ = Λ2(D), this follows from (a). �

Example 9.21(b) says that the partial differential equation

−Δu + u = f (9.17)

has a unique solution u ∈ S for every f ∈ S and that u depends continuously on
f in the topology of S. Also we can obtain the solution u ∈ S of (9.17) by first
“Fourier transforming” this equation. This, according to Proposition 9.6, gives
the equation (|ξ|2 +1)û(ξ) = Λ2(ξ)û(ξ) = f̂(ξ) for ξ ∈ Rn. This equation can then
be solved for û, giving û = Λ−2f̂ , and then “reverse Fourier transformed”, giving
u = F−1

(
Λ−2f̂

)
= Λ−2(D)f . This “method of Fourier transformation” plays a

prominent role in the theory of partial differential equations. Note that Λ−2(D)
or, more generally, (1/p)(D), is not a differential operator.

Plancherel’s theorem

To conclude this chapter, we show that the Fourier transformation can also be
defined on L2, and we explain a few consequences of this fact.

Suppose H is a Hilbert space. We say T : H → H is unitary if T is an
isometric isomorphism.

9.22 Remarks Suppose H is a (real or complex) Hilbert space and T : H → H is
linear.

(a) If T is unitary, then T belongs to Laut(H), and

(Tx |Ty) = (x | y) for x, y ∈ H .

Proof The first statement is clear. Because T is an isometry, we have

4Re(Tx |Ty) = ‖T (x + y)‖2 − ‖T (x− y)‖2 = ‖x + y‖2 − ‖x− y‖2 = 4Re(x | y) ,

and therefore Re(Tx |Ty) = Re(x | y) for x, y ∈ H . Replacing y in this identity by iy,
we get

Im(Tx | Ty) = Re(Tx |T iy) = Re(x | iy) = Im(x | y) ,

and thus (Tx |Ty) = (x | y) for x, y ∈ H . �
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(b) If H is finite-dimensional, then the following statements are equivalent:

(i) T is unitary.

(ii) (Tx |Ty) = (x | y) for x, y ∈ H .

(iii) T ∗T = idH .

Proof “(i)=⇒(ii)” is a consequence of (a).

“(ii)=⇒(iii)” Let {b1, . . . , bm} be an orthonormal basis of H . Then every y ∈ H can
be expanded as y =

∑m
j=1(y | bj)bj (see Exercise II.3.12 and Theorem VI.7.14). From

Exercise VII.1.5 and (ii), it follows that

T ∗Tx =

m∑
j=1

(T ∗Tx | bj)bj =

m∑
j=1

(Tx | Tbj)bj =

m∑
j=1

(x | bj)bj = x

for every x ∈ H .

“(iii)=⇒(i)” Because T ∗T = idH , we know T is injective and is therefore also sur-
jective by the rank formula of linear algebra. For x ∈ H , we also have

‖Tx‖2 = (Tx | Tx) = (T ∗Tx |x) = (x |x) = ‖x‖2 .

Therefore T is an isometry. �

9.23 Theorem (Plancherel) The Fourier transformation has a unique extension
from L1 ∩ L2 to a unitary operator on L2.

Proof Denote by X2 the vector subspace L1∩L2 of the Hilbert space L2. Then it
follows from Lemma 9.17 that F belongs to L(X2, L2) and is an isometry. Because
X2 contains the space S, Theorem 9.3 and VI.2.6 imply the existence of a unique
isometric extension F ∈ L(L2). As an isometry, F has a closed image, which by
Corollary 9.13(i) contains the space S. Therefore Proposition V.4.4 implies that
F is surjective and therefore unitary. �

As usual, we reuse the symbol F for the unique continuous extension of F
and likewise call it the Fourier transformation.5

The next proposition describes the Fourier transform Ff for an arbitrary
f ∈ L2.

9.24 Proposition For f ∈ L2, we have

Ff = lim
R→∞

F(χRBnf) = lim
R→∞

(2π)−n/2

∫
[ |x|≤R]

e−i 〈x,· 〉f(x) dx in L2 .

5On L2, the Fourier transformation will sometimes also be called the Fourier–Plancherel, or
Plancherel, transformation.
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Proof For R > 0, the element fR := χRBnf belongs to L1∩L2, and the dominated
convergence theorem implies∫

|f − fR|2 dx =
∫
|f |2 (1− χRBn)2 dx → 0 (R →∞) .

Therefore limR→∞ fR = f in L2. Then by Plancherel’s theorem, FfR converges
in L2 to Ff . Because

F(fR)(ξ) = (2π)−n/2

∫
[ |x|≤R ]

e−i〈x,ξ〉f(x) dx for ξ ∈ Rn ,

the claim follows. �

9.25 Example Suppose n = 1 and a > 0. Also let f := χ[−a,a] ∈ L1(R). Then

f̂(ξ) =
1√
2π

∫ a

−a

e−ixξ dx =
−1√
2π iξ

(
e−i ξa − eiξa

)
=

√
2
π

a
sin(aξ)

aξ

for ξ ∈ R. Because
∫
|f |2 dx = 2a, Plancherel’s theorem gives∫ ∞

−∞

[sin(ax)
ax

]2

dx =
π

a
for a > 0 .

Note that x �→ sin(x)/x does not belong to L1(R). �

Symmetric operators

Suppose E is a Banach space over K. By a linear operator A in E, we mean a
map A : dom(A) ⊂ E → E such that dom(A) is a vector subspace of E and such
that A is linear. For linear operators Aj : dom(Aj) ⊂ E → E and λ ∈ K×, we
define A0 + λA1 by

dom(A0 + λA1) := dom(A0) ∩ dom(A1) , (A0 + λA1)x := A0x + λA1x .

The product A0A1 is defined by

dom(A0A1) :=
{
x ∈ dom(A1) ; A1x ∈ dom(A0)

}
, (A0A1)x := A0(A1x) .

Finally, the operator defined by

dom
(
[A0, A1]

)
:= dom(A0A1 −A1A0) , [A0, A1]x := (A0A1 −A1A0)x

is called the commutator of A0 and A1. Obviously A0 + λA1, A0A1, and [A0, A1]
are linear operators in E, for which

A0 + λA1 = λA1 + A0 , λA0 = A0(λidE) , [A0, A1] = −[A1, A0] .
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Suppose now H is a Hilbert space, and A : dom(A) ⊂ H → H is a linear
operator on H . If

(Au | v) = (u |Av) for u, v ∈ dom(A) ,

we say A is symmetric.

9.26 Remarks (a) Suppose H is a complex Hilbert space and A is a linear operator
on H . Then these statements are equivalent:

(i) A is symmetric.
(ii) (Au |u) ∈ R for u ∈ dom(A).

Proof “(i)=⇒(ii)” Because A is symmetric, it follows that

(Au |u) = (u |Au) = (Au |u) for u ∈ dom(A) ,

and therefore Im(Au |u) = 0.

“(ii)=⇒(i)” For u, v ∈ dom(A), we have(
A(u + v)

∣∣ u + v
)

= (Au |u) + (Av |u) + (Au | v) + (Av | v) . (9.18)

Because of (ii), it follows that Im(Au | v) = − Im(Av |u), and therefore

Im(Au | v) = − Im(Av |u) = − Im (u |Av) = Im(u |Av) .

Replacing u in (9.18) by iu, we get

Re(Au | v) = Im
(
A(iu)

∣∣ v
)

= Im(iu |Av) = Re(u |Av) .

Therefore (Au | v) = (v |Au). �

(b) Suppose p ∈ C[X1, . . . , Xn] and P is the linear operator on L2 such that
dom(P ) = S and Pu := p(D)u for u ∈ S. Then these statements are equivalent:

(i) P is symmetric.
(ii) p(D) is formally self-adjoint.
(iii) p has real coefficients.
Proof “(i)=⇒(ii)” That P is symmetric implies(

p(D)u
∣∣ v

)
= (Pu | v) = (u |Pv) =

(
u

∣∣ p(D)v
)

for u, v ∈ D ,

which in turn implies (ii) by the uniqueness of formally adjoint operators.

“(ii)=⇒(iii)” Remark 9.18(c).

“(iii)=⇒(i)” Suppose p =
∑

|α|≤m aαXα. Then Corollary 9.20(iii) and Plancherel’s
theorem imply

(Pu | u) =
(
p(D)u

∣∣ u
)

= (pû | û) =
∑

|α|≤m

aα

∫
ξα |û(ξ)|2 dξ for u ∈ S .

Therefore (Pu |u) is real, and the claim follows from (a). �

(c) With S as their domain, the Laplace, wave, and Schrödinger operators are
symmetric in L2.
Proof This follows from (b) and Examples 7.25(a) and (e). �
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The Heisenberg uncertainty relation

As another application of Plancherel’s theorem, we close this section by discussing
several important properties of the position and momentum operators of quantum
mechanics. So we fix j ∈ {1, . . . , n} and set

dom(Aj) := { u ∈ L2 ; Xj û ∈ L2 } , dom(Bj) := { u ∈ L2 ; Xju ∈ L2 } .

Then we define linear operators in L2, the momentum operator Aj and the position
operator Bj (for the j-th coordinate), by

Aju := F−1(Xj û) and Bjv := Xjv for u ∈ dom(Aj) , v ∈ dom(Bj) .

9.27 Remarks (a) We have S ⊂ dom(Aj), and

Aju = Xj(D)u = Dju = −i∂ju for u ∈ S .

Proof This follows from Proposition 9.7 and Corollary 9.8. �

(b) We have F
(
dom(Aj)

)
= dom(Bj) and a commutative diagram:

dom(Aj) L2

dom(Bj) L2

F F

Aj

Bj

�

�
� �

In particular,

Aju = F−1BjFu , u ∈ dom(Aj) and Bju = FAjF−1u , u ∈ dom(Bj) .

Proof These are consequences of Plancherel’s theorem. �

(c) The position and momentum operators of quantum mechanics are symmetric.
Proof Let u ∈ dom(Aj). Then (b) and Plancherel’s theorem imply

(Aju |u) = (F−1BjFu |u) = (Bj û | û) =

∫
ξj |û(ξ)|2 dξ ,

Now the claim follows from Remark 9.26(a). �

(d) For u ∈ dom
(
[Aj , Bj ]

)
, we have

(
[Aj , Bj ]u

∣∣ u
)

= 2i Im(AjBju |u).

Proof By (b), (c), and Plancherel’s theorem, we get for u ∈ dom
(
[Aj , Bj ]

)
that(

[Aj , Bj ]u
∣∣ u

)
= (AjBju−BjAju |u)

= (F−1BjFBju−BjF−1BjFu |u)

= (FBju |BjFu)− (BjFu | FBju)

= 2i Im(FBju |BjFu) = 2i Im(F−1BjFBju |u)

= 2i Im(AjBju |u) . �
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(e) The operator i [Aj , Bj] is symmetric in L2.
Proof This follows from (d). �

(f) We have S ⊂ dom
(
[Aj , Bj ]

)
, and [Aj , Bj ]u = −iu on u ∈ S.

Proof The first statement follows easily from Proposition 9.7 and Remark 9.2(h). Also
(a) shows that

[Aj , Bj ]u = Dj(Xju)−XjDju = (DjXj)u = −iu

for u ∈ S . �

(g) (Heisenberg uncertainty relation for S) For j ∈ {1, . . . , n}, we have

‖u‖22 ≤ 2 ‖∂ju‖2 ‖Xju‖2 for u ∈ S .

Proof Let u ∈ S . By (d) and (f), we have

−i ‖u‖22 = −i(u |u) =
(
[Aj , Bj ]u

∣∣ u
)

= 2i Im(AjBju |u) .

The Cauchy–Schwarz inequality therefore gives

‖u‖22 = 2
∣∣Im(AjBju |u)

∣∣ ≤ 2
∣∣(AjBju |u)

∣∣ = 2
∣∣(Bju |Aju)

∣∣ ≤ 2 ‖Aju‖2 ‖Bju‖2 ,

and thus the claim follows because of (a). �

We conclude this section by extending the validity of the Heisenberg uncer-
tainty relation on S to dom(Aj) ∩ dom(Bj). We first need a lemma.

9.28 Lemma For every u ∈ dom(Aj)∩dom(Bj), there is a sequence (um) in S such
that

lim
m→∞

(um, Ajum, Bjum) = (u, Aju, Bju) in L3
2 .

Proof (i) Suppose u ∈ dom(Aj)∩dom(Bj), and let { kε ; ε > 0 } be the Gaussian
approximation kernel. We set uε := kε ∗ u. By Exercise 8(iv), uε belongs to S,
and Theorem 7.11 shows limε→0 uε = u in L2.

(ii) Because k

̂

= k, it follows from Example 9.10(c) that

k̂ε(ξ) :=

̂

k̂ε(ξ) = F−1kε(ξ) = ϕ(εξ) = (2π)−n/2e−ε2 |ξ|2 for ξ ∈ Rn .

According to Theorem 9.3, we can find a sequence (vm) in S such that limm vm = u
in L2. The convolution theorem therefore shows

(kε ∗ vm)̂(ξ) = (2π)n/2 k̂ε(ξ)v̂m(ξ) = e−ε2 |ξ|2 v̂m(ξ) for ξ ∈ Rn .

The limit m →∞ then gives ûε = e−ε2 | · |2 û (see Corollary 7.9 and Theorem 9.23).
Because

‖Aju−Aju
ε‖22 = ‖Xjû−Xj ûε‖22 =

∫
|ξj û(ξ)|2

(
1− e−ε2 |ξ|2)2

dξ ,

it follows from the dominated convergence theorem that limε→0 Aju
ε = Aju in L2.
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(iii) Let ∗u be a representative of u. We set

dε(x, z) := xj

( ∗u(x) − ∗u(x − εz)
)

, gε(x, z) := dε(x, z)k(z)

for ε > 0 and (x, z) ∈ Rn×Rn. Then it follows, as in (7.7) (or from the Minkowski
inequality for integrals), that

‖Xju−Xju
ε‖2 ≤

(∫ [∫
|gε(x, z)| dz

]2

dx
)1/2

≤
∫
‖dε( · , z)‖2 k(z) dz , (9.19)

where for the last inequality we used gε =
(
dε

√
k

)√
k and

∫
k dx = 1 together

with the Cauchy–Schwarz inequality. Further noting

dε( · , z) = Xj
∗u− τεz(Xj

∗u)− εzjτεz
∗u ,

it follows from the strong continuity of the translation group on L2 and the trans-
lation invariance of integrals that

lim
ε→0

‖dε( · , z)‖2 k(z) = 0 for z ∈ Rn ,

and

‖dε( · , z)‖2 k(z) ≤ 2 max
{
‖Xju‖2, ‖u‖2

}
(1 + |zj |)k(z) for ε ∈ (0, 2] , z ∈ Rn .

Because z �→ (1 + |zj |)k(z) belongs to L1, the claim is implied by (9.19) and the
dominated convergence theorem. �

9.29 Corollary (Heisenberg uncertainty relation) For 1 ≤ j ≤ n, we have

‖u‖22 ≤ 2 ‖Aju‖2 ‖Bju‖2 for u ∈ dom(Aj) ∩ dom(Bj) .

Proof This follows from Remarks 9.27(a) and (g) and Lemma 9.28. �

From Remark 9.27(a) and Lemma 9.28 it easily follows, as in the proof of
Theorem 7.27, that the distributional derivative ∂ju belongs to L2 for u ∈ dom(Aj)
and is therefore a weak L2-derivative. Also Aju = −i∂ju. Consequently, we can
also write the Heisenberg uncertainty relation for u ∈ dom(Aj) ∩ dom(Bj) in the
form (1

2

∫
|u|2 dx

)2

≤
∫
|∂ju|2 dx

∫
|Xju|2 dx

if we interpret ∂ju in the weak sense. The significance of this broadened in-
terpretation of the operators Aj and Bj is clarified in the theory of unbounded
self-adjoint operators on Hilbert spaces, as developed in functional analysis. Self-
adjoint operators built from the position and momentum operators, in particular
the Schrödinger operators, are used in the mathematical construction of quantum



230 X Integration theory

mechanics (for example [RS72]). For an interpretation of the Heisenberg uncer-
tainty relation, we refer you to the physics literature.

Exercises

1 Let a > 0. Determine the Fourier transform of

(i) sin(ax)/x , (ii) 1/(a2 + x2) , (iii) e−a |x| ,

(iv) (1− |x|/a)χ[−a,a](x) , (v)
(
sin(ax)

/
x
)2

.

(Hint: See Section VIII.6.)

2 Let f(x) := (sin(x)/x)2 and g(x) := e2ixf(x) for x ∈ R×. Then show f ∗ g = 0.
(Hint: Apply Exercise 1 and Theorem 9.16.)

3 Show that if f ∈ L1 satisfies either f ∗ f = f or f ∗ f = 0, then f = 0.

4 Let {ϕε ; ε > 0 } be an approximation to the identity, and let (εj) be a null sequence.
Show that (F(ϕεj )) converges in D′(Rn) to (2π)−n/21.

5 For a, f ∈ S , show a(D)f = â ∗ f .

6 For s ≥ 0, define Hs := {u ∈ L2 ; Λsû ∈ L2 } and (u | v)Hs := (Λsû | v̂)L2 for
u, v ∈ Hs.
Show

(i) Hs :=
(
Hs ; ( · | · )Hs

)
is a Hilbert space with H0 = L2, and

S d
↪→ Hs d

↪→ Ht d
↪→ L2 for s > t > 0 ;

(ii) Hm = W m
2 for m ∈ N.

7 For s > n/2, show

(i) F(Hs) ⊂ L1 and

(ii) H2 d
↪→ C0 (Sobolev embedding theorem).

(Hints: (i) Apply the Cauchy–Schwarz inequality to Λs |û|Λ−s.
(ii) The Riemann–Lebesgue theorem.)

8 Suppose σ ≥ 0, and let { kε ; ε > 0 } be the Gaussian approximating kernel. Prove:

(i) T (t) := [f �→ k√
t ∗ f ] belongs to L(Hσ) for every t > 0.

(ii) T (t + s) = T (t)T (s), s, t > 0.

(iii) limt→0 T (t)f = f for f ∈ Hσ.

(iv) T (t)(L2) ⊂ S , t > 0.

(v) For f ∈ L2 ∩ C, let u(t, x) := T (t)f(x) for (t, x) ∈ [0,∞)× Rn. Show that u solves
the initial value problem of the heat equation in Rn, that is,

∂tu−Δu = 0 in (0,∞)× Rn and u(0, · ) = f on Rn , (9.20)

in the sense that u ∈ C∞(
(0,∞) × Rn

)
∩ C(R+ × Rn) and that u satisfies (9.20)

pointwise.
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Remark Let T (0) := idHσ . Then
{

T (t) ; t ≥ 0
}

is called the Gauss–Weierstrass
semigroup (of Hσ).
(Hint: (v) To get an initial value problem for an ordinary differential equation, apply to
(9.20) the Fourier transformation with respect to x ∈ Rn.)

9 Let n = 1 and py(x) :=
√

2/π y/(x2 +y2) for (x, y) ∈ H2. Also let σ ≥ 0. Prove these
statements:

(i) P (y) := [f �→ py ∗ f ] belongs to L(Hσ) for every t > 0.

(ii) P (y + z) = P (y)P (z) for y, z > 0.

(iii) limy→0 P (y)f = f for f ∈ Hσ.

(iv) P (y)(L2) ⊂ S .

(v) For f ∈ L2 ∩ C, let

u(x, y) :=
(
P (y)f

)
(x) for (x, y) ∈ H2 .

Then u belongs to C2(H2)∩C(H2) and solves the Dirichlet boundary value problem
for the half plane given by

Δu = 0 in H2 and u( · , 0) = f on R .

Remark With P (0) := idHσ , we call
{

P (y) ; y ≥ 0
}

the Poisson semigroup (of Hσ).
(Hints: (ii) Exercise 1. (v) Example 9.21(b).)

10 Suppose X is open in Rn and (Xk) is an ascending sequence of relatively compact
open subsets of X with X =

⋃
k Xk (see Remarks 1.16(d) and (e)). Also let

qk(f) := max
|α|≤k

‖∂αf‖∞,Xk
for f ∈ C∞(X) and k ∈ N ,

and

d(f, g) :=

∞∑
k=0

2−k qk(f − g)

1 + qk(f − g)
for f, g ∈ C∞(X) .

Show that (C∞(X), d) is a complete metric space. (Hint: To prove the completeness,
apply the diagonal sequence principle (Remark III.3.11(a)).)

11 Show that D d
↪→ C∞ and S d

↪→ C∞.
(Hint: Consider ϕ(ε · ) with a cutoff function ϕ for Bn).

12 For f ∈ D, let

F (z) :=

∫
e−i (z | x)Cn f(x) dx for z ∈ C .

Show then that F belongs to Cω(C, C).
(Hint: With Remark V.3.4(c) in mind, apply Corollary 3.19.)

13 Show that f̂ does not belong to D for f ∈ D\{0}. (Hint: Recall Exercise 12 and the

identity theorem for analytic functions (Theorem V.3.13).)



Chapter XI

Manifolds and differential forms

In Chapter VIII, we learned about Pfaff forms and saw that differential forms
of first degree are closely connected with the theory of line integrals. In this
chapter, we will treat the higher-dimensional analogue of line integrals, in which
differential forms of higher degree are integrated over certain submanifolds of Rn.
So this chapter will deal with the theory of differential forms.

In Section 1, we generalize what we know about manifolds. In particular,
we explore the concept of a submanifold of a given manifold, and we introduce
manifolds with boundary.

In Section 2, we compile the needed results from multilinear algebra. They
form the algebraic foundation for the theory of differential forms: In Section 3, we
treat differential forms on open subsets of Rn. In Section 4, we make this theory
global and then discuss the orientability of manifolds.

Because we always consider submanifolds of Euclidean spaces, we can natu-
rally endow them with a Riemannian metric. In Section 5, we look more closely at
this additional structure and explain several basic facts of Riemannian geometry.
To accommodate the needs of physics, we also treat semi-Riemannian metrics; in
the examples, we will always confine ourselves to Minkowski space.

Section 6, which concludes this chapter, makes the connection between the
theory of differential forms and classical vector analysis. In particular, we study
the operators gradient, divergence, and curl, and we derive their basic properties.
We give their local coordinate representations and calculate these explicitly in
several important examples.

In Section 2, which otherwise concerns linear algebra, we also introduce the
Hodge star operator, which we will need in later sections to define the codifferential.
Then we will be able unify the various operators of vector analysis into the language
of the Hodge calculus. This material can be skipped on first reading: For this
reason, we wait for the end of each section to discuss any material that uses
Hodge theory.
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In the entire book, we restrict to submanifolds of Rn. However, apart from
the definition of the tangent space, we structure all proofs so that they remain
true or can be easily modified for abstract manifolds. Thus Chapters XI and XII
give a first introduction to differential topology and differential geometry; though
they sometimes lack the full elegance of the general theory, the many examples we
consider do form a solid foundation for further study of the subject.



1 Submanifolds

In this section,
• M is an m-dimensional manifold and N is an n-dimensional manifold.

More precisely, this means M is an m-dimensional C∞ submanifold of Rm for
some m ≥ m; a like statement holds for N .

For simplicity and to emphasize the essential, we restrict to the study of
smooth maps. In particular, we always understand a diffeomorphism to be a C∞

diffeomorphism, and we set

Diff(M, N) := Diff∞(M, N) .

However, whenever anything is proved in the following, it will also hold for Ck man-
ifolds and Ck maps, where, if necessary, k ∈ N× must be restricted appropriately.
We will usually put these adjustments in remarks1 and leave their verification to
you.

Definitions and elementary properties

Let 0 ≤ � ≤ m. A subset L of M is called an (�-dimensional) submanifold of M
if for every p ∈ L there is a chart (ϕ, U) of M around p such that2

ϕ(U ∩ L) = ϕ(U) ∩
(
R	 × {0}

)
.

Every such chart is a submanifold chart of M for L. The number m− � is called
the codimension of L in M .

Clearly this definition directly generalizes of the idea of a submanifold of Rm.
In the context of submanifolds, immersions play an important role. They

will be introduced in analogy to the definition given Section VII.9.
Let k ∈ N× ∪ {∞}. Then f ∈ Ck(M, N) is a Ck immersion if Tpf : TpM →

Tf(p)N is injective for every p ∈ M . We call a Ck immersion f a Ck embedding

1In small print sections entitled “regularity”.
2To avoid bothersome special cases, we interpret the empty set as a submanifold of dimension �

for every � ∈ {0, . . . , m} (see Section VII.9).
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of M in N if f is a homeomorphism from M to f(M) (where f(M) is natu-
rally provide with the relative topology of N). Instead of C∞ immersion [or C∞

embedding], we say for short immersion [or embedding].

1.1 Remarks (a) If L is an �-dimensional submanifold of M and M is submanifold
of N , then L is an �-dimensional submanifold of N .
Proof Let p ∈ L, and let (ϕ, U) be a submanifold chart of M for L around p. Also let
(ψ, V ) be a submanifold chart of N for M around p. We can also assume U = V ∩M .
Letting X := ϕ(U) ⊂ Rm and Y := pr ◦ψ(V ) ⊂ Rm, where pr : Rm × Rn−m → Rm

denotes the canonical projection, we have

χ := pr ◦ψ ◦ ϕ−1 ∈ Diff(X, Y ) .

Now we define Φ ∈ Diff(Y × Rn−m, X × Rn−m) by

Φ(y, z) :=
(
χ−1(y), z

)
for (y, z) ∈ Y × Rn−m ,

and set Ψ := Φ ◦ ψ. Then Ψ(V ) is open in Rn, and Ψ ∈ Diff(V, Ψ(V )) with

Ψ(V ∩ L) =
(
ϕ(U ∩ L)× {0}

)
∩

(
R� × {0}

)
= Ψ(V ) ∩

(
R� × {0}

)
⊂ Rn ,

as one can easily check. Therefore (Ψ, V ) is a submanifold chart of N for L around p. �

(b) Because the Rm = Rm × {0} ⊂ Rn is a submanifold of Rn for n ≥ m, it
follows from (a) that M is an m-dimensional submanifold of Rn for every n ≥ m.
This shows that the “surrounding space” Rm of M does not play an important
role so long as we are only interested in the “inside properties” of M , that is, in
properties that are described only with the help of charts and tangent spaces of
M and which do not depend on how M is “situated” in the surrounding space.3

However, how M is situated in Rm does matter, for example, when defining the
normal bundle T⊥M .

(c) Let L be a submanifold of M . For the submanifold chart (ϕ, U) of M for L,
we set

(ϕL, UL) := (ϕ |U ∩ L, U ∩ L) .

Then (ϕL, UL) is a chart for L, where ϕ(UL) is interpreted as an open subset of
R	, that is, R	 × {0} ⊂ Rm is identified with R	.

If A :=
{

(ϕλ, Uλ) ; λ ∈ Λ
}

is a set of submanifold charts of M for L such
that L is covered by the coordinate patches (charted territories) {Uλ ; λ ∈ Λ },
then

{
(ϕλ,L, Uλ,L) ; λ ∈ Λ

}
is an atlas for L, the atlas induced by A.

Proof We leave the simple verifications to you. �

(d) Suppose L and K are respectively �- and k-dimensional submanifolds of M
and N . Then L×K is an (�+k)-dimensional submanifold of the manifold M ×N ,
which is (m+n)-dimensional.

3In Section 4, it will be clear that tangent spaces also have an “inside” characterization.
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Proof This follows simply from the definitions. We again leave the proof to you.4 �

(e) Let L be a submanifold of M . Then

i : L →M , p �→ p

is an embedding, the natural embedding of L in M ; we write it as i : L ↪→M . We
identify TpL for p ∈ L with its image in TpM under the injection Tpi, that is, we
regard TpL as a vector subspace of TpM : TpL ⊂ TpM .

Proof Let (ϕ, U) be a submanifold chart of M for L. Then i has the local representation

ϕ ◦ i ◦ ϕ−1
L : ϕL(UL)→ ϕ(U) , x �→ (x, 0) .

Now the claim is clear. �

(f) If f : M → N is an immersion, then m ≤ n.

(g) Let L be a submanifold of M of dimension �, and suppose f belongs to
Diff(M, N). Then f(L) is an �-dimensional submanifold of N .

Proof We leave the simple check to you. �

(h) Every open subset of M is an m-dimensional submanifold of M .

(i) If (ϕ, U) is a chart of M , then ϕ : U → Rm is an embedding, and ϕ is a
diffeomorphism from U to ϕ(U).

(j) Suppose L and K are respectively submanifolds of M and N , and iL : L ↪→M
and iK : K ↪→ N are their respective natural embeddings. Let k ∈ N ∪ {∞} and
f ∈ Ck(M, N) with f(L) ⊂ K. Then the restriction of f to L satisfies

f |L := f ◦ iL ∈ Ck(L, K) ,

and the diagrams

L M

K N

f |L f

iL

iK

��
�

��
�

� �

TpL TpM

Tf(p)K Tf(p)N

Tp(f |L) Tpf

TpiL

Tf(p)iK

�

�
� �

commute. Identifying TpL with its image in TpM under TpiL, that is, regarding
TpL in the canonical way as a vector subspace of TpM , we have in particular
Tp(f |L) = (Tpf) |TpL.

Proof This follows from obvious changes to the proof of Example VII.10.10(b), which
is generalized by this statement. �

4See Exercise VII.9.4.
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(k) (regularity) Analogous definitions and statements hold when M is a Ck manifold
for k ∈ N×. In this case L is also a Ck manifold, and the natural inclusion i : L ↪→ M
belongs to the class Ck. �

The next theorem, a generalization of Proposition VII.9.10, shows that we
can generate submanifolds using embeddings.

1.2 Theorem

(i) Suppose f : M → N is an immersion. Then f is locally an embedding,
that is, for every p in M , there is a neighborhood U such that f |U is an
embedding.

(ii) If f : M → N is an embedding, then f(M) is an m-dimensional submanifold
of N , and f is a diffeomorphism from M to f(M).

Proof (i) Let p ∈ M , and suppose (ϕ, U0) and (ψ, V ) are respectively charts of
M around p and of N around f(p) such that f(U0) ⊂ V . Then

fϕ,ψ := ψ ◦ f ◦ ϕ−1 : ϕ(U0) → ψ(V )

is an immersion by Remark 1.1(i). By the immersion theorem (Theorem VII.9.7),
there is an open neighborhood X of ϕ(p) in ϕ(U0) such that fϕ,ψ(X) is an
m-dimensional submanifold of Rn. Then ψ ∈ Diff(V, ψ(V )) and Remark 1.1(g)
imply that f(U), with U := ϕ−1(X), is an m-dimensional submanifold of N .

By appropriately shrinking X , Remark VII.9.9(d) shows that fϕ,ψ is a diffeo-
morphism from X = ϕ(U) to fϕ,ψ(X) = ψ◦f(U). Therefore f is a diffeomorphism
from U to f(U), where f(U) is provided with the topology induced by N . There-
fore f |U is an embedding.

(ii) Suppose f is an embedding. For q ∈ f(M), suppose (ψ, V ) is a chart of N
around q and (ϕ, U) is a chart of M around p := f−1(q) with f(U) ⊂ V . Because
f is topological from M to f(M), we know f(U) is open in f(M). Therefore we
can assume that f(U) = f(M) ∩ V . Now it follows from the proof of (i) that
f(M) ∩ V is an m-dimensional submanifold of N . Because this is true for every
q ∈ f(M), we conclude f(M) is an m-dimensional submanifold of N .

By (i), f is a local diffeomorphism from M to f(M). Because f is topological,
it follows that f ∈ Diff(M, f(M)). �

From Remark VII.9.9(c), we know that the image of an injective immersion
is generally not a submanifold. The following theorem gives a simple sufficient
condition which tells whether an injective immersion is an embedding.

1.3 Theorem Suppose M is compact and f : M → N is an injective immer-
sion. Then f is an embedding, f(M) is an m-dimensional submanifold of N , and
f ∈ Diff(M, f(M)).
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Proof Because M compact and f(M) is a metric space, the bijective continuous
map f : M → f(M) is topological (see Exercise III.3.3). Now the claim follows
from Theorem 1.2. �

1.4 Remark (regularity) Let k ∈ N×. Then corresponding versions of Theorems 1.2
and 1.3 remain true when M and N are Ck manifolds and f belongs to the class Ck. �

1.5 Examples (a) Suppose 1 ≤ � < m,
and let (x, y) denote a general point of
R	+1 × Rm−	 = Rm+1. Then

Ly :=
√

1− |y|2 S	 × {y}

is an �-dimensional submanifold of the
m-sphere Sm for every y ∈ Bm−	. It is
diffeomorphic to S	. The tangent space at the point p ∈ Ly satisfies

TpLy = TpS
m ∩

(
p, R	+1 × {0}

)
⊂ TpRm+1 . (1.1)

Proof For y ∈ Bm−�, the map

Fy : R�+1 → Rm+1 , x �→
(√

1− |y|2 x, y
)

(1.2)

is a smooth immersion. Because S� and Sm are respectively submanifolds of R�+1 and
Rm+1 and because Fy(S�) ⊂ Sm, Remark 1.1(j) with i� : S� ↪→ R�+1 gives

fy := Fy |S� = Fy ◦ i� ∈ C∞(S�, Sm) . (1.3)

Clearly fy is injective, and the chain rule of Remark VII.10.9(b) implies

Tpfy = TpFy ◦ Tpi� for p ∈ S� .

Therefore Tpfy is injective (see Exercise I.3.3), that is, fy is an immersion. Because S�

is compact, Theorem 1.3 shows that Ly = fy(S�) is an �-dimensional submanifold of Sm

and is diffeomorphic to S�. Then (1.1) is a simple consequence of (1.2) and (1.3). �

(b) (torus-like hypersurfaces of rotation) Let

γ : S1 → (0,∞)× R , t �→
(
ρ(t), σ(t)

)
be an injective immersion and therefore by Theorem 1.3 an embedding. Also let
i : Sm ↪→ Rm+1, and define

f : Sm × S1 → Rm+1 × R , (q, t) �→
(
ρ(t)i(q), σ(t)

)
.

Then f is an embedding, and

T m+1 := f(Sm × S1)

is a hypersurface in Rm+2, which is diffeomorphic to Sm × S1.



240 XI Manifolds and differential forms

In the case m = 0, the set T 1 con-
sists of two copies of the closed, smooth
curve γ(S1), which has no points of self-
intersection5 and reflects symmetrically
about the y-axis.

For m = 1, T 2 is the surface of rotation in R3 generated by rotating the
meridional curve

Γ :=
{ (

ρ(t), 0, σ(t)
)

; t ∈ S1
}

around the z-axis (see Example VII.9.11(e)).
T 2 “is a 2-torus”, that is, it is diffeomorphic
to T2 := S1 × S1. In particular, T2

a,r, the
2-torus from Example VII.9.11(f), is diffeo-
morphic to T2.

In the general case, we call T m+1 a torus-
like hypersurface of rotation.
Proof By Example VII.9.5(b), Sm and S1 are m- and 1-dimensional manifolds, respec-
tively. Therefore Sm × S1 is an (m+1)-dimensional manifold.

Suppose (ϕ×ψ, U ×V ) is a product chart6 of Sm×S1. Because γ is an immersion,
its local representation with respect to ψ (and the trivial chart idR2 of R2), that is,
γψ = (r, s) with r := ρ ◦ ψ−1 and s := σ ◦ ψ−1, satisfies(

ṙ(y), ṡ(y)
)
	= (0, 0) for y ∈ ψ(V ) . (1.4)

Further, the local representation of f with respect to ϕ× ψ has the form

fϕ×ψ(x, y) =
(
r(y)g(x), s(y)

)
for (x, y) ∈ ϕ(U)× ψ(V ) ,

where g := i◦ϕ−1 is the parametrization of Sm belonging to ϕ. From this is follows that

[
∂fϕ×ψ(x, y)

]
= · · · · · · · · · · · · · · · · · · · · · · ·

·······

⎡⎣ r(y)∂g(x) ṙ(y)g(x)

0 ṡ(y)

⎤⎦∈ R(m+2)×(m+1) .

Because r(y) > 0 and because ∂g(x) is injective, the first m columns of this matrix are
linearly independent. If ṡ(y) 	= 0, then the matrix has rank m + 1. If ṡ(y) = 0, then we
have ṙ(y) 	= 0 by (1.4). From |g(x)|2 = (g(x) | g(x)) = 1 for x ∈ ϕ(U), it follows that
(g(x) | ∂jg(x)) = 0 for 1 ≤ j ≤ m and x ∈ ϕ(U). This shows that the matrix has rank
m + 1 in this case as well. Therefore f is an immersion.

We now consider the equation f(q, t) = (y, s) for some (y, s) ∈ T m+1. From the
relations ρ(t)i(q) = y and |i(q)| = 1, it follows that ρ(t) = |y|. Because γ is injective,
there is exactly one t ∈ S1 such that (ρ(t), σ(t)) = (|y|, s). Likewise, there is exactly one
q ∈ Sm with i(q) = y/|y|. Therefore the equation (ρ(t)i(q), σ(t)) = (y, s), with (y, s) as
above, has a unique solution (since y = |y| (y/|y|)). Hence f is an injective immersion

5Here and in the following, “curve” means a one-dimensional manifold (see Remark 1.19(a)).
6That is, (ϕ, U) and (ψ, V ) are respectively charts of Sm and S1, and ϕ × ψ(q, t) :=(

ϕ(q), ψ(t)
)
.
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of Sm × S1 in Rm+2. Now all the claims follow from Theorem 1.3 because Sm × S1 is
compact. �

(c) Suppose L and M are submanifolds of N with L ⊂ M . Then L is a submanifold
of M .
Proof Because idN ∈ Diff(N, N), we know i := idN |L is an immersion of L in N with
i(L) ⊂ M . Therefore it follows from Remark 1.1(j) that i is a bijective immersion of
L in M . Because L and M carry the topology induced by N and because M induces
the same topology on L, we know i, as a restriction of a diffeomorphism, is topological.
Therefore i is an embedding, and the claim follows from Theorem 1.2. �

(d) Suppose the assumptions of (b) are satisfied with
m = 1. Then for every (q0, t0) ∈ S1 × S1, the images
of

f( · , t0) : S1 → R3

and
f(q0, · ) : S1 → R3

are one-dimensional submanifolds of T 2 and are dif-
feomorphic to S1 (and therefore “circles”).

Proof Because f( · , t0) and f(q0, · ) as restrictions of embeddings are themselves em-
beddings, f(S1, t0) and f(q0, S

1) are submanifolds of R3 diffeomorphic to S1, and they
lie in T 2. The claim now follows from (c). �

Submersions

Suppose f ∈ C1(M, N). Then we say p ∈ M is a regular point of f if Tpf is
surjective. Otherwise p is a singular point. A point q ∈ N is said to be a regular
value of f if every p ∈ f−1(q) is a regular point. If every point of M is regular, we
say f is a regular map or a submersion.

These definitions generalize concepts introduced in Section VII.8.

1.6 Remarks (a) If p is a regular point of f , then m ≥ n. Every q ∈ N \f(M) is
a regular value of f .

(b) The point p ∈ M is a regular point of f = (f1, . . . , fn) ∈ C1(M, Rn) if and
only if the cotangent vectors7

df j(p) := dpf
j = pr2 ◦Tpf

j ∈ T ∗
p M for 1 ≤ j ≤ n

are linearly independent.

(c) A singular point of f ∈ C1(M, R) is also called a critical point. Therefore
p ∈M is a critical point of f if and only if df(p) = 0.8 �

7See Section VIII.3.
8See Remark VII.3.14(a).
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The following theorem generalizes the regular value theorem to the case of
maps between manifolds.

1.7 Theorem (regular value) Suppose q ∈ N is a regular value of the map
f ∈ C∞(M, N). Then L := f−1(q) is a submanifold of M of codimension n. For
p ∈ L, the kernel of Tpf is TpL.

Proof Let p0 ∈ f−1(q). Let (ϕ, U) be a chart of M around p0, and let (ψ, V ) be
a chart of N around q with f(U) ⊂ V . Then it follows from the chain rule that for
every p ∈ U ∩ f−1(q), the point ϕ(p) is a regular point of the local representation

fϕ,ψ := ψ ◦ f ◦ ϕ−1 ∈ C∞(ϕ(U), Rn) .

In other words, y := ψ(q) is a regular value of fϕ,ψ. Therefore Theorem VII.9.3
guarantees that (fϕ,ψ)−1(y) is an (m−n)-dimensional submanifold of Rm. Hence
there are open sets X and Y of Rm and a Φ ∈ Diff(X, Y ) such that

Φ(X ∩ (fϕ,ψ)−1(y)) = Y ∩ (Rm−n × {0}) .

By replacing ϕ(U) and X with their intersection, we can assume that ϕ(U) = X .
But then ϕ1 := Φ ◦ ϕ is a chart of M around p with

ϕ1

(
f−1(q) ∩ U

)
= Φ ◦ ϕ

(
f−1 ◦ ψ−1(y) ∩ U

)
= Φ

(
(fϕ,ψ)−1(y) ∩X

)
= Y ∩

(
Rm−n × {0}

)
and is therefore a submanifold chart of M for f−1(q). The second claim now
follows from an obvious modification of the proof of Theorem VII.10.7. �

1.8 Remarks (a) Theorem 1.7 has a converse that says that every submanifold
of M can be represented locally as the fiber of a regular map. More precisely, it
says that if L is an �-dimensional submanifold of M , then for every p ∈ L there
are a neighborhood U in M and an f ∈ C∞(U, Rm−	) such that f−1(0) = U ∩ L,
and 0 is a regular value of f .
Proof Suppose (ϕ, U) is a submanifold chart of M around p for L. Then the function
defined by f(q) := (ϕ�+1(q), . . . , ϕm(q)) for q ∈ U belongs to C∞(U,Rm−�) and satisfies
f−1(0) = U ∩ L. Because ϕ is a diffeomorphism, 0 is a regular value f . �

(b) (regularity) If q is a regular value of f ∈ Ck(M, N) for some k ∈ N×, then f−1(q) is
a Ck submanifold of M . In this case it suffices to assume that M is itself a Ck manifold. �

1.9 Examples (a) Suppose X is open in Rm×Rn and q ∈ Rn is a regular value of
f ∈ C∞(X, Rn) with M := f−1(q) 
= ∅. Then M is an m-dimensional submanifold
of X . For

π := pr |M : M → Rm

with
pr : Rm × Rn → Rm , (x, y) �→ x ,
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we have π ∈ C∞(M, Rm). Finally let p ∈M , and suppose D1f(p) ∈ L(Rm, Rn) is
surjective.9 Then p is regular point of π if and only if D2f(p) is bijective.
Proof The regular value theorem guarantees that M is an m-dimensional submanifold
of X with TpM = ker(Tpf) for p ∈ M . Because π is the restriction of a linear and
therefore smooth map, it follows from Remark 1.1(j) that π ∈ C∞(M, Rm) and Tpπ =
Tp pr |TpM .

It follows from Tp pr =
(
p, ∂ pr(p)

)
and ∂ pr(p)(h, k) = h for (h, k) ∈ Rm ×Rn that

Tpπ is surjective if and only if for every y ∈ Rm there is an (h, k) ∈ Rm × Rn such that

∂f(p)(h, k) = D1f(p)h + D2f(p)k = 0

and h = y. This is because D1f(p) is surjective if and only if for every z ∈ Rn there is a
k ∈ Rn such that D2f(p)k = z or, equivalently, if and only if D2f(p) itself is surjective.
Because D2f(p) ∈ L(Rn), this finishes the proof. �

(b) (“cusp catastrophe”) For

f : R2 × R → R ,
(
(u, v), x

)
�→ u + vx + x3 ,

we have [
D1f(w, x)

]
= [1, x] ∈ R1×2 , where w := (u, v) .

Therefore 0 is a regular value of f , and M := f−1(0) is a surface in R3. Because
D2f(w, x) = v + 3x2, we know by (a) that

K :=
{ (

(u, v), x
)
∈ M ; v + 3x2 = 0

}
is the set of singular points of the projection
π : M → R2. It satisfies

K = γ(R) with

γ : R → R3 , t �→ (2t3,−3t2, t) .
(1.5)

In particular, K is a 1-dimensional submanifold
of M , a smoothly embedded curve. Its projec-
tion B := π(K) is the image of

σ : R → R2 , t �→ (2t3,−3t2) ,

a Neil parabola.10 It is the union of the 0-dimensional manifold P := {(0, 0)} ∈ R2,
the “cusp”, and the two one-dimensional manifolds B1 := σ((−∞, 0)) and B2 :=
σ((0,∞)).
Proof The point (u, v, x) ∈ R3 belongs to K if and only if it satisfies the equations

u + vx + x3 = 0 and v + 3x2 = 0 . (1.6)

9We apply the notations of Section VII.8.
10See Remark VII.9.9(a).
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By eliminating v from the first equation, we see that (1.6) is equivalent to

2x3 = u and 3x2 = −v .

This proves (1.5). For the derivative of the map

g : R3 → R2 , (u, v, x) �→ (u− 2x3, v + 3x2) ,

we find [
∂g(u, v, x)

]
=

[
1 0 −6x2

0 1 6x

]
∈ R2×3 .

This matrix has rank 2, which shows that 0 is a regular value of g. Therefore by the
regular value theorem, K = g−1(0) is a 1-dimensional submanifold of R3. Because
K ⊂ M it follows from Remark 1.5(c) that K is a submanifold of M . The rest is
obvious. �

1.10 Remark (catastrophe theory) We consider now a point particle of mass 1 moving
along the real axis with potential energy U and total energy

E(ẋ, x) =
ẋ2

2
+ U(x) for x ∈ R .

According to Example VII.6.14(a), Newton’s equation of motion is

ẍ = −U ′(x) .

From Examples VII.8.17(b) and (c), we know that the critical points of the energy E
are exactly the points (0, x0) with U ′(x0) = 0. Because the Hessian matrix of E has the
form [

1 0
0 U ′′(x0)

]
at (0, x0), it is positive definite if and only if U ′′(x0) > 0. Hence it follows from The-
orem VII.5.14 that (0, x0) is an isolated minimum of the total energy if and only if x0

is an isolated minimum of the potential energy.11 It is graphically clear that an iso-
lated minimum of the total energy is “stable” in the sense that

(
ẋ(t), x(t)

)
stays in “the

neighborhood” of (0, x0) for all t ∈ R+ if this is true as its motion begins, that is, at
t = 0.

Intuitively, one can understand how x will
move along the axis R by imagining a small ball
rolling without friction along the graph of U while
experiencing the force of gravity. If it lies on the
“bottom of a potential well”, that is, at a local
minimum, then it will not move because ẋ(t) =
U ′(x0) = 0. If the ball is released near a local
minimum then ball will roll downhill past the min-
imum and up the other “slope of the valley” until

11We consider only the “generic” case in which U ′′(x0) �= 0 is satisfied if U ′(x0) = 0.
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it “runs out” of kinetic energy at its original height. Then it will reverse course and roll
until it again comes to instantaneous rest where it was initially released. Thus the ball
will execute a periodic oscillation about x0.

12

Now we assume that U depends continuously on additional “control parameters”
u, v, . . . . By varying these parameters, we can vary the graph of U continuously. In this
way, it can happen that a local minimum merges first into a saddle point and then ceases
to be a critical point. A ball that had previously been confined to the neighborhood
of the local minimum would then leave this neighborhood and oscillate about another
resting point.

Now consider an observer who can see the ball move but is unaware of the mechanism
underlying the process. She would see that the ball, which had before rested peacefully
at a certain place, would suddenly, “for no apparent reason”, begin to roll and oscillate
periodically about another (fictitious) center. It would seem to be a sudden and drastic
change of the situation, a “catastrophe”.

In order to understand such catastrophes (and avoid them if necessary), one must
understand the mechanism by which they occur. In the situation described above, this
boils down to understanding how the critical points of the potential (and in particular
the relative minima) depend on the control parameters.

To illustrate, we consider the potential

U(u,v) : R → R , x �→ ux + vx2/2 + x4/4

for (u, v) ∈ R2. The critical points of U(u,v) are just the zeros of the function f from
Example 1.9(b). Therefore the manifold M , the catastrophe manifold, describes all
critical points of the two parameter set

{
U(u,v) ; (u, v) ∈ R2

}
of potentials. Of particular

interest is that subset of M , the catastrophe set K, consisting of all singular points of
the projection π from M to the parameter space. In our example, K is a curve smoothly
embedded in M , the fold curve, because the catastrophe manifold is “folded” along K.
The image of K under π, that is, the projection of the fold curve onto the parameter
plane, is the bifurcation set B. Every point of R2 \B is a regular point of π. The
fiber π−1(u, v) consists of exactly one point for (u, v) ∈ A ∪ P , exactly two points for
(u, v) ∈ B1 ∪ B2, and exactly three points for (u, v) ∈ I , where A and I are depicted in
the illustration to Example 1.9(b). The following pictures show the qualitative form of
the potential U(u,v) when (u, v) belongs to these sets.

12This plausible scenario can be proved using the theory of ordinary differential equations; see
for example [Ama95].
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left of B1 on B1 in I on B2 right of B2

in P v positive

Now consider a continuous curve C in the parameter space that begins in A and
ends in I (or the reverse), while staying in B1 ∪ B2. While moving continuously along
this curve, the number of points in the inverse image of π will change suddenly from 1
to 3 (or from 3 to 1). As illustrated at right, one such curve C is obtained by projecting
a curve Γ on the catastrophe manifold M that “jumps” when crossing the fold curve. In
short, the value of x experiences a “catastrophe”.

These facts have led to many inter-
pretations of “catastrophe theory” which
— not least because of its name — have
been leveraged to great popularity and,
especially in the popularized science lit-
erature, have kindled exaggerated hopes
that the subject will somehow explain or
help prevent real-world catastrophes. We
refer to [Arn84] for a critical, nontechnical
introduction to catastrophe theory, and
we recommend [PS78] for a detailed pre-
sentation and several applications of the
mathematical theory of singularities, of
which catastrophe theory is a part. �

Submanifolds with boundary

We know that the open unit ball Bm and its boundary, the (m−1)-sphere Sm−1,
are respectively m- and (m−1)-dimensional submanifolds of Rm. However, the
closed ball Bm = Bm ∪ Sm−1 is not a manifold, because a point p ∈ ∂Bm = Sm−1

has no neighborhood U in Bm that is mapped topologically onto an open set V of
Rm; such a neighborhood U , as the homeomorphic image of an open set V , would
likewise need to be open in Rm, which is not true. In the neighborhood of p, that
is, “by viewing it with a very strong microscope”, Bm does not look like Rm, but
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rather like a half-space. To capture such situations also, we must generalize the
idea of a manifold by allowing subsets of half-spaces to be parameter sets.

In the following, m ∈ N×, and

Hm := Rm−1 × (0,∞)

is the open upper half-space of Rm. We
identify its boundary ∂Hm = Rm−1×{0}
with Rm−1 if there is no fear of misun-
derstanding. If U is an open subset of
Hm := Hm = Rm−1×R+, we call int(U) := U∩Hm the interior and ∂U := U∩∂Hm

the boundary of U . Note that the boundary ∂U is not the topological boundary13

of U either in Hm or in Rm (unless U = Hm in the latter case).
Suppose X is open in Hm and E is a Banach space. Then f : X → E is said

to be differentiable at the boundary point x0 ∈ ∂X if there is a neighborhood U
of x0 in Rm and a differentiable function fU : U → E that agrees with f in U ∩X .
Then it follows from Proposition VII.2.5 that

∂jfU (x0) = lim
t→0+

(
fU (x0 + tej)− fU (x0)

)/
t

= lim
t→0+

(
f(x0 + tej)− f(x0)

)/
t

for 1 ≤ j ≤ m, where (e1, . . . , em) is the standard basis of Rm. This and Proposi-
tion VII.2.8 show that ∂fU (x0) is already determined by f . Therefore the deriva-
tive

∂f(x0) := ∂fU (x0) ∈ L(Rm, E)

of f is well defined at x0, that is, independent of the choice of the local continuation
fU of f .

A map f : X → E is said to be continuously differentiable if f is differentiable
at every point of X and if the map

∂f : X → L(Rm, E) , x �→ ∂f(x)

is continuous.14

The higher derivatives of f are defined analogously, and these are also in-
dependent of the particular local continuation. For k ∈ N× ∪ {∞}, the Ck maps
of X to E form a vector space, which, as in the case of open subsets of Rm, we
denote by Ck(X, E).

Suppose Y is open in Hm. Then f : X → Y is also called a Ck diffeomor-
phism, and we write f ∈ Diffk(X, Y ), if f is bijective and if f and f−1 belong to
the class Ck. In particular, Diff(X, Y ) := Diff∞(X, Y ) is the set of all smooth,
that is, C∞, diffeomorphisms from X to Y .

13From this point on, we use the symbol ∂M exclusively for boundaries, and, for clarity, we
write Rd(M) for the topological boundary of a subset M of a topological space, that is, we put

Rd(M) := M \M̊ .
14Naturally, we say f is differentiable at x0 ∈ int(X) if f | int(X) is differentiable at x0.
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1.11 Remarks Suppose X and Y are open in Hm and f : X → Y is a Ck

diffeomorphism for some k ∈ N× ∪ {∞}.
(a) If ∂X is not empty, then ∂Y 
= ∅, and f | ∂X is a Ck diffeomorphism from ∂X

to ∂Y . Also, f | int(X) belongs to Diffk
(
int(X), int(Y )

)
.

Proof Suppose p ∈ ∂X and q := f(p) belongs to int(Y ). Then it follows from the inverse
function theorem, Theorem VII.7.3, (applied to a local extension of f) that ∂f−1(q) is
an automorphism of Rm. It therefore follows, again from Theorem VII.7.3, that f−1

maps a suitable neighborhood V of q in int(Y ) to an open neighborhood U of p in Rm.
But because f−1(V ) ⊂ X ⊂ Hm and p = f−1(q) ∈ ∂X, this is not possible. Therefore
f(∂X) ⊂ ∂Y . Analogously we find f−1(∂Y ) ⊂ ∂X. This shows f(∂X) = ∂Y .

Because X and Y in Hm are open, both ∂X and ∂Y are open in ∂Hm = Rm−1, and
f | ∂X is a bijection from ∂X to ∂Y . Because f | ∂X and f−1 | ∂Y obviously belongs to
the class Ck, we know f | ∂X is a Ck diffeomorphism from ∂X to ∂Y . The last statement
is now clear. �

(b) For p ∈ ∂X , we have ∂f(p)(∂Hm) ⊂ ∂Hm and ∂f(p)(±Hm) ⊂ ±Hm.

Proof From f(∂X) = ∂Y , it follows that fm | ∂X = 0 for the m-th coordinate function
fm of f . From this we get ∂jf

m(p) = 0 for 1 ≤ j ≤ m− 1. Therefore the Jacobi matrix
of f has at p the form

[
∂f(p)

]
=

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

··············

⎡⎢⎢⎢⎢⎢⎣
∂mf1(p)

∂(f | ∂Hm)(p)
...

∂mfm−1(p)

0 · · · 0 ∂mfm(p)

⎤⎥⎥⎥⎥⎥⎦ . (1.7)

Because f(X) ⊂ Y ⊂ Hm, the inequality fm(q) ≥ 0 holds for q ∈ X. Hence we find

∂mfm(p) = lim
t→0+

t−1
(
fm(p + tem)− fm(p)

)
= lim

t→0+
t−1fm(p + tem) ≥ 0 .

Since ∂f(p) ∈ Laut(Rm) (see Remark VII.7.4(d)) and since ∂mfm(p) ≥ 0, we have
∂mfm(p) > 0. From (1.7), we read off(

∂f(p)x
)m

= ∂mfm(p)t for x := (y, t) ∈ Rm−1 × R .

Therefore the sign of the m-th coordinate of ∂f(p)x agrees with sign(t), and we are
done. �

We can now define the concept of submanifold with boundary. A subset B of
the n-dimensional manifold N is said to be a b-dimensional submanifold of N with
boundary if for every p ∈ B there is a chart (ψ, V ) of N around p, a submanifold
chart of N around p for B, such that

ψ(V ∩B) = ψ(V ) ∩
(
Hb × {0}

)
⊂ Rn . (1.8)
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Here we say p is a boundary point of B if ψ(p) lies in ∂Hb := ∂Hb × {0}.

The set of all boundary points forms the boundary15 ∂B of B. The set int(B) :=
B\∂B is called the interior of the submanifold B with boundary. Finally B is a
hypersurface in N with boundary if b = n− 1.

1.12 Remarks

(a) Every submanifold M of N , in the sense given in the beginning of this section,
is a submanifold with boundary, but with an empty boundary. We call such objects
(sub)manifolds without boundary.

(b) The boundary ∂B and the interior int(B) are well defined, that is, independent
of charts.
Proof Suppose (χ, W ) is another submanifold chart of N around p for B. Also let f be
the restriction of the transition function χ ◦ ψ−1 to ψ(V ∩W ) ∩ (Hb × {0}), understood
as an open subset of Hb. Then it follows from Remark 1.11(a) that χ(p) belongs to ∂Hb

if and only if ψ(p) does. �

(c) Suppose p ∈ int(B). Then (1.8) implies

ψ
(
V ∩ int(B)

)
= ψ(V ) ∩

(
Hb × {0}

)
.

Because Hb is diffeomorphic to Rb, this shows that int(B) is a b-dimensional sub-
manifold of N without boundary.

(d) In the case p ∈ ∂B, it follows from (1.8) that

ψ(V ∩ ∂B) = ψ(V ) ∩
(
Rb−1 × {0}

)
.

Therefore ∂B is a (b−1)-dimensional submanifold of N without boundary.

(e) Every b-dimensional submanifold of N with boundary is a b-dimensional sub-
manifold of Rn with boundary.
Proof This follows in analogy to the proof of Remark 1.1(a). �

(f) (regularity) It is clear how Ck submanifolds with boundary are defined for k ∈ N×,
and that the analogues of (a)–(c) remain true. �

15Note that the boundary ∂B and the interior int(B) are generally different from the topolog-

ical boundary Rd(B) and the topological interior B̊ of B. In the context of statements about
manifolds, we will understand “boundary” and “interior” in the sense of the definitions above.
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Local charts

Suppose B is a b-dimensional submanifold of N with boundary. We call the map
ϕ a (b-dimensional local) chart of (or for) B around p if
• U := dom(ϕ) is open in B, where B carries the topology induced by N (and

therefore by Rn).
• ϕ is a homeomorphism from U to an open subset X of Hb.
• iB ◦ ϕ−1 : X → N is an immersion, where iB : B → N , p �→ p denotes the

injection.
Note that except for the fact that ϕ(U) is open in Hb and Rn is replaced by N ,
this definition agrees literally with the definition of a C∞ chart of a submanifold
of Rn (see Section VII.9).

1.13 Remarks (a) If (ψ, V ) is a submanifold chart of N for B, the intersected
chart (ϕ, U) := (ψ |V ∩B, V ∩B) is a b-dimensional chart for B.

(b) If (ϕ1, U1) and (ϕ2, U2) are charts of B around p ∈ B, then ϕj(U1 ∩ U2) is
open in Hb for j = 1, 2, and transition function ϕ2 ◦ ϕ−1

1 satisfies

ϕ2 ◦ ϕ−1
1 ∈ Diff

(
ϕ1(U1 ∩ U2), ϕ2(U1 ∩ U2)

)
.

(c) Suppose (ϕ, U) is a chart for B around p ∈ ∂B. Then

(ϕ∂B , U∂B) := (ϕ |U ∩ ∂B, U ∩ ∂B)

is a chart for ∂B, a (b−1)-dimensional submanifold of N without boundary.

(d) All concepts and definitions, for example, differentiability of maps and lo-
cal representations, that can be described using charts of manifolds, carry over
straightforwardly to submanifolds with boundary. In particular, iB : B ↪→ N ,
that is, the natural embedding p �→ p of B in N , is a smooth map.

(e) If C is a submanifold of M with boundary and f ∈ Diff(B, C), then f(∂B) =
∂C, and f | ∂B is a diffeomorphism from ∂B to ∂C.
Proof This follows from Remark 1.11(a). �

(f) Suppose B is a b-dimensional submanifold of N with boundary, and f ∈
C∞(B, M) is an embedding, that is, f is a bijective immersion and a homeo-
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morphism from B to f(B). Then f(B) is a b-dimensional submanifold M with
boundary satisfying ∂f(B) = f(∂B), and f is a diffeomorphism from B to f(B).

Proof The proof of Theorem 1.2(ii) also applies here. �

(g) (regularity) All previous statements transfer literally to Ck submanifolds with
boundary. �

Naturally, we again say a family
{

(ϕα, Uα) ; α ∈ A
}

of charts of B with
B =

⋃
α Uα is an atlas of B.

Tangents and normals

Suppose B is a submanifold of N with boundary, and let p ∈ ∂B. Also suppose
(ϕ, U) is a chart of B around p. Then we define the tangent space TpB of B at
the point p by

TpB := Tϕ(p)(iB ◦ ϕ−1)(Tϕ(p)R
b) ,

where b := dim(B). Therefore TpB is a
(“full”) b-dimensional vector subspace of
the tangent space TpN of N at p (and not,
say, a half-space). An obvious modification
of the proof of Remark VII.10.3(a) shows
that TpB is well defined, that is, independent of which chart is used. In this case,
we define the tangent bundle TB of B by TB :=

⋃
p∈B TpB.

1.14 Remarks (a) For p ∈ ∂B, Tp∂B is a (b−1)-dimensional vector subspace of
TpB.

Proof This is a simple consequence of Remarks 1.12(d) and 1.13(c). �

(b) Suppose p ∈ ∂B and (ϕ, U) is chart of B around p. Letting

T±
p B := Tϕ(p)(iB ◦ ϕ−1)

(
ϕ(p),±Hb

)
,

we have TpB = T +
p B ∪ T−

p B and T +
p B ∩ T−

p B = Tp(∂B). The vector v is an
inward pointing [or an outward pointing] tangent vector if and only if v belongs
to the set T +

p B\Tp(∂B) [or T−
p B\Tp(∂B)]. This is the case if and only if the b-th

component of (Tpϕ)v is positive [or negative].

Proof From Remarks 1.11(b) and 1.13(b), it follows easily that T±
p B is defined in a

coordinate-independent way. �

(c) Let C be a submanifold of M with or without boundary. For f ∈ C1(C, N),
the tangential Tpf of f at p ∈ C is defined as in the case of manifolds without
boundary. Then the analogues of Remarks VII.10.9 remain true. �
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Suppose p ∈ ∂B. Then Tp(∂B) is a
(b−1)-dimensional vector subspace of the b-
dimensional vector space TpB. As a vector
subspace of TpN (and therefore of TpRn),
TpB is an inner product space with the in-
ner product ( · | · )p induced by the Euclidean
scalar product on Rn. Hence there is exactly
one unit vector ν(p) in T−

p B that is orthog-
onal to Tp(∂B), and we call it the outward
(unit) normal vector of ∂B at p. Clearly
−ν(p) ∈ T +

p B is the unique inward pointing
vector of TpB that is orthogonal to Tp(∂B),
and we call it the inward (unit) normal vec-
tor ∂B at p.

The regular value theorem

We have already seen that submanifolds without boundary can be represented in
many cases (actually always, locally) as fibers of regular maps. We will now extend
this important and simple criterion to the case of submanifolds with boundary.

1.15 Theorem (regular value) Suppose c is a regular value of f ∈ C∞(N, R).
Then

B := f−1
(
(−∞, c]

)
=

{
p ∈ N ; f(p) ≤ c

}
is an n-dimensional submanifold of N with boundary with ∂B = f−1(c) and
int(B) = f−1

(
(−∞, c)

)
. For p ∈ ∂B, we have Tp(∂B) = ker(dpf), and the

outward unit normal ν(p) on ∂B is given by ∇pf(p)/|∇pf |p.

Proof Because f−1((−∞, c)) is open in N and is therefore an n-dimensional
submanifold of N , it suffices to consider p ∈ f−1(c).

Therefore let p ∈ f−1(c), and let (ψ, V ) be a chart of N around p such that
ψ(p) = 0. Then g := c − f ◦ ψ−1 belongs to C∞(ψ(V ), R) and satisfies g(0) = 0
and g(x) ≥ 0 if and only if x lies in ψ(V ∩B). Also 0 is a regular point of g. By
renaming the coordinates (that is, by composing ψ with a permutation), we can
assume that ∂ng(0) 
= 0 and therefore ∂ng(0) > 0.

Consider the map ϕ ∈ C∞(ψ(V ), Rn) defined by ϕ(x) := (x1, . . . , xn−1, g(x)).
It satisfies ϕ(0) = 0 and

∂ϕ =

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

··············

⎡⎢⎢⎢⎢⎢⎣
0

1n−1

...
0

∂1g · · · ∂n−1g ∂ng

⎤⎥⎥⎥⎥⎥⎦ .
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Therefore ∂ϕ(0) is an automorphism of Rn, and Theorem VII.7.3 (the inverse
function theorem) guarantees the existence of open neighborhoods U and W of 0
in ψ(V ) such that ϕ |U is a diffeomorphism from U to W .

Letting V0 := ψ−1(U) and χ := ϕ ◦ ψ |V0, we see that (χ, V0) is a chart of
N around p with χ(p) = 0 and χ(B ∩ V0) = χ(V0) ∩ Hn. This shows that B is a
submanifold of N with boundary with ∂B = f−1(c) and int(B) = f−1((−∞, c)).
Thus we get from Theorem 1.7 that

Tp(∂B) = ker(Tpf) = ker(dpf) for p ∈ ∂B . (1.9)

Because 〈dpf, v〉p = (∇pf | v)p for v ∈ TpN , it follows from (1.9) that ∇pf is
orthogonal to Tp(∂B).

Finally, let λ : (−ε, ε)→ N be a C1 path in N with λ(0) = p and λ̇(0) = ∇pf
(see Theorem VII.10.6). Then

(f ◦ λ)·(0) = 〈dpf,∇pf〉 = |∇pf |2p > 0 .

Therefore we derive from the Taylor formula of Corollary IV.3.3 that

f(λ(t)) = c + t |∇pf |2p + o(t) (t → 0) .

