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Preface

The eukaryotic microtubule cytoskeleton is involved in a large number of essential

processes such as cell migration, polarization, and morphogenesis, as well as

intracellular transport, positioning of organelles, and segregation of chromosomes

during cell division. Fundamental to the function of the microtubule network is the

arrangement of microtubules into highly ordered arrays. The assembly and regula-

tion of these arrays and their remodeling during cell cycle progression or cell

differentiation are highly complex processes that we only begin to understand.

Increasing our knowledge in this area is an important task, since defects in the

microtubule network have been implicated in a large number of pathological

conditions ranging from malformations during development to degenerative

disorders.

This book does not attempt to cover all aspects of this immense complexity, but

instead provides an overview on the organization and function of the microtubule

cytoskeleton and how its impairment is linked to disease. By focusing on the key

mechanisms and by presenting concepts alongside detailed molecular information,

the book should be of interest not only to experts but also to nonexpert readers.

In several chapters leaders in the field describe how microtubules are organized

at different cell cycle stages and in different cell types; present insight into the

structure and function of the centrosome, the main microtubule organizing center;

and highlight important proteins and protein complexes that generate and organize

microtubules, modulate their properties, and mediate their function. The chapters

also contain information on how malfunction of specific components of the micro-

tubule network, caused by genetic mutation or other mechanisms, leads to patho-

logical conditions.

I am grateful to all authors for their excellent contributions and efforts to align

these with the scope of this book. Hopefully, by stimulating discussion and

research, their work will make a contribution toward a better understanding of the

cell and pathobiology of the microtubule cytoskeleton.

Barcelona, Spain

November 2015

Jens Lüders
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Microtubule Organization in Mitotic Cells 1
Sylvain Meunier and Isabelle Vernos

Abstract

Mitosis, the process by which one cell divides into two genetically identical

daughter cells, is the most basic process for the development and proliferation of

living organisms. In eukaryotes, mitosis involves the transient organization of a

sophisticated molecular machine, the bipolar spindle that orchestrates the segre-

gation of the genetic material to the daughter cells. The spindle is a microtubule

(MT)-based apparatus whose assembly and function rely on the fine modulation

of MT intrinsic dynamic properties and on their spatial and temporal organi-

zation. In this chapter, we will focus on the mechanisms of spindle assembly and

dynamics. We will discuss some current questions in the field and review the

consequences of defective MT function in mitotic cells for human health.
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1.1 Introduction

Almost 200 years ago, Schwann’s theory stated that all living things are composed

of cells. Later in 1857, Rudolf Virchow postulated that “Omnis cellula e cellula,”

the generation of new cells from a pre-existing cell, involves a specific process

called mitosis.

After the very first division of the fertilized egg, a complex developmental

program involving billions of cell divisions takes place to generate the tissues

and organs that constitute a full organism. Cell division is also essential in the

adult organism. It occurs permanently throughout the life of a human being, playing

an essential role in the maintenance and renewal of its tissues and organs.

Flemming in the late nineteenth century described the two main elements in

animal cells undergoing mitosis, called “thin filaments” and “chromo elements”

(Paweletz 2001): these are microtubules (MTs) and chromosomes. Almost

150 years after this initial description, we have now attained a reasonably good

understanding of the mechanism that underlies cell division. In this chapter, we will

focus on the general principles underlying spindle assembly and function from an

MT centric perspective. For simplicity, we will focus on mitosis in higher

eukaryotes, but it is worth keeping in mind that many of the pathways and

mechanisms are similar in meiosis, a gamete-specific cell division process.

1.2 Microtubule Basic Properties and Mitosis

Cell division involves the full reorganization of the interphase MT network to

assemble the mitotic spindle, a dynamic molecular machine that provides the forces

and support for chromosome segregation (Inoue and Sato 1967). To address the

mechanism leading to the assembly of the spindle, it is therefore essential to start by

revising some essential MT properties.

1.2.1 MT Basics

MTs are hollow tubes of 25 nm in diameter formed by lateral interactions of

13 protofilaments. Each protofilament in turn is formed by head to tail interactions

of α-/β-tubulin heterodimers, two closely related tubulin isoforms that bind GTP.

This molecular organization defines MT polarity: only α-tubulin subunits are

exposed at one extremity called the minus end and only β-tubulin subunits are

exposed at the other extremity called the plus end (Fig. 1.1). The resulting polarity

along the MT lattice is read by molecular motors that move directionally along the

filament either toward the plus or the minus end.

In vitro MTs form spontaneously above a certain concentration threshold of

α-/β-tubulin heterodimers and exhibit dynamic properties. In the presence of GTP,

MTs grow and shrink, stochastically alternating between these two phases by

undergoing catastrophes when switching from the growing state to the shrinking

2 S. Meunier and I. Vernos



state and rescues for the opposite switch (Wade 2009) (Fig. 1.1). These unique

properties define MT dynamic instability as named by Mitchison and Kirschner

when they first described it in 1984 (Mitchison and Kirschner 1984). Interestingly,

they demonstrated that the dynamic properties and average length of any MT

population could be described using four parameters: the velocities of growth and

shrinkage, and the catastrophe and rescue frequencies (Mitchison and Kirschner

1984). All these events occur at the MT plus ends, while MT minus ends are more

stable. MT polarity therefore is also related to the differential dynamic behavior of

the two MT extremities.

MT dynamic properties are intimately related to GTP hydrolysis. Indeed, MTs

formed with a slowly hydrolysable GTP analogue GMCPP are remarkably stable

in vitro. GTP hydrolysis occurs only at the β-tubulin subunit after incorporation of

the α-/β-tubulin heterodimer into the growing MT plus end. MTs are therefore

mainly composed by GDP-tubulin with a so-called GTP cap at their plus ends. By

promoting a change in conformation of the tubulin dimer, GTP hydrolysis generates

catastrophe rescue

minus-end

minus-end

plus-end

plus-end

GROWTH

SHRINKAGE

tubulin dimer

α-tubulin

β-tubulin

Fig. 1.1 MT basics. Microtubules (MTs) are composed by tubulin heterodimers of α- and

β-tubulin. This composition defines a polarity to the MTs; α-tubulin is exposed at the minus end

and β-tubulin at the plus end. They are intrinsically dynamic and undergo phase of growth and

shrinkage. The switch from a growth state to a shrinking state is called catastrophe, and the

opposite switch is the MT rescue
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a tension within the polymer. When GTP hydrolysis occurs faster than the rate of

tubulin incorporation at the plus end, this tension is released by fast depolymeri-

zation (Alushin et al. 2014).

MTs therefore have two essential intrinsic properties: they are polarized and they

show dynamic instability. These properties are key for most of the events leading to

the assembly of the mitotic spindle.

1.2.2 Microtubule Organization in Mitosis

By regulating MT dynamic properties, the cell controls the organization of its MT

network. This is key for mitosis when in a timely manner the interphase MT

network disassembles to build the mitotic spindle, the essential machinery to

segregate the chromosomes. This reorganization is in fact dynamic and occurs

through an ordered sequence of phases (Fig. 1.2).

In prophase, the interphase MT network disassembles and the duplicated

centrosomes separate to opposite sides of the nucleus along the nuclear envelope.

As the centrosome MT nucleation activity increases, they form two asters of highly

dynamic MTs. The chromosomes condense inside the nucleus. Prometaphase starts

after nuclear envelope breakdown. MTs establish connections with the

chromosomes and some of them get stabilized at specific sites on the centromeres,

the kinetochores. As these interactions get established, MTs start to organize into a

spindle-shaped apparatus (Fig. 1.2). Metaphase is characterized by a mature bipolar

spindle in which MT minus ends are focused at the two spindle poles and MT plus

ends interdigitate at the center where chromosomes are aligned on the metaphase

plate. Once all the chromosomes are correctly attached to both spindle poles,

anaphase A starts, and the sister chromatids are pulled apart toward the two

opposite poles. In anaphase B, a novel MT-based antiparallel array, the central

spindle, assembles in between the separated chromosome masses and promotes

their further separation by antiparallel MT sliding. In telophase, two nuclei form

and the daughter cells separate completely through cytokinesis and abscission

before establishing their interphase MT network (Fig. 1.2).

All the major events driving cell division rely on timely and spatially controlled

changes in MT dynamic properties and organization. Based on the MT dynamic

instability property, Kirschner and Mitchison (1986) proposed the “search and

capture” model for spindle assembly. It postulated that highly dynamic MTs

emanating from the separated centrosomes grow and shrink, exploring the cyto-

plasm until some of them get captured and stabilized by the kinetochores. Since

MTs emanate from two centrosomes and each chromosome has two kinetochores,

this stochastic process should naturally drive bipolar spindle assembly. Although

we know now that the mechanism driving spindle assembly is more complex, the

basic principle of this model is still valid: a large number of dynamic MTs are

required to efficiently explore the cellular space and attach the chromosomes.

However, these MTs may or may not be generated by the centrosomes. In fact,

centrosomal MTs alone do not form a functional bipolar spindle (Gruss et al. 2002)

4 S. Meunier and I. Vernos



PRO-METAPHASE

METAPHASEANAPHASE-A

ANAPHASE-B TELOPHASE

PROPHASE

MT

centrosome

chromosome

nuclear envelope

kinetochore

interpolar MT

K-fiber

astral MT

metaphase plate
chromatid

central spindle nuclear envelope midbody

Fig. 1.2 Mitotic phases. In prophase, chromosomes are condensed, and centrosomes have been

duplicated and nucleate highly dynamics MTs. Nuclear envelope breaks down. In prometaphase,

MTs become specialized. Some of them interact with the cell cortex and are called astral MTs;

interpolar MTs form the main part of the bipolar spindle and MTs interacting with the kinetochores

become organized into K-fibers. In metaphase, the bipolar spindle is mature and the chromosomes

are aligned in the center at the metaphase plate, all of them connected to the two opposite poles

through sister K-fibers. In anaphase A, K-fibers shorten and pull the sister chromatids apart. In

anaphase B, a new MT-based structure, called the central spindle, is built between the two

chromosome masses and helps in separating them. In telophase, nuclear envelope forms again

and the midbody will define the site of abscission between the two daughter cells
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and modeling approaches have suggested that a process involving only centrosomal

MTs could not account for the rapid attachment of all chromosomes in human cells

in the observed time (Wollman et al. 2005). Indeed, we know now that in addition to

the centrosomes, other pathways are set up in mitotic cells to promote MT nucle-

ation and assembly in an acentrosomal manner. We will see later in this chapter that

these mitotic pathways are essential for spindle assembly. We will also discuss

whether their role is merely to provide an efficient “search and capture” mechanism

or whether it may go beyond.

1.3 General Principles in Mitotic Spindle Assembly

Since the bipolar spindle is constituted by transient interactions between highly

dynamic MTs, it is itself highly dynamic in nature, a property that underlies its self-

organization and self-correction properties. In the most extreme case, mitotic cells

can rebuild a spindle after the full depolymerization of MTs by cold or drug

treatments (Tulu et al. 2003). Under physiological conditions, spindle dynamics

enables the correction of erroneous MT-chromosome attachments thereby

preventing defects in chromosome segregation or mitotic slippage. However, and

despite its highly dynamic nature, the spindle also has to provide mechanical

support for the forces required to move and segregate the chromosomes.

In this chapter, we will focus on two general mechanisms essential to understand

how MTs organize the bipolar spindle: First, we will focus on the mechanism by

which cells promote the assembly of a large number of highly dynamic MTs by

upregulating MT nucleation. Second, we will focus on the global and local regu-

lation of MT dynamics.

1.3.1 Control of MT Nucleation in M Phase

In cells, the tubulin concentration does not reach the critical threshold for sponta-

neous MT assembly. In fact, cells define and control where and when MT assembly

occurs by using a specific mechanism driving MT nucleation. In eukaryotic cells,

this involves a major MT nucleation complex called the γ-TuRC (γ-tubulin ring

complex). This protein complex is composed by multiple copies of γ-tubulin and

five additional proteins called GCPs (γ-tubulin complex proteins) that organize a

ringlike structure postulated to act as a template for tubulin dimer addition and MT

polymerization (Teixido-Travesa et al. 2010; Kollman et al. 2011). A number of

additional proteins associate with the γ-TuRC. One of them, NEDD1 (also called

GCP-WD), functions as an adaptor or targeting factor for the γ-TuRC (Haren

et al. 2006; Luders et al. 2006; Zhu et al. 2008; Zhang et al. 2009; Sdelci

et al. 2012; Pinyol et al. 2013). For a detailed description of this complex and its

role in MT nucleation, we refer the reader to excellent reviews (Kollman

et al. 2011; Teixido-Travesa et al. 2012) (also see the Chap. 4 by Sánchez-Huertas,

Freixo, and Lüders).

6 S. Meunier and I. Vernos
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In mitosis, MT nucleation increases through different mechanisms that all

involve the γ-TuRC (Moudjou et al. 1996; Teixido-Travesa et al. 2012). This in

turn defines different MT assembly pathways.

1.3.1.1 Centrosome Maturation and MT Nucleation
Centrosomes are MT-based organelles playing a variety of functions in the cell

(Bettencourt-Dias and Glover 2007). In higher eukaryotes, the cell has one centro-

some composed by a pair of centrioles surrounded by pericentriolar material (PCM)

(see the Chap. 3 by Comartin and Pelletier for a detailed description). In interphase,

the centrosome is the main MT organizing center (MTOC), promoting MT nucle-

ation and maintaining in focus most MT minus ends. In cycling cells, the centro-

some duplicates during interphase and before mitosis onset, the duplicated

centrosomes undergo maturation characterized by the active recruitment of PCM

components, in particular MT nucleation factors such as γ-tubulin as part of the

γ-TuRC (Khodjakov and Rieder 1999; Piehl et al. 2004). Centrosome maturation

therefore leads to a dramatic increase of the MT nucleation activity. This promotes

the formation of two asters of dynamic MTs that get positioned on opposite sides of

the nucleus through the active separation of the centrosomes before the nuclear

envelope breaks down. However, centrosomes are not essential for bipolar spindle

assembly (Bettencourt-Dias 2013). Other pathways are specifically set up in divid-

ing cells and activate MT nucleation in a centrosome-independent manner.

1.3.1.2 Chromosome-Dependent MT Assembly
The last 20 years have provided compelling evidence for the existence of a specific

MT nucleation and assembly pathway triggered around the chromosomes in divid-

ing cells (Karsenti et al. 1984; Heald et al. 1996). The underlying mechanism

involves the activity of Ran, a small GTPase that is essential for nucleocytoplasmic

transport in interphase (Clarke and Zhang 2008). In dividing cells, the association

of its guanosine exchange factor (GEF) RCC1 with the chromatin results in the

formation of a GTP-bound Ran (RanGTP) gradient centered around the

chromosomes (Carazo-Salas et al. 1999; Kalab et al. 1999, 2002; Ohba

et al. 1999; Zhang et al. 1999; Carazo-Salas et al. 2001; Gruss et al. 2001).

Following the same basic mechanism as in interphase, RanGTP induces the release

of NLS (nuclear localization signal)-containing proteins from karyopherins. Some

of these proteins perform essential functions in spindle assembly. A number of

recent reviews cover the principles of the RanGTP gradient in mitosis as well as the

current knowledge on the identity and function of RanGTP-regulated proteins

(Karsenti and Vernos 2001; Meunier and Vernos 2012).

The mechanism by which RanGTP upregulates de novo MT nucleation in the

vicinity of the chromosomes is however not fully understood yet. As for all the

other pathways, it requires γ-TuRC activity (Groen et al. 2004; Luders et al. 2006),

but it also requires the RanGTP-regulated protein TPX2 (targeting protein for

Xklp2) (Wittmann et al. 2000; Gruss et al. 2001, 2002), a specific activator of the

Aurora A kinase (Bayliss et al. 2003; Eyers et al. 2003; Tsai et al. 2003). Recently,

it was shown that the specific phosphorylation of the γ-TuRC-associated protein

1 Microtubule Organization in Mitotic Cells 7
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NEDD1 by the mitotic kinase Aurora A is essential for this pathway (Pinyol

et al. 2013). TPX2 interacts with the mitotic kinase Aurora A and activates it in a

RanGTP-dependent manner, promoting NEDD1 phosphorylation and thereby a

mechanism for the activation of MT nucleation by RanGTP (Scrofani et al. 2015).

Although many data support a mechanism for RanGTP-/chromosomal-depen-

dent MT nucleation without a predefined site, some reports on the localization of

γ-TuRCs at the kinetochores suggest that MTs may also be nucleated at the

kinetochore (Torosantucci et al. 2008; Mishra et al. 2010). However, it is still not

clear whether such a direct kinetochore-dependent MT nucleation occurs or

whether MTs are stabilized in this specific region of the chromosomes (Tulu

et al. 2006; Maresca et al. 2009; Needleman et al. 2010) by the chromosomal

passenger complex, located at the kinetochores (Sampath et al. 2004; Tseng

et al. 2010). The putative nucleation of MTs at the kinetochore would however

result in their “reversed” polarity with their minus end at the kinetochore and their

plus end extending toward the spindle poles. This orientation has never been

observed in animal cells (Euteneuer and McIntosh 1981; Euteneuer et al. 1983;

Rieder 2005; Kitamura et al. 2010).

1.3.1.3 MT Amplification
In addition to the activation of MT nucleation at the centrosome and around the

chromosomes, the recruitment of γ-TuRCs on pre-existing MTs drives an amplifi-

cation mechanism that increases MT polymer amounts (Goshima et al. 2007, 2008;

Lawo et al. 2009). This pathway relies on the augmin complex, constituted by eight

proteins in humans (Lawo et al. 2009). The augmin complex binds the lattice of a

pre-existing MT recruiting the γ-TuRC and promotes the nucleation and elongation

of a new MT (Kamasaki et al. 2013). This results in MT branching and drives the

efficient amplification of the whole MT mass during mitosis (Petry et al. 2013).

Augmin-dependent MTs are then sorted toward the spindle poles (Lecland and

Luders 2014). The augmin-dependent amplification pathway plays an important

role during cell division. Indeed, the silencing of some of its components results in

dramatic phenotypes (Uehara et al. 2009; Wainman et al. 2009; Petry et al. 2011).

Recently, this pathway has been proposed to be intimately related with the chromo-

somal, RanGTP-dependent pathway of MT assembly (Petry et al. 2013).

Altogether, various mechanisms boost MT nucleation in the dividing cells

actively promoting MT assembly. This activation does not occur simultaneously

or at a single site; it starts at the centrosomes and then around the chromosomes and

on pre-existing MTs. One common requirement is the γ-TuRC (Moudjou

et al. 1996; Teixido-Travesa et al. 2012) and NEDD1 phosphorylation (Haren

et al. 2006; Luders et al. 2006; Zhu et al. 2008; Zhang et al. 2009; Johmura

et al. 2011; Gomez-Ferreria et al. 2012; Sdelci et al. 2012; Pinyol et al. 2013;

Scrofani et al. 2015). This regulatory mechanism involves different mitotic kinases

that target specific sites on NEDD1 but interestingly all in close proximity within

the protein (Luders et al. 2006; Sdelci et al. 2012; Pinyol et al. 2013). However, the

precise mechanisms by which these phosphorylation events participate in the

activation of MT nucleation are still not understood.
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1.3.2 Balancing High MT Dynamics

Spindle assembly requires abundant dynamic MTs, but their local stabilization is

essential to generate a structure that is robust enough to provide support for

chromosome movements yet flexible enough to correct erroneous interactions

with the chromosomes to ensure their error-free segregation.

The global destabilization of the interphase MTs (turnover in the range of

minutes to hours) is triggered by the cell cycle machinery through the activation

of the Cdk1 kinase. However, the highly dynamic nature of the mitotic MTs

(turnover in the range of seconds to a few minutes) is finely controlled by MT

stabilizing and destabilizing activities. This general concept was validated in vitro.

Indeed, mitotic MT dynamics could be mimicked in vitro by adding at a certain

ratio two proteins with antagonizing MT stabilizing and destabilizing activities

(Tournebize et al. 2000). These two proteins are XMAP215/chTOG and MCAK.

chTOG/XMAP215 is an MT-associated protein (MAP) conserved in all

eukaryotes (Gard and Kirschner 1987; Vasquez et al. 1994); it binds very efficiently

to MTs and promotes their assembly in vitro and in vivo (Brouhard et al. 2008).

XMAP215 can bind along the whole MT lattice but has also been characterized as a

plus-end binding protein, promoting MT polymerization. Indeed, MT stabilizing

factors are MAPs acting through various mechanisms. Some of them as XMAP215

are found along the entire MT length, whereas others have specific plus-end-

tracking properties (+TIPs). They localize to the MT growing ends, probably

recognizing the GTP-bound state of tubulin, and regulate their dynamic behavior

(Mimori-Kiyosue et al. 2000; Maiato et al. 2005; Kronja et al. 2009; Akhmanova

and Steinmetz 2010; Maurer et al. 2012; Zanic et al. 2013; Alushin et al. 2014;

Zhang et al. 2015). Finally, other MT stabilizing factors seem to function by

protecting MT against depolymerization. At MT minus ends, the γ-TuRC or other

minus-end binding complexes may stabilize MTs through an end-capping activity

(Wiese and Zheng 2000; Goodwin and Vale 2010; Meunier and Vernos 2011; Jiang

et al. 2014; Meunier et al. 2015).

Counteracting the action of MT stabilizing factors, three different types of

activities promote MT destabilization: catastrophe factors, tubulin sequestering

factors, and severing factors. MCAK is a major MT depolymerase belonging to

the kinesin 13 family (constituted by KIF2A, KIF2B, and MCAK/KIF2C). In vitro,

MCAK was shown to attach to the MT lattice through electrostatic interactions and

diffuse along the MT, driving MT depolymerization both at MT plus and minus

ends (Walczak et al. 1996; Desai et al. 1999; Hunter et al. 2003). The members of

another class of depolymerizing kinesins in the kinesin 8 family (KIF18A and

KIF18B) use a distinct mechanism to induce MT destabilization. They act by

blocking the incorporation of new tubulin dimers at MT plus ends (Mayr

et al. 2007; Du et al. 2010; Walczak et al. 2013). An additional way to regulate

MT stability involves the protein Op18 (also called stathmin). Op18 binds free

tubulin dimers and impairs their incorporation at the MT plus end (Belmont and

Mitchison 1996; Cassimeris 2002; Gupta et al. 2013), leading to a decrease in MT

growth and MT destabilization. Finally, a number of MT severing enzymes have

1 Microtubule Organization in Mitotic Cells 9



been recently identified, affecting MT stability within the mitotic spindle (Sharp

and Ross 2012).

Altogether, a large number of mechanisms control MT stabilization and

destabilization. They are tightly regulated and coordinated in space and time during

mitosis to ensure the correct assembly and function of the bipolar spindle. A spatial

control on MT dynamics is provided by the chromosomes through the RanGTP

pathway that favors MT stabilization by creating a gradient of MT stabilizing

factors (Karsenti and Vernos 2001; Caudron et al. 2005; Clarke and Zhang 2008).

The RanGTP gradient is moreover translated into a phosphorylation gradient

through the TPX2-dependent activation of the Aurora A kinase, promoting MT

stabilization around the chromosomes (Eyers et al. 2003; Tsai et al. 2003; Sardon

et al. 2008). The assembly of the full mitotic spindle appears therefore to rely on

overlapping regulatory gradients. The RanGTP gradient around the chromosomes

favors MT nucleation and stabilization, and the Aurora A kinase acts on MT

stabilization at the chromosomes and the centrosomes. A Plk1-dependent phos-

phorylation gradient around the centrosomes favors MT assembly and is essential

for spindle positioning (Kiyomitsu and Cheeseman 2012). An Aurora B-dependent

phosphorylation gradient centered at the kinetochores in the first phases of mitosis

and at the central spindle in anaphase is involved in multiple functions, including

MT dynamic regulation (Carmena et al. 2012). Altogether, these regulatory

gradients within the mitotic cell stabilize and orient the nascent MTs in order to

organize MTs into a spindle-shaped structure, with MT minus ends focused at the

two poles and their plus ends interdigitating or connecting with the chromosomes.

1.4 MT Organization in the Spindle: Different Configurations,
Functions, and Properties

While keeping highly dynamic properties, MTs get organized into different

structures whose properties and dynamics change throughout cell division. In this

section, we will focus on the principles driving the organization of the three most

characteristic mitotic MT assemblies: the bipolar spindle, the K-fibers, and the

central spindle.

1.4.1 The Bipolar Spindle

The organization of MTs into two interdigitating antiparallel arrays is key to cell

division. The main forces driving MT organization into this typical configuration

are provided by molecular motors that interact with MTs in an ATP-dependent

manner using the energy derived from its hydrolysis to move directionally along the

MTs. While some of them move toward MT minus ends (dynein and some

kinesins), others move toward the plus ends (most of the kinesins). Recent excellent

reviews describe in detail the mechanochemistry of motor movement and force

generation (Roberts et al. 2013; Cross and McAinsh 2014).
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Mitosis in human cells involves the activity of a large number of kinesins and

cytoplasmic dynein. The collective action of these motors drives bipolar spindle

assembly by establishing and maintaining three main activities: stable but dynamic

interactions between the two antiparallel MT asters, focusing MT minus ends into

the spindle poles, and dynamic interactions between MTs and chromosomes. Each

one of these functions is related to specific motor organizations and mechanisms of

action. Motors can indeed cross-link and move on two antiparallel MTs, link two

MTs but move on only one of them, or mediate the MT-chromosome interaction.

We will here briefly describe examples of these three kinds of motors.

Eg5 (also called KIF11 or kinesin 5) is an extensively characterized mitotic

motor. It is a homotetramer that can interact with two MTs preferentially in an

antiparallel configuration. By moving toward the plus ends of the two cross-linked

MTs, it drives their separation (van den Wildenberg et al. 2008; Tanenbaum and

Medema 2010) (Fig. 1.3). This is an essential mechanism promoting spindle pole

separation and bipolarity establishment and maintenance. Eg5 function is essential

for bipolar spindle organization. In the absence of Eg5 activity, MTs organize into a

monopolar spindle with the MT minus ends in the center and the plus ends at the

periphery of a rosette-like structure (Mayer et al. 1999).

Other MT-cross-linking motors adopt distinct configurations, such as HSET,

also known as KIFC1 or XCTK2 (Walczak et al. 1997; Mountain et al. 1999).

HSET is a minus-end-directed kinesin, which cross-links two MTs, but moves only

on one of them. It is organized as a homodimer that can interact with one MT

through its motor domain and with another MT through another ATP-independent

MT-binding domain, promoting MT organization (Fig. 1.3). HSET plays a role in

spindle length control and, like the dynein complex, in spindle pole focusing (Cai

et al. 2009; Hentrich and Surrey 2010). Dynein is a major minus-end-directed motor

in the mitotic cell. Depending on its “cargo,” dynein functions by promoting MT

movement in relation to another MT (pole focusing), to the nuclear envelope (pole

separation in prophase), to the cell cortex (spindle positioning), or to the kineto-

chore (chromosome positioning) (Roberts et al. 2013) (Fig. 1.3).

Another class of motors includes the chromokinesins that mediate interactions

between MTs and the chromosome arms. The forces exerted by chromokinesins are

called polar ejection forces that play important roles in chromosome congression

(Vanneste et al. 2011). At least two classes of kinesins are able to directly interact

with chromosome arms: KIF22 (Kid) and KIF4 (Mazumdar and Misteli 2005). The

role of Kid in chromosome congression is essential (Levesque and Compton 2001).

In Xenopus egg extracts, Xkid depletion results in the dramatic chromosome

scattering phenotype (Antonio et al. 2000; Funabiki and Murray 2000).

Chromokinesins share common structural features. They are all plus-end-directed

motors and function in homodimers, with a motor MT-binding domain in

N-terminal and a DNA-binding motif in the C-terminal part (Vanneste

et al. 2011) (Fig. 1.3).

The complexity of motor functions and their interactions is overall a challenge to

achieve a full understanding of their roles in bipolar spindle assembly. Their

function cannot be limited to focusing minus ends at the poles, congressing
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chromosomes, and cross-linking antiparallel MTs in the region of their overlap. For

example, dynein has also a role in the targeting of a number of essential factors to

the spindle poles, including Eg5 and TPX2 (Ma et al. 2010).

1.4.2 The K-Fibers

As the spindle assembles, the dynamic plus ends of someMTs are “captured” by the

kinetochore, a specialized region organized as a paired structure on each chromo-

some. MT plus-end attachment to the kinetochore is mediated by interactions with

the Ndc80 and Ska complexes leading to their stabilization (Jeyaprakash

et al. 2012; Cheerambathur et al. 2013; Shrestha and Draviam 2013). These MTs

Eg5

Dynein

HSET
+ +

+

+

-
--

-
-

-
-
-- -

+

+

KID +

+

--

Fig. 1.3 Bipolar spindle MT organization. Left: schematic representation of a prometaphase

spindle. Right boxes: (upper box) Eg5 is a homotetrameric, plus-end-directed motor. It works

separating two antiparallel MTs apart and is essential for spindle bipolarization and cell division.

Middle box: HSET and dynein are two types of minus-end-directed motors. They move on one MT

and also interact with another, parallel, MT. This process is essential for focusing MT minus ends

at the poles. Lower box: KID is one example of chromokinesins. It is a plus-end-directed,

homodimeric motor interacting with an MT through its motor domain and with chromosomes

through its C-terminal part. Its function is essential in congressing the chromosomes in the

metaphase plate
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form bundles of 20–40 MTs organized in parallel orientation, called the K-fibers.

K-fibers have specific dynamic properties and are remarkably more stable than the

other spindle MTs (Rieder 1981). They generate pushing forces that contribute to

centrosome separation and the establishment of spindle bipolarity and are obviously

essential for chromosome movements and segregation (McHedlishvili et al. 2012).

The K-fiber MT bundles require protein complexes forming bridges in between

the parallel MTs. One of them is composed by clathrin and TACC3 that interacts

with the MT polymerase chTOG/XMAP215 (Booth et al. 2011) (Fig. 1.4). K-fiber

organization in bundles is however still poorly understood, since other kinds of

inter-MT bridges have been observed (Booth et al. 2011).

The K-fibers exhibit very specific plus- and minus-end dynamics that are tightly

related to attachment error correction and chromosome movements. The MT plus

ends of the K-fiber alternate between phases of growth and depolymerization that

drive poleward and anti-poleward chromosome movements and oscillations that

result in chromosome alignment at the metaphase plate (Magidson et al. 2011).

While the plus ends exhibit a “switching” behavior alternating between phases of

MT growth and shrinkage coordinated at the two sister kinetochores, K-fiber MT

minus ends depolymerize constantly. This results in a characteristic tubulin flux

from the plus end toward the minus end (Fig. 1.4) that generates forces within the

spindle strong enough to move the chromosomes (Waters et al. 1996).

K-fiber dynamics regulation involves both proteins favoring MT polymerization

like CLASP or EB1 and others promoting MT destabilization like the kinesin

13 and 8 family members (Tirnauer et al. 2002; Maiato et al. 2005; Joglekar

et al. 2010; Manning et al. 2010) (Fig. 1.4). The mechanism involved in regulating

MT depolymerization at the minus end is still unclear. However, the recent identifi-

cation of novel proteins that specifically protect MT minus ends from depolymerase

MCRS1

minus-end plus-end
kinetochore

kinesin 13

kinesin 13

kinesin 13

EB1
CLASP

XMAP215/
TACC3/
clathrin

tubulin flux
KIF18A

tubulin dimers

Fig. 1.4 K-fiber organization. K-fibers are bundles of 20–40 MTs. Bridges between MTs, in part

composed by XMAP214, clathrin, and TACC3, maintain the MTs forming the K-fiber together.

Their plus ends are interacting with the kinetochores, and their minus ends are focused in close

proximity to the spindle poles. K-fibers are constantly depolymerizing at the minus end and overall

incorporate new tubulin dimers at the plus end. This mechanism creates a tubulin poleward flux

from the plus to the minus end of the K-fibers. While kinesins 13 work at both ends in

depolymerizing K-fiber MTs, KIF18A is a depolymerizing kinesin specific for the plus end. At

the plus end, +TIPS factors such as EB1 and CLASPs favor MT polymerization. At the minus end,

MCRS1 protects MTs against destabilization
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activities opens the way to a better understanding of K-fiber dynamics (Goodwin

and Vale 2010; Meunier and Vernos 2011; Jiang et al. 2014; Meunier et al. 2015)

(Fig. 1.4).

A dramatic change in K-fiber dynamics drives K-fiber shortening and thereby

chromosome segregation in anaphase (Waters et al. 1996). However, how the

shortening of all K-fibers is coordinated, which signal triggers of the process, and

what mechanism controls the depolymerization rate are still open questions.

1.4.3 The Central Spindle

During anaphase, a new MT-based structure, called the central spindle, assembles

between the two segregating chromosome masses. The central spindle is formed by

interdigitating MT arrays that promote the separation of the centrosomes and

chromosomes by sliding in an antiparallel manner. MTs in the central spindle are

organized into bundles that are remarkably more stable than those forming the

metaphase spindle (Saxton and McIntosh 1987).

The mechanism underlying central spindle assembly involves at least two

protein complexes. One of them called, centralspindlin, initiates central spindle

assembly. It is formed by a kinesin-like protein, MKLP1, and a Rho GTPase-

activating protein (RhoGAP), CYK-4. This protein complex is targeted to an

antiparallel MT overlapping area immediately after chromosome segregation

(Mishima et al. 2002; White and Glotzer 2012) (Fig. 1.5). Centralspindlin plays

also essential roles in midbody assembly and abscission, the very last steps in the

full separation of the daughter cells.

The mechanism defining the extent of MT overlap and sliding in the central

spindle involves another complex constituted by the protein PRC1 (protein

centralspindlin

PRC1
KIF4

Eg5

+

+
+

+

+
+

+

+

-

-

-

--

-
-

Fig. 1.5 Central spindle organization. Left: schematic representation of an anaphase B spindle,

with the central spindle in the center. Right box: detail of central spindle organization. MTs plus

tips are interdigitating in the central spindle. They are cross-linked together though the action of

two main complexes: the centralspindlin complex and the complex formed by PRC1 and KIF4.

The interaction between PRC1 and KIF4 is essential for maintaining central spindle length and

defining the antiparallel, overlapping MT region
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regulator of cytokinesis 1), a MAP with MT bundling activity in vitro (Mollinari

et al. 2002), and the kinesin KIF4 (Kurasawa et al. 2004) (Fig. 1.5). In vitro

experiments with recombinant PRC1 and KIF4 showed that these two activities

are sufficient to reconstitute a central spindle-like organization (Bieling et al. 2010).

Several regulating protein complexes are targeted to the central spindle during

anaphase. Among them, the chromosomal passenger complex (CPC) containing the

Aurora B kinase relocalizes from the kinetochores to the central spindle and

regulates central spindle assembly and function, by phosphorylating a variety of

substrates (Guse et al. 2005). Recently, it was also shown that the kinase Aurora A

plays a role in central spindle organization and dynamics regulation through the

phosphorylation of the dynein complex and TACC3 (Lioutas and Vernos 2013;

Reboutier et al. 2013).

The central spindle is constituted by some interpolar MTs, but recent studies

have demonstrated that it can be assembled de novo, involving MT nucleation and

stabilization. The signals triggering the assembly of these MTs are however still not

identified, but the involvement of the RanGTP pathway and the augmin complex is

likely (Glotzer 2009; Uehara and Goshima 2010).

1.5 Specifying MT Identities in the Spindle?

MTs during mitosis show a range of dynamic properties, organization, and function

that coexist at any given time and evolve as mitosis proceeds. Overall, astral and

interpolar MTs are very dynamic mainly at their plus ends. K-fibers are organized

into bundles with specific dynamic properties both at the plus and at the minus ends,

while being more stable than the other spindle MTs. How these characteristics are

specified is still not understood. In fact, it is unclear whether MT organization

determines function (for instance, MTs contacting the kinetochore organize into

K-fibers) or whether different MTs with specific properties define organization and

function. In this context, it may be relevant to consider that mitotic MTs originate at

different sites and through different pathways that involve specific components and

regulators. Interestingly, some proteins were found to specifically associate with

one class of MTs. The RanGTP-regulated protein HURP associates only with the

K-fibers in a region close to the chromosomes (Sillje et al. 2006). Another RanGTP-

regulated protein, MCRS1, associates exclusively to chromosomal MTs and to

those forming the K-fibers (Meunier and Vernos 2011). These data suggest that

the chromosomal MTs participate at least in part to K-fiber formation, as they have

specific MAPs that confer them properties different to the other MTs. This hypo-

thesis still requires experimental support to be confirmed.

Other mechanisms could potentially confer specific properties to the spindle

MTs. Although all MTs are formed by α-/β-tubulin dimers, mammalian cells have

several genes for these two proteins (7 α-tubulin and 8 β-tubulin genes in humans).

The different tubulin isotypes are extremely conserved (more than 95 % amino acid

sequence identity), but their C-terminal tails have more variability. Interestingly,

this region is exposed on the MT surface and is responsible for binding MAPs and
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motors (Sirajuddin et al. 2014). The expression of specific tubulin isotypes has been

related with specific MT organizations (Raff et al. 1997) and with adaptation

mechanisms. Although it is not yet clear whether they play any role in mitosis,

changes in the expression pattern of tubulin isotypes have been reported in some

cancer cells that show altered MT dynamics and resistance to antitumor treatments

that target tubulin (Wang et al. 2014).

In addition to the expression of specific tubulin isotypes, several posttrans-

lational modifications (PTMs) on the C-terminal tails of the tubulins modulate the

binding affinities of MAPs and motors and may even change motor processivity

and/or velocity (Janke and Bulinski 2011; Sirajuddin et al. 2014). Many PTMs have

been described including detyrosination, mono- or poly-glutamylation, phosphory-

lation, acetylation, and glycylation. These modifications may constitute a “tubulin

code” that could specify which MAPs and which motors would bind to one specific

MT (Janke and Bulinski 2011; Magiera and Janke 2014; Barisic et al. 2015).

Although this remains speculative, the number of α- and β-tubulin isotypes together
with the combinatorial possibilities of PTMs at their C-terminus potentially offers a

myriad of possibilities to precisely define the properties of MT subpopulations, and

this could play a role in the bipolar spindle.

1.6 Mitotic MTs in Health and Disease

1.6.1 Mitotic MT-Related Disorders and Pathologies

Cell division is fundamental for life. Any error in this process may be fatal or

generate cells with an incorrect chromosome number. Aneuploidy, the loss or gain

of chromosomes, is the leading genetic cause of miscarriage and congenital birth

defects as well as being tightly associated to health-threatening conditions like

cancer.

In humans, as many as one in five pregnancies end in miscarriage, the most

common complication of early pregnancy. Aneuploidy is the leading known cause

of miscarriage, but some of them (as, e.g. trisomy 21 and monosomy X, Down or

Turner syndromes, respectively) are compatible with live birth, making aneuploidy

the leading cause of congenital birth defects and mental retardation. A common

cause for these miscarriages seems to be aneuploidies in human oocytes, which

increase dramatically with age (Holubcova et al. 2015). This is associated to the

weakening of cohesion between the sister chromatids with time (Chiang et al. 2010;

Duncan et al. 2012). This phenomenon was recently described as “chromosome

fatigue” (Daum et al. 2011) and is particularly threatening for human reproduction

because oocytes are maintained blocked in prophase of meiosis I from birth until

maturation is induced after puberty on a monthly basis throughout the reproductive

lifespan (Chiang et al. 2010).

A number of pathologies derive from spindle orientation defects that compro-

mise the fate of the daughter cells during development (Noatynska et al. 2012).

During development, neural progenitor cells undergo symmetric and asymmetric
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divisions from a monolayer of stem cells to build the brain. Mutations in genes

related with centrosome function and duplication or with astral MT stabilization

have been related to brain development defects like microcephaly or lissencephaly,

respectively (Fish et al. 2006; Yingling et al. 2008; Chavali et al. 2014). However,

the mutated genes have a large range of distinct functions in various processes and

organs (Noatynska et al. 2012) and a direct causal relationship between spindle

orientation defects and these brain pathologies is currently missing.

Cell division is essential after birth for the growth of organs and body parts and

throughout adulthood for the maintenance and renewal of cells and tissues.

Mutations in proteins related with mitotic MT regulation, for example, in the

PCM component pericentrin, have been linked to a number of pathologies including

cancer (Delaval and Doxsey 2010). Most human solid tumors have aneuploid cells

due to CIN (chromosome instability), which promotes chromosome missegregation

in mitosis. CIN occurs early in tumorigenesis and is associated with poor prognosis.

Aneuploid cells may get supernumerary copies of oncogenes and/or insufficient

copies of tumor suppressor genes, which could favor the development of tumors

(Duijf and Benezra 2013; Salmela and Kallio 2013). CIN can be caused by multiple

mechanisms including a weakened or overactivated mitotic spindle assembly

checkpoint, sister chromatid cohesion defects, increased merotelic kinetochore‐
microtubule attachments, or the presence of extra centrosomes. Although CIN

was proposed as a leading cause of tumor progression, recent studies suggest that

CIN can either promote or suppress tumor progression, depending on the context.

Aneuploidy or other mechanisms may also be involved with changes in the

expression levels of mitotic factors: enzymes involved in the regulation of the cell

division like the kinase Aurora A as well as MT-binding proteins like TPX2. These

two proteins interact during mitosis and the TPX2-Aurora A complex has been

described as an “oncogenic holoenzyme” (Asteriti et al. 2010). Interestingly, TPX2

was found to be the protein with the highest CIN (chromosome instability) score

among 10,000 analyzed genes in a number of tumors (Carter et al. 2006).

1.6.2 MTs and Therapeutic Strategies

The highly dynamic properties of the mitotic MTs are essential for the assembly of

a functional spindle. At the same time, they render mitotic cells particularly

sensitive to factors that alter these properties. In fact, MT-binding agents (TBAs)

that alter MT dynamics were the first antitumor compounds used for cancer

treatment. There are different classes of TBAs isolated from a broad range of

species, such as bacteria, sponges, or plants. They either promote MT stabilization

(such as taxanes and epothilones) or MT destabilization (such as vinblastine). The

prevailing idea is that TBAs exert an anticancer activity by targeting dividing cells

particularly abundant in tumors, although this is under debate (Mitchison 2012;

Topham and Taylor 2013). In any case, these drugs are still widely used in the clinic

as they have a clear therapeutic value. However, there is a need for novel ways to

fight tumors, as cancer cells can evade the effects of compounds and drugs through
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different mechanisms. Interestingly, one of them is the expression of the neuronal

βIII-tubulin isotype (Cortes and Vidal 2011). Moreover, TBAs are not specific for

the dividing cells, generating secondary effects like neurotoxicity (Harrison

et al. 2009; Kavallaris 2010).

