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Preface

Given that the opening chapter by Bruggeman et al. will provide an introduction
to systems biology, it is not our intention in this preface to cover this; rather we will
give an overview of the contents of this book and outline our reasoning for compiling
it in the way that we have. This book is intended to give a comprehensive overview of
the research field, which given its diversity, should have appeal to graduate students
wanting to broaden their knowledge as well as to specialists of any of the genomic
sub-disciplines. The overall structure of our book is inspired by the different conse-
quences of gene expression, ranging from DNA, via RNA to proteins and metabolites,
before the last chapters dealing with computational considerations concerning data
standardization, storage, distribution and finally integration.

Given the origins of systems biology, the opening chapter deals with theoretical
and mathematical approaches toward understanding the cellular hierarchy of bio-
logical systems with the chapters that follow dealing either with the acquisition of
multi-factorial datasets or with their subsequent bioinformatical and biological in-
terpretation. First among these, the chapter by Causse and Rothan, explains the
collection or generation and identification of genetic variance suitable for systems
biology. Herein both reverse (genotype to phenotype) and forward (phenotype to
genotype) genetic strategies are discussed as methods of studying the effect of
allelic variation as a method of perturbing biological systems with particular focus
on quantitative genetics approaches and on the technological advances that will
likely facilitate systems biology in plants. The third chapter by Foyer et al. utilizes
the signaling functions of ascorbate to present a case study for experimental and
interpretational analysis of global transcription profiling. This chapter thus provides
three important functions firstly providing an important example of the use of envi-
ronmental perturbation as a method to study plant systems, secondly presenting
important considerations that need to be borne in mind both in experimental plan-
ning and equally importantly in data analysis of microarray experimentation and
finally illustrating how biological information can be extracted from such studies.
As an alternative experimental strategy, collection and evaluation of experimental
data across a time course to allow an analysis of the kinetic response to a given
perturbation. In a complementary chapter to Foyer et al., Hennig and Kéhler explore
this approach using case studies involving the analysis of the function of the tran-
scription factors PHERES and LEAFY. The approach they introduce is the comple-
mentation of mutants by reintroduction of an unmutated copy of the gene in question
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under the control of an inducible promoter. Hennig and Kéhler lay a special emphasis
on discussing experimental design strategies to accept, or reject a hypothesis gener-
ated from the high-throughput data. The final chapter concerned with transcrip-
tional regulation that by Sundaresan, describes advances in the understanding of
RNA interference presenting methods for their identification via computational
analysis as well as discussing strategies to experimentally verify their function.
RNA interference introduces an additional layer of regulation into a cellular system
and may have an impact on how we understand RNA stability and posttranscrip-
tional regulation in a complex biological “system”.

Jumping to the next level of the cellular hierarchy, the subsequent two chapters
deal with the analysis and characterization of proteins — those molecules that deter-
mine the metabolic and regulatory capacities of cells. Their high-throughput analysis
has become possible by two parallel scientific achievements: the acquisition of
genome information and the development of soft peptide ionization techniques for
mass spectrometric applications. Brunner et al.’s chapter provides a thorough over-
view of different methods for the quantification of proteins, e.g. by comparing
gel- and mass-spectral based proteomics methods for the differential display of
proteins in two different samples and for their accurate quantification. Schuchardt
and Sickmann’s chapter provides a thorough overview of state-of-the art mass
spectrometry (MS) equipment that is currently available for systematic protein
analyses. Because mass spectrometric methods differ considerably each method has
specific strength and weaknesses that determine its applicability to special experi-
mental strategies. Therefore, this chapter has a special emphasis on the discussion
of MS equipment for a certain experimental design. It furthermore covers the
analysis of posttranslational modifications using phosphorylation as an example
and lastly touches upon emerging issues of data analysis in proteomics.

The chapters by Steinhauser/Kopka and Sumner et al. deal with experimental
considerations for measuring primary and secondary metabolites, respectively. Stein-
hauser and Kopka provide an overview of the requirements for establishing a GC-MS
based metabolite profiling platform covering the entire experimental time frame
from conceptual design through sample extraction and analysis to data analysis. The
chapter additionally addresses the issue of quality by defining the widely used termi-
nologies of fingerprinting, profiling and target application. Sumner et al. focus on the
larger and more chemically diverse secondary metabolites. In this chapter Sumner and
co-authors discuss the current state of the art in identifying and quantifying secondary
metabolites of plant origin, and highlight the difficulties in doing so, as well as
discussing potential solutions for the future. While the two preceding chapters are
concerned with analysis of steady-state levels of metabolites, Dieuaide-Noubhani
et al.’s chapter deals with the considerably more complex task of dynamic analysis
of metabolism using techniques of metabolite flux analysis. The chapter covers both
theoretical and experimental aspects of flux determination and also reviews recent key
papers that attempt to integrate both experimental data and bioinfomatic modeling in
order to allow a more comprehensive understanding of plant metabolism.

Having covered protocols for data acquisition the final module of this book will
focus on what to do with global data sets post-acquisition. The first chapter in this
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section that of Nikiforova and Willmitzer describes the utility of correlation net-
work visualisation and analysis utilizing the authors own studies on plant responses
to nutrient deprivation to illustrate the power of this tool when applied to post-
genomic datasets. The serious problem of non-standard ontology and the current
status in adapting to a common language in the naming of both genes and proteins
is discussed in Ahrens et al.’s chapter. As part of this issue, the authors highlight
strategies to make data available to a wide scientific community in order to promote
data distribution for the benefit of research progress.

The final chapters are both concerned with the integration of data from several
different multi-factorial experiments and using them to model a biological system
such that its reaction on a perturbation can be precisely predicted. Both of these
chapters, by Steinfath et al. and by Schéner et al. highlight potentials and challenges
of current modeling strategies and comment on their ability to retrieve biologically
meaningful data. These final two chapters provide the full circle to the opening
chapter, in wrapping up more theoretical considerations about biological systems
that involve mathematical models and novel computer algorithms. We sincerely hope
that our book presents an informative basic overview of the emergent discipline of
systems biology from both experimental and theoretic perspectives and we both
hope you enjoy reading it — we certainly did!

Sacha Baginsky
Alisdair Fernie October 2006
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Abstract

The developments in the molecular biosciences have made possible a shift to combined mo-
lecular and system-level approaches to biological research under the name of Systems Biology.
It integrates many types of molecular knowledge, which can best be achieved by the synergis-
tic use of models and experimental data. Many different types of modeling approaches are
useful depending on the amount and quality of the molecular data available and the purpose of
the model. Analysis of such models and the structure of molecular networks have led to the
discovery of principles of cell functioning overarching single species. Two main approaches
of systems biology can be distinguished. Top-down systems biology is a method to character-
ize cells using system-wide data originating from the Omics in combination with
modeling. Those models are often phenomenological but serve to discover new insights into
the molecular network under study. Bottom-up systems biology does not start with data but
with a detailed model of a molecular network on the basis of its molecular properties. In this
approach, molecular networks can be quantitatively studied leading to predictive models that
can be applied in drug design and optimization of product formation in bioengineering. In this
chapter we introduce analysis of molecular network by use of models, the two approaches to
systems biology, and we shall discuss a number of examples of recent successes in systems
biology.

From a molecular to a systems perspective in biology

In the last century many of the molecular details of living organisms have been de-
ciphered. The identification of molecular constituents was greatly speeded up by
genome sequencing. Many of the processes occurring in cells have been character-
ized. For simple organisms, such as Escherichia coli or yeast, large parts of the
metabolic network structure, the operon structure and their transcriptional regula-
tors are now known [1-3].
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This knowledge allows for combined molecular and system-level studies
applying a synergistic approach involving modeling, theory, and experiment
under the name of Systems Biology. Dynamics of entire cells cannot yet be mod-
eled with detailed kinetic models but we anticipate that this may happen within
a decade or two. Detailed stoichiometric models of entire organisms have already
been studied [1, 4-6]. Those cannot deal with the dynamics of cells for they do not
contain any kinetic data; they focus on distributions of steady-state flux or study
network organization. However, the dynamics of a number of subsystems of
cells have already been modeled in great detail (e.g., [7-12]). Such models describe
the molecular mechanisms operative in cells. They contain all the molecular
knowledge available of the systems under study; they are near replica of the real
system. We term such models silicon-cell models. They allow for a ‘completeness’
test of our knowledge (e.g., [7, 9, 10]). This form of scientific rigidity is unprece-
dented in biology. In addition, those models allow for analysis of the system
in silico in ways not (yet) achievable in the laboratory (e.g., [13, 14]). More impor-
tantly, they may allow for rational strategies of drug design in medicine and opti-
mization of product formation in bioengineering (e.g., [11, 15, 16]). Also more
qualitative models are of importance in systems biological approaches to illustrate
principles (re-) occurring in molecular networks [17, 18]. Such models may be
model reductions of complicated silicon-cell models to facilitate explanation of
phenomena by focusing on the core mechanism responsible for some phenomenon
of interest. In other cases, such models may be approximations of the real system
to describe phenomena too complicated to grasp without usage of mathematical
modeling [14, 18, 19].

Systems biology aims to provide a firm link between the molecular disciplines
in biology, such as genetics, molecular biology, biochemistry, enzymology, and
biophysics, and the disciplines within biology that study entire organisms, i.e., cell
biology and physiology [20, 21]. It does so by quantitatively characterizing the
molecular mechanisms in organisms on a molecular and system level. Such com-
bined molecular and system-level studies are therefore a sort of unification; they
‘unify’ the molecular characterization of organisms with their physiological — be-
havioral or functional — characterization. That is, they indicate how the properties of
organisms are brought about by the properties of their molecular constitution and
organization and how the system can be altered molecularly to have it behave as
desired.

Many associate this kind of strategy with reduction, i.e., that properties of or-
ganisms are reduced to properties of molecules; that properties of organisms are just
properties of molecules. We disagree with such kinds of statements [22]. Rather, the
type of reduction achieved here is that of mechanistic explanation [23, 24]. Proper-
ties of organisms that are unique to organisms — not found on the level of single
molecules or simpler systems thereof — are explained in terms of the molecular
mechanisms that manifest those properties. Accordingly, organisms display emer-
gent behaviors not displayed by any of their molecules in isolation, such as adapta-
tion, growth, robustness, and natural selection [22, 25]. Those emergent system
properties do depend on the properties of the molecular constituents but even more
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so on how they interact in the organism to function in mechanisms. Without the latter
knowledge the emergent properties are not understood.

From a nested-level-of-organization point of view, systems biology is an inter-
level approach to biology rather than an intralevel approach, which is more charac-
teristic of molecular biology and genetics [22]. Comparing to physics, systems biol-
ogy shares more similarities with statistical thermodynamics than with macroscopic
thermodynamics, which is more a mirror image of physiology or molecular biology.
Contrast the temperature of a system of particles, perceived in statistical thermody-
namics as the average kinetic energy of the particles, which is an intrinsically inter-
level concept, with the interpretation of the ideal gas law (pVV=nRT) in macroscopic
thermodynamics that merely expresses a relation among system properties and is
therefore intralevel. Interlevel approaches are not so common in science [26] but are
central to studies of complex systems [23, 27].

Organismal properties are not properties of molecules but of networks
of molecules

A characterization of a (resting) bag of billiard balls leads to a list of many proper-
ties. None of them depend on how the billiard balls are organized within the bag.
Many of them are retrievable by superposition of the properties of isolated indi-
vidual billiard balls. Actually, according to any reasonable sense of organization,
the billiard balls in the bag cannot be considered organized relative to each other.
Even if all blue ones are on top it does not matter, for many of the characterizing
properties of a bag of billiard balls do not depend on the color of the balls. This
example, simple as it may be, indicates a number of interesting points. For instance,
not all systems have properties that depend on the organization of their constituents.
One could then argue that this is obviously so since the billiard balls are all the
same; therefore one cannot speak of organization in this case. But changing their
color does not have an effect, indicating that only some properties of parts matter
for the systems characterization in terms of its organization — or in terms of its
mechanisms.

Obviously, cells are not comparable to a bag of billiards balls in any meaningful
biological sense. Cells do display behaviors that depend on their molecular organi-
zation. They consist of molecules of different types that occur in different abun-
dances depending on conditions and history. Those molecules engage in interactions
of high specificity; not all molecules interact and if some of them do interact then
often by varying degree. The interactions and their effects are not retrievable from
the isolated molecules without considering cells as molecular networks; that is,
without integrating all the molecular properties, for instance by using mathematical
models [22, 25]. This does not mean that all properties of cells depend on their
molecular organization. For instance, their mass, total energy and the number of
molecular constituents do not.

Let’s consider a simple molecular network to make the dominant role of mo-
lecular organization in determining the properties of cells more transparent. Along
the way, we shall introduce a number of general characteristics of cells perceived as
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molecular networks. The network we consider consists of enzyme 1 and 2. Enzyme
1 produces X out of S whereas enzyme 2 has X as a substrate and produces P:

S enzyme | X enzyme 2 P

We shall describe it in terms of a kinetic model (e.g., [28]); a type of modeling
used often in systems biology; for examples see JWS online at www.jjj.bio.vu.nl
[29, 30]. The system properties of interest are the concentration of X and the flux J
through the pathway at steady state. Steady state is defined as the state where X
remains constant while a net flux runs through the pathway. In contrast, an
equilibrium state is defined as a net flux of zero while X is constant. Both enzymes
have many different properties but only their Kinetic properties matter for X and J
at steady state; that is, their 3D-structure, gene sequence, or weight do not
matter.

In terms of kinetic properties, the rate with which enzyme 1 produces X and
enzyme 2 consumes X is described by the following reversible Michaelis-Menten
rate equations [31]:

_ VMAX,I 'S/Kl,S '(1_X/<S'Keq,1 ))
a 1+S/Ky5+ X/K, x

Vi

(1a)

VMAX,2 'X/K2,X '(I_P/(X'Keq,Z ))
Vy, =
? 1+ X/K,  +P/K, »

(1b)

The maximal rates of the enzymes are denoted by Vyax1 and Viax 2, respectively.
The affinity of the two enzymes for their substrates and products are given by
Michaelis-Menten constants: Ky s, Ky x, Kox, and K, p. Ky 5 indicates that in the ab-
sence of X, the first enzyme operates at half-maximal rate if S = K; s whereas if
S >>K, 5 the rate of the first enzyme is maximal. Both reactions are inhibited by
their products: by a thermodynamic term, involving an equilibrium constant, K,
for enzyme 1 or K, for enzyme 2, and by a kinetic term involving a Michaelis-
Menten constant. The equilibrium constants are determined by the standard free
energies of the substrates and products of a reaction and do not depend on the prop-
erties of an enzyme (e.g., [32]).

The rate of change in the concentration of X is described by an ordinary differ-
ential equation:

ax

— =y -V 2

e )
The concentration of X increases, i.e., dX/dt > 0, if v; > v, and vice versa. This is a
kinetic model of the simple network we are studying. To determine the dynamics of
the concentration of X as function of time, given some initial concentration of X, a
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computer is most helpful. This type of kinetic modeling approach, using experimen-
tally determined kinetic parameters and network structure, has proven very promis-
ing. Many of such type of models can be found on the JWS online website (at www.
jli-bio.vu.nl) [29, 30].

In thermodynamic equilibrium (v; = v, = 0), one finds that: X =S - Kgq1 = P / K¢go.
Apparently, the kinetic properties of the enzyme do not matter! This is a general
result for systems in thermodynamic equilibrium irrespective of the complexity of
the network [33]. This changes in a steady state. To attain a steady state, the concen-
trations of S and P should remain fixed (set by the experimentalist) and their ratio
(P/S) should not be chosen equal to the product of the equilibrium constants of the
two reactions. In the steady state, v, = v,# 0 and the concentration of X, i.e., X, is a
solution from the algebraic equation v, — v, = 0. We will not give the analytical solu-
tion here as it is given by a rather complicated equation that depends on all the
kinetic properties. Graphically, the steady-state concentration of X and the flux J can
be found by determining the intersection of the rate functions v, and v, as function
of X for a given set of kinetic parameters. It is not hard to imagine that all kinetic
parameters now effect X and J, for the shape of the rate curves of enzyme 1 and
enzyme 2, and therefore their intersection, depends on them. The steady-state flux J
now equals v, (X).

For illustrative purposes, let us consider a biologically unrealistic form of rate
equations for enzyme 1 and 2; that is, mass-action kinetics:

wW=ktS—k X, v, =kiX —k; P ®3)

The “k’ coefficients are referred to as elementary rate constants. The steady-state

concentration of X now equals:

kS +ky P
ki + k3

X= (4)
Already in this simple example, with unrealistic kinetics and over-simplified net-
work structure, we find that all the kinetic parameters of the reactions and a charac-
terization of the environment, the fixed concentrations of S and P, determine the
steady state concentration of X. The mathematical function describing the depend-
ency of the steady state concentration of X on those parameters, i.e., Eq. 4, is also
dependent on the network structure. This illustrates that only by integration of all
those pieces of information, i.e., characterization of the environment, properties of
reactions, and network structure, the steady-state system properties can be retrieved.
Examples of such studies can be found on the online modeling website JWS online
(www.jjj.bio.vu.nl).

To investigate whether all molecular properties of the network are equally im-
portant we return to the description of the system having biologically relevant kinet-
ics. Suppose we want to determine whether enzyme 1 and 2 are as important for
controlling the steady-state concentration of X by investigating the fractional change
in X upon a fractional in the enzyme amount of enzyme 1 and 2 by changing their
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Vuax’s. This we accomplish for enzyme 1 by taking the total fractional derivative of
the steady-state condition for X, i.e., v (X,Vyux.,)—v, (X )= 0:

dlnv, dinX dlny,  dlnv, dlnX
olnX dinVyyy, 0V, 0lnX dinVy,y,

®)

In terms of metabolic control analysis (MCA) [32, 34-36], those differentials are
identified as control coefficients (‘C” with proper subscript and superscript) and
elasticity coefficients (“¢” with proper subscript and superscript):

v dhX _dlny,

aanZ
| H SX - °
dInVyyx, dln X

doln X

V1 2

X =

(6)

This gives an expression for the dependence of the concentration control coefficient
of the first enzyme on the steady-state concentration of X in terms of elasticity coef-
ficients (note that: dlnv, /9 InV,y, =1):

-1

V] vV
€y —€Y

c¥ = (7

Typically, the elasticity coefficient of the first enzyme for X shall be negative: X
inhibits the rate of its producing enzyme. It activates the rate of the second enzyme.
This leads to a positive control coefficient for enzyme 1, which can be intuitively
understood: a higher activity of the first enzyme should lead to a higher concentra-
tion of X to allow for a higher rate of enzyme 2. For the second enzyme, we obtain
(after the same operation as in Eq. 6 with respect to Vyax,):

Cf =-C¥ ®)

Interestingly, the sum of the concentration control coefficients equals zero! This can
be understood by considering that, if in steady state, v,(X)—v,(X) = 0, both rates
are changed by the same factor «, the value of X shall remain unchanged. The
steady-state flux will change with factor «, however; illustrating that the flux control
coefficients of the two enzymes obey the following law:

C/+Cf =1 ©)

The flux control coefficient of enzyme 1, i.e., CY, is defined as:

dln V]\/IAX,I dlIn V]VIAX,I (10)

2
J__ &

J =
el —€%
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Interestingly, it has been proven mathematically that those two summation theo-
rems (Eq. 8 and 9) hold irrespectively of the complexity of the network (having r
reactions) and for all concentrations and fluxes [34, 35, 37]:

2CN =0 3¢/ =1 (11)

i=1 i=1

This can be understood by the same kind of reasoning as was given above. Net-
works with a level-structure or cascade-structure have additional summation theo-
rems [38, 39].

Within the network studied so far two other theorems exist. They are referred to
as connectivity theorems and relate control coefficients and elasticity coefficients:

Ci¥ely +Cet =1, CYel, +Cie3 =0 (12)

Those relationships can be easily verified using Eqg. 7, 8, 9 and 10. Those two equa-
tions can be easily understood by considering one of the assumptions of MCA.: it
assumes that the steady state is (asymptotically) stable with respect to fluctuations
[32]. This stability means that the time-averaged concentration X in steady state,
despite of thermally fluctuating reaction rates, equals X (and that the time-averaged
flux equals J) with a variance depending on the distance from thermodynamic equi-
librium and the non-linearity of the system at steady state [32, 40, 41]. The connec-
tivity theorems express exactly this stability property for they indicate the outcome
of the dissipating response of the system to restore any change in X and J upon a
perturbation in X induced by thermally fluctuating reaction rates. In contrast to the
summation theorems, the connectivity theorems do depend on the structure of the
network [37, 42-44]. Together the summation and connectivity theorems allow one
to derive control coefficients in terms of elasticity coefficients [42].

This section illustrated that many of the interesting properties of cells studied in
cell biology and physiology are related to the properties of the molecules, the envi-
ronment, and the network structure in a complicated nonlinear fashion. The exact
dependency only becomes evident by integrating all those properties using models.
This we illustrated using metabolic control analysis. Models then may indicate the
existence of general relationships reminiscent of laws in physics [45].

Two approaches to systems biology: top-down and bottom-up

Two approaches to systems biology can be distinguished. Top-down systems biology
starts with data, often generated by system-wide methods, and analyses this data
using network models of various types and degrees of detail to discover molecular
mechanisms, modules, and patterns of functional behavior (e.g., [4, 46-50]). Typi-
cally, the data analyzed originate from metabolomics, flux analysis, proteomics,
transcriptomics, or combinations thereof. The following chapters will provide de-
tailed information of how such data are acquired. This approach relies more on in-
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duction than bottom-up system biology. Top-down systems biology extracts infor-
mation from the data rather than deducing it from pre-existing knowledge. In bottom-
up systems biology experimentation is done not on the entire system level but on
smaller subsystems and typically small quantitative heterogeneous datasets are
used, containing steady-state and transient metabolite and flux data. The experiments
are done on the basis of detailed models of the system to both validate and improve
the model or to investigate hypotheses inspired by model analysis. The models used
are typically silicon-cell models (e.g., [7-12, 51, 52]). Top-down systems biology is
an interesting approach for determination of the network structure and the identifi-
cation of the molecular mechanisms operative within cells that have not yet been
fully characterized [53]. This approach may lead to a more complete picture of the
molecular network inside cells. In later stages, top-down systems biological studies
may develop into bottom-up approaches as soon as the network has been more care-
fully characterized. Bottom-up systems biology builds on pre-existing molecular
data and allows for analysis of their systemic consequences for the cell [20].

Examples of systems biology research?

One aspect of systems biology is the analysis of the structure of the molecular net-
works and its consequences for the cell. In much the same way as genome sequenc-
ing has lead to the emergence of the theoretical analysis of genomes (bioinformatics),
has the availability of the entire metabolic, signaling, and gene networks of cells led
to the development of theoretical analyses of networks [6, 54]. Many interesting
properties of molecular networks haven been discovered [54-56]. Most noticeably
are small world organization [57, 58], modularity [59, 60], motifs [61-63], flux bal-
ance analysis, extreme pathway and elementary mode analysis [6, 64—67]. All these
methods analyze large-scale molecular networks and induce general information
regarding their structure and functional consequences. This is one exciting branch
of systems biology that is anticipated to develop further and discover many new
insights into the molecular organization of cells. Reviews on this aspect of systems
biology can be found elsewhere [6, 54].

Another aspect of systems biology is the construction of kinetic models of
molecular network functioning as was introduced briefly in the previous section
[12, 17, 20]. The history of kinetic model construction and analysis is already long.
The first models of metabolism were created in the 1960s and 1970s [68, 69]. Those
models suffered mostly from a lack of sufficient system data. The introduction of
desktop computers, the development of theory for the analysis of dynamics of non-
linear systems (e.g., [70]), and the development of non-equilibrium thermodynam-
ics (e.g., [71, 72]) lead to the analysis of simplified models — core models —illustrating
complex dynamics of molecular networks [19, 73-76]. As understanding pro-
gressed, those core models were interchanged for detailed models describing com-

L The models mentioned in this section can all be investigated online at the JWS online website
(www.jjj.bio.vu.nl)
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plex dynamics, e.g., compare core models of glycolysis [74, 75] with detailed
models [77, 78]. The more detailed models are of interest in bioengineering as
they may facilitate rational approaches to optimization of product formation [10,
11, 51, 79].

Hoefnagel et al. [11] developed a kinetic model of pyruvate metabolism in
Lactococcus lactis to optimize the production rate of acetoin by this organism. All
the rate equations of enzymes, as they were characterized in the literature, were in-
corporated in a kinetic model. They showed that two enzymes (lactate dehydroge-
nase (LDH) and NADH oxidase (NOX)), previously not identified as important for
acetoin production, had most control on the acetoin production flux. By deleting
LDH and overexpressing NOX in experiment they were able to redirect carbon flux
to acetoin; 49% of pyruvate consumption flux in the mutant versus ~0% in the wild
type. This result was of importance for industry.

Glycolysis is a catabolic pathway (Fig. 1A) that is present in all kinds of cells.
Teusink et al. [80, 81] constructed a kinetic model of yeast glycolysis that was quite
helpful in solving the puzzle of an unexpected phenotype of a particular mutant
strain and at the same time lead to a surprising new insight about glycolysis. Sac-
charomyces cerevisiae strains with a lesion in the TPS1 gene, which encodes treha-
lose-6-phosphate (Tre-6-P) synthase, cannot grow with glucose as the sole carbon
and free energy source. Although this enzyme appeared to have little relevance to
glycolysis — it was considered to function in the formation of storage carbohydrates
and the acquisition of stress tolerance — it turned out to be crucial for growth on
glucose. Using the detailed kinetic model of S. cerevisiae glycolysis it was shown
that the turbo design of the glycolytic pathway (Fig. 1B), apart from being useful in
allowing for rapid growth, also represents an inherent risk. A yeast cell investing
ATP in the first part of glycolysis and producing a surplus of ATP in the downstream
(lower) part of glycolysis runs the risk of an uncontrolled glycolytic flux. In the
model, this resulted in the accumulation of hexose monophosphate and fructose-
1,6-bisphosphate to levels that are considered toxic when established in the real
yeast cell. The formation of trehalose-6-phosphate prevented glycolysis from going
awry by inhibiting hexokinase (Fig. 2A), the first ATP-consuming step of glycolysis
and thereby restricting the flux of glucose into glycolysis [80]. The importance of
the trehalose branch of glycolysis for growth on glucose could only be discovered
through the systems biological approach of combining experimental data with
kinetic modeling as outlined above. Detailed models can also be used to calculate
the outcome of experiments that are not yet achievable, too laborious or too costly
to perform as a pilot experiment. Glycolysis in Trypanosoma brucei takes place in
a special organel, the glycosome, except for the steps by which 3-phosphoglycerate
is converted into pyruvate. In contrast to the situation described above for S. cerevi-
siae, the first step catalyzed by hexokinase is not at all regulated in trypanosomes.
The glycosome is surrounded by a membrane (Fig. 2B). Bakker et al. [13] were able
to calculate the effect of the removal of the glycosomal membrane in T. brucei. At
the time, this experiment could not be performed experimentally. However, they
could remove the membrane in a detailed kinetic model that was validated earlier
[7]. The removal of the membrane was of interest because the biological advantage
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Figure 1. The dangerous turbo design of glycolysis. (A) A simplified scheme of glycolysis.
Solid lines represent reactions catayzed by a single enzyme; dashed lines represent multiple
sequential reactions. Glc-6P, glucose 6-phosphate; Fru-1,6-BP, fructose 1,6 bisphosphate;
DHAP, dihydroxyaceton phosphate; GA-3-P, glyceraldehyde 3-phosphate; 1,3-BPGA, 1,3-bis-
phosphoglycerate; 3-PGA, 3-phosphoglycerate. (B) The turbo design of glycolysis. Genera-
lized scheme for glycolysis in which the upper part from substrate S to intermediate | combines
the ATP-consuming reactions and the lower part from | to product P combines the ATP-produ-
cing reactions. The surplus of ATP produced in the lower part is depicted in bold capitals and
the boosting effect on the upper part is indicated by thick lines.

of the glycosome was hypothesized by others to enable this organism to have an
extremely high glycolytic flux. Bakker et al. [13] showed that yeast — which does
not have glycosomes — can have fluxes as high as T. brucei. In addition, they showed
that the removal of the glycosomal membrane did not cause a physiologically sig-
nificant change in the glycolytic flux. Rather, the removal of the glycosome caused
accumulation of glucose-6-phosphate and fructose-1,6-bisphosphate up to 100 mM.
This would certainly represent a pathological situation for T. brucei involving phos-
phate depletion and possibly osmotic swelling. As it turned out, the glycosomal
membrane makes sure that the upper part of glycolysis is not accelerated by the ATP
produced by the lower part of glycolysis, because the surplus ATP producing step in
the lower part of glycolysis (by pyruvate kinase) actually resides outside of the
glycosome. Thus the glycosome is another implementation of a protective device
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Figure 2. Two different solutions to the turbo design problem. (A) The trehalose branch in S.
cerevisiae. The scheme is the same as the one shown in Figure 1A, except for the addition of the
trehalose shunt in bold. Tre-6-P, trehalose 6-phosphate. The inhibition of hexokinase by Tre-6-P
is indicated by a thick dashed line. (B) The glycosome in trypanosomes. Again, the scheme is
the same as the one shown in Figure 1A, except for the addition of the glycosomal membrane
in bold. The conversion of 3-PGA to pyruvate takes place outside of the glycosome.

against the potentially dangerous ‘turbo’ design of glycolysis. These two examples
of models of glycolysis demonstrate the power of (bottom-up systems biological)
kinetic models; when precise and detailed knowledge of the kinetics of the molecu-
lar components is available, so-called computer experimentation can be carried out
which serves as an adequate substitute for true experimentation.

Regulation of metabolic flux is governed by many different mechanisms. They
may function at the level of metabolism, transcription, translation, or at the level of
degradation of mMRNA or protein. At the level of metabolism, contributions to the
regulation of enzymatic conversion rates are made by substrates and products, by
effectors through allosteric feedback or feedforward loops, or by covalent modifica-
tion. Recently a quantitative mathematical tool has been developed in our laboratory,
referred to as hierarchical regulation analysis, that allows for the quantitative deter-
mination of the importance of all those mechanisms that contribute to the regulation
of flux, given experimental data [82-84].
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The regulation of the ammonium-assimilation flux by Escherichia coli is governed
by a complicated mechanism involving multiple covalent modifications, feedback,
substrate/product effects, gene expression and targeted protein degradation [85, 86].
This system has for a long time been a paradigm of flux regulation by way of cova-
lent modification. We have recently integrated all molecular data of this network
into a detailed kinetic model describing the short-term metabolic regulation of am-
monium assimilation [12]. We confirmed many of the hypotheses postulated in the
literature on how this system should function. We identified that covalent modifica-
tion of glutamine synthetase is the most important determinant of the ammonium
assimilation flux upon sudden changes in ammonium availability using hierarchical
regulation analysis. Removal of the covalent modification of glutamine synthetase
caused accumulation of glutamine and severe impairment of growth as was shown
experimentally by others [87]. It was confirmed that indeed gene expression of
glutamine synthetase alone can lead to regulation of ammonium assimilation; the
ammonium assimilation flux was not sensitive to changes made in the level of any
of the other enzymes. Finally, we predicted that one advantage of all this complexity
is to allow E. coli to keep its ammonium assimilation flux constant despite of
changes in the ammonium concentration and to change from an energetically unfa-
vorable mode of ammonium uptake to a more favorable alternative as the ammonium
level is increased.

The analysis and construction of models incorporating signal transduction net-
works at a high level of molecular detail has recently been pioneered because of
their high potential in drug design [8, 15, 52, 88-90]. We have investigated one of
the largest and most complete model of a signal transduction network for its control
properties [90]. We determined the control coefficients of all the processes in the
network on three characteristics of the transient activation profile of extracellular
signal regulated kinase (ERK), which is a member of the mitogen activating protein
kinase (MAPK) family. The model contained 148 reactions and 103 variable con-
centrations and it is an enlarged version of the model published by Schoeberl et al.
[89]. To our surprise, we found that less than 10% of the reactions had a large con-
trol on ERK activation. We identified RAF as a candidate oncogene and indeed it
was found frequently mutated in tumors. To cope with the enormous size of signal
transduction network some systems biologists are presently developing theoretical
methods for model reduction [91-93]. Such strategies may greatly facilitate under-
standing, analysis, and experimental design.

In model-driven experimentation, usage of simplified models that illuminate
principles of system functioning and guide experimentation (experimental design)
are extremely helpful. This approach is nicely illustrated by a series of papers by the
group of Ferrell and co-workers [94-97] and Alon and co-workers [98-102]. In
Pomerening et al. [97], Ferrell and co-workers investigate the core oscillator driving
the cell cycle in Xenopus laevis. They study the entry into mitosis and the subsequent
return to interphase by following the dynamics of the formation and degradation of
the complex cdc2-cyclinB. The interphase-mitosis transition (mitosis: M-phase) is
accompanied by synthesis and accumulation of cyclin-B and the subsequent forma-
tion of cdc2-cyclinB complex. The degradation of this complex is mediated by
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APC-catalyzed degradation of cyclin-B and signals the exit of the M-phase and
reentry into interphase. In addition, two net positive feedbacks play a role: via
Myt1-Weel and cdc25. It was shown experimentally [103] that in the absence of the
degradation of cyclin-B by APC the resulting network is bistable. In the presence of
cyclin-B degradation, the network displays the oscillations characteristic for the cell
cycle; more specifically, it functioned as a relaxation oscillator. Using a semi-de-
tailed model (based on [18, 103]), the authors modeled the network in the absence
and the presence of the degradation of cyclin-B and found bistability and oscillations,
respectively. Then they investigated the effects of the two net positive feedbacks by
inhibiting them. This caused the core oscillator to engage in damped oscillations
rather than prolonged oscillations indicating the essentiality of the positive feedback
for proper functioning of the cell cycle. The model they used was only quasi-de-
tailed at best but still it had sufficient detail and reflection of reality facilitating
model-driven experimentation. In our studies on MAPK signaling, we took a simi-
lar approach [45]. We used a simple core model of the MAPK pathway to investi-
gate the difference between inhibition of phosphatases and kinases on the activation
profile of ERK. We found that the core model could qualitatively predict the ex-
perimental data. It showed that phosphatases tend to control both the amplitude and
duration of signaling whereas kinases tend to control only the amplitude. Those
results were backed up by theory leading to new theorems in control analysis for
signal transduction [45]. Another successful application of the use of simple models
to drive experimentation is found in the work by Alon and co-workers [98-102].
They are characterizing the functional properties of motifs, small intracellular
networks that occur more frequently in biological networks than in networks of
similar size with a random structure. So far they focused mostly on gene circuitry
and their activation by transcription factors. The reasoning behind the search and
characterization for motifs is that if they occur significantly more frequently in bio-
logical networks their design is predicted to have a functional relevance for the
cell. They have been successful in showing the functional significance of a number
of these motifs. Synthetic biology takes the opposite approach. It tries to design
new networks using simple models and implement those in cells to facilitate their
analysis, as biosensors, and to endow them with new properties. One successful ap-
proach of synthetic biology has been the analysis of noise [104-111]. Noise occurs
naturally in all physical systems. In cells noise, perceived as fluctuating copy num-
bers of molecules in cells, occurs because of fluctuating reaction rates due to local
thermal fluctuations [40]. The magnitude of the fluctuations relative to the average
copy number determines their influence and importance on intracellular dynamics.
The effects of noise are most pronounced when the copy number of molecules are
small, <50 molecules/cell, but may become high even in systems with high average
copy numbers, ~1,000s molecules/cell, if the system is sufficiently nonlinear [41,
112].
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Conclusion

Systems biology is a rational continuation of successful experimental biology
initiated by the molecular biosciences. It represents a combined molecular and
systems approach to decipher how molecules jointly bring about cell behavior
by cooperating in mechanisms. Those mechanisms can be studied individually (or
in a small number) in bottom-up approaches of systems biology using either de-
tailed models or core models. Top-down approaches of systems biology hope to
identify such mechanisms and characterize them more roughly first before bottom-
up approaches can home in on them in more detail. When the two approaches are
combined a rational approach to discovery and characterization of molecular
mechanisms, and therefore of cells, results that supplements pure molecular ap-
proaches.
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Abstract

The sequencing of plant genomes which was completed a few years ago for Arabidopsis
thaliana and Oryza sativa is currently underway for numerous crop plants of commercial value
such as maize, poplar, tomato grape or tobacco. In addition, hundreds of thousands of expressed
sequence tags (ESTs) are publicly available that may well represent 40-60% of the genes
present in plant genomes. Despite its importance for life sciences, genome information is only
an initial step towards understanding gene function (functional genomics) and deciphering the
complex relationships between individual genes in the framework of gene networks. In this
chapter we introduce and discuss means of generating and identifying genetic diversity, i.e.,
means to genetically perturb a biological system and to subsequently analyse the systems
response, e.g., the changes in plant morphology and chemical composition. Generating and
identifying genetic diversity is in its own right a highly powerful resource of information and is
established as an invaluable tool for systems biology.

Introduction

In the plant genomic era, huge amounts of sequence data have been obtained, mostly
for model plants but also for an ever increasing number of non model plant species.
Genome sequencing, which was completed a few years ago for Arabidopsis and
rice, is currently underway for numerous crop plants of high commercial value such
as maize, poplar, tomato, grape or tobacco. In addition, hundreds of thousands of
EST sequences are publicly available for many plant species (e.g., at TIGR, http://
www.tigr.org/tdb/tgi/plant.shtml) and may represent between 40 and 60% of the
genes present in plant genomes. However, the identification of very large sets of
gene sequences in any plant species is only an initial step towards (i) understanding
gene function in the plant (functional genomics) and (ii) deciphering and represent-
ing the complex relationships between gene sequence and protein expression varia-
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tion, corresponding pathways and networks, and changes in plant morphology and
chemical composition (plant systems biology).

The recent development of high throughput methods for transcriptional profil-
ing of genes using microarrays (Chapters by Foyer et al. and Hennig and Kohler)
and for metabolite profiling using various separation and analytical techniques (me-
tabolome) (Chapters by Steinhauser and Kopka, and Sumner et al.), as well as the
current progress in large scale protein analysis (proteomics, Chapters by Brunner
et al. and Schuchardt and Sickmann) and morphological phenotyping of plants, has
revolutionised the way we now envisage plant systems biology. By studying plants
to find out where and when, and under what conditions, whole sets of genes and
proteins are expressed, and by analysing the correlations with corresponding changes
in plant phenotype (development, morphology and chemical composition), we are
now able to infer the putative functions of genes and to deduce the possible relation-
ships between pathways, regulatory networks and phenotypes.

Linking phenotype to genotype: Strategies

Basically, two strategies, usually named forward and reverse genetics, will help
bridge the gap between genotypic variations and associated phenotypic changes.
Both are based on the use of natural or artificially induced allelic gene variation to
gain insights into the relationship between genes, their function and their influence
on phenotypic traits. The forward (traditional) genetic approach aims at discovering
the gene(s) responsible for variations of known single Mendelian traits or of quan-
titative traits (Quantitative Trait Loci or QTL) previously identified through pheno-
typic screening of natural populations. In contrast, the main objective of reverse
genetics is to unravel the physiological role of a target gene and to establish its
effect on the plant phenotype.

Forward genetic approaches

Forward genetic approaches have been hampered until recently in many crop plants
by the lack of detailed genetic maps, genomic resources (BACs, bacterial artificial
chromosome) and genomic sequences. Due to the remarkable development of genetic
marker technology over the last 15 years, genetic linkage maps are now available for
most crop species, allowing the comparative mapping of crop species and model
plants, the location of loci controlling Mendelian traits or QTL on linkage groups and
finally the isolation by map-based cloning of the gene responsible for the phenotype.
Today, the availability and use of high throughput and precise analytical tools for
metabolic profiling (Chapters by Steinhauser and Kopka, and Sumner et al.) has
considerably increased the number of compounds that can be identified and quanti-
fied in plants. This will enable the decomposition of previously identified complex
quantitative traits into multiple single quantitative traits, potentially unravelling loci
controlling whole metabolic pathways. The use of transcriptome or proteome profil-
ing and genome sequence information will provide new candidate genes for charac-
terising the sequences responsible for natural genetic variation.
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Reverse genetic approaches

Genome and EST sequencing, and large scale analyses of transcript, protein and
metabolite profiles, can give rise to a large number of candidate genes whose func-
tion needs to be evaluated in the context of the plant. Very efficient reverse genetic
tools, mostly based on insertional mutagenesis and targeted silencing of specific
genes by RNAi-based technology (Chapter by Johnson and Sundaresan), have
therefore been developed in model plants. However, a comparable strategy is clearly
impossible for most crop plants, due to cost or technical limitations such as a large
genome size or the unfeasibility of large scale genetic transformation. One might
consider that the information gained from model plants can easily be transferred to
plant species. Currently, recent advances in plant studies indicate that results ob-
tained from a model plant are not always applicable to other plant species, not only
because many crop plants have specialised organs not present in the model plants
Arabidopsis and rice (e.g., tubers in potato, root in sugar beet or fruit in tomato) but
also because a considerable fraction of the genes are probably unique to the different
taxa or even to the particular species to which they belong [1]. In addition, for cer-
tain categories of genes, e.g., those involved in signalling pathways or in regulatory
processes such as transcription factors or kinases, knockout mutations can be lethal
for the plant, induce phenotypic variations only distantly related to the real function
of the target gene or, in some cases, give weaker phenotypes than those observed
with missense mutations that produce dominant-negative mutants [2]. In these cir-
cumstances, natural or artificially induced allelic variants appear as the most appro-
priate strategy.

Forward genetics: Gene and QTL characterisation

The possibility of saturating the genome with molecular markers has allowed Men-
delian mutations and QTL to be systematically mapped. Since the early 1990s,
hundreds of studies have been conducted to map Mendelian mutations and QTL in
plants. Several genes have been cloned through map-based cloning [3-5], but only
afew QTL have been cloned and characterised. QTL are not different in nature from
loci responsible for discrete variations, but, rather than a ‘mutant-wild-type’ opposi-
tion, there are moderate differences (of effects) between ‘wild-type’ (or active) al-
leles, which are responsible for the variation of quantitative characters. One can
believe that systems biology and high-throughput genomic approaches will lead to
a rapid increase in the number of gene/QTL cloned and of our understanding of the
genetic basis of natural variation.
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Principles and methods of QTL mapping

QTL mapping is based on a systematic search for association between the genotype
at marker loci and the average value of a trait. It requires:

e a segregating population derived from the cross of two individuals contrasted
for the character of interest.

e that the genotype of marker loci distributed over the entire genome is deter-
mined for each individual of the population (and thus a saturated genetic map is
constructed).

e the measurement of the value of the quantitative character for each individual of
the population.

e the use of biometric methods to find marker loci whose genotype is correlated
with the character, and estimation of the genetic parameters of the QTL detected.

Several biometric techniques to find QTL have been proposed, from the most sim-
ple, based on analysis of variance or Student’s test, applied marker by marker, to
those that take into account simultaneously two or more markers [6]. The QTL are
characterised by three parameters (a, d, R?). The additive effect a is equal to (m,, —
m,4)/2, where my, and my; are the mean values of homozygous genotypes A1A1 and
A2A2, respectively. The degree of dominance is the difference between the mean of
the heterozygotes A1A2, and half the sum of the homozygotes: d = m;, — (My; + My,)/2
(Fig. 1). Each segregating QTL contributes to a certain fraction of the total pheno-
typic variation, which is quantified by the R?, which is the ratio of the sum of squares
of the differences linked to the marker locus genotype to the sum of squares of the
total differences. Epistasis (interaction between QTL) may also be searched for by
screening for interaction between every pair of markers, but due to the number of
tests, very stringent thresholds must be applied and thus only very highly significant
interactions are detected, unless a specific design is used. The advantage of QTL
detection on individual markers is its simplicity. Other more powerful methods have
been developed that allow us to precisely position QTL in the interval between the
markers and to estimate their effects at this position. The most widespread method
for testing for the presence of a QTL in an interval between two markers is based on
the calculation of a LOD score. At each position on a chromosome (with a step of 2
cM for example), the decimal logarithm of the probability ratio below is calculated:

V(a11 dl)
LOD =logy, V(ay, do)
where V(ay, d,) is the value of the probability function for the hypothesis of QTL
presence, in which the estimations of parameters are a; and d,, and where V(ay, dy)
is the value of the probability function for the hypothesis of QTL absence, that is,
when a; =0 and d, = 0 [7]. ALOD of 2 thus signifies that the presence of a QTL at
a given point is 100 times more probable than its absence; a LOD of 3 means 1,000
times more probable, etc. A curve of LOD can thus be traced as a function of the
position on a linkage group. The maximum of the curve, if it goes beyond a certain
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Figure 1. Genetic parameters related to a QTL. The plot shows average values of the three
genotypic classes at the marker B (of Fig. 1) for the quantitative character studied. A significant
difference between the means signifies that the effects of two alleles at the QTL are sufficiently
different to have detectable consequences. The parameters a and d are then estimated. R? is re-
lated to the intraclass variance s? and to the sample size.
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Figure 2. Example of Lod plot along a 90 cM chromosome.The most likely position of the QTL
is shown with the confidence interval associated.
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threshold, indicates the most probable position of the QTL (Fig. 2). The confidence
interval of the QTL position is thus conventionally defined as the chromosomal
fragment corresponding to a reduction in LOD of 1 unit in relation to the maximum
LOD, which indicates that the probability ratio has fallen by a factor of 10. This
method was first implemented in the Mapmaker/QTL software [8], which is coupled
with the Mapmaker software for the construction of genetic maps. Several related
methods have then been proposed including the composite interval mapping that
takes the other QTL present in the genome, represented by markers that are close to
them, as co-factors in the model. This reduces the residual variation induced by
their segregation [9-10] and then substantially improves the precision of estimation
of QTL effects and positions. These methods are implemented in several software.
Access to most of these software is free and the addresses of sources can be found
in databases including http://www.stat.wisc.edu/~yandell/qgtl/software.

Factors influencing QTL detection

Although the principle of QTL detection is relatively simple, several parameters
influence the results and must be taken into account to optimise the experimental
setup. For a given sample size, the efficiency of QTL detection depends partly on
the additive effect of QTL (a very small difference of effects between alleles will
not be found significant) and partly on the variance within the genotypic classes.
This variance depends on environmental effects (the environmental control of vari-
ations increases the efficiency of the test) on other segregating QTL in the genome,
on the presence of epistasis and on the distance between markers and QTL (this is
particularly important if the density of markers is low). Because of the large number
of analyses carried out, low values of a. must be chosen. For interval mapping,
a global risk of oo = 0.05 for the entire genome imposes a fairly high LOD threshold
per interval, which depends on the density of markers and the genetic length of the
genome [7]. Thresholds are now usually estimated following permutation tests,
based on a random resampling of data [11].

Efficiency of QTL detection and precision of QTL location depends more on
population size than on marker density [12]. Once a mean marker density of 20 or
25 cM is attained, any supplementary means must be invested in analysing additional
individuals rather than in increasing the number of markers. A QTL with a strong
effect will be detected with a high probability whatever the population size, but for
detection of a QTL with moderate effect (R? about 5%), it is necessary to use a
larger number of individuals. It must also be noted that it is better to increase the
number of genotypes in the population rather than the number of replications per
genotype.

The populations in which QTL mapping is most efficient are those derived from
crosses between two homozygous lines, such as F2, recombinant inbred lines (RIL),
doubled haploid (DH) and backcross (BC). F2 are the only populations allowing the
dominance effect to be estimated, while a mixture of a and d is estimated with BC.
Highly recombinantinbred lines (HRIL) obtained after several cycles of intercrossing
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individuals were proposed to increase the precision of marker ordering and subse-
quently also to increase the precision of QTL mapping [13]. When no homozygous
parental lines are available (in allogamous species and species with a long generation
time, such as trees), QTL detection is complicated because the parents may differ by
more than two alleles, and because the phase (coupling or repulsion) of the marker-
QTL linkage may change from one family to another. Various populations may
nevertheless be used, from F1, BC or populations using information from two gen-
erations in families of full siblings [14]. Knowledge of the grandparent genotypes at
marker loci can improve detection by allowing phases of associations between ad-
jacent markers to be identified [15].

Tanksley and Nelson [16] proposed to search for QTL in populations of ad-
vanced backcross (BC2, BC3, BC4). Although the power of QTL detection is
reduced, this strategy is interesting when screening positive alleles from a wild spe-
cies, as it will allow the identification of mostly additive effects and will reduce
linkage with unfavourable alleles and thus simultaneously advance the production
of commercially desirable lines.

The efficiency of detecting a particular QTL in a segregating population is low
because other QTL are segregating and major QTL mask minor ones. For this reason,
Eshed and Zamir [17] proposed the use of introgression lines in which each line pos-
sesses a unique segment from a wild progenitor introgressed in the same genetic
background. The whole genome has been covered with 75 lines and has created a sort
of ‘genome bank’ of a wild species in the genome of a cultivated tomato. These lines
can then be compared with the parental cultivated line to search for QTL carried by
the introgressed fragments. The detection is more efficient than in a classical progeny
because of the fixation of the rest of the genome. Greater test efficiency and a signifi-
cant economy in terms of time and effort can also be achieved by molecular genotyping
exclusively individuals showing the extreme values of the character studied (through
selective genotyping) [18]. Nevertheless this approach is only useful for detecting
QTL with major effects and can be applied only if one character is studied.

What have we learnt from QTL studies?

Ever since the mapping of QTL became possible, several studies have showed that
even with populations of moderate size (sometimes less than 100 individuals), some
QTL are almost always found, for all types of characters and plants [19-20]. Data
compiled from maize and tomato, where many QTL have been mapped, indicate
that the effects of QTL measured by their R? are distributed according to a marked
L curve, with a few QTL having a strong or very strong effect, and most QTL having
a weak or very weak effect. With populations of normal size (60 to 400 individuals),
R? are usually overestimated [21] and depending on the characters, one to ten QTL
are usually detected with an average of 4 QTL detected per study [22]. These num-
bers constitute a minimum estimate of the number of segregating QTL in the popu-
lations studied for several reasons: (i) Some QTL have an effect below the detection
threshold, (ii) some chromosomal segments may contain several linked QTL when
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only one is apparent and (iii) if two QTL of comparable effect are closely linked, but
in repulsion phase, i.e., if the positive alleles at the two loci do not come from the
same parent, no QTL will be detected, until fine mapping is attempted [23]. More-
over, the monomorphic QTL in a given population cannot be detected. For species
and traits where a large number of studies have been performed with several prog-
enies, it is frequent to compile more than 30 QTL [24, 25]. Using meta-analysis,
Chardon and colleagues [26] summarised 22 studies and identified at least 62 QTL
controlling flowering time in maize.

Transgressive QTL are frequently discovered. Even when highly contrasted in-
dividuals have been chosen as parents of a population, it is not rare to find a QTL
showing an effect opposite to that expected from the value of the parents. Results
from advanced backcross experiments in tomato showed for example unexpected
positive transgressions from wild relatives, for various fruit traits [27].