Therefore f(λ(t)) > c, that is, f(λ(t)) /∈ B for sufficiently small positive t. This
implies that ∇pf is an outward pointing tangent vector of B at p. Now the last
claim is also clear. �

1.16 Remarks (a) Because we can locally represent submanifolds as fibers of
regular maps (see Remark 1.8(a)), we can also locally represent submanifolds with
boundary as inverse images of half open intervals. More precisely, suppose B
is an n-dimensional submanifold of N with boundary. Then there is for every
point p ∈ B a neighborhood U in N and a function f ∈ C∞(U, R) such that
B ∩ U = f−1((−∞, 1)) if p ∈ int(B) but f(p) = 0 and B ∩ U = f−1((−∞, 0]) if
p ∈ ∂B, and for which 0 is a regular value.
Proof Suppose (ϕ, U) is a submanifold chart of N around p for B with ϕ(p) = 0. We can
assume that ϕ(U) is contained in Bn

∞. If p is an interior point of B, we set f(q) := ϕn(q)
for q ∈ U . Then f belongs to C∞(U, R), and f−1((−∞, 1)) = U . If p belongs to ∂B,
we set f(q) := −ϕn(q) for q ∈ U . Then f(p) = 0, and f−1((−∞, 0]) = U ∩ B. Because
ϕ ∈ Diff(U,ϕ(U)), we know f is a submersion. Therefore 0 is a regular value of f . �

(b) (regularity) Suppose c is a regular value of f ∈ Ck(N, R) for some k ∈ N×. Then
f−1((−∞, c]) is an n-dimensional submanifold in N with boundary. In this case, one
need only assume that N is a Ck manifold. �

1.17 Examples (a) For every r > 0, Bn
r := rBn = { x ∈ Rn ; |x| ≤ r } is

an n-dimensional submanifold of Rn with boundary. Its boundary coincides with
the topological boundary and therefore with the (n−1)-sphere of radius r, that is,
∂Bn

r = rSn−1. The outward normal ν(p) at p ∈ ∂Bn
r is given by (p, p/|p|).
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In the case n = 1, the ball B1
r is the closed interval [−r, r] in R, and the

0-sphere with radius r is given by S0
r = {−r} ∪ {r}. The outward normal has

ν(−r) = (−r,−1) and ν(r) = (r, 1).

Proof This follows from Theorem 1.15 with N := Rn and f(x) := |x|2 for x ∈ Rn. �

(b) Suppose A ∈ R(n+1)×(n+1)
sym and c ∈ R×. Also suppose

Vc :=
{

x ∈ Rn+1 ; (Ax |x) ≤ c
}

is not empty. If A is positive definite and c > 0, then Vc is an (n+1)-dimensional
solid whose boundary is the n-dimensional ellipsoid

Kc :=
{

x ∈ Rn+1 ; (Ax |x) = c
}

.

If A is negative definite and c < 0, then Vc is the complement of the interior of V−c,
and the boundary of V−c is the n-dimensional ellipsoid K−c. If A is indefinite but
invertible, then Vc is the “interior” or “exterior” of an appropriate n-dimensional
hyperboloid Kc that bounds Vc. In every case, Ax/|Ax| is the outward normal of
Vc at Kc. (Compare this with Remark VII.10.18, and interpret the pictures there
accordingly.)

(c) Suppose A ∈ R(n+1)×(n+1) is symmetric and c ∈ R× with Kc 
= ∅. Also
suppose v ∈ Rn+1\{0} and α, β ∈ R with α < β. Then

B :=
{

x ∈ Kc ; α ≤ (v |x) ≤ β
}

is the part of Kc that lies between the two parallel hyperplanes

Hγ :=
{

x ∈ Rn+1 ; (v |x) = γ
}

for γ ∈ {α, β} .

If Hα and Hβ are not tangent hyperplanes of Kc, then B is an n-dimensional
submanifold of Kc with boundary with

∂B =
{

x ∈ Kc ; (v |x) ∈ {α, β}
}

.

Proof Because the map g := (v | · ) |Kc : Kc → R is smooth by Remark 1.1(j), we know
g−1((α, β)) is open in Kc. Therefore g−1((α, β)) is an n-dimensional submanifold of Kc.
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Hence it suffices to show that every p ∈ g−1({α, β}) is a boundary point of B. So let V
be an open neighborhood in Kc of p ∈ g−1(β) such that g−1(α)∩V = ∅. The assumption
at Hβ is not a tangent hyperplane implies that β is a regular value of f := g |V (prove
this!). The claim now follows from Theorem 1.15 applied to the manifold V and the
function f . A similar argument shows that every p ∈ g−1(α) is a boundary point of B. �

(d) (cylinder-like rotational hypersurfaces) Suppose

γ : [0, 1]→ (0,∞)× R , t �→
(
ρ(t), σ(t)

)
is a smooth embedding. Also let i : Sm ↪→ Rm+1 and

f : Sm × [0, 1]→ Rm+1 × R , (q, t) �→
(
ρ(t)i(q), σ(t)

)
.

Then f is a smooth embedding, and

Zm+1 := f
(
Sm × [0, 1])

is a hypersurface in Rm+2 with boundary which is diffeomorphic to the “spherical
cylinder” Sm × [0, 1].

In the case m = 0, Z1 consists of two copies of smooth, non-self-intersecting,
compact curves16 γ([0, 1]) that are symmetric about the y-axis.

For m = 1, Z2 is the surface of rotation in R3 obtained by rotating the meridian
curve

Γ := { (ρ(t), 0, σ(t)) ; t ∈ [0, 1] }
around the z-axis.

In the general case, we call Zm+1 a cylinder-like surface of rotation with
boundary. Its boundary satisfies

∂Zm+1 = f
(
Sm × {0}

)
∪ f

(
Sm × {1}

)
,

while its interior has
int(Zm+1) = f

(
Sm × (0, 1)

)
.

16That is, one-dimensional manifolds with boundary.
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In particular, int(Zm+1) is a cylinder-type hypersurface of rotation without bound-
ary. In the case m = 1, it is generated by rotating the meridian curve

int(Γ) :=
{ (

ρ(t), 0, σ(t)
)

; 0 < t < 1
}

around the z-axis.

Proof It is easy to see17 that Sm × [0, 1] is a submanifold of Rm+2 with boundary
and that its boundary is (Sm × {0}) ∪ (Sm × {1}). An obvious modification of the
proof of Example 1.5(b) shows that f is an embedding. Now the claims follow from
Remark 1.13(f). �

One-dimensional manifolds

Obviously every perfect interval J in R is a one-dimensional submanifold of Rn

with or without boundary, depending on whether J is open or not. Also, we already
know that the 1-sphere S1 is a one-dimensional submanifold of Rn, provided n ≥ 2.
It is easy to see18 that a nonempty perfect interval is diffeomorphic to (0, 1) if it
is open, to [0, 1) if it is closed on one side, and to [0, 1] if it is compact. The
following important classification theorem shows that these intervals and S1 are,
up to diffeomorphism, the only one-dimensional connected manifolds.

1.18 Theorem Suppose C is a connected one-dimensional submanifold N with [or
without] boundary. Then C is diffeomorphic to [0, 1] or [0, 1) [or to (0, 1)] or S1.

Proof For a proof, we refer to Section 3.4 of [BG88], which treats manifolds
without boundary. An obvious modifications of the arguments there also covers
the case of manifolds with boundary (see the appendix in [Mil65]). �

1.19 Remarks (a) We understand a (smooth) curve C embedded in N to be
the image of a perfect interval of S1 under a (smooth) embedding. In the last
case, we also call C the 1-sphere embedded in N . Then Theorem 1.18 says that
every connected one-dimensional submanifold of N with or without boundary is
an embedded curve, and conversely.

(b) (regularity) Theorem 1.18 remains true for C1 manifolds. �

Partitions of unity

We conclude this section by proving a technical result which will be particularly
helpful in the transition from local to global (and conversely).

17See Exercise 4.
18See Exercise 7.
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Suppose X is an n-dimensional submanifold of Rn with or without boundary
for some n ∈ N×. Also let {Uα ; α ∈ A } be an open cover of X . Then we say
that the family { πα ; α ∈ A } is a smooth partition of unity of unity subordinate
to this cover if it satisfies the properties

(i) πα ∈ C∞(
X, [0, 1]

)
with supp(πα) ⊂⊂ Uα for α ∈ A;

(ii) the family { πα ; α ∈ A } is locally finite, that is, for every p ∈ X there is an
open neighborhood V such that supp(πα) ∩ V = ∅ for all but finitely many
α ∈ A;

(iii)
∑

α∈A πα(p) = 1 for every p ∈ X .

1.20 Proposition Every open cover X has a smooth partition of unity subordinate
to it.

Proof (i) Let (ϕ, U) be a chart around p ∈ X . Then ϕ(U) is open in Hn. Hence
there is a compact neighborhood K ′ of ϕ(p) in Hn such that K ′ ⊂ ϕ(U). Because
ϕ is topological, K := ϕ−1(K ′) is a compact neighborhood of p in X with K ⊂ U ,
and (ϕ | K̊, K̊) is a chart around p. In particular, X is locally compact.

Proposition X.7.14 implies the existence of a χ′ ∈ C∞(
ϕ(U), [0, 1]

)
with

χ′ |K ′ = 1 and supp(χ′) ⊂⊂ ϕ(U). We set χ(q) := ϕ∗χ′(q) if q ∈ U and χ(q) := 0
if q belongs to X\U . Then χ lies in C∞(

X, [0, 1]
)

and has compact support, which
is contained in U .

(ii) By Corollary IX.1.9(ii) and Remark X.1.16(e), there exists a countable
cover {Vj ; j ∈ N } of X consisting of relatively compact open sets. We set
K0 := V 0. Then there are i0, . . . , im ∈ N such that K0 is covered by {Vi0 , . . . , Vim}.
In addition, we set j1 := max{i0, . . . , im} + 1 and K1 :=

⋃j1
i=0 V i. The set K1 is

compact, and K0 ⊂⊂ K1. We then inductively obtain a sequence (Kj) of compact
sets with Kj ⊂⊂ Kj+1, and

⋃∞
j=0 Kj =

⋃∞
j=0 Vj = X .

(iii) We first assume that Kj 
= Kj+1 for j ∈ N, and we set Wj := Kj\K̊j−1

for j ∈ N with K−1 := ∅. Then Wj is compact, and Wj ∩Wk = ∅ for |j − k| ≥ 2.
We also have

⋃∞
j=0 Wj = X .

Let U := {Uα ; α ∈ A } be an open
cover of X . From (i) and the compactness
of Wj , it follows that for every j ∈ N, there
is a finite cover

{
Ũj,i ∈ U ; 0 ≤ i ≤ m(j)

}
of Wj . We set

Uj,i := Ũj,i ∩ (W̊j−1 ∪Wj ∪ W̊j+1)

and choose functions χj,i ∈ C∞(
Uj,i, [0, 1]

)
so that

supp(χj,i) ⊂⊂ Uj,i ⊂ W̊j−1 ∪Wj ∪ W̊j+1 for 0 ≤ i ≤ m(j) ,
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with W−1 := ∅ and
m(j)⋃
i=0

[χj,i > 0] ⊃Wj

for j ∈ N. Then
{

χj,i ; 0 ≤ i ≤ m(j), j ∈ N
}

is a locally finite family. Therefore

χ :=
∞∑

j=0

m(j)∑
i=0

χj,i

is defined, belongs to C∞(
X, [0, 1]

)
, and satisfies χ(p) > 0 for p ∈ X . Now we set

πα :=
∑

α
χj,i/χ for α ∈ A ,

where
∑

α means the sum over all index pairs (j, i) for which Uj,i is contained in
Uα. Then { πα ; α ∈ A} is a smooth partition of unity subordinate to the cover
{Uα ; α ∈ A }.

(iv) If there is a j ∈ N such that Kj = Kj+1, then X = Kj . Therefore X is
compact. In this case, the claim follows by a simple modification of (iii) (as only
a single compact set, namely X , must be considered). �

Remark (a), below, shows that Proposition 1.20 is a wide-reaching general-
ization of Theorem X.7.16.

1.21 Remarks (a) Suppose K is a compact subset of the manifold X , and
suppose {Uj ; 1 ≤ j ≤ m} is an open cover of K. Then there are functions
πj ∈ C∞(X, [0, 1]) such that supp(πj) ⊂⊂ Uj for 1 ≤ j ≤ m, and

∑m
j=1 πj(p) = 1

for p ∈ K.
Proof Let U0 := X\K. Then {Uj ; 0 ≤ j ≤ m } is an open cover of X. Now the claim
follows easily from Proposition 1.20. �

(b) The proof of Proposition 1.20 shows that every submanifold of Rm with or
without boundary is locally compact, has a countable basis, and is σ-compact.

(c) (regularity) Suppose k ∈ N×. Replacing πα ∈ C∞(X, [0, 1]) by πα ∈ Ck(X, [0, 1]) in
part (i) of the definition above, we obtain a Ck partition of unity subordinate to the cover
{Uα ; α ∈ A }. Then Proposition 1.20 remains true if one replaces “smooth partition”
by “Ck partition”. In this case, it suffices to assume that X belongs to the class Ck. �

Convention In the rest of this book, we understand every manifold to be a
smooth submanifold with boundary in a suitable “surrounding space” Rm.

Exercises

1 Suppose f : M → N is a submersion. Show that f “locally looks like a projection”,
that is, for every p ∈M , there are charts (ϕ, U) of M around p and (ψ, V ) of N around
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f(p) with f(U) ⊂ V that satisfy

fϕ,ψ : Rn × Rm−n → Rn , (x, y) �→ x .

2 Suppose f : M → N is an immersion. Prove that f locally looks like the canonical
injection Rm → Rm × Rn−m, x �→ (x, 0).

3 Show that every diffeomorphism from M to N locally looks like the identity in Rm.

4 Suppose B is a submanifold of N with boundary. Show that M ×B is a submanifold
of M ×N with boundary with ∂(M ×B) = M × ∂B.

5 Show that both the cylinder [0, 1]×M with “cross section’ M and the “filled” torus
S1 × B2 are manifolds with boundary. Determine the dimension and boundary of each.

6 Show that the closed r-ball rBn in Rn is diffeomorphic to the closed unit ball Bn.

7 Show that a perfect interval in R is diffeomorphic to (0, 1), [0, 1), or [0, 1].

8 Suppose B is a nonempty k-dimensional submanifold of M (with or without bound-
ary). Show that the Hausdorff dimension of B equals k.
(Hints: Exercises 4–6 of IX.3 and Remark 1.21(b).)

9 Suppose B is a submanifold of M with boundary and f ∈ C∞(B,N). Show that
graph(f) is a submanifold of M ×N with boundary and determine its boundary.

10 Suppose X is an n-dimensional submanifold of Rn with or without boundary, and

let U := {Uα ; α ∈ A } and V := { Vβ ; β ∈ B } denote open covers of X. We call V
a refinement of U if there is a j : B → A such that Vβ ⊂ Uj(β) for β ∈ B. Show that

every smooth partition of unity subordinate to V induces a smooth partition of unity

subordinate to U .



2 Multilinear algebra

To construct and understand the calculus of differential forms of higher degree,
we need several results from linear (more precisely, multilinear) algebra, which we
provide in this section.

2.1 Remarks Suppose V is a finite-dimensional vector space.

(a) V can be provided with an inner product ( · | · )V , so that (V, ( · | · )V ) is a
Hilbert space. All norms on V are equivalent.

Proof By Remark I.12.5, there is a vector space isomorphism T : Km → V such that
m := dim(V ). Then

(v |w)V := (T−1v |T−1w) for v, w ∈ V

defines a scalar product on V , where ( · | · ) denotes the Euclidean inner product in Km.
Thus (V, ( · | · )V ) is a finite-dimensional inner product space and therefore a Hilbert space,
as we know from Remark VII.1.7(b). The second claim follows from Corollary VII.1.5. �

(b) As usual (in functional analysis), we denote by V ∗ the space of all (continuous)
conjugate linear maps from V to C, while V ′ is the space dual to V , the space
of all (continuous) linear forms on V . Then it follows from (a) and the Riesz
representation theorem (Theorem VII.2.14) that the map

V → V ∗ , v �→ (v | · )V (2.1)

is an isometric isomorphism, whereas

V → V ′ , v �→ ( · | v)V (2.2)

is conjugate linear. If K = R, then V ∗ = V ′, and the maps (2.1) and (2.2) are
identical because every real scalar product is symmetric. In the following, we will
exclusively treat the real case, and so, for this and some historical reasons, we will
write V ∗ instead of V ′. �

In this section, let

• V and W be finite-dimensional real vector spaces.

Exterior products

For r ∈ N, we denote by Lr(V, R) the vector space of all r-linear maps V r → R.
By Remark 2.1(b) and Theorem VII.4.2(iii), this notation is consistent with that
introduced in Section VII.4. In particular, we have

L0(V, R) = R and L1(V, R) = V ∗ .
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An r-linear map α : V r →W is said to be alternating if r ≥ 2 and

α(vσ(1), . . . , vσ(r)) = sign(σ)α(v1, . . . , vr) for v1, . . . , vr ∈ V

and for every permutation σ ∈ Sr (see Exercise I.9.6). We set∧0
V ∗ := L0(V, R) = R and

∧1
V ∗ := L1(V, R) = V ∗

and ∧r
V ∗ :=

{
α ∈ Lr(V, R) ; α is alternating

}
for r ≥ 2 .

Here
∧r

V ∗ is called the r-fold exterior product of V ∗ for r ∈ N, and α ∈
∧r

V ∗

is an alternating r-form on V (or, for short, simply an r-form).

2.2 Remarks (a)
∧r

V ∗ is a vector subspace of Lr(V, R), the vector space of
alternating r-forms on V .

(b) Let r ≥ 2 and α ∈ Lr(V, R). These four statements are equivalent:

(i) α ∈ ∧rV ∗.

(ii) α(v1, . . . , vr) = 0 if vj = vk for any a pair (j, k) with j 
= k.

(iii) α(. . . , vj , . . . , vk, . . .) = −α(. . . , vk, . . . , vj , . . .) for j 
= k, that is, if two entries
in α(v1, . . . , vr) are exchanged, its sign reverses.

(iv) If v1, . . . , vr ∈ V are linearly independent, then α(v1, . . . , vr) = 0.
Proof The implication “(i)=⇒(iii)=⇒(ii)” is obvious.

“(ii)=⇒(iv)” Suppose v1, . . . , vr ∈ V are linearly independent. This means there are
k ∈ {1, . . . , r} and λ1, . . . , λr ∈ R such that λk = 0 and vk =

∑r
j=1 λjvj . Now it follows

from the linearity of α in its k-th variable and from (ii) that

α(v1, . . . , vr) =
r∑

j=1

λjα(v1, . . . ,vj , . . . , vr) = 0 .
(k)

“(iv)=⇒(iii)” From (iv) and the multilinearity, we get

0 = α(. . . , vj + vk, . . . , vj + vk, . . .)

= α(. . . , vj , . . . , vj , . . .) + α(. . . , vj , . . . , vk, . . .)

+ α(. . . , vk, . . . , vj , . . .) + α(. . . , vk, . . . , vk, . . .)

= α(. . . , vj , . . . , vk, . . .) + α(. . . , vk, . . . , vj , . . .) ,

and which proves the claim.

“(iii)=⇒(i)” This follows from the fact that every permutation can be written as a
product of transpositions (see Exercise I.9.6). �

(c)
∧r

V ∗ = {0} for r > dim(V ).
Proof This follows from (iv) of (b). �
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For r ∈ N× and ϕ1, . . . , ϕr ∈ V ∗, the exterior product1

ϕ1 ∧ · · · ∧ ϕr

is defined by

ϕ1 ∧ · · · ∧ ϕr(v1, . . . , vr) := det
[
〈ϕj , vk〉

]
= det

⎡⎢⎣ 〈ϕ1, v1〉 · · · 〈ϕ1, vr〉
...

...
〈ϕr , v1〉 · · · 〈ϕr, vr〉

⎤⎥⎦ (2.3)

for v1, . . . , vr ∈ V . It is known from linear algebra that the determinant of an
(r × r)-matrix is an alternating r-form in its column vectors. From this and the
linearity of ϕ1, . . . , ϕr, it follows immediately that ϕ1 ∧ · · · ∧ϕr belongs to

∧rV ∗:
The exterior product ϕ1 ∧ · · · ∧ ϕr is an alternating r-form on V .

2.3 Proposition

(i) Let m := dim(V ) > 0. If (e1, . . . , em) is a basis2 of V and (ε1, . . . , εm) is the
associated dual basis of V ∗, then

{ εj1 ∧ · · · ∧ εjr ; 1 ≤ j1 < j2 < · · · < jr ≤ m }

is a basis of
∧rV ∗ for 1 ≤ r ≤ m.

(ii) dim(
∧r

V ∗) =
(

m
r

)
for r ∈ N.

Proof For short, we set

Jr := Jm
r := { (j) := (j1, . . . , jr) ∈ Nr ; 1 ≤ j1 < j2 < · · · < jr ≤ m } .

Also, for an ordered multiindex (j) ∈ Jr, let

ε(j) := εj1 ∧ · · · ∧ εjr .

(i) Let α be an alternating r-form. Because every vector v ∈ V has the basis
representation v =

∑m
k=1〈εk, v〉ek, it follows from Remark 2.2(b) that

α(v1, . . . , vr) =
m∑

k1=1

· · · · ·
m∑

kr=1

〈εk1 , v1〉 · · · · · 〈εkr , vr〉α(ek1 , . . . , ekr)

=
∑

(j)∈Jr

a(j)

∑
σ∈Sr

sign(σ)〈εσ(j1), v1〉 · · · · · 〈εσ(jr), vr〉 ,

where
a(j) := α(ej1 , . . . , ejr) . (2.4)

1The exterior product is also called the wedge product.
2If {e1, . . . , em} is an ordered basis, that is, the order of its elements is fixed, we write

(e1, . . . , em).
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By Remark VII.1.19(a) and because the determinant of a square matrix does not
change when it is transposed, we can rewrite the inner sum of the last expression
as

det
([
〈εjμ , vν〉

]
1≤μ,ν≤r

)
= ε(j)(v1, . . . , vr) .

Therefore

α(v1, . . . , vr) =
∑

(j)∈Jr

a(j)ε
(j)(v1, . . . , vr) for v1, . . . , vr ∈ V ,

and hence
α =

∑
(j)∈Jr

a(j)ε
(j) . (2.5)

This shows that the set { ε(j) ; (j) ∈ Jr } spans the vector space
∧r

V ∗.

Now suppose

α =
∑

(j)∈Jr

b(j)ε
(j)

with b(j) ∈ R is another representation of α. Then we have in particular that

α(ek1 , . . . , ekr) =
∑

(j)∈Jr

b(j)ε
(j)(ek1 , . . . , ekr ) for (k) ∈ Jr .

Because

ε(j)(ek1 , . . . , ekr ) = det
(
[δjμ

kν
]1≤μ,ν≤r

)
=

{
1 if (j) = (k) ,

0 otherwise ,

it follows that b(j) = a(j) for (j) ∈ Jr. Therefore the representation (2.5) is unique.

(ii) This statement is now clear because an m element set contains exactly(
m
r

)
subsets with r elements (see Exercise I.6.3). �

In the following, let

α1 ∧ · · · ∧ α̂j ∧ · · · ∧ αr

for 1 ≤ j ≤ r denote the (r−1)-form one gets by omitting the linear form αj from
α1 ∧ · · · ∧ αr. We use like notation, for example

α1 ∧ · · · ∧ α̂j ∧ · · · ∧ α̂k ∧ · · · ∧ αr ,

when more linear forms are omitted.
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2.4 Examples (a) The one-dimensional vector spaces
∧0V ∗ = R and

∧mV ∗ have
bases 1 and ε1 ∧ · · · ∧ εm, respectively.

(b) {ε1, . . . , εm} is a basis of
∧1

V ∗ = V ∗.

(c)
{

ε1 ∧ · · · ∧ ε̂j ∧ · · · ∧ εm ; 1 ≤ j ≤ m
}

is a basis of
∧m−1

V ∗.

(d) For the basis representation

αj =
m∑

k=1

aj
kεk ∈ V ∗ for 1 ≤ j ≤ r ,

and
α1 ∧ · · · ∧ αr =

∑
(j)∈Jr

a(j)ε
(j) ∈ ∧r

V ∗ ,

we have ai
k = 〈αi, ek〉 for 1 ≤ i ≤ r and 1 ≤ k ≤ m. Also

a(j) = det
(
[ai

jk
]1≤i,k≤r

)
for (j) = (j1, . . . , jr) ∈ Jr .

Proof This follows from (2.3) and (2.4). �

(e) For r ≥ 1, we have∧r
V ∗ = span{ϕ1 ∧ · · · ∧ ϕr ; ϕj ∈ V ∗, 1 ≤ j ≤ r } .

(f) For r ≥ 2, ϕ1 ∧ · · · ∧ϕr = 0 if and only if ϕ1, . . . , ϕr are linearly independent.

Proof This follows from (2.3). �

As the next proposition shows, we can define a bilinear map from
∧r

V ∗ ×∧sV ∗ to
∧r+sV ∗ using the basis representation.

2.5 Proposition Let r, s ∈ N×.

(i) There is exactly one map

∧ :
∧r

V ∗ ×∧s
V ∗ → ∧r+s

V ∗ , (α, β) �→ α ∧ β , (2.6)

the exterior product, with the properties that

(α) ∧ is bilinear;

(β) for ϕ1, . . . , ϕr, ψ1, . . . , ψs ∈ V ∗,

(ϕ1 ∧ · · · ∧ ϕr) ∧ (ψ1 ∧ · · · ∧ ψs) = ϕ1 ∧ · · · ∧ ϕr ∧ ψ1 ∧ · · · ∧ ψs . (2.7)

(ii) Given the basis representations

α =
∑

(j)∈Jr

a(j)ε
(j) and β =

∑
(k)∈Js

b(k)ε
(k) , (2.8)
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we have

α ∧ β =
∑

(j)∈Jr

(k)∈Js

a(j)b(k)ε
(j) ∧ ε(k) . (2.9)

(iii) The exterior product is associative and graded anticommutative, that is,

α ∧ β = (−1)rsβ ∧ α for α ∈
∧r

V ∗ and β ∈
∧s

V ∗ .

Proof If ∧ is some linear map from
∧r

V ∗ ×
∧s

V ∗ to
∧r+s

V ∗ satisfying (2.7),
it follows immediately from (2.8) that (2.9) is true. Hence we can use (2.9) and
a given basis to uniquely define (that is, by the bilinear continuation of the basis
elements to the entire space) the bilinear map (2.6) with the properties (α) and (β).
By (2.3), (2.7), and Example 2.4(e), ∧ is independent of chosen basis. (iii) is now
an immediate consequence of the properties of the determinant. �

2.6 Remarks Suppose Ek for k ∈ N are vector spaces on the same field K.

(a) The direct sum

E :=
∞⊕

k=0

Ek =:
⊕
k≥0

Ek

is defined as follows:

E is the set of all sequences (xk) in
⋃∞

k=0 Ek with xk ∈ Ek for k ∈ N that
satisfy xk = 0 for almost all k ∈ N. On E, addition + and multiplication by
scalars are defined by

(xk) + λ(yk) := (xk + λyk) for (xk), (yk) ∈ E and λ ∈ K .

Then E is a K-vector space.3 In addition, Ek will be identified with a vector
subspace by means of the linear map

Ek → E , xk �→ (0, . . . , 0, xk, 0, . . .) ,

where xk occupies the k-th entry in the sequence at right. Obviously

E = span{Ek ; k ∈ N } and Ek ∩Ej = {0} for k 
= j ,

which justifies the name “direct sum” (see Example I.12.3(l)).

(b) Letting E :=
⊕

k≥0 Ek, we define a multiplication

E × E → E , (v, w) �→ v � w

3E is the vector space of all maps f : N → ⋃∞
k=0 Ek with compact support, with f(k) ∈ Ek

and k ∈ N, endowed with the pointwise product of Example I.12.3(e).
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so that (E, +,�) is an algebra (see Section I.12). We call E the graded algebra
(over K), and we say the multiplication is graded if

Ek � E	 ⊂ Ek+	 for k, � ∈ N .

If the relations
vk � v	 = (−1)k	v	 � vk for k, � ∈ N

are also satisfied, then both the multiplication and the algebra are said to be
graded anticommutative. �

We set ∧
V ∗ :=

⊕
r≥0

∧r
V ∗

and extend the definition of the exterior product by defining

α ∧ β := β ∧ α := αβ for α ∈
∧0

V ∗ = R , β ∈
∧

V ∗ . (2.10)

We also let J0 := {0}.

2.7 Theorem

(i) There is exactly one bilinear, associative, and graded anticommutative map∧
V ∗ ×∧

V ∗ → ∧
V ∗

that extends the exterior product (2.6) and/or (2.10) to all of
∧

V ∗ ×∧
V ∗.

It also will be denoted by ∧ and called the exterior product on
∧

V ∗.

(ii) dim(
∧

V ∗) = 2dim(V ).

Proof (i) This follows immediately from Proposition 2.5 and definition (2.10) by
the natural bilinear extension.

(ii) Because
∧r

V ∗ = {0} for r > dim(V ) and because
∧

V ∗ is a direct sum
of vector subspaces

∧rV ∗, it follows from Proposition 2.3(ii) and the binomial
theorem that

dim(
∧

V ∗) =
m∑

r=0

(m

r

)
= 2m

with m := dim(V ). �

This theorem shows that
∧

V ∗, when provided with the natural vector space
structure and the exterior product, is an associative, graded anticommutative, real
algebra of dimension 2dim(V ). It is called the Grassmann algebra (or the exterior
algebra) of V ∗.
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2.8 Remark Because V is finite-dimensional, V can be identified with V ∗∗ by
means of the canonical isomorphism

κ : V → V ∗∗ := (V ∗)∗

defined by 〈
κ(v), v∗

〉
V ∗ := 〈v∗, v〉 for v ∈ V , v∗ ∈ V ∗ .

Therefore the Grassmann algebra∧
V :=

⊕
r≥0

∧rV

is also well defined on V .

Proof Clearly κ : V → V ∗∗ is linear. Suppose {e1, . . . , em} is a basis of V , and
suppose {ε1, . . . , εm} is the associated dual basis of V ∗. For v ∈ ker(κ), we have

〈εj , v〉 =
〈
κ(v), εj

〉
V ∗ = 0 for j = 1, . . . , m .

Then v =
∑m

j=1〈εj , v〉ej implies v = 0, so κ is injective. Now dim(V ∗∗) = m (see
Theorem VII.2.14) implies κ is an isomorphism. �

Pull backs

For A ∈ L(V, W ) and α ∈
∧r

W ∗, we define A∗α by

A∗α(v1, . . . , vr) := α(Av1, . . . , Avr) for v1, . . . , vr ∈ V

if r ≥ 1 and by
A∗α := α for α ∈ ∧0

W ∗ = R

if r = 0. Then we call A∗α the pull back of α by A on V .

2.9 Remarks (a) For α ∈ ∧r
W ∗, the pull back A∗α belongs to

∧r
V ∗, and the

map A∗ is linear:

A∗ ∈ L(
∧

W ∗,
∧

V ∗) with A(
∧rW ∗) ⊂ ∧rV ∗ and r ∈ N .

We call A∗ the pull back transformation (or usually the pull back) by A.
In the case r = 1, A∗ is the map dual to A (denoted in Section VIII.3 by

A�). Note also that A maps the vector space V to W , while A∗ maps
∧

W ∗ to∧
V ∗ and therefore “in the reverse direction”:

V
A−−→W∧

V ∗ A∗
←−− ∧

W ∗
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(b) If X is another finite-dimensional real vector space and B ∈ L(W, X), then

(BA)∗ = A∗B∗ and (idV )∗ = id∧
V ∗ .

In other words, the map A �→ A∗ is contravariant.

(c) We have
A∗(α ∧ β) = A∗α ∧A∗β for α, β ∈

∧
W ∗ .

Therefore A∗ is an algebra homomorphism from
∧

W ∗ to
∧

V ∗.
Proof These statements follow obviously from the definitions of the pull back and the
exterior product. �

Let m := dim(V ) and W := V , and let α ∈ ∧m
V ∗. According to Proposi-

tion 2.3(ii),
∧m

V ∗ is one-dimensional, and hence A∗α must be proportional to α;
we determine the multiple next.

2.10 Proposition For m := dim(V ) and A ∈ L(V ),

A∗α = det(A)α for α ∈ ∧mV ∗ .

Proof Let {e1, . . . , em} be a basis of V , and let [aj
k] ∈ Rm×m be the matrix of A

in this basis (see Section VII.1). Then

Aek =
m∑

j=1

aj
kej for 1 ≤ k ≤ m .

From this and the properties of α ∈ ∧m
V ∗, it follows that

A∗α(e1, . . . , em) = α(Ae1, . . . , Aem)

=
m∑

j1=1

· · · · ·
m∑

jm=1

aj1
1 · · · · · ajm

m α(ej1 , . . . , ejm)

=
∑

σ∈Sm

sign(σ) a
σ(1)
1 · · · · · aσ(m)

m α(e1, . . . , em)

= det(A)α(e1, . . . , em) ,

where in the last step we have used the signature formula of Remark VII.1.19 and
the fact that det(A�) = det(A). Now the claim follows from the multilinearity of
α. �

The volume element

Suppose Or now is an orientation of V , that is, V := (V,Or) is an oriented vector
space. For short, we a call positively oriented ordered basis of V (which is therefore
an element of Or) a positive basis (see Remark VIII.2.4). Also let m := dim(V ).
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We call every α ∈ ∧mV ∗\{0} a volume form on V . Two volume forms α
and β are equivalent if there is a λ > 0 such that α = λβ. We check easily that
this definition induces an equivalence relation ∼ on the set of all volume forms
on V . Because dim(

∧m
V ∗) = 1, there are exactly two equivalence classes.

2.11 Remarks (a) Suppose (e1, . . . , em) is a positive basis of V and (ε1, . . . , εm)
is the associated dual basis. If (ẽ1, . . . , ẽm) is a basis of V and α ∈

∧m
V ∗\{0}

with α ∼ ε1∧· · ·∧εm, then (ẽ1, . . . , ẽm) is positive if and only if α(ẽ1, . . . , ẽm) > 0.
This means that the two equivalence classes of

∧m
V ∗\{0} can be identified with

the two orientations of V . In other words, the volume form α determines the
orientation Or of V through the requirement

α(e1, . . . , em) > 0 ⇐⇒ (e1, . . . , em) ∈ Or .

Proof Suppose B ∈ L(V ) is the change of basis from (e1, . . . , em) to (ẽ1, . . . , ẽm), that
is, ẽj = Bej for 1 ≤ j ≤ m. Then it follows from Proposition 2.10 that

α(ẽ1, . . . , ẽm) = det(B)α(e1, . . . , em) = det(B)λ

where α = λε1 ∧ · · · ∧ εm and λ > 0. �

(b) We say an automorphism A of V is orientation preserving [or reversing] if
det(A) > 0 [or det(A) < 0]. We set

Laut+(V ) := GL+(V ) :=
{

A ∈ Laut(V ) ; det(A) > 0
}

.

(i) The following statements are equivalent for A ∈ Laut(V ):
(α) A ∈ Laut+(V ).
(β) For every basis (b1, . . . , bm), the bases (b1, . . . , bm) and (Ab1, . . . , Abm)

have the same orientation.
(γ) For every α ∈

∧m
V ∗\{0}, the volume forms α and A∗α determine the

same orientation of V .
(ii) Laut+(V ) is a subgroup of Laut(V ) =: GL(V ).

Proof (i) This follows from A∗α = det(A)α and the definition of orientation.

(ii) The map
Laut(V )→ (R×, · ) , A �→ det(A)

is a homomorphism. According to Exercise I.7.5, Laut+(V ), as the inverse image of the
subgroup ((0,∞), · ) of (R×, · ), is a subgroup of Laut(V ). �

Suppose now (V, ( · | · ),Or) is an oriented inner product space. Also let
(e1, . . . , em) be a positive orthonormal basis (ONB), and let (ε1, . . . , εm) be the
associated dual basis of V ∗. Then

ω := ωV := ε1 ∧ · · · ∧ εm

is called the volume element of V .
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2.12 Remarks (a) For every positive ONB (ẽ1, . . . , ẽm) of V , we have

ω(ẽ1, . . . , ẽm) = 1 .

Proof Let B by the basis change specified by ẽj = Bej for 1 ≤ j ≤ m. Then B belongs
to Laut+(V ) ∩ O(m), and thus det(B) = 1 (see Exercise VII.9.2). Therefore it follows
from Proposition 2.10 that

ω(ẽ1, . . . , ẽm) = B∗ω(e1, . . . , em) = det(B)ε1 ∧ · · · ∧ εm(e1, . . . , em) = 1 ,

which proves the claim. �

(b) The volume element of V is the unique volume form that assigns the value 1
to any, and thus every, positive ONB.
Proof This follows from (a). �

(c) For v1, . . . , vm ∈ Rm, let

P (v1, . . . , vm) :=
{∑m

j=1t
jvj ; 0 ≤ tj ≤ 1

}
,

that is, P (v1, . . . , vm) is the parallelepiped spanned by v1, . . . , vm. Then

|ωRm(v1, . . . , vm)| = volm(P (v1, . . . , vm)) := λm(P (v1, . . . , vm)) .

In other words, the volume element assigns every m-tuple of vectors the oriented
volume4 of the parallelogram they span.
Proof We define B ∈ L(Rm) by vj = Bej for 1 ≤ j ≤ m. Then

P (v1, . . . , vm) = B([0, 1]m) .

Then it follows from Proposition 2.10 and (a) that

ωRm(v1, . . . , vm) = B∗ωRm(e1, . . . , em) = det(B) .

From Theorem IX.5.25, we know that λm(B([0, 1]m)) = |det(B)|, as desired. �

In the following proposition, we represent the volume element ω in terms of
an arbitrary positive basis of V .

2.13 Proposition Suppose (b1, . . . , bm) is a positive basis of V and (β1, . . . , βm)
is its dual basis. Then

ω =
√

Gβ1 ∧ · · · ∧ βm ,

where G := det
[
(bj | bk)

]
is the Gram determinant. In particular,

ω(b1, . . . , bm) =
√

G .

4An oriented volume is positive if and only if (v1, . . . , vm) is positive; it is negative if and only
if (v1, . . . , vm) belongs to −Or.
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Proof Let (e1, . . . , em) be a positive ONB of V , and define B ∈ L(V ) by bj = Bej

for 1 ≤ j ≤ m. According to (i) of Remark 2.11(b), we have det(B) > 0. From
Remark 2.12(a) and (2.3), we get

ω(e1, . . . , em) = 1 = β1 ∧ · · · ∧ βm(b1, . . . , bm)

= B∗(β1 ∧ · · · ∧ βm)(e1, . . . , em) .

Therefore
ω = det(B)β1 ∧ · · · ∧ βm ,

because an m-form is determined by its value on a basis of V , and because of
Proposition 2.10. Also

(bj | bk) = (Bej |Bek) = (B∗Bej | ek) for 1 ≤ j, k ≤ m (2.11)

(see Exercise VII.1.5). Because (e1, . . . , em) is an ONB, any v ∈ V has the repre-
sentation v =

∑m
k=1(v | ek)ek. From this it follows that

Tej =
m∑

k=1

(Tej | ek)ek for 1 ≤ j ≤ m and T ∈ L(V ) .

Hence (2.11) shows that
[
(bj | bk)

]
∈ Rm×m is the matrix of B∗B in the basis

(e1, . . . , em). Therefore

G = det
[
(bj | bk)

]
= det(B∗B) = (det(B))2

because det(B∗) = det(B). The claim follows. �

The Riesz isomorphism

Suppose (V, ( · | · )) is an inner product space and m := dim(V ). We denote the
Riesz isomorphism (2.2) by

Θ := ΘV : V → V ∗ , v �→ (· | v) ,

that is,
〈Θv, w〉 = (w | v) for v, w ∈ V . (2.12)

Then
(α |β)∗ := (Θ−1α |Θ−1β) for α, β ∈ V ∗ (2.13)

defines an inner product on V ∗, the scalar product dual to ( · | · ). In the following,
we always provide V ∗ with this inner product, so that V ∗ := (V ∗, ( · | · )∗) is an
inner product space.
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2.14 Remarks Suppose {e1, . . . , em} is a basis in V and {ε1, . . . , εm} is its dual
basis in V ∗.

(a) We set

gjk := (ej | ek) for 1 ≤ j, k ≤ m , where [gjk] := [gjk]−1 ∈ Rm×m .

Then

Θej =
m∑

k=1

gjkεk and Θ−1εj =
m∑

k=1

gjkek for 1 ≤ j ≤ m .

Proof From the basis expansion Θej =
∑m

k=1 ajkεk for 1 ≤ j ≤ m and from (2.12), we
get

(ej | v) = 〈Θej , v〉 =
m∑

k=1

ajk〈εk, v〉 for v ∈ V and 1 ≤ j ≤ m .

Replacing v by each of e1, . . . , em, we find ajk = (ej | ek), which proves the first statement.
The representation of Θ−1εj is obvious. �

(b) For v =
∑m

j=1 ξjej ∈ V and w =
∑m

j=1 ηjej ∈ V , we have

(v |w) =
m∑

j,k=1

gjkξjηk .

For α =
∑m

j=1 ajε
j ∈ V ∗ and β =

∑m
j=1 bjε

j ∈ V ∗, we have the relation

(α |β)∗ =
m∑

j,k=1

gjkajbk .

Proof The first statement is obvious. From (a) and (2.13), we derive

(εi | ε�)∗ = (Θ−1εi |Θ−1ε�) =
m∑

j,k=1

gijg�k(ej | ek) =
m∑

j,k=1

gijg�kgjk = gi�

for 1 ≤ i, � ≤ m. Now the second claim follows from the bilinearity of ( · | · )∗. �

(c) If {e1, . . . , em} is an ONB, then Θej = εj for 1 ≤ j ≤ m, and {ε1, . . . , εm} is
likewise an ONB.

(d) You may have noticed that we have used upper indices to label the coeffi-
cients of a vector in a basis representation, whereas we used lower indices for the
expansion coefficients of a 1-form. That is,

v =
m∑

j=1

ξjej ∈ V and α =
m∑

j=1

ajε
j ∈ V ∗ .
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From (a) and the symmetry of [gjk], it follows that

Θv =
m∑

j=1

bjε
j ∈ V ∗ and Θ−1α =

m∑
j=1

ηjej ∈ V

with

bj :=
m∑

k=1

gjkξk and ηj :=
m∑

k=1

gjkak for 1 ≤ j ≤ m .

The application of Θ [or Θ−1] formally effects a lowering [or raising] of indices.
On these grounds, we may borrow the musical notations

g� := Θ and g� := Θ−1 ,

or simply v� := Θv for v ∈ V and α� := Θ−1α for α ∈ V ∗. �

The Hodge star operator5

Suppose (V, ( · | · ),Or) is an oriented inner product space, m := dim(V ), and
ω is the volume element of V . Also let {e1, . . . , em} be an ONB of V , and let
{ε1, . . . , εm} be its dual basis.

We now define a scalar product ( · | · )r on
∧r

V ∗ as follows:
For r = 0, let

(α |β)0 := αβ for α, β ∈ ∧0V ∗ = R . (2.14)

For 1 ≤ r ≤ m, let

α =
∑

(j)∈Jr

a(j)ε
(j) and β =

∑
(j)∈Jr

b(j)ε
(j) ,

which, according to Proposition 2.3, are valid basis representations of α, β ∈ ∧r
V ∗.

Then we set
(α |β)r :=

∑
(j)∈Jr

a(j)b(j) . (2.15)

It is clear that ( · | · )r is a scalar product on
∧r

V ∗ for 0 ≤ r ≤ m. By Remarks
2.14(b) and (c), we have ( · | · )1 = ( · | · )∗.

2.15 Remarks (a) The basis { ε(j) ; (j) ∈ Jr } is an ONB of (
∧r

V ∗, ( · | · )r) for
1 ≤ r ≤ m.

(b) For α1, . . . , αr , β1, . . . , βr ∈ V ∗, we have(
α1 ∧ · · · ∧ αr

∣∣ β1 ∧ · · · ∧ βr
)
r

= det
[
(αj |βk)∗

]
.

5This section and the next may be skipped on first reading.
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Proof Suppose

αj =
m∑

i=1

aj
i ε

i and βk =
m∑

i=1

bk
i εi for 1 ≤ j, k ≤ r .

Also let

α1 ∧ · · · ∧ αr =
∑

(j)∈Jr

a(j)ε
(j) and β1 ∧ · · · ∧ βr =

∑
(k)∈Jr

b(k)ε
(k)

be basis representations. Then according to Example 2.4(d), we have

a(j) = det
(
[ai

jk
]1≤i,k≤r

)
and b(k) = det

(
[bi

k�
]1≤i,�≤r

)
for (j) = (j1, . . . , jr) ∈ Jr and (k) = (k1, . . . , kr) ∈ Jr.

By the bilinearity and symmetry of ( · | · )∗ and the fact that the determinant is an
alternating r-form in its row vectors, we find (see the proof of Proposition 2.3(i))

det
[
(αj |βk)∗

]
=

∑
(j)∈Jr

∑
σ∈Sr

sign(σ)a1
jσ(1)

· · · · · ar
jσ(r)

det
([

(εjk |β�)∗
]
1≤k,�≤r

)
=

∑
(j)∈Jr

det
(
[ai

jk
]1≤i,k≤r

)
det

([
(εjk |β�)∗

]
1≤k,�≤r

)
=

∑
(j)∈Jr

a(j) det
([

(εjk |β�)∗
]
1≤k,�≤r

)
=

∑
(j)∈Jr

∑
(k)∈Jr

a(j)b(k) det
([

(εji | εk�)∗
]
1≤i,�≤r

)
.

By (a), we have

det
[
(εji | εk�)∗

]
= det

(
[δji,k� ]1≤i,�≤r

)
=

{
1 if (j) = (k) ,

0 otherwise .

Thus we get

det
[
(αj |βk)∗

]
=

∑
(j)∈Jr

a(j)b(j) .

By (2.15), this finishes the proof. �

(c) The scalar product ( · | · )r on
∧r

V ∗ does not depend on the special choice of
ONB or its orientation, but rather only on the inner product ( · | · ) on V .
Proof This follows from (b), Example 2.4(e), and the scalar product’s bilinearity. �

Because

dim(
∧r

V ∗) =
(m

r

)
=

( m

m− r

)
= dim(

∧m−r
V ∗) , (2.16)

∧r
V ∗ and

∧m−r
V ∗ are isomorphic vector spaces for 0 ≤ r ≤ m. We now introduce

a special (natural) isomorphism from
∧rV ∗ to

∧m−rV ∗, the Hodge star operator.
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We first note that for every α ∈ ∧rV ∗, Proposition 2.5 implies

(β �→ α ∧ β) ∈ L(
∧m−rV ∗,

∧mV ∗) . (2.17)

Because
∧mV ∗ is one-dimensional, there exists exactly one fα(β) ∈ R such that

α ∧ β = fα(β)ωV for β ∈ ∧m−rV ∗ .

By (2.17), fα belongs to L(
∧m−rV ∗, R). Then according to the Riesz represen-

tation theorem, there is exactly one ∗α ∈ ∧m−r
V ∗ with fα(β) = (∗α |β)m−r

for β ∈
∧m−r

V ∗. In other words, every α ∈
∧r

V ∗ has a unique element
∗α ∈ ∧m−r

V ∗ such that

α ∧ β = (∗α |β)m−rωV for β ∈ ∧m−r
V ∗ . (2.18)

Therefore ∗α = Θ−1fα, where Θ denotes the Riesz isomorphism Θ of the space∧m−r
V ∗. Hence

(α �→ ∗α) ∈ L(
∧rV ∗,

∧m−rV ∗) . (2.19)

This map is called the Hodge star operator (or simply the Hodge star).

2.16 Remarks (a) The Hodge star is an isomorphism.
Proof From ∗α = 0 and (2.18), it follows that α ∧ β = 0 for every β ∈ ∧m−rV ∗. For
the special choice β := εr+1 ∧ · · · ∧ εm, it follows from

α =
∑

(j)∈Jr

a(j)ε
(j) with (j0) := (1, . . . , r)

that 0 = α ∧ β = a(j0)ωV , and therefore a(j0) = 0. Analogously we find that a(j) = 0 for
(j) ∈ Jr. Therefore (2.19) is injective. Now the claim is implied by (2.16). �

(b) The Hodge star depends on the scalar product and the orientation of V . �

2.17 Examples (a) For 1 ≤ j ≤ m, we have ∗εj = (−1)j−1ε1 ∧ · · · ∧ ε̂j ∧ · · · ∧ εm.
Proof From the alternating property, the associativity of the exterior product, and
Example 2.4(f) it follows that

εj ∧ (ε1 ∧ · · · ∧ ε̂k ∧ · · · ∧ εm) = (−1)j−1δjkε1 ∧ · · · ∧ εm = (−1)j−1δjkω

for 1 ≤ k ≤ m. Now the claim is implied by (2.18) and the fact that, according to
Remark 2.15(a),

{ ε1 ∧ · · · ∧ ε̂k ∧ · · · ∧ εm ; 1 ≤ k ≤ m }
is an ONB of

∧m−1V ∗. �

(b) For 1 ≤ j ≤ m, we have

∗(ε1 ∧ · · · ∧ ε̂j ∧ · · · ∧ εr) = (−1)m−jεj .

Proof Because
(ε1 ∧ · · · ∧ ε̂j ∧ · · · ∧ εm) ∧ εk = (−1)m−jδjkω ,

the statement follows as in the previous proof. �
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(c) ∗1 = ω and ∗ω = 1.

(d) We now consider the general case covering both (a) and (b). Suppose therefore
1 ≤ r ≤ m − 1 and (j) ∈ Jr. Then there is exactly one (jc) ∈ Jm−r such that
(j) ∨ (jc) := (j1, . . . , jr, j

c
1, . . . , j

c
m−r) is a permutation of {1, . . . , m}. Putting

s(j) := sign((j) ∨ (jc)), we then have

∗ε(j) = s(j)ε(jc) . (2.20)

It follows for α =
∑

(j)∈Jr
a(j)ε

(j) ∈ ∧rV ∗ that

∗α =
∑

(j)∈Jr

s(j)a(j)ε
(jc) .

Proof For (k) ∈ Jm−r with (k) 	= (jc), we have ε(j) ∧ ε(k) = 0, because at least one εji

occurs twice in this product. For (k) = (jc), we derive from (2.3) that

ε(j) ∧ ε(jc) = s(j)ω . (2.21)

Now (2.20) follows from (2.18) and Remark 2.15(a). �

(e) For α ∈ ∧r
V ∗ with 0 ≤ r ≤ m, we have ∗∗α := ∗(∗α) = (−1)r(m−r)α.

Proof For (j), (k) ∈ Jr, it follows from (2.18), (d), and Proposition 2.5(iii) that

(∗∗ε(j) | ε(k))rω = (∗ε(j)) ∧ ε(k) = s(j)ε(jc) ∧ ε(k) = (−1)r(m−r)s(j)ε(k) ∧ ε(jc) .

Then because ε(k) ∧ ε(jc) = 0 for (k) 	= (j) and using (2.21), we find

(∗∗ε(j) |β)r = (−1)r(m−r)(ε(j) |β)r for β ∈ ∧rV ∗ .

Hence ∗∗ε(j) = (−1)r(m−r)ε(j) for (j) ∈ Jr, which, because of Proposition 2.3(i), proves
the claim. �

(f) For α, β ∈
∧r

V ∗, we have the relationship

α ∧ ∗β = β ∧ ∗α = (α |β)rω . (2.22)

Proof Suppose α := β := ε(j). Then by (d) and (2.21), we have

α ∧ ∗β = α ∧ ∗α = β ∧ ∗α = s(j)ε(j) ∧ ε(jc) = ω = (ε(j) | ε(j))rω = (α | β)rω .

Letting α := ε(j) and β := ε(k) with (j) 	= (k), we obtain from (d) that

α ∧ ∗β = s(k)ε(j) ∧ ε(kc) = 0 = s(j)ε(k) ∧ ε(jc) = β ∧ ∗α .

In addition, from Remark 2.15(a) we have (α |β)r = 0. Therefore (2.22) also holds in
this case. Now this claim also follows from Proposition 2.3(i). �
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Indefinite inner products

For several applications, particularly in physics, one must drop the assumption
that the scalar product is positive definite. So we will now shortly go over the
modifications needed to handle this case.

A bilinear form b : V × V → R is said to be nondegenerate if for every
y ∈ V \{0} there is an x ∈ V such that b(x, y) 
= 0. It is symmetric if

b(x, y) = b(y, x) for x, y ∈ V .

Suppose b : V ×V → R is a nondegenerate symmetric bilinear form on V :=
(V, ( · | · )). In the following remarks, we list some basic properties of b.

2.18 Remarks (a) There is a b-orthonormal basis (b-ONB) of V , that is, there
is a basis {b1, . . . , bm} of V such that b(bj , bk) = ±δjk for 1 ≤ j, k ≤ m. If r is
the number of plus sign and s is the number of minuses, then r + s = m. The
number t := r − s is called the signature of b. The signature, as well as r and s,
is independent of the choice of b-ONB. In particular,6

(−1)s = sign(b) := sign
(
det

[
b(bj , bk)

])
.

Proof Theorem VII.4.2(iii) clearly implies that b is continuous. Then b(x, · ) : V → R
is a continuous linear form on V . Therefore, the Riesz representation theorem (Theo-
rem VII.2.14) guarantees the existence of a unique Bx ∈ V such that

b(x, y) =
(
Bx

∣∣ y
)

for y ∈ V .

From the linearity of b( · , y), it follows that x �→ Bx is linear. Then by Theorem VII.1.6,
B belongs to L(V ), and

b(x, y) = (Bx | y) for x, y ∈ V .

The map B is called the representation operator of b with respect to ( · | · ). Because b is
nondegenerate, B is an automorphism of V (and conversely), and because b is symmetric,
so is B.

Remark 2.1(a) allows us to identify V with Rm. Therefore the principal axis trans-
formation theorem7 guarantees the existence of an ONB {v1, . . . , vm} of V and eigenval-
ues λ1 ≥ · · · ≥ λm of B such that

Bvj = λjvj for 1 ≤ j ≤ m . (2.23)

Because b is nondegenerate, we have λj 	= 0 for 1 ≤ j ≤ m. We set bj := vj

/√
|λj |.

Then {b1, . . . , bm} is a basis of V , and it follows from (2.23) that

b(bj , bk) = (Bbj | bk) = (Bvj | vk)
/√
|λjλk| = λj(vj | vk)

/√
|λjλk| = sign(λj)δjk

for 1 ≤ j, k ≤ m.

6sign(b) should not be confused with the signature t. Obviously 2 sign(b) = m − t.
7See Example VII.10.17(b).
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To show that t = r − s is independent of the choice of b-ONB, it suffices, because
r + s = m, to prove this is true of r. Suppose therefore {c1, . . . , cm} is a b-ONB of V
such that b(cj , cj) = 1 for 1 ≤ j ≤ ρ and b(cj , cj) = −1 for ρ + 1 ≤ j ≤ m. We want to
show that the vectors b1, . . . , br, cρ+1, . . . , cm are linearly independent, since this would
imply r + (m − ρ) ≤ m and therefore r ≤ ρ; also, by exchanging the two b-ONB, we
would analogously obtain ρ ≤ r, which then determines r.

Suppose therefore

β1b1 + · · ·+ βrbr = γρ+1cρ+1 + · · ·+ γmcm

with real numbers β1, . . . , βr, γρ+1, . . . , γm. Every linear dependence relation of the set
{b1, . . . , br, cρ+1, . . . , cm} can be so written. Then for v := β1b1 + · · ·+ βrbr, we have

b(v, v) =
r∑

j=1

β2
r = −

m∑
j=ρ+1

γ2
j ,

which implies β1 = · · · = βr = γρ+1 = · · · = γm = 0. The last claim is now clear. �

(b) (Riesz representation theorem) To every v∗ ∈ V ∗, there is exactly one v ∈ V
with b(v, w) = 〈v∗, w〉 for w ∈W . The map

Θb : V → V ∗ , v �→ b(v, · )

is a vector space isomorphism, the Riesz isomorphism with respect to b. The
statements of Remark 2.14(a) also hold in this case.
Proof With the representation operator B of b and the Riesz isomorphism Θ of V ,
Theorem VII.2.14 implies

b(v, w) = (Bv |w) = 〈ΘBv, w〉 for v, w ∈ V .

The claim then follows after putting Θb := ΘB. �

(c) For every basis {v1, . . . , vm} of V , the Gram determinant with respect to b,
that is,

Gb := det
([

b(vj , vk)
])

,

is nonzero.
Proof The determinant Gb is zero if and only if the system of linear equations

m∑
k=1

b(vj , vk)ξk = 0 for 1 ≤ j ≤ m , (2.24)

has a nontrivial solution. If v :=
∑m

k=1 ξkvk, then (2.24) is equivalent to b(vj , v) = 0 for
1 ≤ j ≤ m. Because {v1, . . . , vm} is a basis of V and b is nondegenerate, it follows that
v = 0, and we are done. �

(d) Suppose (b1, . . . , bm) is a positive basis of V and (β1, . . . , βm) is its dual basis.
Also assume B is unitary. Then

ε1 ∧ · · · ∧ εm =
√
|Gb|β1 ∧ · · · ∧ βm .
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Proof The first part of the proof of Proposition 2.13 shows that

ε1 ∧ · · · ∧ εm = det(B)β1 ∧ · · · ∧ βm ,

where B ∈ L(V ) is the change of basis from (e1, . . . , em) to (b1, . . . , bm). With the
representation B of b, we find

b(bj , bk) = (Bbj | bk) = (BBej |Bek) = (B∗BBej | ek) for 1 ≤ j, k ≤ m .

As in the proof of Proposition 2.13, this implies

Gb = det
[
b(bj , bk)

]
= det(B∗BB) = det(B)(det(B))2 .

Because |det(B)| = 1, it follows that (det(B))2 = |Gb |, which implies the claim. �

Suppose now Or is an orientation of V and b is a nondegenerate symmetric
bilinear form on V . Also let (e1, . . . , em) be a positive b-ONB of V whose dual
basis is (ε1, . . . , εm).

On V ∗, we define by

b∗(v∗, w∗) := b(Θ−1
b v∗, Θ−1

b w∗) for v∗, w∗ ∈ V ∗ .

the nondegenerate symmetric bilinear form b∗. For α1, . . . , αr, β1, . . . , βr ∈ V ∗,
we set

br(α1 ∧ · · · ∧ αr, β1 ∧ · · · ∧ βr) := det
[
b∗(αj , βk)

]
,

and therefore b1 = b∗; we also define

br :
∧r

V ∗ ×∧r
V ∗ → R for r ≥ 1

by bilinear extension using the basis representation of Proposition 2.3(i). As in
(2.16)–(2.19), it follows (with b0 := ( · | · )0) that there is a linear map∧r

V ∗ → ∧m−r
V ∗ , α �→ ∗α

for 0 ≤ r ≤ m, called the Hodge star operator, that is characterized by

α ∧ β = bm−r(∗α, β)ε1 ∧ · · · ∧ εm for β ∈
∧m−r

V ∗ . (2.25)

2.19 Remarks (a) The Hodge star is an isomorphism that depends only on the
bilinear form b and the orientation, not on the b-ONB.

(b) For 1 ≤ r ≤ m, { ε(j) ; (j) ∈ Jr } is a br-ONB, and for ω := ε1 ∧ · · · ∧ εm, we
have bm(ω, ω) = sign(b).
Proof The first statement follows easily from the definition of br. Because

bm(ω, ω) = det
(
diag

[
b∗(ε1, ε1), . . . , b∗(εm, εm)

])
= det

(
diag

[
b(e1, e1), . . . , b(em, em)

])
,

the second statement is also true. �



280 XI Manifolds and differential forms

(c) We have ∗1 = sign(b)ω and ∗ω = 1. Also

∗ε(j) = s(j)bm−r(ε(jc), ε(jc))ε(jc) for (j) ∈ Jr ,

for 1 ≤ r ≤ m− 1.
Proof First ω = 1∧ω = bm(∗1, ω)ω implies bm(∗1, ω) = 1. Next dim(

∧mV ∗) = 1 gives
∗1 = aω with a ∈ R. From this we obtain with (b) that

1 = bm(∗1, ω) = abm(ω, ω) = a sign(b) ,

and therefore a = sign(b). This proves the first claim. Analogously, we find ∗ω = 1.

Suppose 1 ≤ r ≤ m− 1 and (j) ∈ Jr. Then

ω = s(j)ε(j) ∧ ε(jc) = s(j)bm−r(∗ε(j), ε(jc))ω ,

and therefore bm−r(∗ε(j), ε(jc)) = s(j). Note { ε(k) ; (k) ∈ Jm−r } is a bm−r-ONB of∧m−rV ∗. Also ∗ε(j) ∈ ∧m−rV ∗, and bm−r(∗ε(j), ε(k)) = 0 for (k) 	= (jc). It follows that
∗ε(j) = aε(jc) with a ∈ R, and therefore

abm−r(ε
(jc), ε(jc)) = bm−r(∗ε(j), ε(jc)) = s(j) .

This implies a = s(j)bm−r(ε
(jc), ε(jc)). Now the last claim is clear. �

(d) For α ∈ ∧r
V ∗ with 0 ≤ r ≤ m, we have ∗∗α = sign(b) (−1)r(m−r)α.

Proof As in the proof of (c), we obtain from

br(∗ε(jc), ε(j))ω = ε(jc) ∧ ε(j) = (−1)r(m−r)ε(j) ∧ ε(jc) = s(j)(−1)r(m−r)ω ,

that ∗ε(jc) = s(j)(−1)r(m−r)br(ε
(j), ε(j))ε(j). Therefore we find by (c) that

∗(∗ε(j)) = ∗
(
s(j)bm−r(ε

(jc), ε(jc))ε(jc))
= s(j)2(−1)r(m−r)br(ε

(j), ε(j))bm−r(ε
(jc), ε(jc))ε(j) ,

from which the claim follows. �

(e) For α, β ∈ ∧r
V ∗, we have

α ∧ ∗β = β ∧ ∗α = sign(b) br(α, β)ω .

Proof This is true by an obvious modification of the proof of Example 2.17(f). �

An important use of these ideas is the Minkowski space R4
1,3 :=

(
R4, ( · | · )1,3

)
,

that is, the “spacetime” of special relativity with the Minkowski metric

(x | y)1,3 := x0y0 − x1y1 − x2y2 − x3y3 .

(In relativity theory, the “0-th coordinate” is the time.) We will elaborate on this
later.

An indefinite nondegenerate symmetric bilinear form b is also called an in-
definite inner product; accordingly, (V, b) is an indefinite inner product space.
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Tensors

For the sake of completeness, we now briefly introduce the concept of general
tensors, which we will encounter in several later sections. Suppose r, s ∈ N. An
(r + s)-linear map

γ : V ∗ × · · · × V ∗︸ ︷︷ ︸
r

×V × · · · × V︸ ︷︷ ︸
s

→ R

is called a tensor on V of type (r, s) or an (r, s)-tensor. In particular, γ is con-
travariant of order r and covariant of order s (or r-contravariant and s-covariant).
We denote by T r

s (V ) the normed8 vector space of all (r, s)-tensors on V .
For γ1 ∈ T r1

s1
(V ) and γ2 ∈ T r2

s2
(V ), the tensor product γ1 ⊗ γ2 is defined by

γ1 ⊗ γ2(α1, . . . , αr1 , β1, . . . , βr2 , v1, . . . , vs1 , w1, . . . , ws2)

:= γ1(α1, . . . , αr1 , v1, . . . , vs1)γ2(β1, . . . , βr2 , w1, . . . , ws2)

with α1, . . . , αr1 , β1, . . . , βr2 ∈ V ∗ and v1, . . . , vs1 , w1, . . . , ws2 ∈ V .
In the following and as usual, we identify V ∗∗ with V using the canonical

isomorphism κ of Remark 2.8.

2.20 Remarks (a) T 1
0 (V ) = V , T 0

1 (V ) = V ∗, and T 0
2 (V ) = L2(V, R).

(b) For γ ∈ T 1
1 (V ), there exists exactly one C ∈ L(V ) with

γ(v∗, v) = 〈v∗, Cv〉 for v ∈ V , v∗ ∈ V ∗ . (2.26)

The map
T 1

1 (V )→ L(V ) , γ �→ C

is an isometric isomorphism.
Proof For v ∈ V , the map γ( · , v) belongs to V ∗∗ = V . Because γ is bilinear, we have

C :=
(
v �→ γ( · , v)

)
∈ L(V )

with 〈v∗, Cv〉 = γ(v∗, v) for (v, v∗) ∈ V × V ∗. Conversely, every C ∈ L(V ) defines by
virtue of (2.26) a γ ∈ T 1

1 (V ). The last claim is now clear. �

(c) The tensor product is bilinear and associative.

(d) Letting m := dim(V ), we have dim
(
T r

s (V )
)

= mr+s. If (e1, . . . , em) is a basis
of V and (ε1, . . . , εm) is its dual basis, then{

ej1 ⊗ · · · ⊗ ejr ⊗ εk1 ⊗ · · · ⊗ εks ; ji, ki ∈ {1, . . . , m}
}

is a basis of T r
s (V ).

8See Theorem VII.4.2.
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Proof We leave the simple proof to you. �

(e)
∧r

V ∗ is a vector subspace of T 0
r (V ).

(f) The dual pairing 〈 · , · 〉 : V ∗ × V → R is a (1, 1)-tensor on V . �

Exercises

1 For T ∈ Lr(V, R), the alternator, Alt(T ), is defined by

Alt(T )(v1, . . . , vr) :=
1

r!

∑
σ∈Sr

sign(σ)T (vσ(1), . . . , vσ(r))

for v1, . . . , vr ∈ V . Show that

(a) Alt ∈ L(Lr(V, R),
∧rV ∗);

(b) Alt2 = Alt.

2 For S ∈ Ls(V, R) and T ∈ Lt(V, R), define S ⊗ T ∈ Ls+t(V, R) by

S ⊗ T (v1, . . . , vs, vs+1, . . . , vs+t) := S(v1, . . . , vs)T (vs+1, . . . , vs+t) ,

where v1, . . . , vs+t ∈ V . Show that for α ∈ ∧rV ∗ and β ∈ ∧sV ∗,

α ∧ β =
(r + s)!

r! s!
Alt(α⊗ β) .

