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Abstract

Defects in centrosome number or structure can have considerable consequences

for the physiology of an organism. Aberrant centrosome number has been

proposed for a century to contribute to genome instability and tumour formation.

However, in the last decade, mutations in centrosome genes have been described

in diseases characterised by defective growth. Centrosome dysfunction can

therefore have opposite effects on the homeostasis of the organism. Here we

discuss how deregulation of centrosome number during embryonic development

might contribute to growth defective syndromes such as autosomal recessive

primary microcephaly (MCPH) and primordial dwarfism. We further discuss

how the same defects might play a role in cancer when present in adult tissues.

5.1 Introduction

The centrosome is the major microtubule-organising centre of animal cells

(Kellogg et al. 1994). It participates in different processes such as cell division,

motility and polarity, mainly by organising the microtubule network. Centrosomes

are not present in plants, whereas fungi have an analogous structure called the

spindle pole body (Marshall 2009).

The centrosome is composed by two centrioles surrounded by the pericentriolar

material (PCM) (Nigg andRaff 2009) (for a discussion of PCMstructure and function,

see also the Chap. 3 by Comartin and Pelletier). Centrioles are cylindrical structures

made of nine microtubule triplets arranged in a ninefold symmetry. They recruit and

organise a large number of proteins forming the PCM (Bobinnec et al. 1998).
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Centriole number is tightly regulated. For most part of the cell cycle, the two

centrioles are linked and placed orthogonally to each other. This configuration is

called centriole engagement, and a new centriole is not formed as long as the

pre-existing centrioles are engaged (Tsou and Stearns 2006). Centriole disengage-

ment takes place usually at the end of mitosis when the daughter cells inherit one

centrosome with two separated centrioles (Kuriyama and Borisy 1981). Centriole

disengagement is thought to be the licence to allow centriole duplication (Tsou and

Stearns 2006), which occurs only once per cell cycle.

Five proteins, ZYG-1, SPD-2, SAS-4, SAS-5 and SAS-6, were identified in

Caenorhabditis elegans as essential for centriole biogenesis (Dammermann

et al. 2004; Delattre et al. 2004; Kemp et al. 2004; Kirkham et al. 2003; Leidel

et al. 2005; Leidel and Gonczy 2003; O’Connell et al. 2001; Pelletier et al. 2004).

These proteins are recruited in a precise temporal order (Delattre et al. 2006;

Pelletier et al. 2006). SPD-2 is the first to be recruited to the parental centriole,

which in turn is required for ZYG-1 recruitment. Shortly after, a complex conteining

SAS-5 and SAS-6 is recruited to structurally form the centriole. Finally SAS-4 is

recruited to allow the incorporation of microtubules into the centriole wall.

Remarkably, all these genes have a sequence or a functional ortholog in most

animals (Carvalho-Santos et al. 2010; Hodges et al. 2010). Human PLK4, also

called SAK in Drosophila, is the functional ortholog of ZYG-1 and, like ZYG-1, is

a serine-threonine kinase (Bettencourt-Dias et al. 2005; Habedanck et al. 2005)

(Fig. 5.1). CEP192 is the human ortholog of SPD-2 (Andersen et al. 2003; Pelletier

et al. 2004). SAS-4 orthologs are called CPAP in humans (Tang et al. 2009) and

DSas-4 in Drosophila (Basto et al. 2006). STIL and Ana2 are, respectively, the

human and the Drosophila functional orthologs of SAS-5 (Arquint et al. 2012;

Stevens et al. 2010; Tang et al. 2011; Vulprecht et al. 2012). SAS-6 is called

HsSAS-6 in humans and DSas-6 in flies (Gopalakrishnan et al. 2010; Leidel

et al. 2005; Peel et al. 2007; Rodrigues-Martins et al. 2007a; Strnad et al. 2007).

Fig. 5.1 The centriole duplication cycle. For most part of the cell cycle, the two centrioles (dark
green cylinders) are linked and placed orthogonally to each other. This configuration is called

centriole engagement. At the end of mitosis, each daughter cell inherits one centrosome with two

separated centrioles (centriole disengagement). This event is permissive to centriole duplication.

Centriole duplication is initiated when CEP192 and CEP152/Asl recruit PLK4/SAK at the

proximal end of the mother centriole (yellow ring). PLK4/SAK activity is required for cartwheel

formation (light green ring). The cartwheel is composed of SAS-6, STIL/Ana2 and CEP135 and is

the first visible structure of the new centriole. Subsequently, SAS-4 is recruited to allow the

incorporation of nine sets of microtubules (centriole assembly). During G2 the procentriole (short
dark green cylinders at the proximal end of the mother centriole) elongates to achieve the size of

the mother
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Similarly to their orthologs in C. elegans, centriolar recruitment of these proteins

is hierarchically regulated (Kleylein-Sohn et al. 2007). PLK4/SAK is the master

regulator of centriole duplication, and in human cells, it is recruited to the mother

centriole by CEP192 in collaboration with another protein not present in C. elegans
called CEP152 (Kim et al. 2013; Sonnen et al. 2013). In Drosophila, SPD-2 is

dispensable for centriole duplication (Dix and Raff 2007; Giansanti et al. 2008) and

SAK recruitment is entirely fulfilled by the CEP152 ortholog, asterless (Asl)

(Dzhindzhev et al. 2010). PLK4/SAK triggers centriole formation through direct

interaction with STIL/Ana2, and its phosphorylation by PLK4/SAK (Dzhindzhev

et al. 2014; Kratz et al. 2015; Ohta et al. 2014) is then required for centriolar loading

of HsSAS-6/DSas-6. STIL/Ana2 and HsSAS-6/DSas-6 form the cartwheel, which

is the first identifiable structure in pro-centriole assembly (Guichard et al. 2010;

Kitagawa et al. 2011b; Kuriyama 2009; van Breugel et al. 2011). Subsequently,

CPAP is recruited and, according to cell type, nine sets of microtubule (Kleylein-

Sohn et al. 2007) singlets, doublets or triplets will complete the centriole structure

(Fig. 5.1). Although in humans extra proteins participate in procentriole assembly,

such as CEP135, CP110 and γ-tubulin (Kleylein-Sohn et al. 2007), the core

duplication machinery is well conserved through evolution (Carvalho-Santos

et al. 2010; Hodges et al. 2010) (see Fig. 5.1 and Chap. 3 for further details on

centriole duplication).

5.2 Animals Without Centrosomes

In 1887, Van Beneden and Boveri described the centrosome as “the organ for cell

division”. This statement was justified by the presence of centrosomes at the spindle

poles, suggesting a function in spindle formation. For this reason, it has long been

accepted that centrosomes were essential for cell division. However, the discovery

that many eukaryotic organisms, such as plants, do not have centrosomes suggested

that probably centrosomes are dispensable to form a bipolar spindle, at least in some

cell types. Indeed, many cells form a bipolar spindle and divide even in absence of

centrosomes. One interesting example is the mouse embryo that forms

“acentrosomal” spindles in the first cleavages (Szollosi et al. 1972). Other examples

are female oocytes from most animal species that assemble “acentrosomal”

spindles during both meiotic divisions (Schatten 1994). In the absence of

centrosomes, microtubules are nucleated at the vicinity of the chromatin, and

with the help of molecular motors, spindle poles become focused (Heald

et al. 1996; Karsenti et al. 1984; Khodjakov et al. 2003; Maiato et al. 2004). In

addition to this pathway, microtubules can also be generated within the mitotic

spindle from pre-existing microtubules. In this case, γ-tubulin is required and its

localisation depends on the augmin complex (Goshima et al. 2008).

