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   Abstract  
  Posttranscriptional regulation comprises those mechanisms occurring after the 
initial copy of the DNA sequence is transcribed into an intermediate RNA mol-
ecule (i.e., messenger RNA) until such a molecule is used as a template to gen-
erate a protein. A subset of these posttranscriptional regulatory mechanisms 
essentially are destined to process the immature mRNA toward its mature form, 
conferring the adequate mRNA stability, providing the means for pertinent 
introns excision, and controlling mRNA turnover rate and quality control check. 
An additional layer of complexity is added in certain cases, since discrete nucle-
otide modifi cations in the mature RNA molecule are added by RNA editing, a 
process that provides large mature mRNA diversity. Moreover, a number of 
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posttranscriptional regulatory mechanisms occur in a cell- and tissue-specifi c 
manner, such as alternative splicing and non-coding RNA-mediated regulation. 
In this chapter we will briefl y summarize current state-of-the-art knowledge of 
general posttranscriptional mechanisms, while major emphases will be devoted 
to those tissue-specifi c posttranscriptional modifi cations that impact on cardiac 
development and congenital heart disease.  

13.1          Introduction 

 Posttranscriptional regulation comprises those mechanisms occurring after the ini-
tial copy of the DNA sequence is transcribed into an intermediate RNA molecule 
(i.e., messenger RNA) until such a molecule is used as a template to generate a 
protein. Posttranscriptional regulation is mainly mediated by distinct RNA-binding 
proteins (RBPs). RBPs are key components in RNA metabolism, regulating the 
temporal, spatial, and functional dynamics of RNAs. RBPs form dynamic interac-
tions with coding, untranslated, and non-protein-coding RNAs in functional units 
called ribonucleoprotein (RNP) complexes [ 1 ,  2 ]. This enables the RBPs within 
RNP complexes to remain stably bound to the RNA throughout its journey from 
synthesis to degradation or to associate with the RNAs in a temporally and spatially 
specifi c manner. RNA molecules are constantly accompanied by RBPs, which are 
intimately involved in every step of RNA biology, including transcription, editing, 
splicing, transport and localization, stability, and translation. Altering the expres-
sion of RBPs has profound implications for cellular physiology, affecting RNA pro-
cesses from pre-mRNA splicing to protein translation [ 1 ,  3 ]. RBPs therefore have 
opportunities to shape gene expression at multiple levels. This capacity is particu-
larly important during development, when dynamic chemical and physical changes 
give rise to complex organs and tissues [ 2 ]. 

 Modifi cation of the nascent mRNA is a general mechanism that occurs in all 
cells within an organism. A subset of these posttranscriptional regulatory mecha-
nisms essentially are destined to process the immature mRNA toward its mature 
form, conferring the adequate mRNA stability including modifi cations at the 5′ and 
3′ ends (5′ capping and 3′ polyadenylation) as well as excision of pertinent introns 
by pre-mRNA splicing. mRNA turnover rate and quality control checking are per-
formed by the nonsense-mediated decay (NMD) surveillance pathway. An addi-
tional layer of complexity is added in certain cases, since discrete nucleotide 
modifi cations in the mature RNA molecule are added by RNA editing, a process 
that provides large mature mRNA diversity. Given the fact that these posttranscrip-
tional modifi cations would affect all RNA molecules, there are a very limited num-
ber of cases in which a discrete tissue layer or an organ, such as the heart, is affected 
since impairment impacts at the level of the organism. On the other hand, a number 
of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specifi c 
manner, such as alternative splicing and non-coding RNA-mediated regulation. 
Alternative splicing is a major driver of mRNA diversity and consequently protein 
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diversity, affecting almost all genes within an organism. The use of alternative pro-
moters or the generation of alternative mRNA species from a single gene locus has 
been reported widely in almost every biological context, providing extensive 
mRNA, and thus protein, diversity. In recent years a novel layer of regulation has 
been identifi ed mediated by non-coding RNAs. Currently, short and long non-coding 
RNAs have been implicated modulating RNA expression at distinct biological lev-
els, acting both as cis- and trans-acting factors. Importantly, tissue-specifi c expres-
sion of these short and long non-coding RNAs has been widely reported. In this 
chapter we will briefl y summarize current state-of-the-art knowledge of general 
posttranscriptional mechanisms, while major emphases will be devoted to those 
tissue-specifi c posttranscriptional modifi cations that impact on cardiac develop-
ment and congenital heart disease. While these processes are presented in the fol-
lowing subheadings as discrete events, it is important to highlight the intricate 
interrelationship between different posttranscriptional regulatory mechanisms.  