When comparative mapping data are available, some QTL of a given character
are frequently found at homologous positions on the genomes of species that are
more or less related. This is the case for grain weight in several legume species
[28-30], for domestication traits in cereals [31, 32] and for fruit-related traits in
Solanaceae species [33].

Epistasis between QTL is rarely detected with classical populations [34], but
this is mostly due to statistical limits of the populations studied. A way of increasing
the reliability of epistasis analysis is to eliminate the ‘background noise’ due to
other QTL by using near isogenic lines (differing only by a chromosome fragment)
for a particular QTL as parents of the populations studied [35]. On the other hand,
it is not because a QTL does not show epistatic interactions with other QTL taken
individually that its effect is independent of the genetic background. For instance,
the effects of two maize domestication QTL are much weaker when they are segre-
gating in a ‘teosinte’ genetic background than in an F2 maize x teosinte background
[36]. Similarly, significant QTL by genetic background interaction was shown in
tomato by transferring the same QTL regions into three different lines [37].

QTL mapping is particularly interesting in attempting to analyse the determinism
of complex characters, by focusing on components of these characters [38-40].
QTL mapping thus provides access to the genetic basis of correlations between
characters. When characters are correlated, at least some of their QTL will be com-
mon (or at least genetically linked). In the case of apparent co-location of QTL
controlling different characters, there is no direct method to highlight the existence
of a single QTL with a pleiotropic effect or of two linked QTL. Korol and colleagues
[41] proposed a statistical test to use the information of correlated traits to locate
QTL simultaneously controlling several traits. They showed that this approach in-
creased the power of QTL detection when compared to a trait by trait search.
Nevertheless the best way to distinguish pleiotropy from linkage is through fine
mapping experiments. Many fine mapping experiments have separated QTL that
were initially thought to control two related traits [42—44].

The environment may have a significant impact on the effect of QTL: a QTL
detected in one environment may no longer be detected in another, or its effect may
vary. This has been frequently observed, even though the environmental influence
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differs according to the characters and the range of environments studied. Certain
QTL are detected in all or almost all the environments tested, while others are
specific to a single environment. Several statistical methods for the estimation of
QTL x environment interactions have been proposed [45-48]. Certain studies look
directly at QTL involved in the response to environmental changes such as soil
nitrogen [49] or drought [50]. Ecophysiological modelling may also be used to
identify the biological processes underlying QTL and to distinguish loci affected by
the environment [51-53].

Characterisation of QTL: Still a difficult task

Today, in plants, several Mendelian mutations have been characterised by positional
cloning in plants, but still very few QTL have been definitively characterised at the
molecular level ([54, 55], Tab. 1). Direct cloning of a QTL is more difficult than
cloning a major gene because the QTL only partially influences character variation
and its effect can only be appreciated by statistical methods. For this reason, the
resources required are more considerable and the first QTL cloned by map-based
cloning correspond to QTL with strong effects that are independent of the environ-
ment. Figure 3 illustrates the general strategy used to characterise a QTL. If nothing
is known about the physiological and molecular determinism of the character, posi-
tional cloning is the most straightforward method to characterise a QTL. If on the
other hand some genes involved in the expression of the character are known, it is
possible to test whether the polymorphism of one of them (the ‘candidate’ gene)
could explain the variation of the character. In both cases it is necessary to reduce
the interval around the QTL through fine mapping.

The population sizes conventionally used do not allow for precise location of
QTL with moderate effects (confidence intervals usually range from 10-30 cM).
Such segments may comprise several hundreds of genes, so any attempt at charac-
terising or positional cloning of QTL is impracticable. To fine map a QTL it is nec-
essary to compare several near-isogenic lines differing only for a region containing
the QTL that has to be located precisely. The QTL can be located more precisely by
comparing these new lines to the initial recurrent line [42]. Such lines can be derived
through backcrosses or using residual heterozygosity of RILs [56]. The QTL is
‘mendelised” when it is the only source of variation for the trait. Introgression lines
constitute another point of departure for fine mapping and cloning a QTL. By deriving
an F, population from a cross between an introgression line and a cultivated line,
then self-fertilising the individuals carrying a recombination in the fragment of in-
terest, fixed lines for different subgroups of the initial fragment can be created [57].

Positional cloning can only really be considered when the QTL is precisely lo-
cated in an interval much smaller than one centimorgan, in which case large insert
libraries (YAC or BAC) can be screened. Ideally the distance between marker and
QTL should be around the size of a BAC clone. This is obtained by studying a
population of several thousands plants [58] and obtaining polymorphic markers
closely linked to the QTL. To confirm that the isolated gene corresponds to the QTL
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Figure 3. General strategy used to characterise a QTL.

of interest, the ideal situation is to obtain a recombinant within the candidate gene
that leads to different values of the trait. For example the cloning of a QTL controlling
the variation in sugar content of tomato fruit followed fine mapping [59] and bene-
fited from the existence of recombinations within the gene to localise the QTL in a
region of 484bp covering the sequence of a cell-wall invertase. The functional poly-
morphism was then delimited to an amino acid near the catalytic site which affects
enzyme Kinetics and fruit sink strength [60]. Transformation with contrasted alleles
may allow us to definitively prove that the candidate gene is the QTL. A fruit weight
QTL in tomato responsible for about 30% of the variation of this character has been
isolated using the classical strategy of high resolution mapping by screening 3472
F2 plants, identifying 53 recombinants (between two markers 4.2 ¢cM apart) and
screening a YAC library. From a YAC likely to contain the required gene, a cosmid
library was screened and three clones used to transform a tomato variety. The cos-
mid leading to differences in fruit size after transformation was sequenced and the
two sequences corresponding to ORFs were used ina second round of transformation.
This allowed the definitive identification of the clone corresponding to the QTL
[61]. Certain problems may arise from validation by transformation, as generally
we aim to modify the value of a trait by introducing a favourable allele, no easy task
when the effect of the environment, the genetic background, and the transformation
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(dose effects, gene silencing) may interfere. Constructions to overexpress the gene
can be used but carry a risk of seeing artefactual positive effects on the trait.

For certain quantitative characters, the physiology of the plant indicates what
the functions in question might be. For others, mutants with phenotypes resembling
extreme variations of the character are available. If the corresponding genes are
available, whether they are responsible for the QTL of the character studied depends
on whether they are polymorphic and whether this polymorphism has repercussions
on the variation of the character considered [40, 62, 63].

The confirmation of the role of a candidate gene in the variation of a character is
not direct and must proceed via:

o fine mapping of the QTL; testing for co-segregation of the candidate gene and
the QTL with thousands of plants may allow the rejection of several candidate
genes

e the search for correlations between polymorphisms of the candidate gene and
variation of the character in populations in which linkage disequilibrium is
minimal (in such populations, only a cause-effect relationship ensures the dura-
bility of the correlation throughout the generations). This association mapping
approach has already been useful to characterise several QTLs [64—68]

e analysis of the variation at biochemical and metabolic levels. A necessary but
not sufficient condition for a gene coding for an enzyme to be a QTL is that the
activity of the enzyme must be variable. This has allowed elucidation of the
origin of variation at the Lin5 QTL [60]

e molecular analysis of alleles to find the molecular basis of variation; the identi-
fication of the polymorphism responsible for the QTL is not straightforward, as
it can be either a nucleotide substitution (or indel) causing an amino acid modi-
fication [59, 60, 69-71], a stop codon [72, 73], a gene deletion [74] or a mutation
in a regulatory sequence that may be very distant from the gene [75-77]. The
exact nature substitutions or indels are detected [78]

e transformation, even though this poses specific problems in the case of QTL
[77-80]

e complementation of a known mutation corresponding to the same gene [59, 60,
71, 81].

How can systems biology help QTL characterisation?

Functional genomics facilitates gene or QTL cloning at different levels. Due to high
throughput technologies, the number of ESTs sequenced and mapped is rapidly in-
creasing for many species, providing new candidate genes [82]. Apart to the access
to all the ORFs carried by a genome fragment, this will provide a non limited
number of molecular markers useful for map-based cloning. In Arabidopsis, the
access to the whole genome sequenced has considerably reduced the time to posi-
tionally clone a gene [4]. Although the number of genomes fully sequenced is still
limited, their number is rapidly growing, now covering a range of botanical families.
Synteny with model species should then assist in identifying molecular markers and
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candidate genes in related crop species [83]. Even distantly related species exhibit
microsynteny (see for example tomato and Arabidopsis genomes [84]), thus markers
and candidate genes can be transferable across species.

Microarray-based techniques may be helpful for high throughput identification
of polymorphisms (SNP or Indels) at thousands of loci simultaneously [85]. Screen-
ing for candidate genes is also much more efficient when utilising high throughput
tools for genome expression studies. Transcriptional profiling between near iso-
genic lines may provide a list of differentially expressed genes. Those which map in
the QTL region are strong good candidates [86]. Expression profiling may also be
used on a mapping population considering the level of expression of a gene as a trait
(the QTL are thus expression QTL, called eQTL). These analyses provide important
information about the organisation of regulatory networks [87], as eQTL are either
located in the region of the corresponding gene (cis-regulation) or in a distant region
(trans-regulation). A review of the first eQTL mapping experiments shows that (i)
major effect eQTL are often detected, (ii) up to one-third of eQTL are cis-acting,
and (iii) eQTL hot spots that explain variation for multiple transcripts are frequent
[88]. Correspondence between eQTL and morpho-physiological QTL can then be
researched [89]. It almost goes without saying however that this approach is limited
by the fact that all the QTL are governed by alterations in RNA amounts.

An alternative approach consists of identifying loci affecting the quantities of
protein (Protein Quantity Loci or PQLS) or loci responsible for the charge or
molecular mass of protein isoforms (Position Shift Loci or PSLs) as detected by
two-dimensional gel electrophoresis [90]. When a PQL cosegregates with a PSL,
the variation of protein quantity can be due to a polymorphism within the protein
itself. On the other hand, if PSL and PQL are mapped to distinct regions of the ge-
nome, the variation in protein quantity can be due to a trans-acting regulatory factor/
gene [91]. In maize, this approach has been useful in discovering genes involved in
water-stress tolerance [92]. Proteomic approaches, by revealing polymorphisms
within genes as well as differences in protein expression are therefore complemen-
tary to DNA marker and mapping approaches. Metabolomic profiling combined to
genetic studies may also provide insight on the physiological bases of quantitative
trait and give clues on the candidate genes to screen [93]. At last, all the tools avail-
able for reverse genetics, collections of mutants, TILLING (Targeting Induced Local
Lesions IN Genomes), RNAI (presented below) may be used to validate a candidate.

To recapitulate, forward genetics approaches are thus powerful tools for deci-
phering natural genotypic variability. They have also been applied to artificially
induced mutants in crop and model plant species. In Arabidopsis for example, this
strategy is yielding remarkable results by allowing the isolation of unknown genes
involved in the control of specific phenotypes [94].

Reverse genetics strategies in plants

Several genome-wide gene targeting techniques have been widely developed in
plants. In the absence of efficient and routine methods for homologous recombina-
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tion in plants, insertional mutatagenesis using transferred DNA (T-DNA) from
Agrobacterium or transposable elements has been the method of choice for genome
size reverse genetics approaches in the model plants Arabidopsis and rice. Several
populations of tens of thousand of mutagenised plants have been created with the
objective to reach near saturation of the collections (e.g., Arabidopsis genetic re-
sources at http://www.arabidopsis.org/portals/mutants/worldwide.jsp). Knockout
mutants in a given gene can be screened by PCR-search of Arabidopsis insertion
collections or even by BLAST search of the insertion flanking sequences. Since the
probability to hit the gene is lower for small genes than for large genes, loss-of-
function mutants for the target gene are not always identified and very large num-
bers of mutagenised plants are needed to reach near saturation of the collection [95].
Nonetheless, insertion collections have proved to be powerful reverse genetics tools
for studying gene function in the context of the plant (as reviewed in [94]). In much
the same way, collections of activation tagging lines resulting in gain-of-function
phenotypes have been created. Target genes are activated by random insertion in the
genome of T-DNA or transposable elements carrying strong promoters [96]. More
recently, downregulation of specific genes by using RNAi-based technology [97]
has been scaled up to genome-wide level in Arabidopsis (e.g., the AGRIKOLA
project, http://www.agrikola.org/objectives.html). Genome-scale RNAI approaches
take advantage of the easiness of Agrobacterium transformation of Arabidopsis
using the floral dipping technique and of the recent development of site-specific
recombination-based cloning vectors allowing efficient and high throughput inser-
tion of inverted repeats of a gene sequence in plant transformation vectors [97, 98].
Though silencing efficiency may vary according to the gene studied, which often
results in the observation of a range of more or less severe phenotypic effects in the
RNA. silenced plants, this approach is particularly useful when analysing large
gene families or classes of genes. In addition to the detailed functional analysis of
individual genes, it also allows the study of detectable phenotypes by targeting the
regions conserved among several genes in a multigene family, which is very useful
when loss-of-function phenotypes are difficult to observe due to the high functional
redundancy of plant genes [99]. This strategy may alleviate the need for multiple
knockout mutants in order to detect phenotypic changes linked with the mutations
in target genes belonging to the same family.

However, these strategies are mostly used for Arabidopsis [94] and, to a lesser
extent, for rice [100, 101]. Most crop plants still await the development of similar
high throughput methods for functional genomics. Considering the case of tomato
is instructive. Tomato is the model plant for fleshy fruit development and for
Solanaceae (among others: potato, tobacco, pepper), and at the same time, a com-
mercial crop of prime importance. Tomato genome size is 950 Mb, i.e., several fold
larger than the 125 Mb of Arabidopsis but much smaller than the 2,700 Mb of pep-
per and the 17,000 Mb of wheat, for example. Transposon-based insertional muta-
genesis using the non-autonomous mobile elements Activator(Ac)/Dissociation(Ds)
from maize have been developed in tomato and shown to be very effective for creat-
ing knockout mutants and for promoter-trap studies [102-104]. Activation-tagging
lines using T-DNA insertions have also been developed, yielding very interesting
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gain-of-function phenotypes (Mathews et al., 2003). However, given the genome
size of tomato, near to 200,000 to 300,000 transposon-tagged lines are necessary to
obtain 95% saturation of the genome, according to some estimates [106]. Since
tomato genetic transformation is based on the low throughput in vitro somatic em-
bryogenesis, this goal is still out of reach for most groups, including large consorti-
ums, even when using the miniature tomato cultivar MicroTom suitable for high
throughput reverse genetics approaches [102]. Insertional mutagenesis with T-DNA
in tomato, which necessitates a plant transformation step to obtain each insertion
line, would require even more efforts.

The two rate-limiting steps pointed out for tomato, i.e., large genome size and
lack of high throughput transformation methods are common features to most crop
plants. Ideally, mutagenesis methods for genome-wide reverse genetics should be
applicable to any plant whatever the genome size, remain independent of the avail-
ability of high throughput transformation methods for that plant (if such method
exists) and give a range of mutations prone to be detected by easy, robust, auto-
mated and cheap techniques. With the overwhelming increase in sequence data for
model and most field-grown crop plants, such alternatives have been developed in
recent years. These methods, based on the use of chemical or physical mutagenesis
techniques and previously employed for decades for creating genetic variability,
have been mostly exploited until recently in plant breeding programs and in forward
genetics approaches aimed at identifying the genes behind the phenotypes.

Chemical mutagens and ionising radiations usually create high density of irre-
versible mutations ranging from point mutations to very large deletions, depending
on the mutagenic agent used. As a consequence, saturated mutant collections can be
obtained with only a few thousand mutagenised lines, which should be compared to
the hundreds of thousand of lines necessary for reaching near saturation collections
of insertional mutants [95]. Unknown mutations in target genes can be screened
using low throughput classical methods, including DNA sequencing, which may
eventually become the method of choice due to the large decrease in DNA sequenc-
ing prices over the last years. The recent development of PCR-based technologies
allowing the detection of unknown mutations triggered the rapid development of
mutant collections in crop and model plants and of high throughput mutation screen-
ing methods aimed at discovering the phenotypes behind the genes. An additional
advantage of mutant plants in many countries, especially in some European countries
opposed to GMO plants, is that they are not genetically modified organisms and, as
such, not subjected to regulatory or public acceptance barriers. Mutant alleles can
thus be used for crop improvement using traditional and marker assisted breeding
programs.

The following section will describe two of the major reverse genetic techniques
recently developed for functional genomics approaches in model and crop species:
(i) fast neutron mutagenesis and detection [107] and (ii) TILLING (Targeting In-
duced Local Lesions IN Genomes) [108, 109].
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Fast neutron mutagenesis and mutation detection

Fast neutron bombardment is a highly efficient mutagenic method that creates DNA
deletions with size distribution ranging from a few bases to more than 30 kb. As a
consequence, knockout mutants are obtained. Since the large deletions generated
may encompass several genes, this general reverse-genetics strategy can be particu-
larly useful in plant species where duplicated genes, which often show functional
redundancy, are arranged in tandem repeats. Availability of tandem repeat knock-
outs may overcome the very difficult (or even impossible) task of obtaining double
mutants. In addition, similar mutation frequencies are observed whatever the size of
the genome of the plant [110], which renders this method very attractive for many
crop species. One of its disadvantages is that the occurrence of large deletions may
be problematic for subsequent genetic analyses. The construction of a deletion
mutant collection is straightforward [102, 107, 111]. Basically, after conducting
pilot studies aimed at determining the optimal dose necessary to achieve the rate of
mutations desired (typically, half of the mutagenised M1 plants should be fertile
enough; [112]), MO seeds are mutagenised, giving M1 seeds which are sown. The
M2 seeds are individually collected from the resulting M1 plants and a fraction of
them are sown for collecting plant material for DNA extraction. The remaining M2
seeds can be sown for performing phenotypic and segregation analyses on the M2
families and/or stored until further use.

Screening the collection for mutations is a simple PCR-based technique (named
Deleteagene for Delete-a-gene) described for rice and Arabidopsis [107, 112]. A
region of the target gene is PCR-amplified from DNA samples collected from M2
plants using gene-specific primers. The primers and the length of the PCR extension
time are carefully chosen so that deletions in target gene can be detectable by PCR
in deletion mutants (typically, 1 kb deletions) but not in wild-type plants (wild-type
DNA fragment with larger size is not amplified since extension time is too short). In
addition, since PCR methods are highly sensitive, pools of up to 2,500 lines can be
screened. Once a positive pool is detected, individual mutants can be detected using
the same strategy by deconvolution of the pools and of the subpools, and further
confirmed by DNA sequencing of the mutated target gene. Based on screenings
performed in Arabidopis, about 50,000 mutagenised lines would be necessary to
achieve an objective of deletion mutants in about 85% of the targeted loci. While
possibly realistic in crop plants bearing dry fruits that are easy to collect (e.g., seeds),
this objective is probably very difficult to achieve in some other species where seed
harvesting is the limiting step, e.g., in the fleshy fruits such as tomato, melon or
grape or in species with long reproductive cycles, e.g., the perennial trees. In tomato
for example, the largest fast neutron mutagenesis collection includes several thou-
sand M2 families in cv. M82 [102, 111] (http://zamir.sgn.cornell.edu/mutants/),
which is already a huge task to produce. In addition, preliminary knowledge of ge-
nomic sequence is preferably needed for efficient PCR screening of deletion mu-
tants thereby reducing the range of species for which this method can be used at the
present time. For many crop species, forward genetics will probably remain the best
adapted approach for using deletion mutant collections in the few coming years.
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TILLING

TILLING is a general reverse-genetics strategy first described by McCallum et al.
[108] who used this method for allele discovery for chromomethylase gene in
Arabidopsis [113]. This method combines random chemical mutagenesis by EMS
(ethylmethanesulfonate) with PCR-based methods for detecting unknown point
mutations in regions of interest in target genes. Since the early description of the
method, which was then performed by using heteroduplex analysis with dHPLC
[108], the method has been refined and adapted to high throughput screening by
using enzymatic mismatch cleavage with CEL1 endonuclease, a member of the
S1 nuclease family [109, 114]. TILLING technology is quite simple, robust, cost-
effective and thus affordable for many laboratories. In addition, it allows the identi-
fication of allelic series including knockout and missense mutations. For these
reasons, this genome-wide reverse-genetics strategy has been applied very rapidly
to a growing number of plants, including model plants and field-grown crops of
diverse genome size and ploidy levels, and even to insects (Drosophila [115]).
A number of TILLING efforts in plants have been reported for Arabidopsis [109,
116], Lotus japonicus [117], barley [118], maize [119] and wheat [120]. Recent
reviews give excellent insights on the TILLING methods, from the production of the
mutagenised population to the current technologies for mutation detection, and on
the future prospects for TILLING [121-124]. In addition, a number of TILLING
facilities have been created for various plants including facilities for Arabidopsis
which already delivered >6,000 EMS-induced mutations in Arabidopsis and is also
opened to other species [124] (ATP, http://tilling.fhcre.org:9366/), maize at Purdue
University (http://genome.purdue.edu/ maizetilling/), Lotus in Norwich (USA)
(http://www.lotusjaponicus.org/tillingpages/ Homepage.htm), barley in Dundee
(UK) (http://germinate.scri.sari.ac.uk/barley/mutants/), sugar beet in Kiel (Germany)
(http://www.plantbreeding.uni-kiel.de/project_tilling.shtml), pea at INRA (Evry,
France; http://www.evry.inra.fr/public/projects/tilling/tilling.html) and ecotilling at
CanTILL (Vancouver, Canada) (http://www.botany.ubc.ca/can-till/).

Mutagenesis

EMS (ethylmethanesulfonate) is the mutagenic agent used for most of the plant
TILLING projects cited above. As a result of EMS alkylation of guanine, more than
99% of mutations are G/C-to-A/T transitions, as experimentally shown by analysing
(EMS)-induced mutations in Arabidopsis [116]. Other mutagens with genotoxic
effects inducing point mutations, frameshifts or small insertion/deletions (InDel)
are also likely to be applicable to a TILLING project using CEL1 endonuclease.
Indeed, CEL1 technology allows the efficient detection of a broad range of muta-
tions, i.e., the natural allelic variants found in different plant genotypes or ecotypes
or the artificially-induced mutations in zebrafish induced by the N-ethylnitro-N-
nitrosourea (ENU) mutagen [125]. With EMS, similar mutation frequencies are
expected whatever the plant genome size [110], rendering this approach applicable
to most crop species. However, considering the results from the diverse TILLING
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projects in different species, the mutation density detected by TILLING may actually
range from 1 mutation/Mb in barley [118] and 1 mutation/500 kb in maize [119] to
1 mutation/40 kb in tetraploid wheat and even 1 mutation/25 kb in hexaploid wheat
[120]. By comparison, mutation densities are 1 mutation/170 kb in Arabidopsis
(ATP project [116]) and 1 mutation/125 kb in MicroTom tomato (our own unpub-
lished results). Polyploidy may confer tolerance to EMS mutations, thus explaining
the high density of mutations found in wheat [124].

EMS treatment is usually done by soaking the seeds (referred to as MO seeds) in
EMS solution for several hours (usually 12-16 h overnight); mutagenised seeds are
then referred to as M1 seeds (Fig. 4). Pollen can also be mutagenised, as done in
maize [119, 124]. At this step, a delicate balance has to be found between (i) the pri-
mary objective of mutagenesis for TILLING, which is to obtain saturated mutagen-
esis (i.e., the highest density of mutations possible in the plant genome) in order to
analyse a reduced number of lines, and (ii) the amount of mutagenesis that a plant can
withstand without overwhelming problems of seed lethality or plant lethality and
sterility. In tomato, we obtained high density mutations using EMS doses giving
50-70% of seed lethality after EMS treatment (M1 seeds) and 40-50% of sterile
plants in the M1 plants. Since the necessary EMS concentrations may vary consider-
ably according to the species, the physiological state of the seeds and even from batch
to batch, pilot studies with different EMS concentrations (from 0.2-1.5%) should be
carried out before large scale mutagenesis. The M1 plants obtained by sowing the
mutagenised seeds are chimeric and cannot be further used for mutation detection.
Indeed, in the embryo, each cell is independently mutagenised. Only a few cells in
the apical meristem (e.g., two to three cells in tomato, A. Levy, personal communica-
tion) will give rise to reproductive organs and thus to gametes. In contrast, mutations
in other embryonic cells are not inherited by the next generation (somatic mutations)
and will give rise to chimeric tissues in M1 plants (e.g., the variegated plants with
dark green and light green or white sectors often observed in M1 plants).

The M2 seeds, obtained after selfing (or crossing when necessary) the M1 plants,
are individually collected from each plant and stored. One or a few M2 plants are
usually grown in order to provide plant material for DNA extraction (Fig. 4). An-
other strategy that we use in tomato, though it involves a time-consuming step, is to
grow 12 individual plants per M2 family and to collect M3 seeds and tissue samples
from these plants. In addition to enabling the multiplication of the seeds, this strategy
allows the description of the plant phenotypes and the segregation analyses of visible
mutations in the M2 families. These data are collected and further compiled in a
phenotypic description database. The rationale is that once a mutation in a target
gene is detected in an individual M2 family, the information on the phenotypic and
segregation data can give a first hint on the severity of the mutation and the func-
tional role in the plant of the target gene without having to wait for the observations
made on M3 plants. This approach can be particularly useful when dealing with
crop species that have a long developmental cycle and/or with specific plant tissues
(e.g., fruits or seeds).

In addition to the artificially-induced mutants obtained by using various physical
or chemical mutagens in species such as rice [126] or tomato [111], natural allelic
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Figure 4. Schematic description of the TILLING procedure. Tomato TILLING strategy is
shown. Seeds (MO0) are mutagenised with ethylmethanesulfonate (EMS) giving M1 seeds,
which are sown. M2 seeds from the resulting M1 plants are collected and sown. For each M2
family, 12 plants are grown and used for: (i) description of plant phenotype (data stored in a
tomato mutant database); (ii), extraction of DNA from leaf tissue, later used for mutation detec-
tion; and (iii), collection of M3 seeds stored in a seed bank. For mutation detection, eightfold
DNA pools are generated from M2 family DNA and gene-specific primers are designed to PCR-
amplify the target gene from these pools. The resulting amplicon is heat denatured and rean-
nealed, producing both homoduplexes and heteroduplexes (presence of a mismatch in the du-
plex). Heteroduplexes are cleaved at the 3’ side of the mismatch by the CEL1 endonuclease and
further detected by denaturing gel electrophoresis. Identification of the individual M2 family
harbouring the mutation is done by deconvolution of the DNA pools using the same technology.
Screening tomato mutant collection for a target gene (e.g., a gene involved in fruit colour) yields
a series of mutant alleles. Some mutations (~5%) will create knockout mutants (null mutations,
~5%) or affect the biological function of the encoded protein (missense mutations, ~50%) while
many mutations (~45%) will remain silent.
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variants are already present in germplasm resources, which represent a large source
of genetic variability for most crop and model species [57, 127]. Core collections
may include related species, various accessions with high genetic diversity often
collected near the centre of origin of the species, and cultivated lines and mutants
obtained by breeders worldwide (e.g., the Tomato Genomic Resource Center at
Davis: http://tgrc.ucdavis.edu/). In addition to the populations of artificially-induced
mutants, these collections provide very useful resources for identifying natural
alleles for a target gene using Ecotilling. This approach refers to the detection, using
high throughput TILLING technology with CEL1 type endonuclease, of allelic
variants in the species germplasm (e.g., ecotypes in Arabidopsis, hence the name of
Ecotilling) [128]. This can be particularly useful in association genetics approaches,
for example for the confirmation of the role of a candidate gene previously shown
to be co-localised with a QTL.

Mutation detection

A recent review [124] describes in detail the current technologies for mutation and
polymorphism detection while Yeung et al. [114] analyses and compares the diverse
enzymatic mutation detection technologies available. Basically, three different tech-
nologies are used for high throughput mutation discovery in TILLING: (i), the de-
naturing high performance liquid chromatography (dHPLC), originally used in the
first plant TILLING project described [108] and further improved since [118]. The
dHPLC is aduplex DNA melting temperature-based system that allows the detection
of duplex DNA fragments destabilised by mismatches using temperature-controlled
hydrophobic columns. The system is automated and can be used for screening four
family DNA pools. However, this technology displays best results with DNA frag-
ment ranging from 300-600 bp and does not allow the precise location of the point
mutation; (ii), the single-strand conformational polymorphism (SSCP), which de-
tects conformational changes caused by point mutations and has been improved and
automated for capillary DNA sequencers. However, it shows the same limitations as
dHPLC, i.e., the limitation to pools of four DNA samples, the detection of fragments
<500 bp, and the unknown location of the mismatch; and (iii) enzymatic mismatch
cleavage using endonuclease enzymes, members of the S1 nuclease family, followed
by electrophoresis separation of the cleaved fragments [109]. This technology has
become the method of choice for high throughput TILLING [122].

Originally extracted from celery and later from other plant species, the CEL1
endonuclease is a mismatch cleavage enzyme showing very little sequence bias
[114]. In addition, CEL1 has an exonuclease activity that cleaves the 5’ end of
DNA fragments, thus releasing the labelled end used for detecting DNA fragments
(Fig. 4), which can decrease the sensitivity of the detection. Efficient CEL1 enzyme
preparations can be purified from many plant sources [124]. In addition, enzymes
performing similar functions have been cloned and are commercially available such
as the Surveyor mutation detection kit (http://www.transgenomic.com/flash/
surveyor/Surveyor.asp [129]) or the ENDO1 enzyme (http://www.evry.inra.fr/
public/projects/tilling/tilling.html).



Natural and artificially induced genetic variability in crop and model plant species 41

The technology used for high throughput TILLING with CEL1 is very simple
(Fig. 4) and affordable in main research centres. First, a DNA fragment of 0.5-2 kb
is amplified from DNA pools (usually eight-fold pools when detecting heterozygous
mutations, i.e., 1 genome in 16) with differentially labelled primers. The design of
the primer will depend on the previous knowledge of the protein (the most interest-
ing region to target for functional analysis according to the user, e.g., the interacting
domain in a transcription factor or the catalytic site in an enzyme), the probability
of finding knockout or missense mutations in the region, which can be estimated
using the CODDLE (Codons Optimised to detect Deleterious Lesions) software
developed by the Seattle group (http://www.proweb.org/coddle) or, more simply for
many crop plants, the availability of EST or genomic sequences. Amplification of
the DNA fragment with unlabelled primers is usually done in a first round to check
the primers, especially when amplifying DNA fragments with no previous knowl-
edge of genomic sequence of the target gene, e.g., EST sequences. In order to reduce
the costs of labelled primers specifically designed for a target gene, a two-step
strategy can also be followed for amplifying labelled DNA fragments [115]. The
labelling of the primers will depend on the electrophoresis equipment used: infra-
red-based sequencers such as LI-COR, which is commonly used for TILLING due
to its robustness and sensitivity [109, 121, 124], or fluorescence-based sequencers
such as ABI sequencers [114]. Once the labelled DNA fragment has been amplified,
the amplicon is subjected to a high temperature-denaturation/low temperature-rean-
nealing cycle, in order to allow the formation of DNA homoduplexes and heterodu-
plexes. By using CEL1 endonuclease, which cuts at the 3’ side of the mismatch, the
heteroduplexes are then cleaved while homoduplexes are left intact by the enzyme
(Fig. 4). The cleaved end-labelled DNA fragments can be readily separated from
non-cleaved DNA fragments by electrophoresis on denaturing gel. Furthermore, the
use of differentially labelled primers allows the precise location on the gel of the
two cleaved fragments and thus the detection of the region in the DNA sequence
where mutation occurs. In addition to the use of Photoshop software for gel image
analysis and band detection, newly developed free software called GelBuddy (www.
proweb.org/gelbuddy/index.html) facilitates image analysis of TILLING gels [124].

Once a mutant is detected in a pool of families, the deconvolution of the pool and
the detection of the mutated family or plant can be done using the same technology
(PCR amplification of target gene, CEL1 cleavage and denaturing gel detection). The
mutation in the target gene can thus be confirmed, usually by using DNA sequencing
or alternative Single Nucleotide Polymorphism (SNP) detection technologies [124].

Linking mutation to phenotype

EMS induces point mutations, mostly G/C-to-A/T transitions. Single-base change
in protein-coding genes may be classified as silent, missense or truncation. Silent
mutations do not affect the protein. Missense mutations arise when single base
change in a given codon induces changes in the amino acid encoded. Amino acid
substitutions can be conservative (similar function is expected) or non conservative
(e.g., the substitution of the neutral amino acid glycine by the basic amino acid ar-
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ginine, which is expected to modify the function of the protein). The SIFT (Sorting
Intolerant From Tolerant) program can be used to predict the damage to protein
function caused by missense mutation (http://blocks.fhcrc.org/sift/SIFT.html).
Truncations of the protein resulting in knockout mutants are expected from single-
base changes converting an amino acid codon to a stop codon or from mutations in
splice junctions. From the TILLING experimental results obtained in Arabidopsis
[116] the proportion of nonsilent mutations that may affect the biological function
of the protein and hence the phenotype of the plant, was estimated to be 55%, in-
cluding 5% of truncations and 50% of missense mutations. Interestingly, there was
a considerable bias in favour of heterozygotes for the detection of the most severe
mutations (truncations), suggesting that corresponding knockouts mutations in ho-
mozygotes were lethal. These overall results highlight the potential of TILLING for
discovering allelic series, including knockouts and hypomorphic mutations that are
highly informative for functional studies of target genes.

Once a mutation is discovered in a target gene and the corresponding family
identified, the effect on the plant resulting from a possible lesion on the protein must
be screened phenotypically, usually on the M3 plants. At this point, a major issue is
how to differentiate the mutation in the target gene detected by TILLING from the
other background mutations in the plant introduced by EMS mutagenesis. Actually,
the strategy will depend on the objective of TILLING, i.e., for mutation breeding
purposes or for functional study of a target gene. For crop improvement, a number
of cycles of backcrossing are necessary before agronomic use. In the highly muta-
genised wheat for example, Slade et al. [120] estimated that four backcrosses should
be sufficient to derive lines very similar to the parents but did not exclude the need
for additional backcrosses. For functional studies, it is generally considered that the
fastest method for demonstrating that the mutant phenotype results from a mutation
in the target gene is to isolate additional mutant alleles [94].

The optimum number of mutated alleles necessary for functional studies of a
gene of interest will mostly depend on the target gene studied. Based on the results
obtained in Arabidopsis [116], an allelic series including one knockout mutation
and ~10 missense mutations that can possibly affect the biological function of the
protein should roughly comprise 20 mutated alleles. Depending on the species and
the density of mutations in the collection of mutants, this objective usually involves
the screening of 3,000-6,000 mutant lines. According to calculations made with
Arabidopsis TILLING collections [121], the frequency of misattributing a pheno-
type observed in M3 plants in these collections to a mutation in the target gene can
be estimated to ~0.05% when the parent M2 plant is heterozygous. When the M2
plant is homozygous, a backcross is necessary before selfing and analysing the
plants. Another possibility is to cross two independent lines mutated in the same
target gene. Background mutations are heterozygous in the resulting plants carrying
the two non-complementing mutations that can therefore be considered as responsi-
ble for the phenotype observed.
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Plant systems biology and reverse genetics approaches

During the last few years, tremendous efforts have been made in developing ge-
nome-size reverse genetics tools and genetic resources in model and crop plants for
studying gene function in the context of the plant. At the same time, the develop-
ment of high-throughput approaches for global analyses of transcripts, proteins and
metabolites paved the way for a comprehensive description of complex networks
involved in signal transduction cascades, in regulation and activity of primary or
secondary metabolism pathways, and in many other aspects of plant development.
These studies have major consequences on our present way of studying plants.
First, they allow the discovery of new candidate genes putatively involved in the
operation of plant functional networks [94]. Other candidate genes are being gener-
ated in both model and crop plants by the forward genetic approaches aimed at
identifying the genes underlying the QTLs controlling traits of interest, as previously
described. Second, beyond the mere functional study of a single gene, genomic-scale
approaches now allow the study of plant biology from the systems level. Visualisa-
tion of metabolic pathways and cell functions is already facilitated in some model
and crop plants by tools such as MAPMAN which uses transcriptome and metabo-
lome data [130, 131], and models describing complex networks begin to be con-
structed in plants [132].

Plant mutants have already proved valuable tools for plant functional genomic
studies, e.g., for the discovery of the function of new candidate genes and the analy-
sis of their possible contribution to functional complexes or metabolic pathways
[94, 133]. Given the very large collections of insertional mutants available in Ara-
bidopsis, most of the studies have been focused on knockout mutants. Indeed, null
mutants can be very helpful genetic tools for systems biology approaches, as dem-
onstrated in yeast [134], for example. In this genome-scale study, knockout mutants
with functions in central metabolism used in combination with computational
analyses, flux data and phenotypic analyses gave access to the relative contribution
of network redundancy and of alternative pathways to genetic network robustness
in yeast. Although comparable studies are still difficult to carry out in plants, inte-
grated analyses of plant primary and secondary metabolic networks using null mu-
tants or overexpressing lines have been attempted [132, 133] and should progress
with the availability of new mutant collections and analytical technologies.

In that context, the recent development of large-scale RNAI in Arabidopsis and,
especially, of the TILLING and Ecotilling approaches in model and crop plants is
very promising. The RNAI approach is already used in some model organisms such
as C. elegans for inducing systematic perturbations of networks in order to study the
functional relationships between the components of interacting complexes involved
in a signalling pathway [135]. Systems biology approaches can also make use of
TILLING and Ecotilling, which reveal allelic series corresponding to several inde-
pendent point mutations or other small mutations in target genes. Point mutations
are more prone than null mutants to cause a range of discrete variations close to
those observed in natural populations, where most traits are controlled by Quantita-
tive Trait Loci (QTLs). One advantage of the artificially-induced mutants for
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systems biology studies is that they share exactly the same genetic background and
can thus be directly compared, while the lines containing the natural allelic variants
usually differ by several tens or hundreds of genes, even in Nearly Isogenic Lines.
Nonsilent point mutation usually results in protein lesion, the severity of which will
cause a more or less profound effect on the biological function of the protein. Point
mutations may also produce dominant-negative mutants, which are very useful
tools for revealing functional interactions between the components of a complex or
a signalling pathway [2], or even gain-of-function mutants such as the tomato LIN5
invertase variant with altered Kkinetic properties [60], originally cloned as a QTL
controlling solid soluble solids content in tomato fruit [59]. The wide collection
of mutants available for a gene of interest identified through TILLING should be
particularly amenable for systems biology approaches since a range of quantitative
effects, and not only of qualitative effects as in null mutants, can be obtained.

How to use these mutants? One of the most immediate applications in network
analysis for mutants detected by TILLING is probably the study of the regulation of
metabolic pathways. Although few TILLING results have been published to date,
two of the target genes analysed were involved in sugar metabolism, either in starch
synthesis [120] or in the synthesis of callose, a beta-1,3-glucan [136]. Metabolite
profiling is a high throughput technology with limited cost per sample that allows
the initial screening of the allelic mutants identified, even those showing no visual
phenotype. Furthermore, since the establishment of network regulation needs large-
scale studies involving as many different mutants in several target genes as possible
[132, 134], metabolic profiling can be reduced in a first step to rapid metabolic fin-
gerprinting of the mutants, as already experimented with mutants displaying a silent
phenotype [137, 138]. In this approach, the most interesting mutants showing sig-
nificant perturbations in metabolite profiles can be subsequently subjected to more
detailed analyses, including transcriptome, proteome and metabolome profiling.
The global set of data obtained can be further combined and analysed with the array
of tools already available ([130, 139] and Chapters by Dieuaide-Noubhani et al.,
Nikiforova and Willmitzer, and Ahrens et al.), in order to validate the underlying
hypotheses on the functional role of the target gene studied and/or to give a compre-
hensive view of the metabolic network [140]. One delicate step for fully under-
standing the changes in the metabolic network induced by the mutation in the target
genes remains the analysis of the metabolic fluxes ([141] and Chapter by Dieuaide-
Noubhani et al.), which can hardly be carried out in a high throughput manner in
plants, and, therefore, will probably remain restricted to a limited number of mutants
previously selected through global analyses.

Summary

The first experiments on gene and QTL mapping date from the late 1980s. Since that
time, hundreds of mapping experiments have been performed, providing information
on the genetic basis of individual traits or allowing complex traits to be dissected into
their component parts. The number of Mendelian mutations characterised by a candi-
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date gene approach or positional cloning has rapidly increased, but very few QTL
have been characterised to date. Accumulated data from several species suggest a
continuum between discrete variations (mutant genes) and continuous variations
(QTL), and the identification of QTL will improve our understanding of the molecular
and physiological basis to complex character variation. In this context, gene maps and
large EST data sets will prove useful as sources of candidates. The access to a growing
number of sequenced genomes, and to transcriptomic and proteomic approaches,
should increase the efficiency of QTL characterisation. Furthermore ecophysiological
modelling and metabolomic profiling will give clues to the physiological processes
underlying QTL and the potential candidate genes. In this context, fine mapping of the
QTL and validation of the candidate genes will become the most restrictive steps.
The development of large scale DNA sequencing facilities and of high through-
put gene and protein expression and metabolite profiling technologies in model and
crop plants has triggered the development of genome-wide reverse genetics tools
aimed at identifying and characterising the function of candidate genes in the context
of the plant. Insertional mutagenesis using T-DNA or transposons that creates
knockout or activation-tagged mutants and, more recently, large scale gene target-
ing by RNAI have been the methods of choice for functional genomics in the model
plants Arabidopsis and rice. However, most of the above mentioned tools are un-
available in crop plants due to limitations (low throughput genetic transformation
technologies, size of the genome) inherent to the species. For these reasons, new
technologies for detecting unknown mutations created by chemical mutagens or
ionising radiations have emerged in the recent years. Among them, the TILLING
(Targeting Induced Local Lesions In Genomes) technology, which is mostly based
on the generation by a chemical mutagen (EMS) of high density point mutations
evenly distributed in the genome and on the subsequent screening of the mutant
collection by a PCR-based enzymatic assay, has become very popular and is cur-
rently applied to a wide variety of model and crop plants. Chemical mutagenesis
used in the TILLING procedure generates a range of mutated alleles for a target
gene, including knockouts and missense mutations, thereby affecting more or less
severely the biological function of the corresponding protein and the phenotype of
the plant. These allelic series should prove valuable tools for plant systems biology
studies by enabling the comparative analysis of metabolic or other complex networks
in plants showing genetic variability for a target gene with the help of genomics
(transcriptome, proteome, metabolome) and data analysis/modelling tools.
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Abstract

In this chapter, basic technical aspects concerning the design of DNA microarray experiments
are discussed including sample preparation, hybridisation conditions and statistical significance
of the acquired data are detailed. Given that microarrays are perhaps the most used tool in plant
systems biology there is much experience in the pitfalls in using them. Herein important consid-
erations are presented for both the experimental biologists and data analyst in order to maximise
the utility of these resources. Finally a case study using the analysis of vitamin C deficient plants
is presented to illustrate the power of this approach in enhancing comprehension of important
and complex biological functions.

Introduction

Vitamin C (vtc, ascorbic acid, AA) is a highly abundant, multifunctional metabolite
in plants [1-4]. Low AA levels trigger programmed cell death (PCD) and promote
early senescence [5, 6]. While cellular oxidation increases during leaf senescence
[7] there is no evidence to suggest that progressive increases in oxidative damage to
macromolecules causes ageing in plant cells as is the case in animal ageing [8]. AA
is a key antioxidant vitamin in primates that is implicated in healthy ageing [9, 10].
It is therefore important to gain a comprehensive understanding of the diverse roles
of AAin plant biology as well as knowledge of factors that limit AA production and
accumulation in different plant organs.

The major pathway of AA synthesis in leaves occurs via GDP-D-mannose,
GDP-L-galactose and L-galactose [11] but other entry points into the AA synthetic
networks have been suggested [12, 13]. The mannose pathway branches at GDP-
mannose, where an epimerase can form either GDP-gulose or GDP-L-galactose.
Low shoot AA can be induced by perturbations in L-galactose metabolism, for ex-
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ample in the Arabidopsis thaliana low AA (vtc) vtc4 mutant, which has decreased
I-galactose 1-P phosphatase activity or in vtcl, which lacks GDP-mannose pyro-
phosphorylase (GMPase) [14] or in transformed plants with much reduced activity
of this enzyme [15]. Decreases in L-galactose dehydrogenase [16] and L-galactono-
1, 4-lactone dehydrogenase (GalLDH) activity [17] however, have less effect on AA
content.

AA synthesis and accumulation in leaves is regulated by light and responds to
both developmental and environmental triggers [18, 19]. High light grown plants
have more AA than those grown with less irradiance [19] and AA levels are low
basal senescent leaves [20]. Light exerts effects through control of respiration [19]
and through altered gene expression [21]. In some species leaf AA accumulation
fluctuates on a diurnal basis being lowest at night and increasing throughout the day
[22, 23] but in other species no diurnal changes in leaf AA can be observed [18].
The capacity of AA re-generation from its oxidised forms also impacts on AA abun-
dance [19, 24].

Several types of A. thaliana vtc mutants having low AA have been isolated [14,
25]. They have been useful in analysing the pathway of AA synthesis as well as in
elucidating the roles of AA. The vtcl mutant was selected via its high sensitivity to
ozone and it also has enhanced sensitivity to other abiotic stresses such as freezing
and UV-B irradiation [14, 26]. This mutant has a single point mutation in the gene
encoding GMPase, causing the conversion of a highly conserved proline to a serine
at position 22. Hence, while the vtcl plants contain similar amounts of GMPase
mMRNA to the wild type, the GMPase protein in the mutant has a substantially lower
enzyme activity. As a result the mutant rosette leaves have only about 30% of the
leaf AA than that found in the wild type [25]. When grown in optimal growth condi-
tions, vtcl has similar rates of photosynthesis to the wild type [27]. However, vtc
leaves generally have a decreased capacity to accumulate zeaxanthin and as a result
photosynthesis is more susceptible to inhibition by abiotic stress [28]. The vtc2
mutants, which have even less ascorbate (15-20% [6]) are deficient in GDP-L-ga-
lactose phosphorylase, an enzyme that is at a branch point between AA synthesis
and incorporation of L-galactose into polysaccharides. Ectopic expression of the
animal AA biosynthetic enzyme L-gulono-1, 4-lactone oxidase, restores wild type
AA levels and the wild type phenotype to the vtcl and vtc2 mutants suggesting that
the vtcl and vtc2 phenotypes are caused largely by low AA alone [29]. The vtc3 and
vtc4 mutants have about 50% of the wild type leaf AA levels [25].

Genetic screens based on either sugar-regulated gene expression or the arrest of
development by high concentrations of sugar has led to the isolation of a number of
sugar sensing mutants [30-34]. Much evidence has shown that abscisic acid (ABA)
and some components of the ABA signal transduction cascades are involved in
sugar signalling in higher plants [35, 36]. The abi4 mutant for example plays a crucial
role in ABA signalling and is also important in detecting both sucrose and glucose
and in mediating the inhibitory effect of nitrate on LR development [37, 38].
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Strategy and approach

In the following studies we have used the vtc1 mutant and the abi4 mutant. By com-
paring the transcriptome of the vtc1 mutant with that of the wild-type we were able
to explore the effects of low AA on the A. thaliana leaf transcriptome [6, 39]. Simi-
larly, by feeding AA, we were able to greatly enhance tissue AA levels and thus
compare the high AA transcriptome to that of controls. Expression analysis tech-
niques were compared using the results from three to five pairs of array plates.
Three to five independent samples of mutant and wild-type leaves were harvested
from 5-6 week-old plants. Furthermore, comparisons of the vtcl mutant transcrip-
tome with that of the abi4 mutant that is unable to sense ABA has enabled elucidation
of relationships between ABA and AA signalling.

Micro-array analysis

The gene expression microarray is a very powerful tool for exploring the expression
level of large numbers of transcripts in a single experiment. Currently available
commercial microarrays can be used to track the expression levels of 60,000 or
more transcripts. RNA extracted from whole plants, specific tissues or specific cells
is normally used in a hybridisation process to compare the expression levels in one
system to that of another. Where an organism has been well studied and the gene
responses are well understood, microarray technology can be used as a diagnostic
tool to determine when samples are behaving abnormally. The majority of microarray
experiments follow a similar set of procedures. Assuming that a suitable microarray
is available, the selected material is prepared for hybridisation with the microarray
slide and is inoculated with a number of control RNAs. Dependant on the type of
the experiment, the sample RNA may be labelled with Cy3 or Cy5 dyes. Following
hybridisation, the microarray is then scanned with a high-precision laser scanning
device to provide a measure of the quantity of material hybridising to each probe
cell of the microarray. The data is then processed with appropriate statistically
sound analysis software to derive the comparative levels of the microarray probes,
either within a single microarray slide or across multiple slides that comprise the
experiment. Having obtained the levels of the represented genes, the task is then one
of identifying relationships between the genes under the conditions of the experiments
which normally involves the application of considerable biological knowledge.
The process briefly outlined above describes purely the basic processes that
have to be undertaken. In reality, each step requires the adherence to appropriate
protocols, enormous care when undertaking the RNA extraction, inoculation, label-
ling, hybridisation, scanning setup and data analysis stage. The analysis stage brings
with it a further complication in that the quantity of data can be overwhelming. An
experiment utilising a 40,000 spot microarray with five experimental conditions and
three replicates will generate 600,000 expression levels (and many other values that
need to be considered when looking at the statistical significance), which stretches
the capabilities of the most able spreadsheet manipulator. Therefore, it is necessary
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to deploy appropriate software packages to analyse the basic information coming
from the experiments. The package has to pull out the pertinent points of interest for
the biologist to then examine the system and obtain some insight as to the processes
involved in the organism.

The microarray slide

The majority of microarray users will obtain their slides from one of the commercial
providers or from a collaborating research group that produces a volume of slides.
While it is not essential to know the detail as to how a microarray slide is produced,
there are certain issues that should be considered when preparing an experiment and
when analysing the results. There are two main types of microarray. A portion of a
‘spotted’ array is shown in Figure 1. This is produced by a robot that deposits small
quantities of each of the cDNA or oligonucleotide target probe onto the array slide.
This process is termed printing and the probe spots are produced in blocks. The
number of spots in each block normally depends on the design of the array. Each
block is printed by one print needle. For example, a slide may have 48 blocks, each
comprising 20 columns, by 25 rows. While the robot tries to align the spots so that
they have the same size with similar spacing, in practice, the spots tend to vary both
in size and alignment. In addition, while alignment within a block may be quite
good, alignment between blocks is not as precise. The probe spot alignment, or mis-
alignment is an important issue when preparing to scan the image. No two print
needles are exactly the same and each wears in use so that spots vary in size. The
process of production can be imperfect and sometimes the probe spot dries too
quickly leading to doughnut or cusp shaped hybridisation to the probe. Thus, the
problem of variations in density over the spots and between slides requires resolu-
tion by analysis software [40].

