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Abstract

Network analysis of living systems is an essential component of contemporary  systems biology. 
It is targeted at assemblance of mutual dependences between interacting systems elements 
into an integrated view of whole-system functioning. In the following chapter we describe the 
existing classifi cation of what is referred to as biological networks and show how complex 
 interdependencies in biological  systems can be represented in a simpler form of network graphs. 
Further structural analysis of the assembled biological network allows getting knowledge on the 
functioning of the entire biological system. Such aspects of network structure as connectivity of 
network elements and connectivity degree distribution, degree of node centralities, clustering 
coeffi cient, network diameter and average path length are touched. Networks are analyzed as 
static entities, or the dynamical behavior of underlying biological systems may be considered. 
The description of mathematical and computational approaches for determining the dynamics of 
regulatory networks is provided. Causality as another characteristic feature of a dynamically 
functioning biosystem can be also accessed in the reconstruction of biological networks; we 
give the examples of how this integration is accomplished. Further questions about network 
dynamics and evolution can be approached by means of network comparison. Network analysis 
gives rise to new global hypotheses on systems functionality and reductionist fi ndings of novel 
molecular interactions, based on the reliability of network reconstructions, which has to be 
tested in the subsequent experiments. We provide a collection of useful links to be used for the 
analysis of biological networks.

Introduction

A living organism consists of a lot of elements (e.g., genes, proteins, metabolites, 
etc.) organized in a functional structure capable simultaneously to maintain its ho-
meostasis and to develop. In addition, this structure must be able to react to the 
changes in both external and internal environment. This reaction itself constitutes a 
chain of consecutive events starting from signal perception through signal transduc-
tion and various subsequent transformations towards an endpoint response reaction. 
These events need to be integrated in a proper spatial and temporal context. The 
events in such chains are changes in a state of elements, and information concerning 
these changes propagates along the chain. From this explanation, the answer to the 



V. J. Nikiforova and L. Willmitzer246

biological questions why and how a particular response to a given signal develops 
seems to be relatively straightforward. However, the complexity of living systems 
is so high, that to date hardly any such chains of reactions have been elucidated. 
Actually, for the vast majority of reactions our knowledge is at a rudimentary ‘black 
box’ stage: we know the initial signal (the exciter) and a response endpoint, but how 
spatio-temporal aspects of responses are executed remains largely unknown. A fur-
ther complexity is introduced by the fact that a single exciter generally infl uences 
more than one physiological reaction. For the above-described simplifi ed concept 
of information exchange this suggests that the chains of consecutive events occur-
ring in response to the exciter must branch, and change in a state of each element 
within a chain can result in multiple downstream effects. This response plurality can 
nowadays be easily illustrated with the use of transcript profi les, which are rapidly 
accumulating in public repositories and hence available for the research community. 
In most underlying physiological experiments a single environmental parameter is 
altered, and in response expression of a large number of genes is changed. For ex-
ample, in experiments in which sulfur was depleted from the Arabidopsis growth 
medium, up to 5% of all genes and 11.5% of measured metabolites exhibited sig-
nifi cantly different levels [1]. These multiple changes in response to a single initial 
exciter have to be extrapolated to the whole system of response development. Each 
new change in a chain (being in turn an exciter for the downstream changes) is also 
potentially able to cause multiple changes downstream in the network. Thus, infor-
mation on the initial exciter spreads in multiple downstream directions, forming a 
dense causally directed network of interactions. Studying the network of interacting 
elements within living systems is facilitating efforts to fi ll the ‘response black box’ 
– a task that represents a major challenge for network analysis as a component of 
contemporary systems biology.

Types of recognized biological networks

According to the Webster’s dictionary, a network is an intricately connected system 
of things or people. A type of a biological network is defi ned by what these ‘things’ 
are (nodes, vertices, etc.), what the nature of their connections (edges) is, and ide-
ally why these things are connected. Below we give the examples of the most com-
mon types of biological (often termed also cellular or molecular) networks, with 
comments on what knowledge is usually gained from networks of these types. It is 
worth mentioning that in this relatively new research area the terminology is not yet 
well-established. Table 1 illustrates the frequency of different terms used for bio-
logical networks in the related literature as of January 2006.

In what are currently termed metabolic networks, or biochemical reaction net-
works, vertices are represented by metabolites (substances), and metabolic  reactions 
are represented by directed edges, which interconnect substrates and products of 
these reactions. Metabolic networks describe the potential pathways that may be
used by a cell to accomplish metabolic processes. These are probably the fi rst cel-
lular networks, which biologists started to reconstruct as schematic representations 
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of a sum of biosynthetic pathways deduced from biochemical studies. Nowadays 
the vast biochemical information is compiled in specialized databases, and meta-
bolic networks on top of these data serve as a visualization tool for multiple inter-
connections between their elements. As an example of such repositories, BioCyc [2] 
is a collection of 205 (as of January 2006) Pathway/Genome Databases, each of 
which describes the genome and metabolic pathways of a single organism. Among 
these organisms plant biologists will fi nd a comprehensive Arabidopsis Pathway/
Genome Database called AraCyc [3]. Connected to the BioCyc repository is the 
MetaCyc database, which, in distinction to the organism-specifi c databases, is a 
reference source on metabolic pathways from many organisms [4]. Another exam-
ple is the KEGG PATHWAY [5], a collection of manually drawn pathway maps 
representing our up-to-date knowledge on the molecular interaction and reaction 
networks. Although very rich, this database may be less recommended for plant 
biologists, as the reference metabolic networks represent non-plant metabolism. 
The enzymes known for plants can be mapped on these networks, but the reactions 

Term in Ovid Database Server (http://ovid.gwdg.de/) Frequency

0 biological network(s) 235
0 cellular network(s) (used also in, e.g., Telecommunication Systems) 1,089
0 molecular network(s) 400
0 biomolecular network(s) 9
0 bioregulatory network(s) 4
1 metabolic network(s) 626
1 biochemical reaction network(s) 45
2 transcription network(s) 47
2 network(s) of transcription interactions 1
2 gene regulation network(s) 26
2 gene-regulatory network(s) (used broader) 234
2 transcriptional regulation network(s) 14
2 regulatory network(s) (used very broad) 1,666
3 protein interaction network(s) 218
3 protein–protein interaction network(s) 62
3 interactome 101
4 correlation network(s) (not only biological networks) 64
4 co-expression network(s) 5
4 coexpression network(s) 9
4 expression network(s) 71
5 signaling network(s) 1,249
 signaling network(s) 1,030
 signaling network(s) 223
6 gene network(s) 552
6 genetic regulatory network(s) 113

Table 1. Terminology of biological networks
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which are known not to occur in plants will still stay in the networks as connecting 
links. However, keeping in mind that, contrary to conventional wisdom, our current 
knowledge of the structure of plant cellular metabolism is far from complete [6], 
expansion and integration of the knowledge of metabolism in well characterized 
‘post-genome’ organisms into plant biology will facilitate faster progress in plant 
systems.

