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       ONTOGENY VS PHYLOGENY 

 Despite Steinböck’s ( 1963 , p. 49) dismissive state-
ment that “ontogeny has only a very limited value 
for phylogenetic questions,” successful attempts to 
infer phylogenetic relationships from comparative 
information about the developmental schedules of 
animal species are numerous, beginning with two 
well-known, eighteenth- century examples. One is 
Thompson’s ( 1830 ) discovery of the crustacean 
nature of barnacles, based on his observation of 
nauplius larvae metamorphosing into sessile adults 
(see Vol. 4, Chapter   5    ) whose morphology devi-
ates so strongly from the arthropod ground plan 
that Linné ( 1758 ) placed  Lepas  (inclusive of bar-
nacles) in his Vermes Testacea (i.e., the shelled 
mollusks) rather than in his Insecta (a “class” 
broadly equivalent to present-day Arthropoda). 
The other example is Kowalewski’s ( 1866 ) discov-
ery of the affi nities between vertebrates and ascid-
ians, revealed by the presence of the notochord in 
the larva of the latter (Vol. 6, Chapter   4    ). This does 
not imply, however, that the relationships between 
ontogeny and phylogeny are always easy to dis-
cover or that these follow simple and perhaps uni-
versal principles such as Haeckel’s ( 1866 ) 
“biogenetic law.” Haeckel’s recapitulationist 
views, indeed, have never been again much in 
favor since Garstang ( 1922 ) demonstrated that 
many larval adaptations are recent and indepen-
dent; and a further strong blow to the theory was 
de Beer’s ( 1930 ,  1940 ) demonstration of the per-
vasiveness of heterochrony. However, new oppor-
tunities to extract phylogenetic information from 
ontogenetic data have been emerging since the 
advent of evolutionary developmental biology 
(Telford and Budd  2003 ; Cracraft  2005 ; Minelli 
 2007 ,  2009 ; Minelli et al.  2007 ).  

    EVOLUTIONARY DEVELOPMENTAL 
BIOLOGY 

 Evolutionary developmental biology, or 
EvoDevo, is one of the most active frontiers of 
the life sciences, despite the fuzzy defi nition of 
its scope and its sometimes problematic boundar-
ies in respect to the parent disciplines – evolu-

tionary biology and developmental biology. 
Comprehensive overviews of origins, aims, and 
methods of evolutionary developmental biology 
can be found in Hall ( 1998 ) and Hall and Olson 
( 2003 ); other useful book-size accounts, although 
more selective in their approach, are Wilkins 
( 2001 ), Minelli ( 2003a ), Carroll et al. ( 2005 ), and 
Minelli and Fusco ( 2008 ). 

 As one should expect for a newly established, 
or reestablished, fi eld of study, EvoDevo is still 
struggling to defi ne its own identity; short intro-
ductions to the internal debate have been pro-
vided by Arthur ( 2002 ) and Müller ( 2008 ). 

 Many researchers (e.g., Carroll et al.  2005 ) view 
EvoDevo essentially as comparative developmen-
tal genetics, that is, as the comparative study of the 
spatial and temporal expression patterns of genes 
controlling the establishment of body architecture: 
anterior-posterior and dorsoventral polarity; longi-
tudinal patterning of the main body axis; segmen-
tation, production, and patterning of appendages; 
and so on, down to details such as the differentia-
tion of eyespots on butterfl y wings or the rows of 
specialized bristles forming the sex combs on the 
forelegs of  Drosophila  males. This comparative 
approach to the study of gene expression pattern 
has produced the positive effect of rapidly increas-
ing the number of organisms used in the lab as 
model species. In turn, the expanding taxonomic 
coverage of these studies has helped generating 
results of potentially high relevance for phyloge-
netic research. At the level of the genetic mecha-
nisms controlling development, it has become 
meaningful, and operationally feasible, to address 
questions of homology between features of vastly 
divergent taxa. 

 Arguably, simply broadening the scope of com-
parison beyond the traditional bunch of model spe-
cies, such as  Caenorhabditis elegans ,  Drosophila 
melanogaster , and  Mus musculus , would hardly 
justify the recognition of a new, distinct discipline. 
EvoDevo, however, is characterized by a problem 
agenda that could not be satisfactorily fulfi lled 
within the premises of either evolutionary or 
developmental biology in isolation. This is true, 
for example, for the origin of evolutionary novel-
ties (Müller  1990 ; Müller and Wagner  1991 ,  2003 ; 
Wagner  2000 ,  2011 ; Galis  2001 ; Müller and 
Newman  2003 ,  2005 ; Minelli and Fusco  2005 ; 
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Love  2008 ; Moczek  2008 ; Pigliucci  2008 ; Shubin 
et al.  2009 ; Brigandt and Love  2010 ,  2012 ; Hall 
and Kerney  2012 ; Peterson and Müller  2013 ). The 
most discipline- specifi c problem addressed by 
EvoDevo is the nature and the properties of  evolv-
ability , defi ned by Hendrikse et al. ( 2007 ) as “the 
capacity of a developmental system to evolve.” 
This means that EvoDevo characteristically 
focuses on the  arrival  of the fi ttest rather than on 
the  survival  of the fi ttest. How far this shift of 
focus should be considered an extension, either 
marginal or substantial, of the evolutionary syn-
thesis paradigm, or a radical alternative to the 
same, is still a matter of dispute (e.g., Laubichler 
 2010 ; Minelli  2010 ; Pigliucci and Müller  2010 ), 
but this is not relevant to our subject. 

 To introduce, instead, an overview of the pos-
sible signifi cance of EvoDevo in the context of 
phylogenetic analysis, it is fair to repeat, at the 
outset, the comment made 10 years ago by Wiens 
et al. ( 2005 ) that up to now the overall contribu-
tion of EvoDevo to phylogenetics has been quite 
small. But this is arguably due to the limited 
awareness of EvoDevo by a large majority of 
phylogeneticists, and vice versa, rather than to 
the exiguity of the potential intersection between 
the two disciplines. Eventually discovering 
mutual foreignness between EvoDevo and phylo-
genetics would be ironic, indeed: let’s recall that 
Gould’s magisterial introduction to one of the 
roots of EvoDevo, namely, the study of heteroch-
rony, was published in 1977 under the title 
 Ontogeny and Phylogeny . There are instead sev-
eral important areas to which EvoDevo can con-
tribute to progress in phylogenetics. I will 
articulate these areas in the following sections, 
mainly taking examples from invertebrates.  

    RECAPITULATION VS CLADISTIC 
ASSESSMENTS OF CHARACTER 
POLARITY 

 In its earliest steps, long before getting its current 
name, EvoDevo contributed substantially to a 
critical revisitation of Haeckel’s recapitulation-
ism, the principle according to which ontogeny 
recapitulates phylogeny. As mentioned before, de 
Beer’s books ( 1930 ,  1940 ) dissected the possible 

relationship between ontogeny and phylogeny in 
such a way that these eventually revealed the 
wealth of alternative patterns, recapitulation 
being only one among several possible scenarios 
and, arguably, not necessarily the most common 
among them. De Beer’s analysis eventually 
resulted in the birth of the modern studies on het-
erochrony, especially after this area was popular-
ized by Gould’s ( 1977 ) book. 

 In the meantime, debates about the phyloge-
netic signal contained in ontogenetic sequences 
developed in cladistic circles. Some cladists, like 
Rieppel ( 1979 ), were critical of the independence 
of ontogenetic information from the morphologi-
cal data used in outgroup comparisons. Others, 
however, thought otherwise. 