Targeting characteristics specific to tumor cells, such as CIN, aneuploidies, and

supernumerary centrosomes, is therefore an attractive therapeutic avenue.

Compounds targeting mitotic factors such as the kinases Plk1, Aurora A or Aurora

B (Salmela and Kallio 2013), or microtubule motors have been developed. Some of

them are in different phases of clinical trials (Ding et al. 2014).

1.7 Conclusions

Spindle assembly relies on the coordination of a number of individual events

including MT nucleation, stabilization, and organization. The importance of accu-

rate chromosome segregation for the continuity of life is underscored by tightly

controlled mechanisms ensuring the interaction between MTs and chromosomes

with several layers of regulations and checkpoints that ensure the fidelity of the

system. However, errors in cell division can occur, often leading to catastrophic

consequences in terms of fertility, development, or tissue maintenance and renewal.

Although individual pieces of the puzzle start to be well understood, future work

will certainly focus on getting more information on the coordination of all single

events and thereby a global view of a system at the basis of life transmission.
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Non-centrosomal Microtubule
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Abstract

The centrosome consists of a pair of centrioles surrounded by pericentriolar

material. During the formation of the mitotic spindle, multi-protein complexes in

the pericentriolar material are involved in the nucleation and anchorage of

microtubules. In postmitotic cells of many tissues, proteins of the pericentriolar

material lose their association with the centrosome and redistribute to various

sites in the cytoplasm, to the cellular cortex, or to the nuclear surface. Conse-

quently, the organization of the microtubule network is changed. Localization of

centrosomal proteins and organization of microtubules follow cell type-specific

patterns, to fulfill specialized functions. For example, in polarized epithelia,

microtubules are involved in transcytosis and establishment of epithelial polar-

ity, in neurons microtubules are necessary for axonal transport, or in muscle

microtubules participate in the assembly of sarcomeres and in the positioning of

nuclei. In this review, the principles of microtubule organization in different cell

types will be described. The role of microtubules in muscle cells and the

potential involvement of microtubule-dependent processes in muscular diseases

will be documented in detail.
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Toulouse, France

Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden

C. Bierkamp • A. Merdes (*)
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2.1 Introduction

During division of somatic animal cells, centrosomes serve as centers for the

nucleation and organization of microtubules. At each pole of the mitotic spindle,

a pair of centrioles can be found, surrounded by pericentriolar material from which

microtubules emanate. After completion of mitosis, the involvement of the centro-

some in microtubule organization varies among different cell types. Although

textbook illustrations often depict the centrosome as an organizing center of a

radial microtubule network in interphase, this type of microtubule organization

may only reflect a special situation seen in two-dimensional cell culture. In animals,

radial organization of microtubules from the centrosome may still be detected in

fibroblasts or in other migratory cell types, but in differentiated cells of many

tissues, the centrosome loses its role as an organizing center. The following chapter

will highlight several typical examples of non-centrosomal microtubule organiza-

tion, with a particular focus on the transformation of the microtubule network in

differentiating muscle cells. The potential role of microtubules in muscular tissue

and potential defects in myopathies will be discussed.

2.2 Microtubule Organization in Polarized Epithelia

Among the numerous cell types that exhibit altered microtubule organization after

differentiation, perhaps the best-studied objects are polarized epithelial cells of

various origins. Monolayers of polarized epithelial cells are connected by intercel-

lular connections, such as tight junctions, that form an impermeable barrier. These

tight junctions separate the plasma membrane into an apical domain and a

basolateral domain. Any transport processes across the epithelial layer have to

occur via transcytosis, involving directed intracellular transport. Consequently,

microtubules in these cells are organized in a polarized manner and serve as tracks

for polarized transport. Pioneering studies on Drosophila wing epidermal cells

revealed a uniform polarity of the microtubule cytoskeleton, with microtubule

minus ends anchored in a region underlying the apical plasma membrane and

plus ends terminating in the basal region of the cell (Mogensen et al. 1989). Similar

organizational principles have been described for the microtubule network in other

polarized epithelia, including cells from canine kidney, human intestine, rodent

cochlea, Drosophila ommatidia, or Drosophila tracheal placodes (Bacallao

et al. 1989; Meads and Schroer 1995; Tucker et al. 1992; Mogensen et al. 1993;

Brodu et al. 2010). In all these cell types, centrioles are still visible in the apical area

of the cytoplasm, but they no longer serve as major anchorage points for

microtubules. Likewise, marker proteins of the centrosome are partly delocalized

from the pericentriolar material. Whereas large amounts of gamma-tubulin and

pericentrin are still focused around the centrioles of several epithelial cell types

(Meads and Schroer 1995; Tucker et al. 1998), an increasing percentage of ninein in

cochlear epithelial cells is lost from the centrosome during differentiation and

accumulates at the non-centrosomal sites in the apical region of the cell. This is
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particularly well visible in inner pillar cells of the organ of Corti in the cochlea,

where ninein concentrates at the apical cell periphery in a ring-shaped area under-

lying the plasma membrane, where thousands of microtubule minus ends terminate

(Mogensen et al. 2000). Since ninein is considered to play a role in anchoring

microtubule minus ends (Dammermann and Merdes 2002), the data in cochlear

epithelial cells have evoked the hypothesis of initial microtubule nucleation at the

pericentriolar material, followed by release, translocation, and subsequent capture

of microtubule minus ends at non-centrosomal apical sites containing ninein

(Mogensen 1999). Release of microtubules from the centrosome in epithelial

cells may involve microtubule-severing enzymes, such as spastin (Brodu

et al. 2010). The maintenance of the non-centrosomal microtubule network may

be further supported by a recently identified class of minus end-binding proteins

termed CAMSAP, nezha, or patronin (Tanaka et al. 2012). Interestingly, a recent

report on a ninein-related protein in the nematode Caenorhabditis elegans, NOCA-
1, has shown functional redundancy with patronin, in the organization of

non-centrosomal microtubule arrays in larval epidermal cells (Wang et al. 2015).

Along the basal cortex of polarized epithelial cells of the MDCK line, a separate

set of microtubules has been described in addition to the apicobasal fibers,

consisting of acentrosomal microtubules of mixed polarity that intersect and that

interact with the cortex (Reilein et al. 2005). Small amounts of the microtubule-

nucleating protein gamma-tubulin are found at branch points within this basal

microtubule network.

In WIF-B cells that possess characteristics of polarized hepatocytes, neighboring

cells are in close contact, except for small intercellular spaces that represent bile

canaliculi (Ihrke et al. 1993). The plasma membrane surfaces outlining the bile

canaliculi are equivalent to the apical membrane domains seen in columnar epithe-

lial cells, such as intestinal or renal epithelia. In an analogous manner, gamma-

tubulin is enriched underneath these membrane areas, from which microtubules

radiate out toward the basolateral regions of the cells (Ihrke et al. 1993) (Fig. 2.1).

2.3 Microtubule Organization in Skin Keratinocytes

The epidermis of vertebrate skin is a stratified epithelium, i.e., an epithelium

containing multiple layers of cells. The innermost layer is the “basal layer,” in

contact with the basement membrane, and consists of cells that maintain

proliferative activity. Differentiating keratinocytes are oriented outward and estab-

lish a dense pattern of intercellular junctions, containing desmosomes, tight

junctions, and adherens junctions. During differentiation, centrosomal proteins

such as ninein lose their association with the pericentriolar material and redistribute

to the cell cortex (Lechler and Fuchs 2007). Ninein interacts with the desmosomal

protein desmoplakin. Moreover, adherens junctions have been found to be involved

in microtubule reorganization: the protein p120/catenin has been shown to interact

with microtubule plus ends in basal cells, via the plus end-binding protein CLASP2

(Shahbazi et al. 2013). Other microtubule-binding proteins, such as Lis1, Ndel1,

2 Non-centrosomal Microtubule Organization in Differentiated Cells 29



and CLIP170, equally associate with the cortex (Sumigray et al. 2011). The

microtubule network is transformed during this process, from a centrosomally

anchored network into a cortical array of fibers (Lechler and Fuchs 2007; Sumigray

et al. 2011, 2012). Consistently, in differentiated keratinocytes of the suprabasal

layer, the non-centrosomal minus end-binding protein Nezha equally localizes to

the cortex (Shahbazi et al. 2013). Apparently, the density of desmosomal cell

junctions and the cortical recruitment of microtubule-binding proteins are mutually

dependent, as knockout of desmoplakin prevents cortical accumulation of ninein,

Lis1, and Ndel1, and likewise the knockout of Lis1 provokes desmosomal defects

with reduced desmosomal stability (Sumigray et al. 2011). A similar interdepen-

dence as seen for microtubules and desmosomes has been described for adherens

junctions and microtubule plus ends (Shahbazi et al. 2013). Moreover, it has been

undifferentiated cell

skin keratinocyte

polarized epithelial cells

centriole pair

proteins of the 
pericentriolar material

desmosome

microtubule

+

-

+

-
-

+

Fig. 2.1 Microtubule organization in epithelial cells. Top left: undifferentiated cell, with

microtubules organized in a radial network. Microtubule minus ends are anchored at the

pericentriolar material; plus ends are growing outward to the cell periphery. Top middle and
right: two different examples for microtubule organization in polarized epithelial cells. Top
middle: proteins of the pericentriolar material are redistributed to a wider apical region where

microtubule minus ends are anchored. This resembles microtubule organization as seen in MDCK

cells. Top right: Microtubule organization from specific sites underlying the apical plasma

membrane, such as seen in cochlear epithelial cells. Bottom: microtubule organization in

differentiated skin keratinocytes. Centrosome proteins such as ninein are relocalized to the cortex

of the cell, binding to proteins of the desmosome. Microtubules concentrate in the cortical region

of the cell
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shown that the rapid incorporation of the desmosomal components Dsc2 and Dgl2

into desmosomes involves microtubule-dependent transport by the motor proteins

KIF3A and kinesin 1, respectively (Nekrasova et al. 2011).

In primary cultures of keratinocytes, the formation of cell junctions and the

transformation of the microtubule network can be followed upon induction of

“differentiation” in vitro, by adding calcium to the culture medium. In such

cultures, centrosomes maintain their ability to nucleate microtubules, but after

initial nucleation, microtubules don’t remain anchored at the pericentriolar material

and redistribute in the cell (Lechler and Fuchs 2007). This observation is consistent

with the “release and capture” model of microtubules that has been described for

polarized epithelial cells (Mogensen 1999). Ninein could play the role of a crucial

factor for anchoring microtubule minus ends to the centrosome in

non-differentiated cells and to specific non-centrosomal sites after differentiation,

although it still remains to be determined experimentally whether ninein takes

indeed an active role in microtubule anchoring or whether it simply follows the

reorganized microtubule network.

2.4 Microtubule Organization in Neurons

Neurons have a very specific morphology, with a main cell body (soma) from which

one axon and multiple dendrites emanate. Within the soma, a pair of centrioles is

located next to the nucleus (Sharp et al. 1982), surrounded by centrosomal proteins

such as gamma-tubulin, pericentrin, or ninein (Baas and Joshi 1992; Leask

et al. 1997; Baird et al. 2004). Despite the presence of a centrosome, microtubule

ends are not anchored at the pericentriolar material but are found free in the

cytoplasm (Baas and Joshi 1992). Arrays of overlapping microtubules are found

along the length of axons and dendrites. These microtubules don’t seem to have any

specific points of anchorage, nor do their ends seem to be capped by gamma-tubulin

complexes (Baas and Joshi 1992). Axons possess microtubules of uniform polarity,

with the minus ends oriented toward the soma and the plus ends oriented toward the

growth cone of the axon (Heidemann et al. 1981). Microtubules in dendrites, on the

other hand, are of mixed polarity (Baas et al. 1988; Burton 1988). It is hypothesized

that during neurogenesis, microtubules are initially nucleated at the centrosome,

followed by release and translocation into the extending axon and dendrites. The

release of centrosomal microtubules may involve microtubule-severing proteins,

such as katanin and spastin (Ahmad et al. 1999; Wood et al. 2006). The position of

the centrosome within the cell body is important for neuronal polarization, by

defining the site of initial axon formation (de Anda et al. 2005). Experimentally

generated neurons with multiple centrosomes grew additional axons in the vicinity

of each centrosome, as verified by immunolabeling of the axon-specific microtu-

bule-associated protein tau (de Anda et al. 2005). Interestingly, at later stages of

neuronal differentiation, during the formation of synaptic connections, the centro-

some may no longer function as a nucleation site, since gamma-tubulin has been

found to be absent in synaptically coupled neurons in the hypothalamus and cortex
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(Leask et al. 1997). Moreover, in Drosophila neurons, the nucleation and organiza-
tion of microtubules may not involve the centrosome at all (Nguyen et al. 2011). It

is likely that a large number of microtubules are nucleated from cytoplasmic sites,

or from the surface of existing microtubules, in particular at later stages. Specifi-

cally those microtubules in dendrites that grow from distal sites toward the cell

body must originate from non-centrosomal sites, since their polarity is opposite to

the polarity of microtubules growing outward from sites at or near the centrosome.

Cytoplasmic microtubules may be anchored or stabilized by non-centrosomal

ninein that has been detected in small particles, widespread in neurons (Baird

et al. 2004). Additional information on microtubule organization in neurons can

be found in the Chap. 4 by Sánchez-Huertas, Freixo, and Lüders (Fig. 2.2).

2.5 Microtubule Organization in Skeletal Muscle Cells

The microtubule network in skeletal muscle cells has been studied largely in

cultures of myoblasts that undergo differentiation into myotubes upon serum

starvation. Undifferentiated myoblasts possess a regular centrosome that acts as a

nucleation center and that constitutes an anchorage point of a radial microtubule

network. During differentiation, myoblasts elongate and subsequently fuse into

+ 

- 

+ + 
- 

- 

axon dendrite 

neuron

 

Fig. 2.2 Microtubule organization in neurons. Most microtubules are detached from the centro-

some. Microtubules in the axon have a uniform polarity, with minus ends oriented toward the cell

body and distal plus ends oriented toward the axonal growth cone. In dendrites, microtubules are of

mixed polarity, with a subset of microtubules growing from distal sites toward the cell body.

Proteins such as ninein are found widespread in the cytoplasm
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multinucleated, syncytial myotubes. In an early phase of the differentiation process,

prior to fusion, proteins of the pericentriolar material accumulate at the cytoplasmic

surface of the nuclear envelope (Tassin et al. 1985; Musa et al. 2003; Bugnard

et al. 2005; Srsen et al. 2009). How pericentriolar proteins anchor to the nucleus is

currently unknown. During myogenesis in Drosophila, RacGap50C, a protein that

has been identified previously at the cleavage furrow of dividing cells, appears to be

necessary for binding gamma-tubulin to various foci associated with the nuclear

periphery (Guerin and Kramer 2009). Consistently, experiments involving

regrowth of microtubules after previous depolymerization have shown that the

nuclear surface can act as a nucleation center (Tassin et al. 1985; Bugnard

et al. 2005; Fant et al. 2009). The centrioles are still detectable in fused myotubes

during the first days of culture (Tassin et al. 1985), but individual marker proteins

may be lost from the pericentriolar material in prolonged cultures (Connolly

et al. 1986). Although centrioles may be partially degraded in maturing muscle,

few centriolar cylinders seem to persist in adult muscle tissue, as electron micros-

copy of diaphragm muscle from rodents has revealed the presence of occasional

centriole pairs (Kano et al. 1991). Differentiated myotubes in culture contain long,

parallel arrays of microtubules, oriented along the long axis of the syncytial cell

(Tassin et al. 1985). The formation of elongated microtubules depends on proteins

of the EB family that are necessary for the shape of the cells and for fusion of

myoblasts into myotubes (Straube and Merdes 2007; Zhang et al. 2009a). Although

centrosomal proteins have largely accumulated at the nuclear surface in myotubes,

most longitudinally oriented microtubules do not seem to be anchored to the nuclei

in these cells (Musa et al. 2003). It is possible that the nuclear surface is involved in

microtubule nucleation at an early stage of differentiation (Fant et al. 2009) and that

microtubules are subsequently released and re-oriented in the cytoplasm, in a

similar manner as seen in other differentiated cell types (see previous paragraphs).

In muscle fibers from adult mouse tissue, a grid-like network of microtubules has

been described (Kano et al. 1991; Ralston et al. 1999, 2001; Oddoux et al. 2013).

In these mature muscle fibers, the cytoplasm is filled with actin and myosin

filaments that are organized into sarcomeres. Nuclei and microtubules are

distributed in a thin cytoplasmic layer at the periphery of the fiber, and grids of

orthogonally oriented microtubules are nucleated from elements of the Golgi

complex. Clusters of the centrosome proteins gamma-tubulin and pericentrin

co-localize with these Golgi elements (Oddoux et al. 2013). Growing microtubules

are often guided by existing microtubules, with which they form bundles. At least in

part, microtubules are also guided by dystrophin (Percival et al. 2007; Prins

et al. 2009; Oddoux et al. 2013).

Interestingly, slight differences in microtubule organization exist between slow-

twitch and fast-twitch fibers: in the former, bundles of microtubules are seen

between nuclei, with few clear nucleation points. In the latter, more individual

microtubules than bundles are visible, and these microtubules possess astral nucle-

ation points adjacent to the nuclei (Ralston et al. 1999). The microtubule patterns in

both slow- and fast-twitch muscle fibers can be slightly altered by experimental
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stimulation with electrical pulses, mimicking different firing patterns of motor

neurons (Ralston et al. 2001) (Fig. 2.3).

2.6 Potential Role of the Microtubule Network in Skeletal
Muscle Cells

Skeletal muscle fibers are highly specialized cells that fulfill the single role of

contraction and relaxation. They are postmitotic and thus unable to renew after

injury. Damaged fibers are replaced by satellite cells that differentiate into new

muscle cells. Since muscle fibers don’t undergo any cell division, the question

arises as to what specific role microtubules might play in differentiation and in the

mature cell.

myoblast, 
undifferentiated

differentiating 
myoblast, prior 
to fusion

muscle fiber

neuro-muscular 
junction

extra-synaptic 
nucleus

synaptic 
nucleus

Fig. 2.3 Microtubule organization in muscle cells. In undifferentiated myoblasts, a fully func-

tional centrosome is visible that acts as a microtubule-organizing center. At the beginning of the

differentiation process, myoblasts elongate, and proteins of the pericentriolar material accumulate

on the surface of the nucleus. At this stage, most microtubules are visible in long parallel arrays in

the cytoplasm. Upon fusion of myoblasts into myotubes, actin and myosin organize into

sarcomeres (not shown). In the fully mature muscle fibers, the microtubules are organized into a

grid-like pattern, excluded from the sarcomeres. Elements of the Golgi complex associate with

centrosome proteins and act as microtubule-organizing centers. The nuclei are pushed toward the

periphery of the muscle fiber. Multiple synaptic nuclei are clustered near the neuromuscular

junction, whereas the remaining extra-synaptic nuclei are distributed along the length of the fiber
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In early pharmacological experiments on cultures of myoblasts and myotubes, it

has been shown that microtubules influence the distribution of intermediate

filaments and myosin (Holtzer et al. 1975; Antin et al. 1981; Saitoh et al. 1988).

More recently, direct evidence was obtained from microscopic observations of

living myotubes that microtubules provide a scaffold for the transport of myosin

and for the proper assembly of sarcomeres (Pizon et al. 2005).

Microtubules seem to play a second major role in myotubes, in the positioning of

nuclei (Folker and Baylies 2013). After fusion of mononucleated myoblasts into

multinucleated myotubes, most nuclei are distributed at equidistance along the

periphery of the myotube. However, a subgroup of nuclei is found clustered beneath

the neuromuscular junction. Although the specific role of these “synaptic” nuclei is

still unclear, it has been suggested that they are involved in the maintenance of the

synapse, for example, by an increased transcriptional activity to express acetylcho-

line receptors and other constituents of the postsynaptic membrane (Klarsfeld

et al. 1991; Sanes et al. 1991). For the correct positioning of synaptic and extra-

synaptic nuclei, microtubules likely serve as tracks, for motor-dependent transport

of the nuclei. The dependence of nuclear positioning on microtubules has been

shown first in cultured myotubes, in which clusters of acetylcholine receptor were

experimentally induced on the plasma membrane, by treating the culture with

extracts of electrical tissue from Torpedo fish (Englander and Rubin 1987). Once

clusters of acetylcholine receptor had formed, the nearest nuclei moved to the

cluster and got immobilized there. The movement of these nuclei occurred in a

microtubule-dependent manner, since the microtubule poison colchicine inhibited

any nuclear movement, unlike the actin poison cytochalasin D that had no such

effect. More recent experiments in vivo, in mice and in Drosophila, confirm a role

of microtubules in the positioning of myonuclei (Bruusgaard et al. 2006; Elhanany-

Tamir et al. 2012).

The nuclear movement is driven both by plus end- and minus end-directed

microtubule motors and might involve additional microtubule-associated proteins.

In Drosophila, nuclear movement has been shown to involve kinesin 1 “KIF5B,”

dynein, and MAP7 (Metzger et al. 2012; Folker et al. 2012, 2014). On the surface of

moving nuclei, kinesin acts at the leading edge, whereas dynein acts at the lagging

edge, in addition to cortically anchored dynein that generates pulling forces on

microtubules (Folker et al. 2014). In mouse C2C12 cells, dynein, dynactin, as well

as KIF5B have been detected on the nuclear envelope of myotube nuclei (Cadot

et al. 2012; Wilson and Holzbaur 2012, 2015). Dynein and kinesin motor

complexes are involved in linear translocation of nuclei along microtubules and

also in the rotation of these nuclei (Wilson and Holzbaur 2012).

Altogether, these experiments suggest that microtubules play an important role

in the differentiation of myotubes, during the formation of sarcomeres and during

the positioning of nuclei. This raises the question whether cellular defects in any

known myopathies correlate with defects in the microtubule network.
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2.7 Possible Involvement of Microtubules in Muscular Defects

Duchenne muscular dystrophy is one of the most abundant muscular diseases in

children. Since the locus for this recessive muscular dystrophy is on the X chromo-

some, encoding the protein dystrophin, mainly boys are affected. Dystrophin is a

large cytoplasmic protein that links the cytoskeleton to a complex of plasma

membrane proteins, including alpha- and beta-dystroglycan that are connected to

the extracellular matrix. Besides binding to the actin cytoskeleton, dystrophin has

also been shown to interact with microtubules (Prins et al. 2009). Interestingly, the

dystrophin-deficient mdx mouse that is considered an animal model for Duchenne

muscular dystrophy shows disorganization of microtubules in skeletal muscle

(Percival et al. 2007). The grid pattern of orthogonally oriented microtubules is

lost in these mutant mice. At the same time, elements of the Golgi complex are

distributed abnormally. The organization of microtubules as well as the distribution

of Golgi elements can be largely restored by the expression of microdystrophin, a

designed form of dystrophin lacking most of the central rod domain and the

carboxy-terminus (Percival et al. 2007).

Besides showing differences in microtubule organization, muscle fibers of

Duchenne muscular dystrophy appear to exhibit another defect involving

microtubules: biopsies from patients display an increased percentage of myofibers

with incorrectly positioned nuclei. Instead of localizing along the periphery, nuclei

concentrate centrally within the fiber (Bell and Conen 1968). This unusual pattern

has been described in a variety of muscular diseases, also including Becker muscu-

lar dystrophy and Emery-Dreifuss muscular dystrophy (Folker and Baylies 2013).

However, the significance of nuclear positioning for pathogenesis remains unclear.

In recent years, the molecular mechanisms leading to defective distribution of

nuclei have been tested in mutant mice with phenotypes resembling Emery-

Dreifuss muscular dystrophy (Puckelwartz et al. 2009; Zhang et al. 2007a, 2010).

In these mice, exons of the syne-1 gene were removed, encoding various parts of the

carboxy-terminal region of the protein nesprin 1. As a consequence, these mice

showed defects in the positioning of synaptic and extra-synaptic nuclei in skeletal

muscle. Nesprins are a family of nuclear envelope proteins that provide a link

between the cytoplasm and the inner nuclear membrane. Four nesprin genes exist in

mammals, encoding proteins with a conserved carboxy-terminal “KASH” domain

that binds to “SUN” proteins in the perinuclear space, i.e., in the lumen between the

outer and inner nuclear membrane. The SUN proteins are transmembrane proteins

of the inner nuclear membrane and interact with the nuclear lamina. The link to the

cytoplasm is established by a nesprin transmembrane domain in the outer nuclear

membrane and an amino-terminal region projecting into the cytoplasm. The amino-

terminal regions of the four nesprins differ from each other, and numerous splice

variants exist for each nesprin gene. They encode a varying number of spectrin

repeats, besides calponin homology domains and other sequence features. The

calponin homology domains are involved in binding nesprins to the actin network

(Starr and Han 2002; Zhen et al. 2002; Padmakumar et al. 2004). Moreover, the

protein nesprin 3 forms a connection to the intermediate filament network, by
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binding to the linker protein plectin (Wilhelmsen et al. 2005). Finally, interactions

between microtubule-dependent motors and nesprins or nesprin-related KASH

proteins have been documented in a variety of experimental systems, including

muscular and nonmuscular cell types from vertebrates as well as Caenorhabditis
elegans (Malone et al. 2003; Meyerzon et al. 2009; Roux et al. 2009; Zhang

et al. 2009b; Zhou et al. 2009; Fridolfsson et al. 2010; Yu et al. 2011; Wilson and

Holzbaur 2012). A possible mechanism for nuclear positioning may involve

nesprins, binding directly or indirectly to microtubule motor proteins that drive

the translocation of nuclei along longitudinal arrays of microtubules along the

muscle fiber. Interestingly, synaptic nuclei accumulate significantly more nesprin

1 on the nuclear envelope than extra-synaptic nuclei (Apel et al. 2000), raising the

possibility that their clustering and retention at the neuromuscular junction requires

increased interactions between the nuclear envelope and microtubule motor

proteins. While it is unknown whether defects in the microtubule network or defects

in microtubule-dependent transport may be causally involved in the pathogenesis of

muscular diseases, it is clear that mutations in nesprin-encoding genes correlate

with different myopathies, such as Emery-Dreifuss muscular dystrophy or autoso-

mal recessive arthrogryposis (Zhang et al. 2007b; Wheeler et al. 2007; Attali

et al. 2009).

2.8 Conclusion

Microtubule organization in differentiating cell types is generally characterized by

a loss of microtubule anchoring to the centrosomal surface and by cell type-specific

remodeling of the microtubule network from various cytoplasmic and cortical sites.

It is unclear how this loss of centrosomal anchoring is regulated. It is possible that

upon differentiation, centrosomes maintain microtubule nucleation activity, but

that new microtubules are no longer firmly anchored to the pericentriolar material

or that they are actively disconnected from the centrosome by severing enzymes.

The resulting free minus ends may then permit translocation of these microtubules

to novel sites or may lead to increased polymer turnover and disappearance or

remodeling. Likely, proteins of the pericentriolar material may be lost from

centrosomes in various differentiating cell types, such as seen in muscle cells,

and as a consequence, centrosomal microtubule nucleation may be lost with time.

Moreover, it remains so far largely unknown how novel non-centrosomal microtu-

bule organization centers form. Strikingly, proteins that are part of the

pericentriolar material in undifferentiated cells, such as ninein, are now found

enriched at new microtubule-organizing centers, without centrioles being present.

Identifying mechanisms that lead to this relocalization and identifying “receptor”

proteins for the pericentriolar material at the sites of non-centrosomal microtubule

organization will be a challenge for future research activities. Finally, the notion of

a “centrosomal protein” will need to change: since proteins of the pericentriolar

material can equally be found at non-centrosomal locations upon differentiation,

they should be considered “microtubule-organizing proteins” in a broader sense.
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Organizational Properties
of the Pericentriolar Material 3
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Abstract

The centrosome is the major microtubule-organizing centre of animal cells. It

participates in a number of crucial cellular functions including cell motility,

intracellular transport, mitotic spindle assembly/positioning and cilia formation.

Centrosome is composed of pair of ninefold symmetric centrioles surrounded by

pericentriolar material, or PCM. PCM organization undergoes a series of dra-

matic changes in its organization and function as cells progress through the cell

cycle. Indeed, the rather small interphase centrosome increases dramatically in

size and microtubule nucleation capacity from interphase to mitosis, a process

referred to as centrosome maturation. Until very recently, the PCM was thought

to be largely amorphous. However, it has been elegantly demonstrated in several

super-resolution studies that the PCM is highly organized and that the higher-

order organizational properties are conserved from flies to humans. In this book

chapter, we review current knowledge on the organization and composition of

PCM in both interphase and mitosis and discuss how the centrosome landscape

is altered through post-translational modifications, mainly mitotic phosphoryla-

tion, during centrosome maturation.
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3.1 The PCM in Interphase

3.1.1 Organization of the Interphase PCM

One of the primary functions of a centriole is to serve as an anchor or docking site

for a large collection of proteins collectively called the pericentriolar material

(PCM). In early electron microscopy (EM) studies, the PCM appeared as a dark

electron-dense cloud from which microtubules originated (Gould and Borisy 1977;

Telzer and Rosenbaum 1979). It followed that one of the key roles of the PCM, in

interphase but more so in mitosis, was to organize the machinery necessary to

nucleate and anchor microtubules (Gould and Borisy 1977). In this chapter, we will

focus on the molecular architecture of the PCM, key proteins within the PCM and

the regulation of the PCM in both interphase and mitosis.

In recent years, a highly detailed structure of the centriole and its cartwheel has

emerged (Guichard et al. 2013; Kitagawa et al. 2011; van Breugel et al. 2011). In

particular, crystallographic studies of the Sas-6 protein from Chlamydomonas
reinhardtii and Caenorhabditis elegans have revealed the molecular basis of the

conserved ninefold symmetry of centrioles, and cryotomographic studies of the

centriole from Trichonympha have provided highly detailed 3D maps of the cart-

wheel, microtubule triplets and the linkages among them (Guichard et al. 2013;

Kitagawa et al. 2011; Leidel and G€onczy 2003; van Breugel et al. 2011). Similarly,

x-ray crystallography is being used to begin to address the intermolecular organi-

zation of key centriole structural and duplication proteins, including the STIL-

CENPJ interaction and the dimerization and binding of PLK4 to CEP192 (see

Table 3.1 for non-human homologues of proteins discussed throughout this chapter)

(Cottee et al. 2013; Hatzopoulos et al. 2013; Shimanovskaya et al. 2014). These

studies and the approaches used therein promise to yield a complete molecular

architecture of the centriole and a deeper understanding of its assembly in the

coming years (G€onczy 2012).

Immunofluorescence microscopy (IFM) has been central to advancing the field

of centrosome biology. Unlike EM, which cannot distinguish individual proteins in

a large electron-dense assembly, IFM allows comparative localization of known

proteins within a single cell. This technique has allowed identification of several

proteins contained within the PCM. Unfortunately, until recently, the distribution

and orientation of molecules within the PCM cloud remained unknown. According

to Abbe’s Law, wide-field microscopy is limited in axial resolution to approxi-

mately half the wavelength of the emitted light (d¼ λ/2NA, where NA is the lens’

numerical aperture and λ the wavelength of the light), and the emission wavelength

for conventional fluorophores ranges from 450 to 800 nm (for reviews, see Huang

et al. 2009, 2010; Yamanaka et al. 2014). In practical terms, any single-molecule

fluorescing at 525 nm (i.e. FITC) would appear to be an airy disc of diameter

~230 nm in an ideal microscope (N.A. 1.4 objective) (Huang et al. 2009, 2010;

Yamanaka et al. 2014). Centrioles are approximately 100 nm in diameter, and the

most tightly associated PCM surrounding them therefore appears as a single spot by

conventional IFM (see Fig. 3.1). One of the longest-standing questions in
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centrosome biology was whether or not the PCM was organized. Was it specifically

arranged, polarized and/or containing discrete domains, or was it an amorphous

cloud of interacting proteins glued to the centrioles? There had been some

indications that the PCM formed a scaffold and was organized around centrioles

as a ‘ring’ when viewed down the barrel (Dictenberg et al. 1998; Ou et al. 2004). As

will be discussed below, the fact that PCM components show defined recruitment

dependencies and regulation suggested ordered assembly. But the limitations of

conventional microscopy prevented further dissection of potential organization.

Advances in microscopy now allow IFM to surpass (or at least bypass) the

resolution limits of conventional microscopy (Huang et al. 2009, 2010;

Schermelleh et al. 2010; Yamanaka et al. 2014). These ‘super-resolution’ micro-

scopy methods include patterned light methods such as three-dimensional structured

illumination (3D-SIM) and stimulated emission depletion microscopy (STED) and

single-molecule excitation methods such as stochastic optical reconstruction micro-

scopy (STORM) and photoactivated localization microscopy (PALM) (Huang

et al. 2009). Of the various methods in use today, 3D-SIM is probably the best

commercialized system for being highly amenable to multicolour fluorescence

microscopy, while cutting the resolution limits of IFM in half (Gustafsson 2000;

Table 3.1 The HUGO nomenclature

HUGO

name Protein common names/alias (D, Drosophila; X, Xenopus)

PCNT Pericentrin, Drosophila pericentrin-like protein/D-PLP (D)

AKAP9 A-kinase-anchoring protein, AKAP450, GC-NAP, AKAP350

CDK5RAP2 CDK5 regulatory subunit-associated protein 2, CEP215, centrosomin/CNN (D)

CENPJ CPAP, centrosomal P4.1-associated protein, SAS-4 (D)

CEP152 Asterless/ASL (D)

NIN Ninein

PCM1 Pericentriolar material protein 1/PCM-1

CNTROB Centrosomal BRCA2-interacting protein/centrobin, NIP2

CEP192 SPD-2 (D)

PLK1 Polo-like kinase 1/Plk1, Polo (D), Plx1 (X)

STIL SCL/TAL1 interrupting locus

NINL Ninein-like protein

NEDD1 Neural precursor cell expressed developmentally downregulated protein

1, GCP-WD, Dgrip71WD (D)

AURKA Aurora kinase A

KIZ Kizuna

SSX2IP Synovial sarcoma X breakpoint 2 interacting protein

DCTN1 Dynactin 1, p150Glued (D)

TUBG1 γ-tubulin
ODF2 Outer dense fibre of sperm tails 2/hCenexin1

HUGO Gene Nomenclature Committee, http://www.genenames.org, was used for proteins

discussed in depth throughout this chapter

Above is a list of commonly used names and alias for each HUGO entry
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Fig. 3.1 Organization of the interphase PCM of human centrosomes. (a) Resolution difference

between conventional deconvolution microscopy and three-dimensional structured illumination

microscopy (3D-SIM). An interphase human cell labelled with DAPI (nucleus) and fluorescent

antibodies against pericentrin and Nedd1 is shown (left panel). The middle and right panels show
fourfold magnifications of the outlined centrosome region in cell as imaged in either

deconvolution (DM) or 3D-SIM (SIM) microscopy. Note that Nedd1 rings become resolved

only when imaged using 3D-SIM. (b) Diagrammatic representation of the PCM region

surrounding a centriole as a series of regions, indicated by dashed circles, each with an incre-

mental increase of 100 nm, in diameter beginning with 200 nm. Rings and diameter guides (left,
bottom) are drawn to scale. Protein names are given within the region they have been reported to

localize to (Lawo et al. 2012; Sonnen et al. 2012). PCTN and CEP152 have been reported to span

larger regions of the PCM, as indicated by their grey boxes. Protein locations in green are from

Lawo et al. (2012), and those in red are from Sonnen et al. (2012), with the red triangle indicating
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Huang et al. 2009, 2010; Yamanaka et al. 2014). This technological innovation

allows successful probing of the interphase PCM organization. In 2012, parallel

studies (of human and fruit fly interphase centrosomes) utilized super-resolution

IFM and antibodies targeting known epitopes within select PCM proteins (Fu and

Glover 2012; Lawo et al. 2012; Mennella et al. 2012; Sonnen et al. 2012). PCNT

(D-PLP in fruit flies; see below) was found to adopt an elongated conformation

spanning~ 200 nm, with the amino-terminal portion (hereafter N or NTD for amino-

terminal domain) of the protein aimed away from the centrioles (Fu and Glover 2012;

Lawo et al. 2012; Mennella et al. 2012; Sonnen et al. 2012). In humans, CDK5RAP2

and CEP152 appeared polarized with regard to the centrioles, although over shorter

spans (Lawo et al. 2012; Sonnen et al. 2012). The other PCM proteins examined in

these studies (CEP192, CENPJ, CEP120 and NEDD1 (human)) each occupied

distinct radii around the centrioles, as indicated by similar localizations of antibodies

targeting opposite ends of each protein (Lawo et al. 2012; Mennella et al. 2012;

Sonnen et al. 2012). In G1, about half of cells have only one centriole with a complete

shell of PCM, but by G2 both mother centrioles are surrounded by PCM rings with

small gaps corresponding to the sites where daughter procentrioles have assembled

(Lawo et al. 2012; Mennella et al. 2012). From this work a picture emerged of the

interphase PCM as a network of proteins organized in discrete rings by large scaffold

proteins. A complete schematic of the human PCM proteins was measured, and their

reported localizations are shown in Fig. 3.1.

3.1.2 The PCM at the Centriole Wall

In addition to its function in centriole duplication, CENPJ (Sas-4 in Drosophila)
may have an important role in PCM recruitment (Gopalakrishnan et al. 2011;

Kirkham et al. 2003; Leidel and G€onczy 2003; Pelletier et al. 2006). CENPJ

localizes to the centriole barrel, but may also have a distinct population within

the outer portion of the PCM (Kleylein-Sohn et al. 2007; Lawo et al. 2012; Sonnen

et al. 2012). Patient mutations in CENPJ have led to its classification as an MCPH

protein (MCPH6) (Bond et al. 2005; Kaindl 2014; Leal et al. 2003). Notably, a

CENPJ-interacting protein called STIL is also an MCPH protein (MCPH7)

(Arquint and Nigg 2014; Bond et al. 2005; Kaindl 2014; Kraemer et al. 2011;

Kumar et al. 2009; Leal et al. 2003). Initially, human CENPJ was identified as a

centrosomal P4.1-associated protein (CPAP) interacting with the 4.1R protein and

TUBG1 (γ-tubulin) (Hung et al. 2000). Human CENPJ has a number of critical

�

Fig. 3.1 (continued) appendages (distal and subdistal). (c) Table of reported diameters from Lawo

et al. (2012) and Sonnen et al. (2012). Note that Lawo et al. (2012) used the outer edge of the

protein toroid to determine the diameter, whereas Sonnen et al. (2012) used max intensity to

determine the diameters. For proteins where multiple antibodies were used, maximal ranges are

given. For some proteins from Sonnen et al. (2012), measurements were made on mother (m) and
daughter (d ) centrioles as indicated
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interactions with centriole assembly proteins including STIL, SASS6, CEP135,

CEP120 and CNTROB, making it a key organizer of centriole assembly proteins

and regulator of centriole length (Comartin et al. 2013; Lin et al. 2013a; Tang

et al. 2011). Sas-4 in C. elegans is also required for centriole duplication, but in

cells with partial depletion of Sas-4, defective centrioles organized less PCM

(Kirkham et al. 2003). Accordingly, recent evidence suggests that in Drosophila,
Sas-4 may function in recruitment of PCM components and that Sas-4 is present in

the cytoplasm as well as at the centrosomes in vivo (Gopalakrishnan et al. 2011).

Sas-4 appears to participate in multiple cytoplasmic complexes, including one

called the ‘S-CAP’ (Sas-4-CNN-ASL-D-PLP) composed of PCM proteins, another

that includes the components of the γ-tubulin small complex (γ-TuSC) (Grip84,
Grip91) and finally one that includes all the components of the γ-tubulin ring

complex (γ-TuRC) (Grip128, Grip163, Grip75, along with Grip84 and Grip91)

(Gopalakrishnan et al. 2012, 2011) (more information on γ-tubulin and its role in

microtubule nucleation can be found in the Chap. 4 by Sánchez-Huertas, Freixo and

Lüders).

When Sas-4 is overexpressed, acentriolar cytoplasmic foci form that include

ASL and D-PLP, and cytoplasmic portions of sucrose gradients from these cells

show a unique set of fractions that contain Sas-4, CNN, ASL and CP-190 that are

not observed in control cells (Gopalakrishnan et al. 2011). This suggests that Sas-4

can recruit CNN, D-PLP, ASL and CP-190 to cytoplasmic foci or aggregates

(Gopalakrishnan et al. 2011). The authors further show that deleting the tubulin-

binding PN2-3 domain of Sas-4 removes the interactions with CNN, D-PLP and

ASL but not CP-190 or TUBG1 (Gopalakrishnan et al. 2011). Most convincingly,

when purified salt-stripped centrosomes (lacking CNN, ASL, CP-190 and Sas-4)

are combined with a purified recombinant fragment of Sas-4 (missing the first

90 amino acids) and recombinant CNN and ASL, both CNN and ASL along with

the Sas-4 fragment become bound to salt-stripped centrosomes (Gopalakrishnan

et al. 2012). When CNN and ASL alone are mixed with these centrosomes, this

effect is not observed, indicating that the Sas-4 fragments are tethering CNN and

ASL to the naked centrioles in vitro (Gopalakrishnan et al. 2011). Thus, in Droso-
phila at least, Sas-4 can ‘deliver’ CNN (CDK5RAP2) and ASL (Cep152) to

centrioles independent of a role in centriole assembly.

Fine-mapping and crystallographic studies of the interactions between CENPJ

and a variety of interacting proteins provide the basis for two recent predictions of

the PCM organization immediately surrounding centrioles (Hatzopoulos

et al. 2013; Leidel and G€onczy 2003; Lin et al. 2013a). Both models place the

CENPJ CTD alongside CEP135 and the NTD along the centriolar microtubules,

with one model predicting CENPJ NTD arranged parallel to the cartwheel spokes,

the other model predicting CENPJ oriented parallel to the triplet microtubule

(Hatzopoulos et al. 2013; Lin et al. 2013a). STIL forms a complex with CENPJ

and hsSAS-6 and is required for their localization to procentrioles (Tang

et al. 2011). Recent evidence suggests that RBM14 competitively binds STIL to

prevent premature STIL-CENPJ interaction and block ectopic centriole assembly

(Shiratsuchi et al. 2014). The crystal structures of the CENPJ conserved glycine-
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rich CTD (called the G-box or TCP) from Danio rerio have been reported, along

with co-crystal structures with the CENPJ-interacting domain of STIL (Cottee

et al. 2013; Hatzopoulos et al. 2013). The G-box of CENPJ forms an extended

β-sheet that can multimerize into long fibrils in vitro and act as binding sites for a

conserved domain within STIL (Cottee et al. 2013; Hatzopoulos et al. 2013). These

studies led to the suggestion that CENPJ forms polymers along the centriolar axis

through its G-box domain, which would be consistent with the predicted interaction

of CEP135 with the CTD of CENPJ (Hatzopoulos et al. 2013; Lin et al. 2013a).