In Exercises 3–8, let (V, ( · , | ·),Or) be an oriented inner product space, let ω be its
volume element, and let Θ be the Riesz isomorphism.

3 Let dim(V ) = 3. Then the vector or cross product × on V is defined by9

× : V × V → V , (v, w) �→ v × w := Θ−1ω(v,w, · ) .

Show the following:

(a) (v ×w |u) = ω(v,w, u) for u, v, w ∈ V .

(b) The vector product is bilinear and alternating.

(c) The vector v×w is different from zero if and only if v and w are linearly independent.

(d) If v and w are linear independent, then (v, w, v × w) is a positive basis of V .

(e) The vector v × w is orthogonal to v and w.

(f) For v, w ∈ V \{0}, we have

|v × w| =
√
|v|2 |w|2 − (v |w)2 = |v| |w| sin ϕ ,

where ϕ ∈ [0, π] is the (unoriented) angle between the vectors v and w.

9See Remarks VIII.2.14.
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(g) Let (e1, e2, e3) be a positive ONB of V . Then for v =
∑

j ξjej and w =
∑

j ηjej , we
have

v × w = (ξ2η3 − ξ3η2)e1 + (ξ3η1 − ξ1η3)e2 + (ξ1η2 − ξ2η1)e3 .

(h) (Grassmann identity) v1 × (v2 × v3) = (v1 | v3)v2 − (v1 | v2)v3.

(i) The vector product is not associative.

(j) (v1 × v2)× (v3 × v4) = ω(v1, v2, v4)v3 − ω(v1, v2, v3)v4.

(k) (Jacobi identity) v1 × (v2 × v3) + v2 × (v3 × v1) + v3 × (v1 × v2) = 0.

(Hints: (f) Recall Proposition 2.13 and (a). (h) The vector product is determined by
its values in the basis (e1, e2, e3).)

4 For 0 ≤ r ≤ m, verify the following formulas:

(a) (∗α |β)m−r = (−1)r(m−r)(α | ∗β)r for α ∈ ∧rV ∗ and β ∈ ∧m−rV ∗.

(b) (∗α) ∧ β = (∗β) ∧ α for α, β ∈ ∧rV ∗.

(c) ∗(Θv ∧ ∗Θw) = (v |w) for v, w ∈ V .

5 Let (b1, . . . , bm) be a positive basis of V with (β1, . . . , βm) its dual basis. Prove these:

(a) βj ∧ ∗βk = gjk
√

G β1 ∧ · · · ∧ βm for 1 ≤ j, k ≤ m.

(b) ∗βj =
∑m

k=1(−1)k−1gjk
√

G β1 ∧ · · · ∧ β̂k ∧ · · · ∧ βm for 1 ≤ j ≤ m. If V is three-
dimensional, show that

∗(βj ∧ βk) =
1√
G

sign(j, k, �)
3∑

i=1

g�iβ
i =

1

G
sign(j, k, �)Θb�

for (j, k, �) ∈ S3.

6 In the case dim(V ) = 3, show v ×w = Θ−1
(
∗(Θv ∧Θw)

)
for v, w ∈ V .

7 Let (b1, b2, b3) be a positive basis of V with dual basis (β1, β2, β3). Show that

bj × bk =
√

G sign(j, k, �)

3∑
i=1

g�ibi =
√

G sign(j, k, �)Θ−1β�

for (j, k, �) ∈ S3.

8 Let
(
W, ( · | · )W ,Or(W )

)
be an oriented inner product, and let A ∈ L(V, W ) be an

orientation-preserving isometry (that is, A∗ωW = ωV ). Then show that the diagram

∧rV ∗ ∧m−rV ∗

∧rW ∗ ∧m−rW ∗

A∗ A∗

∗

∗

�

�

� �

commutes for 0 ≤ r ≤ m.

9 Formulate and prove the claims of Exercises 4 and 5 for indefinite inner product
spaces.
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10 For k ∈ N, let Kk[X] be the vector space of all polynomials of degree ≤ k over
K. Show that K[X] =

⊕
k≥0 Kk[X] is a graded commutative algebra with respect to the

usual multiplication of polynomials, that is, with respect to the convolution of Section I.8.

11 Let (ε0, ε1, ε2, ε3) be the basis dual to the standard basis of R4. For c, Ej , Hj ∈ R,
set

α := (E1ε
1 + E2ε

2 + E3ε
3) ∧ cε0 + (H1ε

2 ∧ ε3 + H2ε
3 ∧ ε1 + H3ε

1 ∧ ε2) ,

β := −(H1ε
1 + H2ε

2 + H3ε
3) ∧ cε0 + (E1ε

2 ∧ ε3 + E2ε
3 ∧ ε1 + E3ε

1 ∧ ε2)

and calculate ∗α and ∗β with respect to ( · | · )1,3.



3 The local theory of differential forms

In Section VIII.3, we learned much about differential forms of degree 1, the Pfaff
forms, and we developed a calculus that forms the foundation for the theory of line
integral. Now we extend these ideas to more dimensions. In a first step, to which
this section is given, we introduce differential forms of arbitrary degree on open
subsets of Euclidean space, and we provide the calculus of differential forms in
this “local” situation. In the sections thereafter, we consider the general situation,
namely, differential forms on manifolds.

A differential form of degree r on an open subset X of Rm is nothing other
than a set consisting of an alternating r-form on the tangent space TxX for each
x ∈ X . For this reason, the first part of this section is really only a reformulation
of the results of linear algebra provided in Section 2. Rather than formulating new
theorems, we will explain the definitions with remarks and examples. Analysis will
come into play when we introduce an operation on differential forms, the exterior
derivative. The exterior derivative makes use of concepts from analysis and goes
beyond linear algebra.

In this entire section
• X is open in Rm and K = R.

Definitions and basis representations

For x ∈ X , the cotangent space T ∗
xX = {x} × (Rm)∗ is the space dual to the

tangent space TxX = {x} × Rm. Therefore the exterior product∧r
T ∗

xX = {x} ×∧r(Rm)∗ for r ∈ N (3.1)

and the Grassmann algebra ∧
T ∗

x X = {x} ×∧
(Rm)∗

are well defined on T ∗
xX . We can generalize the tangent and cotangent bundle by

defining the bundle of alternating r-forms on X by∧rT ∗X :=
⋃

x∈X

∧rT ∗
xX = X ×∧r(Rm)∗

and by defining the Grassmann bundle of X by∧
T ∗X :=

⋃
x∈X

∧
T ∗

x X = X ×∧
(Rm)∗ .

A map
α : X → ∧rT ∗X with α(x) ∈ ∧rT ∗

xX and x ∈ X ,
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that is, a section1 of the Grassmann bundle, is called a differential form of de-
gree r (for short, an r-form) on X. By (3.1), every r-form on X has a unique
representation

α(x) = (x, α(x)) for x ∈ X

whose r-covector part (for short, covector part) is

α : X → ∧r(Rm)∗ .

Let k ∈ N ∪ {∞}. The r-form α belongs to the class Ck (or is k-times
continuously differentiable,2 or smooth in case k =∞) if this is true for its covector
part, that is, if

α ∈ Ck
(
X,

∧r(Rm)∗
)

. (3.2)

This definition is meaningful because, according to Remark 2.2(a),
∧r(Rm)∗ is a

(closed) vector subspace of Lr(Rm, R).

For simplicity and in order to concentrate on the essential aspects of the
theory, we consider almost exclusively smooth r-forms and smooth vector fields.
We treat the Ck case only briefly in remarks, whose verification we leave to you.

We denote the set of all smooth r-forms on X by Ωr(X). For short we set

E(X) := C∞(X) and V(X) := V∞(X) .

If v1, . . . ,vr are vector fields on X with corresponding vector parts v1, . . . , vr,
that is, if vj(x) = (x, vj(x)) for x ∈ X and 1 ≤ j ≤ r, then we set

α(v1, . . . , vr)(x) := α(x)
(
v1(x), . . . ,vr(x)

)
for x ∈ X . (3.3)

Then it follows from (VIII.3.1) that

α(x)(v1(x), . . . ,vr(x)) = α(x)(v1(x), . . . , vr(x)) for x ∈ X ,

that is,
α(v1, . . . ,vr) = α(v1, . . . , vr) . (3.4)

This shows that, without causing misunderstanding, we can identify an r-form α
with its covector part α and a vector field v with its vector part v. For this reason,
we will from now on write differential forms and vector fields in a normal font (not
boldface). In each instance, you will be able to decide without trouble whether a
symbol describes a form or its covector part (or whether it means a vector field or
its vector part).

1We apply the language of the theory of “vector bundles”. We will not elaborate on these
here (but see for example [Con93], [Dar94], or [HR72]), although it would lead to a unification
of various ideas.

2Naturally, we say an r-form of class C0 is continuous.
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Addition

Ωr(X)× Ωr(X)→ Ωr(X) , (α, β) �→ α + β

and the exterior product

∧ : Ωr(X)× Ωs(X)→ Ωr+s(X) , (α, β) �→ α ∧ β

are performed pointwise:

(α + β)(x) := α(x) + β(x) and (α ∧ β)(x) := α(x) ∧ β(x) for x ∈ X .

These maps are obviously well defined.

3.1 Remarks (a) Ω0(X) = E(X).

(b) Ω1(X) = Ω(∞)(X), that is, the smooth 1-forms of X are C∞ Pfaff forms on X .

(c) Ωr(X) = {0} for r > m.

(d) Ωr(X) for 0 ≤ r ≤ m is an infinite-dimensional real vector space and a free
E(X)-module of dimension

(
m
r

)
(with respect to pointwise multiplication). A

module basis for Ωr(X) is given by{
dx(j) := dxj1 ∧ · · · ∧ dxjm ; (j) ∈ Jr

}
. (3.5)

Proof Because of (a) and the canonical identification of R with the subring3 R1 of
E(X), we have the relation α ∧ β = αβ for α ∈ R and β ∈ Ω(X). The first statement
then follows immediately from Remark 2.2(a) and Example I.12.3(e).

According to Remark VIII.3.3, (dx1(x), . . . , dxm(x)) is the basis dual to the canon-
ical basis ((e1)x, . . . , (em)x) of TxX. Then the remaining claim follows from Proposi-
tion 2.3. �

(e) An r-form α on X belongs to the class Ck if and only if every r-tuple v1, . . . , vr

in Vk(X) satisfies
α(v1, . . . , vr) ∈ Ck(X) . (3.6)

This is the case if and only if the coefficients a(j) of the canonical basis represen-
tation4

α =
∑

(j)∈Jr

a(j)dx(j) (3.7)

satisfy the relation
a(j) ∈ Ck(X) for (j) ∈ Jr . (3.8)

31(x) = 1 for x ∈ X.
4It follows from Proposition 2.3, as in the proof of (d), that (3.5) is a basis of the RX -module

of all r-forms on X.
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Proof When α belongs to the class Ck, it follows easily from (3.2) and Corollary VII.4.7
that (3.6) is true. Then because (2.4) implies

a(j) = α(ej1 , . . . , ejr ) , (3.9)

(3.8) follows from (3.6). If (3.8) is satisfied, we conclude from (3.7) and the constancy of
the basis forms dx(j) that α belongs to the class Ck. �

(f) The exterior product5 is bilinear, associative, and graded anticommutative.
Therefore

Ω(X) :=
⊕
r≥0

Ωr(X)

is an (infinite-dimensional) associative, graded anticommutative algebra (with re-
spect to the product ∧ ). Also Ω(X) is a free E(X)-module of dimension 2m (with
respect to pointwise multiplication); we call it the module of differential forms
on X .
Proof These are simple consequences of Theorem 2.7 and (d). �

(g) Every α ∈ Ωr(X) is an alternating r-form on V(X).
Proof This follows immediately from the definition (3.3). �

(h) (regularity) For k ∈ N, let Ωr
(k)(X) be the set of r-forms of class Ck on X. Then

the previous statements hold analogously for Ωr
(k)(X) when E(X) is replaced everywhere

by Ck(X). �

In the following, we will generally not state that the coefficients a(j) of the
canonical basis representation (3.7) of α ∈ Ωr(X) belong to E(X). This will be
deemed self-evident.

3.2 Examples (a) As we already know, every Pfaff Form α ∈ Ω1(X) has the
canonical basis representation

α =
m∑

j=1

aj dxj .

(b) For α ∈ Ωm−1(X), the basis representation has the form

α =
m∑

j=1

(−1)j−1aj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm .

(c) In the case m = 3, any α ∈ Ω2(X) has the basis representation6

α = a1 dx2 ∧ dx3 + a2 dx3 ∧ dx1 + a3 dx1 ∧ dx2 .

Proof Because dx3 ∧ dx2 = −dx2 ∧ dx3, this follows from (b). �

5Sometimes we say wedge product instead of exterior product.
6Note the cyclic permutation of the indices.
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(d) Every α ∈ Ωm(X) has the form a dx1 ∧ · · · ∧ dxm with a ∈ E(X).

(e) For m = 3, the wedge product of

α = a1 dx1 + a2 dx2 + a3 dx3 and β = b1 dx1 + b2 dx2 + b3 dx3

is
α ∧ β = (a2b3 − a3b2) dx2 ∧ dx3 + (a3b1 − a1b3) dx3 ∧ dx1

+ (a1b2 − a2b1) dx1 ∧ dx2 .

Proof This follows from Remark 3.1(f). �

Pull backs

Let Y be open in Rn and ϕ ∈ C∞(X, Y ). In a generalization of the pull back of
Pfaff forms, we introduce the pull back of differential forms by ϕ. It is a map

ϕ∗ : Ω(Y ) → Ω(X) (3.10)

defined by

(ϕ∗β)(x) := (Txϕ)∗β
(
ϕ(x)

)
for x ∈ X and β ∈ Ω(Y ) . (3.11)

If β ∈ Ωr(Y ), then, because Txϕ ∈ L(TxX, Tϕ(x)Y ) and by Remark 2.9(a),
both (Txϕ)∗β

(
ϕ(x)

)
and β

(
ϕ(x)

)
∈ ∧r

T ∗
ϕ(x)Y lie in

∧r
T ∗

x X . From Txϕ =(
ϕ(x), ∂ϕ(x)

)
and

∂ϕ ∈ C∞(
X,L(Rm, Rn)

)
and also because (3.4) implies

ϕ∗β(v1, . . . , vr) = (β ◦ ϕ)
(
(∂ϕ)v1, . . . , (∂ϕ)vr

)
for v1, . . . , vr ∈ V(X) ,

we see by Remark 3.1(e) that ϕ∗β belongs to Ωr(X). Therefore (3.10) is well
defined through (3.11).

3.3 Remarks (a) The map (3.10) is R-linear and satisfies

(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗ and (idX)∗ = idΩ(X) ,

that is, the pull back operates contravariantly. It is also compatible with the
exterior product, that is,

ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β for α, β ∈ Ω(Y ) .

Therefore ϕ∗ is an algebra homomorphism from Ω(Y ) to Ω(X).
Proof This follows from Remarks 2.9 and the chain rule given in Remark VII.10.2(b). �

(b) (regularity) The pull back can also be naturally defined for ϕ ∈ Ck+1(X, Y ). If
1 ≤ r ≤ m, then an r-form of class Ck+1 generally becomes an r-form only of class Ck,
while an r-form of class Ck remains in the same class. In the case r = 0, the pull back
preserves the regularity. �
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3.4 Examples Let (x1, . . . , xm) and (y1, . . . , yn) be the Euclidean coordinates of
X and Y , respectively.

(a) ϕ∗ dyj = dϕj =
m∑

k=1

∂kϕj dxk and 1 ≤ j ≤ n .

Proof See Example VIII.3.14(a). �

(b) For
β =

∑
(j)∈Jr

b(j) dy(j) ∈ Ωr(Y ) ,

we have
ϕ∗β =

∑
(j)∈Jr

(ϕ∗b(j)) dϕ(j) .

Proof This is a consequence of (a) and Remark 3.3(a). �

(c) In the case m = n, we have

ϕ∗(dy1 ∧ · · · ∧ dym) = dϕ1 ∧ · · · ∧ dϕm = (det ∂ϕ) dx1 ∧ · · · ∧ dxm .

Proof The first equality follows from (b). Because det Txϕ = det ∂ϕ(x) for x ∈ X, the
claim follows from Proposition 2.10 and the constancy of the basis form dx1 ∧ · · · ∧ dxm

on X. �

(d) Let m = 2 and n = 3, and let (u, v) and (x, y, z) be respective Euclidean
coordinates of X and Y . Then7

ϕ∗(a dy ∧ dz + b dz ∧ dx + c dx ∧ dy)

=
[
a ◦ ϕ

∂(ϕ2, ϕ3)
∂(u, v)

+ b ◦ ϕ
∂(ϕ3, ϕ1)
∂(u, v)

+ c ◦ ϕ
∂(ϕ1, ϕ2)
∂(u, v)

]
du ∧ dv .

Proof Because dϕj = ϕj
u du + ϕj

v dv for 1 ≤ j ≤ 3 and because

∂(ϕ2, ϕ3)

∂(u, v)
= det

[
ϕ2

u ϕ2
v

ϕ3
u ϕ3

v

]
= ϕ2

uϕ3
v − ϕ3

uϕ2
v

etc., the claim follows from (b) and Example 3.2(e). �

(e) (plane polar coordinates) Let

f2 : R2 → R2 , (r, ϕ) �→ (x, y) := (r cosϕ, r sin ϕ)

be the polar coordinate map. Then

f∗
2 (dx ∧ dy) = r dr ∧ dϕ .

Proof This follows from (c) and Example X.8.7. �

7See Remark VII.7.9.
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(f) (spherical coordinates) For the spherical coordinate map

f3 : R3 → R3 , (r, ϕ, ϑ) �→ (x, y, z) := (r cosϕ sin ϑ, r sin ϕ sinϑ, r cosϑ) ,

we have
f∗
3 (dx ∧ dy ∧ dz) = −r2 sin ϑ dr ∧ dϕ ∧ dϑ .

Proof Lemma X.8.8 and (c). �

(g) (m-dimensional polar coordinates) Let

fm : Rm → Rm , (r, ϕ, ϑ1, . . . , ϑm−2) �→ (x1, . . . , xm)

be the m-dimensional polar coordinate map (X.8.17). Then

f∗
m dx1 ∧ · · · ∧ dxm = (−1)mrm−1wm(ϑ) dr ∧ dϕ ∧ dϑ1 ∧ · · · ∧ dϑm−2 ,

where wm(ϑ) := sinϑ1 sin2 ϑ2 · · · sinm−2 ϑm−2.
Proof This follows from Lemma X.8.8. �

(h) (cylindrical coordinates) Let

f : R3 → R3 , (r, ϕ, z) �→ (x, y, z) := (r cosϕ, r sin ϕ, z)

be the cylindrical coordinate map. Then

f∗(dx ∧ dy ∧ dz) = r dr ∧ dϕ ∧ dz .

Proof Example VII.9.11(c) and (c). �

(i) If ϕ is a constant map, then ϕ∗α = 0 for α ∈ Ωr(Y ) with r ≥ 1.
Proof Because dϕj = 0 for 1 ≤ j ≤ n, the claim is a consequence of (b). �

(j) Let m ≤ n, and let i : Rm ↪→ Rn

be the natural embedding that identi-
fies Rm with Rm × {0} ⊂ Rn. Also let
Y be open in Rn with

Y ∩
(
Rm × {0}

)
⊃ i(X) .

Note that X is an m-dimensional sub-
manifold of Y .

For α ∈ Ωr(Y ), define α |X , the restriction of α to X , by

(α |X)(x) := α(x, 0) | (TxX)r for x ∈ X .

In other words, when α has the basis representation

α =
∑

(j)∈Jn
r

a(j) dx(j) ,
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it follows that

(α |X)(x) =
∑

(j)∈Jn
r

jr≤m

a(j)(x, 0) dx(j) for x ∈ X .

Then i∗α = α |X .
Proof Because of the linearity of i∗ and that of the restriction map

Ωr(Y )→ Ωr(X) , α �→ α |X ,

it suffices to consider the case α = a dx(j) for (j) ∈ Jn
r . Then it follows from (b) that

i∗α = (i∗a) di(j) .

By (i∗a)(x) = a(x, 0) and ik = prk i = 0 for m + 1 ≤ k ≤ n (where prk : Rn → R is the
canonical projection), we have di(j) = 0 for jr > m. For jr ≤ m, we find di(j) = dx(j).
Now the claim is obvious. �

(k) Let (q, p) ∈ Rm × Rm = R2m be any point of R2m. We define the (standard)
symplectic form on R2m by

σ :=
m∑

j=1

dpj ∧ dqj .

We denote by Sp(2m) the set of all S ∈ L(R2m) with S∗σ = σ. Then Sp(2m)
is a subgroup of Laut(R2m), the symplectic group. Any S ∈ Sp(2m) satisfies
det(S) = 1.
Proof We define α ∈ Ω2m(R2m) by α := σ ∧ · · · ∧ σ (with m factors). Then there is an
a ∈ R× such that α = aω, where ω denotes the volume element of R2m. Suppose now
S ∈ Sp(2m). Then it follows from S∗σ = σ and Remark 3.3(a) that

S∗α = S∗σ ∧ · · · ∧ S∗σ = σ ∧ · · · ∧ σ = α .

Because S∗α = S∗(aω) = aS∗ω and from (c), we find

α = S∗α = adet(S)ω = det(S)α ,

and therefore det(S) = 1. We leave the proof that Sp(2m) is a subgroup of Laut(R2m)
to you as an exercise. �

The exterior derivative

In Section VIII.3, we saw that the differential df of a function f ∈ E(X) = Ω0(X)
is a smooth Pfaff form and therefore an element of Ω1(X). Obviously d : Ω0(X)→
Ω1(X) is linear. In addition, we know from Proposition VIII.3.12 that d commutes
with pull backs. The following theorem shows that d can be extended to an R-
linear map from the module Ω(X) of differential forms to itself; this map likewise
commutes with pull backs.
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3.5 Theorem There is exactly one map

d : Ω(X)→ Ω(X) ,

the exterior derivative,8 with the properties (i)–(iv):

(i) d is R-linear and maps Ωr(X) to Ωr+1(X).

(ii) d satisfies the product rule

d(α ∧ β) = dα ∧ β + (−1)rα ∧ dβ for α ∈ Ωr(X) and β ∈ Ω(X) .

(iii) d2 := d ◦ d = 0.

(iv) The exterior derivative df for f ∈ E(X) equals the differential of f .

If Y is open in Rn and ϕ ∈ C∞(X, Y ), then

d ◦ ϕ∗ = ϕ∗ ◦ d , (3.12)

that is, the exterior derivative commutes with the pull back.

Proof (a) (uniqueness) For

α =
∑

(j)∈Jr

a(j) dx(j) ∈ Ωr(X) , (3.13)

it follows easily from (i)–(iv) that

dα =
∑

(j)∈Jr

da(j) ∧ dx(j) ∈ Ωr+1(X) . (3.14)

This implies that at most one map can satisfy the properties (i)–(iv).

(b) (existence) For α ∈ Ωr(X) expanded as in (3.13), we defined dα by (3.14).
Then d obviously satisfies the demands (i) and (iv).

To show (ii), realize that (i) means we need only consider the case α = a dx(j)

and β = b dx(k) with (j) ∈ Jr and (k) ∈ Js. Then it follows from (3.14), the prop-
erties of the exterior product, and the ordinary product rule of Corollary VII.3.8
that

d(α ∧ β) = d(ab dx(j) ∧ dx(k)) = d(ab) ∧ dx(j) ∧ dx(k)

= da ∧ dx(j) ∧ b dx(k) + (−1)ra dx(j) ∧ db ∧ dx(k)

= d(a dx(j)) ∧ b dx(k) + (−1)ra dx(j) ∧ d(b dx(k))
= dα ∧ β + (−1)rα ∧ dβ ,

as desired.
8Sometimes the exterior derivative is called the Cartan derivative.



294 XI Manifolds and differential forms

For the proof of (iii), we can use the linearity of d to again restrict to the
case α = a dx(j) with (j) ∈ Jr. Then it follows from (3.14) and (ii) that

d(dα) = d(da ∧ dx(j)) = d2a ∧ dx(j) − da ∧ d(dx(j)) .

By successive application of the product rule (ii) to d(dx(j)), we see that the claim
will follow if we can show d2a = 0 for a ∈ Ω0(X) = E(X).

Suppose therefore a ∈ E(X). Then we may use (i), (ii), and (iv) to derive
the relation

d(da) = d
( m∑

k=1

∂ka dxk
)

=
m∑

k=1

d(∂ka) ∧ dxk

=
m∑

j,k=1

∂j∂ka dxj ∧ dxk =
∑

1≤j<k≤m

(∂j∂ka− ∂k∂ja) dxj ∧ dxk = 0 ,

where the last equality follows from Schwarz’s theorem (Corollary VII.5.5). There-
fore (iii) is satisfied.

(c) Suppose ϕ ∈ C∞(X, Y ) and (j) ∈ Jn
r . Let β = b dy(j) ∈ Ωr(Y ). Then

according to Example 3.4(b), we have

ϕ∗β = ϕ∗b dϕ(j) ∈ Ωr(X) . (3.15)

From (3.14) and the property of the pull back explained in Remark 3.3(a), we get

ϕ∗ dβ = ϕ∗(db ∧ dy(j)) = ϕ∗ db ∧ ϕ∗ dy(j) = ϕ∗ db ∧ dϕ(j) .

Proposition VIII.3.12 implies ϕ∗ db = d(ϕ∗b). Therefore we find using (i), (iii),
and (3.15) that

ϕ∗ dβ = d(ϕ∗b) ∧ dϕ(j) = d(ϕ∗b) ∧ dϕ(j) + (−1)1ϕ∗b ∧ d(dϕ(j))

= d(ϕ∗b ∧ dϕ(j)) = d(ϕ∗β) .

Now (3.12) follows from the linearity of ϕ∗ and d and from Remark 3.1(e). �

3.6 Remarks (a) For α =
∑

(j)∈Jr
a(j) dx(j) ∈ Ωr(X), we have

dα =
∑

(j)∈Jr

da(j) ∧ dx(j) .

Proof This is the statement (3.13), (3.14). �



XI.3 The local theory of differential forms 295

(b) For ϕ ∈ C∞(X, Y ) and r ∈ N, the diagram

Ωr(Y ) Ωr+1(Y )

Ωr(X) Ωr+1(X)

ϕ∗ ϕ∗

d

d

�

�
� �

commutes.

Proof This is (3.12). �

(c) (regularity) If α is an r-form of class Ck+1, then dα is obviously an (r + 1)-form of
class Ck. However, for α = a dx(j) with (j) ∈ Jm

r , we have

dα = da ∧ dx(j) =
∑

i

∂ia dxi ∧ dx(j) ,

where we only sum over the indices i ∈ {1, . . . , m} with i 	= jk for 1 ≤ k ≤ r, because
dxi ∧ dx(j) = 0 is true of the remaining indices. Hence there is an r-form α of class Ck

for which dα also belongs to the class Ck. �

3.7 Examples (a) For α =
∑m

j=1 aj dxj ∈ Ω1(X), we have

dα =
∑

1≤j<k≤m

(∂jak − ∂kaj) dxj ∧ dxk .

(b) For α =
∑m

j=1(−1)j−1aj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm ∈ Ωm−1(X), we get

dα =
( m∑

j=1

∂jaj

)
dx1 ∧ · · · ∧ dxm .

(c) dα = 0 for α ∈ Ωm(X). �

The Poincaré lemma

A differential form α ∈ Ω(X) is said to be closed if dα = 0. We say it is exact if
there an antiderivative β ∈ Ω(X) such that9 dβ = α.

3.8 Remarks and examples (a) Example 3.7(a) says α =
∑m

j=1 aj dxj is closed
if and only if ∂jak = ∂kaj for 1 ≤ j, k ≤ m. Therefore this extended notion of
closedness reduces to the definition of Section VIII.3 in the case of Pfaff forms.

9Saying that a form is exact implies that it has degree at least 1.
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(b) Every exact form is closed.
Proof This follows from d2 = 0. �

(c) Every m-form on X is closed.
Proof Example 3.7(c). �

(d) (regularity) The definition of closed is clearly meaningful for forms of class C1; the
notion of exact makes sense for continuous differential forms. �

In Theorem VIII.3.8, we have seen that every closed Pfaff form is exact if X
is star shaped. In the following, we will show that this “lemma” of Poincaré is
also true in the general case.

Let I := [0, 1], and let t be a generic point in I. For � ∈ {0, 1}, the injection

i	 : X → I ×X , x �→ (�, x)

is smooth. Obviously i0 and i1 identify the X with the “bottom” {0}×X and the
“top” {1} ×X , respectively, of the cylinder I ×X over X . Therefore10

i∗	 : Ωr(I ×X)→ Ωr(X)

is defined. For α ∈ Ω(I × X) the form i∗0α [or i∗1α] is a restriction of α to X .
It is obtained by replacing (t, x) by (0, x) [or (1, x)] in the coefficients of the
canonical basis representation of α, and by removing all terms in which dt occurs
(see Example 3.4(j)).

We define a linear map

K : Ωr+1(I ×X)→ Ωr(X)

by

Kα :=
∑

(j)∈Jr

∫ 1

0

a(j)(t, · ) dt dx(j) (3.16)

for
α =

∑
(j)∈Jr

a(j) dt ∧ dx(j) +
∑

(k)∈Jr+1

b(k) dx(k) . (3.17)

3.9 Lemma K is well defined and satisfies

K ◦ d + d ◦K = i∗1 − i∗0 . (3.18)

Proof The theorem about the differentiability of parameter-dependent integrals
(Theorem X.3.18) implies easily that Kα, defined for the α of (3.17) by (3.16),
belongs to Ωr(X). Clearly the map K is also linear.

10Because the partial derivative ∂t is defined on I, it is clear how differential forms are defined
on I × X. Note that I × X is a manifold with boundary, and see Section 4.
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To show (3.18), it suffices to consider the cases α = a dt∧dx(j) and α = b dx(k)

with (j) ∈ Jr and (k) ∈ Jr+1.
(i) Let α = a dt ∧ dx(j). Then i∗0α = i∗1α = 0. We also get

K dα = K(da ∧ dt ∧ dx(j)) = K
( m∑

	=1

∂x�a dx	 ∧ dt ∧ dx(j)
)

= −
m∑

	=1

∫ 1

0

∂x�a(t, · ) dt dx	 ∧ dx(j) ,

where we have used dt∧ dt∧ dx(j) = 0. On the other hand, Theorem X.3.18 gives

d(Kα) = d
(∫ 1

0

a(t, · ) dt dx(j)
)

=
m∑

	=1

∫ 1

0

∂x�a(t, · ) dt dx	 ∧ dx(j) .

This proves the claim in this case.
(ii) Let α = b dx(k) with (k) ∈ Jr+1. Then Kα = 0, and therefore dKα = 0.

Also, we find

dα = ∂tb dt ∧ dx(k) +
m∑

	=1

∂x�b dx	 ∧ dx(k)

and

Kdα =
∫ 1

0

∂tb(τ, · ) dτ dx(k) =
(
b(1, · )− b(0, · )

)
dx(k) = i∗1α− i∗0α ,

so the claim holds in this case also. �

Let M and N be manifolds. Two maps f0, f1 ∈ C∞(M, N) are said to be
homotopic in N if there is a map11 h ∈ C∞(I ×M, N), a homotopy, such that
h(j, · ) = fj for j = 0, 1. A map f ∈ C∞(M, N) is null-homotopic in N if it
is homotopic in N to a constant map. Finally, we say M is contractible if the
identity map from M to M is null-homotopic.

3.10 Remarks (a) The statement “f1 is homotopic in N to f2” defines an equiv-
alence relation in C∞(M, N) (or, more generally, in Ck(M, N)).

(b) The concept of a (continuous) homotopy obviously generalizes the idea of a
loop homotopy (see Section VIII.4).

(c) Every star shaped open set is contractible.
Proof Let X be star shaped with respect to x0 ∈ X. Then

h : I ×X → X , (t, x) �→ x0 + t(x− x0)

is obvious a homotopy with h(0, · ) = x0 and h(1, · ) = idX . �

11Note that I × M is a manifold with boundary.
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(d) (regularity) For k ∈ N×, the definitions above are meaningful for Ck manifolds M
and N if all the functions that appear belong to the class Ck. They are then also mean-
ingful if M and N are topological spaces and all functions considered are continuous. �

We can now easily prove the generalized Poincaré lemma.

3.11 Theorem (Poincaré lemma) If X is contractible, then every closed differential
form on X is exact.

Proof Suppose α ∈ Ωr+1(X) is closed. Because X is contractible, there exists
an h ∈ C∞(I ×X, X) such that h(1, · ) = idX and h(0, · ) = p for some p ∈ X .
Because α is closed, h∗α ∈ Ωr+1(I × X) is also closed because d ◦ h∗ = h∗ ◦ d.
Therefore it follows from Lemma 3.9 that

d(Kh∗α) = i∗1h
∗α− i∗0h

∗α = (h ◦ i1)∗α = α .

This is because h◦i1 = idX and because i∗0h
∗α = (h◦i0)∗α is a null form according

to Example 3.4(i). �

We should point out that the proof of the Poincaré lemma gives an explicit
procedure for constructing an antiderivative of a given closed differential form.
The situation is particularly simple when X is star shaped, where we can assume
without loss of generality (by applying a suitable translation) that X is star shaped
with respect to 0.

3.12 Corollary Suppose X is star shaped with respect to 0. Suppose with r ∈ N×

that

α =
∑

(j)∈Jr

a(j) dx(j) ∈ Ωr(X)

is closed. Also let

β :=
∑

(j)∈Jr

r∑
k=1

(−1)k−1

∫ 1

0

tr−1a(j)(tx) dt xjk dxj1 ∧ · · · ∧ d̂xjk ∧ · · · ∧ dxjr . (3.19)

Then β belongs to Ωr−1(X), and dβ = α.

Proof In this case, h(t, x) := tx for (t, x) ∈ I × X defines a “contraction of X
to 0”. From dhj = xj dt + t dxj and Example 3.4(b), it follows that

h∗α(t, x) =
∑

(j)∈Jr

a(j)(tx)tr dx(j)

+
∑

(j)∈Jr

r∑
k=1

(−1)k−1a(j)(tx)tr−1xjk dt ∧ dxj1 ∧ · · · ∧ d̂xjk ∧ · · · ∧ dxjr ,
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because those terms in which dt occurs at least twice vanish. From (3.16) and
(3.17), it follows that β = Kh∗α, and the claim now follows from the proof of the
Poincaré lemma. �

3.13 Remarks (a) In the case r = 1, that is, when α is a Pfaff form, the formula
for β is the case as the one in (VIII.3.4).

(b) Let m = 3 and

α = a1 dx2 ∧ dx3 + a2 dx3 ∧ dx1 + a3 dx1 ∧ dx2 ∈ Ω2(X) .

Then the problem of finding a β =
∑3

j=1 bj dxj with dβ = α is equivalent to the
problem of finding three functions b1, b2, b3 ∈ E(X) that satisfy the system

∂1b2 − ∂2b1 = a3 ,

∂2b3 − ∂3b2 = a1 ,

∂3b1 − ∂1b3 = a2

(3.20)

of partial differential equations in X . Then, for given aj ∈ E(X),

∂1a1 + ∂2a2 + ∂3a3 = 0 (3.21)

is required for (3.20) to have a solution. If X is contractible (for example X = R3),
then (3.21) is also sufficient.

Proof By Example 3.7(a), (3.20) is equivalent to dβ = α. Example 3.7(b) shows that
(3.21) is equivalent to dα = 0. Now the claim follows from d2 = 0 and the Poincaré
lemma. �

From Corollary 3.12, it follows in particular that in the case of star shaped
domains, (3.20) can be solved by quadrature using the formula (3.19). In the
general case, the equation dβ = α can clearly also be reformulated as an equivalent
system of partial differential equations.

Of course, (3.20) does not have a unique solution, because a closed form can
be added to β, that is, one can add any solution (b1, b2, b3) of the homogeneous
system obtained by zeroing the right side of (3.20).

Tensors

Let r, s ∈ N. For x ∈ X , we set

T r
s (TxX) := {x} × T r

s (Rm) (3.22)
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and call γ ∈ T r
s (TxX) an r-contravariant and s-covariant tensor, or tensor of

type (r, s) on TxX . The bundle of (r, s)-tensors on X is defined by

T r
s (X) :=

⋃
x∈X

T r
s (TxX) = X × T r

s (Rm) .

A map
γ : X → T r

s (X) with γ(x) ∈ T r
s (TxX) ,

that is, a section of the tensor bundle T r
s (X), is called an (r, s)-tensor (field) or

tensor of type (r, s) on X . By (3.22), every (r, s)-tensor γ on X has the unique
representation

γ(x) =
(
x, γ(x)

)
for x ∈ X ,

with the principal part12

γ : X → T r
s (Rm) .

Let k ∈ N ∪ {∞}. An (r, s)-tensor γ belongs to the class Ck (or is k-times
continuously differentiable or smooth if k = ∞) if this is true of its principal part,
that is, if13

γ ∈ Ck
(
X,Lr+s(Rm, R)

)
.

We denote the set of all smooth (r, s)-tensors on X by

T r
s (X) .

If α1, . . . ,αr are Pfaff forms and v1, . . . ,vs are vector fields on X with correspond-
ing principal parts α1, . . . , αr and v1, . . . , vs, then we will set

γ(α1, . . . ,αr, v1, . . . ,vs)(x) := γ(x)
(
α1(x), . . . , αr(x), v1(x), . . . , vs(x)

)
for x ∈ X . (This is clearly consistent with (3.4).) For these reasons, we can use
the same notational conventions as before with vector fields and differential forms,
that is, we identify tensors with their principal parts, and from now on use the
ordinary font instead of boldface.

Addition

T r
s (X)× T r

s (X)→ T r
s (X) , (γ, δ) �→ γ + δ ,

multiplication by functions

E(X)× T r
s (X)→ T r

s (X), , (f, γ) �→ fγ

and the tensor product

T r1
s1

(X)× T r2
s2

(X)→ T r1+r2
s1+s2

(X) , (γ, δ) �→ γ ⊗ δ (3.23)

12In the case s = 0, we called this the vector part, and for r = 0, we called it the covector
part. A tensor combines vectors and covectors, so such terminology is no longer possible.

13As usual, we identify TxRm and T ∗
x Rm with Rm.
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will also be defined pointwise:

(γ + δ)(x) := γ(x) + δ(x) , (fγ)(x) := f(x)γ(x) , (γ ⊗ δ)(x) := γ(x) ⊗ δ(x) .

The following remarks are simple consequences of Remarks 2.20 and the chain
rule. We leave the detailed proofs to you as exercises.

3.14 Remarks (a) T 1
0 (X) = V(X) and T 0

1 (X) = Ω1(X). Also

T 0
2 (X) = C∞(

X,L2(Rm)
)

,

where we have used the canonical identification of a tensor with its principal part.

(b) The tensor product is E(X)-bilinear and associative.

(c) T r
s (X) is an infinite-dimensional R-vector space and an mr+s-dimensional

E(X)-module. With the canonical basis (∂/∂x1, . . . , ∂/∂xm) of Rm,{ ∂

∂xj1
⊗ · · · ⊗ ∂

∂xjr
⊗ dxk1 ⊗ · · · ⊗ dxks ; ji, ki ∈ {1, . . . , m}

}
(3.24)

is a module basis of T r
s (X).

(d) An (r, s)-tensor γ on X belongs to T r
s (X) if and only if every r-tuple α1, . . . , αr

in Ω1(X) and every s-tuple v1, . . . , vs in V(X) satisfy

γ(α1, . . . , αr, v1, . . . , vs) ∈ E(X) .

This is the case if and only if the coefficients of γ in basis (3.24) belong to E(X).

(e) (regularity) The definitions and claims above have obvious analogues which remain
true for tensors of class Ck. �

Exercises

1 Let α, β ∈ Ω(R4) be given by

α := dx1 + x2 dx2 and β := sin(x2) dx1 ∧ dx3 + cos(x3) dx2 ∧ dx4 ,

and define h ∈ C∞(R4, R4) by h(x) := (x1, x2, x3x4, x4).

Calculate:

(i) γ := α ∧ β;

(ii) h∗γ;

(iii) h∗γ(0)(e1, e2, e3 + e4), where (e1, e2, e3, e4) is the standard basis in R4;

(iv) dα, dβ, dγ, d(h∗γ).

2 Let f3 : R3 → R3, (r, ϕ, ϑ) �→ (x, y, z) be the spherical coordinate map.
Calculate

(a) f∗
3 dx, f∗

3 dy, f∗
3 dz;
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(b) f∗
3 (dy ∧ dz);

(c) f∗
3 dx ∧ f∗

3 (dy ∧ dz).

3 A simple thermodynamic system (for example, an ideal gas) is characterized by its
volume V and its temperature T (here V, T ∈ R). The state of such a system is then
described by the pressure p := p(V,T ) and the internal energy E := E(V, T ). By the
second law of thermodynamics, the system has another state function S := S(V, T ), the
entropy, whose differential is given by

dS :=
dE + p dV

T
for T > 0 .

Show the following facts:

(a) E and p satisfy the relation

∂E

∂V
= T

∂p

∂T
− p .

(b) The internal energy of an ideal gas, which satisfies the equation of state pV = RT
with R ∈ R the (universal gas) constant, is independent of the volume, that is, E = E(T ).

(c) For van der Waals gas, which has the equation of state(
p +

a

V 2

)
(V − b) = c T for a, b, c ∈ R× , (3.25)

the internal energy does depend on volume.

(Hints: (a) d2 = 0. (c) (3.25) =⇒ T ∂p/∂T = p + a/V 2.)

Remark In the physics literature, dα is often written δα when the 1-form α is not exact.

4 An r-form α ∈ Ωr(X) is said to be decomposable if there are α1, . . . , αr ∈ Ω1(X) such
that

α = α1 ∧ α2 ∧ · · · ∧ αr .

Let α, β ∈ Ωr(X) be decomposable. Calculate (α + β) ∧ (α + β).

5 Suppose α =
∑

j≤k ajk dxj ∧ dxk ∈ Ω2(X). Show that α is decomposable if and only
if

aijak� + ajkai� + akiaj� = 0 for 1 ≤ i, j, k, � ≤ n ,

where ajk := −akj for j ≥ k.

6 Let α =
∑

i≤j aij dxi ∧ dxj ∈ Ω2(X). Show

dα =
∑

i<j<k

(∂aij

∂xk
+

∂ajk

∂xi
+

∂aki

∂xj

)
dxi ∧ dxj ∧ dxk .

7 Calculate the exterior derivatives of

(a) dα ∧ β − α ∧ dβ and

(b) dα ∧ β ∧ γ + α ∧ dβ ∧ γ + α ∧ β ∧ dγ, where in (b) α and β are of even degree.

8 Find dα if α :=
∑m

j=1(−1)j−1 xj/|x|m dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm ∈ Ωm−1
(
Rm

∖
{0}

)
.
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9 Let α := 2xz dy ∧ dz + dz ∧ dx − (z2 + ex) dx ∧ dy ∈ Ω2(R3). Show that α is exact
and determine an antiderivative.

10 Suppose ω ∈ Ω2(X) is nondegenerate. Show that

Θω : V(X)→ Ω1(X) , v �→ ω(v, · )

is an E(X)-module isomorphism.

11 Prove these three statements:

(a) The symplectic form σ ∈ Ω2(R2m) is nondegenerate and closed.

(b) The m-fold product σm := σ ∧ · · · ∧ σ ∈ Ω2m(R2m) satisfies σm 	= 0.

(c) According to Exercise 10 and (b) the symplectic gradient sgrad f := Θ−1
σ df ∈ V(R2m)

is defined for every f ∈ E(R2m). Calculate sgrad f in the coordinates (q, p) ∈ Rm × Rm.

12 If σ is the symplectic form on R2m, then

{ · , · } : E(R2m)× E(R2m)→ E(R2m) , (f, g) �→ σ(sgrad f, sgrad g)

is called the Poisson bracket.

For f, g, h ∈ E(R2m) and c ∈ R prove

(i) in local coordinates (q1, . . . , qm, p1, . . . , pm), the Poisson bracket reads

{f, g} =

m∑
j=1

( ∂f

∂pj

∂g

∂qj
− ∂f

∂qj

∂g

∂pj

)
;

(ii) {f, c g + h} = c{f, g}+ {f, h};
(iii) {f, g} = −{g, f};
(iv)

{
f, {g, h}

}
+

{
g, {h, f}

}
+

{
h, {f, g}

}
= 0 (Jacobi identity);

(v) {f, gh} = g{f, h}+ h{f, g};
(vi) sgrad{f, g} = (sgrad f | sgrad g)R2m .

13 Show that the Poisson bracket is related to the symplectic form σ on R2m by the
relation

df ∧ dg ∧ σm−1 =
1

m
{f, g}σm .



4 Vector fields and differential forms

This section is devoted to the global theory of differential forms, that is, to dif-
ferential forms on manifolds. The first part, which is essentially a simple transfer
of the local theory, requires us to focus on the problem of regularity. With help
from a theorem about partitions of unity, we can then extend the important con-
cept of the exterior derivative to the case of manifolds and show that the rules we
developed for the local theory still apply.

The global theory brings up an important new idea, the orientability of a
manifold. We present various ways to characterize this central concept and con-
sider numerous examples. To prepare for the theory of integration on manifolds, we
give explicit representations of the volume elements of many important manifolds.

In this entire section,

• M is an m-dimensional, and N is an n-dimensional manifold;

• r ∈ N.

Vector fields

By a vector field v on M , we mean a map

v : M → TM with v(p) ∈ TpM for p ∈M ,

that is, a section of the tangent bundle. If v is a vector field on M , then we
can “transplant” it using a diffeomorphism from M to N . So we define for ϕ ∈
Diff1(M, N) the push forward ϕ∗v of v by ϕ by letting

Therefore ϕ∗v is a vector field on N . For functions on M , the push forward by a
bijection ψ : M → N is the assignment

ψ∗ : RM → RN , a �→ ψ∗a := a ◦ ψ−1 .

4.1 Remarks (a) For functions, the push forward ψ∗ is obviously the same as
the pull back ψ−1: ψ∗ = (ψ−1)∗. Note however that, in contrast to the pull back,
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the push forward is only defined for bijections. In particular, it must be true that
dim(M) = dim(N).1

(b) Let ϕ ∈ Diff1(M, N). Then

ϕ∗(a + b) = ϕ∗a + ϕ∗b , ϕ∗(v + w) = ϕ∗v + ϕ∗w ,

and
ϕ∗(av) = ϕ∗a ϕ∗v

for a, b ∈ RM and vector fields v and w on M .

(c) Let ϕ ∈ Diff(M, N) and ψ ∈ Diff(N, L), where L is another manifold. Then

(ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗ and (idM )∗ = idF(M) (4.1)

for F(M) := E(M) or F(M) := V(M). The rule (4.1) means that the push forward
operates covariantly.
Proof The statement is obvious for push forwards of functions. For vector fields, (4.1)
follows from the chain rule of Remark VII.10.9(b) and from Remark 1.14(c). �

Let k ∈ N ∪ {∞}. The vector field v on M belongs to the class Ck (that is,
it is k-times continuously differentiable, or smooth in case k = ∞) if every point p
of M has a chart (ϕ, U) around p such that2 ϕ∗v ∈ Vk

(
ϕ(U)

)
. We denote the set

of all vector fields on M of class Ck by Vk(M). For simplicity of notation, we set

V(M) := V∞(M) and E(M) := C∞(M) .

4.2 Remarks (a) The definition of Ck vector fields is coordinate-independent. If
v is a Ck vector field and (ψ, V ) is an arbitrary chart of M , then ψ∗v belongs to
the class Ck.
Proof Suppose therefore (ψ, V ) is a chart of M . Then we need to show that ψ∗v belongs
to the class Ck. Every q ∈ V has a chart (ϕ, U) of M around it such that ϕ∗v ∈ Vk

(
ϕ(U)

)
.

Then ψ∗v = (ψ ◦ ϕ−1)∗ϕ∗v follows from (4.1). Because

ψ ◦ ϕ−1 ∈ Diff
(
ϕ(U ∩ V ), ψ(U ∩ V )

)
and ϕ∗v ∈ Vk

(
ϕ(U)

)
, we find ψ∗v ∈ Vk

(
ψ(U ∩ V )

)
. Because this holds for every q ∈ V

and because differentiability is a local property, we get ψ∗v ∈ Vk
(
ψ(V )

)
. �

(b) The pointwise-defined operations

V(M)× V(M)→ V(M) , (v, w) �→ v + w

1See Exercise VII.10.9.
2See Section VIII.3. What was said there holds without change for open subsets of Hm as

well.
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and
E(M)× V(M)→ V(M) , (a, v) �→ av

make V(M) into an E(M)-module. In particular, E(M) and V(M) are (infinite-
dimensional) R-vector spaces.

If ϕ ∈ Diff(M, N), then ϕ∗ is a module isomorphism from E(M) to E(N) and
from V(M) to V(N).

Proof It follows from (4.1) that

idM = (ϕ−1 ◦ ϕ)∗ = (ϕ−1)∗ϕ∗ and idN = (ϕ ◦ ϕ−1)∗ = ϕ∗(ϕ
−1)∗ .

Therefore ϕ∗ is bijective, and ϕ−1
∗ = (ϕ−1)∗. The remaining claims are simple conse-

quences of Remark 4.1(b) and the properties of vector fields on open subsets of Hm (see
Section VIII.3). �

(c) Let X0 and X1 be open in Rm, and suppose ϕ ∈ Diff(X0, X1). Also denote
by Θj : V(Xj) → Ω1(Xj) for j = 0, 1 the canonical module isomorphism that was
defined in Remark VIII.3.3(g). Then

(ϕ−1)∗ ◦Θ0 = Θ1 ◦ ϕ∗ ,

that is, the diagram

V(X0) V(X1)

Ω1(X0) Ω1(X1)

Θ0 Θ1

ϕ∗

(ϕ−1)∗

�

�
� �

commutes.

(d) (regularity) Let k ∈ N. For ϕ ∈ Diffk+1(M, N) and 0 ≤ � ≤ k, the push forward ϕ∗
maps C�(M) to C�(N) and V�(M) to V�(N), but this statement (without the inequality)
does not hold for � = k + 1.

If M is a Ck+1 manifold, then the C�(M)-modules C�(M) and V�(M) are defined
for 0 ≤ � ≤ k; however3 the modules Ck+1(M) and Vk+1(M) are not.

Proof This is because the tangential “loses” one derivative. �

Local basis representation

Let (ϕ, U) be a chart of M around p. Then we denote by

∂j |p =
∂

∂xj

∣∣∣
p
∈ TpM for 1 ≤ j ≤ m

3except for trivial cases
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the basis vectors of TpM corresponding to the local coordinates ϕ = (x1, . . . , xm).
In other words, ∂j |p is the tangent vector on the coordinate path t �→ ϕ−1

(
ϕ(p) +

tej

)
at the point4 p, that is,

∂j |p := (Tpϕ)−1
(
ϕ(p), ej

)
for 1 ≤ j ≤ m , (4.2)

where (e1, . . . , em) is the canonical basis of Rm.

4.3 Remarks (a) Let iM : M ↪→ Rm, and let gϕ := iM ◦ ϕ−1 : ϕ(U) → Rm be
the parametrization belonging to ϕ. Then

(TpiM )∂j |p =
(
p, ∂jgϕ

(
ϕ(p)

))
∈ TpRm for 1 ≤ j ≤ m .

This means that, if we identify ∂j |p ∈ TpM with its image in TpRm under the
canonical injection

TpiM : TpM → TpRm ,

then we find ∂j |p =
(
p, ∂jgϕ

(
ϕ(p)

))
.

Proof From Example VII.10.9(b) and Remark 1.14(c), we get

Tϕ(p)gϕ = Tϕ(p)(iM ◦ ϕ−1) = TpiM ◦ Tϕ(p)(ϕ
−1) = TpiM ◦ (Tpϕ)−1 .

Then it follows from (4.2) that

(TpiM )∂j |p = (Tϕ(p)gϕ)
(
ϕ(p), ej

)
=

(
p, ∂gϕ

(
ϕ(p)

)
ej

)
=

(
p, ∂jgϕ

(
ϕ(p)

))
. �

(b) The maps

∂j =
∂

∂xj
: U → TU , p �→ ∂j |p for 1 ≤ j ≤ m

are smooth vector fields on U .
Proof This is clear because

(ϕ∗∂j)
(
ϕ(p)

)
= (Tpϕ)(Tpϕ)−1(ϕ(p), ej

)
=

(
ϕ(p), ej

)
for 1 ≤ j ≤ m

for p ∈ U . �

4If p is in the interior of M . If p is a boundary point, we must make ϕ a submanifold chart
of Rm around p for M .
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(c) For p ∈ U , we have a basis (∂1|p, . . . , ∂m|p) of TpM and a module basis
(∂1, . . . , ∂m) of V(U). A vector field v on U belongs to V(U) if and only if the
coefficients vj of the basis representation

v =
m∑

j=1

vj∂j

all belong to E(U).
Proof The first statement follows from Remark VII.10.5 and the definition of the tan-
gent space at a boundary point. The second claim is a consequence of

ϕ∗v = ϕ∗
( m∑

j=1

vj∂j

)
=

m∑
j=1

(ϕ∗v
j)ϕ∗∂j ,

of (b), and of Remark VIII.3.3(c). �

(d) (regularity) Let k ∈ N, and let M be a Ck+1 manifold. In this case, (∂1, . . . , ∂m) is
a Ck(U)-module basis of Vk(U). A vector field v on U belongs to Vk(U) if and only if
its coefficients with respect to this basis representation lie in Ck(U). �

Differential forms

To generalize the cotangent space T ∗
p X and the cotangent bundle T ∗X of an open

subset X of Rm, we now define the cotangent space of M at the point p by

T ∗
p M := (TpM)∗ = L(TpM, R) .

We define the cotangent bundle of M by

T ∗M :=
⋃

p∈M

T ∗
p M .

We denote by

〈 · , · 〉p : T ∗
p M × TpM → R for p ∈M

the dual pairing5 and call

〈 · , · 〉 : T ∗M × TM → E(M) , (α, v) �→
[
p �→

〈
α(p), v(p)

〉
p

]
the dual pairing as well.

Because TpM is an m-dimensional vector space, so is T ∗
p M . Hence for r ∈ N

and p ∈ M , the r-fold exterior product
∧r

T ∗
p M of T ∗

p M and the Grassmann

5See Section VIII.3.
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algebra ∧
T ∗

p M =
⊕
r≥0

∧r
T ∗

p M

of T ∗
p M are defined. To extend the concepts introduced in the previous section,

we define the bundle of alternating r-forms on M by∧rT ∗M :=
⋃

p∈M

∧rT ∗
p M .

We define the Grassmann bundle of M by∧
T ∗M :=

⋃
p∈M

∧
T ∗

p M .

A differential form on M is then a map

α : M → ∧
T ∗M with α(p) ∈ ∧

T ∗
p M for p ∈M ,

that is, a section of the Grassmann bundle. It has degree r (or is called an r-form)
if α(M) ⊂

∧r
T ∗M . Sometimes we call a 1-form a Pfaff form.

If α and β are differential forms on M , then the sum α + β and the exterior
product6 α ∧ β are defined pointwise:

(α + β)(p) := α(p) + β(p) and α ∧ β(p) := α(p) ∧ β(p) for p ∈ M .

If α is an r-form on M , then its effect on vector fields is also defined pointwise:

α(v1, . . . , vr)(p) := α(p)
(
v1(p), . . . , vr(p)

)
for p ∈M and v1, . . . , vr ∈ V(M) .

Finally let ϕ ∈ C1(M, N), and let β be a differential form on N . Then the
pull back of β by ϕ is again defined pointwise:

ϕ∗β(p) := (Tpϕ)∗β
(
ϕ(p)

)
for p ∈ M .

Obviously ϕ∗β is a differential form on M , the pull back of β by ϕ. If ϕ is a C1

diffeomorphism from M to N , then

ϕ∗α := (ϕ−1)∗α

is the push forward of the differential form α on M .

Let k ∈ N ∪ {∞}. The differential form α on M belongs to the class Ck (or
is k-times continuously differentiable,7 or smooth in the case k = ∞) if there is a

6 ∧ is also called the wedge product.
7Of course, we say a differential form of class C0 is continuous.
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chart (ϕ, U) around every point of M such that ϕ∗α is a differential form of class
Ck on ϕ(U). We denote the set of all r-forms of class Ck on M by

Ωr
(k)(M) ,

and
Ωr(M) := Ωr

(∞)(M)

is the set of all smooth r-forms on M . Finally

Ω(M) := Ω(∞)(M)

is the set of all smooth differential forms on M .

Following our treatment of vector fields, we will generally restrict our atten-
tion to the study of smooth differential forms. We leave it to you to prove that
all the statements we prove about smooth forms also hold analogously for forms
of class Ck provided k has been restricted as the case may require.

4.4 Remarks (a) The above notion of differentiability of differential forms is
coordinate-independent.

If α is an r-form of class Ck on M and (ψ, V ) is a chart on M , then ψ∗α is
an r-form of class Ck on ψ(V ).
Proof Every p ∈ M has a chart (ϕ, U) around it with ϕ∗α ∈ Ωr

(k)

(
ϕ(U)

)
. From

Remark 3.3(a) and the pointwise definition of the push forward, it follows that

ψ∗α = (ψ ◦ ϕ−1)∗ϕ∗α .

After this, the claim follows in analogy to the proof of Remark 4.2(a). �

(b) Ω(M) and Ωr(M) are E(M)-modules and therefore in particular R-vector
spaces. Also

Ω(M) =
⊕
r≥0

Ωr(M) .

The exterior product is R-bilinear, associative, and graded anticommutative, that
is, it satisfies these rules:

(i) The map
Ωr(M)× Ωs(M)→ Ωr+s(M) , (α, β) �→ α ∧ β

is well defined and R-bilinear.
(ii) α ∧ (β ∧ γ) = (α ∧ β) ∧ γ for α, β, γ ∈ Ω(M).
(iii) α ∧ β = (−1)rsβ ∧ α for α ∈ Ωr(M) and β ∈ Ωs(M).
Proof This follows from the definition of smoothness, from the pointwise definition of ∧,
and from Theorem 2.7. �

(c) Every α ∈ Ωr(M) is an alternating r-form on V(M).
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(d) Ω0(M) = E(M), and Ωr(M) = {0} for r > m.

(e) For h ∈ C∞(M, N), the pull back h∗ : Ω(N)→ Ω(M) is an algebra homomor-
phism, that is,

h∗(α + β) = h∗α + h∗β , h∗(α ∧ β) = h∗α ∧ h∗β

for α, β ∈ Ω(N). If α ∈ Ωr(N), then h∗α belongs to Ωr(M). Also

(k ◦ h)∗ = h∗ ◦ k∗ and (idM )∗ = idΩ(M) .

If h is a diffeomorphism, then h∗ is bijective, and (h∗)−1 = (h−1)∗ = h∗.
Proof We leave the simple checks to you. �

(f) Suppose M is a submanifold of N and i : M ↪→ N is the natural embedding.8

Then for α ∈ Ωr(N),
α |M := i∗α ∈ Ωr(M)

is the restriction9 of α to M . Let p ∈M . Because the tangent space TpM can be
regarded as a vector subspace of TpN , we have (α |M)(p) = α(p) | (TpM)r. �

Local representations

Suppose f ∈ C1(M) := C1(M, R). As in Section VII.10, we define the differen-
tial df of f by

df(p) := pr ◦Tpf for p ∈ M ,

where
pr := pr2 : Tf(p)R =

{
f(p)

}
× R → R

is the canonical projection.
Let (ϕ, U) be a chart around p ∈ M . Then it follows from the definitions of

df(p) and ∂j |p as well as the chain rule of Remarks VII.10.9(b) and 1.14(c) that〈
df(p), ∂j |p

〉
p

=
〈
df(p), (Tϕ(p)ϕ

−1)
(
ϕ(p), ej

)〉
p

= pr ◦Tpf ◦ Tϕ(p)ϕ
−1

(
ϕ(p), ej

)
= pr ◦Tϕ(p)(f ◦ ϕ−1)

(
ϕ(p), ej

)
= ∂(f ◦ ϕ−1)

(
ϕ(p)

)
ej

= ∂j(f ◦ ϕ−1)
(
ϕ(p)

)
= ∂j(ϕ∗f)

(
ϕ(p)

)
for 1 ≤ j ≤ m. With the abbreviation

∂jf(p) :=
∂f

∂xj
(p) := ∂j(f ◦ ϕ−1)

(
ϕ(p)

)
= ∂j(ϕ∗f)

(
ϕ(p)

)
(4.3)

8In this situation, we always assume that N is without boundary.
9See Example 3.4(j).
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for 1 ≤ j ≤ m and p ∈ U , we thus have〈
df(p), ∂j |p

〉
p

= ∂jf(p) for 1 ≤ j ≤ m , p ∈ U . (4.4)

Therefore
〈df, ∂j〉 = ∂jf for 1 ≤ j ≤ m . (4.5)

Note that the usual partial derivative ∂jf on M (in the sense of Remark VII.2.7(a))
is not defined when M is not “flat”, that is, not an open subset of Rm. Because
derivatives of functions on manifolds can only be defined in terms of local represen-
tations, ∂jf in (4.5) is meaningless unless it is interpreted as the partial derivative
of the function “pushed down” by ϕ to the parameter domain ϕ(U), that is, the
partial derivative of the ϕ∗f appearing in (4.3). This rules out any misinterpreta-
tion in practice. The notation ∂f/∂xj has the advantage that it gives the “name
of the coordinates” (x1, . . . , xm) = ϕ in which f is locally written.

In Section VII.2, for the case of open subsets of Rm, we defined the partial
derivative ∂jf(p) as the image of the j-th coordinate unit vector ej under the
(total) derivative ∂f(p) (that is, the linearization of f at p). Since df(p) is just
the tangent part of the tangential Tpf and therefore the “linearization of f at the
point p”, and since ∂j |p is the j-th coordinate basis vector of TpM , (4.4) shows
that ∂jf(p) is the tangent part of the image of these coordinate vectors under the
tangential of f . Therefore (4.3) is indeed the correct generalization of the concept
of partial derivative to functions defined on manifolds.

Finally, it is clear that (4.3) agrees with the classical partial derivative when
M is open in Rm and ϕ denotes the trivial chart idM .

4.5 Remarks Let (ϕ, U) be a chart of M .

(a) For f ∈ E(M) = Ω0(M), the differential df belongs to Ω1(M). The map

d : Ω0(M)→ Ω1(M) , f �→ df

is R-linear.

(b) Let (x1, . . . , xm) = ϕ be the local coordinates on U induced by ϕ, so that

xj := prj ◦ϕ ∈ E(U) for 1 ≤ j ≤ m ,

where prj : Rm → R are the canonical projections. Then Ω1(U) is a free E(U)-
module of dimension m, and (dx1, . . . , dxm) is a module basis with〈

dxj ,
∂

∂xk

〉
= δj

k for 1 ≤ j, k ≤ m (4.6)

and is the dual basis to the basis (∂/∂x1, . . . , ∂/∂xm) of V(U). The basis repre-
sentations

v =
m∑

j=1

vj ∂

∂xj
∈ V(U) and α =

m∑
j=1

aj dxj ∈ Ω1(U) (4.7)
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require the relations

vj = 〈dxj , v〉 ∈ E(U) and aj =
〈
α,

∂

∂xj

〉
∈ E(U) (4.8)

for 1 ≤ j ≤ m. In particular, for f ∈ E(U), we have

df =
m∑

j=1

∂f

∂xj
dxj ∈ Ω1(U) .

Proof (4.3) and (4.5) imply

〈dxj, ∂k〉 = ∂kxj = ϕ∗∂k(ϕ∗x
j) = ϕ∗∂k

[
(prj ◦ϕ) ◦ ϕ−1

]
= ϕ∗∂k prj = δj

k

and hence (4.6). For v with the representation given in (4.7), we obtain

〈
dxj(p), v(p)

〉
p

=
m∑

k=1

vk(p)
〈
dxj(p),

∂

∂xk

∣∣∣
p

〉
p

=
m∑

k=1

vk(p)δj
k = vj(p) (4.9)

for p ∈ U and 1 ≤ j ≤ m, because dxj(p) is a linear form on TpM = TpU . Therefore the
first part of (4.7) and Remark 4.3(c) imply the first claim of (4.8).

For the push forward dxj by ϕ, we find by applying Remarks VII.10.9(b) and 1.14(c)
as well as (4.2) and (4.6) that〈

(ϕ∗dxj)
(
ϕ(p)

)
,
(
ϕ(p), ek

)〉
ϕ(p)

=
〈
dxj(p), (Tϕ(p)ϕ

−1)
(
ϕ(p), ek

)〉
p

=
〈
dxj(p), (Tpϕ)−1

(
ϕ(p), ek

)〉
p

=
〈
dxj(p),

∂

∂xk

∣∣∣
p

〉
p

= δj
k .

(4.10)

This shows that (ϕ∗ dx1, . . . , ϕ∗ dxm) is, at every point ϕ(p) ∈ ϕ(U), the basis dual to
the canonical basis of Tϕ(p)ϕ(U). In particular, the covector part of ϕ∗ dxj is constant
on ϕ(U).