 Among the criteria to be used for polarizing 
characters, i.e., to distinguish the plesiomorphic 
from the apomorphic state of a character, Hennig 
( 1966 ) had suggested ontogenetic character pre-
cedence. Somehow echoing Haeckel’s bioge-
netic principle, this criterion postulated that the 
derived character states are to be found in late 
developmental stages, whereas similarities shared 
at earlier stages are generally symplesiomorphies 
(shared primitive character states) that cannot 
be used to infer phylogenetic relationships. The 
ontogenetic character precedence was regarded 
by some authors (e.g., Fink  1982 ) as reliable as 
the outgroup comparison, whereas others (e.g., 
Kluge  1985 ) pointed to its lack of general appli-
cability and still others (e.g., Nelson  1978 ; de 
Queiroz  1985 ) suggested different reformulations 
of the principle, effectively taking distance from 
the original recapitulationist fl avor of Hennig’s 
principle. For example, Nelson ( 1978 , p. 327) 
reformulated the “biogenetic law” in the follow-
ing terms: “given an ontogenetic character trans-
formation, from a character observed to be more 
general to a character observed to be less general, 
the more general character is primitive and the less 
general advanced.” A different formulation was 
recently suggested by Martynov ( 2012 , p. 833) as 
the main principle of his  ontogenetic systematics , 
which should be based on “progressive (addition 
of stages and characters) or regressive (reduction 
of already existing stages and structures) modifi -
cation of ancestral taxon, the diagnosis of which 
corresponds to the model of its ontogenetic cycle.” 

1 EvoDevo and Its Signifi cance for Animal Evolution and Phylogeny
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 An unusual extension of the recapitulationist 
paradigm into the area of animal behavior has 
been recently proposed by Barrantes and 
Eberhard ( 2010 ) with a comparative study of the 
web-spinning behavior in spiders. These authors 
found that the design of the web spun by adults of 
three  Latrodectus  species is more divergent than 
the design of those spun by juveniles of the same 
species and more similar to those of young spi-
ders of the genus  Steatoda  than to those of the 
adult of the latter genus. 

 But let’s move to more explicit suggestions 
and recent examples of their application.  

    DEVELOPMENTAL GENES 
AND PHYLOGENETIC INFERENCE 

    Gene-Based Homology 

 The fi rst step toward a phylogenetic analysis is 
getting informative data. How can EvoDevo con-
tribute to fi lling a matrix? 

 The contribution of EvoDevo to the assess-
ment of homology is controversial (see Chapter 
  2    ). On the one hand, it is right from early works 
in what was still to be named EvoDevo that biolo-
gists realized that traits fi rmly regarded as homol-
ogous by comparative morphologists can have 
quite a different developmental origin. On the 
other hand, one of the most visible successes of 
EvoDevo has been the discovery that homolo-
gous genes are often involved in building equiva-
lent structures in the most disparate animals, 
although this equivalence has been generally 
regarded as nonhomologous by comparative 
morphologists. On homology, see Minelli and 
Fusco ( 2013 ), Wagner ( 2014 ), and Chapter   2     
herein.  

    The Genotype→Phenotype Map 

 One of the most far-reaching results of EvoDevo 
studies is the growing awareness of the complex-
ity (and, to a very large extent, unpredictability) 
of the genotype→phenotype map, that is, of the 
cascade of processes through which a given 

 phenotypic trait is controlled by the expression 
of a given gene (e.g., Alberch  1991 ; Altenberg 
 1995 ; Mezey et al.  2000 ; Kell  2002 ; West-
Eberhard  2003 ; Pigliucci  2010 ; Wagner and 
Zhang  2011 ). To put it in simple terms, this map-
ping is rarely, if ever, a one-to-one function (one 
gene→one phenotypic trait), but it is generally 
one-to-many (pleiotropy; e.g., Wagner and Zhang 
 2011 ,  2013 ; Paaby and Rockman  2013 ) or many-
to-one (convergence and or redundancy) and 
eventually many-to-many. 

 In  Drosophila , some 50 genes are the direct 
targets of transcription factors encoded by Hox 
genes (Pearson et al.  2005 ): some of these genes 
are involved in apoptosis and others in the control 
of cell cycle, cell motility, intercellular signaling, 
or cell adhesion (Davidson  2006 ), and there are 
hundreds of genes whose expression is down-
stream of the expression of one or more of the 
Hox genes (Mastick et al.  1995 ; Botas and 
Auwers  1996 ).  

    Convergence 

 A nice example of the intricacies of the 
genotype→phenotype map is the fact that the 
same genes can regulate the development of 
homologous structures through signifi cantly dif-
ferent cellular processes. A recently studied 
example is offered by the sex combs of male 
 Drosophila  species. The key regulatory genes 
involved in the production of these rows of spe-
cialized bristles are the same in the different spe-
cies that have been investigated, but the cellular 
mechanisms through which they operate are dif-
ferent, not only between members of different 
subgenera ( Sophophora  vs  Lordiphosa ) (Atallah 
et al.  2012 ) but also between quite closely related 
species that are classifi ed in the same subgenus 
( Sophophora : species of the  obscura  and  melano-
gaster  species groups; Barmina and Kopp  2007 ; 
Tanaka et al.  2009 ,  2011 ). 

 Developmental genes, Hox genes included, 
are as prone to convergence as morphological 
characters are. An example is offered by the 
mechanisms controlling leg repression in one of 
the body regions (abdomen or opisthosoma) of 
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some arthropod clades. In insects, the Hox genes 
 Ultrabithorax  ( Ubx ) and  abdominal-A  mediate 
leg repression, thus providing the most obvious 
difference between a leg-bearing thorax and a 
legless abdomen. Things are different in spiders, 
so far as the recent fi ndings of Khadjeh et al. 
( 2012 ) on  Achaearanea tepidariorum  will hold 
for the whole clade. Here, the gene  Antennapedia  
( Antp ) represses leg formation in the fi rst seg-
ment of the opisthosoma, whereas both  Antp  and 
 Ubx  show their (redundant) effect in repressing 
leg formation in the following segment.  

    From Gene Phylogeny to a Comparison 
of Gene Expression Patterns 

 Most of the total output of EvoDevo research has 
been a growing knowledge of the identity, 
sequence, patterns of expression, and relative 
position in developmental control cascades of 
“developmental genes,” i.e., of genes demonstra-
bly involved in the control of specifi c ontogenetic 
events or in the deployment of specifi c traits of 
body architecture. Among these genes are those 
involved in body segmentation and those (the 
Hox genes) that specify positions along the 
anterior- posterior body axis. Indeed, the discov-
ery of the high degree of conservation of these 
genes across the animal kingdom was one of the 
main successes that contributed to establishment 
of EvoDevo as a promising new biological 
discipline. 

 The potential phylogenetic signal contained in 
these genes can be studied at different levels, as 
shown here briefl y on the example of the Hox 
genes. 

 A fi rst level of analysis is the reconstruction of 
gene phylogeny, a necessary step, not only 
required to reveal duplications and thus to disen-
tangle orthologous from paralogous sequences 
but also to establish relationships between gene 
families that may evolve either in concert or in 
divergent manner and eventually to polarize gene 
changes. The literature on the phylogenetic rela-
tionships of Hox genes is extensive (e.g., Finnerty 
and Martindale  1998 ; Kourakis and Martindale 
 2000 ; Ferrier and Holland  2001 ; Ferrier and 

Minguillon  2003 ; Garcia-Fernàndez  2005a ,  b ; 
Duboule  2007 ; Ferrier  2007 ,  2010 ; Butts et al. 
 2008 ). A recent review by Holland ( 2012 ) high-
lights the phylogenetic relationships between the 
Hox family and other gene families also involved 
in development ( ParaHox ,  Evx ,  Dlx ,  En ,  NK4 , 
 NK3 ,  Msx , and  Nanog ), all together forming the 
ANTP class. 