CEP120 is another CENPJ-interacting centriole-associated protein that binds

microtubules (Comartin et al. 2013; Lin et al. 2013b; Mahjoub et al. 2010; Xie

et al. 2007). CEP120 occupies a domain very near the centriole barrel in both EM

and super-resolution IFM studies (Comartin et al. 2013; Lawo et al. 2012; Mahjoub

et al. 2010). CEP120 interacts with microtubules via its NTD (residues 1–209), but

also dimerizes and localizes to the centrosome via its C-terminal coiled-coil domain

(731–986 and 700–988, respectively) and interacts with CENPJ via a domain

between them (residues 416–730) (Lin et al. 2013b; Mahjoub et al. 2010). Again,

the C-terminal domain of CENPJ (residues 895–1070) mediates the binding of

CEP120 to this protein (Lin et al. 2013b). Structurally, this suggests that CEP120

dimers are located with their CTD near CENPJ/CEP135, although the position and

orientation of its N-terminal microtubule-binding domain are not clear. Function-

ally, CEP120 cooperates with CENPJ to drive centriole elongation when

overexpressed (Comartin et al. 2013; Lin et al. 2013b). Consistent with the shared

function in centriole elongation, CENPJ-induced centriole elongation is also

blocked by depletion of CEP120 (Comartin et al. 2013; Lin et al. 2013b).

CEP120 preferentially localizes to procentrioles, and a proportion of CEP120

undergoes exchange between the cytoplasm and centrioles (Mahjoub et al. 2010).

The similarity in functions of CEP120 and CENPJ, as well as their direct interac-

tion, raises the intriguing but untested possibility that CEP120 might also help

deliver and tether other PCM components to the centrioles.

A second procentriole-enriched protein called CNTROB (centrosomal BRCA2-

interacting protein) was identified in 2005, and like the other CENPJ-interacting

proteins, CNTROB is required for centriole duplication (Zou 2005). Like CENPJ

and CEP120, CNTROB binds tubulin in vivo and in vitro, through its C-terminal

region (residues 765–903) (Gudi et al. 2011). When overexpressed, the tubulin-

binding domain of CNTROB displaces native CNTROB from centrioles and

destabilizes the existing centrioles (Gudi et al. 2011). CNTROB interacts with

CEP152, and RNAi of CNTROB blocks CENPJ recruitment to centrosomes but

not vice versa (Gudi et al. 2011, 2014). Like CEP120, CNTROB is required for

CENPJ-induced centriole elongation, as pre-depletion of CNTROB prevents

overexpressed CENPJ from localizing to centrosomes (Gudi et al. 2014). Remark-

ably, when either the CENPJ-binding or CEP152-binding domains of CNTROB

(residues 183–364 and 1–364, respectively) are overexpressed, CENPJ is removed

from both mother and daughter centrioles, consistent with either competitive

binding of CENPJ under dynamic exchange or competitive displacement of a

complex of CNTROB-CENPJ from centrioles via competition at the CEP152
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binding site (Gudi et al. 2014). Regardless, the fact that CNTROB is required for

CENPJ localization and retention at centrioles suggests that CNTROB may also

share a role in PCM recruitment and anchoring at centrosomes (Gudi et al. 2014).

CEP152 is required for CDK5RAP2, CNTROB and CENPJ recruitment to

centrosomes, and CEP152 may cooperate with CEP192 to recruit the kinase

PLK4 (Firat-Karalar et al. 2014; Guernsey et al. 2010; Habedanck et al. 2005;

Kaindl 2014; Kim et al. 2013; Kleylein-Sohn et al. 2007; Sonnen et al. 2013).

CEP152 depletion results in over-accumulation of PLK4, whereas co-depletion of

CEP192 and CEP152 results in loss of PLK4 from centrosomes to a degree greater

than CEP192 depletion alone (Kim et al. 2013; Sonnen et al. 2013). CEP192

interacts with CEP152 and appears to be partially required for the localization of

CEP152 and PLK4 to the centrosome (Sonnen et al. 2013). Finally, the orientation

of CEP152 within the PCM is similar to PCNT (CTD near the centriole, NTD

extended further into the PCM), suggesting that it adopts an extended conformation

(Sonnen et al. 2012).

3.1.3 Large Scaffolds of the Interphase PCM

One of the most important and best studied PCM proteins is PCNT, a coiled-coil

domain-containing protein with two isoforms (~378 kDa and ~356 kDa) that

localizes to the centrosome (Delaval and Doxsey 2010; Doxsey et al. 1994).

PCNT forms the most elongated scaffold yet found in the interphase PCM, as

detected by the differences in localization of antibodies targeting epitope sequences

within the N-terminal or carboxy-terminal (hereafter C or CTD) portions of PCNT

(Lawo et al. 2012; Mennella et al. 2012). Many proteins have been identified as

PCNT-interacting partners (reviewed in Delaval and Doxsey (2010)). The list of

proteins includes PLK1, PCM1, DISC1, Chk1, PKA, PCKβII, BCR-ABL, IFT,
PC2, NEK2, AKAP-450, CDK5RAP2, calmodulin and the γ-TuRC components

TUBG1 and GCP2 and GCP3 (see Delaval and Doxsey 2010; Lee and Rhee 2011;

Li et al. 2001; Zimmerman et al. 2004). PCNT has been implicated in a number of

diseases (Delaval and Doxsey 2010). Chiefly, mutations in the PCNT gene are

associated with Majewski microcephalic osteodysplastic primordial dwarfism type

2 (MOPDII) and Seckel syndrome (Griffith et al. 2008; Rauch et al. 2008). Addi-

tionally, PCNT is implicated in multiple psychiatric disorders through its require-

ment for the localization of DISC1 (disrupted in schizophrenia gene 1) to the

centrosomes (Delaval and Doxsey 2010; Miyoshi et al. 2004). Recent work has

revealed a novel role for PCNT as a possible negative regulator of microtubule

nucleation from interphase centrosomes (Lerit and Rusan 2013; O’Rourke

et al. 2014). In human interphase cells depleted of PCNT, the number of

microtubules grown from centrosomes following cold shock is increased, and in

interphase Drosophila neuroblasts (NBs), the inactive centrosome has higher levels

of D-PLP (Lerit and Rusan 2013; O’Rourke et al. 2014). Depletion of either

CEP192 or PCNT leads to increased centrosomal levels of the other, suggesting

binding site competition or negative regulation (O’Rourke et al. 2014; Zhu
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et al. 2008). In interphase NBs, D-PLP negatively correlates with Spd-2, TUBG1

and Polo kinase recruitment to centrosomes, and removal of D-PLP results in

localization of TUBG1 and Polo to both centrosomes (Lerit and Rusan 2013).

Thus, it is tempting to speculate that in the case of Drosophila NBs, the prevention

of Polo recruitment might be mediated through D-PLP inhibition of Spd-2

(Cep192) localization in interphase, similar to the negative regulation of CEP192

and microtubule nucleation by PCNT in interphase human cells (Lerit and Rusan

2013; O’Rourke et al. 2014). This recent data also suggests that CEP192 may play a

carefully regulated role in interphase centrosome microtubule nucleation

(O’Rourke et al. 2014). As will be discussed below, CEP192 is a major regulator

of PLK1 and TUBG1 recruitment to mitotic centrosomes, and in stark contrast to

interphase, phosphorylated mitotic PCNT appears to be required for CEP192

localization to centrioles in mitosis (Joukov et al. 2014; Lee and Rhee 2011).

AKAP9 (for ‘A-kinase-anchoring protein’) encodes a coiled-coil PCM protein

even larger than PCNT (Schmidt et al. 1999; Takahashi et al. 1999; Witczak

et al. 1999). The largest isoform (of 6) has a molecular weight of ~454 kDa

(Takahashi et al. 1999; Witczak et al. 1999). Two studies initially described

AKAP9 as being localized to the centrosome and Golgi apparatus (CG-NAP

comes from centrosome and Golgi-localized PKN-associated protein) (Takahashi

et al. 1999; Witczak et al. 1999). Both studies found AKAP9 while searching for

interactions of protein kinases (Takahashi et al. 1999; Witczak et al. 1999). AKAP9

has since been shown to interact with protein kinase A (PKA) type II regulatory

subunit RIIα, as well as PKN, CK1δ, CK1ε and the protein phosphatases PP2A and

PP1 (Keryer et al. 2003b; Sillibourne et al. 2002; Takahashi et al. 1999; Witczak

et al. 1999). This implicates AKAP9 as an important centrosomal docking site for

regulatory kinases and phosphatases. The AKAP9 protein shares some homology to

PCNT, and interestingly the two proteins interact (Takahashi et al. 2002). AKAP9

also requires a protein called CEP72 for proper localization to both interphase and

mitotic centrosomes (Oshimori et al. 2009).

The C-terminal region of AKAP9 can competitively displace full-length AKAP9

and can also displace PCNT from the centrosome (Gillingham and Munro 2000;

Keryer et al. 2003b). Both AKAP9 and PCNT harbour a PACT domain (PCNT-

AKAP9 centrosome targeting) (Gillingham and Munro 2000). PACT domains are

critical for both PCNT and AKAP9 localization to PCM and are now regularly used

as fusions to force other peptides to localize to the centrosome (discussed below)

(Gillingham and Munro 2000). That the C-terminal region of AKAP9 can displace

PCNT suggests that the binding sites of PCNT and AKAP9 at centrosomes could be

shared and limited and that there is dynamic exchange with cytoplasmic pools of

these proteins in interphase (Gillingham and Munro 2000). Interestingly, the

interacting partner of the PACT domain at the centrosome that acts to anchor

these PCM proteins is unknown, and how PCNT interacts with the centriolar wall

is an important open question (Leidel and G€onczy 2003). The structure of AKAP9

within the PCM is also unknown, as it was not included in recent super-resolution

mapping studies of PCM organization. However, it is tempting to speculate that it
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might orient itself similar to PCNT given their shared PACT domains and adopt a

similarly extended conformation.

The third large coiled-coil scaffold of the PCM is CDK5RAP2/CEP215/CNN.

CDK5RAP2 was identified as an interacting partner of CDK5 regulating kinase I

(Nagase et al. 2000). The longest of the four splice variants is 215 kDa, and it

contains multiple domains, including two ‘CNN motif’ domains termed CM1 and

CM2, as well as two SMC (structural maintenance of chromosomes) domains

(Kraemer et al. 2011; Wang et al. 2010). The CM1 domain is involved in the

interactions with γ-TuRCs, and the CM2 domain is involved in interactions with

PCNT, the Golgi network and calmodulin (Fong et al. 2008; Kraemer et al. 2011;

Wang et al. 2010). In addition to these domains, EB1 and CDK5 regulatory kinase I

interaction domains have been identified within other regions of the protein (Ching

et al. 2000; Fong et al. 2009; Kraemer et al. 2011). Like PCNT and AKAP9,

CDK5RAP2 is a coiled-coil domain-containing protein with a variety of binding

partners and cellular function. Like AKAP9, CDK5RAP2 is localized to both the

Golgi (a non-centrosomal microtubule-organizing organelle) and the centrosome

(Rivero et al. 2009; Wang et al. 2010). CDK5RAP2 co-immunoprecipitates

(co-IPs) with PCNT and AKAP9 as a complex (Kraemer et al. 2011; Wang

et al. 2010). When either PCNT or CDK5RAP2 is overexpressed, both proteins

are enriched around interphase centrosomes (Fong et al. 2008; Lawo et al. 2012). In

addition to interactions with PCNT and AKAP9, CDK5RAP2 also interacts with

CEP152 (discussed later) and is dependent on CEP152 for its localization to the

PCM (Firat-Karalar et al. 2014). Depletion of CEP192 also leads to reduction of

CDK5RAP2 at interphase centrosomes, suggesting that CEP192 may also be

important for CDK5RAP2 localization (O’Rourke et al. 2014). CDK5RAP2

mutations have been identified in patients with primary autosomal recessive micro-

cephaly (MCPH), and CDK5RAP2 is also referred to as MCPH3 (Bond et al. 2005;

Kaindl 2014; Kraemer et al. 2011; Moynihan et al. 2000). Consistent with their

roles in microcephaly, the loss of CDK5RAP2 or PCNT leads to depletion of neural

progenitor cells in mouse embryos (Buchman et al. 2010).

3.1.4 Regulation of Interphase PCM Assembly

The size of the interphase PCM at Drosophila centrosomes appears to be controlled

by the rate of incorporation of CNN (the CDK5RAP2 homologue) (Conduit

et al. 2010). In CNN-null flies, GFP-CNN incorporation into the PCM is faster

when two copies of the gene are introduced than when a single copy is present

(Conduit et al. 2010). Along with faster incorporation, the total amount of PCM is

also increased when two copies of the gene are present (Conduit et al. 2010). CNN

appears to first localize to the wall of the centriole and then to migrate into the

peripheral PCM (Conduit et al. 2010). Two-channel live-imaging experiments

show that GFP-CNN recovers first at the centrioles and then the protein migrates

outwards (Conduit et al. 2010). CNN interacts with DSpd-2(CEP192), ASL

(CEP152), D-PLP (PCNT) and DSas-4 (CENPJ) by co-IP. Of these, ASL and
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DSpd-2 are the strongest candidates for centriolar docking sites for CNN, since

injection of ASL or DSpd-2 antibodies drastically reduced GFP-CNN recruitment

compared to D-PLP or DSas-4 antibodies (Conduit et al. 2010). CDK5RAP2 may

also play a key role in human interphase PCM size regulation, as overexpression of

either CDK5RAP2 or PCNT in interphase results in an expansion of PCM beyond

typical interphase rings that is reminiscent of mitosis and enrichment of both

proteins along with TUBG1 and NEDD1 around the centrosome (Lawo

et al. 2012). Notably, CEP192 does not get additionally recruited by CDK5RAP2

or PCNT overexpression, nor does CEP192 overexpression cause enlargement of

interphase PCM (Lawo et al. 2012). As will be discussed below, CEP192 is

carefully regulated and critical for mitotic PCM function.

Gopalakrishnan and colleagues show that the nucleotide binding state of the α/β
tubulin dimers bound to Sas-4 played a critical regulatory role in delivery of PCM

components to centrosomes. When a Sas-4 mutant that cannot bind tubulin was

expressed in cells, centrosomes became larger and contained additional CNN

(Gopalakrishnan et al. 2012). β-tubulin is a GTPase; in the cytoplasm, the predomi-

nant form of β-tubulin is GTP-bound tubulin (David-Pfeuty et al. 1977; Desai and

Mitchison 1997; Kobayashi 1975). When centrosome-free cytoplasmic extracts

were incubated with GDP before immunoprecipitation with Sas-4 antibodies, the

amounts of other proteins in complex with Sas-4 increased, whereas incubation

with the non-hydrolysable GTP analogue (GMPCPP) drastically destabilized these

complexes (Gopalakrishnan et al. 2012). The NTD (amino acids 1–190) of Sas-4 is

able to act as a GTPase-activating protein (GAP) for tubulin, catalysing the

hydrolysis of GTP into GDP and remaining tightly bound to GDP-tubulin

(Gopalakrishnan et al. 2012). Incubation of Sas-4 complexes with GMPCPP and

centrosomes results in delivery and stable association of CNN and ASL with

centrosomes, but release of Sas-4 and tubulin (Gopalakrishnan et al. 2012). Sas-4

encounters GDP-tubulin at the G2/M transition, causing it to form stable S-CAP

complexes for delivery to the centrosome which acts like a guanine nucleotide

exchange factor for tubulin, leading to the release of Sas-4 from the centrosome

where the key PCM cargo is retained (Gopalakrishnan et al. 2011, 2012). Therefore,

the PN2-3 domain of Sas-4/CENPJ might function as a regulatory domain for

Sas-4, but when overexpressed, it can bind GTP-tubulin dimers and catalyse

hydrolysis to create GDP-tubulin, depleting the pool of available tubulin for

polymerization. Consistent with this, highly overexpressed CENPJ forms

aggregates that contain tubulin, but not microtubule polymers (Hsu et al. 2008).

3.1.5 Interphase Microtubule Nucleation and Anchoring
in the PCM

In many cell types, the interphase centrosomes organize the microtubule cyto-

skeleton. Microtubules are nucleated from a complex called the γ-tubulin ring

complex (γ-TuRC) as described elsewhere in this book. Several PCM proteins

have been shown to bind γ-TuRCs or TUBG1 and to be important for the interphase
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microtubule cytoskeleton. NIN is a 245 kDa protein containing multiple coiled

coils, a guanine nucleotide binding site, an EF-hand and four leucine zipper

domains (Bouckson-Castaing et al. 1996). Mutations in NIN (Ninein) have been

identified in microcephalic primordial dwarfism (MPD) (Dauber et al. 2012). By

immuno-EM, NIN localizes to the PCM at sites of microtubule nucleation, as well

as the subdistal appendages of the mother centriole and the proximal ends of both

centrioles (Bouckson-Castaing et al. 1996; Mogensen et al. 2000). Overexpressed

NIN localizes to the PCM and forms an extended focus that strongly recruits

γ-TuRCs and dynein-DCTN1 (DCTN1) (Casenghi 2005). Also, NIN

co-immunoprecipitates with TUBG1 and several dynactin subunits (Casenghi

2005; Delgehyr 2005). The proper recruitment of NIN requires DCTN1, and both

DCTN1 and NIN are dependent on Kif3a for their localization, suggesting that

Kif3a is an upstream recruitment factor important for the assembly of mother

centriole appendages (Kodani et al. 2013). NIN may be recruited to the centrosome

via centriolar satellites, which are dynamic macromolecular complexes that include

multiple proteins important for centrosome and cilia assembly and function (Bärenz

et al. 2011; Kubo 2003; Kubo et al. 1999; L€offler et al. 2012; Prosser et al. 2009;
Tollenaere et al. 2015). Loss of NIN from centrosomes results in loss of interphase

microtubule organization capability at the centrosome (Dammermann 2002). NIN

fragments consisting of the NTD (residues 1–373) and the central coiled-coil region

(residues 373–1874) do not localize to the centrosome; however, the CTD (residues

1874–2113) is sufficient for localization to both centrioles equally and apparently

displaces the endogenous NIN and TUBG1 from the centrosomes (Delgehyr 2005).

When a fusion of the NTD and CTD fragments (omitting residues 373–1874) is

expressed, this NIN construct restores preferential labelling of the mother centrioles

(Delgehyr 2005). More interestingly, the NþC fusion NIN is capable of facilitating

microtubule nucleation at centrosomes, but not retention of microtubules (Delgehyr

2005). This leads to the conclusion that NIN has a dual role at the centrosome, in

facilitating microtubule nucleation by γ-TuRC recruitment through its NTD and

then in maintaining anchorage of the microtubules at the centrosomes (Delgehyr

2005). Although the regulation of NIN is not well studied, the N-terminal portion of

NIN is conserved within another protein, NINL (Ninein-like protein).

NINL was identified in a yeast two-hybrid screen for PLK1 targets (Casenghi

et al. 2003). It shares 37 % identity between its N-terminal half and the N-terminal

end of NIN, a region that includes the EF-hand domain, though the C-terminal

portions of each protein are unrelated besides having coiled coils (Casenghi

et al. 2003). NINL is found to localize to interphase centrosomes and by co-IP to

interact with PLK1, TUBG1 and GCP4 (Casenghi et al. 2003). When

overexpressed, large assemblies of NINL form at the centrosome that are capable

of nucleating microtubule asters following release from cold treatment in cells, and

purified NINL mixed with Xenopus egg extracts is capable of nucleating

microtubules (Casenghi et al. 2003). The N-terminal portion of NINL, but not the

C-terminal portion, is able to nucleate microtubules in the cytoplasm when

overexpressed, indicating that the microtubule nucleation activity resides there

(Casenghi et al. 2003). Remarkably, co-expression of a constitutively activated
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mutant PLK1 (PLK1-T210D) that functionally mimics mitotic PLK1 with NINL

leads to fragmentation of these centrosomal assemblies (Casenghi et al. 2003). In

U-2 OS cells, PLK1-T210D (constitutively active) expression completely removes

native NINL from interphase centrosomes, whereas wild-type PLK1 expression

does not (Casenghi et al. 2003). Consistent with this, NINL is lost from

centrosomes at the onset of maturation and absent throughout mitosis (Casenghi

et al. 2003).

CDK5RAP2 is important for the localization of TUBG1 to the interphase

centrosome, and depletion of CDK5RAP2 leads to loss of TUBG1 and failure of

microtubule nucleation at centrosomes following nocodazole washout (Fong

et al. 2008). The depletion of CDK5RAP2 in interphase does not displace PCNT,

consistent with the idea that in interphase PCNT is not a primary TUBG1 binding

site at the centrosome (Fong et al. 2008; O’Rourke et al. 2014; Zimmerman

et al. 2004). AKAP9 is the other scaffold protein that appears to play a role in

interphase microtubule nucleation at the centrosomes (Oshimori et al. 2009;

Takahashi et al. 2002). AKAP9 binds γ-TuRC subunits GPC2 and possibly

GPC3, although it is unclear which isoform of AKAP9 is required for γ-TuRC
localization to centrosomes (Keryer et al. 2003a; Takahashi et al. 2002). When

CEP72 is depleted in interphase, AKAP9 is lost from centrosomes, along with a

significant proportion of TUBG1 (Oshimori et al. 2009). Centrosomes depleted of

CEP72 cannot nucleate microtubule asters following washout of nocodazole

(Oshimori et al. 2009). The depletion of AKAP9 also results in centrosomes that

cannot nucleate microtubules following nocodazole washout; however, AKAP9

depletion does not remove TUBG1 from these centrosomes (Keryer et al. 2003a;

Oshimori et al. 2009). Thus, CEP72 is critical for both TUBG1 and AKAP9

recruitment to interphase PCM, while CDK5RAP2 plays a key role in TUBG1

recruitment, and AKAP9 is important for the microtubule nucleating ability of

interphase centrosomes downstream of TUBG1 recruitment (Fong et al. 2008;

Oshimori et al. 2009).

3.2 The PCM in Mitosis

3.2.1 Organization of the Mitotic PCM

The demand on mitotic centrosomes to nucleate and anchor microtubules mandates

an increase in the size of the PCM leading up to mitosis. There are microtubule

nucleation events within the mitotic spindle, and at the chromosomes themselves,

but the primary sources of microtubule nucleation for the mitotic spindle are the

centrosomes (Lüders and Stearns 2007; Piehl et al. 2004) (for details see the Chap. 1

by Meunier and Vernos). Centrosome maturation refers to the process wherein the

PCM surrounding centrioles expands at the onset of mitosis to facilitate increased

microtubule nucleation and anchoring (Piehl et al. 2004). This process is carefully

regulated, and many PCM proteins have been shown to be critical for proper

3 Organizational Properties of the Pericentriolar Material 55

http://dx.doi.org/10.1007/978-3-7091-1903-7_1


recruitment or anchoring of the γ-TuRCs, and consequently spindle microtubules,

in mitosis.

The proteins of the interphase PCM are organized within distinct domains

around the centrioles (Fu and Glover 2012; Lawo et al. 2012; Mennella

et al. 2012; Sonnen et al. 2012). In mitosis, although the expanded PCM no longer

forms discrete rings, careful correlation analyses indicate that there are persistent

patterns of organization among the proteins (Lawo et al. 2012). These organization

patterns persist even when the PCM is fragmented artificially by depletion of

HAUS6 or microtubule nucleation factors or when cells are treated with nocodazole

to depolymerize microtubules (Lawo et al. 2009; 2012). Thus, like interphase PCM,

mitotic PCM is highly organized spatially, and this organization is maintained even

without microtubules. In the following section, we describe the roles of select

proteins in mitotic PCM assembly, as well as the regulation of centrosome matura-

tion by multiple kinases, most notably PLK1. The kinases phosphorylating key

PCM proteins, and the recruitment dependencies of key PCM proteins, are

summarized in Table 3.2.

3.2.2 The Regulation of Mitotic PCM Expansion

When the human polo-like kinase 1 (PLK1) was first characterized, it was found to

be localized to the centrosomes through interphase and G2 and then focused on the

mitotic centrosomes in metaphase, until disappearing from centrosomes and

appearing in the central spindle region in anaphase cells and later the midbody

through the completion of cytokinesis (Golsteyn et al. 1994, 1995; Lane and Nigg

1996). When antibodies against PLK1 are injected into HeLa cells, centrosome

separation, centrosome maturation and ultimately mitotic spindle formation are

blocked (Golsteyn et al. 1994, 1995; Lane and Nigg 1996). Consistent with a

critical mitotic role, PLK1 reaches peak levels and is activated in mitotically

arrested cells (Golsteyn et al. 1994, 1995). PLK1 preferentially binds substrates

that have been primed by phosphorylation, notably by Cdk1-cyclin B or NEK2

(Barr et al. 2004; Elia et al. 2003; Elia 2003; Jeong et al. 2007; Rapley et al. 2005;

Zitouni et al. 2014). PLK1 interacts with a protein called ODF2 whose depletion

results in reduced recruitment of PLK1 and NIN to centrosomes and serious mitotic

defects (Soung et al. 2006; 2009). PCM1 is required for both PLK1 and NIN

transport to centrosomes, thus it is possible that ODF2 is also involved in satellite

assembly or delivery. A variety of PLK1 substrates have been identified in mitosis,

both at the centrosome and elsewhere (for reviews, see Barr et al. 2004; Petronczki

et al. 2008; Zitouni et al. 2014). Notably, PCM maturation requires PLK1, as

depletion of the kinase results in reduced levels of PCNT, CDK5RAP2 and

CEP192 at mitotic centrosomes (Haren et al. 2009). PLK1 itself is under cell

cycle regulation (reviewed in Zitouni et al. (2014)). Early work in Xenopus
identified an activating phosphorylation of PLK1 at T201 (human residue threonine

210), and a mutation of T201D creates a constitutively active PLK1 (Qian

et al. 1999). It is also known that the PBD domain of PLK1, when expressed
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alone, can bind the kinase domain of PLK1, except when T210 is mutated to mimic

phosphorylation (T210D) (Jang et al. 2002). The interaction of the PBD fragment

with PLK1 inhibits the kinase activity of the full-length protein (Jang et al. 2002).

This leads to the simple model that PLK1 is auto-inhibitory throughout interphase,

but its activation by phosphorylation at T210 corresponds to loss of this auto-

inhibition (Jang et al. 2002; Seki et al. 2008b). The mechanism of PLK1’s

Table 3.2 Known recruitment dependencies and regulatory kinases for PCM proteins discussed

within this chapter

Protein

Required for PCM

recruitment of

Phosphorylated

by

Evidence of

γ-TuRC or

γ-tub
interaction

Required for

γ-tub
recruitment or

anchoring

PCNT DISC1,

CDK5RAP2,

CEP192, NEDD1,

AURKA,

PLK1 Y Y

AKAP9 RAN, PKA Y Y

CDK5RAP2 DCTN1, PCNT,

AKAP9

y Y

CENPJ Cnn(D),Asl (D),
D-PLP(D)

N N

CEP72 AKAP9, KIZ N Y

CEP152 CDK5RAP2,

CNTROB, CENPJ

N N

KIF3A NIN, DCTN1 N N

NIN Y Y

PCM1 NIN, PCNT,CETN,

PLK1, NEK2,

SSX2IP

CDK1, PLK1 N N

CNTROB CENPJ NEK2, PLK1 N N

CEP192 CEP152, NEDD1,

PCNT, AURKA

Y Y

STIL N N

CEP120 SPICE1,CENPJ,

CEP135

N N

PLK1 CEP192, PCNT,

CDK5RAP2,

ODF2,

AURKA N Y

ODF2 NIN, PLK1 N Y

NEDD1 CDK1, PLK1,

NEK9

Y Y

KIZ PLK1 Y N

NINL CDK1, NEK2,

PLK1

Y N

SSX2IP Y Y

See text for references and Table 3.1 for equivalent gene names in other species
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activation in vivo has since been found to involve the mitotic AURKA kinase and a

protein called BORA (Seki et al. 2008b). BORA was identified as giving a mitotic

delay when depleted in an siRNA screen of proteins enriched in G2 (Seki

et al. 2008a, b). BORA interacts with PLK1 by reciprocal co-IP, and when

BORA is depleted, PLK1 phosphorylation at T210 is disrupted (Seki

et al. 2008b). Conversely, overexpression of BORA leads to increased PLK1-

T210 phosphorylation in asynchronous cells, which is inhibited by treatment with

a small-molecule AURKA inhibitor (Seki et al. 2008b). PLK1 kinase phosphoryla-

tion at T210 and its activity in vitro are increased by a combination of BORA and

AURKA addition, and AURKA depletion in vivo leads to loss of PLK1 phosphory-

lation at T210 (Seki et al. 2008b). Overall, the model is that PLK1 binds BORA in

G2, which induces a conformational change in PLK1 to allow AURKA activation at

T210 (Seki et al. 2008b). Once PLK1 becomes activated at T210, it no longer

requires BORA, and BORA becomes a target for PLK1 phosphorylation and

SCF-β-TrCP degradation to allow the onset of anaphase (Seki et al. 2008a).

NINL is an interphase centrosomal protein that disappears from centrosomes

during mitosis. PLK1 phosphorylates the N-terminal half of NINL, which has eight

candidate phosphorylation sites (Casenghi et al. 2003). When overexpressed, NINL

causes abnormal mitotic spindles, and an NINL-8A mutant with eight potential

PLK1 sites mutated to alanines has a more severe effect, consistent with PLK1-

mediated removal of NINL before mitosis (Casenghi et al. 2003). The mechanism

by which PLK1 phosphorylation of NINL facilitates its removal from centrosomes

has been partly elucidated. NINL (and NIN) delivery to centrosomes requires the

presence of both a microtubule network and an active dynein-dynactin complex

(Casenghi 2005). NIN and NINL share a common N-terminal region which

regulates their recruitment and localization to the centrosomes via the activity of

the dynein-dynactin microtubule motor complex (Casenghi 2005). Overexpression

of NINL recruits large concentrations of dynein-dynactin to the centrosomes, and

this is reversible by co-expression of PLK1-T210D, but not by PLK1-K82R or

when the NINL-8A mutant is used (Casenghi 2005). Further cementing the nega-

tive regulation of NINL-dynactin interaction by PLK1, in vitro phosphorylation of

the NINL N-terminal fragment by PLK1 inhibits its interaction with DCTN1

(a dynactin subunit) (Casenghi 2005). Like other mitotic PLK1 substrates, NINL

undergoes a priming phosphorylation by NEK2NEK2 (Rapley et al. 2005). When a

kinase-dead NEK2 protein is overexpressed, NINL is found to persist in mitotic

centrosomes (Rapley et al. 2005). Conversely, overexpression of NEK2 results in

displacement of either NINL or the NINL-8A mutant from centrosomes, and NEK2

is able to phosphorylate both forms suggesting NEK2 target sites are distinct from

PLK1 target sites (Rapley et al. 2005). Supporting the model of a priming phos-

phorylation, in vitro phosphorylation assays show that pre-incubation of NINL with

active NEK2 leads to a strong increase phosphorylation by PLK1 relative to a

kinase-dead NEK2 or buffer (Rapley et al. 2005). NINL is phosphorylated at

multiple sites, and in addition to NEK2, CDK1/CCNB also regulates NINL and

phosphorylates to prime NINL for PLK1 interaction (Wang and Zhan 2007; Zhao

et al. 2010). NINL interacts with CDK1, and the phosphorylation sites for CDK1/
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cyclin B were found to be S185 and S589, mutation of both of which results in

NINL persisting through mitosis (Zhao et al. 2010). Under normal conditions,

NINL interacts with Cdh1 by co-IP and is a target of the Cdh1-APC complex for

ubiquitinylation and degradation (Wang and Zhan 2007; Zhao et al. 2010). An

NINL S185A/S589A double mutant is stable through mitosis and does not interact

with Cdh1 (Zhao et al. 2010). Expression of this variant of NINL causes multi-

nucleate cells, consistent with a mitotic or cytokinetic defect and illustrating the

importance of its regulation for mitosis (Zhao et al. 2010). Finally, the S185A

mutant NINL does not interact with PLK1, indicating that a phosphorylation event

likely primes for the PBD of PLK1 to bind (Zhao et al. 2010).

CEP192 was identified as a centrosomal protein required for proper mitotic

spindle formation and centriole duplication (Gomez-Ferreria et al. 2007, p. -; Zhu

et al. 2008). CEP192 acts as a scaffold that organizes the mitotic signalling

activities of AURKA and PLK1 in both human and Xenopus (Joukov et al. 2014).

CEP192 is a critical part of PCM maturation, as depletion of CEP192 leads to loss

of PCNT, NEDD1, AURKA and TUBG1 at mitotic centrosomes (Gomez-Ferreria

et al. 2007; Joukov et al. 2010; Zhu et al. 2008). At the onset of mitosis, CEP192

undergoes an approximately tenfold enrichment on centrosomes, dependent upon

PLK1 activity (Gomez-Ferreria et al. 2007; Haren et al. 2009; Zhu et al. 2008).

CEP192 interacts with and activates AURKA kinase and is critical for its recruit-

ment to mitotic PCM (Joukov et al. 2010). When AURKA-coated beads are

incubated with metaphase Xenopus extracts, they co-IP CEP192, Plx1 (Xenopus
PLK1), NEDD1, and TUBG1, and AURKA becomes activated by trans-

autophosphorylation (Joukov et al. 2010, 2014). CEP192 is required for recruitment

of all of the proteins listed to AURKA beads and AURKA activation under these

conditions (Joukov et al. 2010, 2014). CEP192 interacts with AURKA, leading to

AURKA activation, and subsequently AURKA activates Plx1 by phosphorylation

(Joukov et al. 2014). Both AURKA and Plx1 can bind and phosphorylate CEP192,

and five serine residues were identified as Plx1 phosphorylation-dependent γ-TuRC
binding sites (Joukov et al. 2014). When those five serine residues of CEP192 were

mutated to alanines, centrosomes and AURKA, coated beads lost their MTOC

capability when incubated with metaphase Xenopus extracts, consistent with

CEP192-mediated γ-TuRC recruitment playing a major role in centrosome matura-

tion (Joukov et al. 2014). Similar to the results in Xenopus, CEP192 depletion

phenotypes in mitotic HeLa cells were not rescued by a PLK1-binding-deficient

CEP192 nor an AURKA-binding-deficient CEP192 construct (Joukov et al. 2014).

Finally, CEP192, NEDD1, γ-TuRC, AURKA and PLK1 localization to Xenopus
sperm centrioles treated with mitotic extracts was dependent on PCNT; however,

AURKA beads were able to properly act as MTOCs when treated with metaphase

extracts regardless of PCNT being absent (Joukov et al. 2014). Notably, PCNT is

also a target of PLK1 phosphorylation, with four different residues identified as

PLK1 sites: S1235, S1241, T1209 and T1221 (Lee and Rhee 2011). When endo-

genous PCNT is depleted, no PCNT is observed at centrosomes, and mitotic spindles

do not form properly (Lee and Rhee 2011). Under conditions where endogenous

PCNT is depleted, phosphorylation-resistant versions of PCNT (S1235A, S1241A,
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T1209A and T1221A) can all localize to the mitotic centrosomes; however, S1235A

and S1241A mutants cannot rescue the spindle defects in mitosis (Lee and Rhee

2011). This indicates that these two sites, and their phosphorylation by PLK1, are

essential for maturation of functional mitotic centrosomes (Lee and Rhee 2011). In

other experiments where endogenous PCNT is removed, the phosphorylation-

resistant PCNT proteins are unable to restore mitotic centrosomal localization of

CEP192, NEDD1, AURKA and TUBG1, whereas CDK5RAP2 localization to the

centrosome appears to depend only on the presence of PCNT, not on its phosphory-

lation at those sites (Lee and Rhee 2011). Interestingly, in interphase cells PCNT

depletion does not affect CEP192/NEDD1/TUBG1 localization (Lee and Rhee

2011). To solidify the importance of PLK1 phosphorylation of PCNT in PCM

maturation, Lee and Rhee created a PLK1-PCNT fusion protein and versions of

this construct that were kinase dead, constitutively active or phosphorylation resis-

tant (S1235A and S1241A double mutant in PCNT) (Lee and Rhee 2011). In

interphase cells, the constitutively active PLK1-PCNT fusion (but not the kinase

dead or phosphorylation resistant) drives centrosomes to recruit increased amounts

of CEP192, NEDD1 and TUBG1, mimicking the maturation of centrosomes in

mitosis (Lee and Rhee 2011). Consistent with CDK5RAP2 recruitment being phos-

phorylation independent, all three PLK1-PCNT fusions increase CDK5RAP2 local-

ization to centrosomes (Lee and Rhee 2011). Thus, PLK1 phosphorylation of PCNT

drives centrosome maturation through increased CEP192 recruitment, where

CEP192 then acts as a scaffold for AURKA and PLK1 activation at the centrosome

and is phosphorylated by PLK1 leading to a gain in γ-TuRC recruitment that is

critical for proper mitotic spindle formation (Joukov et al. 2010, 2014; Lee and Rhee

2011).

In Drosophila, mitotic PCM scaffolds are assembled primarily based on two

proteins, Spd-2 (CEP192) and CNN (CDK5RAP2). Initially, it was shown that

CNN was dynamic at the centrosomes, being recruited first to the centriole wall,

then spreading outwards into the PCM (Conduit et al. 2014a, b). Subsequent studies

have shown that Spd2 has similar dynamics, and in photobleaching experiments,

the Spd2-GFP recovers initially as a toroid around the centriole (Conduit

et al. 2014a, b) (see Fig. 3.2). These proteins are the only two PCM components

found to be recruited to the centriole first, as GFP fusions to the Drosophila
homologues of CENPJ, NEDD1, Plk1, AURKA, PCNT, CEP152 and TUBG1

show uniform recovery throughout the PCM following photobleaching (Conduit

et al. 2014a, b). ASL appears to be the primary docking site for Spd2 and CNN at

the centrioles, as injection of ASL antibodies reduces both Spd2 and CNN recovery

rates following photobleaching (Conduit et al. 2010; Conduit et al. 2014a, b).

Consistent with this model, simultaneous removal of Spd2 and CNN essentially

abolishes PCM maturation in mitosis, but not ASL localization (Conduit

et al. 2014a, b). There are subtle but important differences in the PCM scaffolds

of CNN and Spd2. First, the mitotic Spd2 scaffold only partially overlaps the CNN

scaffold, which reaches farther from the centriole (Conduit et al. 2014a, b). Sec-

ondly, the CNN scaffold collapses without microtubules, whereas the Spd2 scaffold

appears robustly microtubule independent (Conduit et al. 2014a, b). Finally, using
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super-resolution microscopy, a Spd-2 toroid around the centriole is evident within

the mitotic scaffold, whereas CNN lacks a strongly defined structure around the

centriole (Conduit et al. 2014a, b). Despite these differences, there is clear evidence

of a functional relationship. Removal of either protein drastically reduces the

overall amount of the other in the PCM (Conduit et al. 2014a, b). Importantly,

Spd-2 is able to recover at the centriole wall with similar kinetics regardless of CNN

being absent, suggesting that CNN is important for Spd-2 retention/expansion in the

mitotic PCM downstream of recruitment by ASL (Conduit et al. 2010; Conduit

et al. 2014a, b). Therefore, ASL appears to recruit Spd-2, which recruits CNN, and

together they migrate outwards to form a stable mitotic PCMmatrix that is required

for recruitment of most other mitotic PCM components and the formation of a

mitotic spindle (Conduit et al. 2010; Conduit et al. 2014a, b). Together, both

proteins appear to be responsible for the vast majority of mitotic PCM assembly

(Conduit et al. 2014a, b).

The expansion of Drosophila CNN into a mitotic PCM matrix is regulated by

Polo kinase (Conduit et al. 2010, 2014a, b). There are ten conserved potential

phosphorylation sites within the phospho-regulated multimerization (PReM)

domain of CNN, and when all ten are mutated to alanines, CNN loses its ability

to expand into a centrosomal scaffold and localizes to the centrosome as what

appears to be a centriolar protein (Conduit et al. 2014a, b). Conversely, mutating

those ten candidate phosphorylation sites to aspartic acids leads to expanded CNN

foci in Drosophila embryos, and in vitro the purified protein forms larger

complexes based on size exclusion chromatography (Conduit et al. 2014a, b).

Although the human CDK5RAP2 has not been identified as a bona fide PLK1

target, it is known that treatment of cells with a PLK1 inhibitor reduces strongly the

mitotic accumulation of CDK5RAP2 (and other PCM proteins) (Haren et al. 2009).

However, overexpression of CDK5RAP2 in human interphase cells (presumably

without active PLK1) does lead to an expansion of a PCM scaffold that strongly

incorporates PCNT but weakly incorporates TUBG1 and NEDD1 (Lawo

et al. 2012). It will be interesting to see how the regulation of CDK5RAP2 in

humans compares to CNN in Drosophila.

