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2.1. Introduction 

In the quest to understand reinforcement by high performance fibres, such as carbon 
fibres, the development of the subject of composite micromechanics is traced from its 
earliest roots. It is shown first how, employing concepts introduced by Kelly, it is 
possible through the use of shear-lag theory to predict the distribution of stress and 
strain in a single discontinuous fibre in a low-modulus matrix. For a number of years 
the shear-lag approach could only be used theoretically as there were no techniques 
available to monitor the stresses within a fibre in a resin. It is then shown that the 
advent of Raman spectroscopy and the discovery of stress-induced Raman bands 
shifts in reinforcing fibres, has enabled us to map out the stresses in individual fibres 
in a transparent resin matrix, and thereby both test and develop Kelly’s pioneering 
analytical approach.  

2.2. Fibre Reinforcement – Theory 

2.2.1. Composite micromechanics 

Interest in the mechanics of fibre reinforcement can be traced back to the first uses of 
high-modulus fibres to reinforce a low modulus matrix. A useful relationship de-
veloped to describe this reinforcement is the so-called ‘rule of mixtures’ in which, for 
stress parallel to the fibre direction, the Young’s modulus of a composite Ec con-
sisting of infinitely-long aligned fibres is given by an equation of the form  

 mmffc VEVEE  (2.1) 

where Ef and Em are the Young’s modulus of the fibre and matrix and Vf and Vm are 
the volume fraction of the fibre and matrix respectively (Young and Lovell, 2011). 
This equation captures the essence of fibre reinforcement and is found to work well in 
the specific conditions outlined above when high modulus fibres are incorporated 
into low modulus matrix materials. Since the strain in the fibre and matrix are the 
same, the stress in the fibres is much higher than that in the matrix - hence the fibres 
take most of the load and so reinforce the polymer matrix.  
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In reality, however, composites do not consist of infinitely-long aligned fibres and 
are not always stressed parallel to the fibre direction. The full analysis of the situation 
in reality is the subject of many composites textbooks (Hull and Clyne, 1996; Gibson, 
2012). The deformation of composites containing fibres of finite length deformed 
axially has been considered by a number of authors including Krenchel (1964). In 
addition he also analysed the situation with fibres aligned randomly in plane and also 
randomly in three dimensions (Krenchel, 1964).  

The problem of transfer of stress from the matrix to a fibre and the subsequent 
variation of stress along a fibre of finite length in a matrix was first tackled properly 
by Kelly (1966) in his classical text, ‘Strong Solids’. This ground breaking work 
involved both the revival of the shear lag concept of Cox (1952) and considerable 
intuition on his part. Indeed, in the introductory text to Chapter V of Strong Solids 
(Kelly, 1966) he makes the following statement. “In this chapter we will discuss 
firstly how stress can be transferred between the matrix and fibre. This will be done 
in a semi-intuitive fashion since it is a difficult problem to solve exactly”. 

Kelly’s analysis became the foundation of a new research field known as ‘com-
posite micromechanics’. It will be shown how it gave us the framework for the study 
of fibre reinforcement at both a theoretical and practical level, also enabling us to use 
the approach to tailor the properties of fibre-matrix interfaces in composites.  

 

Figure 2.1. Deformation patterns for a discontinuous high-modulus fibre in a low-modulus 
polymer matrix. The top diagram shows the situation before deformation and the bottom 
diagram shows the effect of the application of a tensile stress, 1, parallel to the fibre. 
(Adapted from Young and Lovell, 2011 with permission from CRC Press). 
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Figure 2.2. Balance of stresses acting on an element of the fibre of thickness dx in the 
composite. (Adapted from Young and Lovell, 2011 with permission from CRC Press). 

2.2.2. Discontinuous Fibres 

In the case of discontinuous fibres reinforcing a composite matrix, stress transfer 
from the matrix to the fibre takes place through a shear stress at the fibre-matrix 
interface as shown in Figure 2.1. It is envisaged that parallel lines perpendicular to 
the fibre can be drawn from the matrix through the fibre before deformation. When 
the system is subjected to an axial stress 1 parallel to the fibre axis, the lines become 
distorted since the Young’s modulus of the matrix is much lower than that of the 
fibre. This induces a shear stress at the fibre/matrix interface and the axial stress in the 
fibre builds up from zero at the fibre ends to a maximum value in the middle of the 
fibre. The assumption of uniform strain means that in the middle of the fibre the strain 
in the fibre equals that in the matrix, if the fibre is long enough. Since the fibres 
generally have a much higher Young’s modulus than the matrix, the fibres then carry 
most of the stress (and hence load) in the composite – this is essentially how com-
posites work (Kelly and Macmillan, 1986). 