Remark 4.4(e) guarantees that ϕ∗ is a vector space isomorphism from Ω1(U) to
Ω1(ϕ(U)). From this, (4.10), and Proposition 2.3, we conclude that every α ∈ Ω1(U) has
a representation of the form given in (4.7) by real-valued functions aj on U . Because of

ϕ∗α =
m∑

j=1

(ϕ∗aj) ϕ∗dxj (4.11)

and due to the constancy of the covector part of 1-forms ϕ∗dxj on ϕ(U), we learn from
Remark 3.1(e) that α belongs to Ω1(U) if and only if aj ∈ E(U) for 1 ≤ j ≤ m. Finally
aj = 〈α, ∂j〉 follows by a calculation analogous to (4.9). �

(c) For r ∈ N, Ωr(U) is a free E(U)-module of dimension
(

m
r

)
, and{

dx(j) = dxj1 ∧ · · · ∧ dxjr ; (j) = (j1, . . . , jr) ∈ Jr

}
(4.12)
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is a basis. An r-form α on U has a uniquely determined basis representation in
local coordinates

α =
∑

(j)∈Jr

a(j) dx(j) (4.13)

whose coefficients are

a(j) = α
( ∂

∂xj1
, . . . ,

∂

∂xjr

)
for (j) ∈ Jr . (4.14)

If k ∈ N ∪ {∞}, then α belongs to the class Ck on U if and only if a(j) ∈ Ck(U)
for (j) ∈ Jr.
Proof From (4.10) and the properties of the pull back (ϕ−1)∗ = ϕ∗ given in Re-
mark 4.4(e), it follows that

ϕ∗ dx(j) = ε(j) for (j) ∈ Jr , (4.15)

where (ε1, . . . , εm) denotes the basis dual to the canonical basis of Tϕ(p)ϕ(U) for p ∈ U .
Because ϕ∗ is a vector space isomorphism from Ωr(U) to Ωr

(
ϕ(U)

)
, we derive from

Proposition 2.3 and (4.2) that every r-form α on U has a unique representation of the
form (4.13), whose coefficients are given by (4.14). Because

ϕ∗α =
∑

(j)∈Jr

(ϕ∗a(j))ϕ∗ dx(j)

and by (4.15), the definition of the differentiability of an r-form of class Ck implies that
α belongs to the class Ck if and only if the a(j) lie in Ck(U). �

(d) Note that we have only shown that V(U) and Ω(U) are free modules, while
we have made no such statements about V(M) and Ω(M). Indeed, corresponding
statements are not generally true in the global case, that is, for manifolds that
cannot be described by a single chart. For example, it is known10 that the n-
sphere does not support n (nontrivial) linearly independent vector fields (that is,
V(Sn) is not a free module of dimension n) unless n = 0, 1, 3, or 7.

(e) (regularity) If k ∈ N, then the statements of (c) remain true if M is a Ck+1

manifold. �

The local coordinates x1, . . . , xm on U belonging to a chart ϕ are smooth
functions on U ; namely, they are the maps prj ◦ϕ ∈ E(U) for 1 ≤ j ≤ m. On
the other hand, we also use (x1, . . . , xm) as the notation for a general point of
ϕ(U), that is, the coordinates of Rm are also called x1, . . . , xm. This use of the
same notation for two different things is deliberate. It simplifies calculations with
(local) coordinates considerably, if it is clear from context which interpretation is
correct. For example, the expression

α =
∑

(j)∈Jr

a(j) dx(j) (4.16)

10By work of Bott, Kervaire, and Milnor.
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has two meanings if no other specification is made (which is usual in practice).
First, we can regard (4.16) as the basis representation of an r-form on the open
subset X = ϕ(U) of Hm, as we have done in the previous sections. Or, we can
interpret (4.16) as the basis representation of an r-form on U with respect to the
local coordinates in the corresponding chart. This is the standpoint we have taken
here. In the first case, the a(j) are functions on X , and the dx(j) are the constant
basis forms of Rm. In the second, the a(j) are functions on U ⊂ M , and the dx(j)

are the position-dependent r-forms that “live” on U . Because of (4.15), we must,
in order to pass from second interpretation to the first, “pass down” the coefficient
functions a(j) = a(j)(p) to the parameter domain using ϕ. That is, a(j) must be
interpreted as ϕ∗a(j) = a(j) ◦ ϕ−1, and we must think a(j) = a(j)(x) for x ∈ X .

4.6 Examples (a) Denote the upper and lower hemispheres of the m-sphere Sm

in Rm+1 by Sm
+ and S−, respectively. That is, let

Sm
± :=

{
x ∈ Rm+1 ; |x| = 1, ±xm+1 > 0

}
.

Also let
ϕ± : Sm

± → Bm , x �→ x′ := (x1, . . . , xm)

be the projection of Bm = Bm×{0} onto the hyperplane orthogonal to the xm+1-
axis. Then (ϕ+, Sm

+ ) and (ϕ−, Sm
− ) are charts of Sm. For

α :=
m+1∑
j=1

(−1)j−1xj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm+1 ∈ Ωm(Rm+1) ,

the restriction to Sm reads, in the local coordinates induced by ϕ±, as

α |Sm
± = ± (−1)m√

1− |x′|2
dx1 ∧ · · · ∧ dxm .

Proof Let g±(x′) :=
(
x′,±

√
1− |x′|2

)
for x′ ∈ Bm. Then g± is smooth and is the

parametrization belonging to ϕ± of the hemisphere Sm
± as a graph over Bm. Also g± =

i ◦ ϕ−1
± with i : Sm ↪→ Rm+1. Therefore (ϕ±, Sm

± ) are charts of Sm. For these we find

(ϕ±)∗(α |Sm
± ) = (ϕ−1

± )∗ ◦ i∗α = g∗
±α

=

m+1∑
j=1

(−1)j−1gj
± dg1

± ∧ · · · ∧ d̂gj
± ∧ · · · ∧ dgm+1

±

=

m∑
j=1

(−1)j−1xj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm ∧
m∑

k=1

∓xk dxk√
1− |x′|2

± (−1)m
√

1− |x′|2 dx1 ∧ · · · ∧ dxm

= ± (−1)m√
1− |x′|2

[
−

m∑
j=1

(−1)m+j−1+m−j(xj)2 + 1− |x′|2
]
dx1 ∧ · · · ∧ dxm .

The claim follows because the expression in the square brackets reduces to 1. �
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(b) Let ωS1 := (xdy − y dx) |S1, and make

g1 : (0, 2π)→ S1
∖ {

(1, 0)
}

, t �→ (cos t, sin t)

a parametrization of S1 \
{
(1, 0)

}
. Then with respect to the local coordinates

induced by the chart (ϕ, U) with ϕ := g−1
1 and U := S1\

{
(1, 0)

}
, we have

ωS1 |U = dt .

Proof This follows from ϕ∗ωS1 = (g1
1 ġ2

1 − g2
1 ġ1

1) dt. �

(c) Let U := S2\H3 be the 2-sphere S2 minus the half circle where it intersects
the half plane H3 := R+ × {0} × R.11 Also let

(0, 2π)× (0, π)→ U , (ϕ, ϑ) �→ (cosϕ sin ϑ, sin ϕ sin ϑ, cosϑ)

be the parametrization of U by spherical coordinates. Finally, let

α := xdy ∧ dz + y dz ∧ dx + z dx ∧ dy ∈ Ω2(R3) .

Then the form ωS2 := α |S2 ∈ Ω2(S2) has the representation

ωS2 |U = − sin ϑ dϕ ∧ dϑ

with respect to the local coordinates (ϕ, ϑ).
Proof After a simple calculation,12 we obtain this from Example 3.4(d). �

Coordinate transformations

To carry out concrete calculations efficiently, it is important to choose the coordi-
nates best suited to the problem. So, for example, we use polar coordinates when
we want to describe rotationally symmetric problems, as we have already done in
our treatment of integration theory in Section X.8.

Because a given problem is usually already described in a coordinate system,
we must be able to change to another coordinate system without undue trouble.
This background frames the following transformation theorem for vector fields and
Pfaff forms.

Let (ϕ, U) and (ψ, V ) be charts of M with U ∩ V 
= ∅. Let ϕ = (x1, . . . , xm)
and ψ = (y1, . . . , ym). On U ∩ V , we can regard the yj as functions of lo-
cal coordinates x = (x1, . . . , xm); we could also regard the xj as functions of
y = (y1, . . . , ym). Here is it usual and expedient not to introduce new symbols
but rather to write simply y = y(x) and x = x(y). Clearly the map y( ·) is a

11See Example VII.9.11(b).
12Note that (for example) ∂(x, y)/∂(ϕ, ϑ) is the determinant of the matrix obtained from

(VII.9.3) by removing the last row.
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diffeomorphism from U ∩ V to itself, a coordinate transformation, which we also
denote by x �→ y. The inverse map is x( · ), that is, the coordinate transformation
y �→ x. However, we can also regard x [or y] as a generic point in X := ϕ(U ∩ V )
[or Y := ψ(U ∩ V )] in Hm. Then the coordinate transformation x �→ y is nothing
but the transition function ψ ◦ ϕ−1 ∈ Diff(X, Y ). It will always be clear from
context which of these two interpretations is to be chosen.

In the following formulas, we leave it to you to determine from context
whether xj means an independent variable or the function xj( · ). The double
meaning, which is scarcely a problem in practice, is used on purpose since it helps
to cast formulas into a form that is more intuitively understandable and easier to
remember.

4.7 Proposition For the coordinate transformation x �→ y, we have

∂

∂yj
=

m∑
k=1

∂xk

∂yj

∂

∂xk
and dyj =

m∑
k=1

∂yj

∂xk
dxk

for 1 ≤ j ≤ m.

Proof From Remark 4.5(c), it follows that

∂

∂yj
=

m∑
k=1

vk
j

∂

∂xk
and vk

j =
〈
dxk,

∂

∂yj

〉
for 1 ≤ j, k ≤ m .

With x = f(y) and (4.5), we find〈
dxk,

∂

∂yj

〉
=

∂xk

∂yj
for 1 ≤ j, k ≤ m , (4.17)

which proves the first claim.
Analogously, we have

dyj =
m∑

k=1

ak dxk and ak =
〈
dyj ,

∂

∂xk

〉
=

∂yj

∂xk

for 1 ≤ j, k ≤ m, which proves the second. �

4.8 Corollary (a) The Jacobi matrix of the coordinate transformation x �→ y
satisfies [ ∂yj

∂xk

]
=

[∂xj

∂yk

]−1

.

(b) dy1 ∧ · · · ∧ dym =
∂(y1, . . . , ym)
∂(x1, . . . , xm)

dx1 ∧ · · · ∧ dxm.
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Proof (a) Because

y( · ) = ψ ◦ ϕ−1 ∈ Diff(X, Y ) and y( ·)−1 = x( · ) = ϕ ◦ ψ−1 ∈ Diff(Y, X) ,

the claim is immediate.
(b) This is a consequence of Example 3.4(c), the considerations after Re-

mark 4.5(e), and the fact that

∂(y1, . . . , ym)
∂(x1, . . . , xm)

is the Jacobian of the coordinate transformation x �→ y (see Remark VII.7.9(a)). �

4.9 Examples (a) (plane polar coordinates) Using the polar coordinate trans-
formation

V2 → R2 , (r, ϕ) �→ (x, y) := (r cosϕ, r sin ϕ)

with V2 := (0,∞)× (0, 2π), we have

∂

∂r
=

∂x

∂r

∂

∂x
+

∂y

∂r

∂

∂y
= cosϕ

∂

∂x
+ sin ϕ

∂

∂y

and
∂

∂ϕ
=

∂x

∂ϕ

∂

∂x
+

∂y

∂ϕ

∂

∂y
= −r sinϕ

∂

∂x
+ r cosϕ

∂

∂y
.

(b) (spherical coordinates) Let V3 := (0,∞)×(0, 2π)×(0, π). Using the spherical
coordinate transformation

V3 → R3 , (r, ϕ, ϑ) �→ (x, y, z) = (r cosϕ sin ϑ, r sin ϕ sin ϑ, r cosϑ) ,

we find
∂

∂r
= cosϕ sin ϑ

∂

∂x
+ sin ϕ sin ϑ

∂

∂y
+ cosϑ

∂

∂z

∂

∂ϕ
= −r sin ϕ sin ϑ

∂

∂x
+ r cosϕ sin ϑ

∂

∂y

∂

∂ϑ
= r cosϕ cosϑ

∂

∂x
+ r sin ϕ cosϑ

∂

∂y
− r sinϑ

∂

∂z
.

(c) (cylindrical coordinates) Let X := (0,∞) × (0, 2π) × R. For the cylindrical
coordinate transformation

X → R3 , (r, ϕ, ζ) �→ (x, y, z) := (r cosϕ, r sin ϕ, ζ) ,

we find

∂

∂r
= cosϕ

∂

∂x
+ sin ϕ

∂

∂y
,

∂

∂ϕ
= −r sinϕ

∂

∂x
+ r cosϕ

∂

∂y
,

∂

∂ζ
=

∂

∂z
. �
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The exterior derivative

The next theorem shows that the exterior derivative can be generalized so that it
is defined globally on manifolds.

4.10 Theorem There is exactly one map

d : Ω(M)→ Ω(M) ,

the exterior (or Cartan) derivative, with these four properties:

(i) d is R-linear and maps Ωr(M) to Ωr+1(M).

(ii) d satisfies the product rule

d(α ∧ β) = dα ∧ β + (−1)rα ∧ dβ for α ∈ Ωr(M) and β ∈ Ω(M) .

(iii) d2 = d ◦ d = 0.

(iv) The differential df of f ∈ E(M) = Ω0(M) is the same as the differential of f .

Also

d ◦ h∗ = h∗ ◦ d (4.18)

for h ∈ C∞(M, N).

Proof (a) (existence) Let (ϕ, U) be a chart of M . According to Theorem 3.5,
there is exactly one map d : Ω

(
ϕ(U)

)
→ Ω

(
ϕ(U)

)
with the properties (i)–(iv). We

define dU : Ω(U)→ Ω(U) by requiring the commutativity of the diagram

Ω(U) Ω(U)

Ω
(
ϕ(U)

)
Ω

(
ϕ(U)

)
.

ϕ∗ ϕ∗

dU

d

�

�
�

� (4.19)

Equivalently, we set dU := ϕ∗ ◦ d ◦ϕ∗. We learn from Remark 4.4(e) that ϕ∗ is an
algebra isomorphism with (ϕ∗)−1 = (ϕ−1)∗. With this and (4.19), we verify easily
that dU has the properties (i)–(iv) and is uniquely defined.

Let (ψ, V ) be another chart of M such that U ∩ V 
= ∅. Then it follows from
ϕ = (ϕ ◦ ψ−1) ◦ ψ, the properties of pull backs, and (3.12) that

dU = ϕ∗ ◦ d ◦ ϕ∗ = ψ∗ ◦ (ϕ ◦ ψ−1)∗ ◦ d ◦ (ϕ ◦ ψ−1)∗ ◦ ψ∗

= ψ∗ ◦ d ◦ ψ∗ = dV

(4.20)

(of course, on U ∩ V ). Therefore dU is independent of the special coordinates
chosen.
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Let
{

(ϕκ, Uκ) ; κ ∈ K
}

be an atlas for M , and let iκ : Uκ ↪→ M be the
natural embedding. Then we define d : Ω(M)→ Ω(M) by

dα(p) := dUκ

[
(iκ)∗α

]
(p) for α ∈ Ω(M) ,

where κ ∈ K is chosen so that p lies in Uκ. By (4.20) this definition is meaningful,
and it is clear that d has the properties (i)–(iv).

(b) (uniqueness) Let α ∈ Ωr(M) and p ∈ M . Also let (ϕ, U) be a chart
around p. According to Remark 4.5(c), α |U can be written in local coordinates
as

α |U =
∑

(j)∈Jr

a(j) dx(j)

with a(j) ∈ E(U). Now it follows from (4.19) and Remarks 3.6(a) and 4.4(e) that

dU (α |U) = ϕ∗ dϕ∗(α |U) = ϕ∗
∑

(j)∈Jr

d(ϕ∗a(j)) ∧ ϕ∗ dx(j)

=
∑

(j)∈Jr

dUa(j) ∧ dx(j) =
∑

(j)∈Jr

da(j) ∧ dx(j) ,
(4.21)

because dUa(j) is the differential of a(j) ∈ E(U).

Let V be an open neighborhood of p with V ⊂⊂ U . Then ϕ(V ) ⊂⊂ ϕ(U).
Hence Remark 1.21(a) implies the existence of χ̃ ∈ D

(
ϕ(U)

)
such that χ̃ |ϕ(V ) =

1. For

χ :=
{

ϕ∗χ̃ on U ,

0 on M \U ,

we have χ ∈ E(M) and χ |V = 1. This implies that both

b(j) := χa(j) for (j) ∈ Jr and ξj := χxj for 1 ≤ j ≤ m

belong to E(M). Therefore the differentials dξj ∈ Ω1(M) are defined, which
implies that

β :=
∑

(j)∈Jr

b(j) dξ(j)

is also defined and belongs to Ω(M).

Now suppose d̃ is a map from Ω(M) to itself satisfying (i)–(iv). Then we find
easily that

d̃β =
∑

(j)∈Jr

db(j) ∧ dξ(j) .

For a ∈ E(U), the product rule gives

d(χa) = a dχ + χ da
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(see Corollary VII.3.8 and the definition of the tangential). Because χ |V = 1, we
may use the natural embedding i : V ↪→ M to conclude〈

i∗ d(χa)(q), v(q)
〉

q
=

〈
d(χa)(q), v(q)

〉
q

=
〈
da(q), v(q)

〉
q

for q ∈ V ,

for v ∈ V(M). That is, d(χa) |V = da |V . This and (4.21) imply β |V = α |V and

d̃β |V = dV (α |V ) . (4.22)

Because dV is unique and every p ∈ M has an open coordinate neighborhood V
for which (4.22) holds, we see that d̃ = d.

(c) To prove (4.18), we can use our previous work to restrict to the local
situation, that is, we can assume that M = U . Then the claim follows from
(4.19), (3.12), and Theorem 3.5. �

4.11 Remarks (a) Let
α |U =

∑
(j)∈Jr

a(j) dx(j)

be the representation of α ∈ Ωr(M) in the local coordinates of the chart (ϕ, U).
Then

d(α |U) =
∑

(j)∈Jr

da(j) ∧ dx(j) .

Proof This follows from (4.21). �

(b) (regularity) For k ∈ N, the map

d : Ωr
(k+1)(M)→ Ωr+1

(k) (M) for r ∈ N

is defined and R-linear. This remains true when M is a Ck+2 manifold. �

Closed and exact forms

As in the local theory, we say α ∈ Ω(M) is closed if dα = 0. We say it is exact if
there is a β ∈ Ω(M), an antiderivative, such that dβ = α.

4.12 Remarks and examples (a) Because d2 = 0, every exact form is closed.

(b) Every m-form on M is closed.
Proof This is because Ωm+1(M) = {0}. �

(c) (Poincaré lemma) Let r ∈ N×, and let α ∈ Ωr(M) be closed. Then α is locally
exact, that is, every p ∈ M has an open neighborhood U and a β ∈ Ωr−1(U) such
that dβ = α |U .
Proof Let (ϕ, U) be a chart around p, in which ϕ(U) is star shaped. Because dα = 0
and dϕ∗α = ϕ∗ dα, the form ϕ∗α ∈ Ωr

(
ϕ(U)

)
. Since ϕ(U) is contractible, it follows

from the Poincaré lemma (Theorem 3.11) that there exists a β0 ∈ Ωr−1
(
ϕ(U)

)
such that

dβ0 = ϕ∗α. For β := ϕ∗β0 ∈ Ωr−1(U), we then have dβ = ϕ∗ dβ0 = ϕ∗ϕ∗α = α |U . �
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Contractions

Let α ∈ Ωr+1(M) and v ∈ V(M). Then the contraction v −� α of α by v is
defined by

v −� α(v1, . . . , vr) := α(v, v1, . . . , vr) for vj ∈ V(M) and 1 ≤ j ≤ r .

We sometimes write v −� · as iv and call ivα the interior product of v by α.
We verify easily that v −� α belongs to Ωr(M). For completeness and to avoid a
bothersome special case, we simply set

v −� α := 0 for α ∈ Ω0(M) .

4.13 Remarks and examples (a) If ϕ : M → N is a diffeomorphism, then

v −� (ϕ∗α) = ϕ∗(ϕ∗v −� α)

for α ∈ Ω(N) and v ∈ V(M). In particular, for every r the diagram

Ωr+1(M) Ωr+1(N)

Ωr(M) Ωr(N)

v −� ϕ∗v −�

ϕ∗

ϕ∗

�

�
� �

commutes.
Proof If α is a null form, then the claim is trivially true. Therefore we can assume
α ∈ Ωr+1(N). Then we find for p ∈M and v1, . . . , vr ∈ TpM that

v −� (ϕ∗α)(p)(v1, . . . , vr) = (ϕ∗α)(p)
(
v(p), v1, . . . , vr

)
= α

(
ϕ(p)

)(
(Tpϕ)v(p), (Tpϕ)v1, . . . , (Tpϕ)vr

)
= α

(
ϕ(p)

)(
ϕ∗v

(
ϕ(p)

)
, (Tpϕ)v1, . . . , (Tpϕ)vr

)
= (ϕ∗v −� α)

(
ϕ(p)

)(
(Tpϕ)v1, . . . , (Tpϕ)vr

)
= ϕ∗(ϕ∗v −� α)(p)(v1, . . . , vr) ,

which proves the claim. �

(b) Suppose X is open in Hm and ω := dx1 ∧ · · · ∧ dxm. For v =
∑m

j=1 vj∂j , we
have

v −� ω =
m∑

j=1

(−1)j−1vj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm .

Proof We set v1 := v. Then for v2, . . . , vm ∈ V(X), we have

(v1 −� ω)(v2, . . . , vm) = ω(v1, . . . , vm) = det
[
〈dxj , vk〉

]
.
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By expanding this determinant in the first column, we find it has the value

m∑
j=1

(−1)j+1〈dxj, v1〉 det(Aj) ,

where Aj is the matrix obtained by striking the first column and the j-th row from[
〈dxj , vk〉

]
. From this it follows that

det(Aj) = dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm(v2, . . . , vm) .

The claim now follows because

〈dxj, v1〉 =
m∑

k=1

vk〈dxj, ∂k〉 = vj . �

(c) Let
ρ : Rm+1\{0} → Sm , x �→ x/|x|

be the radial retraction13 on the m-sphere in Rm+1.
Also let

α :=
m+1∑
j=1

(−1)j−1xj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm+1

and
ωSm := α |Sm .

Then letting r(x) := |x| for x ∈ Rm+1, we have

ρ∗ωSm =
1

rm+1
α =

m+1∑
j=1

(−1)j−1 xj

|x|m+1
dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm+1 ,

and ρ∗ωSm is closed.

Proof Because ρ ∈ C∞(
Rm+1\{0}, Rm+1

)
with im(ρ) = Sm, we know ρ is a smooth

map from Rm+1\{0} to Sm. Therefore ρ∗ωSm ∈ Ωm
(
Rm+1\{0}

)
is defined. It is closed

by Remark 4.12(b) and because d(ρ∗ωSm) = ρ∗ dωSm = 0.

To show that ρ∗ωSm = r−(m+1)α, we must verify that for every p ∈ Rm+1\{0}, both
sides agree on every m-tuple from a system of basis vectors of TpRm+1. Suppose therefore
p ∈ Rm+1\{0}. A basis of TpRm+1 is given by the vectors

{
(p)p, (v1)p, . . . , (vm)p

}
, where

13If X is topological space and A is a subset of X, then a continuous map ρ : X → A is called
a retraction of X on A if ρ(a) = a for a ∈ A. If there is a retraction of X on A, then A is a
retract of X.



324 XI Manifolds and differential forms

{
(v1)p, . . . , (vm)p

}
is a basis of Tp

(
r(p)Sm

)
. If the m-tuple (w1)p, . . . , (wm)p contains

the vector (p)p, then by letting ω := dx1 ∧ · · · ∧ dxm+1, we can use (b) to find

α(p)
(
(w1)p, . . . , (wm)p

)
=

(
(p)p −� ω

)(
(w1)p, . . . , (wm)p

)
= ω

(
(p)p, (w1)p, . . . , (wm)p

)
= 0 ,

because two entries are equal. Therefore r−(m+1)(p)α(p) also vanishes on this m-tuple.
We also find

ρ∗ωSm(p)
(
(w1)p, . . . , (wm)p

)
= ωSm

(
ρ(p)

)(
(Tpρ)(w1)p, . . . , (Tpρ)(wm)p

)
with

(Tpρ)(wj)p =
(
ρ(p), ∂ρ(p)wj

)
,

where, according to Proposition VII.2.5, we have

∂ρ(p)wj = ∂tρ(p + twj)
∣∣
t=0

for 1 ≤ j ≤ m .

Because ρ(p+tp) = ρ(p) for t ∈ (−1, 1), it follows in particular that (Tpρ)(p)p = 0. There-
fore ρ∗ωSm(p)

(
(w1)p, . . . , (wm)p

)
also vanishes if the m-tuple (w1)p, . . . , (wm)p contains

the vector (p)p.

It remains to show

ρ∗ωSm(p)
(
(v1)p, . . . , (vm)p

)
=

1

r(p)m+1
α(p)

(
(v1)p, . . . , (vm)p

)
. (4.23)

For (v)p ∈ Tp

(
r(p)Sm

)
, Theorem VII.10.6 gives an ε > 0 and a γ ∈ C1

(
(−ε, ε), r(p)Sm

)
such that γ(0) = p and γ̇(0) = v. Now we use ρ ◦ γ(t) = γ(t)/r(p) to get

∂ρ(p)v = (ρ ◦ γ)· (0) = v/r(p) .

From this we derive

ρ∗ωSm(p)
(
(v1)p, . . . , (vm)p

)
= r(p)−mα

(
ρ(p)

)(
(v1)p, . . . , (vm)p

)
,

which implies (4.23), thus finishing the proof. �

(d) (regularity) Let k ∈ N, and suppose M is a Ck+1 manifold. For α ∈ Ωr+1
(k) (M) and

v ∈ Vk(M), the contraction v −� α belongs to Ωr
(k)(M). �

Orientability

As we learned in Section 2, TpM can be oriented by choosing a volume form
α(p) ∈

∧m
T ∗

p M . Thereby one gets an m-form α on M with α(p) 
= 0 for p ∈ M .
Conversely, every map p �→ α(p) ∈ ΛmT ∗

p M such that α(p) 
= 0 for p ∈ M induces
an orientation on every TpM . However, such α will generally not be continuous.
Intuitively, this means that the orientation of the tangent spaces is not “coherent”,
that is, the tangent spaces can “flip over” in moving from one point to the next.
To avoid this, we also require that α be smooth (more precisely, as regular as
permitted by the regularity of the manifold).
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A manifold M is said to be orientable if there is an α ∈ Ωm(M) such that
α(p) 
= 0 for every p ∈M ; such an m-form α is called a volume form on M .

4.14 Remarks (a) If M is orientable, then Ωm(M) is a one-dimensional E(M)-
module.
Proof Let α be a volume form on M , and let β ∈ Ωm(M). Because dim

∧mT ∗
p M = 1

for p ∈ M , there is an f : M → R such that β = fα. We must show that f is smooth.
In local coordinates, we have

α |U = a dx1 ∧ · · · ∧ dxm and β |U = b dx1 ∧ · · · ∧ dxm

with a, b ∈ E(U) and a(p) 	= 0 for p ∈ U . From this we deduce that β |U = fα |U , where
f := b/a belongs to E(U). �

(b) (regularity) Suppose k ∈ N and M is a Ck+1 manifold. Then M is orientable if and
only if there is an α ∈ Ωm

(k)(M) such that α(p) 	= 0 for p ∈ M . This is the case if and

only if the Ck(M)-module Ωm
(k)(M) is one-dimensional. �

The next proposition shows that one can also characterize the orientability
of a manifold by its charts.

If X and Y are open in Hm, then we say ϕ ∈ Diff(X, Y ) is orientation-
preserving [or orientation-reversing] if det ∂ϕ(x) > 0 [or det ∂ϕ(x) < 0] for every
x ∈ X , that is, if ∂ϕ(x) ∈ L(Rm) is an orientation-preserving [or orientation-
reversing] automorphism for every x ∈ X . An atlas of M is said to be oriented if
all of its transition functions are orientation-preserving.

4.15 Proposition A manifold of dimension ≥ 2 is orientable if and only if it has
an oriented atlas.

Proof (a) Suppose M is orientable and α ∈ Ωm(M) is a volume form. In addi-
tion, let

{
(ϕκ, Uκ) ; κ ∈ K

}
be an atlas of M . Then (ϕκ)∗α = aκ dx1∧· · ·∧dxm on

Xκ := ϕκ(Uκ) ⊂ Hm, with aκ(x) 
= 0 for x ∈ Xκ. Because we can change coordi-
nates (if necessary) as x �→ (−x1, x2, . . . , xm), we can assume that aκ(xκ) is strictly
positive for some xκ ∈ Xκ. Because we can assume that Uκ and therefore also Xκ

are connected, it follows from the intermediate value theorem (Theorem III.4.7)
that aκ(x) > 0 for all x ∈ Xκ and every κ ∈ K.

Suppose now (ϕκ, Uκ) and (ϕλ, Uλ) are local charts with Uκ ∩ Uλ 
= ∅. Also
let ϕκ = (x1, . . . , xm) and ϕλ = (y1, . . . , ym). Then we find

(ϕλ ◦ ϕ−1
κ )∗

(
aλ dy1 ∧ · · · ∧ dym

∣∣ ϕλ(Uκ ∩ Uλ)
)

= (ϕκ)∗ϕ∗
λ

(
aλ dy1 ∧ · · · ∧ dym

∣∣ ϕλ(Uκ ∩ Uλ)
)

= (ϕκ)∗α
∣∣ (Uκ ∩ Uλ) = aκ dx1 ∧ · · · ∧ dxm .

(4.24)

By Example 3.4(c), we have

(ϕλ ◦ ϕ−1
κ )∗ dy1 ∧ · · · ∧ dym = det ∂(ϕλ ◦ ϕ−1

κ ) dx1 ∧ · · · ∧ dxm .
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By comparing with (4.24), we see

(ϕλ ◦ ϕ−1
κ )∗aλ(x) det ∂(ϕλ ◦ ϕ−1

κ )(x) = aκ(x) > 0 for x ∈ ϕκ(Uκ ∩ Uλ) .

Because aλ is positive, it follows that M has an oriented atlas.

(b) Let
{

(ϕκ, Uκ) ; κ ∈ K
}

be an oriented atlas. Proposition 1.20 guarantees
the existence of a smooth partition of unity { πκ ; κ ∈ K } that is subordinate to
the cover {Uκ ; κ ∈ K } of M . For κ ∈ K, define ακ ∈ Ωm(Uκ) by

ακ :=
{

πκϕ∗
κ dx1 ∧ · · · ∧ dxm in Uκ ,

0 otherwise .

We can verify easily that the definition

α :=
∑
κ∈K

ακ ∈ Ωm(M)

is meaningful. We must show that α(p) 
= 0 for p ∈ M .

Let p ∈ M , and choose κ ∈ K so that πκ(p) > 0. For λ ∈ K with λ 
= κ and
Uκ ∩ Uλ 
= ∅, it follows, as in (a), that

αλ = πλϕ∗
λ dy1 ∧ · · · ∧ dym = πλϕ∗

κ(ϕλ ◦ ϕ−1
κ )∗ dy1 ∧ · · · ∧ dym

= πλ

(
ϕ∗

κ det
(
∂(ϕλ ◦ ϕ−1

κ )
))

ϕ∗
κ dx1 ∧ · · · ∧ dxm .

From this we obtain

α(p) =
(
πκ(p) +

∑
λ∈K
λ�=κ

πλ(p) det
(
∂(ϕλ ◦ ϕ−1

κ )
)(

ϕκ(p)
))

ϕ∗
κ dx1 ∧ · · · ∧ dxm(p) ,

where only finitely many summands differ from zero. Because πλ(p) ≥ 0 and
because the transition functions are orientation-preserving, we see that α(p) 
= 0.
Therefore α is a volume form, and M is orientable. �

Suppose M is orientable. Then we say two volume forms α, β ∈ Ωm(M) are
equivalent if there is an f ∈ E(M) such that f(p) > 0 for p ∈ M , and α = fβ. This
is obviously an equivalence relation on the set of all volume forms on M . Every
equivalence class with respect to this relation is called an orientation on M . Given
Or := Or(M) an orientation of M , then we call (M,Or) an oriented manifold. If
the orientation of M is clear from context, we may write M for (M,Or).

If α ∈ Or, then −α is a volume form that does not belong to Or. We denote
the associated equivalence class by −Or and call it the orientation opposite to Or.
It is clear that −Or is independent of its particular representative.
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4.16 Remarks (a) An orientable manifold is connected if and only if it has exactly
two orientations.

Proof Suppose M is connected, and α and β are two volume forms. By Remark 4.14(a),
there is an f ∈ E(M) such that α = fβ. Because α vanishes nowhere, we have f(p) 	= 0
for p ∈M . Because M is connected, the intermediate value theorem (see Theorem III.4.7)
implies that either f(p) > 0 or f(p) < 0 for every p ∈ M . Hence α is equivalent either
to β or to −β. Therefore M has precisely two orientations.

Now suppose M is connected. Proposition III.4.2 guarantees the existence of a
nonempty, open, and closed proper subset X of M . For α a volume form on M , we set

β(p) :=

{
α(p) if p ∈ X ,

−α(p) if p ∈M \X .

Then β is obviously a volume form with β /∈ Or ∪ (−Or), where Or is the equivalence
class of α. Therefore M has more than two orientations. �

(b) Let M = (M,Or) be an oriented manifold. A chart (ϕ, U) of M is said
to be positive(ly oriented) if ϕ∗(α |U) for α ∈ Or is equivalent to the m-form
dx1 ∧ · · · ∧ dxm |ϕ(U). Otherwise it is negative(ly oriented). M has an atlas
consisting only of positive charts, an oriented atlas.

Proof For β ∈ Or, we have α = fβ with f ∈ E(M) and f(p) > 0 for p ∈ M . With
i : U ↪→ M , it follows from this that

ϕ∗α |U = ϕ∗i
∗α = ϕ∗i

∗(fβ) = (ϕ∗i
∗f)(ϕ∗i

∗β) = gϕ∗(β |U) ,

where g := f ◦ϕ−1 ∈ E
(
ϕ(U)

)
and g(x) > 0 for x ∈ ϕ(U). This shows that the definition

does not depend on the chosen representative. That there is indeed an atlas with positive
charts was shown in part (a) of the proof of Proposition 4.15. �

(c) Let M be oriented. Then (ϕ, U) is a positive chart if and only if (∂1|p, . . . , ∂m|p)
is a positive basis of TpM for p ∈ U .

Proof For α ∈ Ωm(M), Remark 4.5(c) says that the basis representation in local coor-
dinates is

α |U = a dx1 ∧ · · · ∧ dxm

with a(p) = α(p)(∂1|p, . . . , ∂m|p) for p ∈ U . The claim is now clear. �

4.17 Examples (a) Every open subset U of an orientable manifold M is itself
orientable.14

Proof For α ∈ Or(M), the restriction α |U is a volume form on U . �

(b) If M and N are orientable and one of these manifolds is without boundary,
then the product manifold15 M ×N is orientable.

14We stipulate that the empty set is orientable.
15See Exercise VII.9.4 and Exercise 3. Why do we assume that one of these two manifolds is

without boundary?
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Proof If
{

(ϕκ, Uκ) ; κ ∈ K
}

and
{

(ψλ, Vλ) ; λ ∈ L
}

are oriented atlases of M and N ,
respectively, then it is easy to see that

{
ϕκ × ψλ ; (κ, λ) ∈ K× L

}
with

ϕκ × ψλ(p, q) :=
(
ϕκ(p), ψλ(q)

)
∈ Rm × Rn for (p, q) ∈ Uκ × Vλ ,

is an oriented atlas of M ×N . Because we can assume without loss of generality that M
and N are at least one-dimensional, the claim follows from Proposition 4.15. �

(c) Any manifold that can be described by a single chart (that is, one that has an
atlas with only one chart) is orientable.
Proof This is trivial (see the first part of the proof of Proposition 4.15). �

(d) (graphs) Suppose X is open in Rm and f ∈ C∞(X, Rn). Then graph(f) is
an m-dimensional orientable submanifold of Rm+n.
Proof For Proposition VII.9.2, we know that graph(f) is an m-dimensional submanifold
of Rm+n. The proof of that result shows that

ϕ : graph(f)→ X ,
(
x, f(x)

)
�→ x

is a chart that describes graph(f). Therefore the claim follows from (c). �

(e) (fibers of regular maps) Suppose X is open in Rm and � ∈ {0, . . . , m−1}. Also
let q be regular value of f ∈ C∞(X, Rm−	). Then the �-dimensional submanifold
f−1(q) of X is orientable.
Proof Let ω := dx1 ∧ · · · ∧ dxm

∣∣ X and

∇fk :=
m∑

j=1

∂jf
k ∂

∂xj
∈ V(X) for 1 ≤ k ≤ m− � .

With the notations of Remark VII.10.11(a), we have ∇fk(p) = ∇pfk for p ∈ X. We can
assume that L := f−1(q) is not empty. Then

α := ∇f1 −�
(
∇f2 −�

(
· · · −� (∇fm−� −� ω) · · ·

)) ∣∣∣ L ∈ Ω�(L) .

Proposition VII.10.13 guarantees that ∇f1(p), . . . ,∇fm−�(p) are linearly independent.
Therefore

α(p) = ω
(
∇fm−�(p), . . . ,∇f1(p), . . .

)
	= 0 for p ∈ L ,

that is, α is a volume form on L. �

(f) If M and N are diffeomorphic, then M is orientable if and only if N is ori-
entable.
Proof Let f ∈ Diff(M, N), and let (ϕ, U) be a chart of M . Then ψ := ϕ◦f−1 is a chart
of N with V := f(U) = dom(ψ). Because M and N are diffeomorphic, m = n. Suppose
now β ∈ Ωm(N) is a volume form on N . The local coordinates (y1, . . . , ym) = ψ give β
the representation β | V = b dy1 ∧ · · · ∧ dym with b(q) 	= 0 for q ∈ V . From this it follows
that

f∗(β |V ) = (f∗b)f∗(dy1 ∧ · · · ∧ dym) = b ◦ f dx1 ∧ · · · ∧ dxm ,

because f∗yj = prj ◦ψ ◦ f = prj ◦ϕ = xj with (x1, . . . , xm) = ϕ. Because b ◦ f(p) 	= 0 for
p ∈ U , we see that f∗β is a volume form on M . Now the claim is immediate. �
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(g) Every one-dimensional manifold is orientable.
Proof We can assume that the manifold M is connected since it suffices to show that
every connected component in orientable. Then by Theorem 1.18, M is diffeomorphic to
an interval J or to S1. Because J and S1 are orientable (where the orientability of S1

follows from (e), for example), the claim is implied by (f). �

(h) (hypersurfaces) A hypersurface M in Rm+1 is orientable if and only if there is
a smooth unit normal field on M , that is, a ν ∈ C∞(M, Rm+1) such that |ν(p)| = 1
and ν(p) =

(
p, ν(p)

)
∈ T⊥

p M for p ∈ M .

Proof If ν is a unit normal field on M , then (ν −� dx1 ∧ · · · ∧ dxm+1)
∣∣ M is a volume

form on M . Therefore M is orientable.

Let M be orientable. If (ϕ, U) is a positive chart with ϕ = (x1, . . . , xm), then,
because dim(T⊥

p M) = 1, there is for every p ∈ U exactly one ν(p) =
(
p, ν(p)

)
∈ T⊥

p M
with |ν(p)| = 1 such that (

ν(p), ∂
∂x1

∣∣
p
, . . . , ∂

∂xm

∣∣
p

)
is a positive basis of TpRm+1. By shrinking U , we can assume that there are open sets
Ũ and Ṽ of Rm+1, with U = Ũ ∩M , and a Φ ∈ Diff(Ũ , Ṽ ) such that U = f−1(0) for

f := Φm+1 ∈ E(Ũ). It follows because ∇f(p) 	= 0 for p ∈ Ũ that f is regular. Hence it
follows from Proposition VII.10.13, that

ν(p) = ε∇f(p)
/
|∇f(p)| for p ∈ U

with ε ∈ {±1}. This shows that ν is smooth.

Now let (ψ, V ) be a second positive chart with U∩V 	= ∅ and ψ = (y1, . . . , ym), and
suppose μ(q) =

(
q, μ(q)

)
∈ T⊥

q M satisfies μ ∈ C∞(V, Rm+1) and |μ(q)| = 1 for q ∈ V .

Also suppose
(
μ(q), ∂

∂y1

∣∣
q
, . . . , ∂

∂ym

∣∣
q

)
is a positive basis of TqRm+1 for q ∈ V . Because

the two bases (
∂

∂x1

∣∣
p
, . . . , ∂

∂xm

∣∣
p

)
and

(
∂

∂y1

∣∣
p
, . . . , ∂

∂ym

∣∣
p

)
have the same orientation for p ∈ U ∩ V , it follows that μ(p) = ν(p) for p ∈ U ∩ V . Now
the existence of a unit normal field follows from the existence of an oriented atlas of M . �

(i) (Möbius strip) Suppose R > 0, and define

f : [−π, π)× (−1, 1)→ R3

by
f(θ, t) :=

((
R + t cos θ

2

)
cos θ,

(
R + t cos θ

2

)
sin θ, t sin θ

2

)
.

Then the image M of f is a nonorientable
surface, the Möbius strip. Visually, the
map f works as follows: Because

f(±π, t) = (−R, 0,±t) ,

it twists the end {π}× (−1, 1) of the rect-
angle [−π, π]× (−1, 1) by 180 degrees rel-
ative to the start {−π} × (−1, 1). These
two ends are then glued together.
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Representing f in the form

f(θ, t) = R(cos θ, sin θ, 0) + tg(θ)

with g(θ) :=
(
cos(θ/2) cos θ, sin(θ/2) sin θ, sin(θ/2)

)
, we obtain an interpretation

of the parametrization of f : A point with angular velocity 1 traces a circle in the
(x, y)-plane with center 0 and radius R; this describes the first summand. The
midpoint of a rod of length 2 is affixed to this point (along its length) and is allowed
to simultaneously rotate about its own midpoint with an angular velocity of 1/2,
so that its direction is reversed after one rotation; this is the second summand.
Proof The proof that M is a smooth surface is left to you.

For −π ≤ θ ≤ π, we have

v1(θ) := ∂1f(θ, 0) = R(− sin θ, cos θ, 0) ,

v2(θ) := ∂2f(θ, 0) =
(
cos(θ/2) cos θ, cos(θ/2) sin θ, sin(θ/2)

)
.

It follows that for every θ ∈ [−π, π) the vectors v1(θ), v2(θ) attached to p(θ) := f(θ, 0)
form a basis of Tp(θ)M . Therefore the vector

n(θ) :=
(
−v1(θ)× v2(θ)

)/
R =

(
− cos θ sin(θ/2),− sin θ sin(θ/2), cos(θ/2)

)
attached to p(θ) is a unit normal vector for −π ≤ θ < π. In particular, n(0) = e3.

We assume that ν : M → R3 is a unit normal field with ν
(
p(0)

)
= e3. Then because

T⊥
p(θ)M is continuous and one-dimensional, it follows that the vectors ν

(
p(θ)

)
and n(θ)

coincide in −π ≤ θ < π. From this and the relation p(−π) = p(π), we find as θ → π that

−e1 = n(−π) = ν
(
p(−π)

)
= ν

(
p(π)

)
= n(π) = e1 ,

which is not possible. Thus there is no smooth (or even continuous) unit normal field
on M ; this, by (h), shows that M is not orientable. �

(j) (regularity) With obvious modifications, the statements above remain true for C1

manifolds. �

Tensor fields

Let r, s ∈ N. Then, according to Section 2, the vector space T r
s (TpM), which con-

sists of r-contravariant and s-covariant tensors, is well defined on TpM . Therefore
the bundle of (r, s)-tensors on M ,

T r
s (M) :=

⋃
p∈M

T r
s (TpM) ,

is also well defined. An (r, s)-tensor (more precisely, an r-contravariant and
s-covariant tensor) on M is a section of this bundle, that is, it is a map

γ : M → T r
s (M) with γ(p) ∈ T r

s (TpM) for p ∈M .
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If γ and δ are (r, s)-tensors on M and f ∈ RM , then the sum, γ + δ, the product
with functions, fγ, and the tensor product, γ ⊗ δ, are again defined pointwise as

(γ + δ)(p) := γ(p) + δ(p) , (fγ)(p) := f(p)γ(p) , γ ⊗ δ(p) := γ(p)⊗ δ(p)

for p ∈ M . Likewise, the effect of γ ∈ T r
s (M) on an r-tuple α1, . . . , αr of Pfaff

forms and an s-tuple v1, . . . , vs of vector fields is defined pointwise by

γ(α1, . . . , αr, v1, . . . , vs)(p) := γ(p)
(
α1(p), . . . , αr(p), v1(p), . . . , vs(p)

)
for p ∈M .

Finally let ϕ ∈ Diff1(M, N). Then we define the push forward by ϕ of γ ∈ T r
s (M)

through

(ϕ∗γ)(α1, . . . , αr, v1, . . . , vs) := (γ ◦ ϕ−1)(ϕ∗α1, . . . , ϕ
∗αr, ϕ

∗v1, . . . , ϕ
∗vs) ,

where α1, . . . , αr are Pfaff forms and v1, . . . , vs are vector fields on N , and we have
set

ϕ∗v := (ϕ−1)∗v (4.25)

with v a vector field on N . Naturally, ϕ∗γ := (ϕ−1)∗γ is then the pull back of
γ ∈ T r

s (N).
Let k ∈ N ∪ {∞}. Then an (r, s)-tensor γ belongs to the class Ck (or, is

k-times continuously differentiable or smooth in the case k = ∞) if every point
of M has a chart (ϕ, U) such that ϕ∗γ is a (r, s)-tensor on ϕ(U) of class Ck. We
denote the set of all smooth (r, s)-tensors on M by

T r
s (M) .

The proofs of the following remarks are straightforwardly transferred from
the corresponding proofs for differential forms in Sections 2 and 3.16 Therefore we
leave these proofs to you.

4.18 Remarks (a) The definition of differentiability is coordinate independent.

(b) T r
s (M) is an E(M)-module. The tensor product map

⊗ : T r1
s1

(M)× T r2
s2

(M)→ T r1+r2
s1+s2

(M) , (γ, δ) �→ γ ⊗ δ

is E(M)-bilinear and associative.

(c) An (r, s)-tensor γ on M is smooth if and only if

γ(α1, . . . , αr, v1, . . . , vs) ∈ E(M)

for all v1, . . . , vs ∈ V(M) and α1, . . . , αr ∈ Ω1(M).

16This repetition can be avoided if one first develops the (elementary) theory of vector bundles.
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(d) Let (ϕ, U) be a chart of M . Then{ ∂

∂xj1
⊗ · · · ⊗ ∂

∂xjr
⊗ dxk1 ⊗ · · · ⊗ dxks ; ji, ki ∈ {1, . . . , m}

}
(4.26)

is a module basis of T r
s (M). Then γ ∈ T r

s (U) if and only if the coefficients of γ in
the basis representation (4.26) are smooth.

(e) Let ϕ ∈ Diff(M, N). Then ϕ∗ maps the module T r
s (M) to T r

s (N) and operates
covariantly as

(ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗ and (idM )∗ = idT r
s (M) .

Analogously, ϕ∗(T r
s (N)

)
= T r

s (M), and ϕ∗ operates contravariantly. Finally ϕ∗
and therefore also ϕ∗ is compatible with the tensor product map, that is,

ϕ∗(γ ⊗ δ) = ϕ∗γ ⊗ ϕ∗δ .

(f) For f ∈ C∞(M, N) and γ ∈ T 0
s (N), the pull back f∗γ of γ by f is determined

by

f∗γ(v1, . . . , vs) := (γ ◦ f)
(
(Tf)v1, . . . , (Tf)vs

)
for v1, . . . , vs ∈ V(M)

with ((Tf)v)(p) := (Tpf)v(p) for p ∈ M . Then the map

f∗ : T 0
s (N)→ T 0

s (M) , γ �→ f∗γ

is well defined and R-linear, operates contravariantly, and is compatible with the
tensor product map. For f ∈ Diff(M, N), it is the same as the previously defined
pull back.

(g) T 1
0 (M) = V(M), T 0

1 (M) = Ω1(M), and dual pairing 〈 · , · 〉 is a (1, 1)-tensor
on M .

(h) (regularity) Let k ∈ N. Then the statements above hold analogously if M is a
Ck+1manifold and C∞ is replaced by Ck. �

Exercises

1 Let N be a submanifold of a manifold without boundary. Show that (with the canon-
ical identification) Vk(N) ⊂ Vk(M) for k ∈ N ∪ {∞}.
2 Suppose α ∈ Ωr(M) and β ∈ Ω(M), and let v ∈ V(M). Show that

v −� (α ∧ β) = (v −� α) ∧ β + (−1)rα ∧ (v −� β) .

3 Verify the statements made in the proof of Example 4.17(b).

4 For α ∈ Ω1(M) and v ∈ V(M), calculate d〈α, v〉 in local coordinates.



5 Riemannian metrics

We already know from Section VII.10 that the Euclidean inner product ( · | · ) on
Rm can be used to define another inner product by restricting it to the tangent
space TpM of a submanifold M . This gives a way to measure lengths and angles
on TpM . So, for example, we can determine if two curves Γ1 and Γ2 on M intersect
orthogonally at a point p by verifying that the tangent spaces TpΓ1 and TpΓ2 are
themselves orthogonal in TpM .

That the Euclidean structure of Rm induces one on M , or precisely on the
tangent bundle of M , is the foundation for the theory of integration on manifolds,
which we will treat in the next chapter. In this section, we explore a few con-
sequences of the existence of a Euclidean structure on M , and we study several
examples. We also introduce the Hodge star operator and the codifferential, which
are of significance for a deeper incursion into the theory of differential forms— in
particular, these concepts are important in (theoretical) physics.

To ease the introduction to the material, we consider first the case of the
Euclidean structure on M induced by ( · | · ). It will be apparent, however, that all
abstract theorems remain true in an essentially more general framework, namely,
that of Riemannian geometry. Because these facts are of great theoretical and
practical importance, we will introduce the concept of a (pseudo) Riemannian
metric, which forms the general framework for our subsequent considerations.

For the entire section, suppose the following:
• M is an m-dimensional submanifold of Rm; N is an n-dimensional submani-

fold of Rn.
• The indices i, j, k, l always range from 1 to m unless otherwise stated, and∑

j means that j is summed from 1 to m.

The volume element

Suppose M is oriented. Then Or induces an orientation on every tangent space
TpM . Also TpM is an inner product space with inner product ( · | · )p induced
by the Euclidean scalar product of the surrounding space Rm. Thus, by Re-
mark 2.12(b), there is a unique volume element ωp on TpM . Therefore

ωM (p) := ωp for p ∈M

defines an m-form on M , the volume element on M .

5.1 Proposition Suppose M is oriented. Then ωM belongs to Or(M). If (ϕ, U)
is a positive chart with ϕ = (x1, . . . , xm), then

ωM |U =
√

Gdx1 ∧ · · · ∧ dxm , (5.1)
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where G := det[gjk] ∈ E(U) is the Gram determinant and

gjk(p) :=
(
∂j |p

∣∣ ∂k|p
)
p

for 1 ≤ j, k ≤ m and p ∈ U .

Letting gϕ := i◦ϕ−1 ∈ C∞(ϕ(U), Rm), with i : M ↪→ Rm, be the parametrization
belonging to ϕ, we have

ϕ∗gjk(x) =
(
∂jgϕ(x)

∣∣ ∂kgϕ(x)
)

for 1 ≤ j, k ≤ m and x ∈ ϕ(U) . (5.2)

Proof Because (∂1|p, . . . , ∂m|p) is a positive basis of TpM , it follows from Propo-
sition 2.13 that

ωp =
√

G(p) dx1 ∧ · · · ∧ dxm(p) for p ∈ U .

Therefore (5.1) holds. Because

ϕ∗(ωM |U) = ϕ∗
√

Gdx1 ∧ · · · ∧ dxm
∣∣ ϕ(U)

with ϕ∗
√

G =
√

G ◦ ϕ−1, it follows from Remark 4.3(a) that (5.2) is satisfied.
Because the scalar product and the determinant function are smooth (see Propo-
sition VII.4.6 and Exercise VII.4.2) and because G(p) > 0 for p ∈ U , the chain rule
gives ϕ∗

√
G ∈ E

(
ϕ(U)

)
. Therefore ωM |U is smooth, which proves ωM ∈ Or. �

5.2 Remark (regularity) By modifying the statement of this proposition in the obvious
way, we find it remains true when M is a C1 manifold. �

5.3 Examples (a) (open sets in Hm) Let X be a nonempty open subset of Hm.
Then X is endowed with a natural orientation with respect to which every tangent
space TpX = TpRm with p ∈ X is naturally oriented, that is, this orientation makes
the canonical basis

(
(e1)p, . . . , (em)p

)
positive. Then the volume element of X is

given by
ωX = dx1 ∧ · · · ∧ dxm

∣∣ X .

The trivial chart (idX , X) is positive.

(b) (fibers of regular maps) Suppose X is open in Rm and q is a regular value
of f ∈ E(X) with M := f−1(q) 
= ∅. We provide the hypersurface M with the
orientation Or(M,∇f) induced by ∇f , as follows: For every p ∈ M , the basis
(v1, . . . , vm−1) of TpM is positive if and
only if the basis(

∇f(p), v1, . . . , vm−1

)
of TpX = TpRm is positive with ∇f =∑

k ∂kf ∂
/
∂xk. With

ν := ∇f
/
|∇f |

the unit normal field of M , the volume element of
(
M,Or(M,∇f)

)
is given by

ωM := (ν −� ωX) |M .
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If m = 3, a basis
(
v1(p), v2(p)

)
of TpM is positive if and only if the three

vectors
(
v1, v2, ν(p)

)
form a “right handed basis” of TpR3. Here (w1, w2, w3) is

a right handed basis if one can stretch out the thumb, first, and second fingers
of one’s right hand (with the middle finger bent palmward) so that these three
fingers point in the direction (and the same order) of these three vectors. This is
called the right hand rule.

Proof Because q is a regular point, ∇f(q) 	= 0 for q ∈M . By the regular value theorem,
M is a smooth hypersurface in X. The proof of Example 4.17(e) shows that ωM is a
smooth volume form. Now all is clear. �

(c) (spheres) The m-sphere Sm in Rm+1 for m ∈ N
is canonically oriented by the outward unit normal
field

ν(x) := (x, x) ∈ TxRm+1 .

If m = 0, S0 consists of the two points {±1} ⊂ R,
and the outward unit normal field at 1 [or −1] is
given by (1, 1) ∈ T1R [or (−1,−1) ∈ T−1R].1

When m = 1, the canonical orientation of S1 is the same as the one given
in Remark VIII.5.8. Therefore “one traverses S1 is the positive direction” exactly
when the traversal is counterclockwise. In this case, ν coincides with the negative
unit normal vector −n in the sense of the Frenet two-frame.

The volume element of the canonically oriented m-sphere is the m-form2

ωSm = (ν −� ωRm+1)
∣∣ Sm

=
m+1∑
j=1

(−1)j−1xj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm+1
∣∣∣ Sm .

The chart (ϕ±, Sm
± ) describes the upper [or lower] hemisphere Sm

± that is projected
along the xm+1-axis onto Bm × {0}; this chart is positively oriented when m is
even [or odd] and is negatively oriented for odd [or even] m.

The spherical coordinate chart of S1 is positive, whereas that of S2 is nega-
tive.

Proof The formula for ωSm is a special case of (b). The statements about the various
charts of Sm follow from Examples 4.6(a)–(b). �

(d) (graphs) Let X be open in Hm and f ∈ C∞(X, Rn). Then the natural
orientation of the graph M := graph(f) is the one for which the natural chart
(ϕ, M) with

ϕ : M → Rm ,
(
x, f(x)

)
�→ x

1See Example 1.17(a).
2This justifies the notations used in Examples 4.6 and 4.13(c).
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is positive. In the case n = 1, the volume element ωM has the local representation

ωM |M =
√

1 + |∇f |2 dx1 ∧ · · · ∧ dxm

with ∇f =
∑m

j=1 ∂jf ∂j .

Proof Because gϕ(x) =
(
x, f(x)

)
for x ∈ X = ϕ(M), it follows from Remark 4.3(a)

that

∂j |p =
(
p, (ej , ∂jf(x)

)
∈ TpRm+1 for p =

(
x, f(x)

)
∈M and 1 ≤ j ≤ m ,

where TpM is identified canonically with the vector subspace (TpiM )(TpM) of TpRm+1.
Putting dj := ∂jf , we then get gjk = δjk + djdk.

Let Dm := [ϕ∗gjk]. Then it follows that

G = det Dm = det
· · ·

⎡⎢⎢⎢⎢⎣
1 + d2

1 d1d2 · · · d1dm

d2d1 1 + d2
2 · · · d2dm

...
...

...

dmd1 dmd2 · · · 1 + d2
m

⎤⎥⎥⎥⎥⎦

= det

· · · · · · · · · · · · · · · · · · · · · · · · · · · ·

··············

⎡⎢⎢⎢⎢⎢⎣
0

Dm−1

...
0

dmd1 · · · dmdm−1 1

⎤⎥⎥⎥⎥⎥⎦ + d2
m det

· · · · · · · · · · · · · · · · · · · · · · · · · ·

··············

⎡⎢⎢⎢⎢⎢⎣
d1

Dm−1

...
dm−1

d1 · · · dm−1 1

⎤⎥⎥⎥⎥⎥⎦ .

To compute the last determinant, we subtract dj times the last column from the j-th
column for 1 ≤ j ≤ m − 1, and so find that its value is 1. This then gives the recursion
formula

detDm = detDm−1 + d2
m .

Because detD1 = 1 + d2
1, the recursion yields

G = detDm = 1 + d2
1 + · · ·+ d2

m = 1 + |∇f |2

and hence the claim. �

(e) (curves) Suppose J is a perfect interval in R, and γ : J → Rm is a smooth
embedding. Then M := γ(J) is an embedded curve in Rm. Also let M be oriented
by γ, that is, let

(
γ(t), γ̇(t)

)
be a positive basis of Tγ(t)M for t ∈ J . Finally, suppose

ϕ : M → R, with γ = iM ◦ ϕ−1 the chart of M belonging to γ. Then ωM = |γ̇| dt.
Proof This is an immediate consequence of Proposition 5.1. �

(f) (parametrized surfaces) Let X be open in H2, and h : X → Rn let be a
smooth embedding. Then M := h(X) is a two-dimensional submanifold in Rn, a
surface in Rn, which is described by a single chart. Therefore M is orientable. By
the orientation induced by the parametrization h, we mean that orientation for
which

(
∂1h(x), ∂2h(x)

)
is a positive basis of Th(x)M for every x ∈ X .
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Let ϕ : M → R2 with ϕ = (u, v) charge belonging to h, that is, h = iM ◦ϕ−1.
With the classical notations

E := |∂1h|2 , F := (∂1h | ∂2h) , G := |∂2h|2 ,

we have
ωM =

√
EG− F2 du ∧ dv .

Proof This follows from ϕ∗G = EG− F2. �

(g) (boundaries) Suppose M is an oriented manifold with boundary and ν(p)
is the outward (unit) normal vector ∂M at p ∈ ∂M . Then we say a basis
(v1, . . . , vm−1) of Tp∂M is positive if

(
ν(p), v1, . . . , vm−1

)
is a positive basis of

TpM . This is turn determines an orientation on ∂M , the orientation induced by
the outward normal. The volume element ω∂M of ∂M satisfies

ω∂M = (ν −� ωM ) | ∂M = i∗∂M (ν −� ωM ) ,

where i∂M : ∂M ↪→M is the natural embedding.
Obviously (c) is a special case of this situation. Note also that the orientation

induced by the outward normal must not agree with that induced by ∇f if ∂M
can be represented as in (b) as the fiber of a regular map.
Proof From Theorem 1.15 and Remark 1.16(a), we know that ν can be locally described
in the form ν(p) = ∇f(p)/|∇f(p)|, where f is a smooth function satisfying ∇f(p) 	= 0.
This shows the unit normal vector field is smooth. From this it follows easily that
(ν −� ωM ) | ∂M belongs to Ωm−1(∂M). If (v1, . . . , vm−1) is an ONB of Tp∂M , then(
ν(p), v1, . . . , vm−1

)
is an ONB of TpM . When

(
ν(p), v1, . . . , vm−1

)
is a positive ONB of

TpM ,
1 = ωM

(
ν(p), v1, . . . , vm−1

)
= (ν −� ωM )(p)(v1, . . . , vm−1) . �

(h) Let m ≥ 2. Then the orientation of ∂Hm = Rm−1 induced by the outward
normal ν = −em coincides with the natural orientation of Rm−1 if and only if m
is even.
Proof This we may read off from

det[ν, e1, . . . , em−1] = (−1)m−1 det[e1, . . . , em−1,−em] = (−1)m . �

Riemannian manifolds

The proof of Proposition 5.1 depends on the fact that every tangent space TpM
is endowed naturally with an inner product that varies differentiably with p ∈M .
Such situations appear quite frequently, although the scalar product on TM is
often generated in another way. Therefore it is useful to explore these issues
somewhat more precisely.
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A Riemannian metric on M is a tensor g ∈ T 0
2 (M) such that g(p) is an inner

product on TpM for every p ∈ M . Then (M, g) is a Riemannian manifold.
Let (M, g) be a Riemannian manifold. We will often write

(
(x1, . . . , xm), U

)
for the chart (ϕ, U) of M with ϕ = (x1, . . . , xm). Then we set

gjk := g
( ∂

∂xj
,

∂

∂xk

)
∈ E(U) (5.3)

and put

[gjk] := [gjk]−1 ∈ C∞(U, Rm×m
sym ) and G := det[gjk] ∈ E(U) . (5.4)

We also call g the (first) fundamental tensor. Here [gjk] is the representation
matrix (or simply, the matrix) of g in the local coordinates (x1, . . . , xm); it is
also called the (first) fundamental matrix.3 As before, G is called the Gram
determinant.

5.4 Remarks (a) If g is a Riemannian metric on M , the map

V(M)× V(M)→ E(M) , (v, w) �→ g(v, w) (5.5)

is well defined, bilinear, symmetric, and positive in the sense that

g(v, v) ≥ 0 and g(v, v) = 0 ⇐⇒ v = 0 . (5.6)

Proof That the map (5.5) is well defined follows immediately from Remark 4.18(c).
The remaining claims are direct consequences of the properties of scalar products. �

(b) Let
(
(x1, . . . , xm), U

)
be a chart of a Riemannian manifold (M, g). Then

g |U =
∑

j,k
gjk dxj ⊗ dxk .

In this context, we usually write dxjdxk for dxj ⊗ dxk.
Proof According to (4.8), any v ∈ V(U) has a basis representation

v =
∑

j
〈dxj , v〉 ∂

dxj
.

The claim follows from this, the bilinearity of the map (5.5), and the definitions of
dxj ⊗ dxk and gjk. �

(c) Let
(
(x1, . . . , xm), U

)
be a positive chart of an oriented Riemannian mani-

fold (M, g). Then the volume element ωM of M satisfies

ωM |U =
√

Gdx1 ∧ · · · ∧ dxm .

Proof This follows from Proposition 2.13. �

3See Remark VII.10.3(b).
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(d) Let g be a Riemannian metric on M , and let (x1, . . . , xm) and (y1, . . . , ym) be
local coordinates on an open set U of M . Then

g |U =
∑

j,k
gjk dxj ⊗ dxk =

∑
r,s

grs dyr ⊗ dys

with

grs =
∑

j,k

∂xj

∂yr

∂xk

∂ys
gjk for 1 ≤ r, s ≤ m .

Proof Because

dxj =
∑

r

∂xj

∂yr
dyr for 1 ≤ r ≤ m ,

this is a consequence of (b). �

(e) If we only require of g ∈ T 0
2 (M) that the bilinear form g(p) on TpM is symmet-

ric and nondegenerate for every p ∈ M , then we call g an indefinite Riemannian
metric, and (M, g) is a pseudo-Riemannian manifold. In this case, we again use
the notations (5.3) and (5.4). Then (a), (b) and (d), with the exception of (5.6),
remain true. Every Riemannian manifold is also pseudo-Riemannian.

(f) Let (M, g) be a (pseudo-)Riemannian manifold, and suppose W is open in M .
If v1, . . . , vm ∈ V(W ) satisfy

g(vj , vk) = ±δjk for 1 ≤ j, k ≤ m ,

we say (v1, . . . , vm) is an orthonormal frame on W . Of course, Riemannian mani-
folds have g(vj , vj) = 1 for 1 ≤ j ≤ m. An orthonormal frame (v1, . . . , vm) on W is
therefore an m-tuple of (smooth) vector fields W that form an ONB (with respect
to the (indefinite) inner product g(p) of TpM) at every point p ∈W . Such an or-
thonormal frame does not exist in general, because, according to Remark 4.5(d),
one cannot generally find m vector fields that are everywhere linearly independent.

If (ϕ, U) is a chart of M , then there is an orthonormal frame on U .
Proof The basis vector fields ∂1, . . . , ∂m ∈ V(U) are linearly independent at every point.
Because g is nondegenerate, the Gram–Schmidt orthonormalization procedure (see for
example [Art93, §§ 7.1 and 7.2]) then generates an orthonormal frame. The details are
left to you. �

(g) Let (M, g) be an oriented pseudo-Riemannian manifold. If (ϕ, U) is a positive
chart of M with ϕ = (x1, . . . , xm), we set

ωM |U :=
√
|G| dx1 ∧ · · · ∧ dxm .

This then defines a volume form ωM ∈ Ωm(M) on M , which we call the volume
element of M . Every positive orthonormal frame (v1, . . . , vm) on U satisfies

ωM (v1, . . . , vm) = 1 .
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Proof We show first that ωM ∈ Ωm(M) is well defined. So let (e1, . . . , em) be any
orthonormal frame on U , with (ε1, . . . , εm) its dual frame; that is, εj ∈ Ω1(U) and
〈εj , ek〉 = δj

k for 1 ≤ j, k ≤ m. Then it follows from Remark 2.18(d) that

ε1 ∧ · · · ∧ εm =
√
|G| dx1 ∧ · · · ∧ dxm .

Because this is true for every positive coordinate system (x1, . . . , xm) on U , it follows that
ωM |U ∈ Ωm(U) is well defined and independent of the special choice of local coordinates.
Suppose now

{
(ϕα, Uα) ; α ∈ A

}
is a positive atlas of M and (vα,1, . . . , vα,m) is a positive

orthonormal frame on Uα with dual frame (ε1
α, . . . , εm

α ). Then we define ωM on M by
ωM |Uα := ε1

α ∧ · · · ∧ εm
α . From the previous considerations, it follows that ωM is well

defined and belongs to Ωm(M). The last claim is now obvious. �

(h) (regularity) Let k ∈ N, and let M be a Ck+1 manifold. Then the definitions and
statements above remain true if V(M) and E(M) are replaced everywhere by Vk(M) and
Ck(M), respectively. �

Suppose (N, g) is a Riemannian manifold and f : M → N is an immersion.
Then f∗g (the pull back of g by f) is a Riemannian metric on M . If M is a
submanifold of N and i : M ↪→ N is the natural embedding, then i∗g is the
Riemannian metric induced by N (more precisely, by (N, g)).