3.2.3 Expansion of the PCM Matrix During Mitosis

PCNT, CDK5RAP2 and AKAP9 are also important proteins of the expanded PCM

shell seen in mitotic cells. AKAP9 further undergoes expansion onto the mitotic

spindle, reminiscent of the localization of TUBG1 and CDK5RAP2 (Fong

et al. 2008; Kraemer et al. 2011; Takahashi et al. 2002). In terms of recruitment

dependencies, a study by Fong et al., in 2008, showed that depletion of CDK5RAP2

did not impact PCNT localization in mitosis (Fong et al. 2008). However, more

recent studies using higher resolution indicate that when either CDK5RAP2 or

PCNT is depleted, mitotic centrosomes retain an interphase-like ring of the other

protein immediately surrounding centrioles, indicating that PCNT and CDK5RAP2

are codependent for expansion into a mitotic PCM matrix (Lawo et al. 2012). As
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Fig. 3.2 Mitotic PCM in humans and Drosophila. (a) Pathways contributing to human mitotic

PCM expansion. Pericentrin recruits CEP192 which organizes a signalling cascade between

AURKA and Plk1 leading to CEP192 phosphorylation which generates g-TuRC binding sites on

CEP192 (left). CEP192 also recruits NEDD1, which is required for mitotic PCM microtubule

nucleation. Curved lines indicate phosphorylation. CDK5RAP2 and pericentrin are codependent

for their localization to mitotic PCM. Within the mitotic PCM, distinct organization exists among

key proteins. Removal of proteins important for microtubule nucleation lead to fragmentation of

the PCM, but despite this fragmentation PCM organization persists, indicating that the assembly

and arrangement of the mitotic PCM matrix is microtubule independent in humans. Removal of

CDK5RAP2 or PCNT results in loss of the expanded mitotic PCM, but retention on the other

protein as a toroid around the centriole, indicating codependence for mitotic PCM matrix expan-

sion. (b) Live 3D-SIM FRAP data from Conduit et al. (Conduit et al. 2014a, b) showing the

dynamic nature of mitotic PCM recruitment in Drosophila (top). Note that following
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mentioned, overexpression of either PCNT or CDK5RAP2 results in interphase

PCM enlargement (Lawo et al. 2012) (see Fig. 3.2). Finally, in keeping with the

multifunctional nature of CDK5RAP2, it has been shown to transcriptionally

activate the promoters of the checkpoint proteins BUBR1 and Mad2 and binds

the APC subunit CDC20, making it an important regulator of the mitotic spindle

checkpoint (Zhang et al. 2009a, b). Therefore, AKAP9, PCNT and CDK5RAP2

form the expanded scaffold of the mitotic PCM and play critical roles in mitotic

centrosome function.

An important role for mitotic PCM in regulating centrosome inheritance has

emerged in recent years. Asymmetric cell division is a process where mitosis

creates two distinct daughter cells, one differentiated and one undifferentiated

(Morrison and Kimble 2006; Reina and Gonzalez 2014). During such divisions,

one of the two centrosomes is often preferentially retained by the

non-differentiating stem cell (Morrison and Kimble 2006; Reina and Gonzalez

2014). Differentiation between the two centrosomes is achieved through

differences in PCM composition and microtubule nucleating activities between

older and younger centrosomes. In Drosophila neuroblast stem cells, CNN

accumulates on the younger centrosomes prior to asymmetric cell division and is

lost from the mother centrioles following a period of decreased incorporation rates

(Conduit and Raff 2010). The younger centrosome is anchored to the apical cortex

by microtubules, whereas the older centrosome is basically inactive (Januschke

et al. 2013). Removal of CNN in the neuroblast niche leads to random retention of

mother or daughter centrosomes by the stem cells following mitosis, presumably

due to loss of apical cortex anchoring without CNN (Conduit and Raff 2010).

Selective retention of CNTROB is also seen on the younger centrosomes in

neuroblast cells, and CNTROB localization along with Polo activity is critical for

microtubule nucleation by the daughter centrosome (Januschke et al. 2013). Con-

versely, D-PLP is enriched on the older centrosome in Drosophila neuroblast cells,
where it appears to prevent unwanted activation of the mother centriole by blocking

recruitment of Polo kinase (Lerit and Rusan 2013). Asymmetric cell division is less

well studied in mammals; however, evidence to date suggests that the proteins

enriched on the more mature mother centriole are critical for centrosome identity in

these contexts. In the developing brains of mice, the older centrosomes are retained

by glia progenitor cells selectively, and this requires NIN (Wang et al. 2009). NIN

is enriched on the more mature mother centriole, and when NIN is absent, cell

�

Fig. 3.2 (continued) photobleaching (second panel), DSpd-2 recovers first as a toroid around the

centriole, while CNN also recovers around the centriole first but with less defined structure.

Following initial recruitment to the centriole wall, both DSpd-2 and CNN migrate into the larger

PCM matrix. Note that DSpd-2 retains a distinct toroid structure around the centriole within the

expanded PCM. Inset in top panel shows typical ASL toroid for comparison. (c) Model of mitotic

PCM recruitment and dynamics in Drosophila. ASL recruits DSpd-2 to the centriole, which brings

with it CNN. CNN is able to expand into a mitotic matrix following phosphorylation by Polo

kinase, and the expanded matrix of CNN and DSpd-2 is maintained by both proteins. See text for

details (Panel (b) is reproduced from Conduit et al. (2014a, b) with permission from the authors)
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divisions become symmetrical and progenitor cells are depleted (Ou et al. 2002;

Wang et al. 2009). In summary, for stem cell niches, differential recruitment and

regulation of mitotic PCM components between older and younger mother

centrioles is a critical part of ensuring proper centrosome segregation.

CEP72 is also required for localization of a protein called Kiz (Kizuna, from the

Japanese word for ‘bonds’) that was identified as a PLK1 substrate and interacting

protein (Oshimori et al. 2006). Kiz localizes to the centrosomes, but preferentially

to the older centrosome, and becomes enriched starting in prophase (Oshimori

et al. 2006). Depletion of Kiz results in a striking mitotic phenotype, where multiple

foci containing TUBG1, GCP2, PCNT and AKAP9 are observed that are capable of

nucleating microtubules (Oshimori et al. 2006). Immediately prior to mitosis,

Kiz-depleted cells have two properly matured centrosomes with two centrioles

each, but these fragment in prometaphase (Oshimori et al. 2006). This fragmenta-

tion is prevented by nocodazole treatment and partially reversed by simultaneous

reduction in chromosome pulling forces (Oshimori et al. 2006). Kiz protein levels

are elevated in mitosis, and the mitotic protein is phosphorylated by PLK1

(Oshimori et al. 2006). The phosphorylation of Kiz by PLK1 in vitro occurs on

Thr 379, and the mitotic phenotypes of Kiz depletion are not rescued by an RNAi-

resistant T379A mutant Kiz (Oshimori et al. 2006). Mitotic phenotypes of Kiz

depletion, including centrosome fragmentation, are rescued by expression of an

RNAi-resistant wild-type Kiz or a Kiz T379E mutant (Oshimori et al. 2006). The

PCM stabilization by Kiz may be through interactions with other PCM proteins,

since AKAP9, PCNT and TUBG1 co-IP with Kiz (Oshimori et al. 2006). Notably,

the Kiz interaction with PCNT is found to be increased in mitosis, and Kiz-T379A

only weakly interacts with PCNT whereas Kiz-T379E interacts more strongly than

the wild-type protein (Oshimori et al. 2006). Thus, Kiz is an important PLK1-

regulated PCM component that interacts with PCNT and is critical for the mitotic

centrosome to resist the pulling forces of the mitotic spindle (Oshimori et al. 2006).

The first paper describing the critical role of CNTROB in centriole duplication

reported a striking effect of CNTROB depletion in HeLa cells, namely, the accu-

mulation of multinucleate cells resulting from a failure in cytokinesis after delayed

and/or prolonged mitoses (Jeffery et al. 2010; Zou 2005). CNTROB was indepen-

dently identified in a screen for proteins interacting with NEK2 kinase and found to

localize to the mitotic spindle, in addition to the centrosomes (the authors refer to

CNTROB as NIP2, for NEK2-interacting protein 2) (Jeong et al. 2007). NEK2

phosphorylates CNTROB both in vivo and in vitro, specifically in the N-terminal

region of CNTROB (residues 1–193) (Jeong et al. 2007). The phosphorylation of

CNTROB by NEK2 impacts its conformation and cellular localization, as

CNTROB alone forms large aggregates when overexpressed, whereas

co-overexpression of NEK2 leads to microtubule localization of both or the forma-

tion of smaller foci (Jeong et al. 2007). This effect is not observed with a kinase-

dead NEK2 mutant (Jeong et al. 2007). In other cells where either full-length

CNTROB or the C-terminal half (445–903) is overexpressed, perinuclear bundles

of nocodazole-resistant-acetylated microtubules are observed, suggesting that

CNTROB might have a microtubule-stabilizing function (Jeong et al. 2007).
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Consistent with this, mitotic cells depleted of CNTROB form disorganized spindles

with either fragmented or unattached centrosomes (Jeffery et al. 2010; Jeong

et al. 2007).

The most interesting finding with regard to NEK2 regulation of CNTROB is that

overexpression of NEK2 displaces CNTROB from interphase centrosomes,

whereas depletion of NEK2 leads to accumulation of higher levels of endogenous

CNTROB at centrosomes, implying NEK2 plays a role in regulating CNTROB

localization (Jeong et al. 2007). In addition to NEK2 regulatory phosphorylation,

CNTROB is also a target of PLK1 in mitosis (Lee et al. 2010). The phosphorylation

of CNTROB by PLK1 at multiple residues was demonstrated in vitro, and mutation

of four residues abolishes phosphorylation by PLK1 (T3A-S4A, S21A, S22A),

whereas no single substitution abolishes this activity (Lee et al. 2010). Perhaps

surprisingly, NEK2 phosphorylation of CNTROB is not essential for PLK1 phos-

phorylation in vivo (Lee et al. 2010).

Phosphorylation of CNTROB appears to influence its effects on microtubules.

Purified GST-CNTROB can increase microtubule polymerization rates in vitro

(Lee et al. 2010). When purified from cells overexpressing constitutively active

PLK1 (but not kinase-dead PLK1), GST-CNTROB shows higher microtubule

polymerization activity (Lee et al. 2010). Conversely, a CNTROB construct with

alanine substitutions at the PLK1 phosphorylation sites (T3A-S4A-S21A-S22A)

shows no sensitivity to the overexpression of constitutively active PLK1 (Lee

et al. 2010). Consistent with a PLK1-regulated mitotic spindle function of

CNTROB, a PLK1 phosphorylation-resistant siRNA-resistant CNTROB fails to

rescue spindle assembly defects following CNTROB depletion in HeLa cells (Lee

et al. 2010). In Drosophila, it has been found that the homologue of CNTROB may

interact with a complex of several PCM proteins (Drosophila homologues of

CDK5RAP2, TUBG1, γ-TuRC components) and as discussed may be important

in select cell types for regulating PCM activity in interphase (Conduit 2013;

Januschke et al. 2013). Overall, like CENPJ, CNTROB is a PCM protein required

for centriole duplication, but CNTROB is also a NEK2- and PLK1-regulated

microtubule-stabilizing protein with a critical role in mitosis.

3.2.4 Microtubule Nucleation by Mitotic PCM

NEDD1 (also called GCP-WD) was identified as the human homologue of Droso-
phila Dgp71WD and is critical for mitotic spindle formation (Haren 2006; Lüders

et al. 2006). NEDD1 localizes to interphase and mitotic centrosomes and interacts

with GCP2 and TUBG1 by co-IP in human cells (Lüders et al. 2006). When

NEDD1 is depleted, centrosomes have reduced TUBG1 but not PCNT, whereas

depletion of TUBG1 does not reduce NEDD1 localization to centrosomes (Haren

2006; Lüders et al. 2006). NEDD1 is made up of a WD40 domain required for

centrosome localization and a conserved C-terminal domain that mediates γ-TuRC
interactions (Haren 2006; Lüders et al. 2006). Consistent with the model that

NEDD1 is important for delivery of γ-TuRC components to the centrosomes,
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fragments of NEDD1 that lack the WD40 domain disrupt centrosomal TUBG1

recruitment presumably by competitively interacting in the cytoplasm (Lüders

et al. 2006). When NEDD1 fragments lacking both the WD40 domains and the

conserved CTD are overexpressed, TUBG1 localization is normal (Lüders

et al. 2006). The importance of NEDD1 in γ-TuRC organization is further

supported by microtubule regrowth experiments, where mitotic cells lacking

NEDD1 were deficient in both chromosome- and centrosome-based microtubule

nucleation (Haren 2006; Lüders et al. 2006).

NEDD1 is regulated by phosphorylation, and CEP192 interacts with NEDD1

and is important for its phosphorylation and localization in mitosis (Gomez-Ferreria

et al. 2012; Zhu et al. 2008). Regulation of NEDD1 was initially shown to involve

Cdk1 phosphorylation at S418 (Lüders et al. 2006). S418 is sometimes referred to

as S411, reflecting the use of a shorter NEDD1 isoform that lacks the first seven

amino acids of the originally reported longer isoform (Lüders et al. 2006). For

consistency, the numbering used in this chapter will reflect the residue identities in

the longer isoform of NEDD1, not necessarily the numbering in the cited papers. In

rescue experiments, NEDD1-S418A mutants could rescue localization of TUBG1

to centrosomes, but not to the mitotic spindle, indicating that this phosphorylation

was critical for intra-spindle microtubule nucleation (Lüders et al. 2006). In micro-

tubule regrowth experiments, the NEDD1-S418A does not impact microtubule

nucleation at centrosomes or chromosomes, but the mitotic spindles that formed

are less dense between the poles (Lüders et al. 2006). In a later study, another group

identifies T557 as an amino acid residue where a priming phosphorylation of

NEDD1 takes place (Zhang et al. 2009a, b). Although properly localized to

centrosomes, a NEDD1 T557A mutant is incapable of binding PLK1, consistent

with priming phosphorylation of NEDD1 driving the interaction with PLK1 (Zhang

et al. 2009a, b). Using mass spectrometry, three sites are confirmed as

phosphorylated by PLK1 in vitro (T389, S404 and S644), and sequence analysis

indicates that S433 is a consensus PLK1 binding site (Zhang et al. 2009a, b).

NEDD1 constructs with alanine substitutions at either T557 or at all four PLK1

target residues (NEDD1-4A) and fails to co-IP TUBG1 (Zhang et al. 2009a, b). The

NEDD1-4A construct is able to localize to centrosomes, but does not recruit

TUBG1, and in rescue experiments NEDD1-4A cannot restore TUBG1 localization

to the centrosome and spindles in mitotic cells (Zhang et al. 2009a, b). In the same

experiment, a NEDD1 construct (NEDD1-4E) designed to mimic PLK1 phosphory-

lation at all four sites with glutamic acid residues is able to rescue TUBG1

localization (Zhang et al. 2009a, b). Unexpectedly, the NEDD1-4E is not able to

rescue the recruitment of TUBG1 to centrosomes when PLK1 and endogenous

NEDD1 were both depleted (Zhang et al. 2009a, b). This suggests that while

NEDD1 phosphorylation is important for its function and required for its interaction

with TUBG1, other targets of PLK1 must also be phosphorylated before TUBG1

can be recruited to centrosomes (Zhang et al. 2009a, b). The phosphorylation of

S418 of NEDD1 was later revisited and found to be essential for PLK1 interaction

as well, suggesting that both T558 and S418 must be phosphorylated by Cdk1

before PLK1 can interact with NEDD1 (Haren et al. 2009; Zhang et al. 2009a, b).

66 D. Comartin and L. Pelletier



NEDD1 may also be regulated by a third kinase, NEK9 (Sdelci et al. 2012). NEK9

depletion leads to failure of prometaphase recruitment of both NEDD1 and TUBG1

to centrosomes (Sdelci et al. 2012). FLAG-NEDD1 can co-immunoprecipitate

NEK9, and when a conserved serine (S377) is mutated to mimic phosphorylation,

the resulting NEDD1 (NEDD1-S377D or NEDD1-S377E) can reverse the pheno-

type of NEK9 depletion (Sdelci et al. 2012). Conversely, an siRNA-resistant

NEDD1-S377A mutant does not localize to centrosomes and cannot rescue the

TUBG1 recruitment defects that follow NEDD1 depletion (Sdelci et al. 2012).

These results indicate that NEDD1 phosphorylation by NEK9, possibly at S377, is

important for its centrosome enrichment during maturation and TUBG1 recruit-

ment during mitosis (Sdelci et al. 2012).

Recently, it was discovered that a ~71 kDa protein called SSX2IP (synovial

sarcoma X breakpoint 2 interacting protein) was important for mitotic centrosome

function in human cells and Xenopus cell-free extracts (Barenz et al. 2013; de

Bruijn et al. 2002; Hori et al. 2014). In Xenopus, SSX2IP was found to be enriched

on mitotic spindles and to be localized to the centrosome by dynein (Barenz

et al. 2013). Both human and Xenopus SSX2IP co-localize and co-IP PCM1 and

TUBG1 (Barenz et al. 2013; Hori et al. 2014). In one study, depletion of human

SSX2IP reduced mitotic TUBG1 levels at the spindle poles and led to fragmented

PCM and prolonged metaphase (Barenz et al. 2013). In a second study, TUBG1

levels were not strongly reduced, but the density of mitotic spindle microtubules

was affected (Hori et al. 2014). The authors explained that their observations were

made at 48 h of depletion, whereas the previous study reported 72 h depletion, and

they observed a time-dependent loss of TUBG1 with SSX2IP depletion (Barenz

et al. 2013; Hori et al. 2014). When microtubules are regrown following washout of

nocodazole, centrosomes initially (5 min post-washout) nucleate microtubule asters

despite lack of SSX2IP, but by 30 min post-washout, centrosomes have lost their

asters, suggesting microtubule-anchoring defects (Hori et al. 2014). Time-

dependent loss of microtubule organization has been observed following depletion

of PCM1, consistent with PCM1 delivering SSX2IP and other important PCM

proteins to the centrosome (Dammermann 2002). The PCM1-binding domain of

SSX2IP was mapped to the NTD of the protein, and the TUBG1-binding domain

was within a region including the third coiled-coil domain and the CTD of the

protein (Hori et al. 2014). SSX2IP fragments lacking the PCM1-binding domain

localize to cytoplasmic foci, whereas PACT fusions of this domain partially rescue

the effect of SSX2IP depletion on the interphase centrosome’s ability to organize

microtubule asters and the mitotic spindle microtubule defects observed when

SSX2IP is depleted (Hori et al. 2014). Overall, SSX2IP may be important for

retention or ‘anchoring’ of microtubules at centrosomes, rather than centrosome

maturation as previously supposed (Barenz et al. 2013; Hori et al. 2014).

PCNT is a major scaffold for the expanded mitotic PCM and is critical for the

microtubule nucleation capability of mitotic centrosomes. Pericentrin can directly

anchor γ-tubulin ring complexes through multiple domains (Dictenberg et al. 1998;

Lin et al. 2014; Takahashi et al. 2002; Zimmerman et al. 2004). PLK1-activated

PCNT is important for recruiting CEP192, NEDD1, AURKA and γ -tubulin to
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mitotic centrosomes, making PCNT an upstream recruitment factor for proteins

required for microtubule nucleation (Joukov et al. 2010, 2014; Lee and Rhee 2011).

Like PCNT, AKAP9 co-IPs the γ-TuRC complex proteins GCP2 and GCP3 through

its N-terminal region, consistent with a role in anchoring or recruiting γ-TuRCs to
the centrosome and spindle (Takahashi et al. 2002). AKAP9 depletion in mitosis

does not affect PCNT localization, but results in fragmentation of PCNT and

γ-tubulin foci, along with a disorganized spindle (Oshimori et al. 2009). PCNT is

also important for CDK5RAP2 recruitment to mitotic centrosomes, independent of

phosphorylation by PLK1 (Lee and Rhee 2011). CDK5RAP2 depletion leads to

mitotic cells that can have monopolar spindles or otherwise normal spindles where

the centrosome is not properly positioned relative to the spindle (Lee and Rhee

2010). Mitotic centrosomes also have reduced γ-tubulin localization and a lack of

astral microtubules when CDK5RAP2 is depleted (Fong et al. 2008). PCNT

recruitment to mitotic centrosomes is also dependent on CEP192 recruitment, and

CEP192 plays a critical role in microtubule nucleation and proper mitotic spindle

formation (Gomez-Ferreria et al. 2007; Haren et al. 2009; Zhu et al. 2008). CEP192

is phosphorylated by PLK1, and this phosphorylation creates γ-tubulin-binding
sites that are important for mitotic spindle formation (Joukov et al. 2010, 2014;

Lee and Rhee 2011). In summary, PCNT, AKAP9, CDK5RAP2 and CEP192 are all

critical for the proper formation of mitotic spindles through their roles in micro-

tubule nucleation or anchoring.

3.3 Conclusions and Perspectives

The PCM is a complex network of proteins organized around templates called

centrioles to create functional centrosomes that can act as MTOCs and signalling

hubs in interphase. Through a complex and carefully regulated series of events

called ‘centrosome maturation’, the PCM is further able to provide the microtubule

nucleation capabilities required to organize and anchor the mitotic spindle to the

centrioles during cell division. The centriole cartwheel structure has long been

highly refined. Recently, the understanding of PCM structure has advanced signifi-

cantly, driven by the technological advances of light microscopy (Leidel and

G€onczy 2003). However, many challenges remain. The assembly and dynamics

of the PCM are still only partially understood, especially in humans, despite the

growing list of recruitment dependencies and interactions (Leidel and G€onczy
2003). There is evidence in Drosophila that CNN (CDK5RAP2 homologue) is

constantly being actively transported to and from the centrosomes and its

incorporation within the PCM is mobile, with CNN recruited first to the centriole

then moving outwards from there (Conduit et al. 2010; Conduit et al. 2014a, b;

Megraw 2002). It will be of great interest to see how far such a model is applicable

and if other components of the PCM undergo migrations beginning at the centriole.

Testing the possibility of dynamics in human PCM components will also be of great

interest. Further, although PCM maturation is heavily investigated because of the

serious mitotic defects and diseases that may arise from them, the process by which
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the PCM returns to interphase levels is not well understood. It is likely to involve

ubiquitinylation followed by proteasomal degradation, as has been clearly shown to

be the case for regulation of centriole duplication factors, such as Sas-6 and CENPJ

(Korzeniewski et al. 2010; Puklowski et al. 2011). Finally, although we have

recently expanded our understanding of PCM and its subdomains substantially,

there is certainly room for continued study of how other proteins are organized

within the PCM. Notably, the orientation of AKAP9 within the PCM is not studied,

but given its large size and similarities to PCNT, it will be an interesting protein to

investigate. Additionally, in vitro reconstitution of PCM sub-complexes from

recombinant proteins might be a promising strategy to gain insight into organiza-

tion of PCM subdomains and the kinetics of their assembly (Leidel and G€onczy
2003). There are many proteins in the PCM, and accordingly many opportunities

remain for useful insights into PCM structure and organization using ever-

improving super-resolution microscopy methods. Hopefully, one day these

techniques will converge with cryo-electron tomography and x-ray crystallography

to provide a detailed 3D atlas of the PCM at the molecular level.
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Bärenz F, Mayilo D, Gruss OJ (2011) Centriolar satellites: busy orbits around the centrosome.

Eur J Cell Biol 90:983–989. doi:10.1016/j.ejcb.2011.07.007

Barenz F, Inoue D, Yokoyama H, Tegha-Dunghu J, Freiss S, Draeger S, Mayilo D, Cado I,

Merker S, Klinger M, Hoeckendorf B, Pilz S, Hupfeld K, Steinbeisser H, Lorenz H, Ruppert T,

Wittbrodt J, Gruss OJ (2013) The centriolar satellite protein SSX2IP promotes centrosome

maturation. J Cell Biol 202:81–95. doi:10.1083/jcb.201302122
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Kodani A, Salomé Sirerol‐Piquer M, Seol A, Manuel Garcia‐Verdugo J, Reiter JF (2013)

Kif3a interacts with Dynactin subunit p150Glued to organize centriole subdistal appendages.

EMBO J 32:597–607. doi:10.1038/emboj.2013.3

Korzeniewski N, Cuevas R, Duensing A, Duensing S (2010) Daughter centriole elongation is

controlled by proteolysis. Mol Biol Cell 21:3942–3951

Kraemer N, Issa L, Hauck SCR, Mani S, Ninnemann O, Kaindl AM (2011) What’s the hype about

CDK5RAP2? Cell Mol Life Sci 68:1719–1736. doi:10.1007/s00018-011-0635-4

Kubo A (2003) Non-membranous granular organelle consisting of PCM-1: subcellular distribution

and cell-cycle-dependent assembly/disassembly. J Cell Sci 116:919–928. doi:10.1242/jcs.

00282

Kubo A, Sasaki H, Yuba-Kubo A, Tsukita S, Shiina N, Centriolar Satellites Molecular Characteri-

zation (1999) Atp-dependent movement toward centrioles and possible involvement in cilio-

genesis. J Cell Biol 147:969–980

Kumar A, Girimaji SC, Duvvari MR, Blanton SH (2009) Mutations in STIL, encoding a

pericentriolar and centrosomal protein, cause primary microcephaly. Am J Hum Genet 84:

286–290. doi:10.1016/j.ajhg.2009.01.017

Lane HA, Nigg EA (1996) Antibody microinjection reveals an essential role for human polo-like

kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J Cell Biol 135:1701–1713

Lawo S, Bashkurov M, Mullin M, Ferreria MG, Kittler R, Habermann B, Tagliaferro A, Poser I,

Hutchins JRA, Hegemann B, Pinchev D, Buchholz F, Peters J-M, Hyman AA, Gingras A-C,

Pelletier L (2009) HAUS, the 8-subunit human augmin complex, regulates centrosome and

spindle integrity. Curr Biol 19:816–826. doi:10.1016/j.cub.2009.04.033

Lawo S, Hasegan M, Gupta GD, Pelletier L (2012) Subdiffraction imaging of centrosomes reveals

higher-order organizational features of pericentriolar material. Nat Cell Biol 14:1148–1158.

doi:10.1038/ncb2591

Leal GF, Roberts E, Silva EO, Costa SMR, Hampshire DJ, Woods CG (2003) A novel locus for

autosomal recessive primary microcephaly (MCPH6) maps to 13q12. 2. J Med Genet 40:

540–542

Lee S, Rhee K (2010) CEP215 is involved in the dynein-dependent accumulation of pericentriolar

matrix proteins for spindle pole formation. Cell Cycle 9:774–783

Lee K, Rhee K (2011) PLK1 phosphorylation of pericentrin initiates centrosome maturation at the

onset of mitosis. J Cell Biol 195:1093–1101. doi:10.1083/jcb.201106093

Lee J, Jeong Y, Jeong S, Rhee K (2010) Centrobin/NIP2 is a microtubule stabilizer whose activity

is enhanced by PLK1 phosphorylation during mitosis. J Biol Chem 285:25476–25484. doi:10.

1074/jbc.M109.099127

Leidel S, G€onczy P (2003) SAS-4 is essential for centrosome duplication in C. elegans and is

recruited to daughter centrioles once per cell cycle. Dev Cell 4:431–439

Lerit DA, Rusan NM (2013) PLP inhibits the activity of interphase centrosomes to ensure their

proper segregation in stem cells. J Cell Biol 202:1013–1022. doi:10.1083/jcb.201303141

Li Q, Hansen D, Killilea A, Joshi HC, Palazzo RE, Balczon R (2001) Kendrin/pericentrin-B, a

centrosome protein with homology to pericentrin that complexes with PCM-1. J Cell Sci 114:

797–809

Lin Y-C, Chang C-W, Hsu W-B, Tang C-JC, Lin Y-N, Chou E-J, Wu C-T, Tang TK (2013)

Human microcephaly protein CEP135 binds to hSAS-6 and CPAP, and is required for centriole

assembly. EMBO J 32:1141–1154

3 Organizational Properties of the Pericentriolar Material 73

http://dx.doi.org/10.1016/j.cell.2011.01.008
http://dx.doi.org/10.1016/j.devcel.2007.07.002
http://dx.doi.org/10.1016/j.devcel.2007.07.002
http://dx.doi.org/10.1038/emboj.2013.3
http://dx.doi.org/10.1007/s00018-011-0635-4
http://dx.doi.org/10.1242/jcs.00282
http://dx.doi.org/10.1242/jcs.00282
http://dx.doi.org/10.1016/j.ajhg.2009.01.017
http://dx.doi.org/10.1016/j.cub.2009.04.033
http://dx.doi.org/10.1038/ncb2591
http://dx.doi.org/10.1083/jcb.201106093
http://dx.doi.org/10.1074/jbc.M109.099127
http://dx.doi.org/10.1074/jbc.M109.099127
http://dx.doi.org/10.1083/jcb.201303141


Lin Y-N, Wu C-T, Lin Y-C, Hsu W-B, Tang C-JC, Chang C-W, Tang TK (2013b) CEP120

interacts with CPAP and positively regulates centriole elongation. J Cell Biol 202:211–219.

doi:10.1083/jcb.201212060

Lin T, Neuner A, Schlosser YT, Scharf AN, Weber L, Schiebel E (2014) Cell-cycle dependent

phosphorylation of yeast pericentrin regulates γ-TuSC-mediated microtubule nucleation.

Elife 3, e02208

L€offler H, Fechter A, Liu FY, Poppelreuther S, Krämer A (2012) DNA damage-induced centro-
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Principles of Microtubule Organization:
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Abstract

A multitude of protein activities contribute to the organization of cell type and

cell cycle-specific microtubule arrays. One key factor is the γ-tubulin ring

complex (γTuRC), a microtubule nucleator that determines where and when

new microtubules are generated. Other proteins interact with newly formed

or existing microtubules to promote microtubule stabilization, destabilization,

severing, bundling, or transport. Together these activities allow arrangement

of microtubules into arrays with specific distribution, polarity, and dynamic

properties. Importantly, microtubule arrays are not static and can undergo

extensive remodeling. During neural development, for example, self-renewing

and neurogenic divisions of neural progenitors require specific spindle position-

ing, which is determined by centrosome-based microtubule organization. In

newly born neurons, the centrosomal microtubule array mediates the migration

process. However, during neuron maturation the centrosome-centered micro-

tubule network is converted into non-centrosomal, highly bundled arrays, which

are crucial for long-range transport within the extensive dendritic and axonal

compartments. Accordingly, neuronal development, homeostasis and function

are particularly sensitive to genetic and other insults of the microtubule cyto-

skeleton. In this chapter we will highlight, using neurons as an example, differ-

ent microtubule-organizing activities, in particular microtubule nucleation and

its spatiotemporal regulation, and discuss how defects in the microtubule net-

work are implicated in neurodevelopmental disorders and neurodegenerative

diseases.
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4.1 Cellular Tools for Organizing Microtubules

4.1.1 Microtubule Nucleation

A key mechanism underlying assembly, maintenance, and remodeling of ordered

microtubule arrays is microtubule nucleation. Spatiotemporal regulation of this

process allows cells to control when, where, and in what orientation new

microtubules are formed (Luders and Stearns 2007; Teixid�o-Travesa et al. 2012;

Yau et al. 2014). Above a critical tubulin concentration, polymerization from

purified tubulin occurs spontaneously in vitro. In cells, however, the tubulin

concentration is too low to allow spontaneous polymerization and formation of

microtubules requires a nucleator. In animal cells microtubules are nucleated by the

multi-subunit γ-tubulin ring complex (γTuRC). γTuRC is composed of γ-tubulin, a
member of the tubulin superfamily that is not incorporated into the microtubule

polymer, and additional subunits known as gamma complex proteins 2, 3, 4, 5, and

6 (GCP2-6) (Fig. 4.1) (Baas and Joshi 1992; Kollman et al. 2011; Teixid�o-Travesa
et al. 2012). GCP2-6 are related to each other and form a protein family. Based on

the crystal structure of GCP4 and the sequence similarity between GCP4 and other

GCPs, all members of this protein family were predicted to have the same elongated

shape (Guillet et al. 2011; Kollman et al. 2011). According to the current model, the

lock washer-like structure of the γTuRC is formed by oligomerization of the GCPs

through lateral association of their N-terminal domains and binding of γ-tubulin to

their C-terminal domains (Kollman et al. 2011). Whereas the exact positions and

stoichiometries of distinct GCP subunits are still unknown, γTuRC contains ~13

γ-tubulin molecules, the arrangement of which matches the symmetry of a micro-

tubule in cross section. Based on this observation, a template-based nucleation

model was proposed: by mimicking the end of a microtubule, γTuRC provides a

platform for the assembly of heterodimers of α- and β-tubulin, which initiates

microtubule polymerization (Fig. 4.1) (Moritz et al. 2000; Kollman et al. 2010;

Kollman et al. 2011).

Recent work has suggested that efficient nucleation requires additional factors

that cooperate with γTuRC by stabilizing early nascent microtubules (Goodwin and

Vale 2010; Tanaka et al. 2012; Wieczorek et al. 2015). While the γTuRC template

mimics the microtubule symmetry in cross section, its blunt structure differs from

an actively growing plus end, which is splayed and outwardly curved.

Polymerization-promoting factors such as the microtubule-binding protein TPX2

may help to transform nascent microtubules into a complete microtubule plus end,

which will facilitate further polymerization and allow robust microtubule growth

(Yau et al. 2014; Wieczorek et al. 2015).

Spatiotemporal control over the formation of new microtubules is crucial to

microtubule organization. Thus an important question is how γTuRC is regulated.

Regulatory activities have been assigned to various γTuRC-associated proteins

such as GCP-WD/NEDD1, CDK5RAP2, Mozart1, GCP8/Mozart2, and NME7.

These proteins are typically not required for γTuRC assembly but target γTuRC
to specific nucleation sites (GCP-WD, Mozart1, CDK5RAP2) or activate its
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Fig. 4.1 Composition and function of the γ-tubulin ring complex (γTuRC). The γTuRC, the main

microtubule nucleator, initiates microtubule polymerization by a template mechanism. It is

composed of ~13 γ-tubulin molecules that are arranged into a helical, lock washer-like structure

with the help of multiple GCP subunits (GCP2, GCP3, GCP4, GCP5, and GCP6). The surface

formed by the γ-tubulin molecules in the γTuRC serves as assembly platform for α-β-tubulin
heterodimers. γTuRC is regulated by specific targeting and activation factors to nucleate

microtubules from centrosomes, the surface of other microtubules, and “free” within the cytosol

(e.g., stimulated by RanGTP during mitosis). The roles of some γTuRC subunits and associated

proteins are depicted: γ-tubulin and GCPs 2-6, by forming γTuSC- and γTuSC-like
sub-complexes, have roles in γTuRC assembly, GCP-WD/NEDD1 and MZT1 in targeting,

CDK5RAP2 in targeting and activation, and NME7 in activation
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nucleation activity (CDK5RAP2, NME7) (Fig. 4.1) (Sherwood et al. 2004; Trotta

et al. 2004; Yang et al. 2005; Yu et al. 2005; Lüders et al. 2006; Haren et al. 2006;

Solowska et al. 2008; Lee et al. 2009; Hutchins et al. 2010; Butler et al. 2010; Choi

et al. 2010; Teixid�o-Travesa et al. 2012; Liu et al. 2014a). The precise function of

GCP8 is still unclear: unlike other γTuRC subunits, it is not required for mitotic

spindle assembly suggesting that it may have a role in non-mitotic cells (Teixid-

�o-Travesa et al. 2010).
A well-characterized γTuRC-targeting factor in human cells is NEDD1 (also

known as GCP-WD), which targets γTuRC to the centrosome (Lüders et al. 2006;

Haren et al. 2006). NEDD1 binds γTuRC through its C-terminus and attaches it at

the centrosome via its N-terminal domain. In addition, NEDD1 is also involved in

targeting γTuRC to spindle microtubules in mitosis (see below) (Lüders

et al. 2006). Targeting to these sites involves regulation by differential phosphory-

lation of NEDD1 (Lüders et al. 2006; Zhang et al. 2009; Johmura et al. 2011;

Gomez-Ferreria et al. 2012; Sdelci et al. 2012; Pinyol et al. 2012). Curiously,

NEDD1 is not essential for targeting γTuRC to centrosomes in Drosophila
(Vérollet et al. 2006) and NEDD1 is not present in fungi indicating that targeting

of γTuRC can also be mediated by other factors. Indeed, various adapter proteins

that are unrelated to NEDD1 have been described in different organisms. Recent

work demonstrated that with the exception of NEDD1, all of these proteins contain

short sequence motifs that are conserved throughout the animal, fungi, and plant

kingdoms and that mediate γ-tubulin complex binding and in some cases also

activation (Choi et al. 2010; Lin et al. 2014, 2015). In human cells the proteins

CDK5RAP2 and myomegalin, which have been implicated in γTuRC recruitment

to centrosomes and Golgi, respectively, contain the so-called CM1 motif. The

centrosomal scaffold protein pericentrin contains two motifs, CM1 and SPM, and

has also been implicated in centrosome recruitment of γTuRC (Sawin et al. 2004;

Samejima et al. 2008; Choi et al. 2010; Lin et al. 2014, 2015). It is currently unclear

whether multiple adaptors interact with γTuRC simultaneously or whether the

different γTuRC recruitment factors function independently of each other, poten-

tially to recruit γTuRCs with distinct composition and/or functions at the respective

nucleation site.

Another important unresolved question is how γTuRC nucleation activity is

regulated. This process is best understood for the budding yeast γ-tubulin complex.

Budding yeast lacks orthologs of GCP4, GCP5, and GCP6 and does not assemble

γTuRCs. Instead it contains a heterotetrameric γ-tubulin small complex (γTuSC)
assembled from two molecules of γ-tubulin and one each of GCP2 and GCP3

(Fig. 4.1) (Knop and Schiebel 1997; Vinh et al. 2002). γTuSC is a poor nucleator

and requires interaction with the adaptor protein Spc110 to oligomerize and form

nucleation-competent γTuRC-like rings (Kollman et al. 2010; Lin et al. 2014).

However, oligomerization alone does not strongly enhance nucleation activity. This

can be explained by a structural mismatch that was observed between the oligo-

meric γTuSC ring structure and the microtubule end: the spacing between γ-tubulin
molecules in the γTuSC ring does not match the narrower spacing of α-tubulin
molecules at the microtubule end. Indeed, a conformational switch that adjusts the

82 C. Sánchez-Huertas et al.



positioning of γ-tubulin molecules in the γTuSC ring can be induced artificially

in vitro and yields a more active nucleator (Kollman et al. 2015). More recently, it

was shown that γTuSC oligomerization and activation involve interaction of

Spc110 with the N-terminus of GCP3 and require the CM1 and SPM motifs of

Spc110 as well as cell cycle-dependent phosphorylation by the yeast kinases Cdk1

and Mps1 in a region between these two motifs (Lin et al. 2014).

In contrast to budding yeast cells, human cells contain pre-assembled, ring-

shaped γ-tubulin complexes in the form of γTuRC (Murphy et al. 2001). However,

most of cytosolic γTuRC seems to be in a relatively inactive state, suggesting that

γTuRC assembly and activation are two separate steps. Indeed, CDK5RAP2 or a

fragment containing only the CM1 motif were shown to strongly stimulate γTuRC
nucleation activity both in vitro and in vivo (Choi et al. 2010). In addition, the

nucleoside diphosphate kinase and γTuRC interactor NME7 also moderately

activated γTuRC-dependent nucleation (Liu et al. 2014a). The molecular basis of

γTuRC activation is currently unknown. Converting γTuRC into an active nucleator

may involve a conformational switch, similar to what has been described for

oligomeric γTuSC (Kollman et al. 2015). However, testing this model will require

structural analysis of γTuRC at a resolution that is higher than the ones currently

available.

4.1.2 Microtubule Organizing Centers

Spatial control over microtubule assembly is achieved with the help of specific

cellular structures that function as microtubule-organizing centers (MTOCs) by

nucleating and anchoring microtubules (Luders and Stearns 2007). The main

MTOC in animal cells, the centrosome, is a small spherical structure formed by a

central pair of centrioles surrounded by a proteinaceous matrix that nucleates

microtubules. For detailed information on the structure and function of this

“pericentriolar material” (PCM), we refer to the Chap. 3 by Comartin and Pelletier.

A newly born cell in G1 phase contains a single centrosome, which is duplicated

precisely once during the cell cycle (Firat-Karalar and Stearns 2014; Fu et al. 2015).

At mitotic entry the cell contains two centrosomes that will be used to organize the

two spindle poles of the bipolar mitotic spindle. Even though centrosomes are not

strictly required for mitotic spindle assembly, centrosomal microtubule organi-

zation enhances the efficiency of this process and promotes spindle bipolarity and

the fidelity of chromosome segregation. Moreover centrosomal microtubules are

important for controlling spindle positioning (Vitre and Cleveland 2012; Sir

et al. 2013). For this reason cells tightly control centrosome maintenance and

copy number (Firat-Karalar and Stearns 2014; Fu et al. 2015). For a detailed

discussion of mitotic spindle assembly, we refer to the Chap. 1 by Meunier and

Vernos. Regarding the consequences of numerical centrosome aberrations, please

see the Chap. 5 by Gambarotto and Basto.

After nucleation the minus end of microtubules is typically anchored at MTOCs,

whereas the plus end extends away from the MTOC into the cytoplasm (Lüders and
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Stearns 2007). Since nondividing cells typically contain only a single centrosome,

this results in the organization of a radial microtubule array. Even in proliferating

cells, in which centrosome duplication occurs, the radial organization is maintained

because the duplicated centrosomes are physically linked and remain in close

proximity to each other. Only at the G2/M phase transition, centrosomes separate

(centrosome disjunction) and help converting the radial array into a bipolar mitotic

spindle (Firat-Karalar and Stearns 2014; Fu et al. 2015).

Apart from centrosomes several non-centrosomal MTOCs have been described

(Lüders and Stearns 2007). It appears that a centrosome-centered, radial micro-

tubule network is mainly found in fibroblast-like cells and that alternative micro-

tubule configurations organized by non-centrosomal MTOCs are common in other

cell types. According to the concept of MTOC plasticity, originally introduced by

Mazia (Mazia 1984), specific microtubule-organizing proteins including the nucle-

ator γTuRC are present not only at centrosomes but can also associate with various

other cellular structures to form MTOCs of variable size, shape, and distribution

(Lüders and Stearns 2007). Examples are the cytosolic surfaces of the Golgi

network (Chabin-Brion et al. 2001; Rios et al. 2004; Oddoux et al. 2013; Zhu and

Kaverina 2013; Rios 2014) and of the nuclear envelope (Tassin et al. 1985; Musa

et al. 2003; Bugnard et al. 2005). More details on non-centrosomal microtubule

organization in different cell types can be found in the Chap. 2 by Dyachuk,

Bierkamp and Merdes.

Recently an additional, unusual “MTOC” was added to the list: the lateral

surface of existing microtubules can function as a recruitment site for γTuRC, to
promote nucleation of “daughter” microtubules in the form of lateral branches that

have the same polarity as the “mother” microtubule (Goshima et al. 2008; Petry

et al. 2013). This nucleation mode was initially described in the cortical micro-

tubule array of certain plant cells and later also in fission yeast and in the mitotic and

meiotic spindles of animal cells (Janson et al. 2005; Murata et al. 2005; Sánchez-

Huertas and Lüders 2015). This type of nucleation serves two functions: first, it

rapidly increases the amount of microtubules during the early stages of microtubule

array assembly, and second, it reinforces and maintains existing microtubule

arrangements including their polarity.

4.1.3 Activities That Modify the Properties and Behavior
of Microtubules

A large number of proteins associate with microtubules to regulate their properties

and behavior. This includes proteins that bind specifically to minus ends, proteins

that bind to the microtubule lattice, and proteins that specifically associate with

microtubule plus ends.