 The second step is to use gene sequences to 
reconstruct the phylogeny of the organisms from 
which the sequences have been obtained. Will 
EvoDevo suggest to give preferences to selected 
gene families? In the past, several biologists 
looked at chromosome structure as at privileged 
morphological traits, insofar as chromosomes 
contain genes and genes are involved in deter-
mining the phenotype. In the same vein, some 
authors have looked at Hox genes – genes con-
trolling aspects of the overall body architecture – 
as to privileged genes, possibly carrying 
important phylogenetic signal. Of course, the 
phylogenetic information potentially carried by 
the highly conserved homeobox sequence (the 
“morphological signature” of this gene class) 
will be very different from the phylogenetic 
information potentially carried by the remaining 
of the molecule, especially by regions distant 
from the homeobox. Eventually, Hox gene 
sequences have been used in reconstructing the 
mutual relationships of bilaterian phyla (de Rosa 
et al.  1999 ; Balavoine et al.  2002 ; Hueber et al. 
 2013 ) or to investigate phylogeny within large 
phyla such as Arthropoda (Cook et al.  2001 ). 
Other studies have contributed to fi x affi nities, 
e.g., of bryozoans (ectoprocts) as lophotrochozo-
ans (Passamaneck and Halanych  2004 ). Apart 
from the Hox genes, specifi c signatures have 
been found in many other developmental genes. 
An example is provided by the  bone morphoge-
netic protein  genes, which are represented in all 
insects by  decapentaplegic  and  glass bottom boat  
( gbb ); a third gene,  screw  ( scw ), is found in 
 Drosophila melanogaster  and other fl ies, and 
recent comparative studies have placed the 
 gbb / scw  duplication in the interval between 
the origin of the Brachycera and the origin of the 
Cyclorrhapha, that is, between 200 and 150 Ma 
ago (Wotton et al.  2013 ). 

1 EvoDevo and Its Signifi cance for Animal Evolution and Phylogeny
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 The last step is to compare gene expression 
patterns in order to trace homologies, especially 
in cases where morphological evidence does not 
seem to allow a defi nitive assessment. This 
approach has been followed, for example, by 
Hughes and Kaufman ( 2002 ), Copf et al. ( 2003 ), 
and Angelini and Kaufman ( 2005 ) in comparing 
body regions of different arthropod groups and 
by Lichtneckert and Reichert ( 2005 ) in delineat-
ing homologies between vertebrate and arthro-
pod brains. Jager et al. ( 2006 ) (see also Manuel 
et al.  2006 ) used the expression patterns of Hox 
genes to align the anterior appendages of sea spi-
ders with those of other arthropods, thus yielding 
results that are in contrast with the morphological 
(neuroanatomical) evidence obtained by Maxmen 
et al. ( 2005 ). There are, however, examples of 
developmental genes whose expression patterns 
confi rm the homologies suggested by morphol-
ogy. One of these is  Brachyury  ( bra ): its expres-
sion in the notochord of chordates has been 
fi ttingly chosen by Ferrier ( 2011 ) as a good 
example of a homologous gene with a homolo-
gous function in a homologous morphological 
character, a far from marginal example, the pres-
ence of a notochord being an apomorphy of a 
phylum.  

    miRNA and Phylogeny 

 According to Wheeler et al. ( 2009 ), a substan-
tial increase in morphological complexity along 
the evolutionary history of metazoans is linked 
to a corresponding increase in the number and 
specifi city of action of miRNAs. The same 
authors stress the high phylogenetic value of 
these molecules, confi rm the previously estab-
lished (Hertel et al.  2006 ; Sempere et al.  2006 ; 
Prochnik et al.  2007 ) major expansion of the 
miRNA family at the base of the nephrozoan 
clade, and identify the presence of 34 miRNA 
families in the last common ancestor of proto-
stomes and deuterostomes, to the exclusion of 
acoels. A few  miRNAs have been discovered in 
sponges (Robinson et al.  2013 ) but none of these 
is shared with eumetazoans.  

    Conservation of Gene Function 
and Developmental System Drift 

 The value of detailed patterns of Hox gene 
expression as a base to establish homology of 
segments or positions along the main body axis 
has probably been overestimated (Abzhanov 
et al.  1999 ; Brenneis et al.  2008 ), because of the 
observable evolutionary shifts of the anterior 
boundary of expression of many Hox genes 
within arthropods, especially  Antennapedia , 
 Ultrabithorax ,  abdominal-A , and  abdominal-B  
(Hughes and Kaufman  2002 ). 

 Shifts corresponding to a positional inversion 
along the main body axis are very unlikely. 
Morphologically, the  fore wings of male strep-
sipterans (the females are wingless and mostly 
vermiform) are quite similar to the halteres of dip-
terans – their characteristically modifi ed  hind-
 wings. However, whatever the mechanisms 
specifying the peculiar structure of the strep-
sipteran forewings, it is quite unlikely that these 
evolved from the dipteran condition, through a 
“macromutation” switching the haltere specifi ca-
tion from the meta- to the mesothorax, in turn 
restoring the metathoracic wings to a more con-
ventional morphology. This unconventional 
hypothesis was suggested by Whiting and Wheeler 
( 1994 ) as a tentative EvoDevo counterpart of their 
phylogeny of holometabolous insects, in which 
the Strepsiptera turned out to be the sister group of 
the Diptera (for the putative Diptera+Strepsiptera 
monophylum, the name Halteria was also pro-
posed) (Whiting et al.  1997 ). The need to demon-
strate the actual occurrence of such a macromutation 
eventually vanished, as soon as subsequent phylo-
genetic analyses (e.g., Rokas et al.  1999 ; 
Wiegmann et al.  2009 ) refuted the monophyly of 
the Halteria, thus showing the independent evolu-
tion, in the two clades, of morphologically similar 
but positionally nonequivalent “halteres.”  

    Evolving Gene Functions 

 Comparative developmental genetics has 
revealed many examples of evolutionary changes 
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in gene function. For example,  fushi tarazu  and 
 oskar  may have initially functioned in the central 
nervous system but later became involved in the 
patterning of the early embryo, as seen today in 
 Drosophila  (Ewen-Campen et al.  2012 ; Heffer 
et al.  2013 ). The evolution of new functional 
roles has been documented to occur even if the 
phenotypic traits previously controlled by a gene 
are subjected to strong stabilizing selection; this 
is why the evolution of new functions in a lineage 
of orthologous genes (i.e., independent from 
gene duplications) has been called  developmental 
system drift  (DSD) (True and Haag  2001 ; Haag 
 2014 ). Even organs that are identical at the cel-
lular level, because they are produced through an 
identical cell lineage, can experience rapid 
DSD. This has been shown by Verster et al. 
( 2014 ) by comparing over 20 species of 
 Caenorhabditis  where functional divergence has 
been found in orthologous genes regulating sex 
determination, early embryonic patterning, vulva 
development, and excretory physiology. 