All these pathways exist in cells that form mitotic spindle via the “classical”

centrosome-dependent mechanism, and the three collaborate to assemble a func-

tional bipolar spindle that accurately segregates chromosomes (Meunier and

Vernos 2012).
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Even if some cell types in animals can undergo cell division in the absence of

centrosomes, it was difficult to imagine that an entire organism could develop

without centrosomes. In a surprising study, it was shown that the planarian

Schmidtea mediterranea does not contain centrosomes at any stage of its life

cycle (Azimzadeh et al. 2012). Interestingly, planarians need to assemble cilia in

some cell types, and de novo centriole formation in these cells ensures the presence

of basal bodies for ciliogenesis. PCM proteins such as SPD-2/CEP192 and

Cnn/CDK5RAP2 are absent from S. mediterranea, and cell division does not

depend on centrosomes. Since centrosomes also play important roles in spindle

positioning during oriented cell divisions (Morin and Bellaiche 2011), these results

also put in evidence that regeneration, a process frequently used in planaria, does

not require centrosome-dependent spindle positioning (Cardona et al. 2006).

But what happens if centrosomes are removed from somatic cells that normally

contain centrosomes? This question was initially addressed in vertebrate cells

where centrosomes were removed by laser ablation or microsurgery (Hinchcliffe

et al. 2001; Khodjakov et al. 2000). In these cells, a bipolar spindle, which could

correctly segregate chromosomes within the following cell division, was assem-

bled. Recently however, it has been shown that permanent removal of centrosomes

in chicken DT40 cells by knockout of either CEP152 or STIL results in abnormal

chromosome segregation (Sir et al. 2013). In these cells, the spindle was

disorganised explaining probably the high rate of segregation errors observed.

The authors proposed that organisms with high number of chromosomes, such as

chicken, which has 78 chromosomes, strongly rely on centrosome-driven spindle

assembly for mitotic fidelity. It is important to mention, however, that these cells

are non-adherent and might require centrosomes for mitotic spindle assembly while

other cell types that undergo mitosis while adhering to a substrate do not

(Hinchcliffe et al. 2001; Khodjakov et al. 2000).

Flies that carry mutations in the centriole duplication genes asl, DSas-4 and

PLK4/SAK undergo larval development giving rise to adults without any morpho-

logical defect (Basto et al. 2006; Bettencourt-Dias et al. 2005; Blachon et al. 2008).

Importantly, this is possible because maternally provided components ensure cen-

triole duplication at early developmental stages. In the absence of centrosomes,

early embryonic development is impaired and embryos arrest during syncytial

stages (Stevens et al. 2007). The centrosome-dependent spindle assembly mecha-

nism is probably extremely important during the rapid mitotic cycles occurring

after fertilisation, and astral microtubules are required for nuclear separation after

anaphase in the preblastoderm cytoplasm (Telley et al. 2012).

Acentriolar flies also lack cilia and flagella, which are essential inDrosophila for
adult viability and male fertility, respectively. In flies very few cells contain cilia.

Type I mechanosensory neurons are ciliated, and adults that lack centrioles are

severely uncoordinated and die a few hours after eclosion (Baker et al. 2004;

Dubruille et al. 2002; Gogendeau and Basto 2010; Martinez-Campos et al. 2004).

Another cell type that requires centrioles for cell division in flies are primary

spermatocytes that normally have long centrioles containing microtubule triplets.

In the absence of centrioles, meiotic spindles present broad poles and are highly
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disorganised giving rise to unviable aneuploid progeny (Basto et al. 2006;

Bettencourt-Dias et al. 2005; Martinez-Campos et al. 2004; Rodrigues-Martins

et al. 2007b).

Centrosomes, through astral microtubule nucleation, also contribute to accurate

spindle positioning. This is particularly important when cell fate determinants

should be segregated into daughter cells during asymmetric and even symmetric

divisions (Knoblich 2008). Drosophila acentriolar larval brain stem cells (NSCs)

divide symmetrically and give rise to two stem cells, at the expense of

differentiating cells (Basto et al. 2006; Giansanti et al. 2001; Megraw

et al. 2001), which causes tumour formation in transplantation assays (Castellanos

et al. 2008). Centrosomes also participate in spindle positioning inDrosophilamale

germline stem cells (Yamashita et al. 2003); however, other mechanisms contribute

to tissue homeostasis in the absence of centrosomes (Riparbelli and Callaini 2011;

Sheng and Matunis 2011). In female germline stem cells however, centrosomes are

dispensable and spindle positioning depends on the function of the fusome (Stevens

et al. 2007), a membrane skeleton-enriched structure typical of the insect germline

(Lin et al. 1994).

In vertebrates, most cells contain a primary cilium, and centriole loss has severe

consequences during development. Embryos lacking cilia have defective body plan

organisation caused by disruption of hedgehog signalling pathway and arrest at

E10.5–11.5 (Goetz and Anderson 2010). Recently, the developmental functions of

mammalian centrioles in vivo have been analysed (Bazzi and Anderson 2014).

Characterisation of a null Cpap (the SAS-4 ortholog) mutant mouse revealed that

centrosomes are essential during embryonic development. Cpap�/� mice died at

early stages (E9.0) with increased p53-dependent cell death. Interestingly, increase

in DNA damage or aneuploidy was not observed. Instead, cells displayed a

prolonged prometaphase, and consequently mitosis completion was delayed,

suggesting a requirement for centrosomes for rapid bipolar spindle assembly in

vertebrates. Null mutant mice for other centriole duplication genes, Plk4, Stil and
Cep152, also arrested early in development, at the same stage of the Cpap�/� mice,

showing increased apoptosis and increased p53 levels (Bazzi and Anderson 2014;

Hudson et al. 2001; Izraeli et al. 1999). Intriguingly, Bazzi and colleagues noticed

that in embryos lacking centrioles, regions with higher proliferation rates showed

higher p53 levels. Since these embryos died earlier than those lacking cilia

(Huangfu et al. 2003), it is possible that the absence of centrioles per se
up-regulates p53 in rapidly proliferating cells, causing widespread cell death and

consequent lethality. Probably, the apoptotic pathway is triggered in cells that are

not able to go through mitosis as fast as they should. In zebra fish, depletion of stil
induced a similar phenotype (Pfaff et al. 2007). Apoptosis was also increased and

embryos died between 7 and 10 days post-fertilisation. Spindles were monopolar or

highly disorganised, which resulted in delayed mitotic progression.

Overall, these studies show an unexpected up-regulation of cell death by apo-

ptosis in response to prolonged mitosis or mitotic arrest. It will be important in the

future to determine why the apoptotic pathway is triggered in the absence of

centrosomes, when aneuploidy is not being generated (Bazzi and Anderson
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2014). In particular it will be essential to understand how the lack of centrosomes is

detected in embryonic cells and then translated into p53 up-regulation and

apoptosis.