Apart from the nucleator γTuRC, only a few other proteins interact specifically

with microtubule minus ends (Akhmanova and Hoogenraad 2015; Akhmanova and

Steinmetz 2015). These proteins belong to the CAMSAP family that comprises

three members CAMSAP1, CAMSAP2, and CAMSAP3. For CAMSAP2 it was
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recently shown that it stabilizes the minus ends of newly formed microtubules in the

dendrites of neurons, subsequent to nucleation by the γTuRC (Jiang et al. 2014; Yau

et al. 2014). In the absence of CAMSAP2, dendrites contained fewer microtubules

and microtubule-dependent extension and branching were impaired.

Proteins that bind to the microtubule lattice frequently help in stabilizing

microtubules. TPX2, for example, can prevent depolymerization and thus functions

as anti-catastrophe factor. This activity was recently suggested to assist in γTuRC-
dependent nucleation by stabilizing nascent plus ends in the very early phases of

nucleation, before robust microtubule elongation can occur (Wieczorek et al. 2015).

Other examples for lattice binders are MAP2 and TAU, proteins that stabilize

neuronal microtubules in dendrites and axons, respectively (Dehmelt and Halpain

2005).

Other lattice-binding proteins have ATP-dependent motor activity and use

microtubules as tracks to transport cargo. The dynein motor moves cargo toward

minus ends, whereas most of the kinesin motors are plus end-directed. Some lattice-

binding proteins including some motors can interact with different microtubules

simultaneously via two independent lattice-binding regions. In this way they can

cross-link microtubules and thus contribute to microtubule bundling and sliding

(Sharp et al. 1999; Mountain et al. 1999).

Some lattice-binding proteins use energy derived from ATP hydrolysis to sever

microtubules and generate multiple shorter microtubule fragments. In humans three

such proteins are known: katanin, spastin, and fidgetin (Roll-Mecak and Mcnally

2010; Sharp and Ross 2012).

Another group of enzymes interacts with the microtubule lattice to posttransla-

tionally modify the tubulin subunits. These modifications are believed to change the

properties of microtubules to regulate, for example, interactions with microtubule-

associated proteins (MAPs) or motor proteins (Janke and Bulinski 2011; Janke

2014; Song and Brady 2015).

In addition, there is a very large group of proteins that interact specifically with

the plus ends of microtubules (Gouveia and Akhmanova 2010; Jiang and

Akhmanova 2011; Kumar and Wittmann 2012; Akhmanova and Steinmetz 2015).

These so-calledþTIPs have diverse functions; some prevent microtubule depo-

lymerization or even actively promote polymerization by acting as tubulin

polymerases. An example is the Xenopus laevis protein XMAP215 (CKAP5 in

humans), which was proposed to assist, similar to TPX2, γTuRC in nucleating

microtubules (see above) (Wieczorek et al. 2015). SomeþTIPs function as

depolymerases by destabilizing the growing plus end. Through this function the

depolymerase MCAK, for example, was proposed to negatively regulate nucleation

by γTuRC, opposite to the action of TPX2 or XMAP215 described above

(Wieczorek et al. 2015). OtherþTIPs regulate the dynamics of the plus end by

altering the rates at which microtubules grow or shrink. Some of these proteins also

mediate the interaction of growing microtubule plus ends with other cellular

structures. In this way the dynamic microtubule plus ends can provide regulatory

activity (Gouveia and Akhmanova 2010; Jiang and Akhmanova 2011; Akhmanova

and Steinmetz 2015).
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4.2 The Microtubule Network in Neurons

Proper organization of the microtubule network is particularly important in neurons

as indicated by the following observations. (1) Microtubules drive neuronal

morphogenesis during normal development as well as during regeneration after

injury. For example, microtubule-stabilizing drugs can promote axon regeneration

in spinal cord neurons (Hellal et al. 2011; Ruschel et al. 2015). (2) Microtubules are

important for neuron homeostasis as indicated by severe peripheral neuropathies in

cancer patients treated with chemotherapeutic microtubule poisons (Schmidt and

Bastians 2007; Baas and Ahmad 2013; Funahashi et al. 2014). (3) Several neuro-

degenerative disorders are caused by gene mutations that impair microtubule-based

transport (Perlson et al. 2010; Kuijpers and Hoogenraad 2011). (4) Transport

defects associated with the abnormal accumulation of proteins and organelles in

axons have been suggested to contribute to the pathology of neurodegenerative

disorders such as Huntington’s, Parkinson’s, and Alzheimer’s disease (Perlson

et al. 2010; Kuijpers and Hoogenraad 2011).

Considering the importance of the microtubule cytoskeleton in neurons, we will

present in the following section our current understanding of how these cells

organize their microtubule network.

4.2.1 Organization of Neuronal Microtubule Arrays

When a progenitor cell differentiates, it remodels its microtubule array to allow new

cellular functions. Major reorganization of microtubules occurs during the differ-

entiation of neurons, due to their extreme polarization and subcellular compart-

mentalization. This polarized structure results from the formation of one long axon

and multiple shorter dendrites. These two types of subcellular compartments differ

in their morphology, internal organization, and function. The distinct features of

axons and dendrites are, to a large extent, determined by the differential organi-

zation of the microtubule cytoskeleton (Fig. 4.2) (Baas et al. 1988; Burton 1988;

Poulain and Sobel 2010; Kuijpers and Hoogenraad 2011).

Even though centrosomes are present in postmitotic neurons, they are not at the

center of the microtubule network. Instead neurons display non-centrosomal

microtubules arrays that are characterized by a high degree of bundling. Whereas

microtubule bundling is prominent in both axons and dendrites, the configuration of

microtubules within these bundles differs between the two neuronal compartments.

In vertebrate neurons the axonal microtubules have uniform polarity, with their plus

ends facing the axons tip, whereas the dendritic microtubules are of mixed polarity.

However, the distal dendritic tips contain unipolar microtubules oriented in the

same way as in axons (Conde and Cáceres 2009; Sakakibara et al. 2013). By

determining the directionality of motor-dependent cargo transport, the

compartment-specific orientation of microtubules establishes and maintains neuro-

nal polarization and compartment identity and thus is at the heart of neuronal

function.
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Fig. 4.2 Organization and regulation of microtubule arrays in neurons. New microtubules in

neurons can be generated by γTuRC-mediated nucleation at the centrosome, followed by cleavage

through severing enzymes and release of the newly formed microtubules (box “Centrosomal
nucleation and release”). In the cytoplasm, γTuRC can also promote non-centrosomal nucleation

of microtubules, which are then stabilized at their minus ends by CAMSAPs (box “Non-
centrosomal nucleation”). In the axon microtubules display a uniform polarity with plus ends

distal to the soma (box “Axon”). Short microtubules either formed locally by severing (box
“Severing”) or derived from the soma are transported by dynein-dependent sliding (box
“Axon”). Other cargoes such as mitochondria and vesicles are also transported throughout the

axon by dynein or kinesins in an anterograde or retrograde fashion, respectively (box “Axon”).
The transport specificity of axonal cargo is achieved among other factors by posttranslational

modification (PTM) of microtubules. Axonal microtubules display a high degree of acetylation and

are enriched in the MAP tau. In the somato-dendritic compartment, microtubules are less

acetylated and more tyrosinated than in the axon and are decorated with MAP2 (box “Dendrite”).
In dendrites, microtubule organization also differs from the axon, as microtubules have mixed

polarity. Minus-end-distal microtubules are transported into dendrites by kinesins. However, at the

dendrite tip microtubule polarity is more uniform with plus ends distal, similar to the axon. As

expected, these features also regulate the transport of specific dendritic cargo, either by dynein or

kinesins (box “Dendrite”)
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4.2.2 MTOCs in Neurons: Centrosomal vs. Non-centrosomal

In young neurons the centrosome organizes the microtubule array required for

neuronal migration (please see the Chap. 6 by Theisen and Straube for more

information), and in some types of neurons, centrosome position determines the

site of axon specification, even though there is still controversy on this matter

(Zmuda and Rivas 1998; de Anda et al. 2005; Gärtner et al. 2012). Despite these

observations, the role of the centrosome in generating the microtubules present in

the distinct cellular compartments of more mature neurons remains unclear. Early

work suggested that the centrosome is the main source of neuronal microtubules. It

was proposed that microtubules are nucleated at the centrosome from where they

are released by severing and, with the help of motor proteins, actively transported

along microtubule tracks to other locations in the cell (Yu et al. 1993; Baas and Yu

1996; Karabay et al. 2004; Zheng et al. 2008; Lin et al. 2012). However, more

recent studies have challenged this view. The presence of an adult, morphologically

normal nervous system in flies without centrosomes suggests that centrosomes are

not essential for neuron morphogenesis (Basto et al. 2006). This is also supported

by the observations that elimination of the centrosome does not impair axon

extension in cultured rat hippocampal neurons (Stiess et al. 2010) and does not

alter microtubule polarity in axons and dendrites of Drosophila larvae neurons

(Nguyen et al. 2011). In summary, centrosome-derived microtubules play an

important role in immature neurons by contributing to neuronal motility and may

also contribute to the extension of the first neurites. In subsequent more mature

stages, however, it is very likely that non-centrosomal mechanisms become instru-

mental for generating and maintaining neuronal microtubule arrays.

4.2.3 Non-centrosomal Nucleation

Consistent with the existence of non-centrosomal nucleation, γ-tubulin at

centrosomes progressively decreases during neuronal maturation (Leask

et al. 1997; Stiess et al. 2010; Yau et al. 2014). Moreover, whereas in young

neurons microtubules emanate from the centrosomes, in more mature neurons

most of the microtubules are not connected to the centrosome (Stiess et al. 2010).

In Drosophila neurons it was proposed that non-centrosomal γTuRC nucleates

microtubules from the surface of dendritic Golgi outposts to promote dendritic

arborization, but this observation has recently been questioned (Ori-McKenney

et al. 2012; Nguyen et al. 2014; Quassollo et al. 2015). More recently it was

shown that γ-tubulin can nucleate acentrosomal microtubules in the cytoplasm of

the somato-dendritic compartment of young and mature hippocampal neurons (Yau

et al. 2014), but a specific MTOC was not identified.

γ-Tubulin complexes are known to nucleate microtubules from non-centrosomal

sites in various organisms and cell types. For example, in higher plant cells, which

do not have centrosomes, microtubules are nucleated from the nuclear envelope and

from the lateral surface of other microtubules (Fishel and Dixit 2013; Hashimoto
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2013). In dividing animal and plant cells, nucleation from the lattice of other

microtubules is mediated by augmin, a multi-subunit protein complex that recruits

γTuRC to nucleate branches that grow almost parallel to and with the same polarity

as the “mother” microtubule. This augmin-dependent intra-spindle nucleation path-

way is crucial for proper mitotic and meiotic spindle assembly and function

(Goshima et al. 2008; Colombié et al. 2013; Petry et al. 2013). Interestingly,

augmin-dependent branching nucleation was recently found to also drive the

assembly of the cortical microtubule array of interphase plant cells (Liu

et al. 2014b), suggesting that augmin is not a mitosis/meiosis-specific factor.

Thus it is tempting to speculate that augmin may also have a role in postmitotic

neurons, in the generation and maintenance of microtubule bundles in axons and

dendrites. Indeed, this view is supported by unpublished data from our group.

An important question is how the minus ends of microtubules that are not

associated with any MTOC are stabilized. In principle, this function could be

carried out by minus end-associated γTuRC. While γ-tubulin is present in the

axonal fractions of rat hippocampal cultures (Stiess et al. 2010) and was also

detected in dendrites (Yau et al. 2014), it does not seem to be stably bound to the

minus ends of non-centrosomal MTs in any of these compartments (Baas and Joshi

1992). Apart from γTuRC, ninein, a minus end-associated protein, was shown to be

expressed in neurons and stabilize axonal microtubules (Baird et al. 2004; Srivatsa

et al. 2015). More recently, members of the patronin/CAMSAP protein family have

been characterized as important minus end-associated factors that stabilize

non-centrosomal microtubules (Goodwin and Vale 2010; Tanaka et al. 2012).

CAMSAP2 was shown to stabilize minus ends of non-centrosomal MTs nucleated

by γTuRC, promoting axon specification and dendrite morphogenesis (Jiang

et al. 2014; Yau et al. 2014).

4.2.4 Microtubule Severing

Apart from nucleation, new microtubules can also be generated by breakage of

preexisting microtubules through the action of severing enzymes. Severing of

microtubules occurs in cycling cells as well as in postmitotic cells, in an

ATP-dependent enzymatic process. Initially considered a mechanism for destruc-

tion or recycling of parts of the microtubule lattice, microtubule severing was later

found to underlie constructive processes, including seeding of new microtubule

growth and release of microtubules from their nucleation sites for their subsequent

transport. Three classes of microtubule-severing enzymes have been described –

katanin, spastin, and fidgetin. All three are expressed in the nervous system in

several organisms, and katanin and spastin were shown to have a role in neuronal

microtubule organization (Ahmad et al. 1999; Sherwood et al. 2004; Trotta

et al. 2004; Yang et al. 2005; Yu et al. 2005; Solowska et al. 2008; Lee

et al. 2009; Butler et al. 2010).

Katanin is a heterodimeric enzyme, with a p60 catalytic subunit and a p80

regulatory-and-targeting subunit. Inhibition of katanin p60 subunit in cultured rat

4 Principles of Microtubule Organization: Insight from the Study of Neurons 89



neurons was found to inhibit axon growth, while increasing the number of

centrosome-associated microtubules and the overall microtubule length in the

soma and the axon (Ahmad et al. 1999). This seems to indicate that katanin is

required to cleave centrosome-nucleated microtubules to allow their release and

transport to other parts of the cell. In the axon katanin may sever long microtubules

to generate multiple short microtubule fragments, which can be transported to the

axon tip and, by polymerization, promote axon growth (Karabay et al. 2004). In

dendrites, katanin seems to be required for the establishment of correct morphology

and arborization. Drosophila loss-of-function mutants of katanin p60 showed

reduced neurotransmitter efficiency at neuromuscular junctions with an increased

elaboration of dendrites (Mao et al. 2014). In contrast, Drosophila katanin p60-like
1 (kat-60 L1) mutants have decreased dendrite branch number and length in larval

class IV sensory neurons (Stewart et al. 2012), and mutations in the kat-60 L1 gene
inhibited dendritic pruning in Drosophila larval neurons, a process that removes

dendritic branches to allow rewiring of the nervous system during metamorphosis

(Lee et al. 2009). These differential effects of severing enzymes on dendritic growth

and arborization may be due to differences in their specific localization or

regulation.

To avoid an excessive severing of microtubules, this activity needs to be

controlled. In axons, the axon-specific protein tau protects microtubules against

severing, by limiting access of katanin to microtubules (Qiang et al. 2006). Phos-

phorylation of tau releases this MAP from microtubules and has been proposed to

regulate katanin-mediated severing (Qiang et al. 2010). Microtubule acetylation

also regulates severing, as acetylated microtubules are more sensitive to katanin

activity (Sudo and Baas 2010; Mao et al. 2014). Furthermore, it was shown that the

adenomatous polyposis coli (APC) protein controls the stability and activity of

katanin p60 in interneurons to ensure a rapid remodeling of neurites, necessary for

interneuron migration (Eom et al. 2014).

Together with katanin the enzyme spastin also regulates axon growth and

morphology. In cultured rat neurons spastin was shown to localize at the nascent

sites of axonal lateral branches, where it seems to cleave long microtubules, giving

rise to short microtubules that can be transported into these new branches

(Yu et al. 1994; Yu et al. 2008). This role seems to be conserved in other organisms,

such as zebrafish (Butler et al. 2010) and Drosophila. While behavior of axonal

microtubules seems to be normal in flies heterozygous for a spastin null-allele,

these neurons showed severe impairment of regenerative axon growth post-

axotomy (Stone et al. 2012). The cooperation between the activities of spastin

and katanin is also found in dendrites. Dendritic branching was reduced in null

mutants of the spastin gene in Drosophila, which goes in line with the hypothesis

that spastin generates short microtubules at the branching points of dendrites, to

seed the formation of the new microtubules required for branching (Jinushi-Nakao

et al. 2007). Tubulin polyglutamylation renders microtubules more sensitive to

severing by spastin (Qiang et al. 2006; Lacroix et al. 2010).
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4.2.5 Microtubule Transport

Short microtubules generated by nucleation or severing can subsequently be

distributed by motor proteins (Fig. 4.2). The specific localizations and activities

of various motors promote the compartment-specific organization of neuronal

microtubules. For example, microtubules can be transported with the plus end

leading into the nascent axon and dendrites to support neurite growth, and transport

of minus end-distal microtubules selectively into dendrites was proposed to con-

tribute to dendritic identity (Baas 1998). For quite some time, the existence of

microtubule transport was uncertain; the first photobleaching experiments,

performed on short axon segments (a few micrometers long) of neurons that were

microinjected with fluorescent tubulin, showed no movement of fluorescent

particles through the bleached zone. This leads to the hypothesis that either

microtubule transport in neurons was a very slow process or that axon microtubules

were completely stationary (Hirokawa et al. 1997). However, in subsequent

experiments, by photobleaching a longer segment of the axon and extending the

imaging period, rapidly moving fluorescent tubulin (presumably in the form of very

short microtubules with a length of 7–10 μm) was visualized. The movement was

intermittent, asynchronous, and bidirectional and occurred at a rate that was

consistent with motor-dependent transport (Wang and Brown 2002; Hasaka

et al. 2004; He et al. 2005; Myers and Baas 2007; Qiang et al. 2010; Liu et al. 2010).

In axons, anterograde movement of microtubules is about twice as frequent as

retrograde movement (Wang and Brown 2002). Even though the polarity of such

microtubules is difficult to assess (only actively growing microtubule plus ends can

be visualized; the currently available markers such as members of the EB family

only bind to growing plus ends), it was proposed that selective transport of

microtubules with specific polarity may underlie the uniform plus end-out orienta-

tion of axonal microtubules (Baas and Mozgova 2012). This model assumes that the

anterograde-moving microtubules would be plus end distal, whereas the retrograde-

moving microtubules would have the opposite polarity (minus end distal). One of

the premises of this model is that the retrograde microtubule transport is a clearing

mechanism that maintains the uniform polarity of microtubules in the axon, by

removing incorrectly oriented, minus end-distal short microtubules. Such

microtubules may arise by severing of longer microtubules and flipping of the

resulting very short microtubule fragments in wider areas of the axon (Baas and

Mozgova 2012). In addition, local nucleation, if not precisely controlled, may also

generate microtubules with incorrect polarity.

Concerning the motors that drive this transport, cytoplasmic dynein was one of

the first to be tested. The two heavy chains of the multi-subunit dynein complex

hydrolyze ATP and mediate movement along microtubules, whereas interaction

with cargo such as vesicles and organelles is mediated by the cargo domain.

However, since the cargo domain can also bind to microtubules and actin filaments,

dynein can also operate in a sliding mode: while the cargo domain is bound to a

longer immobile microtubule or actin filament, the motor domain binds to short

microtubules and, by moving toward their minus end, “slides” these along the
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immobile structure with their plus ends leading (Vale et al. 1992; Keays et al. 2007;

Poirier et al. 2007). When dynein heavy chain was partially depleted in neurons, the

anterograde movement of microtubules decreased, without affecting the retrograde

movement (He et al. 2005; Bahi-Buisson et al. 2014). This would be consistent with

a role of dynein in microtubule sliding toward the axon tip. Since it was

demonstrated that this dynein-dependent anterograde sliding can occur against

both actin filaments and long microtubules but retrograde movement only against

microtubules, it was hypothesized that dynein may only be used for sliding against

actin filaments (Hasaka et al. 2004; Baas and Mozgova 2012). On the other hand, in

a separate study inhibition of dynein generated an increase in misoriented

microtubules in the axon in Drosophila neurons, suggesting that dynein may also

have a role in the retrograde transport mechanism, which would allow clearing of

microtubules with incorrect, minus end-distal polarity. Apart from dynein, kinesin

motors may also be involved in microtubule transport. However, kinesin motors

move (with a few exceptions) toward microtubule plus ends and therefore short

microtubules would have to be transported as cargo rather than by sliding. Since

this type of transport would occur regardless of short microtubule polarity, it would

have the risk of introducing minus end-distal microtubules into the axon. Indeed,

the depletion of some of the so-called “mitotic” kinesins that are also expressed in

neurons did not decrease the rate of short microtubule transport in the axon, but

rather increased it. Eg5/kinesin-5/KIF11, for example, is required for the separation

of centrosomes during prophase and formation of the bipolar mitotic spindle

(Bertran et al. 2011). In postmitotic neurons, depletion of Eg5 increased bidirec-

tional traffic of short microtubules in the axon, without affecting the movement of

vesicles or mitochondria, suggesting that one of its functions is to act as a brake for

short microtubule transport (Myers and Baas 2007). Inhibition of Eg5 with drugs

also leads to an increase in axon growth in rat peripheral neurons (Haque

et al. 2004; Myers and Baas 2007; Tischfield et al. 2010) and to an increase in

axon length in immature rat cortical neurons, but not in later stages of neuron

maturation in vitro (Yoon et al. 2005). In agreement with these observations, Eg5

was also shown to control the distribution of microtubules in the axonal growth

cone (Nadar et al. 2012) and its overexpression in rat peripheral neurons leads to a

decrease in axon length and anterograde microtubule transport (Myers and Baas

2007).

Kinesin-12/KLP/KIF15 is also expressed in neurons. Knockdown of kinesin-12

led to an increase in anterograde and retrograde axonal microtubule transport and to

faster axon growth, a phenotype shared with Eg5-depleted neurons. However, in

contrast to Eg5 depletion, depletion of kinesin-12 did not increase axonal branching

or growth cone size (Abdollahi et al. 2009; Liu et al. 2010).

In dendrites, as mentioned before, microtubule polarity is mixed, and therefore

the mechanisms driving microtubule transport in this compartment are likely to be

different from those in the axon (Fig. 4.2). It is known that microtubules in newly

forming dendrites are mostly plus end-distal and that minus end-distal microtubules

occur gradually during dendrite growth, to establish the characteristic mixed polar-

ity configuration (Sharp et al. 1995; Jaglin and Chelly 2009; Tischfield et al. 2011).
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Fig. 4.3 Genes encoding components of the microtubule cytoskeleton and their association with

nervous system diseases. The yellow box contains genes linked to malformations or diseases of the

central nervous system (CNS). The blue box below contains genes linked to syndromes of the

peripheral nervous system (PNS). Gene names (black font) are grouped within ovals according to
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An important player in this process is the plus end-directed motor KIF23/CHO1/

MKLP1. KIF23 is expressed in rat sympathetic and cortical neurons and

accumulates in dendrites, being almost absent from the axon. Depletion of KIF23

causes dendrites to develop abnormally, displaying a thin and elongated axon-like

morphology and axon-like organelle composition. In these dendrites the nonuni-

form microtubule polarity was disrupted. Minus-end-distal microtubules were

drawn back to the soma, while plus end-distal microtubules were pushed forward

in the dendrite. Thus, KIF23 is essential for establishment and maintenance of

dendritic identity (Sharp et al. 1997; Yu et al. 2000; Barkovich et al. 2005; Lin

et al. 2012). Similar results were obtained for depletion of kinesin-12 (Lin

et al. 2012). Moreover, Eg5 depletion was found to decrease dendrite length and

width and increase the percentage of minus end-distal microtubules in dendrites

suggesting that Eg5 limits transport of minus end-leading microtubules into

dendrites (Wang and Brown 2002; Baas and Mozgova 2012; Lin et al. 2012;

Kahn et al. 2015).

Finally, cytoplasmic dynein can influence dendritic morphology as well, as

changes in the levels of dynein cofactors NudE or Lis1 affect microtubule dynamics

and dendrite branching in Drosophila (Arthur et al. 2015).

Even though the molecular details remain to be elucidated, the motor-dependent

sorting of microtubules generated by centrosomal and non-centrosomal nucleation

as well as by severing has emerged as a crucial mechanism to establish and

maintain compartment-specific microtubule configurations in neurons.

4.2.6 Tubulin Isotypes, Posttranslational Modifications, and MAPs

Multiple mechanisms exist in cells to modulate the properties of microtubules

including expression of various tubulin isotypes, posttranslational modification

(PTM) of tubulin, and interaction with MAPs. Here we will highlight only some

of these mechanisms, focusing on those relevant to neurons.

Multiple genes encoding α- and β-tubulin exist, generating a range of tubulin

molecules with subtle differences in their amino acid composition, in particular in

their C-terminal tail that is exposed on the microtubule surface. It was initially

suggested that the different tubulin isotypes, which frequently show tissue or

development stage-specific expression, generate different types of microtubules

that differ in their properties (Vale et al. 1992; Hasaka et al. 2004; Baas and

Mozgova 2012). While in many cell types the isotype composition of microtubules

may not be crucial, certain isotypes are specifically expressed in neurons and

mutations in the corresponding genes have been linked to neurodevelopmental

disorders, suggesting that certain important properties of neuronal microtubules

are tubulin isotype-dependent (Joe et al. 2008). We will discuss mutations in tubulin

genes and their implication in disease in more detail below.

In addition to the expression of tubulin isotypes, microtubule properties can be

modulated by posttranslational modification. Modifications such as acetylation,

detyrosination, or glutamylation are frequently enriched on more stable
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microtubules. In neurons stable microtubules are crucial for many aspects of neuron

development and function, including axon specification, neuron polarization, as

well as axodendritic growth and trafficking (Witte and Bradke 2008; Janke and

Kneussel 2010; Funahashi et al. 2014). However, there is currently no evidence that

a particular modification directly affects the biophysical properties of microtubules.

Most posttranslational modifications occur at the C-terminal tail of tubulin and it

has been proposed that variability in the amount, distribution, and combination of

specific modifications exposed on the microtubule lattice represents a “tubulin

code” that is read by motors and MAPs, regulating their binding and function

(Funahashi et al. 2014; Janke 2014).

Microtubules in neurons are known to interact with a great number of MAPs,

which play a crucial role in the compartmentalization of the cell. Two well-known

MAPs that display a highly polarized distribution are MAP2 and tau. MAP2

associates preferentially with dendritic microtubules, whereas tau is highly

enriched on axonal microtubules (Fig. 4.2) (Dehmelt and Halpain 2005; Chew

et al. 2013). Inhibition of MAP2 expression reduces neuritic growth and

disorganizes microtubules in cultured neurons (Caceres et al. 1992; Tischfield

et al. 2010; Cederquist et al. 2012), but mice lacking MAP2 are viable and display

only a slight dendritic length reduction in hippocampal neurons (Harada 2002;

Barnes et al. 2007). Only in the absence of both MAP2 and MAP1B, severe defects

are observed (Teng et al. 2001; Yokota et al. 2009). MAP1B belongs to the MAP1

family and can cross-link microtubules, promoting their stability. MAP1B is

localized throughout the whole neuron, accumulating in the axonal shaft and

growth cone and regulating axonal growth (Mansfield et al. 1991; Black

et al. 1994; Bush et al. 1996; Gonzalez-Billault et al. 2001). The protein tau also

functions in microtubule stabilization. Tau has an important role in axon specifi-

cation, growth, and branching (Caceres et al. 1991; Liu et al. 1999). Tau has around

80 predicted serine/threonine phosphorylation sites and many have been confirmed

(Billingsley and Kincaid 1997). Increasing levels of tau phosphorylation generally

result in less binding to microtubules. Phosphorylation of tau is regulated spatially

and temporally during development, and hyperphosphorylation of tau is associated

with disruption of the microtubule cytoskeleton and abnormal physiological events

and disease, as will be discussed later in this chapter (Takashima 2013).

4.3 Defects in the Neuronal Microtubule Cytoskeleton
and Disease

In the following paragraphs we will highlight examples of neurodevelopmental and

neurodegenerative disorders caused by mutations in genes encoding proteins of the

microtubule cytoskeleton (Fig. 4.3). Additional discussion can be found in the

Chaps. 5 by Gambarotto and Basto and 6 by Theissen and Straube.
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4.3.1 Mutations in a-Tubulin and b-Tubulin

Mutations in genes encoding α- and β-tubulin isotypes (TUBA1A, TUBA8 and

TUBB2B, TUBB3, TUBB5) have been associated to a large spectrum of develop-

mental brain malformations, referred to as “tubulinopathies”. Patients normally

suffer from microcephaly, moderate to severe motor and intellectual disabilities,

and seizures. These tubulin-encoding genes are highly expressed during cortical

development with specifics spatial and temporal expression patterns. In TUBA1A,
TUBB2B, TUBB3, and TUBB5 heterozygous missense mutations are found,

whereas the unique TUBA8 mutation consists of a homozygous 14 bp intronic

deletion. The large majority of the mutations in α-tubulin and β-tubulin are

predicted to impair the interaction with MAPs or motor proteins, diminish the

abundance of functional tubulin heterodimers, alter GTP binding, or affect

interactions within the microtubule polymer (Haque et al. 2004; Myers and Baas

2007; Tischfield et al. 2011; Bertran et al. 2011; Bahi-Buisson et al. 2014).

Since the first reports highlighting the presence of brain abnormalities related to

TUBA1A mutations (Keays et al. 2007; Poirier et al. 2007), some common features

have been consistently found in patients carrying mutations in tubulin genes. These

tubulinopathy hallmarks affect mainly extra-cortical structures and include a dys-

morphic aspect of the basal ganglia, the agenesis of the corpus callosum and the

brainstem, and a mild to severe cerebellar hypoplasia. Together with these common

extra-cortical features, specific cortical dysplasias have been linked to mutations in

particular tubulin genes. These are likely the result of differences in the spatiotem-

poral expression patterns of the different tubulin genes (Poirier et al. 2013; Bahi-

Buisson et al. 2014).

TUBA1A mutations are typically associated to type I lissencephaly, which is

characterized by a smooth brain surface, absence of hypoplastic gyri and sulci,

variable cortical thickness, and abnormal lamination patterns. A significant propor-

tion of mutations in TUBA1A is linked to a more severe pattern of micro-

lissencephaly. TUBB2B mutant patients, in contrast, show asymmetric bilateral

polymicrogyria (PMG), a defect characterized by multiple small, partially fused

gyri separated by shallow sulci that produce an irregular cortical surface. Neuro-

pathological analyses revealed a disorganized layering of cortical hemispheres, the

presence of ectopic clusters of neurons and heterotopias in the white matter, and an

important disorganization of the radial processes of the radial glial cells (Yoon

et al. 2005; Myers and Baas 2007; Jaglin and Chelly 2009; Tischfield et al. 2011;

Nadar et al. 2012). TUBB3 mutations cause a more diffuse pattern of

malformations, encompassing polymicrogyria-like cortical dysplasia and ophthalmo-

logical and peripheral nerve pathologies (Tischfield et al. 2010; Poirier et al. 2013).

TUBB5 tubulinopathies show typically milder cortical dysgenesis and some reminis-

cent features of TUBB3 mutants (Sharp et al. 1995, 1997; Yu et al. 2000; Liu

et al. 2010, 2012; Breuss et al. 2012; Bahi-Buisson et al. 2014). The homozygous

deletion on TUBA8 is associated with polymicrogyria and corpus callosum and optic

nerve hypoplasia (Abdollahi et al. 2009; Yau et al. 2014; Nguyen et al. 2014).
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The tubulin-related cortical dysgenesis is thought to be caused by a combination

of abnormal neuron proliferation, migration and differentiation, and axon growth

and guidance defects (Yuba-Kubo et al. 2005; Jaglin and Chelly 2009; Tischfield

et al. 2011). Proliferative abnormalities and their linkage to microcephaly are

described in detail in the Chap. 5 by Gambarotto and Basto. Since an altered neuron

migration process may explain the abnormal lamination phenotypes such as

lissencephaly or heterotopias, the tubulin-related cortical dysgeneses were primar-

ily classified as neuronal migration disorders (Barkovich et al. 2005). Supporting

this idea, investigations carried out on TUBA1A-deficient mice or by knocking

down TUBB2B expression in rodent embryos have shown that TUBA1A and

TUBB2B are necessary for proper radial neuron migration (Keays et al. 2007;

Jaglin and Chelly 2009; Lin et al. 2012). Thus the specific tubulin isotype compo-

sition of neuronal microtubules is crucial for their function in neuron migration.

In addition to lamination defects, tubulinopathies progress with dysgenesis of

extra-cortical axon tracts such as the internal capsule or the corpus callossum. The

anomalies in the corpus callosum, internal capsule, and other nerve tracts observed

in a subset of TUBB3 mutant patients have been interpreted as resulting from axon

growth and/or guidance defects (Chew et al. 2013). Moreover, inherited missense

mutations in TUB2B and TUBB3 genes assayed in mice models revealed axon

guidance defects and dysinnervation without evidence of neuronal proliferation or

migration abnormalities (Tischfield et al. 2010; Cederquist et al. 2012; Scheidecker

et al. 2015). Other studies have shown that the growth and guidance of axon bundles

projected by the cortical pyramidal neurons strongly depend on microtubule regu-

lator proteins. For instance, the genetic deletion of the Ser/Thr kinase LKB1, a key

activator of several MAPs involved in neuron polarization and morphogenesis,

prevents specifically the formation of the axons of the internal capsule and the

corpus callosum (Pilz et al. 1998; Barnes et al. 2007). Also, targeting the adeno-

matous polyposis coli (APC) protein, which binds to MT plus ends, impairs the

formation of the major post-migratory cortical and extra-cortical axon tracts

(Yokota et al. 2009; Reiner 2013).

4.3.2 Mutations in gTuRC Subunits

Heterozygous missense mutants and allele variants in genes encoding different

subunits of the microtubule nucleator γTuRC (TUBG1, TUBCGP4, and

TUBGCP6) have been recently linked to brain malformations (Puffenberger

et al. 2012; Poirier et al. 2013; Martin et al. 2014; Scheidecker et al. 2015; Arthur

et al. 2015). Cortical dysgenesis related to TUBG1 mutations consists mainly of

severe microcephaly combined with a classic lissencephaly and predominant pos-

terior pachygyria. Interestingly, the few patients analyzed had a normal brainstem

and cerebellum formation (Sapir et al. 1997; Poirier et al. 2013). Neuron migration

defects are likely a major contributor to the pathology in TUBG1 patients, since

TUBG1 knockdown leads to neuronal migratory defects in mice (Wynshaw-Boris

et al. 2010; Vallee et al. 2012; Poirier et al. 2013). However, considering that
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γ-tubulin is central to the function of the nucleator γTuRC, other major defects in

neuronal morphogenesis and function can be expected (Vallee and Tsai 2006; Yau

et al. 2014; Nguyen et al. 2014). Mammals have two γ-tubulin genes, which encode
the two highly similar γ-tubulin proteins TUBG1 and TUBG2 (>97 % identical). In

mice, deficiency of the ubiquitously expressed TUBG1 is embryonically lethal,

whereas loss of TUBG2, which is predominantly expressed in the brain, does not

cause major histological or behavioral abnormalities (Tanaka et al. 2004; Yuba-

Kubo et al. 2005; Umeshima and Hirano 2007; Tsai et al. 2007).

Patients carrying TUBGCP6 mutations show microcephaly with diffuse cortical

pachygyria, hypoplastic cerebellum, reduced axonal tracts in the corpus callosum,

and retinopathy (Puffenberger et al. 2012; Martin et al. 2014). TUBGCP4 allele

variants associate with autosomal recessive microcephaly and retinopathy as well.

A more detailed analysis of fibroblasts from mutant-TUBGCP4 patients showed

reduced γTuRC levels, altered microtubule nucleation and organization, abnormal

cell morphology, and mitotic defects (Reiner 2013; Scheidecker et al. 2015). These

studies establish that the γTuRC is an important regulator of brain development.

4.3.3 Mutations in MAPs

Mutations in genes encoding MAPs have been associated to severe central and

peripheral neuropathies. Mutations in the lissencephaly-1 (LIS1) and doublecortin

(DCX) genes account for a majority of the cases of lissencephaly syndrome (Pilz

et al. 1998; Moores et al. 2004; Bechstedt and Brouhard 2012). However, some

differences have been noted between patients. Whereas mutations in LIS1 are found
mostly in patients with type I lissencephaly affecting primarily the dorsal part of the

brain, mutations in DCX primarily affect the rostral regions of the brain and are the

major cause of the X-linked lissencephaly, also termed double cortex syndrome

(Tanaka et al. 2006; Koizumi et al. 2006; Tint et al. 2009; Jean et al. 2012; Reiner

2013).

LIS1 is an atypical MAP which can modulate microtubule dynamics and organi-

zation in mammalian cells (Sapir et al. 1997). LIS1 interacts with the proteins

NDE1 and NDEL1 for regulation of dynein-driven cell motility (Wynshaw-Boris

et al. 2010; Vallee et al. 2012). Genetic ablation of Lis1 in mice results in peri-

implantation lethality, but the usage of hypomorphic alleles and in utero electro-

poration of siRNAs have shown that LIS1 plays a critical role in neuron migration

during development. The migration deficits observed lead to a disorganized

layering of the neocortex, hippocampus, cerebellum, and olfactory bulb, which

subsequently interfered with normal cognition and motor coordination (Vallee and

Tsai 2006). More detailed studies revealed that LIS1 deficiency specifically impairs

the nuclear translocation during neuron migration without interfering with the

coupling of microtubules and centrosome in the leading process (Tanaka

et al. 2004; Umeshima and Hirano 2007; Tsai et al. 2007).

DCX is a phospho-MAP expressed in migrating and differentiating mammalian

neurons during the period of corticogenesis. It can be phosphorylated by a number
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of kinases such as JNK, Cdk5, PKA, or GSK3b, controlling its affinity for

microtubules (Pramparo et al. 2010; Reiner 2013). DCX interacts with and

stabilizes the lattice of microtubules. Interestingly, mutations in DCX found in

patients with double cortex syndrome disrupt this mechanism (Wieczorek

et al. 1999; Fonknechten et al. 2000; Parvari et al. 2002; Moores et al. 2004;

Bechstedt and Brouhard 2012). DCX contributes to many aspects of brain develop-

ment, including axonal and dendritic arborization, microtubule organization in

growth cones, and the maintenance of bipolar morphology during neuron migration

(Parvari et al. 2002; Tanaka et al. 2006; Koizumi et al. 2006; Tint et al. 2009; Jean

et al. 2012). DCX-deficient mice show normal cortical lamination and no gross

neurodevelopmental defects, likely due to compensation. Indeed, double knockout

of Dcx and Dclk1, a doublecortin-like kinase, revealed neuron migratory deficits

producing abnormalities in the neocortical and hippocampal lamination (Tanaka

et al. 2006; Kappeler et al. 2006). Interestingly, LIS1 and DCX have overlapping

localization and coimmunoprecipitate in brain lysates and DCX can rescue

centrosome-nucleus uncoupling and neuron migration defects triggered by LIS1

or dynein loss-of-function (Martin et al. 2002; Tanaka et al. 2004; Schaefer

et al. 2007; Jin et al. 2009).

Although multiple evidences indicate that mutations in LIS1 and DCX impair

neuronal migration, neurogenesis deficits could also contribute to the pathology in

affected patients. Both LIS1 and DCX participate in the regulation of neuron

proliferation in the developing brain by influencing mitotic spindle orientation of

neuroepithelial stem cells and radial glia progenitors or by acting in the interkinetic

motility of the radial glia (Tsai et al. 2005; Beetz et al. 2006; Pramparo et al. 2010).

Other microtubule-interacting proteins associated with neurological and devel-

opmental defects are the tubulin-specific chaperone TBCE and the microtubule-

severing protein spastin (Wieczorek et al. 1999; Fonknechten et al. 2000; Parvari

et al. 2002; Liu et al. 2009; Deluca et al. 2015). Deletion and truncation mutations in

TBCE were identified in patients with congenital hypoparathyroidism, mental

retardation, facial dysmorphism (HRD or Sanjad-Sakaty syndrome) (Parvari

et al. 2002; Fink and Rainier 2004; Tarrade et al. 2006). TBCE protein is critical

for microtubule maintenance in mouse motor axons, and its down-regulation

correlates with peripheral axon retrograde degeneration (die back process) and

developmental defects in neuromuscular synapses (Weingarten et al. 1975;

Drechsel et al. 1992; Martin et al. 2002; Schaefer et al. 2007; Jin et al. 2009).

Mutations in the spastin gene (SPG4) are responsible for 40 % of autosomal

dominant forms of hereditary spastic paraplegia (HSP), also called the “dying-

back” neuropathy (Beetz et al. 2006; Elie et al. 2015). The major clinical feature of

this disease is gait disturbance with muscle spasticity and weakness, seemingly due

to axon loss in motor and sensory tracts and to the presence of axon swellings in

patients (Liu et al. 2009; Tenreiro et al. 2014; Deluca et al. 2015). Mice models

homozygous for Spg4 mutations reproduce these degenerative hallmarks and show

deficits in axonal trafficking. Although it was suggested that SPG4 mutations alter

the interaction with microtubules, the microtubule pathology underlying the axonal
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phenotypes is not completely understood (Fink and Rainier 2004; Tarrade

et al. 2006; Hernández and Avila 2007; Beharry et al. 2014).

Tau (MAPT) is another neuronal MAP strongly associated with a long list of

neurodegenerative dementias. It is found preferentially bound to axonal

microtubules, and it can promote microtubule polymerization and stability

(Weingarten et al. 1975; Drechsel et al. 1992; Taymans et al. 2014; Vuono

et al. 2015). Interestingly, a recent study shows tau binding simultaneously to

actin and microtubules in vitro, coordinating a coupled growth of both networks

(Zhang et al. 2014; Elie et al. 2015). Tau is a phosphoprotein with multiple

phosphorylation sites and is a substrate of at least 20 protein kinases, including

GSK3b, CDK5-p25, MARK, or PKA (Millecamps and Julien 2013; Tenreiro

et al. 2014). The accumulation in brain tissue of abnormally hyperphosphorylated

tau protein as filamentous aggregates is a common feature of several dementias,

collectively referred to as tauopathies. This family of diseases includes Alzheimer’s

disease (AD), frontotemporal dementia (FTD) with or without parkinsonism-17,

corticobasal degeneration (CBD), Pick’s disease, progressive supranuclear palsy

(PSP), or dementia pugilistic (Hernández and Avila 2007; Iqbal et al. 2009; Combs

and Gamblin 2012; Beharry et al. 2014). Moreover tau pathology has been recently

associated also with Huntington’s and Parkinson’s disease (Ishihara et al. 1999;

Zhang et al. 2004; Taymans et al. 2014; Vuono et al. 2015).