In transcription networks (termed also: networks of transcription interactions, 
gene regulation networks, gene-regulatory networks, transcriptional regulation net-
works or simply regulatory networks) directed edges refl ect interactions between 
transcription factors and the genes they regulate or the DNA sites to which they 
bind, with the direction from the transcription factor to the regulated gene. These 
networks describe potential pathways cells can use to regulate global gene expres-
sion programs. This is a newer type of cellular network which started to develop 
with the accumulating knowledge on protein factors regulating transcription of tar-
get genes by means of binding to the regulatory elements contained in their promot-
ers. As with biochemical repositories, the information on experimentally verifi ed 
interactions is also collected in major electronically accessible data bases. Here 
analysis at the network level is essential, because each transcription factor generally 
regulates the expression of more than one gene, the expression of each gene is often 
regulated by more than one transcription factor, and furthermore, the expression of 
transcription factors themselves can be regulated by the other transcription factors 
in a cascade-like manner. Thus, this type of information exchange also forms a 
dense network of interactions.

For many model systems the complete arrays of transcription factors and their 
target genes have been deciphered and compiled into electronic repositories. The 
major data repository for gene regulation in Escherichia coli is stored in RegulonDB 
[7], while the GRID database compiles information on physical interactions for three 
organisms whose genomes have been deciphered: yeast Saccharomyces cerevisiae,
fl y Drosophila melanogaster and worm Caenorhabditis elegans. Among plant-spe-
cifi c databases, the major ones which collect information on transcription factors and 
cis-regulatory elements are AGRIS, DATF, PlantCare and Place. Data on identifi ed 
molecular interactions are also collected within the more general databases (such as 
BIND [8]), which are organism- and interaction-type unspecifi c. The analysis of 
genome-scale transcription networks is exemplifi ed by the papers [9] for E. coli and 
[10] for yeast, but no comprehensive survey of this type exists yet for plants.

In the other type of cellular graphs – protein interaction networks – the nodes are 
proteins, and two nodes are connected by a non-directed edge if the two proteins 
bind to each other. In parallel with the rapid development of modern molecular 
techniques for determining protein–protein interactions, such as high-throughput 
yeast two-hybrid strategies [11], proteome-scale reconstructions of global protein 
interaction networks have been carried out for some model organisms. An organ-
ism’s total set of protein–protein interactions is often termed as its interactome [12, 
13]. Similarly to the data on metabolic and transcriptional interactions, that con-
cerning protein–protein interactions is stored in electronic repositories and often 
utilized to construct interactome networks of model organisms, such as yeast [14], 
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Drosophila [15], Bacillus subtilis [16], Caenorhabditis elegans [17], the malaria 
parasite Plasmodium falciparum [18] and even humans [19, 20]. Among plants, the 
interactome of Arabidopsis will most probably be the fi rst described. To date, the 
fi rst Arabidopsis interactome fragments have been recently reconstructed, e.g., de 
Folter and colleagues [21] presented a plant interactome map of proteins from the 
Arabidopsis thaliana MADS box transcription factor family. This network  fragment 
adds data on plants to a growing collection of available interaction maps for a 
number of different organisms.

Besides organism-specifi c databases on protein–protein interactions, several 
large repositories collect information on protein interactions in different organisms, 
or even more general, on all known biomolecular interactions of different types. One 
such major collection for data on experimentally verifi ed protein interactions is the 
Database of Interacting Proteins (DIP [22]), which stores the information on more 
than 55,000 protein interactions in 110 different organisms (as of January 2006). 
The above-mentioned BIND compiles published information on more than 200,000 
biomolecular interactions in 1,528 different organisms, including 1,537 interactions 
described for Arabidopsis thaliana (as of January 2006). Although the plant-related 
part of the BIND database remains relatively small (in BIND only 0.76% of all in-
teraction records refer to plants) cataloguing and networking protein interactions is 
a rapidly expanding area with high gene function discovery potential. The success 
of such approaches depends on combined efforts of large scientifi c consortia and 
mapping of the Arabidopsis interactome has been included as an integrated compo-
nent of the 2010 Project, aimed at determining the function of all genes in Arabi-
dopsis thaliana.

In correlation networks nodes are genes (these networks are often termed also as 
gene coexpression networks, or just expression networks) or/and metabolites; two 
nodes are connected with non-directed edges, if patterns of changes in their expres-
sion/concentration correlate signifi cantly to each other. Unlike in the previously de-
scribed types of cellular networks, in correlation networks connections do not directly 
represent a physical interaction between nodes, but coexpression or co-behavior, un-
der applied conditions. The items with similar patterns of co-behavior are usually 
considered to be more likely functionally associated, due to a variety of  different 
 biological reasons. These functional associations imply an exchange of information 
between items. The whole correlation network represents a sum of such associations, 
with the branching paths, along which the information is processed in order to fi nally 
accomplish endpoint biological reactions. Building of such correlation networks at-
tempts to reconstruct real dynamic interacting networks of genes in the genetic regula-
tory circuitry. The approach seems to be adequate, as these real networks result in vivo
in complex gene expression and metabolite concentration patterns.

The initial datasets for reconstruction of correlation networks are ‘omics’-scale 
profi les of gene expression and metabolite concentrations (what is often termed as 
transcriptome and metabolome, correspondingly). Current approaches to attain tran-
script and metabolic profi les are described in the previous chapters. Available collec-
tions of transcript profi les are already large and continue to grow rapidly and 
the  necessity of such repositories for metabolic profi les is widely recognized. Major 
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 repositories of genome-scale transcript profi les are compiled in Table 2. Some of 
these, for example M-CHiPS, NASCArrays or Genevestigator, provide convenient 
tools for data mining, acting as data warehouses rather than mere repositories. In 
several of these databases there exists the possibility for pair-wise correlation 
 analysis. For example, utilizing NASCArrays one can build two gene scatter plots 
to compare expression patterns of two genes, or with another tool, Gene Correlator 
of Genevestigator repository, coexpression of two genes over a set of array chips can 
be visualized.