13.2     mRNA Maturation: Generating Stability and Quality 
Control 

 The maturation of mRNA transcripts, from the time they are transcribed in the 
nucleus until they are exported into the cytoplasm, is accompanied by a series of 
general structural modifi cations (Fig.  13.1 ). A large number of RNA-binding pro-
teins interact with the nascent transcript leading to the addition of modifi cations at 
the 5′ and 3′ ends as well along the coding sequence to basically stabilize the tran-
script and promote splicing whenever required [ 1 ,  2 ]. If impaired processing occurs, 
the NMD surveillance system is rapidly activated. In particular cases, editing of the 
nascent RNA transcript also occurs. Over the last years, we have gained much 
knowledge about the basic regulatory mechanisms orchestrating these events in 
eukaryotic cells, particularly in  Saccharomyces cerevisiae  and  Saccharomyces 
pombe , while our understanding in metazoan cells has lagged behind.

13.2.1        5′ End Capping 

 Eukaryotic mRNAs are modifi ed by the addition of a 7-methylguanosine “cap” to 
the fi rst transcribed nucleotide in the nucleus (Fig.  13.1 ). This modifi cation is neces-
sary for effi cient gene expression and cell viability from yeast to humans. The 
7-methylguanosine cap is required for transcription elongation, splicing, transla-
tion, and general mRNA stability. On the other hand, the 5′ cap seems to be required 
for polyadenylation and nuclear export of mRNA in  S. cerevisiae  [ 4 ], but not in 
metazoan cells [ 5 ,  6 ]. Several factors have been reported to regulate mRNA cap 
methylation in yeast [ 7 ]. Triphosphatases such as Cet1p and Pct1 direct the hydro-
lyzation of RNA 5′ triphosphate to a diphosphate-RNA. Guanylyltransferases, such 
as Ceg1p and Pch1, catalyze the addition of CMP to the diphosphate-RNA to pro-
duce the guanosine cap [ 8 ], while the methylation of the guanosine cap is mediated 
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by Abd1 and Pcm1. In mammals, the triphosphate and guanylyltransferase activi-
ties are found within the same peptide [ 9 ,  10 ] the capping enzyme of RNA guanyl-
yltransferase and 5′ triphosphatase (RNGTT), while the RNA methyltransferase 
(RNMT) is encoded by a distinct protein [ 9 – 13 ]. Interestingly, guanylyltransferase 

  Fig. 13.1    Graphical representation of the distinct posttranscriptional regulatory mechanisms 
operating during the transcription, splicing, editing, quality control checking, and maturation of 
mRNA transcripts       
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and methyltransferase are highly conserved in structure and function from yeast to 
humans, yet triphosphatases are widely divergent. 

 mRNA capping and cap methylation occur “co-transcriptionally,” that is to 
say, the cap methyltransferase is recruited to RNA polymerase II as the RNA is 