Figure 1. Two blocks of a cDNA microarray after hybridisation showing the Cy5 response.
Note the contamination at top right and the large spot sizes in the left hand block. Note also that
some spots exhibit doughnut and cusp-like hybridisation.
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Figure 2. A section of an Affymetrix athO oligonucleotide microarray chip after hybridisation.
This shows the typically rectangular probe spots found in this production type. Note that this
slide has some obvious contamination that affects a large number of probe cells, and although
not easily discernable in this image, there is a general degradation of image quality to the left of
the obvious white-out.

The second type of array is the manufactured oligonucleotide array. The most
commonly found arrays of this form are geneChip™ proprietary products of
Affymetrix. In this process, each probe is generated through the application of a
sequence of printed masks, nucleotide washes and etching washes to generate the
appropriate short cDNA fragments in each array cell. These arrays have very regu-
lar spacing and can be produced at very high densities. Figure 2 shows a portion of
an Affymetrix geneChip array with some damage.

The approach to the creation of cDNA fragments for each cell in the Affymetrix
arrays is interesting in itself. Cells are created as perfect cDNA matches and as mis-
match cells, where the mis-match cells will have one nucleotide being altered from
the perfect match. To determine if a hybridisation match occurs, account can be
taken of the perfect matches and the mis-matches. This approach has sound ground-
ings but it does mean that an analysis package has to be used to determine the hy-
bridisation levels.

For the spotted array, the control is labelled with one dye and the experiment
with the other dye. One slide is then hybridised with both the control and the ex-
periment. Often the process is repeated with the dyes reversed and hybridised onto
a second plate. This is known as a dye-swap experiment. This helps in providing a
better framework for experiment analysis when determining the relative expression
levels. Both types of microarray suffer from the problem that the hybridisation
process is not perfect and there is invariably a gradient of hybridisation quality
across the slide. In addition, there are frequently found contaminations which may
affect a few or many probes, due to air bubbles, dust or imperfect drying of the slide
or some other mechanism that results in streaks, blotches and non-uniform slide
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density. Figures 1 and 2 show portions of hybridised arrays where not everything
went perfectly. The process of creating a hybridised array can be fraught. Thus, it is
wise to invest time in practising the technique before investing in the use of hard-
won experimental material which may not easily be re-created.

Types of experiment

The type of experiment that could be conducted using microarray technologies is
limited perhaps only by imagination. However, dye-swap experiments are most
commonly used on spotted arrays. Here, a control sample is labelled with, e.g., Cy3
and the sample which it is to be compared with is labelled with Cy5. Both labelled
samples are hybridised to the same array. When scanned, a value for the Cy3 and the
Cyb5 labelled signal levels is obtained. A comparison is then made between the sig-
nal levels of the Cy3 and Cy5 labelled expressions. The resultant comparison gives
a value for the difference between the expression levels of the two samples for each
DNA or RNA fragment in the probe set. The experiment is then repeated but the
control is labelled with Cy5 and the experiment sample labelled with Cy3. A com-
parison can then be made between the two sets of data to obtain a better estimate of
the expression levels. Comparisons are often made as ratios of one level against the
other. Sometimes log, values of the ratio are used and the straight ratio may be
called the fold level, so it is best to check the definitions that are being used.

Another common experiment, particularly with Affymetrix labelling style arrays,
involves no labelling with one sample only hybridised per array slide. This requires
that good analysis technologies are available when comparing data across slides.
Single array techniques are often used in diagnostic experiments. Time series ex-
periments utilise either single sample slides or dye swap pairs with material being
taken from a sequence of samplings, the timing varying according to the purpose of
the experiment. Sample times may vary from minutes to days according to the un-
derlying process being investigated. In all experiments, consideration must be given
to experiment replication. Normally, costs prohibit large quantities of replication,
but normal practice is to make three biological replicates to ensure that unusual bio-
logical variation is masked and that the unfortunate appearance of slide damage/
contamination does not totally ruin the complete experiment. Where it is known that
the biological sample is likely to exhibit a very noisy response, then additional rep-
licates may well be required. There is normally no need to make technical replicates
of the same biological sample unless they are to experiment with the procedures or
to gain experience.

Scanning a slide

After hybridisation, each slide must be scanned with an appropriate laser scanner
and its associated software package. The quality of the scan setup will have an im-
pact on the subsequent analysis and quality of the results. Normally, the process is
to identify each spot or cell with a mask. This mask is intended to enclose the
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printed spot or oligonucleotide cell (easier with the manufactured cell chip which
has regular spacing). In the case of printed spot arrays, the alignment of the spots is
not always perfect and the microarray for any printed batch will need the mask to be
checked and manually aligned to ensure that spots are not missed or cut by the spot
mask area. Once the mask has been aligned and the mask saved, the scanned levels
of the control probes can be assessed. An analysis of the levels of the controls will
give an indication of both the hybridisation quality and will indicate any serious
change of levels across the slide. If the non-control probes show overall low signal
strength, the illumination may be increased. However, this might make some very
strong hybridisation levels to become saturated (reach the peak recordable light in-
tensity). While this may not be a problem, it does mean that relative hybridisation
strengths cannot be compared with the saturated probes. Most scanners allow satu-
rated spots and contaminated spots to be flagged with an appropriate value to record
the problem. If a relative level is required for spots that have to be saturated to lift
lower intensity spots out of the background, a second scan can be made where the
signal level is lower. This second scan can be used to gain a higher level of knowl-
edge of the relative expressions and will require additional steps in the expression
level analysis to merge the multiple scans of one slide.

The scanning process divides the slide into pixels, where a pixel represents the
resolution of the scanner. A single spot will typically be divided into 25 or more
pixels. The scanning software will normally calculate the mean and median intensi-
ties of the pixels in each spot mask and various statistical measures of the intensity
distribution. It will also determine similar values for the areas outside the spot mask
to derive background intensity. Most scanning software will calculate a number of
additional measures and output these to a file in a standard format suitable for read-
ing by an analysis package. Values to be output are often user selectable and care
must be taken to ensure that all the required values are output and it is good practice
to keep the output format and order the same for all scans in the same experiment to
avoid subsequent errors or misunderstanding in the data organisation.

Experimental design issues

When planning a microarray experiment, it is just as important to consider the de-
sign of the experiment in terms of sample collection as is the design of the way the
microarrays will be hybridised. For example, where RNA extraction leads to low
volumes of RNA, it is often necessary to produce many numbers of plants to obtain
the appropriate material quantities. If these plants are grown in a glasshouse, then
normal methods of randomisation should be employed to ensure that the growing
environment is not placing undue emphasis on the outcome in that one location may
be receiving undue water, fertilisation, drought, heat etc.

As an example, suppose we have an experiment where we wish to compare the
tissue sampled from 20 isogenic and 20 transgenic plants and we wish to have three
replicates. The glasshouse space available is of necessity limited and there may be
slight differences in the basic treatments of the plants in different parts of the glass-
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Figure 3. Random block layout for wheat plant pots to accommodate an experiment with three
replicates, the control isogenic line and the experiment, the transgenic line; each experiment
requiring 10 plants to gather sufficient material for RNA extraction of seed embryo. An addi-
tional experiment using the same plants has been accommodated in which leaf tissue is sampled
with three replicates.

house benching as well as possible effects of the proximity to the glass, proximity
to the edge of the bench and proximity to a neighbour. To provide a suitable random
placement of the plants in the growing environment a random block design was
produced using a standard statistical package (Genstat (http://www.vsn-intl.com/
genstat/)) as shown in Figure 3. While the experiment could have proceeded with-
out the random block design, the use of it will ensure that any systematic effects of
the environment will not unduly weight the results.

The design of the microarray itself requires consideration. In most cases, this
will be outside the control of the experimenter, but a microarray should have con-
trols placed at random locations across the slide and be of sufficient number to
provide an indication of poor hybridisation technique. In addition, each probe frag-
ment should be repeated at least once on the slide, preferably the copies should not
be close to each other. Probe copies provide a better estimate and also give further
indication of non-uniform hybridisation. The comparison of one sample against
another is straightforward in experiments where there is just one control and one
sample, but where there are several experimental samples (with perhaps different
treatments, or different phenotypes), consideration should be made of the design of
the experiment in terms of which sample is hybridised with which for dye-swap
experiments. For example comparing Control C against experiment A and Control
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C against experiment B does enable an analysis to be made to compare A against B
and this will potentially increase the error over a straight microarray experiment in
which A is compared to B. The problem becomes more severe when there are several
comparisons being made. The further the comparison gets from being an experi-
mental comparison, the more error will creep into the results. The basic principle for
a sound analysis is to minimise the distance between comparisons. A distance, of
two plates between comparisons is acceptable, while distances greater than three
may lead to misleading results. However, this has to be moderated with the cost of
the experiment. For multi-dye hybridisations, it is sensible to use a single control
over all plates within one experiment. Control versus A plus Control versus B en-
ables a comparison of A versus B to be made through an analysis. The careful de-
signing of an array experiment can save a lot of money by reducing the number of
slides required and it is always wise to consult a statistician for the design.

Analysing the scans

The problem of extracting expression levels from the scanned microarrays has been
exercising mathematicians and statisticians for several years. The methodologies
are numerous and the techniques are improving [41]. Novel and revised methodolo-
gies appear in the literature at an alarming rate. The practicing biologist is faced
with the major dilemma of how to proceed and with which methodology. The quick-
est approach in the laboratory would be to use a package such as the proprietary
GeneSpring product which can be used to analyse large numbers of microarrays of
both the spotted type and the manufactured Affymetrix style. The more adventurous
could well make use of the R package which is a public domain statistical package
coupled with the growing library of microarray analysis tools prepared for the R
environment and GeneSpring users can import some R procedures into the package.
This may be driven directly or through the Bioconductor suite. There are also many
public domain packages that are suitable for handling either spotted arrays or the
Affymetrix style arrays. In any event, the successful use of any of these software
tools requires that the user understands how to use the tool and the process that he
is trying to achieve. It is important to understand that the whole basis of the analysis
of the expression levels is that almost all the expression levels will be similar when
two samples are compared. The analysis packages make use of this fact. The sig-
nificantly differentially expressed spots may number a few hundred to a few thousand.
An initial check of the overall spot levels can be made by producing a scattergram
and a frequency histogram without any adjustments to values other than grouping.
This will give an immediate impression of potential bias in the slide and an indica-
tion of the amount of high expressers as well as a possible indication of hybridisa-
tion problems. A simple regression of two slides against each other will also show a
broad comparison between the expression levels.

The analysis process is straightforward in terms of the overall strategy, but com-
plex in terms of some of the techniques. A simple dye swap experiment using a pair
of microarrays without replication (for the sake of clarity) will be used to illustrate
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the type of analysis required. The following is not intended to be a definitive ap-
proach to the analysis of a dye-swap spotted array experiment, but rather a descrip-
tion of a frequently used technique. The example is given to illustrate the type of
steps that have to be taken by the analysis software. Other experiment types are not
covered in such depth. In this experiment we have as a control, leaf tissue of Arabi-
dopsis thaliana wild strain Col0. The experiment plant is leaf tissue of the same
species but the vtc1 mutant, an AA-deficient strain. The microarray being used is the
Stanford University cDNA chip which comprises about 4,500 spots representing
7,800 genes. The chip was produced by a robot with 48 printing needles giving rise
to 48 blocks of 18 cols by 18 rows of spots. Not all spot locations contain a probe.
Following hybridisation and labelling with Cy3 and Cy5, the two microarrays were
scanned and the resultant file provided the mean and median spot pixel intensities
and variance for both foreground and background levels. The single dye-swap ex-
periment resulted in four images and scan files, a Cy3 and Cy5 for each plate. The
dye was reversed on the second plate. The analysis mechanism described by Yang
et al. [41] (Normalization for cONA Microarray Data, Berkeley Technical Report;
http://citeseer.nj.nec.com/406329.html) has been followed to undertake a print-tip
normalisation with robust smoothing. For any spot j, j = 1,...,p where p is the
number of spots, the measured fluorescent intensities R; and G; are the Red and
Green dye values respectively. Background intensities could be subtracted but have
not been in this analysis on the assumption that the equipment setup stabilised the
background, but a recalculation with background removed should perhaps be un-
dertaken for comparison, but note that the background determination used by the
scanner will possibly include many small blemishes and if the mask is not properly
set on scanning, will also include some hybridised spot pixels making the back-
ground levels rather misleading. This method is also sensitive to very low intensity
levels (often found after background levels are subtracted from the individual spot
intensities) where misleading results can be obtained

The log intensity ratio M = log,(R/G) gives a useful measure of the changes in
expression level. Plotting M against A = log,(N(RG)) assists in the identification of
spot artefacts and intensity dependent patterns, since A is proportional to intensity
and it is known that the dyes fluoresce differently at different intensities. The M
versus A plots can give an immediate indication of the overall expression levels.
Figure 4(A) shows a typical M-A plot of raw data. In this case there is a marked
tendency to favour the green dye at the lower intensity levels. Note that in produc-
ing this M-A plot, the controls and empty spot cells have been removed from the
analysis. Note that the horizontal line is M=0, thus any spot above the line is ex-
pressing more in Red and below the line, more in Green. One would expect that the
majority of probes will show very little change between the two samples. It is useful
to view the distribution of M values, Figure 4(D) shows the distribution density of
M values, the tick mark representing M=0. From this it can be seen that the distribu-
tion is skewed and while there are plenty of outliers, the majority of spots appear in
a broad central distribution. The statistical task is to look at the causes of the distri-
bution being non-normal and to implement methods to sharpen this distribution so
that the majority of spots fall into a tight cluster around M=0. Yang et al. recom-
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Figure 4. M-A plots (A) showing the typical spread of spot intensities for the raw data. Back-
ground has not been removed. The horizontal line represents M=0. Any spot above this line
indicates a relative over-expression of the red (Cy5) labelled sample and anything below the
line represents a relative over-expression of the green (Cy3) labelled sample. (B) After Lowess
normalisation and block scaling, the spots above the cut=off of |0.95| show the selected differ-
entially expressed genes. (C) the selected genes thrown back onto the raw data distribution. (D)
the raw data distribution of M, (E) the distribution of M values in each group in the raw data.
(F) the distribution of M in each group after applying a Loweess normalisation.

mend that the data should be normalised within each print-tip group because each
print tip has different properties and this leads to variation between the printed spots
between the tips, but similar spot profiles should be seen for a single print tip. The
Stanford arrays can be taken to have 48 print tips, with at least 48 blocks, which
may each differ in their characteristics. Print tips are identified by the on-plate
Block numbers in the scanner output. Even if the utilisation of print tips in the
blocks is not known, any one block can be treated as a separate group and this
method would then treat systematic variations across the plate.

Within a print tip, Yang et al. [40] perform a transformation of the data using a
robust Lowess smoothing, although a smoothed spline approach could also be used.
The Lowess method performs a robust local linear fit to the data. Since the majority
of M values should be expected to be similar (little or no change in expression levels
with a value close to 1, the Lowess is made robust by disregarding points that lie
outside five standard deviations adjustable from the mean value. Lowess takes a
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percentage of the points near the x-value (A in our case) to create a localised linear
regression fit to the data, having due regard to robustness. The fraction used is typi-
cally 20%. The Lowess fit thus gives a modified distribution of data for each print
tip. The mean of this distribution can then be used to normalise the data within each
print tip group. We thus have the Lowess transformation of

M — M —c;i(A)

where c;(A) is the Lowess fit to the M versus A plot for the iy, grid, where i =1,...,1,
and | represents the number of print-tips. Figure 4(E) shows the separated print tip
groups before normalisation against a Lowess fit. This should be compared with
Figure 4(F) that shows the distribution after Lowess fitting has been performed:
This transformation improves the distribution of the data, making for better com-
parisons. It can be improved further by scaling each print tip group with the others
to remove cross-plate variation in the hybridisation process. This method is not
necessarily the best approach to across plate normalisation, but is reasonably sound.
This, then, provides a full plate normalisation enabling comparisons of individual
spot intensities to be made across the whole plate. Yang et al. found that appropriate
robust scale factor to apply is a;%, where

gy = MAD; / \[IT'.; MAD|]
where MAD is the median absolute deviation, defined by
MAD;= median; { | M;; — median;(M;)) | }

Where, | denotes the total number of print-tip groups and Mj; denotes the iy, log
ratio in the iy, print tip group, j = 1,...,n;. This robust MAD statistic will not be af-
fected by the small percentage of differentially expressed genes which will appear
as outliers in the M versus A plots. The resultant scaled distribution, is now sharper
and centred on M=0 as can be seen in Figure 4(B). In this case, the outliers, where
| M| > 0.95 have been highlighted. These spots are considered to be worthy of
further investigation. The cut-off point for | M | is somewhat arbitrary and can be
determined by selective PCR. In reality, the number of expressed genes to be inves-
tigated will limit the positioning of the base-line cut-off. To continue the analysis,
the marked spots are saved along with their original ID’s for later comparison with
other data. In the dye-swap experiments, Yang et al. have suggested that a between
plate normalisation of 0.5 (M + M”) versus 0.5 (A + A’) will provide an immediate
comparison between the plates. In this case Aand M are for one plate and the A’and
M’ are for the dye swapped plate.

It has been found that the method of normalising and scaling each plate without
background removal leads to less error. Each set of expressed spots fitting the crite-
ria | M | > 0.95 are then compared. Spots appearing in both the un-swapped and
dye-swapped plates with these high expression level changes are then considered as
likely candidates for function investigation. Spots that do not appear in both lists are
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considered as dubious spots which may be worth following up, but there is insuffi-
cient evidence to include them in the likely spots list. The un-swapped array is
shown in Figure 4(C) with the raw data highlighted spots marking the spots meeting
the | M | > 0.95 criteria following normalisation and scaling. The dye-swapped plate
must undergo a similar analysis. Following some manipulation, a set of spots was
found to match the selection criteria. Consideration must be given to any spots that
are flagged as damaged or are saturated. Only by examining the original image can
the damaged spots be declared as possible for inclusion or must be excluded from
the analysis. Saturated spots should be noted in order that later comparisons are in-
formed of the artificially low intensity value being recorded. Should the experiment
include replicates, the mean plates should be further normalised between them to
obtain comparable values. This is normally performed by taking the plate with me-
dian spot expression level of each plate and using this plate as a normalising factor
for all plates in the experiment. However, with a dye swap experiment using the
above print-tip analysis, the result is a set of ratios. The ratios should not change
significantly if all the values are raised or lowered in a broad spectrum spot nor-
malisation process. If there are a number of spots exhibiting low intensities, and
there will normally be many of these, the ratios of these intensities may be over-
emphasised by the analysis process. Therefore it is recommended that a small inten-
sity value be added to all spot intensities prior to analysis, typically this will be a
value of around 50. This “trick’ to avoid artefacts of the analysis process is particu-
larly important if the background intensity level is subtracted from the foreground
spot intensity. After reversing the results of the second dye-swap analysis, the two
sets of results can be combined, usually as a mean value of the spot ratios and with
replicate plates, a similar combination taken. Statistical considerations should be
made and the variance used to give some confidence to the values obtained. For the
cut-off of M| > = 0.95, we obtained 255 spots with differential expression levels.
But what does it tell us and how do we proceed? The first step in the further analysis
is to identify the gene related to the probe fragment. This may be provided by the
microarray supplier as an EST or gene accession number or loci. Alternatively, only
the sequence may be known. Whatever is the given information; this must be used
to seek appropriate annotation for the selected probes. For the print-tip analysis
above, the plain results are given in Table 1 where the spots giving an absolute log
fold change of > 1.5 is shown. The interpretation of these results is given in later
sections of this chapter. Note that the expression levels are often referred to as “fold-
change’ and some authors use Log base 2 to express the change, where others show
the actual change. In the former, a negative value indicates the divisor spot is ex-
pressing more and a value of 0 means they are equal. The data is now ready for
exploration and this normally requires several steps:

a) Check the identity of the probes of interest and if possible check the sequence
used is functionally equivalent to the target

b) Check for recent annotations of the probes of interest

¢) Compare with similar or related experiments for additional hints of activity levels

d) Explore related biology/processes etc
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Table 1. Results of print tip analysis showing |log,(R/G)| > 1.5. The annotation given is that locat-
ed at the time for the experiment (2004) and includes several unknown functional equivalents

results for 1-50

SpotName

ID

Loci Log2-
RbyG

Annotation

N96309
T45480

BE521605
T13744

N65691

T20589

M90508

M90508

H76907

T41722

R86807
T22117
N37319

T43374

G8C11T7
13211777

M20E9STM
38C12T7

229K3T7

8812177

PR-1

PR-1

205J15T7

65F10T7

124115T7
96024T7
209K19T7

118F16T7

AA395470 94E10XP

At3g45780 —2.09
2.05

—2.04
-2.02

-2.01

Atl1g09310 -2.01

-1.98
-1.98
-1.95

1.92

-1.89
-1.88
-1.87

At2938540 -1.86

At3g21760 —1.84

nonphototropic hypocotyl 1
UDP-glucoronosyl/UDP-glucosyl transferase
family protein contains Pfam profile: PF00201
UDP-glucoronosyl and UDP-glucosyl trans-
ferase

expressed protein contains similarity to cotton
fiber expressed protein 1 [Gossypium hirsutum]
0i|3264828|gb|AAC33276

expressed protein contains similarity to cotton
fiber expressed protein 1 [Gossypium hirsutum]
0i|3264828|gb|AAC33276

expressed protein contains Pfam profile
PF04398: Protein of unknown function,
DUF538

Not found in TAIR. EMBL.: Arabidopsis
thaliana PR-1-like mRNA, complete cds.

Not found in TAIR. EMBL.: Arabidopsis
thaliana PR-1-like mMRNA, complete cds.
nonspecific lipid transfer protein 1 (LTP1)
identical to SP|Q42589

zinc finger (C2H2 type) family protein
(ZAT12) identical to zinc finger protein
ZAT12 [Arabidopsis thaliana]
0i|1418325|emb|CAA67232

expressed protein

expressed protein

long hypocotyl in far-red 1 (HFR1) / reduced
phytochrome signalling (REP1) / basic helix-
loop-helix FBI1 protein (FBI1) / reduced
sensitivity to far-red light (RSF1) / bHLH
protein 26 (BHLHO026) (BHLH26) identical to
SP|Q9FE22 Long hypocotyl in far-red 1
(bHLH-like protein HFR1) (Reduced phyto-
chrome signalling) (Basic helix-loop-helix
FBI1 protein) (Reduced sensitivity to far-red
light) [Arabidopsis thaliana]

nonspecific lipid transfer protein 1 (LTP1)
identical to SP|Q42589

glycosyltransferase family; contains Pfam
profile: PF00201 UDP-glucoronosyl and
UDP-glucosyl transferase
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Table 1 (continue)

results for 1-50

SpotName

ID

Loci

Log2-
RbyG

Annotation

H37424

BE521509
AAT21829
H75999

R90351

T75691

AAB50788

N37141

AA395252

Al100032
H36203

AAB05360

N38199

181F10T7

M20A8XTM
126C9T7
193C17T7

192M4AT7

142K12T7

283D6T7

208H21T7

119G10XP

149E11XP
175018T7

185F1XP

220N21T7

At2g44790

Atlg11210

At2922125

At2g08383
At3g16370

At1g49750

1.83

-1.8
-1.78
-1.75

-1.73

-1.72

1.69

-1.68

1.67

-1.65
-1.64

-1.63

-1.61

uclacyanin Il; almost identical to uclacyanin Il
G1:3399769 from [Arabidopsis thaliana]

expressed protein; similar to hypothetical
protein GB:AAD50003 GI:5734738 from
[Arabidopsis thaliana]

C2 domain-containing protein; contains Pfam
profile PF00168: C2 domain

expressed protein contains Pfam profile
PF04862: Protein of unknown function,
DUF642

glutathione S-transferase, putative similar to
glutathione transferase GB:CAA09188
[Alopecurus myosuroides]

alpha-xylosidase (XYL1) identical to alpha-
xylosidase precursor GB:AAD05539
G1:4163997 from [Arabidopsis thaliana];
contains Pfam profile PF01055: Glycosyl
hydrolases family 31; identical to cDNA
alpha-xylosidase precursor (XYL1) partial cds
G1:4163996

glycerophosphoryl diester phosphodiesterase
family protein weak similarity to SP|P37965
Glycerophosphoryl diester phosphodiesterase
(EC 3.1.4.46) [Bacillus subtilis]; contains
Pfam profile PF03009: Glycerophosphoryl
diester phosphodiesterase family

predicted protein

GDSL-motif lipase/hydrolase protein; similar
to family Il lipases EXL3 GI:15054386, EXL1
G1:15054382, EXL2 GI:15054384 from
[Arabidopsis thaliana]; contains Pfam profile:
PF00657 Lipase Acylhydrolase with GDSL-
like motif

leucine rich repeat protein family; contains
leucine-rich repeats, Pfam:PF00560

defective chloroplasts and leaves protein-
related / DCL protein-related similar to defec-
tive chloroplasts and leaves (DCL) protein SP:
Q42463 from [Lycopersicon esculentum]
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Table 1 (continue)

results for 1-50

SpotName 1D Loci Log2- Annotation
RbyG
T22370 104E20T7 -1.6  germin-like protein (GER1) identical to ger-

min-like protein subfamily 3 member 1
SP|P94040; contains Pfam profile: PF01072
Germin family

AA394884 314A10T7 Atlg75540 -1.6  diadenosine 5°,5*‘-P1,P4-tetraphosphate
hydrolase, putative; similar to diadenosine
5°,5*“-P1,P4-tetraphosphate hydrolase
G1:1888556 from [Lupinus angustifolius],
[Hordeum vulgare subsp. vulgare]
G1:2564253; contains Pfam profile PF00293:
NUDIX domain

T21853 103M21T7 At4g21960 —1.59 peroxidase, putative; identical to peroxidase
[Arabidopsis thaliana]
gi|1402904|emb|CAA66957

N38263  222A6T7 At3910490 -1.59 expressed protein; N-terminus similar to un-
known protein GB:AAD25613 [Arabidopsis
thaliana]

N65640  240K8T7 At2g39530 1.57  expressed protein

AA712435 190N22T7  At5g38980 —1.55 expressed protein

BE520960 M15H9STM 1.55

R90675 191G3T7 At1g22500 -1.52 RING-H2 zinc finger protein ATL5 -related,;
similar to RING-H2 zinc finger protein ATL5
G1:4928401 from [Arabidopsis thaliana]

H37681 185B17T7  At4g29510 -1.5 protein arginine N-methyltransferase, puta-
tive; similar to protein arginine N-methyl-
transferase 1-variant 2 (Homo sapiens)
GI:7453575

Affymetrix style microarray analysis

For our next example, we consider an experiment using a number of microarrays
produced by Affymetrix, the AthO (also known as the AG-8K) chip which contains
spots representing some 30,000 Arabidopsis thaliana genes. The Affymetrix chip
contains multiple repeats of *perfect match’ (PM) oligonucleotide fragments for
each target sequence together with a similar number of *mis-match’ (MM) fragments,
where each MM spot differs in one base. The various PM’s and MM’s are dispersed
across the physical plate. These arrays require a different type of analysis. Some
approaches to the analysis make a comparison of the PM and MM values to deter-
mine if true hybridisation has been detected at a given target. Other packages ignore
the MM values and simply determine the hybridisation levels through the PM
probes alone. Among the former are the Affymetrix (GCOS) and dChip. Techniques
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such as Robust Multichip Average (RMA) [42] and gcRMA (available in Biocon-
ductor (http://www.bioconductor.org/)) ignore the MM probes and consider only
the normalisation of the PM probes. The RMA approach is gaining in popularity and
while gcRMA is considered the best of these approaches as it includes a Bayes em-
pirical GC content correction on the basic RMA methodology. A quick analysis may
readily be conducted using RMAExpress which is a standalone, public domain
package purely for the fast application of RMA to extract the expression levels over
many chips. GeneSpring can analyse Affymetrix scans using their in-built algorithms
or can be used to analyse with RMA or gcRMA by importing the appropriate R-
library. Bioconductor can of course be used for the application of these techniques
as well. The proprietary packages provide many features for exploring the data be-
fore and post processing and the reader is referred to the documentation of such
packages to see how this may be performed.

The use of RMA Express (http://stat-www.berkeley.edu/users/bolstad/RMA
Express/RMAExpress.html), R (http://www.r-project.org/) and many other algorithm
collections requires that the user work hard and have some experience in the collec-
tion and analysis of post-processed data. Experienced users will make use of avail-
able database systems (MySQL, MS Access, ORACLE or Postgress for example)
and statistical engines (R, Genstat etc.) to import (and in some instances determine
expression levels) the normalised data collection and perform the appropriate calcu-
lation of confidence levels, spot-level comparisons, linking to annotation and selec-
tion/export of results of interest. The visualisation of features is often a most valu-
able exploration tool and the methods of distance clustering for the production of
‘heat maps’ which shows the ‘nearness’ of plates to each other along with the levels
of expression and the use of Principal Component Analysis which separates the
main causes of differences between the experiments and helps to identify signifi-
cantly distinct gene sets across experiments are two primary methods available for
the exploration of the data. Such methods are available in the larger packages and in
the many public domain tools.

Time series microarray analysis

One frequent class of microarray experiment is that of the time series. In this case,
there is usually a biologically replicated series of microarrays taken at intervals of
hours, days or weeks according to the organism being studied. Often these form a
series of about five time steps. The objective being to determine how an organism
responds to various stimuli over time compared to an appropriate control. The
analysis of such short time series requires the use of appropriate techniques [43] due
to the large number of genes and the small number of time steps where many pat-
terns are expected to arise at random. One implementation for the analysis of short
time series is available in the public domain package STEM (http://www.cs.cmu.
edu/~jernst/stem/). Figure 5 shows the results of the STEM-based analysis of a time
series of an experiment on Arabidopsis, using the Affymetrix athl chip for which
the scanned data was analysed using RMA Express to obtain the expression levels
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Figure 5. STEM package cluster groups. The greyed cells identify the significant clusters.

normalised across all plates in the experiment. The expression levels were then ex-
ported in a suitable format for STEM, along with the available GO ontology for
Arabidopsis. In this experiment there are five time steps available. Figure 5 shows
the resultant set of distinct time-series clusters found by the package. The greyed
boxes indicate the clusters of statistical significance. Examination of the first group
shows (Fig. 6) that 65 genes on the arrays follow this specific expression level
change over the time series. With the associated Go annotation, STEM also pro-
vides the gene annotation sorted by function enabling a rapid assimilation to be
made of the activities taking place and also often shows the appearance of genes of
unknown function following this same pattern. The problem for the biologist is to
interpret the different clusters and to perhaps locate causal genes for which one
cluster might follow the activity of another.

Significance levels

The analysis of an array would not be complete without some form of measure of
the confidence level of any given spot value or cluster. Essentially, there are
two levels of significance that require to be considered. Firstly, the actual spot
levels and the values of the pixels that makes up these spots. There may be consid-
erable variation in the pixel intensity for a single spot (e.g., in the case of a ‘dough-
nut’ or ‘cusp’-like spot) and this will have an impact on the quality of the signifi-
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Figure 6. The first cluster profile from STEM showing 65 genes that fit this expression pattern.

cance of the spot value. There may also be ‘missing’ spots across an experiment,
where one spot is damaged in a set of replicates and there may be a large variance
in the intensities of one probe across the replicates. These sources of uncertainty
need to be considered in the analysis. In addition, it is possible to assess the
probability of a selected spot being present at high intensities through chance in
these experiments. Both these measures are frequently produced by the various
analysis packages, but not all. This chapter cannot deal with the methods used to
describe such statistics, and reference should be made to an appropriate text such
as that of Wit and McClure [44] which also gives a very thorough review of analy-
sis approaches.

Resources

A large experiment with 150 arrays each representing say 30,000 genes will eat
away the average resources of the normal computer user. Many analysis packages
are memory hungry and the volume of calculations is sufficiently large to strain the
smaller desktop computers. As an illustration, a typical PC running under the Mi-
crosoft Windows XP operating system configured for analysing this large number of
arrays is likely to have 300 Gb of local disc, 4 Gb local memory, 3 GHz CPU chip
and a large size monitor. Be prepared to handle the disk store back-up require-
ment.
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Discernable signatures within the vtc transcriptome

Using the Affymetrix Athl (AG-8K) array, we found that AA deficiency in the vtcl
mutant led to the differential expression of 171 genes, of which 97 genes were in-
duced and 74 genes were repressed. A comparable experiment conducted using the
Affymetrix ATH1-22K full genome array yielded 821 differentially expressed genes
of which 249 were induced and 572 were repressed. In comparison, the abi4 mutant
leaves yielded 535 differentially expressed genes compared to the wild type control
leaves using the Affymetrix ATH1-22K array. Of these 149 genes were induced and
386 were repressed. From analysis of the gene expression patterns we were able to
determine that AA content influences the following processes.

Innate immune resistance to pathogens

One of the most interesting features of the vtcl transcriptome is the synchronised
accumulation of transcripts encoding pathogenesis resistance (PR) proteins [39,
45]. These results suggested that low AA might confer enhanced basal resistance to
pathogen attack. This hypothesis was confirmed in experiments using a number of
pathogens such as Pseudomonas syringae [5, 6]. In contrast to low symplastic AA,
which enhances pathogen resistance [6], low abundance of AA specifically in the
apoplast as a result of high ascorbate oxidase (AO) activity, decreases pathogen
resistance [46].

Effects on growth and development

AA and AO have long been considered to influence cell expansion [23, 46-48] and
mitosis [4, 49]. The low AA transcriptome revealed effects of AA on plant hormone
metabolism that indicate how AA can influence growth. AA-modulated transcripts
that have the potential to influence plant growth and development are listed in Ta-
bles 2-5. Some of the implications of these results are as follows.

Effects on ABA and giberrellic acid

The vtcl signature contained transcripts indicating an increased abundance of ABA
in the vtc mutants, a feature confirmed by measurements of leaf ABA contents [45].
The upregulation of this plant hormone in vtc leaves coincides with enhanced
pathogen resistance and slowed growth [6, 50]. We therefore considered whether at
least a part of AA signalling in leaves proceeds via ABA-dependent pathways. We
thus examined whether ABA signalling events were also involved in AA-signalling.
A comparison of the transcriptome of abi4 and vtc1 leaves relative to that of the wild
type leaves revealed that a large number of transcripts were modified in a similar
manner in abi4 and vtcl leaves. A comparison of the data given in Table 4 for vtcl
and Table 5 for abi4, illustrates this point well for transcripts concerned with cell
cycle regulation, development and hormone and cell signalling. The extent of cross
talk between ABA and AA signalling pathways is now under further investigation.
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Table 2. Comparisons of key transcripts related to plant growth and development modified in
vtcl leaves relative to wild type using the Affymetrix GeneChip Arabidopsis Genome Array
(AG-8K array; [45])

Fold Gene ID Description Function
-1.45  At5g44290  CDC2a type cyclin (AK23; G1—S) cell cycle
-1.31  Atlg30690 patellin-4(cytokinesis) cell cycle
+1.22  At4g39180  Putative SEC14 protein (cytokinesis) cell cycle
+1.48  At2g23430  cyclin-dependent kinase inhibitor (KRP1; G1—S)  cell cycle
+2.16  At2g18050  histone H1-3 (HIS1-3) cell cycle
-1.3 At1g01720  ATAF1 Mrna (NAM) development
-1.26  At4g20370  twin sister of FT (TSF) development
-1.23  At4g33680  Abarrent growth and death 2 development
-1.21  At2g02450  Putative no apical meristem (NAM) protein development
+1.33  At5g41410  homeobox protein (BEL1; NAM) development
+1.53  At2g17040  putative no apical meristem (NAM) protein development
+1.65  At4g26850  vitamin C defective 2 (VTC 2) development
+1.2 At2g36690  putative giberellin beta-hydroxylase hormone
+1.57  At4g00700  putative phosphoribosylanthranilate hormone
+1.7 At4g19170  9-cis neoxanthin cleavage enzyme hormone

Fold: — ve fold change (repressed); + ve fold change (induced);

Gene ID A. thaliana gene identifier;

Description: name of protein encoded by transcript modified;

Function: functional classification of each encoded protein was obtained from the Protein
Families Data Base (Pfam; http://www.sanger.ac.uk/Software/Pfam/).

ABA and gibberellic acid (GA) often act antagonistically to modulate plant growth
and defence. An interesting example of this antagonistic behaviour in relation to anti-
oxidant defence concerns the regulation of PCD in the aleurone layer of seeds. ABA
increases antioxidant gene expression and decreased sensitivity to H,O, and suscepti-
bly to PCD [51, 52] while application of GA decreased antioxidant gene expression
and increased sensitivity to H,O, and susceptibly to cell death [51, 52]. AAis a co-fac-
tor for the 2-oxoacid-dependant dioxygenase (20DD) family of enzymes [47]. These
enzymes are responsible for the synthesis of a wide range of crucial secondary me-
tabolites including hormones [47]. One example is the aminocyclopropane-1-car-
boxylate (ACC) oxidase that is involved in ethylene synthesis. The ACC oxidase re-
quires AA and Fe?* for optimal rates of catalysis [53]. Furthermore cytosolic 20DD’s
catalyse the final stages of GA synthesis, where GA12-aldehyde is converted to bioac-
tive GA [54, 55]. In in vitro assays, 20DD activities can often be enhanced by AA
[54]. The KNOX family of transcription factors exert control over GA synthesis. In-
terestingly, transcripts encoding the homeodomain transcription factor BEL1 which
activate the KNOX transcription factors [56, 57] are modulated by AA. Cellular AA
availability may therefore contribute to the control of the BEL1 and KNOX proteins.
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Table 3. Comparisons of key transcripts related to plant growth and development modified in
wild type A. thaliana leaves as a result of ascorbate feeding, using data obtained from the Stan-
ford Universities CONA microarrays [41]

Fold Gene ID Description Function
-2.62  Atlgl2430  kinesin-like protein (cytokinesis) cell cycle
-2.58 At4939050 Kinesin like protein (MKRP2; cytokinesis) cell cycle
-2.35 Atlg52740 putative histone H2A cell cycle
-2.22  Atlg4a7210 putative cyclin-A (CYCA3.2; G1—S) cell cycle
-2.1 At4g08950  putative phi-1-like phosphate-induced protein cell cycle
+1.99 At5g03340 cell division control protein (CDC48E; cytokinesis)  cell cycle
+2.03 At3g28780 histone-H4-like protein cell cycle
-2.79  At2g29890  putative villin (actin binding) development
-2.62  Atlg57720  similarity to elongation factor 1-gamma 2 development
-2.57 Atg73680 similarity to feebly-like protein development
-2.51 At1g09640 eukaryotic translation elongation factor 1 complex development
-2.31 At3g23550 aberrant lateral root formation 5 development
-2.03 At1g69490 NAC-like, activated by AP3/PI protein development
-1.97 At4912420 putative pollen-specific protein development
-1.95 At5g41410 homeotic protein (BEL1;NAM) development
+2.14  At3g57520 imbibition protein homolog development
+2.17  At5g44120  similarity to legumin-like protein development
-2.89 Atlg05180  auxin-resistance protein (AXR1; IAA) hormone
-1.96 At4g19170  9-cis neoxanthin cleavage enzyme (ABA) hormone

+2.38 At4g37390  Indole-3-acetic acid-amido synthetase (GH3.2; IAA)  hormone

-2.89 At4929810 MAP kinase kinase 2 (MAPKK2; MK1) signalling
-2.32  At3g59220  pirin-like protein signalling
-2.08 At3g18820 putative GTP binding protein signalling
-2.01 At4909720 rab7-like protein (GTP-binding protein) signalling

Fold: — ve fold change (repressed); + ve fold change (induced);

Gene ID A. thaliana gene identifier;

Description: name of protein encoded by transcript modified,;

Function: functional classification of each encoded protein was obtained from the Protein
Families Data Base (Pfam; http://www.sanger.ac.uk/Software/Pfam/).
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Table 4. Comparisons of key transcripts related to plant growth and development modified in
vtcl leaves relative to wild type using the Affymetrix ATH1-22K arrays

Fold  GeneID Description Function
-0.90 Atlg75780 tubulin beta-1 chain Cell cycle
+0.90 At3g53230 cell division control protein (CDCA48E; cytokinesis) Cell cycle
+0.90 At5g10400 *histone H3-like protein Cell cycle
+0.99 At3g46030 *histone H2B-ike protein Cell cycle
-1.69 At5g24780 vegetative storage protein (Vspl) development
-1.22 At1g28330 dormancy-associated protein development
-0.97 At5g62210 embryo-specific protein development
-0.94 At4g13560 *putative protein LEA protein development
+0.87 At5g33290 putative protein EXOSTOSIN-1 development
+0.89 At4g02380 *late embryogenesis abundant 3 family protein / LEA3  development
+1.00 At3g49530 NAC2-like protein development
+1.06 At3g44350 *NAC domain-like protein development
+1.08 At1g61340 late embryogenesis abundant protein (LEA) development
+1.23 At3g54150 embryonic abundant protein development
+1.33 At3g25290 auxin-responsive family protein development
+1.58 At5g22380 *NAC-domain protein-like development
+1.75 At2g43000 NAM (no apical meristem)-like protein development
+1.84 At2g17040 *NAM (no apical meristem)-like protein development
-0.96 At1g78440 *gibberellin 2- oxidase hormone
-0.89 At1g05560 indole-3-acetate beta-D-glucosyltransferase hormone
+1.02 At4g29740 cytokinin dehydrogenase 4 hormones
+1.18 At5g20400 ethylene-forming-enzyme-like dioxygenase hormone
+2.02 At5g913320 auxin-responsive GH3 family protein hormone
+0.89 At4g08470 putative mitogen-activated protein kinase signalling
+0.91 At3g45640 mitogen-activated protein kinase 3 (MAP kinase 3; signalling
AtMPK3)
+1.01 Atl1g73500 *mitogen-activated protein Kinase kinase (MAPKK; signalling
MKK9)

Transcriptome comparison acquired using the Affymetrix GeneChip Arabidopsis Genome Ar-
ray (ATH1-22K).

Fold: — ve fold change (repressed); + ve fold change (induced);

Gene ID A. thaliana gene identifier;

Description: name of protein encoded by transcript modified,;

Function: functional classification of each encoded protein was obtained from the Protein

Families Data Base (Pfam; http://www.sanger.ac.uk/Software/Pfam/).

* Transcript abundance also changed in abi4-102 leaves (Tab. 4), identified using the same
technology.
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Table 5. Comparisons of key transcripts related to plant growth and development modified
abi4-102 leaves relative to wild type using the Affymetrix GeneChip Arabidopsis Genome Ar-
ray (ATH1-22K)

Fold  GenelID Description Function
-1.09 At3g50240 Kinesin-like protein (KIF4; cytokinesis) cell cycle
-0.86  At4g27180  Kinesin-related protein katB (ATK2; cytokinesis) cell cycle
-0.85 At3gl6000  myosin heavy chain-like protein (cytokinesis) cell cycle
+0.86  At2g38810  histone H2A cell cycle
+0.92  At5g22880  histone H2B-like protein cell cycle
+1.00  At3g45930  histone H4-like protein cell cycle
+1.24  At3g46030  *histone H2B-like protein cell cycle
+1.44  At5g10400  *histone H3-like protein cell cycle
-1.61  At4gl3560 *putative protein LEA protein development
-1.28  At1g34180  similar to NAM-like protein development
-1.17  Atl1g52690 late embryogenesis-abundant protein (LEA76) development
-1.04  At5g55400  fimbrin (actin binding) development
—-0.99 At3gl3470 putative chaperonin 60 beta development
-0.93 At1g72030  GCN5-related N-acetyltransferase (GNAT) development
+0.85  At3g44350  *putative NAC-domain containing protein 61 development
+0.88  At4g02380  *‘embryogenesis abundant 3 family protein / LEA3 family development
protein
+0.91  Atlg01720  similar to NAC domain protein development
+1.33  At2g39030  GCN5-related N-acetyltransferase (GNAT) development
+1.40  At1g52890  similar to NAM (no apical meristem) protein development
+1.44  At2g17040  *NAM (no apical meristem)-like protein development
+1.58  At5g22380 *NAC-domain protein-like development
-0.94  Atl1g15550 putative similar to gibberellin 3 beta-hydroxylase hormone
-0.89  Atlg78440  *gibberellin 2-oxidase hormone
+0.96  At4g11280  1-aminocyclopropane-1-carboxylate synthase 6 hormone

+1.40 Atlg73500 *putative mitogen-activated protein kinase kinase (MKK9) signalling

Fold: — ve fold change (repressed); + ve fold change (induced);

Gene ID A. thaliana gene identifier;

Description: name of protein encoded by transcript modified;

Function: functional classification of each encoded protein was obtained from the Protein

Families Data Base (Pfam; http://www.sanger.ac.uk/Software/Pfam/).

* Transcript abundance also changed in vtcl-1 leaves (Tab. 3), identified using the same tech-
nology.

The synthesis of biologically active GAs (GA; and GA,) is dependent upon the
activities of the GA 20 oxidase (GA200X/GA5) enzymes. The expression of the
GA200X genes is regulated by feedback inhibition by GA [58, 59]. For example,
GAG5 transcripts accumulate in gibberellin-deficient plants [60]. Furthermore, sense
and antisense expression of GA5 has direct effects on the bioactive gibberellin con-
tent of transformed A. thaliana plants and also effects growth [61]. The expression
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of GA5 can therefore be used as a physiological marker for bioactive GA. GA5
transcripts were much more abundant in vtcl leaves than those of the wild type,
suggesting that bioactive GAs were much lower in vitcl leaves.

Affects on two mitogen activated protein kinase cascades

Mitogen activated protein kinase (MAPK) cascades are also involved in redox sig-
nal transduction [62]. It is therefore not surprising that leaf AA abundance influ-
enced the mRNAs encoding a MAPK (AtMPK3; At3g45640) and a MAPK kinase
(MAPKKJ; At1g73500; Tab. 5), which were increased in vtcl shoots. The expres-
sion of AtMPK3 is regulated by ABA and it is thought to act by phosphorylation of
the ABI5 transcription factor [63]. We have also shown that the amount of AA in the
apoplast specifically also responses to auxin and GA through effects on MAP kinase
activity [46].

Effects on the cell cycle

Cell cycle regulation involves components that respond to signals from the external
environment as well as intrinsic developmental programmes and it ensures that
DNA is replicated with high fidelity within the constraints of prevailing environ-
mental conditions [64, 65]. Arabidopsis has two Al-type (CYCAL; 1 and CYCAL; 2),
four A2-type (CYCA2;1, CYCA2;2, CYCAZ2;3, and CYCAZ2;4) and four A3-type
(CYCAS3;1, CYCAS;2, CYCA3;3, and CYCAZ3;4) cyclins. In synchronised tobacco
BY?2 cells, different A-type cyclins are expressed sequentially at different time
points from late G1/early S-phase through to mid M-phase [66]. The alfalfa A2-type
cyclin Medsa; CYCAZ2;2 is expressed during all phases of the cell cycle, but its as-
sociated kinase activity peaks both in S-phase and during the G2/M transition [67].
Cyclin-dependent kinases (CDKSs) play a central role in cell cycle regulation, with
negative kip-related proteins (KRP) and positive (D-type cyclins) regulators acting
downstream of environmental inputs at the G1 checkpoint [65, 68].

The components that are modulated by AA in the control on the cell cycle re-
main to be characterised but effects of AA are independent of glutathione another
abundant cellular antioxidant [49]. The expression of a number of genes encoding
kinases were altered in vtcl leaves compared to the wild type [45] (Tabs 2-4).
A number of transcripts that transcripts are either known to be cell cycle regulat-
ed or could be associated with progression through the cell cycle are shown in
Figure 7. At this stage we can only draw tentative conclusions from the trans-
criptome results as changes in gene expression can be an indirect effect of arrest
in cell cycle phases, rather than being direct targets of AA signalling. Here we
consider the changes in expression as a molecular footprint revealing the points
of cell cycle arrest (providing that the transcripts are indeed cell cycle regulated).
They are thus putative targets which will induce arrests at specific phases of
the cell cycle. While transcripts encoding D-type cyclins were similar in vtcl and
wild type leaves and they were not changed by feeding AA, the expression of
KRP1, a cyclin dependant kinase inhibitor (ICK1; At2g23430) was upregulated in
the vtcl transcriptome suggesting that low AA favours decreased D-type cyclin
expression.
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Other cell cycle transcripts

histone transcripts:

At291850
At1952740

At3g28780 AK23 / At5g44290 (+)
Atbg10400 CYCA3.2/At1g47210 (-)
At3g10400 KRP1/At2923430 (-)

. G, (Quiescence)
Phi-1: At4g08950

Tubulin: At1g75780

Re-entry to G,

(endreduplication) CDC48 / At5g03340 / At3g53230 (+/-)
Palletins At1g30690 / At4g39180 (+/-)
Kinesins At1g12340 / At4g39050 (-)

° Commitment to next phase?

Figure 7. Ascorbate-modulated cell cycle genes. Classification: plus indicates induced by high
ascorbate/redox state while minus indicates repressed by high ascorbate/redox state. Thus genes
that are induced by low ascorbate should be repressed by high ascorbate. Genes decreased by
low ascorbate have a (plus) and genes increased by low ascorbate have a (minus) and genes that
are decreased by high ascorbate thus have a (plus) while those increased by high ascorbate have
a (minus).

While A cyclins and KRP function in the G1/S transition, changes in histone
transcripts are related to S-phase progression. Leaf AA content has a large effect on
the abundance of tubulin transcripts. Changes in tubulin configuration occur during
G2/M. However, tubulin contents are also influenced by other events such as the
exit from the cell cycle and elongation, as well as the transport of protein com-
plexes throughout the cell cycle. Kinesins are required at the G2/M phase. While a
number of issues have to be considered during the interpretation of these data, it
would appear that that AA exerts effects at several points in the cell cycle and not
just the G1/S transition. Some of the observed changes in transcripts could be due
to knock on effects caused by a primary block or delay during cell cycle progression
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by inducing a even a partial restriction at any one cell cycle checkpoint. This will
affect the expression of genes involved at the next checkpoint. Hence, having more
proliferating cells lingering longer in G1 will reduce the population of cells in G2, and
therefore the levels of G2/M associated transcripts. It is therefore important to verify
these findings using flow cytometrical analysis data. If the AA-modulated arrest
occurs at both checkpoints, one would expect to find no changes in the balance of cells
in G1 and G2. However, such analyses might be complicated by the superimposed
effects of endoreduplication. The nuclear location of the non expressor of PR proteins
(NPR1) in vtcl leaves [6] may also suggest effects of low AA on endoreduplication
levels in Arabidopsis [69]. The transcriptome data may suggest that expression of
transcripts associated with cytokinesis are modified in vtcl leaves and this may affect
endoreduplication levels. For example, the expression of two Arabidopsis CDC48
proteins known to regulate cell plate turnover and endoplasmic reticulum assembly
during cytokinesis are modified in vitcl rosettes compared to the wild type and these
are also modified in vtcl leaf discs following AA feeding (At5g03340). The expres-
sion of patellin genes (At4g39180 and At1g30690) was also modified in vtcl shoots.
Patellins have been associated with membrane trafficking events during cell plate
formation [70]. The decreased abundance of kinesin transcripts (At1g12430 and
At4g39050) in vtcl leaves compared to those of the wild type suggests that AA could
influence the cell cycle through the various roles of these proteins in centromere sepa-
ration; chromosome attachment to microtubules; and aggregation to the cell plate
during metaphase. Itis of interest to note that one of the kinesins (MKRP2; At4g39050)
whose mRNA abundance is deceased in vtcl is targeted to mitochondria [71].