Let (M, g) and (N, g) be Riemannian manifolds. An immersion f : M → N is
said to be an isometry if g = f∗g. If f is an isometric diffeomorphism, that is, both
an isometry and a diffeomorphism, then M and N are isometrically isomorphic.

5.5 Examples (a) Suppose (M, g) is a Riemannian manifold and (ϕ, U) is a chart
with ϕ = (x1, . . . , xm). Then (U, g) and

(
ϕ(U), ϕ∗g

)
are isometrically isomorphic,

and
ϕ∗g =

∑
j,k

gjk dxjdxk .

Proof This follows immediately from the definition of the fundamental matrix. �

(b) Rm is a Riemannian manifold with the Euclidean metric gm := ( · | · ), the
standard metric. Therefore Rm induces a Riemannian metric g on M , which we
also call the standard metric. It is obviously independent of Rm in the sense that
Rn induces the same metric on M when M lies in Rn. In particular, g(p) = ( · | · )p

for p ∈ M (with the notation we have been using) for the scalar product induced
by ( · | · ) in TpM .

If (ϕ, U) is a chart of M with ϕ = (x1, . . . , xm) and h := i ◦ ϕ−1 with
i : M ↪→ Rm is the associated parametrization, then

ϕ∗g =
∑

j,k
(∂jh | ∂kh) dxjdxk .

In other words, the first fundamental matrix [gjk] is given in local coordinates
(x1, . . . , xm) by [

(∂jh | ∂kh)
]
∈ C∞(

ϕ(U), Rm×m
)

.
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This is consistent with Remark 5.4(b) and also shows that Proposition 5.1 is a
special case of Remark 5.4(c).
Proof From g = i∗gm, it follows that ϕ∗g = (ϕ−1)∗i∗gm = h∗gm. Let (y1, . . . , ym) be
Euclidean coordinates of Rm. Then

gm =
m∑

j=1

(dyj)2 and h∗gm =
m∑

j=1

h∗(dyj ⊗ dyj) =
m∑

j=1

dhj ⊗ dhj ,

which follow easily from the definition of the pull back of (0, 2)-tensors dyj ⊗ dyj and
from Example 3.4(a). Now the claim follows easily from the bilinearity of (α, β) �→ α⊗β
for α, β ∈ Ω1

(
ϕ(U)

)
and from dhj =

∑
k ∂khj dxk. �

(c) (graphs) Suppose X is open in Hm and f ∈ C∞(X, Rn). Let M be the graph
of f , and let

ϕ : M → Rm ,
(
x, f(x)

)
�→ x

be the natural chart (ϕ, M). Then the standard metric g of M satisfies

g =
∑

j
(dxj)2 +

∑
j,k

(∂jf | ∂kf) dxjdxk .

In particular, in the case of a surface (m = 2),

g = (1 + |∂1f |2)(dx)2 + 2(∂1f | ∂2f) dxdy + (1 + |∂2f |2)(dy)2 .

Proof Because gjk = δjk + (∂jf | ∂kf) for 1 ≤ j, k ≤ m, this follows from (b). �

(d) (parametrized surfaces) Suppose X is open in H
2

and h : X → Rn is an
embedding. Then the standard metric of the surface M := h(X) is given by

g = E(du)2 + 2F dudv + G(dv)2 ,

where we have used the notations of Example 5.3(f).

(e) (plane polar coordinates) Let V2 := (0,∞)×(0, 2π). Then the polar coordinate
map

f2 : V2 → R2 , (r, ϕ) �→ (x, y) := (r cosϕ, r sin ϕ)

is an embedding with M := f2(V2) = R2\
(
R+ × {0}

)
, and

g2 |M = (dx)2 + (dy)2 = (dr)2 + r2(dϕ)2 .

Proof This follows easily from (d). �

(f) (circular coordinates) With respect to the parametrization

h : (0, 2π)→ R2 , t �→ (cos t, sin t)

of S1\
{
(1, 0)

}
, the standard metric on the circle satisfies gS1 = (dt)2.
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Proof Because |∂h| = 1, this follows from (b). �

(g) (m-dimensional polar coordinates) With m ≥ 3, let4

fm : Vm → Rm , (r, ϕ, ϑ1, . . . , ϑm−2) �→ (x1, x2, x3, . . . , xm)

be the (restriction to Vm of the) polar coordinate map (X.8.17). Then fm is a
parametrization of Rm\Hm−1, and

m∑
j=1

(dxj)2 = (dr)2 + r2
[
am,0(dϕ)2 +

m−2∑
k=1

am,k(dϑk)2
]

with

am,k :=
m−2∏

i=k+1

sin2 ϑi for 0 ≤ k ≤ m− 3 and am,m−2 := 1 .

In particular, spherical coordinates satisfy (m = 3)

(dx)2 + (dy)2 + (dz)2 = (dr)2 + r2
[
sin2 ϑ(dϕ)2 + (dϑ)2

]
.

Proof With y = (r, z) ∈ R× Rm−1, we read off from (X.8.14) that

∂1fm(y) = hm−1(z) and ∂jfm(y) = r∂j−1hm−1(z) for 2 ≤ j ≤ m . (5.7)

Therefore (X.8.13) implies
|∂1fm|2 = 1 . (5.8)

Differentiation of |hm−1|2 = 1 gives (hm−1 | ∂khm−1) = 0 for 1 ≤ k ≤ m − 1. Then it
follows from (5.7) that(

∂1fm(y)
∣∣ ∂kfm(y)

)
= r

(
hm−1(z)

∣∣ ∂k−1hm−1(z)
)

= 0 for 2 ≤ k ≤ m . (5.9)

From (5.7) we also get(
∂jfm(y)

∣∣ ∂kfm(y)
)

= r2
(
∂j−1hm−1(z)

∣∣ ∂k−1hm−1(z)
)

for 2 ≤ j, k ≤ m . (5.10)

The recursion formula (X.8.12) with z = (z′, zm−1) ∈ Rm−2 × R leads to

∂jhm−1(z) =
(
∂jhm−2(z

′) sin zm−1, 0
)

for 1 ≤ j ≤ m− 2 , (5.11)

and
∂m−1hm−1(z) =

(
hm−2(z

′) cos zm−1,− sin zm−1

)
.

From this and (X.8.13), it follows that

|∂m−1hm−1(z)|2 = |hm−2(z
′)|2 cos2 zm−1 + sin2 zm−1 = 1 ,

and, in analogy to the above, we have(
∂jhm−1(z)

∣∣ ∂m−1hm−1(z)
)

= sin zm−1 cos zm−1

(
hm−2(z

′)
∣∣ ∂jhm−2(z

′)
)

= 0

4We use the notations of (X.8.11)–(X.8.24).
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for 1 ≤ j ≤ m− 2. With (5.7), this proves

|∂mfm(z)|2 = r2 and (∂jfm | ∂mfm) = 0 for 2 ≤ j ≤ m− 1 . (5.12)

Finally (5.11) implies(
∂jhm−1(z)

∣∣ ∂khm−1(z)
)

= sin2 zm−1

(
∂jhm−2(z

′)
∣∣ ∂khm−2(z

′)
)

for 1 ≤ j ≤ m− 2 .

Thus (5.7) and (5.10) give the recursion formula(
∂jfm(y)

∣∣ ∂kfm(y)
)

= sin2 zm−1

(
∂jfm−1(y

′)
∣∣ ∂kfm−1(y

′)
)

(5.13)

for 2 ≤ j, k ≤ m − 1, with y = (y′, ym) ∈ Rm−1 × R. Because (5.8) and (5.12) are true
for all m ≥ 3, induction on (5.13) gives

|∂jfm|2 = r2am,j−2 for 2 ≤ j ≤ m− 1 , (5.14)

and
(∂jfm | ∂kfm) = 0 for 2 ≤ j, k ≤ m− 1 and j 	= k . (5.15)

Now the claim follows from (5.8), (5.9), (5.12), (5.14), (5.15), and (b). �

(h) (m-dimensional spherical coordinates) For m ≥ 2, let

hm : Wm → Rm+1 , (ϕ, ϑ1, . . . , ϑm−1) �→ (y1, y2, . . . , ym+1) ,

where Wm := (0, 2π)× (0, π)m−1 and

y1

y2

y3

ym

ym+1

=
=
=
...
=
=

cosϕ sin ϑ1 sin ϑ2 · · · sin ϑm−1 ,

sin ϕ sin ϑ1 sin ϑ2 · · · sin ϑm−1 ,

cosϑ1 sin ϑ2 · · · sin ϑm−1 ,

cosϑm−2 sin ϑm−1 ,

cosϑm−1

are (m-dimensional) spherical coordinates.5 Then hm is a parametrization of the
open subset Um := Sm\Hm of the m-sphere. The standard metric gSm of Sm

satisfies

gSm = am+1,0(dϕ)2 +
m−1∑
k=1

am+1,k(dϑk)2 .

In the case of the 2-sphere (with ϑ := ϑ1), this becomes

gS2 = sin2 ϑ(dϕ)2 + (dϑ)2 .

Proof Because hm = fm+1(1, · ), the claim is a simple consequence of (g). �

5See Example VII.9.11(b).
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(i) (Minkowski metric) We denote the Euclidean coordinates of R4 by (t, x, y, z)
or (x0, x1, x2, x3) and set R4

1,3 :=
(
R4, ( · | · )1,3

)
with the Minkowski metric

( · | · )1,3 = (dt)2 − (dx)2 − (dy)2 − (dz)2 = (dx0)2 −
3∑

j=1

(dxj)2 .

Then R4
1,3 is a pseudo-Riemannian manifold, the spacetime or Minkowski space of

(special) relativity theory.
For v = (v0, . . . , v3) ⊂ R4

1,3, we call

|v|21,3 := (v | v)1,3 = (v0)2 −
∑3

j=1
(vj)2

the Minkowski norm of the vector v. Vectors with posi-
tive Minkowski norm are said to be timelike; those with
negative norm are spacelike. Those whose Minkowski
norm is zero are lightlike; in R4

1,3, the lightlike vectors
form a (double) cone, the light cone L1,3.

(j) (pseudospherical coordinates) Let V1,3 := R× V3 and

f1,3 : V1,3 → R4 , (ρ, χ, ϕ, ϑ) �→ (x0, x1, x2, x3)

with
x0 = ρ coshχ ,

x1 = ρ sinh χ cosϕ sin ϑ ,

x2 = ρ sinh χ sin ϕ sin ϑ ,

x3 = ρ sinh χ cosϑ ;

this is the pseudospherical coordinate map. Then f1,3 is a smooth diffeomorphism
from V1,3\{0} to the interior

L̊1,3 :=
{

x ∈ R4 ; |x|21,3 > 0
}

of the light cone, and

( · | · )1,3 = (dρ)2 − ρ2
[
(dχ)2 + sinh2 χ sin2 ϑ(dϕ)2 + sinh2 χ(dϑ)2

]
.

Proof This follows easily from the properties of sinh and cosh (see Exercises III.6.5 and
IV.2.5), and from Remark 5.4(d). �

(k) (hyperbolic spaces) To generalize the Minkowski space, we set

( · | · )1,m := (dx0)2 −
m∑

j=1

(dxj)2

for n ∈ N×. Then Rm+1
1,m :=

(
Rm+1, ( · | · )1,m

)
is an m-dimensional pseudo-

Riemannian manifold.
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Let

Mm :=
{

(x0, x) ∈ R× Rm ; (x0)2 − |x|2 = 1, x0 > 0
}

,

that is, Mm is the upper connected component of the m-dimensional two-shelled
hyperboloid

K1 :=
{

x ∈ Rm+1 ; (Ax |x) = 1
}

, where A := diag(1,−1, . . . ,−1)

(see Example 1.17(b)). Also let i : Mm ↪→ Rm+1 be the canonical embedding, and
let

gHm := −i∗( · | · )1,m .

Then
Hm := (Mm, gHm)

is an m-dimensional Riemannian manifold, the m-dimensional hyperbolic space.
If N := (N, g) is isometrically isomorphic to Hm, we say N is a model of Hm. In
particular, if we provide Rm with the metric

(dr)2

1 + r2
+ r2gSm−1 ,

written in the “polar coordinates” (r, σ) ∈ R+×Sm−1, then Rm is a model of Hm.
Proof For u : Rm → Rm+1, x �→

√
1 + |x|2, we have Mm = graph(u). Therefore

ϕ : Mm → Rm ,
(
h(x), x

)
�→ x

is a diffeomorphism from the hypersurface Mm in Rm+1 to Rm. Hence we have only to
show that the bilinear form gHm(0) induced on M by −( · | · )1,m is positive definite and
that ϕ∗gHm has the form indicated, because one could read off from this that gHm(p) is
positive definite for every p ∈M \

{
ϕ−1(0)

}
.

With h(x) :=
(
u(x), x

)
for x ∈ Rm, we have h = i ◦ ϕ−1 and

∂jh = (∂ju, ej) for 1 ≤ j ≤ m ,

where ej is the j-th standard basis vector of Rm. Because ∂ju(x) = xj/u(x), it follows
that

(ϕ∗gHm)jk(x) = (∂jh | ∂kh)1,m(x) = (δjk − xjxk)
/
u2(x) for x ∈ Rm ;

in particular (ϕ∗gHm)(0) =
∑

j(dxj)2.

As in (g), let

fm : (0,∞)×Wm−1 → Rm , (r, ϑ) �→ rhm−1(ϑ)

be the m-dimensional polar coordinate map. Then ψ := f−1
m ◦ ϕ is a local chart of M ,

and a := i ◦ ψ−1 = h ◦ fm = f∗
mh is the associated parametrization. This has

a(r, ϑ) =
(√

1 + r2, rhm−1(ϑ)
)

,
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and therefore

∂ra(r, ϑ) =
( r√

1 + r2
, hm−1(ϑ)

)
, ∂ϑj a(r, ϑ) =

(
0, r∂jhm−1(r, ϑ)

)
for (r, ϑ) ∈ (0,∞)×Wm−1. Because |hm−1| = 1, we derive

ψ∗gHm = −a∗( · | · )1,m

= r2
∑

j,k
(∂jhm−1 | ∂khm−1) dxj dxk +

(
1− r2

√
1 + r2

)
(dr)2 .

The claim now follows from this because of (h) and because the part still missing from
Mm\

{
ϕ−1(0)

}
can be analogously parametrized by rotating Mm around the x0-axis. �

(l) (the Poincaré model) In analogy to
the stereographic projection of the sphere onto
the plane, consider the stereographic projec-
tion of the pseudosphere

S2
1,3 :=

{
(t, x, y) ∈ R3 ; t2 − x2 − y2 = 1

}
.

We set N := (1, 0, 0), the north pole of S2
1,3,

and define the south pole as S := (−1, 0, 0).
Then the value s(p) of the point p ∈ M2 of
the stereographic projection s : M2 → R2 is
defined as the point where the line from S to p intersects the plane R2×{0} in R3.
If the (Euclidean) coordinates of p ∈ M2 are (t, x, y), and those of s(p) are (u, v),
we learn from the figure above that

x

u
=

t + 1
1

and
y

v
=

t + 1
1

.

Because t2 − x2 − y2 = 1, it follows that t2 − (u2 + v2)(t + 1)2 = 1. From this we
calculate

t =
1 + u2 + v2

1− u2 − v2
, x =

2u

1− u2 − v2
, y =

2v

1− u2 − v2
.

This shows that

π : B2 →M2 , (u, v) �→
(1 + u2 + v2

1− u2 − v2
,

2u

1− u2 − v2
,

2v

1− u2 − v2

)
is a parametrization of M2 over B2. It satisfies

π∗gH2 = 4
(du)2 + (dv)2

(1− u2 − v2)2
.

Therefore (
B2, 4

(dx)2 + (dy)2

(1− x2 − y2)2
)

is a model of the hyperbolic plane, the Poincaré model.
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Proof The proof that π∗gH2 has the form given is left to you as an exercise. �

(m) (the Lobachevsky model) Following what we did in (h) and (j), we can
parametrize M2 by the pseudospherical coordinates

h1,2 : R+ × [0, 2π)→ R3 , (χ, ϕ) �→ (t, x, y)

with
t = coshχ , x = sinhχ cosϕ , y = sinhχ sin ϕ .

These satisfy h∗
1,2gH3 = (dχ)2 + sinh2 χ (dϕ)2. Therefore(

R+ × [0, 2π), (dχ)2 + sinh2 χ (dϕ)2
)

is a model of the hyperbolic plane H2, the Lobachevsky model.
Proof The verification of the given formulas is again left to you as an exercise. �

(n) (general pseudo-Riemannian metrics) Let X be open in Hm, and suppose
gjk = gkj ∈ E(X) for 1 ≤ j, k ≤ m and det

[
gjk(x)

]

= 0 for x ∈ X . Then

g :=
∑

j,k
gjk dxjdxk

defines a pseudo-Riemannian metric on X . If the matrix
[
gjk(x)

]
is positive defi-

nite for every x ∈ X , then g is a Riemannian metric on X .

Now suppose
{

(ϕα, Uα) ; α ∈ A
}

is an atlas for M ,

gα,jk = gα,kj ∈ E
(
ϕα(Uα)

)
for 1 ≤ j, k ≤ m ,

and det
[
gα,jk(x)

]

= 0 for x ∈ ϕα(Uα) and α ∈ A. Then there is exactly one

pseudo-Riemannian metric g on M such that

g |Uα = gα :=
∑

j,k
gα,jk dxjdxk

if the transition function h := ϕ−1
β ◦ ϕα satisfies

gβ,rs =
∑

j,k

∂hj

∂xr

∂hk

∂xs
gα,jk

for α, β ∈ A with Uα ∩ Uβ 
= ∅.
Proof This is a consequence of Remark 5.4(d). �

A Riemannian manifold has a Euclidean structure on every tangent space,
which allows lengths and angles to be measured. This allows many concepts from
Euclidean geometry to be extended. For example, we presented in Section VIII.1
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a formula for the length of a curve. It can now be naturally generalized: a curve
γ : I →M on a Riemannian manifold M has length∫

I

√
g
(
γ̇(t), γ̇(t)

)
dt ,

where γ̇(t) ∈ Tγ(t)M is the “velocity vector”

γ̇(t) = (Ttγ)(t, 1) for t ∈ I

at the point γ(t). We will not expand here on this subject, as the questions
raised are best treated in the framework of Riemannian geometry (see however
Exercise 5).

The Hodge star6

Suppose (M, g) is an Riemannian manifold and ωM is the volume element of M .
For 0 ≤ r ≤ m, we define bilinear maps

( · | · )g,r : Ωr(M)× Ωr(M)→ E(M) (5.16)

by

(α |β)g,r(p) :=
(
α(p)

∣∣ β(p)
)

g(p),r
for p ∈M and α, β ∈ Ωr(M) , (5.17)

where ( · | · )g(p),r denotes the scalar product on
∧r

T ∗
p M introduced in (2.14) and

(2.15). The Hodge star operator (or simply Hodge star)

∗ : Ωr(M)→ Ωm−r(M) , α �→ ∗α (5.18)

is also defined pointwise:

(∗α)(p) := ∗α(p) for p ∈M and α ∈ Ω(M) .

5.6 Remarks (a) The map (5.16) is well defined, bilinear, symmetric, and positive.
Proof We need only show that (α |β)g,r belongs to E(M) for α, β ∈ Ωr(M), because the
other statements follow from the properties of ( · | · )g(p),r. Suppose therefore (ϕ, U) is a
positive chart of M . According to Remark 5.4(f), we can choose an oriented orthonormal
frame (v1, . . . , vm) on U . Let (η1, . . . , ηm) be its dual frame. Then Remark 3.1(e) implies

α |U =
∑

(j)∈Jr

α(j)η
j1 ∧ · · · ∧ ηjr (5.19)

with
α(j) = α(vj1 , . . . , vjr ) ∈ E(U) for (j) ∈ Jr . (5.20)

Now the claim follows from (2.14), (2.15), and Remark 2.15(c). �

6The rest of this chapter can be skipped on first reading.
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(b) The star operator is a well-defined E(M)-module isomorphism with

∗∗α = (−1)r(m−r)α for α ∈ Ωr(M) . (5.21)

Proof Because (5.21) follows from Example 2.17(e) and the pointwise definition (5.18),
and because (5.21) also shows that the star operator is bijective, it only remains to show
that ∗α is smooth. So let (ϕ, U) be a positive chart of M . As in the proof of (a),
let (v1, . . . , vm) be an orthonormal frame on U , and let (η1, . . . , ηm) be its dual frame.
Then ∗α |U ∈ E(U) follows from (5.19), (5.20), and the explicit representation of ∗α in
Example 2.17(d). �

(c) For α, β ∈ Ωr(M), we have

α ∧ ∗β = β ∧ ∗α = (α |β)g,rωM . (5.22)

Proof This follows immediately from Example 2.17(f) and the pointwise definition of
all operations involved. �

(d) ∗1 = ωM and ∗ωM = 1.

(e) (regularity) It is clear that the statements above are still true when M is a Ck+1

manifold and Ω(M) is replaced by Ω(k)(M). �

Using the pointwise definition of the star operator, we can transfer the other
formulas of Example 2.17 to the present case. The following examples gather
several rules so obtained.

Let
(
(x1, . . . , xm), U

)
be a chart of M . When (∂1, . . . , ∂m) is an orthonormal

frame on U , we say (x1, . . . , xm) are orthonormal coordinates on U . If the ∂j are
not necessarily normalized, that is, we only know g(∂j , ∂k) = 0 for j 
= k, then the
coordinates are orthogonal.

5.7 Examples In these examples, (x1, . . . , xm) are orthonormal coordinates on
U ⊂M , and α ∈ Ω(U).

(a) Euclidean coordinates are orthonormal coordinates. Polar, spherical, and pseu-
dospherical coordinates are orthogonal.

Proof This follows from Examples 5.5. �

(b) ∗∑
j aj dxj =

∑m
j=1(−1)j−1aj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm.

(c) ∗∑
j(−1)j−1aj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm = (−1)m−1

∑
j aj dxj .

(d) For m = 3, we have

∗d
(∑

j
aj dxj

)
= (∂2a3 − ∂3a2) dx1 + (∂3a1 − ∂1a3) dx2 + (∂1a2 − ∂2a1) dx3 .
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Proof This follows from Example 3.7(a) (and the remarks following (4.16)), because
(2.20) implies the relations

∗(dx2 ∧ dx3) = dx1 , ∗(dx3 ∧ dx1) = dx2 , ∗(dx1 ∧ dx2) = dx3 . �

Of course, we can also explicitly calculate ∗∑
(j)∈Jr

a(j) dx(j) even if we are
not using orthonormal coordinates. For simplicity, we only consider the case of
1-forms.

5.8 Proposition Let
(
(x1, . . . , xm), U

)
be a positive chart of M . Then

∗dxj =
∑

k
(−1)k−1gjk

√
Gdx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxm .

Proof Because ∗dxj ∈ Ωm−1(U), Example 3.2(b) guarantees that there are aj	

in E(U) such that

∗dxj =
∑

	
(−1)	−1aj	 dx1 ∧ · · · ∧ d̂x	 ∧ · · · ∧ dxm .

This gives

dxk ∧ ∗dxj =
∑

	
(−1)	−1aj	 dxk ∧ dx1 ∧ · · · ∧ d̂x	 ∧ · · · ∧ dxm

= ajk dx1 ∧ · · · ∧ dxm .
(5.23)

From Remark 2.14(b) we get (dxj | dxk)g,1 = gjk. Thus Remark 5.6(c) gives

dxk ∧ ∗dxj = gkjωM = gjk
√

Gdx1 ∧ · · · ∧ dxm , (5.24)

where the last equality follows from Remark 5.4(c). Now the claim follows from
(5.23) and (5.24). �

The codifferential

Let (M, g) be an oriented Riemannian manifold. To avoid an exceptional case, we
set Ω−1(M) := {0} so that, because Ωm+1(M) = {0}, we can also define the star
operation ∗ : Ωm+1(M)→ Ω−1(M). With help of the (so extended) star operator
and the exterior derivative, we define for 0 ≤ r ≤ m the codifferential

δ : Ωr(M)→ Ωr−1(M)

by7

δα := (−1)m(r+1)∗d∗α for α ∈ Ωr(M) .

7The normalization factor (−1)m(r+1)+1 is often used instead of (−1)m(r+1), particularly in
differential geometry. The reason for our choice will be made clear in Remark 6.23(c).
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In other words, we require that the diagram

Ωr(M) Ωm−r(M)

Ωr−1(M) Ωm−r+1(M)

(−1)m(r+1)δ d

∗

∗

�

�
� �

commutes.
The following remarks list several properties of the codifferential.

5.9 Remarks (a) δ2 = 0.
Proof Because ∗∗α = (−1)r(m−r)α, we have δδα = ±∗d∗∗d∗α = ±∗d2∗α = 0 because
d2 = 0. �

(b) ∗δd = dδ∗ and ∗dδ = δd∗.
Proof If α ∈ Ωr(M), then dα belongs to Ωr+1(M). Therefore

∗δdα = (−1)m(r+2)∗∗d∗dα = (−1)mr∗∗d∗dα .

Because d∗dα ∈ Ωm−r(M), we thus find ∗δdα = (−1)−r2
d∗dα. Analogously,

dδ∗α = (−1)m(m−r+1)d∗d∗∗α = (−1)m(m+1)−r2
d∗dα .

Because m(m + 1) is even, this proves the first claim. The second follows analogously. �

(c) d∗δ = δ∗d = 0.
Proof We leave the simple proof to you. �

(d) ∗δα = (−1)r+1d∗α and δ(∗α) = (−1)r∗dα for α ∈ Ωr(M).
Proof The first statement follows from

∗δα = (−1)m(r+1)∗∗d∗α = (−1)mr+m(−1)(m−r+1)(r−1)d∗α = (−1)r+1d∗α .

The second follows from an analogous calculation. �

(e) (regularity) From the definition of δ and Remarks 4.11(b) and 5.6(e), it follows
immediately that δ is an R-linear map from Ωr

(k) to Ωr−1
(k−1) for 1 ≤ r ≤ m and k ∈ N×.

This remains true for Ck+1 manifolds. �

5.10 Examples Let
(
(x1, . . . , xm), U

)
be a positive chart on M .

(a) For α =
∑

j aj dxj ∈ Ω1(U), we have

δα =
1√
G

∑
j,k

∂

∂xj

(
gjkak

√
G

)
∈ E(U) .

Proof It follows from Proposition 5.8 that

∗α =
∑

j
aj

∑
k
(−1)k−1gjk

√
G dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxm .
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From this we derive (because r = 1) that

δα = ∗d∗α = ∗
∑

j

∑
k

∑
�
(−1)k−1 ∂

∂x�

(
ajg

jk
√

G
)
dx� ∧ dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxm

= ∗
∑

j,k

∂

∂xj

(
gjkak

√
G

)
dx1 ∧ · · · ∧ dxm .

The claim now follows from

dx1 ∧ · · · ∧ dxm =
1√
G

ωM (5.25)

and from Remark 5.6(d). �

(b) For orthonormal coordinates (x1, . . . , xm), it follows from (a) that

δ
(∑

j
aj dxj

)
=

∑
j
∂jaj .

(c) δa = 0 for a ∈ E(M).

(d) δ(a dx1 ∧ · · · ∧ dxm)

=
∑

j,k
(−1)k−1 ∂

∂xj

( a√
G

)
gjk
√

Gdx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxm .

Proof Using (5.25) and Remark 5.6(d), we get

∗(a dx1 ∧ · · · ∧ dxm) = a
/√

G .

Therefore

∗d∗(a dx1 ∧ · · · ∧ dxm) = ∗
∑

j

∂

∂xj

( a√
G

)
dxj .

Now the claim follows from Proposition 5.8. �

(e) With orthonormal coordinates, we have

δ
∑

(j)∈Jr

a(j) dx(j) =
∑

(j)∈Jr

r∑
k=1

(−1)k−1∂jk
a(j) dx1 ∧ · · · ∧ d̂xjk ∧ · · · ∧ dxjr .

Proof Because of the linearity, it suffices to consider α = a dx(j) with (j) ∈ Jr. From
(2.20) and Theorem 4.10(ii), we obtain

d∗α = s(j) da ∧ dx(jc) = s(j)

r∑
k=1

∂jka dxjk ∧ dx(jc) .

Therefore Example 2.17(d) implies

∗d∗α = s(j)
r∑

k=1

s
(
jk, (jc)

)
∂jka dxj1 ∧ · · · ∧ d̂xjk ∧ · · · ∧ dxjr
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with s
(
jk, (jc)

)
:= sign

(
jk, (jc), j1, . . . , ĵk, . . . , jr

)
. Because (jc) consists of m − r ele-

ments, it follows that

s
(
jk, (jc)

)
= (−1)(m−r)(r−1) sign

(
jk, j1, . . . , ĵk, . . . , jr, (j

c)
)

= (−1)(m−r)(r−1)+k−1s(j) .

Due to the (mod 2) congruences

(m− r)(r − 1) + k − 1 + m(r + 1) ≡ k − r(r + 1)− 1 ≡ k − 1 ,

the claim then follows from the definition of δ. �

5.11 Remarks (a) By making appropriate modifications, the above properties
of the star operator and the codifferential can be extended to the case of pseudo-
Riemannian manifolds.

More precisely, suppose (M, g) is an oriented pseudo-Riemannian manifold.
We can provide TpM with the inner product induced by that of Rm. By Re-
mark 2.18(a), it follows that the representation matrix g of g(p) at every p ∈ M
is diagonal in an appropriately chosen basis, and its diagonal entries are ±1. Now
(−1)s = sign g(p) is uniquely determined by g(p), where s denotes the number of
negative elements. We now assume that sign(g) = sign g(p) is constant on M , that
is, it is independent of p. From (the proof of) Remark 5.4(f), it follows that this
assumption is satisfied if M can be described by a single chart.

Under this assumption the star operator, as defined through (2.25), can also
be defined pointwise. Then (5.21) and (5.22) must be replaced by

∗∗α = sign(g)(−1)r(m−r)α for α ∈ Ωr(M) ,

and
α ∧ ∗β = β ∧ ∗α = sign(g)(α |β)g,rωM for α, β ∈ Ωr(M) ,

as we learn from Remarks 2.19(d) and (e), respectively. Here ωM is the volume
element of M defined in Remark 5.4(g). Remark 2.19(c) also implies

∗1 = sign(g)ωM for ∗ωM = 1 .

The codifferential is defined in this case by

δα := sign(g)(−1)m(r+1)∗d∗α for α ∈ Ωr(M) . (5.26)

We verify easily that with these modifications, the statements of Remark 5.6 hold
as written.
Proof The claims follows from Remarks 2.19. �

(b) Let
(
(x1, . . . , xm), U

)
be a positive chart of M . Then

δ
∑

j
aj dxj =

1√
|G|

∑
j,k

∂

∂xj

(
gjkak

√
|G|

)
∈ E(U) .

Proof This follows, in analogy to the proof of Example 5.10(a), from Remark 5.4(g). �
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5.12 Examples We consider now the Minkowski space R4
1,3 with the metric ( · | · )1,3

and therefore with g := (dt)2 − (dx)2 − (dy)2 − (dz)2.

(a) If (i, j, k) is a cyclic permutation of (1, 2, 3), then with (x1, x2, x3) := (x, y, z),
we have

∗(dxi ∧ dt) = dxj ∧ dxk and ∗(dxi ∧ dxj) = −dxk ∧ dt .

Proof Let (e0, e1, e2, e3) be the canonical basis of R4
1,3. Then

g(e0, e0) = 1 and g(ej, ej) = −1 for 1 ≤ j ≤ 3 .

This implies
(dt | dt)g,1 = 1 and (dxj | dxj)g,1 = −1 .

Therefore

(dt ∧ dxj | dt ∧ dxj)g,2 = −1 and (dxj ∧ dxk | dxj ∧ dxk)g,2 = 1 for 1 ≤ j < k ≤ 3 .

Now the claim follows from Remark 2.19(c). �

(b) Let Ej , Hj ∈ E(R4
1,3) and

α := (E1dx1 + E2dx2 + E3dx3) ∧ dt

+ H1dx2 ∧ dx3 + H2dx3 ∧ dx1 + H3dx1 ∧ dx2 .

Then
∗α = −(H1dx1 + H2dx2 + H3dx3) ∧ dt

+ E1dx2 ∧ dx3 + E2dx3 ∧ dx1 + E3dx1 ∧ dx2 .

Proof This is an immediate consequence of (a) and the E(R4
1,3)-linearity of the star

operator. �

(c) The α from (b) satisfies

δα =
3∑

j=1

∂Ej

∂t
dxj −

3∑
k=1

∂Ek

∂xk
dt +

∑
(i,j,k)

(∂Hi

∂xj
− ∂Hj

∂xi

)
dxk ,

where the last term is summed over all cyclic permutations of (1, 2, 3).
Proof From (b), we know that

∗α = −
3∑

i=1

Hi dxi ∧ dt +
∑

(i,j,k)

Ei dxj ∧ dxk .

This implies

d∗α = −
3∑

i=1

3∑
j=1
j �=i

∂Hi

∂xj
dxj ∧ dxi ∧ dt

+
∑

(i,j,k)

(∂Ei

∂t
dt ∧ dxj ∧ dxk +

∂Ei

∂xi
dxi ∧ dxj ∧ dxk

)
.
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From Remark 2.19(c), we derive

∗(dt ∧ dxi ∧ dxj) = −dxk and ∗(dxi ∧ dxj ∧ dxk) = dt .

With this we get

∗d∗α = −
∑

(i,j,k)

(∂Hi

∂xj
− ∂Hj

∂xi

)
dxk −

3∑
i=1

∂Ei

∂t
dxi +

3∑
k=1

∂Ek

∂xk
dt .

Now the claim follows because m = 4 and sign(g) = −1. �

Exercises

1 Let (Mj , gj) for j = 1, 2 be pseudo-Riemannian manifolds with ∂M1 = ∅, and denote
by πj : M1 ×M2 →Mj the canonical projection onto Mj . Prove these statements:

(i) (M1 ×M2, π
∗
1g1 + π∗

2g2) is a Riemannian manifold, the product of M1 and M2.

(ii) Two points (p1, p2) yield submanifolds M1 × {p2} and {p1} ×M2 of M1 ×M2.

(iii) T(p1,p2)(M1 ×M2) = T(p1,p2)

(
M1 × {p2}

)
⊕ T(p1,p2)

(
{p1} ×M2

)
.

(iv) ωM1×M2 = π∗
1ωM1 ∧ π∗

2ωM2 .

2 Let M be an oriented hypersurface in Rm+1. We call ν : M → TRm+1 a positive
unit normal field when ν is a unit normal of M such that, for every p ∈ M and every
positive basis (v1, . . . , vm) of TpM , the (m+1)-tuple

(
ν(p), v1, . . . , vm

)
is a positive basis

of TpRm+1.

(a) Show that ν is well defined and unique.

(b) Determine the unit normal on these surfaces in R3:

(i) graph f, with X open in R2 and f ∈ E(X) , (ii) R × S1 , (iii) S2 , (iv) T2
a,r .

(Hint: (iv) Exercise VII.10.10 and Example VII.9.11(f).)

3 Let M be an oriented hypersurface in Rm+1, provided with the standard metric.
Denote by ν the positive unit normal of M . Show these facts:

(i) ν defines a smooth map from M to Sm, the Gauss map (which is also denoted by ν).

(ii) For p ∈ M and v ∈ TpM , we have
(
(Tpν)v | ν(p)

)
Rm+1 = 0. Therefore (Tpν)v

belongs to TpM .

(iii) The map

L : M →
⋃

p∈M

L(TpM) ∈ L(TpM) , p �→ Tpν

is well defined. This is called the Weingarten map of M .

(iv) For p ∈M and v, w ∈ TpM , we have

g(p)
(
L(p)v, w

)
= g(p)

(
v, L(p)w

)
,

that is, L(p) is symmetric on the inner product space
(
TpM, g(p)

)
. The tensor

h ∈ T 0
2 (M) defined by

h(p)(v, w) := g(p)
(
L(p)v, w

)
for p ∈M and v, w ∈ TpM

is called the second fundamental tensor of M .
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(v) In local coordinates (U, ϕ), with the natural embedding i : M ↪→ Rm+1, and with
f := i ◦ ϕ−1, we have

hjk = (∂jν | ∂kf) = −(ν | ∂j∂kf) ,

where hjk := h
(
∂/∂xj , ∂/∂xk

)
.

4 Calculate the second fundamental forms of R2, S2, R× S1, and T2
a,r as submanifolds

of R3.

5 Suppose I is a compact interval in R and M is a Riemannian manifold. Also let
γ ∈ C1(I,M). Let i : M ↪→ Rm be the natural embedding, and put γ̃ := i ◦ γ. Then the
length L(γ̃) of γ̃ is defined as in Section VIII.1. Show that if γ̇(t) := (Ttγ)(t, 1) for t ∈ I ,
then

L(γ̃) =

∫
I

√
g
(
γ̇(t), γ̇(t)

)
dt .

When L(γ̃) = L(I), we say γ is parametrized by arc length.

6 Suppose M is an oriented surface in R3 and γ ∈ C2(I, M) is parametrized by arc
length. Also denote by ν the positive unit normal bundle of M . Then we call

κg(γ) := det[γ̇, γ̈, ν]

the curvature of γ in M or the geodesic curvature of γ.

(a) Verify in the Euclidean case M = R2 that the geodesic curvature is the same as the
(usual) curvature from Section VIII.2.

(b) Suppose M = S2 and (x, y, z) are the Euclidean coordinates in R3. Also let γz

for z ∈ (−1, 1) be a parametrization by arc length of Lz :=
√

1− |z|2 S1 × {z} (see
Example 1.5(a)). Show then that

κg(γz) =
z√

1− |z|2
.

Therefore the geodesic curvature is constant on the circle Lz and vanishes at the equator.

7 Prove the equality ρ∗ωSm = r−(m+1)α from Example 4.13(c) by direct calculation for
m = 2 and 3.

8 Prove the statements made in the proof of Example 5.5(b).

9 Show that

{ z ∈ C ; Im z > 0 } → D , z �→ (1 + iz)/(1− iz)

gives a diffeomorphism from the “upper half of complex half plane” to the unit disc.
Then use this map to show that (

H2,
(dx)2 + (dy)2

y2

)
is a model of the hyperbolic plane, the Klein model.

10 Show that the Lobachevsky plane from Example 5.5(m) is a model of H2.
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11 For α ∈ Ωr−1(M) and β ∈ Ωr(M), show

d(α ∧ ∗β) = dα ∧ ∗β + α ∧ ∗δβ .

12 Show that the codifferential does not depend on the orientation of the underlying
Riemannian manifold.

13 Suppose M is oriented, (N, g) is another oriented m-dimensional Riemannian man-
ifold, and f : M → N is an isometric diffeomorphism. Show that f∗ωN = ±ωM . Also
show that f∗ωN = ωM if and only if f is orientation-preserving.

14 Suppose M and N are as in Exercise 13 and f : M → N is an orientation-preserving
isometric diffeomorphism. Show that the diagram

Ωr(M) Ωm−r(M)

Ωr(N) Ωm−r(N)

f∗ f∗

∗

∗

�

�

� �

is commutative for 0 ≤ r ≤ m.

15 Suppose M and N are as in Exercise 13, and f : M → N is an isometric diffeomor-
phism.8 Show that the diagram

Ωr(M) Ωr−1(M)

Ωr(N) Ωr−1(N)

f∗ f∗

δ

δ

�

�

� �

commutes for 0 ≤ r ≤ m.

8Note Exercise 12.



6 Vector analysis

Vector fields and Pfaff forms can be interchanged using the Riesz isomorphism.
While vector fields have an immediate geometrical interpretation, the calculus
of differential forms is of great value in calculations. The exterior product and
derivative obey relatively simple rules, which themselves stand for a more compli-
cated set of prescriptions for how to change from one system of local coordinates
to another. In this section, we will use the Riesz isomorphism to translate some
of the concepts and theorems of differential forms into the language of classical
vector analysis. In so doing, we will learn about the divergence and curl of vector
fields, which are of fundamental significance in physics and the theory of partial
differential equations.

For the entire section suppose the following:

• M is an m-dimensional manifold; N is an n-dimensional manifold.

• The indices i, j, k, � always range from 1 to m unless stated otherwise, and∑
j means that j is summed from 1 to m.

The Riesz isomorphism

Let g be a pseudo-Riemannian metric on M . Then we define the Riesz isomor-
phism, Θg, by

Θg : V(M)→ Ω1(M) , v �→ Θgv (6.1)

and
(Θgv)(p) := Θg(p)v(p) for p ∈ M ,

where Θg(p) : TpM → T ∗
p M is the Riesz isomorphism of (2.12) (or Remark 2.18(b))

and is defined by

〈Θg(p)u, w〉 = g(p)(u, w) for u, w ∈ TpM .

When no confusion is expected, we may write Θ instead of Θg.

6.1 Remarks (a) The map (6.1) is well defined.
Proof We must show that Θv belongs to Ω1(M) for v ∈ V(M). In local coordinates,
we have

v |U =
∑

j
vj ∂

∂xj

with vj ∈ E(U). From this and from Remarks 2.14(a) and 2.18(b), it follows that

Θv(p) = Θg(p)

∑
j
vj(p)

∂

∂xj

∣∣∣
p

=
∑

j
vj(p)Θg(p)

∂

∂xj

∣∣∣
p

=
∑

j
vj(p)

∑
k

gjk(p) dxk(p) =
∑

j
aj(p) dxj(p) ,
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where
ak :=

∑
j
gkjv

j ∈ E(U) .

Now the claim follows from Remarks 4.5(c) and 5.4(e). �

(b) In local coordinates,

Θ
(∑

j
vj ∂

∂xj

)
=

∑
j
aj dxj with aj :=

∑
k
gjkvk . (6.2)

Instead of Θv, we often write v� or g�v, because, as seen in (6.2), Θ effects a
“lowering of indices” (see Remark 2.14(d)).
Proof This was shown in the proof of (a). �

(c) The map Θ : V(M)→ Ω1(M) is an E(M)-module isomorphism.
Proof Let α ∈ Ω1(M). Then α(p) ∈ T ∗

p M for p ∈ M . From Section 2, we know that
Θg(p) is a vector space isomorphism. Therefore Θ−1

g(p)
α(p) ∈ TpM is well defined. We set

(Θgα)(p) := Θ−1
g(p)α(p) for p ∈M and α ∈ Ω1(M) .

In local coordinates, we know from Remarks 2.14(a) and 2.18(b) that

Θgα(p) = Θ−1
g(p)

∑
j
aj(p) dxj(p) =

∑
j
aj(p)Θ−1

g(p) dxj(p)

=
∑

j
aj(p)

∑
k

gjk(p)
∂

∂xk

∣∣∣
p

=
∑

j
vj(p)

∂

∂xj

∣∣∣
p

,

where
vj :=

∑
k

gjkak ∈ E(U) .

Thus it follows from Remark 4.3(c) that Θgα belongs to V(M). From the definitions of
Θg and Θg, it follows immediately that ΘgΘg = idΩ1(M) and ΘgΘg = idV(M). Therefore

Θg is bijective, and Θ−1
g = Θg.

Finally we see that for a ∈ E(M) and v ∈ V(M), we have

Θg(av)(p) = Θg(p)a(p)v(p) = a(p)Θg(p)v(p) = (aΘgv)(p) for p ∈M .

Therefore Θ is an E(M)-Module isomorphism. �

(d) In local coordinates,

Θ−1
(∑

j
aj dxj

)
=

∑
j
vj ∂

∂xj
with vj :=

∑
k
gjkak . (6.3)

Instead of Θ−1α, we often write α� or g�α, because Θ−1 “raises indices”.
Proof This was shown in the proof of (c). �

(e) (orthogonal coordinates) If (x1, . . . , xm) are orthogonal coordinates, that is,
if

g
( ∂

∂xj
,

∂

∂xk

)
= 0 for j 
= k ,
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then (6.2) and (6.3) simplify respectively to

Θv =
∑

j
gjjv

j dxj and Θ−1α =
∑

j
gjjaj

∂

∂xj

for v =
∑

j vj ∂/∂xj and α =
∑

j aj dxj .

(f) Let (N, g) be a pseudo-Riemannian manifold, and let ϕ ∈ Diff(M, N) with
ϕ∗g = λg for some λ 
= 0. Then the diagram

V(M) V(N)

Ω1(M) Ω1(N)

ΘM
∼= ∼= λΘN

ϕ∗

∼=

ϕ∗

∼=

�

�
� �

commutes. Therefore ΘMϕ∗ = λϕ∗ΘN .
Proof Using the definition and properties of the push forward and the pull back of
vector fields and forms (see in particular (4.25)), we find for v, w ∈ V(N) that

λg(v, w) = ϕ∗g(v,w) = g(ϕ∗v, ϕ∗w) = 〈ΘMϕ∗v, ϕ∗w〉M = 〈ϕ∗ΘMϕ∗v, w〉N
= g(Θ−1

N ϕ∗ΘMϕ∗v, w) .

Because g is nondegenerate and R-linear, it follows that

λv = Θ−1
N ϕ∗ΘMϕ∗v for v ∈ V(M) ,

which proves the claim. �

(g) (regularity) Suppose k ∈ N and M is a Ck+1 manifold. Then the definitions and
statements above remain true when smooth vector fields, differential forms, and functions
are replaced by Ck vector fields, Ck differential forms, and Ck functions. �

6.2 Examples (a) (Euclidean coordinates) Let M be open in Rm. We denote
Euclidean coordinates by (x1, . . . , xm), that is, ( · | · ) =

∑
j(dxj)2. Then

Θ
(∑

j
vj ∂

∂xj

)
=

∑
j
aj dxj for aj := vj .

The last assignment means that in the Euclidean case we do not need to introduce
new notation; instead we normally write

∑
j vj dxj for the image of

∑
j vj ∂/∂xj

under Θ. That is, Θ allows us to regard the components vj of the vector field∑
j vj ∂/∂xj as those of the Pfaff form

∑
j vj dxj .

Proof Because gjk = δjk, this follows from Remark 6.1(b). �

(b) (spherical coordinates) Let V3 := (0,∞)× (0, 2π)× (0, π), and let

f : V3 → R3 , (r, ϕ, ϑ) �→ (x, y, z)
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be the spherical coordinate transformation of Example VII.9.11(a). Then with
respect to the standard metric, we have

Θ
(
v1 ∂

∂r
+ v2 ∂

∂ϕ
+ v3 ∂

∂ϑ

)
= v1 dr + r2 sin2(ϑ)v2 dϕ + r2v3 dϑ .

Proof This follows immediately from Remark 6.1(b). �

(c) (Minkowski metric) On R4
1,3, we have

Θg

(∑3

μ=0
vμ ∂

∂xμ

)
= v0 dx0 −

∑3

j=1
vj dxj

for g := ( · | · )1,3. �

The gradient

If f ∈ E(M), then df belongs to Ω1(M). Therefore

gradg f := Θ−1
g df ∈ V(M)

is a well-defined vector field on M , the gradient of f on the (pseudo-)Riemannian
manifold (M, g) (or with respect to g). We may also write it as gradM f or gradf if
no misunderstanding is expected. Therefore grad f is defined by the commutativity
of the diagram

�

�
��

�
�	

E(M) = Ω0(M)

V(M) Ω1(M) .
Θ

∼=

grad d (6.4)

6.3 Remarks (a) The map grad : E(M)→ V(M), f �→ grad f is R-linear.

(b) For f ∈ E(M), the vector field gradf is characterized by the relation

g(grad f, w) = 〈df, w〉 for w ∈ V(M) .

(c) In local coordinates, we have

gradf =
∑

j

(∑
k
gjk ∂f

∂xk

) ∂

∂xj
. (6.5)

Proof Because we know from (4.5) and (4.8) that df =
∑

j ∂f/∂xj dxj , the claim follows
from Remark 6.1(d). �
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(d) (orthogonal coordinates) In orthogonal coordinates, (6.5) simplifies to

gradf =
∑

j
gjj ∂f

∂xj

∂

∂xj
.

Because in this case g has the form

g =
∑

j
gjj (dxj)2 , (6.6)

that is, because the fundamental matrix is diagonal, we have gjj = 1/gjj . Thus
the coefficients gjj can be read directly from the representation (6.6).

(e) Suppose (N, g) is a pseudo-Riemannian manifold and ϕ ∈ Diff(M, N) with
ϕ∗g = λg for some λ 
= 0. Then the diagram

E(M) V(M)

E(N) V(N)

ϕ∗ ϕ∗

λ gradM

gradN

�

�

� �

commutes. Therefore gradM ◦ ϕ∗ = λ−1ϕ∗ ◦ gradN .
Proof Because the relation λΘ−1

M ϕ∗ = ϕ∗Θ−1
N follows from Remark 6.1(f), we find for

f ∈ E(N) that

λ gradM (ϕ∗f) = λΘ−1
M d(ϕ∗f) = λΘ−1

M ϕ∗df = ϕ∗Θ−1
N df = ϕ∗gradN f ,

where we have used (4.19). �

(f) (regularity) Let k ∈ N. For f ∈ Ck+1(M), we have grad f ∈ Vk(M). Here it suffices
to assume that M is a Ck+1 manifold. �

6.4 Examples (a) (Euclidean coordinates) Let M be open in Rm. Denoting
Euclidean coordinates by (x1, . . . , xm), we have gjk = δjk and therefore

gradf =
∑

j

∂f

∂xj

∂

∂xj
.

This representation obviously coincides with that of Proposition VII.2.16. For
an arbitrary locally Riemannian metric, we have already confirmed (6.4) in Re-
mark VII.2.17(c).

(b) (spherical coordinates) Let V3 → R3, (r, ϕ, ϑ) �→ (x, y, z) be the spherical
coordinate map. In these coordinates, the gradient with respect to the standard
metric reads

gradf =
∂f

∂r

∂

∂r
+

1
r2 sin2 ϑ

∂f

∂ϕ

∂

∂ϕ
+

1
r2

∂f

∂ϑ

∂

∂ϑ
.

Proof Because spherical coordinates are orthogonal, this follows from Example 5.5(g). �
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(c) (spherical coordinates) Suppose h2 : W2 → R3, (ϕ, ϑ) �→ (x, y, z) is the
parametrization of the open subset U2 := S2 \H2 of the 2-sphere. Then for
f ∈ C1(U2, R), we have

gradS2 f =
1

sin2 ϑ

∂f

∂ϕ

∂

∂ϕ
+

∂f

∂ϑ

∂

∂ϑ
.

Proof This can be read from the representation of gS2 in Example 5.5(h). �

(d) (Minkowski metric) Suppose X is open in R4
1,3 and f ∈ C1(X, R). Then,

with respect to the Minkowski metric, we have

gradf =
∂f

∂t

∂

∂t
− ∂f

∂x

∂

∂x
− ∂f

∂y

∂

∂y
− ∂f

∂z

∂

∂z
,

as we see immediately from the definition of ( · | · )1,3. �

The divergence

Now suppose M is oriented and that ωM denotes the volume element of (M, g).
Then the maps

� ωM : E(M)→ Ωm(M) , a �→ aωM (6.7)

and
−� ωM : V(M)→ Ωm−1(M) , v �→ v −� ωM (6.8)

are defined pointwise.

6.5 Lemma The maps (6.7) and (6.8) are well-defined E(M)-module isomor-
phisms. If

(
(x1, . . . , xm), U

)
is a chart of M , then

aωM |U = ±a
√
|G| dx1 ∧ · · · ∧ dxm (6.9)

and (∑
j
vj ∂

∂xj

)
−� ωM

=
∑

j
(−1)j−1vj

√
|G| dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm ,

(6.10)

where the positive sign is used in (6.9) when the chart is positively oriented, and
the negative is used otherwise.

Proof (i) From the pointwise definition of � ωM and from Remarks 5.4(c) and (g),
the truth of (6.9) follows immediately. From this and Remark 4.5(c), we conclude
that aωM belongs to Ωm(M) for a ∈ E(M). Therefore the map (6.7) is well defined.
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It is clearly E(M)-linear. By Remark 4.14(a), every α ∈ Ωm(M) has exactly one
a ∈ E(M) such that α = aωM . Thus (6.7) is also bijective.

(ii) The validity of (6.10) follows from Remark 4.13(b) if the chart is positive.
Otherwise we replace1 x1 by −x1. Then v1 is substituted by −v1. This shows that
(6.10) is independent of the chart’s orientation.

Because
√
|G| ∈ E(U), (6.10) and Remark 4.5(c) show that v −� ωM belongs

to Ωm−1(M) for v ∈ V(M). Thus the map (6.8) is well defined and clearly E(M)-
linear.

Let α ∈ Ωm−1(M). Then it follows from Example 3.2(b) and Remark 4.5(c)
that there is a unique aj ∈ E(U) such that

α |U =
∑

j
(−1)j−1aj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm .

Then vj := aj

/√
|G| belongs to E(U). Therefore

v :=
∑

j
vj ∂

∂xj
∈ V(U) ,

and (6.10) shows (v −� ωM ) |U = α |U . This implies that the map −� ωM is
surjective. Because its injectivity is clear, we see that it is an isomorphism from
V(M) to Ωm−1(M). �

6.6 Remarks (a) Let (N, g) be an oriented pseudo-Riemannian manifold, and
suppose ϕ ∈ C∞(M, N) with ϕ∗ωN = μωM for some μ 
= 0. Then the diagram

E(M) Ωm(M)

E(N) Ωn(N)

ϕ∗ ϕ∗

μ( � ωM )

�ωN

�

�

� �

commutes, that is,

μ(ϕ∗a) � ωM = ϕ∗(a � ωN) for a ∈ E(N) .

Proof This follows immediately from the behavior of (exterior) products under pull
backs. �

1Consider how this proof should be modified for the case of a one-dimensional manifold with
boundary.
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(b) Let (N, g) be an oriented pseudo-Riemannian manifold, and suppose ϕ belongs
to Diff(M, N) and satisfies ϕ∗ωN = μωM for some μ 
= 0. Then

V(M) Ωm−1(M)

V(N) Ωm−1(N)

ϕ∗ ϕ∗

μ(−� ωM )

∼=

−� ωN

∼=

�

�

� �

is a commutative diagram, that is, μ
(
(ϕ∗v) −� ωM

)
= ϕ∗(v −� ωN ) for v ∈ V(N).

Proof We derive from Remark 4.13(a) that

μ
(
(ϕ∗v) −� ωM

)
= ϕ∗v −� (μωM ) = ϕ∗v −� ϕ∗ωN = ϕ∗(ϕ∗ϕ

∗v −� ωN) = ϕ∗(v −� ωN )

for v ∈ V(N). �

(c) (regularity) Let k ∈ N. Clearly then

� ωM : Ck(M)→ Ωm
(k)(M)

and

−� ωM : Vk(M)→ Ωm−1
(k) (M) ,

and these maps are Ck(M)-module isomorphisms. Thus it suffices to assume that M is
a Ck+1 manifold. �

With help of the isomorphisms (6.7) and (6.8), we define a map

divg : V(M)→ E(M) , v �→ divg v (6.11)

by demanding that the diagram

V(M) E(M)

Ωm−1(M) Ωm(M)

−� ωM ∼= ∼= �ωM

divg

d

�

�
� �

(6.12)

commutes. In other words, for v ∈ V(M), the divergence divg v of a vector field v
on an oriented pseudo-Riemannian manifold (M, g) (or, with respect to g) is de-
fined by the relation

(divg v)ωM = d(v −� ωM ) . (6.13)

Instead of divg, we may also write divM or, if no confusion is anticipated, simply
div.
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6.7 Remarks (a) The map (6.11) is R-linear.

(b) Let
(
(x1, . . . , xm), U

)
be a chart of M . For v :=

∑
j vj ∂/∂xj ∈ V(U), we have

div v =
1√
|G|

∑
j

∂

∂xj

(√
|G| vj

)
. (6.14)

In orthogonal coordinates, we also have
√
|G| =

√
|g11 · g22 · · · · · gmm|.

Proof Let ε := 1 if the chart is positive; use ε := −1 if it is negative. From (6.9), (6.10),
and (6.13), we obtain (on U) that

div(v)ωM = d(v −� ωM ) = εd
(∑

j
(−1)j−1vj

√
|G| dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm

)
= ε

∑
j,k

(−1)j−1 ∂
(
vj

√
|G|

)
∂xk

dxk ∧ dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm

= ε
(∑

j

∂
(
vj

√
|G|

)
∂xj

)
dx1 ∧ · · · ∧ dxm

=
( 1√

|G|
∑

j

∂
(
vj

√
|G|

)
∂xj

)
ωM

for v ∈ V(M). �

(c) Suppose (N, g) is an oriented pseudo-Riemannian manifold and a map ϕ ∈
Diff(M, N) satisfies ϕ∗ωN = μωM for some μ 
= 0. Then

V(M) E(M)

V(N) E(N)

ϕ∗ ϕ∗

divM

divN

�

�

� �

is a commutative diagram, that is, divM ◦ ϕ∗ = ϕ∗ ◦ divN .
Proof From Remark 6.6(b) and from (6.13) we obtain, by using d ◦ ϕ∗ = ϕ∗ ◦ d, that

μ divM (ϕ∗v)ωM = μ d(ϕ∗v −� ωM ) = dϕ∗(v −� ωN) = ϕ∗d(v −� ωN )

= ϕ∗[(divN v)ωN

]
= ϕ∗(divN v)ϕ∗ωN = μϕ∗(divN v)ωM

for v ∈ V(N). Now the claim follows from Lemma 6.5. �

(d) (regularity) Let k ∈ N. Then div v belongs to Ck(M) for v ∈ Vk+1(M), and the
map

div : Vk+1(M)→ Ck(M) , v �→ div v

is R-linear. So it suffices to assume that M is a Ck+2 manifold.

Proof This is a consequence of Remarks 4.11(b) and 6.6(c). �

As we shall see in the next chapter, the divergence of a vector field has
interesting geometric and physical interpretations.
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6.8 Examples (a) (Euclidean coordinates) Suppose U is open in Rm. Denoting
Euclidean coordinates by (x1, . . . , xm), we have

div v =
∑

j

∂vj

∂xj

for v =
∑

j vj ∂/∂xj . This formula also holds when
(
(x1, . . . , xm), U

)
are any

other orthonormal coordinates on (M, g).

(b) (plane polar coordinates) Let V2 := (0,∞)× (0, 2π), and let

f2 : V2 → R2 , (r, ϕ) �→ (x, y) := (r cosϕ, r sin ϕ)

be the plane polar coordinate map. Then with respect to the standard metric, we
have

div
(
v1 ∂

∂r
+ v2 ∂

∂ϕ

)
=

1
r

∂(rv1)
∂r

+
∂v2

∂ϕ
=

v1

r
+

∂v1

∂r
+

∂v2

∂ϕ
.

Proof This follows from
√

G = r, as can be read off the representation of g2 given in
Example 5.5(e). �

(c) (spherical coordinates) Let V3 := (0,∞)× (0, 2π)× (0, π), and let

f3 : V3 → R3 , (r, ϕ, ϑ) �→ (x, y, z)

be the spherical coordinate map of Example 5.5(g). With respect to the standard
metric g3 := (dx)2 + (dy)2 + (dz)2, we have

div
(
v1 ∂

∂r
+ v2 ∂

∂ϕ
+ v3 ∂

∂ϑ

)
=

1
r2

∂(r2v1)
∂r

+
∂v2

∂ϕ
+

1
sin ϑ

∂(v3 sin ϑ)
∂ϑ

=
2
r

v1 +
∂v1

∂r
+

∂v2

∂ϕ
+ cot(ϑ)v3 +

∂v3

∂ϑ
.

Proof Example 5.5(g) gives
√
|G| = r2 sin ϑ, as the claim requires. �

(d) (Minkowski metric) Let M := R4
1,3 and g := (dt)2 − (dx)2 − (dy)2 − (dz)2.

Then

div
(
v0 ∂

∂t
+ v1 ∂

∂x
+ v2 ∂

∂y
+ v3 ∂

∂z

)
=

∂v0

∂t
− ∂v1

∂x
− ∂v2

∂y
− ∂v3

∂z

for vj ∈ E(R4
1,3) with 0 ≤ j ≤ 3. �

The Laplace–Beltrami operator

By combining the two first order differential operators grad and div, we obtain
the most important second order differential operator, the Laplace–Beltrami op-
erator Δg.
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Let (M, g) be an oriented pseudo-Riemannian manifold. Then we define Δg

by
Δg := divg gradg

or, equivalently, by requiring that the diagram

�

�
�	 �

�


V(M)

E(M) E(M)
Δg

gradg divg

commutes. Instead of Δg, we may also write ΔM or simply Δ if g is clear from
context.

6.9 Remarks (a) The map ΔM : E(M)→ E(M) is R-linear.

(b) If
(
(x1, . . . , xm), U

)
is a chart of M , then

ΔMf =
1√
|G|

∑
j,k

∂

∂xj

(√
|G| gjk ∂f

∂xk

)
for f ∈ E(U) . (6.15)

In orthogonal coordinates, (6.15) simplifies to

ΔMf =
1√
|G|

∑
j

∂

∂xj

(√
|G| gjj ∂f

∂xj

)
for f ∈ E(U) , (6.16)

where
√
|G| =

√
|g11 · g22 · · · · · gmm|.

Proof This follows from Remarks 6.3(c) and (d) and Remark 6.7(b). �

(c) Suppose (N, g) is an oriented pseudo-Riemannian manifold. Also let ϕ ∈
Diff(M, N), and suppose there are λ 
= 0 and μ 
= 0 such that ϕ∗g = λg and
ϕ∗ωN = μωM . Then the diagram

E(M) E(M)

E(N) E(N)

ϕ∗ ∼= ∼= ϕ∗

λΔM

ΔN

�

�

� �

commutes: λΔM ◦ ϕ∗ = ϕ∗ ◦ΔN .
Proof This is a consequence of Remarks 6.3(e) and 6.7(c). �

(d) (regularity) Let k ∈ N. Then obviously

ΔM : Ck+2(M)→ Ck(M) ,

and this map is R-linear. Here it suffices to assume that M is a Ck+2 manifold. �
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6.10 Examples (a) (Euclidean coordinates) Suppose M is open in Rm, with
Euclidean coordinates

(
(x1, . . . , xm), M

)
. Then ΔM is the same as the (usual)

m-dimensional Laplace operator

Δm :=
∑

j
∂2

j .

See Exercise VII.5.3.

(b) (circular coordinates) With respect to the parametrization

h : (0, 2π)→ R2 , ϕ �→ (cosϕ, sin ϕ)

of S1\
{
(1, 0)

}
(and the standard metric), we have ΔS1 = ∂2

ϕ.
Proof Remark 6.9(b) and Example 5.5(f). �

(c) (plane polar coordinates) In plane polar coordinates

(0,∞)× (0, 2π)→ R2 , (r, ϕ) �→ (r cosϕ, r sin ϕ) ,

the Laplace–Beltrami operator (with respect to the standard metric R2) is

Δ2 =
1
r

∂r(r∂r · ) +
1
r2

∂2
ϕ = ∂2

r +
1
r

∂r +
1
r2

∂2
ϕ =

1
r2

[
(r∂r)2 + ΔS1

]
.

Proof This follows from Remark 6.9(b), Example 5.5(e), and (b). �

(d) (m-dimensional spherical coordinates) For m ≥ 2, the Laplace–Beltrami
operator of Sm (with respect to the standard metric) in the spherical coordinates
of Example 5.5(h) assumes the form

ΔSm =
1

sin2 ϑ1 · · · · · sin2 ϑm−1

∂2

∂ϕ2

+
m−1∑
k=1

1
sink ϑk sin2 ϑk+1 · · · · · sin2 ϑm−1

∂

∂ϑk

(
sink ϑk

∂

∂ϑk

)
.

In particular,

ΔS2 =
1

sin2 ϑ
∂2

ϕ +
1

sin ϑ
∂ϑ(sin ϑ ∂ϑ · ) =

1
sin2 ϑ

∂2
ϕ + ∂2

ϑ + cotϑ ∂ϑ .

Proof From Examples 5.5(g) and (h), it follows

G =

m−1∏
k=0

am+1,k =

m−2∏
k=0

m−1∏
i=k+1

sin2 ϑi .

Exchanging the order of the two products gives

G =
m−1∏
i=1

sin2i ϑi =
[
wm+1(ϑ)

]2
, (6.17)

where we use the abbreviated notation intro-
duced in Proposition X.8.9.
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From the orthogonality of the spherical coordinates, it also follows from the given
examples that

gjj =
1

am+1,j−1
=

1∏m−1
i=j sin2 ϑi

for 1 ≤ j ≤ m .

From this we read off

√
G gjj =

( m−1∏
i=1

i�=j−1

sini ϑi

m−1∏
k=j

1

sin2 ϑk

)
sinj−1 ϑj−1

for 2 ≤ j ≤ m. Thus we find

1√
G

∂

∂ϑj−1

(√
G gjj ∂

∂ϑj−1

)
=

1

sinj−1 ϑj−1

∏m−1
i=j sin2 ϑi

∂

∂ϑj−1

(
sinj−1 ϑj−1

∂

∂ϑj−1

)
for 2 ≤ j ≤ m. Now the claim is clear. �

(e) (m-dimensional polar coordinates) In m-dimensional polar coordinates with
m ≥ 2, the m-dimensional Laplace operator reads

Δm =
1

rm−1
∂r(rm−1∂r·) +

1
r2

ΔSm−1 = ∂2
r +

m− 1
r

∂r +
1
r2

ΔSm−1

=
1
r2

[
(r∂r)2 + (m− 2)r∂r + ΔSm−1

]
.

Proof From Examples 5.5(g) and (h), we read off gm = (dr)2 + r2gSm−1 . This then
implies G = r2(m−1)GSm−1 . It also implies g11 = 1 and

gjj =
1

r2
g
(j−1)(j−1)

Sm−1 for 2 ≤ j ≤ m .