 The phylogenetically widespread involvement 
of  Pax6 / ey  homologs in eye morphogenesis (e.g., 
Halder et al.  1995 ; Tomarev et al.  1997 ; Glardon 
et al.  1998 ; Kmita-Cunisse et al.  1998 ; Chow 
et al.  1999 ; Pineda et al.  2000 ) has led to the 
hypothesis of a monophyletic origin of bilaterian 
eyes (e.g., Gehring and Ikeo  1999 ; Gehring 
 2000 ), contrary to a well-entrenched opinion, 
based on gross morphological differences 
between ciliary- and rhabdomeric-type eyes, sug-
gesting an at least diphyletic origin of eyes. More 
cautiously, Wagner ( 2001 ) suggested that ances-
trally  Pax-6  homologs may have been involved in 
initiating the development of light-sensitive epi-
thelia, eventually a key component of subse-
quently evolved eye types such as the compound 
eye of arthropods and the camera eye of squids, 
but the hypothesis of a monophyletic origin of 
the eye has been strongly rejected by others, 
among which Harris ( 1997 ) and Meyer-Rochow 
( 2000 ). In addition to the arguments provided by 
comparative morphology, Harris ( 1997 ) remarked 
that the expression of  Pax-6  is not restricted to 
the eyes. For example, in vertebrates this gene 
is also expressed in the nasal placodes, the 

 diencephalon, the latero-ventral hindbrain, and 
the spinal cord (Li et al.  1994 ; Amirthalingam 
et al.  1995 ). In  Drosophila , its homolog  ey  is also 
expressed in the brain and the ventral nerve cord, 
and in the squid,  Pax6  expression extends to the 
brain and the arms (Tomarev et al.  1997 ). Even 
more intriguing is the fact that  Pax6  homologs 
are also present in eyeless animals. In the nema-
todes, for example,  vab-3  is involved in the dif-
ferentiation of the cephalic body end and  mab-18  
is expressed in the precursors of peripheral sense 
organs (Chisholm and Horvitz  1995 ; Harris 
 1997 ). In the sea urchins, a  Pax6  homolog is 
expressed in the tube feet (Czerny and Busslinger 
 1995 ). Summing up,  Pax6  is likely a patterning 
gene, expressed in the head, which has been 
repeatedly involved (or, better, co-opted; see 
below) in the regulation of eye development. 

 Two arthropod genes of the Hox family have 
undergone dramatic functional changes. In 
selected branches of the arthropod tree, both of 
them have lost their original function as specifi -
ers of position along the main body axis. One of 
these genes is  fushi tarazu , which is involved in 
segmentation and, in insects only, in neurogene-
sis. The other gene is  zerknuellt  ( zen ), which is 
involved in dorsoventral patterning. In the 
Diptera, a duplication of  zen  has given rise to 
 bicoid , whose functional role has continued to 
evolve rapidly: in  Drosophila , it is required for 
the normal development of the head and thorax, 
and in the phorid  Megaselia abdita , it is addition-
ally required for the development of four abdom-
inal segments (Stauber et al.  2000 ).  

    Gene Regulatory Networks 
and Their Evolution 

 Eventually, following the rapidly increasing 
knowledge on gene control cascades, research 
focus has shifted from the evolution of individual 
genes, and of their expression, to the evolution of 
whole gene regulatory networks (Davidson  2006 ; 
see also Davidson et al.  2002 ,  2003 ; Davidson 
and Erwin  2006 ; see also Chapter   2    ). From the 
perspective of phylogenetic reconstruction, this 
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means moving from the limited evidence of 
homology provided by single genes, whose 
involvement in a given developmental process is 
prone to convergent evolution (multiple indepen-
dent co-option events), to the more robust evi-
dence provided by whole sets of functionally 
integrated genes (Ferrier  2011 ). 

 Comparative developmental genetics is able 
to reveal the intricate nature of gene networks 
such as those underlying the architectural design 
of the nervous system of bilaterians (Denes et al. 
 2007 ), the segmented body of arthropods (Dray 
et al.  2010 ), and the notochord of chordates 
(Kugler et al.  2011 ), a kind of synapomorphy 
packages for the corresponding clades. 

 Davidson ( 2006 ) described the developmental 
regulatory genome as something like a computer, 
with four classes of subcircuits: (i) batteries of 
genes involved in cell differentiation, (ii) little 
invariant subcircuits repeatedly involved in less 
specifi c functions, (iii) switches, and (iv) “ker-
nels,” complex and highly conserved networks 
responsible for specifying morphogenetic fi elds 
from which particular body parts arise. One of 
those kernels, for example, would be responsible 
for the specifi cation of the endoderm. Kernels 
would be most robust to change and are thus 
likely to be shared by distantly related clades. 
Davidson envisaged a phylogenetic hierarchy of 
regulatory networks, e.g., bilaterian kernels, pro-
tostome kernels, and ecdysozoan kernels. 

 However, selected parts of a gene regulatory 
network may show unequal rate of evolution. For 
example, within the gene regulatory network 
(GRN) controlling the specifi cation of endome-
soderm in nematodes, a preliminary analysis of 
genome sequences of  Haemonchus contortus  and 
 Brugia malayi  suggests that evolution is most 
rapid for some zygotic genes involved in the 
specifi cation of blastomere identity (Maduro 
 2006 ). 

 If we accept that development is controlled by 
GRNs, it follows that the evolution of develop-
ment and form is due to changes within GRNs 
(Carroll  2008 ), but this is arguably an excessive 
generalization. 

 An exceptional example of the evolvability of 
developmental gene networks has been revealed 
by Kugler et al. ( 2011 ) with a comparison of 

notochord development between the pelagic uro-
chordate  Oikopleura  and the ascidian  Ciona 
intestinalis  (Vol. 6, Chapter   4    ). In the latter, some 
50 genes are known to be activated downstream 
of  bra , but 24 of them do not have a homolog in 
the small, very compact genome of  Oikopleura . 
Some of the latter have undergone a lineage- 
specifi c duplication, but less than a half of them 
are apparently expressed in the context of noto-
chord formation. For an extensive discussion on 
gene regulatory networks and their bearings on 
character identity and evolution, see Chapter   2    .  

    Gene Loss and Character Loss 

 From the perspective of phylogenetic reconstruc-
tion, character loss is a frequent cause of 
problems. 

 In an important study of salamander phylog-
eny, Wiens et al. ( 2005 ) have shown the mislead-
ing effects of paedomorphosis on phylogenetic 
analysis, because of which a previous analysis by 
Gao and Shubin ( 2001 ), based on morphological 
data, had placed most paedomorphic families in a 
single clade. As demonstrated by the new analy-
sis, problems are not solved by simply excluding 
from the data matrix the characters suspected to 
be paedomorphic and by taking into account the 
parallel evolution of adaptive changes associated 
with the aquatic habitat typical of salamander lar-
vae generally and defi nitely retained in the pae-
domorphic lineages. A possibly more disturbing 
problem is the absence, in the paedomorphic lin-
eages, of those synapomorphies that in non- 
paedomorphic taxa develop at metamorphosis. 

 In respect to regressive changes, EvoDevo has 
much to offer beyond a conceptual framework, 
especially in those cases in which a regressive 
change is apparently due to gene loss. This has 
been tentatively suggested (Aboobaker and 
Blaxter  2003a ; Minelli  2009 ) as a possible expla-
nation for the relatively simple organization of 
the nematodes, compared to most ecdysozoans, 
which possibly correlates with a reduction in the 
number of Hox genes (which is coupled, how-
ever, with a very high rate of evolution of the sur-
viving members of this gene family; Aboobaker 
and Blaxter  2003b ). The most intriguing example 
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of a likely correlation between the loss of a gene 
and the loss of a body part is, however, the 
extreme reduction of the abdomen in the parasitic 
crustacean  Sacculina carcini , matched by the 
loss of the Hox gene  abdominal-A  (Blin et al. 
 2003 ; cf. Vol. 4, Chapter   5    ).  