It is now necessary to introduce the concept of interfacial shear stress (Kelly, 
1966). The relationship between the interfacial shear stress i near the fibre ends and 
the fibre stress f can be determined by using a balance of the shear forces at the 
interface and the tensile forces in a fibre element, as shown in Figure 2.2. The main 
assumption is that the force due to the shear stress i at the interface is balanced by the 
force due to the variation of axial stress d f in the fibre such that  

 f
2

i ddπ2 rxr   (2.2) 

and so 
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if 2
d

d  (2.3) 
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Figure 2.3. Model of a fibre undergoing deformation within a resin used in shear-lag 
theory. The shear stress  acts at a radius  from the fibre centre. (Adapted from Young and 
Lovell, 2011 with permission from CRC Press). 

2.2.3. Elastic Stress Transfer 

The behaviour of a discontinuous fibre in a matrix can be modelled using shear lag 
theory, developed initially by Cox (1952) to model the mechanical properties of 
paper. It is assumed in the theory that the fibre is surrounded by a cylinder of resin 
extending to a radius  from the fibre centre, as show in Figure 2.3. In this model it is 
assumed that both the fibre and matrix deform elastically and that the fibre-matrix 
interface remains intact. If u is the displacement of the matrix in the fibre axial 
direction at a radius  then the shear strain   at that position is be given by  

 
d
du   (2.4) 

The shear modulus of the matrix is defined as Gm = / , hence it follows that  

 
md

d
G

u   (2.5) 

The shear force per unit length carried by the matrix cylinder surface is 2   and is 
transmitted to the fibre surface though the layers of resin and so the shear stress at 
radius  is given by  

 i22 r   (2.6) 

and so i
r   (2.7) 
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It follows using Equation (2.5), that 

 
m

i

d
d

G
ru   (2.8) 

It is possible to integrate this equation using the limits of the displacement at the fibre 
surface (  = r) of u = uf and the displacement at  = R of u = uR  
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hence  
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These displacements can be converted into strain since the fibre strain ef and matrix 
strain em can be approximated as ef  duf/dx and em  duR/dx. It should be noted that 
this shear-lag analysis is not rigorous, as shown by Nairn (1997), but it serves as a 
simple illustration of the process of stress transfer from the matrix to a fibre in a 
short-fibre composite. In addition, i is given by Equation (2.3) and so differentiating 
Equation (2.10) with respect to x leads to  
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Furthermore, multiplying through by Ef gives 
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This differential equation has the general solution 

 
r

nxD
r

nxCeE coshsinhmff  

where C and D are constants of integration. Now, equation (2.12) can be simplified 
and solved by double differentiation of the general solution, if it is assumed that the 
boundary conditions are that there is no stress transmitted across the fibre ends, i.e. if 
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x = 0 in the middle of the fibre where f = Efem then f = 0 at x = l/2 where l is the 
length of the fibre. This leads to C = 0 and comparing terms gives 

 
rnl

eED
2/cosh

mf  

Finally, the equation for the distribution of fibre stress as a function of distance, x 
along the fibre is  

 
)2/cosh(
)/cosh(1mff rnl

rnxeE  (2.13) 

2.2.4. Interfacial shear stress 

It is possible, now, to determine the distribution of interfacial shear stress along the 
fibre using Equation (2.3) which by differentiation of Equation (2.13) leads to 

 
)2/cosh(

)/sinh(
2 mfi rnl

rnxeEn  (2.14) 

It is convenient to introduce the concept of fibre aspect ratio s (= l/2r) which is 
dimensionless so that the two above equations can be rewritten as  

 
)cosh(

2cosh
1mff ns

l
xns

eE  (2.15) 

for the axial fibre stress and as  

 
)cosh(

2sinh

2 mfi ns
l
xns

eEn  (2.16) 

for the interfacial shear stress. The effect of the different parameters upon the varia-
tion of stress in a fibre is demonstrated in Figure 2.4 for different values of the 
product ns. It can be seen from this figure that the fibre is most highly stressed, i.e. the 
most efficient fibre reinforcement is obtained, when the product ns is high. This 
therefore implies that a high aspect ratio s is desirable along with a high value of n, for 
the best reinforcement. 
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Figure 2.4. (a) Predicted variation of fibre stress with distance along the fibre for a short 
fibre in matrix. (b) Predicted variation of interfacial shear stress with distance along the 
fibre for a short fibre. The values of the product ns are indicated in each case. (Adapted 
from Young and Lovell, 2011 with permission from CRC Press). 
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Figure 2.5. Schematic diagram of the Raman scattering from a single fibre. 