5.3 Animals with Extra Centrosomes

Differentiated cells have one centrosome that organises the microtubule network or

cilia, whereas cycling cells, in mitosis, have two centrosomes to form a bipolar

spindle. The presence of more than two centrosomes in a cell is called centrosome

amplification, and it has been described in both physiological and pathological

conditions. There are three main ways to induce centrosome amplification:

1. Cytokinesis failure: it generates tetraploid cells with four centrosomes. Cytoki-

nesis failure occurs physiologically in certain mammalian tissues during postna-

tal growth such as hepatocytes (Guidotti et al. 2003).

2. Cell fusion: during development, cell fusion is involved in many processes, such

as the formation of trophoblast cells in the mammalian placenta, muscles and

osteoclasts (Oren-Suissa and Podbilewicz 2007). Cell fusion can also be

involved in wound healing as shown in Drosophila larval and adult epidermis

(Galko and Krasnow 2004; Losick et al. 2013).

3. Centrosome cycle deregulation: the levels of proteins involved in centriole

duplication are highly regulated during the cell cycle (Marthiens et al. 2012).

Their overexpression can trigger centrosome amplification (Kleylein-Sohn

et al. 2007). For example, when PLK4 is overexpressed, multiple centrioles

are formed in S phase in the typical rosette-like structure surrounding the mother

centriole (Habedanck et al. 2005; Kleylein-Sohn et al. 2007). At the end of

mitosis, they disengage and duplicate to give rise to extra centrosomes.

The presence of extra centrosomes can induce multipolar divisions, which are in

most cases not viable (Ganem et al. 2009). Cells evolved several mechanisms to

enable bipolar division in the presence of centrosome amplification, and the pre-

dominant mean is the clustering of extra centrosomes in two main spindle poles

(Basto et al. 2008; Kwon et al. 2008; Leber et al. 2010; Marthiens et al. 2012;

Quintyne et al. 2005; Ring et al. 1982). Clustering is achieved mainly by combining

spindle-intrinsic microtubule binding forces and actin-regulating forces at the cell

cortex (Kwon et al. 2008). However, this mechanism can hide a threat. Extra

centrosomes induce the formation of multipolar spindle intermediates during

prometaphase, which promote merotelic attachments (one kinetochore attached to

microtubules nucleated by different poles) and consequent chromosome

missegregation during anaphase (Ganem et al. 2009; Silkworth and Cimini 2012).

In certain cell types, extra centrosomes favour the nucleation of extra cilia, which

leads to dilution of cilia signalling molecules such as members of the sonic

hedgehog signalling pathway (Mahjoub and Stearns 2012).
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Consequences of centrosome amplification at the level of the whole organism

have been studied only in Drosophila so far. When SAK (the PLK4 Drosophila
ortholog) is overexpressed in all the cells of the body, almost 60 % of somatic cells

present centrosome amplification. Embryonic development is highly compromised,

as clustering mechanisms are not efficient during early development (Basto

et al. 2008). Larval development is slightly delayed, but adults are morphologically

normal, viable and fertile. Neuroblasts (NBs) of the larval brain, which are neural

stem cells, always divide in a bipolar fashion even though they harbour extra

centrosomes, thanks to the very efficient centrosome clustering and inactivation

mechanisms (lack of microtubule-nucleating capacity). However, in certain cases,

spindles are mispositioned which results in defects in asymmetric cell division and

in the generation of extra stem cells at the expense of differentiating cells. As a

consequence, in transplantation assays, these brains can over-proliferate and induce

tumours that kill the host prematurely (Basto et al. 2008) (see also next paragraphs).

In the wing imaginal disc, the larval epithelium that gives rise to the adult wings,

mechanisms of centrosome clustering and centrosome inactivation are also present

but not fully efficient (Sabino et al. 2015). As a result, tripolar divisions and

chromosome segregation defects occur with only minor defects in spindle position-

ing. This leads to aneuploid cells able to proliferate and induce tumorigenesis when

transplanted into WT hosts. Hence, these studies show that centrosome amplifica-

tion, at least in Drosophila, is a tumour-initiating event (Basto et al. 2008; Sabino

et al. 2015).

The consequences of centrosome amplification in vertebrates are still not known

with the exception of centrosome amplification in the mouse central nervous system

(CNS) (Marthiens et al. 2013). Contrary to flies, the presence of extra centrosomes

in mouse neural stem cells does not perturb spindle orientation. However, it causes

aneuploidy and consequent cell death due to inefficient clustering. A major conse-

quence of centrosome amplification in the mouse CNS is a severe reduction in brain

size, a condition also known as microcephaly (see below) (Fig. 5.2).

5.4 Centrosomes and Disease

5.4.1 Centrosome Defects and Growth Failure

Generally, the number and size of cells define the size of organs and organisms

(Conlon and Raff 1999). The balance between cell proliferation, differentiation and

cell death contributes to determine the number of cells at the end of development

(Conlon and Raff 1999). Changes in one of these parameters, in particular during

embryonic development when body size is being established, can lead to growth

defects (Klingseisen and Jackson 2011).

Progenitor cells undergo two different types of division: (1) to enlarge the pool

of progenitors, they divide symmetrically forming two identical cells and (2) to

allow differentiation, they divide asymmetrically giving rise to one progenitor cell

and to another, generally more committed that will ultimately differentiate
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(Tajbakhsh et al. 2009). Accurate timely control of the switch from symmetric to

asymmetric division is essential to guarantee correct development and body size.

Although the mechanisms behind growth retardation during embryonic devel-

opment are not entirely known, mutations in genes encoding for centrosome and

centrosome-associated proteins have been reported in diseases characterised by

growth deregulation, such as autosomal recessive primary microcephaly (MCPH)

and the primordial dwarfism diseases Seckel syndrome (SCKS) and microcephalic

osteodysplastic primordial dwarfism type II (MOPD-II).

The common feature of these syndromes is microcephaly, which is clinically

defined as a smaller brain than the mean for sex, age and ethnicity, with the

occipitofrontal head circumference (OFC) equal or less than -2 standard deviation

(SD) (Roberts et al. 2002). In MCPH, SCKS and MOPD-II, brain structures are

proportionated and present minor malformations. The phenotype of MCPH and

SCKS is similar but more severe in the latter (Klingseisen and Jackson 2011). In

SCKS, effects in intrauterine and postnatal growth are more pronounced. The mean

OFC in children and adults is around -9 SD, whereas mean height is -7 SD. They

usually suffer of mental retardation and a characteristic appearance with a narrow

Fig. 5.2 Consequences of Plk4 overexpression (Plk4OE) in the developing mouse brain. Centro-

some amplification in mouse embryonic neural stem cells (NSCs) caused by the overexpression of

Plk4 results in microcephaly. Dorsal views of control (a) and Plk4OE (b) brains at E15.5. Scale
bar¼ 2 mm. Control (c) and Plk4OE (d) E15.5 brain sections immunostained for the cycling

proliferating marker Ki67 (red). DNA is shown in blue. Scale bar¼ 12 μm

124 D. Gambarotto and R. Basto



and sloping forehead, prominent eyes, large and convex nose and small jaw (Hall

et al. 2004; Majewski and Goecke 1982).