    Gene and Gene Network Co-option vs 
Paramorphism 

 Since the last years of the past century, it has 
become fashionable to interpret major events in 
the evolution of the genetic control of develop-
ment in terms of  co-option  of individual genes or 
even of whole gene regulatory networks. Gene 
co-option would be usually dependent on previ-
ous gene duplication. Following the latter event, 
neofunctionalization of a duplicate gene would 
add a new trait to the phenotypic features under 
its control. Co-option, for example, would 
explain the evolution of arthropod and vertebrate 
appendages (Tabin et al.  1999 ). According to 
Pires-daSilva and Sommer ( 2003 ), all develop-
mental processes involved in the generation of 
new structures would necessarily depend on 
co-option. 

 However, we should probably advocate gene 
co-option only when an existing gene gets a new 
role in a developmental process in which it was 
not previously involved or in a body part where it 
was previously not expressed, only when the 
developmental process or the body part with 
which it now becomes involved was already in 
existence (Minelli  2009 ). This is the case of the 
wing eye spots of many butterfl ies, which are 
centered on a group of  Distal-less -expressing 
cells (Carroll et al.  1994 ).  Distal-less  has a much 
older and phylogenetically much more general 
role in animal development, as an early marker of 
the sites where appendages will form, including 
insect legs, “polychaete” parapodia, vertebrate 
limbs, and sea urchin podia (Panganiban et al. 
 1997 ). In butterfl ies,  Distal-less  has been co- 
opted to mark the position of new “virtual axes,” 
but the presence of wings does not depend on this 
novel expression of the gene. 

 The concept of co-option does not apply, how-
ever, when a novel pattern of expression of a 

gene, or of a whole gene regulative network, 
coincides with the origin of a new body part. It is 
possible, indeed, that the evolving phenotypic 
outcome of that gene’s expression is a story of 
exaptation rather than one of co-option. This is 
arguably the case of  nanos , originally a determi-
nant of the posterior end of the trunk (cf. 
Rabinowitz et al.  2008 ), subsequently turned into 
a specifi er of germ cell identity, and also of  Pax6 , 
perhaps exapted from pigment specifi er to speci-
fi er of the eye (Kozmik  2005 ). 

 Genes involved in patterning the main body 
axis may have also a role in the proximo-distal 
patterning of appendages. This secondary expres-
sion is unlikely the result of co-option of these 
genes’ function in patterning a new body feature 
(the appendage) that supposedly evolved prior to, 
and independent of, these genes’ expression. If, 
on the contrary, this new gene expression evolved 
together with the origin of the appendage, this 
would be a case of paramorphism (Minelli  2000 ). 
With time, the patterning role of these genes in the 
appendage will likely diverge from the corre-
sponding role in the trunk; nevertheless the 
appendage is likely to behave like a duplicate of 
the main body axis and thus to retain some char-
acteristic traits of the latter. This may explain why 
the appendages of segmented animals are fre-
quently segmented, while those of unsegmented 
animals never are. If we accept the hypothesis of 
axis paramorphism, we shall perhaps revise some 
popular interpretation of character polarity. 

 For example, is the arthropod (fi rst) antenna a 
specialized leg, or vice versa? Dong et al. ( 2001 ) 
favored the antenna-fi rst hypothesis, whereas 
Casares and Mann ( 1998 ) initially supported the 
“leg-fi rst” hypothesis, but in a later paper 
(Casares and Mann  2001 ) they accepted that the 
appendages may have been already different (and 
segmented) since their very fi rst expression. 
However, if the relationship between the (seg-
mented) appendages and the (also segmented) 
main body axis of arthropods is one of paramor-
phism, the whole question of the primacy of the 
leg versus the antenna would become meaning-
less (Minelli  2003b ; Minelli and Fusco  2005 ), 
and no scheme of character transition from one 
form to the other would be applicable (Minelli 
et al.  2007 ).   
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    SEGMENTATION: GENES 
AND BILATERIAN PHYLOGENY 

 The fi rst suggestion that arthropod and annelid 
segmentation may have evolved independently, 
thus shaking the solidity of one of the oldest “sup-
raphyletic” assemblages – the one closely corre-
sponding to Cuvier’s ( 1812 ) old  embranchement  
of the Articulata – was based on rudimentary 
EvoDevo arguments (Minelli and Bortoletto 
 1988 ). Shortly thereafter, the Articulata hypothe-
sis was rejected by a phylogenetic analysis based 
on a for the time extensive matrix of morphologi-
cal data (Eernisse et al.  1992 ). Eventually, a 
molecular analysis (Aguinaldo et al.  1997 ) con-
fi rmed the lack of close affi nities between arthro-
pods and annelids and revealed the existence of a 
clade of molting animals, segmented and unseg-
mented, which received the now popular name 
Ecdysozoa. 

 In the following years, the Articulata vs 
Ecdysozoa debate (e.g., Schmidt-Rhaesa et al. 
 1998 ; Wägele et al.  1999 ; Zrzavý  2001 ; Scholtz 
 2002 ,  2003 ; Giribet  2003 ; Nielsen  2003a ,  b ; 
Schmidt-Rhaesa  2004 ,  2006 ; Pilato et al.  2005 ; 
Ivanova-Kazas  2013 ) was mostly centered on 
steadily revised interpretations of morphological 
evidence (including descriptive embryology), in 
the light of a growing set of phylogenetic analy-
ses. The need of a contribution from EvoDevo, 
however, became increasingly important, insofar 
as a growing detail of segmentation processes 
was understood at the level of gene expression, in 
a few model organisms at least. It became thus 
critically important to determine what compara-
tive developmental genetics could say about the 
single or multiple origin of segmentation. 
Eventually, the newly emerging phylogeny (e.g., 
Adoutte et al.  2000 ; Halanych  2004 ; Bourlat 
et al.  2008 ; Dunn et al.  2008 ; Telford and 
Littlewood  2009 ; Edgecombe et al.  2011 ; Mallatt 
et al.  2012 ), strongly based on molecular evi-
dence, provided a background against which the 
problem of the evolution of segmentation could 
be framed in the following alternative terms: (i) 
segmentation evolved before the split between 
Ecdysozoa and Lophotrochozoa and perhaps 

even before the split between Protostomia and 
Deuterostomia, i.e., essentially, at the base of the 
Bilateria – if so, segmentation would have been 
secondarily lost several times – or (ii) segmenta-
tion evolved independently in the arthropod, 
annelid, and vertebrate lineages, from unseg-
mented ancestors, which were also the last com-
mon ancestor of all Bilateria and the last common 
ancestor of Ecdysozoa and Lophotrochozoa. 

 Discussions about the mono- vs polyphy-
letic origin of segmentation are far from settled. 
Comparative studies of the genetic control of seg-
mentation have played an increasing role in the 
dispute. In the 1980s, the presence of regularly 
spaced stripes of  engrailed  ( en ) expression along 
the elongating main axis of the embryo emerged 
as a potentially reliable proof in favor of a seg-
mentation mechanism shared by all  segmented 
metazoans. In arthropods, indeed,  en  is expressed 
in transversal rows of cells immediately ante-
rior to the future segmental margin. It is also 
expressed in a series of transversal stripes in the 
embryos of leeches, polyplacophoran mollusks, 
onychophorans, as well as in amphioxus and in 
the vertebrates (Jacobs et al.  2000 ). This does not 
mean, however, that in all these metazoans  en  is 
actually involved in segmentation. In  Drosophila , 
 en  expression is limited to the ectoderm, where 
it marks compartment boundaries, besides being 
involved in the patterning of the nervous sys-
tem. In the leech, its expression extends to the 
mesoderm but in the ectodermal derivatives it 
is not involved in patterning the nervous system 
into segmental units (Shankland  2003 ). Besides 
these spatial (germ layer or tissue level) differ-
ences,  en  expression is also diverse temporally. 
In vertebrates,  en  homologs are expressed in the 
segmental mesodermal units (somites), but only 
after these are formed (Holland and Holland 
 1998 ). Moreover, homologs of  en  are present 
and expressed during the embryonic develop-
ment, also in non-segmented animals such as 
mollusks ( Patella : Nederbragt et al.  2002 ; Vol. 2, 
Chapter   7    ). In a variety of segmented and unseg-
mented animals including arthropods, annelids, 
mollusks, and echinoderms, the ectodermal 
expression of  en  is associated with skeletal devel-
opment (Jacobs et al.  2000 ). In polychaetes,  en  
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is regularly expressed in the chaetal sacs (Seaver 
et al.  2001 ). In mollusks,  en - expressing  cells 
surround the ectodermal cells producing shell 
material (Moshel et al.  1998 ; Wanninger and 
Haszprunar  2001 ). In ophiuroid echinoderms, 
 en -expressing ectodermal cells delimit the areas 
where the ossicles are produced (Lowe and Wray 
 1997 ). It is thus quite possible that the associa-
tion of segmentation with  en  expression is only 
an indirect one rather than evidence of a common 
origin of segmentation. 