Six tau isoforms are produced by alternative splicing in the adult human brain.

At least 59 mutations have been found in exons and introns, mostly associated to

FTDP-17, PSP, Pick’s disease, and CBD. Many of these disease-related tau

mutations promote the exon 10 inclusion in the spliced variants, resulting in the

disruption of the tau isoform balance and triggering pathology (Zhang et al. 2014).

Hyperphosphorylated tau has a reduced affinity for microtubules, lowering the

ability to promote microtubule assembly and stabilization and influencing motor

transport along microtubules (Millecamps and Julien 2013). Some of the patho-

genic tau mutations were shown to make the protein more easily abnormally

phosphorylated, inducing protein aggregation and microtubule-related dysfunctions

(Iqbal et al. 2009; Combs and Gamblin 2012). To address the physiological

consequences, transgenic mice overexpressing wild type or mutant tau were

generated. These animals present axonal transport deficits and axon swellings

preceding the appearance of tau protein aggregates, which could explain the

observed synaptic deficits and neurodegeneration, and the associated cognitive

symptoms (Ishihara et al. 1999; Zhang et al. 2004).

4.3.4 Mutations in Motors and Motor-Associated Proteins

Abnormalities in the intracellular transport machinery are considered risk factors

for a wide variety of both central and peripheral congenital or degenerative

diseases. Most of the neurodegenerative diseases present axon pathology and

accumulation of aggregates of certain microtubule-related proteins in different

neuron types, associated with axonal trafficking defects. However, the causal
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relationship between transport impairments and neurodegeneration is currently

unclear. In addition to diseases associated with abnormal protein aggregation,

some neuropathies have been linked to mutations in motor or motor-associated

proteins in the absence of any protein aggregates (Mansfield et al. 1991; Black

et al. 1994; Takashima 2013; Millecamps and Julien 2013). Examples will be

discussed in the following sections.

4.3.4.1 Dynein
A missense mutation in the homodimerization domain of the heavy-chain

DYNC1H1 of the dynein motor complex has been identified in a form of Charcot-

Marie-Tooth (CMT) disease, which is characterized by axonal degeneration with

distal sensory loss and weakness (Weedon et al. 2011). Mice carrying mutations in

this same domain show impaired axonal retrograde transport and age-related

progressive loss of muscle tone and locomotor skills (Hafezparast et al. 2003;

Chen et al. 2007). CMT disease is also associated with mutations in other genes

includingMTF2, which encodes a mitochondrial protein that interacts with adaptor

proteins of kinesin motors. Accordingly, Mtf2 knockout mice display defects in

mitochondrial motility (Züchner et al. 2004; Cartoni et al. 2010).

Mutations in DYNC1H1 have also been linked to spinal muscular atrophy

(SMA), a disease of the peripheral nervous system impairing muscle movement

and leading to muscle weakening, and to developmental cortical malformations and

severe intellectual disability in the central nervous system (Willemsen et al. 2012;

Poirier et al. 2013; Jamuar et al. 2014). Recessive hypomorphic variants of the

heavy-chain DYNC2H1 of the dynein complex are responsible for some human

ciliary disorders (Huber and Cormier-Daire 2012). Moreover, genetic mutations in

the dynein regulator BICD2 have been found in patients with dominant congenital

SMA (DCSMA), characterized by nonprogressive congenital early-onset lower-

limb-predominant weakness. BICD2 participates in the transport of RAB6 vesicles

and other dynein-dependent trafficking, and some pathogenic BICD2 mutations

have shown to alter RAB6 binding and produce Golgi fragmentation (Oates

et al. 2013; Peeters et al. 2013; Rossor et al. 2015).

Mutations in the gene DCTN1, which encodes the p150glued subunit of the

dynein cofactor complex dynactin, are associated with amyotrophic lateral sclerosis

(ALS), a progressive neurodegenerative disease caused by functional impairment

and degeneration of motor neurons in the brain and the spinal cord (Puls et al. 2003;

Münch et al. 2004; Stockmann et al. 2013). Supporting a role of dynactin in ALS,

DCTN1 expression was found to be strongly downregulated in sporadic ALS

patient samples (Jiang et al. 2005). However, no other clear links to ALS were

established for other DCTN1 genetic variations (Farrer et al. 2009).

Mutations in other dynein adaptors have also been linked to disease. NDE1

regulates mitotic spindle assembly in cortical progenitors, whereas NDEL1 controls

the microtubule-dependent coupling of centrosome and nucleus in migrating

postmitotic neurons (Feng and Walsh 2004; Shu et al. 2014). Only mutations in

the NDE1 gene have been associated to developmental cortical malformations, such

as microcephaly with a spectrum of lissencephaly (referred to as
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microlissencephaly) and fetal brain disruption. The pathological NDE1 versions

showed impaired centrosomal localization and altered binding to cytoplasmic

dynein (Alkuraya et al. 2011; Bakircioglu et al. 2011; Paciorkowski et al. 2013).

However, both NDE1 and NDEL1 have been identified in genetic association

studies of mental illnesses, linked to risk variants of another dynein adaptor,

DISC1 (Bradshaw and Porteous 2012). DISC1 (Disrupted In Schizophrenia 1)

protein is implicated in embryonic and adult neurogenesis, radial and tangential

modes of neuron migration, and synaptic function. Together DISC1, NDE1, and
NDEL1 regulate the functions of the microtubule network in cortical development

and neurite formation and mutation of the corresponding genes is a robust genetic

risk factor for a wide range of psychiatric disorders (Thomson et al. 2013; Lipina

et al. 2013). The microtubule-associated protein PCM1, which participates in

protein recruitment to the centrosome and influences centrosomal microtubule

organization, is a DISC1 interactor and has been also genetically associated with

schizophrenia (Zoubovsky et al. 2015).

Importantly, dynein is also involved in the clearing of abnormal protein

aggregates by autophagy. Autophagy is a catabolic neuroprotective mechanism

ensuring the constant removal of damaged organelles or proteins. The targeted

materials are engulfed by autophagosomes, which are then fused to endosomes and

lysosomes for the final degradation of their content. Whereas in healthy neurons

autophagosomes move in the axons mostly retrogradely through dynein-dependent

transport (Yang et al. 2013), accumulation of autophagy-related vesicles is fre-

quently observed in PD, AD, or HD samples. Dynein-dependent vesicular transport

deficits are believed to contribute to defective autophagy and thus to axonal

degeneration (Chen et al. 2012; Wong et al. 2015).

4.3.4.2 Kinesins
Most members of the kinesin superfamily drive microtubule plus end-directed

transport, which in axons permits anterograde cargo movement toward the nerve

terminals.

Mutations in the neuron-specific kinesin-1 family member KIF5A are responsi-

ble for dominant forms of hereditary spastic paraplegia (HSP), a group of diseases

showing progressive spasticity in the lower limbs. The defects are thought to be

caused by a reduction in KIF5A microtubule affinity and thus in transport activity

(Ebbing et al. 2008; Goizet et al. 2009). A mutation in KIF5A has also been linked

to Charcot-Marie-Tooth disease type 2 (CMT2) (Crimella et al. 2012). In other

CMT2 patients, however, a loss-of-function mutation in the motor domain of the

kinesin-3 family member KIF1Bbeta was identified (Zhao et al. 2001).

Missense genetic variants of the kinesins KIF2A and KIF5C have been identified

in individuals with microcephaly and cortical malformations. Whereas the mutation

in KIF5C seems to impair the protein’s ability to hydrolyze ATP, the pathogenic

KIF2Amutation causes protein misfolding and loss-of-function (Poirier et al. 2013;

Jamuar et al. 2014).
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Mutant versions of KIF5C and also KIF4A have been identified as risk factors

for intellectual disability and epilepsy, due to an imbalance between excitatory and

inhibitory synaptic activity (Willemsen et al. 2014).

Heterozygous mutations in the homotetramer kinesin motor Eg5/KIF11, a pro-

tein implicated in mitotic spindle assembly and with neuronal functions in axonal

path finding and dendrite morphogenesis, cause microcephaly, lymphedema,

chorioretinopathy, and retinal detachment (Ostergaard et al. 2012; Jones

et al. 2014; Robitaille et al. 2014).

Huntingtin (HTT), a multi-domain protein with multiple but poorly understood

cellular roles, interacts direct and indirectly (through its partner HAP1) with kinesin

light chain 1 (KLC1), the p150 subunit of dynactin and with dynein intermediate

chains. It has been proposed that HTT acts as a molecular switch: when it is

phosphorylated, HTT associates with kinesin-1 to promote anterograde transport,

and when it dephosphorylates, kinesin-1 dissociation favors dynein-dependent

retrograde transport (Colin et al. 2008). However, the precise molecular mechanism

is not completely understood. The expansion of CAG codon repetitions in the

coding region of the HTT gene is cause of Huntington’s disease (HD), an adult-

onset autosomal dominant neurodegenerative disease that impairs muscle coordi-

nation and leads to cognitive decline and dementia. The expansion of the CAG

repetitions generates an extended poly-glutamine region in the HTT protein, which

alters HTT function, induces abnormal HTT aggregates, and ultimately leads to the

degeneration of striatal and cortical neurons (Gil et al. 2008; Caviston et al. 2009).

4.4 Conclusion

The wide range of neurodevelopmental and degenerative diseases associated with

defects in the microtubule cytoskeleton reveals that neurons are particularly sensi-

tive to perturbances affecting microtubule organization and/or function. Despite

this fact, our understanding of how the neuronal microtubule network is assembled

and maintained, and how its different components function at the molecular level, is

still very limited. Addressing these issues in the future will not only be crucial for

uncovering disease mechanisms, a prerequisite for developing therapeutic

strategies, but will also be informative for understanding microtubule organization

and function in other cell types.
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Colombié N, Głuszek AA, Meireles AM, Ohkura H (2013) Meiosis-specific stable binding of

Augmin to acentrosomal spindle poles promotes biased microtubule assembly in oocytes.

PLoS Genet 9, e1003562. doi:10.1371/journal.pgen.1003562.s006

Combs B, Gamblin TC (2012) FTDP-17 tau mutations induce distinct effects on aggregation and

microtubule interactions. Biochemistry 51:8597–8607. doi:10.1021/bi3010818
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Sdelci S, Schütz M, Pinyol R et al (2012) Nek9 phosphorylation of NEDD1/GCP-WD contributes

to Plk1 control of gamma-tubulin recruitment to the mitotic centrosome. Curr Biol 22:

1516–1523. doi:10.1016/j.cub.2012.06.027

Sharp DJ, Ross JL (2012) Microtubule-severing enzymes at the cutting edge. J Cell Sci 125:

2561–2569. doi:10.1242/jcs.101139

Sharp DJ, Yu W, Baas PW (1995) Transport of dendritic microtubules establishes their non-

uniform polarity orientation. J Cell Biol 130:93–103

Sharp DJ, Yu W, Ferhat L et al (1997) Identification of a microtubule-associated motor protein

essential for dendritic differentiation. J Cell Biol 138:833–843

Sharp DJ, McDonald KL, Brown HM et al (1999) The bipolar kinesin, KLP61F, cross-links

microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles.

J Cell Biol 144:125–138

Sherwood NT, Sun Q, Xue M et al (2004) Drosophila spastin regulates synaptic microtubule

networks and is required for normal motor function. Plos Biol. doi:10.1371/journal.pbio.

0020429.sv001

Shu T, Walia A, Ayala R et al (2014) GCP-WDmediates γ-TuRC recruitment and the geometry of

microtubule nucleation in interphase arrays of Arabidopsis. Curr Biol 24:2548–2555. doi:10.

1016/j.cub.2014.09.013
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Abstract

Defects in centrosome number or structure can have considerable consequences

for the physiology of an organism. Aberrant centrosome number has been

proposed for a century to contribute to genome instability and tumour formation.

However, in the last decade, mutations in centrosome genes have been described

in diseases characterised by defective growth. Centrosome dysfunction can

therefore have opposite effects on the homeostasis of the organism. Here we

discuss how deregulation of centrosome number during embryonic development

might contribute to growth defective syndromes such as autosomal recessive

primary microcephaly (MCPH) and primordial dwarfism. We further discuss

how the same defects might play a role in cancer when present in adult tissues.

5.1 Introduction

The centrosome is the major microtubule-organising centre of animal cells

(Kellogg et al. 1994). It participates in different processes such as cell division,

motility and polarity, mainly by organising the microtubule network. Centrosomes

are not present in plants, whereas fungi have an analogous structure called the

spindle pole body (Marshall 2009).

The centrosome is composed by two centrioles surrounded by the pericentriolar

material (PCM) (Nigg andRaff 2009) (for a discussion of PCMstructure and function,

see also the Chap. 3 by Comartin and Pelletier). Centrioles are cylindrical structures

made of nine microtubule triplets arranged in a ninefold symmetry. They recruit and

organise a large number of proteins forming the PCM (Bobinnec et al. 1998).
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Centriole number is tightly regulated. For most part of the cell cycle, the two

centrioles are linked and placed orthogonally to each other. This configuration is

called centriole engagement, and a new centriole is not formed as long as the

pre-existing centrioles are engaged (Tsou and Stearns 2006). Centriole disengage-

ment takes place usually at the end of mitosis when the daughter cells inherit one

centrosome with two separated centrioles (Kuriyama and Borisy 1981). Centriole

disengagement is thought to be the licence to allow centriole duplication (Tsou and

Stearns 2006), which occurs only once per cell cycle.

Five proteins, ZYG-1, SPD-2, SAS-4, SAS-5 and SAS-6, were identified in

Caenorhabditis elegans as essential for centriole biogenesis (Dammermann

et al. 2004; Delattre et al. 2004; Kemp et al. 2004; Kirkham et al. 2003; Leidel

et al. 2005; Leidel and Gonczy 2003; O’Connell et al. 2001; Pelletier et al. 2004).

These proteins are recruited in a precise temporal order (Delattre et al. 2006;

Pelletier et al. 2006). SPD-2 is the first to be recruited to the parental centriole,

which in turn is required for ZYG-1 recruitment. Shortly after, a complex conteining

SAS-5 and SAS-6 is recruited to structurally form the centriole. Finally SAS-4 is

recruited to allow the incorporation of microtubules into the centriole wall.

Remarkably, all these genes have a sequence or a functional ortholog in most

animals (Carvalho-Santos et al. 2010; Hodges et al. 2010). Human PLK4, also

called SAK in Drosophila, is the functional ortholog of ZYG-1 and, like ZYG-1, is

a serine-threonine kinase (Bettencourt-Dias et al. 2005; Habedanck et al. 2005)

(Fig. 5.1). CEP192 is the human ortholog of SPD-2 (Andersen et al. 2003; Pelletier

et al. 2004). SAS-4 orthologs are called CPAP in humans (Tang et al. 2009) and

DSas-4 in Drosophila (Basto et al. 2006). STIL and Ana2 are, respectively, the

human and the Drosophila functional orthologs of SAS-5 (Arquint et al. 2012;

Stevens et al. 2010; Tang et al. 2011; Vulprecht et al. 2012). SAS-6 is called

HsSAS-6 in humans and DSas-6 in flies (Gopalakrishnan et al. 2010; Leidel

et al. 2005; Peel et al. 2007; Rodrigues-Martins et al. 2007a; Strnad et al. 2007).

Fig. 5.1 The centriole duplication cycle. For most part of the cell cycle, the two centrioles (dark
green cylinders) are linked and placed orthogonally to each other. This configuration is called

centriole engagement. At the end of mitosis, each daughter cell inherits one centrosome with two

separated centrioles (centriole disengagement). This event is permissive to centriole duplication.

Centriole duplication is initiated when CEP192 and CEP152/Asl recruit PLK4/SAK at the

proximal end of the mother centriole (yellow ring). PLK4/SAK activity is required for cartwheel

formation (light green ring). The cartwheel is composed of SAS-6, STIL/Ana2 and CEP135 and is

the first visible structure of the new centriole. Subsequently, SAS-4 is recruited to allow the

incorporation of nine sets of microtubules (centriole assembly). During G2 the procentriole (short
dark green cylinders at the proximal end of the mother centriole) elongates to achieve the size of

the mother
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Similarly to their orthologs in C. elegans, centriolar recruitment of these proteins

is hierarchically regulated (Kleylein-Sohn et al. 2007). PLK4/SAK is the master

regulator of centriole duplication, and in human cells, it is recruited to the mother

centriole by CEP192 in collaboration with another protein not present in C. elegans
called CEP152 (Kim et al. 2013; Sonnen et al. 2013). In Drosophila, SPD-2 is

dispensable for centriole duplication (Dix and Raff 2007; Giansanti et al. 2008) and

SAK recruitment is entirely fulfilled by the CEP152 ortholog, asterless (Asl)

(Dzhindzhev et al. 2010). PLK4/SAK triggers centriole formation through direct

interaction with STIL/Ana2, and its phosphorylation by PLK4/SAK (Dzhindzhev

et al. 2014; Kratz et al. 2015; Ohta et al. 2014) is then required for centriolar loading

of HsSAS-6/DSas-6. STIL/Ana2 and HsSAS-6/DSas-6 form the cartwheel, which

is the first identifiable structure in pro-centriole assembly (Guichard et al. 2010;

Kitagawa et al. 2011b; Kuriyama 2009; van Breugel et al. 2011). Subsequently,

CPAP is recruited and, according to cell type, nine sets of microtubule (Kleylein-

Sohn et al. 2007) singlets, doublets or triplets will complete the centriole structure

(Fig. 5.1). Although in humans extra proteins participate in procentriole assembly,

such as CEP135, CP110 and γ-tubulin (Kleylein-Sohn et al. 2007), the core

duplication machinery is well conserved through evolution (Carvalho-Santos

et al. 2010; Hodges et al. 2010) (see Fig. 5.1 and Chap. 3 for further details on

centriole duplication).

5.2 Animals Without Centrosomes

In 1887, Van Beneden and Boveri described the centrosome as “the organ for cell

division”. This statement was justified by the presence of centrosomes at the spindle

poles, suggesting a function in spindle formation. For this reason, it has long been

accepted that centrosomes were essential for cell division. However, the discovery

that many eukaryotic organisms, such as plants, do not have centrosomes suggested

that probably centrosomes are dispensable to form a bipolar spindle, at least in some

cell types. Indeed, many cells form a bipolar spindle and divide even in absence of

centrosomes. One interesting example is the mouse embryo that forms

“acentrosomal” spindles in the first cleavages (Szollosi et al. 1972). Other examples

are female oocytes from most animal species that assemble “acentrosomal”

spindles during both meiotic divisions (Schatten 1994). In the absence of

centrosomes, microtubules are nucleated at the vicinity of the chromatin, and

with the help of molecular motors, spindle poles become focused (Heald

et al. 1996; Karsenti et al. 1984; Khodjakov et al. 2003; Maiato et al. 2004). In

addition to this pathway, microtubules can also be generated within the mitotic

spindle from pre-existing microtubules. In this case, γ-tubulin is required and its

localisation depends on the augmin complex (Goshima et al. 2008).

All these pathways exist in cells that form mitotic spindle via the “classical”

centrosome-dependent mechanism, and the three collaborate to assemble a func-

tional bipolar spindle that accurately segregates chromosomes (Meunier and

Vernos 2012).
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Even if some cell types in animals can undergo cell division in the absence of

centrosomes, it was difficult to imagine that an entire organism could develop

without centrosomes. In a surprising study, it was shown that the planarian

Schmidtea mediterranea does not contain centrosomes at any stage of its life

cycle (Azimzadeh et al. 2012). Interestingly, planarians need to assemble cilia in

some cell types, and de novo centriole formation in these cells ensures the presence

of basal bodies for ciliogenesis. PCM proteins such as SPD-2/CEP192 and

Cnn/CDK5RAP2 are absent from S. mediterranea, and cell division does not

depend on centrosomes. Since centrosomes also play important roles in spindle

positioning during oriented cell divisions (Morin and Bellaiche 2011), these results

also put in evidence that regeneration, a process frequently used in planaria, does

not require centrosome-dependent spindle positioning (Cardona et al. 2006).

But what happens if centrosomes are removed from somatic cells that normally

contain centrosomes? This question was initially addressed in vertebrate cells

where centrosomes were removed by laser ablation or microsurgery (Hinchcliffe

et al. 2001; Khodjakov et al. 2000). In these cells, a bipolar spindle, which could

correctly segregate chromosomes within the following cell division, was assem-

bled. Recently however, it has been shown that permanent removal of centrosomes

in chicken DT40 cells by knockout of either CEP152 or STIL results in abnormal

chromosome segregation (Sir et al. 2013). In these cells, the spindle was

disorganised explaining probably the high rate of segregation errors observed.

The authors proposed that organisms with high number of chromosomes, such as

chicken, which has 78 chromosomes, strongly rely on centrosome-driven spindle

assembly for mitotic fidelity. It is important to mention, however, that these cells

are non-adherent and might require centrosomes for mitotic spindle assembly while

other cell types that undergo mitosis while adhering to a substrate do not

(Hinchcliffe et al. 2001; Khodjakov et al. 2000).

Flies that carry mutations in the centriole duplication genes asl, DSas-4 and

PLK4/SAK undergo larval development giving rise to adults without any morpho-

logical defect (Basto et al. 2006; Bettencourt-Dias et al. 2005; Blachon et al. 2008).

Importantly, this is possible because maternally provided components ensure cen-

triole duplication at early developmental stages. In the absence of centrosomes,

early embryonic development is impaired and embryos arrest during syncytial

stages (Stevens et al. 2007). The centrosome-dependent spindle assembly mecha-

nism is probably extremely important during the rapid mitotic cycles occurring

after fertilisation, and astral microtubules are required for nuclear separation after

anaphase in the preblastoderm cytoplasm (Telley et al. 2012).

Acentriolar flies also lack cilia and flagella, which are essential inDrosophila for
adult viability and male fertility, respectively. In flies very few cells contain cilia.

Type I mechanosensory neurons are ciliated, and adults that lack centrioles are

severely uncoordinated and die a few hours after eclosion (Baker et al. 2004;

Dubruille et al. 2002; Gogendeau and Basto 2010; Martinez-Campos et al. 2004).

Another cell type that requires centrioles for cell division in flies are primary

spermatocytes that normally have long centrioles containing microtubule triplets.

In the absence of centrioles, meiotic spindles present broad poles and are highly
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disorganised giving rise to unviable aneuploid progeny (Basto et al. 2006;

Bettencourt-Dias et al. 2005; Martinez-Campos et al. 2004; Rodrigues-Martins

et al. 2007b).

Centrosomes, through astral microtubule nucleation, also contribute to accurate

spindle positioning. This is particularly important when cell fate determinants

should be segregated into daughter cells during asymmetric and even symmetric

divisions (Knoblich 2008). Drosophila acentriolar larval brain stem cells (NSCs)

divide symmetrically and give rise to two stem cells, at the expense of

differentiating cells (Basto et al. 2006; Giansanti et al. 2001; Megraw

et al. 2001), which causes tumour formation in transplantation assays (Castellanos

et al. 2008). Centrosomes also participate in spindle positioning inDrosophilamale

germline stem cells (Yamashita et al. 2003); however, other mechanisms contribute

to tissue homeostasis in the absence of centrosomes (Riparbelli and Callaini 2011;

Sheng and Matunis 2011). In female germline stem cells however, centrosomes are

dispensable and spindle positioning depends on the function of the fusome (Stevens

et al. 2007), a membrane skeleton-enriched structure typical of the insect germline

(Lin et al. 1994).

In vertebrates, most cells contain a primary cilium, and centriole loss has severe

consequences during development. Embryos lacking cilia have defective body plan

organisation caused by disruption of hedgehog signalling pathway and arrest at

E10.5–11.5 (Goetz and Anderson 2010). Recently, the developmental functions of

mammalian centrioles in vivo have been analysed (Bazzi and Anderson 2014).

Characterisation of a null Cpap (the SAS-4 ortholog) mutant mouse revealed that

centrosomes are essential during embryonic development. Cpap�/� mice died at

early stages (E9.0) with increased p53-dependent cell death. Interestingly, increase

in DNA damage or aneuploidy was not observed. Instead, cells displayed a

prolonged prometaphase, and consequently mitosis completion was delayed,

suggesting a requirement for centrosomes for rapid bipolar spindle assembly in

vertebrates. Null mutant mice for other centriole duplication genes, Plk4, Stil and
Cep152, also arrested early in development, at the same stage of the Cpap�/� mice,

showing increased apoptosis and increased p53 levels (Bazzi and Anderson 2014;

Hudson et al. 2001; Izraeli et al. 1999). Intriguingly, Bazzi and colleagues noticed

that in embryos lacking centrioles, regions with higher proliferation rates showed

higher p53 levels. Since these embryos died earlier than those lacking cilia

(Huangfu et al. 2003), it is possible that the absence of centrioles per se
up-regulates p53 in rapidly proliferating cells, causing widespread cell death and

consequent lethality. Probably, the apoptotic pathway is triggered in cells that are

not able to go through mitosis as fast as they should. In zebra fish, depletion of stil
induced a similar phenotype (Pfaff et al. 2007). Apoptosis was also increased and

embryos died between 7 and 10 days post-fertilisation. Spindles were monopolar or

highly disorganised, which resulted in delayed mitotic progression.

Overall, these studies show an unexpected up-regulation of cell death by apo-

ptosis in response to prolonged mitosis or mitotic arrest. It will be important in the

future to determine why the apoptotic pathway is triggered in the absence of

centrosomes, when aneuploidy is not being generated (Bazzi and Anderson
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2014). In particular it will be essential to understand how the lack of centrosomes is

detected in embryonic cells and then translated into p53 up-regulation and

apoptosis.

5.3 Animals with Extra Centrosomes

Differentiated cells have one centrosome that organises the microtubule network or

cilia, whereas cycling cells, in mitosis, have two centrosomes to form a bipolar

spindle. The presence of more than two centrosomes in a cell is called centrosome

amplification, and it has been described in both physiological and pathological

conditions. There are three main ways to induce centrosome amplification:

1. Cytokinesis failure: it generates tetraploid cells with four centrosomes. Cytoki-

nesis failure occurs physiologically in certain mammalian tissues during postna-

tal growth such as hepatocytes (Guidotti et al. 2003).

2. Cell fusion: during development, cell fusion is involved in many processes, such

as the formation of trophoblast cells in the mammalian placenta, muscles and

osteoclasts (Oren-Suissa and Podbilewicz 2007). Cell fusion can also be

involved in wound healing as shown in Drosophila larval and adult epidermis

(Galko and Krasnow 2004; Losick et al. 2013).

3. Centrosome cycle deregulation: the levels of proteins involved in centriole

duplication are highly regulated during the cell cycle (Marthiens et al. 2012).

Their overexpression can trigger centrosome amplification (Kleylein-Sohn

et al. 2007). For example, when PLK4 is overexpressed, multiple centrioles

are formed in S phase in the typical rosette-like structure surrounding the mother

centriole (Habedanck et al. 2005; Kleylein-Sohn et al. 2007). At the end of

mitosis, they disengage and duplicate to give rise to extra centrosomes.

The presence of extra centrosomes can induce multipolar divisions, which are in

most cases not viable (Ganem et al. 2009). Cells evolved several mechanisms to

enable bipolar division in the presence of centrosome amplification, and the pre-

dominant mean is the clustering of extra centrosomes in two main spindle poles

(Basto et al. 2008; Kwon et al. 2008; Leber et al. 2010; Marthiens et al. 2012;

Quintyne et al. 2005; Ring et al. 1982). Clustering is achieved mainly by combining

spindle-intrinsic microtubule binding forces and actin-regulating forces at the cell

cortex (Kwon et al. 2008). However, this mechanism can hide a threat. Extra

centrosomes induce the formation of multipolar spindle intermediates during

prometaphase, which promote merotelic attachments (one kinetochore attached to

microtubules nucleated by different poles) and consequent chromosome

missegregation during anaphase (Ganem et al. 2009; Silkworth and Cimini 2012).

In certain cell types, extra centrosomes favour the nucleation of extra cilia, which

leads to dilution of cilia signalling molecules such as members of the sonic

hedgehog signalling pathway (Mahjoub and Stearns 2012).
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Consequences of centrosome amplification at the level of the whole organism

have been studied only in Drosophila so far. When SAK (the PLK4 Drosophila
ortholog) is overexpressed in all the cells of the body, almost 60 % of somatic cells

present centrosome amplification. Embryonic development is highly compromised,

as clustering mechanisms are not efficient during early development (Basto

et al. 2008). Larval development is slightly delayed, but adults are morphologically

normal, viable and fertile. Neuroblasts (NBs) of the larval brain, which are neural

stem cells, always divide in a bipolar fashion even though they harbour extra

centrosomes, thanks to the very efficient centrosome clustering and inactivation

mechanisms (lack of microtubule-nucleating capacity). However, in certain cases,

spindles are mispositioned which results in defects in asymmetric cell division and

in the generation of extra stem cells at the expense of differentiating cells. As a

consequence, in transplantation assays, these brains can over-proliferate and induce

tumours that kill the host prematurely (Basto et al. 2008) (see also next paragraphs).

In the wing imaginal disc, the larval epithelium that gives rise to the adult wings,

mechanisms of centrosome clustering and centrosome inactivation are also present

but not fully efficient (Sabino et al. 2015). As a result, tripolar divisions and

chromosome segregation defects occur with only minor defects in spindle position-

ing. This leads to aneuploid cells able to proliferate and induce tumorigenesis when

transplanted into WT hosts. Hence, these studies show that centrosome amplifica-

tion, at least in Drosophila, is a tumour-initiating event (Basto et al. 2008; Sabino

et al. 2015).

The consequences of centrosome amplification in vertebrates are still not known

with the exception of centrosome amplification in the mouse central nervous system

(CNS) (Marthiens et al. 2013). Contrary to flies, the presence of extra centrosomes

in mouse neural stem cells does not perturb spindle orientation. However, it causes

aneuploidy and consequent cell death due to inefficient clustering. A major conse-

quence of centrosome amplification in the mouse CNS is a severe reduction in brain

size, a condition also known as microcephaly (see below) (Fig. 5.2).

5.4 Centrosomes and Disease

5.4.1 Centrosome Defects and Growth Failure

Generally, the number and size of cells define the size of organs and organisms

(Conlon and Raff 1999). The balance between cell proliferation, differentiation and

cell death contributes to determine the number of cells at the end of development

(Conlon and Raff 1999). Changes in one of these parameters, in particular during

embryonic development when body size is being established, can lead to growth

defects (Klingseisen and Jackson 2011).

Progenitor cells undergo two different types of division: (1) to enlarge the pool

of progenitors, they divide symmetrically forming two identical cells and (2) to

allow differentiation, they divide asymmetrically giving rise to one progenitor cell

and to another, generally more committed that will ultimately differentiate
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(Tajbakhsh et al. 2009). Accurate timely control of the switch from symmetric to

asymmetric division is essential to guarantee correct development and body size.

Although the mechanisms behind growth retardation during embryonic devel-

opment are not entirely known, mutations in genes encoding for centrosome and

centrosome-associated proteins have been reported in diseases characterised by

growth deregulation, such as autosomal recessive primary microcephaly (MCPH)

and the primordial dwarfism diseases Seckel syndrome (SCKS) and microcephalic

osteodysplastic primordial dwarfism type II (MOPD-II).

The common feature of these syndromes is microcephaly, which is clinically

defined as a smaller brain than the mean for sex, age and ethnicity, with the

occipitofrontal head circumference (OFC) equal or less than -2 standard deviation

(SD) (Roberts et al. 2002). In MCPH, SCKS and MOPD-II, brain structures are

proportionated and present minor malformations. The phenotype of MCPH and

SCKS is similar but more severe in the latter (Klingseisen and Jackson 2011). In

SCKS, effects in intrauterine and postnatal growth are more pronounced. The mean

OFC in children and adults is around -9 SD, whereas mean height is -7 SD. They

usually suffer of mental retardation and a characteristic appearance with a narrow

Fig. 5.2 Consequences of Plk4 overexpression (Plk4OE) in the developing mouse brain. Centro-

some amplification in mouse embryonic neural stem cells (NSCs) caused by the overexpression of

Plk4 results in microcephaly. Dorsal views of control (a) and Plk4OE (b) brains at E15.5. Scale
bar¼ 2 mm. Control (c) and Plk4OE (d) E15.5 brain sections immunostained for the cycling

proliferating marker Ki67 (red). DNA is shown in blue. Scale bar¼ 12 μm
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and sloping forehead, prominent eyes, large and convex nose and small jaw (Hall

et al. 2004; Majewski and Goecke 1982).

Stature measurement is usually the parameter used to distinguish between

MCPH and SCKS: patients with normal height or between -1 SD and -2 SD are

classified as MCPH, whereas those between -4 SD and -12 SD as SCKS (Verloes

et al. 1993). Compared to MCPH and SCKS, in MOPD-II, growth retardation is

more severe and accompanied by highly proportional reduced body size (Majewski

et al. 1982). Primordial dwarfisms and MCPH are extremely rare autosomal reces-

sive one-gene disorders, with higher incidence in populations where consanguine-

ous marriages are common (Woods et al. 2005). MCPH, for example, has been

reported in only about 100 families worldwide (Kaindl et al. 2010).

Non-centrosomal genes can also lead to microcephalic primordial dwarfisms,

usually accompanied with other malformations. Meier-Gorlin syndrome is

characterised by small ears, absent/hypoplastic patellae and short stature (Gorlin

et al. 1975). Taybi-Linder syndrome (also known as MOPD type I or III) has

profound growth retardation and severe brain malformation of the cerebral cortex

(Sigaudy et al. 1998). In patients affected by lissencephaly, the brain is smooth with

a thickened cortex, although microcephaly is not always present (Dobyns

et al. 1993).

Since the majority of genes found mutated in microcephaly are centrosome or

spindle pole-associated genes, we will focus this chapter on these, while mention-

ing briefly other non-centrosomal genes.

5.4.1.1 Etiology of Microcephaly
So far, three main causes have been proposed to be at the basis of microcephaly.

They ultimately converge at the same outcome, depletion of the pool of progenitors

during brain development, and consequently fewer cells can form the brain. These

three causes are DNA damage response, spindle orientation and spindle integrity

(Fig. 5.3).

The first MCPH gene identified, microcephalin, has been associated with the

DNA damage checkpoint (Jackson et al. 1998). The DNA damage checkpoint

maintains cells blocked in G2 through the activation of the G2/M checkpoint,

inhibiting entry into mitosis to allow DNA repair. Defects in DNA repair result in

apoptosis or premature differentiation, at least in certain cell types (Inomata

et al. 2009; Schneider et al. 2013; Sherman et al. 2011).

Defects in spindle orientation have been proposed to result from mutations in at

least three MCPH genes, Aspm, CDK5RAP2 (also known as Cep215) and CPAP
(also called CenpJ) (Fish et al. 2006; Kitagawa et al. 2011a; Lancaster et al. 2013;

Lizarraga et al. 2010). In both symmetric and asymmetric dividing cells, spindle

orientation determines the plane of cell division and consequently the correct

segregation of cell fate determinants (Morin and Bellaiche 2011). For example,

Aspm knockdown in the mouse neuroepithelium caused defects in spindle orienta-

tion that led to premature differentiation during neurogenesis (Fish et al. 2006).

Certain MCPH mutations cause disruption of centrosome integrity and numeri-

cal defects, affecting also spindle formation. Among these, mutations in the master
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regulator of centriole duplication PLK4 have been recently described (Martin

et al. 2014; Shaheen et al. 2014). Patient-derived fibroblasts showed reduced

protein levels and consequent centriole duplication failure. Mitotic spindle forma-

tion was also affected with a predominance of monopolar spindles (Martin

et al. 2014).

Another type of centrosome dysfunction that also impacts in brain size is

centrosome amplification (Marthiens et al. 2013). Overexpression of Plk4 in

embryonic NSCs resulted in the presence of supernumerary centrosomes in one

third of the NSC population. Unexpectedly, failure to cluster led to the generation

of multipolar spindles that divided abnormally and generated aneuploid daughter

cells. These cells died of apoptosis in a p53-dependent manner, depleting in this

way the population of neural progenitors. These results suggest that multipolarity,

aneuploidy and consequent cell death can also be at the basis of microcephaly. In

agreement, mutations in STIL, identified in microcephaly patients, cause centro-

some amplification (Arquint and Nigg 2014), and mutations inWdr62 cause spindle
multipolarity (Chen et al. 2014). In addition, aneuploidy and cell death by apoptosis

were also noticed in asp (ASPM orthologue) Drosophila mutants that present

defects in head size (Rujano et al. 2013).

Lack of centrosomes or mutations perturbing its integrity frequently result in

lengthened mitosis and increased mitotic index as the generation of a bipolar

spindle in the absence of centrosomes takes more time (Basto et al. 2006; Bazzi

and Anderson 2014; Chen et al. 2014; Insolera et al. 2014; Lizarraga et al. 2010; Sir

et al. 2013). Although at the moment a true correlative relationship between mitotic

delay and organ size has not been established, it is possible that certain phases of

development would require fast proliferation rates at least in certain progenitor

Fig. 5.3 Etiology of microcephaly. Three major causes of microcephaly have been proposed so

far: (i) DNA damage response, (ii) spindle orientation, (iii) spindle integrity. Through different

means, they all lead to depletion of the pool of progenitors
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cells. Failure to divide correctly or in a rapid way might induce cell death and also

contribute to MCPH (Bazzi and Anderson 2014; Chen et al. 2014; Novorol

et al. 2013) (see above).

Interestingly, cell cycle lengthening not related to centrosome dysfunction was

proposed to lead to microcephaly. In Maier-Gorlin syndrome, for example,

mutations in components of the pre-replicative complex cause defects in the initia-

tion of DNA replication (Bicknell et al. 2011a; Bicknell et al. 2011b; Guernsey

et al. 2011). As a consequence, S-phase progression and completion were delayed

(Bicknell et al. 2011b). Recently, mutations in kinetochore components, CASC5
(MCPH4) and CENP-E (MCPH13), have also been described in patients with

severe microcephalic primordial dwarfism (Genin et al. 2012; Jamieson

et al. 1999; Mirzaa et al. 2014). CASC5 is required for correct microtubule

attachment to the centromere and the spindle assembly checkpoint (Kiyomitsu

et al. 2007), whereas CENP-E is a kinesin required for accurate chromosome

congression and segregation (Mirzaa et al. 2014; Putkey et al. 2002; Weaver

et al. 2003). Therefore, aneuploidy appears as a possible cause of microcephaly

in several size-related syndromes.

5.4.1.2 Genes Identified So Far
Initially when the genetic causes of microcephaly started to be unravelled, it

appeared that MCPH and SCKS could be classified not only phenotypically but

also genetically (Table 5.1). CPAP and CEP152 were first described as MCPH

genes (Bond et al. 2005; Guernsey et al. 2010). Later, both were also identified in

families affected by SCKS (Al-Dosari et al. 2010; Kalay et al. 2011). This led to

the emerging idea that MCPH and SCKS are not two different diseases but a

spectrum of the same disorder with different degrees of penetrance (Verloes

et al. 1993). MOPD-II might also be included in this spectrum since pericentrin
(PCNT) was initially reported in families with SCKS (Griffith et al. 2008) and

subsequently in patients diagnosed with MOPD-II (Rauch et al. 2008; Willems

et al. 2010). For this reason, we will refer to all these syndromes as primordial

microcephalic disorders.

To date, twelve centrosome/spindle pole-related genes (Table 5.1) have been

identified in primordial microcephalic disorders in humans. Mutations are fre-

quently predicted to result in shorter truncated versions of the affected proteins.

Most of our knowledge comes from studies performed in cell lines, and today, we

still lack cell or animal models that recapitulate the human mutations as in most

cases the few models available are knockdown or knockout approaches that

decrease the overall level of wild-type proteins.

Here we describe the known functions of centrosome, spindle pole with mutation

described in growth disorders. We will also briefly describe other genes associated

with the microtubule cytoskeleton mutated in growth disorders.
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Table 5.1 Genes involved in diseases characterised by microcephaly

Gene Localisation Disorder References

MCPH1/

microcephalin
Chromatin

associated

MCPH Alderton et al. (2006), Jackson

et al. (2002) Jackson et al. (1998)

MCPH2/

WDR62
Spindle pole

component

MCPH cases

with brain

malformations

Bilguvar et al. (2010), Chen

et al. (2014), Nicholas

et al. (2010), Yu et al. (2010)

MCPH3/

CDK5RAP2
(Cep215)

Centrosome (PCM

component)

MCPH Barrera et al. (2010), Bond

et al. (2005), Buchman

et al. (2010), Lancaster

et al. (2013), Lizarraga

et al. (2010)

MCPH4/

CASC5
Kinetochore MCPH Genin et al. (2012), Jamieson

et al. (1999)

MCPH5/

ASPM
Spindle pole

component

MCPH Bond et al. (2002), Darvish

et al. (2010), Pattison et al. (2000),

Rujano et al. (2013)

MCPH6/

SCKL4/

CPAP

Centriole component MCPH

SCKS

Al-Dosari et al. (2010), Bazzi and

Anderson (2014), Bond

et al. (2005), Insolera et al. (2014),

Kitagawa et al. (2011a)

MCPH7/STIL Centriole component MCPH Arquint and Nigg (2014), Kumar

et al. (2009), Novorol et al. (2013)

MCPH8/

CEP135
Centriole component MCPH Hussain et al. (2012)

MCPH9/

SCKL5/

CEP152

Centriole and PCM

component

MCPH

SCKS

Guernsey et al. (2010), Kalay

et al. (2011)

MCPH10/

ZNF335
Chromatin

remodelling protein

MCPH with

MCD

Yang et al. (2012)

MCPH11/

PHC1
Chromatin

remodelling protein

MCPH Awad et al. (2013)

MCPH12/

CDK6
Cytoplasmic and

nuclear (interphase),

centrosome (mitosis)

MCPH Hussain et al. (2013)

MCPH13/

CENP-E
Kinetochore Similar to

MOPD-II

Mirzaa et al. (2014)

SCKL6/

CEP63
Ring around parental

centriole

SCKS Sir et al. (2011)

PLK4 Centriole duplication

regulator

SCKS with

retinopathy

Martin et al. (2014), Shaheen

et al. (2014)

SAS-6 Centriole component MCPH Khan et al. (2014)

PCNT Centrosome (PCM

component)

SCKS

MOPD-II

Griffith et al. (2008), Rauch

et al. (2008)

LIS1 MTs and spindle LIS Hattori et al. (1994), Moon

et al. (2014), Reiner et al. (1993),

Yingling et al. (2008)

DCX MTs and spindle LIS des Portes et al. (1998), Gleeson

et al. (1998)

(continued)
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5.4.1.3 Genes Required for Centriole Duplication
1. CEP152 (known as asterless in flies) is associated with centrioles, and it is

required for centriole duplication as it forms a scaffold for the recruitment of

PLK4, the master regulator of centriole duplication (Cizmecioglu et al. 2010;

Dzhindzhev et al. 2010; Hatch et al. 2010; Kim et al. 2013; Sonnen et al. 2013).