The potential for the analysis of coexpression for functional genetics has been 
already recognized in pre-genomic era [29, 30], tested experimentally and proved to 
be useful for decisions on functions of examined genes (e.g., [31, 32]). Later, when 
‘omics’-scale gene expression/metabolic concentration profi les became available, 
global analysis of pattern similarities began to be applied [33–35]. Approximately 
at the same time the fi rst studies on functional genomics based on transcriptional 
correlations were carried out [36]. Since these pioneering studies systematic ap-
proaches for identifying the biological functions of novel genes have been widely 
applied, signifying an era of genome-wide functional analysis. Finally, matrices of 
pair-wise correlations across genome-scale arrays have been computed and global 
correlation networks were built from these correlation matrices. For example, Kim 
and co-workers assembled data from Caenorhabditis elegans DNA microarray ex-
periments [37] involving multiple growth conditions, developmental stages, and 
varieties of mutants. In this study co-regulated genes were grouped together and 
visualized in an expression map that displayed correlations of gene expression pro-
fi les. Already in this early study of one of the fi rst correlation networks their high 
potential in gene discovery was visualized demonstrating that it is possible to assign 
functions through identifi cation of genes that are co-regulated with known sets of 
genes or even to uncover previously unknown genetic functions. Correlation net-
work analysis has subsequently been applied to yeast, worm, fl y and human, and 
combined analysis of all four allowed identifi cation of global coexpression relation-
ships and their evolutionary conservation [38]. Subsequent demonstrations of the 
high level of co-regulation conservation in the evolution of prokaryotes and eu-
karyotes [39] implies that functional relationships predicted from coexpression 
network analysis in one species can be transferred to another species. 

As the next cognitive step alterations in coexpression relationships in two 
 distinct coexpression networks have been studied [40]. With this approach it was 
possible to show, that functional changes such as alteration in energy metabolism, 
promotion of cell growth and enhanced immune activity were accompanied with 
coexpression changes. We shall discuss this approach in more detail below in a 
chapter devoted to network comparison.

Metabolite correlation networks can be exemplifi ed by the studies of Weckwerth, 
Fiehn and colleagues [41, 42]. Unlike gene expression correlation networks, most 
metabolite correlation networks concern plant systems. Recently, given the availabil-
ity of both metabolite and gene expression profi les, the use of cross-correlation 
analysis in search for functional gene-metabolite associations became possible. It has 
been demonstrated by fungal and plant biologists, that the integration of transcript 
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and metabolic profi les can facilitate the identifi cation of candidate genes for biotech-
nology [43, 44]. In subsequent studies, combined metabolomics and transcriptomics 
data were mined and clusters of co-regulated genes and metabolites were determined 
that displayed coordinated behavior under given experimental conditions [45, 46]. 
Finally, the entire network of gene-metabolite correlations has been reconstructed 
from combined sets of transcript and metabolic profi les [47]. From such reconstruc-
tions, a global network of information exchange in a living organism is revealed al-
lowing prediction of master controllers of homeostasis. Weckwerth and Morgenthal 
[48] recently summarized what biologists can gain when analyzing metabolite cor-
relation networks. From studies on network topology putative regulators of underly-
ing processes can be identifi ed as highly connected nodes, or hubs. Metabolic cor-
relation networks can be further superimposed on biochemical reaction networks; 
through this analysis unexpected pleiotropic changes in genetically modifi ed plants 
can be identifi ed and assigned to those parts of metabolism which are infl uenced by 
genetic manipulation [49]. Knowledge gained from the analysis of gene expression 
correlation networks is based on the underlying assumption that identifi ed clusters of 
co-expressed genes are co-regulated. Gene expression at the level of transcription is 
regulated by transcription factors which bind to specifi c regulatory sequences in the 
promoter regions of regulated genes. That many genes are co-regulated suggests the 
presence of common regulatory sequences in the promoters of clustered genes and 
makes their analysis a priority in network studies. The validity of such promoter 
analysis was realized in early studies on correlations of patterns of gene expression 
[50]. To understand combinatorial control of gene expression, hierarchical and mod-
ular organization of regulatory DNA sequence elements in the promoters of co-ex-
pressed genes has been examined [34]. For such studies global gene expression 
correlation networks can be of extreme use, as they intrinsically contain and process 
the information encoded by transcription networks. Modern research on transcrip-
tomics coupled to promoter analysis has allowed the identifi cation of novel transcrip-
tion factor target genes [51] and putative regulatory motifs [52], elucidation and 
prediction of complex regulatory events [53].

Signaling networks are often distinguished as another type of molecular net-
work [54, 55]. These networks represent signal transduction pathways, where nodes 
are proteins or small molecules, and directed links are signal transduction events. 
The basic knowledge for reconstruction of such networks comes from low-through-
put experiments on individual molecules. Resulting signaling networks are usually 
assembled around a single signaling cascade, as, for example, the signaling network 
of bacterial chemotaxis [56] or multiple studies on cancer signaling (reviewed by 
[57, 58]). In this sense such signaling pathways may be regarded as subnetworks, or 
network fragments of a global signaling network. Nevertheless their complexity is 
high due to a big number of the involved elements, branching, feedforward and 
feedback regulations and cross-talk with other signaling cascades [59, 60].

In plant biology several signaling networks have also been resolved at the mo-
lecular level, for example the signaling network of the plant immune system [61] or 
hydrogen peroxide signaling network that mediates plant programmed cell death 
[62]. Such studies can be concentrated also on signaling molecules, which may be 
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common for several signaling pathways. For example, nitric oxide and hydrogen 
peroxide are key signaling molecules produced in response to various stimuli and 
involved in a diverse range of plant signal transduction processes. One such process 
is stomatal closure controlled by guard cell signal transduction. By the combined 
efforts of several laboratories the whole signaling network which controls stomatal 
closure is being assembled molecule by molecule. Through the analysis of this net-
work in its spatial and temporal resolution a close interrelationship between the in-
volved molecules have been identifi ed [63–66].

In spite of the fact that common signaling molecules have been identifi ed, the 
present state of knowledge cannot say how molecular information is processed 
through a network of interlacing signal transduction pathways. Reconstruction of a 
whole network of interlacing signaling cascades remains a challenging task. In this 
direction, there are attempts to assemble the whole signaling network, although still 
limited to single processes. For example, Janes and co-workers [67] constructed a 
systems model of 7,980 intracellular signaling events that links response outputs 
associated with apoptosis. Due to globality of the model, it was possible to predict 
multiple responses induced by a combination of factors.

In what are often called gene networks (or genetic regulatory networks), nodes 
are genes that are connected with arrowed links directed from gene A to gene B, if 
for example a mutation (perturbed expression level) in gene A leads to changed 
expression of gene B. Thus, gene networks show the phenomenological interactions 
between gene activities. Although in this approach only the transcriptome is consid-
ered, gene relationships are basically mediated by proteins and metabolites, and in 
this way all biochemistry underlying gene–gene interactions is implicitly present in 
gene networks. Besides network connectivity, regulatory strengths of gene–gene 
interactions can be quantifi ed from experimental data and represented by, e.g., a 
thickness of a connecting edge (for example, by an approach suggested by [68]), 
introducing quantitative aspects to gene networks. Gene networks can be recon-
structed from single gene perturbations, as was done, for example, by modulating 
activin in mice [69], human fi broblast response [70], or by perturbing the action of 
a key regulator of fl oral asymmetry in Arabidopsis [71]. If perturbations were ap-
plied to all genes in a genome, the global gene network of an organism would be 
uncovered. On the way to such globalization, the repositories of compiled informa-
tion of single-gene mutations of ‘post-genome’ organisms and resulting databases 
of essential genes, like DEG [72] could be used.