Conclusions and perspectives

Plants created the aerobic world in which we live and hence they have already tack-
led the key problems of living with oxygen and found solutions in antioxidants and
in redox signalling. The above discussion illustrates how combined physiological
and genetic approaches can be used to identify relevant transcripts and genes for
further analysis and how such data can be used to form testable hypotheses regard-
ing metabolite signalling functions. The results show that AA is not only integral to
the redox regulation of plant cells [1, 2] but that it is also a crucial metabolic regula-
tor influencing plant growth and development. Much of the information that has
allowed the development of current concepts concerning the central role of AA has
come from transcript data. The evidence discussed here illustrates how microarray
analysis can be used to give a comprehensive perspective of the influence of a me-
tabolite such as AA on the leaf transcriptome and hence plant metabolism, physiol-
ogy and development. The underpinning technologies have become routine and
reliable while the methods of transcriptome analysis and data mining have become
increasingly more sophisticated, useful and informative. Thus, we consider that
microarray approaches and transcriptomics are the most easily accessible and user-
friendly of all the information-rich —omics technologies available to help the plant
scientist advance current knowledge.
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For simplicity, in this discussion we have considered only certain of the AA
transcriptome and how these features have enabled us to develop hypotheses for
further testing by more classic physiology and molecular genetic approaches. In this
way, the microarray analysis has provided a much deeper understanding of the in-
teractions between AA and plant hormones that underpin key aspects plant biology
than could have been gleaned by other approaches. With regard to the regulation of
the cell cycle, we can only draw tentative conclusions at present but the transcrip-
tome results suggests at least two redox regulated sites influenced by AA availabil-
ity. We can use this information to test whether AA-dependent changes in compo-
nent gene expression are direct targets of AA signalling or indirect effects of for
example, arrest in cell cycle phases.
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Abstract

DNA microarrays are frequently used to study transcriptome regulation in a wide variety of
organisms. Although they are an invaluable tool for the acquisition of large scale dataset in plant
systems biology, a number of surprising results and unanticipated complications are often
encountered that illustrate the limitations and potential pitfalls of this technology. In this chapter
we will present examples of real world studies from two classes of microarray experiments
that were designed to (i) identify target genes for transcriptional regulators and (ii) to character-
ize complex expression patterns to reveal unexpected dependencies within transcriptional
networks.

Introduction

Since DNA microarrays have been introduced into experimental biology, scientists
have used this technology to study transcriptome regulation in a wide range of or-
ganisms. Thousands of microarray studies have appeared in the literature since. In
Foyer, Kiddle and Verrier’s chapter several basic technical aspects concerning the
design of DNA microarray experiments are discussed including sample preparation,
hybridization conditions and statistical significance of the acquired data. These
considerations are crucial for the successful design of microarray experiments and
the acquisition of meaningful data in a biological context. As in all cases where
large scale data are acquired, a number of surprising results and unanticipated com-
plications can be expected that illustrate the limitations and potential pitfalls of a
new technology. In this chapter, we will present examples of real world studies from
two classes of microarray experiments, i.e., the identification of target genes for
transcriptional regulators and the characterization of complex expression pattern to
reveal unexpected dependencies within transcriptional networks.

Identification of target genes

To obtain a closer understanding of a particular biological process it is often helpful
to search for mutants with defects in this process. The knowledge of the mutant
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gene that is responsible for the observed phenotype can give important insights
into the process of investigation. However, to understand the molecular basis for
a mutant phenotype it is essential to know which genes are deregulated in this
mutant. This is of particular importance for the functional analysis of transcrip-
tional regulators, as to understand the biological function of a transcriptional regula-
tor itself it is often necessary to know the genes that this factor regulates. One clas-
sical approach to identify target genes regulated by a transcription factor is to
compare the transcriptional profile of a mutant for that transcription factor with
that of the corresponding wild type. More advanced approaches make use of an
inducible complementation of the mutant phenotype, e.g., by applying the steroid
inducible rat glucocorticoid receptor-binding domain fused to the protein of interest.
The application of the steroid hormone dexamethasone causes the translocation
of the transcription factor from the cytoplasm into the nucleus where it can activate
its target genes. The challenge in both approaches is to identify the genes that are
directly controlled by the transcription factor and to distinguish these primary target
genes from genes that are deregulated in response to the deregulated primary targets.
Subsequently, potential primary target genes are validated using Chromatin Immu-
noprecipitation (ChIP). The transcription factor should be directly associated
with the locus of its target gene. Therefore, after immunoprecipitation with specific
antibodies directed against the transcription factor the DNA of the target locus
should become enriched in the precipitate. Figure 1 gives an overview about
the typical steps in identifying target genes. In the following two sections we will
discuss two approaches that have been successfully applied to identify primary
target genes for the Arabidopsis Polycomb group protein MEDEA and the tran-
scription factor LEAFY.

PHERESLI is a direct target gene of a plant Polycomb group complex

Polycomb group (PcG) genes have been initially identified in Drosophila by the
isolation of mutations that cause strong homeotic transformations. PcG proteins
form multimeric complexes that keep their target genes in a transcriptionally re-
pressed state, which is stably transmitted over several mitotic divisions. PcG genes
are evolutionary well conserved and have been identified in animals and plants
(reviewed in [1, 2]). In plants, PcG proteins regulate major developmental deci-
sions. In most flowering plants, seed development starts after the fusion of the
two male gametes with the two female gametes, giving rise to the embryo and the
endosperm. The maternally derived seed coat surrounds embryo and endosperm.
Seed coat, embryo and endosperm together constitute the seed (reviewed in [3]).
Mutants of the fertilization independent seed (fis) class bypass the strict require-
ment of fertilization and can start an autonomous endosperm development. If fis
mutants are fertilized, the developing embryo and endosperm have proliferation
defects and the seed aborts. Thus, the FERTILIZATION INDEPENDENT SEED
(FIS) PcG proteins not only repress autonomous seed development but also coor-
dinate the development of embryo and endosperm (reviewed in [4, 5]). To gain a
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Figure 1. Scheme of the typical experimental strategy to identify target genes of transcriptional
regulators. This approach establishes gene function from a microarray experiment. First, tran-
scriptomes are measured on a genome-wide scale with microarrays. This can be a comparison
of a mutant to its wild type. Alternatively, transgenic lines can be used that express a transcrip-
tion factor glucocorticoid receptor hormone-binding domain fusion (TF-GR). In the absence of
the steroid hormone dexamethasone (-DEX) the TF-GR protein remains in the cytosol and does
not affect gene expression. Upon DEX treatment (+DEX), TF-GR migrates into the nucleus and
activates target genes. If translation is not repressed with cycloheximide, both primary and se-
condary targets will be affected. Statistics are then used to select candidate target genes, which
are verified by independent expression analysis. Chromatin immunoprecipitation (ChIP) is used
to identify direct, primary target genes. Finally, the biological relevance of the finding will be
addressed by functional tests. The funnel shape symbolizes number of genes analyzed at any
step.

closer insight into the function of the FIS complex Kbler and colleagues aimed

at the identification of direct target genes of the FIS complex [6]. The first two
identified FIS genes are MEDEA (MEA) and FERTILIZATION INDEPENDENT
ENDOSPERM (FIE) [7-9]. The encoded proteins MEA and FIE interact with each
other and are part of a common protein complex [10-12]. Therefore, the identifica-
tion of target genes of the FIS complex started with the transcriptional analysis of
the mea and fie mutants assuming that in both mutants a common set of target
genes would be deregulated. As the main interest of Kbler and colleagues was the
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identification of primary FIS target genes, the analysis focused on the identifica-
tion of genes that were deregulated in mea and fie mutants at very early develop-
mental stages, before any phenotypic aberrations were observed [6]. Mutant mea
and fie plants as well as wild type plants were grown under the same environmental
conditions and siliques were harvested. In the first sampling, only the mea mutant
and wild type plants were harvested. Several weeks later a second sampling that
was done including also the fie mutant in addition to the mea mutant and wild-type
plants. To minimize effects of plant-to-plant transcriptional variation, material was
collected and pooled from at least ten different plants for each sample. To identify
commonly deregulated genes of the mea and fie mutants probe sets were selected
that changed more than two-fold and were commonly affected in all three mutant
RNA samples. According to these criteria, no probe set detected common down-
regulation of a gene in all mutant samples. In contrast, two probe sets detected
increased gene expression in all three samples. The identified deregulated genes
encode for a MADS-box transcription factor and an S-phase kinase-associated
proteinl. The deregulated expression of both genes in mea and fie mutants was
confirmed by real-time PCR of independently collected material. The gene encod-
ing the MADS-box protein was named PHERES1 (PHE1) and it was shown by
ChIP that PHEL is a direct target gene of the FIS complex. Furthermore, the func-
tional relevance of PHEL could be demonstrated by introducing a knock-down
construct of PHEL into the mea mutant background. The reduced PHE1 expression
in mea mutant seeds caused a partial complementation of seed abortion in mea
plants indicating that enhanced PHEL expression in the mea mutant is causally
related with the mea mutant phenotype.

Identification of direct target genes for LEAFY using inducible
complementation of the leafy mutant

LEAFY (LFY) is a plant specific transcription factor that controls the switch from
vegetative to reproductive development [13, 14]. Despite the biological importance
of this developmental decision, APETALAL (AP1) was until recently the only known
direct target gene of LEAFY [15]. However, the phenotype of Ify mutants was sig-
nificantly stronger than the phenotype of the strongest ap1 mutant allele. Therefore,
it was assumed that AP1 is not the only gene regulated by LFY [16]. The Wagner
laboratory constructed a conditional Ify mutant by introducing a fusion protein of
LFY with the rat glucocorticoid receptor hormone-binding domain (LFY-GR) into
the Ify mutant background. The application of the steroid hormone dexamethasone
causes the translocation of the LFY-GR fusion protein from the cytoplasm to the
nucleus (Fig. 2) causing a rescue of the Ify mutant phenotype [15]. To find LFY
dependent targets William and colleagues used 9-day-old seedlings that showed a
strong LFY dependent up-regulation of AP1 after steroid treatment [16]. AP1 was
also upregulated in the presence of cycloheximide (CHX). CHX inhibits the eu-
karyotic ribosomal peptidyltransferase and is used as an effective inhibitor of pro-
tein synthesis. The application of CHX allows to discriminate between primary (not
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Figure 2. Nucleocytoplasmic shuttling of LEAFY-GR fusion proteins. Within the cytoplasm,
heat shock proteins (HSPs) bind the LEAFY-Glucocorticoid receptor (LFY-GR) fusion protein
and retain this protein in the cytoplasm. Binding of Dexamethasone (ligand) to the LEAFY-
Glucocorticoid receptor fusion protein causes the translocation to the nucleus. The heat shock
proteins (HSPs) dissociate from the receptor and LEAFY can bind to DNA response elements
(LFY-REs) and activate transcription. Unliganded LFY-GR associates again with HSPs and is
exported form the nucleus.

CHX sensitive) and secondary (CHX sensitive) target genes. AP1 induction is inde-
pendent of protein synthesis and thus probably not a secondary effect mediated by
primary LFY targets. Most likely, AP1 is a primary target of LFY. The following
sample sets were generated and analyzed: (1) LFY-GR seedlings treated either with
or without steroid, (2) LFY-GR seedlings treated either with or without steroid but
in the presence of CHX, (3) seedlings constitutively overexpressing LFY (35S::LFY)
in comparison to untreated wild-type seedlings. All samples were generated in du-
plicate using independently treated seedlings. The analysis concentrated on genes
that were at least two-fold upregulated after steroid treatment resulting in 134 up-
regulated genes for sample set 1 and 152 genes for sample set 2. Because of a likely
habituation of the seedlings to higher LFY expression levels, the threshold in sam-
ple set 3 was lowered to 1.4-fold upregulation, resulting in 753 upregulated genes.
Out of this rather large number of deregulated genes, only 14 genes were commonly
upregulated in all three sample sets. The identified genes were considered as good
candidates for direct target genes of LFY as they were directly activated by LFY
(without protein synthesis) and they were expressed at elevated levels in plants that
ectopically express LFY. Williams and colleagues focused their further analysis on
the five most highly expressed genes that encoded either potential transcription fac-
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tors or signal transduction components. Those genes were confirmed to be upregu-
lated in a LFY dependent manner but independently of protein synthesis. Finally,
ChlIP confirmed that LFY is indeed a direct activator of the identified genes as it can
bind to the respective promoter regions. This study succeeded in the identification
of five new direct target genes of LFY establishing that the inducible complementa-
tion of a mutant is an effective approach for the isolation of direct target genes of
transcription factors.

Characterization of transcriptional profiles

In contrast to experiments like those described above, which aim to identify target
genes of certain proteins of interest, other transcriptional profiling experiments aim
to characterize expression patterns during development or in response to certain
signals. Such experiments usually identify groups of genes collectively involved in
certain biological processes and help to establish hypotheses about the biological
functions of uncharacterized genes. Commonly these experiments involve time
course designs and require different approaches for data mining than the simpler
identification of target genes. Such advanced methods include, among others, re-
gression analysis to find genes with particular expression patterns, clustering to
group genes according to their expression profiles, pathway analysis and analysis of
gene ontology (GO) terms to identify affected processes. Here, we will describe two
examples from our own laboratories.

Cell cycle-regulated gene expression in Arabidopsis

The ability to divide is a fundamental property of cells, and multicellular organ-
isms strictly control cell proliferation to ensure regulated development and growth.
Therefore, understanding processes involved in cell division and their control is
of great interest to developmental biology but also to tumor medicine. Others have
studied gene expression during the cell cycle of yeast or mammalian cells [17, 18]
and we used Arabidopsis suspension cells [19, 20]. For the experiments, we used
a protocol to synchronize dividing cells in early S-phase by treatment with the
DNA-polymerase inhibitor aphidicolin [21]. After washing out the drug, cells
synchronously continue through one entire cell cycle, which lasts in these cells
about 22 hours. Material was collected just before drug removal and subsequently
at two hours intervals (Fig. 3). RNA was extracted, labeled and hybridized to
Affymetrix GeneChip® microarrays. In order to enrich for relevant changes,
only genes that passed a biological variation filter were selected. This filter was
based on MASS “presence’ and “difference’ calls [22], and required at least one ‘P’
(= present) and one ‘D’ or ‘I’ (= decreased or increased) for a gene to be consid-
ered. Transcripts that show a cell cycle modulated expression were identified using
a method suggested by Shedden and Cooper [23]: This method assumes that the
expression profile Y;(t) of cell cycle regulated genes can be modeled with a sine
wave. The phase of the wave function relates to the expression maximum during
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Figure 3. Scheme of experimental set-up for the transcriptional profiling of the plant cell-cycle.
Asynchronously growing Arabidopsis suspension cells were incubated with the DNA polyme-
rase inhibitor aphidicolin, which arrests cells in S-phase. At time zero, aphidicolin was washed
out and cells synchronously re-entered the cell cycle. Samples were taken at given times during
an entire cell cycle period. S, G2, M and G1 represent S-phase, G2-phase, mitosis and G1 phase,
respectively.

the cell cycle. For every gene, Y;(t) can be decomposed into a periodic component
Z;(t) with T =22 h and a component R;(t) that is a-periodic or has a period substan-
tially different from 22 h. The proportion of variance explained by the Fourier
basis (Fourier proportion of variance explained (PVE)) is the ratio m; = var(Z;(t))/
var(Y;(t)), which can range from 0 to 1. Values closer to 1 indicate greater sinusoidal
expression with a period of 22 h, whereas values closer to 0 indicate a lack of pe-
riodicity or periodicity with a period that is substantially different. Because among
several thousand measurements some genes would display a periodic expression
profiles even by chance, significance was estimated by shuffling the time points
randomly and calculating a reference distribution of PVE values m based on the
randomized data. Genes with a statistically significant (p < 0.05) greater periodic
expression in the experiment than the randomized data set were selected for down-
stream analysis.

Out of the 22,800 probe sets on the ATH1 microarray, 9,910 passed the biologi-
cal variation filter of which 1,605 had a significant periodicity. Out of these 1,605
genes, 1,016 had a fold change that was at least once larger 2 or smaller —2. Hierar-
chical and SOM clustering grouped these genes into several clusters with preferred
expression in various phases of the cell cycle. A total of 669 genes had their expres-
sion maximum in S phase (0—4 h), 20 genes in G2 (6-8 h), 198 in mitosis (10-14 h)
and 129 genes in G1 (16-19 h). In addition, a large number of signal transduction
and regulatory components had strongly changing expression values but did not
always fit a sine wave. These genes encode 93 receptor like kinases (RLKSs), nine
mitogen-activated protein kinase (MAPK) cascade members, eight protein phos-
phatase 2C (PP2C) and 79 annotated transcription factors (TF). Because only 18 TF
genes were significantly oscillating, it is possible that the factors that regulate cell
cycle oscillation will show expression during the cell cycle that is not necessarily
periodic. It was also striking that there was a higher percentage of G2 genes in this
set of genes than in the set of periodic genes. This analysis found back most of the
known cell cycle regulators in Arabidopsis but identified also many other genes that
were not known to be expressed cell cycle-dependent and likely include unknown
regulators of the cell cycle. Thus, these results provide starting points for future
targeted reverse genetic approaches.
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Transcriptional programs of early reproductive stages in Arabidopsis

In addition to basic cellular functions like progression through the cell cycle, devel-
opmental programs are commonly studied using transcriptional profiling. We have
characterized gene expression during plant reproduction [24]. Here, we analyzed
RNA from three developmental stages of Arabidopsis, namely closed flower buds
shortly before pollination (stage 1), open pollinated flowers (stage I1), and siliques 2
d after pollination (stage I11). First, we compared the expression data to similar data
sets from seedlings, roots or rosette leaves to identify transcripts that preferentially
accumulate in flowers and developing fruits (reproductive set). Second, we selected
genes that change expression upon pollination and initiation of seed and fruit devel-
opment (regulated set). In the reproductive set, we found a significant overrepresen-
tation of YABBY-, MADS-box- and MY B-type transcription factors. In the regu-
lated set we found a significant overrepresentation YABBY-, MADS-box-, NAC-,
CCAAT-HAP3- and MY B-type transcription factors. These results strongly suggest
a dominating role of members of these transcription factor families in seed plant
reproduction. Indeed, evolution of MADS-box transcription factors and evolution
of plant reproductive organs are closely connected [25].

To identify various groups of regulated genes in the reproductive set, we used a
regression approach with nine predefined patterns of interest. Assigning functional
categories to genes, we observed that transcription factors were significantly over-
represented among the constantly expressed reproductive genes. By contrast, genes
related to metabolism were significantly overrepresented among the upregulated,
downregulated or transiently changed genes. These results show that organ and
tissue specificity is to a large extent defined by specific transcription factors that
remain expressed throughout the experiment, while genes for metabolic enzymes
have often a highly dynamic pattern during the tested developmental stages. One
metabolic pathway was analyzed in more detail, and it turned out that expression of
enzymes for flavonoid metabolism is heavily regulated: Genes for flavonol synthesis
were mostly downregulated, genes for anthocyanin synthesis were transiently up-
regulated, and genes for proanthocyanins were continuously upregulated. Intrigu-
ingly, the expression pattern of the structural genes of this pathway reflected closely
the expression patterns of genes for transcription factors known to control gene
expression for flavonoid synthesis. These results provide a molecular and genomic
basis for existing physiological data about the importance of flavonoid biosynthesis
during flower development [26]. Flavonoids, which are synthesized in several floral
organs, are required for pollen function. Anthocyanins are transiently formed in
Arabidopsis pistils after pollination, and proanthocyanins are synthesized in the
developing testa to form condensed tannins of the seed coat [27].

Because reproductive development relies on intricate coordination of cell cycle
activity, the data were also analyzed using the previously established information on
cell cycle dependent gene expression. None of the known core-cell cycle genes in
Arabidopsis was in the set of regulated genes demonstrating that the core cell cycle
regulators fulfill basic cellular functions that are not specific to particular develop-
mental stages. Surprisingly, when the maximal expression during the cell cycle for
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the reproductive genes and for all genes was compared, it was found that mitosis-
specific genes are strongly overrepresented and S-phase-specific genes were largely
lacking from the reproductive gene set. These results imply that S-phase relies dur-
ing reproductive development on proteins that are important in other stages of the
life cycle as well. By contrast, the G2 and M phases of cell proliferation during re-
productive development involve often-specific proteins. Such functions could for
instance involve the control of the division plane, which is essential for plant mor-
phogenesis.

Another surprise from this dataset was the observation that genes encoding
small secreted proteins were strongly overrepresented among the upregulated,
downregulated and the transiently changed genes but not among the constantly ex-
pressed genes. Cell—cell signaling based on small, secreted proteins or peptides is
well established in plants, e.g., the WUSCHEL CLAVATA1 (CLV1)-CLV3 system
or sporophytic self-incompatibility in the Brassicaceae [28]. Only a few enzymes
are smaller than 15 kDa, and therefore many of the regulated small secreted proteins
could function directly as signaling molecules or as precursors for peptide hor-
mones, similar to the ZmEA1 peptide of maize [29].

Conclusions

Microarray studies can involve very diverse experimental designs and analysis
strategies. Because the biological question determines the best design and strategy,
it is essential that this question is exact and precise. Nevertheless, even with a well-
defined question, a well-suited experimental system and a powerful analysis strat-
egy, verification of results with independent techniques is often essential.

After a microarray experiment, diverse reasons call for verification and follow-
up experimentation. First, any statistical analysis will generate errors. Type | errors
(false positives) arise when genes are called differentially expressed although in
reality they are not. Most experimental researchers are aware of type I errors and try
to control it with appropriate statistical measures. In transcriptomics and other
highly parallel experiments, the conventional statistical confidence level o (typical
set to 0.05) is commonly replaced by the false discovery rate FDR. In contrast to o
‘which reflects the probability of any false positive occurring in the selected gene
list, the FDR reflects the percentage of false positives among the selected genes.
Although a certain fraction of false positives can usually be tolerated, it requires
independent experiments to obtain certainty about the regulation of any particular
gene. While type | errors are false positives, type Il errors are false negatives that
arise when true signals are missed. Often, experimental researchers are not aware of
type Il errors, and usually the rate of type 1l errors is not known. Only more highly
parallel tests can efficiently reduce type Il errors, and therefore it is usually of no or
only limited relevance if certain genes do not appear in the final selection in a
microarray data experiment.

Second, statistical significance is not necessarily equivalent with biological rel-
evance. Tests for errors in the selected gene lists always involve transcript measure-
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ments (e.g., Northern-blots or RT-qPCR). In contrast, biological relevance will be
revealed only by functional experiments. To this end, researchers typically choose
reverse genetic approaches using transgenics (e.g., ectopic overexpression or RNAI)
or mutants (e.g., TILLING or T-DNA insertion lines [30-32]) to modify the dosage
of selected genes. One reason why differential transcript levels identified with
microarrays are not always biological relevant, are other levels of regulation, like
differential splicing or translation as well as posttranslational modifications of pro-
teins and altered metabolite abundance. Technologies to measure such effects will
be discussed in the following chapters.
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Abstract

The discovery of microRNAs in the last decade altered the paradigm that protein coding genes
are the only significant components for the regulation of gene networks. Within a short period
of time small RNA systems within regulatory networks of eukaryotic cells have been uncovered
that will ultimately change the way we infer gene regulation networks from transcriptional
profiling data. Small RNAs are involved in the regulation of global activities of genic regions
via chromatin states, as inhibitors of “selfish’ sequences (transposons, retroviruses), in establish-
ment or maintenance of tissue/organ identity, and as modulators of the activity of transcription
factor as well as *house keeping’ genes. With this chapter we provide an overview of the central
aspects of small RNA function in plants and the features that distinguish the different small
RNAs. We furthermore highlight the use of computational prediction methods for identification
of plant miRNAs/precursors and their targets and provide examples for the experimental valida-
tion of small RNA candidates that could represent trans-regulators of downstream genes. Lastly,
the emerging concepts of small RNAs as modulators of gene expression constituting systems
networks within different cells in a multicellular organism are discussed.

Introduction

Prior to the discovery of microRNAs in the last decade and the mechanisms of
RNA silencing, protein coding genes were considered to be the only significant
components for regulation of gene networks. Within a short period of time the
discovery of small RNA systems within regulatory networks of eukaryotic cells
has substantially altered this paradigm and will ultimately change the way we
infer gene regulation networks from transcriptional profiling data (see Chapters
by Foyer et al. and Hennig and Kéler). It is now recognized that small RNAs are

involved in processes including the regulation of global activities of genic regions
via chromatin states, as inhibitors of “selfish’ sequences (transposons, retroviruses),
in establishment or maintenance of tissue/organ identity, and as modulators of
the activity of transcription factor as well as ‘house keeping’ genes. Small RNAs
such as miRNAs, short interfering RNAs (siRNAs), and in plants, the transact-
ing-siRNAs, are 21-24 nt single stranded RNAs that are sequence-specific nega-
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tive regulators that are produced from longer double stranded RNA (dsRNA)
molecules. SiIRNAs exactly match the RNA from which they are produced and
result in cleavage and elimination of these source RNAs, whereas miRNAs are
produced from RNA hairpin precursor molecules and act to negatively regulate
unrelated target RNAs by transcript cleavage if matching exactly, or predomi-
nantly by translational inhibition if insufficient pairing occurs between the
miRNA and the target transcript. These RNA negative regulators are part of a
complex network of pathways for which the central component encompasses the
many potential variants of the RNA-induced silencing complex (RISC), the
details of which are reviewed elsewhere (reviewed in [1-4]). The RISC com-
plexes are characterized by their ability to use a Dicer-processed small RNA for
sequence specific target recognition. These Dicer or a Dicer-related proteins be-
long to the PAZ domain containing RNase-111 class of proteins that produce double
stranded RNA cleavage products with 2 nt 3’ overhangs, one strand of which is
loaded onto RISC. Central to each RISC is a protein of the Argonaute family, each
of which contain a PAZ and a PIWI domain, and is thought to hold the single
stranded small RNA (reviewed in refs. 5, 6). Target site recognition by the active
RISC may lead to mRNA cleavage, translational inhibition of the mRNA or
transcriptional silencing at the genomic locus, with the exact outcome dependant
on the degree of complementarity between the small RNA and the target, but also
probably on the particular type of RISC as determined by the specific Argonaute
protein.

This chapter provides a brief overview of the central aspects of small RNA func-
tion in plants and the features that distinguish the different small RNAs, the use of
computational prediction methods for identification of plant miRNAs/precursors
and their targets, the experimental validation of small RNA candidates that could
represent trans-regulators of downstream genes, and the emerging concepts of small
RNAs as modulators of gene expression constituting systems networks within dif-
ferent cells in a multicellular organism.

Origin of small RNAs in plants

Dicer processed small RNAs are believed to be derived from double stranded RNA
from at least four different sources: 1) Double stranded intermediates of viral or
retrotransposon origin (SiRNAs). 2) Annealed duplexes of sense transcripts with
cis- and trans-natural anti-sense transcripts (SiRNASs). 3) Double stranded products
resulting from the action of RNA dependant RNA polymerase (involved in the pro-
duction of siRNAs, including trans-acting siRNAS). 4) miRNA precursors consist-
ing of locally folded RNA structures. siRNAs may also be derived from extended
inverted repeats over larger stretches of RNA than in the case of miRNA precursors.
In Arabidopsis and likely also in other plants, these different sources of dSRNA are
thought to be processed by overlapping and partially redundant pathways [7] each
thought to incorporate at least one dicer-like and Argonaute protein. Other factors
specific to each pathway such as RNA dependent RNA polymerases for trans-acting
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siRNAs, are also required (Fig. 1). In Arabidopsis there are four members of the
Dicer-like protein family, DCL1, DCL2 , DCL3 and DCL4, and the functions of
these have diverged and partially specialized to process particular dsRNA sub-
strates. DCL1 appears to be specialized for processing the imperfect base pairing
that occurs in the stem region containing the miRNA/miRNA* sequences within
miRNA precursors. The other dicer members do not appear to be able to substitute
for this function in development, since the dcl1 null mutants are embryo lethal [8].
Furthermore, miRNAs have been reported to be undetectable in dcl1 weak alleles
[9-11]. DCLA4 is specialized for ta-siRNA production along with the RNA depend-
ant RNA polymerase RDR6 [12], while DCL2 and DCL3 appear to be general
producers of sSiRNAs. DCL2 is able to process viral RNA from turnip crinkle virus
but not CMV or TuMV [12], while DCL3 might be primarily involved in endog-
enous siRNAs from silent heterochromatic regions [12]. The sizes of small RNAs
appear to be determined by which dicer member processes the dsSRNA. It has been
shown that DCL1 and DCL4 produce 21 nt small RNAs [7, 13], DCL3 produces 24
nt sSiRNAs and DCL2 produces 22-23 nt siRNAs [7].

Biogenesis and distinguishing features of sSiRNAs and miRNAs

The general RNAi mechanism results in the production of siRNAs that are directed
against invasive elements such as viruses and retro-transposons. These siRNAs are
self-acting or autonomous in that they act on the same molecular sequences that
they are generated from, and as a result match their targets exactly. It is thought that
when siRNAs incorporated into a RISC exactly match the source RNA, that this
results in cleavage and subsequent degradation of matching copies of the RNA and
may result in complete suppression of these elements. The function of sSiRNAs as a
defense mechanism is enhanced by the systemic transfer of siRNAs throughout a
plant. It has been shown in plants that sSiRNAs can act systemically via the phloem
and result in the protection of the entire plant from a virus that has initiated its infec-
tion at a local site. The mobility of the signal has been shown to depend on RDR6
[14, 15] which might contribute to signal amplification and propagation through the
phloem. In addition to this, SIRNAs have the ability to induce transitive RNA inter-
ference, in which primary siRNAs specific for one section of an RNA transcript can
induce the production of secondary siRNAs from a different part of the same tran-
script enabling the spread of silencing along the nucleic acid sequence [16]. This
process presumably provides inherent protection against different but related viruses
from that which caused the initial SIRNA induction, but also acts to amplify the
signal. As well as transitive RNAI, genomic silencing of selfish nucleic acids that
become integrated into the DNA genome may occur via SiRNAs that are associated
with a complex like the S. pombe RNA-induced initiation of transcriptional gene
silencing (RITS) complex, which would enable localized action of sSiRNAs to main-
tain silencing epigenetic states (reviewed in [17]). Unlike siRNAs, miRNAs are
derived from single RNA molecules by processing of a double stranded region of a
folded RNA precursor. In animal systems the secondary structure of precursors is
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relatively simple and the dimensions of these precursors appear to be restricted
from between 60 and 100 nt in length. In plants the precursor structure and size ap-
pear to much less constrained. Within the secondary structure, side branches and
multiple end loops are frequent and the precursor sizes range from about 60 nt to
over 300 nt in length. In animal systems miRNA genes have been identified
within intergenic regions but also within introns (reviewed in [18]). For miRNAs
and their targets within plants, there is often a mismatch between the terminal
nucleotides of the miRNA and the corresponding nucleotides in the target transcript.
These mismatches may be involved in preventing the production of siRNAs from
other parts of the target transcript via transitive RNAI through the action of an RDR.
Alternatively, or in addition, an RDR may need to be led to the target transcript by
an appropriate RISC complex, and the miRNA specific DCL1-containing RISC
may not be able to associate with RDR6 or RDR2 in order for such a process to
occur. More recently another species of small RNA, called trans-acting siRNAs
(ta-siRNAs), that also act as regulators of gene expression have been found in
Arabidopsis and other plants [19]. ta-siRNAs found in Arabidopsis are thought to
be derived from transcripts in which the required phasing results from a predefined
dicer processing start point achieved by miRNA directed cleavage, and subsequently
made double stranded by an RNA dependent RNA polymerase. In contrast with the
cis-acting siRNAs, the sequences of trans-acting miRNAs and ta-siRNAs and their
co-evolving but genomically distinct target sites are constrained by the functional
requirement that they continue to match their targets. The resulting conservation of
sequences across 18-22 nt facilitates their computational prediction within and
between species.

Computational prediction of miRNAs and their targets

Cloning and sequencing small RNAs has been a central strategy for identifying
miRNA sequences from within genomic sequence datasets, and has been responsible
for the initial identification of many of the currently recognized miRNAs in Arabi-
dopsis. Cleavage products of RNase 111 type enzymes, such as dicer, contain a 5’
phosphate which has enabled enrichment for miRNAs and siRNAs from other small
RNAs resulting from other mechanisms such as ribosomal and mRNA degradation
[20]. In addition to cloning, technologies such as MPSS and 454 sequencing, which
allow high throughput direct sequencing of expressed RNAS, represent more sensi-
tive approaches to small RNA detection (see [21], http://mpss.dbi.udel.edu/ and
http://www.454.com). However, experimental strategies have technical limitations.
First, although highly expressed miRNAs can be relatively easily identified from
among the many clones in a small RNA library, miRNAs that are expressed in a
relatively small number of cells or only under specific conditions or time of devel-
opment may not be represented in many small RNA libraries. Second, despite the
enrichment based on the 5’ phosphate, miRNAs often represent only a small propor-
tion of the total cloned small RNAs in a library. Furthermore, the functional basis of
this enrichment process has been questioned, at least for use in Drosophila, where
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an endogenous kinase activity was suggested to have added phosphate groups to the
5 end of small RNAs derived from other processes such as RNA degradation [22].

Clues to the identity of miRNA sequences from within small RNA libraries can
be derived bioinformatically when a relatively complete genome sequence is avail-
able. The sequence of a miRNA should be found embedded in a genomic sequence,
that if expressed would be part of a double stranded stem region of a predicted RNA
secondary structure. Sometimes the miRNA* sequence is also found within the
small RNA library thus revealing the two nucleotide 3’ overhangs RNase 111 signa-
ture that in turn supports the processing of a single RNA molecule rather than a
duplex of two different RNA molecules derived from the two different genomic
strands. In addition the miRNA sequence, by definition, should have a matching
target sequence within another region of the genome. However, without molecular
evidence of the miRNA* sequence the existence of the other features do not by
themselves confirm the classification as a miRNA. This is because the regulatory
specificity of miRNAs is determined within such a short sequence that can occur by
chance alone, and almost all genomic sequences, when represented as RNA, can be
folded into a predicted secondary structure that contain double stranded helical
regions. In addition to the classification of experimentally derived small RNA se-
guences as either miRNAs or siRNAs, computational strategies have been used to
provide a means to predict new miRNA candidates from available genome sequence
data. Several different strategies and algorithms have been devised, as shown in
Table 1, and the principles of some approaches are discussed below.

Unlike protein coding genes, miRNA genes do not have open reading frames,
codon bias or other significant internal characteristics that can help in their identifi-
cation. The requirement for miRNAS to match their targets provides a constraint on
both the miRNA sequence and the sequence of their target(s). The miRNA* se-
quence is also constrained, but to a lesser degree, due to the requirement for the
miRNA to be processed from a double stranded region in the stem of the miRNA
precursor (pre-miRNA). Therefore, not surprisingly, most computational strategies
for identifying miRNA genes have incorporated a comparative genomics component
to search for conserved sequences in related species (summarized in Tab. 1). Among
the first algorithms using comparative genomics were MiRscan, miRseeker and
srnaloop which were produced for analyzing animal genomes, and an algorithm
MIRFINDER that was used on the Arabidopsis and rice genomes. All these algo-
rithms use relatively complete sequence data available from two or more genomes
and look for the existence of interspecies conservation of the precursor-embedded
miRNA and miRNA* subsequences. A more recent comparative genomic algorithm,
phylogenic shadowing, is best used with several closely related genomes and over-
comes the problem of insufficient divergence having occurred between two closely
related species. In this approach the genomes are aligned to produce a multiple se-
guence alignment in which less important nucleotide residues will more often vary
across the species while important ones will be conserved across most if not all the
species. This variation in residue conservation can be graphically represented in
vista plots with the miRNA and miRNA* sequences visualized as two peaks of in-
creasing conservation in a region of relatively low conservation [23].
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Using comparative genomics methods, estimates of the total number of miRNAs
in a single species will depend on the evolutionary distance between the genome
under study and the comparison genome. The greater the distance between the two
species, the fewer miRNAs can be identified from the comparison, but the strength
of the evidence is perhaps stronger due to the increased divergence of other neigh-
boring sequences. Using closely related species in the comparison increases the to-
tal number of predicted miRNAs, which will approach the total number of miRNAs
that actually exist in the genome of interest, except that several genomes are needed
in the comparison, as in phylogenic shadowing, in order to detect the conserved
miRNA sequences in an otherwise relatively un-diverged set of genome sequences.
The phylogenic shadowing approach has produced results for primates that suggest
that there are possibly twice as many miRNA genes in the human genome than was
previously believed from earlier studies using more distantly related species [23].

In addition to sequence conservation, some of the algorithms use additional
criteria to more specifically identify miRNA precursors from among the conserved
sequences. In this respect, the most advanced algorithm is probably MiRscan, which
takes into consideration features such as the distance of the miRNA from the end
loop, extension of base pairing around the miRNA/miRNA* double stranded seg-
ment, the presence of a 5’ U residue in the miRNA, localized conservation within
the 5’ and 3’ ends of the miRNA, nucleotide bias in the first five positions, and base
pairing and bulge symmetry in the miRNA/miRNA* duplex region. Other algo-
rithms used on metazoan genomes with a more limited use of precursor/miRNA
features analysis include miRseeker and srnaloop [26, 27]. Bioinformatic approaches
similar to these latter methods have been used on plants (see [28, 29] and Tab. 1).

The use of comparative genomics methods in plants has enabled the discovery
of many miRNA genes in Arabidopsis and rice. In addition, algorithms employing
relatively straightforward homology searches enabled the identification of potential
precursor orthologs/homologs in other plant species such as poplar, as well as lower
plants [34, 35]. However, these methods cannot identify species—specific miRNAsS,
such as miR161, miR163 and miR173, which are specific to Arabidopsis and were
initially identified by cloning. Interestingly these miRNAs are represented by single
precursor loci unlike other Arabidopsis precursors that exist in families. This would
mean that even intra-specific sequence comparison would not have revealed these
miRNA precursors, and they may not have been identified at all if their expression
levels were too low for experimental detection. Therefore, there is a need for bioin-
formatic strategies that can enable the identification of miRNAs without relying on
sequence conservation. An alternate target-based strategy has been developed using
an algorithm called findMiRNA (Tab. 1), which exploits the requirement that any
miRNA must have a matching target sequence elsewhere in the genome, probably
within a transcript encoding a protein [31]. This requirement enabled the mapping
of almost all good miRNA-target candidate pairs existing as matches between subse-
quences of intergenic/intronic regions (with hairpin potential) and subsequences of
protein coding transcripts. At this stage the dataset represents mostly false positive
miRNA candidates in addition to the true positives. A post-processing step (that in-
corporated the characteristic divergence pattern of miRNA precursor sequences) was
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applied to the resulting large dataset which enabled identification of novel miRNAs.
The large unfiltered dataset is available at <http://sundarlab.ucdavis.edu/mirna/*o-
gether with custom filters provided for various characteristic miRNA/precursor
parameters, which can be deployed to reduce or eliminate the background of spuri-
ous candidates.

There is still a need for the implementation of an algorithm for use in plants with
a more comprehensive set of specific features associated with miRNAs, similar to
those used by MiRscan. The identification of additional miRNA specific features is
continuing, and in the future it may be possible to develop algorithms that will be
capable of identifying single copy miRNA genes without the use of comparative
genomics.

Confirmation of candidate miRNAs and targets

As is the case for many bioinformatic problems, there is no perfect algorithm for
predicting miRNA precursors. Rules that can be applied to absolutely distinguish
miRNA precursors from other sequences currently do not exist. For this reason each
miRNA candidate identified by an algorithm needs to be validated before it should
be included as a confirmed miRNA. This validation process often seeks to obtain
molecular evidence for the existence of a miRNA by detection of the miRNA itself
and/or by detecting the effect of the miRNA on target transcripts. Methods to detect
miRNAs include small RNA cloning, RNA blot hybridization (miRNA Northerns)
and more recently PCR-based approaches. The use of Arabidopsis plants express-
ing the viral suppressor of RNA silencing P1/HC-pro, in which the levels of most
miRNAs are significantly elevated, can increase the signal still further [10, 31, 36].
Early studies tended to conclude miRNA status if a strong signal was detected on a
miRNA Northern. Later, as more weakly expressed miRNAs were being assessed,
confusion arose between miRNAs and siRNAs. Signals arising from miRNAs
should be in the range of 21-22 nt in size, as is expected for Arabidopsis DCL1
processed small RNAs. Such signals may also arise from DCL4 processed double
stranded RNA as is the case for ta-siRNAs. If weak signals of two or more bands of
similar strength in the range of 23-24 nt is observed, this is more likely the product
of other dicers such as Arabidopsis DCL2 and DCL3.

Genetic approaches are also available to distinguish miRNAs from siRNAs.
Since, unlike miRNAs, the production of most endogenous siRNAs require the action
of RNA dependent RNA polymerase 2 (RDR2) (Fig. 1) while ta-siRNA production
requires RDR6. Control RNA isolated from rdr2 and rdré mutants should resolve the
issue. Unlike siRNAs, the molecular levels of bona fide miRNAs should be unaf-
fected in plants that are mutant for RDR2 or RDR6. Hybridization methods, includ-
ing microarrays, have the limitation that the exact sequence being detected is not
known. This also means the boundary of the detected small RNA sequence remains
unknown and therefore the exact miRNA sequence predicted cannot be confirmed
with such a method. PCR-based methods offer dramatically increased sensitivity and
the sequence data may also include sequence boundary information [37—-40].
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A commonly used technique for the validation of miRNA targets, and therefore
also by implication the existence of the small RNA, is the detection of mMRNA cleav-
age products using 5 RACE. These PCR amplified cleavage products can be se-
quenced to identify the exact nucleotide sites that are cleaved by the specific RISC
complex. This technique is very sensitive and has enabled the validation of the mo-
lecular interaction between many Arabidopsis miRNAs and their suggested targets.
The sensitivity, however, represents a problem with respect to target validation, as
it can be argued that the molecular interaction detected by 5’RACE can be so infre-
guent as to represent an interaction that has no biological significance in the life
cycle of the plant, and that all one is doing is reconfirming the generally accepted
mechanism that sufficiently matching ‘miRNA-target’ pairs can result in cleavage
of the transcript by the miRNA loaded RISC. The method could be used to deter-
mine molecular targets of a miRNA that fall within the cleavage class, but a nega-
tive result does not indicate that translation of the proposed target is not affected.
More biologically oriented methods may be more appropriate. Other sources of
evidence supporting the biological significance of a proposed miRNA-target pair
may be achievable through genetic approaches, such as the identification of a phe-
notype associated with a mutation that would be expected to affect miRNA-target
interaction.

Itis likely that purely bioinformatic approaches can also be used to provide evi-
dence of biological significance for a particular miRNA-target pair. One possible
approach might be to detect sequence conservation of the target site within other-
wise divergent but related transcripts. This could be achieved by alignment of
orthologous target transcript sequences from two or more sufficiently diverged ge-
nomes or the use of phylogenic shadowing for the orthologous transcripts across
several closely related species.

Future prospects for computational discovery of small RNAs in plants

The ultimate goal of computational approaches to small RNA discovery is to detect
miRNAs or ta-siRNAs that would otherwise not be easily identified. Use of algo-
rithms that rely more heavily on characteristics of miRNA genes may enable predic-
tions of miRNAs in a single genome but the presence of a high proportion of false
positives precludes this method as a way to estimate miRNA gene number within a
species. Approaches based on a good statistical foundation will be valuable for es-
timating the number of miRNAs within an organism. Some success can be achieved
through extensions of already available computational tools, as in the case of the
identification of the transacting-siRNA, ta-siR-ARF (TAS3) [41]. Other non-statis-
tical methods will use additional criteria to limit the data based on features expected
to be associated with trans-acting small RNAs. The effectiveness of these methods
will depend on the basis of the selective criteria and how well they are integrated
into the approach as a whole. With the increasing amounts of data that relates di-
rectly to the epigenetic state of any particular site within a genome, for instance
whether the region is composed of repeated sequence or perhaps revealing the pre-
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dominant methylation states of regions with the use of methods such as bisulfite
sequencing, biologically relevant data can be used to more thoroughly and accu-
rately analyze the available data. This will enable the effective interrogation of the
available genomic sequence to identify small RNAs that are involved at both the
post transcriptional level but also the transcriptional level of gene regulation.

Genes, networks and systems: Regulation by small RNAs in plants

In plants small RNAs appear to fall into two categories, those involved in ‘defense’
related functions and those that represent regulators of development and homeosta-
sis (see Fig. 2). Defense-related small RNAs are siRNAs, usually of the 24 nt class,
that act to generally suppress RNA production from the invading virus or a ‘selfish’
nucleotide sequence in the genome such as a retrotransposon. In plants these sSiRNA
signals are capable of being transmitted between cells as well as through the phloem
to result in systemic silencing. A different set of sSiRNA molecules are present in
complexes involved in a positive feedback loop for post transcriptional gene silenc-
ing, and these act in a localized fashion on specific loci. Also every cell will have a
particular miRNA expression profile, with the various miRNAs at different concen-
trations depending on the state of the cell or plant. The consequences of these
miRNA concentrations will depend on the type of regulatory circuit being modu-
lated. Three different potential outcomes for regulation by any expressed miRNA
have been proposed [42]. An increase in the expression of a miRNA may: 1) act to
switch on or turn off a biological response, 2) act to tune a biological response, and
3) is biologically neutral despite a reduction in the level of the ‘target’ transcript.
The differences between miRNAs of the switching category and the tuning category
are shown in Figure 2.

In animal systems, the matching of miRNAs to their targets is based on a much
looser interaction than which occurs in plants, and as such animal miRNAs are
thought to have a large number of targets with perhaps as many as 1,000 different
target transcripts for each miRNA [43]. For example miR1 and miR124 from ani-
mals are likely to represent switches that define a tissue type as they have been
shown to regulate the expression of large numbers of genes specific to muscle and
brain respectively [44]. In plants, most miRNAS appear to act on their target tran-
scripts in a way that resembles the action of sSiRNAs in both animals and plants, and
therefore the regulatory networks for miRNAs might be simpler to model computa-
tionally in plant systems than in animal systems. Probably the best example in
plants of such a tissue identity network is that involving the miRNAs miR165/166
that negatively regulates the transcripts of the adaxial-specific (upper surface spe-
cific) class Il HD zip transcription factors PHABULOSA, PHAVOLUTA and
REVOLUTA within the abaxial tissue (lower tissue) during and after leaf develop-
ment in Arabidopsis [45, 46]. In wild type plants, the miR165/166 family is expressed
in the abaxial domain of developing leaf primordia and act to exclude PHB, PHV
and REV transcripts. In plants containing target site mutant alleles of these genes,
the transcripts with the mutated target site are no longer excluded from the abaxial
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Figure 2. Cellular miRNA and siRNA profiles. Two plant cells A and B are shown with distinct
miRNA profiles that result in the expression or modulation of different sets of genes. Whereas
miRNA-x1 acts as a switch by reducing the protein expression of its target mMRNAs below a
biological threshold in cell A, miRNA-x2 acts to modulate and maintain target mMRNA-product
levels within appropriate upper and lower bounds indicated by fine lines. In addition, Cell B has
mounted a siRNA response to a virus, as well as siRNA mediated silencing of an endogenous
gene. These siRNAs constitute signals that can be transmitted to Cell A, which then alters its
own siRNA profile in response.

domain and this results in a radialized leaf. This miRNA causes a change of state
through the downregulation of a target transcript and thus belongs to the switching
category of miRNA (category 1 in Fig. 2).

Plant miRNAs may also be involved in the control of homeostasis. An example
is the targeting of two components of the sulfate assimilation pathway by miR395.
This miRNA was shown to target ATP-sulfurylase [47], but a conserved target site
was also identified within the 5 UTR of the sulfate transporter gene by alignment
of the presumptive orthologs from Arabidopsis and rice [31]. These two targets
represent structurally unrelated proteins that act in the same cellular process. This
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example could illustrate the biological utility of a tuning miRNA (like mMiRNA-x2
in Fig. 2), with targets that are distinct enzyme components of a nutrient assimila-
tion pathway. In summary, it is likely that plant cells will have defining small RNA
profiles that are responsive to signals from other cells, maintaining a balance of
gene expression through silencing and modulation of transcripts and chromatin that
will finally affect protein concentrations and metabolic and regulatory pathway ac-
tivities (for details on the analysis of proteins see the following two chapters). The
challenge for the future will be to incorporate these regulatory molecules and their
effects into the systems biology models of plant gene expression (see also Chapters
by Steinfath et al., and Schier et al.)
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Abstract

High-throughput quantitation of proteins is of essential importance for all systems biology
approaches and provides complementary information on steady-state gene expression and
perturbation-induced systems responses. This information is necessary because it is, e.g., dif-
ficult to predict protein concentrations from the level of mMRNAS, since regulatory processes at
the posttranscriptional level adjust protein concentrations to prevailing conditions. Despite its
importance, quantitative proteomics is still a challenging task because of the high dynamic
range of protein concentrations in the cell and the variation in the physical properties of
proteins. In this chapter we review the current status of, and options for, protein quantification
in high-throughput experiments and discuss the suitability and limitations of different existing
methods.

Introduction

Quantitative proteome analysis, the global analysis of protein expression, is a com-
plementary method to study steady-state gene expression and perturbation-induced
changes. In comparison to gene expression analysis at the mRNA level, proteome
analysis provides more accurate information about biological systems and path-
ways since the measurement directly focuses on the actual biological effector
molecules. It is, e.g., difficult to predict protein concentrations from the level of
mMRNAs, since regulatory processes at the posttranscriptional level adjust protein
concentrations to prevailing conditions. Quantitative information on proteins is
necessary to infer regulatory events that take place between the expression of a gene
and the metabolite that is synthesized by the gene product (Fig. 1). Recent analyses
with different biological systems revealed that in many cases no apparent correla-
tions between transcript, protein and metabolite levels exist, suggesting that regula-
tion occurs at different nodes in the network. These cases particularly comprise
conditions where rapid responses of the system towards, e.g., stress conditions are
required.