Stature measurement is usually the parameter used to distinguish between

MCPH and SCKS: patients with normal height or between -1 SD and -2 SD are

classified as MCPH, whereas those between -4 SD and -12 SD as SCKS (Verloes

et al. 1993). Compared to MCPH and SCKS, in MOPD-II, growth retardation is

more severe and accompanied by highly proportional reduced body size (Majewski

et al. 1982). Primordial dwarfisms and MCPH are extremely rare autosomal reces-

sive one-gene disorders, with higher incidence in populations where consanguine-

ous marriages are common (Woods et al. 2005). MCPH, for example, has been

reported in only about 100 families worldwide (Kaindl et al. 2010).

Non-centrosomal genes can also lead to microcephalic primordial dwarfisms,

usually accompanied with other malformations. Meier-Gorlin syndrome is

characterised by small ears, absent/hypoplastic patellae and short stature (Gorlin

et al. 1975). Taybi-Linder syndrome (also known as MOPD type I or III) has

profound growth retardation and severe brain malformation of the cerebral cortex

(Sigaudy et al. 1998). In patients affected by lissencephaly, the brain is smooth with

a thickened cortex, although microcephaly is not always present (Dobyns

et al. 1993).

Since the majority of genes found mutated in microcephaly are centrosome or

spindle pole-associated genes, we will focus this chapter on these, while mention-

ing briefly other non-centrosomal genes.

5.4.1.1 Etiology of Microcephaly
So far, three main causes have been proposed to be at the basis of microcephaly.

They ultimately converge at the same outcome, depletion of the pool of progenitors

during brain development, and consequently fewer cells can form the brain. These

three causes are DNA damage response, spindle orientation and spindle integrity

(Fig. 5.3).

The first MCPH gene identified, microcephalin, has been associated with the

DNA damage checkpoint (Jackson et al. 1998). The DNA damage checkpoint

maintains cells blocked in G2 through the activation of the G2/M checkpoint,

inhibiting entry into mitosis to allow DNA repair. Defects in DNA repair result in

apoptosis or premature differentiation, at least in certain cell types (Inomata

et al. 2009; Schneider et al. 2013; Sherman et al. 2011).

Defects in spindle orientation have been proposed to result from mutations in at

least three MCPH genes, Aspm, CDK5RAP2 (also known as Cep215) and CPAP
(also called CenpJ) (Fish et al. 2006; Kitagawa et al. 2011a; Lancaster et al. 2013;

Lizarraga et al. 2010). In both symmetric and asymmetric dividing cells, spindle

orientation determines the plane of cell division and consequently the correct

segregation of cell fate determinants (Morin and Bellaiche 2011). For example,

Aspm knockdown in the mouse neuroepithelium caused defects in spindle orienta-

tion that led to premature differentiation during neurogenesis (Fish et al. 2006).

Certain MCPH mutations cause disruption of centrosome integrity and numeri-

cal defects, affecting also spindle formation. Among these, mutations in the master
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regulator of centriole duplication PLK4 have been recently described (Martin

et al. 2014; Shaheen et al. 2014). Patient-derived fibroblasts showed reduced

protein levels and consequent centriole duplication failure. Mitotic spindle forma-

tion was also affected with a predominance of monopolar spindles (Martin

et al. 2014).

Another type of centrosome dysfunction that also impacts in brain size is

centrosome amplification (Marthiens et al. 2013). Overexpression of Plk4 in

embryonic NSCs resulted in the presence of supernumerary centrosomes in one

third of the NSC population. Unexpectedly, failure to cluster led to the generation

of multipolar spindles that divided abnormally and generated aneuploid daughter

cells. These cells died of apoptosis in a p53-dependent manner, depleting in this

way the population of neural progenitors. These results suggest that multipolarity,

aneuploidy and consequent cell death can also be at the basis of microcephaly. In

agreement, mutations in STIL, identified in microcephaly patients, cause centro-

some amplification (Arquint and Nigg 2014), and mutations inWdr62 cause spindle
multipolarity (Chen et al. 2014). In addition, aneuploidy and cell death by apoptosis

were also noticed in asp (ASPM orthologue) Drosophila mutants that present

defects in head size (Rujano et al. 2013).

Lack of centrosomes or mutations perturbing its integrity frequently result in

lengthened mitosis and increased mitotic index as the generation of a bipolar

spindle in the absence of centrosomes takes more time (Basto et al. 2006; Bazzi

and Anderson 2014; Chen et al. 2014; Insolera et al. 2014; Lizarraga et al. 2010; Sir

et al. 2013). Although at the moment a true correlative relationship between mitotic

delay and organ size has not been established, it is possible that certain phases of

development would require fast proliferation rates at least in certain progenitor

Fig. 5.3 Etiology of microcephaly. Three major causes of microcephaly have been proposed so

far: (i) DNA damage response, (ii) spindle orientation, (iii) spindle integrity. Through different

means, they all lead to depletion of the pool of progenitors
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cells. Failure to divide correctly or in a rapid way might induce cell death and also

contribute to MCPH (Bazzi and Anderson 2014; Chen et al. 2014; Novorol

et al. 2013) (see above).

Interestingly, cell cycle lengthening not related to centrosome dysfunction was

proposed to lead to microcephaly. In Maier-Gorlin syndrome, for example,

mutations in components of the pre-replicative complex cause defects in the initia-

tion of DNA replication (Bicknell et al. 2011a; Bicknell et al. 2011b; Guernsey

et al. 2011). As a consequence, S-phase progression and completion were delayed

(Bicknell et al. 2011b). Recently, mutations in kinetochore components, CASC5
(MCPH4) and CENP-E (MCPH13), have also been described in patients with

severe microcephalic primordial dwarfism (Genin et al. 2012; Jamieson

et al. 1999; Mirzaa et al. 2014). CASC5 is required for correct microtubule

attachment to the centromere and the spindle assembly checkpoint (Kiyomitsu

et al. 2007), whereas CENP-E is a kinesin required for accurate chromosome

congression and segregation (Mirzaa et al. 2014; Putkey et al. 2002; Weaver

et al. 2003). Therefore, aneuploidy appears as a possible cause of microcephaly

in several size-related syndromes.

5.4.1.2 Genes Identified So Far
Initially when the genetic causes of microcephaly started to be unravelled, it

appeared that MCPH and SCKS could be classified not only phenotypically but

also genetically (Table 5.1). CPAP and CEP152 were first described as MCPH

genes (Bond et al. 2005; Guernsey et al. 2010). Later, both were also identified in

families affected by SCKS (Al-Dosari et al. 2010; Kalay et al. 2011). This led to

the emerging idea that MCPH and SCKS are not two different diseases but a

spectrum of the same disorder with different degrees of penetrance (Verloes

et al. 1993). MOPD-II might also be included in this spectrum since pericentrin
(PCNT) was initially reported in families with SCKS (Griffith et al. 2008) and

subsequently in patients diagnosed with MOPD-II (Rauch et al. 2008; Willems

et al. 2010). For this reason, we will refer to all these syndromes as primordial

microcephalic disorders.