As summarized by Chan with colleagues [70], reconstruction of gene networks 
from gene expression data is useful for:

1. identifying important genes in relation to a disease or a biological function 
2. gaining an understanding on the dynamic interaction between genes 
3. predicting gene expression values at future time points
4. predicting drug effects over time.

Currently less utilized are protein sequence similarity-based networks. In patterns
of protein domains the latter are connected if appearing in genome sequences in 
com binations [73]. Protein domain universe graphs (PDUG) are constructed by 
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 representing the nonredundant set of protein structural domains as nodes and using 
the structural similarity between those domains to defi ne the edges on the graph [74].

Other types of biological networks usually represent an integration of the above-
described network types in different combinations based on multiple datasets, rep-
resenting any relationship between a set of genes, mRNAs, metabolites or proteins. 
New types of network can be generated by an enrichment of any of these networks 
with data from diverse genetic sources. For example, Garten and colleagues [75] 
superimposed transcription network and gene expression correlation network of 
yeast to fi lter out false positive associations from so-called location data on tran-
scription factor proteins with their spectrum of promoter-binding sites determined 
in vivo. In yeast cellular network modelled by Yu and Li [76], data on transcription 
factor, gene relationships, microarray data and prior biological knowledge are inte-
grated. As distinguishing features resulting from this integration, the combinatorial 
nature of transcription regulation, an estimate of transcription factor activity and 
condition specifi city of the relationships are considered. Lu and co-workers [77] 
integrated initial yeast protein interaction network with diverse sources of genomic 
evidence, ranging from coexpression relationships to similar phylogenetic profi les. 
As a result, they observed measurable improvement in prediction performance of
protein networks. In another approach undertaken by Patil and Nielsen [78] integra-
tion of genome-scale metabolic network and gene expression data enabled system-
atic identifi cation of so-called reporter metabolites, important in metabolic  regulation. 
It was possible to identify also the signifi cantly correlated metabolic subnetworks
after direct or indirect perturbations of the metabolism. de Lichtenberg and col-
leagues [79] used gene expression data from different stages of the yeast cell cycle,
integrated it with a protein network and discovered that most of the protein com-
plexes are comprized of both periodically and constitutively expressed proteins, 
which suggests that the former control complex activity by a mechanism of just-in-
time assembly. Ihmels and co-workers [80] integrated large-scale expression data 
with the structural description of yeast metabolic network and found that only  distinct 
branches at metabolic branchpoints are coexpressed and that individual isozymes 
were often separately co-regulated with distinct processes. Ideker and co-workers 
[81] inferred models of transcriptional regulation through integrating the data on 
protein–protein and protein–DNA interactions, the directionality of signal transduc-
tion in protein–protein interactions, as well as signs of the immediate effects of 
these interactions in what they call physical networks. 

Obviously, the list of integrated networks has increased dramatically in the last 
two years alone and may be continued with almost any combination of data. 

Types of representations of biological networks

With the use of high-throughput methods of modern biology the information on 
molecular interactions or co-behavior, cell regulation and signal transduction is 
rapidly accumulating. Although very complex by its nature, this data can be assem-
bled in a simpler form of network graphs of interconnected elements. The informa-
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tion contained in such graphs can be of varying precision, depending on the avail-
ability of underlying knowledge. For example, in the networks describing interac-
tome edges are usually unambiguous: connection between two proteins represents 
the possibility of direct binding which has been experimentally proven. However, 
the symbols used in other network types may lack strict defi nitions (often refl ecting 
a lack of exact knowledge). To illustrate this, Kitano and colleagues [82] give an 
example of a typical signal transduction diagram, in which an arrow symbol could 
be interpreted four different ways: activation, translocation, dissociation of protein 
complex and residue modifi cation.

To be able to share and to exchange knowledge gained from network analysis, 
systems biologists need to ‘speak the same language’, i.e., apply similar sets of 
formalization rules in the process of building such networks. While, to date, no 
consensus has yet been reached several approaches such as that of Pirson and 
 colleagues [83], who elaborated a simple symbolic representation set of 18 con-
trols for signal transduction networks, have been attempted. This set of formaliza-
tion rules was further extended by KW Kohn [84] to additionally cover protein 
interaction and transcription networks. The elaborated graphical method could 
deal with both ‘heuristic’ and ‘explicit’ diagrams. Heuristic diagrams are important 
to build networks, when detailed knowledge of all possible reaction paths is not 
available, while ‘explicit’ means that the diagrams are totally unambiguous and 
suitable for computer simulation. This work was a step forward in information 
standardization from  human- to machine-readable form of representing and com-
municating biological networks. The innovation in this direction was the develop-
ment of the Systems  Biology Markup Language (SBML), an open XML-based 
format for representing biochemical reaction networks. With the help of SBML 
models common to research in many areas of computational biology, including cell 
signaling pathways, metabolic pathways, gene regulation networks and others can 
be described [85].

Network topologies

After it has become possible to assemble information around a biological system in 
the form of a network of molecular interactions, it’s time now to get the knowledge 
on how the functioning of the entire biological system is accomplished by means of 
the analysis of assembled network. To make it clear why biologists need to study an 
assembly to understand a biosystem, an analogy with a comprehensive technical 
system consisting of a lot of pieces is often exploited. Indeed, to understand func-
tioning of the entire biosystem from a sum of studies on functionality of individual 
molecules is similar to studying the ship components to obtain knowledge on how 
a ship retains buoyancy and moves in a desired direction. For conceiving the entire 
functioning of both systems, knowledge on functionality of separate components, 
although being absolutely necessary is not suffi cient, it is rather a matter of assem-
bling and interaction of the component parts. For biosystems these properties are 
indicated by the structure, or topology, of an assembled network. 
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Early topological studies of cellular networks revealed several common charac-
teristic features. Assemblies of molecular interactions usually represent complex 
heterogeneous networks, with nests of more dense connections. These nests are 
recognized as network modules, allowing network fragmentation into functional 
subnetworks. Network structure often involves a hierarchy of levels.

Aspects of structure can be deduced from statistical analysis of several param-
eters of network topology, in particular a number of connections (connectivity) for 
network elements and connectivity degree distribution, the degree of node centrali-
ties, clustering coeffi cient, network diameter and average path length.