  Fig. 13.2    Graphical representation of the microRNAs and long non-coding RNAs (lcnRNA) bio-
synthetic pathway and their functional roles during transcriptional and posttranscriptional regula-
tion. microRNAs can elicit mRNA degradation and/or protein translation blockage. lncRNAs have 
been reported to actively contribute to transcriptional regulation and serve as sequestering small 
RNA system (sponge) or as template to generate smaller RNA molecules with, to date, poorly 
characterized functions       
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being transcribed, providing thus the means to promote transcription elongation 
[ 7 ]. Pre-RNA splicing is dependent on the 5′ cap since the splicing reaction has 
been demonstrated to be inhibited by the presence of free 7-methylguanosine 
[ 14 ]. The dependency of splicing on the 5′ cap is mediated by the cap-binding 
complex, which is a heteromeric complex formed by cap-binding protein (CBP) 
80 and CBP20. From yeast to humans, the 5′ cap is necessary for the translation 
of almost all mRNAs, with the exception of mRNAs translated by an internal 
ribosome entry site [ 15 ]. The presence of a 5′ cap can also protect mRNA from 
degradation in  X. laevis  [ 16 – 18 ], while in  S. cerevisiae  inhibition of guanosine 
capping  in vivo  provoked rapid degradation in some but not all mRNAs, demon-
strating the necessity for a guanosine cap to stabilize at a least a subset of 
mRNAs [ 4 ,  7 ,  19 ,  20 ]. Similarly, mRNA polyadenylation and nuclear export 
appear to largely be independent of the 5′ capping in  S. cerevisiae  [ 3 ] but depen-
dent in other species such as  X. laevis  and humans [ 6 ,  21 ]. Thus, while the infl u-
ence of 5′ capping is pivotal for subsequent mRNA biogenic steps such as 
transcriptional elongation, pre-mRNA splicing, and translation, species-specifi c 
differences seem to occur for degradation protection and mRNA polyadenyl-
ation. Given the essential role of 5′ capping in basal mRNA biogenesis, to date 
no specifi c defects affecting heart morphogenesis and/or muscle development 
have been reported.  

13.2.2     3′ End Polyadenylation 

 Polyadenylation is a two-step nuclear process that involves an endonucleolytic 
cleavage of the pre-mRNA at the 3′-end and the polymerization of a poly-adenos-
ine (polyA) tail (Fig.  13.1 ), which is fundamental for mRNA stability, nuclear 
export, and effi cient translation during development [ 22 ]. The core molecular 
machinery responsible for the defi nition of a poly-A site includes several recogni-
tion, cleavage, and polyadenylation factors that identify and act on a given poly-A 
signal present in a pre-mRNA, usually an AAUAAA hexamer [ 22 ]. This mecha-
nism is tightly regulated by both cis- and trans-acting factors, and its impairment 
can cause ineffi cient gene expression and thus disease. Previous studies have indi-
cated that more than half of the human genes possess multiple polyadenylation 
sites [ 23 ], dubbed APA, which may produce mRNA isoforms with different pro-
tein-coding regions or 3′ UTRs of variable length. Interestingly, such a property 
is also documented in yeast [ 24 ]. The differential recognition of polyadenylation 
signals leads to long or short 3′ UTR of the transcripts. Usage of alternative 
poly(A) sites infl uences the fate of mRNAs by altering the availability of RNA-
binding protein sites and miRNA binding sites. Abnormalities in the 3′-end pro-
cessing mechanisms thus represent a common feature among many oncological, 
immunological, neurological, and hematological disorders [ 23 ,  25 ,  26 ], and the 
usage of APA and alterations in polyadenylation are beginning to be discovered 
and studied in human diseases [ 27 ,  28 ], yet to date no direct involvement in car-
diovascular diseases has been reported.  
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13.2.3     Nonsense-Mediated Decay 

 Nonsense-mediated decay (NMD) is an evolutionary conserved surveillance path-
way present in all eukaryotes studied to date. NMD plays an important role in the 
posttranscriptional control of gene expression. Approximately one-third of human 
genes generate pre-mRNAs that undergo alternative splicing, and similarly one- 
third of alternatively spliced transcripts are targeted for elimination by the NMD 
pathway [ 29 ]. Most alternatively spliced NMD targets appear to be generated in 
error [ 30 ], yet NMD also downregulates the level of other apparently normal tran-
scripts [ 31 – 33 ]. NMD targets premature translation termination codons (PTC)-
containing transcripts for rapid degradation (Fig.  13.1 ), thus protecting the organism 
from deleterious gain- or loss-of-function (dominant-negative effects) effects of the 
resulting truncated proteins [ 34 – 36 ]. As a rule, NMD degrades newly synthesized 
mRNAs during a pioneer round of translation [ 37 – 40 ] and occurs when a PTC is 
located more than 50–55 nucleotides upstream of the last exon-exon junction within 
the mRNA, and at least one intron and components of translation are present [ 41 ]. 
Importantly, there is a growing body of evidence supporting that mRNA decay in 
eukaryotes requires an exit from translation so that the mRNA is accessible to deg-
radative activities [ 42 – 45 ]. 