2.3. Fibre Reinforcement – Experiment 

2.3.1. Raman Spectra of Carbon Fibres 

Following this original theoretical determination of stresses in discontinuous fibres, 
researchers had to rely upon it for the analysis of the micromechanics of composites, 
since there were initially no experimental methods available to measure local fibre 
stress or strain. Experimental measurement of the fibre stress and strain in discon-
tinuous fibres in a composite under stress has now become available through the use 
of Raman spectroscopy (Huang and Young, 1994). This is shown schematically in 
Figure 2.5 where a sample such as a carbon fibre is irradiated with a laser beam of 
frequency, 0. Most of the light is scattered at the same frequency (or energy) with a 
small amount scattered at different frequencies of  . This is the Raman scattered 
light and many high-performance fibres have well-defined Raman spectra (Young, 
1995). Moreover when the fibres are deformed in a Raman spectrometer large 
stress-induced band shifts are obtained as the result of the externally applied stress 
distorting the covalent bond in the fibre backbone. This type of behaviour has been 
found for fibres such as Kevlar, polyethylene and PBO (Young, 1995). This is not so 
surprising since the excellent mechanical properties of high performance fibres are 
the result to the covalent bond in the backbone taking the load during deformation. 
Indeed, carbon fibres are found to behave in a similar manner.  

Raman spectra are shown in Figure 2.6 for PAN- and pitch-based carbon fibres. 
In all cases the spectra exhibit the same appearance, that is, four well-resolved bands, 
namely D (~1330 cm-1), G (~1580 cm-1), D’ (~1620 cm-1) and 2D (~2660 cm-1) along 
with additional weaker features. Figure 2.6 shows spectra for the fibres both un-
treated and treated with oxygen plasma to improve fibre-matrix adhesion 
(Montes-Morán and Young, 2002a). No differences were observed in Raman band 
positions and widths after the plasma treatment of the fibres but the intensity ratio of 
the two first-order bands D and G is always higher after the plasma treatment, 
showing that this treatment introduces defects and functionality into the fibre surface 
which we will see results in better fibre-matrix adhesion. 
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Figure 2.6. Raman spectra of (a) a T50 PAN-based carbon fibres and (b) a P100 
pitch-based carbon fibres (untreated (top) and plasma treated (bottom)). (Adapted from 
Montes-Morán and Young, 2002b with permission from Elsevier). 
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2.3.2. Stress-induced Raman Band Shifts 

The positions of all the Raman bands are found to shift when the carbon fibres are 
subjected to tensile deformation and this phenomenon can be employed to follow the 
deformation micromechanics.  

Figure 2.7 compares the 2D band of a P100 fibre in the undeformed state and two 
levels of tensile and compressive strain (0.6% and 0.2% respectively). The band 
moves towards lower wavenumbers (red shift) when the fibre is in tension, the shift is 
in the opposite direction (blue shift) when in compression. A significant broadening 
of the Raman band when the fibre is deformed can be also seen from Figure 2.7. 
Similar stress-induced Raman band shift behaviour is also found for PAN-based 
carbon fibres such as T50.  

It is found that there is an approximately linear shift of the band position with 
tensile strain as shown in Figure 2.8 for the 2D band of both the T50 and P100 fibres. 
Since the fibres deform in an approximately linearly elastic manner there is also a 
linear shift with stress. It will be shown that Figure 2.8 can be used as a simple 
calibration to determine the distribution of stress along a fibre using a Raman laser 
beam focused onto individual fibres inside the matrix resin. 

 

Figure 2.7. Shift of the 2D band peak on the application of tensile and compressive strain to 
a P100 carbon fibre. (Adapted from Montes-Morán and Young, 2002b with permission 
from Elsevier). 
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Figure 2.8. Variation of the 2D Raman band peak position with strain in as-received T50 
and P100 carbon fibres. (Adapted from Cooper et al. 2001 with permission from Elsevier). 