Connectivities

In a biological network representation two nodes are connected to each other by 
edges, if an information exchange between these nodes occurs. Each node may be 
connected to distinct numbers of other nodes. From multiple analyses of biological 
network topologies, it is well established that connectivities are distributed among 
nodes with high inhomogeneity: the majority of nodes have a small number of con-
nections, while a minority have a big number of connections. In large networks, the 
probability function P(k) for the connectivity degree k may follow a behavior, de-
scribed by the formula P(k) = Ak- , called a power law. In a logarithmic scale this 
function takes a shape of a line, with the slope refl ected by . Such distribution of a 
connectivity degree means that none of the nodes can be chosen as a scale represen-
tative from connectivity degree of which the judgement on connectivities of the 
other nodes may be drawn. That is why the networks with such connectivity degree 
distribution are often referred to as scale-free networks. Scale-free property of large 
networks was fi rst distinguished by Barabasi and Albert [86]. After that, numerous 
large networks were described as being scale-free. Among biological networks, ap-
proximate scale-freeness was detected for many systems including, among others, 
metabolic networks of 43 different organisms [87], a pattern of protein domain 
combinations occurring in 40 genomes [73] further expanded to a protein domain
universe graph [74] and gene-metabolite correlation network of Arabidopsis [47].

Scale-free networks possess a set of universal properties. First, paths by which 
information from any node can reach any other node, are relatively short. This fea-
ture was called a ‘small-word’ property [88]. The consequence of this feature for 
topology of scale-free networks is their high density and relatively small diameter. 
This in turn, taken together with a vast number of weakly connected nodes, brings 
us to the next consequence that is high redundancy of network paths. This property 
is very important for network stability. Indeed, if information from one node can 
reach another node by many redundant paths, then the probability to break informa-
tion exchange by disturbance of any casual node from these paths is low. This 
means that scale-free networks are very robust against casual disturbances [89]. 
High stress tolerance of biological systems can be deduced also from robustness of 
a scale-free network of stress information processing. However, this property has an 
evident underside. The network integrity can be easily disrupted by the disturbance 
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of highly connected nodes, called hubs. This determines the potential importance of 
elements with high numbers of connections in maintaining homeostasis of a biosys-
tem. For biotechnology and biomedicine, such hubs represent target elements to 
infl uence system functioning. However, it has to be mentioned here that the latest 
well-defi ned studies on topologies of technological and biological networks clarify 
the relationship between scale-freeness and power law distribution and suggest that 
the connectivity degree distribution of many biological networks is often better 
described by distributions other than the popular power law. Affi rmative conclu-
sions, which are often deduced from scale-freeness of biological networks, have to 
be assessed critically for the quantitative understanding of complex biological proc-
esses [90, 91].

Centralities

The ranking of system elements (nodes) using centralities is another tool for esti-
mating the importance, or infl uence strength, of a node. Such tools are mainly used 
in the analysis of social networks, where centrality measures are commonly de-
scribed as indices of prestige, prominence, importance, and power – the four Ps 
[92]. Centrality is considered to weight indispensability of a node for information 
processing between distant nodes. A classical illustration implies a network of two 
clusters connected to each other with one node. This node is considered to be cen-
trally positioned, or central. Although in a minimal case it may bear only two con-
nections, one to each of the clusters (and thus is of low connectivity), it is neverthe-
less crucially important for keeping the integrity of the whole network. In terms of 
informational processing, information (a parcel) cannot be delivered from any node 
of one cluster to any other node of another cluster, bypassing the node which con-
nects two clusters. Being central for information processing through the network, 
this node therefore is able to infl uence a lot of other nodes and consequently is of 
high importance for system functionality.

In network topology analysis, several centrality measures are utilized [93]. The 
degree centrality [94, 95] is interpreted as a measure of immediate infl uence. As 
opposed to connectivity, the degree centrality of a node considers not only a number 
of direct connections of this node, but also connectivities of its direct neighbors. 
Indeed, if a node has just a few connections, but through these connections is bound 
to a highly connected hub, then the probability of the information to be processed 
through this node is still high. The eigenvector centrality [96] can be considered as 
an extended degree centrality which is proportional to the sum of the centralities of 
the node’s neighbors [93]. Another centrality measure, betweenness centrality [97], 
gives an estimation of how often a node appears on the way of an informational 
parcel between any two other nodes, and by this defi nes the control infl uence 
strength of the node whose centrality is being measured. Congenerous to this meas-
ure is the closeness centrality [94, 95], which in social networks is most frequently 
used to measure relative access to network resources and information, and can also 
be interpreted as measuring the degree of independence from others in the network 
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[98]. The subgraph centrality [93] characterizes the participation of each node in all 
subgraphs in a network, with smaller subgraphs having higher importance. To de-
scribe the centers of biological networks, further methods for geometric centrality 
measures were considered, namely excentricity, status, and centroid value that were 
originally used in the context of resource placement problems [99].

In biological networks the most important nodes are traditionally searched 
among those highest connected (hubs). However, this approach is not always suc-
cessful, for example in the analysis of yeast protein interaction network the essenti-
ality of a gene was poorly related to the number of interactors of the corresponding 
protein [100]. Centrality measures as an alternative to connectivity are increasingly 
attempted for this means. For example in the yeast protein interaction network, 
centrality of the genes was associated with the essential functions of the genes 
[101], and when compared with node connectivities, the ranking introduced by the 
subgraph centrality was more highly correlated with the lethality of individual yeast 
proteins [93]. Ma and Zeng [102] have identifi ed the most central metabolites in a 
metabolic network by measuring the closeness centrality of the nodes, which cor-
related with the average path length. By the analysis of the betweenness centrality 
of protein domains in the graph of protein domain structures a gatekeeper protein 
domain, removal of which partitions the largest cluster into two large sub-clusters, 
was found. As was suggested, the loss of such gatekeeper protein domains in the 
course of evolution may be responsible for the creation of new fold families [103]. 
The centrality measure was recently also applied in biomedicine, where it helped to 
estimate, e.g., the importance of differentially expressed genes in lung cancer  tissues 
[104], or the relevance of different mediators in the human immune cell network 
[105]. As was shown by a comparative study of protein interaction networks of 
three evolutionary distant eukaryotes: yeast, worm, and fl y, the centrality of proteins 
had similar distributions; proteins that had a more central position in all three net-
works, regardless of the number of direct interactors, evolve more slowly and are 
more likely to be essential for survival [106].

By analogy with the connectivity degree distribution, which follows a power 
law in most large biological networks, Goh and co-workers [107] found that the 
betweenness centrality in biological scale-free networks also displays a power law 
distribution, and an exponent of this distribution can be used as a discriminating 
factor to classify the scale-free networks. Power law distribution was demonstrated 
also for the betweenness centrality values of protein domains in the graph of protein 
domain structures [103].