In flies it is also required for PCM recruitment (Varmark et al. 2007). CEP152
mutations were initially identified in patients affected by MCPH (Guernsey

et al. 2010) and later also in families with SCKS (Kalay et al. 2011). Mutations

are predicted to give loss-of-function truncated proteins. Analysis of fibroblasts

and lymphocytes derived from SCKS patient cells showed increased replicative

stress and chromosomal instability. In addition, high frequency of abnormal cell

divisions with multiple nuclei, fragmented centrosomes and aneuploidy was also

noticed (Kalay et al. 2011).

2. PLK4 is a serine-threonine kinase, member of the polo-like kinase family. Its

activity is required for centriole duplication (Bettencourt-Dias et al. 2005;

Habedanck et al. 2005). PLK4 self-regulates its own stability through trans-

autophosphorylation upon homodimerisation (Guderian et al. 2010; Holland

et al. 2010). Two recent studies described mutations in PLK4 in distinct families

(Martin et al. 2014; Shaheen et al. 2014). Individuals displayed profound

microcephaly, reduced stature and retinopathy. This latter defect was reported

Table 5.1 (continued)

Gene Localisation Disorder References

KIF5C MTs and spindle Microcephaly

with MCD

Poirier et al. (2013)

KIF2A MTs and spindle Microcephaly

with MCD

Poirier et al. (2013)

DYNC1H1 MTs and spindle MCD (usually

normocephaly)

Poirier et al. (2013)

TUBA1A MTs and spindle LIS to MCD Tischfield et al. (2011)

TUBB2B MTs and spindle PMG Tischfield et al. (2011)

TUBB3 MTs and spindle MCD Tischfield et al. (2011)

TUBG1 MTs and spindle Microcephaly

with MCD

Poirier et al. (2013)

The table shows all the genes described so far to be involved in diseases characterised by

microcephaly. Genes called MCPH (MCPH 1–13) have been found mutated in patients affected

by autosomal recessive primary microcephaly (MCPH). MCPH presents only minor brain

malformations. In Seckel syndrome (SCKS) and microcephalic osteodysplastic primordial dwarf-

ism type II (MOPD-II), microcephaly is accompanied with more severe defects such as

polymicrogyria, retinopathy or defective neuronal migration. As described in the second column,

most of the microcephalic genes encode for centrosomal proteins (centriole structure and PCM) or

proteins associated with the mitotic spindle machinery

MCPH autosomal recessive primary microcephaly, SCKS Seckel syndrome, MOPD-II microce-

phalic osteodysplastic primordial dwarfism type II, LIS lissencephaly, MCD malformations of

cortical development, PMG polymicrogyria
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for the first time in a primordial microcephalic gene (Martin et al. 2014). Patient-

derived fibroblasts showed highly reduced PLK4 protein levels and impaired

centriole duplication. Although spindle formation was affected, chromosome

segregation defects were rarely observed. In a zebra fish model, depletion of plk4
transcript through morpholino antisense oligonucleotides recapitulated the

patients’ phenotype: delay in mitotic progression, decreased cell number and

consequently also body size reduction. Interestingly, cilia-related phenotypes

were seen in a morpholino dose-dependent manner.

3. CPAP (known as SAS-4 in flies and worms) is required for microtubule attach-

ment to the initial pro-centriole scaffold, and it controls centriole length and

microtubule elongation (Pelletier et al. 2006; Tang et al. 2009). As CEP152,
mutations in CPAP can also lead to both MCPH and SCKS syndromes

(Al-Dosari et al. 2010; Bond et al. 2005). A mouse model expressing a truncated

variant of CPAP recapitulates many clinical characteristics of SCKS, including

intrauterine growth retardation, microcephaly and skeletal defects (McIntyre

et al. 2012). DNA damage and apoptosis were also increased in the brain region

where cortical neurogenesis takes place and the number of neurons was signifi-

cantly reduced. A new mouse Cpap model, in which Cpap was selectively

removed from neural progenitors during neurogenesis, also showed a strong

microcephalic phenotype (Insolera et al. 2014). Loss of centrioles led to detach-

ment of the neural progenitors from the ventricular zone, where they normally

reside. Remarkably, these cells did not change their fate and maintained

proliferative capacity. Nevertheless, mitosis was delayed and p53 expression

was up-regulated. This led to apoptosis and consequently neuronal loss and

microcephaly. Importantly, aneuploidy and DNA damage were not observed

(Insolera et al. 2014). The expression of CPAP MCPH-mutated versions in

human culture cells induced defects in centriole formation and randomised

spindle orientation (Kitagawa et al. 2011a). Importantly, one CPAP mutation

found in MCPH family impairs centriole formation in vivo (Kumar et al. 2009)

due to a weaker interaction with STIL (Cottee et al. 2013).

4. Very recently, a mutation in the HsSAS-6 gene that encodes a protein recruited

during the initial steps of procentriole assembly (Kleylein-Sohn et al. 2007;

Leidel et al. 2005; Strnad et al. 2007) has been reported in a newly identified

MCPH family. This mutation, when expressed in human cells in culture,

impaired centrosome duplication, which led to monopolar spindle formation

(Khan et al. 2014). So it is possible that in this case abnormal cell division,

aneuploidy and consequent cell death of neuronal progenitors contribute to brain

size defects.

5. STIL (Ana2 and SAS-5 in Drosophila and C. elegans) is a centriole duplication
protein that participates in cartwheel assembly (Arquint et al. 2012; Tang

et al. 2011). STIL dissociation from centrosomes during early mitosis triggers

HsSAS-6 dissociation and so cartwheel disassembly (Arquint and Nigg 2014).

Mutations found in MCPH patients result in the expression of truncated proteins

that lack the degradation motif and cause centrosome amplification (Arquint and

Nigg 2014; Kumar et al. 2009). Likely, extra centrosomes and consequent
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aneuploidy and cell death contribute to MCPH in this case. In addition, since

centrosome amplification also causes a delay in mitosis (Basto et al. 2008;

Marthiens et al. 2013), it is possible that this also contributes to brain size

reduction as discussed above. Interestingly, morpholino-mediated knockdown

in zebra fish showed a dramatic increase in both the number of retina progenitors

and mitotic cells arrested in prometaphase and increase in apoptotic cells

(Novorol et al. 2013).

6. CEP135 (Bld10 in flies) has been proposed to act as a bridging molecule

between the “cartwheel” and centriole microtubules, being required for CPAP-

mediated centriole elongation (Lin et al. 2013). A single mutation has been

found so far in one MCPH family. This mutation results in a truncation at the

C-terminus (Hussain et al. 2012), which affected the region that mediates

CEP135-cartwheel interaction (Lin et al. 2013). Unexpectedly, 22 % of primary

fibroblasts derived from patients completely lack centrosomes, while 18 %

contained extra centrosomes, or centrosome fragments (Hussain et al. 2012).

In this case, it is possible that several types of defects are at the basis of brain size

reduction.

7. CEP63 is an MCPH protein that regulates CEP152 centrosomal localisation to

ensure efficient and timely controlled centriole duplication (Brown et al. 2013;

Sir et al. 2011). Indeed, human B lymphocytes derived from affected patients

showed reduced level of CEP152 at the centrosomes but without major defects

in spindle formation and centrosome number (Sir et al. 2011). DT40 chicken B

lymphocytes, which have a rapid cell cycle, presented an increased population

doubling time and monopolar spindles due to inefficient centriole duplication. It

has been proposed that CEP63 is required to timely ensure the presence of

enough CEP152 (and consequently PLK4) to allow centriole duplication.

Since neural progenitors divide much faster than lymphocytes (10–12 h

vs. 24 h), the presence of CEP63 might be essential in the fast proliferating

progenitors of the developing brain. Supporting this hypothesis, Cep63-deficient
mice have neural progenitors with monopolar spindles and acentriolar spindle

poles (Marjanovic et al. 2015). As a consequence, these defects delay mitosis,

trigger p53-dependent cell death and ultimately lead to microcephaly, similar to

the Cpap-mutant mouse model (Insolera et al. 2014). Moreover, Cep63-deficient
mice also showed body growth retardation, recapitulating thus two key

characteristics of human SCKS syndrome caused by CEP63 mutations (Sir

et al. 2011). Interestingly, this work also uncovered a surprising function of

CEP63 in meiotic male recombination (Marjanovic et al. 2015). The authors

proposed that centrosome loss in Cep63-deficient spermatocytes impairs normal

intranuclear chromosome movement that is required to facilitate homologous

chromosomes encounter and thus meiotic DNA recombination, leading to

defective spermatogenesis. CEP63 seems to be also a target of the DNA damage

response pathway in vertebrate cells. Activation of this pathway promotes

CEP63 displacement from spindle poles, inhibiting spindle formation and

delaying mitotic progression (Smith et al. 2009). Thus, mutations in CEP63

might perturb cell cycle progression in several ways.
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5.4.1.4 Genes Encoding for Centrosomal Proteins
8. Pericentrin (PCNT) is a component of the pericentriolar material (PCM), known

to play an important role in the recruitment of proteins to the centrosome

(e.g. γ-tubulin) (Doxsey et al. 1994; Zimmerman et al. 2004). It was the first

centrosomal gene identified in two primordial dwarfism disorders, SCKS and

MOPDII (Griffith et al. 2008; Rauch et al. 2008). In lymphoblastoid SCKS

patient cell lines defective ATR signalling pathway and lack of G2-M check-

point after UV radiation were also reported (Griffith et al. 2008). Importantly

however, monopolar spindles with decreased γ-tubulin recruitment were also

noticed, raising the possibility that these abnormal spindles also contribute to

abnormal chromosome segregation and aneuploidy in cells with PCNT

mutations.

9. CDK5RAP2 (Cep215 and Cnn) is a PCM protein involved in γ-tubulin recruit-

ment (Fong et al. 2008). CDK5RAP2 seems to be involved in centriole engage-

ment and maintenance of the neural progenitor pool in the mouse developing

neocortex (Barrera et al. 2010; Buchman et al. 2010). Embryonic fibroblasts

derived from mouse models carrying Cdk5rap2 mutations similar to the ones

found in humanMCPH showed centrosome amplification due to loss of centriole

engagement and consequent formation of multipolar spindles (Barrera

et al. 2010). Cdk5rap2 knockdown by in utero electroporation described a

depletion of neural progenitors in the developing mouse neocortex due to

premature neural differentiation (Buchman et al. 2010). However, in these two

studies, neither spindle orientation nor microcephaly was observed. Importantly,

an in vitro model of human brain development that used reprogrammed skin

fibroblasts from MCPH patients showed reduced neuroepithelial tissue with

defects in spindle orientation and premature neural differentiation (Lancaster

et al. 2013). Spindle positioning might, however, not be the sole defect as the

characterisation of Hertwig’s anaemia mouse model, which carries a mutation in

the Cdk5rap2 gene, also showed multipolar spindles in neural progenitors

accompanied by cell death (Lizarraga et al. 2010).

10. CDK6, in concert with CDK4, regulates the G1/S transition (Meyerson and

Harlow 1994). It localises in the cytoplasm and in the nucleus in interphase and

also at the centrosome throughout mitosis (Hussain et al. 2013). Fibroblasts

from MCPH patients do not contain centrosomal CDK6 during mitosis. This

results in several defects such as disorganised interphase microtubule network

and mitotic spindles, centrosome amplification, reduced proliferation and cell

death (Hussain et al. 2013). Although Cdk6-null mice do not show microceph-

aly at birth, CDK6 is required during adult neurogenesis. Lack of this kinase

resulted in lengthened G1 and consequent premature cell cycle exit (Beukelaers

et al. 2011; Malumbres et al. 2004). Absence of microcephaly in Cdk6-null
mice suggests that the particular mutation found in MCPH patients might have

a more severe effect in brain development than loss of CDK6.
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5.4.1.5 Genes Encoding for Spindle Pole-Associated Proteins
11. The abnormal spindle-like microcephaly-associated (ASPM) gene is the most

frequently mutated locus found in MCPH (Bond et al. 2002; Darvish

et al. 2010; Pattison et al. 2000). ASPM is a microtubule minus end- and

spindle pole-associated protein with important roles in cell division

(do Carmo Avides and Glover 1999; Gonzalez et al. 1988; Gonzalez

et al. 1990; Riparbelli et al. 2002; Saunders et al. 1997; Wakefield

et al. 2001). Loss of ASPM causes alteration in spindle positioning in mouse

neural stem cells, which favours asymmetric cell division depleting the pool of

progenitors (Fish et al. 2006). Recent work in Drosophila showed that the

ASPM orthologue, Asp, also plays a role in brain size regulation in flies

(Rujano et al. 2013). Defects in spindle orientation, chromosome segregation

and interkinetic nuclear migration were noticed. Moreover, Asp was found to

interact with myosin II, and this interaction was essential during brain morpho-

genesis to maintain neuroepithelial organisation (Rujano et al. 2013). These

results showed that Asp plays unexpected functions, beyond the role in micro-

tubule cytoskeleton in brain development. They might also explain the

observations that some MCPH mutations also affect brain organisation in

addition to size (Mochida 2005).

12. WDR62 is the second most common mutated gene in MCPH. It is a spindle pole

protein-coding gene (Bilguvar et al. 2010; Nicholas et al. 2010; Yu et al. 2010).

It has been recently demonstrated in a hypomorphic Wdr62 mouse model that

neural progenitor cells are arrested in mitosis due to spindle stability defects

with increased cell death. In addition, defects in spindle positioning or prema-

ture differentiation were not seen, suggesting that disruption of mitotic pro-

gression and consequent cell death of neural progenitors is a potential cause of

human microcephaly (Chen et al. 2014).

5.4.1.6 Genes Encoding for Molecular Motors and Microtubule-
Associated Proteins

Defects in molecular motors and microtubule-associated proteins lead to severe

disorders with microcephaly and brain malformation. Lissencephaly is

characterised by the absence of normal folds in the cerebral cortex due to defective

neuronal migration (Dobyns et al. 1993). The first gene identified in lissencephaly

was LIS1 (Hattori et al. 1994; Reiner et al. 1993), which encodes a subunit of the

cytoplasmic dynein complex. An in vivo study demonstrated its requirement for

neuronal migration (Reiner et al. 1995). Interestingly, LIS1 has also been

implicated in spindle positioning of apical neural progenitors in mouse (Yingling

et al. 2008), and recently centrosome amplification and severe chromosome segre-

gation defects have also been described in Lis1 mutant MEFs (Moon et al. 2014),

suggesting that aneuploidy and cell death might also contribute to the overall

phenotype. Neuronal migration is impaired in mutation in Doublecortin (DCX),
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and patients carrying this mutation also present lissencephaly (des Portes

et al. 1998; Gleeson et al. 1998).

Mutations in KIF5C and KIF2A, members of the kinesin superfamily, and in

DYNC1H1, cytoplasmic dynein 1 heavy chain 1, have also been recently described

in patients affected by lissencephaly with microcephaly (Poirier et al. 2013). These

mutations affect ATP hydrolysis, protein folding and microtubule binding.

Mutation in another motor, KIF11 (kinesin Eg5), was found to lead to syndromes

characterised by microcephaly accompanied by eye malformations (Ostergaard

et al. 2012). Eg5 is a mitotic kinesin involved in centrosome separation (Kwok

et al. 2004) and centrosome clustering (Drosopoulos et al. 2014). These results

suggest that neural progenitors are more vulnerable to microtubule mutations than

other cell types during embryonic development. A further demonstration of the

importance of functional microtubules was given by the fact that mutations in α-, β-
and γ-tubulin isotypes coding genes also lead to microcephaly with brain

malformations (Poirier et al. 2013; Tischfield et al. 2011). Importantly, all human

mutations identified in these genes are heterozygous missense mutations.

For further discussion of neurodevelopmental defects caused by an impaired

microtubule cytoskeleton, please also see the Chap. 4 by Sánchez-Huertas, Freixo

and Lüders.

5.4.1.7 Genes Encoding for Chromatin Associated Proteins
Microcephalin (MCPH1) was the first mutated locus identified in patients affected

by MCPH (Jackson et al. 1998). Microcephalin is highly expressed in the develop-

ing mouse forebrain, in particular in the region where neural progenitors reside

(Jackson et al. 2002). It localises to the DNA during interphase, and it has a role in

chromosome condensation. Furthermore, microcephalin mediates the DNA damage

response, being recruited to the damaged foci (Lin et al. 2005; Rai et al. 2006; Xu

et al. 2004). MCPH1 also localises at centrosomes in U2OS cells (Zhong

et al. 2006), in chicken DT-40 cells after irradiation (Jeffers et al. 2008), and

recruits Chk1, a kinase involved in the G2-M checkpoint (Alderton et al. 2006).

Importantly, however, human lymphoblastoid cell lines with truncating mutations

found in MCPH patients do not show impaired DNA damage response, but rather a

defective G2-M checkpoint. In these cells, Chk1 is not targeted to the centrosome

and mitosis starts even in the presence of damaged DNA, leading to nuclear

fragmentation and centrosome amplification (Alderton et al. 2006). Studies from

Drosophila suggested a role for MCPH1 (also known as awol) in chromosome

condensation but not in the DNA damage response (Brunk et al. 2007; Rickmyre

et al. 2007). A centrosomal localisation of MCPH1 during mitosis has been reported

in Drosophila embryos (Brunk et al. 2007). However, different to all the other

centrosomal/spindle pole MCPH genes, a clear spindle function has not been

identified.

In addition to cytoskeleton genes, mutations in the nuclear zinc finger

335 (ZNF335, trithorax group) and PHC1 (polycomb group) genes have been

134 D. Gambarotto and R. Basto

http://dx.doi.org/10.1007/978-3-7091-1903-7_4


recently identified in families with severe microcephaly, suggesting a broader cause

resulting from alterations in gene expression (Awad et al. 2013; Yang et al. 2012).

5.4.2 Centrosome Defects and Cancer

Centrosome defects and in particular centrosome amplification are usually linked to

cancer. Centrosome amplification is present in almost all solid and haematological

tumours described (Chan 2011) (Fig. 5.4). At the beginning of the twentieth

century, German zoologist Theodor Boveri proposed that centrosome amplification

and consequent aneuploidy could be at the basis of tumour initiation (Boveri 2008).

This hypothesis was proposed after the observations that the presence of extra

centrosomes in sea urchin embryos, due to dispermic fertilisation, could lead to

abnormal mitosis and defects in chromosome segregation. These defective chro-

mosome combinations were usually detrimental for embryo development, but

Boveri could observe rare cases where abnormal cells continued to proliferate.

Boveri remarkably found that they were similar to tumour cells (Boveri 2008). At

his time it was already known that aneuploidy was a characteristic of human

tumours. Indeed, in 1890 David Hansemann initially observed asymmetric chro-

mosome segregation in human epithelial cells, and he documented this phenome-

non in a variety of tumours (Boveri 2008).

Persistent high levels of chromosome mis-segregation, commonly referred to as

“chromosomal instability” (CIN), are hallmark of most cancers (Lengauer

et al. 1997). It is difficult to understand how centrosome amplification contributes

to CIN, since multipolarity is often associated with poor viability. A link between

centrosome amplification and viable CIN has been established recently. The transi-

tion from multipolarity to bipolarity during the process of clustering promotes

merotelic attachments that might lead to viable aneuploid daughter cells (Ganem

Fig. 5.4 Centrosome amplification in human ovarian tumour. Human ovarian tissue (a) and

serous tumour (b) sections immunostained for pericentrin (green), γ-tubulin (red). DNA is

shown in blue. Scale bar¼ 30 μm
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et al. 2009; Silkworth et al. 2009). The contribution of aneuploidy (generated

independently of centrosome amplification) to tumorigenesis is tissue dependent.

While aneuploidy can promote tumour formation in certain tissues upon carcino-

genic treatment, it can also inhibit tumorigenesis in other tissues (Silk et al. 2013;

Sotillo et al. 2007; Weaver et al. 2007).

Centrosome amplification was shown to initiate tumorigenesis in Drosophila
both independently and dependently of aneuploidy. Allograft transplantation of

larval brains carrying extra centrosomes caused over-proliferation and tumours.

Although defects in chromosome segregation were not observed, defects in mitotic

spindle positioning resulted in the increase of the neural stem cell pool (Basto

et al. 2008). In flies, mutations that perturb neural stem cell asymmetric cell

division due to centriole duplication defects or mutations in polarity genes are

tumorigenic with little if any CIN (Castellanos et al. 2008; Caussinus and Gonzalez

2005). In another tissue, the wing imaginal disc, extra-centrosomes, are not effi-

ciently clustered or inactivated with consequent multipolar spindle formation. This

generates aneuploid cells and causes tumours in allograft transplantation (Sabino

et al. 2015).

In vertebrates the contribution of centrosome amplification to tumorigenesis is

still an open question. Overexpression of Plk4, which still remains the most

efficient mean to drive centriole over-duplication in vivo, in the mouse developing

central nervous system resulted in microcephaly (Fig. 5.2), but brain tumours were

not reported (Marthiens et al. 2013). Although centrosome clustering allows the

assembly of bipolar spindles in most embryonic neural stem cells, in a significant

proportion of cells, mainly during early and mid-neurogenesis, tripolar spindles and

abnormal chromosome segregation lead to the generation of unviable aneuploid

cells. These cells died by apoptosis in a p53-dependent manner. Importantly, even

in the absence of p53, tumours were not detected in the CNS. It is therefore possible

that during development, centrosome amplification and aneuploidy are not suffi-

cient to initiate tumour formation. It will be important in the future to establish

whether centrosome amplification during adult life in the mammalian brain or in

highly proliferative tissues such as the intestine or the skin is able to drive tumour

formation.

Until recently, centrosome amplification was thought to only contribute to

tumour formation through the generation of aneuploidy and spindle positioning

defects. However, it is also possible that the presence of extra centrosomes even in

interphase cells might represent an advantageous condition. Surprisingly,

non-transformed human mammary epithelial cells with extra centrosomes showed

increased microtubule nucleation capacity that strongly correlated with invasive

behaviour (Godinho et al. 2014). Increased centrosomal microtubule nucleation

during interphase activates the small GTPase Rac1, which is known to promote

invasiveness and metastasis (Mack et al. 2011). It is therefore possible that centro-

some amplification contributes to tumour formation in several different ways.
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5.5 Conclusions

At the beginning of the last century, it was proposed that defects in centrosome

number, in particular centrosome amplification, might be a cause for tumour

formation (Boveri 2008). Today, several lines of evidence support this view

(Basto et al. 2008; Castellanos et al. 2008; Ganem et al. 2009; Godinho

et al. 2014; Nigg 2006; Sabino et al. 2015; Zyss and Gergely 2009). However,

the observations made during the past 15 years using autozygosity mapping

techniques and whole-genome SNP genotyping implicated centrosome mutations

in growth defective syndromes, but not in cancer.

Both primordial dwarfisms and MCPH are characterised by proportionate reduc-

tion of body or head size, which results from premature depletion of progenitors

and/or increased levels of cell death. In most tumours, cancer cells show high levels

of proliferation, and even if high cell death rates can be identified, proliferation and

capacity to evade cell death signals are essential during cancer progression and

invasion (Hanahan and Weinberg 2000; Hanahan and Weinberg 2011). It is impor-

tant to mention that most of the cellular pathways affected in MCPH or in primor-

dial dwarfisms are also frequently referred to be dysfunctional in cancer cells. This

is the case for DNA damage response (Lord and Ashworth 2012), spindle orienta-

tion (Gonzalez 2007) or abnormal cell division and aneuploidy (Boveri 2008). It is

therefore possible that these conditions just represent two sides of the same coin.

Centrosome dysfunction due to zygotic mutations, if viable, would lead to growth

defects such as MCPH or dwarfism. If acquired in somatic adult tissues in certain

contexts, they might lead to the opposite effect: over-proliferation and growth.

Interestingly, mutation in BUBR1 and CEP57 (kinetochore and centrosomal

proteins, respectively) leads to a disease called mosaic variegated aneuploidy

(MVA), which is characterised by the appearance of tumours at early age and

features of primordial dwarfism (microcephaly and short stature) (Hanks

et al. 2006; Snape et al. 2011).

Further work is required to understand the relation between centrosome

mutations with cancer, MCPH and primordial dwarfism. Can centrosome amplifi-

cation or any other types of centrosome dysfunction initiate tumorigenesis in

humans? And if yes, by which means? Which adult tissues are more prone to

develop cancer when accumulating centrosome defects? And concerning growth

defects, why is the brain the most susceptible tissue to centrosome mutations? For

all these reasons, the centrosome field remains an active one and calls for in vivo
investigations that will keep us busy in the years to come.
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Microtubules Regulate Cell Migration
and Neuronal Pathfinding 6
Ulrike Theisen and Anne Straube

Abstract

While many cell types are able to generate cellular movement through the

action of the actomyosin cytoskeleton alone, microtubules are important for

establishing and maintaining polarity, regulating the force-generating machinery

and cell adhesion. Therefore, directionally persistent cell migration and neuronal

pathfinding often require microtubules.

The microtubule cytoskeleton itself is organised asymmetrically to allow

differential regulation of the migration machinery at the front and the rear of

the cell. Microtubules position organelles such as the nucleus, the centrosome

and the Golgi. Transport of mRNAs, vesicles, receptors and signalling

components to the cell edges occurs along microtubules. These cargoes in turn

support force generation by the actin cytoskeleton, act as a source of membrane

lipids and regulate polarity signalling, adhesion, cell-cell communication and

chemical gradient sensing. Microtubules themselves and especially the dynamic

plus ends act as signalling platforms to control adhesion turnover and membrane

protrusion. The rapid turnover of microtubules allows cells to quickly adapt to

extracellular signals and change migration direction in response to guidance

cues. Microtubule dynamics and organisation are in turn controlled by cortical

cues. These feedback mechanisms ensure robustness and adaptation to environ-

mental influences.
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Given the fundamental importance of cell migration for embryonic develop-

ment, the immune system and wound healing, impaired microtubule function

leads to birth defects and diseases. Likewise, drugs targeting microtubules are

routinely used to prevent excessive cell migration in cancer metastasis and

chronic inflammatory diseases.

6.1 Introduction

Cell migration is a fundamental biological phenomenon occurring in protists as well

as in multicellular organisms. Locomotion of unicellular organisms enables access to

nutrients and optimal environmental conditions as well as the assembly of cells into

spore-bearing structures (Van Haastert and Devreotes 2004). In multicellular

organisms, migration is essential to positioning each cell in the body at its correct

location. During embryonic development, many cells are generated from precursors

in a different location to where they are needed. Furthermore, neuronal precursors in

mammals need to migrate not only to reach a specific destination but also to

encounter the correct type of cells along the way to form contacts with in order to

build the neuronal network in the brain. For example, cerebellar granule cell

precursors migrate tangentially until they change to radial migration along glial fibres

during which they establish contacts with Purkinje cells needed for the proper wiring

of the adult cerebellum (Cooper 2013; Komuro and Rakic 1998; Fig. 6.1a). Other

instances of migration occurring during development are clusters of cells that move

along the entire length of the body to form the lateral line organ in fish (Fig. 6.1b) and

precursors of muscle cells that align before fusion into muscle fibres (Revenu

et al. 2014; Wakelam 1985). In adults, cell migration is of utmost importance for

immune surveillance and response and for healing wounds (Fig. 6.1c). Finally,

defective regulation of migration contributes to chronic inflammatory diseases such

as gout and atherosclerosis and enables the spreading of cancer cells from the primary

tumour site (Chi and Melendez 2007; Colvin et al. 2010; Friedl and Wolf 2003,

Fig. 6.1d). Metastasis is responsible for 90 % of cancer deaths (Mehlen and Puisieux

2006). For an overview of human diseases directly linked to defective migration as a

result of an impaired microtubule cytoskeleton, please refer to Table 6.1.

Cells can migrate in various different modes that depend on the environment

they are in and on the cell type. On a flat surface such as a plastic dish in culture or

the surface of a muscle fibre or endothelial sheets in vivo, cells move in a

mesenchymal mode with adhesion to the surface being a crucial aspect of migra-

tion. Moving through dense 3Dmatrices or other confined spaces requires only little

adhesion as under these conditions contractile forces that drive amoeboid or

blebbing motion can generate forces and traction at the same time. Cells can

migrate as individual cells or as collectives, and they can also switch between

different types of migration (Friedl and Gilmour 2009). Such a change occurs, for

example, during epithelial-mesenchymal transition, a process where cancer cells

undergo dedifferentiation from a tissue collective to a more single-cell-like

behaviour and acquire the ability to metastasise (Friedl and Wolf 2003).
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In general, cells need to coordinate the following steps in order to achieve

migration (Etienne-Manneville 2013; Ridley et al. 2003):

1. Protrusion. This involves the cell membrane to be pushed forward by cyto-

skeletal polymerisation.

2. Adhesion. Forces that the cytoskeleton generates must be transmitted to the

underlying substratum while regulating the turnover (lifetime) according to the

spatial cues (strong attachment at the front, weakening attachment at the rear).

A

D

B

E

HeLaepithelial cell
granulo-

cyte neuron

C

amoeboid
cancer cell

keratino-
cyte

Fig. 6.1 Examples of migration modes and cell shapes. (a) Modes of migration depend on the

cellular environment. In this example, a cerebellar granule cell neuron (white) is migrating

tangentially over other tissue, until it finds a glia cell (dark grey). It is then guided along the

axon of the glia cell during radial migration using microtubule-dependent nucleokinesis to reach

the inner layer of the developing cerebellum. During radial migration, the axon of the granule cell

projects from the rear of the cell and establishes contacts to Purkinje cells (light grey) (Fahrion
et al. 2012). (b) Some cells migrate as highly coordinated multicellular strands during develop-

ment. In this example, leader cells form a path for the follower cells. In the lateral line primordium,

these take the form of rosettes. Close communication between leader and follower cells is

necessary to achieve collective migration (Revenu et al. 2014). (c) Similarly, cancer cells often

metastasize as clusters of cells that force their way by localised release of extracellular matrix-

degrading enzymes (Friedl and Gilmour 2009). (d) Wound healing can be recreated in cell culture.

Typically, once a gap is created, individual cells (leader cells, light grey) at the edge of the wound
sense the gap and respond by extending a lamellipodium into the gap. Once these cells start to

invade the open space, they are followed by other cells pushing from behind (Tsai et al. 2014). (e)
Commonly observed migrating cell types are depicted in their relative size. All cells migrate

towards the top of the page. Note that the cell area depends on the mode of migration and the

stiffness of the substrate and can therefore change depending on the cellular environment
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Table 6.1 Diseases directly associated with cell migration and microtubule function

Cause/

accelerating

factor Effect Disease Reference

Microtubule
structure
and stability:

Dynamic

microtubules

Increased motility Metastasis Mehlen and Puisieux (2006)

Dynamic

microtubules

Immune cell migration Rheumatoid arthritis Brahn et al. (1994), Friedl

and Weigelin (2008)

Dynamic

microtubules

Neutrophil migration Gout Chia et al. (2008)

Dynamic

microtubules

Infiltration of immune

cells into the brain;

multiple sclerosis-like

phenotype

Experimental

autoimmune

encephalomyelitis

O’Sullivan et al. (2013)

TUBB3 Neuronal migration

defects

Malformation of

cortical

development

Poirier et al. (2010), Saillour

et al. (2014)

TUBA1A Neuronal migration

defects

Lissencephaly/

pachygyria

Poirier et al. (2007)

TUBB2B Neuronal migration

defects

Polymicrogyria Jaglin et al. (2009)

TUBB5 Neuronal migration

defects

Microcephaly Breuss et al. (2012)

TUBA3A Neuronal migration

defects

Polymicrogyria Keays et al. (2007)

TUBG1 Neuronal migration

defects

Malformation of

cortical

development

Poirier et al. (2013)

Doublecortin Neuronal migration

defects

Lissencephaly Gleeson et al. (1999b), Pilz

et al. (1998)

MAP1B Neuronal migration

defects

Diverse

neuropathologies

Del Rio et al. (2004),

Riederer (2007)

APC Impaired neuronal

network formation

Schizophrenia,

autism

Cui et al. (2005), Kozlovsky

et al. (2002), Mohn

et al. (2014)

HDAC6 Blood vessel

formation

Tumour

angiogenesis,

metastasis

Li et al. (2011), Wu

et al. (2010)

Clip-170 Increased vessel

density in tumours

Tumour

angiogenesis

Sun et al. (2013)

Microtubule
length and
array
control:

Tau Increased microtubule

severing

Alzheimer’s disease Sapir et al. (2012)

(continued)
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Table 6.1 (continued)

Cause/

accelerating

factor Effect Disease Reference

Katanin Sperm motility

defective

Male fertility defect O’Donnell et al. (2012)

Spastin Impaired microtubule

severing

Metastasis Draberova et al. (2011)

Kif2A Enhanced cell motility

and invasiveness

Metastasis Wang et al. (2010), (2014)

Motor
proteins and
their
regulation:

Dynein Movement of

organelles, retrograde

trafficking affected

Charcot-Marie-

Tooth disease type

2; several

neurological

symptoms

Willemsen et al. (2012)

Lis1 Impaired dynein

function

Lissencephaly,

Miller-Dieker

syndrome

Pilz et al. (1998), Badano

et al. (2005), Hattori

et al. (1994)

Kif5C Neuronal migration

defects

Malformation of

cortical

development

Poirier et al. (2013)

Centrosome:

DISC1 Centrosomal function

impaired

Schizophrenia,

depression, bipolar

disorder

Duan et al. (2007),

Hashimoto et al. (2006),

Hennah et al. (2009),

Ishizuka et al. (2011), Meyer

and Morris (2009),

Steinecke et al. (2012)

PCM1 Centrosomal satellites

defective

Schizophrenia Kamiya et al. (2008)

SDCCAG8 Centrosomal satellites

defective

Schizophrenia Hamshere et al. (2013),

Insolera et al. (2014)

BBS1, BBS4 Defective cilia; defects

in migration cause

craniofacial

dysmorphia

Bardet-Biedl

syndrome

Tobin et al. (2008)

Excess

centrosomes

in interphase

Impaired migration Angiogenesis;

defective vessel

sprouting

Kushner et al. (2014)

Cell polarity
signalling:

Cdc42 Stability of

microtubules in the

uropod of neutrophils

Immunodeficiency Kumar et al. (2012)

Cell
adhesion:

(continued)
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3. Contraction. Actin and myosin generate contractile forces to move the cell body

forward.

4. Retraction. Substrate adhesion at the rear must be released and the rear end of the

cell brought forward.

This classic model describes the series of events needed to propel a cell forward.

The importance of each of these aspects differs depending on the type of migration,

e.g. mesenchymal migration strongly depends on attachment, while amoeboid

migration does not (for details, see Lammermann and Sixt 2009). In order to

achieve persistent directional motility of a cell, there are essential requirements

that need to be met: First, cell polarity needs to be established. Next, the cyto-

skeleton needs to be arranged so that forces are generated in the different parts of

the cell that allow protrusion at the front and retraction at the rear. These forces

need to be transferred to the underlying substrate with the help of adhesive contacts,

either to the extracellular matrix (ECM) or to neighbouring cells. Additional tasks

are added where cells migrate in clusters, as contacts and communication between

the migrating cells need to be maintained at all times.

Although migration is often regarded as a purely actin-driven process,

microtubules have fundamental roles in the regulation of different aspects of the

complex task of moving a cell forward. However, the exact involvement of

microtubules in migration is strongly dependent on the type of cell and its environ-

ment. Leaving aside protists, whose motility depends entirely on microtubules

organised into cilia, it appears that in small cells, such as neutrophils (Dziezanowski

et al. 1980; Niggli 2003), T cells (Takesono et al. 2010) or fish keratinocytes

(Euteneuer and Schliwa 1984), microtubules are dispensable for efficient migration,

even if some aspects of migration require microtubules (Stramer et al. 2010; Vogl

et al. 2004, Fig. 6.1e). This was demonstrated in experiments using microtubule-

depolymerising drugs, e.g. nocodazole or colcemid. When small cell types were

treated with these drugs, their migration was hardly impaired or even stimulated

(Euteneuer and Schliwa 1984; Niggli 2003). Yet when the experiment was repeated

on larger cell types, such as fibroblasts, neurons, astrocytes or cancer cells, the

effects on migration ranged from loss of directionality and cell polarity and

Table 6.1 (continued)

Cause/

accelerating

factor Effect Disease Reference

ACF7 Microtubule-regulated

adhesion turnover

defective

Delayed skin

healing

Wu et al. (2008)

APC Cell adhesion by

cadherins affected

Tumour

development/

metastasis in

colorectal cancer

Faux et al. (2004)
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reduction of speed to complete inhibition of cell locomotion (Etienne-Manneville

2004; Ganguly et al. 2012; Liao et al. 1995; Vasiliev et al. 1970; Xu et al. 2005).

One idea is that diffusion or actin-based transport can efficiently compensate for

loss of microtubules in small but not in larger cells (Kaverina and Straube 2011;

Keren et al. 2008).

By their reach throughout the whole cell, microtubules can coordinate the

different aspects involved in cell migration by acting at different parts of the cell

at the same time (Fig. 6.2), such as regulating increased adhesiveness at the cell

front while reducing adhesiveness at the rear. They are also crucial to long-distance

transport and directing cargo (vesicles, proteins, mRNA) to different regions of the

cell, thereby gaining a regulatory influence over local protrusion and adhesiveness,

signal perception/transduction and cell-cell communication. In addition, their

mechanical properties contribute to shaping the cell, for example, by preventing

the collapse of membrane structures due to their resistance to compression. Still, the

microtubule system is fairly short-lived, as a result of the intrinsic dynamic instabi-

lity, allowing the microtubule cytoskeleton to adapt very quickly to changes, for

example, when signals from the environment are perceived that make changes to

the migration direction necessary. In spite of their normally short lifetime, certain

microtubules can be stabilised for specific functions, e.g. in order to move the

nucleus forward during neuronal migration. Finally, by selectively adapting the

composition of proteins binding to the dynamic plus ends, these can provide a

spatially and temporally highly restricted environment to carry out special tasks,

such as targeting focal adhesions at the rear of the cell for disassembly or

interacting with signalling components in a very controlled manner.

6.2 Microtubule Organisation in Migrating Cells

In many migrating cells, microtubules show an asymmetric arrangement. This is

typically biased towards the front of the cell in most cell types, such as fibroblasts,

epithelial and endothelial cells, astrocytes and neurons (Fig. 6.2a, b), but a bias to

the rear of the cell has been shown in leucocytes (Kaverina and Straube 2011;

Watanabe et al. 2004; Yoo et al. 2012). Many microtubules are nucleated by and

anchored with their minus ends at the centrosome so that their dynamic plus ends

project towards the cell cortex. Often the centrosome is positioned between the

nucleus and the leading edge of the cell. The mechanism behind orienting the

centrosome involves microtubule capture at the cortex, which allows the minus-

end-directed motor dynein to exert pulling forces on the microtubules to position

the centrosome in the cell centre (Palazzo et al. 2001; Tsai and Gleeson 2005; Yvon

et al. 2002; Fig. 6.3). In addition, actin-mediated forces pull the nucleus backwards

(Gomes et al. 2005). While defects in the positioning of the centrosome are

indicative of problems in cell polarity and correlate with cell migration defects

(Etienne-Manneville and Hall 2003; Luxton and Gundersen 2011; Tsai et al. 2007),

it is unlikely that the position of the centrosome itself determines directionality of

cell migration or the asymmetry of the microtubule network. Centrosome position
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Fig. 6.2 Microtubule arrangement in migrating/protruding cells. (a) In epithelial cells moving

over a flat surface, more microtubules reach the leading edge than the cell rear. The centrosome

nucleates a radial array of microtubules, but rearwards growing microtubules are deflected by the

nucleus. In addition, the trans-Golgi nucleates a front-directed microtubule array. This front bias is

enhanced by a gradient of microtubule-destabilising factors, which are more active at the rear of

the cell and the selective stabilisation of microtubules at the leading edge mediated by plus end

capture at the cell cortex. CLASP proteins have been implicated in both nucleation at the Golgi and

capture at the cell cortex. (b) In migrating neurons, most microtubules extend towards the leading

edge, and only few reach around the nucleus to the rear. Microtubules are nucleated from the

centrosome, which is oriented towards the leading edge. A cage of stable microtubules links the

centrosome and the nucleus. This cage is important for moving the nucleus forward. (c) Growing
axons resemble migrating cells in many aspects. They typically exhibit a dense array of stable

microtubules. Microtubules nucleated at the centrosome are often not long enough to reach the

leading edge. Instead the array mainly contains free microtubules generated by microtubule

severing and capping of the minus ends by stabilising complexes. These microtubules can be

moved by motor proteins and contribute to force generation
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Fig. 6.3 Microtubule functions in cell migration. Microtubules are the main tracks for intra-

cellular long-distance transport, delivering cargo to support and regulate the cell migrationmachinery.

Microtubules are organised asymmetrically and their stability is regulated spatially by rescue factors

such as CLASPs, minus end capping and severing proteins. Dynamic microtubules modulate Rho

GTPase signalling by sequestering, concentrating and releasing regulatory proteins. Microtubules

stimulate actin polymerisation through delivery of mRNAs and the accumulation of actin nucleators

such as APC and formins at microtubule ends. Localised exocytosis supplies the membrane for

protrusion and receptors and enzymes for matrix degradation. Microtubule targeting and directed

transport also regulates focal adhesions
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is dictated by cell geometry and therefore a read-out of cell shape (Dupin

et al. 2009; Gomes et al. 2005). Most cells moving on 2D surfaces will position

the centrosome in front of the nucleus. However, plating the same cells on patterned

substrates that confine adhesion to narrow lines results in an elongated cell morpho-

logy and efficient cell migration, but the centrosome is found behind the nucleus

(Pouthas et al. 2008). Under these conditions, the majority of microtubules still

grow towards the front of the cells; therefore, centrosome position and microtubule

network bias are independent of each other (Straube, unpublished data). Similarly,

in wound-edge Ptk cells, the rear-oriented position of the centrosome may become

compensated for by actin-based transport of microtubules to the front (Yvon

et al. 2002). Likewise, zebrafish neutrophils migrating in vivo position the centro-

some in front of the nucleus, but the majority of microtubules project towards the

rear (Yoo et al. 2012) (for an overview of centrosomal positions in different

systems, see Luxton and Gundersen 2011). The mechanisms underlying the reverse

microtubule orientation in these cells are not understood, and we will concentrate

on the more commonly observed front-biased microtubule organisation in the

remainder of this chapter.