 The role of NMD in genetic diseases is emerging progressively. A pivotal role for 
NMD in cystic fi brosis as well as in Duchenne muscular dystrophy (DMD) has been 
documented (see for a review [ 46 ]), yet has only begun to be recognized in cardiac 
genetic diseases. Geiger et al. [ 47 ] recently reported that insuffi cient clearance of 
lamin A/C truncated mutations by NMD underlies the development of dilated car-
diomyopathy in a human kindred. Similar fi ndings have also been reported for non-
sense mutations in hERG in the context of human long QT syndrome [ 48 ,  49 ]. 
Importantly an intricate relationship between NMD and the ubiquitin-proteasome 
system has been recently demonstrated in the context of hypertrophic cardiomyopa-
thy [ 50 ], opening new ways to understand the complex RNA-protein interphase. In 
the context of congenital heart diseases, involvement of NMD has been proven for 
GATA binding protein 6 ( GATA6 ) regulation in the setting of ventricular septal 
defect, patent ductus arteriosus, and congenital diaphragmatic hernia [ 51 ] and sus-
pected in a kindred of syndromic patent ductus arteriosus as consequence the gen-
eration of aberrant transcription factor AP-2 beta ( TFAP2B ) splice variants [ 52 ].   

13.3     mRNA Maturation: Generating Diversity (RNA Editing 
and Pre-mRNA Splicing) 

13.3.1     RNA Editing 

 RNA editing relates to those molecular processes by which the RNA nucleotide 
sequence is conspicuously modifi ed (Fig.  13.1 ). To date such changes have been 
observed in tRNA, rRNA, and mRNA molecules of eukaryotes, but not prokaryotes. 
RNA editing can modify an A-to-I (inosine) by the action of adenosine deaminase 
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that acts on RNA (ADAR), and similarly a C-to-U modifi cation can be elicited by a 
protein complex composed by APOBEC-1 (apolipoprotein B mRNA editing 
enzyme, catalytic polypeptide 1), an RNA cytidine deaminase, and APOBEC-1 
complementation factor (ACF). This C to U editing holoenzyme (APOBEC-1/ACF) 
is also in part regulated by CELF2 [ 53 ,  54 ]. 

 Inosine is an essential modifi cation introduced by specialized enzymes in a 
highly regulated manner generating thereafter transcriptome diversity. Adenosine 
to inosine (A-to-I) modifi cation by the ADAR (i.e., ADAR1 and ADAR2) 
enzymes performs the most common type of RNA editing in metazoans [ 55 ], 
while C-to-U modifi cations seem to be confi ned to more discrete transcripts [ 53 , 
 56 – 59 ]. A-to-I RNA editing most frequently targets repetitive RNA sequences 
located within introns and 5′ and 3′ untranslated regions (UTRs). ADARs use 
double-stranded RNA as substrates but allow structure interruptions such as 
bulges and loops. It is well known that these enzymes can use messenger RNA as 
targets for A-to-I editing and thereby recode the transcript. Both ADAR1 and 
ADAR2 have been proven to be able to also target short double-stranded RNA 
molecules, i.e., microRNAs and their precursors. Since the editing activity is 
found both in the nucleus and the cytoplasm, there are several steps during the 
microRNA maturation pathway that can be targeted for modifi cation [ 60 ]. 
Although the biological signifi cance of non-coding RNA editing remains largely 
unknown, several possibilities have been proposed, including its role in the con-
trol of endogenous short interfering RNAs [ 61 ]. 

 RNA editing involving C-to-U modifi cations has been reported extensively to 
play a pivotal role in virus-associated human diseases, including human T lympho-
tropic virus (HTLV), hepatitis C virus (HCV), hepatitis B virus (HBV), and Epstein- 
Barr virus (EBV), among others [ 62 ,  63 ]. Furthermore, more recently a possible 
role in cancer development has also been proposed [ 63 ]. However, to date, no 
abnormalities in C-to-U RNA editing have been reported in cardiovascular 
diseases. 

 A-to-I RNA defective editing has been reported in various human diseases 
including viral infection susceptibility and cancer and neurological and psychiatric 
disorders [ 64 – 68 ]. Involvement of defective RNA editing in cardiovascular diseases 
is indirect and scarce [ 69 ,  70 ], yet an involvement in congenital heart diseases is 
likely to soon emerge.  