Clustering coeffi cient

The clustering coeffi cient is another statistical measure to characterize large net-
works. It quantifi es the cohesiveness of the neighborhood of a node, in other words, 
how well connected the neighbors of a vertex in a graph are. In real networks it 
decreases with the vertex degree connectivity [108]. The clustering coeffi cient of a 
node is defi ned as the ratio between the number of edges linking nodes adjacent to 
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this node and the total possible number of edges among them [88]. In other words, 
the clustering coeffi cient quantifi es how close the local neighborhood of a node is 
to being part of a clique, a region of the graph (a subgraph) where every node is 
connected to every other node [109].

Real networks are generally characterized by a high clustering coeffi cient [88, 
110]. For biological networks, a high average clustering coeffi cient was found, for 
example, in protein interaction and metabolic networks [111, 112], indicating a high 
level of redundancy and cohesiveness [109]. In gene expression networks generated 
from large model-organism expression datasets the average clustering coeffi cient 
was also several orders of magnitude higher than would be expected for similarly 
sized scale-free networks [113].

The diversity of cohesiveness of local neighborhoods is characterized by aver-
aging the clustering coeffi cients of nodes that have the same connectivity degree. 
The function resulting from this procedure was decreasing in metabolic networks 
[114] and protein interaction networks [112]. This suggests that low-degree nodes 
tend to belong to highly cohesive neighborhoods whereas higher-degree nodes tend 
to have neighbors that are less connected to each other [109].

As an example application, in the recent study by Wei and colleagues [115] 
clustering coeffi cient was used to fi nd out the superior one of the two possible 
mechanisms of the tRNA sequences evolution, namely point mutation and comple-
mentary duplication. From comparison of clustering coeffi cients in two alternative 
networks, which were constructed, based on these two possible mechanisms it was 
concluded that modern tRNA sequences evolved primarily by the mechanism of 
complementary method, and point mutation is an important and indispensable aux-
iliary mechanism during the evolutionary event.

Network diameter

In a graph theory, a network diameter is a global metric of its structure. It is defi ned 
as the average path length among all nodes. Together with average path lengths, the 
network diameter is considered as a measure of systems functionality, like, for ex-
ample, in a study of robustness and vulnerability of the p53 protein interaction 
 network [116]. In another example, using the path of shortest length, Said and co-
workers [117] identifi ed that the toxicity-modulating proteins in yeast have more
interactions with other proteins, leading to a greater degree of metabolic adaptation 
upon modulating the functioning of these proteins.

Considering dynamics in biological networks

As a biological system is alive and ever-changing, it functions in time, or dynami-
cally. Dynamical behavior is its intrinsic property and implies dynamical behavior 
of its constituting elements. Networks, now widely applied for systems biology, 
may be analyzed statically, or may consider this dynamical behavior, depending on 
the network type and on the nature of the datasets underlying network reconstruc-
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tion. For metabolic, transcription and protein interaction networks, usual represen-
tation as graphs refl ects the static properties of a system. The standard approach to 
model network dynamics is through sets of coupled differential equations, describ-
ing how the concentrations of the various products evolve over time [118]. How-
ever, such a model requires knowledge of the various reaction rates and rate-order 
kinetics. To overcome this drawback temporal data can be integrated into these 
networks. For example de Lichtenberg and colleagues analyzed the dynamics of 
protein complexes during the yeast cell cycle by means of integration of temporal 
data on protein interactions and gene expression [79], revealing previously unknown
components and modules. In modeling the dynamics of another type of initially 
static network, a metabolic network, large-scale biochemical systems approaches, 
such as the network thermodynamics theory, biochemical systems theory, metabolic 
control analysis, and fl ux balance analysis are used. P Ao [119] modeled dynamics 
of a metabolic network by adding four dynamical structure elements: potential 
function, translocation matrix, degradation matrix, and stochastic force. Network 
dynamics was determined by these four elements being in balance, which gave rise 
to a special stochastic differential equation. This allowed experimental data being 
displayed stochasticity which carried important biological information.

As opposed to the above-mentioned networks, which are static by the nature of 
underlying data utilized, correlation networks are built from temporal (or some-
times concentrational) series of transcript or/and metabolite profi les. This defi nes 
the dynamical property of a resulting correlation network, which can be analyzed by 
cluster analysis and the systematic search for characteristic patterns of gene expres-
sion associated with a state of interest [120–123]. The dynamical property can also 
be implemented into the analysis of static networks by integrating with dynamical 
network types, as was demonstrated, for example, by Guthke and co-workers [124] 
in studies of the kinetics of the immune response to bacterial infection. In another 
study on yeast transcriptional regulatory network, molecular interactions in the cel-
lular transcription, translation, and degradation machineries were incorporated into 
dynamic mathematical models of the biochemical system by fi nding the most 
changed parameters from yeast oligonucleotide microarray expression patterns in 
cases where a phenotype difference existed between two samples [125]. On a ge-
nomic scale, the dynamics of a biological network was analyzed for multiple condi-
tions in yeast by integrating transcriptional regulatory information and gene expres-
sion data [126]. In another approach, which we would call vertical integration, 
 dynamics is implemented into a biological network by combining different levels of 
system description. Applicability and limitations of modeling the dynamics of cel-
lular networks with this approach were demonstrated by Vilar and colleagues [127] 
on the lac operon of Escherichia coli as a prototype system. Here, three levels (mo-
lecular, cellular, and that of cell population) were integrated into a single model, and 
by this dynamical aspects of the system were captured.

Several mathematical and computational approaches have been suggested for 
determining the dynamics of regulatory networks: including linear [128] and non-
linear [129] models, time-series analysis [130, 131] and Bayesian networks of de-
pendencies [132, 133]. The dynamics of a biological system can be investigated by 
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computing kinetic curves for molecular components (RNA, proteins) using the 
method of generalized threshold models [134]. A dynamic network model can also 
be deduced from a simple discrete model by postulating logical rules that formally 
summarize legacy data, as was demonstrated by plant biologists for interaction of 
the so-called ABC homeotic fl oral genes in Arabidopsis fl oral organ determination 
[135].

Generally, the highly nonlinear dynamics exhibited by genetic regulatory sys-
tems can be predicted by either of two important theoretical approaches: the con-
tinuous approach, based on reaction-kinetics differential equations, and the Boolean
approach, based on difference equations and discrete logical rules [136, 137]. With 
these approaches biological systems can be characterized into an ordered regime 
where the system is robust against perturbations, and a chaotic regime where the 
system is extremely sensitive to perturbations. In a case study of HeLa cells its un-
derlying genetic network appeared to operate either in the ordered regime or at the 
border between order and chaos but did not appear to be chaotic [138].