Quantitative analysis of protein expression is therefore an important tool for
the examination of complex biological systems. Albeit its importance, quantitative
proteomics is still a challenging task because of the high dynamic range of protein
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Figure 1. Regulatory network of gene expression. Regulation occurs at different nodes in the
network.

amounts in the cell and the variation in the physical properties of proteins. The
current methods to determine protein expression levels are applicable to most bio-
logical systems or any model organism and therefore are described here from a very
general point of view. As a general rule, the applicability of a certain quantification
strategy is mainly determined by the method that is used to separate and analyse
the proteins: Gel-based proteomics provoked and generated different quantitation
strategies than gel free approaches. For each of the quantitative approaches de-
scribed below, the general features, a range of possible applications as well as their
advantages or limitations are outlined. By means of a candidate experiment the
reader is guided step by step through the experimental set up thereby receiving
a comprehensive overview over the prevailing tools and techniques in quantitative
proteomics.

Quantitative two-dimensional gel electrophoresis
Introduction

Two-dimensional gel electrophoresis (2-DE) is a well-established electrophoretic
method for separating proteins in a gel matrix [1]. In the most common approach,
proteins are extracted and non-protein substances are removed. The proteins
are then dissolved in a buffer for isoelectric focusing. The proteins are then
electrophoretically separated in an immobilized pH gradient (IPG) gel strip;
each protein migrates to its isoelectric point. This process is called isoelectric
focusing (IEF). The focused proteins on the strip are then loaded onto a sodium
dodecyl sulfate (SDS) polyacrylamide gel. The SDS-denatured proteins are
then migrated in the presence of an electrical field across the length of the gel:
SDS-PAGE [2]. Over the course of this electrophoresis small proteins will migrate
further than large proteins. At the conclusion of this stage, the proteins have
been resolved in the first dimension according to isoelectric point (pl) and the
second dimension according to molecular weight (MW). The proteins are then
fixed in the gel, stained and scanned. The resulting images can be analyzed and
compared. After image analysis, spots of interest can be picked. The proteins are
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then digested with trypsin, de-salted, spotted to a MALDI target, and analyzed by
MALDI-MS [3].

Gel-based quantitation versus LC approaches

Using 2-DE as a fractionation technique has distinct differences from LC-based
guantitative proteomics. The most obvious is that whole proteins are separated, and
the quantitation of integrated optical spot density is done before the mass spectrom-
etry. Since the gel can be calibrated, MS identification of spot digests can be vali-
dated with respect to pl and MW.

Another advantage of gel-based proteomics is the orientation of spot patterns
indicating post-translational modifications (PTMs) (Fig. 2). A variety of PTM-spe-
cific stains exist [4]. Using a PTM-specific stain prior to a general protein stain can
serve as a useful approach for both quantitation and MS data validation [5].

One should never assume that one spot (even a nicely symmetrical spot) on a gel
corresponds to a single protein [6]. However, the MALDI analyses are quantified
with respect to the position on the MALDI target, and the digest from each gel spot
goes to a single MALDI target location. Thus, the number of coincident proteins is
never great. Usage of narrow range (‘zoom’) IPG strips reduces coincident proteins
even more. Usage of zoom IPG strips (approximately 1.5 pl unit range) is necessary
to perform quantitative gel-based proteomics, as a wide range strip will generally
have many spots with greater than one protein per spot.

Gel-based proteomics involves many transfer steps, and some protein is lost at
each transfer [7]. Such losses necessitate consistent technique for all gels processed
in any comparative study. For more precise quantitation protein samples from two
different conditions can be covalently labeled at lysine residues with different

ACT1_DROME pl = 5.73 ACT1_DROME pl = 6.87 [ ]
Arnotation - (P10957) Actin-5C [Score=175] Annotation : (P10S67) Actin-5C [Score=255]
URL - hitp: ffcs expasy orghuniprot/ACT1_DROME LRL : hitprdica expasy orgluniorot/ACT1_DROME
1: 0,275 150,255
[}

W

Figure 2. Example for a 2-D-PAGE gel showing spot tailing as a result of urea-induced car-
bamylation.
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fluorescent cyanine dyes. To facilitate an internal standard, a third pooled sample
is labeled with a third cyanine dye. All three labeled extracts are pooled and run in
a single gel [8]. This approach to 2-DE is called 2-D Fluorescence Difference
Gel Electrophoresis (DIGE). A DIGE approach significantly increases precision
of measurement of protein expression ratios for two reasons: elimination of gel-to-
gel variability, and the use of an internal standard for quantitation of spot density
ratios.

Gel-based techniques can only resolve the proteins within the pl range of the
IPG strip. A LC-based approach will yield a mix of peptides irrespective of pl.
Pre-fractionation methods based on pl do exist: free flow electrophoresis (FFE) and
liquid-phase isoelectric focusing (e.g., Rotofor) [9]. These approaches are important
for the use of zoom IPG strips, unless one can tolerate overloading the strip and
sacrificing the proteome beyond the pl range of the strip.

Protein sample preparation and fractionation strategies

Protein samples for 2-DE must be of sufficient purity for IEF. Lipids, carbohydrates,
salts, surfactants, and insoluble residues can all cause difficulties in IEF. Thus,
samples must have interfering substances removed before IEF. A universal problem
with sample purification is alteration of the proteomic composition of the sample:
any purification step will cause losses, and the losses will not be proportionate to the
composition of the sample. For example, not all proteins have the same (in)solubility
in cold acetone. Thus, for quantitative 2-DE proteomics, the general approach
should be to clean the sample just enough to allow for efficient IEF. Some traces of
salts and other interferents can be tolerated, especially if absorbent pads are used in
IEF [10].

Given the wide range of differences between different organisms, there is no
single approach that is appropriate to go from tissue to protein isolate. For example,
some tissues present problems from high fat content, other tissues may have high
levels of insoluble material. The experimentalist must consult the literature or Inter-
net resources to help locate relevant protocols. Protease inhibitors are almost always
required to be included in the initial preparation step [1].

Acetone/TCA precipitation has been shown to be an effective approach with
proteomic studies [11]. Many vendors offer clean-up kits based on this approach.
For very difficult samples, one may use a phenol extraction approach [12, 13].
Phenol extraction will result in a very clean sample, but it is unknown how the
proteome is biased using this approach. Lengthy dialysis steps may be avoided by
the use of spin filters [14].

Fractionation of the sample is nearly always a good idea. The proteome of
organisms and whole cell lysates is far too complex to resolve using a 2-DE ap-
proach. For an expert technician, over 5,000 proteins may be resolved on a 24 cm x
20 cm 2-D gel; 2,000 protein spots may be routinely resolved by less experienced
individuals [1]. Sequential extraction [15] results in multiple fractions based on
aqueous solubility. FFE and Rotofor techniques [9] are useful for the fractionation
of proteins based on pl; this approach assures the experimentalist that high levels of
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proteins will not migrate off the IPG strip. Subcellular fractionation techniques [16]
should be used when feasible.

The first dimension: isoelectric focusing

The quantity of protein to apply to a gel is dependent on the size of the gel, the stain-
ing approach, and the sensitivity of the mass spectrometer to be used. For a ruthe-
nium tris-bathophenanthrolate stained 24 cm x 20 cm x 0.1 cm 2-D gel, 150 pg is
generally sufficient for identification of the top 80-90% of the spots in the gel [17].
For a Coomassie gel, 300 pg is generally sufficient, but one can go lower.

IEF buffer composition should be varied depending on sample type [1, 18-20].
To avoid streaking in the alkaline range, dithiothreitol (DTT) should never be used
with IPG strips with pls above 7. Instead, use a nonionizable reducing agent [21]
such as tributylphosphine (TBP), or the thiol-protecting agent hydroxyethyl di-
sulfide (HED). Also, IEF buffers should contain 10% isopropanol and 5% glycerol
to prevent streaking due to electroendoosmotic flow [19]. Streaking and loading
efficiency are also affected by loading style and IEF voltage programming [1, 22,
23]. The surfactant of choice is usually CHAPS, but ASB-14 is showing increasing
promise as a surfactant to increase representation of membrane proteins in 2-D gels
[24-26].

After IEF, the strips need to be (double) equilibrated in reducing agent and alkylat-
ed to prevent disulfide formation at cysteine thiols. Some choose to reduce and alkylate
prior to IEF, but this is not generally recommended due to shifting the pl before IEF.
Alternatively, one can equilibrate the IPG strips in HED in a single step [18]. The
resulting mass spectra must be searched with consideration of the cysteine S-mercap-
toethanol modification. Other compounds such as tris(2-carboxyethyl)-phosphine and
vinylpyridine have been used for preventing IEF streaking [27].

IEF is the stage of 2-DE which is most in flux. There exist a great variety of
approaches in buffer composition, IEF voltage programming, and strip equilibration
techniques. The experimentalist is encouraged to choose wisely then stick to one’s
experimental design. Gels are difficult enough to compare without adding extra
variability from ‘tinkering’ from experiment to experiment.

SDS-PAGE and gel stains

SDS-PAGE for 2-DE is generally performed in the discontinuous buffer system
of Laemmli [28] and modifications thereof. Due mainly to insolubility problems,
proteins heavier than 150 kDa are not suitable for traditional Laemmli SDS-PAGE.
Low MW proteins can be resolved in a Tris-tricine buffer system [29]. The second
dimension of 2-DE is much more established than IEF: The IEF strip is loaded to
the top edge of a gel, and sealed in place with a warm agarose solution colored with
bromophenol blue for tracking the electrophoretic migration. For a 24 cm x 20 cm x
0.1 cm gel, a two-stage program is recommended: 2 Watts/gel for 45 min for load-
ing proteins, and 17 Watts/gel for electrophoresis at 25°C. The migration time is
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variable; 4 h for 20 cm is typical. If one prefers to run SDS-PAGE overnight, a suit-
able protocol is a 45 min loading step at 7 mA per gel, and then increasing to 15 mA
per gel for 18 h at 20°C. The proteins in a gel need to be fixed after SDS-PAGE.
Diffusion of lower molecular weight proteins in PA gels becomes apparent after 6 h.
Excessively low pH will cause esterification [30] at protein carboxyl groups. Thus,
TCA fixing is to be avoided when possible.

Avariety of stains are available for staining 2-D gels [4, 5, 31-33]. Silver staining
is sensitive, but has a number of disadvantages for quantitative proteomics. Silver-
stained gels have poor linear response [32] with concentration. Silver-stained gels
also tend to form crater spots, which complicate quantitation. While most staining
techniques have the greatest intensity at the center of the protein spot, a crater spot
has reduced signal intensity at the center. In a three-dimensional view, most non-
silver stained spots appear as a conical peak. In a three-dimensional view of many
silver spots, a profiled crater spot appears as a volcanic caldera. Relative to other
staining techniques, silver staining can reduce signal intensity for MALDI-MS, even
when using the Shevchenko method [34].

Coomassie staining has numerous advantages. Coomassie staining is relatively
inexpensive and compatible with mass spectrometry. Newer formulations of col-
loidal Coomassie Brilliant Blue (CBB) along with improved protocols [31] have
increased the sensitivity of CBB to near silver levels. CBB spots are visible, and
thus do not require a fluorescent scanner for imaging.

For a high-sensitivity stain with long-term stability, MS-compatibility, and good
linear response, the best approach is using ruthenium (I1) tris-(bathophenanthroline
disulfonate), [RuBP]. RuBP can be easily used as the commercial formulation
SYPRO Ruby [Invitrogen Corporation] [35]. The main disadvantage of SYPRO
Ruby is the expense. RuBP staining can be done without the expense of SYPRO
Ruby by the use of 1 uM aqueous RuBP solution according the Lamanda protocol
[32]. The expense is 100-fold less. The synthesis of RuBP concentrate is relatively
simple, and the 20 mM concentrate is stable for years at 4°C (personal communica-
tion) [36]. Aliquot the concentrate into 1.5 mL tubes, and freeze them at —20°C for
long-term storage.

Staining with epicocconone (Deep Purple) is sensitive and MS-compatible.
However, Deep Purple is not as photostable as RuBP [37]. It is also quite expensive.
Deep Purple has been reported to have a linear response to four orders of concentra-
tion [33].

For the highest levels of accuracy and precision in quantitative gel proteomics,
one must approach 2-DE using a pre-stained internal standard in the gel along with
two other stains for the two conditions to be studied. This approach is usually re-
ferred to as DIGE (see, Gel-Based Quantitation versus LC Approaches, discussed
previously). With the DIGE technique, one can see finer changes in up- or down-
regulation between different conditions. The ‘staining’ is a reaction which adds a
charged cyanine at a similarly charged lysine residue. The reaction adds 0.5 kDa per
lysine, and is staining is minimal (no more than one cyanine per molecule) [38].
DIGE gels can be fluorescently scanned immediately after SDS-PAGE. They are
scanned three times, once for each fluorophore, and the images can be combined
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for a visual comparison. The separate images are analyzed to see how the intensity
ratios vary between the individual conditions, and the internal standard, which con-
tains all the proteins. Gel spot match quality is generally excellent due to co-electro-
phoresis of control and treated sample within the same gel. DIGE experiments are
quite expensive, with cyanine dye expenses in the hundreds of dollars per gel. How-
ever, the DIGE approach is certainly the gold standard for quantitative 2-DE.

Spot analysis software and experimental design

Several 2-DE pattern software packages are available. Since the author only has
extensive experience with one software package, no review will be offered. All
software allows for comparison of groups of gels where each group is a specific
biological condition (e.g., control vs. treated). The coefficient of variation (CV) of
spot intensity within a group is a key factor to use to determine if between-group
differences are significant. Of course, biological replicates must be considered when
generating groups for expression analysis. A rule of thumb for one-color compari-
son of groups is four gels per group. Given the complexity of a 2-DE experiment, it
is recommended that five gels be run for each condition. If one of the five gels is of
poor quality, four gels will remain for generating CVs.

For the ‘typical’ experiment where one is searching for proteomic changes, the
following approach is recommended:

1. Run two control gels and two treated gels though the 2-D workflow. Analyze
and pick spots of interest. See if you can identify some interesting proteins in the
gel. If you can separate and identify the proteins, move on to the next step.

2. Run four (or five) gels per condition. Given careful one-color staining, proteins
up- or downregulated by 60% or greater can be identified.

3. Run DIGE to refine your findings. Quantitative 2-DE experiments can yield strik-
ing results. However, the required level of technical lab bench skill for 2-DE is
high, and it can take weeks or months to generate high quality data. When one has
the option of using an LC-MS approach as opposed to 2-DE, it should be care-
fully considered (see below).

Quantitative proteomics by metabolic labeling

Isotope-based quantitative analysis by mass spectrometry has long been used in
the small molecule field [39] and later on in structural biology where researchers
applied this technology to detect phase shifts in NMR studies by replacing all
14N atoms using >N media. In 1999 this substitution technology was applied to bac-
teria and yeast for simultaneous identification and quantitation of individual proteins
by mass spectrometry and for determining changes in the levels of modifications at
specific sites on individual proteins [40, 41]. Since **N-substituted media are difficult
and expensive to make for mammalian systems, the particular method employed was
restricted to microorganisms. Additionally, the degree of incorporation is not neces-
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sarily 100%. Because there are varying numbers of nitrogen atoms in the different
amino acids, automated interpretation of the resulting spectra has proven difficult.

The principle of metabolic isotope-coded labeling of all proteins in mammalian
cell culture was first reported by the laboratory of Matthias Mann (stable isotope
labeling by amino acids in cell culture (SILAC) [42]). With this technology cell
lines are grown in media in which a standard essential amino acid (which is not
synthesized de novo by these cells) is substituted by an isotopically labeled isoform,
most often used is deuterated leucine (Leu-d3) (Fig. 3A). The substituted amino
acids are incorporated normally into all proteins as they are synthesized and as a
result all the proteins in the cell are completely tagged after a few generation cycles.
No chemical labeling or affinity purification steps are necessary and the method is
compatible with virtually any cell culture system, including primary cells. Even the
autotrophic plant cells that can synthesize all amino acids from inorganic nitrogen
were shown to be compatible with the SILAC technology [43].

Recently, metabolic labeling of two multicellular organisms such as the nematode
Caenorhabditis elegans or the fruit fly Drosophila melanogaster has been demon-
strated [44]. This was achieved by feeding these model organisms with °N-labeled E.
coli or yeast, respectively. 98% of the nematode’s proteins were labeled in the second
generation, whereas for the fly a single live-cycle was sufficient to generate almost
complete N-labeled offspring.

Metabolic labeling

Leu-dO Leu-d3

e R W—

Optional protein purification

J

Combine and digest with trypsin

J

Identify and quantitate by MS

Cells
untreated

Cells
treated

Figure 3 (A). Workflow of a typical SILAC experiment: Protein populations from both control
and treated samples are then harvested, and because the label is encoded directly into the amino
acid sequence of every protein, the extracts can be mixed directly. Purified proteins or peptides
will preserve the exact ratio of the labeled to unlabeled protein, as no more synthesis is taking
place, and therefore no scrambling can take place at the amino acid level. The proteins and
peptides can then be analyzed in any of the ways in which they are analyzed in non-quantitative
proteomics. Quantitation takes place at the level of the peptide mass spectrum or peptide frag-
ment mass spectrum, exactly the same as in any other stable isotope method (such as ICAT);
after [42].
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It seems just a matter of time until this technology will be applied to other
model organisms.

In Figure 3A the general set up of SILAC experiment is illustrated. In brief the
two cell populations to be compared (e.g., induced vs. non-induced cells) are grown
in either standard cell culture medium or medium supplied with an essential iso-
tope-bearing amino acid. The proteins from both samples are then extracted. Since
the label is included directly into the amino acid sequence of every protein, the
extracts can be mixed directly. The purified proteins or peptides will preserve the
exact ratio of the labeled to unlabeled protein, as no more synthesis is taking place
and the proteins or peptides can be analyzed by mass spectrometry. Quantitation
takes place at the level of the peptide mass spectrum or peptide fragment mass spec-
trum, identical to any other stable isotope method (see below). It is important to note
that the absence of chemical steps implies the same sensitivity and throughput for
SILAC as for non-quantitative methods.

Being a simple and rather cheap technology the SILAC method has become
widely used in many laboratories. Furthermore, different protocols for cell fraction-
ation and protein separation such as 2-DE or strong cation exchange chromatogra-
phy can be used in combination with SILAC making it the method of choice for
many applications.

Isotope coded affinity tags (ICAT™)

In the previous paragraph we described the quantitation of proteins through meta-
bolic labeling. This technology, however, is limited to unicellular organisms or cell
culture systems. Complete proteome labeling by SILAC in multicellular organisms
remains, with a few exceptions [44] utterly impossible. In 1999 Aebersold and col-
leagues developed another technique for quantitative proteome profiling that is also
based on stable isotope incorporation into the proteins allowing to perform a quan-
titative proteome analysis of two samples irrespective of the protein source [45].
The crucial difference to SILAC, however, is that the protein-tagging takes place by
chemical means after the proteins have been extracted. Protein labeling is based on
a class of reagents termed isotope-coded affinity tags (ICAT, Fig. 3B). The reagent
consists of three elements: an affinity tag (biotin), which is used to isolate ICAT-
labeled peptides; a linker that can incorporate stable isotopes; and a reactive group
with specificity toward thiol groups (cysteine residues). Since the ICAT reagents are
available in two flavors (a so-called isotopic light and an isotopic heavy label) they
allow to compare protein expression levels in two different samples. ICAT-labeled
peptides elute as pairs from a reverse-phase column. By calculating the ratio of the
areas under the elution profile curve for identical peptide peaks labeled with the
light and heavy ICAT reagent, the relative abundance of that peptide in each sample
can be determined, which is directly related to the abundance of the corresponding
protein (Fig. 3B). Originally the ICAT reagents featured either eight hydrogen
or deuterium atoms in the linker [45] in the isotope coding linker region. However,
2H and H labeled peptides show slightly different elution profiles during reversed-
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phase separation (RP), which makes it difficult to quantify at a single moment in
time [46]. In addition, the relatively hydrophobic biotin tag causes peptides to elute
in a relatively narrow time window during RP-chromatography. To circumvent
these shortcomings and to minimize the effects of the label, a novel set of ICAT
reagents, called cleavable ICAT (cICAT) has been developed [47]. First the poly-
ethylene glycol linker has been replaced by an acid cleavable linker that enables
clipping of the biotin tag after affinity purification. Second, the isotope coding by
eight deuterium atoms has been replaced by nine *3C atoms in the heavy version of
the new cICAT reagents. Li and colleagues [48] demonstrated the improved per-
formance and identical behavior of differentially labeled peptides on a RP-column.

In order to determine the absolute amount of a target protein or proteins in a
complex biological sample using this technology further development of the ICAT
strategy lead to the generation of the so-called VICAT reagents [49]. The principle
was to generate three distinct isotope-coded tags of which one is used to label an
internal reference peptide of known concentration. The technology however has
never become widely accepted. It has rather become substituted by the iTRAQ
technology.

The ICAT approach is based on two fundamental principles. First, pairs of pep-
tides tagged with the light and heavy ICAT reagents, respectively, are chemically
identical and therefore serve as ideal mutual internal standards for accurate quanti-
fication. Second, a short sequence of contiguous amino acids from a protein (5-25
residues) contains sufficient information to identify that unique protein. This prin-
ciple is corroborated by that fact that every quantifiable peptides contains cystein,
which is a rare amino acid that is frequently a component of novel tryptic peptides
— peptides whose sequence is found only once in an organism’s proteome.

The ICAT technology is illustrated in Figure 3B and the processing of the probes
includes the following sequential steps: First proteins from the two samples (tissues,
cells, whole organisms) to be compared are separately isolated and resolubilized
under strong denaturing conditions using urea and SDS. The extracted proteins in
one sample, representing for instance a tissue in a normal state, are then reduced
before the cysteinyl residues are derivatized with the isotopically light form of the
ICAT reagent. The equivalent groups in the second sample derived for instance
from a tissue in a diseased state are derivatized with the isotopically heavy reagent.
After the labeling is complete, the two samples are combined. This is a crucial step,
because both samples undergo the same treatment thus conserving the appropriate
abundance ratios of the proteins. In the subsequent step, the protein mixture is sub-
jected to protease treatment generating two different tryptic peptide populations: a)
a minor fraction (roughly 10%) consisting of (light or heavy) tagged cysteine-con-
taining peptides, and b) a major fraction (90%) consisting of untagged non-cysteine-
containing peptides. By selectively isolating the protein-tagged cysteine-containing
peptides on an avidin affinity column through the biotin tag, one achieves a major
reduction in peptide complexity before subjecting the mixture to mass spectrometric
analysis and thus allows the analysis of quantifiable peptides under less crowded
analytical conditions. Finally, the isolated peptides are separated and analyzed by
LC-MS/MS (a detailed description of the underlying principles can be found in the
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Isotope Coded Affinity Tags (ICAT)
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Figure 3 (B). Workflow of a typical ICAT experiment: Proteins isolated from a control sample
(untreated cells) are treated with the light reagent, while proteins from the test sample are
treated with the heavy reagent. The samples are mixed and the protein pool digested with
trypsin. Following tryptic digestion of the pooled proteins, the peptides are separated from the
byproducts of the labeling and digestion reactions on cation exchange chromatography. The
ICAT-reagent-labeled peptides are then separated from the other peptides by avidin affinity
chromatography. Following the avidin elution step, the ICAT-reagent-labeled peptides are evap-
orated to dryness and reconstituted in concentrated trifluoroacetic acid (TFA) to cleave the
biotin portion of the tag from the labeled peptides. The reaction mix is kept at 37°C for 2 h and
is followed by a second evaporation step to remove the acid. The peptides are then placed in an
autosampler for reversed-phase capillary LC/MS/MS analysis. Inset 1: To assess whether the
labeling and protease treatment processes were successful, small aliquots of the initial samples
(lane 1 (sample 1) and lane 2 (sample 2)), each labeled fraction (after labeling, lane 3 (sample 1
+ light ICAT) and lane 4 (sample 2 + heavy ICAT)), and the trypsinized mixture (combined
samples incubated with trypsin for 4 h (lane 5), 8 h (lane 6), 16 h (lane 7), are collected after
each step, run on a polyacrylamide gel and examined after the gel has been fixed and silver
stained. Proper labeling of the samples can be monitored if bands show a decreased mobility.
The mobility shift may, however, be subtle and hard to detect on gels with a high poly acryl
amide concentration. More important is that the bands show the same strength before and
after the labeling procedure indicating that no degradation of the proteins occurred. The tryptic
digest is considered to be complete if distinct protein bands are no longer visible (inset 1).
Inset 2: Quantitation of an ICAT experiment. Quantitation of two coeluting, differentially
labeled peptides (*?C designates cysteine labeled with the light form of ICAT reagent, while
13C designates cysteine labeled with the heavy form of ICAT reagent), the peptide elution
profiles indicating the relative abundance, and the calculated *?C: **C ratio obtained using
XPRESS software [75].



126 E. Brunner et al.

following chapter). In this last step, both the quantity and sequence identity of the
proteins from which the tagged peptides originated are determined by automated
multistage MS: When peptides from the two sources are analyzed concurrently, two
distinct peaks representing the differentially labeled species are detected by MS.
Relative quantitation is done by comparing the areas of the related peaks of the
identical, yet isotopically distinct, peptides.

To assess whether the labeling and protease treatment processes were success-
ful, small aliquots of the initial samples, each labeled fraction (before combining
them) and the trypsinized mixture are collected after each step, run on a polyacryl-
amide gel and examined after the gel has been fixed and silver stained. Proper label-
ing of the samples can be monitored if bands show a decreased mobility. The
mobility shift may, however, be subtle and hard to detect on gels with a high poly
acryl amide concentration. More important is that the bands show the same strength
before and after the labeling procedure indicating that no degradation of the proteins
occurred. The tryptic digest is considered to be complete if distinct protein bands
are no longer visible (Fig. 3B).

The original ICAT protocol uses ion exchange chromatography after the ICAT
labeling and mixing of the two samples to remove excess derived reagents. Another
option was developed by Li [48]. By running the labeled ICAT proteins (prior
to digestion) on a 1D SDS PAGE, excess ICAT reagents, salts, and detergents, can
easily be removed and allows easy buffer changes for the following digestion step.
Moreover, proteins are pre-fractionated according to molecular weight which can
be used as an additional criterion for the evaluation of protein identifications.

This basic ICAT protocol can not only be applied to whole proteome compari-
sons of whole tissues, sorted cells, subcellular fractions or perturbed cell culture
populations but can also be used to determine candidate interaction partners of
specific proteins (bait) by immuno precipitation (IP). This is achieved by labeling
the proteins that co-immunoprecipitate with the bait with one ICAT label and to tag
the appropriate control IP (lacking the bait) with the corresponding tag and process-
ing and analyzing the two samples as described. Proteins that show a 1:1 ratio are
equally present in either of the samples indicating an unspecific binding of this pro-
tein to the beads or affinity column. A specific interaction of a protein with the bait
is represented by an increased relative intensity signal in the specific IP. The feasi-
bility of this approach has been demonstrated by Ranish and colleagues [50].

Alternatively, it has been demonstrated that the 2-DE and the ICAT labeling
technology can be combined into a single differential display platform [51]. Pro-
teins from two different samples are labeled with heavy and light ICAT reagents,
combined and then separated by 2-D gel electrophoresis. The gel-separated proteins
are detected with a sensitive protein stain, excised, cleaved with trypsin and ana-
lyzed by MS.

This method closely parallels the DIGE methodology with some important im-
provements — both, the DIGE and the ICAT technology decrease the electrophoretic
mobility of proteins. Since the cysteine residues are modified with a pH-neutral
ICAT group, the isoelectric point is preserved for all but the most basic proteins.
While DIGE requires controlled labeling with the hydrophobic cyanine dyes, ICAT
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labeling is done to completion which is readily accomplished using excess ICAT
reagent. This makes the labeling and quantification by ICAT more robust and repro-
ducible; the labeling of proteins using cyanine dyes is more prone to generate
molecular mass ladders of spots with varying degrees of dye incorporation. More-
over, since the ICAT reagent is relatively hydrophilic, migration problems do not
arise during electrophoresis.

One important application of ICAT in combination with 2-D gels (instead of a
separation of peptides in liquid phase) is for the assessment of the relative abun-
dances of protein isoforms that may arise from posttranslational modification.

The ICAT technology has a number of advantages but also limitations which
shall be discussed in more detail. First and foremost is its ability to reduce peptide
complexity by 90% at the slight expense of being unable to identify, on theoretical
grounds, some 10-15% of a cell’s proteins. Second, the chemical reaction in the
ICAT alkylation can be performed in the presence of urea, sodium dodecy! sulfate
(SDS), salts, and other chemicals that do not contain a reactive thiol group. There-
fore, proteins are kept in solution with powerful stabilizing agents until they are
enzymatically digested. Third, the sensitivity of the LC-MS/MS system is critically
dependent on the sample quality. In particular, commonly used protein-solubilizing
agents are poorly compatible with MS. Avidin affinity purification of the tagged
peptides completely eliminates contaminants incompatible with MS. Fourth, the
quantification and identification of low-abundance proteins requires large amounts
(milligrams) of starting protein lysate. Isotope-coded affinity tag analysis is com-
patible with any biochemical, immunological, or cell biological fractionation meth-
ods that reduce the mixture complexity and enrich for proteins of low abundance
while quantification is maintained. It should be noted that accurate quantification is
only maintained over the course of protein enrichment procedures if all manipula-
tions preceding combination of the differentially labeled samples are strictly con-
served. Fifth, unlike the *N/*N labeling scheme, the ICAT method is a post-isola-
tion isotopic labeling approach that does not require cells to be cultured in special-
ized media. Finally, the ICAT approach can be extended to include reactivity towards
other functional groups. One weakness of the current ICAT method is that it requires
proteins to contain cysteine residues flanked by appropriately spaced protease cleav-
age sites. In Arabidopsis approximately 5% contain no cysteinyl residues and are
therefore missed by using thiol-specific ICAT reagents. Moreover, the quantitative
information on posttranslational modifications of proteins is rarely available since
the modified amino acid residue needs to coincide in a quantifiable cystein-contain-
ing peptide. Recently, an improved approach analogous to ICAT called iTRAQ has
been developed that renders the cysteine-free proteins as well as any PTM suscep-
tible to quantitative analysis.

Isobaric peptide tagging using iTRAQ™

iTRAQ is a primary amine specific (N-terminus) stable isobaric labeling method
well suited for relative and absolute protein quantitation using mass spectrometry
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[52]. Aset of four labels are available adding flexibility to the experimental approach
including time course analyses, biological replicates and accurate quantitation using
internal standards. In general, all the steps for sample handling and post label-
processing as described for the ICAT approach can be applied. As a primary differ-
ence to the ICAT technology, peptides and non-intact proteins are subjected to labe-
ling with iTRAQ. Due to the large number of tagged peptides produced, biochemi-
cal fractionation on iTRAQ samples, for instance by SCX chromatography, are in-
dispensable prior to MS analysis.

As a major advantage, quantitative information is not restricted to cystein-con-
taining peptides as in the ICAT methodology, but is in effect available for any pep-
tide class including those that underwent posttranslational modification. As a conse-
guence, higher quantitative peptide coverage is achieved than with the ICAT meth-
od. In addition, the labeled peptides are isobaric, i.e., they do not differ in mass and
hence also identical in the single MS mode (Fig. 3C). The differentially labeled
isobaric peptides sum up to an increased precursor signal, improved MS/MS frag-
mentation and eventually result in better confidence identifications. Quantitation is
elegantly and easily achieved during MS/MS fragmentation where each of the four
labels generates distinct diagnostic signature ions in the low mass range with a A-mass
of 1 Dalton (114-117 Daltons). Finally, iTRAQ is well suited to perform absolute
quantitation [53] of individual proteins in complex mixtures by spiking the sample
with one or more iTRAQ-tagged synthetic protein-specific peptides in known con-
centrations.

These tremendous improvements are achieved at the expense of an increase in
sample complexity as well as an analysis being restricted to the use of mass spec-
trometers that cover the low mass range. However, the tremendous sample com-
plexity demands for high throughput instruments such as ion-traps, which unfortu-
nately still have a restricted dynamic range and in most cases cannot detect the
diagnostic fragment ions. In addition, it has recently been reported that in a direct
comparison of the two methods, the ICAT technology has the potential to detect a
higher proportion of lower-abundance proteins than the iTRAQ methodology [54].

For both, the ICAT and the iTRAQ technology, companies offer fully-fledged
solutions including the necessary reagents, MS instruments, and application soft-
ware.

In a similar study, Choe and co-workers compared the reproducibility and varia-
tion in quantitation of proteins in a mixture analyzed by 2-DE and the iTRAQ
technology [55]. Whereas the analysis of the 2-DE resulted in a total 68 proteins,
the shotgun iITRAQ approach quantified 527 proteins. For a direct comparison of
the protein expression ratio consistency, only the 55 proteins quantified with both
methods (shared proteins) were included in the analysis. The variability was deter-
mined by calculating the so-called coefficent of variation (CV) and was determined
to be between CV = 0.31 and 0.81 for 2-DE and CV = 0.24 to 0.53 for the isobaric
tagging method. Taken together, not only could more proteins be identified but also
quantification was more accurate using the isobaric iTRAQ labeling method. More-
over, spots of lower staining intensity (which correspond in most cases to lower
abundance proteins) were shown to offer less consistency in quantitation by 2-DE
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Figure 3 (C). Workflow of a typical iTRAQ experiment: Although up to four different samples
can be analyzed in any given experimental procedure, for simplicity, Figure 3 shows an experi-
ment using only two. Protein isolates are reduced, alkylated and digested with trypsin in an
amine free buffer system, in parallel. The resulting peptides are then labeled with the iTRAQ
reagents. Upon completion of labeling the samples are then combined. Depending on sample
complexity, samples are either directly analyzed via LC-MS/MS after a one-step elution from
a cation exchange column to remove reagent byproducts or, in the case of complex samples,
cation exchange chromatographic fractionation to reduce overall peptide complexity.

whereas isobaric tags are capable of providing more consistent quantitation for
lower intensity proteins.

uantitation of protein levels using protease incorporated 20
Q p ap p

This paragraph deals with another post expression labeling method, namely the
incorporation of 0 by proteases. One of the first applications of this method was
to facilitate the interpretation of de novo sequencing of mass spectrometric derived
peptide fragments [56] and for creating peptide internal standards [57]. However,
the increased interest over the last couple of years in protein quantitation, both rela-
tive and absolute, shed new light into this particular technology.

Proteases, proteinases, or the more modern name peptidases, describe the same
group of enzymes that catalyze the hydrolysis of the peptide bond in the peptide
backbone of a protein. Per definition, all peptidases that incorporate oxygen from
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the surrounding matrix during the protein/peptide hydrolysis can be used. But for
clarity, this paragraph will only deal with one specific protease, namely the most
commonly used protease in proteomic experiments, trypsin.

Trypsin, a serine protease, uses a mechanism that is based on nucleophilic attack
of the targeted peptidic bond by a serine. Figure 4 shows a schematic overview of
the mechanism of the hydrolysis of a peptide bond. The mechanism consists essen-
tially of six steps (see also Fig. 5) [58]:

1. Substrate binds.

2. Nucleophilic attack of the side chain oxygen of serine 195 in the active site
of trypsin, on the carbonyl carbon of the readily cleavable bond, forming a tetra-
hedral intermediate.

3. Breakage of the peptide bond with assistance from histidine 57 (proton transfer
to the new amino terminus).

4. Release of the first product.

5. Nucleophilic attack of water on the acyl-enzyme intermediate with assistance of
histidine 57 and formation of the tetrahedral intermediate.

6. Decomposition of acyl intermediate and release of the second product.

A

O
-§-CH—C—N + HO—Enz -§-CH—C—N *HO=—Enz
H,'80
Protein Trypsin
-§-NH2
_____________________ 4 oo
o
B I
-§-CH—C—180H+ HO = Enz
|
R
180 H2180 180
I i
(IJH—C—180H + HO=—Enz -§-(I)H—C—OH-HO—Enz
R H,O R

Figure 4. Schematic overview of the reaction mechanism of peptide hydrolysis by trypsin.
After substrate binding (A), the peptide bond is cleaved by nucleophilic attack of the serine in
the active site of trypsin. After releasing the first intermediate product, there is a carboxyl
oxygen exchange (B). There is double oxygen incorporation after complete cleavage of the
peptide bond. Figure adapted from [58].
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Figure 5. Experiment design for protein level quantitation using ‘20 labeled peptides. For a two
way comparison of relative protein amount, equal amounts of sample X and Y are digested
independently using ordinary water and ‘20, respectively. Samples are then combined and sub-
jected to subsequent peptide separation and mass spectrometric analysis.

During the hydrolysis of the peptide backbone bond by trypsin, two oxygen atoms
from the surrounding matrix are incorporated into the product on the c-terminus side
of either arginine or lysine. It is exactly this fact that is being made use of. By using
80 enriched water (H,*®0), 80 is incorporated instead of the ‘usual’ %0 isotope
from ‘normal’ water (H,'®0). Normal water does naturally contain H,'®0, but at
negligible amounts.

The actual experimental set up is straightforward and is being represented by the
schematic in Figure 6. Samples are compared in a pair wise manner, e.g., sample X
versus sample Y. Approximate equal amounts of protein from the two samples are
important to the data analysis. To this, typically, a simple protein determination is
performed. However, small offset differences can be corrected by using a so-called
set factor in the data analysis.

Sample X is then digested in the presence of normal water, while sample Y is
digested in the presence of H,'®0. The samples are combined in a one to one ratio
and subjected to subsequent peptide separation and mass spectrometric analysis.

Protein identification and quantification can then be performed using one typical
LC-MS/MS run. Where the fragmentation data functions for the identification, the
MS scan functions as the quantitative information. An example of a real measure-
ment by high accuracy ion cyclotron resonance Fourier transform mass spectro-
metry (ICR-FT MS) is shown in Figure 6. The zoom-in shows the single charged
peptides from sample X and sample Y. The double incorporation of oxygen gives
rise to the distinct 4 Da difference between the mono-isotopic peaks at m/z 804.3908
and 808.3994 for sample X and Y, respectively. The ratio of the relative intensity is
then a measure for the relative protein/peptide quantification.
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Figure 6. Example of a MS-survey scan of #0 labeled and non-labeled peptide. A zoom in from
a MS-survey scan of a singly charged peptide is shown which has been digested in the presence
of normal water (804.3908 Da) and 20 labeled water (808.3994). The double incorporation of
oxygen reveals the distinct difference of 4 Da. The ratio of the relative intensity of the different
peptides is used for the relative protein/peptide quantification.

A number of groups have developed software for analyzing this type of data.
Mann and co-workers have developed a neat tool called MSQuant [59], which
is designed to analyze isotopic labeled samples, not only 0 but for instance also
SILAC [42] derived samples. The software can be downloaded from http://msquant.
sourceforge.net/. The software has a standard Mascot search and one or more raw
files. Raw files from all major instrument vendors are supported.

Anumber of interesting applications using 20 incorporation by different enzymes
have been published [60-64]. The strong point of this particular method is that it is
easy. There is no need for complex lengthy chemical labeling protocols or expensive
labor intensive tissue culture work. However, H,*0 is rather expensive and is also
less suited for complex sample analysis without further complexity reduction. An
example of such an approach was demonstrated by Bonenfant and co-workers [65],
where they analyzed a complex sample to quantify changes in protein phosphoryla-
tion using 20 incorporation by trypsin followed by IMAC [66] enrichment.
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lon intensity-based quantitative approach

In the last few paragraphs we have described various techniques that allow the iden-
tification and quantification of proteins in complex mixtures — all of them involve
the stable modifications of proteins in one way or another. As a matter of fact it
would be nice to have reliable and reproducible quantitative methods for absolute
protein quantification using mass spectrometry based on signal intensity only; how-
ever, comprehensive quantitative proteomics remains technically challenging due
to the issues associated with sample complexity, sample preparation, and the wide
dynamic range of protein abundance. Generally, signal intensity in mass spectrom-
etry increases with the amount of analyte. A number of reports account for linear
correlations between signal intensity and the amount of analyte in special applica-
tions [67, 68] but there are also concerns regarding nonlinearity of signal intensity
and ion suppression effects for complex proteomic samples [69].

A very rough idea about protein concentration in complex mixtures can be
gained using protein abundance indices (PAI) introduced by Rappsilber and col-
leagues (2002) [70]. The basis of the PAls describes the number of identified pep-
tides divided by the number of observable peptides per protein. This approach has
been used to analyze the human spliceosome complex. This approach could only
describe relative ratios of proteins within a given sample. The next step towards
absolute quantification was the finding that the protein amount has a logarithmic
dependency to the PAI. With this exponentially modified PAI they investigated
known amounts of 46 proteins in a complex cell lysate with an average deviation
factor of 1.74 ©.79 [71]. Despite the still strong variation of this method it has the
great advantage that quantitative results can be obtained from already measured
samples simply by reanalyzing them with the emPAI approach (Equation 1). With
the knowledge of the total amount of protein you have applied you can recalculate
the amount of your protein of interest.

protein content (mol %) = _emPAl %100 (Eq. 1)
X (emPAI)

Typically, absolute quantification of proteins requires the use of one or more exter-
nal reference peptides to generate a calibration-response curve for specific polypep-
tides from that protein (i.e., synthetic tryptic polypeptide product). The absolute
quantity of the protein under investigation is determined from the observed signal
response for its polypeptides in the sample compared to the signal response from the
calibration curve. In cases where absolute quantities of a number of different pro-
teins are required, separate calibration curves are necessary. Absolute quantification
would allow not only to determine changes between two conditions but also to per-
form quantitative protein comparisons within the same sample.

Gerber and co-workers describe a conventional technique for absolute quantifi-
cation (called AQUA) of proteins and their corresponding modified states in com-
plex mixtures using a synthesized peptide as a reference standard [72]. The refer-
ence peptide is chemically identical to the naturally occurring tryptic peptides of a
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given protein but one residue contains stable isotopes (*3C and/or **N). The refer-
ence standard is introduced to a complex mixture and the mixture is analyzed using
LC/MS to measure the corresponding signal intensity for the spiked peptide along
with the endogenous peptide. This intensity signal response is compared with an
intensity calibration curve created using the introduced synthetic molecule to deter-
mine the amount of the endogenous protein in the mixture. A disadvantage with
using synthetic peptides is that extra steps are required to synthesize an authentic
sample, and to later ‘spike’ the synthetic standard prior to being able to determine
the absolute quantity of the protein itself. To perform an absolute quantification for
a number of proteins within a mixture requires a synthetic standard for each protein
of interest (see above) [72].

Another method for absolute quantification of proteins requires that a known
quantity of intact protein of a different species is spiked into the protein mixture of
interest prior to digestion with trypsin or that a known quantity of pre-digested pep-
tide is spiked into the mixture after it has been digested. The average MS signal
response for the three most intense tryptic peptides is calculated for each well-char-
acterized protein in the mixture, including those to the internal standard protein(s).
The average MS signal response from the internal standard protein(s) is used to
determine a universal signal response factor (counts/mol of protein), which is then
applied to the other identified proteins in the mixture to determine their correspond-
ing absolute concentration. The absolute quantity of each well-characterized protein
in the mixture is determined by dividing the average MS signal response of the three
most intense tryptic peptides of each well-characterized protein by the universal
signal response factor described above.

Silva and co-workers observed a linear response of MS signal intensity from
digested peptides correlating with protein concentration. Six proteins were analyzed
in various dilutions from 6 fmol to 900 fmol total protein. All detected monoiso-
topic components were extracted with their accurate mass and retention time, to
compare chemically identical components by using the Expression Informatics
Software from Waters®. Upon decreasing protein concentrations the number of
measurable peptides and their corresponding signal intensity responses decreased in
a linear fashion but the relative signal intensity pattern between different proteins
was constant. An average signal response of around 26,000 counts per pmol of each
protein on column was observed with a CV of 4.9%. Because the response curve
was independent of the protein that has been used the response factor of the spiked
protein can be used to obtain absolute quantification of other well-characterized
proteins in this sample. The standard protein mixture was spiked in a complex
protein sample (human serum) and re-analyzed. Although there was a 20% de-
crease of signal response in the signal response factor (counts/pmol) the signal
intensity ratios are internally consistent. With this signal suppression effect the CV
increased from 4.9% to 8.4% in the more complex sample. With this response factor
it was possible to determine the absolute amount of 11 serum proteins. The results
obtained from the replicate analysis were better than 15% variability [73].

Wang and co-workers reported a quantification method without labeled or
spiked standards. This method relies on a number of data manipulations, e.g., base-
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line subtraction, data smoothing, de-isotoping, charge state normalization, and
appropriate peak detection in order to identify peaks that are valid for quantitation.
The authors used a test sample of five proteins where the amount of three proteins
was kept constant and the amount of two proteins was varied. The relative inten-
sity of these proteins was close to linear in a range of one order of magnitude
with a CV of 33% #. The quantitation method was used to analyze 105 human
serum samples with spiked non-human proteins. 80 samples were tested on
a Thermo Finnigan LCQ Deca ESI-lon Trap and 25 samples were measured on
a Micromass LCT ESI-ToF mass spectrometer (a detailed explanation can be
found in the following chapter). The higher resolution power of the ToF instrument
provides a 20 times lower detection limit compared to the LCQ-Deca instrument.
One of the serum samples was arbitrarily chosen for reference (e.g., house keeping
proteins) and used to adjust all LC-MS retention times. MS signal intensities
were normalized with one normalization constant for the entire sample. This pro-
cedure showed the smallest variations between the samples. The result showed
a linear MS response for the test proteins between 100 fmol and 100 pmol on
column [74].

All ion intensity-based quantification methods were performed on samples with
limited complexity. It is therefore still an open question as to whether these methods
are also applicable to more complex tissue samples. Once more the studies discussed
above illustrate that mass resolution, ionization efficiency, reproducibility, and suf-
ficient pre-fractionation are crucial for MS-based quantification methods.

Summary and conclusions

Over the last 20 years several elegant techniques have been established that allow
quantifying protein levels in complex biological samples. Each of these methods
has advantages and none of them are without flaws. All of the technologies cover a
wide range of experimental designs and for each of them there is a scientific ques-
tion for which a particular approach is best suited. However, none of the techniques
has won the race making the others obsolete. There are rather several important
considerations to be made in the design of quantitative proteomics experiments in
order to avoid dissatisfactory results, and thus, before subjecting precious biological
samples to labor intensive and costly quantitative proteomic analyses. There is the
urgent need to formulate the scientific questions to be answered, delineate the ex-
pected results, but also to consider the own resources and to calculate the costs of
any envisaged approach. Where applicable, a reasonable solution may be to subject
the same probe to more than one quantitative measurement. In any case, it is impor-
tant to note that any quantitative measurement and especially any conclusion drawn
thereof needs to be confirmed in the context of the corresponding biological system
by other means. Emerging technologies, such as the ion-intensity-based quantita-
tion in conjunction with the rapid improvements in MS technology, will bring along
more accurate and more comprehensive measurements and carry a promise for the
future.
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Abstract

With the introduction of soft ionization techniques such as Matrix Assisted Laser Desorption
lonization (MALDI), and Electrospray lonization (ESI), proteins have become accessible to
mass spectrometric analyses. Since then, mass spectrometry has become the method of choice
for sensitive, reliable and inexpensive protein and peptide identification. With the increasing
number of full genome sequences for a variety of organisms and the numerous protein data-
bases constructed thereof, all the tools necessary for the high-throughput protein identification
with mass spectrometry are in place. This chapter highlights the different mass spectrometric
techniques currently applied in proteome research by giving a brief overview of methods for
identification of posttranslational modifications and discussing their suitability of strategies for
automated data analysis.

Introduction

Since its invention in 1905, mass spectrometry (MS) has become a widely estab-
lished technique for analyzing chemical structures in quantities down to trace levels.
Due to a lack of suitable ionization techniques for high mass biomolecules, proteins
remained inaccessible to MS analysis for decades. Since the introduction of soft
ionization techniques such as Matrix Assisted Laser Desorption lonization (MALDI)
and Electrospray lonization (ESI), MS at the end of the 1980s [1, 2] protein analysis
by mass spectrometry underwent a rapid phase of development. In parallel, an in-
creasing number of full genome sequences for a variety of organisms are now avail-
able and numerous protein databases were constructed from this information. Well-
annotated, high-quality protein databases built the ground on which high-through-
put protein identification with mass spectrometry can be performed.

The modular arrangement of different types of mass analyzers in combination
with MALDI- or ESI has resulted in a wide variety of different mass spectrometric
instrumentation (e.g., MALDI-TOF, ESI-Q-TOF, ESl-ion trap, MALDI-TOF/TOF,
ESI-FT-ICR, etc.). All of these MS techniques allowed the determination of the
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primary structure of a protein, though they always required additional sample prep-
aration techniques. Furthermore, the analysis of posttranslational modifications
such as phosphorylation or glycosylation has become possible. Modern mass spec-
trometers now combine attributes like high sensitivity, mass accuracy, mass resolu-
tion, and rapid analysis as well as sophisticated data handling in a system-dependent
manner. In addition to these technical aspects in mass spectrometry, greatly im-
proved sample separation and preparation techniques have also lead to enhanced
sensitivity. The quantification of chemically or metabolically labeled proteins is yet
another focus of interest in mass spectrometry (see previous chapter). Despite these
advances current MS approaches still have limitations and are therefore subjected
to further development. The aim of this paper is therefore to highlight the different
mass spectrometric techniques currently applied in proteome research by giving a
brief overview of methods for identification of posttranslational modifications and
discussing their suitability of strategies for protein quantification.

General technical considerations

Mass spectrometry is a highly sensitive and accurate method for the determination
of molecular masses of different types of molecules. All common mass spectrome-
ters consist of three functional units: the ion source which ionizes the analyte, the
mass analyzer which separates the resulting ions according to their mass-to-charge
ratio (m/z), and the ion detector, whose signals can be recorded and processed by a
computer. The order, which is given here, reflects the direction of the ion’s path
through a standard mass spectrometer. For every unit of a mass spectrometer, differ-
ent designs are available, all of which can be arranged in a multitude of ways. For
mass analyzers in particular, different arrangements of units can be incorporated
into a single mass spectrometer. For example, the coupling of two mass selective
devices for tandem mass spectrometry (MS/MS) has expanded the field’s applica-
tion enormously, resulting in a profusion of experimental set ups and designs in
modern protein analyzing mass spectrometers. For a better understanding of the
variety of instrumentation, a brief introduction to the functional principles of the
most common designs is essential.

lon sources

The ion source is designed to generate analyte ions and transfer them into the gas-
phase, where they can enter the vacuum of the mass spectrometer. The ions are
generated by loss or gain of charge (e.g., electron capture, electron ejection, proto-
nation, deprotonation or cationization). Electron ionization (EI) was the most com-
mon ionization technique for mass analysis until the development of MALDI and
ESI ionization. The electron ionization technology is limited to compounds with
masses well below the range of peptides and proteins, due to the involatility of large
biomolecules in a vacuum by thermal desorption. Nevertheless, electron ionization
still plays an important role in the routine analysis of small molecules. The first
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satisfactory biomolecule ionization was achieved with techniques such as plasma
desorption [3] and fast atom bombardment (FAB) [4], which still have several limi-
tations. With the introduction of *soft’ ionization techniques (e.g., MALDI and ESI)
in mass spectrometry, problems like thermal decomposition and excessive fragmen-
tation of large biomolecules such as peptides could be overcome. In both cases, the
ionization is primarily accomplished by protonation of the analyte in a liquid phase
which is supplemented with a proton donor (e.g., an organic acid).