It is also important to point out that it is found that the slope of the lines in Figure 
2.8 is found to depend upon the Young’s modulus of the carbon fibres (Cooper et al, 
2001). This is shown in Figure 2.9 for a number of pitch-based carbon fibres. The 
measured Raman band shifts of PAN-based carbon fibres are found to fall upon the 
same line (Young, 1995) 

It can be seen that there is an approximately linear dependence of the band shift 
rate upon the fibre Young’s modulus and the slope of the dashed line is of the order of 
-50 to -60 cm-1/TPa. It is found that this is a universal relationship for the 2D band 
applicable to all different forms of graphitic carbon materials (Cooper et al, 2001). It 
is now used widely to follow the deformation behaviour of other types of sp2 carbon 
materials such as carbon nanotubes (Deng et al, 2011) and graphene (Young et al, 
2012). The rates of Raman band shift (per unit strain) for such materials in nano-
composites are found to be proportional to the effective values of their Young’s 
moduli.  
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Figure 2.9. Shift rate of the 2D Raman band per unit strain as a function of the tensile 
Young’s modulus for a number of different pitch-based carbon fibres. 

 

Figure 2.10. Schematic diagram of a model composite specimen containing a single fibre 
embedded within a transparent polymer resin. The matrix strain is determined by the 
resistance strain gauge and fibre strain by obtaining Raman spectra along the length of the 
fibre. (Adapted from Montes-Morán and Young, 2002b with permission from Elsevier). 
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2.3.3. Analysis of Micromechanics 

The fibre stress or strain can be determined from the stress-induced shift of the 
Raman bands obtained from the fibre using a laser beam focused onto an individual 
fibre inside the matrix resin as shown in Figure 2.10. The laser beam diameter in a 
typical modern microscope-based Raman spectrometer is typically 1 m. This is 
significantly smaller than the usual fibre diameter (5-10 m) which means that fibre 
stress and strain mapping can now be undertaken at high precision along individual 
fibres (Montes-Morán and Young, 2002b).  

 

 
Figure 2.11. Determination of strain from Raman spectra obtained along a carbon fibre. 
(Adapted from Montes-Morán and Young, 2002b with permission from Elsevier). 
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Figure 2.11 shows how the strain along a carbon fibre within a matrix can be 
determined from the local positions of the 2D band in the Raman spectra obtained 
from the fibre. Well-defined Raman bands can be obtained from the fibres since the 
Raman scattering from the fibres is generally much stronger than that of the resin 
matrix. The band shift need to be calibrated first of all by deforming single fibres in 
air producing data such as those shown in Figure 2.8. The fibre strain can then be 
readily determined since the bands tend to shift approximately linear with strain.  

 

 

Figure 2.12. Scanning electron micrographs of (a) untreated and (b) plasma-treated T50 
carbon fibres. (Adapted from Montes-Morán and Young, 2002a with permission from 
Elsevier). 

(a) 

(b) 
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2.3.4. Effect of Fibre Surface Treatment 

The carbonaceous nature of the surface of carbon fibres leads to low levels of stress 
transfer from the matrix to the fibres. This lack of fibre/matrix adhesion has been 
partially overcome with the development of surface treatments that nowadays are 
implemented fully in the carbon fibre fabrication process. The conventional surface 
treatment used by carbon fibre manufacturers is an electrochemical oxidation.  Apart 
from the relative success they achieve in the improvement of the interfacial properties 
of composites, increasing concern about environmental pollution problems has 
limited wide industrial application of such chemical surface treatments. The devel-
opment of alternative environmental-friendly methods is an attractive prospect, from 
both scientific and technological points of view. Among these new methods, the 
surface modification of fibres by cold plasma is becoming popular and it is now an 
important branch of plasma technology 

High modulus (HM) carbon fibres are possibly one of the most impressive re-
inforcements of composites in terms of specific tensile properties. These properties 
are related to the high degree of orientation of the crystallites and this highly graphitic 
character is also responsible for high level of thermal and electric conductivity. All 
these properties confer upon HM carbon fibres an unquestionable role in the aero-
space industry.  On the other hand, the enhanced crystallinity of this type of fibre is 
often reflected in a lower efficiency of industrial methods for increasing the carbon 
surface activity, in comparison with the high strength (HT) carbon fibres in that HM 
carbon fibres are more resistant to electrochemical oxidation than HT ones 