Now the claim follows from (6.16) because of the orthogonality of the coordinates. �

(f) (Minkowski metric) In orthonormal coordinates, the Laplace–Beltrami oper-
ator of the Minkowski space R4

1,3 has the form ∂2
t − Δ3, where Δ3 is the three-

dimensional (Euclidian) Laplace operator. That is, the Laplace–Beltrami operator
in the Minkowski space is just the wave operator.2

Proof This is an immediate consequence of (6.16). �

In the next proposition, we list some basic properties of differential opera-
tors used in vector analysis. Here and in the following, we denote the pseudo-
Riemannian metric of M by ( · | · )M .

2See Exercise VII.5.10.
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6.11 Proposition Suppose
(
M, ( · | · )M

)
is an oriented pseudo-Riemannian mani-

fold, f, g ∈ E(M), and v, w ∈ V(M). Then

(i) grad(fg) = f grad g + g grad f ;
(ii) div(fv) = f div v + (grad f | v)M ;
(iii) Δ(fg) = fΔg + 2(grad f | gradg)M + gΔf ;
(iv) fΔg − gΔf = div(f gradg)− div(g grad f).

Proof (i) Because Θ is a module isomorphism, it follows from (6.4) that (i) is
equivalent to

d(fg) = f dg + g df . (6.18)

Because (6.18) is a local statement, it suffices to prove this formula in local coor-
dinates. In this case, it is an immediate consequence of the product rule.

(ii) From (fv) −� ωM = f(v −� ωM ) = f ∧ (v −� ωM ) and the product rule of
Theorem 4.10, it follows that

d
(
(fv) −� ωM

)
= d

(
f ∧ (v −� ωM )

)
= df ∧ (v −� ωM ) + f d(v −� ωM ) . (6.19)

Because this is also a local statement, we can use local representations. Then,
with v =

∑
j vj ∂/∂xj and a positive chart, we obtain from (6.9) and (6.10) that

df ∧ (v −� ωM )

=
(∑

j

∂f

∂xj
dxj

)
∧

∑
k
(−1)k−1vk

√
|G| dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxm

=
(∑

j

∂f

∂xj
vj

)√
|G| dx1 ∧ · · · ∧ dxm =

∑
j

∂f

∂xj
vjωM .

(6.20)

We then read from Remark 6.3(b) and (4.4) that

(grad f | v)M = 〈df, v〉 =
∑

j

〈
df,

∂

∂xj

〉
vj =

∑
j

∂f

∂xj
vj . (6.21)

Therefore it follows from (6.19)–(6.21) and the definition (6.13) that

div(fv)ωM = d
(
(fv) −� ωM

)
= (grad f | v)MωM + f div v ωM ,

which implies the claim.
(iii) This we get immediately from Δ = div grad and (i), (ii).
(iv) From (ii), it follows that

div(f grad g) = fΔg + (grad f | gradg)M . (6.22)

Exchanging f and g and subtracting the result from (6.22) then yields (iv). �
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The curl

Suppose now (M, g) is a 3-dimensional oriented pseudo-Riemannian manifold.
Then we define the curl3 curl v of the vector field v ∈ V(M) by requiring that
the diagram

V(M) Ω1(M)

V(M) Ω2(M)

curl d

Θ

∼=

−� ωM

∼=

�

�
� �

(6.23)

commutes, that is, by requiring

(curl v) −� ωM = d(Θv) for v ∈ V(M) . (6.24)

The definition is clearly only possible in the case m = 3.

6.12 Remarks (a) The map curl : V(M)→ V(M), v �→ curl v is R-linear.

(b) Let
(
(x1, x2, x3), U

)
be a chart of M . Then

curl v =
1√
|G|

3∑
i=1

∑
(j,k,	)∈S3

sign(j, k, �)
∂

∂xj
(gkiv

i)
∂

∂x	

for v =
∑3

j=1 vj ∂/∂xj. If the coordinates are orthogonal, this expression simplifies
to

curl v =
1√
|G|

∑
(j,k,	)∈S3

sign(j, k, �)
∂

∂xj
(gkkvk)

∂

∂x	

=
1√
|G|

[(
∂2(g33v

3)− ∂3(g22v
2)

) ∂

∂x1
+

(
∂3(g11v

1)− ∂1(g33v
3)

) ∂

∂x2

+
(
∂1(g22v

2)− ∂2(g11v
1)

) ∂

∂x3

]
with

√
|G| =

√
|g11g22g33|. If the coordinates are orthonormal, this becomes

curl v = (∂2v
3 − ∂3v

2)
∂

∂x1
+ (∂3v

1 − ∂1v
3)

∂

∂x2
+ (∂1v

2 − ∂2v
1)

∂

∂x3
.

Proof Remark 6.1(b) and the properties of the exterior derivative give

d(Θv) = d
∑

k

(∑
i
gkiv

i
)

dxk =
∑

k

∑
j �=k

∂

∂xj

(∑
i
gkiv

i
)

dxj ∧ dxk .

3Sometimes written rot, short for “rotation”.
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From (6.10), we read off

curl v −� ωM =
√
|G|

(
(curl v)1 dx2∧dx3+(curl v)2 dx3∧dx1+(curl v)3 dx1∧dx2) . (6.25)

Therefore the claim follows from (6.24). �

(c) (regularity) Let k ∈ N. Then curl v ∈ Vk(M) for v ∈ Vk+1(M). So it suffices here
to assume that M is a Ck+2 manifold. �

In the case m = 3, there are important relations between the operators grad,
div, and curl. These are summarized diagrammatically in the following theorem.

6.13 Theorem Let (M, g) be a three-dimensional oriented (pseudo-)Riemannian
manifold.

(i) The diagram

E(M) V(M) V(M) E(M)

Ω0(M) Ω1(M) Ω2(M) Ω3(M)

∼= ΘM
∼= −� ωM ∼= �ωM

grad curl div

d d d

� � �

� � �
� � �

(6.26)

commutes.

(ii) curl ◦ grad = 0.

(iii) div ◦ curl = 0.

Proof (i) follows immediately from the commutativity of the diagrams (6.4),
(6.12), and (6.23).

(ii) and (iii) are now direct consequence of d2 = 0. �

6.14 Corollary Let X be open and contractible in R3. Also let v be a smooth
vector field on X .

(i) If curl v = 0, then there is an f ∈ E(X) such that v = gradf , a potential
for v.

(ii) If div v = 0, then there is a w ∈ V(X) with v = curlw, a vector potential
for v.

Proof (i) From (6.26) we learn that curl v = 0 is equivalent to d(ΘXv) = 0.
Therefore the 1-form ΘMv is closed, and the Poincaré lemma (Theorem 3.11)
guarantees the existence of an f ∈ Ω0(X) = E(X) such that ΘXv = df . From this
it follows that v = Θ−1

X df = gradf .
(ii) Analogously to (i), it follows from div v = 0 that the 2-form v −� ωX

is closed and therefore exact, again by the Poincaré lemma. Thus there is an
α ∈ Ω1(X) with dα = v −� ωX . Then w := Θ−1

X α ∈ V(X), by the commutativity
of the middle “loop” of (6.26), satisfies curlw = v. �
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6.15 Remarks Suppose X is open in R3.

(a) In Euclidean coordinates, the equality curl v = 0 is equivalent to the integra-
bility conditions

∂jv
k = ∂kvj for 1 ≤ j, k ≤ 3 ,

which can be seen from Remark 6.12(b). Therefore Corollary 6.14(i) is a special
case of Remark VIII.4.10(a).

(b) (classical notation) In Euclidean coordinates, we know from Example 6.4(a)
that gradf agrees with the ∇f from Proposition VII.2.16. The physics and engi-
neering literatures, and many mathematical texts, use the formal nabla vector

∇ :=
( ∂

∂x
,

∂

∂y
,

∂

∂z

)
.

With the notation x · y for the Euclidean scalar product in R3 and x × y for the
vector product, the nabla vector notation leads to the (formal) relations

div v = ∇ · v , curl v = ∇× v , Δv = (∇ · ∇)v =: ∇2v .

These follow easily from the corresponding local representations of these operators
and from Remark VIII.2.14(d). In particular, the components of the vector curl v
can be found by expanding the (formal) determinant∣∣∣∣∣∣∣

�e1 �e2 �e3

∂/∂x ∂/∂y ∂/∂z

v1 v2 v3

∣∣∣∣∣∣∣
in its first row. Here �e1, �e2, �e3 are the standard basis vectors of R3, and ∂/∂x,
∂/∂y, ∂/∂z are not interpreted as tangent vectors, but as differential operators.

Because the symbol ∇ has another meaning in the context of Riemannian
geometry, we will rarely use the nabla vector in the rest of this book.

(c) (the physical meaning of the curl4)

0

�r �v

�w
We

consider a rigid body rotating at constant
(angular) velocity about a fixed axis. We
then choose an orthonormal basis (�e1, �e2, �e3)
and the coordinate origin so that �e3 points
along the rotation axis. Also let ω be the
angular velocity, that is, ω is the speed of
any point P fixed in the rotating body at
unit distance from the axis of rotation. If
�r is the radius vector of the point P , that

4A deeper interpretation of the curl of a vector field is given in Section XII.3.
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is, the position vector of the point P in the coordinate system (O;�e1, �e2, �e3) (see
the statements after Remarks I.12.6) and if θ is the angle between �e3 and �r (in
the plane spanned by �e3 and �r), then the distance a from P to the rotation axis
satisfies a = |�r | sin θ. Therefore the modulus of the velocity vector �v of the point P
is given by

|�v | = ωa = ω |�r | sin θ .

Denote by �w := ω�e3 the “angular velocity vector” and orient it so that the body
rotates clockwise about it. Then it follows from the properties of the vector product
that

�v = �w × �r , (6.27)

since the point P moves with constant speed ω in a circle centered at and in a
plane orthogonal to the �e3-axis.5

Let (x, y, z) be the coordinates of P with respect to (O;�e1, �e2, �e3). Then

�r = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
and �w = ω

∂

∂z
.

Therefore
�v = �w × �r = −ωy

∂

∂x
+ ωx

∂

∂y
.

For the curl of the vector field �v, we find curl�v = 2ω ∂/∂z = 2�w. In words, for a
rigid body rotating about a fixed axis, the curl of the velocity vector is a vector
field whose elements are parallel to the rotation axis and have absolute value twice
the angular velocity.

(d) (regularity) The statements of Theorem 6.13 and Corollary 6.14 can be proved with
weaker differentiability assumptions that are easily derived from earlier remarks about
regularity. �

The Lie derivative

Now suppose M is again an arbitrary manifold. For f ∈ E(M) and v ∈ V(M), we
set

Lvf := 〈df, v〉 ∈ E(M)

and call Lvf the Lie derivative of f with respect to v.

6.16 Proposition

(i) The map Lv : E(M) → E(M), the Lie derivative with respect to v, has the
properties that

(α) Lv is R-linear;

(β) Lv(fg) = Lv(f)g + fLvg for f, g ∈ E(M).
5We leave the formal proof of (6.27) to you.
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(ii) In local coordinates,

Lvf =
∑

j
vj ∂f

∂xj
and v =

∑
j
vj ∂

∂xj
.

Proof (i) follows immediately from the properties of d (see (6.18)).
(ii) is a consequence of (4.4). �

6.17 Remarks (a) Proposition 6.16(ii) makes it clear that the Lie derivative
generalizes the directional derivative of Section VII.2.

(b) Let A be an R-algebra. A map D : A→ A is said to be a derivation (of A) if
D is R-linear and satisfies the product rule

D(ab) = (Da)b + a(Db) for a, b ∈ A .

Therefore the Lie derivative with respect to v ∈ V(M) is a derivation of the
algebra E(M).

(c) If A is an algebra with unity e and D is a derivation of A, then De = 0.
Proof The product rule gives

De = D(ee) = (De)e + e(De) = De + De = 2De

and hence the claim. �

The next theorem shows that every derivation of E(M) is given by a Lie
derivative.

6.18 Theorem Let D be a derivation of E(M). Then there is exactly one v ∈ V(M)
such that D = Lv.

Proof (i) We show first that D is a “local operator”. Let U be an open and K
a compact neighborhood of p ∈M with K ⊂⊂ U . Remark 1.21(a) guarantees the
existence of a χ ∈ E(M) with χ |K = 1 and supp(χ) ⊂⊂ U .

Let f ∈ E(M) with f |U = 0. Then f = fχ + f(1− χ) = f(1− χ), and thus

Df(p) = Df(p)
(
1− χ(p)

)
+ f(p)D(1− χ)(p) = 0 .

Because this is true for every p ∈ U , it follows that D(f) |U = 0. If χ1 ∈ E(M)
is another function with supp(χ1) ⊂⊂ U and which is identically equal to 1 in a
neighborhood of p, then fχ−fχ1 ∈ E(M) for f ∈ E(U) vanishes in a neighborhood
of p. Then it follows from the above that D(fχ) = D(fχ1) for f ∈ E(U). Hence
the “restriction of D to U” is well defined by

DUf := D(fχ) for f ∈ E(U)

and is independent of the special choice of χ.
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(ii) Suppose now (ϕ, U) is a chart with ϕ = (x1, . . . , xm). We can assume
that X := ϕ(U) is convex. For every fixed p ∈ U , it follows from the mean value
theorem in integral form (Theorem VII.3.10) with a := ϕ(p) that

(ϕ∗f)(x) = (ϕ∗f)(a) +
∑

j
(xj − aj)f̃j(x) for x ∈ X ,

where we have set

f̃j(x) :=
∫ 1

0

∂jf
(
a + t(x − a)

)
dt for x ∈ X .

Therefore
fj := ϕ∗f̃j ∈ E(U) , fj(p) =

∂f

∂xj
(p) ,

and
f(q) = f(p) +

∑
j

(
ϕj(q)− ϕj(p)

)
fj(q) for q ∈ U .

From this, the properties of D, and Remark 6.17(c), it follows that

Df(p) =
∑

j
Dϕj(p)

∂f

∂xj
(p) for p ∈ U , (6.28)

where we have written D instead of DU .
(iii) Let (ψ, V ) be a second chart around p with ψ = (y1, . . . , ym). Now define

the transition function k := ψ ◦ ϕ−1. Then, in analogy to (ii) and because we can
assume U = V , we have

kj(x) = kj(a) +
∑

	
(x	 − a	)kj

	 (x) for x ∈ X , (6.29)

with kj
	 ∈ E(X) and kj

	 (a) = ∂	k
j(a). Because ϕ∗k = ψ, applying ϕ∗ to (6.29)

gives
ψj(q) = ψj(p) +

∑
	

(
ϕ	(q)− ϕ	(p)

)
hj

	(q) for q ∈ U , (6.30)

with hj
	 := ϕ∗kj

	 ∈ E(U) and

hj
	(p) = (ϕ∗∂	k

j)(p) =
∂yj

∂x	
(p) .

This and (6.30) imply

Dψj(p) =
∑

k
Dϕk(p)

∂yj

∂xk
(p) for p ∈ U and 1 ≤ j, k ≤ m . (6.31)

Now we set
vϕ :=

∑
j
Dϕj ∂

∂xj
and vψ :=

∑
j
Dψj ∂

∂yj
. (6.32)
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Then it follows from (6.31) and Proposition 4.7 that

vψ =
∑

j

∑
k
Dϕk ∂yj

∂xk

∂

∂yj
=

∑
k
Dϕk ∂

∂xk
= vϕ .

This shows that (6.32) defines a vector field vU ∈ V(U) on U that is independent
of the coordinates chosen. From (6.28), (6.31), and Proposition 6.16(ii), we read
off DUf = LvU f for f ∈ E(U).

(iv) Suppose now
{

(ϕα, Uα) ; α ∈ A
}

is an atlas for M . Then it follows
from (iii) that for every α ∈ A there is an vα ∈ V(Uα) such that DUαf = Lvαf
for f ∈ E(Uα). Moreover, the observations in (iii) show that there is exactly one
v ∈ V(M) such that v |Uα = vα for α ∈ A. Now (i) and Proposition 6.16(ii) give
D = Lv.

(v) Suppose v, w ∈ V(M) with D = Lv and D = Lw. Then Lvf = Lwf for
every f ∈ E(M). In an arbitrary local chart

(
(x1, . . . , xm), U

)
, we then have

∑
j
(vj − wj)

∂f

∂xj
= 0 for f ∈ E(U) .

Choosing f := xk, we find ∂f/∂xj = δk
j and therefore vk − wk = 0. That this is

true for 1 ≤ k ≤ m implies v |U = w |U and hence v = w. Thus we are done. �

6.19 Lemma For LvLw − LwLv is a derivation of E(M) for v, w ∈ V(M).

Proof Clearly LvLw − LwLv is an R-linear map of E(M) to itself. For f, g ∈
E(M), we know because E(M) is commutative that

LvLw(fg) = Lv

(
Lw(f)g + fLwg

)
= gLvLwf + LvfLwg + LvgLwf + fLvLwg .

The claim is now obvious. �

Let v, w ∈ V(M). Then it follows from Theorem 6.18 and Lemma 6.19 that
there is exactly one smooth vector field [v, w] on M such that

L[v,w] = LvLw − LwLv . (6.33)

We call [v, w] the Lie bracket or the commutator of v and w.

6.20 Proposition

(i) The map V(M)× V(M)→ V(M), (v, w) �→ [v, w] has the properties that

(α) (bilinearity) [ · , · ] is R-bilinear.

(β) (skew-symmetry) [v, w] = −[w, v] for v, w ∈ V(M).
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(γ) (Jacobi identity) u, v, w ∈ V(M) satisfy the relation[
u, [v, w]

]
+

[
v, [w, u]

]
+

[
w, [u, v]

]
= 0 .

(ii) In local coordinates,

[v, w] =
∑

j,k

(
vk ∂wj

∂xk
− wk ∂vj

∂xk

) ∂

∂xj
(6.34)

for v =
∑

j vj ∂/∂xj and w =
∑

j wj ∂/∂xj .

Proof The simple proofs are left to you. �

6.21 Remarks (a) Suppose M is open in Rm and (x1, . . . , xm) are Euclidean
coordinates on M . Using the nabla vector ∇, (6.34) can be written symbolically
in the intuitive form

[v, w] = (v · ∇)w − (w · ∇)v .

(b) Suppose V is a vector space and [ · , · ] : V ×V → V is a map with the properties
(α)–(γ) of Proposition 6.20(i). Then

(
V, [ · , · ]

)
is called a Lie algebra. Because

of (β), the “multiplication” [ · , · ] is generally not commutative. It follows from
(β) and (γ) that[

a, [b, c]
]
−

[
[a, b], c

]
=

[
[c, a], b

]
for a, b, c ∈ V .

So the multiplication is generally not associative either. Thus a Lie algebra is gen-
erally a noncommutative, nonassociative algebra.6 Therefore

(
V(M), [ · , · ]

)
is a

Lie algebra.

(c) (regularity) Let k ∈ N and v, w ∈ Vk(M). Let M be a manifold of class Ck+1. Then
Lv is not a derivation on Ek+1(M), because Lvf for f ∈ Ek+1(M) generally only belongs
to Ek(M). Therefore the Lie bracket cannot be defined through (6.33) either. We are
left to choose local coordinates and to define [v, w] for v, w ∈ Vk(M) through (6.34).7

Then [v, w] ∈ Vk−1(M). �

The Hodge–Laplace operator

In the rest of this section, we use the codifferential and the star operator to derive
some more important relations from vector analysis.

Let
(
M, ( · | · )M

)
be an oriented pseudo-Riemannian manifold. First we write

the divergence in terms of the codifferential.

6In the trivial commutative case in which [a, b] = 0 for a, b ∈ V , it is of course commutative
and associative.

7You may want to consider why [v, w] so defined is well defined on all of M .
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6.22 Proposition The diagram

�

�
�	

�
��

E(M) = Ω0(M)

V(M) Ω1(M)
Θ

div δ

is commutative, that is, div = δ ◦Θ.

Proof If suffices to prove this equation locally. So let
(
(x1, . . . , xm), U

)
be local

coordinates. Then for v =
∑

j vj ∂/∂xj ∈ V(U), Remarks 6.1(b) and 5.11(b) imply

δΘv = δ
∑

j

(∑
k
gjkvk

)
dxj =

1√
|G|

∑
j

∂

∂xj

(√
|G| vj

)
.

Therefore the claim follows from (6.14). �

Using the exterior derivative and the codifferential, we define for 0 ≤ r ≤ m
an R-linear map on Ωr(M) by

ΔM := dδ + δd : Ωr(M)→ Ωr(M) . (6.35)

This is the Hodge–Laplace operator. For a ∈ E(M), it follows from (6.4) and
Proposition 6.22 that

(dδ + δd)a = δda = δΘ(Θ−1da) = div grada .

Therefore the Hodge–Laplace operator on Ω0(M) = E(M) is the same as the
Laplace–Beltrami operator, which justifies the notation. When M is clear from
context, we write Δ for ΔM . �

6.23 Remarks (a) ∗Δ = Δ∗.
Proof Remarks 5.9(b) and 5.11(a) give

∗Δ = ∗dδ + ∗δd = δd∗+ dδ∗ = Δ∗

and therefore the claim. �

(b) dΔ = Δd = dδd and δΔ = Δδ = δdδ.

Proof From d2 = 0 we get

dΔ = ddδ + dδd = dδd = dδd + δdd = Δd .

The second claim follows analogously. �
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(c) Suppose M is open in Rm and (x1, . . . , xm) are Euclidean coordinates. Then

Δ
(∑

(j)∈Jr

a(j) dx(j)
)

=
∑

(j)∈Jr

Δa(j) dx(j)

for 1 ≤ r ≤ m.
Proof Because of the linearity, it suffices to show the statement for α := a dx(j) with
(j) ∈ Jr. Using Example 5.10(e), we find

dδα = d
( r∑

k=1

(−1)k−1∂jka dxj1 ∧ · · · ∧ d̂xjk ∧ · · · ∧ dxjr

)
=

r∑
k=1

(−1)k−1
m∑

�=1

∂�∂jka dx� ∧ dxj1 ∧ · · · ∧ d̂xjk ∧ · · · ∧ dxjr

=
r∑

k=1

∂2
jk

a dx(j) +
r∑

k=1

(−1)k−1
m∑

�=1
�/∈{j1,...,jr}

∂�∂jka dx� ∧ dxj1 ∧ · · · ∧ d̂xjk ∧ · · · ∧ dxjr .

Analogously, we get

δdα = δ
m∑

�=1
�/∈{j1,...,jr}

∂�a dx� ∧ dx(j) =
m∑

�=1
�/∈{j1,...,jr}

∂2
� a dx(j)

−
m∑

�=1
�/∈{j1,...,jr}

r∑
k=1

(−1)k−1∂jk∂�a dx� ∧ dxj1 ∧ · · · ∧ d̂xjk ∧ · · · ∧ dxjr .

This implies8

ΔMα = (dδ + δd)α =
(∑

k
∂2

ka
)

dx(j) = (Δa) dx(j)

and therefore the claim. �

(d) (regularity) Clearly ΔM is an R-linear map from Ωr
(k)(M) to Ωr

(k−2)(M) when
0 ≤ r ≤ m and k ∈ N with k ≥ 2. In this case, it suffices to assume that M is a Ck+2

manifold. �

Finally, we define the Laplace operator for vector fields, namely, �Δ, by

�Δ := �ΔM := Θ−1
M ◦ΔM ◦ΘM : V(M)→ V(M)

and therefore by the commutativity of the diagram

V(M) V(M)

Ω1(M) Ω1(M) .

Θ Θ

�Δ

Δ

�

�
� �

8We chose the sign in the definition of δ to be (−1)m(r+1) so that this formula would take this
form. For the sign convention typically used in geometry, the formula is (dδ+δd)α = −(Δa) dx(j).
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6.24 Remarks (a) Proposition 6.22 and (6.4) give �Δ = graddiv + Θ−1δdΘ.

(b) Suppose M is open in Rm, and (x1, . . . , xm) are Euclidean coordinates on M .
Then

�Δ
(∑

j
vj ∂

∂xj

)
=

∑
j
Δvj ∂

∂xj
.

If we identify as usual the vector field v =
∑

j vj ∂/∂xj with (v1, . . . , vm), then
�Δv means that the Laplace operator can be applied componentwise

�Δv = (Δv1, . . . ,Δvm) .

In this case, we usually write Δ, not �Δ.
Proof This follows from Example 6.2(a) and Remark 6.23(c). �

(c) (regularity) Let k ∈ N. Then �Δ maps the R-vector space Vk+2(M) linearly into
Vk(M). So here it suffices to assume that M is a Ck+2 manifold. �

The vector product and the curl

In this last section, we derive the most important properties of the curl operator.
Let

(
M, ( · | · )M

)
be a three-dimensional oriented Riemannian9 manifold with

volume element ωM .
On V(M), we define the vector product or cross product,

× : V(M)× V(M)→ V(M) , (v, w) �→ v × w , (6.36)

by
v × w := Θ−1

M ωM (v, w, · ) . (6.37)

Clearly this map is well defined.

6.25 Remarks (a) Suppose
(
M, ( · | · )M

)
=

(
R3, ( · | · )

)
. Then in the case of a

constant vector field, (6.37) agrees with the definition of Section VIII.2.

(b) The vector product is bilinear, alternating (skew symmetric), and satisfies

(u | v × w)M = ωM (u, v, w) for u, v, w ∈ V(M) . (6.38)

For p ∈ M , the vector product (v × w)(p) is orthogonal to v(p) and w(p) with
respect to the inner product ( · | · )M (p) of TpM . Letting |v|M :=

√
(v | v)M , we

have
|v × w|M =

√
|v|2M |w|2M − (v |w)2M = |v|M |w|M sin ϕ ,

where ϕ(p) ∈ [0, π] is the angle between the vectors v(p) and w(p) for p ∈ M and
v, w ∈ V(M).

9For simplicity, we will restrict here to Riemannian metrics, as they are the most important
in applications.
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The vector product satisfies the Grassmann identity

v1 × (v2 × v3) = (v1 | v3)Mv2 − (v1 | v2)Mv3 ,

the Jacobi identity

v1 × (v2 × v3) + v2 × (v3 × v1) + v3 × (v1 × v2) = 0

and the relation

(v1 × v2)× (v3 × v4) = ωM (v1, v2, v4)v3 − ωM (v1, v2, v3)v4

for v1, v2, v3, v4 ∈ V(M). In particular,
(
V(M),×

)
is a Lie algebra.

Proof All of these reduce easily to pointwise statements already proved in Exercise 2.3. �

(c) Suppose
(
(x1, x2, x3), U

)
are positive orthonormal coordinates10 on M . Then

the cross product of vector fields v =
∑

j vj ∂/∂xj and w =
∑

j wj ∂/∂xj takes
the form

v × w = (v2w3 − v3w2)
∂

∂x1
+ (v3w1 − v1w3)

∂

∂x2
+ (v1w2 − v2w1)

∂

∂x3
.

Proof Exercise 2.3. �

(d) (regularity) For k ∈ N, the statements above remain true for Ck vector fields, and
it suffices to assume that M is a Ck+1 manifold. �

The next theorem shows how the vector product is related to the exterior
product of 1-forms.

6.26 Proposition For v, w ∈ V(M), we have v×w = Θ−1∗(Θv∧Θw), that is, the
diagram

V(M) × V(M) Ω1(M)× Ω1(M)

V(M) Ω1(M) Ω2(M)

× ∧

Θ×Θ

Θ−1 ∗

�

� �

�
���


�

commutes.

Proof It suffices to prove the equality locally, where we can choose positive or-
thonormal coordinates

(
(x1, x2, x3), U

)
. If (v1, v2, v3) and (w1, w2, w3) are the

components of vector fields v, w ∈ V(M), then it follows from Remark 6.1(e) that

Θv ∧Θw =
∑

j
vj dxj ∧

∑
k
wk dxk

= (v2w3 − v3w2) dx2 ∧ dx3 + (v3w1 − v1w3) dx3 ∧ dx1

+ (v1w2 − v2w1) dx1 ∧ dx2 .

10That is, (∂/∂x1, ∂/∂x2, ∂/∂x3) is a positive orthonormal frame.
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From the proof of Example 5.7(d), we know that

∗(dx2 ∧ dx3) = dx1 , ∗(dx3 ∧ dx1) = dx2 , ∗(dx1 ∧ dx2) = dx3 . (6.39)

Now the claim follows from Remarks 6.1(e) and 6.25(c). �

We next derive a representation of the curl operator.

6.27 Proposition The diagram

� �

�

�
�	

�
��

V(M) Ω1(M) Ω2(M)

V(M) Ω1(M)

Θ d

Θ−1
curl ∗

commutes, that is, curl = Θ−1∗dΘ.

Proof It again suffices to prove the equality locally in positive orthonormal
coordinates

(
(x1, x2, x3), U

)
. Then for v =

∑3
j=1 vj ∂/∂xj, we find using Re-

mark 6.1(e) that

d(Θv) = d
(∑

j
vj dxj

)
=

∑
j,k

∂vj

∂xk
dxk ∧ dxj

=
(∂v3

∂x2
− ∂v2

∂x3

)
dx2 ∧ dx3 +

(∂v1

∂x3
− ∂v3

∂x1

)
dx3 ∧ dx1

+
(∂v2

∂x1
− ∂v1

∂x2

)
dx1 ∧ dx2 .

Then the claim follows from (6.39) and Remarks 6.1(e) and 6.12(b). �

We are now ready to deduce several important differential identities involving
three-dimensional vector fields.

6.28 Proposition For f ∈ E(M) and v, w ∈ V(M),

(i) div(v × w) = (curl v |w)M − (v | curlw)M ;

(ii) curl(fv) = f curl v + grad f × v;

(iii) curl(v × w) = (div w)v − (div v)w − [v, w];

(iv) curl(curl v) = graddiv v − �Δv.

Proof (i) Putting m = 3 in Remark 5.9(d), we obtain

∗δα = (−1)m(r+1)∗∗d∗α = d∗α for α ∈ Ω2(M) .
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Now we use Propositions 6.22 and 6.26 to deduce

div(v × w) = δΘ
(
Θ−1∗(Θv ∧Θw)

)
= δ∗(Θv ∧Θw)

= ∗d(Θv ∧Θw) = ∗(dΘv ∧Θw −Θv ∧ dΘw) .

From Proposition 6.27, it follows that Θ curl = ∗dΘ. Now Remark 2.19(d) implies
that dΘ = ∗Θ curl, because m = 3 and r = 2. Hence we get

div(v × w) = ∗
(
(∗Θ curlv) ∧Θw −Θv ∧ ∗Θ curlw

)
= ∗(Θw ∧ ∗Θ curl v −Θv ∧ ∗Θ curlw) ,

where we have used ∗Θ curl v ∈ Ω2(M). Now (2.22), with r = 1, and (2.13) give

div(v × w) = ∗
[
(w | curl v)M − (v | curlw)

]
ωM .

The claim now follows from ∗ωM = 1.
(ii) Proposition 6.27 gives

curl(fv) = Θ−1∗dΘ(fv) = Θ−1∗d(fΘv)

= Θ−1∗(df ∧Θv + fdΘv)

= Θ−1∗(Θ gradf ∧Θv) + fΘ−1∗dΘv

= grad f × v + f curl v .

Here we have also made use of Proposition 6.26 and properties of d.
(iii) It suffices to prove the statement locally. We can use positive orthonor-

mal coordinates. Then the claim follows from the local representations of Remarks
6.12(b) and 6.25(c) and from Proposition 6.20 after a simple calculation, which we
leave to you.

(iv) It follows from Proposition 6.27 and the definition of δ that

curl curl v = Θ−1∗dΘΘ−1∗dΘv = Θ−1∗d∗dΘv

= (−1)3(2+1)Θ−1δdΘv = −Θ−1δdΘv .

Now the claim follows from Remark 6.24(a). �

To demonstrate the power of the new calculus, we proved part (i) using the
properties of the codifferential and the star operator. Of course, we could also
have worked in the orthonormal coordinates of a positive chart. In other words,
we can assume that M is open in R3 and ( · | · )M is the standard metric ( · | · ).
Using the (formal) nabla operator in (6.38), we obtain

∇ · (v × w) = det[∇, v, w]

= ∂1(v2w3 − v3w2) + ∂2(v3w1 − v1w3) + ∂3(v1w2 − v2w1)

by expanding the (formal) determinant in its first row. By using the product rule,
we see easily that the last row agrees with the expression w · curl v − v · curlw, as
claimed in (i).
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However, the formal calculus with the nabla operator must be used with
caution. For example, if we formally calculate curl(v × w) = ∇ × (v × w) using
the Grassmann identity, we find the false statement

∇× (v × w) = (∇ · w)v − (∇ · v)w .

Where was the mistake?

Exercises

1 Find the representation of the Laplace–Beltrami operator with respect to

(i) the cylindrical coordinates (0, 2π)× R→ R3, (ϕ, z) �→ (cos ϕ, sin ϕ, z);

(ii) the parametrization

(0, 2π)2 → R3 , (α, β) �→
(
(2 + cos α) cos β, (2 + cos α) sin β, sin α

)
of the 2-torus T2

2.1 of Example VII.9.11(f);

(iii) the parametrization X → R3, x �→
(
x, f(x)

)
of the graph of f ∈ E(X), when X is

open in R2.

2 Let (Mj , gj) for j = 1, 2 be Riemannian manifolds with ∂M1 = ∅, and let πj denote
the canonical projection M1 ×M2 →Mj . Show that

ΔM1×M2 = π∗
1ΔM1 + π∗

2ΔM2 .

3 Suppose M and N are Riemannian manifolds and f : M → N is an isometric diffeo-
morphism. Then for 0 ≤ r ≤ m, show that the diagram

Ωr(M) Ωr(M)

Ωr(N) Ωr(N)

f∗ f∗

ΔM

ΔN

�

�

� �

commutes.

4 Let (M, g) be a pseudo-Riemannian manifold. Show the commutativity of the diagram

V(M)

Ω1(M) Ωm−1(M)
∗

Θ −�

�

�
��

�
�


and derive the relations

(i) div = ∗d∗Θ;

(ii) curl = Θ−1∗dΘ (m = 3);
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(iii) ΔM = ∗d∗d,

where ΔM is the Laplace–Beltrami operator of M .

5 Let Ω be open in R3. For E, B, j ∈ C∞(R × Ω, R3), ρ ∈ C∞(R × Ω, R), and c > 0,
set

F := ΘeE ∧ (c dt) + ∗
(
ΘeB ∧ (c dt)

)
, J := Θej − ρ dt ∈ Ω(R4

1,3) ,

where E, B, and j are seen as time-dependent vector fields, ρ is seen as a time-dependent
function on Ω, and Θe : V(R3) → Ω1(R3) denotes the (Euclidean) Riesz isomorphism.
Also let dt be the first standard basis vector in Ω1(R4

1,3). Now show these facts:

(a) The statements

(i) dF = 0;

(ii) ∂B
/
∂t + c curl E = 0 and div B = 0

are equivalent. (These are the homogeneous Maxwell’s equations.) That is, the 2-form F
is closed if and only if the vector fields E and B satisfy these two of Maxwell’s equations.

(b) The statements

(i) dF = 4πJ ;

(ii) ∂E/∂t− c curl B = 4πj and div E = 4πρ

are equivalent. (These are the Maxwell’s equations with sources.)

(c) The statments

(i) ΔR4
1,3

F = 0;

(ii) ∂B/∂t + c curl E = 0, ∂E/∂t− c curl B = 0, div E = 0, div B = 0

are equivalent. Therefore the 2-form F is harmonic if and only if the vector fields E
and B satisfy the homogeneous Maxwell’s equations.

(d) If dF = 0, then j and ρ satisfy the continuity equation

∂ρ/∂t + div j = 0 ,

which can also be written gradR4
1,3

J = 0.

(e) These two statements are equivalent:

(i) F is exact;

(ii) There are an A ∈ C∞(R×Ω, R), a vector potential, and Φ ∈ C∞(R×Ω, R), a scalar
potential, with

curl A = B and − ∂A/∂t− grad Φ = E .

6 Suppose X is open in R3 and contractible. Also suppose f, g ∈ E(X). Show:

(i) There is a v ∈ V(X) such that grad f × grad g = curl v.

(ii) If f(x) 	= 0 for x ∈ X, then there is an h ∈ E(X) with (grad f)/f = grad h.

7 Verify that

�ΔM (f grad f) = grad div(f grad f) = ΔMf grad f + grad |grad f |2M + f grad ΔMf

for f ∈ E(M), where |v|2M := (v | v)M for v ∈ V(M).
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8 Show that α ∈ Ω1(M) and v, w ∈ V(M) satisfy

dα(v, w) = Lv〈α, w〉 − Lw〈α, v〉 −
〈
α, [v, w]

〉
.

9 Let M and N be m-dimensional manifolds, and let ϕ ∈ Diff(M, N). Show that

ϕ∗[v, w] = [ϕ∗v, ϕ∗w] for v, w ∈ V(M) .

10 Let T 2 := S1 × S2 ⊂ R4, and let α, β ∈ Ω1(T 2) with

α := −x2 dx1 + x1 dx2 , β := −x4 dx3 + x3 dx4 .

Show that Δα = Δβ = 0.

11 Show that for H ∈ E(R2m) the vector field sgrad H ∈ V(R2m) is divergence free.



Chapter XII

Integration on manifolds

In the first two chapters of this book, we developed the basics of measure and
integration theory, and, in the third, we deepened our knowledge of manifolds and
introduced the theory of differential forms. We are now ready to extend integration
theory to manifolds, which means we will be able to integrate over “curved spaces”.

In Section 1, we introduce the Riemann–Lebesgue measure on manifolds. Its
construction is based entirely on the properties of the Lebesgue measure, which we
“lift up” from Rm to the manifold using local charts. The transformation theorem
plays a principal role, because it guarantees that the construction is independent
of the local coordinates. We show that Riemann–Lebesgue volume measure is
a complete Radon measure, which makes available the entire integration theory
developed in the second chapter. As a first application of the general theory, we
calculate the volumes of several manifolds.

In Section 2, we generalize the theory of line integrals which tells how to
integrate 1-forms over curves and therefore over 1-dimensional manifolds. We
now show how to integrate m-forms over m-dimensional manifolds. To make
the calculus more powerful, we extend the transformation theorem and Fubini’s
theorem so that they can be used with integrals of differential forms. Then we will
be ready to treat more complicated integration problems, as we demonstrate in a
series of examples.

We also give physical and geometric interpretations to integrals of differential
forms, and we present the basic idea of the flux of a vector field. As an application,
we prove the transport theorem and derive some of its consequences.

The high point of the differential and integral calculus of manifolds is un-
doubtedly Stokes’s theorem, to which the last section, Section 3, is devoted. We
prove a version for manifolds with singularities; this version will suffice for most
cases seen in practice. Of course, we show several classical application of Stokes’s
theorem and also give a first glimpse at its topological consequences. However,
in the framework of this introduction, we must forgo any deeper explorations. It
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is the goal of this work to give you the basics for your further progress into this
fascinating branch of mathematics. Should you choose to take further courses
in analysis or delve deeper into its literature, you will learn a great number of
applications and generalizations of the theory developed here.



1 Volume measure

In Section VIII.1, we learned how to calculate the length of a curve. We also know
how to find the area under graphs and the volume of simple shapes. Now we turn
to the problem of determining the area of curve surfaces and the content of general
manifolds.

In this section, we introduce the Riemann–Lebesgue volume measure of a
pseudo-Riemannian manifold and show that it is a complete massive Radon mea-
sure. Then the entire theory of integration developed in Chapter X will also be
available for manifolds. With the help of local representations, we can explicitly
calculate integrals on manifolds in many cases, as our examples will show.

In the entire section

• M is an m-dimensional manifold with m ∈ N×.

The Lebesgue σ-algebra of M

Because a manifold locally “looks” like an open subset of Hm, it is clear that
measurability can be “lifted up” from Hm to M using local charts.

A subset A of M is said to be (Lebesgue) measurable if around every p ∈ A
there is a chart (ϕ, U) such that ϕ(A ∩ U) belongs to L(m), that is, ϕ(A ∩ U) is
λm-measurable. We set

LM := {A ⊂ M ; A is measurable } .

The following remarks shows that this definition is meaningful.

1.1 Remarks (a) The definition is coordinate-independent.
Proof Suppose A ⊂ M and (ϕp, Up) is a chart around p ∈ A with ϕp(A ∩ Up) ∈ L(m).
Further let (ψ,V ) be a chart of M , and let q ∈ A ∩ V . Because the set ϕp(Uq ∩ V ) is
open in Hm, it is λm-measurable and therefore so is

ϕq(A ∩ V ∩ Uq) = ϕq(A ∩ Uq) ∩ ϕq(V ∩ Uq) .

By Corollary IX.5.13, it now follows from

ψ(A ∩ V ∩ Uq) = ψ ◦ ϕ−1
q

(
ϕq(A ∩ V ∩ Uq)

)
that ψ(A ∩ V ∩ Uq) belongs to L(m). This holds for every q ∈ A ∩ V , and according to
Remark IX.5.14(c), measurability is a local property. Hence ψ(A ∩ V ) ∈ L(m), and we
are done. �

(b) If M is open in Rm, then LM = L(m) |M . Therefore the notation introduced
here is consistent with that of Section X.5.
Proof This follows by using the trivial chart (id, M). �
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1.2 Proposition LM is a σ-algebra over M , the Lebesgue σ-algebra of M . It
contains the Borel σ-algebra B(M).

Proof Let (ϕ, U) be a chart of M . If A ∈ LM , then ϕ(A ∩ U) belongs to L(m).
Because L(m) is a σ-algebra, we have ϕ(Ac ∩ U) = ϕ(U)\ϕ(A ∩ U) ∈ L(m).
Because this is true for every chart, it follows that Ac ∈ LM .

If (Aj) is a sequence in LM , then we analogously find

ϕ
((⋃

j
Aj

)
∩ U

)
= ϕ

(⋃
j
(Aj ∩ U)

)
=

⋃
j
ϕ(Aj ∩ U) ∈ L(m) ,

which implies
⋃

j Aj ∈ LM .

Finally, it is obvious that M belongs to LM . Thus we have shown that LM

is a σ-algebra.

If O is open in M , then ϕ(O ∩ U) is open in Hm and therefore belongs to
L(m). Therefore O belongs to LM , which implies LM ⊃ B(M). �

The definition of the volume measure

Suppose now g is a pseudo-Riemannian metric on M and (ϕ, U) is a chart of M
with ϕ = (x1, . . . , xm). Then the Gram determinant G = det[gjk] with gjk =
g
(
∂
/
∂xj , ∂

/
∂xk

)
is well defined, and

√
|G| ∈ E(U). For A ∈ LM with A ⊂ U , we

set

volg,U (A) :=
∫

ϕ(A)

ϕ∗
√
|G| dλm =

∫
ϕ(A)

ϕ∗
√
|G| dx . (1.1)

1.3 Lemma For A ∈ LM , the volume volg,U (A) is independent of the chart (ϕ, U)
when A ⊂ U .

Proof Suppose (ψ, V ) is another chart with A ⊂ V and ψ = (y1, . . . , ym). We
can assume V = U . Now we regard U as an oriented manifold with positive atlas{
(ϕ, U)

}
. Then, according to Remark XI.5.4(g),

ωU :=
√
|G| dx1 ∧ · · · ∧ dxm ∈ Ωm(U)

is the volume element of U . Also

ωU = ±
√
|G| dy1 ∧ · · · ∧ dym ,

where the positive sign is chosen if ψ positively oriented and the negative is chosen
otherwise. Because f := ψ ◦ ϕ−1 ∈ Diff

(
ϕ(U), ψ(U)

)
and ϕ = f−1 ◦ ψ, it follows
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from Example XI.3.4(c) that

ϕ∗
√
|G| dx1 ∧ · · · ∧ dxm = ϕ∗ωU = (f−1)∗ψ∗ωU = f∗ψ∗ωU

= ±f∗(ψ∗
√
|G| dy1 ∧ · · · ∧ dym

)
= ±f∗(ψ∗

√
|G|

)
det(∂f) dx1 ∧ · · · ∧ dxm

= f∗(ψ∗
√
|G|

)
|det(∂f)| dx1 ∧ · · · ∧ dxm ,

because f is orientation-preserving if and only if ψ is positively oriented, and f is
orientation-reversing otherwise. Therefore

ϕ∗
√
|G| =

(
ψ∗

√
|G|

)
◦ f |det(∂f)| .

Because ϕ(U ∩ ∂M) = ϕ(U) ∩ ∂Hm is a λm-null set and ϕ(U \∂M) = ϕ(U)\∂Hm

is open in Rm, and because f
(
ϕ(U)

)
= ψ(U), it follows from the transformation

theorem in the version of Corollary X.8.5 that∫
ϕ(U)

ϕ∗
√
|G| dx =

∫
ψ(U)

ψ∗
√
|G| dy .

This proves the claim. �

By Remark XI.1.21(b) and Proposition IX.1.8, M is a Lindelöf space. There-
fore M has a countable atlas A :=

{
(ϕj , Uj) ; j ∈ N

}
. For A ∈ LM , we set

A0 := A ∩ U0 and An+1 := (A ∩ Un+1)
∖ n⋃

k=0

Ak for n ∈ N .

Then (Aj) is a disjoint sequence in LM with Aj ⊂ Uj , and A =
⋃

j Aj . Therefore

volg(A) :=
∞∑

j=0

volg,Uj (Aj) (1.2)

is a well-defined element of R+.

1.4 Lemma The definition (1.2) is independent of the special choice of an atlas.

Proof Let Ã :=
{

(ϕ̃j , Ũj) ; j ∈ N
}

be another countable atlas, and let Ãj

be defined in analogy to Aj under the application of Ũj rather than Uj . Now
volg,Uj and vol

g,Ũk
are measures on Uj and Ũk, respectively, and they are therefore

σ-additive. Then it follows from
⋃

j Aj =
⋃

k Ãk = A that

volg,Uj (Aj) = volg,Uj (Aj ∩A) = volg,Uj

(
Aj ∩

⋃
k
Ãk

)
= volg,Uj

(⋃
k
(Aj ∩ Ãk)

)
=

∑
k
volg,Uj (Aj ∩ Ãk) .
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By exchanging the roles of A and Ã, we find analogously that

volg,ŨUk
(Ãk) =

∑
j
volg,ŨUk

(Ãk ∩Aj) .

Because Aj ∩ Ãk ⊂ Uj ∩ Ũk, Lemma 1.3 results in

volg,Uj (Aj ∩ Ãk) = volg,ŨUk
(Ãk ∩Aj) .

Then from Remark X.3.6(b), we obtain∑
j
volg,Uj (Aj) =

∑
j

∑
k
volg,Uj (Aj ∩ Ãk) =

∑
j

∑
k
volg,ŨUk

(Ãk ∩Aj)

=
∑

k

∑
j
volg,ŨUk

(Ãk ∩Aj) =
∑

k
volg,ŨUk

(Ãk) ,

as desired. �

Clearly, volg(A) should represent the “volume” of A ⊂ M , measured with
respect to the measure tensor g. We will now think about how this is to be
understood.

Definition (1.2) shows that an arbitrary measurable subset A of M is decom-
posed into countably many pairwise disjoint parts Aj and that the “volume” of
A is just the “sum” of the volumes of these parts. The definition requires that
every Aj is contained in a chart of an atlas. Therefore it suffices to understand
how volg(A) is to be interpreted when A is contained in the domain U of a chart
(ϕ, U).

So let x ∈ ϕ(U) and p := ϕ−1(x), and let �1, . . . , �m be positive numbers such
that

Q :=
m∏

j=1

[xj , xj + �j ] ,

the rectangle with “lower left corner” x
and volume λm(Q) = �1 · · · · ·�m, still lies
entirely in ϕ(U). If the side lengths �j

are sufficiently small, the parallelepiped
Q̂ := Txϕ−1(Q) spanned by the vectors

�1 ∂

∂x1

∣∣∣
p
, . . . , �m ∂

∂xm

∣∣∣
p

in TpM will approximate well the image A := ϕ−1(Q) of Q in M .
We can assume that (ϕ, U) is a positive chart of U . Then it follows from

Remark XI.2.12(c) that the volume of Q̂ satisfies

ω(p)
(
�1 ∂

∂x1

∣∣∣
p
, . . . , �m ∂

∂xm

∣∣∣
p

)
= ω(p)

( ∂

∂x1

∣∣∣
p
, . . . ,

∂

∂xm

∣∣∣
p

)
�1 · · · · · �m

=
√
|G| (p)λm(Q) = ϕ∗

√
|G| (x)λm(Q) .
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Now we decompose Q into finitely many rectangles Qj (with edges along the
Cartesian axes) that intersect at most along their common sides.

We denote by xj the lower left corner of Qj and set pj := ϕ−1(xj). We let Q̂j be
the image of Qj in Tpj

M under the tangential map Txj
ϕ−1. Then it follows from

the considerations above that

volg(A) =
∫

Q

ϕ∗
√
|G| dx ≈

∑
j
ϕ∗

√
|G| (xj)λm(Qj) .

This shows that volg
(
ϕ−1(Q)

)
is approximately equal to the sum of the volumes

of the parallelepipeds that approximate A ⊂ M . By “unlimited refinement”, these
sums approach the integral and therefore volg(A), while at the same time Q̂j gets
arbitrarily close to the A. This shows that volg(A) does agree with our usual
understanding of the volume of A.

In the following, we set λ(M,g) := volg. We may also write this as λM or λg

if the context allows it. Also

vol(M) := λM (M)

is the volume of M or, in the case m = 2, the area of M .

1.5 Proposition λM is a Radon measure of M , the Riemann–Lebesgue volume
measure of M .

Proof (a) It is clear that λM maps the σ-algebra LM to [0,∞] and assigns the
empty set the value 0.

Suppose
{

(ϕj , Uj) ; j ∈ N
}

is a countable atlas and (Ak) is a disjoint se-
quence in LM . Then (Ak ∩ Uj)k∈N is disjoint sequence in Uj . Therefore Proposi-
tion 1.2 with A :=

⋃
k Ak and λM,Uj := volg,Uj gives

λM,Uj (A ∩ Uj) =
∑

k
λM,Uj (Ak ∩ Uj) .

Because λM (Ak) =
∑

j λM,Uj (Ak ∩ Uj), we find

λM (A) =
∑

j
λM,Uj (A ∩ Uj) =

∑
j

∑
k
λM,Uj (Ak ∩ Uj)

=
∑

k

∑
j
λM,Uj (Ak ∩ Uj) =

∑
k
λM (Ak) ,

where we have again referred to Remark X.3.6(b). Thus λM is a σ-additive function
and therefore a measure.
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(b) Let A ∈ LM , and suppose (ϕ, U) is a chart with A ⊂ U . Then it follows
from Corollary IX.5.5 that there are a Gδ-set G̃ and an Fσ-set F̃ in ϕ(U) such
that F̃ ⊂ ϕ(A) ⊂ G̃ and λm

(
F̃

)
= λm

(
ϕ(A)

)
= λm

(
G̃

)
. This gives∫

F̃

ϕ∗
√
|G| dx =

∫
ϕ(A)

ϕ∗
√
|G| dx =

∫
G̃

ϕ∗
√
|G| dx .

Therefore we find an increasing sequence
(
F̃j

)
of compact subsets F̃j of F̃ with⋃

j F̃j = F̃ . Then Fj := ϕ−1
(
F̃j

)
is a compact subset of A, and the monotone

convergence theorem gives

λM (Fj) =
∫

F̃j

ϕ∗
√
|G| dx ↑

∫
F̃

ϕ∗
√
|G| dx =

∫
ϕ(A)

ϕ∗
√
|G| dx = λM (A) .

Therefore

λM (A) = sup
{

λM (K) ; K ⊂ A, K is compact in M
}

. (1.3)

Analogously, we show

λM (A) = inf
{

λM (O) ; O ⊃ A, O is open in M
}

. (1.4)

(c) Suppose now A is an arbitrary set in LM . Then the proof of Lemma 1.4
shows that there is a disjoint sequence (Aj) in LM with Aj ⊂ Uj and

⋃
j Aj = A.

If λM (Aj0 ) = ∞ for some j0 ∈ N, then λM (A) = ∞. Also, (b) then shows
that to every α > 0 there is a compact set K such that K ⊂ Aj0 ⊂ A and
λM (K) > α. From this it follows that (1.3) is true in this case as well. Therefore
suppose λM (Aj) < ∞ for j ∈ N, and let α < β < λM (A). Then there is an N

with
∑N

j=0 λM (Aj) > β > α. According to (b), we find for every j a compact
subset Kj of Aj with λM (Kj) > λM (Aj)− (β − α)2−j−1. Then K :=

⋃N
j=0 Kj is

a compact subset of A, and

λM (K) =
N∑

j=0

λM (Kj) >

N∑
j=0

λM (Aj)− (β − α)
N∑

j=0

2−j−1 > β − (β − α) = α .

Because this it true for every α < λM (A), we see that (1.3) also holds in this case.
From (b) it also follows that to every ε > 0 and j ∈ N there is an open set Oj

with A ⊂ Oj ⊂ Uj and λM (Oj) < λM (Aj) + ε 2−j−1. Then O :=
⋃

j Oj is open
in M and satisfies O ⊃ A and

λM (O) ≤
∑

j
λM (Oj) <

∑
j
λM (Aj) + ε = λM (A) + ε .

This shows that (1.4) is also true.
(d) Let p ∈ M , and let (ϕ, U) be a chart around p. Then there is a compact

neighborhood K of p in M with K ⊂ U . Because ϕ(K) is compact in Hm and
therefore in Rm, it follows from (1.1), the continuity of ϕ∗

√
|G|, Theorem X.5.1(i),

and Corollary X.3.15(iii) that ϕ∗
√
|G| is integrable over ϕ(K). Therefore λM (K)

is finite, which shows that λM is locally finite. Thus it is a Radon measure. �
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Properties

The next proposition characterizes λM -null sets.

1.6 Proposition Let A ∈ LM . These statements are equivalent:
(i) λM (A) = 0;

(ii) λm

(
ϕ(A ∩ U)

)
= 0 for every chart (ϕ, U);

(iii) λm

(
ϕ(A ∩ U)

)
= 0 for every chart of a countable atlas of M .

Proof “(i)=⇒(ii)” Because A ∩ U ∈ LM and A ∩ U ⊂ A, it follows that

0 = λM (A) ≥ λM (A ∩ U) =
∫

ϕ(A∩U)

ϕ∗
√
|G| dx .

Because ϕ∗
√
|G| is continuous and pointwise strictly positive, Remark X.3.3(c)

gives λm

(
ϕ(A ∩ U)

)
= 0.

“(ii)=⇒(iii)” This is clear.
“(iii)=⇒(i)” From λm

(
ϕ(A∩U)

)
= 0 and (1.1), it follows that λM (A∩U) = 0.

Let
{

(ϕj , Uj) ; j ∈ N
}

be a countable atlas. Then A = A ∩
⋃

j Uj =
⋃

j(A ∩ Uj),
and the claim follows from the σ-subadditivity of λM . �

This proposition shows that the concept of a λM -null set is independent of
the particular pseudo-Riemannian metric. Therefore we may simply call λM -null
sets null sets or Lebesgue null sets of M .

The next theorem lists the basic properties of Riemann–Lebesgue measures.

1.7 Theorem Let (M, g) be a pseudo-Riemannian manifold.

(i) (M,LM , λM ) is a σ-compact complete measure space.

(ii) λM is a massive Radon measure.

(iii) All n-dimensional submanifolds of M with n < m are null sets in M , and
∂M is also a null set in M .

(iv) If M is an m-dimensional submanifold of Rm, then λM = λm.

Proof (i) Since M is a locally compact metric and a Lindelöf space, (M,LM , λM )
is σ-compact by Remark X.1.16(e). Its completeness follows from Propositions 1.5
and 1.6 and the completeness of the Lebesgue measure.

(ii) Let O open in M and nonempty, and let (ϕ, U) be a chart with U∩O 
= ∅.
Then ϕ(O∩U) has positive Lebesgue measure. Because ϕ∗

√
|G| is continuous and

pointwise strictly positive, Remark X.3.3(c) gives

λM (O) ≥ λM (O ∩ U) =
∫

ϕ(O∩U)

ϕ∗
√
|G| dx > 0 .

Thus we get (ii) from (i) and Proposition 1.5.
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(iii) This follows from Proposition 1.6 and Example IX.5.2.

(iv) Using the trivial chart, we get

λM (A) =
∫

A

dx = λm(A) for A ∈ LM ,

as desired. �

Integrability

Let E := (E, | · |) be a Banach space. By Theorem 1.7, we can use the en-
tire integration theory developed in Sections X.1–X.4. In particular, the spaces
Lp(M, λM , E) and Lp(M, λM , E) are defined for p ∈ [1,∞] ∪ {0}.

1.8 Proposition For f : M → E, these statements are equivalent:

(i) f ∈ L0(M, λM , E);

(ii) ϕ∗f ∈ L0

(
ϕ(U), E

)
for every chart (ϕ, U) of M ;

(iii) ϕ∗f ∈ L0

(
ϕ(U), E

)
for every chart of a countable atlas of M .

Proof “(i)=⇒(ii)” Suppose f is λM -measurable. Then by Theorem X.1.4, f is
λM -almost separable valued and LM -measurable. From Proposition 1.6 and the
definition of LM , it now follows easily that ϕ∗f : ϕ(U)→ E is λm-almost separable
valued and Lϕ(U)-measurable. Therefore Theorem X.1.4 implies that ϕ∗f belongs
to L0

(
ϕ(U), E

)
.

“(ii)=⇒(iii)” This is trivial.

“(iii)=⇒(i)” Let
{

(ϕj , Uj) ; j ∈ N
}

be a countable atlas of M , and suppose
ϕj∗f ∈ L0

(
ϕj(Uj), E

)
for j ∈ N. Proposition XI.1.20 guarantees the existence of

a smooth partition of unity { πj ; j ∈ N } subordinate to the cover {Uj ; j ∈ N }
of M . Then ϕj∗πj belongs to C∞(

ϕj(Uj)
)

for j ∈ N. Hence it follows from
Remark X.1.2(d) that

ϕj∗(πjf) = (ϕj∗πj)(ϕj∗f) ∈ L0

(
ϕj(Uj), E

)
for j ∈ N .

As in the first part of the proof, we can deduce πjf ∈ L0(M, λM , E) for j ∈ N.
Because f =

(∑∞
j=1 πj

)
f =

∑∞
j=1 πjf , the λM -measurability of f now follows

from Theorem X.1.14. �

Because λM is a massive Radon measure, we can use the convention we set
after Proposition X.4.17. This is to be noted in the next proposition.

1.9 Proposition

(a) In the sense of vector subspaces, the following are true:
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(i) C(M, E) ⊂ L0(M, λM , E).
(ii) Cc(M, E) is dense in Lp(M, λM , E) for 1 ≤ p < ∞.

(b) If K is a compact subset of M , then∣∣∣∫
K

f dλM

∣∣ ≤ ∫
K

|f | dλM ≤ ‖f‖C(K,E) λM (K) for f ∈ C(M, E) .

Proof Because of Theorem 1.7, the proposition follows from Theorem X.4.18(i)
and Corollary X.3.15(iii). �

We now show how the calculation of
∫

M
f dλM can be reduced to integration

in local coordinates. So first we consider the local case.

1.10 Theorem Suppose (ϕ, U) is a chart of M and f ∈ L0(U, λM , E). Then f
belongs to L1(U, λM , E) if and only if (ϕ∗f)ϕ∗

√
|G| lies in L1

(
ϕ(u), λm, E

)
. In

that case, we have ∫
U

f dλM =
∫

ϕ(U)

(ϕ∗f)ϕ∗
√
|G| dx . (1.5)

Proof (i) Let f = χA for some A ∈ LM with A ⊂ U . Then∫
U

f dλM =
∫

A

dλM =
∫

ϕ(A)

ϕ∗
√
|G| dx =

∫
ϕ(U)

(ϕ∗f)ϕ∗
√
|G| dx

because ϕ∗f = ϕ∗χA = χϕ(A). Now it follows that (1.5) holds for simple functions.
(ii) Let f ∈ L1(U, λM , E). Then there is an L1-Cauchy sequence (fj) of

simple functions such that fj → f λM -a.e. and∫
U

fj dλM →
∫

U

f dλM . (1.6)

Further (ϕ∗fj) is a sequence in S
(
ϕ(U), E

)
, and

(ϕ∗fj)ϕ∗
√
|G| → (ϕ∗f)ϕ∗

√
|G| λm-a.e. in ϕ(U) .

In addition, it follows from the validity of (1.5) for simple functions that∫
U

|fj − fk| dλM =
∫

ϕ(U)

|ϕ∗fj − ϕ∗fk|ϕ∗
√
|G| dx =

∫
ϕ(U)

|hj − hk| dx ,

where hj := ϕ∗
(
fj

√
|G|

)
. Therefore (hj) is a L1-Cauchy sequence in F :=

L1

(
ϕ(U), E

)
. By Theorem X.2.10(ii), we find an h ∈ F such that hj → h in F .

Then it follows from Theorem X.2.18(i) that there is a subsequence (hjk
)k∈N of
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(hj) such that hjk
→ h λm-a.e. as k →∞. Because fj → f λM -a.e. implies that

hj → ϕ∗
(
f
√
|G|

)
λm-a.e., we find that h agrees λm-a.e. with ϕ∗

(
f
√
|G|

)
. Then

Theorem X.2.18(ii) implies∫
U

fj dλM =
∫

ϕ(U)

hj dx→
∫

ϕ(U)

ϕ∗
(
f
√
|G|

)
dx .

Hence the claim follows from (1.6). �

We now treat the general case. We first introduce a useful abbreviation:
Suppose

{
(ϕj , Uj) ; j ∈ N

}
is a countable atlas for M , and let { πj ; j ∈ N } be a

smooth partition of unity subordinate to the cover {Uj ; j ∈ N } of M . Then we
call

{
(ϕj , Uj, πj) ; j ∈ N

}
a local system for M . The existence of such systems is

secured by Proposition XI.1.20.

1.11 Proposition Let
{

(ϕj , Uj, πj) ; j ∈ N
}

be a local system for M . Then
f ∈ L0(M, λM , E) belongs to L1(M, λM , E) if and only if πjf lies in L1(Uj, λM , E)
for every j ∈ N and

∞∑
j=0

∫
Uj

πj |f | dλM <∞ . (1.7)

In this case, we have ∫
M

f dλM =
∞∑

j=0

∫
Uj

πjf dλM . (1.8)

Proof (i) Let f ∈ L1(M, λM , E). Then f =
(∑∞

j=0 πj

)
f =

∑∞
j=0 πjf holds with

pointwise convergence, and

|πkf | ≤
n∑

j=0

|πjf | =
n∑

j=0

πj |f | ≤ |f | for 0 ≤ k ≤ n < ∞ .

Therefore πkf ∈ L1(Uk, λM , E) follows because supp(πk) ⊂⊂ Uk. Theorems X.3.9
and 1.10 and Lebesgue’s theorem now imply (1.7) and (1.8).

(ii) Let πjf ∈ L1(Uj, λM , E) for j ∈ N, and suppose (1.7) holds. Letting
hn :=

∑n
j=0 πjf for n ∈ N, it follows that

∫
M

|hj − hk| dλM ≤
k∑

i=j+1

∫
Ui

πi |f | dλM for 0 ≤ j < k <∞ .

Therefore (hj) is an L1-Cauchy sequence in L1(M, λM , E). Because (hj) con-
verges pointwise to f , it follows from the completeness of L1(M, λM , E) and from
Theorem X.2.18 that f is integrable with respect to the measure λM . �
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1.12 Remark (regularity) Obviously all the definitions and propositions above remain
true when M is a C1 manifold. �

Calculation of several volumes

Of course, Proposition 1.11 is chiefly of theoretical importance. In practical cases,
one is often in the comfortable situation that M can be described, except for
perhaps a null set, by a single chart. In this case, Theorem 1.10 can be used. In
the following examples, we consider such cases in the special case f = 1.

1.13 Examples Unless we say otherwise, we use the standard metric on M .

(a) (curves) Let γ : J → Rm be an embedding of a perfect interval J ⊂ R. Then
M := γ(J) is an embedded curve Rm, and vol(M) = L(M), where L denotes the
arc length. More generally, f ∈ L1(M, λM , E) satisfies∫

M

f dλM =
∫

J

(f ◦ γ) |γ̇| dt .

In this case, we set ds :=
√

Gdt and call ds the arc length element, as motivated
by Theorem VIII.1.7.
Proof This follows from Example XI.5.3(e) and Theorem VIII.1.7. �

(b) (graphs) Let X be open in Rm and f ∈ C∞(X, R). Then1

vol
(
graph(f)

)
=

∫
X

√
1 + |∇f |2 dx .

Proof Example XI.5.3(d). �

(c) (spheres) Let m ∈ N× and r > 0. Then

r vol(rSm) = (m + 1) vol(rBm+1) .

In particular, vol(rS1) = 2πr, vol(rS2) = 4πr2, and vol(rS3) = 2π2r3.
Proof From Remark IX.5.26(b), we know that

vol(rBm+1) = rm+1 vol(Bm+1) . (1.9)

Then by Example VIII.1.9(c), we can assume m ≥ 2. Let

h± : Bm
r → R , x �→ ±

√
r2 − |x|2

be the parametrizations of the upper and lower half spheres rSm
± . For these we find

∇h±(x) = −x/h±(x) and therefore |∇h±(x)|2 = |x|2/(r2 − |x|2) for x ∈ rBm. Therefore

1See Example VIII.1.9(a).
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it follows from (b) and the transformation theorem that

vol(rSm
± ) =

∫
rBm

√
r2/(r2 − |x|2) dx = rm

∫
Bm

√
1/(1− |y|2) dy = rm vol(Sm

± ) .

Because Sm = Sm
+ ∪ Sm

− ∪ Sm−1, where Sm−1 is identified with the “equatorial sphere”
Sm−1 × {0} of Sm, and because λSm(Sm−1) = 0, we find

vol(rSm) = rm vol(Sm) . (1.10)

Due to (1.9) and (1.10), it suffices to show

vol(Sm) = (m + 1) vol(Bm+1) .

We apply the parametrization hm : Wm → Rm+1 of Sm\Hm that we considered in
Example XI.5.5(h) and denote its chart by ψ. Then we may read from the formula given
there for gSm (because the fundamental matrix is diagonal) that

ψ∗G =

m−1∏
k=0

am+1,k =

m−1∏
k=0

m−1∏
i=k+1

sin2 ϑi = w2
m+1(ϑ) ,

where

wm+1(ϑ) := sin ϑ1 sin2 ϑ2 · · · · · sinm−1 ϑm−1 for ϑ = (ϑ1, . . . , ϑm−1) ∈ [0, π]m−1 .