To date, twelve centrosome/spindle pole-related genes (Table 5.1) have been

identified in primordial microcephalic disorders in humans. Mutations are fre-

quently predicted to result in shorter truncated versions of the affected proteins.

Most of our knowledge comes from studies performed in cell lines, and today, we

still lack cell or animal models that recapitulate the human mutations as in most

cases the few models available are knockdown or knockout approaches that

decrease the overall level of wild-type proteins.

Here we describe the known functions of centrosome, spindle pole with mutation

described in growth disorders. We will also briefly describe other genes associated

with the microtubule cytoskeleton mutated in growth disorders.
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Table 5.1 Genes involved in diseases characterised by microcephaly

Gene Localisation Disorder References

MCPH1/

microcephalin
Chromatin

associated

MCPH Alderton et al. (2006), Jackson

et al. (2002) Jackson et al. (1998)

MCPH2/

WDR62
Spindle pole

component

MCPH cases

with brain

malformations

Bilguvar et al. (2010), Chen

et al. (2014), Nicholas

et al. (2010), Yu et al. (2010)

MCPH3/

CDK5RAP2
(Cep215)

Centrosome (PCM

component)

MCPH Barrera et al. (2010), Bond

et al. (2005), Buchman

et al. (2010), Lancaster

et al. (2013), Lizarraga

et al. (2010)

MCPH4/

CASC5
Kinetochore MCPH Genin et al. (2012), Jamieson

et al. (1999)

MCPH5/

ASPM
Spindle pole

component

MCPH Bond et al. (2002), Darvish

et al. (2010), Pattison et al. (2000),

Rujano et al. (2013)

MCPH6/

SCKL4/

CPAP

Centriole component MCPH

SCKS

Al-Dosari et al. (2010), Bazzi and

Anderson (2014), Bond

et al. (2005), Insolera et al. (2014),

Kitagawa et al. (2011a)

MCPH7/STIL Centriole component MCPH Arquint and Nigg (2014), Kumar

et al. (2009), Novorol et al. (2013)

MCPH8/

CEP135
Centriole component MCPH Hussain et al. (2012)

MCPH9/

SCKL5/

CEP152

Centriole and PCM

component

MCPH

SCKS

Guernsey et al. (2010), Kalay

et al. (2011)

MCPH10/

ZNF335
Chromatin

remodelling protein

MCPH with

MCD

Yang et al. (2012)

MCPH11/

PHC1
Chromatin

remodelling protein

MCPH Awad et al. (2013)

MCPH12/

CDK6
Cytoplasmic and

nuclear (interphase),

centrosome (mitosis)

MCPH Hussain et al. (2013)

MCPH13/

CENP-E
Kinetochore Similar to

MOPD-II

Mirzaa et al. (2014)

SCKL6/

CEP63
Ring around parental

centriole

SCKS Sir et al. (2011)

PLK4 Centriole duplication

regulator

SCKS with

retinopathy

Martin et al. (2014), Shaheen

et al. (2014)

SAS-6 Centriole component MCPH Khan et al. (2014)

PCNT Centrosome (PCM

component)

SCKS

MOPD-II

Griffith et al. (2008), Rauch

et al. (2008)

LIS1 MTs and spindle LIS Hattori et al. (1994), Moon

et al. (2014), Reiner et al. (1993),

Yingling et al. (2008)

DCX MTs and spindle LIS des Portes et al. (1998), Gleeson

et al. (1998)

(continued)
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5.4.1.3 Genes Required for Centriole Duplication
1. CEP152 (known as asterless in flies) is associated with centrioles, and it is

required for centriole duplication as it forms a scaffold for the recruitment of

PLK4, the master regulator of centriole duplication (Cizmecioglu et al. 2010;

Dzhindzhev et al. 2010; Hatch et al. 2010; Kim et al. 2013; Sonnen et al. 2013).

In flies it is also required for PCM recruitment (Varmark et al. 2007). CEP152
mutations were initially identified in patients affected by MCPH (Guernsey

et al. 2010) and later also in families with SCKS (Kalay et al. 2011). Mutations

are predicted to give loss-of-function truncated proteins. Analysis of fibroblasts

and lymphocytes derived from SCKS patient cells showed increased replicative

stress and chromosomal instability. In addition, high frequency of abnormal cell

divisions with multiple nuclei, fragmented centrosomes and aneuploidy was also

noticed (Kalay et al. 2011).

2. PLK4 is a serine-threonine kinase, member of the polo-like kinase family. Its

activity is required for centriole duplication (Bettencourt-Dias et al. 2005;

Habedanck et al. 2005). PLK4 self-regulates its own stability through trans-

autophosphorylation upon homodimerisation (Guderian et al. 2010; Holland

et al. 2010). Two recent studies described mutations in PLK4 in distinct families

(Martin et al. 2014; Shaheen et al. 2014). Individuals displayed profound

microcephaly, reduced stature and retinopathy. This latter defect was reported

Table 5.1 (continued)

Gene Localisation Disorder References

KIF5C MTs and spindle Microcephaly

with MCD

Poirier et al. (2013)

KIF2A MTs and spindle Microcephaly

with MCD

Poirier et al. (2013)

DYNC1H1 MTs and spindle MCD (usually

normocephaly)

Poirier et al. (2013)

TUBA1A MTs and spindle LIS to MCD Tischfield et al. (2011)

TUBB2B MTs and spindle PMG Tischfield et al. (2011)

TUBB3 MTs and spindle MCD Tischfield et al. (2011)

TUBG1 MTs and spindle Microcephaly

with MCD

Poirier et al. (2013)

The table shows all the genes described so far to be involved in diseases characterised by

microcephaly. Genes called MCPH (MCPH 1–13) have been found mutated in patients affected

by autosomal recessive primary microcephaly (MCPH). MCPH presents only minor brain

malformations. In Seckel syndrome (SCKS) and microcephalic osteodysplastic primordial dwarf-

ism type II (MOPD-II), microcephaly is accompanied with more severe defects such as

polymicrogyria, retinopathy or defective neuronal migration. As described in the second column,

most of the microcephalic genes encode for centrosomal proteins (centriole structure and PCM) or

proteins associated with the mitotic spindle machinery

MCPH autosomal recessive primary microcephaly, SCKS Seckel syndrome, MOPD-II microce-

phalic osteodysplastic primordial dwarfism type II, LIS lissencephaly, MCD malformations of

cortical development, PMG polymicrogyria
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for the first time in a primordial microcephalic gene (Martin et al. 2014). Patient-

derived fibroblasts showed highly reduced PLK4 protein levels and impaired

centriole duplication. Although spindle formation was affected, chromosome

segregation defects were rarely observed. In a zebra fish model, depletion of plk4
transcript through morpholino antisense oligonucleotides recapitulated the

patients’ phenotype: delay in mitotic progression, decreased cell number and

consequently also body size reduction. Interestingly, cilia-related phenotypes

were seen in a morpholino dose-dependent manner.