The behaviour of untreated and unsized T50 PAN-based HM carbon fibres has 
been studied by Montes-Morán and Young (2002b). Plasma-treated samples were 
obtained (-O series) from the as-received fibres. Microwave (2.45 GHz) plasma 
treatments were carried out in a cylindrical chamber where the fibres were placed 
during 3 min of residence at 75 W.  Yarns of fibres (2k, 20 cm long) were attached to 
a glass rack, running parallel to the cylinder axis.  Oxygen (99.999%) was employed 
as the activation gas with a chamber pressure of 1.0  0.1 mbar during the treatment 
time.  Such a configuration gave rise to a very homogeneous treatment confirmed by 
several fibre surface characterisation techniques. Scanning electron micrographs of 
the two types of fibres are shown in Figure 2.12. 

Figure 2.13(a) shows the variation of fibre strain ef (= f/Ef) along a T50-O 
plasma-treated carbon fibre in an epoxy resin subjected to different levels of matrix 
strain, em. The data have been fitted to Equation (2.15) using the aspect ratio of the 
fibre, s and by choosing appropriate values of n and it can be seen that there is a close 
correlation between the theoretical curves and experimental data points. Moreover, it 
can be seen that the strain in the fibre is that same as the matrix strain in the middle of 
the fibres as was assumed in the theoretical analysis earlier.  
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Figure 2.13. (a) Fibre strain distributions determined from strain-induced Raman band 
shifts at different levels of matrix strain in an epoxy resin for a plasma treated T50-O fibre 
up to 0.7% strain. (b) Derived distribution of interfacial shear stress along the fibre. 
(Adapted from Montes-Morán and Young, 2002b with permission from Elsevier). 
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It should be noted, however, that Equation (2.15) cannot be used to determine n 
since the value of ln(R/r) is essentially indeterminate. It is more appropriate to think 
of n as a fitting parameter that characterises the efficiency of stress transfer between 
the matrix and fibre (Young and Lovell, 2011). It is possible, however, to determine 
the distribution of interfacial shear stress i along the fibre as shown in Figure 2.13(b). 
It can be seen that the interfacial shear stress is highest at the fibre ends (where there 
is a gradient of fibre strain or stress). For a matrix strain of 0.7% the value increases 
to around 45 MPa which is approaching the shear yield stress of the resin. 

 

Figure 2.14. Fibre strain distributions determined from strain-induced Raman band shifts 
at different levels of matrix strain (up to 1.1%) in an epoxy resin for a plasma-treated T50-O 
fibre showing the effect of fibre fragmentation. (Adapted from Montes-Morán and Young, 
2002b with permission from Elsevier). 

The effect of increasing the matrix strain to 0.9% is shown in Figure 2.14. At this 
matrix strain level the T50-O fibre undergoes fragmentation (the strain falls to zero at 
the fibre breaks) which saturates at a matrix strain of 1.1%. In this case the interfacial 
adhesion has been lost and stress transfer at the interface is essentially frictional so 
that there is an approximately triangular variation along the length of each fragment 
(Kelly and Tyson, 1965). Moreover, it can be seen that the peak fragment strain are 
well below the matrix strain, indicating that once the fibres have undergone frag-
mentation reinforcement is diminished.  
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Figure 2.15. Fibre strain distributions determined from strain-induced Raman band shifts 
at different levels of matrix strain in an epoxy resin for an untreated T50 fibre, showing the 
effect of debonding at the fibre matrix interface at the higher strain level. (a) Low strain 
region and (b) high strain region. (Adapted from Montes-Morán and Young, 2002b with 
permission from Elsevier). 

(a) 

(b) 
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The behaviour of a T50 fibre that had not been modified by plasma treatment is 
shown in Figure 2.15. The distribution of strain in the fibre at 0.35% matrix strain 
follows the shear-lag model defined by Equation (2.15). When the matrix strain is 
increased to 0.7%, however, the distribution of strain is somewhat different with 
approximately linear behaviour at the two ends. This is an indication that the fibre has 
undergone debonding that starts at the fibre ends and progresses along the fibre as the 
level of matrix strain is increased (Montes-Morán and Young, 2002b). This can be 
compared with the behaviour shown in Figure 2.12(a) for the T50-O fibre at 0.7% 
strain.  