MALDI - Source and sample introduction

For this ionization technique, the purified analyte is generally dissolved in a matrix
solution, spotted onto a solid target and co-crystallized with the matrix. The matrix,
which typically contains a UV sensitive aromatic compound, is used to facilitate
UV-laser energy-absorption and energy-transfer. The irradiated area of the crystals
and the analyte embedded therein are vaporized by the laser energy uptake (Fig. 1).
Although the mechanism of ion formation during the MALDI process is still a
matter of some controversy [5], the efficiency of ionization and the initial ion veloc-
ity can be controlled by the choice of matrix or the composition of the analyte
sample. Typical matrix compounds include 2,5-dihydroxybenzoic acid (DHB),
3,5-dimethoxy-4-hydroxy-cinnamic acid (sinapinic acid), and a-cyano-4-hydroxy-
cinnamic acid (HCCA). The analyte molecules are normally ionized by simple
protonation, leading to the formation of the typical singly charged [M+H]* type spe-
cies (where M is the mass of the analyte molecule). Trace contaminations of earth
alkali metals in the matrix will especially generate [M+X]* ions (where X = Li, Na,
K, etc.). Once the ions are vaporized, they are accelerated in an electric field and
different mass analyzers can be used to measure their m/z. The most commonly used
instrument type is the MALDI-TOF-MS design whose performance has dramati-
cally improved due to the introduction of delayed ion extraction [6, 7] and reflectron
technology. The MALDI evaporation process generates ions with an initial velocity
distribution, which normally causes low resolution due to start-time errors. This
effect is compensated with delayed ion extraction by the use of a two-stage accel-
eration field in combination with a delay time resulting from appropriate accelera-
tion voltages following the laser pulse.

MALDI-TOF instruments are capable of analyzing intact proteins and com-
plex peptide mixtures since they have an almost unlimited mass range that can
be analyzed within their flight tube. The MALDI technique generates singly-
charged molecules [8] with a typical detection limit in the low femtomol range.
MALDI has long been considered a ‘soft’ ionization technique that apparently
generates almost exclusively intact ions. In fact, a significant degree of metastable
decay occurs after ion acceleration which is used in reflectron TOF or in modern
TOF-TOF analyzers for simple post-source decay (PSD) analysis. Such an analysis
provides some structural information about an analyte ion, which can be used
for the interpretation of the mass spectrum and the identification of the analyte
molecule.
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ESI - Source and sample introduction

The introduction of charged molecules into the mass spectrometer with ESI sources
is carried out using different quantities of aqueous sample under atmospheric pres-
sure conditions [2]. In nanoelectrospray (nanoES) technology [9], for example, only
a few microliters of sample are needed for spraying from the highly charged (up to
3,000 V) tip of a metal coated glass needle to the inlet of the mass spectrometer
(Fig. 1). The finely pointed nozzle generates a strong electric field, which helps to
accelerate the charged droplets and to form a constant spray of 20-200 nL/min.
Evaporation of the solvent, which is normally supported by a dry gas, decreases the
droplet size and thus increases the surface charge density, finally releasing solvent-
free ionized analyte molecules. Here, organic solvents, e.g., 2-propanol or ace-
tonitrile, facilitate the evaporation process and enhance the formation of a stable
spray. The resulting ions are directed into an orifice and focused stepwise under
increasing vacuum conditions by electrostatic lenses to form an ion beam. The ESI
technique generates primarily multiply charged molecules. It has been demonstrat-
ed that the maximum charge states and charge state distributions of ions generated
by electrospray ionization are influenced by solvents that are more volatile than
water [10, 11].

Mass analyzers
Time of Flight (TOF) mass analyzer

An attractive feature of the TOF mass spectrometer is its graspable design. Mass
analysis simply involves measuring the flight time of the ions on their way through
the field-free-drift region in a flight tube after acceleration. The velocity of the ions
in the analyzer tube is dependent on their m/z values. The greater the m/z, the lower
the speed and the longer the time needed to travel the distance to the detector. Un-
fortunately, for a simple linear tube design, the mass resolution is relatively poor
due to the inevitable initial energy spread from the evaporation process. This disad-
vantage was eliminated by the introduction of the reflectron [1], which is located at
the end of the flight tube and compensates the fuzziness in flight times by focusing
ions with the same m/z in space and time before they hit the detector (Fig. 2). Thus,
with a reflectron TOF mass analyzer design high resolution up to 25,000 can be
effortlessly accomplished.

Another feature of MALDI-TOF instruments is the post-source decay (PSD)
technique that makes use of the fact that some of the MALDI generated ions undergo
metastable decay during flight through the mass analyzer. For simple reflectron
MALDI-TOF devices a composite PSD mass spectrum is generated stepwise due to
the kinetic energy range dependent focusing potential. However, modern MALDI-
TOF-TOF-MS devices provide a faster and more precise MS/MS-spectrum genera-
tion comparable with other common tandem-MS devices.
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Figure 2. Schematized mass analyzer types. TOF: Some time of flight reflectron analyzer are
capable of PSD- or LIFT-tandem MS and provide generally high mass resolution. lon Trap:
The Paul ion trap can usually perform fast MS" experiments but suffers normally from low mass
resolution and accuracy. Quad: Multiple quadrupol mass filters in combination with a collision
cell are suitable for tandem MS with good mass accuracy. LIT: Linear ion trap are simplified
a synthesis of a Quad and an ion trap analyzer (connecting arrows) with over all improved
performance. Within the end caps it can trap strings of ions. Orbitrap: It can be considered as
a highly modified ion trap with an exceptional resolution and mass accuracy. FT-ICR: This
mass analyzer provides the highest resolution power and the best mass accuracy of all currently
known devices. All these analyzers can be combined with each other and with ion sources and
detectors in various ways.

Quadrupole (Q or Quad) mass analyzer

The principle of a quadrupole mass filter is based on the fact, that ions have an
m/z-dependent trajectory in an alternating radio-frequency field [94]. The oscillat-
ing field is generated by two pairs of rod electrodes which focuses ions in two di-
mensions (i.e., two axes). The ions are alternately accelerated to the active attracting
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electrode. At any given field oscillation of the amplitude and the frequency a number
of ions with a specific m/z value are stabilized in between the electrodes, while
the majority of ions are discarded. For this reason, quadrupole mass analyzers are
described as mass filters. With different electrode designs, the ions can be trapped
in a defined volume (ion trap), or drift through a third dimension as in quadrupole
mass filters (ion path). The range of the scanning mass gate is highly field modula-
tion-dependent. If the mass window is increased, more selected ions pass in stable
trajectories through the analyzer, increasing the signal but reducing the resolution.
Triple quadrupole (triple quad) and the Q-TOF mass spectrometers are commonly
used set ups to perform tandem MS with quadrupole mass analyzers.

lon trap mass analyzer

In principle, the ion trap functionality is similar to the quadrupole analyzer [94], the
difference being that the ions are trapped in three dimensions due to the specific
assembly of the electrodes. The trapping volume for selected ions is defined by a
ring electrode and two end-cap electrodes in a compact shape. The operation of ion
trap analyzers is more sophisticated, since several gate drives can be applied for
demanding mass analyses. The operation of an ion trap instrument is, in many ways,
similar to that of a triple quadrupole mass spectrometer. The triple quad performs
ion selection, collisional dissociation and mass analysis in three aligned mass ana-
lyzers separated in time and space, whereas the ion trap performs each operation
sequentially in a single device only separated in time. A major drawback of the ion
trap design is the limitation in the number of ions that can be trapped. The more ions
are located in the limited volume of the ion trap, the more they interact with each
other, e.g., repulsion by identical charges, and the more deviation from their pre-
dicted behavior can be observed. A significant loss of resolution and mass accuracy
are direct consequences of excessively high ion density. This ‘space charge’ phe-
nomenon requires additional scanning and control procedures to ensure that a suit-
able number of ions are trapped during every scan. Normally 0.5 amu can easily be
resolved if ‘space charging’ is minimized. Following collision induced dissociation
(CID), fragment ions can be scanned out of the trap to generate an MS/MS spec-
trum. If required, more MS stages can usually be performed with ion trap instru-
ments (MS"). However, n is usually less than 7 depending on the ion yields from
former experiments. Fast scanning rate, sensitivity, flexibility, robustness and rela-
tively low cost are the considerable advantages of the ion trap mass analyzers.

Orbitrap

Despite the fact that the Orbitrap uses constant electrostatic fields while the ion trap
uses an oscillating electric field, the Orbitrap can be regarded as a highly modified ion
trap (Fig. 2). The electrode geometry of the Orbitrap is a completely new design and
resembles an elongated circular outer barrel with a central spindle-like electrode [12].
These axially symmetric electrodes create a combined quadro-logarithmic electro-
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static potential, leading to stable ion trajectories around the central electrode and
a simultaneous oscillation in the axial direction. The Orbitrap design provides high
resolution (up to 150,000), high mass accuracy (2-5 ppm), and an appropriate dynamic
range [13] and can be operated with MALDI and ESI sources [12, 14]. Although the
applicability of the Orbitrap in tandem mass spectrometry is currently being scrutinized
in different laboratories, this new type of high resolution mass analyzer has the poten-
tial to become a cost-effective alternative to FT-ICR-MS instruments (next section).
However, to date, insufficient practical data are available to evaluate the future impact
of Orbitrap instruments in mass spectrometric protein analysis.

Fourier Transform-lon Cyclotron Resonance (FT-ICR) mass analyzer

This smart type of mass analyzer is having a great impact on MS derived protein
and peptide analysis. FT-ICR-MS offers a higher resolution and mass accuracy than
any other currently available mass spectrometer designs. The analyte ions are
trapped in a combination of electric and strong magnetic fields, which give rise
to the high performance of the FT-ICR analyzer (Fig. 2). lons trapped by a static
electric field are constrained to move in circular orbits in the presence of a uniform
static magnetic field. The frequency of the circular motion (cyclotron frequency) is
a function of the m/z of the ion and the magnetic field strength. The radius of this
circular motion is dependent on the momentum of the ions in the plane perpendicu-
lar to the magnetic field. Thus, under high vacuum conditions, ions can be contained
for a long period of time and ion excitation and detection of their cyclotron frequen-
cies can be performed repeatedly. This technique allows nondestructive detection of
the ions and subsequent acquisition of the spectra with a broadband amplifier for all
ions simultaneously. Fourier transformation of the induced image current signals
provides a complete mass spectrum with very high mass accuracy. Unfortunately,
every aspect of FT-ICR-MS performance improves at higher magnetic fields which
normally originate from superconducting magnets. Currently available supercon-
ducting magnetic materials must be operated at extremely low temperature (typi-
cally <10 K). Using superconducting magnets in FT-ICR analyzers constraints the
design of these instruments and requires a balance for the analysis-space (a large
space is desirable since ‘space charge’ phenomena can be avoided) and the limited
size of the homogeneous magnetic fields that are technically achievable with super-
conducting magnets. These challenging technical demands make FT-ICR-MS tech-
nology very cost-intensive, rendering this design economically less attractive.
However, coupled to a MALDI or an ESI source, FT-ICR is the most effective and
promising mass spectrometric technology and has undoubtedly become an impor-
tant research tool in protein analysis.

lon detectors

With exception of the Orbitrap and the FT-ICR instruments a destructive ion detec-
tion is the general approach to register incoming ions from the different mass



Protein identification using mass spectrometry: A method overview 149

analyzers. lons are generally detected by secondary electron multipliers (SEM) or by
microchannel plate (MCP) detectors. Usually, the detector enables the mass spec-
trometer to generate an analog signal, by producing secondary electrons, which are
further amplified. The analog signal from the detector is finally digitized and proc-
essed by a computer. Several additional designs and applications for ion detection are
in use, e.g., photon-sensitive detectors [15] but are beyond the scope of this review.

Analysis of proteins and peptides by mass spectrometry

In this section, the most widely used modern mass spectrometry techniques for
identification of proteins and peptides will be described. At present, the typical
approach for analyzing proteins is to gather protein spots from 2-D gels, to convert
them into peptides, obtain sequence tags of the peptides, and then identify the cor-
responding proteins from matching sequences in a database. The procedure for
a successful protein identification is thereby arranged in a hierarchy of methods
depending on the degree of protein sample complexity.

General analytical considerations

Peptide mass fingerprinting (PMF) is the fastest method for identifying proteins
recovered from 2D-PAGE or other samples containing only one or two proteins
making sophisticated upstream protein fractionation workflows necessary. A de-
tailed description of the sample treatment prior to mass spectrometric analysis is
given in the next section. The MALDI-MS analysis and the appropriate database
search can easily be done within a few minutes per sample (Fig. 3). More time con-
suming is the tandem-MS approach, which is often required in case of an unsuc-
cessful PMF analysis since it provides information about the peptide structure which
can be used to infer the amino acid sequence. These types of analyses are normally
performed with mass spectrometers coupled to nano-HPLC and takes up to 2 h per
sample although MS/MS analyses with a static spray are possible. This approach
has currently become the standard protein identification method and yields a much
higher identification rate compared to the PMF-approach. A brief comparison of
these two mass spectrometric methods is given in Figure 4. For completely unknown
proteins more labor- and time-intensive procedures are applied, e.g., de novo se-
quencing which can take between several hours and one day and Edman degrada-
tion with its high sample consumption and long analysis times. Among the ap-
proaches mentioned above, the classical Edman degradation approach is the slowest
but the only fully database-independent method.

Peptide Mass Fingerprinting (PMF)-identification

The mass spectrometric analysis of in-gel digested proteins can be done easily by
the peptide mass fingerprinting (PMF) approach [16-18]. The general strategy of
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Figure 3. Workflow for a protein analysis strategy after in gel digestion. The fastest method for
protein identification is the peptide mass fingerprinting (PMF) approach. Mass spectrum record-
ing and database search can be done in less than 2 min. The analysis of tandem mass spectra
takes between a few minutes and few hours. More time consuming is the full de novo sequenc-
ing approach, which can take between several hours and some days, which is comparable with
the database-independent but sample and time consuming Edman degradation method.

PMF comprises the digestion of a protein by a protease with high selectivity for
specific residues and a high reactivity for cleavage to give a maximum peptide
yield. Trypsin, which cleaves proteins selectively at lysine and arginine residues
except those adjacent to proline, meets this requirement and is therefore the most
widely used protease in protein mass spectrometry analysis. After gel electrophoresis
and mass spectrometry-compatible staining (such as all Coomassie-based methods,
SyproRuby (see also the previous chapter) and some silver stain protocols that do
not use crosslinking reagents), the protein spots are excised, washed, and digested.
Since every protein digest gives rise to a unique set of peptides after cleavage with
a specific protease, the identification can be performed by the comparison of the
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Figure 4. Comparison of data generation between simple PMF-approach (A) and the nano-
HPLC-tandem-MS-approach (B). Starting point for each approach is a tryptic protein digest. In
case of (A), the digest is directly analyzed by MALDI-TOF-MS (1) generating a simple peak
list of the detected peptides (2). The peptide masses are then aligned with theoretical digest lists
from each known protein in the database (in silico digestion). In case of tandem-MS combined
with HPLC separation (B 1), much more data with higher peptide detection sensitivity can be
generated from the digest. A tandem-MS capable instrument scans continuously through the
HPLC-run (offline MALDI or online ESI) generating first a full scan spectrum for each duty
circle (2). From here, all applicable peptides can be automatically selected and subsequently
fragmented by user-defined routine. The MS/MS-spectrum reveals in many cases sequence
information from the selected peptide (3). Thus, thousands of MS-spectra can be generated from
a single HPLC-run (4) and yield a much higher reliability in database identification than the
PMF approach (A).

measured peptide masses with calculated (and predicted considering the known
protease cleavage site) peptide masses from database entries. In principle, any mass
spectrometer can be used for determining the peptide masses. However, highly
accurate mass measurements significantly increase the reliability of the database
matches. Most of the MALDI-TOF instruments equipped with delayed extraction
and reflectron analyzers are capable of this type of approach.

Unfortunately, several factors complicate the peptide mass fingerprinting ap-
proach. Important limiting factors are sample losses by inappropriate handling,
incomplete digestion of low-abundance or hydrophobic proteins, multiple proteins
in one gel spot, and the presence of contaminants (e.g., detergents, salts, human
keratin). These factors are critical when analyzing protein amounts in the lower
fmol range. All protein modifications such as, e.g., glycosylation or phosphoryla-
tion also complicate the PMF-approach. In such cases, the best strategy is the chem-
ical or enzymatic removal of these modifications provided that they can be pre-
dicted. In the course of automation for high throughput proteomics, the PMF
approach is very applicable, since hundreds of protein identifications can be per-
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formed per day. Unfortunately, protein digestion and the handling of low fmol
amounts of protein are not routinely possible, despite the fact that modern MS in-
struments are reaching attomol sensitivities. Nevertheless, peptide mass fingerprint-
ing remains primarily a protein identification technique based on the comparison of
measured and calculated peptide masses. Even with up-to-date databases and im-
proved search algorithms, scoring dependent identification will remain unsatisfac-
tory for highly homologous proteins and for the investigation of PTMs. Other more
sophisticated mass spectrometry technologies such as tandem MS are therefore re-
quired. One such promising method is the Accurate Mass and Time (AMT)-tag
approach for whole protein characterization based on the analysis of low level tryp-
tic peptides by LC-FT-ICR-MS [19, 20].

Peptide fragmentation identification

In contrast to PMF, the peptide fragment identification approach yields direct
sequence information. This technique not only measures the mass of the tryptic
peptides, but it also provides sequence information of the peptide fragments gener-
ated by CID and measured by tandem MS. This analytical step provides amino acid
sequence tags that dramatically enhance the success rate of protein identification by
database searches. However, using sequence tags for the identification of peptides
and the respective proteins is frequently confused with de novo sequencing (next
section). The identification of proteins is usually performed by searching within
protein or expressed sequence tag (EST) databases using various search algorithms
such as SEQUEST™ [21], Mascot™ [22], ProFound™ [23], Phenyx [24, 25], etc.

The implementation of tandem mass spectrometry (MS/MS) has pushed the
boundary of mass spectrometric peptide analysis considerably both in terms of sen-
sitivity and information content. The coupling of two mass analyzers in combina-
tion with a collision cell has enabled the direct determination of sequence informa-
tion from peptides. The first mass analyzer serves to select the target peptide for
introduction into the collision cell. Here, the ions undergo multiple collisions with
inert gas atoms (such as nitrogen or argon), whose kinetic energy is converted into
vibrational energy, which is sufficient to cleave a single amide-backbone bond
within a peptide. The second mass analyzer simply records the resulting fragment
ions. Figure 5 shows ions produced by low energy collision induced dissociation
(CID); this is the mode generally used by triple quadrupole, Q-TOF or ion trap
instruments. The different types of positively charged fragment ions are assigned
according to a generally accepted nomenclature [26, 27]. The resulting ions are
called b-type fragment ions when the N-terminus is included (fragmentation from
the C-terminus) and y-type fragment ions when the C-terminus is included (frag-
mentation form the N-terminus). In fragment ion spectra, b- and y-type fragment
ion signals are commonly but not necessarily the most intense signals. Correspond-
ing b- and y-type fragment ions can be obtained by calculating the mass differences
between distinct fragment ions and the precursor ion signal. Furthermore, the amino
acid sequence can be calculated by the mass differences within each ion series. The
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fragmentation pattern is highly dependent on the amino acid sequence of the peptide,
the collisional energy and the number of charges carried by the peptide. Further-
more, the information content of a fragment spectrum depends, to a certain degree,
on the instrument set up used to obtain the spectra. ESI and MALDI, quadrupole,
ion trap and TOF analyzers are all complementary techniques. Easy to interpret
spectra are produced by ESI-Q-TOF MALDI-TOF/TOF instruments, since they are
capable of generating high resolution and high mass accuracy full range fragment
ion spectra allowing, e.g., for de-isotoping. The mass accuracy of Q-TOF instru-
ments allows the differentiation of glutamine and lysine solely on the basis of the
mass difference (Q = 128.06 amu and K = 128.09 amu), whereas the isobaric amino
acids isoleucine and leucine (both 113.08 amu) cannot be distinguished under low
collision energy regimes. Another advantage of both types of instruments are the
accessibility of the low mass range (m/z < 200), which allows the acquisition of
immonium ion data for amino acid composition analysis of peptides (e.g., the marker
ions 110 amu — His, 120 amu — Phe, 136 amu — Tyr, 159 amu — Trp, 175 amu —
C-terminal Arg). The best fragment ion spectra can be obtained from doubly or triply
charged peptides since all resulting fragment ions also remain charged and can be
detected. The generated fragment ion spectra may increase in complexity because
doubly charged ions are able to form singly and doubly charged fragment ions
(depending where the charged residue is localized in the peptide). Triply charged
ions are even capable of forming triply charged fragment ions. However, only one
fragment ion can be detected from singly charged peptides and the remaining
fragment is uncharged (neutral) and therefore does not respond to electric fields and
is not detected (neutral loss). Since MALDI in most cases generates singly-charged
ions [8], its fragmentation spectra only exist of singly charged ions which reduce the
complexity of product ion spectra and yield sufficient information to determine
peptide sequences. The distribution and transfer of charge plays an essential role in
the peptide dissociation process and thus the relative amounts of detectable fragment
ion types. Histidine, tryptophan, arginine, and lysine, which have a high basicity in
the gas phase, can easily attract protons, yielding relatively high fragment ion inten-
sities. Spectra of abnormally fragmenting peptides like proline- or histidine-rich
sequences are more difficult to interpret because of an increased number of internal
fragment (neither containing the N- nor the C-terminus of the precursor) ion signals
or the partial deletion of serial ion signals. However, for the data interpretation it is
mandatory that all intense ions are accounted for; otherwise the result can be decep-
tive. Another method of peptide identification is the fragmentation of isolated
peptide ions by post source decay (PSD) using acommon MALDI-TOF or MALDI-
TOF/TOF instrument [28]. Generally the PSD fragmentation pattern favors back-
bone cleavages producing predominantly a-, b-, and y-type fragment ions with
very little side-chain specific cleavages. The a-ions are formed by the loss of CO
from corresponding b-ions explaining why x-ions cannot be detected in CID spectra
(Fig. 5). A further development of MALDI-PSD is the combination with MALDI
LIFT-TOF-TOF technology [29] and an additional collision cell that can also induce
high energy collisions in the kiloelectron volt range. Compared to ESI instruments,
the higher-energy fragments that result from side-chain cleavages, such as d-, w-
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Figure 5. The generally accepted nomenclature for peptide fragment ions. N-terminal fragment
ions are classified as either a, b or ¢ and the C-terminal ions are labeled either X, y or z. A sub-
script represents the number of residues in the respective fragment. The y- and b- type series
(bold) are the most prominent signals in low-energy collision induced dissociation of tryptic
peptides.

and v-type fragment ions [95] are also observable, along with strong signals from
immonium ions when gas is added to the collision cell. High-energy product ions
such as w- and d-ions can be used to differentiate between the isobaric amino acids
leucine and isoleucine.

The three-dimensional ion trap, with its high sensitivity, rapid duty cycles, ability
to perform MS" and excellent fragmentation efficiency has become a standard in-
strument in peptide fragment analysis. The greatest advantage of the ion trap instru-
ment lies in its ability to retain the fragment ions after MS/MS so that a fragment
ion can be selected for further MS/MS analysis (MS"). In contrast, 3D ion trap mass
spectrometers are limited to the low mass range region and exhibit lower mass
accuracy and resolution due to the ‘space charging’ phenomena, even though
improvements such as linear ion trap (LIT) are in implementation [30, 31]. Current
linear ion trap instruments will typically produce fragment-ion mass accuracies of
better than = 0.3 amu, and the fragment ion range is presently no more limited.
More highly developed and modified mass spectrometers such as FT-ICR or Orbit-
rap instruments guarantee high resolution mass spectra and the implementation of
modern fragmentation techniques. Unfortunately, FT-ICR instruments only operate
at very high vacuum which is in conflict with the commonly used CID fragmenta-
tion technique that uses gas. Consequently, alternative fragmentation techniques
have been employed, such as infrared laser multiphoton dissociation (IRMPD) or
electron capture dissociation (ECD) [32, 33]. The use of ECD with FT-ICR-MS
instruments not only results in different fragmentation patterns but is also advanta-
geous for analyzing protein modifications. Another advantage of FT-ICR-MS is
that it enables ‘top-down’ protein characterization, in which the intact protein is
fragmented directly in the mass spectrometer. MS/MS of intact proteins electro-
sprayed into the mass spectrometer has already been demonstrated [34]. High mass
accuracy, resolution and the ability of FT-ICR-MS instruments to perform MS?
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experiments, allows us to make sense of the complex fragmentation patterns gen-
erated from intact proteins. Although there are continuous developments such as
coupling TOF-TOF and Q-TOF technology with MALDI, most of the MS/MS
approaches in proteomics are still performed using ESI in combination with
ion trap or Q-TOF instruments. However, MS/MS spectra of peptides can only
provide partial sequence information of a protein. Another shortcoming of sequence
tag -protein identification by database search is the existence of protein modifica-
tions that are unknown or not included in the search algorithm used. Furthermore,
the n search parameters (e.g., mass tolerance, size of the database) have a major
impact on the search results and must be carefully adjusted to the experimental re-
quirements.

De novo sequencing

De novo sequencing [35] is often presented as an alternative to the methods described
above. However, de novo sequencing requires almost full sequence coverage of
a peptide and is based mainly on the manual or computer aided interpretation of
a-, b- and y-type fragment ion series from peptide tandem mass spectra. After the
sequencing of individual peptides it is necessary to assemble the sequence informa-
tion and reconstruct the whole protein sequence. Therefore, three or more different
proteases, e.g., trypsin, chymotrypsin or Glu-C (see Tab. 1 for specificity of pro-
teases), are often used independently for digestion to generate overlapping peptides.
The overlapping peptide sequences may be aligned and thereby combined into
longer sequences or even the entire protein sequence.

Table 1. Overview: Proteases used in protein analysis

Endopeptidase  Type Specificity pH range  Inhibitors

Chymotrypsin  Serine Y, F,W 1.5-85 Aprotinin, DFP, PMSF
Trypsin Serine R, K 7.5-9.0 TLCK, DFP, PMSF
GluC Serine D,E 7.5-8.5 DFP

LysC Serine R 7.5-85 DFP, Aprotinin, Leupeptin
Arg C Cysteine R 7.5-8.5 EDTA, Citrate

Asp N Metallo D (N-terminal) 6.0-8.0 EDTA

Elastase Serine AVILG 8.0-9.0 DFP, a1-Antitrypsin, PMFS
Pepsin Acidic FM, LW 2.0-4.0 Pepstatin

Papaine Cysteine R,K,G,H,Y 7.0-9.0 IAA, TLCK, TPCK
Proteinase K Serine HydrophobicAA 7.0 IAA

Thrombin Serine R 7.5 DFP, TLCK, TPCK

DFP = Diisopropylfluorophosphate; PMSF Phenylmethylsulfonylfluoride; IAA = lodoacetamide;
TPCK = L-1-chloro-3-(4-tosylamido)-4-phenyl-2-butanone; TLCK = L-1-chloro-3-(4-tosyl-
amido)-7-amino-2-heptanonhydrochloride
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To make de novo MS/MS spectra interpretation easier, peptides can be modified
by chemical means. This will help distinguishing the different ion types (mainly
y- and b-ions), since they have different chemical properties. Most of the methods
influence the intensity of b- or y-type fragment ions by adding negative (knock out
intensity) or positive (increased intensity) charges to the various functional groups
of the peptides [36—40]. Another method of simplifying fragment spectra interpreta-
tion involves the labeling of a particular ion series by introduction of stable isotopes
into the peptide [41, 42]. A very easy and reliable isotopic technique uses tryptic
digestion in 50% 80-labeled water to identify y-type fragment ions by modifying
the C-terminus with a 2 amu shift which results in mass spectral doublets [43].
Occasionally, highly sophisticated technologies may increase the success of
de novo sequencing. For some proteins 100% sequence coverage was achieved
by using, e.g., infrared-multiphoton dissociation (IRMPD) in combination with
FT-ICR-MS [44]. Moreover, the amount of mass spectrometric data generated by
such experiments is constrained by the manual interpretation and validation which
is necessary to infer an amino acid sequence from an MS/MS spectrum de novo.

Current state of instrumentation in proteome analysis
by mass spectrometry

Even though the mass spectrometric instrumentation for protein analysis is improv-
ing at an amazing pace, no single instrument presently fulfils all the requirements
for high-throughput proteome research in a systems biology context. In fact a for-
midable number of specialized instruments exist. The combination of MALDI or
ESI sources with the different types of mass analyzer described above increases
the total number of mass spectrometers available to date. Since different mass
spectrometers have different strength and weaknesses, deep understanding of their
functional principles is necessary to decide which technique to use for a specific
biological question. We provide here a broad overview of the commonly used mass
spectrometer types in proteome research to help elucidating optimal solutions.

Commonly used mass spectrometers in proteome analysis

The easiest and most effective approach is the direct analysis of the proteolytic
digest with a MALDI-TOF mass spectrometer. However, the tandem or multiple
stage mass spectrometric analysis combined with CID is steadily replacing PMF,
though the quality of the generated fragment spectra varies considerably with the
various modular instruments available. A typical tandem MS instrument is the triple
stage quadrupole, which can perform fragmentation analysis of sufficient quality.
Due to the demand for more mass accuracy and resolution the Q-TOF was devel-
oped, in which second mass analyzer is an orthogonal acceleration TOF-analyzer
[45]. The relatively slow scanning rate of the Q-TOF instruments remains a problem
especially when running precursor ion scans (PIS) or neutral loss scans (NLS). The
low-resolution, mostly ESI coupled, ion trap mass spectrometers are very popular
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for a number of reasons detailed above. These ‘tandem-in-time’ instruments nor-
mally have extremely fast scan rates which is important, since fast duty circles are
critical for high sensitivity especially when combined with increasingly fats and
efficient chromatographic separation techniques [46]. During the last few years
various hybrid instruments (Tab. 2) have evolved rapidly to meet these changing
needs. The ubiquitous space charging problem of standard ion trap cells has re-
cently been solved by the design of the linear ion trap (LIT), which provides much
higher resolution and has prepared the ground for a new generation of powerful
tandem MS instruments. LIT coupled with FT-ICR is undoubtedly the most power-
ful mass spectrometer type currently available for protein analysis [47]. Thus, the
different mass spectrometer designs employed in protein analysis vary widely in
their operation and performance characteristics. A short overview of the most com-
mon mass spectrometers is given in Table 2.

Mass spectrometric coupled techniques for increasing sensitivity and specificity

Although the sensitivity of mass analyzers and detectors has reached an impressive
level, additional improvements in analytical performance have come from new
approaches in sample preparation and separation techniques. High sensitivity is not
only a question of sophisticated mass spectrometer design and assembly; it is also
affected by the selected combination of high end mass spectrometer devices and
progressive sample introduction. Irrespective of which protein separation technique
has been applied (e.g., gel electrophoresis or chromatographic separation) in most
of the cases a complex mixture of proteins will be analyzed and a complex mixture
of peptide introduced into the mass spectrometer. The analysis of a highly purified
single protein is usually the exception in a proteome study. From unseparated
peptide mixtures, only the most abundant peptides are usually detected since they
suppress the detection of low abundance species. Pre-fractionation of complex mix-
tures, the removal of interfering impurities and sample preconcentration are widely-
used techniques for enhancing mass spectrometric sensitivity (e.g., ZipTip™ proce-
dure for manual MALDI-MS sample preparation or trap columns for nano-HPLC
separations). Hydrophilic “anchor’ surfaces, positioned onto a MALDI target plate,
are also used to obtain higher mass spectrometric sensitivity improved mass accu-
racy and easier instrument automation [48]. Multiple peptides can be detected more
successfully when MS measurements are coupled with HPLC separation. Nowa-
days, miniaturization of liquid chromatography (nano-HPLC) allows handling
sample volumes from a few microliters up to a hundred microliters. In combination
with online chromatographic pre-concentration and desalting methods, more than
a 100-fold increase in sensitivity can be achieved [49]. It has been demonstrated
that nano-HPLC sensitivity increases linearly with decreasing flow rate in the range
of 20-400 nL/min [50]. Current nano-HPLC technology can be coupled, either on-
line or offline, to any mass spectrometer. Consequently, nano-HPLC combined with
ESI-tandem-MS instruments is nowadays the standard method for peptide identifi-
cation. For the analogous MALDI-tandem-MS approach offline nano-HPLC must
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be applied [51]. In this case the eluate and the matrix solution are applied directly
on the MALDI target by a spotting robot. The separated sample is thus *‘stored’
on the target and multiple MS analyses are possible over a longer period of time.
Furthermore, modern MALDI-TOF-TOF mass spectrometers are capable of fully
automated repeatable data acquisition. This is advantageous, since the nano-HPLC-
ESI-tandem-MS method, in contrast to the offline-technique, only allows one
MS-experiment per sample. The high level of automation for both processes greatly
improves the overall speed and the accuracy of proteome analyses. Automation is
inevitable, because the amount of data recorded by such continuous scanning mass
spectrometric analysis techniques is beyond the scope of a manual data interpreta-
tion. Noteworthy is the observation that MALDI and ESI MS analysis coupled with
nano-HPLC from identical samples, yield largely complementary results for protein
identification [52]. This is a generally recognized problem for the use of fundamen-
tally different analytical techniques and must therefore be taken into consideration
for data interpretation.

Analysis of Posttranslational Modifications (PTMs) by mass spectrometry

The deduction of the primary amino acid sequence from a protein is a completely
different task compared to mapping posttranslational protein modifications. The
latter ideally requires high sequence coverage, if no modification is to be missed. As
mentioned above, this cannot be performed routinely with existing mass spectro-
metric techniques and for the most part has to be done manually. In the following,
we will discuss the analysis of protein phosphorylation, which is the most frequent-
ly occurring posttranslational modification in cellular signaling. At the same time,
phosphoprotein analyses illustrate that a combination of different technical adapta-
tions at different levels (upstream sample fractionation and mass analyzer set up)
must be employed for an optimal solution to a specialized biological question.

Phosphorylation analysis

The variety of functions, in which phosphoproteins are involved, necessitates a
huge diversity of phosphorylated protein species [53]. Fortunately, only a limited
number of amino acids can be phosphorylated by protein kinases, O-phosphates
attached to serine-, threonine-, and tyrosine-residues being the most common class
[54]. Additionally, the unusual amino acid hydroxy-proline can also be O-phospho-
rylated. Further, relatively rare phosphorylation sites can be found on histidine and
lysine (N-phosphates), cysteine (S-phosphates) as well as apartic and glutamic acid
residues (acyl-phosphates). Presently, phosphorylation sites of phosphoproteins are
usually identified by mass spectrometry.
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Detection and enrichment of phosphoproteins and phosophopeptides

The mass spectrometric phosphoproteins and phosphopeptides signal intensities are
often suppressed in comparison to the unphosphorylated species since they have
unfavorable chemical characteristics for ionization. Thus, an appropriate method
for the isolation or enrichment of phosphopeptide samples is advantageous before
performing mass spectrometry analysis. After lysis of cells, all phosphatases and
proteases are released and may cause a loss of phosphorylation sites. This can
be suppressed by the addition of phosphatase inhibitors to all buffer solutions and
by working at low temperatures (mostly at 4°C) during sample preparation. The
stabilities of different phosphorylation sites in distinct buffer systems are well char-
acterized and the analysis procedure should be adapted to this [54]. N-phosphates
are labile at low pH-values while O-phosphates are stable to acidic conditions.
Phosphorylations that are unstable in all buffer systems must be analyzed indirectly,
generally using less sensitive techniques [55-57]. The most frequently applied
technique for phosphopeptide and phosphoprotein enrichment is immobilized
metal-ion chromatography (IMAC) [58] which was originally introduced by Porath
et al. for the purification of His-tagged proteins [59]. The sustained success of the
IMAC-technology in phosphoproteomics is based on its compatibility with further
separation and detection techniques such as capillary electrophoresis [60], LC-MS/
MS [61, 62] and target bonded MALDI-MS. Another method for enrichment is the
specific binding of organic phosphates to TiO,-columns under acidic conditions [63,
64], after which elution is accomplished at an alkaline pH. Further methods for the
enrichment of phosphoproteins and phosphopeptides use chemical modification by
labeling or derivatization in combination with respective HPLC purification tech-
niques [65-69]. Despite these effective enrichment technologies, the problem of
mass spectrometric identification remains, due to the frequently observed low level
of a particular phosphoprotein compared to the unphosphorylated species [70, 71].

Identification and localization of phosphorylated amino acid residues

The frequently applied ‘bottom-up’ phosphorylation analysis of proteolytically di-
gested samples generally yields a peptide mixture containing both phosphorylated
and unphosphorylated peptides. A widely used method for the identification of
phosphorylated peptides is the comparison of ESI MS spectra before and after alka-
line phosphatase treatment, which gives rise to a -80 amu (-HPO3) shift of the phos-
phopeptides. The phosphorylated peptides can be further analyzed by MS/MS ex-
periments for localization of the phosphorylated residue. Under MALDI-TOF-MS
conditions, serine- and threonine-phosphorylated peptides tend to lose phosphorous
acid (H,PO3) and phosphoric acid (H;PO,) due to metastable decay, while phospho-
tyrosine residues remain intact. For identification of the phosphorylated peptides,
the sample is first measured in linear-mode, where only the intact phosphopeptides
can be observed. In reflector-mode, a decrease in the intensity of these phosphopep-
tide signals occurs and the usually low resolution signals due to the loss of -80 amu
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and 98 amu appear. Generally, a major drawback of mass spectrometric phos-
phopeptide analysis is the decreased ionization rates due to suppression effects.
Phosphorylated residues only maintain a negative charge if the pH is not less than
1.5, which is not favorable while operating in the standard positive ion mode used
for detecting peptides. The best way to reduce phosphopeptide suppression effects
is to operate in the less sensitive negative ion mode for a full MS spectrum or to
reduce the sample complexity by HPLC techniques, as mentioned above for gener-
ating MS/MS spectra. In the case of MALDI-MS, suppression effects can be partly
circumvented by the use of 2’,4’,6’-trihydroxyacetophenone with di-ammonium
citrate, a UV-sensitive matrix, resulting in a higher signal intensity for most of the
phosphopeptides [72]. A similar effect can be achieved by the use of phosphoric
acid as a DHB matrix additive for MALDI-MS-derived phosphorylation analysis
[73, 74]. With these methods, the fragmentation patterns of peptides remain un-
affected under MALDI conditions and the phosphorylation sites can be determined
by a conventional PSD-experiment or by a TOF/TOF-analyzer capable of tandem-
MS. Triple quadrupole and Q-TOF instruments offer the opportunity to perform
precursor ion scanning (PIS) and neutral loss scanning (NLS), which, though time-
consuming, are useful mass spectrometric tools for the identification and localiza-
tion of phosphorylated residues. PIS is particularly useful, when stable tyrosine
phosphorylation is being investigated. The first quadrupole analyzer is therefore
used as a mass filter, scanning repeatedly through the entire mass range. The second
quadrupole commonly serves as a collision cell in which the passing peptides are
fragmented. The latter mass analyzer (quadrupole or TOF) is used for monitoring
the specific fragment ion that is characteristic for the residue of interest. In the case
of phosphotyrosine, the immonium ion at 216.043 amu is indicative for this type of
phosphorylation. Sufficient resolution and mass accuracy is indispensable for cor-
rect determination of this immonium ion, since several dipeptides with almost
identical masses exist [75]. PIS for a phosphate residue (79 amu) can be conducted
in full MS negative ion mode [76], whereas for MS/MS-spectra the polarity has to
be switched in order to obtain better fragmentation signals in positive ion mode.
Switching the polarity during the experiment exceeds the capabilities (if actually
applicable) of currently available MS instruments, resulting in decreased scanning
rates. For serine- and threonine-phosphorylations a simple selective derivatization
technique permits the use of PIS in positive ion mode, abolishing the necessity for
polarity switching. This can be done by alkaline S-elimination of the phosphate
moieties and subsequent Michael-type addition of 2-dimethylaminoethanethiol,
which is followed by oxidation. Low energy CID reveals 2-dimethylaminoethanesul-
foxide at 122.06 amu, which can be selected for PIS in positive ion mode [77].
Unfortunately, alkaline racemization of peptide bonds leads to strongly reduced
trypsin cleavage rates and peak broadening during RP-HPLC due to the separability
of the obtained diastereomers and incomplete derivatization.

In a neutral-loss scan (NLS), the first quadrupole and the third mass analyzer are
scanned at the same rate with an offset of 98 amu for loss of the phosphoric acid
(H3PO,). Both PIS and NLLS are highly sensitive phosphorylation detection methods,
but are only applicable on instruments with sufficient resolution and a fast scanning
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rate as is the case in LC-MS/MS coupling. The same can be done with a regular ion
trap instrument using ion/ion-reactions for reduction of the charge state and subse-
quent MS"-experiments [78]. However, FT-ICR is presently the only mass spectro-
metric technique capable of electron capture dissociation (ECD) [79], although this
technique could be applied to any ion trap analyzer [80]. ECD fragmentation is suit-
able for the analysis of protein modifications that are usually labile in MS/MS-ex-
periments. Thus, modifications such as phosphorylation or glycosylation remain
intact in ECD experiments, while the peptide backbone is cleaved upon electron
capture yielding c-, and z-type fragment ions [33] rather than the b- and y-type frag-
ment ions produced by CID and PSD. Recently, electron transfer dissociation (ETD)
was established as an alternative to the ECD-fragmentation by using a modified
linear ion trap yielding fragmentation patterns similar to ECD [81]. In this process,
electrons are transferred to the protein- or peptide-ions from anions generated by a
chemical ionization source containing methane buffer gas. The possibility of using
all these new mass spectrometric techniques in modified ion trap analyzers will
certainly improve the analysis of all posttranslational modifications in the near
future.

Mass spectrometric data handling and interpretation

The amount of data generated by mass spectrometric analysis depends on the ana-
lytical method and the objectives of the study. For single protein analysis the
acquired data are generally manageable and in most cases can be evaluated manu-
ally, even when posttranslational modifications are taken into account. The manual
approach is normally supported by software that is usually provided with the MS
instrument. Although the final data interpretation is user dependent, the results
are mostly comprehensible. This is obviously not true for the analysis of complex
protein or peptide mixtures in a high throughput environment. The acquisition of
tens of thousands of spectra per day makes manual methods inadequate for analysis.
In the case of continuous data uptake and for automated data interpretation, special-
ized software tools frequently with complicated algorithms come into use. How-
ever, before database search engines are involved, the raw data must normally be
converted in a MS-device independent data format (e.g., dta, mgf, xml, etc.). This is
a difficult task, since the quality and the complexity of the mass spectrometric data
vary considerably with the used instrument type. The following database search can
alternatively be performed using a free access web-based or in-house licensed data-
base, offered by several providers. For complex proteome studies there is a hierarchy
of protein identification techniques based on peptide analysis (see sections on
peptide mass fingerprinting, peptide fragment identification, and de novo sequenc-
ing). The sophistication of these mass spectrometric techniques and the respective
data handling complexity increases in the order presented above.

The first PMF approach developed relies upon a comparison of the experimen-
tally determined mass values with the predicted molecular mass values of the pep-
tides, generated by a theoretical digestion of each protein in a database. Since the
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protein databases have grown steadily larger with an inevitable increase in redun-
dancy, each dataset must be compared with a growing number of candidates. Con-
sequently, the criteria for PMF analysis have become more stringent and a more
precise mass assignment is necessary. Furthermore, an increasing number of
matched peptides for higher sequence coverage is advantageous, which can be
achieved by better sample preparation, by higher performance MS, and by more
sophisticated MS interpretation algorithms [82, 83]. However, the larger the data-
bases, the greater the likelihood of false positive results. Particularly for the PMF
approach the limitations at this stage are apparent, explaining why this method is
steadily being replaced by more reliable protein identification techniques. Peptide
sequence determination using tandem MS is now becoming the accepted standard
for protein identification. Data obtained this way are much more complex and re-
quire highly developed software for handling, especially when multidimensional
peptide separation techniques are coupled with tandem mass spectrometry [84, 85].
All these considerations also apply to the subsequent database search. Currently
such database searches are based on comparisons between the experimentally re-
corded fragment ions and all predicted fragments for all potential peptides in the
database with the corresponding molecular weight. The computation of these poten-
tial fragment ions is based on known fragmentation rules [86]. The matching of
multiple peptide sequences for higher sequence coverage is the goal of these calcu-
lations. High sequence coverage of the matched proteins provides greater statistical
confidence in the result obtained. Error tolerant and remote sequence homology
searching are additional parameters included in more powerful search algorithms,
although these are time-consuming and computationally intensive [87]. Moreover,
the multitude of different types of mass spectrometers available complicates the
analysis of the results considerably. The algorithms must differentiate between the
different charge states of the fragmented precursor ions of MALDI or ESI generated
spectra. Furthermore, the different types of mass analyzer influence the data quality
as well. Higher performance triple quad, Q-TOF or TOF-TOF instruments provide
more accurate tandem MS data than the low-resolution but very sensitive ion trap
instruments. However, the data extraction algorithm and the search engines must be
accompanied by steady optimization of the data processing. Bioinformatics has
therefore already taken a key position in mass spectrometric protein identification
techniques.

The most sophisticated MS interpretation algorithm is needed, if no matches
are found in the protein database. This indicates that the protein being sought is
possibly not present in the database and therefore de novo peptide sequencing based
on known rules for peptide fragmentation must be applied. This approach requires
good quality MS/MS spectra, an accessible genome database, and a de novo
sequencing algorithm for the interpretation of MALDI- [88] and ESI-generated
[89-92] PSD- and CID-spectra. Without genome databases the de novo sequencing
approach works adequately on a peptide level. For a completely unknown protein,
manual intervention for data interpretation or even Edman degradation for sequence
determination may still be required. Also, for the database search approach there
may be uncertainty as to the choice of search engine and search parameters [93].
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Data computation as a whole is a turbulent and rapidly developing area in mass
spectrometry, which makes it difficult to establish generally accepted standards.
Despite these developments, the widely accepted truth still remains: For any com-
puter-generated protein match returned from a database, the probability of a false
positive result cannot be excluded with certainty.

Concluding remarks

Protein identification by mass spectrometry is presently the most powerful tool in
proteome research in a systems biology context. The variety and constant develop-
ment of mass spectrometric techniques guarantees further improvements in protein
identification performance and broadens the scope of proteomics analyses in gen-
eral. Currently, mass spectrometric protein analysis is in a very dynamic state,
making it difficult to establish long-needed standards for generally accepted proce-
dures. Consequently, a direct comparison of different instruments is not meaningful.
An understanding of the basic function of the different mass spectrometric designs
discussed above is essential to design efficient strategies for protein detection or
quantification. However, it is presently not foreseeable which design will become
widely accepted. Although, FT-ICR-MS with its recent refinements is now the most
promising of the current MS platforms, other developments should be kept in view.
These include, among others, the new ion trap designs, including linear ion trap and
Orbitrap, which now form the basis of a new generation of powerful tandem mass
spectrometers with unsurpassed sensitivity. Such mass analyzers may provide a
space-saving and less costly alternative to FT-ICR-MS systems. It is therefore more
likely that several different MS technologies will continue to coexist. The single
mass analyzer design, incapable of ‘real’ tandem MS, alone is threatened with
extinction in proteome analysis.

Perhaps most challenging of all is the need for increased sample throughput con-
nected with high performance MS. The use of automated multidimensional peptide
separation techniques together with isotope tagging methods should provide mass
spectrometry with a high throughput platform that promises sufficient analytical
depth for proteome analyses. Furthermore, the insertion of HPLC-based peptide
fractionation prior to the tandem MS techniques has made it possible to detect low
abundance proteins and to compare changes in protein expression. As has already
happened in genomics, increased automation of sample handling, mass spectromet-
ric analysis, and the interpretation of MS spectra are generating a flood of qualita-
tive and quantitative proteome data. It is becoming more and more apparent, that the
high-performance computation of recorded MS data is the main bottleneck in mass
spectrometric protein identification (see also Chapter by Ahrens et al.).

Although the mass spectrometric interpretation algorithms currently in use can
clearly produce good results, nearly all MS protein information is based on the
characterization of short peptide sequences. The demand for higher sample through-
put in proteomics makes a manual and time-consuming user intervention more and
more impractical, leading inevitably to an unknown number of false positive re-
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sults. Thus, the elaboration of generally accepted minimum requirements for the
publishing of mass spectrometric protein identification has become indispensable.
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Abstract

In the 1990s the concept of a comprehensive analysis of the metabolic complement in biological
systems, termed metabolomics or alternately metabonomics, was established as the last of four
cornerstones for phenotypic studies in the post-genomic era. With genomic, transcriptomic, and
proteomic technologies in place and metabolomic phenotyping under rapid development all
necessary tools appear to be available today for a fully functional assessment of biological
phenomena at all major system levels of life. This chapter attempts to describe and discuss
crucial steps of establishing and maintaining a gas chromatography/electron impact ionization/
mass spectrometry (GC-EI-MS)-based metabolite profiling platform. GC-EI-MS can be per-
ceived as the first and exemplary profiling technology aimed at simultaneous and non-biased
analysis of primary metabolites from biological samples. The potential and constraints of this
profiling technology are among the best understood. Most problems are solved as well as pit-
falls identified. Thus GC-EI-MS serves as an ideal example for students and scientists who
intend to enter the field of metabolomics. This chapter will be biased towards GC-EI-MS
analyses but aims at discussing general topics, such as experimental design, metabolite identifi-
cation, quantification and data mining.

Introduction

In the 1990s the concept of a comprehensive analysis of the metabolic complement
in biological systems, termed metabolomics [1, 2] or alternately metabonomics [3,
4], was established as the last of four corner stones for phenotypic studies in the
post-genomic era (e.g., [5-8]). With genomic, transcriptomic, and proteomic tech-
nologies in place and metabolomic phenotyping under rapid development all neces-
sary tools appear to be available today for a functional assessment of biological
phenomena at all major system levels of life. However, all “-omics’ technologies are
at different stages of comprehensiveness, sample throughput and accuracy of con-
stituent identification and quantification. While the set of genes in an organism can
be exactly defined and described, knowledge of the full inventory of metabolites
and a truly comprehensive metabolome analysis remains a vision for the future. The
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Figure 1. Principal component analysis covering 38.5% and 21.9% of total variance in a dataset
of leaf metabolite profiles from Arabidopsis thaliana ecotype Columbia. Plants were environ-
mentally challenged by highlight (L, diamonds; long-term adaptation to 560 and 850 pE/m?
compared to a control at 120-150 nE/m3, by high temperature (H, squares; up to 4 h at 40€
compared to a control at 20€C) and by low temperature (C, circles; up to 96 h at 4C compared
to a control at 20€) [17]. Different formatting highlights environmental challenge (A) and time
course compared to the control group (B). Note: (1) Highlight and high temperature response
exhibits an expected partial overlap (arrows). (2) Cold de-acclimatized plants (CD, triangles;
24 h reversion to 20€ after 96 h at 4€) show the existence of metabolic memory after rever-
sion to optimum temperature conditions.

highly diverse chemical properties of metabolites which range from gasses, such as
0, and CO,, to macromolecules such as starch and complex lipids, is the crucial
limiting factor. This high diversity impedes comprehensive metabolomics with single
analytical technologies. Thus the current developments in metabolomic technolo-
gies focus on establishment and optimization of minimally overlapping, broad-
spectrum metabolite profiling methods which have been pioneered decades earlier
(e.g., [9-11)]).