13.3.2     Pre-mRNA Splicing and Alternative Splicing 

 RNA splicing is the molecular process by which introns are deleted from nascent 
immature mRNA providing the means to successfully liked exons back together and 
thus form a single mature mRNA molecule. RNA splicing is carried out by the 
assembly of over a hundred core proteins and fi ve small nuclear RNAs into large 
ribonucleoprotein complexes, named spliceosomes [ 71 ]. Regulation of splicing is a 
complex process [ 72 – 74 ], and alterations of splicing potential have major conse-
quences in distinct human diseases [ 75 ]. 
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 Alternative splicing is a major driver of protein diversity and allows the genera-
tion of distinct proteins from a single gene. It is estimated that almost 85 % of genes 
within the human genome undergo alternative splicing. Distinct mechanisms such 
as exon exclusion, intron retention, and the usage of alternative splice sites contrib-
ute to modify protein structure, localization, regulation, and function [ 76 ,  77 ]. 
Interestingly, genetic mutations in distinct spliceosome components have been 
reported in human families with distinct cardiac diseases such as myocardial infarc-
tion [ 78 ,  79 ] and dilated cardiomyopathy [ 80 ,  81 ], suggesting a functional link. 
Importantly, alternative splicing also plays a pivotal role during embryonic develop-
ment. Differential expression of distinct spliceosome components has been reported 
during heart development [ 82 ]. Postnatal excitation-contraction coupling impair-
ment has been reported in genetically engineered mice lacking ASF/SF2 spliceo-
some component [ 83 ], and mutant mice for SRp38, a spliceosome regulator, display 
early embryonic cardiac resulting in impaired calcium handling [ 84 ]. 

 On the other hand, alternatively spliced variants have been documented widely 
in cardiovascular diseases such as cardiomyopathies, arrhythmias, and vascular 
defects leading to differential expression of sarcomeric proteins, ion channels, and 
cell signaling proteins [ 76 ,  77 ,  85 – 89 ]. An example of the impact of alternative 
splicing in adult heart physiology is illustrated by the diversity and functional con-
sequences of alternative spliced variants of the troponin-tropomyosin complex (see 
for a review [ 90 ]). Multiple alternatively spliced variants are formed from each of 
the troponin isoforms, and deregulation of spliced variant expression is linked to 
dilated cardiomyopathy in different species [ 91 – 93 ]. Similarly, impaired ion chan-
nel splice variants also contribute to cardiac arrhythmogenesis, as reported for dis-
tinct components of the calcium handling and plasma membrane cardiac pumps 
[ 86 ,  88 ]. 

 Multiple transcription factors, with critical roles in cardiac development, are 
alternatively spliced, such as T-box genes [ 94 – 96 ], myocardin [ 97 ], myocyte 
enhancer factor (Mef)-2 [ 98 ,  99 ], pituitary homeobox (Pitx)-2 [ 100 – 102 ], and 
GATA binding protein 4 (Gata4) [ 103 ]. In this context, Yehya et al. [ 104 ] identifi ed 
an intronic retention variant of the  NFATC1  (nuclear factor of activated T cells, 
cytoplasmic, calcineurin-dependent 1) gene in patients with ventricular septal 
defects, suggesting that such a spliced variant might be a VSD-susceptibility gene. 
Bedard et al. [ 105 ] reported spliced variants of  ZIC3  (Zic family member 3) linked 
to patients with heterotaxy and congenital heart diseases. McCright et al. [ 106 ] 
reported that aberrant Notch2 alternative spliced variants leads to myocardial hypo-
plasia as well as eye and kidney defects. More recently, Ricci et al. [ 107 ] demon-
strate that multiple genes were differentially spliced in hypoplastic left heart 
syndrome, suggesting a deregulation of cell metabolism and cytoskeleton and cell 
adherence. Interestingly, impaired alternative splicing in other genes also result in 
cardiac alterations. Impaired fi bronectin splicing is associated with thoracic aortic 
aneurysm in patients with bicuspid aortic valve [ 108 ], while abnormal  SCN5A  
(sodium channel, voltage gated, type V, alpha subunit) alternative spliced variants 
leads to fetal arrhythmias [ 109 ]. Furthermore, impaired expression of alternatively 
spliced  NXT2  (nuclear transport factor 2-like export factor 2) variants, a protein 