At high strain Figure 2.15(b) shows that the fibre-matrix interface has failed 
completely and the fibre has broken into two fragments with approximately triangular 
strain distributions. The length of the two fragments is around 1000 m (around 1 
mm). This is significantly longer than that of the fragments of the T50-O fibre shown 
in Figure 2.14 which are only around 300 m long. This is a clear demonstration of 
the effect of fibre surface treatment upon the micromechanics of deformation.  

2.3.5. Interfacial Shear Stress 

So far the ability of Raman spectroscopy has been demonstrated for the assessment, 
in a qualitative manner, of the changes on fibre/matrix adhesion after the plasma 
treatment of the T-50 HM carbon fibres. It is necessary, however, to quantify such an 
adhesion enhancement. For a given matrix strain level, the interfacial shear stress, i, 
at any point along the fibre can be derived from a consideration of the balance of 
forces at the interface. Equation (2.3) can be recast to give 

 
x
erE

xτ
d
d

2
=)( ff

i  (2.17) 

where Ef and r are the fibre modulus and radius, respectively, ef is the fibre strain, and 
x is the position along the fibre. Since Raman spectroscopic studies of single-fibre 
composites provide the fibre strain distribution, it makes it also possible to determine 
the point-to-point variation of the interfacial shear stress using either analytical 
models or directly from the measured fibre strain distribution.  

The maximum value of the interfacial shear stress, i, max, can be determined di-
rectly from plots of the variation of i(x) with distance along the fibre (e.g. Figure 
2.13(b)). Figure 2.16 compares the evolution of i, max with applied matrix strain for a 
T50-O single-fibre/epoxy composite. It can be seen that max initially increases with 
increasing matrix strain and reaches a maximum value of 45 MPa at 0.9% matrix 
strain. There are basically two possible routes to interface failure in fibre-reinforced 
composites. Firstly interface failure occurs when i, max reaches the interfacial shear 
strength (IFSS), i.e., the parameter used conventionally to quantify the degree of 
adhesion between fibre and matrix. Secondly, the interface failure can also occur 
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when i, max reaches the shear yield stress of the matrix, y. The shear yield stress of the 
matrix used in this study was thought to be around 45 MPa as indicated in Figure 
2.16. Hence it appears that the strength of the fibre-matrix interface in the case of the 
T50-O plasma-treated fibre was limited by the shear yield stress of the matrix. This 
should be contrasted with similar measurements upon the untreated T50 fibre where 

i max was found to be only around 20 MPa and its value is controlled by cohesive 
failure of the fibre-matrix interface (Montes-Morán and Young, 2002b).  

In conclusion it is found that the fibre surface treatment increases the value of 
i,max significantly compared with the untreated fibre but the strength of the interface 

is eventually limited by shear yielding of the epoxy resin matrix. 

 

Figure 2.16. Variation of maximum interfacial shear stress i, max with applied matrix strain 
for T50-O fibre/epoxy composite. (Adapted from Montes-Morán and Young, 2002b with 
permission from Elsevier). 

2.4. Conclusions 

It has been shown that a relatively simple theoretical analysis can be used to predict 
the local distribution of stress and strain in a fibre in a composite. Moreover, it has 
been demonstrated that the local stress or strain distribution can be determined 
experimentally using Raman spectroscopy and that there is a good correlation be-
tween the theoretical and experimental approaches.  
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It is clear that the issue of reinforcement by a single discontinuous fibre is now 
well understood but there are still challenges to be addressed in terms of the funda-
mental mechanics such as developing better analytical methods that do not suffer 
from some of the issues that arise using the shear-lag approach. There continue to be 
developments in numerical methods such as finite element analysis and the increas-
ing power of computer systems offers scope for solving even more complex 
problems. 

There are, however, a number of unsolved problems in the field of composite 
micromechanics that include: 

– Fibre compression – the extent to which failure occurs through geometrical 
instabilities or internal compressive failure processes is still not resolved.  

– Effect of fibre orientation and waviness – it is still not fully understood how 
fibre waviness affects properties especially when a composite is subjected to 
axial compression.  

– Reinforcement with nanofibres and nanotubes – there is no clear indication as 
yet as to the extent to which the deformation of nanofibres and nanotubes 
within a composite can be modelled using continuum mechanics. Experience 
with graphene (Gong et al, 2010) now indicates that it may also be applicable 
in this case. 

There is no doubt that future developments of the theoretical and experimental 
approaches outlined in this review will enable further significant advances to be 
made.  
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