 More recently, the idea of a single origin of 
segmentation in bilaterians has been fl oated 
anew, based on the common involvement, shared 
between arthropods and vertebrates, of a peri-
odic, oscillatory behavior in the expression of 
genes involved in the Notch/Delta signaling path-
way (Stollewerk et al.  2003 ). To be more precise, 
this oscillating behavior is now fi rmly established 
as central to the segmentation process in verte-
brates (e.g., Jiang et al.  2000 ; Holley et al.  2002 ; 
Mara et al.  2007 ; Özbudak and Lewis  2008 ; 
Lewis et al.  2009 ; Oates et al.  2012 ). In annelids, 
there is some positive evidence for the involve-
ment of Notch signaling in segmentation in the 
leech  Helobdella robusta  (Rivera and Weisblat 
 2009 ), but not in the polychaete  Capitella  sp. 1 
(Thamm and Seaver  2008 ). In arthropods, where 
it has been detected in several lineages (e.g., in 
the spider  Cupiennius salei : Stollewerk et al. 
 2003 ; the cockroach  Periplaneta americana : 
Pueyo et al.  2008 ; the fl our beetle  Tribolium : 
Sarrazin et al.  2012 ), this mechanism does not 
seem to be universally present or, at least, univer-
sally required for segmentation (Kainz et al. 
 2011 :  Gryllus ), but this condition might well be 
secondary. However, the recent discovery of 
oscillatory transcription in  Arabidopsis , with pat-
terning effect on the positioning of the lateral 
root primordia (Moreno-Risueno et al.  2010 ), 
suggests that a “segmentation clock” is a general 
principle governing patterning in growing tis-
sues, but this also suggests its multiple evolution 
in multicellulars (Richmond and Oates  2012 ); 
even among the metazoans, it has possibly 
evolved multiple times through the parallel co- 
option of ancestral gene regulatory networks 
(Chipman  2010 ).  

    RETHINKING EMBRYOLOGICAL 
EVIDENCE OF PHYLOGENETIC 
RELATIONSHIPS 

    The Phylogenetic Signal of 
Cleavage Patterns 

 Acoels (Chapter   9    ) are characterized by duet spi-
ral cleavage; hydrozoans and other cnidarians 
(Chapter   6    ) have variable (Beklemishev  1963 ), 
unstable cleavage patterns, but this character is 
not easily coded in a matrix. 

 Synapomorphies of annelids, mollusks, ento-
procts, nemerteans, and rhabditophorans are 
quite likely their quartet spiral cleavage, with 
the typical orientation of the mitotic spindles 
during the earliest mitoses and their character-
istic cell lineage (reviewed in Nielsen  2008 ; cf. 
Vol. 2, Chapters   3    ,   6    ,   7    ,   8    , and   9    ). The phyloge-
netic value of sharing spiral cleavage is likely 
strengthened by the low probability of multiple 
independent transitions to such an idiosyncratic 
cleavage pattern. The opposite transition (spiral 
to radial cleavage) is possibly quite easier, as 
shown by the coexistence of both patterns in a 
member of an otherwise typical spiralian group, 
the Rhabditophora. At the eight-cell stage, some 
embryos of the lecithoepitheliate  Prorhynchus 
stagnalis  have eight blastomeres of equal size, 
but others have four macromeres and four micro-
meres, as in radial and spiral cleavage, respec-
tively (Steinböck and Ausserhofer  1950 ).  

    Germ Layer Homology 

 Rather than on objective morphological or molecu-
lar evidence, germ layers have being often identi-
fi ed in terms of their prospective fate. This 
theory-laden approach (Hall  1998 ) has invited 
comparisons even between embryos with clearly 
distinguishable germ layers as individualized cell 
sheets and embryos where germ layers are not dis-
tinguishable as morphological units. As a conse-
quence, what had been called germ layers became 
the initial pools of cells eventually fated to produce 
specifi c tissues or organ systems rather than objec-
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tively recognizable morphological units in the 
embryo before organogenesis. Eventually, how-
ever, comparative developmental genetics has led 
to the identifi cation of genes selectively expressed 
in one or the other of the germ layers, thus suggest-
ing a more objective criterion upon which to com-
pare features of embryos with morphologically 
identifi able germ layers with those without. For 
example, in their effort to homologize endomeso-
derm across eumetazoans – diplo- as well as triplo-
blastic ones – Technau and Scholz ( 2003 ) have 
focused on  GATA 4-6 ,  twist ,  snail , and  brachyury . 

 Interestingly, endoderm-specifi c genes have 
been found in  Caenorhabditis elegans , where the 
distinct germ “layers” are not discernible, due to 
the very small total number of cells in the embryo 
(Maduro and Rothman  2002 ). Other genes, such 
as  snail  and  twist , are characteristically expressed 
in the mesoderm. Eventually, a  snail  homolog 
has been found in the coral  Acropora millepora  
(Hayward et al.  2004 ) and in the sea anemone 
 Nematostella vectensis  (Martindale et al.  2004 ), 
where it arguably contributes to the specifi cation 
of the endoderm in respect to the ectoderm (Ball 
et al.  2004 ; Martindale et al.  2004 ; Chapter   6    ). 
A  twist  homolog has been found in the hydrozoan 
 Podocoryne carnea  (Spring et al.  2000 ). This is 
potentially of interest in respect to the repeatedly 
fl oated question of the possible presence of 
mesoderm in the Cnidaria, which are tradition-
ally described as diploblastic (but see Boero et al. 
 1998 ; Seipel and Schmid  2005 ,  2006 ; Burton 
 2008 ; Chapter   6    ). 

 Persisting diffi culties in fi nding reliable 
homologies between cnidarian germ layers and 
those of bilaterians are deepened by the diverse 
behavior of hydrozoans, whose germ cells gener-
ally differentiate from ectodermal interstitial 
cells, but in  Protohydra  and  Boreohydra , germ 
cells originate instead from the endoderm (Van de 
Vyver  1993 ). Moreover, nervous cells originate 
from the endoderm in the hydrozoan  Phialidium 
gregarium  (Thomas et al.  1987 ) but from the ecto-
derm in scyphozoans (Nielsen  2001 ). Problems, 
however, are not restricted to Cnidaria. Malpighian 
tubules are ectodermal in insects but endodermal 
in chelicerates, and in tardigrades the midgut is of 
mesodermal origin (Kristensen  2003 ) rather than 
endodermal, as it would be expected to be.   