13 Post-transcriptional Regulation by Proteins and Non-coding RNAs



162

involved in nuclear RNA export, also has been proven to affect cardiac develop-
ment, particularly valve formation [ 110 ]. Ver Heyen et al. [ 111 ] reported that genetic 
engineered disruption of  SERCA2a/2b  (sarcoplasmic/endoplasmic reticulum cal-
cium ATPase 2a/b) alternative splicing leads to 20 % increase in embryonic and 
neonatal mortality, as consequence of severe cardiac malformations. Buyon et al. 
[ 112 ] describes a spliced variant of congenital heart block-associated 52 kb autoan-
tigen which is maximal at the time of fetal heart block, suggesting a putative role in 
its pathophysiology. These reports exemplify the potential causative role of impaired 
alternative spliced variants as key regulatory modulators of cardiac development. 
Increasing evidence of this is expected in the coming years as deep-sequencing 
technologies depict the magnitude of the alternative spliced transcriptome in con-
genital heart diseases.   

13.4     Non-coding RNA-Mediated Posttranscriptional Control 

 Non-coding RNAs (ncRNAs) constitute a highly diverse group of RNA molecules 
in structure and function (see for a recent review [ 113 ]). Currently ncRNAs are 
broadly classifi ed according to their size. Small ncRNAs are generally defi ned as 
those that are <200 nucleotides, whereas long non-coding RNAs (lncRNAs) can 
extend to tens or even hundreds of thousands of nucleotides in length. Small ncRNAs 
display a rather homogeneous structure, whereas lcnRNAs have more complex sec-
ondary structures. ncRNAs, such as ribosomal RNAs (rRNAs) and transfer RNAs 
(tRNAs), have been extensively studied given their prominent roles as components 
of the translational machinery. A similar situation occurs with small nuclear RNAs 
(snRNAs) and small nucleolar RNAs (snoRNAs) given their essential role in splic-
ing. Over the last decade, great interest has arisen in a class of small regulatory 
ncRNAs that directly affect the expression and/or function of protein-coding genes, 
i.e., microRNAs (miRNAs). miRNAs were discovered in the early 1990s and since 
then represent the most extensively studied class of ncRNA. microRNAs display an 
average length of 22–24 nucleotides and are capable of interacting with the 3′ 
untranslated region of coding RNAs (mRNAs) eliciting blockage of protein transla-
tion and/or mRNA degradation [ 114 ]. Understanding of microRNA biogenesis has 
moved rapidly [ 115 ], whereas insights into the functional role of microRNAs are 
progressively emerging at a slower pace. Nonetheless, the functional relevance of 
distinct microRNAs in multiple aspects of cardiac development and diseases is now 
widely documented (see for recent reviews [ 116 – 118 ]). 