Causal directionality in biological networks

Causality is another characteristic feature of a dynamically functioning system. 
Depending on the nature of underlying type of an informational exchange biologi-
cal networks can be either directed or undirected. Causal directionality in the bio-
logical networks is subject for reconstruction, when cause-and-effect relationship of 
the interactions between two components is well defi ned, e.g., the direction of meta-
bolic fl ow from substrates to products in metabolic networks, the information fl ow 
from transcription factors to the genes that they regulate in transcription networks, 
propagation of signal transduction events in signaling networks, or infl uence on 
gene expression in gene networks. Such networks are causally directed. In undi-
rected networks, such as protein interaction networks or protein sequence similari-
ty-based networks, the relationships are mutually equidirectional. Some biological 
networks, although possessing intrinsic causal directionality, stay as undirected 
graphs, because edge directions are diffi cult or even not possible to identify. This 
applies to a great extent to networks reconstructed from high-throughput metabolic, 
proteomic or genomic analysis. As can be illustrated by gene coexpression net-
works, although genes with similar expression profi les are likely to regulate each 
other or be regulated by another common gene, from co-response analysis it is im-
possible to infer any notion of causality – which gene is regulated and which gene 
is regulating. However, if such networks are built from dynamic measurements of 
responses, which yield hierarchical information about causal relations in the under-
lying system, then causal relationships in these networks can be inferred. This ap-
proach was probed, for example, on hormone and insulin signaling using tyrosine 
residues phosphorylation data [139]. Similarly, response dynamics elucidates cau-
sality, when the information is used regarding the time lag between species at which 
the highest correlation was found [122]. In the new multiscale fuzzy clustering 
method fuzzy cluster centers can be used to discover causal relationships between 



V. J. Nikiforova and L. Willmitzer262

groups of co-regulated genes. With this method applied to gene expression data, a 
new regulatory relationship concerning trehalose regulation of carbohydrate me-
tabolism in Arabidopsis was found [140]. In another example, causal directionality 
was implemented to gene-metabolite correlation network with the use of a priori 
knowledge on the molecule, which excites the systems response and can thus be 
considered as a ‘cause’. In such network propagation of the information fl ow from 
the exciter to physiological endpoints can be followed [47]. To derive causal infl u-
ences in cellular signaling networks, machine learning was applied to the simultane-
ous measurement of multiple phosphorylated protein and phospholipid components 
in thousands of individual primary human immune system cells. Perturbing these 
cells with molecular interventions drove the ordering of connections between path-
way components [141].

The problem of causality in biological networks can be accessed also by means 
of integrating with directed networks. In a causal inference approach transcriptional 
regulatory networks of yeast were constructed using gene expression data, promoter 
sequences and information on transcription factor binding sites [142]. In this  method 
identifi ed active transcription factors provide the causal effect as ‘treatments’ meas-
ured quantitatively, and gene expression levels are viewed as ‘responses’. In a study 
of the pheromone response in yeast, causal relationships were implemented into the 
non-directed network of protein–protein interactions by integrating with the di-
rected networks of protein–DNA interactions and signal transduction [81].

Comparative network analysis

Now, as enormous amounts of data are available on molecular interaction networks, 
the next cognition step for system biologists implies new questions about network 
dynamics and evolution. These questions can be approached by means of network 
comparison. In such analysis communication networks for steady state and pertur-
bation, or for organisms of different evolutionary distance in normal growth and in 
response to the same perturbing agent, can be compared. By comparing topologies 
of the resulting alternative communication networks constitutive and exciter-spe-
cifi c communication paths can be revealed, as well as hubs as specifi c controllers of 
the response development. Moreover, network comparisons can be used systemati-
cally to catalog conserved network regions, each representing a functionally ho-
mologous mechanism or pathway [143]. This approach also helps to resolve some 
technical aspects of network analysis. One of the major such problems is generally 
the high noise component in biological networks. This problem can be approached, 
for example, by comparing a network reconstructed from real data with a network 
built from the same dataset, subjected to shuffl ing procedure and thus assumed to be 
information-free. As a result of such comparison, noise component can be sub-
tracted from the real data-based network. Comparative analysis of real networks 
also helps to address the problem of noise. Thus, by comparing networks drawn 
from different species or conditions [144–146], it was possible to reinforce the com-
mon signal present in both networks while reducing the noise component. Network 
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comparison was helpful also in separating true protein–protein and protein–DNA 
interactions from false positives [147], annotating interactions with functional roles 
and, ultimately, organizing large-scale interaction data into models of cellular sig-
naling and regulatory machinery [148].

In biological applications, network comparison is becoming increasingly fruit-
ful. We shall illustrate this with several examples. As was shown by the analysis of 
metabolic networks, comparison of network topologies for 43 organisms revealed 
hierarchical modularity in the network organization [114]. Pairwise comparison of 
protein interaction networks of bacteria and yeast allowed detection of evolutionar-
ily conserved pathways [149] and signifi cantly conserved protein complexes [150]. 
Further cross-species study of protein–protein interaction networks, now of worm, 
fl y and yeast, revealed remarkable similarities in network structures [106], and 
identifi ed previously not described protein functions and interactions [151]. Net-
work comparison was applied also to gene coexpression networks. In cancer re-
search, studies on two distinct coexpression networks: a tumor network and normal 
network showed that cancer affected many coexpression relationships accompanied 
with functional changes [40]. These case studies demonstrate that network com-
parisons provide essential biological information beyond what is gained from the 
analysis of separate networks.

A growing demand for statistical techniques and tools applicable for network 
comparison meets with a growing response by bioinformaticians. In this vein a 
technique for fi nding branching structure shared by a set of phylogenetic networks 
was recently introduced [152]. Kelley and co-workers [149] implemented a strategy 
for aligning two protein–protein interaction networks that combines interaction to-
pology and protein sequence similarity, which was further developed into a Path-
BLAST tool for alignment of protein interaction networks [143]. Another tool called
Cfi nder allows fi nding overlapping dense groups of nodes in networks [153]. The 
reader will fi nd the collection of corresponding links in Table 3 below.

Testing biological networks

Analysis of biological networks gives life to new global hypotheses on systems 
functionality and reductionist fi ndings of novel molecular interactions. The reliabil-
ity of these hypotheses will be based on the general reliability of the network recon-
struction procedure. If among numerous fi ndings revealed through network analysis 
a signifi cant number matches with prior experimental knowledge, this can generally 
serve as a validation of the network analysis methodology employed. However this 
approach evidently cannot validate each individual fi nding and as such cannot sub-
stitute for wet-laboratory experimentation.