    PRIMARY VS SECONDARY LARVAE 

 Among the synapomorphies of clades such as the 
Holometabola among the Insecta and the 
Epimorpha among the Chilopoda are characters 
of their postembryonic development, holometab-
oly (“complete metamorphosis”), and epimor-
phosis (postembryonic development without 
addition of segments or appendages). Other 
“higher” taxa have been tentatively characterized 
by the presence of specifi c larval types, e.g., the 
trochophore or the tornaria. Larval morphology 
is however liable to profound and even rapid 
change, up to complete disappearance. EvoDevo 
can thus offer a valuable contribution to phyloge-
netics, insofar as it can provide reliable scenarios 
of the evolvability of larvae and determine the 
degree to which larval and adult traits can actu-
ally evolve independently – a property likely to 
be different in different major clades of 
metazoans. 

 Quite long ago, Steinböck ( 1963 ) argued that 
the phylogenetic signifi cance of the larvae has 
been considerably overestimated. Today, in the 
context of cladistic methods and language, we 
can say that even coding larval characters in 
matrices intended for the reconstruction of 
“higher” group relationships is fraught with 
problems. First, we have not even a satisfactory 
defi nition of larva (for a discussion, see Minelli 
 2009 ). Second, across the metazoans, larvae cer-
tainly evolved several times. Third, the widely 
accepted distinction between primary and sec-
ondary larvae is far from obvious and perhaps 
unwarranted. This is briefl y discussed here. 

 When proposing a distinction between pri-
mary and secondary larvae, it is necessary to 
specify the node(s) of the phylogenetic tree cor-
responding to ground plans we credit with pos-
sessing either larval type. In the literature it 
seems often to be implicitly accepted that the last 
common ancestor of all recent metazoans, the 
Urbilateria, was an indirect developer. This does 
not rule out, however, the possibility that some 
clades re-evolved a secondary larva after having 
lost the primary one. 

 According to the phylogenetic scenario pro-
posed by (Davidson  1991 ; see also Peterson et al. 
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 1997 ; Cameron et al.  1998 ; Peterson and 
Davidson  2000 ), ancestral bilaterians would have 
lacked the later evolved genetic circuitry respon-
sible for the complex body structure of their 
modern descendants. Their simpler genetic net-
works were only capable to produce little animals 
with a bodily organization directly comparable to 
that of the larva of many living invertebrates. In 
this scenario, the modern bilaterian adult is inter-
preted as an evolutionary novelty, a terminal 
addition grafted onto the original body plan, 
which is eventually conserved in the larva. As a 
consequence, larvae such as the trochophore and 
the tornaria would be primary because they 
would be older and recapitulative in respect to the 
corresponding adults. An often implied corollary 
is their supposed monophyletic origin. 

 However, there are problems with phylogeny 
(Valentine et al.  1999 ; Jenner  2000 ; Sly et al. 
 2003 ). Mollusk veligers are probably homoplas-
tic (Ponder and Lindberg  1997 ; Waller  1998 ; 
Lindberg et al.  2004 ). Transitions from one larval 
type to another are frequent and often reversible. 
Planktotrophic larvae corresponding to the “pri-
mary” larva of Davidson and others are often lost 
and acquired again (Haszprunar et al.  1995 ; 
McEdward and Janies  1997 ; McHugh and Rouse 
 1998 ). Independent transition from planktonic to 
non-planktonic larvae occurred many times even 
within one genus, as in the case of  Conus  (Duda 
and Palumbi  1999 ). 

 The opposite idea that all larvae are secondary 
has been championed by many authors (e.g., 
Garstang  1922 ; de Beer  1954 ; Hadži  1955 ; 
Steinböck  1963 ; Conway Morris  1998 ; Valentine 
and Collins  2000 ; Collins and Valentine  2001 ; 
Hadfi eld et al.  2001 ), although often without a 
precise reference to a specifi c node in the meta-
zoan tree. 

 The most serious diffi culty with Davidson’s 
scenario is the implied polyphyletic origin of the 
“zootype,” that is, of the anterior-posterior pat-
terning of the main axis of the bilaterians con-
trolled by the Hox genes (Slack et al.  1993 ). 
Nothing like a zootype organization is found in 
any of the putative “primary” larvae. For exam-
ple, in the pluteus of the sea urchin 
 Strongylocentrotus purpuratus , Hox gene expres-
sion is limited to the adult rudiment (Arenas- 

Mena et al.  2000 ). Similarly, in the trochophore 
of the polychaete  Chaetopterus , Hox gene 
expression is limited to future adult tissues, while 
it does not show up in any of the larval structures 
that are fated to disappear at metamorphosis 
(Peterson et al.  2000 ). Things are broadly similar 
in other polychaetes, although in the late trocho-
phore of  Platynereis dumerilii ,  Hox1  is expressed 
in the apical tuft cells (Kulakova et al.  2007 ). 

 Nielsen ( 2003a ,  b ) regarded the lack of Hox 
gene expression in these larvae as an argument in 
favor of their primary nature. However, it is also 
possible (Minelli  2009 ) that the anterior- posterior 
patterning of the main body axis is a very old fea-
ture. If so, the lack of Hox gene expression in the 
larval tissues may indicate that the larva has been 
secondarily intercalated in the developmental 
schedule, in correspondence to an early develop-
mental phase where Hox genes were still silent. 
We should not rule out, however, that other larvae 
may correspond to a later, Hox-expressing devel-
opmental phase. Let’s remark in this context that 
trochophore-like larvae may have evolved repeat-
edly (Haszprunar et al.  1995 ).  

    TEMPO AND MODE IN EVOLUTION 

    Heterochrony in Phylogenetics: Noise 
or Data? 

 From the perspective of Haeckelian recapitula-
tion, heterochrony is exception to the rule; in 
inferring phylogeny from ontogeny, it turns 
straight into noise. Indeed, it was right by show-
ing the pervasiveness of heterochrony throughout 
the animal kingdom that de Beer, as mentioned 
before, was able to refute the “biogenetic law.” 
However, de Beer was also able to provide a fi rst 
classifi cation of the possible kinds of change in 
ontogenetic sequences, thus remotely introduc-
ing two ideas that could be subsequently exploited 
in phylogenetics. 

 On the one side, de Beer’s analysis suggested 
at least some degree of modularity of ontogenetic 
sequences. Anticipation, postponement, and 
changes in relative speed can only be predicated 
of “units,” be these individual developmental 
processes or individual developmental stages. 
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This could suggest that homologs of which we 
can trace the evolution are not necessarily the 
organs – more generally, the structural features – 
of adult animals but perhaps also those of earlier 
stages or, better, (i) ontogenetic stages as such 
(e.g., the gastrula or the germband stage in arthro-
pod embryonic development) and (ii) develop-
mental processes as such (e.g., gastrulation, or a 
particular sequence of cell lineage). 

 On the other hand, the very possibility to clas-
sify heterochronies could invite a search for the 
phylogenetic signal possibly present in heteroch-
ronies as such. Patterns of heterochrony may con-
tain useful phylogenetic signal, as demonstrated 
by, e.g., Guralnick and Lindberg ( 2001 ), who pro-
duced a phylogenetic tree of several lophotrocho-
zoan taxa based on the timing of cell lineage 
events and found that the phylogenetic hypothesis 
thus obtained replicated patterns found in more 
traditional analyses. In another study, patterns of 
heterochrony in the developmental sequences of 
Branchiopoda were used to identify the origin of 
Cladocera (Fritsch et al.  2013 ).  

    Growth Heterochrony vs Sequence 
Heterochrony 

 At the beginning of this century, a decisive 
enhancement of the use of heterochrony as a 
source of data for phylogenetic reconstruction 
was obtained following a shift of focus from 
growth heterochrony to sequence heterochrony, 
to use a terminology introduced by Smith ( 2001 ). 
Virtually all of the traditional literature on heter-
ochrony (e.g., Gould  1977 ; Alberch et al.  1979 ; 
McNamara  1986 ,  1995 ; McKinney  1988 ; 
McKinney and McNamara  1991 ) refers to  growth 
heterochrony , i.e., to developmental changes in 
size and shape relationships. 