This chapter attempts to describe and discuss crucial steps of establishing and
maintaining a gas chromatography/electron impact ionization/mass spectrometry
(GC-EI-MS)-based metabolite profiling platform. GC-EI-MS can be perceived as
the first and exemplary profiling technology aimed at simultaneous and non-biased
analysis of primary metabolites from biological samples [12, 13]. The potential and
constraints of this profiling technology are among the best understood. Most prob-
lems are solved as well as pitfalls identified. Thus GC-EI-MS serves as an ideal
example for students and scientists who intend to enter the field of metabolomics.
This chapter will be biased towards GC-EI-MS analyses but aims at discussing
general topics, such as experimental design, metabolite identification, quantification
and data mining. For a more detailed review of metabolic inactivation, metabolome
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sampling, metabolite extraction, chemical derivatization, gas chromatographic sep-
aration, mass spectral ionization and detection the reader is referred to previous re-
views [14-16].

As detailed bio-analytic aspects are best exemplified with a relevant experiment
in mind, most discussions will refer to one data set, which describes the metabolic
phenotype of environmentally challenged and genetically modified Arabidopsis
thaliana plants as summarized by a principal components analysis (Fig. 1). This
experiment charts metabolic changes of a model plant in response to common envi-
ronmental stresses such as variable light and temperature [17].

Experimental design
Pairwise comparison, dose dependency or time-course

Alongside the immediate and full metabolic inactivation at and following time of
sampling [14, 15], the crucial issue in a metabolite profiling study is experimental
design. It is evident that the result and quality of a profiling experiment depends on a
design which is optimally fitted to the question that is about to be addressed. If a
genetically modified organism (GMO) or an environmental challenge is first ana-
lyzed for metabolic equivalence, metabolite profiling studies can be successfully
used to screen for relevant metabolic changes (e.g., [18, 19]). This task is purely
descriptive and can be solved by pairwise or multiple comparison. In a comparative
experiment only one factor, such as the genotype or one environmental parameter, is
changed and all other influences are, ideally, kept constant. Typically each of the
compared conditions is replicated within one experiment and in independent con-
secutive experimental repeats. The aim of repetition is to distinguish true differences
from unavoidable experimental errors and basic biological variability (see control
samples of Fig 1B; also note that the cold stress experiment was performed in two
independent experiments which cannot be distinguished by PCA analysis). By
application of statistical significance tests any detected change within the metabolic
phenotype can be unequivocally linked to the experimental manipulation, such as
mutant versus ecotype [12], temperature stress [17], transgene expression or chemi-
cal treatment with glucose (e.g., [13, 20]). Functional genomics studies employ
multiple comparative analyses for the classification of genes with yet unknown or
hypothetical function by similarity of the metabolic phenotypes [8]. However, these
comparisons typically result in multiple detected statistically significant changes.
Among these the primary mechanistic effect of modified genes or environmental
impact can not unambiguously be distinguished from secondary pleiotropic meta-
bolic adaptations to the usually constitutive genetic modification. In other words the
permanent presence or absence of transgene expression throughout the life cycle of
a GMO may result in unexpected long-term adaptations of primary metabolism,
which up to today were overlooked by biased and targeted metabolic analysis.

One strategy to dissect primary metabolic effects from secondary adaptations is
the use of dose dependency. In environmental challenges different light intensities,
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temperatures or concentrations of nutrients and chemicals can be applied. In GMO
studies stably modified lines with a range of low, medium to high transgene expres-
sion can be selected. Chemically controlled or otherwise inducible promoters can be
employed for the same purpose. The use of these promoters may yield different
metabolic responses compared to constitutive promoters and generate novel insights
into metabolic regulation (e.g., [21]). In all cases sensitive metabolic effects which
respond to small doses can be distinguished from effects of high doses that are more
prone to cause pleiotropic effects. Moreover, the dose quantity can be linked to a
quantitative metabolic effect for example by application of correlation analysis. It
can be argued that those metabolic effects which show a strict dose dependency have
a strong mechanistic link. Caution needs to be applied in thoroughly controlling dose
dependency experiments. For example the effect of a chemical inductor needs to be
distinguished from the effect of transgene expression. Also environmental changes
may not be independent, for example increased light intensity and heat have similar
metabolic effects as is demonstrated by a partial overlap of the heat response and the
highlight metabolite phenotypes of Arabidopsis thaliana rosette leaves (Fig. 1A).

The best but also most demanding strategy to dissect possible mechanisms of
metabolic changes is a time-course design (Fig. 1B). It can be argued that early
changes are linked to sensing and represent a direct response mechanism, whereas
secondary adaptations will be observed in a long-term transition from the initial to
a final metabolic state to, for example, a cold-adapted metabolism (Fig. 1A). Time-
course investigations do not only allow comparison of initial and stably adapted
metabolic states but also unravel the sequence of metabolic events and transient,
i.e., reversible changes, which would otherwise be overlooked, such as early mal-
tose and maltotriose accumulation in Arabidopsis thaliana cold adaptation (Fig. 2).
The example of cold adaptation in plants also unveils that the history of a biological
system may determine the metabolic phenotype. Cold de-acclimatized plants, even
after 24 h reversion to optimum temperature, still exhibit a metabolic memory (Fig.
1A). In conclusion, good experimental practice for optimum reproduction of bio-
logical experiments not only controls the conditions at the time of sampling but also
the history of the biological objects.

Fingerprinting, profiling or exact quantification

The experimental design of GC-EI-MS analyses has a strong impact on the accuracy
of metabolome studies. Three major approaches were described and have been ex-
tensively discussed, i.e., fingerprinting, metabolite profiling and exact quantification
[6-8, 22]. In general, the complexity of information and number of theoretically
covered metabolites decreases when moving from fingerprinting to exact quantifi-
cation [8]. Typically a concomitant increase in experimental complexity is ob-
served, with higher time demand, and requirements for quantitative standardization
or compound identification.

Fingerprinting studies appear to be the easiest approach to metabolome analysis.
These studies utilize all detector readings for numerical analysis without the at-
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Figure 2. Transition of metabolic states exemplified by the time course of 4€C cold adaptation
of Arabidopsis thaliana plants, ecotype Columbia. Note that Maltose and Maltotriose exhibit
early transitory accumulation followed by sustained increases in Glucose-6-phosphate, glucose,
galactinol and ultimately raffinose, a metabolic product of galactinol in plants [17].

tempt, and in some cases even the potential, to unambiguously identify the specific
metabolites represented in these experiments. Fingerprints are used for metabolic
pattern comparison aimed at the discovery of experimental conditions which result
in similar or identical metabolic responses, so-called metabolic phenocopies [20].
This approach is exploited in gene function analysis and has the potential to group
genes with known function and orphan genes of unknown or hypothetical function
into classes of similar or identical metabolic function [2, 5]. This type of metabolic
pattern analysis appears to be especially promising when gene modifications result
in ‘silent’ phenotypes. (For the definition of silent phenotype refer to [18].) This
phenomenon is better defined as changes of the metabolic state in organisms, which
do not show obvious visual or morphological traits.

Fingerprinting, however, has one fundamental requirement, which results from
unavoidable technical drifts in the calibration of mass, retention time and ion cur-
rent. These decalibration artifacts are inherent to all chromatographic and mass
spectrometric analysis technologies. In GC-EI-MS analyses one of the technology
breakthroughs was the employment of widely accepted reference substances for the
automated mass calibration of the GC-MS systems, such as BFB (4-bromofluor-
obenzene) and DFTPP (decafluorotriphenylphosphine). These substances are used
in so-called tuning procedures which are inbuilt into the maintenance routines of the
respective manufacturer. GC-MS tuning of the mass scale is usually performed
prior to a series of analyses and allows accurate mass alignment. A rather low reso-
lution of 1 atomic mass unit is sufficient for most of the small molecules which are
routinely analyzed by GC-MS. More precise mass calibration can be obtained by
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reference compounds, which are continuously added to the GC effluent before mass
analysis. This so-called ‘lock-mass’ technology is only useful for the high mass
accuracy obtainable with sector field or specialized high-resolution time-of-flight
GC-TOF-MS systems. While negligible for the low mass resolution typically
achieved by quadrupole, iontrap or fast scanning time-of-flight GC-MS systems, the
‘lock-mass’ calibration has significantly improved routine LC-MS profiling experi-
ments (e.g., [23]).

Likewise the retention time axis should be calibrated by use of retention time
standard substances. One of the most widely accepted procedure utilizes mixtures
of n-alkanes [24] and so-called retention time indices (RI) to correct for inevitable
retention time shifts within and between series of consecutive chromatograms. The
use of retention time indices has been introduced to GC-EI-MS metabolite profiling
experiments [12, 13]. In these early studies n-acy| fatty acids were used, which were
later substituted for n-alkanes [25] to allow for better comparability with the wealth
of previous RI information, which — since 2005 — is commercially provided to-
gether with thousands of biologically relevant GC-MS mass spectra [26—28] by the
NISTO5 mass spectral library (National Institute of Standards and Technology,
Gaithersburg, MD, USA; http://www.nist.gov/srd/mslist.htm).

One of the most critical causes for artifacts in fingerprinting studies, in many
studies, is the non-calibrated ion current scale. The quantity of metabolic compo-
nents from GC-MS runs is routinely measured by ion currents detected after chro-
matography, ionization, and mass separation. The quantity of ions which reaches
the final detector system is subject to multiple artifacts. One of the most important
effects is exerted through the decrease of detector sensitivity over time. The detector
sensitivity is partially corrected by the tuning procedure mentioned above. How-
ever, the best approach is the use of quantitative reference substances, so-called
internal standards (IS), which are added to the biological sample at constant known
quantities prior to metabolite extraction and are carried along throughout the
complete analysis. The most versatile IS are stable isotope-labeled substances [12,
22,29].

Today, software tools which use statistical algorithms for the alignment of mass
and time dimensions promise good success by avoiding artifacts through false
alignment (for example [30-32] or metAlign, http://www.metalign.nl [33, 34]).
However, the limits of both mass and retention time drift successfully corrected by
these software tools have still not been thoroughly tested. Therefore, chemical cali-
bration of all three dimensions in hyphenated GC-EI-MS analysis represent the
most secure approach towards valid fingerprinting (Fig. 3).

In contrast to fingerprinting, metabolite profiling studies attempt to identify all
metabolites which are represented in the dataset. Non-identified components can be
discarded or used for fingerprinting. In profiling experiments the analysis is re-
stricted to the selected subset of those analytical detector readings which can be
identified. The clear advantage of this approach is the possibility that the metabolic
pattern of profiling experiments can be biochemically interpreted. Thus, besides
pattern recognition and comparison, metabolite profiling has the potential to pro-
vide insight into the mechanism of gene function or the response triggered by envi-
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Figure 3. Heat-map display of a comparative GC-EI-MS metabolite fingerprinting study. The
heat-map demonstrates the information content of an experiment which compares a treatment
to non-treated reference samples. Approximately 13,000 mass fragments are shown. lon current
was corrected by a single quantitative internal standard. The mass fragments are characterized
by mass to charge ratio (MZ), retention time index (RI), relative increase (red) or decrease
(cyan) in log-transformed response ratios, and significance of the observed change. Large spots
indicate p8.05. The insert demonstrates the high degree of EI-MS fragmentation. Columns of
mass fragments, which exhibit the same quantitative change, represent the same substance.
Abundant compounds exhibit typical mass isotopomer series resulting mostly from incorpora-
tion of the 2.1% ambient °C isotope (square brackets). Note the severe co-elution present in
complex biological samples.

ronmental changes. For example, part of the early cold stress response in Arabidop-
sis is a massive release of carbohydrates (Fig. 2) in the form of maltose, a process
which points towards a fast induction of transitory starch degradation in chloroplasts
and the generation of carbon buildings blocks for subsequent metabolic events [17].
In addition sets of metabolites, such as maltose and maltotriose in the above example,
can be grouped into modules of substances, which exhibit simultaneous changes.
These metabolites can be assumed to be subject to common control mechanisms
which may also be beyond pathway connectivity in contrast to this example.

A minor aspect of metabolite profiling but certainly an important asset in avoid-
ing artifact pattern recognition is the opportunity to remove detector readings from
subsequent data analysis, which result from laboratory contaminations, intention-
ally added IS, and electronic or chemical noise.

Because metabolite identification is inherent to profiling experiments, quantita-
tive standardization can be improved compared to fingerprints. If necessary, each
metabolite can be provided with an appropriate internal standard, ideally a chemi-
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cally identical but stable isotope labeled substance. Initially commercially available
and expensive, chemically synthesized compounds, such as U-13C or fully deuter-
ated mass isotopomers, have been suggested [12]. Recently this concept has been
extended towards fully U-13C-labeled metabolome extracts from organisms which
can be grown on exclusive carbon sources and thus are fully labeled in vivo. For a
short introduction and discussion of the concept of metabolite profiling by mass
isotopomer ratios the reader is referred to earlier publications [22, 35-37].

Studies that perform exact quantification of metabolites have only two further,
but time consuming, requirements when compared to profiling experiments:

1. The detector reading, such as the observed ion current at a specific mass and
chromatographic retention of a metabolite needs to be calibrated to the molar
amount or concentration of each quantified compound. This is typically done by
dilution series of pure reference substances measured at precise quantities. These
calibration series are required because chemical substances exhibit highly dif-
ferent ionization efficiencies and equally variable fragmentation patterns. Quan-
titative calibration ensures that easily and difficult to ionize compounds as well
as abundant and minor mass fragments of the same compound can be used to
obtain the same quantitative result.

2. The recovery of each substance needs to be estimated. In comparison to pure
reference samples each substance can selectively get lost or may accumulate at
all steps from extraction to detection throughout analysis of complex mixtures.
Typically the nature and composition of the biological sample influences com-
pound recovery. The effects on specific metabolites are as a rule thumb unpre-
dictable. Therefore, each new type of biological sample needs to be tested for
unforeseen changes in metabolite recovery. Typically so-called standard addi-
tion experiments are performed [14], which test the apparent quantity of an
identical amount of pure reference substance in the presence and the absence of
the respective biological sample. When the presence of a biological sample
leads to an apparent reduction of the metabolite amount, the term matrix sup-
pression is used. Matrix effects are best estimated by stable isotope labeled mass
isotopomers applied as IS. These are absent from typical biological samples and
thus recovery experiments do not need to be corrected for the respective endog-
enous amount of metabolites present in the biological sample.

In conclusion metabolite profiles supplied with stable isotope labeled authentic refer-
ence substances already allow correction of variable metabolite recovery and thus
are only one step away from fulfilling the prerequisites for exact quantification.

Estimating relative changes in metabolite pool size

While exact quantification of metabolite pools is clearly within the scope of GC-
EI-MS profiling experiments (e.g., [20, 38, 39]) accurate quantification is not re-
quired for most investigations and screening for relative changes in metabolite pool
sizes is performed instead. In the following, all steps in data processing are de-
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scribed which enable detection of quantitative changes such as represented in the
heat-map representation of Figure 3.

The first quantitative observation in GC-EI-MS-based profiling is linked to mass
fragments or molecular ions, which have the properties, mass (or more precisely mass
to charge ratio), chromatographic retention time index (Fig. 3) and an abundance meas-
ured as ion current. The so-called response of a mass fragment is obtained by baseline
subtraction of ion current caused by electronic and chemical noise and either subse-
quent integration of chromatographic peaks or determination of peak height (for exact
details the interested reader is referred to [40]). These steps are typically performed by
chromatography processing software of the respective GC-MS system manufacturers.
In a second step responses are normalized to the response of at least one 1S and the ini-
tial amount of the biological sample, as determined by dry or fresh weight of solid
samples or volume of liquid samples. The resulting normalized response takes into
account the variation in sample amount, inevitable volume errors, which may occur
during extraction, sample preparation and GC-MS injection, and the drift of detector
sensitivity discussed above. If the experimental design includes additional substance
specific, stable isotope labeled ISs, specific corrections of metabolite recovery can be
applied. Additional ISs are especially advised for instable metabolites.

Response ratios are calculated for each metabolite separately using the average
normalized response observed in a replicate set of reference or control samples as
quotient denominator. If the experiment provides no obvious control condition the
response ratio can be calculated utilizing the average normalized response of all
samples. Response ratios represent relative changes in metabolite abundance or
pools size. However, the fold change may differ from ratios which are calculated
after exact quantification, especially when measurements approach upper or lower
detection limits. Provided all samples are treated equally the use of reference samples
not only allows correction for the inherent technical errors. In addition, randomized
or appropriately arrayed reference samples correct for non-controlled factors which
might influence the biological experiment, such as unexpected, slight and mostly
unnoticed environmental gradients.

Response ratios can furthermore be subjected to numerical transformation (Figs 2
and 3). For example, logarithmic transformation converts factorial into additive
numerical changes. Thus a 10-fold increase, a factor of 10, and an equal decrease,
a factor of 0.1, gain equally weighted numerical representation, i.e., +1 and -1,
respectively. Numerical transformation is advised prior to analyses of statistical
significance. Two of the requirements for significance tests, namely normal distri-
bution and homogeneity of variance are typically not met by either normalized re-
sponses or response ratios from metabolite profiling analyses. After log-transforma-
tion both criteria are usually better approximated or are even fully met.
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Metabolite identification
Reference substances, mass spectral tags, and metabolites

The quintessential task of metabolite profiling is the reliable identification of me-
tabolites in complex mixtures. This task has been the limitation of early studies and
still is the major bottleneck of today’s metabolite profiling studies. The subsequent
paragraph will be dedicated to concepts and solutions of this central aspect in
metabolome analysis. The presented strategies and concepts apply specifically to
ubiquitous primary metabolites and may not be directly transferable to secondary
metabolites, which are typically phylum or even species specific. Primary metabo-
lites are best identified by pure references substances (see below). Availability of
primary metabolites is satisfying, whereas purified or synthesized reference prepa-
rations of secondary metabolites are rare and hard to obtain.

The task of identification is best exemplified by Figure 3. All mass fragments of a
profiling experiment need to be linked either to underlying metabolites, 1Ss or labora-
tory contaminations. In view of more than 10,000 reliably aligned mass fragments, this
task appears to be enormous, if not impossible, to perform. In detail metabolite struc-
tures, which are archived in public reference databases such as KEGG [41], BRENDA
[42], MetaCyc [43], the PubChem project (http://pubchem.ncbi.nim.nih.gov/), or the
chemical abstracts service (CAS, http://www.cas.org/), need to be linked:

1. To one or multiple alternative analytes. An analyte is the structure of a volatile
chemical derivative of a metabolite or the non-modified, volatile metabolite. In
short the reagent chemistry applied in routine GC-MS profiling [12, 13, 15]
converts carbonyl moieties of metabolites to methoxyamine-moieties, CHs-
N=Cgand substitutes exchangeable protons, such as -OH, -COOH, -NRH, and
-SH, by trimethylsilyl-moieties, -Si(CHj3);. Partial derivatization, steric hin-
drance, and EZ- isomerism of methoxyamines may cause multiple possible ana-
lyte structures of the same metabolite [16, 40].

2. The physicochemical properties through which each analyte is represented in
GC-EI-MS profiles allow in most cases unambiguous identification. The sum of
all relevant properties, in detail, the chromatographic retention time index (RI),
the molecular mass to charge ratio (MZ), and the typical, induced EI-MS frag-
mentation pattern represented by a mass spectrum (MS), was termed mass
spectral tag (MST) [40].

3. MSTs comprise multiple mass fragments. Each of these mass fragments needs
to be linked unambiguously to one of usually multiple possible co-eluting MSTs
and those mass fragments which are selective and specific for single MSTs need
to be selected (Fig. 3).

4. Finally, a pure reference substance has to be acquired and identity has to be
proven by match of Rl and MS. Contaminations of ‘pure’ reference substances
may present a severe source for false identifications. A typical expectation is that
the most abundant analyte after chemical derivatization of a pure reference
sample indeed represents the metabolite. However, unexpected impurities or
laboratory contaminations may compromise this reasoning. For this reason
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MSTs need to be interpreted by occurrence of molecular ions, plausible mass
fragmentation pattern, or matching to pre-annotated mass spectral compendia,
before finally accepting the metabolite identification of a MST.

Identification of mass spectral tags (MSTs)

Single mass fragments without the additional information of MSTs are hard, if not
impossible, to unambiguously identify in different laboratories. In contrast, identified
MSTs can be exchanged between laboratories [44] and hitherto non-identified MSTs
can be identified by standard additional experiments of authenticated reference
substances even years after the first MST description, provided the chemometric
properties, i.e., molecular mass to charge ratio, chromatographic retention index
and an induced mass fragmentation pattern such as an electron impact mass spec-
trum (EI-MS) are documented together with the respective quantitative profiles.

In the following a MST identification process is described and discussed using
the non-trivial identification of hexoaldoses, specifically mannose (D-Man) and
galactose (D-Gal) in the presence of abundant glucose (D-Glc) as a test case for
isomer identification.

1. lIsomers, especially stereoisomers, for example sugar epimers or cis/trans (E/Z-)
diastereomers typically exhibit almost identical EI-MS fragmentation pattern
and thus cannot be unambiguously distinguished by mass spectrometry alone
[25]. The main reason for this limitation of mass spectral matching is the strong
impact of analyte concentration on probability-based matching, such as provid-
ed by the NISTO5 standard software for GC-EI-MS matching [26, 27]. In com-
parison, diastereomers exert only a small effect on mass fragment abundance.

2. Thus when considering the task of mannose and galactose identification, in addition
to the common monosaccharides, all rare hexoaldoses, i.e., talose (D-Tal), gulose
(D-Gul), idose (D-Ido), allose (D-All) and altrose (D-Alt) need to be checked.

3. Possible D- and L- enantiomers would further increase the complexity of this
test case; however, most GC applications including routine GC-MS profiling are
not chiro-selective.

4. For GC-MS analysis anomeric o.- and -structures of reducing sugars are chemi-
cally transformed from furanose- or pyranose- rings into open chains. The product
is a mixture of E- and Z- >C=N-isomers which is generated at stable ratios and
with more than 95% vyield (Fig. 4A). As a result major and minor analytes are
generated, which exhibit different chromatographic retention (Fig. 4B).

5. Figure 4 shows a typical metabolite profile of an Arabidopsis leaf extract in 80%
methanol. The characteristic chromatographic region and a selected ion chroma-
togram at MZ=160, a characteristic mass fragment of aldose derived meth-
oxyamines, is shown. Peaks with mass spectra indicative of aldoses are marked.
In addition, the leaf sample was spiked with pure mannose or galactose in stand-
ard addition experiments (see above). The resulting chromatograms demonstrate
a specific increase of peak size of the major analyte and a shoulder at the respec-
tive position of the minor analyte, respectively.
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Figure 4. Representation of a MST identification experiment. An 80% methanol extract from
Arabidopsis thaliana leaf was analyzed. Reducing sugars are routinely converted into metho-
xyamine structures and per-siliylated (A). Rls of major and minor analytes representing mannose
(D-Man), galactose (D-Gal), glucose (D-Glc), closed triangles (B-C), as well as rare talose
(D-Tal), gulose (D-Gul), idose (D-Ido), allose (D-All) and altrose (D-Alt), open triangles (B-C),
are indicated. A typical standard addition experiment contains a sample of the pure reference
substance (bottom), in this case mannose (B) or galactose (C), the reference substance added to
a complex biological sample (top, gray), and the biological sample without standard addition
(top, black). Mass spectral matching allowed identification of hexoaldoses in general (* indi-
cates Match >800 on a scale of 0-1,000) but no differentiation between sugar epimers. Previ-
ously established elution sequences of ubiquitous hexoaldoses and rare isomers are shown. The
pure reference substances were used to correct for the RI-offset to the previously established RI
sequence (horizontal arrows).
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Figure 5. RI-offset between GC-EI-MS systems operated with an identical stationary GC
column phase. Authenticated MSTs from pure reference substances exhibit good RI linearity
between different GC-EI-MS systems (A) and in general a constant elution sequence (B). Me-
tabolites of identical compound classes exhibit strict repeatability of elution. In contrast, the RI
sequence may locally differ between compound classes, for examples refer to allantoin and
hexoses, aspartic and pyroglutamic acid, or ornithine and citric acid. GC-EI-MS systems had
either TOF (time of flight), 1,2,4, or quadrupole MS technology, 3,5,6. The MPIMP-ID may be
used to retrieve further MST information (GMD, http://csbdb.mpimp-golm.mpg.de/gmd.html)

[48].
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6. Comparison with the elution sequence of all eight possible hexoaldoses, which
was previously established on a GC-TOF-MS system [44], shows the best RI fit
of mannose. Abundant peaks like glucose in leaf samples can obscure minor
isomers. In the absence of clearly visible minor analytes galactose cannot be
distinguished from idose and talose (Fig. 4C).

7. Note that previously established RI sequences and RI data determined in other
laboratories or on different GC-MS systems (Fig. 5A) exhibit a slight R1-offset,
which as a first approximation is best corrected by a factor proportional to the
observed RI, such as a percentage (Fig. 4). Late eluting compounds exhibit as a
rule a stronger off-set than early eluting analytes. Due to small differences in GC
column make and column aging, differences in temperature programming or
carrier gas flow and pressure, Rls of different compound classes may exhibit a
differential shift. Thus, when alcanes are used for RI standardization hydrocar-
bons have almost no shift in response to changes in flow or pressure, however
different classes of TMS ethers and esters show clear off-sets.

8. The elution sequence within each of the compound classes, however, is fully
maintained. RI inversions of co-eluting compounds occur only between differ-
ent compound classes (Fig. 5B). The correction for RI-offset is best performed
by including reference mixtures of pure compounds into every set of routine
profiling experiments. These mixtures should ideally contain at least one repre-
sentative of each of the difficult to identify diastereomer classes. Sugars and
respective alcohols or polyhydroxyacids are among the most critical metabolite
classes, for example C4-C7 monosaccarides, and respective phosphates, poly-
ols, or acids, such as glucuronic-, glucaric- or gluconic acid.

MS-RI libraries enhance MST identification

The enormous chemical diversity of compounds obtained when analyzing the me-
tabolome of organisms constitutes one of the main challenges in metabolomics [8,
45]. Current estimations vary. However, 4,000-25,000 compounds may represent
the metabolome of any given organism [8, 46]. The plant kingdom is believed to
comprise in excess of 200,000 metabolites with only a minority of well studied
primary metabolites [6, 46].

From what was said above it is evident that the highly diverse chemical charac-
teristics in conjunction with the vast amount of potential compounds have profound
implications on any non-biased attempt to apply an analytical technology. Currently
only approximately 35% of the MSTs from GC-MS profiling analyses are identified.
The majority of known metabolites in GC-EI-MS profiles still are primary metabo-
lites [12, 13, 47]. The huge white parts on the metabolite profiling chart is one of the
most puzzling and challenging findings of the metabolite profiling effort.

Did traditional biochemistry overlook a multitude of metabolic products or does
metabolite profiling suffer from hard to access or incompletely accessible previous
phytochemical research data?

Irrespective of the outcome of the time-consuming peak to peak charting effort in
multiple laboratories, it is evident that this task is best performed as a long-term, open
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access project with contributions of experts on different organisms and pathways.
Thus the Golm Metabolome Database (GMD) started to tackle the urgent and neces-
sary need for a public metabolome database that harbors pathway information and the
underlying technical details that are prerequisite for metabolome analyses [48]. Be-
cause any technology has specific potential and limitations GMD currently focuses on
the best understood metabolite profiling technology platform, namely GC-EI-MS
profiling of methoxyaminated and trimethyl-silylated extracts of polar metabolites
[15, 25, 44]. GMD provides identified and frequently observed yet non-identified
MSTs in MS-RI libraries, which are provided in a so-called msp-format, that can
be imported either into NIST02/05 or AMDIS mass spectral processing software
(National Institute of Standards and Technology, Gaithersburg, MD, USA). AMDIS
provides MS deconvolution, a fast automated RI and MS matching algorithm, and
allows transfer of mass spectra to NIST02/05, which has a more accurate MS com-
parison algorithm but no capability for automated RI matching.

Metabolite coverage of GC-MS profiling

Any given protocol for metabolome measurements represents a well-tuned balance
between accuracy and metabolite coverage. The coverage of GC-MS based metabo-
lite profiling after methoxyamination and silylation of dried biological extracts is best
exemplified by an inventory (Tab. 1) of the environmental stress experiments presented
in Figure 1. Table 1 was generated with the GMD custom MSRI library and AMDIS
(\Version 2.63, 2005). AMDIS settings were peak width 20, adjacent peak substraction
2, resolution and shape requirements low and sensitivity medium. Rl windows and
penalties were deactivated, multiple identifications allowed and the minimum match
factor set to 65. Report files of 15 representative GC-MS profiles from the above
experiment were filtered for the best match of each MST present in the GMD library.
The RI off-set between library and this GC-MS profiling experiment was corrected by
a factor of 0.29 RI% as determined from reference mixture of metabolites. Positive
matches were reported within a £.0 Rl window. Table 1 reports the quality of iden-
tification by signal to noise, RI deviation and reverse match values.

Analytes are characterized by a MPIMP-ID, number of derivatized moieties,
possible multiple derivatives, expected RI and five characteristic mass fragments.
Additional information on MSTs and identified metabolites can be downloaded
from GMD using either name, MPIMP-ID, or mass spectral search options (GMD,
http://csbdb.mpimp-golm.mpg.de/gmd.html) [48]. Metabolite identity is established
by name, sum formula, and KEGG or CAS identifier and thus linked to pathway and
chemometric information. KEGG and CAS metabolite identifiers in this table rep-
resent the biologically relevant main enantiomers. GMD pursues the concept of
using existing metabolite identification systems rather than creating yet one further
redundant metabolite definition. In contrast analytes had to be indexed by GMD,
because the majority of analytes are still non-identified and identified products did
not always have a CAS index number.

In conclusion, Table 1 clearly shows the high coverage of small primary me-
tabolites which can be classified into organic acids, amino acids, N-containing
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compounds, sugars, polyols, polyhydroxy acids, and small conjugates. In addition,
four hitherto non-identified MST are shown for the purpose of demonstration. These
MSTs can be preliminary classified by best mass spectral match to already identified
MSTs or by manual mass spectral interpretation. Thus the potential of metabolite
profiling to deal with not yet identified MST and the option to link future precise
metabolite identifications to past measurements is demonstrated. While automated
analysis is already fairly powerful, it is not perfect and manual identification still
allows extension of automated inventories, for example maltotriose (Tab. 1). Vali-
dation of usually rare or usually absent metabolites such as sorbose in this example,
or Arabidopsis leaf, is still required. In ambiguous cases repeated standard addition
experiments are advised. A completed inventory finally allows choice of selective
metabolite derivatives and mass fragments for the quantitative analysis [48].

Limitations of metabolite coverage in GC-MS profiling

GC-MS profiling technology is perhaps the best understood platform for metabo-
lome analyses. Our understanding not only comprises metabolome coverage but
also detailed information about limitations. The most obvious limitation of GC-MS
profiling is analyte volatility. Small compounds close to the volatility of the reagent
and solvent are lost as are high molecular weight compounds which have boiling
points exceeding the temperature range of gas chromatography. A good overview of
the current size limitations is provided by RI and sum formula information of Table
1. Besides these obvious limitations a small number of specific pitfalls exist in
GC-MS profiling which are well understood and arise mainly from metabolite insta-
bility, conversion of different metabolites into the same analyte through action of
the chemical reagent, or co-elution of chemically distinct diastereomers and enanti-
omers without option for selective choice of mass fragments. In the following ex-
emplary cases will be discussed.

Metabolite instability is a general problem for metabolite analysis. A typical
example is ascorbic acid. Ascorbic acid can be analyzed by GC-MS or traditional
HPLC based technologies provided oxygen is eliminated by degassing and argon or
nitrogen enriched atmosphere. Without these precautions ascorbic acids yields more
than 10 distinctive products in routine GC-MS metabolite profiling, the most abun-
dant among these is — not unexpected — dehydroascorbic acid. Recovery experiments
using chemically synthesized isoascorbic acid demonstrate a sample dependent loss
of this instable stereoisomer of vitamin C which unexpectedly can be chromato-
graphically separated from ascorbic acid in routine GC-MS profiling experiments.
Applying GC-MS profiling without protective gasses results in 20-30% recovery of
isoascorbic acid from potato leaves; in comparison potato tubers have only 5-10%
recovery and the compound is completely lost from potato root samples.

Analyte conversion is specific for the reagent chemistry applied. A typical ex-
ample is the loss of N-aminoiminomethyl- (guanidino-; -NH-CNH-NH,) and N-
carbamoyl- (ureido-; -NH-CO-NH,) moieties, which result in conversion of ar-
ginine, and citrulline to ornithine and of agmatine to putrescine.
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A general restriction brought about by methoxyamination is the conversion of
alpha- and beta- conformations of cyclic hemiacetals — present in reducing sugars
— into the respective methoxyamine, and the loss of phosphate moieties linked to
hemiacetals, such as glucose-1-phosphate. In contrast, glycosidic bonds maintain
conformation and structural integrity. A borderline case between analyte conversion
and metabolite instability is pyroglutamate, which is formed from glutamine through
loss of NH; and by far smaller proportion from glutamate by loss of H,O. These
cycle formation processes occur in aqueous solution and are enhanced by prolonged
TMS derivatization protocols.

Co-elution is a specific chromatographic problem. As long as co-eluting
analytes can be distinguished by specific and selective mass fragments, co-elution
presents no problem for compound specific quantification. In general routine capil-
lary GC columns such as employed for metabolite profiling are not enantio-selec-
tive. Thus L-amino acids and D-sugars cannot be distinguished from the rare
D- and L- enantiomers. Identifications such as the preferred metabolite IDs given
in Table 1 represent an approximation based on expected enantiomer abundance.
Library updates of GMD are in preparation, which will list all frequent and rare
metabolites which are currently known to be represented by each of the included
analytes.

Diastereomers such as the different hexoaldoses can usually be chromatograph-
ically separated. However the high number of possible structures inevitably leads to
co-elution of analytes (Fig. 4). Co-elution problems are today addressed by GC-MS
technology extensions. One strategy utilizes two capillary columns with alternate
separation properties. This ultimately highly powerful approach is called GCxGC-
TOF-MS technology and can be employed for two-dimensional chromatographic
separation in metabolite profiling experiments (e.g., [49-51]). The future will show
if repeatability of 2D-separation and the higher apparent sensitivity of GCxGC-
TOF-MS can indeed be utilized for a high-throughput routine profiling technology
of approximately 2,000 MSTs as reported by a recent publication [52].
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Abstract

Plants manufacture a vast array of secondary metabolites/natural products for protection against
biotic or abiotic environmental challenges. These compounds provide increased fitness due to
their antimicrobial, anti-herbivory, and/or alleopathic activities. Secondary metabolites also
serve fundamental roles as key signaling compounds in mutualistic interactions and plant
development. Metabolic profiling and integrated functional genomics are advancing the under-
standing of these intriguing biosynthetic pathways and the response of these pathways to envi-
ronmental challenges. This chapter provides an overview of the basic methods, select applica-
tions, and future directions of metabolic profiling of secondary metabolism. The emphasis of
the application section includes the combination of primary and secondary metabolic profiling.
The future directions section describes the need for increased chromatographic and mass resolu-
tion, as well as the inevitable need and benefit of spatially and temporally resolved metabolic
profiling.

Introduction

Secondary metabolites represent a diverse and vast array of compounds that have
evolved over time and are found throughout a wide range of terrestrial and marine
species [1-8]. Plants contain an especially rich source of natural products and
approximately 100,000 unique plant natural products have been identified to date
[9]. However, there are still a large number that have not been identified and over-
all estimates exceeding 200,000 throughout the plant kingdom are common [5, 6].
A representative list of secondary metabolite classes is provided in Table 1. The
large number and diversity of plant secondary metabolites can be attributed to the
broad substrate specificity and the generation of multiple reactions products that
are typical of natural product enzymes. These enzymatic traits enhance the proba-
bility of generating chemical diversity and hence beneficial compounds. The selec-
tion and retention of chemical diversity is a critical factor in an organism’s adapta-
tion and fitness [10-12] and a primary reason for the large number of natural
products.
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Table 1. Representative secondary metabolite classes

Artemisinins Hydroxycinnamic acids
Acetophenones Isoflavonoids
Alkaloids (imidazole, isoquinoline, Isothiocyanates

piperidine/pyridine, purine, pyrrolizide,  Lignins/Lignans

quinoline, quinolizidine, terepene, Non protein amino acids

tropane, and tropolone alkaloids) Phenanthrenes
Amines _ . Phenolics
Anthranoids/Anthraquinones Phenols (phloroglucinols, acylphloro
Anthocyanidins glucinols, etc.)
Avristolochic acids Phenylpropanoids
Aurones Polyacetylenes
Azoxyglycosides Polyines
Benzenoids Polyketides
Coumarins Steroidal and Triterepenoid Saponins
Cyanogenic glycosides Stilbenes
Condensed tannins Taxols
Dibenzofurans Terepenoids (hemi, mono, sesqui, di, tri,
Flavonoids (flavanols, flavones, and tetra)

flavanones, etc.)
Glucosinolates
Hyrdroxybenzoic acid

Thiosulfinates
Xanthones

Plants manufacture a vast array of secondary metabolites/natural products for
protection against biotic or abiotic environmental challenges [5]. Thus, these com-
pounds provide increased fitness due to their antimicrobial, anti-herbivory, and/or
alleopathic activities. These toxic chemical weapons thwart potential damage by
pathogenic viruses/bacteria/fungi/herbivores and/or minimize competition with
other plants. For example, select secondary metabolites produce unfavorable re-
sponses in targeted plant predators such as bloat (saponins) in cattle and infertility
in sheep (isoflavones). Many natural products also have other beneficial biological
functions such as flavor/fragrance/color attractants [13-15], UV-protectants, anti-
oxidants, signaling compounds associated with ecological interactions and symbiotic
nodulation [16-18], and nutraceutical/pharmacological properties related to human
and animal health [16-25]. In fact, natural products account for approximately 30%
of all the sales of human therapeutics [26]. The anticancer utility of taxol [27, 28]
and the antimalarial properties of artemisinin [29-31] are good examples.

In addition to the large diversity in basic chemical structures, many natural prod-
ucts are further conjugated with a variety of sugars and/or organic acids. The conju-
gation process is believed to be an import part of the cellular detoxification and
storage mechanisms. However, they can also dramatically impact the biological
activity of these compounds. Additional derivatives of natural products are achieved
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through the attachment of chemical moieties, such as acylation or prenylation,
which continue to add to the chemical diversity of the metabolome and impact bio-
logical activity [32-34].

Methods

The vast numbers of plant secondary metabolites represent an extreme challenge for
large-scale metabolite profiling, i.e., metabolomics, and a singular tool for profiling
all primary or secondary plant metabolites currently does not exist. Most present
strategies involve ‘divide and conquer’ strategies. This is achieved by employing a
series of parallel targeted profiling methods focused on singular or multiple me-
tabolite classes. Natural product classes are selectively extracted through the use of
optimized solvents and often analyzed separately or in parallel. If specific natural
products are of particular low abundance, enrichment methods such a solid phase
extraction may also be employed.

There exist a growing number of successful technical methods that are employed
in metabolic profiling of secondary metabolites [35, 36] and the selection of any
specific method is usually a compromise between sensitivity, selectivity and speed
[37]. GC/MS is capable of profiling many of the smaller and volatile secondary
metabolites including the isoprenoids [38], triterepenoids such as p-amyrin [39],
and phenylpropanoid aglycones such as ferulic acid [39]. However, a large number
of secondary metabolites are conjugated with sugars as described above and are not
amenable to GC/MS even following derivatization. Therefore, high performance
liquid chromatography (HPLC) coupled to ultraviolet (UV) and mass spectrometry
(MS) detection [40, 41], capillary electrophoresis-MS [42-44], NMR [45], and/or
HPLC-NMR [46-49] are heavily relied upon in most approaches for metabolic
profiling of secondary metabolism. The use of various established metabolomics
technologies have been reviewed previously [35] and will not be replicated here.
However, a detailed discussion of emerging technologies that offer significant en-
hancements in metabolic profiling of secondary metabolites will be discussed in the
‘Future directions’ section below.

Applications

Functional genomics and systems biology approaches based upon high density
microarray analyses have traditionally been pursued in a limited number of model
plant species such as Arabidopsis, rice, and Medicago as these species offer the major
genomic and transcript sequence resources. Fortunately, the quantity of sequence
information in the form of genomic or expressed sequence tags (ESTSs) is growing
exponentially for a vast number of plant species (http://www:.tigr.org/tdb/tgi/plant.
shtml) which is making cDNA or oligonucleotide arrays for these species possible.
However, these resources are coming at additional costs. Metabolomics and/or
metabolic profiling on the other hand are less species dependent as most primary
and some secondary metabolites such as flavonoids are observed across major por-
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tions of the plant kingdom. Thus, metabolomics offers greater diversity in its appli-
cation to various plant species relative to transcriptomics and proteomics platforms
without the additional costs. Accordingly, metabolic profiling has been significantly
utilized in the study of primary metabolism of model species [13, 50-54] and also
in many other crop plants such as potato [55-58], tomato [59], and cucurbits [60].
However, the study of secondary metabolism in model species has been less actively
pursued [61, 62].

Metabolic profiling as a tool to study secondary metabolism has traditionally
been focused on two major areas. First, it was traditionally a phytochemical tool for
the rigorous separation, isolation, and identification of individual and unknown
secondary metabolites [63]. For example, LC/MS might be used to obtain a nominal
or accurate mass of a highly purified unknown metabolite to aid in structural deter-
mination. Secondly, metabolic profiling has been used as a tool to study the mo-
lecular aspects of secondary metabolism [15, 64, 65]. These efforts often focus upon
a limited number of secondary metabolites related to the specific pathway being
studied and less attention is directed toward the cumulative differential profiles.
More recently, the scale and scope of metabolic profiling related to secondary me-
tabolism have dramatically broadened towards a larger-scale and more comprehen-
sive nature [39, 41, 44, 66, 67]. However, these larger-scale functional genomics
applications are still somewhat limited.

The most exciting applications of metabolomics are not focused solely on spe-
cific natural product classes, but are bridging the gap by profiling both primary and
secondary metabolites to better understand the interrelationship between these two
important areas. For example, von Roepenack-Lahaye and colleagues have devel-
oped a capillary HPLC coupled to quadrupole time-of-flight mass spectrometry
(LC-QtofMS) method for profiling both primary and secondary metabolites and
used it to evaluate chalcone synthase deficient tt4 mutants in Arabidopsis [68]. Hirai
and colleagues have also used an integrated approach composed of multiple tech-
nologies to show that sulfur and nitrogen metabolism were coordinately modulated
with the secondary metabolism of glucosinolates and anthocyanins [42, 69, 70].
Further, these pioneers also integrated metabolomic and mRNA expression data to
render gene-to-metabolite networks used in the identification of gene function and
subsequent improvement in the production of useful compounds in plants. Simi-
larly, Nikiforova and colleagues determined the impact of sulfur deprivation on
primary metabolism and flavonoid levels and used this information to reconstruct
the coordinating network of their mutual influences [71].

Colleagues at The Noble Foundation are currently applying metabolic profiling
in both genomic and functional genomic approaches for discovery of new genes and
for new insight into the biosynthetic mechanisms related to secondary metabolism.
A major area of focus includes triterpene saponins. Although the biosynthetic path-
way is poorly understood, these compounds have a large diversity of important bio-
logical activities including anti-herbivory (i.e., hemolytic and cause bloat), antifungal,
antimicrobial, alleopathic, lowering of cholesterol, anticancer, and utility asadjuvants.
Recently, Achnine and coworkers utilized EST mining, in vitro assays, and meta-
bolic profiling to identify putative glycosyltransferases (GTs) involved in triterpenoid
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Figure 1. A proposed mechanistic model of the metabolic response of Medicago truncatula cell
suspension cultures to methyl jasmonate elicitation [39]. The data suggest a major reprogram-
ming of metabolism in which as carbon normally destined for sucrose is redirected towards
secondary metabolism (triterpene saponin).

saponin biosynthesis [41]. In this report, two new uridine diphosphate GTs were
identified and characterized that possessed saponin specificity. This project continues
with a large number of additional putative GTs under investigation.

In a separate study on biotic stress, Broeckling and colleagues reported a major
reprogramming of carbon flow from primary towards secondary saponin metabo-
lism in response to methyl jasmonate elicitation in Medicago truncatula [39, 72].
Based on metabolic profiling of both primary and secondary metabolism, a mecha-
nistic response model was proposed and is presented in Figure 1, which involves a
major reprogramming of carbon from primary metabolism towards secondary me-
tabolism (i.e., triterpene saponins). The response includes increased levels of serine/
glycine/threonie metabolism which is believed to result in increased levels of
branched chain amino acids suggesting increased hydroxylmethylgluturate (HMG)
levels. The increased levels of the polyamine beta-alanine and putrescine imply
increased levels of the HMG-CoA ester which serves as the source of carbon for
triterpene saponin and sterol production. However, no increase in sterol accumula-
tion was observed supporting carbon flow directed toward saponin production
which was confirmed by LC/MS metabolic profiling. Although the HMG-CoA ester
was not observed in the metabolic profiles, microarray data (Naoumkina et al.,
unpublished) reveal increased levels of HMG-CoA synthase and HMG-CoA reduc-
tase that further support this model and will be presented in detail elsewhere.
Continued efforts are underway that will further integrate transcript, protein, and
metabolite data consistent with a systems biology approach.
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Future directions

The separation of complex secondary metabolome mixtures is still quite challenging,
and there exists a need for greater differentiation and resolution in metabolomics
approaches at both the technical and biological levels. We are actively pursuing
these needs by increasing chromatographic resolution and by increasing spatially/
temporally resolved biological sampling. These efforts are amplifying the biological
context of our metabolic profiling efforts.

Increased chromatographic resolution

Currently, analytical HPLC commonly used in many secondary metabolic profil-
ing approaches has an upper peak capacity (i.e., theoretical number representing
the maximum peaks resolvable by the system based on optimum performance) of
approximately 300. Based on this estimate, a maximum of 300 components could
be resolved in a best case scenario; however in practice, this value is seldom
achieved and more realistic peak capacities are between 100 and 200. Thus, current
HPLC technologies are limiting the comprehensive scope of metabolomics. Sepa-
ration efficiencies can be improved by altering selectivity, increasing column
lengths, decreasing column diameters, reducing particle sizes, increasing tempera-
ture, and/or utilization of alternative column materials. These approaches have
been recently reviewed [73] and we are currently evaluating alternative techniques,
including capillary/nano-HPLC-QtofMS and ultra-performance liquid chromatog-
raphy mass spectrometry (UPLC-MS) in an effort to increase the comprehensive
coverage of metabolic profiling. Both methods have yielded increased separation
efficiencies. For example, average separation efficiencies exceeding 225,000 plates
per meter were obtained by capillary column (300 um in diameter) HPLC-QtofMS
analysis of a saponin extract from Medicago truncatula (see Fig. 2). This repre-
sents an approximate three-fold increase in efficiency as compared to an average
efficiency of 87,000 plates per meter for analytical HPLC (4.6 x 250 mm, Agilent
1100) system coupled to a quadrupole ion trap mass spectrometer (LC-QITMS)
[40]. All separation gradients and sample loadings were identical. Unfortunately,
the standard deviation was higher for the capillary system (16.6%) relative to
the analytical system (8.8%). The higher variability was attributed to the passive
flow splitting associated with the LC Packings Ultimate HPLC pump; however,
active splitting modules are now available that should significantly lower this
variability.

We have also completed preliminary evaluations of ultra-performance liquid
chromatography mass spectrometry (UPLC-MS) for the analysis of phenolics and
saponins. These efforts yielded impressive results as illustrated in Figure 3. The
average peak widths were approximately 6 seconds at half height and represent an
average separation efficiency of approximately 500,000 plates per meter. These
results illustrate that high resolution and separation efficiencies are possible for
high pressure liquid chromatography and compare favorably to those obtained by
capillary GC/MS. Further, these high efficiencies were reached using faster separa-
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tions than previously reported [40, 74] thereby increasing throughput at the same
time.

Although the above techniques can be used to achieve enhanced chromato-
graphic resolution, the resolution enhancements are still far from that which is needed
for complex metabolomics mixtures. It is expected that the maximum peak capaci-
ties obtainable by capillary HPLC or UPLC methods will reach a maximum in the
range of 600 to 1,000. However, peak capacities of thousands to tens of thousands
are necessary to separate complex metabolome mixtures. Currently, only multidimen-
sional chromatographic methods offer peak capacities of this magnitude [75, 76].
Multidimensional chromatography utilizes combinations of two or more orthogonal
separation mechanisms based on different selectivity, e.g., ion-exchange and re-
verse-phase or capillary electrophoresis and reverse-phase LC. These systems offer
enhanced resolution due to the utilization of multiple columns with independent
chemistries and selectivity which can dramatically improve resolution. The maxi-
mum peak capacity of a multidimensional system is the product of the two or more
individual separation dimensions. For example, a realistic system that has a peak
capacity in the first dimension (n,) of 150 and the peak capacity in the second di-
mension (ny) of 50, then the total maximum peak capacity of the multidimensional
system is n,xn, = 150 %60 =7,500. If one considers that an individual metabolome
consists of 15,000 metabolites, then this is a considerable increase in comprehen-
sive coverage relative to existing methods.

Multidimensional LCxLC separations have been utilized in proteomics research
and are commonly referred to as multidimensional protein identification technology
(i.e., MUDPIT; [77, 78]. Multidimensional LC separations have not been applied to
secondary metabolism, but GC&C/time-of- flight-MS has been used with a focus
on primary metabolism [79]. Unfortunately, these complex separations often come
with increased analysis times, but we believe that the additional depth of coverage
provided by these experiments will be worth the additional temporal costs.

If higher resolution chromatography is obtained, mass analyzers must also be
employed with compatible scan speeds to record data for compounds eluting in very
short temporal periods. It is expected that LC peak widths of 1-5 s will be routine
in the very near future. For accurate quantification, it is commonly accepted that
the sampling rate should be sufficient to capture 10 data points across the eluting
peak to provide a statistically valid representation of the peak profile and higher
sampling rates are beneficial. Thus, sampling rates should be less than 0.1 s or
greater than 10 Hz. This is achievable with current time-of-flight mass analyzers
(TOF-MS). It is worth mentioning that quadrupole-based mass analyzers, including
traps, can approach these speeds; however, TOF mass spectrometers equipped with
delayed extraction and ion-reflectrons also offer improved mass accuracy over
quadrupoles.