The use of a priori knowledge is best illustrated by the studies on the yeast inte-
grated regulatory network. Its reliability was tested on datasets related to the phe-
romone response pathway, and the resulting model showed consistence with previ-
ous studies on the pathway [81]. Similarly, in the network model of bacteria and 
yeast protein complexes several of these complexes matched well with prior ex-



V. J. Nikiforova and L. Willmitzer264

perimental knowledge on complexes in yeast only and thus served for validation of 
the methodology [150]. In biomedical studies, the importance of identifi ed hubs for 
network function was supported by the severe phenotypes exhibited by human pa-
tients and animal models when these genes were mutated [154].

Similarly the use of direct experimentation for validation of biological networks 
has also been applied to the yeast integrated regulatory network: whereby the 
knockout of genes and subsequent phenotyping confi rmed the effects which were 
predicted by the network model [81]. Mutation has also been used strategically in 
cancer research in order to test the signifi cance of the results drawn from the net-
work analysis [116]. In the same study another method of experimental testing was 
tried, namely the effects of tumor inducing viruses were compared with those de-
rived from network analysis. Protein interaction networks were tested by two hybrid 
experiments in which approximately half of 60 inferred interaction predictions were 
confi rmed [151]. However, in spite of the general acceptance of the reductionist 

Tool name 
[Reference #]

Designation Web link

Pajek [157] analysis of large networks http://vlado.fmf.uni-lj.si/pub/ 
networks/pajek/

Cytoscape [158] visualizing molecular interaction 
networks and integrating these 
interactions with gene expression 
profi les and other state data

http://www.cytoscape.org/

VANTED [159] Visualization and Analysis of Net-
works containing Experimental 
Data

http://vanted.ipk-gatersleben.de/

VisANT [160] visualizing and analyzing many 
types of biological networks 

http://visant.bu.edu/

BiNGO [161] assessing overrepresentation 
of gene ontology categories in 
biological networks

http://www.psb.ugent.be/cbd/ 
papers/BiNGO/

Centibin [162] calculation and visualization 
of centralities for biological 
networks

http://centibin.ipk-gatersleben.de/

Cfi nder [153] fi nding overlapping dense groups 
of nodes in networks

http://angel.elte.hu/%7Evicsek/

PathBLAST [143] alignment of protein interaction 
networks

http://www.pathblast.org/

TopNet [163] comparing network topologies http://networks.gersteinlab.org/ 
genome/interactions/networks/
core.html

CellDesigner [82] diagrammatic network editing 
software

http://www.celldesigner.org/

Table 3. Networking tools
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methods of experimental confi rmation in biology, the problem of testing the relia-
bility of a reconstructed biological network cannot be fully approached by such 
methods for all network types. Where it is possible, network construction as the 
method for analysis of the entire system’s functionality by means of assembling 
coherence between the elements in complex systems can be reliably tested by the 
assembly of an alternative network. The expected experiments on this may imply, 
e.g., analysis of information conductivity in a network reconstructed from the simi-
lar data source, but obtained on a system with a hub gene/protein knocked out, and 
therefore will lay in a fi eld of network comparison. Here, matching of the predicted 
information conductivity to that one in an alternative network will work for confi r-
mation of the reliability of the reconstructed network.

Intrinsic properties of biological networks – are there any?

Recent advances in networking studies allow a comparative analysis of many large 
networks of biological, social and technological nature (e.g., [153, 155, 156]). In 
these studies a question is asked on the existence of common properties for these 
large networks and systems they describe. It was found, that, while on the one hand, 
complex systems, indeed, share several common properties, on the other hand, each 
system is characterized by unique parameters. Identifi cation of regularities being 
specifi c for biosystems may lead to better understanding of the uniqueness of life 
phenomenon and may imply also a practical interest in developing the new informa-
tion technologies of complex systems management.

Software solutions for network visualization and analysis with useful links 

Modern software networking tools can handle multiple data types from distinct 
technologies. Some of these tools are multifunctional developments for general 
networking studies like Pajek, Cytoscape, and VANTED. The others represent more 
specialized tools created for the analysis of separate network properties, like net-
work centralities (Centibin), or overrepresented gene ontologies (BiNGO). Network 
comparison studies can be approached with PathBLAST and TopNet. The reader 
will fi nd short descriptions of functionality and applicability for the major network-
ing tools with the corresponding links and references in Table 3.

Furthermore, the set of software tools helpful in networking studies, which has 
been developed for pathway analysis, is given in Table 4. Among these tools, Ara-
Cyc, a collection of biochemical pathways described in Arabidopsis, is designated 
for the networking of plant biosystems.

Among the other useful software developments, in Table 5 we provide the list of 
those, which are the most commonly used as data sources for network reconstruc-
tions. The last two links are devoted to the universal networking language SBML 
and the data integration tool Pointillist.
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Tool/Database name 
[Reference #]

Designation Link

KEGG PATHWAY 
[5]

collection of manually drawn pathway 
maps for the molecular interaction and 
reaction networks 

http://www.genome.ad.jp/ 
kegg/pathway.html

BioCyc [2] collection of pathway/genome data-
bases plus the BioCyc open chemical 
database

http://www.biocyc.org/

AraCyc [3] biochemical pathway database for 
Arabidopsis

http://www.arabidopsis.org/ 
tools/aracyc/

MetaCyc [4] database of nonredundant, experimen-
tally elucidated metabolic pathways

http://metacyc.org/

PaVESy [164] Pathway Visualization Editing System http://pavesy.mpimp-golm.
mpg.de/PaVESy.htm

KnowledgeEditor
[165]

interactive modeling and analyzing 
biological pathways based on micro-
array data

Table 4. Pathways: databases and analysis tools

Name
[Reference #]

Designation Web link

RegulonDB [7] database on mechanisms of transcrip-
tion regulation and operon organiza-
tion in Escherichia coli

http://regulondb.ccg.unam.mx

GRID [166] database of genetic and physical 
interactions in yeast, fl y and worm

http://biodata.mshri.on.ca/grid

Ospray [167] visualization of complex interaction 
networks

http://biodata.mshri.on.ca/osprey

BIND [8] Biomolecular Interaction Network 
Database

http://www.bind.ca/Action

DIP [22] Database of Interacting Proteins http://dip.doe-mbi.ucla.edu/

PPI [19] Human protein–protein interaction 
network database

http://141.80.164.19/neuroprot/
ppi_search.php

KEGG [168] Kyoto Encyclopedia of Genes and 
Genomes

http://www.genome.ad.jp/kegg/

DEG [72] Database of Essential Genes http://tubic.tju.edu.cn/deg/

SBML [85] Systems Biology Markup Language http://www.sbml.org/

Pointillist [169] inferring the set of elements affected 
by a perturbation of a biological 
system

http://magnet.systemsbiology.
net/software/Pointillist/

Table 5. Databases of molecular interactions and other
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