 However, many interesting evolutionary 
changes in developmental schedules are not 
changes in either size or shape. This is why Smith 
( 1996 ,  2001 ,  2002 ,  2003 ) and Velhagen ( 1997 ) 
have suggested a different approach, termed 
 sequence heterochrony , in which heterochrony is 
identifi ed in the changes in the position of a 
developmental event relative to other events in 

the same ontogenetic sequence. Several tech-
niques have been proposed to analyze sequence 
heterochronies. Any two events A and B in a 
developmental sequence occur in one of the fol-
lowing orders: (i) A occurs before B, (ii) A and B 
are simultaneous, or (iii) A occurs after B. These 
timing relationships, or event pairs, are given a 
numerical score. Data are thus assembled in a 
matrix that can be analyzed under maximum 
 parsimony. In these efforts, the major problem to 
be addressed is how to dissect ontogeny into rea-
sonably independent units, as required by a cla-
distic analysis. This diffi culty was acknowledged 
since the earliest studies in this area (e.g., 
Velhagen  1997 ; Bininda-Emonds et al.  2002 ). 
Schulmeister and Wheeler ( 2004 ) remarked that 
the optimization of developmental event 
sequences on a given cladogram based on event 
pairing may lead to unacceptable results because 
event pairing treats interdependent features as if 
they were independent. To overcome this prob-
lem, they suggested a method of character opti-
mization treating the entire developmental 
sequence as a single character and aiming to 
determine the transformation cost between pairs 
of character states. Parsimov, another method for 
examining heterochronies in a phylogenetic 
framework, was introduced by Jeffery et al. 
( 2005 ). In this parsimony-based method, the least 
number of event displacements (heterochronies) 
that explains all the observed event-pair changes 
is identifi ed for each branch of the tree, thus 
eventually obtaining all alternative, equally parsi-
monious explanations, out of which a consensus 
is derived that contains the developmental 
changes that form part of every equally most par-
simonious explanation.  

    Hot Points of Change Along 
the Developmental Schedule 

 One of the reasons to abandon von Baer’s ( 1828 ) 
scenario of morphological divergence regularly 
increasing with the embryos progressing along 
their developmental trajectory and Haeckel’s 
recapitulationist view according to which the 
evolutionary novelties are essentially terminal 
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additions to the largely invariant earlier develop-
mental stages is the fact that some developmental 
stages are more conservative (or more variable) 
than others, although not in a monotonic relation-
ship with developmental age. 

 It is now fashionable to describe embryonic 
development in terms of the so-called hourglass 
model, to signify that the earliest stages (espe-
cially, but not exclusively, those under exclusive 
or prevailing control of maternal genes) are more 
extensively and easily divergent than later embry-
onic stages (Duboule  1994 ; Raff  1996 ; Hall 
 1997 ; Galis and Metz  2001 ). From initially dif-
ferent starting points (fi rst discussed for insects 
by Sander  1976 ), developmental trajectories con-
verge toward a much more conserved stage, often 
recognizable as characteristic for an individual 
phylum, which is called the phylotypic stage 
(Sander  1983 ) or at least a largely conserved seg-
ment of the developmental trajectory that has 
been termed the phylotypic period (Richardson 
et al.  1997 ). As expected, gene expression is 
maximally conserved around the phylotypic 
period ( Drosophila : Kalinka et al.  2010 ). 

 Early-stage divergence, especially between 
closely related species, is often a direct conse-
quence of the different amount of yolk stored in 
the female gamete during oogenesis; for example, 
thus is the case of two sea urchin species, the leci-
thotrophic  Heliocidaris erythrogramma  and the 
planktotrophic  H. tuberculata  (e.g., Parks et al. 
 1988 ; Wray and Raff  1991 ; Henry et al.  1992 ). 
More interesting, however, are other examples of 
early-stage divergence that cannot be explained in 
such a simple “mechanistic” way. The most dra-
matic case is the nematodes, among which the 
pattern of cleavage, the spatial arrangement, and 
the differentiation of cells have diverged dramati-
cally during the history of the phylum, without 
producing corresponding changes in the adult 
phenotype (Schierenberg and Schulze  2008 ; 
Schulze and Schierenberg  2011 ). 

 Early divergence is sometimes noticeable 
even at intraspecifi c level, as shown by Tills et al. 
( 2011 ) for the pond snail  Radix balthica . 

 Heterochrony is not limited to the embryonic 
segment of the developmental schedule, but its 
occurrence along the postembryonic develop-

ment is not frequently studied and is still less 
used to infer phylogenetic relationship. A prom-
ising example is the crustacean genus  Niphargus : 
a preliminary study by Fišer et al. ( 2008 ) has 
revealed extensive sequence heterochrony along 
the postembryonic development, independence 
between events being more pronounced in mid- 
aged instars.  

    Saltational Evolution 
and Discontinuous Variation 

 Continuous variation is notoriously diffi cult to 
handle when we are confronted with the problem 
of partitioning it into bins to be differently coded 
in a data matrix used in a phylogenetic analysis. 
However, from the perspective of evolutionary 
change, continuous variation fi ts well within a 
gradualistic neo-Darwinian paradigm. The oppo-
site is true when the observed character states are 
widely separated. In this case, there is no prob-
lem in partitioning our set into unambiguously 
distinct classes (unless the differences are so big 
that we may have problems recognizing two 
states as homologous). However, from an evolu-
tionary point of view, we would not expect 
closely related taxa to be separated by an appar-
ently unbridgeable gap. In other terms, we do not 
expect evolution to be saltational. However, this 
expectation is due for revision, in the light of 
facts that are possibly intractable in a traditional 
evolutionary scenario, but may become reason-
able in the light of EvoDevo. 

 Major phenotypic differences may not nec-
essarily depend on major changes or even rear-
rangements, at the genetic or genomic level. As 
mentioned above, the genotype→phenotype map 
is not necessarily simple or obvious, and a single 
instance of saltational evolution may require a 
reassessment of the phylogenetic signal carried 
by a given character. For example, the pres-
ence of 21 or 23 pairs of legs in the adult was 
long regarded as a reliable synapomorphy of the 
Scolopendromorpha, the other “higher” clades 
among the Chilopoda having instead either 
15 (Scutigeromorpha, Craterostigmomorpha, 
Lithobiomorpha) or at least 27 (Geophilomorpha) 
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pairs of legs. Recently, a scolopendromorph 
species with either 39 or 43 pairs of legs has 
been described (Chagas et al.  2008 ). What most 
matters (Minelli et al.  2009 ) besides the obvious 
need to reformulate the diagnosis of the clade 
Scolopendromorpha is that the newly discovered 
species ( Scolopendropsis duplicata ) is not the 
sister group to all remaining scolopendromorphs, 
or at least to a substantial subclade within them, 
but a very close relative of a “normal” species 
( Scolopendropsis bahiensis ), to the same genus 
of which it has been thus assigned. The nature of 
the change in developmental mechanisms that in 
this case has broken a long entrenched phenotypic 
stability (the Carboniferous  Mazoscolopendra  
had 21 pairs of legs; Mundel  1979 ) is not known, 
but it is not diffi cult to hypothesize a point muta-
tion potentially responsible for this one-shot 
duplication of segment number. 

 Patterns of “saltational” variation are perhaps 
less rare than our gradualistic tradition has thus 
far invited to expect. EvoDevo is the obvious tool 
for accommodating them within our growing 
hypotheses of phylogenetic relationships.      
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