Improvements in the accuracy of the mass analyzer can further enhance metabo-
lite differentiation, provide elemental compositions useful in identification, and al-
low for the profiling of greater numbers of metabolites. Mass accuracy is directly
related to the mass resolution or the ability of the mass analyzer to resolve com-
pounds of different m/z values. Mass resolution is defined in Equation 1 and is a
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function of mass (M) divided by the peak width (AM) which is most commonly
defined at half-height:

M
Rm = AM (Eq. 1)

Often, LC/MS is performed with quadrupole ion-traps or linear quadrupole mass
analyzers that yield mass accuracies in the range of 1.0-0.1 Da. Unfortunately,
many metabolites have similar nominal masses which can not be differentiated at
this level of mass accuracy. For example, the important natural products genistein
and medicarpin have similar nominal masses of 270, but have different accurate
masses of 270.2390 (Cy5H,00s) and 270.2830 (C,6H140,) respectively, due to differ-
ent chemical compositions. If the mass can be measured with sufficient accuracy,
then these compounds can be differentiated in the mass domain even if they cannot
be physically separated in the chromatographic domain. This mass differentiation
can be achieved at a mass resolution (M/AM) greater than 6136. Compounds with
closer accurate masses such as rutin (C,;H3,0. = 610.5180) and hesperidin
(CygH34045 = 610.5620) would require a higher mass resolution of 13,864 for their
differentiation. Mass resolutions on the order of 10,000 can be achieved with modern
TOF-MS analyzers, and resolutions in excess of 100,000 with sub-part-per-million
mass accuracies (i.e., less than 0.001 at m/z of 1,000 Da) are achievable with Fourier
transform ion cyclotron mass spectrometry (FTMS). Newer technologies, such as
Thermo Electron Corporation’s Orbitrap mass analyzer are currently surfacing that
also offer high-resolution (100,000) solutions. Although high resolution accurate
mass measurements have great advantages, this technology is still rather costly.

Interestingly, a significant argument can be made that accurate mass measure-
ments significantly reduce the need for ultra-high resolution separations due to the
enhanced separation in the mass domain. However, if the chromatography step is
omitted or compressed significantly, then ion suppression, competitive ionization,
and other matrix affects become increasingly more influential. We personally be-
lieve that both improved chromatographic resolution and accurate mass measure-
ments offer the best solution and that the combination of these techniques will
provide greater comprehension and confidence in our ability to profile the metabo-
lome. Further, we also believe that the needed magnitude of enhancements in chro-
matographic resolution can only be achieved with multidimensional approaches at
this point in time.

Spatially and temporally resolved metabolomics

Higher organisms localize both primary and secondary biochemistry into cellular
compartments, tissues, and organs; however traditional sampling strategies for the
majority of metabolomics or functional genomic applications have involved the
pooling of tissues, organs, and/or organisms. This sampling approach dramatically
reduces the resolving power of the experiment and related conclusions due to
dilution of specific biochemical responses that are often spatially segregated within
the organism. For example, the differential accumulation of specific conjugated
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Figure 4. Principal component analyses of HPLC/UV data collected for soluble phenolic com-
pounds extracted from stem and leaf tissues of wild-type (Regen SY control) and lines of alfalfa
downregulated in expression of caffeic acid 3-O-methyltransferase (COMT) and caffeoyl CoA
3-O-methyl-transferase (CCOAOMT) [67].

forms of triterpene saponins in various tissues of Medicago truncatula has been
observed [74] suggesting specialized roles of these individual components that were
not previously observable using a pooled sampling strategy [40]. Spatially resolved
phenolic metabolite profiles were also used to differentiate tissues in transgenic al-
falfa modified in lignin biosynthesis [67] as shown in Figure 4. GC/MS and HPLC
have also been used to evaluate metabolism in other specialized organs such as
glandular and non glandular trichomes. Using this approach, gross differences in
the metabolic profiles were observed as illustrated in Figure 5 which dramatically
enhance opportunities for increased understanding of localized biochemical proc-
esses [80]. Recent technologies including laser microdissection [81, 82] and fluo-
rescent cell sorting [83] will continue to advance the utility and information content
of spatially resolved metabolomics.

Spatially resolved sampling is more time consuming and requires considerable,
additional effort to yield sufficient quantities of tissue for metabolic profiling. Thus,
if spatially resolved metabolomics is to be successful, then scalable or more sensitive
methods will be required. For example, previously reported methods that utilized
milligram quantities of starting material for GC/MS metabolic profiling have been
scaled down to the microgram level (see Fig. 6).

The biosynthesis and accumulation of primary and secondary metabolites are
also temporally regulated. The temporal accumulation of secondary metabolites can
be correlated with normal development and/or programmed responses to biotic and
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abiotic stress [39, 72]. Several examples were also provided above in relationship to
glucosinolate [42, 70] and triterpenoid metabolism [39].

Summary

We believe that there still exists tremendous opportunities in the use of metabolomics
in the pursuit of advanced understanding of the biochemical and molecular aspects of
secondary metabolism. Our current integrated functional genomics approach is yield-
ing a significant number of new gene discoveries and mechanistic insight. We will
continue to push forward this important area of research for the advancement of plant
productivity and for the improvement of human and animal nutrition and health.

References

1. Field B, Cardon G, Traka M, Botterman J, Vancanneyt G, Mithen R (2004) Glucosinolate
and amino acid biosynthesis in Arabidopsis. Plant Physiol 135: 828-839
2. Keller N, Turner G, Bennett J (2005) Fungal secondary metabolism — from biochemistry to
genomics. Nat Rev Microbiol 3: 937-947
3. Muller WEG, Schroder HC, Wiens M, Perovic-Ottstadt S, Batel R, Muller IM (2004)
Traditional and modern biomedical prospecting: Part Il — The benefits: approaches for a
sustainable exploitation of biodiversity (secondary metabolites and biomaterials from
sponges). Evid Based Complement Altern Med 1: 133-144
4. Wink ME (1999) Biochemistry of plant secondary metabolism, vol. 2, CRC Press, Boca
Raton
5. Dixon RA (2001) Natural products and disease resistance. Nature 411: 843-847
6. Dixon RA, Sumner LW (2003) Legume natural products: understanding and manipulating
complex pathways for human and animal health. Plant Physiol 131: 878-885
7. Dixon RA (2004) Phytoestrogens. Ann Rev Plant Biol 55: 225-261
8. Goossens A, Hakkinen ST, Laakso I, Seppanen-Laakso T, Biondi S, De Sutter V, Lammer-
tyn F, Nuutila AM, Soderlund H, Zabeau M et al. (2003) A functional genomics approach
toward the understanding of secondary metabolism in plant cells. PNAS 100: 8595-8600
9. Wink ME (1999) Functions of plant secondary metabolites and their exploitation in bio-
technology, vol. 3, CRC Press, Boca Raton
10. Firn R, Jones C (2003) Natural products—a simple model to explain chemical diversity. Nat
Prod Rep 20: 382-391
11. Firn R, Jones C (1999) Secondary metabolism and the risks of GMOs. Nature 400: 13-14
12. Firn R, Jones C (2000) The evolution of secondary metabolism — a unifying model. Mol
Microbiol 37: 989-994
13. Rohloff J, Bones A (2005) Volatile profiling of Arabidopsis thaliana — putative olfactory
compounds in plant communication. Phytochemistry 66: 1941-1955
14. Verdonk J, Ric de Vos C, Verhoeven H, Haring M, van Tunen A, Schuurink R (2003)
Regulation of floral scent production in petunia revealed by targeted metabolomics. Phyto-
chemistry 62: 997-1008
15. Frydman A, Weisshaus O, Bar-Peled M, Huhman DV, Sumner LW, Marin FR, Lewinsohn
E, Fluhr R, Gressel J, Eyal Y (2004) Citrus fruit bitter flavors: Isolation and functional
characterization of the gene encoding a 1,2 rhamnosyltransferase, a key enzyme in the bio-
synthesis of the bitter flavonoids of citrus. Plant J 40: 88-100



Methods, applications and concepts of metabolite profiling: Secondary metabolism 209

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
217.

28.

29.

30.

3L

32.

33.

34.

35.

36.

3r.

38.

D’Haeze W, Holsters M (2002) Nod factor structures, responses, and perception during
initiation of nodule development. Glycobiology 12: 79R-105

Relic B, Perret X, Estrada-Garcia M, Kopcinska J, Golinowski W, Krishnan H, Pueppke S,
Broughton W (1994) Nod factors of Rhizobium are a key to the legume door. Mol Micro-
biol 13: 171-178

Oldroyd GED (2001) Dissecting symbiosis: developments in Nod factor signal transduc-
tion. Ann Bot 87: 709-718

Deavours BE, Dixon RA (2005) Metabolic engineering of isoflavonoid biosynthesis in
Alfalfa. Plant Physiol 138: 2245-2259

Aerts RJ, Barry TN, McNabb WC (1999) Polyphenols and agriculture: beneficial effects of
proanthocyanidins in forages. Agriculture Ecosystems & Environment 75: 1-12

Bagchi D, Bagchi M, Stohs SJ, Das DK, Ray SD, Kuszynski CA, Joshi SS, Pruess HG
(2000) Free radicals and grape seed proanthocyanidn extract: importance in human health
and disease prevention. Toxicology 148: 187-197

Setchell KDR, Cassidy A (1999) Dietary isoflavones: Biological effects and relevance to
human health. J Nutrition 129: 758S-767S

MerzDemlow BE, Duncan AM, Wangen KE, Xu X, Carr TP, Phipps WR, Kurzer MS
(2000) Soy isoflavones improve plasma lipids in normocholesterolemic, premenopausal
women. Am J Clin Nutr 71: 1462-1469

Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources
and bioavailability. Am J Clin Nutr 79: 727-747

Gidley M (2004) Naturally functional foods — challenges and opportunities. Asia Pac J Clin
Nutr 13: S31

Grabley S, Thiericke R (2000) Drug Discovery from Nature, 366, Springer-Verlag, New York
Rowinsky EK, Donehower RC (1995) Paclitaxel (Taxol). N Engl J Med 332: 1004—
1014

Khayat D, Antoine E, Coeffic D (2000) Taxol in the management of cancers of the breast
and the ovary. Cancer Invest 18: 242-260

Sriram D, Rao V, Chandrasekhara K, Yogeeswari P (2004) Progress in the research of
artemisinin and its analogues as antimalarials: an update. Nat Prod Res 18: 503-527

Price R (2000) Artemisinin drugs: novel antimalarial agents. Expert Opin Investig Drugs 9:
1815-1827

Jung M, Lee K, Kim H, Park M (2004) Recent advances in artemisinin and its derivatives
as antimalarial and antitumor agents. Curr Med Chem 11: 1265-1284

Botta B, Vitali A, Menendez P, Misiti D, Delle Monache G (2005) Prenylated flavonoids:
pharmacology and biotechnology. Curr Med Chem 12: 717-739

Stevens J, Page J (2004) Xanthohumol and related prenylflavonoids from hops and beer: to
your good health! Phytochemistry 65: 1317-1330

Cos P, De Bruyne T, Apers S, Vanden Berghe D, Pieters L, Vlietinck A (2003) Phytoestro-
gens: recent developments. Planta Med 69: 589-599

Sumner L, Mendes P, Dixon R (2003) Plant metabolomics: large-scale phytochemistry in
the functional genomics era. Phytochemistry 62: 817-836

Kopka J, Fernie A, Weckwerth W, Gibon Y, Stitt M (2004) Metabolite profiling in plant
biology: platforms and destinations. Genome Biol 5: 109

Trethewey R (2004) Metabolite profiling as an aid to metabolic engineering in plants. Curr
Opin Plant Biol 7: 196-201

Lange BM, Ketchum REB, Croteau RB (2001) Isoprenoid biosynthesis. Metabolite profil-
ing of peppermint oil gland secretory cells and application to herbicide target analysis.
Plant Physiol 127: 305-314



210

39.

40.

41.

42.

43.

44,

45,

46.

47,

48.

49.

50.

51.

52.

53.

54.

55.

L.W. Sumner et al.

Broeckling CD, Huhman DV, Farag MA, Smith JT, May GD, Mendes P, Dixon RA, Sumner
LW (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of
biotic and abiotic elicitors on metabolism. J Exp Bot 56: 323-336

Huhman D, Sumner L (2002) Metabolic profiling of saponins in Medicago sativa and
Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer.
Phytochemistry 59: 347-360

Achnine L, Huhman D, Farag M, Sumner L, Blount J, Dixon R (2005) Genomics-based
selection and functional characterization of triterpene glycosyltransferases from the model
legume Medicago truncatula. Plant J 41: 875-887

Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya S, Naka-
mura Y, Kitayama M, Suzuki H et al. (2005) Elucidation of gene-to-gene and metabolite-
to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics.
J Biol Chem 280: 25590-25595

Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T (2003) Quantitative metabo-
lome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2: 488—
494

Sato S, Soga T, Nishioka T, Tomita M (2004) Simultaneous determination of the main
metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary
electrophoresis diode array detection. Plant J 40: 151-163

Mesnard F, Ratcliffe R (2005) NMR analysis of plant nitrogen metabolism. Photosynth Res
83: 163-180

Wolfender J, Queiroz E, Hostettmann K (2005) Phytochemistry in the microgram domain
—a LC-NMR perspective. Magn Reson Chem 43: 697-709

Zanolari B, Wolfender J, Guilet D, Marston A, Queiroz E, Paulo M, Hostettmann K (2003)
On-line identification of tropane alkaloids from Erythroxylum vacciniifolium by liquid
chromatography-UV detection-multiple mass spectrometry and liquid chromatography-
nuclear magnetic resonance spectrometry. J Chromatogr A 1020: 75-89

Wolfender J, Ndjoko K, Hostettmann K (2003) Liquid chromatography with ultraviolet
absorbance-mass spectrometric detection and with nuclear magnetic resonance spectros-
copy: a powerful combination for the on-line structural investigation of plant metabolites.
J Chromatogr A 1000: 437-455

Exarchou V, Krucker M, van Beek T, Vervoort J, Gerothanassis I, Albert K (2005) LC-
NMR coupling technology: recent advancements and applications in natural products anal-
ysis. Magn Reson Chem 43: 681-687

Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004)
Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136: 4159—
4168

Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite
profiling for plant fuctional genomics. Nat Biotechnol 18: 1142-1161

Steinhauser D, Usadel B, Luedemann A, Thimm O, Kopka J (2004) CSB.DB: a compre-
hensive systems-biology database. Bioinformatics 20: 3647-3651

Taylor J, King RD, Altmann T, Fiehn O (2002) Application of metabolomics to plant geno-
type discrimination using statistics and machine learning. Bioinformatics 18: 241S-248
Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold
response pathway in configuring the low-temperature metabolome of Arabidopsis. PNAS
101: 15243-15248

Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis
of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23:
131-142



Methods, applications and concepts of metabolite profiling: Secondary metabolism 211

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001)
Metabolic profiling allows comprehensive phenotyping of genetically or environmentally
modified plant systems. Plant Cell 13: 11-29

Roessner-Tunali U, Urbanczyk-Wochniak E, Czechowski T, Kolbe A, Willmitzer L, Fernie
AR (2003) De novo amino acid biosynthesis in potato tubers is regulated by sucrose levels.
Plant Physiol 133: 683-692

Urbanczyk-Wochniak E, Baxter C, Kolbe A, Kopka J, Sweetlove L, Fernie A (2005) Profil-
ing of diurnal patterns of metabolite and transcript abundance in potato (Solanum tubero-
sum) leaves. Planta 221: 891-903

Urbanczyk-Wochniak E, Fernie AR (2005) Metabolic profiling reveals altered nitrogen
nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato
(Solanum lycopersicum) plants. J Exp Bot 56: 309-321

Fiehn O (2003) Metabolic networks of Cucurbita maxima phloem. Phytochem 62: 875-886
D’Auria J, Gershenzon J (2005) The secondary metabolism of Arabidopsis thaliana: grow-
ing like a weed. Curr Opin Plant Biol 8: 308-316

Romeo JT (2004) Secondary metabolism in model systems, volume 38: recent advances in
phytochemistry, vol. 38, Elsevier Science, San Diego, CA

Blount J, Masoud S, Sumner L, Huhman D, Dixon R (2002) Over-expression of cinnamate
4-hydroxylase leads to increased accumulation of acetosyringone in elicited tobacco cell-
suspension cultures. Planta 214: 902-910

Liu C, Huhman D, Sumner L, Dixon R (2003) Regiospecific hydroxylation of isoflavones
by cytochrome p450 81E enzymes from Medicago truncatula. Plant J 36: 471-484
Frydman A, Weisshaus O, Huhman D, Sumner L, Bar-Peled M, Lewinsohn E, Fluhr R,
Gressel J, Eyal Y (2005) Metabolic engineering of plant cells for biotransformation of
hesperedin into neohesperidin, a substrate for production of the low-calorie sweetener and
flavor enhancer NHDC. J Agric Food Chem 53: 9708-9712

Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya S, Naka-
mura Y, Kitayama M, Suzuki H et al. (2005) Elucidation of gene-to-gene and metabolite-
to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics.
J Biol Chem 280: 25590-25595

Chen F, Duran AL, Blount JW, Sumner LW, Dixon RA (2003) Profiling phenolic metabo-
lites in transgenic alfalfa modified in lignin biosynthesis. Phytochem 64: 1013-1021

von Roepenack-Lahaye E, Degenkolb T, Zerjeski M, Franz M, Roth U, Wessjohann L,
Schmidt J, Scheel D, Clemens S (2004) Profiling of Arabidopsis secondary metabolites by
capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-
flight mass spectrometry. Plant Physiol 134: 548-559

Hirai MY, Saito K (2004) Post-genomics approaches for the elucidation of plant adaptive
mechanisms to sulphur deficiency. J Exp Bot 55: 1871-1879

Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M,
Fujiwara T, Saito K (2004) Integration of transcriptomics and metabolomics for under-
standing of global responses to nutritional stresses in Arabidopsis thaliana. PNAS 101:
10205-10210

Nikiforova VJ, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, Hesse H,
Hoefgen R (2005) Systems rebalancing of metabolism in response to sulfur deprivation, as
revealed by metabolome analysis of Arabidopsis plants. Plant Physiol 138: 1887-1896
Suzuki H, Reddy MS, Naoumkina M, Aziz N, May GD, Huhman DV, Sumner LW, Blount
JW, Mendes P, Dixon RA (2005) Methyl jasmonate and yeast elicitor induce differential
transcriptional and metabolic re-programming in cell suspension cultures of the model
legume Medicago truncatula. Planta 220: 696707



212 L.W. Sumner et al.

73. Sumner LW (2006) Current status and forward looking thoughts on LC/MS metabolomics,
In Saito K, Dixon RA, Willmitzer L (ed.) Biotechnology in Agriculture and Forestry, vol.
57. Springer-Verlag, Berlin, 21-32

74. Huhman DV, Berhow M, Sumner LW (2005) Quantification of saponins in aerial and sub-
terranean tissues of Medicago truncatula. J Ag Food Chem 53: 1914-1920

75. Mondello L, Lewis AC, Bartle KD (2002) Multidimensional chromatography, John Wiley
&ons Ltd, Chichester, UK

76. Evans C, Jorgenson J (2004) Multidimensional LC-LC and LC-CE for high-resolution
separations of biological molecules. Anal Bioanal Chem 378: 1952-1961

77. Washburn M, Wolters D, Yates J (2001) Large-scale analysis of the yeast proteome by
multidimensional protein identification technology. Nat Biotechnol 19: 242-247

78. Wolters D, Washburn M, Yates J (2001) An automated multidimensional protein identifica-
tion technology for shotgun proteomics. Anal Chem 73: 5683-5690

79. Welthagen W, Shellie RA, Spranger J, Ristow M, Zimmermannn R, Fiehn O (2005) Com-
prehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC x
GC-TOF) for high resolution metabolomics: biomarker discovery on spleen tissue extracts
of obese NZO compared to lean C57BL/6 mice. Metabolomics 1: 65-73

80. Aziz N, Paiva NL, May GD, Dixon RA (2005) Transcriptome analysis of alfalfa glandular
trichomes. Planta 221: 28-38

81. Asano T, Masumura T, Kusano H, Kurita S, Shimada H, Kadowaki KI (2002) Construction
of a specialized cDNA library from plant cells isolated by laser capture microdissection:
toward comprehensive analysis of the genes expressed in the rice phloem. Plant J 32:
401-408

82. Nakazono M, Qiu F, Borsuk LA, Schnable PS (2003) Laser-capture microdissection, a tool
for the global analysis of gene expression in specific plant cell types: identification of genes
expressed differentially in epidermal cells of vascular tissues of maize. Plant Cell 15:
583-596

83. Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN
(2003) A gene expression map of the Arabidopsis root. Science 302: 1956-1960



Plant Systems Biology
Edited by Sacha Baginsky and Alisdair R. Fernie
© 2007 Birkhauser Verlag/Switzerland

Metabolic flux analysis: Recent advances in carbon
metabolism in plants

Martine Dieuaide-Noubhani®, Ana-Paula Alonso®, Dominique Rolin?,
Wolfgang Eisenreich? and Philippe Raymond?

1 UMR 619 ‘Biologie du Fruit’, INRA Université Bordeaux 2, IBVM, BP 81, 33883 Villenave
d’Ornon Cedex, France

2 Lehrstuhl fur Organische Chemie und Biochemie, Technische Universitat Miinchen,
Lichtenbergstrale 4, 85747 Garching, Germany

3 Department of Plant Biology, Michigan State University, 166 Plant Biology Building,
East Lansing, MI 48824, USA

Abstract

Isotopic tracers are used to both trace metabolic pathways and quantify fluxes through these
pathways. The use of different labeling methods recently led to profound changes in our views
of plant metabolism. Examples are taken from primary metabolism, with sugar interconver-
sions, carbon partitioning between glycolysis and the pentose phosphate pathway, or metabolite
inputs into the tricarboxylic acid (TCA) cycle, as well as from secondary metabolism with the
relative contribution of the plastidial and cytosolic pathways to the biosynthesis of terpenoids.
While labeling methods are often distinguished according to the instruments used for label
detection, emphasis is put here on labeling duration. Short time labeling is adequate to study
limited areas of the metabolic network. Long-term labeling, when designed to obtain metabolic
and isotopic steady-state, allows to calculate various fluxes in large areas of central metabolism.
After longer labeling periods, large amounts of label accumulate in structural or storage com-
pounds: their detailed study through the retrobiosynthetic method gives access to the biosyn-
thetic pathways of otherwise undetectable precursors. This chapter presents the power and
limits of the different methods, and illustrates how they can be associated with each other and
with other methods of cell biology, to provide the information needed for a rational approach of
metabolic engineering.

Introduction

Curiosity about metabolic pathways arises from the need to understand the
biological mechanisms of plant life or from intents to improve the yield or quality
of a plant product like wood, fruits or flowers, or the production of particular
compounds. The first answers can be obtained from the analysis of metabolites,
either by specific assays or by comprehensive methods of metabolite profiling.
More specific questions that may require the use of tracers arise after the observa-
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tions of changes in the levels of a metabolite of interest in relation to the genotype,
development stages or the environment, or from unexpected results of carbon
balance calculations. In recent years, labeling experiments have been used to
unravel the function of regulatory or structural proteins in genetic engineering ex-
periments.

Isotopic tracers are used to study metabolic pathways both qualitatively, to iden-
tify fluxes, and quantitatively, to quantify the fluxes in the pathways. The tracers
may be either radioactive (**C) or stable (*3C) isotopes. A wide range of enrichments
is used for [*3C] labeled precursors, from about 100%, as in most of the works re-
viewed here, to around 1% with natural substrates when small variations around the
natural abundance of *3C are studied [1, 2]. Analyses are performed either by nuclear
magnetic resonance (NMR) [3], or by mass spectrometry [4]. The combination of
tracers, tracer concentrations and detection methods constitute a large number of
methods. In addition, it must be noted that time is an essential parameter in labeling
experiments because the duration of labeling determines how the labeling results
can be handled and, more specifically, which type of model is adequate for the
quantitative interpretation of enrichments in terms of flux values.

The experimental setup for a labeling experiment may be ‘hypothesis free’, but
the interpretation of labeling data benefits from computational modeling of the
metabolic pathways, which is necessarily based on hypotheses on the occurrence
of certain metabolic pathways. The basic principles of modeling were established
many years ago [5-8]. Establishing the set of metabolic pathways is the first step
of setting up a model: the preliminary metabolic scheme is derived from pub-
lished data on enzyme activities and compartmentation obtained from the literature.
It should be noted that as long as the model fits the experimental data, the proposed
pathways are validated, but the model itself does not lead to pathway discovery. The
systematic search for pathways by methods such as elementary flux mode analysis
[9] will provide more certainty in including all the pathways that may account
for the observed label distribution. In addition, as underlined in [10], various sets
of reactions may lead to similar label distribution from one given substrate. There-
fore, fitting the model with experimental data is no proof that the metabolic scheme
is valid. Redundancy is required in tracer experiments, i.e., a conclusion must
be obtained through various means: by complementary labeling experiments
with precursors labeled on different positions or with different labeling times, or by
different methods like enzyme assays, enzyme inhibition, gene disruption or over-
expression, etc.

Properties of labeling methods according to the length of labeling
Short-term labeling

In a typical short-term experiment (Fig. 1), the flow of tracer can be followed along
the pathway: the amount of label in the pools, expressed as a percentage of the total
incorporated label, decreases along the sequence. Similarly, the enrichment, or spe-
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Figure 1. Labeling of pools in a pathway as a function of time. In labeling experiments, a pool
may be a group of metabolites (proteins), a metabolite from a given cell compartment, or a
particular moiety, or atom, of a metabolite. A purified metabolite may be a mixture of different
pools of this compound from different cellular compartments, or from different cells of a tissue,
each with different metabolic fates.
The results of tracer experiments are expressed as the amount of tracer in a given pool of meta-
bolite (A) or as enrichment of the pools (B). *3C enrichment is expressed as % and varies be-
tween 1.1%, the natural enrichment of carbon, and 100%, the enrichment of commercial tracers.
For C and other radioactive isotopes, enrichment is expressed as specific radioactivity which
is an amount of radioactivity per mol (dpm (or Bg)/mol). In early pre-steady-state, both the
amount of label per pool or the enrichment decrease along the pathway: both can be used as
indicators of the position of the metabolites in the pathways (pool compartmentation, or bran-
ching pathways are possible complications). Unidirectional fluxes are calculated as the ratio
(amount of label accumulated)/(enrichment of the precursor); underestimation may happen
where labeling time is so long that label is lost from the product of interest. At isotopic and
metabolic steady-state, the labeling and concentration of the intermediates remain constant: in
a linear pathway, as illustrated here, the amount of label per pool is proportional to pool size,
which brings no information on the pathway itself.

cific radioactivity, of the different pools decreases along the pathway. Short-term
experiments are useful to solve three types of problems:

1. to establish the sequence of metabolites in a pathway; for example, the C3 and
C4 photosynthesis types were named from the first metabolite found to be la-
beled after a few seconds of labeling with *“CO,.

2. to quantify the absolute flux in the pathway: the number of moles of a metabo-
lite, or group of metabolites, produced is calculated by dividing the amount of
label accumulated by the enrichment of the precursor in the pathway (Fig. 1).
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3. to deduce kinetic parameters of enzymes in the pathway from the kinetics of
label distribution, by using models that include kinetic parameters of the enzymes.
However, many kinetic parameters that are typically calculated from in vitro
experiments with isolated enzymes may fail to meet the actual values under in
vivo conditions of a compartmentalized plant cell or whole plant. Therefore, on
the basis of the current technologies, modeling short-term labeling data in plant
cells is intended with only limited areas of the metabolic network. As an exam-
ple, this method was used for the identification of constraints in the accumula-
tion of glycine betaine in plants [11, 12].

Steady-state labeling

As labeling time increases, isotopic steady-state is established in the pathway. In
plants labeled with glucose, this was found to take a few hours. At this stage, the
enrichments of different pools in the pathway are found to be constant, but the
whole cells are not yet uniformly labeled. This was called ‘relative steady-state’
[13]. When a uniformly labeled substrate is provided, the steady-state enrichment in
a linear pathway is uniform. This provides no information on fluxes in the pathway.
However, where entering fluxes of unlabeled endogenous substrates lead to a dilu-
tion of label, the relative values of the labeled and unlabeled fluxes can be quantified
from the decreased enrichment induced at the entry step (see Fig. 2). With non-uni-
formly labeled substrates, such as [1-**C]glucose, the redistribution of the labeled
atom(s) provides additional qualitative and quantitative information on substrate
cycles in the pathway. This steady-state labeling method has been applied to the
relatively large network formed by central metabolism (see below).

Vs1

Vd

[ X JeX X YeI Y ]

ceece EX
ecee00000

000000000
oooeo E2
000000800

Vs2

metabolic steady state : Vs1 + Vs2 = Vd
isotopic steady state : Vs1. E1 + Vs2. E2 = Vd. Ex

Figure 2. Modeling label distribution at metabolic and isotopic steady-state. Labeling to meta-
bolic and isotopic steady-state enrichments provides information on joining pathways. For each
pool (metabolite, or part of a metabolite) formed from two or more precursors, enrichment de-
pends on both the enrichment of and the relative flux from each of the precursors. Two sets of
equations can be written for each pool of metabolite or metabolite moiety: the metabolic steady-
state equations state that C input = C output; the isotopic steady-state equations state that label
input = label output. These equations link fluxes to enrichments. Relative values of Vs fluxes are
calculated from measured enrichments of the precursors (E1 and E2) and product (EX).
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Modeling of the isotopic and metabolic steady-state uses relatively simple linear
equations, which link enrichment ratios with relative rates (Fig. 2). The amount of
experimental data required to feed the model is lower after steady-state than after
short-term labeling because after the long labeling times used, rapidly exchanging
pools of a metabolite that are present in two or more compartments can be considered
to have the same labeling. The review by Roscher et al. [14] discusses the effects of
compartmentation and of transient conditions in long-term labeling experiments. In
most experimental conditions, near steady-state rather than true steady-state condi-
tions is obtained: applying steady-state models creates a problem when transient
situations are studied, because the metabolic steady-state condition is not verified
[3]. When the changes occur slowly, the turnover of the metabolites may be sufficient
to ensure that changes in labeling in one step will be transmitted to the whole system.
When changes in the level of a metabolite cannot be neglected, the metabolic steady-
state equation must be modified to take this particular flux into account.

Long-term labeling for retrobiosynthetic analysis

After longer labeling time, final metabolites like protein amino acids become
strongly labeled. Information is obtained from the relative abundances of different
isotopologs in the sink metabolites (e.g., amino acids from proteins, starch, lipids)
in these experiments. The isotopolog profiles of their respective precursors can be
reconstructed by retrobiosynthetic analysis. The wealth of the method is that, on this
basis, otherwise inaccessible metabolic intermediates can be analyzed that also
constitute the central nodes of a metabolic network.

This chapter shows how labeling methods of metabolic flux analysis have re-
cently led to a renewal of our views of the pathways of central metabolism, from
sugars and hexose-P to the TCA cycle, and of isoprenoid biosynthesis. Clearly,
many fields where sound approaches were developed are not treated here. The aims
of this limited presentation are to illustrate the basic principles as well as the power
and limits of the different methods, and to show how the qualitative and quantitative
information provided by labeling experiments may contribute to the global ap-
proaches of systems biology.

Sucrose, glucose and hexose-P interconversions in heterotrophic cells

Heterotrophic cells import sugars, usually sucrose, from photosynthetic tissues.
Sucrose enters the cell as sucrose or as glucose and fructose after hydrolysis by cell
wall invertase. In the cell, sucrose can be hydrolyzed to glucose and fructose by
invertase or cleaved to UDP-Glc and fructose by sucrose synthase. Intracellular
glucose is also formed by substrate cycles similar to the turnover of sucrose, starch
or cell wall polysaccharides. The operation of sucrose cycling was deduced after
pulse/chase labeling experiments with labeled Glc where the decrease of the radio-
activity measured in sucrose was more rapid than the decrease in the amount of
sucrose [15]. It was deduced that sucrose was simultaneously synthesized (incorpo-
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Figure 3. The sources of intracellular Glc in non photosynthetic plant cells. Glc is imported
from the apoplast (extracellular medium). It is also a product of the turnover of intracellular
oligo- and polysaccharides. This global flux was calculated after steady-state labeling experi-
ments. The flux of Glc import and the fluxes of Glc formation from cell walls, starch and sucro-
se were measured by short-time labeling experiments. The occurrence of a Glc-phosphatase
reaction results from the comparison of the global and individual fluxes towards intracellular
Glc [22].

ration of label during the pulse) and degraded (decrease of labeling during the
chase). In contrast, starch was found to be stable. The turnover of sucrose and starch
was then quantified in other tissues: Chenopodium cells [16], ripening banana [17],
potato tubers [18], and tomato fruit [19]. Using an approach of steady-state labeling
in maize root tips [20], and in tomato cells [21], a high rate of cycling between hex-
ose-P and glucose was observed and, based on enzyme activity data, it was suggested
that this cycle was the result of sucrose turnover. More recently [22], a combination
of short time and steady-state labeling approaches led to an evaluation of the respec-
tive role of the different pathways that may be involved in the Glc-P to Glc conver-
sion (see Fig. 3). This work is presented in more detail here as an illustration of the
properties of these two methods of labeling.

Short-term labeling estimations of free Glc formation in plant cells

Short-term labeling experiments were used, together with metabolite measure-
ments, to evaluate the flux of external Glc uptake and the fluxes of Glc formation
from the turnover of sucrose, starch and cell wall polysaccharides (Fig. 3). The ap-
proach was similar to that used in [16], and consists of:
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1. Measuring the unidirectional flux of synthesis (Vs) using short-term labeling
experiments.

2. Calculating the net flux of sugar (i.e., sucrose or starch) accumulation (Va), as
the variation in sugar content, measured by a method of quantitative analysis of
metabolites, over a time period: Va = A sugar content/At.

3. Deducing the unidirectional flux of degradation (Vd) as: Vd = Va-Vs.

The unidirectional flux of synthesis of a compound is calculated as the rate of incor-
poration of radioactivity (Vg,) divided by the specific radioactivity of its precursor.
The precursors of sucrose and starch are UDP-Glc and ADP-Glc, respectively. Be-
cause measuring their specific radioactivity is difficult, glucose [16], or hexose-P [15,
23] were used as indicators because they give more certainty and they were expected
to be in rapid exchange with UDPGIc and ADPGlc. In maize root tips, it was verified
that Glc-6P and UDP-Glc were identically labeled, even after a very short time of
labeling [22]. On the other hand, intracellular Glc was not identically labeled to UD-
PGlc, which may be explained by the slow labeling of the Glc vacuolar pool [20].

In growing maize root tips, short-term labeling experiments showed that the
turnover of cell walls and starch were low compared to sucrose turnover and could
therefore be neglected as sources of intracellular glucose. Steady-state labeling was
used to examine whether sucrose turnover accounts for Glc-6P turnover.

Steady-state labeling measurements of Glc-P cycling

At isotopic steady-state the labeling of intracellular Glc results from the relative
values of the flux of external Glc uptake (external Glc is labeled on C1 only) and the
sum of the intracellular fluxes of Glc production from cellular oligo- and polysac-
charides. The Glc molecules formed from these reactions derive from the hexose-P
pool: they are less labeled on C1 than external Glc, and more labeled on C6. The
enrichment of C1 and C6 of intracellular Glc and of the sucrose glucosyl was meas-
ured by *H and **C NMR. Resolution of the equations for either C1 or C6 leads to
estimations of the flux ratio of total intracellular flux of Glc production (called
Vrem) to the flux of Glc uptake. The absolute value of VVrem was then calculated
using this ratio and the absolute value of Glc uptake measured in the short-term
experiment. Vrem was found to be very much higher than the flux of Glc production
from sucrose turnover determined by short time labeling. This result pointed to the
operation of another substrate cycle in maize root tips, possibly the direct hydrolysis
of Glc-P to Glc by a Glc-phosphatase [22].

This work illustrates how short- and steady-state labeling are complementary
approaches to a better insight into central metabolism.

Partitioning of Glc-P through the pentose phosphate
pathway and glycolysis

Glucose 6P can be catabolized through glycolysis or the oxidative pentose phos-
phate pathway (OPPP) which plays an important role in cell biosyntheses and de-
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fence through the production of NADPH. Measuring the partition of hexose-P be-
tween OPPP and glycolysis is important to establish the function of the pathways.
This is difficult in all organisms because the two pathways are interconnected
through the exchange of fructose-6-P and triose-P. In addition, in plants, both path-
ways are present in two compartments, the cytosol and the plastids.

Classic assays with [1-1*C]- and [6-1“C]glucose

The approaches used to compare the fluxes in glycolysis and the OPPP have been
elaborated by Katz and collaborators [6]. A model was set up to calculate the contribu-
tion of each pathway by using [**C]glucose labeled on C1 or C6, through the specific
yields of evolved *CO, (the C1/C6 ratio) or the enrichments ratios of the triose-P and
their derivatives (alanine, malate, etc.). Glucose labeled on C2 or C3 was also used to
obtain complementary information through the redistribution of label in the Glc mol-
ecule. The specific yield of CO, is higher, and the enrichment of triose-P is usually
found to be lower with [1-}*C]glucose than with [6-1*C]glucose. This is explained by
the different fates of the Glc-C1 and -C6 through the OPPP. For Glc-6-P that enters the
OPPP, C1 is lost as CO, at the second step of this pathway, whereas the C6 is incor-
porated into fructose-P or glyceraldehyde-3-P via the non-oxidative part of the pen-
tose phosphate pathway. It may either be lost as CO, much further along the meta-
bolic pathway, after two turns in the TCA cycle, or be retained in biosynthetic prod-
ucts, the most important, quantitatively, being the proteinogenic amino acids. Con-
versely, the fate of Glc-6-P C1 and C6 through glycolysis, is the same. Therefore, the
differences observed in the labeling of CO, or triose-P derivatives are attributed to the
OPPP. In fact, two distinct mechanisms affect the production of **CO, from [1-
14Clglucose or [6-**C]glucose: with [1-1*C]glucose, *CO, evolves earlier as can be
seen in short-term experiments, and in higher amounts when in an isotopic steady-
state. Very often the two effects are confused. For example, the fact that the C1 of
Glc-1-P is lost earlier in the OPPP does not explain that the specific yield of CO, is
higher with [1-1“C]glucose than with [6-}*C]glucose, because the specific yields,
(which give the C1/C6 ratio) are measured in near steady-state conditions. Indeed, if
glucose was fully oxidized to CO,, the C1/C6 ratio (at steady-state) would be 1, what-
ever the flux through the OPPP. The difference in specific CO, yields essentially de-
pends on the incomplete oxidation of the triose-P derivatives [6, 8].

The problem is then to derive flux quantification from the observed differences
in specific yields or enrichments. The method most often used because of its appar-
entsimplicity was to incubate the tissues with either [1-2*C]glucose or [6-1“C]glucose
and measure the specific yields of CO, and calculate the C1/C6 ratio: the C1/C6
ratio higher than 1 was used as an indicator of the operation of the OPPP [6]. The
application to plants has been critically analyzed by ap Rees [8]. It was noted that,
in plants, the pathway of pentosan synthesis which releases the Glc carbon 6 as CO,
would be a cause of error. The results obtained on maize root tips show that this
method is effectively unreliable with plant tissues: the same production of *CO,
was measured from [1-1*C]glucose and [6-**C]glucose, which confirmed previous
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data that had been interpreted as an indication that the OPPP was not active in this
material [20]. However, the decreased enrichment of triose-P derivatives compared
to that of hexose-P after steady-state labeling experiment [20] (see below) strongly
suggested that the OPPP was highly active. In addition, this is consistent with the
high biosynthetic activity of the growing root tips, which requires a source of
NADPH. It was suggested that the C1/C6 ratio was disturbed by the pathway of
pentosan synthesis. This example demonstrates that the method based on *#CO,
yields is not reliable with plant tissues, as previously indicated [8]. It may be noted
that, in the same labeling conditions, the observation of triose derivatives, instead of
CO,, would be less prone to errors.

As an improvement to this method, Garlick et al. [24] replaced [1-}*C]glucose
with [1-'*C]gluconate. They showed that plant cells can take up [1-**C]gluconate
and metabolize it essentially by direct phosphorylation into [1-1*C]6-phospho-
gluconate which is then decarboxylated. Therefore, the release of *CO, from
[1-“C]gluconate is a reliable indicator of the occurrence of a flux through the OPPP.
The C1*/C6 ratio, with [1-1*C]gluconate and [6-1*C]glucose, respectively, was used.
The method was found to be broadly applicable to plants, and showed that the OPPP
was active in a number of plant materials, including maize root tips. However, it
would be difficult to make this method quantitative. The C1*/C6 ratio depends on
both the flux through the OPPP relative to that of glycolysis, and on the fraction of
triose-P oxidized to CO,. Therefore, a variation in the C1*/C6 ratio would not be
reliably interpreted as a change in the flux through the OPPP relative to glycolysis,
since it may also reflect a change in the fraction of triose-P retained in stored prod-
ucts. A quantification of the absolute flux through the OPPP could be made in short-
term labeling experiments from the rate of 1*CO, evolution if the specific radioac-
tivity of the pool of 6-phosphogluconate could be measured; however, as discussed
in [24], the cellular location of the reaction, cytosolic or plastidial, is not known.

Assays through NMR measurements of carbon enrichments

Steady-state labeling of plant tissues with stable isotopes ([1-**C]-, [2-*C]-, [1,2-
13C,]-, or [U-13C¢]-Glc) associated with NMR or MS label measurements of me-
tabolites provides a great deal of information about the reactions of intermediary
metabolism. Estimations of the partitioning of hexose-P between glycolysis and the
OPPP can be obtained after steady-state labeling with [1-**C]glucose, through the
analysis of sucrose, starch and alanine. The labeling of sucrose and starch reflects
that of the cytosolic and plastidial hexose-phosphates, respectively, and the labeling
of alanine reflects that of pyruvate, which derives from the triose-P. The informa-
tion that was obtained by the comparison of specific CO, yields with [1-1“C]- or
[6-“C]GIc can be obtained with [1-1*C]glucose alone because, in the latter case, the
carbon enrichments of hexose-P and triose-P can be compared. However, redun-
dancy through the use of other tracers is still useful.

This approach was used to study the intermediary metabolism of maize root tips
[20] and in tomato cells [21]. After incubation with [1-*C]Glc up to isotopic steady-
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state, the enrichments of carbon atoms in glucose, sucrose, starch and alanine were
determined. Initially, the qualitative analysis of data were used to determine which
metabolic pathways had to be included in the model, an important step before writ-
ing the equations that relate fluxes (the unknowns) to enrichments (experimental
data). As an example, the OPPP was included in the model after the observation that
alanine C3 was less labeled than the average of Glc C1 and C6. In a second step,
fluxes were calculated to fit experimental enrichments. The carbon flux entering the
OPPP was found to be higher than the flux of glycolysis measured at the PEP forma-
tion step [20, 21].

It is characteristic of steady-state labeling studies that fluxes can be quantified
but the pathway involved cannot be identified with certainty. Since, in maize root
tips, the ratio of enrichments of C6 to C1 was higher in starch than in sucrose, the
plastidial OPPP was considered as a possibility to explain the loss of label from the
Glc-P C1 position. In a complementary experiment with [2-14C]Glc, the transfer of
label to Glc C1, which characterizes the operation of the OPPP, was sought in the
glucosyl units of sucrose and starch: it was found essentially in starch, thus confirm-
ing the plastidial location of the OPPP. In maize root tips, it was possible to fit the
model with a null flux through the cytosolic OPPP [20]. In tomato cells the situation
was found to be different: sucrose and starch were identically labeled, which was
interpreted as a rapid exchange between the cytosolic and plastidial hexose-P; con-
sequently, it was not possible to estimate the flux of the OPPP in each of these
subcellular compartments [21]. It must be observed that in these two studies [20,
21] not all the possible reactions in the non-oxidative branch of the PPP were con-
sidered: the ribose-5P isomerase and ribulose-5P isomerase reaction were assumed
to function close to equilibrium.

A more complete description of the pentose phosphate pathway was obtained
by the complete analysis of the intramolecular labeling of sucrose and starch in
Brassica napus embryos incubated to isotopic steady-state with [U-3Cg]glucose,
[1-*C]glucose, [6-1*C]glucose, [U-*C;,]Jsucrose, and [1,2-3*C,]glucose [25]. La-
beling with [2-1*C]Glc was used to evaluate the reversibility of the transketalose
and transaldolase reactions. The labeling in amino acids, lipids, sucrose and starch
was measured by GC-MS and NMR. The similar labeling of cytosolic and plastidial
metabolites was interpreted as a rapid exchange of metabolites between these com-
partments. The measured fluxes were used to evaluate the split of hexose-P towards
glycolysis and the OPPP: the latter was found to have a contribution to the supply
of reductant for fatty acid biosynthesis lower than usually estimated. In a further
study [26], the balance of carbohydrate to oil conversion was found to be much
higher than would be expected from established pathways. Metabolic and isotopic
steady-state experiments and modeling, using [1-**C]alanine and [U-*C]alanine as
substrates, showed that a significant fraction of the CO, lost in the pyruvate dehy-
drogenase reaction, which forms the acetyl-CoA used for fatty acid biosynthesis, is
recycled by Rubisco in a light dependent manner, but without Calvin cycle.

Using steady-state labeling, metabolic pathways and fluxes were also analyzed
in developing maize kernels [27-29]. The in vitro culture of maize kernels repre-
sents a system to study the metabolism in intact kernels at different developmental
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stages under defined conditions. Typically, the kernels were supplied with culture
media containing a mixture of [U-*Cg]glucose and unlabeled glucose. After growth
on the labeled medium for several days, glucose was isolated from the starch hydro-
lysate and analyzed by NMR spectroscopy.

Due to the use of totally *3C-labeled glucose as a tracer, highly complex signal
patterns were detected in the *C-NMR spectra that reflect couplings between *C-
atoms in a given molecule. Due to the inherently restricted coupling information in
complex molecules (typically, **C-*C couplings can only be observed via 1-3
bonds) and due to limited spectral resolution, isotopolog groups (so-called X-groups)
[30] give sets of individual glucose isotopologs. Numerical deconvolution can then
be used to determine the abundances of individual carbon isotopologs from the
abundances of the X-groups.

As a major finding, the relative abundances of the [U-13C¢]-isotopolog were low
showing that the carbon skeleton of the vast majority of the applied labeled glucose
had been broken and reassembled at least once. The observed [1,2,3-1*C;]- and
[4,5,6-13C4]-isotopologs reflected glycolytic cycling via triose phosphates. The [1,2-
13C,]-isotopologs showed cycling via the transketolase reaction of the pentose phos-
phate pathway, and the [2,3-13C,]- and [4,5-13C,]-isotopologs have been explained
by cycling involving the tricarboxylic acid cycle.

As outlined in more detail below, the isotopolog compositions can then be bal-
anced by numerical or computational methods affording relative metabolic fluxes in
the biosynthesis of the metabolites under study. In the kernel experiments, a compu-
tational approach [29, 31] was used that assessed the contributions and interconnec-
tions of glycolysis, glucogenesis, the pentose phosphate pathway, and the citrate
pathway in considerable detail. Interestingly, minor modulations of the flux pattern
were found during different phases of kernel development probably as an answer to
the specific demands for metabolic precursors during kernel development [29].

Carbon inputs into the TCA cycle

The tricarboxylic acid cycle (TCA cycle) is the major pathway of respiration in all
eukaryotic cells. It is well known for its energetic and biosynthetic roles. Acetyl-
CoA, usually produced in the mitochondrion by the PDH reaction, is condensed
with OAA to form citrate. In one “turn’ of the cycle, two carbons are lost as CO, and
a new OAA molecule is formed: this is equivalent to the complete oxidation of the
acetyl unit, but the entering acetyl carbons remain present in the OAA molecule.
The intermediates of the TCA cycle are also used as building blocks for biosynthe-
ses, particularly, in quantitative terms, the biosynthesis of amino acids of the gluta-
mate and aspartate families. For each molecule taken out of the TCA cycle, so-
called *anaplerotic’ reactions provide the OAA required as acetyl-unit acceptor. In
plants, the PEP carboxylase reaction, which produces OAA in the cytosol, plays this
role (Fig. 4). Equivalent anaplerotic substrates are four carbon compounds derived
from the catabolism of amino acids of the aspartate family, or succinate produced
by the glyoxylic acid cycle; the five C compound alpha-ketoglurate, which is de-
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Figure 4. Glycolytic carbon input into the TCA cycle. Glc labeled on C1 or C6 produces PEP,
pyruvate and alanine labeled on their C3 (@), with the other two carbons unlabeled (O). A:
pyruvate dehydrogenase produces acetyl units labeled on their C2 (A2). A2 then forms the C4
of glutamate carbons. During the first turn of the TCA cycle (n=1), A2 and O3 are incorporated
into the methylene carbons of succinate; because succinate is symmetrical, A2 goes to either of
the central carbons of OAA. As the number of ‘turns’ increases, the enrichments of the OAA
carbons O2 and O3 increases up that of A2 (shown here for n>6). B: The PEP carboxylase reac-
tion forms OAA labeled on its C3 (O3), and the near equilibrium reactions between malate,
fumarate and OAA randomize this label between O2 and O3 of OAA,; O4 is also labeled, accor-
ding to the enrichment of cytosolic CO,. The OAA metabolized in the TCA cycle, as observed
in the Glu molecule, is a mixture of the OAA formed in the TCA cycle (A) and that formed by
the PEPC reaction (B).

rived from the catabolism of amino acids of the glutamate family also plays this
role. The full oxidation of OAA is possible after its conversion to pyruvate through
the malic enzyme reaction.

Major questions about the TCA cycle are the following:

Among sugars, proteins and lipids, what is the substrate of respiration?

In sugar-fed cells, where glycolysis provides both pyruvate and OAA to the

TCA cycle:

— how is the glycolytic flux partitioned between these two branches?

— is OAA used as anaplerotic substrate only, or is it converted to pyruvate, via
the malic enzyme (ME) reaction, to feed respiration?

Short-term labeling has been used for pathway identification, and steady-state labe-
ling experiments have provided quantitative information about fluxes. The origin
and fate of some carbon atoms in intermediates of the TCA cycle will be described
first, because this knowledge helps to deduce qualitative information from labeling
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patterns and to design experiments that can produce the information needed, even if
the final, quantitative, interpretation of the data needs comprehensive modeling of
the pathways.

Glutamate as the indicator molecule in studies of the TCA cycle

In steady-state labeling studies of the tricarboxylic acid cycle, the essential molecule
to examine is glutamate, the indicator molecule for alpha-ketoglurate. Glutamate is
a stable compound, it is usually abundant and its enrichments can be easily measured
by *H and *3C NMR spectroscopy (for example, 