3. CPAP (known as SAS-4 in flies and worms) is required for microtubule attach-

ment to the initial pro-centriole scaffold, and it controls centriole length and

microtubule elongation (Pelletier et al. 2006; Tang et al. 2009). As CEP152,
mutations in CPAP can also lead to both MCPH and SCKS syndromes

(Al-Dosari et al. 2010; Bond et al. 2005). A mouse model expressing a truncated

variant of CPAP recapitulates many clinical characteristics of SCKS, including

intrauterine growth retardation, microcephaly and skeletal defects (McIntyre

et al. 2012). DNA damage and apoptosis were also increased in the brain region

where cortical neurogenesis takes place and the number of neurons was signifi-

cantly reduced. A new mouse Cpap model, in which Cpap was selectively

removed from neural progenitors during neurogenesis, also showed a strong

microcephalic phenotype (Insolera et al. 2014). Loss of centrioles led to detach-

ment of the neural progenitors from the ventricular zone, where they normally

reside. Remarkably, these cells did not change their fate and maintained

proliferative capacity. Nevertheless, mitosis was delayed and p53 expression

was up-regulated. This led to apoptosis and consequently neuronal loss and

microcephaly. Importantly, aneuploidy and DNA damage were not observed

(Insolera et al. 2014). The expression of CPAP MCPH-mutated versions in

human culture cells induced defects in centriole formation and randomised

spindle orientation (Kitagawa et al. 2011a). Importantly, one CPAP mutation

found in MCPH family impairs centriole formation in vivo (Kumar et al. 2009)

due to a weaker interaction with STIL (Cottee et al. 2013).

4. Very recently, a mutation in the HsSAS-6 gene that encodes a protein recruited

during the initial steps of procentriole assembly (Kleylein-Sohn et al. 2007;

Leidel et al. 2005; Strnad et al. 2007) has been reported in a newly identified

MCPH family. This mutation, when expressed in human cells in culture,

impaired centrosome duplication, which led to monopolar spindle formation

(Khan et al. 2014). So it is possible that in this case abnormal cell division,

aneuploidy and consequent cell death of neuronal progenitors contribute to brain

size defects.

5. STIL (Ana2 and SAS-5 in Drosophila and C. elegans) is a centriole duplication
protein that participates in cartwheel assembly (Arquint et al. 2012; Tang

et al. 2011). STIL dissociation from centrosomes during early mitosis triggers

HsSAS-6 dissociation and so cartwheel disassembly (Arquint and Nigg 2014).

Mutations found in MCPH patients result in the expression of truncated proteins

that lack the degradation motif and cause centrosome amplification (Arquint and

Nigg 2014; Kumar et al. 2009). Likely, extra centrosomes and consequent
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aneuploidy and cell death contribute to MCPH in this case. In addition, since

centrosome amplification also causes a delay in mitosis (Basto et al. 2008;

Marthiens et al. 2013), it is possible that this also contributes to brain size

reduction as discussed above. Interestingly, morpholino-mediated knockdown

in zebra fish showed a dramatic increase in both the number of retina progenitors

and mitotic cells arrested in prometaphase and increase in apoptotic cells

(Novorol et al. 2013).

6. CEP135 (Bld10 in flies) has been proposed to act as a bridging molecule

between the “cartwheel” and centriole microtubules, being required for CPAP-

mediated centriole elongation (Lin et al. 2013). A single mutation has been

found so far in one MCPH family. This mutation results in a truncation at the

C-terminus (Hussain et al. 2012), which affected the region that mediates

CEP135-cartwheel interaction (Lin et al. 2013). Unexpectedly, 22 % of primary

fibroblasts derived from patients completely lack centrosomes, while 18 %

contained extra centrosomes, or centrosome fragments (Hussain et al. 2012).

In this case, it is possible that several types of defects are at the basis of brain size

reduction.

7. CEP63 is an MCPH protein that regulates CEP152 centrosomal localisation to

ensure efficient and timely controlled centriole duplication (Brown et al. 2013;

Sir et al. 2011). Indeed, human B lymphocytes derived from affected patients

showed reduced level of CEP152 at the centrosomes but without major defects

in spindle formation and centrosome number (Sir et al. 2011). DT40 chicken B

lymphocytes, which have a rapid cell cycle, presented an increased population

doubling time and monopolar spindles due to inefficient centriole duplication. It

has been proposed that CEP63 is required to timely ensure the presence of

enough CEP152 (and consequently PLK4) to allow centriole duplication.

Since neural progenitors divide much faster than lymphocytes (10–12 h

vs. 24 h), the presence of CEP63 might be essential in the fast proliferating

progenitors of the developing brain. Supporting this hypothesis, Cep63-deficient
mice have neural progenitors with monopolar spindles and acentriolar spindle

poles (Marjanovic et al. 2015). As a consequence, these defects delay mitosis,

trigger p53-dependent cell death and ultimately lead to microcephaly, similar to

the Cpap-mutant mouse model (Insolera et al. 2014). Moreover, Cep63-deficient
mice also showed body growth retardation, recapitulating thus two key

characteristics of human SCKS syndrome caused by CEP63 mutations (Sir

et al. 2011). Interestingly, this work also uncovered a surprising function of

CEP63 in meiotic male recombination (Marjanovic et al. 2015). The authors

proposed that centrosome loss in Cep63-deficient spermatocytes impairs normal

intranuclear chromosome movement that is required to facilitate homologous

chromosomes encounter and thus meiotic DNA recombination, leading to

defective spermatogenesis. CEP63 seems to be also a target of the DNA damage

response pathway in vertebrate cells. Activation of this pathway promotes

CEP63 displacement from spindle poles, inhibiting spindle formation and

delaying mitotic progression (Smith et al. 2009). Thus, mutations in CEP63

might perturb cell cycle progression in several ways.
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5.4.1.4 Genes Encoding for Centrosomal Proteins
8. Pericentrin (PCNT) is a component of the pericentriolar material (PCM), known

to play an important role in the recruitment of proteins to the centrosome

(e.g. γ-tubulin) (Doxsey et al. 1994; Zimmerman et al. 2004). It was the first

centrosomal gene identified in two primordial dwarfism disorders, SCKS and

MOPDII (Griffith et al. 2008; Rauch et al. 2008). In lymphoblastoid SCKS

patient cell lines defective ATR signalling pathway and lack of G2-M check-

point after UV radiation were also reported (Griffith et al. 2008). Importantly

however, monopolar spindles with decreased γ-tubulin recruitment were also

noticed, raising the possibility that these abnormal spindles also contribute to

abnormal chromosome segregation and aneuploidy in cells with PCNT

mutations.

9. CDK5RAP2 (Cep215 and Cnn) is a PCM protein involved in γ-tubulin recruit-

ment (Fong et al. 2008). CDK5RAP2 seems to be involved in centriole engage-

ment and maintenance of the neural progenitor pool in the mouse developing

neocortex (Barrera et al. 2010; Buchman et al. 2010). Embryonic fibroblasts

derived from mouse models carrying Cdk5rap2 mutations similar to the ones

found in humanMCPH showed centrosome amplification due to loss of centriole

engagement and consequent formation of multipolar spindles (Barrera

et al. 2010). Cdk5rap2 knockdown by in utero electroporation described a

depletion of neural progenitors in the developing mouse neocortex due to

premature neural differentiation (Buchman et al. 2010). However, in these two

studies, neither spindle orientation nor microcephaly was observed. Importantly,

an in vitro model of human brain development that used reprogrammed skin

fibroblasts from MCPH patients showed reduced neuroepithelial tissue with

defects in spindle orientation and premature neural differentiation (Lancaster

et al. 2013). Spindle positioning might, however, not be the sole defect as the

characterisation of Hertwig’s anaemia mouse model, which carries a mutation in

the Cdk5rap2 gene, also showed multipolar spindles in neural progenitors

accompanied by cell death (Lizarraga et al. 2010).