Because of Wm = (0, 2π)× (0, π)m−1, Example X.8.10(c), and Fubini’s theorem, we get

λSm(Sm\Hm) =

∫
Wm

ψ∗
√

G d(ϕ, ϑ) = 2π

∫
(0,π)m−1

wm+1(ϑ) dϑ = (m + 1)ωm+1 ,

where ωm+1 := vol(Bm+1). Because Sm ∩Hm is a null set of Sm, the claim follows. �

(d) (helicoids) Let 0 ≤ α < β < ∞ and a ≥ 0.
Let T > 0, and define

h : (α, β)× (0, T )→ R3

by

h(s, t) := (s cos t, s sin t, at) .

Then h is a parametrization of a helicoid F . It is
generated by beginning at t = 0 with the “rod”
consisting of the interval (α, β) lying on the x-axis and then rotating it with angular
velocity 1 around the z-axis, while simultaneously raising it with velocity a. It
satisfies

vol(F ) =
T

2

[
s
√

s2 + a2 + a2 log
(
s +

√
s2 + a2

)]∣∣∣β
α

.
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In particular, for α = 0, β = 1, and T = 2π — that is, for the complete rotation
of a rod of length 1 about its endpoint— we have

vol(F ) = π
[√

1 + a2 + a2 log
(
1 +

√
1 + a2

)
− a2 log a

]
= π

[√
1 + a2 + a2 log

(√
1 + 1/a2 + 1/a

)]
.

This formula gives what we would expect in several special cases: When a = 0,
we obtain the unit disc of area π, whereas vol(F ) > π for a > 0.
Proof A simple calculation shows that ϕ∗

√
G =

√
s2 + a2, where ϕ is the chart belong-

ing to h, that is, h = i ◦ ϕ−1. Because[
s
√

s2 + a2 + a2 log
(
s +

√
s2 + a2

)]·
= 2

√
s2 + a2 ,

the claim follows from Fubini’s theorem. �

(e) The volume of the disc RB2 in the hyperbolic plane H2 satisfies

volgH2 (RB2) = 2π
(√

1 + R2 − 1
)

.

As R gets larger, this expression behaves approximately as 2πR, while in the
Euclidean case the volume grows as R2.
Proof Using polar coordinates, we recall Example XI.5.5(k) that

gH2 =
(dr)2

1 + r2
+ r2(dϕ)2 .

From this we read
ωH2 =

r√
1 + r2

dr ∧ dϕ .

Because a single point set of H2 is a null set, it follows that

volg
H2 (RB2) =

∫ R

0

∫ 2π

0

r√
1 + r2

dr dϕ = 2π

∫ R

0

r dr√
1 + r2

,

as desired. �

Exercises

1 Let N be an m-dimensional manifold and f ∈ Diff1(M, N).
Show that A ∈ LM ⇐⇒ f(A) ∈ LN .

2 Determine ωM for the hyperboloid H :=
{

(x, y, z) ∈ R3 ; x2 + y2 − z2 = 1
}

with
respect to the standard metric and the parametrization

(t, ϕ) �→ (cosh t cos ϕ, cosh t sin ϕ, sinh t) .

Also calculate the volume of the part of H satisfying 0 < z < 1.

3 Let Z := S1 × (−1, 1) be a cylinder in R3. Calculate
∫

Z
|x|2 dλZ.
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4 Calculate the integral
∫

S2 x2y2z2 dλS2 .

5 The solid cut out from the ball RB3 by the
cylinder

ZR :=
{

(x, y, z) ∈ R3 ; x2 + y2 = Rx
}

is called the Viviani solid VR.
Show

(i) vol(VR) = 2(π − 4/3)R3
/
3;

(ii) the area of the intersection DR of ZR with RS2 (the left and right “caps” of VR in
the figure) equals 4R2(π/2− 1).

6 Show that vol(M × N) = vol(M) vol(N) if N is an n-dimensional manifold without
boundary.

7 Suppose γ : [0, 1]→ (0,∞)×R, t �→
(
ρ(t), σ(t)

)
is a smooth embedding, i : S1 ↪→ R2,

and
f : S1 × [0, 1]→ R3 , (q, t) �→

(
ρ(t)i(q), σ(t)

)
.

Finally denote by Z2
γ := f

(
S1 × [0, 1]

)
the surface of revolution in R3 generated by γ.

Show that

vol(Z2
γ) = 2π

∫ 1

0

ρ(t) |γ′(t)| dt .

8 Let Ea,b be an ellipsoid of revolution R3 with semiaxes a ≥ b > 0. Also let k :=√
a2 − b2

/
a. Then2

vol(Ea,b) = 4πab

∫ π/2

0

√
1− k2 sin t dt .

9 Show that a torus T2
a,1 with a > 1 satisfies vol(T2

a,1) = 4π2a.

10 Let α ∈ (1/2, 1] and r(x) := x−α for x ≥ 1.
Show that the set{

(x, y, z) ∈ [1,∞)× R2 ; y2 + z2 ≤ r2(x)
}

has finite volume, even though its surface area is
infinite.

11 Let H2 :=
{

(x, y) ∈ R2 ; y > 0
}

and i : S1 ↪→ R2. Also let M be a compact
submanifold of H2 with dim(M) = 2. Then

RM :=
{

(x, u) ∈ R× R2 ; (x, |u|) ∈M
}
⊂ R3

is the rotationally symmetric solid generated by rotating M about the x-axis.

Show these facts:

(a) RM →M × S1, (x, u) �→
(
(x, |u|), u/|u|

)
is a diffeomorphism, and

M × S1 → RM ,
(
(x, y), σ

)
�→

(
x, y i(σ)

)
is its inverse map (“cylindrical coordinates”);

2See Remark VIII.2.3(b).
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(b) vol(RM ) = 2π
∫

M
y dλM ;

(c) Guldin’s first rule says

vol(RM ) = 2πS2(M) vol(M) ,

where S2(M) denotes the second coordinate of the centroid S(M) of M and therefore
the distance of this point from the rotation axis (see Exercise X.6.4). That is, the volume
of a solid of revolution is equal to the product of the area of a meridional slice and the
circumference of the circle whose radius is the distance of the centroid of that slice from
the axis of rotation.

12 Use the notations of Exercise 11, but let dim(M) = 1. Show:

(a) Statements (a) and (b) of Exercise 11 also hold in this case.3

(b) With the centroid

S(M) :=
1

vol(M)

∫
M

i dR3 dλM ∈ R3 ,

we have Guldin’s second rule

vol(RM ) = 2πS2(M) vol(M) ,

that is, the volume of the surface of revolution is equal to the product of the arc length
of a meridional slice and the circumference of the circle whose radius is the distance of
the centroid of that slice from the axis of rotation.

13 Determine the centroid of the half disc RB2 ∩ H2. (Hint: Exercise 12.)

14 Suppose N is a pseudo-Riemannian manifold and ϕ ∈ Diff(M, N). Let p ∈ [1,∞],
and let E be a Banach space. For f ∈ EN , define Jϕf ∈ EM by

Jϕf(s) := ϕ∗f(s) detTsϕ for s ∈M .

Prove these claims:

(a) Jϕ maps Lp(N, dλN , E) linearly and continuously to Lp(M, dλM , E).

(b) For f ∈ L0(N, dλN , E), the statements

(i) f = 0 λN -a.e. and

(ii) Jϕf = 0 λM -a.e.

are equivalent.

(c) Suppose Jϕ[f ] := [Jϕf ] for [f ] ∈ Lp(N, dλN , E). Then Jϕ[f ] is well defined in
Lp(M, dλM , E), and Jϕ itself is an isometric isomorphic map from Lp(N, dλN , E) to
Lp(M, dλM , E).

15 For p ∈ [1,∞], give an isometric isomorphism from Lp

(
(0,∞)× Sn−1

)
to Lp(Rn).

16 For f ∈ L0(Rn) and s ∈ Sn−1, define a function T0f(s) : (0,∞)→ R by

T0f(s)(r) := f(rs)rn−1 for r ∈ (0,∞) .

Also let p ∈ [1,∞).

3See Exercise 7.
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Show:

(a) If f ∈ Ec(Rn), then T0f belongs to L0

(
Sn−1, Lp(0,∞)

)
;

(b) Let f ∈ Ec(Rn). Then the class [T0f ] of T0f belongs to Lp

(
Sn−1, Lp(0,∞)

)
.

(c) There is a unique extension

T ∈ Lis
(
Lp(R

n), Lp

(
Sn−1, Lp(0,∞)

))
of Ec(Rn)→ Lp

(
Sn−1, Lp(0,∞)

)
, f �→ [T0f ], and T is an isometry.

(Hint: Study the proofs of Lemma X.6.20 and Theorem X.6.22.)



2 Integration of differential forms

In Section VIII.4, we introduced the important concept of the line integral, an
integral of a 1-form over an oriented curve and therefore over a 1-dimensional
manifold. In this section, we introduce higher-dimensional analogues, namely,
integrals of m-forms over oriented m-dimensional manifolds.

After we have introduced the basics, we prove generalizations of the transfor-
mation theorem and Fubini’s theorem for differential forms. Through examples,
we show how these ideas can be used in concrete cases.

Finally, we discuss fluxes on manifolds and prove the important transport
theorem. The latter is not only significant in continuum mechanics, but also gives
us a geometric interpretation of the divergence of a vector field.

In this section, let

• M be an m- and N be an n-dimensional oriented manifold
with m, n ∈ N×.

Integrals of m-forms

Let g be a pseudo-Riemannian metric on M , let ωM be the volume element, and
let λM be the associated Riemann-Lebesgue volume measure. If ω is an m-form
of M , then, because dim(

∧m
T ∗

p M) = 1 for p ∈ M , there is exactly one f ∈ RM

such that ω = fωM . Then the m-form ω on (M, g) is said to be integrable if f is
λM -integrable, that is, if f belongs to L1(M, λM ). In this case, we set∫

M

ω :=
∫

M

f dλM (2.1)

and call
∫

M ω the integral of the m-form ω over M .

2.1 Remarks (a) (local representation) Suppose (ϕ, U) is a positive chart of M
such that ϕ = (x1, . . . , xm). The m-form ω := a dx1 ∧ · · · ∧ dxm is integrable over
U if and only if ϕ∗a belongs to L1

(
ϕ(U)

)
. If this is the case, then∫

U

ω =
∫

U

a dx1 ∧ · · · ∧ dxm =
∫

ϕ(U)

ϕ∗a dx =
∫

ϕ(U)

ϕ∗ω . (2.2)

Proof It follows from ωU =
√
|G| dx1 ∧ · · · ∧ dxm that ω =

(
a
/√
|G|

)
ωU . Therefore ω

is integrable if and only if a
/√
|G| belongs to L1(U, λM ). By Theorem 1.10, this is the

case if and only if

ϕ∗a = ϕ∗
(
a
/√
|G|

)
ϕ∗

√
|G| ∈ L1

(
ϕ(U)

)
.

Now the claim follows from (1.5) and (2.1). �
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(b) (reduction to local representations) Suppose ω is an m-form on M , and
suppose that

{
(ϕj , Uj, πj) ; j ∈ N

}
is a local system for M whose charts are all

positive, a positive local system. For j ∈ N, let aj dx1
j ∧ · · · ∧ dxm

j be the local
representation of ω |Uj with respect to the chart (ϕj , Uj), and let ωj := πjω |Uj .
Then ω is integrable over M if and only if

∞∑
j=0

∫
Uj

πj |aj | dx1
j ∧ · · · ∧ dxm

j =
∞∑

j=0

∫
ϕj(Uj)

ϕj∗(πj |aj|) dx < ∞ . (2.3)

If (2.3) is satisfied, then ∫
M

ω =
∞∑

j=0

∫
Uj

ωj . (2.4)

Proof This follows from (a) and (the proof of) Proposition 1.11. �

(c) Every continuous m-form on M with compact support is integrable over M .

Proof Suppose ω is a continuous m-form with compact support. Then there is a positive
local system

{
(ϕj , Uj , πj) ; j ∈ N

}
and a k ∈ N such that

supp(πj) ∩ supp(ω) = ∅ for j > k .

Therefore the series in (2.3) reduces to a finite sum, and πj |aj | ∈ Cc(Uj) for j ∈ N.
Proposition 1.9(b) implies the integrability of these functions. �

(d) From (a) and (b), we see that the integral of an m-form on M is independent of
the special pseudo-Riemannian metric. We therefore lose no generality by always
taking the standard metric. Indeed, we require no metric for the integration of
differential forms. That is, we can define

∫
M ω by the formulas (2.2)–(2.4), and

thereby only use the Lebesgue integral in Rm. From the considerations above, for
which we can take some Riemannian metric, for example, the standard metric, it
follows that these definitions are meaningful, that is, independent of the chosen
local system. In particular, the integral of a continuous m-form with compact
support is defined over an arbitrary1 oriented m-dimensional manifold.

(e) (linearity) Let Ωm
c (M) be the set of all smooth m-forms on M with compact

support. In particular, Ec(M) := Ω0
c(M). Then Ωm

c (M) is an E(M)-submodule of
Ωm(M), and ∫

M

: Ωm
c (M) → R , ω �→

∫
M

ω

is well defined and R-linear.

Proof The first statement is obvious. Because of (c), the given map is well defined, and
its linearity follows from the linearity of integrals with respect to λM . �

1This fact is significant when one considers abstract manifolds. One can show that Riemannian
metrics always exist on such manifolds.
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(f) (orientability) The integral of m-forms is oriented, that is, if the orientation
of M is reversed, then the sign changes:∫

(M,−Or)

ω = −
∫

M

ω .

Proof This follows from ω(M,−Or) = −ωM . �

(g) An m-form ω on M is integrable if and only if χAω is integrable for every
A ∈ LM . In this case, we set∫

A

ω :=
∫

M

χAω for A ∈ LM .

Proof This follows easily from (a) and (b). �

(h) (regularity) It suffices to assume that M is a C1 manifold. �

Suppose (M, g) is a pseudo-Riemannian manifold. Then A ∈ LM satisfies
λM (A) < ∞. Thus χAωM is an integrable m-form on M , and

λM (A) =
∫

A

ωM . (2.5)

If λM (A) = ∞, we set
∫

A
ωM := ∞. This definition makes (2.5) hold for every

A ∈ LM .

Restrictions to submanifolds

Suppose M is either a submanifold of N or the boundary ∂N of N ; let i : M ↪→ N
denote the natural embedding. Also suppose ω is an m-form on N and ω |M = i∗ω
is integrable over M . Then we set∫

M

ω :=
∫

M

i∗ω . (2.6)

2.2 Remarks Let (ϕ, U) with ϕ = (x1, . . . , xm) be a positive chart of M , and put
h := i ◦ ϕ−1.

(a) An m-form ω on N satisfies∫
U

ω =
∫

ϕ(U)

h∗ω

if ω |U is integrable.
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Proof From (2.6) and Remark 2.1(a), it follows that∫
U

ω =

∫
U

i∗ω =

∫
ϕ(U)

ϕ∗i
∗ω =

∫
ϕ(U)

(ϕ−1)∗i∗ω =

∫
ϕ(U)

(i ◦ ϕ−1)∗ω =

∫
ϕ(U)

h∗ω .

The claim follows. �

(b) (line integrals) Let X := N be open in Rn, and let ω :=
∑n

j=1 aj dxj ∈ Ω1(X).
Also let m = 1. Then ∫

M

ω =
∫

M

a1 dx1 + · · ·+ an dxn

is a line integral.
Proof This follows from Section VIII.4 (by an obvious extension of its results about
noncompact curves) and Theorem XI.1.18. �

(c) (vector line elements) Suppose X is open in Rn and m = 1. In physics,
ω :=

∑n
j=1 aj dxj ∈ Ω1(X) is often written as the formal inner product �a · �ds of

the vector field �a := (a1, . . . , an) and the vector line element2 �ds := (dx1, . . . , dxn).
Then ∫

M

ω =
∫

M

�a · �ds .

Let J := ϕ(U). Then J is an open interval in R. Because M is one-
dimensional and oriented, there is for p ∈ M exactly one positive unit tangent
vector t(p) of M at p, that is, there is exactly one t(p) =

∑
j tjej ∈ TpM such

that |t(p)| = 1 and ωM (p)
(
t(p)

)
= 1. Then t := ϕ(p) ∈ J satisfies (ϕ∗tj)(t) =

ḣj(t)/|ḣ(t)|. Therefore it follows from (a), Example 1.13(a), and Theorem 1.10
that ∫

U

ω =
∫

ϕ(U)

h∗ω =
∫

J

n∑
j=1

(aj ◦ ϕ−1)ḣj dt =
∫

ϕ(U)

n∑
j=1

ϕ∗aj ϕ∗t
j |ḣ| dt

=
∫

ϕ(U)

ϕ∗(Θ−1ω | t)ϕ∗
√

Gdt =
∫

U

(Θ−1ω | t) ds .

Therefore ∫
M

�a · �ds =
∫

M

(�a | t) ds ,

which is also expressed by �ds = t ds.

(d) (surfaces in space) Let m = 2, and let N be open in R3. Also let (x, y, z) be
the Euclidean coordinates of R3, and put

ω := a dy ∧ dz + b dz ∧ dx + c dx ∧ dy .

2See Remark VIII.4.10(b).
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Denoting by (u, v) the local coordinates of U , we have∫
U

ω =
∫

U

a dy ∧ dz + b dz ∧ dx + c dx ∧ dy

=
∫

ϕ(U)

[
h∗a

∂(y, z)
∂(u, v)

+ h∗b
∂(z, x)
∂(u, v)

+ h∗c
∂(x, y)
∂(u, v)

]
d(u, v)

=
∫

ϕ(U)

(h∗�a) · ( �Xu × �Xv) d(u, v)

with �a := (a, b, c) and �X := h.
Proof This is a consequence of Example XI.3.4(d) and Remark XI.6.25(c). �

(e) (vector area element) We use the assumptions and notations of (d). We
define the positive (unit) normal ν := νM of M by demanding that

(
ν(p), v1, v2

)
is a positive ONB of TpR3 for every p ∈ M and every positive ONB (v1, v2) of
TpM . If (u, v) are positive coordinates on U , then

ν |U =
( ∂

∂u
× ∂

∂v

)/∣∣∣ ∂

∂u
× ∂

∂v

∣∣∣ . (2.7)

In physics, the triple (dy ∧ dz, dz ∧ dx, dx ∧ dy) is
often called the oriented vector area element. It is
written �dF and understood as an “infinitesimal area
element” together with its orientation, as specified by
the normal ν.

We also set∫
M

�a · �dF :=
∫

M

a dy ∧ dz + b dz ∧ dx + c dx ∧ dy .

Then, by using the scalar area element dF :=
√

Gdx ∧ dy ∧ dz, we find∫
M

�a · �dF =
∫

M

�a · ν dF , (2.8)

which is also expressed by �dF = ν dF .
Proof As in the proof of Example XI.5.3(g), we see that ν is well defined. We set
w1 := ∂/∂u and w2 := ∂/∂v. Then

(
w1(p), w2(p)

)
is a positive basis of TpM ⊂ TpR3.

Therefore w1(p)×w2(p) 	= 0. We define ν̃ |U as the right side of (2.7). Then ν̃ |U belongs
to C∞(U, R3). Remark XI.6.25(b) implies

ωR3(ν̃, w1, w2) = ωR3(w1, w2, ν̃) = (ν̃ |w1 × w2) = |w1 × w2| . (2.9)

Therefore
(
w1(p), w2(p), ν̃(p)

)
is a positive basis of TpR3, and ν̃(p) is orthogonal to w1(p)

and w2(p). This implies that the positive normal on U is given by (2.7).
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Remark XI.6.25(b) and Example XI.5.3(f) imply

|w1 ×w2| =
√
|w1|2 |w2|2 − (w1 |w2)2 =

√
EG− F2 .

Therefore w1 × w2 = ν
√

EG− F2 on U , which again follows from Example XI.5.3(f).
Now (2.8) is a consequence of (d) and the definition of λM . �

(f) Suppose either M is a submanifold of N or M := ∂N . By a vector field of N
along M , we mean a map

v : M → TN with v(p) ∈ TpN and p ∈M .

Note that v(p) is not necessarily a tangent
vector of M , that is, v is generally not a
vector field on M . If k ∈ N ∪ {∞}, we say
v is a Ck vector field (a smooth vector field
in the case k = ∞) of N along M if every
p ∈M has a submanifold chart (ϕ, U) of N
for M such that ϕ∗v ∈ Ck

(
ϕ(U ∩M), Rn

)
.

It is easy to verify that this definition is
chart-independent.3

Now suppose ( · | · ) is a Riemannian metric on N and M is an oriented hy-
persurface in N , that is, m = n−1. Then there is exactly one smooth vector field,
ν := νM , of N along M with the properties

(i) ν(p)⊥TpM for p ∈ M ;

(ii) |ν(p)| = 1 for p ∈M ; and

(iii) if (v1, . . . , vm) is a positive basis of TpM , then
(
ν(p), v1, . . . , vm

)
is a positive

basis of TpN .
We call ν a positive unit normal field along M or, for short, a positive normal
of M .
Proof The claim follows an obvious modification of the proof of Example XI.5.3(g). �

(g) Suppose
(
N, ( · | · )

)
is a Riemannian manifold and either M is an oriented

hypersurface in N or M := ∂N . Then every vector field v of N along M satisfies

v −� ωN = (v | ν)ωM .

Proof Let p ∈ M , and let (v1, . . . , vm) be a positive ONB of TpM . Then the vectors(
ν(p), v1, . . . , vm

)
are a positive ONB of TpN . Therefore v(p) ∈ TpN has the basis

representation

v(p) =
(
v(p) | ν(p)

)
ν(p) +

m∑
j=1

(v(p) | vj)vj .

3See Remark XI.4.2(a).
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Therefore we get from the alternating property of ωN that

v(p) −� ωN (p)(v1, . . . , vm) = ωN(p)
(
v(p), v1, . . . , vm

)
=

(
v(p) | ν(p)

)
ωN (p)

(
ν(p), v1, . . . , vm

)
=

(
v(p) | ν(p)

)(
ν(p) −� ωN(p)(v1, . . . , vm)

)
.

Now

ν(p) −� ωN(p)(v1, . . . , vm) = ωN (p)
(
ν(p), v1, . . . , vm

)
= 1

and ν −� ωN ∈ Ωm(M) imply ν −� ωN = ωM , and we are done. �

(h) Suppose
(
N, ( · | · )

)
is a Riemannian manifold and either M is an oriented

hypersurface in N or M := ∂N . Also let v be a vector field of N along M with
(v | ν) ∈ L(M, dλM ). Then it follows from (g) that∫

M

v −� ωN =
∫

M

(v | ν) dλM .

This integral is called the flux of the vector field v through M (in the direction
of the positive normal). In the situation of (e),∫

M

�a · �dF

is the flux of the vector field �a through M .

To motivate this idea, we consider the situation of (e) with N = X and
assume that X is filled with a (fictitious) flowing fluid (or, more generally, a
continuously deformable medium). We consider an (infinitesimal) fluid element,
which at time t = 0, goes “through the point x”. We denote by χt(x) := χ(x, t)
its position at time t. Therefore t �→ χt(x) is the trajectory of the element located
at x at time t = 0.

Now suppose v(y, t) is the velocity vector of the element located at y at time t.
Then

dχt(x)
dt

= v
(
χt(x), t

)
,

where dχt(x)/dt is the derivative of s �→ χs(x) at s = t.

We assume that the flow has a well-defined (smooth) mass (or charge) density
ρ(x, t) > 0 at every time. This means that the total mass (or charge) of the fluid
contained in the (measurable) subset A of X is given at time t by

ρ(A, t) :=
∫

A

ρ(x, t) dx .

We now consider a vector area element �dFx attached to the point x. Then the
fluid that flows outward (and thus in the direction of the positive normal) through
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dFx in the time interval [t, t+Δt] approxi-
mately fills an inclined cylinder of base area
dFx and height Δt

(
v(x, t)

∣∣ νF (x)
)
.

Thus

Δtρ(x, t)
(
v(x, t)

∣∣ ν(x)
)
dFx

is approximately the fluid mass (or charge)
transported outward through �dFx in the interval [t, t + Δt]. (See Exercise X.6.1.)
These considerations show that the flux of the vector field (ρv)( · , t) through M ,
that is, ∫

M

(
(ρv)( · , t)

∣∣ ν
)
dλM

specifies the rate at which total mass (or charge) flows out of M at time t.

(i) Suppose (N, g) is a pseudo-Riemannian manifold and either M is a hypersurface
in N or M := ∂N . Also let v be a vector field of N along M . Then we call∫

M

v −� ωN

the flux of v through M , if v −� ωM is integrable over M . We have∫
M

v −� ωN =
∫

M

∗Θv .

Proof This follows from Exercise XI.6.4. �

The transformation theorem

The transformation theorem for the Lebesgue integral, one of the most important
aids both for concrete calculations and for theoretical purposes, has a globalization:

2.3 Theorem (transformation theorem) Suppose f ∈ Diff(M, N) is orientation-
preserving. Then an n-form ω is integrable on N if and only if f∗ω is integrable
on M .4 Then

∫
N

ω =
∫

M
f∗ω.

Proof (i) Suppose ω is integrable on M and (ϕ, U) is a positive chart of M . Then
(ψ, V ) :=

(
ϕ◦f−1, f(U)

)
is a positive chart of N , and f is an orientation-preserving

diffeomorphism from U to V . Also ψ(V ) = ϕ(U) and ψ∗ = (ϕ ◦ f−1)∗ = ϕ∗f∗.
For an integrable differential form ω ∈ Ωm(V ), we get from Remark 2.1(a) that∫

V

ω =
∫

ψ(V )

ψ∗ω =
∫

ϕ(U)

ϕ∗(f∗ω) =
∫

U

f∗ω .

Therefore the m-form f∗ω is integrable on U .
4Note that M ∼= N also implies m = n.
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(ii) Let
{

(ϕj , Uj , πj) ; j ∈ N
}

be a positive local system for M . Then{
(ψj , Vj , ρj) ; j ∈ N

}
with

(ψj , Vj , ρj) :=
(
ϕj ◦ f−1, f(Uj), πj ◦ f−1

)
is a positive local system for N . If ω is an integrable m-form of N and j ∈ N, then
ρjω |Vj is an integrable m-form on Vj . It follows from (i) that∫

Vj

ρjω =
∫

Uj

f∗(ρjω) =
∫

Uj

(f∗ρj)f∗ω =
∫

Uj

πjf
∗ω for j ∈ N .

Thus we get from Remark 2.1(b) that∫
N

ω =
∞∑

j=0

∫
Vj

ρjω =
∞∑

j=0

∫
Uj

πjf
∗ω =

∫
M

f∗ω .

In particular, f∗ω is integrable over M .
(iii) Now the claim follows by applying (ii) to f−1. �

Fubini’s theorem

Next we prove a global version of Fubini’s theorem for the case of a product
manifold. More precisely, we now assume that M or N is without boundary and
set L := M × N and � := m + n. In addition, we provide L with the product
orientation (see Example XI.4.17(b) and Exercise XI.4.3).

For every (p, q) ∈ M × N the product manifolds {p} × N and M × {q} are
oriented, n- and m-dimensional, respectively, and submanifolds of L. Clearly the
natural diffeomorphisms

{p} ×N → N , (p, q) �→ q and M × {q} →M , (p, q) �→ p (2.10)

preserve orientation.
Because

T(p,q)L = T(p,q)

(
M × {q}

)
⊕ T(p,q)

(
{p} ×N

)
(see Exercise XI.5.1), the diffeomorphisms (2.10) induce natural vector space iso-
morphisms

T(p,q)L → TpM × TqN for (p, q) ∈ M ×N .

In the following, we identify {p} × N with N and M × {q} with M by virtue of
(2.10); thus T(p,q)L is identified with TpM × TqN , so that we can write

T(p,q)L = TpM ⊕ TqN for (p, q) ∈ M ×N , (2.11)

if the meaning is clear from context.
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Let ω be an �-form on L, and let (p, q) ∈ M ×N . For a1, . . . , am ∈ TpM ,

(b1, . . . , bn) �→ ω(p, q)(a1, . . . , am, b1, . . . , bn)

belongs to
∧nT ∗

q N . Therefore

ω̂(p, · )(a1, . . . , am) := ω(p, · )(a1, . . . , am, · , . . . , · )

is an n-form on N . The map

ω̂(p, · ) :=
(
(a1, . . . , am) �→ ω̂(p, · )(a1, . . . , am)

)
is m-linear, alternating on (TpM)m, and assumes its values in the vector space of
n-forms on N . Therefore it is an n-form-valued m-form on M . In addition, we
say ω̂(p, · ) is integrable over N if the n-form ω̂(p, · )(a1, . . . , am) is integrable over
N for every m-tuple (a1, . . . , am) ∈ (TpM)m. Then it is clear that∫

N

ω̂(p, · ) :=
(
(a1, . . . , am) �→

∫
N

ω̂(p, · )(a1, . . . , am)
)

belongs to
∧m

T ∗
p M .

Analogously,

ω̂( · , q)(b1, . . . , bn) := ω( · , q)( · , . . . , · , b1, . . . , bn) for b1, . . . , bn ∈ TqN

defines an m-form-valued n-form ω̂( · , q) on N , and ω̂( · , q) is integrable over M if
the m-form ω̂( · , q)(b1, . . . , bn) is integrable over M for every n-tuple (b1, . . . , bn)
of vectors in TqN . In this case,∫

M

ω̂( · , q) :=
(
(b1, . . . , bn) �→

∫
M

ω̂( · , q)(b1, . . . , bn)
)

belongs to
∧n

T ∗
q N .

We can now prove a useful analogue of Fubini’s theorem for differential forms.

2.4 Theorem (Fubini) Suppose ω is an integrable �-form on L. Then these three
statements are valid:

(i) ω̂(p, · ) is integrable over N for λM -almost every p ∈ M , and ω̂( · , q) is
integrable over M for λN -almost every q ∈ N .

(ii) The m-form ∫
N

ω :=
(
p �→

∫
N

ω̂(p, · )
)

,

which is defined λM -a.e., is integrable over M , and the n-form∫
M

ω :=
(
q �→

∫
M

ω̂( · , q)
)

,

which is defined λN -a.e., is integrable over N .
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(iii)
∫

L

ω =
∫

M

(∫
N

ω
)

=
∫

N

(∫
M

ω
)

.

Proof (a) Let (ϕ, U) be a positive chart of M with ϕ = (x1, . . . , xm). Let (ψ, V )
be a positive chart of N with ψ = (y1, . . . , yn). Then (χ, W ) := (ϕ× ψ, U × V ) is
a positive product chart of L. Finally, suppose

ω := a dx1 ∧ · · · ∧ dxm ∧ dy1 ∧ · · · ∧ dyn

is integrable over W . Then χ∗a belongs to L1

(
ϕ(U) × ψ(V ), λm+n

)
. It therefore

follows from Theorem X.6.9 that

χ∗a(x, · ) ∈ L1

(
ψ(V ), λn

)
for λm-almost every x ∈ ϕ(U) , (2.12)

that ∫
ψ(V )

χ∗a( · , y) dy ∈ L1

(
ϕ(U), λm

)
(2.13)

(where this function is only defined λm-a.e.), and that∫
χ(W )

χ∗a dλm+n =
∫

ϕ(U)

(∫
ψ(V )

χ∗a(x, y) dy
)

dx . (2.14)

For (p, q) ∈ U × V and v1, . . . , vm ∈ TpU , it follows that

ω̂(p, · )(v1, . . . , vm) = a(p, · ) dx1 ∧ · · · ∧ dxm ∧ dy1 ∧ · · · ∧ dyn(v1, . . . , vm, ·, . . . , · )
= α(p)a(p, · ) dy1 ∧ · · · ∧ dyn

with
α(p) := dx1 ∧ · · · ∧ dxm(p)(v1, . . . , vm) ,

as, because of (2.11), one may read from (XI.2.3). Therefore we get

ψ∗ω̂(p, · )(v1, . . . , vm) = α(p)ψ∗
(
a(p, · )

)
dy1 ∧ · · · ∧ dyn .

Now we note the relation

ψ∗
(
a(p, · )

)
(y) = a

(
p, ψ−1(y)

)
= a

(
ϕ−1(x), ψ−1(y)

)
= χ∗a(x, y)

for x = ϕ(p) and y ∈ ψ(V ). With this and by means of Remark 2.1(a) we find
because of (2.12) that∫

V

ω̂(p, · ) =
∫

ψ(V )

a
(
p, ψ−1(y)

)
dy dx1 ∧ · · · ∧ dxm(p) ∈ ∧m

T ∗
p U

is well defined for λM -almost every p ∈ U . Also, it follows from (2.13) that

ϕ∗

∫
V

ω̂(p, · )(x) =
∫

ψ(V )

a
(
ϕ−1(x), ψ−1(y)

)
dy dx1 ∧ · · · ∧ dxm

=
∫

ψ(V )

χ∗a(x, y) dy dx1 ∧ · · · ∧ dxm
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for λM -almost every p ∈ U with x = ϕ(p). Hence (2.14) and Remark 2.1(a) imply∫
U

∫
V

ω =
∫

U

∫
V

ω̂(p, · ) =
∫

ϕ(U)

∫
ψ(V )

χ∗a(x, y) dy dx

=
∫

χ(W )

χ∗a dλm+n =
∫

W

ω .

We get the remaining statements in this case by exchanging the roles of U and V ,
(b) Let

{
(ϕj , Uj, πj) ; j ∈ N

}
and

{
(ψj , Vj , ρj) ; j ∈ N

}
be positive local

systems for M and N , respectively. Then, with πj ⊗ ρk(p, q) := πj(p)ρk(q) for
(p, q) ∈ M ×N , {

(ϕj × ψk, Uj × Vk, πj ⊗ ρk) ; (j, k) ∈ N2
}

is a positive local system for L. We get from (a) that∫
Uj×Vk

πj ⊗ ρkω =
∫

Uj

πj

∫
Vk

ρkω for (j, k) ∈ N2 .

Now the claim follows from Remark 2.1(b). �

2.5 Corollary Let L := M × N , and let π1 : L → M and π2 : L → N be the
canonical projections. If α is an integrable m-form on M and β is an integrable
n-form on N , then γ := π∗

1α ∧ π∗
2β is integrable over L, and

∫
L

γ =
∫

M
α

∫
N

β.

2.6 Remark (regularity) It suffices that M and N are C1 manifolds and that the f in
Theorem 2.3 is a C1 diffeomorphism. �

Calculations of several integrals

Formula (2.5) and the theorems of this section lay the foundation for calculating
volumes. We illustrate this with some examples, in which we always use the
standard metric.

2.7 Examples (a) (A, B) ∈ LM × LN satisfy λM×N (A×B) = λM (A)λN (B). In
particular, it follows that

vol(M ×N) = vol(M) vol(N) .

Proof We consider the (m+n)-form ω := χA×BωL = χAωM ∧ χBωN on the product
manifold L := M ×N (see Exercise XI.5.1). Then the claim follows (in consideration of
the convention 0 · ∞ := ∞ · 0 := 0) from Corollary 2.5. �

(b) (spheres) For m ≥ 1, the canonically oriented m-sphere Sm in Rm+1 satisfies∫
Sm

m+1∑
j=1

(−1)j−1xj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm+1 = vol(Sm) .
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In particular,5 ∫
S1

xdy − y dx = 2π (2.15)

and ∫
S2

xdy ∧ dz + y dz ∧ dx + z dx ∧ dy = 4π .

Proof This follows from Examples XI.5.3(c) and 1.13(c). �

(c) (star-shaped domains) Let m ≥ 1, and define f as the “polar coordinate
diffeomorphism”

(0,∞)× Sm → Rm+1\{0} , (r, σ) �→ rσ := ri(σ)

with the canonical embedding i : Sm ↪→ Rm+1.
Then

f∗(dy1 ∧ · · · ∧ dym+1) = rm dr ∧ ωSm . (2.16)

Also let R ∈ L1(Sm, R+) and

A :=
{

y ∈ Rm+1\{0} ; |y| ≤ R(y/|y|)
}

.

Therefore A is star shaped (with respect to 0), and its “outer boundary” is
parametrized over the m-sphere. It satisfies

λm+1(A) =
1

m + 1

∫
Sm

Rm+1 dλSm . (2.17)

Proof Let (ϕ, U) be a positive chart of Sm with h := i ◦ ϕ−1 : ϕ(U) → Rm+1 the
associated parametrization. Then f has the local representation

fψ : (0,∞)× ϕ(U)→ Rm+1 , (r, x) �→ rh(x)

with respect to the positive chart

(ψ, V ) :=
(
id× ϕ, (0,∞)× U

)
of M := (0,∞)× Sm and the trivial chart of Rm+1\{0}. Therefore

dfj
ψ(r, x) = hj(x) dr + r dhj(x) for 1 ≤ j ≤ m + 1 .

By an easy induction, this gives

f∗
ψ(dy1 ∧ · · · ∧ dym+1) = df1

ψ ∧ · · · ∧ dfm+1
ψ

= rm
m+1∑
j=1

(−1)j−1hj dr ∧ dh1 ∧ · · · ∧ d̂hj ∧ · · · ∧ dhm+1

+ rm+1dh1 ∧ · · · ∧ dhm+1 .

5We already calculated the line integral (2.15) in Example VIII.4.2(a). Now we understand
this formula.
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From |h|2 = 1, we get
∑m+1

j=1 hj dhj = 0, that is, the covectors dh1(x), . . . , dhm+1(x)

are linearly independent for every x ∈ ϕ(U). Therefore dh1 ∧ · · · ∧ dhm+1 = 0. From
Example XI.5.3(c), it follows that

f∗
ψ(dy1 ∧ · · · ∧ dym+1) = rm dr ∧

m+1∑
j=1

(−1)j−1hj dh1 ∧ · · · ∧ d̂hj ∧ · · · ∧ dhm+1

= rm dr ∧ h∗ωSm = ψ∗(r
m dr ∧ ωSm) .

Because this is true for every positive chart of Sm, we get (2.16). This also implies that f
is an orientation-preserving diffeomorphism from M to N := Rm+1\{0}.

We set ω := χAωN = χA dy1∧· · · ∧dym+1. Then the transformation theorem gives

λm+1(A) = λN (A) =

∫
N

ω =

∫
M

f∗ω =

∫
M

f∗χArm dr ∧ ωSm

=

∫
f−1(A)

rm dr ∧ ωSm .

Because f−1(A) =
{

(r, σ) ∈ (0,∞) × Sm ; 0 < r ≤ R(σ)
}
, it follows from Fubini’s

theorem that∫
f−1(A)

rm dr ∧ ωSm =

∫
Sm

(∫ R(σ)

0

rm dr
)
ωSm(σ) =

1

m + 1

∫
Sm

Rm+1ωSm

=
1

m + 1

∫
Sm

Rm+1 dλSm . �

(d) (conical slices of spheres) Let B be a
measurable subset of Sm for m ≥ 1. Then

K(rB) := { tσ ; 0 ≤ t ≤ 1, σ ∈ rB }

is a cone whose tip is at the origin and whose
base is the subset of rB of the sphere rSm.
We have6

(m + 1) vol
(
K(rB)

)
= r vol(rB) .

For B := Sm, we again find the formula r vol(rSm) = (m + 1) vol(rBm+1) of
Example 1.13(c).
Proof With R := rχB , this follows from (c) because of (1.10). �

(e) (integration using polar coordinates) Let g ∈ L0(Rn). Then g is integrable if
and only if(

r �→ g(rσ)rn−1
)
∈ L1

(
(0,∞)

)
for almost every σ ∈ Sn−1

6The formula is the analogue of the statement of Exercise X.6.1 for cones with “flat bases”.
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and (
σ �→

∫ ∞

0

g(rσ)rn−1 dr
)
∈ L1(Sn−1) .

Then we have the formula7∫
Rn

g dx =
∫

Sn−1

∫ ∞

0

g(rσ)rn−1 dr dλSn−1 . (2.18)

If g is rotationally symmetric with g(x) =
�

g(|x|) for x ∈ Rn, then g is integrable
if and only if

�

g(r)rn−1 is integrable over (0,∞). In this case, (2.18) reduces to∫
Rn

g dx = vol(Sn−1)
∫ ∞

0

�

g(r)rn−1 dr ,

as we already know from Theorem X.8.11.
Proof We consider the n-form ω := g dy1 ∧ · · · ∧ dyn on N := Rn\{0}. Then ω is inte-
grable on N if and only if g belongs to L1(Rn). With the polar coordinate diffeomorphism
of (c), we get from (2.16) that

f∗ω = (f∗g)rn−1 dr ∧ ωSn−1 .

Now the claim follows from Theorem 2.3 and Corollary 2.5. �

Flows of vector fields

By a (global) flow on M , we mean a smooth map

χ : M × R →M , (p, t) �→ χt(p) := χ(p, t)

for which
χ0 = idM and χs+t = χs ◦ χt for s, t ∈ R . (2.19)

From (2.19), it follows that

χt ∈ Diff(M, M) and (χt)−1 = χ−t for t ∈ R .

Because χ(p, · ) ∈ C∞(R, M) for p ∈ M , the vector v(p) := T0χ(p, · )(0, 1) ∈ TpM
is well defined, and v is a smooth vector field on M . It also follows from (2.19)
that

dχt(p)
dt

= v
(
χt(p)

)
for p ∈ M and t ∈ R . (2.20)

This means that the trajectory χ(p, · ) is a global solution of the initial value
problem (in Rm)

ẏ = v(y) and y(0) = p (2.21)

for every p ∈ M .
7See Proposition X.8.9.
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In the following, we denote by Vk
c (M) the Ck(M) submodule of Vk(M) of

Ck vector fields with compact support. We put Vc(M) := V∞
c (M).

Conversely, suppose v ∈ Vc(M) and M is without boundary. Then it is
shown in the theory of ordinary differential equations8 that there is exactly one
flow χ on M , the flow generated by v, that satisfies (2.20). Regarding χ(p, · ) as
the trajectory of a “fluid element” that is found at the point p at time t = 0,
we see that v(p) is the velocity9 at which this element passes through p. In this
interpretation, χt is a snapshot of the entire flow field at time t.

We will now derive a connection between the divergence of a vector field
and the flow it generates. So we first prove a result about linear, nonautonomous
differential equations.

2.8 Proposition (Liouville) Suppose A ∈ C
(
R,L(Rm)

)
and X ∈ C1

(
R,L(Rm)

)
is a solution of the homogeneous linear differential equation

Ẏ = A(t)Y for t ∈ R

in L(Rm). Then W := det(X) is a solution of the scalar equation

ẏ = tr
(
A(t)

)
y for t ∈ R . (2.22)

Therefore

W (t) = W (t0)e
∫

t
t0

tr(A(s)) ds
for t, t0 ∈ R .

Proof Let r ∈ R. For η ∈ Rm, we consider the initial value problem

ẏ = A(t)y for t ∈ R , y(r) = η . (2.23)r,η

From the Picard–Lindelöf theorem (Theorem VII.8.14), it follows easily that this
problem has a unique global solution u( · , r, η) ∈ C1(R, Rm).10 Then

u
(
· , s, u(s, r, η)

)
for r, s ∈ R

is the unique solution of (2.23)s,u(s,r,η). In other
words, we follow the solution u( · , r, η) of (2.23)r,η

until time s. Then we “start again”, that is, we
solve the differential equation ẏ = A(t)y anew by
now taking the value u(s, r, η) as the starting value

8For example [Ama95], if M is open in Rm. This carries over to the general case by means of
local charts (see[Con93], [Lan95]).

9Note that, in contrast to Remark 2.2(h), we consider here “stationary”, that is, time-
independent vector fields.

10See Exercise VII.8.13.
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at the time point s. However, we can also follow the solution u( · , r, η) until time t.
Then that (2.23)r,η has a unique solution for every (r, η) ∈ R× Rm implies

u(t, r, η) = u
(
t, s, u(s, r, η)

)
for r, s, t ∈ R and η ∈ Rm . (2.24)

The linearity of the differential equation ẏ = A(t)y and that it has a unique
solution imply easily that η �→ u(t, r, η) is a linear function for any pair (t, r) ∈ R2.
Therefore

u(t, r, η) = U(t, r)η for t, r ∈ R and η ∈ Rm , (2.25)

with U(t, r) ∈ L(Rm) = Rm×m. Hence we read from (2.24) that

U(t, r) = U(t, s)U(s, r) , U(t, t) = 1m for r, s, t ∈ R . (2.26)

Finally, it follows from (2.25) and because u( · , r, η) is the solution of (2.23)r,η for
every η ∈ Rm that

∂1U(t, r) = A(t)U(t, r) for t ∈ R , U(r, r) = 1m . (2.27)

This shows that U( · , r) is the unique global solution to the initial value problem
in E := L(Rm) given by11

Ẏ = A(t)Y for t ∈ R , Y (r) = 1m .

Suppose now B = [b1, . . . , bm] ∈ Rm×m. Then these considerations imply
that

U( · , r)B =
[
U( · , r)b1, . . . , U( · , r)bm

]
is the unique global solution of

Ẏ = A(t)Y for t ∈ R , Y (r) = B

in E. If X is some solution of Ẏ = A(t)Y , then it follows with B := X(r) that

X(t) = U(t, r)X(r) for r, t ∈ R . (2.28)

We fix r and set α(t) := det
(
U(t, r)

)
. Then Example VII.4.8(a), together

with (2.27) and the relation U(t, r) =
[
u1(t), . . . , um(t)

]
, give

α̇(t) =
m∑

j=1

det
[
u1(t), . . . , uj−1(t), u̇j(t), uj+1(t), . . . , um(t)

]
=

m∑
j=1

det
[
u1(t), . . . , uj−1(t), A(t)uj(t), uj+1(t), . . . , um(t)

]
.

(2.29)

11On the other hand, see Exercise VII.8.13.
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For t = r, we read from U(r, r) = 1m that uj(r) = ej for 1 ≤ j ≤ m, where
(e1, . . . , em) denotes the standard basis of Rm. Thus (2.29) gives

α̇(r) =
m∑

j=1

det
[
e1, . . . , ej−1, aj(r), ej+1, . . . , em

]
=

m∑
j=1

aj
j(r) = tr

(
A(r)

) (2.30)

with A(r) =
[
a1(r), . . . , am(r)

]
. Finally, Ẋ(t) = ∂1U(t, r)X(r) follows from (2.28),

and therefore
Ẇ (t) = α̇(t)W (r) for t ∈ R .

From this and (2.30), we get

Ẇ (r) = tr
(
A(r)

)
W (r) for r ∈ R ,

which shows that W satisfies Equation (2.22). The claim is now a consequence of
Example VII.8.11(e). �

2.9 Remarks (a) The proof of Proposition 2.8 has generated results for the
initial value problem (2.23)r,η which generalize the corresponding results from
Section VII.1 for the linear differential equation ẋ = Ax with constant matrix
A ∈ L(Rn). In particular, this case has

e(t−s)A = U(t, s) for s, t ∈ R .

In the time-independent case, Theorem VII.1.11(ii) says that t �→ etA is a group ho-
momorphism; in the nonautonomous case, that is, in the case of “time-dependent
coefficients”, this statement is replaced by (2.26).

(b) If X is a matrix solving the differential equation Ẏ = A(t)Y in L(Rm), then
W := det(X) is called the Wronskian or Wronski determinant. From the explicit
form of W given in Proposition 2.8, we learn that W (t) is distinct from zero for
every t ∈ R if and only if W (t0) 
= 0 for some t0 ∈ R. In this case, the columns
x1, . . . , xm of X form a fundamental system of the differential equation ẏ = A(t)y
in Rm, since we can easily check that every solution of this equation can be written
as a linear combination of x1, . . . , xm. �

Now we can make the aforementioned connection between the flow of a vector
field and its divergence.

2.10 Proposition Let M be without boundary and pseudo-Riemannian. Also
suppose v ∈ Vc(M) and that χ is the flow on M generated by v. Then

div(v)ωM = (χt)∗
d

ds

[
(χs)∗ωM

]∣∣∣
s=t

for t ∈ R ,
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and therefore in particular

div(v)ωM =
d

dt

[
(χt)∗ωM

]∣∣∣
t=0

.

Proof Because the claim is a local statement, it suffices to prove the claim in
local orthonormal coordinates. Therefore we can assume that M is open in Rm

and define ω := ωM = dx1 ∧ · · · ∧ dxm.
We take the derivative of (2.20) with respect to p. The chain rule then gives

[∂χt]· =
(
(χt)∗∂v

)
∂χt for t ∈ R ,

with ∂ := ∂p. Thus Liouville’s theorem (applied to every fixed p ∈ M) gives[
det(∂χt)

]· = tr
[
(χt)∗∂v

]
det(∂χt) for t ∈ R . (2.31)

Then Example XI.6.8(a) gives

tr
[
(χt)∗∂v

]
= (χt)∗

m∑
j=1

∂jv
j = (χt)∗ div v . (2.32)

By Example XI.3.4(c), we know that

(χt)∗ω = det(∂χt)ω for t ∈ R .

From this, it follows from (2.31) and (2.32) that[
(χt)∗ω

]· =
[
det(∂χt)

]·
ω =

(
(χt)∗ div v

)
det(∂χt)ω

= (χt)∗ div v (χt)∗ω = (χt)∗
(
div(v)ω

)
for t ∈ R. �

The transport theorem

Proposition 2.10 makes possible a geometric interpretation of the divergence of
a vector field. To explain this, we first prove the important transport theorem,
which is particularly useful in continuum mechanics.

2.11 Theorem (transport theorem) Suppose M is without boundary and pseudo-
Riemannian. Also suppose v ∈ Vc(M) and χ is the flow on M generated by v.
Finally let f ∈ E(M ×R). Then for every relatively compact set A ∈ LM we have

d

dt

∫
At

f( · , t) dλM =
∫

At

[
∂2f( · , t) + div

(
f( · , t)v

)]
dλM for t ∈ R ,

with At := χt(A).
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Proof Because χt ∈ Diff(M, M), it follows that At ∈ LM whenever A ∈ LM

(see Exercise 1.1), and also At =
(
A

)t. Therefore At is relatively compact, and
Proposition 1.9(b) implies that f( · , t) is integrable over At. Thus the m-form12

ωt := χAtf( · , t)ωM is integrable over M , and the transformation theorem gives∫
At

f( · , t) dλM =
∫

M

ωt =
∫

M

(χt)∗ωt =
∫

A

(χt)∗
(
f( · , t)ωM

)
.

The theorem about the differentiability of parameter-dependent integrals (Theo-
rem X.3.18) then gives

d

dt

∫
At

f( · , t) dλM =
∫

A

d

dt
(χt)∗

(
f( · , t)ωM

)
. (2.33)

Because (χt)∗
(
f( · , t)ωM

)
= f(χt, t)(χt)∗ωM , Proposition 2.10 says

d

dt
(χt)∗

(
f( · , t)ωM

)
=

( d

dt
f(χt, t)

)
(χt)∗ωM + f(χt, t)

d

dt

(
(χt)∗ωM

)
=

(〈
(χt)∗ df( · , t), d

dt
χt

〉
+ (χt)∗∂2f( · , t)

)
(χt)∗ωM

+ (χt)∗f( · , t)(χt)∗
(
div(v)ωM

)
.

Considering (2.20), we now find

d

dt
(χt)∗

(
f( · , t)ωM

)
= (χt)∗

[(〈
df( · , t), v

〉
+ ∂2f( · , t) + f( · , t) div v

)
ωM

]
= (χt)∗

[(
∂2f( · , t) +

(
gradf( · , t)

∣∣ v
)
M

+ f( · , t) div v
)
ωM

]
= (χt)∗

[(
∂2f( · , t) + div

(
f( · , t)v

))
ωM

]
,

where we have used Proposition XI.6.11(ii) in the last step. Now the claim follows
from (2.33) and the transformation theorem. �

2.12 Corollary Let t ∈ R. Then for every relatively compact set A ∈ LM and
every v ∈ Vc(M), we have

d

dt
volM (At) =

∫
At

div v dλM for v ∈ Vc(M) .

A vector field v ∈ V(M) is said to be divergence free if div v = 0. If v has
compact support, then the flow χ generated by v is said to be volume preserving
if

volM (At) = volM (A) for t ∈ R and A ∈ LM .

From Corollary 2.12, we find that for relatively compact measurable subsets A
of M , the volume of the transported set At increases with time if div v ≥ 0; when
div v ≤ 0, this volume decreases.

12χAt is the characteristic function of At.
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2.13 Proposition Suppose M is without boundary and pseudo-Riemannian. Also
let v ∈ Vc(M). Then v is divergence free if and only if the flow generated by v is
volume preserving.

Proof “=⇒” Suppose div v = 0. Then it follows from Corollary 2.12 that

vol(At) = vol(A) for t ∈ R (2.34)

for every compact subset of A of M . Because M is σ-compact and λM regular,
we find that (2.34) holds for every A ∈ LM .

“⇐=” Suppose χ is volume preserving. Then Corollary 2.12 shows in partic-
ular that ∫

A

div v dλM = 0 for A ∈ LM with A ⊂⊂M . (2.35)

Because div v belongs to Cc(M), (2.35) implies∫
M

f div v dλM = 0 for f ∈ S(M, λM ) . (2.36)

Because div v ∈ L2(M, λM ) and since S(M, λM ) is dense in L2(M, λM ) according
to Proposition X.4.8, there is a sequence (fj) in S(M, λM ) such that fj → div v
in L2(M, λM ). Therefore it follows from the continuity of the scalar product
in L2(M, λM ) (that is, the Cauchy–Schwarz inequality) that∫

M

(div v)2 dλM = lim
j→∞

∫
M

fj div v dλM = 0 .

Now the claim follows from Remark X.3.3(c). �

2.14 Example (continuity equation) Suppose X is open and bounded in R3

and v ∈ Vc(X). Also let χ be the flow generated by v. As in Remark 2.2(h),
we interpret χ as a flowing fluid in X with (smooth) mass density ρ. In fluid
mechanics, it is frequently assumed that mass is neither created nor destroyed
in X and hence it obeys the law of mass conservation: The mass contained in the
domain A at time t = 0 stays constant as it is transported by the flow. This means
that ρ(At, t) = ρ(A, 0) for t ∈ R and therefore

d

dt

∫
At

ρ( · , t) dx = 0 for t ∈ R and A ∈ LX .

The transport theorem shows that this is equivalent to∫
At

(
∂tρ + div(ρv)

)
dx = 0 for t ∈ R and A ∈ LX . (2.37)

Therefore law of mass conservation is equivalent to the continuity equation

∂tρ + div(ρv) = 0 in X . (2.38)
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(Here and in analogous formulas, in which we treat “time-dependent” vector fields,
divergence operators only operate on the “position variables”.)

In the special case of a constant density ρ > 0, that is, an incompressible fluid,
the law of mass conservation is equivalent to div v = 0, that is, to the vanishing
divergence of the velocity field. For this reason, we also call divergence-free vector
fields incompressible.

Proof The equivalence of (2.37) and (2.38) follows as in the proof of Proposition 2.13. �

2.15 Remarks (a) For simplicity, we have concentrated on the case of global fluids.
If one relaxes the assumption that the vector fields have compact support, then
v ∈ V(M) generates a local flow. Then corresponding local versions of Theorems
2.10, 2.11, and 2.13 and of Corollary 2.12 remain true.

Proof Compare this, for example, to Section 10 and Theorem 11.8 in [Ama95]. �

(b) (regularity) The statements about the flows generated by vector fields and their
associated theorems remain true when M is a C2 manifold and v is a C1 vector field.
Of course, we then only have χ ∈ C1(M × R, M). In this case, the transport theorem
requires the assumption that f ∈ C1(M × R). �

Exercises

1 Prove the following form of Lebesgue’s theorem for differential forms: Suppose ω is an
integrable m-form on M and f, fj ∈ L∞(M, λM ) with fj → f λM -a.e. and supj ‖fj‖∞ <
∞. Also let ωj := fjω for j ∈ N. Show that

∫
M

ωj →
∫

M
ω as j →∞.

2 Let a ∈ R3 and R > 0, and define M := a + RS2. Calculate
∫

M
ω for

ω := x2 dy ∧ dz + y2 dz ∧ dx + z2 dx ∧ dy .

3 Suppose v ∈ Vc(M), and denote by χ the flow on M generated by v. A function
f ∈ E(M) is said to be a first integral of v if

d

dt
(χt)∗f = 0 on M × R .

Show that these statements are equivalent:

(i) f is a first integral for v.

(ii) (χt)∗f = f for t ∈ R.

(iii) Lvf = 0.

4 Let H ∈ Ec(R2n). Show that the statements

(i) f is a first integral of sgrad H and

(ii) {f, H} = 0

are equivalent. In particular, H is a first integral of sgrad H .
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5 Let v ∈ Vc(M), and let χ be the flow v generates. For α ∈ Ω(M),

Lv(α) :=
d

dt

[
(χt)∗α

]∣∣
t=0

is called the Lie derivative of α.

Prove the following.

(i) If α ∈ Ωr(M) then Lv(α) belongs to Ωr(M), and in the case r = 0, the definition
above agrees with that of Section XI.6.

(ii) Lv ◦ d = d ◦ Lv .

(iii) The forms α, β ∈ Ω(M) satisfy the product rule Lv(α∧β) = Lv(α)∧β +α∧Lv(β).

(iv) Lv(α) = d(v −� α) + v −� dα for α ∈ Ω(M).

(v) Lv(ωM ) = div(v)ωM .

(vi) If w ∈ Vc(M) then ΘM [v, w] = Lv(ΘMw).

6 Describe the flows generated by the vector fields

(i) x ∂/∂x + y ∂/∂y ∈ V(R2);

(ii) −y ∂/∂x + x ∂/∂y ∈ V(R2);

(iii) −y ∂/∂x + x ∂/∂y ∈ V(R3);

(iv) (x− y)∂/∂x + (x + y)∂/∂y ∈ V(R2);

(v) (x + y)∂/∂x + x2 ∂/∂y ∈ V(R2);

(vi) (x + y)∂/∂x + (x− y)∂/∂y + z ∂/∂z ∈ V(R3).



3 Stokes’s theorem

In this section, we combine the differential and integral calculus on manifolds and
prove the general Stokes’s theorem. It is a higher-dimensional generalization of the
fundamental theorem of calculus and has numerous applications in mathematics
and theoretical physics. In particular, it forms the basis for theoretical explorations
in topology and geometry, but we shall not go into these subjects here.

We show how Stokes’s theorem can be used to calculate volume and that it
provides physical interpretations to the operators div and curl. As a topological
application, we prove the Brouwer fixed point theorem.

We close this section by making a connection between the exterior product
and the coderivative, though we leave the full significance of this connection to
further courses on global analysis.

In the entire section suppose

• m ≥ 2;

• M is an m-dimensional oriented manifold.

If M is with boundary, then ∂M will be oriented by the outward normal (with
respect to the metric induced by the surrounding space Rm).

Stokes’s theorem for smooth manifolds

We denote by i : ∂M ↪→M the natural embedding and recall the definition∫
∂M

ω :=
∫

∂M

i∗ω =
∫

∂M

ω | ∂M for ω ∈ Ωm−1(M) ,

which is meaningful if ω | ∂M is integrable. In addition, we set
∫
∅ ω := 0.

3.1 Theorem (Stokes) Any ω ∈ Ωm−1
c (M) satisfies

∫
M

dω =
∫

∂M
ω.

Proof (i) We consider first the case M = Rm. Then ∂M = ∅, and ω has the
representation

ω =
m∑

j=1

(−1)j−1aj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm (3.1)

with aj ∈ D(Rm), as we know from Example XI.3.2(b). Example XI.3.7(b) implies

dω =
( m∑

j=1

∂jaj

)
dx1 ∧ · · · ∧ dxm . (3.2)
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Hence it follows from Remark 2.1(a) that∫
M

dω =
∫

Rm

m∑
j=1

∂jaj dx =
m∑

j=1

∫
Rm

∂jaj dx = 0 ,

where, since ∂jaj = 1∂jaj, the last equality follows from integration by parts,
according to Proposition X.7.22. Therefore the claim is correct in this case because∫

∂M ω =
∫
∅ ω = 0.

(ii) Let M = Hm. Then (3.1) and (3.2) likewise hold, were now the aj

belong to C∞
c (Hm). From Fubini’s theorem and Proposition X.7.22, we obtain

with x′ = (x1, . . . , xm−1) that∫
Hm

∂jaj dx =
∫ ∞

0

(∫
Rm−1

∂jaj dx′
)

dxm = 0 for 1 ≤ j ≤ m− 1 . (3.3)

Fubini’s theorem and the fundamental theorem of calculus imply∫
Hm

∂mam dx =
∫

Rm−1

(∫ ∞

0

∂mam dxm
)

dx′ = −
∫

Rm−1
am(x′, 0) dx′ . (3.4)

Because i(x′) = (x′, 0), it follows from Example XI.3.4(j) that

i∗ω = (−1)m−1i∗am dx1 ∧ · · · ∧ dxm−1 . (3.5)

Because of the standard orientation of ∂Hm (see Example XI.5.3(h)) and by (3.2),
(3.3), and (3.5), we can write (3.4) in the form∫

M

dω =
∫

Hm

∂mam dx = −
∫

Rm−1
i∗am dx′

= (−1)m−1

∫
∂Hm

(i∗am) dx1 ∧ · · · ∧ dxm−1 =
∫

∂M

i∗ω =
∫

∂M

ω .

Thus the claim holds in this case also.
(iii) Suppose now ∂M = ∅ and M is described by a single (positive) chart

(ϕ, M). Because ω has compact support, ϕ∗ω belongs to Ωm−1
c (Rm). From ϕ∗ =

(ϕ−1)∗ and Theorem XI.4.10, it follows that ϕ∗ ◦ d = d ◦ ϕ∗. Therefore, (i) gives∫
M

dω =
∫

ϕ(M)

ϕ∗ dω =
∫

ϕ(M)

d(ϕ∗ω) =
∫

Rm

d(ϕ∗ω) = 0 =
∫
∅
ω =

∫
∂M

ω .

(iv) Suppose ∂M 
= ∅ and M is described by a single (positive) chart (ϕ, M).
Then

{
(ϕ∂ , ∂M)

}
with ϕ∂ := ϕ | ∂M is a positive atlas of ∂M . Also ϕ∗ω has

compact support in Hm, and i ◦ ϕ−1
∂ = ϕ−1 ◦ i∂Hm . Therefore

(ϕ∂)∗i∗ = (i∂Hm)∗ϕ∗ .
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Thus it follows from (ii), in analogy to step (iii), that∫
M

dω =
∫

ϕ(M)

ϕ∗ dω =
∫

ϕ(M)

d(ϕ∗ω) =
∫

Hm

d(ϕ∗ω)

=
∫

∂Hm

i∗
∂Hmϕ∗ω =

∫
∂Hm

(ϕ∂)∗i∗ω =
∫

∂M

i∗ω =
∫

∂M

ω .

This proves the claim in this case.
(v) Finally, let

{
(ϕj , Uj , πj) ; j ∈ N

}
be a local system for M . Because

K := supp(ω) is compact, we can choose it so that there is a k ∈ N such that
supp(πj) ∩ K = ∅ for j > k. Letting ωj := πjω |Uj ∈ Ωm−1

c (Uj), it follows that
ω =

∑k
j=0 ωj . Hence from (iii) and (iv), we get

∫
M

dω =
k∑

j=0

∫
M

dωj =
k∑

j=0

∫
Uj

dωj =
k∑

j=0

∫
∂Uj

ωj =
k∑

j=0

∫
∂M

ωj =
∫

∂M

ω .

Here we have used that
{

(ϕj,∂ , ∂Uj, i
∗πj) ; j ∈ N

}
is a local system for ∂M with

supp(i∗πj) ∩K = ∅ for j > k. �

Manifolds with singularities

For many applications, the assumption that M is a manifold is too restrictive.
One would also like to apply Stokes’s theorem to “piecewise smooth manifolds”
such as cylinders or cones.

Were it not for “singularities”, that is, edges, corners, pointy tips, etc., the sets
above would be manifolds with boundary. In fact, these exceptions consist of sets
that, relative to the boundary, are “thin”. Thus it is to be expected that, as far
as integration is concerned, the singularities make no difference.

We now introduce a class of “manifolds with thin singularities”, which con-
tains the examples above, and we show that Stokes’s theorem also holds for these
objects.

Suppose B is a closed subset of M with a nonempty interior. Then we denote
by MB the set of all p ∈ B for which there is an open neighborhood Vp of p in M
such that B ∩ Vp is an m-dimensional submanifold of Vp. Then MB is an m-
dimensional submanifold of M , the support manifold of B. The set SB := B\MB

is called the singular set of B, and B is an m-dimensional submanifold of M
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with singularities. Clearly SB is closed in M .
By the boundary of B, we mean that of MB;
that is, ∂B := ∂MB. Do not confuse ∂B with
the topological boundary, Rd(B), of B in M .
Finally, we provide MB with the orientation
induced canonically by M .

Let Hs be an s-dimensional Hausdorff measure on M (where M carries the
metric induced by Rm). Then we say that the singular set SB of B is thin when
is an Hm−1-null set. In this case, B is a manifold with thin singular set.

If we only require that the set MB is a submanifold of class Ck for some
k ∈ N×, then we naturally call B a Ck submanifold of M with singularities. Here
it suffices that M is a Ck manifold.

3.2 Examples (a) Every m-dimensional submanifold of M that is topologically
closed in M — and thus in particular M itself— has a thin (indeed empty) singular
set.

(b) If the Hausdorff dimension has dimH(SB) < m− 1, then SB is thin.
Proof This follows from the definition of dimH in Exercise IX.3.5. �

(c) Suppose (Jk) is a sequence of intervals in Rm−2 and fk ∈ C1-(Jk, M) with⋃∞
k=0 fk(Jk) = SB. Then SB is thin.