 Differential expression of microRNAs has been documented widely during 
embryonic [ 119 – 121 ], postnatal [ 122 ,  123 ], and the aging heart [ 124 ,  125 ] suggest-
ing a pivotal role for microRNAs during different stages of heart development. 
Similarly, investigators have reported impaired microRNA expression in a large vari-
ety of cardiovascular physiopathological conditions, such as hypertrophic and/or 
dilated cardiomyopathy [ 126 – 131 ], heart failure [ 132 – 134 ], atrial fi brillation [ 135 –
 139 ], and aortic aneurism [ 140 ]. The importance of microRNAs in congenital heart 
diseases is manifested by the embryonic defects observed in genetically engineered 
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mice. Conditional deletion of Dicer, an endonuclease required for the microRNA 
processing, with distinct Cre drivers, demonstrated the critical role of microRNA 
biogenesis in distinct temporal and tissue-specifi c contexts during cardiovascular 
development. Conditional ablation using an early cardiogenic deletor mouse strain 
( Nkx2-5-Cre  mice) led to embryonic lethality due to cardiac hypoplasia [ 141 ], 
whereas ablation with myocardial-specifi c Cre driver line  (αMHC-Cre ) resulted in 
outfl ow tract defects and impaired chamber formation [ 142 ]. More recently Singh 
et al. [ 143 ] demonstrated that Dicer deletion in pro-epicardial cells compromised 
cardiac vascular development. In addition, germline deletion of discrete microRNAs 
such as miR-1-2 resulted in ventricular septal defects and early embryonic lethality 
[ 141 ], whereas miR-126 deletion leads to embryonic lethality due to vascular leak-
age [ 144 ]. These studies highlight the importance of microRNA biology for congeni-
tal heart diseases. In this context, an increasing number of studies are providing the 
impaired microRNA signature of distinct congenital heart diseases [ 145 ], such as 
ventricular septal defects [ 146 ], tetralogy of Fallot [ 147 ], corrected transposition of 
great arteries [ 148 ], univentricular left hearts [ 149 ], bicuspid aortic valves [ 150 ], and 
DiGeorge syndrome [ 151 ]. These studies provide novel insights for the prospective 
use of microRNA signature as biomarkers of prenatal diagnosis [ 152 ,  153 ]. However, 
in most cases, the impaired regulatory networks modulated by these microRNAs 
remain to be fully elucidated. In the coming years, we shall see an explosion on the 
understanding and functional consequences of microRNA regulation, with great 
hopes as to their therapeutic potential, including pediatric cardiology [ 154 ]. 

 In addition to microRNAs, lncRNAs and circular RNAs are emerging also as post-
transcriptional modulators. lcnRNAs might undergo alternative splicing and in some 
cases, but not in others, can be polyadenylated. lncRNAs can be located within the 
nucleus but also can be found within the cytoplasm thus potentially exerting a large 
number of biological functions. lncRNAs have been reported in a wide range of func-
tions beyond posttranscriptional regulation such as cell cycle progression, differentia-
tion, apoptosis, structural or cellular traffi cking, as well as serving as precursors for 
smaller RNAs (see for a recent reviews [ 113 ,  154 – 156 ]). Differential expression of 
lncRNAs has been reported in the developing [ 157 – 159 ], adult [ 160 ] and aging [ 161 ] 
heart as well as in ventricular cardiac hypertrophy [ 161 ], heart failure [ 134 ], myocar-
dial infarction [ 162 ], and cardiac ischemia [ 163 ]. Interestingly, a pivotal role of 
 myheart  lcnRNA has been reported in the context of cardiac hypertrophy [ 164 ,  165 ]. 
Importantly, differentially expression of lcnRNAs also has been reported in hearts 
with congenital heart defects, such as ventricular septal defect [ 166 ] and tetralogy of 
Fallot [ 167 ]. Overall these data suggest a plausible role for lncRNAs in congenital 
heart diseases, and the fi rst evidences for this have recently been reported. Seminal 
works demonstrated that genetic deletion of  fendrr  and  braveheart , two cardiac 
enriched lncRNAs, respectively, leads to impaired cardiogenesis [ 168 ,  169 ]. On the 
other hand, understanding of the functional role of circular RNAs is very incipient, 
with yet some evidence that they can act as microRNA sponges [ 170 ,  171 ]. In the 
coming years, it is expected that unraveling the functional roles of lcnRNAs and cir-
cular RNAs will guide toward the understanding of the etiology of distinct cardiovas-
cular diseases, including there in congenital heart diseases.  
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    Conclusion 
 Posttranscriptional regulation is a complex process. This chapter has highlighted 
distinct processes that sequentially modify the nascent mRNA molecule into a 
mature form with, in many cases multiple distinct variants. It is important to 
emphasize that complex regulatory networks between these processes are well 
documented such as for the multiple roles of 5′ capping and 3′ polyadenylation 
in mRNA stabilization, elongation, and translation among others, but impor-
tantly emerging evidence demonstrates that microRNAs and lncRNAs also par-
ticipate in these intricately interlinked regulatory mechanisms [ 172 ], i.e., 
modulating alternative splicing [ 173 ]. Thus, we could foresee that in coming 
years, impaired posttranscriptional regulatory networks would be linked to dis-
tinct congenital heart diseases, as recently reported by Xu et al. [ 174 ].     
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