10. CDK6, in concert with CDK4, regulates the G1/S transition (Meyerson and

Harlow 1994). It localises in the cytoplasm and in the nucleus in interphase and

also at the centrosome throughout mitosis (Hussain et al. 2013). Fibroblasts

from MCPH patients do not contain centrosomal CDK6 during mitosis. This

results in several defects such as disorganised interphase microtubule network

and mitotic spindles, centrosome amplification, reduced proliferation and cell

death (Hussain et al. 2013). Although Cdk6-null mice do not show microceph-

aly at birth, CDK6 is required during adult neurogenesis. Lack of this kinase

resulted in lengthened G1 and consequent premature cell cycle exit (Beukelaers

et al. 2011; Malumbres et al. 2004). Absence of microcephaly in Cdk6-null
mice suggests that the particular mutation found in MCPH patients might have

a more severe effect in brain development than loss of CDK6.
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5.4.1.5 Genes Encoding for Spindle Pole-Associated Proteins
11. The abnormal spindle-like microcephaly-associated (ASPM) gene is the most

frequently mutated locus found in MCPH (Bond et al. 2002; Darvish

et al. 2010; Pattison et al. 2000). ASPM is a microtubule minus end- and

spindle pole-associated protein with important roles in cell division

(do Carmo Avides and Glover 1999; Gonzalez et al. 1988; Gonzalez

et al. 1990; Riparbelli et al. 2002; Saunders et al. 1997; Wakefield

et al. 2001). Loss of ASPM causes alteration in spindle positioning in mouse

neural stem cells, which favours asymmetric cell division depleting the pool of

progenitors (Fish et al. 2006). Recent work in Drosophila showed that the

ASPM orthologue, Asp, also plays a role in brain size regulation in flies

(Rujano et al. 2013). Defects in spindle orientation, chromosome segregation

and interkinetic nuclear migration were noticed. Moreover, Asp was found to

interact with myosin II, and this interaction was essential during brain morpho-

genesis to maintain neuroepithelial organisation (Rujano et al. 2013). These

results showed that Asp plays unexpected functions, beyond the role in micro-

tubule cytoskeleton in brain development. They might also explain the

observations that some MCPH mutations also affect brain organisation in

addition to size (Mochida 2005).

12. WDR62 is the second most common mutated gene in MCPH. It is a spindle pole

protein-coding gene (Bilguvar et al. 2010; Nicholas et al. 2010; Yu et al. 2010).

It has been recently demonstrated in a hypomorphic Wdr62 mouse model that

neural progenitor cells are arrested in mitosis due to spindle stability defects

with increased cell death. In addition, defects in spindle positioning or prema-

ture differentiation were not seen, suggesting that disruption of mitotic pro-

gression and consequent cell death of neural progenitors is a potential cause of

human microcephaly (Chen et al. 2014).

5.4.1.6 Genes Encoding for Molecular Motors and Microtubule-
Associated Proteins

Defects in molecular motors and microtubule-associated proteins lead to severe

disorders with microcephaly and brain malformation. Lissencephaly is

characterised by the absence of normal folds in the cerebral cortex due to defective

neuronal migration (Dobyns et al. 1993). The first gene identified in lissencephaly

was LIS1 (Hattori et al. 1994; Reiner et al. 1993), which encodes a subunit of the

cytoplasmic dynein complex. An in vivo study demonstrated its requirement for

neuronal migration (Reiner et al. 1995). Interestingly, LIS1 has also been

implicated in spindle positioning of apical neural progenitors in mouse (Yingling

et al. 2008), and recently centrosome amplification and severe chromosome segre-

gation defects have also been described in Lis1 mutant MEFs (Moon et al. 2014),

suggesting that aneuploidy and cell death might also contribute to the overall

phenotype. Neuronal migration is impaired in mutation in Doublecortin (DCX),
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and patients carrying this mutation also present lissencephaly (des Portes

et al. 1998; Gleeson et al. 1998).

Mutations in KIF5C and KIF2A, members of the kinesin superfamily, and in

DYNC1H1, cytoplasmic dynein 1 heavy chain 1, have also been recently described

in patients affected by lissencephaly with microcephaly (Poirier et al. 2013). These

mutations affect ATP hydrolysis, protein folding and microtubule binding.

Mutation in another motor, KIF11 (kinesin Eg5), was found to lead to syndromes

characterised by microcephaly accompanied by eye malformations (Ostergaard

et al. 2012). Eg5 is a mitotic kinesin involved in centrosome separation (Kwok

et al. 2004) and centrosome clustering (Drosopoulos et al. 2014). These results

suggest that neural progenitors are more vulnerable to microtubule mutations than

other cell types during embryonic development. A further demonstration of the

importance of functional microtubules was given by the fact that mutations in α-, β-
and γ-tubulin isotypes coding genes also lead to microcephaly with brain

malformations (Poirier et al. 2013; Tischfield et al. 2011). Importantly, all human

mutations identified in these genes are heterozygous missense mutations.

For further discussion of neurodevelopmental defects caused by an impaired

microtubule cytoskeleton, please also see the Chap. 4 by Sánchez-Huertas, Freixo

and Lüders.

5.4.1.7 Genes Encoding for Chromatin Associated Proteins
Microcephalin (MCPH1) was the first mutated locus identified in patients affected

by MCPH (Jackson et al. 1998). Microcephalin is highly expressed in the develop-

ing mouse forebrain, in particular in the region where neural progenitors reside

(Jackson et al. 2002). It localises to the DNA during interphase, and it has a role in

chromosome condensation. Furthermore, microcephalin mediates the DNA damage

response, being recruited to the damaged foci (Lin et al. 2005; Rai et al. 2006; Xu

et al. 2004). MCPH1 also localises at centrosomes in U2OS cells (Zhong

et al. 2006), in chicken DT-40 cells after irradiation (Jeffers et al. 2008), and

recruits Chk1, a kinase involved in the G2-M checkpoint (Alderton et al. 2006).

Importantly, however, human lymphoblastoid cell lines with truncating mutations

found in MCPH patients do not show impaired DNA damage response, but rather a

defective G2-M checkpoint. In these cells, Chk1 is not targeted to the centrosome

and mitosis starts even in the presence of damaged DNA, leading to nuclear

fragmentation and centrosome amplification (Alderton et al. 2006). Studies from

Drosophila suggested a role for MCPH1 (also known as awol) in chromosome

condensation but not in the DNA damage response (Brunk et al. 2007; Rickmyre

et al. 2007). A centrosomal localisation of MCPH1 during mitosis has been reported

in Drosophila embryos (Brunk et al. 2007). However, different to all the other

centrosomal/spindle pole MCPH genes, a clear spindle function has not been

identified.