Proof From Exercises IX.3.6(a) and (f), it follows that dimH

(
fk(Jk)

)
≤ m− 2. There-

fore fk(Jk) is an Hm−1-null set for every k ∈ N, and the σ-subadditivity of the Hausdorff
measure finishes the proof. �

(d) (piecewise smooth domains) Let Ω be a nonempty domain in M , that is,
a nonempty open and connected subset of M . Then SΩ and MΩ, and therefore
also ∂Ω = ∂MΩ, are defined. Let Bm−1

∞ = (−1, 1)m−1 be the open unit ball in
(Rm−1, | · |∞). We say Ω is a piecewise smooth domain in M there are finitely
many functions1

hj ∈ C1(B̄m−1
∞ , M) ∩ C∞(Bm−1

∞ , M) for 0 ≤ j ≤ n

such that
(i) hj |Bm−1

∞ is a parametrization of a subset of ∂Ω for 0 ≤ j ≤ n;
(ii) ∂Ω =

⋃n
j=0 hj(Bm−1

∞ );

(iii) Rd(Ω) =
⋃n

j=0 hj(B̄m−1
∞ ).

Then Ω is an m-dimensional submanifold of M with a thin singular set, and we
set ∂Ω := ∂Ω. More precisely, we have

SΩ =
n⋃

j=0

hj

(
Rd(Bm−1

∞ )
)

and MΩ = Ω ∪
n⋃

j=0

hj(Bm−1
∞ ) ,

1If Ω is only a Ck submanifold of M with singularities, we call Ω a piecewise Ck domain in M .
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and Ω has a compact boundary Rd(Ω). In addition, ∂Ω = Rd(Ω) if and only if
the singular set of Ω is empty.
Proof The mean value theorem and M ↪→ Rm imply that hj ∈ C1-(Bm−1

∞ , M) (see
Remark VII.3.11(b)). Therefore hj | Rd(Bm−1

∞ ) is also locally Lipschitz continuous, and
the claim follows from (c). �

(e) Every open polyhedron in Rm with a nonempty interior is a piecewise smooth
domain in Rm. The boundary consists of “open” (m− 1)-dimensional “faces”. In
other words, the singular set consists of all points that lie in “edges” of dimension
≤ m − 2. So, for example, the singular set of a cube in R3 consists the 12 edges
and 8 corners.
Proof This follows from (d). �

(f) Let M and N be m- and n-dimensional, topologically closed submanifolds of
Rm and Rn, respectively. Then B := M ×N is a submanifold of Rm+n with thin
singular set. More precisely,

SB = ∂M × ∂N , ∂B = (M̊ × ∂N) ∪ (∂M × N̊) , MB = (M̊ × N̊) ∪ ∂B .

Proof It is easy to see that SB, MB , and ∂B are the given sets. From Exercise XI.1.8,
we know that dimH(∂M) ≤ m − 1 and dimH(∂N) ≤ n − 1. Therefore Exercise IX.3.8
shows that dimH(∂M × ∂N) ≤ m + n− 2. Hence SB is thin. �

(g) Let B be an m-dimensional subman-
ifold of Sm with thin singular set and
r > 0. Then the cone K(rB) of Exam-
ple 2.7(d) is an (m+1)-dimensional sub-
manifold of Rm+1 with thin singular set.
To be more precise, (with K(∅, r) := ∅)
we have

SK(rB) = {0} ∪K(SrB) ∪ ∂(rB)

and
∂K(rB) = int(rB) ∪ { t i(σ) ; 0 < t < 1, σ ∈ ∂(rB) }

with i : rB ↪→ Rm+1.
Proof We leave it to you to justify the given representations of the singular set and the
boundary of K(rB). By dimH(∂B) ≤ m− 1 and Exercise IX.1.4(b), r∂B = ∂(rB) is an
Hm-null set.

As a closed subset of the compact set Sm, the set SB is compact in Rm+1. Let
ε ∈ (0, 1] and ρ > 0. Because SB is an Hm−1-null set, there are open sets O0, . . . , OJ

in Rm+1 such that diam Oj < ε and

J∑
j=0

[diam Oj ]
m−1 < ρ .
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Let K ∈ N× with Kε < r ≤ (K + 1)ε. Then the intervals

Jk :=
[
kε, (k + 1)ε

]
for 0 ≤ k ≤ K

cover the interval [0, r] and satisfy diam(Jk) = ε. Therefore

{Qj × Jk ; 0 ≤ j ≤ J, 0 ≤ k ≤ K }

is a cover of SB × [0, r] in Rm+1 × R with subsets of Rm+1 for which

diam(Qj × Jk) ≤
√

2 ε diam(Qj) ≤
√

2 diam(Qj) ≤
√

2 ε .

With this we get

J∑
j=0

K∑
k=0

[
diam(Qj × Jk)

]m ≤ (K + 1)2m/2
J∑

j=0

[diam Qj ]
m

≤ (r + 1)2m/2
J∑

j=0

ε−1[diam Qj ]
m

≤ (r + 1)2m/2
J∑

j=0

[diam Qj ]
m−1 < (r + 1)2m/2ρ .

Because this holds for every ε ∈ (0, 1] and every ρ > 0, we read off from Exercise IX.3.4(a)
that SB× [0, r] is an Hm-null set in Rm+1×R. Clearly K(SrB) is the image of SB× [0, r]
under the Lipschitz continuous map

Rm+1 × R→ Rm+1 , (x, t) �→ tx .

Therefore Exercise IX.3.4(b) implies that K(SrB) is also an Hm-null set. Now it follows
that SK(rB) is a thin singular set. �

(h) Let N be an m-dimensional manifold, and let f ∈ Diff(M, N). If B is a
submanifold of M with thin singular set, then f(B) is a submanifold of N with
thin singular set.

Proof This follows easily from Remark XI.1.1(g) and Exercise IX.3.4(b). �
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Stokes’s theorem with singularities

We now generalize Theorem 3.1 to the case of C2 manifolds with thin singular
sets.2 We first need a lemma. Here we denote by Bm(A, r) the open neighborhood
of A ⊂ Rm with radius r > 0, that is,

Bm(A, r) :=
⋃

x∈A

Bm(x, r) =
{

x ∈ Rm ; dist(x, A) < r
}

if A 
= ∅.

3.3 Lemma Let K be a nonempty compact Hm−1-null set in Rm. Then for every
pair ε, r > 0, there are open sets U and V and a χ ∈ E(Rm) such that

K ⊂⊂ U ⊂⊂ V ⊂⊂ Bm(K, r) (3.6)

and

χ |U = 0 , χ |V c = 1 , 0 ≤ χ ≤ 1 ,

∫
Rm

|∇χ| dx ≤ ε . (3.7)

Proof We fix a ψ ∈ E(R) with 0 ≤ ψ ≤ 1, let ψ | [0, 1] = 0 and ψ | [2,∞) = 1,
and set κ := 2m vol(Bm) ‖ψ′‖∞.

Because Hm−1(K) = 0, we have Hm−1
δ (K) = 0 for every δ > 0. Since K is

compact, there are open set Wj for 0 ≤ j ≤ n with K ⊂
⋃n

j=0 Wj , K ∩Wj 
= ∅,
and ρj := diam(Wj) < r/3, and

n∑
j=0

ρm−1
j ≤ ε/κ . (3.8)

We choose xj ∈ Wj ∩ K and set Uj := Bm(xj , ρj) and Vj := Bm(xj , 2ρj) for
0 ≤ j ≤ n. Then U :=

⋃n
j=0 Uj and V :=

⋃n
j=0 Vj are open and satisfy (3.6)

because Uj ⊃Wj for 0 ≤ j ≤ n.

Now we set

χ(x) :=
n∏

j=0

ψ
( |x− xj |

ρj

)
for x ∈ Rm .

Then χ belongs to E(Rm) and satisfies χ |U = 0 and χ |V c = 1. We also have

∇χ(x) =
n∑

j=0

ψ′
( |x− xj |

ρj

) x− xj

|x− xj |
1
ρj

n∏
k=0
k �=j

ψ
( |x− xk|

ρk

)
2Our proof follows the ideas presented in [Lan95]. For another approach, see [HR72]

and [AMR83].



XII.3 Stokes’s theorem 437

for x ∈ Rm, and therefore

|∇χ| ≤ ‖ψ′‖∞
n∑

j=0

ρ−1
j χ[ρj≤|x−xj|≤2ρj ] .

Then this and the translation invariance of the Lebesgue measure give∫
Rm

|∇χ| dx ≤ ‖ψ′‖∞
n∑

j=0

ρ−1
j vol(2ρjB

m)

= 2m vol(Bm) ‖ψ′‖∞
n∑

j=0

ρm−1
j = κ

n∑
j=0

ρm−1
j .

Because of (3.8), this implies the last statement of (3.7). �

We can now prove the advertised generalization of Stokes’s theorem.

3.4 Theorem (Stokes’s theorem with singularities) Let B be an m-dimensional
submanifold of M with thin singular set, and let ω ∈ Ωm−1

c (M). If ω | ∂B is
integrable, then

∫
B dω =

∫
∂B ω.

Proof (i) Suppose M is open in Hm and K := SB ∩ supp(ω). Because supp(ω)
is compact and SB is closed in M , we know K is a compact Hm−1-null set in Rm.
Therefore, it follows from Lemma 3.3 that there are a constant κ > 0 and open
sets Uk and Vk, for every ε > 0 and k ∈ N×, such that

K ⊂⊂ Uk ⊂⊂ Vk ⊂⊂ Bm(K, 1/k) .

There is also a χk ∈ E(Rm) with

χk |Uk = 0 , χk |V c
k = 1 , 0 ≤ χk ≤ 1 ,

∫
Rm

|∇χk| dx ≤ ε .

In particular,
∞⋂

k=1

(V k ∩ ∂B) = ∅ . (3.9)

We set ωk := χkω. Then ωk belongs to Ωm−1
c (MB). Thus because B\MB =

SB is a λm-null set, Theorem 3.1 gives∫
B

dωk =
∫

MB

dωk =
∫

∂MB

ωk =
∫

∂B

ωk for k ∈ N× . (3.10)

With ψk := 1− χk, it follows that∫
∂B

ω −
∫

∂B

ωk =
∫

∂B

(1 − χk)ω =
∫

∂B

ψkω .
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Because ω | ∂B is integrable and supp(ψk) ⊂ V k, (3.9) and Lebesgue’s theorem
(see Exercise 2.1) imply that

(∫
∂B ψkω

)
is a null sequence. Therefore

lim
k→∞

∫
∂B

ωk =
∫

∂B

ω . (3.11)

Further, Theorem XI.4.10(ii) gives the equality∫
B

dωk =
∫

B

dχk ∧ ω +
∫

B

χk dω . (3.12)

Since B\MB is a λm-null set, we have∫
B

χk dω =
∫

MB

χk dω for k ∈ N× .

Because dω ∈ Ωm(M) has compact support, dω is integrable over MB. Also
χk(x) → 1 for x ∈ MB. Again using Lebesgue’s theorem, we find

lim
k→∞

∫
B

χk dω =
∫

B

dω . (3.13)

Now ω has the representation ω =
∑m

j=1(−1)j−1aj dx1 ∧· · · ∧ d̂xj ∧· · · ∧dxm with
aj ∈ D(M). From this we read off that dχk ∧ ω = bkωRn , where

bk :=
m∑

j=1

aj∂jχk for k ∈ N× .

Therefore we get∣∣∣∫
B

dχk ∧ ω
∣∣∣ =

∣∣∣∫
M

bk dx
∣∣∣ ≤ c

∫
Rm

|∇χk| dx ≤ c ε for k ∈ N× ,

where c is a constant independent of k. As k → ∞, results (3.10)–(3.13) now
imply ∣∣∣∫

B

dω −
∫

∂B

ω
∣∣∣ ≤ c ε .

Because this is true for every ε > 0, the claim is proved in this case.

(ii) Now suppose M is described by a single chart (ϕ, U). Then the claim
follows from (i) by “moving down” to ϕ(U) ⊂ Hm.

(iii) Finally suppose M is arbitrary and
{

(ϕj , Uj, πj) ; j ∈ N
}

local system
for M . Then we see as in step (v) of the proof of Theorem 3.1 that it suffices to
prove the claim for ωj := πjω and Bj := B ∩ Uj for j ∈ N. Their validity in this
case follows from (ii). We are done. �



XII.3 Stokes’s theorem 439

3.5 Corollary

(i) If ω is closed, then
∫

∂B
ω = 0.

(ii)
∫

M
dω = 0 if M is without boundary.

We again point out that Theorem 3.4 contains the “regular case” of Theo-
rem 3.1, namely, the case B = M .

3.6 Remarks (a) (the one-dimensional case) We consider a connected one-
dimensional compact oriented manifold Γ. According to Theorem XI.1.18, Γ is
either a 1-sphere embedded in Rm or diffeomorphic to I := [0, 1]. Therefore Γ is
an oriented smooth curve that is either closed or has an initial point A and an
endpoint E. Because Ω0(Γ) = E(Γ) and m := dim(Γ) = 1, we know ω ∈ Ω0(Γ)
is a function on Γ. Then it follows from Remark 2.2(b) and Example VIII.4.2(b)
(when one considers that the proof only uses the values of f and Γ) that∫

Γ

dω = ω(E)− ω(A) , (3.14)

where we set E = A in case Γ is an embedded 1-sphere. By stipulating that
the volume measure of a 0-dimensional manifold is the 0-dimensional Hausdorff
measure (the counting measure), and by providing the boundary ∂Γ, if nonempty,
with the orientation given by +1 at E and −1 at A, we can write (3.14) in the
form

∫
Γ

dω =
∫

∂Γ
ω. In the special case that Γ is the interval [a, b], equation

(3.14) is nothing other than the fundamental theorem of calculus. This shows
that Stokes’s theorem is a higher-dimensional generalization of— and is indeed
based on —Theorem VI.4.13..

(b) Corollary 3.5(i) implies a higher-dimensional generalization of “half of” the
fundamental theorem of line integrals, that is, the statement (i)=⇒(ii) of Theo-
rem VIII.4.4. The “second half” is likewise true in the general case (for example,
Theorem XIII.1.1 in [Lan95]).

(c) (regularity) An analysis of the proof shows that Stokes’s theorem (with singularities)

remains true if we only assume that ω belongs to Ωm−1
(1) (MB) and has compact support

in M , and that ω | ∂B and ω |MB are integrable. In addition, it suffices to assume B is a

C2 submanifold of M with thin singularities and that M is itself only a C2 manifold. �

Planar domains

Suppose Ω is a piecewise smooth domain in R2.
Then there are finitely many closed piecewise
smooth curves Γ0, Γ1, . . . ,Γn that are pairwise
disjoint, free of self-intersections, and are such
that Rd(Ω) = Γ := Γ0 + · · · + Γn. Here every
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curve Γj is oriented by the outward normal of ∂Ω ∩ Γj . This means that every Γj

is oriented so that in traversing Γj , the part of Ω adjacent to Γj lies to the left.
For short, we say Γ is the oriented boundary curve of Ω.

3.7 Proposition (Green–Riemann) Let Ω be a bounded piecewise smooth domain
in R2 with oriented boundary curve Γ. Also let X be an open neighborhood of Ω
in R2, and let a, b ∈ C1(X). Then3∫

Γ

a dx + b dy =
∫

Ω

( ∂b

∂x
− ∂a

∂y

)
d(x, y) .

Proof Let Ω ⊂⊂ U ⊂⊂ X , and let χ be a cutoff function for U . Also define
α := a dx + b dy. Then α belongs to Ω1

(1)(X), and dα = (∂1b − ∂2a) dx ∧ dy.
Therefore ω := χα lies in Ω1

(1)(X), has compact support in X , and agrees on U

with α. Because the line integral
∫
Γ

α exists, α is integrable over ∂Ω, and∫
Γ

a dx + b dy =
∫

∂Ω

α =
∫

∂Ω

ω .

Because λ2

(
Rd(Ω)

)
= 0, we have∫

Ω

dω =
∫

Ω

dα =
∫

Ω

dα =
∫

Ω

(∂2b− ∂1a) d(x, y) .

Now the claim follows from Theorem 3.4 and Remark 3.6(c). �

3.8 Corollary Under the assumptions of Proposition 3.7, we have the Leibniz
area formulas4

A(Ω) := λ2(Ω) =
∫

Γ

xdy = −
∫

Γ

y dx =
1
2

∫
Γ

xdy − y dx .

Proof As required, set (a, b) := (0, X), (a, b) := (−Y, 0), or (a, b) := (−Y, X). �

3.9 Examples (a) Let Ω be a bounded piece-
wise smooth domain in R2 with oriented bound-
ary curve Γ. In polar coordinates (r, ϕ), we have

A(Ω) =
1
2

∫
Γ

r2 dϕ .

This formula has a simple geometric interpre-
tation: From Example XI.4.6(b), we know that

3See Exercises 6 and 7 in VIII.1 and Example VIII.4.2(a).
4A(·) stands for Area.
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dϕ is the volume element of the unit circle S1. Thus we can interpret r dϕ as
the length of an5 infinitesimal, positively oriented line segment which is tangent
to rS1. Then r2 dϕ/2 can be interpreted as the area of the triangle whose vertices
lie at the origin and the ends of the position vectors r and r + r dϕ. The sum of
these “infinitesimal” oriented areas, that is, the integral, then gives the total area.
Proof With the plane polar coordinate map f2 (see Section X.8), we can verify that
f∗
2 (x dy − y dx) = r2 dϕ. Therefore the claim follows from Corollary 3.8. �

(b) (Leibniz’s sector formula) Let Ω be
a piecewise smooth domain R2 whose
boundary curve Γ is oriented and satis-
fies Γ = Σ+Γ0, where Σ consists of line
segments with endpoints at 0. Then

A(Ω) =
1
2

∫
Γ0

xdy − y dx .

Proof It follows immediately from (a)
that the integral over Σ vanishes. �

(c) (Cauchy’s integral theorem) We identify C with R2 and consider a piecewise
smooth domain Ω in C with oriented boundary curve Γ. Let X be an open
neighborhood of Ω in C, and suppose f : X → C is holomorphic. Then Cauchy’s
integral theorem holds,6 that is,

∫
Γ f dz = 0.

Proof We decompose z = x + iy and f = u + iv into their real and imaginary parts.
This gives us f dz = α + iβ with α := u dx − v dy and β := u dy + v dx. Then the
Cauchy–Riemann equations imply

dα = −(uy + vx) dx ∧ dy = 0 and dβ = (ux − vy) dx ∧ dy = 0

(see Remark VIII.5.4(c)). Now the claim follows from Proposition 3.7 (or, by using a
cutoff function, directly from Theorem 3.4). �

(d) Let7 B :=
{

(x, y) ∈ R2 ; 0 ≤ x ≤ 1, 0 ≤ y ≤ f(x)
}

with

f(x) :=
{

1 if x = 0 ,

1 + x sin(π/x2) if x 
= 0 .

Then SB =
{
(0, 0), (0, 1), (1, 0), (1, 1)

}
, and with ω = (xdy − y dx)/2 we find

λ2(B) =
∫

B dx ∧ dy =
∫

B dω <∞. Along the curve graph(f), we have

2ω = xdy − y dx =
(
xf ′(x)− f(x)

)
dx =

(
−1− 2π

x
cos

π

x2

)
dx .

5See Remark VI.5.2(c).
6Compare Theorems VIII.5.5 and VIII.6.20, and note that Γ can now have multiple compo-

nents.
7See Example II.B.10 in the fourth volume of [SW96].
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Therefore ω | ∂B is not integrable, and the Leibniz area formula does not hold. This
shows that Theorem 3.4 does require the assumption that ω | ∂B is integrable. �

Higher-dimensional problems

In the following examples, we consider generalizations of the results above to
higher-dimensional cases.

3.10 Examples (a) (calculation of volumes) Let Ω be a bounded piecewise
smooth domain in Rm. Then

vol(Ω) = vol(Ω) =
1
m

∫
∂Ω

m∑
j=1

(−1)j−1xj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm .

Proof We set

α :=
m∑

j=1

(−1)j−1xj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm ∈ Ωm−1(Rm)

and ω := ϕα, where ϕ is a smooth cutoff function for a compact neighborhood U of Ω.
Then ω belongs to Ωm−1

c (Rm), agrees on U with α, and satisfies

dω |Ω = mωRm |Ω ,

which follows from Example XI.3.7(b). Because Hm−1(SΩ) = 0 and by Theorem 1.7(iii)
and (iv), we see Rd(Ω) = SΩ ∪ ∂Ω is a λm-null set. Therefore we get

m vol(Ω) = m vol(Ω) =

∫
Ω

dx =

∫
Ω

dω =

∫
∂Ω

ω =

∫
∂Ω

α ,

where the last equality follows from Stokes’s theorem in the form of Theorem 3.4. �

(b) (spheres) For Ω = Bm, we again get the formula

vol(Sm−1) = m vol(Bm) ,

which was already derived in Example 1.13(c).
Proof This follows with Example XI.5.3(c) from (a). �

(c) Let N be a nonempty compact hypersurface in Rm\{0} such that every half
ray going out from 0 intersects N at most once. Also let K(N) be the cone with
base N and tip 0. Then, in a (partial) generalization of the Leibniz sector formula,
we have

vol
(
K(N)

)
=

1
m

∫
N

m∑
j=1

(−1)j−1xj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm .
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Proof We check easily that B := K(N) is an m-dimensional compact submanifold of Rm

with thin singular set for which ∂B = int(N) ∪ S and S :=
{
t i(p) ; p ∈ N, 0 < t < 1

}
,

where i : N ↪→ Rm. Example XI.4.13(b) gives

α :=

m∑
j=1

(−1)j−1xj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm = v −� ωRm

with v(x) := (x, x) ∈ TxRm. Then Remark 2.2(g) shows that α = (v | ν)ω∂B. Because
v(p) ∈ TpS for p ∈ S, we find α |S = 0. Then because dα = mωRm , Theorem 3.4 gives

m vol(B) =

∫
B

dα =

∫
∂B

α =

∫
int(N)

α =

∫
N

α

and therefore the claim. �

Homotopy invariance and applications

Let I := [0, 1] and r ∈ N, and suppose M is compact and without boundary. As
in the considerations prior to Fubini’s theorem for differential forms, we denote
by ω̂( · , p), where ω ∈ Ωr+1(I ×M) and p ∈ M , the 1-form-valued r-form on M
induced by ω. It is defined by

ω̂( · , p)(v1, . . . , vr) := ω( · , p)( · , v1, . . . , vr) for v1, . . . , vr ∈ TpM .

Since the 1-form ω̂( · , p)(v1, . . . , vr) is continuous for every r-tuple (v1, . . . , vr) ∈
(TpM)r and is therefore integrable over I, it follows that∫

I

ω :=
(
p �→

∫
I

ω̂( · , p)
)

is a well-defined element of Ωr(M) for every ω ∈ Ωr+1(I × M). Therefore the
linear map

K : Ωr+1(I ×M)→ Ωr(M) , ω �→
∫

I

ω (3.15)

is defined. As in Section XI.3, we denote by i	 the embedding

i	 : M → I ×M , p �→ (�, p)

for � ∈ {0, 1} = ∂I. Then Lemma XI.3.9 has a global generalization:

3.11 Lemma K ◦ d + d ◦K = i∗1 − i∗0.

Proof Because the statement is local with respect to M , it suffices to verify it in
local coordinates. But this is exactly what Lemma XI.3.9 does. �

As an application of this lemma, we can now prove a higher-dimensional
generalization of Proposition VIII.4.7, which was about the homotopy invariance
of line integrals.



444 XII Integration on manifolds

3.12 Theorem Let M and N be compact m-dimensional oriented manifolds
without boundary. If f0, f1 ∈ C∞(M, N) are homotopic, then∫

M

f∗
0 ω =

∫
M

f∗
1 ω for ω ∈ Ωm(N) .

Proof By assumption, there is an h ∈ C∞(I ×M, N) such that h(j, · ) = fj for
j = 0, 1. Now let g := K ◦h∗, where K is the map (3.15). Then, because d and h∗

commute, we have

d ◦ g + g ◦ d = d ◦K ◦ h∗ + K ◦ h∗ ◦ d = d ◦K ◦ h∗ + K ◦ d ◦ h∗

= (d ◦K + K ◦ d) ◦ h∗ = i∗1h
∗ − i∗0h

∗ = f∗
1 − f∗

0 .

From dω = 0 for ω ∈ Ωm(N), it then follows that

f∗
1 ω − f∗

0 ω = (d ◦ g)ω − g ◦ dω = d(Kh∗ω) .

Therefore we get ∫
M

f∗
1 ω −

∫
M

f∗
0 ω =

∫
M

d(Kh∗ω) = 0

from Corollary 3.5(ii). �

In the following, we demonstrate several topological applications of Stokes’s
theorem.

3.13 Proposition (hairy ball theorem) Every smooth vector field on an even-
dimensional sphere has a zero.

Proof From Example VII.10.14(a), we know that TpS
m for p ∈ Sm is the or-

thogonal complement of Rp in Rm+1. Therefore, we can regard v ∈ V(Sm) as a
smooth map v : Sm → Rm+1 with v(p) ⊥ p for p ∈ Sm. If v has a zero, then we
can replace v by p �→ v(p)/|v(p)|. Therefore we can assume that |v(p)| = 1 for
p ∈ Sm, that is, we can assume v(Sm) ⊂ Sm. From this, because

| cos(πt)p + sin(πt)v(p)|2 = cos2(πt) |p|2 + sin2(πt) |v(p)|2 = 1 ,

we find that the map

h : I × Sm → Sm , (t, p) �→ cos(πt)p + sin(πt)v(p)

is well defined. Remark XI.1.1(j) implies that h is smooth with h(0, · ) = idSm and
h(1, · ) = −idSm . Thus f0 := idSm is homotopic to the antipodal map f1 := −idSm .
Now Theorem 3.12 gives∫

Sm

ω =
∫

Sm

f∗
1 ω for ω ∈ Ωm(Sm) . (3.16)

Suppose m is even. Then F := −idBm+1 is an orientation-reversing diffeomorphism
of Bm+1 to itself. Now this and Remark XI.1.1(j) imply that f1 = F |Sm is also
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an orientation-reversing diffeomorphism of Sm to itself. Thus Remark 2.1(f) and
Theorem 2.3 give the equation

∫
Sm f∗

1 ω = −
∫

Sm ω, which, together with (3.16),
shows that

∫
Sm ω = 0 for ω ∈ Ωm(Sm). However, this is in contradiction with∫

Sm ωSm = vol(Sm) 
= 0. �

We can interpret a smooth vector field on S2 as a (mathematically idealized)
combing of a “hairy ball”. Then Proposition 3.13 says that “a smoothly combed
hairy ball has at least one bald spot”.

We can also derive from Theorem 3.12 the fundamental Brouwer fixed point
theorem.

3.14 Theorem (Brouwer fixed point theorem) Every continuous map of Bm to
itself has at least one fixed point.

Proof8 (i) Let f ∈ C(Bm, Bm), and suppose f does not have a fixed point. We
consider the radial retraction

ρ : Rm → Bm , x �→
{

x if x ∈ Bm ,

x/|x| if x ∈ (Bm)c .

One verifies easily that ρ is uniformly continuous. Therefore the function g :=
f ◦ρ : Rm → Bm is also uniformly continuous, and g |Bm = f . In particular, g does
not have a fixed point. Because g(Rm) ⊂ Bm, we have |g(x)−x| ≥ |x|− |g(x)| ≥ 1
for |x| ≥ 2. Because 2Bm is compact, there is a δ ∈ (0, 1/2] such that |g(x)−x| ≥ 2δ
for |x| ≤ 2. Therefore |g(x)− x| ≥ 2δ > 0 for all x ∈ Rm.

Suppose {ϕε ; ε > 0 } is a smoothing kernel. Because g belongs to BUC(Rm),
Theorem X.7.11 shows that there is an ε0 > 0 such that h := ϕε0 ∗ g satisfies the
estimate

|h(x)− g(x)| ≤ ‖h− g‖∞ < δ for x ∈ Rm .

Therefore

|h(x) − x| ≥ |g(x)− x| − |h(x)− g(x)| ≥ δ for x ∈ Rm .

Also, we find

|h(x)| =
∣∣∣∫

Rm

ϕε0(x− y)g(y) dy
∣∣∣ ≤ ‖g‖∞ ∫

Rm

ϕε0(x − y) dy

= ‖g‖∞
∫

Rm

ϕ1 dx ≤ 1

for x ∈ Rm. Finally, it follows from Theorem X.7.8(iv) that h is smooth. Therefore
h |Bm a smooth mapping of Bm to itself that has no fixed point. In the next step,
we show that this is not possible.

8For m = 1, the claim follows from the intermediate value theorem (see Exercise III.5.1).
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(ii) Let f ∈ C∞(Bm, Bm), and suppose f does not have a fixed point. Then
for x ∈ Bm, we can define a half ray starting from f(x) and passing through x. We
denote by g(x) the point where it intersects Sm−1.
Then g(x) = f(x)+t(x)

(
x−f(x)

)
for x ∈ Bm, where

t(x) denotes the positive solution of the quadratic
equation

|x− f(x)|2 t2 + 2t
(
x− f(x)

∣∣ f(x)
)

+ |f(x)|2 = 1 .

From this, it follows that g belongs to C∞(Bm, Bm)
and satisfies g |Sm−1 = idSm−1 .

We now consider the smooth map

h : I × Sm−1 → Sm−1 , (t, x) �→ g(tx) .

Then h0 := h(0, · ) = g(0) and h1 := h(1, · ) = idSm−1 . In other words, the
identity on Sm−1 is homotopic in Sm−1 to the constant map h0, that is, idSm−1

is null homotopic in Sm−1. Because h∗
0ω = 0 for ω ∈ Ωm−1(Sm−1), we find

from Theorem 3.12 the false statement that
∫

Sm−1 ω =
∫

Sm−1 h∗
0ω = 0 for ω ∈

Ωm−1(Sm−1). This shows that every f ∈ C∞(Bm, Bm) has at least one fixed
point. �

Gauss’s law

Unless we say otherwise, the sequel will use the following assumptions and con-
ventions:

• ( · | · ) := ( · | · )M is a Riemannian metric on M ;

• B is an m-dimensional submanifold of M with thin singular set;

• ν := νB is the outward normal of ∂B;

• μ := λM and σ := λ∂B .

Stokes’s theorem (with singularities) implies immediately the divergence theorem.
Because the divergence theorem is not usually formulated in terms of differential
forms, it is perhaps the most well-known consequence of Stokes’s theorem.

3.15 Theorem (Gauss’s law, divergence theorem) For v ∈ Vc(M) satisfying
(v | ν) ∈ L1(∂B, σ), we have∫

B

div v dμ =
∫

∂B

(v | ν) dσ .
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Proof Remark 2.2(g) gives v −� ωM = (v | ν)ω∂B . Therefore we obtain from
Theorem 3.4, because d(v −� ωM ) = div(v)ωM , that∫

B

div v dμ =
∫

B

div(v)ωM =
∫

B

d(v −� ωM )

=
∫

∂B

v −� ωM =
∫

∂B

(v | ν)ω∂B =
∫

∂B

(v | ν) dσ ,

which finishes the proof. �

3.16 Remarks (a) For v ∈ Vc(M), the assumption that (v | ν) ∈ L1(∂B, σ) is
automatically satisfied when either

(i) B = M

or

(ii) Ω is a piecewise smooth domain in M and B = Ω.

Proof (i) is clear, and we leave (ii) to you. �

(b) (physical interpretation of the divergence) Let v ∈ V(M) and p ∈ M . Then
we have the relation

div v(p) = lim
Ω→p

∫
∂Ω(v | ν) dσ

vol(Ω)
. (3.17)

More precisely, this means that for every ε > 0 there is a neighborhood U of p
in M such that for every relatively compact piecewise smooth domain Ω in M
with p ∈ Ω ⊂ U , we have ∣∣∣div v(p)−

∫
∂Ω(v | ν) dσ

vol(Ω)

∣∣∣ < ε . (3.18)

From Remark 2.2(h), we know that the quotient∫
∂Ω(v | ν) dσ

vol(Ω)
(3.19)

is the flux of the vector field v through ∂Ω per unit volume. In the special case v :=
ρw, where ρ is the density and w is the velocity of a fluid in M , (3.19) represents
the mass per unit time and volume flowing outward through ∂Ω. Therefore (3.17)
in this case measures how much mass is created or destroyed (depending on the
sign of div v(p)) per unit time at the point p. For this reason div v(p) is also called
the source of the vector field v at point p. In particular, we say v is source free or
divergence free if div v = 0.

Proof By the continuity of div v, there is to every ε > 0 a neighborhood U of p in M
such that

|div v(q)− div v(p)| ≤ ε for q ∈ U . (3.20)
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Let Ω be a relatively compact piecewise smooth domain in M with p ∈ Ω ⊂ U . Then we
get with (3.20) the estimate∣∣∣∫

Ω

div v dμ− div v(p) vol(Ω)
∣∣∣ ≤ ∫

Ω

|div v − div v(p)|dμ ≤ ε vol(Ω) .

Now (3.18) follows from Gauss’s law. �

(c) (regularity) Gauss’s law remains true when M is a C2 manifold, B is a piecewise
C2 submanifold with thin singular set, and v is a C2 vector field of M along B with
div v ∈ L1(MB, μ) and (v | ν) ∈ L1(∂B, σ). �

Green’s formula

Let f ∈ C1(M). We denote by ∂νf the derivative of f in the direction of the
outward normal of B, that is,

∂νf(p) :=
(
gradf(p)

∣∣ ν(p)
)

for p ∈ ∂B .

We call ∂νf the normal derivative of f .

3.17 Theorem Suppose Ω is a piecewise smooth domain in M with Ω = B and
f, g ∈ E(M). Defining the Laplace–Beltrami operator Δ := ΔM of M , we have

(i) (1. Green’s formula)∫
Ω

fΔg dμ +
∫

Ω

(gradf | gradg) dμ =
∫

∂Ω

f∂νg dσ

if f or g has compact support;

(ii) (2. Green’s formula)∫
Ω

(fΔg − gΔf) dμ =
∫

∂Ω

(f∂νg − g∂νf) dσ

if f and g have compact support.

Proof (i) With v := grad g and because Δ = div grad, the claim follows easily
from Proposition XI.6.11(ii) and Theorem 3.15.

(ii) follows analogously from Proposition XI.6.11(iv). �

3.18 Corollary ∫
Ω

Δu dμ =
∫

∂Ω

∂νu dσ for u ∈ Ec(M) .

Proof Set f := 1 and g := u. �
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As an application, we derive a necessary condition for the solvability of Neu-
mann boundary value problems.

Let Ω be a bounded domain in Rm with smooth boundary, that is, Ω is a
connected compact m-dimensional smooth submanifold of Rm. Also let f ∈ E(Ω)
and g ∈ E(Γ) with Γ := ∂Ω. By the Neumann boundary value problem for the
Laplace operator in Ω, we mean the problem of finding the function u ∈ E(Ω)
satisfying the equations

−Δu = f in Ω , ∂νu = g on Γ . (3.21)

Here Δ := Δm is the m-dimensional Laplace operator, that is, we use the standard
metric.

3.19 Proposition

(i) In order to be solvable, the boundary value problem (3.21) requires that the
compatibility condition ∫

Ω

f dx +
∫

Γ

g dσ = 0

is satisfied.

(ii) Two solutions u, v ∈ E(Ω) of (3.21) differ by at most a constant.

Proof (i) is a consequence of Corollary 3.18.
(ii) It follows from the linearity of Δ and ∂ν that w := u − v satisfies the

homogeneous equations

−Δw = 0 in Ω , ∂νw = 0 on Γ .

Thus it follows from the first Green’s formula with f := g := w that∫
Ω

| gradw|2 dx = 0 .

From this we read that gradw = 0, which implies w = const, as we know from
Remark VII.3.11(c). �

Obviously every constant function is a solution of the homogeneous Neumann
problem

−Δu = 0 in Ω , ∂νu = 0 on Γ .

This implies that the Neumann boundary value problem (3.21) never has a unique
solution. That is, if u is a solution of (3.21), then so is u + c1 for every c ∈ R.

The boundary conditions of the Neumann problem can be modified to give
another important boundary value problem, the Dirichlet problem. This is the
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task of finding a u ∈ E(Ω) such that

−Δu = f in Ω , u = g on Γ .

In contrast to the Neumann problem, the Dirichlet problem has at most one solu-
tion, as the next result shows.

3.20 Proposition The homogeneous Dirichlet problem

−Δu = 0 in Ω , u = 0 on Γ (3.22)

has only the trivial solution u = 0.

Proof If u ∈ E(Ω) solves (3.22), then it follows from the first Green’s formula
with f := g := u, and that u solves the Dirichlet problem, that

∫
Ω | gradu|2 dx = 0

and therefore u = const. Because u |Γ = 0, this means u = 0. �

The theory of partial differential equations proves that both the Dirichlet and
Neumann problem are solvable, though the latter case requires the compatibility
condition to be satisfied.

The classical Stokes’s theorem

As usual, we assume R3 carries the standard metric. As a special case of the
general Stokes’s theorem, we now prove its classical version.

3.21 Theorem (Stokes) Suppose X is open in R3 and M is an oriented surface
in X . Also let t be the positive unit tangent of ∂B, that is, of ∂MB. Then for
v ∈ Vc(X) with (v | t) ∈ L1(∂M, λ∂M ), we have∫

B

curl v · �dF =
∫

∂B

v · �ds

and therefore ∫
B

(curl v | ν) dF =
∫

∂B

(v | t) ds .

Proof Example XI.4.13(b) implies

curl v −� ωR3 = (curl v)1 dy ∧ dz + (curl v)2 dz ∧ dx + (curl v)3 dx ∧ dy .

Thus Remark 2.2(e), definition (XI.6.24), and Theorem 3.4 give∫
B

curl v · �dF =
∫

B

curl v −� ωR3 =
∫

B

d(Θv) =
∫

∂B

Θv =
∫

∂B

v · �ds ,

where the last equality follows from Remark 2.2(c). The second part of the claim
is a consequence of Remarks 2.2(c) and (e). �
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3.22 Remark (physical interpretation of
the curl) The integral∫

Γ

(v | t) ds

is called the circulation of the vector field v
along Γ := ∂B. In the fluid model of
Remark 2.2(h),

∫
Γ(ρv | t) ds is a measure

of the total mass transported along the
curve Γ per unit time.

For p ∈M , we have

lim
B→p

∫
∂Ω

(v | t) ds

vol(B)
= (curl v | ν)(p) , (3.23)

where the limit is understood as follows: For every ε > 0, there is a neighborhood U
of p in M such that ∣∣∣∣

∫
∂Ω

(v | t) ds

vol(B)
− (curl v | ν)(p)

∣∣∣∣ < ε

for every piecewise smooth domain B in M with p ∈ B ⊂ U . The limit on the left
side of (3.23) is called the circulation density of the vector field v at the point p
with respect to the ν(p)-axis (this is, the axis pointing in the ν(p)-direction).

We now choose for M an oriented
plane through the point p such that ν(p)
is the positive normal of M . Also let Br

be a disc in M with center p and radius
r > 0, with Γr the oriented boundary
of Br. Then

lim
r→0

1
r2π

∫
Γr

(v | t) ds = (curl v | ν)(p) . (3.24)

Because
∫
Γr

(ρv | t) ds is the amount of fluid transported along the oriented circle Γr

per unit time, (3.24) says that the component of curl v(p) along the unit vector ν(p)
is equal to the circulation density with respect to the ν(p)-axis. For curl v(p) 
= 0,
it follows from the Cauchy–Schwarz inequality that

(curl v | ν)(p) ≤ | curl v(p)| =
(
curl v

∣∣∣ curl v
| curl v|

)
(p) .

Therefore the circulation density is largest at the point p when taken with respect
to the (p + curl v(p)R)-axis.9 On these grounds, curl v is also called the vorticity
vector. If curl v = 0, then v is said to be curl free.
Proof By Theorem 3.21, (3.23) follows in analogy to the proof of Remark 3.16(b). �

9See Remark XI.6.15(c).
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The star operator and the coderivative

In the rest of this section, let g be a pseudo-Riemannian metric on M , so that
sign(g) is constant. We also set ( · | · )M := g.

The following theorem is the general form of the divergence theorem in the
pseudo-Riemannian case.

3.23 Theorem (divergence theorem) For v ∈ Vc(M),∫
M

div v dλM =
∫

∂M

∗Θv .

Proof By definition (XI.6.13) (which defined the divergence) and Remark 2.2(i),
this is an immediate consequence of Stokes’s theorem (Theorem 3.1). �

Let r ∈ N with r ≤ m. For α, β ∈ Ωr
c(M), we set

[α |β]M :=
∫

M

α ∧ ∗β .

3.24 Remarks [ · | · ]M is a nondegenerate symmetric bilinear form on Ωr
c(M). If g

is a Riemannian metric, then [ · | · ]M is a scalar product on M .
Proof We know from Remark XI.5.11(a) that

α ∧ ∗β = β ∧ ∗α = sign(g)(α |β)g,rωM .

The claim follows from this and the fact that ( · | · )g(p),r is an inner product on
∧rT ∗

p M . �

(b) Clearly [α |β]M is defined when α ∧ ∗β is an integrable m-form on M . In
particular, this is the case when α and β belong to Ωr(M) and the intersection of
their supports is compact. �

From Stokes’s theorem, we easily get the general Green’s integral formula:

3.25 Proposition Let 1 ≤ r ≤ m, α ∈ Ωr−1
c (M), and β ∈ Ωr

c(M). Then

[dα |β]M + [α | δβ]M = [α |β]∂M .

Proof From the product rule for the exterior derivative, it follows that

d(α ∧ ∗β) = dα ∧ ∗β + (−1)r−1α ∧ d∗β .

Remark XI.5.9(d) shows d∗β = (−1)r+1∗δβ. Thus we get

d(α ∧ ∗β) = dα ∧ ∗β + α ∧ ∗δβ .
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Now Theorem 3.1 (Stokes’s) implies∫
M

dα ∧ ∗β +
∫

M

α ∧ ∗δβ =
∫

∂M

α ∧ ∗β

and therefore the claim. �

3.26 Corollary Suppose M compact and without boundary. Then we have the
duality formula

[dα |β]M = −[α | δβ]M for α ∈ Ωr−1(M) and β ∈ Ωr(M) .

In the case of a Riemannian manifold, the duality formula says that −δ is
the operator formally adjoint to d with respect to the inner product [ · | · ]M .10

The formulas above are the starting point for the topological exploration of
manifolds; these we must relegate to further courses or other books in differential
geometry and global analysis.

Exercises

1 Suppose M is compact and without boundary, and let ω ∈ Ωm−1(M). Show that dω
has a zero.

2 Let ρ : R3\{0} → S2 denote the radial retraction, and let σ := ρ∗ωS2 . Show σ is
closed but not exact. (Hints: Example XI.4.13(c); consider

∫
S2 σ.)

3 Let M be without boundary and Riemannian, and suppose f ∈ Ec(M) has Δf ≥ 0.
Show that f is constant. (Hints: Show first that Δf = 0, and then consider Δ(f2);
Green’s formula.)

4 Suppose (e1, e2, e3) is the canonical basis and (x, y, z) are the Euclidean coordinates
of R3. Also let M be a compact three-dimensional submanifold of R3 with Γ := ∂M and
outward normal ν. Prove Archimedes’s theorem, that is,∫

Γ

zν dλΓ = vol(M)e3 .

Physical interpretation: We regard M as a body immersed in a fluid whose density is
ρ = 1 and whose surface is the (x, y)-plane. Because z < 0 in the fluid, ρz �dF is the force
( = pressure ρ |z| in the direction of the inward normal, times the (infinitesimal) area
element dF ) that is exerted on the fluid at the point p ∈ Γ. Then because∫

Γ

zν dλΓ =

∫
Γ

z �dF ,

Archimedes’s theorem says that the resulting force acts in the direction of the positive
z-axis and is equal to the mass of the body: The buoyant force is equal to the weight of

10In the sign conventions that are typically used in geometry, the coderivative δ is formally
adjoint to d.
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the fluid displaced. Eureka.
(Hints:

∫
Γ

zν1 dλΓ =
∫
Γ

z dy ∧ dz etc.; Stokes’s theorem.)

5 Adopt the assumptions of Exercise XI.6.5. Using Gauss’s law, find the integral form
of Maxwell’s equations. For example, show∫

∂M

E · �dF = 4π

∫
M

ρ dx

for every relatively compact, piecewise smooth domain M in Ω with outward normal ν,
that is, the flux of the electric field through a closed surface is proportional to the total
charge it contains.
Show that the differential and integral versions are equivalent.

6 Let Ω be a piecewise smooth bounded domain in R3, and let p1, . . . , pk ∈ Ω. Calculate

k∑
j=1

∫
∂Ω

∂ν

(
1/|x − pj |3

)
dσ(x) .

(Hint: Exercise X.3.6 and Corollary 3.18.)

7 Suppose M is a nonempty compact hypersurface in Rm+1\{0} such that every half
ray from 0 intersects M at most once. Also let

K∞(M) :=
{

t i(p) ; t ∈ R+, p ∈M
}

with i : M ↪→ Rm+1 be the (infinite) cone consisting of all line segments from the origin
that intersect M . Finally let ρ : Rm+1\{0} → Sm be the radial retraction. Prove that∫

M

ρ∗ωSm = volSm

(
K∞(M) ∩ Sm

)
.

Remark volSm

(
K∞(M) ∩ Sm

)
is the solid angle of the cone K∞(M).

(Hints: Examples XI.4.13(c) and 3.10(c); Stokes’s theorem.)

8 Show that every closed differential form on S2 is exact.
(Hint: Recall Lemma 3.11, and study the proof of Theorem XI.3.11.)

9 Let B be a compact m-dimensional submanifold of M with boundary, and let f be a
smooth map from ∂B to a manifold N . Show these:

(a) If there is a smooth map F : B → N with F | ∂B = f , then
∫

∂B
f∗ω = 0 for every

closed form ω ∈ Ωn−1(N).

(b) In the case M = Rm and N := ∂B, there is no smooth F : B → ∂B such that
F |B = id∂B , that is, there is no smooth retraction of B onto ∂B.

(Hints: (a) With F = (F 1, . . . , F n), consider the form F 1 dF 2 ∧ · · · ∧ dF n; use Stokes’s
theorem.)

10 Prove that if M is without boundary, then the restriction of the Laplace–Beltrami
operator ΔM to Ec(M) is symmetric in L2(M, dλM ), that is,

(Δf | g)L2(M,dλM ) = (f |Δg)L2(M,dλM ) for f, g ∈ Ec(M) .

11 Let M := H2 be the hyperbolic plane and v ∈ Vc(M). Determine the explicit form
of the divergence theorem (Theorem 3.15) in the following cases:
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(a) the parametrization by polar coordinates (Example XI.5.5(k));

(b) the Poincaré model;

(c) the Lobachevski model;

(d) the Klein model.

12 Suppose M is without boundary and Riemannian, and let ω ∈ Ωc(M). Show the
equivalence of

(i) Δω = 0 and

(ii) dω = δω = 0.

13 Let M be a Riemannian manifold. Prove that for α ∈ Ωr−1
c (M) and β, γ ∈ Ωr

c(M)
the following statements hold:

(i)
∫

M

[
(dα |β)r + (α | δβ)r−1

]
=

∫
∂M

α ∧ ∗β;

(ii)
∫

M

[
(dβ | dγ)r+1 + (β | δdγ)r

]
=

∫
∂M

β ∧ ∗dγ.

(Hint: Consider d(α ∧ ∗β).)

14 Suppose M is compact and without boundary. Show that the Hodge–Laplace oper-
ator with respect to the inner product [ · | · ]M is symmetric, that is,

[Δω1 |ω2]M = [ω1 |Δω2]M for ω1, ω2 ∈ Ωr(M) .
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[Sch65] L. Schwartz. Méthodes Mathématiques pour les Sciences Physiques. Hermann,
Paris, 1965.
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adjoint, formal, 182
algebra

Borel σ, 5
exterior, 266
graded, 266
Grassmann, 266
Lebesgue σ, 40, 392
Lie, 379, 383
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set, 4
σ, 3

almost every, μ, 62
almost everywhere, μ, 62
alternating, 261
alternator, 282
angular velocity, 374
antiderivative, 321
antipodal map, 444
approximating kernel, 172
approximation

– theorem, 170
– to the identity, 172

arc length element, 401
Archimedes’s theorem, 453
area

– element, scalar, 411
– element, vector, 411
Leibniz – formula, 440

atlas, 251
induced, 236
oriented, 325

atom, 22

Baire function space, 77
ball, seminorm, 82
Banach

– lattice, 117
reflexive – space, 123

basis
– of a topology, 6
– representation, 314
b-orthonormal, 277
dual, 312
positive, 268

Beltrami, Laplace – operator, 367, 381
beta function, 147
bilinear form, 277
Bochner–Lebesgue integral, 86
Borel

– Stieltjes measure, 39
– measurable, 15
– measure, 41
– σ-algebra, 5

Bott, 314
boundaries, 337
boundary, 247, 433

– curve, oriented, 439
boundary value problem

Dirichlet, 231, 449
Neumann, 448

Brouwer fixed point theorem, 445
bundle

– of alternating r-forms, 285, 309
cotangent, 308
Grassmann, 285, 309
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tensor, 300, 330
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– dust, 38
– set, 39
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Cartan derivative, 293, 319
catastrophe

– theory, 244
cusp, 243



460 Index

Cauchy

– Schwarz inequality, 112
– integral theorem, 441
L1 – sequence, 84

Cavalieri principle, 138
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positive, 327
product, 240
submanifold, 235, 248

Chebyshev inequality, 96

circulation of a vector field, 450
codifferential, 350
codimension of a submanifold, 235
commutator, 378

compact
–ly contained, 172
relatively, 74
σ, 44

completion of a measure, 21
conforming cover, 24
continuous

– embedding, 119

absolutely, 135, 136
strongly, 166

contractible, 297
contraction, 322

contravariant, 268, 289
r, 281

convergence
– in measure, 78
monotone – theorem, 100

μ-almost uniform, 78
weak, 126

convolution, 163, 165
– theorem, 218

coordinate
– patch, 236
– transformation, 317
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circular, 341, 369
cylindrical, 291, 318
Euclidean, 360, 362, 367, 369
local, 312

orthogonal, 349, 359, 362
orthonormal, 349
polar, 290, 291, 318, 341, 342, 367,

369, 370, 419, 420

pseudospherical, 344, 347
spherical, 291, 318, 342, 343, 360,

363, 367, 369
cotangent

– bundle, 308
– space, 308

countability, second – axiom, 6
covariantly, 305
cross product, 282, 382
curl

– free vector field, 451
– of a vector field, 372

cutoff function, 174
cylindrical coordinates, 291, 318

degree of a differential form, 309
derivation, 376
derivative

Cartan, 293, 319
distributional, 186
exterior, 293, 319
Lie, 375
normal, 448
weak, 185

differential
– operator, 181
co, 350

differential form, 309
closed, 295, 321
covector part of a, 286
degree of a, 309
exact, 295, 321
exterior product of a, 287
integrable, 407
module of –s, 288
pull back of a, 289

dilation, 207
dimension, Hausdorff, 30
Dirac

– distribution, 180
– measure, 18

Dirichlet boundary value problem, 231,
449

distribution
Dirac, 180
regular, 180
Schwartz, 179
singular, 180
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distributional derivative, 186
divergence, 365

– theorem, 446, 451
domain

– with smooth boundary, 448
piecewise Ck, 433
piecewise smooth, 433

double dual, 123
dual

– pairing, 308
double, 123

Egorov, theorem of, 78
ellipsoid, 254
embedding, 236

natural, 237
extension, trivial, 106

Fatou, lemma of, 101
flow, 421

– of a vector field, 422
fluid

– mechanics, 427
incompressible, 428

flux integral, 413, 414
form

alternating r, 261
differential, 309
Pfaff, 309
symplectic, 292

formal adjoint, 182
Fourier

– integral theorem, 216, 217
– transform, 206

inverse, 207
– transformation, 224

fractal, 39
Fubini

theorem of, 145, 150, 416
theorem of – Tonelli, 145

function
A-measurable, 64
cutoff, 174
distribution, 28
measure-generating, 28
R-valued, 67
rapidly decreasing, 208
simple, 62
Urysohn, 119

fundamental
– matrix, 338
– system, 424
– tensor, 338
– tensor, second, 355

Gauss
– integral, 147
– law, 446
– map, 355
– Weierstrass semigroup, 231
–ian kernel, 172, 215

generating set, 5
graded

– algebra, 266
– multiplication, 266

gradient, 361
Gram determinant, 270, 278, 334
Grassmann

– algebra, 266
– bundle, 285, 309
– identity, 283, 383

Green
–s formula, 448, 452
theorem of – Riemann, 439

group
– of dilations, 207
Gauss–Weierstrass semi, 231
Poisson semi, 231
symplectic, 292
translation, 47, 167

Guldin’s rule
first, 160, 405
second, 405

Hausdorff
– dimension, 30
– measure, 35

heat
– equation, 230
– operator, 183

Heisenberg uncertainty relation, 229
Hodge

– Laplace operator, 380
– star operator, 275, 279, 348

Hölder inequality, 112
homotopy, 297
hypersurface with boundary, 249
hypersurfaces, 329
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identity, approximation to the, 172
immersion, 236

isometric, 340
inequality

Cauchy–Schwarz, 112
Chebyshev, 96
Hölder’s, 112
interpolation, 124
Jensen’s, 96
Minkowski – for integrals, 156
Minkowski’s, 112
Young’s, 164, 168
Young’s, generalized, 189

injection, canonical, 123
integral

– with respect to a measure, 80
Bochner–Lebesgue, 86
flux, 413, 414
Gaussian, 147
iterated, 146
Lebesgue, 98, 103
line, 410
n-dimensional, 128
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integration
– in polar coordinates, 197, 201
theorem of – by parts, 182

inverse Fourier transform, 207
inversion, 162

Jacobi identity, 283, 303, 383
Jensen inequality, 96

kernel
approximating, 172
Gaussian, 172, 215
smoothing, 172

Kervaire, 314
Klein model, 356

Laplace
– Beltrami operator, 367, 381
Hodge – operator, 380

lattice, 68
Banach, 117
vector, 68

Lebesgue
– Stieltjes measure, 35

– integrable, 103
– integral, 98, 103
– measurable, 35, 391
– measure, 35, 128
– measure space, 40
– measure zero, 40
– null set, 397
– σ-algebra, 40, 392
– space, 111
Bochner – integral, 86
Borel – measure, 41
lemma of Riemann –, 214
Riemann – volume measure, 395
theorem of, 104, 428

Leibniz area formula, 440
lemma

– of Fatou, 101
– of Poincaré, 298, 321
– of Zorn, 55
shrinking, 175

Lie
– algebra, 379, 383
– bracket, 378
– derivative, 375

light cone, 344
Lindelöf space, 6
line element, vector, 410
Liouville, theorem of, 422
Lobachevsky model, 347
local coordinates, 312
local system, 400
locally compact topological space, 41
Luzin theorem, 76

manifold
– with thin singular set, 433
boundary of a, 249
interior of a, 249
orientation of a, 326
pseudo-Riemannian, 339
Riemannian, 338
sub, 235
volume of a, 395

map
antipodal, 444
Gauss, 355
regular, 241, 328, 334
Weingarten, 355
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mass conservation, 427

massive, 74
maximal element, 55
measurable, 137

A, 3
A-B, 15
Borel, 15

Lebesgue, 35, 391
μ, 35
μ∗, 33
weakly μ, 77

measure

– space, 3, 18
Borel, 41
Borel–Lebesgue, 41
Borel–Stieltjes, 39
counting, 18

Dirac, 18
Hausdorff, 35
Lebesgue, 35, 128
Lebesgue – space, 40
Lebesgue–Stieltjes, 35

Lebesgue–Stieltjes outer, 28
locally finite, 39, 41
metric, 36
monotone, 18
outer, 24

probability, 18
Radon, 74
Radon –, massive, 74
regular, 41
Riemann–Lebesgue volume, 395

measure zero, Lebesgue, 40
meridian curve, 255
metric

Minkowski, 344, 361, 363, 367, 370
Riemannian, 338–340

standard, 340
Milnor, 314
Minkowski

– inequality, 112
– inequality for integrals, 156

– metric, 344, 361, 363, 367, 370
– space, 344

mollifier, 172
momentum operator, 227
multilinear form, alternating, 261

nabla vector, 374
negative part, 70
Neumann boundary value problem, 448
normal

– derivative, 448
outward, 252, 446
positive, 411, 412
unit – field, 329, 355

null set
– of a manifold, 397
Lebesgue, 40, 397
μ, 20, 35
μ∗, 33

null-homotopic, 297

ONB, 269
operator

differential, 181
Fourier multiplication, 221
heat, 183
Hodge star, 275, 279, 348
Hodge–Laplace, 380
Laplace–Beltrami, 367, 381
momentum, 227
position, 227
Schrödinger, 183
symmetric, 226
trace, 158
wave, 183

ordering, natural – of Rn, 8
orientation

– induced by a parametrization, 336
– induced by the outward normal,

337
– of a manifold, 326
canonical – of Sm, 335
natural, 334

oriented
– atlas, 325
– boundary curve, 439
– by a parametrization, 336
– integral, 409
– manifold, 326
– volume, 270

orthogonal coordinates, 349, 359, 362
orthonormal

– coordinates, 349
– frame, 339
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parallelepiped, 53
partition

– of unity, 174, 257
smooth, 175

Pfaff form, 309
Plancherel’s theorem, 224
Poincaré

– lemma, 298, 321
– model, 346

Poisson
– bracket, 303
– semigroup, 231

polar coordinates, 290, 318, 341, 367,
369, 419, 420

integration in, 197, 201
position operator, 227
positive part, 70
potential, 373

vector, 373
probability

– measure, 18
– space, 18

product
– chart, 240
– rule, 319
– σ-algebra, 12
– topology, 11
cross, 282, 382
exterior, 261, 262, 264, 266, 287,

309
indefinite inner, 280
tensor, 281, 300, 331
topological, 11
vector, 282, 382
wedge, 262, 288

projection, stereographic, 346
pseudospherical coordinates, 344, 347
pull back, 267, 309, 331

– of a differential form, 289
– of a measure, 191
– transformation, 267

push forward, 309, 331
– of a function, 304
– of a vector field, 304

Radon measure, 74
massive, 74

regular
– distribution, 180
– map, 241, 328, 334
– measure, 41
– measure space, 41
– point, 241
– value, 241

representation
– operator of a bilinear form, 277
linear, 166
translation, 166

retract, 323
retraction, 323

radial, 323
Riemann

– Lebesgue volume measure, 395
–ian manifold, 338

pseudo, 339
–ian metric, 338

indefinite, 339
lemma of – Lebesgue, 214
theorem of Green, 439

Riesz isomorphism, 271, 278, 358
right hand rule, 335
rotation

cylinder-like hypersurface of, 255
torus-like hypersurface of, 240

rule, substitution, 195

Sard, theorem of, 205
Schrödinger operator, 183
Schwartz

– distribution, 179
– space, 208

Schwarz, Cauchy – inequality, 112
second countability axiom, 6
section

– of a Grassmann bundle, 286, 309
– of a tangent bundle, 304
– of a tensor bundle, 300, 330

sections, 13
self-adjoint, formally, 182
seminorm, L1, 87
separable valued, μ-almost, 64
set

– algebra, 4
Fσ, 5
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Gδ, 5

Lebesgue measurable, 35
σ-compact, 44

shrinking lemma, 175
signature of a quadratic form, 277

simplex, standard, 161
singular, 241

– distribution, 180

– set, 432
Sobolev

– embedding theorem, 230
– space, 187

source of a vector field, 447
space

– of Baire functions, 77

– of Schwartz distributions, 179
– of functions of bounded variation,

135
– of rapidly decreasing functions,

208
– of slowly increasing functions, 218
– of summable series, 94

– of test functions, 173
–time, 344
complete measure, 20
cotangent, 308

double dual, 123
hyperbolic, 345
indefinite inner product, 280

Lebesgue, 111
Lebesgue measure, 40
Lindelöf, 6
locally compact, 41

locally finite measure, 41
measure, 3, 18
Minkowski, 344

probability, 18
reflexive Banach, 123
regular measure, 41
Schwartz, 208

σ-compact, 74
Sobolev, 187
tangent, 251

sphere, 335
embedded, 256
pseudo, 346

spheres, 401, 418, 442

standard metric, 340
Steinhaus theorem, 48
Stieltjes

Borel – measure, 39
Lebesgue – measure, 35

Stokes’s theorem, 437, 450
subadditive set function, 17
submanifold, 235

– chart, 235, 248
– with boundary, 248
codimension of a, 235

submersion, 241
substitution

– rule, 195
– rule for linear maps, 51, 142

sum, direct, 265
support, 93, 118

– of the Dirac measure, 18
surface, 336, 410
surfaces, hyper, 329
symbol

– of a Fourier multiplication oper-
ator, 221

– of a differential operator, 220
symmetric operator, 226
symplectic

– form, 292
– group, 292

tangent
– bundle, 251
– space, 251

tensor, 281
– bundle, 300
– field, 300
– product, 281, 300, 331
fundamental, 338

second, 355
(r, s), 281

test functions, 173
theorem

– of Archimedes, 453
– of Fubini, 145, 150, 416
– of Fubini–Tonelli, 145
– of Gauss’s law, 446
– of Green–Riemann, 439
– of Lebesgue, 104, 428
– of Liouville, 422
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– of Plancherel, 224

– of Sard, 205
– of Stokes, 437, 450
– of Tonelli, 144

– of integration by parts, 182
– of smooth partitions of unity, 175

– of the continuity of parametrized
integrals, 107

– of the differentiability of parametrized
integrals, 107

– of the termwise integration of se-
ries, 106

approximation, 170
Brouwer fixed point, 445
Carathéodory’s extension, 33

Cauchy integral, 441
convolution, 218

divergence, 446, 451
dominated convergence, 104
Egorov’s, 78

Fourier integral, 216, 217
hairy ball, 444
Luzin’s, 76

monotone convergence, 95, 100
regular value, 242, 252

Sobolev embedding, 230
Steinhaus, 48
trace, 158, 188

transformation, 204, 414
transport, 425

Tonelli

theorem of, 144
theorem of Fubini, 145

topology
– generated by p, 83
basis of a, 6

product, 11
trivial, 6

trace, 158

– operator, 158
– theorem, 158, 188

transform, Fourier, 206
transformation

– theorem, 204, 414

coordinate, 317
Fourier, 224

pull back, 267, 289, 309, 331
push forward, 309, 331

translation, 47
– group, 47, 167
– representation, 166
right – of functions, 123

transport theorem, 425

uncertainty, Heisenberg, 229
unit tangent vector, positive, 410
Urysohn function, 119

variation, bounded, 135
vector

– lattice, 68
– potential, 373
– product, 282, 382
nabla, 374
outward normal, 252
positive unit tangent, 410

vector field, 304
– along a submanifold, 412
– with compact support, 422
circulation of a, 450
curl of a, 372
curlfree, 451
divergence free, 426, 447
flow of a, 422
incompressible, 428
push forward of a, 304
source free, 447
source of a, 447

Viviani solid, 404
volume

– element, 269, 333, 339
– of a manifold, 395
– of the unit ball, 143
oriented, 270

wave operator, 183
weak

– convergence, 126
– derivative, 185
– differentiability, 184
– limit, 126

weakly μ-measurable, 77
Weierstrass, Gauss – semigroup, 231
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Weingarten map, 355
Wronski determinant, 424
Wronskian, 424

Young
– inequality, 164, 168
– inequality, generalized, 189

Zorn’s lemma, 55

�, 11
⊗, 12, 300, 331
×, 240⊕

k≥0, 265
⊂⊂, 172
↪→, 119, 237
d

↪→, 119
∧, 287, 309

−�, 322

1n, 43
x+, 69
x−, 69
τa, 47, 123
σλ, 207
sign, 79, 277
supp, 93, 118

f̃ , 106
f̂ , 206
f

̂

, 162
F , 206
F , 207
ϕε, 170
ϕ∗, 289, 309, 331
ϕ∗, 304, 309
ε(j), 262

∗, 163, 275, 279
Alt, 282
iv, 322
Jr, 262

J(a, b), 26
J(n), 8
J�(n), Jr(n), 27
J(n), 27

A(μ∗), 33
A |Y , 15
Aσ, 5
B, 5
Bn, 5
L(n), 40
LX , 128, 391
N , 116
C[b], 13
C[a], 13

δa, 18
βn, 41
λ∗

n, 25
λn, 35, 395
Hs

∗, 29
Hs, 18, 35
μ∗

F , 28
μF , 35
vol, 26, 395

Dj , 212
∂j |p, 306
∂ν , 448
d, 293
df , 311
δ, 350

∇, 374
grad, 361
div, 365
curl, 372
rot, 372
Δ, 368, 369, 380
�ΔM , 381
Lv, 375
p(D), 220
Op, 221
A�(∂), 182∫

f dμ, 86, 98, 128, 132
−∫

X
f dμ, 96∫

M
ω, 407

ds, 401
dF , 411
�ds, 410
�dF , 411
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V ∗, 260
GL, 269
Laut+, 269
Sp, 292

�p, 79, 94
S , 62
L0, 63, 67
Lp, 84, 111, 128
Lp, 116, 117, 128
Lp,loc, 124
Lp + Lq , 124
Lp ∩ Lq, 124
W m

p , 185, 187

Ĥ1
p , 158

C0, 126
Cc, 93, 118
D, 173
S , 208
OM , 218
E , 286, 305
Ec, 408
V, 286, 305
Vc, 422
D′, 179
Diff, 235, 247
Diffop, 181, 220

‖·‖p, 79, 83, 87, 110, 111
‖·‖m,p, 158, 187
ess-sup, 110
pK , 82
qk,m, 208

〈 · , · 〉, 308
〈 · , · 〉p, 308
( · | · )M , 370
( · | · )r, 273
( · | · )∗, 271
( · | · )1,3, 344
[ · , · ], 378
[ · | · ]M , 452
Θ, 271, 278, 358
g�, 273
g�, 273
b, 279

int, 249
∂M , 249
Rd, 247
MB, 432
SB, 432
νM , 252, 411
Hm, 247
TM , 251
T ∗M , 308
Or, 326
gjk, 272, 338
gjk, 272
G, 270, 278, 338
R4

1,3, 280, 344

ωM , 333∧rV ∗, 261∧
V ∗, 266

Ωr, 286, 310
Ωm

c , 408
Ωr

(k), 288, 310
T r

s , 281, 300
T r

s , 300, 331
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