The Golgi complex is usually positioned close to the centrosome (Kupfer

et al. 1983; Pouthas et al. 2008) and nucleates a large number of almost exclusively

front-directed microtubules from the trans-Golgi network (Chabin-Brion

et al. 2001; Efimov et al. 2007; Rivero et al. 2009; Fig. 6.3). As the centrosome

and the associated microtubules organise the Golgi apparatus, this coupling of

centrosomal positioning and Golgi-mediated nucleation of microtubules increases

the front-biased orientation of microtubules in the cell (Vinogradova et al. 2012).

An extreme example of higher microtubule density extending towards the front

occurs in the very long, but narrow, lamellipodia of migrating granule cell neurons

(Umeshima et al. 2007).

Only a few of all microtubules growing towards the leading edge of the cell

actually reach the plasma membrane. These are so-called “pioneer” microtubules

(Etienne-Manneville 2013). Most other front-oriented microtubules terminate near

the actin-rich regions of the cortex, but do not touch the expanding membrane at the

front. It is thought that retrograde flow from the actin filaments prevents these

microtubules from reaching the membrane (Waterman-Storer and Salmon 1997).

“Pioneer” microtubules withstand expulsion by actin retrograde flow by anchorage

to the membrane (Etienne-Manneville et al. 2005). The observation that “pioneer”

microtubules show extensive tubulin modifications supports the idea of increased

longevity of this microtubule population (Bulinski and Gundersen 1991; Gundersen

and Bulinski 1988). A similar arrangement is found in axons, where only a subset of

microtubules enters the peripheral domain of the growth cones (Fig. 6.2c).

In differentiating neurons, the cell body will no longer move forward, but the

growth cones at the tips of the extending neurites structurally and functionally

resemble the lamella of migrating cells. Growth cones are able to continue to grow

in the absence of microtubules, but the sensing of chemical gradients of guiding

cues is impaired and directional growth is lost (Williamson et al. 1996). The

directionality of growth is determined by highly localised actin protrusion and
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adhesiveness on one side of the growth cone against the other (Vitriol and Zheng

2012; Fig. 6.2c). This correlates with changes to the microtubule array:

Microtubules are stabilised on the protruding and destabilised on the collapsing

side, possibly through the action of APC (Buck and Zheng 2002; Zhou et al. 2004).

One idea is therefore that microtubules direct the delivery of vesicles, mRNAs and

GTPase activators to the growing side of the axon tip. The microtubule organisation

in growth cones is dominated by front-directed microtubules that grow from the

neurite into the growth cone (de Anda et al. 2005). Most of these microtubules do

not extend all the way from the centrosome or Golgi network. Non-centrosomal

microtubule nucleation occurs throughout the axon and dendrites (Stiess et al. 2010;

Yau et al. 2014). In addition, severing enzymes such as Katanin or Spastin release

microtubules from their anchoring at the centrosome, thereby enabling motor-

driven transport of microtubules into neurites (Liu et al. 2010; Myers and Baas

2007; Yu et al. 2008). Advancing microtubules into the peripheral domain is then

mediated by molecular motors of the kinesin-5 and kinesin-12 family (Nadar

et al. 2008; Liu et al. 2010). In some migrating cells, the release of microtubules

from the centrosome and cytoplasmic transport has also been observed, suggesting

that similar mechanisms for microtubule reorganisation exist in migrating cells

(Abal et al. 2002; Jolly et al. 2010).

In addition to the release of microtubules from their nucleation site, severing

proteins also allow the destruction or amplification of microtubule subpopulations

and can therefore modify the number of microtubules in a given orientation

(Lacroix et al. 2010; Lindeboom et al. 2013; Sudo and Baas 2010). Cutting the

microtubule lattice will produce two microtubules with the same orientation that

either rapidly depolymerise or are stabilised and grow. Newly created minus ends

are stabilised by CAMSAP family proteins. Depletion of CAMSAP2 results in a

reduction in posttranslationally modified microtubules, cell polarity and directional

cell migration (Jiang et al. 2014), suggesting that the stabilisation of

non-centrosomal microtubules and the amplification of front-directed microtubules

through collaboration of severing enzymes and minus end stabilisers are important

for the asymmetric microtubule arrangement in motile cells.

Katanin localises to the leading edge of migrating human and Drosophila S2

cells and negatively regulates migration of these cells in vitro (Zhang et al. 2011).

Katanin appears to be enriched at sites of filopodia formation (Liu et al. 2008), and

increased amounts of Katanin subunits have been linked to more aggressive migra-

tory behaviour in prostate cancer cells (Ye et al. 2012). Similarly, inhibition of

Katanin subunits leads to migration impairment in mouse neurons and rat epithelial

cells (Sudo and Maru 2008; Toyo-Oka et al. 2005). Uncontrolled function of

Katanin and Spastin leads to aberrant numbers of microtubules in neurons, which

has been linked to a number of diseases such as hereditary spastic paraplegia or

Alzheimer’s disease (Errico et al. 2002; Sudo and Baas 2011), causing general

defects in microtubule-mediated transport.

In addition to increased nucleation of microtubules towards the front of the cell

and potential amplification mechanisms by severing enzymes, differences in micro-

tubule stability contribute to the asymmetry of the microtubule cytoskeleton.
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Tubulin acquires posttranslational modifications in long-lived microtubules. In

migrating cells, a front-directed accumulation of microtubules containing

acetylated and detyrosinated tubulin is often observed (Gundersen and Bulinski

1988; Umeshima et al. 2007), suggesting that front-directed microtubules are

stabilised, thus further exacerbating microtubule asymmetry.

It is thought that the asymmetry in the microtubule array allows preferential

traffic of cargoes to the front of the cells (Fig. 6.3; Bachmann and Straube 2015).

Important cargoes for cell migration are actin and Arp2/3 mRNA (Lawrence and

Singer 1986; Mingle et al. 2005), post-Golgi carriers (Miller et al. 2009; Yadav

et al. 2009) and recycling endosomes (Palamidessi et al. 2008). As posttranslational

modifications of tubulin can serve as guidance cues for microtubule motor proteins,

efficient front-directed transport can be achieved by a combination of increased

number and selective stabilisation and modification of microtubules to the leading

edge. Track selectivity has been demonstrated for kinesin-1s, kinesin-2s and dynein

(Dixit et al. 2008; Sirajuddin et al. 2014) in vitro, and there is some evidence that

this is also the case in cells (Cai et al. 2009; Ghosh-Roy et al. 2012; Huang and

Banker 2012; Jacobson et al. 2006; Reed et al. 2006). In mature neurons, this

property of kinesins to preferentially bind differentially modified tubulin is

exploited to selectively target cargo specifically to axons or dendrites (Burack

et al. 2000; Jenkins et al. 2012). Likewise, a preference for transport to and

accumulation at the rear of migrating cells has been shown for the kinesin-3

Kif1C, which is negatively regulated by tubulin acetylation (Bhuwania

et al. 2014; Theisen et al. 2012).

Posttranslational modifications of tubulin also regulate the activity of Katanin

and Spastin and the binding affinities of microtubule-associated proteins (MAPs)

such as Tau. While acetylation and polyglutamylation of tubulin increases severing

activity, decoration of the microtubule lattice with Tau protects microtubules from

severing (Lacroix et al. 2010; Sudo and Baas 2010). Abnormal regulation of Tau

has been associated with disease progression, most notably with neurodegenerative

diseases such as dementia (Lee and Leugers 2012). Thus complex feedback loops

involving chemical modification and modification-sensitive MAPs modulate the

asymmetric microtubule network in migrating cells.

6.3 Spatial Regulation of Microtubule Dynamics

As mentioned above, differences in microtubule dynamics at the front and rear of

the cell contribute to the asymmetry in the microtubule organisation. Cells express

an arsenal of microtubule regulators that tightly control the assembly and dis-

assembly of microtubules (van der Vaart et al. 2009). In cells, microtubule cata-

strophe occurs almost exclusively at the cell cortex (Komarova et al. 2002), and

microtubule stabilisation occurs through the close coupling of rescue and cata-

strophe events, holding microtubules in a dynamic captured state with short length

fluctuations (Straube 2011; Straube and Merdes 2007). Microtubules are captured at

the leading edge’s cell cortex by a number of pathways, including EB1/APC/
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mDia1, LL5beta/ELKS/CLASPs, IQGAP/CLIP-170 and Dlg (Akhmanova

et al. 2001; Drabek et al. 2006; Kroboth et al. 2007; Kumar et al. 2009; Nakamura

et al. 2001; Pfister et al. 2012; Schober et al. 2009; Watanabe et al. 2009a;

Wittmann et al. 2004). Microtubule capture can be maintained for prolonged

times resulting in stable microtubules leading to the front of the cell. These long-

lived microtubules in turn acquire a number of posttranslational modifications.

While detyrosination protects microtubules from depolymerases and severing

enzymes (Peris et al. 2009; Roll-Mecak and Vale 2008), acetylation and poly-

glutamylation recruit microtubule-severing enzymes (Lacroix et al. 2010; Sudo and

Baas 2010). Microtubule severing close to the cell cortex can result in the release of

a captured microtubule and is a mechanism that allows the spatial regulation of

microtubule stability (Zhang et al. 2011).

The inactivation of the microtubule destabilisers stathmin and MCAK at the

front of the cell by phosphorylation results in a gradient of increasing microtubule

stability towards the front of the cell (Braun et al. 2014; Niethammer et al. 2004).

Likewise, the interaction of microtubules with focal adhesion sites results in

different outcomes at the front and rear of the cell: While microtubules are captured

at adhesion sites in the front of the cell (Kaverina et al. 1998), catastrophe is

induced when microtubules contact trailing adhesions (Efimov et al. 2007). While

the mechanisms underlying these differences remain to be understood, it is clear

that microtubule dynamicity is crucial for cell migration. Freezing dynamicity with

low doses of Taxol and other microtubule-targeting agents so that the overall

organisation is not perturbed impairs protrusion in fibroblasts, migrating neurons

and growing axons (Dunn et al. 1997; Liao et al. 1995; Rochlin et al. 1996; Tanaka

et al. 1995; Umeshima et al. 2007; Vasiliev et al. 1970). Furthermore, interference

with the dynamicity of rear microtubules specifically leads to decreased rear

retraction and changes to the time HeLa cells and CHO fibroblasts spent migrating

(Ganguly et al. 2012). When the regional differences in microtubule dynamics

regulation are removed by inhibition of MCAK or constitutive activity of Rac1,

directional cell migration is severely reduced (Braun et al. 2014).

6.4 How Do Microtubules Influence Cell Migration?

6.4.1 Cell Shape, Polarity and Directionality

Directional cell migration requires the establishment of distinct regions in the cell

as the front and the rear. This is often reflected in the morphology of the cell, where

the leading edge is protruding either as a flat lamellipodium, using spiky filopodia,

pseudopods or more complex structures such as the leading process of neurons.

Retracting rears can be either (1) curved inwards pushing against the nucleus as in

keratinocytes, (2) long, tail-like extensions as in some epithelial cells and

fibroblasts or (3) uropods in leucocytes (Keren et al. 2008; Ratner et al. 1997;

Theisen et al. 2012). In each configuration, the protruding edge, the nucleus and the

retracting rear set up a single polarity axis. When branches or multiple protrusions
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are formed, these are often used to make directional decisions in chemotaxis and

neuronal pathfinding with the better-positioned protrusion persisting (Andrew and

Insall 2007; Cooper 2013). Directional protrusions for cell migration are very

similar to emerging axons. In some neurons such as cortical projection neurons,

the axon is formed during cell migration by extending cell tails that continue to

grow rather than retract (Cooper 2013).

Yet how is the polarity axis established? In cells that have been “starved” by

serum withdrawal and then exposed to a chemical attractant gradient, a protruding

extension is established towards the higher concentration of the chemical, and the

cell begins to move up the gradient. A very similar mechanism guides axon growth

cones along attractive or repulsive gradients (Vitriol and Zheng 2012). This mech-

anism has been conserved from amoeba to humans (Van Haastert and Devreotes

2004). Even in the absence of a guiding chemical gradient, cells from higher

eukaryotes that are not surrounded by others spontaneously polarise and form a

lamellipodium at one side of the cell. In keratinocytes, symmetry breaking occurs

by contraction of actin filaments by non-muscle myosin II on one side of the cell,

leaving the opposite side free to protrude (Yam et al. 2007). In epithelial cells,

adhesion at the rear and formation of a tail precede protrusion in the opposite

direction (Rid et al. 2005; Vicente-Manzanares et al. 2009). Pulling forces from

other cells in a collective result in protrusion at the opposite cell edge, resulting in

mechanical feedback and coupling of collective cell migration (Weber et al. 2012).

For a cell to change direction, either the polarity axis is gradually shifted, the cell

depolarises and repolarises again in a new direction, or the front bifurcates or

branches with one of the new protrusions taking over as front after a while (Petrie

et al. 2009). The latter mechanism of branching and retraction of a branch is a

pathfinding mechanism, for example, in migrating cortical interneurons and neo-

cortical neurons (Cooper 2013; Sakakibara et al. 2014).

How do microtubules support the establishment, maintenance and changes of the

polarity axis? As explained above, the asymmetry in the microtubule organisation

and distribution of posttranslational modifications enables intracellular trafficking

along microtubules to be asymmetric. Important cargo for cell polarity and migra-

tion is generated in and near the nucleus in the cell centre and requires transport

along microtubules for delivery to the cell edges. An example is the mRNA for

β-actin, which localises to the leading edge of migrating cells and is transported by

kinesin-1 and dynein along microtubules (Kislauskis et al. 1997; Ma et al. 2011).

The localised translation of actin mRNA is important for directional cell migration

as it dictates the sites of actin filament nucleation (Katz et al. 2012). Equally

importantly, proteins modified and packaged in the Golgi apparatus are transported

efficiently to the leading edge via front-directed microtubules nucleated at the trans-

Golgi by CLASPs (Miller et al. 2009). Further important cargoes to support front

protrusion are vesicles that can be used as a source for additional membrane and

supply receptors for adhesion helping protrusion at the leading edge (Etienne-

Manneville 2013). It can be beneficial to distribute receptors for sensing chemical

gradients and to adhere to the extracellular substrate and neighbouring cells

164 U. Theisen and A. Straube



unequally at the cell surface to enhance or adapt to extracellular signals and

regulate adhesion in different parts of the cell.

Given that the asymmetry in the microtubule cytoskeleton is key to directional

intracellular transport, factors that regulate centrosome positioning such as Lis1 are

implicated in developmental diseases due to impaired neuronal migration. Lis1

interacts with dynein to regulate the forces acting on cortical microtubule ends and

thereby the centrosome and is crucial to moving the nucleus forward, an essential

step in neuronal migration (Umeshima et al. 2007). The loss of Lis1 leads to a

smooth brain surface, abnormal neuronal layering and large brain ventricles in

humans (Ozmen et al. 2000; Pilz et al. 1998). Similar defects in brain morphology

are caused by insufficient neuron migration upon loss of Dcx (doublecortin)

(Gleeson et al. 1999a; Gleeson et al. 1999b; Liu 2011; Pilz et al. 1998). Dcx is a

MAP that increases microtubule stability, but can also interact with Lis1 (Caspi

et al. 2000). Centrosome position also determines the site of axon growth when

hippocampal neurons differentiate (de Anda et al. 2005). It is thought that centro-

some position again creates a bias of microtubules towards specific sites of the cells,

with consequences for intracellular trafficking, protrusion, adhesion and signalling.

In line with this idea, the amplification of centrosomes results in increased protru-

sion and invasion, probably by increasing front-directed microtubule activities

(Godinho et al. 2014). For additional information on neurodevelopmental disorders

caused by defective cell migration, please also consult the Chap. 5 by Gambarotto

and Basto and the Chap. 4 by Sánchez-Huertas, Freixo and Lüders.

It is now firmly established that signalling by small GTPases of the Rho family is

important in cell polarity (Nobes and Hall 1999). Small Rho GTPases are proteins

that are active in the GTP-bound state, and their activity is regulated by guanine

nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). GAPs

accelerate GTP hydrolysis to switch off the Rho GTPase, while GEFs accelerate the

removal of the product and binding of GTP to activate Rho GTPase signalling.

Once activated, Rho GTPases bind to a number of effectors such as protein kinases

and actin-binding proteins (Sit and Manser 2011). In migrating cells, the most

important Rho GTPases are Rac1, Cdc42 and RhoA. Their activity regulates cell

polarity: Rac1 is most important in regulating the protrusion of cells through the

WAVE and Arp2/3 complex (Eden et al. 2002). Cdc42 is most active at the cortical

zone to promote protrusion via the WASP pathway and is important in orienting the

centrosome towards the leading edge via the PAR complex, dynein and

microtubules (Etienne-Manneville et al. 2005; Palazzo et al. 2001). RhoA is active

further into the lamella and at the rear of the cell to regulate actin contractility

(Amano et al. 2010; Machacek et al. 2009). Microtubules are known to influence

the activity of Rho GTPases through the local distribution and function of GEFs,

GAPs and effectors. Growing microtubules activate Rac1, while the release of

microtubule-bound GEF-H1 upon microtubule depolymerisation activates RhoA

(Nalbant et al. 2009; Ren et al. 1998); thereby, microtubule dynamics supports the

localised activity of Rho GTPases. In turn, GTPases also influence microtubule

stability in a positive feedback loop to improve cargo delivery to sites of active
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protrusion, e.g. RhoA stabilises microtubules via IQGAP1 and mDia1 (Brandt

et al. 2007; Kholmanskikh et al. 2006; Wen et al. 2004; Wittmann et al. 2004).

A second connection between microtubules and cell polarity is established

through the interaction of microtubules with the Par complex (Suzuki and Ohno

2006). The Par complex, composed of Par6, atypical protein kinase C and Par3,

regulates centrosomal polarity. The complex acts downstream of Cdc42 and

regulates the activity of GSK3 kinases, which in turn control the activity of

MAPs and thereby influence microtubule dynamics locally at the leading edge

(Etienne-Manneville et al. 2005). A related protein, MARK/Par-1, can detach

MAPs from microtubules to destabilise them (Ebneth et al. 1999; Tassan and Le

Goff 2004). MARK activity is highest at the rear and lowest at the front of the cell,

increasing the front-biased asymmetry in the microtubule array (Hayashi

et al. 2012).

Recently, evidence is accumulating that maintaining an extended cell rear can

influence persistent motility. The maintenance of such a tail requires adhesion at the

rear despite high contractile forces. Reduction of contractile forces allows forma-

tion of extended tails in CHO cells and increases cell motility (Vicente-Manzanares

et al. 2007). Likewise, microtubule transport of integrins into cell tails is required

for the maturation of trailing focal adhesions and the stability of cell tails.

Interfering with microtubule transport by depletion of the kinesin motor Kif1C

results in shortened lifetime of cell tails and more frequent directional changes in

migrating cells (Theisen et al. 2012). Similarly, drug treatments that suppress

dynamic microtubules in the rear of the cell led to increased tail stability and

affected directionality in HeLa and CHO cell (Ganguly et al. 2012). In these

cells, the morphology of the front of the cells was not affected nor was the front-

oriented position of the centrosome, arguing that the cells’ ability to polarise was

not globally perturbed. One hypothesis is that drag generated at the cell rear acts as

a mechanical cue to support protrusion in the opposite direction (Theisen

et al. 2012; Weber et al. 2012). Likewise, the extended cell polarity axis could

facilitate biochemical gradients and cytoskeletal filament orientation (Rid

et al. 2005; Theisen et al. 2012).

In sum, microtubules have important functions in supporting cell polarity by

ensuring that signalling and actin-dependent processes are asymmetric. The

interactions with the actin cytoskeleton are likely to function as a positive feedback

loop, in which microtubules deliver actin-regulating proteins, while proteins

localising to the actin cortex enhance microtubule stability (Siegrist and Doe 2007).

6.4.2 Force Generation

Forces generated by microtubules themselves are generally thought to be of minor

importance for moving a cell forward. Microtubules can generate pushing and

pulling forces through coupling polymer assembly and/or disassembly to subcellu-

lar structures. These forces are harnessed in the movement of chromosomes during

mitosis and contribute to the distribution of the endoplasmic reticulum (Jordan and
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Wilson 2004; Waterman-Storer and Salmon 1998). In cell types where only a

small number of pioneer microtubules reach the plasma membrane, the direct contri-

bution of microtubules to membrane protrusion is probably not significant. However,

large numbers of microtubule ends reach the cell edge in axonal growth cones, and

pushing forces generated by assembling microtubules are likely to be harnessed for

cell protrusion (Liu et al. 2010). In this system, microtubule motors also generate

forces either by sliding two microtubules relative to each other or by moving

microtubules relative to the cell cortex, so that more microtubule ends reach the

cortex. The main motors implicated in microtubule motility are kinesin-1 and dynein.

Kinesin-mediated microtubule-microtubule sliding has been shown to generate forces

for the protrusion of neurites (Lu et al. 2013; Myers and Baas 2007). To which extent

forces generated by microtubule sliding and polymerisation directly contribute to cell

migration remains to be established as microtubules also affect cell protrusion by a

number of indirect pathways, most of which involve the actin cytoskeleton. It is well

accepted that pushing forces generated by the assembly of actin at the cell front are the

main driving force for cell protrusions. Likewise myosin-mediated contraction of

actin bundles generates hydrostatic pressure and contractile forces involved in protru-

sion as well as contraction. Therefore, force generation during cell migration is

primarily attributed to the action of the actin cytoskeleton.

Microtubules support actin-mediated cell protrusion indirectly through delivery

of vesicles, i.e. lipids to the cell front, thereby allowing the expansion of the plasma

membrane at the leading edge. The positioning of mRNA for actin and Arp2/3 at

the leading edge is likely to involve microtubule-based transport and ensures a

ready supply of actin monomers and the main actin nucleator for lamellipodial

protrusion at the front of the cell (Jaulin and Kreitzer 2010; Mingle et al. 2005;

Oleynikov and Singer 1998). Furthermore, the microtubule plus end complex

contains a number of actin nucleators and regulators. Amongst them is adeno-

matous polyposis coli (APC), a protein that also promotes microtubule assembly

(Kita et al. 2006; Mimori-Kiyosue et al. 2000) and acts as an actin nucleator in

synergy with the formin mDia1 (Nathke et al. 1996; Okada et al. 2010). In addition

to APC, a number of MAPs have been identified to bind and/or regulate both

microtubules and actin. These include CLASPs, ACF7, MAP4 and dynein/dynactin

(Matsushima et al. 2012; Rodriguez et al. 2003; Tsvetkov et al. 2007; Wu

et al. 2008). For example, GSK3β acts downstream of the polarity-regulating

GTPase Cdc42 and controls microtubule stability via ACF7 and other factors

(Etienne-Manneville and Hall 2003; Kodama et al. 2003). ACF7 itself cross-links

actin and microtubules, influences microtubule dynamics and has microtubule

guidance functions (Applewhite et al. 2010; Wu et al. 2008). Also the

non-receptor tyrosine kinase ABL2/Arg binds to microtubules and actin and

promotes cell protrusion and spreading. This activity requires the physical coupling

between F-actin and microtubules by ABL2 (Miller et al. 2004).

Other ways in which microtubules can influence actin polymerisation are by

locally regulating small GTPase signalling, which in turn regulate force generation.

It has been known for some time that microtubule polymerisation can activate Rac1

(Montenegro-Venegas et al. 2010; Waterman-Storer et al. 1999). Microtubules bind
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the Rac1 activators Tiam1, Stef and Trio (Pegtel et al. 2007; Rooney et al. 2010;

van Haren et al. 2014), thus allowing microtubule-dependent regulation of Rac1

through several pathways. RhoA can be activated by GEF-H1, which is sequestered

on the microtubule lattice and activated upon release during microtubule cata-

strophe (Nalbant et al. 2009; Ren et al. 1998).

Thus a complex network of structural and signalling interactions between the

microtubule and actin cytoskeleton at the cell front controls cell migration, and a

fine balance between these activities is important for robust and directional cell

migration (Kaverina and Straube 2011). So far, no diseases have been linked to an

imbalance of forces in cell migration, but as many of the players involved serve

multiple functions, and we do not yet fully understand how they interact with each

other, it may be possible that we are underestimating the significance of a force

imbalance for disease development. This intriguing area awaits further investi-

gation, but individual players (e.g. APC, RASSF1A) have already been demon-

strated to play important roles in cancer development (Humbert et al. 2008; Kassler

et al. 2012; van Es et al. 2001).

While actin and non-muscle myosin II provide the forces necessary for protru-

sion at the leading edge, the microtubule cytoskeleton with its motor dynein can

supplement these forces when necessary. In elongated cells that need to move in

coherent clusters within surrounding tissue pressing in on them, such as migrating

neurons, moving the nucleus presents a difficult challenge (Harada et al. 2014). The

nucleus is the bulkiest organelle in the cell that cannot easily be compressed without

causing DNA damage. Hence moving it against pressure from the environment

requires forces that exceed those that actin rear contraction can provide (Tsai

et al. 2007). The close spatial localisation of the centrosome to the nucleus in

interphase cells has suggested early on that microtubules might be important in this

task. Experiments on granule cells from mice explant cultures could demonstrate

that stable microtubules and dynein are essential to move the nucleus and to

position the centrosome in front of the nucleus (Tsai and Gleeson 2005; Umeshima

et al. 2007). These results have led to two models on how microtubules and dynein

can be used to move the nucleus (nucleokinesis): One model suggests that dynein is

anchored at the leading edge to pull on plus ends of microtubules whose minus ends

are embedded in the centrosome, which serves to translate the forces from dynein

into net forward movement of the nucleus (Tsai and Gleeson 2005). Another model

implicates a cage formed from a subpopulation of acetylated microtubules that

encloses the nucleus and transmits the force generated by cortex-anchored dynein

to move the nucleus forward (Umeshima et al. 2007). It should be noted though that

not all neurons use dynein-mediated forces to move their nuclei. Differences exist

between types of neurons and between the same neuron types in different

organisms. For example, different force-generation models implicating actin-

generated pushing forces exist for cerebellar Purkinje cells and cortical

interneurons and also for cerebellar granule cells from mice and zebrafish (Cooper

2013). One possible explanation for these differences was proposed to lie in the

different cell shapes, as the wider zebrafish cells might be able to move the nucleus
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by actin-mediated contractility alone, while the very narrow and elongated mouse

neurons require additional microtubule-mediated forces (Cooper 2013).

6.4.3 Adhesion

In order for the cell to move forward, the forces generated through actin

polymerisation and contraction need to be transmitted to the extracellular matrix

or neighbouring cells. To achieve this, cells form adhesive structures: focal

adhesions and podosomes that attach to the extracellular matrix, and tight junctions,

gap junctions and adherens junctions that link them to neighbouring cells. The size

and composition of these structures depend on the type of cell and the cellular

environment. Typically, adhesive structures are formed by a transmembrane recep-

tor, which contacts the substrate on the outside of the cell or forms homophilic

interactions with the neighbouring cells. The receptor is then stabilised on the inside

of the cell by association with other proteins. The adhesion complexes are

connected to the cytoskeleton, which will also contribute to clustering of such

complexes into larger structures.

The dependence of cells on adhesion for migration can be very different. In

confined environments, protrusions such as blebs can generate enough traction

themselves to allow the cell to move forward efficiently. Pressurised blebs can be

used to find the weakest linkage between cells and can create a foothold for moving

cells trying to cross tissues (Lammermann and Sixt 2009; Mandeville et al. 1997;

Sanz-Moreno and Marshall 2010; Wolf et al. 2003b). Such modes of migration are

employed by cells of the immune system, such as neutrophils and leucocytes, and

some tumour cells (Friedl et al. 1998a; Friedl et al. 1998b; Werr et al. 1998).

Mesenchymal migration of fibroblasts and epithelial cells relies strongly on cell

adhesion for migration in 2D as well as in 3D (Sanz-Moreno and Marshall 2010).

Adherent cells can use different classes of receptors to attach to their surroundings;

the classic receptors for a variety of extracellular matrix molecules are integrins.

Integrins are obligatory heterodimers of an α- and a β-chain, and different

combinations of the 18 α- and 8 β-chains in mammalian cells result in 24 different

receptors with distinct substrate specificity (Hynes 2002). Integrins are embedded

in the plasma membrane with the greater part of the protein extending into the

extracellular space where it directly binds to matrix proteins. Exocytosis of

integrin-containing vesicles delivered by microtubule-dependent trafficking occurs

at the leading edge (Bretscher and Aguado-Velasco 1998; Spiczka and Yeaman

2008) allowing the formation of small focal complexes. At least in part, this process

is controlled by Rac1 which becomes activated by Tiam2, which in turn is regulated

by microtubules (Rooney et al. 2010). Focal complexes turn over rapidly with only

a few of them maturing into focal adhesions. Focal adhesions consist of >150

proteins on the cytoplasmic side, which mediate links to actin fibres and/or function

in signalling (Zaidel-Bar et al. 2007). Focal adhesion maturation is force dependent:

Actin contractility increases the size of adhesions as well as the density of adhesion
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molecules in the adhesion (Parsons et al. 2010). This response allows adhesion

strength to scale to the forces applied to them.

Microtubules are important regulators of focal adhesions. The disassembly of

microtubules by small-molecule inhibitors results in the formation of large focal

adhesions, while their turnover is induced as soon as microtubule regrowth is

permitted by washing out of the drug (Ezratty et al. 2005; Waterman-Storer

et al. 1999). Furthermore, microtubules have been observed to target focal

adhesions repeatedly with their dynamic plus ends, and this targeting results in

the dissolution of focal adhesions (Kaverina et al. 1999; Kaverina et al. 1998;

Krylyshkina et al. 2003; Rid et al. 2005). Microtubules are thought to reach focal

adhesions by guidance along actin filaments. In migrating fibroblasts, microtubules

are crossbridged to actin filaments by a number of factors including ACF7,

IQGAP1/CLIP-170 or CLASPs, which then guide the growing microtubule ends

to focal adhesions (Drabek et al. 2006; Small and Kaverina 2003; Stehbens and

Wittmann 2012). Microtubule ends reduce their growth speed and undergo cata-

strophe upon contact with focal adhesions. This process is regulated by paxillin, a

structural component of focal adhesions (Efimov et al. 2008). Often, the micro-

tubule undergoes a rescue and targets the same or another focal adhesion, thereby

resulting in the repeated targeting of adhesions and their turnover.

One possible way how microtubules could disassemble focal adhesions is by

interacting with signalling molecules that control the composition of focal

adhesions (Etienne-Manneville 2013; Wickstrom et al. 2010), and another is that

microtubules deliver components of the endocytic machinery, as could be shown

for dynamin and Clathrin, to help internalise integrins for recycling (Chao and

Kunz 2009; Ezratty et al. 2009; Nishimura and Kaibuchi 2007). Also, microtubule-

dependent control of the local release of proteases into the extracellular space may

promote the detachment of the cell from the substrate by cleaving substrate-bound

receptors (Takino et al. 2006). It was demonstrated that exocytosis of such

proteases occurs in the vicinity of focal adhesions (Steffen et al. 2008; Wiesner

et al. 2010), but if this mechanism plays a role in cell migration remains to be

established (Margadant et al. 2011). It is, however, well known that localised

secretion of metalloproteases is important for the migration of cancer cells through

existing tissue (Hegerfeldt et al. 2002; Takino et al. 2006; Wang and McNiven

2012; Yilmaz and Christofori 2009). Blocking these proteases stops the migration

of fibrosarcoma and mammary carcinoma cells (Coopman et al. 1998; Wolf

et al. 2003a). Likewise, microtubule-dependent regulation of actin dynamics (see

section above) could affect the force coupling into focal adhesions with loss of the

pulling force resulting in the dissolution of the focal adhesion.

The microtubule-dependent control of focal adhesions requires motor-dependent

transport as kinesin-1 has been demonstrated to be required for the process

(Krylyshkina et al. 2002). Podosomes, invasive adhesion structures prevalent in

immune cells such as macrophages and dendritic cells, require the kinesin-3 Kif1C

for their formation and dynamic turnover and Kif9 for their function in matrix

degradation via localised exocytosis (Bachmann and Straube 2015; Cornfine

et al. 2011; Efimova et al. 2014; Kopp et al. 2006). However, it is currently not
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clear which cargoes are delivered by these kinesins that contribute to the observed

processes.

Controlled turnover of focal adhesions is likely to play a role in the metastatic

behaviour of cancers, regulating the aggressiveness of disease progression by the

cells’ motility and invasiveness (McLean et al. 2005; Recher et al. 2004). The

formation of adhesions is in the range of several minutes, which can be the rate-

limiting step in migration as shown by the increase in cell migration speed in

vinculin-depleted cells (Friedl et al. 2004; Mierke et al. 2010). In accordance with

this, a reduction in cell adhesiveness has been implicated in the progression of

cancer (Sanz-Moreno and Marshall 2010). Cells migrating as collective, either as

clusters of cancer cells or during developmental processes, need to maintain close

connections to the other cells at all times in order to improve their migration

efficiency, as surrounding tissues pose significant obstacles. Cadherins play an

important role in this.

Cadherins are a large family of membrane-bound receptors that form homophilic

interactions with molecules on the surface of neighbouring cells. This establishes a

tight link between cells. Examples of cells that depend on N-cadherin for motility

are a number of different types of migrating neurons (Jossin and Cooper 2011; Lele

et al. 2002; Monier-Gavelle and Duband 1995; Nakagawa and Takeichi 1998;

Rappl et al. 2008; Rieger et al. 2009) but also cells forming the lateral line organ

in zebrafish (Revenu et al. 2014) and cancer cells (Qi et al. 2006; Shih and Yamada

2012). Other cells rely on E-cadherin, such as fibroblasts and keratinocytes

(Maretzky et al. 2005). The increased cohesion mediated by cadherin within the

cell cluster could facilitate pulling of follower cells along the path that the leader

cells have created by breaking down the extracellular matrix (Friedl and Gilmour

2009), or it could provide a point of strong attachment for cytoskeletal elements to

help move cell organelles like the nucleus forward, especially in neurons (Rieger

et al. 2009; Tsai and Gleeson 2005). Like most other plasma membrane-bound

proteins, cadherins require kinesin-based transport to reach their destination (Chen

et al. 2003; Kawauchi et al. 2010; Mary et al. 2002; Yanagisawa et al. 2004). In

addition, the plus ends of non-acetylated microtubules have been shown to cluster

cadherins in the plasma membrane, a prerequisite to forming stable cell-cell

connections (Stehbens et al. 2006; Waterman-Storer et al. 2000). Similar to

cadherins, CAMs are a large group of proteins that can form homophilic

interactions to connect two cells. They are often upregulated when cells obtain

increased motile characteristics such as during metastasis (Lehembre et al. 2008;

Schreiber et al. 2008). They possess functions in addition to adhesion, such as

sensing chemical gradients during migration, making their regulation even more

complex (Cavallaro et al. 2001; Francavilla et al. 2007; Paratcha et al. 2003; Yilmaz

and Christofori 2009).

All these different types of adhesions have their own signalling pathways, which

link adhesions and their various states of engagement to polarity signalling and

microtubule stability, and they all depend on microtubule-based transport from the

cell centre to the surface. This places microtubule-mediated transport at the centre

of the regulation of local adhesiveness by site-directed delivery of substrate
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receptors or regulatory elements (Miller et al. 2009; Yadav et al. 2009). Many cell

surface proteins have residency times at the surface in the range of seconds to

minutes (Bretscher 2008), before they need to be internalised and either transported

back into the cells for processing or returned to specific sites to counteract diffusion

in the plasma membrane. For N-cadherin and α5β1 integrin, for example, recycling

pathways have been described which can be rather elaborated, involving

internalisation, retrograde transport to recycling compartments that can be as far

away as next to the centrosome and return to the surface (Bretscher 1989; Caswell

and Norman 2008; Gu et al. 2011; Shieh et al. 2011). Through their transport

capacity and motor protein preference for specific microtubule tracks, cargo can

be directed to different parts of the cell (Cai et al. 2009; Reed et al. 2006), giving

microtubules control over the amount and position of adhesive complexes on the

cell surface. For example, Kif1C transports integrin-containing vesicles in migrat-

ing cells. This transport is required for the maturation of focal adhesions in the rear

of the cell as it provides the ready supply of integrins for additional incorporation

and exchange. A reduced supply of surface integrin results in a misbalance of

contractile forces and adhesion strength causing the frequent contraction of cell

tails and loss of polarity (Theisen et al. 2012). Recently, kinesins Kif15 and Kif4A

have also been implicated in integrin transport (Eskova et al. 2014; Heintz

et al. 2014). How the different transport pathways contribute to the microtubule-

dependent regulation of cell adhesion remains to be elucidated.

6.4.4 Signalling

The coordination of the cell migration machinery at the front and rear of the cell and

the response to environmental signals and guidance cues involve complex signal-

ling networks. Amongst the well-characterised pathways organising migration are

polarity signalling (small GTPases), adhesion signalling (integrins and cadherin)

and guidance signalling (with the use of second messengers, intracellular calcium

and phosphoinositol species).

Rho GTPases regulate actin dynamics, contractility and cell adhesion (Sit and

Manser 2011). Rho GTPase signalling pathways are spatially restricted allowing

the local regulation of protrusion and retraction enabling cell migration and other

processes such as cytokinesis, phagocytosis and morphogenesis (Hall 2012).

Microtubules control Rho GTPases signalling (1) by delivery of GTPases Rac1

and Cdc42 to the membrane (Osmani et al. 2010; Palamidessi et al. 2008); (2) by

positioning GEFs such as Tiam1, Stef/Tiam2, Trio and effectors such as IQGAP1

(Briggs et al. 2002; Briggs and Sacks 2003b; Rooney et al. 2010; van Haren

et al. 2014); and (3) by sequestering GEFs and coupling their release and activation

to microtubule dynamics such as GEF-H1/RhoGEF2 (Chang et al. 2008; Glaven

et al. 1999; Krendel et al. 2002; Rogers et al. 2004). In turn, Rho GTPases regulate

microtubule dynamics. In cells without the Rac1 GEF Tiam1, microtubules are

unstable (Pegtel et al. 2007), and Cdc42 influences the polarity of the microtubule

array via the Par complex and GSK3β (Etienne-Manneville et al. 2005; Watanabe
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et al. 2009a). Therefore, the relationship between microtubules and GTPases is

balanced by feedback loops (for further examples, see review by Etienne-

Manneville 2013).

Rho GTPase signalling is connected to adhesion signalling. Cadherins at the

plasma membrane are signalling hubs via their binding of β-catenin and p120.

β-catenin can be released from cadherin to move into the nucleus and, as co-factor,

triggers the transcription of several genes, including those of adhesion molecules

(McCrea et al. 2009). This is a crucial event in Wnt signalling, a pathway that is

often enhanced in cancer cells and metastasis and which is controlled by Cdc42

(Aman and Piotrowski 2008; Clevers 2006; Fukata et al. 1999; Heuberger and

Birchmeier 2010). Another component of the Wnt signalling pathway is APC,

which is localised at the leading edge at microtubule plus ends (Matsumoto

et al. 2010; Okada et al. 2010) and which regulates β-catenin levels (Munemitsu

et al. 1995). The release of β-catenin from cadherin is also partly depending on

IQGAP1, which is an effector of Rho GTPases and can bind microtubules directly

to stabilise them (Fukata et al. 1999; Fukata et al. 2002). p120, another catenin

family protein normally found associated with cadherin, has been reported to

suppress RhoA and increase the activity of Rac1 and Cdc42 to regulate cell-cell

contacts and may be able to influence microtubule dynamics (Ichii and Takeichi

2007; Watanabe et al. 2009b).

Another example for crosstalk between polarity signalling and adhesion signal-

ling is the relationship between small GTPases and integrin. Integrin signalling is

activated by binding of integrins to the extracellular substrate and is mostly

mediated through focal adhesion kinase (FAK) and integrin-linked kinase (ILK)

(Schwartz 2001). FAK regulates the turnover of focal adhesions but also activates

RhoA and mDia (Palazzo et al. 2004; Webb et al. 2004). As mDia can bind to

microtubule plus ends at the leading edge, this could explain the observed link

between FAK activity and microtubule stabilisation (Palazzo et al. 2004). Focal

adhesions can also influence the activity of Cdc42, which can act back on micro-

tubule stability (Etienne-Manneville and Hall 2001). In migrating neurons,

interfering with the function of FAK leads to a disorganised microtubule array

and defective nuclear movement, a prerequisite for neuronal migration (Xie

et al. 2003). Similarly, ILK regulates Rac1 and therefore lamellipodium formation

via its interaction partners α- and β-parvin (Legate et al. 2006; Zhang et al. 2004).

ILK and microtubules together function to impart polarity on epithelial cells, and

ILK is needed to organise microtubules in this system (Akhtar and Streuli 2013).

Other effects of ILK include the regulation of microtubule dynamics through the

interaction with IQGAP1 and mDia1 (Wickstrom et al. 2010).

Recently, it was proposed that local intracellular calcium levels, a second

messenger common to many signalling pathways, could be another mechanism to

coordinate the different signalling pathways and biological processes (Tsai

et al. 2014). Calcium waves at the front of migrating fibroblasts dictate cell

speed. As some of the microtubule-regulating proteins such as IQGAP1 require

calmodulin and/or calcium for their function (Briggs and Sacks 2003a), it is

possible that other signalling pathways which we currently do not know can
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influence microtubules by these means indirectly and thereby increase the

microtubule-centred regulatory network during migration.

6.5 Conclusion

While many cell types are able to generate movement in the absence of

microtubules by employing their actin cytoskeleton, microtubules are consistently

important in fine tuning several aspects of migration, such as establishing polarity,

exercising spatial control over force generation and adhesion, as well as signalling.

Microtubules span the entire cell, making it possible to coordinate these tasks

across spatially distant cellular regions. Due to their intrinsic dynamic instability,

microtubules can adapt quickly in response to external and internal cues.

Over recent years, it has become clear that imbalance or mis-regulation of

microtubule dynamics and/or motor function can lead to disease or promote disease

progression when cells that should move cannot (e.g. immune cells or cells in

embryonic development) or cells that should not move gain the ability to break

down tissue barriers and colonise other tissues (e.g. cancer metastasis). Further

research will continue to elucidate the details of the molecular interactions and will

help us to understand the development of diseases affecting many patients.
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