In addition to cytoskeleton genes, mutations in the nuclear zinc finger

335 (ZNF335, trithorax group) and PHC1 (polycomb group) genes have been
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recently identified in families with severe microcephaly, suggesting a broader cause

resulting from alterations in gene expression (Awad et al. 2013; Yang et al. 2012).

5.4.2 Centrosome Defects and Cancer

Centrosome defects and in particular centrosome amplification are usually linked to

cancer. Centrosome amplification is present in almost all solid and haematological

tumours described (Chan 2011) (Fig. 5.4). At the beginning of the twentieth

century, German zoologist Theodor Boveri proposed that centrosome amplification

and consequent aneuploidy could be at the basis of tumour initiation (Boveri 2008).

This hypothesis was proposed after the observations that the presence of extra

centrosomes in sea urchin embryos, due to dispermic fertilisation, could lead to

abnormal mitosis and defects in chromosome segregation. These defective chro-

mosome combinations were usually detrimental for embryo development, but

Boveri could observe rare cases where abnormal cells continued to proliferate.

Boveri remarkably found that they were similar to tumour cells (Boveri 2008). At

his time it was already known that aneuploidy was a characteristic of human

tumours. Indeed, in 1890 David Hansemann initially observed asymmetric chro-

mosome segregation in human epithelial cells, and he documented this phenome-

non in a variety of tumours (Boveri 2008).

Persistent high levels of chromosome mis-segregation, commonly referred to as

“chromosomal instability” (CIN), are hallmark of most cancers (Lengauer

et al. 1997). It is difficult to understand how centrosome amplification contributes

to CIN, since multipolarity is often associated with poor viability. A link between

centrosome amplification and viable CIN has been established recently. The transi-

tion from multipolarity to bipolarity during the process of clustering promotes

merotelic attachments that might lead to viable aneuploid daughter cells (Ganem

Fig. 5.4 Centrosome amplification in human ovarian tumour. Human ovarian tissue (a) and

serous tumour (b) sections immunostained for pericentrin (green), γ-tubulin (red). DNA is

shown in blue. Scale bar¼ 30 μm
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et al. 2009; Silkworth et al. 2009). The contribution of aneuploidy (generated

independently of centrosome amplification) to tumorigenesis is tissue dependent.

While aneuploidy can promote tumour formation in certain tissues upon carcino-

genic treatment, it can also inhibit tumorigenesis in other tissues (Silk et al. 2013;

Sotillo et al. 2007; Weaver et al. 2007).

Centrosome amplification was shown to initiate tumorigenesis in Drosophila
both independently and dependently of aneuploidy. Allograft transplantation of

larval brains carrying extra centrosomes caused over-proliferation and tumours.

Although defects in chromosome segregation were not observed, defects in mitotic

spindle positioning resulted in the increase of the neural stem cell pool (Basto

et al. 2008). In flies, mutations that perturb neural stem cell asymmetric cell

division due to centriole duplication defects or mutations in polarity genes are

tumorigenic with little if any CIN (Castellanos et al. 2008; Caussinus and Gonzalez

2005). In another tissue, the wing imaginal disc, extra-centrosomes, are not effi-

ciently clustered or inactivated with consequent multipolar spindle formation. This

generates aneuploid cells and causes tumours in allograft transplantation (Sabino

et al. 2015).

In vertebrates the contribution of centrosome amplification to tumorigenesis is

still an open question. Overexpression of Plk4, which still remains the most

efficient mean to drive centriole over-duplication in vivo, in the mouse developing

central nervous system resulted in microcephaly (Fig. 5.2), but brain tumours were

not reported (Marthiens et al. 2013). Although centrosome clustering allows the

assembly of bipolar spindles in most embryonic neural stem cells, in a significant

proportion of cells, mainly during early and mid-neurogenesis, tripolar spindles and

abnormal chromosome segregation lead to the generation of unviable aneuploid

cells. These cells died by apoptosis in a p53-dependent manner. Importantly, even

in the absence of p53, tumours were not detected in the CNS. It is therefore possible

that during development, centrosome amplification and aneuploidy are not suffi-

cient to initiate tumour formation. It will be important in the future to establish

whether centrosome amplification during adult life in the mammalian brain or in

highly proliferative tissues such as the intestine or the skin is able to drive tumour

formation.

Until recently, centrosome amplification was thought to only contribute to

tumour formation through the generation of aneuploidy and spindle positioning

defects. However, it is also possible that the presence of extra centrosomes even in

interphase cells might represent an advantageous condition. Surprisingly,

non-transformed human mammary epithelial cells with extra centrosomes showed

increased microtubule nucleation capacity that strongly correlated with invasive

behaviour (Godinho et al. 2014). Increased centrosomal microtubule nucleation

during interphase activates the small GTPase Rac1, which is known to promote

invasiveness and metastasis (Mack et al. 2011). It is therefore possible that centro-

some amplification contributes to tumour formation in several different ways.
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5.5 Conclusions

At the beginning of the last century, it was proposed that defects in centrosome

number, in particular centrosome amplification, might be a cause for tumour

formation (Boveri 2008). Today, several lines of evidence support this view

(Basto et al. 2008; Castellanos et al. 2008; Ganem et al. 2009; Godinho

et al. 2014; Nigg 2006; Sabino et al. 2015; Zyss and Gergely 2009). However,

the observations made during the past 15 years using autozygosity mapping

techniques and whole-genome SNP genotyping implicated centrosome mutations

in growth defective syndromes, but not in cancer.

Both primordial dwarfisms and MCPH are characterised by proportionate reduc-

tion of body or head size, which results from premature depletion of progenitors

and/or increased levels of cell death. In most tumours, cancer cells show high levels

of proliferation, and even if high cell death rates can be identified, proliferation and

capacity to evade cell death signals are essential during cancer progression and

invasion (Hanahan and Weinberg 2000; Hanahan and Weinberg 2011). It is impor-

tant to mention that most of the cellular pathways affected in MCPH or in primor-

dial dwarfisms are also frequently referred to be dysfunctional in cancer cells. This

is the case for DNA damage response (Lord and Ashworth 2012), spindle orienta-

tion (Gonzalez 2007) or abnormal cell division and aneuploidy (Boveri 2008). It is

therefore possible that these conditions just represent two sides of the same coin.

Centrosome dysfunction due to zygotic mutations, if viable, would lead to growth

defects such as MCPH or dwarfism. If acquired in somatic adult tissues in certain

contexts, they might lead to the opposite effect: over-proliferation and growth.

Interestingly, mutation in BUBR1 and CEP57 (kinetochore and centrosomal

proteins, respectively) leads to a disease called mosaic variegated aneuploidy

(MVA), which is characterised by the appearance of tumours at early age and

features of primordial dwarfism (microcephaly and short stature) (Hanks

et al. 2006; Snape et al. 2011).

Further work is required to understand the relation between centrosome

mutations with cancer, MCPH and primordial dwarfism. Can centrosome amplifi-

cation or any other types of centrosome dysfunction initiate tumorigenesis in

humans? And if yes, by which means? Which adult tissues are more prone to

develop cancer when accumulating centrosome defects? And concerning growth

defects, why is the brain the most susceptible tissue to centrosome mutations? For

all these reasons, the centrosome field remains an active one and calls for in vivo
investigations that will keep us busy in the years to come.
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